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ABSTRACT 

The second generation intact stability criteria are currently under finalization by the 

International Maritime Organization. They are intended to improve the current intact 

stability rules by adding safety in waves. They are structured in five failure modes and three 

levels of assessment in each failure mode. The first level is based on a simplified 

deterministic approach of the phenomena and ensures high safety margins. The second level 

requires more complex computations based on hydrostatic considerations with regard to 

static waves and is expected to provide reduced safety margins. The third level, currently 

uŶdeƌ deǀelopŵeŶt, ǁould ĐoŶsist of ŶuŵeƌiĐal siŵulatioŶs of the ship’s ďehaǀioƌ iŶ real sea 

states performed by specialized institutes. Level-one and level-two criteria of both pure loss 

of stability and parametric roll failure modes have been implemented in a stability code. The 

KGmax curves associated with these future criteria are computed for a selection of different 

ships of different types, both civilian and military, expected or known to have different 

behaviors with regard to the considered failure modes. The requirement and the relevance 

of the criteria are analyzed. The second check of parametric roll level-two criterion is 

thoroughly analyzed. A simplified method providing the maximum parametric roll angle 

assuming a linear GZ is developed and implemented in the corresponding criterion. 

RESUME 

Les Đƌitğƌes de staďilitĠ à l’Ġtat iŶtaĐt de seĐoŶde gĠŶĠƌatioŶ soŶt eŶ Đouƌs de fiŶalisatioŶ paƌ 
l’Oƌganisation Maritime Internationale. Ils doivent compléter les critères actuels en 

apportant une sécurité accrue dans les vagues. Ils sont organisés en cinq modes de 

dĠfaillaŶĐe et tƌois Ŷiǀeauǆ d’ĠǀaluatioŶ daŶs ĐhaƋue ŵode de dĠfaillaŶĐe. Le pƌeŵieƌ 
niveau est basé sur une approche déterministe simplifiée des phénomènes et assure des 

marges de sécurité importantes. Le second niveau requiert des calculs plus complexes basés 

sur des considérations hydrostatiques dans les vagues. Il est supposé assurer des marges de 

sécurité réduites. Le troisième niveau, actuellement en cours de développement, devrait 

consister en des simulations numériques du comportement du navire sur des états de mer 

réels réalisés par des instituts spécialisés. Les deux premiers niveaux des modes de 

défaillance perte pure de stabilité et roulis paramétrique ont été implémentés dans un code 

de stabilité. Les courbes de KGmax associées à ces critères sont calculées pour une sélection 

de navires civils et militaires de différents types ayant des comportements connus ou 

supposés différents vis-à-vis de ces modes de défaillance. Les exigences et la pertinence des 

critères sont analysées. La seconde vérification du critère de niveau deux en roulis 

paramétrique est étudiée en détail. Une méthode simplifiée de ĐalĐul de l’aŶgle ŵaǆiŵuŵ 
de roulis paramétrique supposant un GZ linéaire est proposée et implémentée dans le 

critère correspondant. 
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INTRODUCTION 

Context 

Since the first SOLAS Conference (Safety Of Life At Sea) in 1914 [10] resulting from the highly 

mediated sinking of the Titanic, the safety of people and goods on ships has been the subject 

of many discussions that have led to the establishment of rules that are applied to new ships 

and then verified by classification societies throughout the life of the ship. The main causes 

of major ship accidents are multiple: 

 Insufficient stability, leading to capsize and then sinking or grounding; 

 Flooding through a breach in the hull, due to a collision with the ground (Salem Express 

1991 [55], Sea Diamond 2007, Costa Concordia 2012), another ship (Andrea Doria 1956 

Figure 1) or a floating object (Titanic 1912, Explorer 2007 [61] Figure 2) or due to a 

military aggression (Lusitania 1915, Wilhelm Gustloff 1945); 

 Fire on board leading to flooding and sinking or capsize (Normandie/La Fayette 1942, 

Achille Lauro 1994 [55]) or leading to high damages (Hyundai Fortune 2006, MSC Flaminia 

2012 [63]); 

 “tƌuĐtuƌal daŵage ďƌeakiŶg the ship’s hull (Erika 1999 [56], Prestige 2002 [57], MSC 

Napoli 2007 [58], MOL Comfort 2013 [62]) or leading to flooding and capsize or sinking 

(Estonia 1994 [55]); 

All these causes are the object of specific rules (intact stability, damage stability, structure, 

fiƌe safetǇ …Ϳ ǁith the aiŵ to eliŵiŶate aĐĐideŶts and reduce their consequences. 

 

 

Figure 1 – Passenger vessel Andrea Doria during 

sinking (photo from US Coast Guard). 

 

Figure 2 – Passenger vessel Explorer during sinking 

(photo by Reinhard Jahn). 
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First Generation Intact Stability Criteria 

The first intact stability rules were defined in 1968 by the Inter-Governmental Maritime 

Consultative Organization (IMCO, which was renamed as International Maritime 

Organization, IMO, in 1982). These rules were given as recommendations in Resolution 

A.167 [14]. They are based on the work of Rahola [11] which consists of a statistical analysis 

of a large amount of ships recognized as safe or unsafe with regard to the stability in intact 

condition. The rules are presented as criteria regarding the righting lever curve (GZ curve) in 

calm water and cited hereunder: 

͞ (a) The area under the righting lever curve (GZ curve) should not be less than 

0.055 meter-radians up to =30° angle of heel and not less than 0.09 

meter-radians up to =40° or the angle of flooding f if this angle is less 

than 40°. Additionally, the area under the righting lever curve (GZ curve) 

between the angles of heel of 30° and 40° or between 30° and f if this 

angle is less than 40°, should not be less than 0.03 meter-radians. 

(b) The righting lever GZ should be at least 0.20 m at an angle of heel equal to 

or greater than 30°. 

(c) The maximum righting arm should occur at an angle of heel preferably 

exceeding 30° but not less than 25°. 

(d) The initial metacentric height GM0 should not be less than 0.15 m.͟ 

These six criteria (the first is triple) are completed by two concerning passenger ships, 

regarding the crowding of passengers to one side and the angle of heel while turning. 

In 1985, these criteria were completed by the weather criterion provided in Resolution 

A.562 [16]. This more-physical-based criterion considers the combined actions of beam wind 

(established and gust) and waves. 

Today, these well-known criteria are mandatory and embedded in part A of the Intact 

Stability Code of the IMO [18]. 

A Long Series of Unexpected Accidents in Waves in Intact Stability Condition 

The entry into force of intact stability rules did not eliminate accidents of ships in such a 

configuration. Some accidents are due to the non-compliance with the ƌules afteƌ ship’s 
conversion (Al Salam Boccaccio 98 2006, Figure 3), overloading (Neptune 1993 [55], Joola 

2002) or insufficient cargo securing (Ice Prince 2008 [59]). Unfortunately, some other 

accidents occurred in intact configuration despite full compliance with the rules. It is not 

possible to list all of them here. Only few, having sufficiently robust report or analysis, are 

listed hereunder. In all cases, the ship was considered as safe with regard to the intact 

stability criteria (computed within the scope of a post-analysis for the oldest cases, since 

these criteria did not exist at that time) and was in heavy weather, often in following seas. 

Other similarities are the fateful consequences in terms of human lives or high financial 

damages. 

 The 2000-ton cargo Lohengrin capsized in the Baltic Sea in January 1950, possibly due to a 

negative stability on a wave crest, combined to poor initial stability after conversion. The 

accident is reported by Krüger and Kluwe in [40]. 
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 A 55-meter LPG tanker sank in the Mediterranean Sea in March 1969, killing her 17 

crewmembers. Taylan provides a thorough analysis of this accident in [36]. As possible 

causes, he mentions a loss of stability in longitudinal waves or broaching. 

 In October 1998, the 4832-TEU container vessel APL China suffered an unexpected 

extreme roll accident in the Northern Pacific (Figure 112 page 119). Almost 400 

containers were lost overboard and 400 others were damaged, making this accident one 

of the most expensive (over $50 million). The accident is reported in [41] and analyzed as 

due to parametric resonance in roll motion. 

 Few years later, in January 2003, a similar accident occurred on the 4324-TEU container 

vessel Maersk Carolina (Figure 4) in the Northern Atlantic. 133 containers were lost 

overboard and 50 others were damaged. The accident is reported and analyzed in [45]. 

 A 12-meter fishing vessel suddenly capsized and sank off the Northern coast of Spain in 

June 2004, killing all ten members of her crew. A detailed analysis of the accident, 

including tests in a towing tank, is provided by Maron et al. in [37]. As possible cause, the 

authors mention a loss of stability on the wave crest combined with water shifting on the 

working deck. 

 The pure car carrier Cougar Ace attained a severe heel angle in the Northern Pacific in 

July 2006 (Figure 5). This accident was not fatal in itself but one member of the salvage 

team died during rescue operations. The ship was recovered. However, the damages 

were high since all 5,000 cars were scrapped after being extracted from the inclined 

garage decks. The accident was due to an insufficient stability on the wave crest in 

following seas combined to a ballast movement. It is reported by Krüger and Kluwe in 

[40]. 

 The Ro-Ro Vessel Finnbirch capsized and sank in the Baltic Sea in November 2006, killing 

two of her seamen (Figure 6). The accident is reported by Kluwe and Krüger in [38] and 

thoroughly analyzed by the Swedish Accident Investigation Board (SHK) in its report [39]. 

As main causes of the accident, SHK wrote ͞Finnbirch was on an unfavourable course at 

an unfavourable speed in a sea with high and long waves which resulted in a loss of 

stability with considerable but not exceptional heelings and a subsequent shifting of the 

cargo. The securing of the cargo on board was unsatisfactory.͟ 

 Moreover, several recommendations are formulated, as usual in such an official report. 

The first one is ͞“HK ƌeĐoŵŵeŶd that the “ǁedish Maƌitiŵe AdŵiŶistƌatioŶ pƌopose that 
stability requirements for ships with a following sea should be entered into the relevant 

iŶteƌŶatioŶal ƌules aŶd ƌegulatioŶs͟. 

 In September 2008, the 8749-TEU container vessel Chicago Express (Figure 114 page 120) 

suffered a violent roll accident during a typhoon off the coast of Hong Kong, killing one 

seaman and seriously injuring her master. The accident is reported and analyzed in [60]. 

One of the causes given by the experts is the insufficient roll damping. Moreover, the 

metacentric height was equal to 7.72 m, which is an unusually high value for this type of 

ship. 
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Figure 3 – Passenger vessel Al Salam Boccacio 98 

(photo by Carlo Martinelli from 

www.shipspotting.com). 

 

Figure 4 – Container Vessel Maersk Carolina (photo by 

Hannes van Rijn from www.shipspotting.com). 

 

Figure 5 – Pure Car Carrier Cougar Ace with severe 

heel on port side (photo from National Digital Library 

of the United States Fish and Wildlife Service). 

 

Figure 6 – Ro-Ro vessel Finnbirch during sinking (photo 

by Swedish Maritime Administration). 

Genesis of the Second Generation Criteria 

This type of accidents highlights the insufficiency of the intact stability criteria in some 

configurations of sailing in waves and has led the IMO to start developing new criteria 

focusing on these conditions. The work started in 2007 with the aim to define new intact 

stability criteria, also Ŷaŵed ͞seĐoŶd geŶeƌatioŶ iŶtaĐt staďilitǇ Đƌiteƌia͟. The work is 

performed by the Working Group on Intact Stability (WGIS) during the sessions of the Sub-

Committee on Stability and Load Lines and on Fishing Vessels Safety (SLF, nowadays the Sub-

Committee on Ship Design and Construction, SDC) of the IMO. In 2008, a correspondence 

group (ISCG) was created to continue working between sessions. The author of this thesis is 

a member of the Delegation of France in the correspondence group. The development of the 

second generation intact stability criteria is the topic of a large amount of scientific papers, 

most of which are presented in conferences and workshops dedicated to ship stability [25, 

26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and many others]. As related by Francescutto [34], it 

was decided to focus on the five following possible stability failures: 

 Pure loss of stability due to reduced righting lever on a wave crest in following or stern 

quartering seas, leading to excessive heel angle or capsize; 
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 Parametric resonance in roll motion, due to variation of righting lever in waves; 

 Broaching, i.e. excessive heel angle or capsize due to loss of course-keeping ability in surf-

riding condition; 

 Dead ship condition, i.e. ship without propulsion in beam waves and wind; 

 Excessive accelerations in roll motion. 

Moreover, it was decided to structure these new rules in a three-level approach with: 

 A first level of assessment, based on a simplified physical and deterministic approach of 

the phenomena, eventually requiring basic hydrostatic computations and consequently 

ensuring large safety margins. 

 A second level of assessment, based on a more-accurate physical analysis of the 

phenomena and considering hydrostatics in waves through a probabilistic approach. 

Hence, safety margins are expected to be reduced. 

 A direct assessment, consisting in numerical simulations of the ship’s behavior in waves 

and presumably allowing more awareness about safety margins. 

Although this is not clearly written in the future regulation, the first level should be 

implemented by any shipyard or naval architect since it requires no specific tool. The second 

level should be implemented by shipyards or naval architects equipped with adequate 

stability software (presumably currently under development) since only specialized institutes 

would be able to perform direct assessment because of both the highly-specialized 

personnel and the specific computing tools it requires. 

A ship that ǁould Ŷot pass the fiƌst leǀel Đƌiteƌia is desigŶated as ͞uŶĐoŶǀeŶtioŶal͟ ďǇ the 
future regulation (Figure 7). In order to comply with future rules, a ship must comply with 

the current rules [18] and with at least one level of each failure mode (Figure 7). Like the 

current criteria, the future ones are intended for ships longer than 24 meters and not 

intended for naval ships, for which the corresponding regulation is imposed by the state, 

also ship-owner. 

Nowadays, the first-and-second-level criteria of all five failure modes are fully defined in SDC 

2/WP.4 and SDC 3/WP.5 [respectively 22 and 23]. Because of their relatively high complexity 

compared to the current intact stability criteria [18], the definition of level-one and level-two 

criteria is enriched by explanatory notes in SDC 3/WP.5 [23] providing explanations, 

comments, guidelines and calculation methods. Table 1 lists where to find the definition of 

level-one and level-two criteria of the five failure modes and their associated explanatory 

notes. 

The direct assessment is currently under development and expected to be reported as draft 

guidelines at the 4th session of the Sub-Committee on Ship Design and Construction (SDC4) 

in the beginning of 2017 and finalized at the 5
th

 session (2018). The second generation intact 

stability criteria are expected to enter into force firstly on part B as recommendations at the 

earliest in 2019. Umeda and Francescutto provide the current status of the development of 

the second generation intact stability criteria in [35]. 
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maximum height of the center of gravity with regard to a specific criterion (or a set of 

criteria) as a function of the displacement or the draft. 

Usually, KGmax curves are included in the stability booklet. They allow the crew to assess the 

stability with regard to the regulation applied to the ship without any complex computation 

rather than KG. Here, considering KGmax curves allows the comparison of the requirement of 

the criterion of each level and the comparison of different computation methods proposed 

for a specific criterion in order to determine the efficiency and the relevance of the new 

criteria. It also allows comparing the requirement of the new criteria with that of the current 

intact stability rules applied on the considered vessel. Although this is not the aim here, the 

comparison of the requirement of both current and new criteria allows assessing the 

vulnerability of the ship with regard to the considered failure mode. 

Outline 

The first chapter provides a presentation of the second generation criteria of level one and 

level two of both pure loss of stability and parametric roll failure modes. In particular, the 

method used in this thesis to compute the second check of level-two parametric roll 

criterion is thoroughly detailed. 

The second chapter describes the main algorithms used in the Calcoque software to 

compute the equilibrium, the metacentric height and the righting arm in both calm water 

and longitudinal static waves. A general presentation of the software and its uses at the 

French Naval Academy and onboard several French Navy ships is provided in Annex 1. All 

geometric considerations are made in a unique ship-fixed coordinate system presented in 

Annex 4. 

The third chapter provides results of future criteria of both pure loss of stability and 

parametric roll failure modes applied to six civilian vessels and three military vessels. It also 

proposes a focus on the second check of the parametric roll level-two criterion, which has an 

uŶusual ďehaǀioƌ Đoŵpaƌed to otheƌ ĐuƌƌeŶt aŶd futuƌe Đƌiteƌia. The iŶflueŶĐe of the ship’s 
speed is analyzed. The application of second generation intact stability criteria to naval 

vessels is argued in this chapter. The nine selected vessels are presented in Annex 2. 

The second check of level-two criterion of parametric roll requires the computation of the 

maximum roll angle in resonance condition. Since both methods proposed by the future 

regulation are relatively complex to implement, the fourth and last chapter proposes an 

alternative method based on an energy analysis of the phenomenon and assuming a linear 

righting lever. This method is close to the analysis of parametric roll proposed by Kerwin in 

1955 [12]. The associated mathematical proofs are deported in Annex 3. 

The symbols used in this thesis are defined twice, inline when appearing for the first time 

and gathered in a glossary proposed in page 151. They are in accordance with the 

recommendations of the International Towing Tank Conference (ITTC, [71]) except the draft, 

denoted by d instead of T, for consistency with the text of both the current and future 

regulations [18, 22 and 23]. 
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CHAPTER 1. SECOND GENERATION INTACT STABILITY CRITERIA 

1.1. PURE LOSS OF STABILITY FAILURE MODE 

1.1.1. Physical Background and General Information 

Physical Background 

When a ship is sailing in waves, the geometry of the submerged part of her watertight 

volume significantly changes. In longitudinal waves, i.e. in pure head seas or following seas, 

there is no transverse excitation. Hence, any transverse stability problem other than that in 

still water could be overlooked. However, the geometry of the waterplane, which is no 

longer flat, also significantly changes. Hence, its inertia and the associated metacentric 

heights vary with the wave encounter. Consequently, a risk of insufficient transverse stability 

exists possibly leading to large heel angle or even to capsizing. 

Figure 8 shows the GZ curves in waves and in calm water computed for the C11 container 

vessel (presented in Annex 2) at a draft equal to 12 m and a KG equal to 18 m. The wave is 

siŶusoidal aŶd loŶgitudiŶal. Its leŶgth is eƋual to the ship’s leŶgth ;ϮϲϮ m) and its height is 

equal to 8.75 m, corresponding to a wave steepness (i.e. ratio height over length) equal to 

0.0334 (this value is proposed in the future regulation and is presented in this chapter). Ten 

positions of the ship relative to the wave are considered. Both curves corresponding to the 

maximum and minimum metacentric height (GM) in waves are colored in red (the dashed 

one corresponds to the minimum GM). Maximum and minimum values of the GM are 

respectively equal to 5.07 m and 0.31 m. The average value of the GM in waves is equal to 

2.62 m since the GM in calm water (solid blue curve) is equal to 2.22 m. 

 

Figure 8 – GZ in waves and in calm water. 
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Influence of the Hull Form 

The displacement volumes corresponding to the maximum and minimum GM are 

respectively shown in Figure 9 and Figure 10. The hull is wall-sided amidships and flare-sided 

at the bow and at the stern (see Figure 110 in Annex 2 page 119). In Figure 9, the wave 

crests are centered at the bow and the stern. The waterplane area is larger than that in still 

water and so is its inertia. The associated GM is thus increased. In Figure 10, the wave crest 

is centered amidships. The waterplane area and its inertia are lower than in still water. Thus, 

the corresponding GM is also lowered. 

Consequently, the hull form has a direct effect on the GM variation in longitudinal waves. 

The more the hull is flared at the bow and at the stern, the larger the GM variation is. A ship 

having a wall-sided hull over a major part of its length, such as the tanker presented in 

Annex 2, would have a low GM variation in waves and would thus be expected not to be 

vulnerable to the pure loss of stability. 

Moreover, it is expected that the most critical wave has a length almost equal to the ship’s 

length. In other configurations, the wave steepness seen along the hull is reduced (causing 

low GM variation) and the ship only pitches in long waves or surges in short waves. 

 

Figure 9 – Displacement volume corresponding to the maximum GM in waves. 

 

Figure 10 – Displacement volume corresponding to the minimum GM in waves. 

Influence of the Speed 

Even if the GM reduction occurring when the wave crest is centered amidships is large, the 

ship should not capsize or even attain a large heel angle if the time in this critical 

configuration is too short. This time is function of the wave encounter frequency. 

CoŶseƋueŶtlǇ, the ship’s speed also has a great importance in the phenomenon. To 

maximize the time in the critical configuration, the ship must be in following seas at a speed 

equal to that of the wave crests. Hence, the corresponding Froude number is 0.4. The 

phenomenon cannot occur in head waves and should be reduced if the ship is clearly unable 

to attain a speed corresponding to such a Froude number. That is why these new criteria are 

intended for ships having a service speed Froude number larger than 0.24. 
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1.1.2. Level One 

General Principles 

The first level criterion of pure loss of stability failure mode considers waves having a 

steepness SW equal to 0.0334. This value is calculated from the wave scatter diagram taken 

from recommendation 34 of the International Association of Classification Societies (IACS, 

[69]). The calculation method is described in the explanatory notes of the future regulation 

(SDC 3/WP.5, Annex 4, Appendix 1, [23]). 

The minimum transverse metacentric height in waves (denoted by GMmin) must be higher 

than 5 centimeters. Two methods are proposed to calculate its value. 

First Method 

The first method considers that the moment of inertia of the waterplane area in waves is 

equal to that of the parallel waterplane area in calm water at a lowest draft (denoted by dL) 

as shown in Figure 11 (the waterplane at lowest draft is the grey area). The lowest draft dL is 

calculated as follows: 

 ݀௅ = ݀ − (݀ − Ͳ.ʹͷ݀௙௨௟௟;   ௐʹ) (1)ܵܮ

With: 

d (m) draft corresponding to the considered loading condition in calm water 

(black line in Figure 11); 

dfull (m) draft, full load; 

L (m) ship’s leŶgth; 

SW 0.0334 wave steepness. 

In most cases, the lowest draft can be simplified as follows: 

 ݀௅ = ݀ −   ௐʹ (2)ܵܮ

Then, the minimum metacentric height in waves is calculated as follows: 

௠௜௡ܯܩ  = ܤܭ + ׏௅ܫ −   (3) ܩܭ

With: 

KB (m) height of the vertical center of buoyancy in calm water; 

IL (m4) moment of inertia of the water-plane area at lowest draft dL (grey area in 

Figure 11); 

 (m3) volume of displacement; 

KG (m) height of the vertical center of gravity. 
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Figure 11 – Parallel waterplane at lowest draft dL. 

Second Method 

The second method consists of computing the minimum metacentric height of the ship 

balanced in trim and sinkage on sinusoidal waves. The wave leŶgth is eƋual to the ship’s 
length L and the height is h=SWL. The wave crest is centered at the longitudinal center of 

gravity and at each L/10 forward and aft thereof. 

1.1.3. Level Two 

General Principle 

The second level consists of a probabilistic approach of the phenomenon associated with a 

wave scattering table. For an unrestricted sailing area, the new regulation imposes that 

included in the IACS Recommendation 34 corresponding to the Northern Atlantic (Table 2, 

from [69]). In this table, which lists 16 wave periods and 17 wave heights, 197 waves have a 

non-zero number of occurrence. The new regulation allows using another wave scattering 

table if the ship is sailing in a restricted area. 

HS (m) 
Zero-crossing period, TZ (s) 

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 

0.5 1.3 133.7 865.6 1186 634.2 186.3 36.9 5.6 0.7 0.1 0 0 0 0 0 0 

1.5 0 29.3 986 4976 7738 5569.7 2375.7 703.5 160.7 30.5 5.1 0.8 0.1 0 0 0 

2.5 0 2.2 197.5 2158.8 6230 7449.5 4860.4 2066 644.5 160.2 33.7 6.3 1.1 0.2 0 0 

3.5 0 0.2 34.9 695.5 3226.5 5675 5099.1 2838 1114.1 337.7 84.3 18.2 3.5 0.6 0.1 0 

4.5 0 0 6 196.1 1354.3 3288.5 3857.5 2685.5 1275.2 455.1 130.9 31.9 6.9 1.3 0.2 0 

5.5 0 0 1 51 498.4 1602.9 2372.7 2008.3 1126 463.6 150.9 41 9.7 2.1 0.4 0.1 

6.5 0 0 0.2 12.6 167 690.3 1257.9 1268.6 825.9 386.8 140.8 42.2 10.9 2.5 0.5 0.1 

7.5 0 0 0 3 52.1 270.1 594.4 703.2 524.9 276.7 111.7 36.7 10.2 2.5 0.6 0.1 

8.5 0 0 0 0.7 15.4 97.9 255.9 350.6 296.9 174.6 77.6 27.7 8.4 2.2 0.5 0.1 

9.5 0 0 0 0.2 4.3 33.2 101.9 159.9 152.2 99.2 48.3 18.7 6.1 1.7 0.4 0.1 

10.5 0 0 0 0 1.2 10.7 37.9 67.5 71.7 51.5 27.3 11.4 4 1.2 0.3 0.1 

11.5 0 0 0 0 0.3 3.3 13.3 26.6 31.4 24.7 14.2 6.4 2.4 0.7 0.2 0.1 

12.5 0 0 0 0 0.1 1 4.4 9.9 12.8 11 6.8 3.3 1.3 0.4 0.1 0 

13.5 0 0 0 0 0 0.3 1.4 3.5 5 4.6 3.1 1.6 0.7 0.2 0.1 0 

14.5 0 0 0 0 0 0.1 0.4 1.2 1.8 1.8 1.3 0.7 0.3 0.1 0 0 

15.5 0 0 0 0 0 0 0.1 0.4 0.6 0.7 0.5 0.3 0.1 0.1 0 0 

16.5 0 0 0 0 0 0 0 0.1 0.2 0.2 0.2 0.1 0.1 0 0 0 

Table 2 – IACS wave scatter diagram (from [69]). 

The ship is found to be non-vulnerable to the pure loss of stability if both values of CR1 and 

CR2 are lower than RPL0=0.06. CR1 and CR2 are computed as follows: 
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ͳܴܥ  =∑ ௜ܹܥͳ௜ଵ9଻
௜=ଵ ʹܴܥ  =∑ ௜ܹܥʹ௜ଵ9଻

௜=ଵ  (4)  

With: 

Wi weighting factor of the wave number i taken from Table 2 (number of occurrences 

divided by 100,000); 

C1i coefficient for the wave number i regarding the minimum angle of vanishing 

stability V.min (Figure 12); 

C2i coefficient for the wave number i regarding the maximum angle of stable 

equilibrium S.max under action of a heeling lever RPL3 (Figure 12). 

 

Figure 12 – Righting arm curve on static wave with angle of stable equilibrium under heeling lever RPL3 (S) and 

angle of vanishing stability (V). 

Waves are supposed to be sinusoidal. Their height is from Table 2 (HS is twice the wave 

amplitude). Their length  is linked to their zero-crossing period TZ (Table 2) by the infinite-

depth relation: 

 � = ݃ ௓ܶଶʹ�  (5)  

For each wave, the heeling lever RPL3 is defined as follows: 

 ܴ�௅ଷ = ͺܪ௦�   ௡ଶ (6)ܨ݀

The minimum angle of vanishing stability (V.min) and the maximum angle of stable 

equilibrium (S.max) are computed for the 197 non-zero-weighted waves of the wave scatter 

diagram and used to calculate C1i and C2i as follows: 
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ͳ௜ܥ  = {ͳ �݂ Φ௏.௠௜௡ < ܴ�௅ଵͲ ݁ݏ�ݓݎℎ݁ݐ݋ ௜ʹܥ   = {ͳ �݂ Φௌ.௠௜௡ > ܴ�௅ଶͲ ݁ݏ�ݓݎℎ݁ݐ݋  (7)  

With: 

RPL1 30 degrees; 

RPL2 25 degrees (15 degrees for passenger vessels). 

Effective Wave Height Concept 

Since the number of non-zero-weighted waves is large, the new regulation proposes a 

method to make the computation faster. This method is based on the effective wave height 

concept proposed by Grim [65]. For each wave of the scattering diagram (Table 2) defined by 

its zero-crossing period (TZ) and significant height (HS), this method consists in computing an 

effective height of the 3% highest waves H3%eff corresponding to an equivalent wave whose 

length  is eƋual to the ship’s length L. This effective wave provides the ship with the same 

energy than the original wave. 

The effective wave height is calculated according to the following formulae: 

ଷ%௘௙௙ܪ  = ͷ.ͻ͹ʹͷ√݉଴ (8)  

 ݉଴ = ∫ { 
 �ଶ݃ܮ sin (�ଶܮʹ݃ )�ଶ − (�ଶܮʹ݃ )ଶ } 

 ଶ ��ସሻ݀�ଷ��଴.଴ଵ−�ܤ−ሺ݌ݔହ݁�ܣ  (9)  

ܣ  = ͳ͹͵ܪௌଶ ଴ܶଵ−ସ (10)  

ܤ  = ͸ͻͳ ଴ܶଵ−ସ (11)  

 ଴ܶଵ = ͳ.Ͳͺ͸ ௓ܶ (12)  

 �௅ = ܮ�݃ʹ√  

(13)  

Table 3 gives the effective wave heights computed according to this method for some 

vessels described in Annex 2 and associated to the waves of Table 2 having a zero-crossing 

period (TZ) equal to 10.5 seconds. 

For a given ship, all effective waves have the same length. We consider 11 effective waves 

having a height from zero to the maximum effective height corresponding to the length and 

all wave cases of the considered scatter diagram (Table 2). The minimum angle of vanishing 

stability (V.min) and the maximum angle of stable equilibrium (S.max) are pre-calculated for 

these 11 waves. This requires the computation of one GZ curve in calm water for the first 

effective wave whose height is equal to zero. For each of the 10 other effective wave 

heights, this requires the computation of 10 GZ curves considering the ship balanced in trim 

and sinkage and for the wave crest centered at the longitudinal center of gravity and at each 

/10 forward and aft thereof. 

Then, the values of V.min and S.max, required to calculate coefficients C1i and C2i associated 

to all wave cases of the scatter diagram, are simply calculated by linear interpolation in the 

interval formed by 2 successive values of the 11 previously considered effective heights. 
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HS (m) 
DTMB-5415 

L=142m 

Container 

L=262m 

Container 

L=319m 

Ro-Ro 

L=135m 

Tanker 

L=227.5m 

0.5 0.430 0.539 0.538 0.417 0.526 

1.5 1.289 1.618 1.614 1.251 1.579 

2.5 2.149 2.697 2.691 2.085 2.631 

3.5 3.008 3.776 3.767 2.919 3.683 

4.5 3.868 4.855 4.843 3.753 4.736 

5.5 4.727 5.934 5.919 4.587 5.788 

6.5 5.587 7.013 6.996 5.421 6.841 

7.5 6.446 8.092 8.072 6.255 7.893 

8.5 7.306 9.171 9.148 7.089 8.945 

9.5 8.165 10.250 10.225 7.923 9.998 

10.5 9.025 11.329 11.301 8.757 11.050 

11.5 9.884 12.408 12.377 9.591 12.103 

12.5 10.744 13.487 13.453 10.425 13.155 

13.5 11.603 14.566 14.530 11.258 14.207 

14.5 12.463 15.645 15.606 12.092 15.260 

15.5 13.322 16.724 16.682 12.926 16.312 

16.5 14.182 17.803 17.758 13.760 17.365 

Table 3 – Effective height of the 3% highest waves (m) for a zero-crossing period equal to 10.5 seconds. 

  



24 

 

1.2. PARAMETRIC ROLL FAILURE MODE 

1.2.1. Historical and Physical Background 

Simplified Approach 

As previously shown in pure loss of stability failure mode, the restoring moment and the 

transverse metacentric height of a ship change while sailing in longitudinal waves. This 

phenomenon may occur to a lesser extent in quartering seas. Although longitudinal waves 

provide no transverse excitation, an amplification of the roll motion is possible if the wave 

encounter repeats the variation of restoring moment during a sufficiently long time in some 

particular conditions. 

This phenomenon can appear if the GM variation frequency (equal to the roll encounter 

fƌeƋueŶĐǇͿ is tǁiĐe the ship’s Ŷatuƌal ƌoll frequency. If a ship rolls while the wave trough is 

centered amidships, the resulting increased GM provides a strong restoring moment and 

greatly accelerates the ship to the opposite side. As the ship approaches the upright 

position, her position in wave has changed and the wave crest is now centered amidships, 

reducing the restoring moment. Due to her inertia and roll speed, the ship rolls further to 

the opposite side, assuming the damping has a moderate effect. Then, the ship attains her 

maximum roll angle on this side when the next wave trough arrives amidships, repeating the 

cycle. 

This simplified approach shows the conditions of appearance of parametric roll: 

 The ship sails in head or following seas, possibly in bow or stern-quartering seas. 

 The ǁaǀe eŶĐouŶteƌ fƌeƋueŶĐǇ is tǁiĐe the ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ. 

 The hull geometry provides sufficient restoring moment variation in longitudinal waves. 

 The roll damping has a moderate effect. 

Historical background 

Parametric roll is a sort of parametric resonance, also called parametric pumping. This 

phenomenon is characteristic of oscillating systems having variations in their stiffness 

constant. It has long been known in several scientific domains. Since Galeazzi recently 

provided a detailed historical review in his thesis [47], we quote here only few important 

references. 

Parametric pumping was already known and used in the Middle Ages. Known under the 

Ŷaŵe of ͞O Botafuŵeiƌo͟, a ϭϳϬ-kg censer hangs in the transept of the cathedral of Santiago 

de Compostela (Spain). Its pendulum motion is excited by eight men using a cylinder varying 

the length of the rope. Sanmarin provides a detailed mechanical and mathematical analysis 

of this ingenious system [15]. 

In the 19th Century, parametric resonance was studied by mathematicians and naval 

architects [8 and 9]. In [9], Mathieu laid the basis of the mathematical analysis of this 

phenomenon. His name was given to the differential equation that governs it: 

 
݀ଶݐ݀ݔଶ + �଴ଶሺͳ + �଴ cos ሻݐ = Ͳ (14)  
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Parametric resonance is also used in optical oscillators as demonstrated by Giordmaine and 

Miller [13]. 

In 1955, Kerwin provided a detailed analysis of the parametric resonance applied to the roll 

motion of ships [12]. As he recognized, his mathematical work had no practical application 

on ships at that time. 

However, Kerwin was visionary and parametric roll was highlighted a few decades later by 

several accidents on large container vessels. In particular, the APL China suffered from a 

severe parametric roll accident in the Northern Pacific Ocean in October 1998 [41]. This 

unexpected accident has been extensively studied and is part of the bases of the new 

generation criteria. Figure 112 page 119 shows some damage resulting from this accident. 

Several similar accidents have occurred since that date, such as that of the Maersk Carolina 

in the Northern Atlantic in January 2003 [45] (Figure 4 page 13). 

Although this phenomenon has become well-known by ship-masters, ship-owners and naval 

architects nowadays, it generates high safety and financial risk (respectively over $50 million 

and $4 million for the accidents that occurred on APL China and Maersk Carolina). Hence, it 

is one of the five failure modes considered in the new intact stability criteria developed by 

the IMO. 

Modes of Parametric Resonance 

Parametric resonance exists when the constant stiffness of the considered system varies 

according to a frequency that is twice a sub-multiple of the natural oscillating period of the 

system: 

 �௘ = ʹ݊ �଴ 
(15)  

With: 

n - ŵode of paƌaŵetƌiĐ ƌesoŶaŶĐe: ϭ, Ϯ, ϯ, ϰ, …; 

e (rad/s) frequency of variation of the stiffness constant of the considered system; 

0 (rad/s) natural frequency of the considered system. 

Applied to the roll motion of a ship in longitudinal waves, the stiffness constant is the 

metacentric height (GM) and varies with the wave encounter frequency (e) while 0 is the 

ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ. 

Hence, the first mode of parametric resonance occurs when the encounter frequency is 

tǁiĐe the ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ. The seĐoŶd ŵode oĐĐuƌs when both frequencies are 

equal and the third mode when the encounter frequency is 2/3 of the roll frequency. 

Parametric resonance is stronger at first mode and decreases as the mode increases. 

Consequently, the first mode of parametric roll, occurring when the encounter frequency is 

twice the natural roll frequency, provides the largest risk for the ship and is considered prior. 
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1.2.2. Level One 

General Principles 

While the pure loss of stability failure mode is a single-wave incident, the parametric roll 

results from the encounter of similar waves (having almost the same period) during a 

sufficiently long time to allow a significant amplification of the roll motion. Consequently, 

the considered wave height is reduced to that of the 1/3 highest waves instead of 3%. The 

associated wave steepness (SW) is equal to 0.0167 (instead of 0.0334 in pure loss of stability). 

This value is also calculated from the wave scatter diagram taken from the IACS 

recommendation number 34 with the same method than that of pure loss of stability (see 

SDC 3/WP.5, Annex 4, Appendix 1, [23]). 

The first level of parametric roll requires that the non-dimensional amplitude of the variation 

of the metacentric height in waves (GM/GM) is less than a coefficient RPR. This coefficient 

depends largely on bilge keel area and to a lesser extent on the midship section coefficient 

(denoted by Cm). The calculation method is described in SDC 2/WP.4 (Annex 2, [22]). The 

value of RPR is comprised between 0.17 (ship with no bilge keels) and 1.87 (ships with large 

bilge keels). 

The new regulation proposes two methods to calculate the variation of metacentric height in 

waves (denoted by GM). They are described hereunder. 

First Method 

The first method of level-one criterion of parametric roll failure mode is similar to that of 

pure loss of stability. Here, the first method considers that the minimum and maximum 

moments of inertia of the waterplane area in waves are respectively equal to that of parallel 

waterplanes at a lowest draft dL (Figure 11 page 20, grey area) and at a highest draft dH 

(Figure 13 page 27, dashed line). Both drafts are calculated as follows: 

 ݀௅ = ݀ −݉�݊ (݀ − Ͳ.ʹͷ݀௙௨௟௟; ௐʹ) ݀ுܵܮ = ݀ +݉�݊ ܦ) − ݀;   ௐʹ) (16)ܵܮ

d (m) draft corresponding to the loading condition; 

dfull (m) draft, full load; 

D (m) ship’s depth; 

L (m) ship’s leŶgth; 

SW 0.0167 wave steepness. 

In most of cases, both drafts can be simplified: 

 ݀௅ = ݀ − ௐʹ ݀ுܵܮ = ݀ +   ௐʹ (17)ܵܮ

Then, the amplitude of the variation of the metacentric height in waves is calculated as 

follows: 

ܯܩ∆  = ுܫ − ׏ʹ௅ܫ  (18)  

With: 
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IH (m4) moment of inertia of the parallel waterplane associated with the highest 

draft dH; 

IL (m4) moment of inertia of the parallel waterplane associated with the lowest 

draft dL; 

 

Figure 13 – Parallel waterplane at highest draft dH. 

Second Method 

The second method consists in computing 10 metacentric heights of the ship balanced in 

tƌiŵ aŶd siŶkage iŶ siŶusoidal ǁaǀes. The ǁaǀe leŶgth is eƋual to the ship’s leŶgth L aŶd the 
height is h=SWL. The wave crest is centered at the longitudinal center of gravity and at each 

L/10 forward and aft thereof. The minimum and maximum values of GM are used to 

calculate GM as follows: 

ܯܩ∆  = ௠௔௫ܯܩ − ʹ௠௜௡ܯܩ  (19)  

1.2.3. Level Two 

The parametric roll level-two is divided in two checks marked C1 and C2, consisting of two 

independent probabilistic approaches of the phenomenon. The ship is found to be non-

vulnerable to parametric roll if any of the values of C1 and C2 are lower than RPR0=0.06. 

First Check 

The first check considers a shortlist of weighted waves calculated from the chosen wave 

scatter diagram according to the method described in the explanatory notes of the future 

regulation (SDC 3/WP.5 [23]). Table 4 shows this wave list calculated from the IACS wave 

scatter diagram [69] shown in Table 2. 

The value of the C1 coefficient, associated with the first check, is computed as follows: 

ͳܥ  =∑ ௜ܹ . ௜ଵ଺ܥ
௜=ଵ  (20)  

Wi is the wave weighting factor from the shortlist (Table 4). Ci is equal to 0 if any of the 

conditions A or B is satisfied, 1 otherwise. 

Condition A is: 
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௜ܯܩ  > Ͳ And 
௜ܯܩ௜ܯܩ∆ < ܴ�ோ (21)  

With: 

GMi (m) average value of the 10 metacentric heights computed for wave number i, 

with the wave crest centered at the longitudinal center of gravity and at 

each i/10 forward and aft thereof; 

GMi (m) half of the difference between the maximum and the minimum values of 

the 10 metacentric heights. 

Condition B is: 

 �ܸோ.௜ > ௌܸ With �ܸோ.௜ = |ʹ�௜଴ܶ ଴ܯܩ௜ܯܩ√ −√݃�௜ʹ� | (22)  

And: 

VS (m/s) ship’s speed; 

VPR.i (m/s) reference speed corresponding to the first mode of parametric roll 

;eŶĐouŶteƌ fƌeƋueŶĐǇ is tǁiĐe the ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇͿ; the 
relationship which gives its value is demonstrated in Annex 3 (page 126); 

i (m) wave length (from the shortlist, Table 4); 

T0 (s) natural roll period of the ship in calm water; 

GMi (m) as defined above; 

GM0 (m) metacentric height in calm water. 

This criterion considers that, for each wave in the shortlist, the ship cannot attain the speed 

corresponding to the parametric resonance condition, otherwise the metacentric height in 

wave must remain positive and its variation must be acceptable. 

Wave number i Weight Wi Wave length i (m) Wave height Hi (m) 

1 0.000013 22.574 0.350 

2 0.001654 37.316 0.495 

3 0.020912 55.743 0.857 

4 0.092799 77.857 1.295 

5 0.199218 103.655 1.732 

6 0.248788 133.139 2.205 

7 0.208699 166.309 2.697 

8 0.128984 203.164 3.176 

9 0.062446 243.705 3.625 

10 0.024790 287.931 4.040 

11 0.008367 335.843 4.421 

12 0.002473 387.440 4.769 

13 0.000658 442.723 5.097 

14 0.000158 501.691 5.370 

15 0.000034 564.345 5.621 

16 0.000007 630.684 5.950 

Table 4 – Wave cases for the first check of parametric roll level-two criterion. 
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Second Check 

General Principle 

The second check of level-two parametric roll condition, which can be assessed only if the 

first check is not fulfilled, considers the maximum roll angle in each wave of a specified 

scattering diagram. As for the pure loss of stability failure mode, the new regulation imposes 

the scattering diagram proposed by IACS corresponding to the Northern Atlantic (Table 2, 

from [69]) for sailing in unrestricted areas, and allows the use of another diagram for sailing 

in restricted areas. 

The C2 coefficient is associated with the second check. Its value, which must be lower than 

RPR0=0.06 to fulfill the criterion, is calculated from the maximum roll angle of the ship on 

each of the non-zero-weighted waves of the wave scatter diagram considering 7 speeds. For 

a given wave and a given speed, the maximum roll angle is the maximum absolute value of 

the solution (t) of the differential equation of parametric roll, which can be established as 

follows: 

ସସφሷܬ  + Bସସφሶ + WGZሺφ, ሻݐ = Ͳ (23)  

With: 

 (rad) roll angle; 

J44 (kg.m2) roll moment of inertia, including added mass; 

B44 (N.m.s/rad) damping coefficient; 

W (N) ship’s weight; 

GZ(,t) (m) righting arm, function of both the roll angle  and time t, varying with 

the wave encounter frequency; 

The C2 coefficient is calculated as follows: 

ʹܥ  = ͳ͹∑∑ ௜ܹܥʹ௜,௝଻
௝=ଵ

ଵ9଻
௜=ଵ  (24)  

The weighting factor Wi is extracted from the wave scattering table (Table 2, number of 

occurrences divided by 100,000). The coefficient C2i,j is equal to 1 if the maximum roll angle 

of the (t) function solution of the differential equation (23) for wave number i and the 

speed KjVS is higher than 25 degrees, 0 otherwise. The speed factors Kj are given in Table 5. 

Effective Wave Concept 

Since the number of non-zero-weighted waves in the scattering table may be large, the new 

regulation imposes the use of the Grim effective wave height concept [65] to make the 

computation faster. The methodology is similar to that used in pure loss of stability. 

However, the considered effective height is that of the 1/3 highest waves. It is calculated as 

follows: 

ଵଷ௘௙௙ܪ  = Ͷ.ͲͲͶ͵√݉଴ (25)  

The maximum roll angle max is pre-computed by solving the differential equation (23) for 10 

effective waves whose heights are a fraction (from 0.1 to 1) of the maximum effective wave 
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height ĐoƌƌespoŶdiŶg to the ship’s leŶgth aŶd the ǁaǀe sĐatteƌ diagƌaŵ. The ŵaǆiŵuŵ ƌoll 
angle associated with any effective wave height is calculated by linear interpolation. Table 6 

gives the effective wave heights (in meters) computed according to the Grim method for 

some vessels and associated to the waves of Table 2 having a zero-crossing period (TZ) equal 

to 10.5 seconds. 

Number j Speed factor Kj 

1 -1 

2 -0.866 

3 -0.5 

4 0 

5 0.5 

6 0.866 

7 1 

Table 5 – Speed factors Kj. 

HS (m) 
DTMB-5415 

L=142m 

Container 

L=262m 

Container 

L=319m 

Ro-Ro 

L=135m 

Tanker 

L=227.5m 

0.5 0.288 0.362 0.361 0.280 0.353 

1.5 0.865 1.085 1.082 0.839 1.059 

2.5 1.442 1.809 1.804 1.399 1.764 

3.5 2.018 2.532 2.525 1.958 2.470 

4.5 2.595 3.256 3.247 2.518 3.176 

5.5 3.171 3.979 3.968 3.077 3.882 

6.5 3.748 4.703 4.690 3.637 4.587 

7.5 4.325 5.426 5.411 4.196 5.293 

8.5 4.901 6.149 6.133 4.756 5.999 

9.5 5.478 6.873 6.854 5.315 6.705 

10.5 6.054 7.596 7.576 5.875 7.410 

11.5 6.631 8.320 8.297 6.434 8.116 

12.5 7.208 9.043 9.019 6.993 8.822 

13.5 7.784 9.767 9.740 7.553 9.528 

14.5 8.361 10.490 10.462 8.112 10.234 

15.5 8.937 11.214 11.183 8.672 10.939 

16.5 9.514 11.937 11.905 9.231 11.645 

Table 6 – Effective height of the 1/3 highest waves (m) for a zero-crossing period equal to 10.5 seconds. 

The future regulation proposes two different methods to compute the maximum roll angle. 

They are briefly described hereunder. Both methods consider a non-linear GZ, which renders 

their implementation relatively complex, especially for naval architects accustomed to the 

simplicity of the current intact stability regulation [18]. However, the linear-GZ option was 

considered as shown in a paper presented by Umeda at the International Ship Stability 

Workshop held in Brest in 2013 [30]. In Chapter 4, we propose a simplified method providing 

the maximum parametric roll angle assuming a linear GZ (Section 4.4 in page 97). 

First Method: Analytical Solution of the Differential Equation 

The first method is described in SDC 3/WP.5, Annex 4, Appendix 5 [23]. It is based on an 

averaging method, which provides an analytical solution for non-linear oscillators such as 

parametric ones. The method assumes non-linearity as small disturbances which make a 

slow evolution of the system response. Thus, the inertia and linear component of the 

restoring moment (GM) are assumed as leading characteristics since the non-linearity in the 

restoring moment and its variations have small magnitude. The averaging method is 

thoroughly described in [66]. 
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This method requires a polynomial fit of the GZ curve in calm water at odd-degree (5th 

degree or higher). It provides directly the maximum roll angle, calculated as the solution of a 

scalar equation. 

Second Method: One-Degree-of-Freedom Numerical Simulation 

The second method consists in solving the differential equation (23) with a time-domain 

numerical simulation in one degree of freedom (1-DoF). During the 12th International 

Conference on the Stability of Ships and Ocean Vehicles, held in Glasgow (UK) in June 2015, 

Peters et al. formulated some recommendations for this numerical solving [32]. Their 

propositions are included as guidelines in the new regulation (SDC 3/WP.5, Annex 4, 

Appendix 3, [23]). 

This second method is used in this thesis. It is described in more detail in Section 1.2.4. 

Comparison of Both Methods 

The first method (analytical solution) is not used in this thesis. However, a student project 

recently carried at the French Naval Academy showed very good accordance between 

results given by both methods for the C11 container vessel (described in Annex 2) in one 

condition of parametric roll [74]. 

1.2.4. Maximum Roll Angle and KGmax computation 

This section describes the method used in this thesis to solve the parametric roll differential 

equation (23) with a one-degree-of-freedom numerical situation in order to calculate the 

maximum roll angle. 

Moment of Inertia 

The moment of inertia J44 is calculated as follows: 

ସସܬ  = Δሺͳ + ܽሻሺ�ܤሻଶ (26)  

With: 

 (kg) ship’s displaĐeŵeŶt; 

a - added mass coefficient; 

k - radius of inertia coefficient; 

B (m) ship’s ďƌeadth. 

The ship’s Ŷatuƌal ƌoll peƌiod iŶ Đalŵ ǁateƌ ;T0) is linked to her moment of inertia as follows: 

 ଴ܶ = ʹ�√ ܯܩସସ݃Δܬ = ͳ√ܤ��ʹ + ܯܩ݃ܽ  (27)  

With: 

g 9.81 m/s2 gravitational acceleration; 

GM (m) metacentric height in calm water. 
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WheŶ the ship’s ƌoll peƌiod is kŶoǁŶ, the ĐoeffiĐieŶts a aŶd k aƌe ĐhoseŶ iŶ ĐoŶseƋueŶĐe. 
Otherwise, the coefficient a is set to 0.1 and k to 0.4. Values of both coefficients are given in 

Table 15 and Table 16 (Annex 2 pages 118 and 123) respectively for civilian and naval ships. 

Roll Damping 

The roll damping coefficient B44 is calculated according to the method proposed by 

Kawahara, Maekawa and Ikeda [50]. The ship’s speed is takeŶ iŶto aĐĐouŶt though the lift 

component according to the method proposed by Ikeda, Himeno and Tanaka [48]. The 

explanatory notes of parametric roll criteria give both methods (SDC 3/WP.5, Annex 4, 

Appendix 4, [23]). The roll damping coefficient B44 depends on the roll amplitude (a in [50]). 

Here, B44 is pre-computed for 11 values of roll amplitude from 1 to 50 degrees and 

calculated by linear interpolation during the solving of the differential equation, using the 

value of the current roll amplitude. The roll damping coefficient B44 also depends on the 

distance between the center of gravity and the calm water surface (OG in [50]) and on the 

ship’s ƌoll peƌiod (T0). Both are linked to the KG. Thus, the pre-computation of B44 for all roll 

amplitudes is required in all iterations of the search of KGmax. 

Righting Arm 

The righting arm is calculated according to a simplified method proposed by Peters, Belenky, 

Chouliaras and Spyrou [32] and the new regulation (SDC 3/WP.5 [23]). This method consists 

in modulating the GZ in calm water by the GM in waves as follows: 

ሺφሻܼܩ  = ଴ሺφሻܼܩ − ଴ܯܩ) − ௠௢௬ܯܩ − Δܯܩ. sinሺ�௘ݐሻ) sinφ (28)  

With: 

GZ0() (m) righting arm in calm water associated to a user-defined height of the 

center of gravity (KG0); 

GM0 (m) metacentric height in calm water associated with KG0. 

GMmoy (m) average value of the metacentric height in waves, associated with the 

considered KG, which may differ from KG0; 

GM (m) amplitude of the variation of the metacentric height in waves; 

e (rad/s) wave encounter frequency. 

Belenky, Bassler and Spyrou showed that this simplified method gives acceptable values of 

GZ up to an angle of 30 degrees [27]. Figure 14 shows the GZ curves resulting from this 

method applied to the C11 container vessel in the conditions of Figure 8 (page 17). The real 

GZ in waves in three configurations (maximum GM, minimum GM, average value of GZ in 

waves) is drawn as solid lines (respectively blue, red and grey). The GZ in calm water 

modulated by the GM in waves as dashed lines in the same configurations (same colors). We 

also observe that the differences are negligible under 15 degrees and acceptable under 25 

degrees. 

Note: the first method proposed by the future regulation to compute the maximum roll 

angle (analytical solution of the differential equation, page 30) also uses this approximation 

of the GZ in waves. 
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Since the C2 coefficient is increased if the maximum roll angle exceeds 25 degrees, this 

approximation method can be used here. It makes the computation of maximum roll angle 

and KGmax faster. The righting arm in calm water (GZ0) is pre-computed for heel angles from 

0 to 50 degrees with a step equal to 5 degrees. During the simulation, its value for any roll 

angle  is calculated by linear interpolation between two adjacent values. GMmoy and GM 

are computed before the simulation by computation of GM on the considered sinusoidal 

wave with 10 positions of the ship on the wave. GMmoy is the average value of the 10 

metacentric heights. GM is half the difference between the maximum and the minimum 

values. During the finding of KGmax, the value of GMmoy is updated with the considered value 

of KG since the value of GM remains unchanged. 

GMmoy is used to ĐalĐulate the ship’s Ŷatuƌal ƌoll peƌiod T0, which is required to calculate the 

damping coefficient B44. Thus, if GMmoy is negative, the simulation is not possible and the C2 

coefficient is forced to 1. 

The wave encounter frequency e is calculated as follows: 

 �௘ = �௪ (ͳ + �௪ ௝ܭ ௦ܸ݃ ) (29)  

With: 

w (rad/s) wave frequency. 

The speed factors Kj are given in Table 5. The positive values correspond to head seas. The 

negative values correspond to following seas. 

 

Figure 14 – Comparison of real GZ in waves and GZ in calm water modulated by the GM in waves for the C11 

container vessel. 
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Solving Method 

The solving of the differential equation is performed with the Runge-Kutta 4th order method. 

The implementation of this method is detailed in Annex 3 page 128. 

Initial Conditions 

As proposed by Peters et al. [32] and the new regulation (SDC 3/WP.5 [23]), the initial roll 

angle is equal to 5 degrees. The initial roll speed is null. The influence of an initial roll angle 

equal to 10 degrees is tested in Section 3.3.4 page 75. 

Simulation Duration 

The time duration of the simulation is equal to ϭϱ tiŵes the ship’s Ŷatuƌal ƌoll peƌiod. This 
value is proposed by Peters et al. [32] and the new regulation (SDC 3/WP.5 [23]). Moreover, 

it is validated by a series of computations performed with different durations, from 3 to 20 

roll periods, which give the same KGmax from 10 roll periods. 

The simulation is interrupted if the roll angle exceeds 50 degrees. 

Time Step 

The time step is set to one 40th of the ship’s Ŷatuƌal ƌoll peƌiod. This ǀalue has ďeeŶ ǀalidated 
by removing the damping and GM variation from the differential equation, to simulate an 

undamped roll on calm water: The roll amplitude remains equal to the initial roll angle. This 

test fails if the Euler method is used to solve the differential equation instead of the Runge-

Kutta method: the roll amplitude increases. Peters et al. [32] and SDC 3/WP.5 [23] propose a 

time step equal to one 30th of the ship’s Ŷatuƌal ƌoll peƌiod. 

Simulation Implementation 

The hydrostatic computations are performed with Calcoque software as described in 

Chapter 2. The water density is equal to 1.025 t/m3. The solving of the differential equation 

and the damping coefficient calculation are also implemented in this software, in order to 

permit a user-friendly computation of the C2 coefficient and the associated KGmax curves. 

KGmax computation 

The KGmax associated with the second check of level-two parametric roll criterion, i.e. the 

maximum value of KG ensuring the compliance with the criterion, is the highest value of KG 

which gives a value of C2 lower than RPR0=0.06. 

Since C2 is a discrete sum of weighting factors, the function C2 versus KG is not continuous. 

Moreover, this function may have many local peaks when the ship is vulnerable to 

parametric roll (see Section 3.3.2). These characteristics make inefficient a lot of root-finding 

algorithms. Hence, we propose the following basic algorithm to find the value of KGmax 

associated with C2. It is performed in two steps.  

First Step 

The first step consists in finding a first value of KG for which the C2 coefficient is lower than 

RPR0 and a second value of KG for which C2 is larger than RPR0. Finding this interval begins at a 

low value of KG for which C2 is lower than RPR0, near zero. This value of KG is named 



35 

 

͞“taƌtiŶg ǀalue of KG͟ aŶd deŶoted ďǇ KGstart. The value of KG is increased by 10 centimeters 

at each iteration until C2 is higher than RPR0. 

Second Step 

The second step consists of a classical dichotomy to find the highest value of KG for which C2 

is lower than RPR0. The required precision is 0.1 mm. Since C2 is the sum of weighting 

coefficients drawn from the wave scatter diagram (number of occurrences of each wave in 

Table 2 divided by 100,000), it is not possible for C2 to be equal to RPR0. 

Table 7 shows the values of KG and C2 while finding the KGmax for the naval ship DTMB-5415 

described in Annex 2 page 124 at a draft equal to 6.125 m. The associated KGmax is 9.2236 m 

(in bold in Table 7). 

First step: finding the interval 

Iteration KG (m) C2 C2<RPR0 

1 KGstart = 7 0 Y 

2 7.1 0 Y 

3 7.2 0 Y 

4 7.3 0 Y 

5 7.4 0 Y 

6 7.5 0 Y 

7 7.6 0 Y 

8 7.7 0 Y 

9 7.8 2.86E-07 Y 

10 7.9 1.57E-06 Y 

11 8 4.29E-07 Y 

12 8.1 0 Y 

13 8.2 0 Y 

14 8.3 0 Y 

15 8.4 0 Y 

16 8.5 0 Y 

17 8.6 2.49E-05 Y 

18 8.7 0.0293483 Y 

19 8.8 0.017636 Y 

20 8.9 0.00266057 Y 

21 9 0.000234857 Y 

22 9.1 3.13E-05 Y 

23 9.2 0.0219234 Y 

24 9.3 0.154703 N 

Second step: dichotomy 

Iteration KG (m) C2 C2<RPR0 

25 9.25 0.0760626 N 

26 9.225 0.0749527 N 

27 9.2125 0.0371166 Y 

28 9.21875 0.0449244 Y 

29 9.22188 0.0462103 Y 

30 9.22344 0.0464114 Y 

31 9.22422 0.0740300 N 

32 9.22383 0.0740291 N 

33 9.22363 0.0502479 Y 

34 9.22373 0.0740291 N 

Table 7 – Finding the value of KGmax. 
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CHAPTER 2. HYDROSTATIC COMPUTATION 

The new generation criteria of both pure loss of stability and parametric failure mode, 

presented in Chapter 1, require a hydrostatic solver which performs computations in static 

longitudinal waves. 

Calcoque is a three-dimension hydrostatic computer code developed at the French Naval 

Academy for academic and research use. It computes equilibrium, intact and damage 

stability and bending moment. The software can handle the current intact stability rules for 

civilian ships [18] and the regulation applied in the French Navy for naval vessels [17]. A 

detailed presentation of the software is proposed in Annex 1. 

After improvements added within the scope of this thesis, the software is now able to 

perform hydrostatic computations in longitudinal waves. Level-one and level-two criteria of 

both pure loss of stability and parametric roll failure modes have been fully implemented. 

This chapter describes the three main algorithms used to perform hydrostatic computations 

in still water and in longitudinal waves. The first algorithm transforms the classical 

representation of the ship’s hull by stations into a volume mesh made of tetrahedrons, 

prisms and hexahedrons, which can have large dimensions without degradation of the 

numerical result. The second algorithm cuts this volume mesh with a plane, generating one 

volume sub-mesh on each side of the plane. This second algorithm is used by the third, 

which finds the balance position of the ship in three degrees of freedom (sinkage, heel, trim, 

two degrees if the heel is fixed while computing the GZ curve), in calm water and in static 

waves with a real three-dimension approach. 

The content of this chapter has been presented at the 12th International Conference on the 

Stability of Ships and Ocean Vehicles, held in Glasgow (UK) in June 2015 [3]. Part of it is 

proposed in a handbook [1]. 

2.1. GENERATION OF VOLUME MESH 

The ship is classically designed with stations, which are a list of (Y, Z) points with the same 

longitudinal coordinate X (see the ship-fixed coordinate system in Annex 4). Figure 15 shows 

the stations of the Offshore Patrol Vessel (OPV) Adroit in service in the French Navy (see her 

main particulars in Annex 2). The algorithm imposes the following constraints: 

 Stations are ordered from aft to forward; 

 Stations are symmetrical, defined on port side only; 

 The first point of each station is on the ship’s ĐeŶteƌliŶe ;Y=ϬͿ; 

 Vertical coordinates of the points are increasing (Zi+1>Zi). 

This last constraint prevents the design of a multi-hull ship by sections. However, designing 

such a ship or floating structure remains possible by considering the hulls as appendages 

providing buoyancy. 
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In addition to the stations, some lines are defined by the user. They connect some points of 

stations in order to represent the main edges of the hull. A line starts at any station and ends 

at any other one located forward. It has a unique point on each station it intersects and 

cannot miss out any station. Two lines can intersect only at a station point. 

Stations and lines (Figure 16) are used to generate a volume mesh of the ship through a 

matrix algorithm which builds the N-1 strips defined by the N stations. For each strip 

between stations indexed i and i+1, the process is divided in two steps. 

 

Figure 15 – Stations of the OPV Adroit. 

 

Figure 16 – Station and lines of the OPV Adroit. 

2.1.1. First Step 

The first step consists of the generation of a matrix defining the links between all the points 

of the station i and all the points of station i+1. Let us consider a strip defined by an aft 

station with 5 points (port side only) and a forward station with 4 points. Let us consider 3 

user lines. The first one links point 1 of the aft station to point 1 of the forward station (keel 

line). The second one links point 2 (aft) to point 3 (forward). The third links point 5 (aft) to 

point 4 (forward). The strip and its links are represented in Figure 17 (stations in black, lines 

in grey). 

Thus, a link matrix is defined with 5 rows associated with the 5 points of the aft station, and 

4 columns associated with the 4 points of the forward station. The three user lines are 

represented in this matrix by three black dots in the appropriate cells (Figure 18). 

Each link in the matrix defines two restricted zones which are the upper right cells and the 

lower left cells. This avoids considering a line which crosses another. In the current sample, 
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the restricted zones defined by the second link (23) appear in grey in Figure 18. The other 

links (11 and 54) define no restricted zone. 

 

Figure 17 – Strip defined by two stations and three lines. 

 

Figure 18 – Link matrix associated with the strip. 

Then, the matrix is automatically completed with other links by going from the upper left 

corner to the lower right corner without missing out any cells while passing by all cells 

associated with user links. A diagonal path is favored (link 11 to link 22). If not possible, 

the path is horizontal (22 to 23) or vertical (34 to 44). These added links are shown 

as grey dots in Figure 19. They are materialized by dotted lines on the strip diagram (Figure 

20). 

 

Figure 19 – Completed link matrix. 

 

Figure 20 – Strip diagram associated with the completed 

link matrix. 

2.1.2. Second Step 

The second step consists of the generation of the volume and surface meshes defined by the 

completed link matrix. A diagonal path (11 to 22 and 23 to 34) generates a 

tetragon on each side of the hull and a hexahedron which connects both together. A 

horizontal path (22 to 23) generates a triangle on each side of the hull and a prism, 

whose bases are on the forward station. A vertical path (34 to 44 and 44 to 45) also 

generates two triangles and one prism, but their bases are on the aft station. All triangles 

and tetragons form the surface mesh of the strip while all prisms and hexahedrons form the 

volume mesh. Figure 21 shows the surface mesh associated with the current sample. 
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Flat volumes should be eliminated (same Z coordinate of the points). Some volumes may be 

simplified: in the sample, the first hexahedron is a prism because the Y coordinate of the first 

point of each station is null. 

Both surface and volume meshes of the entire ship are created by concatenating 

respectively surface and volume meshes of all strips. Figure 22 and Figure 23 show 

respectively the surface and the volume meshes of the OPV Adroit. 

The volume mesh may be corrected to represent the real hull. If necessary, it may be cut at 

the watertight deck and the void spaces (bow thruster tunnel, water inlets and possibly 

flooded ƌooŵs foƌ daŵage staďilitǇ …Ϳ ŵaǇ ďe eǆtƌaĐted. Both opeƌatioŶs require a routine 

to cut the mesh by a plane, described in the next section. Moreover, volume meshes of 

appendages and propellers may be added. Figure 25 shows the watertight volume of the 

OPV Adroit. Its appendages (rudders, bilge keels, shafts) and propellers, shown in Figure 24, 

haǀe ďeeŶ added. The stƌuts aƌe defiŶed ďǇ suƌfaĐe ŵeshes: theǇ iŶĐƌease the ship’s 
resistance but provide no buoyancy. Thus, they are not included in the watertight volume. 

Water inlets on each side of the engine room and both housings of fast rafts on the aft lower 

deck have been extracted from the mesh of the watertight volume. 

 

Figure 21 – 3D wireframe view of the strip and its surface mesh. 

 

Figure 22 – Wireframe view of the surface mesh of the OPV Adroit. 

 

Figure 23 – Wireframe view of the volume mesh of the OPV Adroit. 
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Figure 24 – Appendages and propellers of the OPV Adroit. 

 

Figure 25 – Watertight volume of the OPV Adroit. 
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2.2. CUTTING A VOLUME MESH BY A PLANE 

To define the watertight volume, the waterplane, the displacement volume and other 

elements, it is necessary to cut a volume mesh by a plane. The waterplane is the intersection 

of the mesh of the watertight volume and the still water surface as cutting plane. The 

displacement volume is the volume sub-mesh located under the cutting plane. This routine 

also permits to extract some volumes from the hull (void spaces or flooded rooms) and to 

define volume meshes of the compartments and surface meshes of the decks. 

2.2.1. Decomposition of Elementary Volumes 

As seen in the previous section, the volume mesh is made of prisms and hexahedrons. The 

former can be divided in three tetrahedrons (Figure 26) and the latter in two prisms or six 

tetrahedrons (Figure 27). The cutting routine of prisms and hexahedrons only handles simple 

cases: volume entirely on one side or the other of the plane, a face contained in the plane or 

faĐe ͞paƌallel͟ to the plaŶe. IŶ otheƌ Đases, the volume being cut is first decomposed into 

three or six tetrahedrons. 

 

Figure 26 – Cutting a prism into 3 tetrahedrons. 

 

Figure 27 – Cutting a hexahedron into 2 prisms. 

2.2.2. Cutting a Tetrahedron by a Plane 

The cutting plane is modelled with a point P and a normal vector ݊⃗ . We consider a point M 

to be located from the plane. Three cases are possible, function of the sign of the scalar 

product ܲ⃗⃗⃗⃗ܯ ⃗⃗ . ݊⃗ . They are shown in Table 8. ܲ⃗⃗⃗⃗ܯ ⃗⃗ . ݊⃗ > Ͳ ܲ⃗⃗⃗⃗ܯ ⃗⃗ . ݊⃗ = Ͳ ܲ⃗⃗⃗⃗ܯ ⃗⃗ . ݊⃗ < Ͳ 

M is located above the plane M is located in the plane M is located under the plane 

Table 8 – Location of a point from a plane. 

Each of the four points of the tetrahedron is in one of those three cases. Thus, we have 

34=81 possibilities. However, the order of points having no importance (unlike the necessary 

orientation of the vertices of a surface mesh), we build three lists containing points 

respectively above, in the plane and under, disregarding their original order. Thus, the 

number of cases is reduced to 15 as shown in Table 9. Moreover, gathering different cases 

which have the same result finally defines 8 different configurations (designated A to H), 

shown in Table 10. 

Configurations C, (D and E), (F and G) and H are shown in Figure 28. The original tetrahedron 

is drawn in black and the intersection with the cutting plane is drawn in grey. 
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Note: 

 In case 9 (configuration B), the intersection triangle is not to be considered since it is 

already considered in configuration A. If the cutting plane is located at the frontier 

between two adjacent elementary volumes (one on each side of the plane), the 

intersection surface must be considered only once. 

 Since the order of the points of the original tetrahedron has been lost, it is possible to 

orientate the intersection vertices by assigning the normal vector of the cutting plane.  

 

Case Configuration 
Number of points 

above the plane 

Number of points 

in the plane 

Number of points 

under the plane 

1 

A 0 

0 4 

2 1 3 

3 2 2 

4 3 1 

5 4 0 

6 D 

1 

0 3 

7 F 1 2 

8 H 2 1 

9 B 3 0 

10 C 

2 

0 2 

11 G 1 1 

12 B 2 0 

13 E 
3 

0 1 

14 
B 

1 0 

15 4 0 0 

Table 9 – 15 cases of cutting a tetrahedron with a plane. 

 

 

Figure 28 – Different configurations of cutting a tetrahedron with a plane. 
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Config. Topology 

A 
No point above the plane 

1 tetrahedron under the plane 

1 intersecting triangle if 3 points in the plane 

B 
No point under the plane 

1 tetrahedron above the plane 

C 

2 points above the plane 

2 points under the plane 

1 prism above the plane 

1 prism under the plane 

1 intersecting tetragon 

D 

1 point above the plane 

3 points under the plane 

1 tetrahedron above the plane 

1 prism under the plane 

1 intersecting triangle 

E 

3 points above the plane 

1 point under the plane 

1 prism above the plane 

1 tetrahedron under the plane 

1 intersecting triangle 

F 

1 point above the plane 

1 point in the plane 

2 points under the plane 

1 tetrahedron above the plane 

1 tetrahedron under the plane 

1 intersecting triangle 

G 

2 points above the plane 

1 point in the plane 

1 point under the plane 

1 tetrahedron above the plane 

1 tetrahedron under the plane 

1 intersecting triangle 

H 

1 point above the plane 

2 points in the plane 

1 point under the plane 

1 tetrahedron above the plane 

1 tetrahedron under the plane 

1 intersecting triangle 

Table 10 – 8 configurations of cutting a tetrahedron with a plane. 
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2.3. FINDING THE BALANCE POSITION 

2.3.1. Definition of the Balance Position 

The three considered degrees of freedom are the sinkage (denoted by e), the heel () and 

trim (). The sinkage replaces the draft which has no sense while the heel approaches 90 

degrees. The sinkage is defined as the algebraic distance between a ship-fixed point Q 

(coordinates LPP/2, 0, Z of the reference waterline 10H) and its projected point P on the calm 

water waterplane (even for computation in static waves). See Figure 29. 

Balance is achieved if the three following conditions are met together: 

׏�  = ଴׏ − =׏ Ͳ �௫ = Ͳ �௬ = Ͳ (30)  

With: 

 (m3) computed displacement volume; 

0 (m3) ship displacement volume; 

 (m3) volume gap; 

X (m) longitudinal gap, defined hereunder in Equation (34); 

Y (m) transverse gap, defined hereunder in Equation (34). 

The heel can be free (when finding the balance position) or fixed (GZ curve computation). In 

that case, the third condition in (30) is ignored and the transverse gap Y is the righting arm 

lever GZ, to be calculated. 

 

Figure 29 – Sinkage. 

2.3.2. Inclined-Ship Planes 

The gaps X and Y are respectively the algebraic longitudinal and transverse distances 

between the center of gravity (G) and the Earth vertical through the center of buoyancy (B). 

Two inclined-ship planes are defined to compute these gaps. Their line of intersection is the 

Earth vertical whose director vector is ݊ଵ⃗⃗⃗⃗ . 
The transverse plane of inclined ship also contains vector ݊ଶ⃗⃗⃗⃗  defined as: 
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 ݊ଶ⃗⃗⃗⃗ = ݊ଵ⃗⃗⃗⃗ ∧  ܺ‖݊ଵ⃗⃗⃗⃗ ∧  ܺ‖ (31)   ܺ is the unit vector of the longitudinal axis of the ship-fixed coordinate system (Annex 4). 

The longitudinal plane of inclined ship contains ݊ଵ⃗⃗⃗⃗  and ݊ଷ⃗⃗⃗⃗  vectors with: 

 ݊ଷ⃗⃗⃗⃗ = ݊ଶ⃗⃗⃗⃗ ∧ ݊ଵ⃗⃗⃗⃗  (32)  

In the ship-fixed coordinate system, the three vectors are: 

 

݊ଵ.௫ = −sin �݊ଵ.௬ = −sin� ଵ.௭݊�ݏ݋ܿ = cos� cos �  

݊ଶ௫ = Ͳ݊ଶ.௬ = cos�݊ଶ.௭ = sin�  

݊ଷ௫ = cos �݊ଷ.௬ = −sin� sin �݊ଷ.௭ = cos� sin �  (33)  

Thus, the gaps X and Y are respectively the algebraic distances between G and the 

transverse and longitudinal planes of the inclined ship. They are calculated as follows: 

 ݁௫ = ⃗⃗⃗⃗ܩܤ  ⃗. ݊ଷ⃗⃗⃗⃗  ݁௬ = ܼܩ = ⃗⃗⃗⃗ܩܤ  ⃗. ݊ଶ⃗⃗⃗⃗  (34)  

The gaps and the inclined-ship planes are shown in Figure 30. 

This expression of the longitudinal gap is more accurate than that of the simplified strip 

method proposed by the SLF 52/INF.2 (see [19], Annex 6) which is: 

 ݁௫ = ܤܥܮ −   (35) ܩܥܮ

 

Figure 30 – Inclined-ship planes and gaps. 

2.3.3. Hydrostatic Computation in Calm Water 

The waterplane, depending on sinkage (e), heel () and trim (), is defined with a point P 

(see Figure 29) and the vector ݊ଵ⃗⃗⃗⃗  (function of  and ) with: 

 ܳܲ⃗⃗⃗⃗  ⃗ = ݁݊ଵ⃗⃗⃗⃗  (36)  

When finding the balance position, the displacement volume () and its center (B) are 

computed by cutting the mesh of the watertight volume by the considered waterplane. 
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2.3.4. Hydrostatic Computation in Waves 

The watertight volume is previously divided in strips by cutting with transverse planes. SLF 

52/INF.2 ([19], Annex 6) recommends at least 20 strips. In each strip, the following are 

defined (see Figure 31): 

 Plane P1: stƌip’s aft plane. 

 Plane P2: stƌip’s foƌǁaƌd plaŶe. 

 Line D3: through point P with director vector ݊ଷ⃗⃗⃗⃗  (longitudinal line located in the calm-

water waterplane). 

 Point I1: intersection of P1 and D3. 

 Point I2: intersection of P2 and D3. 

Thƌee poiŶts ;A, B aŶd CͿ defiŶe the stƌip’s loĐal ǁateƌplaŶe. TheǇ aƌe defiŶed as folloǁs 
(Figure 31): 

⃗⃗⃗⃗ܣܱ   ⃗ = ଵ⃗⃗ܫܱ ⃗⃗ ⃗⃗ + ݊ଶ⃗⃗⃗⃗ + ⃗⃗ܤܱ  ଵ݊ଵ⃗⃗⃗⃗ݖ ⃗⃗  ⃗ = ଵ⃗⃗ܫܱ ⃗⃗ ⃗⃗ − ݊ଶ⃗⃗⃗⃗ + ⃗⃗⃗⃗ܥܱ  ଵ݊ଵ⃗⃗⃗⃗ݖ  ⃗ = ଶ⃗⃗ܫܱ ⃗⃗ ⃗⃗ +   ଶ݊ଵ⃗⃗⃗⃗  (37)ݖ

With: 

ଵݖ  = ℎʹ cosሺ�. ଶݖ ଵ+∝ሻݔ = ℎʹ cosሺ�. א∝ ଶ+∝ሻݔ [Ͳ,ʹ�[ (38)  

h (m) Wave height; 

k (m-1) Wave number; 

x1 (m) Longitudinal position of the aft plane of the strip; 

x2 (m) Longitudinal position of the forward plane of the strip. 

 

 

Figure 31 – Strip wave waterplane 

The normal vector which defines the loĐal stƌip’s ǁateƌplaŶe is ĐalĐulated as folloǁs: 

 n⃗ = ⃗⃗⃗⃗ܤܣ  ⃗ ∧ ⃗⃗⃗⃗ܥܣ ⃗⃗⃗⃗ܤܣ‖⃗   ⃗ ∧ ⃗⃗⃗⃗ܥܣ  ⃗‖ (39)  
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IŶ eaĐh stƌip, the loĐal ǁateƌplaŶe Đuts the stƌip’s ǁateƌtight ǀoluŵe to Đoŵpute the 
submerged volume of the strip and its center. Then, the displacement volume  of the 

entire ship in waves and its center B are calculated. 

2.3.5. Balance 

The balance position is found through an iterative process. Two methods are proposed.  

First Method 

At each step of the iterative process, three gaps (, x and y, two if fixed heel) are 

computed as explained above. The sinkage, heel and trim are corrected as follows before 

being used in the next step: 

 ݁௜+ଵ = ݁௜ + ௐ� �௜+ଵܣ׏� = �௜ + �௬|்ܯܩ| �௜+ଵ = �௜ + �௫|ܯܩ௅| (40)  

With: 

ei sinkage at step i (m); 

ei+1 sinkage at step i+1 (m); 

i heel at step i (rad); 

i+1 heel at step i+1 (rad); 

i trim at step i (rad); 

i+1 trim at step i+1 (rad). 

Absolute values of the metacentric heights (GMT and GML) let the process diverge in case of 

transverse or longitudinal instability. Without this, the process should converge to an 

unstable balance position. At first iteration, the waterplane area (AWP) and local metacentric 

heights (GMT, GML) are calculated with the hydrostatic table or by direct computation of 

area and inertia on the waterplane surface mesh, which must be projected on an Earth-

horizontal plane in case of computation in waves. At next iterations, they are computed as 

follows: 

�ௐܣ  = ௜+ଵ׏ − ௜݁௜+ଵ׏ − ݁௜ ்ܯܩ  = �௬.௜+ଵ − �௬.௜�௜+ଵ − �௜ ௅ܯܩ  = �௫.௜+ଵ − �௫.௜�௜+ଵ − �௜  (41)  

When the three gaps (, x and y) are small enough, the balance position is considered 

reached. This method is compatible with a strong coupling between the heel and trim 

(unconventional floating structures). However, it is fragile if the coupling between the trim 

and sinkage is strong because the corrections of trim and sinkage may conflict. 
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Second Method 

The second method is also iterative and was developed after the publication of the 

handbook [1]. Before the iterative process, an initial hydrostatic computation gives the three 

gaps for initial values of e,  and . At each step of the iterative process, three hydrostatic 

computations (two if the heel is fixed) are performed. They permit to evaluate separately 

the influence of a small increment of sinkage, heel and trim on the values of the three gaps. 

These computations are listed in Table 11. 

 Input data Output data 

1 e+e   e xe ye 

2 e +   x y 
3 e  +  x y 

Table 11 – Hydrostatic computations performed to find balance position. 

With: 

e dfull/100 small sinkage increment; 

 0.1 degree small trim increment; 

 1.0 degree small heel increment; 

dfull (m) full loaded draft. 

Then, still in the same iteration, the following system of three equations with three 

unknowns (2x2 if the heel is fixed) is solved: 

 

( 
   
௘׏�  − ௘�׏� �׏� − ��׏� φ׏� − ୶௘���׏� − �୶�௘ �୶� − �୶�� �୶� − �୶���୷௘ − �୷�௘ �୷� − �୷�� �୷� − �୷�� ) 

   
 ×

( 
   
݀݁
݀�
݀�) 
   =

( 
   
׏�−
−�௫
−�௬) 

    (42)  

The unknowns of this system are de, d and d, which are respectively increments of 

sinkage, trim and heel to be added to the current values to cancel the gaps. The second and 

third terms of the diagonal are respectively the local longitudinal and transverse metacentric 

heights. Thus, their sign may be used to detect instability and invert the sign of the trim and 

heel increments, in order to diverge from an unstable balance position. 

At the end of the iteration, a final hydrostatic computation is done using corrected values of 

the sinkage, trim and heel. If the three gaps are small enough, the balance position is 

considered reached. 

This second method is as suitable as the first for a strong coupling between the heel and 

trim. It is more robust in case of strong coupling between the trim and sinkage. The number 

of iterations is very small (1 or 2, see Table 12) but the number of hydrostatic computations 

is similar. If n is the number of iterations, the number of hydrostatic computations is 3n + 1 if 

the heel is fixed aŶd ϰŶ + ϭ if it’s fƌee. 
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Comparison of Both Methods 

Table 12 shows the GZ computed for a 160 m passenger vessel (presented in Annex 2) using 

both methods. It also shows numbers of iterations (Nb. iter.) and hydrostatic computations 

(Nb. comp.) to find each balance position with fixed heel. The maximum allowed gaps are 1 

m3 in volume (to be compared to the 13,000-tons displacement) and 1 millimeter for x. The 

maximum difference between both values of GZ is lower than 0.02 millimeters (not visible in 

Table 12). 

 First method Second method 

Heel 

(deg.) 
GZ (m) Nb. iter. 

Nb. 

comp. 
GZ (m) Nb. iter. 

Nb. 

comp. 

0 0.000 8 8 0.000 2 7 

1 0.042 6 6 0.042 1 4 

2 0.085 7 7 0.085 1 4 

3 0.130 11 11 0.130 1 4 

4 0.176 7 7 0.176 1 4 

5 0.224 7 7 0.224 1 4 

10 0.484 8 8 0.484 2 7 

15 0.774 8 8 0.774 2 7 

20 1.103 8 8 1.103 2 7 

25 1.441 7 7 1.441 2 7 

30 1.737 8 8 1.737 2 7 

35 1.984 5 5 1.984 2 7 

40 2.179 5 5 2.179 2 7 

45 2.252 6 6 2.252 2 7 

50 2.189 6 6 2.189 2 7 

 Sum 107 Sum 90 

Table 12 – Comparison of both balance methods. 

2.3.6. Calculation of Transverse Metacentric Height 

The transverse metacentric height is computed using two first points of the GZ curve (0 and 

1 degree). 

்ܯܩ  = �ܼ݀ܩ݀) )�=଴ (43)  

In the case of the hydrostatic computation on waves, the inertia of the projected waterplane 

is not used as proposed in the simplified strip method proposed by the IMO (see SLF 

52/INF.2 Annex 6, [19]). 
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CHAPTER 3. RESULTS 

3.1. PRELIMINARY INFORMATION 

3.1.1. General Information 

This chapter presents the results of the computations of the second generation intact 

stability criteria, in both pure loss of stability and parametric roll failure modes and in both 

level one and level two, applied to a panel of civilian and military ships presented in Annex 2. 

Six civilian ships are chosen for their variety of type and size: two large container vessels, 

one roll-on roll-off vessel, one tanker and two passenger vessels (one large, one small). 

Different behaviors with regard to both failure modes are expected. Some container vessels 

are already known to be vulnerable to parametric roll [41, 45] while tankers, characterized 

by a wall-sided hull shape, are expected not to be vulnerable. Although the future IMO intact 

stability rules are not intended for naval ships, it seems interesting to the author to assess 

such different vessels with regard to these future criteria. This choice is argued hereunder. 

The results are given as KGmax curves. These curves indicate the maximum height of the 

center of gravity above the baseline ensuring the compliance of a specific criterion or a set of 

criteria as a function of the displacement or the draft. Considering KGmax curves allows to 

avoid any assumption about the height of the center of gravity and provides richer 

iŶfoƌŵatioŶ thaŶ the ĐlassiĐal ďiŶaƌǇ ͞pass/fail͟ assoĐiated with a specific loading condition 

[29]. Especially, this permits the comparison of the requirement of the criterion of each level 

and the comparison of different computation methods proposed for a specific criterion in 

order to determine the efficiency and the relevance of the new criteria. 

Moreover, KGmax curves associated with the new generation intact stability criteria are 

compared to those associated with both current IMO and current French military rules 

(respectively [18] and [17]). This allows assessing the vulnerability of the selected ships with 

regard to both failure modes. A ship may be considered vulnerable to pure loss of stability or 

parametric roll if her KGmax curve associated with the current regulation (civilian or military) 

is located above the highest curve associated with the pure loss of stability criteria (we 

formulate this consideration in this thesis) because the current regulation would allow 

sailing with a KG assessed as dangerous by the new criteria. 

Similar works have already been performed [31, 33] although they deal with former versions 

of the new criteria (respectively SLF 54/19, 2012 [20] and SDC 1/INF.8, 2013 [21]). 

The hydrostatic computations in calm water and in static waves are performed by Calcoque 

software as presented in Chapter 2. All computations are performed with the water density 

equal to 1.025 t/m3 and with zero trim (the sinkage and trim remain free while the ship is 

balanced in waves). 

3.1.2. Application to Military Vessels 

Accidents caused by the failure modes considered in the second generation intact stability 

criteria may be fatal (see the report of the accident occurred to the Chicago Express off 
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Hong-Kong in 2008, [60]) or may cause significant financial losses (APL China in October 1998 

[41], Maersk Carolina in January 2003 [45]), but they are fortunately rare. Since the number 

of naval ships in service is significantly smaller than the number of merchant vessels and 

their time at sea is smaller too, it is not surprising that none of the serious accidents causing 

the development of the new criteria has occurred on a naval ship. However it cannot be 

excluded in principle that naval ships be vulnerable to such stability failures. Although the 

new regulations are not intended for naval ships, it seems interesting to assess the outcome 

of their applications. In fact the hull geometry and the high speed of naval ship typology are 

in principle a remarkable combination worthy of attention. 

Hence, a set of three military vessels, chosen for their variety of typology and size, has been 

included in this study: a 12,000-ton helicopter carrier, a 9,000-ton destroyer and a 1,500-ton 

Offshore Patrol Vessel. 

3.1.3. Graphic Design 

All figures showing the KGmax curves in paragraphs 3.2.1 (pure loss of stability) and 3.3.1 

(parametric roll) have the same graphic design: 

 The KGmax curve associated with the current IMO regulation [18] is drawn as a grey 

dashed line. 

 The KGmax curve associated with the French military regulation (IG 6018A DGA [17]), 

computed only for naval vessels, is drawn as a grey dotted line. 

 The light blue plain line indicates the height of the transverse metacenter above the 

baseline (KMT) which allows to determine the minimum GM required by all criteria. 

 The vertical grey lines indicate the full-load displacement and, when it is known, the light 

displacement. Otherwise, a black dot corresponds to the standard loading condition of 

the ship. 

 The KGmax curve associated with the first method of level one (parallel waterplane) 

criteria of both pure loss of stability and parametric roll failure modes is drawn in blue 

with square markers. 

 The KGmax curve associated with the second method of level-one criteria (ship balanced in 

trim and sinkage on a wave with the same length) is drawn in red with round markers. 

 The KGmax curve associated with the level-two criteria (first check only for parametric roll) 

is drawn as a green solid line with diamond markers. 

 The KGmax curve associated with the second check of level-two parametric roll criterion is 

drawn as a green dashed line with diamond markers. 
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3.2. PURE LOSS OF STABILITY 

Since neither the 319 m container vessel nor the tanker fulfill the condition on Froude 

number (Fn>0.24), their KGmax curves associated to level 1 and 2 criteria are not presented. 

Both vessels are assessed as non-vulnerable to the pure loss of stability by the new 

regulation. 

Parts of the content of this section have already been presented in [3] (influence of the 

watertight deck height), [5] (results on naval vessels) and [2, 6] (results on some civilian 

vessels and one naval vessel). 

3.2.1. General Results 

The KGmax curves associated with level-one and level-two criteria of pure loss of stability 

failure mode are shown in Figure 32 to Figure 38. We can observe the following facts: 

1) In Figure 34 (160 m passenger vessel), the curve associated with the first method of level 

one has a hook at a displacement equal to 12,200 tons (draft equal to 5.67 m). This 

particularity results from a loss of inertia on the parallel waterplane due to the stabilizers’ 
housings (see dark grey waterplane in Figure 39). Using the bare hull would mask this 

phenomenon. 

2) Each level-one method yields significantly different results for all vessels with no 

exception. 

3) The KGmax associated with the second level-one method is relatively close to that given by 

level two for the C11 container vessel, the Ro-Ro vessel and the JeaŶŶe d’AƌĐ. 

4) Level two can be more conservative than the second level-one method: one point for the 

C11 container vessel and completely for the Ro-Ro vessel, both passenger vessels and all 

naval ships. This is contrary to what seems to be the philosophy of the future regulation. 

5) Level two is more conservative than the first level-one method for the 30 m passenger 

vessel, but this occurs at a significantly higher displacement than the standard loading 

condition. However, this proves the possibility of this unexpected configuration. 

6) The C11 container vessel is found to be vulnerable to pure loss of stability according to 

these criteria. The 160 m passenger vessel is found to be slightly vulnerable since the gap 

between the KGmax required by the second method of level one is slightly lower than that 

required by the current regulation. None of the three naval ships is assessed as 

vulnerable. No conclusions can be drawn with regard to the Ro-Ro vessel since her 

superstructures are not modelled and the weather criterion is not taken into account. 
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Figure 32 – KGmax curves associated with pure loss of stability criteria for the C11 container vessel. 

 

Figure 33 – KGmax curves associated with pure loss of stability criteria for the Ro-Ro vessel. 
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Figure 34 – KGmax curves associated with pure loss of stability criteria for the 160 m passenger vessel. 

 

Figure 35 – KGmax curves associated with pure loss of stability criteria for the 30 m passenger vessel. 
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Figure 36 – KGmax curves associated with pure loss of stability criteria for the JeaŶŶe d’AƌĐ. 

 

Figure 37 – KGmax curves associated with pure loss of stability criteria for the DTMB-5415. 
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Figure 38 – KGmax curves associated with pure loss of stability criteria for the Offshore Patrol Vessel. 

 

Figure 39 – Parallel waterplanes for d=6.00 m (light grey) and dL=3.33 m (dark grey). 

3.2.2. Influence of the Watertight Deck Height 

In intact stability configuration, the watertight deck of the 160 m passenger vessel is the 

weather deck, located 14 m above the base line. The associated watertight volume includes 

the car garage as shown in Figure 119 (page 121). 

We propose now to consider the bulkhead deck as new watertight deck. It is located 9 m 

above the baseline. The associated watertight volume excludes the car garage as shown in 

Figure 120. 

First Level 

Lowering the watertight deck has normally no influence on the level-one criterion which 

considers only metacentric height (hence small inclinations). For the first method (parallel 

waterplane at lowest draft), this is evident. For the second method (GM computation on 

wave), the wave crest should pass over the watertight deck, reducing the waterplane and its 

inertia. This situation does not occur with the watertight deck at 9 m (free-board at full load 

is 3 m, to be compared with wave half-height equal to 2.67 m). However, it appears at a 

draft over 6 m if the watertight deck is lowered at 8 m (in this case the ship does not fulfill 

the current regulation with any KG). See resulting KGmax curves in Figure 40. 

The situatioŶ foƌ the last poiŶt of the Đuƌǀe ͞Wateƌtight deĐk @ ϴ ŵ͟ iŶ Figure 40 (d=6.25 m) 

is shown in Figure 41. The waterplane is truncated on a quarter of its length. This situation 
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should not occur in reality because the wave crest should not flood the garage deck even if 

its volume is considered as not watertight (Figure 42). 

Note: The future regulation should clearly specify the watertight volume to consider. French 

military regulation (IG6018A, [17]) considers two different watertight volumes. The bulkhead 

deck is its upper limit which is tight to long-time immersion. This watertight volume is 

considered in damage stability. In this example, this deck is the garage deck at 9 m above 

baseline. The weather deck is the upper limit which is tight to short-time immersion. The 

weather deck of some naval ships coincides with the bulkhead deck (partially or totally). 

Otherwise the weather deck is located above. The increased watertight volume associated 

with this deck is considered in intact stability. In this example, this deck is the first passenger 

deck located 14 m above the baseline. 

 

Figure 40 – KGmax curves for 1
st

 level criterion (2
nd

 method) for watertight deck at 9 and 8 m. 

 

Figure 41 – Truncated waterplane. 
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Figure 42 – Flooded garage deck in waves. 

 

Second Level 

KGmax curves associated with the second level criterion for both heights of the watertight 

deck are shown in Figure 43. We observe that lowering the watertight deck highly increases 

the requirement of the criterion by significantly lowering the associated KGmax. This is 

expected as a result of the strong reduction of the GZ from the heel angle corresponding to 

the immersion of the bulkhead deck edge. However, we note that first generation criteria 

also increase their requirement to such an extent that the ship is now assessed as non-

vulnerable to the pure loss of stability failure mode. 

 

Figure 43 – KGmax curves associated with level-2 pure loss of stability criterion for the 160 m passenger vessel, 

watertight deck @ 14m and 9 m. 
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3.2.3. Influence of Speed 

The pure loss of stability failure mode depends on the speed of the ship which must stay 

centered amidships on the wave crest during a sufficiently long time to attain a dangerous 

heel angle. Hence, the associated level-one and level-two criteria apply to ships having a 

service speed Froude number larger than 0.24. 

The speed of the ship has no influence on the level-one criterion. However, it has an 

influence on the level-two criterion through the heeling lever RPL3 which depends on the 

Froude number (Equation (6) page 21). 

The service speed of the Ro-Ro vessel is 20 knots. The associated Froude number is equal to 

0.28. We consider two other service speeds equal to 17 and 25 knots, giving Froude numbers 

respectively equal to 0.24 (lowest value making the ship eligible to the pure loss of stability 

criteria) and 0.35. Figure 44 compares the KGmax curves associated with the three speeds. As 

expected, lowering the service speed increase KGmax since the vulnerability of the ship is 

reduced. 

We perform the same test on the 30 m passenger vessel at speeds equal to 7.5 and 

12.5 knots, corresponding to Froude numbers respectively equal to 0.24 and 0.4, since the 

original service speed is 22 knots and the associated Froude number is 0.7. We could expect 

a result similar to that of the Ro-Ro vessel. However, we observe that the speed has no 

influence on the KGmax. The shape of the hull, characterized by a large breadth-over-depth 

ratio (see Figure 122 page 122), causes the condition considering the angle of vanishing 

stability (C1i, regarding V vs RPL1) to be met before that considering the angle of stable 

equilibrium (C2i, regarding S vs RPL2) in all wave cases (Equation (7) page 22). The speed is 

not considered in the first condition while it is considered in the second through RPL3 

(Equation (6) page 21). 

 

Figure 44 – Influence of speed on KGmax curves associated with pure loss of stability level-two criterion for the 

Ro-Ro vessel. 



60 

 

3.3. PARAMETRIC ROLL 

3.3.1. General Results 

Parts of the content of this section have already been presented in [5] (results on naval 

vessels) and [6] (results on some civilian vessels and one naval vessel). 

The KGmax curves associated with level-one and level-two criteria of parametric roll failure 

mode are shown in Figure 45 to Figure 53. Although both checks C1 and C2 are embedded to 

the same level-two criterion, they are considered separate criteria here. Hence, they are 

associated with two different KGmax curves. We can observe the following facts, some of 

which are similar to those observed for the pure loss of stability failure mode: 

1) In Figure 49 (160 m passenger vessel), the curve associated with the first method of 

level one has two hooks at displacements equal to 8,700 tons and 11,300 tons, similar to 

that observed at 12,200 tons in pure loss of stability. The reason is the same (loss of 

inertia due to the stabilizers’ housings) but the displacements are different because the 

considered wave heights are different too. 

2) The results of both level-one methods significantly differ for the 160 m passenger vessel 

and all naval vessels. 

3) The KGmax associated with the second level-one method is almost equal to that given by 

the first check of level two for the tanker, the 30 m passenger vessel and all naval 

vessels. 

4) The first check of level two is partially more conservative than the second level-one 

method for the Ro-Ro vessel and the 160 m passenger vessel. However, this 

inconsistency is reduced with regard to that observed in pure loss of stability. 

5) Both level-one methods give the same KGmax for the tanker at full-load displacement 

and beyond. This is expected as a result of the cylindrical shape of the hull. 

6) The first check of level-two criterion is limited by zero-GM beyond the full-load 

displacement for the tanker (Equation (21) page 28). 

7) Figure 48, Figure 49 and Figure 51 show that the KGmax associated with the second check 

of level-two criterion is coincident or almost coincident with KMT. This is due to the limit 

imposed by the negative average value of the metacentric height in waves (GMmoy, see 

Section 1.2.4 page 33) and shows that these vessels (tanker, 160 m passenger vessel and 

JeaŶŶe d’AƌĐ) are not vulnerable to parametric roll since the criterion is no longer 

fulfilled when the ship becomes statically unstable in waves. 

8) The second check of level-two criterion is less conservative than the first check for all 

ships except the 30 m passenger vessel (Figure 50). This exception is probably due to the 

inadequacy of the Ikeda simplified roll damping method to ships having sharp bilge (see 

Figure 122 page 122). However, this method, taken from [48] for the lift component and 

[50] for other components, is explicitly described in the explanatory notes of parametric 

roll criteria (SDC 3/WP.5, Annex 4, Appendix 4, [23]). It would be wise to propose 

another simplified method for this type of ships in the future regulation. 

9) The curve associated with the second check of level-two criterion for the 319 m 

container vessel has two strange jumps (at 75,000 and 105,000 tons, Figure 46). Lesser 
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jumps exist on the same curve for the C11 container vessel (at 45,000 and 50,000 tons, 

Figure 45). This point is developed in Section 3.3.2. 

10) Both container vessels are considered to be vulnerable to parametric roll according to 

these criteria. This confirms what is already known for the C11 [41]. The Ro-Ro vessel 

may also be considered to be vulnerable at full-load displacement because the KGmax 

associated with C2 is lower than that associated with the 1st generation criteria. 

However, these criteria do not include the weather criterion and would probably be 

more conservative if the ship’s supeƌstƌuĐtuƌe ǁeƌe ŵodelled. All otheƌ ǀessels aƌe 
considered as non-vulnerable to parametric roll according to the new criteria. 

 

 

Figure 45 – KGmax curves associated with parametric roll criteria for the C11 container vessel. 
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Figure 46 – KGmax curves associated with parametric roll criteria for the 319 m container vessel. 

 

Figure 47 – KGmax curves associated with parametric roll criteria for the Ro-Ro vessel. 
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Figure 48 – KGmax curves associated with parametric roll criteria for the tanker. 

 

Figure 49 – KGmax curves associated with parametric roll criteria for the 160 m passenger vessel. 
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Figure 50 – KGmax curves associated with parametric roll criteria for the 30 m passenger vessel. 

 

Figure 51 – KGmax curves associated with parametric roll criteria for the JeaŶŶe d’AƌĐ. 
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Figure 52 – KGmax curves associated with parametric roll criteria for the DTMB-5415. 

 

Figure 53 – KGmax curves associated with parametric roll criteria for the Offshore Patrol Vessel. 
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3.3.2. Focus on Second Check 

The content of this section has already been presented in [6]. 

For any ship at any draft, the KGmax associated with the second check of level-two criterion 

(C2) is defined as the highest value of KG for which the value of C2 is lower than RPR0=0.06. 

Thus, it is interesting to check the curve of C2 versus KG. These curves are shown in Figure 

54 to Figure 58 for five of the vessels studied in this thesis. For the non-vulnerable ships (Ro-

Ro, tanker, DTMB-5415), they are computed at full-load draft for an interval containing 

KGmax with a step of 2 centimeters. For both container vessels, assessed as vulnerable, they 

are computed for a larger interval of KG with a step of 1 centimeter, at a draft equal to 10 m 

(C11 container vessel, Figure 54) and 12 m (319 m container vessel, Figure 55). 

Figure 57 shows the curve of the tanker. C2 is equal to 0 for all values of KG lower than KGmax 

(13.70 m) and to 1 for all higher values. This shows that the parametric roll never occurs on 

this ship. The value of C2 is forced to 1 when the average value of GM in waves becomes 

negative (see Section 1.2.4 page 33). 

Figure 58 shows the curve for the DTMB-5415. We observe a small interval of KG (centered 

approximatively at 8.70 m) in which C2 is non-zero. This shows that the parametric roll 

occurs for some lightly-weighted waves. For higher values of KG, C2 tends to zero and then 

rapidly increases to 1. Parametric roll occurs in these conditions of KG but the average value 

of GM is near zero: the ship becomes statically unstable on waves. 

Figure 56 shows the curve C2 versus KG for the Ro-Ro vessel. We observe that the increasing 

part of the curve is longer than those of the tanker and the naval ship. We also observe that 

two values of KG larger than KGmax (12.57 m) give values of C2 lower than RPR0 (KG = 12.60 

and 12.62 m, marked with * in Figure 56). 

Figure 54 and Figure 55 show the same curves respectively for the C11 and the 319 m 

container vessels. On both, we observe many peaks and relatively large intervals of KG larger 

than KGmax for which the value of C2 is lower than RPR0, thus for which the associated 

criterion is fulfilled. These intervals are colored in grey in the corresponding figures. This 

non-monotonically-increasing configuration of the C2 curve makes the starting value of KG 

(KGstart in this thesis, 15 m for both container vessels) very important in the process of 

finding KGmax. The value of the increment used in this process is also very important. Both 

parameters must be chosen to avoid overlooking a small zone of KG for which C2 is larger 

than RPR0. 

We observe that the more the ship is vulnerable to parametric roll, the more the curve C2 

versus KG has peaks and the longer the interval where C2 increase from 0 to 1 is. 

The computation of C2 as a function of all possible values of both KG and draft defines 

authorized as well as restricted areas according to the C2 criterion. Figure 59 and Figure 60 

show these zones for both container vessels (authorized areas in white, restricted areas in 

grey). The lower envelopes of the restricted areas give the KGmax curves associated with C2 

shown in Figure 45 and Figure 46. The jumps observed on these curves correspond to the 

passage from the upper restricted area to the lower restricted area (at drafts equal to 10 m 

and 13 m for the 319 m container vessel). 
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Figure 54 – Curve C2 versus KG for the C11 container vessel at a draft equal to 10 m. 

 

Figure 55 – Curve C2 versus KG for the 319 m container vessel at a draft equal to 12 m. 
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Figure 56 – Curve C2 versus KG for the Ro-Ro vessel at a draft equal to 5.5 m. 

 

Figure 57 – Curve C2 versus KG for the tanker at a draft equal to 11 m. 
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Figure 58 – Curve C2 versus KG for the DTMB-5415 at a draft equal to 6.125 m. 

 

Figure 59 – Authorized and restricted areas according to the C2 criterion for the C11 container vessel. 
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Figure 60 – Authorized and restricted areas according to the C2 criterion for the 319 m container vessel. 

3.3.3. Influence of Speed 

Since parametric roll results from the encounter of waves, the speed has a major influence in 

the behavior of the ship. The service speed of the C11 container vessel is 24.5 knots. 

However, a lot of papers in the literature consider this ship with a speed equal to 20 knots. 

Figure 61 shows the authorized and restricted areas of this vessel recomputed for this 

reduced service speed (since Figure 45 and Figure 59 are computed for 24.5 knots). We 

observe that the lower restricted area is partially merged with the upper one. However, the 

behavior of the ship with regard to the second check of level-two criterion remains 

unchanged. 

Figure 62 compares the resulting KGmax curves. Except one point at 50,000 tons, both curves 

are close together. The gap observed at 50,000 tons results from the shift to the left of the 

lower restricted area when the service speed is reduced (the draft of its left boundary shifts 

from 9.5 to 9.0 m). 

Note: although the speed is considered in one condition of the first check of level-two 

criterion (Equation (22) page 28), it has no influence on the associated KGmax curve for this 

vessel. 
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Figure 61 – Authorized and restricted areas according to the C2 criterion for the C11 container vessel with a 

service speed equal to 20 knots. 

 

Figure 62 – Influence of speed on KGmax curves associated with the second check of parametric roll level-two 

criterion for the C11 container vessel. 
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3.3.4. Influence of Computation Parameters 

During the 12th International Conference on the Stability of Ships and Ocean Vehicles, held in 

Glasgow (UK) in June 2015, Peters et al. [32] formulated some recommendations to solve 

the parametric roll differential equation (23) and calculate the associated maximum roll 

angle required in the second check of level-two criterion (coefficient C2, seen as a separate 

criterion here). Their proposals have been included in the explanatory notes of the new 

regulation (SDC 3/WP.5, Annex 4, Appendix 3 [23]). 

Among other recommendations, Peters et al. propose to solve the differential equation with 

a simulation time equal to 15 natural roll periods of the ship and an initial roll angle equal to 

5 degrees. They also recommended to consider a non-linear GZ. 

In this section, we propose to study the influence of each of these proposals on the KGmax 

curves associated with the second check of level-two criterion for four selected ships: both 

container vessels (assessed as vulnerable to parametric roll by the new criteria) the Ro-Ro 

vessel (assessed as slightly vulnerable, although neither the test in the towing tank nor direct 

assessment computation have proven this yet) and the tanker (clearly non-vulnerable). 

Note: in this section, the service speed of the C11 container vessel is set to 20 knots. 

The content of this section has been presented at the 15th International Ship Stability 

Workshop held in Stockholm (Sweden) in June 2016 [4]. 

Simulation Duration 

Since parametric roll is a resonance phenomenon due to the repetition of the encounter of 

waves, attaining the steady state roll amplitude is essential to determine the vulnerability to 

this failure mode. Thus, the duration of the simulation is important. The KGmax curves 

associated with the second check of level-two criterion are computed for 6 different 

siŵulatioŶ duƌatioŶs, giǀeŶ as a Ŷuŵďeƌ of the ship’s Ŷatuƌal ƌoll peƌiod. The folloǁiŶg 
durations are tested: 3, 4, 6, 10, 15 and 20 natural roll periods. Peters et al. [32] and SDC 

3/WP.5 [23] recommend a simulation duration equal to 15 roll periods. 

Figure 63 and Figure 64 show the results for both container ships. We observe that the KGmax 

significantly varies with the duration of the simulation, but the curves associated with 10, 15 

and 20 roll periods are fully coincident for both ships. This proves that the steady state roll 

amplitude has been attained between 6 and 10 roll periods. 

Figure 65 shows the results for the Ro-Ro vessel. We observe that all curves are close 

together. The KGmax is slightly affected by the simulation duration. As above, the curves 

associated with 10, 15 and 20 periods are fully coincident. 

Figure 66 shows the results for the tanker. We observe that all curves are coincident and 

correspond to zero-GM. This proves again that the tanker is not vulnerable to parametric 

roll: parametric roll never occurs, regardless of the wave and speed (the C2 coefficient is set 

to 1 when the ship becomes statically unstable in waves, see Section 1.2.4 page 33). The 

simulation duration has no effect on KGmax curves. 

This first test shows that: 

1) The more the ship is vulnerable to parametric roll, the more the simulation duration has 

an influence on the KGmax curve associated with the second check of level-two criterion. 
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2) The relevance of the simulation duration equal to 15 natural roll periods of the ship 

proposed by Peters et al. [32] is confirmed. 

 

Figure 63 – Influence of the simulation duration on KGmax curves associated with the C2 criterion for the C11 

container vessel. 

 

Figure 64 – Influence of the simulation duration on KGmax curves associated with the C2 criterion for the 319 m 

container vessel. 
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Figure 65 – Influence of the simulation duration on KGmax curves associated with the C2 criterion for the Ro-Ro 

vessel. 

 

Figure 66 – Influence of the simulation duration on KGmax curves associated with the C2 criterion for the tanker 

(all curves coincide). 
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Initial Roll Angle 

The right term of the differential equation (23) is equal to zero because there is no 

transverse excitation in parametric roll. The ship is assumed to sail in pure head or following 

seas. Thus, a non-zero initial roll angle (or a non-zero initial roll speed) must exist to initialize 

the numerical phenomenon during the simulation. Peters et al. [32] and SDC 3/WP.5 [23] 

recommend an initial roll angle equal to 5 degrees. Since the C2 coefficient increases if the 

maximum roll angle exceeds 25 degrees (see page 29), it may be interesting to start the 

simulation with an initial roll angle larger than 5 degrees, in order to reduce the number of 

natural roll periods of the ship which are required to attain the steady state roll amplitude. 

Computations performed with an initial roll angle equal to 10 degrees show that the steady 

state roll amplitude is attained between 6 and 10 roll periods, as if the initial roll angle were 

5 degrees. Computations with other durations between 6 and 10 roll periods would probably 

prove that the initial roll angle has an influence on the duration needed to attain the steady 

state roll amplitude. However, the initial roll angle has no major influence on this duration. 

Even if the influence of the initial roll angle on the duration needed to attain the steady state 

roll amplitude is limited, the initial roll angle may also have an influence on the KGmax. This 

should be limited, but not zero. KGmax curves are computed for the four selected ships with 

initial roll angles equal to 5 and 10 degrees. The results are shown in Figure 67 to Figure 70 

respectively for the C11 container ship, the 319 m container ship, the Ro-Ro vessel and the 

tanker. As expected, the initial roll angle has no influence on the KGmax curves of the tanker 

since she is not vulnerable to parametric roll (Figure 70). On the three other ships, the initial 

roll angle has a minor influence on the KGmax. Only one point differs significantly for the 319 

m container ship (Figure 68, draft equal to 9.5 m, difference of about 0.5 m between both 

KGmax). This is due to the shift of the lower restricted area (see Section 3.3.2), also observed 

as influence of the service speed of the same vessel in Section 3.3.3. 

To conclude, we can note the following: 

1) The initial roll angle has no major influence on the duration needed to attain the steady 

state roll amplitude. 

2) Since the initial roll angle has a limited influence on the KGmax associated with the second 

check of level-two criterion, it is wise to clearly specify its value in the future regulation. 
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Figure 67 – Influence of the initial roll angle on KGmax curves associated with the C2 criterion for the C11 

container vessel. 

 

Figure 68 – Influence of the initial roll angle on KGmax curves associated with the C2 criterion for the 319 m 

container vessel. 
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Figure 69 – Influence of the initial roll angle on KGmax curves associated with the C2 criterion for the Ro-Ro 

vessel. 

 

Figure 70 – Influence of the initial roll angle on KGmax curves associated with the C2 criterion for the tanker 

(both curves coincide). 
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Linearizing GZ 

Parametric roll is a failure mode that could cause capsizing. Thus, it seems logical to study it 

at large roll angles with a non-linear GZ as recommended by Peters et al. [32] and SDC 

3/WP.5 [23]. However, the C2 coefficient increases if the maximum roll angle exceeds 25 

degrees (see page 29). Thus, an error on GZ at angles larger than 25 degrees has no 

influence on the result. Since many ships have a linear GZ up to an angle equal to 25 

degrees, it is interesting to compare KGmax associated with the second check of level-two 

criterion computed with linear and non-linear GZ. GZ curves are computed in calm water for 

the four selected ships at full-load draft and KG equal to KGmax associated with C2 (except for 

the tanker where the KG has been chosen for GM equal to 0.175 m since her GMmin 

associated with C2 is zero). They are shown in Figure 75 to Figure 78. All possible 

configurations of GZ versus GM are presented: the non-linear GZ is significantly larger than 

the linearized GZ (GZlin = GM) for both the 319 m container ship and tanker (Figure 76 and 

Figure 78). The non-linear GZ is lower than the linearized GZ for the Ro-Ro vessel (Figure 77) 

and the GZ of the C11 container ship is almost linear up to 30 degrees (Figure 75). The non-

linear GZ and linearized GZ are used to compute the KGmax curves associated with C2. The 

results are shown in Figure 71 to Figure 74. 

As expected, the linearized GZ reduces the KGmax of the 319 m container ship (Figure 72). In 

this case, linearizing the GZ provides an irrelevant safety margin (30 to 50 centimeters). 

It would be logical to expect a similar result on the tanker (Figure 74) since her GZ curve has 

the same configuration, but the linearized GZ has no influence on KGmax at a full-load draft 

(11 m). However, KGmax is reduced at lower drafts: the tanker is assessed as vulnerable to 

parametric roll if her GM is lower than 50 centimeters. The jump of KGmax between drafts 

equal to 10 m and 10.5 m reveals the existence of a restricted area as defined in Section 

3.3.2. 

The result on the Ro-Ro vessel is unexpected (Figure 73): at full-load draft (5.5 m), the KGmax 

associated with the linearized GZ is more conservative than that given by the real GZ 

although the linearized GZ is larger than the real GZ. This is due to the highly non-linear 

behavior of the parametric roll differential equation. 

The result on the C11 container ship is as expected (Figure 71): since the non-linear GZ and 

linearized GZ almost overlap up to an angle of 25 degrees, linearizing the GZ has a very 

limited influence on the KGmax associated with C2. 

To conclude, we observe that, as expected, linearizing the GZ is not relevant, unless the real 

GZ is linear up to 25 degrees for all drafts scanned by the KGmax curve. 



79 

 

 

Figure 71 – Influence of GZ linearity on KGmax curves associated with the C2 criterion for the C11 container 

vessel. 

 

Figure 72 – Influence of GZ linearity on KGmax curves associated with the C2 criterion for the 319 m container 

vessel. 
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Figure 73 – Influence of GZ linearity on KGmax curves associated with the C2 criterion for the Ro-Ro vessel. 

 

Figure 74 – Influence of GZ linearity on KGmax curves associated with the C2 criterion for the tanker. 
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Figure 75 – GZ curve of the C11 container vessel at a draft equal to 12 m. 

 

Figure 76 – GZ curve of the 319 m container vessel at a draft equal to 13 m. 
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Figure 77 – GZ curve of the Ro-Ro vessel at a draft equal to 5.5 m. 

 

Figure 78 – GZ curve of the tanker at a draft equal to 11 m. 
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3.3.5. Comparison with 6-Degrees-of-Freedom Simulation 

In this section, we propose to compare the KGmax curves associated with both checks of 

level-two criterion with equivalent curves calculated from 6-degrees-of-freedom numerical 

simulations, in order to analyze the relevance of the proposed criterion. Fredyn software is 

used for this [70]. This software is developed by the members of Cooperative Research 

Navies (CRNAV, www.crnav.org) and performs non-linear 6-degrees-of-freedom simulations 

of steered ships in extreme seas and wind. 

The simulations are performed on the C11 container vessel. Her numerical model is made of 

the hull, the propeller, the rudder and the bilge keels. Six different drafts are considered: 8, 

9, 10, 11, 12 and 12.339 meters. Several parametric roll simulations are performed for each 

draft with increasing values of KG, in order to determine both values of KG providing a 

maximum roll angle equal to 25 degrees and causing the vessel to capsize. 

As proposed by the level-one criterion, the waves are sinusoidal and their length is equal to 

the ship’s leŶgth ;ϮϲϮ m). This makes their period equal to 12.95 seconds. The wind is not 

considered. 

For each simulation, the ship is placed in the conditions of the first mode of parametric roll: 

her speed is such that the encounter frequency is twice the natural roll frequency, which is 

previously measured from a roll-decay test in still water at almost same speed (expected 

speed calculated from the natural roll period obtained by ratio of GM and a reference 

situation). If the required speed is negative, the simulation is performed in following seas 

and the ship’s speed remains positive. Otherwise, the simulation is performed in head seas. 

Results are shown in Figure 79. The KG providing a maximum roll angle equal to 25 degrees 

is drawn as a black solid line with diamond markers. The KG causing the vessel to capsize is 

drawn as a black dotted line with white markers. We observe following facts: 

1) At full-load displacement, the vessel may capsize with a value of KG allowed by the 

current IMO regulation. Moreover, the vessel may roll over 25 degrees with such a KG in 

any load configuration. Although the sinusoidal-wave assumption is subject to discussion, 

both observations prove the requirement for new intact stability regulation considering 

this failure mode. 

2) Near full-load displacement, the KGmax associated with the second check of level-two 

criterion is in relatively good accordance with that associated with 6-degrees-of-freedom 

simulation considering a maximum roll angle equal to 25 degrees. The latter is more 

conservative, due to the severe parametric roll conditions imposed at each simulation, 

since the second check of level-two criterion specifies 7 speeds which have no relation 

with the wave period (which remain the same for all wave cases of the scattering table 

because of the use of the Grim method). Moreover, the roll damping computation in 

Fredyn is based on [49] and differs from the method used in this thesis [48 and 50]. 
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Figure 79 – KGmax curves associated with parametric roll 6-degrees-of-freedom simulations for the C11 

container vessel. 
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CHAPTER 4. ENERGY ANALYSIS OF PARAMETRIC ROLL 

4.1. INTRODUCTION 

As presented in Chapter 1, the second check of level-two criterion of parametric roll failure 

mode requires the computation of the maximum roll angle for several speeds in head and 

following seas for any considered loading condition defined by both the draft and KG. Future 

rules propose two methods: an analytical solution based on a polynomial fit of the GZ curve 

at the 5th order which directly yields the maximum roll angle (not studied in this thesis), and 

a numerical solving of the differential equation of parametric roll, equivalent to a one-

degree-of-freedom simulation of the behavior of the ship during rolling. Both methods are 

relatively complex to implement and require tools that naval architects are not accustomed 

to. 

Parametric roll has been extensively studied through analytical, numerical and experimental 

approaches [44, 46 and 42]. In some papers, authors explain that a steady-state roll 

amplitude occurs if the energy provided by the variation over time of the restoring moment 

is entirely dissipated by roll damping [27, 43]. However, to our knowledge, no paper explores 

the energy problem in a quantitative manner, except the contribution of Kerwin [12]. In this 

chapter, we propose to perform an energy analysis of parametric roll with the aim to provide 

a simplified method which yields the maximum roll amplitude assuming a linear GZ. 

The first part of this chapter consists of an analytical approach of the energy transfer of 

parametric roll in the first-mode resonance condition, where the wave encounter frequency 

is tǁiĐe the ship’s Ŷatuƌal ƌoll fƌeƋuency. Subsequently, the behavior of the ship in other 

conditions with and without parametric roll is observed and presented. Finally, a simplified 

method which provides the amplitude of steady-state parametric roll is proposed assuming a 

linear GZ. 

In 1955, Kerwin provided a major contribution on parametric roll [12] based mainly on an 

analytical study of the motion. Our conclusions are strictly identical in resonance condition 

and equivalent outside this condition. 

The content of this chapter has been submitted to a scientific journal [7]. 

4.2. PARAMETRIC ROLL IN RESONANCE CONDITION 

4.2.1. Equation of Parametric Roll 

Parametric roll in pure head or following seas (i.e. with no transverse excitation) is 

represented in one degree of freedom by differential equation (23) previously presented in 

page 29 and rewritten hereunder: 

ସସ�ሷܬ  + ସସ�ሶܤ ,�ሺܼܩܹ+ ሻݐ = Ͳ (23) 

With: 

J44 (kg.m2) roll moment of inertia, including added mass; 
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B44 (N.m.s/rad) damping coefficient; 

W (N) ship’s ǁeight; 

GZ(,t) (m) righting arm, function of both the instantaneous roll angle  and time 

t with the wave encounter frequency. 

We assume a linear GZ in this chapter. Hence, the differential equation is rewritten: 

ସସ�ሷܬ  + ସସ�ሶܤ +ܹሺܯܩ + ܯܩ∆ cos�௘ݐሻ� = Ͳ (44)  

With: 

GM m average value of the metacentric height in waves; 

GM m half-amplitude of the metacentric height variation in waves; 

e rad/s wave encounter frequency. 

Equation (44) is a linear differential equation with non-constant terms. The added mass in 

the first term depends on the roll frequency. The second term (B44) depends on the roll 

amplitude and frequency, especially if a simplified Ikeda method is used [48, 50]. The third 

term varies over time with the wave encounter frequency. We reformulate Equation (44) by 

moving the non-constant part of the restoring moment to the right as follows: 

ସସ�ሷܬ  + ସସ�ሶܤ �ܯܩܹ+ = −ሺܹ∆ܯܩcos�௘ݐሻ� (45)  

The left-hand part of Equation (45) is identical to that of the well-known differential 

equation of a linear oscillating system. Although it is not properly correct because of the 

dependency on the roll angle , the right-hand part is considered as an exciting moment in 

this chapter. 

4.2.2. Assumptions 

The first assumption, previously introduced, is the linearity of GZ. It is used throughout the 

chapter. 

Other following assumptions are formulated in this section: 

 The analysis is performed when the roll motion has reached steady-state amplitude 

(denoted by ), i.e. when the transient movement has finished; 

 The ship rolls at its natural frequency 0 defined as: 

 �଴ = ସସܬܯܩܹ√  (46)  

 The wave encounter frequency e is tǁiĐe the ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ 0. This 

corresponds to the resonance condition of the first mode of parametric roll as 

demonstrated by Mathieu [9]. 

Assumptions on both the roll amplitude and frequency render the first and second terms 

(respectively J44 and B44) constant in the differential equation. These assumptions provide 

expressions for the function of the roll angle over time and its first derivate: 

 �ሺݐሻ = Φcos�଴ݐ And �ሶ ሺݐሻ = −�଴Φsin�଴(47) ݐ  
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4.2.3. Distribution of Energy 

Kinetic and Potential Energy 

Assuming the ship rolls at its natural frequency, the sum of kinetic energy (EK) and potential 

energy (EP), contained respectively in the first term (inertia) and third term (constant part of 

restoring moment) of Equation (45) is constant and equal to: 

௄ܧ  + �ܧ = ͳʹܹܯܩΦଶ (48)  

Consequently, the assumption of a constant roll amplitude  causes the energy provided by 

the exciting moment (EEͿ to eŶtiƌelǇ dissipate ďǇ the daŵpiŶg ŵoŵeŶt as a ͞daŵpiŶg 
eŶeƌgǇ͟ ;ED). 

Damping Energy 

The damping energy during one roll period is formulated as follows: 

஽ܧ  = ∫ ସସ�ሶܤ ݀�ଵ ௣௘௥  With ݀� = �ሶ   (49) ݐ݀

Using Equation (47), the energy dissipated by the damping moment from 0 to a time t is: 

ሻݐ஽ሺܧ  = ∫ସସ�଴ଶΦଶܤ sinଶ�଴ݐ ௧ݐ݀
଴  (50)  

The instantaneous power dissipated by damping is: 

 ஽ܲሺݐሻ = ݐ஽݀ܧ݀ = ସସ�଴ଶΦଶܤ sinଶ�଴(51) ݐ  

The average value of this power is: 

 ஽ܲ = ͳʹܤସସ�଴ଶΦଶ (52)  

Exciting Energy 

The exciting energy during one roll period is formulated as follows: 

ாܧ  = −ܹΔܯܩ∫ � cosሺ�௘ݐ + ሻߙ ݀�ଵ ௣௘௥  (53)  

The angle  is required here because the variation of GM in waves may not be in phase with 

the roll motion. In this paper, this angle is called the shift angle. Using the expression of  

and d/dt in Equation (47) and the expression of d in Equation (49), we construct the 

following expression of the exciting energy between 0 and a time t: 

ሻݐாሺܧ  = ܹΔܯܩ�଴Φଶ∫ cos�଴ݐ sin�଴ݐ cosሺ�௘ݐ + ሻߙ ௧ݐ݀
଴  (54)  

The instantaneous exciting power is: 

 ாܲሺݐሻ = ݐா݀ܧ݀ = ܹΔܯܩ�଴Φଶ cos�଴ݐ sin�଴ݐ cosሺ�௘ݐ +   ሻ (55)ߙ
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The assumption regarding the wave encounter frequency (e=20) and trigonometric 

identities allow a simplification of this equation (Annex 3 provides the mathematical proof in 

page 130): 

 ாܲሺݐሻ = ͳͶܹΔܯܩ�଴Φଶ[sinሺͶ�଴ݐ + ሻߙ − sin   (56) [ߙ

Consequently, the average value of the exciting power is a function of the shift angle : 

 ாܲ = −ͳͶܹΔܯܩ�଴Φଶ sin   (57) ߙ

The maximum value of the exciting power is obtained for =–/2: 

 ாܲ.௠௔௫ = ͳͶܹΔܯܩ�଴Φଶ (58)  

4.2.4. Direct Calculation of the Maximum Roll Angle in Resonance Condition 

Required Damping Coefficient 

Assuming the steady state of parametric roll amplitude and the worst case of shift angle 

(=–/2), the exciting energy is entirely dissipated if the damping coefficient can attain a 

required value B44.req defined by the equality between PD (Equation (52)) and PE.max (Equation 

(58)): 

ସସ.௥௘௤ܤ  = ܹΔܯܩʹ�଴  (59)  

Surprisingly, the roll amplitude  does not appear directly in this relationship. If the damping 

coefficient B44 is independent from the roll amplitude (i.e. linear damping), the parametric 

roll cannot appear when its value is larger than the required value (B44.req). When B44 is lower 

than B44.req, parametric roll appears with very large roll amplitude or causes the vessel to 

capsize, subject to the linear-GZ assumption. 

However, the damping coefficient is a function of the roll amplitude as proposed by Ikeda 

simplified methods [48, 50]. Consequently, this approach provides an easy direct calculation 

of the maximum parametric roll amplitude max (corresponding to both the resonance 

condition and the worst case of shift angle) by solving the following equation: 

ସସሺΦ௠௔௫ሻܤ  = ܹΔܯܩʹ�଴  (60)  

In 1955, Kerwin [12] arrived at the same conclusion using both analytical solving of the 

differential equation and energy consideration, assuming a non-linear damping. In the 

second method, the exciting energy is provided by a vertical movement of the center of 

gravity, causing an equivalent variation of GM while the metacenter is motionless. 

Comparison with Time-Domain Simulation 

The method described above is used to calculate the maximum roll angle in resonance 

condition for the C11 container vessel at a draft equal to 12 m. As required by the first-level 

criterion of the future regulation, hydrostatics are computed in waves which have a length 

equal to the length between perpendiculars (262 m) and a wave steepness equal to 0.0167 
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(see Section 1.2.2 or [22]). This causes the wave height to be equal to 4.375 m and the half-

amplitude of the GM variation (GM) equal to 1.511 m, independent of KG. The damping 

coefficients B44 are calculated according to Kawahara, Maekawa & Ikeda [50] and Ikeda, 

Himeno & Tanaka [48] for the lift component. The results are provided in Table 13 and 

Figure 80. For each value of KG, the speed is calculated for the parametric resonance 

condition. Positive speeds correspond to the head seas and negative speeds correspond to 

the following seas. The resulting maximum roll angle (max in Table 13) is compared to the 

value obtained by the numerical solving of the differential equation (Equation (44)) using the 

method of Runge-Kutta at the 4th order and a simulation duration equal to 20 times the 

ship’s Ŷatuƌal ƌoll peƌiod ;max sim in Table 13). We observe that both values of the 

maximum roll angle are almost equal (both calculations are limited to 50 degrees). In each 

case, the value obtained by the time-domain simulation is slightly lower than that obtained 

by the energy approach. This suggests that the duration of 20 natural roll periods of the ship 

is not long enough to precisely attain the steady-state roll amplitude. 

Moreover, the direct calculation of the maximum roll angle is performed assuming the worst 

case of shift angle (=–/2). Equality between the values of the maximum roll angle 

calculated with both methods seems to show that this assumption is correct. Figure 81 

shows the variation of roll angle over time during the numerical solving of the differential 

equation. This time-domain simulation in one degree of freedom starts with an initial angle 

equal to 10 degrees and a shift angle  equal to zero, which reduces the exciting power to 

zero. During the first period, we observe a slight decrease of the roll amplitude (the roll 

angle is 8.9 degrees at the end of the period). After that, the amplitude increases up to the 

steady state. The frequency of the roll motion during the first period is 0.396 rad/s. Its value 

during the steady state is 0.369 rad/s. This shows that the roll motion automatically shifts in 

waves at the start of the simulation in order to attain the shift angle which provides 

maximum exciting energy (–/2). The assumption of the worst case of shift angle in 

parametric resonance condition is verified. 

KG (m) 
Average GM in 

waves (m) 
0 (rad/s) V (m/s) 

B44.req 

(N.m.s/rad) 
max (deg.) max sim (deg.) 

15.0 5.445 0.406 13.64 1.34E+09 17.96 17.83 

15.5 4.945 0.387 12.05 1.40E+09 19.92 19.84 

16.0 4.445 0.367 10.37 1.48E+09 22.26 22.20 

16.5 3.945 0.346 8.60 1.57E+09 25.33 25.26 

17.0 3.445 0.323 6.71 1.68E+09 29.75 29.66 

17.5 2.945 0.299 4.68 1.82E+09 38.08 37.85 

18.0 2.445 0.272 2.47 2.00E+09 50 50 

18.5 1.945 0.243 0.01 2.24E+09 50 50 

19.0 1.445 0.209 -2.78 2.60E+09 50 50 

19.5 0.945 0.169 -6.12 3.21E+09 50 50 

20.0 0.445 0.116 -10.55 4.68E+09 50 50 

Table 13 – Maximum roll angle in parametric resonance condition for the C11 container vessel. 
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Figure 80 – Maximum roll angle in parametric resonance condition as a function of KG (both curve coincide). 

 

Figure 81 – Roll angle versus time in parametric resonance condition. 
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4.3. PARAMETRIC ROLL IN OTHER CONDITIONS 

In this section and the next one, the roll frequency is denoted by  and may differ from the 

natural roll frequency 0. The encounter frequency e may be non-synchronized with . We 

introduce 0 and  as follows: 

଴ߛ  = �௘�଴ And ߛ = �௘�  (61)  

4.3.1. Non-Synchronized Parametric Roll 

Kinetic and Potential Energy 

If the roll frequency  differs from the natural roll frequency 0, the sum of the kinetic and 

potential energies is not constant in time and Equation (48) (page 87) is no longer valid. 

However, the sum of these energies is a sinusoidal function. Hence, the average value of its 

derivate in time, equivalent to the average power required to maintain the roll motion, is 

zero. Annex 3 provides the mathematical proof in page 132. 

Consequently, as for the synchronized parametric roll, the assumption of a constant roll 

amplitude  causes the energy provided by the exciting moment (EE) to entirely dissipate by 

the damping moment as a damping energy (ED). 

Exciting Energy 

Modifying Equation (55) for the general case yields the following relationship for the exciting 

power: 

 ாܲሺݐሻ = ܹΔܯܩ�Φଶ cos�ݐ sin�ݐ cosሺ�௘ݐ +  ሻ (62)ߙ

Trigonometric identities allow a modification of this relationship as follows (Annex 3 

provides the mathematical proof in page 130): 

 ாܲሺݐሻ = ͳͶܹΔܯܩ�Φଶ[sin(ሺʹ − ݐ�ሻߛ − (ߙ + sin(ሺʹ + ݐ�ሻߛ +  (63) [(ߙ

We observe that the average value of the exciting power is zero except if  is equal to –2 or 

+2. The case =–2 corresponds to a non-realistically high speed in following seas. When the 

value of KG of the C11 container vessel is in the usual range from 15 to 20 m, the 

corresponding resonance speed is in the range from 54 m/s (KG=15 m) to 30 m/s (KG=20 m). 

This case is not considered here. 

If  is not equal to 2 but close to this value, the exciting power consists of two frequencies: a 

high frequency equal to (2+) and a low one equal to (2–). Figure 82 shows the roll angle 

plotted as a function of time resulting from a time-domain simulation in this condition. The 

speed of paƌaŵetƌiĐ ƌesoŶaŶĐe is eƋual to ϴ.ϴ ŵ/s aŶd the ship’s speed eƋual to ϱ.ϱ ŵ/s. We 
observe long periods which could be seen as corresponding to the low frequency part of the 

exciting power. In these long periods, parametric roll successively appears and disappears 

passing through a maximum. The roll frequency during the two first long periods of this 

simulation (0 to 150 seconds and 150 to 300 seconds) remains almost unchanged 

(respectively 0.315 and 0.316 rad/s) but roll motions are not in phase. This shows again that 

the roll motion automatically shifts in waves in order to capture the maximum exciting 
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energy. The encounter frequency is equal to 0.617 rad/s, which renders  equal to 1.95 

during both first long periods of parametric roll. However, it is not possible to exactly find 

the low frequency of the exciting power ((2–)) in Figure 82 because of the shift of the roll 

motion. 

Nevertheless, the roll amplitude rapidly tends to zero in this non-synchronized condition. 

Although parametric roll periodically exists during a short time, it may be ignored because 

the risk for the vessel is null. 

 

Figure 82 – Roll angle versus time in non-synchronized parametric roll condition. 

4.3.2. Lock-in Field 

We now propose to examine the behavior of parametric roll close to the resonance 

condition by performing numerical one-degree-of-freedom simulations for all possible 

speeds in head seas (positive speed) and following seas (negative speed) and to look at both 

the ŵaǆiŵuŵ ƌoll aŶgle aŶd the ship’s ƌoll peƌiod ;Đalled ͞oďseƌǀed ƌoll peƌiod͟, ĐalĐulated at 
zero-crossing in the second half-time of the simulation). Results for the C11 container vessel 

with draft, KG and mean GM in waves respectively equal to 12, 17.5 and 2.95 meters and are 

shown in Figure 83. The vertical dashed line indicates the speed corresponding to the 

resonance condition. The horizontal dashed line indicates the natural roll period. The dashed 

hyperbole represents twice the encounter period and the black dot represents the maximum 

roll amplitude provided by the direct energy calculation. We observe the following facts: 

1) The maximum roll angle occurs at a slightly lower speed than that of the resonance 

condition and is slightly higher than the speed calculated by the energy approach. We 

could believe that this is due to the reduction of roll damping at lower speeds but similar 

calculations performed with a roll damping coefficient independent of the speed yield 

similar results. This fact remains unexplained at this time. However, the analytical 

approach proposed by Kerwin [12] also observes this fact. The calculation of the 

frequency providing the actual maximum roll angle is proposed in Annex 3 page 133. 
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2) Parametric roll exists at a range of speeds from 1.5 to 7.7 m/s, in which the observed roll 

period is locked at twice the encounter period (i.e. 0=2). We call this range lock-in field. 

3) Outside this range, parametric roll does not occur (the maximum roll angle is roughly 

equal to the initial value used in the numerical solving, 1 degree) or is limited to the non-

synchronized configuration previously presented. The observed roll period seems erratic; 

its calculation is disturbed by the shift of the roll motion. It tends to be close to the 

natural roll period. 

4) As expected, the observed roll period in resonance condition is equal to the natural roll 

period and the maximum roll angle is equal to that calculated by the energy approach. 

 

Figure 83 – Maximum roll angle and roll period versus speed. 

4.3.3. Second and Third Modes of Parametric Roll 

Figure 84 shows a similar calculation performed with a KG increased to 18.45 m and a mean 

GM in waves reduced to 2.00 m. The maximum roll angle in the lock-in field is larger than 50 

degrees and the ship would possibly capsize in the vicinity of the resonance condition. We 

observe a second lock-in field corresponding to the second mode of parametric roll, 

characterized by equality between both the roll frequency and the encounter frequency 

(0=1). This lock-in field is not exactly centered on the second resonance speed (9.98 m/s, 

following seas) but passes through this value. The maximum roll angle occurs at a speed 

lower than the resonance speed, possibly for the same unexplained reasons than what is 

observed in the first mode of parametric roll. The value of the maximum roll angle is 2.2 

degrees, negligible compared to what occurs in the first mode. The width of the second lock-

in field is also reduced. 

The third mode of parametric roll (0=2/3) is neither observable in the roll period nor in the 

roll amplitude for this vessel. In the conditions of Figure 84, the corresponding speed is 

13.4 m/s in following seas. However, it can be observed in non-realistic conditions as shown 
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in Figure 85, where the speed range has been enlarged, the GM variation has been increased 

(i.e. the wave steepness does not correspond to the future regulation requirement any 

longer) and the damping coefficient has been customized. We observe that the third lock-in 

field is narrow and the corresponding maximum roll angle is negligible. 

 

Figure 84 – Maximum roll angle and roll period versus speed with lower GM. 

 

Figure 85 – Three modes of parametric roll. 
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4.3.4. Shift Angle in the Lock-in Field 

The shift angle  can be calculated by comparing the resulting variation of the roll angle and 

the variation of the metacentric height imposed during the time-domain simulation. Figure 

86 shows the evolution of its absolute value as a function of 0. All data are dimensionless in 

this figure: the maximum roll angle is divided by the value obtained with the direct energy 

ĐalĐulatioŶ, the peƌiods aƌe diǀided ďǇ the ship’s Ŷatuƌal ƌoll peƌiod aŶd the shift aŶgle is 
divided by –/2. We observe that its value starts from near zero at the left (low-speed side 

of the lock-in field), is equal to –/2 near the resonance condition (0=2) and continues up to 

approximately – at the right end of the lock-in field (high-speed side). Since the exciting 

power is reduced by sin(), this evolution is in accordance with the evolution of the 

maximum roll angle observed in the lock-in field. The shift angle is not drawn outside the 

lock-in field since it has no significance here. 

 

Figure 86 – Evolution of the shift angle in the lock-in field. 

4.3.5. Width of the Lock-in Field 

The width of the lock-in field is defined as the difference of 0 at both ends of the field. Its 

value is almost equal to GM/GM. This observation has been made for all calculations 

performed on the C11 container vessel, for any values of the average metacentric height in 

waves and its variation (respectively GM and GM). This observation has also been made for 

the other vessels examined within the scope of this chapter (the 319 m container vessel, the 

Ro-Ro vessel and the tanker). The second generation intact stability criteria of level one and 

level two assess these vessels as respectively vulnerable (similar to the C11 container vessel), 

slightly vulnerable and non-vulnerable to parametric roll (see Section 3.3.1). 

In 1955, Kerwin [12] demonstrated an equivalent result both without and with damping 

from an approximate solution of Equation (44). The equivalence between his result and the 

observation made here is demonstrated in Annex 3 page 135. 
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Moreover, it seems interesting to validate the location and the width of the lock-in field with 

a computation of higher accuracy than that of the one-degree-of-freedom simulation with a 

linear GZ. Fredyn software [70], presented in Section 3.3.5, is used for this. It is used here to 

simulate the behavior of the C11 container vessel in one loading condition (draft 12 m, KG 18 

m) in sinusoidal waves which have the required characteristics (length 262 m, steepness 

0.0167), in head seas and following seas conditions. Figure 87 shows the maximum roll angle 

provided by both 1- and 6-degrees-of-freedom simulations. We observe the following facts: 

1) Both fields of parametric roll coincide perfectly. The location and the width of the lock-in 

field obtained with 1-DoF simulations are validated. 

2) The maximum roll angle provided by 6-DoF simulations occurs exactly at the resonance 

condition, contrarily to what has been observed with 1-DoF simulations and by Kerwin. 

3) The maximum roll angle provided by 6-DoF simulations is significantly smaller than the 

amplitude obtained by 1-DoF simulations. This is due to the dispersion of energy in the 5 

other degrees of freedom and to non-linear effects. Moreover, the methods used for roll 

damping are not the same in 1-DoF and 6-DoF simulations (roll damping computation in 

Fredyn is based on [49]). 

4) KeepiŶg the ship’s headiŶg is iŵpossiďle at zero speed in waves. This causes the trough 

observed at this speed in the 6-DoF curve. 

5) The second mode of parametric roll is clearly visible in 6-DoF simulations but its peak 

does not occur at the expected speed. 

 

Figure 87 – Maximum roll angle versus speed provided by 1-DoF and 6-DoF simulations. 

  



97 

 

4.4. METHOD PROVIDING STEADY-STATE PARAMETRIC ROLL AMPLITUDE AT ANY 

SPEED 

We are able to easily calculate the maximum parametric roll amplitude which occurs in the 

first-mode resonance condition assuming a linear GZ. Moreover, we can predict the width of 

the lock-in field, in which parametric roll exists, and the evolution of the shift angle in this 

field. We assume a linear evolution from 0 to –. These points allow the establishment of a 

simplified method providing the parametric roll amplitude in all speed conditions. 

4.4.1. Energy Method 

We propose a practical method, called energy method, which provides the parametric roll 

amplitude in all speed conditions for a specific loading condition (draft and KG). Only the first 

mode is considered. This method consists of two steps. 

First Step 

The first step consists of computing the parametric roll amplitude at the speed 

corresponding to the resonance condition. This speed is obtained by the following 

relationship: 

 ଵܸ௦௧ ௠௢ௗ௘ = ሺʹ�଴ − �௪ሻ �݃௪ (64) 

Where w is the wave frequency (rad/s) and g is the acceleration of gravity (m/s2). 

The parametric roll amplitude at this speed, denoted by max, is obtained by the solving of 

Equation (60), which can be easily done numerically on a spreadsheet. 

The more difficult problems of this first step are: 

 The handling of the Ikeda method: although the number of coefficients to be calculated is 

large, there is neither hard relationship nor integral to deal with. 

 The computation of the GM variation in sinusoidal waves, which requires an adequate 

hydrostatic tool: several hydrostatic software packages, currently used by naval 

architects, can be used to perform such computations. 

Second Step 

For any speed V (m/s), we calculate 0 as follows: 

଴ߛ  = �௘�଴ = �௪�଴ (ͳ + �௪ܸ݃ ) (65) 

The parametric roll amplitude is zero outside the lock-in field (the second and third modes 

are not considered) and non-zero inside. The lock-in field is defined by 0 in the range: 

From ʹ − ʹ To ܯܩʹܯܩ∆ +   (66) ܯܩʹܯܩ∆

Assuming a linear evolution of the shift angle  in the lock-in field and a parametric roll 

amplitude proportional to sin(), this amplitude, denoted by , is obtained by: 
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 Φ = Φ௠௔௫ cos (�ሺʹ − ଴ሻߛ   (67) (ܯܩΔܯܩ

4.4.2. Improvement of the Energy Method 

The evolution of the shift angle in the lock-in field is not exactly linear, as shown in Figure 86. 

The comparison of the roll amplitudes provided by the above method and those obtained 

with the 1-DoF simulation demonstrates that our method underestimates the amplitude. 

Consequently, we propose to introduce an exponent k in Equation (67) as follows: 

 Φ = Φ௠௔௫ cos௞ (�ሺʹ − ଴ሻߛ  (68) (ܯܩΔܯܩ

Figure 88 shows the results provided by the proposed method with different values of the 

exponent for the C11 container vessel with the same loading condition as that in Figure 83. 

Setting k to zero renders the roll amplitude equal to the value obtained in the resonance 

condition inside the entire lock-in field and zero outside the field. We propose k=½ (plain line 

in Figure 88). This value provides a good accuracy and a slight safety margin. 

 

Figure 88 – Maximum roll angle versus speed, influence of exponent in energy method. 

4.4.3. Application to Second Generation Intact Stability Criteria 

As mentioned in Section 1.2.3, the second check of the level-two criterion of the parametric 

roll failure mode requires computing the maximum roll angle for several wave cases and 7 

speeds in head and following seas (independent from the resonance speed) for each wave 

and any considered loading condition. This criterion has been defined by the IMO in 2015 

[22] and is enhanced by explanatory notes written in 2016 [23] providing explanations, 

comments and guidelines, such as the criteria of other failure modes because of their 

unusual complexity with regard to the current intact stability regulation [18]. 
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We propose to implement the energy method in the computation of the second check of 

level-two criterion of parametric roll. Computations are performed on the C11 container 

vessel, the 319 m container vessel, the Ro-Ro vessel and the tanker. Results are provided in 

terms of KGmax curves and the second check (C2) is seen as a separate criterion. Results are 

given in Figure 89 to Figure 92. KGmax curves obtained with the energy method are compared 

to those obtained by numerical 1-DoF time-domain simulations assuming a linear and non-

linear GZ in waves. The non-linear GZ in waves is calculated as the GZ in calm water 

modulated by the GM in waves, as proposed in the explanatory notes [23] and presented in 

Section 1.2.4 page 32. The comparison of KGmax curves obtained by 1-DoF time-domain 

simulations with a linear and non-linear GZ is previously presented in Section 3.3.4 page 78. 

Figure 89 – KGmax curves associated with the 2nd check of the parametric roll level 2 criterion 

for the C11 container vessel. Figure 89 shows the results for the C11 container vessel. We 

observe a good accordance of the three methods. 

Figure 90 shows the results for the 319 m container vessel. Both curves obtained with a 

linear GZ are in very good accordance. 

Figure 91 shows the results for the Ro-Ro vessel. Both curves obtained with a linear GZ are in 

very good accordance except for one point located beyond the full-load draft. The extension 

of computations at larger non-realistic drafts shows that the curves meet again. This local 

jump is characteristic of the KGmax curves associated with the second check of level-two 

criterion as explained in Section 3.3.2. 

Figure 92 shows the results for the tanker. The accordance between both curves associated 

with a linear GZ is very high again. 

 

Figure 89 – KGmax curves associated with the 2
nd

 check of the parametric roll level 2 criterion for the C11 

container vessel. 
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Figure 90 – KGmax curves associated with the 2
nd

 check of the parametric roll level 2 criterion for the 319 m 

container vessel. 

 

Figure 91 – KGmax curves associated with the 2
nd

 check of the parametric roll level 2 criterion for the Ro-Ro 

vessel. 
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Figure 92 – KGmax curves associated with the 2
nd

 check of the parametric roll level 2 criterion for the tanker. 
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CONCLUSION 

Objective 

The second generation intact stability criteria are currently under finalization and validation 

at the International Maritime Organization. These criteria are structured in five failure 

modes and three levels of assessment in each failure mode. Pure loss of stability and 

parametric roll failure modes are consequences of the variation of the restoring moment in 

longitudinal waves. The former is a single wave effect since the latter is due to the repetition 

of the encounter of waves. The aim of the work reported in this thesis was to implement the 

level-one and level-two criteria of these failure modes in order to analyze their relevance 

and their requirement. 

The criteria are implemented in the Calcoque software. This real three-dimension 

hydrostatic code computes equilibrium, metacentric heights and righting arm curves in both 

calm water and longitudinal waves, using a matrix algorithm which generates a mesh of the 

watertight volume from the classical hull design by stations. 

The criteria are computed for several ships of different types, both civilian and military, 

expected to have different behavior with regard to these failure modes. Although new 

criteria are not intended for naval ships, it cannot be excluded that naval ships be vulnerable 

to such stability failures. Moreover, if one is provided with an infra-red camera, although this 

is not mandatory, one will proceed to a thermal check of oŶe’s home in order to improve its 

efficiency in this domain at optimized cost. New criteria could be seen as this camera. They 

allow assessing any ship with regard to several failure modes at zero cost (a KGmax curve 

associated with a level-two criterion requires about 10 minutes of computation). Hence, it 

would be unfortunate to forego the analysis of naval ships while we consider civilian ones. 

The author recommends a change of military stability regulations in this direction after the 

new IMO regulation comes into force. 

Results are provided as KGmax curves, giving the maximum height of the center of gravity 

ensuring the compliance of the considered criterion. This avoids any consideration of the 

vertical center of gravity and allows the evaluation of criteria rather than ships. 

Results, Comments and Recommendations 

The computation of KGmax curves associated with the level-one and level-two criteria for 

different civilian and military vessels reveals that level two can be more conservative than 

the second level-one method for both failure modes. This configuration is not expected in 

the future regulation. This computation also shows that the gap between both level-one 

methods can be very large, especially for the pure loss of stability failure mode. The safety 

margins ensured by the first level-one method (parallel waterplane) seem to be excessive 

and may conflict with the excessive acceleration criteria. Thus, if they are equipped to 

compute hydrostatics in waves, naval architects and shipyards will probably not use the first 

level-one method. This first method could have a real added value if it ensures acceptable 

safety margins for small vessels, which are likely to be designed by architects with modest 
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means. This seems to be the case for the 30 m passenger vessel presented here since her 

standard loading condition complies with the first-method level-one criterion of both failure 

modes. 

Although this is not the aim here, the KGmax curves associated with parametric roll criteria 

confirm the well-known vulnerability of the C11 container vessel to this failure mode. As 

expected, the other container vessel is also assessed as vulnerable to parametric roll. The 

tanker is assessed as non-vulnerable to both pure loss of stability and parametric roll, as 

expected due to her wall-sided hull. 

KGmax curves associated with the first method of level-one criteria of both failure modes 

have hooks due to void spaces in the hull form. Considering the bare hull masks this 

phenomenon. Moreover, the height of the watertight limit has an important influence on 

the level-two criterion of pure loss of stability. Both points show the importance of a 

rigorous definition of the watertight volume to be considered. 

Recommendation: The future regulation should clearly specify the watertight volume to be 

considered (bare or real hull, height of the watertight deck). 

The second check of parametric roll level-two criterion (C2) considers the maximum roll 

angle for 7 speeds in both head and following seas and all waves cases of a scattering table. 

The future regulation proposes two methods to compute its value. The method based on the 

numerical solving of the parametric roll differential equation is used and analysed here. The 

future regulation stipulates a simulation duration eƋual to ϭϱ tiŵes the ship’s Ŷatuƌal ƌoll 
period, based on a proposal of experts in the field [32]. This value is validated here by 

sensitivity tests. 

The computation of the second check of parametric roll level-two criterion for all possible 

values of KG shows that the more the ship is vulnerable to this failure mode, the more her 

curve C2 versus KG has peaks and a long interval to let C2 go from 0 to 1. This creates jumps 

in the associated KGmax curves and makes the surface formed by both draft and KG foliated 

with authorized and restricted zones. Consequently, checking that C2 is lower than the 

specified threshold (RPR0) foƌ a giǀeŶ ship’s loadiŶg ĐoŶditioŶ ǁill Ŷot ďe suffiĐieŶt. It ǁill ďe 
necessary to check this condition for all lower values of KG. 

Recommendation: The future regulation should clearly specify the requirement of checking 

C2 for all values of KG lower than that of the considered loading condition. 

The future regulation imposes the use of the Grim method [65] in the second check of 

parametric roll level-two criterion. This causes all wave cases of the scattering table to be 

replaced by effective waves which have the same length and period. Hence, the 7 stipulated 

speeds ŵaǇ haǀe a ƌaŶdoŵ effeĐt ǁith ƌegaƌd to this ǁaǀe, depeŶdiŶg oŶ the ship’s leŶgth, 

possibly overlooking the speed corresponding to the resonance condition. Increasing the 

number of speeds or focusing on the resonance speed should improve the criterion. This 

recommendation is also formulated by the Delegation of Sweden in the Intact Stability 

Correspondence Group (ISCG) [24]. 

Recommendation: The number of speeds considered in the second check of level-two 

parametric roll criterion should be increased, or the criterion should focus on the speed 

corresponding to the first-mode resonance condition. 

The computation of the maximum parametric roll angle requires the roll damping 

coefficient. The future regulation provides the Ikeda simplified method in the explanatory 
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notes of parametric roll criteria (SDC 3/WP.5, Annex 4, Appendix 4, [23]). The proposed 

method is taken from [48] for the lift component and [50] for other components. However, 

this method underestimates the damping coefficient for hull having sharp bilges, such as 

that of the 30 m passenger vessel. This point is illustrated by the inconsistency between the 

very conservative KGmax associated with C2 and the KGmax associated with other parametric 

roll criteria. 

Recommendation: The future regulation should propose a method to provide the roll 

damping coefficient for hulls with sharp bilges. 

Since both methods proposed in the future regulation to compute the maximum roll angle 

required by the second check of parametric roll level-two criterion are relatively complex to 

implement, an alternative method is proposed. It consists firstly in calculating the steady 

state roll amplitude in resonance condition from energy considerations and assuming a 

linear GZ. A method providing the roll damping coefficient function of roll amplitude, such as 

a simplified Ikeda method, is required. The obtained value is the amplitude of parametric roll 

which may occur in the worst conditions, when the wave encounter frequency is twice the 

ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ. CoŶseƋueŶtlǇ, this easǇ ĐalĐulatioŶ is Đoŵpatiďle ǁith the 
deterministic principle of the level-one criterion of the future intact stability regulation: a 

vessel having a roll amplitude lower than an adequate threshold in the worst condition of 

parametric roll should not be assessed as vulnerable to this failure mode. 

The fiƌst ŵode of paƌaŵetƌiĐ ƌoll oĐĐuƌs iŶ a field ǁheƌe the ship’s ƌoll fƌeƋueŶĐǇ, ǁhiĐh ŵaǇ 
differ from her natural frequency, is locked to half the wave encounter frequency. 

Simulations on several ships exhibiting different behaviors with regard to parametric roll 

show that the non-dimensional width of this lock-in field is almost equal to the non-

dimensional GM variation (GM/GM). They also show that the shift angle, which 

corresponds to the phase between the GM variation and the roll motion and which reduces 

the exciting energy, is almost linear from 0 to – in this field, passing –/2 near the 

resonance condition. Thus, the second part of the alternative method allows the estimation 

of the parametric roll amplitude in any condition, in particular for any speed. 

The implementation of this alternative method in the second check of the level-two criterion 

is possible. It provides almost the same KGmax than the one-degree-of-freedom numerical 

simulation with a linear GZ. The linear GZ assumption is doubtful for vessels having a highly-

non-linear GZ such as the 319 m container vessel. However, the alternative method is so 

easy to implement that it would be unfortunate to go without in the case of vessels having 

an almost-linear GZ up to 25 degrees. 

Proposal: The future regulation should propose a simplified alternative method for vessels 

having a GZ almost linear up to 25 degrees. 

Although the mean value of the parametric exciting power is zero outside the first-mode 

lock-in field, parametric roll may occur with low amplitude in modes 2 and 3, where the 

ƌatios ďetǁeeŶ the ǁaǀe eŶĐouŶteƌ fƌeƋueŶĐǇ aŶd ship’s ƌoll fƌeƋueŶĐǇ aƌe ƌespeĐtiǀelǇ 
equal to 1 and 2/3. An improvement of the alternative method in these conditions would be 

interesting, even if the financial and safety risk is almost null or significantly reduced. 
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Perspective 

Planned Improvements 

The work presented in this thesis could be completed by several planned developments and 

comparisons: 

The six-degrees-of-freedom computations performed in parametric roll could be extended 

to pure loss of stability, in order to analyze the relevance of the KGmax associated with the 

corresponding criteria. The computation of KGmax curves associated with these criteria could 

be extended to vessels having suffered an accident due to this failure mode. In particular, 

the 55-meter LPG tanker reported by Taylan [36] sank presumably due to a stability failure 

on a wave crest as. This vessel had a Froude number equal to 0.23 and would consequently 

be assessed as non-vulnerable by the future rules. This unexpected case requires to be 

rigorously analyzed. 

Although it is not proposed in the future regulation, a simplified method providing the roll 

damping coefficient for hulls with sharp bilges could be implemented in order to analyze the 

results for the 30 m passenger vessel, expecting the resulting KGmax to be close to those 

associated with other parametric roll criteria. 

Moreover, other computation methods providing the maximum parametric roll angle for the 

second check of level two could be implemented: 

 considering the real GZ in waves instead of the GZ in calm water modulated by GM in 

waves; 

 analytical method proposed by Kerwin [12], assuming a linear GZ, to be compared with 

both the energy method proposed in Chapter 4 and numerical time-domain simulation 

with a linear GZ; 

 averaging method proposed in the future regulation, directly providing the maximum roll 

angle from a fit of the GZ curve at the 5th order, to be compared with the numerical time-

domain simulation. 

Entry into Force of the Second Generation Intact Stability Criteria 

The entry into force of the future rules, currently estimated at the earliest in 2019 as 

recommendations in part B of the IMO intact stability code, will shake up habits of shipyards 

and naval architects because of their unusual complexity with regard to the current intact 

stability rules. However, shipyards and naval architects nowadays handle the probabilistic 

rules of damage stability, which require a large amount of computations and represent a 

significant leap of complexity with regard to the former deterministic rules. The future intact 

stability rules require adapted computing tools which are presumably currently under 

development. Schools and universities specialized in naval architecture will teach these new 

rules to their students and will propose training courses updating the knowledge of senior 

naval architects. The author sees no major obstacle to the entry into force of pure loss of 

stability and parametric roll criteria, except for the second check of parametric roll level-two 

criterion because of its requirement of the roll damping coefficient. 

Unfortunately, there is no universal simplified method providing the roll damping coefficient 

for any type of ship, as shown by the inadequacy of the method proposed in the future 

regulation to the sharp-bilge hull of the 30 m passenger ship. Hence, it would be desirable to 
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include several methods corresponding to all possible hull designs in the future regulation. 

However, it is not currently possible do predict the innovative hull designs that will exist in 

future decades. Consequently, including an exhaustive review of the simplified roll damping 

method in the future regulation is pointless. CFD (computational fluid dynamics, solving 

Navier-Stokes equations) is currently able to provide accurate (or at least acceptable) values 

of the roll damping coefficient for any hull design. Unfortunately, it is not compatible with 

the philosophy of the second level of assessment because of the highly specialized personnel 

and computing time it needs. 

Consequently, in the authoƌ’s personal opinion, the second check of parametric roll level-

two criterion could be seen in its present form as a first step of third level of assessment, 

which will presumably be performed by specialized institutes. An alternative way could be to 

restrict the second check in its present form to the vessels compatible with the simplified roll 

damping method (or a panel of different methods) using objective simple criteria (Froude 

number, block-coefficient, bilge radius …Ϳ to ďe ĐleaƌlǇ speĐified iŶ the futuƌe ƌegulatioŶ. Foƌ 
other vessels, the second level of assessment would be limited to its first check. In case of 

non-compliance with this check, the classification society should enjoin the implementation 

of the second check by a specialized institute, able to select and use an adequate method to 

provide the roll damping coefficient (including CFD if required), otherwise enjoin the direct 

assessment, also to be performed by a specialized institute. 

Direct Assessment 

Although some improvements are desirable and some points need to be clarified, the level-

one and level-two criteria of pure loss of stability and parametric roll are now finalized, and 

so are those of the three other failure modes. This is not the case for the third level, which is 

yet in its earliest development. 

The third level is planned to be a direct assessment, i.e. numerical simulations of the ship in 

waves, expected to evaluate the vulnerability regarding the five considered failure modes 

with good accuracy. These simulations are necessarily performed in six degrees of freedom. 

CFD not seems to be adapted for this task because of the excessive computation time it 

currently needs. The Fredyn software, developed by the CRNAV members and used for some 

comparisons within the scope of this thesis, could be adapted for this task. In this software, 

hydrodynamics (radiation and diffraction forces) are computed first using potential theory. 

The simulation can consequently be accelerated up to 10 times the real time or more. Other 

similar existing 6-DoF hydrodynamic solvers may also be adapted. 

The direct assessment in parametric roll failure mode could consist of an improved second 

check of level two, replacing both the numerical one-degree-of-freedom simulations and 

sinusoidal waves, respectively by six-degrees-of-freedom simulations and real sea-states 

with a wave spectrum to be determined. The author recommends increasing the number of 

considered speeds or focusing on resonance speed, as argued above. 

A similar work could be performed for the pure loss of stability failure mode, considerably 

increasing the simulation time in order to capture a significant number of extreme waves. 

It is also possible to merge direct assessments of all failure modes in a unique assessment 

made of a large amount of simulations in all wave cases of the scattering table, with all 

possiďle ǀalues of the ship’s speed and all courses. Such a work has already been performed 

to calculate the capsize probability of French frigates [72]. A preliminary analysis of a 
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significant number of vessels already known as safe or unsafe with regard to all failure 

modes would provide the threshold to be used as a global criterion of third level. This 

statistical analysis is similar to that performed by Rahola [11] but with modern computation 

tools and more realistic sailing conditions. 

Such a process would provide a global criterion which would embed all failure modes. 

Although it is not possible to target a specific failure mode in simulations, it is possible to 

implement detectors in the 6-DoF solver indicating the failure mode which causes capsizing, 

excessive roll angle or excessive acceleration, such as both the surf-ride and broach 

detectors currently implemented in the Fredyn software. 
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ANNEX 1. CALCOQUE SOFTWARE 

Calcoque is a personal project started in 1993. It consists of naval architecture software 

dedicated to educational and research use at the French Naval Academy. Calcoque is also 

used onboard several French Navy ships as stability software. 

Historical Review 

The project started in 1993 duƌiŶg a studeŶt pƌojeĐt at the ͞EĐole NatioŶale “upĠƌieuƌe 
d’Aƌts et MĠtieƌs͟ ;Lille, FƌaŶĐeͿ as a fiƌst ǀeƌsioŶ of the software which aim was to compute 

the hydrostatic table of fishing vessels for a shipyard. Then, the project is entering a phase of 

sleep during my boarding. 

The current version of the software was recreated in 2003 as a Microsoft Windows 

application developed in C++ language. The initial goal was extended to the ship’s ǁeights 

and successively to the other main steps of the ship design loop. 

A first opportunity occurred in 2004 at the Saint-Mandrier Naval Training Center (France). I 

was responsible of a 70-hour exercise of naval architecture for officers which aim was to 

perform the preliminary design of a large civilian or military ship. This required a dedicated 

numerical tool. I decided to continue the development of the software for this. The exercise 

was conducted twice in 2005 and 2006. 

A damage stability module using the lost-buoyancy method and 3D view, extensively used to 

illustrate this report, were developed during one-year training (2006-2007) at ENSTA 

Bretagne (Brest, France). 

A second major opportunity occurred in 2008 at the French Naval Academy when the 

software was selected to equip some French Navy ships as stability software within the 

scope of an experiment. This required some deep modifications and improvements such as 

virtual mass (see [1], Chapter 3) or a lock to prevent modifications of the model by the crew. 

Calcoque was installed onboard the research ship Beautemps Beaupré in 2010. 

Nowadays, the software is used onboard 12 French Navy ships. The onboard installation 

requires the prior creation of a numerical model. Some of them have been made by students 

and midships at the French Naval Academy. 

The software is also used to teach ship stability and naval architecture to midships and 

civilian students of Master through practical exercises and scientific projects. In particular, 

historical and scientific study of the battleship Bouvet, which sank in the Dardanelles on 18 

March 1915, was conducted jointly by students and teachers in 2012-2014 [73]. 

The experience acquired from the development of the software was capitalized in writing a 

ship stability handbook [1]. 

The software was awarded by the French Naval Academy alumni association in 2013. 
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Ship Modeling 

The ship modeling consists of the definition of a numerical model including the hull, weights, 

superstructures, decks and bulkheads, propellers and appendages. This requires from few 

days to few month working, depending on the required level of detail. The drawings of the 

ship and her stability booklet are required. 

The hull form is created from stations and lines as described in Chapter 2. Both associated 

volume and surface meshes are the base of all hydrostatic computations, such as the 

watertight volume, obtained by cutting the volume mesh with the plane of watertight deck 

or the displacement volume by cutting the watertight volume with the waterplane. 

Weights are added to the ship model. They are geometrical elements representing all 

weighting objects (engines, hull faĐilities …Ϳ, solid cargo (crew, passengers, ammunitions, 

containers, lifeďoats …Ϳ and superstructures, subject to wind effect. They are designed as 

basic geometric elements (box-shaped hexahedron, sphere, lines and cylinder) or as meshes. 

Figure 93 shows the superstructures of the Offshore Patrol Vessel Adroit, entirely defined as 

meshes by students. 

 

Figure 93 – Superstructures of the Offshore Patrol Vessel Adroit. 

Rooms and tanks are defined as the intersection of a hexahedron with the volume mesh of 

the ship. They may be truncated with other inclined plans and concatenated together to 

define rooms which have a complex geometry. Tanks contain all liquids (water, fuel, lube oil 

…Ϳ aŶd paƌtiĐipate to the ship’s ǁeights ǁith fƌee suƌfaĐe effeĐt. All ƌooŵs ŵaǇ ďe flooded 

occasionally for damage stability or permanently to create voids in the hull form such as bow 

thruster tunnels, ǁateƌ iŶlets oƌ staďilizeƌs’ housiŶgs. Figure 94 shows all tanks of an A69-

class frigate. Figure 95 shows all rooms defined in the numerical model of the same ship. 
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Figure 94 – Tanks of the Offshore Patrol Vessel Adroit. 

 

 

Figure 95 – All rooms of an A69-class Frigate. 

Decks and bulkheads are defined as the intersection of the volume mesh with a plane. A 

weight may be assigned. Decks may be used as watertight or weather deck. 

 

Figure 96 – Decks and bulkheads of a Patrol Vessel defined within the scope of a ship design exercise. 

Appendages are volumes concatenated to the watertight volume. They participate to the 

buoyancy lift and may generate ship resistance. Classical appendages (rudders, stabilizers, 

shafts, POD …Ϳ aƌe autoŵatiĐallǇ geŶeƌated fƌoŵ theiƌ ŵaiŶ ĐhaƌaĐteƌistiĐs ;see Figure 24 

page 40). Other appendages, such as sonar, may be defined as meshes created by the user 

(Figure 97). 

 

Figure 97 – Special appendage under the bow of the research ship Beautemps Beaupré. 

Propellers are defined by volume meshes, created automatically from their main 

geometrical data. They are added to the watertight volume as appendages. Hydrodynamic 

computation of propellers is an intended improvement. 
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Ship Computing 

Stability 

Calcoque computes all buoyancy and stability particulars as well as the righting arm curve. 

These computations are performed in both intact and damage stability configurations, in still 

water or in longitudinal waves. If required, intact stability rules (IMO [18] and French military 

rules [17]) are checked. Results are saved and viewed in a HTML file which constitutes the 

daily stability report. 

Damage stability can be treated with the lost buoyancy method in case of flooding, or with 

additional weight and free surface effect in case of water ingress or fire, extinguished with 

water, hence similar to water ingress with regard to the ship stability. 

 

Figure 98 – Flooded room retired from the watertight volume in damage stability (lost buoyancy method). 

Shear Forces and Bending Moment 

Calcoque computes the buoyancy, weight, shear forces and bending moment along the hull 

in still water or in longitudinal waves. Figure 99 and Figure 100 show the bending moment of 

an A69-class frigate in waves respectively in sagging and hogging conditions. 

 

Figure 99 – Bending moment in sagging condition. 

 

Figure 100 – Bending moment in hogging condition. 

Resistance and Motorization 

Calcoque calculates the ship resistance according to empirical methods provided by the ITTC 

[51] for the viscous component and Holtrop and Fung [52, 53 and 54] for the wave 

component. 

With a catalog of over 1,600 diesel engines and gas turbines, Calcoque finds automatically all 

possible solutions to form the propulsion device according to the previously determined 

resistance, the use of the ship specified by user and constraints in terms of architecture, 

mass and autonomy. 
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Other Capabilities 

Calcoque is also able to compute the followings: 

 Windage area of the heeled ship. This allows the analysis of the relevance of the weather 

stability criteria (IMO criterion assumes a heeling lever independent from the heel since 

military equivalent criteria assume that the heeling lever of the wind reduces since the 

heel angle increases). 

 Hydrostatic tables, cross curves, tank tables and KGmax curves associated with IMO and 

French military intact stability rules. These computations allow the validation of the 

numerical models by comparison with tables included in the stability booklet. The 

computation of inertia required for the hydrostatic table is performed with the Green-

Riemann method, which consists in replacing the two-dimension integral on a surface by 

a single-dimension integral on its closed border. 

 

Educational and Research Use 

Calcoque is used for several teaching and research activities. The most important are briefly 

described hereunder. 

 

Stability Training 

As conclusion of a 38-hours course dealing with mechanics and ship stability, students at 

French Naval Academy have a 3-hours exercise using Calcoque. They input the solid weights 

and liquid cargo of an A69-class frigate. Then, they compute the GZ curve and calculate 

intact stability criteria in a spreadsheet, in order to become accustomed to the military 

stability rules. In second part of this exercise, they calculate shear forces and bending 

moment of the ship in different longitudinal waves, in order to determine the wave length 

generating the most important moments amidships (Figure 101). 

 

 

Figure 101 – Maximum bending moment as a function of the wave length in hogging and sagging conditions. 
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Naval Architecture Training 

Calcoque is used for several naval architecture practical exercises at the Saint-Mandrier 

Naval Training Center and at the French Naval Academy according to Table 14. During these 

exercises, the students are divided in pairs. They design a ship which specifications are 

provided by the teachers. They describe the classical design loop focusing on following steps: 

 analysis of specifications and choice of main particulars; 

 hull design: depending on the duration of the exercise, they totally design the hull or they 

modify a given one; 

 definition of the general arrangement; 

 definition of weights and liquid cargo; 

 intact stability check according to the specified rules (IMO, military); 

 estiŵatioŶ of ship’s ƌesistance; 

 definition of the propulsion device. 

Eventually, if the duration of exercise is sufficient: 

 calculation of shear forces and bending moment, design of the midship section; 

 check of seakeeping and maneuverability performances: Fredyn software is used for this. 

 

Academy Year Duration of exercise Students 
Ships designed by 

students 

Saint-Mandrier Naval 

Training Center 
2004-2005 70 hours ~7-8 officers 

amphibious vessel 

naval tanker 

fast passenger vessel 

container vessel 

French Naval 

Academy 

Since 2011 20 hours ~20 midships 400-ton trainee ship 

Since 2014 35 hours 
~10 civilian students 

(Master) 

Scientific vessel 

Supply vessel 

Patrol vessel 

Since 2016 35 hours 
5 civilian students 

(Master) 

Innovative supply 

vessel 

Table 14 – Naval architecture practical exercises. 
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Bouvet Project 

The Battleship Bouvet sunk in the Dardanelles on 18 March 1915, killing 600 of her seamen. 

This drama is the topic of a major project carried out at the French Naval Academy in 2012-

2014 in collaboration with DGA Techniques Hydrodynamiques (Val de Reuil, France) and 

foreign historians and naval architects. The aim of this historical and scientific project, which 

was conducted within the scope of the centennial of the Great War, is to investigate the 

causes of the wreck using modern tools. The first part of the work was the realization of a 

detailed numerical model of the vessel (Figure 102 and Figure 103). This work was done by 

both students and teachers. The campaigns of sonar surveys, conducted in situ by Turkish 

archaeologists, have validated the hypotheses locating the breach caused by the mine, 

previously made by French historians on the basis of testimonies. By issuing other 

hypotheses on the location of the bulkhead deck, it was possible to define a watertight 

volume in intact condition and after the mine impact (Figure 104). Righting arm curves in 

intact and flooded conditions (Figure 105) show that: 

 The vessel had a good initial stability in intact condition. However, the area under GZ 

curves remains so insufficient that she would not have fulfilled the stability rules if they 

had existed at that time (blue curve). 

 The vessel might have survived a symmetrical flooding since a stable equilibrium exists at 

zero-heel angle. However, a dynamic flooding simulation is required to confirm or refute 

this assumption (green curve). 

 After asymmetrical flooding, as it is assumed to have occurred, the unique point of stable 

equilibrium is at a heel angle almost equal to 180 degrees. The capsizing of Bouvet was 

inevitable. 
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Figure 102 – Numerical model of the Battleship Bouvet. 

 

Figure 103 – Numerical model of the Battleship Bouvet, 

zoom on the bridge. 

 

Figure 104 – Watertight volume after mine impact. 

 

Figure 105 – GZ curves in intact and flooded conditions. 
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Operational Use 

Calcoque is installed onboard 12 naval ships. Some corresponding numerical models are 

shown in Figure 106 to Figure 108. 

While the ship is moored, a crew member inputs the weights (solid and liquid cargo) and 

drafts. Then, Calcoque computes a virtual mass fitting the weight situation to the observed 

hydrostatic situation, assuming the observed drafts are more accurate than the weight list 

(see [1], Chapter 3). 

At sea, the software is used daily to compute stability data and to check the associated 

criteria [17 or 18] with an updated weight situation. 

In case of damage situation such as flooding, water ingress or fire, the software is used to 

evaluate the stability in order to guide the ship’s master to recover a safe situation. 

 

Figure 106 – Numerical model of an Anti-Submarine 

Frigate. 

 

Figure 107 – Numerical model of an A69-Frigate. 

 

Figure 108 – Numerical model of the Research Ship Beautemps Beaupré. 
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ANNEX 2. PRESENTATION OF SHIPS 

Six civilian ships and three naval ships are considered in this thesis. Although second 

generation intact stability criteria are not intended for naval ships, it seems interesting to 

assess the outcome of their applications. This choice is argued in Section 3.1.2 page 50. 

These nine ships are briefly described hereunder. The Offshore Patrol Vessel Adroit, used to 

illustrate the generation of meshes in Chapter 2, is also presented. Since she is currently in 

service in the French Navy, her results with regard to the new criteria are not provided here. 

Civilian Ships 

The main particulars of the six selected civilian ships are given in Table 15. The 

superstructures of some of them (except one) are modelled to permit the computation of 

the weather criterion (IMO IS Code 2.3, [18]) without taking into account their flooding 

points. The bilge keels of all ships are modelled. 

The first ship is the C11 container vessel. Her numerical model is shown in Figure 109 and 

her stations are shown in Figure 110. This vessel is well-known by the scientific community 

since one ship of this class, APL China (Figure 111), suffered from a parametric roll accident 

in October 1998 in the Northern Pacific Ocean. This accident is described in [41] (Figure 112). 

The 49-MW MAN B&W diesel engine of this vessel is capable of powering her at speeds up 

to 24.5 knots. This value is considered as service speed in most parts of this thesis. However, 

her service speed is often set equal to 20 knots in the literature. Computations in Section 

3.3.4 have been performed with this reduced value.  

The second civilian ship is another container vessel, 319 m long. Her numerical model is 

shown in Figure 113. A fatal accident due to an extreme roll motion (not parametric roll) 

occurred on a vessel of this class in 2008 (Chicago Express, Figure 114). One of the causes 

given by the experts is the insufficient roll damping [60]. This accident is one of those behind 

the development of excessive acceleration criteria by the IMO [23]. 

The numerical models of both container vessels include the containers in full-load 

configuration as shown in Figure 109 and Figure 114. The associated windage area is 

considered in the KGmax curves associated with the current IMO regulation provided in 

Chapter 3 through the weather criterion. 

The third civilian ship is a 135-meter-long Roll-on Roll-of vessel presented by Garme [67]. 

Her data have been provided by the KTH Royal Institute of Technology. Her superstructures 

are not modelled. Consequently, the KGmax curve associated with the first generation criteria 

does not take the weather criterion into account. Her watertight volume is shown in Figure 

115.  

The fourth ship is a 227-meter-long tanker. She is wall-sided on 80% of her length and has 

been chosen for her supposed non vulnerability to both pure loss of stability and parametric 

roll failure modes. She has been taken from DELFTship database (www.delftship.net). A 

simplified box-shaped superstructure has been added to her model but has no influence on 
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the KGmax curve associated with the current criteria. Her watertight volume is shown in 

Figure 116. 

The fifth ship is a 160-meter-long passenger vessel. Her numerical model is shown in Figure 

118. Her characteristics and her hull are inspired from those of the high-speed ferry Mega 

Express (Figure 117), sailing from Mainland France and Italy to Corsica and Sardinia. Two 

different watertight volumes are considered. The first is limited by the weather deck (14 m 

above baseline) and includes the volume of the garage car (Figure 119). The second is limited 

by the bulkhead deck (9 m above baseline) and excludes this volume (Figure 120). 

The sixth and last civilian ship is a 30-meter-long passenger vessel named Le Palais (Figure 

121). In summer, she sails from the Mainland South Brittany (France) to the Gulf of 

Morbihan Islands. Outside this period, she crosses the Bay of Brest (France) between the 

Naval Base and Lanvéoc, where the Naval Academy and Naval Air station are located. Her 

hull is classically designed with sharp bilge and no bilge keels. Her watertight volume is 

shown in Figure 122. 

In Table 15 (civilian ships) and Table 16 (naval ships), the reference height of the center of 

gravity (KGref) is used to calculate both the associated metacentric height in calm water 

(GMref) and natural roll period (T0) of each ship. The latter depends on the added mass 

coefficient and radius of inertia coefficient (denoted by a and k, defined in Section 1.2.4 page 

31). The roll period is given for the full-load displacement except for the C11 container vessel 

whose associated draft is 12.339 m (see [41]). The roll damping coefficient B44 is calculated 

as described in Section 1.2.4 (page 32). Its value is given for the reference height of the 

center of gravity (KGref), the full-load draft (12.339 m for the C11 container vessel), the 

service speed (VS) and a roll amplitude of 10 degrees. 

   
Container 

C11 

Container 

319m 
Ro-Ro Tanker 

Passenger 

160 m 

Passenger 

30 m 

Length overall LOA m 275.8 335.5 147.9 236.5 175 29.6 

Length between 

perpendiculars 
LPP m 262 319 135 227.5 160 26.4 

Breadth B m 40 42.8 24.2 32.2 24 7.8 

Draft, full load dfull m 12 13 5.50 11 6 1.05 

Freeboard, full load f m 12.45 11.60 12.50 7.00 8.00 1.53 

Displacement, full load  t 73,340 107,350 11,544 70,397 13,147 93 

Speed VS knots 24.5 25 20 15 25 22 

Froude number Fn - 0.203 0.230 0.283 0.163 0.325 0.703 

Block coefficient Cb - 0.569 0.590 0.625 0.852 0.554 0.433 

Bilge keels length Lbk m 76.53 81 45 75 69 - 

Bilge keels breadth Bbk m 0.40 0.50 0.30 0.30 0.70 - 

Bilge keels projected area Ak m
2
 58.02 57.28 19.09 31.82 91.85 - 

Added mass coefficient a - 0.1 0.1 0.094 0.1 0.1 0.1 

Radius of inertia coefficient k - 0.429 0.4 0.41 0.4 0.4 0.4 

Reference height of G KGref m 18.24 18.00 12.22 12.00 9.00 2.50 

Metacentric height @ KGref GMref m 1.97 2.17 1.64 1.70 2.29 5.00 

Roll period @ KGref T0 s 25.7 24.43 16.27 20.78 13.35 2.95 

Starting value of KG KGstart m 14 15 9 10 9 2.5 

Pure loss limit angle RPL2 - 25 25 25 25 15 15 

GM variation limit RPR - 0.405 0.348 0.418 0.355 1.187 1.87 

Roll damping coefficient B44 
N.m.s/ 

rad 
1.027e9 1.099e9 1.721e8 2.463e8 1.785e8 6.414e-5 

Superstructures - - Yes Yes No Yes Yes Yes 

Table 15 – Main particulars of civilian ships. 
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Figure 109 – Numerical model of the C11 container vessel. 

 

Figure 110 – Stations of the C11 container vessel. 

 

Figure 111 – APL China container vessel (photo by Jan 

Svendsen from www.containership-info.com). 

 

Figure 112 – Damage occurred on the APL China after a 

parametric roll accident in October 1998 (from 

afcan.org). 
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Figure 113 – Numerical model of the 319 m container vessel. 

 

Figure 114 – Chicago Express container vessel (photo by Jan Svendsen from www.containership-info.com). 

 

 

Figure 115 – Watertight volume of the Ro-Ro vessel. 

 

Figure 116 – Watertight volume of the tanker. 
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Figure 117 – High-speed passenger vessel Mega Express. 

 

Figure 118 – Numerical model of the 160 m passenger vessel. 

 

 

Figure 119 – Watertight volume of the 160 m passenger 

vessel, limited by the weather deck. 

 

Figure 120 – Watertight volume of the 160 m 

passenger vessel, limited by the bulkhead deck. 
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Figure 121 – Passenger vessel Le Palais. 

 

Figure 122 – Watertight volume of the 30 m passenger vessel. 
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Naval Ships 

The main particulars of the four selected naval ships are listed in Table 16. 

The first naval ship is the well-known former French Helicopter Carrier JeaŶŶe d’AƌĐ (Figure 

123). She is known as non-vulnerable to heavy seas after serving for over 45 years as trainee 

ship on all seas around the World. She has been retired in 2010. Her numerical model (Figure 

124) has been created from the drawings provided by the French Historic Service of Defense 

[64]. Her watertight volume is shown in Figure 125. 

The second naval ship is the David Taylor Model Basin hull number 5415, denoted in this 

thesis by the symbol DTMB-5415. She is presented in [68]. Her hull form is close to that of 

the well-known DDG-51 Arleigh Burke (Figure 126). Imaginary superstructures inspired by 

those of this vessel are added to the numerical model to allow the computation of weather 

criteria of current IMO and French military regulations. Her watertight volume is shown in 

Figure 127. 

The third naval ship is representative of a 1,200-ton class Offshore Patrol Vessel. Her hull is 

shown in Figure 128. She is denoted in this thesis by the symbol OPV or Offshore Patrol 

Vessel. An imaginary box-shaped superstructure is added to the model to allow the 

computation of weather criteria. 

The last naval ship presented here is the Offshore Patrol Vessel Adroit (Figure 129), currently 

in service in the French Navy and used in Chapter 2 to illustrate the generation of volume 

and surface meshes. Her full numerical model, used onboard by their crew, is shown in 

Figure 130. 

   
Jeanne 

d’AƌĐ 
DTMB-5415 OPV Adroit 

Length overall LOA m 182 152.9 87.5 87 

Length between 

perpendiculars 
LPP m 172 142 80.6 81.5 

Breadth B m 24 19.06 9.6 13 

Draft, full load dfull m 6.50 6.15 3.37 3.30 

Freeboard, full load f m 5.5 3.85 2.63 1.65 

Displacement, full load  t 11,768 8,634 1,250 1,450 

Service speed VS knots 27 30 25 21 

Froude number Fn - 0.338 0.413 0.457 0.382 

Block coefficient Cb - 0.465 0.507 0.471 0.405 

Bilge keels length Lbk m 55.7 35.7 24.0 - 

Bilge keels breadth Bbk m 1.20 0.55 0.30 - 

Bilge keels projected area Ak m
2
 94.53 34.01 10.18 - 

Added mass coefficient(*) a - 0.1 0.1 0.1 - 

Radius of inertia 

coefficient(*) 
k - 0.4 0.4 0.4 - 

Reference height of G KGref m 8.90 8.00 3.85 - 

Metacentric height @ KGref GMref m 1.50 1.50 1.09 - 

Roll period @ KGref T0 s 16.48 14.12 8.00 - 

Starting value of KG(*) KGstart m 8 7 3 - 

Pure loss limit angle(*) RPL2 - 25 25 25 - 

GM variation limit(*) RPR - 0.657 0.418 0.433 - 

Roll damping coefficient B44 
N.m.s/ 

rad 
9.813e7 4.018e7 2.436e6 - 

Superstructures - - Yes Yes Yes Yes 

Table 16 – Main particulars of naval ships. 
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Figure 123 – Last arrival of the JeaŶŶe d’AƌĐ in Brest after 45 years sailing around the World, May 27, 2010 

(photo by Lancelot Frederic). 

 

Figure 124 – Numerical model of the JeaŶŶe d’AƌĐ. 

 

Figure 125 – Watertight volume of the JeaŶŶe d’AƌĐ. 

  

Figure 126 - DDG-51 Argleigh Burke (US Navy). 

 

Figure 127 – Watertight volume of the DTMB-5415. 
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Figure 128 – Hull of the Offshore Patrol Vessel. 

  

Figure 129 – Offshore patrol vessel Adroit (Marine Nationale). 

 

Figure 130 – Numerical model of the OPV Adroit. 
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ANNEX 3. MATHEMATICAL PROOFS 

Reference Speed Corresponding to the First Mode of Parametric Roll 

The objective is to demonstrate the relationship (22) (page 28) providing the value of the 

reference speed of the first mode of parametric roll (denoted here by VPR) and rewritten 

hereunder: 

 �ܸோ = |ʹ�ܶ଴ ଴ܯܩܯܩ√ −√݃�ʹ�| (69)  

With: 

VS (m/s) ship’s speed; 

 (m) wave length; 

T0 (s) natural roll period of the ship in calm water; 

GM (m) average value of the metacentric height in waves; 

GM0 (m) metacentric height in calm water. 

As demonstrated by Mathieu [9], the first mode of parametric roll occurs when the wave 

encounter frequency (denoted by eͿ is tǁiĐe the ship’s ƌoll fƌeƋueŶĐǇ ;deŶoted ďǇ ): 

 �௘ = ʹ� (70)  

Since the average value of the metacentric height in waves (GM) may differ from the 

metacentric height in calm water (GM0Ϳ, the ship’s ƌoll fƌeƋueŶĐǇ iŶ loŶgitudiŶal ǁaǀes ;) 

may differ from her natural roll frequency in calm water (0) and is corrected as follows: 

 � = �଴√ܯܩܯܩ଴ (71)  

The encounter frequency is given by the following relationship: 

 �௘ = �௪ − �௪ଶܸ݃ cos   (72) ߚ

 denotes the aŶgle ďetǁeeŶ the ship’s headiŶg aŶd the ǁaǀe diƌeĐtioŶ. Its ǀalue is 
180 degrees in head seas and 0 degrees in following seas. Hence, the relationship becomes: �௘ = �௪ + �௪ଶܸ݃  in head seas (73)  

�௘ = �௪ − �௪ଶܸ݃  in following seas (74)  

w denotes the wave frequency. 
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Mixing Equations (73) and (74) with the sign  and replacing e with the expression of  

(Equations (70) and (71)) give: 

 ʹ�଴√ܯܩܯܩ଴ = �௪ ± �௪ଶ �ܸோ݃  (75)  

Since the condition of the first mode of parametric resonance is met (Equation (70)), VPR 

ƌeplaĐes the ship’s speed V. 

Assuming an infinite depth, following relationship links the wave frequency to its length () 

and the acceleration of gravity (g): 

 �௪ = √ʹ�݃�  (76)  

Introducing Equation (76) in Equation (75), we have: 

 ʹ�଴√ܯܩܯܩ଴ = √ʹ�݃� ± ʹ� �ܸோ�  (77)  

The ship’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ 0 is linked to her natural roll period (T0) as follows: 

 �଴ = ʹ�ܶ଴  (78)  

Hence, Equation (77) becomes: 

 
Ͷ�ܶ଴ ଴ܯܩܯܩ√ = √ʹ�݃� ± ʹ� �ܸோ�  (79)  

Or: 

 
ʹ� �ܸோ� = ±ቌͶ�ܶ଴ ଴ܯܩܯܩ√ −√ʹ�݃� ቍ (80)  

Hence: 

 �ܸோ = ±ቌʹ�ܶ଴ ଴ܯܩܯܩ√ −√݃�ʹ�ቍ (81)  

We introduce an absolute value in order to define a unique positive speed of parametric roll 

resonance. 

 �ܸோ = |ʹ�ܶ଴ ଴ܯܩܯܩ√ −√݃�ʹ�| (69)  

QED 

The first check of the level-two criterion of parametric roll considers that if her service speed 

is lower than this resonance speed, the ship cannot attain the resonance condition. 
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Solving the Parametric Roll Differential Equation with the Method of Runge-Kutta at 

4th Order 

The objective is to solve the parametric roll one-degree-of-freedom differential equation 

(23) with the Runge-Kutta method at 4th order. This equation is given in page 29 and 

rewritten hereunder in a slightly different form: 

 φሷ + Bସସܬସସ φሶ + Wܬସସ GZሺφ, ሻݐ = Ͳ (82)  

The Runge-Kutta method treats only 1st order equations, which are formatted as follows: 

ሶݕ  = ݂ሺݕ,   ሻ (83)ݐ

In order to solve the second-order parametric roll differential equation with this method, we 

rewrite it as a first-order vector differential equation where ܸ⃗  is the unknown vector and  ݂ is 

a vector function of both ܸ⃗  and the time t: 

 ܸ⃗ ሶ =  ݂(ܸ⃗ ,   (84) (ݐ

Vector ܸ⃗  and function  ݂ are defined as follows: 

 ܸ⃗ = ( ௫ܸ = �௬ܸ = �ሶ ) (85)  

  ݂(ܸ⃗ , (ݐ = ቌ ௫݂ = ௬ܸ
௬݂ = − Wܬସସ GZሺV௫, ሻݐ − Bସସܬସସ ௬ܸቍ (86)  

Expanding Equation (84) with the expressions of ܸ⃗  (85) and  ݂ (86) gives: 

 (�ሶ�ሷ ) = ቌ �ሶ− Wܬସସ GZሺφ, ሻݐ − Bସସܬସସ �ሶቍ (87)  

The second component of this vector equality is the second-order differential equation (82) 

since the first component is neutral. 

The first-order vector differential equation (84) is solved numerically with an iterative 

process. The initial conditions are specified in the vector ܸ⃗  at the first iteration (indexed 0), 

with a chosen roll angle 0 and a roll speed equal to zero: 

 ܸ⃗ ଴ = ቀ �଴�ሶ ଴ = Ͳቁ (88)  

The time step is set to one 40th of the ship’s Ŷatuƌal ƌoll aŶgle. It is deŶoted by dt. At each 

iteration, we compute successively four values of the function vector  ݂ as follows: 
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 ݂ଵ =  ݂(ܸ⃗ , ଶ݂  (ݐ =  ݂(ܸ⃗ + ݐʹ݀  ݂ଵ, ݐ + ଷ݂  (ݐʹ݀ =  ݂(ܸ⃗ + ݐʹ݀  ݂ଶ, ݐ + ସ݂  (ݐʹ݀ =  ݂(ܸ⃗ + ݐ݀  ݂ଷ, ݐ +  (ݐ݀
(89)  

Vector ܸ⃗  at the next iteration (denoted by ܸ⃗ ௡+ଵ) is built from its value at the previous 

iteration (denoted by ܸ⃗ ௡) as follows: 

 ܸ⃗ ௡+ଵ = ܸ⃗ ௡ + ͸ݐ݀ (  ݂ଵ + ʹ  ݂ଶ + ʹ  ݂ଷ +  ݂ସ) (90)  

The roll angle and the roll speed at each iteration are given respectively by the first and the 

second component of vector ܸ⃗ . 
The Runge-Kutta methods are well-known to provide very stable solutions. For example, if 

we remove both the damping and GM variation in differential equation (23), it becomes that 

of an undamped oscillating system. The response is characterized by a constant amplitude, 

equal to the initial angle if the initial speed is zero. The Runge-Kutta method accurately 

restores this behavior (even with large time step) while the Euler method diverges after few 

periods. 
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Exciting Power of Parametric Roll 

Any Condition 

The objective is to demonstrate the following equality: 

 cos�ݐ sin�ݐ cosሺ�௘ݐ + ሻߙ = ͳͶ [sin(ሺʹ − ݐ�ሻߛ − (ߙ + sin(ሺʹ + ݐ�ሻߛ +   (91) [(ߙ

With: 

ߛ  = �௘�  (92)  

Following trigonometric identities are used for this: 

 cos ܽ sin ܽ = ͳʹ sin ʹܽ (93)  

 sin ܽ sin ܾ = ͳʹ [cosሺܽ − ܾሻ − cosሺܽ + ܾሻ] (94)  

 sin ܽ cos ܾ = ͳʹ [sinሺܽ − ܾሻ + sinሺܽ + ܾሻ] (95)  

 sinሺܽ + ܾሻ = sin ܽ cos ܾ + cos ܽ sin ܾ (96)  

 cosሺܽ + ܾሻ = cos ܽ cos ܾ − sin ܽ sin ܾ (97)  

The function of time t to be transformed is denoted by f(t): 

 ݂ሺݐሻ = cos�ݐ sin�ݐ cosሺ�௘ݐ +   ሻ (98)ߙ

Identity (93) gives: 

 ݂ሺݐሻ = ͳʹ sin ݐ�ʹ cosሺ�௘ݐ +   ሻ (99)ߙ

Identity (97) and the definition of  (92) give: 

 cosሺ�௘ݐ + ሻߙ = cos ݐ�ߛ cos ߙ − sin ݐ�ߛ sin   (100) ߙ

Hence: 

 ݂ሺݐሻ = ͳʹ sin ݐ�ʹ cos ݐ�ߛ cos ߙ − ͳʹ sin ݐ�ʹ sin ݐ�ߛ sin ߙ = ͳʹ ܽ cos ߙ − ͳʹ ܾ sin   (101) ߙ

With 

 ܽ = sin ݐ�ʹ cos ܾ And ݐ�ߛ = sin ݐ�ʹ sin   (102) ݐ�ߛ

Identities (94) and (95) give following relationships for a and b, respectively: 

 ܽ = ͳʹ [sin(ሺʹ − (ݐ�ሻߛ + sin(ሺʹ +   (103) [(ݐ�ሻߛ

 ܾ = ͳʹ [cos(ሺʹ − (ݐ�ሻߛ − cos(ሺʹ +   (104) [(ݐ�ሻߛ

Hence: 
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݂ሺݐሻ = ͳͶ [(sin(ሺʹ − (ݐ�ሻߛ + sin(ሺʹ + ((ݐ�ሻߛ cos −ߙ (cos(ሺʹ − (ݐ�ሻߛ − cos(ሺʹ + ((ݐ�ሻߛ sin   (105) [ߙ

We expanse this relationship: 

 
݂ሺݐሻ = ͳͶ [sin(ሺʹ − (ݐ�ሻߛ cos ߙ + sin(ሺʹ + (ݐ�ሻߛ cos −ߙ cos(ሺʹ − (ݐ�ሻߛ sin ߙ + cos(ሺʹ + (ݐ�ሻߛ sin   (106) [ߙ

We replace once cos and sin respectively by cos(–) and –sin(–): 

 
݂ሺݐሻ = ͳͶ [sin(ሺʹ − (ݐ�ሻߛ cosሺ−ߙሻ + cos(ሺʹ − (ݐ�ሻߛ sinሺ−ߙሻ+ sin(ሺʹ + (ݐ�ሻߛ cos ߙ + cos(ሺʹ + (ݐ�ሻߛ sin   (107) [ߙ

Using twice the identity (96), we have: 

 ݂ሺݐሻ = ͳͶ [sin(ሺʹ − ݐ�ሻߛ − (ߙ + sin(ሺʹ + ݐ�ሻߛ +   (91) [(ߙ

QED 

Resonance Condition 

The resonance condition of the first mode of parametric roll is characterized by: 

 � = �଴ And ߛ = ଴ߛ = �௘�଴ = ʹ (108)  

Hence, the equality (91) previously demonstrated becomes: 

 ݂ሺݐሻ = cos�଴ݐ sin�଴ݐ cosሺʹ�଴ݐ + ሻߙ = ͳͶ [sinሺͶ�଴ݐ + ሻ−sinߙ   (109) [ߙ
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Kinetic and Potential Energy of Roll Motion at any Frequency 

The function of roll angle over time and its first derivate are given by following relationships: 

 �ሺݐሻ = Φcos�ݐ And �ሶ ሺݐሻ = −�଴Φsin�(110) ݐ  

Consequently, the potential energy and kinetic energy are respectively: 

�ܧ  = ͳʹܹܯܩ�ଶ = ͳʹΦଶܹܯܩcosଶ�(111) ݐ  

௄ܧ  = ͳʹ ସସ�ሶܬ ଶ = ͳʹΦଶ�ଶܬସସ sinଶ�(112) ݐ  

Their sum is: 

�ܧ  + ௄ܧ = ͳʹΦଶሺܹܯܩcosଶ�ݐ + �ଶܬସସ sinଶ�ݐሻ (113)  

This function is not constant in time. We introduce x as: 

ݔ  = ��଴ With �଴ଶ = ସସܬܯܩܹ  (114)  

Equation (113) becomes: 

�ܧ  + ௄ܧ = ͳʹΦଶ ܯܩܹ) cosଶ�ݐ + ସସ�଴ଶ⏟  =ௐீெܬ ଶݔ sinଶ�(115) (ݐ  

Replacing ݔଶ by ͳ + ሺݔଶ − ͳሻ, we have: 

�ܧ  + ௄ܧ = ͳʹܹܯܩΦଶሺcosଶ�ݐ + sinଶ�ݐ + ሺݔଶ − ͳሻ sinଶ�ݐሻ (116)  

Or: 

�ܧ  + ௄ܧ = ͳʹܹܯܩΦଶሺͳ + ሺݔଶ − ͳሻ sinଶ�ݐሻ (117)  

Using identity (94) with a=b, we have: 

�ܧ  + ௄ܧ = ͳʹܹܯܩΦଶ ቆͳ + ͳʹ ሺݔଶ − ͳሻሺͳ − cos   ሻቇ (118)ݐ�ʹ

Or: 

�ܧ  + ௄ܧ = ͳͶܹܯܩΦଶሺͳ + ଶݔ + ሺͳ − ଶሻݔ cos   ሻ (119)ݐ�ʹ

At the natural roll frequency, x=1 and the relationship becomes the Equation (48) previously 

introduced page 87: 

�ܧ  + ௄ܧ = ͳͶܹܯܩΦଶሺͳ + ଶݔ + ሺͳ − ଶሻݔ cos   ሻ (48)ݐ�ʹ

In general cases, this function is sinusoidal. The average power required to maintain the roll 

motion is zero. The average value of the energy is: 

�ܧ  + ௄ܧ = ͳͶܹܯܩΦଶሺͳ +   ଶሻ (120)ݔ
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Frequency of Maximum Parametric Roll Amplitude According to Kerwin 

In 1955, Kerwin [12] gave the maximum parametric roll angle  as the result of the following 

relationship: 

 Φ = ଶݔʹ√݊� + ܾଶͶ − ͳݔସ − ͳ − ݉݊ 
(121)  

Where: 

ݔ  = ω�଴ = ω௘ʹ�଴ (122)  

Coefficients m and n define the non-linear roll damping as a function of the roll amplitude: 

ସସܤ  = ݉ + ݊Φ (123)  

Coefficient b denotes the non-dimensional half amplitude of GM variation: 

 ܾ = Δܯܩܯܩ  (124)  

Note: Kerwin defines GM as the full amplitude of GM variation since we define it (such as 

future rules do [22, 23]) as the half amplitude. Hence, relationship giving b used here differs 

fƌoŵ that giǀeŶ iŶ KeƌǁiŶ’s papeƌ. 

The relationship (121) is rewritten using the expression of x in Equation (122). 

 Φ = ଴݊�ݔ ଶݔʹ√ + ܾଶͶ − ͳݔସ − ͳ − ݉݊ = �଴݊√ʹ + ܾଶͶ − ͳݔଶ − ଶݔ − ݉݊ 
(125)  

The maximum value of  is obtained (in the interval where the term in the square root is 

positive) for: 

 
dΦ݀ݔ = Ͳ (126)  

Hence: 

 
dΦ݀ݔ = �଴ʹ݊ × −ʹܾଶͶ − ͳݔଷ − ݔʹ

√ʹ + ܾଶͶ − ͳݔଶ − ଶݔ = Ͳ (127)  

The value of x=/0 corresponding to the maximum value of  is defined by: 

 −ܾଶͶ − ͳݔଷ − ݔ = Ͳ 
Or ݔସ = ͳ − ܾଶͶ = ͳ −   ଶ (128)(ܯܩʹܯܩ∆)

Consequently, the frequency providing the maximum parametric roll amplitude is given by 

the following relationship: 
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 � = �଴√ͳ − ଶ4(ܯܩʹܯܩ∆)
 (129)  

Figure 131 shows the evolution of /0 as a function of GM/GM. The ratio GM/GM must 

be lower than 2, i.e. the metacentric height must remain positive at any time. The maximum 

parametric roll amplitude alǁaǇs oĐĐuƌs at a fƌeƋueŶĐǇ loǁeƌ thaŶ the ship’s Ŷatuƌal ƌoll 
frequency 0. If GM/GM is small, it occurs almost at the natural roll frequency. 

 

Figure 131 – Frequency of maximum parametric roll amplitude as a function of GM/GM. 
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Width of the Lock-in Field According to Kerwin 

The relationship providing the value of the maximum parametric roll amplitude proposed by 

Kerwin (Equation (121) page 133, taken from [12]) is rewritten hereunder: 

 Φ = ଶݔʹ√݊� + ܾଶͶ − ͳݔସ − ͳ − ݉݊ 
(121)  

The lock-in field, in which parametric roll exists, is such as: 

ଶݔʹ  + ܾଶͶ − ͳݔସ − ͳ ≥ Ͳ 
(130) 

Its frontiers are defined by both positive roots x1 and x2 of the following 4th order equation: 

 −xସ + ʹxଶ + ቆܾଶͶ − ͳቇ = Ͳ (131)  

This equation is solved as a 2nd order equation. The discriminant  is: 

 ∆= ܯܩܯܩ∆) )ଶ (132)  

Both roots of the 2nd order equation are: 

ଵଶݔ  = ͳ − ଶଶݔ And ܯܩʹܯܩ∆ = ͳ +   (133) ܯܩʹܯܩ∆

Thus, parametric roll exists if the roll frequency =e/2 is located in the following interval: 

From �଴√ͳ − To �଴√ͳ ܯܩʹܯܩ∆ +   (134) ܯܩʹܯܩ∆

The Taylor expansion at 1st order allows simplifying the frontiers of the interval as following: 

From �଴ (ͳ − To �଴ (ܯܩͶܯܩ∆ (ͳ +   (135) (ܯܩͶܯܩ∆

In the lock-in field, the encounter frequency e is twice the roll frequency . Hence, the 

interval is defined with 0=e/0 (Equation (61) page 91) in the range defined in Equation 

(66) page 97 and reminded hereunder:  

From ʹ − ʹ To ܯܩʹܯܩ∆ +  (66) ܯܩʹܯܩ∆

Note: The parametric roll amplitude given by Kerwin is negative in the close vicinity of the 

frontiers of the lock-in field as calculated above, since the following condition is met: 

ଶݔʹ√�  + ܾଶͶ − ͳݔସ − ͳ < ݉ 
(136)  

Hence, the lock-in field is slightly narrower than as calculated above. 
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ANNEX 4. SHIP-FIXED COORDINATE SYSTEM 

The coordinates of all points are given in a unique coordinate system linked to the ship, 

illustrated in Figure 132 and defined as follows: 

 The X axis is the baseline (also called 0H), positive forward, X=0 on the aft perpendicular. 

 The Y axis is the transverse axis, positive portside, Y=0 on the ship’s ĐeŶteƌliŶe. 

 The Z axis is the aft perpendicular, positive upward, Z=0 on the baseline. 

 

Figure 132 – Ship-fixed coordinate system. 
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RESUME ETENDU 

 INTRODUCTION 

Depuis la première conférence SOLAS en 1914 [10], la sécurité des biens et des personnes en 

ŵeƌ fait l’oďjet de Ŷoŵďƌeuses disĐussioŶs iŶteƌŶatioŶales aǇaŶt aďouti à l’ĠtaďlisseŵeŶt de 
règles appliquées à la construction du navire et vérifiées par la société de classification 

durant son exploitation. Les causes principales des grands accidents de navires sont 

multiples : stabilité insuffisante, envahissement (collision avec un autre navire, le fond ou un 

objet flottant, agression militaire), incendie, avarie structurelle. Toutes ces causes font 

l’oďjet de Ŷoŵďƌeuǆ ƌğgleŵeŶts. 

Les pƌeŵiğƌes ƌğgles de staďilitĠ à l’Ġtat iŶtaĐt oŶt ĠtĠ dĠfiŶies paƌ l’OMI eŶ ϭϵϲϴ, sous la 
forme de recommandations [14]. Elles ont été complétées par le critère météorologique en 

1985 [16]. Aujouƌd’hui, Đes ƌğgles ďieŶ ĐoŶŶues soŶt oďligatoiƌes et foŶt l’oďjet de la paƌtie A 
du Đode de staďilitĠ à l’Ġtat iŶtaĐt de l’OMI [18]. L’eŶtƌĠe eŶ ǀigueuƌ de Đes ƌğgles Ŷ’a 
ŵalheuƌeuseŵeŶt pas ĠliŵiŶĠ les aĐĐideŶts des Ŷaǀiƌes à l’Ġtat iŶtaĐt. CeƌtaiŶs soŶt dus à la 
non-ĐoŶfoƌŵitĠ aǀeĐ les ƌğgles ou à uŶ ĐhaƌgeŵeŶt eǆĐessif ou ŵal aƌƌiŵĠ. D’autƌes 
accidents montrent que la stabilité peut être mise à défaut dans les vagues, majoritairement 

paƌ ŵeƌ de l’aƌƌiğƌe, ŵalgƌĠ le ƌespeĐt des ƌğgles de staďilitĠ et de ĐhaƌgeŵeŶt. Quelques-

uns, suffisamment documentés, sont listés ci-dessous : 

 perte du cargo Lohengrin en mer Baltique en 1950, probablement due à une stabilité 

négative sur une crête de vague [40] ; 

 peƌte d’uŶ Ŷaǀiƌe de tƌaŶspoƌt de GPL eŶ MĠditeƌƌaŶĠe eŶ ϭϵϲϵ, due à une cause 

similaire [36] ; 

 roulis excessif du porte-conteneurs APL China dans le Pacifique nord en 1998, consécutif 

à une résonance paramétrique dans les vagues longitudinales [41] ; 

 roulis excessif du porte-conteneurs Maersk Carolina daŶs l’AtlaŶtiƋue Ŷoƌd eŶ ϮϬϬϯ pouƌ 
une raison identique [45] ; 

 peƌte d’uŶ Ŷaǀiƌe de pġĐhe au laƌge de l’EspagŶe eŶ ϮϬϬϰ, pƌoďaďleŵeŶt due à uŶe 
staďilitĠ ŶĠgatiǀe suƌ uŶe Đƌġte de ǀague ĐoŵďiŶĠe à uŶ eŵďaƌƋueŵeŶt d’eau suƌ le poŶt 
de travail [37] ; 

 chavirement du roulier Cougar Ace dans le Pacifique nord en 2006 consécutif à une 

stabilité insuffisante sur une crête de houle combinée à un mouvement de ballast [40] ; 

 perte du roulier Finnbirch en mer Baltique en 2006 consécutif à une stabilité insuffisante 

sur houle ; dans son rapport [39], l’adŵiŶistƌatioŶ ŵaƌitiŵe suĠdoise pƌĠĐoŶise la ŵise eŶ 
plaĐe de ƌğgles de staďilitĠ suƌ ŵeƌ de l’aƌƌiğƌe ; 

 roulis excessif du porte-conteneurs Chicago Express durant un typhon au large de Hong-

Kong en 2008 dû à une hauteur métacentrique excessive [60]. 

Ces aĐĐideŶts, paƌŵi d’autƌes, oŶt poiŶtĠ l’iŶsuffisaŶĐe des ƌğgles de staďilitĠ à l’Ġtat iŶtaĐt 
daŶs ĐeƌtaiŶes ĐoŶfiguƌatioŶs de ŶaǀigatioŶ daŶs les ǀagues et oŶt aŵeŶĠ l’OMI à 
développer des nouvelles règles à partir de 2007. Appelées « Đƌitğƌes de staďilitĠ à l’Ġtat 
intact de seconde génération », ces règles sont organisées en 5 modes de défaillance : 
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 peƌte puƌe de staďilitĠ eŶ ŵeƌ de l’aƌƌiğƌe ; 

 roulis paramétrique ; 

 peƌte de ŵaŶœuǀƌaďilitĠ eŶ ŵeƌ de l’aƌƌiğƌe ; 

 navire dans propulsion en mer et vent traversiers ; 

 accélération de roulis excessive. 

Dans chaque mode de défaillaŶĐe, ϯ Ŷiǀeauǆ d’ĠǀaluatioŶ soŶt dĠfiŶis : 

 le niveau 1 est basé sur une approche déterministe simplifié du phénomène et supposé 

procurer des marges de sécurité élevées ; 

 le niveau 2 est basé sur une approche physique plus poussée du phénomène couplée à 

une étude probabiliste ; les marges de sécurité correspondantes sont supposées 

réduites ; 

 le niveau 3, actuellement en cours de définition, devrait consister en des simulations 

numériques du comportement du navire sur la houle et devrait procurer des marges de 

sécurité optimisées ; il deǀƌait ġtƌe ŵis eŶ œuǀƌe paƌ des iŶstituts spĠĐialisĠs. 

Cette Ŷouǀelle ƌĠgleŵeŶtatioŶ est dĠfiŶie paƌ l’OMI daŶs deuǆ doĐuŵeŶts [22 et 23] 

décrivant les règles proprement dites et proposant des notes explicatives dont la présence 

est motivée par la complexité inhabituelle des règles. La réglementation entrera en vigueur 

au plus tôt en 2019, sous la forme de recommandations dans un premier temps. 

La perte pure de stabilité et le roulis paramétrique sont tous deux consécutifs à la variation 

du couple de redressement dans les vagues longitudinales. La première défaillance est un 

évènement sur une vague extrême tandis que la seconde est consécutive à la répétition de 

la ƌeŶĐoŶtƌe des ǀagues. Quoi Ƌu’il eŶ soit, l’ĠǀaluatioŶ de Đes deuǆ ŵodes de dĠfaillaŶĐe 
nécessite le même outil informatique capable de calculer le couple de redressement dans les 

vagues longitudinales. 

Le but du travail effectué dans le cadre de cette thèse est l’aŶalǇse de l’eǆigeŶĐe et de la 

pertinence des critères les premiers et deuxièmes niveaux de ces deux modes de défaillance. 

Cela nécessite l’iŵplĠŵeŶtatioŶ de ces critères dans un code informatique. Le logiciel 

hǇdƌostatiƋue CalĐoƋue, utilisĠ à l’EĐole Ŷaǀale pouƌ l’eŶseigŶeŵeŶt et la ƌeĐheƌĐhe, est 
modifié pour cela. Les critères sont calculés pour plusieurs navires de différents types, civils 

et militaires, choisis pour leurs comportements différents connus ou supposés vis-à-vis de 

ces modes de défaillance. Ces navires sont présentés en annexe 2. Le ďut ĠtaŶt d’Ġǀalueƌ les 
critères et non les navires, les résultats sont fournis sous la forme de courbes de KGmax, 

indiquant la hauteur maximale du centre de gravité garantissant le respect du (des) critère(s) 

considéré(s). 

La première partie de ce résumé présente les critères de niveau 1 et niveau 2 de perte pure 

de stabilité et de roulis paramétrique. La seconde partie décrit les principaux algorithmes 

utilisés pour calculer le couple de redressement dans sur mer plate et dans les vagues. Les 

résultats sont fournis dans la troisième partie. La seconde vérification du critère de niveau 2 

du ƌoulis paƌaŵĠtƌiƋue ŶĠĐessite le ĐalĐul de l’aŶgle de ƌoulis ŵaǆiŵuŵ eŶ ĐoŶditioŶ de 
résonance. Une méthode de calcul alternative aux deux méthodes décrites dans la 

réglementation est proposée dans la quatrième et dernière partie de ce résumé.  
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1. CRITERES DE STABILITE A L’ETAT INTACT DE SECONDE GENERATION 

Perte pure de stabilité 

Description physique 

LoƌsƋu’uŶ Ŷaǀiƌe Ŷaǀigue daŶs les ǀagues, la gĠoŵĠtƌie de la paƌtie iŵŵeƌgĠe de soŶ flotteuƌ 
est modifiée en permanence. Dans les vagues longitudinales (c.-à-d. ŵeƌ de l’aǀaŶt ou ŵeƌ 
de l’aƌƌiğƌeͿ, la gĠoŵĠtƌie de la suƌfaĐe de flottaisoŶ gauĐhe ĐhaŶge ĠgaleŵeŶt, pƌoǀoƋuaŶt 
des variations de son inertie, donc de la hauteur métacentrique (GM) et du couple de 

redressement. Il existe en conséquence un risque de stabilité insuffisante ou même de 

chavirement si la configuration défavorable, caractérisée par la crête de la vague centrée sur 

le milieu du navire, dure suffisamment longtemps. Le risque de perte pure de stabilité est 

conditionné par : 

 la gĠoŵĠtƌie des ǀagues, Ƌui auƌoŶt d’autaŶt plus d’effet Ƌue leuƌ loŶgueuƌ est pƌoĐhe de 
celle du navire et que leur hauteur est importante ; 

 la gĠoŵĠtƌie de la ĐaƌğŶe, Ƌui doit pƌĠseŶteƌ uŶ dĠǀeƌs iŵpoƌtaŶt à l’aǀaŶt et à l’aƌƌiğƌe 
ainsi que des murailles verticales en section médiane pour que la variation de GM soit 

significative ; 

 la vitesse du navire, qui doit être proche de celle de la crête des vagues en mer de 

l’aƌƌiğƌe. 

EŶ ĐoŶsĠƋueŶĐe, les Ŷouǀeauǆ Đƌitğƌes de peƌte puƌe de staďilitĠ s’appliƋueŶt aux navires 

dont le nombre de Froude est supérieur à 0,24. 

Niveau 1 

Le critère de niveau 1 impose que la hauteur métacentrique minimale sur houle (GMmin) soit 

supérieure à 5 centimètres. Deux méthodes de calcul de sa valeur sont proposées. La 

première méthode ĐoŶsidğƌe uŶe suƌfaĐe de flottaisoŶ isoĐliŶe à tiƌaŶt d’eau ƌĠduit 
supposée avoir une inertie similaire à celle de la surface de flottaison gauche lorsque le 

navire est centré sur la crête de vague. La seconde méthode consiste à retenir la plus petite 

valeur de 10 hauteurs métacentriques calculées pour 10 positions différentes sur une vague 

sinusoïdale ayant la même longueur que le navire. 

Niveau 2 

Le critère de niveau 2 consiste en une approche probabiliste du phénomène associée à un 

diagramme de dispersion de vagues. Le diagramme proposé dans la recommandation n° 34 

de l’IAC“ [69] est imposé pour une navigation sans limitation géographique. Un autre 

diagramme peut être choisi pour une navigation en zone limitée. Pour que le navire soit jugé 

non vulnérable, deux coefficients CR1 et CR2 doivent être simultanément inférieurs à 0,06. 

Le pƌeŵieƌ ĐoeffiĐieŶt ĐoŶsidğƌe l’aŶgle de ĐhaǀiƌeŵeŶt statiƋue suƌ ĐhaƋue ǀague du 
diagramme de dispersion. Cet angle doit être inférieur à 25 degrés ou 15 degrés pour les 

navires à passagers. Le seĐoŶd ĐoŶsidğƌe l’aŶgle d’ĠƋuiliďƌe staďle ƌĠsultant d’uŶ ŵoŵeŶt 
inclinant proportionnel au carré de la vitesse du navire sur chaque vague. Le nombre de 

vagues dans le diagramme de dispersion étant important, la future réglementation impose 

l’utilisation du concept de hauteur de vague effective de Grim [65] permettant de réduire le 

nombre de calculs hydrostatiques. 
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Roulis paramétrique 

Description physique et historique 

Le couple de redressement varie avec la rencontre des vagues en mer longitudinale. Bien 

Ƌu’il Ŷ’Ǉ ait pas d’eǆĐitatioŶ tƌaŶsǀeƌse dans une telle configuration, une amplification du 

roulis est possible si la fréquence de rencontre est proche du double de la fréquence de 

roulis naturelle du navire et si l’aŵoƌtisseŵeŶt, dû ŶotaŵŵeŶt auǆ Ƌuilles aŶti-roulis, est 

insuffisant. Ce phénomène, appelé résonance paramétrique, est connu depuis longtemps 

dans de nombreux domaines en mécanique [15], en mathématiques [9] ou en optique [13]. 

Il est utilisé par les enfants sur les balançoires. L’eǆisteŶĐe thĠoƌiƋue du roulis paramétrique 

est mise en évidence par Froude [8] en 1861. En 1955, Kerwin en fait une étude analytique 

et pratique poussée [12], quelques décennies avant les premiers accidents survenus sur des 

porte-conteneurs [41 et 45]. 

Niveau 1 

Le critère de niveau 1 impose que la variation adimensionnelle de la hauteur métacentrique 

(GM/GMͿ soit iŶfĠƌieuƌe à uŶ seuil doŶt la ǀaleuƌ dĠpeŶd pƌiŶĐipaleŵeŶt de l’aiƌe des 
quilles anti-roulis. Deux méthodes sont proposées pour déterminer GM. Elles sont 

similaires à celles proposées en perte pure de stabilité. La première méthode considère deux 

flottaisoŶs isoĐliŶes, à tiƌaŶt d’eau ƌĠduit et à tiƌaŶt d’eau augŵeŶtĠ, supposĠes avoir une 

inertie similaire à celle de la surface de flottaison gauche lorsque le navire est centré 

respectivement sur la crête et le creux de la vague. La seconde méthode consiste à retenir la 

plus petite et la plus grande valeurs de 10 hauteurs métacentriques calculées pour 10 

positions différentes sur une vague sinusoïdale ayant une longueur entre crêtes égale à celle 

du navire. 

Niveau 2 

Le critère niveau 2 est constitué de deux conditions portant sur deux coefficients notés C1 et 

CϮ et deǀaŶt ġtƌe l’uŶ ou l’autƌe iŶfĠƌieuƌ à Ϭ,Ϭϲ. ChaĐuŶe de Đes deuǆ ǀĠƌifiĐatioŶs 
consistent en une approche probabiliste du phénomène associé à un diagramme de vagues, 

choisi dans les mêmes conditions que celui du critère de niveau 2 de perte pure de stabilité. 

La première vérification (C1) considère la variation de hauteur métacentrique et la vitesse de 

ƌĠsoŶaŶĐe paƌaŵĠtƌiƋue suƌ ĐhaĐuŶe des ǀagues d’uŶe liste ƌĠduite dĠteƌŵiŶĠe à paƌtiƌ du 

diagramme de dispersion de vagues. 

La seĐoŶde ǀĠƌifiĐatioŶ ;CϮͿ ĐoŶsidğƌe l’aŶgle de ƌoulis ŵaǆiŵuŵ suƌ ĐhaƋue ǀague du 
diagƌaŵŵe de dispeƌsioŶ et pouƌ ϳ ǀitesses diffĠƌeŶtes du Ŷaǀiƌe eŶ ŵeƌ de l’aǀaŶt ou ŵeƌ 
de l’arrière. Deux méthodes sont proposées pour calculer sa valeur. La première méthode 

est basée sur la méthode des moyennes, qui donne une solution analytique pour les 

oscillateurs non linéaires en assimilant les non linéarités à des petites perturbations 

provoquant une évolution lente de la réponse du système. Cette méthode est décrite en 

détail par Nayfeh [66]. La seconde méthode consiste en la résolution numérique de 

l’ĠƋuatioŶ diffĠƌeŶtielle à un degré de liberté régissant le roulis paramétrique. Des 

ƌeĐoŵŵaŶdatioŶs pouƌ sa ŵise eŶ œuǀƌe soŶt doŶŶĠes paƌ Peteƌs et al. [32] et reprises 

dans les notes explicatives de la future réglementation [23]. Seule cette seconde méthode 

est ŵise eŶ œuǀƌe dans la thèse. Les ŵĠthodes siŵplifiĠes d’Ikeda [48 et 50] sont utilisées 

pouƌ estiŵeƌ le ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt eŶ ƌoulis pouƌ les deuǆ ŵĠthodes. Le concept de 

vague effective de Grim [65] est imposé pour réduire le nombre de calculs hydrostatiques, 
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en ramenant les vagues du diagramme de dispersion à des vagues équivalentes dont la 

longueur entre crêtes est égale à celle du navire. 

2. CALCULS HYDROSTATIQUES 

Le logiciel hydrostatique Calcoque est utilisĠ pouƌ l’eŶseigŶeŵeŶt et la ƌeĐheƌĐhe à l’EĐole 
navale. Il a été modifié dans le cadre de la thèse pour permettre le calcul de la hauteur 

métacentrique et de la courbe de GZ sur houle longitudinale et des critères de niveaux 1 et 2 

de perte pure de stabilité et de roulis paramétrique. Les calculs hydrostatiques sont basés 

sur trois algorithmes principaux décrits ci-dessous. 

Maillage volumique du navire 

Le pƌeŵieƌ algoƌithŵe tƌaŶsfoƌŵe la ƌepƌĠseŶtatioŶ ĐlassiƋue des foƌŵes d’uŶ Ŷaǀiƌe paƌ 
couples en un maillage volumique à partir duquel sont réalisés les calculs hydrostatiques 

proprement dits. Ces couples sont une suite de points (Y,Z) situés à une même coordonnée 

longitudinale X (voir le repère lié au navire en annexe 4). En complément, des lignes reliant 

certains points des couples soŶt dĠfiŶies paƌ l’utilisateuƌ afiŶ de ŵatĠƌialiseƌ les aƌġtes 
principales du navire ;liǀet de poŶt, ďouĐhaiŶ, …Ϳ. Le maillage est réalisé tranche par tranche, 

celles-ci étant définies entre deux couples successifs. Une matrice représentant les liens 

eŶtƌe les poiŶts d’uŶ Đouple et ceux du couple suivant est renseignée par les lignes imposées 

paƌ l’utilisateuƌ, puis ĐoŵplĠtĠe autoŵatiƋueŵeŶt paƌ d’autƌes lieŶs de ŵaŶiğƌe à dĠfiŶiƌ 
des triangles et des quadrilatères sur chaque face latérale de la tranche. Deux triangles 

symétriques définissent un prisme et deux quadrilatères définissent un hexaèdre. La 

concaténation des volumes élémentaires de toutes les tranches définit le maillage 

volumique du navire. Ce maillage est coupĠ paƌ le poŶt d’ĠtaŶĐhĠitĠ et ĐoŵplĠtĠ paƌ les 
appendices afin de représenter le flotteur réel. 

Coupure d’un maillage volumique par un plan 

Le deuxième algorithme coupe un maillage par un plan. Il constitue la base des calculs 

hydrostatiques proprement dits, en coupant le maillage volumique du flotteur par le plan de 

la mer afin de définir la surface de flottaison et le volume de carène. La coupuƌe d’uŶ 
maillage par un plan permet également la définition du volume des compartiments ou des 

poŶts et des ĐloisoŶs du Ŷaǀiƌe. L’algoƌithŵe de Đoupuƌe tƌaite suĐĐessiǀeŵeŶt tous les 
volumes élémentaires du maillage. Seul les cas simples sont considérés pour les prismes et 

les hexaèdres. Pour les autres cas, ceux-ci sont préalablement divisés respectivement en 3 et 

ϲ tĠtƌağdƌes. La Đoupuƌe d’uŶ tĠtƌağdƌe ƋuelĐoŶƋue paƌ uŶ plaŶ est ƌaŵeŶĠe à ϴ Đas siŵples 
et génère 0 ou 1 tétraèdre ou prisme de chaque côté du plan et 0 ou 1 triangle ou 

Ƌuadƌilatğƌe d’iŶteƌseĐtioŶ aǀeĐ le plaŶ. 

Recherche de la position d’équilibre 

La ƌeĐheƌĐhe de la positioŶ d’ĠƋuiliďƌe se fait eŶ ϯ degƌĠs de liďeƌtĠ ;eŶfoŶĐeŵeŶt, gîte, 
assiette) ou 2 degrés de liberté lors du calcul de la courbe de GZ (gîte imposée). L’ĠƋuiliďƌe 

est considéré atteint ƋuaŶd l’ĠĐaƌt eŶ ǀoluŵe, l’ĠĐaƌt tƌaŶsǀeƌsal et l’ĠĐaƌt loŶgitudiŶal soŶt 
suffisaŵŵeŶt petits. L’ĠĐaƌt eŶ ǀoluŵe ƌepƌĠseŶte la diffĠƌeŶĐe eŶtƌe le ǀoluŵe de ĐaƌğŶe 
visé et le volume calculé aveĐ l’eŶfoŶĐeŵeŶt, la gîte et l’assiette ĐouƌaŶts. Pouƌ dĠfiŶiƌ les 
deuǆ autƌes ĠĐaƌts, oŶ dĠfiŶit deuǆ plaŶs peƌpeŶdiĐulaiƌes, l’uŶ tƌaŶsǀeƌsal et l’autƌe 
longitudinal, dont la droite d’iŶteƌseĐtioŶ est la ǀeƌtiĐale teƌƌestƌe passaŶt paƌ le ĐeŶtƌe de 
carène. L’ĠĐaƌt loŶgitudiŶal est la distaŶĐe eŶtƌe le ĐeŶtƌe de gƌaǀitĠ et le plaŶ tƌaŶsǀeƌsal. 
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L’ĠĐaƌt tƌaŶsǀeƌsal est la distaŶĐe eŶtƌe le ĐeŶtƌe de gravité et le plan longitudinal et 

correspond au bras de levier de redressement GZ, à annuler lors de la recherche de la 

positioŶ d’ĠƋuiliďƌe du Ŷaǀiƌe suƌ ŵeƌ plate ou suƌ houle figĠe, siŶoŶ à dĠteƌŵiŶeƌ ;Đouƌďe 
de GZ). 

Le plaŶ de la ŵeƌ est dĠfiŶi paƌ l’eŶfoŶĐeŵeŶt, la gîte et l’assiette dans le repère lié au 

navire. Il sert de plan de coupure du maillage du volume étanche lors de la recherche de 

l’ĠƋuiliďƌe suƌ ŵeƌ plate. EŶ Đas de ƌeĐheƌĐhe de l’ĠƋuiliďƌe suƌ sur vagues longitudinales 

statiques, le volume étanche est préalablement découpé en tranches transversales. Dans 

chaque tranche, un plan de coupure local est défini en fonction des caractéristiques des 

vagues et de la position du navire (enfoncement, gîte assiette). 

La recheƌĐhe de la positioŶ d’ĠƋuiliďƌe sur mer plate ou sur houle figée consiste en la 

ƌĠsolutioŶ d’uŶ sǇstğŵe ŶoŶ liŶĠaiƌe de ϯ ĠƋuatioŶs et ϯ inconnues (ou 2x2 si la gîte est 

figée). Elle suit un processus itératif. Deux méthodes coexistent. 

DaŶs la pƌeŵiğƌe ŵĠthode, l’eŶfoŶĐeŵeŶt, la gîte et l’assiette de l’itĠƌatioŶ suiǀaŶte soŶt 
ĐalĐulĠs à paƌtiƌ de Đeuǆ de l’itĠƌatioŶ précédente en utilisant ƌespeĐtiǀeŵeŶt l’ĠĐaƌt eŶ 
ǀoluŵe et l’aiƌe de la suƌfaĐe de flottaisoŶ, l’ĠĐaƌt tƌaŶsǀeƌsal et la hauteuƌ ŵĠtaĐeŶtƌiƋue 
tƌaŶsǀeƌsale, l’ĠĐaƌt loŶgitudiŶal et la hauteuƌ ŵĠtaĐeŶtƌiƋue loŶgitudiŶale. L’ĠǀolutioŶ du 
volume de carène, et des écarts transversal et loŶgitudiŶal d’uŶe itĠƌatioŶ à l’autƌe peƌŵet 
de ƌĠĠǀalueƌ l’aiƌe de la suƌfaĐe de flottaisoŶ et les deuǆ hauteuƌs ŵĠtaĐeŶtƌiƋues. Ces ϯ 
grandeurs sont calculées classiquement avant la première itération. 

Dans la seconde méthode, à chaque itération, 3 calculs hydrostatiques (2 si la gîte est figée) 

permettent de déterminer l’iŵpaĐt d’uŶ iŶĐƌĠŵeŶt ĠlĠŵeŶtaiƌe d’eŶfoŶĐeŵeŶt, de gîte puis 

d’assiette suƌ les ϯ ĠĐaƌts ;ǀoluŵe, tƌaŶsǀeƌsal, loŶgitudiŶalͿ. “’eŶ suit la ƌĠsolutioŶ d’uŶ 
système linéaire de dimension 3 (2 si la gîte est figée) pour déterminer les incréments 

d’eŶfoŶĐeŵeŶt, de gîte et d’assiette peƌŵettaŶt de faiƌe ĐoŶǀeƌgeƌ les ĠĐaƌts ǀeƌs zĠƌo. UŶ 
Ƌuatƌiğŵe ĐalĐul hǇdƌostatiƋue doŶŶe les ĠĐaƌts ƌĠsiduels Ƌue l’oŶ ĐheƌĐhe à ƌĠduiƌe à 
nouveau loƌs de l’itĠƌatioŶ suiǀaŶte. 

Dans les deux méthodes, le signe des hauteurs métacentriques est vérifié afin de diverger 

d’uŶe ĠǀeŶtuelle positioŶ d’ĠƋuiliďƌe iŶstaďle. Les deuǆ ŵĠthodes ĐoŶǀeƌgeŶt ǀeƌs la ŵġŵe 
positioŶ d’ĠƋuiliďƌe et ŶĠĐessiteŶt des Ŷoŵďƌes de calculs hydrostatiques similaires. 

3. RESULTATS 

Les courbes de KGmax associées aux critères de niveau 1 et niveau 2 de perte pure de stabilité 

et de roulis paramétrique sont calculées pour 6 navires civils (2 porte-conteneurs dont un 

connu pour être vulnérable au roulis paramétrique, 2 navires à passagers, 1 navire roulier et 

1 pétrolier). BieŶ Ƌue l’appliĐatioŶ de Đes Ŷouǀeauǆ Đƌitğƌes auǆ Ŷaǀiƌes ŵilitaiƌes Ŷe soit pas 

envisagée aujouƌd’hui, ƌieŶ Ŷe gaƌaŶtit la ŶoŶ-vulnérabilité de ces navires. Par ailleurs, le 

faible nombre de navires militaires en service, comparé à celui des navires civils, rend quasi 

iŶeǆistaŶt le ƌetouƌ d’eǆpĠƌieŶĐe daŶs le doŵaiŶe des ŵodes de dĠfaillaŶĐe ĐoŶsidĠƌĠs. 
AiŶsi, il paƌait iŶtĠƌessaŶt de testeƌ l’appliĐation des nouveaux critères aux navires militaires. 

Trois d’eŶtƌe euǆ oŶt ĠtĠ sĠleĐtioŶŶĠs à Đet effet (porte-hélicoptère JeaŶŶe d’AƌĐ, destroyer 

type DDG-51 et patrouilleur hauturier). Les navires testés sont présentés en annexe 2. 
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Perte pure de stabilité 

Les courbes de KGmax associées aux critères de niveau 1 et 2 en perte pure de stabilité 

montrent les points suivants : 

 La courbe associée à la première méthode du critère de niveau 1 présente un 

décrochement lorsque la flottaison isocline intercepte les évidements dans la coque 

;logeŵeŶts des aileƌoŶs staďilisateuƌsͿ. L’utilisatioŶ de la ĐoƋue Ŷue ;saŶs appeŶdiĐe Ŷi 
évidement) masque ce phénomène. 

 Les deux méthodes du critère de niveau 1 fournissent des résultats très différents pour 

tous les navires. La première méthode (flottaison isocline) est très conservative. 

 Le critère de niveau 2 est plus conservatif que la seconde méthode du critère de niveau 1 

pour certains navires, ĐoŶtƌaiƌeŵeŶt à l’espƌit de la Ŷouǀelle ƌĠgleŵeŶtatioŶ. 

 La hauteur du pont étanche peut avoir une très légère influence sur la seconde méthode 

du niveau 1. Elle a en revanche une influence considérable sur le critère de niveau 2. Il 

parait sage en conséquence que la future réglementation spécifie clairement le pont 

étanche à prendre en compte. 

 L’iŶflueŶĐe de la ǀitesse du Ŷaǀiƌe Ŷ’est pas sǇstĠŵatiƋue. LoƌsƋu’elle eǆiste, 
l’augŵeŶtatioŶ de la ǀitesse augŵeŶte la ǀulŶĠƌaďilitĠ du Ŷaǀiƌe, Đoŵŵe atteŶdu. 

Roulis paramétrique 

Les courbes de KGmax associées aux critères de niveau 1 et 2 en roulis paramétrique 

montrent les points suivants (dont certains sont similaires à ceux observés en perte pure de 

stabilité) : 

 La courbe associée à la première méthode du critère de niveau 1 présente un 

décrochement lorsque la flottaison isocline intercepte les évidements dans la coque. 

CepeŶdaŶt, les dĠĐƌoĐheŵeŶts iŶteƌǀieŶŶeŶt à des tiƌaŶts d’eau ou des dĠplaĐeŵeŶts 
différents de ceux observés en perte pure de stabilité car la cambrure de vague 

considérée est différente. 

 Les deux méthodes du critère de niveau 1 fournissent des résultats très différents pour 

certains navires (dont tous les navires militaires). La première méthode (flottaison 

isocline) est toujours plus conservative. 

 Le critère de niveau 2 est plus conservatif que la seconde méthode du critère de niveau 1 

pour certains navires. Cependant, cette incohérence est moins marquée que celle 

observée en perte pure de stabilité. 

 Pour certains navires, le KGmax associé à la seconde vérification du critère de niveau 2 (C2) 

correspond à un GM nul (pétrolier, navire à passager, JeaŶŶe d’AƌĐ). Cela est dû au fait 

Ƌue l’aŶgle de ƌoulis ŵaǆiŵal autoƌisĠ ;Ϯϱ degƌĠsͿ Ŷ’est atteiŶt Ƌue loƌsƋue le Ŷaǀiƌe 
devient statiquement instable. Ces navires ne sont pas vulnérables au roulis 

paramétrique. 

 Le résultat de la seconde vérification du critère de niveau 2 est incohérent pour l’un des 

deux navires à passagers. La ŵĠthode de ĐalĐul du ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt iŵposĠe 
dans la réglementation est inadaptée à sa coque à bouchain vif. 
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 Le porte-conteneurs C11, connu pour être vulnérable au roulis paramétrique à la suite de 

l’aĐĐideŶt suƌǀeŶu eŶ ϭϵϵϴ [41], est bien jugé comme tel par les nouveaux critères. Il en 

est de même pouƌ l’autƌe poƌte-conteneurs. 

La seconde vérification du critère de niveau 2 (C2), vue ici comme un critère indépendant, a 

un comportement sensiblement différent de celui des autres critères. Le calcul de C2 pour 

uŶ tiƌaŶt d’eau doŶŶĠ et toutes les ǀaleurs possibles de KG génère une courbe présentant de 

nombreux pics lorsque le navire est vulnérable au roulis paramétrique. Il en résulte que le 

critère C2 peut être respecté au-delà de KGmax, configuration impossible pour les autres 

critères. Le calcul de CϮ pouƌ toutes les ǀaleuƌs possiďles de tiƌaŶt d’eau et de KG gĠŶğƌe des 

surfaces autorisées et interdites au regard du critère associé. Il résulte de cela que la 

vérification du respect du critère pour un cas de chargement donné (correspondant à un 

couple tiƌaŶt d’eau et KGͿ Ŷe suffiƌa pas. EŶ effet, il est possiďle Ƌue le Đƌitğƌe Ŷe soit plus 
vérifié si le KG est légèrement inférieur à celui du cas de chargement. Cette particularité 

devrait être indiquée clairement dans la nouvelle réglementation. 

Le calcul de l’aŶgle de ƌoulis ŵaǆiŵuŵ, ƌeƋuis daŶs le Đƌitğƌe CϮ, est ƌĠalisĠ paƌ ƌĠsolutioŶ 
ŶuŵĠƌiƋue de l’ĠƋuatioŶ diffĠƌeŶtielle du ƌoulis paƌaŵĠtƌiƋue. Des ĐoŶditioŶs de ƌĠsolutioŶ 
ont été proposées par Peters et al. [32] et reprises dans les notes explicatives de la future 

réglementation [23]. Sont proposés entre autres : 

 une durée de simulation égale à 15 périodes naturelles de roulis du navire ; 

 un angle de gîte initial de 5 degrés et une vitesse initiale nulle ; 

 de considérer le GZ non linéaire. 

Une étude de sensibilité réalisée sur plusieurs navires présentant des vulnérabilités 

différentes montre que : 

 quelle que soit la vulnérabilité du navire, les courbes de KGmax associées au critère C2 sont 

confondues pour une durée de simulation égale ou supérieure à 10 périodes naturelles de 

roulis ; 

 l’influence de l’aŶgle de gîte iŶitiale sur les courbes de KGmax associées au critère C2 est 

faible ; 

 la liŶĠaƌisatioŶ du G) Ŷ’est pas peƌtiŶeŶte, eǆĐeptĠ daŶs le Đas paƌtiĐulieƌ où le G) ƌĠel est 
ƌelatiǀeŵeŶt liŶĠaiƌe jusƋu’à Ϯϱ degrés ou au-delà. 

Des simulations numériques du comportement du porte-conteneurs C11 réalisées en 6 

degƌĠs de liďeƌtĠ à l’aide du logiĐiel FƌedǇŶ [70] montrent que : 

 à pleine charge, le navire peut chavirer en roulis paramétrique avec un KG autorisé par les 

Đƌitğƌes de staďilitĠ à l’Ġtat iŶtaĐt aĐtuelleŵeŶt eŶ ǀigueuƌ [18] et dépasser 25 degrés de 

roulis quelle que soit son chargement ; Đela ŵoŶtƌe ďieŶ la ŶĠĐessitĠ d’uŶe Ŷouǀelle 
réglementation considérant ce mode de défaillance ; 

 la courbe de KGmax associée au critère C2 est proche de la courbe équivalente considérant 

un angle de roulis paramétrique maximum de 25 degƌĠs ĐalĐulĠe à l’aide des siŵulatioŶs 
en 6 degrés de liberté. 
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4. ANALYSE ENERGETIQUE DU ROULIS PARAMETRIQUE 

La seconde vérification du critère de niveau 2 du roulis paramétrique (C2) requiert le calcul 

de l’aŶgle de ƌoulis ŵaǆiŵuŵ pouƌ diffĠƌeŶtes ǀitesses eŶ ŵeƌ de l’aǀaŶt et eŶ ŵeƌ de 
l’aƌƌiğƌe. Les deuǆ ŵĠthodes de ĐalĐul pƌoposĠes daŶs la futuƌe ƌĠgleŵeŶtatioŶ ĠtaŶt 
relativement complexes à implémenter, notamment pour les architectes navals habitués à la 

simplicité des critères actuels, nous proposons ici une méthode alternative simplifiée basée 

sur des considérations énergétiques et supposant un GZ linéaire. 

Roulis paramétrique en condition de résonance 

L’ĠƋuatioŶ diffĠƌeŶtielle du ƌoulis paƌaŵĠtƌiƋue est ƌĠĠĐƌite aǀeĐ uŶ G) liŶĠaiƌe et eŶ 
assimilant la composante non constante du moment de redressement à un moment 

d’eǆĐitatioŶ. OŶ suppose Ƌue le Ŷaǀiƌe ƌoule à sa fƌĠƋueŶĐe pƌopƌe eŶ ĐoŶditioŶ de 
résonance paramétrique. La fréquence de rencontre des vagues est égale au double de la 

fréquence propre. On suppose également que le navire a atteint un régime permanent de 

roulis paramétrique à amplitude constance. Ces hypothèses rendent constants les termes 

d’iŶeƌtie et d’aŵoƌtisseŵeŶt de l’ĠƋuatioŶ diffĠƌeŶtielle. 

La soŵŵe de l’ĠŶeƌgie ĐiŶĠtiƋue et de l’ĠŶergie potentielle est constante à tout instant car le 

navire roule à sa fréquence propre. En conséquence, l’hǇpothğse d’uŶe amplitude de roulis 

constante impose Ƌue la totalitĠ de l’ĠŶeƌgie appoƌtĠe paƌ l’eǆĐitatioŶ soit dissipée par 

l’aŵoƌtisseŵeŶt. En supposant le cas le plus défavorable (c.-à-d. l’eǆĐitatioŶ la plus 
importante) concernant le décalage angulaire entre la rencontre des vagues et le roulis du 

Ŷaǀiƌe, oŶ dĠteƌŵiŶe uŶ ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt dit « requis » permettant une 

amplitude de ƌoulis ĐoŶstaŶte. “i le ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt ƌĠel est supĠƌieuƌ à Đette 
ǀaleuƌ, le ƌoulis paƌaŵĠtƌiƋue Ŷ’appaƌaît pas. “i, à l’opposé, le coefficient réel ne peut pas 

atteiŶdƌe la ǀaleuƌ ƌeƋuise, l’aŵplitude du ƌoulis paƌaŵĠtƌiƋue est thĠoƌiƋueŵeŶt infinie, 

pƌoǀoƋuaŶt le ĐhaǀiƌeŵeŶt du Ŷaǀiƌe sous ƌĠseƌǀe de ĐoŵpatiďilitĠ aǀeĐ l’hǇpothğse du G) 
liŶĠaiƌe. Cela ĠtaŶt, le ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt est foŶĐtioŶ de l’aŵplitude du roulis. De 

fait, l’ĠgalitĠ eŶtƌe le ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt ƌĠel et la valeur requise permet, dans la 

plupart des cas, de poser une équation simple dont la racine est l’aŵplitude de ƌoulis. Le 

résultat obtenu ici est ideŶtiƋue Đelui oďteŶu paƌ d’autƌe ŵoǇeŶs paƌ KeƌǁiŶ eŶ ϭϵϱϱ [12]. 

Des simulations numériques en condition de résonance paramétrique donnent une 

amplitude de roulis finale identique à la valeur précédemment calculée. Cela donne une 

pƌeŵiğƌe ǀalidatioŶ de l’hǇpothğse du Đas le plus défavorable concernant le décalage 

angulaire (noté ) entre la rencontre des vagues et le roulis. Par ailleurs, ces simulations 

sont lancées avec un décalage angulaire différent et on montre que celui-ci évolue au début 

de la simulation vers la valeur la plus défavorable (=–/2). L’hǇpothğse ĐoŶĐeƌŶaŶt Đe 
décalage en condition de résonance paramétrique est validée. 

Roulis paramétrique dans les autres conditions 

Lorsque le navire roule à une fréquence autre que sa fréquence propre, la somme de 

l’ĠŶeƌgie ĐiŶĠtiƋue et de l’ĠŶeƌgie poteŶtielle Ŷ’est pas ĐoŶstaŶte. CepeŶdaŶt, sa ǀaleuƌ 
ŵoǇeŶŶe l’est. EŶ ĐoŶsĠƋueŶĐe, l’hǇpothğse d’aŵplitude de ƌoulis ĐoŶstaŶte fait Ƌue 
l’ĠŶeƌgie appoƌtĠe paƌ l’eǆĐitatioŶ paƌaŵĠtƌiƋue est eŶtiğƌeŵeŶt dissipĠe paƌ 
l’aŵoƌtissement, comme précédemment. 
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On note  le rapport entre la fréquence de rencontre et la fréquence de roulis du navire. Il 

est égal à 2 en condition de résonance. 

OŶ ŵoŶtƌe Ƌue l’ĠŶeƌgie d’excitation est portée par un signal sinusoïdal à deux fréquences : 

une basse fréquence égale à 2- et une haute fréquence égale à 2+. Le cas =-2 correspond 

à uŶe ǀitesse du Ŷaǀiƌe iƌƌĠaliste et Ŷ’est pas ĐoŶsidĠƌĠ. La ĐoeǆisteŶĐe de Đes deuǆ 
fréquences peut être montrée par une simulation numérique avec une vitesse du navire 

seŶsiďleŵeŶt diffĠƌeŶte de la ǀitesse de ƌĠsoŶaŶĐe. CepeŶdaŶt, l’oďseƌǀatioŶ de la ďasse 
fréquence est impossible dans ces conditions car le mouvement de roulis se décale 

autoŵatiƋueŵeŶt suƌ la houle pouƌ Đapteƌ uŶ ŵaǆiŵuŵ d’ĠŶeƌgie ;ĐhaŶgeŵeŶt de l’angle  

au cours de la simulation). DaŶs Đes ĐoŶditioŶs de ǀitesse, l’aŵplitude de ƌoulis 
paramétrique est très faible et le risque pour le navire est inexistant ou très limité. 

Les simulations numériques à un degré de liberté montrent que le roulis paramétrique 

apparaît lorsque la vitesse du navire est proche de la vitesse de résonance. Dans ce cas, la 

fréquence de roulis est exactement égale à la moitié de la fréquence de rencontre (=2). 

L’aŵplitude ŵaǆiŵale est oďseƌǀĠe à uŶe fƌĠƋueŶĐe lĠgğƌeŵeŶt inférieure à la fréquence de 

ƌĠsoŶaŶĐe. Le seĐoŶd ŵode de ƌoulis paƌaŵĠtƌiƋue, ĐaƌaĐtĠƌisĠ paƌ l’ĠgalitĠ eŶtƌe la 
fƌĠƋueŶĐe de ƌoulis et la fƌĠƋueŶĐe de ƌeŶĐoŶtƌe, est oďseƌǀaďle ŵais soŶ aŵplitude Ŷ’est 
pas significative. Le troisième mode de roulis paramétrique (fréquence de rencontre égale 

auǆ deuǆ tieƌs de la fƌĠƋueŶĐe de ƌoulisͿ Ŷ’est pas oďseƌǀaďle eŶ ĐoŶditioŶs ĐouƌaŶtes. 

Dans le domaine de roulis paramétrique centré sur la résonance du premier mode, les 

siŵulatioŶs ŵoŶtƌeŶt Ƌue l’aŶgle de dĠĐalage  évolue de 0 à - en passant par -/2 au 

ǀoisiŶage de la ƌĠsoŶaŶĐe. Ce dĠĐalage ŵodğƌe la puissaŶĐe d’eǆĐitatioŶ. La ǀaleuƌ -/2 

ĐoƌƌespoŶd à l’eǆĐitatioŶ ŵaǆiŵale. 

On observe que la largeur du domaine de roulis paramétrique, exprimée à l’aide du rapport 

entre la fréquence de rencontre et la fréquence de roulis naturelle du navire, est égale à la 

variation adimensionnelle de la hauteur métacentrique (GM/GM). Kerwin a démontré un 

résultat similaire en 1955 [12]. Des simulations numériques à six degrés de liberté sur une 

houle sinusoïdale avec un GZ non linéaire positionnent le domaine de roulis paramétrique 

aux mêmes fréquences. 

Méthode alternative 

Le ĐalĐul de l’aŶgle de roulis maximum en condition de résonance au moyen de 

considérations énergétiques, la connaissance des fréquences limitant le domaine de roulis 

paƌaŵĠtƌiƋue et l’ĠǀolutioŶ de l’aŶgle de dĠĐalage daŶs ce domaine permettent de bâtir une 

méthode alternatiǀe siŵple doŶŶaŶt l’aŶgle de ƌoulis ŵaǆiŵal eŶ foŶĐtioŶ de la ǀitesse du 
navire et de la variation de la hauteur métacentrique. Cette méthode, ďasĠe suƌ l’hǇpothğse 
d’un GZ linéaire, est compatible avec une implémentation dans la seconde vérification du 

critère de niveau 2 (C2). Les courbes de KGmax qui lui sont associées coïncident avec celles 

oďteŶues paƌ ƌĠsolutioŶ ŶuŵĠƌiƋue de l’ĠƋuatioŶ diffĠƌeŶtielle aǀeĐ G) liŶĠaiƌe, et Đe pouƌ 
plusieurs navires plus ou moins vulnérables au roulis paramétrique. 
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 CONCLUSION 

Les Đƌitğƌes de staďilitĠ à l’Ġtat iŶtaĐt de seĐoŶde gĠŶĠƌatioŶ soŶt aĐtuelleŵeŶt eŶ Đouƌs de 
fiŶalisatioŶ à l’OMI. Ces Đƌitğƌes soŶt oƌgaŶisĠs eŶ ĐiŶƋ ŵodes de dĠfaillaŶĐe et tƌois Ŷiǀeauǆ 
d’ĠǀaluatioŶ daŶs ĐhaƋue ŵode. La peƌte puƌe de staďilité et le roulis paramétrique sont 

deux défaillances consécutives à la variation du couple de redressement dans les vagues 

loŶgitudiŶales. Le ďut du tƌaǀail ƌĠalisĠ daŶs le Đadƌe de Đette thğse est l’aŶalǇse de 
l’eǆigeŶĐe et de la peƌtiŶeŶĐe des Đƌitğƌes de premier et deuxième niveaux de ces deux 

modes de défaillance. Ces critères ont été implémentés dans un logiciel hydrostatique 

ŵodifiĠ pouƌ l’oĐĐasioŶ. 

Les critères ont été calculés pour plusieurs navires de différents types, tant civils que 

militaires, supposés ou connus pour avoir des comportements différents vis-à-vis de ces 

ŵodes de dĠfaillaŶĐe. BieŶ Ƌue l’appliĐatioŶ de Đette Ŷouǀelle ƌĠgleŵeŶtatioŶ aux navires 

miliaires ne soit pas prévue, rien ne garantit la non-vulnérabilité de ces navires. Par ailleurs, 

les nouveaux critères constituent un outil à coût négligeable (environ 10 minutes de calcul 

pour une courbe de KGmax assoĐiĠe à uŶ Đƌitğƌe de Ŷiǀeau ϮͿ Ƌu’il seƌait ƌegƌettaďle d’igŶoƌeƌ. 
L’auteuƌ ƌeĐoŵŵaŶde la ŵodifiĐatioŶ des ƌğgleŵeŶts ŵilitaiƌes de staďilitĠ à l’Ġtat iŶtaĐt 
apƌğs l’eŶtƌĠe eŶ ǀigueuƌ de Đes Ŷouǀeauǆ Đƌitğƌes daŶs le Điǀil. Les ƌĠsultats soŶt doŶŶĠs 
sous la forme de courbes de KGmax indiquant la hauteur maximale du centre de gravité 

garantissant le respect du (des) critère(s) considéré(s). Cela peƌŵet d’igŶoƌeƌ les Đas de 
ĐhaƌgeŵeŶt des Ŷaǀiƌes ĠtudiĠs et d’aŶalǇseƌ les Đƌitğƌes plutôt Ƌue les Ŷaǀiƌes eux-mêmes. 

Le calcul des KGmax associés aux nouveaux critères montre que les critères de niveau 1 

peuvent être plus conservatifs que les critères de niveau 2 dans les deux modes de 

défaillance, contrairement à ce qui est attendu. Il montre également que les deux méthodes 

de calcul proposées dans le niveau 1 fournissent des KGmax sensiblement différents, 

notamment en perte pure de stabilité. Les marges de sécurité conférées par la première 

méthode de calcul (flottaison isocline) sont tellement élevées que les critères correspondant 

pouƌƌaieŶt ġtƌe iŶĐoŵpatiďles aǀeĐ les Đƌitğƌes d’aĐĐĠlĠƌatioŶ eǆĐessiǀe. EŶ ĐoŶsĠƋueŶĐe, 
s’ils soŶt ĠƋuipĠs d’uŶ outil de ĐalĐul hǇdƌodǇŶaŵiƋue suƌ houle, les ĐhaŶtieƌs Ŷaǀals et les 
aƌĐhiteĐtes Ŷaǀals deǀƌaieŶt ġtƌe teŶtĠs d’igŶoƌeƌ Đette ŵĠthode. Celle-ci aurait cependant 

une réelle valeur ajoutée si elle conférait des marges de sécurité acceptables pour les 

navires de faible déplacement, normalement conçus par des chantiers ou des cabinets 

d’aƌĐhiteĐtuƌe ĠƋuipĠs plus ŵodesteŵeŶt. Les ƌĠsultats oďteŶus suƌ uŶ Ŷaǀiƌe à passageƌs de 
30 mètres montrent que cela peut être le cas. 

BieŶ Ƌue Đela Ŷe soit pas l’oďjeĐtif premier ici, les résultats confirment la vulnérabilité au 

roulis paramétrique bien connue du porte-conteneurs C11. Ils confirment également la non-

ǀulŶĠƌaďilitĠ d’uŶ pĠtƌolieƌ ǀis-à-vis de la perte pure de stabilité et du roulis paramétrique, 

attendue en raison de la présence de murailles verticales sur une majeure partie de la coque 

du navire. 

Les courbes de KGmax associées à la première méthode des critères de niveau 1 des deux 

modes de défaillance montrent des décrochés consécutifs aux évidements de la coque 

(logements des ailerons stabilisateurs). L’utilisatioŶ de la ĐoƋue Ŷue ;saŶs appeŶdiĐe Ŷi 
évidement) masque ce phénomène. Par ailleurs, la limite supérieure du volume étanche a 

une influence majeure sur le KGmax associé au critère de niveau 2 de la perte pure de 

stabilité. 
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Recommandation : la future réglementation devrait clairement spécifier le volume étanche 

à considérer (coque nue ou avec appendices et évidements, hauteur du pont étanche). 

La seconde vérification du critère de niveau 2 du roulis paƌaŵĠtƌiƋue ;CϮͿ ĐoŶsidğƌe l’aŶgle 
de ƌoulis ŵaǆiŵal pouƌ ϳ ǀitesses eŶ ŵeƌ de l’aǀaŶt et eŶ ŵeƌ de l’arrière pour tous les cas 

d’uŶ diagƌaŵŵe de dispeƌsioŶ de ǀagues. La futuƌe ƌĠgleŵeŶtatioŶ pƌopose deuǆ ŵĠthodes 
pour déterminer sa valeur. La méthode basĠe suƌ uŶe ƌĠsolutioŶ ŶuŵĠƌiƋue de l’ĠƋuatioŶ 
différentielle du roulis paramétrique est utilisée et analysée ici. La durée de simulation 

proposée dans la réglementation est validée par des tests de sensibilité. 

Le calcul de C2 pour toutes les valeurs possiďles du tiƌaŶt d’eau et de KG peƌŵet de dĠfiŶiƌ 
des zones autorisées et interdites par le critère associé. En particulier, le critère peut être 

respecté au-delà de KGmax et ŶĠĐessite doŶĐ d’ġtƌe ĠǀaluĠ pƌudeŵŵeŶt. 

Recommandation : la future réglementatioŶ devƌait ĐlaiƌeŵeŶt spéĐifieƌ l’oďligatioŶ de 
vérifier C2 pour toutes les valeurs de KG inférieures à celle du cas de chargement considéré. 

La future réglementation impose la méthode de Grim [65] pour le calcul de C2, donnant la 

même longueur à toutes les vagues du diagramme de dispersion. En conséquence, les 7 

vitesses considérées par le critère sont positionnées aléatoirement par rapport à la vitesse 

de résonance, en fonction de la longueuƌ du Ŷaǀiƌe. L’augŵeŶtatioŶ du Ŷoŵďƌe de ǀitesses 
ou la prise en compte de la vitesse de résonance devrait améliorer le critère. 

Recommandation : le nombre de vitesses considérées dans la seconde vérification du 

critère de niveau 2 de roulis paramétrique devrait être augmenté, ou le critère devrait 

considérer la vitesse correspondant à la résonance paramétrique. 

Le ĐalĐul de l’aŶgle de ƌoulis paƌaŵĠtƌiƋue ŵaǆiŵuŵ fait iŶteƌǀeŶiƌ le ĐoeffiĐieŶt 
d’aŵoƌtisseŵeŶt. La futuƌe ƌĠgleŵeŶtatioŶ fouƌŶit uŶe ŵĠthode siŵplifiĠe d’Ikeda [48, 50] à 

cet effet. CepeŶdaŶt, Đette ŵĠthode Ŷ’est pas adaptĠe auǆ ĐoƋues à ďouĐhaiŶ ǀif. 

Recommandation : la future réglementation devrait proposer une méthode de calcul du 

ĐoeffiĐieŶt d’aŵoƌtisseŵeŶt eŶ ƌoulis adaptée aux ĐoƋues à ďouĐhaiŶ vif. 

Les deux méthodes de calcul de l’aŶgle de ƌoulis paƌaŵĠtƌiƋue ŵaǆiŵuŵ pƌoposĠes daŶs la 
réglementation étant relativement complexe à implémenter, une méthode alternative 

simplifiée, basée sur une hypothèse de GZ linéaire, est proposée ici. Cette méthode peut 

être implémentée dans la nouvelle réglementation et donne une valeur de KGmax identique à 

Đelle fouƌŶie paƌ la ƌĠsolutioŶ ŶuŵĠƌiƋue de l’ĠƋuatioŶ diffĠƌeŶtielle utilisaŶt la ŵġŵe 
hypothèse de GZ. Cette hypothèse est douteuse pour les navires ayant GZ fortement non 

linéaire, mais la mĠthode alteƌŶatiǀe est si siŵple Ƌu’il seƌait ƌegƌettaďle de de l’igŶoƌeƌ si le 
G) est à peu pƌğs liŶĠaiƌe jusƋu’à Ϯϱ degrés. 

Proposition : la future réglementation pourrait proposer une méthode alternative 

siŵplifiée de ĐalĐul de l’aŶgle de ƌoulis ŵaxiŵuŵ pour les navires ayant un GZ linéaire 

jusƋu’à 25 degrés. 

L’eŶtƌĠe eŶ ǀigueuƌ de la futuƌe ƌĠgleŵeŶtatioŶ, pƌĠǀue au plus tôt eŶ ϮϬϭϵ sous la foƌŵe de 
ƌeĐoŵŵaŶdatioŶs daŶs la paƌtie B du Đode de staďilitĠ à l’Ġtat iŶtaĐt, risque de bousculer les 

haďitudes daŶs les ĐhaŶtieƌs Ŷaǀals et les ĐaďiŶets d’aƌĐhiteĐtuƌe Ŷaǀale eŶ ƌaisoŶ de sa 
complexité notablement accrue par rapport à celle des critères actuels. Néanmoins, les 

chantiers et cabinets ont récemment intégré la nouvelle réglementation probabiliste de 

stabilité après avarie, qui requiert un nombre de calculs considérablement supérieur à celui 
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de l’aŶĐieŶŶe ƌĠgleŵeŶtatioŶ dĠteƌŵiŶiste. Les ĠĐoles et uŶiǀeƌsitĠs dispeŶsaŶt des 
formations en architecture navale vont enseigner la nouvelle réglementation de stabilité à 

l’Ġtat iŶtaĐt à leuƌs Ġlğǀes et pƌoposeƌ des stages de ŵise à Ŷiǀeau pouƌ les aƌĐhiteĐtes 
Ŷaǀals eŶ aĐtiǀitĠ. L’eŶtƌĠe eŶ ǀigueuƌ de Đette ƌĠgleŵeŶtatioŶ Ŷe deǀƌait eŶ ĐoŶsĠƋueŶĐe 
pas ƌeŶĐoŶtƌeƌ d’oďstaĐle ŵajeuƌ, si Đe Ŷ’est ĐoŶĐeƌŶaŶt la seĐoŶde ǀĠƌifiĐatioŶ du Đƌitğƌe de 
niveau 2 du roulis paramétrique. 

EŶ effet, il Ŷ’eǆiste ŵalheuƌeuseŵeŶt auĐuŶe ŵĠthode siŵplifiĠe fouƌŶissaŶt le ĐoeffiĐieŶt 
d’aŵoƌtisseŵeŶt au ƌoulis pouƌ tous les tǇpes de Ŷaǀiƌes. Il pouƌƌait être tentant de proposer 

plusieurs méthodes correspondant à toutes les géométries existantes, mais il est impossible 

d’iŵagiŶeƌ aujouƌd’hui les géométries que les architectes navals dessineront dans les 

pƌoĐhaiŶes dĠĐeŶŶies. L’utilisatioŶ de ĐalĐuls CFD (résolution des équations de Navier-

“tokesͿ Ŷ’est pas eŶǀisageaďle daŶs le Đadƌe de Đette ƌĠgleŵeŶtatioŶ eŶ ƌaisoŶ du teŵps de 
calcul trop important et de la haute ƋualifiĐatioŶ ŶĠĐessaiƌe à sa ŵise eŶ œuǀƌe. 

EŶ ĐoŶsĠƋueŶĐe, de l’aǀis de l’auteuƌ, la seĐonde vérification du critère de niveau 2 de roulis 

paramétrique dans sa forme actuelle pourrait être considérée comme une première étape 

de niveau 3, leƋuel deǀƌait ġtƌe ŵis eŶ œuǀƌe paƌ des iŶstituts spĠĐialisĠs, à ŵġŵe de Đhoisiƌ 
la méthode de calcul de l’aŵoƌtisseŵeŶt la ŵieuǆ adaptĠe. UŶe alteƌŶatiǀe pouƌƌait ġtƌe de 
limiter cette vérification aux navires dont la géométrie est compatible avec la méthode 

proposée dans la réglementation (éventuellement plusieurs méthodes) en utilisant des 

critères simples et oďjeĐtifs pouƌ s’assuƌeƌ de Đette ĐoŵpatiďilitĠ ;ĐoeffiĐieŶt ďloĐ, Ŷoŵďƌe 
de Fƌoude, ƌaǇoŶ du ďouĐhaiŶ, …Ϳ. EŶ Đas d’iŶĐoŵpatiďilitĠ et si la pƌeŵiğƌe ǀĠƌifiĐatioŶ du 
critère de niveau 2 (ou le critère de niveau 1) ne suffisait pas, la société de classification 

pƌesĐƌiƌait la ŵise eŶ œuǀƌe de Đette ǀĠƌifiĐatioŶ paƌ uŶ iŶstitut spĠĐialisĠ, voire une 

évaluation de niveau 3. 

Bien que quelques améliorations soient souhaitables, les critères de niveau 1 et 2 des cinq 

modes de défaillance sont parfaitement défiŶis. Ce Ŷ’est pas le Đas pouƌ les Đƌitğƌes de 
Ŷiǀeau ϯ, aujouƌd’hui eŶĐoƌe à l’Ġtape de la réflexion. 

Il est établi que ce niveau consiste en une simulation numérique du navire dans les vagues, 

supposée indiquer sa vulnérabilité vis-à-vis des modes de défaillance avec une précision 

accrue par rapport aux critères des deux premiers niveaux. Ces simulations seront 

nécessairement réalisées avec six degrés de liberté. Les calculs CFD ne paraissent pas 

adaptĠs aujouƌd’hui eŶ ƌaisoŶ du teŵps de ĐalĐul ĠleǀĠ Ƌu’ils nécessitent, incompatible avec 

le dĠƌouleŵeŶt d’uŶ pƌojet de Ŷaǀiƌe staŶdaƌd. EŶ ƌeǀaŶĐhe, des Đodes iŶfoƌŵatiƋues à ϲ 
degrés de liberté, basés sur des calculs hydrodynamiques potentiels réalisés avant la 

simulation, paraissant bien adaptés à cette tâche. 

L’ĠǀaluatioŶ de Ŷiǀeau ϯ eŶ ƌoulis paƌaŵĠtƌiƋue pouƌƌait être une évaluation de niveau 2 

améliorée dans laquelle la simulation à un degré de liberté serait remplacée par une 

simulation à six degrés de liberté, prenant en compte les effets non linéaires sur des états de 

mer réels. Une évaluation similaire pourrait être conduite en perte pure de stabilité, avec un 

temps de simulation augmenté afin de capter un nombre significatif de vagues extrêmes. 

Il est également possible de fusionner les évaluations de niveau 3 des cinq modes de 

dĠfaillaŶĐe eŶ uŶe uŶiƋue ĠǀaluatioŶ ƌĠalisĠe à l’aide d’uŶ Ŷoŵďƌe iŵpoƌtaŶt de siŵulatioŶs 
dans tous les états de mer du diagramme de dispersion, avec toutes les vitesses et toutes les 

routes possibles. Un tel travail a déjà été réalisé pour évaluer les probabilités de 

chavirement de frégates françaises [72]. Une analyse prélimiŶaiƌe d’uŶ Ŷoŵďƌe sigŶifiĐatif de 
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navires connus comme vulnérables et non vulnérables est nécessaire afin de définir le seuil 

Ƌui doit ġtƌe utilisĠ Đoŵŵe Đƌitğƌe gloďal, daŶs uŶe dĠŵaƌĐhe doŶt l’espƌit est siŵilaiƌe à 
celui du travail réalisé par Rahola en 1939 [11], mais avec un outil de calcul plus moderne. 

Une telle démarche fournirait un critère global encapsulant tous les modes de défaillance (y 

compris des modes de défaillance éventuellement non considérés par la future 

réglementation). Bien que les simulations ne soient pas orientées vers un mode de 

dĠfaillaŶĐe paƌtiĐulieƌ, il est possiďle d’iŵplĠŵeŶteƌ des dĠteĐteuƌs daŶs le siŵulateuƌ afiŶ 
de ƌeŶseigŶeƌ l’utilisateuƌ suƌ les phĠŶoŵğŶes aǇaŶt Đausé la perte du navire ou un angle de 

roulis indésirable. 
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GLOSSARY 

Symbol Unit Definition 

Numbers 

0H - Baseline, X-axis of the ship-fixed coordinate system 

10H - Reference waterplane, parallel to 0H 

   

A 
  

A - PoiŶt defiŶiŶg the stƌip’s loĐal waterplane 

a - Coefficient of added mass in roll 

AWP m2 Area of waterplane 

   

B 
  

B - Center of buoyancy 

B - PoiŶt defiŶiŶg the stƌip’s loĐal ǁateƌplaŶe 

B m “hip’s ďƌeadth 

B44 N.m.s/rad Roll damping coefficient 

B44.req N.m.s/rad Required roll damping coefficient 

   

C 
  

C - PoiŶt defiŶiŶg the stƌip’s loĐal ǁateƌplaŶe 

C1 - First check of parametric roll level-two criterion 

C1i - Coefficient of first check of parametric roll level-two criterion 

for the wave number i 

C2 - Second check of parametric roll level-two criterion 

C2i - Coefficient for the wave number i regarding the minimum angle 

of stable equilibrium under heeling lever (PL) 

C2i,j - Coefficient for the wave number i and the speed factor number 

j regarding the minimum parametric roll angle 

CFD - Computational fluid dynamics 

Cm - Midship section coefficient of the fully loaded condition in calm 

water 

CR1 - Coefficient for all waves wave regarding the minimum angle of 

vanishing stability (PL) 

CR2 - Coefficient for all waves regarding the minimum angle of stable 

equilibrium under heeling lever (PL) 

CRNAV - Cooperative Research Navies 

   

D 
  

D m “hip’s depth 
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Symbol Unit Definition 

d m “hip’s draft 

D3 - Longitudinal line located in the calm-water waterplane 

dfull m Full loaded draft 

dH m Highest draft 

dL m Lowest draft 

DoF - Degree(s) of freedom 

DTMB - David Taylor Model Basin 

   

E 
  

e m Sinkage 

ED J Damping energy 

EE J Exciting energy 

EK J Kinetic energy 

EP J Potential energy 

   

F 
  

Fn - Froude number 

   

G 
  

G - Center of gravity 

g m/s2 Acceleration of gravity 

GM m Transverse metacentric height 

GM0 m Transverse metacentric height in calm water 

GML m Longitudinal metacentric height 

GMmax m Maximum value of transverse metacentric height in waves 

GMmin m Minimum value of transverse metacentric height in waves 

GMmoy m Average value of transverse metacentric height in waves 

GMT m Transverse metacentric height 

GZ m Righting arm 

   

H 
  

h m Wave height 

H1/3
eff m Effective height of the 1/3 highest waves 

H3%
eff m Effective height of the 3% highest waves 

Heff m Effective wave height 

HS m Significant wave height 

   

I 
  

I1 - Intersection point of P1 and D3 

I2 - Intersection point of P2 and D3 

IACS - International Association of Classification Societies 

IH m4 Inertia of parallel waterplane at highest draft 

IL m4 Inertia of parallel waterplane at lowest draft 
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Symbol Unit Definition 

IMCO - Inter-Governmental Maritime Consultative Organization, 

former name of the IMO (until 1982) 

IMO - International Maritime Organization 

ISCG - Intact Stability Correspondence Group 

   

J 
  

J44 kg.m2 “hip’s ƌoll ŵoŵeŶt of iŶeƌtia 

   

K 
  

k m-1 Wave number 

k - Coefficient of radius of inertia in roll 

KB m Vertical coordinate of the ĐeŶteƌ of ďuoǇaŶĐǇ iŶ the ship’s fiǆed 
coordinate system 

KG m VeƌtiĐal ĐooƌdiŶate of the ĐeŶteƌ of gƌaǀitǇ iŶ the ship’s fiǆed 
coordinate system 

KGmax m Maximum vertical coordinate of the center of gravity ensuring 

the compliance of a specific criterion or a panel of criteria 

Kj - Speed factor number j 

KGstart m Starting value of KG in the process of finding KGmax 

KMT m VeƌtiĐal ĐooƌdiŶate of the tƌaŶsǀeƌse ŵetaĐeŶteƌ iŶ the ship’s 
fixed coordinate system 

   

L 
  

L m “hip’s leŶgth 

LCB m LoŶgitudiŶal ĐooƌdiŶate of the ĐeŶteƌ of ďuoǇaŶĐǇ iŶ the ship’s 
fixed coordinate system 

LCG m LoŶgitudiŶal ĐooƌdiŶate of the ĐeŶteƌ of gƌaǀitǇ iŶ the ship’s 
fixed coordinate system 

LPP m Length between perpendiculars 

   

M 
  

m0 m2s Zero-order moment of the wave spectrum (Grim effective wave 

height concept) 

   

N 
  ݊⃗   - Normal vector, defining any plane, the calm-water waterplane 

oƌ the stƌip’s loĐal ǁateƌplaŶe ݊ଵ⃗⃗⃗⃗   - Vertical vector of the inclined-ship’s plaŶes, defiŶiŶg the Eaƌth-

vertical ݊ଶ⃗⃗⃗⃗   - Transverse vector of the inclined-ship’s plaŶes ݊ଷ⃗⃗⃗⃗   - Longitudinal vector of the inclined-ship’s plaŶes 
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Symbol Unit Definition 

O 
  

O - Origin point of the ship-fixed coordinate system 

   

P 
  

P - Point defining the waterplane 

P1 - “tƌip’s aft plane 

P2 - “tƌip’s forward plane 

PD W Damping power 

PE W Exciting power of parametric roll 

PL - Pure Loss of Stability 

PR - Parametric Roll 

   

Q 
  

Q - Point located amidships on the reference waterplane, used to 

define any waterplane 

   

R 
  

RPL m Minimum allowed value of GM in waves of pure loss of stability 

level-one criterion 

RPL0 - Required index of pure loss of stability level-two criterion 

RPL1 deg Minimum allowed value of angle of vanishing stability of pure 

loss of stability level-two criterion 

RPL2 deg Maximum allowed value of angle of stable equilibrium under 

heeling lever of pure loss of stability level-two criterion 

RPL3 m Heeling lever 

RPR - Maximum allowed value of non-dimensional GM variation of 

parametric roll level-one and level-two criteria 

RPR0 - Required index of parametric roll level-two criterion 

   

S 
  

SDC - Sub-Committee Ship Design and Construction of the IMO 

SHK - Swedish Accident Investigation Board 

SOLAS - Safety Of Life At Sea 

SW - Wave steepness (ratio height over length) 

   

T 
  

t s Time 

T0 s “hip’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ 

TEU - Twenty-foot equivalent unit, defining the cargo capacity of a 

container vessel in terms on number on 20-ft containers 

TZ s Zero-crossing wave period 

   



155 

 

Symbol Unit Definition 

V 
  

V m/s “hip’s speed 

V1st mode m/s Speed of first mode of parametric roll 

VPR.i m/s Speed of first mode of parametric roll corresponding to the 

wave number i 

VS m/s “hip’s seƌǀiĐe speed 

   

W 
  

W N “hip’s ǁeight 
WGIS - Working Group on Intact Stability 

Wi - Weighting factor of the wave number i 

   

X 
   ܺ  - Unit vector defining the longitudinal axis of the ship-fixed 

coordinate system 

   

Z 
  

Z - Projection of the center of gravity on the Earth-vertical through 

the center of buoyancy 

z1 m Height defiŶiŶg the stƌip’s loĐal ǁateƌplaŶe 

z2 m Height defiŶiŶg the stƌip’s loĐal ǁateƌplaŶe 

   

Greek symbols 

 rad Shift angle 

 rad, deg AŶgle ďetǁeeŶ the ship’s headiŶg aŶd the ǁaǀe diƌeĐtioŶ 

 - Ratio e/0 

0 - Ratio e/ characterizing the parametric roll synchronization 

 kg “hip’s displaĐeŵeŶt 
GM m Amplitude of variation of transverse metacentric height in 

waves 

e m Sinkage increment 

X m Longitudinal gap 

Y m Transverse gap 

 rad Trim increment 

 rad Heel increment 

 m
3
 Volume gap 

 rad, deg Trim angle 

 m Wave length 

 kg/m3 Water density 

 rad, deg Roll amplitude 

 rad, deg Roll angle or heel angle 

max rad, deg Maximum roll angle 

S deg Angle of stable equilibrium under a heeling lever 
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Symbol Unit Definition 

V deg Angle of vanishing stability 

 rad/s “hip’s ƌoll fƌeƋueŶĐǇ 

0 rad/s “hip’s Ŷatuƌal ƌoll fƌeƋueŶĐǇ 

e rad/s Wave encounter frequency 

w rad/s Wave frequency 

   

Other symbols 

 m3 “hip’s displacement volume, computed displacement volume 

during the finding of the equilibrium position 

0 m3 “hip’s displaĐeŵeŶt ǀoluŵe during the finding of the 

equilibrium position 
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