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The goal of this thesis is to develop computational tools for the nonlinear analysis of steel and composite steel-concrete structures under cyclic loading taking into account the actual behaviour of joint, material and geometry non-linearities and contact conditions at the steel-to-concrete interface. In particular, our efforts focuses on typical bolted end-plate connection between steel or composite beam and steel column. The objective is to develop a new «joint finite element" able to reproduce accurately the cyclic behavior of the beam-to-column connection. Next this model is combined with a non-linear steel/composite beam element considering slip and possible uplift at the interface. The thesis consists of three major parts. The first part deals with the behavior of a steel beam-to-column bolted endplate connection under arbitrarily cyclic loading. The proposed model is based on an improved component method that closely follows the deformation of each component taking into account non-linearities induced by possible gap between the column flange and the end-plate. This model has been developed for a single row connection. In the case of multiple row bolted connection group effects may develop. Possible group effect between two bolt-rows has been implemented considering the model proposed by Cerfontaine based on the definition of the multi-surface yield criterion and the associated flow rule that govern deformation of equivalent springs. Only the case of perfect plasticity is considered. It is shown that the influence of the group effect is not negligible on the nonlinear response of the joint.
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In the second part, we have developed a flexible co-rotational two-noded beam with generalized elasto-plastic hinges at the beam ends. It is assumed that plastic deformations concentrate at these hinges. These hinges have the ability to elongate/shorten along the beam axis and to rotate. A family of asymmetric and convex yield surfaces of super-elliptic shape is considered for the plastic behavior of the hinges. By varying the roundness factor, an infinite number of yield surface are obtained. It is shown that the nonlinear response of bolted connections subjected to both bending and tension are conveniently modeled with such a yield surface. It was observed that cyclic loading produces pinching effect, cyclic softening and ductile behavior. Advantages and limitations of the approach are discussed.

Finally, the third part is dedicated to the problem of contact at the interface of steel-concrete composite beams. A "new" finite element for composite steelconcrete beam is proposed. The beam element has 6 degrees of freedom per node. The concrete beam is allowed to separate from the steel beam. An efficient contact algorithm is proposed. The Flying node concept is introduced and used to determine the extent of the contact area within a single element and modify the mesh of the beam structure. The contact problem is solve using the Augmented Lagrangian Method. The influence of contact on the loading capacity of the beam and also its influence on some design variables are highlighted.
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Introduction ***

The development of sophisticated models for the elastic global analysis of steel and composite structures (steel and concrete) has witnessed significant development over the past two decades. In particular, joint modeling as well as partial interaction affect strongly the structure behaviour (strength and ductility) and accurate models are welcome.

This work aims to provide solutions through simple models to some of phenomena that were actually observed either in experimental tests or in advanced three dimensional numerical simulations. A good model has to reproduce as faithfully as possible the behavior of steel and composite structures and their connections to ensure correct transfer of the efforts under monotonic or cyclic loading. However these models should have a reasonable level of complexity to be used by engineers. The thesis consists of three parts each of which correspond to a journal paper.

Mechanical model for the bolted end-plate connections...

INTRODUCTION

rigid joint appreciated in the case of cyclic loading due to its dissipative character, its economic aspect and lastly, the simplicity of its execution. In order to propose a model of connection easy to implement and useful for the study of full-scale structures, one focuses this work on the development of a mechanical model based on the components method that is nowadays well-known and adopted by the Eurocodes (EC3 and EC4). The mechanical model to be developed must be formulated as a zero-length finite element to ease its incorporation into a finite element code. By doing so the assembly procedure with others structural elements such as beam element can be easily accomplished. In order to reproduce as closely as possible the experimentally and numerically observed phenomena, the proposed model should include the two following important phenomena:

-The separation between the end-plate and the column flange (called "gap").

This phenomenon result in a complex behaviour under cyclic loading and has never been taken into account.

-The group behavior (of two or more rows of bolts) which is added to the individual behavior of each row. This is also to be included to reproduce the overall behavior of the connection under monotonic and cyclic loading.

The study includes the following steps:

• description of mechanical model.
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• modeling the separation between the column flange and the end-plate and analysis of its effect on the cyclic behavior response of the connection.

• inserting the group effect of two bolt-rows using the plasticity formalism and performing a consistent integration.

• connecting the mechanical model to a beam to study numerically the (M-N) interaction within the joint.

Finally, one obtains a new Finite Element able to provide an accurate response of bolted joint connection for structural frames under monotonic and cyclic loading.

Simplified model for connections...

The aim of this part is to propose a simple model for the joint behaviour using the concept of generalized hinge and new yield surface for the M-N interaction.

The generalized plastic hinges are modeled with combined axial and rotational springs and used to reproduce the plastification of the member including the full interaction between axial force and bending moment. A family of symmetric/asymetric and convex yield surface of super-elliptic shape is considered for the plastic behaviour of the hinges. The yield function that best fit experimental data of any type of cross-sections and materials have to be adopted for the plastic hinges. This yield surface could be selected among those obtained by varying the roundness factor 'q'. Between both hinges, the beam is assumed to remain elastic. Geometrical and material non-linearities have been considered. The use of a condensation process of internal d.o.f facilitates the incorporation of this formulation in a classic co-rotational approach. Numerical examples demonstrate the accuracy of the model in predicting the large displacement inelastic response of framed structures. Effect of the roundness factor on the ultimate load strongly depends on the structure typology. It was observed that cyclic loading produces pinching effect, cyclic softening and ductile behavior. Those effects are more pronounced with anisotropic yield criteria.

INTRODUCTION

Behaviour at the steel-concrete interface...

In order to extend the proposed model of steel beam-to-column connection to a composite beam-to-steel column connection, the objective of this third part aims

to propose an efficient model of steel-concrete composite beam.

The force transfer mechanisms through the steel-concrete interface insures the performance of the composite structure. Besides taking into account the slip connection at the interface (which is nowadays already assimilated), it should also include the behavior of the studs in tension in case of uplift on one hand and the contact without penetration between both materials (by the use of appropriate algorithm) in case of compression, on the other hand.

In this third part, one proposes an improvement for classical contact models usually used to model the behavior at the interface between two materials. The contact algorithm is solved in small displacements by the use of the Augmented Lagrangian Method (ALM). In addition, in order to extend the unilateral "node to node" contact to a continuous contact, a concept so-called "Flying Node Concept" (FNC) is proposed. This concept is based on the principle of an adaptive mesh updated during the non-linear iterative process.

The Finite element of composite beam with 12 degrees of freedom will be easily used to be connected a steel column to the proposed connection model developed previously.

Several approaches can be found in the literature to solve the unilateral contact problem such as: the Lagrange Multiplier Method (LMM), the Penalty Method (PM), Nitsche Method (NM) and Augmented Lagrangian Method (ALM). Although most computer codes use the PM, we prefer the ALM because it does not need to increment the penalty factor to very high values to achieve convergence; the computation time is by this fact, very reduced (especially for bridge continuous beams at real scale).

Even if the contact problem is solved with the assumption of no penetration, the algorithm should be also able to locate the zones on the beam where the uplift occurs. In these zones, the contact algorithm is not active. It should be noted that these zones can vary along the beam during the loading history. In the zones where the contact occurs, the problem consists of minimizing the potential energy and respecting the condition of no-penetration. Numerically, if the ALM is used, one must add an equation to solve the system for each concerned node in the mesh. This equation includes the Lagrange multiplier, the penalty factor and the actual penetration. When the penalty factor increases, the Lagrange multiplier corresponding to the reaction induced by a fictive spring increases, and thereby the penetration between the two materials is reduced. When penetration is deemed eligible, the contact is considered to be corrected at this node. It is clear that each node has its one penalty factor obtained automatically.

Like the uplift, the penetration may involve a number of variable nodes during the loading history of the beam. If the actual size of the system to solve is N and the number of nodes whose the contact should be solved, at a given stage of loading is N c , the dimension of the system becomes (N + N c ). The first improvement of the proposed algorithm is to locate automatically all additional equations following those relating to the standard problem (corresponding to N) and not at the real location of the nodes involved in the system to solve. This arrangement facilitates the computational algorithm by avoiding a complex reorganization of variable size system. When, for a given load level, N c becomes equal to zero, the system recovers its real dimension N and the load can be incremented.

The second improvement of the proposed algorithm concerns the solution for the continuous contact during the iteration process. Indeed, during the load history, it can occur for particular geometric configurations and loading cases, that the contact concerns "a line" of length x instead of only "a node".

It is easy to show that this length may be determined using interpolation functions of the finite element of composite beam. If the calculated length of continuous contact is found not equal to zero, the length of the finite element is automatically corrected and therefore the location of the stud that remains bound to the mesh moves also.

For current version of the used program, if all continuous contacts are corrected at an actual load increment, the mesh changes in accordance with the
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studs distribution along the beam. For next load increment, the contact procedure continues with the "node-to-node" algorithm and the new mesh.

This adaptive mesh leads to the final distribution of the connection and ensures that the contact can continue at the nodes of the mesh and processed by the algorithm "node-to-node".

The new algorithm have been carried out on a continuous beam of composite bridge with 2 spans (reduced scale). The result shows a good agrement, in terms of force-displacement curve, with the experimental ones. The following observations can be drawn from these numerical applications:

i. the concerned zones are those located under the concentrated loads,

ii. the penetration between both materials has been corrected, iii. the uplift zones have been found (light uplift near the internal support), iv. the rotations of the cross-sections under loads have been consequently corrected, v. the slip of the studs changes also due to the contact algorithm. This part deals with the behavior of a steel beam-to-column bolted end-plate connection under arbitrarily cyclic loading. The proposed model consists of an improved component-based approach that closely follows the joint deformation taking into account possible gap between the column flange and the end-plate.

The behavior of joints with several bolt rows is described using surface plasticity in tension and a normal rule to evaluate the plastic deformation within the connection. The chapter reminds the component-based analysis and shows how to implement the proposed modifications towards the elastic-plastic formulation of the joint behavior. A first example of simulation that consists of a steel beam connected to a steel column is performed in order to to show the influence of the gap effect. A second example concerns the simulation of the joint behavior with or without the group effect. Finally, a new joint finite element was implemented and calibrated against the experimental results. These applications highlight the improvements proposed to the component-based model. This new variant remains an easy-to-implement in structural analysis codes.

BOLTED END-PLATE CONNECTION

Introduction

Safe and economic design of steel and composite structures requires a deep understanding of the joint response. Semi-rigid connections can provide several advantages including : economy and fabrication costs, robustness of the frames, ... Two different approaches have been adopted to model the behavior of semirigid connections, one can distinguish between:

-Theoretical models: these models propose empirical or semi-empirical Moment-Rotation curves generally fitted of experimental test data. Parameters of these models are often related to material/geometrical characteristics of the joint. They are formulated in a way to ease their implementation in a standard displacement-based analysis of frame. A nonlinear finite element analysis of frames considering the actual joint behavior provides a more accurate representation of the structure deformation and the corresponding internal forces. Significant improvements have been made to this approach since the 1980s with: Richard et al. [1] proposed to include experimental curves directly in a finite element procedure; several authors proposed multi-linear curves still dependent on a mathematical curve fitting such as:

Moncarz and Gerstle [2] in 1981, Poggi and Zandonini [3] in 1985, Nethercot [4] in 1989, ... . The FEM has been used to investigate the joint behavior; 2D and 3D models have been developed by different authors such as:

Patel and Chen [5] in 1985 for bolted connections, Bursi and Jaspart [6] in 1997, Yang et al. [7] in 2000, Maggi et al. [8] in 2002 and more recently, Concepcion Diaz et al. [9] in 2011, Bo Yang and Kang Hai Tan [10] in 2012. All these results were used to obtain mathematical equations for the Moment-Rotation curves.

-Mechanical models: these models well-known as the component-based models appear as a viable alternative between semi-empirical models and complicated 3D ones. The basic idea is to distinguish within a joint a set of individual components. Each component is characterized by its own mechanical Anas ALHASAWI
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behavior (stiffness, strength, deformability, ...). Main developments have been proposed by Jaspart [11] in 1996, Jaspart et al. [12] in 1999, Cerfontaine [13] in 2004, Del Savio et al. [14] in 2009, Bayo et al. [15] in 2006, Minas et al. [16] in 2009 and Chang et al. [17] Most of the above described models have been developed to describe the joint behavior under monotonic loading. Generally, these studies focused mainly on the evaluation of the resisting bending moment, the rotational stiffness and the rotational capacity (ductility) of the joint. However, some of these theoretical models were adapted to reproduce the mechanical response of connection under cyclic loading: Moncarz and Gerstle [2] in 1981 and Mazzolani [18] -The separation (gap) between the column flange and the end-plate and its effect on the global behavior of the joint. This phenomenon should take into account the collapse models of the T-stub as defined in Eurocode 3 [23].

-The group effect of some bolt-rows and how to include it within the plasticity algorithm. We remind that Eurocode 3 [23] takes into account the group effect through the limit resistance of the bolt-rows only.

From a computational view point, the constitutive equations for each component are discretized using an implicit scheme and the consistent stiffness matrix for the joint is derived using a standard assemblage procedure.

Component-based analysis

The main idea of this approach is to reflect each source of deformation within the joint by a nonlinear spring and combine them within an arrangement to best reproduce the mechanical response of the connection. This method requires the following steps:

• Identification of active component,

• Evaluation of the force deformation response of each component, Anas ALHASAWI 10 Indeed, in Fig. (2.1), the joint configuration is double extended end-plate without bolt-rows between the beam flanges, so no component "BWT" in this configuration.

Component-based analysis

Joint Type characterisation

Each set of individual springs in series is replaced by an equivalent spring denoted "Type", in order to distinguish with individual components denoted "component" (see Fig. 2.1). Each equivalent spring is identified with a label depending on its location. The corresponding activation mode (tension or compression) is highlighted. Each Type can be defined as follows:

-T 2 and T 4 are the compression equivalent springs located at the beam flanges.
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k T 2/T 4 = 1 nc α 1 k α = 1 1 k CW C + 1 k BF W C = k BF W C k CW C k BF W C + k CW C (2.1)
• The stiffness of T 3 i is obtained by condensing out internal degrees of freedom (Fig. 2.3). The index "i" is added for each Type 3 including bolt-rows and corresponding number in the joint (i = 1 for the top bolt-row, i = m for the last bottom bolt-row). 

k T 3 i = 1 nc α 1 k α = 1 1 k CW T + 1 k CF B + 1 k EP B + 1 k BT (2.2)
F = N M T (2.3)
and corresponding global displacement vector is:

U = ū θ T (2.4)
The displacement of each T r can be geometrically calculated assuming small local rotations, as follows:

ūT3 i = ū -d T 3 i θ ⇔ ūT3 i = 1 -d T 3 i U (2.5) ūT2 = ū -d T 2 θ ⇔ ūT2 = 1 -d T 2 U (2.6)
In the above equations, d T r are the vertical coordinates of the corresponding Type r, positive value for the Type above the reference axis and negative value for those under the reference axis.

The stiffness matrix of the mechanical model is obtained by the use of the principle of virtual work. The equilibrium equation between the variation of the internal virtual work, δW int , and external one , δW ext is defined by:

δW int = δW ext (2.7)
where:

δW int = r δ ūT T r k T r ūTr + n i δ ūT T 3 i k T 3 i ūT3 i (2.8)
The first term of Eq. (2.8) corresponds to the virtual work of activated top or bottom beam flange rows (r = 2 or 4), whilst the second term represents the virtual work of all activated bolt-rows.

External virtual work is given by:

δW ext = δU T F (2.9)
replacing Eg.(2.5) into Eq. (2.8) and substituting it with Eq. (2.9) into Eq. (2.7), it leads to:

C 11 C 12 C 12 C 22 ū θ = N M (2.10)
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where:

C 11 = r k T r + m i k T 3 i C 12 = - r k T r d T r - m i k T 3 i d T 3 i C 22 = r k T r d 2 T r + m i k T 3 i d 2 T 3 i
The model uses a displacement control procedure to solve the non-linear system of equations, Eq. (2.10), (mechanical non-linearity). 

Cyclic behaviour of bolted end-plate con

Joint mechanical response during cyclic loading

In the aim to simplify the analysis of the joint behaviour under cyclic loading, the case of two bolt-rows is considered. This analysis could be easily extended to the case of more then two bolt-rows.

It is worth to mention that the specimen is loaded firstly by a negative rotation Fig. 2.7 followed by a positive rotation Fig. 2.8. The following stages can be distinguish:

-Stage 1 -loading in negative bending: top bolt-row T 3 1 is in tension. Assuming that the gap at this top level g t occurs due to plastic deformations of one or both components (EPB and/or CFB see Table 2.1) of T 3 1 .

-Stage 2 -unloading from negative bending: previous plastic deformation remain permanent in corresponding component(s). In order to close the gap g t , a slip must occur in the behaviour curve (F T 3 1 -ūT3 1 ), Fig. 2.7(c). This slip allows the bottom bolt-row T 3 2 to be activated.

-Stage 3 -loading in positive bending: bottom bolt-row T 3 2 is in tension and the top one T 3 1 is disabled. Assuming that the gap at this bottom level g b occurs due to plastic deformations of one or both components (EPB and/or CFB see Table 2.1).

-Stage 4 -unloading from positive bending (and finish one cycle): in order to close the gap g b , a slip must occur in the behaviour curve

(F T 3 2 -ūT3 2 ), Fig. 2.8(f).
Starting the next cycle loading both gaps ( g t and g b ) must be closed before to allow the activation of concerned Type. This remark is represented as slips in the behaviour model. Following loading-unloading cycles use the same procedure taking care to close previously the gaps.

Group of bolt-rows effect

Loading negative bending Initial State Unloading 

Group of bolt-rows effect

Cerfontaine [13] proposed to consider the group of bolt-rows effect by the use of a multi-linear failure criterion based on the lower bound theorem of limit analysis applied to the joint. In this section, it is proposed to show how to take into account this effect through plasticity modeling.

Assuming normality and associate rules, the plastic flow direction is given by the gradient to the yield surface. Plastic elongation and normal force are evaluated for each bolt-row within a group and the model provides automatically plastic redistribution of this forces within the group of bolt-rows during the loading. It is worth to mention that, the theory that developed for the case of 2 bolt-rows per group is presented in section 2.5.1 and that one for more than two bolt-rows per group is demonstrated in section 2.5.2. The proposed formulation is detailed for the case of the group of two bolt-rows (T 3 1 and T 3 2 )(Fig. 2.9) and will be generalized for groups with more than two bolt-rows. The group effect of two bolt-rows creates five zones that can be distinguished as shown in Fig. 2.10:

BOLTED END-PLATE CONNECTION

End-column Beam

• The lines (Φ 1 , Φ 2 and Φ 3 ) that allow to respect the yield criteria are defined by the following equations:

Φ 1 (F T 3 1 , F T 3 1 , Rd ) = F T 3 1 -F T 3 1 ,Rd Φ 2 (F T 3 2 , F T 3 2 , Rd ) = F T 3 2 -F T 3 2 ,Rd Φ 3 (F T 3 1 , F T 3 2 , F 12, Rd ) = F T 3 1 + F T 3 2 -F 12,Rd . 
(2.11) -The lines D 1 and D 2 separate respectively the zones (1 and 4) and the zones (2 and 5). As-soon-as the trial force is known, appropriate projection is automatically detected. For this aim, firstly the coordinates of the points A and B are obtained using:

F 1A = F T 3 1 ,Rd F 1B = F 12,Rd -F T 3 2 ,Rd F 2A = F 12,Rd -F T 3 1 ,Rd F 2B = F T 3 2 ,Rd
Therefore, the lines (D A , D B , D 1 and D 2 ) are defined as follows:

D A (F T 3 1 , F T 3 2 ) = F T 3 1 -F T 3 2 -(2F T 3 1 , Rd -F 12, Rd ) (2.12) D B (F T 3 1 , F T 3 2 ) = F T 3 1 -F T 3 2 + (2F T 3 2 , Rd -F 12, Rd ) (2.13) D 1 (F T 3 2 ) = F T 3 2 -(F 12, Rd -F T 3 1 ,Rd ) (2.14) D 2 (F T 3 1 ) = F T 3 1 -(F 12, Rd -F T 3 2 , Rd ) (2.15)
Finally, the different zones are defined as follows:
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• Elastic zone: the following inequations respect the behaviour of the boltrows remain to in the elastic range.

       Φ 1 (F T 3 1 , F T 3 1 , Rd ) ≤ 0 Φ 2 (F T 3 2 , F T 3 2 , Rd ) ≤ 0 Φ 3 (F T 3 1 , F T 3 2 , F 12, Rd ) ≤ 0 ⇒ ∆ū T 3 1 , p = 0 ∆ū T 3 2 , p = 0 (2.16)
Herein ∆ū T 3 1 , p and ∆ū T 3 2 , p represent respectively the plastic deformation for the first and second bolt-rows.

• Zone 1: it is limited by the lines Φ 1 and D 1 . The corresponding criterion must respect the following inequations:

Φ 1 (F T 3 1 , F T 3 1 , Rd ) ≥ 0 D 1 (F T 3 2 ) ≤ 0 ⇒ ∆ū T 3 1 , p = ∆λ 1 ∂Φ 1 ∂F T 3 1 ∆ū T 3 2 , p = 0
(2.17)

• Zone 2: it is limited by the lines Φ 2 and D 2 . The corresponding criterion must respect the following inequations:

Φ 2 (F T 3 2 , F T 3 2 , Rd ) ≥ 0 D 2 (F T 3 1 ) ≤ 0 ⇒ ∆ū T 3 1 , p = 0 ∆ū T 3 2 , p = ∆λ 2 ∂Φ 2 ∂F T 3 2
(2.18)

• Zone 3: it is limited by the lines Φ 3 , D A and D B . The corresponding criterion must respect the following inequations:

       Φ 3 (F T 3 1 , F T 3 2 , F 12,Rd ) ≥ 0 D A (F T 3 1 , F T 3 2 , F T 3 1 , Rd , F 12, Rd ) ≤ 0 D B (F T 3 1 , F T 3 2 , F T 3 2 , Rd , F 12, Rd ) ≥ 0 ⇒    ∆ū T 3 1 , p = ∆λ 3 ∂Φ 3 ∂F T 3 1 ∆ū T 3 2 , p = ∆λ 3 ∂Φ 3 ∂F T 3 2 (2.19)
• Zone 4: the projection reaches directly the point A, this zone is limited by the lines Φ 1 , Φ 3 , D A and D 1 . The corresponding criterion must respect the
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following inequations:

           Φ 1 (F T 3 1 , F T 3 1 , Rd ) > 0 Φ 3 (F T 3 1 , F T 3 2 , F 12, Rd ) > 0 D A (F T 3 1 , F T 3 2 , F T 3 1 , Rd , F 12, Rd ) > 0 D 1 (F T 3 2 ) > 0 ⇒    ∆ū T 3 1 , p = ∆λ 1 ∂Φ ∂F T + ∆λ 3 ∂Φ 3 ∂F T 3 1 ∆ū T 3 2 , p = ∆λ 3 ∂Φ ∂F T
(2.20)

• Zone 5: the projection reaches directly the point B, this zone is limited by the lines Φ 2 , Φ 3 , D B and D 2 . The corresponding criterion must respect the following inequations:

           Φ 2 (F T 3 2 , F T 3 2 , Rd ) > 0 Φ 3 (F T 3 1 , F T 3 2 , F 12, Rd ) > 0 D B (F T 3 1 , F T 3 2 , F T 3 2 , Rd , F 12, Rd ) < 0 D 2 (F T 3 1 ) > 0 ⇒    ∆ū T 3 1 , p = ∆λ 3 ∂Φ ∂F T ∆ū T 3 2 , p = ∆λ 2 ∂Φ ∂F T + ∆λ 3 ∂Φ 3 ∂F T 3 2
(2.21)

Incremental algorithm of projection

In accordance with the previous definition of different zones, incremental plasticity algorithm [25] can be established for zone 1 to zone 5:

• Zone 1: in this case, T 3 1 is in the plastic range:

Φ n+1 1 = F n+1 T 3 1 -F T 3 1 ,Rd > 0 (2.22)
whilst T 3 2 as-well-as the group of (T 3 1 and T 3 2 ) are in the elastic range:

Φ n+1 2 = F n+1 T 3 2 -F T 3 2 ,Rd ≤ 0 ⇒ k n+1 T 3 2 = k e2 Φ n+1 3 = F n+1 T 3 1 + F n+1 T 3 2 -F 12, Rd ≤ 0 (2.23)
Herein k e2 is the elastic stiffness of T 3 2 , Eq. (2.2).

The current force in the T 3 1 at (n+1) increment is given as:

F n+1 T 3 1 = k e1 ūn+1 T 3 1 -ūn+1 T 3 1 , p = F n+1 T 3 1 , trial -k e1 ∆λ 1 (2.24)
Anas ALHASAWI

Group of bolt-rows effect

where k e1 is the elastic stiffness of T 3 1 , Eq. (2.2).

The yield function becomes:

Φ n+1 1 = F n+1 T 3 1 , trial -k e1 ∆λ 1 -F T 3 1 , Rd = 0 (2.25)
-The increment of plastic multiplier:

∆λ 1 = Φ n+1 1, trial k e1 (2.26)
-The tangent stiffness Derivation of Eq. (2.24) gives:

k n+1 T 3 1 = ∂F n+1 T 3 1 ∂ ūn+1 T 3 1 = ∂F n+1 T 3 1 , trial ∂ ūn+1 T 3 1 - ∂∆λ 1 ∂ ūn+1 T 3 1 k e1 (2.27) 
Substituting Eq. (2.26) into Eq. (2.27) leads to:

k n+1 T 3 1 = 0 (2.28)
• Zone 2: in this case, T 3 1 and the group of (T 3 1 and T 3 2 ) are in the elastic domain:

Φ n+1 1 = F n+1 T 3 1 -F T 3 1 ,Rd ≤ 0 ⇒ k n+1 T 3 1 = k e1 Φ n+1 3 = F n+1 T 3 1 + F n+1 T 3 2 -F 12,Rd ≤ 0 (2.29)
whilst T 3 2 is in the plastic range:

Φ n+1 2 = F n+1 T 3 2 -F T 3 2 ,Rd > 0 (2.30)
The same procedure as for the first bolt-row is followed for the second boltrow, therefore we can define -The increment of plastic multiplier:

∆λ 2 = Φ n+1 2, trial k e2 (2.31)
-The tangent stiffness

k n+1 T 3 2 = 0 (2.32)
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• Zone 3: the group criterion is activated:

Φ n+1 3 = F n+1 T 3 1 + F n+1 T 3 2 -F 12, Rd > 0 (2.33)
Trial force of the group (T 3 1 and T 3 2 )

F n+1 12, trial = F n+1 T 3 1 , trial + F n+1 T 3 2 , trial (2.34) 
and corrected force is:

F n+1 12 = F n+1 T 3 1 + F n+1 T 3 2 = k e1 ūn+1 T 3 1 -ūn+1 T 3 1 ,p + k e2 ūn+1 T 3 2 -ūn+1 T 3 2 ,p ⇒ F n+1 12 = F n+1 12, trial -∆λ 3 (k e1 + k e2 ) (2.35)
where:

F n+1 12, trial = F n+1 T 3 1 , trial + F n+1 T 3 2 , trial
The yield function can be written as follows:

Φ n+1 3 = F n+1 12, T rial -∆λ 3 (k e1 + k e2 ) -F 12, Rd = 0
-The increment of plastic multiplier:

∆λ 3 = Φ n+1 3, T rial k e1 + k e2 (2.36) 
where:

Φ n+1 3, trial = F n+1 T 3 1 , trial + F n+1 T 3 2 , trial -F 12, Rd
-The tangent stiffness:

i. Tangent stiffness for T 3 1 is given by:

k n+1 T 3 1 = ∂F n+1 T 3 1 ∂ ūn+1 T 3 1 = ∂F n+1 T 3 1 , trial ∂ ūn+1 T 3 1 -k e1 ∂ (∆λ 3 ) ∂ ūn+1 T 3 1 = k e1 k e2 k e1 + k e2 (2.37)
ii. Tangent stiffness for T 3 2 is given by:

k n+1 T 3 2 = ∂F n+1 T 3 2 ∂ ūn+1 T 3 2 = ∂F n+1 T 3 2 , trial ∂ ūn+1 T 3 2 -k e2 ∂ (∆λ 3 ) ∂ ūn+1 T 3 2 = k e1 k e2 k e1 + k e2 (2.38)

Group of bolt-rows effect

• Zone 4: in this case we have:

Φ n+1 1 = F n+1 T 3 1 -F T 3 1 , Rd > 0 Φ n+1 3 = F n+1 T 3 1 + F n+1 T 3 2 -F 12, Rd > 0 (2.39)
The yield function is written as:

Φ n+1 1 = F n+1 T 3 1 , trial -k e1 ∆λ 1 -k e1 ∆λ 3 -F T 3 1 , Rd = 0 ⇒ k e1 ∆λ 1 + k e1 ∆λ 3 = Φ n+1 1, trial (2.40)
On the other side, the yield surface function Φ 3 can be defined as follows:

Φ n+1 3 = F n+1 T 3 1 , trial -k e1 ∆λ 1 -k e1 ∆λ 3 + F n+1 T 3 2 , trial -k e2 ∆λ 3 -F 12, Rd ⇒ k e1 ∆λ 1 + ∆λ 3 (k e1 + k e2 ) = Φ n+1 3, trial (2.41)
Combining the last equations of Eqs. (2.40) and (2.41), we obtain:

k e1 k e1 k e1 k e1 + k e2 ∆λ 1 ∆λ 3 = Φ n+1 1, trial Φ n+1 3, trial (2.42) 
Solving Eq. (2.42) leads to:

-Plastic multipliers:

i.

∆λ 1 = Φ n+1 1, trial (k e1 + k e2 ) -Φ n+1 3, trial k e1 k e1 k e2 (2.43)
ii.

∆λ 3 = Φ n+1 3, trial -Φ n+1 1, trial k e2 (2.44)
-Tangent stiffness:

i. Tangent stiffness for T 3 1 is defined by:

k n+1 T 3 1 = ∂F n+1 T 3 1 ∂ ūn+1 T 3 1 = ∂F n+1 T 3 1 , trial ∂ ūn+1 T 3 1 -k e1 ∂ (∆λ 3 ) ∂ ūn+1 T 3 1 -k e1 ∂ (∆λ 1 ) ∂ ūn+1 T 3 1 (2.45)
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where

k e1 ∂ (∆λ 1 ) ∂ ūn+1 T 3 1 = k e1 k e1 ∂ (∆λ 3 ) ∂ ūn+1 T 3 1 = 0 (2.46)
Replace Eq. (2.46) into Eq. (2.45) gives

k n+1 T 3 1 = 0 (2.47)
ii. Tangent stiffness for T 3 2 is defined by:

k n+1 T 3 2 = ∂F n+1 12 ∂ ūn+1 T 3 2 = ∂F n+1 T 3 2 , trial ∂ ūn+1 T 3 2 -k e2 ∂ (∆λ 3 ) ∂ ūn+1 T 3 2 (2.48)
where

k e2 ∂ (∆λ 3 ) ∂ ūn+1 T 3 2 = k e2 (2.49) 
Combining Eq. (2.48) and Eq. (2.49) gives

k n+1 T 3 2 = 0 (2.50)
• Zone 5:

in this case we have two activated yield surfaces: one concerns T 3 2 and the other corresponds to the group of (T 3 1 and T 3 2 ).

Φ n+1 2 = F n+1 T 3 2 -F T 3 2 , Rd > 0 Φ n+1 3 = F n+1 T 3 1 + F n+1 T 3 2 -F 12, Rd > 0 i.
The increment of plastic multiplier can be defined by:

k e2 k e2 k e2 k e1 + k e2 ∆λ 2 ∆λ 3 = Φ n+1 2, trial Φ n+1 3, trial (2.51) 
ii. The tangent stiffnesses of the (T 3 1 and T 3 2 ) are:

k n+1 T 3 1 = 0 (2.52)
k n+1 T 3 2 = 0 (2.53)
2.5 Group of bolt-rows effect 2.5.2 General formulation for the group effect criterion

• The general formulation for the bolt-rows interaction criterion can be written as follows:

F T 3q + F T 3s ≤ M in   F qs,Rd , F ks,Rd - q-1 i=k F T 3 i k=1,..,(q-1)   (2.54)
where q = 2,...m -1; and s= q + 1,....., m, in which m is the total number of the bolt-rows in the joint. F qs and F ks are the group resistances including the bolt-rows from (q to s) or (k to s), respectively.

• Example of a group of three bolt-rows: in the aim to take into account the effect of three bolt-rows (Fig. 2.11), successive group effects of two boltrows are proposed. The steps of the group effect occurrence in the case of positive bending can be described. The method remains available in case of negative bending. -Group effect 1 (T 3 1 , T 3 2 ).

-Group effect 2 (T 3 2 , T 3 3 ).
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According to EC3, individual and group resistances can be easily obtained and denoted as follows:

-Individual: (F T 3 1 ,Rd , F T 3 2 ,Rd ).

-Group 1: (F 12,Rd ).

-Group 2: (F 23,Rd ).

In case of negative bending:

-Group effect 1 is controlled by following criterion:

F T 3 1 + F T 3 2 ≤ F 12,Rd (2.55) 
-Group effect 2 is controlled by the combination of both following criteria:

F T 3 2 + F T 3 3 ≤ F 23,Rd and F T 3 1 + F T 3 2 + F T 3 3 ≤ F 13,Rd (2.56) 
The first equation of Eqs. (2.56) corresponds to the group effect of the two bolt-rows T 3 2 and T 3 3 and the second equation corresponds the group effect of the three bolt-rows T 3 1 , T 3 2 and T 3 3 . The combination of these equations leads to the following criterion:

F T 3 2 + F T 3 3 ≤ M in [F 23,Rd , (F 13,Rd -F T 3 1 )] .
(2.57)

Beam element with semi-rigid connection

Generally, mathematical expression is required to incorporate the joint behaviour, that obtained from its corresponding model, into structural analysis packages.

But in this section tow zero-length component-based mechanical model, that have been developed in section 2.3, are incorporated at the ends of standard beam element to simulate connection behaviour. 12. The co-rotational framework is applied to the proposed member in

  1 1 1 , M    1 2 2 , M    2 2 2 , M    2 3 3 , M    3 3 3 , M    3 4 4 , M  1 1 1 , M  4 4 , N u 4 4 , M  1 2 2 3 3 4   1 2 2 , N u   2 2 2 , N u   2 3 3 , N u   3 3 3 , N u   3 4 4 , N u   1   2   3   1 0 L    2 L   3 0 L  Figure 2
.12: Finite joint element which a rotational and extensional springs are used to represent the semi-rigid connections at the beam ends. The origin of the co-rotational frame is taken at node 1 which corresponds to the centroid of the cross-section. The x-axis of the local coordinate system is defined by the line connecting node 1 to node 4. The y-axis is orthogonal to the x-axis so that the result is right-handedly orthogonal coordinate system. The motion of the element from the original undeformed to the actual deformed configuration can thus be separated into two parts. The first one, which corresponds to rigid motion of the local frame, is the translation of node 1 and the rotation α of the x-axis (see Fig. 2.13). The second one refers to the deformations in the co-rotational element frame which are made of an elastic beam element and two semi-rigid connections.

The notations used in this section are defined in Figs. 2.12 and 2.13. The

BOLTED END-PLATE CONNECTION

1 2  1 1  1  2   0    1 u  0   0  1 u 1 X 0 L 4  2  1  1 4  4  3 Y y 4 u 1 v 4 v 3 1 x  4 ˆ4 2 0 L n L  1 2  2  3  1 2 u 2 3 u 3 4 u Figure 2
.13: Initial and final configuration for the finite joint element subscript and the superscript denote the node number and the subelement number, respectively. The coordinates of the nodes 1 and 4 in the global coordinate system (X, Y ) are (X 1 , Y 1 ) and (X 4 , Y 4 ), respectively. In the deformed configuration (see Fig. 2.13), the global nodal rotations of the superelement nodes (node 1 and node 4) are θ 1 and θ 4 and the local ones are θ1 and θ4 , respectively. In addition to this, the global rotations of the elastic beam element nodes (node 2 and 3) are described by θ 2 and θ 3 and the local ones by θ2 and θ3 , respectively.

θ 2 = θ 1 -θ1 θ 3 = θ 4 -θ4 (2.58)
where θ1 and θ4 are the relative rotations between the connected element at (2.60)

The vectors of global and local displacements are respectively defined by: The vectors of global and local displacements are respectively defined by:

d g = u 1 v 1 θ 1 u 4 v 4 θ 4 T
(2.61)

d l = ū θ1 θ4 T (2.62)
Referring to the definition of the co-rotating frame, the components of the local displacement vector d l can be calculated from the geometric shape (see Fig. 2.13)

as ū = L n -L 0 (2.63a) θ1 = θ 1 -α (2.63b) θ4 = θ 4 -α (2.63c)
where the initial and final length of the element defined as L 0 and L n , respectively, are obtained by. 

L 0 = (X 4 -X 1 ) 2 + (Y 4 -Y 1 ) 2 (2.64a) L n = (X 4 -X 1 + u 4 -u 1 ) 2 + (Y 4 -Y 1 + v 4 -v 1 ) 2 (2.64b) in which (X 1 + u 1 , Y 1 + v 1 )
sin α = c 0 s -s 0 c (2.65a) cos α = c 0 c + s 0 s (2.65b) 2. BOLTED END-PLATE CONNECTION with c = cos β = 1 L n (X 4 -X 1 + u 4 -u 1 ) (2.66a) c 0 = cos β = 1 L 0 (X 4 -X 1 ) (2.66b) s = sin β = 1 L n (Y 4 -Y 1 + v 4 -v 1 )
(2.66c)

s 0 = sin β = 1 L 0 (Y 4 -Y 1 ) (2.66d)
The local -global displacement relationship can be derived through differentiation of Eqs. (2.63), therefore one can write:

δū = δL n (2.67a) δ θ1 = δθ 1 -δα = δθ 1 -δβ (2.67b) δ θ4 = δθ 4 -δα = δθ 4 -δβ (2.67c) 
By using (2.64b)and (2.66c), one obtains δū = c(δu 2 -δu 1 ) + s(δv 4 -δv 1 ) = -c -s 0 c s 0 δd g (2.68)

δβ = 1 cL n s -c 0 -s c 0 δd g (2.69)
Finally, the global displacement vector is related to the local deformation vector by

δd l = Bδd g (2.70)
where the transformation matrix, B is given by 

B =        -c -s 0 c s 0 - s L n c L n 1 s L n - c L n 0 - s L n c L n 0 s L n - c L n 1        (2.
δd T g f g = δd T l f l = δd T g B T f l (2.72)
Eq. (2.72) must apply for any arbitrary δd g . Hence, the global force vector f g is given by

f g = B T f l (2.73)
By taking the differentiation of Eq. (2.73) with respect to global displacement vector, the global stiffness matrix is obtained as 

k g = B T k l B + zz T L n N 4 + 1 L 2 n rz T + zr T (M 1 + M 4 ) (2.

Local element formulation

This section will be devoted to the elaboration of the local stiffness matrix. Illustrated by Fig. 2.12, the new joint finite element is composed of three subelements: an elastic flexible beam element and two semi-rigid connections. The introduction of the joints at the ends of the element has increased extra degrees of freedom exceeding the original ones in the standard co-rotational formulation.

The condensing equations are then introduced to cancel out those extra degrees of freedom. To establish the assembled tangent stiffness of the joint finite element with the co-rotational format, the displacement of node 1 is restrained (ū 1 = 0). The elongation/shortening or relative axial displacement jump of each subelement are denoted by ū(ij) = ūj -ūi (Eqs. 2.60). The subelement 1, i.e.

BOLTED END-PLATE CONNECTION

semi-rigid connection modeled by a component method, has an axial elongation ū(12) and a relative rotation θ1 = θ1 -θ2 . The incremental relation between the stress-resultants and their conjugates can be formally written as (2.78)

∆N (1) 2 ∆M (1) 2 = C ( 
The incremental equilibrium of the first element imposes that ∆M 

       ∆M (1) 1 ∆N (1) 2 ∆M (1) 2        =     C (1) 22 -C (1) 12 
-C

(1) 22

-C

(1) 12

C

(1) 11

C

(1) 12

-C

(1) 22

C

(1) 12

C (1) 22     n+1        ∆ θ1 ∆ū 2 ∆ θ2        (2.80)
Using the same manipulation, the relation between the stress-resultants and their conjugates in the second connection, that is the subelement 3, is obtained ∆M

(3) 3 + ∆M (3) 4 = 0 ∆N (3) 3 + ∆N (3) 4 = 0 (2.81)
Hence,the relation between the stress-resultants and their conjugates in the second semi-rigid connection is given as

           ∆N (3) 3 ∆M (3) 3 ∆N (3) 4 ∆M (3) 4            =       C (3) 11 C (3) 12 -C (3) 11 -C (3) 12 C (3) 12 C (3) 22 -C (3) 12 -C (3) 22 -C (3) 11 -C (3) 12 C (3) 11 C (3) 12 -C (3) 12 -C (3) 22 C (3) 12 C (3) 22       n+1            ∆ū 3 ∆ θ3 ∆ū 4 ∆ θ4            (2.82)
On the other hand, the beam element (subelement 2) is assumed to deform elastically. Having an elastic elongation ū (12) and elastic rotations θ 2 and θ 3 on each 2.6 Beam element with semi-rigid connection side of its ends, the incremental stress-resultants are related to their conjugates, for this subelement, by denote the Young modulus, the second moment of area, the cross-section area and the beam length, respectively. The tangent stiffness matrix of the superelement and the corresponding force vector are assembled using the nodal force equilibrium equations, redand force/deformation and compatibility equations member stiffness equations) The tangent stiffness matrix for the joint finite element is assembled using the standard direct stiffness method based which involve nodal equilibrium. The sum of internal forces exerted by all members that meet at a joint balances the external force applied to that joint. Further, as shown in Fig. 2.12, the flexural beam element has two ends: node 2 and 3. The nodal equilibrium equations for these nodes, used to eliminate the extra degrees of freedom, are given as follows

           ∆N (2) 2 ∆M (2) 2 ∆N (2) 3 ∆M (2) 3            =       k (2) 11 0 -k (2) 11 0 0 k (2) 22 0 k (2) 24 -k (2) 11 0 k (2) 11 0 0 k (2) 42 0 k (2) 44       n+1            ∆ū 2 ∆ θ2 ∆ū 3 ∆ θ3            (2.83) in which, k (2) 11 
= EA L , k (2) 22 = k 
∆N (1) 2 + ∆N (2) 2 = 0 ∆M (1) 2 + ∆M (2) 2 = 0 ∆N (2) 3 + ∆N (3) 3 = 0 ∆M (2) 3 + ∆M (2) 3 = 0 (2.84)
The above equilibrium equations are supplemented with equilibrium equations pertaining to the end nodes (node 1 and node 4): (2.85)

∆M 1 = ∆M (1) 1 ∆N 4 = ∆N
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Equilibrium equations Eq.2.84 and Eq.2.85 are combined together with the member stiffness equations Eq.2.80, Eq.2.82 and Eq.2.83 to give:

∆f = [k] n+1 ∆d (2.86) with f T = M 1 0 0 0 0 N 4 M 4 , d T = θ1 ū2 θ2 ū3 θ3 ū4 θ4 (2.87) and [k] n+1 =               C (1) 22 -C (1) 12 
-C

(1) 22

0 0 0 0 -C (1) 12 C 
(1)

11 + k (2) 11 C (1) 12 -k 
(2) 11

0 0 0 -C (1) 22 C 
(1) 12

C

(1)

22 + k (2) 22 0 k (2) 24 0 0 0 -k (2) 11 0 k (2) 11 + C (3) 11 C (3) 12 -C (3) 11 -C 
(3) 12

0 0 k (2) 42 C (3) 21 k (2) 
44 + C

-C

(3) 22

0 0 0 -C (3) 11 -C (3) 12 C (3) 11 C 
(3) 12

0 0 0 -C (3) 12 
-C

(3) 22

C

(3) 12

C (3) 22               (2.88)
To carry out the condensation process, the assembled stiffness equations of the superelement (Eq.2.86) are rearranged and partitioned as follows:

∆f l 0 = [k ll ] n+1 [k li ] n+1 [k il ] n+1 [k ii ] n+1 ∆d l ∆d i (2.89)
where the subvector ∆d i collects the interior degrees of freedom and the subvector ∆d l comprises the co-rotational kinematic variables pertaining to the superelement (elongation and local rotations at the end nodes):

d l =        ū4 θ1 θ4        , d i =            ū2 θ2 ū3 θ3            (2.90)
In the above equation, the subvector f l collect the independent stress-resultants pertaining to the superelement which corresponds to the so-called local force 2.6 Beam element with semi-rigid connection vector in the co-rotational formulation:

f l =        N 4 M 1 M 4        (2.91)
The sub-matrices in Eq.( 2.89) have the following expressions:

k ll =     C (3) 11 0 C (3) 12 0 C (1) 22 0 C (3) 12 0 C (1) 22     n+1 (2.92) k li =     0 0 -C (3) 11 -C (3) 12 -C (1) 12 -C 
(1) 22

0 0 0 0 -C (3) 12 
-C

   n+1 (3) 22  
k il =       0 -C (1) 12 0 0 -C (1) 22 0 -C (3) 11 0 -C (3) 12 -C (3) 12 0 -C (3) 22       n+1 (2.94) k ii =       C (1) 11 + k (2) 11 C (1) 12 -k (2) 11 0 C (1) (2.93) 
C (1) 22 + k (2) 22 0 k (2) 24 -k (2) 11 0 k (2) 11 + C (3) 11 C (3) 12 0 k (3) 42 C (3) 12 
C (3) 22 + k (3) 33       n+1 (2.95) 12 
Solving for the interior degrees of freedom:

∆d i = -[k ii ] -1 n+1 [k il ] n+1 ∆d l (2.96)
and replacing the outcome into the first matrix equation yield the condensed stiffness equations

∆f l = [k l ] n+1 ∆d l (2.97) 2. BOLTED END-PLATE CONNECTION with [k l ] n+1 = [k ll ] n+1 -[k li ] n+1 [k ii ] -1 n+1 [k il ] n+1 (2.98) [k l ] n+1
is the local tangent stiffness matrix. To ease the computations, the above stiffness equations are slightly modified by replacing the axial displacements with sub-element elongations using ∆ū 2 = ∆ū (12) ∆ū 3 = ∆ū (12) + ∆ū ( 23)

∆ū 4 = ∆ū (12) + ∆ū (23) + ∆ū (34) = ∆ū (2.99)
where ∆ū is the elongation of the superelement. Full expressions of the new assembled stiffness matrix along with the corresponding sub-matrices are given in the appendix.

Numerical applications

Three numerical applications based on the above mentioned algorithm are presented in this section. The purpose of the first one is to show the gap effect on the hysteric behaviour of the joint whilst the second example illustrates the influence of the bolt-group in the joint response. The third one address the influence of the axial force in the connection on the bending moment capacity in one hand. And the interaction diagrams between axial force and bending moment in the other hand.

Example for the gap effect

The simple example of two bolt-rows (Fig. 

Numerical applications

• First loading cycle (-8.65 mrad ≤ θ ≤ 8.65 mrad):

(O -A t -B t ) Loading in negative bending (1 -2) (B t -C t ) Unloading (3) (C t -O) Slipping (4) (O -A b -B b ) Loading in positive bending (B b -C b ) Unloading (C b -O) Slipping
• Second loading cycle (-23.05 mrad ≤ θ ≤ 23.05 mrad):

(C t -B t -D t )
Reloading in negative bending (5 -6)

(D t -E t )
Unloading ( 7)

(E t -C t -O -C b ) Slipping (C b -B b -D b ) Reloading in positive bending (D b -E b ) Unloading Figure 2
.17: Moment vs. Rotation curve

BOLTED END-PLATE CONNECTION

After each load cycle, the plastic deformation of the components within each equivalent spring are cumulated. At the end of the unloading stage, permanent deformation defining the so-called gap needs to be closed to allow the activation of the others rows. In accordance with Fig. 2.17, following values of couples (Moment -Rotation) of the joints are obtained when the top bolt-row is active (same results when the bottom bolt-row is active because of symmetry):

• First loading cycle (-8.65 mrad ≤ θ ≤ 8.65 mrad): -Negative displacement obtained in the spring T 4 (bottom beam-flange row) is due to a compression force whilst the tension is active in the spring T 3 1

(O -A t -B t ) (0,
(O -C t ) (0,0), (0,-4.49) (C t -B t -D t ) ( 0 
(top bolt-row).

-Negative displacement obtained in the spring T 3 2 (bottom bolt-row) is due to a slipping (the spring does not support any compression force) whilst the positive displacement obtained in the spring T 2 (top beam-flange row) is also a slipping (this row does not support any tension).

It is clear that the behavior of each equivalent spring "Type" (Fig. 

-(C t -O) = 1.208 mm -(E t -O) = 5.056 mm 2.7.1.

3D finite element modelling

In order to validate our proposed mechanical model, a 3D model of the previous end-plate connection, Fig. 2.14, is investigated with the finite element codes ABAQUS. The three-dimensional solid element type C3D8R have been used.
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The contact element between the end-plate and the column flange surfaces as well as between the end-plate, the column flange and the bolts surface are used with friction coefficient of 0.3. All the nodes of the top and bottom section of the column are restrained in all directions. In order to achieve reliable results,a fine mesh was employed in the contact zone as shown in the general view of the mesh pattern for the connection, Fig. 2.19.

Finite element modelling

A 3D model of double extended end-plate connection is investigated with finite element ABAQUS computer program. The three-dimensional solid element type C3D8R have been used. The contact element between end-plate and column flange surfaces as well as between end-plate, column flange and bolts surface are used with friction less coefficient of 0.3. All the nodes of the top and bottom section of the column are restrained in all directions. In order to achieve reliable results, the fine mesh was employed in the contact zone as shown in the general view of the mesh pattern for the connection, fig 2.

Fig2 Mesh pattern of the finite element type.

In the other hand, the steel material, type S355, for the component concerning the creation of the gap, Column-flange, end-plate and bolts, is considered as ductile and behave as elastic-perfectly plastic. wilst, the other component have an elastic behavior.

In this analysis displacement control was applied, rotation, to the surface rigid at the end of the beam. The applied displacement was cyclic and controlled by amplitude function. The load was measured as the total reaction on the loading surface.

Moment-rotation response.

The moment-rotation curve results from FE model is compared to the mechanical model response that developed in this thesis and implemented in MATLAB, Fig 3 . It can be observed that the 3D FE result have a good agreement with that from mechanical model mainly in the initial stiffness and In this analysis displacement control was applied, rotation, to a rigid surface at the end of the beam. The applied rotation was cyclic and controlled by amplitude function.

• Results and discussions The Moment-Rotation curve results from FE The gap effect is demonstrated in the moment-rotation curve as the follow-
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ing:

i In the proposed model a slipping phenomenon is adopted on the forcedisplacement curve of the equivalent spring therefore, the benchingeffect is significant in the cyclic response.

ii For 3D FE model the benching -effect is not significant as in the response of the proposed model, in contrast a degradation of the stiffness is observed during closing the gap. 

Example for the group effect

The following application concerns an example of a semi-rigid connection that has been analyzed by Cerfontaine [13] (Fig. 2.22). This example consists of an IPE600 steel beam connected to a HEB400 steel column towards an end-plate with 5 bolt-rows denoted T 3 i (i = 1, ..., 5). Table 2. 

Individual rows (Types)

Row (Type) F Tr, Rd (kN) k r,eq (kN\mm)

BOLTED END-PLATE CONNECTION

the yield surface criterion for different combination of group of bolt-rows are obtained and reported in Table 2.4. Two calculations have been performed:

-Calculation 1: the data given in Table 2.3 are the same as those of Cerfontaine [13]. In this conditions, it appears that no group effect is activated (Fig.

).

-Calculation 2: in order to activate the group effects, it is proposed to increase (arbitrary) the resistance of Type T 4 from 1011 kN to 1500 kN (Fig. 2.24).

Table 2.4: Yield surface criterion for this example(5 bolt-rows)

q s F T 3q + F T 3s ≤ 2 3 M in [F 23,Rd , (F 13,Rd -F T 3 1 )] 3 4 M in [F 34,Rd , (F 14,Rd -F T 3 1 -F T 3 2 ), (F 24,Rd -F T 3 2 )] 4 5 M in [F 45,Rd , (F 15,Rd -F T 3 1 -F T 3 2 -F T 3 3 ), (F 25,Rd -F T 3 2 -F T 3 3 ), (F 35,Rd -F T 3 3 )]
Both figures represent the (Moment-Rotation) curve of the joint corresponding to each calculation. It is worth to mention that in order to reach a significant rotation of the joint, for both calculations an elastic-perfectly plastic behavior is adopted for all the components of the mechanical model. The algorithm is able to give the force at each bolt-row during the loading history. It can be easily observed that the equilibrium is always satisfied. These forces are highlighted at each point where the slop is changing.

For the first calculation (Fig. 2.23), it can observed that:

-At point "1" (Fig. 2.23) and at the point "A" (Fig. 2.24), same distribution of forces is obtained. This step corresponds to the case where T 3 1 reaches its individual resistance. All other bolt-rows are still in elastic range.

-From point "2" (Fig. 2.23), the force at the Type T 4 reaches its individual resistance (1011 kN ). Therefore, with respect to the equilibrium between Anas ALHASAWI 50 2.7 Numerical applications tension and compression zones, the tension force is too low to activate a group effect.

-Point "3" (Fig. 2.23) corresponds to the maximum of the bending moment in the connection (M j,max = 567.5 kN.m). This obtained value is in accordance with the maximum value of the bending moment (M j,max = 567 kN.m) that obtained by Cerfontaine [13]. At this point an unloading of the force at T For the second calculation (Fig. 2.24), it can be observed that: It can be observed that the group of 3 bolt-rows is activated at this point.
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-At point D (Fig. 2.24), the force at Type T 4 reaches its resistance (1500 kN ).

The bolt-rows from 1 to 4 are in plastic range (individual or group limit resistance). The force at the last bolt-row T 3 5 reaches the value (127 kN ) that insures the equilibrium between compression and tension zones. On one hand, it can be observed that the activation of the previous group effects leads to a first influence on the redistribution force respecting following criteria (407 + 298 = 705 kN ) and (407 + 298 + 339 = 1044 kN ). On the second hand, there is no other group effect activated. In accordance with 

Flush end-plate connection

This example concerns for a cantilever beam with semi-rigid connection under concentrated loads as depicted in Fig. 2.27 . The purpose of this example is to confirm the performance of the proposed finite joint element. It is worth to mention that an experimental test have been performed on this example and all the results are reported in [26]. Mechanical properties of the connection are as those shown in Table ??. Components characteristic values, determined in accordance with Eurocode 3 [23] procedures, are taken from [26] and represented in Table 2. 
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bending moment was observed for H = 20% N pl . In contrast, The tensile axial force reduce the connection bending moment capacity. It is worth to mention that these results are in accordance with those of the experimental tests, Fig.

2.29.

In the other hand, the interaction diagrams of bending moment-axial force for all the specimens are also captured and illustrated with the analytical one that drawn according to [13] and represented in Fig. 

Conclusion

The performance of the beam-to-column joint model proposed in this chapter is due to its simplicity. It appears as an easy-to-compute tool that is very useful in practice to be implemented in structural analysis program, i.e. MATALB and Anas ALHASAWI L. Simões da Silva, L. R. O de Lima, P. C. G. de S. Vellasco, and S. A. L. de Andrade

Analysis of the experimental results

Moment vs. rotation curves

The experimental moment vs. rotation curves for the eight tests are presented in Fig. 10, where it may be observed that even for a level of equivalent axial force of 27% of the beam plastic resistance, the bending moment still exceeds the pure bending result (FE1). Also, the maximum bending moment was obtained for an axial load level of 20% of the beam plastic resistance. In contrast, the application of a tensile force in the beam results in a sharp reduction of the bending resistance of the joint. Table 3 presents the values obtained for the moment resistance and the initial stiffness of the tested joints. The theoretical values calculated according to Eurocode 3 (FE1) were, respectively, 70 kN.m and 11865 kN.m/rad.

Analysis of individual components

Table 4 presents the theoretical values of the strength and initial stiffness for all components of the connection in study, calculated in accordance with Eurocode 3.

Fig. 11 shows that, for all the tests, the column flange in bending presented deformations according to mode 1, that is, complete yielding of the flange. The measured displacements for this component are presented in Fig. 12 where it is noticed that the behaviour of the component is similar for all the tests, independently of the applied axial force. 
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Fortran 90, to study frame behavior in dynamic for example. It is based on the component-based analysis that is nowadays well-known by the designers of the joints. It worth to remind that its performance has been extended to solve the problem of the gap that could appear between the column flange and the endplate during the cyclic loading. This problem has never been considered before, especially when it is included as a part of the plasticity algorithm.

In addition, the group effect of two bolt-rows has been detailed to show how to implement this effect into the plasticity algorithm. This model has been generalized to take into account the group effect including more than two bolt-rows.

Both phenomena have been developed for simple cases of joints in order to simplify the validation of the proposed model. Nevertheless, both improvements proposed to the component based-model remain available for any bolted end-plate connection configuration.

i Concerning the gap effect, special care during computation is required for several tests that have to be computed for the gap to control the plasticity of each component within the joint. This care insures to approach the real behaviour of the joint including appropriate slipping to recover different gaps.

ii Concerning the solution proposed for the group effect, more the number of bolt-rows increases, more the number of criteria increases. The generalisation of the interaction formula has been easily verified for the case of a group of 3 bolt-rows and remains available for more.

Finally, The joint element with zero-length that derived from the component based model have been assembled with a beam element. The new joint finite element consists of a beam element with two joint elements connected at its ends.

A numerical study was carried out on a steel beam-to-column flush end-plate connection subjected to axial force and bending moment. The results present the ability of this model to capture the joint response and the influence of the axial force on the moment-rotation curve.

For further developments:

Conclusion

i At first time, the example considered for the group of bolt-rows have to be treated under cyclic loading including the gap solution.

ii At second time, the model will be implemented in a structural analysis code to test frame behaviour under cyclic loading. 
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pronounced with anisotropic yield criteria.

Introduction

Serviceability conditions exposes the buildings to various kinds of loadings such as dead load, live load and wind/snow load. Added to those loads, extreme and accidental loadings in exceptional events such as seismic load, explosion and impact can cause framed structures to exhibit inelastically substantial strain. Slender elements in framed structures may undergo large displacement and experience high nonlinear behavior. The nonlinearity can be principally triggered by two sources: geometrical and material. Nonlinear behaviour is generally complex which requires nonlinear inelastic analysis methods. Most of the studies have agreed that a nonlinear inelastic analysis can be distinguishably placed into two branches: the distributed plasticity analysis and the concentrated plastic hinge method (lumped plasticity analysis) [4][5][6][7][8][9][10][11][12][13][14][15]. In distributed plasticity method, structural elements are meshed along the length into a set of finite elements and the cross-section is subdivided into several fiber where the spread of plasticity is considered. The Bernoulli-type beam elements in distributed plasticity method as found in [12,[16][17][18][19][20][21] take into account only uniaxial stress-strain relation of the cross-section. With this model gradual spread of yielding can be simulated although local buckling may not be accounted for. More recently, interaction between normal and shear stress has been implemented in Timoshenko planar beam element [22]. However, this method is still regarded as inappropriate for practical design use since it requires a numerical computation using a large number of stress -strain sampling points through the cross sections and along the member length to accurately consider the coupled effect between bending, normal and shear forces and the spread of yielding [23]. More than that, the formulation is rather complicated for a practical engineer to acquire.

On the contrary, the plastic hinge method allows the possibility to use fewer elements to model frame member and to skip the necessity to integrate over the discretized cross-sections for internal forces, which makes it more efficient in engi-
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neering practices. With the advantages of its simplicity and its applicabilities, the plastic hinge concept has been applied in various settings by adopting different levels of enhancements. The elasto-plastic hinge method is the earliest formulation to be dated back among the others. In this analysis, the yielding effect of the member is concentrated at specific cross-sections located at member's ends whose inelastic behaviour is modelled by a means of dimensionless plastic hinge in the form of rotational springs. In addition, the constitutive relationship between bending moment and relative cross-section rotation is considered elastic perfectly plastic. In other words, the behaviour of the concentrated hinge is either elastic or perfectly plastic. As a consequence of the lumped plasticity, the element between the plastic hinges is assumed to remain elastic. Quite many research works have adopted this method to investigate the inelastic behaviour of the steel or concrete frame members [24][25][26][27][START_REF] Chi | Inelastic finite element analysis of composite beams on the basis of the plastic hinge approach[END_REF][START_REF] Ngo-Huu | Secondorder plastic-hinge analysis of space semi-rigid steel frames[END_REF][START_REF] White | Plastic-Hinge Methods for Advanced Analysis of Steel Frames[END_REF][START_REF] Landesmann | Plastic-hinge approach for inelastic analysis of steel-concrete framed structures[END_REF]. Orbison et al in [24] developed a threedimensional beam column finite element using a single equation stress-resultant yield surface to formulate the plastification of some steel cross-sections in the form of zero-length plastic hinge. Lui and Chen in [26] presented two types of elements to analyse the behaviour of semi-rigid plane steel frames namely beamcolumn element and connection element. The member inelastic behaviour was also modelled by concentrated plastic hinges. Chi, in [START_REF] Chi | Inelastic finite element analysis of composite beams on the basis of the plastic hinge approach[END_REF], also used the plastic hinge approach to investigate the nonlinear behaviour of composite beams. In addition to that, Cuong et al in [START_REF] Ngo-Huu | Secondorder plastic-hinge analysis of space semi-rigid steel frames[END_REF] presented a numerical procedure for nonlinear static analysis of space semi-rigid steel frame adopting the lumped inelastic concept using yield surface defined in the stress-resultants space. The secondorder effects were considered by using the stability functions. However, Donald White concluded in [START_REF] White | Plastic-Hinge Methods for Advanced Analysis of Steel Frames[END_REF] that the zero-length elastic-plastic hinge approaches are not adequate to be considered as advanced inelastic analysis methods because the members are modeled as fully elastic between the plastic hinge locations. Surovek in [23] added that the inelastic stiffness and the strength are normally overestimated in the zero-length elastic-plastic hinge method and that the interaction between stability and plasticity effect as well as the residual stress effects are not properly accounted. Seeing these inconsistencies in such conventional zero length
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elastic plastic hinge methods, a number of enhancements of the elastic-plastic hinge method have been developed. For instance, Powell and Chan in [START_REF] Powell | 3D Beam-Column Element with Generalized Plastic Hinges[END_REF] for the first time introduced the generalized plastic hinge approach in which the interaction between the axial, torsional and bi-axial bending effects is incorporated.

Similarly, Liew et al in [START_REF] Liew | Second-Order Refined Plastic-Hinge Analysis for Frame Design[END_REF] proposed a refined plastic hinge formulation that utilizes a column tangent modulus concept to represent the effective stiffness of the element when loaded with large axial forces. This refined plastic hinge method has been adopted for steel concrete structures in [START_REF] Landesmann | Refined plastic-hinge model for analysis of steel-concrete structures exposed to fire[END_REF]. This method accounts for degradation of the element stiffness in the process where the second order forces at critical locations in the element reach the cross-section plastic strength. Apart from that, a non-zero quasi-plastic hinge method was introduced by Attalla et al in [START_REF] Attalla | Spread of Plasticity: Quasi-Plastic-Hinge Approach[END_REF]. Their method consists of an element formulation that is developed to account for gradual plastification through the cross-section under combined bending and axial force based on fitting the nonlinear equations to data obtained from inelastic and numerical integration of the cross section model along the member length. Ali et al in [START_REF] Biglari | Quasi-hinge beam element implemented within the hybrid force-based method[END_REF] adopted this quasi-plastic hinge method to develop a new force-based hinge element using large increment method. The proposed model is able to include inelastic behaviour close to structural hinges as well as strain hardening in the material. El-Tawil and Deierlein in [START_REF] El-Tawil | Nonlinear Analysis of Mixed Steel-Concrete Frames. I: Element Formulation[END_REF] proposed a beam column element developed, using stress -resultant plasticity concepts to model inelastic cross section behaviour, incorporating cross-section model in a flexibility-based beam column element, and employing a function of dissipated hysteretic energy to model strength and stiffness degradation. Ziemian and McGuire [START_REF] Ziemian | Modified Tangent Modulus Approach, A Contribution to Plastic Hinge Analysis[END_REF], on the other hand, suggested a modified tangent modulus approach in as a contribution to plastic hinge analysis of the nonlinear inelastic behaviour of frame members.

The approach used an empirical constant that has been calibrated to a set of moment curvature relationships to find a simple expression that degrades the elastic modulus of the individual elements based on the amount of axial force and minor-axis bending moment resisted. Cuong in [11] provided a fiber plastic hinge method to evaluate the nonlinear behaviour of space steel frame. Instead of using a specific yield surface, this fiber model partitioned the cross-section
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into fibers and the plastification of the hinge is accounted by treating the stress -strain relationship of each fiber on the cross section. The stability functions are adopted to capture the second order effects. Hoang et al in [4] presented an overview of the plastic-hinge approach for 3-dimensional steel frame using both rigid-plastic and elastoplastic methods. The 3D plastic deformations of the hinges derive from the normality rule. However, these methodologies adopted require the use of optimization techniques to solve the equilibrium equations. Most of the above cited authors considered second order effects by enhancing the member stiffness equations with stability functions to include terms that depends on the axial forces which are constantly changing during the analysis.

In this chapter, a beam-column elements for nonlinear inelastic analysis of framed structure considering nonlinear geometry and nonlinear material behavior are presented. The model consists of an elastic flexible beam element whose ends are connected to generalized plastic hinges. In this model, the generalized plastic hinges which are modeled by combined axial and rotational springs are used to reproduce the plastification of the member including the full interaction between the axial force and the bending moment. As a consequence, the generalized plastic hinges have the ability to elongate/shorten along the beam axis and to rotate. Lateral-torsional buckling and local buckling are not considered because of the assumptions of adequate lateral bracing and compact cross-section.

Besides, the material constitutive model is assumed to be elastic-perfectly plastic. Geometric nonlinearity for second order effect is included by the use of the co-rotational coordinate transformation techniques. A condensation procedure is performed to eliminate the internal degrees of freedom between the springs and the beam element ends so that the condensed stiffness matrix of the beam element with generalized plastic hinges has the usual dimension ready for assemblage. A family of asymmetric and convex yield surfaces of super-elliptic shape is considered for the plastic behaviour of the hinges. By varying the roundness factor, an infinite number of yield surface are obtained making it possible to select the yield function that best fit experimental data of any type of cross-section and material. The nonlinear response of bolted connections subjected to both Those effects are more pronounced with anisotropic yield criteria.

Co-rotating beam element with generalized hinges

With regard to the co-rotational formulation for rods we employ here the one originally proposed by Rankin and Nour-Omid [START_REF] Rankin | The use of projectors to improve finite element performance[END_REF]48], further developed by Battini and Pacoste [START_REF] Battini | Co-rotational beam elements with warping effects in instability problems[END_REF][START_REF] Battini | Plastic instability of beam structures using co-rotational elements[END_REF] and many other authors. The fundamental idea of a co-rotational formulation is to decompose the large motion of the element into rigid body and pure deformation parts through the use of a local system which continuously rotates and translates with the element. The deformation is captured at the level of the local reference frame, whereas the geometric non-linearity induced by the large rigid-body motion, is incorporated in the transformation matrices relating local and global displacements. The main interest is that the pure deformation part can be assumed as small and can be represented by a linear or a low order non-linear theory. Avoiding the nonlinear relationship between the strain tensor and the displacement gradient makes the co-rotational approach very attractive and efficient for nonlinear static analysis. The efficiency is even more substantial if the material behavior is inelastic as large strain time stepping algorithms are far more complex than the small strain ones. For a general account we refer also to [START_REF] Cristfield | Non-linear finite element analysis of solids and structures[END_REF] where the kinematics and the derivation of the tangent stiffness matrix of the standard co-rotating element are detailed.

3.2 Co-rotating beam element with generalized hinges

Beam kinematics

The structural member consists of three subelements: a standard flexible beam element and two generalized elasto-plastic hinges that are modeled by a combination of axial and rotational springs, see Fig. 3.1. Elongation/shortening of the hinges occur along the beam axis. The generalized hinges can be seen as finite element with zero initial length. Assembling these hinges with the beam element gives a two-node superelement that maybe regarded as an individual element for computational purposes. Since plasticity is assumed to be concentrated at the hinges, the beam element is allowed to bend and to stretch in pure elastic range.

The generalized plastic hinges, on the other hand, are able to rotate and to stretch according to the elasto-plastic constitutive relationships expressed in incremental form considering a yield criterion in the stress-resultants space and the normality rule. The latter governs the plastic flow, i.e. the plastic rotation and the plastic elongation/shortening.

1 1 2 2 3 4   1 0 L    2 L   3 0 L  3 4   1   2   3 4 , N u   1 2 2 , M    2 2 2 , M    2 3 3 , M    3 3 3 , M  1 1 , M  4 4 
,

M    1 2 2 , N u   2 2 2 , N u   2 3 3 , N u   3 3 3 , N u   3 4 4 , N u   1 1 1 , M    3 4 4 , M  Figure 3.1: Local superelement
The co-rotational framework is applied to the structural member. The origin of the co-rotational frame is taken at node 1 located at the centroid of the crosssection. The x-axis of the local coordinate system is defined by the line connecting node 1 to node 4. The y-axis is orthogonal to the x-axis so that the result is right-Anas ALHASAWI
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handedly orthogonal coordinate system. The motion of the element from the original undeformed to the actual deformed configuration can thus be separated into two parts. The first one, which corresponds to rigid motion of the local frame, is the translation of node 1 and the rotation α of the x-axis (see Fig. 3.2).

The second one refers to the deformations in the co-rotating element frame.

The notations used in this section are defined in Figs. 

θ 2 = θ 1 -θ1 θ 3 = θ 4 -θ4 (3.1) 
where θ1 and θ4 are the relative rotations between the local rotations of the superelement and the local rotations of the elastic flexible beam sub-element, respectively.

The total elongation, ū, is composed of the elongations of the first hinge ū(12) , the elastic beam element ū (23) and the second hinge ū(34)

ū = ū(12) + ū(23) + ū(34) (3.2) with ū(12) = ū2 -ū1 ū(23) = ū3 -ū2 ū(34) = ū4 -ū3 (3.3)
The vectors of global and local displacements are respectively defined by:

d g = u 1 v 1 θ 1 u 4 v 4 θ 4 T (3.4) d l = ū θ1 θ4 T (3.5)
3.2 Co-rotating beam element with generalized hinges 

1 2  1 1  1  2   0    1 u  0   0  1 u 1 X 0 L 4  2  1  1 4  4  3 Y y 4 u 1 v 4 v 3 1 x  4 ˆ4 2 0 L n L  1 2  2  3  1 2 u 2 3
ū = L n -L 0 (3.6a) θ1 = θ 1 -α (3.6b) θ4 = θ 4 -α (3.6c)
where the initial and final length of the element defined as L 0 and L n , respectively, are obtained by 

L 0 = (X 4 -X 1 ) 2 + (Y 4 -Y 1 ) 2 (3.7a) L n = (X 4 -X 1 + u 4 -u 1 ) 2 + (Y 4 -Y 1 + v 4 -v 1 ) 2 (3.7b) in which (X 1 + u 1 , Y 1 + v 1 )
sin α = c 0 s -s 0 c (3.8a) cos α = c 0 c + s 0 s (3.8b) with c = cos β = 1 L n (X 4 -X 1 + u 4 -u 1 ) (3.9a) c 0 = cos β 0 = 1 L 0 (X 4 -X 1 ) (3.9b) s = sin β = 1 L n (Y 4 -Y 1 + v 4 -v 1 ) (3.9c) s 0 = sin β 0 = 1 L 0 (Y 4 -Y 1 ) (3.
δβ = 1 cL n s -c 0 -s c 0 δd g (3.12)
Finally, the global displacement vector is related to the local deformation vector by

δd l = Bδd g (3.13)
where the transformation matrix, B is given by

B =        -c -s 0 c s 0 - s L n c L n 1 s L n - c L n 0 - s L n c L n 0 s L n - c L n 1        (3.14)

Local element definition

Element formulation

The co-rotational method is convenient for establishing the relationship between the local and global variables. The relation between the global force vector f g and the local one f l is obtained by equating the virtual work in the local and global system as

δd T g f g = δd T l f l = δd T g B T f l (3.15)
Eq. (3.15) must apply for any arbitrary δd g . Hence, the global force vector f g is given by

f g = B T f l (3.16)
By taking the differentiation of Eq. (3.16) with respect to global displacement vector, the global stiffness matrix is obtained as 

k g = B T k l B + zz T L n N 4 + 1 L 2 n rz T + zr T (M 1 + M 4 ) (3.17 

Local element definition

This section will be devoted to the elaboration of the local tangent stiffness matrix of the superelement. Illustrated in Fig. 3.1, the superelement is composed of three sub-elements: an elastic beam element and two generalized elasto-plastic hinges.

The introduction of the generalized hinges at the beam ends increases the number of degrees of freedom exceeding the original ones in the standard co-rotational formulation. The static condensation procedure is then used to eliminate the internal nodes ( node 2 and node 3) and the corresponding degree of freedom.

To establish the assembled tangent stiffness of the superelement consistent with the co-rotational format, the displacement of node 1 is restrained (ū 1 = 0). The = C

(1) 11

C

(1) 12

C

(1) 21

C (1) 22 n+1 ∆ū 2 ∆ θ2 -∆ θ1 (3.20)
in which, n is the number of step. The tangent operator matrix C defined in Eq.

(3.21) is obtained from the plastic constitutive law of the hinges that is given in Section 3.5.

C

(1)

n+1 = C (1) 11 
C (1) 12 C (1) 21 C (1) 22 n+1 (3.21) 
The incremental equilibrium of the first element imposes that ∆M

1 + ∆M

Combining Eqs. (3.20) and (3.22) gives
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C (1) 22     n+1        ∆ θ1 ∆ū 2 ∆ θ2        -C (3) 22 C 
(3) 12

C (3) 22       n+1            ∆ū 3 ∆ θ3 ∆ū 4 ∆ θ4            (3.25)

Local element definition

On the other hand, the beam element (subelement 2) is assumed to deform elastically. Having an elastic elongation ū (12) and elastic rotations θ 2 and θ 3 on each side of its ends, the incremental stress-resultants are related to their conjugates, for this subelement, by (2)

           ∆N (2) 2 ∆M (2) 2 ∆N (2) 3 ∆M (2) 3            =       k (2) 11 0 -k (2) 11 0 0 k (2) 22 0 k (2) 24 -k (2) 11 0 k (2) 11 0 0 k (2) 42 0 k (2) 44       n+1            ∆ū 2 ∆ θ2 ∆ū 3 ∆ θ3            (3.26) in which, k (2) 11 
= EA L , k (2) 22 = k 
2 = 0 ∆M (1) 2 + ∆M (2) 2 = 0 ∆N (2) 3 + ∆N (3) 3 = 0 ∆M (2) 3 + ∆M (2) 3 = 0 (3.27)
The above equilibrium equations are supplemented with equilibrium equations pertaining to the end nodes (node 1 and node 4): 

∆M 1 = ∆M (1) 1 ∆N 4 = ∆N (3) 4 ∆M 4 = ∆M
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with

f T = M 1 0 0 0 0 N 4 M 4 , d T = θ1 ū2 θ2 ū3 θ3 ū4 θ4 (3.30)
and
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(1) 12

C

(1)

22 + k (2) 22 0 k (2) 24 0 0 0 -k (2) 11 0 k (2)
11 + C

(3) 11

C

(3) 12

-C

(3) 11

-C

(3) 12

0 0 k (2) 42 C (3) 21 k (2) 44 + C (3) 22 -C (3) 12 
-C

(3) 22

0 0 0 -C (3) 11 
-C

(3) 12

C

(3) 11

C

(3) 12

0 0 0 -C (3) 12 
-C

(3) 22

C

(3) 12

C (3) 22               (3.31) 
To carry out the condensation process, the assembled stiffness equations of the superelement (Eq.3.29) are rearranged and partitioned as follows:

∆f l 0 = [k ll ] n+1 [k li ] n+1 [k il ] n+1 [k ii ] n+1 ∆d l ∆d i (3.32)
where the subvector ∆d i collects the interior degrees of freedom and the subvector ∆d l comprises the co-rotational kinematic variables pertaining to the superelement (elongation and local rotations at the end nodes):

d l =        ū4 θ1 θ4        , d i =            ū2 θ2 ū3 θ3            (3.33)
In the above equation, the subvector f l collect the independent stress-resultants pertaining to the superelement which corresponds to the so-called local force vector in the co-rotational formulation:

f l =        N 4 M 1 M 4        (3.34)

Local element definition

The sub-matrices in Eq.(3.32) have the following expressions:

k ll =     C (3) 11 0 C (3) 12 0 C (1) 22 0 C (3) 12 0 C (1) 22     n+1 (3.35) k li =     0 0 -C (3) 11 
-C

(3) 12

-C

(1) 12

-C

(1) 22

0 0 0 0 -C (3) 12 -C (3) 22     n+1 (3.36) k il =       0 -C (1) 12 0 0 -C (1) 22 0 -C 
(3) 11

0 -C (3) 12 -C 
(3) 12

0 -C (3) 22  
     n+1 (3.37) 
k ii =       C (1)
11 + k 

(3) 12

C (3) 22 + k (3) 33       n+1 (3.38)
Solving for the interior degrees of freedom:

∆d i = -[k ii ] -1 n+1 [k il ] n+1 ∆d l (3.39)
and replacing the outcome into the first matrix equation yield the condensed stiffness equations

∆f l = [k l ] n+1 ∆d l (3.40) with [k l ] n+1 = [k ll ] n+1 -[k li ] n+1 [k ii ] -1 n+1 [k il ] n+1 (3.41) 
[k l ] n+1 is the local tangent stiffness matrix. To ease the computations, the above stiffness equations are slightly modified by replacing the axial displacements with Anas ALHASAWI 79
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sub-element elongations using ∆ū 2 = ∆ū (12) ∆ū 3 = ∆ū (12) + ∆ū (23) ∆ū 4 = ∆ū (12) + ∆ū (23) + ∆ū [START_REF] Powell | 3D Beam-Column Element with Generalized Plastic Hinges[END_REF] = ∆ū (3.42) where ∆ū is the elongation of the superelement. Full expressions of the new assembled stiffness matrix along with the corresponding sub-matrices are given in the appendix.

Generalized plastic hinge model

We apply the general plasticity theory [START_REF] Simo | Computational inelasticity[END_REF] to the generalized elasto-plastic hinges.

The present model assumes that plasticity are lumped into axial and rotational springs located at the end of flexible beam element. The elastic behavior of the generalized hinge is uncoupled whereas axial-moment interaction is considered in the plastic range. We adopt the total generalized strain rate decomposition into elastic and plastic parts Ξ = Ξe + Ξp (3.43) where Ξ = θ , δ T . For an associated flow rule, the direction of the generalized plastic strain rate vector is given by the gradient to the yield function, with its magnitude given by the plastic multiplier rate λ:

Ξp = λ ∂f ∂Σ (3.44)
where Σ = [ M, N ] T is the generalized stress vector containing the bending and axial forces in the hinge. The plastic multiplier λ is determined by the classical complementary conditions:

λ ≥ 0, f (M, N ) ≤ 0, λ f (M, N ) = 0 (3.45)
The set of allowable stress resultants K defined by

K = Σ ∈ R 2 f (Σ) ≤ 0 (3.46)

Generalized plastic hinge model

An alternative formulation of the rate form of the flow rule given in Eq(3.44)

is the Hill variational inequality:

Σ ∈ K , Ξp • (Σ * -Σ) ≤ 0, ∀Σ * ∈ K (3.47)
Both formulation will be used to derive the discrete counterpart of the constitutive equations. Assuming linear elastic behaviour, the generalized stresses are given as:

Σ = C e (Ξ -Ξ p ) (3.48)
in which the elastic stiffness matrix is given by:

C e = k θ 0 0 k δ
In this model, the classical distributed plasticity model is replaced by transforming the stress-space yield surface of fiber model, denoted by f (σ x ), to stressresultant space yield surface, denoted by f (M, N ) due to the assumption that the plasticization of the cross section is controlled by a yield surface of the combined effects of axial and bending forces disregarding shear and torsional actions.

In this chapter, we consider a family of asymmetric and convex yield surface of superelliptic shape:

f (M, N ) = Σ q -1 (3.49)
where

Σ q = N + |N | 2N p+ + N -|N | 2N p- q + M + |M | 2M p+ + M -|M | 2M p- q 1 q (3.50)
with 1 ≤ q < ∞. The curve intersects the x-axis at N p+ and N p-and the y-axis at M p+ and M p-. The coefficient q, called roundness factor, controls the shape of the (M-N) interaction criterion. This shape evolves from a parallelogram (p = 1) to a rectangle (p → ∞). Its shape is plot in Fig. (3.3) for q = 1, 2, 4 and 12. The super-elliptic yield surface is defined in Eq. (3.49), and its anisotropic super-elliptic norm can be reformulated as

Σ q = (| N N | q + | M M | q ) 1 q (3.51)
Anas ALHASAWI 81 The plastic behavior is completely specified by the flow rule and the loading/unloading conditions. Its analytical transcription can take different but equivalent forms.

a • = 1 2• p + + 1 2• p - and b • = 1 2• p + - 1 2• p - ( 3 
Probably, the most familiar version of the flow rule is the rate equation (3.44) completed by the complementary conditions (3.57). An alternative formulation is provided by Hill's principle of maximum dissipation. This principle takes the form of a variational inequality (3.47). The discrete constitution are derived for the general case using the rate form of the flow rule. For the linear and quadratic yield criteria, we adopt the variational formulation. In order to enforce the flow rule at the end of each time step, we apply the Euler-backward type approximation scheme. We recall here that the time t is conceived as a monotonically increasing arbitrary parameter, which merely orders successive events since a time-independent behavior of the hinges is assumed. The current state of the stress-resultants given by Hook's law:

Σ n+1 = C e Ξ n+1 -Ξ p n+1 = Σ n + C e (∆Ξ -∆Ξ p ) (3.54) with Σ n+1 =    M n+1 N n+1    , ∆Ξ p =    ∆θ p ∆δ p    (3.55)
The increment of plastic deformation vector is obtained by integrating Eq. (3.44) using the Euler-Backward scheme:

∆Ξ p = ∆λ ∂f ∂Σ n+1 (3.56)
The plastic multiplier ∆λ must be determined to satisfy the complementarity (loading/unloading) conditions:

∆λ ≥ 0, f n+1 ≤ 0, ∆λ f n+1 = 0 (3.57)
with f n+1 being the yield criterion at time instant t n+1 :

f n+1 = f (M n+1 , N n+1 ) = Σ n+1 q -1 (3.58)
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Introducing the trial state 

Σ trial n+1 = Σ n + C e ∆Ξ ( 3 
M n+1 = M trial n+1 -k θ ∆λ M n+1 q |M n+1 | q-1 sgn (M n+1 ) [ Σ n+1 q ] 1-q (3.62) N n+1 = N trial n+1 -k δ ∆λ N n+1 q |N n+1 | q-1 sgn (N n+1 ) [ Σ n+1 q ] 1-q (3.63) with [ Σ n+1 q ] 1-q = N n+1 N n+1 q + M n+1 M n+1 q 1-q q (3.64)
In the next section, the applications of method are provided for the general superelliptic criterion as well as the linear and quadratic-form yield surface. It will be shown that, for the case of linear surface, q = 1, the analytical solution to the optimization can be attained whereas it is not the case for the non-linear curve, q > 1, in which Newton Raphson iteration method is used. This technique is powerful for the reason that the formulation has the form of a minimization of a convex function on a convex set. This secures the existence of a unique solution.

As the yield surface may have high curvature at corners, it is possible that one meets the convergence problems. But, the formulation of this technique gives a means of applying algorithms from mathematical programming theory which gives unique plastic strain increments when the trial stresses are found in the dual cone.

Smooth yielding criterion

The super-elliptic yield surface is illustrated in Fig. 3.3. The surface should have regular smooth curve at all points for q > 1. For q = 1, the curve will be linear

Discrete constitutive equations of the generalized plastic hinge

and have four singular point, whose integration is provided in the next section.

Within the boundaries of the surface, the behaviour is regarded as elastic and the update of the stresses is not needed. If the trial stresses lie outside of the convex set of elastic domain K, only one constraint is active at a time. The yield criterion at time t n+1 becomes

f (M n+1 , N n+1 ) = Σ n+1 q -1 (3.65)
where

Σ n+1 q = N n+1 N n+1 q + M n+1 M n+1 q 1 q (3.66)
The plastic multiplier ∆λ in Eqs The tangent operator for the case of nonlinear yield surface requires the derivative of stress resultant vector Σ (Ξ n+1 , ∆λ) with respect to deformation vector Ξ n+1 . Using Eq. (3.61), the derivative of the stress resultant Σ n+1 is

dΣ n+1 = dΣ trial n+1 -C e d∆λ ∂f ∂Σ n+1 + ∆λ ∂ 2 f ∂Σ 2 n+1 dΣ n+1 (3.67)
Rearranging Eq. (3.67) for dΣ n+1 gives

dΣ n+1 = H -1 n+1 dΣ trial n+1 -C e A n+1 d∆λ (3.68) 
where 

H n+1 = I -∆λ ∂ 2 f ∂Σ 2 n+1 (3.69) A n+1 = ∂f ∂Σ n+1 ( 
A T n+1 H -1 n+1 dΣ trial n+1 -C e A n+1 d∆λ = 0 (3.72)
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Rearranging Eq. (3.72) gives the expression of d∆λ as

d∆λ = A T n+1 H -1 n+1 dΣ trial n+1 A T n+1 H -1 n+1 C e A n+1 (3.73) 
Using Eq. (3.73), Eq. (3.68) becomes 

dΣ n+1 = H -1 n+1 dΣ trial n+1 -C e A n+1 A T n+1 H -1 n+1 dΣ trial n+1 A T n+1 H -1 n+1 C e A n+1 ( 
C = dΣ n+1 dΞ n+1 = H -1 n+1 C e I -A n+1 A T n+1 H -1 n+1 C e A T n+1 H -1 n+1 C e A n+1
(3.76)

An anisotropic linear yield surface

This section addresses the particular case of anisotropic multi-linear yield surfaces. Equations derived in Section 3.5.1 cannot be used because the multi-linear yield surface possesses singular points. Applying the Euler-backward scheme to the variational inequality (3.47), one obtains the discrete flow rule

Σ n+1 ∈ K , ∆Ξ p • (Σ * -Σ n+1 ) ≤ 0, ∀Σ * ∈ K (3.77)
By inserting Eqs. (3.60) into Eqs. (3.77), we obtain:

Σ n+1 ∈ K , (Σ * -Σ n+1 ) • C -1 e Σ n+1 -Σ trial n+1 ≥ 0, ∀Σ * ∈ K (3.78)
The last inequality (3.78) means that Σ n+1 is the projection of Σ trial n+1 onto the closed convex set K with respect to the norm

• C -1 e . Σ n+1 = proj (Σ trial n+1 , K ) (3.79)
In other words, the generalized stress vector Σ n+1 is the solution of the following nonlinear optimization problem:

proj (Σ trial n+1 , K ) = inf Σ∈K Σ trial n+1 -Σ n+1 2 C -1 e
(3.80)
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Then, the expression in Eq. (3.80) can be solved as:

min f (Σ)≤0 Σ trial n+1 -Σ n+1 • C -1 e Σ trial n+1 -Σ n+1 (3.81)
Next, Eq. (3.81) can be reformulated as a constrained minimisation problem by means of the Lagrange multiplier technique:

(Σ n+1 , µ (i) ) = 1 2 Σ trial n+1 -Σ n+1 • C -1 e Σ trial n+1 -Σ n+1 + µ (i) f (i) (Σ n+1 ) (3.82)
The stationary conditions can then be expressed as:

∂ Σ n+1 , µ (i) ∂Σ n+1 = 0, ∂ Σ n+1 , µ (i) ∂µ (i) = 0 (3.83)
By solving the system equations given by stationary conditions in Eq. (3.83), the expression of the generalized stresses at the end of the time step Σ n+1 is found.

The tangent operator is obtained by taking the derivative of these stresses:

C n+1 = ∂Σ n+1 ∂Ξ n+1 (3.84)
The linear yield surface is illustrated in Fig. 3.4. The surface has a parallelogram shape and consists of four constraints depending on the sign of the axial and bending forces. The intersections between each two constraints are singular points of the curve which create the dual cones. If the trial stresses are found in the dual cone, a special treatment must be done by considering the two associated constraints active. If the trial stresses lie outside of the convex set of elastic domain K and the dual cones, only one constraint is active at a time. The yield condition can be defined as:

N > 0 and M > 0 : f (1) = N N p + + M M p + -1 (3.85) N < 0 and M > 0 : f (2) = - N N p - + M M p + -1 (3.86) N < 0 and M < 0 : f (3) = - N N p - - M M p - -1 (3.87) N > 0 and M < 0 : f (4) = N N p + - M M p - -1 (3.88) 3. GENERALIZED PLASTIC HINGE M N   1 f   2 f   3 f   4 f  p N  p N  p M  p M Figure 3.4: linear yield surface

One active constraint

If only f (1) is active, µ (1) > 0 and µ (2) = µ (3) = µ (4) = 0. The Lagrangian in Eq.

(3.82) is given in this case as:

(Σ n+1 , µ (i) ) = 1 2 (Σ trial n+1 -Σ n+1 ) • C -1 e (Σ trial n+1 -Σ n+1 ) + µ (1) f (1) (3.89)
The stationary conditions in Eqs. (3.83) are applied:

∂ ∂M n+1 = - 1 k θ M trial n+1 -M n+1 + µ (1) M p + = 0 ∂ ∂N n+1 = - 1 k δ N trial n+1 -N n+1 + µ (1) N p + = 0 ∂ ∂µ (1) = M n+1 M p + + N n+1 N p + -1 = 0
(3.90)
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Solving Eqs. (3.90) for M n+1 , N n+1 and µ (1) gives:

M n+1 =M trial n+1 -k θ µ (1) M p + N n+1 =N trial n+1 -k δ µ (1) N p + µ (1) = M trial n+1 M p + + N trial n+1 N p + -1 k θ (M p+ ) 2 + k δ (N p + ) 2 -1 (3.91)
The tangent operator for this case is derived as:

C 11 = ∂M n+1 ∂θ n+1 = k θ - k θ M p+ 2 k θ (M p + ) 2 + k δ (N p + ) 2 -1 C 22 = ∂N n+1 ∂δ n+1 = k δ - k δ N p + 2 k θ (M p + ) 2 + k δ (N p + ) 2 -1 C 12 = C 12 = ∂N n+1 ∂θ n+1 = ∂M n+1 ∂δ n+1 = - k θ k δ M p + N p + k θ (M p + ) 2 + k δ (N p + ) 2 -1 (3.92)
The same approach can be followed for the other cases of one activate constraint.

two active constraints

At each corner of the surface ( see Fig. 3.4 ), two constraints at most are active.

The case of top corner (f (1) and f (2) are active ) is given as an example whereas the other three corners will follow the same procedure. The Lagrangian in Eq.

(3.82) becomes:

(Σ n+1 , µ (i) ) = 1 2 (Σ trial n+1 -Σ n+1 ) • C -1 e • (Σ trial n+1 -Σ n+1 ) + 2 i=1 µ (i) f (i) (3.93)
The stationary conditions in Eq. (3.83) are then evaluated:

∂ ∂M n+1 = - 1 k θ M trial n+1 -M n+1 + µ (1) M p + + µ (2) M p + = 0 ∂ ∂N n+1 = - 1 k δ N trial n+1 -N n+1 + µ (1) N p + - µ (2) N p - = 0 ∂ ∂µ (1) = M n+1 M p + + N n+1 N p + -1 = 0 ∂ ∂µ (2) = M n+1 M p + - N n+1 N p - -1 = 0 (3.94)
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Solving Eqs. (3.94) gives

M n+1 = M p + N n+1 = 0 µ (1) = N p+ N trial n+1 N p -k θ + M p + M trial n+1 k δ -M 2 p + k δ k δ k θ N p + + N p - µ (2) = - N p -N trial n+1 N p + k θ -M p + M trial n+1 k δ + M 2 p+ k δ k δ k θ N p + + N p - (3.95)
The tangent operator for the cases of two active constraints are the following:

C ij = 0 (3.96)

An anisotropic quadratic yield surface

The quadratic form of the yield surface, illustrated in Fig. 3.5, is a particular case of the nonlinear shape in Eq. (3.49), which is defined with q = 2 as

f (M, N ) = ( N N n+1 ) 2 + ( M M n+1 ) 2 -1 (3.97)
The lagrangian in Eq. (3.82) is given in this case as

(Σ n+1 , µ) = 1 2 (Σ trial n+1 -Σ n+1 ) • C -1 e (Σ trial n+1 -Σ n+1 ) + µf (3.98)
where and the stationary conditions consist of:

∂(Σ n+1 , µ) ∂M n+1 = - 1 k θ M trial n+1 -M n+1 + µ 2 M M n+1 ( N N n+1 ) 2 + ( M M n+1 ) 2 = 0 ∂(Σ n+1 , µ) ∂N n+1 = - 1 k δ N trial n+1 -N n+1 + µ 2 N N n+1 ( N N n+1 ) 2 + ( M M n+1 ) 2 = 0 ∂(Σ n+1 , µ) ∂µ = ( N N n+1 ) 2 + ( M M n+1 ) 2 -1 = 0 (3.99)
According to Eq. (3.97), we can write 

( N N n+1 ) 2 + ( M M n+1 ) 2 = 1 (3.
M M trial n+1 2 (1 + µk θ 2 M ) 2 + N N trial n+1 2 (1 + µ k δ 2 N ) 2 = 1 (3.
M M trial n+1 2 M 2 + N N trial n+1 2 N 2 = 1 (3.105) M = k θ 2 M k δ 2 N N + k δ 2 N -k θ 2 M k δ 2 N (3.106)
This is illustrated graphically in Fig. 3.6. Note that the first equation of the 3.6 reveals that the system of equation has one negative root,one positive root and a pair of complex conjugate roots. According to Eqs. (3.99), the process is iterative and the Newton-Raphson method will be adopted to determine M n+1 , N n+1 and µ. The tangent operator for these cases of nonlinearity will be determined according to Eq. (3.76).

y M  x y y M   x N  x N  

Elasto-plastic finite step procedure

Elasto-plastic finite step procedure

In this section, we briefly describe the solution strategy employed to solve the nonlinear structural equilibrium equations. Assuming that the internal forces pertaining to the superelements balance the external loading at the time instant t n , we seek to update all mechanical variables such that structural equilibrium is

achieved at t n+1 F int n+1 -F ext n+1 = 0 (3.107)
and the constitutive equations (Eq. 3.56 and Eq. 3.57) are fulfilled. The iterative procedure employed to solve this nonlinear problem involve several steps and proceeds as follows. Let (•)

(k)
n+1 be the value of a variable (•) at the k th iteration during the time increment [t n , t n+1 ], we have:

∆U (k+1) n+1 = -K (k) n+1 -1 F int(k) n+1 -F ext n+1 (3.108)
where K is the structural tangent stiffness matrix. The nodal displacement are updated according to:

U (k+1) n+1 = U n + ∆U (k+1) n+1 (3.109)
The above steps pertain to the global stage where the vector U collects the nodal displacement of the suprelements. The internal degrees of freedom are determined in a local stage. From U (k+1) n+1 , we immediately build the vector ∆d (k+1) g,n+1 for each superelement from which we compute ∆d (k+1) l,n+1 using Eq.3.6. Initialization of vector ∆d (j=1) i,n+1 is performed using Eq. 3.39:

∆d (j=1) i,n+1 = -[k ii ] (k) n+1 -1 [k il ] (k) n+1 ∆d (k+1) l,n+1 (3.110) 
Next, the "internal" forces are obtained iteratively by solving equilibrium equations Eq. 3.27:

∆R (j) i,n+1 + ∂∆R (j) i,n+1 ∂∆d (j) i,n+1 δ ∆d (j+1) i,n+1 = 0 (3.111)
where R i stands for the "internal" equilibrium residual of Eq. 3.27. Once the displacement vector ∆d (j+1)

i,n+1 has been found, the internal force as well as the
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stiffness matrices are updated and the out-of-balance force vector is evaluated.

With this strategy equilibrium is enforced at both global and local levels for each load step.

Numerical examples

This section provides four numerical examples of standard framed structures with the purposes to show the features of the model which include both geometric and material non-linearities and to investigate the response of framed structures undergoing both large displacements and inelastic deformations. Computations were driven using an appropriate version of the arc-length method [START_REF] Carrera | A study on arc-length-type methods and their operation failures illustrated by a simple model[END_REF] in order to capture the whole force-displacement curve. The effects of the roundness factor q affecting the shape of the yield surface as well as the consequence of significant changes in structural geometry on the frame's response are studied within the examples.

Fixed-end beam with asymmetric concentrated load

This first example concerns with a clamped beam under an asymmetric point load.

Firstly, in order to validate our proposed model, we compare its prediction against the co-rotational fiber beam model (see [? ]). The adopted (M,N) interaction criterion is consistent with the beam cross section shape. Duan and Chen in [? ] gave an approximated equation to the yield surface of the double symmetrical steel section subjected to bending moment and axial force:

M M P + N N P β = 1 (3.112)
Here M P and N P are plastic resistances for the bending moment and the axial force respectively. β is a section-dependent parameter.(β equal 2 for a solid rectangular; 2.1 for a solid circular section; 1.75 for a thin-walled circular section;

1.3 for a wide flange section under strong axis bending). Secondly, the effect of the roundness factor q on the response of the clamped beam under both monotonic Anas ALHASAWI

Numerical examples

and cyclic loading is investigated. Isotropic as well as anisotropic yield criterion with varying values of q are considered. For the monotonic loading the following values of q are considered: 1, 1.5, 2, 4 and 12 whereas q = 2 and 4 are taken for cyclic loading condition. While only isotropic yield criterion is considered in the case of monotonic loading. Yield surface anisotropy is considered for cyclic loading with the plastic limits M p -= 1 2 M p + and N p -= 1 2 N p + . The isotropic and anisotropic yield criterion for q equal 2 anf 4 are plotted in Fig. 3.9 and constant amplitudes (see Fig. 3.11). The cyclic loading histories adopted involve both increasing and constant amplitudes (see Fig. 3.10). The point load is applied at one-third of the total length of the beam, as being depicted in Fig. 3.7. The beam has a cross-section of type HEB 220 S355, whose yield limit f y = 355 M P a and Young modulus E = 210 GP a. In the other hand, Fig. 3.12 illustrates the force-displacement curve of the beam under monotonic loading. Up until the formation of the second hinge, the force-displacement curve almost does not vary with the value of q because the normal force developed in the beam is still small as a result of small displacements.

Between the formation of the second and the third hinge, the beam displacements become moderate producing slight differences in the load-displacement curve showing a dependance of the latter on the value of the roundness factor of q. After the third plastic hinge has formed, second order effects modify the load carrying mechanism with increasing value of the normal force. Consequently the curve begins to change significantly with the value of q. For same level of large displacement, the beam is able to sustain larger load with increasing value of q. Indeed, the load carrying capacity can be doubled in the case of q = 12 with respect to q =1. The roundness of the yield curve strongly influence the load level at which plastification of a hinge occurs. Membrane effect in the beam are more significant for increasing value of q. It is worth mentioning also that the computation may experience difficulties in convergence if the value of q is too Although the force is imposed with the same amplitude in all cycles, the amplitudes of the displacement become larger disregarding of the roundness factor as well as the yield criterion. This phenomenon is known as cyclic softening. Pinching effect is more pronounced with an anisotropic yield criteria.
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A low value of the roundness factor q combined with an isotropic yield criteria produces a force-displacement curve with significant pinching effect. With the same amplitudes of imposed force, the displacement is larger with the anisotropic yield criteria and for both values of q. The largest displacement is obtained with cycles is observed. Similarly to the force-controlled case, an anisotropic yield criteria will induces more pinching effect in the force-displacement curve.With the same amplitudes of imposed displacement, the force is larger with the isotropic yield criteria and for both values of q. The largest force is obtained with q = 4. 

q = 2.
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Limit load of a two-bay frame with single storey

This section presents a response of a two-bay frame with single storey as illustrated in Fig. 3.17. Again, the effect of the roundness factor q on the value of the ultimate load factor λ for this kind of structure is explored by varying the value Anas ALHASAWI As expected, the load factor obtained with first order analysis (with or without M -N interaction) is larger than the one computed with large displacement analysis considering or not M -N interaction. The first order analysis without load factor versus lateral displacement is illustrated in Fig. 3.21. In this figure, the roundness effect is more significant than in the previous example. At the beginning of the descending branch, the difference between the ultimate load factors computed with q = 2 and q = 10 is quite small but progressively increases as the curve for q = 2 drops more dramatically than for q = 10. The load factor is much lower for the case of q = 1 compared to the other two. The axial forces in this example grow so largely that their influence on the bending moments are noticeable. This effect is confirmed in Fig. 3.22 where the curves relating the load factor to the lateral displacement obtained from different types of analyses are compared against each other. It is clearly evident that the load factor is much lower with second order analysis when M -N interaction is not considered. This difference almost dissapear once M -N interaction is taken nto account.

GENERALIZED PLASTIC HINGE

 9  6  14   1   2   3   4   7   5  

Two-storey frame

Two-storey frame shown in Fig. 3.23 is also analysed to determine the effect of roundness parameter q as well as to discuss the different behaviors of the structure according to the method of analysis and the plasticity model (with or without Anas ALHASAWI 107 

Conclusion

This section presented a co-rotational beam elements for large-displacement inelastic analysis of planar framed structures. The local beam formulation consists of a flexible beam element whose ends are connected to generalized plastic hinges.

In this model, the generalized plastic hinges which are modeled by combined axial and rotational springs are used to reproduce the plastification of the member.

The plastic behavior of the hinges is described by an anisotropic super-elliptic yield surface and the normality rule. By varying the roundness factor, an infinite number of yield surface are obtained making it possible to select the yield function that best fit experimental data of any type of cross-section and material.

In addition to that, an integration of the constitutive law using Euler backward scheme was provided for any typical value of roundness factor q. The integration was also provided for special cases such linear and quadratic yield surface. For the application to linear yield surface, close form solution to the optimization was obtained. A proof of unique root was also given for the case of the quadratic yield surface (q = 2) although close form expressions could not be found. Aside from that, the numerical examples were additionally provided to show the ability Anas ALHASAWI 110

Conclusion

of the model to capture the structural nonlinearities of the frame's response and to study the effect of the roundness factor q as well as the second order effects on the frame structure's response. The study on a clamped beam subjected to monotonic and cyclic loading showed that the increase of load carrying capacity of the beam with the increasing value of the roundness factor. The pinching effect and cyclic softening were also seen in the beam's response under cyclic loading.

In addition, three portal frames were also investigated by varying the value of q and by performing different calculations (1st order/2nd order and with/without M -N interaction). Small difference between the force-displacement curves obtained from calculations with and without M -N interaction could be found for the two-bay frame with single storey due to the reason that the axial forces developed in the elements are small. As expected, the other two frames gave significant difference between the force-displacement curves obtained from calculations with and without M -N interaction because the axial forces were large in these two examples. 
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Introduction

In the past few years, several finite element models have been proposed for the analysis of composite steel-concrete beams; most of them are based on onedimensional beam elements with embedded interlayer slip. "Pontmixte" [1] is one of the most innovative programs able to study composite continuous beams at real scale making two numerical integrations -the first on the height of the cross-section and the second along the longitudinal axis of the beam -. Nevertheless, the first version of this model assumed that there is no uplift between the concrete slab and the steel beam. The whole composite cross-section had same vertical displacement and same rotation. This assumption prevents the prediction of possible uplift which could occur in particular loading cases for continuous beams and especially on both sides of the intermediate supports.

Huang et al. [2], [3], proposed a non-linear layered finite element procedure for predicting the structural response of reinforced concrete slabs subjected to fire.

The proposed procedure based on Mindlin/Reissner (thick plate) theory includes both geometric and material non-linearities. In this study a total Lagrangian approach was adopted in which displacements are referred to the original configuration and small strains were assumed. In the case of beams subjected to fire, contact problem needs a special attention.

Amilton et al. [4], presented a family of zero-thickness interface elements developed for the simulation of composite beams with horizontal deformable connection, or interlayer slip. The proposed elements include formulations to be employed with Euler-Bernoulli as well as with Timoshenko beam theories, combined to displacement-based beam elements sharing the same degrees of freedom.

The elements that can be employed for the simulation of steel-concrete composite beams, was computed more recently by Batista et al. [5] combining with the plate formulation of Huang. The proposed model used to analyse composite floor that includes interface elements appeared able to give the relative longitudinal and transversal displacements between the slab and the steel beam as-well-as the relative vertical displacements in the transverse plane. Recently, Qureshi et al. Different methods exist to solve the contact problem [8]. For example, in penalty method, increasing the penalty factor to infinity would lead to the exact solution, but in computational application it is not possible to use very high penalty factors because of ill-conditioning of the system. The Lagrange multiplier method fulfill the contact constraints exactly by introducing additional variables; for this reason the Lagrange multiplier generate an increment in the system-matrix size. A combination of the penalty method and the Lagrangian multiplier method leads to the so-called Augmented Lagrangian Method (ALM).

With this method, the penalty factor does not need to reach a high value to get the convergence of the iterative process. This method will be used in the proposed model to solve the contact problem at the interface between the concrete slab and the steel beam subjected to the inequality constraint corresponding to the non-penetrability between both materials.

For special loading cases, it could happen that the contact at the interface is not only "node-to node" and concerns a part of the finite element length. The Anas ALHASAWI 123 this means that the FNC algorithm was not activated significantly and so, no continuous contact zones have been occurred.

4.2

The "node-to-node" contact

Uplift tests

Before solving the contact problem at some composite cross-sections along the beam during the loading history, other cross-sections where the uplift could occur or the contact without penetration between both materials is satisfied should be located.

With the index (s) for the slab and (g) for the steel beam, the following notation is used: s) : distance between the interface and the centroid of the slab cross-section, d (g) : distance between the interface and the centroid of the steel beam crosssection, γ j : stud slip at the node j, The Augmented Lagrangian Method is used to solve the "node-to-node" contact problem. For elastic deformation in solid mechanics, the kinematically admitted displacements that satisfy a stable equilibrium state are those whom minimize the total potential energy -this is the kinematic approach. In our problem, the total potential energy is:

d (
V = 1 2 ∆ t K∆ -∆ t F (4.1)
with: ∆ = d e , K = K e and F = f e where: d e is the finite element displacement vector, K e is its stiffness matrix and F e is its load vector.

The minimization of Eq. ( 4.1) corresponds to:

K∆ -F = 0 (4.2)
The problem of partial derivative equations is replaced by a linear system of equations and the minimal value of V in classical finite element approach of unconstrained problem is:

M in V = - 1 2 ∆ t F (4.3)

Application of ALM to total potential energy

The constrained problem to solve at each connected node can be written as fol-

lows: Min V subjected to α ≥ 0 (4.4)
The problem can be solved as a series of unconstrained minimization problems.

It is pointed out that the contact depends on the behaviour of the connectors.

Even if the shear failure of a connector (for example) corresponds to 6 mm slip, all along the beam its maximum slip remains around 2 mm (always in elastic range) in serviceability limit state. Similar remark could be done for the tension of a connector. The use of Minimum Potential Energy in this case is then justified.

The penalty method approach gives:

Π = V + p 2 α j 2 
After each iteration:updating p (4.5)

At iteration (I ), penalty method solves this problem, then at iteration (I+1 ) it re-solves the problem using a largest value of the penalty factor p using the old solution as the initial guess.

The ALM combines the penalty method with the Lagrangian multipliers method.

The ALM uses the following constrained objective:

Π = V + p 2 α j 2 -λ j α j
After each iteration: updating p and replacing λ j by λ j -pα j (4.6)

The advantage of the ALM is that unlike the penalty method, it is not necessary that p have a very large value in order to solve the original constrained problem.

Instead, because of the presence of the Lagrangian multiplier λ j , p can stay much smaller.

According to Eq. (4.6), the modifications that have to be done to the assembled stiffness matrix and to the corresponding loading vector, at each connected node j, are: It is easy to verify that the equilibrium is satisfied in Fig. (4.4). The stiffness matrix remains symmetric and there is one line and one column added for each node being in contact. In practice, it is easier to add the supplementary equations corresponding to the nodes being in contact, at the end of the initial system as shown in Fig. (4.5). The system of equations to be solved has finally a variable dimension between (n × n) and (2n × 2n) maximum depending on the number of nodes being in contact (q 1 , q 2 , q 3 , .....). In Fig. (4.5), each value of the Lagrangian multiplier λ qi corresponds to a node q i being in contact. A penalty factor p qi will be adjusted for each node q i ; its initial value is equal to 1 and it increases during iterations (multiplying by 10 at each iteration). During the material nonlinear iterative process, the number of nodes being in contact could change.
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  s j u   s j v   s j    g j u   g j v   g j  j    s j u   s j N j * p  j * p     s j v   s j j j T p    s j    s j M   g j u   g j N j * p  j * p     g j v   g j j j T p    g j    g j M   j 1 p  j  j   Figure 4.4: ALM is activated at node j.   g n u  Initial system dimension   g n v nn K   g n  1 q  "Variable" system dimension  2 q  3 q   Figure 4.5: ALM is activated at q nodes .
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"Continuous" contact solution

During the loading history, it is possible to have some zones subjected to a contact that concerns a part of the element-length and not only its nodes. This could occur in case of distributed load more than in case of concentrated loads. In order to take into account this actual phenomenon, one proposes an approach so called "Flying Node Concept (FNC )". This method should be included in the iterative process that solves the contact problem at the interface previously described.

Slab

Girder

(i) ( j) (i-1) x  1,I L 2,I L Slab Girder (i) (j) (i-1) 1,I 1 L  2,I 1 L  Figure 4.6: Adaptive mesh -FNC
The FNC adapts the longitudinal mesh of the beam during the iterative process in order to take into account the "continuous" contact to a "node-to-node" connection. If the initial mesh of the beam appears unchanged at the end-loading history, it means that all the contacts have been "node-to-node"; otherwise, the final mesh will inform about the zones that have been subjected to a "continuous" contact. It is worth to mention out that these zones could sometimes appear and sometime disappear depending on the loading history of the beam. The final solution corresponding to the end-loading and to the real final mesh depends on 4.2 The "node-to-node" contact all intermediate calculation steps. If the FNC leads to major changes to the mesh and thus to the connection in certain zones of the continuous beam, the connection should be correctly distributed in these zones during the steel beam conception.

One considers two consecutive finite elements [(i -1)˘i] and [i˘j] with respective element lengths L 1,I and L 2,I at iteration I (Fig. 4.6.a). One suppose that the test concerns the node i of the finite element [i -j] and using appropriate shape functions N i=1,...4 one calculates the vertical displacements of both the slab and the steel beam as follows:

v (s) (x) = N 1 (x) v (s) i + N 2 (x) θ (s) i + N 3 (x) v (s) j + N 4 (x) θ (s) j v (s) (x) = N 1 (x) v (g) i + N 2 (x) θ (g) i + N 3 (x) v (g) j + N 4 (x) θ (g) j (4.7)
The difference between both vertical displacements of the concrete slab and the steel beam, previously called α, is easily obtained with following equation:

α i (x) = N 1 (x) v (s) i -v (g) i +N 2 (x) θ (s) i -θ (g) i +N 3 (x) v (s) j -v (g) j +N 4 (x) θ (s) j -θ (g) j or: α i (x) = N 1 (x) ∆v i + N 2 (x) ∆θ i + N 3 (x) ∆v j + N 4 (x) ∆θ j (4.8) 
This function depends only on the longitudinal x position of the node i. the objective now is to calculate, if it exists, the distance x given by α i (x) = 0.

With:

N 1 (x) = 1 -3 x 2 L 2 2,I + 2 x 3 L 3 2,I , N 2 (x) = x -2 x 2 L 2,I + x 3 L 2 2,I N 3 (x) = 3 x 2 L 2 2,I -2 x 3 L 3 2,I and N 4 (x) = - x 2 L 2,I + x 3 L 2 2,I
Eq. (4.8) leads to following equation:

α i (x) = 2x 3 (∆v i k -∆v j k ) L 3 2,I + (∆θ i k +∆θ j k ) 2L 2 2,I -3x 2 (∆v i k -∆v j k ) L 2 2,I + (2∆θ i k +∆θ j k ) 3L 2,I + x∆θ i k + ∆v i k (4.9)
Finally, the equation α i (x) = 0 can be easily solved using trigonometric method for example. Only real solutions are considered and if there is more than one the second element at the node i, appropriate length changes will concern both elements [(i -1) -i] and [i -j] and so on... of the distance x obtained from Eq. (4.9). In the case where x is too close to the finite element length, one observes from Eq. (4.10) that L 2,I+1 could be very low

4.3 THE COMPOSITE BEAM F.E.
and then the convergence of the iterative process could be affected. Two methods could be adopted:

-Method 1: Limiting x to an arbitrary value (less than half of the finite element length for example). This method insures to keep constant the number of finite element, it remains easy to compute and it gives enough accurate results.

-Method 2: If L 2,I+1 is too low, actual finite element disappears and the number of finite elements changes. In (Fig. 4.6.b), both finite elements [(i -1), (i)]

and [(i), (j)] merge and become only one finite element [(i -1), (j)]. This method is more difficult to compute because it needs a renumbering of the mesh during the iterative process. In addition, the solution could be affected by the final mesh density that is not suitable.

In Fig. 4.7, the FNC algorithm is shown with its links to the ALM in order to solve the contact problem. It is worth to mention out that the set of values obtained for the penalty factor p is verified by reconnecting FNC to ALM (at same contact iteration). Generally, these values are still available and the verification is directly satisfied; this is due probably to: α i (x) = 0 (Eq. 4.8).

4.3 THE COMPOSITE BEAM F.E.

Nodal variables

The user-friendly software "Pontmixte" has been upgraded to a "new" version based on a new finite element formulation for the composite beam element. Six degrees of freedom are necessary (instead of four in the preceding version), to take into account the contact/uplift at the interface. The concrete slab as well as the steel beam has 3 degrees of freedom at each node (i) and (j ) Fig. 4.8. Nodal displacements vector of the composite finite element is: 

{d e } = u (s) i 4. CONTACT PROBLEM Slab Girder ) s ( i u ) s ( i v ) s ( i  ) g ( i u ) g ( i v ) g ( i  ) s ( j u ) s ( j v ) s ( j  ) g ( j u ) g ( j v ) g ( j  0 L ) s ( d ) g ( d Interface
(x, y)} = [N (x, y)] {d e } (4.12) 
Where

[N (x, y)] = N (s) i 0 N (g) i 0 0 N (s) j 0 N (g ) j (4.13) 
In Eq. 4.13, N includes (3 × 3) matrices. The stud slip and lengthening of (shortening) are calculated considering the translation and the rotation of each material. Concerning the lengthening, the stud will be supposed fixes to the concrete:

Stud-slip:

γ j = u (s) j + d (s) θ (s) j -u (g) j + d (g) θ (g) j (4.14) 
Stud-slip:

α j = v (s) j -v (g) j (4.15) 

Kinematic relationships

The kinematic variables are respectively the longitudinal strain and the curvature of each material cross-section:

ε (s) x = ∂u (s)
∂x and ε

(g) x = ∂u (g) ∂x κ (s) x = ∂ 2 v (s) ∂x 2
and κ

(g) x = ∂ 2 v (g) ∂x 2
(4.16)

THE COMPOSITE BEAM F.E.

Kinematic relationship and corresponding strain vector are

{ε} = [B] {d e } with {ε} t = ε (s) x κ (s) x ε (g) x κ (g) x (4.17) 
The kinematic matrix can be written explicitly as follows:

[B] =       -B 1 B 2 y B 3 y 0 0 0 B 1 -B 2 y B 3 -2 L y 0 0 0 0 -B 2 -B 3 0 0 0 0 B 2 -B 3 -2 L 0 0 0 0 0 0 -B 1 B 2 y B 3 y 0 0 0 B 1 -B 2 y B 3 -2 L y 0 0 0 0 -B 2 -B 3 0 0 0 0 B 2 -B 3 -2 L       (4.18) 
with:

B 1 = 1/L, B 2 = 6/L 2 -12 (x/L 3 ) , and B 3 =4/L -6 (x/L 2 )

Stiffness matrix of the composite finite element

Paying attention to the kinematic matrix, one observes that it depends on the axial x position of the concerned cross-section and on the depth positiony of each material-fiber at the same cross-section. The composite beam cross-section is then divided into a number of horizontal fibers (m for each steel beam flange, n fibers for the steel beam web and p fibers for the slab). The algorithm takes firstly a Gauss-Legendre numerical integration towards the element-depth with 2 gauss-points for each fiber (1st integration along y axis-Fig. 4.9). By summing different stiffnesses along y axis, the result (that correspond to the stiffness of the composite cross-section) is affected to one of the Gauss points in order to understand the 2nd integration along x axis (Fig. 4.9) that uses also 2 Gauss points.

In order to simplify the presentation, the first numerical integration will not appear explicitly. One begins by the element stiffness matrix of the unconnected [(i) , (j)] composite beam that can be easily obtained by: with the behaviour matrix [D] in accordance with Eq. 4.16:

Ke = L 0 [B] t [D] [B] (4.19) 
[D] =       (EA) (s) 0 0 0 0 (EI) (s) 0 0 0 0 (EA) (g) 0 0 0 0 (EI) (g)       (4.20) 
E : Secant Young's modulus, A: cross section area and I : quadratic inertia of the cross-section.

A secant algorithm is used to solve nonlinear equations due to nonlinear behaviour of materials.

In order to include a connector at the node (j ) of the finite element [(i) , (j)] for example, the principe of virtual work is applied to set the global relationship of the stud behaviour under shear loading as-well-as under a tension.

• The internal work of an infinitesimal slip of the stud at the node (j ) and corresponding nodal variable are Q j is the stud shear force and d (s) and d (g) are defined in Fig. 4.8.

δW ss int = Q j γ j = Q j 1 d (s) -1 -d (g) δd ss j (4.
Corresponding nodal forces are

F ss j t = N (s) j M (s) j N (g) j M (g) j (4.23) 
• The internal work of an infinitesimal lengthening of the stud at the node (j ) and corresponding nodal variables are

δW st int = P j δα j = P j 1 -1 δd st j (4.24)
δd st j t = δv (s) j δv (g) j (4.25) 
Corresponding nodal forces are

F st j t = T (s) j T (g) j (4.26) 
• External works related to the nodal forces given in Eqs. 

δW st int = δW st ext (4.30)
The stud slip behaviour is defined as the relationship between the force at the stud head and the slip calculated between its base and the force point application.

This stud slip has been defined previously in Eq. (4.14) and R ss is the stub slipresistance

Q ss j = R ss γ j (4.31) 
From Eq. (4.29), the stud stiffness matrix [K ss ] related to its slip-resistance can be easily obtained

   δW ss int = Q j γ j = R ss δd ss j t 1 d (s) -1 -d (g) t 1 d (s) -1 -d (g) d ss j δW ss ext = δd ss j t F ss j (4.32)
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F ss j = R ss 1 d (s) -1 -d (g) t 1 d (s) -1 -d (g) d ss j (4.33) 
The stud stiffness matrix related to its slip-resistance is finally

[K ss ] =       1 d (s) -1 -d (g) d (s) d (s) 2 -d (s) -d (s) d (g) -1 -d (s) 1 d (g) -d (g) -d (s) d (g) d (g ) d (g) 2       (4.34) 
Concerning the stud lengthening behaviour, same procedure then the one developed for the stud slip-resistance is carried out. The stud tension resistance is called R st and the stud lengthen has been previously defined in Eq. (4.15).

P st j = R st α j (4.35)    δW st int = P j δα j = R st δd st j t 1 -1 t 1 -1 d st j δW st ext = δd st j F st j (4.36) F st j = R st 1 -1 t 1 -1 d st j (4.37) 
The stud stiffness matrix related to its lengthening-resistance is finally

K st = R st 1 -1 - 1 1 (4.38) 
After replacing by the symbol ( * )the terms of the stiffness matrix related to an unconnected composite beam element given in Eq. (4.19) concerning an unconnected composite beam, the stiffness matrix of the finite element [(i) , (j)] representing a connected campsite beam is

[K e ] = Ke + [K ss ] + K st (4.39)

Numerical simulation

Respecting the nodal variables organization given in Eq. (4.11), this matrix can be written explicitly as follows:

[K e ] =                            * * * 0 0 0 * * * 0 0 0 * * 0 0 0 * * * 0 0 0 * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * * * 0 0 0 * * * * 0 0 0 * * * * + R ss * * + d (s) R ss -R ss 0 -d (g) R ss * + R st * 0 -R st 0 * + d (s) 2 R ss -d (s) R ss 0 -d (s) d (g) R ss Symmetry * + R ss * * + d ( g ) R ss * + R st * * + d (g) 2 R ss                            (4.40) 

Numerical simulation

In order to proof that the use of contact algorithm is relevant to obtain accurate results, first numerical investigation concerns the comparison between experimental test results and the ones obtained by the "old" model with 4 degrees of freedom per node on one hand and the "new" model with 6 degrees of freedom per node on second hand.

Second numerical simulation will concerns an application for the FNC considering the same twin-beam subjected to a distributed load.

Comparison with an experimental test

The steel-concrete composite twin-beam considered (Fig. -Stage 1: The self-weight is taken into account (4.17 kN/m for sagging zones and 4.26 kN/m for hogging ones). 

u = 620 M P a, µ Concrete:

(a) 1 = 10, µ (a) 2 = 28 Rebar E (s) = 200, 000 M P a, f (s) 
y = 443 M P a, f (s) 
u = 565 M P a, µ (s) 1 = 1, µ (s) 
σ (c) f cm = kη -η 2 1 + (k -2) η with: η = ε (c) ε m > 0 and k = 1.1E cm ε m f cm (4.41) Stud: Q = Q u 1 -e -c 1 |γ| c 2 (4.42)
As mentioned previously, with the assumption of 4 degrees of freedom per node, the contact at the interface could not be taken into account as-well-as possible uplifts along the beam. With this assumption, the comparison between numerical and experimental results could not be totally satisfactory. In Fig. 4.12 obtained from [16], the comparison of the beam deflexion between numerical and experimental results with the previous "old" model "Pontmixte" shows a significant difference especially over the elastic range. This result was predictable because the penetration as-well-as the uplift at the material interface begin to be significant when the load increases. In this figure, one observes that the deflexion under "P1" has been underestimated with this numerical model since "P1" continues to increase over 550 kN. Unfortunately the measurements under the load "P2" have not been done, but the conclusion should be similar to "P1".
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For this reason, following numerical simulations, using the proposed "new" model the rotations for the last-step loading. As it was predicted, the left curves related to the cross-sections located under the concentrated loads show a penetration of the concrete slab in the steel beam. This penetration is theoretical and not realistic and it will be corrected by activating the ALM algorithm (right curves).

It is pointed out that the minimum gap at the interface is fixed to 10 3 mm for these numerical simulations. This value leads to reasonable time computation for convergence of the contact iterative process. In Figs. One observes that the use of the ALM algorithm makes changes in the magnitude of the design variables and therefore should have a special attention. = 475 M P a . The stress difference observed on hogging bending between both calculations is due only to the precision and it appears neglectable and same corresponding hogging bending is M - s = M - el = -871 kN/m. Nevertheless, in sagging zone, the stress difference is greater than the one on hogging and should not be neglected. In Calculation2, the sagging bending is greater than in Calculation1; this explains why the elastic hogging bending is reached faster (Table 4.2).

One compares now the stress distribution of both calculations for same load level 4.2) are around 3% less in sagging zone and 6% less on hogging zone. This difference is mostly due to the "continuous" contact that increases the stud slip in Calculation 2 and not in Calculation 
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Conclusion

The finite element model (with 6 degrees of freedom per node) for steel-concrete composite beams presented in this research has been developed in order to solve the problem of contact at the steel-concrete interface using the Augmented Lagrangian Method. The first numerical example is provided to assess the accuracy and robustness of the proposed formulation by comparison to experimental test results to confirm the reliability of the model. A new concept (FNC ) has been proposed to take into account the continuous contact that sometimes occurs for special loading cases. The proposed method is easy to compute and to include in the algorithm of the Augmented Lagrangian Method. The second numerical simulation is proposed to show the influence of the FNC on some design variables.

Main conclusions for the present work could be summarized as follows:

• The numerical simulation shows that the "old " model of the program "Pontmixte" (with 4 degrees of freedom per node) could not take into account the real behaviour at the steel-concrete interface. Consequently, the comparison with experimental results was not satisfactory especially for high load level and under concentrated loads as-well-as at intermediate support.

The separation between the slab and the steel beam degrees of freedom appears necessary, the "new " model with 6 degrees of freedom per node is then proposed.

• Contact algorithm based on ALM is well-adapted for composite structures and appears easy to compute and the convergence is relatively fast. The practical organization of the system given in Fig. or "with" ALM algorithm highlights the "critical" zones in the continuous beam where the unrealistic penetration of the concrete slab in the steel beam occurs and then is corrected by the use of ALM algorithm. It is pointed out that the uplift obtained when the calculation does not take into account the ALM algorithm is also unrealistic and is corrected by the use of ALM algorithm.

Conclusion

• The proposed model solves the node-to-node contact that is enough accurate in case of concentrated loads. Nevertheless, for distributed loads, the contact becomes more continuous and then the model should include the FNC. The example presented in this work shows that the loading capacity of the beam could be lower than the one predicted by a calculation without FNC (about 6% in this example). This percentage even if it remains relatively low, should be taken into account during the design of the beam because it could be not neglectable for other loading cases (for example asymmetrical distributed load on the beam). Nevertheless, more numerical simulations and experimental tests should be carried out to conclude on practical purposes.

• Solving contact problem at the steel-concrete interface has an influence on the design variables especially on the stud slip. It could be interesting to study its influence on the degree of connection in order to optimize the connection design. We have developed in this thesis some computational tools for steel and steelconcrete composite structures of buildings and bridges.

CONTACT PROBLEM

The bibliographic study allowed us to review the state of the art concerning the component-based method and its performance in order to estimate the behavior of a bolted end-plate connection. This method is easy to compute and it has been the subject of various research during the last decade for finally been adopted in the design standard (Eurocode). It appears that different variants of the model have been developed this last decade for such type of connection. Under monotonic loading, these purposes allow to predict efficiently the Moment-Rotation curve of an isolated joint. However, the response of the connection under cyclic loading remains in progress. This field interests the research because of the performance of this semi-rigid connection, especially in seismic zones. Therefore, in this work, we focus our attention on the cyclic response of the bolted end-plate connection by improving existing component-based model on one hand and deepen the well-known method of plastic hinges, on the other hand.

Firstly, we concentrated our attention on the improvements that we considered necessary to take into account in the component-based model. Beginning by "purely steel" connection subjected to a cyclic rotation, we took into account the separation between the end-plate and the column flange by making appropriate changes in the behavior of each component within the joint. After that, for the most frequent case of two bolt-rows, if the group resistance could arise (in addition In the second stage, we followed the study by assuming plastic hinges at each end of the steel beam. This method is well-known and has its limits. Our objective was to make some numerical simulations in order to highlight the influence of the form of the yield surface on the bearing capacity of a framed structure. The yield surface defined in the plane (M-N) with M as the bending moment and N the axial force in the considered cross-section, can take different forms depending on the value given to a factor q so-called "roundness factor". It has been shown that the influence of the rolled factor has a significant influence on the membrane effect in large displacements as well as on the bearing capacity. Moreover, in cyclic behavior of an isostatic beam, the effect of this factor has been also observed on the pinching effect and also on the softening of the cyclic curve. Finally, the model tested with or without (M-N) interaction on framed structures shown that the bearing capacity depends on the number of frames in the structure.

In the third stage of this work, it has been proposed to connect a steel-concrete composite beam to the proposed model of connection developed in the first stage. This work requiring validations at different levels of the modeling, it was agreed to start by proposing an efficient model of composite beam (with 6 dof per node) in small displacements taking into account the material nonlinearity of the beam as well as the contact between the steel and the concrete. The approach using the augmented Lagrangian method has been chosen for its rapidity with respect to the penalty method. The improvements made in this study mainly concerned the improvements made to include a continuous contact within the composite finite element by means of an adaptive mesh. This approach so-called "Flying Node Concept" gave more realistic results than those obtained with a unilateral contact approach.

In parallel, a simplified composite beam model (4 ddl per node) which does not take into account the contact between materials but only the slip at their interface, has been developed to test the assembly with the proposed joint model developed in the first section. This development includes only 2 non-linearities (material and geometrical) leaving out the third non-linearity that the contact could produce.

This assumption, allows to make calculations in large displacements insuring a relative good convergence of the iterative process. This model has been presented in the Appendix of this thesis and is currently the subject of some numerical simulations for validation.

It will be appropriate in the immediate perspective to finalize a relatively "complete" model of steel-concrete composite beam in large displacements taking into account the contact and ready to be assembled to the proposed componentbased model. The obtained macro-element will be easily used to carry out any structural analysis in large displacements. This model will be easy to compute and will give more accurate results than those obtained at this day.

In a more distant perspective, numerical simulations have to be envisaged on different framed structures with dissipative bolted connections in large displacements in order to achieve the validation of the proposed model. Experimental (small scale) experiments have to be planned at this stage.

A Appendix

Composite joint ***

The composite joint is a result of the combination between steel connection and reinforcement slab. The analytical behavior of a beam-to-column composite joint (moment -rotation curve) can be evaluated depending on the component method that adopted by EC3 and EC4. Actually, the same procedure that used in the steel joint will be used for the composite joint. We can consider the steel joint as a particular case of the composite joint. Therefore, the same mechanical model, as in steel connection, with additional rows, for reinforcement slab component, will be used to derive the relationship between local forces and its corresponded deformations for an isolated composite connection.(See Where y c is the distance between the concrete slab component and ∆ (s) .

For the steel part component, the deformation is given respectively for boltrows and bottom/top beam flange as

ūT3 = ūg2 -y T 3 θ2 -ūg1 + y T 3 θ1 = -1 0 y T 3 1 0 -y T 3 U l (A.5)
Where y T 3 is the distance between the bolt-rows component and ∆ (g) .

ūT2/T4 = ūg2 -y T 2/4 θ2 -ūg1 + y T 2/4 θ1 = -1 0 y T 2/4 1 0 -y T 2/4 U l (A.6)
Where y T 2/4 is the distance between the top/bottom beam flange component and ∆ (g) .

Depending on the virtual work theorem, the local stiffness matrix for composite joint element is given as follows

K l =             k 11 0 -k 13 -k 11 0 k 13 0 k 22 -k 23 0 -k 22 k 23 -k 13 -k 23 k 33 k 13 k 23 -k 33 -k 11 0 k 13 k 11 0 -k13 0 -k 22 k 23 0 k22 -k23 k 13 k 23 -k 33 -k13 -k23 k33             (A.7)
In which

k 11 = k T 3 + k T 2/4 k 13 = y T 3 k T 3 + y T 2/4 k T 2/4 k 22 = k rs + k c k 23 = y rs k rs + y c k c k 33 = y 2 T 3 k T 3 + y 2 T 2/4 k T 2/4 + y 2 rs k rs + y c k 2 c
where k T 3 and k T 2/4 are equivalent stiffnesses of the bolt-row and the top/bottom beam flange respectively. k rs and k c are the stiffnesses of the concrete and the reinforcement steel component successively .

In order to study an isolated composite joint we have to added, as in the composite concrete structure, connectors at the nodes. The connectors tied the two parts of the composite joint and make them work together. As known, the connector resists the shear forces at the interface therefore its stiffness is related to the slipping magnitude that can be written as follows:

R ss = k ss d ss (A.8)
where k ss represents discrete connection stiffness. and d ss is the slip at the interface steel-concrete.

As the two parts of the joint element have the same rotations, the produced slip between them at the node 1 is given as

d ss = ūg1 -ūs1 -d θ1 = 1 -1 d     ūg1 ūs1 θ1     (A.9)
In which d is the distances between ∆ (s) and ∆ (g) .

A.1.1 Stiffness matrix of the connector element

The connection between the two parts of an isolated joint will be simulated by a specific element with zero-length but it has a significant stiffness.

A.1 Composite joint element formulation Substitute Eq. (A.9) into Eq. (A.8) gives

R ss = k ss 1 -1 d     ūg1 ūs1 θ1     (A.10)
In the other side the vector force corresponding the node 1 is defined by.

f ss 1 = Ng1 Ns1 M1 T (A.11)
Using the virtual work theorem gives the connector stiffness matrix related to node 1

K ss 1 = k ss     1 -1 d -1 1 -d d -d d 2     (A.12)
Following the same procedures for the connector stiffness at node 2 produces

K ss 2 = k ss     1 -1 d -1 1 -d d -d d 2     (A.13)
Combined Eqs. (A.7),(A.12) and (A.13) gives the local stiffness for connected composite joint element Le travail de thèse comprend 3 parties qui correspondent chacune a un article scientifique. 

K j = K l + K ss 1 + K ss 2 (A.

Description du modèle mécanique

Le modèle mécanique à composantes considéré (Fig. (Moment-Rotation) avec le traitement du "gap". On constate comme cela était prévisible, que la symétrie du comportement est retrouvée en raison de la symétrie de l'exemple traité (Fig. 6.5).
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L'effet de groupe

Lorsqu'un assemblage boulonné comprend plusieurs rangées de boulons, le comportement de chaque élément-Type équivalent "i" présente son propre critère limite de résistance F T 3 i ,Rd .

-Tant que le niveau de sollicitation de l'assemblage reste modéré (toutes les rangées se trouvent encore dans le domaine élastique), l'assemblage est alors gouverné par des critères de limites élastiques individuels et de groupe.

-Lorsque le chargement augmente (toujours dans le même sens), cette rangée de boulons peut à son tour atteindre sa limite de résistance individuelle ou de groupe.

La sollicitation de l'assemblage peut s'arrêter :

soit par atteinte d'un chargement précis imposé 6.1 Première partie de la thèse Prendre en compte ce critère de résistance de groupe, outre les critères de résistance individuelle, nous devons définir une surface de charge plus complexe.

Cette surface de charge est d'autant plus complexe que le nombre de rangées de boulons susceptibles de générer un effet de groupe est élevé.

Dans le cadre de ce travail, nous avons adopté le modèle proposé par Cerfontaine pour prendre en compte l'effet de groupe engendré par 2 rangées de boulons. Ce cas sera étendu à plus que deux rangées de boulons. Il permet de travailler sur une surface de charge plane ce qui simplifie d'une façon significative la formulation élasto-plastique du problème.

Le principe est de projeter tout effort inadmissible sur la surface de charge après avoir localisé la zone concernée parmi celles définies sur la Fig. 6.6. On observe tout d'abord sur la Fig. 6.8, qui représente la réponse de l'assemblage illustrée par la courbe (Moment-Rotation), que la prise en compte de l'effet de groupe diminue la valeur du moment résistant de l'assemblage de l'ordre de 4, 8% pour cet exemple. Il est clair que cette influence dépend étroitement de la configuration de l'assemblage vis-à-vis de la position et du nombre de rangées de boulons existants. D'autre part, la Fig. 6.9 montre la chronologie de l'atteinte de la surface de charge limite en fonction de l'augmentation du chargement. On observe que la plus haute rangée de boulon atteint sa limite individuelle en premier ; le critère de groupe est ensuite atteint à son tour alors que la seconde rangée ii. Lorsque l'effort N est un effort de traction, le moment de flexion est inférieur ou proche du moment résistant calculé selon l'EC3. D'un autre côté, la Fig. 6.12, place tous les résultats de simulations numériques précédentes dans une représentation de diagramme d'interaction (M-N). Ce diagramme, déterminé analytiquement, représente le critère de limite de résistance de l'assemblage. On observe bien, que tous les cas calculés respectent bien ce critère limite, ce qui témoigne de l'efficacité et la performance du modèle proposé.

Seconde partie de la thèse

Elle consiste à développer un modèle de poutre avec rotules généralisées en formulation corotationnelle pour l'analyse non-linéaire (matérielle et géométrique) des structures à éléments élancés.

L'utilisation d'une procédure de condensation des d.d.l. internes facilite l'incorporation de cette formulation dans une approche corotationnelle classique. Le comportement plastique des rotules est contrôlé par une surface de charge qui peut prendre différentes formes selon la valeur donnée à un facteur q dit "facteur de forme". La prise en compte de la non-linéarité géométrique (effets du second ordre) est obtenue grâce à une formulation corotationnelle du problème. Le facteur q octroi différentes formes à la surface de charge autant dans le cas isotrope que dans le cas anisotrope. Le comportement élasto-plastique est traité par un schéma du type Backward-Euler. La poutre est soumise ensuite à un chargement cyclique à amplitude croissante (Fig. 6.17) autant en déplacement imposé qu'en force imposée. La réponse de la poutre est symétrique dans le cas d'une surface de charge isotrope et légèrement asymétrique dans le cas anisotrope indépendamment du facteur q (Fig. 6.18). L'accroissement du facteur q a tendance à accroitre l'amplitude de la force. Cette comparaison est menée au premier ainsi qu'au second ordre pour un même facteur de rondeur q = 2.
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-OM-first order : Pas d'interaction (M-N) -1 er ordre.

-OM-second order : Pas d'interaction (M-N) -2 nd ordre.

-IMN-first order : Avec interaction (M-N) -1 er ordre. Anas ALHASAWI n'a pas une grande influence sur le déplacement latéral de la structure. L'effet du second ordre débute aussitôt que la première rotule plastique apparait (environ à 0,1 m de déplacement latéral). La branche descendante au-delà de cette valeur traduit bien le comportement au second ordre de structures en portiques.
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On considère ensuite la configuration (IMN-second order) pour étudier le niveau Anas ALHASAWI 190 6.2 Seconde partie de la thèse maximum de chargement atteint en fonction du facteur de forme q (qui aura pour valeurs : 1, 2 et 10). Le tableau 6.2, résume les résultats obtenus.

On remarque (Fig. 6.22) qu'au-delà de q = 2, l'augmentation de la valeur de Table 6.2: Influence du facteur q sur le niveau maximum de chargement atteint q 1 2 10 λ 6.899 7.345 7.387 ce facteur n'a quasiment pas d'influence sur le niveau maximum de chargement atteint. Par contre, entre q = 1 et q = 2 on observe une augmentation d'environ 7% du niveau maximum de chargement atteint. teur q au-delà de 2 augmente encore le niveau maximum de chargement atteint d'environ 10%. De même, entre q = 1 et q = 2 on observe une augmentation d'environ 29% du niveau maximum de chargement atteint. Ces variations sont plus significatives que celles des 2 cas précédents.

Troisième partie de la thèse

Le transfert des efforts à travers l'interface acier-béton conditionne les performances mécaniques du matériau composite. Outre la prise en compte du glissement de la connexion à l'interface (ce qui est déjà bien assimilé de nos jours), il convient d'inclure aussi le comportement de la connexion vis-à-vis de la tractioncompression et de ce fait, le traitement du problème de contact s'impose. On -Les zones traitées sont celles situées sous les charges concentrées.

-La pénétration du béton dans l'acier a été corrigée.

-Les zones de soulèvement ont été repérées (léger soulèvement proche de l'appui intermédiaire).
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6.3 Troisième partie de la thèse -Les rotations des sections sous charges ont aussi été par conséquent, corrigées.

-Le glissement des connecteurs sont aussi affectés lors du traitement du contact.

Le soulèvement pourrait être relativement plus important dans le cas de chargement fortement dissymétrique de part et d'autre de l'appui intermédiaire. Le glissement étant la variable de dimensionnement de la connexion, il convient donc de tenir compte de l'effet que peut engendrer le traitement du contact sur cette variable.

Bien que l'option FNC soit aussi activée, aucune zone de contact continu n'a été détectée.

Poutre de pont mixte sous un chargement réparti

Afin de mettre en évidence l'option FNC. La poutre continue de pont mixte de l'application précédente est soumise cette fois-ci à un chargement uniformément réparti p. En effet, sous un tel chargement, il y a plus de chance que le contact continu soit détecté. La simulation numérique montre comment le maillage s'adapte au contact continu détecté au cours de l'histoire du chargement (Fig. Cette thèse a pour objectifs de développer une modélisation aussi fine que possible des structures aciers et mixtes acierbéton sous sollicitations cycliques avec prise en compte d'une part du comportement des assemblages et d'autre part des non-linéarités géométriques et du contact à l'interface acierbéton. Notre attention porte en particulier sur l'assemblage de type poutre acier/mixte sur poteau métallique par platine d'extrémité boulonnée. L'objectif étant de proposer un modèle « élément fini » d'assemblage qui reproduit aussi fidèlement que possible le comportement cyclique de ce dernier pour ensuite l'assembler à un élément fini de poutre non-linéaire acier ou mixte avec prise en compte, pour ce dernier, du soulèvement à l'interface. Le travail se compose de 3 parties distinctes. Un premier modèle qui se base sur la méthode des composantes a été développé ayant pour objectif de suivre la déformation de chaque composante au cours des cycles et de prendre en compte les non-linéarités induites par la séparation entre la platine d'extrémité et la semelle du poteau auquel elle est boulonnée. Ce modèle type composantes, a été développé pour une rangée de boulons. Dans le cas le plus fréquent, de deux rangées de boulons, une résistance de groupe (en plus des résistances individuelles de chacune des rangées) est susceptible de se développer. Pour rendre compte de ce phénomène, nous avons implanté le modèle proposé par Cerfontaine qui repose sur la définition d'une surface de charge et une règle d'écoulement associée pour déterminer les allongements des ressorts équivalents. Seul le cas de plasticité parfaite est considéré. Il est mis en évidence que l'influence de l'effet de groupe s'avère non négligeable sur le comportement post-élastique de l'assemblage et donc de la structure. Dans une seconde phase, nous proposons un modèle de poutre métallique classique en grands déplacements (approche co-rotationnelle) avec rotules généralisées aux extrémités. Nous faisons l'hypothèse que les déformations plastiques sont concentrées aux rotules dont le comportement plastique est contrôlé par une surface de charge asymétrique (anisotrope) qui peut prendre différentes formes selon la valeur donnée à un facteur q dit « facteur de forme ». Chacune de ces rotules plastiques comprend un ressort longitudinal pour l'effort normal N et un ressort spiral pour le moment fléchissant M. L'interaction (M-N) entre ces deux efforts dans le domaine plastique est régie par le critère de plasticité. Le modèle de rotule plastique généralisé proposé permet de rendre compte de l'adoucissement cyclique, de la ductilité et du « pinching effect ». Nous montrons aux travers de plusieurs exemples la pertinence mais également les limites d'une telle approche. Dans une troisième partie, nous proposons un nouvel élément fini de poutre mixte (à 6 ddl par noeud) en petits déplacements avec prise en compte de la non-linéarité matérielle de la poutre ainsi que du contact entre l'acier et le béton. 

Abstract

The goal of this thesis is to develop computational tools for the nonlinear analysis of steel and composite steel-concrete structures under cyclic loading taking into account the actual behaviour of joint, material and geometry non-linearities and contact conditions at the steel-to-concrete interface. In particular, our efforts focuses on typical bolted end-plate connection between steel or composite beam and steel column. The objective is to develop a new «joint finite element" able to reproduce accurately the cyclic behavior of the beam-to-column connection. Next this model is combined with a non-linear steel/composite beam element considering slip and possible uplift at the interface. The thesis consists of three major parts.

The first part deals with the behavior of a steel beam-to-column bolted end-plate connection under arbitrarily cyclic loading. The proposed model is based on an improved component method that closely follows the deformation of each component taking into account non-linearities induced by possible gap between the column flange and the end-plate. This model has been developed for a single row connection. In the case of multiple row bolted connection group effects may develop. Possible group effect between two bolt-rows has been implemented considering the model proposed by Cerfontaine based on the definition of the multi-surface yield criterion and the associated flow rule that govern deformation of equivalent springs. Only the case of perfect plasticity is considered. It is shown that the influence of the group effect is not negligible on the nonlinear response of the joint.

In the second part, we have developed a flexible co-rotational two-noded beam with generalized elasto-plastic hinges at the beam ends. It is assumed that plastic deformations concentrate at these hinges. These hinges have the ability to elongate/shorten along the beam axis and to rotate. A family of asymmetric and convex yield surfaces of super-elliptic shape is considered for the plastic behavior of the hinges. By varying the roundness factor, an infinite number of yield surface are obtained. It is shown that the nonlinear response of bolted connections subjected to both bending and tension are conveniently modeled with such a yield surface. It was observed that cyclic loading produces pinching effect, cyclic softening and ductile behavior. Advantages and limitations of the approach are discussed.

Finally, the third part is dedicated to the problem of contact at the interface of steel-concrete composite beams. A "new" finite element for composite steel-concrete beam is proposed. The beam element has 6 degrees of freedom per node. The concrete beam is allowed to separate from the steel beam. An efficient contact algorithm is proposed. The Flying node concept is introduced and used to determine the extent of the contact area within a single element and modify the mesh of the beam structure. The contact problem is solve using the Augmented Lagrangian Method. The influence of contact on the loading capacity of the beam and also its influence on some design variables are highlighted.
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  This study was conducted as part of a European research project entitled ROBUSIMPACT with the collaboration of: Universität Stuttgart, Université de Liège, Università degli Studi di Trento, Rheinisch Westfälische Technische Hochschule Aachen, ArcelorMittal Belval & Differdange S.A, MS3 Materials & Systems for Safety & Security and Institut National des Sciences Appliquées de Rennes. This European project extended over a period of 36 months from 01/07/2012. The objective was to make experimental tests and numerical models to investigate the behavior of structural frames subjected to lost-column due to an impact. The robustness of the structure is the key word of the study. We were in charge of Work Package 8 untitled: development of a new joint element.

  in 2015. Component-based mechanical models use tension/compression springs connected to rigid links. Each spring reproduces the behavior of a component inside the joint resisting either in tension or in compression. The models proposed by different authors concern various types of connections (welded, double seats, bolted, ..).

  in 1988. In this section, The mechanical response of joints under cyclic loading has been investigated using a component-based model. Gang Shi et al.[19] undertook several experimental tests on different typologies of bolted end-plate connection. This investigation has been focused on the comparison between flush and extended end-plate configurations: considering different end-plate thicknesses, bolt diameters, number of bolts and including or not stiffeners. Some specimens have been tested under monotonic and cyclic loading. Under cyclic loading, one can observe that in case of a flush end-plate joint, the gap between the column flange and the end-plate is more significant than in case of an extended end-plate connection (specimen JD1). Pu Yang et al.[20] proposed a model for bolted extended en-plate connection to describe the joint behavior under cyclic loadings. The model includes linear springs connected to a rotational spring for beam plastic hinge on one side and a rotational spring for the column panel in shear on the other side. The simulations were compared to six full-scale experiments. One can observe that the experimental results (specimen ES-1-1/2-24a) show evidence of an end-plate separation at the bottom of the beam flange. It appears that this Anas ALHASAWI 2. BOLTED END-PLATE CONNECTION separation (gap) has a significant influence on the bending moment. More recently, Da Silva et al. [21] in 2016 proposed a cyclic component-based model. The proposed model concerns steel joints subjected to a bending moment. Under cyclic loading, the proposed model included the possibility of load reversal for any rotation magnitude. The objective is to reproduce the hysteretic behavior with degradation of performance. Possible separation (gap) is not discussed. To conclude for the bolted end-plate connection, it appears that the literature does not give efficient mechanical models able to accurately reproduce the joint behavior under cyclic loading. The newly proposed model concerning this research includes two aspects that significantly influence the joint behavior:

Fig. 2 .

 2 Fig. 2.1 shows the connection and its corresponding mechanical model. The components which contribute to the deformation of the bolted beam-to-column connection are defined in Table 2.1. Notice: the component BWT does not appear in Fig. (2.1) because this component is considered only for the bolt-rows located between the beam flanges.
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 2122 Figure 2.1: Components effects and corresponding springs -equivalent springs "T ypes, r"
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 423 Figure 4 -Equivalent component of Type 3
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 24 Figure 2.4: Proposed mechanical model
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 25 Figure 2.5: General mechanical model for the joint
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 26 Figure 2.6: The gap -3D finite element model

  displacement) curves for each Type
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 27 Figure 2.7: First Loading-Unloading stage (half cycle)
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 285 Figure 2.8: Second Loading-Unloading stage (complete cycle) -Beginning of second cycle
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 29 Figure 2.9: Extended end-plate connection

2 Figure 2 . 10 :

 2210 Figure 2.10: Yield surface for 2 bolt-rows per group

Figure 2 . 11 :

 211 Figure 2.11: End-plate connection with several bolt-rows

2. 6

 6 Fig.2.12. The co-rotational framework is applied to the proposed member in

node 1

 1 and node 4 respectively. The total elongation, ū, is composed of the elongations of the first connection ū(12) , the elastic beam element ū(23) and the second connection ū(34) ū = ū(12) + ū(23) + ū(34) (2.59) 2.6 Beam element with semi-rigid connection with ū(12) = ū2 -ū1 ū(23) = ū3 -ū2 ū(34) = ū4 -ū3

  I, A and L
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 214215 Figure 2.14: Example for the gap effect

Figure 2 .

 2 Figure 2.16: Mechanical model

  ,-4.49), (-69.45,-8.65), (-70.46,-23.05) (D t -E t ) (-70.46,-23.05), (0,-18.94) (E t -O) (0,-18.94) , (0,0) It worth to precise that the couple of springs (T 3 1 -T 4) are active in same time and (T 3 2 -T 2) also, and both couples are active alternatively (Fig. 2.18); therefore:
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 2218 Figure 2.18: Force-displacement curves for each row of the joint
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 219 Figure 2.19: Mesh pattern of the finite element model
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 7220 Figure 2.20: Moment vs. rotation curves

Figure 2 . 21 :

 221 Figure 2.21: Plastic deformation in the connection at the end of the 3D FE simulation
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 222 Figure 2.22: Bolted end-plate configuration
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 4 zero leads to a redistribution of this force to the upper bolt-rows which have not reaching their individual resistance yet (T 3 2 and T 3 3 ). It appears that with this redistribution, T 3 2 reaches its individual resistance (407 kN ).

Figure 2 . 23 :

 223 Figure 2.23: Moment vs. rotation curve

Figure 2 . 24 :Figure 2 .Figure 2 .

 22422 Figure 2.24: Moment vs. rotation curve

5 .

 5 All the geometric properties are shown in Fig 2.27. The beam is discretized just by one element and it subjected to simultaneous vertical and horizontal forces. The horizontal load, H, is given several values as a percentage of the axial beam plastic resistance,N pl . However, the vertical load, F, takes a constant value for all the specimens. The moment-rotation curves for the tested specimens are provided by Fig. 2.28. It is observed that the influence of the presence of axial force is predicted by the proposed model. It is seen that the bending moment increases with increasing of the compressive axial force but this increasing is limited. The maximum 2

Figure 2 . 27 :

 227 Figure 2.27: Cantilever beam and its semi-rigid configuration

  2.30. It is clearly that the interaction diagram for all the specimens remain inside and on the boundary of the analytical one. This result confirm the accuracy and efficiency of the proposed finite joint element.

Figure 2 . 28 :

 228 Figure 2.28: Moment-rotation curves of the specimens, proposed model

Figure 2 .

 2 Figure 2.29: Moment-rotation curves of the specimens, experimental tests[26] 

Figure 2 . 30 :

 230 Figure 2.30: Bending moment-axial force interaction diagrams of the specimens

  scheme for both smooth and non-smooth cases. Numerical examples demonstrate the accuracy of the model in predicting the large displacement inelastic response of framed structures. Effect of the roundness factor on the ultimate load strongly depends on the structure typology. It was observed that cyclic loading produces pinching effect, cyclic softening and ductile behavior. Those effects are more

3 .

 3 GENERALIZED PLASTIC HINGE bending and tension can also be conveniently modeled with such a yield surface. The discrete constitutive equations for the hinge are derived based on both the rate form of the flow rule and the variational formulation. The expression of the consistent tangent operator is given with details and the solution algorithm which involve two stage (local and global equilibrium is described. Numerical examples demonstrate the accuracy of the model in predicting the large displacement inelastic response of framed structures. Effect of the roundness factor on the ultimate load strongly depends on the structure typology. It was observed that cyclic loading produces pinching effect, cyclic softening and ductile behavior.

u 3 4 uFigure 3 . 2 :

 432 Figure 3.2: Initial and final configuration for the beam element

  and (X 4 + u 4 , Y 4 + v 4 ) are the global coordinates in the deformed configuration of node 1 and node 4, respectively. With the help of basic Anas ALHASAWI 3. GENERALIZED PLASTIC HINGE geometric considerations, the rigid rotation of the x-axis α, that was mentioned in Eqs. (3.6b) and (3.6c), is computed as

  9d) The local -global displacement relationship can be derived through differentiation of Eqs. (3.6), therefore one can write: δū = δL n (3.10a) δ θ1 = δθ 1 -δα = δθ 1 -δβ (3.10b) δ θ4 = δθ 4 -δα = δθ 4 -δβ (3.10c) By using (3.7b)and (3.9c), one obtains δū = c (δu 2 -δu 1 ) + s (δv 4 -δv 1 ) = -c -s 0 c s 0 δd g (3.11)

) where r = -c -s 0 c s 0 T( 3 . 18 )

 0318 z = s -c 0 -s c 0 T (3.19)

3 .

 3 GENERALIZED PLASTIC HINGE elongation/shortening or relative axial displacement jump of each subelement are denoted by ū(ij) = ūj -ūi (Eqs. 3.3). The subelement 1, i.e. an elasto-plastic hinge modeled by a combination of a rotational and an axial springs, has an axial elongation ū(12) and a relative rotation θ1 = θ1 -θ2 . The incremental relation between the stress-resultants and their conjugates can be formally written as ∆N

  I, A and L denote the Young modulus, the second moment of area, the cross-section area and the beam length, respectively. The tangent stiffness matrix for the superelement is assembled using the standard direct stiffness method based on nodal force equilibrium equations. The sum of internal forces exerted by all members that meet at a joint balances the external force applied to that joint. Further, as shown in Fig.3.1, the flexural beam element has two ends: node 2 and 3. The nodal equilibrium equations for these nodes, used to eliminate the extra degrees of freedom, are given as follows ∆N

  .3.27 and Eq.3.28 are combined together with the member stiffness equations Eq.3.23, Eq.3.25 and Eq.3.26 to give: ∆f = [k] n+1 ∆d (3.29)

Figure 3 . 3 :

 33 Figure 3.3: General case of anisotropic yield surface

- 1 for x < 0 3 . 5

 135 .53) and the signum function sgn(•) is defined by sgn(x ) = Discrete constitutive equations of the generalized plastic hinge 3.5 Discrete constitutive equations of the generalized plastic hinge

  (3.62) and (3.63) is computed to satisfy the consistent condition (3.47), i.e. f (M n+1 , N n+1 ) = 0. As the Eqs. (3.65), (3.62) and (3.63) are non-linear, Newton Raphson iteration is adopted to solve for M n+1 , N n+1 , and ∆λ.

  3.70) in which I is a 2 × 2 unit matrix. Making derivation of Eq. (3.65) results in df (Σ n+1 ) = ∂f ∂Σ dΣ n+1 (Eq. (3.68)) in Eq. (3.71) obtains

  3.74) Provided that dΣ trial n+1 = C e dΞ n+1 (3.75) from Eq. (3.74), the tangent operator C has the following form

100) 3 . 5 Figure 3 . 5 :trial n+1 1 + µk θ 2 M N n+1 = N trial n+1 1 + µ k δ 2 N( 3

 353512123 Figure 3.5: Anisotropic yield surface

3 .

 3 GENERALIZED PLASTIC HINGE so that Eq. (3.102) reduces to finding the intersection of a quadratic and a straight line

Figure 3 . 6 :

 36 Figure 3.6: Geometric interpretation of the projection solution

Figure 3 . 7 :

 37 Figure 3.7: Two-dimensional fixed-end beam

Figure 3 . 8 :

 38 Figure 3.8: Load vs. deflection curve -comparative study

  Figure 3.9: Yield surface criteria

Figure 3 . 10 :

 310 Figure 3.10: Load history: reversed cyclic loading with increasing amplitudes

Figs. 3 .

 3 Figs.3.13 present the response of the beam under reversed and force-controlled cyclic loading with increasing amplitude. The loading history is symmetric with, for each cycle, the same force magnitude in both directions (upward and downward). The amplitudes of the cyclic force are determined by a multiplying the force F 0 = 500 kN with an increasing factor. For the first cycle, the amplitude
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 3113123733 Figure 3.11: Load history: reversed cyclic loading with constant amplitudes

Figure 3 . 13 :

 313 Figure 3.13: Reversed force-controlled cyclic loading with increasing amplitude: Isotropic versus Anisotropic yield criteria

Figure 3 . 14 :

 314 Figure 3.14: Reversed displacement-controlled cyclic loading with increasing amplitude: Isotropic versus Anisotropic yield criteria

Figs. 3 .

 3 Figs.3.16 present the response of the beam under reversed and displacementcontrolled cyclic loading with constant amplitude. The loading history is symmetric with, for all the cycles, the same displacement magnitude in both the downward and the upward directions. The amplitudes are constant at v 0 = 212 mm from one cycle to another. Although the displacement is imposed with the same amplitude in all cycles, the amplitudes of the force become smaller disregarding of the roundness factor as well as the yield criterion. As shown in 3.16(a) and 3.16(b), the beam response is almost symmetric for both isotropic and anisotropic yield criterion regardless of the value of the roundness factor. Again, cyclic softening which is characterized by a reduction of the force amplitude during successive
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 315 Figure 3.15: Reversed force-controlled cyclic loading with constant amplitude: Isotropic versus Anisotropic yield criteria

Figure 3 . 16 :

 316 Figure 3.16: Reversed displacement-controlled cyclic loading with constant amplitude: Isotropic versus Anisotropic yield criteria
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 317 Figure 3.17: Two-bay frame with a single storey

Figure 3 . 18 :

 318 Figure 3.18: Load factor λ versus roof lateral displacement with and without M -N interaction / second order effects
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 319321 Figure 3.19: Influence of the roundness parameter q on the Load factor λ.
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 3223323324 Figure 3.22: Load factor λ versus roof lateral displacement with and without M -N interaction / second order effects

Figure 3 . 25 :

 325 Figure 3.25: Load factor λ versus roof lateral displacement with and without M -N interaction / second order effects.

[ 48 ]

 48 Nour-Omid, B., Rankin, C.C. (1988). Finite rotation analysis and consistent linearization using projectors. Computer Methods in Applied Mechanics and Engineering 93 (1991) 353-384.

A

  new concept for the contact at the interface of steel-concrete composite beams. This chapter deals with the problem of contact at the interface of steel-concrete composite beams. The F.E. model "Pontmixte", able to study continuous composite beams at real scale, was based on a finite element of composite beam which considers only 4 degrees of freedom per node: both longitudinal displacements of the slab and the steel beam and common vertical displacement and rotation of the whole composite cross-section. This assumption did not allow any uplift at the interface between both materials. A "new" finite element is proposed in this work with 6 degrees of freedom per node in the aim to include a contact algorithm in the model. The originality of the method is to use the Augmented Lagrangian Method to solve the contact problem at the steel-concrete interface

4. 1 Introduction[ 6 ]

 16 , studied the effect of shear connector spacing and layout on the shear connector capacity in composite beams. A proposed 3D model (Plan dimensions: 1500 mm × 1500 mm), is loaded as a horizontal push test. This model developed with ABAQUS, includes profiled sheeting and the interfaces concerned by the contact algorithm are: (top profile sheeting -bottom of the concrete slab) and (shaft of the headed studs -surrounding concrete). Running time and convergence difficulty lead to consider 3D models inappropriate to study a continuous bridge beam at real scale. Due to the non-linear nature of contact mechanics, such problems in the past were often approximated by special assumptions within the design process. Due to the rapid improvement of modern computer technology, one can today apply the tools of computational mechanics to simulate applications which include contact mechanisms numerically[7].The model proposed herein takes into account the slip and lengthening-shortening nonlinear behaviours of the connection. Whatever the zone where the contact occurs after uplift, the relative vertical displacements along the longitudinal axis of the beam is obtained without interpenetration between materials.

"

  Flying Node Concept (FNC)" is a new method proposed in this work to make the appropriate adjustments to the final solution of the problem.Practically, the connection design leads to a number of studs which are distributed uniformly along the continuous beam or by portions of it (Eurocode recommendations for studs' design). This uniform distribution is generally validated by models that use a node-based connection. In order to take into account the actual continuous contact by using a node-based connection, the FNC algorithm is proposed. The main objective is to propose a longitudinal stud distribution that could be as realistic as possible by taking into account the continuous contact. The first mesh of the beam (same as studs' location) begins uniform and at the end of calculation, a new stud location is proposed. If the studs' distribution does not change significantly from the beginning until the end of calculation;

Figure 4 . 2 :Figure 4 . 3 :

 4243 Figure 4.2: Contact at the node j -Slip and slab uplift + steel beam lowering.

4. 2 . 2 "

 22 Node-to-node" contact solution 4.2.2.1 Equilibrium equations

  solution, the maximum one is restrained while it remains less than actual finite element length. The beam mesh changes at considered node for next iteration I + 1 as follows:L 1,I+1 = L 1,I + x and L 2,I+1 = L 2,I -x (4.10) Only shape function on the right side of the node i are employed because the FNC tests all the nodes from the left side to the right side of the beam (x axis sense); the first node being the first support which never moves like the other nodes located at each support of the continuous beam. If the test beings from

Fig. 4 .

 4 Fig. 4.6 shows how the FNC runs as an adaptive mesh depending on the value

Figure 4 . 7 :

 47 Figure 4.7: Contact algorithm (ALM + FNC )

Figure 4 . 8 :

 48 Figure 4.8: Definition of the nodal variables

Figure 4 . 9 :

 49 Figure 4.9: Two numerical integrations (one along each axes y and x)

•

  The principle of the virtual works leads to δW ss int = δW ss ext (4.29)

  4.10.a) has been subjected to an experimental test at Structural Laboratory of INSA-Rennes. The beam is loaded in accordance with the following stages:

Figure 4 . 3 -Table 4 . 1 :

 4341 Figure 4.10: (a) Geometrical characteristics of the twin-beam. (b) Loading stage 2 and 3

2 = 32

 232 Stud Q u = 80, 000 M P a, C 1 = 0.7, C 2 = 0.8, γ max = 6 mm different on hogging and sagging zones of the continuous beam. It is assumed that the hogging zone concerns 15% of the span length on each side of the intermediate support. For this zone, the thickness of the bottom flange is equal to 15 mm and for other cross-sections (in sagging zones) only 10 mm is required. The top flange thickness is equal to the bottom one. Related to mechanical behaviour of each material (Fig. 4.11), the mechanical properties are summarized in Table 4.1.

Figure 4 . 11 :

 411 Figure 4.11: Material mechanical behaviour

( 6 Figure 4 . 12 :

 6412 Figure 4.12: Comparison of deflexions -"old" model[16] 

  4.13.(e,f), are plotted the stud slip curves and the lengthening-shortening ones. The penetration and the uplift observed in the left curves disappear in the right curves; maximum uplift is observed at each side of the intermediate support. The slip curves become more smoothed with the ALM algorithm especially under the concentrated loads.

4. 4

 4 Numerical simulation are given in Fig. 4.17.a and b. The hogging bending is obtained when the top beam-flange reaches its yield stress f (a) y

Table 4 . 2 :

 42 Comparison of bending moments. kN/m M - s = M - el = 871 kN/m Calculation 2 (ALM + FNC) P=264 kN/m M + s = 548 kN/m M - s = M - el = 871 kN/m Calculation 1 (ALM) P=264 kN/m M + s = 534 kN/m |M - s | = 871 kN/m < M - el (p = 264 kN/m). Fig. 4.17.b and Fig. 4.18 show that in Calculation1 the stresses are underestimated and the moments (Table

1 .

 1 Fig. 4.16).

  (

4 . 5 )

 45 permits to avoid the node-renumbering of the system. The comparison between "without"

Figure 4 .

 4 Figure 4.13: (a,b) Comparison of the vertical displacement. (c,d) Comparison of the cross-section rotation. (d,e) Comparison of the stud slip and the stud lengthening-shortening.

Figure 4 . 16 :

 416 Figure 4.16: Comparison between initial and final mesh.

Figure 4 .

 4 Figure 4.17: (a) Stress distribution in sagging and hogging cross-sections Calcu-lation1 (ALM )-p = 280 kN/m. (b)Stress distribution in sagging and hogging cross-sections Calculation2 (ALM + FNC ) -p = 264 kN/m.

Figure 4 . 18 :

 418 Figure 4.18: Stress distribution in sagging and hogging cross-sections Calculation1 (ALM) -p = 264 kN/m.

Figure 4 .

 4 Figure 4.19: -Influence of the FNC on the stud-slip -p = 264 kN/m.

5 .

 5 SUMMARY AND CONCLUSIONto the individual resistances of each bolt-row), an elastoplastic formulation of the model proposed by Cerfontaine has been developed. It is highlighted that the group effect has a significant influence on the post-elastic behavior of the connection.The proposed component-based model leaded to a finite element of joint with zero-length and appropriate degrees of freedom in order to be finally assembled with a beam finite element. The new macro-finite element consists of a beam finite element with one finite element of joint connected at each end. A numerical study has been carried out on a steel beam-to-column flush end-plate connection subjected to axial force and bending moment. The results present the ability of this model to capture the joint response and the influence of the axial force on the moment-rotation curve.

Fig A. 1 )

 1 As depicted inFig A.1 a component based model for an isolated composite joint, each components of the joint are simulated by a nonlinear springs. The two parts of the composite joint are not connected.The slab part composite of reinforcement steel bar and concrete, herein each steel bar is represented by a nonlinear spring that will be activated in tension and compression. In the other hand, the concrete part is divided in several fibers and they work just in compression.The second part represents the steel joint which have been study obviously.It consists of bot-rows and beam flange rows.

Figure A. 2 :

 2 Figure A.2: Non connected mechanical model of composite joint

14 )

 14 It is worth to indicate that assembling this composite joint element with a composite beam element do not need to add the connectors stiffness at the composite joint element because they have already considered in the composite beam element. (See Fig. A.3 ) de la réponse globale du comportement des structures métalliques et mixtes (acier-béton) en régime élastique a vu ces dernières années un développement très significatif autant sur le plan expérimental que sur le plan de la modélisation numérique. Ces structures destinées aux bâtiments ou aux ouvrages d'art (ponts) se doivent d'assurer deux propriétés fondamentales : résistance et ductilité. Beaucoup d'aspects restent néanmoins encore mal compris et risquent d'affecter la pérennité de l'ouvrage d'une part et le coût de sa construction, d'autre part. Dans le cadre de ce travail de recherche, nous proposons d'apporter des solutions par le biais de modèles simples à certains de ces phénomènes qui ont été réellement observés aussi bien lors d'essais expérimentaux que lors des simulations numériques tridimensionnelles avancées. Une bonne modélisation se doit de reproduire le plus fidèlement possible le comportement de ces structures et de leurs assemblages afin d'assurer un acheminement correct des efforts autant sous chargement monotone que sous chargement cyclique.
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 6262 Figure 6.2: Modèle mécanique
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 63 Figure 6.3: Modèle élément fini 3D -Apparition du Gap
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 64 Figure 6.4: Configuration de l'assemblage traité

Figure 6 . 5 :

 65 Figure 6.5: La courbe momoent -rotation

2 Figure 6 . 6 :Figure 6 . 7 :

 26667 Figure 6.6: Interaction entre deux rangées de boulons

  de boulons et encore loin d'atteindre sa limite individuelle. On rappelle que le comportement individuel de chaque élément-Type équivalent est élasto-plastique parfait (pas d'écrouissage).
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 68 Figure 6.8: La courbe moment -rotation
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 1269610 Figure 6.9: Interaction diagramme entre (F T 3 1 -F T 3 2 )
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 23611 Figure 6.11: Moment-rotation
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 612 Figure 6.12: Diagramme d'interaction
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 615 Figure 6.14: Première simulation numérique
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 2616 Figure 6.16: Réponse de la poutre sous chargement monotone
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 617618 Figure 6.17: Histoire du chargement à amplitude variable
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 2 Seconde partie de la thèse criteria Anisotropic yield surface criteria (d) q=4 -Déplacements imposés

Figure 6 . 19 :

 619 Figure 6.19: Chargement cyclique à amplitude constante

  Figure 6.20: Portique à 2 travées

  order (b) 2 nd ordre.
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 621 Figure 6.21: Facteur de force λ -déplacement latéral
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 622623624 Figure 6.22: Influence du facteur q sur le niveau maximum de chargement atteint λ.
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 6266363628629 Figure 6.25: Configuration de portique

Figure 6 .

 6 Figure 6.31: (a) Description de la poutre mixte. (b) Les étapes 2 et 3 de chargement

6. 32 )

 32 . Néanmoins, il semble plus important de regarder les changements engen-

Figure 6 . 32 :

 632 Figure 6.32: Le maillage au cours de chargement.

  Une stratégie efficace de type noeud mobile (Flying Node) est proposée pour déterminer l'étendue de la surface de contact au sein d'un élément fini et d'adapter le maillage de l'élément poutre/poteau. Pour la résolution du problème de contact, la technique du Lagrangien Augmenté a été retenue. On montre que dans certaines situations, le soulèvement modifie la redistribution des efforts. N° d'ordre : 17ISAR 01 / D17 -01 Institut National des Sciences Appliquées de Rennes 20, Avenue des Buttes de Coësmes -CS 14315 -F-35043 Rennes Cedex Tél : 02 23 23 82 00 -Fax : 02 23 23 83 96
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		1: List and effect of different components
	Symbols Components
	CWT	Column Web in Tension
	CFB	Column Flange in Bending
	EPB	End-Plate in Bending
	BWT	Beam Web in Tension
	BT	Bolt in Tension
	CWC	Column Web in transverse Compression
	BFWC	Beam Flange and Web in Compression

• Assembly of the active components for the evaluation of the whole joint response.

  and (X 4 + u 4 , Y 4 + v 4 ) are the global coordinates in the

	deformed configuration for node 1 and node 4, respectively. The rigid rotation
	of the x-axis α, that was mentioned in Eqs. (2.63b) and (2.63c), is obtained by
	using the geometrical relations as

  ∆M

	(1) 2 = 0	(2.79)
	Combining Eqs. (2.77) and (2.79) gives	

  In this section the proposed mechanical model will be used to capture the cyclic response of the connection. It is worth to point out that the strength of equivalent Type spring is obtained as the minimum of the strengths of included components (highlighted values in Table2.2).

		2.7 Numerical applications
	2.7.1.1 Proposed mechanical model analysis			
	For each component within the joint, material hardening has been considered
	HEB 240	IPE 240	32	96 32	30
					240 30
	15				

2.14

) is used to investigate the influence of the gap effect on the joint behavior. Two cycles of rotations are applied to this joint according to the diagram given in Fig.

2

.15. Corresponding mechanical model is given in Fig.

2

.16. The steel grade that adopted is S355 and the Young's Modulus is 210 GPa. This example has been solved using proposed mechanical model analysis and 3D finite element modelling. q R.A.
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	Compression zone	Top beam flange (T2) Bottom beam flange (T4)	1011 1011	2394 2394
		First bolt-row (T3 1 )	329	574.75
		Second bolt-row (T3 2 )	407	414.85
	Tension zone	Third bolt-row (T3 3 )	388	420.75
		Fourth bolt-row (T3 4 )	388	420.75
		Fifth bolt-row (T3 5 )	407	512.63

3: Types and Groupes characterisation

Group of bolt-rows

  

	Group of tow bolt-rows	Resistance (kN)
	T3 1 + T3 2	813
	T3 2 + T3 3	705
	T3 3 + T3 4	728
	T3 4 + T3 5	706
	Group of three bolt-rows	Resistance (kN)
	T3 1 + T3 2 +T3 3	1200
	T3 2 + T3 3 +T3 4	1044
	T3 3 + T3 4 +T3 5	1046
	Group of four bolt-rows	Resistance (kN)
	T3 1 + T3 2 +T3 3 +T3 4	1627
	T3 2 + T3 3 +T3 4 +T3 5	1363
	Group of five bolt-rows	Resistance (kN)
	T3 1 + T3 2 +T3 3 +T3 4 +T3 5	1772

Table 2 .
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4 where q = 4 and s = 5, it follows: 339 + 127 = 466 kN ≤ M in 706, (1772 -329 -407 -298 = 738 kN ), (1363 -407 -298 = 658 kN ), (1046 -298 = 748 kN = 658 kN
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 2 

			5: Components characterisation	
	Component		T3-1/T3-2	T2/T4
	CWT	498.9	7.03	-	-
	CFB	406.1	38.22	-	-
	EPB	321.7	13.35	-	-
	BWT	476.8	∞	-	-
	BT	441	7.76	-	-
	CWC	-	-	598.2	10.40
	BFWC	-	-	529.8	∞

F Rd (kN) k/E(kN/mm) F Rd (kN) k/E(kN/mm)

Table 3 Experimental
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	FE1 (only M)	-	68.4	7244
	FE3 (-4% Npl)	52.7	76.7	9768
	FE4 (-8% Npl)	105.6	73.5	10853
	FE5 (-20% Npl)	265.0	78.5	10610
	FE6 (-27% Npl)	345.0	72.4	9927
	FE7 (-20% Npl)	265.0	80.0	8028
	FE8 (+10% Npl)	130.6	62.8	8959
	FE9 (+20% Npl)	264.9	52.3	9084

values of bending moment resistance and initial stiffness Test N (kN) M Rd (kN.m) S j,ini (kN.m/rad) Fig. 10 Moment vs. rotation curves of the experimental tests

  3.1 and 3.2. The subscript and the superscript denote the node number and the subelement number, respectively. The coordinates of the nodes 1 and 4 in the global coordinate sys-

tem (X, Y ) are (X 1 , Y 1 ) and (X 4 , Y 4 ), respectively. In the deformed configuration (see Fig.

3

.2), the global nodal rotations of the superelement nodes (node 1 and node 4) are θ 1 and θ 4 and the local ones are θ1 and θ4 , respectively. In addition to this, the global rotations of the elastic beam element nodes (node 2 and 3) are described by θ 2 and θ 3 and the local ones by θ2 and θ3 , respectively

Table 6 .
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		1: Liste et effet des différentes composantes
	Symbols Components
	CWT	Beam Web in Tension
	CFB	Column Flange in Bending
	EPB	End-Plate in Bending
	BWT	Beam Web in Tension
	BT	Bolt in Tension
	CWC	Column Web in transverse Compression
	BFWC	Beam or column Flange and Web in Compression
	Tant que tous les éléments sollicités en traction restent dans leurs domaines
	élastiques, toute séparation (négligeable ou quasi-nulle) entre la platine d'about
	et la semelle du poteau est aussitôt résorbée. Par contre, lorsqu'au moins un
	élément ,parmi les éléments suivants: semelle de poteau, platine d'extrémité et le
	boulon, migre vers le domaine plastique, les déformations plastiques engendrées
	provoquent l'apparition de "gap" permanents. Ce phénomène s'accentue et se
	cumule lorsque l'assemblage est soumis à un chargement cyclique aussi bien en
	partie haute qu'en partie basse de celui-ci. Il convient néanmoins de préciser que
	bien que ce gap soit localisé au niveau de la semelle tendue, il sera pris en con-
	sidération dans le modèle au niveau des rangées de boulons qui sont susceptibles
	de résister à la traction (Fig. 6.3).

Afin de prendre en compte ce phénomène, nous avons opté de l'inclure dans le 6.1 Première partie de la thèse Printed using Abaqus/CAE on: Wed Sep 07 17:06:56 Paris, Madrid (heure d'été) 2016
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 (3.23)Using the same procedure for the sub-element 3 we obtain the incremental equilibrium equations for this element: ∆M Hence,the relation between the stress-resultants and their conjugates in the second generalized elasto-plastic hinge is given as 

Numerical examples

of q = 1, 2 and 10. The isotropic yield criterion is employed in this example. The second order effect and the influence of interaction between axial and bending forces are also examined for the roundness factor of q = 2 by performing four different calculations: first order analysis without M -N interaction (OM-1st order), first order analysis with M -N interaction (IMN-1st order), second order analysis without M -N interaction (OM-2nd order) and second order analysis with M -N interaction (IMN-2nd order). The first order elasto-plastic analysis of this frame, without M-N interaction, has been performed using mathematical programming technique by Spiliopoulos et al. [START_REF] Spiliopoulos | An efficient mathematical programming method for the elastoplastic analysis of frames[END_REF]. For first order analyses (OM-1st order and IMN-1st order), the transformation matrix B defined by Eq. (3.14) becomes B 0 that is constant and independent of displacement by replacing L n with L 0 . Without considering nonlinear geometry, the tangent stiffness matrix in this case is given by

For the analyses without M -N interaction (OM-1st order and OM-2nd order), the axial spring has been removed and only a elastic perfectly plastic rotational spring is considered. The cross-section properties for each element of the frame is described in table 3.1. The yield limit and the Young modulus are taken as f y = 220 MPa and E = 210 GPa, respectively. Fig. 3.18 gives a Table 3.1: Mechanical properties [START_REF] Spiliopoulos | An efficient mathematical programming method for the elastoplastic analysis of frames[END_REF]. It can be seen from Fig. 3.18 that second order effects manifest themselves soon after the first hinge has formed. For the same value of the displacement, the corresponding load is smaller with a second order analysis. The difference between the load multiplier obtained via first and second order analyses continue to grow with increasing value of the displacement.

Once the maximum load has been reached, one can observe the typical descending branch associated with second order analysis of framed structures. For the problem under consideration, neglecting the M -N interaction does not affect much the response of the structure. Only a very small difference is observed with a higher value of the load multiplier obtained from computations without M -N interaction. This is due to the fact that the axial forces developed in the elements are ineffectively small making insignificant influence on the value of the plastic bending moments. Next, we investigate the effect of the roundness factor q on the frame response. The load factor is plotted against the lateral displacement in Fig. 3.19. The ultimate load factor obtained is λ = 6.899 for q = 1, λ = 7.345 for q = 2 and λ = 7.387 for q = 10. There is a significant difference between the ultimate load factor computed with q = 1 and q = 2. However, this difference is less important when comparing the load carrying capacity evaluated with q = 2 and q = 10.

One storey portal frame of Vogel

We investigate the response of the one-storey portal frame suggested by Vogel ( see Fig. 3.20). The cross-section properties are given as following: the Young modulus E = 205 GP a, yield stress 235 MPa and the columns of HEB 300 and the beam of HEA 340. As in example 3.7.2 we explore the effect of the roundness factor q on the value of the ultimate load factor λ by varying the value of q = 1, 2 and 10. The second order effect and the influence of interaction between axial and bending forces are also examined for the roundness factor of q = 2. The Slab Girder 

: horizontal displacement, vertical displacement and rotation of the slab cross-section at the node j, and

: horizontal displacement, vertical displacement and rotation of the steel beam cross-section at the node j, and

The following tests must be activated depending on the sign of the variable

• Case 1: the contact without penetration is satisfied at the node j → the stud is only subjected to a slip (Fig. 4.1).

• Case 2: the uplift of the concrete slab with the bending of the steel beam → the contact does not exist at the node j and the bolt is subjected to both slip and lengthening (Fig. 4.2).

• Case 3: the uplift of the concrete slab greater (in absolute value) then the uplift of the steel beam → the contact does not exist at the node j and the stud is subjected to both slip and lengthening (Fig. 4.3).

CONTACT PROBLEM

In Fig. 4.14 are plotted similar curves as in Fig. 4.12 but for the "new' finite element model activating the ALM algorithm. One observes the incidence on the beam deflexion under the concentrated load "P1"; the correlation between numerical and experimental results is more satisfactory in the post-elastic range. 

The local force vector is given as

The deformation of each component of the reinforcement steel is defined by

In which y rs is the distance between the reinforcement steel component and ∆ (s) .

Following the same procedure for determining the concrete slab component deformation, we can write

,