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Mâıtre de conférences, Grenoble INP, Encadrant de thèse
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Chapter 1

Introduction

Remote sensing systems provide an unique way to perform large scale and non-intrusive

observations of the Earth’s surface [87, 34, 33]. Since its conception in the late 60s, the

number of applications that benefit from the information acquired by such sensors have grown

rapidly. Among many, it is possible to highlight the urban settlement analysis, environment

and crops monitoring, damage assessment, biomass estimation and general surveillance related

applications.

Optical systems and Synthetic Aperture Radars (SARs) have been sharing the spotlights

of the research community when it comes to the most employed sensors for such purpose

[87]. In general, optical imagery senses the reflectance of the Earth’s surface on the visible

and near infrared ranges of the electromagnetic spectrum [33]. Conversely, SAR sensors are

active systems that characterize the surface by detecting the backscattering of electromagnetic

pulses sent by the platform towards the former [34].

Optical and SAR images present completely different features due to distinct sensing

geometry, way of acquisition and sensed physical characteristics of the surface. Typically,

optical images present a better spatial and spectral resolution. SAR data on the other hand are

independent on the weather condition (they can also be acquired in nighttime), depending on

the operating frequency they can penetrate vegetation canopies and they allow unique analysis

such as the estimation of the surface 3D geometry through interferometry [33]. Unlike optical

images, which are construed in a straightforward manner, the correct interpretation of a

SAR image is still an open challenge to the scientific community from both a methodological

as well as an applicative perspective. Specific methods are still required to enhance the

characterization of objects in the scene, land cover types, monitoring surface parameters and,

in general, extracting information on the surveyed areas.

Polarimetric systems emerged as an attempt to fill this gap. Polarimetry theory relies on

the analysis of the interaction between the illuminated area and the transmitted waveform,

considering each polarimetric state of the latter. Compared to the univariate analysis of single

polarization systems, the multivariate nature of Polarimetric SAR (PolSAR) data allows for

a better prediction of the physical properties of the illuminated targets, leading to more

effective classification, detection and geophysical parameter inversion algorithms. One of

the most employed techniques for PolSAR image interpretation is the Polarimetric Target

Decomposition, that enables the description of an image cell as a sum of canonical scattering

mechanisms, making it more intuitive to understand the behaviour of the clutter and therefore

1
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to analyse it [98].

There are key aspects that underpin effective PolSAR target decomposition techniques.

Stochastic clutter modelling, in case of distributed targets (e.g. vegetation, forests and snow)

and the correct retrieval of quantitative information from the estimated scattering mecha-

nisms (parametrization) are examples of such topics that directly influence the performance

of applied algorithms.

When distributed targets are under investigation, special care has to be taken. Unlike

deterministic ones such as man made structures, the study of distributed targets is more

challenging, requiring an analysis usually based on the stochastic properties of the SAR data.

In general, when low-resolution multivariate SAR data is under investigation, the central limit

theorem is taken into consideration and the data can be locally modelled by a multivariate

zero-mean circular Gaussian stochastic process, which is completely determined by its covari-

ance matrix. With the improved resolution of modern SAR platforms, the number of scatters

within each resolution cell decreases considerably. Consequently, high scene heterogeneity

may eventually lead to non-Gaussian clutter modelling.

Spherically Invariant Random Vectors (SIRVs) [107], have been frequently employed for

modelling high-resolution PolSAR data [104, 7, 41, 105]. SIRV is a multiplicative model

that expresses the SAR signal as a product between the square root of a scalar positive

quantity (texture) and the description of an equivalent homogeneous surface (speckle) [102].

It is important to notice that in the SIRV definition, the texture probability density function

is not explicitly specified. As a consequence, SIRVs describe a whole class of stochastic

processes [85], including the Gaussian (multivariate) model (deterministic texture), KummerU

distribution (Fisher texture) [7], the multivariate K distribution (Gamma texture) [74] and

the G0 distribution (inverse Gamma texture) [73], the last two being special cases of the more

general multivariate G-family, specially suited for extremely heterogeneous clutters [44, 43].

The estimated covariance matrix of the speckle is the basis of many PolSAR classification

algorithms [18]. Usually, optimal solutions rely on maximum likelihood estimators, which are

highly dependent on the model adopted [76]. The assumption that the texture is polarization

independent causes PolSAR data to present a spherical symmetry property, allowing for the

usage of most of the algorithms present in the literature. Nevertheless, the existence of

polarization dependant clutter has also been reported [35, 97], for which specific algorithms

need to be derived. Therefore, it becomes clear that the first step in SAR data analysis should

be the validation of the model employed. Within this context, in Chapter 3 we present a new

methodological framework to assess the conformity of multivariate high-resolution SAR data

with respect to the product model in terms of asymptotic statistics. More precisely, spherical

symmetry is investigated by applying statistical hypotheses testing on the structure of the

quadricovariance matrix.

The analysis with real data shows that a considerable portion of high heterogeneous data

may not fit the Spherically Invariant Random Vector model (product model). Therefore,

traditional detection and classification algorithms developed based on the latter become sub-

optimal when applied in such kind of regions. This assertion highlights for the need of either
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updating the model to one that associates an individual texture variable with each polarimet-

ric channel [35], or the development of model independent algorithms, like the Independent

Component Analysis (ICA), proposed in [3].

The referred method is briefly summarised in three main steps: data selection, based on

the statistical classification of the POLSAR image; estimation of independent components

and parametrization of the derived target vectors. As stated in [3], the major drawback of

the proposed method is the size of the observation dataset, which has to be somewhat larger

than the size of the sliding window used in the well established methods. This constraint

led the authors in [3] to use an unsupervised classification algorithm rather than relying on a

very large sliding window, jeopardising the effectiveness of the method.

The use of a classification algorithm limits the performance of the method in the sense

that the image is segmented in a priori defined number of classes with variable sizes, what

can compromise the estimation of the target vectors parameters and, as a consequence, the

correct interpretation of the scatters present in the area under study. One of the implications

of the employment of a classification algorithm is that a class can contain more samples than it

needs for a correct estimation of target’s parameters, meaning that spatial resolution, highly

degraded with the use of this approach, is worse than it could be. On the other hand, if a

class does not contain enough samples, the estimation performed using this given set of pixels

can be biased, i.e., the estimated parameters present a bias, either positive or negative, that

drives the derived values away from the ground truth.

An additional drawback inherent to ICA described in the literature, that could limit its

usage in PolSAR application, is the central principle of non-gaussianity of the sources that

has to be assumed in the model [48]. Even though heterogeneous clutter models like [104]

have gained notoriety, one single Gaussian source could jeopardise the performance of ICA,

making its use inappropriate. Recent studies [37] proved that, under certain conditions,

Gaussian sources can indeed be separable, indicating that the usage of ICA in PolSAR data

analysis can occur in a larger number of scenarios.

Within this context, another contribution of the present work is a detailed analysis (de-

scribed in Chapter 5) based on a Monte Carlo simulation approach to evaluate the afore-

mentioned theoretical aspects of ICA based ICTD. The optimal size of a sliding window for

various medias, simple ones composed by basic scatters such as helix, dipole, dihedral and tri-

hedral and more complex ones like Surface, Double Bounce and Volume returns is addressed.

The performance of the algorithm in the presence of Gaussian sources is also investigated, as

well as in the assumption of scenarios that present spatial correlation, increasing the range of

potential applications to this technique.

The final aspect of this thesis is the analysis of the potential new information provided by

the ICA based ICTD. For that purpose, we take into consideration both Touzi Target Vector

Scattering Model (TSVM) as well as Cloude and Pottier H/α feature space, two of the most

employed methods for unsupervised PolSAR data classification based on Incoherent Target

Decomposition. The combined use of ICA and Touzi TSVM is straightforward, indicating

new, but not groundbreaking information, when compared to the Eigenvector approach. Nev-



4 Chapter 1. Introduction

ertheless, the analysis of the combined use of ICA and Cloude and Pottier H/α feature space

revealed a potential aspect of the Independent Component Analysis based ICTD, which can

not be matched by the Eigenvector approach.

The aforementioned parameterization method can be split in two stages, the retrieval of

the canonical scattering mechanisms present in an image cell and their parameterization. The

association of the coherence matrix eigenvectors to the most dominant scatters in the analysed

pixel introduces unfeasible regions in the H/α plane. This constraint can compromise the

performance of detection, classification and geophysical parameters inversion algorithms that

are based on the investigation of this feature space. Not constrained to any orthogonality

between the estimated scattering mechanisms that compose the clutter under analysis, ICA

does not introduce any unfeasible region in the H/α plane, increasing the range of possible

natural phenomena depicted in the aforementioned feature space. A detailed investigation of

the characteristics of pixels that may fall outside the feasible regions in the H/α plane that

arise when the Eigenvector approach is employed is performed in Chapter 4.

This thesis is organised as follows. In Chapter 2 we revisit Synthetic Aperture Radar

principles, addressing its geometry of acquisition, basic image formation concepts, spatial

resolution and the importance of the proper choice of system parameters. Still in Chapter

2, we introduce concepts related to the multivariate analysis of SAR datasets resultant from

multiple acquisitions. Interferometry concepts used to retrieve the vertical profile of the

scene under study as well as the polarimetric state of electromagnetic waveforms and how

this feature can be explored to enhance SAR data interpretation are approached. In Chapter 3

we address the stochastic assessment of the clutter model. For that purpose, we introduce the

SIRV stochastic model [104], highlighting the main differences with respect to the multivariate

Gaussian model. Next, we detail the proposed method for quantitative assessment of the SIRV

conformity, which relies on the spherical symmetry test of the multivariate PolSAR data and

we verify its consistency from different aspects, including synthetic and real data analysis.

Chapter 4 addresses in more details Incoherent Target decompositions, reviewing both

Touzi Target Scattering Vector Model (TSVM) as well as Cloude and Pottier decomposition

(and consequently the H/α feature space), highlighting the constraint inherent to its com-

bined use with the Eigenvector approach. Also in this chapter the Independent Component

Analysis proposed in [3] as an ICTD method is presented. Chapter 5 addresses theoretical

aspects of the ICA based ICTD approach, including its performance under a sliding window

implementation and a discussion regarding its employment in Gaussian clutter scenarios and

scenarios that exhibit spatial correlation. Taking into account the SIRV model addressed

previously, a Monte Carlo simulation approach is conducted in order to evaluate its perfor-

mance under a sliding window approach, enabling a more accurate comparison to the results

obtained with the widespread Eigenvector based approach. Clutters composed by orthogonal

and non-orthogonal scattering mechanisms are taken into consideration, evidencing the new

information brought about the proposed technique.

In Chapter 6 practical aspects of the employment of the ICA as an ICTD technique are

analysed. A detailed investigation of the characteristics presented by pixels classified by the

ICA based ICTD outside the feasible regions of the H/α feature space that arise upon the
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employment of the Eigenvector approach is performed. The new information brought about

ICA based ICTD in tropical scenarios is also discussed, as well as its potential employment

in PolInSAR experiments. Finally, Chapter 7 presents some general remarks regarding the

proposed methodological framework for the clutter stochastic assessment and ICA based

ICTD, as well as some conclusions and future works perspectives.

Throughout the present work, data from the P-band airborne dataset acquired by the

Office National dÉtudes et de Recherches Aérospatiales (ONERA) over the French Guiana in

2009 in the frame of the European Space Agency campaign TropiSAR, a RAMSES X-band

image acquired over Brétigny, France and a PolSAR dataset acquired in October 2006 by the

E-SAR system over the upper part of the Tacul glacier from the “Chamonix - Mont Blanc”

test site are taken into consideration in several analysis. Details on the referred data sets are

presented in Appendix E.





Chapter 2

Synthetic Aperture Radar
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Radars are electromagnetic systems originally conceived for detecting and estimating the

radial distance of a reflecting object. Its basic principle consisted on the transmission of a

waveform and the measurement of the time delay until the reception of the signal reflected

on a given scatter. The advances in the fields of electronics during the last few decades

considerably increased the range of applications where such kind of systems can be employed.

Several features of the illuminated targets/scene can now be derived based on the proper

choice of the system parameters and the correct interpretation of the returned signal. This

assertion is somehow intuitive, since each object on the Earth’s surface scatters an incident

electromagnetic wave in a unique fashion, generally as a function of its shape and compo-

sition. Therefore, changing the properties of the transmit waveform as well as the angle of

illumination, directly affects the backscattered energy and the perception of the targets on

the scene.

There are several different architectures of radar systems, each specially suited for a specific

application. They are often classified either by their final purpose (e.g. meteorological,

surveillance, remote sensing) or by the choice of their parameters (e.g. central frequency band,

transmit waveform, bandwidth, antenna characteristics). The latter in turn, is directly related

to the system performance. As an example, it is possible to highlight that the transmitted

signal central frequency impacts directly the atmospheric transmittance1, the penetration

through vegetation, and the antenna size.

1Even though atmospheric effects are more critical for high frequency electromagnetic waves, the ionosphere

can induce undesired behaviour (i.g. Faraday rotation) for frequencies lower than 1GHz [87].

7
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In the present work, the focus relies on remote sensing radars, more precisely, imaging

radars that sense the Earth’s surface. Imaging radar research can be broadly divided in two

areas: image formation and image interpretation. Image formation theory comprises the de-

sign of the system physical architecture, the proper choice of parameters, the transmission,

the reception and specific signal processing algorithms target, for example, to correct phe-

nomena related to the systems geometry or to enhance the system spatial resolution. Image

interpretation, on the other hand is basically focused on better understanding the illuminated

area on the ground, extracting both qualitative as well as quantitative information from it,

that can lead to better detection and classification schemes of the objects and physical phe-

nomena in the scene under study. In the present work, the main interest lies in enhancing

Synthetic Aperture Radar image interpretation. Nevertheless, for the sake of completeness

we briefly address a few SAR image formation concepts, that will be referenced throughout

this thesis.

2.1 SAR basic principles

Generally, in remote sensing the area under analysis is large, inhibiting the usage of fixed

antenna configurations for such kind of applications. Therefore, side looking antennas are

embedded on a moving platform (airplane, satellite, UAV), producing large scale 2D images

of areas on the ground with a considerable high spatial resolution, as illustrated in Figure

2.1. This architecture is referred in the literature to synthetic aperture radar (SAR), whose

name will become clear later on this section, but for simplicity the nomenclature is already

adopted henceforth.

Figure 2.1: Synthetic Aperture Radar strip map geometry (modified from [57]).
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In Figure 2.1, vsar represents the platform velocity, H its height, θ0 the illumination angle

and Lx and Ly the antenna dimensions. The coordinate axes are represented by ra, which is

the along-track or azimuthal direction (as a heritage of classical rotational radar systems), rg
which is the ground range and rs that represents the slant range direction, i.e. the radar line

of sight. As the platform moves, the entire region indicated as the Radar swath is sensed.

Generally, SAR systems are pulsed monostatic systems, i.e. a single antenna is used for

transmission and reception of time limited signals spaced in time by a pulse repetition period

(PRI). Furthermore, it is a coherent system, i.e. the signal’s phase is preserved throughout

the RF and signal processing chain.

The image formation process starts by associating to each point on the illuminated surface

a specific information. Note that, according to the system geometry presented in Figure 2.12,

the transmit waveform, being a planar wavefront (see Section 2.2.1) hits each point on the

surface at a different time. Therefore, it is possible to associate to each point P on the surface

a given received signal corresponding to its backscatter.

One of the relevant information that can be extracted from the received signal is its mean

power. Being a function of both the system parameters as well as the surface’s, it can reveal

much of the targets characteristics. The mean power of the signal received by the antenna,

Pr, relative to the backscatter of a given point on the surface (henceforth also addressed as

a target) located at a distance R0 from the radar (in slant range direction) is given by the so

called radar equation [91], and is written as

Pr =
PtGtGrσλ

(4π)3R4
0

(2.1)

where σ is the target radar cross section which represents a mean measure of how much of the

incident energy it backscattered to the radar, Pt is the mean power of the transmitted signal,

Gt and Gr are the transmit and receive antenna gain, respectively, and λ is the transmitted

signal wavelength.

Aside from the target radar cross section, all parameters in (2.1) are somehow under the

radar designer control. Therefore, manipulating them, can lead to more effective detection

algorithms, since it will directly affect the signal to noise ratio throughout the processing

chain. Note that (2.1) represents the received signal power, therefore, the system losses and

processing gains are not taken into consideration. Furthermore, it can be considered extremely

optimist since it does not account for the stochastic nature of its parameters, specially the

target radar cross section.

Another information of interest to most SAR applications is the received signal’s phase. In

order to exploit this parameter, its a common practise to extract the received signal complex

envelope (through a Hilbert transform [45]) and perform all signal processing algorithms

(image formation and image interpretation) considering the latter. Let us now briefly address

2The geometry is a key factor in SAR systems, and it is directly related to the final application. Even

though other geometries are also feasible under the Synthetic Aperture Radar concept, throughout this work,

only the Strip map configuration is addressed.
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the mathematical model of the involved signals.

Assume that s̃i(t), 0 < t < τs is the complex envelope (with respect to a given reference

frequency) of the time limited signal emitted by the radar at the beginning of the ith interval,

(i∆, (i + 1)∆], with t denoting time with respect to the beginning of the interval, and ∆ is

the Pulse Repetition Interval. The complex envelope of the received signal, during the ith

interval, corresponding to the backscatter of each point on the surface can be written as

r̃i(t) = x̃i(t) + ñi(t) (2.2)

where ñi(t) corresponds to the filtered complex envelope of the corrupting thermal noise

inherent to the receiver, assumed to be Gaussian with zero mean and a flat power spectral

density over the signal component bandwidth and x̃i(t) denotes the complex envelope of the

signal component, given by

x̃i(t) = Aie
−4πR0

λ eϕr s̃i(t− T0) (2.3)

with Ai being an amplitude that reflects channel fading and the gains and distortions intro-

duced by the receiver RF chain (assumed to be constant during the ith interval with no loss

of generality), T0 being the time spent by the emitted signal to echo on a given point on the

surface and return to the radar, which is given by T0 = 2R0/c, with c being the vacuum light

speed and ϕr representing a possible phase rotation introduced by specific type of scatters.

At this moment it is relevant to introduce the range resolution concept. Range resolution

describes the radar ability in disguising the scatters of two points on the surface close to

each other in range. If the transmitted signal duration is τs, then it spreads in space by a

distance Rτs = cτs. Therefore, two points could only be interpreted as such, i.e., without being

mistaken as a single point on the surface (due to their backscatter overlap) when separated

by a distance equal to or greater than ∆Rτs =
Rτs
2 = cτs

2 .

Equipments capable of generating short pulses with high energy (necessary to enhance

system performance, see (2.1)) are difficult to achieve [57], constraining the transmission of

long pulses. Therefore, in order to enhance range resolution, without compromising system’s

performance, the pulse compression technique is generally employed. Pulse compression at

the receiver is implemented by a matched filter [91] (matched to the transmitted signal),

having an impulse response (low-pass equivalent) h̃i(t) = s̃∗i (−t). There are several works in

radar literature that evaluate the performance of different filters with respect to varied aspects

[15]. The matched filter is often preferred over the others because it maximises the signal to

noise ratio at its output, enhancing detection. The output ỹ′i(t) of this filter is written as

ỹ′i(t) = x̃′i(t) + ñ′i(t) (2.4)

where

x̃′i(t) =

∫ Tint

0
Aie

−4πR0
λ eϕr s̃i(τ + t− T0)s̃

∗
i (τ)dτ (2.5)

ñ′i(t) =

∫ Tint

0
ñi(τ + t)s̃∗i (τ)dτ (2.6)
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with Tint being the upper limit of the convolution integration, referred to as “integration time”

(Tint ≤ τs). Tint is an intrinsic parameter of the pulse compression process. In remote sensing

applications, where the targets are located outside the blind zone and the entire returned

signal is received, Tint = τs.

The signal to noise ratio at the matched filter output is given by

SNR′
i(T0) =

Ex̃i

N0
(2.7)

where Ex̃i is the signal component energy and N0 is the noise power spectral level at the

input of the matched filter. Finally, the pulse compression gain is given by Gc = Bs̃τs, where

Bs̃ is the bandwidth of the transmitted signal complex envelope. The aforementioned gain is

also referred to, within the radar community, as the time-bandwidth product.

It is counter-intuitive to name this operation as “pulse compression” since the output

signal ỹ′i(t) has twice the size of the input signal. Nevertheless, the signal’s energy is concen-

trated in a smaller time interval, increasing the ability of radars that employ such technique

to discriminate between two targets located close to each other. In such systems, the range

resolution is then derived considering τs equal to the 3dB width in time, τ3dB, of the matched

filter output. This parameter is an intrinsic property of the transmit waveform. Likewise the

filter design, many works have been published in the literature proposing different waveforms

in order to improve the range resolution [79]. Nevertheless, linear frequency modulation have

been employed more than any other in radar applications [91]3, being the most widespread

signal generation method in radar community.

Carriers modulated in frequency are generically given by

s(t) =
√

2Ps cos(2πfct+Kp

t∫
−∞

a(α)dα+ ν) (2.8)

where ν is a phase deviation inserted by local oscillators, inherent to most communications

systems [14], fc is the transmitted signal central frequency Ps is the signal’s mean power, Kp

is the modulation constant and a(t) is the modulating signal. Chirps modulating signals are

given by

a(t) = t− τs
2

; 0 < t < τs (2.9)

The transmitted signal complex envelope (with respect to the transmit central frequency)

is then written as

s̃(t) =
√

2Pse
j

[
Kpt

2

2
−Kpτst

2
+λ

]
; 0 < t < τs (2.10)

3The basic concept of pulse compression radars that employ linear frequency modulated signals (also referred

to as chirps) was initially introduced by Dicke in 1945 [29].
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Its bandwidth is Bs̃ = Kpτs and the complex envelope of the signal component at the

pulse compression output when such kind of waveform is employed is given by

x̃′i(t) = Ae
−4πR0

λ eϕr

[
2Pτse

−j
Kpt

2

2 sinc
(Kpτst

2

)]
(2.11)

The slant range resolution, estimated from the 3dB width in time of (2.11) is ∆Rs ≈ c 0.9
2Bs̃

[69]. Finally, applying basic geometry (see Figure 2.1), the ground range resolution is given

by

∆Rg = 0.9
c

2B

1

sin θ0
(2.12)

Note that the ground range resolution, being a function of θ0 varies along the radar

operation ranges. Observing Figure 2.1, it is possible to see that the resolution cell4, i.e.

the smallest fraction of the observed scenario liable of being analysed, comprises a range

component and an azimuth component. If no signal processing technique is performed, the

along-track or azimuth resolution is given as a function of the antenna 3dB width, θa, as

illustrated in Figure 2.2.

Figure 2.2: SAR strip map geometry - azimuthal view.

All signals reflected on scatters located within the azimuth resolution, for the same range,

will be received at the same time. Therefore, with no additional signal processing this pa-

rameter is written as

∆Ra = R0θa ≈ R0
λ

Ly
(2.13)

Note that higher resolution demands bigger antennas. Unfortunately, this constraint can

not be fulfilled in an embedded architecture like the one presented in Figure 2.1. Therefore, it

is necessary to synthesize a narrower antenna aperture through signal processing techniques.

4The resolution cell is also referred to as a pixel, following the idea that the final output of remote sensing

radars corresponds to an image
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In order to enhance the along-track resolution, it is first necessary to note that a given

fixed point on the surface is illuminated several times by the radar as the platforms moves.

Therefore, all pulses reflected on this given point on the surface, starting from the moment

it enters the antenna main lobe, until the moment it leaves, can be jointly exploited. The

outputs {ỹ′1(t), . . . , ỹ′np
(t)} generated by the radar processing chain during a sequence of np

transmission intervals are stored in a buffer and passed to an azimuth compression processing

block. The azimuth compression operation takes into consideration that the slant range of

this given point varies as a function of the platform position and, consequently, as a function

of time.

First, let us write the slant range corresponding to the ith transmission as a function of

the ra coordinate of the platform and the minimum slant range, R0, as

Ri =
√
R0 + (ra − ra0) (2.14)

with ra0 being the value of ra when Ri = R0. It can be shown that (2.14) is approximately

R(ra) = R0 +
vsart

2

2R0
(2.15)

Considering that the slant range is directly related to the phase of the returned signal

(see (2.3)), the variation with time reported in (2.15) induces a linear frequency modulation

on the returned pulses, if analyzed in the azimuthal direction. Therefore, a similar procedure

as the one performed in pulse compression for increasing range resolution can be employed in

the azimuthal direction and the azimuth resolution can be shown to be given, independently

of the range, by

∆Ra =
Ly

2
(2.16)

The spatial resolution, defined trough (2.12) and (2.16), plays a key role in Synthetic

Aperture Radars performance. The basic principle underpinning microwave remote sensing

is that all scatters within a resolution cell contribute to the returned signal, i.e., when there

are Na multiple scatters within a single resolution cell, the received signal can be written as

ri(t) =

Na∑
j=1

rij(t) (2.17)

Figure 2.3 illustrates the above mentioned scenario with multiple scatters within a single

Strip-map SAR resolution cell, considering the antenna elevation aperture. Note further that

the number of scatters Na increases when the area under analysis presents an elevation profile,

like in forested or urban scenarios.

It is important to highlight that (2.17) is a vectorial summation, meaning that the rij
signals are added considering both their amplitude as well as their phase. Therefore, (2.17)

can result in either a constructive or a destructive operation, improving, or deteriorating, the

characterization of the illuminated scene.
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Figure 2.3: Volume within which all scatters returns are superposed (modified from [71]).

Multiple targets are always present in remote sensing data. Knowing how to properly

address them is a key aspect of high performance remote sensing radars since they can be

either wanted or unwanted. In other words, depending on the application, it can either be

necessary to remove the contribution of the distributed scatters or to enhance it, in order to

exploit the information provided by them, which will allow a better characterization of the

scene under analysis.

When strong elementary scattering mechanisms are present, they will generally stand

out, being easily identified. The behaviour of such scattering mechanisms are well known and

many objects on the Earth’s surface are precisely modeled as being one or a composition of

a few of them. Among the elementary scattering mechanisms most present in SAR data it is

possible to point out plates, dihedrals, trihedrals, helix and spheres, just to cite a few. Their

characteristic electromagnetic behaviour comprises the target radar cross section (related to

the backscattered signal power) and the phase shift induced on the backscattered signal (see

(2.2)). Furthermore, this behaviour is a function not only of the scattering mechanisms own

properties, but also the systems parameters, like the angle of incidence and the transmit

frequency.

When the resolution cell does not contemplate a strong elementary scatter, the clutter

is said to be distributed and its characterization has to be performed based on the mean

behaviour of the several scattering mechanisms present in its composition. This type of

clutter is addressed in more detail in Chapter 3. For the present moment, it is sufficient to

state that its analysis is not straightforward, comprising the employment of probabilistic tools

derived based on asymptotic statistics and stochastic models.

Prior to moving on, it is important to highlight that in the present work, other concepts

related to image formation like terrain correction, foreshortening, layover, shadowing and

platform motion compensation will not be addressed and are assumed to have been taken

care of. For that purpose the reader is advised to go to the extensive specific literature, like

[57, 87].
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2.2 Multiple Acquisitions

The outcome of the procedure described in the previous section is a single look complex (SLC)

image. The image interpretation stage can be performed on the latter, taking into consider-

ation the amplitude and phase of the received signal corresponding to each pixel (resolution

cell), or multiple images (originated from several acquisitions) can be jointly analysed. As

already mentioned in the preamble of this Chapter, changing the properties of the transmit

waveform as well as the angle of illumination, directly affects the backscattered energy and

the perception of the targets on the scene. Therefore, not only it is possible to use this infor-

mation to optimize a single acquisition, but also it is possible to change properties between

acquisitions and combine the results in a multivariate analysis.

Generally, in remote sensing, the parameters that are most interesting to be modified be-

tween acquisitions are the central transmit frequency, the angle of illumination, or the antenna

position, and the polarization state of the transmit waveform. In the present work, images

acquired with different antenna positions are employed under the iterferometric context, while

images acquired with different polarization states are addressed under the polarimetric prin-

ciples. Next, these two fields of SAR image interpretation are closer analysed.

2.2.1 Polarimetry

In free space, the polarization state of the electromagnetic wave does not change the

propagation properties of the latter. Nevertheless, as previously mentioned, different ob-

jects/materials backscatter the incident electromagnetic wave in a unique fashion, as a func-

tion of both their properties as well as the wave’s. The latter also holds for the polarization

state of the transmit waveform. Therefore, additional information can be extracted when

analysing the dependence of the reflecting signal to this feature. In the present section we

revisit a few theoretical principles related to the electromagnetic properties of the waves in-

volved in radar systems as well as how they can be taken into consideration to enhance the

study of a given sensed area.

Polarization background

The concept of polarization is related to the orientation of the electrical field with respect

to the direction of propagation of the electromagnetic wave. It is important to highlight

that, in remote sensing SAR systems, the assumption that the illuminated targets are in the

antenna far field is generally accepted. Therefore, not only we can consider the wavefront

planar (independently of the antenna properties), but also it is possible to assume that we are

dealing with transverse electromagnetic (TEM) waves. Hence, the orientation of the magnetic

field is always perpendicular to the one of the electric field. Thus, and still considering their

dependence characterised by the impedance of the free space, we neglect the behaviour of the

magnetic field throughout this thesis, focusing only on the electric filed properties.
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Suppose u and t form an orthonormal basis in a plane perpendicular to the direction of

propagation. The electrical field vector of a given electromagnetic wave is then given by

E =

[
Eu

Et

]
=

[
eu cos(2πft− kR+ δu)

et cos(2πft− kR+ δt)

]
(2.18)

where f is the central frequency, k is the wave number, R is the distance travelled by the

wave (slant range, see Figure 2.1) and δi, i = u, t, are phase terms.

With no loss of generality and for the sake of simplicity, throughout this section we

consider u and t to be, respectively, unitary vectors on the incident plane and on the plane

perpendicular to the latter. As a heritage of communication systems, the polarization state

corresponding to each of the aforementioned vectors solely are respectively called horizontal

and vertical, as a reference to their position with respect to the Earth’s surface. Therefore, the

unitary vectors are assigned the nomenclature h and v and the resultant basis is referred to as

linear. Note that the phase difference between the two components (horizontal and vertical),

combined with their time dependence causes the Electric field vector to move according to an

ellipse (in the most general case). The equation of the ellipse is given by [87](
Ev

ev

)2

+

(
Eh

eh

)2

− 2
EhEv

ehev
cos(δ) = sin2(δ) (2.19)

where Eh = eh cos(2πft− kR), Ev = ev cos(2πft− kR+ δ) and δ = δv − δh.

Figure 2.4 presents an illustration of the propagation path of an electromagnetic wave

along with the Electric field vector.

Note that the derivation made considering the linear polarization basis (horizon-

tal/vertical), can be easily extended for other basis with no additional measurement [57].

Left and right circular polarization basis is the most employed one following the linear. These

two components are easily derived from the polarization ellipse formulation (see (2.19)) and

they occur when ah = av and δ = ±π/2. In a matrix format, it is possible to write[
El

Er

]
=

1√
2

[
1 −j
1 j

] [
Eh

Ev

]
(2.20)

where El and Er are the Electric field vectors representing a purely left circular and right

circular polarization sate, respectively.

A simpler representation of the Electric field described in (2.18) is given by the Jones

vector [87] as a function of the polarization ellipse parameters as follow

E = Aejα
[
cos τ − sin τ

sin τ cos τ

] [
cos ϵ

j sin ϵ

]
(2.21)

where δ is the inclination of the ellipse with respect to the horizontal direction and ϵ is the

ellipticity. The amplitude A and the total phase term α are parameters generally neglected,

therefore we will not address their formulation. For that purpose the reader is advised to go

to [87, 57].
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(a)

(b)

Figure 2.4: (a) Electromagnetic wave propagation; (b) Propagation ellipse.

Alternatively, a convenient way of describing the polarimetric state of the wave is through

the Poincaré sphere. The latter is a geometric representation that takes into consideration

the Stokes parameters, which, in turn, are given as function of the polarization Ellipse (see

(2.19)) as follows

s =


s0
s1
s2
s3

 =


a2h + a2v
a2h − a2v

2ahav cos δ

2ahav sin δ

 (2.22)

In (2.22), s is referred to as the Stokes vector whose components present the following

interesting property

s20 = s21 + s22 + s23 (2.23)

with s0 being the total power density of the electromagnetic wave.

Note that (2.23) describes the equation of a sphere (Poicaré sphere) with radius s0, whose

surface comprises all possible polarization states of an electromagnetic wave. Figure 2.5

presents the referred sphere.
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Figure 2.5: Poicaré sphere representation of the Electromagnetic wave polarization state.

Depending on the stationarity of the scattering surface, the returned electromagnetic wave

can be partially polarized or even unpolarized. These phenomena generally occur when the

illuminated targets are distributed, i.e. multiple scatters within a single resolution cell (see

Section 2.1). For these special cases, the Stokes parameters are estimated using the concept

of statistical expectancy, which, assuming the ergodicity property are evaluated as the spatial

averages of neighbouring pixels. In these cases, the polarization state of the reflected waveform

will be represented by a point inside the Poincaré sphere. The Jones coherency matrix J is

generally taken into consideration when addressing such scatters. It is given by

J = E
[
EEH

]
(2.24)

where E[·] is the expectation operator.

In the present section the basic principles of electromagnetic wave polarization were pre-

sented. Next, we address how SAR systems can exploit the polarimetric properties of the

signals involved (both in transmission and reception) in order to enhance the characterization

of the area under study.

Polarimetric Radar

In order to better interpret geophysical behaviors, Synthetic Aperture Radars gave rise to

Polarimetric SAR (PolSAR) systems. PolSAR data describes the interaction between the

electromagnetic waves and the scatters within a resolution cell, for each polarimetric state of

the former. Compared to the univariate analysis of single polarization systems, the multivari-

ate nature of Polarimetric SAR (PolSAR) data allows for a better prediction of the physical

properties of the illuminated targets, leading to more effective classification, detection and

geophysical parameter inversion algorithms.

With respect to the system described in Section 2.1, the only difference is that the wave-

forms are transmitted horizontally and vertically polarized, alternatively, and signals are re-
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ceived in both antennas simultaneously. Therefore, four SLC images are formed, one for each

pair of transmit/received polarization state. The image formation procedure is performed in

an unchanged manner as previously described, and the spatial resolution formulation is the

same as the one derived in Section 2.1.

In order to properly address the dependence of the scattering mechanisms characterization

with the polarization state of the waveforms, let us first revisit the target radar cross section

concept introduced in (2.1). This parameter is a function of the incident and backscattered

waves electric field, Ei and Eb, respectively, and is written as

σ = 4πR2
0

|Eb|
|Ei|

(2.25)

Furthermore, since the backscatter of a given object/material is a function of the polar-

ization state of the incident (and consequently the transmit) waveform, it is reasonable to

say that for each of the four combination of polarization states previously mentioned, there

is a target radar cross section associated. In the present work, they are uniquely addressed

as σqp, where q and p represent the polarization state of the scattered and incident wave,

respectively.

It is clear from (2.25) that the way the electric fields of the incident and backscattered

waves interact with one another as a function of their polarization state is a key factor in

PolSAR data analysis. The Sinclair (or Scattering) matrix, S, describes these relations as

follow

Eb = SEi (2.26)

where

S =

[
Shh Shv
Svh Svv

]
and Ej

[
Eq

h

Eq
v

]
(2.27)

where j = b, i

The same nomenclature, with respect to the indexes, described above is adopted in (2.27),

i.e. given a component of the Sinclair matrix, Sqp, q and p represent the polarization state

of the scattered and incident wave, respectively. Finally, each target radar cross section,σqp,

can be shown to be

σqp = 4π|Sqp|2 (2.28)

It is clear, from (2.28) and (2.1), that the power of the received signal is polarization de-

pendent and, consequently, each of the PolSAR images presents complementary information.

Nevertheless, it is important to highlight that the elements of the Sinclair matrix, Sqp, are

complex quantities, therefore there are also additional information related to the phase of the

received signals. In summary, instead of having just an amplitude and phase associated to

a given resolution cell, in PolSAR systems there are four amplitudes and four phases that
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can be jointly exploited to better characterize the targets. Prior to continue, it is important

to mention that the system coordinates used throughout the present work is the backscatter

alignment (BSA).

The abovementioned polarization dependent information can be also represented in a

vector format, characterizing what is called the target vector. The four components of the

multivariate PolSAR target vector, k, describing the polarimetric characteristics of a single

coherent scattering mechanism within each resolution cell are the elements of the Sinclair

matrix: Shh, Shv, Svh and Svv. For monostatic configurations, where the reciprocity theorem

applies (i.e., Shv = Svh)
5 only three components remain: Shh, Shv and Svv. In this case, the

dimension of the target vector k becomes m = 3 and it is written as

k = [Shh Shv Svv]
T (2.29)

Alternatively, it can be represented in Pauli basis as follow

k =
1√
2
[Shh + Svv Shh − Svv 2Shv]

T (2.30)

The Pauli basis is generally preferred over the lexicographic representation for two reasons:

it is closely related to the physics of wave scattering [20] and it has a straightforward manner

of indicating a rotation around the radar line of sight in matrix form [49].

Polarimetric Target Decomposition

As previously mentioned, a resolution cell is the smallest fraction of the observed scenario li-

able of being analysed. Due to system limitations or to intrinsic characteristics of the reflecting

objects, several different scattering mechanisms can be comprised within a single resolution

cell. In such cases the target is said to be distributed (instead of point) and the electromag-

netic behaviour of the returned signal is a mixture of multiple sources. Depending on the

application, the correct retrieval of the canonical scatters within a resolution cell becomes

imperative for a precise interpretation of the illuminated targets/scene and the estimation of

quantitative information from them.

The Polarimetric Target Decomposition is a PolSAR image interpretation technique that

enables the description of an image cell as a sum of canonical scattering mechanisms (each

represented by a specific target vector) making it more intuitive to understand the behaviour

of the clutter and therefore to analyse it [98]. Target decompositions are mainly classified in

coherent, if their interest lies on the scattering matrix analysis for each resolution cell, like

the ones proposed by Cameron [12, 11] and Krogager [52], or incoherent, if they are based

on a statistical analysis of neighbouring pixels. Coherent decompositions are better suited

for deterministic clutter analysis, not being appropriate for high resolution systems imaging

5When the Faraday rotation phenomenon is observed in SAR systems the reciprocity theorem may not

apply [87].
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distributed heterogeneous clutters. Therefore, we will not address such techniques throughout

this thesis.

Incoherent target decomposition (ICTD) theory on the other hand assumes that the scat-

tering process in most natural media is a combination of coherent speckle noise and random

vector scattering effects. Therefore, a stochastic approach is required and the concept of

average or dominant scattering mechanisms is associated to each imaging cell [18]. Most

methods described in the literature focus on the Hermitian, semidefinite positive coherence

or covariance matrix [18, 98]. Assuming that the reciprocity theorem is valid (see (2.29)), the

covariance matrix [M ] is defined as

[M ] = E
[
kkH

]
=

E
[
ShhS

H
hh

]
E
[
ShhS

H
hv

]
E
[
ShhS

H
vv

]
E
[
ShvS

H
hh

]
E
[
ShvS

H
hv

]
E
[
ShvS

H
vv

]
E
[
SvvS

H
hh

]
E
[
SvvS

H
hv

]
E
[
SvvS

H
vv

]
 (2.31)

where E[· ] is the expectation operator and ·H is the complex conjugate transpose operator.

Note that (2.31) was derived taking into consideration the target vector k written in the

lexicographic basis (see (2.29)). Alternatively, if the Pauli basis was considered (see (2.30)),

[M ] would be referred to as the coherence matrix. Throughout this thesis, the coherence and

the covariance Matrix are used indistinctly and are referred simply as [M ].

As reported in more details in the next chapters of this thesis, the analysis based on the

second order moment may not be the most indicated approach for specific type of clutters.

Therefore, the investigation of higher order moments has recently sparked great interest of

the SAR community, introducing supplementary information to the clutter analysis and con-

sequently leading to new ICTD approaches [30, 3]. In Chapter 4, a dedicated discussion over

ICTD techniques is performed.

2.2.2 Interferometry

Interferometric radars take advantage of the information acquired by two sensors located

in distinct positions to infer characteristics of the third dimension of the sensed area (scat-

ters/terrain height). The employment of a greater set of acquisitions (more antennas or

baselines) can be used in tomographic applications to derive the entire height profile of a

given imaged area. Tomography is out of the scope of the present work, for that purpose the

reader is advised to go to the extensive literature already published, like [86, 94, 16, 51, 72].

The terrain height of a given pixel is estimated from the phase difference (also referred

to as the interferometric phase) between the two SLC images6. Figure 2.6 illustrates the

acquisition architecture and the geometric procedure employed to extract the interferometric

phase.

6For interferometric applications, the phases from the flat earth phase component and the topographic

phase should be removed before any analysis.
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(a) (b)

Figure 2.6: (a) Dual antenna acquisition configuration; (b) Basic geometry of an Interfero-

metric SAR system.

Note that the antennas A1 e A2 are separated by the base line B, whose tilt angle is α.

H is their height and θ the illumination angle. In the configuration presented in Figure 2.6

both antennas are located on the same aircraft and the two SLC images are formed at the

same time. If the same antenna shall be used for interferometric applications, two distinct

flights would have to be performed with flights trajectories separated by a distance B. This

specific branch of interferometry is addressed in the literature as multi-pass interferometry.

Note that

(r +∆r)2 = r2 +B2 − 2rB sin(α− θ) → r =
B2 −∆r2

2(∆r +B sin(α− θ))
(2.32)

where ∆r = λ∆ϕ
4π and ∆ϕ is the phase difference extracted from the two SLC images. Finally,

the height z is estimated as

z(r, θ) = H − r cos(θ) (2.33)

It is important to highlight that the interferometric phase of a given pixel only adds

relevant information to the analysis if there is a certain degree of statistical correlation between

the two images taken into consideration. In other words, if the received signals from the two

different acquisitions, relative to the same area on the ground are decorrelated, then the

interferometric phase does not introduce any meaningful information [87].

Decorrelation between two distinct acquisitions can be caused by several phenomena, both

relative to the type of scatters being sensed or due to external factors. If the analysed pixel

corresponds to a shadow area, for example, it is then composed mainly by thermal noise, hence

the given signals are completely decorrelated. Otherwise, neglecting decorrelation caused by

hardware mismatch between acquisitions and incorrect image registration (they are both

assumed to be precisely done), the decorrelation can occur due to changes in the sensed

area (specially in multi-pass interferometry). Natural changes range from the movement of

the ocean to forest growth, while external factors can be, for example, the displacement of
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a moving deterministic target on the scene. It is clear that such events will induce varied

effects on the interferometric phase. Depending on the application, some can be neglected

while others can’t.

The coherence defined in (2.34) is a complex parameter whose magnitude represents a

measure of the degree of correlation between two signals, corresponding to the same area on

the ground, from two distinct images [57].

ρM =
E[S1S

∗
2 ]√

E[|S2
1 |E[|S2

2 |]]
(2.34)

where Si, i = 1, 2 are the components of each SAR acquisition and E[·], as previously defined

is the expectation operator.

Note that the coherence, being a parameter defined for any two SAR acquisitions, can be

employed in varied analysis that takes into account the temporal behaviour of the area under

study. High coherence acquisitions of a given area can be employed to evaluate specific types

of algorithms, while the high degree of decorrelation between acquisitions (low coherence)

can indicate significant temporal change of the area under study (information relevant in

deforestation detection applications, for example).

In (2.34), S1 and S2 may correspond to different polarization pairs (transmit/receive po-

larization sate). Furthermore, in full polarimetric systems (m = 3), the entire target vector

k can be taken into consideration [87]. Such approach is addressed in the literature as PolIn-

SAR, accounting for the joint analysis of the information provided by both interferometric as

well as polarimetric acquisitions. For such cases, the coherence in (2.34) is given by

ρk =
E[k1k

H
2 ]√

E[|k2
1|E[|k2

2|]]
(2.35)

Note that (2.35) is an extension of the Coherence matrix defined in (2.31).
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Each radar application faces different challenges during the return signal interpretation.

Generally, when there is only a single dominant scatter within a resolution cell (point target),

the signal processing stage is straightforward. This is the case of air surveillance radars for

example. Nevertheless, when distributed targets are under investigation, special care has to

be taken.

As previously mentioned, in remote sensing, multiple scatters are always present in a given

resolution cell. Generally, when the interest lies in strong deterministic targets (such as man

made structures), the contribution of distributed targets produces an undesired effect in the

image, referred in the literature as speckle noise. In such cases, there is a need to understand

the clutter behaviour up to a stage that allows the proposal of specific algorithms that can

either reduce or remove its effect (e.g. speckle filtering algorithms [florence, idan, 56, 61]).

The study of clutters composed solely by distributed targets (e.g. vegetation, forests and

snow) is more challenging, requiring an analysis usually based on the stochastic properties of

the SAR data targeted in extracting information on their composition.

Compared to the univariate analysis of single polarization systems, the multivariate nature

of PolSAR data allows for a better prediction of the physical properties of the illuminated

targets. Nevertheless, the characterization of multivariate data based on asymptotic statistics

is considerably more complex. In the present chapter we investigate in closer details specific

aspects related to PolSAR clutter stochastic models.

25
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3.1 Multivariate Zero-Mean Circular Gaussian model

When the scene is homogeneous or when low-resolution SAR systems (either single polariza-

tion or multi polarization) are under investigation, situations where the number of scattering

mechanism within a resolution cell is considerably large, the central limit theorem can be

taken into consideration (see (2.17)). Therefore, the received signals can be locally modelled

by an univariate or multivariate (depending if the system is single or multi polarization) zero-

mean circular Gaussian stochastic process, being completely characterized by their variance

or covariance matrix. More precisely, the probability density function of the target vector k

defined in (2.29) is given by [59, 95]

pk(k) =
1

πm|[M ]|
exp (−kH [M ]−1k) (3.1)

where, [M ] is the m × m Hermitian, semi-positive definite covariance matrix (see (2.31))

and m, as reported in Chapter 2, assumes the values m = 3, 4, depending if the reciprocity

theorem applies or not, respectively.

If we further assume that the components of the target vector, Sqp, q, p = h, v, are ergodic

in mean and in correlation and that their cross products terms, SqpS
∗
tu, t, u = h, v, are wide

sense stationary in mean [65], the maximum likelihood estimator of (2.31) is obtained by

performing a neighbouring spatial average as follow

[̂M ] =
1

n

n∑
i=1

kik
H
i (3.2)

where ki is the target vector of the ith resolution cell (pixel) and n is the number of pixels

used in the averaging operation. [̂M ] is referred in the literature as the sample covariance

matrix and is characterized by a Wishart distribution as follows

p([M̂ ]) =
nmn [̂M ]

n−m

[M ]nΓ̃m(n)
etr(−n[M ]−1 [̂M ]) (3.3)

where etr(· ) is the operator that performs the exponential of a given matrix trace and Γ̃ is

the multivariate gamma function defined, as a function of the Gamma function Γ, by [65]

Γ̃m(n) = πm(m−1)/2
n∏

i=1

Γ(n− i+ 1) (3.4)

With the improved resolution of modern SAR platforms, the number of scatters within

each resolution cell decreases considerably. High scene heterogeneity may eventually lead to

non-Gaussian clutter modelling, requiring more complex stochastic models for the analysis.

Several special cases of univariate stochastic processes (K-compound, Weibull, etc.) have

been extensively studied over the years. They all fall in the same class of compound Gaussian

distributions [76] which, in turn, had been previously grouped under the SIRP (Spherically
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Invariant Random Process) family [78], whose name is often used for referring to the afore-

mentioned stochastic processes [25, 26, 84].

Multivariate versions of SIRP distributions, namely SIRVs (Spherically Invariant Random

Vectors) [107], have been frequently employed for modelling high-resolution POLSAR data

[104, 7, 41, 105]. In the next section, a brief description of the referred stochastic model with

normalised covariance matrix is performed. For a more detailed description of such class of

random vectors, the reader is advised to go to [76].

3.2 Spherically Invariant Random Vector (SIRV) model

The SIRV is a multiplicative model that expresses the SAR signal as a product between the

square root of a scalar positive quantity (texture) and the description of an equivalent ho-

mogeneous surface (speckle) [102]. It is important to notice that in the SIRV definition, the

texture probability density function is not explicitly specified. As a consequence, SIRVs de-

scribe a whole class of stochastic processes [85], including the Gaussian (multivariate) model

(deterministic texture), KummerU distribution (Fisher texture) [7], the multivariate K dis-

tribution (Gamma texture) [74] and the G0 distribution (inverse Gamma texture) [73], the

last two being special cases of the more general multivariate G-family, specially suited for

extremely heterogeneous clutters [44, 43]. Let us now address the mathematical model that

describe this class of random vectors.

As described in Section 2.2.1, for an m-dimensional PolSAR system (m ≤ 4), the single

channel model [40] has been extended as follows: in each ith azimuth / range location, ki is

them×1 complex target vector corresponding to the same area on the ground. For distributed

targets, the corresponding k vector is considered non-deterministic and may be written under

the SIRV assumption.

The SIRV is, originally, a class of non-homogeneous Gaussian processes with random

variance [104]. It is an important subclass of Complex Elliptically Symmetric Distributions

(CES), also referred to as compound-Gaussian [76], where each m-dimensional observation

vector k is defined as

k =
√
τ · z (3.5)

where z is an independent complex circular Gaussian vector, characterising the speckle, with

zero mean and covariance matrix of the form [T ] = σ0 · [M ], such that Tr{|M |} = 1 and σ0 is

the total power (span). In (E.2), τ represents the texture, a positive random variable charac-

terising the spatial variations in the radar backscattering, which is statistically independent of

the speckle. The probability density function of the texture random variable is not explicitly

specified by the model, therefore, as previously mentioned in this section, SIRVs describe a

wide range of well known specific models.

The generalisation of the [M ] maximum likelihood estimator (obtained under the deter-
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ministic texture case) is the solution of the recursive equation given by

[M̂ ]FP = f([M̂ ]FP ) =
1

n

n∑
i=1

kik
H
i

kH
i [M̂ ]−1

FPki

(3.6)

where ki, 0 < i < n represents each sample (pixel) of the observation dataset, ·H is the

complex conjugate transpose operator and the acronym FP stands for a Fixed-Point iteration.

Equation (3.6) is often referred to as the M-estimator of scatter [76].

The generalised texture maximum likelihood estimator [104] for each observation vector

is given by

τ̂i =
kH
i [M̂ ]−1

FPki

m
(3.7)

Note that the estimator described in (3.7) is a function of the covariance matrix estimator

described in (3.6) and does not rely on the sample (spatially averaged) covariance matrix.

In summary, the characterisation of the PolSAR target vector k reduces to determining

the probability density function of the texture, which is the same for all channels, and the

covariance matrix [M ] of the speckle, from which it is possible to infer the nature of the most

dominant scatters in the scene as well as the identification of their mixture process inside

each cell, i.e. parametrization [18].

Aside from the formulation presented above, many methods have been proposed in the

literature to both derive the covariance matrix [M ] as well as the texture characteristics under

specific stochastic model assumptions. Usually, optimal solutions rely on maximum likelihood

estimators, which are highly dependent on the model adopted [76]. With the exception of

the sample covariance matrix (see (3.2)) which, asides from being the maximum likelihood

estimator under the Gaussian clutter assumption, features a geometric/physical meaning for

its estimation (i.e. it can be thought of as the centre of mass of the estimated covariance

matrices for each pixel), other estimators loose their meaning if the assumed model does

not hold, becoming sub-optimal. Furthermore, the assumption of either a Gaussian clutter

or the product model to describe the heterogeneous clutter are basic assumptions of many

algorithms related to segmentation and classification of PolSAR images, which would have

their performance dramatically affected if their assumed models are not valid.

Despite its widespread use among the community, many authors raised the question if

considering the texture polarization independent is the most suitable model for all kinds

of clutter [35, 97]. In particular, under forested scenarios, where the returned signal may

probably contain contributions from surface, double bounce and volume type of scatters, each

one originated from different sources and thus potentially having different textures, a higher

deviation from this model is expected [35]. Indeed, experimental results showed significant

variations of the texture measures among the polarization channels for such kind of scenario

[2] evidencing the criticality of the assumptions done with the model prior to any SAR image

processing operation (segmentation, classification, speckle filtering).

Within this context, in the next section a general framework is proposed for evaluate



3.3. Wald test on Complex Elliptical Symmetric Distribution 29

quantitatively the fitting of SIRV stochastic models with respect to a given multidimensional

SAR dataset. Briefly, the procedure relies on the fact that the SIRV model is a specific

subclass of Complex Elliptically Symmetric Distributions (CES), also referred to as compound

Gaussian [76]. A Wald test is derived to verify if the structure of the fourth order moment

corresponds to that of an elliptical population. The proposed method has a relatively simple

form and is derived based on the Schott test for real valued random vectors [90].

3.3 Wald test on Complex Elliptical Symmetric Distribution

Testing for spherical or elliptical distributions is not a relative new subject in neither signal

processing nor statistics community. Nevertheless, most of the tests are designed for real

valued data and rely on the estimation of high order moment matrices [1, 38], not being

suitable for PolSAR evaluation, since the latter is characterised by complex random variables

and a possible mapping C → R would double the dimensionality of the problem, increasing

significantly the complexity of the algorithms. Within this context, the procedure adopted

here to derive the test on complex elliptical symmetry is analogous to what has been done by

Schott with real valued random vectors [90]. Hence a few steps are deliberately let implicit

being their derivation straightforward due to their conformity with the real case.

As previously mentioned, the SIRV model is a specific subclass of Complex Elliptically

Symmetric Distributions (CES), also referred to as compound Gaussian [76]. CES distribu-

tions present an important property which states that their higher order moment matrices are

scalars multiple of their correspondent Complex Normal Distribution (CN) [90]. Therefore,

most of the statistic theory derived for CN can be easily adjusted to fit CES. Consequently,

an easy way to verify if a dataset follows a CES distribution is simply to verify if the structure

of its fourth order moment (quadricovariance matrix) retains this property.

Let the observation vector k be anm×n dataset wherem ≤ 4 is the number of polarization

channels used by the system and n is the number of samples acquired from an homogeneous

region, that share the same statistical properties. Furthermore, assume that this dataset is

extracted from a finite second order moment elliptical distribution with zero mean vector and

covariance matrix [M ]. Therefore, the asymptotic normal distribution of the random vector

n1/2vec([̂M ]−[M ]), where vec(·) is the operator that transforms a matrix into a column vector

[66] and [̂M ] is the unbiased sample covariance matrix, is zero mean with covariance matrix

Ω and pseudo-covariance matrix P , respectively given by

Ω = σ1([M ]∗ ⊗ [M ]) + σ2vec([M ])vec([M ])H

P = σ1([M ]∗ ⊗ [M ])Kmm + σ2vec([M ])vec([M ])T (3.8)

where Kmm is a commutation matrix [66], ·∗ and ·H are the complex and complex transpose

operators respectively, ·T stands for the transpose operation, ⊗ is the Kronecker product

operator and σ1 and σ2 are functions of the dimensionality m and the CES characteristic

function generator ψ [67]. Without loss of generality, assuming fitness of the fourth order

moment of the CES, and that the texture τ is unit mean, they reduce to σ1 = 1 + ω and
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σ2 = ω [76]. It is worth pointing out that ω is still a function of m and ψ and, as physical

meaning, it represents the variance of the texture [76].

The fourth order moment matrix [M ]4 = E
[
kkH ⊗ kkH

]
is given by (see Appendix A)

[M ]4 = (1 + ω) [(Im2 +Kmm) ([M ]⊗ [M ])] (3.9)

where Iq is the q × q identity matrix .

According to [39], the sample complex quadricovariance estimator can be expressed in

terms of the Kronecker product as

[̂M ]4 =
1

n

n∑
i=1

kik
H
i ⊗ kik

H
i (3.10)

Its corresponding standardized form is given by

[̂M ]4∗ =

(
[̂M ]

− 1
2

H

⊗ [̂M ]
− 1

2

H)
[̂M ]4

(
[̂M ]

− 1
2 ⊗ [̂M ]

− 1
2

)
(3.11)

where [̂M ]
− 1

2 · [̂M ]
− 1

2

H

= [̂M ]
−1

.

Assuming that A = [̂M ]− [M ] and C = [̂M ]4 − [M ]4, it is shown in the Appendix B that,

concerning the effectiveness of the test, we may assume hereafter, with no loss of generality,

that [M ] = Im, where Im is the m x m identity matrix and that

vec([̂M ]4∗) = (1 + ω)vec([N ]4) + vec(C)− (1 + ω)Hvec(A) +Op(n
−1/2) (3.12)

where [N ]4 is what [M ]4 simplifies to when ki ∼ CNm(0, Im) and H is an operator given by

H = [Im2⊗(Im2+Kmm)]·{Im⊗[(Kmm⊗Im)·(Im⊗vec(Im))]+[(Im⊗Kmm)·(vec(Im)⊗Im)]⊗Im}
(3.13)

Note that (3.12) is asymptotically equal to

vec([̂M ]4∗) = (1 + ω)vec([N ]4) +Op(n
−1/2) (3.14)

Therefore, defining G = ρ−1vec(N4)vec(N4)
T , with ρ = vec(N4)

Tvec(N4), it is possible to

state that Gvec([̂M ]4∗) is a consistent estimator of [M4] if and only if [M4] has the structure

defined in (3.9). Hence, assuming that the latter is true, it is of common knowledge that

n1/2v = n1/2(Im4 −G)vec([̂M ]4∗) (3.15)

is asymptotically normal with zero mean and covariance matrix

Φ = (Im4 −G)Ξ(Im4 −G) (3.16)

where Ξ denotes the asymptotic covariance matrix of n1/2vec([̂M ]4∗).
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The Wald test for complex-valued signals states that

T = nvHΓv (3.17)

has an asymptotic chi-squared distribution with degrees of freedom f equal to the rank of

Φ if Γ is a consistent estimator of a generalised inverse of the latter. In other words, if the

tested samples are elliptically symmetric (hypothesis H0), then

T → χ2
f in distribution (3.18)

Therefore, the test described in (3.17) rejects H0 whenever T exceeds the critical value of

χ2
f , taking into consideration a significance level 1− p, where p is also often referred to as the

asymptotic level and 1− p the probability of false alarm.

Let us then address the formulation of Ξ. Note from (3.12) that Ξ can be written as

Ξ = [M ]C − (1 + ω)[M ]C,AH
H − (1 + ω)H[M ]A,C + (1 + ω)2H[M ]AH

H (3.19)

where [M ]C is the covariance matrix of vec(C), [M ]A is the covariance matrix of vec(A), and

[M ]Q,R is the cross-covariance matrix between Q and R.

Note from (3.19) that in order to construct the test, it is necessary to derive sixth and

eighth order moment matrices, what could significantly increase the complexity of the former.

Nevertheless, assuming that they both exist and that the moment structure of our population

is the same as that of an elliptical distribution up to the eight-order moments [90], then

[M ]4 = (1 + ω)N4, [M ]6 = (1 + η)N6 and [M8] = (1 + θ)N8, with η, θ and ω, being functions

of the characteristic function generator. Furthermore it is possible to write (see (3.8))

[M ]C = (1 + θ)(1 + ω)2(NT
4 ⊗N4) + θ(1 + ω)2vec(N4)vec(N4)

T (3.20)

[M ]C,A = (1 + η)
∑
i

(ei ⊗ Im3)N6(ei ⊗ Im2)− (1 + ω)vec(N4)vec(Im)T (3.21)

where ei denotes the ith column of the identity matrix Im, and

[M ]A = (1 + ω)(Im ⊗ Im) + ω
(
vec(Im)vec(Im)T

)
(3.22)

In order to conclude the derivation of the test, the only point missing is to specify a

consistent estimator of the generalised inverse of Φ. Note that specifying ω̂, η̂, θ̂ as consistent

estimators of ω, η and θ, respectively, is a sufficient condition to achieve this goal. A consistent

estimator of ω is directly obtained from (3.14) and is given by

ω̂ =
1

nm(m+ 1)

n∑
i=1

[
kHi [̂M ]

−1
ki

]2
(3.23)
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Analogously, it can be shown that

η̂ =
1

nm(m+ 1)(m+ 2)

n∑
i=1

[
kHi [̂M ]

−1
ki

]3
(3.24)

and

θ̂ =
1

nm(m+ 1)(m+ 2)(m+ 3)

n∑
i=1

[
kHi [̂M ]

−1
ki

]4
(3.25)

Summarising, the proposed framework for the complex elliptical symmetry starts with

the estimation of (3.23), (3.24) and (3.25). Next, (3.20), (3.21) and (3.22) are calculated and

consequently, (3.19) is derived. Then (3.16) is used along with (3.15) into (3.17) and the test

is finally finished. The degrees of freedom of the test is equal to the rank of Φ [90] and is

given by (see Appendix C)

f = m2 +
m(m− 1)(m2 + 19m+ 6)

24
− 1 (3.26)

Note that for m = 3, (3.26) reduces to f = 26.

3.4 Performance Analysis

In order to access the performance and robustness of the proposed test, simulated data, data

from the P-band airborne dataset acquired by the Office National d’Études et de Recherches

Aérospatiales (ONERA) over the French Guiana in 2009 in the frame of the European Space

Agency campaign TropiSAR and a RAMSES X-band image acquired over Brétigny, France

(see Appendix E) are taken into consideration.

3.4.1 Synthetic Data Analysis

The synthetic data used in the present analysis is divided into 9 regions, each containing

100 x 100 samples of a specific type of heterogeneous clutter. With the exception of the

first, assumed Gaussian and the last assumed a polarization dependent model, all others

are modelled as SIRVs (see (E.2)), with different parameters. Since the probability density

function of the texture random variable is not explicitly specified by the model, with no loss

of generality, we generated the synthetic dataset assuming it to have a Gamma distribution.

The shape and scale parameters of the Gamma distribution that characterises the texture

random variable for each region are such that their mean are fixed and set to 1 and the their

variances are given as in Figure 3.1.

Once the Gamma distribution is parameterized for each region c, a simulated texture

vector τ̃ c, 2 ≤ c ≤ 8 is randomly generated. Afterwards, a complex normal distributed
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Figure 3.1: Synthetic data span with an indicative of the variance of Gamma distribution

that characterises the texture random variable for each region.

random vector z̃, i.e., z̃c ∼ CN(0, I) is generated. Finally, the simulated observation vector

for each region is then given by

k̃c = [M]1/2
√
τ̃ c · z̃c (3.27)

where [M ] is the speckle covariance matrix, kept the same for all regions and given by

[M ]1/2 =

0.2236 0 0.5477

0.2236 0.3873 0.5477j

0 −0.3873j 0

 (3.28)

where j =
√
−1 is the imaginary unit. According to [98] this covariance matrix describes an

heterogeneous clutter composed by 60% of quarter wave, 30% of helix left screw and 10% of

dipole, with entropy equal to 0.8.

A key point in the analysis of statistical tests performance is the choice of the set of samples

(size and location within the data) used in the derivation of their stochastic properties. Since

the synthetic data used in the present study is composed by homogeneous regions, a sliding

window approach is sufficient for the definition of the set of samples used. Nevertheless the

size of this sliding window can impact directly in the performance of the test, either if it

is underestimated or overestimated. Figure 3.2 presents in green an over plot of the points

where the test indicates non Spherical Symmetric samples with the synthetic data span as

background for different sliding window sizes. The asymptotic level p (see (E.13)) was set to

0.99.
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Note that the proposed test performance is extremely dependent on the window size.

It is evident in Figure 3.2 that the higher the window size, the better the probability of

detection (seen in the efficient of the test in rejecting the multiplicative model for the pixels

in the “Polarization Dependent” region). Nevertheless, the probability of false alarm can be

seen from two perspectives. On the one hand, the amount of isolated false alarms (outliers)

decreases as the window size increases, on the other, even though the number of cluster of false

alarms pixels remains nearly the same, their size increases with an increase of the window size.

The latter points to the dependence of the test performance on the degree of heterogeneity

within the set of samples used in the derivation of the statistics.

Therefore, it is possible to conclude that the proposed test has a very good performance

in discriminating between SIRV and non SIRV heterogeneous clutter, indicating where the

traditional product model (polarization independent texture) fails. Nevertheless, depending

on the degree of non-stationarity of the samples used in the test, it also rejects the models,

what can be better seen in the boarders of a few regions on the dataset. It is important to

highlight that it is not mandatory that the test will fail when samples from different SIRVs

models are used to extract the statistics. If that was the case, all the boarders within the

synthetic dataset would have failing pixels and yet just the boarders of a few regions present

this behaviour.

This assertion opens an interesting venue for discussion, the performance of the test under

mixture models. Its is possible to conclude from the achieved results that such performance

is a function of the heterogeneity degree within the dataset used to derive the test statistics.

Therefore, if the mixed models are close to each other, then the derived test is able to correctly

identify them as being SIRVs. Nevertheless, if the probabilistic models are too different from

each other the text indicates a departure from the Spherically Invariant Random Vector

model.

The test performance is also verified as a function of the confidence level p. Analogously,

Figure 3.3 presents in green an over plot of the points where the test indicates non Spherical

Symmetric samples with the synthetic data span as background for different asymptotic levels

p. The window size was chosen to be 23×23. Note that the probability of detection, as defined

above, remains nearly unchanged, while the probability of false alarm increases considerably

as the asymptotic level decreases.

For the sake of completeness, we verify the consistency of the test as a function of the

window size. Figure 3.4 shows the normalized fitted chi-squared distribution to the histogram

of the test performed (see (3.17)), using the sliding window approach (window sizes 7 × 7,

15 × 15 and 23 × 23) and taking into consideration the region where the pixels present a

Gamma distribution with variance σ2τ = 0.5. It is important to highlight that the integral

of any pdf over the range [−∞,∞] should always be equal to 1, nevertheless, since we are

mainly interested in the goodness of fit of the test, with no loss of generality, we chose to

present the normalized version of the given curves.

Note from Figure 3.4 that the chi-squared distribution with degrees of freedom given

by (3.26) does not provide an overall satisfactory goodness of fit for the proposed Spherical
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Symmetry test, despite of the chosen window size. Nevertheless, the goodness of fit of the

tail distribution (more important in our analysis) of the derived test presented in (3.17) for

window sizes 15× 15 and 23× 23 is remarkable, in accordance with the theory derived in the

previous section. Note further that such goodness of fit of the tail distribution is not verified

for small window sizes, what can be seen in the curve corresponding to a 7× 7 window size.

This points to another indication of the test performance dependence to the window size.

Finally, it is important to highlight once again that the proposed Wald test distribution is

asymptotically chi-squared, therefore, for each window size, the test distribution will most

likely present a departure from the chi-squared one, as a function of the number of samples

being used in the statistics derivation.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Rejected samples by the proposed test in green backgrounded by the synthetic

data span. Test repeated with different window sizes: (a) 7× 7; (b) 11× 11; (c) 15× 15; (d)

19× 19; (e) 23× 23; (f) 31× 31.
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(a) (b) (c)

Figure 3.3: Rejected samples by the proposed test in green backgrounded by the synthetic

data span. Test repeated with different asymptotic levels p: (a) 90%; (b) 95%; (c) 99%.

Figure 3.4: Fitted chi-squared distribution (red) to the histogram of the test performed with

different window sizes: 7 × 7 (blue), 15 × 15 (black) and 23 × 23 (green). It was taken into

consideration the region with Gamma distribution and variance σ2τ = 0.5.
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3.4.2 Real Data Analysis

Once the test is validated with synthetic data, we carried on with our investigation using real

data. More precisely, in the present work we take into consideration data from the P-band

airborne dataset acquired by the Office National d’Études et de Recherches Aérospatiales

(ONERA) over the French Guiana in 2009 in the frame of the European Space Agency

campaign TropiSAR, characterising an area mainly composed by distributed targets and a

RAMSES X-band image acquired over Brétigny, France with strong deterministic targets.

More details of the datasets employed in the analysis can be found in Appendix E.

When working with real data, the set of samples used in the test can be extracted either

by using a sliding window, or from classes previously segmented with the use of an additional

algorithm. In the present work we choose to apply the test on a sliding window configuration,

to avoid any constraint (or bias) that could emerge from the use of the former. The sliding

window size, in turn, is a constant concern in SAR community since high values decrease

considerably the system spatial resolution and may eventually introduce bias in the estimation

of a few parameters. Many authors raised the question of what would be the optimal window

size for several different applications, e.g. [58, 65]. In the previous section the tradeoffs in the

proposed statistical test performance, concerning the sliding window size, were discussed. The

size of the sliding window was then chosen to be 15×15, which presented a good performance

regarding the probability of detection and probability of false alarm and is in accordance to

what is described as necessary by other authors when applying many SAR algorithms [58,

65, 82].

The analysis starts by verifying the consistency of the test with respect to temporal

datasets. Before applying the proposed test, it is first necessary to verify if the dataset

is coherent, i.e., if there is no significant statistical decorrelation between the information

acquired in different moments (see (2.34)). Four images acquired by the Office National

d’Études et de Recherches Aérospatiales (ONERA) over the same area on the ground (in

French Guiana), by the same P-band airborne sensor flying in the same trajectory were

taken into consideration. The time interval between each acquisition with respect to the first

(taken as reference) is 2, 4 and 7 days, respectively. More details on the dataset are provided

in Appendix E.

Figure 3.5 presents the magnitude of the coherence of each temporal image calculated with

respect to the first one. It is important to highlight that this preliminary analysis is done

merely in a qualitative, rather then a quantitative, sense. Therefore, only the first component

of the target vector, written in Pauli basis (see (2.30)) is taken into consideration. Note that

the temporal datasets are coherent with respect to one another. This result is in accordance

to what was reported in [32].

Next, we perform the proposed clutter stochastic model testing procedure on each of

the aforementioned polarimetric temporal data set. The result is presented in Figure 3.6.

Note that the test is consistent with respect to temporal coherent datasets. The average of

matching results from the test is 83.73%, i.e. the average number of pixels in each image
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(a) (b)

(c)

Figure 3.5: Temporal analysis of the Spherical Symmetry test: (a) coherence between the

reference image and image 2; (b) coherence between the reference image and image 3; (c)

coherence between the reference image and image 4.

whose test outcome is the same as the outcome taking into consideration the reference image

is 83.73%. Therefore, different coherent temporal polarimetric data sets provide nearly the

same test result.

As an additional tool for the remainder of the analysis, a statistical classification algorithm

is still employed to segment the scene under study into 8 different classes. For that purpose,

the statistical classifier developed for highly textured POLSAR data [41] was employed. Un-
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(a) (b)

(c) (d)

Figure 3.6: Temporal analysis of the Spherical Symmetry test: (a) test output performed on

the reference image; (b) test output performed on the image 2; (c) test output performed on

the image 3; (d) test output performed on the image 4.

like the classical H/α unsupervised classification [18], that assumes Gaussian homogeneous

clutter and therefore relies on the Sample Covariance Matrix (SCM) estimation, classical

mean and Wishart distance, the Non-Gaussian heterogeneous clutter is taken into account.

More details on this algorithm is presented in Chapter 6, where its contribution is more

noticed.

Let us first address the TropiSAR dataset. Figure 3.7 presents the region under study

of the referred area (different from the one use in the temporal analysis due to its higher

heterogeneity), the classification algorithm output and the spherical symmetry map where,
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in green, are indicated non Spherical Symmetric samples backgrounded by the dataset span.

Figure 3.7: French Guiana area under study: (a) RGB image, Red (HH+VV), Green (HV),

Blue (HH-VV); (b) statistical classification algorithm output; (c) spherical symmetry map.

Note that the river constitutes Class 1, as well as some presumable floated areas while

Class 8 is mainly represented by a small region probably with some man made structure. Using

an H/α feature space (Figure 3.8), it is possible to perceive the high degree of heterogeneity

within the data which contains pixels that can be classified as Volume, Double-Bounce and

Surface type of scatters [19]. Likewise the statistical classification algorithm, more details on

the H/α feature space are given in Chapter 4.

Note that the amount of pixels that fail the proposed test in such type of dataset is

not negligible (30%). This indicates that a considerable portion of the data does not fit the

Spherically Invariant Random Vector model (product model). Furthermore, note that the test

is able to correctly identify regions with high indexes of non-stationarity, more accentuated

in borders between classes, as can be clearly seen in what seems to be the river shore. The

intervals [200 : 300, 200 : 300] and [400 : 500, 400 : 600] of the dataset, both composed by

pixels from several different classes, also present a high concentration of samples that fail the

test and therefore do not fit the product model. The percentage of rejected pixels for each

class is given in Table 3.1.

Note that Classes 3, 7 and 8 are not very good representatives of the product model, while

on the other hand, classes 1, 2, 4, 5 and 6 are well described as SIRVs. Further investigation
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Figure 3.8: French Guiana area under study: H/α feature space.

Table 3.1: Percentage of non spherical symmetric pixels per class in French Guiana area under

study.

Class Percentage of non spherical symmetric pixels

1 13.76%

2 25.46%

3 45.30%

4 33.20%

5 32.19%

6 30.99%

7 48.76%

8 55.12%

of the data revealed that most of the pixels declared non spherical symmetric by the proposed

test (98.62%) had their statistic derived from a set of samples containing pixels from different

classes, more precisely, 3 (38.79%) or 4 (30.51%) classes. This indicates for the importance

in considering the high heterogeneity of the data, specially under forested scenarios, in the

derivation of SAR image processing algorithms. The latter becomes critical if a sliding window

approach is directly adopted with no additional step to avoid the contamination of pixels with

different characteristics, compromising the considered statistical model goodness of fit.

Let us now turn our attention to the RAMSES X-band image acquired over Brétigny,

France, which characterises an urban area. Analogously, Figure 3.9 presents the referred

area, the classification algorithm output and the spherical symmetry map where, in green,

are indicated non Spherical Symmetric samples backgrounded by the dataset span.

Note that, unlike the TropiSAR dataset, the RAMSES X-band image depicts a more

homogeneous region, therefore the amount of non spherical symmetric pixels is considerably

less than the former, accounting for just 18% of the pixels in the image. On the other hand,

likewise the TropiSAR dataset analysis, most of the pixels declared non spherical symmetric

by the proposed test (62.12%) had their statistic derived from a set of samples containing
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(a) (b) (c)

Figure 3.9: RAMSES X-band image acquired over Brétigny, France: (a) RGB image, Red

(HH+VV), Green (HV), Blue (HH-VV); (b) statistical classification algorithm output; (c)

spherical symmetry map.

pixels from different classes. Furthermore, it is important to highlight the correctness of the

test in indicating the regions where the trihedrals are present as Spherical Symmetric pixels

since we can characterise them as a sum of a deterministic signal with SIRV clutters, being

straightforward to state that the result also fits a SIRV model. Nevertheless, once again,

the high heterogeneity of the samples used in deriving the statistics seems to be the cause

of the surroundings of the regions where the trihedrals are located failure to the test and,

consequently, failure to the product model.

3.5 Remarks

The analysis with real data (see figures (3.7) and (3.9)) showed that the rate of pixels that fail

the proposed test is not negligible in specific types of scenarios. The forested area investigated

here presented 30% of pixels that do not fit the product model. It is important to highlight

that the applied classification used as an additional tool to better illustrate the regions where

the model fails was unsupervised, therefore the correspondence to ground truth may not be

strictly exact. It is common sense in SAR community that the evaluation of unsupervised

classification is a challenging task, due to the high degree of complexity in relating, physically

and unambiguously, classes to the ground truth data [35], specially in tropical forest scenarios

where ground truth is scarce and generally incomplete due to the difficult in accessing and

performing in situ measurements. Furthermore, highly heterogeneous clutters rarely present

the same statistic behaviour within another, making it difficult to precisely quantify the

amount of pixels that will fail the model.

Even though the lack of precise ground truth can limit the assertion of what is causing the

product model to fail, the main objective of the present analysis was to show that by proving

the correctness of test (by means of a detailed mathematical derivation and an analysis with a

synthetic dataset) and by applying it to real datasets with different sensor characteristics, we

could be able to indicate that the amount of pixels that fail the model can be non negligible,
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requiring extra attention in their analysis.

In short, a considerable portion of high heterogeneous data may not fit the Spherically

Invariant Random Vector model (product model). Therefore, traditional detection and clas-

sification algorithms developed based on the latter become sub-optimal when applied in such

kind of regions, highlighting for the need of either updating the model to one that associates

an individual texture variable with each polarimetric channel [35], or the development of

model independent algorithms, like the Independent Component Analysis (ICA), proposed in

[3].

The former, introduces a high degree of complexity in modelling PolSAR data and, conse-

quently in deriving proper algorithms suited for such models. Furthermore, providing unique

models when multi-texture assumption is taken into consideration is a challenge very difficult

to came across. The ICA, on the other hand, being a blind source separation technique,

based on higher order statistical moments, aims in recovering statistical independent sources

without having any physical background of the mixing process [48]. Therefore, it is a model

independent strategy to analyse the behaviour of non-Gaussian heterogeneous clutters (in-

herent to high resolution SAR systems) which proved itself very useful and introduces an

alternative way of physically interpreting a polarimetric SAR image. In the next chapter this

technique is further addressed.
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Polarimetric target decomposition is one of the most powerful and widespread tools for

PolSAR image interpretation. The analysis of the interaction between the illuminated area

and the transmitted waveform, to each polarimetric state of the latter, allows for a better

prediction of the basic scattering mechanisms present on the scene, and to more efficiently

propose classification, detection and geophysical parameter inversion algorithms.

More specifically, Incoherent target decomposition (ICTD) theory assumes that the scat-

tering process in most natural media is a combination of coherent speckle noise and random

vector scattering effects. Therefore, not only a statistical analysis is often required, but also

it is a common practise to associate to the imaging cell the concept of average or dominant

scattering mechanisms [18].

ICTD algorithms can be split in two stages: the decomposition of an image pixel into basic

target vectors and the correct retrieval of quantitative information from them (parametriza-

tion). Concerning the latter, Cloude and Pottier’s parameters (entropy, alpha and anisotropy)

[19] and Touzi’s target scattering vector model [98] are the most employed ones, whose use-

fulness have already been demonstrated by several authors. Regarding the former, the as-

sociation of the three most dominant scatters in an image cell to the eigenvectors of the

coherence/covariance matrix of the data is so widespread in the PolSAR community that

it is often mistaken as the only alternative for that purpose. In the present chapter we first

describe the aforementioned parametrization methods, then we present the Eigenvector based

ICTD, highlighting the constraints inherent to such technique and finally introduce the Inde-

pendent Component Analysis as an alternative ICTD method to be employed in conjunction

with the latter in an attempt to better interpret PolSAR data of distributed scatters.

45
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4.1 ICTD Parametrization

Parameterizing a given target vector (defined in (2.30)) means associating to the latter phys-

ical parameters related to its shape/composition that enables its classification as one of the

already known scattering mechanisms or natural phenomena. Such parameters are derived

based on the electromagnetic behaviour of the backscattered wave, considering each polariza-

tion state of the transmit waveform. In the following, two of the most employed, within the

SAR community, parametrization methods are briefly described.

4.1.1 Cloude and Pottier H/α/β

The Scattering Vector Reduction Theorem proposed by Cloude and Pottier [19] states that

for any scattering mechanisms, its target vector can be written as a set of transformations

performed in the identity vector [49] as follows

k = |k| ·

ejϕ1 0 0

0 ejϕ2 0

0 0 ejϕ3

 ·

1 0 0

0 cos(β) − sin(β)

0 sin(β) cos(β)

 ·

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 ·

10
0

 (4.1)

The reduced form of the target vector is given as

k = |k| ·

 cos(α)ejϕ1

sin(α) cos(β)ejϕ2

sin(α) sin(β)ejϕ3

 (4.2)

where the angles ϕi, i = 1, 2, 3 represent phase relations with no relevant physical meaning

reported up to now and the angles β and α account for the scatter orientation with respect

to the radar line of sight and its natural phenomenology, respectively. The α angle is a key

parameter if the scatter physical behaviour is under investigation, ranging from an isotropic

surface (α = 0◦) to double bounce type of targets (α = 90◦), passing trough oriented dipole

(α = 45◦).

The referred decomposition presents ambiguity when discriminating between some spe-

cific scatters. In [27] the authors highlight that some targets with the same scattering type

parameter can not be distinguished using the Cloude and Pottier parameterization. This is

the case of helix and dihedral, for example. Therefore, the authors propose an analysis in

an alternative orthonormal basis formed by a sphere and a pair of helices to circumvent the

problem. The ambiguities related to the parametrization are not addressed in the present

work. For that purpose the reader is advised to go to [27].

Additionally, other concerns have been raised regarding the robustness of the aforemen-

tioned parametrization which are mainly related to the roll-variance of the β angle and the

inability to describe asymmetric type of targets [98]. Nevertheless, in the present work, these

concerns are also neglected with no loss of generality since our main interest lies in the target

classification scheme originated from the referred parametrization (see Section 4.2.1), which

does not take into account the β angle [18].
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4.1.2 Touzi Target Scattering Vector Model

The target scattering vector model derived in [98] based on the Kennaugh-Huynen decompo-

sition is given, for both symmetric and asymmetric targets, by

k = m|k|m · ejϕs ·

1 0 0

0 cos(2ψ) − sin(2ψ)

0 sin(2ψ) cos(2ψ)

 ·

 cos(αs) cos(2τm)

sin(αs)e
jϕαs

−j cos(αs) sin(2τm)

 (4.3)

where each coherent scatter can be represented by four unique and roll-invariant parameters,

τm, αs, ϕαs and m and by two roll variant parameters ϕs and ψ. In [6], Bombrun made a

detailed investigation of the ambiguities in (4.3) and came up with the following relations

k(τm, αs, ϕαs ,m, ϕs, ψ) = k(−τm, αs, ϕαs ± π,m, ϕs, ψ ± π

2
)

= k(−τm,−αs, ϕαs ,m, ϕs, ψ ± π

2
) (4.4)

In (4.3), target helicity, τm, is used for identifying its symmetric nature and is defined in

the interval [−π/4, π/4]. The parameter αs, defined in the interval [0, π/2] represents the

magnitude of the symmetric scattering, while ϕαs , ranging between [−π/2, π/2], its phase.

In [98] it is shown that αs is identical to Cloude and Pottier scattering type parameter for a

low entropy symmetric target, i.e., target having an axis of symmetry in the plane orthogonal

to the radar line of sight direction. These three parameters allows for a complete and an

unambiguous description of coherent scatters while ψ determines the target orientation angle,

m is a measure of the maximum amplitude return and the phase ϕs is investigated only in

interferometric applications.

In his work, with the aid of the Poincaré sphere, Touzi enumerates a set of canonical

scattering mechanisms and their corresponding τm, αs, ϕαs parameters. Figure 4.1 illustrates

a few of the scattering mechanisms parameterized with the aforementioned method.

As in Cloude and Pottier decomposition, Touzi target vector scattering model also presents

ambiguity for some specific scatters. While in [27] the authors proposed an analysis in an

alternative orthonormal basis to circumvent the problem in Cloude and Pottier parametriza-

tion, in Touzi’s decomposition the ambiguity problem seems slightly more complex since it

involves the evaluation of the orientation angle ψ.

In order to derive the roll invariant parameters τm, αs and ϕαs , responsible for an unam-

biguous description of the target, the orientation angle has to be first derived and removed,

an operation referred to as “desying” in [8]. This procedure has been addressed in [8] where

the authors proposed a new method for estimating ψ and compared its performance with the

method proposed by Krogager based on the phase difference between right-right and left-left

circular polarizations of the scattering matrix [53]. The referred method is given by

ψ =
1

2
arctan

(
2ℜ{(S∗

HH + S∗
V V )SHV }

ℜ{(S∗
HH + S∗

V V )(SHH − SV V )}

)
(4.5)
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Figure 4.1: Poincaré sphere representation of Touzi parameters and scattering mechanisms

parameterized considering: (a) τ=0, (b) ϕαs = 0.

The authors in [8] concluded that unlike the method proposed by Krogager, theirs provide

an unbiased estimation of the target’s orientation angle and should be used for its charac-

terisation. Nevertheless, the procedure described does not treat ambiguities that appears for

some special targets. In Appendix D, we better address this issue but it is worth pointing out

that it is not the intention of the authors here to propose a solution for the aforementioned

ambiguity problem, but rather to show the importance in the appropriate implementation of

the parametrization algorithm and evaluation of the parameters derived.

4.2 Target vectors estimation

Prior to the parametrization, it is first necessary to estimate the scattering vectors from

the given data. The assumption that the scattering process in most natural media is a

combination of coherent speckle noise and random vector scattering effects leads to the need

of a stochastic approach for that purpose. Furthermore, the concept of average or dominant

scattering mechanisms has to be associated to each imaging cell [19], since multiple targets

contribute to the backscatter electromagnetic signature of a given pixel (see (2.17)).

4.2.1 Eigenvector based ICTD

The Eigenvector based approach employs a three-level Bernoulli statistical model to estimate

average target scatters within the data. More precisely, it relies on the diagonalisation of the

Hermitian, semidefinite positive coherence or covariance matrix (see (2.31)) by an unitary

similarity transformation [19, 49] given by

[M ] = [Z][Λ][Z]−1 (4.6)
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where [M ] is the estimated coherence matrix taking into consideration the pixel neighbours

within a sliding window. [Z] is an unitary matrix whose columns are the eigenvectors of [M ]

and [Λ] is the corresponding diagonal eigenvalues matrix.

Such method assumes that each eigenvector represents one of the most dominant deter-

ministic scattering mechanisms within the image cell. Since the coherence matrix is 3 × 3

(assuming that the reciprocity theorem holds, i.e. m = 3), the three scatters that stands out

are retrieved. Many authors justify the usage of the Eigenvectors approach claiming that they

form an orthogonal basis, and that the diagonalisation performed on the coherence matrix in-

dicates that the retrieved sources are uncorrelated, what for Gaussian clutter assumption also

means independence [49]. The drawback of this kind of method emerges when the clutter is

not Gaussian or not composed by orthogonal mechanisms, situations where the performance

of the algorithm could be compromised. As reported in Chapter 5, under the aforementioned

scenarios, both characteristics can in fact compromise the correct interpretation of the scene

under analysis.

The contribution of each mechanism to the total backscatter phenomenology is given by

its corresponding eigenvalue. The entropy H is a parameter introduced to measure how

much, in terms of statistics, the scatters are mixed. In other words, it measures the degree of

randomness within the image cell. It is a function of the eigenvalues λi, i = 1, 2, 3 (representing

the corresponding contribution from each scatter), written as

H =
3∑
1

−Pi log3 Pi (4.7)

where Pi = λi/(λ1 + λ2 + λ3). It is important to note that the entropy, being a function only

of the eigenvalues of the coherence matrix is roll-invariant and basis invariant.

The combined use of the Eigenvector approach with Cloude and Pottier’s parametrization

gave rise to one of the most employed and most traditional classification schemes in PolSAR

data analysis, the H/α feature space [19]. Low entropy values indicate that a dominant

scatter is mainly responsible for the given polarimetric signature, while high values (close

to 1) point to the existence of multiple scattering mechanisms within the image cell equally

strong, suggesting that there is not a single one that stands out among the others. The α

angle is extracted from the eigenvectors of the coherence matrix and, as previously mentioned,

represents the physical behaviour of the scatter. Each eigenvector correspond to a scattering

mechanism within the image cell and therefore each one will provide a different α angle. The

authors in [19] state that the best estimate of such parameter to represent the image cell is

an weighted average based on the eigenvalues of the coherence matrix. In the next section we

take a closer look on this classification scheme.

H/α feature space

The H/α plane is a standard tool for PolSAR image analysis serving as basis for many

detection, classification and geophysical parameters inversion algorithms. The H/α classifi-
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cation introduces an extra step in the characterization of the scattering mechanisms within

a resolution cell. After decomposing an image pixel into basic target vectors and correctly

retrieving quantitative information from them (parametrization), it allows the association of

the estimated parameters to natural phenomena.

Once the α angle is estimated for each mechanism, a weighted average based on the

contribution of each scatter (eigenvalue) is calculated. The resultant average α along with the

entropyH derived for each pixel are plotted in a plane. Based on the polarimetric behaviour of

known type of natural phenomena, Cloude and Pottier proposed linear boundaries to classify

an image cell based on its H and α values. The outcome of this clustering is a feature space

consisting of 9 classes divided in low, medium and high entropy, and surface, dipole and

double bounce type of targets, depicted in Figure 4.2.

Figure 4.2: H/α feature space.

Many works are based on such method, from geophysical parameters inversion algorithms

(in varied regions from the globe) to detection and classification algorithms. Having a re-

markable correspondence to ground truth, the usage of this unsupervised technique has had

very few improvements since its conception. Nevertheless, there is an important remark still

uncovered related to this method. The orthogonality constraint of the eigenvectors of the

coherence matrix generates unfeasible regions in the plane, reducing the feasible H/α pairs

that can be represented in the feature space. It is important to highlight that these regions

are mathematically, and not physically, unfeasible.

As reported in [19], this limitation reaches its apex for H = 1, when only α = 60◦

becomes a possible solution that complies with the referred constraint. Nevertheless, it is

counter intuitive to believe that when any multiple scatters are equally present in an image

cell, necessarily the behaviour of the resultant mechanism has to be the one of double bounce

scatters.
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The feasible regions boundaries are represented by two curves (also presented in Figure

4.2), calculated as the H/α pair estimated considering the following coherence matrices

[M ]I =

1 0 0

0 m 0

0 0 m

 0 ≤ m ≤ 1 (4.8)

and

[M ]II =



0 0 0

0 1 0

0 0 2m

 0 ≤ m ≤ 0.5

2m− 1 0 0

0 1 0

0 0 0

 0.5 ≤ m ≤ 1

(4.9)

The limiting curves on the H/α plane reduce the analysis of high entropy type of targets

in a more limiting way than the analysis of low entropy ones. Even though polarimetry is

a better suited tool to analyse low entropy type of targets, the ability to correctly estimate

the parameters that describe the illuminated scatters is crucial. Therefore, any constraint

that prevent this from happening decreases the performance of any classification, detection

and geophysical parameter inversion algorithms. Furthermore, when surface type of scatters

are addressed, even in low entropy environment the constraint on the estimated average α

angle can lead to a misinterpretation of the actual behaviour of the clutter, directly affecting

the performance of classification and detection algorithms as well as the validity of many

physical models widely used to describe this type of targets. For the sake of completeness,

let us verify what kind of theoretical heterogeneous clutter may fall in the aforementioned

unfeasible regions that arise when the Eigenvector approach is employed. For that purpose,

Touzi target scattering vector model is taken into consideration.

Considering the TSVM parametrization of the canonical scatters presented in the previous

section, let us assume that the heterogeneous clutter composition in the scenario under study

is 15% dihedral (αs = 90◦), 35% dipole (αs = 45◦) and 50% cylinder (αs = 18◦). Such

non-orthogonal symmetric scattering mechanisms may be found in nonurban/forested areas

[80, 55]. Since the referred scatters present zero helicity due to their symmetry, Cloude and

Pottier average α angle can be extracted directly from Touzi’s αs, and is given, for such

clutter, by α = 38.25◦. The estimated Entropy is H = 0.9089. Note that these values of H

and α would fall into a non feasible region, if correctly retrieved by the Eigenvector approach.

Nevertheless, the orthogonality constraint between the estimated scatters does not enable

this from happening. The Eigenvector approach estimates mutually orthogonal but incorrect

scattering mechanisms whose H and average α pair will mandatory fall within the boundaries

set by the aforementioned limiting curves.

Another evidence that the orthogonality constraint introduced by the Eigenvector ap-

proach may compromise the performance of classification algorithms arises when the H/α
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feature space is used as a starting point in iterative classification algorithms. Iterative clas-

sification algorithms, like the ones proposed in [104, 62], rely on the assumption that pixels

with similar statistical behaviour may compose a same cluster (class) even if they reside in

different boundaries regions. Therefore, once an initial population is defined (generally the

output of the H/α classification), a distance measure based on the stochastic model adopted

is taken into consideration to verify if a given pixel is more likely to be part of a new class

than its actual one. In many applications it is noticeable the migration of pixels originally

classified in zone 6 to zone 2, indicating that pixels in these regions have characteristics that

are not well described by neither of phenomena represented by them. This subject is further

addressed in Chapter 6.

In [3] a new strategy to polarimetric target decomposition was presented by incorporating

the independent component analysis (ICA). The ICA is a blind source separation technique

based on higher order statistical moments and cumulants whose utility has already been ex-

plored in many different research areas, such as wireless communications, feature extraction

and brain imaging applications [48]. The results presented in [3] proved it to be a very promis-

ing area in polarimetry, mainly when non-Gaussian heterogeneous clutters (inherent to high

resolution SAR systems) are under study. The theoretical potential in estimating similar

entropy and first component, when compared to traditional eigenvector decomposition, but

rather a second most dominant component independent with respect to the first one and

unconstrained by the orthogonality introduces an alternative way of identifying the canon-

ical scattering mechanisms within an image cell and, therefore, of physically interpreting a

polarimetric SAR image. The following section describes this method in more detail.

4.2.2 Independent Component Analysis based ICTD

In order to better address the ICA approach to ICTD and highlight the main differences

regarding the Eigenvector decomposition, first we shall model the problem from a blind source

separation perspective. Let x be a set of observation vectors, then

x = As (4.10)

where A is the mixing matrix and s is the mutually independent sources vector. Analogously

to Eigenvector decomposition, each column of the estimated mixing matrix Â represents one

of the most dominant mutually independent target vector present in the observed scene. The

estimated sources, ŝ, are given by

ŝ = Â
−1

x (4.11)

The ICA approach aims, based on higher order statistical moments, in recovering sta-

tistical independent sources without having any physical background of the mixing process

[23]. Once a stationary set of observed Pauli target vector is chosen, a pre-processing step,

consisting in centering and whitening, is first performed. The former assumes subtracting

the mean values, while the latter is an orthogonalization transform, V, applied on the set of

vectors x and therefore on the mixing matrix A, increasing the algorithm performance and
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reducing the computational load [3]. Then a Non-Circular Complex Fast-ICA algorithm [75]

is applied in order to estimate the mixing matrix W = V̂A. The final step of the algorithm

consists in de-whitening the estimated mixing matrix using the inverse of the operation per-

formed during the pre-processing step, assuring that, unlike Eigenvector decomposition, the

estimated components are not constrained to any orthogonality among them.

The NC-Complex Fast-ICA algorithm can be applied with different criterions. In all

analysis performed throughout this thesis we chose to employ the same approach as in [3],

which is specifically suited to scenarios where sources may eventually present non-circular

distributions [75]. This fast converging algorithm based on a fixed-point iteration scheme

algorithm seeks to emphasise the Non-Gaussianity of the sources by maximising an arbitrary

nonlinear contrast function whose extrema coincides with the independent component [5]

JG(w) = E{G(|wHt|2)} (4.12)

where t = Vx and w is the estimated mixing vector (column of the estimated mixing matrix

W) which converges to one of the columns of the whitened mixing matrix VA. For the sake

of completeness, the fixed-point solution proposed in [75] is given as follow

wn+1 = −E{g(|y|2)y∗t}+ E{g′(|y|2)|y|2 + g(|y|2)}wn + E{ttT }E{g′(|y|2)y∗2}t∗n (4.13)

where the notation g(z) = dG(z)/dz and g′(z) = dg(z)/dz adopted here is the same as the

authors employed in [75] and y = wHt. Note that the referred algorithm does not rely on

the estimation of the covariance matrix of the sampled vectors.

In [3], a detailed analysis on the performance of the algorithm with respect to the nonlinear

function, G(y), was performed. The authors evaluated the kurtosis G(y) = 1
2y

2, the square

root function G(y) =
√
0.05 + y and the logarithm function, described as the most appropriate

in [3], given by

G(y) = log(0.05 + y) (4.14)

It is worth pointing out that the choice of the contrast function is application dependent

and that the slow growing nature of (4.14) allows a more robust estimation with respect to the

presence of outliers when compared to the more intuitive kurtosis measure of non-Gaussianity.

A more complex discussion over the Non-Circular Complex Fast-ICA algorithm is out of the

scope of the present work. For this purpose the reader is advised to read [3, 47, 75].

The contribution of each source i to the total backscattering, evaluated as the squared l2

complex norm of the corresponding mixing matrix column is given by

||Âi||22 = |Â1i|2 + |Â2i|2 + |Â3i|2 (4.15)

Entropy is then calculated in a similar manner as in Eigenvector based decomposition (see

(4.7)). Likewise, the parameters for each target vector i are derived in an unchanged manner

using either Touzi’s TSVM or Cloude and Pottier parameters.



54 Chapter 4. Incoherent Target Decomposition

It is important to highlight that, unlike the eigenvalue matrix obtained in the Eigenvector

decomposition, that contains the information relative to the contribution of each source dis-

played in a straightforward manner (diagonal components), the referred information can not

be derived using a similar approach when the ICA is employed. Furthermore, in [106], one

of the first published attempts of introducing the ICA into the POLSAR data analysis, the

contributions were estimated based on the information of the derived sources, rather than on

the mixing matrix. Nevertheless, this approach is impracticable for the proposed estimation

procedure, since the variances of the estimated sources are set to the unit value. Finally, as

it will be shown in Chapter 5, the estimation of the mixing matrix is more relevant than the

sources themselves, and in PolSAR applications the latter may even present ambiguities.

For comparison purposes, note that in Eigenvector based decomposition model, the com-

plex single-look observation vector can be written from a source mixing perspective as

x = T1/2s (4.16)

where s characterises a white speckle, i.e., with identity covariance matrix and T is the

observation vector coherence matrix, given as a function of the diagonal matrix Λ1/2, that

contains the square root of its eigenvalues, and Z, a matrix whose columns are given by each

eigenvector of T (see 4.6), as follows

T1/2 = ZΛ1/2 (4.17)

Even though (4.10) and (4.16) are mathematically identical, with A = T1/2, the model

and, consequently, the estimation method will provide different estimated sources and mixing

matrix.

Finally, it is important to highlight that In PolSAR ICTD research area, the stability of

the estimated parameters with respect to polarisation basis changes and rotations around the

line of site is a key factor to ensure the decomposition technique performance. In [3], the

authors proved that ICA preserves the roll invariant property of Touzi’s parameters. In the

present thesis, however, we neglect the demonstration of the aforementioned properties. For

the purpose, the reader is advised to the above mentioned reference work.

Even though the first step towards a new ICTD parametrization technique had been given

in [3], some theoretical aspects of ICA based ICTD were not covered, limiting its full usage

in PolSAR data analysis. The following chapters focus on exploiting a few of this aspects in

order to increase the range of applications where this technique can be employed.
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In the context of PolSAR Incoherent Target Decomposition, as reported in the previous

chapter, many methods have been proposed in the literature to both decompose an image pixel

(composed by distributed scatters) into basic target vectors as well as to correctly retrieve

quantitative information from them (parametrization). Concerning the latter, Cloude and

Pottier’s parameters (entropy, alpha and anisotropy) [19] and Touzi’s target scattering vector

model [98] are the most employed ones, whose usefulness have already been demonstrated by

several authors. Regarding the former, the assessment of PolSAR data statistical properties

(derived using neighbouring pixels) is a key factor to derive the average or dominant scattering

mechanisms within a resolution cell composed by stochastic distributed targets.

The Eigenvector based ICTD manages to decompose an image pixel into the three most

dominant scatters from the averaged coherence matrix. Furthermore, it has an intrinsic prop-

erty that the derived scatters are orthogonal and uncorrelated, which for Gaussian clutters

also means independence. The drawback of this kind of method emerge when the clutter is

not Gaussian or not composed by orthogonal mechanisms, situations where the performance

of the algorithm could be compromised.

A detailed discussion on Chapter 3 concluded that high heterogeneity scenes (inherent

to high resolution systems) may eventually lead to non-Gaussian clutter modelling. SIRVs

(Spherically Invariant Random Vectors), have then been constantly employed for modelling

high-resolution POLSAR data. Nevertheless, as indicated by several authors [35, 97] and as

a conclusion of the results achieved by the employment of the proposed procedure to test the

goodness of fit of the product model to PolSAR data (see Chapter 3), polarization independent

texture may not be the most suitable model for every kind of clutter. The later highlights

55
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for the need of either considering polarization dependent texture models or the development

of model independent algorithms.

In Chapter 4, the Independent Component Analysis, being a model independent algo-

rithm, was described as a potential alternative for highly heterogeneous PolSAR data. The

referred method is briefly summarised in three main steps: data selection, based on the

statistical classification of the POLSAR image; estimation of independent components and

parametrization of the derived target vectors. As stated in [3], the major drawback of the

proposed method is the size of the observation dataset, which has to be somewhat larger than

the size of the sliding window used in the well established methods. This constraint led the

authors in [3] to use an unsupervised classification algorithm rather than relying on a very

large sliding window, jeopardising the effectiveness of the method.

The use of a classification algorithm limits the performance of the method in the sense

that the image is segmented in a priori defined number of classes with variable sizes, what

can compromise the estimation of the target vectors parameters and, as a consequence, the

correct interpretation of the scatters present in the area under study. The employment of a

classification algorithm introduces a few implications. For example, a class can contain more

samples than it needs for a correct estimation of target’s parameters, meaning that spatial

resolution, highly degraded with the use of this approach, is worse than it could be. On the

other hand, if a class do not contain samples enough, the parameters estimated may present

a high variance, indicating that the values derived do not always comply with ground truth.

Within this context, in the present chapter a Monte Carlo simulation approach is employed

to evaluate the optimal size of a sliding window for various medias, simple ones composed by

basic scatters such as helix, dipole, dihedral and trihedral and more complex ones like Surface,

Double Bounce and Volume returns. The simulation procedure is similar to the one presented

in [58] to evaluate the bias of multilook effect on Cloude and Pottier [18] parameters in

Eigenvector based polarimetric SAR decomposition. An unsupervised classification algorithm

is employed to identify within a RAMSES X-band image acquired over Brétigny, France (see

Appendix E), sets of samples characterising Surface, Double Bounce and Volume type of

average scattering mechanisms. The mixing matrix and the covariance matrix for each of the

aforementioned complex type of scatters are estimated using proper algorithms (Non-Circular

Complex Fast-ICA algorithm [47] and Fixed-point algorithm [104], respectively) and used to

bootstrap random samples for the Monte Carlo simulation approach. It is important to

highlight that, as reported in [3], the mixing matrix and the covariance matrix are potentially

different, thus the set of random samples used in the ICA and Eigenvector decomposition

analysis are not the same. Regarding the analysis with basic scatters, the aforementioned

parameters are manually set.

The main difference concerning the generation of the simulated data is that in [58] only

Gaussian variables were addressed and no texture was considered, meaning that the sampled

coherence matrix has the complex Wishart distribution (see (3.2)). In the present work

the heterogeneous clutter is described by a variation of the Spherically Invariant Random

Vectors (SIRV) model [104], assuming a polarization dependent texture, characterised by a

random vector. Analogously to what was done to the mixing and covariance matrices, the
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texture distribution parameters, for each of the aforementioned complex type of scatters, are

estimated from the real dataset while for basic scatters, they are manually set.

Finally, in this chapter we also address another drawback inherent to ICA described in

the literature, that could limit its usage in PolSAR application: the central principle of non-

gaussianity of the sources that has to be assumed in the model [48]. As mentioned in Chapter

3, in remote sensing SAR community, generally, the clutter is assumed homogeneous and

under the basis of the central limit theorem, it is described by a zero-mean, multidimensional,

complex Gaussian pdf [65, 96, 60] (see (3.1)). Even though heterogeneous clutter models have

gained notoriety, one single Gaussian source could jeopardise the performance of ICA, making

its use inappropriate. Nevertheless recent studies [37] proved that even Gaussian sources can

be separable under certain conditions and we depart from these results to increase, in PolSAR

data analysis, the range of potential applications to this technique.

5.1 Identifiability, separability and uniqueness

In [3], the authors proved that the ICA preserves the roll invariant property of Touzi’s pa-

rameters. Continuing with the establishment of theoretical background for the proper use of

ICA in polarimetric decomposition, in the present work the identifiability, separability and

uniqueness of ICA, when employed in PolSAR applications, are addressed. We revisit the the-

orems derived in [37] and establish general conditions for an efficient blind source separation

approach by means of ICA to polarimetric target decomposition.

Each of the above mentioned properties is relevant for a specific type of application. The

separability is investigated when the ICA is employed for retrieving the original sources, the

identifiability when the mixing matrix is the one that should be correctly derived and finally,

uniqueness is addressed when there is an interest on the distribution of the sources [37].

Problems where sources may have normal components with the same circularity coefficient,

for instance, can be identifiable but not separable or unique.

In the framework of PolSAR applications, the interest lies in the estimation of the mixing

matrix rather than in the sources themselves. Therefore the identifiability property plays a

key role in ICA polarimetric target decomposition. The authors in [37] state that the absence

of complex normal sources is not the only sufficient condition to correctly reconstruct the

mixing matrix A. They claim that when A is of full column rank and there are no two

complex normal sources with the same circularity coefficient, it is also possible to retrieve A.

The latter also guarantees that the model is separable.

The previous statement ensures that if there are more sources than mixtures in the model

then, in order to correctly retrieve the mixing matrix, the clutter can not have any Gaussian

component. Nevertheless, if this is not the case, the clutter can even be entirely composed by

Gaussian components. This surprising and yet untapped property of ICA can be of great in-

terest to PolSAR community, since it determines that Gaussian sources and the mixing matrix

of models containing Gaussian sources can indeed be retrieved under certain conditions.
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5.2 Monte Carlo simulation approach

The authors in [3] proved the usefulness of the Independent Component Analysis in ICTD by

means of its employment in real data, leaving some open questions like the performance of

the algorithm under a sliding window implementation and under clutter containing Gaussian

components scenarios. In the present work a Monte Carlo simulation approach is performed

in order to complement the results obtained in [3] and empirically establish theoretical back-

ground that will allow a more efficient use of ICA in further PolSAR applications.

5.2.1 Sliding window optimal size estimation

The heterogeneous clutter is here described by a variation of the Spherically Invariant Ran-

dom Vectors (SIRV) model, with normalised covariance matrix and polarization dependent

texture, defined in Chapter 3. Different assumptions regarding its composition are assumed:

basic scatters (orthogonal and non-orthogonal) representing average or dominant scattering

mechanisms within the imaging cell and complex scatters (Surface, Double Bounce and Vol-

ume). The Independent Component Analysis does not include the estimation of the covariance

matrix itself, nevertheless, since, for comparison reasons, we perform the same simulations

with the Eigenvector based decomposition, the coherence matrix estimator defined in (3.6) is

also addressed.

Each simulation procedure, for a given window size and clutter type is repeated 1000

times and then the estimated parameters are averaged. For the first set of simulations the

average or dominant scattering mechanisms within the imaging cell are assumed basic scatters

and two scenarios are established: one containing orthogonal targets and the other contain-

ing non-orthogonal mechanisms. The Gamma distribution shape and scale parameters that

characterises the texture are fixed and set to 1.95 and 0.51, respectively. They are used to

generate a simulated texture vector τ̃ c. Afterwards, a complex normal distributed random

vector z̃, i.e., z̃ ∼ CN(0, I) is generated. Finally, the simulated observation vector for each

class is then given, analogous to (E.24), by

x̃c = A
√
τ̃ c · z̃ (5.1)

The simulated dataset (5.1) is then used as input for both the Eigenvector decomposition

and ICA decomposition.

Let us first investigate the behaviour of Eigenvector decomposition, hereafter also referred

to as PCA (Principal Component Analysis) for simplicity and ICA under the assumption that

the heterogeneous clutter is composed by orthogonal targets. It is important to highlight that

special care has to be taken in the appropriate choice of the simulated scattering mechanisms,

since Touzi TSVM present ambiguities for some specific scatters, as addressed in Appendix

D. In the present analysis, the clutter composition is 60% of helix left screw, 30% of helix

right screw and 10% of trihedral. The mixing matrix, in Pauli basis for such type of clutter
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[98] is given by

A =

0.3162 0 0

0 0.3873 0.5477

0 0.3873j −0.5477j

 (5.2)

where j =
√
−1 is the imaginary unit and A = T1/2 according to (4.10) and (4.16). The

Entropy of such clutter is 0.8 while Touzi’s roll invariant parameters are displayed in Table

5.1.

Table 5.1: Orthogonal mechanisms Touzi’s parameters

τm [◦] αs [◦] ϕαs [◦]

Helix left screw 45 45 0

Helix right screw −45 45 0

Trihedral 0 0 0

Figure 5.1 presents the estimated Touzi’s roll invariant parameters and entropy derived

using ICA and Eigenvector decomposition. Note that both Eigenvector decomposition, as

anticipated by [58], and ICA correctly derive the Touzi’s parameters corresponding to the

three components as well as the entropy. The third component is more problematic for both

decomposition, presenting a lower convergence rate. Regarding the Entropy and first and

second components, the behaviour of Eigenvector decomposition and ICA are very similar,

and the same window size can be used for both.

The choice of the sliding window size is a constant concern in SAR community since high

values decrease considerably the system spacial resolution and low values may eventually

introduce bias in the estimation of a few parameters. Many authors raised the question of

what would be the optimal window size for several different applications, e.g. [58, 65]. Note

in Figure 5.1 that a window size 11 × 11 provides a good estimation of the first and second

components TSVM parameters as well as the entropy with negligible bias, representing a

good choice in terms of performance tradeoffs.

Next a scenario with non-orthogonal targets is addressed. The clutter is then composed

by 60% of helix left screw, 30% of dipole and 10% of dihedral. The mixing matrix, in Pauli

basis, for such type of clutter is given by

A =

 0 0.3873 0

0.3162 0.3873 0.5477

0 0 −0.5477j

 (5.3)

The Entropy of such clutter is also 0.8 while Touzi’s roll invariant parameters are displayed

in Table 5.2.

As expected, since Eigenvector decomposition has an intrinsic constraint that the es-

timated components are mutually orthogonal, it is unable to correctly derive the original
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Figure 5.1: Entropy and Touzi TSVM parameters derived with ICA and Eigenvector polari-

metric target decomposition, PCA, for a clutter composed by basic orthogonal mechanisms.

mixing matrix, failing to estimate the contents of the heterogeneous clutter. On the other

hand, ICA is not constrained to orthogonality therefore it successfully estimates the three

components parameters. Figure 5.2 presents the results of ICA.
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Table 5.2: Non-orthogonal mechanisms Touzi’s parameters

τm [◦] αs [◦] ϕαs [◦]

Helix left screw 45 45 0

Dipole 0 45 0

Dihedral 0 90 0

Figure 5.2: Entropy and Touzi TSVM parameters derived with ICA polarimetric target de-

composition for a clutter composed by basic non-orthogonal mechanisms.

Note that the convergence rate of the estimated parameters, compared to a scenario with

only orthogonal targets (see Figure 5.1) nearly doesn’t change, concluding that the same

window size can be used despite of the orthogonality of the scattering mechanisms.

For the sake of completeness, Figure 5.3 presents the estimator standard deviation in

order to better evaluate its performance. Note that, the standard deviation of most of the

parameters tends to zero, with the exception of the third component ϕαs and τm.

Let us now address more complex type of targets, composed by either Surface, Double-

Bounce or Volume scatters. The first step in the simulation procedure is to define the observa-

tion dataset from which the covariance matrix, the mixing matrix and the texture parameters

will be estimated for each of the aforementioned mechanisms. An unsupervised classification

algorithm developed for highly textured POLSAR data [42] is employed to identify within a

RAMSES X-band image acquired over Brétigny, France (see Appendix E), sets of samples

characterising Surface, Double Bounce and Volume type of average scattering mechanisms.
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Figure 5.3: Standard deviation of the Entropy and Touzi TSVM parameters derived with

ICA polarimetric target decomposition for a clutter composed by basic non-orthogonal mech-

anisms.

More details on the classification algorithm is provided in the next chapter, where it assumes

a more crucial role on the analysis. Even though it has already been shown throughout this

thesis, for the sake of completeness, Figure 5.4 presents the referred area in Red (HH+VV),

Green (HV) and Blue (HH-VV), the classification algorithm output and an H/α feature space.
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Figure 5.4: Brétigny area under study: (a) RGB image, Red (HH+VV), Green (HV), Blue

(HH-VV); (b) Statistical classification algorithm output; (c) H/α feature space.

Analysing the H/α feature space, it is possible to concluded that Class 1 is mainly com-

posed by Volume scatters, Class 5 is mainly composed by Surface and Class 6 is mainly

composed by Double-Bounce scatters. Therefore samples, corresponding to each class were

extracted from the referred set and the mixing matrix, Â
c
, and covariance matrix, [M̂ ]cFP ,
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were estimated for each of the described classes (c = 1, 2, 3) of mechanisms. An algorithm

described in [24], initialised with the identity matrix, is used for the latter. Next, the texture

is also estimated for each observation vector corresponding to one of the three aforementioned

classes (Surface, Double Bounce and Volume).

The generalised texture maximum likelihood estimator for each observation vector is given

by 3.7. By estimating the texture parameter for each pixel, we get a set of realizations from

which it is possible to retrieve its distribution parameters. Since the probability density

function of the texture random vector is not explicitly specified by the model, as well as in

the previous set of simulations, we will analyse the parameters convergence rate assuming it

to have a Gamma distribution. The parameters of the distribution are then extracted from

the already estimated τ̂ ci and used to generate simulated texture vectors to bootstrap random

samples for the Monte Carlo simulation approach. The remaining steps of the simulated data

generation are the same as previously described. It is important to highlight that, as reported

in [3], the mixing matrix and the covariance matrix are potentially different, thus the set of

random samples used in the ICA and Eigenvector decomposition analysis are not the same.

Figure 5.5 presents the results of the polarimetric decomposition using both ICA and

Eigenvector decomposition (PCA). Note that, despite the low convergence rate of ϕαs for

Surface type of scatter, the convergence rate behaviour achieved by both ICA and PCA are

nearly the same as the ones obtained in the simulations with basic scatters as the average or

dominant scattering mechanisms. This conclusion leads to the possibility of using the same

window size as previously reported of 11× 11 samples.

5.2.2 Gaussian sources

As addressed in Section 5.1, the mixing matrix and, consequently, Touzi’s parameters can be

correctly estimate even if the clutter has Gaussian components. Figure 5.6 shows the results

of the estimation of the entropy and Touzi’s parameters, αs, τm, ϕαs for a model described

by (4.10) with a mixing matrix A given as (5.3) and the heterogeneous clutter s composed

by two sources described by the SIRV model and one Gaussian with zero mean and unit

variance. The Gamma distribution shape and scale parameters that characterises the texture

in the SIRV sources are fixed and set to 1.95 and 0.51, respectively.

Note that ICA is able to correctly estimate Touzi’s parameters at the expense of a notice-

able lower convergence rate for the helicity τm, and a slightly lower convergence rate of αs,

increasing the Bias for lower window sizes. Nevertheless, it fails to derive the correct entropy

value, overestimating it.

5.2.3 Spatial correlation

Spatial correlation is a phenomenon inherent to remote sensing SAR systems. This feature has

already been explored by many different authors specially in the conception of classification
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Figure 5.5: Entropy and Touzi TSVM parameters derived with ICA and Eigenvector polari-

metric target decomposition, PCA, for a complex clutter types: Surface, Double-Bounce and

Volume.

algorithms [103]. In the present work spatial correlation is introduced for each source, by

creating a statistical dependence on neighbours pixels and thus generating a more realistic

type of clutter. The robustness of ICA is verified under this scenario for a clutter type
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Figure 5.6: Entropy and Touzi TSVM parameters derived with ICA polarimetric target de-

composition for a clutter composed by basic non-orthogonal mechanisms and one Gaussian

source.

composed by basic non-orthogonal mechanisms, as previously described in Section 5.2.1 and

Gamma textured sources.

The procedure of generating correlated Gaussian samples and, therefore, statistically de-

pendent pixels is achieved by and additional step of filtering. In theory, the random process

that characterises the speckle with no statistical dependence in the space dimension has a

flat infinite power spectral density. Therefore, its Autocorrelation function has a strong peak

(represented by a Dirac delta function) at the origin and thus all samples are uncorrelated,

what for Gaussian sources, also means independence. The generation of such kind of stochas-

tic process is unfeasible, due to the inability of generating a flat infinite power spectral density.

Therefore, the generation of uncorrelated Gaussian random variables is achieved by a compu-

tational procedure that creates samples from a stochastic process with a flat power spectral

density and bandwidth B = fs, where fs is the sampling frequency. The Autocorrelation

function of such process is a sync(t), with nulls spaced by tz =
1
B , thus the extracted samples

are uncorrelated, what for Gaussian sources also means independence. If the bandwidth of the

referred stochastic process is reduced (rectangular filtering), the samples do not correspond

to the nulls anymore and therefore are correlated, and hence statistically dependent.

Figure 5.7 presents the estimated entropy and Touzi TSVM parameters for the afore-

mentioned configuration. Note that spatial correlation does not significantly deteriorates the

performance of ICA polarimetric decomposition, slightly increasing the Bias for low window
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sizes.

Figure 5.7: Entropy and Touzi TSVM parameters derived with ICA polarimetric target de-

composition for a clutter composed by basic non-orthogonal mechanisms and with spatial

correlation.

5.3 Remarks

The present chapter focused on addressing and quantifying the two main drawbacks of the

employment of Independent Component Analysis in polarimetric target decomposition: the

higher amount of samples needed and the assumption of non-Gaussian clutter. Based on

simulated data we managed to better investigate the theoretical concepts and quantify the

bias on the entropy and Touzi’s parameters caused by insufficient number of samples used in

their estimation.

It is shown that when the averaged or most dominant scattering mechanisms that char-

acterises the heterogeneous clutter are orthogonal, Touzi’s parameters estimated using ICA

are the same as the ones estimated using Eigenvector decomposition and the convergence

rate of the estimation is nearly the same. When the clutter is composed by non-orthogonal

mechanisms, unlike Eigenvector decomposition, ICA successfully derive the basic scattering

mechanisms without compromising its performance.

Simulations with complex type of scatters, Volume, Double-Bounce and Surface, whose

characteristic were extracted from real data, heterogeneous clutter with Gaussian sources
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and with spatial correlation showed similar results, giving strength to the proposal of using

a sliding window size of 11× 11 in ICA based ICTD approach.

Finally, it is important to highlight once again that the Independent Component Analysis

is a model independent strategy to analyse the behaviour of non-Gaussian heterogeneous clut-

ters (inherent to high resolution SAR systems). It proved itself very useful by introducing an

alternative way of physically interpreting a polarimetric SAR image which, unlike Eigenvector

decomposition (PCA), estimates average mechanisms not constrained to any orthogonality

among them.
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In Chapter 5, the theoretical gap involving ICA based ICTD was reduced, enabling a con-

siderable increase in its usage. Nevertheless, since it is a recently introduced ICTD approach

to PolSAR image analysis, it is still difficult to assert if there are specific scenarios where

ICA performance is higher than PCA’s (Eigenvector based ICTD). Alternatively, we believe

that the additional information introduced by ICA can be combined with the information

provided by the Eigenvector decomposition in order to better propose, among others, clas-

sification and geophysical parameter inversion algorithms. Within this context, the present

chapter addresses, in more details, the results obtained when ICA based ICTD is performed

on varied datasets, comparing them to the information provided by the Eigenvector approach.

For more details on the datasets, the reader is advised to go to the Appendix E.

6.1 Cloude and Pottier H/α feature space analysis

The analysis of Cloude and Pottier H/α feature space outcome when ICA based ICTD is

performed first considers a RAMSES X-band image acquired over Brétigny, France. The

increase of possibles H/α pairs brought about the ICA based ICTD can be explored from

several aspects. In the present work, we focus our investigation in pixels that fall in region

3 in the H/α plane. For that purpose, first we address the outputs of an unsupervised

classification algorithm developed for highly textured POLSAR data [42] to identify pixels

that switch between classes originally assigned to regions 6 and 2 when the Eigenvector

approach is applied.

The aforementioned method relies on a statistical test on the covariance matrices esti-

mated for each pixel considering its neighbours within a sliding window. A distance measure,

69
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derived based on the data probabilistic model adopted, is used to verify to which class a given

pixel corresponds. The distance measure employed in the present work assumes that the het-

erogeneous clutter is described by the Spherically Invariant Random Vectors (SIRV) model,

with normalised covariance matrix. As described in Chapter 3, the SIRV is, originally, a class

of non-homogeneous Gaussian processes with random variance [104] where each observation

vector is defined as the product between an independent complex circular Gaussian vector,

characterising the speckle and a positive random vector characterising the spatial variations

in the radar backscattering (texture). The probability density function of the texture random

vector is not explicitly specified by the model.

The first step prior to the employment of the classification algorithm is to assess the

conformity of the data with respect to the statistical model considered. In Chapter 3 a general

framework which allows quantitative evaluation of the SIRV stochastic models goodness of

fit with respect to a given multidimensional SAR dataset was proposed. The referred Wald

test consists in verifying if the structure of its fourth order moment (quadricovariance matrix)

matches the one of Complex Elliptical Symmetric Distributions (CES), a more general class

of which SIRVs are part. This procedure was already performed in Chapter 3 and its output

is presented in Figure 3.9.

As concluded in Chapter 3, only a small portion of the pixels in the area under study fails

the test (18%), indicating that the SIRV model is a good representative of the data stochastic

behaviour. The classification algorithm is then briefly described in 4 steps: generation of the

initial population based on the H/α classification (see Chapter 4), where pixels correspond-

ing to the same region compose a single cluster; compute each cluster centre; calculate the

distance measure between each pixel to all cluster centres; associate the pixel to the cluster

corresponding to the smallest distance derived in the previous step.

The adaptive nature of the classification algorithm seeks to group pixels with similar sta-

tistical behaviour, in an attempt to better cluster similar physical phenomena. The high

amount of pixels that switch between classes evidence that H/α classification fails to fully ex-

plain certain type of scattering mechanisms. Figure 6.1 presents the initial H/α classification

output, the statistical classification algorithm output after 4 iterations and the corresponding

H/α feature spaces.

It is relevant to report that in previous works that employed ICA based ICTD, the de-

composition was performed considering a global approach, instead of a sliding window [3,

80]. Pixels from each class were considered as belonging to the same observation vector and

the parameters were derived for the entire class. It is shown later on this chapter that the

estimated centre of mass on the H/α plane, assuming the aforementioned consideration are

nearly the same for ICA and Eigenvector based ICTD [80]. This result indicates that in a

global point of view, the average ICA based ICTD performance resembles the one achieved

with the Eigenvector approach.

Let us now investigate the evidences that the limitations inherent to the Eigenvector

approach in the H/α feature space can be compromising the correct interpretation of the

SAR image. In the present work, our focus relies on the analysis of pixels whose polarimetric
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Figure 6.1: Brétigny area under study: (a) H/α classification output; (b) Statistical classifi-

cation algorithm output, 4th iteration; (c) H/α initial feature space; (d) H/α feature space

after the 4th iteration.

behaviour falls into regions 2,3 and 6. According to the authors in [19], region 6 represents

a medium entropy surface scatter. When compared to the expected behaviour of surface

mechanisms, it is stated that the increase in entropy can be related to either an increase in

the surface roughness or due to canopy propagation effects. If the entropy increased further

and the α range was kept unchanged, pixels would fall in region 3 and would be classified

as a high entropy surface. Nevertheless, due to the mathematical constraint discussed in

Chapter 4, no scattering mechanisms can be identified as belonging to this region. Finally,

region 2, stands for high entropy vegetation scattering, including volume type of scatters.

The natural behaviour of forest canopies and some types of vegetated surfaces with random

highly anisotropic scattering elements may fall in this region [19]. Note that the physical

phenomenologies represented by region 6 and region 2 are very different. Therefore, it should

be expected very few doubt in determining if a pixel is better represented by region 6 or by

region 2.

Figure 6.2 indicates the amount of pixels that move from class 6 to class 2 at each iteration.

The total amount represents 62.36% of the set originally classified in region 6. If we associate

a single pixel in the edge between regions 6 and 2 (H = 0.9 and α = 39◦) as an extra class
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of the initial population defined by the H/α classification, a huge amount of pixels switch to

this new class, as seen in Figure 6.3.
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Figure 6.2: Number of pixels switching between classes 6 and 2 after each iteration.
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Figure 6.3: Results considering an extra class defined as the edge between regions 6 and 2:

(a)H/α classification output, (b) H/α feature space after the 4th iteration and (c) Statistical

classification output after the 4th iteration.
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Now lets address the new information provided by the ICA based ICTD. A comparison

with the H/α classification resultant taking into consideration the ICA based ICTD (depicted

in Figure 6.4) indicates that a high percentage of the pixels that switch between classes

originally assigned to regions 6 and 2 are classified as belonging to region 3. More precisely,

69.23%. Furthermore, only 10% of the pixels classified in region 3 where not originally

classified in region 6 when the Eigenvector approach was employed. These results indicate

that the physical behaviour of the switching pixels is better represented by region 3, high

entropy surface scattering, which is unfeasible when the Eigenvector approach is employed.
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Figure 6.4: (a) H/α classification output, (b) H/α classification output of pixels that fall into

Eigenvector approach non feasible regions when ICA based ICTD is employed and (c) H/α

feature space.

It is important to highlight that the choice of the sliding window size is a constant concern

in SAR community since high values decrease considerably the system spatial resolution and

low values may eventually introduce bias in the estimation of a few parameters. In Chapter

5 it was shown that a window size 11× 11 represents a good choice in terms of performance

tradeoffs relative to ICA based ICTD [81]. This size is in accordance to what is referred to

as optimal by other authors when the Eigenvector approach is employed [58, 65].

A good indicator of the robustness of the new information provided by the ICA based

ICTD with respect to the H/α feature space is the false alarm rate it provides. A tropi-
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cal forest scenario is taken into consideration to verify if pixels are incorrectly classified as

belonging to region 3 when their natural phenomenology clearly indicates that they should

be represented by region 2. Data from the P-band airborne dataset acquired by the Office

National d’Études et de Recherches Aérospatiales (ONERA) over the French Guiana in 2009

in the frame of the European Space Agency campaign TropiSAR is addressed.
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Figure 6.5: French Guiana area under study: (a) H/α classification output when the Eigen-

vector approach is employed and (b) H/α classification when ICA based ICTD is taken into

consideration and (c) H/α feature space when the Eigenvector approach is employed.

Note in Figure 6.5 that ICA correctly associates most of the tropical forest physical be-

haviour to region 2, volume scatters, as expected, considering the forest canopies effect.

Nevertheless the estimated entropies are higher when compared to the Eigenvector approach.

Finally, we conclude the investigation of the new information provided by the ICA related

to the H/α feature space by analysing the results of a combined use of the ICA based ICTD

and the statistical classification algorithm described. The ICA can be inserted in two stages

of the referred algorithm, whose feasibility are discussed as follows.

First, it can be used as the initial population, considering the H/α classification output

resultant from the ICA based ICTD. In [42] the authors state that the initial population

does not affect the classification output, presenting a comparison of the results achieved when

the Eigenvector H/α classification is used for this purpose and when a random population
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is employed. Nevertheless, the introduction of a new class of mechanisms, represented by

region 3 in the H/α plane can indeed influence the outcome of the classification algorithm.

It is important to highlight that no further modifications are necessary in this approach.

Since the data is mainly composed by SIRV samples (see Figure 3.9), and we are verifying

the statistical resemblance between pixels based on their covariance matrices, the distance

measure employed so far can be kept unchanged, as well as the remainder of the code.

Alternatively, a more drastic modification to the algorithm could be proposed. Instead

of estimating the covariance matrices centre of mass for each class, the mixing matrices

barycenter could be addressed. Additionally, a proper distance measure would also have

to be derived accordingly. The implementation of such approach is not straightforward,

since the task of estimating matrix geometric means is a complex subject. The concept of

geometric mean for more than two matrices has only been fully defined recently, powered by

the association of the geometric mean of two positive definite matrices, M1 and M2, as the

midpoint of the geodesic (with respect to a natural Riemannian metric) joining M1 and M2

[4]. While the derived theory is valid when addressing positive definite matrices [4] (which is

the case of the covariance matrices), it does not hold for the mixing matrices estimated with

ICA, which are not necessarily positive definite. Therefore, more effort has to be spent in

order to define a proper concept for the mixing matrices mean. A more complex discussion

over this topic is out of the scope of the present work. For that purpose, the reader is advised

to go to [4, 50, 70].

The previous discussion make it clear that the second alternative for a combined use of

ICA and the classification algorithm requires a more detailed theoretical analysis prior to

its implementation. Therefore, in the present work, we address the first approach proposed.

Figure 6.6 presents side by side the output of the statistical classification algorithm when

the Eigenvector H/α classification is used as the initial population and when the ICA based

ICTD H/α classification is employed.

Note that the class associated to region 3 persists throughout the iterations and the

corresponding clusters are representing well defined regions. Furthermore, it is important

to highlight that the clusters represented by all other classes are nearly the same in the

Eigenvector approach and ICA based ICTD.

It is also important to emphasise that, as previously mentioned, the new information

provided by the ICA based ICTD with respect to Cloude and Pottier H/α feature space can

be addressed from many aspects. In the present work we focused on scattering mechanisms

that were originally classified as medium entropy surface scatters (region 6) and after the

employment of the statistical classification algorithm were considered high entropy volume

type of targets (region 2). Nevertheless, it is not mandatory that pixels classified in region

3 when ICA based ICTD is used follow this pattern. Let us now repeat the test procedure

taking into account the POLSAR data set acquired in October 2006 by the E-SAR system

over the upper part of the Tacul glacier from the “Chamonix - Mont Blanc” test site, France.

Figure 6.7 presents the referred area in Red (HH+VV), Green (HV) and Blue (HH-VV) and

the output of the Spherical Symmetry test where in green are represented Non Spherical

Symmetric pixels.
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Bretagne Halpha Classification map FP−GM Iteration 4

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i)

Bretagne Halpha Classification map ICA−GM Iteration 4

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(j)

Figure 6.6: Brétigny area under study: (a) Eigenvector H/α initial population; (b) ICA

based ICTD H/α initial population; (c) Eigenvector based statistical classification algorithm

output, 1st iteration; (d) ICA based ICTD statistical classification algorithm output, 1st iter-

ation; (e) Eigenvector based statistical classification algorithm output, 2nd iteration; (f) ICA

based ICTD statistical classification algorithm output, 2nd iteration; (g) Eigenvector based

statistical classification algorithm output, 3rd iteration; (h) ICA based ICTD statistical clas-

sification algorithm output, 3rd iteration; (i) Eigenvector based statistical classification algo-

rithm output, 4th iteration; (j) ICA based ICTD statistical classification algorithm output,

4th iteration.
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Figure 6.7: Tacul glacier area under study: (a) RGB image, Red (HH+VV), Green (HV),

Blue (HH-VV); (b) Spherical symmetry map.
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Note that only a small portion of the pixels in the area under study fails the test (29%),

indicating that the SIRV model is also a good representative of this dataset stochastic be-

haviour. Figure 6.8 presents the initial H/α classification output for both Eigenvector ap-

proach and ICA based ICTD, the statistical classification algorithm output after 4 iterations.

The corresponding H/α feature spaces are depicted in Figure 6.9.
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Figure 6.8: Tacul glacier area under study: (a) H/α classification output Eigenvector ap-

proach; (b) Statistical classification algorithm output, 4th iteration Eigenvector approach;

(c) H/α classification output ICA based ICTD; (d) Statistical classification algorithm out-

put, 4th iteration ICA based ICTD.

The amount of pixels that move from class 6 to class 2 when the Eigenvector approach is

employed represents just 34.70% of the set originally classified in region 6. Nevertheless, even

though the displacement of pixels between classes 6 and 2 is negligible, scatters represented by

region 3 in theH/α feature space not only are still present but also are well clustered, specially

after the employment of the statistical classification algorithm. The latter is an evidence that

region 3 may be indicating a specific natural phenomenon unable to be represented when the

Eigenvector approach is taken into consideration.

Indeed, region 3 is mainly characterizing the pixels that represent the curved stripes due to

the “Forbes’s bands” phenomena [54, 100], a periodical feature caused by a regularly recurrent

displacement of the Tacul glacier during a year. The Forbes’s band can be identified in



6.1. Cloude and Pottier H/α feature space analysis 79

(a) (b)

(c) (d)

Figure 6.9: Tacul glacier area under study: (a) H/α initial feature space Eigenvector ap-

proach; (b) H/α feature space after the 4th iteration Eigenvector aproach; (c) H/α initial

feature space ICA based ICTD; (d) H/α feature space after the 4th iteration ICA based

ICTD.

Figure 6.8 as the succession of undulations which sweeps transversely across the sensed region.

Originally defined in 1842 by Prof. Forbes, as dirt bands, the curves pointing downwards the

glacier are mainly composed by the accumulation of rocks and dirt that fall on the ice, mostly

during summer time. Such impurities affect the grain size and cristallinity characteristics of

the ice in its composition (e.g. they prevent the formation of large undisturbed crystals).

Therefore, its correct identification/characterization is extremely relevant in the analysis of

glacier ice.

In [54], the authors interpreted the corresponding scattering mechanisms as a dominant

surface backscatter with low entropy and alpha angles. This is in accordance to what is

depicted in Figure 6.8 (see also Figure 6.9). Nevertheless, note that a considerable portion

of pixels in this area correspond to class 4 which does not, in theory, explain the physical

phenomenon. The ICA approach on the other hand indicates that the aforementioned region

is initially better characterized by a high entropy surface backscattering signature, which is

unfeasible in the Eigenvector based ICTD using Cloude and Pottier parametrization. Whilst

the typical alpha angles estimated using both methods are nearly the same, the entropy
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derived with ICA is higher, and the existence of pixels characterized as belonging to class

4 is negligible. If no classification algorithm was employed, it would be already possible to

characterize the dirty bands and estimate geophysical parameters related to them taking into

consideration only the initial population derived with the ICA based ICTD (using a sliding

window approach).

Among other improvements, the statistical classification output clearly delimits the afore-

mentioned regions, increasing the ability to better characterize them. The correct identifi-

cation of Furthermore, note that the expected behaviour of the dirt bands as they approach

the bottoms, is met in the ICA based approach, i.e., they are reduced as the glacier descends

until they disappear, which can be observed by the higher amount of pixels classified in class

5 (medium entropy surface) in the bottom of the glacier.

Finally, it is interesting to note that the snow bands, are equally classified either using

the ICA approach or the traditional Eigenvector based ICTD. The dominant mechanisms

of the areas surrounding the dirt bands, where the ice is cleaner is correctly identified as a

combination of surface and volume mechanisms (region 2 in the H/α feature space), probably

due to a partial penetration of the ice surface in L-band [54]. Once again, note that the

transition between the two regions (dirt and snow), is intuitively better represented by region

3 in the H/α feature space, as indicated by the ICA based ICTD approach.

The characterisation of snow parameters based on SAR data analysis is an active research

within the scientific community [68, 101, 28, 63]. The snow pack backscattering can contain

contributions from four different mechanisms: snow pack surface component, snow volume

component, underlying ground surface component and ground volume interaction component.

The complex polarimetric signature of such target is a function of both the imaging sensor

parameters (e.g., frequency and incident angle) as well as the geophysical characteristics of

the snow (e.g., snow density and snow depth), the latter variable over time. Many authors

addressed the inversion of snow parameters and the derivation of snow models based on the

behaviour of PolSAR datasets acquired, specially, in mountainous regions. Recently, the

entropy derived with Eigenvector based ICTD was promisingly associated to the dry snow

depth [28]. The authors reported that smaller dry snow packs (relative to the end of winter

season) lead to an increase in the entropy. The change in the physical behaviour of the snow

scattering mechanism is related to the reduction of the ice crust, which mainly represents

strong surface scattering, causing an increase in snow surface and volume backscattering

components. As highlighted throughout the present work (mainly in Chapter 4), high entropy

type of targets can be incorrectly interpreted when the Eigenvector based ICTD is employed.

Therefore, the proposed ICA approach emerges as a promising tool in the study of such

scattering mechanisms.

6.2 Tropical Forest Analysis by Means of Touzi TSVM

The effectiveness of the additional information provided by the ICA based ICTD for PolSAR

data has already been verified in urban scenarios and in snow environment, as presented in
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the previous section and in the works [3, 28]. In the present section we investigate more

closely the results and the algorithm performance under tropical forest scenarios, comparing

them with the traditional Eigenvector decomposition (also addressed as PCA throughout this

thesis).

The characterisation of forested areas is still an open challenge in the SAR community.

The high degree of complexity achieved by the returned signal considerably increases the

challenge on its analysis [35, 97]. High entropy data is generally expected due to the possible

contribution of both surface, double bounce and volume type of scatters, limiting the usage

of the widely employed Cloude and Pottier H/α feature space, as discussed in the previous

section. Therefore, in this section, the obtained independent target vectors are parameterized

using the Target Scattering Vector Model (TSVM) proposed by Touzi [98], allowing the

representation of the dominant single scatters on the Poincaré sphere and, consequently, the

estimation of its physical properties based on its position on the sphere.

A homogeneous region near the Paracou test site in French Guiana, consisted mainly of

tropical forest, is taken into consideration. The data was provided by the Office National

d’Études et de Recherches Aérospatiales (ONERA), and was aquired in 2009 in the frame

of the European Space Agency campaign TropiSAR. More details about the dataset can be

found in Appendix E. In the present analysis we decided to use the output of the classification

algorithm (described in the previous section) to define the stationary set of observed Pauli

target vectors, rather then relying on the sliding window approach. With no loss of generality,

this decision was motivated by the high homogeneity of the data, considerably reducing the

dimensionality of the estimation procedure. Figure 6.10 presents the area under study in

Red (HH+VV), Green (HV) and Blue (HH-VV) as well as the output of the classification

algorithm described in the previous section.

(a) (b)

Figure 6.10: French Guiana area under study: (a) RGB image, Red (HH+VV), Green (HV),

Blue (HH-VV); (b) Statistical classification algorithm output.
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Each class is analysed using the H/α feature space in order to better interpret and to

correlate the estimated TSVM parameters to known type of scatters. Figure 6.11 present the

parameters derived with the Eigenvector decomposition and the ICA approach, respectively.

(a) (b)

Figure 6.11: French Guiana area under study: (a) H/α feature space derived using the

Eigenvector decomposition; (b) H/α feature space derived using the ICA approach.

As previously addressed in the present chapter, the orthogonality constraint imposed

by the eigenvectors, combined with the averaging of the α angle introduces non feasible

regions in the H/α plane, delimited by the curves plotted on the graph, which can decrease

the performance of the latter in the analysis of high entropy type of targets. As already

mentioned, this constraint does not hold for the ICA approach, what can be noted once again

for this specific dataset, increasing the dimensionality of possible regions and therefore the

analysis itself.

Even though the classes derived with ICA and Eigenvector decomposition, for specific

pixels, fall in different regions within the H/α plane, the center of mass of each class indicates

nearly the same type of target, that corresponds to the traditional behaviour of forest canopies.

Therefore, further investigation on the parameters derived is advised to fully understand the

potential in the additional information introduced by the Independent Component Analysis

under forested scenarios. Tables 6.1 and 6.2 presents Touzi’s TSVM parameters derived

for the three main scatters in each class using the Eigenvector decomposition and the ICA

approach, respectively.

Analysing the results using the Poincaré sphere, we can conclude that while the Eigenvec-

tor decomposition is indicating a mix of basically Cylinder and Dihedral, the ICA approach

points out to the presence of Dipoles along with Dihedrals. Both estimations are in accor-

dance to the type of scattering mechanisms generally found in forested scenarios and can be

thought of as supplementary information that could lead to a more effective analysis.
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Table 6.1: Touzi’s parameters derived for the three most dominant component in each class

estimated using the Eigenvector approach

Class I Class II Class III Class IV

Entropy 0.97 0.97 0.96 0.95

τm1 [ ◦ ] 2.97 4.35 12.94 2.94

αs1 [ ◦ ] 17.80 18.35 12.63 15.53

ϕαs1
[ ◦ ] 38.82 −12.13 35.51 −24.12

τm2 [ ◦ ] 12.21 −5.53 −26.07 0

αs2 [ ◦ ] 69.77 79.20 44.38 78.49

ϕαs2
[ ◦ ] 44.50 −59.38 78.15 −46.97

τm3 [ ◦ ] −31.26 −2.68 0.79 −3.58

αs3 [ ◦ ] 82.19 72.88 78.92 78.12

ϕαs3
[ ◦ ] 3.92 −3.90 −4.41 −10.54

Table 6.2: Touzi’s parameters derived for the three most dominant component in each class

estimated using the ICA approach

Class I Class II Class III Class IV

Entropy 0.98 0.99 0.97 0.97

τm1 [ ◦ ] −2.25 −2.95 0.29 0.83

αs1 [ ◦ ] 35.32 39.10 26.34 43.20

ϕαs1
[ ◦ ] −10.81 −8.94 −23.21 −19.71

τm2 [ ◦ ] 3.68 19.98 −2.28 4.39

αs2 [ ◦ ] 47.27 73.72 59.47 36.15

ϕαs2
[ ◦ ] −23.42 −61.03 −45.54 −14.95

τm3 [ ◦ ] 3.66 0.63 16.40 −15.48

αs3 [ ◦ ] 77.74 36.20 74.64 71.02

ϕαs3
[ ◦ ] 33.00 −10.92 −48.77 −46.42

6.3 PolInSAR Experiments

In case of PolInSAR data (see Chapter 2), the same ICA algorithm as described in Chapter

4 can be employed, except that the dimension of the Blind Source Separation problem is

increased by two (i.e. m = 6). Therefore, (4.10) can be extended to
x1
x2
...

x6

 =


A11 A12 · · · A16

A21 A22 · · · A26
...

...
. . .

...

A61 A62 · · · A66



s1
s2
...

s6

 (6.1)

where x is a set of observation vectors, A is the mixing matrix and s is the mutually inde-

pendent sources vector.
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If we introduce the spatially averaged coherency matrix of the POLinSAR observation

vector as T6, the mixing matrix A can be represented as the factorization of the covariance

matrix

T6 = AAH =

[
T11 Ω12

ΩH
12 T22

]
(6.2)

withT11 being the master PolSAR coherency matrix, T22 the slave PolSAR coherency matrix

and Ω12 the interferometric coherency matrix.

After computing these three matrices from the previously derived mixing matrix, it is now

possible to directly apply the PolInSAR coherence optimization proposed in [17]. Figures 6.12

and 6.13 illustrate the coherence optimization results obtained using the proposed ICA based

technique. Local sliding neighborhood approach, both in terms of optimized coherence and

the associated interferometric phases was employed. One can notice the unwrapped phase

is converted to DEM (Digital Elevation Model) using the ambiguity height (around 200m

for this PolInSAR data set). The obtained results are in good agreement with the available

ground truth (top of the highest building at about 11m). Furthermore, the height difference

between the 2nd and the 1st components shows that the two scattering mechanisms (building

edge and ground) are well separated in Figure 4-(b). Similar behavior has been reported in

[21]. For quantitative performance assessment, the normalized log-ratio [99] between the ICA

and PCA derived optimized coherences is computed as

R =
∑

(i,j)∈I

20 log

(
1

3

3∑
k=1

ρopticak (i, j)

ρ
optpca
k (i, j)

)
(6.3)

The ICA revels an improvement in R of exactly 27.05 dB computed over the entire test

PolInSAR image (500× 500 pixels).

Figure 6.12: Brétigny area under study: ICA optimized coherence - 1st component.

The results depicted in Figure 6.13 are comparable to the ones reported in [22]. In the

latter, the authors proposed a time-frequency optimization method based on the wavelet

transform, achieving results very close to the ground truth (as obtained using the ICA PolIn-

SAR approach). Therefore, it is possible to conclude that the ICA performance in PolInSAR

applications is a promising research area which is worth exploring. Table 6.3 presents the
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(a) (b)

Figure 6.13: Brétigny area under study: Digital Elevation Model (DEM) after ICA coher-

ence optimization - (a) 1st component, (b) height difference between the 2nd and the 1st

component.

height estimation of the three buildings present in the scene under analysis using the two

referred methods.

Table 6.3: Height estimation using the ICA based PolInSAR approach and the time-frequency

optimization method based on the Wavelet transform.

Method Building 1 Building 2 Building 3

ICA 11.0 3.0 7.0

Wavelet 10.6 3.4 7.1

Ground Truth 11.5 3.5 to 7 10

6.4 Remarks

In the present chapter, we first addressed the potential new information provided by ICA

based ICTD in terms of Cloude and Pottier H/α feature space. A theoretical analysis,

performed in Chapter 4, of the limiting curves described in [19] that generate unfeasible

regions in the aforementioned plane show that they arise as a consequence of the orthogonality

constraint inherent to the coherence matrix eigenvectors, which are associated to the most

dominant scatters present in the analysed pixel. Since the ICA based ICTD does not introduce

such constraint, examples of possible clutter compositions with non-orthogonal mechanisms

that fall outside the Eigenvector approach feasible regions were addressed.

A detailed analysis of a RAMSES X-band image acquired over Brétigny, France revealed

that a high number of pixels switch between regions 6 (medium entropy surface scatters)

and 2 (high entropy vegetation scatters), when an iterative classification algorithm, based

on the stochastic features of the data, is employed. The latter points to the inability of the
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Eigevenctor approach to correctly identify the physical phenomenon that lies behind these

given pixels. The result of the ICA based ICTD showed that a considerable percentage of

these pixels are classified as belonging to region 3 in the H/α plane, that is unfeasible when

the Eigenvector approach is employed.

The investigation of the new information provided by the ICA based ICTD was also

addressed considering an Alpine region composed mainly by snow. The results showed that

the reported pattern of changing pixels between region 6 and region 2 does not always stand.

Nevertheless, clusters composed by pixels represented by region 3 in the H/α plane are still

formed and they represent very well defined areas in the observed scene, corresponding to the

Forbes’s band phenomenom. This suggests that the ICA approach is a promising tool in the

study of such scattering mechanisms, increasing the analysis performance of glacier complex

surface and sub-surface which are made of rocks, snow and ice.

The performance and the additional information provided by the Independent Component

Analysis approach to ICTD in forested area scenarios was also evaluated. Accounting for the

difficulty in relating the derived parameters to ground truth, it was shown the differences

between the aforementioned method and the traditional Eigenvector decomposition by means

of a detailed comparison using Cloude and Pottier’s H/α feature space and Touzi’s TSVM

parameters derived with both approaches.

In the analysis of the considered forested area, even though the ICA and Eigenvector

decomposition indicate different regions for some specific pixels, the average scattering mech-

anism remains nearly the same, highly influenced by the forest canopies. The analysis on

Touzi’s TSVM parameters revealed that both approaches, ICA and Eigenvector decomposi-

tion, indicate the strong presence of Dihedral type of scatters in the scene. Nevertheless, while

the latter is indicating the presence of Cylinders along with Dihedrals, the former points out

to the existence of Dipoles in the analysed data.

The results obtained point to the high potential of ICA based ICTD with respect to the

analysis of high entropy type of scatters. Even though it is a common sense in SAR community

that polarimetry is a better suited tool to analyse low entropy type of targets, the ability to

correctly estimate the parameters that describe the illuminated scatters is crucial. Therefore,

any constraint that prevent this to happen decreases the performance of any classification,

detection and geophysical parameter inversion algorithms.

With respect to the PolInSAR experiments carried on, the obtained results show im-

provements in terms of the derived optimized coherences and, in the same time, they remain

consistent with the actual ground truth. It is important to highlight that, as already reported

in [93], in the original PolInSAR formulation proposed in [17], the phase centers separation,

corresponding to different scatters, is carried out by decomposing the data into three orthog-

onal components. Nevertheless, the performance of such algorithm is directly associated to

the assumption about the presence of orthogonal deterministic scattering mechanisms, which,

as already approached throughout this thesis does not hold for forested scenarios. In [77] the

same authors formulated a more sophisticated model based inversion algorithm for forest

parameter estimation. This approach was not considered in the present work, nevertheless,
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the analysis of its result combined with the Independent Component Analysis based ICTD is

highly recommended for future works possibilities.

Finally, it is important to highlight that ICA proved itself very useful as an ICTD method

by introducing an alternative way of physically interpreting a polarimetric SAR image which,

unlike Eigenvector decomposition (PCA), estimates average mechanisms not constrained to

any orthogonality among them. The new information provided by ICA based ICTD with

respect to Cloude and Pottier H/α feature space can be further investigated in many different

applications, specially the ones related to surface type of scatters. A study of the relation

between the new parameters retrieved and soil roughness is a promising research area. The

analysis of sea ice with the help of the H/α plane [88, 89], is another application that may

also benefit from the additional information provided. Such type of clutter may present high

degree of depolarisation which, despite being mainly associated to volume type of scatters,

may be also due to rough and highly deformed ice, which is in fact a physical phenomenon

inherent to surface mechanisms [30, 36]. Therefore, it is expected that the polarimetric

behaviour of sea ice is better represented by region 3 in the H/α plane since it, intuitively,

reflects more accurately a physical phenomenon corresponding to a clutter composed by both

surface and volume scatters.

It is important to highlight that the applied classification was unsupervised, therefore

the correspondence to ground truth may not be strictly exact. It is common sense in SAR

community that the evaluation of unsupervised classification is a challenging task, due to the

high degree of complexity in relating, physically and unambiguously, classes to the ground

truth data [35]. Furthermore ground truth data in tropical forest/snow covered scenarios

is scarce and generally incomplete due to the difficulty in accessing and performing in situ

measurements.

The main caveat related to ICA is that since it has been recently introduced as an ICTD

approach to SAR image analysis, it is still difficult to assert if there are specific scenarios

where ICA performance is higher than Eigenvector’s. Alternatively, the authors believe that

the additional information introduced by ICA can be combined with the information provided

by the Eigenvector decomposition in order to better propose, among others, classification and

geophysical parameter inversion algorithms.
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Conclusion

In the present work several aspects of highly heterogeneous PolSAR clutter analysis (inherent

to high resolution polarimetric SAR systems) were addressed. First, the validity of the product

model (SIRV) when employed to characterise multivariate PolSAR data was verified. A new

methodological framework to assess the conformity of multivariate high-resolution PolSAR

data model in terms of asymptotic statistics was presented. Statistical hypotheses testing on

the structure of the quadricovariance matrix was performed in order to investigate if samples

from an homogeneous region constitute an elliptical symmetric dataset, the latter being true

if the aforementioned model holds. Simulations with synthetic data and a detailed analysis

over real data were performed.

The analysis with synthetic data asserts for the effectiveness and consistency of the pro-

posed test derived, showing that the latter is able to correctly identify regions from which the

samples do not present elliptical symmetry and, as a consequence, do not fit the Spherically

Invariant Vector model. The performance of the test was verified for different confidence levels

and window sizes, indicating the importance in properly choosing these parameters for better

and not biased results. Finally, it was verified that under SIRV assumption the test output

is in accordance with the expected, rejecting regions composed by samples that present high

indexes of non-stationarity (borders), aside from outliers.

Prior to the quantitative analysis with real data, the consistency of the test with respect to

a temporal coherent dataset was also verified, evidencing its robustness. Next, the investiga-

tion of the test outcome with varied datasets (see figures (3.7) and (3.9)) showed that the rate

of rejected pixels is not negligible in specific types of scenarios. The forested area investigated

here presented 30% of pixels that do not fit the product model. It is important to highlight

that the applied classification used as an additional tool to better illustrate the regions where

the model fails was unsupervised, therefore the correspondence to ground truth may not be

strictly exact. Even though the lack of precise ground truth can limit the assertion of what

is causing the product model to fail, the main objective of the present analysis was to show

that by proving the correctness of test (by means of a detailed mathematical derivation and

an analysis with a synthetic dataset) and by applying it to real datasets with different sensor

characteristics, we could be able to indicate that the amount of pixels that fail the model can

be non negligible, requiring extra attention in their analysis.

In short, a considerable portion of high heterogeneous data may not fit the Spherically

Invariant Random Vector model (product model). Therefore, traditional detection and clas-
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sification algorithms developed based on the latter become sub-optimal when applied in such

kind of regions, highlighting for the need of either updating the model to one that associates

an individual texture variable with each polarimetric channel [35], or the development of

model independent algorithms, like the Independent Component Analysis (ICA), proposed in

[3].

The former, introduces a high degree of complexity in modelling PolSAR data and, conse-

quently in deriving proper algorithms suited for such models. Furthermore, providing unique

models when multi-texture assumption is taken into consideration is a challenge very difficult

to came across. The ICA, on the other hand, being a blind source separation technique,

based on higher order statistical moments, aims in recovering statistical independent sources

without having any physical background of the mixing process [48]. Therefore, it is a model

independent strategy to analyse the behaviour of non-Gaussian heterogeneous clutters (in-

herent to high resolution SAR systems) which proved itself very useful and introduces an

alternative way of physically interpreting a polarimetric SAR image.

In the present work, we also focused on addressing and quantifying the two main drawbacks

of the employment of Independent Component Analysis in polarimetric target decomposition:

the higher amount of samples needed and the assumption of non-Gaussian clutter. Based on

simulated data we managed to better investigate the theoretical concepts and quantify the

bias on the entropy and Touzi’s parameters caused by insufficient number of samples used in

their estimation.

It was shown that when the averaged or most dominant scattering mechanisms that char-

acterises the heterogeneous clutter are orthogonal, Touzi’s parameters estimated using ICA

are the same as the ones estimated using Eigenvector decomposition and the convergence

rate of the estimation is nearly the same. When the clutter is composed by non-orthogonal

mechanisms, unlike Eigenvector decomposition, ICA successfully derive the basic scattering

mechanisms without compromising its performance.

Simulations with complex type of scatters, Volume, Double-Bounce and Surface, whose

characteristic were extracted from real data, heterogeneous clutter with Gaussian sources

and with spatial correlation showed similar results, giving strength to the proposal of using

a sliding window size of 11× 11 in ICA based ICTD approach.

Reducing the theoretical gap involving ICA based ICTD, enables a considerable increase

in its usage. Within this context, the potential new information provided by ICA based

ICTD in terms of Cloude and Pottier H/α feature space was verified. A theoretical analysis

of the limiting curves described in [19] that generate unfeasible regions in the aforementioned

plane show that they arise as a consequence of the orthogonality constraint inherent to the

coherence matrix eigenvectors, which are associated to the most dominant scatters present

in the analysed pixel. Since the ICA based ICTD does not introduce such constraint, exam-

ples of possible clutter compositions with non-orthogonal mechanisms that fall outside the

Eigenvector approach feasible regions were addressed.

A detailed analysis with real data revealed an interesting property of ICA based ICTD
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that is unmatchable by the Eigenvector approach: the ability to classify targets as corre-

sponding to Zone 9 in the aforementioned feature space. ICA performance was also verified

under forested scenarios indicating similar average scatters as the Eigenvector approach, but

rather supplementary scattering mechanisms when Touzi TSVM was taken into consider-

ation. Finally, the present work presented a new framework for applying BSS techniques

with POLinSAR data for polarimetric coherence optimization and associated interferometric

phases estimation. The obtained results show improvements in terms of the derived optimized

coherences and, in the same time, they remain consistent with the actual ground truth.

The main caveat related to ICA is that since it has been recently introduced as an ICTD

approach to SAR image analysis, it is still difficult to assert if there are specific scenarios

where ICA performance is higher than Eigenvector’s. Alternatively, the authors believe that

the additional information introduced by ICA can be combined with the information provided

by the Eigenvector decomposition in order to better propose, among others, classification and

geophysical parameter inversion algorithms.

Finally, as a by-product of this work, closed form expressions for the fourth and sixth

order moments of Complex Normal distributed random vector were derived and extended to

Complex Elliptical Symmetric distributions, along with consistent estimators.

To increase the contribution of the subjects presented in this thesis to the scientific com-

munity, the authors would like to enumerate some future work possibilities, which are, in

some extent, already being addressed by the latter. Even though the two major research axes

investigated throughout the present work were combined in an analysis of high resolution

PolSAR data, they can also be addressed separately. That is why we shall divide future work

suggestions considering them as distinct fields.

Regarding the stochastic assessment of high resolution PolSAR clutter models, the authors

believe that the consistency of the proposed test can be further stressed. A closer verification

of its performance under mixture models and different probabilistic models assumption (other

than K-distribution), and a detailed comparison with the results achieved by the original

Schott test for real multivariate random data are subjects that could be exploited. This may

lead to a considerable increase in the range of possible remote sensing applications ( not to

mention different communication systems other than radar) in which it could be employed.

Since the proposed Wald test probabilistic distribution is asymptotically chi-squared, it

is expected that for each window size the test distribution presents a departure from the chi-

squared one, as a function of the number of samples being used in the statistics derivation.

Therefore, another interesting analysis would be the closer investigation of this phenomenon

and the derivation of the most appropriate test statistic as a function of the window size being

employed.

Associating the proposed method to other stochastic tests of multivariate PolSAR data

is also an interesting approach that could be analysed. Circularity and sphericity are prob-

abilistic properties whose usefulness have already been verified by previous works. Within

this context, a general framework could be proposed, combining them all on a single, more
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complete analysis.

Identifying and better characterising SAR data that do not fit the SIRV model based

on the imaged region or the sensor properties are also key factors to propose more efficient

detection, estimation and inversion of geophysical parameters algorithms. Once this step is

done, updating the model should be considered, taking into account either a polarization

dependent scenario or a model not based on a texture/speckle architecture.

Finally, on the other hand, even though ICA based ICTD has been proving itself as a

promising research field in PolSAR data analysis, there are many theoretical assessment that

still need to be addressed with respect to its proper employment in target decomposition.

Its performance for different types of scatters, different mixtures and considering clutters

characterised by varied stochastic models, are examples of subjects that still need to be

exhausted.

Furthermore, the results achieved when taking into consideration real data still need to

be better understood. Varied scenarios should be investigated and, if possible, geophysical

properties of the scene under study should be precisely associated to the ICA estimated

components. Within this context, a joint use along with the Eigenvector approach could be

investigated instead of a simple stand alone employment.

Finally, an interesting advantage of the ICA based ICTD worth of investigation is its

ability to identify more than three sources, which is something that the Eigenvector approach

can not do. Since many model based incoherent target decompositions highlight for the

existence of multiple sources (more than three), it is clear that ICA can get closer to them

when compared to the eigenvector approach, increasing the range of applications where it

could be more efficiently employed.



Appendix A

Fourth order and sixth order

matrices of Complex Normal

Distributions

In this section we extend the derivation performed in [66] of the fourth and sixth order

moments of real-valued random vectors with normal distribution to complex-valued variables.

Let u be an m x 1 vector with a complex normal distribution u ∼ CN(0, Im), where Im
is the m x m identity matrix. Then, its fourth order moment N4 and its sixth order moment

N6 are respectively given by

N4 = E[uuH ⊗ uuH ] (A.1)

and

N6 = E[uuH ⊗ uuH ⊗ uuH ] (A.2)

where E[x] is the expected value of x, ⊗ is the Kronecker product and ·H is the complex

transpose operator.

In order to derive (A.1) and (A.2) let us first remember that

E[uiu
∗
juku

∗
l ] =


2 if i = j = k = l;

1 if i = j, k = l, i ̸= k;

0 if i ̸= j or k ̸= l.

(A.3)

Therefore, it is straightforward to note that

E[uiu
∗
j · uuH ] = Eji + δijIm (A.4)

where Eij = eiej is a m x m matrix with ei being the ith column of the identity matrix Im
and δij is the Kronecker delta, given by

δij =

{
1 if i = j;

0 if i ̸= j.
(A.5)

Hence, the fourth order moment of u is given by

E[uuH ⊗ uuH ] =
∑
ij

[Eij ⊗ (Eji + δijIm)] (A.6)
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Distributions

Note that (A.6) can be rewritten as

E[uuH ⊗ uuH ] =
∑
ij

Eij ⊗ Eji +
∑
i

Eii ⊗ Im (A.7)

Finally, according to the properties of commutation matrices reported in [66], (A.7) re-

duces to

E[uuH ⊗ uuH ] = Kmm + Im ⊗ Im (A.8)

where Kmm is an m x m commutation matrix [66].

The derivation of N6 is carried out in a similar fashion. Let

E[uiu
∗
juku

∗
l · uuH ] =



0 if i ̸= j ̸= k ̸= l;

Elk if i = j, k ̸= l;

Im + Eii +Ekk if i = j, k = l, i ̸= k;

2Eli if i = j, k ̸= l;

2Im + 4Tii if i = j = k = l.

(A.9)

where Tij = Eij + Eji

Hence,

E
[
uiu

∗
j (uu

H ⊗ uuH)
]
=


∑

kl(Ekl ⊗ Elk) + Im ⊗ Eii + Im ⊗ Im +Eii ⊗ Im+∑
l(Eil ⊗ Eli + Eli ⊗ Eil) if i = j;

Im ⊗ Eji + Eji ⊗ Im +
∑

l(Eli ⊗ Ejl + Ejl ⊗ Eli) if i ̸= j.

Therefore, it is possible to write

E
[
uiu

∗
j (uu

H ⊗ uuH)
]
= δij

[∑
kl

(Ekl ⊗ Elk) + Im ⊗ Im

]
+ Im ⊗ Eji + Eji ⊗ Im +∑
l

(Eli ⊗ Ejl + Ejl ⊗ Eli) (A.10)

Finally, knowing that E[uuH ⊗ uuH ⊗ uuH ] =
∑

ij

[
Eij ⊗

(
E
[
uiu

∗
j

(
uuH ⊗ uuH

)])]
, the

sixth order moment of complex normal random vectors with zero mean and identity covariance

matrix is given by

N6 = Im ⊗ Im ⊗ Im + Im ⊗Kmm +
∑
ij

Eij ⊗ Im ⊗ Eji +
∑
ij

Eij ⊗ Eji ⊗ Im +

∑
ijl

Eij ⊗ (Eli ⊗ Ejl + Ejl ⊗ Eli) (A.11)



Appendix B

Derivation of the vectorised version

of the standardised

quadricovariance

In order to derive a simplified vectorised form of [̂M ]4∗ it is necessary to expand (3.11)

accordingly. Let us assume that A = [̂M ]− [M ], C = [̂M ]4 − [M ]4, and that it is possible to

write

[M ]−1/2HA[M ]−1/2 = BH [M ]−1/2 + [M ]−1/2HB (B.1)

where B = [M ]−1/2 − [M̂ ]−1/2 +Op(n
−1/2). Hence, expanding (3.11), it comes down to

[̂M ]4∗ =
[(

[M ]−
1
2

H

−BH
)
⊗
(
[M ]−

1
2

H

−BH
)]

[M ]4

[(
[M ]−

1
2 −B

)
⊗
(
[M ]−

1
2 −B

)]
+[(

[M ]−
1
2

H

−BH
)
⊗
(
[M ]−

1
2

H

−BH
)]
C
[(

[M ]−
1
2 −B

)
⊗
(
[M ]−

1
2 −B

)]
(B.2)

Let S2 denote the second term in (B.2). Note that it is given by

S2 =
[(

[M ]−
1
2

H

−BH
)
⊗
(
[M ]−

1
2

H

−BH
)]
C
[(

[M ]−
1
2 −B

)
⊗
(
[M ]−

1
2 −B

)]
=

(
[M ]−

1
2

H

⊗ [M ]−
1
2

H)
C
(
[M ]−

1
2 ⊗ [M ]−

1
2

)
+Op(n

−1/2) (B.3)

Likewise, let us refer to the first term as S1, then, expanding S1, knowing (3.9), we get

S1 = (1 + ω)
{(

[M ]−
1
2

H

⊗ [M ]−
1
2

H)
[(Im2 +Kmm) ([M ]⊗ [M ])]

(
[M ]−

1
2 ⊗ [M ]−

1
2

)
+(

[M ]−
1
2

H

⊗ [M ]−
1
2

H)
[(Im2 +Kmm) ([M ]⊗ [M ])]

[
−B ⊗ [M ]−

1
2 − [M ]−

1
2 ⊗B

]
+[

−BH ⊗ [M ]−
1
2

H

− [M ]−
1
2

H

⊗BH
]
[(Im2 +Kmm) ([M ]⊗ [M ])]

(
[M ]−

1
2 ⊗ [M ]−

1
2

)
+Op(n

−1/2)
}
(B.4)

The distributions of both terms (B.3) and (B.4) do not depend on [M ] [90], therefore

it can be assumed for the sake of simplicity and without loss of generality that [M ] = Im,
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quadricovariance

yielding S2 = C and

S1 = (1 + ω)

{
(Im2 +Kmm) + (Im2 +Kmm) [−B ⊗ Im − Im ⊗B] +

[
−BH ⊗ Im − Im ⊗BH

]
(Im2 +Kmm) +Op(n

−1/2)

}
(B.5)

Using basic properties of the commutation matrix, the commutation property of the Kro-

necker product [66], and (B.1), (B.5) reduces to

S1 = (1 + ω) {N4 − (Im2 +Kmm) [Im ⊗A+A⊗ Im]} (B.6)

Finally, using (B.3) and (B.6), (B.2) can be rewritten as

[̂M ]4∗ = (1 + ω)N4 + C − (1 + ω)(Im2 +Kmm) [Im ⊗A+A⊗ Im] (B.7)

where [N ]4 is what [M ]4 simplifies to when ki ∼ CNm(0, Im), derived in the previous section

(see (A.8)).

The vectorised version of (B.7) is then obtained in a straightforward manner as

vec([̂M ]4∗) = (1 + ω)vec([N ]4) + vec(C)− (1 + ω)Hvec(A) +Op(n
−1/2) (B.8)

where vec(· ) is the operator that transforms a matrix into a column vector [66], and H is an

operator given by

H = [Im2⊗(Im2+Kmm)]·{Im⊗[(Kmm⊗Im)·(Im⊗vec(Im))]+[(Im⊗Kmm)·(vec(Im)⊗Im)]⊗Im}
(B.9)
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Rank of the covariance matrix Φ

According to [90], the degrees of freedom of the proposed Wald test is equal to the rank of Φ

(see (3.16)) and is set according to the unknowns of the quadricovariance matrix (3.9), being

the latter minus 1. For the sake o completeness, we derive the degrees of freedom for m > 3,

m being the dimension of the mulivariate random variable k and show that it also applies to

m = 3, more suited to PolSAR applications where the reciprocity theorem applies.

Note that when performing kkH⊗kkH one can get seven different unknowns, which, along

with their number of occurrences are given in Table C.1.

Table C.1: Unknowns of the quadricovariance matrix and respective number of occurrences

Unknown Number of occurrences

kik
∗
i · kik∗i m

kik
∗
j · kik∗j

(
m
2

)
kik

∗
j · kjk∗i

(
m
2

)
kik

∗
i · kik∗j m(m− 1)

kik
∗
i · kjk∗i m(m− 1)

kik
∗
i · kjk∗p m

(
m−1
2

)
kik

∗
j · kik∗p m

(
m−1
2

)
kik

∗
j · kpk∗q

(
m
4

)
Therefore, since the degrees of freedom f is the total number of unknowns minus 1, it can

be shown to be

f = m2 +
m(m− 1)(m2 + 19m+ 6)

24
− 1 (C.1)

Note that if m = 3, the last unknown in Table C.1 does not exist, corresponding to a

zero number of occurrences, while if m = 2 (dual pol configuration), the last three terms are

discarded (nulls) and for both cases (C.1) still holds.
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Appendix D

Touzi’s TSVM estimation for

special cases

Let the estimated mixing matrix be given, in Pauli basis, by

A =

|a1|eγ1|a2|eγ2
|a3|eγ3

 =

ar1 + ai1
ar2 + ai2
ar3 + ai3

 (D.1)

The intuitive flow of an estimation algorithm of Touzi‘s parameters described in (4.3)

would be first the derivation of m and |eT |m from the Graves matrix and the norm of the

mixing matrix, respectively. Then, the estimation of ϕs taken as the phase argument of

the first element of the mixing matrix A, γ1. Next, the rotation angle ψ is addressed, and

removed by multiplying the mixing matrix by the matrix W, described in (D.2), leading

finally to the estimation of the roll-invariant parameters τm, αs and ϕαs . Even though the

described procedure seems straightforward, some specific cases need extra attention.

W =

1 0 0

0 cos(−2ψ) − sin(−2ψ)

0 sin(−2ψ) cos(−2ψ)

 (D.2)

Assuming that m and |eT |m are correctly estimated, it is possible to write from (4.3) that

A′ =

a′r1 + a′i1
a′r2 + a′i2
a′r3 + a′i3

 =

 cos(αs) cos(2τm) cos(ϕs)

cos(2ψ) sin(αs) cos(ϕs + ϕαs)− sin(2ψ) cos(αs) sin(2τm) sin(ϕs)

sin(2ψ) sin(αs) cos(ϕs + ϕαs) + cos(2ψ) cos(αs) sin(2τm) sin(ϕs)

+

j ·

 cos(αs) cos(2τm) sin(ϕs)

cos(2ψ) sin(αs) sin(ϕs + ϕαs) + sin(2ψ) cos(αs) sin(2τm) cos(ϕs)

sin(2ψ) sin(αs) sin(ϕs + ϕαs)− cos(2ψ) cos(αs) sin(2τm) cos(ϕs)


(D.3)

where A′ = A
m|eT |m .
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Note from (D.3) that if the first element of A′ is zero, then ϕs is undetermined. This can

occur if either τm = ±45◦ or if αs = ±90◦. Since ϕs is a parameter only used in interferometric

applications, this conclusion could be, at first, neglected, nevertheless an incorrect estimation

of ϕs can lead to incorrect estimation of other parameters. Let us analyse the consequences

of this misestimation of ϕs for each of the described situations. Taking τm = ±45◦, (D.3)

reduces to

A′ =

a′r1 + a′i1
a′r2 + a′i2
a′r3 + a′i3

 =

 0

cos(2ψ) sin(αs) cos(ϕs + ϕαs)∓ sin(2ψ) cos(αs) sin(ϕs)

sin(2ψ) sin(αs) cos(ϕs + ϕαs)± cos(2ψ) cos(αs) sin(ϕs)

+

j ·

 0

cos(2ψ) sin(αs) sin(ϕs + ϕαs)± sin(2ψ) cos(αs) cos(ϕs)

sin(2ψ) sin(αs) sin(ϕs + ϕαs)∓ cos(2ψ) cos(αs) cos(ϕs)


(D.4)

Even thought the helicity (τm), and the scattering type parameters (αs and ϕαs) are roll

invariant, it is imperative that the rotation angle is correctly estimated. Let us write (D.4)

in terms of linear equations, neglecting a′r1 and a′i1 that are zero.

a′r2 = cos(2ψ) sin(αs) cos(ϕs + ϕαs)∓ sin(2ψ) cos(αs) sin(ϕs)

a′r3 = sin(2ψ) sin(αs) cos(ϕs + ϕαs)± cos(2ψ) cos(αs) sin(ϕs)

a′i2 = cos(2ψ) sin(αs) sin(ϕs + ϕαs)± sin(2ψ) cos(αs) cos(ϕs)

a′i3 = sin(2ψ) sin(αs) sin(ϕs + ϕαs)∓ cos(2ψ) cos(αs) cos(ϕs)

(D.5)

Note that (D.5) can only be solved for ψ in three special cases: i. αs = 0◦; ii. αs = 45◦

and ϕαs = 0◦ and iii. α = ±90◦, the latter, independently of the value of τm.

If αs = 0◦, as in Dihedral 45◦ type of targets, the following equality holds for ψ

2ψ=


arctan

(
−a′r2

a′r3

)
= arctan

(
−

a′i2
a′i3

)
ϕs ̸= 0◦, 90◦

arctan

(
−

a′i2
a′i3

)
ϕs = 0◦

arctan
(
−a′r2

a′r3

)
ϕs = 90◦

(D.6)

If αs = 45◦ and ϕαs = 0◦, the target is either a left oriented or a right oriented helix,

depending on the sign of the elicity. The orientation angle is estimated with an error equals
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to ϕs/2 and it can be shown that

ϕs ± 2ψ = arctan

(
a′r3
a′r2

)
= arctan

(
−
a′i2
a′i3

)
(D.7)

If αs = ±90◦, like in Dihedral type of targets, the analysis is performed independently of

the value of τm, even because the latter is undetermined in this configuration.

2ψ=


arctan

(
a′r3
a′r2

)
= arctan

(
a′i3
a′i2

)
ϕs + ϕαs ̸= 0◦, 90◦

arctan
(
a′r3
a′r2

)
ϕs + ϕαs = 0◦

arctan

(
a′i3
a′i2

)
ϕs + ϕαs = 90◦

(D.8)

Note from (D.6) and (D.8) that Dihedral and Dihedral 45 type of targets can not be

simultaneously identified.

Now let us investigate some special situations when ϕs is known, meaning that τm ̸= 45◦

and αs ̸= 90◦. After removing ϕs, we get

a′′r1 = cos(αs) cos(2τm)

a′′r2 = cos(2ψ) sin(αs) cos(ϕαs)

a′′r3 = sin(2ψ) sin(αs) cos(ϕαs)

a′′i1 = 0

a′′i2 = cos(2ψ) sin(αs) sin(ϕαs) + sin(2ψ) cos(αs) sin(2τm)

a′′i3 = sin(2ψ) sin(αs) sin(ϕαs)− cos(2ψ) cos(αs) sin(2τm)

(D.9)

where a′′ = a′ · e−jϕs .

If αs ̸= 0◦ and ϕαs ̸= 90◦ then

ψ =
1

2
arctan

(
a′′r3
a′′r2

)
(D.10)

Now, let ϕαs = 90◦, then (D.9) is given by

a′′r1 = cos(αs) cos(2τm)

a′′r2 = 0

a′′r3 = 0

a′′i1 = 0

a′′i2 = cos(2ψ) sin(αs) + sin(2ψ) cos(αs) sin(2τm)

a′′i3 = sin(2ψ) sin(αs)− cos(2ψ) cos(αs) sin(2τm)

(D.11)
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Therefore, ψ, αs and τm can not be determined, meaning that, for instance, Quarter Wave

scatters can not be automatically identified.

Now, let αs = 0◦, configuration of targets as Trihedrals for instance. The mixing matrix

components are given by

a′′r1 = cos(2τm)

a′′r2 = 0

a′′r3 = 0

a′′i1 = 0

a′′i2 = sin(2ψ) sin(2τm)

a′′i3 = cos(2ψ) sin(2τm) (D.12)

The orientation angle is then estimated as

ψ =
1

2
arctan

(
−
a′′i2
a′′i3

)
(D.13)

Nevertheless since it is impossible (unless τm = 0) to know in advance from the mixing

matrix elements a′′ if αs = 0◦ or ϕαs = 90◦, the algorithm can not precisely estimates ψ, and

consequently the others parameters in both cases as well.



Appendix E

Datasets employed throughout the

thesis

The conduction of SAR data acquisition campaigns is a task that involves many distinct

aspects, both related to the logistics of the acquisition as well as related to the system de-

sign. Therefore, it is a process that involves a large number of people from varied fields

and generally takes several months between planning and execution. Furthermore, if in situ

measurements are also carried out, then the complexity of the mission grows substantially,

requiring specialized personnel (geologists, biologists and physicists, among others) to achieve

the desired goals.

In the present work, no specific campaign was performed. Instead, we choose to employ

in our study datasets already available that matched the scenarios we wanted to investigate.

Therefore, all our analysis starts after the image formation process (see Chapter 2) and we

assume that all aspects related to the latter are correctly addressed. The drawback of such

approach is that in situ measurements (related to ground truth) are not always available or

not in the desired format, somehow limiting final conclusions.

Three datasets are primarily used throughout this thesis. We have selected distinct sce-

narios illuminated by sensors with different characteristics. The areas under investigation

are mainly composed by tropical forest, snow and an agricultural site with human construc-

tions and canonical scatters. The following sections briefly describe each dataset employed,

along with their acquiring sensors features. It is important to highlight that the informa-

tion presented below is extracted, as is, from the given campaign reports and, as previously

mentioned, are assumed to be true.

E.1 SETHI sensor - French Guiana region

SETHI is a new generation airborne SAR developed by the French Aerospace Research Agency

ONERA [9]. SETHI is a full polarimetric, multi-band system which can be operated with

four radar front ends simultaneously. In P-band mode, the bandwidth is 200MHz, the range

resolution 1.2m and the azimuth resolution 1.5m [32].

The acquisition campaign of the dataset used in this thesis took place in August 2009

in French Guiana under the denomination TropiSAR. The main objective in acquiring a
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large amount, good quality tropical forest dataset was to provide enough information that

could help answering specific questions to support the Phase A of the 7th Earth Explorer

candidate mission, BIOMASS [32]. Multi temporal and multi baseline P-band and L-band

full polarimetric images were produced.

In the present work, we focus our analyses in the dataset acquired over the Paracou test

site in French Guiana. The SLC images were processed using the ONERA SAR processor

[13], based on a modified version of the range-migration algorithm [92]. The postprocessing

includes crosstalk removal, radiometric, and polarimetric calibration [32]. Figure E.1 presents

the RGB image of the referred area. Since the dataset contemplates a high amount of pixels,

throughout this thesis we performed the analyses using sub-regions of the aforementioned

data, which are always within the marked rectangles.

Figure E.1: French Guiana area under study: RGB image, Red (HH), Green (HV), Blue

(VV).The north is toward the top of the image and the river on the west side is the Sinnamary

river.
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E.2 RAMSES sensor - Brétigny region

The RAMSES (Radar Aéroporté Multi-spectrald’Etudes des Signatures) is a full polarimetric,

multi-band, very high resolution Synthetic Aperture Radar system developed by the French

Aerospace Research Agency (ONERA) [10]. Being a flexible SAR system conceived to serve as

an experimental test bench for new technologies, is in constant evolution, like for instance the

increase in the range resolution when in X-band configuration. When operating in X-band,

the central transmit frequency is 9.5GHz, the bandwidth is 1200MHz and the range resolution

11cm. Furthermore, it can be flown in a polarimetric interferometric mode [31]. The motion

compensation is based on an integrated inertial system coupled to a post-processing stage

[13], a fast frequency domain synthesis algorithm associated with an auto-focus method [31].

The dataset employed in the present thesis corresponds to a set of polarimetric-

interferometric images acquired in a campaign that flew over a Brétigny region composed

by industrial buildings, trees, a parking lot, and four canonical trihedrals used for calibration.

Figure E.2 presents the RGB image of the referred area.

Figure E.2: Brétigny area under study: RGB image, Red (HH+VV), Green (HV), Blue

(HH-VV).

E.3 E-SAR sensor - Tacul Glacier region

The DLR’s airborne Experimental Synthetic Aperture Radar System, E-SAR, is also a full

polarimetric, multi-band system [46]. The first images acquired with this sensor date back

to 1988, since then the system experienced several improvements in order to continuously

upgraded its performance. When in L-band, the central transmit frequency is 1.3GHz, the

bandwidth is either 100MHz or 50MHz and the range resolution, consequently is either 2m
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or 4m, respectively. Finally, the azimuth resolution is 0.4m. An Extended Chirp Scaling

(ECS) algorithm based processor converts the SAR data to calibrated image data products.

Radiometric and polarimetric calibration are also implemented [46].

The acquisition campaign of the dataset used in this thesis took place in October 2006

over two well known glaciers located in the Mont-Blanc area in the Alps: the Argentiere and

the Mer de Glace glaciers. The main objective of the given mission was to measure temperate

glacier velocities and surface characteristics. The polarimetric data have been acquired by the

collaboration between the DLR Microwaves and Radar Institute and the MEGATOR group.

Even though repeat-pass data (for interferometric applications) and multi-band data were

available from both sites, in the present work, we are mainly interested in the full polarization

L-band images acquired during the flights in direction SE-NW on the upper parts of the Mer

de Glace (Tacul and Leschaux glaciers). Specially suited motion compensation algorithms [83]

were employed in the focusing stage (image formation) to comply with the large topographic

variation in elevation in the given Alpine region (2000 m) [54]. Figure E.3 presents the RGB

image of the referred area.
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Figure E.3: Tacul glacier area under study: RGB image, Red (HH+VV), Green (HV), Blue

(HH-VV).
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(cit. on p. 11).

[15] Jacques E Cilliers and Johan C Smit. “Pulse compression sidelobe reduction by mini-

mization of L p-norms.” In: IEEE Transactions on Aerospace and Electronic Systems

43.3 (2007), pp. 1238–1247 (cit. on p. 10).

[16] Shane R Cloude. “Dual-baseline coherence tomography.” In: IEEE Geoscience and

Remote Sensing Letters 4.1 (2007), pp. 127–131 (cit. on p. 21).

[17] Shane R Cloude and Konstantinos P Papathanassiou. “Polarimetric SAR interferome-

try.” In: IEEE Transactions on Geoscience and Remote Sensing 36.5 (1998), pp. 1551–

1565 (cit. on pp. 84, 86).

[18] Shane Robert Cloude and Eric Pottier. “A review of target decomposition theorems in

radar polarimetry.” In: Geoscience and Remote Sensing, IEEE Transactions on 34.2

(1996), pp. 498–518 (cit. on pp. 2, 21, 28, 40, 45, 46, 56, 131).

[19] Shane Robert Cloude and Eric Pottier. “An entropy based classification scheme for

land applications of polarimetric SAR.” In: Geoscience and Remote Sensing, IEEE

Transactions on 35.1 (1997), pp. 68–78 (cit. on pp. 41, 45, 46, 48–50, 55, 71, 85, 90,

132, 134, 141, 142, 148).

[20] SR Cloude. “Polarimetry: the characterization of polarimetric effects in EM scatter-

ing.” PhD thesis. University of Birmingham, England-UK, 1986 (cit. on p. 20).

[21] Elise Colin, Cécile Titin-Schnaider, and Walid Tabbara. “An interferometric coher-

ence optimization method in radar polarimetry for high-resolution imagery.” In: IEEE

Transactions on Geoscience and Remote Sensing 44.1 (2006), pp. 167–175 (cit. on

p. 84).

[22] Elise Colin, Mohamed Tria, Cécile Titin-Schnaider, Jean Philippe Ovarlez, and Mes-

saoud Benidir. “SAR imaging using multidimensional continuous wavelet transform

and applications to polarimetry and interferometry.” In: International journal of imag-

ing systems and technology 14.5 (2004), pp. 206–212 (cit. on p. 84).

[23] Pierre Comon. “Independent component analysis, a new concept?” In: Signal process-

ing 36.3 (1994), pp. 287–314 (cit. on p. 52).

[24] Ernesto Conte, Antonio De Maio, and Giuseppe Ricci. “Recursive estimation of the

covariance matrix of a compound-Gaussian process and its application to adaptive

CFAR detection.” In: Signal Processing, IEEE Transactions on 50.8 (2002), pp. 1908–

1915 (cit. on pp. 63, 138).

[25] Ernesto Conte and Maurizio Longo. “Characterisation of radar clutter as a spherically

invariant random process.” In: Communications, Radar and Signal Processing, IEEE

Proceedings 134.2 (1987), pp. 191–197 (cit. on p. 27).



Bibliography 109

[26] Ernesto Conte, Marco Lops, and Giuseppe Ricci. “Asymptotically optimum radar de-

tection in compound-Gaussian clutter.” In: Aerospace and Electronic Systems, IEEE

Transactions on 31.2 (1995), pp. 617–625 (cit. on p. 27).

[27] DG Corr and AF Rodrigues. “Alternative basis matrices for polarimetric decomposi-

tion.” In: Proc. of EUSAR 2002, Cologne, Germany (2002) (cit. on pp. 46, 47).

[28] J-P Dedieu, Nikola Besic, Gabriel Vasile, J Mathieu, Yves Durand, and Frederic Got-

tardi. “Dry snow analysis in alpine regions using RADARSAT-2 full polarimetry data:

Comparison with in situ measurements.” In: Geoscience and Remote Sensing Sympo-

sium (IGARSS), 2014 IEEE International. IEEE. 2014, pp. 3658–3661 (cit. on pp. 80,

81, 146).

[29] R.H. Dicke. Object detection system. US Patent 2,624,876. 1953 (cit. on p. 11).

[30] Anthony P Doulgeris and Torbjorn Eltoft. “Can higher-order statistics add information

in model-based polarimetric decompositions?” In: Proc. POLinSAR. 2015, p. 6 (cit. on

pp. 21, 87).

[31] Pascale Dubois-Fernandez, O Ruault du Plessis, D Le Coz, J Dupas, B Vaizan, X

Dupuis, H Cantalloube, C Coulombeix, C Titin-Schnaider, P Dreuillet, et al. “The

onera ramses sar system.” In: Geoscience and Remote Sensing Symposium, 2002.

IGARSS’02. 2002 IEEE International. Vol. 3. IEEE. 2002, pp. 1723–1725 (cit. on

p. 105).

[32] Pascale C Dubois-Fernandez, Thuy Le Toan, Sandrine Daniel, Hélène Oriot, Jerôme
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[83] Pau Prats, Karlus A Câmara de Macedo, Andreas Reigber, Rolf Scheiber, and Jordi J

Mallorqui. “Comparison of topography-and aperture-dependent motion compensation

algorithms for airborne SAR.” In: IEEE Geoscience and Remote Sensing Letters 4.3

(2007), pp. 349–353 (cit. on p. 106).

[84] Muralidhar Rangaswamy. “Spherically invariant random processes for modeling non-

Gaussian radar clutter.” In: Signals, Systems and Computers, 1993. 1993 Conference

Record of The Twenty-Seventh Asilomar Conference on. IEEE. 1993, pp. 1106–1110

(cit. on p. 27).

[85] Muralidhar Rangaswamy, Donald Weiner, and Aydin Öztürk. “Computer generation
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Abstract

Abstract — Polarimetric SAR (PolSAR) systems characterize a sensed area based on the

analysis of the interaction between the latter and the transmitted waveform, considering

different polarimetric states. One of the most employed techniques for PolSAR image inter-

pretation is the Polarimetric Target Decomposition (TD), that enables the description of an

image cell as a sum of canonical scattering mechanisms, making it more intuitive to under-

stand the behaviour of the clutter and therefore to analyse it. There are key aspects that

underpin effective PolSAR TD techniques. Stochastic clutter modelling, in case of distributed

targets (e.g. vegetation, forests and snow) and the correct retrieval of quantitative informa-

tion from the estimated scattering mechanisms (parametrization) are examples of such topics

that directly influence the performance of applied algorithms. Within this context, this thesis

comprises two research axes. First, a new methodological framework to assess the conformity

of multivariate high-resolution SAR data with respect to the product model (Spherically In-

variant Random Vector model) in terms of asymptotic statistics is proposed. More precisely,

spherical symmetry is investigated by applying statistical hypotheses testing on the structure

of the quadricovariance matrix. Both simulated and real data are taken into consideration

to investigate the performance of the derived test by a detailed qualitative and quantitative

analysis. The most important conclusion drawn, regarding the methodology employed in

analysing SAR data, is that, depending on the scenario under study, a considerable portion

of high heterogeneous data may not fit the aforementioned model. Therefore, traditional de-

tection and classification algorithms developed based on the latter become sub-optimal when

applied in such kind of regions. This assertion highlights for the need of the development

of model independent algorithms, like the Independent Component Analysis, what leads to

the second part of the thesis. A Monte Carlo approach is performed in order to investigate

the bias in estimating the Touzi’s Target Scattering Vector Model (TSVM) parameters when

ICA is employed using a sliding window approach under different scenarios. Finally, the

performance of the algorithm is also evaluated under Gaussian clutter assumption and when

spatial correlation is introduced in the model. These theoretical assessment of ICA based

ICTD enables a more efficient analysis of the potential new information provided by the ICA

based ICTD. Both Touzi TSVM as well as Cloude and Pottier H/α feature space are then

taken into consideration for that purpose. The combined use of ICA and Touzi TSVM is

straightforward, indicating new, but not groundbreaking information, when compared to the

Eigenvector approach. Nevertheless, the analysis of the combined use of ICA and Cloude

and Pottier H/α feature space revealed a potential aspect of the Independent Component

Analysis based ICTD, which can not be matched by the Eigenvector approach. ICA does not

introduce any unfeasible region in the H/α plane, increasing the range of possible natural

phenomenons depicted in the aforementioned feature space.

Keywords: Synthetic Aperture Radar, Multiplicative model, Spherical symmetry test,

Polarimetric Incoherent Target Decomposition, Independent Component Analysis.
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120 Abstract

Résumé — Cette thèse comprend deux axes de recherche. D’abord, un nouveau cadre

méthodologique pour évaluer la conformité des données RSO (Radar à Synthèse d’Ouverture)

multivariées à haute résolution spatiale est proposé en termes de statistique asymptotique

par rapport au modèle produit. Plus précisément, la symétrie sphérique est étudiée en

appliquant un test d’hypothèses sur la structure de la matrice de quadri-covariance. Deux

jeux de données, simulées et réelles, sont prises en considération pour étudier la performance

du test obtenu par l’analyse qualitative et quantitative des résultats. La conclusion la plus

importante, en ce qui concerne la méthodologie employée dans l’analyse des données RSO

multivariées, est que, selon les différents cas d’usages, une partie considérable de données

hétérogènes peut ne pas s’ajuster asymptotiquement au modèle produit. Par conséquent, les

algorithmes de classification et/ou détection conventionnels développés sur la base de celui-ci

deviennent sub-optimaux. Cette observation met en évidence la nécessité de développer de

modèles plus sophistiqués comme l’Analyse en Composantes Indépendantes, ce qui conduit à

la deuxième partie de cette thèse qui consiste en l’étude du biais d’estimation des paramètres

TSVM (Target Scattering Vector Model) lorsque l’ACP est utilisée. Enfin, les performances

de l’algorithme sont également évaluées sous l’hypothèse du bruit gaussien corrélé spatiale-

ment. L’évaluation théorique de l’ACI comme un outil de type ICTD (InCoherent Target

Decomposition) polarimétrique permet une analyse plus efficace de l’apport d’information

fourni. A ce but, deux espaces de représentation sont utilisé, notamment H /alpha et TSVM.

Mots clés : Polarimétriques radar à ouverture synthétique, Modèle Multiplicatif

(SIRV), Test de Symétrie Sphérique, Polarimétriques Incoherent cible de Décomposition,

Analyse en Composantes Indépendantes, Évaluation Bias, H/α Fonctionnalité espace.

GIPSA-lab, laboratoire de recherche Grenoble, Images, Parole, Signal, Automatique, 11 Rue

des Mathématiques

38400 Saint-Martin-d’Hères, France
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Les systèmes de télédétection fournissent un moyen unique de faire à grande échelle et

de manière non-intrusive des observations de la surface de la Terre [87, 34, 33]. Parmi de

nombreuses applications, il est possible de mettre en évidence l’analyse de peuplement ur-

bain, le suivi de l’environnement et des cultures, l’évaluation des dommages, estimation de la

biomasse et les applications générales de surveillance liées.

Radars d’ouverture synthétique sont souvent employés à cette fin. Les capteurs SAR sont

des systèmes actifs qui caractérisent la surface en détectant la rétrodiffusion d’impulsions

électromagnétiques envoyées par la plate-forme vers l’ancien [34]. Plusieurs caractéristiques

des cibles/scènes éclairées peuvent être dérivées en fonction du choix approprié des paramètres

du système et de l’interprétation correcte du signal retourné. Cette affirmation est en

quelque sorte intuitive, puisque chaque objet sur la surface de la Terre diffuse une onde

électromagnétique incidente d’une manière unique, généralement en fonction de sa forme et

de sa composition.

E.4 Principes de base du SAR

Généralement, en télédétection la zone analysée est extensif, ce qui empêche l’utilisation de

configurations d’antennes fixes pour ce type d’applications. Par conséquent, côté en regardant
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antennes sont intégrées sur une plate-forme mobile (avion, satellite, UAV), produisant des im-

ages 2D à grande échelle de zones sur le terrain avec une résolution spatiale considérablement

élevée, comme illustré sur la Figure E.4. Cette architecture est référencée dans la littérature

sur le radar à ouverture synthétique (SAR).

Figure E.4: Géométrie strip map de le radar à ouverture synthétique (modifiée de [57]).

Tandis que la plate-forme se déplace, toute la región indiqué comme zone de radar est

détecté. Le processus de formation d’image commence en associant à chaque point sur la

surface éclairée une information spécifique. Les informations pertinentes qui peuvent être

extraites du signal reçu sont sa puissance moyenne et sa phase. La résolution spatiale joue

un rôle clé dans la performance des radars d’ouverture synthétique. Le principe de base

sous-jacent à la télédétection par micro-ondes est que toutes les dispersions dans une cellule

de résolution contribuent au signal retourné. Quand la cellule de résolution ne considère

pas une forte dispersion élémentaire, la distribution est dite distribuée et sa caractérisation

doit être effectuée sur la base du comportement moyen de divers mécanismes de diffusion

présents dans la composition. Cette analyse est pas simple, comprenant l’emploi des outils

probabilistes obtenue sur la base des statistiques asymptotiques et des modèles stochastiques.

E.5 Radar polarimétrique

Des informations supplémentaires peuvent être extraites lors de l’analyse de la dépendance du

signal réfléchissant à l’état de polarisation des signaux d’émission. Le concept de polarisation

est lié à l’orientation du champ électrique par rapport à la direction de propagation de l’onde

électromagnétique.

Dans ce contexte, afin de mieux interpréter les comportements géophysiques, les Radars à

Ouverture Synthétique ont donné naissance à des systèmes Polarimétriques SAR (PulSAR).

Les données PolSAR décrivent l’interaction entre les ondes électromagnétiques et les disper-

sions à l’intérieur d’une cellule de résolution, pour chaque état polarimétrique de l’ancienne.

Comparativement à l’analyse univariée des systèmes de polarisation unique, la nature mul-

tivariée des données Polarimétriques SAR (PolSAR) permet une meilleure prédiction des
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propriétés physiques des cibles illuminées, conduisant à une classification plus efficace, à la

détection et à des algorithmes d’inversion de paramètres géophysiques.

En ce qui concerne le système décrit dans la section 2.1, la seule différence est que les

formes d’onde sont transmises horizontalement et verticalement polarisées, alternativement,

et les signaux sont reçus dans les deux antennes simultanément. Par conséquent, quatre

images SLC sont formées, une pour chaque paire transmis / reçu d’états de polarization.

Les quatre composantes du vecteur cible PolSAR multivarié, k, décrivant les car-

actéristiques polarimétriques d’un seul mécanisme de diffusion cohérent à l’intérieur de chaque

cellule de résolution sont les éléments de la matrice de Sinclair: Shh, Shv, Svh et Svv.

Pour les configurations monostatiques, où le théorème de réciprocité s’applique (c’est-à-dire,

Shv = Svh) il ne reste que trois composantes: Shh, Shv et Svv. Dans ce cas, la dimension du

vecteur cible k devient m = 3 et elle est écrite en base de Pauli comme suit

k =
1√
2
[Shh + Svv Shh − Svv 2Shv]

T (E.1)

E.6 Evaluation Stochastic de clutter PolSAR

L’étude des clutters composées uniquement par des cibles distribués (par exemple, la

végétation, des forêts et de la neige), exige une analyse habituellement basée sur les propriétés

stochastiques des données SAR ciblés dans l’extraction d’informations sur leur composition.

Comparativement à l’analyse univariée des systèmes de polarisation unique, la nature mul-

tivariée des données PolSAR permet de mieux prédire les propriétés physiques des cibles

illumines. Néanmoins, la caractérisation de données multivariées basées sur des statistiques

asymptotiques est considérablement plus complexe.

Lorsque les systèmes SAR de basse résolution font l’objet d’une étude, le nombre de

mécanismes de diffusion dans une cellule de résolution est si grand que le théorème de limite

centrale peut être pris en considération. Par conséquent, les signaux reçus peuvent être locale-

ment modélisés par un processus stochastique Gaussien circulaire à moyenne nulle multivariée,

étant complètement caractérisés par leur matrice de covariance. Avec la résolution améliorée

des plates-formes SAR modernes, le nombre de diffusions dans chaque cellule de résolution a

diminué considérablement. L’hétérogénéité de la scène élevée peut éventuellement conduire

à une modélisation non encombrante gaussienne, nécessitant des modèles stochastiques plus

complexes pour l’analyse. Les vecteurs aléatoires invariant sphériquement (SIRV) [107], ont

été fréquemment utilisés pour la modélisation de haute résolution des données PolSAR [104,

7, 41, 105].
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E.7 Modèle de vecteur aléatoire invariant sphérique (SIRV)

Le SIRV est un modèle multiplicatif qui exprime le signal SAR comme un produit entre

la racine carrée d’une grandeur scalaire positive (texture) et la description d’une surface

homogène équivalente (speckle) [102]. Il est important de noter que dans la définition du

SIRV, la fonction de densité de probabilité de texture n’est pas explicitement spécifiée. En

conséquence, les SIRV décrivent une classe entière de processus stochastiques [85], incluant le

gaussien (multivarié ) modèle (texture déterministe), la distribution de Kummer U (texture

de Fisher) [7], la distribution K multivariée (texture gamma) [74] et la distribuition G0 distri-

bution (texture Gamma inverse) [73], Les deux derniers étant des cas spéciaux de la famille

G multivariée plus générale, spécialement adaptés aux grappes extrêmement hétérogènes [44,

43]. Chaque vecteur d’observation m-dimensionnel k est défini comme

k =
√
τ · z (E.2)

où z est un vecteur Gaussien circulaire complexe et indépendant, caractérisant le speckle, Avec

moyenne nulle et matrice de covariance de la forme [T ] = σ0 ·[M ], tel que Tr{|M |} = 1 et σ0 est

la puissance totale (span). Dans (E.2), τ représente la texture, une variable aléatoire positive

caractérisant les variations spatiales de la rétrodiffusion radar, statistiquement indépendante

du speckle.

De nombreux procédés ont été proposés dans la littérature à la fois pour dériver la ma-

trice de covariance tachée [M ] ainsi que les caractéristiques de texture sous des hypothèses

de modèle stochastique spécifiques. Habituellement, les solutions optimales reposent sur des

estimateurs de maximum de vraisemblance, qui dépendent fortement du modèle adopté [76].

À l’exception de la matrice de covariance de l’échantillon qui, outre l’estimateur du maxi-

mum de vraisemblance sous l’hypothèse gaussienne, présente une signification géométrique /

physique pour son estimation (c’est-à-dire qu’il peut être considéré comme le centre de masse

des matrices de covariance estimées pour chaque pixel), d’autres estimateurs perdent leur

signification si le modèle supposé ne tient pas, devenant sub-optimal.

En dépit de son utilisation répandue dans la communauté, de nombreux auteurs ont

soulevé la question si considérer la polarisation de texture indépendante est le modèle le

plus approprié pour toutes sortes d’encombrement [35, 97]. En particulier, dans les scénarios

forestiers, où le signal retourné peut probablement contenir des contributions de la surface,

double rebond et volume de scatters, chacun étant issu de différentes sources et donc po-

tentiellement de textures différentes, on s’attend à une déviation plus élevée de ce modèle

[35], démontrant la criticité des hypothèses faites avec le modèle avant toute opération de

traitement d’images SAR (segmentation, classification, filtrage des mouchetures). Dans ce

contexte, un cadre général est dérivé pour évaluer quantitativement l’ajustement des modèles

stochastiques SIRV par rapport à un ensemble de données SAR multidimensionnel donné.
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E.8 Test de Wald sur la distribution complexe symétrique el-

liptique

La procédure adoptée ici pour dériver le test sur la symétrie elliptique complexe est analogue

à ce qui a été fait par Schott avec des vecteurs aléatoires à valeur réelle [90]. Par conséquent,

quelques étapes sont délibérément laissé implicite étant leur dérivation directe en raison de

leur conformité avec le cas réel. Comme mentionné précédemment, le modèle SIR est une

sous-classe spécifique de Distributions Elliptiques Simplifiées Complexes (CES), également

appelé Gaussien Composé [76]. Les distributions CES présentent une propriété importante

qui affirme que leurs matrices de moments d’ordre supérieur sont des scalaires multiples de

leur correspondante Distribution normale complexe (CN) [90]. Par conséquent, un moyen

facile de vérifier si un ensemble de données suit une distribution de CES est simplement de

vérifier si la structure de son quatrième ordre moment (quadri covariance matrice) conserve

cette propriété.

Soit k le vecteur d’observation un ensemble de données m × n où m ≤ 4 est le nombre

de canaux de polarisation utilisés par le système et n le nombre d’échantillons acquis à partir

d’une région homogène, qui partagent les mêmes propriétés statistiques. De plus, supposons

que cet ensemble de données est extrait d’une distribution elliptique de moments finis de sec-

ond ordre avec vecteur moyen nul et matrice de covariance [M ]. La distribution asymptotique

normale du vecteur aléatoire n1/2vec([̂M ]− [M ]), où vec(·) est l’opérateur qui transforme une

matrice en vecteur de colonne [66] et [̂M ] est la matrice de covariance non biaisée, est nulle

avec matrice de covariance Ω et matrice de pseudo-covariance P , respectivement donnée par

Ω = σ1([M ]∗ ⊗ [M ]) + σ2vec([M ])vec([M ])H

P = σ1([M ]∗ ⊗ [M ])Kmm + σ2vec([M ])vec([M ])T (E.3)

où Kmm est une matrice de commutation [66], ·∗ et ·H sont le complex et les opérateurs

de transpositions complex respectivement, ·T représente l’opération de transposition, ⊗ est

l’opérateur du produit Kroneckeret et σ1 et σ2 sont des fonctions de la dimensionnalité m et

du générateur de fonctions caractéristiques CES ψ [67].

La matrice de moment de quatrième ordre [M ]4 = E
[
kkH ⊗ kkH

]
est donnée par (voir

l’appendice A)

[M ]4 = (1 + ω) [(Im2 +Kmm) ([M ]⊗ [M ])] (E.4)

où Iq est les q × q identity matrix .

Selon [39], l’échantillon de l’estimateur de covariance quadratique complexe peut être

exprimé en termes de produit Kronecker comme

[̂M ]4 =
1

n

n∑
i=1

kik
H
i ⊗ kik

H
i (E.5)
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Sa forme normalisée correspondante est donnée par

[̂M ]4∗ =

(
[̂M ]

− 1
2

H

⊗ [̂M ]
− 1

2

H)
[̂M ]4

(
[̂M ]

− 1
2 ⊗ [̂M ]

− 1
2

)
(E.6)

where [̂M ]
− 1

2 · [̂M ]
− 1

2

H

= [̂M ]
−1

.

En supposant que A = [̂M ] − [M ] et C = [̂M ]4 − [M ]4, l est indiqué dans l’Appendice

B qu’en ce qui concerne l’efficacité de l’essai, concernant l’efficacité du test, nous pouvons

supposer ci-après, sans perte de généralité, que [M ] = Im, où Im est la matrice d’identité m

x m et que

vec([̂M ]4∗) = (1 + ω)vec([N ]4) + vec(C)− (1 + ω)Hvec(A) +Op(n
−1/2) (E.7)

où [N ]4 est ce [M ]4 simplifie à quand ki ∼ CNm(0, Im) et H est un opérateur donné par

H = [Im2⊗(Im2+Kmm)]·{Im⊗[(Kmm⊗Im)·(Im⊗vec(Im))]+[(Im⊗Kmm)·(vec(Im)⊗Im)]⊗Im}
(E.8)

Notez que (E.7) est asymptotiquement égal à

vec([̂M ]4∗) = (1 + ω)vec([N ]4) +Op(n
−1/2) (E.9)

Par conséquent, en définissant G = ρ−1vec(N4)vec(N4)
T , avec ρ = vec(N4)

Tvec(N4), Il

est possible d’affirmer que Gvec([̂M ]4∗) est un estimateur cohérent de [M4] si et seulement si

[M4] a la structure définie dans (E.4). Par conséquent, en supposant que ce dernier est vrai,

il est de connaissance commune que

n1/2v = n1/2(Im4 −G)vec([̂M ]4∗) (E.10)

est asymptotiquement normale avec une moyenne nulle et une matrice de covariance

Φ = (Im4 −G)Ξ(Im4 −G) (E.11)

où Ξ désigne la matrice de covariance asymptotique de n1/2vec([̂M ]4∗).

Le test de Wald pour les signaux à valeurs complexes indique que

T = nvHΓv (E.12)

il y a une distribution asymptotique du chi carré avec des degrés de liberté f égal au rang de

Φ si Γ est un estimateur cohérent d’un inverse généralisé de ce dernier. En d’autres termes,

si les échantillons testés sont elliptiquement symétriques (hypothèse H0), alors

T → χ2
f in distribution (E.13)

Par conséquent, le test décrit dans (E.12) rejette H0 lorsque T dépasse χ2
f,1−p, où p est

souvent appelé niveau asymptotique et 1− p est la probabilité de fausse alarme.
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Abordons ensuite la formulation de Ξ. Notez de (E.7) que Ξ peut être écrit comme

Ξ = [M ]C − (1 + ω)[M ]C,AH
H − (1 + ω)H[M ]A,C + (1 + ω)2H[M ]AH

H (E.14)

où [M ]C est la matrice de covariance de vec(C), [M ]A est la matrice de covariance de vec(A),

et [M ]Q,R est la matrice de covariance croisée entre Q et R.

Notez de (E.14) que pour construire le test, il est nécessaire de dériver des matrices de

moments de sixième et huitième ordre, ce qui pourrait considérablement accrôıtre la com-

plexité de l’ancien. Néanmoins, en supposant qu’ils existent tous les deux et que la structure

momentanée de notre population est la même que celle d’une distribution elliptique jusqu’aux

moments de huit ordres [90], puis [M ]4 = (1 + ω)N4, [M ]6 = (1 + η)N6 et [M8] = (1 + θ)N8,

avec η, θ et ω, apportent des fonctions du générateur de fonctions caractéristiques. En outre,

il est possible d’écrire (voir (E.3))

[M ]C = (1 + θ)(1 + ω)2(NT
4 ⊗N4) + θ(1 + ω)2vec(N4)vec(N4)

T (E.15)

[M ]C,A = (1 + η)
∑
i

(ei ⊗ Im3)N6(ei ⊗ Im2)− (1 + ω)vec(N4)vec(Im)T (E.16)

où ei est la ith ième colonne de la matrice d’identité Im, et

[M ]A = (1 + ω)(Im ⊗ Im) + ω
(
vec(Im)vec(Im)T

)
(E.17)

Pour conclure la dérivation du test, le seul point manquant est de spécifier un estimateur

cohérent de l’inverse généralisé de Φ. Notez que la spécification de ω̂, η̂, θ̂ comme estimateurs

cohérents de ω, η et θ, respectivement, est une condition suffisante pour atteindre cet objectif.

Un estimateur cohérent de ω est derivée de (3.14)

ω̂ =
1

nm(m+ 1)

n∑
i=1

[
kHi [̂M ]

−1
ki

]2
(E.18)

De façon analogue, on peut montrer que

η̂ =
1

nm(m+ 1)(m+ 2)

n∑
i=1

[
kHi [̂M ]

−1
ki

]3
(E.19)

et

θ̂ =
1

nm(m+ 1)(m+ 2)(m+ 3)

n∑
i=1

[
kHi [̂M ]

−1
ki

]4
(E.20)

En résumé, le cadre proposé pour la symétrie elliptique complexe commence par

l’estimation de (E.18), (E.19) et (E.20). Ensuite, (E.15), (E.16) et (E.17) sont calculés et
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par conséquent, (E.14) est dérivé. Puis (E.11) est utilisé avec (E.10) dans (E.12) et le test

est finalement terminé. Le degré de liberté du test est égal au rang de Φ [90] et est donné par

(voir l’appendice C)

f = m2 +
m(m− 1)(m2 + 19m+ 6)

24
− 1 (E.21)

Notez que pour m = 3, (3.26) se réduit à f = 26.

E.9 Analyse du rendement

Afin d’accéder à la performance et à la robustesse du test propose, données simulées, les

données de l’ensemble de données aéroportées de la bande P acquises par l’Office national

d’études et de recherches aérospatiales (ONERA) sur la Guyane française en 2009 dans le

cadre de la campagne de l’Agence spatiale européenne TropiSM et d’une image RAMSES X

acquise sur Bretigny, France (voir l’appendice E) sont prises en considération.

E.9.1 Analyse des données synthétiques

Les données synthétiques utilisées dans la présente analyse sont divisées en 9 régions, cha-

cune contenant 100 x 100 échantillons d’un type spécifique d’encombrement hétérogène. A

l’exception du premier, supposé gaussien et le dernier supposé un modèle dépendant de la

polarisation, tous les autres sont modélisés comme SIRVs (voir (??)), avec des paramètres

différents. Puisque la fonction de densité de probabilité de la variable aléatoire de texture

n’est pas spécifiée explicitement par le modèle, sans perte de généralité, nous avons généré

l’ensemble de données synthétiques en supposant qu’il ait une distribution Gamma. Les

paramètres de forme et d’échelle de distribution gamma qui caractérisent la variable aléatoire

de texture pour chaque région sont tels que leur moyenne est fixe et fixée à 1 et leurs variances

sont données comme dans la Figure E.5.

Une fois que la distribution Gamma est paramétrée pour chaque région c, un vecteur de

texture simulé τ̃ c, 2 ≤ c ≤ 8 est généré aléatoirement. Ensuite, on génère un vecteur aléatoire

distribué normal complexe z̃, c’est-à-dire, z̃c ∼ CN(0, I). Enfin, le vecteur d’observation

simulé pour chaque région est alors donné par

k̃c = [M]1/2
√
τ̃ c · z̃c (E.22)

où [M ] est la matrice de covariance speckle, gardé le même pour toutes les régions et donné

par

[M ]1/2 =

0.2236 0 0.5477

0.2236 0.3873 0.5477j

0 −0.3873j 0

 (E.23)
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Figure E.5: Données synthétiques avec une indication de la variance de la distribution gamma

qui caractérise la variable aléatoire de texture pour chaque région.

où j =
√
−1 est l’unité imaginaire. Selon [98] cette matrice de covariance décrit un encom-

brement hétérogène composé de 60% de quart d’onde, de 30% d’hélice à gauche et de 10% de

dipôle, avec une entropie égale à 0.8.

Puisque les données synthétiques utilisées dans la présente étude sont composées de régions

homogènes, une approche par fenêtre coulissante est suffisante pour la définition de l’ensemble

des échantillons utilizes. Néanmoins, la taille de cette fenêtre coulissante peut avoir un impact

direct sur la performance du test, soit si elle est sous-estimée ou surestimée. La figure E.6

présente en vert un surplot des points où le test indique des échantillons symétriques non

sphériques avec la plage de données synthétiques comme arrière-plan pour différentes tailles

de fenêtres coulissantes. Le niveau asymptotique p (voir (??)) a été fixé à 0.99.

(a) (b) (c)

Figure E.6: Échantillons rejetés par le test proposé en vert sur fond d’onde de données

synthétiques. Essai répété avec différentes tailles de fenêtre: (a) 7 x 7; (B) 15 x 15; (C) 31 x

31.

Notez que la performance de test proposée est extrêmement dépendante de la taille de la

fenêtre. Il est évident dans la Figure E.6 que plus la taille de la fenêtre est élevée, meilleure

est la probabilité de détection (vu dans l’efficacité du test en rejetant le modèle multiplicatif
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pour les pixels dans la région ”Polarisation Dépendante”). Néanmoins, la probabilité de

fausse alarme peut être vue sous deux angles. D’une part, la quantité de fausses alarmes

isolées (valeurs aberrantes) diminue à mesure que la taille de la fenêtre augmente, d’autre

part, même si le nombre de pixels de fausses alarmes reste pratiquement le même, leur taille

augmente avec une augmentation de la taille de la fenêtre. Ce dernier point à la dépendance

de la performance d’essai sur le degré d’hétérogénéité dans l’ensemble des échantillons utilisés

dans la dérivation des statistiques.

Par conséquent, il est possible de conclure que le test proposé a une très bonne performance

dans la discrimination entre SIRV et non SIRV encombrement hétérogène, indiquant où le

modèle de produit traditionnel (texture indépendante de polarisation) échoue. Néanmoins,

en fonction du degré de non-stationnarité des échantillons utilisés dans le test, ça rejette le

modèle aussi, ce qui peut être mieux vu dans les frontières de quelques régions sur le jeu de

données. Il est important de souligner qu’il n’est pas obligatoire que, lorsque des échantillons

de différents modèles SIRV sont utilisés pour extraire les statistiques, le test échouera, Si tel

était le cas, toutes les frontières de l’ensemble de données synthétiques auraient des pixels

défaillants et pourtant, seules les frontières de quelques régions présentent ce comportement.

La performance du test est également vérifiée en fonction du niveau de confiance p. De

façon analogue, la Figure E.7 présente en vert un surplot des points où le test indique des

échantillons symétriques non sphériques avec la plage de données synthétiques comme arrière-

plan pour différents niveaux asymptotiques p. La taille de la fenêtre a été choisie pour être

23× 23.

(a) (b) (c)

Figure E.7: Échantillons rejetés par le test proposé en vert sur fond d’onde de données

synthétiques. Essai répété avec différentes niveaux asymptotiques p: (a) 90%; (b) 95%; (c)

99%.

Notez que la probabilité de détection, telle que définie ci-dessus, reste pratiquement in-

changée, tandis que la probabilité de fausse alarme augmente considérablement à mesure que

le niveau asymptotique diminue. Par souci d’exhaustivité, nous vérifions la cohérence du test

en fonction de la taille de la fenêtre. La Figure E.8 montre la distribution chi-carré ajustée

à l’histogramme de l’essai effectué (voir (E.12)), utilisant l’approche par fenêtre coulissante

(tailles de fenêtres 7 × 7, 15 × 15 et 23 × 23) et en tenant compte de la région où les pixels
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présentent une distribution Gamma avec une variance σ2τ = 0.5.

Figure E.8: Distribution chi-carrée ajustée (rouge) à l’histogramme du test effectué avec

différentes tailles de fenêtre : 7 × 7 (bleu), 15 × 15 (noir) et 23 × 23 (vert). Il a été pris en

compte la région avec distribution gamma et variance σ2τ = 0.5.

Notez de la figure E.8 que la distribution du chi-carré avec des degrés de liberté donnés

par (3.26) fournit un bon ajustement pour le test de symétrie sphérique présenté dans (E.12)

pour les tailles de fenêtres 15 × 15 et 23 × 23, conformément à la théorie décrite dans la

section précédente. Néanmoins, l’ajustement n’est pas bien vérifiée pour les tailles de fenêtres

faibles, ce qui peut être vu dans la courbe correspondant à une taille de fenêtre 7 × 7. Cela

met en évidence une autre indication de la dépendance des performances d’essai à la taille de

la fenêtre.

E.9.2 Analyse de données réel

Une fois que le test est validé avec des données synthétiques, nous avons poursuivi notre

enquête en utilisant des données réelles. Plus précisément, dans le présent travail, nous

prenons en considération les données de la bande P dataset aéroporté par acquis l’Office

National d’Etudes et de Recherches A’erospatiales (ONERA) sur la Guyane française en 2009

dans le cadre de la campagne de l’Agence spatiale européenne Tropisar, caractérisant une

zone principalement composée par des cibles distribuées.

La taille de la fenêtre coulissante a ensuite été choisi pour être 15 × 15, qui a présenté

une bonne performance en ce qui concerne la probabilité de détection et la probabilité de

fausse alerte et est conforme à ce qui est décrit comme nécessaire par d’autres auteurs lors de

l’application de nombreux algorithmes SAR [58, 65, 82].

Comme un outil supplémentaire pour le reste de l’analyse, l’algorithme de classification

statistique est encore employé pour segmenter la scène à l’étude en 8 classes différentes. À

cette fin, le classificateur statistique développé pour les données POLSAR fortement texturées

[41] a été utilisé. Contrairement à la classification classique H/α non surveillée [18], le fouillis
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hétérogène non gaussien est pris en compte.

Abordons d’abord le jeu de données Tropisar. La figure E.9 présente la région à l’étude

de la zone concernée (différente de l’utilisation dans l’analyse temporelle en raison de son

plus grande hétérogénéité), La sortie de l’algorithme de classification et la carte de symétrie

sphérique où, en vert, sont indiqués des échantillons symétriques non sphériques en arrière-

plan par l’étendue du jeu de données.

Figure E.9: Guyane française à l’étude: (a) Image RGB, Rouge (HH + VV), Vert (HV),

Bleu (HH-VV); (B) sortie de l’algorithme de classification statistique; (C) carte de symétrie

sphérique.

Notez que la rivière constitue la classe 1, ainsi que certaines zones présumées flottantes

alors que la classe 8 est principalement représentée par une petite région probablement avec

une certaine structure faite par l’homme. En utilisant un espace de fonctions H/α (Figure

E.10), il est possible de percevoir le haut degré d’hétérogénéité dans les données qui contient

des pixels qui peuvent être classés comme Volume, Double-Bounce et Type de surface de

scatters [19].

Figure E.10: Guyane française à l’étude: H/α espace de fonctionnalité.

Notez que l’incidence des pixels rejetés dans ce type d’ensemble de données n’est pas

négligeable (30%). Cela indique qu’une partie considérable des données ne correspond pas
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au modèle vectoriel aléatoire invariant sphérique (modèle de produit). De plus, il faut noter

que le test permet d’identifier correctement les régions à indice élevé de non-stationnarité,

plus accentuées entre les classes, comme on peut le voir clairement dans ce qui semble être le

rivage. Les intervalles [200: 300, 200: 300] et [400: 500, 400: 600] de l’ensemble de données,

tous deux composés de pixels de plusieurs classes différentes, présentent également une forte

concentration d’échantillons qui échouent au test et ne correspondent donc pas au modèle du

produit. Le pourcentage de pixels rejetés pour chaque classe est donné dans le tableau E.1.

Table E.1: Pourcentage de pixels symétriques non sphériques par classe dans la Guyane

française à l’étude.

Class Percentage of non spherical symmetric pixels

1 13.76%

2 25.46%

3 45.30%

4 33.20%

5 32.19%

6 30.99%

7 48.76%

8 55.12%

Notez que les classes 3, 7 et 8 ne sont pas de très bons représentants du modèle de produit,

tandis que d’autre part, les classes 1, 2, 4, 5 et 6 sont bien décrites comme SIRVs. Une étude

plus poussée des données a révélé que la plupart des pixels déclarés non sphériques symétriques

par le test proposé (98,62%) avaient leur statistique dérivée d’un ensemble d’échantillons

contenant des pixels de différentes classes, plus précisément, 3 (38,79%) ou 4 (30,51%) classes.

Cela indique l’importance de considérer la haute hétérogénéité des données, spécialement

dans des scénarios forestiers, dans la dérivation d’algorithmes de traitement d’image SAR.

Ce dernier devient critique si une approche par fenêtre coulissante est directement adoptée

sans étape supplémentaire pour éviter la contamination de pixel avec des caractéristiques

différentes, compromettre le modèle statistique considéré bon d’ajustement.

Une partie considérable de données hétérogènes élevées peut ne pas correspondre au

modèle vectoriel aléatoire invariant sphérique (modèle de produit). Par conséquent, les al-

gorithmes traditionnels de détection et de classification développés à partir de ces derniers

deviennent sub-optimaux lorsqu’ils sont appliqués dans ce type de régions, en mettant en

évidence la nécessité de mettre à jour le modèle pour associer une variable de texture indi-

viduelle à chaque canal polarimétrique [35], ou le développement d’algorithmes indépendants

du modèle, comme l’Analyse de composantes indépendantes (ICA), proposée dans [3].

Le premier, introduit un haut degré de complexité dans la modélisation des données

PolSAR et, par conséquent, en dérivant des algorithmes adaptés à ces modèles. En outre,

fournir des modèles uniques lorsque l’hypothèse multi-texture est pris en considération est un

défi très difficile à trouver. L’ICA, d’autre part, étant une technique de séparation de sources

aveugles, basée sur des moments statistiques d’ordre supérieur, vise à récupérer des sources
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statistiques indépendantes sans avoir aucun fond physique du processus de mélange [48]. Par

conséquent, il s’agit d’une stratégie indépendante de modèle pour analyser le comportement

des clones hétérogènes non gaussiens (inhérents aux systèmes SAR à haute résolution) qui

s’est avérée très utile et introduit une autre manière d’interpréter physiquement une image

SAR polarimétrique. Dans la section suivante, cette technique est traitée plus en détail.

E.10 ICTD basée sur ICA - Aspects théoriques

Dans le contexte de la décomposition de la cible incohérente de PolSAR, de nombreux procédés

ont été proposés dans la littérature pour décomposer un pixel d’image (composé de dispersions

distribuées) en vecteurs de base et récupérer correctement des informations quantitatives

(paramétrisation). En ce qui concerne ces derniers, les paramètres de Cloude et Pottier

(entropie, alpha et anisotropie) [19] et le modèle de vecteur de diffusion cible de Touzi [98]

sont les plus employés, dont l’utilité a déjà été démontrée par plusieurs auteurs. Concernant le

premier, l’évaluation des propriétés statistiques des données PolSAR (dérivée à l’aide de pixels

voisins) est un facteur clé pour dériver les mécanismes de diffusion moyenne ou dominante

dans une cellule de résolution composée de cibles stochastiques distribuées.

Le Eigenvector basée sur ICTD parvient à décomposer un pixel d’image dans les trois

dispersions les plus dominantes à partir de la matrice de cohérence moyenne. En outre, il

a une propriété intrinsèque que les dispersions dérivées sont orthogonales et non corrélées,

ce qui pour les cloches gaussiennes signifie également l’indépendance. L’inconvénient de ce

type de méthode émerge lorsque l’encombrement n’est pas gaussien ou n’est pas composé par

des mécanismes orthogonaux, des situations où la performance de l’algorithme pourrait être

compromise.

L’Analyse de Composants Indépendants, étant un algorithme indépendant modèle, est

décrit comme une alternative potentielle pour les données PolSAR très hétérogènes. Cette

méthode est brièvement résumée en trois étapes principales: la sélection des données, basée sur

la classification statistique de l’image POLSAR; estimation des composantes indépendantes

et paramétrage des vecteurs cibles dérivés. Comme indiqué dans [3], l’inconvénient majeur

de la méthode proposée est la taille de l’ensemble de données d’observation, qui doit être un

peu plus grand que la taille de la fenêtre coulissante utilisée dans les méthodes bien établies.

Cette contrainte a conduit les auteurs dans [3] à utiliser un algorithme de classification non

supervisé plutôt que de s’appuyer sur une très grande fenêtre coulissante, compromettant

l’efficacité de la méthode.

L’utilisation d’un algorithme de classification limite la performance du méthode dans le

sens où l’image est segmentée en un nombre défini a priori de classes de tailles variables, ce

qui peut compromettre l’estimation des paramètres des vecteurs cibles et, par conséquent,

l’interprétation correcte des dispersions présentes dans la zone à l’étude. L’emploi d’un algo-

rithme de classification introduit quelques implications. Par exemple, une classe peut contenir

plus d’échantillons qu’il n’en a besoin pour une estimation correcte des paramètres de la cible,

ce qui signifie que la résolution spatiale, fortement dégradée par l’utilisation de cette approche,
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est pire qu’elle ne pourrait l’être. D’autre part, si une classe ne contient pas suffisamment

d’échantillons, les paramètres estimés peuvent présenter une grande variance, indiquant que

les valeurs dérivées ne sont pas toujours conformes à la vérité au sol.

Dans ce contexte, on utilise dans la présente section une approche de simulation Monte

Carlo pour évaluer la taille optimale d’une fenêtre coulissante pour différents supports, les sim-

ples composés de diffractomètres de base tels que l’hélice, le dipôle, le dièdre et le trièdre et les

plus complexes comme Surface, Double rebond et retour de volume. Un algorithme de classi-

fication non supervisé est utilisé pour identifier dans une image RAMSES X-band acquise sur

Br’etigny, France (voir Appendice E), ensembles d’échantillons caractérisant les mécanismes

de diffusion moyenne, de surface, de double rebond et de volume. La matrice de mélange et

la matrice de covariance pour chacun des types de diffraction complexes susmentionnés sont

estimées à l’aide d’algorithmes appropriés (algorithme ICA non-circulaire complexe et algo-

rithme de point fixe [104], respectivement) et utilisé pour bootstrap échantillons aléatoires

pour la simulation Monte Carlo approche. Il est important de souligner que, comme indiqué

dans [3], la matrice de mélange et la matrice de covariance sont potentiellement différentes,

donc l’ensemble des échantillons aléatoires utilisés dans l’analyse de décomposition ICA et

Eigenvector ne sont pas les mêmes. En ce qui concerne l’analyse avec les dispersions de base,

les paramètres précités sont définis manuellement.

Dans le présent travail, l’encombrement hétérogène est décrit par une variante du modèle

SIRV (Spherically Invariant Random Vectors) [104], en supposant une texture dépendant de

la polarisation, caractérisée par un vecteur aléatoire. Analogiquement à ce qui a été fait aux

matrices de mélange et de covariance, les paramètres de distribution de texture, pour chacun

des types de dispersions complexes susmentionnés, sont estimés à partir de l’ensemble de

données réels alors que pour les diffusions de base, ils sont définis manuellement.

E.11 Approche de simulation Monte Carlo

Les auteurs de [3] ont prouvé l’utilité de l’Analyse de Composante Indépendante dans ICTD

par son emploi en données réelles, laissant quelques questions ouvertes comme la performance

de l’algorithme sous une implémentation de fenêtres coulissantes et sous un encombrement

contenant des scénarios de composants gaussiens. Dans le présent travail, une approche de

simulation Monte Carlo est réalisée afin de compléter les résultats obtenus dans [3] et d’établir

empiriquement un contexte théorique qui permettra une utilisation plus efficace de l’ICA dans

d’autres applications de PolSAR.

E.11.1 Estimation de la taille optimale des fenêtres coulissantes

L’encombrement hétérogène est décrit ici par une variation du modèle SIRV (Spherically In-

variant Random Vectors), avec une matrice de covariance normalisée et une texture dépendant

de la polarization. On suppose différentes hypothèses quant à sa composition: les diffractions
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de base (orthogonales et non orthogonales) représentant les mécanismes de diffusion moyenne

ou dominante dans la cellule d’imagerie et les dispersions complexes (surface, double rebond

et volume).

Chaque procédure de simulation, pour une taille de fenêtre et un type d’encombrement

donnés, est répétée 1000 fois et les paramètres estimés sont alors moyennés. Pour le premier

ensemble de simulations, les mécanismes de diffusion moyenne ou dominante dans la cellule

d’imagerie sont considérés comme des dispersions de base et deux scénarios sont établis: l’un

contenant des cibles orthogonales et l’autre contenant des mécanismes non orthogonaux. La

forme de distribution gamma et les paramètres d’échelle qui caractérisent la texture sont fixés

et fixés à 1.95 et 0.51, respectivement. Ils sont utilisés pour générer un vecteur de texture

simulé τ̃ c. Ensuite, on génère un vecteur aléatoire distribué normal complexe z̃, c’est-à-dire,

z̃ ∼ CN(0, I). Enfin, le vecteur d’observation simulé pour chaque classe est alors donné,

analogue à (E.22), par

x̃c = A
√
τ̃ c · z̃ (E.24)

L’ensemble de données simulées (E.24) est ensuite utilisé comme entrée pour la

décomposition de vecteur propre et la décomposition ICA.

Nous allons d’abord étudier le comportement de décomposition de vecteur propre, ci-après

également désigné sous le nom de PCA (Analyse de Composants Principaux) pour simplifier et

ICA sous l’hypothèse que l’encombrement hétérogène est composé par des cibles orthogonales.

Il est important de souligner que des précautions particulières doivent être prises dans le choix

approprié des mécanismes de diffusion simulés, puisque Touzi TSVM présente des ambiguités

pour certains scatters spécifiques, comme indiqué à l’appendice D. Dans la présente analyse,

la composition d’encombrement est de 60% d’hélice à gauche, 30% d’hélice à droite et 10%

de trièdre. L’entropie d’un tel encombrement est de 0.8 alors que les paramètres invariants

de Touzi sont affichés dans le tableau E.2.

Table E.2: Mécanismes orthogonaux - Paramètres de Touzi

τm [◦] αs [◦] ϕαs [◦]

Helix left screw 45 45 0

Helix right screw −45 45 0

Trihedral 0 0 0

La Figure E.11 présente les paramètres estimés de l’invariant du rouleau de Touzi et

l’entropie obtenue en utilisant la décomposition ICA et Eigenvector. Il est à noter que la

décomposition en Eigenvector, telle qu’anticipée par [58], et ICA dérivent correctement les

paramètres de Touzi correspondant aux trois composantes ainsi que l’entropie. La troisième

composante est plus problématique à la fois pour la décomposition, présentant un taux de

convergence plus faible. En ce qui concerne l’Entropie et les première et deuxième com-

posantes, le comportement de la décomposition d’Eigenvector et de l’ICA sont très similaires,

et la même taille de fenêtre peut être utilisée pour les deux.
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Figure E.11: Paramètres de TSVM d’entropie et de Touzi dérivés de la décomposition po-

larimétrique ICA et Eigenvector cible, PCA, pour un encombrement composé de mécanismes

orthogonaux de base.

Le choix de la taille des fenêtres coulissantes est une préoccupation constante dans la

communauté SAR puisque les valeurs élevées diminuent considérablement la résolution spa-

tiale du système et que des valeurs basses peuvent éventuellement introduire un biais dans

l’estimation de quelques paramètres. De nombreux auteurs ont soulevé la question de savoir

quelle serait la taille de fenêtre optimale pour plusieurs applications différentes, p. Ex [58, 65].

Notez dans la Figure E.11 qu’une taille de fenêtre 11 × 11 fournit une bonne estimation des

premier et second composants des paramètres TSVM ainsi que l’entropie à biais négligeable,

ce qui représente un bon choix en termes de compromis de performance.

Ensuite, un scénario avec des cibles non orthogonales est abordé. L’encombrement est alors

composé de 60% de vis hélicoidale gauche, 30% de dipôle et 10% de dièdre. Comme prévu,

puisque la décomposition de vecteur propre a une contrainte intrinsèque que les composantes
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estimées sont mutuellement orthogonales, il est incapable de dériver correctement la matrice

de mélange initiale, en omettant d’estimer le contenu de l’encombrement hétérogène. D’autre

part, ICA n’est pas contraint à l’orthogonalité donc il réussit à estimer les trois composantes

paramètres.

Passons maintenant à des types plus complexes de cibles, composées soit de surface,

Double-Bounce ou de volume. La première étape de la procédure de simulation consiste à

définir le jeu d’observations à partir duquel la matrice de covariance, la matrice de mélange

et les paramètres de texture seront estimés pour chacun des mécanismes susmentionnés. Un

algorithme de classification non supervisé développé pour les données POLSAR hautement

texturées [42] est utilisé pour identifier au sein d’une image de bande X RAMSES acquise sur

Br’etigny, France (voir appendice E), ensembles d’échantillons caractérisant les mécanismes de

diffusion moyenne, de surface, de double rebond et de volume. Plus de détails sur l’algorithme

de classification sont fournis dans la section suivante, où il est supposé un rôle plus crucial

dans l’analyse. Même si elle a déjà été démontrée tout au long de cette thèse, dans un souci

d’exhaustivité, la Figure E.12 présente la zone référencée en rouge (HH + VV), Vert (HV) et

Bleu (HH-VV), la sortie de l’algorithme de classification et un espace caractéristique H/α.
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Figure E.12: Région de Br’etigny à l’étude: (a) image RGB, Rouge (HH + VV), Verte (HV),

Bleu (HH-VV); (b) sortie de l’algorithme de classification statistique; (c) H/α espace de

fonctionnalité.

En analysant l’espace des traits H/α on peut conclure que la classe 1 est principalement

composée de dispersions de volume, la classe 5 est principalement composée de surface et

la classe 6 est principalement composée de diffractures double rebond. Par conséquent, des

échantillons correspondant à chaque classe ont été extraits de l’ensemble visé et la matrice

de mélange, Â
c
, et matrice de covariance, [M̂ ]cFP , ont été estimées pour chacune des classes

décrites (c = 1, 2, 3) de mécanismes. Un algorithme décrit dans [24], initialisé avec la matrice

identité, est utilisé pour ce dernier. Ensuite, la texture est également estimée pour chaque

vecteur d’observation correspondant à l’une des trois classes précitées (surface, double rebond

et volume).

En estimant le paramètre de texture pour chaque pixel, on obtient un ensemble de

réalisations à partir desquelles il est possible de retrouver ses paramètres de distribution.

Puisque la fonction de densité de probabilité du vecteur aléatoire de texture n’est pas spécifiée
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explicitement par le modèle, ainsi que dans l’ensemble précédent de simulations, nous anal-

yserons les paramètres de convergence en supposant qu’il ait une distribution Gamma. Les

paramètres de la distribution sont ensuite extraits de la τ̂ ci déjà estimée et utilisés pour générer

des vecteurs de texture simulés à des échantillons aléatoires bootstrap pour l’approche de sim-

ulation Monte Carlo. Les étapes restantes de la génération de données simulées sont les mêmes

que celles décrites précédemment. Il est important de souligner que, comme indiqué dans [3],

la matrice de mixage et la matrice de covariance sont potentiellement différentes, l’ensemble

des échantillons aléatoires utilisés dans l’analyse de décomposition ICA et Eigenvector ne sont

pas identiques.

La Figure E.13 présente les résultats de la décomposition polarimétrique en utilisant à la

fois la décomposition ICA et Eigenvector (PCA). Notez que, malgré le faible taux de conver-

gence de ϕαs pour le type de surface de dispersion, le comportement de taux de convergence

atteint à la fois par ICA et PCA sont pratiquement les mêmes que ceux obtenus dans les

simulations avec des dispersions de base que les mécanismes de diffusion moyenne ou domi-

nante. Cette conclusion conduit à la possibilité d’utiliser la même taille de fenêtre que celle

rapportée précédemment de 11× 11 échantillons.

E.12 ICTD basée sur ICA - Aspects pratiques

Réduire l’écart théorique impliquant l’ICA basée sur ICTD, permet une augmentation con-

sidérable de son utilisation. Néanmoins, puisqu’il s’agit d’une approche ICTD récemment

introduite pour l’analyse d’images PolSAR, Il est encore difficile d’affirmer s’il existe des

scénarios spécifiques où la performance de l’ICA est supérieure à celle de l’APC (ETIC basée

sur un Eigenvector). Alternativement, nous pensons que les informations supplémentaires in-

troduites par l’ICA peuvent être combinées avec les informations fournies par la décomposition

des vecteurs propres afin de mieux proposer, parmi d’autres, algorithmes de classification et

d’inversion de paramètres géophysiques. Dans ce contexte, la présente section, en plus de

détails, les résultats obtenus lorsque l’ICA basée sur l’ICCTD est réalisée sur des jeux de

données variés, en les comparant aux informations fournies par l’approche Eigenvector.

E.13 Cloude et Pottier H/α analyse de l’espace des fonctions

L’analyse de Cloud et Pottier H/α caractérise l’espace résultat lors de l’ICTD basée

ICA est d’abord considérée une image RAMSES X-band acquis sur Bretigny, en France.

L’augmentation des possibilités H/α pairs a provoqué le ICA basé sur ICTD peut être ex-

plorée de plusieurs aspects. Dans le présent travail, nous concentrons notre investigation en

pixels qui tombent dans la région 3 dans le plan H/α. Dans ce but, nous abordons d’abord les

résultats d’un algorithme de classification non supervisé développé pour les données POLSAR

fortement texturées [42] afin d’identifier les pixels qui basculent entre les classes initialement

affectées aux régions 6 et 2 lorsque l’approche Eigenvector est appliquée.



140 Extended

Figure E.13: Paramètres TSVM d’entropie et de Touzi dérivés avec la décomposition po-

larimétrique de la cible ICA et Eigenvector, PCA, pour un type d’encombrement complexe:

surface, double-rebond et volume.

La méthode susmentionnée repose sur un test statistique sur les matrices de covariance

estimées pour chaque pixel en considérant ses voisins dans une fenêtre coulissante. Une

mesure de distance, dérivée basée sur le modèle probabiliste de données adopté, est utilisée

pour vérifier à quelle classe correspond un pixel donné. La mesure de distance utilisée dans

le présent travail suppose que l’encombrement hétérogène est décrit par le modèle Spherically

Invariant Random Vectors (SIRV), avec une matrice de covariance normalisée.

La première étape avant l’emploi de l’algorithme de classification est d’évaluer la confor-

mité des données par rapport au modèle statistique considéré. Comme conclu précédemment,

seule une petite partie des pixels de la zone étudiée échoue au test (18%), indiquant

que le modèle SIRV est un bon représentant du comportement stochastique des données.

L’algorithme de classification est ensuite brièvement décrit en 4 étapes: génération de la pop-
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ulation initiale basée sur la classification H/α, où les pixels correspondant à la même région

forment un cluster unique; calculer chaque centre de cluster; calculer la distance mesurée

entre chaque pixel et tous les centres de cluster; associer le pixel à la grappe correspondant à

la plus petite distance dérivée à l’étape précédente.

La nature adaptative de l’algorithme de classification cherche à grouper des pixels ayant un

comportement statistique similaire, dans une tentative de mieux regrouper des phénomènes

physiques similaires. La grande quantité de pixels qui basculent entre les classes prouve que

la classification H/α ne parvient pas à expliquer pleinement certains types de mécanismes

de diffusion. La figure E.14 présente la sortie H/α de classification initiale, l’algorithme de

classification statistique sorti après 4 itérations et les espaces de fonction H/α correspondant.
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Figure E.14: Superficie de Br’etigny à l’étude: (a)H/α production de la classification; (b) Sor-

tie de l’algorithme de classification statistique, 4e itération; (c) H/α espace de caractéristique

initial; (d) H/α espace de caractéristique après la 4e itération.

Examinons maintenant les évidences que les limitations inhérentes à l’approche des

vecteurs propres dans l’espace des traits H/α peuvent compromettre l’interprétation cor-

recte de l’image SAR. Dans le présent travail, nous nous concentrons sur l ’analyse de pixels

dont le comportement polarimétrique se situe dans les régions 2,3 et 6. Selon les auteurs de

[19], la région 6 représente une dispersion de surface d’entropie moyenne. En comparaison

avec le comportement attendu des mécanismes de surface, il est indiqué que l’augmentation
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de l’entropie peut être liée soit à une augmentation de la rugosité de la surface, soit à des

effets de propagation de la canopée. Si l’entropie augmente encore et l’intervalle de α est resté

inchangé, les pixels tombent dans la région 3 et seront classés comme une surface d’entropie

élevée. Néanmoins, en raison de la contrainte mathématique, aucun mécanisme de diffusion

ne peut être identifié comme appartenant à cette région. Enfin, la région 2, signifie une

dispersion de la végétation d’entropie élevée, y compris le type de volume de scatters. Le

comportement naturel des couvertures des forêts et de certains types de surfaces végétalisées

avec des éléments de diffusion aléatoire hautement anisotropes peut tomber dans cette région

[19]. Notez que les phénoménologies physiques représentées par la région 6 et la région 2

sont très différentes. Par conséquent, il devrait être très peu douteux pour déterminer si un

pixel est mieux représenté par la région 6 ou par la région 2. Néanmoins, la quantité totale

de pixels qui basculent entre les régions 6 et 2 représente 62,36% de l’ensemble initialement

classé dans la région 6.

Maintenant, nous allons aborder les nouvelles informations fournies par l’ICA basée ICTD.

Une comparaison avec la classification H/α en prenant en considération l’ICA basée sur ICTD

(représentée sur la figure 6.4) indique qu’un pourcentage élevé des pixels qui basculent entre

les classes initialement affectées aux régions 6 et 2 sont classés comme appartenant à la

région 3. Plus précisément, 69,23%. Furthermore, only 10% of the pixels classified in region

3 where not originally classified in region 6 when the Eigenvector approach was employed.

Ces résultats indiquent que le comportement physique des pixels de commutation est mieux

représenté par la région 3, diffusion de surface à entropie élevée, ce qui est inviable lorsque

l’approche d’Eigenvector est utilisée.

Bretagne − Iteration 0 (ICA−GM)
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Figure E.15: (a) H/α sortie de classification, (b) H/α espace de caractéristique.

Un bon indicateur de la robustesse des nouvelles informations fournies par l’ICA basée

sur l’ ICTD par rapport à l’espace des fonctionnalités H/α est le taux de fausses alertes qu’il

fournit. Un scénario de forêt tropicale est pris en considération pour vérifier si les pixels

sont incorrectement classés comme appartenant à la région 3 lorsque leur phénoménologie

naturelle indique clairement qu’ils devraient être représentés par la région 2. Les données de

l’ensemble de données aéroportées de la bande P acquises par l’Office National d’Etudes et

de Recherches Aérospatiales (ONERA) sur la Guyane en 2009 dans le cadre de la campagne
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de l’Agence spatiale européenne TropiSAR sont abordées.

Paracou − Iteration 0 (FP−GM)
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Paracou − Iteration 0 (ICA−GM)
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Figure E.16: Guyane française à l’étude: (a) H/α production de classification lorsque

l’approche Eigenvector est employée et (b) H/α classification lorsque l’ICA basée sur ICTD

est prise en considération.

Notez dans la Figure E.16 que l’ICA associe correctement la plus grande partie du com-

portement physique des forêts tropicales à la région 2, les dispersions de volume, comme

prévu, compte tenu de l’effet des couvertures forestières. Néanmoins, les entropies estimées

sont plus élevées par rapport à l’approche Eigenvector.

Enfin, nous concluons l ’étude des nouvelles informations fournies par l’ ACI en ce qui

concerne l ’espace des fonctions en analysant les résultats d’ une utilisation combinée de l’ICA

basée sur l’ICTD et de l ’algorithme de classification statistique décrit. L’ICA peut être

utilisée comme population initiale, compte tenu de la sortie de classification H/α résultant de

l’ICA basée sur ICTD. Dans [42] les auteurs indiquent que la population initiale n’affecte pas

la production de la classification, en présentant une comparaison des résultats obtenus lorsque

la classification Eigenvector H/α est utilisée à cette fin et lorsqu’une population aléatoire est

employée. Néanmoins, l’introduction d’une nouvelle classe de mécanismes, représentée par la

région 3 dans le planH/α peut en effet influencer le résultat de l’algorithme de classification. Il

est important de souligner qu’aucune autre modification n’est nécessaire dans cette approche.

Comme les données sont essentiellement composées d’échantillons SIRV, et nous vérifions la

ressemblance statistique entre les pixels en fonction de leurs matrices de covariance, la mesure

de distance employée jusqu’ici peut être maintenue inchangée, ainsi que le reste du code.

Examinons maintenant les résultats en tenant compte de l’ensemble de données POLSAR

acquises en octobre 2006 par le système E-SAR sur la partie supérieure du glacier Tacul du

site d’essai “Chamonix-Mont-Blanc”, France. La figureE.17 présente la zone référencée en

rouge (HH + VV), Vert (HV) et Bleu (HH-VV) et la sortie du test de symétrie sphérique où

en vert sont représentés des pixels symétriques non sphériques.

Notez que seule une petite partie des pixels de la zone étudiée échoue au test (29%),

ce qui indique que le modèle SIRV est également un bon représentant de ce comportement

stochastique de jeu de données. La figure E.18 présente la sortie H/α de classification initiale
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Figure E.17: Superficie du glacier du Tacul à l’étude: (a) Image RVB, rouge (HH + VV),

verte (HV), bleue (HH-VV); (b) Carte de symétrie sphérique.

pour l’approche Eigenvector et l’ICA basée sur ICTD, l’algorithme de classification statistique

délivré après 4 itérations. La figure E.19 présente le corresponant H/α.

Notez que la région 3 caractérise principalement les pixels qui représentent les bandes

incurvées en raison des phénomènes de ”bandes de Forbes” [54, 100], une caractéristique

périodique provoquée par un déplacement périodique récurrent du glacier Tacul au cours

d’une année. La bande de Forbes peut être identifiée sur la figure 6.8 comme la succession

d’ondulations qui balaie transversalement la région détectée. Initialement définie en 1842 par

le Prof. Forbes, en tant que bandes de saleté, les courbes pointant vers le bas le glacier sont

principalement composés par l’accumulation de roches et de saleté qui tombent sur la glace,

surtout pendant l’été. Ces impuretés affectent la taille des grains et les caractéristiques de

cristallinité de la glace dans sa composition (par exemple, elles empêchent la formation de

grands cristaux non perturbés). Par conséquent, son identification / caractérisation correcte

est extrêmement pertinente dans l’analyse de la glace glaciaire.

Dans [54], les auteurs ont interprété les mécanismes de diffusion correspondants comme

une rétrodiffusion de surface dominante avec de faibles entropie et des angles alpha. Ceci est

conforme à ce qui est représenté à la 6.8 (voir également la figure 6.9). Néanmoins, notez

qu’une partie considérable de pixels dans cette zone correspond à la classe 4 qui n’explique

pas théoriquement le phénomène physique. L’approche ICA, d’autre part, indique que la

région susmentionnée est initialement mieux caractérisée par une signature de rétrodiffusion

de surface d’entropie élevée, ce qui est inviable dans un Eigenvector basée sur l’ICTD utilisant

la paramétrisation de Cloude et Pottier. Alors que les angles alpha typiques estimés à l’aide

des deux méthodes sont à peu près les mêmes, l’entropie dérivée avec ICA est plus élevée et

l’existence de pixels caractérisés comme appartenant à la classe 4 est négligeable. Si aucun

algorithme de classification n’a été utilisé, il serait déjà possible de caractériser les bandes

sales et d’estimer les paramètres géophysiques qui les concernent, en prenant en considération
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Argentiere − Iteration 0 (FP−GM)
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Argentiere Halpha Classification map FP−GM Iteration 4
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Argentiere − Iteration 0 (ICA−GM)
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Argentiere Halpha Classification map ICA−GM Iteration 4
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Figure E.18: Superficie du glacier du Tacul à l’étude: (a) H/α sortie de la classification

Eigenvector approche ; (b) Sortie de l’algorithme de classification statistique, 4ème itération

Eigenvector approche ; (c) H/α sortie de classification ICA basée sur ICTD ; (d) Sortie de

l’algorithme de classification statistique, 4ème itération ICA basée sur l’ICTD.

uniquement la population initiale dérivée de l’ICA basée sur l’ICTD (en utilisant une approche

par fenêtre coulissante).

Entre autres améliorations, la sortie de la classification statistique délimite clairement les

régions susmentionnées, augmentant la capacité de mieux les caractériser. En outre, il est

à noter que le comportement attendu des bandes de salissures lorsqu’elles s’approchent des

fonds, est respecté dans l’approche ICA, c’est-à-dire, ils sont réduits comme le glacier descend

jusqu’à disparâıtre, ce qui peut être observé par la plus grande quantité de pixels classés en

classe 5 (surface d’entropie moyenne) dans le fond du glacier.

Enfin, il est intéressant de noter que les bandes de neige, sont également classées soit à

l’aide de l’approche ICA ou de l’ICTD traditionnel basé sur un Eigenvector. Les mécanismes

dominants des zones entourant les bandes de salissure, où la glace est plus propre, sont

correctement identifiés comme une combinaison de mécanismes de surface et de volume (région

2 dans l’espace de caractéristique H/α), probablement due à une pénétration partielle de la

surface de la glace dans la bande L [54]. Notez, encore une fois, que la transition entre les
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Figure E.19: Superficie du glacier de Tacul à l’étude: (a) H/α espace de caractéristique initial

Eigenvector approche ; (b) H/α espace de caractéristique après la 4ème itération Eigenvector

approche; (c) H/α espace caractéristique initial ICA basée sur ICA ; (d) H/α espace de

caractéristique après la 4ème itération ICA basée ICTD.

deux régions (la saleté et la neige) est intuitivement mieux représentée par la région 3 dans

l’espace caractéristique H/α, comme l’indique l’approche ICA basée sur ICTD.

La caractérisation des paramètres de la neige basée sur l’analyse des données SAR est une

recherche active au sein de la communauté scientifique [68, 101, 28, 63]. La rétrodiffusion de

la couche de neige peut contenir des contributions provenant de quatre mécanismes différents:

la composante de la surface de la neige, la composante du volume de la neige, la composante

de la surface du sol sous-jacente et la composante d’interaction du volume du sol. La signature

polarimétrique complexe d’une telle cible est une fonction à la fois des paramètres du capteur

d’imagerie (par exemple la fréquence et l’angle d’incidence) ainsi que des caractéristiques

géophysiques de la neige (par exemple densité de neige et profondeur de neige). De nombreux

auteurs ont abordé l’inversion des paramètres de la neige et la dérivation des modèles de

neige sur la base du comportement des ensembles de données PolSAR acquis, en particulier

dans les régions montagneuses. Récemment, l’entropie dérivée de un Eigenvector basée sur

l’ICTD a été associée de façon prometteuse à la profondeur de neige sèche [28]. Les auteurs

ont signalé que les petits paquets de neige sèche (par rapport à la fin de la saison hivernale)

entrâınaient une augmentation de l’entropie. La variation du comportement physique du

mécanisme de diffusion de neige est liée à la réduction de la croûte de glace, qui représente

principalement une forte diffusion de surface, entrâınant une augmentation de la surface de

la neige et des composantes de rétrodiffusion du volume. Comme nous l’avons souligné tout

au long du présent ouvrage, principalement au chapitre 4), les cibles de type entropie élevée

peuvent être interprétées de manière incorrecte lorsque un Eigenvector basée sur l’ICTD est

utilisée. Par conséquent, l’approche ICA proposée apparâıt comme un outil prometteur dans
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l’étude de ces mécanismes de diffusion.

E.14 Conclusion

Dans le présent travail, plusieurs aspects de l ’analyse de l’ encombrement PolSAR hautement

hétérogène (inhérents aux systèmes SAR de polarimétrie haute résolution) ont été abordés.

Premièrement, on a vérifié la validité du modèle de produit (SIRV) utilisé pour caractériser

les données multivariées de PolSAR. Un nouveau cadre méthodologique pour évaluer la con-

formité du modèle de données multivarié à haute résolution PolSAR en termes de statis-

tiques asymptotiques a été dérivé. Des hypothèses statistiques testant la structure de la

matrice de quadricovariance ont été effectuées afin d’étudier si des échantillons d’une région

homogène constituent un ensemble de données symétriques elliptiques, ce dernier étant vrai

si le modèle susmentionné est valide. Des simulations avec des données synthétiques et une

analyse détaillée des données réelles ont été effectuées.

L’analyse avec les données synthétiques affirme pour l’efficacité et la cohérence du test

proposé dérivé, montrant que celui-ci est capable d’identifier correctement les régions dont les

échantillons ne présentent pas de symétrie elliptique et, par conséquent, ne correspondent pas

au modèle Spherically Invariant Vector. La performance du test a été vérifiée pour différents

niveaux de confiance et de taille des fenêtres, indiquant l’importance de hoosing correctement

ces paramètres pour des résultats meilleurs et non biaisés. Enfin, on a vérifié que selon

l’hypothèse SIRV, la sortie d’essai est conforme aux régions rejetées attendues, composées

d’échantillons présentant des indices élevés de non-stationnarité (frontières), en dehors des

valeurs aberrantes.

Ensuite, l’étude du résultat du test avec des ensembles de données variés (voir figures (3.7)

et (3.9)) a montré que le taux de pixels rejetés n’est pas négligeable dans des types de scénarios

spécifiques. La zone forestière étudiée ici présentait 30% de pixels qui ne correspondent pas

au modèle du produit. Même si l’absence de vérité au sol précise peut limiter l’assertion de ce

qui provoque l’échec du modèle de produit, L’objectif principal de la présente analyse était de

montrer que, en démontrant l’exactitude du test (au moyen d’une dérivation mathématique

détaillée et d’une analyse avec un ensemble de données synthétiques) et en l’appliquant à des

jeux de données réels avec différentes caractéristiques de détecteur, nous pourrions être en

mesure d’indiquer que la quantité de pixels qui échouent le modèle peut être non négligeable,

nécessitant une attention supplémentaire dans leur analyse.

Par conséquent, les algorithmes traditionnels de détection et de classification développés

à partir de ces derniers deviennent sub-optimaux lorsqu’ils sont appliqués dans ce type de

regions, en mettant en évidence la nécessité de mettre à jour le modèle à celui qui associe

une variable de texture individuelle à chaque canal polarimétrique [35], ou le développement

d’algorithmes indépendants du modèle, tels que l’Independent Component Analysis (ICA),

proposé dans [3].

L’ICA étant une technique de séparation de source aveugle, basé sur des instants statis-
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tiques d’ordre supérieur, vise à récupérer des sources statistiques indépendantes sans avoir

aucun fond physique du processus de mélange [48]. Par conséquent, il s’agit d’une stratégie

indépendante de modèle pour analyser le comportement des clones hétérogènes non gaussiens

(inhérents aux systèmes SAR à haute résolution) qui s’est avérée très utile et introduit une

autre manière d’interpréter physiquement une image SAR polarimétrique.

Dans le présent travail, nous nous sommes également concentrés sur l’adressage et

la quantification des deux principaux inconvénients de l’emploi de l’Analyse de Com-

posants Indépendants dans la décomposition polarimétrique cible: La quantité plus élevée

d’échantillons nécessaires et l’hypothèse de l’encombrement non gaussien. Sur la base de

données simulées nous avons réussi à mieux étudier les concepts théoriques et quantifier le

biais sur l’entropie et les paramètres de Touzi causés par un nombre insuffisant d’échantillons

utilisés dans leur estimation.

Il a été montré que lorsque les mécanismes de diffusion moyenne ou la plus dominante qui

caractérisent l’encombrement hétérogène sont orthogonaux, Les paramètres de Touzi estimés

à l’aide de l’ICA sont les mêmes que ceux estimés à l’aide de la décomposition des vecteurs pro-

pres et le taux de convergence de l’estimation est presque le même. Lorsque l’encombrement

est composé par des mécanismes non orthogonaux, contrairement à la décomposition des

Eigenvectors, ICA réussit à dériver les mécanismes de diffusion de base sans compromettre

ses performances.

Simulations avec des types complexes de dispersion, Volume, Double-Bounce et Surface,

dont la caractéristique a été extraite de données réelles, hétérogène avec des sources gaussi-

ennes et avec corrélation spatiale a montré des résultats similaires, Ce qui donne force à la

proposition d’utiliser une fenêtre coulissante de 11×11 dans l’approche ICA fondée sur ICTD.

Réduire l’écart théorique impliquant les ICA basées sur ICTD, permet une augmentation

considérable de son utilisation. Dans ce contexte, on a vérifié les nouvelles informations

potentielles fournies par l’ICA basée sur l’ICTD en termes de Cloude et Pottier H/α feature

space. Une analyse théorique des courbes limites décrite dans [19], qui génèrent des régions

non réalisables dans le plan précité, montrent qu’elles résultent de la contrainte d’orthogonalité

inhérente aux Eigenvectors de la matrice de cohérence, Qui sont associés aux dispersions les

plus dominantes présentes dans le pixel analysé. Puisque l’ICA basée sur l’ICTD n’introduit

pas de telles contraintes, des exemples de compositions d’encombrement possibles avec des

mécanismes non orthogonaux qui ne font pas partie des régions réalisables d’Eigenvector ont

été abordés.

Une analyse détaillée avec des données réelles a révélé une propriété intéressante de ICTD

basée sur ICA qui est inégalable par l’approche d’Eigenvector: la capacité de classer des cibles

correspondant à la zone 9 dans l’espace de caractéristiques susmentionné. Performances ICA

a également été vérifiée en vertu des scénarios boisées indiquant éparpillements moyennes

similaires à l’approche Eigenvector, mais plutôt des mécanismes de diffusion supplémentaires

lorsque Touzi TSVM a été pris en considération. Enfin, le présent travail a présenté un

nouveau cadre pour l’application des techniques du SRS avec les données POLinSAR pour

l’optimisation de la cohérence polarimétrique et l’estimation des phases interférométriques as-
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sociées. Les résultats obtenus montrent des améliorations en termes de cohérences optimisées

dérivées et, dans le même temps, ils restent cohérents avec la vérité au sol réelle.

La principale mise en garde liée à ICA est que, depuis qu’il a été récemment introduit

comme une approche ICTD à l’analyse d’image SAR, Il est encore difficile d’affirmer s’il

existe des scénarios spécifiques où la performance ICA est plus élevée que celle d’Eigenvector.

Alternativement, les auteurs estiment que les informations supplémentaires introduites par

l’ICA peuvent être combinées avec les informations fournies par la décomposition des vecteurs

propres afin de mieux proposer, Entre autres, algorithmes de classification et d’inversion de

paramètres géophysiques.

Enfin, en tant que sous-produit de ce travail, des expressions de forme fermée pour les

quatrième et sixième moments d’ordre du vecteur aléatoire réparti complexe normal ont été

dérivées et étendues à des distributions symétriques elliptiques complexes, avec des estima-

teurs cohérents.
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