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ABSTRACT

The second generation intact stability criteria are currently under finalization by the
International Maritime Organization. They are intended to improve the current intact
stability rules by adding safety in waves. They are structured in five failure modes and three
levels of assessment in each failure mode. The first level is based on a simplified
deterministic approach of the phenomena and ensures high safety margins. The second level
requires more complex computations based on hydrostatic considerations with regard to
static waves and is expected to provide reduced safety margins. The third level, currently
under development, would consist of numerical simulations of the ship’s behavior in real sea
states performed by specialized institutes. Level-one and level-two criteria of both pure loss
of stability and parametric roll failure modes have been implemented in a stability code. The
KGnmax curves associated with these future criteria are computed for a selection of different
ships of different types, both civilian and military, expected or known to have different
behaviors with regard to the considered failure modes. The requirement and the relevance
of the criteria are analyzed. The second check of parametric roll level-two criterion is
thoroughly analyzed. A simplified method providing the maximum parametric roll angle
assuming a linear GZ is developed and implemented in the corresponding criterion.

RESUME

Les critéres de stabilité a I’état intact de seconde génération sont en cours de finalisation par
I’Organisation Maritime Internationale. Ils doivent compléter les critéres actuels en
apportant une sécurité accrue dans les vagues. lls sont organisés en cing modes de
défaillance et trois niveaux d’évaluation dans chaque mode de défaillance. Le premier
niveau est basé sur une approche déterministe simplifiée des phénomenes et assure des
marges de sécurité importantes. Le second niveau requiert des calculs plus complexes basés
sur des considérations hydrostatiques dans les vagues. Il est supposé assurer des marges de
sécurité réduites. Le troisieme niveau, actuellement en cours de développement, devrait
consister en des simulations numériques du comportement du navire sur des états de mer
réels réalisés par des instituts spécialisés. Les deux premiers niveaux des modes de
défaillance perte pure de stabilité et roulis paramétrique ont été implémentés dans un code
de stabilité. Les courbes de KGax associées a ces critéres sont calculées pour une sélection
de navires civils et militaires de différents types ayant des comportements connus ou
supposés différents vis-a-vis de ces modes de défaillance. Les exigences et la pertinence des
criteres sont analysées. La seconde vérification du critere de niveau deux en roulis
paramétrique est étudiée en détail. Une méthode simplifiée de calcul de I'angle maximum
de roulis paramétrique supposant un GZ linéaire est proposée et implémentée dans le
critére correspondant.
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INTRODUCTION

Context

Since the first SOLAS Conference (Safety Of Life At Sea) in 1914 [10] resulting from the highly
mediated sinking of the Titanic, the safety of people and goods on ships has been the subject
of many discussions that have led to the establishment of rules that are applied to new ships
and then verified by classification societies throughout the life of the ship. The main causes
of major ship accidents are multiple:

¢ Insufficient stability, leading to capsize and then sinking or grounding;

e Flooding through a breach in the hull, due to a collision with the ground (Salem Express
1991 [55], Sea Diamond 2007, Costa Concordia 2012), another ship (Andrea Doria 1956
Figure 1) or a floating object (Titanic 1912, Explorer 2007 [61] Figure 2) or due to a
military aggression (Lusitania 1915, Wilhelm Gustloff 1945);

e Fire on board leading to flooding and sinking or capsize (Normandie/La Fayette 1942,
Achille Lauro 1994 [55]) or leading to high damages (Hyundai Fortune 2006, MSC Flaminia
2012 [63]);

e Structural damage breaking the ship’s hull (Erika 1999 [56], Prestige 2002 [57], MSC
Napoli 2007 [58], MOL Comfort 2013 [62]) or leading to flooding and capsize or sinking
(Estonia 1994 [55]);

All these causes are the object of specific rules (intact stability, damage stability, structure,
fire safety ...) with the aim to eliminate accidents and reduce their consequences.

Figure 1 — Passenger vessel Andrea Doria during Figure 2 — Passenger vessel Explorer during sinking
sinking (photo from US Coast Guard). (photo by Reinhard Jahn).
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First Generation Intact Stability Criteria

The first intact stability rules were defined in 1968 by the Inter-Governmental Maritime
Consultative Organization (IMCO, which was renamed as International Maritime
Organization, IMO, in 1982). These rules were given as recommendations in Resolution
A.167 [14]. They are based on the work of Rahola [11] which consists of a statistical analysis
of a large amount of ships recognized as safe or unsafe with regard to the stability in intact
condition. The rules are presented as criteria regarding the righting lever curve (GZ curve) in
calm water and cited hereunder:

“(a) The area under the righting lever curve (GZ curve) should not be less than
0.055 meter-radians up to 6=30° angle of heel and not less than 0.09
meter-radians up to 6=40° or the angle of flooding & if this angle is less
than 40°. Additionally, the area under the righting lever curve (GZ curve)
between the angles of heel of 30° and 40° or between 30° and & if this
angle is less than 40°, should not be less than 0.03 meter-radians.

(b) The righting lever GZ should be at least 0.20 m at an angle of heel equal to
or greater than 30°.

(c) The maximum righting arm should occur at an angle of heel preferably
exceeding 30° but not less than 25°.

(d) The initial metacentric height GM, should not be less than 0.15 m.”

These six criteria (the first is triple) are completed by two concerning passenger ships,
regarding the crowding of passengers to one side and the angle of heel while turning.

In 1985, these criteria were completed by the weather criterion provided in Resolution
A.562 [16]. This more-physical-based criterion considers the combined actions of beam wind
(established and gust) and waves.

Today, these well-known criteria are mandatory and embedded in part A of the Intact
Stability Code of the IMO [18].

A Long Series of Unexpected Accidents in Waves in Intact Stability Condition

The entry into force of intact stability rules did not eliminate accidents of ships in such a
configuration. Some accidents are due to the non-compliance with the rules after ship’s
conversion (Al Salam Boccaccio 98 2006, Figure 3), overloading (Neptune 1993 [55], Joola
2002) or insufficient cargo securing (Ice Prince 2008 [59]). Unfortunately, some other
accidents occurred in intact configuration despite full compliance with the rules. It is not
possible to list all of them here. Only few, having sufficiently robust report or analysis, are
listed hereunder. In all cases, the ship was considered as safe with regard to the intact
stability criteria (computed within the scope of a post-analysis for the oldest cases, since
these criteria did not exist at that time) and was in heavy weather, often in following seas.
Other similarities are the fateful consequences in terms of human lives or high financial
damages.

e The 2000-ton cargo Lohengrin capsized in the Baltic Sea in January 1950, possibly due to a
negative stability on a wave crest, combined to poor initial stability after conversion. The
accident is reported by Kriger and Kluwe in [40].
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A 55-meter LPG tanker sank in the Mediterranean Sea in March 1969, killing her 17
crewmembers. Taylan provides a thorough analysis of this accident in [36]. As possible
causes, he mentions a loss of stability in longitudinal waves or broaching.

In October 1998, the 4832-TEU container vessel APL China suffered an unexpected
extreme roll accident in the Northern Pacific (Figure 112 page 119). Almost 400
containers were lost overboard and 400 others were damaged, making this accident one
of the most expensive (over $50 million). The accident is reported in [41] and analyzed as
due to parametric resonance in roll motion.

Few years later, in January 2003, a similar accident occurred on the 4324-TEU container
vessel Maersk Carolina (Figure 4) in the Northern Atlantic. 133 containers were lost
overboard and 50 others were damaged. The accident is reported and analyzed in [45].

A 12-meter fishing vessel suddenly capsized and sank off the Northern coast of Spain in
June 2004, killing all ten members of her crew. A detailed analysis of the accident,
including tests in a towing tank, is provided by Maron et al. in [37]. As possible cause, the
authors mention a loss of stability on the wave crest combined with water shifting on the
working deck.

The pure car carrier Cougar Ace attained a severe heel angle in the Northern Pacific in
July 2006 (Figure 5). This accident was not fatal in itself but one member of the salvage
team died during rescue operations. The ship was recovered. However, the damages
were high since all 5,000 cars were scrapped after being extracted from the inclined
garage decks. The accident was due to an insufficient stability on the wave crest in
following seas combined to a ballast movement. It is reported by Kriiger and Kluwe in
[40].

The Ro-Ro Vessel Finnbirch capsized and sank in the Baltic Sea in November 2006, killing
two of her seamen (Figure 6). The accident is reported by Kluwe and Kruger in [38] and
thoroughly analyzed by the Swedish Accident Investigation Board (SHK) in its report [39].
As main causes of the accident, SHK wrote “Finnbirch was on an unfavourable course at
an unfavourable speed in a sea with high and long waves which resulted in a loss of
stability with considerable but not exceptional heelings and a subsequent shifting of the
cargo. The securing of the cargo on board was unsatisfactory.”

Moreover, several recommendations are formulated, as usual in such an official report.
The first one is “SHK recommend that the Swedish Maritime Administration propose that
stability requirements for ships with a following sea should be entered into the relevant
international rules and regulations”.

In September 2008, the 8749-TEU container vessel Chicago Express (Figure 114 page 120)
suffered a violent roll accident during a typhoon off the coast of Hong Kong, killing one
seaman and seriously injuring her master. The accident is reported and analyzed in [60].
One of the causes given by the experts is the insufficient roll damping. Moreover, the
metacentric height was equal to 7.72 m, which is an unusually high value for this type of
ship.

12



Figure 3 — Passenger vessel Al Salam Boccacio 98 Figure 4 — Container Vessel Maersk Carolina (photo by
(photo by Carlo Martinelli from Hannes van Rijn from www.shipspotting.com).
www.shipspotting.com).

Figure 5 — Pure Car Carrier Cougar Ace with severe Figure 6 — Ro-Ro vessel Finnbirch during sinking (photo
heel on port side (photo from National Digital Library by Swedish Maritime Administration).
of the United States Fish and Wildlife Service).

Genesis of the Second Generation Criteria

This type of accidents highlights the insufficiency of the intact stability criteria in some
configurations of sailing in waves and has led the IMO to start developing new criteria
focusing on these conditions. The work started in 2007 with the aim to define new intact
stability criteria, also named “second generation intact stability criteria”. The work is
performed by the Working Group on Intact Stability (WGIS) during the sessions of the Sub-
Committee on Stability and Load Lines and on Fishing Vessels Safety (SLF, nowadays the Sub-
Committee on Ship Design and Construction, SDC) of the IMO. In 2008, a correspondence
group (ISCG) was created to continue working between sessions. The author of this thesis is
a member of the Delegation of France in the correspondence group. The development of the
second generation intact stability criteria is the topic of a large amount of scientific papers,
most of which are presented in conferences and workshops dedicated to ship stability [25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and many others]. As related by Francescutto [34], it
was decided to focus on the five following possible stability failures:

e Pure loss of stability due to reduced righting lever on a wave crest in following or stern
quartering seas, leading to excessive heel angle or capsize;
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e Parametric resonance in roll motion, due to variation of righting lever in waves;

e Broaching, i.e. excessive heel angle or capsize due to loss of course-keeping ability in surf-
riding condition;

e Dead ship condition, i.e. ship without propulsion in beam waves and wind;
e Excessive accelerations in roll motion.
Moreover, it was decided to structure these new rules in a three-level approach with:

o A first level of assessment, based on a simplified physical and deterministic approach of
the phenomena, eventually requiring basic hydrostatic computations and consequently
ensuring large safety margins.

e A second level of assessment, based on a more-accurate physical analysis of the
phenomena and considering hydrostatics in waves through a probabilistic approach.
Hence, safety margins are expected to be reduced.

e A direct assessment, consisting in numerical simulations of the ship’s behavior in waves
and presumably allowing more awareness about safety margins.

Although this is not clearly written in the future regulation, the first level should be
implemented by any shipyard or naval architect since it requires no specific tool. The second
level should be implemented by shipyards or naval architects equipped with adequate
stability software (presumably currently under development) since only specialized institutes
would be able to perform direct assessment because of both the highly-specialized
personnel and the specific computing tools it requires.

A ship that would not pass the first level criteria is designated as “unconventional” by the
future regulation (Figure 7). In order to comply with future rules, a ship must comply with
the current rules [18] and with at least one level of each failure mode (Figure 7). Like the
current criteria, the future ones are intended for ships longer than 24 meters and not
intended for naval ships, for which the corresponding regulation is imposed by the state,
also ship-owner.

Nowadays, the first-and-second-level criteria of all five failure modes are fully defined in SDC
2/WP.4 and SDC 3/WP.5 [respectively 22 and 23]. Because of their relatively high complexity
compared to the current intact stability criteria [18], the definition of level-one and level-two
criteria is enriched by explanatory notes in SDC 3/WP.5 [23] providing explanations,
comments, guidelines and calculation methods. Table 1 lists where to find the definition of
level-one and level-two criteria of the five failure modes and their associated explanatory
notes.

The direct assessment is currently under development and expected to be reported as draft
guidelines at the 4™ session of the Sub-Committee on Ship Design and Construction (SDC4)
in the beginning of 2017 and finalized at the 5™ session (2018). The second generation intact
stability criteria are expected to enter into force firstly on part B as recommendations at the
earliest in 2019. Umeda and Francescutto provide the current status of the development of
the second generation intact stability criteria in [35].
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Table 1 — References of new intact stability criteria and the associated explanatory notes.
Objective

Both pure loss of stability and parametric roll failure modes are consequences of the
variation of the restoring moment in longitudinal waves. The former is a single-wave effect
since the latter is due to the repetition of the encounter of the waves. However, both
require the same tool to compute the restoring moment in waves.

The aim of the work performed within the scope of this to analyze the requirement and the
relevance of the first- and second-level criteria of both failure modes. This requires to
implement these criteria in a computer code able to perform computation in longitudinal
waves. Calcoque software is used for this. This hydrostatic tool is developed and used at the
French Naval Academy for academic and research activities. Hence, the first part of the work
consists in rendering it able to perform hydrostatic computations in longitudinal waves and
then implement the level-one and level-two criteria of pure loss of stability and parametric
roll failure modes.

The criteria are computed for several ships of different types, both civilian and military,
selected for their different expected behaviors with regard to both failure modes. Since the
aim of the work is to evaluate criteria rather than ships, considering the loading conditions
of ships does not matter as long as criteria are computed in the usual range of ships’
displacement or draft. Consequently, results are provided as KGpnax curves, giving the
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maximum height of the center of gravity with regard to a specific criterion (or a set of
criteria) as a function of the displacement or the draft.

Usually, KGax curves are included in the stability booklet. They allow the crew to assess the
stability with regard to the regulation applied to the ship without any complex computation
rather than KG. Here, considering KGax curves allows the comparison of the requirement of
the criterion of each level and the comparison of different computation methods proposed
for a specific criterion in order to determine the efficiency and the relevance of the new
criteria. It also allows comparing the requirement of the new criteria with that of the current
intact stability rules applied on the considered vessel. Although this is not the aim here, the
comparison of the requirement of both current and new criteria allows assessing the
vulnerability of the ship with regard to the considered failure mode.

Outline

The first chapter provides a presentation of the second generation criteria of level one and
level two of both pure loss of stability and parametric roll failure modes. In particular, the
method used in this thesis to compute the second check of level-two parametric roll
criterion is thoroughly detailed.

The second chapter describes the main algorithms used in the Calcoque software to
compute the equilibrium, the metacentric height and the righting arm in both calm water
and longitudinal static waves. A general presentation of the software and its uses at the
French Naval Academy and onboard several French Navy ships is provided in Annex 1. All
geometric considerations are made in a unique ship-fixed coordinate system presented in
Annex 4.

The third chapter provides results of future criteria of both pure loss of stability and
parametric roll failure modes applied to six civilian vessels and three military vessels. It also
proposes a focus on the second check of the parametric roll level-two criterion, which has an
unusual behavior compared to other current and future criteria. The influence of the ship’s
speed is analyzed. The application of second generation intact stability criteria to naval
vessels is argued in this chapter. The nine selected vessels are presented in Annex 2.

The second check of level-two criterion of parametric roll requires the computation of the
maximum roll angle in resonance condition. Since both methods proposed by the future
regulation are relatively complex to implement, the fourth and last chapter proposes an
alternative method based on an energy analysis of the phenomenon and assuming a linear
righting lever. This method is close to the analysis of parametric roll proposed by Kerwin in
1955 [12]. The associated mathematical proofs are deported in Annex 3.

The symbols used in this thesis are defined twice, inline when appearing for the first time
and gathered in a glossary proposed in page 151. They are in accordance with the
recommendations of the International Towing Tank Conference (ITTC, [71]) except the draft,
denoted by d instead of T, for consistency with the text of both the current and future
regulations [18, 22 and 23].
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CHAPTER 1. SECOND GENERATION INTACT STABILITY CRITERIA

1.1. PURE LOSS OF STABILITY FAILURE MODE
1.1.1. Physical Background and General Information

Physical Background

When a ship is sailing in waves, the geometry of the submerged part of her watertight
volume significantly changes. In longitudinal waves, i.e. in pure head seas or following seas,
there is no transverse excitation. Hence, any transverse stability problem other than that in
still water could be overlooked. However, the geometry of the waterplane, which is no
longer flat, also significantly changes. Hence, its inertia and the associated metacentric
heights vary with the wave encounter. Consequently, a risk of insufficient transverse stability
exists possibly leading to large heel angle or even to capsizing.

Figure 8 shows the GZ curves in waves and in calm water computed for the C11 container
vessel (presented in Annex 2) at a draft equal to 12 m and a KG equal to 18 m. The wave is
sinusoidal and longitudinal. Its length is equal to the ship’s length (262 m) and its height is
equal to 8.75 m, corresponding to a wave steepness (i.e. ratio height over length) equal to
0.0334 (this value is proposed in the future regulation and is presented in this chapter). Ten
positions of the ship relative to the wave are considered. Both curves corresponding to the
maximum and minimum metacentric height (GM) in waves are colored in red (the dashed
one corresponds to the minimum GM). Maximum and minimum values of the GM are
respectively equal to 5.07 m and 0.31 m. The average value of the GM in waves is equal to
2.62 m since the GM in calm water (solid blue curve) is equal to 2.22 m.

2.5

GZ (m) ——GZin waves
=== &7 in waves, min. GM

——GZ in waves, max. GM

2.0 === GZin waves, average

—GZ in calm water

15 A

1.0 A

0.5 -

0.0 === : : : . . x ‘
0 10 20 30 40 5o Heel(deg) ¢o

Figure 8 — GZ in waves and in calm water.
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Influence of the Hull Form

The displacement volumes corresponding to the maximum and minimum GM are
respectively shown in Figure 9 and Figure 10. The hull is wall-sided amidships and flare-sided
at the bow and at the stern (see Figure 110 in Annex 2 page 119). In Figure 9, the wave
crests are centered at the bow and the stern. The waterplane area is larger than that in still
water and so is its inertia. The associated GM is thus increased. In Figure 10, the wave crest
is centered amidships. The waterplane area and its inertia are lower than in still water. Thus,
the corresponding GM is also lowered.

Consequently, the hull form has a direct effect on the GM variation in longitudinal waves.
The more the hull is flared at the bow and at the stern, the larger the GM variation is. A ship
having a wall-sided hull over a major part of its length, such as the tanker presented in
Annex 2, would have a low GM variation in waves and would thus be expected not to be
vulnerable to the pure loss of stability.

Moreover, it is expected that the most critical wave has a length almost equal to the ship’s
length. In other configurations, the wave steepness seen along the hull is reduced (causing
low GM variation) and the ship only pitches in long waves or surges in short waves.

Figure 10 — Displacement volume corresponding to the minimum GM in waves.

Influence of the Speed

Even if the GM reduction occurring when the wave crest is centered amidships is large, the
ship should not capsize or even attain a large heel angle if the time in this critical
configuration is too short. This time is function of the wave encounter frequency.
Consequently, the ship’s speed also has a great importance in the phenomenon. To
maximize the time in the critical configuration, the ship must be in following seas at a speed
equal to that of the wave crests. Hence, the corresponding Froude number is 0.4. The
phenomenon cannot occur in head waves and should be reduced if the ship is clearly unable
to attain a speed corresponding to such a Froude number. That is why these new criteria are
intended for ships having a service speed Froude number larger than 0.24.
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1.1.2. Level One

General Principles

The first level criterion of pure loss of stability failure mode considers waves having a
steepness Sy equal to 0.0334. This value is calculated from the wave scatter diagram taken
from recommendation 34 of the International Association of Classification Societies (IACS,
[69]). The calculation method is described in the explanatory notes of the future regulation
(SDC 3/WP.5, Annex 4, Appendix 1, [23]).

The minimum transverse metacentric height in waves (denoted by GM,i,) must be higher
than 5 centimeters. Two methods are proposed to calculate its value.

First Method

The first method considers that the moment of inertia of the waterplane area in waves is
equal to that of the parallel waterplane area in calm water at a lowest draft (denoted by d,)
as shown in Figure 11 (the waterplane at lowest draft is the grey area). The lowest draft d, is
calculated as follows:

LSy,
d, =d-— (d — 0.25d T) (1)
With:
d (m) draft corresponding to the considered loading condition in calm water
(black line in Figure 11);
drui (m) draft, full load;
L (m) ship’s length;

Sw 0.0334 wave steepness.

In most cases, the lowest draft can be simplified as follows:

LS
d=d-—% )
2
Then, the minimum metacentric height in waves is calculated as follows:
I
GMminzKB+V—KG (3)
With:
KB (m) height of the vertical center of buoyancy in calm water;
I (m*) moment of inertia of the water-plane area at lowest draft d, (grey area in
Figure 11);
\Y (m?) volume of displacement;
KG (m) height of the vertical center of gravity.
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Figure 11 — Parallel waterplane at lowest draft d,.

Second Method

The second method consists of computing the minimum metacentric height of the ship
balanced in trim and sinkage on sinusoidal waves. The wave length is equal to the ship’s
length L and the height is h=SyL. The wave crest is centered at the longitudinal center of
gravity and at each L/10 forward and aft thereof.

1.1.3. Level Two

General Principle

The second level consists of a probabilistic approach of the phenomenon associated with a
wave scattering table. For an unrestricted sailing area, the new regulation imposes that
included in the IACS Recommendation 34 corresponding to the Northern Atlantic (Table 2,
from [69]). In this table, which lists 16 wave periods and 17 wave heights, 197 waves have a
non-zero number of occurrence. The new regulation allows using another wave scattering
table if the ship is sailing in a restricted area.

Hs (m) Zero-crossing period, Tz (s)

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 115 12.5 13.5 14.5 15.5 16.5 17.5 18.5
0.5 13 133.7 865.6 1186 634.2 186.3 36.9 5.6 0.7 0.1 0 0 0 0 0 0
1.5 0 29.3 986 4976 7738 5569.7 2375.7 703.5 160.7 30.5 5.1 0.8 0.1 0 0 0
2.5 0 2.2 197.5 2158.8 6230 7449.5 4860.4 2066 644.5 160.2 33.7 6.3 1.1 0.2 0 0
3.5 0 0.2 349 695.5 3226.5 5675 5099.1 2838 1114.1 337.7 84.3 18.2 3.5 0.6 0.1 0
4.5 0 0 6 196.1 1354.3 3288.5 3857.5 2685.5 1275.2 455.1 1309 319 6.9 1.3 0.2 0
5.5 0 0 1 51 498.4 1602.9 2372.7 2008.3 1126 463.6 150.9 41 9.7 2.1 0.4 0.1
6.5 0 0 0.2 12.6 167 690.3 1257.9 1268.6 825.9 386.8 140.8 42.2 10.9 2.5 0.5 0.1
7.5 0 0 0 3 52.1 270.1 5944 703.2 5249 276.7 111.7 36.7 10.2 2.5 0.6 0.1
8.5 0 0 0 0.7 15.4 979 2559 350.6 2969 1746 77.6 27.7 8.4 2.2 0.5 0.1
9.5 0 0 0 0.2 4.3 33.2 1019 159.9 152.2 99.2 48.3 18.7 6.1 1.7 0.4 0.1
10.5 0 0 0 0 1.2 10.7 37.9 67.5 71.7 51.5 27.3 11.4 4 1.2 0.3 0.1
11.5 0 0 0 0 0.3 3.3 13.3 26.6 31.4 24.7 14.2 6.4 2.4 0.7 0.2 0.1
12.5 0 0 0 0 0.1 1 4.4 9.9 12.8 11 6.8 3.3 13 0.4 0.1 0
13.5 0 0 0 0 0 0.3 1.4 3.5 5 4.6 3.1 1.6 0.7 0.2 0.1 0
14.5 0 0 0 0 0 0.1 0.4 1.2 1.8 1.8 1.3 0.7 0.3 0.1 0 0
15.5 0 0 0 0 0 0 0.1 0.4 0.6 0.7 0.5 0.3 0.1 0.1 0 0
16.5 0 0 0 0 0 0 0 0.1 0.2 0.2 0.2 0.1 0.1 0 0 0

Table 2 — IACS wave scatter diagram (from [69]).

The ship is found to be non-vulnerable to the pure loss of stability if both values of CR1 and
CR2 are lower than Rpg=0.06. CR1 and CR2 are computed as follows:
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197 197

CR1 =ZWiCli CR2 =ZWiC2i 4)
i=1 i=1
With:
W, weighting factor of the wave number i taken from Table 2 (number of occurrences
divided by 100,000);
C1; coefficient for the wave number i regarding the minimum angle of vanishing
stability @y min (Figure 12);
C2 coefficient for the wave number i regarding the maximum angle of stable
equilibrium @ . under action of a heeling lever Rp 3 (Figure 12).
0.25 -
GZ (m)
0.20 - GZ
0.15 -
RPL3
0.10 -
0.05 -
0,00 . . . . I-Ileel (deg.)
10 20 D 30 40 50
(DV
-0.05 -
-0.10 -

Figure 12 — Righting arm curve on static wave with angle of stable equilibrium under heeling lever Rp 5 (Ds) and
angle of vanishing stability (®y).

Waves are supposed to be sinusoidal. Their height is from Table 2 (Hs is twice the wave
amplitude). Their length A is linked to their zero-crossing period T; (Table 2) by the infinite-
depth relation:

T2
1= 9’z (5)
21
For each wave, the heeling lever Rp 3 is defined as follows:
H
RPL3 = 875an2 (6)

The minimum angle of vanishing stability (®yvmin) and the maximum angle of stable
equilibrium (®s max) are computed for the 197 non-zero-weighted waves of the wave scatter
diagram and used to calculate C1; and C2; as follows:
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1 if ®ymin < Rpp1 1 if ®smin > Rpro
Cl: = min C2. = min 7
¢ {O otherwise : {O otherwise @

With:
Reiz 30 degrees;

Reiz 25 degrees (15 degrees for passenger vessels).

Effective Wave Height Concept

Since the number of non-zero-weighted waves is large, the new regulation proposes a
method to make the computation faster. This method is based on the effective wave height
concept proposed by Grim [65]. For each wave of the scattering diagram (Table 2) defined by
its zero-crossing period (Tz) and significant height (Hs), this method consists in computing an
effective height of the 3% highest waves Hiy et corresponding to an equivalent wave whose
length A is equal to the ship’s length L. This effective wave provides the ship with the same
energy than the original wave.

The effective wave height is calculated according to the following formulae:

HS)) = 5.9725,/m, (8)
3 szsin (sz) 2
wj, - 2_
m =] g gz AwSexp(—Bw™")dw 9
001wy | 2 _ w2l
k 29 J
A =173HZT4t (10
B = 691T;* (11)
T01 - 1.086TZ (12)
13
297 (13)
oL= |7

Table 3 gives the effective wave heights computed according to this method for some
vessels described in Annex 2 and associated to the waves of Table 2 having a zero-crossing
period (T;) equal to 10.5 seconds.

For a given ship, all effective waves have the same length. We consider 11 effective waves
having a height from zero to the maximum effective height corresponding to the length and
all wave cases of the considered scatter diagram (Table 2). The minimum angle of vanishing
stability (Dv.min) and the maximum angle of stable equilibrium (®s .y are pre-calculated for
these 11 waves. This requires the computation of one GZ curve in calm water for the first
effective wave whose height is equal to zero. For each of the 10 other effective wave
heights, this requires the computation of 10 GZ curves considering the ship balanced in trim
and sinkage and for the wave crest centered at the longitudinal center of gravity and at each
A/10 forward and aft thereof.

Then, the values of @y i, and ®s max, required to calculate coefficients C1; and C2; associated
to all wave cases of the scatter diagram, are simply calculated by linear interpolation in the
interval formed by 2 successive values of the 11 previously considered effective heights.
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DTMB-5415 Container Container Ro-Ro Tanker

Hs (m) L=142m L=262m L=319m L=135m L=227.5m
0.5 0.430 0.539 0.538 0.417 0.526
1.5 1.289 1.618 1.614 1.251 1.579
2.5 2.149 2.697 2.691 2.085 2.631
3.5 3.008 3.776 3.767 2.919 3.683
4.5 3.868 4.855 4.843 3.753 4.736
5.5 4.727 5.934 5.919 4.587 5.788
6.5 5.587 7.013 6.996 5.421 6.841
7.5 6.446 8.092 8.072 6.255 7.893
8.5 7.306 9.171 9.148 7.089 8.945
9.5 8.165 10.250 10.225 7.923 9.998
10.5 9.025 11.329 11.301 8.757 11.050
11.5 9.884 12.408 12.377 9.591 12.103
12.5 10.744 13.487 13.453 10.425 13.155
13.5 11.603 14.566 14.530 11.258 14.207
145 12.463 15.645 15.606 12.092 15.260
15.5 13.322 16.724 16.682 12.926 16.312
16.5 14.182 17.803 17.758 13.760 17.365

Table 3 — Effective height of the 3% highest waves (m) for a zero-crossing period equal to 10.5 seconds.
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1.2. PARAMETRIC ROLL FAILURE MODE
1.2.1. Historical and Physical Background

Simplified Approach

As previously shown in pure loss of stability failure mode, the restoring moment and the
transverse metacentric height of a ship change while sailing in longitudinal waves. This
phenomenon may occur to a lesser extent in quartering seas. Although longitudinal waves
provide no transverse excitation, an amplification of the roll motion is possible if the wave
encounter repeats the variation of restoring moment during a sufficiently long time in some
particular conditions.

This phenomenon can appear if the GM variation frequency (equal to the roll encounter
frequency) is twice the ship’s natural roll frequency. If a ship rolls while the wave trough is
centered amidships, the resulting increased GM provides a strong restoring moment and
greatly accelerates the ship to the opposite side. As the ship approaches the upright
position, her position in wave has changed and the wave crest is now centered amidships,
reducing the restoring moment. Due to her inertia and roll speed, the ship rolls further to
the opposite side, assuming the damping has a moderate effect. Then, the ship attains her
maximum roll angle on this side when the next wave trough arrives amidships, repeating the
cycle.

This simplified approach shows the conditions of appearance of parametric roll:

e The ship sails in head or following seas, possibly in bow or stern-quartering seas.

e The wave encounter frequency is twice the ship’s natural roll frequency.

e The hull geometry provides sufficient restoring moment variation in longitudinal waves.

e The roll damping has a moderate effect.

Historical background

Parametric roll is a sort of parametric resonance, also called parametric pumping. This
phenomenon is characteristic of oscillating systems having variations in their stiffness
constant. It has long been known in several scientific domains. Since Galeazzi recently
provided a detailed historical review in his thesis [47], we quote here only few important
references.

Parametric pumping was already known and used in the Middle Ages. Known under the
name of “O Botafumeiro”, a 170-kg censer hangs in the transept of the cathedral of Santiago
de Compostela (Spain). Its pendulum motion is excited by eight men using a cylinder varying
the length of the rope. Sanmarin provides a detailed mechanical and mathematical analysis
of this ingenious system [15].

In the 19" Century, parametric resonance was studied by mathematicians and naval
architects [8 and 9]. In [9], Mathieu laid the basis of the mathematical analysis of this
phenomenon. His name was given to the differential equation that governs it:

d*x

75 + w3(1+ gycost) =0 (14)
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Parametric resonance is also used in optical oscillators as demonstrated by Giordmaine and
Miller [13].

In 1955, Kerwin provided a detailed analysis of the parametric resonance applied to the roll
motion of ships [12]. As he recognized, his mathematical work had no practical application
on ships at that time.

However, Kerwin was visionary and parametric roll was highlighted a few decades later by
several accidents on large container vessels. In particular, the APL China suffered from a
severe parametric roll accident in the Northern Pacific Ocean in October 1998 [41]. This
unexpected accident has been extensively studied and is part of the bases of the new
generation criteria. Figure 112 page 119 shows some damage resulting from this accident.

Several similar accidents have occurred since that date, such as that of the Maersk Carolina
in the Northern Atlantic in January 2003 [45] (Figure 4 page 13).

Although this phenomenon has become well-known by ship-masters, ship-owners and naval
architects nowadays, it generates high safety and financial risk (respectively over S50 million
and S4 million for the accidents that occurred on APL China and Maersk Carolina). Hence, it
is one of the five failure modes considered in the new intact stability criteria developed by
the IMO.

Modes of Parametric Resonance

Parametric resonance exists when the constant stiffness of the considered system varies
according to a frequency that is twice a sub-multiple of the natural oscillating period of the
system:

2 (15)
We = Zwo
With:
n - mode of parametric resonance: 1, 2, 3, 4, ...;
®e (rad/s) frequency of variation of the stiffness constant of the considered system;
™o (rad/s)  natural frequency of the considered system.

Applied to the roll motion of a ship in longitudinal waves, the stiffness constant is the
metacentric height (GM) and varies with the wave encounter frequency (®.) while g is the
ship’s natural roll frequency.

Hence, the first mode of parametric resonance occurs when the encounter frequency is
twice the ship’s natural roll frequency. The second mode occurs when both frequencies are
equal and the third mode when the encounter frequency is 2/3 of the roll frequency.

Parametric resonance is stronger at first mode and decreases as the mode increases.
Consequently, the first mode of parametric roll, occurring when the encounter frequency is
twice the natural roll frequency, provides the largest risk for the ship and is considered prior.
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1.2.2. Level One

General Principles

While the pure loss of stability failure mode is a single-wave incident, the parametric roll
results from the encounter of similar waves (having almost the same period) during a
sufficiently long time to allow a significant amplification of the roll motion. Consequently,
the considered wave height is reduced to that of the 1/3 highest waves instead of 3%. The
associated wave steepness (Sw) is equal to 0.0167 (instead of 0.0334 in pure loss of stability).
This value is also calculated from the wave scatter diagram taken from the IACS
recommendation number 34 with the same method than that of pure loss of stability (see
SDC 3/WP.5, Annex 4, Appendix 1, [23]).

The first level of parametric roll requires that the non-dimensional amplitude of the variation
of the metacentric height in waves (AGM/GM) is less than a coefficient Rpr. This coefficient
depends largely on bilge keel area and to a lesser extent on the midship section coefficient
(denoted by C,,). The calculation method is described in SDC 2/WP.4 (Annex 2, [22]). The
value of Rpg is comprised between 0.17 (ship with no bilge keels) and 1.87 (ships with large
bilge keels).

The new regulation proposes two methods to calculate the variation of metacentric height in
waves (denoted by AGM). They are described hereunder.

First Method

The first method of level-one criterion of parametric roll failure mode is similar to that of
pure loss of stability. Here, the first method considers that the minimum and maximum
moments of inertia of the waterplane area in waves are respectively equal to that of parallel
waterplanes at a lowest draft d. (Figure 11 page 20, grey area) and at a highest draft dy
(Figure 13 page 27, dashed line). Both drafts are calculated as follows:

] LSy, ) LSy,

d, =d —min (d - O.25dfu”;7) dy =d+ min (D - d;T> (16)
d (m) draft corresponding to the loading condition;
P (m) draft, full load;
D (m) ship’s depth;
L (m) ship’s length;
Sw 0.0167 wave steepness.
In most of cases, both drafts can be simplified:

LS LS
dL=d—TW dH=d+TW (17)

Then, the amplitude of the variation of the metacentric height in waves is calculated as
follows:

Iy — 1
2V

AGM = (18)

With:
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Iy (m%) moment of inertia of the parallel waterplane associated with the highest
draft dy;

I (m*) moment of inertia of the parallel waterplane associated with the lowest
draft d;

I

S
~
S~
~———
-

Figure 13 — Parallel waterplane at highest draft dy.

Second Method

The second method consists in computing 10 metacentric heights of the ship balanced in
trim and sinkage in sinusoidal waves. The wave length is equal to the ship’s length L and the
height is h=SyL. The wave crest is centered at the longitudinal center of gravity and at each
L/10 forward and aft thereof. The minimum and maximum values of GM are used to
calculate AGM as follows:

GMmax - GMmin

AGM = 19
G > (19)

1.2.3. Level Two

The parametric roll level-two is divided in two checks marked C1 and C2, consisting of two
independent probabilistic approaches of the phenomenon. The ship is found to be non-
vulnerable to parametric roll if any of the values of C1 and C2 are lower than Rpro=0.06.

First Check

The first check considers a shortlist of weighted waves calculated from the chosen wave
scatter diagram according to the method described in the explanatory notes of the future
regulation (SDC 3/WP.5 [23]). Table 4 shows this wave list calculated from the IACS wave
scatter diagram [69] shown in Table 2.

The value of the C1 coefficient, associated with the first check, is computed as follows:
16
C]. = ZWLCL (20)
i=1

Wi is the wave weighting factor from the shortlist (Table 4). C; is equal to 0 if any of the
conditions A or B is satisfied, 1 otherwise.

Condition A is:
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With:

GM; (m)
Condition B is:
And:

Vs (m/s)
Vpr.i (m/s)
Ai (m)
To (s)
GM; (m)
GMo  (m)

AGM,;

GM; > 0 n G,

< Rpp 21)

average value of the 10 metacentric heights computed for wave number i,
with the wave crest centered at the longitudinal center of gravity and at
each Ai/10 forward and aft thereof;

half of the difference between the maximum and the minimum values of
the 10 metacentric heights.

. 24 |GM; g4
Vpri > Vs With Vpri = T o~ | 7n (22)
0 0

ship’s speed;

reference speed corresponding to the first mode of parametric roll
(encounter frequency is twice the ship’s natural roll frequency); the
relationship which gives its value is demonstrated in Annex 3 (page 126);

wave length (from the shortlist, Table 4);
natural roll period of the ship in calm water;
as defined above;

metacentric height in calm water.

This criterion considers that, for each wave in the shortlist, the ship cannot attain the speed
corresponding to the parametric resonance condition, otherwise the metacentric height in
wave must remain positive and its variation must be acceptable.

Wave number i Weight W; Wave length A; (m) Wave height H; (m)
1 0.000013 22.574 0.350
2 0.001654 37.316 0.495
3 0.020912 55.743 0.857
4 0.092799 77.857 1.295
5 0.199218 103.655 1.732
6 0.248788 133.139 2.205
7 0.208699 166.309 2.697
8 0.128984 203.164 3.176
9 0.062446 243.705 3.625
10 0.024790 287.931 4.040
11 0.008367 335.843 4.421
12 0.002473 387.440 4.769
13 0.000658 442.723 5.097
14 0.000158 501.691 5.370
15 0.000034 564.345 5.621
16 0.000007 630.684 5.950

Table 4 — Wave cases for the first check of parametric roll level-two criterion.
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Second Check
General Principle

The second check of level-two parametric roll condition, which can be assessed only if the
first check is not fulfilled, considers the maximum roll angle in each wave of a specified
scattering diagram. As for the pure loss of stability failure mode, the new regulation imposes
the scattering diagram proposed by IACS corresponding to the Northern Atlantic (Table 2,
from [69]) for sailing in unrestricted areas, and allows the use of another diagram for sailing
in restricted areas.

The C2 coefficient is associated with the second check. Its value, which must be lower than
Rpro=0.06 to fulfill the criterion, is calculated from the maximum roll angle of the ship on
each of the non-zero-weighted waves of the wave scatter diagram considering 7 speeds. For
a given wave and a given speed, the maximum roll angle is the maximum absolute value of
the solution ¢(t) of the differential equation of parametric roll, which can be established as
follows:

Jaa® + Bas@ + WGZ(p, t) = 0 (23)
With:
[0} (rad) roll angle;
Jaa (kg.mz) roll moment of inertia, including added mass;
Bas (N.m.s/rad) damping coefficient;
W (N) ship’s weight;
GZ(p,t) (m) righting arm, function of both the roll angle ¢ and time t, varying with

the wave encounter frequency;

The C2 coefficient is calculated as follows:
197 7
1
Cc2 =§ZZW1C2U (24—)
=1 j=1
The weighting factor W; is extracted from the wave scattering table (Table 2, number of
occurrences divided by 100,000). The coefficient C2;; is equal to 1 if the maximum roll angle

of the o¢(t) function solution of the differential equation (23) for wave number i and the
speed K;Vs is higher than 25 degrees, 0 otherwise. The speed factors K;j are given in Table 5.

Effective Wave Concept

Since the number of non-zero-weighted waves in the scattering table may be large, the new
regulation imposes the use of the Grim effective wave height concept [65] to make the
computation faster. The methodology is similar to that used in pure loss of stability.
However, the considered effective height is that of the 1/3 highest waves. It is calculated as
follows:

H{T = 4.0043,/m, 25)

3

The maximum roll angle ®a is pre-computed by solving the differential equation (23) for 10
effective waves whose heights are a fraction (from 0.1 to 1) of the maximum effective wave
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height corresponding to the ship’s length and the wave scatter diagram. The maximum roll
angle associated with any effective wave height is calculated by linear interpolation. Table 6
gives the effective wave heights (in meters) computed according to the Grim method for
some vessels and associated to the waves of Table 2 having a zero-crossing period (Tz) equal
to 10.5 seconds.

Number j Speed factor K;
1 -1
2 -0.866
3 -0.5
4 0
5 0.5
6 0.866
7 1
Table 5 — Speed factors K;.
Hs (m) DTMB-5415 Container Container Ro-Ro Tanker
L=142m L=262m L=319m L=135m L=227.5m
0.5 0.288 0.362 0.361 0.280 0.353
1.5 0.865 1.085 1.082 0.839 1.059
2.5 1.442 1.809 1.804 1.399 1.764
3.5 2.018 2.532 2.525 1.958 2.470
4.5 2.595 3.256 3.247 2.518 3.176
5.5 3.171 3.979 3.968 3.077 3.882
6.5 3.748 4.703 4.690 3.637 4.587
7.5 4.325 5.426 5.411 4.196 5.293
8.5 4,901 6.149 6.133 4.756 5.999
9.5 5.478 6.873 6.854 5.315 6.705
10.5 6.054 7.596 7.576 5.875 7.410
115 6.631 8.320 8.297 6.434 8.116
12.5 7.208 9.043 9.019 6.993 8.822
13.5 7.784 9.767 9.740 7.553 9.528
14.5 8.361 10.490 10.462 8.112 10.234
15.5 8.937 11.214 11.183 8.672 10.939
16.5 9.514 11.937 11.905 9.231 11.645

Table 6 — Effective height of the 1/3 highest waves (m) for a zero-crossing period equal to 10.5 seconds.

The future regulation proposes two different methods to compute the maximum roll angle.
They are briefly described hereunder. Both methods consider a non-linear GZ, which renders
their implementation relatively complex, especially for naval architects accustomed to the
simplicity of the current intact stability regulation [18]. However, the linear-GZ option was
considered as shown in a paper presented by Umeda at the International Ship Stability
Workshop held in Brest in 2013 [30]. In Chapter 4, we propose a simplified method providing
the maximum parametric roll angle assuming a linear GZ (Section 4.4 in page 97).

First Method: Analytical Solution of the Differential Equation

The first method is described in SDC 3/WP.5, Annex 4, Appendix 5 [23]. It is based on an
averaging method, which provides an analytical solution for non-linear oscillators such as
parametric ones. The method assumes non-linearity as small disturbances which make a
slow evolution of the system response. Thus, the inertia and linear component of the
restoring moment (GM) are assumed as leading characteristics since the non-linearity in the
restoring moment and its variations have small magnitude. The averaging method is
thoroughly described in [66].
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This method requires a polynomial fit of the GZ curve in calm water at odd-degree (5th
degree or higher). It provides directly the maximum roll angle, calculated as the solution of a
scalar equation.

Second Method: One-Degree-of-Freedom Numerical Simulation

The second method consists in solving the differential equation (23) with a time-domain
numerical simulation in one degree of freedom (1-DoF). During the 12™ International
Conference on the Stability of Ships and Ocean Vehicles, held in Glasgow (UK) in June 2015,
Peters et al. formulated some recommendations for this numerical solving [32]. Their
propositions are included as guidelines in the new regulation (SDC 3/WP.5, Annex 4,
Appendix 3, [23]).

This second method is used in this thesis. It is described in more detail in Section 1.2.4.

Comparison of Both Methods

The first method (analytical solution) is not used in this thesis. However, a student project
recently carried at the French Naval Academy showed very good accordance between
results given by both methods for the C11 container vessel (described in Annex 2) in one
condition of parametric roll [74].

1.2.4. Maximum Roll Angle and KGmnax computation

This section describes the method used in this thesis to solve the parametric roll differential
equation (23) with a one-degree-of-freedom numerical situation in order to calculate the
maximum roll angle.

Moment of Inertia

The moment of inertia J44 is calculated as follows:

Jas = A1 + a)(kB)? (26)
With:
A (kg) ship’s displacement;
a - added mass coefficient;
k - radius of inertia coefficient;
B (m) ship’s breadth.

The ship’s natural roll period in calm water (Ty) is linked to her moment of inertia as follows:

T, = 21 |24 = 2mkp [ 27)
0= A fgaem ~ “™C [gem

With:

g 9.81 m/s? gravitational acceleration;

GM (m) metacentric height in calm water.
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When the ship’s roll period is known, the coefficients a and k are chosen in consequence.
Otherwise, the coefficient a is set to 0.1 and k to 0.4. Values of both coefficients are given in
Table 15 and Table 16 (Annex 2 pages 118 and 123) respectively for civilian and naval ships.

Roll Damping

The roll damping coefficient Bs4 is calculated according to the method proposed by
Kawahara, Maekawa and lkeda [50]. The ship’s speed is taken into account though the lift
component according to the method proposed by lkeda, Himeno and Tanaka [48]. The
explanatory notes of parametric roll criteria give both methods (SDC 3/WP.5, Annex 4,
Appendix 4, [23]). The roll damping coefficient B4, depends on the roll amplitude (@, in [50]).
Here, B4s is pre-computed for 11 values of roll amplitude from 1 to 50 degrees and
calculated by linear interpolation during the solving of the differential equation, using the
value of the current roll amplitude. The roll damping coefficient B44 also depends on the
distance between the center of gravity and the calm water surface (OG in [50]) and on the
ship’s roll period (Ty). Both are linked to the KG. Thus, the pre-computation of B4 for all roll
amplitudes is required in all iterations of the search of KGyay.

Righting Arm

The righting arm is calculated according to a simplified method proposed by Peters, Belenky,
Chouliaras and Spyrou [32] and the new regulation (SDC 3/WP.5 [23]). This method consists
in modulating the GZ in calm water by the GM in waves as follows:

GZ(¢) = GZy (@) — (GMy — GM,pp, — AGM. sin(w,t)) sin ¢ (28)
With:
GZo(p) (m) righting arm in calm water associated to a user-defined height of the
center of gravity (KGy);
GMg (m) metacentric height in calm water associated with KGg.
GMpmoy (M) average value of the metacentric height in waves, associated with the
considered KG, which may differ from KGy;
AGM  (m) amplitude of the variation of the metacentric height in waves;
Me (rad/s) wave encounter frequency.

Belenky, Bassler and Spyrou showed that this simplified method gives acceptable values of
GZ up to an angle of 30 degrees [27]. Figure 14 shows the GZ curves resulting from this
method applied to the C11 container vessel in the conditions of Figure 8 (page 17). The real
GZ in waves in three configurations (maximum GM, minimum GM, average value of GZ in
waves) is drawn as solid lines (respectively blue, red and grey). The GZ in calm water
modulated by the GM in waves as dashed lines in the same configurations (same colors). We
also observe that the differences are negligible under 15 degrees and acceptable under 25
degrees.

Note: the first method proposed by the future regulation to compute the maximum roll
angle (analytical solution of the differential equation, page 30) also uses this approximation
of the GZ in waves.
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Since the C2 coefficient is increased if the maximum roll angle exceeds 25 degrees, this
approximation method can be used here. It makes the computation of maximum roll angle
and KGp,a faster. The righting arm in calm water (GZo) is pre-computed for heel angles from
0 to 50 degrees with a step equal to 5 degrees. During the simulation, its value for any roll
angle o is calculated by linear interpolation between two adjacent values. GMmo, and AGM
are computed before the simulation by computation of GM on the considered sinusoidal
wave with 10 positions of the ship on the wave. GMy,, is the average value of the 10
metacentric heights. AGM is half the difference between the maximum and the minimum
values. During the finding of KGnax, the value of GMp,, is updated with the considered value
of KG since the value of AGM remains unchanged.

GMmoy is used to calculate the ship’s natural roll period To, which is required to calculate the
damping coefficient Bas. Thus, if GMy,, is negative, the simulation is not possible and the C2
coefficient is forced to 1.

The wave encounter frequency . is calculated as follows:

ki

We = Wy, (1 + w,, (29)

With:
Ow (rad/s) wave frequency.

The speed factors K; are given in Table 5. The positive values correspond to head seas. The
negative values correspond to following seas.

3.5
GZ (m) ——GZinwaves,max.G™M | | e

——GZ in waves, min. GM - Rl
——GZ in waves, average

3.0 5 === GZ modulated, max. GM
=== GZ modulated, min. GM
=== GZ modulated, average 4

2.5 -

2.0 -

15 4

1.0 -

0.5 -

0.0

0 10 20 30 a0 Heel (deg.) 50

Figure 14 — Comparison of real GZ in waves and GZ in calm water modulated by the GM in waves for the C11

container vessel.
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Solving Method

The solving of the differential equation is performed with the Runge-Kutta 4™ order method.
The implementation of this method is detailed in Annex 3 page 128.

Initial Conditions

As proposed by Peters et al. [32] and the new regulation (SDC 3/WP.5 [23]), the initial roll
angle is equal to 5 degrees. The initial roll speed is null. The influence of an initial roll angle
equal to 10 degrees is tested in Section 3.3.4 page 75.

Simulation Duration

The time duration of the simulation is equal to 15 times the ship’s natural roll period. This
value is proposed by Peters et al. [32] and the new regulation (SDC 3/WP.5 [23]). Moreover,
it is validated by a series of computations performed with different durations, from 3 to 20
roll periods, which give the same KG, from 10 roll periods.

The simulation is interrupted if the roll angle exceeds 50 degrees.

Time Step

The time step is set to one 40" of the ship’s natural roll period. This value has been validated
by removing the damping and GM variation from the differential equation, to simulate an
undamped roll on calm water: The roll amplitude remains equal to the initial roll angle. This
test fails if the Euler method is used to solve the differential equation instead of the Runge-
Kutta method: the roll amplitude increases. Peters et al. [32] and SDC 3/WP.5 [23] propose a
time step equal to one 30" of the ship’s natural roll period.

Simulation Implementation

The hydrostatic computations are performed with Calcoque software as described in
Chapter 2. The water density is equal to 1.025 t/m>. The solving of the differential equation
and the damping coefficient calculation are also implemented in this software, in order to
permit a user-friendly computation of the C2 coefficient and the associated KG,ax curves.

KGmax computation

The KGnax associated with the second check of level-two parametric roll criterion, i.e. the
maximum value of KG ensuring the compliance with the criterion, is the highest value of KG
which gives a value of C2 lower than Rpre=0.06.

Since C2 is a discrete sum of weighting factors, the function C2 versus KG is not continuous.
Moreover, this function may have many local peaks when the ship is vulnerable to
parametric roll (see Section 3.3.2). These characteristics make inefficient a lot of root-finding
algorithms. Hence, we propose the following basic algorithm to find the value of KGay
associated with C2. It is performed in two steps.

First Step

The first step consists in finding a first value of KG for which the C2 coefficient is lower than
Rrro and a second value of KG for which C2 is larger than Rpge. Finding this interval begins at a
low value of KG for which C2 is lower than Rprg, near zero. This value of KG is named
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“Starting value of KG” and denoted by KGg.r. The value of KG is increased by 10 centimeters
at each iteration until C2 is higher than Rpgo.

Second Step

The second step consists of a classical dichotomy to find the highest value of KG for which C2
is lower than Rpro. The required precision is 0.1 mm. Since C2 is the sum of weighting
coefficients drawn from the wave scatter diagram (number of occurrences of each wave in
Table 2 divided by 100,000), it is not possible for C2 to be equal to Rpgo.

Table 7 shows the values of KG and C2 while finding the KG,. for the naval ship DTMB-5415
described in Annex 2 page 124 at a draft equal to 6.125 m. The associated KGp,ax is 9.2236 m
(in bold in Table 7).

First step: finding the interval

Iteration KG (m) Cc2 C2<Rppro
1 KGgtart = 7 0 Y
2 7.1 0 Y
3 7.2 0 Y
4 7.3 0 Y
5 7.4 0 Y
6 7.5 0 Y
7 7.6 0 Y
8 7.7 0 Y
9 7.8 2.86E-07 Y
10 7.9 1.57E-06 Y
11 8 4.29E-07 Y
12 8.1 0 Y
13 8.2 0 Y
14 8.3 0 Y
15 8.4 0 Y
16 8.5 0 Y
17 8.6 2.49E-05 Y
18 8.7 0.0293483 Y
19 8.8 0.017636 Y
20 8.9 0.00266057 Y
21 9 0.000234857 Y
22 9.1 3.13E-05 Y
23 9.2 0.0219234 Y
24 9.3 0.154703 N

Second step: dichotomy

Iteration KG (m) C2 C2<RPRO
25 9.25 0.0760626 N
26 9.225 0.0749527 N
27 9.2125 0.0371166 Y
28 9.21875 0.0449244 Y
29 9.22188 0.0462103 Y
30 9.22344 0.0464114 Y
31 9.22422 0.0740300 N
32 9.22383 0.0740291 N
33 9.22363 0.0502479 Y
34 9.22373 0.0740291 N

Table 7 — Finding the value of KG,,y.
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2.1.

CHAPTER 2. HYDROSTATIC COMPUTATION

The new generation criteria of both pure loss of stability and parametric failure mode,
presented in Chapter 1, require a hydrostatic solver which performs computations in static
longitudinal waves.

Calcoque is a three-dimension hydrostatic computer code developed at the French Naval
Academy for academic and research use. It computes equilibrium, intact and damage
stability and bending moment. The software can handle the current intact stability rules for
civilian ships [18] and the regulation applied in the French Navy for naval vessels [17]. A
detailed presentation of the software is proposed in Annex 1.

After improvements added within the scope of this thesis, the software is now able to
perform hydrostatic computations in longitudinal waves. Level-one and level-two criteria of
both pure loss of stability and parametric roll failure modes have been fully implemented.

This chapter describes the three main algorithms used to perform hydrostatic computations
in still water and in longitudinal waves. The first algorithm transforms the classical
representation of the ship’s hull by stations into a volume mesh made of tetrahedrons,
prisms and hexahedrons, which can have large dimensions without degradation of the
numerical result. The second algorithm cuts this volume mesh with a plane, generating one
volume sub-mesh on each side of the plane. This second algorithm is used by the third,
which finds the balance position of the ship in three degrees of freedom (sinkage, heel, trim,
two degrees if the heel is fixed while computing the GZ curve), in calm water and in static
waves with a real three-dimension approach.

The content of this chapter has been presented at the 12" International Conference on the
Stability of Ships and Ocean Vehicles, held in Glasgow (UK) in June 2015 [3]. Part of it is
proposed in a handbook [1].

GENERATION OF VOLUME MESH

The ship is classically designed with stations, which are a list of (Y, Z) points with the same
longitudinal coordinate X (see the ship-fixed coordinate system in Annex 4). Figure 15 shows
the stations of the Offshore Patrol Vessel (OPV) Adroit in service in the French Navy (see her
main particulars in Annex 2). The algorithm imposes the following constraints:

e Stations are ordered from aft to forward;

e Stations are symmetrical, defined on port side only;

e The first point of each station is on the ship’s centerline (Y=0);
e Vertical coordinates of the points are increasing (Zi+1>Z)).

This last constraint prevents the design of a multi-hull ship by sections. However, designing
such a ship or floating structure remains possible by considering the hulls as appendages
providing buoyancy.
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In addition to the stations, some lines are defined by the user. They connect some points of
stations in order to represent the main edges of the hull. A line starts at any station and ends
at any other one located forward. It has a unique point on each station it intersects and
cannot miss out any station. Two lines can intersect only at a station point.

Stations and lines (Figure 16) are used to generate a volume mesh of the ship through a
matrix algorithm which builds the N-1 strips defined by the N stations. For each strip
between stations indexed i and i+1, the process is divided in two steps.

Figure 16 — Station and lines of the OPV Adroit.

2.1.1. First Step

The first step consists of the generation of a matrix defining the links between all the points
of the station i and all the points of station i+1. Let us consider a strip defined by an aft
station with 5 points (port side only) and a forward station with 4 points. Let us consider 3
user lines. The first one links point 1 of the aft station to point 1 of the forward station (keel
line). The second one links point 2 (aft) to point 3 (forward). The third links point 5 (aft) to
point 4 (forward). The strip and its links are represented in Figure 17 (stations in black, lines
in grey).

Thus, a link matrix is defined with 5 rows associated with the 5 points of the aft station, and
4 columns associated with the 4 points of the forward station. The three user lines are
represented in this matrix by three black dots in the appropriate cells (Figure 18).

Each link in the matrix defines two restricted zones which are the upper right cells and the
lower left cells. This avoids considering a line which crosses another. In the current sample,
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the restricted zones defined by the second link (2—3) appear in grey in Figure 18. The other
links (1—>1 and 5—4) define no restricted zone.

1 2 3 4 <— Station i+1

5@ @ 4 1] e < Restricted
zwone
4 [ } 2 Y
3
30 3
92 4

2
5 °

1@ ® 1 X
T \Restricted

T ) . zone
Station i Station i+1 Station i

Figure 17 — Strip defined by two stations and three lines. Figure 18 — Link matrix associated with the strip.

Then, the matrix is automatically completed with other links by going from the upper left
corner to the lower right corner without missing out any cells while passing by all cells
associated with user links. A diagonal path is favored (link 1—1 to link 2—2). If not possible,
the path is horizontal (2—>2 to 2—3) or vertical (3—4 to 4—4). These added links are shown
as grey dots in Figure 19. They are materialized by dotted lines on the strip diagram (Figure
20).

1 2 3 4
1] e
2 o —re
’ I
L7
v
5 . !
Station i Station i+l
Figure 19 — Completed link matrix. Figure 20 — Strip diagram associated with the completed
link matrix.

2.1.2. Second Step

The second step consists of the generation of the volume and surface meshes defined by the
completed link matrix. A diagonal path (1—>1 to 2—>2 and 2—3 to 3—4) generates a
tetragon on each side of the hull and a hexahedron which connects both together. A
horizontal path (2—2 to 2—3) generates a triangle on each side of the hull and a prism,
whose bases are on the forward station. A vertical path (3—4 to 4—4 and 4—4 to 4—5) also
generates two triangles and one prism, but their bases are on the aft station. All triangles
and tetragons form the surface mesh of the strip while all prisms and hexahedrons form the
volume mesh. Figure 21 shows the surface mesh associated with the current sample.
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Flat volumes should be eliminated (same Z coordinate of the points). Some volumes may be
simplified: in the sample, the first hexahedron is a prism because the Y coordinate of the first
point of each station is null.

Both surface and volume meshes of the entire ship are created by concatenating
respectively surface and volume meshes of all strips. Figure 22 and Figure 23 show
respectively the surface and the volume meshes of the OPV Adroit.

The volume mesh may be corrected to represent the real hull. If necessary, it may be cut at
the watertight deck and the void spaces (bow thruster tunnel, water inlets and possibly
flooded rooms for damage stability ...) may be extracted. Both operations require a routine
to cut the mesh by a plane, described in the next section. Moreover, volume meshes of
appendages and propellers may be added. Figure 25 shows the watertight volume of the
OPV Adroit. Its appendages (rudders, bilge keels, shafts) and propellers, shown in Figure 24,
have been added. The struts are defined by surface meshes: they increase the ship’s
resistance but provide no buoyancy. Thus, they are not included in the watertight volume.
Water inlets on each side of the engine room and both housings of fast rafts on the aft lower
deck have been extracted from the mesh of the watertight volume.

Station i Station i+1

Figure 21 — 3D wireframe view of the strip and its surface mesh.

Figure 23 — Wireframe view of the volume mesh of the OPV Adroit.
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Figure 24 — Appendages and propellers of the OPV Adroit.

Figure 25 — Watertight volume of the OPV Adroit.
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2.2. CUTTING A VOLUME MESH BY A PLANE

To define the watertight volume, the waterplane, the displacement volume and other
elements, it is necessary to cut a volume mesh by a plane. The waterplane is the intersection
of the mesh of the watertight volume and the still water surface as cutting plane. The
displacement volume is the volume sub-mesh located under the cutting plane. This routine
also permits to extract some volumes from the hull (void spaces or flooded rooms) and to
define volume meshes of the compartments and surface meshes of the decks.

2.2.1. Decomposition of Elementary Volumes

As seen in the previous section, the volume mesh is made of prisms and hexahedrons. The
former can be divided in three tetrahedrons (Figure 26) and the latter in two prisms or six
tetrahedrons (Figure 27). The cutting routine of prisms and hexahedrons only handles simple
cases: volume entirely on one side or the other of the plane, a face contained in the plane or
face “parallel” to the plane. In other cases, the volume being cut is first decomposed into
three or six tetrahedrons.

A2 Di Az
c1 A c1 ‘“
B2 B2
25 cz
N / All \ . / \ N
A2 A2 ~ A2 > “ A2
B1 B1
ci = C1 - C1L
c2 c2 c2 c2 c2
Figure 26 — Cutting a prism into 3 tetrahedrons. Figure 27 — Cutting a hexahedron into 2 prisms.

2.2.2. Cutting a Tetrahedron by a Plane

The cutting plane is modelled with a point P and a normal vector 7. We consider a point M
to be located from the plane. Three cases are possible, function of the sign of the scalar

product PM.7. They are shown in Table 8.

PM. >0 PM.71=0 PM. <0
M is located above the plane M is located in the plane M is located under the plane

Table 8 — Location of a point from a plane.

Each of the four points of the tetrahedron is in one of those three cases. Thus, we have
3%=81 possibilities. However, the order of points having no importance (unlike the necessary
orientation of the vertices of a surface mesh), we build three lists containing points
respectively above, in the plane and under, disregarding their original order. Thus, the
number of cases is reduced to 15 as shown in Table 9. Moreover, gathering different cases
which have the same result finally defines 8 different configurations (designated A to H),
shown in Table 10.

Configurations C, (D and E), (F and G) and H are shown in Figure 28. The original tetrahedron
is drawn in black and the intersection with the cutting plane is drawn in grey.
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Note:

e In case 9 (configuration B), the intersection triangle is not to be considered since it is
already considered in configuration A. If the cutting plane is located at the frontier
between two adjacent elementary volumes (one on each side of the plane), the
intersection surface must be considered only once.

e Since the order of the points of the original tetrahedron has been lost, it is possible to
orientate the intersection vertices by assigning the normal vector of the cutting plane.

] . Number of points | Number of points | Number of points
Case Configuration .

above the plane in the plane under the plane
1 0 4
2 1 3
3 A 0 2 2
4 3 1
5 4 0
6 D 0 3
7 F 1 1 2
8 H 2 1
9 B 3 0
10 C 0 2
11 G 2 1 1
12 B 2 0
13 E 0 1
14 B 3 1 0
15 4 0 0

Table 9 — 15 cases of cutting a tetrahedron with a plane.

| Config. C Config. D& E |
| Config. F& G Config. H |

Figure 28 — Different configurations of cutting a tetrahedron with a plane.
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Config. Topology

No point above the plane
A 1 tetrahedron under the plane
1 intersecting triangle if 3 points in the plane

No point under the plane
1 tetrahedron above the plane

2 points above the plane
2 points under the plane
C 1 prism above the plane
1 prism under the plane
1 intersecting tetragon

1 point above the plane

3 points under the plane

D 1 tetrahedron above the plane
1 prism under the plane

1 intersecting triangle

3 points above the plane

1 point under the plane

E 1 prism above the plane

1 tetrahedron under the plane
1 intersecting triangle

1 point above the plane

1 point in the plane

2 points under the plane

1 tetrahedron above the plane
1 tetrahedron under the plane
1 intersecting triangle

2 points above the plane

1 point in the plane

1 point under the plane

1 tetrahedron above the plane
1 tetrahedron under the plane
1 intersecting triangle

1 point above the plane

2 points in the plane

1 point under the plane

1 tetrahedron above the plane
1 tetrahedron under the plane
1 intersecting triangle

Table 10 — 8 configurations of cutting a tetrahedron with a plane.
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2.3. FINDING THE BALANCE POSITION
2.3.1. Definition of the Balance Position

The three considered degrees of freedom are the sinkage (denoted by e), the heel (¢) and
trim (0). The sinkage replaces the draft which has no sense while the heel approaches 90
degrees. The sinkage is defined as the algebraic distance between a ship-fixed point Q
(coordinates Lpp/2, 0, Z of the reference waterline 10H) and its projected point P on the calm
water waterplane (even for computation in static waves). See Figure 29.

Balance is achieved if the three following conditions are met together:

eg=Vy—V=0 & =0 & =0 (30)
With:
\% (m®  computed displacement volume;

Vo  (m?) ship displacement volume;

gy (m®  volume gap;
Ex (m)  longitudinal gap, defined hereunder in Equation (34);
€y (m)  transverse gap, defined hereunder in Equation (34).

The heel can be free (when finding the balance position) or fixed (GZ curve computation). In
that case, the third condition in (30) is ignored and the transverse gap &y is the righting arm
lever GZ, to be calculated.

z 7
W2
e(
R
B
P
10H
e Q
Y OH

=
Figure 29 — Sinkage.

2.3.2. Inclined-Ship Planes

The gaps ex and gy are respectively the algebraic longitudinal and transverse distances
between the center of gravity (G) and the Earth vertical through the center of buoyancy (B).
Two inclined-ship planes are defined to compute these gaps. Their line of intersection is the
Earth vertical whose director vector is 1;.

The transverse plane of inclined ship also contains vector 7, defined as:
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AX

[ T (31)
[ A X
X is the unit vector of the longitudinal axis of the ship-fixed coordinate system (Annex 4).
The longitudinal plane of inclined ship contains n; and n3 vectors with:
In the ship-fixed coordinate system, the three vectors are:
Ny, = —sinf Ny, =0 Nz, = cos6
n,, = —sing cos6 Ny, = COS @ nz, = —singsin6 (33)
ny, = Cos ¢ cos O n,, = sing@ Nz, = cos¢@sinf

Thus, the gaps ex and &y are respectively the algebraic distances between G and the
transverse and longitudinal planes of the inclined ship. They are calculated as follows:

e, = BG.73 e, = GZ = BG.71; (34)
The gaps and the inclined-ship planes are shown in Figure 30.

This expression of the longitudinal gap is more accurate than that of the simplified strip
method proposed by the SLF 52/INF.2 (see [19], Annex 6) which is:

e, = LCB — LCG (35)

Figure 30 — Inclined-ship planes and gaps.

2.3.3. Hydrostatic Computation in Calm Water
The waterplane, depending on sinkage (e), heel (¢) and trim (0), is defined with a point P
(see Figure 29) and the vector 1, (function of ¢ and 0) with:

QP = en; (36)

When finding the balance position, the displacement volume (V) and its center (B) are
computed by cutting the mesh of the watertight volume by the considered waterplane.
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2.3.4. Hydrostatic Computation in Waves

The watertight volume is previously divided in strips by cutting with transverse planes. SLF
52/INF.2 ([19], Annex 6) recommends at least 20 strips. In each strip, the following are
defined (see Figure 31):

e Plane Py: strip’s aft plane.
e Plane P,: strip’s forward plane.

e Line Ds: through point P with director vector n; (longitudinal line located in the calm-
water waterplane).

e Point |;: intersection of P, and Ds.
e Point |,: intersection of P, and Ds.

Three points (A, B and C) define the strip’s local waterplane. They are defined as follows
(Figure 31):

04 =0I, +7; +z;n; OB =0I, — 715 + 2,71, 0C =01, + z,7; (37)

With:
h h
z = ECOS(k.x1+°<) Z = ECOS(k-xz‘HX) € [0,2m] (38)

h (m)  Wave height;
k (m™)  Wave number;
X1 (m)  Longitudinal position of the aft plane of the strip;
X2 (m)  Longitudinal position of the forward plane of the strip.

p

\
s
1 Py
1aA,B Strip wave
Waterp]ane
.
ny
.
’\b;
1

I

Figure 31 — Strip wave waterplane
The normal vector which defines the local strip’s waterplane is calculated as follows:
. ABAAC
n=-—s—— (39)
|AB A AC||
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In each strip, the local waterplane cuts the strip’s watertight volume to compute the
submerged volume of the strip and its center. Then, the displacement volume V of the
entire ship in waves and its center B are calculated.

2.3.5. Balance

The balance position is found through an iterative process. Two methods are proposed.

First Method

At each step of the iterative process, three gaps (ev, & and g, two if fixed heel) are
computed as explained above. The sinkage, heel and trim are corrected as follows before
being used in the next step:

e+ = e + v i+1 = @; + el i1 =0 +——— 40
i+1 i AWP Pi+1 (] |GMT| i+1 i |GML| ( )
With:
€ sinkage at step i (m);

eis1  sinkage at step i+1 (m);
0 heel at step i (rad);

@1 heel at step i+1 (rad);
0; trim at step i (rad);

0i;1  trim at step i+1 (rad).

Absolute values of the metacentric heights (GM; and GM,) let the process diverge in case of
transverse or longitudinal instability. Without this, the process should converge to an
unstable balance position. At first iteration, the waterplane area (Awp) and local metacentric
heights (GMy, GM\) are calculated with the hydrostatic table or by direct computation of
area and inertia on the waterplane surface mesh, which must be projected on an Earth-
horizontal plane in case of computation in waves. At next iterations, they are computed as
follows:
AWP _ Vi+1 - Vi GMT _ 5y.i+1 - Sy.i GML — Exi+1 — Exii (41)
i1 = € Piv1 — @i 0i+1 — 0

When the three gaps (ev, & and g,) are small enough, the balance position is considered
reached. This method is compatible with a strong coupling between the heel and trim
(unconventional floating structures). However, it is fragile if the coupling between the trim
and sinkage is strong because the corrections of trim and sinkage may conflict.
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Second Method

The second method is also iterative and was developed after the publication of the
handbook [1]. Before the iterative process, an initial hydrostatic computation gives the three
gaps for initial values of e, ¢ and 0. At each step of the iterative process, three hydrostatic
computations (two if the heel is fixed) are performed. They permit to evaluate separately
the influence of a small increment of sinkage, heel and trim on the values of the three gaps.
These computations are listed in Table 11.

Input data Output data
1 e+e, 0 (0 €ve Exe Eye
2 e O+gq ¢ Evp €40 €y0
3 e 0 Pty | Evg Bz Eyo

Table 11 — Hydrostatic computations performed to find balance position.

With:

e dsy/100 small sinkage increment;
o 0.1 degree small trim increment;

€ 1.0 degree  small heel increment;
drui (m) full loaded draft.

Then, still in the same iteration, the following system of three equations with three
unknowns (2x2 if the heel is fixed) is solved:
I
-

Eve — €y Eyg — &y Evp — &y

Ex

d(p _Sy/

The unknowns of this system are de, d0 and d¢, which are respectively increments of
sinkage, trim and heel to be added to the current values to cancel the gaps. The second and
third terms of the diagonal are respectively the local longitudinal and transverse metacentric
heights. Thus, their sign may be used to detect instability and invert the sign of the trim and
heel increments, in order to diverge from an unstable balance position.

42
Ee € &g (42)

y &0 — & Eyp —
ER ) Ep

At the end of the iteration, a final hydrostatic computation is done using corrected values of
the sinkage, trim and heel. If the three gaps are small enough, the balance position is
considered reached.

This second method is as suitable as the first for a strong coupling between the heel and
trim. It is more robust in case of strong coupling between the trim and sinkage. The number
of iterations is very small (1 or 2, see Table 12) but the number of hydrostatic computations
is similar. If n is the number of iterations, the number of hydrostatic computations is 3n + 1 if
the heel is fixed and 4n + 1 if it’s free.
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Comparison of Both Methods

Table 12 shows the GZ computed for a 160 m passenger vessel (presented in Annex 2) using
both methods. It also shows numbers of iterations (Nb. iter.) and hydrostatic computations
(Nb. comp.) to find each balance position with fixed heel. The maximum allowed gaps are 1
m? in volume (to be compared to the 13,000-tons displacement) and 1 millimeter for &,. The
maximum difference between both values of GZ is lower than 0.02 millimeters (not visible in
Table 12).

First method Second method
Heel | Gzm) Nb.iter.  N° | Gz(m) Nb.iter. NP
(deg.) comp. comp.
0 0.000 8 8 0.000 2 7
1 0.042 6 6 0.042 1 4
2 0.085 7 7 0.085 1 4
3 0.130 11 11 0.130 1 4
4 0.176 7 7 0.176 1 4
5 0.224 7 7 0.224 1 4
10 0.484 8 8 0.484 2 7
15 0.774 8 8 0.774 2 7
20 1.103 8 8 1.103 2 7
25 1.441 7 7 1.441 2 7
30 1.737 8 8 1.737 2 7
35 1.984 5 5 1.984 2 7
40 2.179 5 5 2.179 2 7
45 2.252 6 6 2.252 2 7
50 2.189 6 6 2.189 2 7
Sum 107 Sum 90

Table 12 — Comparison of both balance methods.

2.3.6. Calculation of Transverse Metacentric Height

The transverse metacentric height is computed using two first points of the GZ curve (0 and
1 degree).
dGgZz
GMT = (_>

43
), (43)

In the case of the hydrostatic computation on waves, the inertia of the projected waterplane
is not used as proposed in the simplified strip method proposed by the IMO (see SLF
52/INF.2 Annex 6, [19]).
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CHAPTER 3. RESULTS

3.1. PRELIMINARY INFORMATION
3.1.1. General Information

This chapter presents the results of the computations of the second generation intact
stability criteria, in both pure loss of stability and parametric roll failure modes and in both
level one and level two, applied to a panel of civilian and military ships presented in Annex 2.
Six civilian ships are chosen for their variety of type and size: two large container vessels,
one roll-on roll-off vessel, one tanker and two passenger vessels (one large, one small).
Different behaviors with regard to both failure modes are expected. Some container vessels
are already known to be vulnerable to parametric roll [41, 45] while tankers, characterized
by a wall-sided hull shape, are expected not to be vulnerable. Although the future IMO intact
stability rules are not intended for naval ships, it seems interesting to the author to assess
such different vessels with regard to these future criteria. This choice is argued hereunder.

The results are given as KGnax curves. These curves indicate the maximum height of the
center of gravity above the baseline ensuring the compliance of a specific criterion or a set of
criteria as a function of the displacement or the draft. Considering KGax curves allows to
avoid any assumption about the height of the center of gravity and provides richer
information than the classical binary “pass/fail” associated with a specific loading condition
[29]. Especially, this permits the comparison of the requirement of the criterion of each level
and the comparison of different computation methods proposed for a specific criterion in
order to determine the efficiency and the relevance of the new criteria.

Moreover, KGmax curves associated with the new generation intact stability criteria are
compared to those associated with both current IMO and current French military rules
(respectively [18] and [17]). This allows assessing the vulnerability of the selected ships with
regard to both failure modes. A ship may be considered vulnerable to pure loss of stability or
parametric roll if her KGn.x curve associated with the current regulation (civilian or military)
is located above the highest curve associated with the pure loss of stability criteria (we
formulate this consideration in this thesis) because the current regulation would allow
sailing with a KG assessed as dangerous by the new criteria.

Similar works have already been performed [31, 33] although they deal with former versions
of the new criteria (respectively SLF 54/19, 2012 [20] and SDC 1/INF.8, 2013 [21]).

The hydrostatic computations in calm water and in static waves are performed by Calcoque
software as presented in Chapter 2. All computations are performed with the water density
equal to 1.025 t/m?® and with zero trim (the sinkage and trim remain free while the ship is
balanced in waves).

3.1.2. Application to Military Vessels

Accidents caused by the failure modes considered in the second generation intact stability
criteria may be fatal (see the report of the accident occurred to the Chicago Express off
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Hong-Kong in 2008, [60]) or may cause significant financial losses (APL China in October 1998
[41], Maersk Carolina in January 2003 [45]), but they are fortunately rare. Since the number
of naval ships in service is significantly smaller than the number of merchant vessels and
their time at sea is smaller too, it is not surprising that none of the serious accidents causing
the development of the new criteria has occurred on a naval ship. However it cannot be
excluded in principle that naval ships be vulnerable to such stability failures. Although the
new regulations are not intended for naval ships, it seems interesting to assess the outcome
of their applications. In fact the hull geometry and the high speed of naval ship typology are
in principle a remarkable combination worthy of attention.

Hence, a set of three military vessels, chosen for their variety of typology and size, has been
included in this study: a 12,000-ton helicopter carrier, a 9,000-ton destroyer and a 1,500-ton
Offshore Patrol Vessel.

3.1.3. Graphic Design

All figures showing the KGax curves in paragraphs 3.2.1 (pure loss of stability) and 3.3.1
(parametric roll) have the same graphic design:

e The KGnay curve associated with the current IMO regulation [18] is drawn as a grey
dashed line.

e The KGnax curve associated with the French military regulation (IG 6018A DGA [17]),
computed only for naval vessels, is drawn as a grey dotted line.

e The light blue plain line indicates the height of the transverse metacenter above the
baseline (KMT) which allows to determine the minimum GM required by all criteria.

e The vertical grey lines indicate the full-load displacement and, when it is known, the light
displacement. Otherwise, a black dot corresponds to the standard loading condition of
the ship.

e The KGpnax curve associated with the first method of level one (parallel waterplane)
criteria of both pure loss of stability and parametric roll failure modes is drawn in blue
with square markers.

e The KGpax curve associated with the second method of level-one criteria (ship balanced in
trim and sinkage on a wave with the same length) is drawn in red with round markers.

e The KGpax curve associated with the level-two criteria (first check only for parametric roll)
is drawn as a green solid line with diamond markers.

e The KG, curve associated with the second check of level-two parametric roll criterion is
drawn as a green dashed line with diamond markers.
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3.2. PURE LOSS OF STABILITY

Since neither the 319 m container vessel nor the tanker fulfill the condition on Froude
number (F,>0.24), their KG,.x curves associated to level 1 and 2 criteria are not presented.
Both vessels are assessed as non-vulnerable to the pure loss of stability by the new
regulation.

Parts of the content of this section have already been presented in [3] (influence of the
watertight deck height), [5] (results on naval vessels) and [2, 6] (results on some civilian
vessels and one naval vessel).

3.2.1. General Results

The KGnax curves associated with level-one and level-two criteria of pure loss of stability
failure mode are shown in Figure 32 to Figure 38. We can observe the following facts:

1) In Figure 34 (160 m passenger vessel), the curve associated with the first method of level
one has a hook at a displacement equal to 12,200 tons (draft equal to 5.67 m). This
particularity results from a loss of inertia on the parallel waterplane due to the stabilizers’
housings (see dark grey waterplane in Figure 39). Using the bare hull would mask this
phenomenon.

2) Each level-one method vyields significantly different results for all vessels with no
exception.

3) The KGnax associated with the second level-one method is relatively close to that given by
level two for the C11 container vessel, the Ro-Ro vessel and the Jeanne d’Arc.

4) Level two can be more conservative than the second level-one method: one point for the
C11 container vessel and completely for the Ro-Ro vessel, both passenger vessels and all
naval ships. This is contrary to what seems to be the philosophy of the future regulation.

5) Level two is more conservative than the first level-one method for the 30 m passenger
vessel, but this occurs at a significantly higher displacement than the standard loading
condition. However, this proves the possibility of this unexpected configuration.

6) The C11 container vessel is found to be vulnerable to pure loss of stability according to
these criteria. The 160 m passenger vessel is found to be slightly vulnerable since the gap
between the KG,x required by the second method of level one is slightly lower than that
required by the current regulation. None of the three naval ships is assessed as
vulnerable. No conclusions can be drawn with regard to the Ro-Ro vessel since her
superstructures are not modelled and the weather criterion is not taken into account.
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Figure 32 — KG,,., curves associated with pure loss of stability criteria for the C11 container vessel.
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Figure 33 — KG,,. curves associated with pure loss of stability criteria for the Ro-Ro vessel.
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Figure 34 — KG,,.x curves associated with pure loss of stability criteria for the 160 m passenger vessel.
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Figure 35 — KG,,, curves associated with pure loss of stability criteria for the 30 m passenger vessel.
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Figure 36 — KG,,,, curves associated with pure loss of stability criteria for the Jeanne d’Arc.
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Figure 37 — KG,,.x curves associated with pure loss of stability criteria for the DTMB-5415.
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Figure 38 — KG,,,, curves associated with pure loss of stability criteria for the Offshore Patrol Vessel.

Figure 39 — Parallel waterplanes for d=6.00 m (light grey) and d,=3.33 m (dark grey).

3.2.2. Influence of the Watertight Deck Height

In intact stability configuration, the watertight deck of the 160 m passenger vessel is the
weather deck, located 14 m above the base line. The associated watertight volume includes
the car garage as shown in Figure 119 (page 121).

We propose now to consider the bulkhead deck as new watertight deck. It is located 9 m
above the baseline. The associated watertight volume excludes the car garage as shown in
Figure 120.

First Level

Lowering the watertight deck has normally no influence on the level-one criterion which
considers only metacentric height (hence small inclinations). For the first method (parallel
waterplane at lowest draft), this is evident. For the second method (GM computation on
wave), the wave crest should pass over the watertight deck, reducing the waterplane and its
inertia. This situation does not occur with the watertight deck at 9 m (free-board at full load
is 3 m, to be compared with wave half-height equal to 2.67 m). However, it appears at a
draft over 6 m if the watertight deck is lowered at 8 m (in this case the ship does not fulfill
the current regulation with any KG). See resulting KGnax curves in Figure 40.

The situation for the last point of the curve “Watertight deck @ 8 m” in Figure 40 (d=6.25 m)
is shown in Figure 41. The waterplane is truncated on a quarter of its length. This situation
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should not occur in reality because the wave crest should not flood the garage deck even if
its volume is considered as not watertight (Figure 42).

Note: The future regulation should clearly specify the watertight volume to consider. French
military regulation (IG6018A, [17]) considers two different watertight volumes. The bulkhead
deck is its upper limit which is tight to long-time immersion. This watertight volume is
considered in damage stability. In this example, this deck is the garage deck at 9 m above
baseline. The weather deck is the upper limit which is tight to short-time immersion. The
weather deck of some naval ships coincides with the bulkhead deck (partially or totally).
Otherwise the weather deck is located above. The increased watertight volume associated
with this deck is considered in intact stability. In this example, this deck is the first passenger
deck located 14 m above the baseline.

12.5 +

KGpa (M) —B-Watertight deck @ 9m

-@~Watertight deck @ 8m
12.0 A .\
11.5
11.0
10.5 A
10.0 A
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4.0 a5 5.0 55 6.0 Draft (m) 6.5

Figure 40 — KG,,, curves for 1% level criterion (2nd method) for watertight deck at 9 and 8 m.

Figure 41 — Truncated waterplane.
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Figure 42 — Flooded garage deck in waves.

Second Level

KGmax curves associated with the second level criterion for both heights of the watertight
deck are shown in Figure 43. We observe that lowering the watertight deck highly increases
the requirement of the criterion by significantly lowering the associated KGpax. This is
expected as a result of the strong reduction of the GZ from the heel angle corresponding to
the immersion of the bulkhead deck edge. However, we note that first generation criteria
also increase their requirement to such an extent that the ship is now assessed as non-
vulnerable to the pure loss of stability failure mode.
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Figure 43 — KG,,. curves associated with level-2 pure loss of stability criterion for the 160 m passenger vessel,
watertight deck @ 14m and 9 m.
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3.2.3. Influence of Speed

The pure loss of stability failure mode depends on the speed of the ship which must stay
centered amidships on the wave crest during a sufficiently long time to attain a dangerous
heel angle. Hence, the associated level-one and level-two criteria apply to ships having a
service speed Froude number larger than 0.24.

The speed of the ship has no influence on the level-one criterion. However, it has an
influence on the level-two criterion through the heeling lever Rp;3 which depends on the
Froude number (Equation (6) page 21).

The service speed of the Ro-Ro vessel is 20 knots. The associated Froude number is equal to
0.28. We consider two other service speeds equal to 17 and 25 knots, giving Froude numbers
respectively equal to 0.24 (lowest value making the ship eligible to the pure loss of stability
criteria) and 0.35. Figure 44 compares the KG,. curves associated with the three speeds. As
expected, lowering the service speed increase KGnay since the vulnerability of the ship is
reduced.

We perform the same test on the 30 m passenger vessel at speeds equal to 7.5 and
12.5 knots, corresponding to Froude numbers respectively equal to 0.24 and 0.4, since the
original service speed is 22 knots and the associated Froude number is 0.7. We could expect
a result similar to that of the Ro-Ro vessel. However, we observe that the speed has no
influence on the KGn.x. The shape of the hull, characterized by a large breadth-over-depth
ratio (see Figure 122 page 122), causes the condition considering the angle of vanishing
stability (C1;, regarding @y vs Rpi1) to be met before that considering the angle of stable
equilibrium (C2;, regarding @5 vs Rp») in all wave cases (Equation (7) page 22). The speed is
not considered in the first condition while it is considered in the second through Rp;3
(Equation (6) page 21).
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Figure 44 — Influence of speed on KG,,,, curves associated with pure loss of stability level-two criterion for the
Ro-Ro vessel.
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3.3. PARAMETRIC ROLL

3.3.1. General Results

Parts of the content of this section have already been presented in [5] (results on naval
vessels) and [6] (results on some civilian vessels and one naval vessel).

The KGn,ax curves associated with level-one and level-two criteria of parametric roll failure
mode are shown in Figure 45 to Figure 53. Although both checks C1 and C2 are embedded to
the same level-two criterion, they are considered separate criteria here. Hence, they are
associated with two different KG,x curves. We can observe the following facts, some of
which are similar to those observed for the pure loss of stability failure mode:

1)

2)

3)

4)

5)

6)

7)

8)

9)

In Figure 49 (160 m passenger vessel), the curve associated with the first method of
level one has two hooks at displacements equal to 8,700 tons and 11,300 tons, similar to
that observed at 12,200 tons in pure loss of stability. The reason is the same (loss of
inertia due to the stabilizers’ housings) but the displacements are different because the
considered wave heights are different too.

The results of both level-one methods significantly differ for the 160 m passenger vessel
and all naval vessels.

The KGn,ax associated with the second level-one method is almost equal to that given by
the first check of level two for the tanker, the 30 m passenger vessel and all naval
vessels.

The first check of level two is partially more conservative than the second level-one
method for the Ro-Ro vessel and the 160 m passenger vessel. However, this
inconsistency is reduced with regard to that observed in pure loss of stability.

Both level-one methods give the same KGax for the tanker at full-load displacement
and beyond. This is expected as a result of the cylindrical shape of the hull.

The first check of level-two criterion is limited by zero-GM beyond the full-load
displacement for the tanker (Equation (21) page 28).

Figure 48, Figure 49 and Figure 51 show that the KGax associated with the second check
of level-two criterion is coincident or almost coincident with KMT. This is due to the limit
imposed by the negative average value of the metacentric height in waves (GMmoy, see
Section 1.2.4 page 33) and shows that these vessels (tanker, 160 m passenger vessel and
Jeanne d’Arc) are not vulnerable to parametric roll since the criterion is no longer
fulfilled when the ship becomes statically unstable in waves.

The second check of level-two criterion is less conservative than the first check for all
ships except the 30 m passenger vessel (Figure 50). This exception is probably due to the
inadequacy of the lkeda simplified roll damping method to ships having sharp bilge (see
Figure 122 page 122). However, this method, taken from [48] for the lift component and
[50] for other components, is explicitly described in the explanatory notes of parametric
roll criteria (SDC 3/WP.5, Annex 4, Appendix 4, [23]). It would be wise to propose
another simplified method for this type of ships in the future regulation.

The curve associated with the second check of level-two criterion for the 319 m
container vessel has two strange jumps (at 75,000 and 105,000 tons, Figure 46). Lesser
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jumps exist on the same curve for the C11 container vessel (at 45,000 and 50,000 tons,
Figure 45). This point is developed in Section 3.3.2.

10) Both container vessels are considered to be vulnerable to parametric roll according to
these criteria. This confirms what is already known for the C11 [41]. The Ro-Ro vessel
may also be considered to be vulnerable at full-load displacement because the KGp,ax
associated with C2 is lower than that associated with the 1% generation criteria.
However, these criteria do not include the weather criterion and would probably be
more conservative if the ship’s superstructure were modelled. All other vessels are
considered as non-vulnerable to parametric roll according to the new criteria.
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Figure 45 — KG,,.x curves associated with parametric roll criteria for the C11 container vessel.
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Figure 46 — KG,,., curves associated with parametric roll criteria for the 319 m container vessel.
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Figure 47 — KG,,.x curves associated with parametric roll criteria for the Ro-Ro vessel.
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Figure 48 — KG,,., curves associated with parametric roll criteria for the tanker.
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Figure 49 — KG,,., curves associated with parametric roll criteria for the 160 m passenger vessel.
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Figure 50 — KG,,., curves associated with parametric roll criteria for the 30 m passenger vessel.
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Figure 51 — KG,., curves associated with parametric roll criteria for the Jeanne d’Arc.
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Figure 52 — KG,,. curves associated with parametric roll criteria for the DTMB-5415.
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Figure 53 — KG,,. curves associated with parametric roll criteria for the Offshore Patrol Vessel.
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3.3.2. Focus on Second Check

The content of this section has already been presented in [6].

For any ship at any draft, the KG,,x associated with the second check of level-two criterion
(C2) is defined as the highest value of KG for which the value of C2 is lower than Rpro=0.06.
Thus, it is interesting to check the curve of C2 versus KG. These curves are shown in Figure
54 to Figure 58 for five of the vessels studied in this thesis. For the non-vulnerable ships (Ro-
Ro, tanker, DTMB-5415), they are computed at full-load draft for an interval containing
KGmax With a step of 2 centimeters. For both container vessels, assessed as vulnerable, they
are computed for a larger interval of KG with a step of 1 centimeter, at a draft equal to 10 m
(C11 container vessel, Figure 54) and 12 m (319 m container vessel, Figure 55).

Figure 57 shows the curve of the tanker. C2 is equal to O for all values of KG lower than KGax
(13.70 m) and to 1 for all higher values. This shows that the parametric roll never occurs on
this ship. The value of C2 is forced to 1 when the average value of GM in waves becomes
negative (see Section 1.2.4 page 33).

Figure 58 shows the curve for the DTMB-5415. We observe a small interval of KG (centered
approximatively at 8.70 m) in which C2 is non-zero. This shows that the parametric roll
occurs for some lightly-weighted waves. For higher values of KG, C2 tends to zero and then
rapidly increases to 1. Parametric roll occurs in these conditions of KG but the average value
of GM is near zero: the ship becomes statically unstable on waves.

Figure 56 shows the curve C2 versus KG for the Ro-Ro vessel. We observe that the increasing
part of the curve is longer than those of the tanker and the naval ship. We also observe that
two values of KG larger than KGp,a (12.57 m) give values of C2 lower than Rpgo (KG = 12.60
and 12.62 m, marked with * in Figure 56).

Figure 54 and Figure 55 show the same curves respectively for the C11 and the 319 m
container vessels. On both, we observe many peaks and relatively large intervals of KG larger
than KGax for which the value of C2 is lower than Rpgo, thus for which the associated
criterion is fulfilled. These intervals are colored in grey in the corresponding figures. This
non-monotonically-increasing configuration of the C2 curve makes the starting value of KG
(KGgtart in this thesis, 15 m for both container vessels) very important in the process of
finding KGnax. The value of the increment used in this process is also very important. Both
parameters must be chosen to avoid overlooking a small zone of KG for which C2 is larger
than Rero-

We observe that the more the ship is vulnerable to parametric roll, the more the curve C2
versus KG has peaks and the longer the interval where C2 increase from 0 to 1 is.

The computation of C2 as a function of all possible values of both KG and draft defines
authorized as well as restricted areas according to the C2 criterion. Figure 59 and Figure 60
show these zones for both container vessels (authorized areas in white, restricted areas in
grey). The lower envelopes of the restricted areas give the KG,.x curves associated with C2
shown in Figure 45 and Figure 46. The jumps observed on these curves correspond to the
passage from the upper restricted area to the lower restricted area (at drafts equal to 10 m
and 13 m for the 319 m container vessel).
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Figure 54 — Curve C2 versus KG for the C11 container vessel at a draft equal to 10 m.
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Figure 55 — Curve C2 versus KG for the 319 m container vessel at a draft equal to 12 m.
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Figure 56 — Curve C2 versus KG for the Ro-Ro vessel at a draft equal to 5.5 m.
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Figure 57 — Curve C2 versus KG for the tanker at a draft equal to 11 m.
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Figure 58 — Curve C2 versus KG for the DTMB-5415 at a draft equal to 6.125 m.

18 Authorized Area

Draft (m)

17 T T T T T
7 8 9 10 11 12 13

Figure 59 — Authorized and restricted areas according to the C2 criterion for the C11 container vessel.
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Figure 60 — Authorized and restricted areas according to the C2 criterion for the 319 m container vessel.

3.3.3. Influence of Speed

Since parametric roll results from the encounter of waves, the speed has a major influence in
the behavior of the ship. The service speed of the C11 container vessel is 24.5 knots.
However, a lot of papers in the literature consider this ship with a speed equal to 20 knots.
Figure 61 shows the authorized and restricted areas of this vessel recomputed for this
reduced service speed (since Figure 45 and Figure 59 are computed for 24.5 knots). We
observe that the lower restricted area is partially merged with the upper one. However, the
behavior of the ship with regard to the second check of level-two criterion remains
unchanged.

Figure 62 compares the resulting KGax curves. Except one point at 50,000 tons, both curves
are close together. The gap observed at 50,000 tons results from the shift to the left of the
lower restricted area when the service speed is reduced (the draft of its left boundary shifts
from 9.5 t0 9.0 m).

Note: although the speed is considered in one condition of the first check of level-two
criterion (Equation (22) page 28), it has no influence on the associated KGax curve for this
vessel.
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Figure 61 — Authorized and restricted areas according to the C2 criterion for the C11 container vessel with a
service speed equal to 20 knots.
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Figure 62 — Influence of speed on KG,,, curves associated with the second check of parametric roll level-two
criterion for the C11 container vessel.
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3.3.4. Influence of Computation Parameters

During the 12" International Conference on the Stability of Ships and Ocean Vehicles, held in
Glasgow (UK) in June 2015, Peters et al. [32] formulated some recommendations to solve
the parametric roll differential equation (23) and calculate the associated maximum roll
angle required in the second check of level-two criterion (coefficient C2, seen as a separate
criterion here). Their proposals have been included in the explanatory notes of the new
regulation (SDC 3/WP.5, Annex 4, Appendix 3 [23]).

Among other recommendations, Peters et al. propose to solve the differential equation with
a simulation time equal to 15 natural roll periods of the ship and an initial roll angle equal to
5 degrees. They also recommended to consider a non-linear GZ.

In this section, we propose to study the influence of each of these proposals on the KGax
curves associated with the second check of level-two criterion for four selected ships: both
container vessels (assessed as vulnerable to parametric roll by the new criteria) the Ro-Ro
vessel (assessed as slightly vulnerable, although neither the test in the towing tank nor direct
assessment computation have proven this yet) and the tanker (clearly non-vulnerable).

Note: in this section, the service speed of the C11 container vessel is set to 20 knots.

The content of this section has been presented at the 15" International Ship Stability
Workshop held in Stockholm (Sweden) in June 2016 [4].

Simulation Duration

Since parametric roll is a resonance phenomenon due to the repetition of the encounter of
waves, attaining the steady state roll amplitude is essential to determine the vulnerability to
this failure mode. Thus, the duration of the simulation is important. The KG.x curves
associated with the second check of level-two criterion are computed for 6 different
simulation durations, given as a number of the ship’s natural roll period. The following
durations are tested: 3, 4, 6, 10, 15 and 20 natural roll periods. Peters et al. [32] and SDC
3/WP.5 [23] recommend a simulation duration equal to 15 roll periods.

Figure 63 and Figure 64 show the results for both container ships. We observe that the KG,.
significantly varies with the duration of the simulation, but the curves associated with 10, 15
and 20 roll periods are fully coincident for both ships. This proves that the steady state roll
amplitude has been attained between 6 and 10 roll periods.

Figure 65 shows the results for the Ro-Ro vessel. We observe that all curves are close
together. The KGnx is slightly affected by the simulation duration. As above, the curves
associated with 10, 15 and 20 periods are fully coincident.

Figure 66 shows the results for the tanker. We observe that all curves are coincident and
correspond to zero-GM. This proves again that the tanker is not vulnerable to parametric
roll: parametric roll never occurs, regardless of the wave and speed (the C2 coefficient is set
to 1 when the ship becomes statically unstable in waves, see Section 1.2.4 page 33). The
simulation duration has no effect on KGnax curves.

This first test shows that:

1) The more the ship is vulnerable to parametric roll, the more the simulation duration has
an influence on the KG,,. curve associated with the second check of level-two criterion.
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2) The relevance of the simulation duration equal to 15 natural roll periods of the ship
proposed by Peters et al. [32] is confirmed.
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Figure 63 — Influence of the simulation duration on KG,,, curves associated with the C2 criterion for the C11
container vessel.
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Figure 64 — Influence of the simulation duration on KG,,, curves associated with the C2 criterion for the 319 m
container vessel.
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Figure 65 — Influence of the simulation duration on KG,,,, curves associated with the C2 criterion for the Ro-Ro
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Figure 66 — Influence of the simulation duration on KG,,,, curves associated with the C2 criterion for the tanker
(all curves coincide).
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Initial Roll Angle

The right term of the differential equation (23) is equal to zero because there is no
transverse excitation in parametric roll. The ship is assumed to sail in pure head or following
seas. Thus, a non-zero initial roll angle (or a non-zero initial roll speed) must exist to initialize
the numerical phenomenon during the simulation. Peters et al. [32] and SDC 3/WP.5 [23]
recommend an initial roll angle equal to 5 degrees. Since the C2 coefficient increases if the
maximum roll angle exceeds 25 degrees (see page 29), it may be interesting to start the
simulation with an initial roll angle larger than 5 degrees, in order to reduce the number of
natural roll periods of the ship which are required to attain the steady state roll amplitude.
Computations performed with an initial roll angle equal to 10 degrees show that the steady
state roll amplitude is attained between 6 and 10 roll periods, as if the initial roll angle were
5 degrees. Computations with other durations between 6 and 10 roll periods would probably
prove that the initial roll angle has an influence on the duration needed to attain the steady
state roll amplitude. However, the initial roll angle has no major influence on this duration.

Even if the influence of the initial roll angle on the duration needed to attain the steady state
roll amplitude is limited, the initial roll angle may also have an influence on the KG,y. This
should be limited, but not zero. KG .« curves are computed for the four selected ships with
initial roll angles equal to 5 and 10 degrees. The results are shown in Figure 67 to Figure 70
respectively for the C11 container ship, the 319 m container ship, the Ro-Ro vessel and the
tanker. As expected, the initial roll angle has no influence on the KGa curves of the tanker
since she is not vulnerable to parametric roll (Figure 70). On the three other ships, the initial
roll angle has a minor influence on the KGax. Only one point differs significantly for the 319
m container ship (Figure 68, draft equal to 9.5 m, difference of about 0.5 m between both
KGmax). This is due to the shift of the lower restricted area (see Section 3.3.2), also observed
as influence of the service speed of the same vessel in Section 3.3.3.

To conclude, we can note the following:

1) The initial roll angle has no major influence on the duration needed to attain the steady
state roll amplitude.

2) Since the initial roll angle has a limited influence on the KG,ax associated with the second
check of level-two criterion, it is wise to clearly specify its value in the future regulation.
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Figure 67 — Influence of the initial roll angle on KG,,,, curves associated with the C2 criterion for the C11
container vessel.
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Figure 68 — Influence of the initial roll angle on KG,,, curves associated with the C2 criterion for the 319 m
container vessel.
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Figure 69 — Influence of the initial roll angle on KG,, curves associated with the C2 criterion for the Ro-Ro
vessel.

19
KGnsy (M)

—+—15 periods - Phi0=10deg. - non linear

18 | -B-15 periods - Phi0=5deg. - non linear

17

16

15 4

14

Draft (m)

13 T T T T T T T
5 6 7 8 9 10 11 12 13

Figure 70 — Influence of the initial roll angle on KG,,,, curves associated with the C2 criterion for the tanker
(both curves coincide).
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Linearizing GZ

Parametric roll is a failure mode that could cause capsizing. Thus, it seems logical to study it
at large roll angles with a non-linear GZ as recommended by Peters et al. [32] and SDC
3/WP.5 [23]. However, the C2 coefficient increases if the maximum roll angle exceeds 25
degrees (see page 29). Thus, an error on GZ at angles larger than 25 degrees has no
influence on the result. Since many ships have a linear GZ up to an angle equal to 25
degrees, it is interesting to compare KG.x associated with the second check of level-two
criterion computed with linear and non-linear GZ. GZ curves are computed in calm water for
the four selected ships at full-load draft and KG equal to KG,x associated with C2 (except for
the tanker where the KG has been chosen for GM equal to 0.175 m since her GMuin
associated with C2 is zero). They are shown in Figure 75 to Figure 78. All possible
configurations of GZ versus GM are presented: the non-linear GZ is significantly larger than
the linearized GZ (GZ;, = GMx@) for both the 319 m container ship and tanker (Figure 76 and
Figure 78). The non-linear GZ is lower than the linearized GZ for the Ro-Ro vessel (Figure 77)
and the GZ of the C11 container ship is almost linear up to 30 degrees (Figure 75). The non-
linear GZ and linearized GZ are used to compute the KG.x curves associated with C2. The
results are shown in Figure 71 to Figure 74.

As expected, the linearized GZ reduces the KG,.x of the 319 m container ship (Figure 72). In
this case, linearizing the GZ provides an irrelevant safety margin (30 to 50 centimeters).

It would be logical to expect a similar result on the tanker (Figure 74) since her GZ curve has
the same configuration, but the linearized GZ has no influence on KG,x at a full-load draft
(11 m). However, KGnay is reduced at lower drafts: the tanker is assessed as vulnerable to
parametric roll if her GM is lower than 50 centimeters. The jump of KG,.x between drafts
equal to 10 m and 10.5 m reveals the existence of a restricted area as defined in Section
3.3.2.

The result on the Ro-Ro vessel is unexpected (Figure 73): at full-load draft (5.5 m), the KGnax
associated with the linearized GZ is more conservative than that given by the real GZ
although the linearized GZ is larger than the real GZ. This is due to the highly non-linear
behavior of the parametric roll differential equation.

The result on the C11 container ship is as expected (Figure 71): since the non-linear GZ and
linearized GZ almost overlap up to an angle of 25 degrees, linearizing the GZ has a very
limited influence on the KG,.x associated with C2.

To conclude, we observe that, as expected, linearizing the GZ is not relevant, unless the real
GZis linear up to 25 degrees for all drafts scanned by the KG,,, curve.
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Figure 71 — Influence of GZ linearity on KG,,, curves associated with the C2 criterion for the C11 container

vessel.
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Figure 72 — Influence of GZ linearity on KG,,, curves associated with the C2 criterion for the 319 m container
vessel.
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Figure 73 — Influence of GZ linearity on KG,,, curves associated with the C2 criterion for the Ro-Ro vessel.
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Figure 74 — Influence of GZ linearity on KG,, curves associated with the C2 criterion for the tanker.
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Figure 75 — GZ curve of the C11 container vessel at a draft equal to 12 m.
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Figure 76 — GZ curve of the 319 m container vessel at a draft equal to 13 m.
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Figure 77 — GZ curve of the Ro-Ro vessel at a draft equal to 5.5 m.
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Figure 78 — GZ curve of the tanker at a draft equal to 11 m.
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3.3.5. Comparison with 6-Degrees-of-Freedom Simulation

In this section, we propose to compare the KG,,, curves associated with both checks of
level-two criterion with equivalent curves calculated from 6-degrees-of-freedom numerical
simulations, in order to analyze the relevance of the proposed criterion. Fredyn software is
used for this [70]. This software is developed by the members of Cooperative Research
Navies (CRNAV, www.crnav.org) and performs non-linear 6-degrees-of-freedom simulations
of steered ships in extreme seas and wind.

The simulations are performed on the C11 container vessel. Her numerical model is made of
the hull, the propeller, the rudder and the bilge keels. Six different drafts are considered: 8,
9, 10, 11, 12 and 12.339 meters. Several parametric roll simulations are performed for each
draft with increasing values of KG, in order to determine both values of KG providing a
maximum roll angle equal to 25 degrees and causing the vessel to capsize.

As proposed by the level-one criterion, the waves are sinusoidal and their length is equal to
the ship’s length (262 m). This makes their period equal to 12.95 seconds. The wind is not
considered.

For each simulation, the ship is placed in the conditions of the first mode of parametric roll:
her speed is such that the encounter frequency is twice the natural roll frequency, which is
previously measured from a roll-decay test in still water at almost same speed (expected
speed calculated from the natural roll period obtained by ratio of GM and a reference
situation). If the required speed is negative, the simulation is performed in following seas
and the ship’s speed remains positive. Otherwise, the simulation is performed in head seas.

Results are shown in Figure 79. The KG providing a maximum roll angle equal to 25 degrees
is drawn as a black solid line with diamond markers. The KG causing the vessel to capsize is
drawn as a black dotted line with white markers. We observe following facts:

1) At full-load displacement, the vessel may capsize with a value of KG allowed by the
current IMO regulation. Moreover, the vessel may roll over 25 degrees with such a KG in
any load configuration. Although the sinusoidal-wave assumption is subject to discussion,
both observations prove the requirement for new intact stability regulation considering
this failure mode.

2) Near full-load displacement, the KG,.x associated with the second check of level-two
criterion is in relatively good accordance with that associated with 6-degrees-of-freedom
simulation considering a maximum roll angle equal to 25 degrees. The latter is more
conservative, due to the severe parametric roll conditions imposed at each simulation,
since the second check of level-two criterion specifies 7 speeds which have no relation
with the wave period (which remain the same for all wave cases of the scattering table
because of the use of the Grim method). Moreover, the roll damping computation in
Fredyn is based on [49] and differs from the method used in this thesis [48 and 50].
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Figure 79 — KG,,.x curves associated with parametric roll 6-degrees-of-freedom simulations for the C11
container vessel.
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4.1.

4.2,

CHAPTER 4. ENERGY ANALYSIS OF PARAMETRIC ROLL

INTRODUCTION

As presented in Chapter 1, the second check of level-two criterion of parametric roll failure
mode requires the computation of the maximum roll angle for several speeds in head and
following seas for any considered loading condition defined by both the draft and KG. Future
rules propose two methods: an analytical solution based on a polynomial fit of the GZ curve
at the 5" order which directly yields the maximum roll angle (not studied in this thesis), and
a numerical solving of the differential equation of parametric roll, equivalent to a one-
degree-of-freedom simulation of the behavior of the ship during rolling. Both methods are
relatively complex to implement and require tools that naval architects are not accustomed
to.

Parametric roll has been extensively studied through analytical, numerical and experimental
approaches [44, 46 and 42]. In some papers, authors explain that a steady-state roll
amplitude occurs if the energy provided by the variation over time of the restoring moment
is entirely dissipated by roll damping [27, 43]. However, to our knowledge, no paper explores
the energy problem in a quantitative manner, except the contribution of Kerwin [12]. In this
chapter, we propose to perform an energy analysis of parametric roll with the aim to provide
a simplified method which yields the maximum roll amplitude assuming a linear GZ.

The first part of this chapter consists of an analytical approach of the energy transfer of
parametric roll in the first-mode resonance condition, where the wave encounter frequency
is twice the ship’s natural roll frequency. Subsequently, the behavior of the ship in other
conditions with and without parametric roll is observed and presented. Finally, a simplified
method which provides the amplitude of steady-state parametric roll is proposed assuming a
linear GZ.

In 1955, Kerwin provided a major contribution on parametric roll [12] based mainly on an
analytical study of the motion. Our conclusions are strictly identical in resonance condition
and equivalent outside this condition.

The content of this chapter has been submitted to a scientific journal [7].

PARAMETRIC ROLL IN RESONANCE CONDITION
4.2.1. Equation of Parametric Roll

Parametric roll in pure head or following seas (i.e. with no transverse excitation) is
represented in one degree of freedom by differential equation (23) previously presented in
page 29 and rewritten hereunder:

J14® + Byap + WGZ(p,t) =0 (23)
With:

Jaa (kg.mz) roll moment of inertia, including added mass;
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Bas (N.m.s/rad) damping coefficient;
W (N) ship’s weight;

GZ(p,t) (m) righting arm, function of both the instantaneous roll angle ¢ and time
t with the wave encounter frequency.

We assume a linear GZ in this chapter. Hence, the differential equation is rewritten:

Jaa® + Baa®p + W(GM + AGM cos w,t)p = 0 (44)
With:
GM m average value of the metacentric height in waves;
AGM m half-amplitude of the metacentric height variation in waves;
We rad/s wave encounter frequency.

Equation (44) is a linear differential equation with non-constant terms. The added mass in
the first term depends on the roll frequency. The second term (Bss) depends on the roll
amplitude and frequency, especially if a simplified lkeda method is used [48, 50]. The third
term varies over time with the wave encounter frequency. We reformulate Equation (44) by
moving the non-constant part of the restoring moment to the right as follows:

JaaP + Byap + WGMp = —(WAGM cos w,t) @ (45)

The left-hand part of Equation (45) is identical to that of the well-known differential
equation of a linear oscillating system. Although it is not properly correct because of the
dependency on the roll angle ¢, the right-hand part is considered as an exciting moment in
this chapter.

4.2.2. Assumptions

The first assumption, previously introduced, is the linearity of GZ. It is used throughout the
chapter.

Other following assumptions are formulated in this section:

e The analysis is performed when the roll motion has reached steady-state amplitude
(denoted by @), i.e. when the transient movement has finished;

e The ship rolls at its natural frequency ®, defined as:

WGM
]44

wo = (46)

e The wave encounter frequency . is twice the ship’s natural roll frequency wo. This
corresponds to the resonance condition of the first mode of parametric roll as
demonstrated by Mathieu [9].

Assumptions on both the roll amplitude and frequency render the first and second terms
(respectively J44 and Byg) constant in the differential equation. These assumptions provide
expressions for the function of the roll angle over time and its first derivate:

@(t) = ® coswyt And @(t) = —wy® sin wyt (47)
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4.2.3. Distribution of Energy

Kinetic and Potential Energy

Assuming the ship rolls at its natural frequency, the sum of kinetic energy (Ex) and potential
energy (Ep), contained respectively in the first term (inertia) and third term (constant part of
restoring moment) of Equation (45) is constant and equal to:

1
Ex + Ep = 5 WGMP* (48)

Consequently, the assumption of a constant roll amplitude @ causes the energy provided by
the exciting moment (Eg) to entirely dissipate by the damping moment as a “damping
energy” (Ep).

Damping Energy

The damping energy during one roll period is formulated as follows:

1 per
Using Equation (47), the energy dissipated by the damping moment from 0 to a time t is:
t
Ep(t) = B44w(2)CI>2f sin? wyt dt (50)
0
The instantaneous power dissipated by damping is:
dE
PD(t) = d_tD = B44_(qu)2 Sinz Cl)ot (51)
The average value of this power is:
1
PD = —344,(1)3(132 (52)

2

Exciting Energy

The exciting energy during one roll period is formulated as follows:

Ep = —-WAGM @ cos(wt + a)de (53)
1 per
The angle a is required here because the variation of GM in waves may not be in phase with
the roll motion. In this paper, this angle is called the shift angle. Using the expression of ¢
and de/dt in Equation (47) and the expression of d¢ in Equation (49), we construct the
following expression of the exciting energy between 0 and a time t:
t

Ep(t) = WAGM w,®? f Cos wyt sin wyt cos(w,t + a) dt (54)
0
The instantaneous exciting power is:
dEg 5 .
P:(t) = i WAGM wy®* cos wyt sin wyt cos(w,t + a) (55)
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The assumption regarding the wave encounter frequency (®e=2w) and trigonometric
identities allow a simplification of this equation (Annex 3 provides the mathematical proof in
page 130):

Pg(t) = %WAGMwOCDZ[sin(LLth + a) — sin a] (56)
Consequently, the average value of the exciting power is a function of the shift angle a:
Py = —%WAGM(UOCDZ sina (57)
The maximum value of the exciting power is obtained for a=—m/2:

1
Prmax = 3 WAGMwo®* (58)

4.2.4. Direct Calculation of the Maximum Roll Angle in Resonance Condition

Required Damping Coefficient

Assuming the steady state of parametric roll amplitude and the worst case of shift angle
(a=—m/2), the exciting energy is entirely dissipated if the damping coefficient can attain a
required value Bas req defined by the equality between Pp (Equation (52)) and Pe.max (Equation
(58)):

WAGM

Bisreq = 2wy (59)

Surprisingly, the roll amplitude @ does not appear directly in this relationship. If the damping
coefficient Bas is independent from the roll amplitude (i.e. linear damping), the parametric
roll cannot appear when its value is larger than the required value (Bas.req). When Bys is lower
than Baareq, parametric roll appears with very large roll amplitude or causes the vessel to
capsize, subject to the linear-GZ assumption.

However, the damping coefficient is a function of the roll amplitude as proposed by lkeda
simplified methods [48, 50]. Consequently, this approach provides an easy direct calculation
of the maximum parametric roll amplitude @, (corresponding to both the resonance
condition and the worst case of shift angle) by solving the following equation:

WAGM
2w

By (cbmax) = (60)

In 1955, Kerwin [12] arrived at the same conclusion using both analytical solving of the
differential equation and energy consideration, assuming a non-linear damping. In the
second method, the exciting energy is provided by a vertical movement of the center of
gravity, causing an equivalent variation of GM while the metacenter is motionless.

Comparison with Time-Domain Simulation

The method described above is used to calculate the maximum roll angle in resonance
condition for the C11 container vessel at a draft equal to 12 m. As required by the first-level
criterion of the future regulation, hydrostatics are computed in waves which have a length
equal to the length between perpendiculars (262 m) and a wave steepness equal to 0.0167
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(see Section 1.2.2 or [22]). This causes the wave height to be equal to 4.375 m and the half-
amplitude of the GM variation (AGM) equal to 1.511 m, independent of KG. The damping
coefficients Bys are calculated according to Kawahara, Maekawa & lkeda [50] and lkeda,
Himeno & Tanaka [48] for the lift component. The results are provided in Table 13 and
Figure 80. For each value of KG, the speed is calculated for the parametric resonance
condition. Positive speeds correspond to the head seas and negative speeds correspond to
the following seas. The resulting maximum roll angle (®,a in Table 13) is compared to the
value obtained by the numerical solving of the differential equation (Equation (44)) using the
method of Runge-Kutta at the 4™ order and a simulation duration equal to 20 times the
ship’s natural roll period (®max sim in Table 13). We observe that both values of the
maximum roll angle are almost equal (both calculations are limited to 50 degrees). In each
case, the value obtained by the time-domain simulation is slightly lower than that obtained
by the energy approach. This suggests that the duration of 20 natural roll periods of the ship
is not long enough to precisely attain the steady-state roll amplitude.

Moreover, the direct calculation of the maximum roll angle is performed assuming the worst
case of shift angle (a=—m/2). Equality between the values of the maximum roll angle
calculated with both methods seems to show that this assumption is correct. Figure 81
shows the variation of roll angle over time during the numerical solving of the differential
equation. This time-domain simulation in one degree of freedom starts with an initial angle
equal to 10 degrees and a shift angle a equal to zero, which reduces the exciting power to
zero. During the first period, we observe a slight decrease of the roll amplitude (the roll
angle is 8.9 degrees at the end of the period). After that, the amplitude increases up to the
steady state. The frequency of the roll motion during the first period is 0.396 rad/s. Its value
during the steady state is 0.369 rad/s. This shows that the roll motion automatically shifts in
waves at the start of the simulation in order to attain the shift angle which provides
maximum exciting energy (—m/2). The assumption of the worst case of shift angle in
parametric resonance condition is verified.

KG (m) Av;;avgei?m n o (rad/s) V (m/s) (N.rE::jls;;a:ad) Do (deg.) Dy sim (deg.)
15.0 5.445 0.406 13.64 1.34E+09 17.96 17.83
15.5 4,945 0.387 12.05 1.40E+09 19.92 19.84
16.0 4.445 0.367 10.37 1.48E+09 22.26 22.20
16.5 3.945 0.346 8.60 1.57E+09 25.33 25.26
17.0 3.445 0.323 6.71 1.68E+09 29.75 29.66
17.5 2.945 0.299 4.68 1.82E+09 38.08 37.85
18.0 2.445 0.272 2.47 2.00E+09 50 50
18.5 1.945 0.243 0.01 2.24E+09 50 50
19.0 1.445 0.209 -2.78 2.60E+09 50 50
19.5 0.945 0.169 -6.12 3.21E+09 50 50
20.0 0.445 0.116 -10.55 4.68E+09 50 50

Table 13 — Maximum roll angle in parametric resonance condition for the C11 container vessel.
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Figure 80 — Maximum roll angle in parametric resonance condition as a function of KG (both curve coincide).
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Figure 81 — Roll angle versus time in parametric resonance condition.
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4.3. PARAMETRIC ROLL IN OTHER CONDITIONS

In this section and the next one, the roll frequency is denoted by m and may differ from the
natural roll frequency wo. The encounter frequency w. may be non-synchronized with ®. We
introduce v, and y as follows:

We W,

=— And =— 61
Yo ™ 14 ” (61)

4.3.1. Non-Synchronized Parametric Roll

Kinetic and Potential Energy

If the roll frequency o differs from the natural roll frequency wo, the sum of the kinetic and
potential energies is not constant in time and Equation (48) (page 87) is no longer valid.
However, the sum of these energies is a sinusoidal function. Hence, the average value of its
derivate in time, equivalent to the average power required to maintain the roll motion, is
zero. Annex 3 provides the mathematical proof in page 132.

Consequently, as for the synchronized parametric roll, the assumption of a constant roll
amplitude @ causes the energy provided by the exciting moment (Eg) to entirely dissipate by
the damping moment as a damping energy (Ep).

Exciting Energy

Modifying Equation (55) for the general case yields the following relationship for the exciting
power:

Pr(t) = WAGMw®? cos wt sin wt cos(w,t + a) (62)

Trigonometric identities allow a modification of this relationship as follows (Annex 3
provides the mathematical proof in page 130):

Pp(t) = %WAGMw(DZ[sin((Z —Y)wt —a) +sin((2 + Yot + a)] (63)

We observe that the average value of the exciting power is zero except if y is equal to =2 or
+2. The case y=—2 corresponds to a non-realistically high speed in following seas. When the
value of KG of the C11 container vessel is in the usual range from 15 to 20 m, the
corresponding resonance speed is in the range from 54 m/s (KG=15 m) to 30 m/s (KG=20 m).
This case is not considered here.

If v is not equal to 2 but close to this value, the exciting power consists of two frequencies: a
high frequency equal to (2+y)® and a low one equal to (2—y)w. Figure 82 shows the roll angle
plotted as a function of time resulting from a time-domain simulation in this condition. The
speed of parametric resonance is equal to 8.8 m/s and the ship’s speed equal to 5.5 m/s. We
observe long periods which could be seen as corresponding to the low frequency part of the
exciting power. In these long periods, parametric roll successively appears and disappears
passing through a maximum. The roll frequency during the two first long periods of this
simulation (0 to 150 seconds and 150 to 300 seconds) remains almost unchanged
(respectively 0.315 and 0.316 rad/s) but roll motions are not in phase. This shows again that
the roll motion automatically shifts in waves in order to capture the maximum exciting
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energy. The encounter frequency is equal to 0.617 rad/s, which renders y equal to 1.95
during both first long periods of parametric roll. However, it is not possible to exactly find
the low frequency of the exciting power ((2—y)®) in Figure 82 because of the shift of the roll
motion.

Nevertheless, the roll amplitude rapidly tends to zero in this non-synchronized condition.
Although parametric roll periodically exists during a short time, it may be ignored because
the risk for the vessel is null.
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ﬂ
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Figure 82 — Roll angle versus time in non-synchronized parametric roll condition.

4.3.2. Lock-in Field

We now propose to examine the behavior of parametric roll close to the resonance
condition by performing numerical one-degree-of-freedom simulations for all possible
speeds in head seas (positive speed) and following seas (negative speed) and to look at both
the maximum roll angle and the ship’s roll period (called “observed roll period”, calculated at
zero-crossing in the second half-time of the simulation). Results for the C11 container vessel
with draft, KG and mean GM in waves respectively equal to 12, 17.5 and 2.95 meters and are
shown in Figure 83. The vertical dashed line indicates the speed corresponding to the
resonance condition. The horizontal dashed line indicates the natural roll period. The dashed
hyperbole represents twice the encounter period and the black dot represents the maximum
roll amplitude provided by the direct energy calculation. We observe the following facts:

1) The maximum roll angle occurs at a slightly lower speed than that of the resonance
condition and is slightly higher than the speed calculated by the energy approach. We
could believe that this is due to the reduction of roll damping at lower speeds but similar
calculations performed with a roll damping coefficient independent of the speed yield
similar results. This fact remains unexplained at this time. However, the analytical
approach proposed by Kerwin [12] also observes this fact. The calculation of the
frequency providing the actual maximum roll angle is proposed in Annex 3 page 133.
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2) Parametric roll exists at a range of speeds from 1.5 to 7.7 m/s, in which the observed roll
period is locked at twice the encounter period (i.e. yo=2). We call this range lock-in field.

3) Outside this range, parametric roll does not occur (the maximum roll angle is roughly
equal to the initial value used in the numerical solving, 1 degree) or is limited to the non-
synchronized configuration previously presented. The observed roll period seems erratic;
its calculation is disturbed by the shift of the roll motion. It tends to be close to the
natural roll period.

4) As expected, the observed roll period in resonance condition is equal to the natural roll
period and the maximum roll angle is equal to that calculated by the energy approach.
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Figure 83 — Maximum roll angle and roll period versus speed.

4.3.3. Second and Third Modes of Parametric Roll

Figure 84 shows a similar calculation performed with a KG increased to 18.45 m and a mean
GM in waves reduced to 2.00 m. The maximum roll angle in the lock-in field is larger than 50
degrees and the ship would possibly capsize in the vicinity of the resonance condition. We
observe a second lock-in field corresponding to the second mode of parametric roll,
characterized by equality between both the roll frequency and the encounter frequency
(Yo=1). This lock-in field is not exactly centered on the second resonance speed (9.98 m/s,
following seas) but passes through this value. The maximum roll angle occurs at a speed
lower than the resonance speed, possibly for the same unexplained reasons than what is
observed in the first mode of parametric roll. The value of the maximum roll angle is 2.2
degrees, negligible compared to what occurs in the first mode. The width of the second lock-
in field is also reduced.

The third mode of parametric roll (yo=2/3) is neither observable in the roll period nor in the
roll amplitude for this vessel. In the conditions of Figure 84, the corresponding speed is
13.4 m/s in following seas. However, it can be observed in non-realistic conditions as shown
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in Figure 85, where the speed range has been enlarged, the GM variation has been increased
(i.e. the wave steepness does not correspond to the future regulation requirement any
longer) and the damping coefficient has been customized. We observe that the third lock-in
field is narrow and the corresponding maximum roll angle is negligible.
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Figure 84 — Maximum roll angle and roll period versus speed with lower GM.
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Figure 85 — Three modes of parametric roll.
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4.3.4. Shift Angle in the Lock-in Field

The shift angle o can be calculated by comparing the resulting variation of the roll angle and
the variation of the metacentric height imposed during the time-domain simulation. Figure
86 shows the evolution of its absolute value as a function of yo. All data are dimensionless in
this figure: the maximum roll angle is divided by the value obtained with the direct energy
calculation, the periods are divided by the ship’s natural roll period and the shift angle is
divided by —t/2. We observe that its value starts from near zero at the left (low-speed side
of the lock-in field), is equal to —1t/2 near the resonance condition (yo=2) and continues up to
approximately —m at the right end of the lock-in field (high-speed side). Since the exciting
power is reduced by sin(a), this evolution is in accordance with the evolution of the
maximum roll angle observed in the lock-in field. The shift angle is not drawn outside the
lock-in field since it has no significance here.
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Figure 86 — Evolution of the shift angle in the lock-in field.

4.3.5. Width of the Lock-in Field

The width of the lock-in field is defined as the difference of y, at both ends of the field. Its
value is almost equal to AGM/GM. This observation has been made for all calculations
performed on the C11 container vessel, for any values of the average metacentric height in
waves and its variation (respectively GM and AGM). This observation has also been made for
the other vessels examined within the scope of this chapter (the 319 m container vessel, the
Ro-Ro vessel and the tanker). The second generation intact stability criteria of level one and
level two assess these vessels as respectively vulnerable (similar to the C11 container vessel),
slightly vulnerable and non-vulnerable to parametric roll (see Section 3.3.1).

In 1955, Kerwin [12] demonstrated an equivalent result both without and with damping
from an approximate solution of Equation (44). The equivalence between his result and the
observation made here is demonstrated in Annex 3 page 135.
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Moreover, it seems interesting to validate the location and the width of the lock-in field with
a computation of higher accuracy than that of the one-degree-of-freedom simulation with a
linear GZ. Fredyn software [70], presented in Section 3.3.5, is used for this. It is used here to
simulate the behavior of the C11 container vessel in one loading condition (draft 12 m, KG 18
m) in sinusoidal waves which have the required characteristics (length 262 m, steepness
0.0167), in head seas and following seas conditions. Figure 87 shows the maximum roll angle
provided by both 1- and 6-degrees-of-freedom simulations. We observe the following facts:

1) Both fields of parametric roll coincide perfectly. The location and the width of the lock-in
field obtained with 1-DoF simulations are validated.

2) The maximum roll angle provided by 6-DoF simulations occurs exactly at the resonance
condition, contrarily to what has been observed with 1-DoF simulations and by Kerwin.

3) The maximum roll angle provided by 6-DoF simulations is significantly smaller than the
amplitude obtained by 1-DoF simulations. This is due to the dispersion of energy in the 5
other degrees of freedom and to non-linear effects. Moreover, the methods used for roll
damping are not the same in 1-DoF and 6-DoF simulations (roll damping computation in
Fredyn is based on [49]).

4) Keeping the ship’s heading is impossible at zero speed in waves. This causes the trough
observed at this speed in the 6-DoF curve.

5) The second mode of parametric roll is clearly visible in 6-DoF simulations but its peak
does not occur at the expected speed.

~~~~~~ Resonance conditions

——Max. roll angle, 6-DoF simulations

=== Max. roll angle, 1-DoF simulations

-15 -10 5 0 5 10 Speed(mfs) 1g

Figure 87 — Maximum roll angle versus speed provided by 1-DoF and 6-DoF simulations.
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4.4. METHOD PROVIDING STEADY-STATE PARAMETRIC ROLL AMPLITUDE AT ANY
SPEED

We are able to easily calculate the maximum parametric roll amplitude which occurs in the
first-mode resonance condition assuming a linear GZ. Moreover, we can predict the width of
the lock-in field, in which parametric roll exists, and the evolution of the shift angle in this
field. We assume a linear evolution from 0 to —n. These points allow the establishment of a
simplified method providing the parametric roll amplitude in all speed conditions.

4.4.1. Energy Method

We propose a practical method, called energy method, which provides the parametric roll
amplitude in all speed conditions for a specific loading condition (draft and KG). Only the first
mode is considered. This method consists of two steps.

First Step

The first step consists of computing the parametric roll amplitude at the speed
corresponding to the resonance condition. This speed is obtained by the following
relationship:

g
Vist mode = (2(‘)0 - ww)_ (64)
Wy,

Where @, is the wave frequency (rad/s) and g is the acceleration of gravity (m/s?).

The parametric roll amplitude at this speed, denoted by ®.,., is obtained by the solving of
Equation (60), which can be easily done numerically on a spreadsheet.

The more difficult problems of this first step are:

e The handling of the Ikeda method: although the number of coefficients to be calculated is
large, there is neither hard relationship nor integral to deal with.

e The computation of the GM variation in sinusoidal waves, which requires an adequate
hydrostatic tool: several hydrostatic software packages, currently used by naval
architects, can be used to perform such computations.

Second Step
For any speed V (m/s), we calculate y, as follows:
W w w,,V
yo=—e=—w(1+L) (65)
Wy W )

The parametric roll amplitude is zero outside the lock-in field (the second and third modes
are not considered) and non-zero inside. The lock-in field is defined by yo in the range:
AGM AGM
- To 2+ —
2GM 2GM

Assuming a linear evolution of the shift angle o in the lock-in field and a parametric roll
amplitude proportional to sin(a), this amplitude, denoted by @, is obtained by:

From (66)
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GM
) 67)

® =d,,,, cos (n(Z - Y0) ACH

4.4.2. Improvement of the Energy Method

The evolution of the shift angle in the lock-in field is not exactly linear, as shown in Figure 86.
The comparison of the roll amplitudes provided by the above method and those obtained
with the 1-DoF simulation demonstrates that our method underestimates the amplitude.
Consequently, we propose to introduce an exponent k in Equation (67) as follows:
GM

AGM)

Figure 88 shows the results provided by the proposed method with different values of the
exponent for the C11 container vessel with the same loading condition as that in Figure 83.
Setting k to zero renders the roll amplitude equal to the value obtained in the resonance
condition inside the entire lock-in field and zero outside the field. We propose k=% (plain line
in Figure 88). This value provides a good accuracy and a slight safety margin.

® = d,,,, cosk (n(Z —Yo) (68)
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Figure 88 — Maximum roll angle versus speed, influence of exponent in energy method.

4.4.3. Application to Second Generation Intact Stability Criteria

As mentioned in Section 1.2.3, the second check of the level-two criterion of the parametric
roll failure mode requires computing the maximum roll angle for several wave cases and 7
speeds in head and following seas (independent from the resonance speed) for each wave
and any considered loading condition. This criterion has been defined by the IMO in 2015
[22] and is enhanced by explanatory notes written in 2016 [23] providing explanations,
comments and guidelines, such as the criteria of other failure modes because of their
unusual complexity with regard to the current intact stability regulation [18].
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We propose to implement the energy method in the computation of the second check of
level-two criterion of parametric roll. Computations are performed on the C11 container
vessel, the 319 m container vessel, the Ro-Ro vessel and the tanker. Results are provided in
terms of KG,ax curves and the second check (C2) is seen as a separate criterion. Results are
given in Figure 89 to Figure 92. KG,.« curves obtained with the energy method are compared
to those obtained by numerical 1-DoF time-domain simulations assuming a linear and non-
linear GZ in waves. The non-linear GZ in waves is calculated as the GZ in calm water
modulated by the GM in waves, as proposed in the explanatory notes [23] and presented in
Section 1.2.4 page 32. The comparison of KGn,x curves obtained by 1-DoF time-domain
simulations with a linear and non-linear GZ is previously presented in Section 3.3.4 page 78.

Figure 89 — KGhax Ccurves associated with the 2" check of the parametric roll level 2 criterion
for the C11 container vessel. Figure 89 shows the results for the C11 container vessel. We
observe a good accordance of the three methods.

Figure 90 shows the results for the 319 m container vessel. Both curves obtained with a
linear GZ are in very good accordance.

Figure 91 shows the results for the Ro-Ro vessel. Both curves obtained with a linear GZ are in
very good accordance except for one point located beyond the full-load draft. The extension
of computations at larger non-realistic drafts shows that the curves meet again. This local
jump is characteristic of the KG,.x curves associated with the second check of level-two
criterion as explained in Section 3.3.2.

Figure 92 shows the results for the tanker. The accordance between both curves associated
with a linear GZ is very high again.

23

KG’I'IEK {m)

22 A

21 - —+—1-DoF simulations, non linear GZ
-m—1-DoF simulations, linear GZ

20 Energy method, linear GZ

19

18

17

7 8 9 10 11 12 Draft(m) 13

Figure 89 — KG,.x curves associated with the 2" check of the parametric roll level 2 criterion for the C11
container vessel.
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Figure 90 — KG,,.x curves associated with the 2" check of the parametric roll level 2 criterion for the 319 m
container vessel.
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Figure 91 — KG,,. curves associated with the 2" check of the parametric roll level 2 criterion for the Ro-Ro
vessel.
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Figure 92 — KG,,,, curves associated with the 2" check of the parametric roll level 2 criterion for the tanker.
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CONCLUSION

Objective

The second generation intact stability criteria are currently under finalization and validation
at the International Maritime Organization. These criteria are structured in five failure
modes and three levels of assessment in each failure mode. Pure loss of stability and
parametric roll failure modes are consequences of the variation of the restoring moment in
longitudinal waves. The former is a single wave effect since the latter is due to the repetition
of the encounter of waves. The aim of the work reported in this thesis was to implement the
level-one and level-two criteria of these failure modes in order to analyze their relevance
and their requirement.

The criteria are implemented in the Calcoque software. This real three-dimension
hydrostatic code computes equilibrium, metacentric heights and righting arm curves in both
calm water and longitudinal waves, using a matrix algorithm which generates a mesh of the
watertight volume from the classical hull design by stations.

The criteria are computed for several ships of different types, both civilian and military,
expected to have different behavior with regard to these failure modes. Although new
criteria are not intended for naval ships, it cannot be excluded that naval ships be vulnerable
to such stability failures. Moreover, if one is provided with an infra-red camera, although this
is not mandatory, one will proceed to a thermal check of one’s home in order to improve its
efficiency in this domain at optimized cost. New criteria could be seen as this camera. They
allow assessing any ship with regard to several failure modes at zero cost (a KGnax curve
associated with a level-two criterion requires about 10 minutes of computation). Hence, it
would be unfortunate to forego the analysis of naval ships while we consider civilian ones.
The author recommends a change of military stability regulations in this direction after the
new IMO regulation comes into force.

Results are provided as KGp,.x curves, giving the maximum height of the center of gravity
ensuring the compliance of the considered criterion. This avoids any consideration of the
vertical center of gravity and allows the evaluation of criteria rather than ships.

Results, Comments and Recommendations

The computation of KGn,.x curves associated with the level-one and level-two criteria for
different civilian and military vessels reveals that level two can be more conservative than
the second level-one method for both failure modes. This configuration is not expected in
the future regulation. This computation also shows that the gap between both level-one
methods can be very large, especially for the pure loss of stability failure mode. The safety
margins ensured by the first level-one method (parallel waterplane) seem to be excessive
and may conflict with the excessive acceleration criteria. Thus, if they are equipped to
compute hydrostatics in waves, naval architects and shipyards will probably not use the first
level-one method. This first method could have a real added value if it ensures acceptable
safety margins for small vessels, which are likely to be designed by architects with modest
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means. This seems to be the case for the 30 m passenger vessel presented here since her
standard loading condition complies with the first-method level-one criterion of both failure
modes.

Although this is not the aim here, the KG,ax curves associated with parametric roll criteria
confirm the well-known vulnerability of the C11 container vessel to this failure mode. As
expected, the other container vessel is also assessed as vulnerable to parametric roll. The
tanker is assessed as non-vulnerable to both pure loss of stability and parametric roll, as
expected due to her wall-sided hull.

KGmax curves associated with the first method of level-one criteria of both failure modes
have hooks due to void spaces in the hull form. Considering the bare hull masks this
phenomenon. Moreover, the height of the watertight limit has an important influence on
the level-two criterion of pure loss of stability. Both points show the importance of a
rigorous definition of the watertight volume to be considered.

Recommendation: The future regulation should clearly specify the watertight volume to be
considered (bare or real hull, height of the watertight deck).

The second check of parametric roll level-two criterion (C2) considers the maximum roll
angle for 7 speeds in both head and following seas and all waves cases of a scattering table.
The future regulation proposes two methods to compute its value. The method based on the
numerical solving of the parametric roll differential equation is used and analysed here. The
future regulation stipulates a simulation duration equal to 15 times the ship’s natural roll
period, based on a proposal of experts in the field [32]. This value is validated here by
sensitivity tests.

The computation of the second check of parametric roll level-two criterion for all possible
values of KG shows that the more the ship is vulnerable to this failure mode, the more her
curve C2 versus KG has peaks and a long interval to let C2 go from 0 to 1. This creates jumps
in the associated KGax curves and makes the surface formed by both draft and KG foliated
with authorized and restricted zones. Consequently, checking that C2 is lower than the
specified threshold (Rpro) for a given ship’s loading condition will not be sufficient. It will be
necessary to check this condition for all lower values of KG.

Recommendation: The future regulation should clearly specify the requirement of checking
C2 for all values of KG lower than that of the considered loading condition.

The future regulation imposes the use of the Grim method [65] in the second check of
parametric roll level-two criterion. This causes all wave cases of the scattering table to be
replaced by effective waves which have the same length and period. Hence, the 7 stipulated
speeds may have a random effect with regard to this wave, depending on the ship’s length,
possibly overlooking the speed corresponding to the resonance condition. Increasing the
number of speeds or focusing on the resonance speed should improve the criterion. This
recommendation is also formulated by the Delegation of Sweden in the Intact Stability
Correspondence Group (ISCG) [24].

Recommendation: The number of speeds considered in the second check of level-two
parametric roll criterion should be increased, or the criterion should focus on the speed
corresponding to the first-mode resonance condition.

The computation of the maximum parametric roll angle requires the roll damping
coefficient. The future regulation provides the lkeda simplified method in the explanatory
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notes of parametric roll criteria (SDC 3/WP.5, Annex 4, Appendix 4, [23]). The proposed
method is taken from [48] for the lift component and [50] for other components. However,
this method underestimates the damping coefficient for hull having sharp bilges, such as
that of the 30 m passenger vessel. This point is illustrated by the inconsistency between the
very conservative KG,. associated with C2 and the KG,.x associated with other parametric
roll criteria.

Recommendation: The future regulation should propose a method to provide the roll
damping coefficient for hulls with sharp bilges.

Since both methods proposed in the future regulation to compute the maximum roll angle
required by the second check of parametric roll level-two criterion are relatively complex to
implement, an alternative method is proposed. It consists firstly in calculating the steady
state roll amplitude in resonance condition from energy considerations and assuming a
linear GZ. A method providing the roll damping coefficient function of roll amplitude, such as
a simplified Ikeda method, is required. The obtained value is the amplitude of parametric roll
which may occur in the worst conditions, when the wave encounter frequency is twice the
ship’s natural roll frequency. Consequently, this easy calculation is compatible with the
deterministic principle of the level-one criterion of the future intact stability regulation: a
vessel having a roll amplitude lower than an adequate threshold in the worst condition of
parametric roll should not be assessed as vulnerable to this failure mode.

The first mode of parametric roll occurs in a field where the ship’s roll frequency, which may
differ from her natural frequency, is locked to half the wave encounter frequency.
Simulations on several ships exhibiting different behaviors with regard to parametric roll
show that the non-dimensional width of this lock-in field is almost equal to the non-
dimensional GM variation (AGM/GM). They also show that the shift angle, which
corresponds to the phase between the GM variation and the roll motion and which reduces
the exciting energy, is almost linear from 0 to —x in this field, passing —n/2 near the
resonance condition. Thus, the second part of the alternative method allows the estimation
of the parametric roll amplitude in any condition, in particular for any speed.

The implementation of this alternative method in the second check of the level-two criterion
is possible. It provides almost the same KG,.x than the one-degree-of-freedom numerical
simulation with a linear GZ. The linear GZ assumption is doubtful for vessels having a highly-
non-linear GZ such as the 319 m container vessel. However, the alternative method is so
easy to implement that it would be unfortunate to go without in the case of vessels having
an almost-linear GZ up to 25 degrees.

Proposal: The future regulation should propose a simplified alternative method for vessels
having a GZ almost linear up to 25 degrees.

Although the mean value of the parametric exciting power is zero outside the first-mode
lock-in field, parametric roll may occur with low amplitude in modes 2 and 3, where the
ratios between the wave encounter frequency and ship’s roll frequency are respectively
equal to 1 and 2/3. An improvement of the alternative method in these conditions would be
interesting, even if the financial and safety risk is almost null or significantly reduced.
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Perspective

Planned Improvements

The work presented in this thesis could be completed by several planned developments and
comparisons:

The six-degrees-of-freedom computations performed in parametric roll could be extended
to pure loss of stability, in order to analyze the relevance of the KG,, associated with the
corresponding criteria. The computation of KG,x curves associated with these criteria could
be extended to vessels having suffered an accident due to this failure mode. In particular,
the 55-meter LPG tanker reported by Taylan [36] sank presumably due to a stability failure
on a wave crest as. This vessel had a Froude number equal to 0.23 and would consequently
be assessed as non-vulnerable by the future rules. This unexpected case requires to be
rigorously analyzed.

Although it is not proposed in the future regulation, a simplified method providing the roll
damping coefficient for hulls with sharp bilges could be implemented in order to analyze the
results for the 30 m passenger vessel, expecting the resulting KG.x to be close to those
associated with other parametric roll criteria.

Moreover, other computation methods providing the maximum parametric roll angle for the
second check of level two could be implemented:

e considering the real GZ in waves instead of the GZ in calm water modulated by GM in
waves;

e analytical method proposed by Kerwin [12], assuming a linear GZ, to be compared with
both the energy method proposed in Chapter 4 and numerical time-domain simulation
with a linear GZ;

e averaging method proposed in the future regulation, directly providing the maximum roll
angle from a fit of the GZ curve at the 5" order, to be compared with the numerical time-
domain simulation.

Entry into Force of the Second Generation Intact Stability Criteria

The entry into force of the future rules, currently estimated at the earliest in 2019 as
recommendations in part B of the IMO intact stability code, will shake up habits of shipyards
and naval architects because of their unusual complexity with regard to the current intact
stability rules. However, shipyards and naval architects nowadays handle the probabilistic
rules of damage stability, which require a large amount of computations and represent a
significant leap of complexity with regard to the former deterministic rules. The future intact
stability rules require adapted computing tools which are presumably currently under
development. Schools and universities specialized in naval architecture will teach these new
rules to their students and will propose training courses updating the knowledge of senior
naval architects. The author sees no major obstacle to the entry into force of pure loss of
stability and parametric roll criteria, except for the second check of parametric roll level-two
criterion because of its requirement of the roll damping coefficient.

Unfortunately, there is no universal simplified method providing the roll damping coefficient
for any type of ship, as shown by the inadequacy of the method proposed in the future
regulation to the sharp-bilge hull of the 30 m passenger ship. Hence, it would be desirable to
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include several methods corresponding to all possible hull designs in the future regulation.
However, it is not currently possible do predict the innovative hull designs that will exist in
future decades. Consequently, including an exhaustive review of the simplified roll damping
method in the future regulation is pointless. CFD (computational fluid dynamics, solving
Navier-Stokes equations) is currently able to provide accurate (or at least acceptable) values
of the roll damping coefficient for any hull design. Unfortunately, it is not compatible with
the philosophy of the second level of assessment because of the highly specialized personnel
and computing time it needs.

Consequently, in the author’s personal opinion, the second check of parametric roll level-
two criterion could be seen in its present form as a first step of third level of assessment,
which will presumably be performed by specialized institutes. An alternative way could be to
restrict the second check in its present form to the vessels compatible with the simplified roll
damping method (or a panel of different methods) using objective simple criteria (Froude
number, block-coefficient, bilge radius ...) to be clearly specified in the future regulation. For
other vessels, the second level of assessment would be limited to its first check. In case of
non-compliance with this check, the classification society should enjoin the implementation
of the second check by a specialized institute, able to select and use an adequate method to
provide the roll damping coefficient (including CFD if required), otherwise enjoin the direct
assessment, also to be performed by a specialized institute.

Direct Assessment

Although some improvements are desirable and some points need to be clarified, the level-
one and level-two criteria of pure loss of stability and parametric roll are now finalized, and
so are those of the three other failure modes. This is not the case for the third level, which is
yet in its earliest development.

The third level is planned to be a direct assessment, i.e. numerical simulations of the ship in
waves, expected to evaluate the vulnerability regarding the five considered failure modes
with good accuracy. These simulations are necessarily performed in six degrees of freedom.
CFD not seems to be adapted for this task because of the excessive computation time it
currently needs. The Fredyn software, developed by the CRNAV members and used for some
comparisons within the scope of this thesis, could be adapted for this task. In this software,
hydrodynamics (radiation and diffraction forces) are computed first using potential theory.
The simulation can consequently be accelerated up to 10 times the real time or more. Other
similar existing 6-DoF hydrodynamic solvers may also be adapted.

The direct assessment in parametric roll failure mode could consist of an improved second
check of level two, replacing both the numerical one-degree-of-freedom simulations and
sinusoidal waves, respectively by six-degrees-of-freedom simulations and real sea-states
with a wave spectrum to be determined. The author recommends increasing the number of
considered speeds or focusing on resonance speed, as argued above.

A similar work could be performed for the pure loss of stability failure mode, considerably
increasing the simulation time in order to capture a significant number of extreme waves.

It is also possible to merge direct assessments of all failure modes in a unique assessment
made of a large amount of simulations in all wave cases of the scattering table, with all
possible values of the ship’s speed and all courses. Such a work has already been performed
to calculate the capsize probability of French frigates [72]. A preliminary analysis of a
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significant number of vessels already known as safe or unsafe with regard to all failure
modes would provide the threshold to be used as a global criterion of third level. This
statistical analysis is similar to that performed by Rahola [11] but with modern computation
tools and more realistic sailing conditions.

Such a process would provide a global criterion which would embed all failure modes.
Although it is not possible to target a specific failure mode in simulations, it is possible to
implement detectors in the 6-DoF solver indicating the failure mode which causes capsizing,
excessive roll angle or excessive acceleration, such as both the surf-ride and broach
detectors currently implemented in the Fredyn software.
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ANNEX 1. CALCOQUE SOFTWARE

Calcoque is a personal project started in 1993. It consists of naval architecture software
dedicated to educational and research use at the French Naval Academy. Calcoque is also
used onboard several French Navy ships as stability software.

Historical Review

The project started in 1993 during a student project at the “Ecole Nationale Supérieure
d’Arts et Métiers” (Lille, France) as a first version of the software which aim was to compute
the hydrostatic table of fishing vessels for a shipyard. Then, the project is entering a phase of
sleep during my boarding.

The current version of the software was recreated in 2003 as a Microsoft Windows
application developed in C++ language. The initial goal was extended to the ship’s weights
and successively to the other main steps of the ship design loop.

A first opportunity occurred in 2004 at the Saint-Mandrier Naval Training Center (France). |
was responsible of a 70-hour exercise of naval architecture for officers which aim was to
perform the preliminary design of a large civilian or military ship. This required a dedicated
numerical tool. | decided to continue the development of the software for this. The exercise
was conducted twice in 2005 and 2006.

A damage stability module using the lost-buoyancy method and 3D view, extensively used to
illustrate this report, were developed during one-year training (2006-2007) at ENSTA
Bretagne (Brest, France).

A second major opportunity occurred in 2008 at the French Naval Academy when the
software was selected to equip some French Navy ships as stability software within the
scope of an experiment. This required some deep modifications and improvements such as
virtual mass (see [1], Chapter 3) or a lock to prevent modifications of the model by the crew.
Calcoque was installed onboard the research ship Beautemps Beaupré in 2010.

Nowadays, the software is used onboard 12 French Navy ships. The onboard installation
requires the prior creation of a numerical model. Some of them have been made by students
and midships at the French Naval Academy.

The software is also used to teach ship stability and naval architecture to midships and
civilian students of Master through practical exercises and scientific projects. In particular,
historical and scientific study of the battleship Bouvet, which sank in the Dardanelles on 18
March 1915, was conducted jointly by students and teachers in 2012-2014 [73].

The experience acquired from the development of the software was capitalized in writing a
ship stability handbook [1].

The software was awarded by the French Naval Academy alumni association in 2013.
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Ship Modeling

The ship modeling consists of the definition of a numerical model including the hull, weights,
superstructures, decks and bulkheads, propellers and appendages. This requires from few
days to few month working, depending on the required level of detail. The drawings of the
ship and her stability booklet are required.

The hull form is created from stations and lines as described in Chapter 2. Both associated
volume and surface meshes are the base of all hydrostatic computations, such as the
watertight volume, obtained by cutting the volume mesh with the plane of watertight deck
or the displacement volume by cutting the watertight volume with the waterplane.

Weights are added to the ship model. They are geometrical elements representing all
weighting objects (engines, hull facilities ...), solid cargo (crew, passengers, ammunitions,
containers, lifeboats ...) and superstructures, subject to wind effect. They are designed as
basic geometric elements (box-shaped hexahedron, sphere, lines and cylinder) or as meshes.
Figure 93 shows the superstructures of the Offshore Patrol Vessel Adroit, entirely defined as
meshes by students.

Figure 93 — Superstructures of the Offshore Patrol Vessel Adroit.

Rooms and tanks are defined as the intersection of a hexahedron with the volume mesh of
the ship. They may be truncated with other inclined plans and concatenated together to
define rooms which have a complex geometry. Tanks contain all liquids (water, fuel, lube oil
...) and participate to the ship’s weights with free surface effect. All rooms may be flooded
occasionally for damage stability or permanently to create voids in the hull form such as bow
thruster tunnels, water inlets or stabilizers’ housings. Figure 94 shows all tanks of an A69-
class frigate. Figure 95 shows all rooms defined in the numerical model of the same ship.
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Figure 94 — Tanks of the Offshore Patrol Vessel Adroit.

Figure 95 — All rooms of an A69-class Frigate.

Decks and bulkheads are defined as the intersection of the volume mesh with a plane. A
weight may be assigned. Decks may be used as watertight or weather deck.

= -

/

Figure 96 — Decks and bulkheads of a Patrol Vessel defined within the scope of a ship design exercise.

Appendages are volumes concatenated to the watertight volume. They participate to the
buoyancy lift and may generate ship resistance. Classical appendages (rudders, stabilizers,
shafts, POD ...) are automatically generated from their main characteristics (see Figure 24

page 40). Other appendages, such as sonar, may be defined as meshes created by the user
(Figure 97).

Figure 97 — Special appendage under the bow of the research ship Beautemps Beaupré.

Propellers are defined by volume meshes, created automatically from their main
geometrical data. They are added to the watertight volume as appendages. Hydrodynamic
computation of propellers is an intended improvement.
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Ship Computing

Stability

Calcoque computes all buoyancy and stability particulars as well as the righting arm curve.
These computations are performed in both intact and damage stability configurations, in still
water or in longitudinal waves. If required, intact stability rules (IMO [18] and French military
rules [17]) are checked. Results are saved and viewed in a HTML file which constitutes the
daily stability report.

Damage stability can be treated with the lost buoyancy method in case of flooding, or with
additional weight and free surface effect in case of water ingress or fire, extinguished with
water, hence similar to water ingress with regard to the ship stability.

Figure 98 — Flooded room retired from the watertight volume in damage stability (lost buoyancy method).
Shear Forces and Bending Moment
Calcoque computes the buoyancy, weight, shear forces and bending moment along the hull

in still water or in longitudinal waves. Figure 99 and Figure 100 show the bending moment of
an A69-class frigate in waves respectively in sagging and hogging conditions.

Figure 99 — Bending moment in sagging condition. Figure 100 — Bending moment in hogging condition.

Resistance and Motorization

Calcoque calculates the ship resistance according to empirical methods provided by the ITTC
[51] for the viscous component and Holtrop and Fung [52, 53 and 54] for the wave
component.

With a catalog of over 1,600 diesel engines and gas turbines, Calcoque finds automatically all
possible solutions to form the propulsion device according to the previously determined
resistance, the use of the ship specified by user and constraints in terms of architecture,
mass and autonomy.
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Other Capabilities

Calcoque is also able to compute the followings:

e Windage area of the heeled ship. This allows the analysis of the relevance of the weather
stability criteria (IMO criterion assumes a heeling lever independent from the heel since
military equivalent criteria assume that the heeling lever of the wind reduces since the
heel angle increases).

e Hydrostatic tables, cross curves, tank tables and KG,, curves associated with IMO and
French military intact stability rules. These computations allow the validation of the
numerical models by comparison with tables included in the stability booklet. The
computation of inertia required for the hydrostatic table is performed with the Green-
Riemann method, which consists in replacing the two-dimension integral on a surface by
a single-dimension integral on its closed border.

Educational and Research Use

Calcoque is used for several teaching and research activities. The most important are briefly
described hereunder.

Stability Training

As conclusion of a 38-hours course dealing with mechanics and ship stability, students at
French Naval Academy have a 3-hours exercise using Calcoque. They input the solid weights
and liquid cargo of an A69-class frigate. Then, they compute the GZ curve and calculate
intact stability criteria in a spreadsheet, in order to become accustomed to the military
stability rules. In second part of this exercise, they calculate shear forces and bending
moment of the ship in different longitudinal waves, in order to determine the wave length
generating the most important moments amidships (Figure 101).
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Figure 101 — Maximum bending moment as a function of the wave length in hogging and sagging conditions.
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Naval Architecture Training

Calcoque is used for several naval architecture practical exercises at the Saint-Mandrier
Naval Training Center and at the French Naval Academy according to Table 14. During these
exercises, the students are divided in pairs. They design a ship which specifications are
provided by the teachers. They describe the classical design loop focusing on following steps:

e analysis of specifications and choice of main particulars;

hull design: depending on the duration of the exercise, they totally design the hull or they

modify a given one;

definition of the general arrangement;

definition of weights and liquid cargo;

intact stability check according to the specified rules (IMO, military);

estimation of ship’s resistance;

definition of the propulsion device.

Eventually, if the duration of exercise is sufficient:

e calculation of shear forces and bending moment, design of the midship section;

e check of seakeeping and maneuverability performances: Fredyn software is used for this.

Ships designed by

Academy Year Duration of exercise Students
students
amphibious vessel
saint-Mandrier Naval| 5404 005 70 hours ~7-8 officers naval tanker
Training Center fast passenger vessel
container vessel
Since 2011 20 hours ~20 midships 400-ton trainee ship
Scientific vessel
. ~10 civilian students
French Naval Since 2014 35 hours Supply vessel
(Master)
Academy Patrol vessel
Since 2016 35 hours 5 civilian students Innovative supply

(Master)

vessel

Table 14 — Naval architecture practical exercises.
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Bouvet Project

The Battleship Bouvet sunk in the Dardanelles on 18 March 1915, killing 600 of her seamen.
This drama is the topic of a major project carried out at the French Naval Academy in 2012-
2014 in collaboration with DGA Techniques Hydrodynamiques (Val de Reuil, France) and
foreign historians and naval architects. The aim of this historical and scientific project, which
was conducted within the scope of the centennial of the Great War, is to investigate the
causes of the wreck using modern tools. The first part of the work was the realization of a
detailed numerical model of the vessel (Figure 102 and Figure 103). This work was done by
both students and teachers. The campaigns of sonar surveys, conducted in situ by Turkish
archaeologists, have validated the hypotheses locating the breach caused by the mine,
previously made by French historians on the basis of testimonies. By issuing other
hypotheses on the location of the bulkhead deck, it was possible to define a watertight
volume in intact condition and after the mine impact (Figure 104). Righting arm curves in
intact and flooded conditions (Figure 105) show that:

e The vessel had a good initial stability in intact condition. However, the area under GZ
curves remains so insufficient that she would not have fulfilled the stability rules if they
had existed at that time (blue curve).

e The vessel might have survived a symmetrical flooding since a stable equilibrium exists at
zero-heel angle. However, a dynamic flooding simulation is required to confirm or refute
this assumption (green curve).

e After asymmetrical flooding, as it is assumed to have occurred, the unique point of stable
equilibrium is at a heel angle almost equal to 180 degrees. The capsizing of Bouvet was
inevitable.
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Figure 102 — Numerical model of the Battleship Bouvet. Figure 103 — Numerical model of the Battleship Bouvet,
zoom on the bridge.

Figure 104 — Watertight volume after mine impact.
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Figure 105 — GZ curves in intact and flooded conditions.
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Operational Use

Calcoque is installed onboard 12 naval ships. Some corresponding numerical models are
shown in Figure 106 to Figure 108.

While the ship is moored, a crew member inputs the weights (solid and liquid cargo) and
drafts. Then, Calcoque computes a virtual mass fitting the weight situation to the observed
hydrostatic situation, assuming the observed drafts are more accurate than the weight list
(see [1], Chapter 3).

At sea, the software is used daily to compute stability data and to check the associated
criteria [17 or 18] with an updated weight situation.

In case of damage situation such as flooding, water ingress or fire, the software is used to
evaluate the stability in order to guide the ship’s master to recover a safe situation.

Figure 106 — Numerical model of an Anti-Submarine Figure 107 — Numerical model of an A69-Frigate.
Frigate.

Figure 108 — Numerical model of the Research Ship Beautemps Beaupré.
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ANNEX 2. PRESENTATION OF SHIPS

Six civilian ships and three naval ships are considered in this thesis. Although second
generation intact stability criteria are not intended for naval ships, it seems interesting to
assess the outcome of their applications. This choice is argued in Section 3.1.2 page 50.
These nine ships are briefly described hereunder. The Offshore Patrol Vessel Adroit, used to
illustrate the generation of meshes in Chapter 2, is also presented. Since she is currently in
service in the French Navy, her results with regard to the new criteria are not provided here.

Civilian Ships

The main particulars of the six selected civilian ships are given in Table 15. The
superstructures of some of them (except one) are modelled to permit the computation of
the weather criterion (IMO IS Code 2.3, [18]) without taking into account their flooding
points. The bilge keels of all ships are modelled.

The first ship is the C11 container vessel. Her numerical model is shown in Figure 109 and
her stations are shown in Figure 110. This vessel is well-known by the scientific community
since one ship of this class, APL China (Figure 111), suffered from a parametric roll accident
in October 1998 in the Northern Pacific Ocean. This accident is described in [41] (Figure 112).
The 49-MW MAN B&W diesel engine of this vessel is capable of powering her at speeds up
to 24.5 knots. This value is considered as service speed in most parts of this thesis. However,
her service speed is often set equal to 20 knots in the literature. Computations in Section
3.3.4 have been performed with this reduced value.

The second civilian ship is another container vessel, 319 m long. Her numerical model is
shown in Figure 113. A fatal accident due to an extreme roll motion (not parametric roll)
occurred on a vessel of this class in 2008 (Chicago Express, Figure 114). One of the causes
given by the experts is the insufficient roll damping [60]. This accident is one of those behind
the development of excessive acceleration criteria by the IMO [23].

The numerical models of both container vessels include the containers in full-load
configuration as shown in Figure 109 and Figure 114. The associated windage area is
considered in the KGna curves associated with the current IMO regulation provided in
Chapter 3 through the weather criterion.

The third civilian ship is a 135-meter-long Roll-on Roll-of vessel presented by Garme [67].
Her data have been provided by the KTH Royal Institute of Technology. Her superstructures
are not modelled. Consequently, the KGay curve associated with the first generation criteria
does not take the weather criterion into account. Her watertight volume is shown in Figure
115.

The fourth ship is a 227-meter-long tanker. She is wall-sided on 80% of her length and has
been chosen for her supposed non vulnerability to both pure loss of stability and parametric
roll failure modes. She has been taken from DELFTship database (www.delftship.net). A
simplified box-shaped superstructure has been added to her model but has no influence on
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the KGnax curve associated with the current criteria. Her watertight volume is shown in
Figure 116.

The fifth ship is a 160-meter-long passenger vessel. Her numerical model is shown in Figure
118. Her characteristics and her hull are inspired from those of the high-speed ferry Mega
Express (Figure 117), sailing from Mainland France and Italy to Corsica and Sardinia. Two
different watertight volumes are considered. The first is limited by the weather deck (14 m
above baseline) and includes the volume of the garage car (Figure 119). The second is limited
by the bulkhead deck (9 m above baseline) and excludes this volume (Figure 120).

The sixth and last civilian ship is a 30-meter-long passenger vessel named Le Palais (Figure
121). In summer, she sails from the Mainland South Brittany (France) to the Gulf of
Morbihan Islands. Outside this period, she crosses the Bay of Brest (France) between the
Naval Base and Lanvéoc, where the Naval Academy and Naval Air station are located. Her
hull is classically designed with sharp bilge and no bilge keels. Her watertight volume is
shown in Figure 122.

In Table 15 (civilian ships) and Table 16 (naval ships), the reference height of the center of
gravity (KGef) is used to calculate both the associated metacentric height in calm water
(GMyef) and natural roll period (To) of each ship. The latter depends on the added mass
coefficient and radius of inertia coefficient (denoted by a and k, defined in Section 1.2.4 page
31). The roll period is given for the full-load displacement except for the C11 container vessel
whose associated draft is 12.339 m (see [41]). The roll damping coefficient B4, is calculated
as described in Section 1.2.4 (page 32). Its value is given for the reference height of the
center of gravity (KGe), the full-load draft (12.339 m for the C11 container vessel), the
service speed (Vs) and a roll amplitude of 10 degrees.

Container Container Passenger Passenger

c11 319m Ro-Ro  Tanker )0 ) 30m
Length overall Loa m 275.8 335.5 147.9 236.5 175 29.6
Length between Lop m 262 319 135 2275 160 26.4
perpendiculars
Breadth B m 40 42.8 24.2 32.2 24 7.8
Draft, full load dsyi m 12 13 5.50 11 6 1.05
Freeboard, full load f m 12.45 11.60 12.50 7.00 8.00 1.53
Displacement, full load A t 73,340 107,350 11,544 70,397 13,147 93
Speed Vs knots 24.5 25 20 15 25 22
Froude number Fn - 0.203 0.230 0.283 0.163 0.325 0.703
Block coefficient Gy - 0.569 0.590 0.625 0.852 0.554 0.433
Bilge keels length Lpk m 76.53 81 45 75 69 -
Bilge keels breadth By m 0.40 0.50 0.30 0.30 0.70 -
Bilge keels projected area Ay m’ 58.02 57.28 19.09 31.82 91.85 -
Added mass coefficient a - 0.1 0.1 0.094 0.1 0.1 0.1
Radius of inertia coefficient k - 0.429 0.4 0.41 0.4 0.4 0.4
Reference height of G KG et m 18.24 18.00 12.22 12.00 9.00 2.50
Metacentric height @ KG,of GM,¢f m 1.97 2.17 1.64 1.70 2.29 5.00
Roll period @ KG,¢f To s 25.7 24.43 16.27 20.78 13.35 2.95
Starting value of KG KGgtart m 14 15 9 10 9 2.5
Pure loss limit angle Rpi2 - 25 25 25 25 15 15
GM variation limit Rer - 0.405 0.348 0.418 0.355 1.187 1.87
Roll damping coefficient Bas N.rr:as/ 1.027e9 1.099e9 1.721e8 2.463e8 1.785e8 6.414e-5
Superstructures - - Yes Yes No Yes Yes Yes

Table 15 — Main particulars of civilian ships.
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Figure 109 — Numerical model of the C11 container vessel.

AF!, CHINA

/ MRy

Figure 111 — APL China container vessel (photo by Jan  Figure 112 — Damage occurred on the APL China after a
Svendsen from www.containership-info.com). parametric roll accident in October 1998 (from
afcan.org).
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Figure 113 — Numerical model of the 319 m container vessel.

Figure 114 — Chicago Express container vessel (photo by Jan Svendsen from www.containership-info.com).

Figure 115 — Watertight volume of the Ro-Ro vessel.

Figure 116 — Watertight volume of the tanker.
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Figure 117 — High-speed passenger vessel Mega Express.

Figure 118 — Numerical model of the 160 m passenger vessel.

Figure 119 — Watertight volume of the 160 m passenger Figure 120 — Watertight volume of the 160 m
vessel, limited by the weather deck. passenger vessel, limited by the bulkhead deck.
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Figure 121 — Passenger vessel Le Palais.

Figure 122 — Watertight volume of the 30 m passenger vessel.
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Naval Ships

The main particulars of the four selected naval ships are listed in Table 16.

The first naval ship is the well-known former French Helicopter Carrier Jeanne d’Arc (Figure
123). She is known as non-vulnerable to heavy seas after serving for over 45 years as trainee
ship on all seas around the World. She has been retired in 2010. Her numerical model (Figure
124) has been created from the drawings provided by the French Historic Service of Defense
[64]. Her watertight volume is shown in Figure 125.

The second naval ship is the David Taylor Model Basin hull number 5415, denoted in this
thesis by the symbol DTMB-5415. She is presented in [68]. Her hull form is close to that of
the well-known DDG-51 Arleigh Burke (Figure 126). Imaginary superstructures inspired by
those of this vessel are added to the numerical model to allow the computation of weather
criteria of current IMO and French military regulations. Her watertight volume is shown in
Figure 127.

The third naval ship is representative of a 1,200-ton class Offshore Patrol Vessel. Her hull is
shown in Figure 128. She is denoted in this thesis by the symbol OPV or Offshore Patrol
Vessel. An imaginary box-shaped superstructure is added to the model to allow the
computation of weather criteria.

The last naval ship presented here is the Offshore Patrol Vessel Adroit (Figure 129), currently
in service in the French Navy and used in Chapter 2 to illustrate the generation of volume
and surface meshes. Her full numerical model, used onboard by their crew, is shown in
Figure 130.

jeanne  prmp-sa1s  opv Adroit
d’Arc

Length overall Loa m 182 152.9 87.5 87
Length between Lop m 172 142 80.6 81.5
perpendiculars
Breadth B m 24 19.06 9.6 13
Draft, full load dsyi m 6.50 6.15 3.37 3.30
Freeboard, full load f m 5.5 3.85 2.63 1.65
Displacement, full load A t 11,768 8,634 1,250 1,450
Service speed Vs knots 27 30 25 21
Froude number Fn - 0.338 0.413 0.457 0.382
Block coefficient G, - 0.465 0.507 0.471 0.405
Bilge keels length Lpk m 55.7 35.7 24.0 -
Bilge keels breadth Bk m 1.20 0.55 0.30 -
Bilge keels projected area Ay m’ 94.53 34.01 10.18 -
Added mass coefficient(*) a - 0.1 0.1 0.1 -
Radius of inertia
coefficient(*) k i 0.4 0.4 0.4 i
Reference height of G KG et m 8.90 8.00 3.85 -
Metacentric height @ KG,of GM,¢f m 1.50 1.50 1.09 -
Roll period @ KG,¢ To S 16.48 14.12 8.00 -
Starting value of KG(*) KGgtart m 8 7 3 -
Pure loss limit angle(*) Rpi2 - 25 25 25 -
GM variation limit(*) Rer - 0.657 0.418 0.433 -
Roll damping coefficient Baa N.rr:(.is/ 9.813e7 4.018e7 2.436e6 -
Superstructures - - Yes Yes Yes Yes

Table 16 — Main particulars of naval ships.
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Figure 123 — Last arrival of the Jeanne d’Arc in Brest after 45 years sailing around the World, May 27, 2010
(photo by Lancelot Frederic).

Figure 124 — Numerical model of the Jeanne d’Arc. Figure 125 — Watertight volume of the Jeanne d’Arc.

Figure 126 - DDG-51 Argleigh Burke (US Navy).

Figure 127 — Watertight volume of the DTMB-5415.
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Figure 128 — Hull of the Offshore Patrol Vessel.

Figure 129 — Offshore patrol vessel Adroit (Marine Nationale).

Figure 130 — Numerical model of the OPV Adroit.
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ANNEX 3. MATHEMATICAL PROOFS

Reference Speed Corresponding to the First Mode of Parametric Roll

The objective is to demonstrate the relationship (22) (page 28) providing the value of the
reference speed of the first mode of parametric roll (denoted here by Vpgr) and rewritten

hereunder:
_ 20 |GM gi 69)
PR™AT, |GM, |27
With:
Vs (m/s)  ship’s speed;
A (m) wave length;
To (s) natural roll period of the ship in calm water;
GM (m) average value of the metacentric height in waves;
GMg (m) metacentric height in calm water.

As demonstrated by Mathieu [9], the first mode of parametric roll occurs when the wave
encounter frequency (denoted by w.) is twice the ship’s roll frequency (denoted by ®):

Since the average value of the metacentric height in waves (GM) may differ from the
metacentric height in calm water (GMy), the ship’s roll frequency in longitudinal waves (®)
may differ from her natural roll frequency in calm water (wo) and is corrected as follows:

GM
w=wo e (71)

The encounter frequency is given by the following relationship:

w2V

cos B (72)

B denotes the angle between the ship’s heading and the wave direction. Its value is
180 degrees in head seas and 0 degrees in following seas. Hence, the relationship becomes:

2
wy,V
We = Wy + — in head seas (73)
2
wyV
We = Wy, — Z in following seas (74)

o, denotes the wave frequency.
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Mixing Equations (73) and (74) with the sign + and replacing ®. with the expression of ®
(Equations (70) and (71)) give:

(75)

Since the condition of the first mode of parametric resonance is met (Equation (70)), Ve
replaces the ship’s speed V.

Assuming an infinite depth, following relationship links the wave frequency to its length (1)
and the acceleration of gravity (g):

21g

229 (76)
A

w,, =

Introducing Equation (76) in Equation (75), we have:

GM 27Tg an/pR
— 77
2w ’ M, / + (77)

The ship’s natural roll frequency wy is linked to her natural roll period (To) as follows:

_27'[

= T_o (78)

Wo

Hence, Equation (77) becomes:

Aam |GM  |2mg  2mV,

pldd _ |29 ZTVeR (79)

T, .|GM, 2 P

21V A |GM |2

AL Gl e E (80)
2 Ty .|GM, 2

o[22 |6M_ |gh -
PR™=\T, |GM, |2m

We introduce an absolute value in order to define a unique positive speed of parametric roll

resonance.
. 24 |GM gi 69)
PR ™ TO GMO 2T

The first check of the level-two criterion of parametric roll considers that if her service speed
is lower than this resonance speed, the ship cannot attain the resonance condition.

Or:

Hence:

QED
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Solving the Parametric Roll Differential Equation with the Method of Runge-Kutta at
4th Order

The objective is to solve the parametric roll one-degree-of-freedom differential equation
(23) with the Runge-Kutta method at 4™ order. This equation is given in page 29 and
rewritten hereunder in a slightly different form:

. Ba, W
$+—¢+-—GZL(p,t) =0 (82)
44 44

The Runge-Kutta method treats only 1% order equations, which are formatted as follows:

y=ft) (83)
In order to solve the second-order parametric roll differential equation with this method, we

rewrite it as a first-order vector differential equation where V is the unknown vector and f is
a vector function of both ¥ and the time t:

V=F(V.1) (84)
Vector V and function f are defined as follows:
. Ve =0
V= ( x ) 85
v, = ¢ (85)
. fx _'L&

V,t) = w B 86

44 ]44

Expanding Equation (84) with the expressions of V (85) and f (86) gives:
@ ¢
= w B
<¢) ——GZ(@,t) ——¢

44 44

(87)

The second component of this vector equality is the second-order differential equation (82)
since the first component is neutral.
The first-order vector differential equation (84) is solved numerically with an iterative

process. The initial conditions are specified in the vector V at the first iteration (indexed 0),
with a chosen roll angle @ and a roll speed equal to zero:

= Po
v, = ( aa ) 88

0 $o=10 (88)
The time step is set to one 40™ of the ship’s natural roll angle. It is denoted by dt. At each
iteration, we compute successively four values of the function vector f as follows:
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fi=f(@.1)
dt

—)_—> ‘—/ dt—>
fo=f(7+S A+
(89)

5 afo dt s dt
fo=f(V+5ft+5)

fo = f(V +dtf, t + dt)

Vector V at the next iteration (denoted by I7)n+1) is built from its value at the previous
iteration (denoted by 17;1) as follows:

— — dt - - - -
Vg1 = Vh"‘z(ﬁ"‘zfz"‘zfs +f4) (90)

The roll angle and the roll speed at each iteration are given respectively by the first and the
second component of vector V.

The Runge-Kutta methods are well-known to provide very stable solutions. For example, if
we remove both the damping and GM variation in differential equation (23), it becomes that
of an undamped oscillating system. The response is characterized by a constant amplitude,
equal to the initial angle if the initial speed is zero. The Runge-Kutta method accurately
restores this behavior (even with large time step) while the Euler method diverges after few
periods.
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Exciting Power of Parametric Roll

Any Condition

The objective is to demonstrate the following equality:
. 1. .
cos wt sin wt cos(w,t + a) = 2 [sm((Z —y)wt — a) + sm((Z + y)owt + a)] (91)

With:
we
= — 92
14 o (92)
Following trigonometric identities are used for this:

1

cosasina = 5 sin 2a (93)
1
sinasinb = 3 [cos(a — b) — cos(a + b)] (94)
1
sinacosh = > [sin(a — b) + sin(a + b)] (95)
sin(a + b) = sinacosb + cosasinb (96)
cos(a+ b) = cosacosbh —sinasinb (97)

The function of time t to be transformed is denoted by f(t):

f(t) = cos wt sin wt cos(wet + a) (98)
Identity (93) gives:
1
f) = 5 sin 2wt cos(w,t + a) (99)

Identity (97) and the definition of y (92) give:
cos(w,t + @) = cos ywt cos a — sin ywt sin a (100)

Hence:

1 1 1 1
f) = Esin 2wt cos ywt cos a — Esin 2wt sinywtsina = Sacosa— Eb sinag (101)

With
a = sin 2wt cos ywt And b = sin 2wt sin ywt (102)

Identities (94) and (95) give following relationships for a and b, respectively:

a= %[sin((Z — y)wt) + sin((Z + y)a)t)] (103)

b = %[cos((Z — y)a)t) — cos((Z + y)a)t)] (104)

Hence:
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[(sin((Z — )/)a)t) + sin((Z + y)a)t)) cosa
— (cos((2 = y)wt) — cos((2 + y)wt)) sina]

NI

f@®) =

We expanse this relationship:
f(t) = % [sin((2 — y)wt) cos a + sin((2 + y)wt) cos a
— cos((2 — y)wt) sina + cos((2 + y)wt) sina|
We replace once cosa and sina respectively by cos(—a) and —sin(—a.):
f) = %[sin((Z — y)a)t) cos(—a) + cos((Z — )/)a)t) sin(—a)
+ sin((2 + y)wt) cos a + cos((2 + y)wt) sina]
Using twice the identity (96), we have:

[sin((Z —y)wt — a) + sin((Z +y)wt + a)]

NI

f@®) =
QED

Resonance Condition

The resonance condition of the first mode of parametric roll is characterized by:
w = W, And Yy =Yo=—=
Hence, the equality (91) previously demonstrated becomes:

1
f(t) = cos wyt sinwyt cosRQwyt + a) = y [sin(4wyt + @) —sin a]
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Kinetic and Potential Energy of Roll Motion at any Frequency

The function of roll angle over time and its first derivate are given by following relationships:

@(t) = ®coswt And @(t) = —wy® sin wt

Consequently, the potential energy and kinetic energy are respectively:

1 1
Ep = EWG1\/1<p2 = EcI:ZWGM cos? wt

1 1 _
Ex = E]44‘P2 = Eq)2w2]44 sin® wt

Their sum is:
1 .
Ep + Ex = ECDZ(WGM cos? wt + w?],, sin? wt)

This function is not constant in time. We introduce x as:
w . ) WGM
X =— With w§ =
Wy Jaa

Equation (113) becomes:

1
Ep + Ex = Edbz (WGM cos? wt + J44w3 x? sin? wt)
=WGM
Replacing x% by 1 + (x? — 1), we have:
1

Ep+ Ex = EWGMCDZ(COSZ wt + sin® wt + (x? — 1) sin? wt)

Or:
1 .
Ep+Ex = EWGMCDZ(l + (x? — 1) sin? wt)
Using identity (94) with a=b, we have:
1 1
Ep + Ex = EWGMCI)2 <1 + E(x2 —1)(1 — cos 2wt)>

Or:

1
Ep+ Ex = ZWGMd)Z(l +x2 + (1 — x2) cos 2wt)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

At the natural roll frequency, x=1 and the relationship becomes the Equation (48) previously

introduced page 87:

1
Ep+ Ex = ZWGMCDZ(l +x2 + (1 — x?) cos 2wt)

(48)

In general cases, this function is sinusoidal. The average power required to maintain the roll

motion is zero. The average value of the energy is:

1
Ep + Ex = ZW(;1v1c1>2(1 + x2)
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Frequency of Maximum Parametric Roll Amplitude According to Kerwin

In 1955, Kerwin [12] gave the maximum parametric roll angle @ as the result of the following

relationship:
w |2 b 1 m (121)
o e
Where:
W W,
x = w—o = 20 (122)

Coefficients m and n define the non-linear roll damping as a function of the roll amplitude:
By, =m+nd (123)
Coefficient b denotes the non-dimensional half amplitude of GM variation:
_AGM
GM

Note: Kerwin defines AGM as the full amplitude of GM variation since we define it (such as
future rules do [22, 23]) as the half amplitude. Hence, relationship giving b used here differs
from that given in Kerwin’s paper.

(124)

The relationship (121) is rewritten using the expression of x in Equation (122).

b2 1 b2 1
X 2 I m w Z m 125
p="2 44 g -0 4 o (125)
n \x?2 x4 n n x2 n

The maximum value of @ is obtained (in the interval where the term in the square root is
positive) for:

d =0 (126)
dx
Hence:
2
b
dCD—wOX —2 X3 —2x -0
dx 2n b2 B (127
—-——1
X
The value of x=m/®, corresponding to the maximum value of @ is defined by:
b? 2 2
71 or x4=1_9_=1_(ﬂﬂg (128)
——3 x=0 4 26M

Consequently, the frequency providing the maximum parametric roll amplitude is given by
the following relationship:
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(129)

Figure 131 shows the evolution of m/wg as a function of AGM/GM. The ratio AGM/GM must
be lower than 2, i.e. the metacentric height must remain positive at any time. The maximum
parametric roll amplitude always occurs at a frequency lower than the ship’s natural roll
frequency mo. If AGM/GM is small, it occurs almost at the natural roll frequency.

1.2

o/m,

1.0

~
AN

|

0.2

AGM/GM
0.0 |
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

Figure 131 — Frequency of maximum parametric roll amplitude as a function of AGM/GM.
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Width of the Lock-in Field According to Kerwin

The relationship providing the value of the maximum parametric roll amplitude proposed by
Kerwin (Equation (121) page 133, taken from [12]) is rewritten hereunder:

b? 1
w |2 I~ m 121
n\x X n
The lock-in field, in which parametric roll exists, is such as:

b2
2 -1
—2+44 —-1>0 (130)
X X

Its frontiers are defined by both positive roots x; and x, of the following 4™ order equation:

b2
—x* +2x% + <T — 1) =0 (131)
This equation is solved as a 2™ order equation. The discriminant A is:
2
A (AGM) (132)
GM
Both roots of the 2™ order equation are:
AGM AGM
2 =1 ——— And 2=1+— 133
i 26M Y2 =1t oM (139)

Thus, parametric roll exists if the roll frequency m=w./2 is located in the following interval:

, AGM , AGM
From _— To - (134)
wo |1 =3¢y wo |1+ 5007

The Taylor expansion at 1* order allows simplifying the frontiers of the interval as following:
From (1 AGM) To (1 + AGM) (135)
@o\* " 4em o\t T aem

In the lock-in field, the encounter frequency . is twice the roll frequency ®. Hence, the
interval is defined with yo=m./®o (Equation (61) page 91) in the range defined in Equation
(66) page 97 and reminded hereunder:

AGM AGM
- To 24+ —
2GM 2GM

Note: The parametric roll amplitude given by Kerwin is negative in the close vicinity of the
frontiers of the lock-in field as calculated above, since the following condition is met:

b2 1
2 7T~ 136
a)—+4 —1<m (136)

Hence, the lock-in field is slightly narrower than as calculated above.

From (66)
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ANNEX 4. SHIP-FIXED COORDINATE SYSTEM

The coordinates of all points are given in a unique coordinate system linked to the ship,
illustrated in Figure 132 and defined as follows:

e The X axis is the baseline (also called OH), positive forward, X=0 on the aft perpendicular.
e TheY axis is the transverse axis, positive portside, Y=0 on the ship’s centerline.

e The Z axis is the aft perpendicular, positive upward, Z=0 on the baseline.

Figure 132 — Ship-fixed coordinate system.
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RESUME ETENDU

INTRODUCTION

Depuis la premiére conférence SOLAS en 1914 [10], la sécurité des biens et des personnes en
mer fait 'objet de nombreuses discussions internationales ayant abouti a I’établissement de
régles appliquées a la construction du navire et vérifiées par la société de classification
durant son exploitation. Les causes principales des grands accidents de navires sont
multiples : stabilité insuffisante, envahissement (collision avec un autre navire, le fond ou un
objet flottant, agression militaire), incendie, avarie structurelle. Toutes ces causes font
I’'objet de nombreux reglements.

Les premieres regles de stabilité a I'état intact ont été définies par ’'OMI en 1968, sous la
forme de recommandations [14]. Elles ont été complétées par le critere météorologique en
1985 [16]. Aujourd’hui, ces régles bien connues sont obligatoires et font I'objet de la partie A
du code de stabilité a I'état intact de 'OMI [18]. L'entrée en vigueur de ces regles n’a
malheureusement pas éliminé les accidents des navires a I'état intact. Certains sont dus a la
non-conformité avec les régles ou a un chargement excessif ou mal arrimé. D’autres
accidents montrent que la stabilité peut étre mise a défaut dans les vagues, majoritairement
par mer de l'arriere, malgré le respect des régles de stabilité et de chargement. Quelques-
uns, suffisamment documentés, sont listés ci-dessous :

e perte du cargo Lohengrin en mer Baltique en 1950, probablement due a une stabilité
négative sur une créte de vague [40] ;

e perte d’'un navire de transport de GPL en Méditerranée en 1969, due a une cause
similaire [36] ;

e roulis excessif du porte-conteneurs APL China dans le Pacifique nord en 1998, consécutif
a une résonance paramétrique dans les vagues longitudinales [41] ;

e roulis excessif du porte-conteneurs Maersk Carolina dans I’Atlantique nord en 2003 pour
une raison identique [45] ;

e perte d'un navire de péche au large de I'Espagne en 2004, probablement due a une
stabilité négative sur une créte de vague combinée a un embarquement d’eau sur le pont
de travail [37] ;

e chavirement du roulier Cougar Ace dans le Pacifique nord en 2006 consécutif a une
stabilité insuffisante sur une créte de houle combinée a un mouvement de ballast [40] ;

e perte du roulier Finnbirch en mer Baltique en 2006 consécutif a une stabilité insuffisante
sur houle ; dans son rapport [39], 'administration maritime suédoise préconise la mise en
place de régles de stabilité sur mer de I'arriere ;

e roulis excessif du porte-conteneurs Chicago Express durant un typhon au large de Hong-
Kong en 2008 d{ a une hauteur métacentrique excessive [60].

Ces accidents, parmi d’autres, ont pointé l'insuffisance des régles de stabilité a I'état intact
dans certaines configurations de navigation dans les vagues et ont amené I'OMI a
développer des nouvelles regles a partir de 2007. Appelées « criteres de stabilité a I'état
intact de seconde génération », ces régles sont organisées en 5 modes de défaillance :
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e perte pure de stabilité en mer de I'arriére ;

e roulis paramétrique ;

e perte de manceuvrabilité en mer de I'arriére ;

e navire dans propulsion en mer et vent traversiers ;

e accélération de roulis excessive.

Dans chaque mode de défaillance, 3 niveaux d’évaluation sont définis :

e |e niveau 1 est basé sur une approche déterministe simplifié du phénomene et supposé
procurer des marges de sécurité élevées ;

e |e niveau 2 est basé sur une approche physique plus poussée du phénoméne couplée a
une étude probabiliste; les marges de sécurité correspondantes sont supposées
réduites ;

e |e niveau 3, actuellement en cours de définition, devrait consister en des simulations
numériques du comportement du navire sur la houle et devrait procurer des marges de
sécurité optimisées ; il devrait étre mis en ceuvre par des instituts spécialisés.

Cette nouvelle réglementation est définie par I'OMI dans deux documents [22 et 23]
décrivant les regles proprement dites et proposant des notes explicatives dont la présence
est motivée par la complexité inhabituelle des regles. La réglementation entrera en vigueur
au plus tot en 2019, sous la forme de recommandations dans un premier temps.

La perte pure de stabilité et le roulis paramétrique sont tous deux consécutifs a la variation
du couple de redressement dans les vagues longitudinales. La premiere défaillance est un
éveénement sur une vague extréme tandis que la seconde est consécutive a la répétition de
la rencontre des vagues. Quoi qu’il en soit, I'évaluation de ces deux modes de défaillance
nécessite le méme outil informatique capable de calculer le couple de redressement dans les
vagues longitudinales.

Le but du travail effectué dans le cadre de cette thése est I'analyse de I'exigence et de la
pertinence des critéres les premiers et deuxiémes niveaux de ces deux modes de défaillance.
Cela nécessite I'implémentation de ces criteres dans un code informatique. Le logiciel
hydrostatique Calcoque, utilisé a I'Ecole navale pour I'enseignement et la recherche, est
modifié pour cela. Les critéres sont calculés pour plusieurs navires de différents types, civils
et militaires, choisis pour leurs comportements différents connus ou supposés vis-a-vis de
ces modes de défaillance. Ces navires sont présentés en annexe 2. Le but étant d’évaluer les
critéres et non les navires, les résultats sont fournis sous la forme de courbes de KGnay,
indiquant la hauteur maximale du centre de gravité garantissant le respect du (des) critére(s)
considéré(s).

La premiére partie de ce résumé présente les criteres de niveau 1 et niveau 2 de perte pure
de stabilité et de roulis paramétrique. La seconde partie décrit les principaux algorithmes
utilisés pour calculer le couple de redressement dans sur mer plate et dans les vagues. Les
résultats sont fournis dans la troisieme partie. La seconde vérification du critére de niveau 2
du roulis paramétrique nécessite le calcul de I'angle de roulis maximum en condition de
résonance. Une méthode de calcul alternative aux deux méthodes décrites dans Ia
réglementation est proposée dans la quatrieme et derniére partie de ce résumé.
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1. CRITERES DE STABILITE A L’ETAT INTACT DE SECONDE GENERATION

Perte pure de stabilité
Description physique

Lorsqu’un navire navigue dans les vagues, la gé¢ométrie de la partie immergée de son flotteur
est modifiée en permanence. Dans les vagues longitudinales (c.-a-d. mer de I'avant ou mer
de I'arriére), la géométrie de la surface de flottaison gauche change également, provoquant
des variations de son inertie, donc de la hauteur métacentrique (GM) et du couple de
redressement. Il existe en conséquence un risque de stabilité insuffisante ou méme de
chavirement si la configuration défavorable, caractérisée par la créte de la vague centrée sur
le milieu du navire, dure suffisamment longtemps. Le risque de perte pure de stabilité est
conditionné par :

e |a géométrie des vagues, qui auront d’autant plus d’effet que leur longueur est proche de
celle du navire et que leur hauteur est importante ;

e |a géométrie de la carene, qui doit présenter un dévers important a l'avant et a |'arriere
ainsi que des murailles verticales en section médiane pour que la variation de GM soit
significative ;

e |a vitesse du navire, qui doit étre proche de celle de la créte des vagues en mer de
I'arriere.

En conséquence, les nouveaux criteres de perte pure de stabilité s’appliquent aux navires

dont le nombre de Froude est supérieur a 0,24.

Niveau 1

Le critere de niveau 1 impose que la hauteur métacentrique minimale sur houle (GM ;) soit
supérieure a 5 centimétres. Deux méthodes de calcul de sa valeur sont proposées. La
premiere méthode considere une surface de flottaison isocline a tirant d’eau réduit
supposée avoir une inertie similaire a celle de la surface de flottaison gauche lorsque le
navire est centré sur la créte de vague. La seconde méthode consiste a retenir la plus petite
valeur de 10 hauteurs métacentriques calculées pour 10 positions différentes sur une vague
sinusoidale ayant la méme longueur que le navire.

Niveau 2

Le critere de niveau 2 consiste en une approche probabiliste du phénomene associée a un
diagramme de dispersion de vagues. Le diagramme proposé dans la recommandation n° 34
de I'IACS [69] est imposé pour une navigation sans limitation géographique. Un autre
diagramme peut étre choisi pour une navigation en zone limitée. Pour que le navire soit jugé
non vulnérable, deux coefficients CR1 et CR2 doivent étre simultanément inférieurs a 0,06.
Le premier coefficient considére I'angle de chavirement statique sur chaque vague du
diagramme de dispersion. Cet angle doit étre inférieur a 25 degrés ou 15 degrés pour les
navires a passagers. Le second considére I'angle d’équilibre stable résultant d’'un moment
inclinant proportionnel au carré de la vitesse du navire sur chaque vague. Le nombre de
vagues dans le diagramme de dispersion étant important, la future réglementation impose
I'utilisation du concept de hauteur de vague effective de Grim [65] permettant de réduire le
nombre de calculs hydrostatiques.
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Roulis paramétrique
Description physique et historique

Le couple de redressement varie avec la rencontre des vagues en mer longitudinale. Bien
gu’il n’y ait pas d’excitation transverse dans une telle configuration, une amplification du
roulis est possible si la fréquence de rencontre est proche du double de la fréquence de
roulis naturelle du navire et si 'amortissement, di notamment aux quilles anti-roulis, est
insuffisant. Ce phénomeéne, appelé résonance paramétrique, est connu depuis longtemps
dans de nombreux domaines en mécanique [15], en mathématiques [9] ou en optique [13].
Il est utilisé par les enfants sur les balancgoires. L’existence théorique du roulis paramétrique
est mise en évidence par Froude [8] en 1861. En 1955, Kerwin en fait une étude analytique
et pratique poussée [12], quelques décennies avant les premiers accidents survenus sur des
porte-conteneurs [41 et 45].

Niveau 1

Le critére de niveau 1 impose que la variation adimensionnelle de la hauteur métacentrique
(AGM/GM) soit inférieure a un seuil dont la valeur dépend principalement de I'aire des
quilles anti-roulis. Deux méthodes sont proposées pour déterminer AGM. Elles sont
similaires a celles proposées en perte pure de stabilité. La premiére méthode considére deux
flottaisons isoclines, a tirant d’eau réduit et a tirant d’eau augmenté, supposées avoir une
inertie similaire a celle de la surface de flottaison gauche lorsque le navire est centré
respectivement sur la créte et le creux de la vague. La seconde méthode consiste a retenir la
plus petite et la plus grande valeurs de 10 hauteurs métacentriques calculées pour 10
positions différentes sur une vague sinusoidale ayant une longueur entre crétes égale a celle
du navire.

Niveau 2

Le critere niveau 2 est constitué de deux conditions portant sur deux coefficients notés C1 et
C2 et devant étre l'un ou l'autre inférieur a 0,06. Chacune de ces deux vérifications
consistent en une approche probabiliste du phénoméne associé a un diagramme de vagues,
choisi dans les mémes conditions que celui du critére de niveau 2 de perte pure de stabilité.

La premiere vérification (C1) considére la variation de hauteur métacentrique et la vitesse de
résonance paramétrique sur chacune des vagues d’une liste réduite déterminée a partir du
diagramme de dispersion de vagues.

La seconde vérification (C2) considére I'angle de roulis maximum sur chaque vague du
diagramme de dispersion et pour 7 vitesses différentes du navire en mer de I'avant ou mer
de l'arriere. Deux méthodes sont proposées pour calculer sa valeur. La premiére méthode
est basée sur la méthode des moyennes, qui donne une solution analytique pour les
oscillateurs non linéaires en assimilant les non linéarités a des petites perturbations
provoquant une évolution lente de la réponse du systéme. Cette méthode est décrite en
détail par Nayfeh [66]. La seconde méthode consiste en la résolution numérique de
I’équation différentielle a un degré de liberté régissant le roulis paramétrique. Des
recommandations pour sa mise en ceuvre sont données par Peters et al. [32] et reprises
dans les notes explicatives de la future réglementation [23]. Seule cette seconde méthode
est mise en ceuvre dans la thése. Les méthodes simplifiées d’lkeda [48 et 50] sont utilisées
pour estimer le coefficient d’amortissement en roulis pour les deux méthodes. Le concept de
vague effective de Grim [65] est imposé pour réduire le nombre de calculs hydrostatiques,
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en ramenant les vagues du diagramme de dispersion a des vagues équivalentes dont la
longueur entre crétes est égale a celle du navire.

CALCULS HYDROSTATIQUES

Le logiciel hydrostatique Calcoque est utilisé pour I'enseignement et la recherche a I'Ecole
navale. Il a été modifié dans le cadre de la thése pour permettre le calcul de la hauteur
métacentrique et de la courbe de GZ sur houle longitudinale et des criteres de niveaux 1 et 2
de perte pure de stabilité et de roulis paramétrique. Les calculs hydrostatiques sont basés
sur trois algorithmes principaux décrits ci-dessous.

Maillage volumique du navire

Le premier algorithme transforme la représentation classique des formes d’un navire par
couples en un maillage volumique a partir duquel sont réalisés les calculs hydrostatiques
proprement dits. Ces couples sont une suite de points (Y,Z) situés a une méme coordonnée
longitudinale X (voir le repére lié au navire en annexe 4). En complément, des lignes reliant
certains points des couples sont définies par l'utilisateur afin de matérialiser les arétes
principales du navire (livet de pont, bouchain, ...). Le maillage est réalisé tranche par tranche,
celles-ci étant définies entre deux couples successifs. Une matrice représentant les liens
entre les points d’un couple et ceux du couple suivant est renseignée par les lignes imposées
par l'utilisateur, puis complétée automatiquement par d’autres liens de maniere a définir
des triangles et des quadrilatéres sur chaque face latérale de la tranche. Deux triangles
symétriques définissent un prisme et deux quadrilatéres définissent un hexaédre. La
concaténation des volumes élémentaires de toutes les tranches définit le maillage
volumique du navire. Ce maillage est coupé par le pont d’étanchéité et complété par les
appendices afin de représenter le flotteur réel.

Coupure d’'un maillage volumique par un plan

Le deuxieme algorithme coupe un maillage par un plan. Il constitue la base des calculs
hydrostatiques proprement dits, en coupant le maillage volumique du flotteur par le plan de
la mer afin de définir la surface de flottaison et le volume de caréne. La coupure d’un
maillage par un plan permet également la définition du volume des compartiments ou des
ponts et des cloisons du navire. L'algorithme de coupure traite successivement tous les
volumes élémentaires du maillage. Seul les cas simples sont considérés pour les prismes et
les hexaédres. Pour les autres cas, ceux-ci sont préalablement divisés respectivement en 3 et
6 tétraedres. La coupure d’un tétraedre quelconque par un plan est ramenée a 8 cas simples
et génere 0 ou 1 tétraedre ou prisme de chaque c6té du plan et 0 ou 1 triangle ou
qguadrilatere d’intersection avec le plan.

Recherche de la position d’équilibre

La recherche de la position d’équilibre se fait en 3 degrés de liberté (enfoncement, gite,
assiette) ou 2 degrés de liberté lors du calcul de la courbe de GZ (gite imposée). L’équilibre
est considéré atteint quand I'écart en volume, I'écart transversal et I'écart longitudinal sont
suffisamment petits. L’écart en volume représente la différence entre le volume de caréne
visé et le volume calculé avec I'enfoncement, la gite et I'assiette courants. Pour définir les
deux autres écarts, on définit deux plans perpendiculaires, l'un transversal et |'autre
longitudinal, dont la droite d’intersection est la verticale terrestre passant par le centre de
caréne. L’écart longitudinal est la distance entre le centre de gravité et le plan transversal.
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L’écart transversal est la distance entre le centre de gravité et le plan longitudinal et
correspond au bras de levier de redressement GZ, a annuler lors de la recherche de la
position d’équilibre du navire sur mer plate ou sur houle figée, sinon a déterminer (courbe
de GZ).

Le plan de la mer est défini par I'enfoncement, la gite et I'assiette dans le repeére lié au
navire. Il sert de plan de coupure du maillage du volume étanche lors de la recherche de
I’équilibre sur mer plate. En cas de recherche de I'équilibre sur sur vagues longitudinales
statiques, le volume étanche est préalablement découpé en tranches transversales. Dans
chaque tranche, un plan de coupure local est défini en fonction des caractéristiques des
vagues et de la position du navire (enfoncement, gite assiette).

La recherche de la position d’équilibre sur mer plate ou sur houle figée consiste en la
résolution d’un systéme non linéaire de 3 équations et 3 inconnues (ou 2x2 si la gite est
figée). Elle suit un processus itératif. Deux méthodes coexistent.

Dans la premiere méthode, I'enfoncement, la gite et 'assiette de l'itération suivante sont
calculés a partir de ceux de l'itération précédente en utilisant respectivement I'écart en
volume et l'aire de la surface de flottaison, I'écart transversal et la hauteur métacentrique
transversale, I’écart longitudinal et la hauteur métacentrique longitudinale. L’évolution du
volume de carene, et des écarts transversal et longitudinal d’'une itération a I'autre permet
de réévaluer I'aire de la surface de flottaison et les deux hauteurs métacentriques. Ces 3
grandeurs sont calculées classiquement avant la premiére itération.

Dans la seconde méthode, a chaque itération, 3 calculs hydrostatiques (2 si la gite est figée)
permettent de déterminer I'impact d’un incrément élémentaire d’enfoncement, de gite puis
d’assiette sur les 3 écarts (volume, transversal, longitudinal). S’en suit la résolution d’un
systeme linéaire de dimension 3 (2 si la gite est figée) pour déterminer les incréments
d’enfoncement, de gite et d’assiette permettant de faire converger les écarts vers zéro. Un
qguatrieme calcul hydrostatique donne les écarts résiduels que I'on cherche a réduire a
nouveau lors de I'itération suivante.

Dans les deux méthodes, le signe des hauteurs métacentriques est vérifié afin de diverger
d’une éventuelle position d’équilibre instable. Les deux méthodes convergent vers la méme
position d’équilibre et nécessitent des nombres de calculs hydrostatiques similaires.

RESULTATS

Les courbes de KGax associées aux critéres de niveau 1 et niveau 2 de perte pure de stabilité
et de roulis paramétrique sont calculées pour 6 navires civils (2 porte-conteneurs dont un
connu pour étre vulnérable au roulis paramétrique, 2 navires a passagers, 1 navire roulier et
1 pétrolier). Bien que I'application de ces nouveaux critéres aux navires militaires ne soit pas
envisagée aujourd’hui, rien ne garantit la non-vulnérabilité de ces navires. Par ailleurs, le
faible nombre de navires militaires en service, comparé a celui des navires civils, rend quasi
inexistant le retour d’expérience dans le domaine des modes de défaillance considérés.
Ainsi, il parait intéressant de tester I'application des nouveaux critéres aux navires militaires.
Trois d’entre eux ont été sélectionnés a cet effet (porte-hélicoptere Jeanne d’Arc, destroyer
type DDG-51 et patrouilleur hauturier). Les navires testés sont présentés en annexe 2.
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Perte pure de stabilité

Les courbes de KG.x associées aux criteres de niveau 1 et 2 en perte pure de stabilité
montrent les points suivants :

La courbe associée a la premiere méthode du critere de niveau 1 présente un
décrochement lorsque la flottaison isocline intercepte les évidements dans la coque
(logements des ailerons stabilisateurs). L’utilisation de la coque nue (sans appendice ni
évidement) masque ce phénomeéne.

Les deux méthodes du critere de niveau 1 fournissent des résultats tres différents pour
tous les navires. La premiére méthode (flottaison isocline) est trés conservative.

Le critere de niveau 2 est plus conservatif que la seconde méthode du critére de niveau 1
pour certains navires, contrairement a I'esprit de la nouvelle réglementation.

La hauteur du pont étanche peut avoir une trés légére influence sur la seconde méthode
du niveau 1. Elle a en revanche une influence considérable sur le critére de niveau 2. Il
parait sage en conséquence que la future réglementation spécifie clairement le pont
étanche a prendre en compte.

L'influence de la vitesse du navire n’est pas systématique. Lorsqu’elle existe,
I'augmentation de la vitesse augmente la vulnérabilité du navire, comme attendu.

Roulis paramétrique

Les courbes de KGnax associées aux critéres de niveau 1 et 2 en roulis paramétrique
montrent les points suivants (dont certains sont similaires a ceux observés en perte pure de
stabilité) :

La courbe associée a la premiere méthode du critere de niveau 1 présente un
décrochement lorsque la flottaison isocline intercepte les évidements dans la coque.
Cependant, les décrochements interviennent a des tirants d’eau ou des déplacements
différents de ceux observés en perte pure de stabilité car la cambrure de vague
considérée est différente.

Les deux méthodes du critere de niveau 1 fournissent des résultats tres différents pour
certains navires (dont tous les navires militaires). La premiére méthode (flottaison
isocline) est toujours plus conservative.

Le critére de niveau 2 est plus conservatif que la seconde méthode du critere de niveau 1
pour certains navires. Cependant, cette incohérence est moins marquée que celle
observée en perte pure de stabilité.

Pour certains navires, le KGnax associé a la seconde vérification du critére de niveau 2 (C2)
correspond a un GM nul (pétrolier, navire a passager, Jeanne d’Arc). Cela est dl au fait
gue l'angle de roulis maximal autorisé (25 degrés) n’est atteint que lorsque le navire
devient statiquement instable. Ces navires ne sont pas vulnérables au roulis
paramétrique.

Le résultat de la seconde vérification du critére de niveau 2 est incohérent pour I'un des
deux navires a passagers. La méthode de calcul du coefficient d’amortissement imposée
dans la réglementation est inadaptée a sa coque a bouchain vif.
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e Le porte-conteneurs C11, connu pour étre vulnérable au roulis paramétrique a la suite de
I’accident survenu en 1998 [41], est bien jugé comme tel par les nouveaux critéres. Il en
est de méme pour I'autre porte-conteneurs.

La seconde vérification du critére de niveau 2 (C2), vue ici comme un critére indépendant, a
un comportement sensiblement différent de celui des autres critéeres. Le calcul de C2 pour
un tirant d’eau donné et toutes les valeurs possibles de KG génere une courbe présentant de
nombreux pics lorsque le navire est vulnérable au roulis paramétrique. Il en résulte que le
critere C2 peut étre respecté au-dela de KG.y, configuration impossible pour les autres
criteres. Le calcul de C2 pour toutes les valeurs possibles de tirant d’eau et de KG génere des
surfaces autorisées et interdites au regard du critére associé. Il résulte de cela que la
vérification du respect du critére pour un cas de chargement donné (correspondant a un
couple tirant d’eau et KG) ne suffira pas. En effet, il est possible que le critére ne soit plus
vérifié si le KG est légerement inférieur a celui du cas de chargement. Cette particularité
devrait étre indiquée clairement dans la nouvelle réglementation.

Le calcul de I'angle de roulis maximum, requis dans le critere C2, est réalisé par résolution
numérique de I"’équation différentielle du roulis paramétrique. Des conditions de résolution
ont été proposées par Peters et al. [32] et reprises dans les notes explicatives de la future
réglementation [23]. Sont proposés entre autres :

e une durée de simulation égale a 15 périodes naturelles de roulis du navire ;
e un angle de gite initial de 5 degrés et une vitesse initiale nulle ;
e de considérer le GZ non linéaire.

Une étude de sensibilité réalisée sur plusieurs navires présentant des vulnérabilités
différentes montre que :

e quelle que soit la vulnérabilité du navire, les courbes de KG,x associées au critére C2 sont
confondues pour une durée de simulation égale ou supérieure a 10 périodes naturelles de
roulis ;

e linfluence de I'angle de gite initiale sur les courbes de KG,.x associées au critere C2 est
faible ;

e |alinéarisation du GZ n’est pas pertinente, excepté dans le cas particulier ou le GZ réel est
relativement linéaire jusqu’a 25 degrés ou au-dela.

Des simulations numériques du comportement du porte-conteneurs C11 réalisées en 6
degrés de liberté a I'aide du logiciel Fredyn [70] montrent que :

e apleine charge, le navire peut chavirer en roulis paramétrique avec un KG autorisé par les
critéres de stabilité a I’état intact actuellement en vigueur [18] et dépasser 25 degrés de
roulis quelle que soit son chargement ; cela montre bien la nécessité d’une nouvelle
réglementation considérant ce mode de défaillance ;

e |a courbe de KGnhax associée au critere C2 est proche de la courbe équivalente considérant
un angle de roulis paramétrique maximum de 25 degrés calculée a |'aide des simulations
en 6 degrés de liberté.
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4. ANALYSE ENERGETIQUE DU ROULIS PARAMETRIQUE

La seconde vérification du critére de niveau 2 du roulis paramétrique (C2) requiert le calcul
de I'angle de roulis maximum pour différentes vitesses en mer de I'avant et en mer de
I'arriere. Les deux méthodes de calcul proposées dans la future réglementation étant
relativement complexes a implémenter, notamment pour les architectes navals habitués a la
simplicité des criteres actuels, nous proposons ici une méthode alternative simplifiée basée
sur des considérations énergétiques et supposant un GZ linéaire.

Roulis paramétrique en condition de résonance

L’équation différentielle du roulis paramétrique est réécrite avec un GZ linéaire et en
assimilant la composante non constante du moment de redressement a un moment
d’excitation. On suppose que le navire roule a sa fréquence propre en condition de
résonance paramétrique. La fréguence de rencontre des vagues est égale au double de la
fréquence propre. On suppose également que le navire a atteint un régime permanent de
roulis paramétrique a amplitude constance. Ces hypothéses rendent constants les termes
d’inertie et d’amortissement de I'’équation différentielle.

La somme de I'énergie cinétique et de I’énergie potentielle est constante a tout instant car le
navire roule a sa fréquence propre. En conséquence, I’"hypothése d’une amplitude de roulis
constante impose que la totalité de I'énergie apportée par I'excitation soit dissipée par
I'amortissement. En supposant le cas le plus défavorable (c.-a-d. I'excitation la plus
importante) concernant le décalage angulaire entre la rencontre des vagues et le roulis du
navire, on détermine un coefficient d’amortissement dit « requis » permettant une
amplitude de roulis constante. Si le coefficient d’amortissement réel est supérieur a cette
valeur, le roulis paramétrique n’apparait pas. Si, a 'opposé, le coefficient réel ne peut pas
atteindre la valeur requise, I'amplitude du roulis paramétrique est théoriquement infinie,
provoquant le chavirement du navire sous réserve de compatibilité avec I’hypothése du GZ
linéaire. Cela étant, le coefficient d’amortissement est fonction de I'amplitude du roulis. De
fait, I'égalité entre le coefficient d’amortissement réel et la valeur requise permet, dans la
plupart des cas, de poser une équation simple dont la racine est I'amplitude de roulis. Le
résultat obtenu ici est identique celui obtenu par d’autre moyens par Kerwin en 1955 [12].

Des simulations numériques en condition de résonance paramétriqgue donnent une
amplitude de roulis finale identique a la valeur précédemment calculée. Cela donne une
premiere validation de I'hypothése du cas le plus défavorable concernant le décalage
angulaire (noté o) entre la rencontre des vagues et le roulis. Par ailleurs, ces simulations
sont lancées avec un décalage angulaire différent et on montre que celui-ci évolue au début
de la simulation vers la valeur la plus défavorable (a=—m/2). L’hypothése concernant ce
décalage en condition de résonance paramétrique est validée.

Roulis paramétrique dans les autres conditions

Lorsque le navire roule a une fréquence autre que sa fréquence propre, la somme de
I’énergie cinétique et de I'énergie potentielle n’est pas constante. Cependant, sa valeur
moyenne l'est. En conséquence, I'hypothése d’amplitude de roulis constante fait que
I’énergie apportée par [I'excitation paramétrique est entierement dissipée par
I'amortissement, comme précédemment.
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On note y le rapport entre la fréquence de rencontre et la fréquence de roulis du navire. Il
est égal a 2 en condition de résonance.

On montre que I'énergie d’excitation est portée par un signal sinusoidal a deux fréquences :
une basse fréquence égale a 2-y et une haute fréquence égale a 2+y. Le cas y=-2 correspond
a une vitesse du navire irréaliste et n’est pas considéré. La coexistence de ces deux
fréquences peut étre montrée par une simulation numérique avec une vitesse du navire
sensiblement différente de la vitesse de résonance. Cependant, |'observation de la basse
fréquence est impossible dans ces conditions car le mouvement de roulis se décale
automatiquement sur la houle pour capter un maximum d’énergie (changement de I'angle o
au cours de la simulation). Dans ces conditions de vitesse, I'amplitude de roulis
paramétrique est tres faible et le risque pour le navire est inexistant ou trés limité.

Les simulations numériques a un degré de liberté montrent que le roulis paramétrique
apparait lorsque la vitesse du navire est proche de la vitesse de résonance. Dans ce cas, la
fréquence de roulis est exactement égale a la moitié de la fréquence de rencontre (y=2).
L'amplitude maximale est observée a une fréquence légerement inférieure a la fréquence de
résonance. Le second mode de roulis paramétrique, caractérisé par I'égalité entre la
fréquence de roulis et la fréquence de rencontre, est observable mais son amplitude n’est
pas significative. Le troisieme mode de roulis paramétrique (fréquence de rencontre égale
aux deux tiers de la fréquence de roulis) n’est pas observable en conditions courantes.

Dans le domaine de roulis paramétrique centré sur la résonance du premier mode, les
simulations montrent que I'angle de décalage o évolue de 0 a -m en passant par -n/2 au
voisinage de la résonance. Ce décalage modere la puissance d’excitation. La valeur -7t/2
correspond a |’excitation maximale.

On observe que la largeur du domaine de roulis paramétrique, exprimée a 'aide du rapport
entre la fréquence de rencontre et la fréquence de roulis naturelle du navire, est égale a la
variation adimensionnelle de la hauteur métacentrique (AGM/GM). Kerwin a démontré un
résultat similaire en 1955 [12]. Des simulations numériques a six degrés de liberté sur une
houle sinusoidale avec un GZ non linéaire positionnent le domaine de roulis paramétrique
aux mémes fréquences.

Méthode alternative

Le calcul de l'angle de roulis maximum en condition de résonance au moyen de
considérations énergétiques, la connaissance des fréquences limitant le domaine de roulis
paramétrique et I'évolution de I'angle de décalage dans ce domaine permettent de batir une
méthode alternative simple donnant I'angle de roulis maximal en fonction de la vitesse du
navire et de la variation de la hauteur métacentrique. Cette méthode, basée sur I'hypothese
d’un GZ linéaire, est compatible avec une implémentation dans la seconde vérification du
critére de niveau 2 (C2). Les courbes de KGnmnax qui lui sont associées coincident avec celles
obtenues par résolution numérique de I'’équation différentielle avec GZ linéaire, et ce pour
plusieurs navires plus ou moins vulnérables au roulis paramétrique.
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CONCLUSION

Les criteres de stabilité a I’état intact de seconde génération sont actuellement en cours de
finalisation a 'OMI. Ces critéres sont organisés en cing modes de défaillance et trois niveaux
d’évaluation dans chaque mode. La perte pure de stabilité et le roulis paramétrique sont
deux défaillances consécutives a la variation du couple de redressement dans les vagues
longitudinales. Le but du travail réalisé dans le cadre de cette thése est I'analyse de
I'exigence et de la pertinence des critéres de premier et deuxiéeme niveaux de ces deux
modes de défaillance. Ces criteres ont été implémentés dans un logiciel hydrostatique
modifié pour I'occasion.

Les critéres ont été calculés pour plusieurs navires de différents types, tant civils que
militaires, supposés ou connus pour avoir des comportements différents vis-a-vis de ces
modes de défaillance. Bien que I'application de cette nouvelle réglementation aux navires
miliaires ne soit pas prévue, rien ne garantit la non-vulnérabilité de ces navires. Par ailleurs,
les nouveaux critéres constituent un outil a colt négligeable (environ 10 minutes de calcul
pour une courbe de KG,a associée a un critére de niveau 2) qu’il serait regrettable d’ignorer.
L'auteur recommande la modification des réglements militaires de stabilité a I'état intact
aprés I'entrée en vigueur de ces nouveaux critéres dans le civil. Les résultats sont donnés
sous la forme de courbes de KG., indiquant la hauteur maximale du centre de gravité
garantissant le respect du (des) critére(s) considéré(s). Cela permet d’ignorer les cas de
chargement des navires étudiés et d’analyser les critéres plutét que les navires eux-mémes.

Le calcul des KGp,.x associés aux nouveaux criteres montre que les critéres de niveau 1
peuvent étre plus conservatifs que les criteres de niveau 2 dans les deux modes de
défaillance, contrairement a ce qui est attendu. Il montre également que les deux méthodes
de calcul proposées dans le niveau 1 fournissent des KGn.x sensiblement différents,
notamment en perte pure de stabilité. Les marges de sécurité conférées par la premiére
méthode de calcul (flottaison isocline) sont tellement élevées que les critéres correspondant
pourraient étre incompatibles avec les critéres d’accélération excessive. En conséquence,
s’ils sont équipés d’un outil de calcul hydrodynamique sur houle, les chantiers navals et les
architectes navals devraient étre tentés d’ignorer cette méthode. Celle-ci aurait cependant
une réelle valeur ajoutée si elle conférait des marges de sécurité acceptables pour les
navires de faible déplacement, normalement congus par des chantiers ou des cabinets
d’architecture équipés plus modestement. Les résultats obtenus sur un navire a passagers de
30 metres montrent que cela peut étre le cas.

Bien que cela ne soit pas 'objectif premier ici, les résultats confirment la vulnérabilité au
roulis paramétrique bien connue du porte-conteneurs C11. lls confirment également la non-
vulnérabilité d’un pétrolier vis-a-vis de la perte pure de stabilité et du roulis paramétrique,
attendue en raison de la présence de murailles verticales sur une majeure partie de la coque
du navire.

Les courbes de KG., associées a la premieére méthode des critéres de niveau 1 des deux
modes de défaillance montrent des décrochés consécutifs aux évidements de la coque
(logements des ailerons stabilisateurs). L'utilisation de la coque nue (sans appendice ni
évidement) masque ce phénomene. Par ailleurs, la limite supérieure du volume étanche a
une influence majeure sur le KGn.x associé au critéere de niveau 2 de la perte pure de
stabilité.
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Recommandation : la future réglementation devrait clairement spécifier le volume étanche
d considérer (coque nue ou avec appendices et évidements, hauteur du pont étanche).

La seconde vérification du critére de niveau 2 du roulis paramétrique (C2) considére I'angle
de roulis maximal pour 7 vitesses en mer de I'avant et en mer de I'arriére pour tous les cas
d’un diagramme de dispersion de vagues. La future réglementation propose deux méthodes
pour déterminer sa valeur. La méthode basée sur une résolution numérique de I'équation
différentielle du roulis paramétrique est utilisée et analysée ici. La durée de simulation
proposée dans la réglementation est validée par des tests de sensibilité.

Le calcul de C2 pour toutes les valeurs possibles du tirant d’eau et de KG permet de définir
des zones autorisées et interdites par le critére associé. En particulier, le critére peut étre
respecté au-dela de KG,x et nécessite donc d’étre évalué prudemment.

Recommandation : la future réglementation devrait clairement spécifier I'obligation de
vérifier C2 pour toutes les valeurs de KG inférieures a celle du cas de chargement considéré.

La future réglementation impose la méthode de Grim [65] pour le calcul de C2, donnant la
méme longueur a toutes les vagues du diagramme de dispersion. En conséquence, les 7
vitesses considérées par le critere sont positionnées aléatoirement par rapport a la vitesse
de résonance, en fonction de la longueur du navire. L'augmentation du nombre de vitesses
ou la prise en compte de la vitesse de résonance devrait améliorer le critéere.

Recommandation : le nombre de vitesses considérées dans la seconde vérification du
critéere de niveau 2 de roulis paramétrique devrait étre augmenté, ou le critére devrait
considérer la vitesse correspondant a la résonance paramétrique.

Le calcul de l'angle de roulis paramétrique maximum fait intervenir le coefficient
d’amortissement. La future réglementation fournit une méthode simplifiée d’'lkeda [48, 50] a
cet effet. Cependant, cette méthode n’est pas adaptée aux coques a bouchain vif.

Recommandation : la future réglementation devrait proposer une méthode de calcul du
coefficient d’amortissement en roulis adaptée aux coques a bouchain vif.

Les deux méthodes de calcul de I'angle de roulis paramétrique maximum proposées dans la
réglementation étant relativement complexe a implémenter, une méthode alternative
simplifiée, basée sur une hypothése de GZ linéaire, est proposée ici. Cette méthode peut
étre implémentée dans la nouvelle réglementation et donne une valeur de KG,,x identique a
celle fournie par la résolution numérique de I'équation différentielle utilisant la méme
hypothése de GZ. Cette hypothése est douteuse pour les navires ayant GZ fortement non
linéaire, mais la méthode alternative est si simple qu’il serait regrettable de de I'ignorer si le
GZ est a peu pres linéaire jusqu’a 25 degrés.

Proposition : la future réglementation pourrait proposer une méthode alternative
simplifiée de calcul de I'angle de roulis maximum pour les navires ayant un GZ linéaire
jusqu’a 25 degrés.

L’entrée en vigueur de la future réglementation, prévue au plus t6t en 2019 sous la forme de
recommandations dans la partie B du code de stabilité a I’état intact, risque de bousculer les
habitudes dans les chantiers navals et les cabinets d’architecture navale en raison de sa
complexité notablement accrue par rapport a celle des critéres actuels. Néanmoins, les
chantiers et cabinets ont récemment intégré la nouvelle réglementation probabiliste de
stabilité aprés avarie, qui requiert un nombre de calculs considérablement supérieur a celui
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de l'ancienne réglementation déterministe. Les écoles et universités dispensant des
formations en architecture navale vont enseigner la nouvelle réglementation de stabilité a
I’état intact a leurs éléves et proposer des stages de mise a niveau pour les architectes
navals en activité. L'entrée en vigueur de cette réglementation ne devrait en conséquence
pas rencontrer d’obstacle majeur, si ce n’est concernant la seconde vérification du critére de
niveau 2 du roulis paramétrique.

En effet, il nexiste malheureusement aucune méthode simplifiée fournissant le coefficient
d’amortissement au roulis pour tous les types de navires. Il pourrait étre tentant de proposer
plusieurs méthodes correspondant a toutes les géométries existantes, mais il est impossible
d’imaginer aujourd’hui les géométries que les architectes navals dessineront dans les
prochaines décennies. L'utilisation de calculs CFD (résolution des équations de Navier-
Stokes) n’est pas envisageable dans le cadre de cette réglementation en raison du temps de
calcul trop important et de la haute qualification nécessaire a sa mise en ceuvre.

En conséquence, de I'avis de I'auteur, la seconde vérification du critére de niveau 2 de roulis
paramétrique dans sa forme actuelle pourrait étre considérée comme une premiere étape
de niveau 3, lequel devrait étre mis en ceuvre par des instituts spécialisés, a méme de choisir
la méthode de calcul de 'amortissement la mieux adaptée. Une alternative pourrait étre de
limiter cette vérification aux navires dont la géométrie est compatible avec la méthode
proposée dans la réglementation (éventuellement plusieurs méthodes) en utilisant des
criteres simples et objectifs pour s’assurer de cette compatibilité (coefficient bloc, nombre
de Froude, rayon du bouchain, ...). En cas d’incompatibilité et si la premiere vérification du
critere de niveau 2 (ou le critére de niveau 1) ne suffisait pas, la société de classification
prescrirait la mise en ceuvre de cette vérification par un institut spécialisé, voire une
évaluation de niveau 3.

Bien que quelques améliorations soient souhaitables, les criteres de niveau 1 et 2 des cinq
modes de défaillance sont parfaitement définis. Ce n’est pas le cas pour les critéres de
niveau 3, aujourd’hui encore a I’étape de la réflexion.

Il est établi que ce niveau consiste en une simulation numérique du navire dans les vagues,
supposée indiquer sa vulnérabilité vis-a-vis des modes de défaillance avec une précision
accrue par rapport aux criteres des deux premiers niveaux. Ces simulations seront
nécessairement réalisées avec six degrés de liberté. Les calculs CFD ne paraissent pas
adaptés aujourd’hui en raison du temps de calcul élevé qu’ils nécessitent, incompatible avec
le déroulement d’un projet de navire standard. En revanche, des codes informatiques a 6
degrés de liberté, basés sur des calculs hydrodynamiques potentiels réalisés avant la
simulation, paraissant bien adaptés a cette tache.

L’évaluation de niveau 3 en roulis paramétrique pourrait étre une évaluation de niveau 2
améliorée dans laquelle la simulation a un degré de liberté serait remplacée par une
simulation a six degrés de liberté, prenant en compte les effets non linéaires sur des états de
mer réels. Une évaluation similaire pourrait étre conduite en perte pure de stabilité, avec un
temps de simulation augmenté afin de capter un nombre significatif de vagues extrémes.

Il est également possible de fusionner les évaluations de niveau 3 des cing modes de
défaillance en une unique évaluation réalisée a I'aide d’'un nombre important de simulations
dans tous les états de mer du diagramme de dispersion, avec toutes les vitesses et toutes les
routes possibles. Un tel travail a déja été réalisé pour évaluer les probabilités de
chavirement de frégates francgaises [72]. Une analyse préliminaire d’un nombre significatif de
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navires connus comme vulnérables et non vulnérables est nécessaire afin de définir le seuil
qui doit étre utilisé comme critére global, dans une démarche dont I'esprit est similaire a
celui du travail réalisé par Rahola en 1939 [11], mais avec un outil de calcul plus moderne.

Une telle démarche fournirait un critére global encapsulant tous les modes de défaillance (y
compris des modes de défaillance éventuellement non considérés par la future
réglementation). Bien que les simulations ne soient pas orientées vers un mode de
défaillance particulier, il est possible d’'implémenter des détecteurs dans le simulateur afin
de renseigner I'utilisateur sur les phénomeénes ayant causé la perte du navire ou un angle de
roulis indésirable.
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GLOSSARY

Symbol Unit Definition

Numbers

OH - Baseline, X-axis of the ship-fixed coordinate system

10H - Reference waterplane, parallel to OH

A

A - Point defining the strip’s local waterplane

a - Coefficient of added mass in roll

Awp m? Area of waterplane

B

B - Center of buoyancy

B - Point defining the strip’s local waterplane

B m Ship’s breadth

Baa N.m.s/rad Roll damping coefficient

Baa.req N.m.s/rad Required roll damping coefficient

C

C - Point defining the strip’s local waterplane

C1 - First check of parametric roll level-two criterion

C1, - Coefficient of first check of parametric roll level-two criterion
for the wave number i

C2 - Second check of parametric roll level-two criterion

C2; - Coefficient for the wave number i regarding the minimum angle
of stable equilibrium under heeling lever (PL)

C2; - Coefficient for the wave number i and the speed factor number
j regarding the minimum parametric roll angle

CFD - Computational fluid dynamics

Cnm - Midship section coefficient of the fully loaded condition in calm
water

CR1 - Coefficient for all waves wave regarding the minimum angle of
vanishing stability (PL)

CR2 - Coefficient for all waves regarding the minimum angle of stable
equilibrium under heeling lever (PL)

CRNAV - Cooperative Research Navies

D

D m Ship’s depth
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Symbol Unit Definition

d m Ship’s draft

Ds - Longitudinal line located in the calm-water waterplane
dsun m Full loaded draft

dy m Highest draft

d. m Lowest draft

DoF - Degree(s) of freedom

DTMB - David Taylor Model Basin

E

e m Sinkage

Ep J Damping energy

Ee J Exciting energy

Ex J Kinetic energy

Ep J Potential energy

F

F, - Froude number

G

G - Center of gravity

g m/s’ Acceleration of gravity

GM m Transverse metacentric height

GMg m Transverse metacentric height in calm water

GM, m Longitudinal metacentric height

GM ax m Maximum value of transverse metacentric height in waves
GMnin m Minimum value of transverse metacentric height in waves
GMmoy m Average value of transverse metacentric height in waves
GMy m Transverse metacentric height

GZ m Righting arm

H

h m Wave height

H1/3Eff m Effective height of the 1/3 highest waves

Hao, o m Effective height of the 3% highest waves

Hest m Effective wave height

Hs m Significant wave height

|

Iy - Intersection point of P; and D3

I, - Intersection point of P, and D3

IACS - International Association of Classification Societies

Iy m* Inertia of parallel waterplane at highest draft

I m* Inertia of parallel waterplane at lowest draft
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Symbol Unit Definition

IMCO - Inter-Governmental Maritime Consultative Organization,
former name of the IMO (until 1982)

IMO - International Maritime Organization

ISCG - Intact Stability Correspondence Group

Jaa

=~

KB

KG
KGmax
K;

KGstart
KMT

LCB

LCG

Ship’s roll moment of inertia

Wave number

Coefficient of radius of inertia in roll

Vertical coordinate of the center of buoyancy in the ship’s fixed
coordinate system

Vertical coordinate of the center of gravity in the ship’s fixed
coordinate system

Maximum vertical coordinate of the center of gravity ensuring
the compliance of a specific criterion or a panel of criteria
Speed factor number j

Starting value of KG in the process of finding KG .

Vertical coordinate of the transverse metacenter in the ship’s
fixed coordinate system

Ship’s length

Longitudinal coordinate of the center of buoyancy in the ship’s
fixed coordinate system

Longitudinal coordinate of the center of gravity in the ship’s
fixed coordinate system

Length between perpendiculars

Zero-order moment of the wave spectrum (Grim effective wave
height concept)

Normal vector, defining any plane, the calm-water waterplane
or the strip’s local waterplane

Vertical vector of the inclined-ship’s planes, defining the Earth-
vertical

Transverse vector of the inclined-ship’s planes

Longitudinal vector of the inclined-ship’s planes
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Symbol Unit Definition

o)

0] - Origin point of the ship-fixed coordinate system

P

P - Point defining the waterplane

P, - Strip’s aft plane

P, - Strip’s forward plane

P W Damping power

Pe w Exciting power of parametric roll

PL - Pure Loss of Stability

PR - Parametric Roll

Q

Q - Point located amidships on the reference waterplane, used to
define any waterplane

R

RpL m Minimum allowed value of GM in waves of pure loss of stability
level-one criterion

Reio - Required index of pure loss of stability level-two criterion

Rpi1 deg Minimum allowed value of angle of vanishing stability of pure
loss of stability level-two criterion

Rpi2 deg Maximum allowed value of angle of stable equilibrium under
heeling lever of pure loss of stability level-two criterion

Rpi3 m Heeling lever

Rpr - Maximum allowed value of non-dimensional GM variation of
parametric roll level-one and level-two criteria

Rpro - Required index of parametric roll level-two criterion

S

SDC - Sub-Committee Ship Design and Construction of the IMO

SHK - Swedish Accident Investigation Board

SOLAS - Safety Of Life At Sea

Sw - Wave steepness (ratio height over length)

T

t S Time

To s Ship’s natural roll frequency

TEU - Twenty-foot equivalent unit, defining the cargo capacity of a
container vessel in terms on number on 20-ft containers

T; S Zero-crossing wave period
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Symbol Unit Definition

Vv

Vv m/s Ship’s speed

V1st mode m/s Speed of first mode of parametric roll

VerRii m/s Speed of first mode of parametric roll corresponding to the
wave number i

Vs m/s Ship’s service speed

W

W N Ship’s weight

WGIS - Working Group on Intact Stability

W, - Weighting factor of the wave number i

X

X - Unit vector defining the longitudinal axis of the ship-fixed
coordinate system

Z

Z - Projection of the center of gravity on the Earth-vertical through
the center of buoyancy

Z1 m Height defining the strip’s local waterplane

2, m Height defining the strip’s local waterplane

Greek symbols

o
p
Y

Yo
A
AGM

rad
rad, deg

rad
rad

rad, deg

kg/m>
rad, deg
rad, deg
rad, deg
deg

Shift angle

Angle between the ship’s heading and the wave direction
Ratio we/®g

Ratio we/m characterizing the parametric roll synchronization
Ship’s displacement

Amplitude of variation of transverse metacentric height in
waves

Sinkage increment

Longitudinal gap

Transverse gap

Trim increment

Heel increment

Volume gap

Trim angle

Wave length

Water density

Roll amplitude

Roll angle or heel angle

Maximum roll angle

Angle of stable equilibrium under a heeling lever
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Symbol Unit Definition

Dy deg Angle of vanishing stability

® rad/s Ship’s roll frequency

o rad/s Ship’s natural roll frequency

We rad/s Wave encounter frequency

Ow rad/s Wave frequency

Other symbols

\Y m? Ship’s displacement volume, computed displacement volume
during the finding of the equilibrium position

Vo m? Ship’s displacement volume during the finding of the

equilibrium position
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