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RESUMEN

CLASIFICACIÓN DINÁMICA DE ESCENARIOS FUNCIONALES PARA EL
DIAGNÓSTICO DE PROCESOS INDUSTRIALES

por

NATHALIE ANDREA BARBOSA ROA
Doctor en Ingeniería, Programa de Doctorado en Ingeniería – Ingeniería Eléctrica

UNIVERSIDAD NACIONAL DE COLOMBIA

Directores: Victor Hugo Grisales Palacio, Ph.D., Louise Travé - Massuyès, Ph. D.

Los avances tecnológicos de las últimas décadas han generado infraestructuras de producción
y servicios que deben adaptarse rápidamente a un ambiente en constante cambio. Estos
avances han cambiado la forma en la que las empresas obtienen la información acerca del
estado de sus sistemas. Grandes cantidades de datos provenientes de diversas fuentes son
recolectados y en muchos casos almacenados, lo que los convierte en un importante recurso
para extraer información y conocimiento del proceso. En general, varios campos de aplicación
han declarado la necesidad de herramientas que les permitan tratar con los datos que reciben
de su proceso en forma eficaz y eficiente.

Las técnicas de minería de datos son ampliamente utilizadas en la industria actualmente
sobre todo en lo que ha sido llamado Industria 4.0. La industria 4.0 o ciber-industria del
futuro, se basa en el uso de dispositivos conectados (máquinas, sensores, actuadores) capaces
de adaptarse rápidamente a las necesidades de producción y capaces de comunicarse en tiempo
real con los entes supervisores del proceso. Los sistemas de supervisión ligados a esta industria
no son los mismos que se tenían hace algunos años. Estos sistemas deben ser capaces de
monitorear datos provenientes del proceso directamente y extraer de ellos la información
sobre el estado del sistema. Estos datos de grandes dimensiones, suelen presentarse como un
flujo continuo de información limitando la capacidad de procesar el mismo dato dos veces.
Dado que actualmente el sistema en sí cambia a causa de las necesidades de producción y
otras variables ligadas a su entorno, los sistemas de supervisión deben también ser capaces no
solo de reconocer el estado actual del proceso sino aprender continuamente de sus cambios con
el fin de poder monitorearlo de forma correcta y de mejorar el diagnóstico del estado actual,
incrementando así la seguridad de la planta, minimizando los tiempos muertos y reduciendo
costos de producción.

Los algoritmos de aprendizaje de máquina y reconocimiento de patrones han surgido
como una solución para extraer de forma eficiente el conocimiento del proceso basándose en
grandes cantidades de datos del proceso que pueden estar disponibles. El diagnóstico por
reconocimiento de patrones es utilizado con frecuencia en sistemas industriales de control de
calidad y monitoreo, sin embargo muchas de las técnicas actuales de diagnóstico basadas en
datos consideran las variables solo como imágenes del estado del proceso en un momento dado
ignorando muchas veces su evolución temporal, es decir, su dinámica. En dichos enfoques
los conceptos que describen el estado del sistema (normal, en falla, avería, disfunción) son
considerados como invariantes en el tiempo; es decir, la variación de las variables que describen
el sistema indican directamente un cambio de estado, por ejemplo de “normal” a “en falla”.



Sin embargo, si dichos conceptos son considerados como variantes en el tiempo, no solo la
información sobre el estado actual del sistema sino también aquella sobre cómo ha llegado
allí son necesarias.

En esta tesis el trabajo se centró en desarrollar un algoritmo de agrupamiento dinámico
de datos que no se limita a conceptos estáticos ni a conjuntos convexos y que a demás puede
manejar distribuciones que evolucionan en el curso del tiempo. Este algoritmo puede ser
utilizado en sistemas de supervisión de procesos pero su aplicación no está limitada a los
mismos. En realidad, para poder incluir las relaciones temporales entre los datos, un método
de extracción de características basado en la aproximación polinomial sobre ventanas de talla
variable fue realizado. Una vez generadas las características estas sirven de entrada al al-
goritmo de agrupamiento que va a encontrar relaciones entre ellas basándose no solo en su
similitud (distancia entre las muestras) sino tambien en la densidad de los grupos encontra-
dos. Con el fin de facilitar el análisis y comprensión de los resultados del agrupamiento, un
sistema a eventos discretos fue incluido en la salida del agrupador. Este sistema permite la
visualización rápida del estado actual del sistema y la previsión de los posibles estados futuros
incluyendo las restricciones temporales entre ellos.

Los aportes de esta tesis pueden entonces listarse en tres grupos:

1. Contribuciones al agrupamiento dinámico de datos: Los algoritmos de agrupamiento
actuales basados en medidas de distancia asumen una representación convexa y por lo
tanto son incapaces de hacer frente a las agrupaciones de datos no lineales o de for-
mas alargadas. Por otro lado, los algoritmos basados en medidas de densidad capaces
de implementar aprendizaje progresivo no consideran la posibilidad de detectar gru-
pos que exhiben diferentes niveles de densidad. En la segunda parte de esta tesis se
presenta un algoritmo que utiliza análisis basados en medidas de distancia y de densi-
dad para agrupar muestras en clases de las cuales ninguna suposición ha sido tomada
con respecto a la linealiadad o a la convexidad. Estas clases, que pueden presentar
densidades variadas, pueden también presentar solapamiento entre ellas. El algoritmo
desarrollado funciona en línea fusionando las etapas de aprendizaje y de clasificación, lo
que le permite detectar y caracterizar de forma continua nuevos comportamientos y al
mismo tiempo reconocer el estado actual del sistema. El algoritmo evoluciona de forma
automática cuando estos comportamientos son detectados. Esta evolución se refleja en
cambios en la estructura y/o parámetros del algoritmo. Los cambios en los parámetros
van a generar el deslizamiento de una o varias clases y se dan en respuesta a una ligera
variación en el concepto que se está siguiendo. Por ejemplo, en el ambiente industrial
las normas pueden cambiar imponiendo estándares cada vez más altos para denominar
un producto como de “alta calidad”. Los cambios en la estructura del algoritmo se gen-
eran por una de cuatro razones: la primera creación de clases. Si un comportamiento
que no habia sido visto se produce, el algoritmo debe poder reconocerlo y caracterizarlo
en una nueva clase. La segunda es la fusión de dos clases diferentes. Este fenómeno
puede presentarse cuando dos comportamientos que se creían no relacionados evolu-
cionan evidenciando una relación. La fusión de clases permite a un algoritmo ganar
robustez con respecto al orden en el que las muestras son presentadas al sistema. La
tercera razón es la separación de clases y se presenta cuando debido a la inclusión de
una nueva variable o a la mejora de un sensor, nueva información es introducida en el
sistema permitiendo distinguir dos comportamientos que antes parecían indistinguibles.
La cuarta razón corresponde a la eliminación de grupos y se presenta cuando un antiguo
comportamiento deja de ser significativo o representativo del sistema.
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En resumen el algoritmo desarrollado, llamado DyClee, tiene como características:

• es capaz de realizar el seguimiento del estado actual del proceso,

• es capaz de analizar grandes cantidades de datos en línea ya sea en forma de lote
o en flujo continuo, de acuerdo con su naturaleza,

• es robusto en presencia de ruido,

• es capaz de detectar nuevos eventos,

• se adapta en forma automática para seguir la evolución del sistema,

• es capaz de manejar las limitaciones de recursos en memoria y en procesamiento,

• es capaz de detectar y caracterizar nuevos comportamientos del sistema sin afectar
los comportamientos ya aprendidos,

• es capaz de reconfigurarse de manera automática; es decir, no es necesaria una
etapa de reentrenamiento para cambiar la estructura del algoritmo.

2. Contribuciones a la extracción de características: los algoritmos de agrupación dinámica
de datos que se encuentran en la literatura manejan en su mayoría características es-
táticas solamente, perdiendo la información relacionada con la dinámica de los cambios
en el proceso. Los enfoques cualitativos para la extracción de tendencias son los únicos
que tienen en cuenta la información sobre la evolución de las variables; sin embargo,
al utilizar solamente representaciones cualitativas, la información cuantitativa sobre la
magnitud del fenómeno descrito se pierde. En la tercera parte de esta tesis se pre-
senta un nuevo enfoque para la extracción de características dinámicas. Este enfoque,
basado en aproximación polinomial por trozos, permite representar comportamientos
dinámicos sin perder la información relacionada con la magnitud y reduce a la vez la
sensibilidad del algoritmo al ruido en la señal analizada. Para poder utilizar la aprox-
imación polinomial en línea fue empleado un método de segmentación de señales en
ventanas que se deslizan con la llegada de nuevos datos. En cada nueva ventana se
realiza una búsqueda de puntos de inflexión para mejorar la calidad de la aproximación
realizada. La validación de las aproximaciones encontradas se realiza comparando el
error inducido por las mismas contra la varianza del ruido en la señal caracterizada, si
este error es menor a la varianza la aproximación es validada y puede ser utilizada para
describir el comportamiento actual de la señal.

3. Contribución en el modelamiento de sistemas a eventos discretos para sistemas evo-
lutivos: Los resultados del algoritmo de agrupamiento son utilizados como base para
desarrollar un modelo de eventos discretos del sistema. Este modelo adaptativo per-
mite una abstracción de alto nivel del sistema en forma de un autómata temporisado
cuyos estados representan los estados del proceso (fruto del reconocimiento efectuado
por el clasificador) y sus transiciones, expresan la accesibilidad de los estados. Estas
transiciones son identificadas con una posibilidad de transición (basado en las transi-
ciones ya evidenciadas) y un tiempo estimado de transición presentado en forma de
intervalo. Este modelo se construye automáticamente a medida que nuevos datos del
sistema se reúnen y que de manera correspondiente el algoritmo de agrupación cambia
su estructura.
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Les avancées technologiques de ces dernières décennies ont généré des infrastructures et
des services de production qui doivent s’adapter rapidement à un environnement changeant.
Ces avancées ont changé la façon dont les entreprises obtiennent les informations sur l’état de
leurs systèmes. Actuellement, de grandes quantités de données provenant de diverses sources
sont collectées et stockées. Ces données sont une ressource importante pour extraire des
informations sur les processus. L’exploitation des données et l’extraction de connaisances
sont donc devenu un besoin dans de nombreux domaines d’application.

Actuellement, les techniques d’exploration de données sont largement utilisées dans l’industrie
en particulier dans ce qui est appelé Industry 4.0. L’industrie 4.0 ou cyber-industrie de
l’avenir, est basée sur l’utilisation d’objets connectés (machines, capteurs, actionneurs) capa-
bles de s’adapter rapidement aux besoins de la production et de communiquer en temps réel
avec les organes de contrôle du processus. Les systèmes de contrôle liés à ce type d’industrie ne
sont pas les mêmes qu’il y a quelques années. Ces systèmes doivent être capables de surveiller
les données du processus directement et d’extraire des informations sur l’état du système. Ces
données sont présentées généralement sous la forme d’un flux continu de mesures, limitant
de ce fait la possibilité de traiter deux fois les mêmes données. Étant donné que le proces-
sus lui-même évolue en fonction des besoins de production et d’autres variables liées à son
environnement, les systèmes de surveillance doivent également être en mesure de reconnaître
l’état actuel du processus, mais aussi d’apprendre de ces changements en continu afin d’être
en mesure de le surveiller et le diagnostiquer correctement.

Les algorithmes d’apprentissage automatique et de reconnaissance des formes sont apparus
comme la solution pour extraire efficacement la connaissance des processus dans le cas où
de grandes quantités de données sont disponibles et peu de connaissances formelles existent
pour construire des modèles. Les méthodes de diagnostic basées sur la reconnaissance des
formes sont souvent utilisées dans les systèmes industriels pour le contrôle de qualité et la
surveillance. Cependant, de nombreuses techniques actuelles de diagnostic basées sur des
données considèrent les variables comme des images de l’état du processus à un instant
donné en ignorant souvent son évolution temporelle, à savoir sa dynamique. Dans de telles
approches les concepts qui décrivent l’état du système (nominal, dégradé, défaillant) sont
considérés comme invariants dans le temps. Les variations dans les données qui décrivent
le système représent alors un changement d’état, par exemple de “nominal” à “défaillant”.
Néanmoins, si l’on considère que ces concepts peuvent varier dans le temps, les algorithmes
doivent être revus.



L’objectif principal de cette thèse est de développer un algorithme dynamique de parti-
tionnement de données (classification non supervisée ou “clustering” en anglais) qui ne se
limite pas à des concepts statiques et qui peut gérer des distributions qui évoluent au fil du
temps. Cet algorithme peut être utilisé dans les systèmes de surveillance du processus, mais
son application ne se limite pas à ceux-ci.

Les contributions de cette thèse peuvent être présentées en trois groupes.

1. Contributions au partitionnement dynamique de données : les algorithmes de clustering
actuels peuvent être classifiés selon la mesure de similitude qu’ils utilisent. Les algo-
rithmes basés sur des mesures de distance supposent surtout que les données ont une
représentation convexe et sont donc incapables de faire face à des groupes de données
non-convexes ou des formes allongées. D’un autre côté, les algorithmes basés sur des
mesures de densité capables de mettre en œuvre un apprentissage progressif n’envisagent
que rarement la possibilité de détecter des groupes présentant différents niveaux de
densité, ce qui pose un problème en diagnostic puisque les états fautifs sont en nombre
inférieur. Dans la deuxième partie de cette thèse, un algorithme de partitionnement
dynamique basé à la fois sur la distance et la densité des échantillons est présenté.
Cet algorithme ne fait aucune hypothèse sur la linéarité ni la convexité des groupes
qu’il analyse. Ces clusters, qui peuvent avoir des densités différentes, peuvent égale-
ment se chevaucher. L’algorithme développé fonctionne en ligne et fusionne les étapes
d’apprentissage et de reconnaissance, ce qui permet de détecter et de caractériser de
nouveaux comportements en continu tout en reconnaissant l’état courant du système.
Le classificateur évolue automatiquement lorsque ces comportements sont détectés, en
changeant sa structure et/ou ses paramètres. La dérive d’un ou de plusieurs groupes
s’effectue en réponse à une variation du concept qui est suivi (dérive conceptuelle).
Par exemple, dans le milieu industriel, les normes peuvent changer, en imposant de
nouveaux standards de qualité et de production de plus en plus élevés, pour pouvoir
considérer un produit comme étant de “bonne qualité”. Les changements dans la struc-
ture du classificateur peuvent apparaître dans quatre situations. La première situation
est la création d’une classe. Si un nouveaux comportement se produit, l’algorithme doit
être capable de le reconnaître et de le caractériser dans une nouvelle classe. La seconde
est la fusion de deux classes. Ce phénomène peut se produire lorsque deux comporte-
ments que l’on croit sans rapport montrent une relation en évoluant. La fusion des
classes permet à l’algorithme de gagner en robustesse par rapport à l’ordre dans lequel
les échantillons lui sont présentés. La troisième est la séparation d’une classe et se pro-
duit lorsque, en raison de l’inclusion d’une nouvelle variable ou dû à l’amélioration dans
un élément du processus (capteur par exemple), de nouvelles informations, permettant
de distinguer deux comportements jusque là impossibles à distinguer, sont entrées dans
le système. La quatrième situation correspond à l’élimination d’un classe et se produit
quand un comportement n’est plus représentatif du système.

L’algorithme développé, appelé DyClee (Dynamic Clustering algorithm for tracking
Evolving Environments), a plusieurs caractéristiques:

• il est en mesure de suivre l’état courant du système,

• il est capable d’analyser de grandes quantités de données en ligne, soit en batch
ou en flux continu en fonction de sa nature,

• il est robuste au bruit dans les signaux d’entrée,
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• il est capable de détecter et de caractériser les nouveautés sans affecter les com-
portements déjà appris.

• il adapte automatiquement ses parametres afin de suivre l’évolution du système,

• il gére des contraintes sur les ressources mémoire et les limitations liées au pro-
cesseur,

• il se reconfigure automatiquement, c’est-à-dire qu’il n’a pas besoin d’une nouvelle
étape d’entraînement pour modifier la structure du classificateur.

2. Contributions à l’extraction de caractéristiques : la plupart des algorithmes de parti-
tionnement dynamique de données de la littérature gèrent seulement des caractéristiques
statiques, perdant ainsi l’information relative aux changements dynamiques dans le pro-
cessus. Les approches qualitatives qui permettent d’extraire les tendances d’un signal
prennent en compte l’information sur l’évolution des variables. Cependant, en util-
isant uniquement des représentations qualitatives, des informations quantitatives sur
la magnitude du phénomène sont perdues. Dans la troisième partie de cette thèse une
nouvelle approche permettant d’extraire des caractéristiques dynamiques est présentée.
Cette approche, basée sur une approximation polynomiale par morceaux, permet de
représenter des comportements dynamiques sans perdre les informations relatives à la
magnitude et en réduisant simultanément la sensibilité de l’algorithme au bruit dans les
signaux analysés. Pour pouvoir se servir de l’approximation polynomiale en ligne, une
méthode de segmentation à fenêtres glissantes des signaux a été implémentée. Dans
chaque nouvelle fenêtre, une recherche de points d’inflexion est effectuée afin d’améliorer
la qualité de l’approximation. La qualité de l’approximation polynomiale est validée
en comparant l’erreur induite par l’approximation à la variance du bruit dans le signal
caractérisé, si cette erreur est inférieure à la variance, l’approche est validée et peut
être utilisée pour décrire le comportement sur le segment de signal considéré.

3. Contributions à la modélisation de systèmes à événements discrets évolutifs : les résul-
tats de l’algorithme de partitionnement sont utilisés comme base pour l’élaboration d’un
modèle à événements discrets du processus. Ce modèle adaptatif offre une representa-
tion du comportement du processus de haut niveau sous la forme d’un automate dont les
états représentent les états du processus appris par le partitionnement jusqu’à l’instant
courant et les transitions expriment l’atteignabilité des états. En fait, la représentation
graphique du modèle présente les états passés et l’état actuel du système ainsi que les
transitions possibles entre ceux-ci. Ces transitions sont identifiés avec une possibilité
de transition (calcul basées sur les transitions déjà produites) et l’estimation du temps
requis pour la transition (sous forme d’intervalle). Ce modèle est construit automa-
tiquement et se met à jour lorsque de nouvelles données sont collectées en fonction des
résultats du partitionnement.
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Chapter 1

Introduction

1.1 Scientific context

Technological advances of past decades have resulted in production and service infrastructures

highly adaptive to a constantly changing environment. These advances had changed the way

enterprises get information about the state of their systems [Bar et al. 15]. Huge amounts of

data, arising from various sources, are generally collected and they are available for further

analysis. As reported by the International Data Corporation (IDC), the volume of data

generated in the world is doubling in size every two years. In 2013 this volume were estimated

around the 4.4 trillion gigabytes and is expected to grow up to 44 trillion by 2020 [Tur et

al. 14].

In general, several applications and fields urgently need efficient and effective tools and

analysis methods for dealing with the ever-growing amount of data [Gam et al. 14a]. More-

over, the use of data mining and data analysis techniques was recognised as necessary to

increase business opportunities, to improve service and to maintain competitiveness in to-

day’s business world [Ang 01]. In the field of supervision, the increasing amount of process

data collected and stored has led to an equally increasing interest in the research of supervi-

sion techniques that:

• process large dimensional data, sometimes coming in the form of streams.

• learn from the data and constantly adapt the targeted model to the evolution of the

system (present as change in the data distribution).

• cope with infrequent behaviors represented by sparse data.

• find meaningful correlations, patterns and trends from the data sets.

• cope with unlabeled data.
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This interest is shared in industrial and academic scenarios since fast and accurate di-

agnosis of the system state can increase the plant operation safety, minimize the shut-off

time and reduce costs. The need of techniques capables to adapt in the presence of unknown

behaviors is also crucial for many applications in which faulty data is rare or even dangerous

to gather [Gou et al. 13]. Among various methods, approaches that make direct use of data

have been described to be most useful for industrial applications [Mau et al. 10]. Machine

learning algorithms and pattern recognition techniques emerge as a feasible solution to ex-

tract efficiently knowledge from large amounts of available process data. Pattern recognition

based diagnosis is frequently used in industrial systems for quality control (in normal opera-

tion) and monitoring. In the case of detection of dangerous states, the monitoring function

automatically initiates an appropriate reaction.

Most of the data-based fault diagnosis methods consider data as a set of instant ob-

jects without taking into account their temporal evolution, i. e. their dynamics. In those

traditional approaches, systems are considered as time invariant, so changes in the feature

pattern (coming from physical or analytical sensors) denote a state change. Nevertheless,

if the system is no longer considered as time invariant, not only the information of current

values but also how those values change in time are needed in order to establish the cur-

rent state. There exist several applications in a variety of domains for which the order of

occurrence of data samples determines the state of the system, such as: network intrusion

detection, customer services (relationship,segmentation, retention, complains management),

fraud detection, conditional maintenance (e.g. tool wear monitoring), etc.

This thesis presents a dynamic clustering approach suitable for monitoring the state of

time varying systems. This approach is:

• able to track the current state of the process,

• suitable to large amounts of data; the data sets are analyzed online and, according to

their nature, in batch or online mode; if the data set is small enough the analysis of the

hole set can be done at once (offline),

• robust to the presence of noisy data,

• able to detect novel events,

• adapted to follow system evolution online; the generated clusters change when data

distribution changes without retraining,

• able to manage storage and computational limitations,

• able to learn new system behavior online, without affecting the previously learned

behavior,
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• self-re-configurable, clusterer structure changes automatically in presence of system

changes.

1.2 Motivation

This thesis is the result of my personal desire to contribute to the development of my country.

The economic and social impact of this work can be established through the analysis of the

implications that the application of the results of the thesis could have. On the economic side,

in Colombia, 36% of GDP (Gross Domestic Product) comes from the industry. Given this

number, any research focused on the industry can contribute in order to boost the economy in

Colombia is promising. One big difference between the so-called advanced economies and the

developing economies is the investment on research and the frequency of academy-industry

collaboration projects. On a social perspective, businessmen and citizens of Bogotá believe

that, in order to improve education, it is necessary to join higher education programs with

productive sectors [Cam 11]. The knowledge gathered through this thesis could improve the

University master program in Industrial Automation, and could lead to an improvement in

education. Moreover, the developed algorithm could lead to an improvement in supervisory

systems, a field in which Colombia has little research background. This improvement would

imply less faults and would reduce human injuries and material losses. This motivation fits

with the regional vision of Bogotá.

Bogotá is the capital of Colombia and the focus of research and innovation in the country.

Generating 31% of national GDP,the region comprising Bogotá and Cundinamarca (Bogotá-

Region) is the driving force of the Colombian economy thanks to it size, the dynamics of

its productive activities, job creation and strength of its business. Being the largest market

in Colombia, its principal strength is to have a diversified production structure, in which

services are the predominant activity (56.2%), followed by trade (14.5%), industry (11.3%)

and construction (4.6%) [Cam 15]. Bogotá-Region is the most enterprising region in Colom-

bia, with more than 384 thousand businesses in total, and an average of 76 thousand new

businesses per year.

The capital aims to structure the policy ‘Bogota 2025’, a policy of ‘Intelligent Strategic

Specialization’ in Bogotá-Region through a productive vocation based on the keystones of

knowledge, science, technology, research and innovation. The so-called key enabling technolo-

gies, capital and knowledge-intensive technologies associated with a high degree of research

and development and innovation, are the advocacy of an ‘intelligent development’ in the re-

gion. Colombian specialists in business and politics have a clear vision of Bogotá-Region in

2025 as a leader of development based on knowledge, research and technological advancement

[Cam and Alc 15]. Among the possible scenarios of what could happen in Bogotá in the next
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10 years, innovation can come from the public sector, in form of strategic alliances between

the state, the businessmen and the academia, or from the private sector, in form of a research

platform between the private sector and the universities [Cam and Alc 15].

1.3 International scientific collaboration

This work was developed in collaboration between the Automation research group at Uni-

versidad Nacional de Colombia (GAUNAL) and the research group in Diagnosis and Su-

pervisory Control (DISCO) from the Laboratory for Analysis and Architecture of Systems

(LAAS-CNRS).

GAUNAL is an interfaculty research group with valuable experience in the field of diag-

nostics applied to electric power generation and transmission systems. Industrial applications

of its research can be found in the area near the city of Medellin. At present time, the group

vision includes to reach similar achievements in the metropolitan area of Bogotá and to build

the foundations of a future graduate course devoted to monitoring and diagnosis.

The DISCO research team conducts a rich and varied methodological research in the field

of automated diagnosis and prognosis. Relying on formalisms from both the field of Automatic

Control Artificial Intelligence, DISCO researchers develop expertise at the intersection of

these two fields. Model-based methods as well as machine learning and data mining methods

are investigated to provide original diagnosis and prognosis solutions. The experience in

considering varied systems and the multidisciplinary approach are the trademarks of the

team, whose results are recognized in both fields.

1.4 Structure of the Thesis

This thesis is organized in three main parts. The first part present as preliminary information

the thesis context, the addressed problem and the state of the art in classification. The second

part presents the proposed dynamic clustering algorithm capable of clustering static and

dynamic objects and illustrates its properties using toy examples over static data. The third

part present the use of the dynamic clustering for monitoring dynamic processes illustrated

in an industrial benchmark. The content of each part is further explained below.

The Part I is organized as follows:

In chapter 2, a general framework on fault diagnosis techniques is given. Starting with

the general structure of a diagnostic system and followed by some definitions, the role of

fault diagnosis in supervision is explained. This is followed by a brief description of the

desired features of a supervisory system and a classification of the techniques that have been

proposed in order to solve the fault diagnosis problem.
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Chapter 3 introduce the data classification problem as has been considered in classical ap-

proaches and then introduces the dynamic classification problem. It will be seen that dynamic

classification may refer to the dynamism of the classified data or to the classifier structure

itself. An state of the art on dynamic classification is presented from which, arguably, the

need of a fully dynamic clustering algorithm can be outlined.

Part II is organized as follows:

Chapter 4 introduces the dynamic clustering algorithm developed throughout this thesis.

This algorithm make use of the advantages of both distance- and density-based clustering

algorithms to resolve classification problems that can not be solved by using just one of these

methods. The distance-based stage if further detailed in Chapter 5 where an analysis over

the distance measures bets suited to work with supervisory problems is also performed.

Chapter 6 introduces the density-based clustering stage. In this stage the output of the

distance-based stage is analyzed in order to find clusters of any shape and size, including

non-convex high overlapping sets. The part II ends with a variety of test performed over

static data showing that the developed algorithm outperforms several well known clustering

algorithms.

Part III is organized as follows:

Chapter 8 presents this thesis proposal to generate dynamic features capable of charac-

terizing dynamic data. This dynamic features can be treated in the same way that static

features by the developed algorithm allowing clustering of dynamic objects. Chapter 9 then

introduces how the clustering results can be used to learn a time dependent discrete event

model of the process under analysis.

The final chapter of this part, Chapter 10, shows the application of the developed algo-

rithm on two industrial benchmarks. The first one is a pilot process describing a thermal

power plant on a reduced scale found at the Lille 1 University - Science and Technology. The

second one, a pilot plant of a continuous stirred tank heater located in the Department of

Chemical and Materials Engineering at University of Alberta in Canada.

Finally, the conclusions of this thesis and recommendations for future work are presented

in Chapter 10.3.

1.5 Contributions

The main contributions of this thesis can be summarized in terms of contributions on dynamic

clustering of static and dynamic objects, on dynamic feature extraction and on discrete event

modeling for evolving systems:

• Contributions on dynamic clustering: Current distance-based clustering algorithms rely
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on convex representation and are therefore unable to deal with non-linear elongated

clusters. On the other hand, density-based algorithms that currently handle incremental

learning do not handle cluster distributions with varied densities. In the part II, an

algorithm that uses distance- and density-based analyses to cluster non-linear, non-

convex, overlapped data distributions with varied densities is proposed. This algorithm,

that works in an online fashion, fusions the learning and classification stages allowing

to continuously detect and characterize new behaviors and at the same time recognize

the system current state.

• Contributions on feature extraction: Dynamic clustering algorithms found in the litera-

ture mostly handle static features only, losing the information related to the dynamics

of the process changes. Qualitative approaches to trend extraction are the only ones to

consider and keep information about the evolution of a variable, however, they serially

lose the quantitative information about the magnitude of the described phenomenon. In

Chapter 8, a novel approach to dynamic feature extraction is presented. This approach

based on polynomial approximation allows to represent dynamic behaviors without los-

ing the magnitude related information and to reduce the algorithm sensitivity to noise

at the same time.

• Contributions on discrete event modeling for evolving systems: In Chapter 9 the found

clustering results are used to develop a discrete event model of the system. This adaptive

model give a high level abstraction of the system with information about the system past

and current states along with the possible transitions identified by the time of transition

and the time constraints between two states.This model is built automatically as new

data of the system is gather.

As a result of these contributions the following publications were generated:

• N. Barbosa Roa, L. Travé-Massuyès, and V. H. Grisales. Trend-Based Dynamic Classi-

fication for on-line Diagnosis of Time-Varying Dynamic Systems. In SAFEPROCESS

2015, Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and

Safety for Technical Processes, pages 1224–1231. IFAC, 2015

• N. Barbosa Roa, L. Travé-Massuyès, and V. H. Grisales. DyClee: Dynamic clustering

for tracking evolving environments. Pattern Recognition, 2016. Submitted

• N. Barbosa Roa, L. Travé-Massuyès, and V. H. Grisales. Dynamic Clustering as a Tool

for Monitoring Evolving Systems. In DX-2016, Proceedings of the 27th International

Workshop on Principles of Diagnosis. DX, 2016
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• N. Barbosa Roa, L. Travé-Massuyès, and V. H. Grisales. Dynamic clustering for process

supervision. In XVII CLCA, Latin American Conference of Automatic Control. IFAC,

2016

• N. Barbosa Roa, L. Travé-Massuyès, and V. H. Grisales. A novel algorithm for dynamic

clustering: properties and performance. In ICMLA 2016, 15th IEEE International Con-

ference on Machine Learning and Applications. IEEE, 2016

The developed algorithm was implemented in Python and is open for academic purposes.

An introduction to the algorithm properties and use is given in Appendix B.
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Part I

Preliminaries

This part aims at presenting the scientific context over which this thesis was developed.

To do so, first a framework of fault diagnosis is presented in Chapter 2. This framework

starts with the field definitions in order to establish a common vocabulary and then focuses

on the desired characteristics that a supervision system should have. It culminates with the

classification of fault diagnosis techniques. Then, Chapter 3 introduces the key concepts

covered during this thesis. These concepts, mainly related to the classification of static

and dynamic objects, are introduced using practical examples. Then the chapter focuses in

dynamic classification, the desired evolution of the dynamic classifier structure and finalizes

with an state of the art in dynamic classification techniques.





Chapter 2

Fault diagnosis framework

The increasing complexity of automated systems has been accompanied by the ever increasing

demand of availability and safety in industrial plants [Tos 11]. The implementation of a fault

detection and diagnosis system is one way to achieve these goals. By continuously monitoring

the evolution of the system, early detection of deviations of the process behavior can be

discovered and functional scenarios could be establish. A functional scenario is the sequence

of actions in a system necessary to perform a task. To characterize the functional scenarios

every possible behavior of the system must be found and represented as a sequence of states,

including their relation with the system inputs. The detection and further maintenance is

useful to prevent a failure before it appears. In order to avoid system breakdowns, production

deterioration and/or damage to machines or humans, faults have to be found as soon as

possible and the decisions involving such events have to be made quickly. When a deviation

is considered abnormal (fault detection), an indicator of fault is generated (symptom), then

the symptoms must be appropriately interpreted to find the origin of the anomalies (fault

diagnosis). Finally, a decision must be made (decision-making) and applied in order to bring

back the system to its normal behavior, see Figure 2.1. A system that includes detection,

isolation and identification or classification skills is referred to as an FDI (Fault detection

and isolation) system.

This chapter explores fault diagnosis in supervision. Fault detection and diagnosis cov-

ers a wide variety of techniques ranging from the use of fault trees, analytical approaches,

knowledge based systems and neural networks in more recent studies. Before going further

and in order to overview the FDI framework, some definitions must be established as a solid

cornerstone for the diagnosis of faults.
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2.1 Fault diagnosis generalities and definitions

The overall concept of fault diagnosis consists of three essential tasks performed over the

system: fault detection (deciding whether or not a fault has occurred), fault isolation (decid-

ing on which components the fault has occurred. Localization and classification) and fault

analysis or identification (assessment of type, magnitude and causes) [TM 14]. To detect a

failure behavior, normal behavior should be defined first.

Definition D2.1. Normal operation of a system: A system is said to be in normal

operating conditions when the variables that define the process (state variables, output vari-

ables, input variables, system parameters) remain close to their reference/nominal values.

The system is said to be faulty otherwise [Tos 11].

Considering the above, we can define a fault and a failure as follows.

Definition D2.2. Fault: A fault is defined as an unauthorized deviation of at least one

property of a variable from its acceptable behavior (nominal situation) [Ise 05]. Faults can

occur in the sensors, actuators or in the process itself.

Therefore, a fault is defined as an abnormality in the process or symptom. If a faulty

state lasts long enough, it may lead to a system malfunction or failure.

Definition D2.3. Failure: A failure implies the alteration or cessation of the ability of a

device to perform the required function within the range given by the technical specifications.

Failures are malfunctions of the system.

It is clear that failure implies fault. Nevertheless, a fault does not necessarily imply a

failure because the device may very well continue to provide its primary function [Tos 11]. If

the failure lasts long enough, it may lead to a system breakdown.

Figure 2.1: General structure of a diagnostic system. Based on [Tos 11]
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Definition D2.4. Breakdown: A breakdown is the inability of a device to perform a

required function.

It is clear that the diagnosis process should be able to detect and locate a fault before it

could lead to a failure or system breakdown. Furthermore, not only the detection of the fault

is important, but also distinguishing between the faults and their effects. Fault diagnosis

has to trace back the cause-effect relationships from the measured variables when they prove

to be different from the nominal values, in order to find the primary cause of the deviation

[Bla 03]. Generally, there are three classes of elements that lead to failure behavior and that

have to be addressed:

1. Unknown inputs: This phenomenon arises when disturbances enter the process through

one or more parameters. In this case, an undesirable behavior due mostly to unmodeled

dynamics, is observed. An example of this kind of faults is a change in the reactant con-

centration from its normal value in a rector feed it the concentration was not considered

in the process model [Ven 94].

2. Malfunctions in the process: They refer to structural changes in the process itself.

These changes occur due to hard failures in the equipment. An example of this kind of

malfunction could be the disconnection of a system component.

3. Malfunction in sensors or actuators: Most faults occur due to sensor or actuator

faults. An instrument fault could cause a deviation in plant state variables. If the

fault is not detected on time, the variable deviation can exceed acceptable limits, thus

causing an undesirable behavior. Examples of structural changes are the blocking of a

valve or the drift in sensor measurements.

Faults may manifest in an abrupt form, an incipient form or an intermittent form. Fault

behavior can also be classified for model purposes as additive or multiplicative [Ger 88].

Additive measurement faults are discrepancies between the measured and the true values

of plant variables mostly due to sensor biases. Additive process faults are disturbances

(unmeasured inputs) acting on the plant. Finally, multiplicative process faults are changes

of the plant parameters, generally caused due to component deterioration.

2.2 Desired features of a Supervision system

Modern methods for supervision and fault diagnosis must have some desirable characteristics

as stated in [Ven et al. 03, Rib and Bar 11]:
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a. Quick detection and diagnosis: The system should detect small abrupt faults as soon

as possible with a tolerable performance. There is a trade-off between robustness and

time response.

b. Isolability: The system should have the ability to distinguish between different faults.

There is also a trade-off between isolability and modeling uncertainty rejection.

c. Robustness: The system should be able to hold an acceptable performance against noise

and uncertainties. Like faults, disturbances and model uncertainties change the plant

behavior. Disturbances are usually represented by unknown input signals that have

to be added up to the system. Model uncertainties change the model parameters in a

similar way as multiplicative faults.

d. Novelty Identification: The system should have the ability of classifying the actual

process state as normal or abnormal. If the process is functioning abnormally, the

cause must be recognized as a known or unknown (novel) malfunction.

e. A priori error estimation: The system should provide an estimate on the classification

error that can occur. These kind of information can increase the confidence of the user

in the supervision system.

f. Adaptability: Since the process is prone to change, the diagnostic system should be

adaptable to changes.

g. Cause-effect reasoning: It is desirable that the system not only detects a faulty condi-

tion, but also explains how the fault originated and propagated to the actual situation.

h. Modelling requirements: The modeling effort should be as minimal as possible, in

order to achieve fast real-time diagnostic.

i. Storage and Computational requirements: The system should be memory and com-

putational efficient. The diagnosis process present a trade-off between computational

complexity and storage requirements, which is not easy to achieve.

j. Multiple fault identification: The system should be able to identify multiple faults

occurring at the same time. The ability to identify multiple faults from different sources

is hard to achieve. Since faults can show a synergistic behavior, a diagnostic system

may not be able to use the individual fault patterns to model the combined effect of

multiple faults.

k. Learning: The system should be able to learn and refine its knowledge and diagnostic

capabilities as more data becomes available (online).
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l. Self-reconfiguration: The system should also evolve preferably autonomously otherwise

should have minimal reconfiguration capabilities.

2.3 Classification of Fault diagnosis Techniques

Several diagnosis techniques have been suggested in order to solve the fault diagnosis problem

(see Figure 2.2). The sequel presents a rough classification of these techniques.

Figure 2.2: Classification of fault diagnosis methods

2.3.1 Hardware redundancy based fault diagnosis

Hardware redundancy accomplishes almost all of the previous characteristics. In hardware

redundancy, process components are reconstructed using identical (redundant) hardware com-

ponents. In this case, a fault is detected when a component and its redundancy have different

outputs, therefore, component fault detection is straightforward. Fault isolation is generally

conducted with a voting process which requires at least two redundant items. Besides fault

detection, the other main advantage of this scheme is its high reliability. On the other hand,

the use of this strategy results in high costs [Din 08]. Nowadays, this type of redundancy

is only used in process key components or critical systems such as the space-shuttle [Zim et

al. 11] (which uses four redundant computers for the primary flight system) or the Airbus

A320 [Tra et al. 04] (which uses two types of computers, each one composed of two identical

units).
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2.3.2 Signal processing based fault diagnosis

Signal processing aims to extract fault information directly from process signals. Fault diag-

nosis can be achieved by a suitable signal processing on the assumption that some process

signals carry information about the faults. This information takes the form of symptoms

(see Figure 2.1). Common symptoms can be time domain functions or frequency domain

functions. Some time domain symptoms are magnitude, limit value, trends, mean values

(arithmetic or quadratic),etc. Examples in the frequency domain are spectral power densi-

ties, frequency spectral lines, cepstrum analysis, etc [Din 08, Din 14]. Similar to statistical

data techniques, signal processing techniques are mainly used for processes in steady state

and have limited efficiency for dynamic systems, which have a wide operating range.

2.3.3 Analytical model based fault diagnosis

The analytic redundancy strategy is the foundation for the Model-Based Techniques which

are based on the availability of a priori knowledge about the process represented by some kind

of model (quantitative or qualitative) in the form of a mathematical description of the process

dynamics. A model-based fault diagnosis scheme consist of two parts: the generation of so-

called residuals, which capture the difference between the measured process variables and

their estimated values (found using the process model) and residual evaluation and decision

making [Din 14]. Processes are exposed to disturbances and uncertainties making almost

impossible to find their exact models. A central problem in the model-based fault diagnosis

techniques is the extraction of the fault information from residual signals corrupted by model

uncertainties and unknown disturbances [Din 08].

2.3.4 Data-based fault diagnosis

In contrast to model-based techniques, in data-based approaches (also called process history

approaches), no a priori knowledge is required. Instead, a large amount of historical process

data must be available. In industrial processes, data directly arise from process measures in

form of voltages, currents, pressures, temperatures, quality measures, data vision feedback,

etc.

The first problem consist in generating relevant features. Features can be found by using

either statistical or non statistical methods. Accordingly, data-based fault diagnosis can be

roughly classified into statistical data-based fault diagnosis and non statistical data-based

fault diagnosis. Data-based schemes principally consist of two phases: the training stage, in

which historical data sets are transformed into a diagnostic classifier, and the online running

stage, in which the measurements data are processed through the classifier achieving a reliable
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fault detection and identification [Din 14]. Statistical approaches are mainly used in static

processes and are often limited in their efficiency for complex processes [Din 08].

2.3.5 Data-driven fault diagnosis

Data-driven methods assume (analytical) model-based methods in the statistical data-based

framework [Din 14]. Different from analytical model based methods that require a priori

knowledge of the first principles physics of the process, data-driven methods perform analysis

over process historical data to find the parameters of the chosen model structure. Among

the existent data-driven techniques principal component analysis and partial least squares

regression are the most popular. In those techniques processes monitoring scheme for a large-

scale system can be improved significantly by computing some meaningful statistics [Chi et

al. 01]. The strength of data-driven techniques is their ability to reduce data dimension while

keeping the important information.

2.3.6 Knowledge based fault diagnosis

Knowledge-based fault diagnosis is based on a qualitative model which represents a priori

knowledge of the process under monitoring. Fault diagnosis is then achieved by running

well developed search algorithms. The core of a knowledge-based fault diagnosis system is

an expert system which consists of (i) a knowledge base (ii) a data base (iii) an inference

engine and (iv) an explanation component. Knowledge-based fault diagnosis techniques are

receiving increasing attention for dealing with fault diagnosis in complex technical processes

[Din 14].

Recent developments of hybrid methods focus on achieving most of the desired character-

istics shown in subsection 2.2 to exploit the strengths of two or more methods, so that their

weaknesses are overcame.
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Chapter 3

Data Classification for monitoring

To estimate the current operating condition of the system is the first step to predict its future

state (prognosis). The assessment of the current functional scenario (monitoring) of the plant

is basically a pattern recognition problem. The recognition involves learning similarities and

differences of patterns that are abstractions of objects in a population of non-identical objects.

Classification methods have been widely used for this purpose.

This work focuses in the unsupervised classification of data for monitoring and fault

diagnosis. The previous chapter presented the fault diagnosis framework, this chapter aims

to provide a general overview of data classification and its application to process monitoring.

The classes or clusters represent functional or behavioral process states and their recognition,

as said before, can be useful for monitoring and diagnosis.

Since a variety of notations can be found in the literature of both fields, data-based fault

diagnosis and data classification, the main notations and definitions used in this thesis are

first defined.

3.1 Preliminary definitions

This section give the definitions of the main concepts used throughout the thesis. As stated

in the previous chapter, the observation space is usually of high dimension and should be

transformed into a feature space when similarities, associations and relationships between

objects make knowledge extraction easier.

The main focus of this chapter is the classification of objects’ current state. Classification

is the task of assigning objects to a group characterized by a given concept. A concept,

as defined in the oxford dictionary, is An idea or mental image which corresponds to some

distinct entity or class of entities, or to its essential features. Let us take as example a crop

of apples.
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Example 3.1. Apples are described by numerous characteristics as color, size, variety, etc.

These characteristics represent any type of apple, for example, a specific apple can be de-

scribed by the concept ‘green’ or more in the more elaborated ‘green granny smith apple’.

The set of all these characteristics describe the current state of the apple and ,since it is a

permanent state1, it describes the object itself (see Figure 3.1).

Object Apples

Permanent
State

size at harvest
variety
color ...

Static
Features

size in cm
color as RGB

Figure 3.1: Data representation of a static object

If one is interested in selling red big apples, not all the apple’s characteristics need to

be considered. The selection of the characteristics containing the necessary information for

classifying the apples is called feature extraction.

Definition D3.1 (Feature extraction). The process of reducing the dimensionality of the

object’s characteristics in a way that retains the information discriminating different objects

with respect to a given concept is called feature extraction.

Consequently a feature can then be defined as follows.

Definition D3.2 (Feature). A feature is a distinctive characteristic of an object that sets it

apart from similar objects with respect to a given concept. This characteristic does not need

to be directly observable.

In the apple sell example the classification can be made using as features the size of the

apple and its color represented in their red, green and blue components. These features

are called static since they represent permanent characteristics of the object. Figure 3.1

illustrates this concept. The concept ‘big red apple’ denotes the set of all apples with size

over 9cm and color redder than the RGB (red, green ,blue) color [224, 50, 60]. It is worth

noting that one characteristic can be described by several features as is the case of the color
1This state can be called as permanent state since, once harvested, these characteristics do not change,

i.e. a green apple cannot become red and vice versa.
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which is described by three different features. The mathematical description is shown in

equation (3.1).

big red apple{x = [x1, x2, x3, x4] | x ∈ X x1 ≥ 9, x2 ≥ 224, x3 ≤ 50, x4 ≤ 60} (3.1)

where X is a data set (as defined later).

The concept of ‘big red apple’ can be used to illustrate another important definition

addressed by this thesis, the concept drift.

Example 3.2. Let us think in the apples crop of two different periods. The first period had

suffer an intense drought while the second does not. Intuitively, the apples from the drought

period are smaller than those from the other period hence drifting the concept of ‘big red

apple’.

Definition D3.3 (Concept drift). Given a data set X and a set of concepts L following a

distribution p(x, l), concept drift denotes the change in the current distribution p(x, l) with

respect to past distributions.

When people think about concepts two more actions can be directly associated to them,

concept creation and concept elimination. A concept creation example is the bravo apple,

introduced in 2014 in western Australia. This apple, result of the cross between two different

apple varieties, has a striking burgundy color unlike any other apple currently available in

Australia. Formal description of both concept creation and elimination are given below.

Definition D3.4 (Concept creation). Given a data set X following a distribution p(x) and

a set of concepts L following a distribution p(x, l). The process of concept creation is such of

assigning a new label ln, ln /∈ L, to a subset of X.

Definition D3.5 (Concept elimination). Given a set of concepts L. The process of concept

elimination is such of deleting the label li, li ∈ L, from the set of concepts when it is not

longer representative of X.

Concept elimination usually occurs due to temporal evolution. Examples are easily found

in the sciences, e. g. "Earth is the center of the universe". Note also that concept creation

may emerge from the merge of two concepts or by splitting an old concept into a subset of

concepts.

Dynamic systems are described not only by permanent states but also by non-permanent

states. These non-permanent states may be further classified as transitory or stationary

states. To illustrate this, let us take a blue car as dynamic object.
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Example 3.3. A blue car can be described by many characteristics. Among its static

characteristic one can name the color, branch, model and year of production. Then, for

example, a car can be described by ‘blue VW beetle of 1990’. The same car has also non-

permanent states as those describing its movement, e.g. moving forward, moving backward,

stopped. It is important to emphasize that in the dynamical representation the concept

may not be related to the object itself but to its states. For example the concept ‘moving’

represents a state of the car.

To describe the non-permanent states, characteristics describing the dynamics as the

speed or acceleration are necessary. The set of features representing the dynamic information

necessary to associate a concept to a non-permanent state of an object are called dynamic

features. A diagram of this example is shown in Figure 3.2.
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Figure 3.2: Data representation of a dynamic object

It is worth noting that the same characteristic can be used to describe stationary and tran-

sitory states. For example the car’s velocity can be used to describe stationary states like stop

or cruise mode, but also for transitory states as setting off. Nevertheless the features repre-

senting this characteristic can be time-independent, as a constant value, or time-dependent,

as a mathematical function.

Concepts in the dynamic world may also be subject to concept drift. Let us take the

concept ‘moving fast’. One century ago cars at 70km/h where considered as the fast while

nowadays that concept is related with cars at more than 200km/h. Another example of

concept drift can appear regarding spatial information. If a car is circulating in a residential

area nowadays at 60km/h it is considered as ‘too fast’ while if it is circulation on the highway,

‘too fast’ is being over 110km/h (or more depending on the country). This example shows

that the concept drift is related not only with time evolution but in general with a parameter
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evolution.

In fault diagnosis, and in general in pattern recognition, each dimension of the data sam-

ples corresponds to a feature carefully chosen to describe at best system’s information. If

these features are static, they are time-independent and the system is considered as static.

On the contrary, if a system or a process is described by at least one time-dependent, hence

dynamic, feature it is said to be dynamic. When features are time-dependent, more informa-

tion about the evolution of the dynamic system can be extracted by analyzing the feature

over time, i.e. by analyzing its trajectory. For example, speed information can be retrieved

by analyzing the position of an object over time. Acceleration information can be similarly

retrieved from the speed trajectory and so on. This analysis can be used to generate relevant

features.

Example 3.4. To better illustrate how dynamic characteristic can be described by dynamic

features a three tanks system as the one shown in Figure 3.3 can be used. Lets assume that

this system has level sensors in each of the tanks. When the system has no input, the level

in all tanks is constant. In this case the tank object can be represented considering the tank

level (hi) at some time point, e.g. t = 0. Figure 3.4 shows the data sample representing

the tank objects at t = 0, in green h1, in magenta h2 and in gray h3. This representation

misses the information of the level remaining constant. Now consider that the system input is

activated at t = 5000, that is, the pump in Figure 3.5 is opened, the level of the tanks starts

changing. The lack of information become clearer if the only representation of the system at

t = 10000 is the one shown in Figure 3.6, where the evolution is not captured.

Qout (t)

h1 (t) h3 (t) h2 (t)

Figure 3.3: Three tank system at t = 0 s
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Figure 3.4: Tanks data samples at t = 0 s
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Figure 3.5: Three tank system at t =10000 s
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Figure 3.6: Tanks data samples at t=10000 s
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If a dynamic system is observed over time, each varying feature is a time-dependent

function [Ang 01]. Intuitively, one can imagine that a dynamic system can not be described

with the same tools as a static system. In our three tanks example it is interesting to analyze

the whole trajectories of the tanks levels as illustrated in Figure 3.7, from where additional

dynamic features, like speed, tendency, etc. can also be generated.
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Figure 3.7: Tanks data samples for 0 ≤ t ≤ 20000 seconds

The object features are usually presented in the form of a vector known as sample or

more precisely data sample. Mathematical definitions for data sample and data set are given

bellow, being F the definition domain of features, which in the case of quantitative features

is R or a subset of R.

Definition D3.6 (Data sample). A data sample is a multi-dimensional representation of an

object permanent state provided by d features. It is denoted by xi = [x1
i , x

2
i , · · · , xdi ] with

xji ∈ F ∀ 1 ≤ j ≤ d, i ∈ N.

Definition D3.7 (Data set). A data set is a collection of N data samples. It is denoted by

X = [x1, x2, · · · , xN ].

As established in definition D3.6, permanent states are described by a vector of d static

features. Non-permanent states are described by dynamic features whose generation may

require the history of the directly measurable features, i.e. their trajectories.

Formally, let xji be a static feature and xji (t) denote a dynamic feature. Dynamic objects

having one or more dynamic features are described using dynamic data samples.

Definition D3.8 (Dynamic data sample). A dynamic data sample of a dynamic object is a

tuple containing an d1-dimensional vector of dynamic features and a d2-dimensional vector
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of static features. It is denoted by xi (t) =
([
x1
i (t) , · · · , xd1

i (t)
]
,
[
x1
i , · · · , xd2

i

])
with xji ∈ F

∀j : 1 ≤ j ≤ d2 (static features) and xj
′

i (t) ∈ F ∀j′ : 1 ≤ j′ ≤ d1 (dynamic features), subject

to d1 ≥ 1, d2 ≥ 0 and d1 + d2 = d.

Data samples can arrive as a whole or in stream. If the concept of time is considered the

order of arrival of the samples is also important, hence two more concepts have to be defined:

Definition D3.9 (Data stream). A data stream is a real-time, continuous flow of data

samples arriving in an ordered manner

Definition D3.10 (Time Stamp). Being xi a data sample part of a data stream, the time

stamp tsi denotes its arrival time.

3.2 Data classification general framework

The problem of data classification exists in a wide variety of domains. Classification tech-

niques try to learn the relationship between a set of features and a target variable of interest

[Agg 14]. This target variable of interest represents a concept as defined in Section 3.1.

Formally, the problem of classification has been stated as:

Definition D3.11 (Data classification). Given a data set X and a set of k different discrete

values L indexed by 1 · · · k, each representing a label, data classification is the task of assigning

a label (or its index) to each data sample in X.

Definition D3.12 (Classifier). An algorithm that implements data classification, is known

as a classifier.

Ideally, a classifier is designed to fulfill two main targets. First, within a class, objects

should be as similar as possible (homogeneity) and second, from one class to another, objects

should be clearly distinguishable (heterogeneity). These properties are relative and only

depend on the selected features describing the classes.

A classifier structure is defined by the number of classes it outputs and the shape of

these classes. Each class is defined by a set of parameters providing the class information

in the features space. Depending on the information available for the classifier design, data

classification can be done in an automatic way (no prior given structure) or by selecting a

given structure and the learning paradigm such as supervised learning, unsupervised learning

and reinforcement learning. The goal of supervised learning is to find the set of parameters

that better describes each class by using a subset of labeled samples called as training set.
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From this training set the classifier learn the parameters (or set of rules) that allows the

classification of new objects into one of the learned classes.

Reinforcement learning, on the other hand, is the problem of learning a specific behavior

(or goal) through trial-and-error interactions with a dynamic environment [Kae et al. 96].

The principal difference between supervised learning and reinforcement learning is that the

later must explicitly explore its environment.

In the case of unsupervised learning the goal of classification, also known as clustering,

is the partitioning of samples without the aid of a training set. Clustering algorithms group

objects into a number of clusters based only on the hidden data structure, evidenced by some

similarity or dissimilarity measures. The main challenge of clustering arises if the number of

clusters is unknown.

Definition D3.13 (Clusterer). A classifier that implements classification under the frame-

work of unsupervised learning, is called a clusterer.

Classification can be further cataloged as static or dynamic. Intuitively, if the knowledge

about the data set to be classified is limited, the set of concepts describing it may drift

(definition D3.3) or new concepts may emerge (definition D3.4 in the course of time. To

follow this evolution the location of clusters and even the number of clusters may change.

Definition D3.14 (Dynamic classifier). A classifier which is able to deal with concept dy-

namism as new data is processed is called a dynamic classifier. Specifically,

• A classifier which is able to change the parameters describing its classes, is a dynamic

parameter classifier.

• A classifier which is able to deal with dynamic cluster structure is a dynamic structure

classifier.

Definition D3.15 (Fully Dynamic classifier). A classifier which is able to change both its

structure (not being limited to just cluster creation) and its parameters, is called a fully

dynamic classifier.

Definition D3.15 implies that a fully dynamic classifier must implement cluster creation,

merge, split, elimination and drift in an automatic fashion. The extension of the above

definitions in the specific case of unsupervised learning is straightforward: a dynamic clusterer

is a clusterer able to deal with concept dynamism and a fully dynamic clusterer is a clusterer

able to change both its structure and its parameters automatically to follow the concept

evolution.

The two kinds of dynamism involved in this work (with reference to the state of the object

and with reference to the cluster structure), are further explained in the next section using
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the concepts of dynamic pattern recognition. Finally, it is worth noting that we consider the

methods classifying static objects with static structure as static classifiers.

3.3 Dynamic objects

Dynamic clustering is concerned with the recognition of evolving concepts for both static

and dynamic objects. To better illustrate the difference between static and dynamic objects,

and the particular interest of this thesis in the later, an example motivated by [Zim 00] is

introduced.

Example 3.5. Consider a set of six objects in R
2 observed over the interval T = [0, 50]. A

snapshot of the directly observable features at t = 50 is shown in Figure 3.8 and a projection

of the features trajectories from t = 0 to t = 50 is shown in Figure 3.9.
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Figure 3.8: States of the objects at t=50
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Figure 3.9: Projections of objects trajectories in
the feature space

Figure 3.8 shows the point of view that has been used in the classical classification ap-

proaches. From this point of view, two classes of objects can be intuitively distinguished in

this figure (represented with purple and red colors). However, if one considers the path that

has brought the features to that point (the set of their positions over T , as shown in Figure

3.9), the intuition may suggest another result.

The problem of dynamic objects classification can be even more challenging if the dynamic

behaviour is heterogeneus, that is, if the parameters describing a feature behavior vary over

time. In order to better understand the concept of heterogeneus dynamics, a well known

benchmark2 is used. This data set contains 600 examples of control charts synthetically

generated by the process described in [Alc and Man 99]. The control charts exhibit one of

five possible dynamic behaviors named cyclic, increasing, decreasing, up shift and down shift.

These behaviors can only be noted observing the hole time series. Each subplot in Figure 3.10

exhibits two examples of each one of the listed behaviors in the form of the corresponding

time series.

2The Synthetic Control Chart time series data available at the UCI machine learning repository [Lic 13]
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Figure 3.10: Time series exhibit different behavior (cyclic, increasing, decreasing, up shift and down shift)

Example 3.6. Heterogeneous dynamics are illustrated using the blue and red signals in

Figure 3.10. Consider the red signals as a set of measures took in a time window T1 and

the blue signals as being the same set of measures but taken in a time window T2 with

T1 < T2. Each subplot shows these two signals to be slightly different, red signals show

original patterns for each specific behavior and blue signals show the evolution of those

patterns. The first subplot, for example, shows a reduction in the cyclic signal frequency.

The second and third subplots show a change in the slope even if the overall behavior is

still the same (increasing/decreasing). The Up shift behavior subplot shows a reduction in

the shift magnitude. Finally, the last subplot shows that the Down shift signal has became

smoother, and the abrupt transition between samples n = 20 and n = 21 has been dragged

to samples n = 27 and n = 28.

The heterogeneous dynamics (changes in patterns) should be taken into account by a

detection and diagnosis system. Currently considering these phenomena is quite challenging

and research in this field is still very active. The main difficulty lays in feature generation: one

has to decide which set of features allows to capture and discriminate the different patterns

and how to generate them from the observable characteristics (in our example the time series

of Figure 3.10.
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As a matter of fact, it has been stated that considering trajectories rather than snapshot

values allows earlier detection of malfunctions [Zim 00]. This claim is confirmed from the

trajectories from Figure 3.10. If we take the blue trajectories and zoom over the first 20

samples as shown in Figure 3.11, a main drawback of snapshot analysis is evidenced. At

n = 0 the value of all the features is the same, accordingly, a classifier would classify all the

signals as belonging to the same class, even if, analyzing its evolution, it is clear that they

exhibit five completely different behaviors. Convincingly analyzing objects dynamically is

unavoidable and this fact stresses feature generation as crucial step.
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Figure 3.11: Zoom over the first data samples in the Time series

3.4 Dynamic classifiers

Dynamic classifiers exist under different names like, on-line classifier, constructive learn-

ing classifier, evolutionary classifier, incremental classifier, evolving classifier, among others.

These classifiers exhibit different properties and they may work on different types of objects.

Dynamism in the classifier is achieved when whether the parameters or the classifier struc-

ture changes automatically according to new data reflecting system changes. Ideally, abrupt

changes in data, also called data shift, are captured as cluster creation or elimination ( corre-

sponding to definition D3.4 for concept creation and D3.5 for concept elimination). Smooth

changes in data, also called data drift, are usually reflected as cluster drifts (corresponding

to concept drift as defined in definition D3.3) and less frequently as cluster merging and

splitting. This subsection takes a closer look over the possible changes in dynamic classifiers.

3.4.1 Possible changes in the structure of a dynamic classifier

Creation of clusters If new data cannot be assigned to any of the existing classes, new

clusters should be created to represent this novelty behavior. Cluster creation faces the

challenge of detecting as fast as possible novel behavior without losing the ability to

reject outliers. See Figure 3.12 as an illustrative example.
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Figure 3.12: New cluster creation

Left side of Figure 3.12 shows the resulting classification of the data samples arrived

from t = 0 until t = t1. This result reveals a cluster (purple) and some outliers. Some

Δt time later the data distribution has changed, as shown on the right of Figure 3.12.

Purple samples have lost opacity indicating that they were assigned to that cluster

before the Δt window. No new elements have been assigned to the purple cluster and

the zone with high samples concentration is detected as a new cluster (cyan).

Elimination of clusters If no new data is assigned to a cluster and old data has been

forgotten the cluster should disappear. Some approaches store the center of forgotten

clusters in case of data belonging to that cluster appearing again in the future, allowing

faster recognition.

Merge of clusters Two or more clusters may be merged if the region that separates them

is filled with new arriving data. In that case the whole region formed by the samples

becomes a new integrating cluster. An illustrative example is shown in Figure 3.13,

where clusters A and B are merged at time t + Δt when the low density area that

used to separate them fades into a dense region full of new samples. New arrivals into

A cluster are drawn as black squares and new arrivals into B as black triangles. It is

interesting to see that at t = t1 the samples between A and B were considered as noise.

The evolution of the classifier at t = t1 + Δt allowed data in this area to be not longer

considered as noise but as part of the new formed cluster instead.

classification at t = t1

Feature 1

Feature 2

A

�

�

�
�

�

��

�
�

�
�

B
�

�

�
�

�

��

�
�

�
�

C
�

�

�
�

�

��

�
�

�
�

�

�

�

�

classification at t = t1 + Δt

Feature 1

Feature 2

�

�

�
�

�

��

�
�

�
�

�
�

�

� �

�

��

�
�

�

�

�

�
�

�

��

�
�

�
�

��

�

� �

�

�
�

�
�
� �

�

C
�

�

� �

�

�
�

��

�

�
�

�

��

�
�

�
�

A&B
�

�

�
�

�

�

�

�

�
�

�

� �

�
�

�
�

�

�

�
�

�
�

�

�

�

�

�

Figure 3.13: Merging of clusters A and B

Some clustering algorithms merge clusters only in the case of strong correlation between

them [Tu and Che 09]. Fuzzy approaches merge the clusters if a large number of new

data samples have equally high membership degrees to the clusters [Ang 01].
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Splitting clusters A cluster should be splitted into two or more clusters if, with the ar-

rival of new data, high density regions can be distinguished inside the cluster. In that

scenario, dense regions are separated by low density regions, making the cluster no

longer homogeneous. Even more, the cluster center could be situated in a low density

region, loosing its interpretability as prototype of the elements in the cluster. Split-

ting the cluster creates smaller homogeneous clusters, completely representative of the

belonging samples. An illustrative example of this phenomenon is shown in Figure 3.14.
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Figure 3.14: Splitting of cluster A

3.4.2 Possible changes in the parameters of a dynamic classifier

Drift of clusters If the data distributions drift slowly over time it is expected that the

cluster describing the objects drift accordingly. An example of drift is shown in Figure

3.15 assisted by point opacity, which serves as an indication of the time of arrival of the

sample. Older samples are more transparent that the new arriving objects. All clusters

are susceptible to drift which may or not cause clusters to become closer and possibly

merge.
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Figure 3.15: Drift of clusters A and B

3.5 State of the Art: dynamism and classification

An introduction, from a pattern recognition perspective, to objects, both static and dynamic,

and to classification algorithms, which can also be considered as static or dynamic, was given

in the previous section. This section reviews the classification methods that show dynamism

in their structure or parameters and/or that are applied to dynamic features.
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These methods are classified based on the nature of the data and the adaptation ability

of the classifier. Three main categories are present: 1. Methods classifying static objects

using dynamic classifiers, 2. Methods classifying dynamic objects with dynamic parameter

classifiers and 3. Methods classifying dynamic objects with dynamic classifiers.

3.5.1 Classifying static objects using dynamic classifiers

Static objects are represented by a set of features that describe their state. Data can come,

for example, from sensors or configuration parameters in a process and be of a qualitative or

quantitative nature. As introduced before, data can be taken as static either because it does

not change in time or because its time related features are not going to be considered. In

these cases the classifier follows the changes in the observed data by adjusting its structure

to preserve a good performance.

In approaches for classifying static objects using dynamic classifiers the structure and

parameters of the classifier can change when different feature arrangements (distributions in

the feature space) are detected and no previous knowledge about them is available. That is

the case of self-learning adaptive approaches and incremental learning. For example, in the

case of fraud detection, the classifier must adapt in order to be able to recognize new forms

of fraud, which may arise from a variation of a known fraud or as a completely new fraud.

If the data is static it is only in the learning stage that dynamic properties of the classifier

would be needed, then any of the methods discussed below classify those data sets.

A common problem that motivates the use of dynamic clustering is that of novelty detec-

tion. In the supervised framework, novelty detection is the identification of new or unknown

data that were not presented to the learning algorithm during training [Mar and Sin 03]. On

the contrary, in the unsupervised framework it correspond to the identification of data that

were not encountered so far. Dynamic classification techniques of static data have mostly im-

plemented an incremental clustering scheme where only the data arriving in the current time

is considered, avoiding to deal with temporal relations or sequential elements. Incremental

clustering is unsupervised, self-corrective classification involving incremental learning. The

problem of incremental clustering is formulated in definition D3.16.

Definition D3.16 (The problem of incremental clustering). For a given data setX of samples

arrived between t = 0 and t = t1 and a label set formed with the clustering results till t1,

L(t1), the problem of incremental clustering is to find the object labels in L(t2) according to

new arriving objects ΔX.

Knowledge coming from the new samples affects the clusterer as new clusters may be

created and the existing ones may be modified allowing the system (or knowledge-base) to
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evolve over time [Bou 09]. Several examples of incremental clustering algorithms can be found

in literature.

Incremental clustering for novelty detection was used in [Kwa et al. 15] in order to find

faults on semiconductor manufacturing, specifically the method detects whether or not a

wafer is normal based on process measurements. In this work only normal wafer data are

clustered, the authors argued that faulty data is rare enough to be discarded in order to

reduce storage and computational requirements. Normal behavior is represented by several

elliptical clusters. When an arriving wafer is found to be normal, the prototype of the closest

cluster is updated with the new wafer data using recursive formulae. If the wafer is found to

be faulty but it was actually normal a new cluster is created taking this wafer as prototype.

Authors argue to be able to detect normal wafers even in severe class distribution skews and

to efficiently process massive sensor data in terms of reductions in the required storage.

Incremental approaches have also emerged from the need to handle large amounts of

incoming data, arriving at high rates in streaming, which limits the possibility to store all

the samples, and reduces the time available for processing the samples. These kind of real

time approaches are usually called data stream clustering. One example of this is evolving

clustering [Ang and Zho 08]. In such approach an evolving fuzzy rule based algorithm that

allows a flexible and evolving system structure is created. One of the main advantages of

this method is that it does not need the pre-specification of any parameter. The algorithm

includes a gradual evolution in terms of local subsystems as well as in terms of input variables.

This gradual simplification is based on a measure of the utility of the rules, in terms of the

accumulated time of appearance of the samples that form the cluster that supports that

fuzzy rule. The algorithm starts the first cluster from the coordinates of the first data

sample. Then, for each incoming data sample the potential (mathematical measure of the

data density) is calculated and after that, the potential of the existing cluster centers is

updated as well. Comparing the potential of the new data sample with the potential of the

previously existing centers, one of the following actions is taken: add a new cluster, remove

the cluster, replace the cluster with other formed around the new sample or finally not change

the cluster structure [Ang 11].

Different approaches to clustering data streams using sumarized representations of data

have been proposed since the 90’s. The general structure of stream clustering methods is

shown in Figure 3.16. These methods are separated in two components: the first stage makes

summarized representations of the arriving data online and the second stage clusters those

representations offline. For the online stage tree or grid indexing methods are used to speed-

up sample location. For the offline stage two main approaches are found, distance-based

methods and density-based methods.

On the side of distance-based methods the CluStream algorithm [Agg et al. 03] is one
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Figure 3.16: General structure of stream clustering methods

of the best known. In its online stage, data are collected, pre-processed and compressed

into micro-clusters. In the second stage, the micro-clusters are grouped into clusters (called

macro-clusters) for different, specific time horizons, using stored pictures of the micro-clusters

(called "snapshots") and a modification of the k-means algorithm. The so-called snapshots

allow one to make classifications in different time windows and also to analyse cluster time

evolution. This pyramidal time framework, as called in [Agg et al. 03], is the main advantage

of this algorithm and is used in this thesis. One disadvantage of the technique is the predefined

constant number of micro clusters that could lead the algorithm to create several clusters for

the outliers, which may leave less space for true clusters. Another disadvantage, derived from

the selection of k-means as clustering algorithm, is the inability to find non-convex clusters.

Based on micro clusters as CluStream, ClusTree [Kra et al. 11] proposes a hierarchical

tree shaped index structure which provides efficient cluster location for sample insertion at

different levels of granularity achieving micro-cluster-data assignation even at fast rates. Since

the ideal is to locate as many data as possible in the leaf nodes of the tree, the algorithm

proposes an "hitch-hiker" approach to help the data which were left in high-level nodes to go

down to the leaf level nodes. If a sample y comes before the insertion process of sample x

is finished, the algorithm interrupts the insertion process of x and stores it temporarily in a

buffer from which it would be taken along in the future as an "hitch-hiker" when a new data

arrives looking to be located in a micro-cluster on the same path. ClusTree improves the

limitation of CluStream about the fix number of micro-clusters, but establishes a maximum

number of micro-clusters and when the algorithm reaches this value, has the same limitations

as CluStream. Furthermore, since each cluster can absorb only a limited amount of data,

similar samples can be located in different micro-clusters and possibly even in different final

clusters. The proposal of a hierarchical index structure saves a lot of time reducing the

amount of calculation necessary for micro-cluster location, nevertheless the deep-first descent
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approach taken by the authors can lead to non optimal classification, since data could be

located within a micro cluster that might not be the closest to it.

Many of the previously named algorithms make, implicitly or explicitly, the assumption

that data are generated from a gaussian probability distribution, and, due to this assumption,

these algorithms produce convex clusters and cannot deal properly with non-convex data

sets. This kind of data sets occur naturally for example in spatial data (e.g. geographic

coordinates) and can take arbitrary shapes, as linear, elongated, etc. because of geographical

constraints as mountains and rivers [Agg and Red 13].

Density-based methods emerge in response to the need of discovering clusters of arbitrary

shape with minimal knowledge requirements. They try to explore the data space in order to

find dense regions. The density of any particular sample in the data space is defined either in

terms of the number of data samples in a prespecified volume of its locality or in terms of a

smoother kernel density estimate [Agg and Red 13]. Density-based clustering methods group

toghether samples in high density regions. For instance, two different clusters are assumed to

be two high density regions separated by contiguous low density regions [Kri et al. 11]. This

kind of methods do not require the number of clusters as input parameters.

Among the algorithms that use density-based final clustering DenStream [Cao et al. 06]

makes a good proposal that handles outliers and cluster evolution with the use of outlier

(low density) and potential (intermediate density) micro-clusters. It saves time by searching

with priority core (high density) or potential micro-clusters to locate arriving data. The

offline stage of this algorithm uses a density-based clustering technique called DBSCAN [Est

et al. 96] to cluster the micro-clusters. The problem with this algorithm is the high number

of user defined parameters, that makes it unsuitable for users with little knowledge of the

process. That problem is also seen but to a lesser extent in the DStream algorithm [Che and

Tu 07] where context should be provided in order to create a grid fine enough for mapping.

An illustration of the grid mapping of DStream is shown in figure 3.17. DStream provides

an explicit way to deal with outliers as low density grid areas that are not considered for

initial mapping, making the grid location and the posterior cluster formation faster and

accurate. A major drawback of using grids is that, with greater dimensionality, density

computations become increasingly difficult to perform because of the greater number of cells

in the underlying grid structure and the sparsity of the data in the underlying grid [Agg 14].

The data streaming approach has also been used in incremental neural network algorithms.

Li et al. [Li et al. 11] design an online clustering algorithm called Self-Adaptive feed-forward

neural network (SAFN), based on a kernel–induced similarity measure. The algorithm is

used to learn continuously evolving clusters from non-stationary data [Li et al. 11]. In this

approach the number of classes can be changed dynamically to create new classes and to

drift, merge, split or eliminate the current classes (represented by output layer neurons).
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Figure 3.17: Illustration of DStream. Taken from [Che and Tu 07]

This changing structure gives the algorithm the ability for adapting to non-stationary, multi-

class data. For unsupervised learning, the learning procedures are built in five main stages

one for each of the desirable changes in cluster structure presented in subsection 3.4.1.

Another technique that has the ability of changing its structure in an automatic way

is LAMDA (Learning Algorithm for Multivariable Data Analysis) [Agu and Man 82]. This

incremental and sequential technique also allows working with quantitative and qualitative

data at the same time [Kem et al. 06]. The LAMDA algorithm creates (only in learning or

self-learning stages) and drift classes in an automatic fashion processing each data sample just

one time, avoiding old data to become more important that the current data. LAMDA assigns

one sample to one existing class (or creates a new one) by analyzing the contribution of each

one of the sample features to the characteristics of the classes. This contribution is called

Marginal Adequacy Degree (MAD). Once all the MAD’s are calculated, the Global Adequacy

Degree (GAD) of the sample to a given class is calculated using fuzzy logic aggregation.

This procedure is done for each class. Finally, the sample is assigned to the class with the

maximum GAD. LAMDA allows the class feature values to update taking into account the

previous data of the class and the values given by the new elements. A diagram of the

LAMDA classification method for an sample xj with n features is shown in Figure 3.18.

Kempowsky et al. [Kem et al. 06] proposed a strategy for the construction of a discrete

state machine that enables situation assessment using LAMDA. Isaza et al. [Isa et al. 09]

improved this method to automatically find an optimal space partition, in terms of cluster

compactness and separation. This optimization is solely based on the membership matrix of

the classification. In [Ora et al. 07] the concepts of entropy and information gain are used

over the characterized classes to determine the most relevant sensors. The sensor selection

in terms of type and location was also adressed in [Hed et al. 10].
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Figure 3.18: General structure of the LAMDA classification method. Edited from [Kem et al. 06]

Yet another incremental learning technique is that based on Gaussian Mixture Models

(GMM). Considered as a model–based clustering approach, GMM allows to describe a data

density function as a weighted sum of Gaussian component densities. Usually trained with

the iterative Expectation Maximization (EM) algorithm that requires the storage of the

entire data set, the technique was modified in order to work as an incremental learning

technique. Two approaches have been used to incremental GMM: refinement–based methods

and learning methods. Bouchachia and Vanaret recently proposed an algorithm within the

learning methods category that reconcile labeled and unlabeled data. This method enhances

the accuracy of the model through Gaussians split and merge operations, based on the volume

of the Gaussian and its divergence, respectively [Bou and Van 11].

3.5.2 Classifying dynamic objects using dynamic parameter classifiers

There is a number of applications in which classification of dynamic objects is of primary

importance although the cluster structure remains unchanged over time, for example, clas-

sification of market characteristics, analysis of customer behavior for marketing or security

purposes. For instance, internet user bank transactions are usually monitored based on past

user transactions that brings specific patterns. In such cases the user behavior can change in

time, influenced by fashionable items perhaps, but the bank possible actions and therefore

the classification outputs remains the same (transaction approved, denied or suspicious). If

the behavior of the user changes, for example, a personal confirmation must be done in or-

der to ensure the security of the bank account, it is not sufficient to consider only current

transaction values to make a correct decision. Dynamic objects can be described by temporal

attributes, forming time sets.

An example of dynamic objects can be that of spatio-temporal information coming from

GPS technologies or mobile devices. Clustering that kind of data is a critical task in the
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Figure 3.19: Primitives used to represent trends

communications field. Elenkave et al. [Eln et al. 07] propose a static algorithm to incre-

mentally cluster objects’ trajectories in order to recognize evolving groups of moving objects.

This algorithm represents a trajectory as a list of minimal bounding boxes and then find the

similarity between trajectories as the amount of overlapping between their bounding boxes.

Yet another example comes from industrial environments were a real need to detect tool

wear as well as to predict remaining life for effective maintenance is present. A recent example

of tool wear detection using static classification techniques can be found in [Kil et al. 11].

Kilundu et al. propose the use of singular spectrum analysis coupled with a band-pass filter

to extract tool wear sensitive features that are then used as input to the classifier.

Trend modelling approaches, also known as Dynamic trend analysis, are a series of tech-

niques to extract relevant information from time series and then use it to draw conclusions

about the state of a process. This analysis relies on the fact that similar (or different) events

result in qualitatively similar (or different) trends but also that process signals can be rep-

resented at different levels of detail. There are mainly two advantages to the qualitative

analysis for process trends. The first is the compaction of large amounts of numerical data.

The second advantage comes from the fact that a suitable classification and analysis of process

trends can detect the underlying class earlier and thus decrease classification time. A for-

mal framework for qualitative representation of process trends was built in the ninety’s, and

several improvements have been done since. The work of Maurya et al. [Mau et al. 07], for

example, extracts dynamic system trends in an automatic way by means of interval-halving

QTA (qualitative trend analysis), and once all possible trajectories are identified and stored

in a database, similarity measures are used to select the actual class (using SDG + fuzzy

trend–matching QTA). The primitives used in that work to identify the trends are shown in

Figure 3.19. Each primitive is identified by a letter assigned according to the signs of the

first and second derivatives.

Static approaches have also been used to novelty detection. In those approaches the nov-

elty is detected but the classifier is not updated with the new samples information. Statistical

techniques, for example, use statistical properties of the data to achieve novelty detection, ei-
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ther by constructing a density function (parametric or non-parametric), by comparing based

on distance measures or by using stochastic models (e.g. Hidden Markov Models). The K-

nearest neighbors algorithm has also been used in the novelty detection framework. String

matching approaches biologically inspired has also been used to differentiate novelties defined

as "non-self" elements [Das and Nin 00]. This approaches do not consider the fact that known

normal states depend on time, that is, normal behavior evolves in time and values that might

be acceptable at a given time might not be in the future. The approaches that consider time

variation of the known data and allow adaptation are described in the previous section and

in the next. One of the most used clustering approach is the K-means algorithm [Mac 67].

This technique performs a strict partition of samples by means of a simple iterative proce-

dure whose general idea is to classify a set of elements in k groups, k being given in advance.

After defining the k centers or prototypes of each group, each element is associated with the

group whose center is closer (only one group). Several modifications and improvements have

been done to this clustering approach in order to deal with dynamic objects as explained

in the next section. Other approaches are: k-nearest neighbors (KNN) algorithm [Sil and

Jon 89], that makes no assumption on the statistical properties of the data, instead, the data

classification is set as a result of the position of the data sample in relation to its k-nearest

samples from the training set. The other techniques as decision trees, discriminant analysis,

supervised neural networks, logistic and linear regression can be further consulted in [Tuf 11].

For further information on novelty detection the reader might refer to [Mar and Sin 03].

3.5.3 Classifying dynamic objects using dynamic classifiers

In this category techniques aim to detect and follow dynamic changes on the system behavior

by possibly changing the cluster structure. An example of dynamic system that requires

dynamic classification is fault detection over long time cycles on industrial applications. To be

able to detect a fault multiple objects/systems must be monitored simultaneously. Mechanical

pieces may degrade over normal usage, which could lead to failing states. Since degradation

does not usually come in short periods of time, only time behavioral analysis can lead to

earlier detection. There should also be notice that all systems are susceptible to fall into

new states (classes) by means of temporal changes. Yet another example is streaming data

classification (video, speech, etc.), because the data to come is not known.

For handling dynamic data three approaches are used: (1) Take only the actual values of

the object features, (2) To pre-process trajectories in order to transform them into conven-

tional feature vectors or (3) To define a distance or dissimilarity measure for the trajectories

themselves. In either case, the classifier can be updated either using the whole set of samples

received from the beginning of observation until the current moment or using only the most
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recently received samples (in a window frame).

Approaches based on Current data

Different techniques have been used to classify non-stationary data from a time indepen-

dent point of view. The development of technology and the need of monitoring processes

and systems, has increased the amount of data produced which need further analysis. The

analysis of such non stationary, high volume data streams requires high storage capabilities

and processing effort. An approach that is becoming stronger among the researchers is that

of adaptive incremental learning (presented in section 3.5.1). In cases were in addition to

high-volume data real time challenges are added, incremental learning emerge as a feasible

solution. This approach can achieve to be computationally efficient for real time applications,

with low storage requirements. On the downside, to achieve these goals several dynamic tech-

niques process dynamic data as static with out taking into account temporal information e.g.

arriving time or order.

Approaches oriented to pre-processing of trajectories

These approaches take some advantages of the time-related information contained in the

behavior of the trajectory but not directly. For example, in the algorithm proposed by

Angstenberger [Ang 01], the technique makes advantage of fuzzy set theory to automatically

recognize gradual or abrupt changes of the cluster structure in the course of time and to adapt

the classifier to these changes. In order to be able to deal with dynamic objects the technique

transforms the data sets into a vector of features and then estimates a number of similarity

measures for each feature and for each trajectory. This algorithm has been developed for the

dynamic unsupervised design of point-prototype-based fuzzy classifiers. The algorithm was

applied to a bank customer segmentation problem and to the recognition of typical states in

computer network load.

Another example of pre-processing inputs in order to define feature vectors is shown in

Filev and Tseng work. They developed a generic evolving model to determine and predict

abrupt and gradually developing (incipient) changes for machine health monitoring [Fil and

Tse 06]. This algorithm relies on a combination of time and frequency features extracted

from time series of measured machine values, process parameters, energy levels, etc. One key

feature of this algorithm is that it considers possible multiple operation modes (e.g. start up,

normal or idle) as known states and detects the novelty, which in this case is related with

faults in the machine. The algorithm is continuously updated implementing an unsupervised

recursive learning algorithm. New operating modes can be created and the existing ones are

updated. The authors stated two main differences in order to distinguish faulty states from
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new operational modes: faults include fewer samples than the normal operating modes and

they have limited life.

A dynamic classification approach to novelty detection for process monitoring using class-

incremental Fisher Discriminant Analysis (FDA) were proposed by [He et al. 09]. They use

the normal data set to build the Principal Component Analysis (PCA) model and to identify

new faults using the joint plot angle. After a new fault is detected, class-incremental FDA is

used to build and update the FDA model (fault signatures matrix) that allows to detect known

faults more efficiently than the PCA model, improving the process monitoring performance.

Approaches based on trajectory similarity measures

The similarity measures for time series or trajectories have been studied since the 90’s and

mainly three kind of methods can be found. Methods based on signature extraction [Wu et

al. 00, Ber and Hül 06], methods based on data reduction [Meg et al. 05, Gam et al. 14b] and

methods based on temporal alignment [Sak et al. 05, Che et al. 12]. Signature based methods

represent information in a lower dimension space chose to be less costly when computing the

distance between signatures. Typical examples of signatures can be found through time to

frequency transformations. Feature reduction methods are based on the selection and trans-

formation of features. Examples of transformation can be polynomial representation, piece

weighted linear segments or the compression by data point importance. Using sequential

temporal alignment, distance between temporal distorted trajectories can be establish. Ex-

amples of sequential alignment are the Dynamic Time Warping [Keo and Paz 00] algorithm

and longest common subsequence methods [Pat and Dan 94].

The main problem of the approaches based on trajectory similarity measures is that in

most cases the method have to be used offline or in batch mode which make them unsuited to

high dimensional data or data coming at high rates. Even more, signatures for each behavior

must be available beforehand. Existing methods are limited to classify trajectories according

to learned signatures and only a few update the class representation as new elements are

assigned. Structural changes have been rarely considered and are mostly limited to cluster

creation [Ber and Hül 06]. In the best of our knowledge there is no fully dynamic method

based on trajectory similarity measures.

3.6 Summary

In this chapter a complete overview of data classification have been given with emphasis

on dynamism. Section 3.1 presents the main notations and definitions used in this thesis.

Then Section 3.2 introduces the framework of data classification emphasizing the difference
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between classification and clustering and the concepts of dynamic classifier and fully dynamic

classifier.

Section 3.3 introduces the concept of dynamic object and establishes the difference be-

tween static and dynamic objects with illustrative examples. These examples show the im-

portance of using dynamic features over static features for monitoring evolving environments.

A state of the art in classification methods considering dynamism is presented in Section

3.5. In this section methods are presented as being part of one of three categories. The first

category consider the dynamic classification techniques that deals with static objects (subsec-

tion 3.5.1). The second category, presented in subsection 3.5.2, considers the approaches that

classify dynamic objects using static classifiers. Finally in subsection 3.5.3 the problem of

classifying dynamic objects with dynamic classifiers is presented, showing that, in fact, most

of the dynamic classification approaches do not really take into account the dynamism of ob-

jects and those approaches considering it do not adapt its structure when new information is

available only its parameters. It was seen that most of the dynamic classification techniques

make use of the concept of incremental clustering and apply it for novelty detection purposes.

Classical approaches deal with dynamic objects by making a static projection of them.

From monitoring to diagnosis

Many researchers have used pattern recognition, neural networks and clustering techniques for

fault diagnosis [Kwa et al. 15, Isa et al. 09, Mau et al. 10, Gam et al. 14b, Kil et al. 11, Hed et

al. 10]. In general supervised recognition methods work on two stages: training (or learning)

and recognition. One known disadvantage of data-driven techniques is that they often address

only anticipated fault conditions [Vac et al. 07], i.e. they do not consider novelty detection.

Other methods use the generation of residuals or the identification of thresholds based on

a training set of "tagged" data, in which one or several samples represent one previously

measured (normal or faulty) instance.

Classification techniques represent the system functional states by extracting knowledge

from various attributes. This knowledge is related to particular behaviors, without being

represented by a set of analytical relations. Deviations on this attributes enable the detec-

tion of abnormal operations [Isa et al. 09]. In classification, when the classes are defined

a-priori they can be related to the faulty states directly in the training stage, by means of

a fault-pattern library (formed using previously observed faults or expert information) or

simply with a knowledge-based interface. On the other hand, in the case of clustering, when

the target classes or labels are not know in advance, data can only be clustered in sets, but,

with no further interpretable meaning. In such case, the self-learning and the interpretation

of the classes in terms of functional states is essential, then a data-reality association must
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be done. This association between the classes and the actual situations that they represent

can be achieved offline by means of expert intervention [Kem et al. 06]. Indeed, some classes

have sometimes very similar characteristics and the expert may decide to assign these classes

to a single state. In the developing of a supervisory system, the adequate structure must

be considered to enable future, medium to long term, reasonable changes. From the desired

characteristics for a supervisory system presented in section 2.2, the self-reconfiguration prop-

erty is by far the less explored. The intelligent supervisory systems should detect, identify

and isolate the different possible behaviors, so that the self-reconfiguration response is accu-

rate. In clustering techniques, self-reconfiguration implies updating the classification model

online (creating, deleting, merging and splitting of classes), hence the need of fully-dynamic

classifiers as explored in this thesis.
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Part II

A Dynamic Clustering algorithm

for tracking Evolving Environments

In Part I the context and basis to this thesis were presented. This part presents the

main contribution of this thesis, a dynamic clustering algorithm that uses distance-based and

density-based analyses to cluster data distributions in which the clusters exhibit different

levels of density making no assumption on linearity or convexity. The algorithm overview

is given in Chapter 4, and then chapters 5 and 6 present in detail the distance-base stage

and the density-based stage respectively. A final chapter uses different data sets found in the

literature to illustrate the clustering capabilities of the proposed algorithm.





Chapter 4

A Dynamic Clustering algorithm

for tracking Evolving Environments

For autonomous systems, it is essential to be able to identify the current state in order to

determine the appropriate future action in order to ensure the achievement of the desired

goal. In complex systems this identification process is known as situation assessment [Agu et

al. 12]. If those systems are exposed to evolving environments the situation assessment task

become harder. Machine learning techniques have been widely used for tracking the current

state of a system [Mil et al. 94, Kem et al. 06, GA 12, Agu et al. 12].

Clustering system data that change in response to evolving environments requires algo-

rithms able to adapt the structure of the clusterer accordingly to data evolution. In this

chapter a Dynamic Clustering algorithm for tracking Evolving Environments is proposed.

This algorithm will be referred to as DyClee. Based on two stages clustering, one based

on distance and the other based on density, DyClee incorporates the advantages of both

approaches.

DyClee was developed to work under the unsupervised learning paradigm in an incre-

mental fashion. Many existing learning algorithms do not emulate the way in which humans

learn. Humans experience the world on the fly, and carry out incremental learning of se-

quences of episodes in real time. Often such learning is unsupervised, with the world itself

as the teacher [Car and Gro 10]. DyClee learns in a similar way. It makes no a priori

assumption of the data structure but instead it finds it progressively (on the fly), changing

the clusterer structure, and hence the concepts representation, to describe the received data.

This distance- and density-based algorithm features several properties like handling non-

convex, multi-density clustering with outlier rejection and achieves to be fully dynamic. All

these properties are not generally found together in the same algorithm and DyClee pushes

forward the state of the art in this respect.
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4.1 Algorithm overview

DyClee uses a two stages clustering approach as those popularized by [Agg et al. 03, Cao et

al. 06, Kra et al. 11], among others. In this thesis the first stage clusters data samples into

micro-clusters (from now on μ-clusters). These μ-clusters are summarized representations

of data objects similar enough to be represented together by using statistical and temporal

information. The second stage analyses the distribution of those μ-cluster whose density is

considered as medium or high and extracts the final clusters by a density-based approach. The

principal assumptions in this stage is that dense μ-clusters that are close enough (connected)

are said to belong to the same final cluster and that the system dynamics are stabilizable.

Final clusters are also called natural clusters in the literature [Kar et al. 99b, Agg et al. 03, Cao

et al. 06], and will be referenced as such throughout this document.

Hypothesis H4.1. The dynamics of a system are detectable, that is, they last enough to

be detected through system measurements.

Hypothesis H4.2. Similar dynamics are described by statistically similar data.

DyClee input can be static, represented as a multidimensional data set (array form) in

which time is not considered, or dynamic if time related features are desired. If the data

input is dynamic, information should be presented in the form of a data stream. Unlike other

streaming approaches as CluStream [Agg et al. 03] and ClusTree [Kra et al. 11], that are

distance-based, DyClee incorporates the density of the μ-clusters as a key factor in finding

natural clusters, in other words, the μ-clusters density affects data clustering in each of the

clustering stages. The way in which density affects each stage will be explained in depth in

the following chapters.

DyClee first stage operates at the rate of the data stream and creates the μ-clusters

putting together data samples that are close in the sense of the L1-norm. These μ-clusters

include statistical and temporal information of the data stream. DyClee second stage takes

place once each tglobal seconds and analyses the distribution of the μ-clusters. The density

of a μ-cluster is considered as low, medium or high (cf sections 6.2 and 6.3) and is used to

create the final clusters by a density-based approach, i.e. connected dense μ-clusters are said

to belong to the same natural cluster.

Both stages work as parallel threads and exchange information to improve each other’s

performance. The distance- and density-based parallel structure allows the algorithm to find

the final clusters even in evolving environments described in high dimensional spaces. This

will be shown in the following chapters. The outlier rejection capability is also granted. A

global graphical description of DyClee in block diagrams can be seen in Figure 4.1.
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Figure 4.1: Global description of DyClee

4.2 Preliminary definitions

As introduced before, DyClee takes data samples and clusters them in what we call μ-

clusters. As stated in definition D3.6, a data sample is a multi-dimensional representation

of an object described by d features. In order to better understand DyClee structure and

operation two preliminary definitions and the corresponding notation are established in this

section.

Definition D4.1 (Vector of linear sum LS). Being X a data set of N d-dimensional data

samples, LS (X) is the d-dimensional vector containing the linear sum of each feature over

the N objects in X.

LS (X) =

[
N∑
i=1

x1
i ,

N∑
i=1

x2
i , · · · ,

N∑
i=1

xdi

]
(4.1)

Definition D4.2 (Vector of sum of squares SS). Being X a set of N d-dimensional data

samples, SS (X) is the d-dimensional vector containing the sum of squares of each feature

over the N objects in X.

SS (X) =

[
N∑
i=1

(x1
i )

2,
N∑
i=1

(x2
i )

2, · · · ,
N∑
i=1

(xdi )
2

]
(4.2)

4.3 Algorithm structure

DyClee structure is based on hyperboxes serving as geometrical representations of the set

of data samples within. These representations are called μ-clusters. Formally,

Definition D4.3 (μ-cluster). A μ-cluster μCz is a d-dimensional hyperbox representing the

set of nz data samples that where map to it since its time of creation tsz. Data samples

information is summarized in the characteristic tuple CTz = (nz, LSz, SSz, tlz, tsz,Dz, labz).

Being LSz the linear sum of the elements mapped to the μ-cluster μCz as defined in D4.1,

SSz the sum of squares as defined in D4.2, tlz the time in which the last data sample was
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assigned to the μ-cluster, labz the label assigned to the μ-cluster, then Dz is the density of

the μ-cluster defined as:

Definition D4.4 (Density of a μ-cluster). The density of the μ-cluster μCz is denoted Dz

and corresponds to the number of data samples mapped to it over its hyper volume Vz.

Dz =
nz
Vz

(4.3)

Since μ-clusters are hyperboxes, their volume is calculated as the product of the size of

the box in each dimension Vz =
∏d

j=1 S
j
z, where Sjz is the size of the μCz in its jth dimension.

DyClee works over normalized data so the μ-cluster hyperboxes are actually hypercubes

with a hypervolume of Vz = Sdz . The size of the hyperboxes Sdz is set as a fraction of the

feature range. This range can be established according to the data context, i.e. minimum

and maximum values of the feature, which are used for normalization purposes. If no context

is available in advance, it may be established on-line. The hyperbox size per feature is found

according to Sdk = φ|maxd − mind| ∀d, where φ is a constant establishing the fraction. For

the sake of clarity and without losing generality, from this point onward the superscript d is

removed.

At anytime the μ-cluster center can be found by means of its LS vector. Formally, the

center of the μ-cluster μCz is cz = [c1
z , . . . , c

d
z ]
T where cjz = LSjz/nz.

DyClee structure starts empty and is built by successive sample insertions. The first

arrived sample becomes the center of the first μ-cluster, and from then on, the insertion

mechanism described next is applied. At the moment of its creation each μ-cluster receives

a unique identifier idμCz for which it will be recognized from that time onwards.

DyClee dynamic structure does not guarantee that a μ-cluster μCz contains all objects

which might have been mapped to it, that is, all the data samples within a L∞ distance

Sz/2 to μCz’s center. On the contrary, it guarantees that all the objects mapped to μCz are

reachable from it. The definition D4.5 and the Figure 4.2 aim to clarify this property.

Definition D4.5 (Sample to μ-cluster reachability). A data sample xi is reachable from a

μ-cluster μCz if

L∞(xi, cz) <
Sz
2

≡ max
j

∣∣∣xji − cjz

∣∣∣ < Sz
2

∀j

In Figure 4.2 two μ-clusters identified in cyan and purple colors contain each several

three dimensional samples illustrated with the same colors, i.e. the cyan μ-cluster contains

all the cyan samples and the purple μ-cluster all the purple samples. If a sample falls in the

intersection of the two μ-cluster, as the red sample in the figure, it is reachable, in the sense

of definition D4.5, from both μ-clusters, but it is assigned only to one of them. The next

section explains further the insertion mechanism.
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Figure 4.2: The red point is reachable from both μ-clusters.

4.3.1 Insertions

Data samples representing objects are inserted to the most similar μ-cluster from which

the data sample is reachable. If there is a tie between several μ-clusters, the data sample is

mapped to the denser one. Once found, the structure of this most similar μ-cluster is updated

with the data sample information.

In order to speed-up the retrieval of the closest μ-cluster when a new object arrives, μ-

clusters are stored in one of two lists. The first list is the ‘Active μ-cluster’ list (A-list),

in this list the μ-clusters to whom the samples are more frequently mapped (medium and

high density μ-clusters) are stored. This list will be the first source queried for reachable

μ-clusters, giving priority in search to the high and medium density μ-clusters stored in this

list over the low density μ-clusters. The second list hence contains the low density μ-clusters,

that is, those that have less samples mapped to them. This list is queried only if the data

sample cannot be reached by any of the μ-clusters in the first list.

If the data sample is not reachable from the existing clusters in the lists, a new μ-cluster

is created with the data sample as center and it is be appended to the ‘less-active’ μ-cluster

list (O-list).

4.3.2 Creation

Clusters represent high density regions in the feature space and consequently, a cluster is

created whenever a group (or subgroup) of connected μ-clusters is found to be dense. In

other words, when the μ-clusters forming the group (or subgroup) are active μ-clusters.

Groups of low density μ-clusters do not form a new cluster. The cluster labeling is done

automatically using an incremental numeric index.
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4.3.3 Deletions

In order to keep an optimal use of the memory and to reduce computational load, all the

μ-clusters no longer considered as representative of the system behavior are deleted. In this

thesis μ-clusters are affected with a forgetting factor that makes newer information more

important that the information provided by old data samples. Following the same forgetting

principle, those μ-clusters receiving no new data, lose density and are eventually pruned when

their density falls below a threshold ξ.

4.3.4 Splits

To describe the possible events that might lead to a natural cluster split, the reachability

between two clusters must be defined.

Definition D4.6 (μ-cluster to μ-cluster reachability). A μ-cluster μCz is reachable from a

μ-cluster μCi in the jth dimension if

∣∣∣cji − cjz

∣∣∣ < Si + Sz
2

that is, if they overlap in that dimension. Two μ-clusters are said to be reachable if there are

reachable in all dimensions, that is:

L∞(ci, cz) <
Si + Sz

2
≡ max

j

∣∣∣cji − cjz

∣∣∣ < Si + Sz
2

In the same way, μCz and μCi are said to be unreachable if there are no longer reachable in

all dimensions.

A cluster may split into two or more clusters for one of two situation arises:

• μ-clusters composing the cluster are grouped in unreachable subgroups (according to

definition D4.6).

• A subset of low density μ-clusters appear between two subsets of high density μ-clusters.

When a cluster splits in two the cluster with the oldest μ-clusters keeps the label of the

original cluster and a new label is assigned to the cluster with the newest μ-clusters.

4.3.5 Merges

Two or more clusters can merge if there is an overlapping of the μ-clusters they comprise,

that is μ-clusters from both clusters are reachable between them. Specifically, the merge only

happens if the reachable μ-clusters have similar densities and they are in the ‘Active μ-cluster’

list. If different-density μ-clusters groups overlap, no merge is performed. To assign a label
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for the cluster formed by the merge process, the labels of the merged clusters are analyzed

and the oldest one is chosen as the newly formed cluster label. The new formed group has

as additional information the list of old labels.

4.3.6 Drift

Cluster drift is achieved thanks to two different processes reacting at different scales. If the

data samples drift slowly enough, arriving samples are prone to be assigned to the same

μ-clusters hence updating the μ-clusters center that drifts accordingly. In this situation, the

cluster drift thanks to the drift of the μ-clusters composing it. On the contrary, if data drift

quickly, arriving samples are probably assigned to new μ-clusters that are created to represent

them. In this case the cluster drifts not by the drifting of the old μ-clusters it comprises but

by the change in its contents, i.e. the addition of new μ-clusters.

4.4 Summary

We have seen that DyClee is a dynamic clustering algorithm working in two stages. In the

first one samples are grouped in μ-clusters using a distance as dissimilarity measure. In the

second stage those μ-clusters are grouped and the natural clusters are found using the denser

clusters as components.

DyClee surpasses all the previously mentioned algorithms (cf. Section 3.5) in the adapt-

ability of its structure. Unlike them, DyClee is capable of merging and splitting natural

clusters, dealing with concept drift and overcoming problems related to the samples order of

arrival.

In fact, as will be seen in chapter 6, DyClee density-based approach allows local and

global density analysis which brings additional advantages to the clustering:

• It can overcome the main problem of most distance-based approaches that can only

find convex sets. In DyClee μ-clusters of similar densities can form natural clusters of

any shape and any size.

• Unlike previous density-based approaches as DenStream [Cao et al. 06], DyClee can

handle natural clusters exhibiting different density levels.

• Unlike any of existing stream clustering approaches it is capable of detecting of both,

local outliers and global outliers.

The following chapters detail each of the algorithm stages, giving special emphasis to

the dynamic structure of the algorithm. The distance-based stage is explained in detail in

Chapter 5. Then, in Chapter 6, the density-based stage is detailed.
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Chapter 5

Distance-based clustering

As introduced in Chapter 4, the first clustering stage seeks to group objects based on the

similarity between their features. In order to choose the dissimilarity measure best suited to

DyClee, a literature review was performed and is presented in section 5.1 along with a brief

analysis of the different measures. This review is summarized in Table 5.1.

To decrease algorithm complexity only one μ-cluster is modified when a new sample

arrives. μ-clusters updating process is explained in Section 5.2. This section also explains

the forgetting process that is implemented in the algorithm. This process allows the μ-clusters

to change in order to follow the evolution of the system.

5.1 Distance dissimilarity measures

As introduced in the first part of this thesis, clustering algorithms aim to group data based

on similarity (or dissimilarity). Distance measures have been widely used as dissimilarity

measures for classification and clustering algorithms, been the euclidean distance the most

popular. Distance measures are used to find the closest cluster (or μ-cluster) to a data sample,

but also to find cluster quality measures when inter-cluster and intra-cluster distances are

considered. In the following Disiz represents the distance between a data sample xi and the

cluster center Cz.

Manhattan distance corresponds to the L1-norm shown in equation (5.1). This mea-

sure also called city-block or taxicab distance has been used mostly in clustering problems,

especially in high dimensional spaces. Several applications can be found such as Human Ex-

pression Recognition [Li and Pen 08], segmentation of multidimensional data [Est et al. 01],

path based texture segmentation [Fis et al. 01], wind speed prediction [Yes et al. 13], etc.

Variations of this norm can be found in fuzzy ART and ARTMAP [Car et al. 92], projected

Clustering [Agg et al. 99], among others.

55



Disiz =
d∑
j=1

∣∣∣xji − Cjz

∣∣∣ (5.1)

The euclidean norm, presented in equation (5.2), is usually chosen for its geometrical

interpretation. The use of this norm creates hyperspherical groups thus ensuring the convexity

of the clusters found. This measure has been used by the k-means algorithm [Mac 67] and its

fuzzy variant Fuzzy c-means [Bez et al. 84]. The Euclidean distance is also used by supervised

approaches such as k-nearest neighbours (kNN) [Sil and Jon 89] and most of its variants [Zha

and Zho 07, Vik and Jen 14]. In the case of stream clustering, CluStream [Agg et al. 03]

and ClusTree [Kra et al. 11] use this norm to find the distance between the samples and the

micro-clusters.

Disiz =

⎛
⎝ d∑
j=1

(
xji − Cjz

)2

⎞
⎠

1/2

(5.2)

In many cases the spherical clusters created by the Euclidean norm can be seen as a

constraint and ultimately as a problem. Even more, Euclidean distance metrics do not

capitalize on any statistical regularities in the data that might be extracted when a large

training set of labeled examples is available.

The Minkowsky norm is the generalization of the Manhattan and Euclidean norms, usually

called Lp-norm. The Minkowsky distance is shown in equation (5.3). Recent works have

shown the possibility of using this norm to improve clustering and data analysis. [Doh et

al. 04] empirically examines the use of a range of Minkowski norms in the clustering of real

world data, showing that fractional Lp-norms (norms with p < 1) increase the performance

of NN-search. Theoretical validation to the results of [Doh et al. 04] can be found in [Fra et

al. 07]. The fractional version of Minkowsky norm was also used in [Amo and Mir 12], where

the authors use different values of p to create a weighted variant of K-means that seems to

improve clustering quality in the presence of irrelevant or noisy features. A variant of fuzzy

c-means using Minkowsky type norms is found in [Hat et al. 00]

Disiz =

⎛
⎝ d∑
j=1

(
xji − Cjz

)p⎞⎠
1/p

(5.3)

Mahalanobis distance (see equation (5.4)) is used in those cases were convex clusters are

desired, without the spherical constraint and some statistical knowledge about the distribu-

tion is available. This knowledge is represented in the covariance matrix S. Furthermore,

most of the existing work in metric learning (from large labeled data sets) relies on learning

a Mahalanobis distance or, in other words, learning the S matrix, which exploits possible

relations between the features.
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Disiz = (xi − Cz)
T S−1 (xi − Cz) (5.4)

From the geometrical point of view, the clusters created based on Mahalanobis distance

have hyperellipsoidal forms. Accordingly, a common application of this distance is summa-

rizing input data using hyperellipsoids [Bez et al. 84, Ana and Geo 01, Mao and Jai 96]. It

is worth noting that, the hyperellipsoid axes are proportional to the eigenvalues of S. Other

approaches exploit the relation among the cluster variables focusing on invertible covariance

operators [Haa and P¸10, ME et al. 14], or finding the best suited S based on an optimisation

algorithm [Wei et al. 05, Dav et al. 07]. In those approaches, Mahalanobis distances usually

represent one-class models as only the within-class information is used for their construction.

The sup distance, also known as Chebyshev distance, shown in equation (5.5), makes use

of the max norm to measure dissimilarity. An extension of the c-means algorithm using L1

and Linf norm as pairwise distances [Bob and Bez 91]. [Sou and Car 04] present a clustering

method for interval data based on adaptive sup distances.

Disiz = maxj
(
xji − Cjz

)
(5.5)

The cosine distance was used in [Ang and Zho 08] for the online classification of streaming

data. The approach, called eClass, is based on a self-developing fuzzy-rule-based classifier

system. The cosine distance equation is shown in equation (5.6). The authors claim that

this distance can cope with problems, such as a different number of features and zero values.

The cosine similarity (second term in equation (5.6)) is one of the most popular similarity

measures applied to text documents clustering [Ste et al. 00].

Disiz = 1 −

∑d
j=1 x

j
iC

j
z√∑d

j=1(xji )2
∑d
j=1(Cjz )2

(5.6)

The previously review is summarized in table 5.1.

5.1.1 The choice of a meaningful distance measure

Since this thesis aims towards an industrial implementation, the selected distance measure

must be capable to work in high dimensional spaces. It is known that in high dimensional

spaces the data becomes sparse, and so the performance of distance or similarity measures for

data mining applications tends to degrade rapidly as the dimensionality of the data increases.

This phenomenon, known as ‘The curse of dimensionality’, has been extensively studied [Hin

et al. 00, Rub et al. 01, Agg et al. 01, Hou et al. 10].

The behavior of the Lp norm family (p > 0) is studied in [Agg et al. 01] showing that

the meaningfulness of this measures in high dimensional spaces is sensitive to the value of p.
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Norm Distance Equation Principal examples

L1

Manhathan
City-block Disiz =

∑d
j=1

∣∣∣xji − Cjz

∣∣∣ Fuzzy ARTMAP[Car et al. 92]
DyClee

L2 Euclidean Disiz =
(∑d

j=1

(
xji − Cjz

)2
)1/2

kNN [Sil and Jon 89]
k-means [Mac 67]
CluStream [Agg et al. 03]
ClusTree [Kra et al. 11]

Lp Minkowsky Disiz =
(∑d

j=1

(
xji − Cjz

)p)1/p k-means var. [Amo and Mir 12]
Fuzzy c-means var [Hat et al. 00]

Mahalanobis Disiz = (xi − ck)
T S−1 (xi − ck)

HEC [Mao and Jai 96]
LMNN [Wei et al. 05]
GKmeans [Gus and Kes 78]

Linf

Sup
distance Disiz = maxj

(
xji − Cjz

)
c-means∞ [Bob and Bez 91]

Cosine

Disiz =

1 −

∑d

j=1
xj

i
Cj

z√∑d

j=1
(xj

i
)2

∑d

j=1
(Cj

z )2

eClass [Ang and Zho 08]

Table 5.1: Distance measures commonly used to establish dissimilarity in clustering

They show that small values of p provide more meaningful results both from the theoretical

and the empirical perspective under the assumption of single data distribution. The effects

of ‘the curse of dimensionality’ under the assumption of mixture models data (as opposed to

single distribution) were studied in [Hou et al. 10].

In the ideal scenario of a data set composed of many well-separated natural clusters,

each following their own distribution, a distance measure is meaningful if the query point is

guaranteed to land in or very near to one of these clusters, as briefly noted in [Bey et al. 99].

Similar results are found in [Ben et al. 99], where the authors demonstrate that nearest-

neighbor queries are meaningful, both theoretically and practically, if for every cluster, the

between cluster distance dominates the within cluster distance.

Theorethical studies performed in [Hin et al. 00] show that the L1 distance is the only Lp

metric (with p ∈ N) for which the absolute difference between nearest and farthest point in

a neighborhood increases with the dimensionality.

Given the results of [Hin et al. 00, Rub et al. 01, Agg et al. 01, Hou et al. 10, Ben et al. 99]

proving that the meaningfulness of the Lp norm worsens faster with increasing dimensionality

for higher values of p, the Manhattan distance (L1 norm) was chosen as dissimilarity measure

in DyClee. In the classification context, this norm outperforms all the other norms of the

Lp family as shown in [Rub et al. 01].

The μ-clusters are then naturally shaped as d-dimensional boxes by the use of L1-norm
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as distance measure. As mentioned in the previous chapter the size of the hyperboxes Sk is

set as a fraction of the feature range. If data is already normalized the size of the μ-clusters

per dimension is Sk = φ 1. The φ parameter is the only mandatory user-defined parameter

for DyClee and is tuned experimentally. Even if φ can take values from 0 to 1, it is shown

in the experimental phase of this thesis (chapters 7 and 10) that the optimal value for φ

varies only between 0.03 and 0.1 for unnoised distributions and goes up to 0.3 for noised data

distributions in the performed tests.

In summary, as stated in the algorithm overview presented in section 4.1, whenever an

object x arrives, DyClee assigns it to the most similar μ-cluster. L1-norm is used to determine

which is the most similar μ-cluster. Once found, the point to cluster reachability property

is verified to asses whether or not the object fits inside the μ-cluster. If there is a fit the

μ-cluster is updated following the procedure described in the next section.

5.2 Updating the μ-clusters

As stated in Chapter 4, if an object xi is reachable from its closest μ-cluster μCz, the μ-cluster

tuple CTz is updated with the object information. Among the attributes of the CT , those

subject to changes by the insertion of xi are:

• the number of data samples mapped into the μ-cluster nz,

• the vector containing the linear sum of each feature LSz,

• the vector containing the sum of squares of each feature SSz,

• the μ-cluster density Dz and

• the time of last update tlz

The two attributes in the tuple that are not modified by the insertion of an object are:

μ-cluster time of creation tsz and μ-cluster class Classz. In the non-supervised approach

the Classz attribute is modified only in the second stage of the algorithm when the natural

clusters are found. The attributes subject to change are updated with the information of xi

in the following way:

n′
z = nz + 1 (5.7)

LS′
z = LSz + xi (5.8)

SS′
z = SSz + x2

i (5.9)

1In the implementation of DyClee φ is called portion.
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D′
z =

n′
z

Vz
(5.10)

t′lz = ti (5.11)

where ′ denotes the updated attribute. The vector attributes are updated by descriptor, that

is, LS′j
z = LSjz +xji and SS′j

z = SSjz +(xji )
2 ∀j ∈ {1, · · · , d}. As introduced before, μ-clusters

updating process might generate changes in the underlying dynamic cluster structure.

In order to maintain an up-to-date structure prone to follow data evolution, the algorithm

sensitivity to changes may be further increased. The chosen strategy for increasing the

sensitivity is the inclusion of a forgetting process in the μ-cluster’s structure. Forgetting

old samples gives more importance to incoming data, hence making it more relevant to the

algorithm. This process will be explained below.

5.2.1 Representation of the forgetting process

DyClee implements a forgetting process in order to cope with cluster evolution. Specifically,

μ-clusters are weighted with a decay function dependent on the current time t and the last

assignation time tlk. This function f (t, tlk) emulates a forgetting process. When a new d-

dimensional sample x1 is assigned to a μ-cluster μCz at ti, the updatable attributes of the

feature vector change as follows:

n′
z = nzf (t, tlz) + 1 (5.12)

LS′
z = LSk,jf (t, tlz) + xi (5.13)

SS′
z = SSk,jf (t, tlz) + x2

i (5.14)

Finally Dz and tlz are updated as stated in equations (5.10) and (5.11), respectively. In

general, if no object is added to a μ-cluster during the time interval (t, t+ Δt), its charac-

teristic tuple at t+ Δt can be calculated using the characteristic tuple at time t and a decay

function for the weighted parameters as follows:

CT
(t+Δt)
k = f (Δt)CT (t)

k (5.15)

In subsection 5.2.2 several options for f (t, tlk) are proposed.

5.2.2 The forgetting functions

As stated above, in order to follow the process dynamic evolution, data in clusters are subject

to a forgetting process. Numerous machine learning methods have implemented some kind

of forgetting function (also called decay function) to be able to detect or track concepts that
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drift or shift over time. In this section several decaying functions that can be used to calculate

the forgetting factor are proposed. All these functions are implemented in DyClee.

The simplest forgetting function corresponds to a linear decay as given in equation (5.16).

The function slope a could be inversely proportional to the time it takes to the function to

go from one to zero, a = 1/tw=0. This function with tw=0 = 6000 is plotted in blue in Figure

5.1. A linear decay has been used above all in biological and physical systems. A linear

forgetting function was used in [Koy 00] for concept drift adaptation in clustering.

f (t, tlk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − a (t− tlk) t− tlk ≤ tw=0

0 t− tlk > tw=0

(5.16)

If a non-forgetting time range is appended to a linear decay, we get a trapezoidal decay

profile. This type of function is used as profile in electronic applications. The trapezoidal

decay function is given in equation (5.17) where t∼f represents the no forgetting time, and

tw=0 the time when the function reaches zero. This function is represented in red in Figure

5.1. A trapezoidal decay was used in [Ang 01] for dynamic clustering, but not as a time

function, instead it was related to monitoring parameters.

f (t, tlk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 t− tlk ≤ t∼f

tw=0−(t−tlk)
tw=0−t

∼f
t∼f ≤ t− tlk ≤ tw=0

0 t− tlk > tw=0

(5.17)

Fuzzy logic makes use of the so called Z-function. This spline-based function uses only

two parameters, the extremes of the sloped portion of the curve t∼f and tw=0. The Z-function

is given in equation (5.18) and plotted in black in Figure 5.1.

f (t, tlk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 t ≤ t∼f

1 − 2 t−t
∼f

tw=0−t
∼f

t∼f ≤ t− tlk ≤
t
∼f +tw=0

2

2 t−tw=0

tw=0−t
∼f

t
∼f +tw=0

2 ≤ t− tlk ≤ tw=0

0 t− tlk > tw=0

(5.18)

Statistical processes use overall an exponential decay function. This function is shown

in equation (5.19), where λd is a positive rate known as exponential decay constant. The

function is plotted in magenta in Figure 5.1. This type of functions is the most widely used to

model decay since it has applications in all fields of science. A generalization of exponential

decay is shown in equation (5.20). It is the decay function used by [Agg et al. 03] and [Kra
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et al. 11] and a graphical representation can be found in green in Figure 5.1. The change in

the base from e to any value β gives interesting properties. For example, if β is chosen to be

β = 2ψ, then the time at which half of the data is forgotten, is 1
ψλd

. This function is known

as the half life function and is widely used in biological processes. Simpler versions of (5.20)

were used in [Bou 11], in particular setting λd to one.

f (t, tlk) = e−λd(t−tlk) (5.19)

f (t, tlk) = β−λd(t−tlk) (5.20)

Although exponential decay is been widely used, several processes do not follow this

imminent decay dynamics. Logistic functions are the common alternative when dead zones

or saturation make part of the process behavior. The Sigmoid function is a particular case

of the logistic function which has been widely used in ecology, statistics, medicine, machine

learning, etc. to describe, for example, growing processes. It introduces a dead zone concept,

which in our case, is used to describe the time gap during which cluster’s data should not

be affected by the forgetting process. The sigmoid equation is given in (5.21), where c is

the value of the sigmoid midpoint and b is the steepness of the graph. The midpoint can be

calculated as t
∼f +tw=0

2 and the steepness is inversely proportional to t∼f − tw=0. This signal

is plotted in cyan in Figure 5.1.

f (t, tlk) =
1

1 + e−b(t−c)
(5.21)

Figure 5.1 shows the shape for the named functions in the case where tw=0 = 6000,

t∼f = 2000. For simplicity in the figure tlk is set to zero. As previously mentioned, DyClee

implements all the functions shown in equations (5.16) to (5.21), allowing proper adaptation

to all kind of process evolutions. In DyClee the forgetting process impacts clusters density.

As explained in the previous chapter, each tglobal period the density of all μ-clusters is re-

calculated. Density change might provoke a structural change in clusters distribution. This

phenomenon is explained in detail in the next chapter.

5.3 Operation of the distance-based clustering stage

The previous sections introduce the tools and methods that form the distance-based stage.

This section aims to clarify how all this mechanism work together to cluster data samples.

The distance-based stage takes as input data samples coming from text files, system

messages or databases. Since DyClee implements incremental learning, the data acquisition

is also done incrementally (see Figure 5.2). This approach diminishes memory requirements
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Figure 5.1: Decay functions used to emulate data forgetting

which allows DyClee to process very large data sets, and even data measurements arriving

in stream directly from the process.

Figure 5.2: Schematic description of the distance-based clustering stage of DyClee

The data ‘reader’ accesses to data in its original source and charges the data samples into

a FIFO queue from which they are processed. For each data sample the set of active μ-clusters

from which it is reachable is searched (see green block in Figure 5.2). Among the found μ-

clusters a closest μ-cluster query is performed. The found ‘closest μ-cluster’ is updated with

the information of the data sample using equations (5.7) to (5.9) if the forgetting process is

disabled or equations (5.12) to (5.14) if it is enabled. The later case includes weighting the

μ-cluster CT before adding the information of the data sample. In either case the density

and time of last update are updated using equations (5.10) and (5.11) respectively.

If no active μ-cluster is reachable from the data sample, a new reacheability search is

perform over the O-list, that is, over the low-density μ-clusters. If the set of low-density

μ-clusters from which x is reachable is empty, a new μ-cluster is created using x information

as follows:

CT =
(

1, [x1, · · · , xd], [(x1)2, · · · , (xd)2], currt, currt,
1
Sd
, Unclassed

)
(5.22)
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where currt means the current time. Once each tglobal seconds the A-list and the O-list are

sent from this stage to the density-based clustering stage (see Figure 5.2). In DyClee the

distance-based and density-based clustering stages are implemented as separate processes

that run in parallel, i. e. using independent memory spaces and CPU resources. These

processes exchange information through a bidirectional pipe (see Figure 5.2). The first stage

sends the μ-clusters lists as a message to the second stage which is in charge of finding the

clusters. This package is sent each tglobal seconds and after the verification that the previous

message has already been processed. Once the classification is made the density-based stage

sends to the distance-based stage a message containing:

• The id of the μ-clusters that have to be removed from the O-list after being considered

as non representative.

• The id of the μ-clusters that can be promoted to the A-list.

• The id of the μ-clusters to be transferred from the short-term memory to the long term

memory.

The next chapter explains how these ids are found as consequence of the density-based

analysis. The distance-based clustering stage is summarized in pseudo-code in Figure 5.3.

5.4 Summary

In this chapter the first stage of DyClee was presented. This distance-based clustering stage

summarizes data samples into μ-clusters according to the similarity between their features.

To give a proper context about distance-based clustering some of the most commonly

used distance metrics were presented in section 5.1 and an analysis of the significance of this

measures in high-dimensional spaces was included. This analysis resulted in the choice of the

L1 norm as the distance measure of this thesis.

In this stage, DyClee assigns data samples to the closest μ-cluster from which they are

reachable. This closest μ-cluster (found using the chosen L1 norm) is then updated with the

data sample information following the procedure stated in section 5.2. In order to increase

the reactivity of DyClee to the changes in the tracked system, a forgetting process was

implemented. This forgetting process weights the μ-cluster’s CT at each update, using a

forgetting function f (t, tlk), giving more importance to the arriving records. Six different

forgetting functions were proposed and are implemented in DyClee.

Finally, DyClee’s distance-based clustering operation was described in detail in section

5.3 making emphasis in its connection with the second stage of DyClee, the density-based

algorithm that will be fully presented in the next chapter.
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Algorithm 1: Distance-based clustering stage
while xi in queue do

if Message in com_pipe then

com_pipe: receive Message from density-based stage
Update μC lists with Message

end

if no μC exist then

create μC with xi info
append μC to O-list

else

Reachables = μC’s in A-list that can reach xi // L∞ distance

if Reachables not null then

find closest μC in Reachables // Manhattan distance

update μC with xi

else

Reachables = μC’s in O-list that can reach xi // L∞ distance

if Reachables not null then

find closest μC in Reachables // Manhattan distance

update μC with xi

else

create μC with xi info
append μC to O-list

end

end

end

Write trend to log
if currt− t_last_message >= tglobal then

com_pipe: Send lists to density-based stage
t_last_message = currt

end

end

close com_pipe

Figure 5.3: Pseudo-code of the distance-based clustering stage
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Chapter 6

Density-based clustering

In this stage, density-based clustering is executed over the μ-clusters, which allows the algo-

rithm to find clusters of arbitrary shape. A μ-cluster is qualified according to its density as

one of three options: dense μ-cluster (DμC), semi-dense μ-cluster (SμC) or low density (out-

lier) μ-cluster (OμC). The difference between each type is established based on a threshold.

SμCs result from an increase in the number of samples assigned to an OμC from which one

can expect a subsequent cluster creation.

In order to be able to formally define a cluster, two concept have to be introduced: μ-

cluster connection and μ-cluster direct connection.

Definition D6.1 (μ-clusters direct connection). Let μCkα
and μCkβ

be two μ-clusters, then

μCkα
and μCkβ

are said to be directly connected if they are reachable (in the sense of definition

D4.6) in all but ϕ dimensions. The parameter ϕ establishes the feature selectivity of the

classifier and can be set by the user.

Definition D6.2 (μ-clusters connection). A μ-cluster μCk1
is said to be connected to μCkn

if

there exists a chain of μ-clusters {μCk1
, μCk2

, · · · , μCkn
} such that μCki

is directly connected

to μCki+1
for i = 1, 2, · · · , n− 1.

To clarify this concepts a set μ-clusters, represented as squares, are depicted in Figure 6.1.

Among the black μ-clusters both direct and indirect connections can be found. An example

of direct connection is that between μ-clusters 8 and 7, indicated with the blue arrows. Not

all black μ-clusters are directly connected, nevertheless, they are all connected by the direct

connections among them. For example μ-clusters 10 and 11, which do not intersect, are

connected via μ-clusters 1 and 2. Colored squares do not intersect with any other square

meaning that these μ-clusters are isolated.
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Figure 6.1: Representation of clustering based on μC

Definition D6.3 (Cluster). A cluster is defined as a group of connected μ-clusters where

every inside μ-cluster is a DμC and every outside μ-cluster is either a DμC or a SμC. μ-clusters

can be connected directly or indirectly.

6.1 Connection search and μ-cluster indexing

The search for all the connections of a μ-cluster is computationally expensive. This task is

similar to that of finding the nearest neighbors (NN) which have been widely studied and

strategies have emerge to improve this search. The task of finding all the groups of μ-clusters

can be seen as that of finding all the existent neighborhoods. In that context, finding the

neighborhood of μCz is the task of finding all its directly connected μ-clusters (neighbors)

and then finding the connections of its neighbors and so on. Finding all the μ-clusters directly

connected to a μCz is the same task of finding all the neighbors within Sz distance of μCz

(distance measured using L∞ − norm).

Spatial indexing methods have been widely used to speed-up the NN-query. These meth-

ods sort data based on its spatial occupancy. Specifically, they use hierarchical data structures

to decompose the data space into regions which can be further decomposed into sub-regions,

and so forth. These regions, usually represented as a tree structure, facilitate the NN query

and also intersection queries [Fan et al. 08].

Since we use hyperboxes to represent data samples the use of a spatial index seems

appropriate. Multi-dimensional indexing structures have proved to reduce similarity search

time in low to medium dimensional spaces. This indexing should allow fast access to μ-clusters

in the first stage and speed-up connectivity search in the second stage. Several options were

analyzed in order to find the index best suited to our research problem.

The first approach implemented to speed up the connection search was that of imple-

menting a uniform grid. This approach worked well in low dimensional spaces as reported in

[Bar et al. 15], but it became computationally more expensive that a brute force search when
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the analyzed data set was composed by sparse data samples of more than ten dimensions.

The second approach was to implement a tree-like index structure. Two different tree data

distributions were tested in order to find the index structure best suited to our goals. The

selected structures are: the ‘R*Tree’ [Bec et al. 90], the ‘BallTree’ [Omo 89] and the ‘KDTree’

[Ben 75]. These structures were tested using three data sets exhibiting different spatial

behavior: a uniformly distributed data set and two geometrically distributed data sets. Tests

were performed varying the number of samples among the values N = {10, 100, 1000, 1000}

and the number of dimensions as d = {2, 4, 8, 16, 32, 64, 128}.

The R*Tree showed the poorest performance in terms of both computation time and

memory usage. The BallTree was found to be an order of magnitude slower than the KDTree.

The KDTree was selected as spatial index since it proved to be more efficient in μ-clusters

group retrieval and index construction. Some graphical results are summarized in Figure 6.2

and the complete test results are shown in appendix A. It can be seen from Figure 6.2 that

the tree-like indexes perform poorly when the number of indexed elements is bigger than a

thousand. Consequently, in the algorithm implementation a limit of a thousand μ-cluster

should be considered if the analyzed dimensions scale up to a hundred.

DyClee implements two different approaches to establish the dense character of the μ-

clusters, named global-density approach and local-density approach. The former approach

allows to detect clusters with similar densities while the later allows the detection of clus-

ters with varied densities. DyClee global- and local-density approaches are explained in the

following subsections.

6.2 Global-density approach to clustering

Density-based clustering algorithms group data samples according to density. Exemples can

be found in [Est et al. 96], proposing the DBSCAN algorithm, and [Cao et al. 06], proposing

the DenStream algorithm. In these algorithms, the concept of ‘dense’ is related to a global

user-defined parameter: MinPts in the case of [Est et al. 96] and βμ in the case of [Cao et

al. 06].

In this thesis’ global-density approach, density is considered as a μ-cluster characteristic

with respect to all the other μ-clusters. Two measures are considered as representative of

theμ-clusters, the average of μ-cluster’s density and the median. These measures will work

as thresholds for establishing the dense character of a μ-cluster, with no need of any user

defined parameter. The intuition behind the selection of these measures is that the median

and average densities of an heterogeneous set of μ-clusters are significantly different, although,
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(a) Tree building Computation time (log10(sec)) (b) Tree building Maximum resident set size (Mb)

(c) Group retrieval Computation time (log10(sec)) (d) Group retrieval Maximum resident set size (Mb)

Figure 6.2: Comparison between different tree indexes for the tree building task (Top) and group retrieval task
(Bottom) in a spherical distribution. The R*Tree was removed from (a) and (c) to illustrate the difference
between KDTree and BallTree

if the set of μ-clusters is uniformly dense, these two quantities are equal.

Formally, a μ-cluster μCz is said to be dense at time t if its density is greater than or

equal to both global measures, i.e. the median and the average. On the contrary if its density

is bigger or equal to one of the two measures and lower than the other, the μ-cluster is said

to be semi-dense (SμC). Finally if the μ-cluster μCk has a density bellow both thresholds it

is said to be an OμC. These conditions are represented in inequalities (6.1) to (6.3), where

Di is the density of the μ-cluster i and K is the total number of μ-clusters.

μCkdense ⇔ Dk ≥ median (D1 · · ·DK) ∧Dk ≥ avg (D1 · · ·DK) , (6.1)
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μCksemi-dense ⇔ Dk ≥ median (D1 · · ·DK) ∨Dk ≥ avg (D1 · · ·DK) , (6.2)

μCkoutlier ⇔ Dk < median (D1 · · ·DK) ∧Dk < avg (D1 · · ·DK) , (6.3)

As stated before, in order to find the final clusters, we take into account the dense char-

acter of the μ-clusters and their connections. Connections are accounted for by the notion of

group. Every group of μ-clusters is analyzed one after the other in order to find the clusters.

A cluster is created if every inside μ-cluster of the group is a DμC and every border μ-cluster

is either a DμC or a SμC.

To better illustrate the cluster formation process let us consider a group of connected

μ-clusters exhibiting two areas of high density as shown at the top left of Figure 6.3. The

density in the figure is represented as μ-clusters opacity. DyClee searches the DμCs inside

the group and all the μ-cluster around them with medium or high density. This subgroup

of denser μ-clusters is qualified as a cluster as depicted in red in Figure 6.3 (Top right).

The remaining μ-clusters are then analyzed and, since some DμCs still remain in the group,

another cluster is formed with the remaining DμCs and SμCs. This process is shown at the

bottom of Figure 6.3. A pseudo-code of the second stage algorithm is shown in Figure 6.4 as

algorithm 2.

(a) Original μ-clusters group (b) The first cluster is recognized (red
μ-clusters)

(c) The remaining μ-clusters (d) The second cluster is identified
(blue μ-clusters)

(e) The final clustering

Figure 6.3: Global-density clustering of μ-clusters group. The algorithm start the cluster construction at a
dense μ-cluster and include all connected active μ-clusters. Once finished the remaining μ-clusters are analyzed
and if with the dense μ-clusters another cluster is formed depicted in blue. Since no more dense clusters are
found, the clustering process ends. The final clustering is shown on (e).

6.3 Local-density approach to clustering

The problem of taking a global value to identify a sample as dense appears when clusters

with varied densities are present in the same data set as can be seen in Figure 6.5, where
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Algorithm 2: clustering using global-density analysis
DMC ← μC such that Dk > Davg ∧Dk > Dmedian // dense

already_seen= [ ]
for μC in DMC do

if μC not in already_seen then

already_seen.append(μC)
if μC.label=Unclass then

cid ← get next cluster label
assign cid as currentμC label

end

Connected_μC←all μC in neighborhood overlapped with currentμC
while Connected_μC not empty do

neighbor←Connected_μC.pop()
if neighbor is dense then

neighbor.label← cid

already_seen.append(neighbor)
NewConnected_μCs←all μC overlapped with neighbor in its neighborhood
for newneighbor in NewConnected_μCs do

if newneighbor & is dense then

Connected_μC.append(newneighbor)
end

newneighbor.label← cid

end

end

end

end

end

Figure 6.4: density-based clustering pseudo-code

density is represented by μ-cluster opacity. In this case, density-based algorithms using a

global approach may misclassify low density clusters as noise.

Figure 6.5: μ-clusters groups of varied densities

While it is deemed desirable to detect clusters of multiple densities, it is also important to

maintain the ability to reject outliers. DyClee’s solution to multi-density clustering is based

on local analysis. Unlike [Est et al. 96] and [Cao et al. 06], in DyClee the dense character

of each μ-cluster is assessed with respect to the density of the other μ-clusters in the same
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group. This approach allows what is called multi-density clustering [Mit et al. 03].

The average and the median of the μ-clusters within the same group are chosen as thresh-

olds for this group. In other words, for each group Gk, the μ-clusters having their density

higher than or equal to the average density of the group (avg(DGk
)) and higher than or equal

to the median density of the group (median(DGk
)) are considered as dense. μ-clusters having

a density higher than or equal to only one of those measures (either average or median) are

considered as SμCs and those with density below both measures are considered as OμCs.

Summarizing:

μCkdense ⇔ Dk ≥ median (DGk
) ∧Dk ≥ avg (DGk

) , (6.4)

μCksemi-dense ⇔ Dk ≥ median (DGk
) ∨Dk ≥ avg (DGk

) , (6.5)

μCkoutlier ⇔ Dk < median (DGk
) ∧Dk < avg (DGk

) . (6.6)

A cluster is created if every inside μ-cluster of the group is a DμC and every border μ-

cluster is either a DμC or an SμC (in a local sense). After this stage, the group Gk is reduced

to the μ-clusters that do not contribute to any cluster and the same procedure is applied

recursively.

The μ-clusters groups shown in Figure 6.5 are analyzed in this manner: first, for each

group, clusters are formed with the denser connected μ-clusters resulting in the two clusters

shown in blue and red in Figure 6.6(b). Once formed the rest of the group is analyzed looking

for the denser μ-clusters (with respect to the remaining elements of the group). If no dense

region is found the next group in analyzed following the same method until all groups are

analyzed. The final classification is shown in Figure 6.6(c). The group or groups with the

lowest density are taken as outliers. It is worth noting that global-density approaches are

unable to detect the green cluster because the densities of the μ-clusters in that group are

low with respect to those in the others groups. A pseudo-code of the second stage algorithm

is shown in Figure 6.7 as algorithm 3.

In real applications, the collected data samples are generally very unbalanced, having more

samples concerning normal modes than faulty modes [Ram and Gou 14]. In DyClee the use

of the local-density analysis allows low density populations (as faults) to be represented as

well as high density populations (as is usually the case of normal behavior). In addition,

the local-density analysis allows the detection of novelty in its early stages when only a few

objects giving evidence of this evolution are present.
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(a) First cluster is identified (b) Second cluster is identified (c) Third cluster is identified

Figure 6.6: local-density clustering of μ-clusters groups. (a) the first cluster is identified (red μ-clusters). (b)
The second cluster is identified (blue μ-clusters). (c) the low density cluster is identified (green μ-clusters),
ending the clustering process.

Algorithm 3: clustering using local-density analysis
find Neighborhoods
for neighborhood in Neighborhoods do

calculate Davg and Dmedian from μC in neighborhood
SMC ← μC such that Dk > Davg ∨Dk > Dmedian // dense

tmp_indx ← ordered(DMC)
while tmp_indx not empty do

to_do = { }
sub_group= { }
μC ← tmp_ indx.pop()
while True do

Connected_μC← all μC in neighborhood overlapped with currentμC
sub_group.append(μC)
to_do.append({x ∈Connected_μC |x ∈ subgroup ∧ x ∈ to_do })
if to_do then

μC ← tmp_indx.pop()
end

break remove from tmp_indx all the elements in Connected_μC

end

if ∃x ∈ sub_group|x.label! = 0 then

analyze group labels()
end

cid ← get next cluster label
assign cid as current sub_group label
if Davg of remaining elements in tmp_indx << Davg of sub_group then

break
end

recalculate Davg and Dmedian from the remaining elements in tmp_indx
end

end

Figure 6.7: density-based clustering pseudo-code

6.4 Reactivity to density changes

In DyClee the forgetting process impacts cluster density. Density change implies μ-cluster

type change, its decrease makes DμCs become SμCs and SμCs become OμCs, and vice-

versa. When the forgetting process is activated clusters are separated into two groups, active

74



clusters (SμCs and DμCs) and less active clusters OμCs. A cluster found in the less active list

corresponds to one of these two cases: a new OμC waiting to grow enough to be representative

or an old SμC or DμC that have lost density due to the lack of new arrivals. The less active

list might be seen as a temporary memory that is purged at some frequency. Since active

clusters represent the current behavior they should be kept in memory to facilitate access.

The memory space where the active clusters are stored will be referred as short-term memory

in analogy to the brain storing process.

DμCs are considered a good representation of process behavior at some time point and

therefore they should not undergo the forgetting process like the other SμCs or OμCs. More-

over, some processes could go through cyclic states and hence they could correspond to

previous states that were defined earlier. Consequently, in order to improve the recognition

process, dense characterized behaviors should not be forgotten at the same rate as other

behaviors.

The proposed approach to deal with this cyclic or infrequent behaviors properly is to

implement a long-term memory along the already used short-term memory. Short-term

memory stores the active μ-clusters, that is, those describing the most recent behavior. If

the density of a SμC drops below a low-density threshold it is tagged as OμC and stored into

the temporary memory only if it has never been DμC before. If it was once DμC, it is tagged

as Oldμ-cluster and stored in a database of old known behaviors (long-term memory). This

database is accessed when an input object is not found to belong to any active μ-clusters.

This action verifies if the behavior represented by the object belongs to a previously learned

behavior, speeding up its recognition in the case where the behavior was already learned

before.

Short-term memory is subject to the forgetting process following one of forgetting dynam-

ics explained in Section B.0.3. Long-term memory can follow the same forgetting dynamics

that the sort-term memory, with a lower forgetting factor, or can actually be configured to

follow completely different dynamics. The configuration of the long-term memory is explained

in appendix B.

6.5 Summary

In this chapter two different density-based approaches were presented. In the first, approach

the dense character of a μ-cluster is assessed with respect to the density of all the other

μ-clusters, these approach is called as global-density analysis. In the second approach, the

dense character of a μ-cluster is assessed with respect to the density of the other μ-clusters

in the same group, these local approach allows multi-density clustering.

Let us notice that single density approaches as DBSCAN [Est et al. 96] and DenStream
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[Cao et al. 06] may have low performance in dissimilar density distributions. In that case,

the cluster or clusters with the lower density are considered as noise, missing completely the

characterization of those samples. On the other hand, multi-density approaches may fail

to reject noise, since they can cluster it in one low density cluster. In order to avoid the

inclusion of outliers in multi-density distributions DyClee mixes local and global density

analysis. Local-density analysis is optional in DyClee, and can be set on or off according to

the user’s needs.

If a sample cannot be assigned to any of the existing μ-cluster, a new OμC is formed

using the sample’s information as model. We assume that μ-clusters with low density (OμC)

are either outliers or potential clusters in an emerging state. The later case reveals itself with

an increment in the cluster density and consequently this μ-cluster grows into a SμC as new

data is provided as input.

The use of a short and a long-term memory allows two different reactivity rates to system

evolution. The first one deals with the most recent behavior stored in the short-term memory.

The second deals with those cyclic behaviors that were once representative, but, in the absence

of new samples, have lost density and can no longer be considered as active, although they

might be revisited later.
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Chapter 7

Properties of DyClee applied to

static data

The previous chapters presented DyClee structure based on the fusion of a distance-based

summarization stage and a density-based clustering stage. In this chapter DyClee principles

are validated by evaluating its properties using different data sets found in the literature.

DyClee results are also compared to those of several other clustering algorithms. The first

section aims at testing DyClee’s capability to capture non-convex structures while dealing

with large data sets. Section 7.2 shows DyClee performance in clustering data sets involving

highly non-linear and elongated clusters. Section 7.3 uses a data set of clusters of different

sizes bind together by the presence of outliers to illustrate the robustness of DyClee owing

to the use of both distance- and density-based clustering. The ability of clustering in highly

overlapped distributions is presented in Section 7.4. As a final experiment, a particularly

difficult set of tests is performed mixing together the previous challenges. The results are

given in Section 7.5.

For some experiments the following metrics are used to describe the clustering results:

• True Positive: defined for each class as the amount of samples corresponding to the

dominant true label with maximum presence in each cluster:

Tpi
= max

l
(Cli ∩ labl) (7.1)

where Cli identifies the cluster i and labl is the corresponding true label of the data.

• False Positive: For each cluster the amount of samples assigned to the cluster that do

not belong to the dominant true label.

• False Negative: For each cluster the amount of samples of the dominant true label

assigned to other clusters.
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• Purity: defined as the percent of the total number of objects(data points) that were

classified correctly.

Purity =
1
N

k∑
i=1

Tpi
(7.2)

• Precision: Represents the proportion of retrieved samples which are relevant, defined

as the number of true positives over the number of true positives plus the number of

false positives (Fp)

Precision =
k∑
i=1

Tpi

Tpi
+ Fpi

(7.3)

• Recall: Represents the proportion of relevant samples found, defined as the number of

true positives over the number of true positives plus the number of false negatives (Fn)

Recall =
k∑
i=1

Tpi

Tpi
+ Fni

(7.4)

DyClee algorithm was implemented using Python programming language (version 3.4).

All the details about the implemented functionalities and a brief introduction to the use of

DyClee are provided in Appendix B. The figures of DyClee clustering results showed in this

chapter were also generated using the implemented code.

7.1 Clustering of non-convex sets

When data is arranged in non-convex sets, classic clustering algorithms like k-means and

stream algorithms like CluStream and ClusTree tend to fail at clustering them. This section

presents DyClee capabilities to separate neighboring non-convex shaped clusters and to ac-

count for local as well as global outliers [Kri et al. 09]. To show this property we have chosen

to cluster some synthetic sets available in the scikit-learn Python module [Ped et al. 11].

Our algorithm is compared to scikit-learn module provided implementations of different clus-

tering algorithms, namely MiniBatch KMeans (MBK-m), Agglomerative Clustering, Affinity

Propagation, DBSCAN [Est et al. 96] and BIRCH [Zha et al. 97].

Two noisy data sets named concentric circles and moons were evaluated. These data sets

were generated using the scikit-learn data set module. Both distributions, of 1500 samples

each, are time invariant. In consequence, DyClee’s forgetting process was disabled for this

test.

The clustering results for the concentric circles data set can be seen in Figure 7.11. Clus-

ters are represented using colors, i.e. samples belonging to the same cluster have the same
1The algorithm parameters for the test were: MBK-m (# of clusters), Agglomerative Clustering (linkage

"average", affinity "cityblock", # of clusters, connectivity (estimated using n_neighbors=10.)), Affinity
Propagation (damping=0.9, preference=−200), BIRCH (# of clusters), DBSCAN (eps=0.2), our algorithm
(box relative size=0.06).
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Figure 7.1: Comparison of six algorithms for the concentric circles data set. Top left to right: MBK-m,
Agglomerative Clustering, Affinity Propagation. Bottom: DBSCAN, BIRCH, DyClee

color. Detected outliers are colored in black. For illustrative purposes, the cluster centers for

the MBK-means and the affinity propagation algorithms are also depicted as colored circles

(Figure 7.1 top right and top left). For the same purpose, the DμCs found by DyClee are

depicted as colored squares at the bottom right of Figure 7.1. The agglomerative cluster-

ing algorithm, as well as the MBK-m and BIRCH require the number of clusters as initial

parameter.

Figure 7.1 shows that MBK-m, BIRCH and Affinity Propagation are not able to cluster the

non-convex sets properly, even if the first two know in advance the desired number of clusters.

The Affinity Propagation algorithm does not perform well at all in this distribution creating

a relatively high number of clusters. Agglomerative Clustering, DBSCAN and DyClee are

able to detect non-convex distribution, nevertheless, Agglomerative Clustering is unable to

detect outliers and DBSCAN rejects less outliers than DyClee. Figure 7.2 shows the results

over the moons example, for which similar conclusions can be drawn.

7.2 Clustering non-linear elongated clusters

Classical clustering approaches have powerful capabilities in modeling compact data. Nev-

ertheless they mostly fail in detecting elongated structures. For this kind of challenge con-

nectivity based or graph based approaches behave better but they are often very sensitive

to outliers. Figure 7.3 shows the three spiral distribution used in [Cha and Yeu 08] to prove
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Figure 7.2: Comparison of six algorithms for the moons data set. Top left to right: MBK-m, Agglomerative
Clustering, Affinity Propagation. Bottom: DBSCAN, BIRCH, DyClee

what is called as robust path-based clustering. In the center of each spiral, samples are more

abundant and they become sparser as spiral grows out. This kind of distribution is path

based, which makes its clustering specially difficult for an algorithm based just on distance

or just on density. Even more, path based clustering methods found in the literature work

over the entire data set which make them unsuitable for real-time, large-data applications.

Since DyClee uses an incremental distance- and density-based approach, it can overcome

this kind of challenge, achieving results comparable to those of the original paper by Chang

and Yeung [Cha and Yeu 08] using the so-called robust path-based spectral clustering method

over this unnoisy set. DyClee clustering results and the original results of [Cha and Yeu 08]

are shown in Figure 7.3. These results are achieved forcing DyClee to cluster all samples

(with the option Unclass_accepted=False).

Figure 7.3: Chang and Yeung robust path-based spectral clustering (left) and DyClee clustering results (right)
for the test case in [Cha and Yeu 08].

Robust path-based clustering like [Cha and Yeu 08] gives a measure of the inter-point
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Algorithm Ref Purity Precision Recall # of Clusters
Path-based [Cha and Yeu 08] 1.0 1.0 1.0 3
DyClee [Bar et al. 16d] 1.0 1.0 1.0 3
CluStream [Agg et al. 03] 0.43 0.43 0.82 3
DenStream [Cao et al. 06] 1.0 1.0 0.6 32

Table 7.1: Clustering evaluation of streaming methods over the test case proposed in [Cha and Yeu 08]

similarity arguably robust in presence of noise and outliers. The main advantage of DyClee

over path-based methods, and in particular over the robust path based method in [Cha and

Yeu 08], is its ability to automatically recognize outliers. DyClee not only works under a

unsupervised paradigm which do not demand a priori knowledge of the number of clusters,

but also exclude outlier samples from the clusters using the OμCs. In [Cha and Yeu 08] the

noisy concentric circles example used in the previous section was also considered and Robust

path-based clustering is unable to correctly label the noisy samples as outliers.

In [Bar et al. 16d] DyClee performance were evaluated against other streaming methods,

namely CluStream and DenStream on this data set. Table 7.1 summarized the clustering

results of the robust path-based approach and the streaming methods. Table 7.1 shows

that DyClee outperforms the other streaming methods. CluStream put together samples

of different clusters which is reflected in its low purity. DenStream is unable to follow the

clusters density evolution (clusters are much more dense in the center) which force it to create

an elevated number of clusters i.e. 32.

7.3 Clustering aggregation problem

The clustering aggregation problem was presented by Gionis et al. in [Gio et al. 07]. This

problem defined as that of finding a single clustering that agrees as much as possible with the

information gathered from other clusterings used as input. Clustering aggregation is claimed

to be useful in improving the robustness of clustering. Figure 7.4 shows the test case used

by Gionis et al. in their clustering aggregation problem [Gio et al. 07]. An intuitively good

clustering for this data set consists of the seven perceptually distinct groups of samples. The

authors of [Gio et al. 07] ran five different clustering algorithms implemented in MATLAB

(single linkage, complete linkage, average linkage, Ward’s clustering, and k-means), setting

the number of clusters to 7 in each case. Nevertheless, the correct clusters distribution was

not found by any of the named algorithms. Gionis et al. [Gio et al. 07] then proposed several

solutions using clustering aggregation, in particular deriving a clustering distribution that

merges the results of the five clustering algorithms used in the previous stage. Unfortunately

the aggregation techniques they consider are NP-hard, which makes their implementation

not feasible for practical problems.
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Figure 7.4: Gionis et al. clustering aggregation results (left) and DyClee clustering results for the test case
in [Gio et al. 07].

DyClee characteristics make DyClee suitable for the test case presented in [Gio et al. 07].

As can be seen in Figure 7.4, DyClee correctly clusters the test set, achieving almost the

same result as Gionis et al. whereas Gionis et al. solution requires to aggregate the results

of five different clustering methods. DyClee does not even require the number of clusters as

input parameter.

Using this data set one interesting aspect of DyClee can also be exemplified, its ability to

reject clusters with size below the generalized tendency. If the clusters distribution is assumed

to be relatively uniform, rejecting clusters of small sizes can improve outlier detection. If the

DyClee user selects to enable the minimum size cluster option, minimum_mc, clusters with

low amount of μ-clusters are not accepted and then taken as noise/outliers. Figure 7.5 shows

DyClee clustering results with this option set to True. As can be seen from the figure, this

restriction cause clusters of low sparsity to be eliminated and its samples registered as noise

(colored black).

7.4 Clustering in highly overlapping situations

In order to illustrate DyClee performance in presence of high overlapping natural clusters

we selected the R15 data set from [Vee et al. 02]. This data set of 600 samples, generated by

15 similar 2D Gaussian distributions is shown on the left of Figure 7.6.

DyClee deals with high overlapping data distributions by design. Its implementation

of μ-clusters of different densities allows it to detect low density regions between connected

cluster which subsequently enables the detection of adjacent clusters.

Figure 7.6 shows DyClee clustering results compared to those of the original paper [Vee

et al. 02]. The 15 classes are correctly recognized and outliers are detected. For this test the
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portion parameter (cf. appendix B) was set to 0.02.

This test allows us to show DyClee sensitivity to changes in the portion parameter,

that is, the relative size of the μ-clusters. It is worth remembering that portion is the only

mandatory field for running DyClee and it can take values from 0 to 1. Figure 7.7 shows

DyClee clustering results when the μ-cluster relative size varies from 0.01 to 0.06 of the

feature range. When the μ-cluster relative size is too low, values under 0.015, more clusters

are created due to density changes inside the cluster, in other words, regions of low relative

density are found between regions of higher density, forming two clusters as can be seen in

Figures 7.7(a). On the other hand, if the μ-cluster relative size is taken too large (as in Figure

and 7.7(c) and 7.7(d)) clusters can be incorrectly merged due to proximity of μ-clusters of

relative high density. For the R15 example DyClee can correctly classify the data set using

relative μ-cluster sizes from 0.015 up to 0.039 as can be seen in Figure 7.7(b). A graphical

summary of the number of clusters found when portion varies from 0.01 to 0.045 is shown

in Figure 7.8.

In some situations clustering all samples might be desirable as can be in the case in fraud

detection or quality control. DyClee allows the user to impose a label to all the samples, i.e.

include in the clusters the outliers which are otherwise detected as non representative samples.

This option is activated by means of the Unclass_accepted parameter. If this optional

parameter is set to False DyClee assigns a label to all samples even if they are identify as

outliers. For the R15 data set the clustering results obtained when Unclass_accepted is set

to False, i.e. DyClee is forced to cluster all samples, are shown in figure 7.9.

Figure 7.5: DyClee clustering results for test case in [Gio et al. 07] if the option minimum_mc is set to True.
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Figure 7.6: Veenman Maximum Variance Cluster Algorithm (left) and DyClee clustering results (right) for
the test case in [Vee et al. 02].

(a) portion=0.1 (b) portion=0.3 (c) portion=0.4

(d) portion=0.6

Figure 7.7: DyClee clustering results. μ-cluster relative size of 0.04(left) and 0.06 (right)
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Figure 7.8: DyClee sensitivity to μ-cluster relative size (portion parameter)

Figure 7.9: DyClee clustering results. μ-cluster relative size of 0.02 and Unclass_accepted = False

7.5 Clustering Chameleon data sets

Finally we consider the t4.8k data set from the Chameleon data sets2. Chameleon is a

hierarchical clustering algorithm developped by Karypis et al. in [Kar et al. 99b]. The t4.8k

data set has six clusters of different size, shape, and orientation, as well as random noise

samples and special artifacts such as streaks running across clusters making its classification

particularly difficult. For this data set Chameleon finds eleven clusters, out of which six

correspond to the genuine clusters in the data set, and the rest contains outliers. Chameleon

clustering results over this data set are the poorest over the five data sets proposed in [Kar

et al. 99a] and this test case was excluded from the final Chameleon Paper [Kar et al. 99b].

Nevertheless, this data set remains an interesting test case for clustering algorithms and

2Available at http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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has been extensively used for clustering validation [Bor and Bha 07, Fah et al. 10, Tra et

al. 14, Tha et al. 15]. The original Chameleon paper which includes this data set is available

on the page of the author [Kar et al. 99a]. DyClee results for this test case are given in

Figure 7.10, showing the correct detection of only six natural clusters, which correspond to

the genuine clusters, but including some outlier samples in the natural clusters. DyClee

results are quite good for this difficult clustering problem.

Figure 7.10: Chameleon (left) and DyClee clustering results (right) for the t4.8k data set in [Kar et al. 99a].

7.6 Summary

In this chapter the ability of DyClee to cluster complex static data sets is tested and it

was proven that it is able to capture non-convex structures along with non-linear elongated

clusters, an ability infrequently present in distance-based algorithms. Furthermore, DyClee

has proven to be able to cluster data sets in which the clusters exhibit different levels of

density. Overlapping distributions were also tested and DyClee shows to be able to correctly

cluster samples in these situations.

DyClee achieves all these properties while being computationally efficient and capable

of dealing with large data sets. In fact, most of the techniques suited to cluster complex

data distributions need to process the data set as a whole, which make them unsuitable for

application in industrial environments or in processes in which data are generated continu-

ously. On the contrary, DyClee is not only able to process complex distributions but it does

it online taking data samples in batch or stream.

The next chapter will illustrate DyClee approach to process dynamic data samples. In

order to cluster dynamic data with the structure presented in Chapters 4 to 6, and used

in this chapter to cluster static data, a preprocessing stage is introduced. In this stage

information involving the temporal evolution of the variables is extracted and transformed

into a representation that DyClee can then cluster.
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Part III

Dynamic clustering for monitoring

dynamic processes

In Part II DyClee was presented and its capabilities illustrated using several data sets.

These tests have shown that DyClee handles non-convex, multi-density distributions and

achieves outlier rejection even in highly overlapping situations. In this part DyClee is applied

to the monitoring of dynamic processes. The first chapter (Chapter 8) presents this thesis

proposal for feature generation capturing dynamic characteristics. The generated features

are used by DyClee to cluster the data acquired on the process and identify the operational

modes. Chapter 9 shows how DyClee’s clustering results can be used to automatically

generate a discrete event model of the process. The last chapter presents the results of the

application of the developped algorithm on industrial benchmarks.





Chapter 8

Dynamic feature generation via

trend extraction

In this chapter the process of transforming a data series into a trend based representation is

fully described. Until this point data samples have been analyzed as time point wise samples

arriving as a whole or in a stream. Nevertheless, for an industrial application, data samples

are usually part of a causal data stream from which trend information can be extracted. A

trend is a time-dependent variation of a process variable which gives information about the

general direction and tendency of a variable. Since such information may be very useful to

supervision purposes, a trend analysis preprocessing stage is incorporated into DyClee.

The preprocessing stage transforms the time series into a much richer representation

that includes information about how the variables are changing in time. This quantitative

representation is formed of so-called episodes. Filtering and trend recognition processes are

involved in finding the correct episode representation for a data series.

This chapter is organized as follows. First, a brief introduction about trends and their

use for diagnosis and supervision purposes is presented. Second, the episodes are formally

introduced giving special attention in the trend representation formalism. Then, the signal

filtering stage is explained. Finally a dynamic window splitting technique is proposed to

describe complex continuous signals.

8.1 Introduction

Qualitative reasoning proposes to model the physical world, characterized by continiously

varying quantitative variables, in a symbolic manner [Tra and Dag 03]. Qualitative based

representations are a user friendly representation that have been successfully applied in the

fields of process monitoring and fault diagnosis [Tra and Mil 97, Ren et al. 01, Mau et
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al. 03, Das et al. 04, Mau et al. 05, Mau et al. 07, GA et al. 09, Mau et al. 10, Gam et

al. 14b]. In general Qualitative Trend Analysis (QTA) approaches are composed of three

components: (i) a language for trend representation, (ii) a methodology to extract the trends

and (iii) a classification methodology to map trends to process situation assessment [Mau et

al. 10].

QTA is a non model-based technique that exploits historical data of a process to char-

acterize its behavior. The use of a language reduces the complexity of system states by

allowing only a finite set of qualitative descriptors [GA 12]. Those descriptors have been his-

toricaly called primitives [Che and Ste 90, Mau et al. 07] or episodes [Jan and Ven 91, GA

et al. 09, GA 12]. Figure 8.1(a) shows the triangular episode language proposed in [Che and

Ste 90] and Figure 8.1(b) the seven primitives language proposed in [Jan and Ven 91]. Both

representations are based on the signs of the first and second derivatives of the analyzed

variable. An example of a trend represented qualitatively with the seven primitives language

is shown in Figure 8.1(c).

(0, )

Constant
(−, 0)

Linear
Decrease

(+, 0)

Linear
Increase

(+,+)

Upward
Increase

(−,+)

Upward
Decrease

(+,−)

Downward
Increase

(−,−)

Downward
Decrease

(a) Triangular episode language

(0, 0)
A

(+,+)
B

(+, 0)
C

(+,−)
D

(−,+)
E

(−, 0)
F

(−,−)
G

(b) Seven Primitives language

A D G E B B F

(c) A trend represented qualitatively by primitives

Figure 8.1: Qualitative representations used to represent trends

Polynomial fit-based methods have been chosen for the trend extraction task owing to

its shorter computational time and higher robustness to noise. The main advantages of the

qualitative representation are its interpretability, the complexity reduction and the robustness

in presence of low to medium amounts of noise. On the contrary, one main drawback is the

lack of differentiation of episodes following the same qualitative trend, i.e. the concept of

magnitude is completely lost. See for example the two different signals depicted in blue and

red in Figure 8.2. Consider that these are tank level measures. It is intuitive that these two

measures carry different information (the red signal indicates a fastest increase in the tank

level) and yet their qualitative representation is the same.
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A D A G

Figure 8.2: Different time series with the same QTA representation

In order to overcome this issue, this thesis proposes a quantitative approach for trend

representations. As said before, most of the QTA approaches make use of polynomials to

represent the trends. Specifically, they use the sign of the linear and quadratic terms to find

the sign of the derivatives and hence the corresponding primitive, as proposed in [Das et

al. 04]. However, in these works, the value of the polynomial coefficients is not used.

On the contrary, this thesis proposal is to use the polynomial coefficients as input to

the classification task rather than the pure qualitative abstractions. The following sections

explains this proposal.

8.2 Dynamic behavior representation

Data streams take the form of time series providing the values of the signals measured over

time on a given process at each sampled time. In order to extract trend information, this

work proposes to process each time series xi into episodes, to generate an abstraction of the

original signal into a qualitative-like, yet quantitative, representation.

The term episode have been largely used in the sense of a qualitative descriptor of a

given representation [GA et al. 09]. In this thesis the same term is kept but the proposed

representation is quantitative.

Episodes are defined by three elements: a trend context TC, a set of auxiliary variables

AV and a time interval Ti leading to (8.1):

e(xi) = {TC,AV, Ti} (8.1)

As introduced before, to find the trend context, polynomial fit can be used. Instead of

using an entirely qualitative representation based on an alphabet of primitives, we use the

polynomial coefficients. The use of coefficients allows us not only to retain all the qualitative

information about the trend (constant, decreasing, increasing) but also to incorporate a

magnitude to it. This Quantitative-Qualitative Trend Analysis is denoted by 2QTA. The

trend context TC, for a polynomial fit of order n, is the n-dimensional vector [c0, c1, . . . , cn].

Auxiliary variables capture information related to the data samples covered by the episode.

The importance of this complementary information in finding structural similarity between
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trends was established by Angstenberger in [Ang 01]. Some possible variables to be used

are average value, standard deviation, slope, curvature, smoothness, etc. Finally the time

interval place the trend information in a specific time related context.

It is worth noting that the validation of a polynomial fit is done by comparing the poly-

nomial fitting error to the time series noise variance. If the noise variance (measured as

explained below in subsection 8.3) is bigger than the variance of the approximation residuals,

the fit is accepted.

Example 8.1 (Clustering using trend abstraction). A set of twelve synthetic signals following

linear and exponential dynamics are generated. These signals have been contaminated with

random white noise as seen in figure 8.3(a) where the increasing dynamics are plotted in

gray (exponential) and green (linear) and the decreasing dynamics in red (linear) and blue

(exponential). For the human perception finding the difference between the set of signals

in the lower half of the figure (red and blue) can be difficult. Classic clustering approaches

using static features are unable to separate this two groups. By using episodes, DyClee is

able to clearly differentiate the two dynamics as can be seen in Figure 8.3(b), were the found

μ-clusters with corresponding colors are shown.

(a) time series
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(b) Episode based classification

Figure 8.3: Illustrative classification task of noisy time series using 2QT A

8.3 Signal filtering and noise variance estimation

In order to filter the input signal and find out the noise variance (used to validate the poly-

nomial fit) an optimization process over the discrete cosine transform is performed. Consider
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the smooth one dimensional signal ŷ, corrupted by zero mean Gaussian noise ε. The measured

signal y is:

y = ŷ + ε (8.2)

[Gar 10] proved that the smoothed signal ŷ can be expressed as:

ŷ = IDCT

((
IN + sΛ2

)−1
DCT (y)

)
(8.3)

where s is a real positive scalar that controls the degree of smoothing known as smoothing

parameter, Λ = diag (λi · · ·λN ) is the matrix whose diagonal is given by the eigenvalues

λi = −2 + 2cos ((i− 1) π/n), as defined in [Yue 05] and DCT and IDCT are the n-by-n

type-2 discrete cosine transform and the inverse cosine transform matrices respectively.

The variance of the noise can then be determined from the smoothed signal that minimizes

the residual sum of squares ‖ŷ − y‖2 as:

σ2
noise = ‖ŷ − y‖2/(N − 1) (8.4)

8.4 Adaptive time window for episode representation

2QTA based episode representation allows one to describe dynamic behaviors that may de-

velop in different time scales, by means of polynomial coefficients. According to the Weier-

strass approximation theorem [Sto 48], a continuous function defined in a closed interval, can

be approximated as closely as desired by a polynomial of sufficient high order. If the process

dynamics is highly variable, finding the polynomial coefficients describing the whole signal

may be computationally expensive. An alternative is to split the function into smaller pieces

that could be described by lower order polynomials.

The proposed algorithm makes use of polynomials of order n ∈ {0, 1, 2}. If the candidate

polynomial does not describe properly the signal, i.e. if the variance of the error introduced by

the approximation process is bigger than the variance of the signal noise, the time window is

shrunk and the polynomial approximation used again to describe the behavior in the current

time window.

Polynomial aproximation algorithms based on window halving, also known as interval

halving, have proven to be useful in shrinking the time window and finding an appropriate

splitting point [Das et al. 04]. This method, however, has two important drawbacks. First,

if the signal change point is located close to the start of the window, several iterations are

necessary to localize it. If it is located at the end, multiple iterations and polynomials must

be used to describe a portion of the signal that could be described by one polynomial only.
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(a) Input signal to the IH method.

halving 1halving 2halving 3

(b) To correctly describe the constant segment at the beginning of the signal, the halving procedure is applied three
times.

(c) The final representation found by the interval halving method. Discontinuities are found at the beginning of the 3th
and 4th segment

Figure 8.4: Interval Halving algorithm for window splitting and polynomial characterization

Second, if the change in the signal does not occur at specific times that divide the halved

window, discontinuities could be introduced by the polynomial approximation. To clarify the

idea, see Figure 8.4, e.g. to find the constant fragment at the start of the time series three

iterations are needed. Figure 8.4 also shows the discontinuities that can be introduced in

the signal as illustrated at the beginning of the third and fourth fragments of the figure. To

diminish the discontinuities, weights can be used in the polynomial fit giving more importance

to the fit of border samples.

To overcome these drawbacks a first approach using wavelet based multi-resolution analy-

sis was tested and the results can be found in [Bar et al. 15]. The outcome is a partition of the

signal favorable to polynomial characterization, nevertheless the selection of the right wavelet

family for signal denoising and splitting is not trivial. This problem can be overcame eval-
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uating several families and choosing the one that gives the best-fit. However, this approach

involves multiple iterations which decrease the general speed of the algorithm and increase the

complexity from O(N) to O(w∗N), where w is the number of considered wavelets, restricting

its applicability.

To surpass this obstacle a new approach was elaborated based on the search of those

points related with behavioral changes in the measured signal. The splitting points are found

by making use of peak detection in both the original and the smoothed signal. The smooth

signal is found as described in section 8.3 and the exact method to found the splitting points

is explained below.

The peak detection algorithm used by DyClee detects discontinuities in the signal and

also local maxima, minima and inflection points. It uses the measured signal y and the

difference between consecutive points of the smoothed signal ŷ:

dŷ = |ŷ(t) − ŷ(t − 1)| (8.5)

Notice that the optimization procedure described in section 8.3 provides both the noise

variance estimation (equation (8.4) and the smoothed signal ŷ (equation (8.3)).

Peaks in y correspond to local maxima and minima points and peaks in dy to inflection

points. We are only interested in finding the first point of change since it establishes the time

window fragment best suited for polynomial characterization. Once the point is found, the

current window is sliced and the first portion is submitted to the polynomial fit. The rest of

the window is updated with the data arrived from the stream before been processed again

by the peak detector. In order to find the first point of change in the signal, we propose

to measure the average value of the m first points in the signal and characterize the signal

behavior in the following way:

behavior is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

constant if ‖avg(ŷ0, ŷ1, · · · , ŷm) − y0‖< 2 ∗ σ2
noise

increasing if avg(ŷ0, ŷ1, · · · , ŷm) − y0 > 2 ∗ σ2
noise

decreasing otherwise

(8.6)

where avg(ŷ0, ŷ1, · · · , ŷm) represents the average of the first m points of ŷ and y0 represents

the first sample of the current window. If the signal behavior is found to be increasing, the

next signal maximum is chosen as splitting point, in a similar way if the behavior is decreasing

the next minimum will be the splitting point. In the case of constant behavior, the point

where the signal changes more than 2 ∗ σ2
noise units above or below the constant average will

be selected as splitting point.
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To illustrate the results, the method was applied to the signal of Figure 8.4. The results

are shown in Figure 8.5. The signal fragments found are quite appropriate to low order

polynomial representation. This result outcomes the representation found using the interval

halving method. One advantage of the presented method is that non symmetrical graphs can

be properly described, since unimodal behavior is split.

1er split

(a) To correctly describe the constant segment at the beginning of the signal, only one split is necessary with the peak
detection method.

(b) The final representation found by the proposed splitting method.

Figure 8.5: Proposal of window splitting for polynomial characterization

8.5 Trend abstraction and clustering synchronization

Episode abstraction is processed for each signal or feature independently providing the so

called local episodes. A proper synchronization of local episodes and their time frames must

be performed to generate the input that can be applied to the clustering algorithm DyClee,

i.e. a d−dimensional vector E. Figure 8.6 shows two signals exhibiting different behavior,

characterized by local episodes ej1 and ei2 in non synchronized time frames. In this example,

the vector E that must be used as input to the clusterer is a 2d vector.

Episode synchronization is performed by considering behavioral changes in any dimension.

The global behavior is hence described by a sequence of epochs for which E changes value.
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Figure 8.6: Episode synchronization

In the example of Figure 8.6, the first epoch is E1 =
[
e1

1, e
1
2

]
, then the second epoch is

E2 =
[
e2

1, e
1
2

]
and so on.

The synchronization procedure is performed on-line and generates the values of E as soon

as a local episode changes. Having dynamic time frames allows episodes of any duration, even

really long episodes. To avoid slow detection time through long episodes, a maximum window

size Max_ws is established as reference for the density-based algorithm. Max_ws is used as

upper limit to generate E and start diagnosis hence ensuring that the density-based analysis

are performed within appropriate security intervals. At the same time episodes are allowed

to evolve to follow process dynamics as illustrated in Example 8.2.

Example 8.2. Let us consider a system with three measured variables for which 2000 samples

has been collected as depicted in Figure 8.7. This features present different dynamics and

are analyzed independently by DyClee 2QTA. The trends cuts found by DyClee are shown

in Figure 8.8. Each cut is depicted in color in the own signal and then in gray in the others

for illustration purposes. It is worth remembering that each episode change in one of the

signals, implies a new Epoch vector generated and send to the density-based clustering stage.

Note also that in n = 1700 a security Epoch is created, this Epoch is generated since no

changes have been detected in the green signal in a time window of Max_ws. This Security

epoch guaranties that DyClee always diagnose the system with a frequency less or equal to

1/Max_ws.

8.6 Summary

In this chapter a proposal for feature generation via trend extraction was presented. This

method allows us to capture the information about the evolution of the monitored charac-

teristics into episodes by making use of polynomial representations. The episode abstraction

is done for each monitored characteristic and then packed into epochs which are analyzed by

the clustering algorithm presented in Part II.
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Figure 8.7: System measurements as collected

Figure 8.8: Example of DyClee synchronization over the system features
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Chapter 9

Learning an adaptive discrete event

model of the process from

clustering results

In Part II a clustering based method for tracking evolving systems was presented. The de-

veloped algorithm, DyClee is able to consider system measurements as static features (dis-

carding the temporal related information) or as dynamic features by the use of the episode

representation arising from 2QTA (See Chapter 8) in order to characterize the system be-

havior. This chapter presents a proposal for using a discrete event model coupled with the

continuous dynamic clustering in order to improve the supervision capabilities. Interestingly,

such model can be learned from the clustering produced by DyClee.

As deeply explained in the previous chapters, classification techniques establish a rep-

resentation of the process behaviors by grouping samples in the feature space. As was in-

troduced in chapter 3 these features are constructed in such a way that they make samples

distinguishable with regard to a certain concept (or set of concepts). In the case of cluster-

ing such concepts are not known in advance, so the feature space have not been selected in

advance to accomplish an specific goal. Clustering methods usually start from the measure

space and find relations that allow an a posteriori selection of features. These methods are

specially suited for complex processes where physical models are complex to develop. Clus-

terers characterize the system behaviors as a cluster partition and then assess the process

situation online by tracking the process measurements [Kem et al. 06]. The concepts of ‘nor-

mal’, ‘degraded’, ‘failure’ are unknown to the clusterer but known to the human operator.

Clustering techniques for supervision must be able to support an interpretable macroscopic

view of the process focused on help the operator in the decision making stage by presenting

the information about the current process state and the possible future states.
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The inclusion of a discrete event model follows two objectives: improving clustering results

interpretability for decision-making purposes and improving the fault detection capabilities

by the inclusion of event related dynamics.

As introduced in Chapter 2, a diagnostic system generates indicators about faulty behavior

in the form of symptoms that should be interpreted in order to find the correct decision about

the actions to take over on the system. In non-supervised approaches this interpretation

comes from a human expert who analyses the cluster information and assigns an appropriate

label to it. The visualization of the clustering results in a simple, yet complete representation

becomes then necessary.

DyClee is able to describe and track the current behavior of the system but it has no

information regarding the correspondence of the ‘observed behavior’ it finds with the desired

behavior. New detected clusters might or not represent faulty states, so the fault diagnosis

cannot be performed without the expert interpretation.

The developments made in this chapter are based on the following hypotheses:

Hypothesis H9.1. The system expert is able to provide the labels of the (finite) set of

nominal operational modes as well as the set-points changes to transition between them

(control events).

Hypothesis H9.2. Changes in the system set-points happen in a much slower timescale

than system dynamics, i.e. the system reaches and remains in a steady state between two

set-point changes.

Hypothesis H9.3. The tuple formed by the observed operational mode (continuous state)

and the control reference (discrete state) of the system is considered to be unique.

In complex systems faults can be detected when the process enters in a failure mode.

Using DyClee clustering faulty states can be observed and characterized, nevertheless since

it does not consider the system references as input, faults due to unexpected transitions

between different operational points or violations to state sequences cannot be detected.

Under hypothesis H9.1 and H9.2 these faults can be detected thanks to the DES model. In

specific, three types of event-related faults are detected: 1) occurrence of an control event not

followed by the actual transition, 2) state transition without the occurrence of the control

event, 3) state transition that does not correspond to the applied control event.

Example 9.1. To illustrate the three kind of faults the blue car example (3.3) will be used.

Let us assume that the change from the stopped state to the moving forward state is driven

by the control event “accelerate” and the opposite transition by the event “slow down” as

shown in Figure 9.1.
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Figure 9.1: Blue car event driven transition

• If the car is in the stopped state and the “accelerate” event is detected but no state

change is evidenced, a fault of type 1 has occurred.

• If the car is in the stopped state and it starts moving without any control event, a fault

of type 2 has occurred.

• If the car is in the moving forward state and after an “slow down” event the car starts

moving backwards instead of stopping, a fault of type 3 has occurred.

Fault detection is possible under hypothesis H9.3. This hypothesis implies that, in the

case where for a operational mode two different control reference (events) are observed a new

label is created to differentiate this behavior.

In this chapter a methodology to automatically generate a discrete event model of the

monitored process from DyClee clustering results is presented. This model represents system

behaviors using a timed automaton in which the states represent DyClee natural clusters

and the transitions the states reacheability. The model is updated each tglobal time units, as

a new clustering is provided by the density-based stage. Qualitative information about the

system states is included in a graphic compact representation that can help, if necessary, in

the process of decision making. This chapter is organized as follows: Section 9.1 introduces

the discrete event systems (DES) and presents the chosen DES model formally and with

practical examples. Section 9.2 explains the construction process of a DES from DyClee

clustering results. Finally section 9.3 summarizes the chapter.

9.1 Discrete event system models for process diagnosis

Approaches for diagnosing DES have been proposed in both the AI and control engineering

literature and covering systems that are discrete by nature as message (alarm) based systems

as well as continuous systems (after quantisation). Diagnostic algorithms model the process

states as normal and abnormal using whether physical principles, expert knowledge (rule-

based) or data mining mechanisms based on labeled samples. For the purposes of diagnosis,

large scale dynamic systems described by continuous variables can often be viewd as DES at
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some level of abstraction [Sam et al. 96]. The set of the process possible situations (and the

related concepts) form a finite set, this fact makes DES especially suited for represent them

[Wai et al. 00]. DES consider the state space as a discrete set in which the state transitions

are event-driven [Cas and Laf 10].

Application of DESs for supervisory tasks are varied. A fuzzy automaton was presented

in [Kem et al. 06] in which the system trajectory is described by a sequence of classes to which

the actual situation belongs. This automaton was used to represent a reference behavioral

model of the process and detect process deviations at state level (unknown behavior) and at

transition level (unexpected transitions). Sampath et al. achieve system diagnosis by first

building a set of finite-state models of the subsystems to be diagnosed and then building

a finite-state machine that will perform as diagnoser of the hole system based on indicator

events [Sam et al. 96]. A decentralised approach for on-line diagnosis was also proposed

in [Pen and Cor 05] to reduce diagnosis computational requirements. In [Pen and Cor 05],

component diagnoses are progressively merged to obtain subsystem diagnoses and the final

system diagnosis. Yet another decentralized approach was proposed in [Cor et al. 07] in

which global diagnosis is represented by the set of diagnoses of its transition-independent

subsystems.

Gaudel et al. use a hybrid particle petri net to diagnose system modes (normal and

abnormal behaviors), represented as discrete states with continuous dynamics, in which faults

are considered as unobservable events [Gau et al. 15]. In [Sub et al. 14], the authors deal

with the issue of extracting temporal patterns (in the form of chronicles) that are common

to a system behavior or situation. The extracted chronicles describe each situation which

allows its further use for situation assessment purposes. Specifically, fault diagnosis can be

accomplish by analyzing the system flow of observations in comparison with the already

learned chronicles.

DyClee allows to represent temporal related information inside the clusters and conse-

quently the chosen DES should be able to incorporate temporal information associated to

the transitions between the characterized behavioral modes. Complex process behaviors are

usually submitted to timed-based or event-based constraints. Conditions as ‘the product must

heat up to 100 degrees’ or ‘the mix must cold down 20 minutes before its injection into the

mold’ can not be modeled by using basic DESs. Among the timed DESs, approaches based on

timed automata (stochastic or deterministic), timed petri nets and (max,+) algebra methods

can be found [Lun and Sup 02, Sup et al. 06, Cas and Laf 10]. To merge time-driven dynamics

with event-driven dynamics timed automata (with guards) are chosen as DES formalism in

the following.
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9.1.1 Timed Automata

In order to introduce a timed automaton with timed guards the definition of automata and

its extension to use timed transitions is first introduced. An automaton A is represented by

the tuple 〈E,S, s0, T f,Sm} where S is a finite set of states, E is a finite set of events, s0 ⊆ S

is the initial state, Tf : S × E → S is the transition function. The automaton starts in an

initial state and then if 〈s, a} ∈ Tf the automaton changes state from s to s′. Sm is the set

of accepted or final states called marked states. To clarify this definition an example is given

below.

Example 9.2 (A water heater automaton). Consider a water heater as the one shown in

Figure 9.2(a). This system is formed by a tank, a burner and two pipes. The system behavior

is the following: the tank is filled with water until it is full, then the burner is activated until

the water gets hot and then the tank is drained until it reaches a minimum level. In addition

if the process is turned off the tank should be completely drained.

The state transition diagram describing the process behavior is shown in Figure 9.2(b)

where nodes represent states and labeled arcs represent transitions between these states.

This graph is a graphical representation of an automaton. The set of nodes is the state set

S = { ‘unfilled’, ‘filling’, ‘emptying’, ‘heating’}, the labels of the arcs are elements of the

event set E = {‘empty ’, ‘full’, ‘minimum’, ‘hot’, ‘off ’, ‘on’} and the arcs provide a graphical

representation of Tf . Γ(s) is the set of all events e for which Tf(s, e) is defined. The marked

state is ‘unfilled’.

Cold Water

Hot mix

(a) Graphical description

filling heating

unfilled emptying

full

hot, offmin ∧ on
off

empty

on

(b) State transition diagram

Figure 9.2: Water heater

Timed automata formalism is an extension of automata in which transitions from any

state in S to any other state in S could have temporal constraints. Adjoining time-driven

dynamics allows to represent information such as how long the system stayed in a given state

or what is the time interval between two events.
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Timed constraints can be added to the transitions of the automata using a finite set of

clocks. Before giving the formal definition, the concept is illustrated using the example 9.2.

Example 9.3. The condition ‘the mix should boil for at least 20 minutes’ can be included

in the automaton using a clock c set to zero at the instant in which the mix reaches the boil

temperature (‘hot’ event) and allowing the transition from ‘heating’ to ‘emptying’ only if c

is bigger than twenty. The state diagram in Figure 9.3 describes the process including this

new condition.

filling heating

unfilled emptying

full

hot, c≥20min ∧ on
off

empty

on

hot,c:=0

off

Figure 9.3: Water heater state transition diagram with a time constraint

The formal definition of timed automaton is given below.

Definition D9.1 (Timed Automaton [Alu and Dil 94]). A time automaton At is a tuple

〈E,S,S0, T ft,Sm, CK} where S is a finite set of states, E is a finite set of events, S0 ⊆ S is

a finite set of start states, Tft : S × E × 2CK × Υ(CK) → S is the timed transition function.

Sm is the set of accepted or final states and CK is a finite set of clocks.

When the automaton is in the state s and the event a is detected, the automaton changes

state from s to s′ iff the clock constraint δ is fulfilled, that is the tuple 〈s, a, ι, δ} ∈ Tft. The

subset ι ⊆ CK makes the clocks to be reset with this transition.

Example 9.4. For the example 9.3 the timed transitions are:

Tft (heating, hot, {c}, {}) = heating

Tft (heating, hot, {}, {c ≥ 20}) = emptying

Example 9.5. For the example 9.3 the full transition table is depicted in Figure 9.4. In this

case the timed constraints are given by design and specified next to the transition triggering

event.
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unfilled emptying filling heating

unfilled on

emptying empty min ∧ on 5

filling off full

heating
hot [c ≥ 20]
off hot [c := 0]

Figure 9.4: Transition table for example 9.3

9.2 Modeling the process behavior from clustering results

In the previous chapter a method for describing time-varying features using episodes was

presented. DyClee’s μ-clusters keep temporal information that is reflected in the final cluster

profile. The DES is built from the clusterer transition matrix found directly from DyClee

clustering results in the following way:

E: The departures and arrivals from and to natural clusters are used as events, i.e. for each

characterized cluster two events are created the arrival event Clusi and the departure

event Clusi. The set of events grows up incrementally as new clusters are created.

S: The set of states of the automaton is given by the set of natural clusters. This set grows

up incrementally as new clusters are created. The notation Cli is adopted to better

distinguish the states from the cluster transitions (Clusi).

S0: The initial state is the first characterized cluster in the case where no previous structure

or knowledge of the process is available. Otherwise, the set of initial states is the set of

operational points of the process.

Tft: The transition function is constructed incrementally as new clusters are detected. The

time constraints are described as time intervals [τ1, τ2] describing the minimum and

maximum time of transition between two clusters (remember that the system may be

cluster as being in OμC during some time before entering an actual cluster). This

interval is updated as more transitions are observed.

Sm: If some knowledge of the process is available, the set of accepted states corresponds to

the known operational modes. In the case where no such knowledge is available, the

DES implementation try to estimate the possible accepted states, assuming that they

are a subset of the normal operational.

CK: One clock is created for each characterized cluster. Clock notation is cci, with i been

the number assigned to the cluster.
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9.2.1 Adding information to the Timed Automata

DyClee clustering results include temporal information about the cluster that can be in-

cluded in the Timed Automata formalism. By default all natural clusters are considered

as both possible departure and arrival states. The chosen timed constraints represent the

minimum and maximum time between a cluster departure and the arrival to the next clus-

ter. This time interval corresponds to the time in which DyClee tracks the current state as

transitional or unknown, i.e. the system measurements are considered as low density samples

and assigned to OμC.
The transition table columns coli and rows ri corresponds to the system states and each

cell ij stores a transition interval [t1, t2] characterizing the time constraints cci ≥ t1 and
cci ≤ t2 (with t2 ≥ t1). To reset each clock a set of complementary states Sc is added to S,
ST = S ∪ Sc. These complementary states represent the fact of not been in a cluster. The
clock cci is set to zero (denoted as cci := 0) when the Clusi event is detected and the system
goes from state Cli to state ∼i, with ∼i ∈ Sc. For simplicity and without loss of generality, from

this point onward the superscript T is removed.

Another temporal information that is important in process monitoring refers to how long the

system remained in a particular state. To better describe this information the median of the past

stays (of the system in a specific cluster) is added to the Timed Automaton. The set of the cluster’s

median time of stay is called D.

Reflecting clusterer evolution in the DES is crucial to keep the system automaton updated. The

following explains how parametric and structural clusterer changes are represented in the DES.

Modeling structural changes

To handle the structural changes in the clusterer the following procedures are used:

Cluster creation When the kth cluster is created the following changes are performed in the DES

automatically:

• the state Clk and the state ∼k are added to S

• the counter cck is added to CK

• a kth row is added to the transition matrix

• a kth column is added to the transition matrix

• Clusk and Clusk are added to the event set E

Cluster elimination When a cluster is eliminated the state remains in the DES but its graphical

representation changes to a smaller gray circle, which intuitively places the cluster as old.

Cluster merge When two or more clusters are merged the transition matrix is rebuilt using the

union of both states. In the case that both states have arriving transitions departing from the

same state the new state time constraints are set as the interval union of those of the previous

transitions. The same principle applies to transitions departing from the old states to a same
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destination. As explained in chapter 4 to assign a label for the cluster formed by the merging

process, the labels of the merged clusters are analyzed and the oldest one is chosen as the newly

formed cluster label.

Cluster split When a cluster is split into two o more clusters, the transitions are recalculated from

available history (recent data). The transitions that cannot be confirmed by looking at available

history will be depicted as dotted lines until be confirmed or deprecated. A transition is dep-

recated if in a time-span corresponding to tree times the sum of all elements in D. Deprecated

transitions do not cause loss of information under hypothesis H9.4.

Hypothesis H9.4. A system is considered as a regular system, i.e. the system behavior is

repeatable. Any possible transition from a system state to another repeats with a certain

frequency.

Modeling parametric changes

Changes in the cluster parameters are not reflected directly in the DES, nevertheless, since they are

also important to the system operator, a descriptive table is also available. This descriptive table

summarizes the following cluster information:

• Time of last assignation of system data to any μ-clusters in cluster k. This indicates the last

time in which the cluster was active.

• Number of μ-clusters conforming the cluster.

• Median of cluster densities.

• Cluster center of gravity calculated as Cj
g =

∑
k C

j
k ∗Dk∑

k Dk

for each of the j features.

• Minimum of the cluster feature range

• Maximum of the cluster feature range

Cluster drift can be easily detected by the change in the cluster center of gravity Cg and/or an

augmented number of μ-cluster.

9.2.2 Building the timed automaton

At each run of the density-based clustering stage a file containing the clusters information and the

labels found for the analyzed time window is created. An example of the information transferred to

the DES generation stage from the density-based clustering is presented in tables 9.1 and 9.2. With

the information in Table 9.2 the transition table is constructed. Using this table the timed automaton

is constructed following the procedure specified in subsection 9.2.1 according to the type of observed

change. Then the automaton is enriched with the information in Table 9.1 in order to generate the

final automaton that is presented to the user. This process will be illustrated in detail for two different

test scenarios in the next chapter.
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cluster D
active
μC Center of gravity Range min Range max

Merged
with

1 4738 3 [0.0, 0.0, 0.84, 0.52, 0.53] [0.0, 0.0, 0.69, 0.31, 0.25] [0.15, 0.15, 1.0, 0.76, 0.86] 5

2 4738 4 [0.0, 0.96, 0.78, 0.54, 0.61] [0.0, 0.81, 0.55, 0.32, 0.40] [0.15, 1.0, 0.96, 0.79, 0.79]

3 3100 12 [0.99, 0.95, 0.80, 0.43, 0.60] [0.81, 0.76, 0.63, 0.22, 0.49] [1.0, 1.0, 0.97, 0.65, 0.75]

4 4500 7 [1.0, 0.0, 0.81, 0.38, 0.37] [0.85, 0.0, 0.65, 0.21, 0.23] [1.0, 0.14, 0.97, 0.56, 0.52]

6 4738 1 [0.0, 0.0, 0.82, 0.62, 0.04] [0.0, 0.0, 0.67, 0.47, 0.0] [0.15, 0.13, 0.95, 0.77, 0.19]

Table 9.1: Example of cluster metrics generated from the density-based stage

Time 7500 10000 12500 · · · 442500 445000 447500 · · · 592500 595000 597500 · · · 957500 960000 962500

idμCz
1 1 1 · · · 5 5 5 · · · 8 8 9 · · · 11 11 11

labz 1 1 1 · · · 3 3 3 · · · 5 5 0 · · · 6 6 6

Table 9.2: Example of μ-cluster history used as input by the DES generator

9.3 Summary

In this chapter the need of a discrete event model for supervision purposes was introduced. The

timed automaton formalism is introduced in section 9.1.1 and its use, for modeling process behaviors

based on DyClee clustering results, is presented in Section 9.2. This adaptive model, automatically

generated from clustering results, provides a high level abstraction view of the system with information

about the system past and current states along with the possible transitions identified by the time of

transition, the estimated probability of occurrence and the time constraints between states.

The next chapter shows that a timed automaton can be correctly generated from clustering results

in a real processes benchmark and that the DES model improves clustering results interpretability.

Furthermore the DES model gives the operator the information about past states as well as possible

future states.
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Chapter 10

Application to industrial

Benchmarks

The main complexity of industrial engineering processes is the interaction of several physical domains

(mechanical, thermical, hydraulics, etc.) which makes difficult their model based monitoring. In some

of these processes, strong non-linearities are usually present (e.g. thermodynamic processes), which

added to non-stationary parameters (e.g. pressure variation inside a boiler causes water and steam

densities to change) make the processes prone to constant evolution (drift) [Dje et al. 09]. In this

situation, data-based monitoring approaches are adequate.

In this chapter DyClee clustering and modeling capabilities are tested using two industrial bench-

marks: a steam generator process [Oul 14] and a continuous stirred tank heater [Tho et al. 08]. The

first section introduces the steam generator and DyClee monitoring function over its different op-

erational modes. The second section introduces the continuous stirred tank heater and presents the

modification made to the model in order to implement operational drift as well as permanent, tran-

sient and intermittent faults. Then DyClee monitoring is applied to different operational scenarios.

Finally section 10.3 summarizes the main topics of this chapter.

10.1 Steam generator Process

In this section DyClee performance was validated in the steam generator process. The steam gener-

ator process is a pilot process, describing a thermal power plant on a reduced scale found at the Lille

1 University - Science and Technology under charge of the CRIStAL laboratory (previously known as

LAGIS laboratory) that has already been used to validate model-based and data-based supervision

approaches [Kem et al. 06, Dje et al. 09, Bot et al. 13].

The thermal power plant is composed of four subsystems: a tank with the water supply system,

a boiler heated by a thermal resistor of 55kW and total volume of 170l, a steam flow system and a

complex condenser coupled with a heat exchanger (see Figure 10.1). In this thesis, only the boiler

(including the water supply) is studied.

The boiler subsystem description and data were provided by the authors of [Kem 04]. The feed
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Figure 10.1: Instrumentation diagram of the thermal power plant at Lille 1 University. Modified from [Oul 14].
The green area is the subsystem under study.

water flow (sensor in FIR 3) is pumped to the boiler via a pump. In normal operation an on-off

controller activates the pump P1 to maintain the water level in the boiler (sensor in LIR 8) at ±3l

of the set-point. The heat power value (Q 4) depends on the accumulator pressure (sensor in PIR 7).

When this pressure drops below a minimum value, the heat resistance is activated at maximum power

until the maximum pressure is achieved and then deactivated in order to keep the pressure within

±0.2 bar of the set-point. The generated steam flow is measured with sensor in FIR 10. A description

of the system outputs used for monitoring the boiler subsystem are presented in Table 10.1.

Symbol Description Unit Range
Operational

Point

F3 Supply water flow l/s 0 − 1600 950
Q4 Heating power Kw 0 − 60 60
P7 Boiler Pressure Bar (abs) 0 − 16 8
L8 Boiler Level l 143 − 156 146
F10 Steam output Flow Kg/h 0 − 100 83

Table 10.1: Characteristiques of the steam generator outputs used for monitoring the boiler subsystem. Taken
from [Kem 04].
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The output variables used as input to DyClee were the feed water flow, the heat power, the boiler

pressure, the boiler level and the steam flow, which were characterized as the most relevant by the

process expert. Normalization were performed to homogenize the influence of each of these features

in the clustering.

10.1.1 Monitoring system operation

Under normal conditions the process goes through four operational modes in order to achieve contin-

uously steam generation. These modes are:

No regulation: Since the boiler pressure and level are inside the operational range, no regulation is

needed.

Pressure regulation: When the boiler pressure drops under the low threshold, the heat resistance

is activated.

Level regulation: When the boiler level drops under the low threshold, the pump P1 is activated.

Level and pressure regulation: If the water inflow has a very low temperature, the boiler pressure

drops and the heat resistance is activated before P1 closure.

Data measurements of the steam generator system registred in three available data sets are de-

picted in Figures 10.2, 10.3 and 10.4. These data sets were used by [Kem 04] and [Bot et al. 13] to

train, validate and test their approaches. Since DyClee is a pure unsupervised approach that performs

continuously learning and recognition tasks, there is no need of a training stage. As consequence, the

three data sets corresponding to training, validating and testing data were merged into a unique data

set (see Figure 10.5) in which a sample time of 1 second was taken. These data were feed to DyClee

for analysis. Nevertheless, for the sake of clarity, the results are presented in an incremental fashion,

comparing DyClee results with the results of the other approaches. The parameters used for DyClee

in this test are shown in table 10.2.

Figure 10.2: First data set: Outputs of the steam generator in normal operation mode.

DyClee clustering results for the first 1000 samples are shown in Figure 10.6 along with the system

measurements. Figure 10.6 shows that DyClee finds five natural clusters in this data set. Clusters 1

and 5 correspond to the no regulation operational mode. Data grouped as cluster 2 corresponds to
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Figure 10.3: Second data set: Outputs of the steam generator in normal operation mode

Figure 10.4: Third data set: A fault in the steam flow output is introduced at the end

Figure 10.5: Steam generator data as presented to DyClee

pressure regulation mode. Cluster 4 represents data in the level regulation mode and cluster 3

the level and pressure regulation mode.
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Parameter Value

portion 0.3
tglobal 100
multi-density True

Table 10.2: DyClee parameters used for monitoring of the steam generator process

Figure 10.6: DyClee clustering results of steam generator data in normal operation mode (first 999 samples)

Figure 10.7: Radar representation of the natural clusters found by DyClee. The thick line represents the
cluster center of gravity while the shadow area represents the whole range of the cluster.

Differences between the two clusters representing the no regulation mode is caused by the difference

between the measures of the boiler level. Radar plots representation has been chosen for showing the

profile of the found clusters. In this plot the center of gravity of the cluster is depicted as a thick line
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and the cluster’s feature range as a filled area. For the first 999 samples of the data set clusters’ profiles

are shown in Figure 10.7. In this figure the similarity between Clusters 1 and 5 can be evidenced and

also the fact that the main difference is the boiler level measurement.

In order to show DyClee μ-clusters evolution four snapshots of the μ-cluster’s distribution are

shown in Figure 10.8. The μ-clusters are represented as cubes centered in the μ-cluster center. For

the x, y and z axes, the three features with maximal variance are chosen in order to ease graphical

interpretation of the results (FeedF low, Heatpower, Boilerlevel). The cube color represents the μ-

cluster class and the μ-cluster density is represented as the cube opacity.
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Figure 10.8: DyClee μ-cluster clustering results of steam generator data in normal operation mode (samples
0− 999)

It is interesting to see that clusters 1 and 5 are conformed by only one μ-cluster while Cluster 4

is formed by 8 μ-clusters. These phenomenon is explained by the dynamism described by the natural

clusters. Cluster 4 represents a class in which the measured outputs change quickly. On the contrary,

clusters 5 and 1 represent the system in much slower dynamic. These clusters, as well as Cluster 2,

exhibit a drifting behavior, common in thermodynamic systems.

Figure 10.9 shows clustering results up to t = 2700, that is, at the end of the second data set.

Due to their drifting behavior clusters 1 and 5 have merged. This merge is directly reflected in the

clustering results graph in which the label 5 has been replaced by label 1 by the clusterer update

process. The cluster’s profiles are shown in figure 10.10. It can be seen that in Figure 10.10 (with

respect to Figure 10.7), the center of gravity of Cluster 1 moved in the Boilerlevel axis and its feature

range has grown to cover the zones previously covered by Cluster 5. The center of gravity of Cluster
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3 has diminish in the Boilerlevel axis.

Figure 10.9: Updated DyClee clustering results of steam generator data in normal operation mode (samples
0− 2700). Labels update is performed automatically by the algorithm.

Figure 10.10: Radar representation of the clusters found by DyClee. The thick line represents the cluster
center of gravity while the shadow area represents the whole range of the cluster.

To see the cluster merge in detail the μ-clusters representation can be useful. Figure 10.11 shows

four snapshots of DyClee μ-clusters distributions at t = {1100, 1700, 2100, 2700}. At snapshot t =
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1700 can be evidenced how clusters 1 and 5 start to getting closer. This rapprochement ends with the

clusters merging at t = 1800 which is reflected in the t = 2100 snapshot. Note also that snapshots

t = 1700 and t = 2100 show no μ-cluster belonging to the Cluster 3. The reason for that is that only

those μ-clusters having been updated in the last 3 ∗ tglobal seconds are considered for the analysis.

Nevertheless, these μ-clusters remain in the long term memory so that whenever the behavior they

represent arises again, it can be recognized immediately, as can be seen in snapshot t = 2700. No

data were assigned to Cluster 4 since t = 581.
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Figure 10.11: DyClee μ-cluster clustering results of steam generator data in normal operation mode (samples
0 to 2700)

The final DyClee clustering results are shown in Figure 10.12. In the last 2000 samples DyClee

recognizes the no regulation, pressure regulation and level regulation modes as well as a new detected

behavior, characterized as Cluster 6 and corresponding to a fault. The cluster’s profiles are shown in

Figure 10.13. It can be seen that Cluster 6 is characterized by low to zero values in the Heatpower,

FeedF low and SteamF low axis with high BoilerP ressure. It is worth noting that some samples along

the whole experiment were clustered as OμCs. These samples, depicted in gray, represent noise and

transitional behaviors.

Between samples 4039 and 4048 the system is in level and pressure regulation mode, nevertheless

DyClee clusters those samples as unknown behavior. To understand this result, Figure 10.14 shows

data and clustering results from the interval t = [4000, 4100] as well as the last interval in which both

level and pressure were regulated, that is, t = [2550, 2680]. It can be seen that the steam output level

between the behavior characterized in Cluster 3 and the one registered in the interval t = [4000, 4100]
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Figure 10.12: DyClee clustering results of steam generator data

Figure 10.13: Radar representation of the clusters found by DyClee. The thick line represents the cluster
center of gravity while the shadow area represents the whole range of the cluster.

is of 0.3 of the feature range, which makes impossible for DyClee to recognize it. It should be kept

in mind that, if in this operational mode the steam level can change between 0.3 and 0.65 of the

normalized feature range, future data might connect these behaviors in Cluster 3.

Figure 10.15 illustrate μ-cluster’s distribution in snapshots taken at t = 3000 , t = 3500, t = 4100

and t = 4700. In snapshots t = 3000 and 4100 it can be seen that the found μ-clusters cover almost

the same space in the plotted dimensions (FeedF low, Heatpower, Boilerlevel) which confirms that the

main difference is in a unplotted dimension. The same conclusion apply for Cluster 6 that share the

same ranges that Cluster 1 in the plotted dimensions, as can be confirmed by the clusters profiles in

Figure 10.13.

This test case allowed to show DyClee clustering capabilities. The detection and further merge of
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Figure 10.14: Comparison of the system outputs between t = [2550, 2680] ans t = [4000, 4100]. On each
interval the regulation of both level and pressure is activated, nevertheless the steam output flow differs
greatly between these intervals.
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Figure 10.15: DyClee μ-cluster clustering results of steam generator data. (Snapshots at t =
{3000, 3500, 4100, 4700})

clusters 1 and 5 are a perfect example of DyClee robustness to the order of appearance of the provided

samples. Results reported in [Kem et al. 06] and [Bot et al. 13], and illustrated in Figure 10.16, use

two clusters to represent the pressure regulation mode while DyClee represents this behavior in only

118



one cluster conformed by several μ-clusters along a large influence zone given by the boiler level and

boiler pressure variations. DyClee surpasses the mentioned approaches thanks to its dynamic nature.

The availability of μ-clusters of different densities allow to characterize new behaviors without the

need of a specific learning stage. The OμCs also allow to describe noise or transitional behavior that

should not be assigned to any cluster or it might bias the cluster characterization. The possibility of

merge or split classes automatically gives DyClee robustness against unknown or unregistered data.

a. Results reported by Kempowsky et al. 

b. Results reported by Botía et al. 

Figure 10.16: Clustering results in [Kem et al. 06] (top) and [Bot et al. 13] (bottom) for steam generator first
937 samples. These samples were used as training set in those works.

10.1.2 Discrete event modeling to support the decision making process

Chapter 9 introduced the formalism to use DyClee clustering results to automatically build a timed

automaton. In this subsection DyClee results, obtained on the steam generator, are used to build

such DES model. In the sake of clarity these results are shown for the three time-spans analyzed in

subsection 10.1.2.

The timed automaton at t = 999, corresponding to the clustering results of Figure 10.6, is depicted

in Figure 10.17. The five states corresponding to DyClee natural clusters are depicted as well as the

complementary states denoted as ∼i. System events are not depicted explicitly but each transition

from a Cli state to a ∼i state implies the Clusi event and each transition from a ∼i state to a Clj state

implies a Clusj event. Each cluster state includes, below the cluster identification, the information

related to the median time that the system had remained in each of these states. Clocks constraints (in
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Clj to ∼i transitions) and resets (in Clj to ∼i transitions) are included in the graph according to the

notation explained in Chapter 9. The probability of a transition is represented between parenthesis

at the beginning of each transition for the ∼i states. For the Cli states the only allowed transition is

to ∼i, fired by the Clusi event. Since this transition has a 100% probability of occurrence it is not

depicted in the graph. The label of the current state is depicted in red.

Figure 10.17: DyClee timed automaton generated automatically from clustering results of steam generator
data (samples 0 to 999)

The graphic representation of the timed automaton at t = 2700 is depicted in Figure 10.18.

The states corresponding to Cluster 5 have disappeared but as informative measure the name of the

merged clusters is kept in the diagram (m : {5}). In this case the prevailing cluster label changes

from black to blue illustrating that another cluster merged with it, and the merged cluster label is

added to the merged list that is now shown at the bottom of the state label. It can be seen that the

timed constraints of Cluster 1 now reflect also the information previously contained in Cluster 5. At

t = 2700 the current state is ∼2 reflecting that the system is in transitional state leaving Cluster 2.

The possible destinations are clusters 1 and 3. The label of the represented operational modes were

added to Figure 10.18 in order to facilitate its comparison with the results found in [Kem et al. 06] and

depicted in Figure 10.19. It can be seen that the automaton found in [Kem et al. 06] recognize only the

transitions found in the training stage which forces the expert to add transitions to explain observed

behavior (see the dotted line transition between C2 and C5 in Figure 10.19). DyClee updates the

timed automaton automatically using the information about novelties reported by the clusterer. For

example, in Figure 10.18 the transition between the pressure regulation mode (Cl2) and the level and

pressure regulation mode (Cl3) are added automatically.

The diagram of the timed automaton at the end of the test is shown in Figure 10.20. This diagram

depicts the creation of a new state (Cl6) and informs that the system has been in that state for 97

samples. Diagrams in figures 10.17 and 10.20 show four states in double circled nodes and one state

in a single circle node. The double-circled notation reflects the set of marked states, that is, the
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Figure 10.18: DyClee timed automaton generated automatically from clustering results of steam generator
data (samples 0 to 2700)

Figure 10.19: Automaton found in [Kem et al. 06] continuous lines depict transitions found by their approach,
the dotted transition is added by the process expert.

set of states that DyClee considers as valid operational states. This set is found dynamically in an

incremental fashion using as only external parameter the number of operational modes (provided by

the process expert).

10.2 The continuous stirred tank heater (CSTH)

The CSTH is a benchmark of a stirred tank in which hot (50◦) and cold (24◦) water are mixed and

further heated using steam; the final mix is then drained using a long pipe. The configuration of this

benchmark, developed by [Tho et al. 08], is shown in Figure 10.21. It is assumed that the tank is well

mixed so the temperature of the outflow is the same as that in the tank. Process inputs are set-points

for the cold water, hot water and steam valves. Process outputs are hot and cold water flow, tank
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Figure 10.20: DyClee timed automaton generated automatically from clustering results of steam generator
data (whole data set)

level and temperature. Process inputs and outputs represent electronic signals in the range 4−20mA.

The benchmark is tested in closed-loop. PID controllers are used to guide the plant as suggested in

[Tho et al. 08].

TC

TT

FT

FT

FC

LCLT

Hot Water

Cold Water
Flow sp

Steam

Figure 10.21: The continuous stirred tank heater

Thornhill et al. in [Tho et al. 08] suggests two operation points depending on whether or not the

hot water flow is used. The suggested set-points for the operation points OP1 and OP2 are shown

in table 10.3. Simulink models are available at the website [Tho 15], with and without disturbances.

The provided disturbance signals are real data sequences experimentally measured on the pilot plant

at the University of Alberta. This benchmark does not implement directly process faults but since
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it implements the process dynamics crearly the fault can be added by including directly their dy-

namic. The modifications made on the original [Tho 15] Simulink files are presented below. These

modifications include an interface that allow to interact with the faults easily.

Variable OP1 OP2

Level(mA) 12.00 12.00

Level(cm) 20.48 20.48

CWflow(mA) 11.89 7.330

CWflow(m3s−1) 9.038 × 10−5 3.823 × 10−5

CWvalve(mA) 12.96 7.704

Temperature(mA) 10.50 10.50

Temperature(◦) 42.52 42.52

Steamvalve(mA) 12.57 6.053

HWvalve(mA) 0 5.500

HWflow(m3s−1) 0 5.215 × 10−5

Table 10.3: Suggested operational points for the CSTH

The Simulink macro model is show in Figure 10.22. The set-points for the process are set in

milliamperes. The plant control is based in three set-points: the desired level (level sp/mA), the desired

temperature (temp sp/mA) and the hot water valve position (HM valve/ma). Process disturbances

can be set on/off by modifying the value of the product block to 1/0.

Figure 10.22: Simulink model of the continuous stirred tank heater
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To simulate faulty scenarios a set of faults was included inside the process dynamics and can

be activated through the main block mask which is shown in Figure 10.23. The first field acti-

vates/deactivates evolving leaks. Second and third fields allow to simulate a blocking condition in

the hot water valve, the former indicated blocking percentage of the valve and the later activate or

deactivate the fault. Forth and fifth fields allow to simulate a blocking condition in the steam valve.

These fields correspond to the blocking percentage and the fault activation respectively.

Figure 10.23: Pilot Plant Model Mask. It allows to activate or deactivate the implemented faults for change
the simulation scenario.

To understand the benchmark implementation and how the modification where made it is nec-

essary to see the internal blocks of the ‘Pilot Plant Model’. Four blocks describe the plant behavior

and interactions, the first block describe the cold water dynamics, in second block the mass balance

is calculated, the third block describe the hot valve dynamics and in the forth block the heat balance

is calculated. These blocks are depicted in Figure 10.24.

The dynamics of the cold water valve were modeled by Tornhill et al. according with the data of

the pilot plant in the University of Alberta. The flow disturbances are included in the valve dynamics

as additive behavior as seen in Figure 10.25. The hot water valve block was modified to emulate a

the blocking of the valve. This modification was implemented using a switch as can be seen in Figure

10.26. The valve reference value is set to the stuck value1 if the fault is active and to the set-point

otherwise. The activation time and duration of the fault can be customized by using the signal builder

block (red block in the figure). Possible faults include permanent valve stuck and intermittent valve

stuck.

The mass balance is calculated in the block shown in Figure 10.27. In order to include leaking

faults a block was added to the original model. This block, depicted in red in Figure 10.27 estimates

the flow due to fluid leakage. The fluid loss due to leaks is in nature incremental since the radius of

the hole causing the leak tends to grow as time passes due to the force exerted by the leaking fluid.

1The valve stuck value is specified as a percentage in the global fault management window found by
double-clicking in the Pilot plant model block
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Figure 10.24: Bock description of the Pilot Plant Model

Figure 10.25: Cold water valve dynamics Figure 10.26: Hot water valve dynamics including stuck
valve fault

Leaks are considered as evolving (incremental) faults following the dynamics described in equation

10.1, where θc is the discharge coefficient, r(t) represent the hole radius, g the gravity force and ht

the tank level. Figure 10.28 shows how the leak flow is calculated.

Flowleak = θcπ(r(t))2 2

√
2 ∗ g ∗ ht (10.1)

Each one of the ‘evolving leak’ blocks showed in Figure 10.28 implement a leak. The radius of the

leaking hole r(t) starts growing at the start time and grows at a rate equals to radius = growing slope
Time of evolution

during the time of evolution. The radius then remains constant until the leak end time. The leak

parameters can be customized in the evolving leak parameters window2. A view of this window is

presented in Figure 10.29. This implementation allow to simulate scenarios of multiple incremental

leaks with different dynamics occurring at different times but also overlapping faults.

2This window is accessible by double-clicking in the evolving leak box.
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Figure 10.27: The Mass Balance block: The system mass balance is calculated inside this block

Figure 10.28: Implementation of leaks inside the model

Figure 10.29: Evolving leak block parameters: Mask view

The heat balance is calculated in the block shown in Figure 10.30. In this block a fault was

introduced to block the steam valve. The fault implementation is the same as the one implemented
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for the hot water valve. The starting time and percentage of blocking are set in the global fault

management window depicted in Figure 10.23.

Figure 10.30: The heat balance block

10.2.1 Monitoring different operational scenarios

Drift in the operational point as well as tank leakage and stuck valve scenarios were simulated in

Simulink, including the given disturbances, and the resulting data were fed to DyClee. The following

experiments use (unless otherwise stated) the user defined parameters and values shown in Table 10.4.

Test results are shown as snapshots of the μ-cluster distributions at different points in the simulation.

The μ-clusters are represented as cubes centered in the μ-cluster center. For the x, y and z axes,

the three features with maximal variance are chosen in order to ease graphical interpretation of the

results. The cube color represents the μ-cluster class and the μ-cluster density is represented as the

cube opacity.

Parameter forget_method tw=0 ws Min_ws ϕ tglobal ρ ζ
Value linear 30ws 600 (5 min) 120 (1 min) 1 300 sec 2.0 1.6

Table 10.4: Parameters used in the experiment

Scenario 1: Tracking a drift in OP1 due to wearing

One common problem in industrial applications is that states might drift when the physical parts of

the system are exposed to wearing processes. In the case of the CSTH, we simulate the evolution of

OP1 when residues accumulate in the border of the output pipe causing an inconsiderable drop in

the output flow. This wearing process must be considered normal, meaning that the operation state

remains OP1 although it suffers a drift.
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The process measurements for Scenario 1 can be seen in Figure 10.31. DyClee clustering results

are shown in figures 10.32, 10.33 and 10.34. The extracted trends are shown in Figure 10.32 (top) in

dashed lines over the original signals plotted as continuous lines. This figure also shows the clustering

results of DyClee at the bottom reported by black horizontal lines indicating the cluster number

according to the scale on the left.
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Figure 10.31: System measures for the OP 1 drift
scenario
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Figure 10.32: Dynamic Classification of the CSTH
OP 1 drift scenario. At the top: Trends (dashed lines)
over normalized system measures (continuous lines).
At the bottom: clustering results

The μ-clusters evolution is shown in Figure 10.33. In spite of disturbances, the stable behavior of

the plant at the beginning of the simulation is reflected in a single one class one μ-cluster classification,

in accordance with uniform data. The opacity of the μ-cluster represent its density normalized to the

maximum density in the analyzed period. In Figure 10.33 the μ-cluster density augment as time passes,

since all the episodes are grouped together. Following the system evolution by seeing its measures

can be a difficult task and even impossible when dozens of signals are analyzed at the same time. To

follow system evolution through the variation in its variables, a radar-like graphic representation is

proposed. For the simulated scenario the graphics for t = 17.07 minutes and t = 93.87 minutes are

shown in Figure 10.34. The drift in the FlowCW variable are depicted as the filled area between the

original characterization of OP1 and its current characterization.

Scenario 2: Tracking an evolving leak in the CSTH

In order to simulate faulty dynamical behavior, an increasing size leak was simulated. CSTH was

working on OP1 and its output signals were sampled at Ts = 0.5s. A leak caused by a hole was

introduced on sample number n = 3300 (t = 27.5 minutes) as shown in Figure 10.35. The starting

radius of the hole is r = 1mm. The experiment emulates the case where the size of the hole increases

as time passes. The final radius of the hole at t = 50 minutes is r = 3.75mm. The algorithm start

window size was set as ws= 512 samples, the minimum size as Min_ws= 68 and the maximum as

Max_ws = 1028. The measured output signals seen in Figure 10.35 were taken as DyClee’s input.

The found trends are shown as dashed lines in Figure 10.36 (top). The clustering labels are shown at

the bottom of Figure 10.36 using the same time axis.

Figure 10.37 shows four snapshots of DyClee structure evolution reflected in the drift and creation
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Figure 10.33: μ-clusters evolution for the drift scenario

FlowCW

TankLevel TankTemp

0.20

0.25

0.30

0.35

0.40

t = 17.07 t = 93.87

Figure 10.34: Radar representation of found
clusters

�
�

�����

Figure 10.35: System measures for the dynamic leak
simulation.
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Figure 10.36: Dynamic Classification of the CSTH in
scenario 2. At the top: Trends (dashed lines) over nor-
malized system measures (continuous lines). At the
bottom: clustering results

of μ-clusters. As explained before, the three features with larger variance were selected as axes in

the 3D plot. The first snapshot show a single class single cluster configuration representing OP1.

After leak introduction, other μ-clusters are created out of Class1. Transitory behavior is detected in

snapshots t = 51.2 and t = 68.27, reflected by Oμ-cluster creation. As soon as the amount of data in

the full leak state increases (see the increased density in snapshot t = 68.27), the algorithm is able to

detect that this transitional behavior has led to a new behavioral state, formally described by Class2

(snapshot t = 89.6). In this case the new state corresponds to the faulty state induced by the leak.

The beginning of the fault can then be tracked to the moment in which the system leaves OP1,

i.e. the creation time of the first Oμ-cluster in the frame, which correspond to t = 29.8 minutes.

Figure 10.38 shows the characterized natural clusters using the radial feature representation. This

representation shows that the cold water inflow is the key feature to distinguish the leak faulty

behavior. This example illustrates the ability of DyClee to characterize and remember functional

states and at the same time forgetting those transitory behaviors in which the system may not return.
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Figure 10.37: μ-clusters evolution for the evolving leak
scenario
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Figure 10.38: Radar representation of found
clusters

Scenario 3: Tracking a stuck valve in the CSTH

Valve failure detection is also tested. Figure 10.39 shows the CSTH outputs when the cold water

inflow valve is blocked in 60% of its capacity at t = 16.6 minutes, with signals sampled at Ts = 0.1s.

CSTH was working in OP1. For this experiment the algorithm start window size was established as

ws= 1024 samples, Min_ws= 512 and Max_ws= 4096. The linear function was chosen as forgetting

function and tw=0 was set to 80 minutes. Trends representing the system behavior are shown at the

top Figure 10.40 as dashed lines. The cluster labels are shown at the bottom of Figure 10.40 using

the same time axis.

Figure 10.41 shows snapshots of DyClee μ-cluster evolution. Snapshot t = 11.99 shows the

behavior of the process in OP1. Snapshot t = 23.99 display an increasing amount of Oμ-clusters,

some of them will evolve into Dμ-clusters representing stuck valve behavior in Class2, as can be seen

in snapshots with t ≥ 35.98. The radar representation of the characterized natural clusters is shown

in figure 10.42. This representation marks the tank level as key feature for the detection of this fault.

Like the previous scenario, this scenario illustrates that transitory behavior is not erroneously detected

as class drift by DyClee.

Scenario 4: long-term tracking of multiple non persistent faults

This scenario spans over a long time window and aims at showing that DyClee is able to detect

and memorize behavior characteristic of a given operational state. For this purpose, occurrence and

disappearance of several faults, i.e. evolving leaks and stuck valves, were simulated to represent real

process life cycles. The total simulation time of this scenario is equivalent to the timespan of a month

(2.419.200 seconds) in which the plant works half of the time in OP1 and the other half in OP2

(operational points described in Table 10.3). The faulty events included in this scenario are detailed

in Table 10.5 with their date of occurrence. Notice that faults occur and are repaired later like in

the real life process. Faults are hence non persistent and the difficulty of this scenario is to manage

novelty detection while also recognizing previously detected classes.
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Figure 10.39: Simulation of valve stuck in 60% at
t = 1000.
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Figure 10.40: Dynamic Clustering of the CSTH for
valve stuck detection. At the top: Trends (dashed lines)
over normalized system measures (continuous lines).
At the bottom: clustering results
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Figure 10.41: μ-clusters evolution for the valve stuck
scenario
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Figure 10.42: Radar representation of found clus-
ters

CSTH output signals are shown in Figure 10.43 together with tags illustrating the event occurrence

up arrows indicate the event introduction while down arrows inform about the system reparation or

change in the operational mode. At the beginning of the simulation the CSTH was working in OP1.

Then, faults are injected and repaired as scheduled in Table 10.5, resulting in 9 operational states

shown in the bottom of Figure 10.44. This figure also depict the found trends in dotted lines. As in

the previous simulations only process outputs were used as input for the clusterer.

As seen in Figure 10.44, DyClee can successfully track online the process and its evolution. Figures

10.45 to 10.49 show DyClee μ-clusters evolution and an interesting tool to analyze this simulation.

For this experiment the sampling time is Ts = 0.5s. The algorithm start window size set to ws= 5000

samples (2500 seconds), Min_ws= 1000 samples and Max_ws= 10000 samples. The forgetting process

was activated and the ‘linear’ forgetting function was selected with tw=0 = 1.50 × 105 seconds.

In Figure 10.45 μ-clusters evolution between t = 0.2 × 105 seconds and t = 3.1 × 105 seconds is

shown. It is worth remembering that DyClee learns at the same time as it clusters the data (online).

In other words, DyClee requires no training stage. The normal OP1 behavior is detected as soon as
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Time (sec.) Event Description
0 OP1 Plant simulation Start at OP1

150000 l1 Evolving leak starts. Hole diameter goes from 1 to 3, 5mm in 1500 seconds
240000 l̄1 Leak fixed
350000 l1 Evolving leak starts. Hole goes from 1 to 3, 5mm in 1500 seconds
380000 l2 A second evolving leak starts. The second hole goes from 0 to 1mm in 1500 seconds
450000 l̄1 l̄2 Leaks fixed
550000 s1 Steam Valve stuck (closed)
578000 s̄1 Valve repaired
650000 s2 Hot water valve stuck at 10%
700400 s̄2 Valve repaired
900000 l3 Evolving leak starts. Hole goes from 1 to 2, 6mm in 1000 seconds
964800 l̄3 Leak fixed
1200000 OP 2 Plant changed to OP2
1500000 s3 Steam valve stuck at 10%
1557600 s̄3 Valve repaired
1800000 l4 Evolving leak starts. Hole goes from 1 to 3mm in 3000 seconds
1840000 l̄4 Leak fixed
2000000 s4 Hot water valve stuck at 40%
2061000 s̄4 Valve repaired

Table 10.5: Multiple fault simulation over a month timespan
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Figure 10.43: Process measurements for multiple fault scenario

t = 0.20 × 105 and confirmed with the information arriving between t = 0 and t = 1.50 × 105. This

information allows DyClee to improve the description of the plant in normal operation point OP1.

This behavior is labeled as Cluster1. The first fault is introduced at t = 1.50 × 105. An evolving leak

with a hole starting at a radius of r = 1mm and increasing as time passes was simulated. The final

radius of the hole is r = 3.5mm at t = 1.52×105. Snapshot at t = 1.8×105 shows DyClee’s response

to process evolution, the creation of Cluster2. New μ-clusters were created for tracking this evolution.

At t = 2.40 × 105 the leak is fixed and the process returns to OP1 normal behavior (Cluster1). At

this point the reader can see in the snapshots how the density of the μ-clusters increases when new

elements are assigned to the μ-cluster (e.g. opacity change in Cluster1 from snapshot t = 0.5 × 105
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Figure 10.44: Dynamic Clustering of the CSTH for Scenario 4. At the top: Trends (dashed lines) over
normalized system measures (continuous lines). At the bottom: clustering results
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Figure 10.45: DyClee’s μ-clusters evolution for Sce-
nario 4 t between 0.2 and 3.1 seconds ×105
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Figure 10.46: DyClee’s μ-clusters evolution for Sce-
nario 4 t between 3.6 and 5.6 seconds ×105

to t = 3.10 × 105).

At t = 3.50 × 105 an evolving leak with the same characteristics as the one at t = 1.50 × 105 is

introduced. Since this behavior is already known DyClee recognizes it quickly, turning the output

to Cluster2 (Figure 10.46). It is worth noting that density of the μ-clusters is plotted in reference to

that maximal density achieved by a μ-cluster. This causes faulty Dμ-clusters (which are locally dense)

to look pale next to the μ-clusters that represent normal behavior.The introduction of a second leak

causes the creation of a new μ-cluster that is later characterized as Cluster3 as shown in the second

snapshot of Figure 10.46. Cluster3 density increase arriving to a maximum at t = 4.50 × 105. When

the leaks are fixed the density of the μ-clusters diminishes, which is represented in the snapshots with

less opacity or the remove of the μ-cluster (see snapshot at t = 5.1 × 105). It is worth noting that

μ-clusters disappear from snapshots when their density downs to zero.

133



The blockage of the steam valve in its closed position is introduced at t = 5.50 × 105. Snapshot

at t = 5.60 × 105 in Figure 10.46 and Snapshot at t = 6.0 × 105 in Figure 10.47 show the tracking

of this new behavior which ends in the creation of a new class Cluster4. When the obstruction is

repaired, the process suffers of a transitory increment in the tank temperature which can be seen in

Figure 10.43 in 5.78×105 ≤ t ≤ 6.00×105. This behavior is characterized by Cluster5 as can be seen

in snapshot t = 6.5 × 105. Hot water valve was stuck at 10% at t = 6.50 × 105. This situation is not

recognized by the system, because, it is not perceptible in the output signals. Figure 10.47 also shows

the creation of Cluster6 in response to the new leak introduced in the process at t = 9.00 × 105. This

cluster can be seen in snapshots t = 9.30 × 105 and t = 10.10 × 105. It is worth remembering that

only the three features with larger variance were selected as axes in the 3D plot, which means that

even if some natural clusters overlap in the plotted dimensions they may be apart in the others (see

as example Cluster1 and Cluster6 in snapshot t = 10.10 × 105).
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Figure 10.47: DyClee’s μ-clusters evolution for Sce-
nario 4 t between 6 and 10.10 seconds ×105
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Figure 10.48: DyClee’s μ-clusters evolution for Sce-
nario 4 t between 12.2 and 17.2 seconds ×105

Figure 10.48 starts with snapshot t = 12.20 × 105 showing the change between OP1 and OP 2.

Normal OP 2 behavior is characterized by Cluster7 as can be seen in the snapshots from t = 14.3×105

onwards. At t = 15.00×105 the steam valve is stuck at 10%: this behavior is represented by Cluster8

in snapshot t = 15.20×105 (overlapping cluster). By the time t = 17.2×105, only the normal behavior

is latent in the system short time memory as can be seen in the last snapshot of Figure 10.48.

At t = 18.00 × 105 a leak is introduced in the process simulation and DyClee tracks this new

behavior which leads to Cluster9 (see snapshot t = 18.3 × 105). Finally at t = 20.00 × 105 the hot

water valve is stuck at 40%, forcing the cold water input flow to increase in order to keep the tank

level constant (process in closed-loop). The hot water valve blocks just at the same point as used

in OP1, which leads the system to detect this behavior as Cluster1. This can be seen in snapshot

t = 20.50 × 105. Once this fault is repaired the system return to OP 2 as can be seen in snapshot

t = 22.20 × 105.

As a summary of the simulated scenario Figure 10.50 compares the clusters, i.e. operation modes,

discovered by DyClee and the true operation modes. There is full concordance except for operation

modes s2 and s4. The faulty state s2 (hot water valve stuck at 10%) is indeed undiscriminable from

operation mode OP1 since the hot water flow is not in use. The faulty mode s4 is confused with
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Figure 10.49: DyClee’s μ-clusters evolution for Sce-
nario 4 t between 18.23 and 22.2 seconds

OP1 which is not actually false because the observed behavior of the process corresponds exactly to

operation mode OP1. Consequently, this mode is also undiscriminable using the available process

data. The results produced by DyClee are hence very good.
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Figure 10.50: DyClee clustering results and CSTH Scenario 4 true labels

For supervision purposes, in order to make a proper diagnosis of the process, not only the measured

variables but also the process set-points (control reference used as input to the closed-loop process)

should be taken into account. We suggest to include the information about process set-points in a

post-processing stage that would verify the relation of the current system measures with the desired

system behavior.

Comparison with other streaming algorithms

DyClee results for Scenario 4 were compared against ClusTree [Kra et al. 11] and DenStream [Cao et

al. 06] using four measures: the Silhouette index [Rou 87], the adjusted Rand index [Hub and Ara 85],

Precision and Recall (as defined in Chapter 7). The best value for Precision and Recall is 1 and the
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Algorithm Silhouette Rand Precision Recall
DyClee 0.7933 0.9302 0.9386 0.9386
ClusTree 0.9600 −2.4078 0.9991 0.5756
DenStream 1.0000 −0.0966 0.9968 0.7873

Table 10.6: Scenario 4 results comparison with other stream clustering algorithms

worst 0. For the silhouette coefficient, the best is 1 and the worst −1. The Rand index is ensured to

have a value near 0 for random labeling, and exactly 1 for perfect labeling. The results provided in

Table 10.6 show that the information found by DyClee is more representative than the information

found by the other algorithms (bigger Recall). The Rand index indicates that DyClee results are the

best compared to the true labeling.

10.2.2 From monitoring to modeling for decision-making support

In this subsection we show that DyClee learned timed DES allows it to distinguish behaviors that were

non-diagnosables before (using only the dynamic clustering). Indeed, the DES allows to incorporate

event based knowledge (for example coming from the control system) that is more adequately described

with discrete dynamics. For complex processes the collection of set-points describing an operational

point can be of an enormous size, comparable or even bigger than the observable measures used to

observe the system behavior. These control variables change in a much slower time scale than the

process dynamics. Giving its time scale and its potentially huge dimension, adding these control

variables to the dynamic clustering directly increases its complexity in an unnecessarily manner. We

propose instead to consider the desired operating point information as a discrete variable and include

this variable directly in the DES.

As shown in Figure 10.50 DyClee can successfully track online the process and its evolution,

however, the faulty state s4 (Hot water valve stuck) is confused with OP1, since both have the same

observable behavior. The key information that allow to distinguish between these two behaviors is the

system desired OP . In industrial environments, the set of references that form an OP is sometimes

equal or bigger in size that the set of output system measurements.

Considering the size of the set-points vector and under Hypothesis H9.2, we consider that adding

all these variables to the clustering stage would increase its complexity and reduce its efficiency.

Instead, we propose use the information of the system OP as a discrete variable representing the

system discrete state (under Hypothesis H9.1).

As stated in chapter 9 in order to build a timed automaton from DyClee clustering results

the continuous states (represented by the clusters) have to be paired with the discrete states. The

association is made using the time as key. Table 10.7 show the pairs and the new labels assigned to

those states that share the continuous state. Even if the DES is generated on-line at the same time

as the clustering results, for the sake of brevity only the final results on the scenario are going to be

depicted.

The transition table considers the new cluster labels found by the association of the dynamic

clustering results with the available event information. The transition table columns and rows corre-

sponds to the system states and each cell ij (with i �= j) stores a number of transitions and an interval
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Cluster a New label

OP 1 1
1

OP 2 1’

2 OP 1 2
3 OP 1 3
4 OP 1 4

Cluster a New label

5 OP 1 5
6 OP 1 6
7 OP 2 7
8 OP 2 8
9 OP 2 9

Table 10.7: Final labels found pairing the continuous and discrete information

To cluster
From

Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl
1′

# 2 0 1 0 1 1 0 0 0
Cl1

TI
[97500, 297500]

[2500, 10000] [-,-] [20000] [-,-] [10000] [40000] [-,-] [-,-] [-,-]

# 1 1 0 0 0 0 0 0 0
Cl2

TI [0.0]
[25000, 77500]

[10000] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]

# 1 0 0 0 0 0 0 0 0
Cl3

TI [0.0] [-,-]
[57500]

[-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]

# 0 0 0 1 0 0 0 0 0
Cl4

TI [-,-] [-,-] [-,-]
[5000]

[12500] [-,-] [-,-] [-,-] [-,-] [-,-]

# 1 0 0 0 0 0 0 0 0
Cl5

TI [2500] [-,-] [-,-] [-,-]
[5000]

[-,-] [-,-] [-,-] [-,-] [-,-]

# 1 0 0 0 0 0 0 0 0
Cl6

TI [0.0] [-,-] [-,-] [-,-] [-,-]
[52500]

[-,-] [-,-] [-,-] [-,-]

# 0 0 0 0 0 0 1 1 1
Cl7

TI [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]
[157500, 352500]

[40000] [10000] [0.0]

# 0 0 0 0 0 0 1 0 0
Cl8

TI [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [5000]
[15000]

[-,-] [-,-]

# 0 0 0 0 0 0 1 0 0
Cl9

TI [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [0.0] [-,-]
[27500]

[-,-]

# 0 0 0 0 0 0 1 0 0
Cl

1′

TI [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [2500] [-,-] [-,-]
[57500]

Table 10.8: Transition table of the simulated scenario

[t1, t2] characterizing the time constraints cci ≥ t1 and cci ≤ t2 (with t2 ≥ t1). The diagonal of the

matrix (cell ij with i = j) include the minimum and maximum Di registered values. The transition

table generated for the tested scenario is shown in Table 10.8.

To construct the DES the transition table rows i.e. the new labels are used as states. These states

are represented as nodes in Figure 10.51. The edges correspond to the observable events, i.e. the

departure and arrival from the natural clusters and the changes in the operational points. The initial

state is determined as Cl1 (the first encountered state). The transition functions correspond to all the

non-empty cells in the transition matrix and are represented as edges in Figure 10.51. To determine

the set of marked states the information about the number of operational points is used, so, in this

case the are two accepted states. As stated in section 9 one clock is created for each state of the DES.

Summarizing:

E: {Clus1, Clus2, Clus3, Clus4, Clus5, Clus6, Clus7, Clus8,

Clus9, Clus1, Clus2, Clus3, Clus4, Clus5, Clus6,

Clus7, Clus8, Clus9, OP1, OP2
}

S: {Cl1, Cl2, Cl3, Cl4, Cl5, Cl6, Cl7, Cl8, Cl9, Cl1′ ,∼ 1,∼ 2,∼ 3,

∼ 4,∼ 5,∼ 6,∼ 7,∼ 8,∼ 9,∼ 1′}

S0: {Cl1}
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Tft:

<Cl1, (Clus1), cc1, >→ ∼ 1

<∼ 1, (Clus7, OP2), , cc1 ∈ [40000, 40000]>→ Cl7

<∼ 1, (Clus2, OP1), , cc1 ∈ [2500, 10000]>→ Cl2

<∼ 7, (Clus1, OP2), , >→Cl1′

· · ·

Sm: {Clus1, Clus7}

CK: {cc1, cc2, cc3, cc4, cc5, cc6, cc7, cc8, cc9, cc1′}

Figure 10.51 shows the timed automaton diagram at the end of the simulated Scenario. This

diagram, generated from DyClee’s results, depicts the 10 clusters and the corresponding transitions.

States Cl1 and Cl2 are found to be the marked states (double-circle representation). The only events

depicted explicitly are the OP , nevertheless each transition from a Cli state to a ∼i state implies the

Clusi event and each transition from a ∼i state to a Clj state implies a Clusj event. Each cluster

state includes, below the cluster identification, the information related to the median time that the

system had remained in each of these states. Clocks constraints (in Clj to ∼i transitions) and resets

(in Clj to ∼i transitions) are included in the graph according to the notation explained before. The

probability of a transition is represented as Pi→j at the beginning of each departing transition for the

∼i states. For the Cli states the only allowed transition is to ∼i, fired by the Clusi event. Since this

transition has a 100% probability of occurrence it is not depicted in the graph. A red colored font

indicates the current state. The orange polygon form depict the nodes generated by the inclusion of

the discrete dynamics. In these nodes the information of the continuous twin state is also depicted as

reference, that is the label found by the clustering process.

It can be seen that the state Cl1 (OP1) is the focus of the diagram having transitions to states

Cl2, Cl4, Cl6 and Cl7. The diagram also shows that the state Cl5 is only achievable from Cl4 and

that Cl3 only from Cl2. These relations show the strong dependency of these states to their sources.

From a point of view of supervision these transitions indicate that the faulty states Cl3 and Cl5 are a

degradation of already degraded states. The system current state at the end of the simulated scenario

is Cl7, meaning that the system is currently in OP2 and no faulty behavior is currently detected. The

state Cl1′ that has the same continuous behavior that Cl1 is now diagnosable since its only achievable

from Cl7 when the system is in OP2. As a summary of DyClee results from clustering and discrete

modeling, Figure 10.52 compares the clusters discovered by DyClee and the true operation modes.

10.3 Summary

In this chapter DyClee supervision capabilities were tested using industrial-like benchmarks. Section

10.1 illustrates DyClee performance in systems with varying operational points following periodical

cycles. Section 10.2 showed DyClee performance in a dynamic system with slower dynamics in which

the drifts and shifts in data were mostly related to faults.

It was shown that DyClee dynamic clustering is useful to monitoring and tracking dynamic

systems in their operational modes even when their behaviors drift in time responding to changing

environments (subsection 10.1.1). DyClee has also proved to be capable to detect different types of
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Figure 10.51: DyClee timed automaton generated from clustering results

Figure 10.52: Final diagnosis achieved by coupling continuous and discrete information
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faults including those with time varying magnitudes and those that are non persistent on a continuous

stirred tank heater benchmark. These faults might occur single or multiple (subsection 10.2.1).

The tested processes allowed to prove that dynamic clustering results can be used to automatically

generate a DES model of the system. DyClee DES generator is even capable of detecting the marked

states having as input only the number of marked states that should be supplied by the process

expert.
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Conclusions and perspectives
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Conclusions

The research area of dynamic clustering is new and challenging from both the theoretical and the

practical point of view. There are a huge number of applications in which considering the temporal

evolution of the system or the objects passing through is necessary to perform a proper monitoring.

Several of these applications capture huge amounts of process information in stream and have limited

possibilities to process and store all the data. So far only a limited number of algorithms for dynamic

clustering of dynamic systems under evolving environments have been developed. These algorithms

can be separated into two categories: methods classifying dynamic objects with dynamic parameter

classifiers and methods classifying dynamic objects with dynamic structure classifiers. The first group

is formed by algorithms with a static structure generally found during a training stage and fixed for

its application in data recognition. In these algorithms only the cluster parameters can be updated

in the recognition stage for which most of these algorithms are able to detect only gradual changes in

the data structure. In fact, they frequently require a re-learning process when new nominal operation

modes or new components are added to the process. The second group is formed by algorithms that

can update both their structure and their parameters in response to detected changes in the system

data. Most of the algorithms in this group classify data using adaptive incremental learning and, in

cases where data arrive in high-volumes, using a streaming approach. To achieve computational and

real-time limitations several dynamic techniques process dynamic data without taking into account

temporal information.

This thesis has suggested a novel algorithm for dynamic clustering which can be applied to any

process in which a sufficient amount of data, describing the process behavior, is available. This

Dynamic Clustering algorithm for tracking Evolving Environments (DyClee) surpasses previous

approaches due to its ability to learn and recognize system behaviors on-line, rejecting outliers and

adapting automatically the clusterer structure and parameters to follow changes in system data.

DyClee makes use of the advantages of distance-based clustering along with density-based clustering

to handle non-linear, multi-density distributions even in high overlapping situations. The proposed

algorithm comprises four modular algorithms than can work together (in parallel) for monitoring

evolving processes in real-time. Each of these algorithms was conceived to help in the monitoring,

even in cases where there is no knowledge about the process. In specific, the main contribution of

this thesis is the proposed algorithm for dynamic clustering of static and dynamic objects presented

in Part II.

The first module, presented in Chapter 5, groups similar samples into a summarized statistical

representation called μ-cluster according to an L1 distance similarity measure. The choice of the

distance was done based on its meaningfulness in medium to high dimensional spaces. μ-clusters are

updated using the information of the samples assigned to them and weighted by a forgetting coefficient.

Several functions were proposed as forgetting functions, giving the algorithm the capacity to adapt to

different dynamics acting at different time scales. The forgetting process affects the μ-clusters making

them prone to mimic current system dynamics quicker than non dynamic clustering approaches. The

use of two lists to store active and less-active μ-clusters gives priority to the evolution of known

behaviors and speeds up the sample location process. The implemented algorithm takes process data

directly from text or log files and/or databases and processes it online in an incremental fashion. This
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incremental approach diminishes memory requirements, allowing to process very large data sets, and

even data measurements arriving in a high speed stream directly from the process.

The second module, presented in Chapter 6, reads the μ-clusters information provided by the

first module and analyses both μ-cluster proximity and density. The principal assumption in this

algorithm is that dense μ-clusters that are close enough (connected) belong to the same final cluster.

To diminish the computational load of checking for μ-cluster groups inside the μ-cluster set a tree

indexing structure was implemented (cf. Appendix A). Two different approaches to establish the dense

character of a μ-cluster, named global-density approach and local-density approach were proposed. μ-

clusters are characterized as belonging to one of three categories: dense μ-clusters (DμC), semi-dense

μ-clusters (SμC) and low density outlier μ-clusters (OμC). In the global-density analysis outliers

correspond mainly to deviated data but transitional or infrequent states can also be characterized as

OμC. This analysis allows us to detect clusters with similar densities while the local-density analysis

allows the detection of clusters with varied densities. In fact, using the local-density analysis, low

density populations (as faults) can be represented as well as high density populations (as is usually

the case of normal behavior). In addition, the local-density analysis allows the detection of novelty

behavior in its early stages when only a few samples giving evidence of this evolution are present.

The fact that DyClee natural clusters are formed as groups of smaller units following dynamic

data (μ-clusters), gives the algorithm the capacities of tracking cluster’s evolution and automatically

merge and split clusters without loosing information and without needing all the belonging samples to

be stored. New clusters are created as soon as a group of μ-clusters reach a relative high density (with

respect to global or local thresholds) and old non-representative clusters are removed to keep up an

updated cluster distribution. In DyClee the distance-based and density-based clustering algorithms

are implemented as separate modules that run in parallel, i. e. using independent memory spaces and

CPU resources. This implementations make possible to operate even in distant computers provided

that a bidirectional pipe is available.

A second contribution refers to dynamic feature extraction. The algorithm presented in Chapter 8

allows DyClee to process time depending features extracting the time related information into episodes

that can then be used as DyCleeinputs. Episodes allow DyClee to capture the information about

the evolution of the monitored characteristics. The episode abstraction is done for each monitored

characteristic using polynomial approximation over non overlapping sliding windows and then packed

into epochs. Epochs carry information not only about the shape and magnitude of the represented

behavior but also about its time of occurrence. The polynomial coefficients found for the time series

section are optimal with respect to the denoised signal approximation found using the cosine transform

(cf. Chapter 8). The third module of DyClee implements the feature extraction mechanism explained

before. This module is optional in DyClee hence the user can choose whether or not to activate it.

A third contribution is the automatic generation of a timed automaton from DyClee cluster-

ing results presented in Chapter 9. This automaton improves clustering results interpretability for

decision-making purposes and improves the fault detection capabilities by the inclusion of event re-

lated dynamics. This adaptive model, built automatically by the fourth module as new data of the

system is gathered, provides a high level abstraction of the system with information about the sys-

tem past and current states along with the possible transitions identified by the time of transition

144



and the time constraints between two states.The timed automaton graphical representation allows

the operator to see rapidly an overall description of the system including the current state that is

identified (red color). Information about the merge of clusters is also included in the diagram inside

each state in blue color. In the cases were information about the number of accepted nominal states

(marked stated) is available, DyClee DES generator makes an estimation of which of the states form

the subset of marked states, that is, the set of states in which the system is allowed to remain.

DyClee clustering results include a cluster general description that along with DyClee timed

automaton describe the active system dynamics. This cluster description includes, among other

things, the feature range and center of gravity which can be used to generate a radar chart. This kind

of graphical representation reflects in two dimensions vectors of three or more dimensions providing a

graphical signature of the system states.

Chapter 10 presents the application of DyClee for the monitoring of two different benchmarks, a

steam generator part of a pilot thermal power plant and a continuous stirred tank heater, a common

reactor used in chemical engineering. The first use case, that of the steam generator, allows to show

DyClee automatic reconfiguration capabilities and its robustness to the order in which samples are

presented to it. In this example the system under analysis exhibits highly non linear cyclic dynamics

and it was shown that DyClee can successfully track all the system’s operational modes. DyClee

results are consistent with the information provided by the system expert. The second use case showed

that DyClee dynamic clustering is useful to monitor and track dynamic systems in their operational

modes even when their behaviors drift in time responding to changing environments. With this use

case DyClee has also proved to be capable to detect different types of incipient and abrupt non

persistent faults of varying magnitudes. The ability to differentiate single faults from multiple faults

was also shown.

The tested processes allowed to prove that dynamic clustering results can be used to automatically

generate a DES model of the system including timed constraints and structural changes. In order to

provide help for decision making, additionally to the automaton diagram, a radar chart and trend

charts are generated in DyClee implementation. All the graphical results shown in Chapter 10 were

generated directly from the Python implementation of DyClee.

In this thesis a framework for the characterization and monitoring of complex systems based only

on measurements were presented. The proposed algorithms were conceived for supervision purposes

but their applications to other fields is completely open. The next section presents possible research

directions and applications for this work.

Possible research directions

As stated above the developed clustering algorithm was tested in pilot plants of industrial processes,

nevertheless the used methodology is general so its application in other fields of knowledge, in which

large amounts of data are available, is promising. Possible applications include intrusion detection

in networks [Maz et al. 11], tracking of moving objects in images or video [Jim et al. 11], event

detection and chronicle recognition for DES [Sub et al. 14], auto-compliance evaluation for in-circuit-

test equipment [Jay and Muh 14], etc.
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The developed algorithm implementation lacks a graphical user interface (GUI) hence is accessible

only by terminal commands. A personal goal as future work is to implement a GUI that allows the

use of the developed software not only for research purposes but also for educational purposes. For

example, the proposed algorithm could be used for the monitoring of remote academic laboratories

[Bar et al. 13] foster the inclusion of supervision concepts in engineering education.

Regarding possible improvements to the dynamic clustering algorithm, Monrousseau et. al have

provided some evidence that the use of fuzzy intervals instead of crisp intervals can improve classifica-

tion results even when the signal to noise ratio is high [Mon et al. 15]. Based on these results it seems

interesting to implement fuzzy μ-clusters that could potentially improve the classification of highly

noisy time series.

An aspect that was not addressed in this work was the feature selection problem. The current

implementation of DyClee allow feature selection in two cases. If a feature’s operational range is found

to be smaller than the μ-cluster relative size, it is not possible for the algorithm to distinguish changes

in this variable and thus its processing is unnecessary. The second possibility is to remove those

features for which the feature range is exactly the same for all the recognized clusters. Nevertheless,

it should be noticed that if continuous learning is desired all features should be kept, since features

that were negligible in the past can as well be the key for characterizing a novel behavior. An example

of this was presented in Section 10.2 with the CSTH use case. In this example, for Scenario 1 and

Scenario 2 the tank level and temperature remain constant for the whole simulation, then for the leak

recognition in Scenario 3 the tank level was the key feature. Scenario 4 also showed that the steam

valve blocking fault was detectable only in the tank temperature, a feature that is negligible for the

other behaviors.

In the era of big data multiple industries look for algorithms that can handle large amount of data

in streams, designed to make use of clusters of computers under a distributed processing framework

as Hadoop3. DyClee was designed to run each of its stages independently and in parallel using one

or several computers. For the moment the parallelization is implemented at algorithm level but it

would be interesting to paralellize intra-stage calculations such as the search for connections between

μ-clusters. To achieve that level of parallelism an approach based in distributed input data should

be considered. The python implementation developed in this thesis can be used as starting point to

develop an algorithm compatible with distributed file systems (for process historical data) and with

stream oriented message brokers (for current system measurements) as Apache Kafka [Apa 16b].

Regarding the developed DES generator multiple aspects can be source of further research. As

stated in chapter 9, under hypothesis H9.1 and H9.2 faults that can be detected thanks to the DES

model correspond to one of three types: 1) occurrence of an event labeling a transition not followed by

the actual transition, 2) state transition without the occurrence of the event labeling the transition,

3) state transition that does not correspond to the event that has occurred. The detection of the

type of faults is achieved by the verification of the DES generated model. In this thesis the DES

model generation was automated but the verification was left for the system operator. There are

no doubts about the improvement that an automatic verification module can provide for supporting

3“The Apache Hadoop software library is a framework that allows for the distributed processing of large
data sets across clusters of computers using simple programming models. It is designed to scale up from single
servers to thousands of machines, each offering local computation and storage” [Apa 16a]
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decision-making supervision. Actually, the generation of a discrete event model opens the door to

the possibility of modeling and monitoring hybrid systems, a growing research field in which great

challenges are still open.

Another improvement can come from the prognosis point of view. In [Ram and Gou 14] the

use of one-class classifiers to find the remaining useful life of a system was evidenced. Arguably the

dynamic structure of DyClee can improve prognosis by the capability to learn possible modes in

an automatic fashion, this path should be explored in future works. DyClee implementation allows

the user to see all possible (already encountered in the past) transitions departing from the system’s

current state and assigns a probability to these departing transition, based on their past occurrences.

At the moment, key information that might potentially improve the transition probability estimation

such as the state density or the already characterized timed constraints are not taken into account.

The use of the transition statistics along with states density values could potentially give a measure

about the possibility of firing a transition over another given a temporal constraint. An alert to the

system operator should be considered if the possibility of transitioning to a failure state increases.
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Appendix A

Comparison of Spatial Indexes

An spatial index was set-up to speed-up μ-cluster connection search. Three different tree
data structures were tested in order to find the index structure best suited to our goals. The
selected structures are: the R*Tree [Bec et al. 90], the BallTree [Omo 89] and the KDTree
[Ben 75].

The R*Tree, or rectangular Tree, was proposed in 1990 and has been largely used since.
In clustering applications, the ClusTree algorithm uses an extension of this index to efficiently
locate the right place for object insertion [Kra et al. 11]. The key idea of this data structure
is to group nearby objects and represent them with their minimum bounding rectangle in the
next higher level of the tree. BallTrees is a completely binary tree in which each node refer
to a region bounded by an d-dimensional hyper-sphere [Omo 89]. A parent node is hence the
smallest hyper-sphere that contains all the hyper-spheres of its children. The BallTree is the
only index, among the analyzed indexes, that accepts the intersection of sibling regions. A
K-dimensional binary search tree (KDTree) partitions the data space into mutually exclusive
hyper-rectangular regions. Each region is found by recursively splitting the space using axis-
parallel hyperplanes. The splitting process finishes when each sub-region has a number of
points less than or equal to a given threshold.

The python implementations of the R*Tree1, the BallTree2, the KDTree3 and the cK-
DTree4 (A cython implementation of the KDTree), were tested using two different scenarios.
The computation time and memory consumption (maximum resident set size used), were
selected as comparative measures.

As stated before the index should increase the efficiency of the closest μ-cluster retrieval
in the first stage of DyClee and also the group retrieval in the second stage. Group retrieval
is considered as the process of finding all the neighborhoods in the data set. This process
involves a recursive implementation of radius-neighbor queries. Time and memory measures
were taken for the tree construction process and for the group retrieval process. These
measures are the average value over a hundred simulations.

In the first scenario, data correspond to random samples extracted from a uniform
distribution. The algorithms were tested for a data sets containing n data samples, where
each sample is a d-dimensional vector. Tests were performed for n varying in the range
n ∈

{
101, 102, 103, 104

}
and d in d ∈

{
21, 22, 23, 24, 25

}
.

1http://toblerity.org/rtree/
2http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
3http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
4http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
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Figure A.1 shows the resources used for the tree building task. Computation time mea-
sured in seconds is presented in Figure A.1(a) and the maximum resident set size measured
in Mb is shown in Figure A.1(b). It can be seen that the R*Tree implementation performs
poorly with respect to the other indexes. The actual measurements of the computation time
and maximum resident set size are presented in tables A.1 and A.2 respectively.

The group retrieval task is computationally more expensive as can be seen in Figure A.2,
where the computation time for the worst case (R*Tree, n = 18,d = 104) passes from 33.12
seconds in the tree building task to 362.9 seconds for group retrieval (see Figure A.2(a)).
The best computation time is achieved by the cKDTree index but at cost of having the worst
memory consumption (see Figure A.2(b)). The recorded data for the group retrieval task is
presented in tables A.3 and A.4.

(a) Computation time (b) Maximum resident set size

Figure A.1: Comparison between different tree indexes for the tree building task in a uniform distribution
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(a) Computation time (b) Maximum resident set size

Figure A.2: Comparison between different tree indexes for the group retrieval task in a uniform distribution
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Dimensions
Index log(n)

2 4 8 16 32 64 128
1 12.12 13.62 14.50 16.12 17.37 23.25 31.62
2 94.88 99.62 108.62 128.00 160.00 222.75 358.50
3 1142.25 1236.62 1444.00 1977.12 3456.00 8483.38 26073.62

R*Tree

4 13861 15552 19784 30752 60609 153557 414038
1 1.75 1.87 1.87 1.87 1.87 1.87 1.87
2 1.87 2.00 2.00 2.12 2.38 2.62 3.25
3 4.00 4.25 5.25 7.50 11.87 20.37 36.37

BallTree

4 40.25 47.50 66.12 103.12 203.75 424.12 877.87
1 1.87 1.87 1.75 1.75 1.87 1.87 1.75
2 1.87 1.87 1.87 2.00 2.12 2.38 3.00
3 3.50 3.75 4.50 6.00 9.00 16.62 31.62

KDTree

4 33.62 40.25 54.25 84.50 165.50 364.37 786.75
1 1.00 1.00 1.00 1.12 1.00 1.12 1.12
2 1.12 1.12 1.12 1.25 1.25 1.50 1.75
3 2.25 2.38 2.62 3.12 3.87 5.00 7.12

cKDTree

4 15.12 16.38 18.75 23.88 33.75 46.25 67.88

Table A.1: Tree building computation time (relative to 80μsec) for uniformly distributed data

Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 1.01 1.01 1.01 1.01 1.01 1.01 1.01
2 1.01 1.01 1.01 1.01 1.01 1.02 1.03
3 1.01 1.01 1.02 1.03 1.05 1.09 1.16
4 1.05 1.06 1.08 1.13 1.23 1.43 1.81

BallTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.01 1.03 1.07 1.15

KDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.01 1.03 1.08 1.17

cKDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.01 1.03 1.06 1.14

Table A.2: Tree building maximum resident set size (relative to 66.762Mb) for uniformly distributed data
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Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 4.00 5.23 5.17 5.83 7.29 11.63 17.14
2 49.83 48.77 62.66 86.66 85.66 124.57 207.80
3 2339 1843.80 1988.77 3330.66 3424.17 6092.80 11293.66
4 260650 171165 254612 350371 967009.14 614249 1036927

BallTree

1 1.06 1.06 1.06 1.06 1.09 1.09 1.14
2 6.43 6.54 6.63 7.11 7.71 9.09 11.26
3 511.94 510.60 520.17 541.06 603.00 736.14 953.86
4 50449 49619 50422 51687 58331 81430 109406

KDTree

1 1.06 1.06 1.06 1.06 1.06 1.09 1.09
2 6.46 6.43 6.40 6.57 6.57 6.71 7.00
3 514.34 514.26 516.29 515.03 509.11 512.94 518.91
4 49768 50382 50643 49987 50149 49846 49907

cKDTree

1 1.03 1.03 1.00 1.06 1.03 1.09 1.11
2 6.14 6.17 6.14 6.14 6.29 6.54 6.89
3 331.94 333.94 335.34 335.94 334.77 336.54 348.29
4 30971 31098 31191 31205 31172 31185 31249

Table A.3: Group retrieval computation time (relative to 350μsec) for uniformly distributed data

Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 1.01 1.01 1.01 1.01 1.01 1.01 1.01
2 1.01 1.01 1.01 1.01 1.01 1.02 1.03
3 1.32 1.20 1.09 1.05 1.06 1.11 1.19
4 34.63 20.14 7.27 1.88 1.36 1.58 2.07

BallTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.11 1.11 1.11 1.11 1.12 1.12 1.14
4 12.74 12.74 12.74 12.76 12.80 12.88 13.04

KDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.11 1.11 1.11 1.11 1.11 1.12 1.14
4 12.74 12.74 12.74 12.76 12.81 12.89 13.05

cKDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.47 1.47 1.47 1.47 1.48 1.49 1.51
4 59.66 59.67 59.68 59.70 59.76 59.87 60.10

Table A.4: Group retrieval maximum resident set size (relative to 66.762Mb) for uniformly distributed data
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The second scenario measures the indexes performance (computation time and max-
imum resident set size) for the tree building and group retrieval tasks in a spherical dis-
tribution. The 2-dimensional version of this distribution, formed by concentric circles, is
shown in Figure A.3(a). In higher dimensions this distribution represents samples located in
the surface of concentric hyper-spheres. For illustrative purposes a 3-dimensional spherical
distribution is depicted in Figure A.3(b).
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(a) Spherical distribution in 2D used to test

�	


�	� �	�

�	�

�	�

�	


�	�

�	


�	�

(b) Spherical distribution in 3D (illustrative)

Figure A.3: Representation of the spherical distribution for 2 and 3 dimensions

Performance statistics for the tree building task are shown in tables A.5 and A.6 and its
graphical representation depicted in Figure A.4. In general all the indexes perform better in
the tree building task for this distribution that for the uniform distribution as can be seen in
Figure A.5. The group retrieval measurements are shown in tables A.7 and A.8.
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Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 15.50 16.00 16.83 18.50 21.83 28.50 42.50
2 127.83 134.00 147.83 168.83 216.33 298.83 487.17
3 1524.67 1640.83 1912.83 2613.17 4548.17 10029.67 27845.00
4 18678 21197 26249 36314 59633 1302993 374534

BallTree

1 2.17 2.17 2.17 2.17 2.17 2.17 2.17
2 2.33 2.33 2.33 2.50 2.83 3.33 4.17
3 5.17 5.50 6.83 9.67 15.67 26.67 49.50
4 56.00 62.67 90.00 139.00 275.17 576.17 1180.50

KDTree

1 2.17 2.17 2.17 2.17 2.17 2.17 2.17
2 2.33 2.33 2.33 2.50 2.67 3.00 3.83
3 4.50 4.83 5.83 7.67 11.83 22.33 43.33
4 45.67 52.50 72.83 113.50 216.33 492.67 1060.67

cKDTree

1 1.00 1.00 1.00 1.00 1.00 1.17 1.17
2 1.17 1.17 1.17 1.33 1.33 1.67 2.00
3 2.67 3.00 3.00 3.83 5.00 6.33 9.33
4 19.67 21.83 31.00 31.83 44.67 62.50 91.67

Table A.5: Tree building computation time (relative to 60μsec) for spherical distribution

Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 1.01 1.01 1.01 1.01 1.01 1.01 1.01
2 1.01 1.01 1.01 1.01 1.01 1.02 1.03
3 1.01 1.02 1.02 1.03 1.05 1.09 1.16
4 1.05 1.06 1.08 1.13 1.23 1.42 1.80

BallTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.01 1.03
4 1.00 1.00 1.01 1.04 1.10 1.21 1.44

KDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.01 1.03
4 1.00 1.00 1.01 1.04 1.10 1.21 1.44

cKDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.01 1.03
4 1.00 1.00 1.01 1.04 1.10 1.21 1.44

Table A.6: Tree building maximum resident set size (relative to 66.64Mb) for spherical distribution
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Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 3.55 3.80 3.80 4.58 6.07 9.10 15.10
2 32.60 40.12 49.67 65.12 90.73 125.00 191.50
3 1920.95 1955.17 2094.47 2451.57 3199.20 4710.50 7680.00
4 219311 236073 267983 317122 402437 528211 804337

BallTree

1 1.05 1.15 1.20 1.28 1.60 2.17 3.00
2 5.75 5.60 5.62 5.77 5.72 5.85 5.95
3 458.25 450.72 455.75 450.77 456.17 451.57 463.32
4 44230 44562 44349 44420 44831.72 44533 44381

KDTree

1 1.00 1.15 1.17 1.28 1.50 2.25 3.00
2 5.58 5.77 5.62 5.70 5.70 5.88 6.10
3 448.47 454.30 459.42 456.32 459.35 455.32 457.50
4 44812 44817 44637 44389 44525 44722 44339

cKDTree

1 1.10 1.20 1.30 1.38 1.60 1.92 2.45
2 5.47 5.53 5.45 5.45 5.65 5.67 6.00
3 300.75 298.70 301.20 301.38 311.93 299.07 301.97
4 27416 27553 28353 27688 27607 27688 27730

Table A.7: Group retrieval computation time (relative to 400μsec) for spherical distribution

Dimensions
Index log(n)

2 4 8 16 32 64 128

R*Tree

1 1.01 1.01 1.01 1.01 1.01 1.01 1.01
2 1.01 1.01 1.01 1.01 1.01 1.02 1.03
3 1.53 1.53 1.54 1.55 1.57 1.62 1.72
4 59.97 59.99 59.97 60.02 60.87 63.45 64.32

BallTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.11 1.11 1.11 1.11 1.12 1.12 1.14
4 12.76 12.76 12.77 12.78 12.83 12.90 13.06

KDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.11 1.11 1.11 1.11 1.12 1.12 1.14
4 12.76 12.76 12.77 12.79 12.83 12.91 13.08

cKDTree

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.47 1.47 1.47 1.47 1.48 1.49 1.51
4 59.77 59.78 59.79 59.81 59.87 59.98 60.21

Table A.8: Group retrieval maximum resident set size (relative to 66.64Mb) for spherical distribution
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(a) Computation time (b) Maximum resident set size

Figure A.4: Comparison between different tree indexes for the tree building task in a spherical distribution
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(a) Computation time (b) Maximum resident set size

Figure A.5: Comparison between different tree indexes for the group retrieval task in a spherical distribution
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Appendix B

Possible and required parameters of
DyClee

In the previous chapters the DyClee algorithm was introduced and its stages explained. This
chapter focuses on DyClee implementation. The developed dynamic clustering algorithm was
implemented in Python 3. Python is an interpreted, interactive, object-oriented programming
language that perfectly matches power with readability of the written code. This open-source
language runs in all the platforms and can be easily shared with other scientist.

The implementation of DyClee allow users to analyze and cluster data sets using only
two lines of code. The first line will establish DyClee configuration and the second will run
the clustering algorithm in the provided data. Data can come from a database, a text file or
can be sent to the algorithm in the run instruction.

The configuration of DyClee is perform via key parameters. DyClee offers several op-
tional features that might help the user improving clustering by adding some knowledge
about the data. Information about the distribution of data, for example, there are clusters
with densities in different levels, or, each clusters contains approximately the same amount of
elements; could improve data clustering if known, and even if there are unknown user might
hypothesize about it for data analyses purposes. Knowledge about distributions changing in
time can also be taken into account, giving for example, more importance to recent data.

DyClee optional and required features are explored in this chapter. For each parameter
its name and a brief description is given. When it is considered as necessary, an example of
use is also provided.

B.0.1 Hyper-cube size

Parameter name: portion

Input type: float value
Default value:
Description: Box size per dimension.

As stated in Chapter 4 a μ-cluster μCz is a d-dimensional hyper-cube with of size Sjz ∀j.
Since features are normalized, the feature range are [0, 1]. The portion describing the size
of the box in each dimension could be a float number in the interval (0, 1), even if a value
of portion> 0.5 may not make sense. This parameter is the only required parameter of
DyClee.
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B.0.2 Uncommon dimensions

Parameter name: uncdim

Input type: Integer value
Default value: Zero
Description: Selectivity of the distance-based clustering stage.

As stated in Chapter 6 two clusters are said to be directly connected if their hyperboxes
overlap in all but ϕ dimensions. The uncdim option establishes the ϕ parameter, setting the
feature selectivity of the clusterer. By default uncdim=0, thus direct connection is established
when hyperboxes overlap in all dimensions (ϕ = 0). This parameter may be particularly
helpful when analyzing data sets for which little or none knowledge is available in medium
to high dimensional spaces.

B.0.3 Forgetting function

Parameter name: forget_method

Input type: String input.
Default value: "None"

Description: Mathematical function used to emulate the forgetting process. Accepted strings
are: "linear", "expo", "sigmo", "z_funct", "trapezoidal" and "half_life".

As stated in subsection 5.2.1 DyClee implements a forgetting process in order to modify
the knowledge representation, hence achieving a correct evolution tracking of the process.
Users can chose weather to use or not the forgetting functions in their models. By default this
option is deactivated meaning that no forgetting function is applied to the μ-cluster. Users
select the decay function to use assigning the corresponding string to the forget_method

parameter.
To illustrate how the forgetting process changes the data representation see the example

illustrated in Figure B.1. This figures represent the accumulated data samples at different
time instants. Let’s analyze this data as the payment profiles of the a bank credit card users.
In the x axis the debt of the customers is represented and in the y axis their income. At
t = 0 the class in red are those users with low debt to income (DtoI) ratio. The blue class
are those user with medium DtoI ratio and the green ones are those credit users whit limit
DtoI ratio.

(a) t = 30 (b) t = 390 (c) t = 660 (d) t = 900

Figure B.1: Snapshots of data samples for 3 cluster distribution

The same data can be analyzed in different ways aiming different objectives. For example,
to implement new marketing strategies the marketing branch of a bank may be interested in
the whole data history. To the contrary, the credit risk department will be specially focused
in the current users behavior which might quickly becomes hazardous for the bank. The
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clusters found by DyClee representing the users behavior, without and with the forgetting
process are shown in figure B.2 and B.3 respectively.

Figure B.2: DyClee clustering results with no for-
getting process

Figure B.3: DyClee clustering results with the
linear function used for forgetting

B.0.4 Forgetting parameters

In section B.0.3 the mathematical functions implemented in DyClee were presented, each of
these functions depend on the current time and the last assignation time, but also on specific
parameters. For example, m in the case of the linear function or λ in the case of the case of
the exponential function. In DyClee all these parameters are coded with only two variables:
beta and lamda1. The relation between these parameters and the desired behavior in each
of the functions is presented in Table B.1. Where t∼f represents the period of time in which
the μ-cluster will suffer of no ageing. The parameter tw=0 represents the time when the
forgetting function reaches zero, and accordingly tw=0.5 and tw=0.05 represent the time when
the function reaches the 0.5 and 0.05 value respectively.

Function beta lamda

linear tw=0 ⇔ 1/m –
trapezoidal t∼f tw=0

z function t∼f tw=0

exponential – λ ⇔ 3
tw�0.05

half-life β λ
sigmoidal t∼f tw=0.5

Table B.1: DyClee equivalence of coded variables beta and lamda to forgetting functions parameters

B.0.5 Long-term memory

Parameter name: ltm

Input type: Boolean value
Default value: False

Description: When true, the long-term memory is activated, i. e. a different forgetting factor

1lamda is used instead of lambda since the former is a reserved word in the implementation language
Python
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will be used to forget the once DμCs from those μ-cluster that have never achieved the dense
status.

As stated in Chapter 6 DμCs are considered as a good representation of process behavior
in a given moment of time and consequently they should not be forgotten at the same rate
as the less representative μ-clusters. If the ltm option is activated, the once dense μ-clusters
will follow a different forgetting dynamic.

If ltm_method is specify the Oldμ-clusters are subject to a forgetting process following
the precised forgetting function. The ltm_method parameter accept the same entries as
the forget_method parameter. If ltm_method is not specified, the function specified in
forget_method is also used for the long-term memory, but with a slower dynamic.

B.0.6 Non-informative label accepted

Parameter name: Unclass_accepted

Input type: Boolean value
Default value: True

Description: When true, DyClee clustering results will consider only SμCs and DμCs to
find the clusters distribution. OμCs will be considered as containing non representative
information and the samples represented by them will be rejected (classed as noise).

According with the use case, one can be interested in leave some abnormal data out
(outlier rejection) or in the contrary to classify them. Indeed, as stated for Kempowsky et
al., the rejection of some samples is very important for industrial fault detection and diagnosis
[Kem et al. 06]. Abnormal samples can corrupt the information about a system state and
in the case were they are present in the learning stages they can induce a bias in the state
representations that may cause misdetections.

However, in some cases, it is desirable to label all samples even if they seems abnormal.
An example, described by [Pyo et al. 11], is that of credit card issuing process for renewal,
where all subjects should be classed whether as approved or as rejected.

Figures B.4 and B.5 show DyClee clustering results in a concentric circles data set when
the Unclass_accepted parameter is set to True and False respectively. Two classes are
detected marked in red and blue colors. In addition, Figure B.4 shows some gray μ-clusters
corresponding to abnormal samples. In Figure B.5 these samples are classed according to the
closest cluster.

Figure B.4: DyClee clustering results with
Unclass_accepted True

Figure B.5: DyClee clustering results with the
Unclass_accepted False
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B.0.7 Minimum amount of μ-clusters

Parameter name: minimum_mc

Input type: Boolean value
Default value: False

Description: This option allows the user to reject clusters describing a small amount of
objects.

This option is highly desirable when the amount of objects described by each cluster are
on the same scale, since they can facilitate the process of finding clusters that are not strictly
dense connected. On the other hand, this option could not be desirable in some situations, as
is the case of fault diagnosis. As said before, fault diagnosis is desirable as soon as possible.
In faulty conditions the amount of information collected of the faulty state is always less
than the amount of information available of the normal behavior. In those conditions, having
a restriction in the minimum number of elements to form a cluster could lead to late fault
detection and even the non-detection of the fault.

To illustrate the clustering results of DyClee when this option is activated, a three cluster
example is used. Figure B.6 shows the samples clustering when minimum_mc is set to True

and Figure B.7 when it is set to False.

Figure B.6: DyClee clustering results with
minimum_mc True

Figure B.7: DyClee clustering results with the
minimum_mc False

B.0.8 Multi-density Clustering

Parameter name: multi-density

Input type: Boolean value
Default value: False

Description: When activated density thresholds are found locally using the clusters densities.
When deactivated, a global density threshold is used.

DyClee allows detection of clusters having densities in different density levels as intro-
duced in chapter 6. This multi-density detection is posible when the local-based analysis is
performed. This analysis is optional in DyClee, and can be set on or off according with
user needs. Interestingly, using the multi-density scheme helps to better shape clusters that
share frontiers, that is, clusters that are side by side, in highly overlapping situations. To do
this, DyClee first finds all possible clusters, allowing multiple densities. Second, it finds the
borders shared by two or more clusters and then analyzes every μ-cluster in those borders.
These μ-cluster are assigned to the connected cluster that has the most similar average den-
sity. In that way clusters frontiers can be precisely drawn which is a key feature in highly
overlapping distributions.
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Figures B.8 and B.9 show a multidensity distribution clustered by DyClee with the local-
density analysis in the former and global-density analysis in the later. In Figure B.9 only the
denser areas of the clusters are detected loosing its relation with the other near points.

Figure B.8: DyClee clustering results with
multi-density True

Figure B.9: DyClee clustering results with
multi-density False

B.0.9 Time between density-based analyses clustering

Parameter name: t_off

Input type: Real value
Default value: When the whole data set is available at once is a quarter of the total amount
of elements. When data is coming in stream is set to 1000 samples.
Description: Time between two runs of the density-based clustering algorithm. This time
establish the maximum amount of time before labeling.

The density-based stage runs in parallel to the distance-based stage of DyClee but its
complexity is higher. Since usually new clusters are a rare event there is no need for this stage
to run all the time. In supervision, for example, the time between two runs of this stage should
correspond to the maximum amount of time before detection of a new behavior. The density-
based stage performs also the purge of those OμCs with extremely low densities, therefore,
this time should be choose also thinking in the release of memory and CPU resources.

B.0.10 Dynamic window parameters

Three parameters can be configured to force DyClee dynamic window splitting. These
parameters are:

• Minimum window size (Min_ws): Integer value. The minimum window size is related
to the length of non linear episodes, that is, the length of the shortest non linear
behavior described by an episode expressed in number of samples. When known this
value improves the quality of the polynomial approximation mostly in highly noisy
environments. The default value is 100 (samples).

• Maximum window size (Max_ws): Integer value. The length of the longest known linear
behavior measured as the amount of samples belonging to the longest linear episode.
The default value is 1000 (samples).
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• Normal window size (ws): Integer value. The initial window length to be considered by
the preprocessing stage. Default value is 200 (samples).
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