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Abstract

***

The goal of this thesis is to develop computational tools for the nonlinear analysis

of steel and composite steel-concrete structures under cyclic loading taking into

account the actual behaviour of joint, material and geometry non-linearities and

contact conditions at the steel-to-concrete interface. In particular, our efforts

focuses on typical bolted end-plate connection between steel or composite beam

and steel column. The objective is to develop a new «joint finite element” able

to reproduce accurately the cyclic behavior of the beam-to-column connection.

Next this model is combined with a non-linear steel/composite beam element

considering slip and possible uplift at the interface. The thesis consists of three

major parts.

The first part deals with the behavior of a steel beam-to-column bolted end-

plate connection under arbitrarily cyclic loading. The proposed model is based

on an improved component method that closely follows the deformation of each

component taking into account non-linearities induced by possible gap between

the column flange and the end-plate. This model has been developed for a sin-

gle row connection. In the case of multiple row bolted connection group effects

may develop. Possible group effect between two bolt-rows has been implemented

considering the model proposed by Cerfontaine based on the definition of the

multi-surface yield criterion and the associated flow rule that govern deformation

of equivalent springs. Only the case of perfect plasticity is considered. It is shown

that the influence of the group effect is not negligible on the nonlinear response

of the joint.
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In the second part, we have developed a flexible co-rotational two-noded beam

with generalized elasto-plastic hinges at the beam ends. It is assumed that plas-

tic deformations concentrate at these hinges. These hinges have the ability to

elongate/shorten along the beam axis and to rotate. A family of asymmetric and

convex yield surfaces of super-elliptic shape is considered for the plastic behavior

of the hinges. By varying the roundness factor, an infinite number of yield sur-

face are obtained. It is shown that the nonlinear response of bolted connections

subjected to both bending and tension are conveniently modeled with such a

yield surface. It was observed that cyclic loading produces pinching effect, cyclic

softening and ductile behavior. Advantages and limitations of the approach are

discussed.

Finally, the third part is dedicated to the problem of contact at the interface

of steel-concrete composite beams. A “new” finite element for composite steel-

concrete beam is proposed. The beam element has 6 degrees of freedom per

node. The concrete beam is allowed to separate from the steel beam. An efficient

contact algorithm is proposed. The Flying node concept is introduced and used

to determine the extent of the contact area within a single element and modify the

mesh of the beam structure. The contact problem is solve using the Augmented

Lagrangian Method. The influence of contact on the loading capacity of the beam

and also its influence on some design variables are highlighted.

Key words: Steel structure, composite beam steel-concrete, bolted end-plate

connections, component-based method, nonlinear analysis, cyclic loading, con-

tact, generalized plastic hinge, co-rotational.
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Résumé

***

Cette thèse a pour objectifs de développer une modélisation aussi fine que pos-

sible des structures aciers et mixtes acier-béton sous sollicitations cycliques avec

prise en compte d’une part du comportement des assemblages et d’autre part des

non-linéarités géométriques et du contact à l’interface acier-béton. Notre atten-

tion porte en particulier sur l’assemblage de type poutre acier/mixte sur poteau

métallique par platine d’extrémité boulonnée. L’objectif étant de proposer un

modèle « élément fini » d’assemblage qui reproduit aussi fidèlement que possible

le comportement cyclique de ce dernier pour ensuite l’assembler à un élément fini

de poutre non-linéaire acier ou mixte avec prise en compte, pour ce dernier, du

soulèvement à l’interface. Le travail se compose de 3 parties distinctes.

Un premier modèle qui se base sur la méthode des composantes a été développé

ayant pour objectif de suivre la déformation de chaque composante au cours des

cycles et de prendre en compte les non-linéarités induites par la séparation entre la

platine d’extrémité et la semelle du poteau auquel elle est boulonnée. Ce modèle

type composantes, a été développé pour une rangée de boulons. Dans le cas le

plus fréquent, de deux rangées de boulons, une résistance de groupe (en plus des

résistances individuelles de chacune des rangées) est susceptible de se développer.

Pour rendre compte de ce phénomène, nous avons implanté le modèle proposé

par Cerfontaine qui repose sur la définition d’une surface de charge et une règle

d’écoulement associée pour déterminer les allongements des ressorts équivalents.

Seul le cas de plasticité parfaite est considéré. Il est mis en évidence que l’influence

de l’effet de groupe s’avère non négligeable sur le comportement post-élastique
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de l’assemblage et donc de la structure.

Dans une seconde phase, nous proposons un modèle de poutre métallique clas-

sique en grands déplacements (approche co-rotationnelle) avec rotules généralisées

aux extrémités. Nous faisons l’hypothèse que les déformations plastiques sont con-

centrées aux rotules dont le comportement plastique est contrôlé par une surface

de charge asymétrique (anisotrope) qui peut prendre différentes formes selon la

valeur donnée à un facteur q dit « facteur de forme ». Chacune de ces rotules

plastiques comprend un ressort longitudinal pour l’effort normal N et un ressort

spiral pour le moment fléchissant M. L’interaction (M-N) entre ces deux efforts

dans le domaine plastique est régie par le critère de plasticité. Le modèle de

rotule plastique généralisé proposé permet de rendre compte de l’adoucissement

cyclique, de la ductilité et du « pinching effect ». Nous montrons aux travers

de plusieurs exemples la pertinence mais également les limites d’une telle ap-

proche. Dans une troisième partie, nous proposons un nouvel élément fini de

poutre mixte (à 6 ddl par nœud) en petits déplacements avec prise en compte

de la non-linéarité matérielle de la poutre ainsi que du contact entre l’acier et le

béton. Une stratégie efficace de type nœud mobile (Flying Node) est proposée

pour déterminer l’étendue de la surface de contact au sein d’un élément fini et

d’adapter le maillage de l’élément poutre/poteau. Pour la résolution du problème

de contact, la technique du Lagrangien Augmenté a été retenue. On montre que

dans certaines situations, le soulèvement modifie la redistribution des efforts.

Mots-clés : Structure métallique, poutre mixte acier-béton, assemblage boulonné

par platine d’extrémité, méthode des composantes, analyse non-linéaire, charge-

ment cyclique, contact, rotule plastique généralisée, co-rotation
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Introduction

***

The development of sophisticated models for the elastic global analysis of steel

and composite structures (steel and concrete) has witnessed significant develop-

ment over the past two decades. In particular, joint modeling as well as partial

interaction affect strongly the structure behaviour (strength and ductility) and

accurate models are welcome.

This work aims to provide solutions through simple models to some of phe-

nomena that were actually observed either in experimental tests or in advanced

three dimensional numerical simulations. A good model has to reproduce as

faithfully as possible the behavior of steel and composite structures and their

connections to ensure correct transfer of the efforts under monotonic or cyclic

loading. However these models should have a reasonable level of complexity to

be used by engineers. The thesis consists of three parts each of which correspond

to a journal paper.

Mechanical model for the bolted end-plate con-

nections...

The first part deals with the modelling of bolted end-plate connection. The

performance of this type of assembly has already been proven by various studies

and confirmed by numerous experimental tests. This connection provides a semi-
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1. INTRODUCTION

rigid joint appreciated in the case of cyclic loading due to its dissipative character,

its economic aspect and lastly, the simplicity of its execution.

This study was conducted as part of a European research project entitled

ROBUSIMPACT with the collaboration of: Universität Stuttgart, Université

de Liège, Università degli Studi di Trento, Rheinisch Westfälische Technische

Hochschule Aachen, ArcelorMittal Belval & Differdange S.A, MS3 Materials &

Systems for Safety & Security and Institut National des Sciences Appliquées

de Rennes. This European project extended over a period of 36 months from

01/07/2012. The objective was to make experimental tests and numerical models

to investigate the behavior of structural frames subjected to lost-column due to

an impact. The robustness of the structure is the key word of the study. We were

in charge of Work Package 8 untitled: development of a new joint element.

In order to propose a model of connection easy to implement and useful for

the study of full-scale structures, one focuses this work on the development of a

mechanical model based on the components method that is nowadays well-known

and adopted by the Eurocodes (EC3 and EC4). The mechanical model to be

developed must be formulated as a zero-length finite element to ease its incorpo-

ration into a finite element code. By doing so the assembly procedure with others

structural elements such as beam element can be easily accomplished. In order

to reproduce as closely as possible the experimentally and numerically observed

phenomena, the proposed model should include the two following important phe-

nomena:

- The separation between the end-plate and the column flange (called ”gap”).

This phenomenon result in a complex behaviour under cyclic loading and

has never been taken into account.

- The group behavior (of two or more rows of bolts) which is added to the indi-

vidual behavior of each row. This is also to be included to reproduce the

overall behavior of the connection under monotonic and cyclic loading.

The study includes the following steps:

• description of mechanical model.
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• modeling the separation between the column flange and the end-plate and

analysis of its effect on the cyclic behavior response of the connection.

• inserting the group effect of two bolt-rows using the plasticity formalism and

performing a consistent integration.

• connecting the mechanical model to a beam to study numerically the (M-N)

interaction within the joint.

Finally, one obtains a new Finite Element able to provide an accurate response of

bolted joint connection for structural frames under monotonic and cyclic loading.

Simplified model for connections...

The aim of this part is to propose a simple model for the joint behaviour using

the concept of generalized hinge and new yield surface for the M-N interaction.

The generalized plastic hinges are modeled with combined axial and rotational

springs and used to reproduce the plastification of the member including the

full interaction between axial force and bending moment. A family of symmet-

ric/asymetric and convex yield surface of super-elliptic shape is considered for

the plastic behaviour of the hinges. The yield function that best fit experimental

data of any type of cross-sections and materials have to be adopted for the plas-

tic hinges. This yield surface could be selected among those obtained by varying

the roundness factor ’q’. Between both hinges, the beam is assumed to remain

elastic. Geometrical and material non-linearities have been considered. The use

of a condensation process of internal d.o.f facilitates the incorporation of this for-

mulation in a classic co-rotational approach. Numerical examples demonstrate

the accuracy of the model in predicting the large displacement inelastic response

of framed structures. Effect of the roundness factor on the ultimate load strongly

depends on the structure typology. It was observed that cyclic loading produces

pinching effect, cyclic softening and ductile behavior. Those effects are more

pronounced with anisotropic yield criteria.
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Behaviour at the steel-concrete interface...

In order to extend the proposed model of steel beam-to-column connection to a

composite beam-to-steel column connection, the objective of this third part aims

to propose an efficient model of steel-concrete composite beam.

The force transfer mechanisms through the steel-concrete interface insures

the performance of the composite structure. Besides taking into account the slip

connection at the interface (which is nowadays already assimilated), it should also

include the behavior of the studs in tension in case of uplift on one hand and the

contact without penetration between both materials (by the use of appropriate

algorithm) in case of compression, on the other hand.

In this third part, one proposes an improvement for classical contact models

usually used to model the behavior at the interface between two materials. The

contact algorithm is solved in small displacements by the use of the Augmented

Lagrangian Method (ALM). In addition, in order to extend the unilateral ”node to

node” contact to a continuous contact, a concept so-called ”Flying Node Concept”

(FNC) is proposed. This concept is based on the principle of an adaptive mesh

updated during the non-linear iterative process.

The Finite element of composite beam with 12 degrees of freedom will be

easily used to be connected a steel column to the proposed connection model

developed previously.

Several approaches can be found in the literature to solve the unilateral contact

problem such as: the Lagrange Multiplier Method (LMM), the Penalty Method

(PM), Nitsche Method (NM) and Augmented Lagrangian Method (ALM). Al-

though most computer codes use the PM, we prefer the ALM because it does

not need to increment the penalty factor to very high values to achieve conver-

gence; the computation time is by this fact, very reduced (especially for bridge

continuous beams at real scale).

Even if the contact problem is solved with the assumption of no penetration,

the algorithm should be also able to locate the zones on the beam where the

uplift occurs. In these zones, the contact algorithm is not active. It should be
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noted that these zones can vary along the beam during the loading history. In the

zones where the contact occurs, the problem consists of minimizing the potential

energy and respecting the condition of no-penetration. Numerically, if the ALM

is used, one must add an equation to solve the system for each concerned node

in the mesh. This equation includes the Lagrange multiplier, the penalty factor

and the actual penetration. When the penalty factor increases, the Lagrange

multiplier corresponding to the reaction induced by a fictive spring increases, and

thereby the penetration between the two materials is reduced. When penetration

is deemed eligible, the contact is considered to be corrected at this node. It is

clear that each node has its one penalty factor obtained automatically.

Like the uplift, the penetration may involve a number of variable nodes during

the loading history of the beam. If the actual size of the system to solve is N

and the number of nodes whose the contact should be solved, at a given stage of

loading is Nc, the dimension of the system becomes (N +Nc). The first improve-

ment of the proposed algorithm is to locate automatically all additional equations

following those relating to the standard problem (corresponding to N) and not at

the real location of the nodes involved in the system to solve. This arrangement

facilitates the computational algorithm by avoiding a complex reorganization of

variable size system. When, for a given load level, Nc becomes equal to zero, the

system recovers its real dimension N and the load can be incremented.

The second improvement of the proposed algorithm concerns the solution for

the continuous contact during the iteration process. Indeed, during the load

history, it can occur for particular geometric configurations and loading cases,

that the contact concerns “a line” of length x̃ instead of only “a node”.

It is easy to show that this length may be determined using interpolation

functions of the finite element of composite beam. If the calculated length of

continuous contact is found not equal to zero, the length of the finite element

is automatically corrected and therefore the location of the stud that remains

bound to the mesh moves also.

For current version of the used program, if all continuous contacts are cor-

rected at an actual load increment, the mesh changes in accordance with the

Anas ALHASAWI 5



1. INTRODUCTION

studs distribution along the beam. For next load increment, the contact proce-

dure continues with the ”node-to-node” algorithm and the new mesh.

This adaptive mesh leads to the final distribution of the connection and en-

sures that the contact can continue at the nodes of the mesh and processed by

the algorithm ”node-to-node”.

The new algorithm have been carried out on a continuous beam of composite

bridge with 2 spans (reduced scale). The result shows a good agrement, in terms of

force-displacement curve, with the experimental ones. The following observations

can be drawn from these numerical applications:

i. the concerned zones are those located under the concentrated loads,

ii. the penetration between both materials has been corrected,

iii. the uplift zones have been found (light uplift near the internal support),

iv. the rotations of the cross-sections under loads have been consequently cor-

rected,

v. the slip of the studs changes also due to the contact algorithm.
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Bolted end-plate connection

***

Component-based model versus

stress-resultant plasticity

modeling of bolted end-plate

connection: Numerical

implementation.

This part deals with the behavior of a steel beam-to-column bolted end-plate

connection under arbitrarily cyclic loading. The proposed model consists of an

improved component-based approach that closely follows the joint deformation

taking into account possible gap between the column flange and the end-plate.

The behavior of joints with several bolt rows is described using surface plastic-

ity in tension and a normal rule to evaluate the plastic deformation within the

connection. The chapter reminds the component-based analysis and shows how

to implement the proposed modifications towards the elastic-plastic formulation

of the joint behavior. A first example of simulation that consists of a steel beam

connected to a steel column is performed in order to to show the influence of the

gap effect. A second example concerns the simulation of the joint behavior with

or without the group effect. Finally, a new joint finite element was implemented

and calibrated against the experimental results. These applications highlight the

improvements proposed to the component-based model. This new variant remains

an easy-to-implement in structural analysis codes.
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2. BOLTED END-PLATE CONNECTION

2.1 Introduction

Safe and economic design of steel and composite structures requires a deep un-

derstanding of the joint response. Semi-rigid connections can provide several

advantages including : economy and fabrication costs, robustness of the frames,

... Two different approaches have been adopted to model the behavior of semi-

rigid connections, one can distinguish between:

- Theoretical models: these models propose empirical or semi-empirical Moment-

Rotation curves generally fitted of experimental test data. Parameters of

these models are often related to material/geometrical characteristics of

the joint. They are formulated in a way to ease their implementation in a

standard displacement-based analysis of frame. A nonlinear finite element

analysis of frames considering the actual joint behavior provides a more

accurate representation of the structure deformation and the corresponding

internal forces. Significant improvements have been made to this approach

since the 1980s with: Richard et al. [1] proposed to include experimen-

tal curves directly in a finite element procedure; several authors proposed

multi-linear curves still dependent on a mathematical curve fitting such as:

Moncarz and Gerstle [2] in 1981, Poggi and Zandonini [3] in 1985, Nethercot

[4] in 1989, ... . The FEM has been used to investigate the joint behav-

ior; 2D and 3D models have been developed by different authors such as:

Patel and Chen [5] in 1985 for bolted connections, Bursi and Jaspart [6] in

1997, Yang et al. [7] in 2000, Maggi et al. [8] in 2002 and more recently,

Concepcion Diaz et al. [9] in 2011, Bo Yang and Kang Hai Tan [10] in

2012. All these results were used to obtain mathematical equations for the

Moment-Rotation curves.

- Mechanical models: these models well-known as the component-based models

appear as a viable alternative between semi-empirical models and compli-

cated 3D ones. The basic idea is to distinguish within a joint a set of individ-

ual components. Each component is characterized by its own mechanical
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behavior (stiffness, strength, deformability, ...). Main developments have

been proposed by Jaspart [11] in 1996, Jaspart et al. [12] in 1999, Cer-

fontaine [13] in 2004, Del Savio et al. [14] in 2009, Bayo et al. [15] in 2006,

Minas et al. [16] in 2009 and Chang et al. [17] in 2015. Component-based

mechanical models use tension/compression springs connected to rigid links.

Each spring reproduces the behavior of a component inside the joint resist-

ing either in tension or in compression. The models proposed by different

authors concern various types of connections (welded, double seats, bolted,

..).

Most of the above described models have been developed to describe the joint

behavior under monotonic loading. Generally, these studies focused mainly on

the evaluation of the resisting bending moment, the rotational stiffness and the

rotational capacity (ductility) of the joint. However, some of these theoretical

models were adapted to reproduce the mechanical response of connection under

cyclic loading: Moncarz and Gerstle [2] in 1981 and Mazzolani [18] in 1988. In this

section, The mechanical response of joints under cyclic loading has been inves-

tigated using a component-based model. Gang Shi et al. [19] undertook several

experimental tests on different typologies of bolted end-plate connection. This

investigation has been focused on the comparison between flush and extended

end-plate configurations: considering different end-plate thicknesses, bolt diame-

ters, number of bolts and including or not stiffeners. Some specimens have been

tested under monotonic and cyclic loading. Under cyclic loading, one can observe

that in case of a flush end-plate joint, the gap between the column flange and

the end-plate is more significant than in case of an extended end-plate connec-

tion (specimen JD1). Pu Yang et al. [20] proposed a model for bolted extended

en-plate connection to describe the joint behavior under cyclic loadings. The

model includes linear springs connected to a rotational spring for beam plastic

hinge on one side and a rotational spring for the column panel in shear on the

other side. The simulations were compared to six full-scale experiments. One can

observe that the experimental results (specimen ES-1-1/2-24a) show evidence of

an end-plate separation at the bottom of the beam flange. It appears that this
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2. BOLTED END-PLATE CONNECTION

separation (gap) has a significant influence on the bending moment. More re-

cently, Da Silva et al. [21] in 2016 proposed a cyclic component-based model.

The proposed model concerns steel joints subjected to a bending moment. Under

cyclic loading, the proposed model included the possibility of load reversal for

any rotation magnitude. The objective is to reproduce the hysteretic behavior

with degradation of performance. Possible separation (gap) is not discussed. To

conclude for the bolted end-plate connection, it appears that the literature does

not give efficient mechanical models able to accurately reproduce the joint be-

havior under cyclic loading. The newly proposed model concerning this research

includes two aspects that significantly influence the joint behavior:

- The separation (gap) between the column flange and the end-plate and its

effect on the global behavior of the joint. This phenomenon should take

into account the collapse models of the T-stub as defined in Eurocode 3

[23].

- The group effect of some bolt-rows and how to include it within the plasticity

algorithm. We remind that Eurocode 3 [23] takes into account the group

effect through the limit resistance of the bolt-rows only.

From a computational view point, the constitutive equations for each component

are discretized using an implicit scheme and the consistent stiffness matrix for

the joint is derived using a standard assemblage procedure.

2.2 Component-based analysis

The main idea of this approach is to reflect each source of deformation within

the joint by a nonlinear spring and combine them within an arrangement to best

reproduce the mechanical response of the connection. This method requires the

following steps:

• Identification of active component,

• Evaluation of the force deformation response of each component,
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2.2 Component-based analysis

Table 2.1: List and effect of different components

Symbols Components

CWT Column Web in Tension

CFB Column Flange in Bending

EPB End-Plate in Bending

BWT Beam Web in Tension

BT Bolt in Tension

CWC Column Web in transverse Compression

BFWC Beam Flange and Web in Compression

• Assembly of the active components for the evaluation of the whole joint

response.

Fig. 2.1 shows the connection and its corresponding mechanical model. The

components which contribute to the deformation of the bolted beam-to-column

connection are defined in Table 2.1.

Notice: the component BWT does not appear in Fig. (2.1) because this com-

ponent is considered only for the bolt-rows located between the beam flanges.

Indeed, in Fig. (2.1), the joint configuration is double extended end-plate without

bolt-rows between the beam flanges, so no component “BWT” in this configura-

tion.

2.2.1 Joint Type characterisation

Each set of individual springs in series is replaced by an equivalent spring denoted

”Type”, in order to distinguish with individual components denoted ”component”

(see Fig. 2.1). Each equivalent spring is identified with a label depending on its

location. The corresponding activation mode (tension or compression) is high-

lighted. Each Type can be defined as follows:

- T2 and T4 are the compression equivalent springs located at the beam flanges.
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D
(b)

D
(c)

Outer bolt-row

Column Beam

Outer bolt-row

T2

T31

T32

T4
CWT CFB EPB BT

CWC BFWC

CWC 

CWT CFB EPB BT

CWC 

CWTCFB

BT

BFWC

BFWC

EPB

a) End-plate connection b) Mechanical Model

Figure 2.1: Components effects and corresponding springs - equivalent springs

”Types, r”

They both contain the same components. T2 is located at the top beam

flange level and T4 at the bottom one.

- T3i concerns bolt-rows i = 1, ...,m that work only in tension. During the cyclic

loading only the bolt-rows being in tension are activated, the others are

temporarily disabled.

The force-displacement relationship of each Type within the joint may be charac-

terized by a bi-linear, tri-linear or non-linear curve. In this study, we consider a

bi-linear elastic perfectly plastic model obtained by assembling all relevant com-

ponents. Each component (individual spring) behave elastically except the end-

plate and the column flange in bending which have an elastic-perfectly plastic

behaviour. For each component ”α” the initial stiffness kα and the plastic resis-

tance Fα
Rd are calculated according to Eurocode 3 [23]. Considering the index ”T”

related to ”Type” and ”r” to its number, the plastic strength for each Type FTr,Rd

is the minimum between individual plastic resistances of the concerned compo-

nents: FTr, Rd = Min
α=1,...,nc

(Fα
Rd), where nc is the number of components in the
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corresponding Type. The stiffness of the Type kTr can be calculated as follows:

• The stiffness of T2 (or T4) is obtained by condensing out the internal degree

of freedom (Fig. 2.2).

 

 

 
 

CWCk BFWCk

CWCu
2T

u

2T
k

2T
u

Figure 2.2: Equivalent component - T2 (or T4)

kT2/T4 =
1

nc∑
α

1
kα

=
1

1
kCWC + 1

kBFWC

=
kBFWCkCWC

kBFWC + kCWC
(2.1)

• The stiffness of T3i is obtained by condensing out internal degrees of free-

dom (Fig. 2.3). The index ”i” is added for each Type 3 including bolt-rows

and corresponding number in the joint (i = 1 for the top bolt-row, i = m

for the last bottom bolt-row).

kT3i =
1

nc∑
α

1
kα

=
1

1
kCWT + 1

kCFB
+ 1

kEPB
+ 1

kBT

(2.2)

 

 

 

 

 
Figure 4 - Equivalent component of Type 3 

 

CWTk CFBk

CWTu
3T
u

EPBk BTk

CFBu EPBu

3T
k

3T
u

Figure 2.3: Equivalent component - T3i
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2.3 Mechanical model formulation

The proposed mechanical model consists of two rigid links, the left one represents

the column web centerline and the right one represents the end-beam line. These

lines are connected by series of springs that are replaced by spring Types: Tr. The

T2

T34

T4

T31

Column Web 

centerline End beam

T32

T33

R.A.

2
T

d
4

T
d

N
M

2Tu

4Tu

N

M

R.A.

R.A.

y

x


c – Negative bending 

b – Positive bending 

u



u



2
3

T
d

3
3

T
d

1
3

T
d

4
3

T
d

33Tu

43Tu

13Tu

23Tu
a – Initial configuration 

Figure 2.4: Proposed mechanical model

details of the proposed mechanical model are given in Fig. 2.4 and an example

of a deformed state in both cases negative and positive bending (Fig. 2.4b and

Fig. 2.4c). The index i of the bolt-row begins from the top. In case of negative

bending, only T31, T32 and T4 are activated and the others are temporarily

disabled. At each ”r” level, the lengthening (shortening) ūTr are highlighted and

at the reference axis (R.A.) the global variables of the joint are represented by the

couple (ū, θ): axial displacement and relative rotation. These variables are related

to the applied loads (N,M): axial force and bending moment, respectively. In

the case of positive bending, Fig. (2.4b), T33, T34 and T2 will be activated and
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the others will be disabled. The global force vector is defined as follows:

F =
{
N M

}T
(2.3)

and corresponding global displacement vector is:

U =
{
ū θ̄

}T
(2.4)

The displacement of each Tr can be geometrically calculated assuming small local

rotations, as follows:

ūT3i = ū− dT3i θ̄ ⇔ ūT3i =
{

1 −dT3i

}
U (2.5)

ūT2 = ū− dT2 θ̄ ⇔ ūT2 =
{

1 −dT2

}
U (2.6)

In the above equations, dTr are the vertical coordinates of the corresponding Type

r, positive value for the Type above the reference axis and negative value for those

under the reference axis.

The stiffness matrix of the mechanical model is obtained by the use of the principle

of virtual work. The equilibrium equation between the variation of the internal

virtual work, δW int, and external one , δW ext is defined by:

δW int = δW ext (2.7)

where:

δW int =
∑
r

δūTTrkTr ūTr +
n∑
i

δūTT3i
kT3i ūT3i (2.8)

The first term of Eq. (2.8) corresponds to the virtual work of activated top or

bottom beam flange rows (r = 2 or 4), whilst the second term represents the

virtual work of all activated bolt-rows.

External virtual work is given by:

δW ext = δUTF (2.9)

replacing Eg.(2.5) into Eq. (2.8) and substituting it with Eq. (2.9) into Eq. (2.7),

it leads to: [
C11 C12

C12 C22

]{
ū

θ̄

}
=

{
N

M

}
(2.10)
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2. BOLTED END-PLATE CONNECTION

where:

C11 =
∑
r

kTr +
m∑
i

kT3i

C12 = −
∑
r

kTrdTr −
m∑
i

kT3idT3i

C22 =
∑
r

kTrd
2
Tr +

m∑
i

kT3id
2
T3i

The model uses a displacement control procedure to solve the non-linear sys-

tem of equations, Eq. (2.10), (mechanical non-linearity).

2.4 Cyclic behaviour of bolted end-plate con-

nection

A general model of a beam-to-column joint should include a component related

to the column shear deformation, Fig. 2.5. The total rotation of the end-beam

cross-section is therefore the sum of the column centerline rotation γ and the

end-beam cross-section rotation relatively to column centerline θ. During cycling

loading, each activated bolt-row is loaded in tension and it elongates according

to its own stiffness. In the elastic domain, the gap vanishes once the equivalent

spring is unloaded. By increasing the load, if the end-plate or the column flange

component is in plastic range, a permanent gap appears. An accurate component-

based model should be able to follow the evolution of this gap and the deformation

during the loading history.

The gap rotation is provided by relative deformation of the end-pate in bending,

the column flange in bending and the bolt in tension. This individual components

that related to the gap rotation are characterized in the component method based

on the T-stub model. An example of 3D finite element simulation show clearly
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2.4 Cyclic behaviour of bolted end-plate connection


 

N

M

N

M

R.A.

Connection

Web panel in shear

Figure 2.5: General mechanical model for the joint

Printed using Abaqus/CAE on: Wed Sep 07 17:06:56 Paris, Madrid (heure d’été) 2016

Figure 2.6: The gap - 3D finite element model
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2. BOLTED END-PLATE CONNECTION

that a gap might occur between the column flange and the end-plate due to plastic

deformations (Fig. 2.6).

2.4.1 Joint mechanical response during cyclic loading

In the aim to simplify the analysis of the joint behaviour under cyclic loading,

the case of two bolt-rows is considered. This analysis could be easily extended to

the case of more then two bolt-rows.

It is worth to mention that the specimen is loaded firstly by a negative rotation

Fig. 2.7 followed by a positive rotation Fig. 2.8. The following stages can be

distinguish:

- Stage 1 - loading in negative bending: top bolt-row T31 is in tension. Assuming

that the gap at this top level gt occurs due to plastic deformations of one

or both components (EPB and/or CFB see Table 2.1) of T31.

- Stage 2 - unloading from negative bending: previous plastic deformation remain

permanent in corresponding component(s). In order to close the gap gt, a

slip must occur in the behaviour curve (FT31 − ūT31), Fig. 2.7(c). This slip

allows the bottom bolt-row T32 to be activated.

- Stage 3 - loading in positive bending: bottom bolt-row T32 is in tension and

the top one T31 is disabled. Assuming that the gap at this bottom level gb

occurs due to plastic deformations of one or both components (EPB and/or

CFB see Table 2.1).

- Stage 4 - unloading from positive bending (and finish one cycle): in order to

close the gap gb, a slip must occur in the behaviour curve (FT32 − ūT32),

Fig. 2.8(f).

Starting the next cycle loading both gaps ( gt and gb) must be closed before to

allow the activation of concerned Type. This remark is represented as slips in

the behaviour model. Following loading-unloading cycles use the same procedure

taking care to close previously the gaps.
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2.5 Group of bolt-rows effect

Loading negative 

bending
Initial State Unloading

(a) (b) (c)

q

T31

T2

T4

T32

t
g

Top Gap  tg

T31  

T2    

        T32

        T4   

 

Unloading – 

Close top Gap

(d)

rF rF rF rF

ru

(Force – displacement) curves for each Type 

Figure 2.7: First Loading-Unloading stage (half cycle)

2.5 Group of bolt-rows effect

Cerfontaine [13] proposed to consider the group of bolt-rows effect by the use of a

multi-linear failure criterion based on the lower bound theorem of limit analysis

applied to the joint. In this section, it is proposed to show how to take into

account this effect through plasticity modeling.

Assuming normality and associate rules, the plastic flow direction is given by

the gradient to the yield surface. Plastic elongation and normal force are eval-

uated for each bolt-row within a group and the model provides automatically

plastic redistribution of this forces within the group of bolt-rows during the load-

ing. It is worth to mention that, the theory that developed for the case of 2

bolt-rows per group is presented in section 2.5.1 and that one for more than two

bolt-rows per group is demonstrated in section 2.5.2.
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2. BOLTED END-PLATE CONNECTION

Loading positive 

bending
Unloading

(f)(e)

q

T31  

T2    

        T32

        T4   

 

b
g

Bottom Gap  bg

q

(g)

Reloading negative bending after 

closing top and bottom gaps

 

 

t
g

Point of loading after 

closing the gap

(Force – displacement) curves for each Type 

rF rF rF

ru

Figure 2.8: Second Loading-Unloading stage (complete cycle) - Beginning of sec-

ond cycle
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2.5 Group of bolt-rows effect

2.5.1 Group of two bolt-rows

The proposed formulation is detailed for the case of the group of two bolt-rows

(T31 and T32)(Fig. 2.9) and will be generalized for groups with more than two

bolt-rows.
 

       
 

                     End-column          Beam 

  

                End-column       Beam 

  

Figure 2.9: Extended end-plate connection

2.5.1.1 Yield surface definition

The yield criteria depend on three lines (see Fig. 2.10). Horizontal and vertical

yield lines (Φ1 and Φ2) correspond individual strength of each bolt-rows and third

line (Φ3) corresponds to the group strength. Eurocode 3 part 1.8 provides the

method to calculate specific strengths. We denote FT31,Rd and FT32,Rd: individual

strength of the bolt-rows T31 and T32 respectively, and F12,Rd is the strength of

the group of these bolt-rows.

The group effect of two bolt-rows creates five zones that can be distinguished as

shown in Fig. 2.10:

• The lines (Φ1,Φ2 and Φ3) that allow to respect the yield criteria are defined

by the following equations:

Φ1 (FT31 , FT31, Rd) = FT31 − FT31,Rd

Φ2 (FT32 , FT32, Rd) = FT32 − FT32,Rd

Φ3 (FT31 , FT32 , F12, Rd) = FT31 + FT32 − F12,Rd

. (2.11)
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2. BOLTED END-PLATE CONNECTION

1

4

3

5
2

1D

AD

BD

2D

A

B

Elastic zone

13TF
13 ,T RdF

23 ,T RdF

23TF

1

3

2

Figure 2.10: Yield surface for 2 bolt-rows per group

• and the lines that allow to respect normal projections:

- The lines DA and DB separate respectively the zones (3 and 4) and the

zones (3 and 5).

- The lines D1 and D2 separate respectively the zones (1 and 4) and the

zones (2 and 5). As-soon-as the trial force is known, appropriate pro-

jection is automatically detected. For this aim, firstly the coordinates

of the points A and B are obtained using:

F1A = FT31,Rd F1B = F12,Rd − FT32,Rd

F2A = F12,Rd − FT31,Rd F2B = FT32,Rd

Therefore, the lines (DA, DB, D1 and D2) are defined as follows:

DA (FT31 , FT32) = FT31 − FT32 − (2FT31, Rd − F12, Rd) (2.12)

DB (FT31 , FT32) = FT31 − FT32 + (2FT32, Rd − F12, Rd) (2.13)

D1 (FT32) = FT32 − (F12, Rd − FT31,Rd) (2.14)

D2 (FT31) = FT31 − (F12, Rd − FT32, Rd) (2.15)

Finally, the different zones are defined as follows:
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2.5 Group of bolt-rows effect

• Elastic zone: the following inequations respect the behaviour of the bolt-

rows remain to in the elastic range.
Φ1 (FT31 , FT31, Rd) ≤ 0

Φ2 (FT32 , FT32, Rd) ≤ 0

Φ3 (FT31 , FT32 , F12, Rd) ≤ 0

⇒

{
∆ūT31, p = 0

∆ūT32, p = 0
(2.16)

Herein ∆ūT31, p and ∆ūT32, p represent respectively the plastic deformation

for the first and second bolt-rows.

• Zone 1: it is limited by the lines Φ1 and D1. The corresponding criterion

must respect the following inequations:{
Φ1 (FT31 , FT31, Rd) ≥ 0

D1 (FT32) ≤ 0
⇒

{
∆ūT31, p = ∆λ1

∂Φ1

∂FT31

∆ūT32, p = 0
(2.17)

• Zone 2: it is limited by the lines Φ2 and D2. The corresponding criterion

must respect the following inequations:{
Φ2 (FT32 , FT32, Rd) ≥ 0

D2 (FT31) ≤ 0
⇒

{
∆ūT31, p = 0

∆ūT32, p = ∆λ2
∂Φ2

∂FT32

(2.18)

• Zone 3: it is limited by the lines Φ3, DA and DB. The corresponding

criterion must respect the following inequations:
Φ3 (FT31 , FT32 , F12,Rd) ≥ 0

DA (FT31 , FT32 , FT31, Rd, F12, Rd) ≤ 0

DB (FT31 , FT32 , FT32, Rd, F12, Rd) ≥ 0

⇒

 ∆ūT31, p = ∆λ3
∂Φ3

∂FT31

∆ūT32, p = ∆λ3
∂Φ3

∂FT32

(2.19)

• Zone 4: the projection reaches directly the point A, this zone is limited by

the lines Φ1, Φ3, DA and D1. The corresponding criterion must respect the
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2. BOLTED END-PLATE CONNECTION

following inequations:
Φ1 (FT31 , FT31, Rd) > 0

Φ3 (FT31 , FT32 , F12, Rd) > 0

DA (FT31 , FT32 , FT31, Rd, F12, Rd) > 0

D1 (FT32) > 0

⇒

 ∆ūT31, p = ∆λ1
∂Φ1

∂FT31
+ ∆λ3

∂Φ3

∂FT31

∆ūT32, p = ∆λ3
∂Φ3

∂FT32

(2.20)

• Zone 5: the projection reaches directly the point B, this zone is limited by

the lines Φ2, Φ3, DB and D2. The corresponding criterion must respect the

following inequations:
Φ2 (FT32 , FT32, Rd) > 0

Φ3 (FT31 , FT32 , F12, Rd) > 0

DB (FT31 , FT32 , FT32, Rd, F12, Rd) < 0

D2 (FT31) > 0

⇒

 ∆ūT31, p = ∆λ3
∂Φ3

∂FT31

∆ūT32, p = ∆λ2
∂Φ2

∂FT32
+ ∆λ3

∂Φ3

∂FT32

(2.21)

2.5.1.2 Incremental algorithm of projection

In accordance with the previous definition of different zones, incremental plasticity

algorithm [25] can be established for zone 1 to zone 5:

• Zone 1: in this case, T31 is in the plastic range:

Φn+1
1 = F n+1

T31
− FT31,Rd > 0 (2.22)

whilst T32 as-well-as the group of (T31 and T32) are in the elastic range:

Φn+1
2 = F n+1

T32
− FT32,Rd ≤ 0 ⇒ kn+1

T32
= ke2

Φn+1
3 = F n+1

T31
+ F n+1

T32
− F12, Rd ≤ 0

(2.23)

Herein ke2 is the elastic stiffness of T32, Eq. (2.2).

The current force in the T31 at (n+1) increment is given as:

F n+1
T31

= ke1
(
ūn+1
T31
− ūn+1

T31, p

)
= F n+1

T31, trial
− ke1∆λ1

(2.24)
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2.5 Group of bolt-rows effect

where ke1 is the elastic stiffness of T31, Eq. (2.2).

The yield function becomes:

Φn+1
1 =

(
F n+1
T31, trial

− ke1∆λ1

)
− FT31, Rd = 0 (2.25)

- The increment of plastic multiplier:

∆λ1 =
Φn+1

1, trial

ke1
(2.26)

- The tangent stiffness

Derivation of Eq. (2.24) gives:

kn+1
T31

=
∂F n+1

T31

∂ūn+1
T31

=
∂F n+1

T31, trial

∂ūn+1
T31

− ∂∆λ1

∂ūn+1
T31

ke1 (2.27)

Substituting Eq. (2.26) into Eq. (2.27) leads to:

kn+1
T31

= 0 (2.28)

• Zone 2: in this case, T31 and the group of (T31 and T32) are in the elastic

domain:
Φn+1

1 = F n+1
T31
− FT31,Rd ≤ 0⇒ kn+1

T31
= ke1

Φn+1
3 = F n+1

T31
+ F n+1

T32
− F12,Rd ≤ 0

(2.29)

whilst T32 is in the plastic range:

Φn+1
2 = F n+1

T32
− FT32,Rd > 0 (2.30)

The same procedure as for the first bolt-row is followed for the second bolt-

row, therefore we can define

- The increment of plastic multiplier:

∆λ2 =
Φn+1

2, trial

ke2
(2.31)

- The tangent stiffness

kn+1
T32

= 0 (2.32)
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2. BOLTED END-PLATE CONNECTION

• Zone 3: the group criterion is activated:

Φn+1
3 = F n+1

T31
+ F n+1

T32
− F12, Rd > 0 (2.33)

Trial force of the group (T31 and T32)

F n+1
12, trial = F n+1

T31, trial
+ F n+1

T32, trial
(2.34)

and corrected force is:

F n+1
12 = F n+1

T31
+ F n+1

T32

= ke1
(
ūn+1
T31
− ūn+1

T31,p

)
+ ke2

(
ūn+1
T32
− ūn+1

T32,p

)
⇒ F n+1

12 = F n+1
12, trial −∆λ3 (ke1 + ke2)

(2.35)

where: F n+1
12, trial = F n+1

T31, trial
+ F n+1

T32, trial

The yield function can be written as follows:

Φn+1
3 = F n+1

12, T rial −∆λ3 (ke1 + ke2)− F12, Rd = 0

- The increment of plastic multiplier:

∆λ3 =
Φn+1

3, T rial

ke1 + ke2
(2.36)

where: Φn+1
3, trial = F n+1

T31, trial
+ F n+1

T32, trial
− F12, Rd

- The tangent stiffness:

i. Tangent stiffness for T31 is given by:

kn+1
T31

=
∂F n+1

T31

∂ūn+1
T31

=
∂F n+1

T31, trial

∂ūn+1
T31

− ke1
∂ (∆λ3)

∂ūn+1
T31

=
ke1ke2
ke1 + ke2

(2.37)

ii. Tangent stiffness for T32 is given by:

kn+1
T32

=
∂F n+1

T32

∂ūn+1
T32

=
∂F n+1

T32, trial

∂ūn+1
T32

− ke2
∂ (∆λ3)

∂ūn+1
T32

=
ke1ke2
ke1 + ke2

(2.38)
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2.5 Group of bolt-rows effect

• Zone 4: in this case we have:

Φn+1
1 = F n+1

T31
− FT31, Rd > 0

Φn+1
3 = F n+1

T31
+ F n+1

T32
− F12, Rd > 0

(2.39)

The yield function is written as:

Φn+1
1 = F n+1

T31, trial
− ke1∆λ1 − ke1∆λ3 − FT31, Rd = 0

⇒ ke1∆λ1 + ke1∆λ3 = Φn+1
1, trial (2.40)

On the other side, the yield surface function Φ3 can be defined as follows:

Φn+1
3 = F n+1

T31, trial
− ke1∆λ1 − ke1∆λ3 + F n+1

T32, trial
− ke2∆λ3 − F12, Rd

⇒ ke1∆λ1 + ∆λ3 (ke1 + ke2) = Φn+1
3, trial (2.41)

Combining the last equations of Eqs. (2.40) and (2.41), we obtain:[
ke1 ke1

ke1 ke1 + ke2

]{
∆λ1

∆λ3

}
=

{
Φn+1

1, trial

Φn+1
3, trial

}
(2.42)

Solving Eq. (2.42) leads to:

- Plastic multipliers:

i.

∆λ1 =
Φn+1

1, trial (ke1 + ke2)− Φn+1
3, trialke1

ke1ke2
(2.43)

ii.

∆λ3 =
Φn+1

3, trial − Φn+1
1, trial

ke2
(2.44)

- Tangent stiffness:

i. Tangent stiffness for T31 is defined by:

kn+1
T31

=
∂F n+1

T31

∂ūn+1
T31

=
∂F n+1

T31, trial

∂ūn+1
T31

− ke1
∂ (∆λ3)

∂ūn+1
T31

− ke1
∂ (∆λ1)

∂ūn+1
T31

(2.45)
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2. BOLTED END-PLATE CONNECTION

where

ke1
∂ (∆λ1)

∂ūn+1
T31

= ke1

ke1
∂ (∆λ3)

∂ūn+1
T31

= 0

(2.46)

Replace Eq. (2.46) into Eq. (2.45) gives

kn+1
T31

= 0 (2.47)

ii. Tangent stiffness for T32 is defined by:

kn+1
T32

=
∂F n+1

12

∂ūn+1
T32

=
∂F n+1

T32, trial

∂ūn+1
T32

− ke2
∂ (∆λ3)

∂ūn+1
T32

(2.48)

where

ke2
∂ (∆λ3)

∂ūn+1
T32

= ke2 (2.49)

Combining Eq. (2.48) and Eq. (2.49) gives

kn+1
T32

= 0 (2.50)

• Zone 5:

in this case we have two activated yield surfaces: one concerns T32 and the

other corresponds to the group of (T31 and T32).

Φn+1
2 = F n+1

T32
− FT32, Rd > 0

Φn+1
3 = F n+1

T31
+ F n+1

T32
− F12, Rd > 0

i. The increment of plastic multiplier can be defined by:[
ke2 ke2

ke2 ke1 + ke2

]{
∆λ2

∆λ3

}
=

{
Φn+1

2, trial

Φn+1
3, trial

}
(2.51)

ii. The tangent stiffnesses of the (T31 and T32) are:

kn+1
T31

= 0 (2.52)

kn+1
T32

= 0 (2.53)
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2.5 Group of bolt-rows effect

2.5.2 General formulation for the group effect criterion

• The general formulation for the bolt-rows interaction criterion can be writ-

ten as follows:

FT3q + FT3s ≤Min

Fqs,Rd,(Fks,Rd − q−1∑
i=k

FT3i

)
k=1,..,(q−1)

 (2.54)

where q = 2,...m−1; and s= q+1,....., m, in which m is the total number of

the bolt-rows in the joint. Fqs and Fks are the group resistances including

the bolt-rows from (q to s) or (k to s), respectively.

• Example of a group of three bolt-rows: in the aim to take into account the

effect of three bolt-rows (Fig. 2.11), successive group effects of two bolt-

rows are proposed. The steps of the group effect occurrence in the case of

positive bending can be described. The method remains available in case

of negative bending.

13T

23T

33T

43T

53T

R.A

Figure 2.11: End-plate connection with several bolt-rows

It can be distinguished:

- Group effect 1 (T31, T32).

- Group effect 2 (T32, T33).
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2. BOLTED END-PLATE CONNECTION

According to EC3, individual and group resistances can be easily obtained

and denoted as follows:

- Individual: (FT31,Rd, FT32,Rd).

- Group 1: (F12,Rd).

- Group 2: (F23,Rd).

In case of negative bending:

- Group effect 1 is controlled by following criterion:

FT31 + FT32 ≤ F12,Rd (2.55)

- Group effect 2 is controlled by the combination of both following criteria:

FT32 + FT33 ≤ F23,Rd and FT31 + FT32 + FT33 ≤ F13,Rd (2.56)

The first equation of Eqs. (2.56) corresponds to the group effect of the

two bolt-rows T32 and T33 and the second equation corresponds the group

effect of the three bolt-rows T31, T32 and T33. The combination of these

equations leads to the following criterion:

FT32 + FT33 ≤Min [F23,Rd, (F13,Rd − FT31)] . (2.57)

2.6 Beam element with semi-rigid connection

Generally, mathematical expression is required to incorporate the joint behaviour,

that obtained from its corresponding model, into structural analysis packages.

But in this section tow zero-length component-based mechanical model, that

have been developed in section 2.3, are incorporated at the ends of standard

beam element to simulate connection behaviour.
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2.6 Beam element with semi-rigid connection

2.6.1 Beam kinematics

This model consists of three subelements: a flexible beam element and two semi-

rigid connections that are modelled by component-based mechanical model, see

Fig. 2.12. The co-rotational framework is applied to the proposed member in

 1
11 ,M 

 1
22 ,M 

 2

22 ,M 

 2

33 ,M 

 3

33 ,M 

 3

44 ,M 

1

1 1
,M 

4
4
,N u

4 4
,M 

1 2 2 3 3 4
 1
2 2,N u  2

2 2,N u
 2

3 3,N u
 3

3 3,N u
 3

4 4,N u

 1  2  3

 1
0L   2

L
 3

0L 

Figure 2.12: Finite joint element

which a rotational and extensional springs are used to represent the semi-rigid

connections at the beam ends. The origin of the co-rotational frame is taken at

node 1 which corresponds to the centroid of the cross-section. The x-axis of the

local coordinate system is defined by the line connecting node 1 to node 4. The

y-axis is orthogonal to the x-axis so that the result is right-handedly orthogonal

coordinate system. The motion of the element from the original undeformed to

the actual deformed configuration can thus be separated into two parts. The first

one, which corresponds to rigid motion of the local frame, is the translation of

node 1 and the rotation α of the x-axis (see Fig. 2.13). The second one refers to

the deformations in the co-rotational element frame which are made of an elastic

beam element and two semi-rigid connections.

The notations used in this section are defined in Figs. 2.12 and 2.13. The
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Figure 2.13: Initial and final configuration for the finite joint element

subscript and the superscript denote the node number and the subelement num-

ber, respectively. The coordinates of the nodes 1 and 4 in the global coordinate

system (X, Y ) are (X1, Y1) and (X4, Y4), respectively. In the deformed configura-

tion (see Fig. 2.13), the global nodal rotations of the superelement nodes (node

1 and node 4) are θ1 and θ4 and the local ones are θ̄1 and θ̄4, respectively. In

addition to this, the global rotations of the elastic beam element nodes (node 2

and 3) are described by θ2 and θ3 and the local ones by θ̄2 and θ̄3, respectively.

θ2 = θ1 − θ̂1

θ3 = θ4 − θ̂4

(2.58)

where θ̂1 and θ̂4 are the relative rotations between the connected element at

node 1 and node 4 respectively. The total elongation, ū, is composed of the

elongations of the first connection ū(12), the elastic beam element ū(23) and the

second connection ū(34)

ū = ū(12) + ū(23) + ū(34) (2.59)
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2.6 Beam element with semi-rigid connection

with

ū(12) = ū2 − ū1

ū(23) = ū3 − ū2

ū(34) = ū4 − ū3

(2.60)

The vectors of global and local displacements are respectively defined by: The

vectors of global and local displacements are respectively defined by:

dg =
[
u1 v1 θ1 u4 v4 θ4

]T

(2.61)

dl =
[

ū θ̄1 θ̄4

]T

(2.62)

Referring to the definition of the co-rotating frame, the components of the local

displacement vector dl can be calculated from the geometric shape (see Fig. 2.13)

as

ū = Ln − L0 (2.63a)

θ̄1 = θ1 − α (2.63b)

θ̄4 = θ4 − α (2.63c)

where the initial and final length of the element defined as L0 and Ln, respectively,

are obtained by.

L0 =
√

(X4 −X1)2 + (Y4 − Y1)2 (2.64a)

Ln =
√

(X4 −X1 + u4 − u1)2 + (Y4 − Y1 + v4 − v1)2 (2.64b)

in which (X1 +u1, Y1 +v1) and (X4 +u4, Y4 +v4) are the global coordinates in the

deformed configuration for node 1 and node 4, respectively. The rigid rotation

of the x-axis α, that was mentioned in Eqs. (2.63b) and (2.63c), is obtained by

using the geometrical relations as

sinα = c0s− s0c (2.65a)

cosα = c0c+ s0s (2.65b)
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2. BOLTED END-PLATE CONNECTION

with

c = cos β =
1

Ln
(X4 −X1 + u4 − u1) (2.66a)

c0 = cos β =
1

L0

(X4 −X1) (2.66b)

s = sin β =
1

Ln
(Y4 − Y1 + v4 − v1) (2.66c)

s0 = sin β =
1

L0

(Y4 − Y1) (2.66d)

The local - global displacement relationship can be derived through differentiation

of Eqs. (2.63), therefore one can write:

δū = δLn (2.67a)

δθ̄1 = δθ1 − δα = δθ1 − δβ (2.67b)

δθ̄4 = δθ4 − δα = δθ4 − δβ (2.67c)

By using (2.64b)and (2.66c), one obtains

δū = c(δu2 − δu1) + s(δv4 − δv1) =
[
−c −s 0 c s 0

]
δdg (2.68)

δβ =
1

cLn

[
s −c 0 −s c 0

]
δdg (2.69)

Finally, the global displacement vector is related to the local deformation vector

by

δdl = Bδdg (2.70)

where the transformation matrix, B is given by

B =


−c −s 0 c s 0

− s

Ln

c

Ln
1

s

Ln
− c

Ln
0

− s

Ln

c

Ln
0

s

Ln
− c

Ln
1

 (2.71)
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2.6 Beam element with semi-rigid connection

2.6.2 Element formulation

The co-rotational method is convenient for establishing the relationship between

the local and global variables. The relation between the global force vector f g

and the local one f l is obtained by equating the virtual work in the local and

global system as

δdT
g f g = δdT

l f l = δdT
gB

Tf l (2.72)

Eq. (2.72) must apply for any arbitrary δdg. Hence, the global force vector f g is

given by

f g = BTf l (2.73)

By taking the differentiation of Eq. (2.73) with respect to global displacement

vector, the global stiffness matrix is obtained as

kg = BTklB +
zzT

Ln
N4 +

1

L2
n

(
rzT + zrT

)
(M1 +M4) (2.74)

where

r =
[
−c −s 0 c s 0

]T

(2.75)

z =
[
s −c 0 −s c 0

]T

(2.76)

2.6.3 Local element formulation

This section will be devoted to the elaboration of the local stiffness matrix. Il-

lustrated by Fig. 2.12, the new joint finite element is composed of three subele-

ments: an elastic flexible beam element and two semi-rigid connections. The

introduction of the joints at the ends of the element has increased extra degrees

of freedom exceeding the original ones in the standard co-rotational formulation.

The condensing equations are then introduced to cancel out those extra degrees

of freedom. To establish the assembled tangent stiffness of the joint finite el-

ement with the co-rotational format, the displacement of node 1 is restrained

(ū1 = 0). The elongation/shortening or relative axial displacement jump of each

subelement are denoted by ū(ij) = ūj − ūi (Eqs. 2.60). The subelement 1, i.e.
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2. BOLTED END-PLATE CONNECTION

semi-rigid connection modeled by a component method, has an axial elongation

ū(12) and a relative rotation θ̂1 = θ̄1 − θ̄2. The incremental relation between the

stress-resultants and their conjugates can be formally written as{
∆N

(1)
2

∆M
(1)
2

}
=

[
C

(1)
11 C

(1)
12

C
(1)
21 C

(1)
22

]
n+1

{
∆ū2

∆θ̄2 −∆θ̄1

}
(2.77)

where the tangent operator matrix C defined in Eq. (2.10) is obtained from an

isolated component-based mechanical model that is given in Section 2.3.

C(1)
n+1 =

[
C

(1)
11 C

(1)
12

C
(1)
21 C

(1)
22

]
n+1

(2.78)

The incremental equilibrium of the first element imposes that

∆M
(1)
1 + ∆M

(1)
2 = 0 (2.79)

Combining Eqs. (2.77) and (2.79) gives
∆M

(1)
1

∆N
(1)
2

∆M
(1)
2

 =


C

(1)
22 −C(1)

12 −C(1)
22

−C(1)
12 C

(1)
11 C

(1)
12

−C(1)
22 C

(1)
12 C

(1)
22


n+1


∆θ̄1

∆ū2

∆θ̄2

 (2.80)

Using the same manipulation, the relation between the stress-resultants and their

conjugates in the second connection, that is the subelement 3, is obtained

∆M
(3)
3 + ∆M

(3)
4 = 0

∆N
(3)
3 + ∆N

(3)
4 = 0

(2.81)

Hence,the relation between the stress-resultants and their conjugates in the second

semi-rigid connection is given as
∆N

(3)
3

∆M
(3)
3

∆N
(3)
4

∆M
(3)
4

 =


C

(3)
11 C

(3)
12 −C(3)

11 −C(3)
12

C
(3)
12 C

(3)
22 −C(3)

12 −C(3)
22

−C(3)
11 −C(3)

12 C
(3)
11 C

(3)
12

−C(3)
12 −C(3)

22 C
(3)
12 C

(3)
22


n+1


∆ū3

∆θ̄3

∆ū4

∆θ̄4

 (2.82)

On the other hand, the beam element (subelement 2) is assumed to deform elas-

tically. Having an elastic elongation ū(12) and elastic rotations θ2 and θ3 on each
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2.6 Beam element with semi-rigid connection

side of its ends, the incremental stress-resultants are related to their conjugates,

for this subelement, by


∆N

(2)
2

∆M
(2)
2

∆N
(2)
3

∆M
(2)
3

 =


k

(2)
11 0 −k(2)

11 0

0 k
(2)
22 0 k

(2)
24

−k(2)
11 0 k

(2)
11 0

0 k
(2)
42 0 k

(2)
44


n+1


∆ū2

∆θ̄2

∆ū3

∆θ̄3

 (2.83)

in which, k
(2)
11 =

EA

L
, k

(2)
22 = k

(2)
44 =

4EI

L
and k

(2)
24 = k

(2)
42 =

2EI

L
. E, I, A and L

denote the Young modulus, the second moment of area, the cross-section area and

the beam length, respectively. The tangent stiffness matrix of the superelement

and the corresponding force vector are assembled using the nodal force equilib-

rium equations, redand force/deformation and compatibility equations member

stiffness equations) The tangent stiffness matrix for the joint finite element is

assembled using the standard direct stiffness method based which involve nodal

equilibrium. The sum of internal forces exerted by all members that meet at a

joint balances the external force applied to that joint. Further, as shown in Fig.

2.12, the flexural beam element has two ends: node 2 and 3. The nodal equilib-

rium equations for these nodes, used to eliminate the extra degrees of freedom,

are given as follows

∆N
(1)
2 + ∆N

(2)
2 = 0

∆M
(1)
2 + ∆M

(2)
2 = 0

∆N
(2)
3 + ∆N

(3)
3 = 0

∆M
(2)
3 + ∆M

(2)
3 = 0

(2.84)

The above equilibrium equations are supplemented with equilibrium equations

pertaining to the end nodes (node 1 and node 4):

∆M1 = ∆M
(1)
1

∆N4 = ∆N
(3)
4

∆M4 = ∆M
(3)
4

(2.85)
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2. BOLTED END-PLATE CONNECTION

Equilibrium equations Eq.2.84 and Eq.2.85 are combined together with the mem-

ber stiffness equations Eq.2.80, Eq.2.82 and Eq.2.83 to give:

∆f = [k]n+1 ∆d (2.86)

with

fT =
[
M1 0 0 0 0 N4 M4

]
, dT =

[
θ̄1 ū2 θ̄2 ū3 θ̄3 ū4 θ̄4

]
(2.87)

and

[k]n+1 =



C
(1)
22 −C(1)

12 −C(1)
22 0 0 0 0

−C(1)
12 C

(1)
11 + k

(2)
11 C

(1)
12 −k(2)

11 0 0 0

−C(1)
22 C

(1)
12 C

(1)
22 + k

(2)
22 0 k

(2)
24 0 0

0 −k(2)
11 0 k

(2)
11 + C

(3)
11 C

(3)
12 −C(3)

11 −C(3)
12

0 0 k
(2)
42 C

(3)
21 k

(2)
44 + C

(3)
22 −C(3)

12 −C(3)
22

0 0 0 −C(3)
11 −C(3)

12 C
(3)
11 C

(3)
12

0 0 0 −C(3)
12 −C(3)

22 C
(3)
12 C

(3)
22


(2.88)

To carry out the condensation process, the assembled stiffness equations of the

superelement (Eq.2.86) are rearranged and partitioned as follows:{
∆f l

0

}
=

[
[kll]n+1 [kli]n+1

[kil]n+1 [kii]n+1

]{
∆dl

∆di

}
(2.89)

where the subvector ∆di collects the interior degrees of freedom and the subvector

∆dl comprises the co-rotational kinematic variables pertaining to the superele-

ment (elongation and local rotations at the end nodes):

dl =


ū4

θ̄1

θ̄4

 , di =


ū2

θ̄2

ū3

θ̄3

 (2.90)

In the above equation, the subvector f l collect the independent stress-resultants

pertaining to the superelement which corresponds to the so-called local force
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2.6 Beam element with semi-rigid connection

vector in the co-rotational formulation:

f l =


N4

M1

M4

 (2.91)

The sub-matrices in Eq.(2.89) have the following expressions:

kll =


C

(3)
11 0 C

(3)
12

0 C
(1)
22 0

C
(3)
12 0 C

(1)
22


n+1

(2.92)

kli =


0 0 −C(3)

11 −C(3)
12

−C(1)
12 −C(1)

22 0 0

0 0 −C(3)
12 −C(3)

22


n+1

(2.93)

kil =


0 −C(1)

12 0

0 −C(1)
22 0

−C(3)
11 0 −C(3)

12

−C(3)
12 0 −C(3)

22


n+1

(2.94)

kii =


C

(1)
11 + k

(2)
11 C

(1)
12 −k(2)

11 0

C
(1)
12 C

(1)
22 + k

(2)
22 0 k

(2)
24

−k(2)
11 0 k

(2)
11 + C

(3)
11 C

(3)
12

0 k
(3)
42 C

(3)
12 C

(3)
22 + k

(3)
33


n+1

(2.95)

Solving for the interior degrees of freedom:

∆di = − [kii]
−1
n+1 [kil]n+1 ∆dl (2.96)

and replacing the outcome into the first matrix equation yield the condensed

stiffness equations

∆f l = [kl]n+1 ∆dl (2.97)

Anas ALHASAWI 39



2. BOLTED END-PLATE CONNECTION

with

[kl]n+1 = [kll]n+1 − [kli]n+1 [kii]
−1
n+1 [kil]n+1 (2.98)

[kl]n+1 is the local tangent stiffness matrix. To ease the computations, the above

stiffness equations are slightly modified by replacing the axial displacements with

sub-element elongations using

∆ū2 = ∆ū(12)

∆ū3 = ∆ū(12) + ∆ū(23)

∆ū4 = ∆ū(12) + ∆ū(23) + ∆ū(34) = ∆ū

(2.99)

where ∆ū is the elongation of the superelement. Full expressions of the new

assembled stiffness matrix along with the corresponding sub-matrices are given

in the appendix.

2.7 Numerical applications

Three numerical applications based on the above mentioned algorithm are pre-

sented in this section. The purpose of the first one is to show the gap effect on the

hysteric behaviour of the joint whilst the second example illustrates the influence

of the bolt-group in the joint response. The third one address the influence of the

axial force in the connection on the bending moment capacity in one hand. And

the interaction diagrams between axial force and bending moment in the other

hand.

2.7.1 Example for the gap effect

The simple example of two bolt-rows (Fig. 2.14) is used to investigate the influ-

ence of the gap effect on the joint behavior. Two cycles of rotations are applied to

this joint according to the diagram given in Fig. 2.15. Corresponding mechanical

model is given in Fig. 2.16. The steel grade that adopted is S355 and the Young’s

Modulus is 210 GPa. This example has been solved using proposed mechanical

model analysis and 3D finite element modelling.
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2.7 Numerical applications

2.7.1.1 Proposed mechanical model analysis

In this section the proposed mechanical model will be used to capture the cyclic

response of the connection. It is worth to point out that the strength of equivalent

Type spring is obtained as the minimum of the strengths of included components

(highlighted values in Table 2.2).

For each component within the joint, material hardening has been considered
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Figure 2.14: Example for the gap effect
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Figure 2.15: Cyclic loading history
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T2

T32

T4

T31

R.A.

Figure 2.16: Mechanical model

Table 2.2: Initial stiffness and resistance force (kN/mm and kN)

Component
T31 and T32 T2 and T4

FRd kini FRd kini

CFB 352 8498 - -

CWT 508 1475 - -

EPB 258 4221 - -

CWC - - 642 2150

BFWC - - 565 ∞
BT 441 1630 - -

very light (keq,r/1000) but not equal to zero. In accordance with the cyclic loading

history (Fig. 2.15), the (Moment - Rotation) curve obtained as the response of

the joint behavior is given in Fig. 2.17. It appears clearly that the gaps obtained

at both top and bottom levels of the joint generate slipping at both sides of the

zero-rotation axis of the curve (horizontal dashed arrows). Alternatively between

top and bottom bolt-rows, the gap obtained by the tension of the top bolt-row

for example, must be first recovered before beginning the tension at the bottom

bolt-row. The proposed algorithm follows these sequences very rigorously in order

to insure an accurate solution of the proposed model (the index t corresponds to

the T31 in tension and the index b to the T32 in tension).
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2.7 Numerical applications

• First loading cycle (−8.65 mrad ≤ θ ≤ 8.65 mrad):

(O − At −Bt) Loading in negative bending (1 - 2)

(Bt − Ct) Unloading (3)

(Ct −O) Slipping (4)

(O − Ab −Bb) Loading in positive bending

(Bb − Cb) Unloading

(Cb −O) Slipping

• Second loading cycle (−23.05 mrad ≤ θ ≤ 23.05 mrad):

(Ct −Bt −Dt) Reloading in negative bending (5 - 6)

(Dt − Et) Unloading (7)

(Et − Ct −O − Cb) Slipping

(Cb −Bb −Db) Reloading in positive bending

(Db − Eb) Unloading

Figure 2.17: Moment vs. Rotation curve
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2. BOLTED END-PLATE CONNECTION

After each load cycle, the plastic deformation of the components within each

equivalent spring are cumulated. At the end of the unloading stage, permanent

deformation defining the so-called gap needs to be closed to allow the activation

of the others rows. In accordance with Fig. 2.17, following values of couples

(Moment - Rotation) of the joints are obtained when the top bolt-row is active

(same results when the bottom bolt-row is active because of symmetry):

• First loading cycle (−8.65 mrad ≤ θ ≤ 8.65 mrad):

(O − At −Bt) (0,0), (-69.09,-4.08), (-69.45,8.65)

(Bt − Ct) (-69.45,-8.65), (0,-4.49)

(Ct −O) (0,-4.49), (0,0)

• Second loading cycle (−23.05 mrad ≤ θ ≤ −23.05 mrad):

(O − Ct) (0,0), (0,-4.49)

(Ct −Bt −Dt) (0,-4.49), (-69.45,-8.65), (-70.46,-23.05)

(Dt − Et) (-70.46,-23.05), (0,-18.94)

(Et −O) (0,-18.94) , (0,0)

It worth to precise that the couple of springs (T31 – T4) are active in same

time and (T32 – T2) also, and both couples are active alternatively (Fig. 2.18);

therefore:

- Negative displacement obtained in the spring T4 (bottom beam-flange row) is

due to a compression force whilst the tension is active in the spring T31

(top bolt-row).

- Negative displacement obtained in the spring T32 (bottom bolt-row) is due to

a slipping (the spring does not support any compression force) whilst the

positive displacement obtained in the spring T2 (top beam-flange row) is

also a slipping (this row does not support any tension).

It is clear that the behavior of each equivalent spring ”Type” (Fig. 2.18) follows

both sleeps occurred during these two loading cycles. The slipping values obtained

from these curves are:
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2.7 Numerical applications

(a) Top bolt-row T31 (b) Bottom beam-flange row T4

(c) Bottom bolt-row T32 (d) Top beam-flange row T2

Figure 2.18: Force-displacement curves for each row of the joint

- (Ct - O) = 1.208 mm

- (Et - O) = 5.056 mm

2.7.1.2 3D finite element modelling

In order to validate our proposed mechanical model, a 3D model of the previous

end-plate connection, Fig. 2.14, is investigated with the finite element codes

ABAQUS. The three-dimensional solid element type C3D8R have been used.
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2. BOLTED END-PLATE CONNECTION

The contact element between the end-plate and the column flange surfaces as

well as between the end-plate, the column flange and the bolts surface are used

with friction coefficient of 0.3. All the nodes of the top and bottom section of the

column are restrained in all directions. In order to achieve reliable results,a fine

mesh was employed in the contact zone as shown in the general view of the mesh

pattern for the connection, Fig. 2.19.

Finite element modelling 

A 3D model of double extended end-plate connection is investigated with finite element ABAQUS 

computer program. The three-dimensional solid element type C3D8R have been used. The contact 

element between end-plate and column flange surfaces as well as between end-plate, column flange 

and bolts surface are used with friction less coefficient of 0.3. All the nodes of the top and bottom 

section of the column are restrained in all directions. In order to achieve reliable results, the fine 

mesh was employed in the contact zone as shown in the general view of the mesh pattern for the 

connection, fig 2. 

 

 

 

 

 

 

Fig2 Mesh pattern of the finite element type. 

In the other hand, the steel material, type S355, for the component concerning the creation of the 

gap, Column-flange, end-plate and bolts, is considered as ductile and behave as elastic-perfectly 

plastic. wilst, the other component have an elastic behavior.  

In this analysis displacement control was applied, rotation, to the surface rigid at the end of the 

beam. The applied displacement was cyclic and controlled by amplitude function. The load was 

measured as the total reaction on the loading surface. 

Moment-rotation response. 

The moment-rotation curve results from FE model is compared to the mechanical model response 

that developed in this thesis and implemented in MATLAB, Fig 3. It can be observed that the 3D FE 

result have a good agreement with that from mechanical model mainly in the initial stiffness and 

Figure 2.19: Mesh pattern of the finite element model

In the other hand, the steel material, type S355, for the components involved

the creation of the gap: column-flange, end-plate and bolts, is considered as

ductile and behave as elastic-perfectly plastic. Whilst, the other components

have an elastic behavior.

In this analysis displacement control was applied, rotation, to a rigid surface at

the end of the beam. The applied rotation was cyclic and controlled by amplitude

function.

• Results and discussions The Moment-Rotation curve results from FE
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model is compared to the mechanical model response developed in section

2.3 and implemented in MATLAB, the two responses are demonstrated

in Fig. 2.20. It can be observed that the connection response from the

developed mechanical model has a good agreement with that from 3D FE

mainly in the initial stiffness and moment resistance. It is worth to mention

that in this example there is no group effect because the two bolt-rows do

not work together under bending moment.
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Figure 2.20: Moment vs. rotation curves

The creation of the gap is very clear in the 3D finite element simulation

and this separation, as expected, comes from plastic deformation of the

end-plate in bending (see Fig. 2.21).

The gap effect is demonstrated in the moment-rotation curve as the follow-
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2. BOLTED END-PLATE CONNECTION

ing:

i In the proposed model a slipping phenomenon is adopted on the force-

displacement curve of the equivalent spring therefore, the benching-

effect is significant in the cyclic response.

ii For 3D FE model the benching –effect is not significant as in the response

of the proposed model, in contrast a degradation of the stiffness is

observed during closing the gap.

 
 

 

Figure 2.21: Plastic deformation in the connection at the end of the 3D FE

simulation

2.7.2 Example for the group effect

The following application concerns an example of a semi-rigid connection that

has been analyzed by Cerfontaine [13] (Fig. 2.22). This example consists of an

IPE600 steel beam connected to a HEB400 steel column towards an end-plate

with 5 bolt-rows denoted T3i (i = 1, ..., 5). Table 2.3 summarizes the resistances

and equivalent stiffnesses of each individual and group of bolt-rows. In addition,

the same data are given for the Types T2 and T4 located at the top and the

bottom beam flange levels, respectively. According to Eq. (2.54) (where m = 5)
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140

120
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Figure 2.22: Bolted end-plate configuration

Table 2.3: Types and Groupes characterisation
 

Compression zone 
Top beam flange (T2) 1011 2394 
Bottom beam flange (T4) 1011 2394 

Tension zone 

First bolt-row (T31) 329 574.75 
Second bolt-row (T32) 407 414.85 
Third bolt-row (T33) 388 420.75 
Fourth bolt-row (T34) 388 420.75 
Fifth bolt-row (T35) 407 512.63 

Group of bolt-rows 
Group of tow bolt-rows  Resistance (kN) 

T31+ T32 813 
T32+ T33 705 
T33+ T34 728 
T34+ T35 706 

Group of three bolt-rows Resistance (kN) 
T31+ T32+T33 1200 
T32+ T33+T34 1044 
T33+ T34+T35 1046 

Group of four bolt-rows Resistance (kN) 
T31+ T32+T33+T34 1627 
T32+ T33+T34+T35 1363 

Group of five bolt-rows Resistance (kN) 
T31+ T32+T33+T34+T35 1772 

 

Individual rows (Types) 
 Row (Type) FTr, Rd(kN) kr,eq(kN\mm) 
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the yield surface criterion for different combination of group of bolt-rows are

obtained and reported in Table 2.4. Two calculations have been performed:

- Calculation 1: the data given in Table 2.3 are the same as those of Cerfontaine

[13]. In this conditions, it appears that no group effect is activated (Fig.

2.23 ).

- Calculation 2: in order to activate the group effects, it is proposed to increase

(arbitrary) the resistance of Type T4 from 1011 kN to 1500 kN (Fig. 2.24).

Table 2.4: Yield surface criterion for this example(5 bolt-rows)

q s FT3q + FT3s ≤
2 3 Min [F23,Rd, (F13,Rd − FT31)]

3 4 Min [F34,Rd, (F14,Rd − FT31 − FT32), (F24,Rd − FT32)]

4 5 Min [F45,Rd, (F15,Rd − FT31 − FT32 − FT33), (F25,Rd − FT32 − FT33), (F35,Rd − FT33)]

Both figures represent the (Moment-Rotation) curve of the joint corresponding

to each calculation. It is worth to mention that in order to reach a significant

rotation of the joint, for both calculations an elastic- perfectly plastic behavior is

adopted for all the components of the mechanical model. The algorithm is able

to give the force at each bolt-row during the loading history. It can be easily

observed that the equilibrium is always satisfied. These forces are highlighted at

each point where the slop is changing.

For the first calculation (Fig. 2.23), it can observed that:

- At point ”1” (Fig. 2.23) and at the point ”A” (Fig.2.24), same distribution of

forces is obtained. This step corresponds to the case where T31 reaches its

individual resistance. All other bolt-rows are still in elastic range.

- From point ”2” (Fig. 2.23), the force at the Type T4 reaches its individual

resistance (1011 kN). Therefore, with respect to the equilibrium between
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tension and compression zones, the tension force is too low to activate a

group effect.

- Point ”3”(Fig. 2.23) corresponds to the maximum of the bending moment in the

connection (Mj,max = 567.5 kN.m). This obtained value is in accordance

with the maximum value of the bending moment (Mj,max = 567 kN.m) that

obtained by Cerfontaine [13]. At this point an unloading of the force at T34

to zero leads to a redistribution of this force to the upper bolt-rows which

have not reaching their individual resistance yet (T32 and T33). It appears

that with this redistribution, T32 reaches its individual resistance (407 kN).

Figure 2.23: Moment vs. rotation curve

For the second calculation (Fig. 2.24), it can be observed that:
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Figure 2.24: Moment vs. rotation curve
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Figure 2.25: (FT32 − FT33) interaction diagram
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Figure 2.26: (FT33 − FT34) interaction diagram

- At point B (Fig. 2.24), the force at Type T4 (1111,1 kN) is less than its

resistance (1500 kN). However, a group resistance is activated by T32 and

T33. In accordance with Table 2.4 where q = 2 and s = 3, it follows:

405, 3 + 299, 7 = 705 kN ≤ Min [705 , (1200 − 329 = 871 kN)] = 705 kN

- At point C (Fig. 2.24), the force at Type T4 (1425,8 kN) is also less than its

resistance (1500 kN). On one hand, it can be observed that the activation of

the previous group effect leads to a first influence on the redistribution force

respecting the criterion of this group (407 + 298 = 705 kN) (see Fig. 2.25

and Fig. 2.26). On the second hand, the group of 3 bolt-rows is activated

by T32, T33 and T34. In accordance with Table 2.4 where q = 3 and s =

4, it follows:

298 + 339 = 637 kN ≤ Min

[
728, (1627 − 329 − 407 = 891 kN),

(1044 − 407 = 637 kN)

]
= 637 kN

It can be observed that the group of 3 bolt-rows is activated at this point.
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- At point D (Fig. 2.24), the force at Type T4 reaches its resistance (1500 kN).

The bolt-rows from 1 to 4 are in plastic range (individual or group limit

resistance). The force at the last bolt-row T35 reaches the value (127 kN)

that insures the equilibrium between compression and tension zones. On one

hand, it can be observed that the activation of the previous group effects

leads to a first influence on the redistribution force respecting following

criteria (407 + 298 = 705 kN) and (407 + 298 + 339 = 1044 kN). On the

second hand, there is no other group effect activated. In accordance with

Table 2.4 where q = 4 and s = 5, it follows:

339 + 127 = 466 kN ≤Min

[
706, (1772 − 329 − 407 − 298 = 738 kN),

(1363 − 407 − 298 = 658 kN), (1046 − 298 = 748 kN

]
= 658 kN

2.7.3 Flush end-plate connection

This example concerns for a cantilever beam with semi-rigid connection under

concentrated loads as depicted in Fig. 2.27 . The purpose of this example is

to confirm the performance of the proposed finite joint element. It is worth to

mention that an experimental test have been performed on this example and

all the results are reported in [26]. Mechanical properties of the connection are

as those shown in Table ??. Components characteristic values, determined in

accordance with Eurocode 3 [23] procedures, are taken from [26] and represented

in Table 2.5. All the geometric properties are shown in Fig 2.27. The beam

is discretized just by one element and it subjected to simultaneous vertical and

horizontal forces. The horizontal load, H, is given several values as a percentage

of the axial beam plastic resistance,Npl. However, the vertical load, F, takes a

constant value for all the specimens.

The moment-rotation curves for the tested specimens are provided by Fig.

2.28. It is observed that the influence of the presence of axial force is predicted

by the proposed model. It is seen that the bending moment increases with increas-

ing of the compressive axial force but this increasing is limited. The maximum
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Figure 2.27: Cantilever beam and its semi-rigid configuration

Table 2.5: Components characterisation

Component
T3-1/T3-2 T2/T4

FRd (kN) k/E(kN/mm) FRd (kN) k/E(kN/mm)

CWT 498.9 7.03 - -

CFB 406.1 38.22 - -

EPB 321.7 13.35 - -

BWT 476.8 ∞ - -

BT 441 7.76 - -

CWC - - 598.2 10.40

BFWC - - 529.8 ∞
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bending moment was observed for H = 20% Npl. In contrast, The tensile axial

force reduce the connection bending moment capacity. It is worth to mention

that these results are in accordance with those of the experimental tests, Fig.

2.29.

In the other hand, the interaction diagrams of bending moment-axial force

for all the specimens are also captured and illustrated with the analytical one

that drawn according to [13] and represented in Fig. 2.30. It is clearly that the

interaction diagram for all the specimens remain inside and on the boundary of

the analytical one. This result confirm the accuracy and efficiency of the proposed

finite joint element.
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Figure 2.28: Moment-rotation curves of the specimens, proposed model

2.8 Conclusion

The performance of the beam-to-column joint model proposed in this chapter is

due to its simplicity. It appears as an easy-to-compute tool that is very useful

in practice to be implemented in structural analysis program, i.e. MATALB and
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3. Analysis of the experimental results

3.1. Moment vs. rotation curves

The experimental moment vs. rotation curves for the eight tests are presented in Fig. 10, where it may

be observed that even for a level of equivalent axial force of 27% of the beam plastic resistance, the

bending moment still exceeds the pure bending result (FE1). Also, the maximum bending moment was

obtained for an axial load level of 20% of the beam plastic resistance. In contrast, the application of a

tensile force in the beam results in a sharp reduction of the bending resistance of the joint. Table 3 presents

the values obtained for the moment resistance and the initial stiffness of the tested joints. The theoretical

values calculated according to Eurocode 3 (FE1) were, respectively, 70 kN.m and 11865 kN.m/rad.

3.2. Analysis of individual components

Table 4 presents the theoretical values of the strength and initial stiffness for all components of the

connection in study, calculated in accordance with Eurocode 3.

Fig. 11 shows that, for all the tests, the column flange in bending presented deformations according to

mode 1, that is, complete yielding of the flange. The measured displacements for this component are

presented in Fig. 12 where it is noticed that the behaviour of the component is similar for all the tests,

independently of the applied axial force.

Table 3 Experimental values of bending moment resistance and initial stiffness

Test N (kN) MRd (kN.m) Sj,ini (kN.m/rad)

FE1 (only M) - 68.4 7244

FE3 (-4% Npl) 52.7 76.7 9768

FE4 (-8% Npl) 105.6 73.5 10853

FE5 (-20% Npl) 265.0 78.5 10610

FE6 (-27% Npl) 345.0 72.4 9927

FE7 (-20% Npl) 265.0 80.0 8028

FE8 (+10% Npl) 130.6 62.8 8959

FE9 (+20% Npl) 264.9 52.3 9084

Fig. 10 Moment vs. rotation curves of the experimental tests

Figure 2.29: Moment-rotation curves of the specimens, experimental tests [26]
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Figure 2.30: Bending moment-axial force interaction diagrams of the specimens
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Fortran 90, to study frame behavior in dynamic for example. It is based on the

component-based analysis that is nowadays well-known by the designers of the

joints. It worth to remind that its performance has been extended to solve the

problem of the gap that could appear between the column flange and the end-

plate during the cyclic loading. This problem has never been considered before,

especially when it is included as a part of the plasticity algorithm.

In addition, the group effect of two bolt-rows has been detailed to show how

to implement this effect into the plasticity algorithm. This model has been gen-

eralized to take into account the group effect including more than two bolt-rows.

Both phenomena have been developed for simple cases of joints in order to

simplify the validation of the proposed model. Nevertheless, both improvements

proposed to the component based-model remain available for any bolted end-plate

connection configuration.

i Concerning the gap effect, special care during computation is required for

several tests that have to be computed for the gap to control the plasticity

of each component within the joint. This care insures to approach the real

behaviour of the joint including appropriate slipping to recover different

gaps.

ii Concerning the solution proposed for the group effect, more the number of

bolt-rows increases, more the number of criteria increases. The generali-

sation of the interaction formula has been easily verified for the case of a

group of 3 bolt-rows and remains available for more.

Finally, The joint element with zero-length that derived from the component

based model have been assembled with a beam element. The new joint finite

element consists of a beam element with two joint elements connected at its ends.

A numerical study was carried out on a steel beam-to-column flush end-plate

connection subjected to axial force and bending moment. The results present the

ability of this model to capture the joint response and the influence of the axial

force on the moment-rotation curve.

For further developments:
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i At first time, the example considered for the group of bolt-rows have to be

treated under cyclic loading including the gap solution.

ii At second time, the model will be implemented in a structural analysis code

to test frame behaviour under cyclic loading.
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Generalized plastic hinge

***

Co-rotational planar beam

element with generalized

elasto-plastic hinges.

Slender elements in framed structures may undergo large displacement and

experience high nonlinear behavior. This section presents a flexible co-rotational

two-noded beam with generalized elastic-plastic hinges at the beam ends. A Con-

densation procedure is used to remove the internal degrees of freedom so that the

formulation is easily incorporated with the standard co-rotational approach. A

family of asymmetric and convex yield surfaces of super-elliptic shape is consid-

ered for the plastic behaviour of the hinges. By varying the roundness factor,

an infinite number of yield surface are obtained making it possible to select the

yield function that best fit experimental data of any type of cross-section and ma-

terial. The nonlinear response of bolted connections subjected to both bending

and tension are conveniently modeled with such a yield surface. Discrete consti-

tutive equations for the hinge plastic deformations are derived using the implicit

scheme for both smooth and non-smooth cases. Numerical examples demonstrate

the accuracy of the model in predicting the large displacement inelastic response

of framed structures. Effect of the roundness factor on the ultimate load strongly

depends on the structure typology. It was observed that cyclic loading produces

pinching effect, cyclic softening and ductile behavior. Those effects are more
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pronounced with anisotropic yield criteria.

3.1 Introduction

Serviceability conditions exposes the buildings to various kinds of loadings such as

dead load, live load and wind/snow load. Added to those loads, extreme and ac-

cidental loadings in exceptional events such as seismic load, explosion and impact

can cause framed structures to exhibit inelastically substantial strain. Slender

elements in framed structures may undergo large displacement and experience

high nonlinear behavior. The nonlinearity can be principally triggered by two

sources: geometrical and material. Nonlinear behaviour is generally complex

which requires nonlinear inelastic analysis methods. Most of the studies have

agreed that a nonlinear inelastic analysis can be distinguishably placed into two

branches: the distributed plasticity analysis and the concentrated plastic hinge

method (lumped plasticity analysis) [4–15]. In distributed plasticity method,

structural elements are meshed along the length into a set of finite elements and

the cross-section is subdivided into several fiber where the spread of plasticity is

considered. The Bernoulli-type beam elements in distributed plasticity method

as found in [12, 16–21] take into account only uniaxial stress–strain relation of

the cross-section. With this model gradual spread of yielding can be simulated

although local buckling may not be accounted for. More recently, interaction be-

tween normal and shear stress has been implemented in Timoshenko planar beam

element [22]. However, this method is still regarded as inappropriate for practi-

cal design use since it requires a numerical computation using a large number of

stress - strain sampling points through the cross sections and along the member

length to accurately consider the coupled effect between bending, normal and

shear forces and the spread of yielding [23]. More than that, the formulation is

rather complicated for a practical engineer to acquire.

On the contrary, the plastic hinge method allows the possibility to use fewer

elements to model frame member and to skip the necessity to integrate over the

discretized cross-sections for internal forces, which makes it more efficient in engi-

Anas ALHASAWI 66



3.1 Introduction

neering practices. With the advantages of its simplicity and its applicabilities, the

plastic hinge concept has been applied in various settings by adopting different

levels of enhancements. The elasto-plastic hinge method is the earliest formula-

tion to be dated back among the others. In this analysis, the yielding effect of

the member is concentrated at specific cross-sections located at member’s ends

whose inelastic behaviour is modelled by a means of dimensionless plastic hinge in

the form of rotational springs. In addition, the constitutive relationship between

bending moment and relative cross-section rotation is considered elastic perfectly

plastic. In other words, the behaviour of the concentrated hinge is either elas-

tic or perfectly plastic. As a consequence of the lumped plasticity, the element

between the plastic hinges is assumed to remain elastic. Quite many research

works have adopted this method to investigate the inelastic behaviour of the

steel or concrete frame members [24–31]. Orbison et al in [24] developed a three-

dimensional beam column finite element using a single equation stress-resultant

yield surface to formulate the plastification of some steel cross-sections in the

form of zero-length plastic hinge. Lui and Chen in [26] presented two types of

elements to analyse the behaviour of semi-rigid plane steel frames namely beam-

column element and connection element. The member inelastic behaviour was

also modelled by concentrated plastic hinges. Chi, in [28], also used the plastic

hinge approach to investigate the nonlinear behaviour of composite beams. In

addition to that, Cuong et al in [29] presented a numerical procedure for nonlin-

ear static analysis of space semi-rigid steel frame adopting the lumped inelastic

concept using yield surface defined in the stress-resultants space. The second-

order effects were considered by using the stability functions. However, Donald

White concluded in [30] that the zero-length elastic-plastic hinge approaches are

not adequate to be considered as advanced inelastic analysis methods because the

members are modeled as fully elastic between the plastic hinge locations. Surovek

in [23] added that the inelastic stiffness and the strength are normally overesti-

mated in the zero-length elastic-plastic hinge method and that the interaction

between stability and plasticity effect as well as the residual stress effects are not

properly accounted. Seeing these inconsistencies in such conventional zero length
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elastic plastic hinge methods, a number of enhancements of the elastic-plastic

hinge method have been developed. For instance, Powell and Chan in [34] for the

first time introduced the generalized plastic hinge approach in which the inter-

action between the axial, torsional and bi-axial bending effects is incorporated.

Similarly, Liew et al in [35] proposed a refined plastic hinge formulation that uti-

lizes a column tangent modulus concept to represent the effective stiffness of the

element when loaded with large axial forces. This refined plastic hinge method

has been adopted for steel concrete structures in [36]. This method accounts for

degradation of the element stiffness in the process where the second order forces

at critical locations in the element reach the cross-section plastic strength. Apart

from that, a non-zero quasi-plastic hinge method was introduced by Attalla et

al in [37]. Their method consists of an element formulation that is developed to

account for gradual plastification through the cross-section under combined bend-

ing and axial force based on fitting the nonlinear equations to data obtained from

inelastic and numerical integration of the cross section model along the member

length. Ali et al in [38] adopted this quasi-plastic hinge method to develop a new

force-based hinge element using large increment method. The proposed model

is able to include inelastic behaviour close to structural hinges as well as strain

hardening in the material. El-Tawil and Deierlein in [39] proposed a beam column

element developed, using stress - resultant plasticity concepts to model inelastic

cross section behaviour, incorporating cross-section model in a flexibility-based

beam column element, and employing a function of dissipated hysteretic energy

to model strength and stiffness degradation. Ziemian and McGuire [40], on the

other hand, suggested a modified tangent modulus approach in as a contribution

to plastic hinge analysis of the nonlinear inelastic behaviour of frame members.

The approach used an empirical constant that has been calibrated to a set of

moment curvature relationships to find a simple expression that degrades the

elastic modulus of the individual elements based on the amount of axial force

and minor-axis bending moment resisted. Cuong in [11] provided a fiber plastic

hinge method to evaluate the nonlinear behaviour of space steel frame. Instead

of using a specific yield surface, this fiber model partitioned the cross-section
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into fibers and the plastification of the hinge is accounted by treating the stress

- strain relationship of each fiber on the cross section. The stability functions

are adopted to capture the second order effects. Hoang et al in [4] presented an

overview of the plastic-hinge approach for 3-dimensional steel frame using both

rigid-plastic and elastoplastic methods. The 3D plastic deformations of the hinges

derive from the normality rule. However, these methodologies adopted require

the use of optimization techniques to solve the equilibrium equations. Most of

the above cited authors considered second order effects by enhancing the member

stiffness equations with stability functions to include terms that depends on the

axial forces which are constantly changing during the analysis.

In this chapter, a beam-column elements for nonlinear inelastic analysis of

framed structure considering nonlinear geometry and nonlinear material behav-

ior are presented. The model consists of an elastic flexible beam element whose

ends are connected to generalized plastic hinges. In this model, the generalized

plastic hinges which are modeled by combined axial and rotational springs are

used to reproduce the plastification of the member including the full interaction

between the axial force and the bending moment. As a consequence, the general-

ized plastic hinges have the ability to elongate/shorten along the beam axis and

to rotate. Lateral-torsional buckling and local buckling are not considered be-

cause of the assumptions of adequate lateral bracing and compact cross-section.

Besides, the material constitutive model is assumed to be elastic-perfectly plas-

tic. Geometric nonlinearity for second order effect is included by the use of the

co-rotational coordinate transformation techniques. A condensation procedure

is performed to eliminate the internal degrees of freedom between the springs

and the beam element ends so that the condensed stiffness matrix of the beam

element with generalized plastic hinges has the usual dimension ready for assem-

blage. A family of asymmetric and convex yield surfaces of super-elliptic shape

is considered for the plastic behaviour of the hinges. By varying the roundness

factor, an infinite number of yield surface are obtained making it possible to se-

lect the yield function that best fit experimental data of any type of cross-section

and material. The nonlinear response of bolted connections subjected to both
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bending and tension can also be conveniently modeled with such a yield surface.

The discrete constitutive equations for the hinge are derived based on both the

rate form of the flow rule and the variational formulation. The expression of

the consistent tangent operator is given with details and the solution algorithm

which involve two stage (local and global equilibrium is described. Numerical

examples demonstrate the accuracy of the model in predicting the large displace-

ment inelastic response of framed structures. Effect of the roundness factor on

the ultimate load strongly depends on the structure typology. It was observed

that cyclic loading produces pinching effect, cyclic softening and ductile behavior.

Those effects are more pronounced with anisotropic yield criteria.

3.2 Co-rotating beam element with generalized

hinges

With regard to the co-rotational formulation for rods we employ here the one

originally proposed by Rankin and Nour-Omid [47, 48], further developed by

Battini and Pacoste [45, 46] and many other authors. The fundamental idea of

a co-rotational formulation is to decompose the large motion of the element into

rigid body and pure deformation parts through the use of a local system which

continuously rotates and translates with the element. The deformation is cap-

tured at the level of the local reference frame, whereas the geometric non-linearity

induced by the large rigid-body motion, is incorporated in the transformation ma-

trices relating local and global displacements. The main interest is that the pure

deformation part can be assumed as small and can be represented by a linear

or a low order non-linear theory. Avoiding the nonlinear relationship between

the strain tensor and the displacement gradient makes the co-rotational approach

very attractive and efficient for nonlinear static analysis. The efficiency is even

more substantial if the material behavior is inelastic as large strain time stepping

algorithms are far more complex than the small strain ones. For a general ac-

count we refer also to [41] where the kinematics and the derivation of the tangent

stiffness matrix of the standard co-rotating element are detailed.
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3.2.1 Beam kinematics

The structural member consists of three subelements: a standard flexible beam

element and two generalized elasto-plastic hinges that are modeled by a combi-

nation of axial and rotational springs, see Fig. 3.1. Elongation/shortening of the

hinges occur along the beam axis. The generalized hinges can be seen as finite

element with zero initial length. Assembling these hinges with the beam element

gives a two-node superelement that maybe regarded as an individual element for

computational purposes. Since plasticity is assumed to be concentrated at the

hinges, the beam element is allowed to bend and to stretch in pure elastic range.

The generalized plastic hinges, on the other hand, are able to rotate and to stretch

according to the elasto-plastic constitutive relationships expressed in incremental

form considering a yield criterion in the stress-resultants space and the normality

rule. The latter governs the plastic flow, i.e. the plastic rotation and the plastic

elongation/shortening.
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Figure 3.1: Local superelement

The co-rotational framework is applied to the structural member. The origin

of the co-rotational frame is taken at node 1 located at the centroid of the cross-

section. The x-axis of the local coordinate system is defined by the line connecting

node 1 to node 4. The y-axis is orthogonal to the x-axis so that the result is right-
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handedly orthogonal coordinate system. The motion of the element from the

original undeformed to the actual deformed configuration can thus be separated

into two parts. The first one, which corresponds to rigid motion of the local

frame, is the translation of node 1 and the rotation α of the x-axis (see Fig. 3.2).

The second one refers to the deformations in the co-rotating element frame.

The notations used in this section are defined in Figs. 3.1 and 3.2. The sub-

script and the superscript denote the node number and the subelement number,

respectively. The coordinates of the nodes 1 and 4 in the global coordinate sys-

tem (X, Y ) are (X1, Y1) and (X4, Y4), respectively. In the deformed configuration

(see Fig. 3.2), the global nodal rotations of the superelement nodes (node 1 and

node 4) are θ1 and θ4 and the local ones are θ̄1 and θ̄4, respectively. In addition

to this, the global rotations of the elastic beam element nodes (node 2 and 3) are

described by θ2 and θ3 and the local ones by θ̄2 and θ̄3, respectively

θ2 = θ1 − θ̂1

θ3 = θ4 − θ̂4

(3.1)

where θ̂1 and θ̂4 are the relative rotations between the local rotations of the

superelement and the local rotations of the elastic flexible beam sub-element,

respectively.

The total elongation, ū, is composed of the elongations of the first hinge ū(12),

the elastic beam element ū(23) and the second hinge ū(34)

ū = ū(12) + ū(23) + ū(34) (3.2)

with
ū(12) = ū2 − ū1

ū(23) = ū3 − ū2

ū(34) = ū4 − ū3

(3.3)

The vectors of global and local displacements are respectively defined by:

dg =
[
u1 v1 θ1 u4 v4 θ4

]T

(3.4)

dl =
[

ū θ̄1 θ̄4

]T

(3.5)
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Figure 3.2: Initial and final configuration for the beam element

Referring to the definition of the co-rotating frame, the components of the

local displacement vector dl can be calculated as (see Fig. 3.2)

ū = Ln − L0 (3.6a)

θ̄1 = θ1 − α (3.6b)

θ̄4 = θ4 − α (3.6c)

where the initial and final length of the element defined as L0 and Ln, respectively,

are obtained by

L0 =
√

(X4 −X1)2 + (Y4 − Y1)2 (3.7a)

Ln =
√

(X4 −X1 + u4 − u1)2 + (Y4 − Y1 + v4 − v1)2 (3.7b)

in which (X1 +u1, Y1 +v1) and (X4 +u4, Y4 +v4) are the global coordinates in the

deformed configuration of node 1 and node 4, respectively. With the help of basic
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geometric considerations, the rigid rotation of the x-axis α, that was mentioned

in Eqs. (3.6b) and (3.6c), is computed as

sinα = c0 s− s0 c (3.8a)

cosα = c0 c+ s0 s (3.8b)

with

c = cos β =
1

Ln
(X4 −X1 + u4 − u1) (3.9a)

c0 = cos β0 =
1

L0

(X4 −X1) (3.9b)

s = sin β =
1

Ln
(Y4 − Y1 + v4 − v1) (3.9c)

s0 = sin β0 =
1

L0

(Y4 − Y1) (3.9d)

The local - global displacement relationship can be derived through differentiation

of Eqs. (3.6), therefore one can write:

δū = δLn (3.10a)

δθ̄1 = δθ1 − δα = δθ1 − δβ (3.10b)

δθ̄4 = δθ4 − δα = δθ4 − δβ (3.10c)

By using (3.7b)and (3.9c), one obtains

δū = c (δu2 − δu1) + s (δv4 − δv1) =
[
−c −s 0 c s 0

]
δdg (3.11)

δβ =
1

cLn

[
s −c 0 −s c 0

]
δdg (3.12)

Finally, the global displacement vector is related to the local deformation vector

by

δdl = Bδdg (3.13)

where the transformation matrix, B is given by

B =


−c −s 0 c s 0

− s

Ln

c

Ln
1

s

Ln
− c

Ln
0

− s

Ln

c

Ln
0

s

Ln
− c

Ln
1

 (3.14)
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3.2.2 Element formulation

The co-rotational method is convenient for establishing the relationship between

the local and global variables. The relation between the global force vector f g

and the local one f l is obtained by equating the virtual work in the local and

global system as

δdT
g f g = δdT

l f l = δdT
gB

Tf l (3.15)

Eq. (3.15) must apply for any arbitrary δdg. Hence, the global force vector f g is

given by

f g = BTf l (3.16)

By taking the differentiation of Eq. (3.16) with respect to global displacement

vector, the global stiffness matrix is obtained as

kg = BTklB +
zzT

Ln
N4 +

1

L2
n

(
rzT + zrT

)
(M1 +M4) (3.17)

where

r =
[
−c −s 0 c s 0

]T

(3.18)

z =
[
s −c 0 −s c 0

]T

(3.19)

3.3 Local element definition

This section will be devoted to the elaboration of the local tangent stiffness matrix

of the superelement. Illustrated in Fig. 3.1, the superelement is composed of three

sub-elements: an elastic beam element and two generalized elasto-plastic hinges.

The introduction of the generalized hinges at the beam ends increases the number

of degrees of freedom exceeding the original ones in the standard co-rotational

formulation. The static condensation procedure is then used to eliminate the

internal nodes ( node 2 and node 3) and the corresponding degree of freedom.

To establish the assembled tangent stiffness of the superelement consistent with

the co-rotational format, the displacement of node 1 is restrained (ū1 = 0). The
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elongation/shortening or relative axial displacement jump of each subelement are

denoted by ū(ij) = ūj − ūi (Eqs. 3.3). The subelement 1, i.e. an elasto-plastic

hinge modeled by a combination of a rotational and an axial springs, has an axial

elongation ū(12) and a relative rotation θ̂1 = θ̄1 − θ̄2. The incremental relation

between the stress-resultants and their conjugates can be formally written as{
∆N

(1)
2

∆M
(1)
2

}
=

[
C

(1)
11 C

(1)
12

C
(1)
21 C

(1)
22

]
n+1

{
∆ū2

∆θ̄2 −∆θ̄1

}
(3.20)

in which, n is the number of step. The tangent operator matrix C defined in Eq.

(3.21) is obtained from the plastic constitutive law of the hinges that is given in

Section 3.5.

C(1)
n+1 =

[
C

(1)
11 C

(1)
12

C
(1)
21 C

(1)
22

]
n+1

(3.21)

The incremental equilibrium of the first element imposes that

∆M
(1)
1 + ∆M

(1)
2 = 0 (3.22)

Combining Eqs. (3.20) and (3.22) gives
∆M

(1)
1

∆N
(1)
2

∆M
(1)
2

 =


C

(1)
22 −C(1)

12 −C(1)
22

−C(1)
12 C

(1)
11 C

(1)
12

−C(1)
22 C

(1)
12 C

(1)
22


n+1


∆θ̄1

∆ū2

∆θ̄2

 (3.23)

Using the same procedure for the sub-element 3 we obtain the incremental equi-

librium equations for this element:

∆M
(3)
3 + ∆M

(3)
4 = 0

∆N
(3)
3 + ∆N

(3)
4 = 0

(3.24)

Hence,the relation between the stress-resultants and their conjugates in the second

generalized elasto-plastic hinge is given as
∆N

(3)
3

∆M
(3)
3

∆N
(3)
4

∆M
(3)
4

 =


C

(3)
11 C

(3)
12 −C(3)

11 −C(3)
12

C
(3)
12 C

(3)
22 −C(3)

12 −C(3)
22

−C(3)
11 −C(3)

12 C
(3)
11 C

(3)
12

−C(3)
12 −C(3)

22 C
(3)
12 C

(3)
22


n+1


∆ū3

∆θ̄3

∆ū4

∆θ̄4

 (3.25)
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On the other hand, the beam element (subelement 2) is assumed to deform elas-

tically. Having an elastic elongation ū(12) and elastic rotations θ2 and θ3 on each

side of its ends, the incremental stress-resultants are related to their conjugates,

for this subelement, by
∆N

(2)
2

∆M
(2)
2

∆N
(2)
3

∆M
(2)
3

 =


k

(2)
11 0 −k(2)

11 0

0 k
(2)
22 0 k

(2)
24

−k(2)
11 0 k

(2)
11 0

0 k
(2)
42 0 k

(2)
44


n+1


∆ū2

∆θ̄2

∆ū3

∆θ̄3

 (3.26)

in which, k
(2)
11 =

EA

L
, k

(2)
22 = k

(2)
44 =

4EI

L
and k

(2)
24 = k

(2)
42 =

2EI

L
. E, I, A and

L denote the Young modulus, the second moment of area, the cross-section area

and the beam length, respectively. The tangent stiffness matrix for the super-

element is assembled using the standard direct stiffness method based on nodal

force equilibrium equations. The sum of internal forces exerted by all members

that meet at a joint balances the external force applied to that joint. Further, as

shown in Fig. 3.1, the flexural beam element has two ends: node 2 and 3. The

nodal equilibrium equations for these nodes, used to eliminate the extra degrees

of freedom, are given as follows

∆N
(1)
2 + ∆N

(2)
2 = 0

∆M
(1)
2 + ∆M

(2)
2 = 0

∆N
(2)
3 + ∆N

(3)
3 = 0

∆M
(2)
3 + ∆M

(2)
3 = 0

(3.27)

The above equilibrium equations are supplemented with equilibrium equations

pertaining to the end nodes (node 1 and node 4):

∆M1 = ∆M
(1)
1

∆N4 = ∆N
(3)
4

∆M4 = ∆M
(3)
4

(3.28)

Equilibrium equations Eq.3.27 and Eq.3.28 are combined together with the mem-

ber stiffness equations Eq.3.23, Eq.3.25 and Eq.3.26 to give:

∆f = [k]n+1 ∆d (3.29)
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with

fT =
[
M1 0 0 0 0 N4 M4

]
, dT =

[
θ̄1 ū2 θ̄2 ū3 θ̄3 ū4 θ̄4

]
(3.30)

and

[k]n+1 =



C
(1)
22 −C(1)

12 −C(1)
22 0 0 0 0

−C(1)
12 C

(1)
11 + k

(2)
11 C

(1)
12 −k(2)

11 0 0 0

−C(1)
22 C

(1)
12 C

(1)
22 + k

(2)
22 0 k

(2)
24 0 0

0 −k(2)
11 0 k

(2)
11 + C

(3)
11 C

(3)
12 −C(3)

11 −C(3)
12

0 0 k
(2)
42 C

(3)
21 k

(2)
44 + C

(3)
22 −C(3)

12 −C(3)
22

0 0 0 −C(3)
11 −C(3)

12 C
(3)
11 C

(3)
12

0 0 0 −C(3)
12 −C(3)

22 C
(3)
12 C

(3)
22


(3.31)

To carry out the condensation process, the assembled stiffness equations of the

superelement (Eq.3.29) are rearranged and partitioned as follows:{
∆f l

0

}
=

[
[kll]n+1 [kli]n+1

[kil]n+1 [kii]n+1

]{
∆dl

∆di

}
(3.32)

where the subvector ∆di collects the interior degrees of freedom and the subvector

∆dl comprises the co-rotational kinematic variables pertaining to the superele-

ment (elongation and local rotations at the end nodes):

dl =


ū4

θ̄1

θ̄4

 , di =


ū2

θ̄2

ū3

θ̄3

 (3.33)

In the above equation, the subvector f l collect the independent stress-resultants

pertaining to the superelement which corresponds to the so-called local force

vector in the co-rotational formulation:

f l =


N4

M1

M4

 (3.34)
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The sub-matrices in Eq.(3.32) have the following expressions:

kll =


C

(3)
11 0 C

(3)
12

0 C
(1)
22 0

C
(3)
12 0 C

(1)
22


n+1

(3.35)

kli =


0 0 −C(3)

11 −C(3)
12

−C(1)
12 −C(1)

22 0 0

0 0 −C(3)
12 −C(3)

22


n+1

(3.36)

kil =


0 −C(1)

12 0

0 −C(1)
22 0

−C(3)
11 0 −C(3)

12

−C(3)
12 0 −C(3)

22


n+1

(3.37)

kii =


C

(1)
11 + k

(2)
11 C

(1)
12 −k(2)

11 0

C
(1)
12 C

(1)
22 + k

(2)
22 0 k

(2)
24

−k(2)
11 0 k

(2)
11 + C

(3)
11 C

(3)
12

0 k
(3)
42 C

(3)
12 C

(3)
22 + k

(3)
33


n+1

(3.38)

Solving for the interior degrees of freedom:

∆di = − [kii]
−1
n+1 [kil]n+1 ∆dl (3.39)

and replacing the outcome into the first matrix equation yield the condensed

stiffness equations

∆f l = [kl]n+1 ∆dl (3.40)

with

[kl]n+1 = [kll]n+1 − [kli]n+1 [kii]
−1
n+1 [kil]n+1 (3.41)

[kl]n+1 is the local tangent stiffness matrix. To ease the computations, the above

stiffness equations are slightly modified by replacing the axial displacements with
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sub-element elongations using

∆ū2 = ∆ū(12)

∆ū3 = ∆ū(12) + ∆ū(23)

∆ū4 = ∆ū(12) + ∆ū(23) + ∆ū(34) = ∆ū

(3.42)

where ∆ū is the elongation of the superelement. Full expressions of the new

assembled stiffness matrix along with the corresponding sub-matrices are given

in the appendix.

3.4 Generalized plastic hinge model

We apply the general plasticity theory [42] to the generalized elasto-plastic hinges.

The present model assumes that plasticity are lumped into axial and rotational

springs located at the end of flexible beam element. The elastic behavior of the

generalized hinge is uncoupled whereas axial-moment interaction is considered in

the plastic range. We adopt the total generalized strain rate decomposition into

elastic and plastic parts

Ξ̇ = Ξ̇e + Ξ̇p (3.43)

where Ξ̇ =
[
θ̇ , δ̇

]T

. For an associated flow rule, the direction of the generalized

plastic strain rate vector is given by the gradient to the yield function, with its

magnitude given by the plastic multiplier rate λ̇:

Ξ̇p = λ̇
∂f

∂Σ
(3.44)

where Σ = [M,N ]T is the generalized stress vector containing the bending and

axial forces in the hinge. The plastic multiplier λ̇ is determined by the classical

complementary conditions:

λ̇ ≥ 0, f(M,N) ≤ 0, λ̇ f(M,N) = 0 (3.45)

The set of allowable stress resultants K defined by

K =
{

Σ ∈ R2
∣∣ f(Σ) ≤ 0

}
(3.46)
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An alternative formulation of the rate form of the flow rule given in Eq(3.44)

is the Hill variational inequality:

Σ ∈ K , Ξ̇
p · (Σ∗ −Σ) ≤ 0, ∀Σ∗ ∈ K (3.47)

Both formulation will be used to derive the discrete counterpart of the constitutive

equations. Assuming linear elastic behaviour, the generalized stresses are given

as:

Σ = Ce (Ξ−Ξp) (3.48)

in which the elastic stiffness matrix is given by:

Ce =

[
kθ 0

0 kδ

]
In this model, the classical distributed plasticity model is replaced by transform-

ing the stress-space yield surface of fiber model, denoted by f(σx), to stress-

resultant space yield surface, denoted by f(M,N) due to the assumption that

the plasticization of the cross section is controlled by a yield surface of the com-

bined effects of axial and bending forces disregarding shear and torsional actions.

In this chapter, we consider a family of asymmetric and convex yield surface of

superelliptic shape:

f(M,N) = ‖Σ‖q − 1 (3.49)

where

‖Σ‖q =

(∣∣∣∣N + |N |
2Np+

+
N − |N |

2Np−

∣∣∣∣q +

∣∣∣∣M + |M |
2Mp+

+
M − |M |

2Mp−

∣∣∣∣q) 1
q

(3.50)

with 1 ≤ q <∞. The curve intersects the x-axis at Np+ and Np− and the y-axis

at Mp+ and Mp−. The coefficient q, called roundness factor, controls the shape of

the (M-N) interaction criterion. This shape evolves from a parallelogram (p = 1)

to a rectangle (p 7→ ∞). Its shape is plot in Fig. (3.3) for q = 1, 2, 4 and

12. The super-elliptic yield surface is defined in Eq. (3.49), and its anisotropic

super-elliptic norm can be reformulated as

‖Σ‖q = (|%NN |q + |%MM |q)
1
q (3.51)
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Figure 3.3: General case of anisotropic yield surface

where the sign dependent coefficients %M and %N are defined by

%M = aM + bM sgn(M) and %N = aN + bN sgn(N) (3.52)

in which the constants a• and b• are defined by

a• =

(
1

2•p+
+

1

2•p−

)
and b• =

(
1

2•p+
− 1

2•p−

)
(3.53)

and the signum function sgn(•) is defined by

sgn(x ) =


1 for x > 0

0 for x = 0

−1 for x < 0
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3.5 Discrete constitutive equations of the gen-

eralized plastic hinge

The plastic behavior is completely specified by the flow rule and the loading/unloading

conditions. Its analytical transcription can take different but equivalent forms.

Probably, the most familiar version of the flow rule is the rate equation (3.44)

completed by the complementary conditions (3.57). An alternative formulation

is provided by Hill’s principle of maximum dissipation. This principle takes the

form of a variational inequality (3.47). The discrete constitution are derived for

the general case using the rate form of the flow rule. For the linear and quadratic

yield criteria, we adopt the variational formulation. In order to enforce the flow

rule at the end of each time step, we apply the Euler-backward type approxi-

mation scheme. We recall here that the time t is conceived as a monotonically

increasing arbitrary parameter, which merely orders successive events since a

time-independent behavior of the hinges is assumed. The current state of the

stress-resultants given by Hook’s law:

Σn+1 = Ce

(
Ξn+1 −Ξp

n+1

)
= Σn + Ce (∆Ξ−∆Ξp) (3.54)

with

Σn+1 =

Mn+1

Nn+1

 , ∆Ξp =

∆θp

∆δp

 (3.55)

The increment of plastic deformation vector is obtained by integrating Eq. (3.44)

using the Euler-Backward scheme:

∆Ξp = ∆λ
∂f

∂Σ

∣∣∣∣
n+1

(3.56)

The plastic multiplier ∆λ must be determined to satisfy the complementarity

(loading/unloading) conditions:

∆λ ≥ 0, fn+1 ≤ 0, ∆λ fn+1 = 0 (3.57)

with fn+1 being the yield criterion at time instant tn+1:

fn+1 = f(Mn+1, Nn+1) = ‖Σn+1‖q − 1 (3.58)
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Introducing the trial state

Σtrial
n+1 = Σn + Ce∆Ξ (3.59)

Eq. (3.54) becomes

Σn+1 = Σtrial
n+1 − Ce∆Ξp (3.60)

By combining Eq. (3.60) and (3.56), the stress resultant vector at time tn+1

becomes

Σn+1 = Σtrial
n+1 − Ce∆λ

∂f

∂Σ

∣∣∣∣
n+1

(3.61)

the component form of Eq. (3.61) is

Mn+1 = M trial
n+1 − kθ∆λ

∣∣%Mn+1

∣∣q |Mn+1|q−1 sgn (Mn+1) [‖Σn+1‖q]1−q (3.62)

Nn+1 = N trial
n+1 − kδ∆λ

∣∣%Nn+1

∣∣q |Nn+1|q−1 sgn (Nn+1) [‖Σn+1‖q]1−q (3.63)

with

[‖Σn+1‖q]1−q =
(∣∣%Nn+1Nn+1

∣∣q +
∣∣%Mn+1Mn+1

∣∣q) 1−q
q (3.64)

In the next section, the applications of method are provided for the general super-

elliptic criterion as well as the linear and quadratic-form yield surface. It will be

shown that, for the case of linear surface, q = 1, the analytical solution to the

optimization can be attained whereas it is not the case for the non-linear curve,

q > 1, in which Newton Raphson iteration method is used. This technique is

powerful for the reason that the formulation has the form of a minimization of a

convex function on a convex set. This secures the existence of a unique solution.

As the yield surface may have high curvature at corners, it is possible that one

meets the convergence problems. But, the formulation of this technique gives

a means of applying algorithms from mathematical programming theory which

gives unique plastic strain increments when the trial stresses are found in the dual

cone.

3.5.1 Smooth yielding criterion

The super-elliptic yield surface is illustrated in Fig. 3.3. The surface should have

regular smooth curve at all points for q > 1. For q = 1, the curve will be linear
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and have four singular point, whose integration is provided in the next section.

Within the boundaries of the surface, the behaviour is regarded as elastic and

the update of the stresses is not needed. If the trial stresses lie outside of the

convex set of elastic domain K, only one constraint is active at a time. The yield

criterion at time tn+1 becomes

f(Mn+1, Nn+1) = ‖Σn+1‖q − 1 (3.65)

where

‖Σn+1‖q =
(∣∣%Nn+1Nn+1

∣∣q +
∣∣%Mn+1Mn+1

∣∣q) 1
q (3.66)

The plastic multiplier ∆λ in Eqs (3.62) and (3.63) is computed to satisfy the

consistent condition (3.47), i.e. f(Mn+1, Nn+1) = 0. As the Eqs. (3.65), (3.62)

and (3.63) are non-linear, Newton Raphson iteration is adopted to solve for Mn+1,

Nn+1, and ∆λ.

The tangent operator for the case of nonlinear yield surface requires the deriva-

tive of stress resultant vector Σ (Ξn+1,∆λ) with respect to deformation vector

Ξn+1. Using Eq. (3.61), the derivative of the stress resultant Σn+1 is

dΣn+1 = dΣtrial
n+1 − Ce

[
d∆λ

∂f

∂Σ

∣∣∣∣
n+1

+ ∆λ
∂2f

∂Σ2

∣∣∣∣
n+1

dΣn+1

]
(3.67)

Rearranging Eq. (3.67) for dΣn+1 gives

dΣn+1 = H−1
n+1

(
dΣtrial

n+1 − CeAn+1 d∆λ
)

(3.68)

where

Hn+1 = I −∆λ
∂2f

∂Σ2

∣∣∣∣
n+1

(3.69)

An+1 =
∂f

∂Σ

∣∣∣∣
n+1

(3.70)

in which I is a 2× 2 unit matrix. Making derivation of Eq. (3.65) results in

df (Σn+1) =
∂f

∂Σ

∣∣∣∣T
n+1

dΣn+1 = 0 (3.71)

Replacing dΣn+1 (Eq. (3.68)) in Eq. (3.71) obtains

AT
n+1H

−1
n+1

(
dΣtrial

n+1 − CeAn+1 d∆λ
)

= 0 (3.72)
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Rearranging Eq. (3.72) gives the expression of d∆λ as

d∆λ =
AT
n+1H

−1
n+1dΣ

trial
n+1

AT
n+1H

−1
n+1CeAn+1

(3.73)

Using Eq. (3.73), Eq. (3.68) becomes

dΣn+1 = H−1
n+1

(
dΣtrial

n+1 − CeAn+1

AT
n+1H

−1
n+1dΣ

trial
n+1

AT
n+1H

−1
n+1CeAn+1

)
(3.74)

Provided that

dΣtrial
n+1 = Ce dΞn+1 (3.75)

from Eq. (3.74), the tangent operator C has the following form

C =
dΣn+1

dΞn+1

= H−1
n+1Ce

[
I −An+1

AT
n+1H

−1
n+1Ce

AT
n+1H

−1
n+1CeAn+1

]
(3.76)

3.5.2 An anisotropic linear yield surface

This section addresses the particular case of anisotropic multi-linear yield sur-

faces. Equations derived in Section 3.5.1 cannot be used because the multi-linear

yield surface possesses singular points. Applying the Euler-backward scheme to

the variational inequality (3.47), one obtains the discrete flow rule

Σn+1 ∈ K , ∆Ξp · (Σ∗ −Σn+1) ≤ 0, ∀Σ∗ ∈ K (3.77)

By inserting Eqs. (3.60) into Eqs. (3.77), we obtain:

Σn+1 ∈ K , (Σ∗ −Σn+1) · C−1
e

(
Σn+1 −Σtrial

n+1

)
≥ 0, ∀Σ∗ ∈ K (3.78)

The last inequality (3.78) means that Σn+1 is the projection of Σtrial
n+1 onto the

closed convex set K with respect to the norm ‖ • ‖C−1
e

.

Σn+1 = proj (Σtrial
n+1 ,K ) (3.79)

In other words, the generalized stress vector Σn+1 is the solution of the following

nonlinear optimization problem:

proj (Σtrial
n+1 ,K ) = inf

Σ∈K

∥∥Σtrial
n+1 −Σn+1

∥∥2

C−1
e

(3.80)
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Then, the expression in Eq. (3.80) can be solved as:

min
f(Σ)≤0

[(
Σtrial
n+1 −Σn+1

)
· C−1

e

(
Σtrial
n+1 −Σn+1

)]
(3.81)

Next, Eq. (3.81) can be reformulated as a constrained minimisation problem by

means of the Lagrange multiplier technique:

(Σn+1, µ
(i)) =

1

2

[(
Σtrial
n+1 −Σn+1

)
· C−1

e

(
Σtrial
n+1 −Σn+1

)]
+ µ(i)f (i)(Σn+1) (3.82)

The stationary conditions can then be expressed as:

∂
(
Σn+1, µ

(i)
)

∂Σn+1

= 0,
∂
(
Σn+1, µ

(i)
)

∂µ(i)
= 0 (3.83)

By solving the system equations given by stationary conditions in Eq. (3.83), the

expression of the generalized stresses at the end of the time step Σn+1 is found.

The tangent operator is obtained by taking the derivative of these stresses:

Cn+1 =
∂Σn+1

∂Ξn+1

(3.84)

The linear yield surface is illustrated in Fig. 3.4. The surface has a parallel-

ogram shape and consists of four constraints depending on the sign of the axial

and bending forces. The intersections between each two constraints are singular

points of the curve which create the dual cones. If the trial stresses are found in

the dual cone, a special treatment must be done by considering the two associ-

ated constraints active. If the trial stresses lie outside of the convex set of elastic

domain K and the dual cones, only one constraint is active at a time. The yield

condition can be defined as:

N > 0 and M > 0 : f (1) =
N

Np+

+
M

Mp+

− 1 (3.85)

N < 0 and M > 0 : f (2) = − N

Np−

+
M

Mp+

− 1 (3.86)

N < 0 and M < 0 : f (3) = − N

Np−

− M

Mp−

− 1 (3.87)

N > 0 and M < 0 : f (4) =
N

Np+

− M

Mp−

− 1 (3.88)
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M

N

 1
f

 2
f

 3
f

 4
f

pNpN

pM

pM

Figure 3.4: linear yield surface

3.5.2.1 One active constraint

If only f (1) is active, µ(1) > 0 and µ(2) = µ(3) = µ(4) = 0. The Lagrangian in Eq.

(3.82) is given in this case as:

(Σn+1, µ
(i)) =

1

2

[
(Σtrial

n+1 −Σn+1) · C−1
e (Σtrial

n+1 −Σn+1)
]

+ µ(1)f (1) (3.89)

The stationary conditions in Eqs. (3.83) are applied:

∂

∂Mn+1

=− 1

kθ

(
M trial

n+1 −Mn+1

)
+
µ(1)

Mp+

= 0

∂

∂Nn+1

=− 1

kδ

(
N trial
n+1 −Nn+1

)
+
µ(1)

Np+

= 0

∂

∂µ(1)
=
Mn+1

Mp+

+
Nn+1

Np+

− 1 = 0

(3.90)
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Solving Eqs. (3.90) for Mn+1, Nn+1 and µ(1) gives:

Mn+1 =M trial
n+1 − kθ

µ(1)

Mp+

Nn+1 =N trial
n+1 − kδ

µ(1)

Np+

µ(1) =

(
M trial

n+1

Mp+

+
N trial
n+1

Np+

− 1

)(
kθ

(Mp+)2
+

kδ
(Np+)2

)−1

(3.91)

The tangent operator for this case is derived as:

C11 =
∂Mn+1

∂θn+1

= kθ −
(

kθ
Mp+

)2(
kθ

(Mp+)2
+

kδ
(Np+)2

)−1

C22 =
∂Nn+1

∂δn+1

= kδ −
(
kδ
Np+

)2(
kθ

(Mp+)2
+

kδ
(Np+)2

)−1

C12 = C12 =
∂Nn+1

∂θn+1

=
∂Mn+1

∂δn+1

= − kθkδ
Mp+Np+

(
kθ

(Mp+)2
+

kδ
(Np+)2

)−1

(3.92)

The same approach can be followed for the other cases of one activate constraint.

3.5.2.2 two active constraints

At each corner of the surface ( see Fig. 3.4 ), two constraints at most are active.

The case of top corner (f (1) and f (2) are active ) is given as an example whereas

the other three corners will follow the same procedure. The Lagrangian in Eq.

(3.82) becomes:

(Σn+1, µ
(i)) =

1

2

[
(Σtrial

n+1 −Σn+1) · C−1
e · (Σtrial

n+1 −Σn+1)
]

+
2∑
i=1

µ(i)f (i) (3.93)

The stationary conditions in Eq. (3.83) are then evaluated:

∂

∂Mn+1

= − 1

kθ

(
M trial

n+1 −Mn+1

)
+
µ(1)

Mp+

+
µ(2)

Mp+

= 0

∂

∂Nn+1

= − 1

kδ

(
N trial
n+1 −Nn+1

)
+
µ(1)

Np+

− µ(2)

Np−

= 0

∂

∂µ(1)
=
Mn+1

Mp+

+
Nn+1

Np+

− 1 = 0

∂

∂µ(2)
=
Mn+1

Mp+

− Nn+1

Np−

− 1 = 0

(3.94)
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Solving Eqs.(3.94) gives

Mn+1 = Mp+

Nn+1 = 0

µ(1) =
Np+

(
N trial
n+1 Np−kθ +Mp+M

trial
n+1 kδ −M2

p+
kδ
)

kδkθ
(
Np+ +Np−

)
µ(2) = −

Np−

(
N trial
n+1 Np+kθ −Mp+M

trial
n+1 kδ +M2

p+kδ
)

kδkθ
(
Np+ +Np−

)
(3.95)

The tangent operator for the cases of two active constraints are the following:

Cij = 0 (3.96)

3.5.3 An anisotropic quadratic yield surface

The quadratic form of the yield surface, illustrated in Fig. 3.5, is a particular

case of the nonlinear shape in Eq. (3.49), which is defined with q = 2 as

f(M,N) =

√
(%NNn+1 )2 + (%MMn+1 )2 − 1 (3.97)

The lagrangian in Eq. (3.82) is given in this case as

(Σn+1, µ) =
1

2

[
(Σtrial

n+1 −Σn+1) · C−1
e (Σtrial

n+1 −Σn+1)
]

+ µf (3.98)

where and the stationary conditions consist of:

∂(Σn+1, µ)

∂Mn+1

= − 1

kθ

(
M trial

n+1 −Mn+1

)
+

µ%2
MMn+1√

(%NNn+1 )2 + (%MMn+1 )2
= 0

∂(Σn+1, µ)

∂Nn+1

= − 1

kδ

(
N trial
n+1 −Nn+1

)
+

µ%2
NNn+1√

(%NNn+1 )2 + (%MMn+1 )2
= 0

∂(Σn+1, µ)

∂µ
=

√
(%NNn+1 )2 + (%MMn+1 )2 − 1 = 0

(3.99)

According to Eq. (3.97), we can write√
(%NNn+1 )2 + (%MMn+1 )2 = 1 (3.100)
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M

N
pNpN

pM

pM  ,f M N

Figure 3.5: Anisotropic yield surface

Replace Eq. (3.100) into Eq. (3.99) gives

Mn+1 =
M trial

n+1

1 + µkθ%2
M

Nn+1 =
N trial
n+1

1 + µ kδ%2
N

(3.101)

By combined Eq. (3.101) and Eq. (3.100),the optimization problem is reduced

to finding the positive zeros of the following quartic equation:

(
%MM

trial
n+1

)2

(1 + µkθ%2
M)

2 +

(
%NN

trial
n+1

)2

(1 + µ kδ%2
N)

2 = 1 (3.102)

Further insight into Eq. (3.102) is gained by letting

M̄ = 1 + µ kθ%
2
M (3.103)

N̄ = 1 + µ kδ%
2
N (3.104)
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so that Eq. (3.102) reduces to finding the intersection of a quadratic and a straight

line (
%MM

trial
n+1

)2(
M̄
)2 +

(
%NN

trial
n+1

)2(
N̄
)2 = 1 (3.105)

M̄ =
kθ%

2
M

kδ%2
N

N̄ +
kδ%

2
N − kθ%2

M

kδ%2
N

(3.106)

This is illustrated graphically in Fig. 3.6. Note that the first equation of the

y M

x

y

y M 

x Nx N 

Figure 3.6: Geometric interpretation of the projection solution

system has orthogonal asymptotes x = ±N̄ and y = ±M̄ . Since the straight line

always has positive slope,direct inspection of Fig. 3.6 reveals that the system of

equation has one negative root,one positive root and a pair of complex conjugate

roots. According to Eqs. (3.99), the process is iterative and the Newton-Raphson

method will be adopted to determine Mn+1, Nn+1 and µ. The tangent operator

for these cases of nonlinearity will be determined according to Eq. (3.76).
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3.6 Elasto-plastic finite step procedure

In this section, we briefly describe the solution strategy employed to solve the

nonlinear structural equilibrium equations. Assuming that the internal forces

pertaining to the superelements balance the external loading at the time instant

tn, we seek to update all mechanical variables such that structural equilibrium is

achieved at tn+1

F int
n+1 − F ext

n+1 = 0 (3.107)

and the constitutive equations (Eq. 3.56 and Eq. 3.57) are fulfilled. The iterative

procedure employed to solve this nonlinear problem involve several steps and

proceeds as follows. Let (•)(k)
n+1 be the value of a variable (•) at the kth iteration

during the time increment [tn, tn+1], we have:

∆U
(k+1)
n+1 = −

[
K

(k)
n+1

]−1 [
F

int(k)
n+1 − F ext

n+1

]
(3.108)

where K is the structural tangent stiffness matrix. The nodal displacement are

updated according to:

U
(k+1)
n+1 = Un + ∆U

(k+1)
n+1 (3.109)

The above steps pertain to the global stage where the vector U collects the nodal

displacement of the suprelements. The internal degrees of freedom are determined

in a local stage. From U
(k+1)
n+1 , we immediately build the vector ∆d

(k+1)
g,n+1 for each

superelement from which we compute ∆d
(k+1)
l,n+1 using Eq.3.6. Initialization of

vector ∆d
(j=1)
i,n+1 is performed using Eq. 3.39:

∆d
(j=1)
i,n+1 = −

(
[kii]

(k)
n+1

)−1

[kil]
(k)
n+1 ∆d

(k+1)
l,n+1 (3.110)

Next, the ”internal” forces are obtained iteratively by solving equilibrium equa-

tions Eq. 3.27:

∆R
(j)
i,n+1 +

∂∆R
(j)
i,n+1

∂∆d
(j)
i,n+1

δ
(

∆d
(j+1)
i,n+1

)
= 0 (3.111)

where Ri stands for the ”internal” equilibrium residual of Eq. 3.27. Once the

displacement vector ∆d
(j+1)
i,n+1 has been found, the internal force as well as the
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stiffness matrices are updated and the out-of-balance force vector is evaluated.

With this strategy equilibrium is enforced at both global and local levels for each

load step.

3.7 Numerical examples

This section provides four numerical examples of standard framed structures with

the purposes to show the features of the model which include both geometric

and material non-linearities and to investigate the response of framed structures

undergoing both large displacements and inelastic deformations. Computations

were driven using an appropriate version of the arc-length method [43] in order to

capture the whole force-displacement curve. The effects of the roundness factor

q affecting the shape of the yield surface as well as the consequence of significant

changes in structural geometry on the frame’s response are studied within the

examples.

3.7.1 Fixed-end beam with asymmetric concentrated load

This first example concerns with a clamped beam under an asymmetric point load.

Firstly, in order to validate our proposed model, we compare its prediction against

the co-rotational fiber beam model (see [? ]). The adopted (M,N) interaction

criterion is consistent with the beam cross section shape. Duan and Chen in [?

] gave an approximated equation to the yield surface of the double symmetrical

steel section subjected to bending moment and axial force:

M

MP
+

(
N

NP

)β
= 1 (3.112)

Here MP and NP are plastic resistances for the bending moment and the axial

force respectively. β is a section-dependent parameter.(β equal 2 for a solid

rectangular; 2.1 for a solid circular section; 1.75 for a thin-walled circular section;

1.3 for a wide flange section under strong axis bending). Secondly, the effect of the

roundness factor q on the response of the clamped beam under both monotonic
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and cyclic loading is investigated. Isotropic as well as anisotropic yield criterion

with varying values of q are considered. For the monotonic loading the following

values of q are considered: 1, 1.5, 2, 4 and 12 whereas q = 2 and 4 are taken

for cyclic loading condition. While only isotropic yield criterion is considered in

the case of monotonic loading. Yield surface anisotropy is considered for cyclic

loading with the plastic limits
∣∣Mp−

∣∣ = 1
2
Mp+ and

∣∣Np−

∣∣ = 1
2
Np+ . The isotropic

and anisotropic yield criterion for q equal 2 anf 4 are plotted in Fig. 3.9 and

constant amplitudes (see Fig. 3.11). The cyclic loading histories adopted involve

both increasing and constant amplitudes (see Fig. 3.10). The point load is applied

at one-third of the total length of the beam, as being depicted in Fig. 3.7. The

beam has a cross-section of type HEB 220 S355, whose yield limit fy = 355MPa

and Young modulus E = 210GPa.

1 2 3

,F v

3L 2 3L

Plastic hinge

Initial configuration

Deformed configuration

u

v

Figure 3.7: Two-dimensional fixed-end beam

The comparative study that shown in Fig.3.8 demonstrates a good agrement

with the fiber model and presents the capability of the proposed model to capture

the nonlinearity geometric and material in the studied structures.

In the other hand, Fig. 3.12 illustrates the force-displacement curve of the

beam under monotonic loading. Up until the formation of the second hinge, the
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Figure 3.8: Load vs. deflection curve - comparative study

force-displacement curve almost does not vary with the value of q because the nor-

mal force developed in the beam is still small as a result of small displacements.

Between the formation of the second and the third hinge, the beam displace-

ments become moderate producing slight differences in the load-displacement

curve showing a dependance of the latter on the value of the roundness factor

of q. After the third plastic hinge has formed, second order effects modify the

load carrying mechanism with increasing value of the normal force. Consequently

the curve begins to change significantly with the value of q. For same level of

large displacement, the beam is able to sustain larger load with increasing value

of q. Indeed, the load carrying capacity can be doubled in the case of q = 12

with respect to q =1. The roundness of the yield curve strongly influence the

load level at which plastification of a hinge occurs. Membrane effect in the beam

are more significant for increasing value of q. It is worth mentioning also that

the computation may experience difficulties in convergence if the value of q is too
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q=2 (Isotropic)
q=4 (Isotropic)
q=2 (Anisotropic)
q=4 (Anisotropic)Np-

Mp+

Np+

Mp-

Figure 3.9: Yield surface criteria

Step

v

00.65v

00.78v

00.91v

0v

01.06v

00.65v

00.78v

00.91v

0v

0.00
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01.25F

(b) Force imposed

Figure 3.10: Load history: reversed cyclic loading with increasing amplitudes

large (the shape becomes close to rectangle).

Figs. 3.13 present the response of the beam under reversed and force-controlled

cyclic loading with increasing amplitude. The loading history is symmetric with,

for each cycle, the same force magnitude in both directions (upward and down-

ward). The amplitudes of the cyclic force are determined by a multiplying the

force F0 = 500 kN with an increasing factor. For the first cycle, the amplitude
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Step

Step

(a) Displacement imposed

Step

Step

(b) Force imposed

Figure 3.11: Load history: reversed cyclic loading with constant amplitudes

Figure 3.12: Beam load-deflection curve

of the force is 0.8F0. The amplitude is increased to 1.08F0 for the second cycle,

1.17F0 for the third cycle and 1.25F0 for the last cycle. After the last cycle, the
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force continues to increase and stop at 1.33F0. As can be seen in Fig. 3.13(a) and

3.13(b), the beam response is symmetric for the isotropic case and slightly asym-

metric for the anisotropic yield criterion, regardless of the value of the roundness

factor. It can also be seen that the shape of the loop does not change during

the loading history in both cases but the amplitude increases from cycle to cycle.

An anisotropic yield surface seems to produce a more ductile behavior with large

plateau and larger displacement amplitudes. Increasing values of the roundness

factor q have the tendency to reduce the beam displacement amplitude. The

anisotropic yield curve is the cause of a pronounced pinching effect indicating the

ability of such model to reproduce well the behavior of bolted connection.

Figs. 3.14 present the response of the beam under reversed and displacement-

controlled cyclic loading with increasing amplitude. In a similar manner as the

force-controlled cyclic loading, the loading history is symmetric with, for each

cycle, the same displacement magnitude in both the downward and the upward

directions. The amplitudes of the cyclic displacement are determined by a mul-

tiplying the nominal displacement v0 = 200mm with an increasing factor. For

the first cycle, the amplitude of the displacement is 0.65 v0. The amplitude is

increased to 0.78 v0 for the second cycle, 0.91 v0 for the third cycle and v0 for

the last cycle. After the last cycle, the displacement is applied up to 1.06 v0 and

the loading is stopped. Shown in Fig. 3.14(a) and 3.14(b), the beam response

is symmetric for isotropic yield criterion but not for the case of anisotropic yield

criterion, regardless of the value of the roundness factor. Like the reversed force-

controlled case, increasing values of the roundness factor q have the tendency to

increase the force amplitude.

Figs. 3.15 present the response of the beam under reversed and force-controlled

cyclic loading with constant amplitude. The loading history is symmetric with,

for all the cycles, the same force magnitude in both the downward and the up-

ward directions. The amplitudes are constant at F0 = 665 kN from one cycle

to another. As shown in 3.15(a) and 3.15(b), the beam response is almost sym-

metric for both isotropic and anisotropic yield criterion regardless of the value of
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(a) q=2
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Figure 3.13: Reversed force-controlled cyclic loading with increasing amplitude:

Isotropic versus Anisotropic yield criteria
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(b) q=4

Figure 3.14: Reversed displacement-controlled cyclic loading with increasing am-

plitude: Isotropic versus Anisotropic yield criteria

the roundness factor. Although the force is imposed with the same amplitude in

all cycles, the amplitudes of the displacement become larger disregarding of the

roundness factor as well as the yield criterion. This phenomenon is known as cyclic

softening. Pinching effect is more pronounced with an anisotropic yield criteria.
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A low value of the roundness factor q combined with an isotropic yield criteria

produces a force-displacement curve with significant pinching effect. With the

same amplitudes of imposed force, the displacement is larger with the anisotropic

yield criteria and for both values of q. The largest displacement is obtained with

q = 2.

Figs. 3.16 present the response of the beam under reversed and displacement-

controlled cyclic loading with constant amplitude. The loading history is symmet-

ric with, for all the cycles, the same displacement magnitude in both the down-

ward and the upward directions. The amplitudes are constant at v0 = 212mm

from one cycle to another. Although the displacement is imposed with the same

amplitude in all cycles, the amplitudes of the force become smaller disregarding

of the roundness factor as well as the yield criterion. As shown in 3.16(a) and

3.16(b), the beam response is almost symmetric for both isotropic and anisotropic

yield criterion regardless of the value of the roundness factor. Again, cyclic soften-

ing which is characterized by a reduction of the force amplitude during successive

cycles is observed. Similarly to the force-controlled case, an anisotropic yield cri-

teria will induces more pinching effect in the force-displacement curve.With the

same amplitudes of imposed displacement, the force is larger with the isotropic

yield criteria and for both values of q. The largest force is obtained with q = 4.
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Figure 3.15: Reversed force-controlled cyclic loading with constant amplitude:

Isotropic versus Anisotropic yield criteria
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Figure 3.16: Reversed displacement-controlled cyclic loading with constant am-

plitude: Isotropic versus Anisotropic yield criteria

3.7.2 Limit load of a two-bay frame with single storey

This section presents a response of a two-bay frame with single storey as illus-

trated in Fig. 3.17. Again, the effect of the roundness factor q on the value of the

ultimate load factor λ for this kind of structure is explored by varying the value
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of q = 1, 2 and 10. The isotropic yield criterion is employed in this example. The

second order effect and the influence of interaction between axial and bending

forces are also examined for the roundness factor of q = 2 by performing four

different calculations: first order analysis without M − N interaction (OM-1st

order), first order analysis with M −N interaction (IMN-1st order), second order

analysis without M − N interaction (OM-2nd order) and second order analysis

with M −N interaction (IMN-2nd order). The first order elasto-plastic analysis

of this frame, without M-N interaction, has been performed using mathematical

programming technique by Spiliopoulos et al. [44]. For first order analyses (OM-

1st order and IMN-1st order), the transformation matrix B defined by Eq. (3.14)

becomes B0 that is constant and independent of displacement by replacing Ln

with L0. Without considering nonlinear geometry, the tangent stiffness matrix in

this case is given by

kg = BT
0 klB0 (3.113)

For the analyses without M − N interaction (OM-1st order and OM-2nd

order), the axial spring has been removed and only a elastic perfectly plastic

rotational spring is considered. The cross-section properties for each element of

the frame is described in table 3.1. The yield limit and the Young modulus are

taken as fy = 220 MPa and E = 210 GPa, respectively. Fig. 3.18 gives a

Table 3.1: Mechanical properties

Member I (×10−5m4) A (×10−3m2) Mp (kNm) Np (kN)

1 1 3 45 660

2 4 4 78 880

3 4 4 78 880

4 0.5 2 17.5 440

5 4 4 78 880

6 4 4 78 880

7 1 2 45 660
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Figure 3.17: Two-bay frame with a single storey
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(a) First order analysis
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Figure 3.18: Load factor λ versus roof lateral displacement with and without

M −N interaction / second order effects

comparison of force-displacement response of the frame between the each type

of analysis: OM-1st order, IMN-1st order, OM-2nd order and IMN-2nd order.

As expected, the load factor obtained with first order analysis (with or without

M − N interaction) is larger than the one computed with large displacement

analysis considering or not M − N interaction. The first order analysis without
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interaction compare very well with the result obtained by Spiliopoulos et al. us-

ing mathematical programming[44]. It can be seen from Fig. 3.18 that second

order effects manifest themselves soon after the first hinge has formed. For the

same value of the displacement, the corresponding load is smaller with a second

order analysis. The difference between the load multiplier obtained via first and

second order analyses continue to grow with increasing value of the displacement.

Once the maximum load has been reached, one can observe the typical descend-

ing branch associated with second order analysis of framed structures. For the

problem under consideration, neglecting the M − N interaction does not affect

much the response of the structure. Only a very small difference is observed with

a higher value of the load multiplier obtained from computations without M −N
interaction. This is due to the fact that the axial forces developed in the elements

are ineffectively small making insignificant influence on the value of the plastic

bending moments. Next, we investigate the effect of the roundness factor q on

the frame response. The load factor is plotted against the lateral displacement

in Fig. 3.19. The ultimate load factor obtained is λ = 6.899 for q = 1, λ = 7.345

for q = 2 and λ = 7.387 for q = 10. There is a significant difference between the

ultimate load factor computed with q = 1 and q = 2. However, this difference is

less important when comparing the load carrying capacity evaluated with q = 2

and q = 10.

3.7.3 One storey portal frame of Vogel

We investigate the response of the one-storey portal frame suggested by Vogel (

see Fig. 3.20). The cross-section properties are given as following: the Young

modulus E = 205GPa, yield stress 235 MPa and the columns of HEB 300 and

the beam of HEA 340. As in example 3.7.2 we explore the effect of the roundness

factor q on the value of the ultimate load factor λ by varying the value of q = 1,

2 and 10. The second order effect and the influence of interaction between axial

and bending forces are also examined for the roundness factor of q = 2. The
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Figure 3.19: Influence of the roundness parameter q on the Load factor λ.
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Figure 3.20: Configuration of Vogel’s frame
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Figure 3.21: Influence of the roundness parameter q on the Load factor λ.

load factor versus lateral displacement is illustrated in Fig. 3.21. In this figure,

the roundness effect is more significant than in the previous example. At the

beginning of the descending branch, the difference between the ultimate load

factors computed with q = 2 and q = 10 is quite small but progressively increases

as the curve for q = 2 drops more dramatically than for q = 10. The load factor

is much lower for the case of q = 1 compared to the other two. The axial forces

in this example grow so largely that their influence on the bending moments are

noticeable. This effect is confirmed in Fig. 3.22 where the curves relating the

load factor to the lateral displacement obtained from different types of analyses

are compared against each other. It is clearly evident that the load factor is much

lower with second order analysis when M −N interaction is not considered. This

difference almost dissapear once M −N interaction is taken nto account.

3.7.4 Two-storey frame

Two-storey frame shown in Fig. 3.23 is also analysed to determine the effect of

roundness parameter q as well as to discuss the different behaviors of the structure

according to the method of analysis and the plasticity model (with or without
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Figure 3.22: Load factor λ versus roof lateral displacement with and without

M −N interaction / second order effects

M − N interaction). The cross-section properties are given as following: the

Young modulus E = 210GPa, yield stress 220 MPa. The member properties are

given in Table 3.2 .

Table 3.2: Mechanical properties of the members

Member I (×10−5m4) A (×10−4m2) Mp (kNm)

I 2.77 43 162

II 1.51 21.5 81

Fig. 3.24 exhibits the relation between load factor and the lateral displacement

of two-storey frame corresponding to different value of q. In this example, the

roundness factor significantly affect the behavior of the two storey frame structure.

Again, the largest carrying load is obtained with a first order analysis considering

a pure bending plasticity model Fig. 3.25.
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Figure 3.23: Configuration of the two-storey frame
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Figure 3.24: Influence of the roundness parameter q on the Load factor λ.
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Figure 3.25: Load factor λ versus roof lateral displacement with and without

M −N interaction / second order effects.

3.8 Conclusion

This section presented a co-rotational beam elements for large-displacement in-

elastic analysis of planar framed structures. The local beam formulation consists

of a flexible beam element whose ends are connected to generalized plastic hinges.

In this model, the generalized plastic hinges which are modeled by combined ax-

ial and rotational springs are used to reproduce the plastification of the member.

The plastic behavior of the hinges is described by an anisotropic super-elliptic

yield surface and the normality rule. By varying the roundness factor, an infi-

nite number of yield surface are obtained making it possible to select the yield

function that best fit experimental data of any type of cross-section and material.

In addition to that, an integration of the constitutive law using Euler backward

scheme was provided for any typical value of roundness factor q. The integration

was also provided for special cases such linear and quadratic yield surface. For

the application to linear yield surface, close form solution to the optimization

was obtained. A proof of unique root was also given for the case of the quadratic

yield surface (q = 2) although close form expressions could not be found. Aside

from that, the numerical examples were additionally provided to show the ability

Anas ALHASAWI 110



3.8 Conclusion

of the model to capture the structural nonlinearities of the frame’s response and

to study the effect of the roundness factor q as well as the second order effects

on the frame structure’s response. The study on a clamped beam subjected to

monotonic and cyclic loading showed that the increase of load carrying capacity

of the beam with the increasing value of the roundness factor. The pinching effect

and cyclic softening were also seen in the beam’s response under cyclic loading.

In addition, three portal frames were also investigated by varying the value of q

and by performing different calculations (1st order/2nd order and with/without

M −N interaction). Small difference between the force-displacement curves ob-

tained from calculations with and without M −N interaction could be found for

the two-bay frame with single storey due to the reason that the axial forces devel-

oped in the elements are small. As expected, the other two frames gave significant

difference between the force-displacement curves obtained from calculations with

and without M −N interaction because the axial forces were large in these two

examples.
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Contact problem

***

A new concept for the contact at

the interface of steel-concrete

composite beams.

This chapter deals with the problem of contact at the interface of steel-concrete

composite beams. The F.E. model “Pontmixte”, able to study continuous com-

posite beams at real scale, was based on a finite element of composite beam which

considers only 4 degrees of freedom per node: both longitudinal displacements

of the slab and the steel beam and common vertical displacement and rotation

of the whole composite cross-section. This assumption did not allow any uplift

at the interface between both materials. A “new” finite element is proposed in

this work with 6 degrees of freedom per node in the aim to include a contact

algorithm in the model. The originality of the method is to use the Augmented

Lagrangian Method to solve the contact problem at the steel-concrete interface

including a new concept so-called:”Flying Node Concept”. This concept solves

the problem of “continuous” contact at the interface that could sometimes occur

along the beam especially in the case of distributed loads. The influence on the

loading capacity of the beam and also the influence on some design variables are

highlighted.
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4.1 Introduction

In the past few years, several finite element models have been proposed for the

analysis of composite steel-concrete beams; most of them are based on one-

dimensional beam elements with embedded interlayer slip. “Pontmixte” [1] is

one of the most innovative programs able to study composite continuous beams

at real scale making two numerical integrations - the first on the height of the

cross-section and the second along the longitudinal axis of the beam -. Neverthe-

less, the first version of this model assumed that there is no uplift between the

concrete slab and the steel beam. The whole composite cross-section had same

vertical displacement and same rotation. This assumption prevents the predic-

tion of possible uplift which could occur in particular loading cases for continuous

beams and especially on both sides of the intermediate supports.

Huang et al.[2], [3], proposed a non-linear layered finite element procedure for

predicting the structural response of reinforced concrete slabs subjected to fire.

The proposed procedure based on Mindlin/Reissner (thick plate) theory includes

both geometric and material non-linearities. In this study a total Lagrangian

approach was adopted in which displacements are referred to the original config-

uration and small strains were assumed. In the case of beams subjected to fire,

contact problem needs a special attention.

Amilton et al. [4], presented a family of zero-thickness interface elements

developed for the simulation of composite beams with horizontal deformable con-

nection, or interlayer slip. The proposed elements include formulations to be

employed with Euler-Bernoulli as well as with Timoshenko beam theories, com-

bined to displacement-based beam elements sharing the same degrees of freedom.

The elements that can be employed for the simulation of steel-concrete compos-

ite beams, was computed more recently by Batista et al. [5] combining with the

plate formulation of Huang. The proposed model used to analyse composite floor

that includes interface elements appeared able to give the relative longitudinal

and transversal displacements between the slab and the steel beam as-well-as the

relative vertical displacements in the transverse plane. Recently, Qureshi et al.
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[6], studied the effect of shear connector spacing and layout on the shear connec-

tor capacity in composite beams. A proposed 3D model (Plan dimensions: 1500

mm × 1500 mm), is loaded as a horizontal push test. This model developed with

ABAQUS, includes profiled sheeting and the interfaces concerned by the contact

algorithm are: (top profile sheeting – bottom of the concrete slab) and (shaft of

the headed studs – surrounding concrete). Running time and convergence diffi-

culty lead to consider 3D models inappropriate to study a continuous bridge beam

at real scale. Due to the non-linear nature of contact mechanics, such problems

in the past were often approximated by special assumptions within the design

process. Due to the rapid improvement of modern computer technology, one can

today apply the tools of computational mechanics to simulate applications which

include contact mechanisms numerically [7].

The model proposed herein takes into account the slip and lengthening-shortening

nonlinear behaviours of the connection. Whatever the zone where the contact oc-

curs after uplift, the relative vertical displacements along the longitudinal axis of

the beam is obtained without interpenetration between materials.

Different methods exist to solve the contact problem [8]. For example, in

penalty method, increasing the penalty factor to infinity would lead to the ex-

act solution, but in computational application it is not possible to use very high

penalty factors because of ill-conditioning of the system. The Lagrange mul-

tiplier method fulfill the contact constraints exactly by introducing additional

variables; for this reason the Lagrange multiplier generate an increment in the

system-matrix size. A combination of the penalty method and the Lagrangian

multiplier method leads to the so-called Augmented Lagrangian Method (ALM).

With this method, the penalty factor does not need to reach a high value to get

the convergence of the iterative process. This method will be used in the pro-

posed model to solve the contact problem at the interface between the concrete

slab and the steel beam subjected to the inequality constraint corresponding to

the non-penetrability between both materials.

For special loading cases, it could happen that the contact at the interface is

not only “node-to node” and concerns a part of the finite element length. The
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“Flying Node Concept (FNC)” is a new method proposed in this work to make

the appropriate adjustments to the final solution of the problem.

Practically, the connection design leads to a number of studs which are dis-

tributed uniformly along the continuous beam or by portions of it (Eurocode rec-

ommendations for studs’ design). This uniform distribution is generally validated

by models that use a node-based connection. In order to take into account the

actual continuous contact by using a node-based connection, the FNC algorithm

is proposed. The main objective is to propose a longitudinal stud distribution

that could be as realistic as possible by taking into account the continuous con-

tact. The first mesh of the beam (same as studs’ location) begins uniform and

at the end of calculation, a new stud location is proposed. If the studs’ distribu-

tion does not change significantly from the beginning until the end of calculation;

this means that the FNC algorithm was not activated significantly and so, no

continuous contact zones have been occurred.

4.2 The ”node-to-node” contact

4.2.1 Uplift tests

Before solving the contact problem at some composite cross-sections along the

beam during the loading history, other cross-sections where the uplift could occur

or the contact without penetration between both materials is satisfied should be

located.

With the index (s) for the slab and (g) for the steel beam, the following

notation is used:

d(s): distance between the interface and the centroid of the slab cross-section,

d(g): distance between the interface and the centroid of the steel beam cross-

section,

γj: stud slip at the node j,
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Figure 4.1: Contact at the node j – Slip only.

(
u

(s)
j v

(s)
j θ

(s)
j

)
: horizontal displacement, vertical displacement and rotation

of the slab cross-section at the node j, and

(
u

(g)
j v

(g)
j θ

(g)
j

)
: horizontal displacement, vertical displacement and rotation

of the steel beam cross-section at the node j, and

The following tests must be activated depending on the sign of the variable αj =

v
(s)
j − v

(g)
j :

• Case 1: the contact without penetration is satisfied at the node j → the

stud is only subjected to a slip (Fig. 4.1).

• Case 2: the uplift of the concrete slab with the bending of the steel beam

→ the contact does not exist at the node j and the bolt is subjected to both

slip and lengthening (Fig. 4.2).

• Case 3: the uplift of the concrete slab greater (in absolute value) then the

uplift of the steel beam → the contact does not exist at the node j and the

stud is subjected to both slip and lengthening (Fig. 4.3).
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Figure 4.2: Contact at the node j – Slip and slab uplift + steel beam lowering.
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Figure 4.3: Contact at the node j – Slip and slab uplift + steel beam uplift.
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4.2.2 “Node-to-node” contact solution

4.2.2.1 Equilibrium equations

The Augmented Lagrangian Method is used to solve the “node-to-node” contact

problem. For elastic deformation in solid mechanics, the kinematically admitted

displacements that satisfy a stable equilibrium state are those whom minimize

the total potential energy – this is the kinematic approach. In our problem, the

total potential energy is:

V =
1

2
∆tK∆−∆tF (4.1)

with: ∆ =
∑
de , K =

∑
Ke and F =

∑
fe where: de is the finite

element displacement vector, Ke is its stiffness matrix and Fe is its load vector.

The minimization of Eq. (4.1) corresponds to:

K∆ − F = 0 (4.2)

The problem of partial derivative equations is replaced by a linear system of

equations and the minimal value of V in classical finite element approach of

unconstrained problem is:

Min V = −1

2
∆tF (4.3)

4.2.2.2 Application of ALM to total potential energy

The constrained problem to solve at each connected node can be written as fol-

lows: {
Min V

subjected to α ≥ 0
(4.4)

The problem can be solved as a series of unconstrained minimization problems.

It is pointed out that the contact depends on the behaviour of the connectors.

Even if the shear failure of a connector (for example) corresponds to 6 mm slip, all

along the beam its maximum slip remains around 2 mm (always in elastic range)

in serviceability limit state. Similar remark could be done for the tension of a
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connector. The use of Minimum Potential Energy in this case is then justified.

The penalty method approach gives:{
Π = V + p

2

∑
αj

2

After each iteration:updating p
(4.5)

At iteration (I ), penalty method solves this problem, then at iteration (I+1 ) it

re-solves the problem using a largest value of the penalty factor p using the old

solution as the initial guess.

The ALM combines the penalty method with the Lagrangian multipliers method.

The ALM uses the following constrained objective:{
Π = V + p

2

∑
αj

2 −
∑
λjαj

After each iteration: updating p and replacing λj by λj − pαj
(4.6)

The advantage of the ALM is that unlike the penalty method, it is not necessary

that p have a very large value in order to solve the original constrained problem.

Instead, because of the presence of the Lagrangian multiplier λj, p can stay much

smaller.

According to Eq. (4.6), the modifications that have to be done to the assembled

stiffness matrix and to the corresponding loading vector, at each connected node

j, are: It is easy to verify that the equilibrium is satisfied in Fig. (4.4). The

stiffness matrix remains symmetric and there is one line and one column added

for each node being in contact. In practice, it is easier to add the supplementary

equations corresponding to the nodes being in contact, at the end of the initial

system as shown in Fig. (4.5). The system of equations to be solved has finally

a variable dimension between (n× n) and (2n× 2n) maximum depending on the

number of nodes being in contact (q1, q2, q3, .....). In Fig. (4.5), each value of the

Lagrangian multiplier λqi corresponds to a node qi being in contact. A penalty

factor pqi will be adjusted for each node qi; its initial value is equal to 1 and

it increases during iterations (multiplying by 10 at each iteration). During the

material nonlinear iterative process, the number of nodes being in contact could

change.
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Figure 4.4: ALM is activated at node j.
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4.2.3 “Continuous” contact solution

During the loading history, it is possible to have some zones subjected to a contact

that concerns a part of the element-length and not only its nodes. This could

occur in case of distributed load more than in case of concentrated loads. In order

to take into account this actual phenomenon, one proposes an approach so called

“Flying Node Concept (FNC )”. This method should be included in the iterative

process that solves the contact problem at the interface previously described.
 

 

Slab

Girder

(i) (j)(i-1) x

1,IL
2,IL

 

 

Slab

Girder

(i) (j)(i-1)

1,I 1L  2 ,I 1L 

Figure 4.6: Adaptive mesh - FNC

The FNC adapts the longitudinal mesh of the beam during the iterative pro-

cess in order to take into account the “continuous” contact to a “node-to-node”

connection. If the initial mesh of the beam appears unchanged at the end-loading

history, it means that all the contacts have been “node-to-node”; otherwise, the

final mesh will inform about the zones that have been subjected to a “continuous”

contact. It is worth to mention out that these zones could sometimes appear and

sometime disappear depending on the loading history of the beam. The final

solution corresponding to the end-loading and to the real final mesh depends on
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4.2 The ”node-to-node” contact

all intermediate calculation steps. If the FNC leads to major changes to the

mesh and thus to the connection in certain zones of the continuous beam, the

connection should be correctly distributed in these zones during the steel beam

conception.

One considers two consecutive finite elements [(i− 1)˘i] and [i˘j] with respective

element lengths L1,I and L2,I at iteration I (Fig. 4.6.a). One suppose that the

test concerns the node i of the finite element [i− j] and using appropriate shape

functions Ni=1,...4 one calculates the vertical displacements of both the slab and

the steel beam as follows:{
v(s) (x) = N1 (x) v

(s)
i +N2 (x) θ

(s)
i +N3 (x) v

(s)
j +N4 (x) θ

(s)
j

v(s) (x) = N1 (x) v
(g)
i +N2 (x) θ

(g)
i +N3 (x) v

(g)
j +N4 (x) θ

(g)
j

(4.7)

The difference between both vertical displacements of the concrete slab and the

steel beam, previously called α, is easily obtained with following equation:

αi (x) = N1 (x)
[
v

(s)
i − v

(g)
i

]
+N2 (x)

[
θ

(s)
i − θ

(g)
i

]
+N3 (x)

[
v

(s)
j − v

(g)
j

]
+N4 (x)

[
θ

(s)
j − θ

(g)
j

]
or:

αi (x) = N1 (x) ∆vi +N2 (x) ∆θi +N3 (x) ∆vj +N4 (x) ∆θj (4.8)

This function depends only on the longitudinal x position of the node i. the

objective now is to calculate, if it exists, the distance x̄ given by αi (x̃) = 0.

With:

N1 (x) =

(
1− 3

x2

L2
2,I

+ 2
x3

L3
2,I

)
, N2 (x) =

(
x− 2

x2

L2,I

+
x3

L2
2,I

)

N3 (x) =

(
3
x2

L2
2,I

− 2
x3

L3
2,I

)
and N4 (x) =

(
− x2

L2,I

+
x3

L2
2,I

)

Eq. (4.8) leads to following equation:

αi (x) = 2x3

[
(∆vik−∆vjk)

L3
2,I

+
(∆θik+∆θjk)

2L2
2,I

]
− 3x2

[
(∆vik−∆vjk)

L2
2,I

+
(2∆θik+∆θjk)

3L2,I

]
+ x∆θik + ∆vik (4.9)

Finally, the equation αi (x̃) = 0 can be easily solved using trigonometric method

for example. Only real solutions are considered and if there is more than one
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solution, the maximum one is restrained while it remains less than actual finite

element length. The beam mesh changes at considered node for next iteration

I + 1 as follows:

L1,I+1 = L1,I + x̃ and L2,I+1 = L2,I − x̃ (4.10)

Only shape function on the right side of the node i are employed because the

FNC tests all the nodes from the left side to the right side of the beam (x axis

sense); the first node being the first support which never moves like the other

nodes located at each support of the continuous beam. If the test beings from

the second element at the node i, appropriate length changes will concern both

elements [(i− 1)− i] and [i− j] and so on...

Fig. 4.6 shows how the FNC runs as an adaptive mesh depending on the value

 

 

Contact iteration loop « I » 

ALM – test contact at each node 
 Contact at a node is solved  penalty factor obtained (p = pI) 
 Contact at a node is not solved yet  penalty factor increases (pI+1 = 10pI) 

Contact on the whole beam is solved: 
Each node has its own penalty factor 

 Re –mesh the continuous beam 

 Re-located the connectors 
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Load increment: J = J+1 
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FNC  

V
er

if
ic

at
io

n 
if

 v
al

ue
s 

of
 p

 
al

w
ay

s 
av

ai
la

bl
e 

Figure 4.7: Contact algorithm (ALM + FNC )

of the distance x̃ obtained from Eq. (4.9). In the case where x̃ is too close to the

finite element length, one observes from Eq. (4.10) that L2,I+1 could be very low
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and then the convergence of the iterative process could be affected. Two methods

could be adopted:

- Method 1: Limiting x̃ to an arbitrary value (less than half of the finite element

length for example). This method insures to keep constant the number of

finite element, it remains easy to compute and it gives enough accurate

results.

- Method 2: If L2,I+1 is too low, actual finite element disappears and the number

of finite elements changes. In (Fig. 4.6.b), both finite elements [(i− 1), (i)]

and [(i), (j)] merge and become only one finite element [(i − 1), (j)]. This

method is more difficult to compute because it needs a renumbering of the

mesh during the iterative process. In addition, the solution could be affected

by the final mesh density that is not suitable.

In Fig. 4.7, the FNC algorithm is shown with its links to the ALM in order to

solve the contact problem. It is worth to mention out that the set of values ob-

tained for the penalty factor p is verified by reconnecting FNC to ALM (at same

contact iteration). Generally, these values are still available and the verification

is directly satisfied; this is due probably to: αi (x̃) = 0 (Eq. 4.8).

4.3 THE COMPOSITE BEAM F.E.

4.3.1 Nodal variables

The user-friendly software ”Pontmixte” has been upgraded to a ”new” version

based on a new finite element formulation for the composite beam element. Six

degrees of freedom are necessary (instead of four in the preceding version), to

take into account the contact/uplift at the interface. The concrete slab as well as

the steel beam has 3 degrees of freedom at each node (i) and (j ) Fig. 4.8. Nodal

displacements vector of the composite finite element is:

{de} =
{
u

(s)
i v

(s)
i θ

(s)
i u

(g)
i v

(g)
i θ

(g)
i u

(s)
j v

(s)
j θ

(s)
j u

( g)
j v

(g)
j θ

(g)
j

}t
(4.11)
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Figure 4.8: Definition of the nodal variables

Using corresponding classical shape function N , the displacement at each fibre

of the composite cross-section is then

{d (x, y)} = [N (x, y)] {de} (4.12)

Where

[N (x, y)] =

[
N

(s)
i 0 N

(g)
i 0

0 N
(s)
j 0 N

(g )
j

]
(4.13)

In Eq. 4.13, N includes (3 × 3) matrices. The stud slip and lengthening of

(shortening) are calculated considering the translation and the rotation of each

material. Concerning the lengthening, the stud will be supposed fixes to the

concrete:

Stud-slip: γj =
[
u

(s)
j + d(s)θ

(s)
j

]
−
[
u

(g)
j + d(g)θ

(g)
j

]
(4.14)

Stud-slip: αj = v
(s)
j − v

(g)
j (4.15)

4.3.2 Kinematic relationships

The kinematic variables are respectively the longitudinal strain and the curvature

of each material cross-section:{
ε

(s)
x = ∂u(s)

∂x
and ε

(g)
x = ∂u(g)

∂x

κ
(s)
x = ∂2v(s)

∂x2
and κ

(g)
x = ∂2v(g)

∂x2

(4.16)
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Kinematic relationship and corresponding strain vector are

{ε} = [B] {de} with {ε}t =
〈
ε

(s)
x κ

(s)
x ε

(g)
x κ

(g)
x

〉
(4.17)

The kinematic matrix can be written explicitly as follows:

[B] =


−B1 B2y B3y 0 0 0 B1 −B2y

(
B3 − 2

L

)
y 0 0 0

0 −B2 −B3 0 0 0 0 B2 −
(
B3 − 2

L

)
0 0 0

0 0 0 −B1 B2y B3y 0 0 0 B1 −B2y
(
B3 − 2

L

)
y

0 0 0 0 −B2 −B3 0 0 0 0 B2 −
(
B3 − 2

L

)


(4.18)

with: B1 = 1/L, B2 = 6/L2 − 12 (x/L3) , and B3 =4/L− 6 (x/L2)

4.3.3 Stiffness matrix of the composite finite element

Paying attention to the kinematic matrix, one observes that it depends on the

axial x position of the concerned cross-section and on the depth positiony of each

material-fiber at the same cross-section. The composite beam cross-section is

then divided into a number of horizontal fibers (m for each steel beam flange,

n fibers for the steel beam web and p fibers for the slab). The algorithm takes

firstly a Gauss-Legendre numerical integration towards the element-depth with 2

gauss-points for each fiber (1st integration along y axis- Fig. 4.9). By summing

different stiffnesses along y axis, the result (that correspond to the stiffness of

the composite cross-section) is affected to one of the Gauss points in order to

understand the 2nd integration along x axis (Fig. 4.9) that uses also 2 Gauss

points.

In order to simplify the presentation, the first numerical integration will not

appear explicitly. One begins by the element stiffness matrix of the unconnected

[(i) , (j)] composite beam that can be easily obtained by:

[
K̃e

]
=

∫ L

0

[B]t [D] [B] (4.19)

Anas ALHASAWI 135



4. CONTACT PROBLEM

 

 

 

 

m fibres 

n fibres 

m fibres 

2 Gauss points 

i    j 

x 
y 

i  j 2 Gauss points 

y 

x 

2nd integration along x axis 

A 

A 

B 

B 

1st integration along y axis 

A‐A or B‐B 

p fibres 

Figure 4.9: Two numerical integrations (one along each axes y and x)

with the behaviour matrix [D] in accordance with Eq. 4.16:

[D] =


(EA)(s) 0 0 0

0 (EI)(s) 0 0

0 0 (EA)(g) 0

0 0 0 (EI)(g)

 (4.20)

E : Secant Young’s modulus, A: cross section area and I : quadratic inertia

of the cross-section.

A secant algorithm is used to solve nonlinear equations due to nonlinear behaviour

of materials.

In order to include a connector at the node (j ) of the finite element [(i) , (j)] for

example, the principe of virtual work is applied to set the global relationship of

the stud behaviour under shear loading as-well-as under a tension.

• The internal work of an infinitesimal slip of the stud at the node (j ) and

corresponding nodal variable are

δW ss
int = Qjγj = Qj

〈
1 d(s) −1 −d(g)

〉{
δdssj

}
(4.21){

δdssj
}t

=
〈
δu

(s)
j δθ

(s)
j δu

(g)
j δθ

(g)
j

〉
(4.22)

Anas ALHASAWI 136



4.3 THE COMPOSITE BEAM F.E.

Qj is the stud shear force and d(s) and d(g) are defined in Fig. 4.8.

Corresponding nodal forces are{
F ss
j

}t
=
〈
N

(s)
j M

(s)
j N

(g)
j M

(g)
j

〉
(4.23)

• The internal work of an infinitesimal lengthening of the stud at the node

(j ) and corresponding nodal variables are

δW st
int = Pjδαj = Pj

〈
1 −1

〉{
δdstj

}
(4.24){

δdstj
}t

=
〈
δv

(s)
j δv

(g)
j

〉
(4.25)

Corresponding nodal forces are{
F st
j

}t
=
〈
T

(s)
j T

(g)
j

〉
(4.26)

• External works related to the nodal forces given in Eqs. (4.23) and (4.26)are:

δW ss
ext =

{
δdssj

}t {
F ss
j

}
(4.27)

δW st
ext =

{
δdstj

}t {
F st
j

}
(4.28)

• The principle of the virtual works leads to

δW ss
int = δW ss

ext (4.29)

δW st
int = δW st

ext (4.30)

The stud slip behaviour is defined as the relationship between the force at the

stud head and the slip calculated between its base and the force point application.

This stud slip has been defined previously in Eq. (4.14) and Rss is the stub slip-

resistance

Qss
j = Rssγj (4.31)

From Eq. (4.29), the stud stiffness matrix [Kss] related to its slip-resistance can

be easily obtained δW ss
int = Qjγj = Rss

{
δdssj

}t〈
1 d(s) −1 −d(g)

〉t 〈
1 d(s) −1 −d(g)

〉{
dssj
}

δW ss
ext =

{
δdssj

}t {
F ss
j

}
(4.32)
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{
F ss
j

}
= Rss

〈
1 d(s) −1 −d(g)

〉t 〈
1 d(s) −1 −d(g)

〉{
dssj
}

(4.33)

The stud stiffness matrix related to its slip-resistance is finally

[Kss] =


1 d(s) −1 −d(g)

d(s)
(
d(s)
)2 −d(s) −d(s)d(g)

−1 −d(s) 1 d(g)

−d(g) −d(s)d(g) d(g )
(
d(g)
)2

 (4.34)

Concerning the stud lengthening behaviour, same procedure then the one devel-

oped for the stud slip-resistance is carried out. The stud tension resistance is

called Rst and the stud lengthen has been previously defined in Eq. (4.15).

P st
j = Rstαj (4.35) δW st

int = Pjδαj = Rst
{
δdstj

}t〈
1 −1

〉t 〈
1 −1

〉{
dstj
}

δW st
ext =

{
δdstj

}{
F st
j

} (4.36)

{
F st
j

}
= Rst

〈
1 −1

〉t 〈
1 −1

〉{
dstj
}

(4.37)

The stud stiffness matrix related to its lengthening-resistance is finally

[
Kst
]

= Rst

[
1 −1

−1 1

]
(4.38)

After replacing by the symbol (∗)the terms of the stiffness matrix related to

an unconnected composite beam element given in Eq. (4.19) concerning an un-

connected composite beam, the stiffness matrix of the finite element [(i) , (j)]

representing a connected campsite beam is

[Ke] =
[
K̃e

]
+ [Kss] +

[
Kst
]

(4.39)
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Respecting the nodal variables organization given in Eq. (4.11), this matrix can

be written explicitly as follows:

[Ke] =



∗ ∗ ∗ 0 0 0 ∗ ∗ ∗ 0 0 0

∗ ∗ 0 0 0 ∗ ∗ ∗ 0 0 0

∗ 0 0 0 ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ 0 0 0 ∗ ∗ ∗
∗ ∗ 0 0 0 ∗ ∗ ∗
∗ 0 0 0 ∗ ∗ ∗
∗+Rss ∗ ∗+ d(s)Rss −Rss 0 −d(g)Rss

∗+Rst ∗ 0 −Rst 0

∗+
(
d(s)
)2
Rss −d(s)Rss 0 −d(s)d(g)Rss

Symmetry ∗+Rss ∗ ∗+ d( g )Rss

∗+Rst ∗
∗+

(
d(g)
)2
Rss


(4.40)

4.4 Numerical simulation

In order to proof that the use of contact algorithm is relevant to obtain accurate

results, first numerical investigation concerns the comparison between experimen-

tal test results and the ones obtained by the“old”model with 4 degrees of freedom

per node on one hand and the “new” model with 6 degrees of freedom per node

on second hand.

Second numerical simulation will concerns an application for the FNC considering

the same twin-beam subjected to a distributed load.

4.4.1 Comparison with an experimental test

The steel-concrete composite twin-beam considered (Fig. 4.10.a) has been sub-

jected to an experimental test at Structural Laboratory of INSA-Rennes. The

beam is loaded in accordance with the following stages:

- Stage 1: The self-weight is taken into account (4.17 kN/m for sagging zones

and 4.26 kN/m for hogging ones).
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Figure 4.10: (a) Geometrical characteristics of the twin-beam. (b) Loading stage

2 and 3

- Stage 2: Concentrated loads “P1” and “P2” are applied at the mid-spans of the

beam until the magnitude of 550 kN for each.

- The load “P2” remains constant and the load “P1” continue to increase from

550 kN to 850 kN.

In Fig. 4.10.b is plotted the loading history corresponding to the stages 2 and 3.

The stage 1 is not represented because it represents a distributed load and it is
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Table 4.1: Numerical values of mechanical characteristics

Material Parameters

Concrete Ecm = 36, 000 MPa, fck = 40 MPa, fctm = 2 MPa, εm = 0.0022, εr = 0.004

Steel profile E(a) = 190, 000 MPa, f
(a)
y = 475 MPa, f

(a)
u = 620 MPa, µ

(a)
1 = 10, µ

(a)
2 = 28

Rebar E(s) = 200, 000 MPa, f
(s)
y = 443 MPa, f

(s)
u = 565 MPa, µ

(s)
1 = 1, µ

(s)
2 = 32

Stud Qu = 80, 000 MPa, C1 = 0.7, C2 = 0.8, γmax = 6 mm

different on hogging and sagging zones of the continuous beam.

It is assumed that the hogging zone concerns 15% of the span length on each side

of the intermediate support. For this zone, the thickness of the bottom flange

is equal to 15 mm and for other cross-sections (in sagging zones) only 10 mm

is required. The top flange thickness is equal to the bottom one. Related to

mechanical behaviour of each material (Fig. 4.11), the mechanical properties are

summarized in Table 4.1.

Concrete:
σ(c)

fcm
=

kη − η2

1 + (k − 2) η
with: η =

ε(c)

εm
> 0 and k = 1.1Ecm

εm
fcm

(4.41)

Stud: Q = Qu

(
1− e−c1|γ|

)c2
(4.42)

As mentioned previously, with the assumption of 4 degrees of freedom per node,

the contact at the interface could not be taken into account as-well-as possible

uplifts along the beam. With this assumption, the comparison between numerical

and experimental results could not be totally satisfactory. In Fig. 4.12 obtained

from [16], the comparison of the beam deflexion between numerical and exper-

imental results with the previous “old” model “Pontmixte” shows a significant

difference especially over the elastic range. This result was predictable because

the penetration as-well-as the uplift at the material interface begin to be signifi-

cant when the load increases. In this figure, one observes that the deflexion under

“P1” has been underestimated with this numerical model since “P1” continues to

increase over 550 kN. Unfortunately the measurements under the load “P2” have

not been done, but the conclusion should be similar to “P1”.
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Figure 4.11: Material mechanical behaviour

It is clear that the effect of the interface “behaviour” becomes significant for high

load level and especially under concentrated loads or at intermediate supports.

For this reason, following numerical simulations, using the proposed “new” model

(6 degrees of freedom per node), should help to understand how the contact al-

gorithm could give more accurate results.

For the same twin-beam, are compared in Figs. 4.13 some design variables
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Figure 4.12: Comparison of deflexions – “old” model [16]

obtained with the “new” finite element model. The left curves correspond to the

model without activating the ALM algorithm and the right ones with activating

the ALM algorithm. The left curves are plotted in the aim to identify the critical

cross-sections along the beam where the ALM algorithm should be activated. In

Figs. 4.13.(a,b) and Figs. 4.13.(c,d) are plotted respectively the comparison of

vertical displacements between the slab and the steel beam and the comparison of

the rotations for the last-step loading. As it was predicted, the left curves related

to the cross-sections located under the concentrated loads show a penetration

of the concrete slab in the steel beam. This penetration is theoretical and not

realistic and it will be corrected by activating the ALM algorithm (right curves).

It is pointed out that the minimum gap at the interface is fixed to 103 mm for

these numerical simulations. This value leads to reasonable time computation for

convergence of the contact iterative process. In Figs. 4.13.(e,f), are plotted the

stud slip curves and the lengthening-shortening ones. The penetration and the

uplift observed in the left curves disappear in the right curves; maximum uplift is

observed at each side of the intermediate support. The slip curves become more

smoothed with the ALM algorithm especially under the concentrated loads.

One observes that the use of the ALM algorithm makes changes in the magnitude

of the design variables and therefore should have a special attention.
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In Fig. 4.14 are plotted similar curves as in Fig. 4.12 but for the “new’ finite

element model activating the ALM algorithm. One observes the incidence on

the beam deflexion under the concentrated load “P1”; the correlation between

numerical and experimental results is more satisfactory in the post-elastic range.

4.4.2 influence of the FNC

In order to show how “Pontmixte” solves the problem of the “continuous” contact,

precedent twin-beam is now subjected to a distributed load p. The calculation is

carried out until reaching elastic hogging bending at intermediate support. Initial

mesh of the twin-beam contains 10 finite elements per beam; this mesh is called

Mesh-0. The results of two calculations are compared:

- Calculation1 : Contact solved with ALM

- Calculation2 : Contact solved with ALM + FNC

In the aim to avoid additional differences between the results due to different

numbers of finite elements, Method1 presented in section 4.2.3 will be used in

this example. Initial mesh will change several times during the loading history of

the beam (Fig. 4.15). Only the final mesh so called Mesh-n will be highlighted

because it corresponds to the last step loading. Mesh-0 and Mesh-n are presented

in Fig. 4.16. One observes that the difference between the finite element lengths

mostly concerns both sides of the intermediate support and also the zones close

to the end-supports. These zones correspond to the ones that are subjected to a

“continuous” contact and solved by the FNC. It is pointed out that the symmetry

of the problem is retained until convergence. For Calculation1 and Calculation2

same stopping criterion is used: reaching elastic hogging bending at intermediate

support. Elastic hogging bending is reached for p = 280 kN/m and p = 264 kN/m

respectively for Calculation1 and for Calculation2. For both loading levels, the

stresses in the composite cross-sections at mid-span and at intermediate support
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are given in Fig. 4.17.a and b.

The hogging bending is obtained when the top beam-flange reaches its yield

stress
(
f

(a)
y = 475 MPa

)
. The stress difference observed on hogging bending be-

tween both calculations is due only to the precision and it appears neglectable

and same corresponding hogging bending is M−
s = M−

el = −871 kN/m. Never-

theless, in sagging zone, the stress difference is greater than the one on hogging

and should not be neglected. In Calculation2, the sagging bending is greater than

in Calculation1; this explains why the elastic hogging bending is reached faster

(Table 4.2).

One compares now the stress distribution of both calculations for same load level

Table 4.2: Comparison of bending moments.

Calculation Sagging bending Hogging bending

Calculation 1 (ALM)

P=280 kN/m M+
s = 570 kN/m M−

s = M−
el = 871 kN/m

Calculation 2 (ALM + FNC)

P=264 kN/m M+
s = 548 kN/m M−

s = M−
el = 871 kN/m

Calculation 1 (ALM)

P=264 kN/m M+
s = 534 kN/m |M−

s | = 871 kN/m <
∣∣M−

el

∣∣
(p = 264 kN/m). Fig. 4.17.b and Fig. 4.18 show that in Calculation1 the stresses

are underestimated and the moments (Table 4.2) are around 3% less in sagging

zone and 6% less on hogging zone. This difference is mostly due to the “continu-

ous” contact that increases the stud slip in Calculation 2 and not in Calculation

1.In Fig. 4.19 are plotted the stud-slip curves for both calculations, maximum

differences are observed in the zones that are mostly subjected to a “continuous”

contact (at each side of intermediate support and near the end-supports – see

Fig. 4.16).
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4.5 Conclusion

The finite element model (with 6 degrees of freedom per node) for steel-concrete

composite beams presented in this research has been developed in order to solve

the problem of contact at the steel-concrete interface using the Augmented La-

grangian Method. The first numerical example is provided to assess the accuracy

and robustness of the proposed formulation by comparison to experimental test

results to confirm the reliability of the model. A new concept (FNC ) has been

proposed to take into account the continuous contact that sometimes occurs for

special loading cases. The proposed method is easy to compute and to include

in the algorithm of the Augmented Lagrangian Method. The second numerical

simulation is proposed to show the influence of the FNC on some design variables.

Main conclusions for the present work could be summarized as follows:

• The numerical simulation shows that the “old” model of the program“Pont-

mixte” (with 4 degrees of freedom per node) could not take into account

the real behaviour at the steel-concrete interface. Consequently, the com-

parison with experimental results was not satisfactory especially for high

load level and under concentrated loads as-well-as at intermediate support.

The separation between the slab and the steel beam degrees of freedom

appears necessary, the “new” model with 6 degrees of freedom per node is

then proposed.

• Contact algorithm based on ALM is well-adapted for composite structures

and appears easy to compute and the convergence is relatively fast. The

practical organization of the system given in Fig. (4.5) permits to avoid

the node-renumbering of the system. The comparison between “without”

or “with” ALM algorithm highlights the “critical” zones in the continuous

beam where the unrealistic penetration of the concrete slab in the steel

beam occurs and then is corrected by the use of ALM algorithm. It is

pointed out that the uplift obtained when the calculation does not take

into account the ALM algorithm is also unrealistic and is corrected by the

use of ALM algorithm.
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• The proposed model solves the node-to-node contact that is enough accu-

rate in case of concentrated loads. Nevertheless, for distributed loads, the

contact becomes more continuous and then the model should include the

FNC. The example presented in this work shows that the loading capacity

of the beam could be lower than the one predicted by a calculation with-

out FNC (about 6% in this example). This percentage even if it remains

relatively low, should be taken into account during the design of the beam

because it could be not neglectable for other loading cases (for example

asymmetrical distributed load on the beam). Nevertheless, more numerical

simulations and experimental tests should be carried out to conclude on

practical purposes.

• Solving contact problem at the steel-concrete interface has an influence on

the design variables especially on the stud slip. It could be interesting to

study its influence on the degree of connection in order to optimize the

connection design.
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Figure 4.13: (a,b) Comparison of the vertical displacement. (c,d) Comparison

of the cross-section rotation. (d,e) Comparison of the stud slip and the stud

lengthening-shortening.
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Figure 4.15: Successive beam meshes.
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Mesh-n
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p

Figure 4.16: Comparison between initial and final mesh.
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Figure 4.17: (a) Stress distribution in sagging and hogging cross-sections Calcu-

lation1 (ALM )– p = 280 kN/m. (b)Stress distribution in sagging and hogging

cross-sections Calculation2 (ALM + FNC ) – p = 264 kN/m.
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domain method for large deformation frictional contact. Problems, Part 1:

Theoretical basis. Computer Methods in Applied Mechanics and Engineering

198 (2009) 2591-2606.

Anas ALHASAWI 154



BIBLIOGRAPHY

[16] Guezouli S., Hjiaj M. and Nguyen Q.H. Local buckling influence on the

moment redistribution coefficient for composite continuous beams of bridges.

The Baltic Journal of Road and Bridge Engineering (BJRBE), 2010, Vol.5,

n◦4, pp. 207-217.

Anas ALHASAWI 155



BIBLIOGRAPHY

Anas ALHASAWI 156



5

C
h

ap
te

r

Summary and Conclusion

***

We have developed in this thesis some computational tools for steel and steel-

concrete composite structures of buildings and bridges.

The bibliographic study allowed us to review the state of the art concerning the

component-based method and its performance in order to estimate the behavior of

a bolted end-plate connection. This method is easy to compute and it has been the

subject of various research during the last decade for finally been adopted in the

design standard (Eurocode). It appears that different variants of the model have

been developed this last decade for such type of connection. Under monotonic

loading, these purposes allow to predict efficiently the Moment-Rotation curve of

an isolated joint. However, the response of the connection under cyclic loading

remains in progress. This field interests the research because of the performance

of this semi-rigid connection, especially in seismic zones.

Therefore, in this work, we focus our attention on the cyclic response of the

bolted end-plate connection by improving existing component-based model on one

hand and deepen the well-known method of plastic hinges, on the other hand.

Firstly, we concentrated our attention on the improvements that we considered

necessary to take into account in the component-based model. Beginning by

”purely steel” connection subjected to a cyclic rotation, we took into account the

separation between the end-plate and the column flange by making appropriate

changes in the behavior of each component within the joint. After that, for the

most frequent case of two bolt-rows, if the group resistance could arise (in addition
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to the individual resistances of each bolt-row), an elastoplastic formulation of

the model proposed by Cerfontaine has been developed. It is highlighted that

the group effect has a significant influence on the post-elastic behavior of the

connection.

The proposed component-based model leaded to a finite element of joint with

zero-length and appropriate degrees of freedom in order to be finally assembled

with a beam finite element. The new macro-finite element consists of a beam

finite element with one finite element of joint connected at each end. A numerical

study has been carried out on a steel beam-to-column flush end-plate connection

subjected to axial force and bending moment. The results present the ability of

this model to capture the joint response and the influence of the axial force on

the moment-rotation curve.

In the second stage, we followed the study by assuming plastic hinges at each

end of the steel beam. This method is well-known and has its limits. Our objective

was to make some numerical simulations in order to highlight the influence of the

form of the yield surface on the bearing capacity of a framed structure. The yield

surface defined in the plane (M-N) with M as the bending moment and N the axial

force in the considered cross-section, can take different forms depending on the

value given to a factor q so-called ”roundness factor”. It has been shown that the

influence of the rolled factor has a significant influence on the membrane effect

in large displacements as well as on the bearing capacity. Moreover, in cyclic

behavior of an isostatic beam, the effect of this factor has been also observed

on the pinching effect and also on the softening of the cyclic curve. Finally, the

model tested with or without (M-N) interaction on framed structures shown that

the bearing capacity depends on the number of frames in the structure.

In the third stage of this work, it has been proposed to connect a steel-concrete

composite beam to the proposed model of connection developed in the first stage.

This work requiring validations at different levels of the modeling, it was agreed

to start by proposing an efficient model of composite beam (with 6 dof per node)

in small displacements taking into account the material nonlinearity of the beam

as well as the contact between the steel and the concrete. The approach using the
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augmented Lagrangian method has been chosen for its rapidity with respect to

the penalty method. The improvements made in this study mainly concerned the

improvements made to include a continuous contact within the composite finite

element by means of an adaptive mesh. This approach so-called ”Flying Node

Concept” gave more realistic results than those obtained with a unilateral contact

approach.

In parallel, a simplified composite beam model (4 ddl per node) which does not

take into account the contact between materials but only the slip at their interface,

has been developed to test the assembly with the proposed joint model developed

in the first section. This development includes only 2 non-linearities (material and

geometrical) leaving out the third non-linearity that the contact could produce.

This assumption, allows to make calculations in large displacements insuring a

relative good convergence of the iterative process. This model has been presented

in the Appendix of this thesis and is currently the subject of some numerical

simulations for validation.

It will be appropriate in the immediate perspective to finalize a relatively

”complete” model of steel-concrete composite beam in large displacements taking

into account the contact and ready to be assembled to the proposed component-

based model. The obtained macro-element will be easily used to carry out any

structural analysis in large displacements. This model will be easy to compute

and will give more accurate results than those obtained at this day.

In a more distant perspective, numerical simulations have to be envisaged on

different framed structures with dissipative bolted connections in large displace-

ments in order to achieve the validation of the proposed model. Experimental

(small scale) experiments have to be planned at this stage.
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Composite joint

***

The composite joint is a result of the combination between steel connection and

reinforcement slab. The analytical behavior of a beam-to-column composite joint

(moment –rotation curve) can be evaluated depending on the component method

that adopted by EC3 and EC4. Actually, the same procedure that used in the

steel joint will be used for the composite joint. We can consider the steel joint as

a particular case of the composite joint. Therefore, the same mechanical model,

as in steel connection, with additional rows, for reinforcement slab component,

will be used to derive the relationship between local forces and its corresponded

deformations for an isolated composite connection.(See Fig A.1)

As depicted in Fig A.1 a component based model for an isolated composite

joint, each components of the joint are simulated by a nonlinear springs. The two

parts of the composite joint are not connected.

The slab part composite of reinforcement steel bar and concrete, herein each

steel bar is represented by a nonlinear spring that will be activated in tension and

compression. In the other hand, the concrete part is divided in several fibers and

they work just in compression.

The second part represents the steel joint which have been study obviously.

It consists of bot-rows and beam flange rows.
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Concrete in compression

Reinforcement steel in Tension

Beam flange row in compression

Bolt row in tension

Slab

Girder

(a) Double sided composite joint configuration

Studed connection

(b) Mechanical model – Initial configuration

Figure A.1: Composite joint and its corresponding mechanical model

A.1 Composite joint element formulation

The composite joint element is a zero-length element, it consists of rigid bars and

extensional springs (Fig. A.2). the local displacement of this element can be

written as:

U l =
[
ūg1 ūs1 θ̄1 ūg2 ūs2 θ̄2

]T
(A.1)

The local force vector is given as

f l =
[
N̄g1 N̄s1 M̄1 N̄g2 N̄s2 M̄2

]T
(A.2)

The deformation of each component of the reinforcement steel is defined by

δrs = ūs2 − yrsθ̄2 − ūs1 + yrsθ̄1 =
[

0 −1 yrs 0 1 yrs

]
U l (A.3)

In which yrs is the distance between the reinforcement steel component and ∆(s).

Following the same procedure for determining the concrete slab component

deformation, we can write

δc = ūs2 − ycθ̄2 − ūs1 + ycθ̄1 =
[

0 −1 yc 0 1 yc

]
U l (A.4)

Anas ALHASAWI 164



A.1 Composite joint element formulation
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1 1,b bN u
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2 2,b bN u

1 1, M

2 2,a aN u

 s


 g


Figure A.2: Non connected mechanical model of composite joint

Where yc is the distance between the concrete slab component and ∆(s).

For the steel part component, the deformation is given respectively for bolt-

rows and bottom/top beam flange as

ūT3 = ūg2 − yT3 θ̄2 − ūg1 + yT3 θ̄1 =
[
−1 0 yT3 1 0 −yT3

]
U l (A.5)

Where yT3 is the distance between the bolt-rows component and ∆(g).

ūT2/T4 = ūg2 − yT2/4 θ̄2 − ūg1 + yT2/4 θ̄1 =
[
−1 0 yT2/4 1 0 −yT2/4

]
U l

(A.6)

Where yT2/4 is the distance between the top/bottom beam flange component and

∆(g).

Depending on the virtual work theorem, the local stiffness matrix for compos-

ite joint element is given as follows

K l =



k11 0 −k13 −k11 0 k13

0 k22 −k23 0 −k22 k23

−k13 −k23 k33 k13 k23 −k33

−k11 0 k13 k11 0 −k13

0 −k22 k23 0 k22 −k23

k13 k23 −k33 −k13 −k23 k33


(A.7)
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In which

k11 =
∑

kT3 +
∑

kT2/4

k13 =
∑

yT3 kT3 +
∑

yT2/4 kT2/4

k22 =
∑

krs +
∑

kc

k23 =
∑

yrs krs +
∑

yc kc

k33 =
∑

y2
T3 kT3 +

∑
y2
T2/4 kT2/4 +

∑
y2
rs krs +

∑
yc k

2
c

where kT3 and kT2/4 are equivalent stiffnesses of the bolt-row and the top/bottom

beam flange respectively. krs and kc are the stiffnesses of the concrete and the

reinforcement steel component successively .

In order to study an isolated composite joint we have to added, as in the

composite concrete structure, connectors at the nodes. The connectors tied the

two parts of the composite joint and make them work together. As known, the

connector resists the shear forces at the interface therefore its stiffness is related

to the slipping magnitude that can be written as follows:

Rss = kss dss (A.8)

where kss represents discrete connection stiffness. and dss is the slip at the inter-

face steel-concrete.

As the two parts of the joint element have the same rotations, the produced

slip between them at the node 1 is given as

dss = ūg1 − ūs1 − d θ̄1 =
[

1 −1 d
] 

ūg1

ūs1

θ̄1

 (A.9)

In which d is the distances between ∆(s) and ∆(g).

A.1.1 Stiffness matrix of the connector element

The connection between the two parts of an isolated joint will be simulated by a

specific element with zero-length but it has a significant stiffness.
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Substitute Eq. (A.9) into Eq. (A.8) gives

Rss = kss
[

1 −1 d
] 

ūg1

ūs1

θ̄1

 (A.10)

In the other side the vector force corresponding the node 1 is defined by.

f ss1 =
[
N̄g1 N̄s1 M̄1

]T
(A.11)

Using the virtual work theorem gives the connector stiffness matrix related to

node 1

Kss
1 = kss


1 −1 d

−1 1 −d
d −d d2

 (A.12)

Following the same procedures for the connector stiffness at node 2 produces

Kss
2 = kss


1 −1 d

−1 1 −d
d −d d2

 (A.13)

Combined Eqs. (A.7),(A.12) and (A.13) gives the local stiffness for connected

composite joint element

Kj = K l +Kss
1 +Kss

2 (A.14)

It is worth to indicate that assembling this composite joint element with a com-

posite beam element do not need to add the connectors stiffness at the composite

joint element because they have already considered in the composite beam ele-

ment. (See Fig. A.3 )
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   1 1

2 2,b bN u

 1  2

   1 1

2 2,a aN u

   1 1

1 1, M
   2 2

2 2, M

   1 1

2 2, M
   2 2

3 3, M   2 2

2 2,b bN u
   2 2

3 3,b bN u

   2 2

2 2,a aN u
   2 2

3 3,a aN u

   1 1

1 1,b bN u
   3 3

4 4,b bN u

 3

   3 3

4 4,a aN u

   3 3

3 3, M

   3 3

4 4, M   3 3

3 3,b bN u

   3 3

3 3,a aN u
   1 1

1 1,a aN u

1 0L 2L 3 0L

Figure A.3: Composite joint beam element
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Résumé en français

***

L’analyse de la réponse globale du comportement des structures métalliques et

mixtes (acier-béton) en régime élastique a vu ces dernières années un développe-

ment très significatif autant sur le plan expérimental que sur le plan de la mod-

élisation numérique. Ces structures destinées aux bâtiments ou aux ouvrages

d’art (ponts) se doivent d’assurer deux propriétés fondamentales : résistance et

ductilité. Beaucoup d’aspects restent néanmoins encore mal compris et risquent

d’affecter la pérennité de l’ouvrage d’une part et le coût de sa construction, d’autre

part.

Dans le cadre de ce travail de recherche, nous proposons d’apporter des so-

lutions par le biais de modèles simples à certains de ces phénomènes qui ont été

réellement observés aussi bien lors d’essais expérimentaux que lors des simula-

tions numériques tridimensionnelles avancées. Une bonne modélisation se doit

de reproduire le plus fidèlement possible le comportement de ces structures et de

leurs assemblages afin d’assurer un acheminement correct des efforts autant sous

chargement monotone que sous chargement cyclique.

Le travail de thèse comprend 3 parties qui correspondent chacune a un article

scientifique.
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6.1 Première partie de la thèse

On s’intéresse tout d’abord aux assemblages métalliques poteau-poutre de bâ-

timent de type boulonné avec platine d’extrémité. La performance de ce type

d’assemblage a déjà été prouvée par différentes recherches et confirmée par une

multitude d’essais expérimentaux. Cet assemblage assure une connexion semi-

rigide très appréciée dans le cas d’un chargement cyclique grâce à son caractère

dissipatif, son aspect économique et enfin, la simplicité de son exécution (Fig.

6.1 ). L’avantage d’adopter des assemblages semi-rigides au lieu d’assemblages

articulés permet de modifier non seulement les sollicitations introduites dans la

structure en acier mais aussi les déplacements. Cette étude est menée dans le

90

,j SdM
,j SdM

Rigid Joint Pinned Joint

B) Proposed ModelA) Extended end-plate joint

Joints

,j SdM

̂

90

Relative 

Rotation
̂

,j SdM

Semi rigid Joint

ˆ 0

M







0

ˆ

M





 ˆ

M







Figure 6.1: Des modèles adoptés pour l’assemblage.

cadre d’un projet de recherche européen intitulé ROBUSIMPACT mettant en

collaboration: Universität Stuttgart, Université de Liège, Università degli Studi

di Trento, Rheinisch Westfälische Technische Hochschule Aachen, ArcelorMittal

Belval & Differdange S.A, MS3 Materials & Systems for Safety & Security and

Institut National des Sciences Appliquées Rennes. Ce projet Européen s’étendait

sur une durée de 36 mois à partir du 01/07/2012. L’objectif était de réaliser des

essais expérimentaux d’une part et de proposer des modèles numériques d’autre

part pour étudier des structures en portiques ayant perdu un poteau intérieur ou

de périphérie suite à un impact. La robustesse de la structure est le mot clé de
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l’étude. Notre équipe de Recherche avait la responsabilité sur 2 thèmes du projet

:

- WP5 : Residual strength of impacted vertical members -numerical and analyt-

ical investigations.

- WP8: Development of a new joint element.

La première partie de la thèse concerne les développements proposés dans le

cadre du WP8.

Afin d’aborder au mieux ce thème de recherche, nous avons tout d’abord

consulté la bibliographie pour comprendre la première approche qui consiste à

développer des modèles analytiques et mathématiques qui lissent au mieux les

courbes (Moment-Rotation) obtenues expérimentalement. Cette première ap-

proche dépendra toujours de la configuration de l’assemblage étudié. Il faudra

toujours calibrer les paramètres dont dépendent les modèles. Par la suite, bien

que trop fastidieux, le développement de modèles numériques 3D ou parfois 3D

simplifiés, s’est avéré comme une étape incontournable pour identifier des aspects

locaux du comportement au sein de l’assemblage. Ces aspects aussi confirmés par

des essais expérimentaux devraient être pris en compte lors du dimensionnement

de ce type d’assemblage. Cette seconde approche est donc utile pour identifier

les phénomènes particuliers du comportement mais ne peut être appropriée pour

un calcul de structure à l’échelle réelle en raison du temps de calcul important

qui en découle. Enfin, dans le but de proposer un modèle d’assemblage qui soit

facilement programmable à des fins de calcul de structures à échelle réelle, nous

profitons des informations recueillies des deux précédentes approches pour nous

axer sur l’approche par un modèle mécanique. L’objectif est donc de proposer un

modèle mécanique basé sur la méthode des composantes bien connue aujourd’hui

car adoptée par les Eurocodes (EC3 et EC4). Le modèle mécanique à développer

doit être adapté à une formulation par éléments finis (E.F.) afin que l’assemblage

proposé puisse être facilement ”connecté” aux éléments de poutres et poteaux de

la structure (E.F. de type poutre). Cette troisième approche est donc un bon

compromis qui peut allier ”simplicité” et performance sous réserve que les aspects
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identifiés lors des essais expérimentaux et dans les modèles 3D soient correctement

pris en compte.

En effet, les aspects auxquels nous nous intéressons sont :

- La séparation entre la platine d’extrémité et la semelle du poteau (nommé

”gap”). Ce phénomène est bien identifié lors d’un comportement cyclique

de l’assemblage mais n’a jamais été pris en compte.

- Le comportement de groupe (de deux ou plusieurs rangées de boulons) qui

vient se greffer au comportement individuel de chaque rangée. Cet aspect

est aussi à inclure dans le comportement global de l’assemblage autant sous

chargement monotone que cyclique.

Le travail proposé dans le cadre de ce thème est le développement d’un modèle mé-

canique qui combine la méthode des composantes et la formulation par éléments

finis. Ce modèle s’inspire de la diversité des modèles mécaniques à composantes

déjà proposés par différents chercheurs dans la littérature. Il inclue en plus la

prise en compte du gap ainsi que de l’effet de groupe. L’objectif est d’obtenir

un nouvel élément fini d’assemblage semi-rigide aussi bien facile à programmer

que performant. Cette étude est réalisée pour des assemblages métalliques et est

étendue aux assemblages mixtes (poutre mixte et poteau métallique).

6.1.1 Description du modèle mécanique

Le modèle mécanique à composantes considéré (Fig. 6.2) reprend l’effet de chaque

composante individuelle (Tabel 6.1) dans le comportement global de l’assemblage.

Certaines de ces composantes résistent à la traction et sont regroupées en composante-

Type équivalente (Type 3) alors que d’autres composantes résistent à la compres-

sion et sont regroupées aussi en composante-Type équivalente (Type 2 ou Type 4).

Les composantes-Types 3 sont localisées au niveau de chaque rangée de boulons,

la composante-Type 2, est localisée au niveau de la semelle supérieure de la poutre

connectée et la composante-Type 4 est localisée au niveau de la semelle inférieure

de la poutre connectée. Lorsque l’assemblage est soumis à un moment positif, la
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composante-Type 2 est active ainsi que toutes les composantes-Type 3 qui subis-

sent une traction. Sous moment négatif, le processus s’inverse, la composante-

Type 4 est active avec toutes les composantes-Type 3 qui subissent une traction.

Dans le cas particulier d’une traction simple, toutes les composantes-Type 3 sont

actives et dans le cas d’une compression simple, seules les composantes-Type 2 et

Type 4 sont alors actives.

D
(b)

D
(c)

Outer bolt-row

Column Beam

Outer bolt-row

T2

T31

T32

T4
CWT CFB EPB BT

CWC BFWC

CWC 

CWT CFB EPB BT

CWC 

CWTCFB

BT

BFWC

BFWC

EPB

a) End-plate connection b) Mechanical Model

Figure 6.2: Modèle mécanique

6.1.2 Comportement cyclique de l’assemblage boulonné à

platine d’extrémité

Avant d’aborder le phénomène de séparation entre la platine d’about et la semelle

de poteau ”gap”, il convient de localiser cette séparation et de l’identifier par le

bais de la notion de ”T-stub”. En réalité, la traction est transmise à l’assemblage

par le biais de la partie tendue de la poutre à travers la platine d’about. L’effort

de traction va solliciter certaines rangées de boulons en fonction de leurs positions

par rapport au centre de rotation de l’assemblage.
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Table 6.1: Liste et effet des différentes composantes

Symbols Components

CWT Beam Web in Tension

CFB Column Flange in Bending

EPB End-Plate in Bending

BWT Beam Web in Tension

BT Bolt in Tension

CWC Column Web in transverse Compression

BFWC Beam or column Flange and Web in Compression

Tant que tous les éléments sollicités en traction restent dans leurs domaines

élastiques, toute séparation (négligeable ou quasi-nulle) entre la platine d’about

et la semelle du poteau est aussitôt résorbée. Par contre, lorsqu’au moins un

élément ,parmi les éléments suivants: semelle de poteau, platine d’extrémité et le

boulon, migre vers le domaine plastique, les déformations plastiques engendrées

provoquent l’apparition de ”gap” permanents. Ce phénomène s’accentue et se

cumule lorsque l’assemblage est soumis à un chargement cyclique aussi bien en

partie haute qu’en partie basse de celui-ci. Il convient néanmoins de préciser que

bien que ce gap soit localisé au niveau de la semelle tendue, il sera pris en con-

sidération dans le modèle au niveau des rangées de boulons qui sont susceptibles

de résister à la traction (Fig. 6.3).

Afin de prendre en compte ce phénomène, nous avons opté de l’inclure dans le
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Printed using Abaqus/CAE on: Wed Sep 07 17:06:56 Paris, Madrid (heure d’été) 2016

Figure 6.3: Modèle élément fini 3D - Apparition du Gap

modèle de comportement relatif à la composante équivalente Type 3 concernée.

Le principe est de prévoir un glissement sur l’axe des déplacements du modèle

de comportement permettant de refermer le ”gap” après une décharge dans un

sens avant d’activer une recharge de l’assemblage dans le sens inverse. Pour un

assemblage symétrique soumis à un chargement cyclique symétrique, le ”gap” en

partie haute et basse seront identiques ce qui n’est pas le cas pour un assemblage

asymétrique. L’hypothèse d’un glissement signifie que l’on néglige la résistance

de la platine d’about déformée lors de la fermeture du ”gap”. Cette hypothèse est

retenue tant que l’on ne peut pas quantifier cette raideur (faible mais en réalité

non nulle).

6.1.2.1 Application numérique sur l’effet de gap

Afin de valider cette approche, le modèle a été appliqué à un exemple simple

(Fig. 6.4) pour 2 cycles de chargement consécutifs (θmax = ±8.65 mrad) puis

(θmax = ±23.05 mrad). Tous les aciers sont de nuance S355 et les boulons sont

des M20. La première étape consiste à calculer les rigidités initiales ainsi que

les efforts résistants pour chaque élément de l’assemblage conformément aux pre-

scriptions de l’EC3. On rappelle que la résistance retenue pour l’assemblage est

la plus faible de tous les éléments en traction et il en est de même pour la com-

pression.

La seconde étape engage un processus itératif dont le résultat est présenté dans

la Figure 6.5 qui représente la réponse de l’assemblage sous forme de courbe
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Figure 6.4: Configuration de l’assemblage traité

(Moment-Rotation) avec le traitement du ”gap”. On constate comme cela était

prévisible, que la symétrie du comportement est retrouvée en raison de la symétrie

de l’exemple traité (Fig. 6.5).

6.1.3 L’effet de groupe

Lorsqu’un assemblage boulonné comprend plusieurs rangées de boulons, le com-

portement de chaque élément-Type équivalent ”i” présente son propre critère lim-

ite de résistance FT3i,Rd.

- Tant que le niveau de sollicitation de l’assemblage reste modéré (toutes les

rangées se trouvent encore dans le domaine élastique), l’assemblage est alors

gouverné par des critères de limites élastiques individuels et de groupe.

- Lorsque le chargement augmente (toujours dans le même sens), cette rangée de

boulons peut à son tour atteindre sa limite de résistance individuelle ou de

groupe.

La sollicitation de l’assemblage peut s’arrêter :

- soit par atteinte d’un chargement précis imposé

Anas ALHASAWI 176



6.1 Première partie de la thèse

Figure 6.5: La courbe momoent - rotation
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- soit par atteinte de l’un des critères de ruine imposé.

Il est claire qu’il existe des configurations d’assemblage qui peuvent activer un

critère de résistance de groupe avant d’atteindre toute limite de résistance indi-

viduelle.

Prendre en compte ce critère de résistance de groupe, outre les critères de ré-

sistance individuelle, nous devons définir une surface de charge plus complexe.

Cette surface de charge est d’autant plus complexe que le nombre de rangées de

boulons susceptibles de générer un effet de groupe est élevé.

Dans le cadre de ce travail, nous avons adopté le modèle proposé par Cerfontaine

pour prendre en compte l’effet de groupe engendré par 2 rangées de boulons. Ce

cas sera étendu à plus que deux rangées de boulons. Il permet de travailler sur

une surface de charge plane ce qui simplifie d’une façon significative la formula-

tion élasto-plastique du problème.

Le principe est de projeter tout effort inadmissible sur la surface de charge après

avoir localisé la zone concernée parmi celles définies sur la Fig. 6.6.

1

4

3

5
2

1D

AD

BD

2D

A

B

Elastic zone

13TF
13 ,T RdF

23 ,T RdF

23TF

1

3

2

Figure 6.6: Interaction entre deux rangées de boulons

• Les zones 1 et 2 limitées par les droites D1 et D2 respectivement, activent l’un

ou l’autre des critères individuels. La projection est normale à la partie de
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la surface de charge concernée. La formulation élasto-plastique classique

(algorithme tangent) engendre le calcul de l’incrément du multiplicateur de

charge adéquat (λ1 ou λ2).

• La zone 3 délimitée par les droites DA et DB active le critère de groupe. La

projection est normale à la partie de la surface de charge concernée. La

formulation élasto-plastique classique engendre le calcul de l’incrément du

multiplicateur de charge adéquat (λ3).

• Les zones 4 et 5 délimitées par les droites (D1 et DA) et (D2 et DB) respec-

tivement activent le critère de continuité entre un critère individuel et un

critère de groupe (les points A et B respectivement). La formulation élasto-

plastique classique engendre le calcul de l’incrément du multiplicateur de

charge adéquat (λ1 ou λ2) puis le calcul de (λ3).

6.1.3.1 Application numérique sur l’effet de groupe

Afin d’illustrer la prise en compte de l’effet de groupe, l’exemple présenté par

la Fig. 6.7 est soumis à une simulation numérique. Les 2 rangées de boulons

situées de part et d’autre de la semelle supérieure de la poutre connectée sont

susceptibles de développer une résistance de groupe.

Comme pour tout assemblage, l’effort de résistance ainsi que la raideur initiale
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Figure 6.7: Assemblage boulonnées poutre-poteau

de chaque élément-Type équivalent sont calculés préalablement (toujours en con-

sidérant la plus faible résistance des éléments de base constituant l’élément-Type

équivalent).

On observe tout d’abord sur la Fig. 6.8, qui représente la réponse de l’assemblage

illustrée par la courbe (Moment-Rotation), que la prise en compte de l’effet de

groupe diminue la valeur du moment résistant de l’assemblage de l’ordre de 4, 8%

pour cet exemple. Il est clair que cette influence dépend étroitement de la con-

figuration de l’assemblage vis-à-vis de la position et du nombre de rangées de

boulons existants. D’autre part, la Fig. 6.9 montre la chronologie de l’atteinte de

la surface de charge limite en fonction de l’augmentation du chargement. On ob-

serve que la plus haute rangée de boulon atteint sa limite individuelle en premier

; le critère de groupe est ensuite atteint à son tour alors que la seconde rangée

de boulons et encore loin d’atteindre sa limite individuelle. On rappelle que le

comportement individuel de chaque élément-Type équivalent est élasto-plastique

parfait (pas d’écrouissage).
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Figure 6.8: La courbe moment - rotation

F
T3-1,Rd

F
T3-2,Rd

F
T3-1

F
T3-2

Figure 6.9: Interaction diagramme entre (FT31 − FT32)
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6.1.4 Application numérique sur l’interaction M-N dans

l’assemblage

En second exemple, on propose d’étudier le comportement de l’assemblage lié à

un élément de structure : ici une poutre-console (Fig. 6.10). Cette poutre est

soumise à son extrémité libre à un effort transversal F et à un effort axial N.

L’assemblage ne présente que 2 rangées de boulons intérieures.

A partir de la Fig. 6.11, qui représente les courbes (Moment-rotation) de
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Figure 6.10: Poutre-console, assemblage avec platine non débordante

l’assemblage pour différents niveaux de compression axiale, on peut faire les ob-

servations suivantes :

i. Lorsque l’effort N est un effort de compression, le moment de flexion est

supérieur au moment résistant calculé selon l’EC3. Il augmente avec l’augmentation

de N mais il ne dépasse pas une limite maximale.

ii. Lorsque l’effort N est un effort de traction, le moment de flexion est inférieur

ou proche du moment résistant calculé selon l’EC3.
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Figure 6.11: Moment-rotation

iii. Pour une flexion pure (N = 0), le moment résistant prédit par le modèle est

égal au moment résistant calculé par l’EC3.

D’un autre côté, la Fig. 6.12, place tous les résultats de simulations numériques

précédentes dans une représentation de diagramme d’interaction (M-N). Ce dia-

gramme, déterminé analytiquement, représente le critère de limite de résistance de

l’assemblage. On observe bien, que tous les cas calculés respectent bien ce critère

limite, ce qui témoigne de l’efficacité et la performance du modèle proposé.

6.2 Seconde partie de la thèse

Elle consiste à développer un modèle de poutre avec rotules généralisées en for-

mulation corotationnelle pour l’analyse non-linéaire (matérielle et géométrique)

des structures à éléments élancés.

L’utilisation d’une procédure de condensation des d.d.l. internes facilite l’incorporation

de cette formulation dans une approche corotationnelle classique. Le comporte-

ment plastique des rotules est contrôlé par une surface de charge qui peut prendre

différentes formes selon la valeur donnée à un facteur q dit ”facteur de forme”.
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Figure 6.12: Diagramme d’interaction

La surface de charge retenue est bien sûr celle qui donne des résultats proches

des valeurs expérimentales. Le modèle proposé inclue un élément de type poutre

connecté à une rotule plastique à chacune de ses extrémités (Fig. 6.13 ). Chacune

de ces rotules plastiques est dite rotule plastique généralisée car elle consiste en

un ressort longitudinal pour le comportement axial qui reprend l’effort normal

N, associé à un ressort spiral pour le comportement en flexion qui reprend le

moment fléchissant M. L’interaction (M-N) entre ces deux efforts définit la sur-

face de charge. Un comportement élastique-parfaitement plastic est adopté pour

ces rotules généralisées tandis-que la poutre reste en comportement élastique.

La prise en compte de la non-linéarité géométrique (effets du second ordre) est

obtenue grâce à une formulation corotationnelle du problème. Le facteur q octroi

différentes formes à la surface de charge autant dans le cas isotrope que dans le

cas anisotrope. Le comportement élasto-plastique est traité par un schéma du

type Backward-Euler.
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Figure 6.13: Présentation du modèle

6.2.1 Exemples numériques

Plusieurs simulations numériques ont été entreprises dans le cadre de cette étude

pour assoir les performances du modèle proposé.

6.2.1.1 Poutre bi-encastrée sous une charge ponctuelle

La première simulation numérique (Fig. 6.14) représente une poutre bi-encastrée

développant des rotules plastiques en ses extrémités et sous le point d’application

de la charge. Etant donné que le modèle proposé consiste en une poutre avec ses

deux rotules, il apparait de part et d’autre du point d’application de la charge

une rotule plastique. Différentes surfaces de charge (isotropes et anisotropes) sont

testées dont celles présentées sur la Fig. 6.15.

La poutre est testée tout d’abord sous un chargement monotone. La courbe

(Force-Déplacement, Fig. 6.16) met en évidence l’apparition des rotules plas-

tiques. On conclut de cette simulation que le comportement fait apparaitre trois

étapes : une première étape où les effets du 2nd ordre sont négligeables (avant

apparition de la seconde rotule plastique), une seconde étape (avant l’apparition

de la 3eme rotule plastique) où les effets du second ordre deviennent modérés

(début de la dépendance au facteur q) et une troisième étape où l’effet du 2nd

ordre devient significatif et la dépendance au facteur q aussi. L’effet membrane
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Figure 6.14: Première simulation numérique
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Figure 6.15: Quelques formes de surfaces de charge

devient de plus en plus important au fur et à mesure que le facteur q augmente.

La poutre est soumise ensuite à un chargement cyclique à amplitude croissante

(Fig. 6.17) autant en déplacement imposé qu’en force imposée. La réponse de la

poutre est symétrique dans le cas d’une surface de charge isotrope et légèrement

asymétrique dans le cas anisotrope indépendamment du facteur q (Fig. 6.18).

L’accroissement du facteur q a tendance à accroitre l’amplitude de la force.
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Figure 6.16: Réponse de la poutre sous chargement monotone
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Figure 6.17: Histoire du chargement à amplitude variable

La même poutre est enfin soumise à un chargement cyclique à amplitude

constante (F0 = 665 kN). La réponse de la poutre est symétrique autant dans le
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Figure 6.18: Chargement cyclique à amplitude croissante

cas d’une surface de charge isotrope que dans le cas anisotrope indépendamment

du facteur q (Fig. 6.19).

6.2.1.2 Portique à deux travées

La seconde simulation numérique (Fig. 6.20) traite d’un portique à 2 travées en-

castré parfaitement à la base de ses 3 poteaux. Les positions des rotules plastiques

sont numérotées de 1 à 14. Les éléments finis du modèle proposé sont numérotés

de [1] à [7].
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(b) q=2 - Déplacements imposés
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Figure 6.19: Chargement cyclique à amplitude constante

L’objectif visé dans cet exemple est de comparer la prise en compte ou pas

de l’interaction (M-N) et son effet sur le déplacement latéral de cette structure.

Cette comparaison est menée au premier ainsi qu’au second ordre pour un même

facteur de rondeur q = 2.

- OM-first order : Pas d’interaction (M-N) – 1er ordre.

- OM-second order : Pas d’interaction (M-N) – 2nd ordre.

- IMN-first order : Avec interaction (M-N) – 1er ordre.
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Figure 6.20: Portique à 2 travées

0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

8

9

Roof lateral displacement (m)

Lo
ad

 fa
ct

ro
, λ

 

 

OM - 1st order
IMN - 1st order

(a) 1er ordre.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7

8

9

Roof lateral displacement (m)

Lo
ad

 fa
ct

ro
, λ

 

 

OM - 2nd order
IMN - 2nd order

(b) 2nd ordre.

Figure 6.21: Facteur de force λ - déplacement latéral

- IMN-second order : Avec interaction (M-N) – 2nd ordre.

Sur les figures 6.21(a) et 6.21(b), la prise en compte ou pas de l’interaction (M-N)

n’a pas une grande influence sur le déplacement latéral de la structure. L’effet du

second ordre débute aussitôt que la première rotule plastique apparait (environ

à 0,1 m de déplacement latéral). La branche descendante au-delà de cette valeur

traduit bien le comportement au second ordre de structures en portiques.

On considère ensuite la configuration (IMN-second order) pour étudier le niveau
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maximum de chargement atteint en fonction du facteur de forme q (qui aura pour

valeurs : 1, 2 et 10). Le tableau 6.2, résume les résultats obtenus.

On remarque (Fig. 6.22) qu’au-delà de q = 2, l’augmentation de la valeur de

Table 6.2: Influence du facteur q sur le niveau maximum de chargement atteint

q 1 2 10

λ 6.899 7.345 7.387

ce facteur n’a quasiment pas d’influence sur le niveau maximum de chargement

atteint. Par contre, entre q = 1 et q = 2 on observe une augmentation d’environ

7% du niveau maximum de chargement atteint.
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Figure 6.22: Influence du facteur q sur le niveau maximum de chargement atteint

λ.

6.2.1.3 Portique simple à une travée

La troisième simulation numérique concerne un portique simple (1 travée) connu

sous le nom de portique de Vogel (Fig. 6.23). Contrairement à la précédente
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application, l’interaction (M-N) pour q = 2, a une influence significative sur la

courbe (Charge-Déplacement latéral). Pour un calcul au 1er ordre, le facteur de

charge maximum se trouve multiplié par environ 10 alors que pour un calcul au

second ordre, celui-ci se trouve multiplié par environ 2. D’autre part, sur la Fig.

6.24 , on observe encore une fois qu’au-delà de q = 2, l’augmentation de ce facteur

n’a quasiment pas d’influence sur le niveau maximum de chargement atteint. De

même, entre q = 1 et q = 2 on observe une augmentation d’environ 7% du niveau

maximum de chargement atteint.
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Figure 6.23: Configuration de portique de Vogel

6.2.1.4 Portique à une travée et deux niveaux

La quatrième simulation numérique concerne un portique à une travée et 2

niveaux (Fig. 6.25). l’interaction (M-N) pour q = 2, a une influence significative

sur la courbe (Charge-Déplacement latéral). Pour un calcul au 1er ordre, le fac-

teur de charge maximum se trouve augmenté d’environ 25% alors que pour un

calcul au second ordre, celui-ci se trouve augmenté d’environ 9%. D’autre part,

sur la Fig. 6.26, on observe cette fois-ci que l’augmentation de la valeur du fac-
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Figure 6.24: Influence du facteur q sur le niveau maximum de chargement atteint

λ.

teur q au-delà de 2 augmente encore le niveau maximum de chargement atteint

d’environ 10%. De même, entre q = 1 et q = 2 on observe une augmentation

d’environ 29% du niveau maximum de chargement atteint. Ces variations sont

plus significatives que celles des 2 cas précédents.

6.3 Troisième partie de la thèse

Le transfert des efforts à travers l’interface acier-béton conditionne les perfor-

mances mécaniques du matériau composite. Outre la prise en compte du glisse-

ment de la connexion à l’interface (ce qui est déjà bien assimilé de nos jours), il

convient d’inclure aussi le comportement de la connexion vis-à-vis de la traction-

compression et de ce fait, le traitement du problème de contact s’impose. On

propose dans cette troisième partie un nouveau modèle de contact à l’interface

acier-béton des poutres mixtes qui permettra d’étudier son influence sur le glisse-

ment (variable de dimensionnement retenue pour la connexion) ainsi que sur la
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Figure 6.26: Influence du facteur q sur le niveau maximum de chargement atteint

λ.
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flèche de la poutre. Le problème est traité en petits déplacements, l’hypothèse de

non-pénétrabilité entre les deux couches est retenue et la Méthode du Lagrangien

augmenté (ALM) est utilisée pour corriger l’interpénétration des matériaux. Pour

étendre le traitement du contact « nœud à nœud » à un nouveau contact continu,

un concept dénommé «Flying Node Concept » (FNC), est proposé. Il est basé

sur le principe d’un maillage adaptatif actualisé au cours du processus itératif.

Plusieurs approches ont été proposée dans la littérature pour traiter le prob-

lème de contact nœud-à-nœud notamment : la méthode du multiplicateur de

Lagrange, la méthode de pénalité, la méthode d’élimination directe de Nitsche

et la méthode du Lagrangien augmenté. Bien que la plupart des codes de calcul

utilisent la méthode de pénalité, on préfèrera la méthode du Lagrangien aug-

menté car elle ne nécessite pas d’incrémenter le facteur de pénalité à des valeurs

très élevées pour atteindre la convergence ; le temps de calcul se trouve par ce

fait, très réduit.

Lorsque le problème de contact est traité en compression avec l’hypothèse de non

pénétration, il va de soi que le soulèvement doit aussi être repéré sur la structure.

Ce soulèvement (séparation entre les deux matériaux) peut se produire selon 3

configurations (Fig. 6.27). Dans ces zones, l’algorithme de contact reste inac-

tif. Il convient de préciser que ces zones peuvent varier au cours de l’histoire du

chargement.

Dans les zones où il y a contact, le problème consiste à minimiser le potentiel

énergétique tout en respectant la condition de non pénétration. Numériquement,

ceci consiste à rajouter une équation au système à résoudre pour tout nœud

concerné du maillage. Cette équation inclut le multiplicateur de Lagrange, le

facteur de pénalité ainsi que la pénétration actuelle. Lorsque le facteur de pénalité

augmente, le multiplicateur de Lagrange qui correspond à la réaction induite par

un ressort fictif placé en ce nœud augmente et de ce fait, la pénétration entre les

deux matériaux est réduite. Lorsque cette pénétration est jugée admissible, le

contact est considéré comme corrigé en ce nœud. Il est clair, qu’à chaque nœud

correspond un facteur de pénalité adéquat obtenu automatiquement.
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Figure 6.27: Configuration de soulèvement au poutre mixte
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Comme pour le soulèvement, la pénétration peut concerner un nombre de nœuds

variable au cours du chargement. Si la dimension réelle du système à résoudre est

N et si le nombre de nœuds dont le contact doit être traité à une étape donné du

chargement est Nc, le système à résoudre devient alors de dimension (N + Nc).

La première nouveauté de l’algorithme proposé est de placer systématiquement

toutes les équations supplémentaires Nc à la suite de celles relatives au problème

réel (correspondant à N) et non à la position des nœuds concernés dans le système

à résoudre (Fig. 6.28). Cet aménagement, facilite la programmation en évitant

une réorganisation complexe du système à dimension variable. Lorsque, pour un

niveau de charge donné, Nc devient égal à zéro, le système retrouve sa dimension

réelle et le chargement peut alors s’incrémenter.

La 2eme nouveauté de l’algorithme proposé concerne le traitement du contact
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 Figure 6.28: Contact est détecté au les nœuds qi - MLA est activé .

continu au cours des itérations. En effet, au cours de l’histoire de chargement, il

peut se produire, sous certaines configurations géométriques et de chargement de

la structure étudiée, que le contact soit sur toute une longueur notée de l’élément

fini testé en cours (Fig. 6.29).

On montre que cette longueur peut être déterminée en utilisant les fonctions

d’interpolation de l’élément fini de poutre mixte. Si la longueur calculée du
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Slab

Girder

(i) (j)(i-1) x

1,IL
2,IL

 

 

Slab

Girder

(i) (j)(i-1)

1,I 1L  2 ,I 1L 

Figure 6.29: maillage adaptatif - FNC

contact continu s’avère non nulle, la longueur de l’élément fini est alors corrigée

et par conséquent la position du connecteur qui reste lié au maillage aussi.

Dans cette considération (version actuelle du programme), si tous les contacts

continus sont corrigés, le maillage modifié avec la répartition de la connexion

qui lui correspond est alors traité par un algorithme « nœud-à-nœud » et le

chargement se poursuit.

Ce maillage adaptatif, réajuste la répartition finale de la connexion et assure

que le contact peut se poursuivre qu’aux nœuds du maillage et être traité par

l’algorithme « nœud-à-nœud ». Une seconde option peut aussi être envisagée :

ajouter des nœuds non connectés au maillage de la structure. Dans ce cas, même

ces nœuds devront subir l’algorithme complet du contact (Fig.6.30).
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Contact iteration loop « I » 

ALM – test contact at each node 
 Contact at a node is solved  penalty factor obtained (p = pI) 
 Contact at a node is not solved yet  penalty factor increases (pI+1 = 10pI) 

Contact on the whole beam is solved: 
Each node has its own penalty factor 

 Re –mesh the continuous beam 

 Re-located the connectors 

Continuous contact is included 
Load increment: J = J+1 

Loading iteration loop « J » 
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Figure 6.30: Algorithme de contact(ALM + FNC )

6.3.1 Applications numériques

Afin d’illustrer l’efficacité de l’algorithme deux applications sont présentées. Une

poutre de pont mixte soumise d’une part, à deux charges concentrées et d’autre

part, à une charge repartie et ce, afin d’illustrer l’influence du FNC sur le glisse-

ment à l’interface acier-béton.

6.3.1.1 Poutre de pont mixte sous deux chargements ponctuels

Une poutre de pont mixte continue à 2 travées (échelle réduite) a été testée ex-

périmentalement (Fig. 6.31). Les travées sont identiques et de longueur 7900mm.

Deux charges ponctuelles sont appliquées simultanément jusqu’à 550kN puis la

première charge est maintenue constante alors que la seconde continue d’augmenter

jusqu’à 850kN .

Après avoir mis en évidence l’erreur engendrée entre un calcul qui ne prend

pas en compte le traitement du contact et le résultat de mesures expérimentales
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Figure 6.31: (a) Description de la poutre mixte. (b) Les étapes 2 et 3 de charge-

ment

(par le biais d’une courbe charge cumulée-déplacement sous chaque charge), on

montre sur un profile longitudinal que :

- Les zones traitées sont celles situées sous les charges concentrées.

- La pénétration du béton dans l’acier a été corrigée.

- Les zones de soulèvement ont été repérées (léger soulèvement proche de l’appui

intermédiaire).
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- Les rotations des sections sous charges ont aussi été par conséquent, corrigées.

- Le glissement des connecteurs sont aussi affectés lors du traitement du contact.

Le soulèvement pourrait être relativement plus important dans le cas de charge-

ment fortement dissymétrique de part et d’autre de l’appui intermédiaire. Le

glissement étant la variable de dimensionnement de la connexion, il convient donc

de tenir compte de l’effet que peut engendrer le traitement du contact sur cette

variable.

Bien que l’option FNC soit aussi activée, aucune zone de contact continu n’a été

détectée.

6.3.1.2 Poutre de pont mixte sous un chargement réparti

Afin de mettre en évidence l’option FNC. La poutre continue de pont mixte de

l’application précédente est soumise cette fois-ci à un chargement uniformément

réparti p. En effet, sous un tel chargement, il y a plus de chance que le con-

tact continu soit détecté. La simulation numérique montre comment le maillage

s’adapte au contact continu détecté au cours de l’histoire du chargement (Fig.

6.32). Néanmoins, il semble plus important de regarder les changements engen-

Initial regular mesh
Loading step : 0

Loading step : 4

Loading step : 3

Loading step : 2

Loading step : 1

Figure 6.32: Le maillage au cours de chargement.

drés au niveau local. Les deux sections transversales les plus critiques (une en

travée et l’autre sur appui intermédiaire). La charge est croissante jusqu’à atteinte
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du moment élastique résistant sur appui intermédiaire. Le calcul des contraintes

en sections permet d’obtenir les résultats illustrés en termes de moments sollic-

itant. On montre que le moment élastique résistant
(
M−

el,Rd = −871 kNm
)

est

atteint :

- pour p = 280 kN avec (ALM seul), et en travée le moment atteint est :(M+
s = 570 kNm)

- pour p = 264 kN avec (ALM+FNC), et en travée le moment atteint est

:(M+
s = 548 kNm)

Pour des codes de calculs qui ne traitent que le contact ponctuel (ALM seul), une

charge p = 264 kN donnerait les moments sollicitant suivants (M+
s = 534 kNm)

en travée et (M−
s = −821 kNm) sur appui.

Pour cet exemple, le moment en travée est sous-estimé d’environ 3% et sur appui

intermédiaire d’environ 6%.
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Résumé  
 

Cette thèse a pour objectifs de développer une modélisation 
aussi fine que possible des structures aciers et mixtes acier-
béton sous sollicitations cycliques avec prise en compte d’une 
part du comportement des assemblages et d’autre part des 
non-linéarités géométriques et du contact à l’interface acier-
béton. Notre attention porte en particulier sur l’assemblage de 
type poutre acier/mixte sur poteau métallique par platine 
d’extrémité boulonnée. L’objectif étant de proposer un modèle 
« élément fini » d’assemblage qui reproduit aussi fidèlement 
que possible le comportement cyclique de ce dernier pour 
ensuite l’assembler à un élément fini de poutre non-linéaire 
acier ou mixte  avec prise en compte, pour ce dernier, du 
soulèvement à l’interface. Le travail se compose de 3 parties 
distinctes. 
Un premier modèle qui se base sur la méthode des 
composantes a été développé ayant pour objectif de suivre la 
déformation de chaque composante au cours des cycles et de 
prendre en compte les non-linéarités induites par la séparation 
entre la platine d’extrémité et la semelle du poteau auquel elle 
est boulonnée. Ce modèle type composantes, a été développé 
pour une rangée de boulons. Dans le cas le plus fréquent, de 
deux rangées de boulons, une résistance de groupe (en plus 
des résistances individuelles de chacune des rangées) est 
susceptible de se développer. Pour rendre compte de ce 
phénomène, nous avons implanté le modèle proposé par 
Cerfontaine qui repose sur la définition d’une surface de charge 
et une règle d’écoulement associée pour déterminer les 
allongements des ressorts équivalents. Seul le cas de plasticité 
parfaite est considéré. Il est mis en évidence que l’influence de 
l’effet de groupe s’avère non négligeable sur le comportement 
post-élastique de l’assemblage et donc de la structure. 
Dans une seconde phase, nous proposons un modèle de 
poutre métallique classique en grands déplacements (approche 
co-rotationnelle) avec rotules généralisées aux extrémités. 
Nous faisons l’hypothèse que les déformations plastiques sont 
concentrées aux rotules dont le comportement plastique est 
contrôlé par une surface de charge asymétrique (anisotrope) 
qui peut prendre différentes formes selon la valeur donnée à un 
facteur q dit « facteur de forme ». Chacune de ces rotules 
plastiques comprend un ressort longitudinal pour l’effort normal 
N et un ressort spiral pour le moment fléchissant M. 
L’interaction (M-N) entre ces deux efforts dans le domaine 
plastique est régie par le critère de plasticité. Le modèle de 
rotule plastique généralisé proposé permet de rendre compte 
de l’adoucissement cyclique, de la ductilité et du « pinching 
effect ». Nous montrons aux travers de plusieurs exemples la 
pertinence mais également les limites d’une telle approche.  
Dans une troisième partie, nous proposons un nouvel élément 
fini de poutre mixte (à 6 ddl par nœud) en petits déplacements 
avec prise en compte de la non-linéarité matérielle de la poutre 
ainsi que du contact entre l’acier et le béton. Une stratégie 
efficace de type nœud mobile (Flying Node) est proposée pour 
déterminer l’étendue de la surface de contact au sein d’un 
élément fini et d’adapter le maillage de l’élément poutre/poteau. 
Pour la résolution du problème de contact, la technique du 
Lagrangien Augmenté a été retenue. On montre que dans 
certaines situations, le soulèvement modifie la redistribution des 
efforts. 
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Abstract  
 

The goal of this thesis is to develop computational tools for the 
nonlinear analysis of steel and composite steel-concrete 
structures under cyclic loading taking into account the actual 
behaviour of joint, material and geometry non-linearities and 
contact conditions at the steel-to-concrete interface. In 
particular, our efforts focuses on typical bolted end-plate 
connection between steel or composite beam and steel column. 
The objective is to develop a new «joint finite element" able to 
reproduce accurately the cyclic behavior of the beam-to-column 
connection. Next this model is combined with a non-linear 
steel/composite beam element considering slip and possible 
uplift at the interface. The thesis consists of three major parts. 
 
The first part deals with the behavior of a steel beam-to-column 
bolted end-plate connection under arbitrarily cyclic loading. The 
proposed model is based on an improved component method 
that closely follows the deformation of each component taking 
into account non-linearities induced by possible gap between 
the column flange and the end-plate. This model has been 
developed for a single row connection. In the case of multiple 
row bolted connection group effects may develop. Possible 
group effect between two bolt-rows has been implemented 
considering the model proposed by Cerfontaine based on the 
definition of the multi-surface yield criterion and the associated 
flow rule that govern deformation of equivalent springs. Only the 
case of perfect plasticity is considered. It is shown that the 
influence of the group effect is not negligible on the nonlinear 
response of the joint. 
 
In the second part, we have developed a flexible co-rotational 
two-noded beam with generalized elasto-plastic hinges at the 
beam ends. It is assumed that plastic deformations concentrate 
at these hinges. These hinges have the ability to 
elongate/shorten along the beam axis and to rotate. A family of 
asymmetric and convex yield surfaces of super-elliptic shape is 
considered for the plastic behavior of the hinges. By varying the 
roundness factor, an infinite number of yield surface are 
obtained.  It is shown that the nonlinear response of bolted 
connections subjected to both bending and tension are 
conveniently modeled with such a yield surface. It was 
observed that cyclic loading produces pinching effect, cyclic 
softening and ductile behavior. Advantages and limitations of 
the approach are discussed. 
 
Finally, the third part is dedicated to the problem of contact at 
the interface of steel-concrete composite beams. A “new” finite 
element for composite steel-concrete beam is proposed. The 
beam element has 6 degrees of freedom per node. The 
concrete beam is allowed to separate from the steel beam. An 
efficient contact algorithm is proposed. The Flying node concept 
is introduced and used to determine the extent of the contact 
area within a single element and modify the mesh of the beam 
structure. The contact problem is solve using the Augmented 
Lagrangian Method. The influence of contact on the loading 
capacity of the beam and also its influence on some design 
variables are highlighted. 
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