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Abstract

Simultaneous PET-MR imaging brings new perspectives for understanding many aspects of brain
function. To achieve PET-MR’s full potential, accurate brain attenuation correction (AC) is required
for absolute PET quantification. In PET-MR scanners, radiodensity maps are not directly available
unlike in PET/CT, and the attenuation map has to be derived from the MR data (MRAC methods). In
this thesis, | have developed a multi-atlas procedure that produces a subject-specific u-map for brain
imaging (MaxProb) via multiple registrations of CT-MR atlas pairs to an MR target. The solution
proposed only requires a T1-weighted MRI of the subject, commonly acquired in clinical and research

protocols, and a CT-MR atlas database.

The MaxProb method permits generating pseudo-CT images for brain MRAC with high accuracy.
Results obtained show very good performance of the method and a bias in reconstructed PET of less
than 2%. | have also demonstrated for the first time that an inaccurate attenuation correction map,
combined with inhomogeneous spatial tracer distribution as is regularly encountered in dynamic
brain PET, can lead to a non-constant bias of the activity measure across time, and this can distort
kinetic parameter estimation. MaxProb AC is not affected by this phenomenon. Accurate
guantification is also achieved with MaxProb on physiological parameters estimated from kinetic
modelling, even when cerebellum (surrounded by bone) is used as reference region. In a simulation
study, | have shown that compared to a standard approach (UTE), MaxProb multi-atlas MRAC
enhances sensitivity to detect physiological variations in binding parameters, opening the way for

new dynamic PET studies on simultaneous PET-MR systems.






Résumeé

L'imagerie simultanée IRM-TEP ouvre de nouvelles perspectives pour I'exploration in vivo des
fonctions cérébrales. Pour une quantification du signal de tomographie par émission de positons, il
est indispensable de corriger I'atténuation tissulaire des photons. En |'absence de mesure
tomodensitométrique en IRM-TEP, les cartes de radiodensité ne sont pas disponibles. Il est
nécessaire de trouver une méthode fiable et exacte pour générer une carte d’atténuation du sujet a
partir des données disponibles TEP ou IRM. Dans cette thése, j'ai développé une technique qui
génére une carte d’atténuation propre a un sujet par une approche multi-atlas (MaxProb) passant
par de multiples recalages de paires d’atlas IRM-CT. Cette méthode utilise uniquement I'image IRM
T1 du sujet, couramment acquise dans les protocoles cliniques et de recherche, ainsi qu’une base de

données d’atlas IRM-CT.

L’évaluation de MaxProb montre de trés bonnes performances, le biais de quantification de I'image
TEP étant réduit a moins de 2% pour des images TEP reconstruites. Cette évaluation pratiquée sur
une acquisition dynamique TEP a en outre montré, pour la premiére fois, qu’une carte d’atténuation
imparfaite, combinée a une distribution spatiale du traceur inhomogéne au cours du temps (comme
c’est le cas dans la plupart des études dynamiques), peut produire un biais non-constant des
cinétiques TEP. Cela impacte les paramétres biologiques estimés par modélisation sur les cinétiques
TEP. La méthode MaxProb n’est cependant pas affectée par ce phénomeéne. MaxProb fournit une
guantification fiable des paramétres physiologiques estimés par modélisation méme lorsque le
cervelet (entouré par les os du crdne) est utilisé comme région de référence. Mon évaluation a aussi
porté sur la reproduction par simulation d’une étude réaliste d’imagerie TEP d’une décharge
dynamique d’un neurotransmetteur. Par rapport a la méthode de correction d’atténuation standard
(UTE), MaxProb améliore la sensibilité de détection des variations physiologiques, méme faibles. Ceci
ouvre la voie a de nouveaux protocoles d’imagerie dynamique et simultanée en IRM-TEP,
augmentant la puissance de détection, et réduisant les nombres de sujets nécessaires a la mise en

évidence d’'un phénomene neurophysiologique ou d’un dysfonctionnement physiopathologique.
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Introduction

In vivo tomographic imaging is a powerful tool to explore brain anatomy and study brain function of
living organisms. Various imaging modalities have been developed and refined in the last decades, in
particular single-photon emission computed tomography (SPECT), positron emission tomography
(PET), and magnetic resonance imaging (MRI). These tools are used to understand neuronal
mechanisms involved in basic functions and cognitive processes, characterize pathophysiological
functions, and elaborate clinical diagnoses. Increasing our knowledge about cerebral dysfunction

opens the possibility to find appropriate treatments.

Besides tomographic imaging, brain neuronal activity can be explored by the neurophysiological
techniques electroencephalography (EEG), which has been among the first approaches introduced
for cerebral in vivo exploration, and magnetoencephalography (MEG). These techniques record
electrical or magnetic activity of the brain with an excellent temporal resolution (few milliseconds)
but present a limited spatial resolution to localise the brain areas involved in the neural activity
recorded. PET using intra-vascular injection of water labelled with O-15 ([**O]H,0-PET) is another
technique that has initially been employed to measure cerebral blood flow (CBF). CBF indirectly
reflects brain activity with a better spatial resolution than EEG. However, the development of
functional magnetic resonance Imaging (fMRI) that provides another indirect measure of brain
activity via the dynamic blood oxygenation with a better compromise between spatial and temporal
resolution than PET, has largely replaced PET for this application. Modern applications of PET imaging
are based on labelling molecules with a positron-emitting isotope, and thus also offers the capacity
to visualise molecular activity of the brain. The isotopes C-11 (~20 min half life) and F-18 (~2h half
life) allow the labelling of a large variety of molecules probing metabolic processes, protein
deposition, and neurotransmission. PET measures the spatial and temporal distribution of a tracer
injected into the venous circulation, with a spatial resolution of few millimetres on a time scale of
few seconds. PET is also unique because it produces quantified measurement of the tracer
concentration with a sensitivity of pmol/mL. PET allows characterizing physiological mechanisms by
modelling the tracer uptake in tissues via kinetic modelling, which explains the local use of the tracer.
Its neurochemical specificity depends on the tracer used, and can be very high (e.g. probing subtypes
of neuroreceptors). [**F]FDG is an analogous of endogenous glucose, and provides an image of the
cellular glucose metabolism in the whole brain. Measures of glucose metabolism are very widely

used clinically for cancer diagnosis and therapeutic evaluation. The expansion of [*F]JFDG PET
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scanning has helped to further develop radiochemistry and pharmacology. A large variety of
molecules labelled with positron emitter has been produced, and PET imaging has become a method
of reference to study neuroreceptors and synaptic transmission. PET has also been used for the
development of new drugs and understanding their mechanism of action. For example,
["'C]raclopride, an antagonist at dopaminergic D2 receptors, and with a lower affinity at D3
receptors, produces very specific images widely used for the understanding of physiology and
pathophysiology of the dopaminergic system and its functions. Because some receptor subtype

expression can be very localized in the brain, PET needs to be associated to a structural image in

order to obtain a precise localization of the surrounding brain regions.

In the 2000s, a complementary structural imaging modality, x-ray computed tomography (CT), has
been added to PET to overcome PET’s deficit in terms of anatomical localisation (Beyer et al., 2000).
PET/CT is now part of routine diagnosis, especially in clinical oncology, and also largely used in brain
research. In those combined systems, CT and PET images are acquired consecutively. The CT image
provides the anatomical information required to localize the tracer uptake, but with a limited
contrast in soft tissues. It also fulfils the requirement of measuring tissular radiodensity needed for
PET attenuation correction. However, in many applications in the brain imaging context, PET/CT still
needs the acquisition of a structural MR image. Ten years later simultaneous PET-MR scanners have
emerged (Delso et al., 2011). These new devices combine PET and MR technologies within the same
field of view, so both imaging modalities can be acquired simultaneously. MRI ensures high spatial
resolution and its excellent soft tissue contrast is particularly interesting to distinguish brain
anatomy. In addition to the large panel of structural sequences, MR imaging is a versatile technique
that provides functional information. For example, and as mentioned above, MRI allows the
measurement of brain activity patterns and oxygen consumption by the means of fMRI. The blood
oxygen level dependent (BOLD) signal is commonly associated to neuronal activity in brain, even if
the neurovascular mechanisms involved are not completely understood for now. Functional
connectivity of brain areas is also studied with MRI via resting-state fMRI. Arterial spin labelling (ASL)
is another technique that provides a quantitative measure of cerebral blood flow. MRI can also offer
information about structural connectivity using diffusion imaging. Another capability of MR is proton
spectroscopy, employed to map metabolites in tissues according to their characteristic resonance

frequency.

The development of PET-MR devices represented an important technological challenge, since the
photo-multipliers traditionally used in the PET detection system are incompatible with the high field

strength of the MRI. This difficulty has been overcome thanks to avalanche photodiodes (APDs) or
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highly sensitive silicon photomultipliers (SiPMs). Two commercial systems that allow acquiring
simultaneous PET and MRI data are now available: the mMR Biograph (Siemens Healthcare) and the
SIGNA PET-MR (General Electrics). The new simultaneous PET-MR scanners have multiplied the
possibilities of exploration achievable within only one examination and allow, for the first time, not

only multi-modal but also simultaneous acquisition of the two modalities.

However, it must be borne in mind that constraints related to both modalities have now to be
considered in a protocol set up. This includes radioprotection measures due to the manipulation of
radioactive tracers used in PET and the constraints imposed by the high field strength of the MRI {i.e.
use of MR-compatible material). Obvious workflow advantages of hybrid PET-MR are linked to easier
organisation of the two examinations (i.e. a single appointment), patient comfort and reduction of
radiation exposure, which is particularly interesting for longitudinal studies and paediatric imaging.
The intrinsic coregistration between PET and MRI is also a gain brought by the simultaneous PET-MR
system. In addition, several applications of PET-MR for clinical diagnosis have been highlighted in the
last years (Catana et al., 2012; Werner et al., 2015). Numerous publications discuss the clinical
interest of multi-modality in areas such as neuroncology (Bisdas et al., 2013; Pirotte et al., 2006),
dementia disorders (Drzezga et al., 2014), neurovascular diseases (Werner et al., 2015), epilepsy

(Galazzo et al., 2016) and neuropsychiatric syndromes (Schultz et al., 2012).

Moreover, simultaneous PET-MR appears to be a promising tool for exploring some areas of
neuroscience that are not yet completely understood. Interesting studies have started to investigate
the relationship between changes in neuroreceptor occupancy measured with PET and changes in
brain activity detected with fMRI (Sander et al., 2013; Wey et al., 2014). Other groups have worked
on the comparison of brain metabolism (FDG-PET) and brain perfusion (ASL) (Galazzo et al., 2016), on
a new method to explore functional changes in brain metabolism (Villien et al., 2014) or on the
characterization of brain connectivity (Tomasi et al., 2013) and resting-state networks (Savio et al.,
2017). PET-MR is also seen as a tool for the cross-validation of multiple MRI and PET parameters
improving data quality of either PET or MRI aided by the other modality (Andersen et al., 2015;
Stegger et al., 2012). A significant advance in basic and clinical brain research by way of PET-MR can
also be expected from the development of multimodal tracers and probes that can be detected by
both modalities (Uppal et al., 2011). Definitively, there is a rising interest for the enormous potential

of simultaneous PET-MR, and novel studies related to these new questions are emerging.

From a methodological point of view, PET-MR also opens interesting perspectives. Some

methodological questions benefit from the information provided by the MRI data acquired
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simultaneously to PET. This is the case for PET image reconstruction (Tahaei and Reader, 2016),
motion correction (Fayad et al., 2016; Manber et al., 2016), correction of partial volume effect
(Gutierrez et al.,, 2012; Hutton et al., 2012; Le Pogam et al., 2013), image-derived input function
estimation (Chen et al., 2016; Fung and Carson, 2013; Sari et al., 2015) and new kinetic modelling

approaches (Jiao et al., 2016).

However, other methodological aspects become a new challenge with PET-MR, as it is the case
notably for attenuation correction (AC). PET data needs to be corrected for photon attenuation by
the tissues in order to obtain accurate PET quantification. In PET/CT systems, AC used to be
computed straightaway from the CT image. With PET-MR systems, the MRI has replaced the CT and a
new strategy has to be found to generate substitute attenuation map from the MR image (MR-based
AC). It has been reported (Andersen et al., 2014) that initial MR-based approaches produce spatially
biased PET images relative to CT-based AC. However, accurate AC is essential to continue brain
research with simultaneous PET-MR protocols, in particular when small variations of the PET signal

are investigated and compared across brain regions.

The work presented in this thesis introduces a novel AC method and validates it on static and

dynamic PET data. Its impact on sensitivity is then investigated in a real PET-MR study.

In the first chapter, the physical basis of MR and PET imaging are introduced. The attenuation
phenomenon is explained and the need for correcting PET data for attenuation is presented.
Methods used for attenuation correction on transmission PET systems and PET/CT scanners are
described. Finally, techniques for PET-MR AC, presented in the literature in the last decade, are

examined at the end of this section.

The second chapter presents the multi-atlas AC approach developed during my PhD (MaxProb). A
detailed evaluation that assesses pseudo-CT accuracy and precision of static PET data quantification
using standard [**F]FDG is provided. Several complementary metrics are used to validate the AC

method at global, regional and voxel levels.

In the third chapter, the impact of MR-based AC on various tracers that have different spatial

distribution in brain is explored with dynamic PET data.
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Finally, in chapter 4, the MaxProb method is applied to a bolus-infusion PET protocol using
[*'C]raclopride. The sensitivity of MaxProb to distinguish differences in tracer uptake between groups
is investigated with simulated and real PET data. Results are compared to those obtained with the

vendor-provided AC technique.

The thesis is concluded by a short chapter synthesising the main insights gained during this work, and

suggestions for future work.
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1 Chapter1l
MR-based attenuation correction for brain PET-MR
imaging: State-of-the-art

Photon attenuation is a physical phenomenon that impacts PET measurements and that tends to
introduce bias in the quantification of the PET image. To understand the need for AC, it is essential to
understand the physical basis of PET imaging, the mechanisms that allow measuring the tracer in the
organism, and the techniques used to recover the tracer distribution in biological tissues from the
photon detection. After introducing the physical basis of MR and PET imaging, this chapter focuses
on the attenuation phenomenon and on the necessity of correcting PET data for attenuation to
obtain an accurate image quantification. This chapter also aims to explain how AC approaches have
been historically implemented in conventional PET and PET/CT scanners, and what the new
difficulties are that occur in hybrid PET-MR devices. Finally, the state-of-the-art of the different
solutions proposed in the literature for MR-based brain AC is described, providing the background of

my PhD work.

1.1 Physical principles of MR imaging

The magnetic properties of proton nuclei abundant in the human body is the basis of the physical

generation of signal in structural and functional MR images.

1.1.1 MR signal

Atoms with non-zero spins can absorb and emit electromagnetic radiation. They are employed in MR
imaging. Due to its great abundance in biological tissues, hydrogen is the most frequently imaged
nucleus. The MR signal is thus based on proton densities (i.e. hydrogen nucleus). When inserted in a
strong external magnetic field By, some of the spins align with the field direction (parallel
orientation), and some align against the filed (anti-parallel orientation). The sum of spins results in a
macroscopic magnetization (My) parallel to Bo. At this equilibrium state, the spins rotate around the

By axis, drawing a cone, at a precession frequency (the Larmor frequency), which is proportional to
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the magnetic field strength. Since a slight excess of spins are in the By orientation, Mg has a positive
longitudinal component, whereas it has a null transverse component because the spins do not rotate

in phase, so the macroscopic transverse component is cancelled out (Figure 1 A).

In those conditions, a radio-frequency (RF) pulse tuned to the Larmor frequency can be applied to
excite the system and disturb the equilibrium state. An exchange of energy occurs between the RF
and the nuclei, which results in a tip down of the net magnetization vector (Figure 1 B). During the
excitation, the longitudinal magnetization decreases, and a transverse magnetization appears (except
for a 180° flip angle). The flip angle (a) depends on the intensity, waveform and duration of the RF
pulse. Relaxation is the dynamic physical process in which the system of spins returns to equilibrium.
Relaxation can be broken down into two phases: 1) the longitudinal magnetization, aligned with By,
which is recovered following an exponential curve characterized by time constant T1, and 2) the
transverse magnetization, due to spins getting out of phase, which decays according to an
exponential function with a time constant T2 (Figure 1 C). The time constants T1 and T2 are specific
to the surrounding biological tissues, typically influenced by their chemical composition, but also

depend on the strength of Bq.

Once the RF transmitter is turned off, the electromagnetic signal produced by the My relaxation is
recorded with specific MR coils (Figure 1 D). In practice, T2*, an effective value of expected T2, is
measured. T2* results principally from inhomogeneities in Bo. These inhomogeneities may be the
result of intrinsic defects in the magnet itself or from susceptibility-induced field distortions
produced by the tissue or other materials placed within the field. An MR sequence is based on a
repetition of RF pulses and the signal recorded is sampled at several time intervals. The echo time
(TE) is defined as the time between the RF pulse and the MR signal sampling, and the repetition time
(TR) is the time between two excitation pulses. Depending on the MR sequence parameters, e.g. the

chosen TE/TR values, the tissue signal will exhibit various contrasts on the MR image (Figure 2).

The two main families of MR sequences are spin-echo and gradient-echo sequences. Many
techniques based on these two families of sequences, including hybrid sequences, have been
developed to acquire different MR contrast images (not detailed in this work) (Bitar et al., 2006;

Gibby, 2005; Hoa et al., 2008).
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Figure 1: Physical basis of the MR signal. Macroscopic magnetization at equilibrium including precession (A),
Radio-frequency applied to disturb the equilibrium (B), Spin relaxation: recover of longitudinal compound
and decay of transverse compound (C), Measure of the MR signal (D).

1.1.2 Contrasts in MR imaging

Considering the wide variety of MRI sequences that provide different tissue contrasts, in this section
we focus on and briefly describe four sequences often used in the context of PET-MR AC: T1 and T2-

weighted images, the two-point Dixon-Water-Fat sequence, and the ultra-short echo time sequence.

T1 and T2-weighted sequences are two standard image contrasts widely employed in a clinical
context. T1-weighted images (Figure 2 A) are obtained by using a short TR and a short TE. With this
image contrast, due to a short T1 time constant, fat appears with a hyper signal in white, while soft
tissues are in grey. Water, air and bone all appear dark grey and black due to the hypo-signal they

produce, so they cannot be correctly distinguished in the image. For T2-weighted images (Figure 2 B),
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long TR and long TE are employed. In this weighting, water is white, fat appears grey, soft tissue dark

grey, and both air and bone appear black. Again, air and bone cannot be differentiated.

Taking advantage of the differences in resonance properties of water and lipids, the two-point Dixon-
Water-Fat sequence (Dixon) separates water and fat signals by exploiting the different resonance
frequencies of the two (Coombs et al., 1997). By adding and subtracting phase-corrected images
obtained from two excitations (Dixon in-phase and Dixon out-of-phase), a “water image” and a “fat

image” are generated. Figure 2 (C - F) shows an illustration of the Dixon sequence.

The last sequence described here is the ultra-short echo time (UTE) sequence (Tyler et al., 2007). It is
used to detect signals from tissues with very short T2* relaxation time (T2* in the range of 0.05-2
ms), such as cortical bone. UTE sequences consist in the acquisition of two consecutive images (UTE1
and UTE2) at two different echo times, typically TE1 = 60 us and TE2 = 2.24 ms. The signal from the
bone is present in the UTE1 but not in the UTE2, whereas the signals from other tissue classes (i.e.,
soft tissue and air) are similar in both cases. (We follow the established terminology and refer to the
materials in body as “tissue” classes, even though air is not actually a tissue). Hence, bone signal can
be highlighted by subtracting UTE1 and UTE2 images. An example of the UTE sequence is shown in
Figure 2 (G and H).

Figure 2: MRI contrasts: T1-weighted (A), T2-weighted (B), Dixon-Water (C), Dixon-Fat (D), Dixon in-phase (E)
and Dixon out-of-phase (F), UTE1 (G), UTE2 (H).
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1.2 Physical principles of PET imaging

In PET imaging, molecules labelled with a positron-emitting isotope are employed as tracer of
endogenous physiological processes in the human body. PET aims to recover a tracer’s temporal and
spatial distribution in the body to characterize and quantify the physiological phenomenon of
interest. The imaging modality is based on several physical properties of the matter and requires
various processing steps before a quantitative image can be obtained: radiotracer synthesis, venous

injection, data acquisition, and image reconstruction.

1.2.1 Radiotracer

The radiotracer consists of a chemical compound into which a radioactive isotope has been
incorporated. The chemical compound is usually chosen to be chemically and functionally close to an
endogenous molecule. Once incorporated, it binds the specific tissues or simply follows a metabolic
process, as the homologous endogenous molecule. The radiotracer hence allows targeting the
physiological function of interest. The radioactive isotope is the element that can be detected by the
PET scanner, following the isotope’s disintegration process, through the ensuing radio emission that
can be detected outside of the body. The tracer is normally injected into the subject by the
intravenous route and behaves as a probe that can be followed by the PET system. It is important to

use it at very low quantities in order not to trigger a physiological reaction in the organism.

Radioactive positron emitter isotopes are usually produced by nuclear reaction in a relatively small
circular particle accelerator, a 9-18 MEv cyclotron. Protons or deuterons are accelerated with the
cyclotron to form a beam. The targeted atoms are bombarded with the accelerated particles. This
reaction creates the positron-emitting isotopes. The most common isotopes used in PET imaging are:
Oxygen-15 (**0), Nitrogen-13 (**N), Carbon-11 (*'C), Fluorine-18 (**F), and have a half-life of 2, 10, 20

and 109 minutes, respectively.

The radioactive isotopes are then incorporated into the chemical compound. This step is called the
radiosynthesis. Some chemical compounds mentioned in this work are 1) Fluoro-deoxy-glucose
labelled with F18 ([*®F]FDG) which is an analogue of endogenous glucose, 2) MPPF, also labelled with
F18 (['®*FJMPPF), which is a selective antagonist of the serotoninergic 5-HT;s receptors and 3)

raclopride labelled with C11 ([*'C]raclopride) which is an antagonist at the dopaminergic D2 receptor,
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and — with lower affinity — at D3 receptors. [**F]FDG provides an image of the cellular glucose
metabolism, whereas [**F]IMPPF and [*!C]raclopride are tracers depicting specific neurotransmission
systems. An example of radiotracer structure is shown in Figure 3, and Figure 4 shows PET images

obtained with [**F]FDG, [**F]MPPF and [11C]raclopride.

CH,OH

OoH 7 OH

OH

Radioactive isotope
18F

2-deoxy-2['8F]-D-glucose

Figure 3: The [18F]FDG molecule consisting of the chemical compound incorporating the radioactive isotope.

Figure 4: Examples of PET [**F]FDG (A), ['*FIMPPF (B) and [*'C]raclopride (C).

1.2.2 Annihilation reaction

The radioisotope coupled to the tracer disintegrates to a more stable state. In this process, a proton
is transformed into a neutron, and additionally, a neutrino (v) and a positron (e+) are emitted. This
positron emitted with an initial energy (depending on the isotope) travels some distance across the

human body, loses energy and interacts with an electron of the matter via an annihilation reaction.
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The annihilation results in the emission of two secondary gamma photons of 511 keV, in opposite

directions (Figure 5).
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Figure 5: Annihilation reaction.

1.2.3 Detection of coincidences

The two photons from the annihilation reaction are detected simultaneously by the detection system
of the PET scanner. This coincident detection is an event called true coincidence. The coincidence
detection serves to determine the projection of the photon emission location. A line of response
(LOR) is the imaginary segment that joins the two detection points. Other types of coincidences can
be collected by the scanner: scatter and random coincidences. In scatter coincidences one of the two
photons undergoes Compton scattering during its transportation in the body. It loses a part of its
initial energy and is deviated from its initial direction (see section 1.3.2), so it is highly likely that the
resulting coincidence event will be assigned to the wrong LOR. Random coincidences occur when two

photons not arising from the same annihilation event are detected as a coincidence (Figure 6).

The PET tomograph is made of scintillation detectors coupled to electronic circuits that convert the
energy of the incident photons into an electrical signal. The PET tomograph records the coincidence
events into a list mode file or a sinogram (usually called PET raw data). The list mode archives each
coincidence detected, its arrival time, and the coordinates of the detectors involved in the detection.
The sinogram is a simpler file that contains the projections of the events acquired for each angle, on

a temporal frame. An example of sinogram and its corresponding PET image are shown in Figure 7.
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Figure 6: PET detector ring (dark grey) and object to be imaged (oval). Three coincidence types: true
coincidence (A), scatter coincidence (B) and random coincidence (C).

A B

Figure 7: Sinogram (A) and reconstructed brain image (B) corresponding to sinogram. Source: (Fahey, 2002).

Scatter and random coincidences add bias to the data, whereas several aspects from the
instrumentation measure chain contribute to add statistical noise to PET data. To limit scatter and
random coincidences, both temporal and energetic windows are introduced. The temporal window
(between 6 and 15 ns depending on the detection system) permits selecting photons that come from
the same annihilation, whereas the window on the energy (usually 350-650 keV) ensures that only

photons with an energy superior to a given threshold will be accepted.

1.2.4 Image reconstruction

Image reconstruction is the step that aims to recover the image of tracer spatial distribution from the
projections collected with the PET scanner. There are two main reconstruction algorithms: analytic

and iterative.
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Analytic reconstruction algorithms offer a direct mathematical solution for the formation of an
image. Filtered-back projection (FBP) (Rogers et al., 1987) is the analytical method most commonly
used, and is fast and straightforward to implement. The drawback is that FBP provides inconsistent
results at low counts and amplifies statistical noise inherent to acquired data. By contrast, iterative
reconstruction schema can integrate a more realistic model of the system and can account for the
noise structure in the observations. These improvements are based on a more complicated
mathematical solution requiring multiple steps to obtain an image. This iterative process results in a
potentially more accurate estimate than analytical reconstruction methods, at the cost of greater
computational demands. Advances in computation speed and faster algorithms have helped to
overcome the computational burden of iterative approaches allowing them to receive growing
clinical acceptance. The Ordered Subset Expectation Maximization (OSEM) algorithm (Hudson and
Larkin, 1994) based on maximum likelihood is largely implemented in clinical routine today. Figure 8
shows an example of a PET image reconstructed with the analytic FBP2D and the iterative OP-

OSEM3D algorithms.

Figure 8: Example of PET image reconstructed with the FBP2D algorithm (A) and OP-OSEM3D algorithm (B).

Now that the main steps required in the creation of a PET image have been introduced, we will

examine the interaction between photons and matter, and zoom in on the attenuation phenomenon.

1.3 Interaction of photons with matter
The two photons emitted by the annihilation can interact with particles from human tissues before

they reach the detectors. In this case, they can be absorbed or scattered. The absorption results in a

reduction of counting statistics, whereas the scattering produces a bias in the localisation of the
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events. Both phenomena induce a degradation of the image quality and have to be corrected for as
far as possible to ensure an accurate quantification of the PET signal. At PET energies (i.e. 511 keV)
photons interact with human body tissues essentially by two mechanisms: the photoelectric effect

and Compton scattering.

1.3.1 Photoelectric effect

In photoelectric absorption, the incident photon is totally absorbed by an atom of the matter. As a
consequence, due to the energy transfer, an electron is ejected from one of its bound shells. The
probability that a photon be absorbed is given by (Equation 1):

u Z4—.5
P = constant.F (Equation 1)

where p/p gives the mass attenuation coefficient, Z the atomic number and E the photon energy.
This means that tissues with high Z values, such as bone that contains a relatively large percentage of
calcium (Z=20), are more attenuating than water or soft tissues (Z=1 for hydrogen and Z=8 for

oxygen), and even more so than air (Kinahan et al., 1998).

1.3.2 Compton scattering

In Compton scattering, a photon interacts with an electron in the absorber material. Part of the
photon energy is transmitted to the electron and the latter is ejected from the atom with an angle ¢
(Figure 9). The photon loses energy, and it is deviated from its initial direction with an angle 6 as
follows (Equation 2):

E' :

S EE— Equation 2
142 (1—cosbB) (qua on )

moc?

E’ gives the energy of the scattered photon, E represents the energy of the incident photon, mqc® is
the rest mass of the electron and 8 the deviation angle of the incident photon. The probability of

Compton scattering is proportional to Z and has a slight inverse dependence (albeit nonlinear) on
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photon energy. Again, bone is more likely to contribute to Compton scattering than water, due to the

atomic number of this material.

Figure 9: Compton scattering.

1.3.3 Linear attenuation coefficients

The effect of the interactions that contribute to photon attenuation can be summarized with linear
attenuation coefficients. The total probability that a photon of a particular energy will undergo an
interaction with matter, when travelling across a unit distance through a given substance, is called
the linear attenuation coefficient (1) of the substance. The attenuation law of a photon beam across

a medium of distance d is given by the following exponential relation (Equation 3).

d
I(d) = Ioe'fo hE (x).dx (Equation 3)

I(d) represents the number of photons transmitted through a distance d, lo the number of incident
photons, pthe linear attenuation coefficient and E, the photon energy. From Equation 3 we see that
the attenuation depends on the photons’ energy and the material that they travel through. However,
as the attenuation is integrated along the LOR, it does not depend on the location of the photon
emission in this LOR. The attenuation correction factor (ACF) gives the total attenuation for the LOR

and is defined as follows (Equation 4):

ACF(LOR) = elLorh()ar (Equation 4)
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1.4 The need to correct for photon attenuation

As shown in the previous section, attenuation alters photon detection and thereby can have an
important impact on the PET signal measured. It has been estimated that around 70% of the photons
emitted at the middle of the brain interact with tissues and do not reach the detectors (Figure 10).
This proportion is even higher for whole body PET imaging. In the absence of correction, the image
obtained in PET underestimates tracer uptake in deep regions (less photons than those really
emitted are detected) and overestimates the activity at the edges (due to the relative lack of
attenuation at the edges compared to deeper structures). Those problems are illustrated in Figure
10. Attenuation correction has to be applied in order to re-establish a representative image of the
real tracer distribution in the volume studied. It may also be noted that other corrections, such as
correction for scatter, random coincidences, count-rate losses due to dead time of the detectors, and
variations in detector efficiency, are not described in this work, but are also required to accurately
guantify the PET image (Alessio and Kinahan, 2006; Buvat et al., 2014; Hutton et al., 2006; Nuyts and
Matej, 2015).

Ideal profile ——
Corrected data —— |

Ideal profile ——
Uncorrected ——

data | Corrections applied

scatters, randoms, dead time, o
attenuation

- oo =
projection clements PenjectEon ¢lrmenls

Image reconstruction

Without attenuation correction With attenuation correction

Figure 10: Errors induced in the PET image by the absence of attenuation correction (Source: courtesy from
Anthonin Reilhac).
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1.5 AC for different modalities

In the past, several approaches have been developed for attenuation correction in PET imaging. In
this paragraph the AC implementations for transmission PET, PET/CT, and new PET-MR scanners are

described.

Above all, to correct the photon attenuation by the tissues, it is necessary to have available the
distribution of the attenuation coefficients for the volume studied (u-map) or at least the attenuation
coefficient factor for all LOR explored, which corresponds to the projection of the u-map. Several
strategies, described in the following, can be used to determine the p-map, depending on the
available acquisition modality. The AC can be performed pre or post data reconstruction, but it is

generally integrated in the reconstruction process to ensure a more efficient and accurate correction.

1.5.1 Transmission PET scanners

The most evident way of measuring tissue attenuation map for a 511 keV gamma photon is to
directly measure the absorption rate of an external known positron source along all the lines of
response of the PET scanner. To this purpose the first conventional PET scanners included a
preliminary acquisition, performed before PET emission scan, called transmission scan. During
transmission, one (or more) external source(s) of 511 keV photons produced by a positron emitter,
generally ®®Ge or ®Ga, rotates around the subject, and is used to assess the transmitted signal
intensity across the field of view (FOV). Since the source strength is generally not known, a scan
acquired without the patient in the gantry is also necessary to determine the measured signal in the
absence of attenuation (blank scan). In 2D, the probability of transmission along a given LOR can be
determined as the ratio of the number of coincidences counted in the LOR with and without the
attenuating object (McKee and Hiltz, 1994). This method directly provides the attenuation
coefficients at PET photon energy. However the measuring time is generally long and suffers from
statistical noise that is subsequently propagated to the emission PET image. An example of

transmission p-map is shown in Figure 11.
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Figure 11: Examples of transmission (A) and CT-based (B) p-maps corresponding to 511 keV attenuation used
for PET AC. Different axial slices are shown.

1.5.2 PET/CT scanners

In more recent PET scanners, a tomodensitometric X ray scanner (CT) is coupled with the PET system
to replace the external rotating source. In PET/CT scanners, an x-ray CT image is acquired by a
rotating X-ray beam. This CT image, expressed in Hounsfield Units (HU), is used to derive the
attenuation map. Compared to transmission PET AC, CT AC is acquired in only few seconds and has
the advantage of having a high flux of photons, so the CT scan does not suffer from contamination by
511 keV photons if the subject has already been injected with the radiotracer. In addition, CT images
have lower statistical noise and are quickly acquired. Since the attenuation coefficients are energy-
dependent, coefficients measured at CT energies (from 30 to 140 keV) must be converted to the
appropriate values at 511 keV (uper) in order to correct PET emission data. The x-ray source in CT
emits photons with a broad energy spectrum from 30 keV to 140 keV whereas PET produces mono-
energetic 511 keV annihilation photons (Figure 12). This presents two difficulties with the conversion
of CT attenuation factors for use with PET data. The first problem is the difference between the
monochromatic 511 keV and wide-band CT energy spectra, while the second is the large difference in
photon energies between PET and CT. Photoelectric absorption is the main contributor to the
attenuation of photons at lower energies, whereas Compton scattering dominates at higher energies

(such as at 511 keV).

Several techniques have been proposed to convert the CT image to uper: segmentation of the CT
image into tissue classes, dual-energy CT scan, intensity scaling with linear relations, or hybrid
approaches (Kinahan et al., 1998). The most common of these methods consists in the bilinear

scaling proposed by Carney et al. (2006) (Equation 5). The bilinear relation between CT intensities
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(HU) and attenuation coefficients at PET energies is shown in Figure 13. An example of a CT-based p-

map, compared to transmission p-map, is shown in Figure 11.

Despite its limitations, CT-based AC is considered as the ground truth and is generally used as the

reference method to validate new AC approaches.
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Figure 12: Spectral distributions for x-ray and PET photons (not to scale). X-ray sources produce a
polychromatic spectrum. The peaks in the characteristic x-rays represent discrete energies corresponding to
the transition of orbital electrons in the target material.
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Figure 13: Bilinear scaling to convert CT intensities (HU) into attenuation coefficients (cm'l) for PET energies
(lower energies than 80 kVp not in diagram, lines not always on points but uncertainty not estimated). Some
manufacturers use different scaling. Source (Carney et al., 2006).
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1.5.3 PET-MR scanners

In current PET-MR scanners, neither the PET transmission, nor the CT image are available anymore
and the py-map needs to be estimated from the MR information. However, contrary to CT, the MR
image does not directly measure electron density, and the relation between MRI intensities and
attenuation coefficients is not obvious. Furthermore, as it has been noticed in section 1.1.2, contrast
between air and bone is generally poor in MR images so it is difficult to discriminate these tissues on
MRI despite their very different attenuation properties. In the following section, the state-of-the-art

of methods for brain PET-MR AC proposed in the literature is detailed.

1.6 State-of-the-artin PET-MR AC

State-of-the art may be operationally defined as the methods that are actually used on the two
commercially available fully integrated PET-MR systems. At the moment, there are two different AC
solutions available on the Siemens PET-MR system (Biograph mMR). Both are based on the
segmentation of MR images into several tissue classes. In the first approach, the Dixon sequence is
segmented into air, lung tissue, fat and water (Martinez-Moller et al., 2009) (Figure 14 B), whereas
the second approach segments the UTE sequence into air, soft tissue and bone (Catana et al., 2010)
(Figure 14 C). The lack of bone in the Dixon method tends to produce important quantification errors,
in particular in the brain regions around the skull (Andersen et al., 2014), and the UTE method suffers
from segmentation errors in air and bone boundaries (Aasheim et al., 2015; Dickson et al., 2014).
Recent studies (Ladefoged et al., 2016) reported regional (such as in cerebellum and parietal cortex)
underestimation of around -15% for Dixon and -8% for UTE. For these reasons, the current versions
of those solutions are not accurate enough for neurological PET-MR quantification. A new procedure
that combines the UTE sequence with a CT template to improve bone segmentation is currently
being validated by the vendor (Koesters et al., 2016; Paulus et al., 2015). AC on the General Electrics
(GE) PET-MR system (SIGNA) is based on a more recent template approach (Sekine et al., 2015)
(detailed in section 1.6.3.3) which provides regional PET quantification errors of around 3 to 4%,

however, local errors of 10% have been reported at the voxel level (Sekine et al., 2016).

To reduce the quantification problems mentioned above, AC for hybrid PET-MR systems has been an
active area of investigation in the last decade. Many research teams have worked on this field and a

large number of approaches based on different techniques have been proposed. Here we present a
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review of the literature to highlight the state-of-the-art for PET-MR AC and discuss the advantages
and disadvantages of each solution. We group the methods into three main families: PET-based
techniques; methods that rely on MR segmentation; and solutions that use a database of images.
Quantification errors are given in an indicative fashion for some of the studies mentioned, but a
relevant comparison has to be realized based on the same data and using the same metrics

(Ladefoged et al., 2016). We focus on methods dedicated to brain imaging.

1.6.1 PET-MR AC based on the PET signal

The first group of approaches aims to estimate the p-maps from transmission or emission PET data

that inherently contain information about the attenuation properties of the body.

1.6.1.1 Transmission-based methods

Mollet et al. (2014) proposed adding an external positron source in the PET FOV to measure the p-
map by transmission. This system consists in a tube wrapped around a cylinder and filled with a
["®F]FDG solution, covering all the FOV. Simultaneous transmission and emission acquisition can be
performed to decrease the acquisition time and ensure a better spatial registration between the u-
map and the emission PET image. The transmission data are extracted from the simultaneous
transmission—emission scan dataset by employing of the time-of-flight (TOF) information (which is
not available on all hybrid PET-MR scanners). Compared to CTAC, errors of 8, 10 and 17% were
obtained in PET images for soft tissue, lungs and bone tissues respectively. This approach allows
taking into account all objects in the FOV that could attenuate the PET signal, such as MR coils and
headphones. It also manages well abnormal anatomies and metallic implants. However, the
transmission source device requires particular maintenance and increases the radiation exposure of
the subject. Additionally, tissue misclassification on p-maps during the extraction of transmission

data can induce an underestimation of the attenuation coefficients, in particular in regions close to

the transmission source (Mollet et al., 2014).
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1.6.1.2 Joint estimation of emission and attenuation maps

Methods that jointly estimate the emission and attenuation maps from PET data with iterative
algorithms, such as maximum-likelihood reconstruction of attenuation and activity (MLAA) (Nuyts et
al., 1999) and MLAA with TOF information (Rezaei et al., 2012), have been initially introduced in the
context of transmission PET scans, before the emergence of PET-MR hybrid systems. These iterative
estimation techniques alternate the computation of the emission and attenuation map estimates
solely using the emission data. They present advantages similar to transmission-based approaches.
However, the additional unknown variables in this optimization problem widen the set of possible
solutions, and the algorithm may converge on local minima leading to inconsistent emission and
attenuation maps and producing crosstalk artefacts resulting from the propagation of activity

features into attenuation maps and vice versa.

Recent papers have introduced anatomical information derived from the subject MRl into the MLAA
algorithm, in order to guide the optimization process and find a better estimate of the attenuation
and emission maps. Salomon et al. (2011) segment a T1 MR image into several clusters whereas
Mehranian et al. (2015) segment a Dixon MR image into four classes (lung, fat, air and cortical bone).
In this case, bone segmentation is refined with a bone probability map derived from CT images.
Finally, Benoit et al. (2016) integrate the UTE image and a discretized version of the T1-weighted MRI
as prior information to the iterative algorithm (Figure 14 D). Errors reported for these methods,
when compared to CTAC, varied from -0.3 to 30% in large brain regions such as cerebellum and
frontal lobe. If those approaches help to reduce noise and improve the map estimation, their
performance strongly depends on the PET tracer used and in particular on its spatial distribution
(Mehranian et al., 2016; Mehranian and Zaidi, 2015). More precisely, a tracer with very localised
brain uptake will lead to a poorer performance, as no information will be available for brain areas
without tracer uptake. It is to notice that many of these methods require TOF information

(Mehranian and Zaidi, 2015; Rezaei et al., 2012; Salomon et al., 2011).

1.6.2 PET-MR AC based on MRI segmentation

1.6.2.1 MRAC with discrete attenuation coefficients

This group of methods segments the subject’s MR images into material classes (mostly air, soft tissue

and bone) and assigns to each of them a representative constant attenuation coefficient.
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Zaidi et al. (2003) segment a T1l-weighted MR image into four tissue classes (air, skull, brain, and
nasal sinuses) using a fuzzy c-means algorithm. This initial segmentation-based technique produced
biases from -2 in occipital lobe to 7% in thalamus (reference method was transmission-based AC in
this study). As T1 MR images provide insufficient contrast between air and bone (see section 1.1.2),
UTE sequences have been later introduced later by other groups (Tyler et al., 2007) and are now
often used in the context of MRAC to better discriminate bone from air-filled cavities. In Anazodo et
al. (2015) a bone mask is generated by applying morphological operations to the probabilistic bone
map extracted from the T1-weighted MRI with the SPM8 function “New Segment”. The bone mask is
finally superimposed to the Dixon-based p-map. This approach led to PET quantification errors of
around -7% in parietal and occipital lobes (Ladefoged et al., 2016). Keereman et al. (2010) work on
the R2* map, which is the logarithmic difference between UTE1 and UTE2 over the difference of the
echo times to enhance bone contrast and distinguish bone from soft tissue. The R2* map is corrected
for air with a mask of air voxels derived from the UTE1. Tissue classes are then segmented by
thresholding the R2* map. In (Catana et al., 2010), bone and air voxels are enhanced by calculating
normalized intensity sum and difference between the two echo images. In both approaches, the MR
image is lastly segmented in air, soft tissue and bone tissue classes. Another solution consists in
combining the segmentation of two-point Dixon and UTE MR images to generate four tissue classes
(bone, air, fat and soft tissue) (Berker et al., 2012). Fat and water images are obtained by
decomposing the MR signal of the two-point Dixon sequence (Coombs et al., 1997). This method
(mean error over eight brain regions 7.6%) improves the performance of AC based on Dixon (mean
error of -14.1%) or UTE only (mean error of 11.4%). In a hybrid procedure, Poynton et al. (2014)
combine probabilistic segmentation of T1-weighted and UTE sequences with a probabilistic CT atlas
producing an improved segmentation of the MR image into air, soft tissue, and bone, compared to
simple segmentation of the T1 or UTE images. After segmentation, this method assumes a constant
attenuation coefficient per tissue class. Compared to methods that only rely on the UTE sequence,
this segmentation approach guided with a CT template slightly reduced quantification error by 0.5 or
2 percentage points, depending on the brain structures, leading to a regional absolute bias of 1.8% in

cingulate and 5.5% in cerebellum.

These techniques are easy to implement and only rely on one or two MR sequences (T1, UTE and/or
Dixon). While the Dixon sequence can be acquired in 20 seconds, the UTE and the T1 require at least
4 and 6 minutes, respectively. In addition, the discrete attenuation coefficient assigned to each tissue
class, after segmentation, may not be representative of the actual local tissue density, and can
induce inaccuracies in reconstructed PET images. This is particularly true for osseous tissues that

exhibit a large range of densities, as shown by Catana et al. (2010). For example, cortical bone is a
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very dense material whereas mastoid cells consist in an osseous structure filled with small air

cavities. Moreover, the reproducibility of the UTE acquisition requires further validation.

1.6.2.2 Continuous coefficients for bone

To account for tissue density variability in bone, some research groups have proposed new solutions
that attempt to compute continuous attenuation coefficients for bone, using constant coefficients

only for the remaining tissue classes.

Ladefoged et al. (2015) segment the UTE MRI into five tissue classes (brain, cerebrospinal fluid,
tissue, air and bone) (Figure 14 E). Continuous coefficients for bone are generated by modelling the
relationship between UTE intensities (R2* map) and HU (CT images) for a group of 10 subjects with a
polynomial fit. In a similar approach (Juttukonda et al., 2015), the MRI is segmented into four tissue
classes (air, fat, soft tissue, and bone) using Dixon and UTE images. A polynomial regression is then
computed between the R2* map and CT intensities for bone tissue. The evaluation performed in this
study led to regional errors around £1% in brain structures such as parietal, temporal and occipital

lobes, cerebellum, thalamus and caudate.

While these techniques have produced encouraging results, their accuracy still strongly relies on the
precision of the initial tissue classification. New MR sequences for this purpose have been developed
recently (PETRA, (Grodzki et al., 2012) and ZTE (Wiesinger et al., 2016)) and their interest for MRAC is

under investigation (Delso et al., 2015; Hsu et al., 2015).

1.6.3 PET-MR AC derived from a database of images

The last family of methods a database of image pairs (for example MR and CT, or MR and PET
images) is used to derive a pseudo p-map or pseudo-CT, which is afterwards easily converted to
attenuation coefficients. Unlike MR segmentation-based techniques, this process can generate

continuous attenuation coefficients for the whole volume.
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1.6.3.1 MR intensity and CT HU fitting

Machine learning algorithms have been proposed to link MR intensities and CT HU. Johansson et al.
(2011) and Larsson et al. (2013) build a Gaussian mixture regression model to predict a subject-
specific pseudo-CT. In this model, features (mean and standard deviation computed on a 27-voxel
neighbourhood) are extracted from UTE, T2 MRI, and CT images. For a new subject, the regression
model is applied to its acquired MRI dataset to generate the pseudo-CT. In a similar approach,
Navalpakkam et al. (2013) handle a super-vector regression estimation with features (mean, median,
standard deviation, minimum and maximum calculated in a 27-voxel neighbourhood) extracted from
Dixon, UTE, CT images and an air mask. This model is also used to derive, for each voxel of the
subject MRI, the corresponding CT intensity. Those methods obtained regional errors of around 5%.
They offer the opportunity to associate MR intensities to CT intensities given a neighbourhood, but
rely on images with good contrast to differentiate tissues and can have excessively long processing

time for clinical routine (several hours).

1.6.3.2 Patch-based

Patch-based techniques use a database of coregistered MR and CT image pairs to predict a subject-
specific pseudo-CT. These approaches perform an intensity-based nearest neighbour search between
patches extracted from the subject T1-weighted MRI (Andreasen et al., 2016; Torrado-Carvajal et al.,
2015) or UTE MRI (Roy et al., 2014) and patches extracted from a database. Even if those methods do
not require any registration to the subject space, the important computational cost (several hours)
associated with the patch search has to be addressed. Such approaches are promising but have not

yet been evaluated exhaustively.

1.6.3.3 Templates

In this thesis, we use the term atlas to refer to an anatomical image from an individual subject and its
associated maps. In contrast, we employ the term template to denote an average of images from

several subjects registered to a common space.

Using the concept of single atlas, Schreibmann et al. (2010) propose to work with a multimodality

optical flow deformable model to create a simulated CT image that matches the patient anatomy by
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mapping the CT image of a single subject to the patient space (T1 or T2 MRI images). The resulting
registered CT is the subject-specific pseudo-CT. In this study no detailed assessment on the PET

guantification was performed.

Various template approaches have been developed. In Montandon and Zaidi (2005), an [*®F]FDG PET
and a transmission p-map template are built with data from 17 subjects. To generate the p-map of a
new subject, the PET template is registered to the subject’s PET image (initially reconstructed with an
approximate AC method). The deformation found via the PET registration is applied to the template
pu-map. This final image gives an attenuation map that is subject-specific to varying degrees. In a
similar design (Malone et al., 2011), the PET template is replaced by an MR template built from 10
subjects and in (lzquierdo-Garcia et al., 2014), the transmission p-map is replaced by a CT template
(15 subjects) (Figure 14 F). For this type of approaches, regional errors between 0.5 and 6% were
reported with CTAC as ground truth. The accuracy of these techniques strongly depends on the
quality of the single registration used to map the average template to the single target subject. To
refine the registration step, Sekine et al. (2015) propose a CT template generated from 50 subjects
and registered to a bone-enhanced liver-accelerated volume acquisition (LAVA) in-phase MRI image
via non-rigid B-spine-based elastic registration. However, the gain produced by this algorithm
compared to the previous techniques presented in this paragraph is difficult to assess as each study

used different data. The regional errors were reported by Sekine et al. (2015) were around 2-3%.

1.6.3.4 Multi-atlas approaches

Finally, true multi-atlas approaches have been introduced in the MRAC context to generate
subject-specific pseudo-CTs from a database of MR and CT pairs. In Burgos et al. (2014), the database
is registered to the target space by registering each atlas MRI to the target MRI and applying the
deformation field to the atlas CT images. Normalised mutual information as a measure of image
similarity is calculated at the voxel level between each atlas MRI and the subject MRI. The MR atlases
are ranked by decreasing similarity and CT atlases are fused with a weighted average that depends
on the similarity rank (Figure 14 G). The mean error obtained with this multi-atlas approach in PET
data, compared to PET corrected with ground truth CT, was 0.99% in grey matter. Sjolund et al.
(2015) investigate a multi-atlas technique by registering 10 MRI and CT pairs to the target space. This
step is optimized with an iterative registration of the CT atlases to the average of previously
registered atlases. The pseudo-CT is calculated by a simple average of registered CT images. In a

different proposition (Torrado-Carvajal et al., 2015), CT atlases are directly registered to the MRI of

44



the subject (CT-MR intermodality registration) using affine and non-rigid registration with mutual
information as similarity metric. Bone tissue is defined by thresholding the CT image and registering
to the subject space. Several strategies for multi-atlas fusion are tested and Dice overlap indices
(intersection over average) of 72% are obtained between the ground truth CT and the pseudo-CT
generated, for bone label. However, this last approach only provides a segmentation of the skull and

is not directly suitable for AC in its current version.

In contrast to single atlas and template designs, true multi-atlas approaches register all CT and MR
atlas pairs independently, thereby reducing the influence of errors in the individual registrations. To
the extent that such errors are uncorrelated, they tend to cancel each other out. Multi-atlas
techniques have been proposed originally for image segmentation problems (Rohlfing et al., 2004), in
particular for brain segmentation into anatomical regions where it has been shown that they
outperform single atlas approaches and methods that use averaging prior to registration (i.e.
template procedures) by 20% in terms of similarity index (Heckemann et al., 2006). Independent
registrations also give the opportunity to better address inter-subject variability by selecting, in the
final step, the most relevant information from the database based on local features. However,
anatomical abnormalities or brain lesions that are not represented in the atlas database will be

difficult to manage with multi-atlas techniques.

Note that all PET-MR AC methods proposed in the literature and described in this work have been
assessed on different datasets, using different references and metrics, making comparison of
methods difficult. In addition, until 2016 no real consensus was reached in the international
community concerning the optimal performance and the acceptable limits of quantitative errors.
Ladefoged et al. (2016) have admonished the need of using a unified quantitative framework with
identical metrics, subject cohort, and common CT-based reference to evaluate and compare the
approaches proposed in the literature. Their study provides a detailed quantitative evaluation of

eleven methods and will be further discussed in the next chapter.
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Figure 14: Selection of pu-maps obtained with different techniques. Ground truth CT-based p-map (A), Dixon-
based (Martinez-Moller et al., 2009) (B), UTE-based (Catana et al., 2010) (C), PET-based (Benoit et al., 2016)
(D), segmentation-based (Ladefoged et al., 2015) (E), template-based (lzquierdo-Garcia et al., 2014) (F),
multi-atlas-based (Burgos et al., 2014a) (G). Adapted from: (Ladefoged et al., 2016).

1.6.4 Hardware AC

Another aspect of photon attenuation in PET imaging concerns the attenuation due to hardware
components. Hardware components have been redesigned to minimal attenuation, however, those
present in the PET field-of-view during PET acquisition will also attenuate and scatter the annihilation
photons and thus reduce and degrade the PET signal measured. For the patient table and the rigid
radiofrequency coils that are generally fixed at a defined position, pre-acquired CT-based pu-maps are
stored in the system. The position of the RF coil in the PET FOV is detected when the coil is
connected to the scanner and the corresponding p-map is then easily integrated to the subject p-
map for PET AC. However, the scaling transformation to convert the CT HU to attenuation
coefficients at 511 keV, usually calibrated for human tissues (Carney et al., 2006), has to be adapted
to hardware components that are made of different materials (Paulus et al., 2013). Flexible RF coils
(mainly used in whole-body imaging) (Paulus et al., 2013), mobile rigid coils (loops for example) and
other hardware components such as headphones (Blther et al., 2016) also contribute to the photon
attenuation leading to a lose in PET values of around -11% in the areas close to these hardware
objects. Taking into account the attenuation maps of those objects is more difficult, as it requires
detecting their position in the FOV and performing accurate registration. New methods are currently

under investigation, for example detecting the position of the object via a Kinect depth sensing input

46



device (Frohwein et al., 2016). Figure 15 shows an example of head coil and headphones that can
contribute to the attenuation of PET signal. Hardware AC in PET-MR imaging is an important

challenge to keep in mind; however, this aspect is beyond the scope of my PhD work.

Figure 15: Hardware can contribute to PET attenuation: Head coil MR (A) and headphones (B).

1.7 Conclusion

In PET imaging, photons measured to generate the image suffer from attenuation by the
tissues. In the absence of correction for this phenomenon, photon attenuation can lead to wrong
guantification and even wrong patterns in the PET image. AC is thus essential to ensure accurate
guantification. Due to photoelectric effect and Compton scattering properties, photon interaction
with tissues is essentially related to electron densities. As a consequence, attenuation of PET photons
is more likely in bone than in water, and not likely in air. As CT measures electron densities and
straightforwardly provides a direct estimation of attenuation coefficients for the volume being
imaged (despite an energy conversion being required), the MR signal is based on proton densities
and there is no obvious link between MR intensities and attenuation coefficients. In addition,
traditional MR sequences (such as T1 and T2) provide very low, if any, contrast between air and
bone, making the distinction between both materials difficult. For these reasons, deriving the u-map
from the MR data is a real challenge for PET-MR imaging. To solve this issue, many research teams
have worked on MR-based AC in the last years, and several methods using different techniques have
emerged. Analysing the advantages and disadvantages of the approaches published in the literature,
it appears that a good AC method should be subject-specific to accurately match the anatomy of the

subject and manage abnormal brain anatomies. In addition, it is important to integrate all tissue
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classes; it is now clear than bone cannot be neglected. The solution has to provide continuous
coefficients to correctly represent inter-class large variations of densities, in particular for bone.
Finally, the method performance should not depend on the tracer used or radioactivity spatial
distribution, to be suitable for any brain protocol. In addition to this, an AC approach that can easily
be extended to other species, such as non-human primates that are often studied in neurosciences

and neuroimaging research, would be a considerable asset.

To address the question of brain AC for PET-MR, | have worked on multi-atlas procedures that
generate a subject-specific u-map for brain imaging. The final proposed solution only requires a T1-
weighted MRI of the subject, commonly acquired in clinical and research protocols, and a database
of atlases | have collected and pre-processed. The principles of the method, as well as a detailed

evaluation of its performance of PET quantification, are presented in the next chapter.
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2 Chapter 2
MaxProb multi-atlas method and validation on static

[**F]FDG data

As discussed in the previous chapter, AC is essential to obtain accurate and quantitative PET images.
In PET-MR scanners, attenuation maps are not directly available, and the p-map has to be derived
from the MR (or the PET) data. This is a challenge as there is no evident link between MR intensities
(based on proton densities) and attenuation coefficients (more related to electron densities). In
addition, bone and air are difficult to distinguish in the MR images due to the poor contrast, while
they are two materials with very different attenuation properties. In the CERMEP, more than 20
research projects for the simultaneous PET-MR mMR system are being planned. Most of these
methodological and applicative studies are in the field of neuroscience and will require accurate AC
for absolute quantification. In this chapter we introduce a novel multi-atlas approach developed to
synthesise a subject-specific pseudo-CT (MaxProb method). We took advantage of our experience in
multi-atlas techniques for image segmentation and applied them to the framework of brain MR-
based AC. Our aim was to develop a solution for both clinical and research contexts, with high
accuracy and robustness. A local bias inferior to 5%, compared to ground truth CT AC, was aimed for.
The method proposed consists in the individual registration of the atlases contained in the database
to the target subject space and the fusion of atlas CT intensities via label propagation and majority
voting. A complete evaluation of the MaxProb method on quantitative static ['*F]FDG PET data is
provided. [*®F]FDG is a tracer widely used in clinical and research applications to characterize glucose
metabolism. Its homogeneous uptake in the whole brain allows a global evaluation of MRAC. Most of
the results shown in this chapter have been published in (Merida et al., 2017). Additional analyses

are also provided.
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2.1 Materials

2.1.1 Atlas database

The atlas database comprised of CT and MR image pairs from 40 subjects (13 male, 27 female) [mean
age * SD, 33.9 + 13.2 y; range, 16-63 y], selected as a convenience sample from our research
database on the basis of the availability of PET/CT and MR. Data were anonymized images of subjects
who had participated in various ethically approved research studies. The anonymization procedure
was registered under the number 1134516 by the competent authority (Comité de Protection des
Personnes Sud-Est Ill). Subjects had been informed that their anonymized images could be used for
methodological development, and had been given the option to oppose this use of their data. The
subjects’ MR images were visually reviewed for conspicuous brain abnormalities (none found). Each
subject had a T1-weighted MR image and a PET/CT brain scan. Three-dimensional anatomical T1-
weighted sequences (MPRAGE) were acquired on a Siemens Sonata 1.5 Tesla MR scanner (TE=3.93
ms, TR=1970 ms, flip angle=15°). The images were reconstructed in a 256 x 256 x 176 matrix with
voxel dimensions of 1 x 1 x 1 mm?>. CT images were acquired on a Siemens Biograph mCT PET/CT
tomograph at the energy of 80 keV. The images were reconstructed in a 512 x 512 x 149 matrix with
a voxel size of 0.58 x 0.58 x 1.5 mm>. MR images were corrected for field inhomogeneities using
SPM12 (Statistical Parametric Mapping 12; Wellcome Trust Centre for Neuroimaging, UCL, London,
UK). Each subject’s field-bias corrected MR image was aligned with the CT image using the affine
registration tool reg_aladin from the NiftyReg software suite, optimizing normalized cross correlation
for the image pair (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg (Ourselin et al., 2001)).
Coregistered MR images were resampled to their initial resolution using cubic B-spline interpolation.
Voxel values in CT images quantitatively represent radiodensity in Hounsfield units (HU). We
therefore chose the CT image as the reference space in order to avoid interpolation of these values.

We use the term atlas to refer to the CT and coregistered T1 MRI image pair (Figure 16).
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Figure 16: T1 MR image (A) and CT image (B) from one individual. This coregistered pair of images is called an
atlas.

2.1.2 Test data

2.1.2.1 PET scanning

From the 40 subjects of the database, twenty-three subjects [mean age + SD, 35.0 + 14.5 y; range,
16-63 y] had a 10-minute static [®F]FDG PET scan, obtained from 40 to 50 minutes after the injection
of 125 + 26.4 MBq of [**F]FDG. PET scans were obtained on the same Siemens Biograph mCT PET/CT

tomograph as the CT scans. All data were acquired in list mode.

2.1.2.2 PET reconstruction

PET data were reconstructed with an offline version of the Siemens reconstruction software (e7tools,
Siemens Medical Solutions, Knoxville, USA). Actual CT images were converted to attenuation maps
(u-maps) by applying a bilinear transformation (Carney et al., 2006) followed by Gaussian blurring
(full width at half maximum (FWHM) = 4 mm), and resampled to the PET voxel grid. ['®F]FDG data
were rebinned into a single 10-minute frame. Images were reconstructed using two different
algorithms: 1) 3D ordinary Poisson-ordered subsets expectation maximization (OP-OSEM3D)
incorporating the system point spread function using 12 iterations of 21 subsets and 2) 2D Fourier
rebinning (FORE) followed by 2D filtered-back projection (FBP2D) using a ramp filter with a cut-off at
Nyquist frequency. Data correction (normalization, attenuation and scatter correction) occurred
either before reconstruction (FBP2D) or was fully integrated within the reconstruction process (OP-
OSEM3D). Time-of-flight was not used, as the PET-MR Siemens Biograph mMR system for which the
method is intended does not record time-of-flight information. Gaussian post-reconstruction filtering
(FWHM = 4 mm) was applied to all PET images. Reconstructions were performed with a zoom of 3

yielding a voxel size of 1.06 x 1.06 x 2.02 mm® in a matrix of 128 x 128 x 109 voxels.
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2.1.2.3 MRI segmentation

The T1 MR images were anatomically segmented into 83 regions using a maximum probability atlas
in Montreal Neurological Institute (MNI) / International Consortium for Brain Mapping stereotaxic
space, based on manual delineations of 30 MRIs of healthy young adults (Hammers_mith maximum
probability atlas n30r83, (Gousias et al., 2008; Hammers et al., 2003), available at www.brain-
development.org). An 84th region, the cerebellar vermis, was manually added in stereotaxic space
(Figure 17 A). Deformation fields from the subjects’ space to MNI space were determined from the
T1 MR image by using the Segment function of SPM12. The atlas was back-normalized to each
individual MRI space via the inverse transformation. Masks of grey matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) were generated in the subject space by combining the Hammers_mith
MRI segmentations and the probabilistic “tissue” maps obtained with SPM12 (SPM Segment) (Figure
17 B).

Figure 17: Brain labels from Hammers_mith atlas 84 ROI including cerebellar vermis (A) and mask of tissue
classes (GM, WM and CSF) (B).

2.2 Methods

2.2.1 MaxProb: multi-atlas generation of a subject-specific pseudo-CT

The general principle of the MaxProb approach consists in predicting a subject-specific from its MR
image and the atlas database. Firstly, pairwise nonrigid registration of each atlas MR image to the
target MR image was computed and used for propagating the atlas CT into the target space.
Secondly, the pseudo-CT was generated through voxelwise atlas selection and intensity fusion. The

pipeline of the MaxProb method is shown in Figure 18; a detailed step-by-step description follows.

52



Step 1: Registration
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Step 2: Voxel-based atlas selection and intensity fusion

Maijority class

§ CI.

iEMajorityClass

Registered database Pseudo-CT

Figure 18: MaxProb pipeline to generate a pseudo-CT from the subject’s MR image. The example in orange
refers to bone; the process classifies all voxels into one of the three classes.

2.2.1.1 Registration

MR images from the original database of co-registered MR-CT pairs (see section 2.1.1) were mapped
to each target subject’s MR image using affine registration, followed by non-rigid registration
(NiftyReg suite: http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) (Modat et al., 2010; Ourselin et
al., 2001), based on cubic-B-spline, with normalized mutual information as similarity measure and a
control point spacing of 5 mm. The transformations obtained from the MR non-rigid registration
were then applied to the corresponding co-registered CT. This step yielded the registered database

(Figure 18, Step 1).

2.2.1.2 Atlas selection and fusion

Registered CT atlases were segmented into three tissue classes, defined by intensity thresholding on

the CT images (Poynton et al., 2014):
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1 Air: <-500 HU
2 Soft tissue: [-500; 300] HU
3 Bone: >300 HU

For each voxel in the target subject space, majority voting was performed across the registered CT
atlases to determine a majority tissue class label (Figure 18, Step 2). If there was more than one
modal value in the distribution, one of the equiprobable tissue classes was randomly selected
(Hammers et al., 2003). Finally, the voxel intensity value of the pseudo-CT was determined by
averaging CT HU values of atlases belonging to the majority class for the corresponding voxel (Figure

18, Step 2).

In this study, synthetic pseudo-CTs were generated for each subject in a leave-one-out design. Each

subject’s MR image was used as a target, and the 39 remaining subjects as the atlas database.

2.2.2 SingleAtlas pseudo-CT

As a point of reference, | developed a simplified method (SingleAtlas), which uses only one atlas (MR
and CT pair), randomly selected from the database. The pipeline of the SingleAtlas procedure is
shown in Figure 19 .The pseudo-CT was built by registering the atlas MRI to the subject space and
then warping the CT image (similar to Schreibmann et al. (2010)). The same registration parameters
as for the multi-atlas approach were used. The transformed single CT constituted the pseudo-CT
(Figure 19). MaxProb was compared to SingleAtlas to determine whether the complexity of the

multi-atlas design yielded any accuracy advantage.

Single atlas

Figure 19: Pipeline for SingleAtlas approach.
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2.2.3 Pseudo-CT background

The background of real CT images (i.e. atlas images in the context of leave-one-out evaluation)
contained the pillow and other components that contributed to the attenuation in the PET images
(Figure 20). To account for this additional attenuation, the background in the pseudo-CT image was
replaced with the real CT image background for each subject. Note that this background issue will
not need to be managed for PET-MR imaging with the mMR scanner, since the hardware p-map is

integrated to the subject attenuation map by the manufacturer’s reconstruction software.

Figure 20: CT image (axial view) of one subject. The background contained the pillow and other components
that could contribute to attenuation (intensities for the pillow and other components were around -800 HU
in areas in purple, whereas background intensities were close to -1000, in black).

2.2.4 Pseudo-CT evaluation

Evaluation of the synthetized pseudo-CT was restricted to voxels within a head mask. Head masks
were generated from the CT images using tools from the software suites FSL (Version 4.1, (Smith et

al., 2004)) and NiftySeg (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg, (Cardoso et al., 2011)).

CTs were thresholded at -500 HU and binarized. The largest connected component was found to
eliminate the head support visible in the images. Binary images were blurred using a Gaussian kernel
with a standard deviation of 6 mm, and thresholded at 0.4. This filled up the air spaces in the nose
and pharynx. Holes were filled using the seg_maths tool from NiftySeg. The basal parts of the head
masks were finally cut at the foramen magnum in order to eliminate the neck. For this, the head
mask for the first subject of the database was manually cut. Then, this cut mask was automatically

wrapped to the other subjects by applying a deformation field previously calculated between the two
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MR images (affine and non-rigid registration, same parameters used as described in section 2.2.1.1).
An example of CT image, head mask and head mask cut at the foramen magnum for one subject is

shown in Figure 21.

Figure 21: CT image (A), head mask (B) and head mask cut at the foramen magnum (C).

Each generated pseudo-CT was compared to the subject’s real CT (ground truth CT). We computed

the Mean Absolute Error (MAE) in HU across the head mask (Equation 6).

XIpcTi—reTy
K

MAE = (Equation 6)
where pCT; refers to the value (in HU) for pseudo-CT at voxel i, rCT; refers to the value (in HU) for

ground truth CT at voxel i and K is the total number of voxels in the volume of interest.

In addition, the Jaccard overlap index (Jaccard, 1901; intersection over union) was computed per
tissue class (air, soft tissue and bone). The percentage of misclassified voxels in the pseudo-CT
compared to the ground truth CT was employed as a metric reflecting the accuracy of the generated
pseudo-CT. For this purpose, ground truth CT and pseudo-CT images were labelled by intensity
thresholding (see thresholds above). Various thresholds for tissue classification were tested in the

evaluation and similar results were found (see section 2.3.1.3.2).

SingleAtlas and MaxProb pseudo-CT generation methods were compared on these quality criteria
using paired Wilcoxon signed-rank tests. The threshold of statistical significance was set at a p-value
of 0.05, divided by the number of comparisons (two in this study) to correct for multiple comparisons

(Bonferroni, 1936).
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2.2.5 [*®F]FDG PET evaluation

The quantitative error induced by the MRAC methods on PET images was assessed by comparing PET
data reconstructed with MRAC approaches to PET data reconstructed with real CT, considered as the

ground truth. The assessment was performed on activity values for PET [**F]FDG data.

MR images and segmentation labels were registered to the corresponding PET images with SPM12

(Coregister function). ["*F]FDG images were spatially normalized to MNI space by using SPM12.

The bias introduced by the MRAC methods was calculated as the relative error (Equation 7) and the

absolute error (Equation 8):

%) = PETMrac — PETcrAC % 100
PETcrac

Relative error ( (Equation 7)

Absolute error (%) = |FoIMRAC — PETeracl o 100 (Equation 8)
PETcTAC |
where PETcrac refers to PET data corrected for attenuation with the ground truth CT, and PETygac is

the PET data corrected with the MRAC SingleAtlas or MaxProb approaches (PETsingieatias OF PETmaxprob)-

2.2.5.1 Global and regional bias

Global mean and standard deviations of [**F]FDG activity were extracted in the subject space for the
brain tissue masks (GM, WM, CSF). Regional mean and standard deviations of [®F]FDG were also
extracted in 84 regions of the Hammers_mith MRI segmentation. The relative errors between the
ground-truth PETcrac and PETyrac Were calculated for each ROI. Average bias for each cerebral region
was computed across the subjects. Statistical significance of the differences in regional evaluation

between ground truth and MRAC solutions was determined with a paired Wilcoxon signed-rank test.

2.2.5.2 Parametric image of bias

Voxel-wise parametric maps of the bias were computed for [**F]FDG PET data: for each subject, the

image of relative error between PETcrac and PETyrac Was calculated in the subject space. The images
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of relative error were then normalized to MNI space using B-spline interpolation, averaged and

finally masked with a brain mask.

2.2.5.3 SPM analysis

Voxel-based analysis to assess differences between PETcac and PETygrac for [18F]FDG PET was
performed with SPM12 using an ANOVA with the factors methods and subjects. The resulting
statistical parametric maps were thresholded at an uncorrected significance level of p<0.001 for
illustration, and surviving clusters at a significance level of p<0.05 corrected for multiple comparisons

(family wise error).

2.3 Results

The computation time required to generate a pseudo-CT with the MaxProb method was around 1.5
hours using a single core. Using a six-core machine, the multiple registrations required in the process

can be parallelized, reducing the run-time to about 15 minutes.

2.3.1 Pseudo-CT evaluation

In this section we report results obtained for the evaluation of the pseudo-CTs generated with the

SingleAtlas and MaxProb MRAC methods.

2.3.1.1 Qualitative results

Figure 22 shows the ground truth CT and pseudo-CTs generated with the SingleAtlas and MaxProb
approaches for a subject of the database with mean voxel classification error. The difference image
between the ground truth CT and each pseudo-CT (pseudo-CT - ground truth CT) is also shown.
Pseudo-CTs computed with both methods showed, in general, strong agreement with the ground

truth CT. However, the error for the skull was much larger for the SingleAtlas technique (error range
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from -3000 to 3000 HU) than for the MaxProb scheme (error between -500 and 500 HU). The small
amount of air in the mastoid cells was not well reproduced in the MaxProb pseudo-CTs but

misplaced in the SingleAtlas approach.
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Figure 22: Ground truth CT and pseudo-CT for one subject with average voxel classification error
performance (top) and the corresponding image difference (pseudo-CT — ground truth CT) (bottom). A
representative axial section is shown. A region with errors in air-filled spaces for some method is pointed out
with arrows.

2.3.1.2 Quantitative results

Volumes of the various head tissues and non-tissue components with dissimilar attenuation
properties, i.e. air, soft tissue, and bone (“tissues”, mean + standard deviation) within the head mask
for all ground truth CTs of the database were 180 + 36 cm? for air, 2309 + 267 c¢m® for soft tissue and

626 + 95 cm? for bone.
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2.3.1.2.1 MAE

Mean absolute errors of pseudo-CT intensities computed voxel-by-voxel, on the head mask per tissue
class and for the global head volume, across all subjects are shown in Table 1. Significantly smaller

errors were obtained for the MaxProb method compared to the SingleAtlas approach.

Table 1: Mean absolute error (MAE) in Hounsfield units computed on the head mask and per tissue class.
Paired Wilcoxon signed-rank test (*: p<0.05 MaxProb vs. SingleAtlas).

SingleAtlas MaxProb

mean  sd mean  sd
Global 189 £ 16 133 £ 19 *
Air 307 + 43 269 + 46 *
Soft tissue 107 £ 15 67+ 9 *
Bone 458 + 42 332 £ 61 *

2.3.1.2.2 Jaccard index

A box plot of the Jaccard indices computed per tissue class and methods is shown in Figure 23. Mean
values, standard deviations, and results from the statistical comparisons are summarized in Table 2.
The mean Jaccard index obtained with SingleAtlas was 46% for air, 67 % for bone and 85% for soft
tissue. MaxProb systematically performed better, with a Jaccard index of around 10 points above the
SingleAtlas method for air and bone. Paired Wilcoxon signed-rank tests showed that all the

differences were statistically significant (Table 2).

Table 2: Jaccard index (mean * standard deviation) per method and per tissue class. Paired Wilcoxon signed-
rank test (*: p<0.05 MaxProb vs. SingleAtlas).

SingleCT MaxProb
Tissue mean  sd mean  sd
Air 46 £ 5 57+ 5
Soft tissue 85+ 1 90 + 2
Bone 67 £ 3 76 £ 3 *

Paired Wilcoxon signed-ranked test (*: p<0.05)
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Figure 23: Boxplots of Jaccard index per tissue class and per method. Note that y axis scales differ between
plots. Centre lines correspond to medians, boxes to interquartile ranges, and whiskers to robust ranges.
Outliers are represented as dots. Note that Jaccard indices obtained with the SingleAtlas approach were
systematically and significantly lower than with the MaxProb method.

2.3.1.2.3 Percentage classification error

The percentage of voxel classification error (mean + standard deviation) across all subjects, per
method and error type, is reported in Table 3. “Bone_as_air” means that a voxel was classified as air
in the pseudo-CT when it should have been bone according to the ground truth CT; the remaining
row labels are formed in the same manner. Errors are expressed as the percentage of the voxels
within the head mask. The total classification error was approximately 12.3% for the SingleAtlas
approach and decreased to around 8.4% for the MaxProb method. Significantly better performance

was achieved with MaxProb compared to SingleAtlas.

2.3.1.3 Additional analysis performed on pseudo-CTs

In addition to the pseudo-CT evaluation presented above, several aspects of the multi-atlas

procedure were explored and reported in this section.

2.3.1.3.1 Atlas database resolution

In the atlas database pre-processing pipeline, each atlas MRI had been coregistered to its

corresponding CT image. In this coregistration step, two choices were possible: resampling the
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coregistered MR image to CT resolution (0.58 x 0.58 x 1.5 mm?), or keeping the initial MRI resolution
(1 x 1 x 1 mm?). The resolution of the atlas database can have an important impact in computation
time, as the registration time increases with the number of voxels to take into account. To a lesser
extent, the fusion step is also affected by the matrix size of the images. For this reason, | studied the
influence of the atlas database resolution on pseudo-CT accuracy. Each pseudo-CT was generated
with both databases (atlas database at MR and CT resolution). A quantitative evaluation of pseudo-
CT accuracy is shown in Table 4 (Jaccard index) and Table 5 (voxel error classification). The mean
Jaccard index obtained with the MaxProb method and database at CT resolution was 57.5% for air,
75.7% for bone and 89.7% for soft tissue, so less than 1% different from results reported for the
MaxProb method and database at MR resolution. The total classification error with MaxProb was
8.31% for the database at CT resolution and 8.34% for the database at MR resolution. In summary,
results reported with databases for the two voxel dimensions tested had very little impact on the
quality of pseudo-CT generated. The atlas database with the coregistered MR images at their initial

resolution was then used in order to reduce the computation time.

Table 3: Mean voxel classification error (in % of all voxels in the head mask) across 40 subjects, per method.
Paired Wilcoxon signed-rank test (*: p<0.05 MaxProb vs. SingleAtlas).

SingleAtlas MaxProb

Error mean  sd mean  sd
bone as soft-tissue  3.19 £ 0.79 275 £ 092 *
bone as_air 0.13 £ 0.04 0.04 £ 0.03 *
air_as_bone 0.18 £ 0.11 0.13 £ 0.12 *
air_as_soft-tissue 1.85 £ 049 1.66 = 0.57 *
soft-tissue_as bone  4.79 = 0.95 2.55 + 0.66 *
soft-tissue as_air 2.13 £ 0.56 1.20 £ 0.46 *
Total 1227 £ 1.17 834 + 1.19 *

Table 4: Mean Jaccard index (%) across 40 subjects, for the MaxProb method, with pseudo-CTs generated
with two different atlas database resolutions (MRI resolution: 1 x 1 x 1 mm?® and CT resolution: 0.58 x 0.58 x
1.5 mm3). Paired Wilcoxon signed-rank test (*: p<0.05 MR resolution vs. CT resolution).

MR resolution CT resolution
Tissue mean  sd mean  sd
Air 56.7 £+ 5.4 575 £ 54 *
Soft tissue 89.6 £ 1.5 89.7 £ 1.4
Bone 76.0 £ 3.3 75.7 £ 3.1

Wilkoxon test (*: p<0.05 MR resolution vs. CT resolution)
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Table 5: Mean voxel classification error (%) across 40 subjects, for the MaxProb method, with pseudo-CTs
generated with two different atlas database resolutions (MRI resolution: 1 x 1 x 1 mm?® and CT resolution:
0.58 x 0.58 x 1.5 mm3). Paired Wilcoxon signed-rank test (*: p<0.05 MR resolution vs. CT resolution).

MR resolution CT resolution
Error mean  sd mean  sd

bone as_soft-tissue 2.75 £ 0.92 2.74 = 091
bone as_air 0.04 + 0.03 0.04 + 0.03 *
air_as bone 0.13 £ 0.12 0.15 £ 0.14 *
air_as_soft-tissue 1.66 + 0.57 1.70 + 0.54
soft-tissue as bone 2.55 + 0.66 2.56 + 0.63
soft-tissue as_air 0.13 £ 0.12 1.12 £ 043 *
Total 834 £ 1.19 831 £ 1.12

Wilkoxon test (*: p<0.05 MR resolution vs. CT resolution)

2.3.1.3.2 Thresholds for pseudo-CT segmentation used in the evaluation

The evaluation of pseudo-CTs per tissue class (section 2.2.4) was realized with the same thresholds
than those used to fuse the atlases in the MaxProb pipeline, i.e. <-500 HU for air, [-500; 300] HU for
soft tissue and >300 HU for bone (section 2.2.1.2) (threshold 1).

In order to investigate the influence of those thresholds on pseudo-CT accuracy, and whether using
same thresholds for pseudo-CT generation and evaluation favoured MaxProb, other thresholds ([-
600; 400] (threshold 2) and [-400; 200] (threshold 3) were also studied in the evaluation. Table 6
shows Jaccard indices and voxel classification error for MaxProb and my implementation of Burgos et
al. (2014a) (called Ref) approaches, using three different thresholds for CT classification. The total
voxel classification error for MaxProb increased from 8.31% to 8.82% respectively with threshold 1
and threshold 3. A similar increase occurred for the Ref approach (8.65% of error with threshold 1
and 9.06% with threshold 2). The results demonstrate slight dependence on the thresholds used for
the evaluation, with the influence similar for MaxProb and the solution described in Burgos et al.
(2014a). Using the same thresholds for generation and evaluation of pseudo-CT did not favour

MaxProb performance.
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Table 6: Mean Jaccard index and mean voxel classification error across 40 subjects for pseudo-CT, per MRAC
method and threshold used to segment the pseudo-CT. Ref refers to (Burgos et al., 2014a). Paired Wilcoxon
signed-rank test (*: p<0.05 MaxProb vs. Ref).

Jaccard index (%) Voxel classification error (%)

Threshold (1): [-500 ; 300] HU

MaxProb Ref Ref MaxProb
Tissue mean  sd mean  sd Error mean  sd mean  sd
Air 57.5 + 5.4 57.0 £+ 4.7 Total 8.65 + 0.93 8.31 + 1.12 *
Soft tissue 89.7 + 1.4 89.0 £+ 1.1 *
Bone 75.7 + 3.1 76.1 + 3.3

Threshold (2): [-600 ; 400] HU

MaxProb Ref Ref MaxProb
Tissue mean  sd mean  sd Error mean  sd mean  sd
Air 56.8 + 6.1 539 + 48 * Total 8.30 + 0.93 8.33 +£ 1.06 NS
Soft tissue 89.7 + 1.3 89.7 + 1.1
Bone 744 + 35 749 + 3.6

Threshold (3): [-400 ; 200] HU

MaxProb Ref Ref MaxProb
Tissue mean  sd mean  sd Error mean  sd mean  sd
Air 56.8 + 4.8 59.7 + 46 * Total 9.06 £ 0.96 8.82 + 1.24 NS
Soft tissue 88.9 + 1.7 88.1 + 1.2 *
Bone 75.7 £ 2.9 77.2 £ 3.1 *

2.3.1.3.3 Map of number of atlases fused

To further investigate the behaviour of the fusion step for the MaxProb scheme, the parametric map
of atlases fused at the voxel level was computed. Figure 24 shows an example of this parametric map
for one randomly selected subject. This figure indicates that there was a broad consensus between
atlases in the middle of tissue structures, as for example in the middle of the brain, and in this case,
most (or even all) of the atlases of the database (i.e. 39 atlases) contributed the average of HU
intensities (voxels in white). In other cases, for regions close to boundaries between tissue classes
(i.e. soft tissue and bone, or air and bone), the number of atlases fused was around 18 (dark voxels)
and 28 (voxels in grey). These results were expected as the inter-subject variability is higher for skull

shape and air-filled cavities than for the overall shape of brain.
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Figure 24: Map of number of atlases fused per voxel with the MaxProb method (example for one randomly
selected subject). Note that the extracorporal grey areas correspond to the background in CT atlases (see
section 2.2.3).

2.3.1.3.4 Joint histogram

Joint histograms provide an indication of the distribution of one variable compared to another one.
This tool can be used to analyse the distribution of pseudo-CT intensities in relation to the
distribution of ground truth CT intensities, for a given subject. In this section, both MaxProb and
SingleAtlas pseudo-CTs are compared to ground truth CT for the two subjects that had best (5.5%)
and worse (11.0%) classification error rate with the MaxProb approach (Figure 25). An identification

of the error type is proposed.

Overall, intensities for MaxProb pseudo-CTs showed better agreement with ground truth CT than
SingleAtlas, in which distributions were sparser. The joint histograms for MaxProb presented holes
with missing values in the distribution. This was expected due to the process of classifying the CT
atlases into three tissue classes before fusion. An averaging of intensities is performed per tissue
class and extreme values of each class are directed towards the centre value of the class. Good
correspondence between ground truth CT and MaxProb pseudo-CT was found for voxels in the range
[-200; 200] HU. Those intensities correspond to soft tissues, which represent an important volume
within the head. Low errors were obtained in the middle of the brain due to the low inter-subject
variability in this area and thus a good agreement between atlases. Good correspondence was seen
for bone structures (dispersion less important around the identity line), despite a slight
underestimation of bone intensities in MaxProb pseudo-CTs that can be explained by the averaging

performed during the fusion process.
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In Figure 25 (for the subject with highest classification error, MaxProb method only), each type of

classification error described in section 2.3.1.3.2 (soft tissue as air, soft tissue as bone, air as soft

tissue, air as bone, bone as air and bone as soft tissue) has been reported.
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Figure 25: Joint histograms of SingleAtlas (left column) and MaxProb (right column) pseudo-CT intensities vs.
ground truth CT intensities. The subjects with the highest (top) and lowest (bottom) classification error rates
were selected for this example. The joint histogram of an ideal pseudo-CT would be distributed along the

identity line.
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2.3.2 [*®F]FDG PET evaluation

In this section, results obtained with the MRAC methods tested are presented in terms of accuracy of
the resulting reconstructed PET image. Differences between OP-OSEM3D and FBP2D were negligible.
Therefore only results generated with the iterative reconstruction algorithm are shown in their
entirety. Part of the results obtained with the filtered back-projection algorithm is provided in

section 2.3.2.6 for comparison.

2.3.2.1 Global bias

Figure 26 shows the absolute error (in %) between PET¢rac and each PETyrac for GM, WM and CSF for
static [*®F]FDG PET. Table 7 reports both relative and absolute biases per method and tissue class. For
a given tissue class, both methods had similar average results. The mean and standard deviation of
absolute bias were slightly, but not significantly, higher for SingleAtlas than for MaxProb. Results also
revealed that the performance discrimination between SingleAtlas and MaxProb is less obvious using
metrics computed from the reconstructed images than when they are directly computed from the
generated pseudo-CT (difference to the MaxProb technique around 10 points using the Jaccard index

on the pseudo-CTs vs. less than one point using the reconstructed PET images).
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Figure 26: Boxplots of absolute bias per tissue class (in %) between the ground-truth [18F]FDG PET
(reconstructed with CT-based attenuation correction) and PET reconstructed with each pseudo-CT method.
Plot features as above (Figure 23).
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Table 7: Absolute and relative bias (mean t standard deviation) per method and structure. Paired Wilcoxon
signed-rank test (*: p<0.05 MaxProb vs. SingleAtlas) for both absolute and relative bias.

Method SingleAtlas MaxProb
Bias (%) mean  sd mean  sd
Absolute 1.71 + 1.05 1.43 + 0.90
Relative 0.99 + 1.78 026 + 1.70 *

GM

Absolute 1.53 + 0.88 1.16 + 0.82

WM Relative 0.99 + 148 001 + 144 *

Absolute 1.17 + 0.87 1.04 + 0.70

CSF Relative 036 + 1.43 026 + 1.25

2.3.2.2 Regional bias

The mean regional bias (in %) measured for the 84 brain structures from ["|FIFDG images

reconstructed with the SingleAtlas and MaxProb MRAC methods is shown in Figure 27.

With [*®F]FDG data, the mean bias obtained with the MaxProb method was mostly between 0 and
1% (range from -0.6 to 2.5%), with a slight tendency for overestimation rather than underestimation.
Few structures had a bias larger than 2%: lateral part of anterior temporal lobe, middle and inferior
temporal gyrus, fusiform gyrus and anterior orbital gyrus. Errors were larger with SingleAtlas (range
from -2 to 4%) with a high variability that included over- and underestimations. There was substantial

localized bias in all regions of the parietal lobe.
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Figure 27: Mean bias for PET ["*F]FDG, per ROI and per AC method. Bias (in %) is represented in the radial
axis. The regions correspond to the 83-region version of the Hammers_mith atlases (www.brain-
development.org), with the cerebellar vermis added (see Methods). R, right; |, left; G, gyrus; TL/FL/OL/PL,
temporal/frontal/occipital/parietal lobe; OFC, orbitofrontal cortex. For a full list of abbreviations, see
Appendix (Table 10). Paired Wilcoxon signed-rank test (*: p<0.05 at the region level). Asterisks indicate that

regional bias was significantly different from ground truth, for SingleAtlas (orange) and MaxProb (blue
asterisks).

2.3.2.3 Parametric image of bias in normalized space

Figure 28 shows the mean voxel-wise difference images (averaged across the 23 subjects in the
standard space) between ground truth CT and pseudo-CT (pseudo-CT — ground truth CT) as well as

the mean voxel-wise relative error between the [®F]FDG images reconstructed with the ground truth

CT and those obtained with SingleAtlas and MaxProb.
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The largest errors in synthetic pseudo-CTs can be seen at the air and bone boundaries. We note that
due to the nature of the reconstruction process, there is no direct translation between inaccuracies
in the CT image and the resulting bias in the reconstructed image. However, in general,
underestimation of the pseudo-CT value leads to underestimation of the activity in the surrounding
brain tissues in the PET image, and overestimation of the pseudo-CT value leads to overestimation of
the activity in the surrounding brain tissues in the PET image. The SingleAtlas approach produces
errors up to £1000 HU in mean image difference. These inaccuracies were localized in bone and air-
filled regions. [*®F]FDG PET data reconstructed with the SingleAtlas pseudo-CT showed local bias
around -2 and 2% inside the brain. In some brain regions, the bias was greater than 25%, for example
in the postcentral gyrus, the superior frontal gyrus and the cerebellum. With the MaxProb method,
the error at the voxel level was near 0% throughout most of the brain. Error was predominantly
localized in the regions of the brain adjacent to the skull, whereas bias was less substantial in the
centre of the brain. Some small clusters of voxels approached 15% error, namely in the inferior
temporal lobe, anterior orbital gyrus and the cerebellum. However the cerebellar errors became
negligible when averaged over the cerebellar region of interest as a whole (see Figure 27 and Figure

28).
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Figure 28: Top row, mean of 23 difference images between ground-truth CT and pseudo-CT (SingleAtlas and
MaxProb), in standard stereotaxic space. Colour scale for CT differences: Hounsfield units. Bottom row,
mean of 23 bias images between [18F]FDG PETcrac and [18F]FDG PETwrac, in standard stereotaxic space. Colour
scale for PET bias: percentage. The colour scale for CT image difference is thresholded at -600 and 600 HU to
improve the display of local errors, although local difference in SingleAtlas images reached +1200 HU (dark
red) and -1200 HU (dark blue). The colour scale for PET image bias is thresholded at -5 and 5% to improve
the display of local errors, although local bias in SingleAtlas images reached 25% (dark red) and —17% (dark
blue). A representative sagittal section is shown.
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2.3.2.4 SPM analysis

The t score maps of the difference between PETcrac and the different PETygrac for the [18F]FDG,

thresholded at p<0.001, are shown in Figure 29. [*®

FIFDG activity image corrected with the
SingleAtlas AC showed more extensive regions of overestimation with higher t-scores (Figure 29, 1a)
than those seen with MaxProb AC (Figure 29, 2a). Regions affected were the main part of parietal
lobe, brain stem and orbitofrontal cortex. [*®F]FDG images corrected with the SingleAtlas AC were
also affected by underestimation in disparate regions such as the frontal lobe and the cerebellum
(Figure 29, 1b). Data corrected with MaxProb showed overestimation in few small clusters that were

localized in the frontal lobe and orbitofrontal regions (Figure 29, 2a). No significant regions of

underestimation were found (Figure 29, 2b).

Overestimation Underestimation

Y

=X

Figure 29: Comparison of static [18F]FDG PET activity concentrations derived from ground truth AC PET data
and data obtained with the two MRAC methods SingleAtlas (1) and MaxProb (2). The images show regions of
overestimation (a) or underestimation (b) at a significance level of p<0.001 uncorrected. Colour scale: t
statistic.

The illustrative statistical parametric maps shown in Figure 29 were then thresholded at a
significance level of p<0.05 corrected for multiple comparisons, and only clusters with an extension
exceeding the expected size (<k>=5.75) were retained. SingleAtlas yielded 43 significant clusters,
covering large areas of the brain; slightly more than half were overestimations. In the cerebellum,
the reference region for a number of PET tracers, eight significant clusters of overestimation were
found with t-scores up to 7.2, and four significant clusters of underestimation with t-scores up to 6.8.
The significant clusters represented more than 328 cm® (20%) of the analysed brain volume (1655

cm’). In contrast, only two significant clusters of overestimation were found with MaxProb MRAC (in
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the left anterior orbital gyrus, z 5.3, 223 mm?, and right superior frontal gyrus, z 5.2, 96 mm?), and no

clusters of underestimation. This represented 0.02% of the analysed brain volume.

2.3.2.5 Outliers

We found two significant outlier subjects in the [*®F]FDG PET analysis, who had a regional bias
exceeding 10% for some labels when MaxProb MRAC was used (five outliers with the SingleAtlas
approach). Figure 30 shows PET data corrected with the MaxProb pseudo-CT. For the first subject, an
abnormally strong signal in the PET image was observed around the anterior frontal cortex
bilaterally, with a gradient in PET bias from the bone towards the centre of the brain. The other
subject had a substantial overestimation in the bias map localized around the lateral part of the left

temporal lobe, but no signal increase was visible on the PET image.

Outlier #1 Outlier #2

Figure 30: The two outlier subjects (bias exceeding 10% for some regions). All images are in stereotaxic
space. First row: Ground-truth CT (left) and the corresponding ['®F]FDG PET image (right). Second row:
MaxProb pseudo-CT (left) and the corresponding [**F]FDG PET image (right). Third row: T1 MRI (left) and PET
bias image reconstructed with the MaxProb pseudo-CT compared to the ground truth PET image (right). A
representative axial section is shown.
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2.3.2.6 PET reconstruction with FBP2D algorithm

Results for PET bias, for ['®F]FDG PET data reconstructed with the analytic FBP2D algorithm, are
reported in Table 8 (global error) and Figure 31 (regional error). Differences between OP-OSEM3D
and FBP2D reconstructions for global errors (Table 7 and Table 8) were inferior to 0.6% for both
MRAC methods, SingleAtlas and MaxProb. The regional errors were under 2% for MaxProb except for
one region (FL_OFC_AOG), similar to results obtained for OP-OSEM3D reconstruction. These few
differences observed between reconstruction algorithms were expected, and can be explained by the
convergence properties and positivity constraints. In conclusion, no meaningful performance
differences of MRAC approaches due to the reconstruction algorithms were noticed. This aspect will

be further developed in the next chapter, in the context of dynamic PET data.

Table 8: Absolute and relative bias (mean t standard deviation) per method and structure for PET data
reconstructed with the filtered back-projection algorithm. Paired Wilcoxon signed-rank test (*: p<0.05
MaxProb vs. SingleAtlas) for both absolute and relative bias. The results obtained with filtered back-
projection were very similar to those obtained with the iterative reconstruction algorithm (Table 7).

Method SingleAtlas MaxProb
Bias (%) mean  sd mean  sd
GM Absolute 1.69 + 1.12 1.48 + 0.96
Relative 091 + 1.84 032 + 1.76 *
WM Absolute 1.49 + 091 1.21 + 0.85
Relative 0.86 + 1.54 0.05 + 1.50 *
CSF Absolute 1.11 £ 0.92 1.10 + 0.82
Relative 0.00 + 1.46 0.30 + 1.36

Paired Wilcoxon signed-ranked test (*: p<0.05)
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Figure 31: Mean bias for PET [18F]FDG, per ROl and per AC method for PET data reconstructed with the
filtered back-projection algorithm. Bias (in %) is represented in the radial axis. The regions correspond to the
83-region version of the Hammers_mith atlases (www.brain-development.org), with the cerebellar vermis
added (see Methods). R, right; |, left; G, gyrus; TL/FL/OL/PL, temporal/frontal/occipital/parietal lobe; OFC,
orbitofrontal cortex. For a full list of abbreviations, see Appendix (Table 10). The results obtained with

filtered back-projection were very similar to those obtained with the iterative reconstruction algorithm
(Figure 27).
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2.3.2.7 Multi-method, multi-centric study

During my PhD | have participated in a multi-method study (Ladefoged et al., 2016) in which eleven
MR-based AC solutions for brain imaging, developed by different research teams in the international
community, have been assessed and compared. Part of the evaluation was performed on static
["®F]FDG scans of 201 subjects, including global, regional and voxel-wise quantitative criteria on p-
maps and reconstructed PET images. My role in this project was to set up a version of the MaxProb
software that could be run in Copenhagen. | have also participated to an international meeting that
gathered all participants to the multi-centric study to discuss the aims of the study as well as the
evaluation strategy and the metrics used in the method comparison. Finally, | have provided the
description of the MaxProb technique and commented the draft of the paper. Here, some of these

results are reported in order to illustrate the performance of MaxProb in a different evaluation

context.

The Jaccard overlap index was calculated to assess the pseudo-CT quality. For bone tissue, MaxProb
obtained a Jaccard score of 81% in the multi-centre study, and a score of 76% was achieved in our
evaluation (Table 2). Several metrics were used to quantify the bias introduced in PETygrac, in
comparison to PETcrac. Figure 32 shows the average regional bias for ten anatomical regions defined
on the MNI template, for three PET tracers ([*®F]FDG, [*®F]PiB and [18F]Florbetapir). For [*®F]FDG,
MaxProb produced low regional biases, ranging from -2 to 0%. For a more detailed assessment, the
parametric images of relative difference are shown in Figure 33. As in our own study, MaxProb

produced local errors between -1 and 1% (Figure 28).
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Figure 32: Global and regional ROI analysis across all patients obtained in the multi-centric study: [18F]FDG
(n=192, excluding patients with fat/water tissue inversion) (A), [(**FIPiB (n=47, excluding patients with
fat/water tissue inversion) (B) and [18F]florbetapir (n=85, excluding patients with fat/water tissue inversion)
(C). The gray lines indicate 1 SD. Adapted from (Ladefoged et al., 2016).
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Figure 33: Mean of bias images across all [lsF]FDG patients (n=201, including patients with fat/water tissue
inversion) for each method compared in the multi-centric study: Dixon (A), UTE (B), Segbone (Koesters et al.,
2016) (C), Ontario (Anazodo et al., 2015) (D), Boston (lzquierdo-Garcia et al., 2014) (E), UCL (Burgos et al.,
2014a) (F), MaxProb (G), MLAA (Benoit et al., 2016) (H), Munich (Cabello et al., 2015) (I), CAR-RiDR
(Juttukonda et al., 2015) (J), RESOLUTE (Ladefoged et al., 2015) (K). Source: (Ladefoged et al., 2016).
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2.4 Discussion

General comments

Pseudo-CTs could be generated with acceptable accuracy with MaxProb. SingleAtlas produced larger
errors as well as many more outliers than the multi-atlas approach, a finding that we expected

because a single image cannot reflect inter-subject variability (Heckemann et al., 2006).

We showed that both regional and local evaluation of the errors is relevant, since large bias localized
in regions near bone may become averaged and not detected in a global and even a regional
evaluation. This point is important for studies in neuroscience that focus on small brain structures,
but also for clinical studies, e.g. in the presurgical evaluation for epilepsy, where small cortical
abnormalities are sought. The results obtained with the different metrics confirmed strong
coherence. Moreover, the detailed evaluation of both pseudo-CT and quantitative PET images
allowed discriminating errors induced by the sensitive head regions in terms of attenuation (air and
bone) and offered the possibility to locally Identify problems. This allows suggesting specific solutions

to further improve the multi-atlas approach (discussed below).

Prior work has shown superiority of multi-atlas techniques over UTE for AC (Burgos et al., 2014a). At
the beginning of my PhD, no UTE data was available, so MaxProb has not been directly compared to
the vendor-provided MRAC solution in this first evaluation. Chapter 4 provides a direct comparison of

UTE-based AC and our multi-atlas proposition, in an applicative context.

Atlas database

Our multi-atlas method has been implemented and tested with two different atlas databases. The
first database, described in this chapter, contained 40 subjects and initial CT resolution of 0.58 x 0.58
x 1.5 mm? (Merida et al., 2015). The second, with 38 atlases and a coarser initial CT resolution (1.37 x
1.37 x 5 mm?) was used in our preliminary work (Merida et al., 2015) and in the multi-centric study
(Ladefoged et al., 2016). The results with both databases were very similar (see Appendix). This is

important, as it suggests that the multi-atlas strategy performs similarly across databases. Currently,
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a third database with larger FOV that will allow generating the attenuation coefficients for the neck,

is under investigation.

Remaining errors on pseudo-CT images

In the MRAC methods, attenuation of brain structures that have boundaries with air cavities or with
bone is difficult to estimate because of the low contrast between air and bone in the MR images.
Figure 28 shows that CT values in such regions were particularly biased for SingleAtlas, but were well
managed in the multi-atlas approach despite a slight local overestimation of around 300 HU. The
effect of error on bone was generalized in the SingleAtlas AC method, and these inaccuracies
produced both overestimations and underestimations on PET images all around the cortex. The small
residual bias observed on the parametric image for MaxProb (Figure 28) may be partially affected by
a lack of information around the neck in the atlas database. The new database with extended field of

view can be used to address this problem.

Outliers in PET quantification

We found an anatomical explanation for the unusually large local errors in PET data seen in two
subjects: outlier #1 had abnormally large frontal sinuses and outlier #2 had undergone a lobectomy
via a craniotomy in the lateral skull overlying the temporal lobe. These characteristics can be
observed on the real CT images. The multi-atlas methods did not handle these anatomical
abnormalities well. However, bias remained localized to the immediate vicinity of the pseudo-CT
abnormalities (Figure 30). The cluster showing high quantification error for outlier subject #2 (Figure
30) was located in the CSF, explaining why no difference was visually discernible on the PET images
(Figure 30). The outlier detection was based on the regional quantification, which did not handle the
postoperative change correctly, while there was no relevant error propagation into the brain image

itself.

The signal increase resulting from anatomical variants or postoperative changes may conceivably
sometimes be clinically pertinent and would present a risk for misdiagnosis if the AC error was not
noticed. In our case, the errors in the pseudo-CTs can be predicted from visual review of the MR

image (large frontal sinuses can be seen on T1-weighted MRI) for outlier #1 and from the medical
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history (craniotomy) for outlier #2. In PET-MR imaging, similarly to PET/CT but possibly even more so,
referring clinicians should take care to provide an accurate request that lists all pertinent history.
Similarly to PET/CT, reporting clinicians have to be aware of possible pitfalls, and should be able to
simultaneously visualize the PET image, the MR image, and the attenuation map, and perhaps
explicitly check for unusually large sinuses or fluid-filled sinuses (for which we did not have examples
in our cohort). It is to be expected that reporting clinicians will become accustomed to PET-MR
artefacts, just as they already are accustomed to interpreting e.g. FLAIR artefacts, or CT artefacts due
to bone or metal. For now, areas close to craniotomies may be difficult to interpret, and clinicians
should remain aware of the possibility of large sinuses causing local artifacts. In some special cases,
e.g. in the case of brain tumours with craniotomies, it may be preferable to plan for an additional

low-dose CT scan.

MaxProb: from limitations to methodological improvement

The MaxProb approach was based on a relatively simple scheme. The subject’s MRI was only used to
perform the registration of the atlas database to the subject space. In general, MaxProb provided
good (or acceptable) performance and accurate air/bone segmentation. Nonetheless, looking at the
detailed evaluation, two main sources of errors could still be identified. First, brain regions close to
skull (the cortex) presented errors slightly higher than the other areas of the brain (Figure 28, Figure
33). These errors were probably due to inaccuracies in skull attenuation coefficients assigned by the
multi-atlas technique. Second, as shown in section 2.3.2.5, registration errors due to abnormal
anatomies not represented in the atlas database or because of artefacts in the MR image could
impact the accuracy of the generated pseudo-CT. These errors were then propagated to the PET

image.

Taking into account the two main above-mentioned limitations, the MaxProb method might be
further improved by combining the following ideas: MaxProb in its actual version would allow
generating the pseudo-CT and compute attenuation coefficients in the whole volume. In addition,
bone tissue could be segmented by thresholding the pseudo-CT image. In order to better capture
subject particularities in skull densities and improve attenuation coefficients, a fit of MR and CT
intensities can be used in bone tissue as proposed by Ladefoged et al. (2015) or Juttukonda et al.
(2015). For this step a UTE image of the subject, in addition to the T1-weighted MRI, should be

acquired. A second refinement of the multi-atlas scheme could be realized by integrating the MR
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information into the atlas selection and fusion step. Different MR sequences could be considered,
additionally to the T1, such as the UTE or new ZTE sequences in which bone can be better
distinguished than in the T1. MR information could be integrated to the algorithm via simple
classification probability maps (e.g. SPM Segment) or by computing more sophisticated confidence
maps between MR and CT images. Finally, several techniques to combine the information could be
taken into account: simple hierarchy routine; combining probabilities; or machine learning
algorithms. Another criterion also interesting to explore would consist in a selection of the atlases

based on metadata (age, sex...) prior to the multi-atlas pipeline.
Other ideas for further investigation

The multi-atlas method could also in principle be refined by updating the coordinate system, rather
than reslicing the MR in CT space. Another area to investigate is the effect of the degree of
smoothing of the pseudo-CT (the pseudo-CT is smoother than the ground truth CT due to its
construction process) in the reconstruction process and the impact on quantitative PET analysis. A
Gaussian smoothing is usually applied to CT (or pseudo-CT) in the reconstruction pipeline for PET/CT
data. As the pseudo-CT is built by averaging several individual atlas CT images, it contains a certain
amount of smoothing. So it would be interesting to determine the additional smoothing that we
need to apply to fairly compare it to the ground truth CT. This question will be raised again when

using the UTE-based attenuation map provided by the vendor.

2.5 Conclusion and perspectives

The MaxProb method permitted generating pseudo-CT images for brain MRAC with high accuracy.
Performance for PET quantification was achieved within likely acceptable limits established by the
community (x 5% of CT-based reference). In the multi-centric study (Ladefoged et al.,, 2016),
MaxProb also provided very good results and was among the top three techniques proposed in the

literature.

MaxProb was implemented into a Matlab program and shared with two other centres: the
Rigshospitalet (Copenhagen) for the multi-centric study and King’s College London where the method

is currently being validated with their own data and will be used soon in clinical research protocols.
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The software is ready to be distributed to other centres and an atlas database will be available for

academic collaborations.

Further work will be focused on the extension of the multi-atlas approach developed for adult
human brain to paediatric imaging. As children have slightly different head shapes and especially
different bone densities compared with adults, we expect that a dedicated database of children
atlases will be more appropriate (or several databases per age range to take into account anatomical
variability in child development). Such a database is already available at the CERMEP. We are also
planning to adapt MaxProb to non-human primate (NHP) imaging. Several PET-MR protocols on NHP
have started at the CERMEP. The vendor MRAC solution is not optimized for NHP and the p-map
computed by the scanner is generally aberrant. A database of CT and MR image pairs is being
acquired for several individuals, and will be used to transpose the MaxProb multi-atlas approach to
NHP. We expect that the registration will possibly be the more difficult step that will require adapting

the registration parameters used.

In the literature, all procedures proposed for attenuation map generation have only been assessed in
the context of static PET acquisition, generally using [**FIFDG PET data. In this chapter, we have
focused the evaluation of our new multi-atlas solution in a similar context, using a large range of
guantitative criteria. Ladefoged et al. (2016) have recently shown that different AC methods can
present varying performance depending on the PET tracer used (['*F]FDG, [''C]PiB and
[*®FIflorbetapir). Those results suggest that the AC performance may depend on the tracer spatial
distribution (variation of contrast) in brain, and deserve further validation. In the next chapter, this

phenomenon is investigated via dynamic PET acquisitions, which are characterized by tracer spatial

distribution changes over time.
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3 Chapter 3
Impact of MR-based AC on dynamic PET data

Two major observations emerge from previous chapter. First, results showing the dependence of the
accuracy of MRAC methods according to the PET tracer used suggest that AC performance may
depend on the tracer spatial distribution (variation of contrast) in the brain. As we seek the best AC
performance whatever the tracer used, this observation is an obvious limitation and raises the
guestion of the behaviour of MRAC in the context of dynamic PET data. During dynamic acquisition,
the spatial distribution of any tracer changes over time. It depends on its transport by blood
especially immediately after the injection, and after few minutes increasingly on its specific uptake to
targeted molecules or neuronal receptors. Secondly, MRAC methods tend to introduce
inhomogeneous local bias: regions close to the skull are often more affected than subcortical areas,
and this is particularly true for the cerebellum (Andersen et al., 2014). These inhomogeneities can
impact PET quantification studies, for example when a reference region is used in the quantification
process. In clinical applications of PET, SUV (standardized uptake value) is often normalized by the
activity in the cerebellum (SUVr). In research studies, simplified kinetic modelling also requires a
reference region to avoid measuring arterial input function for estimating transport or binding

parameters of the tracer. Again, the cerebellum is often chosen as reference region.

Research brain PET studies typically use dynamic acquisitions to characterize physiological
parameters of neuronal mechanisms, glucose and oxygen metabolism, or cerebral blood flow. In the
last years, interest for dynamic PET imaging on simultaneous PET-MR systems requiring accurate
guantification in both clinical and research contexts has increased, and no performance data on MR-

based AC for dynamic PET imaging have been published so far.

In this chapter we propose an novel evaluation of dynamic PET data quantification using MR-based
AC methods. We characterize and quantify the dependence of PET quantification on tracer spatial
distribution, for a tracer with spatially heterogenous specific binding. Dynamic assessment is
performed with 2’-methoxyphenyl-(N-2’-pyridinyl)-p-[**F]fluoro-benzamidoethylpiperazine
([**F]MPPF), a selective antagonist at 5-HT;5 receptors mainly found in limbic structures. Evaluation
presented in this chapter includes accuracy on radioactivity measured and binding parameters

estimated from kinetic modelling using a reference region.

83



3.1 Materials

3.1.1 Atlas database

The same database that the one described in Chapter 2 was used for the study presented in this

chapter. The database was composed of CT and MR image pairs from 40 subjects.

3.1.2 Test data

3.1.2.1 PET scanning

Among the 40 subjects of the database, seven subjects [mean age + SD, 33.4 + 9.8 y; range, 19-44 y]
had a dynamic PET scan during 60 min starting with the injection of 164 + 42.6 MBq of [**F]MPPF.
PET and reference CT scans were obtained on a Siemens Biograph mCT PET/CT. PET data were

acquired in list mode.

3.1.2.2 PET reconstruction

[ISF]MPPF data were rebinned into 35 time frames (variable length frames, 15 x 20's, 15 x 120 s, 5 x

300 s) for multi-frame dynamic reconstruction. Both FBP2D and OP-OSEM3D algorithms were used
for individual frame reconstruction, and identical reconstruction parameters as for static [®FIFDG
data were used (see Chapter 2). The final reconstructed volumes had a voxel size of 1.06 x 1.06 x

2.02 mm?in a matrix of 128 x 128 x 109 x 36 voxels.

3.1.2.3 Modelling of [*® F]MPPF kinetics

The brain distribution of a radiotracer that crosses the blood-brain barrier (BBB) can be described by
a compartmental model. This model is used to explain the dynamic PET kinetic in a tissue volume.
The simplest model is a one-tissue compartment model (1TC). For a tracer that specifically binds a
receptor, a more realistic model is the two-tissue compartment model (2TC). In the first tissue

compartment of a 2TC model, the tracer is free or non-specifically bound. This compartment is called
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non-displaceable compartment, as the tracer concentration is not sensitive to a displacement by a
pharmacological agent specific to the same receptor as the tracer. The second tissue compartment is
the specific compartment, where the tracer is specifically bound to its receptor. The 2TC model is
characterized by parameters describing transport across the BBB (K; and k;), and local uptake (kon, kof
and B,.x). In the absence of an arterial input function, parameters of a 2TC compartment model can
not been estimated. However, some macro parameters combining the transport and uptake
parameters can be derived, considering the 2TC model in target region (region with available
receptor for the tracer), and a reference region. In in vitro binding studies of a compound to a
receptor, the Binding potential (BP) is defined by the ratio of the receptor density (concentration) to
compound affinity for the receptor. In in vivo PET studies, several BP variants can be defined (Innis et
al., 2007). One of them is the non-displaceable binding potential (BPyp) defined as the ratio of

specifically bound tracer concentration to non-displaceable tracer concentration (BPyp= Cs/Cnp).

This BPyp can be computed with the simplified reference tissue model (SRTM) in a two-
compartmental framework ((Lammertsma and Hume, 1996); Figure 34). Under several assumptions,
the three parameters of the SRTM (R4, k, and BPyp) can be solved using different methods. In our
study, the [*®*F]MPPF data were modelled with SRTM, and the basis function approach developed by
Gunn et al. (1997) was used. The reference used in the model was the mean time activity curve of
the cerebellar grey matter (excluding the cerebellar vermis), i.e. parts of the cerebellum that are
devoid of specific 5-HT15 receptor binding (Parsey et al., 2005). Parametric BPyp images of 5-HT;a
receptor distribution were generated. Figure 35 shows the mean parametric BPyp map of 5-HT;,

receptor distribution across the seven subjects.

Reference region

Figure 34: Compartmental model.
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The relationship between C; and Cg is given by (Equation 9):

dCg(t)
dat

ko
1+BPpnp

dcr(t)
at

Ry + kyCr(t) —

Cr(t) (Equation 9)

where:

e Cp: Metabolite-corrected plasma concentration (kBg.ml™)

e Cup: Concentration of free (i.e. not specifically bound) ligand (kBg.mlI™)

e Cs: Concentration of specifically bound ligand (kBg.ml™)

* Cy: Concentration in ROl tissue (kBq.mI'l)

* Cg: Concentration in reference tissue (kBq.mI'l)

*  K;: Rate constant for transfer from plasma to free compartment (ml.ml.min™)
* ko Rate constant for transfer from free to plasma compartment (min™)

* ks: Rate constant for transfer from free to bound compartment (min )

* k4: Rate constant for transfer from bound to free compartment (min™)

e Ky': Rate constant for transfer from plasma to reference compartment (ml.ml*.min)
* k,': Rate constant for transfer from reference to plasma compartment (min™)
* Ri=Ky/Ky

*  BPnp=ka/ks

Figure 35: Mean BP,p image across seven subjects, in standard space after spatial normalization. Note the
limbic distribution with high BPyp in the mesial temporal lobes, followed by other temporal regions, insula
and cingulate gyri.
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3.2 Methods

3.2.1 Pseudo-CT generation

SingleAtlas pseudo-CT and MaxProb pseudo-CT were generated for the seven test subjects following
the methodology detailed in Chapter 2 (sections 2.2.1 and 2.2.2). The multi-atlas approach was

computed in a leave-one-out scheme of the seven subjects within the atlas database of 40 subjects.

Dynamic [**FJMPPF data were reconstructed with three different attenuation maps: SingleAtlas
(PETsingleatias), MaxProb (PETwaxpron) @and ground truth CT (PETaccr). The MRAC solutions were compared
to ground truth CT in terms of quantitative PET, using several metrics computed on the dynamic PET

data.

3.2.2 Evaluation criteria

The bias introduced by the MRAC methods on dynamic ['*F]MPPF data was assessed on radioactivity
images and parametric images of the physiological parameter extracted from kinetic modelling
(BPyp). | also investigated the effect of activity distribution on the accuracy of PET activity

guantification with the MRAC methods.

3.2.2.1 Regional analysis

Regional mean and standard deviations of [18F]MPPF and BPyp images were extracted in a selection
of regions of the Hammers_mith MRI segmentation (see Chapter 2, section 2.1.2.3) that exhibit
specific ["*FIMPPF binding, plus the cerebellum. The resulting 44 ROl were masked by the GM. The
relative errors between PETcrac and PETyrac Were calculated for each ROI. Average bias for each
cerebral region was computed across the subjects. Statistical significance of the differences in
regional evaluation between ground truth and MRAC methods was studied with a paired Wilcoxon

signed-rank test.
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3.2.2.2 Joint histograms

Joint histograms of the BPyp images generated from dynamic PETsingieatias aNd PETaxprob Were plotted

versus the BPyp image from dynamic PET¢rac.

3.2.2.3 Kinetics

[*®*F]MPPF time activity curves (TAC) were extracted for several ROIs. The first frame was removed

because of low count rates close to zero. The bias on TACs was computed by calculating the relative

error frame by frame. The frame biases were then averaged across subjects.

3.3 Results

This section describes the impact of the AC approach on the quantification of dynamic [**F]MPPF PET
data and the subsequent kinetic modelling. As in the previous evaluation on static [**F]FDG (chapter
2), OP-OSEM3D and FBP2D reconstruction algorithms showed similar tendencies in the dynamic
evaluation, therefore only results obtained with the iterative reconstruction algorithm are shown in
their entirety. Part of the results obtained with the filtered back-projection algorithm is provided in

section 3.3.5 for comparison.

3.3.1 Regional evaluation

Results of regional evaluation using [**FIMPPF are shown in Figure 36 for a selection of 44 regions
that exhibit specific [ F)MPPF binding (Costes et al., 2002). To investigate the effects of the
inaccuracies produced by the tested MRAC methods on the kinetic modelling step, we present the
mean bias computed from the late static ['*F]MPPF images (generated by time-weighted averaging
over the final ten minutes of the acquisition; shown as dotted lines), as well as the mean bias for the

BPnp images (as solid lines).
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Figure 36: Mean bias for the late static [18F]MPPF images (dotted lines) and for BPy, images (solid lines), per
selected relevant ROI and per AC method. R, right; |, left; G, gyrus; TL/FL/PL, temporal/frontal/parietal lobe;
OFC, orbitofrontal cortex. For a full list of abbreviations, see Appendix (Table 10). Paired Wilcoxon signed-

rank test (*: p<0.05 at the region level), shown for BPyp images only.

The bias measured from late static [**F]MPPF images was higher than for [®F]FDG data (Chapter 2,
section 2.3.2.2), with the mean error ranging from -1.2 to 5.0% for MaxProb. As for the ["®F]FDG
evaluation, a general overestimation for most of the assessed regions was also noted. SingleAtlas

showed bidirectional, but mainly negative, bias (from -8.5 to 1.7%) for the tested brain structures

The variability of the bias was again higher than for the MaxProb method.
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Bias on the BPyp ranged from —2.5 to 5.0% for MaxProb. For SingleAtlas, the maximum negative bias
reached —9.3% and the positive bias reached 3.3%. Two regions were particularly strongly affected by
errors: lateral orbital gyrus (—9.3%) and lateral part of anterior temporal lobe (—=7.3%). In the BPyp
images, error patterns did not match well with errors in activity values measured in the late static

["*FIMPPF images.

Figure 37 shows an example of [**F]MPPF PET image at early and at late-phase of the dynamic
acquisition for a randomly selected subject. An example of a late-phase [®*F]FDG PET image (from a
different subject) is shown for comparison. Note the very different activity distribution in the brain,

depending on the tracer used and the time of acquisition relative to injection.

Early-phase ["®FIMPPF Late-phase ['8F]MPPF Late-phase ['8F]FDG

Figure 37: Example of radioactivity spatial distribution at different times for ['*FJMPPF, and a late image of
the [18F]FDG uptake in the brain.

3.3.2 Evaluation on BPyp images

The joint histograms of mean BPyp PETsingieatias anNd PETpaxprob VErsus PETaccr are shown in Figure 38.
Linear regressions and goodness-of-fit value (R®) are reported in the graphs. When no mask was
applied to the BPyp images (i.e. the whole image was considered), both MRAC approaches obtained
strong correlation compared to CTAC (R°=0.96 for SingleAtlas and R°=0.99 for MaxProb), but the
dispersion of BPyp values for SingleAtlas was higher than for MaxProb. However, if mean BPyp images

were masked (i.e. only the 44 ROls were considered), both MRAC methods provided similar results.

90



SingleAtlas MaxProb
y=1.031 x + 0.0066; R2=0.9645 y=1.023 x— 0.0051; R2=0.9983

a-

g Frequency ) Frequency
< 2- 1e405 2 2- 18405
'§, 1e+04 e’; 1e+04
< 1e+03 = 1e+03
® <
o' I 1e+02 = 1 I Tes02
Z 1e+01 o 1e+01
& o- 18400 @ B 00
- q-
1 1 1 1 1 ' T 1 1 1
-1 1 2 3 -1 0 1 2 3
BP_ND (GroundTruth) BP_ND (GroundTruth)
SingleAtlas MaxProb
y=1. -0. ; R2=0.9902 y=1.021 x— 0.013; R2=0.9952
3+ a-
g Frequency IO;‘ Frequency
g 2= 150 a 2= 150
2 E
= 100 100
@ <
= a
% 14 . 50 =z .4 . 50
a - & -
0~ 0-
1 1 T T T 1 ¥ T
0 3 0 3

1 2
BP_ND (GroundTruth)

1 2
BP_ND (GroundTruth)

Figure 38: Joint histograms of mean parametric BPyp images across subjects in normalized space. Joint
histograms were calculated within the whole image (top row) or within the 44 ROI (bottom row). yBPyp
(SingleAtlas) vs. BPyp (ground truth CT) (A) and BPyp (MaxProb) vs. BPyp (ground truth CT) (B).

3.3.3 Evaluation on time activity curves

The analysis of the measured TACs showed that the mean bias computed from the early static PET
image (corresponding to the first three minutes of the dynamic image, during the perfusion of tracer
in the tissues) across the 44 investigated regions was 0.2 + 0.8 % for SingleAtlas and 1.0 + 0.7 % for
MaxProb, while when computed from the late static PET image (the last ten minutes of the dynamic
image) and across the same regions the mean bias was -2.6 + 2.2 % for SingleAtlas and 1.5 + 1.1 % for
MaxProb, suggesting first that inaccuracies in AC maps impacted the reconstructed time frames
differently and that, overall, the resulting error seemed to increase in magnitude over time with the

two MRAC methods tested.

Mean errors computed as a function of time for selected regions that were obtained with SingleAtlas
and MaxProb are shown in Figure 39. The graph reports bias on the time-activity curve across time

for the cerebellum excluding vermis (no specific binding, reference region for modelling),
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hippocampus (high binding of [**F]MPPF), anterior temporal lobe lateral part (a region where both
MRAC methods had substantial bias on BPyp) and posterior temporal lobe (a region where both
MRAC methods had weak bias on BPyp). Only labels in left hemisphere are shown here but, in
general, similar curves were obtained for the labels in the right hemisphere. Overall, the magnitude
of the mean bias tended to increase during the measurement period. This was the case for most of
the 44 studied regions. However, the magnitude of bias was lower and less time dependent for the

MaxProb approach than for the SingleAtlas method.

For the cerebellum, the reference region used for [lsF]IVIPPF modelling, the bias on TACs fluctuated
over time between -2 and 2% for SingleAtlas and 0 and 2% for MaxProb. The bias tended to increase
slightly over time, in particular for SingleAtlas. In the hippocampus, both methods yielded very low
and almost constant bias over time and negligible bias for BPyp. For the lateral part of anterior
temporal lobe, the magnitude of bias increased over time, with a higher slope in the case of
SingleAtlas. In this region, the bias reached 4% during the last ten minutes of the acquisition for the
MaxProb method and -7.5% for SingleAtlas. The resulting BPyp was also strongly biased for both
MRAC methods. A large increase (around 4%) in bias magnitude was observed in the posterior
temporal lobe for the SingleAtlas method, whereas the bias remained stable with MaxProb.

However, the biases obtained for BPyp were very close to 0% for both MRAC methods.

Figure 40 provides a generalized analysis of results highlighted in Figure 39. Figure 40 shows, for each
of the seven subjects, the mean bias (in %) averaged across the 44 regions and plotted for each time
frame as a function of the intra-frame coefficient of variation (COV = SD*100/mean). The COV
represents the activity non-uniformity between regional measurements, i.e. the degree of tracer
distribution inhomogeneity, and therefore, for ["*F]MPPF, increases with time (cf. Figure 37). For the
SingleAtlas method there is a strong correlation between the mean bias and the COV of the frame:
the bias linearly increased in magnitude with COV. This ultimately suggests a dependence of bias on
the spatial distribution of the activity: early frames, corresponding to the perfusion of the tracer,
exhibited homogeneous activity distributions (lowest COV) and led to the lowest biases, while late
frames are more representative of the specific binding and yielded higher COV and bias. MaxProb
yielded time activity measurements with errors that were significantly less dependent on the activity
distribution. This was confirmed by the computation of the mean slope across the seven subjects

included in the study which was -7.0 for SingleAtlas and 1.2 for MaxProb (Figure 40).

92



BP\p bias
Not applicable
Reference region

BP\p bias
SingleAtlas: -0.17%
MaxProb: 0.48%

BP\p bias
SingleAtlas: -7.3%
MaxProb: 5.0%

BP\p bias
SingleAtlas: 0.51%
MaxProb: -0.21%

L i
0 20 40 60

9

c Cerebellum (L)

[0

c

3 5

2

S Method

g 0- e — SingleAtlas
c!) — MaxProb
S

@ -5

=

c

© T T T

g o 20 40 60

m Time (in minutes)

c Hippocampus (L)

[0

2

3 5-

=

S Method

‘g o4 vw—— @ @ @0 — SingleAtlas
cl) — MaxProb
€

© -5+

=

c

o

[}

©

o

Time (in minutes)
< Anterior temporal lobe, lateral part (L)
@
b
3 51
>
£ r’”‘“"M/\/ Method
S 0 — SingleAtlas
ql.) — MaxProb
E
@ -5~
=
c
° T T T
8 o 20 40 60
m Time (in minutes)
c Posterior temporal lobe (L)
Py
£
3 51
2
£ Method
g 0- — SingleAtlas
c!) — MaxProb
£
© -5
£
c
© T T T
8 o 20 40 60
m

Time (in minutes)

Figure 39: Mean bias over time for the PET frames across subjects for SingleAtlas and MaxProb MRAC
methods, i.e. during the 60-minute [18F]MPPF PET acquisition, for selected representative regions (see text).
Resulting BPyp biases are also given (left panel). There is no evident relation between the bias on TACs and

the bias on regional BPyp.
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Figure 40: Mean bias (in %) across 44 brain regions, per subject and per MRAC method as a function of the
coefficient of variation of tracer activity (i.e. tracer distribution inhomogeneity). Time-dependency is shown
in levels of grey. Linear regression was performed per subject. The shade around linear regression shows the
standard error of the slope (95% confidence interval).

3.3.4 Bias dependence on spatial tracer distribution and pseudo-CT quality

The plot of the slopes obtained by linear regression of the data presented in Figure 40, versus the
global mean absolute error (MAE) between the ground truth CT and the pseudo-CT computed within
the head mask for SingleAtlas and MaxProb methods, is shown in Figure 41. The figure suggests a
correlation between the dependence of the bias with the image uniformity, expressed with the
slope, and the quality of the generated pseudo-CT. It also shows that MaxProb generated more
accurate pseudo-CTs than SingleAtlas, yielding dynamic activity measurements with a bias that was

less dependent on the activity distribution.
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Figure 41: Slope magnitude of linear regression between activity coefficient of variation and mean bias on
dynamic PET data versus mean absolute error (MAE) between the ground truth CT and pseudo-CT, per
subject and per MRAC method. MAE was computed within the head mask (see Chapter 2, section 2.2.4).
Larger errors in the pseudo-CT accuracy are associated with a larger coefficient of variation, i.e. a more
heterogeneous tracer distribution.

3.3.5 Effect of the reconstruction algorithm

We investigated whether the results obtained with FBP2D PET reconstruction presented the same
behaviour as results obtained with OP-OSEM3D. Mean bias over the 44 ROIs studied, computed per
frame and per subject, is shown in Figure 42 for the same features as in Figure 40. Similarly to Figure
40, linear regressions for SingleAtlas demonstrated a higher dependence of regional bias on the COV,
which was not the case for the MaxProb approach. This observation was supported by the mean
slope of linear regressions across the seven subjects: -4.7 for SingleAtlas and 1.2 for MaxProb (Figure
42). Overall, similar behaviour was obtained with PET reconstructed with OP-OSEM3D and PET
reconstructed with FBP2D. These data confirmed that the magnitude of bias was amplified with the
heterogeneity of tracer spatial distribution of the PET frame for SingleAtlas but remained stable for

MaxProb, irrespective of the reconstruction method.
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Figure 42: Mean bias (in %) across 44 brain regions, per subject and per MRAC method, as a function of the
coefficient of variation of tracer activity. PET data was reconstructed with the filtered back-projection
algorithm (compare the corresponding graph for OP-OSEM3D reconstruction in Figure 40). Time-dependency
is shown in grey colour-scale. Linear regression was performed per subject. The shade around linear
regression shows the standard error of the slope (confidence interval of 95%). The results obtained with
FBP2D were very similar to those obtained with the iterative reconstruction algorithm (Figure 40).

3.3.6 Effect of scatter correction

An exploratory study of the effect of scatter correction on the variation of PET quantification bias
over time was performed for one subject. Dynamic PET data were reconstructed without scatter
correction using ground-truth CT and SingleAtlas pseudo-CT AC methods. We computed the bias on
PET data corrected with SingleAtlas pseudo-CT, compared to PET data corrected with ground-truth
CT, for one single brain region that had shown large bias (Figure 43, similar to the graphs in Figure
39) and the average bias over the 44 ROIs studied (shown in Figure 44, similar to Figure 40 and Figure
42). PET without scatter correction was compared to the corresponding PET series previously

reconstructed including scatter correction.

Error on TACs as a function of time, for the anterior temporal lobe, left lateral part, is shown in Figure
43, for PET data reconstructed with and without scatter correction. Both curves had similar trend:
the error was around 0.5% at the beginning of the acquisition and reached -10% for PET without

scatter correction and -12% for PET with scatter correction in the last frames.
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Figure 43: Bias over time for the PET frames for one subject and for SingleAtlas, i.e. during the 60-minute
[18F]MPPF PET acquisition, for label anterior temporal lobe, left lateral part. PET data was reconstructed with
OP-OSEM3D algorithm with AC and scatter correction (in purple) and without scatter correction (in blue).
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Figure 44: Mean bias (in %) across 44 brain regions, for one subject and for SingleAtlas MRAC method as a
function of the coefficient of variation of tracer activity (between regions). Time-dependency is shown in
levels of grey. The shade around linear regression shows the standard error of the slope (confidence interval
of 95%). PET data was reconstructed with OP-OSEM3D algorithm with AC and scatter correction (in purple)
and with AC but without scatter correction (in blue). Scatter correction only explains a small part of the
evolution of bias across time.
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Mean bias across the 44 brain regions studied (Figure 44) decreased from 1.3% to -1.7% for PET data
reconstructed with scatter correction and from 0.9% to -2.5% when scatter correction was not taken
into account. The bias magnitude increased with the COV in both cases, with and without scatter
correction. In this example, the slope of the linear regression was even higher in absolute terms for

PET data not corrected for scatter (-8.5) than the slope for PET data with scatter correction (-5.4).

Scatter correction had a minor contribution to the amplification of the magnitude of bias over the

dynamic acquisition but did not seem to explain the entirety of the phenomenon.

3.3.7 Effect of head motion

Head motion was estimated on dynamic PET data reconstructed without AC. Each frame of the
dynamic PET series was rigidly coregistered to a reference space (frame 12) using minctracc tools
(McConnell Imaging Center, Montreal, Canada). Translation and rotation parameters were extracted
from the matrices generated by the coregistration step, per time frame (in minutes) and per subject.

Motion parameters as a function of time are shown in Figure 45.

The amount of movement was calculated as follows (Equation 10):

Amount of movement = /(t,% + 5+ t2) (Equation 10)

were ty, t, and t, refer to translations in x, y and z directions, whereas rotations were neglected.

To assess the relation between head motion and the influence of MRAC method, we calculated the
correlation between the amount of movement and the bias on PET data along the dynamic
acquisition per subject, per time frame. The mean R’ coefficient across subjects was 0.24, indicating
that motion artefacts did not explain our new finding of time-dependent (i.e. tracer distribution-

dependent) changes in PET quantification due to the influence of the attenuation map.
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Figure 45: Motion estimation along the dynamic acquisition, per subject (translation and rotation
parameters).

3.4 Discussion

PET-MR scanners are currently largely used for research, and full quantification with kinetic
modelling will often be required. Most papers focused on the evaluation of new AC methods in PET-
MR systems have used static [lsF]FDG PET data. If few studies (Burgos et al., 2015; Ladefoged et al.,
2016) have demonstrated different performance of MRAC method depending on the PET tracer

used, little attention has been paid to this phenomenon until now.

To our knowledge, this work highlights for the first time that inaccurate attenuation maps introduce
bias in measured TACs that depends on the spatial distribution of the tracer in the head. Note that a
similar finding has recently (and independently to this work) been reported in the context of PET/CT
lung imaging (Holman et al., 2016). In dynamic acquisitions, the spatial distribution of the tracer

within the brain can change across time from being rather uniform (early frames: blood flow /
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perfusion) to very contrasted (late frames: specific binding) (cf. Figure 37). In this situation,
inaccurate attenuation maps will not only bias the measured TACs in magnitude but also in shape,
with unpredictable repercussions at the kinetic parameter computation level (cf. Figure 39). In
addition, with inaccurate attenuation maps, varying performance is to be expected for late static
images for tracers with heterogeneous distribution in the brain, which we have shown with late
["®*FIMPPF compared to late [*®F]FDG uptake. Results presented in Figure 40 and Figure 41 illustrate

this finding.

The reconstruction step is complex. However, if the activity value present in a single voxel of a
reconstructed image is conceptualized simply as a linear combination of projection bin values
corrected (e.g. multiplied) by their associated attenuation correction factors, it is easy to perceive the
link between count distribution in projection space and bias in voxel values when attenuation
correction factors are inaccurate. If the count distribution was uniform, the voxel value would not be
very biased even given slightly incorrect attenuation correction factors. A mathematical framework
that describes the quantification error in the PET image due to an inaccurate p-map has been
introduced in Thielemans et al. (2008). In our study, the results obtained with the dynamic evaluation
on [*®F]MPPF PET data showed a strong similar tendency (Figure 40) for six of seven subjects

assessed.

Note that other phenomena could explain the dependence of PET bias on tracer spatial distribution:
changing counting statistics across time can influence the reconstruction algorithm as well as the

scatter correction. In addition, we explored possible head motion artefacts.

In this work, we showed that the dependence of PET bias on tracer spatial distribution was purely the
result of an inaccurate p-map, by verifying the observations reported in Figure 40 (OP-OSEM3D
reconstructions) with the same data reconstructed with FBP2D (Figure 42). The similar behaviour
shown by the linear regressions in the two figures confirmed that the biases did not depend on the
reconstruction method, and in particular that their evolution across time was not due to
convergence properties that can vary with changing counting statistics when using iterative
reconstruction methods. Note that higher standard errors of the slope were found in linear
regressions for FBP2D data than for OP-OSEM3D reconstructions. This higher uncertainty appears to
be produced by the unequal distribution of time frames across COV contributing to the estimation of
the linear regression; most of the time frames of dynamic acquisitions had a small COV, and only a

few time frames had higher COV. This phenomenon might be explained by the lower inter-regional
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standard deviation in FBP2D reconstructions due to the intrinsic lack of contrast in those images, in

particular for short temporal frames.

We also verified that this evolution was not caused by inaccuracies introduced during the scatter
correction, a step that uses the attenuation map and whose performance could be influenced by the
statistics and activity distribution within each emission time frame. The results (section 3.3.6)
showed that the scatter correction only explains a small part of the error and its evolution across
time, a finding which is supported by results reported by Burgos et al. (2014b) in the context of static

PET acquisitions.

The low correlation found between the amount of motion and the bias on dynamic data suggests
that head motion did not explain the amplification of bias across the dynamic acquisition. Note that
the phenomenon of bias amplification across time (i.e. the evaluation of tracer spatial distribution)
was also observed with simulated dynamic PET data that do not contain any motion artefact (see

Chapter 4). In further work, motion correction will be applied to real dynamic data.

The MAE values obtained for pseudo-CT evaluation (Figure 41) were consistent with those reported
in Burgos et al. (2014). MaxProb values were equivalent to those of the multi-atlas method described
in Burgos et al. (2014), and SingleAtlas had similar MAE scores to the AC method based on the UTE
image (the vendor’s method implemented on the scanner). This may suggest that the UTE method

could also lead to considerable bias across time in dynamic data.

The cerebellum contains few receptors belonging to the most frequently studied neurotransmitter
systems, and it is relatively spared in neurodegenerative disease. Therefore, it is routinely used as a
reference region for modelling or internal standardization (e.g. standard uptake value ratios for
amyloid-beta PET imaging). Correct quantification of cerebellar radioactivity concentrations is
therefore particularly important but had not been obtained with standard vendor implementations
(Andersen et al. 2014). We argue that this problem has now been solved with multi-atlas approaches.
The local errors observed in the cerebellar region with the MaxProb method (Chapter 2, Figure 28)
averaged out over the entire cerebellum (Figure 39 and Chapter 2, Figure 27) and did not affect the
kinetic modelling (Figure 36 and Figure 39). BPyp computation relies on the complex modelling of the
activity concentration over time. We found no obvious correlations between biases in cerebellar

activity estimates and biases in the resulting BPyp.
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3.5 Conclusion and perspectives

Detailed evaluation of the impact of two MRAC methods on dynamic [“*FJMPPF PET data was

provided in this chapter.

Data presented demonstrate that an inaccurate attenuation correction map (e.g. the SingleAtlas
method), combined with inhomogeneous spatial tracer distribution, can lead to a non-constant bias
of the activity measure across time, and this may distort kinetic parameter estimation. In contrast,
MaxProb generated more accurate attenuation maps and entailed little bias of [**F]MPPF activity for
both TACs, especially during the first two thirds of the measurement period, and BPyp. This study also
shows that a cerebellar reference curve obtained for PET-MR data attenuation corrected via
MaxProb can be used for kinetic modelling, opening the way for dynamic PET studies on hybrid PET-

MR systems.

More research is necessary to fully understand the impact of MRAC on BPyp modelling. Further
investigation will involve applying the MaxProb method to more subjects and other PET tracers. In
the next chapter we will evaluate the actual impact of inaccuracies due to MRAC on detectability of
neurophysiological processes with PET-MRI. This will be essential for sensitivity evaluation of PET-

MRI used to elucidate pathophysiological processes.

102



4 Chapter 4
Effect of AC on a bolus-infusion ['C]raclopride PET study
of endogenous dopamine release: validation on
simulated data and application to a real study of

transcranial direct current stimulation (tDCS)

Dynamic PET studies and PET kinetic modelling are often used in brain research to characterize
cerebral neurophysiological processes. Some of these studies are focused on the release of an
endogenous ligand induced by indirect pharmacologic challenge, or by a functional task; a process
that can essentially only be studied noninvasively with PET or SPECT in vivo. Comparisons between
groups of subjects under different conditions (e.g. test vs. control) are generally performed. In most
cases, the differences highlighted between groups are small, usually around 5%, and localized in
specific and small brain regions. Volkow et al. (1994) used [**C]raclopride, a D2 receptor radioligand
that is sensitive to endogenous dopamine, to investigate the dopamine release in response to a
neurochemical challenge with a psychostimulant drug. In this study, the percentage change of
["'Clraclopride binding with respect to placebo was around 4% in the striata. In another
pharmacological protocol, Mottolese et al. (2014) investigated the role of oxytocin in the inhibitory
regulation of 5-HT signalling using ["®FIMPPF, a PET tracer for 5HTa serotoninergic receptors. They
showed that oxytocin administration induced a significant mean BPyp increase of around 3% in dorsal
raphe nucleus and some limbic structures (hippocampus, insula, amygdala). In the study reported by
Zald et al. (2004), healthy humans performed card selection tasks for monetary rewards and changes
induced by this cognitive task in endogenous dopamine transmission were measured with
[“C]raclopride. Increases in BP in the left medial caudate nucleus (around 9%) with simultaneous
significant decreases in other areas of the caudate and putamen (around 8%) were reported. In a
different type of protocol (Zubieta et al., 2001), the function of the opioid system and p-opioid
receptors in the brains of healthy human subjects undergoing sustained pain was examined with
["'C]carfentanil, a selective p-receptor radiotracer. Reductions in regional p-opioid receptor
availability (Bmax/Kg) from placebo to sustained pain around 5% were obtained. These studies have

been carried out on standalone PET cameras or PET/CT systems in the last decades and are now

being transposed to PET-MR (Aiello et al., 2015; Galazzo et al., 2016; Sander et al., 2015; Villien et al.,
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2014; Wey et al., 2014). Simultaneous PET-MR systems provide the opportunity to combine PET and
MR imaging to better characterize neuronal mechanisms and brain responses to pathologies.
However, as we have demonstrated in the two last chapters, MRAC can introduce important biases
in PET quantification and affect the parameters derived from kinetic modelling. If an AC method
produces substantial bias in reconstructed PET data, in particular in the cerebellum which is often
used as reference region for PET modelling (Andersen et al., 2014), small variations between groups

of subjects might not be detectable.

In this chapter we assess the impact of MRAC on PET quantification and kinetic modelling using
realistic simulated PET data (Monte-Carlo simulation) in a bolus-infusion [HC]racIopride protocol. We
focus on the detectability of neurophysiological processes with PET-MR by modelling a tracer
displacement produced by endogenous dopamine release; several magnitudes of variation are
considered. We constituted a simulated database that included the main sources of variation of
attenuation, i.e. the brain anatomy and evolution of the spatial distribution of the tracer across the
acquisition time. We compare our multi-atlas AC method (MaxProb) with the sequence-based AC
method implemented by the vendor on the mMR (UTE) and the ground-truth CT-based AC approach
to determine the sensitivity and specificity of detection of each MRAC method. Finally, our multi-
atlas AC methodology is applied to a real simultaneous PET-MR study aiming to demonstrate

endogenous DA release after tDCS.

The results presented in this chapter have been presented in the conferences BrainPET 2017 (results

on simulated data) and PSMR 2017 (results on real data).

4.1 Materials and methods

4.1.1 Simulated PET data

Dynamic [''C]raclopride PET data was simulated using the PET-SORTEO platform (Reilhac et al.,
2004), recently adapted to the geometry of the Siemens mMR Biograph (Reilhac et al., 2016). This
simulation tool uses a Monte Carlo technique to generate realistic PET data from voxelized
descriptions of tracer distributions, in accordance with the scanner geometry and physical
characteristics. PET-SORTEO accounts for all the major sources of noise and biases that can occur

within the acquisition of PET images and permits faithful reproduction of the image formation
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process. PET-SORTEO requires as input two 3D-volumes (phantoms) containing the anatomical
regions of interest for emission and attenuation, and the tracer activity in tissues across time (TAC

per label). The following section describes how those elements have been defined in this study.

4.1.1.1 Materials

4.1.1.1.1 Structural test database for simulations

Datasets of 21 subjects (11 male, 10 female) [mean age + SD, 41 + 19 y; range, 15-68 y] were
obtained from the King’s College London & Guy’s and St Thomas’ PET Centre at St Thomas Hospital,
London. The North East — York Research Ethics Committee (including consultation with the Medicines
and Healthcare products Regulatory Agency (MHRA)), the radiation protection committee (ARSAC),
the local Research & Development Committee, and the Higher Research Authority had approved the
study (15/NE/0203) and all patients had given informed consent. Each subject had a brain PET-MR
acquisition on a fully-integrated PET-MR scanner (Siemens Biograph mMR, Siemens Healthcare,

Erlangen, Germany) after a brain PET/CT examination (GE Discovery 710) on the same day.

Three-dimensional anatomical T1-weighted sequences (MPRAGE) (TE=2.62 ms, TR=1700 ms, flip
angle=9°) were reconstructed on 224 x 256 x 176 matrices with voxel dimensions of 1.06 x 1.06 x 1.1
mm?>. An ultra short echo time (UTE) image was acquired with the vendor-provided sequence
(TE1=0.07 ms, TE2=2.46 ms, TR=11.94 ms, flip angle=10°) and reconstructed on 192 x 192 x 102

matrices with a voxel size of 1.56 x 1.56 x 1.56 mm°.

A low dose CT (140 KVP, 512 x 512 x 47 matrix size, 1.36 x 1.36 x 3.27 mm?> voxels) was acquired on
the PET/CT for each subject.

4.1.1.1.2 Functional test database for simulations

Dynamic ["'C]raclopride PET datasets with bolus-infusion were obtained for ten subjects (4 male, 6
female) [mean age * SD, 24.8 + 2.35 y; range, 22-29 y]. The dose injected was 297 + 42 MBq of

["'C]raclopride . Acquisitions were realized on a mCT Biograph PET/CT system.
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4.1.1.2 MRI segmentation

The T1 MR images were anatomically segmented into 95 brain structures with the multi-atlas based
MAPER procedure (Heckemann et al., 2010). A supplementary region, the cerebellar vermis, was
added to the segmentation. This structure was manually delineated in the stereotaxic space. After
computing the deformation field from the subject’s space to MNI space using the Segment function
of SPM12 on the T1 MR image, the cerebellar vermis was warped to the subject space by applying
the inverse transformation. Probabilistic maps of white matter (WM), grey matter (GM) and

cerebrospinal fluid (CSF) were generated in the subject space with SPM12 (Segment function).

4.1.1.3 Phantom generation

Emission and attenuation phantoms were created for each subject, in their individual space, from the

MRI and CT data, as follows:

Preprocessing

Coregistration of CT to the MRI: The CT image was aligned with the MR image using the rigid
registration tool reg_aladin from the NiftyReg software suite, optimizing normalized cross correlation
for the image pair (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg (Ourselin et al., 2001)). The
coregistered CT image was resampled to the T1 MRI resolution using cubic B-spline interpolation. The

MRI was chosen as reference space to register the CT to the Biograph mMR space.

Cleaning of CT background: The background of the coregistered CT image was cleaned in order to
eliminate the head support from the image. For this, a head mask of the CT image was generated as

described in Chapter 2 (section 2.2.4) and the coregistered CT image was masked by this head mask.

Segmentation of CT: The CT image was thresholded into three tissue classes (bone, soft tissue and

air) using the same thresholds as defined in Chapter 2 (section 2.2.1.2).
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Emission phantom

Fifteen regions of interest were defined for the emission phantoms:

- Air

- Soft tissue

- Bone

- CSF and ventricles

- GM

- WM

- Cerebellar GM

- Cerebellar WM

- Cerebellar vermis

- Caudate nucleus (left) / Caudate nucleus (right)
- Nucleus accumbens (left) / Nucleus accumbens (right)

- Putamen (left) / Putamen (right)

Labels for air (label #1), soft tissue (including brain, neck and scalp - label #2) and bone (label #3)
were directly obtained from the segmented CT. The neck region was added to the segmented CT as
follows: the entire UTE image was binarized and holes were filled (UTE mask). The head region
(binarized segmented CT) was subtracted from the UTE mask to obtain a mask of the neck region.
The neck area was labelled as soft tissue. All the other labels were added to this image by the
superposition principle. A mask of CSF (label #4) was generated by thresholding at > 0.9 and
binarizing the CSF probability map obtained with SPM12 (Segment function). A mask of WM (label
#6) was created by thresholding and binarizing the WM probability map (SPM12, Segment function)
at > 0.5. In order to avoid holes in the brain, a different approach was used for the GM mask (label
#5). This was built by removing WM from the brain. For this, the MAPER MRI segmentation (brain
regions) was masked with the inverse mask of WM. Ventricles were extracted from the MAPER MRI
segmentation and added to CSF label. Finally, the following ROIs were directly extracted from the
MAPER MRI segmentation (see section 4.1.1.2) and overlaid onto the emission phantom: cerebellum
GM (label #7) and WM (label #8) (right and left cerebellum combined), vermis (label #9), caudate
right and left (labels #10 and #11), accumbens right and left (labels #12 and #13), putamen right and
left (labels #14 and #15).
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Attenuation phantom

Attenuation maps consisted of thresholded CTs with the neck area added from the UTE p-map. A
refinement step, in which CSF and GM probability map information was combined, was used to
reduce the volume of bone structure (slightly overestimated by the simple threshold). Furthermore,
the background of all images was set to 0 to reduce the simulation time. Finally, the neck region was
extracted from the UTE p-map and added to the attenuation phantom to compensate for the short
CT field of view (described below). An example of MRI, CT, emission and attenuation maps for one

subject of the database is given in Figure 46.

Both emission and attenuation phantoms were finally resampled to UTE resolution to ensure spatial

matching with PET coordinates in the Biograph mMR.

Figure 46: Example for one subject. T1-weighted MR image (A), CT image (B), emission phantom (C) and
attenuation phantom (D).
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4.1.1.4 Input kinetics

Input time-activity-curves

Input TACs for PET-SORTEO simulations were derived from real PET/CT data. Regional TACs were
extracted from the bolus-infusion [MC]racIopride data described in section “Functional database”
(4.1.1.1.2), for the 15 ROIs described in section 4.1.1.3. Each TAC was first normalized by the area
under the curve for WM (label #5), per subject. WM is devoid of dopaminergic receptors and
provides a measure of free tracer in tissue. The TACs were then averaged across all subjects. Finally,
averaged TACs were multiplied by the mean area under the curve for WM across subjects, in order to
obtain realistic activity values. The TACs for caudate, putamen and accumbens were corrected for
partial volume effect with geometric matrix transfer (GMT) methodology and resolution adapted to

the mMR scanner (Frouin et al., 2002; Rousset et al., 2007).

The activity at time zero was set to 0 Bg/mL. Final TACs were corrected for partial volume effect
(Rousset et al., 1998). The following rearrangements were performed: TACs for caudate nucleus and
nucleus accumbens were averaged and this final curve was associated to both labels, TAC for air was
set to 0 Bg/mL, TAC for vermis, which is devoid of dopaminergic D2 receptors, was set to TAC for

cerebellum GM. Figure 47 shows the resulting TACs used as input for the PET-SORTEO simulations.

15000

Label
= Air
Soft tissue
—— Bone
100007 = CSF and ventricles
- GM
WM
= Cerbellum GM and vermis
Cerebellum WM

= Caudate and accumbens

5000 -

Activity concentration (Bg/mL)

= Putamen

1 1
0 10 20 30 40 50 60 70 80 90
Time (minutes)

Figure 47: Regional TACs calculated from real PET/CT data and used as input for PET-SORTEO simulations.
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Note that this single set of TACs was used as input for simulating data for all the 21 subjects in our
dataset. Inter-subject variability was hence only supported by the anatomical variability of the

emission and attenuation phantoms.
Modelling the PET displacement produced by endogenous dopamine release

In this section we model the effect of endogenous dopamine on [*'C]raclopride binding in the striata
yielded by the tDCS. The endogenous dopamine release was modelled with a decreasing exponential

function as proposed in Endres and Carson (1998) (Equation 11):

DA(t) = ﬁ £.(1 = t5)-Mipoep) (£ = to = Z=2) + Cax- 0. e~ EP/% u(t — t;) (Equation 11)

where Cnay is the maximal radioactivity concentration of the TAC, Q represents the percentage
["'C]raclopride radioactivity decrease compared to Cma. Several magnitudes of variation were
considered, the displacement peak decrease was expressed in % compared to the peak of PET TAC: Q
={5%, 10%, 25%} (stim05, stim10 and stim25 respectively). T is the time constant of the exponential
that characterises the time interval of return to equilibrium. T was set to 30 min for all experiments.
M(t) is the rectangular function, u(t) is the unit step function, tp is the onset time of the activation and
tp is the peak time of maximal response magnitude. tp was set to 40 minutes and tp to 45 minutes. To
generate the effect of endogenous dopamine release on [''C]raclopride binding, the curve of
dopamine release was subtracted from the initial TACs in caudate, accumbens and putamen. The
effect of stimulation was lateralized to the left side of the brain and applied to the three structures of
the striatum: caudate nucleus, nucleus accumbens and putamen. An example of initial TAC for

caudate, curve of dopamine release and TAC modelling the PET displacement for the left caudate

nucleus are shown in Figure 48. Figure 49 shows final TACs for all ROIs, with a stimulation of 10%.
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Figure 48: Model of the PET displacement produced by endogenous dopamine release on TAC (Q = 10%) for

caudate nucleus (L). Dopamine concentration linearly increases from the time of onset to the peak, and then
exponentially decreases.
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Figure 49: TACs with PET displacement (Q = 10%) used as input for PET-SORTEO simulations.

For each subject, PET data were simulated with a placebo condition, i.e. without any stimulation

(using TACs from Figure 47) and the three magnitudes of PET signal decrease (Q, described above) for

the active conditions (TACs from Figure 49).
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4.1.1.5 Reconstruction of simulated PET

Simulated PET data was reconstructed with the Siemens off-line reconstruction software (e7tools,
Siemens Medical Solutions, Knoxville, USA). Raw data were rebinned into 18 frames of 5 minutes for
dynamic reconstruction. Images were reconstructed with the OP-OSEM3D algorithm incorporating
the point spread function (PSF), using 12 iterations of 21 subsets. Data correction (normalization,
attenuation and scatter correction) was integrated in the reconstruction process and Gaussian post-
reconstruction filtering (FWHM = 4 mm) was used. A zoom of 3 was applied to the reconstructions,

yielding a voxel size of 0.9 x 0.9 x 2.03 mm? in a matrix of 256 x 256 x 127 voxels.

4.1.1.6 Attenuation maps for simulated PET

For attenuation correction, three different attenuation maps were used in this study: 1) a CT-based
pu-map, considered as gold standard, 2) the vendor-provided MR-based p-map (UTE) and 3) our multi-
atlas-based p-map MaxProb (Merida et al., 2017, 2015) using the same atlas database as described in
Chapter 2. The coregistred CT was resampled to UTE resolution. CT and MaxProb pseudo-CT
intensities (in Hounsfield Units) were converted to attenuation coefficients at 511 keV with the
standard bilinear transform (Carney et al., 2006) that takes into account the CT energy (kVp). The
UTE p-map was obtained from the UTE MR sequence and consisted in three discrete attenuation
coefficients for bone, soft tissue, and air. This method is directly implemented in the Siemens mMR

system (Catana et al., 2010).

Given that the three p-maps had different neck coverage - in particular the individual CT had a
reduced field of view - a generic neck area containing soft tissue only was added to all p-maps. The
neck section was derived from the UTE pu-map by automatic segmentation and binarization of the

image. Resulting u-maps are shown in Figure 50.
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Figure 50: u-maps with common neck. CT p-map (A), MaxProb p-map (B), UTE p-map (C)

4.1.1.7 Data analysis of simulated data

4.1.1.7.1 Kinetic analysis

Time-activity curves (TACs) were extracted from the simulated PET series, for the striatal regions
(caudate nucleus, nucleus accumbens and putamen) and for the cerebellar grey matter excluding
vermis (no specific binding, reference region for modelling), considered here as the reference region.
Regional extraction was performed with the labels defined in the emission phantom for each subject.
To estimate the BPyp, tissue-to-reference 5-min binding ratios (BR) were deduced from these TACs

for all striatal regions, at equilibrium (Pinborg et al., 2005).

Parametric BR images were generated from the 90-minute dynamic series, for the following time-

interval after the injection of the tracer:
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- Baseline: 30 — 40 minutes
- Stimulation (stim): 40 — 55 minutes
- Post-simulation 1 (post1): 55 — 70 minutes

- Post-simulation 2 (post2): 70 — 85 minutes

4.1.1.7.2 Evaluation of PET quantification

Evaluation of PET quantification was performed by comparing the PET data reconstructed with the
three attenuation maps: MaxProb, UTE and gold standard CT (PETwaxprop and PETyre to PETcy,

respectively). Bias on TACs and bias on tissue-to-reference BR curves was computed as follows:

PETMmRrac — PETcraAC % 100
PETcrac

Errorpae (%) = (Equation 12)

Errorgg (%) = BRMRBA;C_F;CRCTAC x 100 (Equation 13)

Regional errors were also computed on parametric BR images, per time-interval.

MRAC methods were compared on these quality criteria using paired Wilcoxon signed-rank tests. The
threshold of statistical significance was set at a p-value of 0.05, divided by the number of

comparisons (three in this study) to correct for multiple comparisons (Bonferroni, 1936).

4.1.1.7.3 Detection of endogenous dopamine variation

The 21 subjects included in this study were split into two groups: a group of 11 subjects receiving the
dopaminergic stimulation (active group) and a group of 10 subjects that did not undergo stimulation
(placebo group). The effect of dopaminergic stimulation was characterized at the regional and at the

voxel level by means of the BR. The impact of the AC methods on group differentiation was studied.
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4.1.1.7.3.1 Regional analysis

The PET displacement induced by dopamine release was quantified by calculating relative variations
of BR (A) for three time-intervals: stim, postl and post2. BR variations were compared to the BR at

baseline (Equation 14).

BR¢stim: . — BRpaseli
A (%) — {stim;post1;post2 } aseline x 100

Equation 14
BRpaseline ( q )

In addition, to take into account the large intra-group variability of A, the difference change of

[*'C]raclopride binding in active group with respect to placebo (Apgr) was computed.

4.1.1.7.3.2 Voxel-wise analysis

Parametric BR images were normalized to MNI space (voxel size of 2 x 2 x 2 mm?®) and blurred using a
Gaussian kernel with a standard deviation of 8 mm. Voxel-based analysis to assess differences
between PETcrac and PETyrac Was performed with SPM12 on BR images using an ANOVA with the
factors subjects, conditions (placebo vs. active groups), AC method and time-interval (baseline, stim,
postl, post2). The interaction between group, AC method and time-interval was included in the

model. The AC method was added as main effect.

To assess the effect of stimulation between placebo and active groups, we tested if the difference
between baseline and stim (either postl or post2) in the active group was larger than the difference
between baseline and stim (either postl or post2) in the placebo group. This contrast was tested

independently for each stimulation magnitude (stim05, stim10 and stim25).

The statistical parametric maps resulting from the above analysis were thresholded at p=0.001,
uncorrected. Clusters of significant differences within a mask of striatal regions (caudate, accumbens
and putamen) were extracted. For each AC method contrast, we calculated the number of voxels
corresponding to a significant difference of A between between placebo and active groups, by adding
up the spatial extent (k) of all significant clusters found in the mask. This metric was used to assess

the sensitivity of detection of UTE and MaxProb MRAC methods, compared to CTAC.
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4.1.2 Real PET-MR data

Data from the first brain PET-MR protocol, carried out at the CERMEP, that investigates the
neurophysiological impact of fronto-temporal transcranial direct current stimulation in healthy
subjects, were used. This study is still in progress and placebo and active groups have not been

identified, thus preliminary data are shown in this work.

4.1.2.1 Protocol

Transcranial direct current stimulation (tDCS) consists in applying a weak constant current between
two electrodes placed on the surface of the head, above two cortical areas. This stimulation
technique can modify brain functions and is emerging as a prospective therapy for neurologic,
psychiatric and addictive disorders. Some imaging reports suggest that tDCS effects are not restricted
to the brain areas located under the electrodes, but spread through distributed cortical networks
functionally connected with the targets, and reach subcortical areas. As the cortex is densely
connected with basal ganglia areas, tDCS effects are probably capable of reaching subcortical areas
with dopaminergic transmission. For this reason, and taking into account the dopaminergic
pathophysiological hypothesis of schizophrenia, the effect of fronto-temporal tDCS on dopaminergic
transmission is of major interest. This project, lead by Marie-Francoise Suaud-Chagny and Clara
Fonteneau in the PSYR? team from the Centre de Recherche en Neurosciences de Lyon (CRNL), aims
to study tDCS effects on dopaminergic transmission and characterize the neurochemical mechanisms

involved in this process, on healthy subjects.

This study included two groups of subjects, one with active and one with placebo (sham) fronto-
temporal tDCS (with anodal stimulation over the left dorsolateral prefrontal cortex and cathodal
stimulation over the left temporo-parietal junction). Subjects were randomized, and the study was
double-blind with a 2-arm parallel group design. The stimulation started 40 minutes after the
injection of the tracer and lasted 30 minutes. The protocol (Figure 51) comported brain activity and
connectivity measures (ASL, resting state and DTI). In PET, [HC]racIopride radiotracer was used to

measure D2 receptor occupancy variation between the baseline and the stimulation states.
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Protocol
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Figure 51: Protocol of simultaneous PET-MR study with tDCS

4.1.2.2 Data

Eighteen subjects (8 males, 10 females) [mean age * SD, 25.6 + 2.9 y; range, 22-34 y] had a
simultaneous PET-MR exam (Siemens mMR Biograph). Three-dimensional anatomical T1-weighted
sequences (MPRAGE) (TE= 2.34 ms, TR=2300 ms, flip angle=8°) were acquired and reconstructed in a
256 x 256 x 176 matrix with voxel dimensions of 0.97 x 0.97 x 1 mm?>. UTE AC sequences (TE1=0.07
ms, TE2=2.46 ms, TR=11.94 ms, flip angle=10°) were acquired and reconstructed in a 192 x 192 x 102
matrix (voxel size: 1.56 x 1.56 x 1.56 mm?). The scan protocol also included other functional
sequences - BOLD, ASL and DTI - not analysed in this work. All subjects had a 110-minute dynamic PET

examination with a [*'C]raclopride bolus-infusion, acquired in listmode.

4.1.2.3 PET reconstruction and motion correction

PET data were corrected for head motion with the Eber algorithm (event-by-event rebinner; (Reilhac
et al., 2017)), which directly corrects the listmode data by rebinning the detected events according to
the estimated inter-frame motion. This approach presents the advantage to correct for motion
artefacts with high temporal resolution (100 seconds) and also to correct for the spatial
misalignment between emission data and attenuation data that is not taken into account in
traditional motion correction implementations. For motion estimation, dynamic PET data were first
reconstructed without AC in 63 frames of 100s each. Each reconstructed PET volume of the

reconstructed PET series was coregistered onto the reference volume (mean image of the frames 3
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to 5) with rigid body and cross-correlation (minctracc). Translations, and rotations were of each time
interval were stored in a text file. Then the 63 motion correction matrices were applied to the
listmode data, rebinned in sinograms of 21 regular 5-minute (300s) frames. Finally, images were
reconstructed from the corrected sinograms with AC, and the OP-OSEM3D algorithm incorporating
PSF, using 12 iterations and 21 subsets. A zoom of 3 was applied to the reconstructions, yielding a
voxel size of 0.9 x 0.9 x 2.03 mm? in a matrix of 256 x 256 x 127 voxels. The 10 first seconds of PET
acquisition preceding the tracer injection were excluded for PET image reconstruction. Both MaxProb

and UTE MRAC approaches were used for AC.

4.1.2.4 Data analysis of real data

Time-activity curves (TACs) were extracted from the striatal regions (caudate and putamen) and from
the cerebellum, considered as the reference region. The same methodology as presented for the
simulated data (section 4.1.1.7.1) was used. Only the temporal intervals for parametric BR images

were defined differently:

- Baseline: 30 — 40 minutes
- Stimulation (stim): 45 — 70 minutes
- Post-simulation 1 (post1): 75 — 90 minutes

- Post-simulation 2 (post2): 90 — 105 minutes

Tissue -to-reference BR were deduced from these TACs for striatal regions. Parametric BR images
were generated for the following time-intervals after the injection of the tracer: baseline (30-40 min),

stim (45-70 min), post1 (75-90 min) and post2 (90-105 min).

Intraregional means and standard deviations of BRs were extracted from the BR images. Results were
compared with or without applying Eber motion correction, incorporating UTE or MaxProb AC. An
analysis of variance was performed with a Tukey honest significant difference (HSD) test for each

time-interval.
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4.2 Results

4.2.1 Simulated PET data

In this section we report the results obtained with simulated [*'C]raclopride PET data. First, the
accuracy of PET quantification achieved using UTE and MaxProb MRAC compared to CTAC is
assessed. Then, a group analysis is performed to differentiate the placebo group from the active
group under several stimulation conditions. The three AC approaches (CT, UTE and MaxProb) are

compared in this context.

4.2.1.1 PET quantification

4.2.1.1.1 Activity curves and BR curves

Figure 52 and Figure 53 show an example of activity curves and curves of BR obtained from the
Monte-Carlo simulation for one subject at each stimulation condition (placebo, stim05, stim10 and
stim25). Curves are provided for each striatal ROl and the cerebellar reference region. The four time-
intervals, defined to study the effect of the stimulation across the acquisition time, are displayed in

colour in the figures.

The effect of stimulation (applied to labels in left hemisphere only) was well visible at stim25 and
corresponds to a drop of both TAC and BR curve after 40 minutes of acquisition. This effect was
however less evident at stim05, in particular in the accumbens, in which data had higher noise levels.
Note that even though caudate and accumbens ROIs had the same input TAC for PET-SORTEO
simulation, activity and BR obtained were inferior for accumbens due to substantial partial volume
effect in such small structures. Regional BRs extracted in the parametric BR images per stimulation

condition, time-interval and AC approach are shown in Figure 54.
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Figure 52: Example of TACs obtained for one simulated subject randomly selected, per ROI, for all stimulation
conditions tested (i.e. placebo, stim05, stim10, stim25) and with CTAC. Time-intervals are displayed in
colours in the background of the graph as follows: baseline in grey, stim in red, postl in green and post2 in
yellow. Dopamine release was only simulated for the caudate, putamen and accumbens on the left.
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Figure 53: Example of curves of BR estimated with a simple target-over-reference model with cerebellum as
reference region, shown for one randomly selected simulated subject. Curves are shown for CTAC per ROI,
for all stimulation conditions tested (i.e. placebo, stim05, stim10, stim25). Time-intervals are displayed in
colors in the background of the graph as follows: baseline in grey, stim in red, postl in green and post2 in

yellow.
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Figure 54: Mean BR across subjects, per ROl and stimulation condition, for the CT, UTE and MaxProb AC
methods. Results are shown for the placebo group (n=11) and the active group (stimulated on the left;
stim05, stim10 and stim25) (n=10). With UTE, BR were generally higher than those obtained with CT or
MaxProb, The effect of stimulation can be seen in the differences between right and left labels, in particular
for stim25.

4.2.1.1.2 Quantification error

Mean errors computed as a function of time for selected regions that were obtained with UTE and
MaxProb are shown in Figure 55 and Figure 56. The graphs report the bias on the time-activity curves
(Figure 55) and BR curves (Figure 56) across time for the striata (caudate, accumbens and putamen)
and the cerebellum. Figures of mean absolute error for the TACs and BR curves across all subjects are

provided in the Appendix (Figure 68 and Figure 69).
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Figure 55: Mean bias over time for the PET frames across all subjects (n=21) for the UTE and MaxProb MRAC
methods, i.e. during the 90-minute [llc]raclopride PET acquisition, for striatal regions and cerebellum.
Background features as above (Figure 52). Note the time-dependence of bias for UTE but not MRAC.

For the cerebellum, mean bias on time-activity-curves varied over time from -7.7 (lower error) to
-12.9% (higher error) with UTE and from -0.7 to -1.6% with MaxProb. Mean bias in the striata
(caudate, accumbens and putamen) varied from -3.8 to -7.2% for UTE and from -0.7 to -1.2% for
MaxProb. The magnitude of bias tended to increase at later time-intervals for UTE, whereas it
remained stable with MaxProb. For UTE, the magnitude of bias in the cerebellum decreased between

0 and 30 minutes, stabilized until minute 50 and increased until the end of the acquisition.

BRs calculated after UTE AC were substantially affected by quantification errors obtained in the
cerebellum. The inverse U shape of bias time course in the cerebellar TACs (Figure 56) translated into
a U shaped bias time course for the BRs. Mean error on BR reached +6.7% for UTE and were highly
variable over time. However, with MaxProb, the mean error on BR did not fluctuate and remained

below +1% for all striatal regions.
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Figure 56: Mean bias over time for the BR estimated with a simple 5 min target-to-reference model with
cerebellum as reference region, across all subjects (n=21) for the UTE and MaxProb MRAC methods.
Background features as above (Figure 52).

Figure 57 shows the regional bias for parametric images of BR extracted for each time-interval. This
figure shows similar data to Figure 56, but several frames were averaged per time-interval, and
between-subject variability is shown. Again, regional BR errors for all time-intervals were close to
zero with MaxProb, whereas the bias was higher and increased at the later time-intervals for UTE AC.
The dispersion of the error across all subjects was higher for UTE than for MaxProb, especially at
interval post2. Paired Wilcoxon signed-rank tests showed that differences in BR between CT and UTE

were significant, whereas no significant differences between CT and MaxProb were found.
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Figure 57: Boxplots of regional bias on parametric BR images across all simulated subjects (n=21), per time-
interval, for the UTE and MaxProb MRAC approaches. Outliers are represented as dots.

Figure 58 shows the images of mean bias calculated on parametric BR images obtained with UTE and
MaxProb, compared to CTAC for each time-interval. With UTE, the bias in the striatum was between
4 and 6% at the beginning of the acquisition (baseline and stim) and increased to 8% at the end of
the dynamic acquisition (post2). With MaxProb, the local bias remained under 1% for all time-

intervals.
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Figure 58: Mean of 21 bias images between BRcrac and BRyrac, per time point, in standard stereotaxic space.
Color scale: percentage error. The bias images are masked by the mask of the striatum.

4.2.1.1.3 Outliers

In the analysis of PET quantification, we found 16 subjects that had regional errors superior to 5%
with UTE and two of them presented regional biases on BR superior to 10%. With MaxProb only one
subject had a bias on BR superior to 5% (which corresponds to one of the outliers with bias superior

to 10% with UTE). An example is shown in Figure 59.

Figure 59: Example of an outlier subject. The parametric images of relative difference between PETygac and
PETcrac, Obtained with MaxProb (left) and UTE (right) MRAC approaches are shown. The images of relative
differences were computed on averaged dynamic PET series in MNI space, and masked by a brain mask.
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The parametric images of relative difference between PETyrac and PETcrac for the outlier subject that
had regional errors superior to 5% for MaxProb and superior to 10% for UTE are shown in Figure 59.
For MaxProb, abnormal underestimation of PET was observed in the inferior area of the cerebellum
(error around -7%). In comparison, quantification error for UTE was propagated in a larger area (all

posterior brain, including cerebellum) and had higher quantification error rates (around -15%).

4.2.1.2 Detection of endogenous dopamine variation

4.2.1.2.1 Regional analysis

Figure 60 shows the mean variation of BR (A) between baseline and other time-intervals across
placebo and active groups under different stimulation conditions. As ROIs in the right hemisphere did
not undergo stimulation, conditions stim05, stim10 and stim25 in these regions represent test/retest

data.
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Figure 60: Mean variation of BR between baseline and other time-intervals, A (in %), per stimulation
condition, for the CT, UTE and MaxProb AC methods. Results are shown for the placebo group (n=11) and the
active group (stim05, stim10 and stim25) (n=10). Figure of boxplot is given in the Appendix (Figure 70).
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Characteristic patterns of A compared with placebo (Figure 60) were identified for all conditions in
the right hemisphere that represents the condition without PET displacement. For those regions,
stim and postl had similar and positive A which suggests that BR at stim and postl was larger than
BR at baseline. Conversely, post2 had negative A which represents a decrease of BR at post2
compared to BR at baseline. Those patterns were similar for all ROls and time-intervals in the right
hemisphere as well as for the placebo condition in the left hemisphere. Note that no stimulation was
applied in the right hemisphere, and all A should be constant and close to zero, however high
variability (from -4 to 4 for caudate right) between time-intervals was observed. In the left
hemisphere, the effect of stimulation tended to increase values of A (indicating greater difference to
baseline implying dopamine release), and patterns observed in the placebo condition were inversed.
For conditions stim05, stim10 and stim25, the A magnitude increased at time-interval stim. This
showed that BR at stim was inferior to BR at baseline. At postl and post2, A increased progressively,

until returning to equilibrium.

A ratios computed with UTE tended to be both under and over estimated compared to CT, depending
on the time-interval, in particular at post2. At stim, differences between UTE and CT were not
significant, however they were systematically significant at time-intervals postl (except in
accumbens with stim05 and stim25) and post2 (paired Wilcoxon signed-rank test). In contrast, A
ratios obtained with MaxProb were very close to those obtained with CT and no significant

differences were found.

The differences of mean A between active and placebo groups are shown in Figure 61. Differences of
mean A were calculated to take into account inter-subject A and inter-time-interval variations and
thus highlight the effect of PET displacement in the active group. The effect of stimulation was
almost unsubstantial in ROIs of right hemisphere except for the accumbens (this small region was
more sensitive to noise and partial volume effect). On the contrary, for ROIs in the left hemisphere,
the effect of stimulation was characterized by increasing amplitudes of the A difference from stim05
to stim25. At the stim time-interval, the A differences for left caudate and AC CT reached -3.9% for
stim05, -6.5% for stim10 and -19.6% for stim25. Those values were close to the initial degree of
stimulation imposed (i.e. 5, 10 and 25%) but remained slightly inferior. Apr obtained with the MRAC

approaches produced similar patterns than CTAC.
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Figure 61: Mean delta difference between active (n=10) and placebo (n=11) groups, per stimulation
condition, for the CT, UTE and MaxProb AC methods shown for the placebo group (n=11) and the active
group (stim05, stim10 and stim25) (n=10).

4.2.1.2.2 Voxel-wise analysis

Figure 62 shows the t score maps of the differences in parametric images of BR, between active and
placebo groups, obtained with CTAC, thresholded at p<0.001 uncorrected. The results are given for
the three time-intervals studied (stim, postl and post2), compared to baseline. The effect of
stimulation across time was clearly lateralized to the left hemisphere, and was characterized by an
important area of significant voxels showing BR reduction at time-interval stim, whereas the effect of
stimulation on PET displacement was reduced for later time-intervals (postl and post2) suggesting a

return to equilibrium.
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Figure 62: Comparison of parametric images of BR, between active (n=11) and placebo (n=10) groups for
stim25, obtained with CTAC. The images show regions of BR reduction at time-intervals stim (A), postl (B)
and post2 (C), compared to baseline, at a significance level of p<0.001 uncorrected. Color scale: t statistic.
Stimulation was applied on the left. Note that with ground truth CTAC, the dopamine release was detected
in 97% of the striatal volume stimulated (for time-interval stim, with condition stim25).

Results obtained for the SPM analysis are summarized in Table 9. For each AC method, each
condition and each time-interval, the total number of significant voxels showing BR decrease in the
active group, compared to the placebo group, is given. The sensitivity of each AC method is reported
in number of voxels and percentage compared to the simulated volume. The proportion (in %) of

voxels detected with UTE or MaxProb, compared to CT, is also calculated (sensitivity relative to CT).

The sensitivity to detect the endogenous dopamine release of the CTAC, compared to the real striatal

volume stimulated was assessed. At time-interval stim, we found a detection threshold of 97%, 26%
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and 7% for stim25, stim10 and stimO5 respectively (results also shown in Figure 62). In terms of
sensitivity relative to CT, at stim25, both MaxProb and UTE MRAC methods were able to detect
significant BR variations between baseline and other time-intervals, in the active group compared to
the placebo group, with high sensitivity, but sensitivity was slightly inferior for UTE. At stim25,
detection thresholds for stim, postl and post2 were 100, 100 and 97% with MaxProb and 99, 98 and
89% with UTE, respectively. At stim05, MaxProb detected 94, 82 and 93% of the voxels with
significant BR decrease for stim, postl and post2, respectively. In contrast, UTE only detected 91, 62
and 77% of the voxels for the same time-intervals. Overall, MaxProb had a higher sensitivity than UTE

in detecting group differences at the voxel level.

Table 9: Number of significant voxels obtained with the SPM analysis. Sensitivity compared to simulated
volume is given in number of voxels (and %) per AC approach, stimulation condition and time-interval.
Relative sensitivity of MRAC to CTAC is provided (in %).

Sensitivity Relative sensitivity to CT
CcT MaxProb UTE MaxProb (%) UTE (%)
stim 1471 (97%) 1471 (97%) 1457 (96%) 100 99
stim25 postl 1308 (86%) 1308 (86%) 1276 (84%) 100 98
post2 532 (35%) 517 (31%) 473 (31%) 97 89
stim 395 (26%) 357 (24%) 351 (23%) 90 89
stim1l0  postl 154 (10%) 154 (10%) 119 (8%) 100 77
post2 92 (6%) 92 (6%) 73 (5%) 100 79
stim 101 (7%) 95 (6%) 92 (6%) 94 91
stim05  postl 100 (7%) 82 (5%) 62 (4%) 82 62
post2 231 (15%) 214 (14%) 178 (12%) 93 77
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4.2.2 Real data

In this section, we describe the results obtained when applying UTE or MaxProb AC solutions
combined with Eber motion correction algorithm to real PET-MR data acquired on the Siemens mMR

Biograph system.

4.2.2.1 Notable specific case

The example of one subject of the study that showed important motion artefacts was employed to
illustrate the impact of motion artefacts on both image quality and TACs. With this example we
provide an indication about the effect of applying the Eber algorithm. Averages of dynamic PET
images, uncorrected and corrected for motion, are reported in Figure 63. Due to the motion, the
uncorrected image produced an effect of blurring in particular at the top of the head. Another
consequence of this motion artefact is the underestimation of PET uptake in the striatal regions,
compared to PET data corrected for motion. Figure 65 shows the BR curves across time for the given
subject. In the absence of motion correction (top), regional BR decreased after 30 minutes, whereas

the BR was recovered after applying Eber motion correction (bottom).
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Figure 63: [11C]raclopride bolus-infusion study over 110 minutes uncorrected (A) and corrected (B) for

motion. Mean images are shown. In both cases, MaxProb MRAC was applied.
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Figure 64: Motion estimation along the dynamic acquisition, for subject shown in Figure 63 (translation and

rotation parameters).
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Figure 65: Example of BR curves per ROI, for one subject with important motion before (top) and after Eber
motion correction (bottom). MaxProb AC was applied in both cases.

4.2.2.2 Quantitative results

Quantitative results are reported in Figure 66. In this figure, standard deviation of intra-regional BR
extracted in striatal regions (caudate and putamen) is given per time-interval and AC method. When
applying Eber motion correction, at baseline, the mean standard deviation over subjects and striatal
regions decreased from 1.23 to 1.09 for UTE and from 1.16 to 1.03 for MaxProb. Significant
improvement (p<0.001) produced by motion correction was seen for baseline and stim. Concerning
differences between MRAC methods, at baseline, no significant differences were found between UTE
and MaxProb, with or without Eber motion correction. At stim and post2, the BR standard deviation
was significantly (p<0.05) reduced with MaxProb, compared to UTE AC. For example, at post2, the BR
standard deviation was 1.65 for UTE_Eber, and 1.52 for MaxProb_Eber.

Overall, both MaxProb AC and Eber motion correction contributed jointly and individually to

decrease the intra-regional variance of regional BR.
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Figure 66: Boxplot of standard deviation of intra-regional BR, measured in all striatal regions, per time-
interval, and per AC method applied. *: p <0.05 with the Tukey HDS test. Significant statistical tests for
motion correction comparisons are indicated by brackets on the top of the graph, and significant statistical
tests for AC comparisons at the bottom of the graph.

4.3 Discussion

PET quantification

Quantitative evaluation obtained with simulated [“C]raclopride bolus-infusion PET data were
consistent with results based on real acquisitions of dynamic [**F]MPPF bolus PET data, shown in the
previous chapter. The MaxProb method obtained similar performance in both studies that were
based on two different PET tracers and targeted different ROIs due to the different specific tracer
binding patterns. In addition, a similar order of magnitude was reached on the error calculated for
the parameters estimated by kinetic modelling (i.e. BPyp and BR). Our results also demonstrate, as
suggested in Chapter 3, that UTE AC had similar behaviour to the SingleAtlas method: quantification
bias tended to be increased with time-dependent tracer spatial distribution. However, quantification
errors in the cerebellum with UTE were higher than those obtained with SingleAtlas, underlining
again the need for alternative AC approaches in dynamic PET-MR studies. Our study based on

simulated [*'C]raclopride PET data also permitted to confirm that motion artefacts did not explain
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our finding of time-dependent (i.e. tracer distribution-dependent) changes in PET quantification due
to the influence of the attenuation map. Indeed, while real data may suffer from head motion

artefacts, simulated data is motion- free.

Outliers

One subject of the simulation study had substantial quantification error in the cerebellum with both
MaxProb and UTE MRAC approaches. This bias had an important impact on BR modelling. The source
of bias in the cerebellum with MaxProb for the one outlier (regional error > 5%) was not completely
identified. The errors produced by UTE AC were even higher than MaxProb for this subject and more

extended to the posterior part of the brain Figure 59.

Simulated PET data

High variability was observed for A BR across all subjects obtained for a given condition, especially in
the labels from right hemisphere that did not undergo stimulation so they represent test-retest data
(Figure 60). In our simulation study, the same input TACs were used for all subjects (Figure 47 for the
placebo group and Figure 49 for the active group). The intra-condition variability was thus due to the
anatomical variability, PET noise integrated in the simulation process by PET-SORTEO, and partial
volume effect. Note that a factor of around 3 was identified between input TACs and TACs extracted

from simulated PET data that is explained by partial volume effect.

The mean A calculated across all subjects (placebo and active groups) at time-intervals stim and
post1 relative to baseline was generally positive, around 5% (Figure 60). However, in cases where no
stimulation was applied (placebo group and ROl in left hemisphere for active and placebo groups) a
null A was expected. The positive difference can be explained by the fact that BR curves that did not
completely reach the equilibrium at the baseline time-interval (minutes 30-40) so the BR at baseline

was inferior to BR at stim and post1 (see Figure 53).

In bolus-infusion protocols, an equilibrium state is aimed at, in which the activity reaches a constant
value, maintained until the end of the acquisition by a continuous administration of the tracer. In our

simulation study, curves used as input TACs for PET-SORTEO (Figure 47 and Figure 52) showed a

136



slight activity decrease at later time-intervals. Our input TACs were obtained from real PET/CT data,
so this small decrease reflected the behaviour obtained in real acquisitions. The main consequence of
having this small decrease was the negative A obtained in the placebo condition for the time-interval
post2 (Figure 60). Note that this phenomenon was largely compensated for in the difference of A

(Figure 61).

Our study employed an exponential expression to model the extracellular dopamine concentration
variation produced by an endogenous release (stimulation) and the displacement of PET tracer
observable in PET. Due to this exponential expression, the maximal amplitude of stimulation (5, 10
and 25%) did not last during the entire interval of the stim time-intervals. After the impulsion created
by stimulation, the exponential behaviour of our model produced an immediate start of the return to
equilibrium of TACs in the striatum. As a consequence, the variation of BR captured in the time-
interval (shown in Figure 61) was necessarily inferior to the maximal amplitude of stimulation of the

initial stimulation.

In this study, substantial and significant differences were found for BR and A computed at regional
level, between CT and UTE, in particular at later time-intervals (post2), whereas no significant
differences were found between CT and MaxProb. It is possible that the quantification errors found
for BR (especially with the UTE method see Figure 57) were partially cancelled out when computing
the A and also when comparing placebo and active groups, and thus slightly affect the A (Figure 60)
and the difference of A (Figure 61). Similar compensation of quantification errors have been shown
by Galazzo et al. (2016) in a PET-MR study assessing refractory focal epilepsy with [**F]JFDG and ASL.
Despite the quantification errors produced by the UTE AC, compared to CTAC, no differences were

found for z-scores of the asymmetry index between the two AC approaches.

Real PET-MR data

Ground truth CT was not available in this study. For this reason, the evaluation could only be based
on the intra-regional dispersion of BR values. The time-intervals used for the BR analysis were not
exactly the same between simulated and real data. This was due to the fact that the implementation
of both protocols evolved in parallel. In addition, real PET data between 40 and 45 minutes was not

analysed with the BR, but will be integrated in further work.
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We showed that both Eber and MaxProb (and the combination of both algorithms) improved PET
signal quality relative to no motion correction and UTE, respectively. This evaluation needs to be
continued when the study will be completed, to compare whether motion and attenuation
correction algorithms reduce BR variability within each group of subjects (placebo and active). In this
context, it will be interesting to investigate if the MRAC approach used has an impact on group

differentiation.

Limitations of the simple tissue-to-reference ratio kinetic modelling

Our analysis was based on the simple tissue-to-reference ratio. However, this approach seemed too
sensitive to the high levels of noise in regional TACs. A model that fits the data observed and that
searches for a possible effect of endogenous dopamine release on the PET signal (Normandin et al.,

2012) would be preferable to detect PET displacement.

4.4 Conclusion and perspectives

UTE produced high quantification bias on PET activities and simple tissue-to-reference ratios were
importantly affected, in particular at later time-intervals of the dynamic acquisition. Conversely,
accurate quantification was achieved with MaxProb and biases obtained on PET activity and BR were

very close to zero.

We showed that compared to the standard MRAC approach UTE, the MaxProb multi-atlas MRAC

enhanced sensitivity to detect physiological variations in a dynamic PET study.

To further investigate the sensitivity of MRAC methods in differentiating two groups of subjects, the
model proposed by Normandin et al. (2012) can be applied to a new set of simulated PET data and to
the tDCS PET-MR study. The simulations will be based on the analytic expression of ligand exchange
between compartments of plasma, tissue and specific binding in region of interest and region of
reference. The release of endogenous dopamine will be modelled with gamma functions. In this
context, we will test several times of endogenous release to see whether a late stimulation is more
impacted by UTE inaccuracies in the later frames of the dynamic acquisition. The parameters

estimated by the Ip-ntPET algorithm will be compared for each AC approach.
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Used singly and together, Eber motion correction and multi-atlas MaxProb AC contributed to reduce
the intra-regional variance of BR. Further work will investigate the sensitivity gain generated by the
proposed methods in stimulation conditions aiming to evoked extracellular dopamine concentration
variation by contrasting groups receiving an active or placebo stimulation. In addition, it will be
interesting to correlate variations detected in the PET signal with the MRI data: anatomical and

functional connectivity (DTl and BOLD fMRI) and brain activity (ASL).
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General conclusion

To address the question of brain AC for PET-MR, | have achieved a multi-atlas procedure that
generates a subject-specific ui-map. The proposed solution only requires a T1-weighted MRI of the

subject, commonly acquired in clinical and research protocols, and a database of atlases.

The MaxProb method permitted generating pseudo-CT images with high accuracy and the bias of
static PET quantification was reduced to less than 2%. In an independent multi-centric study
published by Ladefoged et al. (2016), MaxProb also obtained very good results and was among the
top three of eleven techniques proposed in the literature. In addition, we were the first to
demonstrate in the brain that an inaccurate attenuation correction map combined with
inhomogeneous spatial tracer distribution can lead to a non-constant bias of the activity measure
across time. MaxProb multi-atlas AC is not affected by this phenomenon. Accurate quantification was
also achieved with MaxProb on physiological parameters estimated from kinetic modelling, even
when cerebellum was used as reference region. This will matter in research practice: From our
simulation study we showed that compared to a standard approach (UTE), MaxProb multi-atlas

MRAC enhanced sensitivity to detect physiological variations in a dynamic PET study.

Our initial goal to reduce PET quantification errors to less than 5% in PET-MR systems has been
reached. The MaxProb software is starting to be distributed to other centres for academic
collaborations, opening the way for a common MRAC method for dynamic PET studies on hybrid PET-

MR systems.

Advantages of the new method

Our multi-atlas method MaxProb has the advantage of only needing a T1 MR image of the subject to
compute its p-map. This is interesting compared to methods that use other specific MR contrasts
such as Dixon or UTE. First, because of the gain in acquisition time and second, due to the possibility
to apply MaxProb to PET data acquired on other systems that cannot provide Dixon or UTE
sequences, such as PET alone scanners (Oncovision, http://oncovision.com/caremibrain/) in which

case a simple T1 could be acquired on a traditional MRI scanner in the context of a standard clinical
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acquisition and coregistered post hoc, whereas UTE or Dixon contrasts are not usually acquired and

not even available on some MRI systems.

Another benefit of the multi-atlas concept is its extensibility to children, and also to non-human

species used in PET research such as non-human primates and cats, as | have suggested in chapter 2.

General limitations and future work

As previously mentioned, subjects with unusual anatomy that deviates too much from the norm
represented by the MR-CT atlas pairs will not be well managed by the multi-atlas technique (e.g.
post-operative skull defects, very large sinuses). To potentially overcome this issue, several strategies
have been presented at the end of chapter 2 that consist in the combination of subject-specific

anatomical information extracted from the MRI with the output of the multi-atlas technique.

Another point to consider is the limit of the CTAC used as reference method to assess new MRAC
approaches. Even if the CT has been considered as the reference AC method by the scientific
community, it is important to keep in mind that CT does not directly measure PET 511 keV photon
attenuation by the tissues, and that an energy conversion needs to be applied. The mathematical
relationship used for this conversion has been determined empirically and presents approximations
(Burger et al., 2002). In addition, the linear conversion approach used defers from one constructor to
another (Siemens vs. GE). To overcome this problem, PET simulation can be used, in which the true
activity is known. My work in chapter 4 has partly addressed the problem, but did still use
attenuation phantoms with discrete values. PET-SORTEO upgrades are necessary for permitting the

use of continuous attenuation coefficients.

While our work so far has indicated that common anatomical or post-surgical variants have limited
impact on brain PET quantification with MaxProb, further work should assess in detail the robustness
of the multi-atlas approach. This will include testing subjects with specific anatomies such as large
frontal sinuses, post-operative cases, subjects with low-quality images and children that may not be

well represented by our atlas database.

Another axis of future investigation concerns the variability between two CT images of the same

subject (test/retest data) compared to the variability between the real CT and the pseudo-CT
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computed with the MaxProb multi-atlas approach. In parallel, the variability and reproducibility of p-

maps derived from the UTE will be studied.

The path to quantitative simultaneous PET-MR in neuroscience

In this last year, new studies and protocols have been proposed to better understand brain function
and new applications have been identified (Sander et al., 2015; Villien et al., 2014; Wey et al., 2014).
In addition to PET-MR bi-modality, some teams have recently worked on the combination of PET-MR
with EEG (Neuner et al., 2015; Shah et al., 2012) to widen the range of parameters that can be

assessed simultaneously.

Simultaneous PET-MR studies aim at highlighting small variations of PET signal (or kinetic parameters
modeled from PET data) and thus require accurate AC that does not produce spatially variant bias
(Galazzo et al., 2016). Now that accurate MRAC has been achieved with multi-atlas solutions
(Ladefoged et al., 2016), more innovative brain PET-MR protocols can be developed to investigate
physiological mechanisms, and in particular neurovascular coupling of the neurochemical brain at

work.

My work forms part of studies which will now enable interesting developments in the domain of
multi-modal analyses to integrate the complementary but simultaneous information derived from
PET and MR (and sometimes EEG). The final aim could be a full understanding of spatio-temporal

relationships between connectivity, neurotransmission, and neural activity.
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Appendix

State-of-the-art in PET-MR attenuation correction
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Table 10: Abbreviation list of the 83 regions used in the ROI evaluation based on the Hammers_mith atlases
(www.brain-development.org / Hammers et al. 2003, Gousias et al. 2008), with cerebellar vermis added

Abbreviation
Hippocampus_r
Hippocampus_|
Amygdala_r
Amygdala_|
Ant_TL_med_r
Ant_TL_med_|
Ant_TL_inf_lat_r
Ant_TL_inf_lat_|
G_paraH_amb_r
G_paraH_amb_|
G_s_t cent_r
G_s_t_cent_|
G_tem_midin_r
G_tem_midin_|
G_occtem_la_r
G_occtem_la_|
Cerebellum_r
Cerebellum_|
Brainstem
Insula_|l

Insula_r
OL_rest_lat_|
OL_rest_lat_r
G_cing_a_s_|
G_cing_a_s_r
G_cing_p_|
G_cing_p_r
FL_mid_fr_G_I
FL_mid_fr_G_r
PosteriorTL_|
PosteriorTL_r
PL_rest_|
PL_rest_r
CaudateNucl_|

CaudateNucl_r

Complete name

Hippocampus (right)

Hippocampus (left)

Amygdala (right)

Amygdala (left)

Anterior temporal lobe, medial part (right)
Anterior temporal lobe, medial part (left)
Anterior temporal lobe, lateral part excluding superior temporal gyrus (right)
Anterior temporal lobe, lateral part excluding superior temporal gyrus (left)
Parahippocampal and ambient gyri (right)
Parahippocampal and ambient gyri (left)
Superior temporal gyrus, central part (right)
Superior temporal gyrus, central part (left)
Middle and inferior temporal gyrus (right)
Middle and inferior temporal gyrus (left)
Fusiform (lateral occipitotemporal) gyrus (right)
Fusiform (lateral occipitotemporal) gyrus (left)
Cerebellum (right)

Cerebellum (left)

Brainstem

Insula (left)

Insula (right)

Lateral remainder of occipital lobe (left)
Lateral remainder of occipital lobe (right)
Cingulate gyrus, anterior part (left)

Cingulate gyrus, anterior part (right)

Gyrus cinguli, posterior part (left)

Gyrus cinguli, posterior part (right)

Middlle frontal gyrus (left)

Middlle frontal gyrus (right)

Posterior temporal lobe (left)

Posterior temporal lobe (right)

Inferiolateral remainder of parietal lobe (left)
Inferiolateral remainder of parietal lobe (right)
Caudate nucleus (left)

Caudate nucleus (right)
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NuclAccumb_|
NuclAccumb_r
Putamen_|
Putamen_r
Thalamus_|
Thalamus_r
Pallidum_|
Pallidum_r
Corp_Callosum
LatVent_excl_TH_r
LatVent_excl_TH_|I
TemporaHorn_r
TemporaHorn_|
ThirdVentricl
FL_precen_G_|
FL_precen_G_r
FL_strai_G_|I
FL_strai_G_r
FL_OFC_AOG_|
FL_OFC_AOG_r
FL_i_fr_G_|I
FL_i_fr_ G_r
FL_s_fr_G_|I
FL_s_fr_ G_r
PL_postce_G_|
PL_postce_G_r
PL_s_pa_G_|
PL_s_pa_G_r
OL_ling_G_|
OL_ling_G_r
OL_cuneus_|
OL_cuneus_r
FL_OFC_MOG_|
FL_OFC_MOG_r
FL_OFC_LOG_I
FL_OFC_LOG_r
FL_OFC_POG_I
FL_OFC_POG_r

Nucleus accumbens (left)
Nucleus accumbens (right)
Putamen (left)

Putamen (right)

Thalamus (left)

Thalamus (right)

Pallidum (left)

Pallidum (right)

Corpus callosum

Lateral ventricle (excluding temporal horn) (right)
Lateral ventricle (excluding temporal horn) (left)
Lateral ventricle, temporal horn (right)

Lateral ventricle, temporal horn (left)

Third ventricle

Precentral gyrus (left)
Precentral gyrus (right)
Straight gyrus (left)

Straight gyrus (right)
Anterior orbital gyrus (left)
Anterior orbital gyrus (right)
Inferior frontal gyrus (left)
Inferior frontal gyrus (right)
Superior frontal gyrus (left)
Superior frontal gyrus (right)
Postcentral gyrus (left)
Postcentral gyrus (right)
Superior parietal gyrus (left)
Superior parietal gyrus (right)
Lingual gyrus (left)

Lingual gyrus (right)

Cuneus (left)

Cuneus (right)

Medial orbital gyrus (left)
Medial orbital gyrus (right)
Lateral orbital gyrus (left)
Lateral orbital gyrus (right)
Posterior orbital gyrus (left)

Posterior orbital gyrus (right)
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S_nigra_|

S_nigra_r
Subgen_antCing_|
Subgen_antCing_r
Subcall_area_|
Subcall_area_r
Presubgen_antCing_|
Presubgen_antCing_r
G s t al

Gstar

Vermis

Substantia nigra (left)

Substantia nigra (right)

Subgenual frontal cortex (left)

Subgenual frontal cortex (right)

Subcallosal area (left)

Subcallosal area (right)

Pre-subgenual frontal cortex (left)
Pre-subgenual frontal cortex (right)

Superior temporal gyrus, anterior part (left)
Superior temporal gyrus, anterior part (right)

Vermis
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Comparison to other multi-atlas approaches

In a preliminary work (Merida et al., 2015), we compared our MaxProb approach to other multi-atlas
techniques. For this, we implemented two simplified variants (Best10 and Average) of the solution
described in Burgos et al. (2014). In the Best10 method, the registered atlases are ranked by local MR
intensity similarity as measured by the normalized cross-correlation and the 10 top-ranked atlases
are then fused via simple (non-weighted) averaging of HU values. In the Average method, fusion is
performed by non-weighted averaging of all registered CTs of the database. The influence of the

number of atlases fused in pseudo-CT generation was studied.

We assessed the influence of the number of atlases fused on pseudo-CT accuracy (Jaccard index),
fusing increasing numbers of atlases ranked by similarity as in the Best10 method. Figure 4 shows the
mean Jaccard (in %) obtained for bone, air and soft tissue, depending of the number of atlases fused.
We found that for all tissues, the number of atlases to fuse that produced maximal overlap was
around ten (Figure 67). Above this optimal number, the accuracy decreased, echoing the results
reported by Aljabar et al. (2009) for regional brain segmentations. The right endpoint in the curves
(39 atlases) corresponds to the Average method, in which all atlases in the database are selected.
The first point corresponds to the best atlas in the ranking, per voxel, and gave better performance

than the SingleAtlas method introduced in Chapter 2, thanks to the selection process at the voxel

level.
Air Soft tissue Bone
/ T — | ‘/,' '7’_.7"""""»”4,,. . p S e T -
56.0- e 590 T 780 1=
o I ES) { §S) I
(] c88.5 ©75.0
354.0 3 3
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iy T88.0 Ly
j | 73.0
52.0-] 87.5: |
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Figure 67: Pseudo-CT accuracy (mean Jaccard, in %) depending of the number of atlases fused. Note the

different scales for the y axis.
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Supplemental figures for Chapter 4
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Figure 68: Mean absolute bias over time for the PET frames across subjects for UTE and MaxProb MRAC

methods, i.e. during the 100-minute [HC]RacIopride PET acquisition, for striatal regions and cerebellum.
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Figure 69: Mean absolute bias over time for the BR estimated from simple tissue-to-reference model with

cerebellum as reference region, across subjects for UTE and MaxProb MRAC methods.
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Figure 70: BR between baseline and other time-intervals, A (in %), per stimulation condition, for the CT, UTE
and MaxProb AC methods. Results are shown for the placebo group (n=11) and the active group (stim05,

stim10 and stim25) (n=10).
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ARTICLE INFO ABSTRACT

Keywords: Aim: To accurately quantify the radioactivity concentration measured by PET, emission data need to be
Attenuation correction corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values,
PET/MRI making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-
Brain

implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed
in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and
reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-
implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold
standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-
based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature,
and identify the ones suitable for clinical use.

Methods: In total, 11 AC methods were evaluated: two vendor-implemented (MR-ACpixon and MR-ACyrg),
five based on template/atlas information (MR-ACgsrgpone (Koesters et al., 2016), MR-AConrario (Anazodo
et al,, 2014), MR-ACgoston (Izquierdo-Garcia et al., 2014), MR-ACyc;, (Burgos et al., 2014), and MR-
ACyaxpros (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-
ACypaa (Benoit et al., 2015)), and three based on image-segmentation (MR-ACyynicu (Cabello et al., 2015),
MR-ACcar-ripr (Juttukonda et al., 2015), and MR-ACrgsorure (Ladefoged et al., 2015)). We selected 359
subjects who were scanned using one of the following radiotracers: [\*F]FDG (210), [*!C]PiB (51), and [**F]
florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally,
with a special focus on robustness and outlier analysis.

Results: The average performance in PET tracer uptake was within + 5% of CT for all of the proposed methods,
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with the average + SD global percentage bias in PET FDG uptake for each method being: MR-ACpxon (-11.3
3.5)%, MR-ACyrg (-5.7 + 2.0)%, MR-AConrario (—4.3 £ 3.6)%, MR-ACyunicn (3.7 + 2.1)%, MR-ACypaa (1.9
+2.6)%, MR-ACspcrong (~1.7 + 3.6)%, MR-ACycr, (0.8 + 1.2)%, MR-ACcag_ring (~0.4 £ 1.9)%, MR-AChiaxpron
(-0.4 £ 1.6)%, MR-ACgoston (—0.3 + 1.8)%, and MR-ACggsorure (0.3 £ 1.7)%, ordered by average bias. The
overall best performing methods (MR-ACgoston, MR-ACymaxpros, MR-ACrgsorure and MR-ACycy, ordered
alphabetically) showed regional average errors within +3% of PET with CT-AC in all regions of the brain with
FDG, and the same four methods, as well as MR-ACcag-ripr, Showed that for 95% of the patients, 95% of brain
voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained
with PiB and florbetapir.

Conclusions: All of the proposed novel methods have an average global performance within likely acceptable
limits (+ 5% of CT-based reference), and the main difference among the methods was found in the robustness,
outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-
ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the
number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and
MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if
processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs
well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a
key factor, this vendor-provided solution currently outperforms most methods. With the performance of the
methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult
brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the

quantification reproducibility in PET imaging.

1. Introduction

Positron emission tomography/magnetic resonance imaging (PET/
MRI) combines the powerful and functional imaging of PET for
assessment of patients in oncology (Hillner et al., 2008) and neurology
(Heiss, 2009) with MRI's excellent soft-tissue characterization, con-
trast, and power to provide additional functional information like
perfusion and diffusion. A likely key clinical application of simulta-
neous PET/MRI is in neurological disorders, in particular in dementia
(Bailey et al., 2015; Drzezga et al., 2014; Dukart et al., 2011). In order
to accurately quantify the radioactivity concentration measured by
PET, emission data need to be corrected for photon attenuation.

Currently, two fully integrated simultaneous whole-body human
PET/MRI systems are commercially available: the Biograph mMR
(Siemens Healthcare GmbH, Erlangen, Germany) and the Signa PET/
MRI (GE Healthcare, Waukesha WI, USA). The vendor-implemented
attenuation correction (AC) method in the Signa PET/MRI system is
based on an atlas of MRI/CT pairs used to derive the approximate size
and location of bones and air cavities (Wollenweber et al., 2013) but is
yet to be fully evaluated on a large patient cohort (Sekine et al., 2016a).
Two AC-methods are implemented in the Biograph mMR system. They
are both segmenting the MR image into tissue classes: the two-point
Dixon-Water-Fat sequence (Dixon) based on Martinez-Moller et al.
(2009), which can lead to underestimation of PET tracer uptake near
the skull (Andersen et al., 2014), and the ultrashort echo time sequence
(UTE), based on a similar acquisition method as Catana et al. (2010)
and a different segmentation method based on a voxel-based classifier,
which is challenged by remaining segmentation errors in the skull base
and near the frontal sinuses (Dickson et al., 2014). A third, atlas-based
AC method is currently being developed (Koesters et al., 2016; Paulus
et al., 2015).

To further improve the quantitative accuracy, a number of methods
have been proposed in the literature. These can be categorized into
three types: template/atlas-based, segmentation-based, and recon-
struction-based. The template/atlas-based methods create a pseudo-
CT image by co-registering database-subjects to a patient's MR image.
The atlas or template can be based on pairs of CT and dual UTE (Delso
et al., 2014b; Roy et al., 2014), CT and anatomical MRI (Dixon, T1,
and/or T2-weighted sequences) (Anazodo et al., 2014; Andreasen et al.,
2015; Burgos et al., 2014; Izquierdo-Garcia et al., 2014; Merida et al.,
2015; Schreibmann et al., 2010; Sekine et al., 2016a; Torrado-Carvajal
et al., 2016). Some methods also use probabilistic measures or machine
learning techniques to compare with an atlas or template (Chan et al.,
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2013; Chen et al., 2015; Hofmann et al., 2008; Johansson et al., 2011;
Navalpakkam et al., 2013; Poynton et al., 2014; Yang et al., 2013).
Alternatives to template/atlas-based methods are the segmentation-
based methods, which derive attenuation maps purely from MR
images. These methods usually segment the T1 (Fei et al., 2012;
Zaidi et al., 2003) or UTE images (Cabello et al., 2015; Catana et al.,
2010; Juttukonda et al., 2015; Ladefoged et al., 2015) into multiple
tissue classes, each assigned a mean linear attenuation coefficient
(LAC). Furthermore, a number of UTE-based methods calculate a
patient specific bone density (Cabello et al., 2015; Juttukonda et al.,
2015; Ladefoged et al., 2015) using the normalized logarithmic
difference between the UTE images ( R} map) (Keereman et al.,
2010). A number of methods also exist employing special MRI
sequences with modified sampling schemes using either short echo
time (STE)/Dixon (Khateri et al., 2015) or improved UTE sequences,
using point-wise encoding time reduction with radial acquisition
(PETRA) (Grodzki et al., 2012), using zero TE (ZTE) (Wiesinger
et al., 2016), or using triple UTE (Aitken et al., 2014; Berker et al.,
2012; Su et al., 2015). Finally, maximum-likelihood reconstruction-
based methods, where activity and attenuation are simultaneously
reconstructed based on maximum-likelihood (Nuyts et al., 1999), using
either time-of-flight information (TOF) (Mehranian and Zaidi, 2015;
Rezaei et al., 2012, 2014; Salomon et al., 2011) or non-TOF informa-
tion using MR-priors (Benoit et al., 2015), are yet to be evaluated for
PET/MRI-brain applications. The methods using TOF would currently
be limited to the Signa PET/MRI system or the sequential Ingenuity TF
PET/MRI system (Philips Healthcare, Cleveland, OH) (Zaidi et al.,
2011). However, recently, a TOF-based MLAA implementation failed
to show additional benefit for attenuation correction in PET/MR
imaging compared to a robust atlas-based method (Mehranian et al.,
2016).

The proposed methods demonstrate improvements compared to
the currently vendor-implemented AC, and many studies report
deviations in PET uptake after AC of only a few percent from a gold
standard CT-AC; or conclude that the methods are ready for clinical use
on the basis of quantitative accuracy (Burgos et al., 2014; Izquierdo-
Garcia et al.,, 2014; Ladefoged et al., 2015). There are publications
indicating the desire for more accuracy in PET brain attenuation
correction (Andersen et al., 2014; Dickson et al., 2014; Hitz et al.,
2014), but whether the problem of AC has been solved fully is still
debatable (Bailey et al., 2015).

There is currently no consensus on a method for summarizing
evaluations, and this lack of standardization of metrics makes direct
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comparisons across the published AC methods difficult. The methods
rely on different gold/silver standards or make use of cohorts with
different diseases or imaging tracers. The cohorts are of varying sizes,
from 5 (Navalpakkam et al., 2013) to 92 subjects (Juttukonda et al.,
2015), which might not be enough to ensure robustness and capture
potential outliers in a clinical setting.

In this work, we present the performance of prototype methods
within a multi-centre study, which include:

e A large patient cohort (n=359) who were scanned with three
different  radiotracers ([lgF]ﬂuoro-D—glucose (FDG), [''C]
Pittsburgh-compound-B (PiB), and ['®F]florbetapir), allowing for
detailed evaluation of outliers and robustness.

Patients recruited from clinical populations with established or
emerging clinical indications for both PET and MRI, and therefore
well-suited for evaluating regional effects of brain MR-AC.

A unified comparison between 11 PET/MRI brain AC methods using
identical metrics and a common CT-based reference: two vendor-
implemented (Dixon and UTE), five based on template/atlas-based
information (Anazodo et al., 2014; Burgos et al., 2014; Izquierdo-
Garcia et al., 2014; Koesters et al., 2016; Merida et al., 2015), one
based on simultaneous reconstruction of attenuation and emission
(Benoit et al., 2015), and three based on image-segmentation
(Cabello et al., 2015; Juttukonda et al., 2015; Ladefoged et al.,
2015).

The methods were assessed both globally and regionally using
multiple metrics, including a detailed robustness and outlier analysis
across the whole patient group. We also compared the methods by
assessing the time that was required to execute the methods, referring
to the actual run-time and scan-time of the corresponding sequences.
While time may not be of high importance in a research setting, a
clinical setup may demand high requirements for this factor in order to
provide a timely diagnosis and acceptable patient management and
throughput. The aim of this study was to evaluate the proposed
methods and identify the ones suitable for clinical use by performing
a unified quantitative evaluation.

2. Materials and methods

All patient studies were performed using a fully-integrated PET/
MRI system (Siemens Biograph mMR, Siemens Healthcare, Erlangen,
Germany) (Delso et al., 2011). For the purpose of obtaining a reference
low-dose CT image of the head, whole-body PET/CT systems were used
(Biograph TruePoint 40 and Biograph TruePoint 64, Siemens
Healthcare) (Jakoby et al., 2009).

2.1. Patients

Data sets were obtained retrospectively from two different centers;
Rigshospitalet, University Hospital Copenhagen, Denmark, and
Washington University, St. Louis, United States of America. The
Rigshospitalet data were comprised from data sets from the complete

Table 1
Patient information.
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cohort of patients referred for a clinical FDG PET/MRI brain examina-
tion, either in neuro-oncology or dementia, as well as the complete
cohort of subjects having undergone PiB PET/MRI examinations.
These cohorts included healthy subjects and patients with mild
cognitive impairment (MCI), Alzheimer's disease (AD), or clinical
dementia. In total, 210 subjects with FDG PET/MRI scans (5 healthy
volunteers, 4 neuro-oncological patients, 201 MCI, AD or clinical
dementia patients) and 51 subjects scanned with PiB (1 healthy
volunteer, 50 MCI, AD or clinical dementia patients) were consecu-
tively selected between November 2013 and April 2015. From
Washington University, data sets were obtained from 98 subjects
referred for a florbetapir examination (3 very mild dementia, 95 MCI
or clinical dementia patients).

Of a total of 359 PET/MRI brain studies from the two centers, 22
studies were excluded (9 FDG, 3 PiB and 10 florbetapir). Exclusion was
due to metal implant-induced artifacts in the brain images (3 subjects)
or data errors due to corruption or missing raw-data (19 subjects)
leaving 337 studies available for analysis. The local ethics committees
had approved the original studies and all patients gave informed
consent.

2.2. Imaging protocol

2.2.1. PET

The PET scan information is given in Table 1. Patients were
positioned head first with their arms down on the fully-integrated
PET/MRI system. Data were acquired over a single bed position of
25.8 em covering the head and neck for 10/20/15 min for FDG/PiB/
florbetapir respectively (Table 1 for initiation of scan). For the purpose
of this study, the PET data from the PET/MR acquisition were
reconstructed using 3D  Ordinary Poisson-Ordered Subset
Expectation Maximization (OP-OSEM) with 4/3/4 iterations, 21 sub-
sets, and 3/5/5 mm Gaussian post filtering for FDG/PiB/florbetapir,
respectively, on 344x344 matrices (2.1x2.1x2.0 mm® voxels) in line
with the respective clinical protocols.

2.2.2. MRI

The scan protocol included two-point Dixon images using the
vendor-provided DIXON-VIBE AC sequence with repetition time
(TR)/echo time 1 (TE1)/echo time 2 (TE2)=2300/1.23/2.46 ms, flip
angle 10°, coronal orientation, voxel size of 2.6x2.6x3.12 mm®, 19 s
acquisition time; a UTE AC sequence with TR/TE1/TE2=11.94/0.07/
2.46 ms, a flip angle of 10°, axial orientation, field of view (FOV) of
300 mm?, reconstructed on 192x192x192 matrices (1.6x1.6x1.6 mm®
voxels), 100s acquisition time; and a Tlw MPRAGE with TR/
TE=1900/2.44 ms (FDG/PiB) and 2300/2.95 ms (florbetapir), inver-
sion time=900 ms, flip angle=9°, sagittal orientation, reconstructed on
512x512x192 matrices (0.49x0.49x1 mm® voxels) (FDG/PiB) and
256x240x176 matrices (1.05x1.05x1.2 mm® voxels) (florbetapir),
300 s acquisition time. The patients injected with FDG or PiB were
all imaged using the software version VB20P, whereas those injected
with florbetapir were imaged with VB18P, which included a work-in-
progress version of the UTE sequence. Due to the difference in version

Tracer Originating center N (fat/water Male/ Age (min-max) Injected tracer (+SD) in MBq Scan start p.i. (min-
inverted) Female in years max) in min
["*FIFDG Rigshospitalet, Copenhagen 201 (9) 108/93 68 (23-96) 203 (+20) 51 (24-134)
Denmark
[''CIPiB Rigshospitalet, Copenhagen 48 (1) 2424 68 (39-85) 426 (+75) 43 (37-100)
Denmark
[*®F)florbetapir ~ Washington University, North 88 (3) 21/67 71 (41-91) 353 (+30) 0n=75, or 52 (49-60)

Carolina, USA

n=13

p.i.: post injection.
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Fig. 1. Attenuation correction images for a sample patient that minimizes the difference of the overall brain error to the median error across all methods. (A) CT, (B) Dixon, (C) UTE,
(D) Segbone, (E) Ontario, (F) Boston, (G) UCL, (H) MaxProb, (I) MLAA, (J) Munich, (K) CAR-RiDR, (L) RESOLUTE.

numbering, mainly expressed in the UTE sequences, the tracers were
evaluated separately.

223. CT

Alow dose CT (120 kVp, 36 mAs, 74 slices, 0.6x0.6x3 mm? voxels)
was acquired from each patient to be used as gold standard. The CT
images were acquired either on the same day as the PET/MRI

Table 2

examination (FDG and PiB) or within 8.3 + 6 days of each other with
no surgical procedures in between (florbetapir).

2.3. Creating the attenuation maps

In all, nine proposed MR-AC methods were selected for evaluation.
These were selected to be representative of the three major types of

Jaccard distance for overlap with bone (u>0.101 cm™) segmented from MR-ACcr shown for each method and tracer. Results are shown for full head and further subdivided into top
and bottom representing the area above and below the eyes. The best results are highlighted in bold. Note the Dixon method is left out due to there not being any bone present.

FDG PiB Florbetapir

Full Top Bottom Full Top Bottom Full Top Bottom
UTE 0.56 +0.06 0.62+0.10 0.51+0.05 0.57 £0.06 0.65 +0.09 0.51+0.04 0.32+0.07 0.38+£0.12 0.27 +0.04
Segbone 0.54 +0.04 0.63 +0.07 0.48 +0.04 0.56 +0.03 0.65 +0.04 0.49 £0.03 N/A N/A N/A
Ontario 0.60 +0.04 0.74 +0.05 0.52+0.05 0.60 +0.05 0.73 £0.07 0.52+£0.04 0.63 +0.05 0.75+0.07 0.55 +0.04
Boston 0.74 +0.06 0.79+£0.08 0.69 +0.07 0.78 £0.04 0.83+0.05 0.73+0.04 0.78 +0.03 0.81+0.06 0.75 +0.03
UCL 0.80 +0.04 0.83+0.05 0.77 +0.05 0.80 +0.04 0.83+0.05 0.78 +0.04 0.82+0.03 0.85 +0.04 0.80+0.03
MaxProb 0.81+0.04 0.85 £ 0.05 0.77 £ 0.04 0.82+0.02 0.84 +£0.04 0.79 £0.03 0.80 +£0.03 0.83+£0.04 0.78 +£0.03
MLAA 0.59 +0.07 0.67+0.09 0.53 +0.06 0.51+0.07 0.60 +0.09 0.44 +£0.06 0.36 +0.09 0.37+0.15 0.35+0.05
Munich 0.72£0.04 0.85+0.05 0.63 +0.05 0.73 £0.04 0.86 +0.05 0.64+0.04 0.72+0.03 0.85+0.04 0.63 +0.04
CAR-RiDR 0.50 +0.07 0.62 +0.09 0.40 +0.06 0.50 +0.06 0.62+0.08 0.41+0.06 0.46 +0.06 0.60 +0.09 0.36 +0.05
RESOLUTE 0.68 +0.04 0.85 +0.04 0.56 +0.04 0.69 +0.03 0.84+0.04 0.58+0.04 0.68 +0.03 0.85+0.03 0.54+0.04
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Fig. 2. PET images for a sample patient that minimizes the difference of the overall brain error to the median error across all methods. (A) CT, (B) Dixon, (C) UTE, (D) Segbone, (E)
Ontario, (F) Boston, (G) UCL, (H) MaxProb, (I) MLAA, (J) Munich, (K) CAR-RiDR, (L) RESOLUTE.
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Fig. 3. Global performance of all methods for the FDG patients (n=201, including
patients with fat/water tissue inversion). The median (red line), 25th and 75th
percentiles (box), 1.5*IQR (whiskers), outliers (red dots), mean and SD are shown for
each method. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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MR-AC categories (template/atlas-based, segmentation-based, and
reconstruction-based), and had to be applicable to the Siemens mMR
data available. Furthermore, they should be implemented on a central
site (Copenhagen). Twelve attenuation maps were created. First,
vendor-provided MR-based attenuation maps (MR-ACpixox and MR-
ACyrg) were derived using the DIXON VIBE sequence and the UTE
MR sequence. Next, the nine proposed brain MR-AC methods were
used. A brief introduction of each method is given below. We refer to
the original publications for detailed explanations. Finally, for each
subject, the CT image was co-registered to the T1 image using a 6-
parameter rigid alignment procedure (minctracc, McConnell Imaging
Center, Montreal, Canada) with normalized mutual information as
objective function. The patient bed and head-holder were extracted
manually from the CT images using an oval ROI (OsiriX software)
applied to each transverse CT slice. The attenuation values were then
converted from HUs to LACs at 511 keV by using a standard bi-linear
scaling approach (Carney et al., 2006) as implemented in the Siemens
PET/CT systems used. The co-registered CT attenuation map was
substituted into the UTE attenuation file (MR-ACcr) to facilitate use of
routine reconstruction. We blurred the resulting image with a 4 mm
Gaussian filter to simulate PET/CT reconstructions. Due to the limited
coverage in the neck region by the acquired CT, we replaced the
missing area by the values from MR-ACpixon. To ensure a fair
comparison, this replacement was also performed in all the other
attenuation maps.

All attenuation maps, except for MR-ACpxon, were created in the
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image space defined by the method, and post-resampled and placed
into the UTE file just as the reference CT. Since the CT image was co-
registered to the T1 image, we also co-registered the Dixon and UTE
images to the T1 image, and aligned the MR-AC maps of the methods
defined using either of these.

All of the methods presented in this study, except for two, had been
made available and were processed in Copenhagen. The MR-
ACsggpone attenuation maps were created by Siemens, and MR-
ACycy, attenuation maps were created in London, as the CT/MRI
database could not be shared at the time of this study.

2.3.1. Template/Atlas-based methods (Segbone, Ontario, Boston,
UCL, MaxProb)

e Siemens Healthcare GmbH - Segbone: The prototype method
by Siemens Healthcare (Koesters et al., 2016; Paulus et al., 2015) is
a template-based method, where an MR model image of the skull
region is non-rigidly registered to an individual subject exclusively
on the Dixon input images. A pre-aligned skull mask is then brought
to subject space, and attenuation values greater than soft-tissue are
superimposed on the original Dixon attenuation map. This method
is still a work-in-progress. The attenuation map is denoted MR-
ACsEGBONE-

e London Ontario: The method by Anazodo et al. (2014) uses the

SPMS8 function ‘new segment’ to extract a bone probability map

from each individual's T1 MPRAGE image. The bone map defined by

voxels with probability above 80% are, following a post-processing
procedure, superimposed on MR-ACpixon and assigned the con-
stant value 0.143 cm™!. The resulting attenuation map is denoted

MR-AConrarIO-

Boston MGH: The method by Izquierdo-Garcia et al. (2014) also

uses SPM8 to extract patient specific tissue probability maps from

the individual's intensity normalized T1 MPRAGE image and

register these to a template of co-aligned probability maps of 15

subjects. The averaged corresponding CT template is then back-

warped to patient space, converted to LACs, blurred with a 4 mm

Gaussian filter, and used as the template-based AC map MR-

ACgoston-

e London UCL: The method by Burgos et al. (2014) non-linearly
aligns a database of 41 T1-CT pairs to the intensity-normalized T1
image of a patient. At each voxel, a patch is extracted and the local
normalized correlation coefficient is calculated between the patient
T1 and each of the T1 images in the database. A weighting vector is
calculated from the coefficients ranking each T1-CT pair relative to
the other pairs, and used to obtain a target CT voxel value. The
resulting synthesized CT image is converted to LACs, blurred with a
4 mm Gaussian filter, and denoted MR-ACycy.

® Lyon - MaxProb: The method by Merida et al. (2015) is similar to
Burgos et al. (2014) by also aligning a database of 27 T1-CT pairs to
an intensity normalized T1 MPRAGE image of a patient, but
deviates in the method used to combine the database into a target
CT image. The authors discretize the CT images into air, soft tissue
and bone voxels, calculate the modal tissue type across the database,
and assign the mean of the CT values from the database subjects
with that tissue type to the voxel. The final fused image is converted
to LACs, blurred with a 4 mm Gaussian filter, and denoted MR-
ACpwmaxprob-

2.3.2. Maximum-likelihood reconstruction-based

e Copenhagen - MLAA: The method by Benoit et al. (2015) is a
reconstruction-based method aimed at optimizing the existing non-
TOF MLAA technique. The method uses the individual's MR-ACyrg
and a discretized version of the individual's T1 image as prior
information to the MLTR algorithm. A heuristically determined
schema assigns the value for a; based on the two prior images, as
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well as the update term calculated in each MLTR iteration step. The
final image of the MLAA algorithm is denoted MR-ACypaa.

2.3.3. Segmentation-based (Munich, CAR-RiDR, RESOLUTE)

® Munich: The method by Cabello et al. (2015) uses the individual's

UTE TE1 and TE2 images to extract air, soft tissue as well as the

bone signal, which is extracted using R, and scaled to LACs by

normalizing to the maximum intensity and thresholding using an
empirically chosen value. The intensity of the bone voxels from the

R, map are equalized by the mean and maximum values from a CT-

based database. The resulting image is blurred with a 3 mm

Gaussian filter, and denoted MR-ACyunich-

University of North Carolina - CAR-RiDR: The method by

Juttukonda et al. (2015) also uses the individual's UTE TE images to

extract air, soft tissue and R, signal. By fitting a sigmoid-best-fit to

a set of 98 R,-CT relationship pairs, the authors convert the

measured R, signal to a continuous CT value. The resulting image

is denoted MR-ACcaRr-RiDR-

o Copenhagen - RESOLUTE: The method by Ladefoged et al.
(2015) segments brain, CSF, soft tissue, and air from the UTE TE
images, and also uses Ry to extract a bone signal, which is converted
to LACs using a set of Ry -CT relationship pairs from 10 training
patients. To limit possible bias from regions with known R," noise
(Delso et al., 2014a), and because the amount of included bone is
higher compared to Cabello et al. (2015), Juttukonda et al. (2015),
the threshold for included bone was regionally varied within the
head. The resulting image is blurred with a 4 mm Gaussian filter and
denoted MR-ACgrgsorLuTE-

2.4. Image analysis

As Dixon-based methods may suffer from fat/water inversion
(Ladefoged et al., 2014), we excluded the patients with inversion from
further analysis in most of the metrics. This was the case for nine FDG,
one PiB, and three florbetapir patients. To avoid bias in the results, the
patients with fat/water inversion are excluded in most figures. When
included, it will be clearly stated. The methods directly affected by the
inversion are MR-ACsgggont, MR-AContario and MR-ACcagr_ripr-

2.4.1. Global attenuation map performance

To evaluate the performance precision of the methods based on the
attenuation maps, we measured the Jaccard-index for the bone
compared to CT-derived attenuation maps. We defined bone as being
greater than 0.101 cm ™, representing values above soft-tissue.

2.4.2. Global PET performance

As a prior step to evaluating the global PET performance, we first
created individual brain masks. We moved all patient data to common
MNI space using ANTs (Avants et al., 2011) by non-rigidly registering
the patients’ T1 images to the ICBM 152 2009a template (Fonov et al.,
2009). The MNI brain mask was back-warped to patient space, and the
PET image reconstructed with the CT attenuation map was thresholded
at >20% of the maximum intensity value. Finally, the intersection
between the two masks was calculated and used as the final mask of the
brain, and used throughout this manuscript when referring to the brain
region. Next, the voxel-wise percent difference relative to PETcr,
defined as:

Rely, = PEL = _PETer .
PETcr 1
as well as the absolute percent difference, defined as:
Absg = IPET, = PETcr] %100,
PET;y 2

were calculated for the PET images corrected with each of the evaluated
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R?=0.74 + 0.09 R?=0.79 + 0.11 R?=0.87 + 0.04
JE=0.51 JE=0.45 JE=0.46

PET.

PET, PETUTE PETSEGEONE

Dixon
R2=0.95 + 0.03 R?=0.96 £+ 0.02

R2=0.90 + 0.04
JE=0.48 JE=0.42 JE=0.37

PET,;

PETONTARIO I:)ETBOSTON PETUCL

R?2=0.96 + 0.04 R?=0.85 + 0.12 R?=0.91 + 0.05
JE=0.39 JE=0.49 JE=0.45
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PET, PET, PET imic

MAXPROB MLAA

R2=0.94 + 0.03 R2=0.96 + 0.02
JE=0.46 JE=0.41

PET,;

PET, PETRESOLUTE
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Fig. 4. Summed joint histograms of PET activity within the brain mask for FDG (n=192, excluding patients with fat/water tissue inversion) for PETcy versus each of the methods. The

R? scores are average + SD of the individual patients. The joint entropy (JE) is calculated for all patients.

methods (PETyx). We calculated the averaged performance of Rels; and a histogram analysis. Finally, we computed the voxel-wise correlation

Abso, for the full brain across all patients for each of the methods. We between PETcr and each of the proposed methods for all voxels within

computed the distribution of Rely; errors for each of the methods using the brain. We plotted the correlations in a joint histogram, and
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Fig. 5. Global and regional ROI analysis across all FDG patients (n=192, excluding
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10 15

computed the goodness-of-fit value (R?) to the identity line for each of
the patients.

2.4.3. Regional PET performance

To evaluate the regional PET performance, we back-warped the
anatomical predefined regions from MNI space (Collins et al., 1999;
Fonov et al., 2009) to each patient, and extracted the mean Relo, for
each region in the template. We furthermore calculated the average and
standard deviation Relo,-images across all patients for each of the
methods for visual evaluation.

2.4.4. Analysis of robustness and outliers
To estimate the number of outliers for each method, we introduced
a novel metric. The metric calculates the percentage of patients with at
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least x% of the brain within +y% in the Rels; images, where x varies
from 0-100 and y={5,10,15}. A perfect method therefore has 100% of
the patients within + 0% in the Rels; images. To understand the reason
for the worst outliers, we then analyzed the three FDG patients with the
worst performance based on the +10% threshold and categorized the
error. We present the worst outlier of each method.

3. Results
3.1. Global attenuation map evaluation

Fig. 1 shows the axial, sagittal and coronal views for each attenua-
tion method for a single sample patient. The representative sample
patient was chosen objectively to be that which minimizes the
difference to the median Rels; error (Eq. (1)) across all methods.

The Jaccard similarity coefficient for bone for each tracer-group
was comparable. For the largest group (FDG) the averaged scores
ranged between 0.50—0.81 for the entire head, 0.40—0.77 in the bottom
of the head covering from the eye socket and downwards, and 0.51—
0.85 for the top of the head. The overall best performance was seen for
MR-ACgosron, MR-ACyaxpros, MR-ACyunicH, MR-ACgesorure and
MR-ACycy, in alphabetical order, with Jaccard indices of 0.68—0.81 in
the entire head, and 0.79-0.85 in the top of the head. The individual
result for all tracer-groups and methods are shown in Table 2. Note
that MR-ACsggpone Was not evaluated on florbetapir-data, and thus no
results are available.

3.2. Global PET performance

The reconstructed PET images for the sample patient in Fig. 1 are
shown for the same slice in Fig. 2. Visually comparing the maximum
uptake areas in PETcr, it is apparent that PETpxon and PETyrg
underestimate the PET uptake, whereas all the alternative methods
improve the performance. For this patient, the average error for the
entire brain was between —3.3% (Ontario) and 3.9% (Munich) for the
proposed methods, and -10% and -5.3% for Dixon and UTE,
respectively. The global Rels, performance for the entire brain is
shown for all 201 FDG patients and 11 methods in the boxplot in
Fig. 3. The average performance was within +5% of PETcy for all of
the proposed methods, with the best performance seen for MR-
ACgostons MR-ACcar-ripr, MR-ACymaxpross MR-ACgrpsorure, and
MR-ACycy, ordered alphabetically. MR-ACprxon showed -11% and
MR-ACyrg, showed —7%. The global Absq, performance for the entire
brain is summarized for each method and tracer in Supplementary
Table 1. The global histogram analysis is shown in Supplemental
Figs. 1-3 for the three tracers. The averaged voxel-wise joint histo-
grams are shown for PETcr versus each of the proposed methods in
Fig. 4 (FDG) and Supplemental Figs. 4-5 (PiB and Florbetapir). The
highest correlation with the unity line was for FDG obtained by MR-
ACgrgsorute (0.96 +£0.02), MR-ACycr, (0.96 £0.02), MR-ACyaxproB
(0.96 + 0.04), MR-ACgostonx (0.95 +0.03), and MR-ACcagr-ripr (0.94
+0.03).

3.3. Regional PET performance

The regional Rels; performance for the anatomical regions defined
in the MNI template is shown in Fig. 5 for FDG and Supplemental
Figs. 67 for PiB and Florbetapir. The best performance across all
regions was again found with MR-ACgoston, MR-ACcar-ripr, MR-
ACyaxproB, MR-ACrrsorure and MR-ACycy, ordered alphabetically.
Only MR-ACyaxprop and MR-ACrgsorure, ordered alphabetically, had
an average + 1 SD error across all tracers below +5% in all regions.
The averaged absolute difference, Abse,, is shown in Supplemental
Figs. 89 for each of the regions and tracers. The average and standard
deviation images of the Rels; calculated for each FDG patient are
shown in Figs. 6 and 7, respectively, and in Supplemental Figs. 10-13
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Fig. 6. Averaged Rely, images across all FDG patients (n=201, including patients with fat/water tissue inversion) for each method: (A) Dixon, (B) UTE, (C) Segbone, (D) Ontario, (E)

Boston, (F) UCL, (G) MaxProb, (H) MLAA, (I) Munich, (J) CAR-RIiDR, (K) RESOLUTE.

for PiB and florbetapir. Considering all regions in the brain and all
tracers, the overall best performance in terms of error and robustness
was seen for MR-ACgposron, MR-ACyaxpros, MR-ACresorure and
MR-ACycy, ordered alphabetically.

3.4. Analysis of robustness and outliers

The result of the outlier analysis is shown in Fig. 8 for errors within
+5%, +10%, and +15% (FDG) and Supplemental Fig. 14 (PiB and
florbetapir). The proposed methods exceed the performance of the
current Dixon and UTE methods. The cutoff where all of the patients
are within +10% of PETcr is achieved for MR-ACgposron, MR-
ACwmaxpross MR-ACrgsorure and MR-ACycy, ordered alphabetically,
and at 90% of the brain, and between 60% and 80% for the other
methods. At +15%, there is a clear separation between five of the
methods (MR-ACgposton; MR-ACcar-riprs MR-ACyaxpros, MR-
ACgrgsorure and MR-ACycy, ordered alphabetically) and the remaining
methods. The robustness of each method can be assessed in the
standard deviation images (Fig. 7). The best performance was obtained
by MR-ACycy. in the center of the brain, shortly followed by MR-
ACyaxpros, MR-ACposton and MR-ACgrgsorure. In the cortical re-
gions, the best performance was obtained by MR-ACgrgsorure and MR-
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ACcar-ripr- The three patients with the worst performance are
categorized in Table 3, and the worst outlier is shown for each method
in Supplemental Fig. 15.

In general, the worst outliers in the template/atlas-based methods
(MR-AConrarI0; MR-ACR0sTON, MR-ACycL, MR-ACMmaxpros) all have
the same error category — the bone density is over or underestimated.
Only a single case is due to registration errors (#1 in MR-ACyaxpros)-
The effect of the error is greatest in the cortical regions, with errors up
to 30% locally.

The general errors in the proposed segmentation-based methods
(MR-ACyunicn, MR-ACcar-ripr, MR-ACresorure) are over/under
estimation of bone in air/tissue interface areas, resulting in local errors
of up to 25% in the medulla and cerebellum. For the vendor-provided
methods, the worst outliers were due to missing bone (MR-ACpxon)
and underestimated bone density (MR-ACyrg).

4. Discussion

This study facilitates a framework for comparing a large number of
state-of-the-art methods using multiple metrics, and does so across a
large patient cohort. We aimed to represent a broad spectrum of
published methods, showing promises of clinical feasibility, and
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Fig. 7. Standard deviation images across all FDG Rely, images (n=201, including patients with fat/water tissue inversion) for each method: (A) Dixon, (B) UTE, (C) Segbone, (D)
Ontario, (E) Boston, (F) UCL, (G) MaxProb, (H) MLAA, (I) Munich, (J) CAR-RiDR, (K) RESOLUTE.

selected nine methods that were applicable to our large cohort of
Siemens mMR examinations. Adding the vendor-provided methods,
Dixon and UTE, we evaluated 11 methods for obtaining an MR-AC
image. The key findings for the proposed methods were: almost all
achieved relative errors below +5% globally and in all regions of the
brain; the methods essentially differed in robustness, clinical feasi-
bility, and outliers. Dixon and UTE have been included as current
vendor references and confirm earlier results from Andersen et al.
(2014), Dickson et al. (2014) with a tendency to global underestimation
of activity.

The cerebellum is a region that is often used for normalization
purposes, especially in kinetic modeling, and therefore requires extra
attention. Considering the average +1 SD, the best performance is
obtained with MR-ACgosron and MR-ACyaxpros, shortly followed by
most of the other methods; the only methods exceeding +5% were
MR-ACpaa and MR-ACyynicn (Fig. 5). The maximum error in the
cerebellum was 6-9% from the reference for most of the proposed
methods (Supplemental Fig. 16), except for MR-ACcar-ripr (14%),
MR-ACp1aa and MR-ACyunicn (17%).

The result of the attenuation map evaluation (Table 2) illustrates
that the multi-atlas and multi-registration based methods (MR-ACycy,
MR-ACypaxprop) have the highest overall bone accuracy, with equally
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good results achieved in the upper part of the head by R, -based
methods (MR-ACyunicn, MR-ACrgsoruTe)- This area-dependent dif-
ference could be explained by the challenges reported in air/tissue
interface areas originating from the UTE sequence, such as the mouth
and esophagus (Delso et al., 2014a). Metal implant-induced artifacts
resulting in overestimation of bone in the mouth area especially affects
the accuracy of the R,"-based methods, but obviously also the remain-
ing methods. Of all methods, two of the R, -based methods (MR-
ACcar-ripr and MR-ACggsorure) had the lowest standard deviation in
the cortical regions near the bone (Fig. 7). This can be explained by the
fact that these methods extract patient specific bone density, whereas
the template/atlas-based methods use an average CT value. This can in
some cases lead to local under- or overestimation of the PET signal of
up to 20% (Table 3, Supplemental Fig. 15). It should be noted that for
the subjects where the CT include the dental region, the CTs were also
affected by metal implants resulting in streak artifacts, which could
bias the results further.

The template/atlas-based methods generally produced attenuation
maps very similar to the CT-based attenuation maps, but they are
based on the assumption that any new subject can be represented by a
template, a local combination of atlas patients, or by a non-rigid
registration to a template. The template/atlas-based methods are
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Fig. 8. Outlier analysis for the FDG patients (n=192, excluding patients with fat/water
tissue inversion). Note different scale of x-axis.

therefore also potentially challenged by abnormal anatomy and patient
surgery. The template/atlas-based methods are, furthermore, currently
only optimized and tested for adults, as the application to children
might require a purpose specific MRI/CT database. We did not include
children, or any patients who have undergone anatomy-changing
surgery in this study.

Most subjects chosen came from dementia studies, as this disease

356

NeuroImage 147 (2017) 346-359

has the potential to be a key clinical application of PET/MRI (Bailey
et al., 2015). The disease is clinically imaged with FDG, or amyloid
binding radiotracers such as PiB or florbetapir, with the majority of
patients having relatively widely distributed uptake in the brain,
making the tracers well suited for a large-scale evaluation of MR-AC
methods. The overall performance was, generally, similar across the
three tracers for all methods (Supplemental Figs. 1-3).

When considering patient management, the acquisition time and
number of steps required for generating AC maps has also to be taken
into account. A potential challenge for the template/atlas-based
methods is the long computation time due to multiple registrations
for each patient in the database (Table 4). The MR-ACyaxprop and
MR-ACycr, methods currently require at least an hour of processing
time for each attenuation map, whereas the MR-ACyynicy and MR-
ACcar-ripr Mmethods only take a few seconds. The shorter processing
time is usually a key argument for choosing the segmentation-based
methods in fast-paced clinical services, whereas accuracy is much more
important than speed in research applications. The MR-ACspcsone
prototype requires less than 2 min of processing time, with further
potential for speed-up. The processing time for multi-atlas methods
could be shortened by code optimization and by reducing the number
of database studies using pre-selection of the candidates more likely to
match the patient (e.g. using gender, age, etc.) (Aljabar et al., 2009) but
this requires further evaluation. An alternative is to use the newly
proposed one-registration multi-atlas approach, which, however,
comes at the cost of a lower accuracy in bone extraction compared to
the multi-atlas approach (Arabi and Zaidi, 2016). In line with this,
recent result on GE Signa system has shown, that compared to the
clinical single-atlas, multi-atlas (MR-ACyc;) is more accurate espe-
cially in regions close to the skull base (Sekine et al., 2016b). The
emission-based method, MLAA, is currently computationally intensive,
and relies on multiple MR sequences, which might complicate its use in
a clinical setting.

We excluded a single machine-learning-based AC-method (Chen
et al., 2015) from this study, as it had excessively long processing time
for each patient (> 4 days), making it infeasible both in clinical routine
and in this study in its current state.

4.1. Limitations

The use of a CT as gold standard is debatable. The CT image does
not fully cover the FOV of the MR and PET area, and is further subject
to streak artifacts from dental implants. Since the CT images are not
simultaneously acquired with the PET/MRI, they are also subject to
non-rigid movement, e.g. jaw movement and swallowing, not ac-
counted for during the rigid registration. In lack of a true gold
standard, such as a transmission scan with a rotating source, we
considered the CT to be the reference.

The cohort, mainly consisting of patients with dementia and age-
matched controls, represents an ageing population. This study did not
include data to test the performance of these MR-AC methods on brain
scans from younger patients. Furthermore, the study cohort did not
include patients with focal PET lesions. Therefore, the performance of
these methods in brain tumor patients has yet to be evaluated in most
cases, although evaluation of individual methods (e.g. MR-ACgosron)
has already been performed in challenging brain tumors as in
Izquierdo-Garcia et al. (2014).

The data from Washington University (florbetapir) were used to
train the mapping of bone values from HU to LACs in the MR-ACcag-
ripr Method (Juttukonda et al., 2015). This could potentially bias the
results.

5. Conclusion

All of the proposed methods have an average global performance
within likely acceptable limits (+5% of CT-based reference), and
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Synthese

Introduction

L'imagerie hybride simultanée IRM-TEP est une nouvelle technique d’imagerie médicale innovante
combinant I'imagerie par résonance magnétique (IRM) et la tomographie par émission de positons
(TEP). Le couplage de ces deux modalités d’imagerie de pointe ouvre aujourd’hui de nouveaux axes
de recherche et va fournir des outils innovants pour explorer les fonctions cérébrales. Pour cela, il est
indispensable de corriger I'atténuation des photons par les tissus afin d’obtenir une quantification
précise du signal TEP. Traditionnellement, en imagerie TEP/CT (TEP couplée au scanner a rayons-X),
les cartes de radiodensité utilisées pour la correction d’atténuation sont directement dérivées de
I'image de CT. En IRM-TEP, les rayons-X ont été remplacés par I'IRM et la carte d’atténuation n’est
plus disponible. Il est alors nécessaire de trouver une alternative pour calculer la carte d’atténuation

du sujet a partir de son image IRM.

Méthodes

Jai mis au point une méthode multi-atlas (MaxProb) qui permet de construire une carte
d’atténuation spécifique a I'anatomie du sujet. J'utilise I'image IRM du sujet, et une base de données
de 40 paires d’images IRM et CT de référence (les atlas). La carte d’atténuation est générée en
combinant les informations contenues dans la base de données. Les atlas sont d’abord recalés dans
I'espace du sujet par transformation non-linéaire. Les CT recalés sont ensuite segmentés en trois
classes tissulaires (air, tissus mous et os) puis fusionnés au niveau du voxel par un processus de classe
majoritaire. L'intensité finale d’un voxel du pseudo-CT est déterminée en moyennant les unités
Hounsfield des atlas CT appartenant a la classe majoritaire. La carte d’atténuation est finalement

dérivée du pseudo-CT généré.

Nous avons évalué I'impact de la qualité du pseudo-CT sur les images TEP reconstruites, par rapport
aux images TEP reconstruites avec le CT de référence. Nous avons également comparé la méthode
MaxProb a une méthode plus simple qui n’utilise qu’un atlas (SingleAtlas), ainsi qu’a la méthode

fournie dans le scanner par le constructeur (UTE).
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Les performances de MaxProb on été évaluées sur des données statiques et dynamiques ainsi que
sur des données TEP simulées et réelles. Les images de TEP [*®F]FDG statiques, trés couramment
utilisées en routine clinique et recherche, présentent une distribution homogéne du traceur ce qui
permet une évaluation globale. Nous avons évalué notre méthode sur des données TEP [*®F]FDG de
23 sujets. Nous avons choisi des données de TEP dynamique au [**FIMPPF (un antagoniste sélectif
des récepteurs 5-HTy,) afin d’explorer I'impact de la distribution spatiale du traceur qui varie au
cours du temps lors d’'une acquisition TEP. Cette évaluation dynamique a été réalisée sur sept sujets.
Nous avons également simulé des données TEP dynamique afin de reproduire une étude de bolus-
infusion utilisant le traceur ['C]raclopride. Vingt-et-un sujets ayant chacun quinze régions d’intérét
définies a partir de I'IRM ont été inclus. Le potentiel de liaison non-déplacable a été estimé par
simple ratio entre région d’intérét et région de référence (cervelet) dans le caudé, putamen et
noyaux accumbens, a I'équilibre. L’évaluation est réalisée au niveau régional mais aussi au niveau du
voxel pour les images de radioactivité, les courbes d’activité et les paramétres cinétiques (potentiel

de liaison non-déplacable).

Résultats

En TEP statique [*®F]FDG, le biais moyen variait entre 0 et 1% pour 73 des 84 régions cérébrales
étudiées et une seule région a obtenu une erreur de 2.5%. L’analyse SPM de données TEP corrigées
avec MaxProb a montré des différences significatives dans moins de 0.02% du volume cérébrale,
alors que pour SingleAtlas nous avons obtenu des différences significatives dans plus de 20% du

cerveau.

Sur les données de ["®*FIMPPF dynamiques, la plupart des erreurs régionales sur le BP étaient
comprises entre -1 et +3% (biais maximal a 5%) pour MaxProb. Avec SingleAtlas, les erreurs étaient
plus importantes et présentaient une plus grande variabilité. Le biais sur la quantification TEP était
amplifié au cours de I'acquisition dynamique avec SingleAtlas mais pas avec MaxProb. Nous avons
montré que cet effet est d0 a I'interaction entre la distribution spatiale du traceur qui varie au cours

du temps et le degré d’erreur sur les cartes d’atténuation.

Sur les données simulées, nous avons mis en évidence qu’une bonne quantification sur les

parametres physiologiques estimés par modélisation cinétique a également été obtenue avec
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MaxProb, méme lorsque le cervelet (entouré par les os du crane) est utilisé comme région de
référence. De plus, par rapport a la méthode de correction d’atténuation standard (UTE), MaxProb

améliore la sensibilité de détection des variations physiologiques mesurées en TEP dynamique.

Conclusion

La correction d’atténuation multi-atlas avec la méthode MaxProb permet une bonne quantification
sur les scanners hybrides IRM-TEP, ce qui ouvre la voie a de nouveaux protocoles d’imagerie

dynamique et simultanée en IRM-TEP.
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Glossary

[**F]FDG: fludeoxyglucose

[*® FIMPPF: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine
1TC: one-tissue compartment model

2TC: two-tissue compartment model

AC: attenuation correction

ACF: attenuation correction factor

ANOVA: analysis of variance

APD: avalanche photodiodes

ASL: arterial spin labelling

BBB: blood-brain barrier

BOLD: blood oxygen level dependent

BP: binding potential

BPyp: non-displaceable binding potential

BR: binding ratio

CBF: cerebral blood flow

COV: coefficient of variation

CRNL: Centre de recherche en neurosciences de Lyon
CSF: cerebrospinal fluid

CT: x-ray computed tomography

CTAC: CT-based attenuation correction

DTI: diffusion tensor imaging

Eber: event-by-event rebinner

EEG: electroencephalography

FBP: Filtered-back projection

fMRI: functional magnetic resonance imaging
FOV: field of view

FWHM: full width at half maximum

GM: grey matter

HSD: honest significant difference

HU: Hounsfield units

keV: kilo electronvolt
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KVP: peak kilovoltage

LAVA: liver-accelerated volume acquisition

LOR: line of response

MAE: mean absolute error

MAPER: multi-atlas propagation with enhanced registration
MEG: magnetoencephalography

MLAA: maximume-likelihood reconstruction of attenuation and activity
MNI: Montreal Neurological Institute

MPRAGE: magnetisation-prepared rapid gradient-echo

MRAC: MR-based attenuation correction

MRI: magnetic resonance imaging

NHP: non-human primate

OSEM: ordered subset expectation maximization

PET: positron emission tomography

PETRA: pointwise encoding time reduction with radial acquisition
PSF: point spread function

R2: spin-spin relaxation rate

R2*: spin-spin relaxation rate with local magnetic field inhomogeneities
RF: radio-frequency

ROI: region of interest

SD: standard deviation

SiPM: silicon photomultiplier

SORTEO: simulation of realistic tridimensional emitting objects
SPECT: single-photon emission computed tomography

SPM: Statistical Parametric Mapping

SRTM: simplified reference tissue model

SUV: standardized uptake value

SUVr: standardized uptake value ratio

SV: super vector

T1: spin-lattice relaxation time

T2: spin-spin relaxation time

T2*: spin-spin relaxation time with local magnetic field inhomogeneities
TAC: time activity curve

tDCS: transcranial direct current stimulation

TE: echo time
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TOF: time of flight

TR: repetition time

UTE: ultra-short echo time

UTE1: first-echo image when referring to the UTE sequence
UTE2: second-echo image when referring to the UTE sequence
WM: white matter

ZTE: zero echo time

p-map: attenuation map

175



176



List of figures

FIGURE 3: THE ['8F]FDG MOLECULE CONSISTING OF THE CHEMICAL COMPOUND INCORPORATING THE RADIOACTIVE

ISOTOPE. cutusureresesssressessssessesessssssssasssasssssssssssssssssssssssssssssssssssessesssetesssssesessssssssssssssssssssesesssessssesnsssssssssssesesessssssesesensssstessnsssnsssnssssnsnen 28
FIGURE 4: EXAMPLES OF PET [18F]FDG, [18F]MPPF AND [11C]RACLOPRIDE.....cveurieseesseesersseessesssesssssssssssssssssssssssessssesssesens 28
FIGURE 5: ANNIHILATION REACTION. wviuiusuesesssesssesessssssssassssssssassssessssssasssssssstassssessassstessssassesassassssssssssssasssssssssssassesssssssssassesassasans 29

FIGURE 6: PET DETECTOR RING AND OBJECT TO BE IMAGED. THREE COINCIDENCE TYPES: TRUE COINCIDENCE, SCATTER

COINCIDENCEAND RANDOM COINCIDENCE w.vtuvtuueessnesseessessssssssessssssssssssesssssssesssesssessssssssssssssssessnssssesssssassssassssssssessssssasssssessns 30
FIGURE 7: SINOGRAM AND RECONSTRUCTED BRAIN IMAGE CORRESPONDING TO SINOGRAM. ...ceuememeresessessessessessessessessssesees 30
FIGURE 8: EXAMPLE OF PET IMAGE RECONSTRUCTED WITH THE FBP2D ALGORITHM AND OP-OSEM3D ALGORITHM ......31
FIGURE O: COMPTON SCATTERING. w.euueueuesseusesressessessessessessesssssessssssssessssssssessssssssessssssssessssssssssssssssssssssssssssssessessssssssssssssessesassssssssasssssnes 33
FIGURE 10: ERRORS INDUCED IN THE PET IMAGE BY THE ABSENCE OF ATTENUATION CORRECTION ...cueueuresrerressesessessssesnees 34
FIGURE 11: EXAMPLES OF TRANSMISSION AND CT-BASED U-MAPS USED FOR PET AC. ...oireeeeerereeeseressesessessesseeens 36
FIGURE 12: SPECTRAL DISTRIBUTIONS FOR X-RAY AND PET PHOTONS ...covuetiereeerseeessesessessessessessessessessessessessessessessssssssssssssssnes 37

FIGURE 13: BILINEAR SCALING TO CONVERT CT INTENSITIES (HU) INTO ATTENUATION COEFFICIENTS (CM'!) FOR PET

EINERGIES . cuueueueueuseseeusessessessessessessessssssssesssssessssssssessesssssesassssssessssssssessssssssssssssssssssessnsssssnessssssssssnsssessessessessessesssssesessssssssssssnssnssssnsss 37
FIGURE 14: SELECTION OF t-MAPS OBTAINED WITH DIFFERENT TECHNIQUES. weucuureseeeesseserssessessessessessessessessessessessessessessessessesens 46
FIGURE 15: HARDWARE CAN CONTRIBUTE TO PET ATTENUATION: HEAD COIL MR AND HEADPHONES ...covvurivesersesssessessees 47
FIGURE 16: T1 MR IMAGE AND CT IMAGE FROM ONE INDIVIDUALL. ceuvuueueuseeserseeseesesssssesssessessessessessessessessessessessessessessesssssessesssssssnes 51

FIGURE 17: BRAIN LABELS FROM HAMMERS_MITH ATLAS 84 ROI INCLUDING CEREBELLAR VERMIS AND MASK OF TISSUE

CLASSES (GM, WM AND CSF) outiriireiretnsessesnsesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssesssssanes 52
FIGURE 18: MAXPROB PIPELINE TO GENERATE A PSEUDO-CT FROM THE SUBJECT’S MR IMAGE.....ccecovevsrneurensrssnesssresssssesssnenns 53
FIGURE 19: PIPELINE FOR SINGLEATLAS APPROACH. w.evureutueeresssssessesssssesssssssssssssssssssssssssssessssssssssssssssssssessessessessessessessesssssesssssssesanes 54
FIGURE 20: CT IMAGE (AXIAL VIEW) OF ONE SUBJECT .. cuvuureteesseesesssssessessssssessssssssssssssssssssssssssssssssssessssssssssessssssssssssssssssssssssssssssssnes 55
FIGURE 21: CT IMAGE, HEAD MASK AND HEAD MASK CUT AT THE FORAMEN MAGNUM. ...ccurererseesesessessessessessessessessessessessesens 56

FIGURE 22: GROUND TRUTH CT AND PSEUDO-CT FOR ONE SUBJECT WITH AVERAGE VOXEL CLASSIFICATION ERROR

PERFORMANCE AND THE CORRESPONDING IMAGE DIFFERENCE (PSEUDO-CT — GROUND TRUTH CT) ..ceuvrerverrerrneereenreenens 59
FIGURE 23: BOXPLOTS OF JACCARD INDEX PER TISSUE CLASS AND PER METHOD. ..cvvuuresrnessesssnesssssssssssesssssssssssssssssssssssssssssssenes 61
FIGURE 24: MAP OF NUMBER OF ATLASES FUSED PER VOXEL WITH THE MAXPROB METHOD ...cueuveueresressessessessessessessessesssssesees 65

FIGURE 25: JOINT HISTOGRAMS OF SINGLEATLAS AND MAXPROBPSEUDO-CT INTENSITIES VS. GROUND TRUTH CT
INTENSITIES. cvvteuueeeessseeeesssseeessssesessssssesssesessssssssssessssseessssssesssssssesessssesssssssessssssessssssesssssssessssseesssssssssssssesssssssssssssessssssssssssssssssnens 66
FIGURE 26: BOXPLOTS OF ABSOLUTE BIAS PER TISSUE CLASS (IN %) BETWEEN THE GROUND-TRUTH ['8F]FDG PET AND
PET RECONSTRUCTED WITH EACH PSEUDO=CT METHOD....vcuureeesseessssssssssssssssssssssessssssessssssssssssessssssssssssessssssssssssnens 67
FIGURE 27: MEAN BIAS FOR PET [18F]FDG, PER ROI AND PER AC METHOD....ccruuetrreueesesesssesssessesssesssssssssssssesssssssssssssssssessees 69
FIGURE 28: TOP ROW, MEAN OF 23 DIFFERENCE IMAGES BETWEEN GROUND-TRUTH CT AND PSEUDO-CT. BOTTOM ROW,

MEAN OF 23 BIAS IMAGES BETWEEN [18F]FDG PETcrac AND [18F]FDG PETMRAG s wsseseereessersresmrssesssesssensesseesssssesesanes 70

177



FIGURE 29: COMPARISON OF STATIC [*8F]FDGPET ACTIVITY CONCENTRATIONS DERIVED FROM GROUND TRUTH AC PET
DATA AND DATA OBTAINED WITH THE TWO MRAC METHODS SINGLEATLAS AND MAXPROB .....cvueosirneerniensessessssssessennnes 71
FIGURE 30: THE TWO OUTLIER SUBJECTS (BIAS EXCEEDING 10% FOR SOME REGIONS). cccoururuerermrsssesssssssssssssssssssssssssssssens 72

FIGURE 31: MEAN BIAS FOR PET [!8F]FDG, PER ROl AND PER AC METHOD FOR PET DATA RECONSTRUCTED WITH THE

FILTERED BACK-PROJECTION ALGORITHM. cvvuuetueeessressesssssssesssssssssssesssssssssssssssssesssssssessssssssesssnssssessnsssnssssnssssssssssnsssssssnsssnsssssssnseas 74
FIGURE 32: GLOBAL AND REGIONAL ROI ANALYSIS ACROSS ALL PATIENTS OBTAINED IN THE MULTI-CENTRIC STUDY........... 76
FIGURE 33: MEAN OF BIAS IMAGES ACROSS ALL [18F]FD G PATIENTS ..uuvuueuueesseessessseesseesssesssessssssssesssessssesssssssessssssssessssssssesssessans 77
FIGURE 34 COMPARTMENTAL MODEL...uucueutuesressessessessessesssssessssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssasssssses 85
FIGURE 35: MEAN BPND IMAGE ACROSS SEVEN SUBJECTS .uucueuitecusscsssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssesssssssssssesasssses 86
FIGURE 36: MEAN BIAS FOR THE LATE STATIC [18F]MPPF IMAGES AND FOR BPND IMAGES ....vvureemeereerneesseesssesseesssssssesssensnns 89

FIGURE 37: EXAMPLE OF RADIOACTIVITY SPATIAL DISTRIBUTION AT DIFFERENT TIMES FOR [18F]MPPF, AND A LATE IMAGE
OF THE [18F]FD G UPTAKE IN THE BRAIN. ..cteuusiuuesssessssssessssssssssssssssssssesssessessssssssssessessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 90
FIGURE 38: JOINT HISTOGRAMS OF MEAN PARAMETRIC BPnp IMAGES ACROSS SUBJECTS IN NORMALIZED SPACE. .....vcureueenes 91
FIGURE 39: MEAN BIAS OVER TIME FOR THE PET FRAMES ACROSS SUBJECTS FOR SINGLEATLAS AND MAXPROB MRAC
METHODS. c.uveureueuessessessessessessessessessessssssssesasssessssssssessesasssesssssssessssssssesssssssssssssssssssssssssssessessssssssssnesssssessessessessesasssesassssssnsassssnssssness 93
FIGURE 40: MEAN BIAS (IN %) ACROSS 44 BRAIN REGIONS, PER SUBJECT AND PER MRAC METHOD AS A FUNCTION OF THE
COEFFICIENT OF VARIATION OF TRACER ACTIVITY. cuueututeerseeseseesseseesssssessessessessessessessessessessessessessessessessesssssssssssssssssssssssssassssas 94
FIGURE 41: SLOPE MAGNITUDE OF LINEAR REGRESSION BETWEEN ACTIVITY COEFFICIENT OF VARIATION AND MEAN BIAS ON
DYNAMIC PET DATA VERSUS MEAN ABSOLUTE ERROR (MAE) BETWEEN THE GROUND TRUTH CT AND PSEUDO-CT...95
FIGURE 42: MEAN BIAS (IN %) ACROSS 44 BRAIN REGIONS, PER SUBJECT AND PER MRAC METHOD, AS A FUNCTION OF THE
COEFFICIENT OF VARIATION OF TRACER ACTIVITY. cuueututesereeseseessesessessessessessessessessessessessessessessessessessessesssssssssssssssssssssssssassssas 96
FIGURE 43: BIAS OVER TIME FOR THE PET FRAMES FOR ONE SUBJECT AND FOR SINGLEATLAS .vovuveeeveeressssssssessssssssssssssssssssssenes 97
FIGURE 44: MEAN BIAS (IN %) ACROSS 44 BRAIN REGIONS, FOR ONE SUBJECT AND FOR SINGLEATLAS MRAC METHOD AS A
FUNCTION OF THE COEFFICIENT OF VARIATION OF TRACER ACTIVITY ..vutuueeesseersseesssseesssesssssessssesssssessssesssssessssessssssssssesssseees 97
FIGURE 45: MOTION ESTIMATION ALONG THE DYNAMIC ACQUISITION, PER SUBJECT w.uevesteeusrereessesssssssssnsssssssnssssssssssssnsssssssssses 99
FIGURE 46: EXAMPLE FOR ONE SUBJECT. T1-WEIGHTED MR IMAGE, CT IMAGE, EMISSION PHANTOM AND ATTENUATION
PHANTOM. cuveureueueuessessessessessessesssssessssssesesssssssssssssssssesssssssssssssssssssssessessessessessessessessessessesasssessesasssessesssssessssssssesssssssssssssssssesssssesnens 108
FIGURE 47: REGIONAL TACS CALCULATED FROM REAL PET/CT DATA AND USED AS INPUT FOR PET-SORTEO
SIMULATIONS. coveuveuresesesessessessesssssessesssesssssssssssssssssessssssssssssssessssssssessessessessessessessessessessesasssessesssssessesssssessessnssessssssssssssssssssesssssesnens 109

FIGURE 48: MODEL OF THE PET DISPLACEMENT PRODUCED BY ENDOGENOUS DOPAMINE RELEASE ON TAC (Q = 10%) FOR

CAUDATE NUCLEUS (L) e+ sttueeueeeeueessessesesssesssssessssssesssssssssssssssssssssssssssssssssssessesssessesssesssessssssessssssssssssssssssssssssssssssssssssssssssssssnnes 111
FIGURE 49: TACS WITH PET DISPLACEMENT (Q = 10%) USED AS INPUT FOR PET-SORTEQ SIMULATIONS.....ccreerreeennes 111
FIGURE 50: [L-MAPS WITH COMMON NECK ..uutuueuresesseessessesssessssssesssessesssssssssssssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssssas 113
FIGURE 51: PROTOCOL OF SIMULTANEOUS PET-MR STUDY WITH TDCS ..ovvvuueeeemresssssessssssessssssssssssssssssssssssssssssssssssssssses 117
FIGURE 52: EXAMPLE OF TACS OBTAINED FOR ONE SIMULATED SUBJECT RANDOMLY SELECTEDcccuuuueeeesseeessssssessssssessssnseeeses 120

FIGURE 53: EXAMPLE OF CURVES OF BR ESTIMATED WITH A SIMPLE TARGET-OVER-REFERENCE MODEL WITH CEREBELLUM

2 S0 28 2 S 0 24 D0 00 20 2 0 0 PP 121
FIGURE 54 MEAN BR ACROSS SUBJECTS. w.eutuueueesessessessessssssssssessesssssssssssssssssssssssssssssssssesssssssessesssesssssssssssssesssssssssssssssssssassssssssssns 122
FIGURE 55: MEAN BIAS OVER TIME FOR THE PET FRAMES ACROSS ALL SUBJECTS...vuueumeeeeesessessesssessesssesssssssssssssssssssssesns 123

178



FIGURE 56: MEAN BIAS OVER TIME FOR THE BR ESTIMATED ..cueveutiitiintcssssssisssss s ssssssssssssssssssssssssssssssssssssssssesssssssssssasssnns 124

FIGURE 57: BOXPLOTS OF REGIONAL BIAS ON PARAMETRIC BR IMAGES ACROSS ALL SIMULATED SUBJECTS. cvvuevuuresneesseseans 125
FIGURE 58: MEAN OF 21 BIAS IMAGES BETWEEN BR(TAC AND BRMRAC: werersesmmemesnmssmssnessssssssssssssssssssssssssssssssssssssssssssssssssssssssns 126
FIGURE 59: EXAMPLE OF AN OUTLIER SUBJECT.. cuevtieuetsstessesissessssssssssesssssssssssesssssssssssssssssessssssssssssasssssssssssssssssssssssssssesssssssassssasssses 126
FIGURE 60: MEAN VARIATION OF BR BETWEEN BASELINE AND OTHER TIME-INTERVALS, A (IN %) covvuureererssssrersessssssssssssens 127
FIGURE 61: MEAN DELTA DIFFERENCE BETWEEN ACTIVE AND PLACEBO GROUPS....ccttiuieseresseeesssssesssssessessssssssesssssessessesssssens 129

FIGURE 62: COMPARISON OF PARAMETRIC IMAGES OF BR, BETWEEN ACTIVE AND PLACEBO GROUPS FOR STIM25, OBTAINED
WITH CTAC. coiertereietereesetseeseess s e s s s s s b8 s b4 4 sS4 130
FIGURE 63: [11C]RACLOPRIDE BOLUS-INFUSION STUDY OVER 110 MINUTES UNCORRECTED AND CORRECTED FOR MOTION.
MEAN IMAGES ARE SHOWN. w..cutuutueetesessessessessessesssssessessessessessssssssessessessesssssessessssssssessssssssssassssssssssssesssssssssssssssssssssssssssssassaneas 133
FIGURE 64: MOTION ESTIMATION ALONG THE DYNAMIC ACQUISITION, FOR SUBJECT SHOWN IN FIGURE 63. ...cececevrvrrerennnene 133
FIGURE 65: EXAMPLE OF BR CURVES PER ROI, FOR ONE SUBJECT WITH IMPORTANT MOTION BEFORE (TOP) AND AFTER
EBER MOTION CORRECTION ([BOTTOM). cevuueeuuersseesseesssesssessseesssesssesssessssesssessssessessssessssssssesssessssesssesssessssessssssssesssesssessssessssssssees 134
FIGURE 66: BOXPLOT OF STANDARD DEVIATION OF INTRA-REGIONAL BR, MEASURED IN ALL STRIATAL REGIONS, PER TIME-
INTERVAL, AND PER AC METHOD APPLIED. w.cuvuutuuessesseseessessessessessessessessessessessessssssssesssssessesssssssssssssssssssssssssssasssssssssssssssssssesnens 135
FIGURE 67: PSEUDO-CT ACCURACY (MEAN JACCARD, IN %) DEPENDING OF THE NUMBER OF ATLASES FUSED. ....cccooniuvnnns 149
FIGURE 68: MEAN ABSOLUTE BIAS OVER TIME FOR THE PET FRAMES ACROSS SUBJECTS FOR UTE AND MAXPRoB MRAC
METHODS. cvtutvusesssessessessssssessssssessssssesssessessssssssssssssssssssnessessesssesssssssessnssssssnsssssssessesssessnsssesssessessnessesssessnsssesssssnssssssssssnssssssesssnssnsssnes 150
FIGURE 69: MEAN ABSOLUTE BIAS OVER TIME FOR THE BR ESTIMATED FROM SIMPLE TISSUE-TO-REFERENCE MODEL WITH
CEREBELLUM AS REFERENCE REGION, ACROSS SUBJECTS FOR UTE AND MAXPROB MRAC METHODS. w..coevveverrrserensnens 151
FIGURE 70: BR BETWEEN BASELINE AND OTHER TIME-INTERVALS, A (IN %), PER STIMULATION CONDITION, FOR THE CT,

UTE AND MAXPROB AC METHODS.. c.vusteisisssasesssssssissesssssssisssssssssssssesssessssasssssssassssssssssstassssassssssssssssssssssasssssssssssssssssasssses 152

179



180



List of tables

TABLE 1: MEAN ABSOLUTE ERROR (MAE) IN HOUNSFIELD UNITS COMPUTED ON THE HEAD MASK AND PER TISSUE CLASS..60
TABLE 2: JACCARD INDEX (MEAN #* STANDARD DEVIATION) PER METHOD AND PER TISSUE CLASS.. cocueeuseeeseeseeseesssessseesssessnees 60
TABLE 3: VOXEL CLASSIFICATION ERROR (IN % OF ALL VOXELS IN THE HEAD MASK) PER METHOD. cc.mvurrrerereesssssesssesssanes 62
TABLE 4: JACCARD INDEX (%) FOR THE MAXPROB METHOD, WITH PSEUDO-CTS GENERATED WITH TWO DIFFERENT ATLAS

DATABASE RESOLUTIONS. ...cuuttuessesssessesssesssessesssessssssessssssssssessssssssssssssssesssesssessessssssssssessssssesssesssssssssssssssssssssssssssssssssassssssssssssssssanes 62
TABLE 5: VOXEL CLASSIFICATION ERROR (%) FOR THE MAXPROB METHOD, WITH PSEUDO-CTS GENERATED WITH TWO

DIFFERENT ATLAS DATABASE RESOLUTIONS cvvuueeerusseessssseessssseeesssssessssesessssessssssessssssessssssesssssssessssssessssssaesessasesssssssessssssessssaneees 63
TABLE 6: JACCARD INDEX AND VOXEL CLASSIFICATION ERROR FOR PSEUDO-CT, PER MRAC METHOD AND THRESHOLD USED

TO SEGMENT THE PSEUDO-CT. .ooeuitieusireessisseessessessesssesssssessssssess s s sssss s s s s sss s sssssssees 64
TABLE 7: ABSOLUTE AND RELATIVE BIAS (MEAN * STANDARD DEVIATION) PER METHOD AND STRUCTURE-.....cvruersseessernnens 68
TABLE 8: ABSOLUTE AND RELATIVE BIAS (MEAN * STANDARD DEVIATION) PER METHOD AND STRUCTURE FOR PET DATA

RECONSTRUCTED WITH THE FILTERED BACK-PROJECTION ALGORITHM. ...ccorurmeerrssceersseeessssessssssssesssesssssssssssssssssssssessssaeees 73
TABLE 9: NUMBER OF SIGNIFICANT VOXELS OBTAINED WITH THE SPM ANALYSIS. w.covtuuemiesiressssssssssssessssssssssessssssessssssssssssns 131
TABLE 10: ABBREVIATION LIST OF THE 83 REGIONS USED IN THE ROI EVALUATION BASED ON THE HAMMERS_MITH

ATLASES c.sueteteesssessssssssssssassssssssssssessssssssssssesessssssesassssssesasssssssssssssssssssssssssenssssessesssesassssesesessesssesessssesesasssssssssssssnsssnssessssesssessnsssesans 146

181



182



Bibliography

10.

11.

12.

13.

14.

Aasheim, L.B., P, AK,, Goa, E., Asta, H., 2015. PET / MR brain imaging : evaluation of clinical UTE-
based attenuation correction. J. Neuclear Med. doi:10.1007/s00259-015-3060-3

Aiello, M., Salvatore, E., Cachia, A., Pappata, S., Cavaliere, C., Prinster, A., Nicolai, E., Salvatore,
M., Baron, J.C., Quarantelli, M., 2015. Relationship between simultaneously acquired resting-
state regional cerebral glucose metabolism and functional MRI: A PET/MR hybrid scanner study.
Neuroimage 113, 111-121. doi:10.1016/j.neuroimage.2015.03.017

Alessio, A., Kinahan, P., 2006. PET image reconstruction, in: Henkin, R. (Ed.), Nuclear Medicine.
Elsevier, Philadelphia.

Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J. V, Rueckert, D., 2009. Multi-atlas based
segmentation of brain images: Atlas selection and its effect on accuracy. Neuroimage 46, 726—
738. doi:10.1016/j.neuroimage.2009.02.018

Anazodo, U.C., Thiessen, J.D., Ssali, T., Mandel, J., Glinther, M., Butler, J., Pavlosky, W., Prato,
F.S., Thompson, R.T., St. Lawrence, K.S., 2015. Feasibility of simultaneous whole-brain imaging on
an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method.
Front. Neurosci. 9, 1-11. doi:10.3389/fnins.2014.00434

Andersen, F.L., Ladefoged, C.N., Beyer, T., Keller, S.H., Hansen, A.E., Hgjgaard, L., Kjeer, A., Law, I.,
Holm, S., Andersen, F.L., Ladefoged, C.N., Beyer, T., Keller, S.H., Hansen, A.E., Hgjgaard, L., Kjeer,
A., Law, ., Holm, S., 2014. Combined PET/MR imaging in neurology: MR-based attenuation
correction implies a strong spatial bias when ignoring bone. Neuroimage 84, 206-216.
d0i:10.1016/j.neuroimage.2013.08.042

Andersen, J.B., Henning, W.S., Lindberg, U., Ladefoged, C.N., Hgjgaard, L., Greisen, G., Law, I.,
2015. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral
blood flow using 150-water positron emission tomography and arterial spin labeling magnetic
resonance imaging in newborn piglets. J. Cereb. Blood Flow Metab. 35, 1703-1710.
d0i:10.1038/jcbfm.2015.139

Andreasen, D., Leemput, K. Van, Hansen, R.H., Andersen, J.A.L., Edmund, J.M., Mri, P.E.T., 2016.
Patch-based generation of a pseudo CT from conventional MRI sequences for MRI- only
radiotherapy of the brain Patch-based generation of a pseudo CT from conventional MRI
sequences for MRI-only radiotherapy of the brain 1596. d0i:10.1118/1.4914158

Benoit, D., Ladefoged, C., Rezaei, A., Keller, S.H., Andersen, F., Hojgaard, L., Hansen, A., Holm, S.,
Nuyts, J., 2016. Optimized MLAA for quantitative non-TOF PET/MR of the brain. Phys. Med. Biol.
8854—-8874. doi:10.1002/elan.

Berker, Y., Franke, J., Salomon, a., Palmowski, M., Donker, H.C.W., Temur, Y., Mottaghy, F.M.,
Kuhl, C., Izquierdo-Garcia, D., Fayad, Z. a., Kiessling, F., Schulz, V., 2012. MRI-Based Attenuation
Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a
Combined Ultrashort-Echo-Time/Dixon MRI Sequence. J. Nucl. Med. 53, 796-804.
d0i:10.2967/jnumed.111.092577

Beyer, T., Townsend, D.W., Brun, T., Kinahan, P.E., Charron, M., Roddy, R., Jerin, J., Young, J.,
Byars, L., Nutt, R., 2000. A combined PET/CT scanner for clinical oncology. J. Neuclear Med. 41,
1369-1379.

Bisdas, S., Ritz, R., Bender, B., Braun, C., Pfannenberg, C., Reimold, M., Naegele, T., Ernemann, U.,
2013. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and
spatial distribution of metabolic changes. Invest. Radiol. 48, 295-301.

Bitar, R., Leung, G., Perng, R., Tadros, S., Moody, A.R., Sarrazin, J., McGregor, C., Christakis, M.,
Symons, S., Nelson, A., Roberts, T.P., 2006. MR pulse sequences: what every radiologist wants to
know but is afraid to ask. Radiographics 26, 513-537. d0i:10.1148/rg.262055063

Bonferroni, C.E., 1936. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. del R Ist.

183



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Super. di Sci. Econ. e Commer. di Firenze 8, 3-62.

Burger, C., Goerres, G., Schoenes, S., Buck, a., Lonn, a., Von Schulthess, G., 2002. PET
attenuation coefficients from CT images: Experimental evaluation of the transformation of CT
into PET 511-keV attenuation coefficients. Eur. J. Nucl. Med. 29, 922-927. d0i:10.1007/s00259-
002-0796-3

Burgos, N., Cardoso, M.J., Thielemans, K., Modat, M., Dickson, J., Schott, J.M., Atkinson, D.,
Arridge, S.R., Hutton, B.F.,, 2015. Multi-contrast attenuation map synthesis for PET / MR
scanners : assessment on FDG and Florbetapir PET tracers. Eur J Nucl Med Mol Imaging 42, 1447—-
1458. doi:10.1007/s00259-015-3082-x

Burgos, N., Cardoso, M.J., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., Barnes, A,,
Ahmed, R., Mahoney, C.J., Schott, J.M., Duncan, J.S., Atkinson, D., Arridge, S.R., Hutton, B.F.,
Ourselin, S., 2014a. Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to
Brain Studies. IEEE Trans. Med. Imaging 33, 2332—-2341. doi:10.1109/TM1.2014.2340135

Burgos, N., Thielemans, K., Cardoso, M.J., Markiewicz, P., Jiao, J., Dickson, J., Duncan, J.S.,
Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S., 2014b. Effect of Scatter Correction When
Comparing Attenuation Maps : Application to Brain PET / MR. IEEE Nucl. Sci. Symp. Conf. Rec.
Bither, F., Vrachimis, A., Becker, A., Stegger, L., 2016. Impact of MR-safe headphones on PET
attenuation in combined PET/MRI scans. EJNMMI Res. 6, 1-5. doi:10.1186/s13550-016-0178-7
Buvat, I., Frey, E.C., Green, A.J., Ljungberg, M., 2014. Quantitative Nuclear Medicine Imaging:
concepts, requirements, and methods, IAEA Human. ed. Vienna.

Cabello, J., Lukas, M., Forster, S., Pyka, T., Nekolla, S.G., Ziegler, S.I., 2015. MR-Based Attenuation
Correction Using Ultrashort-Echo- Time Pulse Sequences in Dementia Patients. J. Nucl. Med. 56,
423-429. doi:10.2967/jnumed.114.146308

Cardoso, M.J., Clarkson, M.J., Ridgway, G.R., Modat, M., Fox, N.C., Ourselin, S., 2011. LoAd: A
locally adaptive cortical segmentation algorithm. Neuroimage 56, 1386-1397.
doi:10.1016/j.neuroimage.2011.02.013

Carney, J.P.J., Townsend, D.W., Rappoport, V., Bendriem, B., 2006. Method for transforming CT
images for attenuation correction in PET/CT imaging. Med. Phys. 33, 976-983.
doi:10.1118/1.2174132

Catana, C., Drzezga, A., Heiss, W.-D., Rosen, B.R., 2012. PET/MRI for neurologic applications. J.
Nucl. Med. 53, 1916-25. doi:10.2967/jnumed.112.105346

Catana, C., van der Kouwe, A., Benner, T., Michel, C.J., Hamm, M., Fenchel, M., Fischl, B., Rosen,
B., Schmand, M., Sorensen, A.G., 2010. Toward implementing an MRI-based PET attenuation-
correction method for neurologic studies on the MR-PET brain prototype. J. Nucl. Med. 51, 1431-
1438. doi:10.2967/jnumed.109.069112

Chen, S., Tyan, Y., Lai, J., Chang, C., 2016. Automated Determination of Arterial Input Function for
Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent
Component Analysis 2016.

Coombs, B.D., Szumowski, J., Coshow, W., 1997. Two-point Dixon technique for water-fat signal
decomposition with BO inhomogeneity correction. Magn. Reson. Med. 38, 884-9.
doi:10.1002/mrm.1910380606

Costes, N., Merlet, I., Zimmer, L., Lavenne, F., Cinotti, L., Delforge, J., Luxen, A., Pujol, J.-F., Le
Bars, D., 2002. Modeling [18 F]MPPF positron emission tomography kinetics for the
determination of 5-hydroxytryptamine(1A) receptor concentration with multiinjection. J. Cereb.
Blood Flow Metab. 22, 753—-65. do0i:10.1097/00004647-200206000-00014

Delso, G., Furst, S., Jakoby, B., Ladebeck, R., Ganter, C., Nekolla, S.G., Schwaiger, M., Ziegler, S.1.,
2011. Performance Measurements of the Siemens mMR Integrated Whole-Body PET/MR
Scanner. J. Nucl. Med. 52, 1914-1922. d0i:10.2967/jnumed.111.092726

Delso, G., Wiesinger, F., Sacolick, L.l., Kaushik, S.S., Shanbhag, D.D., Martin, H., 2015. Clinical
Evaluation of Zero-Echo-Time MR Imaging for the Segmentation of the Skull. J. Nucl. Med. 417-
422. doi:10.2967/jnumed.114.149997

Dickson, J.C., O’Meara, C., Barnes, A., 2014. A comparison of CT- and MR-based attenuation

184



32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

correction in neurological PET. Eur. J. Nucl. Med. Mol. Imaging 41, 1176-1189.
d0i:10.1007/s00259-013-2652-z

Drzezga, A., Barthel, H., Minoshima, S., Sabri, O., 2014. Potential Clinical Applications of PET/MR
Imaging in Neurodegenerative Diseases. J. Nucl. Med. 55, 475-55S.
d0i:10.2967/jnumed.113.129536

Endres, C.J., Carson, R.E., 1998. Assessment of dynamic neurotransmitter changes with bolus or
infusion delivery of neuroreceptor ligands. J. Cereb. Blood Flow Metab. 18, 1196-1210.

Fahey, F.H., 2002. Data Acquisition in PET Imaging. J. Nucl. Med. Technol. 30, 39-49.

Fayad, H., Lamare, F., Merlin, T., Visvikis, D., 2016. Motion correction using anatomical
information in PeT/cT and PeT/Mr hybrid imaging. Q. J. Nucl. Med. Mol. Imaging 60, 12-24.
Frohwein, L.J., Schlicher, D., HeR, M., Bither, F., Schafers, K.P., 2016. Markerless Attenuation
Correction for Flexible MRI RF Surface Coils in Hybrid PET/MRI, in: PSMR.

Frouin, V., Comtat, C., Reilhac, A., Grégoire, M.-C., 2002. Correction of partial-volume effect for
PET striatal imaging: fast implementation and study of robustness. J. Nucl. Med. 43, 1715-1726.
Fung, E., Carson, R.E., 2013. Cerebral blood flow with [150]water PET studies using image-
derived input function and MR-defined carotid centerlines. Phys. Med. Biol.
d0i:10.1124/dmd.107.016501.CYP3A4-Mediated

Galazzo, I.B., Mattoli, M.V., Pizzini, F.B., De Vita, E., Barnes, A., Duncan, J.S., Jager, R., Golay, X.,
Bomaniji, J.B., Koepp, M., Groves, A.M., Fraioli, F., 2016. Cerebral metabolism and perfusion in
MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of
18F-FDG  PET and arterial spin labeling. Neurolmage Clin. 11, 648-657.
do0i:10.1016/j.nicl.2016.04.005

Gibby, W., 2005. Basic principles of magnetic resonance imaging. Neurosurg. Clin. N. Am. 16, 1—
64.

Gousias, |.S., Rueckert, D., Heckemann, R. a., Dyet, L.E., Boardman, J.P., Edwards, a. D.,
Hammers, A., 2008. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of
interest. Neuroimage 40, 672—684. do0i:10.1016/j.neuroimage.2007.11.034

Grodzki, D.M., Jakob, P.M., Heismann, B., 2012. Ultrashort Echo Time Imaging Using Pointwise
Encoding Time Reduction With Radial Acquisition ( PETRA ). Magn. Reson. Med. 518, 510-518.
do0i:10.1002/mrm.23017

Gunn, R.N., Lammertsma, A.A., Cunningham, V.J., 1997. Parametric Imaging of Ligand-Receptor
Binding in PET Using a Simplified Reference Region Model. Neuroimage 287, 279-287.

Gutierrez, D., Montandon, M.L., Assal, F., Allaoua, M., Ratib, O., Lévblad, K.O., Zaidi, H., 2012.
Anatomically guided voxel-based partial volume effect correction in brain PET: Impact of MRI
segmentation. Comput. Med. Imaging Graph. 36, 610-619.
doi:10.1016/j.compmedimag.2012.09.001

Hammers, A., Allom, R., Koepp, M.J,, Free, S.L., Myers, R., Lemieux, L., Mitchell, T.N., Brooks, D.J.,
Duncan, J.S., 2003. Three-dimensional maximum probability atlas of the human brain, with
particular reference to the temporal lobe. Hum. Brain Mapp. 19, 224-247.
do0i:10.1002/hbm.10123

Heckemann, R.A., Hajnal, J. V, Aljabar, P., Rueckert, D., Hammers, A., 2006. Automatic anatomical
brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33, 115—-
126. d0i:10.1016/j.neuroimage.2006.05.061

Heckemann, R.A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J. V., Hammers, A., 2010.
Improving intersubject image registration using tissue-class information benefits robustness and
accuracy of multi-atlas based anatomical segmentation. Neuroimage 51, 221-227.
doi:10.1016/j.neuroimage.2010.01.072

Hoa, D., Micheneau, A., Gahide, G., Le Bars, E., Taourel, P., 2008. L'IRM pas a pas, Sauramps m.
ed. Montpellier.

Holman, B.F., Cuplov, V., Hutton, B.F.,, Groves, A.M., Thielemans, K., 2016. The effect of
respiratory induced density variations on non-TOF PET quantitation in the lung. Phys. Med. Biol.
61, 3148-3163. doi:10.1088/0031-9155/61/8/3148

185



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Hsu, S., Cao, Y., Lawrence, T.S., 2015. Quantitative characterizations of ultrashort echo ( UTE )
images for supporting air — bone separation in the head. Phys. Med. Biol. 2869, 2869.
doi:10.1088/0031-9155/60/7/2869

Hudson, H.M., Larkin, R.S., 1994. Accelerated Image Reconstruction Using Ordered Subsets of
Projection Data. IEEE Trans. Med. Imaging 13, 601-609. doi:10.1109/42.363108

Hutton, B., Nuyts, J., Zaidi, H., 2006. lterative Reconstruction Methods, in: Zaidi, H. (Ed.),
Quantitative Analysis in Nuclear Medicine Imaging.

Hutton, B.F., Thomas, B.A., Erlandsson, K., Bousse, A., Reilhac-Laborde, A., Kazantsev, D.,
Pedemonte, S., Vunckx, K., Arridge, S.R., Ourselin, S., 2012. What approach to brain partial
volume correction is best for PET/MRI? Nucl. Instruments Methods Phys. Res. Sect. A Accel.
Spectrometers, Detect. Assoc. Equip. 702, 29-33. do0i:10.1016/j.nima.2012.07.059

Innis, R.B., Cunningham, V.J., Delforge, J., Fujita, M., Gjedde, A., Gunn, R.N., Holden, J., Houle, S.,
Huang, S.-C., Ichise, M., lida, H., Ito, H., Kimura, Y., Koeppe, R.A., Knudsen, G.M., Knuuti, J.,
Lammertsma, A.A., Laruelle, M., Logan, J., Maguire, R.P., Mintun, M.A., Morris, E.D., Parsey, R.,
Price, J.C., Slifstein, M., Sossi, V., Suhara, T., Votaw, J.R.,, Wong, D.F., Carson, R.E., 2007.
Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands. J. Cereb. Blood
Flow Metab. 27, 1533-1539. doi:10.1038/sj.jcbfm.9600493

Izquierdo-Garcia, D., Hansen, A.E., Forster, S., Benoit, D., Schachoff, S., Furst, S., Chen, K.T,,
Chonde, D.B., Catana, C., 2014. An SPM8-Based Approach for Attenuation Correction Combining
Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain
Imaging. J. Nucl. Med. 55, 1825-1830. doi:10.2967/jnumed.113.136341

Jaccard, P., 1901. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques
régions voisines. Bull. la Société Vaudoise des Sci. Nat. 37, 241-272.

Jiao, J., Bousse, A., Thielemans, K., Burgos, N., Weston, P., Markiewicz, P., Schott, J., D., A,,
Arridge, S., Hutton, B.F., Ourselin, S., 2016. Direct Parametric Reconstruction with Joint Motion
Estimation/Correction for Dynamic Brain {PET} Data. IEEE Trans. Med. Imag. 36, 203-213.
doi:10.1109/TMI.2016.2594150

Johansson, A., Karlsson, M., Nyholm, T., 2011. CT substitute derived from MRI sequences with
ultrashort echo time. Med. Phys. 38, 2708-2714. doi:10.1118/1.3578928

Juttukonda, M.R., Mersereau, B.G., Chen, Y., Su, Y., Rubin, B.G., Benzinger, T.L.S., Lalush, D.S., An,
H., 2015. MR-based attenuation correction for PET / MRI neurological studies with continuous-
valued attenuation coef fi cients for bone through a conversion from R2 * to CT-Houns fi eld
units. Neuroimage 112, 160-168. doi:10.1016/j.neuroimage.2015.03.009

Keereman, V., Fierens, Y., Broux, T., De Deene, Y., Lonneux, M., Vandenberghe, S., 2010. MRI-
based attenuation correction for PET/MRI using ultrashort echo time sequences. J. Nucl. Med.
51, 812-818. d0i:10.2967/jnumed.109.065425

Kinahan, P.E., Townsend, D.W., Beyer, T., Sashin, D., 1998. Attenuation correction for a combined
3D PET/CT scanner. Med. Phys. 25, 2046—2053. doi:10.1118/1.598392

Koesters, T., Friedman, K.P., Fenchel, M., Zhan, Y., Hermosillo, G., Babb, J., Jelescu, 1.0., Faul, D.,
Boada, F.E., Shepherd, T.M., 2016. Dixon sequence with superimposed model-based bone
compartment provides highly accurate PET/MR attenuation correction of the brain. INM 8, 583—
592. doi:10.1002/aur.1474.Replication

Ladefoged, C., Law, ., Anazodo, U., St Lawrence, K., lzquierdo-Garcia, D., Catana, C., Burgos, N.,
Cardoso, M.J., Ourselin, S., Hutton, B., Mérida, |., Costes, N., Hammers, A., Benoit, D., Holm, S,,
Juttukonda, M., An, H., Cabello, J., Lukas, M., Nekolla, S., Ziegler, S., Fenchel, M., Jakoby, B.,
Casey, M.E., Benzinger, T., Hgjgaard, L., Hansen, A.E., Andersen, F.L., 2016. A multi-centre
evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a
large cohort of patients. Neuroimage 147, 346—359. doi:10.1016/j.neuroimage.2016.12.010
Ladefoged, C.N., Benoit, D., Law, I., Holm, S., Kjaer, A., Hojgaard, L., Hansen, A.E., Andersen, F.,
2015. Region specific optimization of continuous linear attenuation coefficients based on UTE (
RESOLUTE ): application to PET / MR brain imaging. Phys. Med. Biol. 60, 8047-8065.
doi:10.1088/0031-9155/60/20/8047

186



65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Lammertsma, A.A., Hume, S.P., 1996. Simplified reference tissue model for PET receptor studies.
Neuroimage 4, 153—8. doi:10.1006/nimg.1996.0066

Larsson, A., Johansson, A., Axelsson, J., Nyholm, T., Asklund, T., Riklund, K., Karlsson, M., 2013.
Evaluation of an attenuation correction method for PET/MR imaging of the head based on
substitute CT images. Magn. Reson. Mater. Physics, Biol. Med. 26, 127-136. doi:10.1007/s10334-
012-0339-2

Le Pogam, A., Lamare, F., Hatt, M., Fernandez, P., Le Rest, C.C., Visvikis, D., 2013. MRI data driven
partial volume effects correction in PET imaging using 3D local multi-resolution analysis. Nucl.
Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 702, 39-41.
doi:10.1016/j.nima.2012.08.038

Malone, |.B., Ansorge, R.E., Williams, G.B., Nestor, P.J., Carpenter, T.A., Fryer, T.D., 2011.
Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a
comparison of tissue atlas and template attenuation map approaches. J. Nucl. Med. 52, 1142-
1149. doi:10.2967/jnumed.110.085076

Manber, R., Thielemans, K., Hutton, B., Wan, M.Y.S., McClelland, J.R., Barnes, A., Arridge, S.,
Ourselin, S., Atkinson, D., 2016. Joint PET-MR respiratory motion models for clinical PET motion
correction. Phys. Med. Biol. 61, 6515—6530. doi:10.1088/0031-9155/61/17/6515
Martinez-Moller, A., Souvatzoglou, M., Delso, G., Bundschuh, R. a, Chefd’hotel, C., Ziegler, S.1.,
Navab, N., Schwaiger, M., Nekolla, S.G., 2009. Tissue classification as a potential approach for
attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J. Nucl. Med. 50,
520-526. d0i:10.2967/jnumed.108.054726

McKee, B.T., Hiltz, L.G.,, 1994. Attenuation correction for three-dimensional PET using
uncollimated flood-source transmission measurements. Phys. Med. Biol. 39, 2043-2058.
doi:10.1088/0031-9155/39/11/015

Mehranian, A., Arabi, H., Zaidi, H., 2016. Vision 20/20: Magnetic resonance imaging-guided
attenuation correction in PET/MRI: Challenges, solutions, and opportunities. Med. Phys. 43,
1130-1155. doi:10.1118/1.4941014

Mehranian, A., Zaidi, H., 2015. Joint estimation of activity and attenuation in whole-body TOF
PET / MRI using constrained Gaussian mixture models. IEEE Trans. Med. Imaging 34, 1808-1821.
doi:10.1109/TMI.2015.2409157

Merida, ., Costes, N., Heckemann, R.A., Drzezga, A., Forster, S., Hammers, A., 2015. Evaluation of
several multi-atlas methods for pseudo-CT generation in brain MRI-PET attenuation correction,
in: Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on. pp. 1431-1434.
doi:10.1109/1SBI1.2015.7164145

Merida, I., Reilhac, A., Redouté, J., Heckemann, R.A., Costes, N., Hammers, A., 2017. Multi-atlas
attenuation correction supports full quantification of static and dynamic brain PET data in PET-
MR. Phys. Med. Biol. 62, 2834-2858. doi:doi.org/10.1088/1361-6560/aa5f6¢

Modat, M., Ridgway, G.R., Taylor, Z. a., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin,
S., 2010. Fast free-form deformation using graphics processing units. Comput. Methods Programs
Biomed. 98, 278-284. d0i:10.1016/j.cmpb.2009.09.002

Mollet, P., Keereman, V., Bini, J., lzquierdo-garcia, D., Fayad, Z.A., Vandenberghe, S., 2014.
Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-
emitting source. J. Nucl. Med. 55, 329-36. d0i:10.2967/jnumed.113.125989

Montandon, M.L., Zaidi, H., 2005. Atlas-guided non-uniform attenuation correction in cerebral
3D PET imaging. Neuroimage 25, 278-286. doi:10.1016/j.neuroimage.2004.11.021

Mottolese, R., Redouté, J., Costes, N., Le Bars, D., Sirigu, A., 2014. Switching brain serotonin with
oxytocin. Proc. Natl. Acad. Sci. U. S. A. 111, 8637-42. do0i:10.1073/pnas.1319810111
Navalpakkam, B.K., Braun, H., Kuwert, T., Quick, H.H., 2013. Magnetic resonance-based
attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps.
Invest. Radiol. 48, 323—-32. doi:10.1097/RLI.0b013e318283292f

Neuner, |., Mauler, J., Arrubla, J., Kops, E., Tellmann, L., Scheins, J., Herzog, H., Langen, K., Shah,
J., 2015. Simultaneous trimodal MR-PET-EEG imaging for the investigation of resting state

187



82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

networks in humans. EJNMMI Phys. 2, A71. doi:10.1186/2197-7364-2-S1-A71

Normandin, M.D., Schiffer, W.K., Morris, E.D., 2012. A linear model for estimation of
neurotransmitter response profiles from dynamic PET data. Neuroimage 59, 2689-2699.
doi:10.1016/j.neuroimage.2011.07.002

Nuyts, J., Dupont, P., Stroobants, S., Benninck, R., Mortelmans, L., Suetens, P., 1999.
Simultaneous Maximum A Posteriori Reconstruction of Attenuation and Activity Distributions
from Emission Sinograms. IEEE Trans. Med. Imaging 18, 393—403.

Nuyts, J., Matej, S., 2015. Image reconstruction, in: Nuclear Medicine Physics: A Handbook for
Teachers and Students. IAEA.

Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N., 2001. Reconstructing a 3D structure
from serial histological sections. Image Vis. Comput. 19, 25-31. doi:10.1016/50262-
8856(00)00052-4

Parsey, R. V, Arango, V., Olvet, D.M., Oquendo, M. a, Van Heertum, R.L., John Mann, J., 2005.
Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron
emission tomography. J. Cereb. Blood Flow Metab. 25, 785-793. d0i:10.1038/sj.jcbfm.9600072
Paulus, D.H., Quick, H.H., Geppert, C., Fenchel, M., Zhan, Y., Hermosillo, G., Faul, D., Boada, F.,
Friedman, K.P., Koesters, T., 2015. Whole-Body PET/MR Imaging: Quantitative Evaluation of a
Novel Model-Based MR Attenuation Correction Method Including Bone. J. Nucl. Med. 56, 1061—
1066. doi:10.2967/jnumed.115.156000

Paulus, D.H., Tellmann, L., Quick, H.H., 2013. Towards improved hardware component
attenuation correction in PET/MR hybrid imaging. Phys. Med. Biol. 58, 8021-40.
doi:10.1088/0031-9155/58/22/8021

Pinborg, L.H., Ziebell, M., Frgkjaer, V.G., de Nijs, R., Svarer, C., Haugbgl, S., Yndgaard, S., Knudsen,
G.M., 2005. Quantification of 123I-PE2I binding to dopamine transporter with SPECT after bolus
and bolus/infusion. J. Nucl. Med. 46, 1119-27.

Pirotte, B., Goldman, S., Dewitte, O., Massager, N., Wikler, D., Lefranc, F., Ben Taib, N.O., Rorive,
S., David, P., Brotchi, J., Levivier, M., 2006. Integrated positron emission tomography and
magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive
procedures. J. Neurosurg. 104, 238-253.

Poynton, C.B., Chen, K.T., Chonde, D.B., lzquierdo-Garcia, D., Gollub, R.L.,, Gerstner, E.R,,
Batchelor, T.T., Catana, C., 2014. Probabilistic atlas-based segmentation of combined T1-
weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI
scanners. Am. J. Nucl. Med. Mol. Imaging 4, 160-71.

Reilhac, A., Lartizien, C., Costes, N., Sans, S., Comtat, C.,, Gunn, R.N., Evans, A.C., 2004. PET-
SORTEO: A Monte Carlo-based simulator with high count rate capabilities. IEEE Trans. Nucl. Sci.
51, 46-52. doi:10.1109/TNS.2003.823011

Reilhac, A., Merida, 1., Irace, Z., Stephenson, M.C., Chen, C., Totman, J.J., Townsend, D.W., Hayad,
F., Costes, N., 2017. Development , validation and application of a rebinner with rigid motion
correction for the mMR scanner, in: PSMR.

Reilhac, A., Soderlund, T., Thomas, B., Irace, Z., Mérida, I., Villien, M., Redouté, J., Costes, N.,
2016. Validation and application of PET-SORTEO for the geometry of the Siemens mMR scanner,
in: PSMR. pp. 1-2.

Rezaei, A., Defrise, M., Bal, G., Michel, C.,, Conti, M., Watson, C., 2012. Simultaneous
Reconstruction of Activity and Attenuation in Time-of-Flight PET. IEEE Trans. Med. Imaging 31,
2224-2233.

Rogers, J.G., Harrop, R., Kinahan, P.E., 1987. The Theory of Three-Dimensional Image
Reconstruction for PET. IEEE Trans. Med. Imaging 6, 239-243.

Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R., 2004. Evaluation of atlas selection strategies for
atlas-based image segmentation with application to confocal microscopy images of bee brains.
Neuroimage 21, 1428-1442. doi:10.1016/j.neuroimage.2003.11.010

Rousset, O., Rahmim, A., Alavi, A., Zaidi, H., 2007. Partial Volume Correction Strategies in PET.
PET Clin. 2, 235-249. d0i:10.1016/j.cpet.2007.10.005

188



99. Rousset, 0.G., Ma, Y., Evans, A.C., 1998. Principle and Validation. J. Nucl. Med. 39.

100. Roy, S., Wang, W., Carass, A., Prince, J.L., Butman, J.A., Pham, D.L., 2014. PET Attenuation
Correction Using Synthetic CT from Ultrashort Echo-Time MR Imaging. J. Nucl. Med. 2071-2078.
doi:10.2967/jnumed.114.143958

101. Salomon, A., Goedicke, A., Schweizer, B., Aach, T., Member, S., Schulz, V., 2011. Simultaneous
Reconstruction of Activity and Attenuation for PET / MR. IEEE Trans. Med. Imaging 30, 804-813.

102. Sander, C.Y., Hooker, J.M., Catana, C., Normandin, M.D., Alpert, N.M., Knudsen, G.M,,
Vanduffel, W., Rosen, B.R., Mandeville, J.B., 2013. Neurovascular coupling to D2/D3 dopamine
receptor occupancy using simultaneous PET/functional MRI. Proc. Natl. Acad. Sci. U. S. A. 110,
11169-74. doi:10.1073/pnas.1220512110

103. Sander, C.Y., Hooker, J.M., Catana, C., Rosen, B.R., Mandeville, J.B., 2015. Imaging Agonist-
Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.
Neuropsychopharmacology 1-10. doi:10.1038/npp.2015.296

104.  Sari, H., Erlandsson, K., Thielemans, K., Atkinson, D., Ourselin, S., Arridge, S., Hutton, B.F.,
2015. Incorporation of MRI-AIF Information For Improved Kinetic Modelling of Dynamic PET
Data. IEEE Trans. Nucl. Sci. 62, 612-618. doi:10.1109/TNS.2015.2426952

105. Savio, A., Fiinger, S., Tahmasian, M., Rachakonda, S., Sorg, C., Grimmer, T., Calhoun, V.,
Drzezga, A., 2017. Resting state networks as simultaneously measured with fMRI and PET.
d0i:10.2967/jnumed.116.185835

106.  Schreibmann, E., Nye, J. a, Schuster, D.M., Martin, D.R., Votaw, J., Fox, T., 2010. MR-based
attenuation correction for hybrid PET-MR brain imaging systems using deformable image
registration. Med. Phys. 37, 2101-2109. doi:10.1118/1.3377774

107.  Schultz, C.C., Fusar-Poli, P., Wagner, G., Koch, K., Schachtzabel, C., Gruber, O., Sauer, H.,
Schlésser, R.G.M., 2012. Multimodal functional and structural imaging investigations in psychosis
research. Eur. Arch. Psychiatry Clin. Neurosci. 262. doi:10.1007/s00406-012-0360-5

108. Sekine, T., Buck, A., Delso, G., Ter Voert, E.E.G.W., Huellner, M., Veit-Haibach, P., Warnock,
G., 2015. Evaluation of Atlas-Based Attenuation Correction for Integrated PET/MR in Human
Brain: Application of a Head Atlas and Comparison to True CT-Based Attenuation Correction. J.
Nucl. Med. 57, 215-220. doi:10.2967/jnumed.115.159228

109. Sekine, T., Burgos, N., Warnock, G., Huellner, M., Buck, A., ter Voert, E.E.G.W., Cardoso, M.J.,
Hutton, B.F., Ourselin, S., Veit-Haibach, P., Delso, G., 2016. Multi-Atlas-Based Attenuation
Correction for Brain 18F-FDG PET Imaging Using a Time-of-Flight PET/MR Scanner: Comparison
with Clinical Single-Atlas- and CT-Based Attenuation Correction. J. Nucl. Med. 57, 1258-1264.
d0i:10.2967/jnumed.115.169045

110.  Shah, N.J., Oros-Peusquens, A.M., Arrubla, J., Zhang, K., Warbrick, T., Mauler, J., Vahedipour,
K., Romanzetti, S., Felder, J., Celik, A., Rota-Kops, E., lida, H., Langen, K.J., Herzog, H., Neuner, I,
2012. Advances in multimodal neuroimaging: Hybrid MR-PET and MR-PET-EEG at 3 T and 9.4 T. J.
Magn. Reson. 229, 101-115. doi:10.1016/j.jmr.2012.11.027

111.  Sjolund, J., Forsberg, D., Andersson, M., Knutsson, H., 2015. Generating patient specific
pseudo-CT of the head from MR using atlas-based regression. Phys. Med. Biol. 825, 825.
doi:10.1088/0031-9155/60/2/825

112.  Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg,
H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J.,
Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in functional and
structural MR image analysis and implementation as FSL. Neuroimage 23, S208-19.
doi:10.1016/j.neuroimage.2004.07.051

113.  Stegger, L., Martirosian, P., Schwenzer, N., Bisdas, S., Kolb, A., Pfannenberg, C., Claussen,
C.D., Pichler, B., Schick, F., Boss, A., 2012. Simultaneous PET/MR imaging of the brain: feasibility
of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI. Acta Radiol
53, 1066—1072. doi:10.1258/ar.2012.120191

114. Tahaei, M.S., Reader, A.J., 2016. Patch-based image reconstruction for PET using prior-image
derived dictionaries. Phys. Med. Biol. 61, 6833-6855. doi:10.1088/0031-9155/61/18/6833

189



115. Thielemans, K., Asma, E., Manjeshwar, R.M., Ganin, A., Spinks, J.T., 2008. Image-based
correction for mismatched attenuation in pet images. IEEE Nucl. Sci. Symp. Conf. Rec. 5292—-
5296. doi:10.1109/NSSMIC.2008.4774427

116. Tomasi, D., Wang, G., Volkow, N.D., 2013. Energetic cost of brain functional connectivity.
doi:10.1073/pnas.1303346110/-
/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1303346110

117. Torrado-Carvajal, A., Herraiz, J.L., Hernandez-tamames, J.A., Jose-estepar, R.S., Eryaman, Y.,
Rozenholc, Y., Adalsteinsson, E., Wald, L.L., Malpica, N., 2015. Multi-Atlas and Label Fusion
Approach for Patient-Specific MRI Based Skull Estimation. Magn. Reson. Med. 0, 1-11.
doi:10.1002/mrm.25737

118. Tyler, D.J., Robson, M.D., Henkelman, R.M., Young, |.R., Bydder, G.M., 2007. Magnetic
resonance imaging with ultrashort TE (UTE) PULSE sequences: Technical considerations. J. Magn.
Reson. Imaging 25, 279-289. d0i:10.1002/jmri.20851

119. Uppal, R., Catana, C., Ay, I., Benner, T., Sorensen, A.G., Caravan, P., 2011. Bimodal thrombus
imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe--feasibility
study in rat model. Radiology 258, 812—820. doi:10.1148/radiol.10100881

120. Villien, M., Wey, H.-Y., Mandeville, J.B., Catana, C., Polimeni, J.R., Sander, C.Y., Ziircher, N.R.,
Chonde, D.B., Fowler, J.S., Rosen, B.R., Hooker, J.M., 2014. Dynamic functional imaging of brain
glucose utilization using fPET-FDG. Neuroimage 100, 192-9.
doi:10.1016/j.neuroimage.2014.06.025

121. Volkow, N.D., Wang, G.J., Fowler, J.S., Logan, J., Schlyer, D., Hitzemann, R., Lieberman, J.,
Angrist, B., Pappas, N., MacGregor, R., Burr, G., Cooper, T., Wolf, A.P., 1994. Imaging endogenous
dopamine competition with [11C]raclopride in the human brain. Synapse 16, 255-262.

122.  Werner, P., Barthel, H., Drzezga, A., Sabri, O., 2015. Current status and future role of brain
PET/MRI in clinical and research settings. Eur. J. Nucl. Med. Mol. Imaging 42, 512-526.
doi:10.1007/s00259-014-2970-9

123.  Wey, H.Y., Catana, C., Hooker, J.M., Dougherty, D.D., Knudsen, G.M., Wang, D.J.J., Chonde,
D.B., Rosen, B.R., Gollub, R.L., Kong, J., 2014. Simultaneous fMRI-PET of the opioidergic pain
system in human brain. Neuroimage 102, 275-282. doi:10.1016/j.neuroimage.2014.07.058

124.  Wiesinger, F., Sacolick, L.I., Menini, A., Kaushik, S.S., Ahn, S., Veit-Haibach, P., Delso, G.,
Shanbhag, D.D., 2016. Zero TE MR bone imaging in the head. Magn. Reson. Med. 75, 107-114.
doi:10.1002/mrm.25545

125.  Zaidi, H., Montandon, M.-L.,, Slosman, D.0., 2003. Magnetic resonance imaging-guided
attenuation and scatter corrections in three-dimensional brain positron emission tomography.
Med. Phys. 30, 937-948. d0i:10.1118/1.1569270

126.  Zald, D.H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G.S., Dagher, A., 2004.
Dopamine Transmission in the Human Striatum during Monetary Reward Tasks. J. Neurosci. 24,
4105-4112. doi:10.1523/INEUROSCI.4643-03.2004

127.  Zubieta, J., Smith, Y., Bueller, J., Xu, Y., Kilbourn, M., Jewett, D., Meyer, C., Koeppe, R.,
Stohler, C., 2001. Regional mu opioid receptor regulation of sensory and affective dimensions of
pain. Science (80-. ). 293, 311-5. doi:10.1126/science.1060952

190



