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Résumé

Une vidéo est une source particulièrement riche en informations. Parmi
tous les objets que nous pouvons y trouver, les visages humains sont as-
surément les plus saillants, ceux qui attirent le plus l’attention des spec-
tateurs. Considérons une séquence vidéo dont chaque trame contient un
ou plusieurs visages en mouvement. Ils peuvent appartenir à des person-
nes connues ou qui apparaissent de manière récurrente dans la vidéo Cette
thèse a pour but de créer une méthodologie afin d’extraire une ou plusieurs
images de visage en vue d’appliquer, par la suite, un algorithme de recon-
naissance du visage. La principale hypothèse de cette thèse réside dans le
fait que certains exemplaires d’un visage sont meilleurs que d’autres en vue
de sa reconnaissance. Un visage est un objet 3D non rigide projeté sur un
plan pour obtenir une image. Ainsi, en fonction de la position relative de
l’objectif par rapport au visage, l’apparence de ce dernier change.

Considérant les études sur la reconnaissance de visages, on peut sup-
poser que les exemplaires d’un visage, les mieux reconnus sont ceux de
face. Afin d’extraire les exemplaires les plus frontaux possibles, nous de-
vons d’une part estimer la pose de ce visage. D’autre part, il est essentiel
de pouvoir suivre le visage tout au long de la séquence. Faute de quoi,
extraire des exemplaires représentatifs d’un visage perd tout son sens.

Les travaux de cette thèse présentent trois parties majeures. Dans un
premier temps, lorsqu’un visage est détecté dans une séquence, nous cher-
chons à extraire position et taille des yeux, du nez et de la bouche. Notre
approche se base sur la création de cartes d’énergie locale principalement
à direction horizontale. Dans un second temps, nous estimons la pose du
visage en utilisant notamment les positions relatives des éléments que nous
avons extraits. Un visage 3D a trois degrés de liberté : le roulis, le lacet
et le tangage. Le roulis est estimé grâce à la maximisation d’une fonction
d’énergie horizontale globale au visage. Il correspond à la rotation qui
s’effectue parallèlement au plan de l’image. Il est donc possible de le cor-
riger pour qu’il soit nul, contrairement aux autres rotations. Enfin, nous
proposons un algorithme de suivi de visage basé sur le suivi des yeux dans
une séquence vidéo. Ce suivi repose sur la maximisation de la corrélation
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des cartes d’énergie binarisées ainsi que sur le suivi des éléments connexes
de cette carte binaire.

L’ensemble de ces trois méthodes permet alors tout d’abord d’évaluer
la pose d’un visage qui se trouve dans une trame donnée puis de lier tous
les visages d’une même personne dans une séquence vidéo, pour finale-
ment extraire plusieurs exemplaires de ce visage afin de les soumettre à un
algorithme de reconnaissance du visage.

Mots Clés : extraction des yeux, extraction du nez, extraction de la
bouche, éléments anatomiques du visage, filtre de Haar, carte d’énergie lo-
cale, carte d’énergie globale, analyse multi-seuil, estimation de pose, roulis,
lacet, tangage, suivi du visage, suivi des yeux.
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Abstract

The aim of this thesis is to create a methodology in order to extract one
or a few representative face images of a video sequence with a view to
apply a face recognition algorithm. A video is a media particularly rich.
Among all the objects present in the video, human faces are, for sure, the
most salient objects. Let us consider a video sequence where each frame
contains a face of the same person. The primary assumption of this thesis
is that some samples of this face are better than the others in terms of face
recognition. A face is a non-rigid 3D object that is projected on a plan
to form an image. Hence, the face appearance changes according to the
relative positions of the camera and the face.

Many works in the field of face recognition require faces as frontal as
possible. To extract the most frontal face samples, on the one hand, we
have to estimate the head pose. On the other hand, tracking the face is also
essential. Otherwise, extraction representative face samples are senseless.

This thesis contains three main parts. First, once a face has been
detected in a sequence, we try to extract the positions and sizes of the
eyes, the nose and the mouth. Our approach is based on local energy
maps mainly with a horizontal direction. In the second part, we estimate
the head pose using the relative positions and sizes of the salient elements
detected in the first part. A 3D face has 3 degrees of freedom: the roll, the
yaw and the pitch. The roll is estimated by the maximization of a global
energy function computed on the whole face. Since this roll corresponds
to the rotation which is parallel to the image plan, it is possible to correct
it to have a null roll value face, contrary to other rotations. In the last
part, we propose a face tracking algorithm based on the tracking of the
region containing both eyes. This tracking is based on the maximization
of a similarity measure between two consecutive frames.

Therefore, we are able to estimate the pose of the face present in a
video frame, then we are also able to link all the faces of the same person
in a video sequence. Finally, we can extract several samples of this face in
order to apply a face recognition algorithm on them.
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Chapter summary

Because of the expansion of the Internet and of the storage capabilities,
digital videos are used worldwide. At this point, digital videos represent
more than 60 % of the data traffic on the web (streaming, uploads and
download). Moreover, a single video has an important amount of images,
Hence, it is impossible to index and annotate manually all the images
included in videos.

Computer vision can help to achieve these tasks with automatic or semi-
automatic systems. In this chapter, we will present the thesis context, the
aim and motivation of our work.

Résumé du chapitre

La vidéo sous forme numérique est omniprésente grâce à l’expansion du
web et des capacités de stockage. A l’heure actuelle, les vidéos représentent
plus de 60% du trafic sur le web (streaming, téléchargements). De plus,
une simple vidéo contient un nombre très important d’images. Ainsi, il est
impossible d’indexer et d’annoter manuellement toutes les images incluses
dans les vidéos.

La vision par ordinateur permet toutefois l’annotation semi-automatique
ou automatique de ces images. Dans ce chapitre, nous présenterons le con-
texte de la thèse ainsi que le but et les motivations de notre travail.
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1.1 Thesis context

This thesis is the result of a partnership between the SIP (Systèmes In-
telligents de Perception) team of LIPADE (Laboratoire d’Informatique de
PAris DEscartes) and the company Konbini. It is a CIFRE (Conventions
Industrielles de Formation par la REcherche) thesis. In this section, we
will first present the context of this thesis, followed by the motivations.
This section will end by an overview of this dissertation.

One of the activities of Konbini is the organization of events for other
companies or brands. For example, parties can be organized for the launch-
ing of a new product.

Another activity is the promotion of a client’s product. Konbini can
create commercials for televisions, but it also proposes to broadcast these
commercials in other platforms such as in social networks or in Youtube.

Konbini also handles a website. The target of this website is the ado-
lescents or young adults, from 15 to 35 years old. The company broadcasts
various cultural news. The content is various: it can be about music, cin-
ema, fashion or headlines. There are many video interviews, music clips...

Konbini is also a video production company. It creates videos, such
as interviews, for clients in many platforms, media sources or television
channels.

Finally, Konbini also handled a web television where they broadcasted
many videos created either by Konbini or by other partners.

1.2 Motivation

Konbini has a large amount of digital videos. These videos are produced
either by Konbini or by other partner companies. One of the aims of
Konbini research is annotating the videos with the objects present in their
frames. Konbini wants to create a new player able to give the positions of
all included objects. Indeed, traditionally, the only information we have
from a digital video is in its meta-data. Among these meta-data, we have
the description of the video’s content. However, if these global meta-data
can be enough to describe a still image, they cannot describe accurately a
video because of the important amount of images and thus of information.
Actually, the meta-data of a video is only a short summary of the content
and not a real description.

Konbini wants to create a player which includes some tags, each one
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associated with the represented object and its position in the video frame.
For example, Konbini had to annotate a specific car in a video. All the
car positions and sizes were labelled manually frame by frame. Konbini
wants a video player able to annotate any object. This is a challenging
aim. However, computer vision techniques are not yet mature enough for
finding all kinds of objects. Actually, even a simple object is difficult to
find in all images where it is present because of scale, illumination, pose
and other variations.

As shown in image 1.1, a simple object like shoes can be difficult to
detect. In image b and c, shoes are visually small whereas in image a, d or e,
shoes are represented in a higher scale. As a consequence, their appearance
changes a lot. Some extreme lightning conditions, like in image e, make
the detection of shoes difficult. In image b, shoes are blurred because of
the movement of the feet. Some of the shoes are frontal views and other
are profile views, their appearance changes according to the camera and
object positions. Moreover, all these images contain shoes, but if we can
reasonably assume that shoes are an important object in image a, d and
e, they seem less important in image b and almost negligible in image c.

Hence, it is very difficult to create a hierarchy of objects, because the
importance of an object depends on the video context and on human sub-
jectivity. Moreover, annotating all objects of a video frame is counterpro-
ductive; we will surely have too much information.

So, at this point, the question to be asked is: which object should
we annotate? Indeed, annotating all the objects, frame by frame, is time
consuming for a poor relevance, because many of them can be negligible in
the context of the video. Moreover, If too many objects are labeled without
a hierarchy on them, salient information of video frames will be gloss over
because of the amount of detected objects. Hence, we must restrict the
objects we want to find on video frames.

Among all the objects of the world, the human face is a singular object.
Indeed, everybody will consider human faces as salient objects. As human
beings, our eyes focus naturally to human faces present in the images.
Therefore, we choose to focus on analyzing human faces in video.

Detecting faces in video frames is the first task. Although some ap-
proaches achieve this detection with frontal or almost frontal faces, most
of them cannot detect faces with a different pose. Here, our goal is not to
recognize a face, but it is to extract best samples of face images on which
recognition should succeed.

To find these samples, we need some facial features. These features
must be robust to illumination, scale, but also to pose variations. We
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Figure 1.1: Some images where there are shoes.

assume that in the whole sequence where a face is present, at least one
sample of this face is detected by face detector. From this sample, we have
two other tasks to do to give the best samples for recognition.

• Once facial features have been extracted, we should be able to esti-
mate the face pose. We assume that best samples are those with null
roll, yaw and pitch values. So, having the pose of each face sample
from a video sequence will respond to the question: which are the
best samples?

• Finally, we also have to track the face. Indeed, since only one face
sample should be detected, we have to propagate this face detection
to the other frames of the video sequence. Hence, we will no longer
need to detect face samples in other frames. Moreover, some face
samples which are not detected by the face detector because of the
pose should still be extracted by the tracking.
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1.3 Overview of this thesis

We propose new facial features extracted on energy maps based on Haar-
like filters. Then, using these features, we extract salient face regions:
left and right eyes, the nose basis and the mouth. This method will be
presented in chapter 2

Once salient regions have been extracted from face, in order to extract
the most frontal sample of this face in a video sequence, we present in
chapter 3 a head pose estimation method which can be actually divided
into two methods. First, the roll is estimated using the energy maps. Then,
the yaw and the pitch are estimated using the relative positions and size
of the extracted salient regions.

Finally, in chapter 4, we present a tracking method. We assume that
eyes are the most representative regions of the face. Hence eyes are tracked.
From the positions and sizes of eyes, we can approximately estimate the
position and size of the whole face and hence estimate the head pose using
methods presented in the previous chapters.

Figure 1.2 shows an overview of the whole system presented in this
dissertation.

Figure 1.2: Overview of this thesis giving the best face samples among
those present in a video sequence.
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Human face salient element ex-
traction

Chapter contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . 9

2.2 State of the art . . . . . . . . . . . . . . . . . . . 11

2.2.1 Wavelet based Features . . . . . . . . . . . . . . 11

2.2.2 Linear features . . . . . . . . . . . . . . . . . . . 16

2.2.3 Features based on Statistics . . . . . . . . . . . . 16

2.2.4 Shape features . . . . . . . . . . . . . . . . . . . 17

2.2.5 Template based features . . . . . . . . . . . . . . 18

2.2.6 Knowledge based features . . . . . . . . . . . . . 18

2.3 Motivation . . . . . . . . . . . . . . . . . . . . . 20

2.4 The face salient element extraction method . . 25

2.4.1 Energy from Haar-like features . . . . . . . . . . 25

2.4.2 Overview of face anatomic elements extraction . 34

2.4.3 Extraction of face vertical contours . . . . . . . . 38

2.4.4 Eyes, nose tip and mouth extraction . . . . . . . 49

2.4.5 Multi-threshold analysis of the normalized hori-
zontal energy map . . . . . . . . . . . . . . . . . 65

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . 71

2.5.1 Still face image databases . . . . . . . . . . . . . 71

2.5.2 Separating face area from the background . . . . 71

2.5.3 Anatomic region extraction evaluation . . . . . . 74

2.6 Conclusion of face salient element extraction . 80

7



Chapter summary

Extracting eyes, nose and mouth in a face is still a challenge in pattern
recognition. Finding the position of these anatomic elements may be the
first step to achieve many tasks, such as segmentation, recognition or iden-
tification, head pose estimation, landmarks localization, facial expression
detection and face tracking...

A method based on analysis of horizontal direction elements, on adap-
tive horizontal Haar-like features including spatial relation knowledge is
proposed. Here, we assume faces have been detected in a sub-window giv-
ing the scale. In order to locate these salient areas in faces, a horizontal
energy map is computed. To overcome the illumination variations, this
method includes a multi-threshold analysis. This detector has been tested
on Color Feret, BioID face databases.

Résumé du chapitre

Extraire les yeux, le nez et la bouche d’un visage est toujours, à l’heure
actuelle, un défi dans le domaine de la reconnaissance des formes. Trou-
ver la position de ces éléments anatomiques peut être la première étape
permettant de réaliser de nombreuses tâches, comme la segmentation, la
reconnaissance ou l’identification, l’estimation de pose du visage, la local-
isation de points d’intérêt, la détection de l’expression faciale, le suivi du
visage. . . Nous proposons, ici, une méthode basée sur l’analyse des élé-
ments horizontaux, sur des filtres de Haar horizontaux adaptatifs et sur
certaines connaissances des relations spatiales entre les éléments du visage.
Nous supposons que les visages sont détectés dans une fenêtre dont la taille
nous donne leur échelle. Afin de localiser ces éléments saillants du visage,
une carte d’énergie horizontale est calculée. Pour surmonter les variations
d’illumination, cette méthode inclut une analyse multi-seuils. Nous avons
testé la méthode d’extraction des éléments saillants sur les images des bases
Color Feret et BioID.
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2.1 Introduction

To manipulate face images, we need to extract features from these images.
The nature of these features varies a lot. First, we can wonder whether
the features are local or global. In the field of face feature extraction,
methods are almost all local. In particular, in face detectors, methods
are bottom up; local features are gathered to make a higher level and
more global decision. Some methods use shape information. Other use
textures, colors, salient points or a combination. Many applications use
face detection in social networks or face detection systems are directly
incorporated in cameras. The detectors achieve their tasks in still images
with a good recall and accuracy. However, in such images, faces are often
taken in good external conditions, making the detection easier to achieve.
In videos, conditions vary a lot; the task is not so simple. Moreover, objects
in videos often move (because of camera movement or object movement
itself). Faces are no longer stable and are often blurred.

Figure 2.1: Difficulties of extracting face.

As shown in Figure 2.1, many difficulties may occur in detecting faces.

• Variations of pose: face images are projections of a 3D object. Ac-
cording to pose, the appearance varies.

• Variations of scale: size of the face images varies. Especially, when
scales are low, parts of the face are no longer separated.
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• Variations of illumination: face illumination may vary from an image
to another.

• Variations of patterns: face is a deformable object. A subject can
smile or not. Moreover, eyes can be closed.

• Occlusions: Hands, glasses, hats, mustaches, beards can occlude par-
tially the face.

The proposed method should aim to extract higher level information as
face features: eyes, nose tip and mouth. The next section presents the state
of art in face feature extraction. Then, the proposed method is described.
Finally, it is evaluated on several face image databases.
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2.2 State of the art

Extracting salient features in faces is relevant for many applications, such
as face recognition [Jain et Unsang, 2009], head pose estimation [Murphy-
Chutorian et Trivedi, 2009], face tracking [Zhou et al., 2010a] or facial
expression [Zhong et al., 2012]. In particular, locating eyes, nose and mouth
may be useful information. For example, in order to track a face in a video,
many methods use Active Appearance Models (AAM) [Cootes et al., 2001],
since they are quite efficient and accurate. The first step in AAM involves
learning the global deformation of face by applying a PCA on salient points
localization and intensity of a face (e.g. eye, nose, mouth corners and
boundary points). The second consists in fitting a given set of salient
points from a face with the model. The main drawback of AAM is salient
points need most often to be placed manually. To achieve making AAM
fully automatic, finding location of these landmarks is required. Although
giving the location and the bounding boxes of eyes, nose and mouth is not
enough to find salient points, it may improve accuracy, since it delimits
the search area. There are many features extracted from human faces in
face detection issue. They can be categorized in different sets of features:

• wavelet based features,

• linear features,

• statistical features,

• shape features,

• template based features,

• knowledge based features.

2.2.1 Wavelet based Features

The first set is composed by approaches based on wavelets. Here, the main
idea is to extract local features in an appropriate subspace using machine
learning techniques, such as in [Vukainovic et Pantic, 2005] where Gentle-
Boost is used on Gabor features or in [Akhloufi et Bendada, 2010] where
PCA is used on texture features called Local Ternary Patterns (LTP). LTP
is presented as a generalization of LBP[Tan et Triggs, 2010]. In order to
understand how this kind of methods works, it is useful to describe Viola
and Jones face extractor.
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2.2.1.1 Back to Viola and Jones face detector

Viola and Jones face detector is based on three main steps. First, it extracts
local descriptor from Haar-like features by using integral image to speed
up the process, and then it uses a learning algorithm which is, actually,
a feature selection step. Finally, an additional cascade of classifiers is
applied which enables the detector to work in real-time. Haar-like features
are actually filters, as shown in figure 2.2.

Figure 2.2: Haar-like features used by Viola and Jones.

They can be seen as convolution filters where white area contains value
1 and black area contains value -1. By varying its width and its height, a
large number of filters are generated from this short list of initial patterns.
According to the observation scale and the pattern, Haar-like features can
describe texture (e.g. pattern with small size), as well as higher level in-
formation such as shape (e.g. large pattern). So, Haar-like features are a
descriptor which describes the general appearance. Hence, Haar-like fea-
tures gather many kind of information. Moreover, although they describe
characteristics of different nature, they are expressed by the same formu-
lation. Therefore, it is possible to compare or combine them. However,
there is an important drawback; the number of generated features is very
large. Some of them are redundant whereas others are irrelevant.

Given the intensity of the pixel I(x, y) at position (x, y) of an image I
and given a Haar filter H, the value fH(x, y) is computed by the formula
2.1.

fH(x, y) = (I ∗H)(x, y); (2.1)

For a given pattern H, computing one Haar single value requires w×h
accesses in the image I intensity table, where w and h are the width and
height of Haar pattern H. So, Computing Haar feature of the whole Image
I depends on the width and height of I, as well as the width and height of
the pattern H. In such case, a real-time computation is not possible. To
make the face extractor fast, Viola and Jones introduce the integral image
which is simply a summed area table. The integral image II of image I is
given by formula 2.2.
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II(X, Y ) =
∑

0≤x≤X

∑
0≤y≤Y

I(x, y) (2.2)

II(X, Y ) = II(X − 1, Y ) + II(X, Y − 1)

−II(X − 1, Y − 1) + I(X, Y )

As we can see, the computation of each value in the integral image
needs only three references in II and one in I. In other words, each value
of the integral image is computed in constant time. So the computation
of the whole integral image depends only on the width and height of the
image I. Once the integral image has been obtained, the computation of
the sum of intensities of any rectangular area is made in constant time too
with respect to Haar pattern size.

Figure 2.3: Scheme of image I with a rectangular area ABCD contained
in I.

Figure 2.3 shows the image of a rectangular area ABCD included in the
image I. Once the integral image II has been computed, the computation
of the sum of all intensities included in the rectangle ABCD is given by
the formula 2.3.

∑
(x,y)inABCD

I(x, y) = II(A) + II(C) (2.3)

−II(B)− II(D)

Formula 2.3 shows that only four references to the integral image are
needed to compute the sum of all intensities of any rectangular area of I.
As all Haar-like patterns are combinations of rectangular areas, each value
of Haar feature is computed in constant time and no longer depends on the
pattern width, nor its height. For instance, the first pattern of Figure 2.2
consists of two rectangles. As we show, four references of II are required
for each rectangles and thus eight references to II are needed, but since two
vertices of both rectangles are common, only six references of the integral
image II are actually required.
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The second step in Viola Jones face detector is a learning step using a
modified version of AdaBoost algorithm. In Viola and Jones method, the
boosting algorithm both selects the best features and train the classifier.
AdaBoost is used to generate a strong classifier as a weighted combination
of weak classifiers. Each weak classifier is associated with a single Haar-
like feature. The classifier is considered as "weak", because even the best
feature is not expected to classify the whole correctly. In practice, the
best feature may only classify correctly 51% of a given database. However,
it is assumed that a weighted combination of weak classifiers gives better
results than separated ones. In Viola and Jones method, in order to train
the classifier, 24× 24 pixels sub-windows are used.

The learning set consists of sub-windows containing faces and non-
face image part. Even if there are only a few patterns, as the size may
vary, more than 160 000 different patterns can be associated with a single
24×24 sub-window. It is easy to understand why selecting features among
160 000 features is essential. As shown in formula 2.4, each weak classifier
h(x, f, p, θ) is associated with the Haar function f , the position x, the sign
of Haar function p and a threshold θ.

h(x, f, p, θ) =

{
1 if pf(x) < pθ
0 otherwise

(2.4)

First, each weak classifier is associated with the same weight. An it-
erative algorithm selects at each iteration t the best weak classifier ht by
minimizing its error rate in the whole training set. Then each weight αt is
adjusted to give more importance to weak classifiers with low error rate.
Finally, a strong classifier C(x) is built as a combination of weighted se-
lected weak classifiers (formula 2.5)

C(x) =

{
1 if

∑
T αtht(x) ≥ 1

2

∑
T αt

0 otherwise
(2.5)

T is the number of iterations and the number of selected weak classifiers.
Only 200 feature weak classifiers are needed to achieve good detection.

The last contribution of Viola and Jones face detector is the cascade of
classifiers. The cascade of classifiers should aim at achieving good perfor-
mance while reducing the computation time. In order to test the presence
of faces in a given image, all sub-windows of different sizes generated in
this image must be tested. Viola and Jones method does not need to build
a pyramid of images of different scale, because of the integral image. How-
ever, compared to the great number of sub-windows originally generated
from one single image, sub-windows which contain a face in a suited scale
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are extremely rare. In other words, the large majority of sub-windows do
not contain face in a suited scale. The cascade of classifiers uses this in-
formation. For example, a strong classifier generated with the two weak
classifiers with the lowest error rates has a recall of 100% but a false pos-
itive rate of 50%. Of course, this classifier can not be used as a detector.
However, since the sub-windows of face are extremely rare, such classifier
with only two features can eliminate 50% of sub-windows which do not
represent a face. Obviously, this classifier is both simple to train and fast
when testing a sub-window. The cascade of classifiers is composed of a
sequence of classifiers (Figure 2.4) where the classifier in position n+ 1 has
a lower false positive rate but a higher computation time than the one in
position n.

Figure 2.4: Cascade of classifiers.

Even if a face sub-window must be validated as a face by all the classi-
fiers of the sequence, such technique is efficient, because it enables to reject
most of the sub-windows which are not faces in the fast first levels of the
cascade.

Viola and Jones face detector is actually a good example of how an ap-
pearance based face detector can be made. This kind of techniques needs
to generate a great number of local features, to train them, in order to
discriminate face sub-windows from the others. In other words for appear-
ance based methods, we need to ask ourselves two questions. The first one
is which descriptor is used and the second one is which learning technique
is used.

2.2.1.2 Extensions of Viola and Jones face detector

Extensions of Viola and Jones method have been developed. In [Lienhart
et Maydt, 2002], the authors extend the initial set of features by adding
45 degree rotated patterns. To compute Haar functions, they introduced
a new rotated integral image which is computed in only two passes of the
whole image. In [Li et al., 2002], since the initial Haar-like feature set
is not suited for multi-view face detection, the authors introduced more
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free features. The rectangular areas in a given Haar-like feature have a
flexible size x × y and are separated by a distance of (dx, dy), in order to
take into account non-symmetrical view which appears when faces are no
longer frontal. In [Jones et Viola, 2003], the authors also proposed their
own extensions which integrate multi-view issue by adding new patterns
composed of overlapped and shifted rectangular areas. In [Brubaker et al.,
2008], a Classification And Regression Tree (CART) is used. They show
that CART based weak classifiers achieve face detection with better results.
In [Wu et al., 2004], the authors proposed to use the histogram of feature
values associated with each Haar-like feature in a RealBoost algorithm.

2.2.2 Linear features

In [Meynet et al., 2007], the authors use anisotropic Gaussian filters which
are actually combination of a Gaussian in one direction and its derivative in
the orthogonal direction. Then, several transformations are applied of these
filters such as translation, rotation, bending or anisotropic scaling. These
transformations will generate a large number of functions. Similarly to
Viola and Jones face detector, AdaBoost and a cascade of classifiers is used
to train and to make the detection faster. In [Xiangrong Chen et al., 2001],
an extension of non-negative matrix factorization (NMF), called local NMF
(LNMF) is used to generate features from face. AdaBoost is then used
to select the most significant features among all generated by LNMF. In
[Wang et Ji, 2005], the authors combine Fisher discriminant analysis and
AdaBoost to improve the accuracy of weak classifiers. They propose a
recursive scheme for non-parametric discriminant analysis (RNDA). First,
with such schemes, they assume training step should be shorter, since
only a subset of the whole feature set is used. Moreover, they assume
that RNDA can improve the face detection despite pose variation. These
features improve the speed of the convergence of classifiers. However, they
are usually longer to compute than Haar features or LBP.

2.2.3 Features based on Statistics

Histograms of local features are also widely used in face detection. In
[Ojala et al., 2002], the authors introduced a new feature called local binary
patterns. A LBP value is obtained by comparing the value of a central pixel
gc to the value of the pixels in the neighborhood NR,P of gc, according to
two parameters, the number of neighbors P and the distance R between
the central pixel and its neighbors gi, i ∈ [0, P − 1] (formula 2.6 and 2.7).
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s(x) =

{
1 x ≥ 0
0 x < 0

(2.6)

LBPP,R =
∑

p∈NR,P

s(gp − gc)2p (2.7)

LBPP,R is an integer which varies between 0 and 2P−1. In [Jin et al.,
2004], LBP are used as features to detect faces. A multivariable Gaussian
Model is used and face and non-face images are then classified under a
Bayesian framework, whereas in [Zhang et al., 2007a], LBP are still used
to detect faces with a boosting training step. LBP show also good results in
face recognition task such as in [Ahonen et al., 2004]. In [Yan et al., 2008a],
the authors present the locally assembled binary feature which use both
modified Haar-like features and LBP. Their method shows good results on
CMU/MIT frontal face database.

In [Levi et Weiss, 2004], local edge orientation histograms are proposed.
First, a Sobel mask is applied on the face window to extract the gradients.
The magnitude and the orientation of the gradients are computed. Both
magnitude and orientation are used in a histogram, the features depend-
ing on the orientation. These features are then trained in an AdaBoost
algorithm. In [Dalal et Triggs, 2005], a similar histogram (histograms of
oriented gradients or HoG) based approach is proposed. In [Wang et al.,
2009], HoG and LBP are combined to detect human.

These methods suffer from the necessity of a learning step including a
database with a ground truth. However, the literature shows they obtain
good results.

2.2.4 Shape features

Other researchers try to use shapes to detect an object. In [Opelt et al.,
2006], the authors propose to use boundary of object to detect them. Ac-
tually the exact boundary of any object is not simple to extract, so object’s
boundary is represented as a set of shape fragments. They also propose
a method to select the fragments as well as a boosting algorithm adapted
to shapes. Very similar features can be found in [Wu et Nevatia, 2005]
where edgelet is introduced to discriminate human body parts using their
silhouette. In [Sabzmeydani et Mori, 2007], shapelets are introduced and
are used to detect pedestrian from the image. Shapelets is extracted from
regions with low level gradients. The main benefit of the features is that
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they try both to segment and detect the object in the image. However,
they are very sensible to occlusion and illumination conditions.

2.2.5 Template based features

This designates features where templates of facial characteristics are used.
Here, a template of a specific anatomic part (e.g. eye, nose, mouth) is
designed. Generally, this template contains shapes and models possible
deformation. Then, candidates are extracted and compared with the tem-
plate. In [Jian et Honglian, 2009], eyes are detected using a multi-angle
template. Candidates are extracted using morphological operators and
the symmetrical characteristics of the eyes. In [Yuille et al., 1989], a de-
formable template is used. Here, template deforms itself by minimizing a
cost function to find the best fit. The main drawback of these methods
is the difficulty to generalize the templates under various illumination and
scale conditions. For example, an eye template will fit candidate to tem-
plate only if eye is open. The main benefit of these approaches is they are
able to process sub-face part.

2.2.6 Knowledge based features

The last set gathers together features which include knowledge and spatial
information of the face. In [Gizatdinova et Surakka, 2007], twenty land-
marks, for example the eye or mouth endpoints, are detected automati-
cally on images with different expressions, illumination conditions. Spa-
tial knowledge is introduced to the method to improve accuracy of these
landmarks. In [Kotropoulos et Pitas, 1997], a face detection method is
proposed using mosaic images. To achieve detection, this method requires
rules related to the spatial information of a face. Actually knowledge based
features are hybrid features. Face knowledge is often used to fix some lim-
itations and to remove aberrant values of other features.

In general, many methods in face detection use local features. Since
the amount of local features is often too large, they use to either select
the most representative features or create a subspace of these features. In
most of the cases, a further step using machine learning techniques allow
face detection or pose estimation.

Landmarks or control points are widely used in face alignment issues,
but rarely for face detection purpose. They are difficult to generalize and
thus depend on the learning data. Moreover, they are not discriminating
enough to separate face and non-face images. However, when a face is

18



detected and we are sure of its presence in an image, they give impressive
visual results. Therefore, they are good candidates to detect the positions
and sizes of face salient anatomic elements (eyes, nose and mouth). How-
ever, we will show in the next section that despite impressive visual results,
control points are not as accurate as they seem to be and thus why have
been motivated to choose to detect more approximately these elements.
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2.3 Motivation

As we said in the state of art, there are many types of face features. Some
of them are local, related to shape, edge orientation or texture information.
Other methods try to find control or salient points. Others try to extract
higher level information. In the case of local features, the main drawback
is the absolute necessity of a labeled database. Of course, it is possible
to use Haar filters, LBP, HoG to detect different salient parts of a face.
However, the training step needs tens of thousands of positive and negative
examples. All must be correctly scaled and positioned.

The first idea we may have, for example to estimate the head pose is
to reconstruct the face from different face samples of a video sequence.
Many face recognition systems rely on a face 3D model such as in [Chu
et al., 2014]. So, first, we must localize the positions of equivalent points
in all frames. This task has been already achieved in many approaches
relying on the detection of anatomic salient points. Many methods require
a machine learning steps using these points which are labeled manually by
human vision, but it seems that localizing these points is quite difficult.

We made an experimentation to show that human beings are not able
to localize these points reliably. To verify the difficulty in using these
anatomic points, we test the robustness of the positions of these points.
For this purpose, we try to make a 3D reconstruction from equivalent points
in a video sequence with good illumination conditions. First, let us choose
the control points of the face. As shown in Figure 2.5, seventeen control
points are labeled.

• Each eye is labeled with 4 points: left (A), right (B), up (C) and
down (D) end points.

• Nose is represented by 5 points: nose tip (E), nose upper central
point (F), left (G) and right (H) end points and nose basis central
point (I).

• Mouth has also 4 control points: the central upper (J) and lower
points (K), left (L) and right (M) end points

We use a video of a single person. Each frame contains the same face.
Throughout this video, the head turns to the right and left. All faces of
this video sequence were labeled manually with the control points defined
above.

These are the steps of the protocol for the experiment:
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Figure 2.5: Face on a frame of a video sequence as well as its related control
points.

1. First, we estimate the fundamental matrix.

2. Then, using equivalent points of a pair of face samples, the 3D re-
construction gives the 3D relative positions of these points.

3. Finally, we try to measure the reliability of these points. If these
points are credible, it means that human vision can localize these
anatomic points reliably, otherwise it means that human vision is
not able to localize these points with accuracy.

In order to obtain the 3D relative positions from two sets of control
points, we must first get the fundamental matrix. Given the focal lengths
fx and fy, as well as the projection coordinates (cx, cy) of the image center
, we are able to compute the fundamental matrix F as shown in formula
2.8.

F =

 fx 0 cx
0 fy cy
0 0 1

 (2.8)

All we have, is sets of homologous control point coordinates. In theory,
if xi and xj are two homologous points, they must respect equation 2.9.

xtiFxj = 0 (2.9)

However, these values are rarely equal to zero. The aim is to find the
matrix F which minimizes xtiFxj. Note that 7 pairs at least of homol-
ogous points are needed to compute the fundamental matrix. We used
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the RANSAC algorithm ([Chum et Matas, 2008]). RANSAC is especially
efficient when outliers must be excluded.

1. Among all control points, 7 points of the first image and their equiv-
alent points in the second image are randomly chosen.

2. The fundamental matrix is then computed with the chosen 7 pairs of
points.

3. For every homologous pair of points (except the 7 pairs initially cho-
sen), if xtiFxj ≤ ε then we consider that the pair xi and xj respects
equation 2.9.

4. We count the number of pairs which respect xtiFxj ≤ ε.

5. Then, we restart step 1 to 4.

6. Finally, we choose the matrix F which has the highest number of
matching points.

Once the fundamental matrix F is computed, we used Hartley trian-
gulation method ([Hartley et Sturm, 1995]). The triangulation gives three
types of results.

• When the equivalent sets of control points are almost the same, in
other words when face doesn’t move a lot between two frames, the
triangulation gives 3D coplanar points (Figure 2.6).

• When the equivalent sets of control points change a lot, for example
when the first set is extracted in a frontal view whereas the second is
extracted for an almost profile view, the triangulation gives 3D linear
points.

• When the equivalent sets of control points change a little, the trian-
gulation gives a correct 3D representation (Figure 2.7).

When triangulation fails, it gives coplanar or linear 3D points. Given
Xi = (x, y, z)t the i-th result 3D point of the triangulation, given A =
(X1X2...Xn) the matrix of all 3D points, we compute the variance-covariance
matrix AAt of size 3× 3, then we extract the 3 eigenvalues λ1 > λ2 > λ3,
then eigenvalues are normalized with λ1. The 3 normalized eigenvalues
λn1 > λn2 > λn3 are given by equation 2.10.
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Figure 2.6: Coplanar triangulation: left and right images are two different
projections of the same 3D result.

Figure 2.7: Correct triangulation: left and right images are two different
views of the same result.


λn1 = 1
λn2 = λ2

λ1

λn3 = λ3
λ1

(2.10)

Table 2.1 shows the normalized eigenvalues according to the distribu-
tion of 3D reconstruction points. As expected, in the coplanar distribution,
the lowest eigenvalue is negligible compared to the other whereas the two
lowest eigenvalues are negligible compared to the highest one in the linear
case. It means that a reconstruction fails if the lowest normalized eigen-
value λn3 is negligible compared to 1. A threshold tnorm = 0.01 is enough
to know if the 3D reconstruction succeeds. As we can see in table 2.1,
when reconstruction fails, λn3 is far from reaching tnorm.

Most of the time, the triangulation fails. First, this experiment shows
that it is not so simple for human beings to label the control points cor-
rectly. For our vision, many different point positions seem correct. It means
that for human vision, a point in a frame has a large number of candidate
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Table 2.1: Examples of normalized eigenvalues according to 3D recon-
struction point distribution.

Distribution λn1 λn2 λn3

Coplanar 1 0.74 0.0009
Linear 1 0.028 0.00055
Correct triangulation 1 0.83 0.18

homologous points in another frame. Moreover, experiment shows that
human vision can better localize control points when face view is frontal.
Indeed, most of successful triangulation includes a frontal view. The more
profile the view is, the more difficult localizing accurately control points is.

Thus, human vision does not require an accurate localization of face ele-
ments to detect face. Indeed, even if we were not able to localize equivalent
control points accurately, we are able to know that the object of this video
is a frontal view. Therefore, we work towards approximate determination
of face elements and not towards anatomic points.
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2.4 The face salient element extraction method

In this section, we will present how we extract facial salient elements. We
suppose face detection succeeds, face is detected in a square face window
of length L pixels. It means that we know the order of magnitude of the
face scale. In a first part, we discuss the properties of Haar-like features
before we propose the general overview of the proposed method. Then, the
different steps are described.

2.4.1 Energy from Haar-like features

As we said in the previous state of the art, Haar-like features are simple
and powerful tools in particular in face detection. The computation of
any value associated with a given Haar-like pattern is done in constant
time. Indeed, the integral image or summed table allows the computation
of the sum of the intensity in a rectangular window in only 4 accesses in
the summed table. In other words, the feature values computation does no
longer depend on the width and height of the features.

Another benefit of Haar-like features is the infinite number of possible
patterns. However, all patterns do not have the same importance. To be
robust, all methods which use Haar-like features must select carefully the
set of patterns they want to apply. Haar-like features are versatile features.
Patterns with small size will describe local texture. With bigger size, they
will describe lines, edges and contours. Finally, when Haar-like feature size
is large enough, the descriptor will describe more high level structure. In
this part, we will introduce the features we use, how to compute energies
and how to combine them as well as the sense of these features.

Figure 2.8: Studied Haar Patterns.

As shown in Figure 2.8, we consider the horizontal, vertical and diag-
onal patterns with different sizes. The horizontal pattern is sensitive to
contours of horizontal direction whereas the vertical one is sensitive to ver-
tical direction. The diagonal pattern is not sensitive to diagonal direction.
It is more a pattern which describes this specific form.

Given H(w, h) the Haar-like filter of width w and height h and (X, Y )
the position of the central pixel, the associated value is given by 2.11.
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fH(w,h)(X, Y ) =
∑

(x1,y1)∈white(X,Y )

I(x1, y1)−
∑

(x2,y2)∈black(X,Y )

I(x2, y2) (2.11)

We define the energy map EH related to a given Haar-like filter H as
the absolute of fH (definition 2.12).

EH(w,h)(X, Y ) =
∣∣fH(w,h)(X, Y )

∣∣ (2.12)

Here, an energy map depends on the pattern and on the size of the Haar
filter. First, let us see how the size affects the horizontal Haar pattern on
a face example (Figure 2.9). The example face has a size of 364× 364.

Figure 2.9: The face example used in this section.

2.4.1.1 Energy with Haar horizontal patterns

Figure 2.10 shows the energy maps of the horizontal pattern of Haar filters
according to the width w and the height h of the filter. First, let us
consider how the size of the filter affects the energy. As it is difficult to
evaluate directly with the energy maps, a threshold is applied manually to
each map to get a suitable binarization. The figure 2.11 shows the energy
maps on which a suitable threshold has been applied. The chosen threshold
must give a binary image where salient face elements (eyes, nose basis and
mouth) are highlighted whereas other parts like face boundaries or other
noise are not taken into account.

It should be recalled that the aim here is to extract salient anatomic
part of the face: left and right eyes, nose tip and mouth. From now on,
we will focus on extracting these areas. A few remarks should help us to
achieve our task.

• When, at least, one of the width w or height h of Haar horizontal
filter is low, energy maps are sensitive to noise, especially when w = 4
and h = 4.
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w=4 w=22 w=54 w=90

h=4

h=8

h=18

h=54

h=90

Figure 2.10: Energies of horizontal Haar filter according to the filter width
w and height h in pixels. The face window width and height equal both to
364 pixels
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w=4 w=22 w=54 w=90

h=4

h=8

h=18

h=54

h=90

Figure 2.11: Binarized horizontal energy maps. Thresholds are chosen
manually with a visually suitable value to illustrate.

• The horizontal Haar energy map should have a better response with
area which contains mainly horizontal edges. However, when w = 4
or w = 22, the Figure 2.11 shows that vertical or oblique lines at
the border of the face have a great horizontal energy. When Haar
filter has a small width, the filter is too local. Therefore, except for
strictly vertical lines, contours which are not exactly vertical have a
non negligible energy. On the contrary, when width w of Haar filter is
high enough, in our example when w ≥ 54, lines with almost vertical
direction disappear.
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• When the width w or the height h of the pattern is too high, regions
tend to merge, other regions, such as hair or forehead have also a
great energy. Almost all the face has a great energy.

As a consequence of all these remarks, for this example, suitable filter
width and height are w = 54 and h = 18. First, horizontal filter must
have a higher width than height. Indeed, a higher width prevents the high
horizontal energy value on edges with approximate vertical direction. A
ratio of 1/3 seems to be a good compromise. Moreover, remember that the
face is a 364×364 pixels image. So, as we can see in the Figure 2.9, an eye
has almost an approximate width of 1/6 of the square face example size L.
So eyes have a width of 60 pixels. Notice that nose tips and mouths have
the same order of magnitude in terms of width, although nose tip width
is generally lower than eye width and mouth width is generally higher.
Then, a good width for horizontal Haar filter is the width of the eye, since
all salient anatomic elements that we want to find have the same order of
magnitude.

2.4.1.2 Energy with Haar vertical patterns

In a similar way, we now study the energy associated with a Haar vertical
pattern. In this Figure 2.12, the energy is high on the boundary of the
face. In order to better appreciate the results, a threshold is applied on
Haar vertical energy map, presented in Figure 2.13. Here too, we can make
a few remarks about the behavior of the vertical energy maps according to
the width and height of the Haar patterns.

• Like the horizontal energy maps, when the width and height of the
vertical pattern are too low, the map is too noisy.

• When the width is too high, even though it is a vertical pattern, the
vertical energy is not local enough: although there are still approxi-
mate vertical lines near the boundary of the face, these lines are too
wide (they look more like regions than like lines).

• The same observation can be made with a high height. The lines are
not accurate enough.

In this example, both vertical Haar patterns H(8, 54) and H(18, 54)
seem to be the most suitable ones. With these vertical patterns, salient
vertical lines are highlighted and noise is reduced. They are the most
representative. Moreover, we can see that vertical energy is globally high
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w=8 w=18 w=54 w=90

h=8

h=18

h=54

h=90

Figure 2.12: Normalized energy maps of vertical Haar filter according
to the filter width w and height h in pixels. The face window width and
height equal both to 364 pixels.

on the boundary of the face. Remember that the aim is the extraction of
the face salient areas (eyes, nose tip and mouth). Although the vertical
maps do not highlight the face salient elements, they may be useful to
estimate face contours.

2.4.1.3 Energy with Haar diagonal patterns

First, as a reminder, the diagonal Haar pattern is not specifically sensitive
to line with an approximate diagonal direction. It is more a pattern able
to respond, to see the local stability, in terms of intensity of an area. As we
can see in Figure 2.14, a strictly vertical or horizontal line has a low energy
when the pattern is a square (w = h). With a small size, the pattern will be
sensitive to atypical area or noise. This pattern is rather interesting when
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w=8 w=18 w=54 w=90

h=8

h=18

h=54

h=90

Figure 2.13: Binarized vertical energy maps. Thresholds are chosen man-
ually with a visually suitable value to illustrate.

H(4, 4) H(16, 16) H(54, 54)

Figure 2.14: Binarized diagonal energy maps. Thresholds are chosen
manually with a visually suitable value to illustrate.

we want to see areas where intensities are constant. For this task, local
minimums are more representative than local maximums. For example,
in Figure 2.14, when the w = 4 and h = 4, the results are very noisy, in
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particular because of small squares created by jpeg compression. However,
when the pattern size is higher, for example when w = 54 and h = 54,
the energy map has low values when the area around the pixel is locally
stable or symmetric. This is the reason why eyes, nose and mouth are often
separated vertically showing the symmetry of these face elements. One can
think this a good way to detect face symmetry. However, as the face turns,
face elements are no longer symmetrical. So, the face symmetry detection
will fail. As we can see, this pattern will not be efficient in face element
detection.

2.4.1.4 Combination of horizontal and vertical energy

Here we propose to combine the information given by several energy maps.
We define two operators.

Linear combination The first combination of a Haar horizontal pattern
Hh and vertical pattern Hv is a weighted combination Hα of these Haar
energies (equation 2.13).

{
E(Hh,Hv,X, Y ) = αh |fHh(X, Y )|+ αv |fHv(X, Y )|

αh + αv = 1
(2.13)

The weights αh and αv make the pattern areas comparable, since their
size may differ. For example, let’s take Hh the horizontal pattern of size
(54, 18) and Hv the vertical pattern of size (18, 54). Since the size of both
pattern are the same, αv = αh = 0.5. The result will be an edge detector.
Figure 2.15 shows some results with different sizes of patterns.

Figure 2.15 shows that the lower the size of Haar filter is, the noisier
the edges are. So, when the size increases, the amount of edges is reduced
and only the most representative ones are detected. In any case, in such
representation of edges, the notion of direction is lost, only intensities are
taken into account.

Non-linear combination However, the direction information is rele-
vant. In order to keep it, another approach combining both horizontal
and vertical energies is also proposed. Let us take an horizontal pattern
Hh of size w = a, h = b and its analogue vertical pattern Hv of size
w = b, h = a. Let us define three sets, the set Shori contains points the
neighborhood of which contains an approximate horizontal direction line,
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Hh(4, 4) Hh(8, 8) Hh(54, 18)
Hv(4, 4) Hv(8, 8) Hv(18, 54)

Combined
energy

After
thresholding

Figure 2.15: Linear combination of horizontal and vertical Haar energies.
the result is an edge detector.

the set Sverti contains points the neighborhood of which contains an ap-
proximate horizontal vertical line. Finally, the set Sother contains points of
other elements(background, neither vertical nor horizontal line).

For a given position (X, Y ) in the horizontal and vertical energies, re-
spectively EHh(X, Y ) and EHv(X, Y ) are computed. If EHh > EHv, then
we have at position (X, Y ) a line which is more "horizontal" than "verti-
cal". Similarly, if EHv > EHh, then we have at position (X, Y ) a line which
is more "vertical" than "horizontal". Moreover, if both energy values at
position (X, Y ) are low, it means that these energies are negligible com-
pared to the highest ones. For example, an almost constant area will give
low values of horizontal and vertical energies. We introduce two thresholds:

• the first threshold Cd > 1 defines the ratio from which a line is
considered as vertical or horizontal.

• the second threshold 0 < Cv < 1 defines the value from which an
energy is no longer negligible.

The formula 2.14 shows 4 definitions, the first two conditions Dhori and
Dverti are related to local direction and the two last conditions Vhori and
Vverti are related to the minimum magnitude of the energies needed to be
taken into account.
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
Dhori(X, Y ) = EHh(X,Y )

EHv(X,Y )
> Cd

Dverti(X, Y ) = EHv(X,Y )
EHh(X,Y )

> Cd
Vhori(X, Y ) = EHh(X, Y ) > max (EHh)× Cv
Vverti(X, Y ) = EHv(X, Y ) > max (EHv)× Cv

(2.14)

With these 4 definitions, we are able to define some clusters of pixels
using some logical combinations as shown in the equation 2.15.


Shori = {(X, Y )/Dhori(X, Y ) and Vhori(X, Y )}
Sverti = {(X, Y )/Dverti(X, Y ) and Vverti(X, Y )}
Sother = {(X, Y )/ all other combinations}

(2.15)

Figure 2.16 shows some results according to the two thresholds Cd and
Cv, and according to the size of the horizontal Haar pattern Hh and the
vertical one Hv.

• Green values visualize the set Shori of lines with an approximate
horizontal direction.

• Red values visualize the set Sverti of lines with an approximate vertical
direction.

• Other pixels of set Sother are represented in blue.

As we can see, when size of both patterns are low, the response of non-
linear combination is, once again, sensitive to noise. As the size of patterns
grows, the sets are better separated. However, when the ratio between a
given energy value and the maximal energy value is less or equal to 0.1
(Cv ≤ 0.1), the response is too strong, especially for the largest pattern of
the examples.

2.4.2 Overview of face anatomic elements extraction

As we mentioned earlier, face salient anatomic parts are more visible with
horizontal energy map. Many researches try to extract anatomic part in-
dependently. Some try to extract eyes, whereas others try to find mouth
from face image. These methods are able to find a specific part, but don’t
consider the whole face. However, it is quite obvious that the eyes, nose
and mouth in a face are related. Positions of these elements, their spatial
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Cd = 3 Cd = 3 Cd = 5 Cd = 5
Cv = 0.1 Cv = 0.5 Cv = 0.1 Cv = 0.5

Hh(4, 4),
Hv(4, 4)

Hh(16, 4),
Hv(4, 16)

Hh(16, 16),
Hv(16, 16)

Hh(54, 18),
Hv(18, 54)

Figure 2.16: Visual results of non-linear combination of horizontal and
vertical energies. Values which belong to Shori is represented in green,
values of Sverti is represented in red and other values of the combination
(belonging to Sother) in blue.

relationship are crucial information which can improve their detection from
a face.

Besides, some control point localization method shows a great per-
formance and achieve good detection of some control points of the face.
Almost all of them are designed to find these control points when face
contains both eyes. In other words, these methods must localize both eyes
even when one of them is not visible. Many researchers may think this is
an improvement, since, for example, these methods are able to localize ap-
proximately the iris control points when eyes are closed. In such cases, the
results are visually impressive. However, in a context of a video sequence,
profile views of a face often appear. Since these methods need to place all
control points, it will still localize the hidden eye, even when it is obviously
not visible. Control points localization methods are powerful in controlled
context, for example, in the context of a camera in front of a driver in

35



a car, or in a context of facial expression analysis where face images are
frontal. In real world video, these methods are not robust enough to roll
rotation.

Moreover, we have seen that localizing manually these control points is
more difficult than it seems. Actually, when human beings try to localize
for example the endpoints of an eye, they will localize them at different
positions. So it is more exact to say from a human visual point of view, that
these endpoints are better defined by regions including these endpoints.

Our face salient element extraction method do not try to extract land-
marks but try to localize the eye, the nose and the mouth regions globally
using a prior information of human face structure. In this part, we try to
extract the eyes, nose and mouth bounding boxes of these facial elements.
Our method is not designed to detect both eyes. If only one is visible,
because of an occlusion or because the face image is a profile view, it will
detect only one eye.

Before we extract the face salient regions, we introduce a preprocessing
step which should make the extraction easier. Indeed, the face window
contains obviously the face but also a background which could delude the
method we propose.

Therefore, globally, our method is composed of two main steps as it is
presented in Figure 2.17.

• First, vertical energy map is used to extract vertical borders of the
faces. The result is a mask enabling to exclude the background.

• Second, horizontal energy map is used to extract salient face anatomic
parts. The result is the bounding boxes of eyes, nose and mouth.

Figure 2.17: Global view of face salient anatomic element extraction.

The first part will be studied in part 2.4.3. Figure 2.18 shows the tasks
which achieve face vertical border extraction.
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Figure 2.18: Scheme of vertical face borders extraction, the result is a mask
which separates the face from the background.

The second step is the extraction of salient anatomic elements. Bound-
ing boxes of eye, nose and mouth regions are extracted. This extraction is
divided in four main parts. There are two inputs in this face anatomic part
extraction step. First, there is the face window extracted from Viola and
Jones face detector or any other face extractor, second is the mask which
gives the search area.

• Task 1: a horizontal energy map is computed from the horizontal
Haar pattern.

• Task 2: candidate anatomic regions are extracted according to each
binarization threshold.

• Task 3: from all candidate anatomic regions, a multi-threshold anal-
ysis is applied to extract suitable regions of eyes, nose and mouth.

• Task 4: a validation is made on horizontal Haar pattern size. If it
is validated, then we keep the selected regions of the previous task,
otherwise horizontal Haar pattern size is modified and the process
restarts at task 1.

Figure 2.19 shows a scheme of the face salient elements extraction step.
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Figure 2.19: Extraction of face salient elements extraction.

2.4.3 Extraction of face vertical contours

As we saw in the previous section, a face is mostly delimited on its left and
right sides by its vertical borders. A first step consists in extracting borders
of approximate vertical direction. Such task may improve the detection of
salient face elements. We see several benefits of this approach.

• First, finding the left and right borders reduces the search area.

• Then, separating the background from the face enables to suppress
lines outside the face. Since our approach is based on energies from
Haar-like features, some approximate horizontal and vertical lines
may appear in the background, it is useful to know where these lines
have to be ignored to extract salient areas of a face.

In order to extract the vertical contours of a face using Haar energies,
we must first fix some parameters.

• First, we have to choose a pattern. Since vertical contours must be
extracted, we will simply choose the vertical Haar-like patterns.

• Second, we have to fix the size of the Haar pattern to extract the
vertical energy of the face image.

• Finally, we must choose a suitable threshold from which a vertical
energy of the map can be considered as sufficient to contain in its
neighborhood a line of approximate vertical direction.
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This will be explained in sections 2.4.3.1 and 2.4.3.2. Once the size of
the vertical pattern has been fixed and once the vertical energy map has
been computed, we are able to extract and select a mask of the face, as
explained in sections 2.4.3.3 and 2.4.3.4.

2.4.3.1 Chosen vertical Haar pattern and its associated energy
map

As we said in part 2.4.1.2, vertical Haar pattern can be a good candidate
tool to extract contours of a face. As a reminder, we assume face detection
succeeded in a square window of size L pixels. Since the order of magnitude
of the face scale is given by L, the size of vertical Haar filter is simply a
ratio of the face window length L. However, as we said, when the size is
too small, vertical energy is sensitive to noise, or to small local maximums.
Besides, when it is too high, the filter is no longer local. The width wHv
and height hHv, inspired by face mean anatomy, are given by formula 2.16.

{
wHv = 0.05 · L
hHv = 0.15 · L (2.16)

Figure 2.20 shows 4 face windows and their associated vertical energy
maps. As expected, most of the pixels with highest energy are located on
the face left and right boundaries. Since the pattern and its size have been
chosen, we can now compute the energy EHv given by formula 2.17.

Figure 2.20: The first line contains the original images, whereas the second
one contains normalized vertical energy maps.
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fHv(X, Y ) =
∑

(x1,y1)∈white(Hv)

I(x1, y1)−
∑

(x2,y2)∈black(Hv)

I(x2, y2)(2.17)

EHv(X, Y ) = |fHv(X, Y )|

Then, the energy is normalized (EnHv) using the maximum value of
EHv in the face window I (equation 2.18).

MHv = max
(x,y)∈I

EHv(x, y) (2.18)

EnHv(X, Y ) =
EHv(X, Y )

MHv

Figure 2.20 shows some examples of vertical normalized energy com-
puted from four faces.

2.4.3.2 Adaptive threshold on vertical Energy map

Once the energy map has been computed, to define a binarised version,
a threshold has to be chosen: energies which exceed this threshold will
indicate the pixels with a neighborhood of vertical approximate direction.
Figure 2.21 shows some binarized vertical energy maps using different val-
ues of threshold.

• Globally, for a given threshold t, the binarized vertical energy map
does not have the same response. For example, in Figure 2.21, with
t = 0.059, this threshold may be suitable to detect contours of face
’b’. However, it is not the case for face ’c’ where binarized vertical
energy map is too noisy.

• Binarized energy map better discriminates vertical contours when
background intensities are very different from those of the face. We
can see it for image ’a’, ’b’ and the left part of image ’d’.

• As the face pixel intensities are almost the same as the background
ones, the binarized vertical energy map detects contours of the face,
but also other parts, such as nose sides, parts of glasses, eyes...

From these remarks, it is quite obvious that a fixed threshold will not
be suitable to find vertical contours of a face. However, pixels with high
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a b c d

original

t = 0

t = 0.059

t = 0.118

t = 0.176

t = 0.235

t = 0.294

Figure 2.21: The first line contains the original images, The others contain
binarized vertical energy maps according to the threshold t.
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vertical energy are located on the vertical boundaries or next to nose.
When background pixels have almost the same vertical energy as those
of the face (example ’c’), elements of nose and the borders have pixels
of highest vertical energy. When background pixels intensities are very
different from those of the face, borders are the elements with high vertical
energy. In order to compute a proper binarization threshold, histogram
and cumulative histogram (Figure 2.22) of the vertical energy map are
computed.

Figure 2.22: Cumulative histograms in percentage of vertical energy map.
Original images are those of Figure 2.21.

As we can see in the cumulative histogram ’b’ of Figure 2.22, when the
background pixel intensities are very different from those of the face, the
cumulative histogram increases rapidly; in other words, high vertical en-
ergies are well separated from the others. Although cumulative histogram
’d’ increases more slowly than ’b’, it still increases faster than ’a’ and ’c’.

Histograms ’a’ and ’c’ increases more slowly; it means that there are
more pixels with intermediate energies, since the background intensities
are closer to those from face. We are interested in finding pixels with high
values, since there are more pixels with intermediate energies, finding a
suitable threshold in such cases is more difficult. However, for all face
windows, boundaries and elements close to nose are the parts which have
highest energies. We propose to consider all the highest 15% energy values,
since we saw that we had more stable and less noisy binarization of vertical
energy map. Given C+(x) the cumulative histogram, and S the area of the
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face window, the binarization threshold t∗V is given by formula 2.19.

t∗V = min
C+(t)>0.85·S

t (2.19)

Table 2.2: Adaptive threshold obtained on images of Figure 2.21.
images a b c d

t∗V 0.176 0.051 0.173 0.090

Table 2.2 shows the computed thresholds associated with the 4 images
of Figure 2.21. As we said before for images ’b’ and ’d’, the more different
the intensities of the background and the face are, the lower the adaptive
threshold is. The value of adaptive threshold can also be seen as a confi-
dence measure of robustness in our vertical border detector. Indeed, when
the value of the threshold is low, it means high energy values are well sep-
arated from the other. In other words, there are less intermediate vertical
energies. Figure 2.23 shows the binarized energy maps of 4 images.

a b c d

original

t∗V

Figure 2.23: Binarized vertical energy map using adaptive threshold.

As we can see in Figure 2.23, binarization with this adaptive threshold
seems more interesting than with a fixed threshold. The results are to be
compared with binary images of Figure 2.21. Indeed, for all images, high
vertical energies are located on face vertical borders and on elements close
to the nose. Within these binarized images, face borders are now to be
extracted.
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2.4.3.3 Extraction of candidate borders

The borders will be materialized by selected connected components of bi-
nary images. In each connected component, at each pixel, the vertical
energy is greater than t∗V . It appears in the map as line of approximate
vertical direction. Since largest components should be taken into account
(Figure 2.24), small vertical connected components, the area of which is less
than 1% of the connected component with the greatest area are removed.
As lines have almost the same direction, the previous computations are
done on the bounding boxes of connected components to make the process
faster. In order to extract face vertical borders, candidate vertical borders
are generated. Each candidate border is then defined by vertical connected
components which have a common projection on the x-axis. So we generate
a graph giving the number of pixels belonging to the connected component
bounding boxes for each image column.

a b c d

t∗V

conserved
connected
components

Figure 2.24: Connected component bounding boxes the area of which is
more than 1% of the area of the greatest bounding box.

Figure 2.25 shows the number of pixels belonging to connected com-
ponent bounding boxes according to the image column. All connected
components which have a common projection on x-axis (i.e. which con-
tribute on the same vertical) are merged to form a candidate border. If
a candidate border Bi is separated from another one Bj by less than 1%
of the face window width, both are merged to generate a single candidate
border. Given two candidate borders Bi and Bj, the merging criterion is
given by formula 2.20.

Bk = Bi ∪Bj if min
(x1,x2)

|x1 − x2| < 0.01 · L (2.20)

with x1 ∈ projx(Bi) and x2 ∈ projx(Bj)

44



Figure 2.25: Number of pixels belonging to connected component bounding
boxes according to the image column.

Then, each candidate border Bi is defined by the set SiCC of connected
components with the maximum cumulative height Hi, the lowest abscissa
is denoted as X i

left and the highest one by X i
right.

Let also mention some basic remarks.

• A candidate border must be completely either on the left side or the
right side of the face window. In other words, if a candidate border
is in the center part of the face, it is not significant.

• Each of the left and right side of the face can have at most one vertical
border.

• Each of the left and right face vertical border must be the most salient
candidate borders.

2.4.3.4 Selection of candidate borders and construction of the
face mask

This section will show how both left and right vertical borders can be
selected and how the face mask is then built. When we speak about the
left view, we consider the point of view of the camera. So, the left vertical
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border, will be at the right side in the point of view of the face. As we said,
a candidate border cannot be in the center part of the face window. Let
us define three sets: Sleft will contains all candidate vertical borders of the
left side of face window whereas Sright will contain all candidate vertical
borders of the right side of face window. The set Scenter will contain all
candidate vertical borders in the center part of face window. Given Bi a
candidate border, sets Sleft and Sright are defined by formula 2.21.

Bi ∈ Sleft , if X i
left ≤ 1

2
· L and X i

right ≤ 1
2
· L (2.21)

Bi ∈ Sright , if X i
left ≥ 1

2
· L and X i

right ≥ 1
2
· L

Bi ∈ Scenter , if X i
left <

1
2
· L and X i

right >
1
2
· L

At this stage, we know that a candidate border which belongs to Scenter
will not be selected.

Each side of the face can have at most one vertical border. Let us
consider the left side. The face border must also be the most salient. We
define Bleft the selected vertical left border as the highest border of Sleft
which also must be higher than all candidate borders of Scenter as expressed
in formula 2.22. Hi designates the height of the bounding box of Bi.

Bleft = Bi , with Bi ∈ Sleft (2.22)
and Hi = max

Bj∈Sleft

Hj

and Hi > Hk,∀Bk ∈ Scenter

The right border Bright can be selected similarly by the formula 2.23.

Bright = Bi , with Bi ∈ Sright (2.23)
and Hi = max

Bj∈Sright

Hj

and Hi > Hk,∀Bk ∈ Scenter

The second condition in 2.22 and in 2.23 selects the highest vertical
border among respectively the sets Sleft and Sright. The last condition in
2.22 and in 2.23 selects a vertical border, only if the border is greater than
candidate vertical borders of the center. Sometimes, a face border is not
or is only partially in the face window. In theses cases, only a little part
of the border is visible in the face window and thus, the third condition
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in 2.22 and in 2.23 is often no longer satisfied. Nevertheless, we add this
last condition because it should give a better precision but a worse recall.
Remember the aim is to reduce the search area of anatomic salient parts.
It is better to find less vertical borders than generate false face borders.

Figure 2.26 shows the selected vertical left border (green rectangles),
as well as vertical right border (red rectangles).

Figure 2.26: Selected left and right vertical borders; the left vertical border
is represented in green boxes and right one is represented in red boxes.

Now that vertical borders are selected, mask can be generated. How-
ever, the selected vertical borders is composed of several vertical connected
components and sometimes some of them are at the same height, we have
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to choose among the connected components of a given selected border those
which will be considered as the face vertical border.

Figure 2.27: Schematic example of a selected left vertical border; the left
side of this figure shows the connected components of this border, the right
side shows the mask.

As shown in the Figure 2.27, the connected component CC1 is at the
"same height" as the connected component CC2. In order to make a hi-
erarchy of all these connected components, we generate an oriented graph.
An oriented edge from the vertex CCi to the vertex CCj, it means that
CCi is "immediately above" CCj.

As we can see, the graph should represent the relative positions accord-
ing to connected component ordinates and heights. Indeed, a part of CC1
is above CC2, but a part of CC1 is also below CC2. Hence, it it difficult
to say which one is relatively above the other. Concerning the components
CC1 and CC4, a part of CC1 is above CC4, however, there is no part of
CC1 which is below CC4 and thus we can say that CC1 is above CC4.
In other words, CC1 and CC2 are at the same level contrary to CC1 and
CC4. Although we can say that CC2 is above CC3, we consider that both
CC2 and CC3 are at the same level as CC1, otherwise the graph will be in-
consistent, since it will depend on the first vertex used to create the graph.
Simirlarly, CC4 and CC5 are at the same level, whereas CC4 or CC5 are
also above CC6. Moreover, there is no edge from CC1 to CC6 because
CC4 and CC5 are above CC6 and hence, CC1 is not immediately above
CC6.

To build the graph, we need to know the conditions which gather some
connected component in a same level. Let consider a group of connected
components which are at the same level, another connected component
is also at this level if its (horizontal) projection on y-axis is included or
includes the projection on y-axis of, at least, one connected component of
this level.
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In other words, Given CCi a connected component, Py is the projection
on y-axis operator. We define a level Lk starting from L1. L1 contains the
highest connected component CC1 (with the lowest ordinate). Then,

CCi ∈ L1 ⇔ Py(CCi) ⊂ Py(CC1)

Iteratively, Lk+1 is defined. It contains the connected component CCl

with the highest position in L\
k⋃
i=1

Lk and

CCi ∈ Lk+1 ⇔ Py(CCi) ⊂ Py(CCl)

The graph is recursively built. The left part of Figure 2.28 shows the
final graph generated from this example.

Figure 2.28: Generated graph and selected connected components from the
example of Figure 2.27.

As shown in the right part of Figure 2.28, at each level of the graph,
since it is the most significant in this level, the connected component with
the greatest height is chosen. Finally the components CC1, CC4 and CC6
are selected. Figure 2.29 shows the mask generated from our initial 4
examples.

2.4.4 Eyes, nose tip and mouth extraction

Now that we have a mask which is able to separate face area and the
background in the face window, it is time to focus on the salient face
elements extraction. These areas are left and right eyes, nose tip, mouth
and they will be defined as rectangular regions or bounding boxes. This
method was described in [Pyun et al., 2014a].
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a b c d

Figure 2.29: Vertical border face masks.

2.4.4.1 Adaptive horizontal Haar pattern optimization

As we said, salient elements of the face, such as eyes, nose and mouth have,
most of time, an approximate horizontal direction. The horizontal Haar
pattern (Figure 2.30) is a good candidate to find these regions. However,
even if we know which Haar pattern will have the best response in terms
of face anatomic element detection, we still do not know what a suitable
size for this pattern is. If the size is too small, the energy map generated
from this pattern will be noisy, whereas if the size is too large, this Haar
filter will not be local enough compared to the face scale. We assume
face detection succeeds; the whole face is detected in a face window. Two
faces in their respective window will have approximately the same scale
compared to the scale of the whole window.

Figure 2.30: Haar horizontal mirror pattern of width w and height h.

As a reminder (see section 2.4.1.1), we assume that a suitable width of
horizontal Haar filter is the width of an eye. With such a width, it is a
good compromise between an energy less sensitive to noise and an enough
local filter. The height of the horizontal Haar filter is fixed to 2/3 of the
width. In order to make the size adaptive, we propose an iterative process
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to fix the width of the Haar pattern. w and h are respectively the width
and the height of the Haar filter. R and L are respectively the bounding
boxes of right and left eyes.

• Initialization: First, the width of the filter is initialized with a value
of a sixth of the whole face window width, w = 1

6
·W .

• The method will extract bounding boxes of salient face anatomic
regions. So, we will get the bounding boxes R and L of right and left
eyes.

• Let us call wmean the mean of left and right eye widths; wmean =
0.5 · wR + 0.5 · wL. if 0.2 · wmean < w < 1.2 · wmean then we will keep
all the selected regions as the final result of our method, otherwise
we modify w and h values, (w = wmean, h = 2

3
· w) and consider to

process extraction again with the horizontal Haar filter of modified
size.

The evolution of Haar filter width is defined by equation 2.24.

wmean =
wR + wL

2
(2.24)

if |wmean − w| < εhaar then

w = wmean and h =
2

3
· w

Here, εhaar = 0.05 · wmean. As a result, the Haar filter will have almost
the same width as the eyes width. Eye width reference was preferred to
those of nose or mouth for two reasons. First, the eyes are the most signif-
icant parts of a face. We assume that there is globally more information
in eye regions than in the others. Second, although eyes, nose and mouth
have a size of a same order of magnitude, a single eye region is generally
larger than nose tip region but smaller than the mouth. So, a Haar filter
with the width of an eye will have a size close to any face element size.

2.4.4.2 Extraction of candidate anatomic regions

Now that we know which Haar pattern to use and its size, we are able to
compute the energy map EHh using the chosen horizontal Haar filter in the
equation 2.11.

Then, the normalized energy EnHh is computed using the maximum
value of EHh in the face window I (equation 2.25).

51



MHh = max
(x,y)∈I

EHh(x, y) (2.25)

EnHh(X, Y ) = 1− EHh(X, Y )

MHh

a b c d

original

detected
face mask

EnHh with-
out mask

EnHh with
mask

Figure 2.31: From top to bottom: original face window, detected face
mask, normalized horizontal energy map of the original image, normalized
horizontal energy map after applying the face mask.

In the equation 2.25, the normalized energy is a value between 0 and
1. However, contrary to the initial value of the energy EHh, the lower a
value in the normalized energy map is, the more confident in the presence
of an approximate horizontal direction line in the neighborhood we are.
The normalized energy map can be seen as an inverse energy map where
values are between 0 and 1. So, compared to the initial energy map, values
are normalized and inverted. The inversion makes the method easier to
understand and to formalize.

Figure 2.31 shows some examples of normalized horizontal energy map
with or without the face mask defined in section 2.4.3. With this nor-
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malization, points with lower energy are more stable in terms of having a
horizontal direction in its neighborhood.

Threshold discussion At this moment, horizontal Haar filter size is
fixed. A normalized horizontal energy map EnHh is then computed with
this Haar filter. However, a threshold must be applied to this energy map.
Above this threshold t, values are considered as non significant. Under
this threshold, values of energy are kept, since they represent pixel with a
neighborhood of approximate horizontal direction. Figure 2.32 shows some
examples of binarization with different thresholds t using or not the face
mask. As we can see, the face mask is particularly useful with high thresh-
old values. It removes most of the parasite information of the background.

without
mask

with
mask

without
mask

with
mask

without
mask

with
mask

without
mask

with
mask

original

t=0.59

t=0.67

t=0.75

t=0.82

t=0.90

Figure 2.32: Examples of energy map EnHh binarization according to
threshold t without the face mask and after applying the face mask.

As expected a fixed binarization threshold is not suitable for all im-
ages. For example a threshold of 0.59 seems to be suitable for the image
’a’ of Figure 2.32, whereas it is not the case for images ’b’, ’c’ and ’d’.
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It seems that energy map binarization depends on face illumination condi-
tions. When the illumination applied on face creates more contrast, a lower
threshold seems to be enough, whereas when there is less contrast between
the skin and the other anatomic parts of the face, a greater threshold is
needed. Moreover, in a single face, illumination condition can vary from
an anatomic element to another. For example in the face window ’b’, eyes
and mouth are visible with a threshold value of 0.67 or 0.75. However, the
nose tip is only visible for a threshold of 0.75. If a threshold of 0.75 is
suitable for eyes and mouth, a threshold of 0.82 is needed to detect nose
tip accurately. So, a suitable threshold for an anatomic element is not
necessarily a suitable one for the others.

These remarks show that we need to find a suitable threshold for each
anatomic salient region of the face. On the other hand, several binariza-
tions are able to extract a given anatomic region. It means that a threshold
which is able to extract this anatomic region is not unique. So, the aim
is to choose a suitable threshold among the possible suitable thresholds.
As we cannot know which threshold is a suitable one for a given anatomic
region, we first decide to extract candidate anatomic regions according to
all fixed thresholds. In other words, for each threshold and binarization,
the method will extract eyes, nose tip and mouth as candidate. A further
step will decide, for each anatomic region of the face which threshold is the
most suitable one.

Candidate extraction In order to extract candidate anatomic regions,
the binarization threshold is fixed. Then, connected components, more
accurately the bounding boxes of connected components, are extracted.
Since face salient elements are in the same order of magnitude, it also
means that too small connected components can be ignored. All con-
nected components the bounding box area of which is less than 1% of the
largest connected component bounding box area are removed. Figure 2.33
shows the bounding boxes of the connected components according to the
thresholds.

When the threshold increases, components tend to merge compare
to those with lower thresholds. With high threshold values, some con-
nected components gather together several anatomic regions. So, for such
cases, it is not possible to separate these anatomic regions. Working with
the bounding boxes makes the process faster. At this moment, the aim
is to gather together connected component bounding boxes of the same
anatomic region and also to remove connected components which belong
neither to eyes, nor to nose tip, nor to mouth. Remark that with this nor-
malization, as the threshold increases, areas taken into account increase
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original
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t=0.67

t=0.75

t=0.82

t=0.90

Figure 2.33: Bounding boxes of connected components according to
threshold t.

too.

Our method also uses some basic knowledge on human face element
distribution.

• Eyes are located in the upper part of the face.

• Nose and mouth are aligned on the face vertical symmetry axis.

• Depending on the face orientation, two or only one eye are visible.
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• An element cannot be entirely included in another face element.

Figure 2.34 shows a scheme of some basic knowledge used in the anatomic
elements extraction method.

Figure 2.34: Left: Scheme of some basic knowledge used in our method.
Right: An anatomic region bounding box can be represent by the upper
left point S and the lower right point T .

In order to show how candidate anatomic regions are extracted, let us
fix the threshold at 0.75. As we can see in Figure 2.34, a projection on
y-axis of connected components bounding boxes should be able to separate
eyes, nose and mouth. So, first we compute the histogram of connected
component CC widths according to their ordinate. For each line perpen-
dicular to the y-axis of the face window, the histogram gives the sum of
widths of connected component bounding boxes which intersect this given
perpendicular line. All connected components with a non empty intersec-
tion of their projection on y-axis are merged to form candidate anatomic
regions. The Figure 2.35 shows this histogram of widths of connected com-
ponent bounding boxes, on y-axis.

As we can see in the Figure 2.35, histograms differ according to the face
image. It shows that with a fixed threshold, some images may have large
connected component such as in image ’d’ whereas others have smaller
connected components such as image ’b’ or ’c’. Components with non
empty intersection of their projection on y-axis are merged:

• Image ’a’: There are six candidate regions detected from this projec-
tion.

• Image ’b’: Five candidate regions are detected.
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Image ’a’

Image ’b’

Image ’c’

Image ’d’

Figure 2.35: Histogram of widths of connected component bounding boxes
on y-axis, respectively for face window ’a’, ’b’, ’c’ and ’d’.

• Image ’c’: Nine candidate regions are detected.

• Image ’d’: Six candidate regions are detected.

Separately, these candidate regions are not significant yet. However,
we can notice that a combination of some of them may be representative.
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In particular, it seems that the candidate region which includes both eyes
is separated from those of nose and mouth.

2.4.4.3 Left and right eye candidate region extraction

At this point, we have generated several candidate regions from projection
on y-axis. Here, we want to extract the candidate region which includes
both eyes. However, separately, we saw that candidate regions extracted
from projection on y-axis are not significant yet. We need to merge some
candidate regions to generate the one with the smallest area that will
include both eyes. A candidate region is defined by:

• all connected components entirely included in it,

• the upper left point S of this candidate region bounding box,

• the lower right point T of this candidate region bounding box.

First, we assume that two consecutive candidate anatomic regions CARi

and CARi+1 according to y-axis can be merged if the minimum distance
between their projection on y-axis is less than 2.5% of the face window
height H. So the number of candidate regions is reduced. For example,
after this step, the image ’a’ has only 3 candidate regions. Figure 2.36
shows another example.

A basic knowledge of face spatial distribution says that eyes are in the
upper part of the face. Since the aim here is to extract eyes candidate
regions, only candidate regions the left upper point S of which is located
in the upper part of the face are kept. More accurately, the candidate
region which is immediately over the horizontal middle line of the face
window should contain both eyes. Given yS, the ordinate of the left upper
point of a candidate region, the candidate anatomic region which contain
both eyes is the one of which ordinate yS∗ is given by the equation 2.26.

{
yS
∗ < 1/2 ·H

yS
∗ = min

yS
(|yS − 1/2 ·H|) (2.26)

As a result a candidate anatomic region containing both eyes is selected.

Notice that we extract both eyes in a single region. Then, we have to
separate the left and right eyes. As a reminder, the left eye is in the left
part of the image (Actually, the eye in the left part of the image is the

58



Figure 2.36: Candidate anatomic regions obtained after merging close can-
didate regions. four candidate anatomic regions are extracted from this
histogram.

right eye in the point of view of the concerning person) and the right one
is in the right part of the face window.

In order to separate the left and right eyes, the histogram of connected
component bounding boxes occurrences is projected on x-axis. Then, two
cases are possible. First, eyes projections on x-axis are clearly separated.
Second, they are not separated. It happens when face window have a great
contrast because of illumination condition, or when the person has glasses
or when the threshold is too high. Indeed, when the threshold is too high,
the binarization of normalized horizontal energy map shows a single con-
nected component which connects both left and right eye regions because
of eyebrow arch. In the example ’a’ of Figure 2.35, we can see that both left
and right eye regions are connected by the eyebrow arch, whereas in the
example ’b’, left and right eyes regions are entirely separated. Figure 2.37
shows the associated histograms of occurrences of connected component
bounding boxes on x-axis for face windows ’a’ and ’b’.

Using the projection on x-axis, new possible regions for a single eye are
generated. Connected components with a common projection are merged
to form a possible single eye region. The coordinates of left upper point S
and of the right lower point T for each possible eyes regions are updated
to fit the projection on x-axis. We assume that eyes are the most salient
regions in both eyes candidate region. Moreover, there are at most two
eyes.
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Image ’a’

Image ’b’

Figure 2.37: Histogram of occurrences of connected component bounding
boxes on x-axis.

• Only the possible regions the bounding box area of which is greater
than 20% of the possible eye region with the greatest bounding box
area are taken into account.

• If there are more than two possible eye regions, only the two possible
single eye regions with the largest areas are kept.

• If there is only one possible single eye region, a further step is needed
to decide if this single eye region contains a single eye or two.

After this step, if there are still two regions selected, it means both
regions are the most salient ones with comparable areas. The possible eye
region at the left side of face window will be the left eye candidate region,
and the other one will be the right eye candidate region.

However, only one eye region can have been selected. In such cases, this
region can contain one single eye or both as we can see in the face window
’a’, but only a thin part connects the left and right eyes. So, in order to see
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if this single possible eye region contains one or two eyes, we compute the
histogram of the connected component on x-axis in this single eye region.
In other words, for each abscissa of this single region, the histogram will
give the number of pixels of the normalized energy map, the energy of
which is smaller than the threshold according to this abscissa. The center
part of Figure 2.38 shows this histogram. As you can see, compared to
the histogram of connected components occurrences of image ’a’ on Figure
2.37, this one is more accurate and gives a better representation of the
energy projection on x-axis. However, it is more time consuming than the
histogram of occurrences of connected component bounding boxes.

Figure 2.38: a) Initial connected components and their bounding boxes of
candidate anatomic region containing both eyes. b) Number of connected
component pixels according to the abscissa as well as the upper level set.
c) Separation of left and right candidate anatomic regions using this level
set.

An upper level set is then applied on this histogram; the level set is
associated with half the maximum value of this histogram. Since two eyes
will be separated by only a thin part of connected components, such a level
set should separate the original both eyes region into two parts. As we can
see in Figure 2.38, the support of the level set function is separated in two
regions. Similarly to the case when both eyes were found, two single eye
regions are generated. Connected components as well as each upper left
point S and each lower right point T are then updated to fit each found
region. A validation is finally made on each bounding box area to see
if one of them is negligible compared to the others. Finally, when these
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eye regions are validated, the left region will give the left eye candidate
anatomic region, and the right region will give the right eye candidate
anatomic region.

2.4.4.4 Nose tip and mouth extraction

Let us call L, the left eye candidate anatomic region and R, the right eye
candidate anatomic region.

Once eyes are located, we introduce a new and common knowledge:
nose and mouth are located on face symmetry axis: Face has a vertical
symmetry axis that passes between the eyes, through the center of the nose
tip and the center of the mouth. If the mouth and the nose tip are visible,
they should be on that axis. Since we found the candidate anatomic regions
of left eye and right eye, we should be able to select connected components
that are located on this face symmetry axis. Given xL the abscissa of the
right lower point TL of the left eye candidate region and xR the abscissa of
the left upper point SR of the right eye candidate region, both eyes are then
separated on x-axis by the interval K = [xL, xR]. Given CCi a connected
component which does not belong neither to L nor to R, we define NM
the anatomic region which gather the nose and the mouth. To define NM ,
we need to know which CCi is included in NM . A connected component
which belongs neither to the left eye nor to the right eye belongs to NM
if it intersects the face vertical symmetry axis. The equation 2.27 tells us
whether CCi belongs to NM or not.

K = [xL, xR] (2.27)
CCi ∈ NM ⇔ Px(CCi) ∩K 6= ∅
CCi /∈ NM ⇔ Px(CCi) ∩K = ∅

At this point, we should be able to separate the connected components
which belong to either the left or right eye or the nose or the mouth from
the other connected components. Figure 2.39 shows all the connected
component bounding boxes which belong to one of the searched anatomic
regions.

Figure 2.39 shows at this point, some connected components located
on the boundary of the face are removed. Other connected components
located on the eyebrow arch are divided to generated two separated new
connected components. Finally, selected connected components are those
which are located on an eye or on the nose tip or on the mouth. Notice that
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Figure 2.39: Connected components taken into account for a fixed thresh-
old: they should belong either to eyes or to nose tip or to mouth.

for image ’b’, no connected component is located on nose although there
was a little connected component detected. This connected component
was removed in the very first step, when small connected components were
removed. It shows that with this fixed threshold, our approach fails in
localizing the nose. However, do not forget we only generate candidates, it
means, that with a proper threshold, a nose tip region might be selected.

Now that we have selected all connected components representing the
nose and the mouth in the regionNM , we must separate them into two sep-
arate candidate anatomic regions, the first one representing the candidate
anatomic region of nose and the second one gathering together components
of mouth candidate anatomic region.

Here, we introduce a common basic knowledge: the nose is over the
mouth. Since the origin of the image is the left upper corner, it means that
the connected component CCnose with the lowest ordinate Ynose belongs at
least to the nose. Let us call yCC the ordinate of the left upper corner of
the bounding box of a given connected component CCi. We define CCnose
and its associated bounding box left upper corner ordinate Ynose by the
formula 2.28.

CCnose = CCi with Ynose = min
CCi∈NM

yCC (2.28)

Moreover, mouth should be larger than nose, it means that the widest
connected component CCmouth should be at least a part of the mouth. Let
us call Wmouth the width of CCmouth and wCC the width of a given CCi.
Figure 2.40 shows some examples of chosen CCnose and CCmouth.
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CCmouth = argmax
CCi∈NM−{CCnose}

wCCi
(2.29)

a b c d

Figure 2.40: Examples of noticeable connected components: the highest
one, CCnose is indicated by a blue arrow and the widest one, CCmouth is
indicated by a red arrow.

Since the mouth is under the nose, all connected components under
the connected component CCmouth should be parts of the mouth. Given
M the candidate anatomic region of the mouth and Ymouth the ordinate
of CCmouth upper left corner, the formula 2.30 shows how to process all
connected components under CCmouth.

∀CCi ∈ NM − {CCnose, CCmouth}, (2.30)
if yCC ≥ Ymouth then CCi ∈M

The last connected components which are located between CCnose and
CCmouth, they are classified according to their width. If such a connected
component width is closer to CCnose width compare to CCmouth, it will
belong to nose otherwise it will belong to mouth.

Finally, Figure 2.41 shows some candidate anatomic regions correspond-
ing to left and right eyes, nose and mouth for a fixed binarization threshold
of 0.75 of the normalized horizontal energy map.

As shown in Figure 2.41, all regions are not detected well. In image b,
nose detection is wrong; we can observe that nose is located at the upper lip
of the mouth. We saw that there was only one single connected component
corresponding to nose which was not kept because its size was too small. In
image c and d, some eyes are only partially extracted. However, if detection
is incomplete, it does not mean that the extraction step failed. Since
extraction of candidate anatomic regions is done with a fixed binarisation
threshold, a better threshold which is able to extract complete regions may
exist. Although some regions are found correctly with a fixed threshold
(image a), it seems obvious that it is not the case for many face images.
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Figure 2.41: Extracted candidate anatomic regions of both eyes, nose and
mouth for a fixed binarisation threshold of 0.75 of the normalized horizontal
energy map.

2.4.5 Multi-threshold analysis of the normalized hor-
izontal energy map

At this moment, we have shown how to extract candidate anatomic regions;
when a specific threshold is applied on the normalized horizontal energy
map. Four candidate anatomic regions are extracted corresponding to:

• the left eye candidate region, LE,

• the right eye candidate region, RE,

• the nose tip candidate region, N ,

• the mouth candidate region, M .

Figure 2.42 shows some candidate anatomic regions according to the
threshold t applied on the normalized horizontal energy map.

As we can see on Figure 2.42, the higher the threshold is, the larger the
candidate anatomic regions are. When t = 0.59, we can see that candidate
anatomic regions in image ’a’ and ’d’ are correct, whereas this extraction is
wrong or incomplete for image ’b’ and ’c’. However, with higher values of
the threshold, extraction seems more correct, but when thresholds are too
high, candidate regions become too large and are not accurate enough. In
order to select a suitable candidate anatomic region, we have to study how
candidate regions of a given face element vary according to the threshold
t and to determine the anatomic region with respect to this variation.

As the threshold varies, the position and the size of candidate regions
of a given face element varies too. However, this variation can be more
or less important. We assume that a candidate region of a given face ele-
ment is potentially suitable if it is stable despite the variation of threshold.
Instability of candidate region positions and size tells us where connected
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Figure 2.42: Candidate anatomic regions extraction according to thresh-
old t applied on normalized horizontal energy map.

components or regions of different face elements are merging. Indeed, with
low values of the threshold, connected components of the same face ele-
ment will merge as the threshold increases. However with high values of
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the threshold, some regions can entirely merge with other regions. This
instability with low thresholds values can be ignored since it is the result
of connected components of the same face element which are growing or
merging. However, when threshold values are high enough, a great varia-
tion of position or size implies that different regions are partially or entirely
merging with others. As a result, regions are often absurd in terms of po-
sitions or size. For example, in the image ’a’, with t = 0.9, nose is not only
too big, it is also represented by a bounding box which entirely includes
the mouth bounding box. In the image ’d’, eyes are located in the lower
part of the face image: this is not possible.

So, we propose a multi-threshold analysis based on these previous re-
marks. For a given face element:

• First, we want to find where the candidate regions positions and size
are stable despite the threshold variation.

• Second, candidate regions must respect some limit values related to
their position and size. An eye candidate region or a nose tip bound-
ing box area must be less that 10% of the face window area. The
mouth candidate region area must be less than 15% of the area of
the whole face image.

Notice that these limitations are very large and are only used to exclude
some absurd candidate regions. Do not forget that candidate anatomic
regions must also respect some basic knowledge. Eyes must be in the
upper part of face window, and two anatomic parts must be separated.
So, a candidate anatomic region represented by its bounding box can not
include entirely another candidate anatomic region. For example, a nose
region cannot be included in a mouth region.

Given an anatomic region R, this region is defined by a set of candidate
anatomic regions depending on the thresholds. Each candidate regions is
defined by 4 values:

• the abscissa xR of the left upper point of the bounding box of this
candidate anatomic region, normalized by the size L of the face win-
dow.

• the ordinate yR of the left upper point of the bounding box of this
candidate anatomic region, normalized by L.

• the width wR of the bounding box of this candidate anatomic region,
normalized by L.
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• the height hR of the bounding box of this candidate anatomic region,
normalized by L.

In other words, for a given region R, four functions, xR(t), yR(t), wR(t)
and hR(t), define the evolution of candidate anatomic regions related to R
according to the threshold t. Figure 2.43 shows the four functions related to
the left eye regions of image ’d’. The abscissa and width were normalized by
the face window widthW and the ordinate and the height were normalized
by the face window height H.

Figure 2.43: Variation of position and size of the bounding boxes of left
eye candidate anatomic region for the face of image ’d’.

When we observe the four functions, there are no values for t > 0.88.
Indeed, when we observe the image ’d’ of Figure 2.42 with t = 0.9, the eyes
are located in the lower part of the face window. Since, eyes must be in
the upper part, it is not possible to find the left and right eye for t > 0.88.
So, for the left eye region of image ’d’, only thresholds between 0.59 and
0.88 are taken into account.

In order to select a suitable threshold for a given face element region
R, we should also add some criteria on local stability despite threshold
variation, as well as maximum area condition.

We define a function D which accumulates the variations of the four
functions. The speed of the variation with respect to the threshold value
is modeled by the derivative.D is defined by the equation 2.31.
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D(t) = |x′R(t)|+ |y′R(t)|+ |w′R(t)|+ |h′R(t)| (2.31)

Let us note α the maximum ratio a specific region can have. As we
said, α = 0.1 for each eye and nose; an eye must have an area less than
10% of the face window area. α = 0.15 for mouth; a mouth must have an
area less than 15% of the face window area. To express the constraint, we
introduce a function A defined by the equation 2.32.

A(t) = α · L2 − wR(t) · hR(t) (2.32)

D(t) must be low and A(t) must be positive. We need to choose a
threshold called εR and we have chosen εR is equal to the mean of all D(t).

A suitable threshold t∗ related to a specific region R is given by the
equation 2.33.

t∗ = max
A(t)>0 and D(t)<εR

t (2.33)

When D(t) is low, it means that candidate anatomic regions vary a
little in the neighborhood of the threshold t. However, when D(t) is high,
candidate anatomic regions position and size vary a lot. As we said, when
D(t) is high, but t is low, it often means that connected components of the
same region are merging. This is the reason why we want to maximize t,
as long as different regions of the face are not merging.

For a given region R, the suitable threshold t∗ respects the stability
condition, maximizes the threshold t as long as R does not merge with
another region, respects some specific conditions related to positions and
size. The left side of Figure 2.44 shows the function D corresponding to
the left eye of Image ’d’. The red line is εR, the mean value of all D(t). The
right side shows the left eye candidate region bounding box area variation
according to the threshold t. Since wR and hR are normalized, the area of
the face window is 1. So, the left eye of image ’d’ must have an area less
than 0.1. the red line in the right graph is α.

In the graph of D, each time D(t) is greater than εR, we can suppose
that it is because connected components of the same region are merging.
The chosen threshold will be the maximum threshold which respects the
stability and the maximum area condition. In the example of the left eye
of image ’d’, t∗ = 0.86.

Similar operations are done for all face regions. Finally, a suitable
threshold is computed for the left eye (t∗LE), the right eye (t∗RE), the nose
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Figure 2.44: Functions D and wR×hR associated with the left eye region
area of image ’d’ according to the threshold t.

Table 2.3: Selected thresholds respectively for the left eye, right eye, nose
tip and mouth regions of images ’a’, ’b’, ’c’ and ’d’.

image t∗LE t∗RE t∗N t∗M

a 0.88 0.80 0.80 0.76
b 0.86 0.86 0.90 0.80
c 0.80 0.82 0.84 0.90
d 0.86 0.86 0.84 0.67

tip (t∗N) and the mouth (t∗M). Table 2.3 shows the selected thresholds for
each region of the four example images and Figure 2.45 shows the visual
results of the selected left and right eye anatomic regions, nose tip anatomic
region and the mouth anatomic region.

Figure 2.45: Selected candidate anatomic regions: they are the candidate
anatomic regions for which we have computed suitable thresholds.
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2.5 Evaluation

In this section, our face anatomic regions extraction method will be evalu-
ated. First, we will begin this introduction by presenting the face databases
used for evaluation. These databases are mainly, BioID, Color Feret, LFW
and CMU/MIT face databases. Then, we will show the results about back-
ground extraction using the vertical energy map. Finally, the results about
eyes, nose and mouth bounding box extraction will be presented.

2.5.1 Still face image databases

The main face image databases used for this evaluation are BioID and Color
Feret databases, because some significant points are labeled and localized.
Color Feret database annotates the iris positions as well as the mouth and
nose centers whereas BioID database annotates only the iris positions.

BioID is a database containing 1521 images of daily and non controlled
environment scenes. Each image contains only one face whereas Color
Feret database contains 11338 face images where the lightning conditions
and the background are controlled. Both databases have faces from differ-
ent persons or various ethnic origins. They also contain face images with
difficult illumination conditions, with occlusions due to mustaches, beards,
glasses and hands. They both contain thousands of images.

LFW is also a widely used face image database. It contains thousands
of face images in daily scenes with more complex backgrounds. All faces
of LFW databases are detected by the OpenCV implementation of Viola
and Jones face detector. Unfortunately, positions of face salient element
are not labeled.

Finally, the CMU/MIT face database is also used in this evaluation.
This database contains only hundreds of face images of daily scenes at
different scales and lightning conditions. Nevertheless, some salient points
of eyes, nose and mouth are labeled.

2.5.2 Separating face area from the background

As we said, separating face area from the background should reduce the
search area and should delete some noise in the step of face salient element
extraction itself. However, in a context of video where there are a lot
of images, this preprocessing step must be as fast as possible. Even if
real-time is not needed, the important amount of images in a video needs
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fast processes. Although an accurate segmentation of the face is desirable,
processing time has to be taken into account. Besides, the aim in this part
is not exactly the segmentation of the face, but we just want to generate
an approximate mask of the background. Accuracy is not the priority here.
When our method separates the background from the face area, it should
keep a maximum number of face elements. Indeed, if a face element is
considered as a background, the main step of face element extraction will
be incomplete or wrong. This is the reason why we will classify these masks
into three different types.

• The masks in which real face salient elements are partially or com-
pletely in the background area will be considered as wrong masks.

• The masks in which segmentation of the face failed, but are not
wrong masks will be considered as incomplete masks. There are
several cases of incomplete mask. Borders of the face are not well
detected; borders are located mostly in the background region of the
mask. Sometimes, a border is not detected at all.

• The masks where face borders are mostly well detected are considered
as good masks.

Only the wrong masks will be involved in a false result of the face ele-
ment extraction. Incomplete masks do not involve false extraction. Figure
2.46 shows some examples of good masks. Figure 2.47 shows some exam-
ples of incomplete marks and Figure 2.48 shows some examples of wrong
masks. In these figures, all the regions in red represent the background.

Figure 2.46: Examples of good masks. The first line contains images
from Color Feret database and the second line contains images from BioID
database.
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Figure 2.47: Examples of incomplete masks. The first line contains images
from Color Feret database and the second line contains images from BioID
database.

Figure 2.48: Examples of wrong masks. All images belong to Color Feret
database.

We can see in Figure 2.46 which contains good masks that our method
is able to detect only one border if the other one does not exist. As we can
see in Figure 2.47, some detected face borders can be totally false, whereas
others are only partially false. However, as face salient elements are not
considered as the background, it is still possible with these incomplete
masks to extract eyes, nose tip and mouth. In wrong masks of Figure 2.48,
one or more elements are considered as background. If we were only inter-
ested in terms of face segmentation, some of the wrong masks would have
been better than the incomplete ones. However, with these wrong masks,
some salient face elements are definitely lost for the salient region extrac-
tion step. This is the reason why, the notion of quality here is different
from the strict segmentation quality notion.

With all these remarks, we can evaluate our method which separates the
background and the face. Table 2.4 gives the percentage of good, incom-
plete and wrong masks using BioID and Color Feret databases. Although
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Table 2.4: Evaluation of the mask generation method. The mask should
separate the face region from the background.

Database Good(%) Incomplete(%) Wrong(%)

BioID 90.32 9.68 0.00
Color Feret 88.75 10.59 0.66

BioID contains images with uncontrolled background (scene of a person
with various background) and Color Feret has a controlled background, we
can see that BioID percentage of good masks is higher than Color Feret
one. The difficulty does not rely only on the complexity of the background,
but also on the complexity of the face. Color Feret has more images with
extreme variation of illumination, with beards, mustaches, glasses. Face
can be turned, not frontal. BioID faces are almost all frontal. Even if
illumination varies from a face to another, in a given face, illumination is
more stable. As we said, we want to minimize the number of wrong masks.
As we can see in this table, almost all the masks are either good or incom-
plete. In BioID, there is not such mask. In Color Feret, 99.34 percents
of the masks can potentially give a suitable face salient anatomic region
extraction.

2.5.3 Anatomic region extraction evaluation

Our problem has not been considered in the same way in the literature,
then evaluation is difficult. Usually in the literature, methods try to find
only one specific part of the face. This evaluation will essentially concern
eye detection, since it is possible to measure detection rate and accuracy
of the detection. Unfortunately, it is not the case for mouth and nose
detection. The only measurement about nose and mouth detection is the
correctness. Our method will be compared to Li et al. method [Li et al.,
2008] and to Asteriadis et al.[Asteriadis et al., 2009]. In these papers, the
standard of Jesorsky [Jesorsky et al., 2001] is used on BioID to test the
accuracy.

Given dr the distance between the true right iris location and the center
of the detected right eye, dl the distance between the true left iris location
and the center of the detected left eye and given drl the distance between
both true iris locations, Jesorsky defines the error err by (2.34).

err =
max(dr, dl)

drl
(2.34)
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For eye detection task, the reception threshold is 0.25. In other words
when err < 0.25, the localization is considered to be right. Note that
this paper is about detection of eyes and not about their localization. The
main difference between detection and localization problems is the first one
tries to detect a region whereas the second one tries to locate some salient
points. For localization issue, an error threshold of 0.05 or 0.1 is required
[Tan et al., 2009]. Jesorsky standard uses iris positions. So first, we have
to estimate the iris position.

Our approach of eye regions detection is not designed only for frontal
facial views. As a head turns, only one eye becomes visible. Our approach
can detect an eye in such cases. However, faces in BioID database are
frontal views. So both eyes are visible. We first compute the rate of images
where both eyes are not detected and found that it is less than 0.0034%.
Since Jesorsky measure needs both eyes, only images where there are both
eyes are taken into account. In other words, 99.9966% of BioID database
images are considered for the evaluation.

In our approach of eye detection, horizontal lines on faces are detected.
Since eyebrows and eyebrows arch are also horizontal, they are systemati-
cally detected in both eyes. Since the aim is to detect bounding boxes of
face salient anatomic regions, we assume that eyebrow may be relevant and
thus, can be incorporated in eye region. However, since Jesorsky standard
considered eye center as the iris and since our eye detection includes eye-
brow or eyebrows arch, the coordinates of point C at the estimated center
of the eye is given by the equation (2.35). xE, yE, wE and hE are respec-
tively the abscissa, the ordinate of the left upper point of the eye region
bounding box, the width and the height of the eye region bounding box.

xC = xE +
1

2
· wE (2.35)

yC = yE −
1

3
· hE +

1

2
· 2

3
· hE

Table 2.5 compares our method with Li’s et al. and Asteriadis et al.
methods. Note that our method has a better correctness whereas Li’s one
has a better mean error. Despite the approximation of eye center position
we used, results on BioID database are quite similar.

Our method is based on selecting suitable candidate among candidate
anatomic regions of a same salient region. The first question is to mea-
sure the interest of the multi-threshold analysis in the detection of the
eyes. Therefore, table 2.6 gives the correctness and the relative mean-error
according to threshold as well as the correctness and mean error of the
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Table 2.5: Comparison of Li et al. and Asteriadis et al. methods with
ours on BioID database.

Method Correctness (%) Relative mean-error

Li et al. 96 0.1004
Asteriadis et al. 96 Not given
Our method 97.23 0.1130

Figure 2.49: Percentage of chosen thresholds by the multi-threshold anal-
ysis.

multi-threshold approach.

As shown in table 2.6 the correctness (err < 0.25) rate is not equally
distributed. One can observe a maximum correctness with low mean error
for a threshold value close to 0.74. This is the effect of the normalization
of the horizontal energy map. This normalization reduces the number
of thresholds we have to study. Note that from a threshold higher than
0.86, correctness and mean error decreases fast. Indeed, if the threshold
is too high, connected components of different parts of the face are no
longer separated. This phenomenon is brutal, since a very little higher
threshold can merge 2 distinct candidate anatomic regions. Without the
multi-threshold analysis, for a threshold fixed at 0.74, the eye detection
works with a quite good accuracy and correctness. However, clearly, the
multi-threshold approach shows better results in terms of correctness and
accuracy than a fixed threshold approach.

Figure 2.49 shows which of the 7 thresholds are chosen by the multi-
threshold analysis for eye detection. Note that the most chosen threshold
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Table 2.6: Correctness and relative mean-error of candidate anatomic
regions with a fixed energy map binarization threshold as well as the multi-
threshold approach.

Threshold Correctness(%) Relative mean-error

0.39 58.98 0.3872
0.43 62.47 0.3495
0.47 67.95 0.3081
0.51 72.90 0.2768
0.55 77.37 0.2540
0.59 82.79 0.2127
0.63 88.48 0.1773
0.67 91.67 0.1549
0.71 93.90 0.1417
0.74 95.39 0.1309
0.78 93.43 0.1434
0.82 87.80 0.1792
0.86 72.22 0.2786
0.90 45.60 0.4971
multi-threshold 97.23 0.1130

is the value where the detection has greatest correctness and lowest mean
error. However, only 47% are chosen with this threshold. It also shows
that multi-threshold analysis favors lower thresholds than higher. As we
said, the lower the threshold is, the more separated candidate anatomic
regions are.

Our method was also evaluated on Color FERET database. It contains
various images under different conditions of pose, illumination. Many peo-
ple have beard or glasses. Eyes, nose tip and mouth position are given in
all frontal images (about 1800 images). Our method gives similar results:
a correctness of 97.60 for a mean error of 0.1110.

We also wanted to evaluate our method on LFW database. Unfortu-
nately, anatomic parts are not labeled or some ground truth such as those
used in [Tan et al., 2009] are not public.

About nose and mouth, just the correctness was simply tested. Con-
trary to eyes, our approach is designed to give a nose and mouth can-
didate anatomic regions, since at least a part of them must be visible.
Table 2.7 gives the ratio of detected nose and mouth in Color FERET and
MIT/CMU, since nose tip and mouth center are labeled in these databases.
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Table 2.7: Nose and mouth detection rate.
Database Nose(%) Mouth(%)

Color FERET 75.23 97.50
MIT/CMU 83.63 97.76

Figure 2.50: Visual results on BioID. Incomplete or wrong extractions are
in last line.

For these tests, we assume that a region is correctly found if its bounding
box contains the corresponding ground truth point with constraints on its
area. Nose region area must be less than 5% of the face window area,
and mouth region less than 8%. This table shows that mouth is correctly
detected. Nose detection failed when faces have mustache or beard.

The average computation time of our method is 16 ms on Intel Core
i7-2670 QM CPU at 2.2GHz. Our software is made for test and thus,
is not optimized. Moreover, extraction part is the most important one
in the algorithm, but can be done in parallel processes. Otherwise, the
computation of each value in the horizontal energy map is quite fast, since
Viola and Jones integral image is used. The computation of multi-threshold
analysis is the fastest part of our approach. Indeed, we use 7 thresholds.
For each threshold, our method detects 4 regions and each regions generates
4 values (position and size). So, only a fixed number of calculations with
a data array of 112 values is needed.
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Figure 2.51: Visual results on Color FERET. Same disposition as Figure
2.50.
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2.6 Conclusion of face salient element extrac-
tion

In this paper, we proposed a new method which uses a single adaptive
horizontal Haar feature to extract bounding boxes of both eyes, nose and
mouth. Knowing the observation level of faces, we are able to detect facial
parts with an efficient horizontal energy map. We have also shown how
basic knowledge of facial distribution can improve facial anatomic regions
detection. Moreover, we propose a multi-threshold method which is able
to choose a suited threshold for each part of the face, despite difficult illu-
mination conditions. Evaluation shows the efficiency of a multi-threshold
analysis. Our method is also able to detect eyes with accuracy, despite
the approximation related to eyebrows or eyebrows arch. Mouth is also
well detected whereas nose is still more difficult to extract, especially when
faces have mustache or beard.
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Chapter 3

Head pose estimation using Haar
energy and face salient elements
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Chapter summary

An image of a face is a projection of the 3D object in image plan. There-
fore, according to the orientation of the face in the 3D world with respect
to the camera position, two projections of the same face will vary a lot.
These variations involve a deformation of the global aspect of the face.
Moreover, other variations related to the environment, such as illumina-
tion or occlusion, can change the appearance of the face. Furthermore,
face is not a rigid object; it means that non linear transformation can also
affect face appearance. Despite all these difficulties, face pose estimation
tries to give the orientation of the face, according to the degrees of freedom
allowed to face movement.

Many methods or applications involving face analysis in computer vi-
sion needs to estimate the pose before achieving their own task. For ex-
ample, the efficiency of many approaches in driver assistance, human com-
puter interaction, face recognition, face tracking depend on the head pose
estimation.

In this chapter, we will present two methods to estimate head pose
using horizontal Haar energy as well as face salient elements. The first
method estimates the roll and the other one estimates the yaw and the
pitch.

Résumé du chapitre

L’image du visage est une projection d’un objet 3D sur le plan de l’image.
Par conséquent, en fonction de l’orientation du visage dans le monde 3D
par rapport à la position de l’objectif de la caméra, deux projections du
même visage varieront beaucoup. Ces variations impliquent une défor-
mation de l’aspect global du visage. De plus, d’autres variations liées
à l’environnement, comme l’illumination ou l’occlusion, peuvent changer
l’apparence du visage. D’ailleurs, le visage n’est pas un objet rigide ;
cela signifie que des transformations non linéaires peuvent affecter son as-
pect. Malgré toutes ces difficultés, l’estimation de pose cherche à donner
l’orientation du visage en fonction des trois degrés de liberté que le mou-
vement du visage permet.

De nombreuses méthodes et applications liées à l’analyse du visage dans
le domaine de la vision par ordinateur requièrent d’estimer la pose avant
d’exécuter leur propre tâche. Par exemple, l’efficacité de nombreuses ap-
proches telles que l’assistance à la conduite, l’interaction homme-machine,
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la reconnaissance du visage ou son suivi dans la vidéo dépend de l’estimation
de pose.

Dans ce chapitre, nous présenterons deux méthodes utilisant l’énergie
de Haar ainsi que les éléments saillants du visage pour en estimer la pose.
La première estimera le roulis tandis que la seconde estimera le lacet et le
tangage du visage.
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3.1 Introduction

The head pose estimation consists in estimating the orientation of a face
according to a model generally adopted and which considers the three
possible rotations of the object in the real world. Let us consider a frontal
face, these rotations are:

• the roll, which is the rotation of the face in the image plan,

• the yaw which corresponds to the rotation when the head turns to
the right or to the left.

• the pitch which corresponds to the rotation when the head moves up
or down.

The Figure 3.1 shows the orientation of the roll, the yaw and the pitch
on a face.

Figure 3.1: Visualization of the roll, yaw and pitch of a head.

The image of a face is a projection on the image plan of the three di-
mensional face object. As a result, face images of a same person vary a lot.
The pose variation makes all computer visions tasks difficult. Although it is
not the only difficulty, knowing the pose may be useful to many processes.

Besides, all rotations are not equivalent in terms of pose correction.
Indeed, if we want to generate a frontal view of a face (with null roll,
yaw and pitch values) from another view of the same face, but with a
different pose, the roll can be corrected by a simple rotation in the image
plan, contrary to the yaw and the pitch corrections which require complex
transformations.

New human-machine interactions are designed, based on human move-
ment. In such cases, finding the orientation of objects is important to
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properly localize the objects in three dimensions, for example, in the field
of video games with the well-known Kinect, or in driver’s fatigue control
systems. In all these interactions, pose has to be estimated.

In this chapter, we have chosen to begin by presenting a method which is
able to estimate the roll of a face, because it can be corrected with a single
transform. This method will use the horizontal global energy of a face,
a scoring system extended from the salient anatomic elements extraction
method developed in the previous chapter. Then, a geometrical method
based on the extracted anatomic regions, which computes the yaw and
the pitch will be presented. In our approach, the computation of the roll,
the yaw and the pitch are independent. All these methods are geometric.
However, roll estimation is based on the presence of horizontal elements in
a face, whereas yaw and pitch estimation are based on spatial face elements
distribution.

The goal in this thesis is to select a "good" face candidate image among
those present in a video sequence. We assume that a good face candidate
should have null roll, yaw and pitch values. Therefore, an accurate estima-
tion for all poses is not required. The pose estimation should be accurate
with only almost frontal faces. Moreover, the pose estimation method
should be computationally fast because any video sequence will generate a
large amount of images.

After we present a brief state of the art where so many different methods
have been developed, we will introduce two original methods we defined
to measure, on the one hand, the roll and on the other hand, the yaw and
the pitch of human face. The last part of this chapter will end with the
evaluation of these methods.
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3.2 Head pose estimation state of the art

This section will present some of the main works in head pose estimation.
Approaches to estimate head pose depend on the type of algorithms used.
As we said, while some methods only estimate one or two degrees of free-
dom, others will estimate all of them. However, whatever are the degrees
of freedom estimated, they all respond to the same problem of face pose
estimation. In this state of the art, pose estimation methods were divided
into seven categories.

• Methods based on templates: A test face image is compared to a set
of face images of a database where each face is labeled with a discrete
pose. These methods assume that similar images will have similar
pose.

• Methods using classification: Several sets where each of them is la-
beled and contains a pose are used to train a machine learning tech-
nique.

• Geometric methods: They use some basic knowledge of face elements
distribution and location to determine the face pose.

• Methods using flexible models: These methods try to learn the con-
tinuous deformation of faces. Features or some parameters of the
deformation model are used to estimate the pose

• Nonlinear regression methods: They use linear and nonlinear func-
tions in order to map a set of features to a head pose.

• Methods based on embedding: They assume that head pose continu-
ous variation can be modeled by a low-dimensional manifold. Then,
these manifolds are used for regression.

• Hybrid methods: They combine some previous methods. They as-
sume that a combination can overcome some limitation proper to
each method.

3.2.1 Methods based on templates

Some of the first pose estimation methods are template methods. Given
a face test image, they try to estimate the pose by comparing this query
image with samples of the set where pose is labeled for each sample. These
methods compare the whole face with others by using a metric. Then, the
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pose is determined using the most similar templates pose. In [Beymer,
1994], the authors propose to use normalized cross-correlation at multiple
image resolutions. In [Niyogi et Freeman, 1996], the authors use mean
square error over a sliding window to compare features. The main advan-
tages of these methods are, first, the template set can be incremental: a
new face template can be added at any time. Second, such methods do
not require negative examples.

However, there are also important drawbacks. First, with these meth-
ods, pose estimation is too sensitive to face alignment. Furthermore, as
the template set grows, computation time to estimate the pose of a query
image will increase too much. These methods assume that the similarity
between two persons of the same pose should be less than other compar-
isons of two other face images. This assumption is not always exact. If we
consider two face images of the same person at different poses, the sim-
ilarity between these images can obviously be higher than the similarity
between two images of different persons but with the same pose.

3.2.2 Methods using classification

Many methods assume frontal face detection. Naturally, if they succeed in
finding faces in a frontal view, they could extract faces in a defined discrete
pose. Methods using classification will train multiple face detectors. Each
of them is associated with a specific pose. Some of these methods assume a
face is detected by one of these detectors, it means that the associated pose
will be the one of the test face image. However, these methods also assume
that two detectors are not able to find the given test face image. Others
assume that the selected face detector and its associated head pose will
be the one with the greatest support. The main differences between these
methods will be on the descriptors and the machine learning techniques.

In [Jones et Viola, 2003], Haar-like features and AdaBoost are used to
get several face detectors depending on the pose. One of the first face pose
estimation method uses three SVM in [Huang et al., 1999], and tries to
classify face images into three different discrete yaws. In [Zhang et al.,
2007b], naive Bayesian classifier and a Hidden Markov Model are used to
aggregate face pose estimation from several cameras.

The main advantage of such methods is that they are able to detect,
localize and estimate the pose at the same time. Indeed, most of the
classification methods used face detectors according to a pose. However,
such methods have an important drawback. They require training many
detectors, each of them corresponding to a discrete pose. Therefore, they
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need many datasets which gather together faces with a discrete pose and
non face examples, as well as negative examples of faces (i.e. with another
discrete pose). The amount of image to annotate and align is huge. On
the other hand, these methods are limited by the number of head poses.
Indeed, when the number of poses increases, the difference between two
consecutive poses will decrease. As a consequence, a training set will have
some positive examples of face with a given pose as well as some negative
examples of face with a slightly different pose. The appearance between
these images will not be enough significant. This is the reason why, these
methods often estimate the pose on one degree of freedom, using less than
twelve detectors.

3.2.3 Geometric methods

These approaches are based on human perception of head pose. Human
being perception is not able to estimate the pose with exact orientation
values. However they are able to compare the pose of two heads. For ex-
ample, in [Wilson et al., 2000], the authors show how human perception of
head pose is based on nose deviation as well as the deviation of the face
symmetry axis. In general, face elements projection spatial distribution
suggests to the human vision what the head pose is. These methods ex-
ploit the common knowledge on human face when pose varies. Geometric
approaches use these properties of human face to estimate the head pose.

In [Gee et Cipolla, 1994], five points are extracted (each eye outer cor-
ners, mouth outer corners and nose tip) the face symmetry axis is consid-
ered as the line between the midpoint of the eyes corners and the midpoint
of the mouth corners. The nose tip position is then compared to this axis
to estimate the yaw of the head. In [Wang et Sung, 2007], the authors ex-
tract three lines. The first one links the outer eye corners. The second one
connects the inner eye corners and the last one connects the outer mouth
corners. They assume that these lines are parallel and thus, if lines are
no longer parallel, it is the result of perspective distortion. The vanishing
point of these lines can be computed and used to compute the head pose.
Geometric methods are fast and require only a few features. However,
these features are not easy to be extracted accurately. Moreover some of
these features can be invisible because of glasses or any other occlusion.

In [Kong et Mbouna, 2015], a 3D face of a person is used as a model.
Then, the authors try to minimize the disparity of some facial features
between the query image and the 3D model. In [Dahmane et al., 2010],
the authors show that the study of local symmetry of some face regions,
as well as the location of face vertical symmetry axis can improve pose
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estimation.

3.2.4 Methods using flexible models

Contrary to other methods which try to detect a face with its pose in a
rectangular window, methods using flexible models try to create a non-
rigid model which describes face structure. In addition to the pose label
for each face image, these methods also need the annotation of further
structural information. In other words, some additional features have to
be annotated in images of training data. Such methods enable to compare
features and not the global face window. Most of them use control points
(eye corners, nose corners, mouth corners, some face contour points, etc
). These points are represented in a deformable graph. These methods
assume that points can converge to a graph corresponding to every face
by deforming the general model. From the training dataset, most of these
methods will first extract these control points and then try to estimate the
pose. In [Lanitis et al., 1995], the authors present the Active Shape Model
(ASM) in the context of face applications. A principal components analysis
on all control points positions of the training data is applied to learn the
possible deformations of faces. In [Jiang et al., 2012], ASM is used to first
extract some control points, then, using the positions, a SVM is used to
estimate the pose. In the ASM, only the positions were considered in the
training step, the Active Appearance Models (AAM) consider the position
and the texture for all control points. In [Cootes et al., 2000], the authors
use the AAM to extract a few control points and assume that the model
parameters are related to the pose and hence estimate the pose of a test
image using the extracted control points. In [Martins et Batista, 2008] or
in [Dai et Chung, 2011], the authors also extract control points using AAM
respectively to estimate the pose in a context of a single view image and
in the context of video frames.

AAM can localize a head with a small error. However, they cannot be
used as a face detector. AAM will never verify the existence of a face in the
image. They are only able to converge to the face. In other words, even if a
face does not exit in the image, if we place the initial control points on this
image, the model will converge by minimizing a distance value and thus
find a face. Similar to all techniques with a machine learning step, AAM
need to annotate all control points in all faces in the database. Moreover,
AAM needs to place all control points, even if they are no longer visible.
For example, in almost profile view of faces, one of the eye will no longer
be visible, AAM will then fail in localizing all control points.

Many researchers develop similar methods to localize control points on
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faces such as in [Luu et al., 2011] where the authors use the Modified
Active Shape Model (MASM) described in [Seshadri et Savvides, 2009].
In this paper, the authors propose to combine landmarks for the MASM
and some face texture information in the proposed Contourlet Appearance
Model to estimate the age. In ??, the authors propose a statistical model
called Statistical Facial Model (SFAM) able to learn the global 3D face
deformation as well as the variation of texture and shape around some 3D
face landmarks. Such 3D face lankmarking techniques are generally more
robust to pose and lighging variations.

3.2.5 Nonlinear regression methods

Nonlinear regression methods try to estimate pose using a non linear func-
tion which matches face images to one or more directions. These ap-
proaches assume that a function built from the images of the training
step, can estimate the pose of any new face image. The main issue of such
methods is how well a regression will learn a suitable matching between
face images and the pose. Indeed, the amount of features generated in a
face image can be very large.

Some methods use regression tools. In [Murphy-Chutorian et Trivedi,
2010], the pose is estimated using localized gradient orientation histograms
on support vector regressors (SVRs). In [Li et al., 2004], eigenface and
SVRs are used to detect face as well as the face pose. However, in order
to use SVRs, the dimensionality of the features must be reduced, using
for example Principal Component Analysis. Other nonlinear regression
methods use neural networks. For example, in [Bishop, 1995], in [Yang
et al., 2012] or in [Voit et al., 2007], Multi-Layer Perceptron (MLP) is used
to estimate pose. MLP updates each node weight backward through each
layer and the output nodes correspond to discrete pose. In these cases,
MLP can only provide coarse estimation of discrete pose. Another popular
neural network is the Locally-Linear Map (LLM) built with a lot of linear
maps, such as in [Rae et Ritter, 1998] or in [Krüger et Sommer, 2002].
Many pose estimation methods need a first step of face image alignment.
In [Haj et al., 2012], the authors use a partial least squares (PSL) regression
to estimate the pose and the alignment. These methods are very fast and
give accurate head pose estimation. However, pose estimation is reliable
only when head is almost perfectly aligned and localized. In [Osadchy
et al., 2007], the authors add to MLP a convolutional network which should
reduce this drawback.
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3.2.6 Methods based on Embedding

Embedding methods assume that a head sample is represented in a high-
dimensional space where only a few dimensions vary as the pose changes.
Indeed, only the dimensions for the pose and three others for the position
are necessary for a rigid object. Hence, a low-dimensional continuous man-
ifold associated with pose variation may represent each high-dimensional
image sample. In order to estimate the pose of a test face image, first, this
manifold must be built and then an embedding algorithm will project this
test image into this manifold. Finally, either the pose is estimated using
regression or by matching the result of the embedding or with classification
process. In other words, all algorithms which try to reduce the dimension-
ality can be seen as a manifold embedding. However, all variations which
may appear in a face are not only because of pose variation. Such meth-
ods need to reliably consider only variations from pose while ignoring the
others.

PCA and the Kernelized Principal Component Analysis are widely
used. These techniques reduce the dimensionality of the initial features,
while conserving most of the information [Duda et al., 2001]. For exam-
ple, in [Sherrah et al., 2001], Gabor wavelets are used to build embedded
templates, then a PCA is applied on these templates to estimate the pose.
The main drawback of PCA or KPCA is that these techniques are an un-
supervised reduction of the dimension. Hence, although reduced features
contain almost all the initial information, we cannot be sure that this in-
formation is related to the pose, rather than other variations which may
appear.

To overcome this, others have the idea to separate the training data into
different sets where each of them is associated with a defined discrete pose.
PCA or KPCA are then applied in each set. A further step is then necessary
to select the set as well as the associated discrete pose for estimation. In
[Srinivasan et Boyer, 2002], pose specific eigenspaces are computed. Then
each test image is normalized and projected into each pose-eigenspace.
The estimated pose will be the one which maximizes the projection energy.
Pose eigenspaces, like the classification methods learn from sets of discrete
pose, so it has almost the same drawback: Fine pose estimation is not
possible. In order to have finer results, it is better to use Multi-class
Linear Discriminant Analysis (LDA), in particular its kernelized version
KLDA, such as in [Wu et Trivedi, 2008] where KLDA tries to find how
the data vary between two sets of discrete poses. In [Hoffken et al., 2013],
the multiclass Linear Discriminant analysis (M-LDA) is used to estimate
the pose, while minimizing the impact of the information which does not
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concern the head pose.

Some approaches such as Isometric feature mapping (Isomap) [Raytchev
et al., 2004], Locally Linear Embedding (LLE) [Roweis et Saul, 2000] or
Laplacian Eigenmaps (LE) [Belkin et Niyogi, 2003] tends also to remove
irrelevant dimension related to other variations than pose variation.

Unfortunately, these methods tend to build manifolds for both identity
and pose. Others suggest to build a separate manifold for each person of
the training set [Yan et al., 2008b], but, in the real world, it is difficult to
get images of each person with many discrete poses.

3.2.7 Hybrid methods

These methods try to overcome a drawback of one specific method with
another approach of another method category. Many methods associate a
geometric approach with another approach based on a flexible model, such
as in [Hu et al., 2004]. Others use PCA embedded template with opti-
cal flow [Zhu et Fujimura, 2004] or with a density Hidden Markov Model
[Huang et Trivedi, 2003]. Hybrid methods can also apply a few pose esti-
mation techniques independently. Then, results are merged to get a better
estimation of the pose. For example, in [Wu et Trivedi, 2008], manifold
embeddings are used followed by Elastic Graph Matching to improve pose
estimation.

3.2.8 Discussion

The first attempts to estimate head pose were methods using the templates.
These methods try to classify a test face image by comparing it with other
labeled annotated images. They assume that faces of a discrete pose are
globally almost the same. This assumption is not entirely exact. Indeed,
when we analyze the whole face, face samples of the same person with
different poses can have a global appearance more similar than two faces
of different persons but with the same pose. Therefore, these approaches
are almost abandoned.

Then, classification approaches as we described in section 3.2.2 and ex-
clusive geometric approaches were developed. Classification methods can
be seen as a multi-class face detection problem, each class representing a
discrete pose. They cannot give accurate estimations and require anno-
tating a large amount of images. Exclusive geometric methods use some
geometric properties to estimate the pose. They are fast but are in general
not so accurate.
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Classification methods as we defined, are now rarely used. Now, the
trend is to build some models or to find the most representative features
according to face pose. Flexible models can describe the deformation of face
appearance, generally using control points according to the pose. These
methods are visually impressive but are quite difficult to generalize and
thus, they depend on the learning database. Others try to find a subset
of some features associated with face pose variation. They use embedding
techniques or regression methods.

Now, the methods are rarely exclusively geometric, they are actually
hybrid methods: face geometry is used as cues for other descriptors to
improve head pose estimation.

In the next section, we will present two methods to estimate the pose:
the first one estimates the roll whereas the other gives an estimation of
the raw and the yaw. Both of the methods are geometric. However, roll
estimation method is also statistical whereas the other one is an exclusive
geometric approach.
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3.3 The proposed face pose estimation meth-
ods

In this section, we will present our face pose estimation method. Actu-
ally, this method is divided into two independent parts. Some methods
estimating yaw or pitch require a null roll face image. Therefore, face roll
estimation must be the first of all tasks with methods related to face anal-
ysis and which are not invariant in rotation. The first one is mostly a
statistical geometric method which is able to estimate the roll of a given
face. The second method is geometrical and will estimate the yaw and the
pitch. We still suppose that a face is found in a square window L. This
window contains the entire face. The order of magnitude of the face is
given by the size of the window.

3.3.1 Estimation of the roll

Many of the methods on face detection and recognition, face tracking, with
face control points assume a null roll value. For example Viola and Jones
face detector needs a face roll value less than ±15 deg. It is almost the
same for our face salient element extraction method. After we motivate
the type of the approach with propose and analyze the properties of the
horizontal energy map with respect with the roll measurement, we sum up
the approach [Pyun et Vincent, 2015] and then come to the details.

3.3.1.1 Motivation

One of the main assumption of the face salient element extraction method
is that face roll is almost a null value. Although this assumption can be
seen as a limitation of our method, it also means that when the extraction
succeeds, we can be quite sure that the face has almost a null roll value.
Hence, given a test face window I, given Rot(α), the rotation operator of
angle α and the center of which is the center of I, depending on α, the
extraction will give more or less credible regions. The credibility of regions
can be partially evaluated because we know what a face must be. However,
this side effect of the extraction method cannot be enough to estimate the
roll for two main reasons.

1. When two face images are differentiated by a small rotation, they
will probably give almost the same salient elements. Therefore, with
small roll variation, it will be difficult to judge which one is the best.
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Figure 3.2 shows results of face elements extraction according to the
roll value α. As we can see, extraction is credible for roll values
between −15 deg to 15 deg. Hence, the roll cannot be estimated
accurately if we only consider the credibility of the extraction.

2. On the other hand, for each discrete pose to be tested, salient ele-
ments must be extracted. Even if the extraction is fast, as we add
discrete roll test values, computation time will also be proportion-
ately longer.

α = 0 −5 −10 −15 −45 −90

Figure 3.2: Face salient extraction results according to roll angle α.

In order to have a correct extraction, we need a roll variation less than
10 deg. Notice that we must make a difference between a correct extraction
and a credible extraction. In Figure 3.2, the extraction of the mouth with
a roll of 15 deg is credible but not correct. Studying the credibility of face
elements can be time consuming and not enough accurate.

3.3.1.2 Global Horizontal energy

In order to have more accurate estimation of head roll, we will come back
to the global horizontal energy. As a remainder, the horizontal energy uses
Haar horizontal mirror pattern. It is expressed at each point of the image,
thus, it can be seen as a local horizontal energy.

Figure 3.3 shows a Haar horizontal filter applied to the point A. The
point "A" is on the straight line which separates a region of null intensities
(black pixels) and another one of maximum intensities U (white pixels). β
is the angle of rotation of center "A". A null rotation β corresponds to the
configuration of a straight horizontal line (a).

The local horizontal energy is the absolute value of the difference be-
tween the sums of the upper and lower part of the filter. Since black regions
have null intensities, we will only be interested in maximum intensities in-
side the Haar pattern, in Figure 3.3b, pixels of maximum intensities are
represented in blue or green.
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a b

Figure 3.3: Image a illustrates a horizontal straight line with the horizontal
Haar filter. Image b illustrates an oblique straight line with the horizontal
Haar filter centered in A. In (a), the energy is the area of the green zone.
In (b), the energy is the difference of the areas of the blue and green zones.

Geometrically, it is obvious the local energy has a maximum when the
contour containing the point "A" is horizontal β = 0[180]. Since the
pattern has 2 symmetry axis, given EHh the local energy, EHh(A, β) =
EHh(A,−β) = EHh(A, 180 − β). In other words, we need to study only
rotation of the interval [0, 90]. Given Hh the Haar horizontal pattern of
width w and height h, the equation 3.1 corresponds to EHh of point "A"
with a rotation of β in the interval [0, 90].

EHh(A, β) = U
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]
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The equation 3.1 shows that there is a unique maximum for β = 0 deg
and EHh(A, 0) = 1

2
wh. So, each pixel close to a horizontal contour has a

high local horizontal energy. As the head roll is close to a null roll, face
elements, nose basis, eyes, and mouth will have approximately a horizontal
direction. Hence, local energy of almost all pixels in salient regions should
generally be high. Other parts of the face are more homogeneous and
should have a low local energy, whatever the roll is.

A global horizontal energy EG is then defined as the sum of all local
horizontal energy of pixels included in the face. However, face segmentation
is a difficult task and will be time consuming. To limit the face, we propose
a circle defining the face position. It will enable to highlight face elements.
The center of this circle is the center of the square window (Figure 3.4a).
This mask Ω will be simple to generate and to apply when we will compute
the global energy. Moreover, since we assume face detection has succeeded,
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this circular mask should contain all the face salient elements. Roll of the
face will be defined as the rotation the center of which is also the center
of the face window. Hence, whatever the roll value is, the image on which
the mask is applied, should contain the same set of pixels (Figure 3.4b and
3.4c).

One can wonder why we do not use the face mask described in 2.4.3.
There are two reasons for that:

1. The main reason is that the vertical borders require an approximate
null roll face. Indeed, for example, when face roll values is ±90 deg,
face main boundaries will be lines of approximate horizontal direc-
tion, but our method of face mask extraction uses approximate ver-
tical lines to detect the mask, and thus it is not be able to generate
the face mask.

2. Another reason is that we do not need a region which includes all the
eyes, nose and mouth. Actually, a region which includes parts of the
eyes, nose and mouth should be sufficient to estimate the roll.

a b c

Input

Mask applied

Figure 3.4: Original face window and application of the circular mask on
the face window.

Given EHh, the local energy, given Ω the circular mask, and Ro(α,Ω, I)
the rotation operator of angle α using the mask Ω on the face window I,
the global energy EG according to the rotation α is defined by the equation
3.2.

EG(α) =

∫∫
Ro(α,Ω,I)

EHh(x, y) dx dy (3.2)
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The horizontal global energy should be maximal with a null face roll
value. Let us start by the graph of global horizontal energy of Figure 3.4a
according to the rotation α.

Since the local and hence the global energies are symmetric for a ro-
tation of 180 deg, only a rotation between [−90, 90] will be taken into ac-
count. This image has a roll value very close to zero. Hence, we should
find a maximum on the graph for a rotation of zero degree. Figure 3.5
shows this graph associated with this image of Figure 3.4a.

Figure 3.5: Graph of the global horizontal energy of Figure 3.4a according
to the rotation α. In the original image, the roll of the face is almost null.

As expected, a maximum of the energy is found for a null roll value.
On the other hand, one can notice that the graph is piecewise monotone.

Now, let us see the similar graph associated with the images of Figure
3.4b. In this image the roll is also almost null, so we should also find a max-
imum value of the global horizontal energy for a null rotation. However,
as we can see in Figure 3.4c on which a rotation of −90 deg is applied (the
ordinate axis is oriented from the top to the bottom, a positive rotation
will be clockwise), face is illuminated from the left. With this rotation,
in Figure 3.4c, some vertical lines appear, essentially located on the nose
and on the cheeks. Therefore, the global energy graph according to the
rotation α should present a maximum value for a null rotation, as well as
another local maximum value for a rotation of α = −90 deg. Since the
global energy value should be the same with a rotation of 180 deg, it also
means that we should have a third local maximum around the rotation
value α = 90 deg. Figure 3.6 shows this graph.

As expected, three local maximums are observed. The global maximum
value of the global horizontal energy is reached for a rotation of 85[180] deg,
despite the roll of the face is null. So, in order to estimate the roll, finding
the global maximum of the horizontal energy graph will not be enough. On
the other hand, we can obviously assume that the roll will be estimated
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Figure 3.6: Graph of the global horizontal energy of Figure 3.4b according
to the rotation α. In the original image, the roll of the face is almost null.

by the rotation corresponding to a local maximum. Contrary to the roll
estimation using only the face salient elements credibility, the roll can
be estimated quite accurately depending on the discretization of possible
angles. Here, we choose a discretization of 1 deg. However, all we can know
from the global energy according to the rotation α is that the roll value of
the face should be one of the rotation αi where EG(αi) is a local maximum.
In other words, the study of the global energy variation will give a set of
possible roll values. To be exploitable, the number of local maximums
and their associate rotation angle should be low. These properties will be
considered to fix the global strategy we present in next section.

3.3.1.3 Global Scheme of roll estimation method

Given a face window I, we, first, extract local maximums of the global hori-
zontal energy according to the rotation α. We assume that local maximums
should be generally separated by a quite large rotation α. We compute the
global energy only every 10 deg from −90 deg to 90 deg. From these 19 val-
ues of global energies at different discrete rotation values α, variation of the
global energy as well as the interval of rotation angle [γi, γi + 20] in which
there is a local maximum are computed. Then for each interval [γi, γi+20]
the local maximum of global horizontal energy EG(αi) will be the maxi-
mum value of EG in the interval [γi, γi+20]. As a result, we will get the set
Θ = {α1, α2, · · · , αn} of the n candidate rotation angles of the face roll cor-
responding to each of the n local maximums EG(α1), EG(α2), · · · , EG(αn).

The second step consists of computing the accurate rotation angle
within Θ. We will use the face salient element extraction method. We
assume that local maximums are separated by a quite significant angle.
For each αi of Θ, we study the credibility of extracted salient elements
to build a credibility score. The extracted elements of a specific αi with

99



the highest credibility score will correspond to the elements of a null roll.
Figure 3.7 shows the global scheme of the roll estimation method.

Figure 3.7: Global scheme of the roll estimation method.

The next paragraph will now focus on how we select a candidate rota-
tion among the possible values.

3.3.1.4 Roll estimation by selecting among candidate rotation

As said before, we have at this moment a set Θ = {α1, α2, · · · , αn} of
possible roll values for a given face. For each of the possible candidate
roll values αi, a rotation of α degree has been applied on the original face
window. Then, we extract salient features on each rotated face image. The
face salient elements extraction method localizes elements in their bound-
ing boxes. However, either we choose the final result with only four boxes
(right and left eyes, nose and mouth) using the multi-threshold analysis
or we choose all the bounding boxes extracted from all the 18 binarized
energy maps, each of them obtained by a discrete threshold value.

In the first case, the only credibility of each of the four extracted ele-
ments will probably be not enough to select a candidate rotation for face
roll estimation. Since there are only four boxes, the information about
the relative positions and sizes lack of accuracy. Further features on each
element must be extracted. On the other hand, if we use the 18 thresholds
which generate 18 energy maps, 4 face elements, at most, being extracted
from each map, we could have at most 72 face elements extracted for each
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rotated face window. We do not want to simply multiply face elements
to have redundant information, but we also want to stress the stability of
extraction method for low variation of the threshold. Then, extracted ele-
ments should be more stable despite the variation of the threshold in a null
roll face than the elements of a rotated face. Figure 3.8 shows the salient
element extraction according to the threshold of energy map binarization
and the rotation angle α related to Figure 2.31.

As expected, relative positions and sizes of face elements with a null
roll face windows are more credible than those from rotated views of the
face window. Moreover, face elements positions and sizes are more stable
despite the binarization threshold variation. Therefore, we assume that
the analysis of this stability as well as the analysis of the credibility of
each region should produce a robust score system. The score is built by
incrementation, accumulating the evidence of a good element extraction.
Then, it will be upper bounded by 72, the number of regions extracted
using 18 different thresholds.

A face salient region of a given threshold which satisfies some crite-
ria will add a point to the score SC which will depend on the rotation
candidate angle αi. Hence, for each candidate rotation αi ∈ Θ, the score
gives the number of face elements which are credible and a large score is
an indication of stability. α∗, the angle value giving the highest score is
the estimated roll, α∗ is also the candidate rotation which maximizes the
score as shown in equation 3.3.

− α∗ ∈ Θ/SC(α∗) = max
αi∈Θ

SC(αi) (3.3)

As we said, some criteria must be satisfied by each region. Some of them
concern all the extracted elements, others are specific to a face element and
others concern two face elements. Here are a list of these criteria.

1. Whenever a region is extracted, it must be significant. Therefore the
bounding box area of the extracted element should be greater than
1% of the face window area.

2. A null roll face region is composed of approximate horizontal lines.
Moreover, face elements themselves are more horizontal than vertical.
The width of element bounding box must be greater than its height.

3. We assume the whole face is detected. Therefore, an eye cannot
have a width which would be greater than half of the window width.
Hence, an eye region bounding box must have a width less than half
of the face window width.
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α = 0 deg −90 deg 180 deg 90 deg

t = 0.59

0.65

0.71

0.76

0.82

0.88

Figure 3.8: Some bounding boxes of extracted salient face elements ac-
cording to the threshold applied on local horizontal energy map and the
rotation angle α.

4. For similar reasons, a nose or mouth must have a width less than
60% of the face window width.

5. In a null roll face, both eyes must be almost at the same ordinate.
In other words, when we project each eye region on y-axis, the inter-
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section of the projections must not be empty.

6. Similarly, in a null roll face, mouth and nose intersect the face sym-
metry axis. In other words, when we project the mouth and nose on
x-axis, the intersection of the projections must not be empty.

All candidate regions (at most 72 regions) are evaluated using these six
criteria.

• Each time an eye region satisfies the criteria 1, 2 and 3, a point will
be added to the score SC.

• To add a point to the score SC, a mouth or a nose must satisfy the
criteria 1, 2 and 4.

However, when the criterion 5 is not satisfied, it means that both eyes
exist but their spatial distribution is not possible for a null roll face. Sim-
ilarly, when the criterion 6 is not satisfied, it means that nose and mouth
were extracted, but they are not aligned and thus are in an impossible
spatial distribution in a null roll face. In both cases, we cannot be sure
that both regions (the eyes, or the nose and mouth) are wrong. However,
we can obviously assume that at least one of them is wrong. Therefore,
when criteria 5 or 6 are not respected, a point is subtracted from the score
SC.

Finally, each candidate rotation αi is associated with a score SC(αi),
the roll estimation will be the candidate rotation −αi which is the maxi-
mum among all computed scores.

Now we presented a method which estimates the roll, the next section
will present a method of yaw and pitch estimation.

3.3.2 Yaw and pitch estimation

Here, a geometric method which estimates the yaw and the pitch is pre-
sented. This method is based on the spatial distribution of the extracted
region bounding boxes [Pyun et al., 2014b]. Since the face element extrac-
tion method requires an approximate null roll face window as the input,
this estimation method needs a face with an approximate null roll. Here,
the yaw and the pitch are estimated independently. However, the gen-
eral steps of these estimations approaches are the same. We know that
some sizes or relative positions of these elements should respect some basic
knowledge on human face. This approach is close to how human vision
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perception works to estimate the pose. Indeed, human vision estimates
head pose using some cues on eyes, nose and mouth sizes and positions.
Human vision is not able to estimate the pose accurately, except for some
extreme poses like frontal and profile face views. As a reminder, the aim
of this thesis is extracting one or a few of the most representative faces in
order to recognize more easily the face in a video. In this part, we do not
need to estimate the yaw or pitch with accuracy for all values, but we want
the method to be fast and to present a better recall and precision as the
face is frontal. Therefore, a geometric method is appropriate. Geometric
methods are known for their rapidity and we will show they can achieve
good estimation, in particular with frontal faces.

3.3.2.1 Motivation

First, to estimate the yaw, we assume that some parts of the faces have the
same widths in the 3D real world. Left and right eyes must have almost
the same widths. Mouth and nose basis are located on face symmetry axis.
The distance of the left corner of nose basis and mouth and the distance
between the right corner of nose basis and mouth should be the same. Let’s
consider the eyes. We assume that the eyes are located on the surface of a
cylinder of radius R. Then the yaw rotation axis and the revolution axis
of the cylinder are the same. Let us consider a single eye which has an
angular width of w0. All plan that intersects the cylinder perpendicularly
to the revolution axis will be a circle of radius R and the center of which
belongs to the revolution axis. An image is a projection of the 3D object on
the image plan. Figure 3.9 shows a schematic view of such a configuration.

Figure 3.9: Schematic view of eye image plan projection.

Given β the yaw rotation, we can see that if β ∈
[
90− w0

2
, 90 + w0

2

]
or β ∈

[
−90− w0

2
,−90 + w0

2

]
, a part of the eye will no longer be visible
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from the image plan. If β ∈
]
90 + w0

2
, 270− w0

2

[
, the eye will be entirely

occluded. The length le of the eye in the image plan is computed by the
equation 3.4.


le = 2R

∣∣cos (β) sin
(
w0

2

)∣∣ if β ∈
[
−90 + w0

2
, 90− w0

2

]
le = R

∣∣1− sin
(
β − w0

2

)∣∣ if β ∈
]
90− w0

2
, 90 + w0

2

]
le = R

∣∣−1− sin
(
β + w0

2

)∣∣ if β ∈
[
−90− w0

2
,−90 + w0

2

[
le = 0 if β ∈

]
90 + w0

2
, 270− w0

2

[ (3.4)

We can prove that a maximum of le is reached for the rotation βmax =
0. Hence, the projection length or an element width projection will be
maximum when the element is at the central position of the face. As the
element is far from a null yaw position, the width should decrease.

Now we study the impact of the projection on widths of facial elements,
we can introduce other knowledge to estimate geometrically the yaw. In-
deed, eyes have the same widths. So, if the projections of two eyes on the
image plan have the same width, it means that, if an eye has a rotation
angle of −β, the other one has a rotation of β, these eyes are symmetric
in the image plan and thus, the face has a null yaw value.

On the other hand, when there is a difference between the widths of left
and right eyes on image plan, it means that the head is turning in the same
direction as the place where the less wide eye is. As we see in Figure 3.9,
it is possible to compute a continuous estimation of the yaw with two eyes
widths when we know the angular width separating the left and right inner
endpoints of both eyes. Unfortunately, despite we can say that eyes have
almost the same angular width, the angular width of the inner endpoints
of both eyes depends on the considered face.

However, we will consider that, generally, the angular widths between
both eyes are almost the same as the angular width of the eye. At least, we
know these distances are in the same order of magnitude. Moreover, when
faces are almost profile views, the nose bridge will hide a part of one eye.
The width expression of projected eye will not be exactly as we expressed
in formula 3.4.

About the pitch, relative positions of face elements are different from a
face to another. Moreover, when faces are oriented downwards or upwards,
elements are merging and cannot be separated.

Generally, despite a few limitations, knowing the positions and sizes of
face elements will give cues to estimate the yaw and the pitch of the head.
Hence, we first use the face salient element extraction method. Now we
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have the bounding boxes of eyes, nose basis and mouth, we can use some
knowledge on face distribution to estimate the yaw and the pitch.

3.3.2.2 Estimation intervals of yaw and pitch

Here, a left element will be the one on the left part of the face. In other
words, "left" or "right" are relative to the image plan and not to the 3D face
object. From previous remarks, we know that such geometric method, with
such configuration cannot give accurate estimations of the yaw, especially
for faces of almost profile views. Therefore, we will estimate only some
intensities of yaw. We consider only nine discrete values represented by
the set SY = {−4,−3, · · · , 0, · · · , 4} where:

• the element -4 represents left profile view,

• the element -3 represents almost left profile view,

• the element -2 represents left diagonal view,

• the element -1 represents almost left frontal view,

• the element 0 represents a null yaw view,

• the element 1 represents almost right frontal view,

• the element 2 represents right diagonal view,

• the element 3 represents almost right profile view,

• the element 4 represents right profile view of the face.

Figure 3.10: Examples of faces depending on the yaw interval.

Figure 3.10 shows examples of faces depending on the yaw interval.
Similarly, the pitch is represented by 3 discrete values designated by ele-
ments of the set SP = {−1, 0, 1} where:
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• the element -1 represents a downward view,

• the element 0 represents an almost null pitch view,

• the element 1 represents an upward view of the face.

Now we have defined how are the discrete estimation angles of face yaw
and pitch, we will first start with presenting the yaw estimation method.

3.3.2.3 Estimation of head yaw

As a reminder, face salient elements (eyes, nose basis and mouth) are ex-
tracted in their bounding boxes. As all faces are at the same scale as the
face window, all positions and sizes are normalized by the length L of the
square face window. Therefore all abscissas, ordinates, widths and heights
in the bounding boxes have a value in the interval [0, 1]. Figure 3.11 shows
schematic representation of these bounding boxes in left profile and diag-
onal views, in null yaw view and in right diagonal and profile views.

Figure 3.11: Schematic representation of the extracted bounding boxes in
left profile and diagonal views, in null yaw view and in right diagonal and
profile views.

A yaw variation has a significant impact on element widths as well as on
the relative positions, especially the element abscissas. As the face turns
on the right, the right eye will be smaller whereas the left one will be larger.
As a result, the difference of the eye widths should increase. Moreover, if
the left eye is smaller than the right eye, it can be associated with a yaw
towards the right. Otherwise, the yaw will be oriented to the left.

Besides, nose and mouth relative positions vary too. When face yaw
value is null, nose and mouth are aligned in their centers. If the face turns
to its right, the nose will shift to the right. Otherwise, the nose will shift
to the left part of the mouth.

These observations were translated into two functions. First, the func-
tion E will concern the eyes widths, whereas the function N will concern
the relative positions on mouth and nose.
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First each element are projected on x-axis. dL is the projected width
of left eye whereas dR is the projected width of the right eye. Nose and
mouth are also projected on x-axis. δL is the abscissa difference between
the projections of the nose and mouth left corners whereas δL is the abscissa
difference between the projections of the mouth and nose right corners as
shown in Figure 3.12.

Figure 3.12: Parameters extracted from face salient element bounding
boxes.

E is a function using the eye widths. First, we define d, the difference
between the left and right widths as well as s which is 1 if dL ≥ dR and is
−1 if dR > dL. When only one eye is visible in the image plan, we consider
that d = +∞. The equation 3.5 gives the expressions of d and s.

d = |dL − dR|

s =

{
d

dL−dR
if dL 6= dR

1 if dL = dR

(3.5)

d will give a cue on how far is the face yaw compared to a null face
yaw whereas the sign of s will indicate if it is left or right rotation. Given
ε and CE two positive constants, the function E relative to eyes is defined
by 3.6. 

E = e0 si d ∈ [0, ε]
E = s× e1 si d ∈]ε, CE]
E = s× e2 si d ∈]CE,+∞[
E = s× e3 si d = +∞

(3.6)

If E = e0, it means that we have a frontal view, since the difference
between the left and right eye widths is almost zero. On the other hand if
E = ±e3, it means that we should have a profile view, since only one eye
is visible.
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Similarly, the function N gives another cue about the yaw estimation
using relative position of nose and mouth. Let us define l the absolute
value of the difference between δL and δR and sN the function which gives
whether the face is turned to the right or to the left (equation 3.7).

l = ||δL| − |δR||

sN =

{
−1 if δL ≤ δR

1 if δL > δR

(3.7)

The function N is then expressed by the equation 3.8 where CN is a
constant. 

N = −n2 si δL > 0
N = n2 si δR < 0
N = sN × n1 si l ∈]Cn,+∞[
N = n0 si l ∈ [0, Cn]

(3.8)

The first two expressions of equation 3.8 are first tested before the last
two expressions. N = ±n2 should happen with profile or almost profile
views, since it means, at least a part of the nose projection on x-axis does
not intersect the mouth projection on x-axis. The face symmetry axis
moves to the left (−n2) or to the right (n2). On the other hand when
N = n0, it means that nose and mouth are almost aligned on the face
symmetry axis. Such configuration happens with a null yaw face.

The function E gives 7 different values and the function N gives 5
different values. In order to estimate the yaw, a combination of E and N
gives the final estimation of the yaw. Table 3.1 shows the yaw estimation
rules.

Table 3.1: Yaw estimation according to E and to N . "ND" means "not
determined".

N & E −e3 −e2 −e1 e0 e1 e2 e3

−n2 -4 -3 -2 ND ND ND ND
−n1 -4 -3 -1 ND ND ND ND
n0 ND ND 0 0 0 ND ND
n1 ND ND ND ND 1 3 4
n2 ND ND ND ND 2 3 4

In the table 3.1, some combinations of E and N values are not realistic.
For example, E = e0 suggests that eyes have almost the same width. This
happens with almost null yaw face. However if N = −n2 at the same time,
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it means that nose and mouth relative positions suggest an approximate left
profile view. Hence, they are inconsistent, the yaw cannot be estimated.

3.3.2.4 Estimation of head pitch

Estimating the pitch using bounding boxes of salient regions is a difficult
task for two reasons. First, when face looks upwards or downwards, ele-
ments tend to merge. In particular, when a face looks downwards, nose
bounding box can be entirely included in mouth bounding box. So the
extraction itself will often fail. Second, even when the face elements are
well extracted, bounding boxes configuration of face with extreme positive
or negative pitch will look like each other. So, it will be difficult to evaluate
correctly the pitch with such geometric method.

However, it is still interesting to see the evaluation of the pitch esti-
mation with this geometric method. Let us define the highest ordinate YE
of bounding eye bounding boxes. Since the origin in the face window is
the left upper corner of the window, given yLE and yRE respectively the
ordinates of the upper left vertex of left and right eye bounding boxes, YE
is defined by the equation 3.9.

YE = min (yLE, yRE) (3.9)

Let us call YN and YM respectively the ordinate of the nose basis and
the ordinate of the mouth. When a face is looking upwards, the distance
δup = |YE − YN | between the eyes and nose decreases while the distance
δdn = |YN − YM | between the nose and the mouth is almost the same.
On the other hand, when a face looks downwards, δdn should be less than
the distance δup between eyes and nose. Therefore, the pitch P can be
evaluated by the equation 3.10.


P = −1 if δdn < 1

2
δup

P = 1 if δup < 1
2
δdn

P = 0 otherwise
(3.10)

We choose a geometric method to estimate the pose for two reasons.
First, we want to show it can be a possible direct application of the previous
extraction method. Second, in order to find a good face window candidate,
we need to estimate the face pose. Indeed, many face recognition methods
require to know the pose before processing. Indeed, knowing the face pose
means that we can eventually correct the pose, in particular the roll, on
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face window to get a frontal view. The next section will discuss on our face
pose estimation method efficiency.
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3.4 Evaluation of our pose estimation method

Here, we will present the evaluation of the pose estimation method. As
a good extraction of face salient elements is required to estimate the yaw
and the pitch and since an almost null roll value is needed to achieve the
elements extraction, we will first evaluate our roll estimation method before
the evaluations of yaw and pitch estimation method.

3.4.1 Evaluation of the roll estimation method

Roll estimation method will be evaluated on Color Feret and BioID. The
roll of Color Feret images is labeled whereas in BioID, the roll is not labeled.
However, all faces in BioID should have an almost null roll. Hence, for
BioID, the roll will be considered as null. Notice that, when we estimate
the roll, all rotations of the face are considered as a possible roll value.
So, it does not matter that the real face roll is null or not. If we apply a
rotation of −α on this image, our method will find that the roll value of
this rotated image is α. In other words, there is no assumption about the
roll of a face image at the beginning. On Color Feret and BioID images,
many faces wear glasses or have mustaches or beards.

Traditionally, when we estimate a pose, whatever the orientation is, we
compute the mean absolute error and the standard deviation of this error.
However, these measures are not sufficient to properly evaluate the roll
estimation. Indeed, roll estimation will be used as the first step of many
applications on faces. Therefore, we should be interested in the ratio of the
face images with an operable roll. A lot of algorithms of face recognition
or tracking have a minimum roll operable error. In other words, if a roll is
greater than this operable error, recognition or tracking will fail.

Given αR and αE respectively the real and estimated rolls, the absolute
error errroll is defined by the equation 3.11.

errroll = |αR − αE| (3.11)

Obviously, the mean absolute error is important, but the ratio of correct
images is more important to see if the method can be used as a prepro-
cessing step. For example, in our face element extraction, eyes detection
rate are almost the same when the faces have a roll less than 15 deg, in
Viola and Jones face detector, the detection requires a face roll less than
15 deg. Hence, it is interesting to know the proportion of images where the
absolute error is less than a reception threshold. We assume that a roll will
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be correctly estimated and operable if the absolute error errroll < 7 deg.
Hence, the correctness is the proportion of images where errroll < 7 deg.

3.4.1.1 Correctness according to the number of local maximums

Our roll estimation method estimates the roll by extracting the local max-
imums of the global energies according to the rotation angle α. One of
these local maximums will be selected to estimate the roll. So, the num-
ber of local maximums to test must be as low as possible. Previously, we
saw that face windows should have generally one or three local maximums.
Table 3.2 shows the distribution of faces and the correctness according to
the number of extracted local maximums in Color Feret database.

Table 3.2: Distribution of faces and correctness according to the number
of extracted local maximums in Color Feret.

Local maximum
numbers 1 2 3 4 5 all

Distribution (%) 76.12 9.16 10.42 1.97 0.33 100
Correctness (%) 99.59 87.72 96.05 86.11 83.33 97.80

The global detection correctness is 97.80%. As expected, most of the
images generate one or two or three local maximums. In particular, 76%
of images in Color Feret database generate a single maximum. Moreover,
the correctness of images with one local maximum of the global energy is
99.59%. In all Color Feret database, a face image can generate at most five
local maximums. Hence, there are at most five candidate angles to test for
the roll estimation.

3.4.1.2 Correctness according to the score

In our roll evaluation method, once candidate rotations angles αi are found,
with each local maximum of the global horizontal energy, a rotation an-
gle αi is associated. A rotation of αi is then applied on the original face
window. Using the salient element extraction, a score SC(αi) is computed
for each candidate rotation angle. In order to understand the relationship
between the score and the correctness, we define the difference operator ∆
using the highest SC(αM1) and the second highest SC(αM2) scores, corre-
sponding respectively to the candidate rotation angle αM1 and αM2. How-
ever, when there is only one candidate angle (one maximum is extracted
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on the global horizontal energy graph), we assume that SC(αM2) = 0. The
difference operator ∆ is defined by the equation 3.12.

∆ = |SC(αM1)− SC(αM2)| (3.12)

Figure 3.13 shows the distribution of faces images in Color Feret ac-
cording to the difference operator ∆. There are two parts in this graph.
The left part is composed by almost all the images which are associated
with at least two local maximums. The right part of the graph corre-
sponds to images associated with one maximum. Generally, as the number
of local maximums (which is also the number of candidate rotation angles)
decreases, the difference operator increases. Since we saw that the correct-
ness with only one maximum is the best one, the correctness should also
increase when the differences operator increases.

Figure 3.13: Distribution of face images (%) according to the difference
operator ∆.

Figure 3.14: Correctness (%) according to ∆.
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Figure 3.14 shows the graph of the correctness according to the dif-
ference operator ∆. As expected, with high values of ∆, the correctness
is globally excellent whereas the correctness of low values of ∆ is worse.
However, the correctness according to the difference operator ∆ is almost
always greater than 80%.

To improve the correctness, we also propose a rejection rule. We ob-
served that results are better when ∆ is high. Thus, ∆ can be used as a
rejection threshold. Given the number of face windows with ∆ < T and
with errroll < 7 deg ](T, errroll < 7 deg) and given the number of face win-
dows with ∆ < T ](T ), we define the correctness with rejection CR(T ) by
the equation 3.13.

CR(T ) =
](T, errroll < 7 deg)

](T )
(3.13)

Figure 3.15 shows the graph of the correctness according to the rejection
threshold T of images of Color Feret database.

Figure 3.15: Correctness (%) according to the rejection threshold T .

3.4.1.3 Mean square error and standard deviation

We also evaluate the roll estimation method in BioID database and we
obtain similar results. Table 3.3 shows the correctness, the mean absolute
error and the standard deviation of the error in both Color Feret and BioID
databases.

As we can see in table 3.3, the mean absolute error is around 4 deg in
both databases. However, the standard deviation is high compared to the
mean absolute error. These values involve two consequences.
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Table 3.3: Correctness(%), mean absolute error and standard deviation of
the roll estimation in Color Feret and BioID.

Database Correctness (%) Mean absolute Standard
error (deg) deviation (deg)

Color Feret 97.80 4.07 8.54
BioID 98.23 4.00 8.35

1. On the one hand, since standard deviation is high, some of the abso-
lute errors of roll estimation must be very high.

2. On the other hand, since the absolute mean error is low, in most of
the cases, roll estimations are quite accurate.

Indeed, the process of head roll estimation selects an angle among face
rotation candidates which maximizes the score. These candidates are often
separated by approximately 90 deg. Hence, when the good angle among
face rotation candidates is selected, the roll estimation absolute error is
generally lower than 4 deg. However, when the roll estimation fails, the
absolute error should be generally around 90 deg.

Figure 3.16: Distribution of face images (%) according to the absolute
error in Color Feret database.

Figure 3.16 shows the distribution of face images according to the roll
estimation absolute error. We are interested in high error values. However
with such graph, it is difficult to see the distribution of high absolute errors.
Figure 3.17 shows the logarithm of face images distribution according to the
absolute error of roll estimation. As expected, most of the roll estimations
are quite accurate. However, a few absolute errors are quite high. As a
consequence, the standard deviation is also high.
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Figure 3.17: Logarithm of the distribution of face images according to the
absolute error in Color Feret database.

3.4.2 Evaluation of yaw and pitch estimation method

Now the roll is estimated, we can easily apply a rotation in order to have
an almost null roll value face. Salients elements have been extracted in
their bounding boxes to estimate the yaw and the pitch.

3.4.3 Test database

To our knowledge, no labeled database exists to evaluate our method. In
order to test the yaw and the pitch estimation method, we build a database
of 566 images extracted from a video sequence with regular and continuous
rotation of the head in both horizontal and vertical directions. Images yaw
and pitch values are labeled manually with one of discrete poses. The yaw
has one of the nine values of the set SY = {−4, · · · , 4} and the pitch has
one of the 3 values of the set SP = {−1, 0, 1}.

3.4.4 Parameters

Three parameters or constants are used to estimate the yaw:

• the parameters ε and CE related to the difference between both eye
widths.

• the parameter CN related to the nose and mouth relative positions.

When we look at the equation 3.5, ε and CE are some limits of the
difference between left and right eye widths. In theory, it is difficult to
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give the exact relationship between d and the corresponding yaw. Indeed,
as we see in equation 3.4, the yaw β depends on the real width w0 of the
eye and the distance between both eyes. In 3D world, eyes are almost
separated by a distance equivalent to the eye width. In theory, for a profile
face the distance between the eyes will be infinite since only one eye is
visible, a frontal face will have d = 0. In practice, we will consider that a
face is frontal when this distance is less than a small value expressed here
by the constant ε. On the other hand, when one of the eyes is still visible
but is too small to be extracted, we will consider that it is a profile view.
As we said, all coordinates of salient elements as well as their sizes are
normalized to a value in the interval [0, 1]. Hence, all the constants should
have a value in [0, 1]. Similarly to ε, CN will discriminate an almost null
yaw face from the others.

Table 3.4 shows the constant values used here as well as their approxi-
mate associated yaw estimation. The yaw estimation is not computed, we
find these angles by analyzing the results on the images of our database.

Table 3.4: Constants value used for yaw estimation, as well as the experi-
ments estimation of the yaw.

Value ε = 0.15 CE = 0.5 CN = 0.40
Yaw(deg) 10 60 25

Although it is not possible to give a continuous function which could
associate a yaw with the difference of the eye widths d, since face spatial
distribution is almost the same, the yaw associated with a constant value
should not vary a lot. We can also understand why geometric method with
such design cannot give accurate estimation of the yaw.

3.4.4.1 Evaluation of yaw estimation

In order to estimate yaw, we will first focus on the reliability of face salient
elements detection despite the yaw variation. Then we can evaluate the
yaw estimation.

Table 3.5 shows the element detection rate according to left yaw vari-
ation and rate of well classified left yaw per yaw class. A detection is
considered as good, if all bounding boxes of both eyes nose and mouth
are correctly found. As we can see, the extraction rate in this database is
good. The detection of salient elements fails only with profile views. The
extraction of salient face elements is reliable in this database. The yaw

118



Table 3.5: Element detection rate according to left yaw variation and rate
of well classified left yaw per yaw class.

Yaw
Element

detection rate
(%)

Yaw estimation
(%)

-4 (left profile) 77.78 77.78
-3 100.00 70.58
-2 100.00 55.56
-1 100.00 85.30

0 (frontal) 100.00 95.90

estimation rate is computed only on images where element extraction suc-
ceeds. We can see that estimation rates of frontal views are good compared
to the others. As expected, the detection rate is better for frontal, almost
frontal and profile views.

Besides, when the estimation fails, it is interesting to know how the
estimation error is. This method estimates the yaw with respect to 9
poses. Therefore, to estimate the error, we must look at the confusion
matrix (table 3.6).

Table 3.6: Confusion matrix of yaw estimation
Ground

Truth/Estimated -4 -3 -2 -1 0 1 2 3 4

-4 7 2
-3 2 12 3
-2 8 15 4
-1 1 29 4
0 2 117 3
1 13 20 4
2 5 14 2
3 4 16 4
4 2 2 31

We can observe that when the yaw estimation fails, the error is almost
always of one class. Hence, a failure can be explained by images close to
both adjacent classes.
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3.4.4.2 Evaluation of pitch estimation

As we said, when face looks upwards or downwards, the projections of
elements should merge. Hence, element detection rate should decrease.
Table 3.7 shows the element detection rate according to the pitch.

Table 3.7: Elements detection rate according to pitch

Pitch
Element

detection rate
(%)

1 (upwards) 62.83
0 100.00

-1(downwards) 70.40

As expected, element detection often fails with extreme values of pitch.
Therefore, estimating the pitch will be difficult. With extreme pitch values,
face elements are too close, but with our model we use the vertical distances
between elements to estimate the pitch. Table 3.8 shows the confusion
matrix of pitch estimation.

Table 3.8: Confustion matric of pitch estimation
Ground

Truth/Estimated 1 0 -1

1 47 13 23
0 0 117 0
-1 25 35 41

As expected, pitch estimation is quite good with almost null pitch face
where the recall is good. However, even for null pitch face, the precision
is low. Indeed, many images where the face is oriented upwards or down-
wards are considered as frontal views. Moreover, as expected, the confu-
sion matrix of pitch estimation shows also that our method cannot clearly
discriminate upward face from downward face. Therefore, the elements
extraction is not efficient for pitch estimation.
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3.5 Conclusion of pose estimation

In this section, we presented two methods to estimate the head pose, ac-
cording to the our goal. The first one estimates the roll, whereas the second
one estimates the yaw and the pitch of the face.

Both methods use the face salient element detector presented in the
previous chapter, but in different ways. In the roll estimation method,
salient elements are used to validate a rotation as the face roll among some
candidate rotations. In the yaw and pitch estimation method, the positions
and sizes of element bounding boxes are the input of these estimations.

Despite both methods are geometric, the roll estimation method is able
to give an accurate value, whatever is the face roll. On the other hand, the
yaw and pitch estimation method gives only a quite wide interval as the
estimations. However, the evaluation shows that the yaw, in particular, of
frontal faces is well estimated. The accuracy of the estimation of approxi-
mate null yaw faces can be adapted by changing the value of a parameter
ε. Indeed, a lower value of ε makes the approximate null yaw detection
more selective.

We also show that salient elements extraction often fails with faces ori-
ented upwards or downwards. Even when elements are correctly detected
despite pitch variation, elements are too close, and spatial configurations
of upwards and downwards faces are almost the same. Therefore, such
geometric methods are not suited for pitch estimation.

Despite this limitation, remember that our pose estimation method
can estimate the roll accurately. Moreover, the yaw estimation method is
efficient with almost null yaw faces. In other words, we can detect almost
null yaw faces. Moreover, the aim of this thesis is selecting the best face
candidate image among frames of a video sequence. This pose estimation
method is efficient to detect frontal faces (faces with roll, yaw and pitch
null values).
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Chapter summary

In this chapter, we will present a new face tracking method based on the
salient element extraction and its associated horizontal local energy map,
as well as the pose estimation method.

This method will track only the region containing both eyes. We as-
sume that this region is the one of the face regions which carries much
information. In extension, from the tracking of the eyes, we will be able to
track the whole face. In this chapter, we will also present how to extract
some representative samples of this face in the video sequence.

Résumé du chapitre

Dans ce chapitre, nous présenterons une nouvelle méthode de tracking
basée sur l’extraction des éléments saillants du visage et sur la carte d’énergie
horizontale associée, ainsi que sur la méthode d’estimation de pose.

Cette méthode ne suivra que la région contenant les deux yeux. Nous
supposons que cette région est l’une des régions renfermant le plus d’infor-
mation. Par extension, à partir du suivi des yeux, nous serons capable
de suivre le visage en entier. Dans ce chapitre, nous présenterons aussi
comment extraire les échantillons représentatifs d’un visage présent dans
une séquence vidéo.
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4.1 Introduction

The previous chapter deals with the problem of extracting salient elements
of a face and of estimating the pose. Given frames of a video sequence,
we want to extract a few representative samples of all faces present in this
sequence. Actually, giving as the output, a few representative samples of a
face in a sequence has an interest only if we know where all the faces sam-
ples, even those which are not chosen, are at any moment of the sequence.
In other words, we must track the faces in the video. Hence, face tracking
will have two main benefits. First, while tracking the face, we should be
able to evaluate some criteria to choose a few representative samples of
faces. Second, the tracking itself will connect all the samples of the same
face. Recognition of the representative samples will lead to the recognition
of all these samples.

Tracking an object in the video consists in localizing this object, in all
the frames. Trackers assume that the general appearance of this object
does not vary a lot when we consider two consecutive frames. Indeed, two
consecutive frames are two images of the same scene separated by a short
lapse of time. Obviously, this assumption is still valid with faces. However,
several kinds of variations can still change the object appearance:

• Illumination variation,

• Pose variation,

• Scale variation,

• Expression variation,

• Occlusion.

Face is a non rigid object and thus, it cannot be represented by a linear
model. Moreover, video processing requires fast algorithms. Even when
real-time is not required, the huge amount of images needs a moderate time
complexity. Face tracking must also take into account this requirement.

The proposed face tracking method is based on the tracking of some
features extracted from the horizontal local energy. Since eyes are the
most salient elements of faces, we propose to track eyes instead of the
whole face. Indeed, with the position and size of the eyes, when we know
the pose, more exactly the face roll, we are able to find the whole face. The
next section will present a state of art of face tracking approaches. Then,
we will present our face tracking method and finally we will evaluate it.
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4.2 Face tracking state of the art

In this section, we present a state of the art of face tracking methods.
Face tracking methods can be divided into two main categories. First, the
first category is composed of motion based approaches which try to track
faces while extracting the face motion between two consecutive frames of a
video sequence. Second, there are approaches based on a face model. These
model based methods need first to build a face model. Using this model,
they first extract the faces which fit this model in two consecutive frames
in order to link them. The main differences between all these approaches
are in the choice of the features to track and in the technique which will
link faces of two consecutive frames.

4.2.1 Motion based methods

Motion based methods need to extract the face motion between two con-
secutive frames. They are either predictive or based on feature tracking or
based on sequential detection.

4.2.1.1 Kalman filters

Kalman filter is widely used to estimate motion. In [McKenna et Gong,
1996], Kalman filter is used on disparity maps to predict the face mo-
tion. In [Comaniciu et al., 2000], the authors propose to use Kalman mean
shift on color information of the area to track. It generates several target
candidates. The target which maximizes the Bhattacharyya coefficients
[Kailath, 1967] is assumed to be the most probable target. These methods
require a good segmentation of the face, otherwise the motion prediction
is influenced by the background.

In [Kim et al., 2007], the authors use Haar-like features to detect faces.
A PCA is used to select the most representative features. Then a SVM is
applied on these selected features to classify faces and non-faces. Kalman
filter is then used on faces of current and next frames to track faces. In
[Foyti et al., 2011], Kalman filter is still used to track faces. Modular
Principal Component Analysis is then used to train on a database in order
to recognize the faces. In [Zhu et Ji, 2004], the authors propose to estimate
the pose and to track the face at the same time. The tracking system is
based on Kalman filter. However, with large movements, the prediction
fails. In order to improve the prediction, eye areas are introduced in the
prediction process and enable to obtain more accurate results.
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4.2.1.2 Particle Filter

Particle Filter gives a solution to hidden Markov Chain and nonlinear filter-
ing problems. Given some partial observations, particle filter estimates the
posterior state as a distribution of probabilities [Del Moral, 1995]. There-
fore, particle filter can be used to predict the motion of the head in the next
frame from a set of descriptors of the current frame. In [Stasiak et Pacut,
2007], the authors used the Conditional Density Propagation for Visual
Tracking [Isard et Blake, 1998] in the particle filter. Face is detected using
the skin color in HSV space. In [Hui et al., 2010], the authors use a color
histogram and Local Binary Pattern histograms at different resolution as
features of a particle filter. It shows that combined features can make the
tracking more efficient. In [Yun et Guan, 2010], face fiducial points are
tracked using multiple Differential Evolution Markov Chain [ter Braak et
Vrugt, 2008] to combine multiple particle filters. Like other face tracking
methods, particle filtering approaches cannot recover face tracking when
it is lost. However, others try to overcome this. In [Mikami et al., 2009],
the memory-based particle filter (M-PF) is proposed to track faces. The
authors remove the Markov assumption which says that the predicted state
depends only on the previous one. They try to include in the particle fil-
tering all the previous target states. The prior distribution is generated
from a random sampling of all previous states and then is associated with
a new particle filter. They assume that such modifications make the track-
ing robust to brutal movements and occlusions, since the M-PF combines
possible target states.

4.2.1.3 Active contours

Active contours [Lefèvre et Vincent, 2004] are also widely used in face
tracking. A set of points is defined. Some forces inside the object tend to
push these points to the outside, whereas other forces tend to push those
points towards the inside of the object. An energy related to these forces
is defined. When this energy is minimized, all the points should be on
the contour of the object. In [Charoensak, 2004], active contour model
is used to find face contour. Active contours are found for each face in
each frame. The positions of the current points are used as the initial
points for the next frame. Although active contour model is quite efficient
to converge to a contour, initial position of points will have an important
impact in the tracking process. First, if the face moves a lot, the points
may converge to another part. Moreover, active contour model is time
consuming. In [Huang et Su, 2004], the authors propose to reduce the
search area using projection histogram of moving silhouette and a prior
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face shape to make the tracking faster and more accurate. Despite these
attempts, active contour model is still a time consuming process.

4.2.1.4 Wavelet Transform

Other approaches try to track face through its wavelet transform. The idea
is to apply a wavelet transform on the face and hence the face is represented
in another space, for example, the space of orientation frequencies. In
[Kruger et al., 2000], Gabor wavelets are applied on faces. Then, faces of
the next frame are matched in the wavelet subspace. Here, the authors
proposed to minimize an energy function between the prior wavelets and
the wavelets of another frame with several affine transforms (rotation and
scale). However, these methods need to use many coefficients and wavelets
and thus, are time consuming. In [Park et Lee, 2008], the authors assume
that all Gabor wavelets are not relevant and therefore propose to learn
the prior Gabor wavelets using Levenberg-Marquardt optimization method
[Marquardt, 1963] and K-means clustering. These methods are robust to
rotation and other affine transforms. However, they are also sensible to
occlusions and are time consuming.

4.2.2 Model based approaches

Contrary to motion based methods, model based methods introduce high
level knowledge, and thus, they guarantee that tracked frames fit a face
model. However, they generally need more computation time. Indeed, they
often need to apply some affine transform before tracking. Model based
tracking methods require a face model. This model is generally based on
skin, or on control point or on contour model.

4.2.2.1 Skin model approaches

Many researchers use human skin characteristics to detect or track faces in
video. In [Kawato et Ohya, 2000], a model from skin color distribution is
built as the faces are detected. A further step analyses the color histograms
to track face. Similarly, in [Niu et al., 2003], skin color distribution is used
to generate a statistical skin model. This step detects candiate face areas.
A further step using some other facial features validates the face or not.

In [Destrero et al., 2007], a skin model is used to remove areas which
do not contain face. Additional cues are introduced to detect face. The
tracking itself uses a Kalman filtering. In [Vadakkepat et al., 2008], a
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neural network separates the skin and non skin colors. Then, a skin color
probability map is used to find face. The tracking can be proceeded using
the Continuous Adaptive Mean Shift [Bradski, 1998]. In [Xia et al., 2006],
frames are segmented using skin color information. The authors propose
an adaptive skin based segmentation, they claim that this segmentation is
more robust to lightning conditions. The main drawback with skin model
tracking methods is that they require generally color images. Moreover,
these methods are not robust to lighting variations.

4.2.2.2 Deformable model approaches

In these approaches, a deformable face model is required. Generally, a
constant number of control points are used. Linking some of them may
be an approximation of some facial features, such as face contours, eyes,
nose and mouth. Elastic Graph is widely used. In [Stamou et al., 2005],
a morphological elastic graph is proposed. Each vertex of the graph is
labeled by a vector obtained by a multiscale dilation-erosion of the face
image. The edges represent the relative positions of the vertices. Each
vertex of the graph is located on a minimum of a cost function which
computes a similarity measure between two consecutive frames, and hence
tracks the faces.

Other researches use Active Shape Model (ASM) [Su et al., 2008] in face
tracking. Shapes are represented as a set of control points. Each point is
characterized by its gray level profile. From a training face database, a
principal component analysis is then used in order to learn the possible
deformation of this set according to the face pose. They also proposed a
verification step; when a shape tracking fails, the Active Shape Model is
restored with a new shape. This model needs reliable points. However,
shape extraction can fail with a noisy background. Active Appearance
Model (AAM) is an extension of Active Shape Model and is also used
for face tracking [Kobayashi et al., 2008; Zhou et al., 2010c]. Each con-
trol point integrates, in addition, texture information. Active Appearance
Model can produce impressive visual results because of an accurate face
alignment. However, similarly to ASM, AAM often fails with cluttered
background. In [Zhou et al., 2010b], the authors add some constraints
during the matching step between two consecutive frames as well as a face
segmentation in order to improve the tracker with cluttered backgrounds.
ASM and AAM have also two main drawbacks. First, these methods are
difficult to generalize. Face alignment often fails with new faces and if face
exemplars of too many people are introduced during the training, very dif-
ferent face deformations will be considered by the Principal Component
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Analysis and thus the alignment will fail too. Moreover, ASM and AAM
consider only linear deformations. Therefore, when head is almost in a pro-
file view, the face alignment will fail. To overcome this limitation, many
approaches propose a multi-modal schemes [Cootes et Taylor, 1999; Grau-
man et Darrell, 2004]; they assume that face pose or expression variations
can be described by a few linear statistical models. However, they are not
able to handle both pose and expression variation. Other approaches try to
overcome this limitation using a 3D face model [Xiao et al., 2004; Li et al.,
2001]. Since a 3D model is built, these methods can handle in theory every
new viewpoint. However, they are not robust to face expression variations
and are time consuming. Finally, other researchers use nonlinear models
[Sozou et al., 1995; Su et al., 2009]. However, these methods suffer from
time complexity and therefore cannot be used in face video tracking.

Another remarkable face tracking approach [Krinidis et al., 2007] uses
Scale-Invariant Feature Transform (SIFT). The first step in this method
consists in selecting feature points, those which will be tracked. These
points will then define a 3-D deformable surface model. Using this model,
tracking points are evaluated accurately. In [Zhao et al., 2009], SIFT points
are used to track faces. Homologous points of different face images ex-
tracted from different frames of a video sequence form a chain. Chains are
then gathered and generate a spatio-temporal tube. These tubes are then
used as features for actor retrieval in movies. On average, a face is tracked
on 54 frames in 200 sequences of the french movie "L’Esquive".
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4.3 Face Tracking Method

In this section, we will introduce a new method to track face in a video
sequence. This face tracking approach is based on the extraction of face
salient regions, then, it tracks these regions. However, Tracking all regions
can be time consuming. Therefore, we only try to track the region con-
taining both eyes. We assume that this region is particularly relevant and
stable between video frames. Moreover, in [Juefei-Xu et al., 2011], the au-
thors use Walsh-Hadamard transform encoded local binary patterns on the
region containing both eyes for an age invariant face recognition. Despite
the age variation, they obtain impressive results. It tends to prove that this
region is particularly rich in information and, thus, is a suitable region to
track in videos. We saw that most of the face tracking methods use either
very local features (control points) or a global one (face skin) to track the
face or some intermediate features like face contours. Our method does
not require a high accuracy while tracking faces. Thus, we suppose that
tracking face in the horizontal energy space could be sufficient. However,
our face tracking method is not only global but it also uses intermediate
features. Here, horizontal lines of eye region will be tracked.

Once a face is detected in a face window, the first step is to find the
region containing one or both eyes. Tracking this region will be enough
to track the whole face, since we are able to infer the whole face position
and size, especially if we are able to know the face roll as it has been
explained in section 3.3.1. The eye region is tracked in the next frame
without performing a prior face extraction.

4.3.1 Finding the eyes at the first face sample

Given Re(T ) the rectangular region containing eyes in the frame T , to
track this region, the idea is to find a rectangle in the search area of the
next frame where the similarity of local energies is maximum.

As a reminder, eyes are detected using a horizontal local energy map.
GivenHh the Haar-like horizontal filter, we use the energy map EHh (equa-
tion 2.11) defined in section 2.4.1. Then, the normalized energy EnHh is
computed by the equation 2.12.

As we saw, using EnHh, the region containing the left eye and the
one containing the right eye are extracted in their bounding boxes. The
region Re containing both eyes is defined as the smallest rectangular region
containing the previous bounding boxes. Given a region Z, we define the
eye energy map ET

Z of the region Z at frame T as the restriction of the
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energy map EnHh to the region Z (equation 4.1).

ET
Z = EnHh/Z(T ) (4.1)

4.3.2 Tracking the region containing both eyes

At frame T − 1, the region containing both eyes Re(T − 1) is represented
by the energy map ET−1

Re . The aim here is to find the region containing
both eyes Re(T ) at frame T . Given Search(T ) the search area at frame T ,
this region Search(T ) includes Re(T − 1) and its energy map is ET

Search.
For every point P in Search(T ), we define a rectangular region S(P, T )
where P is the upper left vertex of this region. The size of each region
S(P, T ) is the same size as the previous region containing both eyes ET−1

Re

and its energy is ET
S (P ). We assume the regions containing both eyes in

two consecutive frames are very similar. Hence, the region Re(T ) should be
the rectangular region S(P ∗, T ) where a similarity function c is maximum.
Figure 4.1 shows a scheme of the eye region tracking process based on
similarity of energy maps.

Figure 4.1: Scheme of the tracking process based on similarity of energy
maps.

At the frame T , the similarity function c depends on the eye energy map
of the previous frame ET−1

Re as well as on the energy map ET
S (P ). Hence,
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the region containing both eyes Re(T ) at frame T and P ∗ the upper left
point of S(P ∗, T ) are defined by the equation 4.2.

Re(T ) = S(P ∗, T ) with (4.2)
P ∗ ∈ Search(T ) and

c
(
ET−1
Re , ET

S (P ∗)
)

= max
P∈Search(T )

c
(
ET−1
Re , ET

S (P )
)

As a result, from the eye region Re(T−1) of frame T−1, we are able to
get a region Re(T ) in frame T . However, the scale can vary. It means that
the size of Re(T ) can be different from the size of Re(T − 1). On the other
hand, face roll can change. Thus, the similarity function c should take
into account these possible variations. The question is how to compute the
similarity function c.

4.3.3 Similarity functions

As we have already mentioned, the similarity function has to be accurate
and with low computation time. It can be defined at different levels, ac-
cording to the elements we consider in the energy map.

We have chosen to simplify the energy map, considering the binarized
versions, but to keep information, we propose different binarization ver-
sions, associated, in our case, with 18 thresholds introduced in the section
2.4.4 about face salient element extraction.

In the first proposal, we compute at pixel level leading to accurate values
but computation time becomes too long. Then, in the second proposal,
we work at object level, the connected component level. The number of
elements to compare is then reduced tremendously.

4.3.3.1 Similarity function at pixel level

The first similarity function uses the 18 binarized energy maps. Each
of them uses one of the thresholds {t1, t2, · · · , t18}. Given a threshold
ti and a rectangular region Z, we define the binary energy map BT

Z (ti)
as the binarization of the energy map ET

Z by the threshold ti. Actually,
the similarity function will depend on the similarity measures of binarized
energy maps, as illustrated on Figure 4.2

The similarity function is defined as an aggregation of partial similarity
functions computed with the same threshold ti at times T − 1 and T . We
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Figure 4.2: Scheme of the tracking process based on similarity of binarized
energy maps.

define a partial similarity measure cp between two energy maps binarized
by the same threshold ti. We use a binary correlation function between
two zones of the same size (equation 4.3).

cp(P, T, ti) = corr(BT−1
Re (ti), B

T
S (P, ti)) (4.3)

cp is associated with a fixed threshold value and this similarity mea-
sure computes actually the binary correlation between the binarized energy
maps. From this partial measure of similarity, we can define a first simi-
larity function c1 at frame T, depending on the position of the point P of
the region S(P, T ) by the equation 4.4

c1(P, T ) =
18∑
i=1

cp(P, T, ti) (4.4)

Using c1(P, T ) as the similarity function in equation 4.2, we are able to
find the point P ∗ and the region containing both eyes Re(T ) in frame T .
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However the computation time is quite expensive since the similarity
function must be computed for each point P of the search area. In other
words, the time complexity will depend on the size of the search area. This
has motivated us to propose a second similarity function.

4.3.3.2 Similarity function at connected components level

The second similarity measure should overcome some of the drawback of
the first function. Instead of computing a value for each point P of the
search area, the second similarity will focus on the connected components
of the binarized maps. As we said in a previous chapter, the binarized
energy maps show the approximate horizontal lines of eye regions. In other
words, the idea here is to track the horizontal lines in the region containing
both eyes. They should be quite stable despite the variations which may
appear between two consecutive frames. Skin based method need actually
a time consuming segmentation step whereas control points method are
often sensible to cluttered background. We assume that the horizontal
components of eyes should achieve face tracking with a good accuracy and
should be more robust to cluttered background than tracking method of
control points.

From each binarized map BT−1
Re (ti) of the eye region at frame T − 1,

bounding boxes of connected components are extracted in the set Ji =
{ui1, ui2, · · · , uin}. Similarly, the energy map is computed in the whole search
region Search(T ) at frame T . Then this search region energy map is
binarized by each threshold {t1, t2, · · · , t18}. Bounding boxes of connected
components of each binarized search region energy map are extracted in
the set Ki = {vi1, vi2, · · · , vim}. The idea is to measure the similarity of n
bounding boxes of the previous eye region with those present in the search
area. The process will be faster, since the number of bounding boxes is
much lower than the number of possible points P . Moreover, in the eye
area, there are generally less than 20 bounding boxes.

Each connected component bounding box of the eye region at frame
T − 1 is matched with each connected component of the search area. For
each couple (vij, u

i
k), the other eye connected components of frame T − 1

are matched with those from the search area of frame T . Since we con-
sider only the bounding boxes, when a previous eye bounding box matches
with a bounding box of the search area, it means that these rectangles
intersects in a rectangle. The similarity measure is the sum of all com-
mon region (rectangles) areas. It can be seen as an approximation of the
correlation measure. For each threshold ti, the algorithm 1 returns the
combination of bounding boxes extracted from the search area Ki which
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matches the most with the bounding boxes extracted from the previous
eye region Ji as well as the position of the previous eye region used for this
matching. The similarity measure of a given combination is the common
areas of previous eye region bounding boxes and search region bounding
boxes. After applying this algorithm to each threshold ti, since there are
18 different thresholds values, there are 18 different positions for the new
detected eye region.

Algorithm 1 Returns the list of matching bounding boxes between the
previous region containing eyes and the current search area, both binarized
by the threshold ti as well as the translation vector used for this best
matching.
1: procedure List of matching bounding boxes
2: listMax← []
3: maximum← 0
4: n← 0
5: vector ← null vector
6: for each uij ∈ Ji do
7: for each vik ∈ Ki do
8: Match uij with vik
9: tempV ector ← translation vector applied on uij for matching

10: list← []
11: max← 0
12: for each uil ∈ Ji do
13: U ← translate uil with tempV ector
14: for each vill ∈ Ki do
15: rect← intersects U and vill (rect is a rectangle)
16: if area of rect is not null and is the maximum then
17: add vill to list
18: max← max+ area of rect
19: if max > maximum then
20: listMax← list
21: maximum← max
22: vector ← tempV ector

return listMax, vector

Let us define P = {(x1, y1), (x2, y2), · · · , (xn, yn)}, the positions of the
new eye region found from each binarization threshold ti. To compute the
final position of the eye region at frame T , the mean of the abscissasmx and
the mean of the ordinates my are used. However, some of the values can
be absurd. These values must not be taken into account while computing
the means. Given std(x) the absolute standard deviation of abscissas and
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std(y) the absolute standard deviation of ordinates. A position is selected
if it respects the conditions 4.5.

|xi −mx| < std(x) and |yi −my| < std(y) (4.5)

Given PS = {(xS1, yS1), (xS2, yS2), · · · , (xSk, ySk)} the set of positions
which respect the conditions 4.5, we know that all points included in PS
should be quite close to each other. The final position (xf , xf ) will simply
be the mean position of all points of PS as shown in equation 4.6.

xf =
1

card(PS)

k∑
i=1

xSi (4.6)

yf =
1

card(PS)

k∑
i=1

ySi

4.3.4 The search area

Searching in the whole frame would be time consuming. Two frames are
separated by a small lapse of time. For example, let us consider a video with
25 fps. It means that two frames are separated by only 40ms. Therefore,
we can realistically admit that the eye region in the next frame will be
in a window the size of which is the double of the found eye region size.
Theoretically, given we and he respectively the width and the height of
the regions containing eyes, the maximum distance of displacement of this
region between two frames is 1

2
we on x-axis and 1

2
he on y-axis. Let us take

a face located at the right side of a given frame, its width is 1/10 of the
frame width. This face is moving horizontally to the right side in the video
with a horizontal displacement of 1

2
we between two frames. This face will

be outside the video window after 20 frames or 0.8s. Similarly, about the
face scale, in each new frame, the eye region can have an area 4 times
bigger than the one in the previous frame and still be tracked. After a
few frames, the face can be so large that the video window can no longer
contain it.

Let us call (xe(T ), ye(T )) the coordinates of the left upper corner of the
region containing eyes Re(T ) at the frame T and we(T ), he(T ) respectively
the eye region width and height at the frame T . Hence, we define the search
area upper left point position (XS, YS), the width WS(T ) and the height
HS(T ) at frame T by the equation 4.7.
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XS(T ) = xe(T − 1)− 1

2
we(T − 1) (4.7)

XS(T ) = ye(T − 1)− 1

2
he(T − 1)

WS(T ) = 2 · we(T − 1)

HS(T ) = 2 · he(T − 1)

Obviously, according to our needs, the search area size can be changed.
However, as the search area size is high, the computation time for localizing
the eyes will be high too.

4.3.5 Selection of the best samples for the purpose of
face recognition

At this point, we have the position (xE, yE) and size of the region containing
both eyes, we will explain in this section how to extract some of the best
samples. For this purpose, first, we estimate the position and the size of
the whole face window from the position and size of the bounding box of
the region containing both eyes. Then, to select n samples (n is fixed) of
a face in a video sequence, we have to answer to two main questions:

• What are the criteria of the quality of the sample?

• With which temporality, do we have to select the samples?

4.3.5.1 Face window position and size estimation

Once we have computed the position and the size of an eye region in a
frame, we can approximately estimate the whole face position and size. We
do not need an accurate estimation of the face window. We only need a
face window in the same order of magnitude as those detected, for example
Viola and Jones face detector. It must contain all the anatomic regions as
main elements of the window.

To estimate the position and size of the face window, we have to esti-
mate the position (Xv, Yv) of its left upper corner as well as its size L, since
the face window is a square. At this point, we have estimated the position
(xE, yE) and size (wE, hE) of the eye region bounding box. The most stable
side of the bounding box is the upper side, because this line is composed
of the upper contours of each line, the eyebrows, as well as the eyebrow
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arch. The lower side is more difficult to detect. Indeed, because of the
eyebrow arch, the lower side of eye regions is in shadow. Hence, since the
upper side of the region containing both eyes should be the most stable,
we assume that estimation of the face window position and size requires
only the (xE, yE) and the width xE.

In order to keep the order of magnitude of all samples, we propose that
the eye region should have a width wE of 2

3
L. The vertical symmetry axis

of the eye region bounding box is the same as the symmetry axis of the
face window bounding box. Hence, the distance between the left or right
side between face window and eye region bounding box is 1

6
wE. Moreover,

the forehead has approximately a height of 1
4
L. With this information on

face element distribution, we are able to define the position and size of face
window by the equation 4.8.

xv = xE −
wE
4

(4.8)

yv = yE −
3

8
wE

L =
3

2
wE

Figure 4.3 shows an example of the estimated position and size of the
face window from the position and size of the region containing the eyes.
The obtained square window seems quite correct in order to process the
face.

Now we have evaluated the position and size of the whole face window,
we can select the best samples, but in order to select or not a sample,
we must define some quality criteria. We have distinguished two types
of criteria, those which are linked to the face pose and those linked to
temporal distribution of the selected samples.

4.3.5.2 Face sample quality criteria

As a reminder, the pose is used to select the best samples of a face. Since
most of the faces in videos have an approximate null roll value, the pose
quality criteria, in the purpose of recognition, are here, null yaw and pitch
values. However, a sample can have an appropriate yaw with an important
pitch value and vice versa. Hence, it is actually a multi-criteria problem
where some configurations can be non comparable. However, we assume
that face samples with an appropriate pitch and a non frontal yaw should
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Figure 4.3: Approximate face proportion.

be better for the purpose of face recognition. Thus, we define different
rules to order the face images:

1. Samples with which we are able to estimate both yaw and pitch are
privileged. Indeed, the table 3.1 of section 2.4.4.3 gives us the rules
to estimate the pose depending on the functions E and N associated
respectively with spatial distribution of the eyes and nose-mouth spa-
tial distribution. Some configurations can be paradoxical and unre-
alistic. In such cases, it is impossible to estimate the yaw. Moreover,
in order to compute the pitch, we need to detect at least one eye, the
nose and the mouth, but one of them can be occluded. Hence, it can
happen that the estimation of the yaw or the pitch is not determined.

2. When pitch and yaw are both estimated, a sample with a better pitch
(more frontal) is privileged whatever the yaw is. As a consequence,
when two samples have almost the same pitch, the one with the most
frontal yaw is privileged.

3. Then come the samples where the pitch is estimated, but the yaw is
not determined. Indeed, even if the function E has always a value
(the starting point of this section is that we have detected an eye
region and estimated the whole face window position and size), N
can be non determined, for example if the nose is missing. Moreover,
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as we said, even if N is determined, the combination of E and N can
be paradoxical and hence gives a non determined result.

4. The last case is the worse configuration for the purpose of face recog-
nition. Here, a sample is detected but, we are able to compute neither
the function E, nor the function N . Obviously, it is not possible to
estimate the pose. It happens when tracking fails or there is an oc-
clusion of the whole face.

The consequence of these rules is that any sample quality can be com-
pared to another sample quality. Hence, all the combinations between the
yaw and pitch as described in section 2.4.4.3 can be associated with a dis-
crete and ordered value. As a reminder, the yaw is estimated by 9 discrete
values. Since the aim is to have a frontal view, each of the four left side dis-
crete yaws has an equivalent discrete yaw among the four right side yaws.
This is symmetric and hence only 5 partial and ordered quality values are
sufficient to describe the yaw. However, the yaw can be non determined
and hence, 6 ordered values are needed to describe the yaw. Similarly,
since the pitch is estimated by 3 discrete poses. Only 3 ordered values are
necessary to describe the pitch. With the rules described above, we are
able to combine the yaw and the pitch and give an ordered finite number
of quality representations, each of them associated with a combination of
the possible yaw and pitch. Hence, given V , a face sample, its associated
quality measure is defined as fq(V ). The highest the quality is, the highest
fq(V ) is.

4.3.5.3 Temporal criterion

in order to prevent the selection of consecutive frames, we have to define
some temporal selection criterion.

Let us call F = {F1, F2, F3, · · · , Fn}, an ordered set of n samples at dif-
ferent frame indexes. Samples of F are ordered according to an ascending
order of the frame indexes. At frame T , another sample Fn+1 is intro-
duced. We call F ′ = {F1, F2, F3, · · · , Fn, Fn+1}, the ordered set defined by
n previous samples plus the new sample.

Besides, for each sample, given the temporal distance d(Ti, Tj) which
separates the samples Ti and Tj, we want to remove the sample which
is the closest (in terms of frames number) to one of its adjacent selected
samples. Therefore, we will privilege new selected samples, while removing
the element of F ′ which is the closest to another sample of F ′.
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For each sample Fi of F ′, we define a temporal loneliness λi which is
the minimum between d(Fi, Fi−1) and d(Fi, Fi+1) (equation 4.9).

λi = min (d(Fi, Fi−1), Fi, Fi+1) (4.9)

Here, we will remove the sample Fi of F ′ which minimizes the temporal
loneliness λi and then we update F ← F ′. The new sample Fn+1 is included
in F , if its loneliness is greater than the loneliness of every sample Fi of F .
Hence, we prevent from selecting successive samples.

4.3.5.4 Samples selection: combination of face quality and tem-
poral criteria

In the previous section, we show how the loneliness is computed in a general
case and how we prevent the selection of successive samples. Nevertheless,
the selected samples are not of equal quality.

ST−1 is the set of the best selected samples at frame T − 1. Here is the
summary of the samples selection process:

1. (initialization) The n first samples are always selected in the set con-
taining the best samples S.

2. Let FT be the new sample, if some samples of ST−1 have a lower
or same quality measure, one of the samples with the lowest qual-
ity measure has to be removed. Indeed, several samples can have
the same quality measure. The replacement is processed using the
temporal loneliness minimization in ST−1 ∪ {FT}

3. Otherwise, it means that all the samples of ST−1 have a greater qual-
ity measure than FT , and hence the process continues with the next
frame.

To select the n best samples of a face in a video sequence, let us define
more accurately ST−1 = {S1, S2, S3, · · · , Sn}, the set of n samples selected
at frame T − 1, ordered by a descending order of the quality measure fq,
thus, Sn is the sample with the lowest quality measure in ST−1.

At frame T , the sample FT pose is estimated giving the associated
quality measure fq(FT ) . If fq(FT ) < fq(Sn), then the sample FT is not
selected.

Otherwise, if fq(FT ) ≥ fq(Sn), given the set S ′ = {S1, S2, S3, · · · , Sn, FT},
we define the subset

SQ = {s/s ∈ S ′ and fq(s) = fq(Sn)}
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Then, we remove the sample S0 which is the sample of the subset SQ
which minimizes the temporal loneliness computed on the frame. We build
a new set ST = S ′\{S0}.

Since we considered both quality and temporal criteria, we should have
selected the most frontal view samples and these selected samples should
not be temporally successive. The next section will present the evaluation
of the tracking method as well as some results of the sample selection
method.
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4.4 Evaluation

In this section, we will evaluate the tracking method and show some results
on the selected samples for the purpose of face recognition.

4.4.1 YouTube Faces database

Figure 4.4: Frame examples in YouTube database.

To evaluate our eye tracking method, we use YouTube Faces database
described in [Wolf et al., 2011]. The authors inspire the LFW database and
created it in 2011. It contains 3425 videos from 1595 different celebrities
and videos are downloaded from YouTube. The shortest video sequence
duration is 48 frames and the longest one is 6070 frames. The average is
181.3 frames.

Most of the videos have a low resolution and a poor quality. Face scales
vary a lot from a video to another. Many videos contain also several faces.
Illumination conditions vary a lot and there are also many occlusions on
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faces. Figure 4.4 shows some frame examples in YouTube database.

4.4.2 Choosing the similarity function

In our tracking method, we presented two similarity functions. Here, the
one used for evaluation is the function defined at connected component
level, because with the similarity function at pixel level, the processing
time is too long. The processing time to track one eye sample is about 5s
to 20s according to the size of the tracked eye region.

Contrary to the similarity function at pixel level, the one at connected
component level enables real time process. Even if we can assume that the
process with the function at pixel level should give better results, it cannot
be used in a real application.

4.4.3 Tracking results

In order to test, we only take into account videos where Viola and Jones
face detector succeeds to detect a face at the first frame of the sequence.
All video clips contain at least one face in the first frame, but Viola and
Jones face detector finds a face at the frame in only 83.77% of the video
clips. Hence, for this evaluation 2869 clips are taken into account. Note
that the clips where Viola and Jones face detector fail are not necessarily
the most difficult. Viola and Jones face detector can detect small faces,
since AdaBoost was performed on face samples of size 16× 16. It is quite
robust to illumination variation and obviously to scale variation.

In the YouTube Faces database, in 87.12% of the clips, our eye tracker
successfully tracks till the end of the clip. In this database, the eye region
have been successfully tracked in a sub-clip with 145.2 frames in average.
Note the average includes all the clips with less than 145 frames. It shows
that the eye tracker is quite efficient.

Our eye tracker fails for three main conditions:

• Tracking fails when the tracked region is very small. Indeed, as the
tracked eye region size is low, connected components to track are
even smaller (Figure 4.5).

• Tracking also fails when eyes are covered by another object. Indeed,
our tracker is a generic tracker. Once we give an area to track, it
will continue the tracking. As a result, when another object masks
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entirely the eye region, the tracker will track the new object and no
longer the eyes (Figure 4.6).

• The tracker also fails when scale of the eyes changes a lot. Indeed,
the region we track has a fixed size.

Figure 4.5: Tracking error with very small eye region

Figure 4.6: Tracking error with total occlusion.

However, most of the eye regions in the video clips are tracked with
accuracy. Moreover, if a total occlusion of the eye region involves a tracking
error. In many clips, small eye regions are well tracked. Besides, our
tracker is generic and can be adapted to any object with lines. As we said,
sometimes Viola and Jones face detector detects a non face region as a face.
It is interesting to see if the tracker can still track the non face object. As
we can see in Figure 4.7, our tracker can track other objects than eyes.

Evaluating the efficiency of our best samples is not an easy task. Here,
we will only show some results of the best samples selected by our method.
Since we assume that frontal faces are the most representative samples of
a face in a video clip, we choose video clips where a face is submitted to
large pose variation including frontal samples.

Figure 4.8 shows the five best samples of 4 video clips, they are repre-
sented in columns. In the first column, four frontal faces are found among
5. In the second column, four frontal faces are also found. In the third col-
umn, all faces can be considered as frontal. Finally, in the fourth column,
only three samples can be considered as really frontal. However, in any
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Figure 4.7: Tracking of other objects.

case, at least one sample of frontal face seems to be present in the list of
best samples. Moreover, it is important to increase the number of selected
best samples, as the number of frames in the video increases too. Globally,
evaluating the quality is not obvious at all, we can notice that even the
frontal samples are very different because, in particular, of face expression.
Our aim was to extract some frontal samples and hence, the whole system
achieves this selection of samples in real time.
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Figure 4.8: Selection of the five best samples in the video clip.
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4.5 Conclusion

In this chapter, we have proposed a method to track an object as we have
shown that it is not necessary to track points. Indeed, regions are more
efficient to be tracked.

Besides, we have not considered the rough data of pixels in the initial
image. We showed it is sufficient to consider a binarized version of the
energy map. This enables to have a low computation time. Moreover, the
regions we considered could have been modified by the process. So, we
have approximated them by simple shapes, rectangles which are the input
of the similarity function.

The results we obtain in real time are quite promising and could be
included as a element in a large system.
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Chapter 5

General conclusion and perspec-
tives
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Figure 5.1: Overview of this thesis giving the best face samples among
those present in a video sequence.
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5.1 General conclusion

The aim of this thesis was to select several face samples among those of a
video sequence and on which face recognition algorithms should have better
recognition rates. We assume that recognition rates should be higher with
frontal faces. Here, we will present the conclusion of the thesis: the benefits
of our face salient regions extraction method, of our head pose estimation
method and of eye region tracking method.

5.1.1 Back to our face salient region extraction method

First, we wondered which features we can use to reach our goal. We need
features robust to all variations (illumination, pose). Obviously, we thought
we could use control points approaches such as Active Appearance Models,
because they are known to give impressive visual results. However, they
have some important limitations. These methods require to localize all the
control points, hence, with profile or almost profile view of faces, even if one
of the eyes is hidden, all control points, in particular, those of the hidden
eye will be localized. Besides, they are known to have some difficulties to
generalize: the accuracy of the localization of these control points depends
on the learning database.

Moreover, we also show that localizing equivalent control points of the
same person in a given video sequence is not an easy task for human vision.
Even if equivalent point localization seems visually accurate, we show that,
actually, many of these points are localized with a non negligible error.
For human vision, a control point of a face is equivalent to many other
points (region). Hence, even when visually, control points localization seem
impressive, they are not so accurate. Therefore, we choose to extract salient
regions instead of control points. The accuracy needed to detect these
salient regions should be enough for the purpose of this thesis.

Our face salient region extraction method shows promising results and
is quite robust to pose or illumination variations, even with profile views.
The extracted regions which are the result of this method can also be used
as features of other applications. Notice that the bounding boxes of these
salient regions are not the only features which can be used. Indeed, the
energy maps, the set of binarized versions of these maps can also be used.
Another benefit of our method, contrary to others, is that we can easily
understand its mechanism: we, first, thought of the characteristics of the
regions we wanted to extract and then chose the filters, contrary to many
other methods which use a large amount of features followed by a feature
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selection or machine learning technique. Hence, we are able to have an
idea of the method efficiency for other problem solving.

5.1.2 Back to our head pose estimation methods

We assume that face salient elements have an approximate horizontal di-
rection. Hence, the local horizontal energy defined previously should have
high values with a null roll face. We proved that the global energy of a
face is locally a maximum with a null roll face. Thus, we were able to esti-
mate the roll with accuracy using, in particular, this global horizontal face
energy and a scoring system based on the credibility of extracted salient
regions. Estimating the head roll may be a very important task in many
face applications because many methods require an almost null roll face to
be efficient.

Moreover, we also present a head yaw and pitch estimation method
based on the positions and sizes of the bounding boxes of extracted salient
regions. This method relies on the fact that in a given pose, salient re-
gion positions and sizes should have a defined configuration regardless the
identity of the person. We show that this method gives accurate results
with almost null yaw or pitch face values. Since the aim of this thesis is to
extract frontal samples of a face in a video sequence, it is possible to use it
to find these samples. Another benefit of this method is the time required
for processing. Once the salient regions have been extracted, the yaw and
the pitch can be estimated with only a few operations. In other words, the
time spent to compute the yaw and the pitch is negligible compared to the
one needed to extract the face regions.

5.1.3 Back to our tracking method

Our tracking method tracks the region containing both eyes. This region
is particularly representative. Tracking only the eye region decreases the
computational time. Moreover, if the tracking is accurate enough, we can
obtain an approximate face region from this region containing both eyes.
As we said, we only need to find a region. When we have the eye region
in the current frame, we use the horizontal local energy maps to extract
the equivalent region in the next frame. The tracking method is based
on the maximization of a similarity measure of these maps. We showed
that tracking in the energy maps space is enough to have good results. We
also propose two different measures of similarity. The first one is based
on computing correlations between binarized versions of horizontal energy
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maps. This similarity function gives accurate results, however it is time
consuming. The second one can achieve tracking in constant time, it is
based on computing the distribution which maximizes the areas of match-
ing connected components in binarized energy maps.

5.1.4 Finding the best face samples

The best face samples are assumed to be frontal ones. Once region con-
taining eyes are tracked, the whole face region is estimated and then the
pose can be estimated, in particular, the yaw and the pitch. Instead of
extracting only one image per tracked samples, we can choose to extract n
samples. Visual results showed that extracted faces are the most frontal.
Notice that the most frontal face can be non frontal, when there are no
frontal samples in all frames of the video sequence. Hence, the output is
not always frontal views.
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5.2 Perspectives

In this section, we will present some possible applications of our work and
some ideas for the continuation of our work. We will also see if it is possible
to use our methods in other objects.

5.2.1 Applications of our work

The proposed methods can be used in many applications. First, it is pos-
sible to use them in surveillance systems, for example, with images from
security cameras localized at the entry of buildings.

Another application is the determination of the quality of the identity
or passport photographs. Indeed, these kinds of images require frontal
faces. There are also other criteria of quality for these photographs. For
example, faces must have a proper illumination. We will see that one of
the idea of the continuation of our work is to determine the illumination
quality of a face.

5.2.2 Continuation of our work

We assume that best face samples are those where the roll, the yaw and the
pitch are null. However, even if this assumption is true, it is only partial
or incomplete. Indeed, other variations can change the appearance of face
samples. For example, lightning conditions can vary.

One of the possible continuations of our work is to consider the face
illumination conditions among the criteria enabling to select "best faces".
Indeed, we can assume that faces with quite homogeneous illumination
conditions will lead to higher recognition rates. An idea to estimate the
illumination direction is to see how the curve of global horizontal energy
according to the roll angle is. As we saw, faces with homogeneous illumina-
tion conditions will have only one maximum on this curve. In other faces
where light comes from its left or right side will contain some approximate
vertical lines, for example on the nose bridge. As the result, several local
maximums will appear. However, if we try to find the best lightning con-
ditions as well as the best pose, we will have to deal with a multicriteria
optimization problem. Indeed, both are sometimes not compatible: we can
have a face with a frontal pose but with bad illumination conditions and
vice versa.

Another improvement is to make the tracking adaptive to roll or scale
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variations. With the current system, the sizes of all tracked eye regions
are the same. However, as the size of this region varies, the size of the
tracked eye should also vary. Furthermore, the pose, in particular the yaw
and the pitch, is estimated once the eye region is tracked. However, we
should introduce to the system a roll estimation before tracking the region
containing the eyes. With these improvements, the tracking should be
invariant to scale and rotation variations.

Furthermore, if we are able to find the salient regions of human face
using the energy maps, we can wonder if it is also possible to detect face
in the energy spaces.

5.2.3 Extension to other objects

We can also wonder if it is possible to generalize to other issues some of
the methods presented in this thesis. First, the salient region extraction
method can be used with objects containing mainly vertical or horizontal
lines. We know that the required sizes of Haar patterns must be equivalent
to the size of the regions we want to extract. Human eyes, nose and mouth
have an approximate horizontal direction and they have a size at the same
order of magnitude. For other objects, the regions we want to extract can
be at different scales. Hence, for such cases, we will probably need to study
several energy maps computed from Haar filters of different sizes. Another
requirement to adapt the extraction methods to other objects is the need
to build a model of the distribution of horizontal and vertical lines.

Concerning our roll estimation method, we can also probably adapt it
to any object with horizontal lines. However, the scoring system must be
modified according to properties of the extracted regions. The yaw and
pitch estimations will depend on the built model too.

The tracking method as described in this thesis is more general. Track-
ing any region is actually possible. The only step we have to modify is the
initialization step: indeed, we must choose the region to track. Since track-
ing is also based on the measure of similarity of energy maps, the tracking
should be more efficient with objects containing vertical or horizontal lines.

Many objects can be described with the straight lines inside them and
thus, our method can be adapted for them. A model of these lines distri-
bution has only to be created. Here, we proposed a methodology which
can be applied in many practical applications. For instance, from a cam-
era installed in front of a road, cars running on this road will have mainly
approximate horizontal and vertical lines. The methodology we proposed
can be adapted to counting cars in order to evaluate the car traffic.
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