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Abstract

Combustion noise has become an increasing contributor of overall aircraft en-
gine noise. It consists of two major parts, direct and indirect combustion noise.
The former is generated by the heat release �uctuations of the �ame itself.
The latter is generated by the temperature inhomogeneities in the burnt gases,
which are accelerated in the turbine stages or nozzle following the combustion
chamber. Various works have been done in the past in order to describe direct
and indirect combustion noise generation experimentally. However no quan-
ti�cation has been done yet where a combustion system generates direct and
indirect combustion noise simultaneously. The aim of this thesis is to narrow
this gap and to design and build a pressurized lean swirling combustor test
bench, which generates high quantities of indirect combustion noise. The en-
tropy waves are to be accelerated by a choked exhaust nozzle. It is necessary
to characterize this combustor, determine its acoustic boundary conditions and
to �nd means to determine the contributions of direct and indirect combustion
noise quantitatively.

The �rst part of the thesis is focusing on a presentation of the new combustor
test bench, as well as of an experimental description of its velocity �elds and
�ame dynamics. The mean and RMS velocity and OH* chemiluminescence
�elds are determined and used to identify the areas of strongest dynamics. The
time resolved local velocity, heat release and pressure are obtained by high speed
diagnostics. The results are used to put forward the existence of a combustion
instability in the combustor. Furthermore, the eigen modes of the system are
found by a combined experimental and analytical approach. The second part
is dealing with two optical diagnostics that were worked on during this thesis.
One of the diagnostics is a new high speed PIV technique that was developed
during this thesis and is applied for the velocity �eld measurements. It is based
on the use of a continuous laser source and allows for sampling frequencies of
up to 100 kHz. The other technique is used for the visualization of the density
�uctuations. This is done by applying a focussing Schlieren technique, which
allows to obtain 2D images of the density gradients at high sampling frequen-
cies. Due to the application of a particular installation, the densities are shown
on a �eld of view of only a few millimetres. The technique allows to visualize
wave-like phenomena in the burnt gases that are probably related to entropy
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waves. Both technique give qualitatively correct results however, work is still
necessary in order to validate these techniques. Nevertheless, they are supposed
to be of interest for future studies of combustion dynamics and noise. Finally,
in the third part of the thesis, the experimental determination of direct and
in direct combustion noise is treated. Two di�erent approaches were worked
on and are presented. The �rst approach is based on the determination of di-
rect combustion noise from the global heat release rate. The second approach
is based on the measurement of high-speed line-of-sight averaged temperature
�uctuations by Laser Interferometric Vibrometry. The measurements are con-
ducted simultaneously and synchronized with pressure measurements. From
these results, the di�erent combustion noise contributions are calculated. Both
approaches show that indirect combustion noise exists in this combustor, how-
ever its contribution is small compared to direct combustion noise.

The test bench is thus able to generate a non-negligible quantity of indirect
combustion noise. Furthermore, techniques were found to characterise the com-
bustor and to determine its direct and indirect combustion noise contributions.
It is now necessary to improve the test bench in order to increase indirect
combustion noise generation.



Résumé

Résumé: Le bruit de combustion est devenu un contributeur de plus en plus
important dans le bruit total de moteur d'avion. Ce bruit global a deux com-
posantes: Le bruit direct et le bruit indirect. Le premier est issu des �uctu-
ations de dégagement de chaleur dans la �amme elle-même. Le deuxième a
pour origine les inhomogénéités de température dans les gaz brûlés accélérés
par les étages de turbine ou une tuyère. Des travaux di�érents ont été faits
dans le passé pour décrire le bruit direct et indirect en utilisant les moyens
expérimentaux. Mais aucune quanti�cation n'a été faite encore sur un système
de combustion qui généré le bruit direct et indirect simultanément. L'objectif
de ce travail est la conception d'un banc de combustion sous pression avec une
�amme pauvre, prémélangée swirlée dont les paramètres d'injection permet-
tront d'obtenir des grandes quantités de bruit indirect. Les ondes entropiques
sont accélérées par une tuyère amorcée. Il est nécessaire de caractériser ce banc
et d'établir quelle est la part du bruit direct et de l'indirect a�n d'identi�er
les sources de ces contributions. Pour cette caractérisation il est nécessaire
d'utiliser di�érents diagnostics, de prendre en compte la résolution temporelle.
Ces diagnostics à haute cadence permettent de caractériser les champs de vitesse
et les dynamiques de �amme, les instabilités de combustion dans le système et
ainsi évaluer les contributions du bruit direct et indirect.

La première partie de la thèse se concentre sur la présentation du nouveau
banc d'essai ainsi que sur une description expérimentale des champs de vitesse
et de la dynamique de �amme. Les champs moyens et RMS de la vitesse et de
l'émission spontanée du radical OH* sont déterminés et utilisés pour identi�er
les régions avec les plus fortes dynamiques. Des mesures résolues en temps de
vitesse, dégagement de chaleur et pression sont obtenus par des diagnostiques
à haute cadence. Les résultats sont utilisés pour mettre en évidence une insta-
bilité de combustion dans l'installation. Aussi, les modes propres du système
sont déterminés par une approche combinée expérimentale et analytique. La
deuxième partie est consacrée au travail sur deux diagnostics optiques. Un des
diagnostics est une nouvelle technique rapide du type PIV et est utilisée pour
mesurer les champs de vitesse. La technique est basée sur l'utilisation d'un laser
continu et permet d'obtenir des fréquences d'acquisition jusqu'à 100 kHz. La
deuxième technique est utilisée pour visualiser les �uctuations de densité. Ceci
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est fait en utilisant un Schlieren focalisé, qui permet d'acquérir des images 2D
des gradients de densité en haute cadence. Gràce à un montage particulier, les
densités sont montrées sur un champ avec une épaisseur de seulement quelques
millimètres. La technique permet de visualiser des e�ets de type onde dans les
gaz brûlés probablement liées aux ondes entropiques. Les deux diagnostics don-
nent des résultats qualitativement correctes, mais il reste du travail à fournir
a�n de les valider. Néanmoins ces techniques semblent prometteuses pour des
futures études des dynamiques de combustion et du bruit. La troisième partie
traite la détermination expérimentale du bruit direct et indirect. Deux ap-
proches di�érents ont étés abordées. La première approche est basée sur la
détermination du bruit direct à partir du taux de dégagement de chaleur de la
�amme. La deuxième démarche est basée sur les mesures en haute cadence des
�uctuations de temperature moyennèes sur une ligne de vue. Ceci est fait par
la Vibrometrie Laser. Les mesures sont prises simultanément et synchronisèes
avec les mesures de pression. A partir de ces résultats, les di�érentes contribu-
tions du bruit de combustion sont calculées. Les deux approches montrent qu'il
y a du bruit indirect dans le brûleur, mais que sa contribution est faible par
rapport à celle du bruit direct. Ceci est probablement lie à la forte instabilité
de combustion.

Le banc est donc capable de produire une quantité non-négligable de bruit
indirect et des moyens ont été trouvés a�n de le caractériser et de quanti�er
les deux contributions du bruit de combustion. Il est maintenant nécessaire de
modi�er l'installation pour augmenter la contribution du bruit indirect.
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Introduction

State of art in the development of combustion in air-
craft engines

With rising world population and economic growth, air tra�c is supposed to
increase and thus also the amount of aircrafts. Vedantham and Oppenheimer
(1998) predicted an increase of air tra�c by a factor of around 10 from the
year 2000 to 2050, with the highest growth around 2030. The consequence is
an increase in exhaust emissions. In the same work, the CO2 emissions are
predicted to rise by a factor of 8 and the NOx emissions by a factor of �ve until
the year 2100, even when taking into account reductions due to technological
progress. Woody et al. (2011) obtained similar results, predicting NOx emis-
sions to double from 2005 to 2025. Another consequence of the increasing air
tra�c is the increased aircraft noise, especially close to airports.

The increasing emissions are the motivation for the continuous improvements of
aircraft engines. Indeed, the emissions of CO2 are considered a major contrib-
utor of global warming and the associated environmental e�ects (EPA (2010)).
NOx emissions on the other hand are responsible for phenomena such as acid
rain, which also leads to environmental damages. Besides, air pollution con-
tributes to health issues such as respiratory problems or heart diseases. Aircraft
noise on the other hand can lead to hearing loss and disturbances in sleep, in
particular for the population living close to airports (enHealth (2004)).

Due to these aspects, but even more due to economical motivations, reductions
in these emissions ere especially linked to the reduction of the speci�c fuel ra-
tio (Gröenstedt et al. (2013)). In particular the introduction and the increase
of bypass �ow lead to a signi�cant decrease in fuel consumption, as shown in
�gure 1.



2 Introduction

Figure 1: Trend of the speci�c fuel consumption for aircraft turbo engines (Gröenstedt
et al. (2013))

As can be seen in the �gure the technological development is converging to-
wards a plateau. According to Gröenstedt et al. (2013), ruptures in technology
are needed for further reductions in fuel consumption. Possible examples would
be advanced cycles, such as pulse detonation combustors (Wintenberger2004),
open rotors (Hendricks (2011)) or even attempts to integrate the combustion in
the �rst stator stages of the engine (Schobeiri and Ghoreyshi (2014); Schobeiri
and Ghoreyshi (2015)).

All these technologies lead to a decrease in CO2 emissions as a consequence of
a decreased fuel consumption. However they are based on the use of improved,
more compact combustors, which lead to higher temperatures. But already the
�rst studies of combustion have shown that an increase in combustion temper-
ature leads to an increase of NOx emissions (Zeldovich (1946)). Indeed, Suder
(2012) showed the direct link between the reduction of speci�c fuel consumption
and the increase of NOx emissions, as presented in �gure 2.
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Figure 2: Relation of Speci�c fuel consumption, NOx emissions and pressure ra-
tio. (created by Lapeyre (2015), based on Suder (2012)). The overall pressure ratio
is directly linked with the thermal e�ciency and the turbine entry temperature of the
engine (Jeschke (2012))

The typical solution for this issue is the application of lean premixed combus-
tion. Previous works show that this arrangement signi�cantly reduces NOx
emissions (Correa (1998)). However this causes new issues in terms of stabi-
lization of the �ame:

• Due to the low equivalence ratio, the risk of extinction exists and is
problematic especially due to issues of re-ignition. (Stöhr et al. (2011))

• With the premixing, the �ame has the tendency to �ash back into the
injector. This condition is dangerous, since it can damage the entire
system due to overheating. (Fritz et al. (2004); Lapeyre et al. (2016))

• The next issue is the existence of combustion instabilities, which can
be explained by a positive feedback circle. The geometric eigen modes
lead to pressure �uctuations. These perturb the �ow �eld, which then
perturbs the local heat release rate. Finally, these generated �uctuations
of heat release directly in�uence the pressure �uctuations. The possible
consequences of these are system ruptures due to premature fatigue and
excessive vibrations, as well as increased noise nuisance. (Candel (2002);
Ducruix et al. (2003))

The �rst issue can be resolved by the Swirl stabilization. In this arrangement
the premixture is injected either via tangential injection or an axial swirler in
order to create a rotational motion. (Candel et al. (2014); Bräunling (2015))
The consequence is a compact �ame, which can be operated under lower equiv-
alence ratios. The typical �ow structure of a swirling �ame is shown in �gure 3.



4 Introduction

Figure 3: Typical �ow structure in a Swirl stabilized aircraft combustor (Bräunling
(2015))

The issue of �ashback can be resolved by constructive choices, as was shown in
previous works. For example, the injection of a small axial air �ow can coun-
terbalance the �ashback tendency and the installation of a blu� body can block
the �ame from �ashing back into the injector (Fritz et al. (2004); Reichel et al.
(2015); Sattelmayer et al. (2015)).

The third issue, the combustion instabilities are still of high actuality and are
being studied extensively. Combustion instabilities occur in combustors where
the �ame is highly turbulent and con�ned. The interactions between the �ame
and the chamber walls as well as the vortices lead to �uctuations in heat release
rate of the �ame and thus in pressure. These pressure oscillations perturb the
�ame itself. This positive feedback circuit is typical for combustion instabilities
and can even lead to damages of the combustor. A state of art about the re-
search in instabilities can be found in di�erent works (Candel (2002); Ducruix
et al. (2003); Lieuwen and Cho (2005)).

Another issue of actuality is combustion noise. Aircraft engines can be a great
noise nuisance, especially close to airports. In 2013 the International Civil
Aviation Organization ICAO agreed on a global standard for further aircraft
noise reductions (FAA (2016)). As combustion noise is a contributor to overall
aircraft engine noise, its understanding and reduction is of high actuality. The
state of art of the research on combustion noise is presented in the following
section.
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Combustion noise

Figure 4: Reduction of aircraft engine noise in the last decades (Neise and Enghardt
(2003))

The noise of aircraft engines has continuously been reduced as shown by Neise
and Enghardt (2003). The diagram shows that after rapid decreases of aircraft
noise in the 1960s and 70s, it has become more and more di�cult to obtain
signi�cant noise reductions. In these �rst periods, the noise reduction has been
achieved due to advances in di�erent engine elements such as the exhaust jet or
the fan, where for example the blade shape has been optimized. Sensiau (2013)
shows that major improvements were achieved in particular for the rotating
part and the exhaust jet, as can be seen in �gure 5.

Figure 5: Breakdown of the di�erent engine noise contributions and their predicted
development until 2025 (Sensiau (2013))

Figure 5 shows another interesting aspect: While the noise of the fan, the
turbine and the jet were continuously decreased, only few work was done on
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the combustor. This is due to the fact that in the past, combustion noise did
not play a major role compared to the other contributors. However, with the
reductions in noise of the di�erent engine components to come, combustion
noise will equally become a major contributor of overall engine noise. This is
especially the case in approach and taxiing, where the jet velocity is low, while
combustion noise stays relatively high. Combustion noise is characterized by a
low frequency, as shown in �gure 6. Its frequency is usually below 1.5 kHz and
it has a broadband spectrum (Sensiau (2013); Leyko (2010); Silva (2010)).

Figure 6: Breakdown of the di�erent engine noise contributions in their typical spec-
tra (Sensiau (2013))

Combustion noise can be described by noise emissions which are generated by
enhanced system resonances as explained by Candel et al. (2009) and can be
separated into the following contributions, as presented in �gure 7

• Direct combusion noise is noise generated from the heat release �uctu-
ations from the �ame itself

• Indirect combustion noise results from the inhomogeneities in vorticity
and entropy in the burnt gases, which are generated by the turbulent
�ame. These are accelerated in the engine parts downstream of the
combustor, such as an exhaust nozzle or the �rst turbine stages.
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Figure 7: Schematic drawing of an aircraft combustion chamber with illustrations of
direct combustion noise, entropy noise and vorticity noise (Ullrich and Sattelmayer
(2016))

The mechanisms which generate direct and indirect combustion noise have been
described in various reviews (Strahle (1978); Crighton et al. (1992); Candel
et al. (2009); Dowling and Mahmoudi (2015); Morgans and Duran (2016)).

Since the focus of this thesis is the experimental study of combustion noise,
a detailed presentation of the di�erent experimental works is provided. The
description concentrates on gas turbine combustors. The aim is also to show
the questions which stay open and the motivations for the present work. Fi-
nally, the most relevant mechanisms of direct and indirect combustion noise are
described.

Overview of the experimental studies of combustion noise in gas
turbine combustors

The �rst experimental studies of combustion noise in aero engines were con-
ducted already in the 1970s and 80s. The aim was to identify the contribution
of combustion noise in industrial gas turbines and to compare it with other
contributors, such as turbine or jet noise.

The �rst tests were conducted by Karchmer and Reshotko (1976) on an AVCO-
Lycoming YF-102 turbofan engine, where several microphones were mounted
on di�erent positions. The total engine noise was measured by mounting micro-
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phones in the far-�eld of the engine. The contributions of the di�erent engine
parts were then obtained by calculating the correlation and coherence between
the di�erent microphones. It could be shown that the combustor contributes
with broadband noise in frequencies below 200 Hz. Karchmer and Reshotko
(1976) also concluded that combustion noise is the main contributor when the
engine is operated at low loads.
Similar observations were made by Shivashankam (1978) on an iResearch GTC
P 85 series gas turbine, which is used as an Auxiliary Power Unit (APU) in
aircraft, and by Guédel and Ferrando (1986) on a TM 333 turboshaft engine.
Both identi�ed combustion noise as a low frequency broadband contributor
that is dominant in low load operating points. Besides, Guédel and Ferrando
(1986) compared the acoustic signal downstream of the combustor with that
within and saw that the former one is dominating. This result suggests the
high importance of indirect combustion noise.
More recently, Harper-Bourne et al. (2008) tested the contribution of combus-
tion noise on a Rolls-Royce Trent 500 engine in the framework of the European
SILENCE(R) program and obtained similar �ndings.

The technique of using correlations and coherences is also applied in �rst at-
tempts to separate direct from indirect combustion noise. This is done by
adding high-speed thermocouples at di�erent positions in the gas turbine. By
calculating the correlation between the thermocouple signals and the di�erent
microphone signals, �rst conclusions could be made about the importance of
entropy noise. This approach was applied by Muthukrishnan et al. (1978) on a
Boeing 502-7D gas turbine, by Pickett (1975) on a JT3D engine from Pratt and
Whitney and equally by Strahle and Muthukrishnan (1980) on di�erent aero
engines. These works con�rm the previous observations that combustion noise
is a broadband phenomenon at low frequencies. With the help of the thermo-
couple spectra they could also show that entropy noise is a more important
contributor for noise in industrial gas turbines than direct combustion noise.
With raising interest on combustion noise, the technique was applied on recent
aero engines.
In the framework of the European TEENI project (Duran et al. (2014)), Live-
bardon (2015) conducted experiments on a turbo-shaft engine from Turbomeca.
This engine has the advantage that jet noise is low, thus the contribution of
combustion noise is easier to detect. The signals of in-chamber microphones
and high speed thermocouples are compared with those of far-�eld microphones
in order to identify the contributions of direct and indirect combustion noise.
However, the study is limited by the response time of the thermocouples, which
only allows for correct measurements up to 300 Hz (Childs (2003)).

While all these studies allowed to identify the strong contribution of entropy
noise to total combustion noise, a quanti�cation still needs to be done. For this
purpose, di�erent laboratory scale experiments were developed, where entropy
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waves are accelerated in a nozzle. Zukoski and Auerbach (1976) made �rst at-
tempts to generate periodic temperature �uctuations in �ows. In a more recent
experiment created by Bake et al. (2009), the so-called Entropy Wave Gen-
erator (EWG), air is periodically heated by an electric heating module. It is
accelerated through a choked nozzle and the pressure �uctuations are measured
by microphones on di�erent positions upstream and downstream of the nozzle.
The results in general correspond to theory and show in particular that the en-
tropy noise generation increases with a decreasing Mach number at the nozzle
entry and an increasing Mach number at the nozzle exit. Di�erently said, the
more the nozzle is accelerating the �ow (and thus the density �uctuations), the
more entropy noise is generated.

Studies of combustion noise were also made on laboratory scale. The analysis
of direct combustion noise is straightforward due to the link of the pressure
and the heat release rate of the �ame, as shown by Schuller et al. (2002). An
example is the experiment of Bender et al. (2009), who measured the sound
emission from a con�ned swirling combustor with modi�able geometry. The
experiments showed indeed the link between the pressure �uctuations and the
spatially resolved �uctuations of the heat release rate of the �ame.
First attempts were also made to use laboratory scale combustors, where the
entropy waves are generated by the �ame and accelerated through an exhaust
nozzle. Examples of such chambers are presented by Bake et al. (2008), Bake
et al. (2009), where a combustor with a nozzle is examined. By varying the
nozzle geometry, the Mach number at the nozzle exit is varied as well. The
experiments show that combustion noise generation increases with increasing
nozzle exit Mach number. The experiments thus con�rm the �ndings on the
EWG.

The EWG allows to generate entropy �uctuations arti�cially and the experi-
ments on laboratory scale show the importance of their acceleration for entropy
noise generation. However, no test bench exists yet, where direct and indirect
combustion noise are studied and quanti�ed with a turbulent �ame as a source.
The aim of this thesis is to narrow this gap and to design and build a pres-
surized lean swirling combustor test bench, which generates high quantities of
indirect combustion noise. Similarly to the previous works, the entropy waves
are to be accelerated by an exhaust nozzle. The di�culties of this objectives
are the high pressure which needs to be attained and the thermal load on the
walls. Furthermore, the right dimensions need to be found, leading to high
quantities of indirect combustion noise while avoiding the existence of a strong
combustion instability. Also, the acoustic boundary conditions must be well-
known and controllable.
The second aim is then to characterize this combustor, determine its acoustic
boundary conditions and to �nd means to determine the contributions of direct
and indirect combustion noise. This is however not trivial, due to the harsh



10 Introduction

environment in the combustor and the high needs for spatial and temporal
resolution. It also has to be added that in this thesis, vorticity noise is not
taken into account. Thus when speaking of Indirect combustion noise, only the
entropy noise is meant.

In this thesis, the design of the combustor is based on the most important the-
oretical �ndings concerning direct and indirect combustion noise generation.
They are summarized in the next section and then used to suggest di�erent
design objectives for the combustor built and used in this work. A good sum-
mary of the key processes that are connected to entropy noise was recently
made by Morgans and Duran (2016) and is recapitulated here and combined
with a description of the direct combustion noise generation.

Theoretical framework on combustion noise generation

First it needs to be considered that indirect combustion noise can be separated
into two contributors, vorticity noise and entropy noise. The noise generated
by vorticity �uctuations has been theoretically described by Howe (2003). In a
numerical simulation of a vortex propagating through a nozzle, Hulsho� et al.
(2001) found that the main factors that in�uence the amplitude of vorticity
generated noise are the vortex circulation, the initial position of the vortex
and the mean �ow Mach number. In an experimental approach Kings et al.
(2011) generated vorticity waves arti�cially by pulsed alternating circumferen-
tial air-injections and found that an increasing intensity of the swirling �ow
also increases noise generation in the nozzle.
However in this thesis the focus is put on entropy noise, while vorticity noise is
not taken into account. Thus when speaking of indirect combustion noise, only
the entropy noise contribution is meant.

Figure 8: Schematic drawing of the key processes that are connected to combustion
noise (Morgans and Duran (2016))

These key processes, identi�ed by Morgans and Duran (2016) and summarized
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in �gure 8, are following (extended by the generation of direct combustion
noise):

• Generation of acoustic waves in the �ame

• Generation of entropy waves in the �ame

• Propagation of entropy �ames through the combustor

• Acceleration of the entropy wave and generation of entropy noise

• Propagation of the entropy wave through the turbine

• E�ects of the re�ected entropy noise on the combustion instability

Generation of acoustic waves in the �ame

Many studies were conducted about the generation of acoustic waves in the
�ame, thus direct combustion noise. The �rst ones were conducted on free
�ames. These experiment have shown the link between the heat release �uctu-
ations of the free �ame and the resulting noise emission in the far �eld (Smith
and Kilham (1963); Thomas and Williams (1966); Shivashankara et al. (1975)).
This phenomenon has been expressed mathematically by Strahle (1978) and
corrected by Crighton et al. (1992). In a review of these works, Candel et al.
(2009) describe the link between the �ame heat release �uctuations and the far
�eld noise by the following equation:

p′(r, t) =
γ − 1

4πc20r

∫
Vc

∂Q̇

∂t
(r0,t −

r

c0
)dV (r0) (1)

with c0 the ambient speed of sound, Q̇ the global heat release rate, γ the spe-
ci�c heat release ratio, Vc the volume of the combustion zone and r

c0
the time

span for the generated sound to propagate between �ame and far �eld observer.

This equation has been based on the approach, that sound is generated in a
quantity of monopole sound sources, which corresponds to Lighthill's analogy
for aerodynamic sound (Lighthill (1952)). These sources are generated by the
heat release �uctuations of the �ame. The source term in this equation includes
the interactions between turbulent �ow and the pressure �eld, for example con-
vection, refraction or di�raction (Bogey et al. (2003); Bailly et al. (2010)).
Abugov and Obrezkov (1978) and later Clavin and Siggia (1991) could demon-
strate experimentally the link between far �eld pressure �uctuations and the
�uctuations of �ame surface, putting forward the relation between the surface
changing due to turbulence and sound generation. However, the approach of
eq. 1 is only valid under the precondition that the length scale L of the �ame
is well below the acoustic wavelength λ, which itself is well below the distance
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between �ame and observer r: L� λ� r

The preconditions mentioned for the theory below are not valid in an indus-
trial combustion chamber, where the pressure is measured close to the �ame.
Furthermore, the con�nement by the chamber walls is not taken into account.
Nevertheless the equation is su�cient to explain the generation of direct com-
bustion noise.

Generation of entropy waves in the �ame

The next aspect that is mentioned by Morgans and Duran (2016) is the gener-
ation of entropy waves in the �ame. This phenomenon can be explained based
on the calculations presented in Dowling and Stow (2003) and Dowling and
Williams (1983) and stated in the following.

The energy conversion in a compressible �ow can be described by the following
equation:

ρ
D

Dt
(e+

1

2
u2) = −O · (pu) + q + O(kOT ) +

∂

∂xj
(τijui) (2)

with ρ the �uid density, e the internal energy, u the velocity, p the pressure,
q the heat release rate, k the thermal conductivity, T the temperature and τij
the viscous stress sensor. This equation can be combined with Gibb's equation
Tds = dh− dp/ρ, where s is the entropy and h is the enthalpy. This operation
results in the following equation:

ρT
Ds

Dt
= q + O(kOT ) + τij

∂ui
∂xj

(3)

The left side of this term shows the entropy advection. The three terms on
the right hand side are either entropy sources or entropy sinks. The �rst one
corresponds to the generation of heat, the second to thermal gradients and the
third to heating due to friction.

Another classical entropy de�nition is s = cvln(p/pγ). If this is decomposed
into a mean and �uctuating part and the perturbations are supposed to be
small, one obtains s′ = cvp

′/p̄− cpρ′/p̄. Combined with the ideal gas law, this
leads to the equation:

s′

cp
=
T ′

T̄
− γ − 1

γ

p′

p̄
(4)
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When this equation is combined with eq. 3, assuming constant k and linearising,
one obtains following:

D̄s′
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)

]
(5)

It is often assumed, that the �ow is non-di�usive. The viscous e�ects and
temperature gradients are thus neglected. Furthermore, it is assumed that for
low frequencies the acoustic waves are plane and one-dimensional. In this case,
the equation simpli�es to the following (Dowling et al. (1988)):

D̄s′

Dt
=
Rq̄

p̄

(
q′

q̄
− p′

p̄
− u′

ū

)
(6)

Eq. (6) shows that the generated entropy �uctuations depend principally on
the heat release �uctuations. These need to be high in order to generate strong
entropy �uctuations. However, as already explained in this section, these heat
release �uctuations ultimately also generate direct combustion noise. The con-
sequence on the practical design of a combustor for combustion noise research
is, that a compromise needs to be found between strong entropy �uctuations
and low direct combustion noise generation.

Propagation of entropy waves through the combustor

Once generated at the �ame, the entropy waves propagate downstream in the
combustion chamber. This corresponds to the next process, which Morgans
and Duran (2016) states.

The propagation of entropy in the combustor is described by Eq. (3). Since
the entropy waves have left the �ame in this stage, the heat addition term is
zero. The equation becomes thus following:

ρT
Ds

Dt
= O(kOT ) + τij

∂ui
∂xj

(7)

In this equation, the entropy �uctuations depend on the temperature gradients
and on friction losses. This means that the entropy waves lose their strength
while propagating in the combustion chamber. This was also observed in the
experimental works of Sattelmayer (2002) and Eckstein et al. (2004). They
showed in their combustor test benches that the entropy waves have almost
disappeared in the combustor exit. On the other hand, the LES simulations of
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combustors in actual engines show that the entropy �uctuations survive until
their arrival to the chamber exit (Franzelli et al. (2012); Leyko et al. (2009);
Livebardon (2015); ?). As stated by Morgans and Duran (2016), no stronger
conclusions can be made on this topic and further research needs to be done.

Nevertheless, di�erent conclusions on combustion system design can be drawn
from the existing �ndings and from Eq. (7). In general it is desirable, that
the combustion chamber is as short as possible in order to minimize losses
due to friction or heat losses (However care needs to be taken as the higher
con�nement can decrease the �ame stability). A possibility to even increase
entropy �uctuations could be the addition of a secondary air �ow through the
chamber walls, as done in industrial aero engine combustors (Jeschke (2012)).
These would increase the temperature gradients in the burnt gases and thus
possibly also the entropy �uctuations.

Acceleration of the entropy wave and generation of entropy noise

The next mechanism mentioned by Morgans and Duran (2016) is the genera-
tion of entropy noise due to the acceleration of the entropy noise in a nozzle or
a turbine stage.

The interactions between pressure �uctuations and �ow homogeneities were al-
ready observed in the 1950s. Tsien (1952) developed an analytical expression for
the response of a nozzle to an excitation in velocity and pressure. Furthermore,
Crocco (1951) studied the e�ects of nozzles on combustion instabilities. Based
on pressure and velocity measurements at the nozzle inlet, they obtained an
analytical solution for the response of the nozzle on the entire frequency range.
In a later work Bell et al. (1973) used an impedance tube facility in order to
determine the admittance of a nozzle experimentally.

The results of these �rst studies led to the suggestion that the acoustic impedance
of the nozzle has an in�uence of the sound generated by �ow inhomogeneities.
In order to test the contribution of each, Chu and Kovasznay (1958) synthe-
sized the �ow homogeneities from the burnt gases of a turbulent �ame into
its acoustic, vorticity and entropy modes. They then examined the interaction
between each of these modes with a nozzle (as treated by Marble and Candel
(1977); Moase et al. (2007)) or a turbine stage (as shown by Cumpsty (1979)).
They could show that acoustic modes propagate the nozzle or turbine blade at
speed of sound, while entropy and acoustic waves do so at �ow velocity. When
the mean �ow velocity increases, the �uctuations in entropy or vorticity are
then transformed into sound emission.

The generation of entropy noise due to acceleration of the �ow homogeneities
is described in a simpli�ed way by Marble and Candel (1977). The nozzle is
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considered as compact and its length is thus negligible compared to the wave
length of the acoustic and the entropy wave. The density perturbations are con-
sidered one-dimensional. In this work the sound generation due to the entropy
wave could be calculated analytically. The results show that while the acoustic
wave is re�ected and transmitted, another acoustic wave is transmitted that
is associated with the accelerated entropy wave. The work has also shown the
importance of the Mach number. Entropy noise generation is highest when the
Mach number of the �ow is low at the nozzle entry and high at the nozzle exit.
Di�erently said, the more the �ow (which contains the entropy �uctuations) is
accelerated, the more noise is generated in the nozzle. These �nding are also
illustrated in �gure 9.

Figure 9: Comparison of the e�ects of the Mach number in the combustion chamber
and at the nozzle exit on combustion noise generation (Dowling and Mahmoudi (2015),
based on the simulations of Leyko et al. (2009))

Concerning combustor design, these �ndings mean that the burnt gases need
to be accelerated as much as possible in order to generate large quantities of
indirect combustion noise. For the sake of simplicity this is done in a nozzle.
In the presented theoretical works (Marble and Candel (1977); Leyko et al.
(2009)) the �ow even attains velocities that are higher than the speed of sound.
Therefore, the exhaust nozzle is choked and the in-chamber pressure increases.
As a consequence, higher mechanical and thermal stresses are put on the struc-
ture, which needs to be taken into account during the combustor design process.

These �ndings are however valid only under the assumption of a compact noz-
zle. ? went a step further and developed an analytical solution for any exhaust
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nozzle and are thus able to calculate the generated direct and indirect combus-
tion noise for more general cases.

Propagation of the entropy wave through the turbine

In industrial scale gas turbines, the entropy waves do not propagate through
one turbine stage or nozzle, but through a series of blades. The process which
leads to the generation of indirect combustion noise is similar to what was
described in the previous section. Moreover, this problematic is not relevant
for this laboratory scale project. Therefore, this point is not detailed further.
A detailed theoretical description can be found in Morgans and Duran (2016).

E�ects of the re�ected entropy noise on the combustion instability

The acoustic waves that are generated in the exhaust nozzle propagate down-
stream and upstream towards the �ame. As explained by Morgans and Duran
(2016), these acoustic waves can interact with a possible combustion instability
that can be found in the burner.

The di�erent mechanisms of combustion instabilities are explained by Ducruix
et al. (2003). A typical mechanism is the impact of the �ame on the chamber
walls, which leads to periodic changes of the �ame surface, thus �uctuations
of the heat release rate and �nally pressure �uctuations. Another mechanism
is the �ame vortex interaction, where vortices lead to a periodic roll-up of the
�ame, leading to �uctuations of heat release rate and thus pressure. Besides,
Ducruix et al. (2003) explains di�erent mechanisms, in which the pressure �uc-
tuations act on the �ame. This leads to a positive feedback circuit, as described
by Candel (2002). The pressure �uctuations can for example lead to �ow rate
�uctuations in the feeding lines, which leads to oscillations in equivalence ratio
and thus �nally to heat release �uctuations. Furthermore, the pressure �uctua-
tions also act on the vortices which interact with the �ame, or on the �ame-wall
interaction.

In the same way, the generated entropy noise, which is propagating upstream,
can also have an in�uence of the di�erent mechanisms that were described be-
fore. However it is di�cult to predict the e�ects beforehand. Goh and Morgans
(2013) have shown in an analytical study the e�ects of entropy noise on the
strongest eigen modes of a model combustor. They observed various possible
e�ects: Entropy noise could destabilize stable modes but also stabilize unstable
ones. It could also lead to mode switching or cause proper acoustic-entropic
instabilities. Due to this variety, no conclusions can be made on combustor
design. But what has been shown by ? and ? is that the re�ection coe�cient
from the �rst stage of the high pressure turbine is low.
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Motivation of this thesis

As shown in the previous sections, various works have been done in order to
describe direct and indirect combustion noise generation experimentally. How-
ever no work has been done where a combustion system generates direct and
indirect combustion noise simultaneously. The aim of this thesis is to narrow
this gap and to design and build a pressurized lean swirling combustor test
bench, which generates high quantities of indirect combustion noise. Similarly
to the previous works, the entropy waves are to be accelerated by an exhaust
nozzle. The second aim is then to characterize this combustor, determine its
acoustic boundary conditions and to �nd means to determine the contributions
of direct and indirect combustion noises.

Figure 10: Schematic drawing of the CESAM testbench of EM2C Laboratory (Lam-
raoui (2011))

The thesis is using and integrating the rich experience of EM2C Laboratory
about gas turbine model combustors and their acoustics. The architecture of
the combustor is shown in �gure 10 and is based on the work of Dioc (2005) who
in her work designed a combustor test bench featuring lean premixed swirling
combustion at atmospheric pressure. In following works, methods were devel-
oped in order to �x and to determine the acoustic boundary conditions of the
test bench. Tran (2009) developed an impedance control system (ICS) which
is able to damp oscillations at a chosen frequency range and determined its
acoustic impedance. The ICS was later modelled and optimized by Scarpato
(2014). Lamraoui (2011) enhanced the test bench by developing a technique to
measure feeding line impedances on the �y. This technique allowed to conduct
a modal analysis of the atmospheric combustor. He also made �rst attempts
to examine the e�ects of an exhaust nozzle on acoustic sound generation, how-
ever the nozzle was not choked. Together with the explained techniques, the
acoustic modelling and the optimization of the exhaust nozzle by Giauque et al.
(2012); Giauque et al. (2013) opened a way to design a combustor test bench
with all acoustic boundary conditions being well de�ned.

Apart from advances in test bench design, knowledge was also obtained in the
diagnostics which allow to determine of direct and indirect combustion noise.
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With the application of Laser Interfermetric Vibrometry on �ows (Mayrhofer
and Woisetschläger (2001); Giuliani et al. (2009); Li (2012)), a technique is
available which allows to obtain temperature �uctuations at sampling frequen-
cies above that of thermocouples, which are limited to 300 Hz (Childs (2003)).
In a next step, Tao (2015) developed a technique to separate direct and indirect
combustion noise, based on simultaneous high speed measurements of temper-
ature and pressure �uctuations on di�erent positions. These approaches, to-
gether with classic diagnostics, such as PIV for the measurement of velocity
�elds or high speed imaging of OH* chemiluminescence, allow to characterize
the test bench and to determine its direct and indirect combustion noise con-
tributions.

Structure of this thesis

From the motivation described in the previous, the following research questions
emerge:

How to design a combustor test bench that generates a high quantity of indirect
combustion noise?

What are the main characteristics of the �ame and the �ow of this combustor?

Which diagnostics can be used to obtain information about combustion noise
and how do they need to be worked on in order to do so?

What are the contributions of direct and indirect combustion noise in this com-
bustor?

In order to answer these research questions, this thesis has been structured in
the following parts and chapters:

In the �rst part of the thesis, the new combustor test bench, as well as the
velocity and �ow �elds and dynamics are described. While this part is not
directly linked to combustion noise, it is necessary in order to know the main
properties of �ame and �ow in the burner.

• In chapter Chapter 1 the design of the new combustor test bench
CESAM-HP is presented. The main architecture is explained and justi-
�ed in terms of combustion noise generation. Furthermore, the operat-
ing conditions are described and three operating points are chosen for
the entire thesis.

• Chapter 2 is focussing on the statistics of �ame and aerodynamic in
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the combustor. For this the mean and RMS �ame visualizations are
obtained by OH* chemiluminescence. The aerodynamics are obtained
by the mean and RMS velocity �elds determined by PIV. Finally, the
areas with the strongest dynamics are identi�ed.

• In Chapter 3 a modal analysis of the test bench is conducted by com-
bined experimental and analytical approaches. In this approach, the
combustor geometry is modelled as two/�ve cavities and the acoustic
boundary conditions are determined analytically and experimentally by
pressure measurements. This study helps to interpret the main acoustic
modes of the test bench and �nally indicates the existence of a combus-
tion instability.

• Chapter 4 is dedicated to the main combustion instability. In this
chapter, the �uctuations of local velocity, heat release and pressure are
obtained by high speed measurements with PIV, OH* imaging and pres-
sure sensors respectively. The existence of the combustion instability is
put forward by comparing the FFT of the di�erent measurements at
di�erent locations in the combustion chamber.

The second part is dealing with optical diagnostics that were worked on during
this thesis. While work is still necessary in order to validate and/or quantify
the techniques, they are supposed to be of interest for the studies of combustion
dynamics and noise in the future.

• In Chapter 5 a new high speed PIV technique is presented that was
developed during this thesis and is applied for the velocity �eld mea-
surements. It is based on the use of a continuous laser source and allows
for sampling frequencies of up to 100 kHz. The validity of the technique
is tested and discussed for the use on this thesis by comparing its mean
and RMS velocities with the results obtained by a classic pulsed PIV
technique.

• In Chapter 6, the visualization of the density �uctuations are pre-
sented. They are conducted by a focussing Schlieren technique, which
allows to obtain 2D images of the density gradients at high sampling
frequencies. Due to the application of a particular installation, the den-
sities are shown on a �eld of view of only a few millimetres. Fourier
analysis is conducted on the resulting images and suggestions are made
to extend the approach to a technique which allows for a quantitative
determination of temperature �uctuations.

Finally, in the third part of the thesis, the experimental determination of direct
and in direct combustion noise is treated. Two di�erent approaches were worked
on and are presented here.
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• Chapter 7 presents a theoretical determination of direct combustion
noise contributions. For this purpose the global heat release rate is
obtained experimentally by photomultiplier measurements. From these
results, the theoretical pressure �uctuations are calculated by using a
simpli�ed wave equation. The high contribution of direct combustion
noise is �nally suggested by determining the coherence between the
theoretical and measured pressures.

• Chapter 8 presents the separation of direct and indirect combustion
noise contributions on the CESAM-HP test bench. For this, high speed
line-of-sight averaged temperature �uctuations are measured with Laser
Interferometric Vibrometry. The measurements are conducted syn-
chronously with pressure measurements. From these results, the dif-
ferent combustion noise contributions are calculated.

In the end, Annex A describes two potential modi�cations, which have the
aim to increase indirect combustion noise contributions. (1) The fuel injection
system is changed with an aim to verify the e�ects of premixing on combustion
noise. (2) Secondary air injection through the chamber wall is applied in order
to add inhomogeneities to the burnt gases. The modi�cations are compared at
di�erent operating points in terms of pressure �uctuations, direct combustion
noise contributions and �ashback into the injector.

Publications

In the framework of this thesis, the following publications were made until the
moment of submission of the manuscript:

M. Mazur, W. Tao, P. Scou�aire, F. Richecoeur, S. Ducruix. Experimental and
analytical study of the acoustic properties of a gas turbine model combustor
with a choked nozzle. GT2015-43013. ASME Turbo Expo 2015, June 2015,
Montréal, Canada

M. Mazur, P. Scou�aire, F. Richecoeur, S. Ducruix. High speed PIV mea-
surements in reactive �ows using a continuous wave laser, Poster presentation.
Gordon Research Conference Laser Diagnostics in Combustion, August 2015,
Waterville Valley, NH, USA

N. Kings, M. Mazur, W. Tao, P. Scou�aire, F. Richecoeur, S. Ducruix. Experi-
mental and numerical investigation on combustion noise sources in a model gas
turbine combustor. XNOISE Workshop 2015, September 2015, La Rochelle,
France

M. Mazur, N. Kings, P. Scou�aire, F. Richecoeur, S. Ducruix. Combustion
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Summary

This part of the thesis has two aims: (1) It has the aim to present the design
of the test bench which is used during this work, (2) It has the goal to present
its �ame and �ow dynamics as well as its eigenmodes.

The design of the test bench, named CESAM-HP (�Combustion Etagée Swirlée
Acoustiquement Maitrisée - Haute Pression� - �Staged Swirled Acoustically
Controlled Combustion - High Pressure�) in the following, is presented in chap-
ter 1. It is designed with the the aim to generate a high quantity of combustion
noise, to be close to an aeronautic con�guration and to have adequate access
for di�erent measurement techniques. In order to ful�l these objectives, the
burner features a lean premixed swirling combustion and has pressures of up
to 2.5 bar. Apart from the combustor design, the chapter also describes the
operating range, basic in-chamber diagnostics and �nally the operating points
that are chosen for this thesis.

The mean and rms velocity �elds and �ame visualizations are presented and
discussed in chapter 2. This is done in order to obtain �rst insight about the
�ame shape and dynamics and also in order to identify the regions with the
strongest velocity and heat release oscillations.

In the following chapter, a modal analysis is conducted in order to determine
the eigen modes of the CESAM-HP combustor. This is done by applying a com-
bined analytical and experimental approach. In this approach, the combustor
is modelled in 1D as di�erent cavities and the acoustic boundary conditions are
determined partially experimentally.

Finally, in chapter 4 these eigen frequencies are investigated further. With the
help of time and spatially resolved diagnostics, the PSD of velocity, heat release
and pressure are obtained in di�erent regions in the chamber. These experi-
ments show that these eigen frequencies are associated with a low frequency
combustion instability. The instability is put into evidence by describing dif-
ferent driving and coupling mechanisms that can be suggested from the obser-
vations that are made.
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Chapter 1

Design of a test bench for

combustion noise studies

In this chapter, the design of the CESAM-HP test bench is presented.
This test bench is designed to study direct and indirect combustion noise
for aeronautical applications. This framework results in a set of design
objectives, which are stated in the �rst part of the chapter. This is fol-
lowed by a presentation of the test bench architecture and the choices,
which were made in order to ful�l these objectives. The design of each
element is explained in detail, with the focus on the generation of com-
bustion noise. Then, the diagnostics used to �nd and verify the operat-
ing points are presented. Finally, the operating conditions are elaborated
and three operating points are chosen and justi�ed for the rest of this
project.

1.1 Design of the combustor test bench

The CESAM-HP test bench has been designed with the aim to study direct
and indirect combustion noise at a laboratory scale for an application to air-
craft engines. For this purpose, the design choices need to ful�l the following
objectives: (1) The combustor architecture and the physical behaviour inside
the burner need to be close to those of aircraft combustion chambers; (2) The
burner needs to be designed in a way, that entropy noise generation is ob-
servable; (3) The design needs to be simple enough to perform reproducible
experiments in a safe way; (4) The design needs to be simple enough to allow
for numerical simulations in the framework of the RECORD project; (5) The
acoustic boundary conditions need to be measured and eventually controllable.
The aim of this chapter is to present the chosen test bench design and to justify
the choices made with regards to the stated objectives. It is also put forward
how the experiments and results from previous work at EM2C laboratory are
used to ful�l these design objectives. Furthermore, the operating limits are
explained and operating points are chosen for the following of the thesis.
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1.1.1 The architecture of the test bench

The CESAM-HP test bench features a lean premixed swirling combustion. This
is similar to most of the aeronautical con�gurations, where the swirl stabilizes
the �ames and allows for lower NOx emissions. Furthermore, the combustion
chamber corresponds to a can-shaped model (Jeschke (2012)). However, the
shape of the combustion chamber is rectangular which allows an easier de-
sign and a high modularity. The combustor is fuelled with propane instead
of kerosene in order to exclude multiphase phenomena in this study, which
is focussed on acoustic phenomena. Besides, the combustion chamber is pres-
surized with the help of a choked exhaust nozzle to pressure levels up to 2.5 bar.

Various design choices were made in order to ensure the desired acoustic be-
haviour. The choked exhaust nozzle pressurizes the combustion chamber and
has been shaped in order to favour the generation of indirect combustion
noise (Giauque et al. (2012); Giauque et al. (2013)). The impedance control
system as well as the choked nozzle allow to control the acoustic boundary con-
ditions upstream and downstream of the combustor (Tran et al. (2009a)). The
simplicity and modularity of the design allow the application of various diagnos-
tics. The combustion chamber includes large optical access for the application
of optical diagnostics and the test bench contains various ports for pressure sen-
sors and thermocouples. The rectangular combustion chamber shape results in
straight windows, which avoids optical distortions.

The data acquisition system is of type NI Compact DAQ. It permits to capture
physical quantities, such as pressures or temperatures, synchronously with the
applied optical diagnostics. It has also been chosen to isolate signals in order
to avoid interferences between the di�erent measurements. Its maximal sam-
pling frequency is 50 kHz and it is connected to the control computer via USB
2.0. This assures that the data transfer is su�ciently rapid even at these high
sampling frequencies.

The main elements of the test bench are shown in �gure 1.1 and are the follow-
ing:

• An injection system containing a tangential injection of an air-propane
premixture, an axial injection and an Impedance Control System (ICS)

• A square-shaped combustion chamber with large optical access

• A choked exhaust-nozzle with an optimized shape

These elements are described in more detail in the following sections.
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Figure 1.1: Schematic drawing of the CESAM-HP test bench

1.1.2 The injection system

The injection system is constituted of one tangential injection stage and an ax-
ial injection system, which is combined with the ICS. The tangential injection
stage is depicted in �gures 1.1 and 1.2.

Figure 1.2: Geometry of the tangential injection system

It features two supply lines, which feed the injector with the propane-air pre-
mixture. The gases are injected via the plenum into the injection tube. The
design of the injection stage is based on previous work at EM2C (Dioc (2005))
and ensures a Swirl number above 0.6. This generates an inner recirculation
zone and thus stabilizes the �ame.
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Figure 1.3: Schematic drawing of the injection stage (light blue) and the ICS with
the bias air �ow (green arrow). The �gure also includes the axial fuel injection (blue
arrow).

The axial injection system is shown in �gures 1.1 and 1.3. The system is
constituted from two elements: The ICS, which is a perforated plate with bias
�ow backed by a cavity of adjustable length, and a direct axial air injection
of 4 mm diameter. The system has been designed, tested and modelled at
EM2C (Tran et al. (2009a); Tran et al. (2009b); Scarpato et al. (2012);
Scarpato et al. (2013)) and aims at the following objectives.
(1) The ICS controls the upstream acoustic impedance due to the combina-

tion of the perforated plate, the bias �ow and the cavity. The cavity
length determines the frequency range in which the acoustic waves are
damped. It is set to its longest length (500 mm) in order to attenuate
frequencies below 200 Hz, as described by Scarpato et al. (2012).

(2) Both the bias �ow and the direct axial injection counterbalance the nat-
ural �ashback tendency of the combustor by pushing the �ame down-
stream, decreasing the swirl number and thus decreasing this tendency (Re-
ichel et al. (2015); Sattelmayer et al. (2015); Lapeyre et al. (2016)).
Indeed, Fritz et al. (2004) show that �ashback can be caused by vor-
tex breakdown induced by the sudden expansion present in burners with
similar structures. The addition of a small axial �ow reduces the circum-
ferential velocity gradient and helps in preventing �ashback.

(3) The direct axial jet allows to inject axial air of high velocities into the
combustor. Supposing equal air mass rate, it injects air with a velocity
over 50 times higher than the bias �ow through the perforated plate. This
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axial jet has the aim to attenuate the main instability frequencies of the
test bench and give a broadband shape to the acoustic spectrum. Both
e�ects will be shown later in this chapter.

The fuel and air repartition in�uences the acoustic spectra measured in the
combustion chamber as will be shown in section 1.3. Between 70 and 90 % of
the total air �ow is injected through the tangential stage to ensure a high swirl
value. The axial air �ow is smaller and distributed between the high veloc-
ity central jet from the direct injection and the low velocity �ow through the
perforated plate. No fuel is injected axially in order to ensure the counterbal-
ancing impact on the �ame �ashback. The fuel is therefore exclusively injected
through the tangential stage.

Figure 1.4: CESAM-HP test bench with the layout of the feeding lines

The feeding lines of the test bench can be seen in �gure 1.4. The pressurized
fresh air is supplied at 6 bar and 300 K, and the fuel is supplied at 3 bar and
300 K. The mass �ow rates are controlled via Brockhorst EL-FLOW Select mass
�ow controllers and a constant humidity is ensured by appropriate �lters. As it
can be seen in �gure 1.4, premixing already starts in the feeding lines, about 1 m
upstream from the tangential injection stage. While this does not guarantee
perfect premixing, the long premixing distance as well as the existence of the
plenum in the swirler are both contributing to the premixing quality.
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1.1.3 The combustion chamber

Figure 1.5: Geometry of the Combustion Chamber (Drawing made by Combustion
Bay One (F. Giuliani)

The combustion chamber is the region where the �ame is observed. It is shown
in �gure 1.5 and its dimensions are indicated in �gure 1.1. It has a length
of 140 mm and a squared cross-section of 70 mm x 70 mm. The length has
been chosen to be su�ciently long so that the �ame does not impinge the ex-
haust nozzle but short enough to avoid a complete dissipation of the entropy
waves. The chamber cross section was chosen large enough to avoid a pertur-
bation of the rotational motion of the �ame by excessive wall impact. This
corresponds to a ratio of surfaces Schamber/Sinjector ≈ 7, which was elaborated
in the previous versions of the burner (Dioc (2005); Lamraoui (2011)) and
leads to a �ame which ful�ls the mentioned requirement. The chamber shape
in general is based on these; however for CESAM-HP it was also taken into
account that the chamber pressurization will lead to a more compact �ame.
The combustion chamber dimensions are hence smaller in this test bench than
what would be expected from the previous studies carried out at atmospheric
pressure.

During the design process, it was important to ensure a test bench which fea-
tures reproducible and durable operation and allows for the use of di�erent
measurement techniques. The chamber structure is cooled by an open water
circuit. Therefore the combustor can be operated safely for long durations at
constant thermal conditions. The squared shape of the chamber is a simpli�-
cation compared to industrial applications but it allows for a high modularity.
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Indeed the chamber walls can be chosen either to be instrumented ports or
windows for observation. The chamber windows have a thickness of 30 mm,
which permits safe operation also at high pressures. The instrument ports can
be mounted with the spark plug for ignition, thermocouples and pressure sen-
sors. The design of the instrument ports can be seen in �gure 1.6. The safe
and durable operation of the pressure sensors is insured by a combined system
of thermal protection and water cooling and shown in �gure 1.7. The installa-
tion of the piezo-sensors was a major design driver in this work. Hence their
functioning as well as their installation will be described in detail in section 1.2.1

Figure 1.6: Geometry of the Instrument Port (Drawing made by Combustion Bay
One (F. Giuliani)). The left image shows a 3D view of an instrument port. It includes
three locations for pressure sensors and one for a spark plug. The right image shows
a section of the same piece together with its dimensions.
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Figure 1.7: Sketch of the cooling system. The pressure sensor is protected by a 10 mm
thick wall with an ori�ce of 2 mm diameter. The walls are cooled by an open water
cooling circuit.

1.1.4 The exhaust nozzle

Figure 1.8: Geometry of the Exhaust Nozzle

The exhaust nozzle is a classical de Laval nozzle with the geometry shown in
�gure 1.8. It has a throat diameter of 11 mm and its converging part is very
short compared to the entire length,which will be explained later on. The nozzle
has two functions in the test bench:
(1) Due to its small throat diameter, the nozzle is choked at total mass �ows

above 15 g/s. This leads to an increase of the total chamber pressure up
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to 2.5 bars. It also prevents the upstream propagation of acoustic waves
from sources downstream the chamber, such as the exhaust jet.

(2) The nozzle shape has been optimized in previous works in order to favour
the generation of indirect combustion noise (Giauque et al. (2012); Gi-
auque et al. (2013)). For this, the nozzle shape is expressed as Bezier
splines and the acoustic behaviour is expressed via a thermoacoustic
model. The shape is then optimized using a genetic algorithm. As can
be seen in �gure 1.8, the convergent part converges rapidly, while the di-
vergence is very smooth. The reason for the geometry of the converging
part can be deduced from the set of equations, developed by Marble and
Candel (1977):
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ū
+
c̄2

ū
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The source term on the right hand side of the second equation shows that
the pressure �uctuations increase when the entropy waves are accelerated.
Hence a shape was chosen, which accelerates the �ow as much as possi-
ble and hence generates as much indirect combustion noise as possible.
The considerations for the divergent shape were di�erent. The diameter
increases over a long distance above 100 mm in order to avoid stall of the
accelerated �ow.

First versions of the nozzle were made of graphite. This material has the ad-
vantage of easy and inexpensive manufacturing, but erodes and become porous
during operation, which leads to an increasing throat diameter and changes the
convergent shape. As explained with Eq. (1.2), this leads to decreased entropy
noise generation. The �nal version of the nozzle is thus made of stainless steel
and has a water cooling circuit (Figure 1.9) in order to ensure safe operation
with a constant nozzle shape and under constant thermal conditions.
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Figure 1.9: Geometry of the Exhaust Nozzle Cooling Circuit. The left image shows
the nozzle from outside with the water feeding lines and the right image shows the
cooling water pipes inside the nozzle.

1.2 In-chamber diagnostics

In this section the basic in-chamber diagnostics are presented. The static pres-
sure and dynamic pressure �uctuations are measured with pressure probes of
piezo type. Their functioning and installation is described in section 1.2.1. The
global heat release rate �uctuations are monitored with a photomultiplier probe
(PM), which is presented in detail in section 1.2.2.

1.2.1 Sensors for pressure measurement and their installation

The static pressure and the pressure �uctuations of the CESAM-HP test bench
are measured with two types of pressure sensors, the 4045A and the 701A
from KISTLER. Their speci�cations are summarized in tables 1.1 and 1.2.
Sensors of the type KISTLER 4045A are installed in the combustor walls. They
are of piezo-resistive type and measure static pressure and dynamic pressure
�uctuations simultaneously. Their installation in the combustor walls requires
a combined system of thermal protection and cooling, which was presented in
�gure 1.7. In the injector, a sensor of the type KISTLER 701A is installed. It
is piezo-electric and measures dynamic pressure �uctuations. The 701A sensor
does not need to be cooled because it is installed in the premixer and thus in
contact with the fresh air/fuel premixture.
As explained before, the in-chamber pressure sensors are installed in a com-
bined set of water cooling and thermal protection. The system is inspired from
previous works (Brouckaert et al. (2008); Mersinligil et al. (2010); Mersin-
ligil et al. (2011)) and was developed in collaboration with the engineers from
KISTLER and F. Giuliani.
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Table 1.1: Technical speci�cations of the KISTLER 4045A pressure sensor

Speci�cation

Name KISTLER 4045A pressure sensor
Measuring principle Piezo-resistive

Application Absolute pressure, static and dynamic
Pressure range 0 to 5 bar

Ampli�er KISTLER 4618A0

Table 1.2: Technical speci�cations of the KISTLER 701A pressure sensor

Speci�cation

Name KISTLER 701A pressure sensor
Measuring principle Piezo-electric

Application Dynamic pressure �uctuations
Pressure range 0 to 250 bar, calibrated for 0 to 2.5 bar

Ampli�er KISTLER 5011A

Figure 1.10: Mass-spring model of the ori�ce and the gap between protective wall
and the pressure sensor. This geometry corresponds to the installation of the pressure
sensors and was developed by KISTLER. (Figure based on drawing from KISTLER
(2013))

The in-chamber pressure sensors are placed behind a wall of 10 mm thick-
ness (L in �gure 1.10) with an ori�ce of 2 mm diameter (A in �gure 1.10). The
instrument port is water cooled via an open water circuit. The basic layout
of this arrangement is shown in �gure 1.7. It can be modelled as a combined
mass-system, as shown in �gure 1.10. In this model, the ori�ce and the cavity
between chamber wall and pressure sensor act as a Helmholtz resonator. Its



38 Chapter 1 - Design of a test bench for combustion noise studies

resonance frequency can be calculated by the following equation:

f =
c

2π

√
A

V · L
(1.3)

with c the speed of sound, A the section of the ori�ce, L the thickness of the
protecting wall and V the volume between protecting wall and pressure sensor.
The variables are also speci�ed in �gure 1.10. At an ori�ce length of 10 mm,
an ori�ce diameter of 2 mm and a cavity depth of below 0.5 mm, the resulting
frequency has a value of 6 kHz. This value is above the vast majority of the
phenomena observed in this work thus it will not interfere with the in-chamber
pressure measurements. Thus the chosen arrangement is suitable for this test
bench in terms of resonance frequency.

Figure 1.11: Schematic drawing and photograph of the ITHACA acoustic test bench.
A loudspeaker is located at the bottom of the tube. At the top, the tube contains various
ports in order to mount microphones and pressure sensors.

In a second step, the sensors as well as their installation are validated experi-
mentally. The test are conducted with the ITHACA acoustic test bench, which
was developed at EM2C (Tran et al. (2009a)). A schematic drawing as well as
a photograph are shown in �gure 1.11. The ITHACA test bench can be con-
sidered as a Kundt tube and consists of a loudspeaker for acoustic excitation
and di�erent microphone and pressure sensor ports. These ports are installed
on the same longitudinal position on a tube with an open end.

As a �rst test, the KISTLER 701A sensor is mounted behind di�erent protect-
ing walls and its signal is acquired and compared with a microphone signal. In
this test, the loudspeaker is modulated at 120 Hz and 480 Hz and with an am-
plitude of around 150 dB. The pressure measurements are acquired at 40 kHz
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Table 1.3: Technical speci�cations of the Bruel & Kjaer 4938 microphone

Speci�cation

Name Bruel & Kjaer type 4938 microphone
Measuring principle Condenser microphone

Application Dynamic pressure �uctuations
Dynamic range 30 to 174 dB

Frequency range 4 Hz to 70 kHz
Ampli�er Type 2670 preampli�er

during 1 s and their PSD is obtained by applying Welch's algorithm with Ham-
ming windows of 8192 elements per window and a 50 % overlap.

The KISTLER 701A sensor is mounted behind walls of di�erent thicknesses (see
L in �gure 1.10) and an ori�ce of 2 mm diameter (see A in �gure 1.10) each.
In parallel, a Bruel & Kjaer type 4938 microphone (for speci�cations see ta-
ble 1.3) without protective wall is mounted as a reference. The resulting pres-
sure spectra are shown in �gure 1.12. Four con�gurations are compared: (1)
The �ush-mounted microphone, (2) a wall thickness of 1.5 mm and a cavity
depth of 0.5 mm, (3) a wall thickness of 1.5 mm and a cavity depth of 1.5 mm
and (4) a wall thickness of 10 mm and a cavity depth of 1.5 mm. For both
excitation frequencies, the main excitation frequency frequency and its main
harmonics are well captured by all pressure sensors. For the lower harmonics
the frequencies are equal to that of the microphones, while for higher harmon-
ics it decreases slightly. Besides, the 701A signals feature a higher white noise,
yet it stays far below the main frequencies. It also has a 50 Hz peak and its
harmonics. These peaks are probably linked to the electric system, as will be
shown later. Another aspect is a broadband phenomenon around 3000 Hz.
While it is not negligible, it does not interfere with the main frequencies.



40 Chapter 1 - Design of a test bench for combustion noise studies

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

40

60

80

100

120

140

160

180

Frequency [Hz]

S
P

L
 [
d
B

]

 

 

Microphone
Sensor 701A,
1.5mm wall, 0.5mm cavity
Sensor 701A,
1.5mm wall, 1.5mm cavity
Sensor 701A,
10mm wall, 1.5mm cavity

0 500 1000
0

50

100

150

Frequency [Hz]

S
P

L
 [
d
B

]

Magnified view

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

40

60

80

100

120

140

160

180

Frequency [Hz]

S
P

L
 [
d
B

]

 

 

Microphone
Sensor 701A,
1.5mm wall, 0.5mm cavity
Sensor 701A,
1.5mm wall, 1.5mm cavity
Sensor 701A,
10mm wall, 1.5mm cavity

0 500 1000
0

50

100

150

Frequency [Hz]

S
P

L
 [
d
B

]

Magnified view

Figure 1.12: Pressure spectra of the KISTLER 701A sensor with di�erent installation
arrangements, compared to microphone signal. The upper �gure corresponds to an
excitation frequency of 120 Hz (140 dB) and the lower one of 480 Hz (154 dB).

In the second test, the KISTLER 701A and the KISTLER 4045A sensors are
compared with each other. No protecting wall is used here. As in the previous
study the loudspeaker is modulated at 120 Hz and 480 Hz and around 150 dB.
The pressure measurements are acquired at 40 kHz during 1 s and their PSD
is obtained by applying Welch's algorithm with Hamming windows of 8192
elements per window and 50 % overlap. The resulting spectra are shown in
�gure 1.13. For both sensors, the main excitation frequency and its harmonics
are equally captured in terms of frequency and amplitude. The white noise is
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slightly higher for the 4045A measurement. The 701A spectrum on the other
hand features the same 50 Hz peak with its harmonics as well as the broad-
band phenomenon around 3 kHz. The former is probably linked to the electric
system. Indeed, the 701A sensor is powered by 230 VAC (at 50 Hz), while the
4045A sensor is driven by 24 VDC.

0 1000 2000 3000 4000 5000
60

80

100

120

140

160

180

Frequency [Hz]

S
P

L
 [
d
B

]

 

 

Sensor 701A
Sensor 4045A

0 500 1000
50

100

150

Frequency [Hz]

S
P

L
 [
d
B

]

Magnified view

0 1000 2000 3000 4000 5000
60

80

100

120

140

160

180

Frequency [Hz]

S
P

L
 [
d
B

]

 

 

Sensor 701A
Sensor 4045A

0 500 1000
50

100

150

Frequency [Hz]

S
P

L
 [
d
B

]

Magnified view

Figure 1.13: Pressure spectra of the KISTLER 701A and the KISTLER 4045A
sensors. The upper �gure corresponds to an excitation frequency of 120 Hz (140 dB)
and the lower one of 480 Hz (154 dB).

The experiments on the ITHACA test bench validate the use of the 701A
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Table 1.4: Technical speci�cations of the PM

Speci�cation

Name Photosensor module
Packaging Metal package photomultiplier tube

Type H5784-06
Spectral Response 185 nm to 650 nm
Conversion factor 1 V/µA

Power Supply C7169
Applied �lter 313 nm with 10 nm spectral width

Table 1.5: Positions of the applied pressure sensor and PMs

Sensor x [mm] y [mm] z [mm]

OH* photomultiplier - total 0 to 110 line-of-sight -35 to 35
OH* photomultiplier - nozzle 117.5 to 127.5 line-of-sight 5 to 15

and the 4045A sensor and their installation. Both sensors correctly detect the
acoustic excitation in terms of frequency and also in terms of amplitude. The
protecting installation has little in�uence on these results. The only irregular-
ities observed are the 50 Hz peak and its harmonics as well as the broadband
phenomena around 3 kHz, however these are speci�c to the 701A sensor and
show a far weaker amplitude than the observed phenomena. In total, it can
be concluded that both the pressure sensors as well as the installation can be
applied on the CESAM-HP test bench.

1.2.2 In-chamber OH* measurements

The global heat release rate is obtained by using photomultiplier probes (PM)
with a 313 nm �lter with 10 nm spectral width. They hence capture the chemi-
luminescence of OH*. The properties of the PM are summarized in table 1.4.
The two regions observed with the help of the PM are shown in table 1.5. The
sensor named "total" aims at observing the entire combustion chamber. The
sensor named "nozzle" focuses on the downstream region, which is not included
in the �rst probe measurement zone. Its region of interest is reduced by using
a tube.

1.3 The operating conditions

The combustion chamber is fed with fresh air and fuel at 300 K as well as 3 bar
and 6 bar reservoir pressure respectively. The total air mass �ow rate can be
varied from 3 to 20 g/s. The air mass �ow rates through the ICS and the central
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Table 1.6: General operating conditions of the CESAM-HP test bench

Property
pa,u 6 bar
pf,u 3 bar
T a,u 300 K
T f,u 300 K

Φglobal 0.85
pchamber 2.45 bar
Power 45.0 kW

a: air, f: fuel, u: unburnt, b: burnt

jet are limited to 2 g/s and 5 g/s respectively. The total fuel mass �ow rate is
injected exclusively through the tangential injection and can be chosen to up
to 1 g/s. The fuel is propane, which has a lower heat capacity of 46.4 MJ/kg.
This leads to a maximum power of 46.4 kW. The main operating conditions are
summarized in table 1.6.

Figure 1.14: Examples of a) detached �ame, b) �ash backed �ame and c) conical
�ame

The combustor can be operated in a stable and durable manner for a wide
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range of operating conditions. The �ame can have di�erent forms, depending
on the global equivalence ratio as well as the chosen air repartition between
the tangential and the two axial air injections. The possible �ame types are
presented in �gure 1.14. Three types are identi�ed:
� Particularly lean �ames are detached from the injector and characterized
by strong contact with the chamber walls. An example is shown in �g-
ure 1.14a. The detached �ame is very close to the blowo� limit, especially
at higher air mass �ows.

� Particularly rich �ames have the tendency to be located entirely in the
injector, as can be seen in �gure 1.14b. The �ashbacked �ame leads to
overheating of the injection stage and cannot be observed using optical
diagnostics.

� A �ame with a shape between the two others leads to a �ame which is
presented in �gure 1.14c. The �ame is robust to small modi�cations of
mass �ow rates and equivalence ratios.

The di�erent operating regions and boundaries are presented in the operation
map shown in �gure 1.15. In this �gure the axial mass �ow rates are chosen
zero for the sake of simplicity. The addition of axial �ow rates does not greatly
impact the operating boundaries, thus this operating map is suitable and ap-
plicable in general. The diagram shows two operating boundaries: (1) The
lean boundary indicates the region of the lowest possible equivalence ratio for a
given total air mass �ow rate. The choice of a leaner �ame leads to �ame blow
o�. (2) The upper equivalence ratio limit has been chosen to be 0.9. While
it would be physically possible to operate under richer conditions, the limit of
0.9 was set in order to limit NOx and soot emissions. Two other limits can be
observed in the operation map, the �ame detachment limit and the �ashback
limit, corresponding to the transition between the di�erent �ame types of �g-
ure 1.14.
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Figure 1.15: Operation map of the CESAM-HP test bench. Both axial mass �ow
rates are zero.

For the choice of operating points from this map the following criteria are taken
into account:
(1) Ignition
(2) Path of access
(3) Stability
(4) Acoustic spectra

The ignition can be only made in a very restricted region of the operating map.
The air mass �ow must come exclusively from the tangential injection stage
and needs to be between 2 g/s and 2.5 g/s. The equivalence ratio needs to
be around 0.63. At lower equivalence ratios or air �ow rates no ignition takes
place. At higher equivalence ratios or air �ow rates the �ame is not able to
stabilize itself. Instead, only a succession of failed ignitions can be observed
and heard. After successful ignition the �ame is detached from the injector due
to the low equivalence ratio.

When the �ame is ignited, the air mass �ows and the equivalence ratio need
to be increased in order to reach high power regimes. This is �rst done by
simultaneously increasing tangential air mass �ow to 6 g/s and the equivalence
ratio to 0.8. At this point the �ame corresponds to the shape shown in �g-
ure 1.14c. It is robust and the equivalence ratio and mass �ow rates can be
quickly and safely increased. Also, from this point on, air can be added by the
axial injections.

The stability of the �ame depends on the chosen �ame type and whether the
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Table 1.7: Chosen operating points for the experimental study.

Op16-0-2 Op16-2-0 Op13.4-4.6-0

ṁa,stage 16 g/s 16 g/s 13.4 g/s
ṁa,jet 0 g/s 2 g/s 4.6 g/s
ṁa,ICS 2 g/s 0 g/s 0 g/s

ṁf 0.97 g/s 0.97 g/s 0.97 g/s
Φglobal 0.85 0.85 0.85

pchamber 2.45 bar 2.45 bar 2.45 bar
Power 45.0 kW 45.0 kW 45.0 kW

a: air, f: fuel

operating point is close to the operating limits. Especially when the �ame
is close to the lean limit it experiences strong oscillations and is prone to be
blown o�. When the rich limit is reached the �ame �ashes back into the injec-
tor. While the �ame stays stable, this position is not suitable because the �ame
overheats the injector and cannot be observed by the in-chamber sensors. The
consequence of these observations is that the chosen operating points must be
located in the region between the rich and the lean limit.

Taking into account the three mentioned criteria, the operating points were
chosen based on their acoustic spectra. Three operating points were chosen
for this study. These points are presented in table 1.7. The operating points
are named Op16-0-2, Op16-2-0 and Op13.4-4.6-0. The �rst number corre-
sponds to the tangential air �ow rate, the second to the central jet �ow rate
and the third to the ICS �ow rate all of them being expressed in g/s. The three
operating points have a total air mass �ow of 18 g/s and an equivalence ratio
of 0.85. This choice leads to a choked exhaust nozzle and a chamber pressure
over 2.4 bar and hence ful�ls the requirements stated at the beginning of this
chapter.

The di�erence between these operating points lies in the repartition of the axial
�ow, which in�uences their acoustic behaviour. This e�ect is depicted in the
in-chamber pressure spectra of the three chosen operating points in �gure 1.16.
The pressure was measured with an in-chamber KISTLER 4045A sensor dur-
ing 4 s at a sampling frequency of 25 kHz. From these measurements the
PSD spectra were calculated using Welch's algorithm with Hamming windows
with 2048 points each window and 50 % window overlapping.

The pressure spectra are described and analysed in detail in chapters 3 and 4.
Here, the focus is put on the di�erence between the spectra in the region be-
low 1 kHz. While the dynamics of Op16-0-2 are dominated by a sharp peak
around 120 Hz and its harmonics, Op13.4-4.6-0 has one very broad peak with
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no visible harmonics. The point Op16-2-0 shows a behaviour in-between. In
this last case, the low frequency harmonics are partly attenuated.
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Figure 1.16: Pressure spectra of the three chosen operating points, measured by a
wall-mounted sensor. The spectra show particular di�erences in the low frequency
region. This di�erence justi�es the choice of these operating points.

The comparison of the spectra allows to create a hypothesis concerning the
acoustic behaviour on these operating points. Op16-0-2 shows a very strong
low frequency peak with its harmonics, possibly belonging to a combustion
instability. The high amplitude of this instability leads to the assumption
that this phenomenon is dominating, hence leading to a high amount of direct
combustion noise. This operating point should thus be dominated by direct
combustion noise.
The contrary is observed for Op13.4-4.6-0 with a large broadband part and a
far lower dominance of the low frequency peak. This behaviour allows to assume
that this operating point has a higher contribution of indirect combustion noise.
With the same logic, Op16-2-0 is assumed to have shown a behaviour in-
between.

1.4 Conclusion

The CESAM-HP test bench has been developed with the aim to study direct
and indirect combustion noise. To do so, the combustor needs to ful�l a variety
of constraints: It needs to feature a pressurized premixed swirling combustion,
it needs a design which favours the generation of indirect combustion noise and
allows for easy experimental observation and numerical simulations, it needs to
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have well de�ned and controllable acoustic boundary conditions.
The test bench has been designed to take into account these requirements. The
tangential injection allows for a lean swirling and compact �ame. The use of an
optimized exhaust nozzle leads to a pressure above 2 bar. This nozzle, together
with the impedance control system upstream, allows to obtain well de�ned
acoustic boundary conditions. The rectangular shape and the modularity of
the combustion chamber permit to apply a large variety of diagnostics in order
to observe the physical phenomena in the combustor. The test bench can be
operated safely for long durations due to a water cooling system, which protects
the combustion chamber, the exhaust nozzle and the in-chamber instruments.
The pressure is measured by piezo sensors, which need a combined system of
cooling and thermal protection. This system as well as the sensors themselves
are validated on an acoustic test bench.
The designed test bench allows for a large variety of operating conditions. From
these, three operating points were chosen with regards to their acoustic be-
haviour: One point is estimated to be dominated by direct combustion noise.
A second operating point is assumed to contain a larger indirect combustion
noise contribution. The third point is supposed to show a behaviour between
that of the other two. Therefore this project features a test bench optimized
for the generation and study of direct and indirect combustion noise, together
with operating points with various acoustic spectra.



Chapter 2

Statistic �ame and �ow

characterization

In this chapter, the statistics of the �ow �eld and the �ame are anal-
ysed with the help of Particle Image Velocimetry and OH* chemilumi-
nescence imaging. The aim is to obtain �rst insight about the topology
of the �ame as well as its size, shape and position. The experiments
are conducted for the three chosen operating points in order to show
the di�erences and similarities in their �ow �elds and �ame shapes.
The mean position of the �ame as well as its topology are described by
the mean �elds. The areas of strongest �ow and �ame dynamics are
identi�ed with the help of the RMS �elds of velocity and OH* chemilu-
minescence. Finally these results allow to estimate the regions that will
be of highest importance for the following work in this thesis.

2.1 Motivation

This chapter has the aim to describe the statistics of the �ame and the aerody-
namics of the CESAM-HP test bench. This is done experimentally by two tech-
niques: (1) The velocity �elds are obtained with Planar velocimetry (PCMV).
(2) The �ame shape is determined experimentally by the acquisition of OH*
chemiluminescence images of the �ame.

The velocity �eld and the OH* chemiluminescence are regarded at the entry
zone of the combustion chamber because of the presence of the �ame in this
region. The OH* signal further downstream is too weak to be detected with
an intensi�ed camera, therefore this region is not taken into account here.

This chapter is focussing on the mean and RMS �elds. This allows to describe
the shape of the �ow �eld and the �ame. It also gives a �rst insight about the
regions with the strongest dynamics.
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2.2 Diagnostics

Two diagnostics are used in this part of the project: OH* visualization is used
since the radical OH* indicates the position of the �ame front and is directly
linked to the heat release rate (Schuller et al. (2002)). The velocity �elds are
obtained by performing Planar velocimetry (PCMV), which is based on PIV, a
standard technique for measuring 2D velocities (Adrian (1991); Adrian (2005)).

The mean and RMS �elds of OH* chemiluminescence are determined by the
application of a high-speed camera with a �lter for OH*. This diagnostic al-
lows to visualize the �ame front, as previous works have shown (Higgins et al.
(2001)).
The images are acquired with a Photron SA-X2 high speed camera with a sam-
pling frequency of 10 kHz and an exposure time of 99 µs per image. The signal
intensity is increased by a Hamamatsu intensi�er unit. The intensi�er has the
same gain for all experiments in order to be able to compare the result. The
comparison is possible because the intensi�er gain is linear to the detected in-
tensity. The pixel resolution of the acquisition is 410 × 590 covering an area
of 70 mm × 100 mm thus an image resolution of 5.9 px/µm. The camera is
equipped with a Nikkor 105 mm UV-lens and a narrow-band �lter centred at
313 nm and a bandwidth of 10 nm. With the chosen alignment, the camera
does not cover the entire combustion chamber but only the region where the
signal is strong enough. The OH* signal in the chamber exit region cannot be
detected because it is very weak.

In PCMV (see Adrian (1991); Adrian (2005) for more details), the �ow is
seeded with particles which follow the �ow �eld and which are illuminated with
a laser source. A camera captures the Mie scattering of these particles at a
sampling frequency of 100 kHz. The velocity �elds are obtained for each time
step by estimating the displacement of the particles between two successive
images. To do so, these images are separated into small windows, also named
interrogation window. Then a cross-correlation algorithm is applied between
the corresponding windows between two image acquisitions in order to obtain
their most probable displacement. Knowing the duration between each image
acquisition, one can calculate the instantaneous velocity for each interrogation
window. The planar velocimetry technique applied in this thesis is described
in detail in chapter 5, which focusses on this technique and the developments
made on it. It is called PCMV (Planar Continuous laser-based Mie scattering
Velocimetry) in the following (see chapter 5 for more information).
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2.3 Experimental results

2.3.1 Flame visualizations

The mean and RMS intensities of the OH* chemiluminescence allow to obtain
the �ame shape and its position in the chamber. Besides, they allow to identify
the regions where the �ame front is moving at most. The three operating points
generate similar �ames.

The Abel transformed mean OH* chemiluminescence of Op16-0-2, Op16-2-0
and Op13.4-4.6-0 is shown in �gure 2.1. The �ame is not perfectly radial
symmetric as the lower half of the �ame is slightly longer than the upper half.
Nevertheless the Abel transform is conducted in order to better visualize the
�ame position. This assumption in made due to the topology of the �ame which
features a strong rotational motion. It can thus be deduced from the images
that the �ame exits the injector in a conical shape and impacts the walls.
The mean OH* �elds of the two points Op16-0-2 and Op16-2-0 also have
similar intensities with the highest values at the chamber walls. They have a
swirl cone angle (angle between the high OH* chemiluminescence cone and the
chamber axis) of around 35◦. Op13.4-4.6-0 on the other hand has a swirl
angle at the injector of about 25◦ and thus impacts the walls at a higher x po-
sition. It has lower mean intensities at the chamber walls, while the intensity
in the swirling cone is similar to that of the two other points.
The mean images show that the positions and shapes of the �ame are close for
all operating points with small di�erences between Op13.4-4.6-0 on the one
hand and Op16-0-2 and Op16-2-0 on the other hand.
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Figure 2.1: Abel transformed mean OH* chemiluminescence �elds of the three op-
erating points. Top �gure: Op16-0-2; Middle �gure: Op16-2-0; Bottom �gure:
Op13.4-4.6-0



Part I - Presentation and characterisation of the CESAM-HP test

bench
53

The RMS OH* chemiluminescence �elds can be seen in �gure 2.2. They show
the local �uctuations of OH* chemiluminescence and hence give insight on the
�ame dynamics. The �uctuations are located in the regions of highest mean
OH* chemiluminescence, especially close to the chamber walls. The swirl cone
angles are thus the same as observed in the mean OH* �elds. Again, the RMS
OH* chemiluminescence �elds of Op16-0-2 and Op16-2-0 are almost equal,
while the �eld of Op13.4-4.6-0 is di�erent. It features a smaller swirl cone
angle and the �ame impingement area is longer than for the two other operating
points. This means that at some moment the �ame was located in these regions.
This higher length is an indicator that Op13.4-4.6-0 has larger �ame motion
in axial direction. This suggestion will be con�rmed by the results in chapter 4.
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Figure 2.2: Abel transformed RMS OH* chemiluminescence �elds of the three op-
erating points. Top �gure: Op16-0-2; Middle �gure: Op16-2-0; Bottom �gure:
Op13.4-4.6-0
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The OH* chemiluminescence �elds give �rst insight about the �ame position
and dynamics. They show that the three operating points feature a classic
�ame shape for a swirled premixed combustor. The �ame has a conical shape
and OH* has its highest intensities at the positions where the �ame is impacting
the chamber walls. Op16-0-2 and Op16-2-0 have almost equal OH* chemi-
luminescence �elds, while the �eld of Op13.4-4.6-0 is more stretched in the
longitudinal direction. This di�erence is probably due to a higher axial �ow
rate for this operating point, as will be developed further with the help of the
velocity �elds.

2.3.2 Statistic analysis of the �ow �elds

In this section the velocity �elds of the three operating points are presented. As
mentioned before, the methodology is presented in detail in chapter 5, which
also contains their validation. Still the mean and RMS velocity �elds are pre-
sented here, since they are part of the analysis of the statistics. The velocity
�elds were only acquired on a limited region, at the entry of the burner with x
up to 25 mm and for the upper half of the burner.

The vector view of the mean velocity �elds for the three operating points is
shown in �gure 2.3. These �gures show that the three operating points feature
a high speed region with a width of a few millimetres and a certain angle com-
pared to the chamber axis. The numerical value of the angle will be presented
later on with the velocity pro�les, since the numerical values obtained from
them will allow to obtain a more precise calculation. If assuming radial sym-
metry this high velocity region can be considered to have a conical shape. It
is adjacent to a low speed inner recirculation zone. Another recirculation zone
can be observed in the wall proximity. This �ow �eld shape is classic for a high
swirling �ame, where the inner recirculation zone has the aim to stabilize the
�ame (Candel et al. (2014)). However it can also be observed that the thickness
of the high speed region Op13.4-4.6-0 is almost twice as that of Op16-0-2
and Op16-2-0. Furthermore, in the former operating point the longitudinal
velocity in the inner recirculation zone is almost zero for x < 10 mm, while be-
ing clearly negative for the two other operating points. As explained in Candel
et al. (2014) the negative velocity is associated with a su�ciently strong re-
circulation, which stabilizes the �ame. Following this reasoning the stabilizing
e�ect of this recirculation zone should thus be lower for Op13.4-4.6-0.
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Figure 2.3: Top left �gure: Mean vector �eld of Op16-0-2; Top right �gure: Mean
vector �eld of Op16-2-0; Bottom �gure: Mean vector �eld of Op13.4-4.6-0

The mean velocity �elds are depicted in the �gures 2.4 to 2.6 and the RMS
�elds in 2.7 to 2.9. They allow to quantify the observations made in the vec-
tor �elds. The two operating points Op16-0-2 and Op16-2-0 are very close
in terms of velocity levels (14 m/s maximal longitudinal and 10 m/s maximal
transverse velocity).
Also in the inner recirculation zone the velocities are close, with a value of
around -3 m/s. The cone angle of the high speed zone also seems to be similar
for both operating points.
Di�erent mean velocities are observed for Op13.4-4.6-0. Here, the maximum
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mean velocities only reach 10 m/s in x- and 4 m/s in z-direction. The cone
angle is about half of that of the two other operating points. The angles are cal-
culated at a later point in this chapter, when the velocity pro�les are considered.
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Figure 2.4: Mean velocity �elds in x and z direction of Op16-0-2
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Figure 2.5: Mean velocity �elds in x and z direction of Op16-2-0
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Figure 2.6: Mean velocity �elds in x and z direction of Op134-46-0

The RMS velocity �elds can be seen in Fig. (2.7) to (2.9). Again the �elds are
similar for both operating points Op16-0-2 and Op16-2-0, with 13 m/s in the
longitudinal and 10 m/s in the transverse direction. The highest RMS velocities
can be found at the high speed regions, while they are below 50 % in the low
speed regions. Op13.4-4.6-0 has di�erent RMS velocity �elds. The operating
point features two regions of high RMS velocities in x direction with values up
to 10 m/s: the high velocity cone and the region along the burner axis. In z
direction, high RMS velocities can only be observed in the high velocity cone,
with values up to 5 m/s.
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Figure 2.7: RMS velocity �elds in x and z direction of Op16-0-2
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Figure 2.8: RMS velocity �elds in x and z direction of Op16-2-0
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Figure 2.9: RMS velocity �elds in x and z direction of Op134-46-0

The mean and RMS velocities are compared on di�erent longitudinal positions
(x = 7 mm, x = 10 mm and x = 13 mm) in �gures 2.10 to 2.13. The x-values
in the diagrams correspond to the PCMV discretisation and are thus not round
�gures.

The �gures also allow to calculate the swirl cone angles for the three oper-
ating points. The swirl cone angle is de�ned as the angle between the line
following the maximum velocity in the pro�le and the chamber axis. In a �rst



60 Chapter 2 - Statistic flame and flow characterization

approximation it is calculated by the following equation:

ϕ = arctan
zu,max(x = 12.85mm)− zu,max(x = 6.61mm)

12.85mm− 6.61mm
(2.1)

In this equation, the di�erence of the z coordinates of the highest u velocity
at x = 12.85 mm and x = 6.61 mm is divided by the di�erence between the
corresponding x values.

The mean x-velocities of the three operating points on the chosen axial posi-
tions are shown in �gure 2.10. The mean velocities in x-direction of Op16-0-2
and Op16-2-0 are almost equal over the entire range and on the three lon-
gitudinal positions. The pro�les also show, that the spatial velocity gradient
between high speed region and low speed central zone is particularly high for
these two operating points. The swirl cone angle has a value of 33.2◦ for both
operating points.
The maximum mean velocity in x-direction is lower for Op13.4-4.6-0 and the
swirl cone angle has only a value of 18.1◦. Besides, the spatial velocity gradient
between high speed zone and low speed central zone is far lower. These obser-
vations lead to the suggestion that the swirling motion is stronger in the �rst
two operating points. The high swirl cone angle, the negative velocity in the
central zone and the high spatial gradients are indicators for this. Indeed, all
these characteristics are weaker for Op13.4-4.6-0.
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Figure 2.10: Mean velocity pro�les in x-direction for di�erent x-positions for the
three operating points

The mean velocity pro�les in z-direction are depicted in �gure 2.11. As ob-
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served for the x-direction, the velocity pro�les are almost equal for Op16-0-2
and Op16-2-0. They equally show the same swirl cone angle as calculated
before and the same high spatial velocity gradient.
Op13.4-4.6-0 on the other hand has very low mean velocities in z-direction. It
is also remarkable that the spatial velocity gradient between the velocity peak
and the symmetry axis is almost constant. These observations are additional
indicators that the swirling motion of Op13.4-4.6-0 is weaker than for the two
other operating points.
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Figure 2.11: Mean velocity pro�les in z-direction for di�erent x-positions for the
three operating points

The RMS velocites in x-direction are presented in �gure 2.12. For Op16-0-2
and Op16-2-0 they are similar to the mean velocity �elds, with the maximum
velocity in a conical region and the low velocities in the inner and outer recir-
culation zones. The strongest axial velocity �uctuations can thus be found in
the regions of the highest velocities.
For Op13.4-4.6-0, two regions with high RMS velocities are identi�ed: the
high speed conic region, but also on the axis of the burner. The RMS velocities
are of the same order of magnitude in the x-direction. This indicates that the
�ow features strong axial �uctuations not only at the high speed cone, but also
in the center.
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Figure 2.12: RMS velocity pro�les in x-direction for di�erent x-positions for the three
operating points

The RMS velocities in the z-direction show that the strongest transverse �uc-
tuations can be found in the high speed swirling cone for all the three operating
points. For Op13.4-4.6-0, contrarily to the RMS in x-direction, the RMS ve-
locity in z-direction has a low value. This shows, that the velocity �uctuations
in the central regions take place in longitudinal direction. This might be related
to an axial �apping motion and is investigated further in chapter 4.
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Figure 2.13: RMS velocity pro�les in z-direction for di�erent x-positions for the three
operating points

To summarize, the observations made for the velocity �elds con�rm those made
for the OH* chemiluminescence. The observed �ow in the three operating points
is typical for a con�guration with high swirl values. They feature a high veloc-
ity cone and low speed recirculation zones around the chamber axis and near
the chamber walls. While Op16-0-2 and Op16-2-0 have almost similar �ow
and OH* �elds, Op13.4-4.6-0 has a smaller swirl cone angle and stronger lon-
gitudinal dynamics on the chamber axis.

A possible interpretation can be made based on the di�erent �ow repartitions.
Reminding the operating conditions presented in chapter 1, these are the only
di�erences between the three points. Op16-0-2 and Op16-0-2 have the same
axial mass �ow rate. However the axial �ow velocity is di�erent as it is injected
via the perforated plate for one �ow and via the central jet for the other. On
the other hand, Op13.4-4.6-0 has a far higher axial air mass �ow. The axial
air is thus injected with a di�erent longitudinal momentum m · v for the three
operating points. This has possibly an e�ect on the swirl number of the total
�ow. This aspect is discussed by estimating the swirl number based on the
injector geometries.
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Figure 2.14: RMS velocity pro�les in z-direction for di�erent x-positions for the three
operating points

In �gure 2.14 and also in the following calculations, A is the axial surface at
the combustion chamber entry, A1 is the entry surface of the tangential stage
stage (taking into account that there are two feeding pipes), Aax the surface of
the axial injection, v the entry velocity in the tangential stage, vax the velocity
of the axial air �ow and u the bulk velocity at the combustion chamber entry.
The swirl is de�ned as the moment of the rotating �ow divided by the moment
of the axial �ow. Using this de�nition, the swirl equation is the following in
integral form (Gupta et al. (1984); Palies et al. (2011)):

S =

∫ R
0 ρuv2πr2dr

R
∫ R
0 ρu22πrdr

(2.2)

with ρ the density (which is assumed constant), r the radius taken from the
symmetry axis, R the radius of the injection tube, u the longitudinal �ow ve-
locity and v the tangential velocity.

When the integral in the numerator of Eq. (2.2) is resolved, the following term
is obtained:

2

3
ρuvπR3 (2.3)

The solution of the integral in the denominator of Eq. (2.2) is following:

ρu2πR3 (2.4)

When these two terms are placed into Eq. (2.2), it becomes:

S =
v

1.5u
(2.5)

In practical use, the mass �ow rates are controlled. Therefore the mass �ow
equation is entered into the swirl equation for each velocity. In this case ṁ =
ρuA for the bulk �ow and ṁ1 = 2ρvA1 for the tangential injection are used.
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The factor 2 in the tangential injection term is due to the two feeding lines that
are used to inject tangentially. With these two terms, Eq. (2.2) becomes (with
ṁ = ṁ1 + ṁax):

S =
1

3

ṁ1

ṁ1 + ṁax

A

A1
(2.6)

The surfaces are resolved with A = πd2/4 and A1 = πd21/4 respectively, with d
the diameter of the injection tube and d1 the diameter of one of the tangential
feeding lines. This �nally leads to the following equation:

S =
1

3

ṁ1

ṁ1 + ṁax

d2

d21
(2.7)

The mass �ows can include both, air and fuel mass �ow. This equation consists
of two divisions - the left one is a division of mass �ow rates and the right one is
a division of surfaces. It is directly visible, that the left term cannot be bigger
than one. Therefore, the maximum swirl number is determined by the quotient
of the surfaces. This swirl number is a geometric quantity since it assumes
equal velocities over the sections, which is not the case in this combustor. Nev-
ertheless this equation can be used to compare di�erent operating conditions
in terms of relative strength of rotational motion.

The equation also shows, that the in�uence of the axial air �ow contribution
only depends on the actual mass �ow rate and not on its velocity. This can
be an explanation for the similarity between the velocity �elds and the �ame
visualisations for Op16-0-2 and Op16-2-0. Both operating points have the
same axial air �ow, while the fact, that velocity of the axial �ows is di�erent,
does not play a role.

Op13.4-4.6-0 has a substantially higher axial mass-�ow rate as can be seen
in table 2.1. At the operating conditions and geometries given in chapter 1,
S has a value of 2.7 for Op16-0-2 and Op16-2-0 and only 2.3 for Op13.4-
4.6-0. The swirl number is thus substantially lower for Op13.4-4.6-0, which
is in agreement with the other observations in this chapter, such as thicker
high velocity zones, lower negative velocities in the recirculation zone and a
lower swirl cone angle. Even more, this high axial mass-�ow rate seems to
increase overall �ame dynamics. The high RMS velocity in x-direction and the
stretching e�ect of the OH* chemiluminescence images might be indicators of
a strong �apping motion of the entire �ame.
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Table 2.1: Calculation of the geometric swirl number for the three operating points.
The mass �ow rates include air and fuel mass �ows.

Op16-0-2 Op16-2-0 Op13.4-4.6-0

ṁ1 16.97 g/s 16.97 g/s 14.37 g/s
ṁax 2 g/s 2 g/s 4.6 g/s
d1 10 mm
d 30 mm

S 2.7 2.7 2.3

2.4 Conclusion

The global velocity �elds give �rst insight about the �ow and �ame structures
of the three operating points. The CESAM-HP combustor has velocity �elds
and OH* chemiluminescence �elds that are classic for a swirling combustor.
The �ame is of conical shape. The velocity �elds feature a high speed area of
conical shape as well as low speed recirculation zones. These are located at the
axis of the burner and at the combustion chamber walls.

The two operating points Op16-0-2 and Op16-2-0 have very similar dynam-
ics, which are dominated by the strong swirling motion. Here, the swirl value
is high, as the axial �ow rate is small compared to the tangential �ow rate. It
could also be shown that the velocity of the axial �ow does not in�uence the
velocity and OH* �elds, as long as the �ow rate is the same.

For Op13.4-4.6-0, the axial �ow part is more than twice as high as for the
other operating points and plays an important role. The stabilization by inner
recirculation zone seems to be disturbed by this strong axial �ow. It leads to
a swirl value that is 15% smaller and hence to positive mean axial velocities
in the inner recirculation zone. Another suggested phenomenon is the strong
axial �apping, which might be the consequence of this reduced stabilization.

The observations in this chapter put into evidence the high importance of the
swirling motion in this combustor con�guration. The RMS values of the velocity
and OH* chemiluminescence show that the strongest dynamics can be found
in the high velocity swirling cone. It can be expected that this will play an
essential role in the further analysis, such as the time and spatially resolved
analysis of pressure, velocity and heat release �uctuations (chapter 4) and the
determination of direct and indirect combustion noise (chapter 7 and 8).



Chapter 3

Modal analysis of the test bench

In this chapter, the acoustic eigen modes of the CESAM-HP test bench
are determined and their features are investigated. For this, a mixed
approach of experimentation and analytical modelling is applied. One
of the main conclusions is that the feeding lines have a strong in�uence
on the acoustic behaviour and are associated with the main mode in
the combustor. Most of the other modes are related to the combustion
chamber and premixer geometries.

3.1 Introduction

The determination of the chamber eigen modes plays an important role in the
study of direct and indirect combustion noise. These acoustic modes are ex-
pected to contribute to direct combustion noise, since they can be associated
with a combustion instability that directly leads to high heat release rate �uc-
tuations and thus high acoustic pressure oscillations. The present results were
presented in ASME Turbo Expo 2015 (Mazur et al. (2015)).

The acoustic modes are detected and identi�ed by a combined experimental
and analytical approach. On the theoretical level, it is common to solve the
Helmholtz equation or the linearised Euler equations instead of the compress-
ible unsteady Navier-Stokes equations (Roux et al. (2005); Sisco et al. (2011)).
Only longitudinal waves are taken into account and therefore the test bench
is modelled as a collection of acoustic cavities with boundary and jump con-
ditions. This approach is correct in low frequencies, which is the case for this
study (Poinsot and Veynante (2005); Dowling and Stow (2003)).

On the experimental level, the analysis of the chamber modes was already per-
formed in previous studies on the CESAM testbench (Tran et al. (2009b);
Lamraoui (2011); Richecoeur et al. (2013)), which features a similar design
but is operated at atmospheric pressure. In these works, the chamber prop-
erties and the acoustic boundary conditions of the ICS were modelled, while
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the acoustic properties of the feeding lines were determined experimentally.
The same approach is applied in the present work. However, the modelling of
the ICS damping properties has been further elaborated until then (Scarpato
(2014)) and the improved model is used here. Also, the choked exhaust nozzle
is modelled analytically.

3.2 Procedure to identify the acoustic eigenmodes

3.2.1 Experimental procedure

The design and the geometry of the CESAM-HP test bench are detailed in
chapter 1. A variety of diagnostics is applied on this combustor. Their posi-
tions are presented in �gure 3.1.

Figure 3.1: Positions of the installed sensors in the combustion chamber

Two types of pressure sensors are applied for the measurements. Their speci-
�cations are summarized in tables 1.1 and 1.2. Sensors of the type KISTLER
4045A are mounted in the combustor walls. They are of piezo-resistive type
and measure static pressure as well as dynamic pressure �uctuations simulta-
neously. Their installation in the combustor walls requires a combined system
of thermal protection and cooling, which is presented in chapter 1. Chapter 1
also presents the technical speci�cations of the pressure sensors. They are thus
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not detailed here.

The acoustic impedance of the feeding lines is measured with a Pressurized
Impedance Measurement System (PIMS). It was developed in EM2C Labora-
tory based on previous works (Lamraoui et al. (2010)). The schematic drawing
of the system is shown in �gure 3.2. The pressure sensors integrated in the
PIMS are of type KISTLER 701A.

Figure 3.2: Schematic drawing of the Pressurized Impedance Measurement System
(PIMS), adapted from Lamraoui et al. (2010)

The measurement technique needs to be calibrated in gain and phase in order
to measure the acoustic impedance. While the gain calibration is straightfor-
ward using calibrated sources, the phase shift calibration is more complicated.
The so-called three microphone method allows to perform the calibration easily
and accurately (Chung and Blaser (1980)).

The phase shift is calibrated by switching sensors 1 and 2 under identical con-
ditions during two measurement campaigns (see �gure 3.2). The associated
transfer function H12 between the pressures on sensor position 1 and sensor
position 2 is obtained by calculating the geometric mean of the two transfer
functions, which were determined during the two campaigns (where o stands
for "original" and s for "switched"):

H12 =
√
Hs

12H
o
12 (3.1)

The signal-to-noise ratio of the measurement is increased by adding a third
sensor in front of sensor 1. A coherence factor Cn can be determined between
the three sensor signals in the original and switched con�gurations:

Cn =
Cn23

Cn12C
n
31

(3.2)

with n = o for the original and n = s for the switched con�guration. The two
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coherence factors are introduced in the transfer function formula:

H12 =
√
CoHo

12C
sHs

12 (3.3)

The speci�city of the present acoustic impedance measurements is that it is the
�ame itself that acts as the acoustic source. The acoustic impedances can thus
be determined on-the-�y using the PIMS. The range of frequencies that can be
reached can be determined by calculating the coherence between the di�erent
pressure signals. The coherence of two signals describes to what extent they
are linked in the frequency domain. It is de�ned by the following equation:

C12 =
|G12|2

G11G22
(3.4)

with G12 the cross spectral density between the two signals and G11 and G22

the autospectral density of each of the signals.

The coherence between the pressure sensors is shown in �gure 3.3. It can be
seen that the coherence only reaches a value close to 1 between 50 and around
500 Hz. This means that the associated impedance (or re�ection coe�cient
)is only valid in this range. The main reason for this behaviour is that the
�ame dynamics, which induce the pressure �uctuations, are too weak at higher
frequencies to be properly measured. Better coherences could be achieved by
acoustic forcing with loud speaker, however this is not trivial in a pressurized
test bench.
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Figure 3.3: Coherence of the PIMS pressure sensors. The diagram shows that the
coherence drops for frequencies above 500 Hz.

Figure 3.1 shows that a thermocouple is installed in the chamber walls. It
is a 1.5 mm sheathed R-type thermocouple which allows to measure mean
temperatures up to 1600 K. The thermocouple aims at measuring the mean
temperature in the burnt gases. This information is needed for the analytical
model, as will be explained in the following section.

The studied operating point is di�erent from the three operating points pro-
posed in chapter 1. While having the same fresh gas temperature and pressure,
the total air mass �ow is only 15 g/s. This operating point is hence intermediate
between low power and high power regimes with a power of 37.5 kW. Indeed,
this point features a chamber pressure of 1.83 bar, which is at the choking limit
of the nozzle. The air repartition is as follows: tangential air �ow of 13 g/s,
axial air �ow of 2 g/s through the ICS. The global equivalence ratio is 0.85.
The point will be named Op13-0-2 from here on.

When running atOp13-0-2, the measured mean burnt gas temperature is 1610 K
and the mean temperature in the injector is 580 K due to a slight �ashback.
Pressure �uctuations are recorded at 25 kHz during 4 s. The Power Spec-
tral Density (PSD) is determined using Hamming windows with 2048 samples
and overlapping of around 50 %. The results are shown in �gure 3.4. The
most remarkable observation is that the spectra are very similar to the spectra
of Op16-0-2 (Fig. ??). They are characterized by a broadband component
mixed with several distinct peaks. The sound pressure level of over 100 dB of
the broadband part indicates the existence of combustion noise. However seven
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distinct peaks can be observed in the low frequency region, which exceed the
broadband component by almost 30 dB. The identi�ed peaks are summarized
in table 3.1 and the aim of this chapter is to reconstruct them with the help of
analytical models in order to interpret their frequencies.
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Figure 3.4: PSD of the pressure sensors in the PIMS, the premixer and the combus-
tion chamber

3.2.2 Theoretical calculations

This section aims at describing the analytical approach developed to model
the CESAM-HP test bench and to calculate the acoustic eigenmodes. The
method has been elaborated in previous work (Richecoeur et al. (2013)) and
is brie�y presented here. The model uses the combustor geometries as well
as the acoustic boundary conditions and the thermodynamic conditions (tem-
perature), which are determined either experimentally or analytically. The
modelling is conducted in two steps. First, the test bench is represented as two
cavities (premixer + combustion chamber) with the ICS as upstream boundary
and the choked nozzle as downstream boundary. In a second step, the model
is extended with the feeding lines to a �ve-cavity model (feeding lines + pre-
mixer + combustion chamber). The boundary conditions of these feeding lines
are determined experimentally with the PIMS. The two models are shown in
�gure 3.5.
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Figure 3.5: Modelling of the burner as a) two and b) �ve cavities. The main dimen-
sions and boundary conditions are also indicated.

In the two-cavity model the combustor is reduced to two cavities which repre-
sent respectively the premixer and the combustion chamber. The cavity of the
premixer has an inner diameter of 30 mm and a length of Lp = 136 mm. The
cavity of the combustion chamber has a section of 70 mm x 70 mm and a length
of Lc = 140 mm. In both cavities �ow quantities such as pressure p, velocity
u and density ρ are decomposed into their mean and �uctuating values (with
the bar indicating the mean and the prime symbol the �uctuating value):

p = p+ p′ (3.5)

u = u+ u′ (3.6)

ρ = ρ+ ρ′ (3.7)

Since the �ow Mach number in both cavities remains small (M = 0.02 as shown
in section 3.3), the mean quantities are supposed to be constant. Thus only
the �uctuation components are considered in the following.

The analysis used in this model is based on linear acoustics where waves can
be decomposed into harmonics in the Fourier domain. Mean �ow e�ects such
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as acoustic dissipation are ignored in the cavities because of the small Mach
number. However this is not the case for the �ow in the perforates or the
nozzle. To overcome this di�culty, the perforates and the nozzle are expressed
as boundary conditions that are dependent on the inlet and outlet �ow Mach
numbers. The cut-o� frequency of the �rst transverse mode is higher than
5 kHz in each of the cavities. Thus only longitudinal waves will be considered
in the lower frequency range. As a result the acoustic perturbations (p̂, û) are
described as the superposition of progressive and regressive plane waves in the
frequency domain:

p̂i = P+
i e

+iωx/ci + P−i e
−iωx/ci (3.8)

ûi =
1

ρici

(
P+
i e

+iωx/ci − P−i e
−iωx/ci

)
(3.9)

with i the cavity number, ρi and ci the mean gas density and sound velocity
in the numbered cavity and ω the pulsation. The abscissa of the following
calculations is given by the x-coordinate and the origin x = 0 is set on the
dump plane at the entry of the combustion chamber. P+

i and P−i represent re-
spectively the pressure �uctuation amplitudes of the progressive and regressive
plane waves. As explained before, mean �ow e�ects such as acoustic dissipa-
tions are neglected because the Mach numbers in the premixing tube and the
chamber are small.

The equations are complemented by the boundary conditions on the up- and
downstream edge of the test bench and the jump condition between the pre-
mixer and the combustion chamber. On the upstream boundary, the re�ection
coe�cient of the ICS is

R1 = P+
1 /P

−
1 , (3.10)

and can be calculated theoretically as a function of the Rayleigh conductiv-
ity KR.

R1 =
ik1d

2/KR − i/tan(k1L) + 1

ik1d2/KR − i/tan(k1L) + 1
(3.11)

with

k = ω/c1 (3.12)

the wave number, d the spacing between the perforates (as shown in chapter 1)
and L the length of the resonance back-cavity of the ICS. The complete solution
of KR is obtained by Howe (1979) and is a function of the Strouhal number.

St = ωa/uc, (3.13)
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It is based on the perforate radius a and the vortex convection velocity through
the perforates uc, as presented in Eq. (3.14).

KR = 1 +
1

St
·
π
2 I1(St)e

−St − iK1(St)sinh(St)
π
2 I1(St)e

−St + iK1(St)cosh(St)
(3.14)

Here I1 and K1 are modi�ed Bessel functions of �rst and second kind.
The jump conditions between the two cavities are based on the acoustic com-
pactness assumption (Poinsot and Veynante (2005)) and correspond to Eq. (3.15)
and (3.16). In this model, the energy loss accross the jump is ignored. It is
supposed that the pressure and the acoustic �ux are conserved, an assumption
which is suitable for low Mach �ows.

p̂1(x = 0−) = p̂2(x = 0+) (3.15)

S1û1(x = 0−) = S2û2(x = 0+) (3.16)

S1,2 designate the cross section area of the two cavities.
The exhaust nozzle is assumed compact, because its length is very small com-
pared to the wavelengths assumed in this study. Taking into account that the
nozzle is choked, the re�ection coe�cient R2 is determined by Eq. (3.17) (Mar-
ble and Candel (1977)).

R2 =
1− 1

2(γ − 1)M

1 + 1
2(γ − 1)M

(3.17)

The characteristic waves P+
1 , P−1 , P+

2 and P−2 must satisfy the set of Eq. (3.11)
to (3.17). The determinant of the linear system given by the boundary and jump
conditions must be null to ensure non-trivial solutions, because the system has
no source term. The obtained dispersion relation (Eq. (3.18)) which gives the
eigenmodes of the two-cavity model is (with Lp and Lc respectively the length
of the premixing tube and the combustion chamber):

(1 + Ξ) · [e−i(k1Lp+k2Lc) −R1R2e
i(k1Lp+k2Lc)]

+(1− Ξ) · [R1e
i(k1Lp−k2Lc) −R2e

−i(k1Lp−k2Lc)] = 0 (3.18)
where

Ξ =
S1/ρ1c1
S2/ρ2c2

(3.19)

is an indicator for the acoustic coupling between the two cavities. Neglecting
the mean pressure drop in the cavities, this expression can be simpli�ed to

Ξ =
S1
S2

√
T1
T2

(3.20)
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with T1 and T2 the mean temperatures in the corresponding cavities.

In the �ve-cavity model (Figure 3.5b) the feeding lines are added to the ex-
isting model. Thus the premixing tube is split into two parts on the feeding
line discharge plan. The two feeding line cavities have a diameter of 10 mm
and are located 43.5 mm downstream of the perforated plate. The re�ection
coe�cient R0 is determined 60 mm from the mixing tube axis with the help of
the PIMS according to the procedure described before. As already explained,
the coherence between the pressure sensors of the PIMS can only be assured
until around 500 Hz. Therefore the analysis of the �ve-cavity model is limited
to this frequency range.

3.3 Results of the experimental and analytical study

Table 3.1: Summary of the acoustic modes obtained experimentally and analytically

n.
Exp 2-cavity model 5-cavity model

fpeak [Hz] fn [Hz] ωni [rad/s] fn [Hz] ωni [rad/s]
1 116 - - 125 -231
2 238 - - 185 -299.2
3 354 - - 365 -190.5
4 470 - - 442 -236.7
5 592 558 -391.7 566 -190.5
6 696 - - - -
7 2935 2990 -5 - -

In a �rst step the acoustic modes are calculated using the two-cavity approach.
To do so the temperatures T1 = 660 K and T2 = 1600 K (as an approximation
from the measured gas temperature) andM = 0.02 at the entrance plane of the
nozzle are applied. For this case, the only frequencies that can be identi�ed are
f5 = 558 Hz and f7 = 2990 Hz. These eigenfrequency, as well as the others,
are listed in Tab. 3.1 as follows:

ωn = 2πfn + i · ωni (3.21)

The imaginary component of the frequencies corresponds to the growth rate of
each mode. It has a negative value as there is no external acoustic excitation.
Furthermore no �ame response model is used here so the physical meaning
of the growth rate can be criticized. The eigenfrequency f7 seems to corre-
spond to the fundamental half-wave mode of the combustion chamber, where
the boundary conditions associated with the inlet and the outlet are wall-like.
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With this simpli�ed geometry one obtains f0c = 2757 Hz for the �rst longitu-
dinal eigenmode of the chamber only, which is about 200 Hz lower than the
experimental peak frequency n.7 (Tab. 3.1). This di�erence is still acceptable
since the chamber cavity is calculated using the mean chamber temperature T2.
This temperature however was determined by thermocouple measurements in
the burnt gases. The incertitude of this measurement is rather high and thus
the error on the temperature value as well.

No analytical solution could be found for f6, but its frequency is close to the �rst
harmonic of the quarter-wave mode of the premixer and combustion chamber
as a total, which can be calculated by the following equation:

f =
3cp

4(Lp + Lc)

(
1− ϕ(R1)

π

)
(3.22)

In this equation ϕ(R1) stands for the phase angle of the re�ection coe�cient of
the perforated screen. A value around zero for ϕ(R1) means that there is no
phase shift between the incident and re�ected wave. The equation is based on
the assumption of a re�ection coe�cient of R = |R| eiω for the perforated plate
(Richecoeur et al. (2013)). It results in a theoretical frequency f0pc = 773 Hz.
However, the imaginary part of f6 is small and the value changes a lot with the
re�ection coe�cient R1 used in the computations to model the ICS impedance.
A higher precision could be obtained if the boundary conditions were deter-
mined experimentally. However the pressure measurement ports that would be
necessary to conduct such tests are not available in the combustor.

As explained in the previous paragraph the two-cavity model permits to iden-
tify the high frequency modes analytically and to interpret their frequency. The
results indicate that these mode are associated with the chamber and premixer
geometries. However, the low frequencies (<500 Hz) in table 3.1 remain un-
known. While these peaks are only visible in the reacting case by the chamber
sensors, they are observed by the PIMS sensors also for non-reacting operation.
This observation leads to the assumption that these modes are linked to the
feeding lines. In order to verify this hypothesis, the �ve-cavity model is applied
in a second step, in order to take into account the feeding lines.

The measured re�ection coe�cient of the feeding lines R0 is presented in �g-
ure 3.6. The dispersion relation is obtained by applying a tenth-order polyno-
mial �t, as shown in the �gure. The found modes for the frequencies between
50 and 500 Hz are presented in table 3.1.
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Figure 3.6: Re�ection coe�cient in the feeding line measured at a radial distance of
60 mm from the premixing tube axis. In red: 10th order polynomial �t

The frequencies found by the �ve-cavity model seem to correspond well to the
measured low frequency peaks. However, the calculations showed that the re-
�ection coe�cient of the feeding lines R0 in�uences the detected frequencies
strongly. It would thus be interesting to apply a more powerful and broadband
acoustic source to determine the feeding line impedance more precisely or to
force the combustor externally with a loudspeaker. This however could not be
done due to the pressurization of the test rig. Nevertheless, the present results
indicate that these low frequency peaks are probably associated with the feed-
ing lines.

As a further step, the analytically found modes are compared with the pressure
sensor measurements on a structure point of view. For this the PSD values
of the pressure measurements f1 = 116 Hz, f5 = 592 Hz and f7 = 2935 Hz
are non-dimensionalized, using the sensor in the premixer as the reference sig-
nal: p(x)/p(x2) = 1 for x = x2. The di�erent mode structures can be seen in
�gure 3.7. While the structure of f1 corresponds well to the �ndings of the �ve-
cavity model, the other two modes seem much closer to the modes found with
the two-cavity approach. The �gure shows that the mode of the feeding line
is almost constant over the entire combustor. The combustion chamber mode
is of half-wave type, as has been shown before. One has however to take into
account that the precision of these mode shapes is limited, since the functions
were �tted with only three point.

The mode interpretations are summarized in table 3.2. The modes above 500 Hz
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are detected with the 2-cavity model and correspond to the chamber and pre-
mixer geometries. The low frequency modes can only be detected when the
feeding lines are taken into account. This is done with the �ve-cavity approach
which shows that indeed the low frequency modes are associated with the feed-
ing lines. More precisely, these frequencies represent the 116 Hz mode and its
harmonics. It is also interesting that very similar mode structures are obtained
for the coupled mode associated with the frequency f5 in the range [500-550] Hz
with both models.
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Figure 3.7: Structure of the modes f1 = 116 Hz, f5 = 592 Hz and f7 = 2935 Hz.
Lines: analytical modes. Symbols: experiments. Circle: 116 Hz; Triangle: 592 Hz;
Square: 2935 Hz. (x2 = 75 mm). The mode for f5 = 592 Hz has a similar shape for
both models.

Table 3.2: Summary of the mode interpretations for n=1 to 7. Frequencies found
experimentally are also indicated.

n. f [Hz] Interpretation
1 116 Feeding line
2 238 Feeding line
3 354 Feeding line
4 470 Feeding line
5 592 Feeding line
6 696 Chamber and premixer together
7 2935 Combustion chamber only
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As described in the introduction, the studied operating point Op13-0-2 does
not correspond to the three operating points presented in chapter 1. However,
it is close to Op16-0-2 as it corresponds to the same axial air �ow, the same
global equivalence ratio and as the exhaust nozzle is choked. Moreover, this
study shows that the modes of the CESAM-HP test bench are related to the
geometry of the combustion chamber, the premixer and the feeding lines. These
geometries do not change from one operating point to the other. One of the
main modi�cations could be the �eld of sound speed that could be di�erent from
one point to the other, mainly because of di�erent temperature strati�cation.
In spite of that, one may expect that the eigenmodes remain similar from one
operating point to the other. This statement corresponds to the observations
forOp16-2-0 as well asOp16-2-0. For all of these modes, the peaks associated
with the feeding lines have the same value and also the higher frequency modes
can be observed. In Op13.4-4.6-0 the low frequency peaks do not exist, yet
chapter 2 shows that due to the high axial air �ow rate, the �ow structure
is completely changed, leading to the sound speed variations envisaged in the
present paragraph.

3.4 Conclusion

In this chapter the acoustic modes of the CESAM-HP test bench are examined
by a combined experimental and analytical approach. In this approach, the
acoustic boundary conditions of the ICS and the nozzle are calculated analyt-
ically while the impedance of the feeding lines is determined experimentally
with the PIMS.

The detected eigenfrequencies are analysed for the intermediary operating point
Op13-0-2. The same frequencies are also observed for Op16-0-2 and Op16-
2-0, as shown in chapter 1 and detailed in chapter 4. The model shows that the
frequencies above 500 Hz are related to the chamber and premixer geometry,
while the lower frequencies are associated to the feeding lines. More generally,
these results indicate the key role of the injector arrangement on the global
combustor behaviour - an observation that will be repeated in various chapters
during this study.

The results show that the acoustic behaviour is dominated by these eigenfre-
quencies. Their amplitude is several orders of magnitude above that of the
broadband noise. This may be a �rst indicator that direct combustion noise
is dominating in the CESAM-HP test bench, as will be shown in chapter 7
and 8. This is certainly due to the strong coupling between acoustics, aerody-
namics and heat release at these speci�c frequencies. This aspect will be put
into evidence in chapter 4.



Chapter 4

Time and spatially resolved

analysis of the combustion

instability

In this chapter the combustion instability in the CESAM-HP combus-
tor is studied further. The aim is to put into evidence the mechanisms
that are driving the pressure �uctuations as well as the e�ects of these
pressure �uctuations on the �ame dynamics. The analysis is done by
conducting time and spatially resolved measurements of pressure, veloc-
ity and OH* chemiluminescence on di�erent locations of the combustion
chamber. From these experimental data, the Power Spectral Density is
calculated for chosen regions of the combustor. The experiments show
that the studied operating points Op16-0-2 and Op16-2-0 are domi-
nated by a 120 Hz instability, that can be detected in the studied regions
by all the used diagnostics. Op13.4-4.6-0 features a strong peak around
80 Hz, that is also detected by all diagnostics that are used. From these
experiments, the interactions between the �ame and the chamber walls
and the interaction between the �ame and the �ow �eld are identi�ed
as mechanisms that drive the combustion instability. Even more, the
acoustic perturbation of the �ame by the pressure �uctuations is put
forward. Based on these observations, �rst suggestions are made about
combustion noise generation in the CESAM-HP burner.

4.1 Introduction

In this chapter, the low frequency combustion instability suggested in chapter 3
is analysed further for the three operating points Op16-0-2, Op16-2-0 and
Op13.4-4.6-0 by using high speed optical diagnostics. The regions where the
corresponding frequency of 120 Hz (of 80 Hz for Op13.4-4.6-0) is dominating
are chosen and the measurements are used to put into evidence the di�erent
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instability mechanisms that can be observed in the CESAM-HP combustor.

A large variety of interactions between the di�erent elements of a combustor
exists, which all lead to combustion instabilities (Candel (2002)), has been iden-
ti�ed in literature. For the applications of gas turbine combustors that feature
a lean premixed swirling �ame, Ducruix et al. (2006) put forward six of them.
They distinguished between two types of mechanisms: (1) Driving mechanisms
are phenomena that lead to pressure �uctuations in the combustor. (2) Cou-
pling mechanisms describe the e�ects of the pressure �uctuations on di�erent
phenomena in the combustor.

Three driving mechanisms are identi�ed by Ducruix et al. (2006):

• One mechanism is the interaction between �ame and vortex, more pre-
cisely the vortex roll up in the �ame. During this process, the vortex
entrains fresh gases which ignite abruptly, which then leads to �uctu-
ations in heat release and �nally in pressure. This process normally
takes place periodically and is also described by Poinsot et al. (1987)
and Shadow et al. (1989).

• Another mechanism is the interaction between �ame and wall, where
the �ame impact on the wall leads to periodic �uctuations of the �ame
surface and thus the heat release. This �nally leads to pressure �uctu-
ations. This process has been studied experimentally by Schuller et al.
(2002).

• Finally, the interaction between neighbouring �ame front leads to �uc-
tuations of the �ame surface. the consequence are �uctuations in heat
release and thus also in pressure. Further precisions can be found in
Durox et al. (2002).

Equally, three coupling mechanisms are described by Ducruix et al. (2006):

• The �rst mechanism is the acoustic perturbation of the �ame. The
associated pressure �uctuations lead to �uctuations of the velocities.
This has an e�ect on the driving mechanisms, such as on the �ame-
wall interactions or the �ame-vortex interactions. Further details can
be found in Ducruix et al. (2000); Schuller et al. (2002).

• Another mechanism, proposed by Lieuwen and Zinn (1998), is the �ame
response to composition inhomogeneities of the fresh gases, where the
pressure �uctuations interact with the fuel feeding lines. This leads to
�uctuations of the equivalence ratio and thus to heat release �uctua-
tions.
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• The �nal mechanism described by Ducruix et al. (2006) is the �ame
response to unsteady strain rate. Here, the pressure �uctuations lead
to �uctuations of the velocities, which in�uences the strain rate of the
�ame. This �nally leads to �uctuations of the �ame surface and the
reaction rate. The process is described in detail by Law (1989) and
Peters (2000).

The aim of this chapter is to use time and spatially resolved diagnostics in order
to put into evidence the di�erent driving and coupling mechanisms that can be
observed in the CESAM-HP combustor.

4.2 Methodology for the spatially resolved observa-
tion of combustion instabilities

Figure 4.1: Applied coordinate system. Keep in mind that the coordinate system is
right-handed. The y-coordinate is therefore showing away from the reader.

The pressure, the velocity and the heat release are observed using the following
diagnostics: (1) The pressure �uctuations are obtained by using piezo-resistive
sensors of type KISTLER 4045A. Their functioning and installation is explained
in chapter 1. (2) The velocity �elds are obtained experimentally with the help
of high speed planar velocimetry. The applied PCMV system is explained and
validated in chapter 5 and the mean velocity �elds are presented in chapter 2.
(3) The local heat release rate is obtained with a high speed camera and a
�lter which allows to select the bandwidth of OH* chemiluminescence. The
technique is described in chapter 1 and the mean and RMS OH* chemilumi-
nescence �elds can be found in chapter 2. The experiments are conducted on
the well-known operating points Op16-0-2, Op16-2-0 and Op13.4-4.6-0

As the pressure measurement is a point measurement, the diagnostic is not
spatially resolved in itself. However, the discussion of the spatial gradient of
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the pressure �uctuations in chapter 7 shows that for frequencies up to 1000 Hz
this gradient is low. This is justi�ed by comparing the acoustic wave length
with the combustion chamber length using the equation for the speed of sound:

c0 = λ · f (4.1)

with λ the wave length and f the frequency of the acoustic wave. When as-
suming a speed of sound of 800 m/s in the burnt gases, an acoustic wave at 120
Hz would have a wave length of 6.7 m, thus far above the chamber length of
0.14 m. Even an acoustic wave of 1000 Hz would have a wave length of 0.8 m,
thus �ve times more than the chamber length.
This calculation shows that the pressure �uctuations are almost equal over the
entire combustion chamber length for frequencies up to 1000 Hz. It is thus
assumed for this chapter that the pressure �uctuations are equal in all the re-
garded regions.

It needs also to be mentioned that the OH* chemiluminescence images used for
this thesis are line-of-sight images. They are not Abel-inverted as this image
treatment is only suitable for �ows that are perfectly radially symmetric. This
is not the case for instantaneous �ows in this combustor. Due to this, the spec-
tra of the OH* images can be directly compared to PM results but care must
be taken when comparing with PCMV results as those are obtained on a single
plane.

The frequency spectra of the three diagnostics are obtained by calculating the
PSD of the di�erent measurements. They are obtained using Welch's algorithm
with Hamming windows (in order to reduce signal ripple) at around 50 % over-
lapping and a window size which allows for a frequency resolution of 5 to 10 Hz.

As described in section 4.1, this chapter has the aim to put into evidence dif-
ferent instability mechanisms in the CESAM-HP combustor. From the di�er-
ent mechanisms that are presented in section 4.1, the following are taken into
account: Flame-Vortex interaction, Flame-Wall interaction, Acoustic pertur-
bation of the �ame and composition �uctuations. The two other mechanisms,
the interaction between neighbouring �ame fronts and the �ame response to
unsteady strain rate are not taken into account. To put them into evidence,
simultaneous time resolved �ame surface measurements (by OH-LIF) and 2D
velocity measurements (PCMV or PIV) would be necessary. However these
measurements are not available here.

The �ame-vortex interaction is put into evidence by regarding the velocity �elds
as well as the spatially resolved OH* chemiluminescence. The idea is to show
that vortexes can be observed in the regions with high OH* �uctuations. This
can be done by drawing the instantaneous velocity �elds on the rms �elds of
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OH* on the same 2D diagrams. In a second step the PSD of the OH* chemi-
luminescence and the velocity are compared in the shear layer between high
velocity swirling cone and the recirculation zones. If the same frequencies can
be observed, then this would be a �rst indicator for a possible interaction be-
tween the �ame front and vortices.

The �ame-wall interactions can be demonstrated by regarding the OH* chemi-
luminescence in the regions where the �ame is impacting the walls. The regions
can be identi�ed from the RMS OH* �elds that were obtained in chapter 2.
In these regions, the PSD of the OH* chemiluminescence can be determined in
order to verify whether the main eigen frequencies correspond to those of the
combustion instability.

The coupling mechanism that corresponds to the acoustic perturbation of the
�ame can be demonstrated by regarding the PSD spectra of pressure, velocity
and heat release in the �ame front. In order to put into evidence this mecha-
nism, all these three should have the same eigen frequency as the combustion
instability.

The last mechanism that needs to be mentioned are the e�ects of the pressure
�uctuations on the gas composition. As shown by Lieuwen and Zinn (1998) and
described by Ducruix et al. (2006), the pressure �uctuations interact with the
fuel �ow controllers at the frequency of the combustion instability. More con-
cretely an increase in pressure acts as counter-pressure on the �ow controllers
and thus decreases the fuel mass �ow rate, and vice versa. This �nally leads
to �uctuations of the equivalence ratio of the combustor. The e�ects of the
feeding lines were already analysed in chapter 3, which shows that they are
linked to the low frequency instability with the combustor. This point is thus
not treated further in this chapter.

Figure 4.2 indicates why the use of these di�erent diagnostics is relevant in order
to put into evidence the di�erent mechanisms. The �gure shows an instanta-
neous velocity �eld plotted together with the RMS OH* chemiluminescence for
Op16-0-2. The velocity �eld is shown as streamlines which allows for an easier
detection of vortices.
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Figure 4.2: Time resolved plot of the streamlines together with the RMS OH* chemi-
luminescence for Op16-0-2

The instantaneous streamline �eld superposed with the RMS OH* chemilumi-
nescence shows a topology that is typical for a lean premixed swirling �ame.
It features a conical region that is located in the region of highest OH* RMS
and corresponds to the high velocity swirling cone that was already presented
in chapter 2. Outside this high velocity zone, di�erent �ow directions can be
detected. It also features the low velocity recirculation zones that can be in
particular seen around the burner axis. Here, the �ow direction is towards the
injector with almost no transverse �ow.

The most remarkable feature is the existence of a vortex that is located at the
inner border of the high velocity swirling cone. The vortex has been marked
with a green circle in �gure 4.2. The streamlines located around this vortex
are pointing downstream. This means that the vortex is probably propagat-
ing downstream along the high velocity cone. Since the vortex is located in
the lower border of the region with high OH* chemiluminescence it can be as-
sumed that both the �ame front and the vortex are interacting. This could
correspond to the mechanism of the �ame-vortex interaction. However the �g-
ure is not su�cient to put into evidence this mechanism, because it is comparing
the instantaneous velocity with a statistic value for OH* chemiluminescence.
This does not allow to draw further conclusions. In order to do so, it would be
interesting to conduct imaging of the �ame front by OH-PLIF, while simultane-
ously obtaining the 2D velocity �eld. Since this was not available in this work,
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no further statements can be made. Nevertheless these observations justify the
interest for this particular region of the �ame and the �ow �eld.

The time and spatially resolved determination of the PSD of pressure, veloc-
ity and heat release rate will give better evidence on the di�erent instability
mechanisms. For this, di�erent regions need to be chosen that are supposed
to be a�ected by di�erent mechanisms. Four points were chosen in this work.
They are presented in table 4.1. The coordinates in this table correspond to the
coordinate system shown in �gure 4.1. The location of these regions is shown
in �gure 4.3. The �gure shows an image of the RMS OH* chemiluminescence
of Op16-0-2 that features in particular the high speed swirling cone and the
zones where the �ame is impacting the chamber walls. (More details about the
diagram can be found in chapter 2). The chosen regions are marked as white
squares on this �gure. For regions 1 to 3, data for PCMV, OH* and pressure
exist, while the remaining region is only represented with OH* visalizations
and pressure measurements.
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Figure 4.3: Image of the RMS OH* chemiluminescence of Op16-0-2 with the regions
that are listed in table 4.1. The image is not Abel transformed and very low values are
shown as gray. Further descriptions of the mean and RMS OH* chemiluminescence
�elds can be found in chapter 2.

Two points are chosen around the high velocity swirling cone. This region is of
interest for the �ame/vortex interaction since the corresponding vortices can
normally be located here. It is also interesting for the coupling mechanisms
between the pressure �uctuations and the response of the �ame because the
e�ects can normally be observed here in the �ame front. The chosen points are
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the following:

• Area 1 corresponds to a part of the swirling cone, on the inner side. It
is thus the interface between high speed swirling motion and the inner
recirculation zone.

• Area 2 is a part of the swirling cone, on the outer side. Hence it is the
interface between high speed swirling motion and the outer recirculation
zone.

The second region is located on the burner axis. By determining the PSD of
velocity and OH* in this region, it can be investigated whether the combustion
instability leads to an axial motion of the �ame. For this, the PCMV measure-
ments in region around the axis are particularly interesting, as this region lies
outside the high velocity swirling cone. The dynamics at the axis is thus not
interfered by the strong dynamics associated with the swirling motion. This re-
gion is particularly of interest for Op13.4-4.6-0, since high longitudinal RMS
velocities were observed in chapter 2 for this operating point in this region. The
following point is regarded here:

• Area 3 located at the axis of the combustor.

The �nal chosen region is at the chamber walls, where the �ame is impacting.
The aim is to put into evidence the �ame/wall interaction mechanism by com-
paring the main PSD of the OH* chemiluminescence with the acoustic eigen
mode frequencies.

• Area 4 is located in the region where the �ame is impacting the chamber
walls.

The high velocity swirling cone and the recirculation zones are described in
chapter 2.
The shown coordinates correspond to the center of the respective window, where
the PSD is obtained over the spatial mean. For the PCMV measurements, it
corresponds to the central point of a 0.97 mm × 0.97 mm square window. This
value is exactly the chosen PCMV interrogation window size. For OH* chemi-
luminescence the PSD is conducted on the spatial mean intensity in windows
of a size of 1.02 mm × 1.02 mm. This corresponds to windows of 7 px × 7 px
and has been chosen to be close to the PCMV interrogation window size.

The OH* acquisitions with the high speed camera are validated by comparing
their spectrum to that of the OH* chemiluminescence measured with a photo-
multiplier probe (PM). For this purpose the PSD is determined for the entire
image �eld of the camera. The results of the PM are presented in detail in
chapter 7 and are proven to correspond to the global heat release of the �ame.
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Table 4.1: Chosen regions where the PSD is determined. The coordinates
of the regions studied by OH* chemiluminescence indicate the central point of
a 1.02 mm × 1.02 mm square. The coordinates of the regions studied by PCMV
indicate the interrogation window in which the point is located. They indicate the
center of a 0.97 mm × 0.97 mm square

Area x [mm] z [mm] PCMV OH* Comment

1 7.7 12.6 X X Swirl cone upstream, inner side
2 7.7 18.6 X X Swirl cone upstream, outer side
3 20.0 0.6 X X Center line
4 25.0 33.0 X Wall impinging

The results are presented in �gure 4.4 and show very good agreement between
the two techniques in the entire frequency span. In the low frequency area, the
peaks are well represented by both measurements in terms of frequencies and
relative amplitudes. OH* high speed imaging thus correctly represents global
heat release. Due to the �ndings of previous works (Schuller et al. (2002)) it
can also be assumed that it correctly represents the heat release in the chosen
regions.
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Figure 4.4: PM and total OH* chemiluminescence imaging spectra of the three chosen
operating points for the entire combustion chamber. The �gures show that the spectra
for both diagnostics have the same peaks.

4.3 Experimental results

As a reminder, the spectrum of the in-chamber pressure measurements is shown
in �gure 4.5. The interpretation of each peak is explained in chapter 3 and 7.
For this study, especially the low frequency peaks are of interest, as they show
the strongest dynamics. As described before, the pressure �uctuations are con-
sidered equal over the entire length of the chamber for frequencies up to 1000 Hz.
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Figure 4.5: The pressure spectra of the three chosen operating points show strong
pressure �uctuations in the low frequency region. Op16-0-2 and Op16-2-0 feature
their strongest peak at 120 Hz and also the harmonics of that frequency. Op13.4-4.6-0
is characterized by a more broadband peak with its maximum frequency at around 80 Hz.

Figures 4.6 and 4.7 show the PSD of the OH* chemiluminescence and of the
velocity in x and z directions for the four chosen regions. Their content is de-
scribed and discussed in the following sections.
The spectra for Op16-0-2 and Op16-2-0 are depicted together in �gure 4.6
because of their similarity. The spectra of Op13.4-4.6-0 are shown separately
in �gure 4.7.
In all diagrams, the regarded frequency is limited to 1000 Hz, since no spectral
content can be found for higher frequencies neither for the velocities nor for
the OH* chemiluminescence. Both �gures are separated in lines and columns.
Every column stands for one for the four regions, while each line stands for the
measured physical quantity. There are no velocity measurements available for
region 4 because it is outside the region where the PCMV measurements were
conducted.
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Figure 4.6: PSD of the OH* and velocity �uctuations in regions 1 to 4 for Op16-0-2
and Op16-2-0
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Figure 4.7: PSD of the OH* and velocity �uctuations in regions 1 to 4 for Op13.4-
4.6-0
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4.3.1 Velocity and OH* �uctuations in the shear layer between
high velocity zone and inner recirculation zone

Area 1 is located at the interface between the high speed swirling cone and
the inner recirculation zone. The velocity and OH* spectra are shown in the
�rst column in �gures 4.6 and 4.7. The PSD amplitudes are very high for
the velocity in x direction for Op16-0-2 and Op16-2-0. The spectra of these
operating points both feature the 120 Hz peak and its harmonics. The ampli-
tude of these peaks are very close. These peaks are also visible for the OH*
chemiluminescence, however their amplitude is limited. Op13.4-4.6-0 has far
weaker amplitudes in the velocity spectra, even in the x direction. However its
amplitudes are higher in the OH* spectra, by a factor of 5 compared to the two
other operating points. The PSD in z direction is weak for all operating points.

The PSD diagrams give insight about the aerodynamics and the �ame dynamics
in the combustor. As already suggested in chapter 2, Op16-0-2 and Op16-2-
0 are dominated by its high velocity swirling cone. In this region the velocity
spectra show their highest values. Even more, in the swirling cone, the PSD
spectra of the pressure measurements, the velocity �eld and the OH* visual-
isation are dominated by the 120 Hz peak and its harmonics. The existence
of the same peak for all three diagnostics in the same regions is an indicator
of a coupling of acoustics, aerodynamics and heat release. This coupling has
been described by Candel (2002) and Ducruix et al. (2003). Furthermore these
�ndings suggest that the pressure �uctuations e�ectively perturb the �ame via
the mechanism described in section 4.8.
Similar results seem to be observable for Op13.4-4.6-0, however the dynamics
in this region is far weaker for this operating point.

Another possible mechanism that can be possibly deduced from these results
is the �ame-vortex interaction. Already the comparison of the instantaneous
streamlines with the RMS OH* �eld indicates that the vortices propagate down-
stream in the regions with highest heat release �uctuations, i.e. the �ame front.
The comparison of the PSD spectra seems to con�rm this assumption, since
both measurements have the same eigen frequency in the regarded region. How-
ever, more information would be needed to draw further conclusions. Examples
are information about the phases of the two physical quantities or even instan-
taneous �ame front imaging and velocity measurements. The phases between
pressure and OH* were analysed in 7 and the results show that both are in
phase, thus ful�lling the Rayleigh criterion for combustion instabilities (?). It
would thus be possible that the phase between the di�erent phenomena in the
di�erent regions is equally close.
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4.3.2 Velocity and OH* �uctuations in the shear layer between
high velocity zone and outer recirculation zone

The interface between the high speed swirling cone and the outer recirculation
zones is represented by area 2 and the corresponding spectra are shown in the
second column of �gures 4.6 and 4.7. The velocity spectra show, that the veloc-
ity �uctuations are weaker than in in area 1, for all three operating points. The
velocity amplitude of the 120 Hz frequency of Op16-0-2 and Op16-2-0 is the
highest in these spectra. However it is only about a fourth of that in region 1.
The peak amplitude of the operating point Op13.4-4.6-0 is even lower and
can be barely distinguished from the white noise. Similarly as in area 1, the
transverse velocity �uctuations are negligible. The PSD spectra of the OH*
chemiluminescence for region 2 are equally dominated by the low frequency
phenomena, with the 120 Hz peaks having the highest amplitudes for Op16-
0-2 and Op16-2-0. The OH* spectra of both operating points also feature
the harmonics of the 120 Hz peaks. The OH* chemiluminescence amplitude is
even higher for a peak around 80 Hz for Op13.4-4.6-0. Besides, the spectrum
forOp13.4-4.6-0 possesses a broadband part in the frequencies below 1000 Hz.

In this region, the OH* chemiluminescence is high for the three operating
points, however the velocity �uctuations are rather low. This means that the
coupling between heat release rate and velocity is probably not that high as in
region 1. Nevertheless due to the recirculation in this zone, some interaction
between the �ame and vortex will probably exist.

4.3.3 Velocity and OH* �uctuations along the combustor axis

The area 3 is located on the symmetry axis of the combustor. Its velocity and
OH* spectra are shown in the third column in �gure 4.6 and 4.7. The veloc-
ity spectra show strong dynamics for all three operating points in x direction,
and almost no dynamics in z direction. As in region 1 and 2, the velocity
�uctuations of Op16-0-2 and Op16-0-2 are dominated by the low frequency
around 120 Hz. Its harmonics can also be observed; however they are weak.
Op13.4-4.6-0 has axial dynamics which are in the same order of magnitude
and with even slightly higher amplitudes in region 3. Even more, these are the
regions, where the amplitude of the velocity PSD is highest for Op13.4-4.6-0.
This can be seen for the peak around 80 Hz that has an amplitude at least
three times as high as for the other observed regions. The dynamics of the
OH* spectra of area 3 correspond to those of area 1. Op16-0-2 and Op16-2-0
are dominated by the 120 Hz peak and its harmonics. Op13.4-4.6-0 features
equally strong peaks, with that around 80 Hz at its highest value of all the
regarded regions.
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These results are particularly interesting for the characterization of Op13.4-
4.6-0. As described in chapter 2, this operating point features a strong central
jet, which reduces the overall swirl value and disturbs the rotating motion. The
consequence is a strong axial �apping, which can be observed in two aspects:
(1) The velocity spectra have their highest value in x-direction on the chamber
axis. They are far below in the swirl cones and non-existing in z-direction.
(2) The cone angle of Op13.4-4.6-0 is well below that of the other operating
points. This can be possibly linked to the fact that the full swirling motion
cannot be established due to the axial �apping and the low swirl value. As in
the two other operating points the PSD spectra of pressure, velocity and OH*
chemiluminescence feature the same dominating frequency - in particular the
peak at about 80 Hz. This leads to the suggestion, that also in this operating
point the �ame is perturbed by the low frequency pressure �uctuations that
are associated with the combustion instability. However the instability is in
particular linked to the axial �apping motion.

4.3.4 Velocity and OH* �uctuations in the region where the
�ame is impacting the chamber walls

Area 4 is located in the regions where the �ame collides with the chamber walls.
As these regions are outside the �eld of view of the PCMV measurements, only
OH* chemiluminescence is shown. The OH* spectra can be found in �gures
4.6 and 4.7 in the �rst line.
As in the other regarded regions, the OH* chemiluminescence spectra of Op16-
0-2 and Op16-2-0 have their highest amplitude at 120 Hz and the following
ones at a multiple of the main peak. The amplitudes are very high and have
similar values to those of region 3. For Op13.4-4.6-0 the strongest dynamics
are located at 80 Hz and have an amplitude below that of the other operating
points. Still, the values are high compared to regions 1 to 2, and of the same
order of magnitude as in region 3.
To sum up, the areas associated with the wall impinging of the �ame feature
strong heat release �uctuations at the same frequency as the combustion in-
stability. This observation is made for the three operating points and allows
to suggest, that the interaction between the �ame and the chamber walls are a
contributing driver of the combustion instability.

These results allow to identify the driving mechanism named �ame-wall inter-
action. Here the wall impact of the �ame leads to surface �uctuations and
thus to �uctuations of the heat release and �nally to pressure �uctuations. In
this work, this mechanism is put into evidence by regarding the PSD spec-
tra of the heat release rate and the pressure in the regions where the �ame is
impacting the walls. The results show that for all operating points the main
eigen frequencies are equal for both measurements. Moreover, the RMS OH*
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chemiluminescence is the highest at the chamber walls and the amplitude of
the OH* chemiluminescence PSD is high compared to the other regions. All
these observations are an indicator that the pressure �uctuations are partly
driven by the �ame heat release �uctuations at the chamber walls, which just
corresponds to the mentioned mechanism.

4.4 Conclusion

The results allow to put forward the dominance of the low frequency phe-
nomena on the dynamics of the velocity and the local heat release, as well as
the pressure. The relevant mechanisms for the combustion instability in this
combustor are summarized in �gure 4.8. It is limited to the four combustion
instability mechanisms that are treated in this chapter and that were described
by Ducruix et al. (2006). In the �gure the red texts mark the di�erent insta-
bility mechanisms. The blue texts show the experimental results that indicate
the existence of the corresponding mechanism in the CESAM-HP combustor.

Figure 4.8: Summary of the identi�ed combustion instability mechanisms. The blue
text corresponds to the experimental indications that presented in this chapter. p:
Pressure, Q: Heat release, v: Velocity, Ω: Vorticity, Φ: Equivalence ratio, A: Flame
surface



98 Chapter 4 - Time and spatially resolved analysis of the combustion

instability

Similar to what was described in section 4.1, the �gure shows two mechanisms
that are causing pressure �uctuations and two mechanisms in which these pres-
sure �uctuations interact with other elements of the combustor. Due to the
latter two, the schematic becomes a positive feedback circle - similar to what
is mentioned in Candel (2002).

The �rst driving mechanism is the interaction between �ame and the wall,
which is described in section 4.3.4. The strongest �uctuations of OH* close the
chamber walls have the same frequencies as the combustion instability, which
is an evidence for his mechanism.
The second observed driving mechanism is the interaction between the �ame
and the vortices. It is put into evidence by the high �uctuations of OH* and
velocity in the shear layer between the high velocity conical region and the
central recirculation zone. These �uctuations have the same frequencies and
since the regarded region corresponds to the �ame front as well as the shear
layer, an interaction between the �ame and the vortices at instability frequency
is probable.

The �rst coupling mechanism that is regarded is the acoustic excitation of the
�ame and the entire combustor. As explained by Ducruix et al. (2006), the
acoustic �uctuations will act on the velocity �elds in the region where the �ame
is impacting the walls, as well as on the vortices that interact with the �ame
front. As the strongest pressure �uctuations act at a certain frequency on
the di�erent parts of the combustor (the combustion instability frequency), it
should be possible to detect this frequency when measuring in di�erent posi-
tions of the �ame. This is the case in the PSD spectra that are obtained for
velocity and OH* in di�erent positions of the �ame, which is an indicator for
the existence of this coupling mechanism.

The second coupling mechanism is the variations of composition due to the
pressure �uctuations. These pressure �uctuations lead to �uctuations of fuel
mass �ow rate in the fuel mass �ow controllers. This mechanism was examined
in chapter 3, where a combined experimental and analytical approach could
show that the low frequency �uctuations are associated with the feeding lines.
It can thus be concluded that this corresponds to the mentioned mechanism.

The schematic drawing in �gure 4.8 also suggests, how direct and indirect com-
bustion noise is generated from this combination of di�erent mechanisms. As
described in the introduction, direct combustion noise corresponds to the pres-
sure �uctuations that result from the heat release �uctuations of the �ame. As
the results of this chapter indicate, these pressure �uctuations are �nally all
related to the four presented instability mechanisms. It can thus be concluded
that the combustion instability plays an important role for the combustion
noise generation and that it will lead to a high contribution of direct combus-
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tion noise.

Figure 4.8 also takes into account the indirect combustion noise generation. It
can be seen that the heat release �uctuations are transmitted from the �ame to
the burnt gases. As the burnt gases are �owing towards the nozzle where they
are accelerated, the density �uctuations generate pressure �uctuations. These
are called indirect combustion noise. At this point it is not possible to quantify
this contribution. Nevertheless, due to the strong combustion instability and
the existence of the associated mechanisms, it is clear that direct combustion
noise contribution will make up most of total combustion noise. However, since
the frequencies are equal, it can also be one of the drivers of indirect combus-
tion noise.

The estimation of combustion noise contributions based on the di�erent in-
stability mechanisms would however be a very crude one. More quantitative
methods are presented in the two following chapters: in chapter 7, the direct
combustion noise contribution is investigated based on the heat release �uctu-
ations of the �ame. Finally in chapter 8, the temperature �uctuations in the
burnt gases are determined experimentally by Laser Interferometric Vibrome-
try (LIV). From these and from the in-chamber pressure �uctuations, the direct
and indirect combustion noise contributions are calculated analytically.
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Summary

The second part of the thesis is focussing on the work that was done on the
development and use of optical diagnostics. These have the potential for a
future application in combustion noise studies, however further steps need to
be done to carry them to this stage. Two diagnostics are presented here, high
speed planar velocimetry at a sampling frequency of up to 100 kHz and focusing
Schlieren for the visualization of entropy waves.

Chapter 5 deals with the development of a new planar velocimetry technique,
called PCMV (Planar continuous laser based Mie scattering Velocimetry). The
technique is based on the use of a continuous wave laser as a light source. In
this case the sampling frequency is exclusively determined by the shutter open-
ing and closing times of the applied high speed camera. In this chapter, the
PCMV system is described and its validation is attempted experimentally on
the CESAM-HP test bench. Latter is done by �rst observing the instantaneous
Mie scattering and velocity �elds and then by comparing the mean and rms
velocity �elds obtained by PCMV with those obtained by a classic low speed
PIV system. Finally, di�erent error sources are discussed and further means of
validation are proposed.

Chapter 6 describes the application of a focusing Schlieren system on the
CESAM-HP combustor. This system is based on the combination of a camera
lens with two complementary grids and allows to visualize density �uctuations
in a �eld depths of only a few millimetres. The Schlieren system is used to
observe �ame front and the density �uctuations in the burnt gases. While the
detected frequencies are equal to those found by Laser Interferometric Vibrom-
etry (see chapter 7), further work needs to be done in order to quantify the
density �uctuations.
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Chapter 5

Development of a high speed

planar velocimetry technique

In this chapter the velocity measurements conducted in this thesis are
presented. For this, a new high speed planar velocimetry technique was
developed, which allows to capture velocity �uctuations at very high sam-
pling frequencies. The technique is based on the use of a continuous
wave laser, which illuminates the particles that are supposed to move
along the �ow they are seeded in. The Mie scattering images are ac-
quired at very high frequencies with a high-speed camera. The velocity
�elds are obtained by applying classical PIV algorithms on successive
images. The properties of the system are described and discussed and
a validation is attempted in two steps. First, the instantaneous ve-
locity �elds obtained on the CESAM-HP combustor are studied. They
capture the �ame topology correctly, with the high speed regions of con-
ical shape and the low speed recirculation zones. Afterwards, the new
velocimetry technique is compared with a classical low speed PIV sys-
tem. This is done by conducting experiments with both systems on the
CESAM-HP test bench and by comparing the mean and RMS of the
obtained velocity �elds. The results show a non-negligible error between
the two techniques. Finally, the reasons for this error are discussed
and improvements are proposed. Nevertheless, since the �ame topology
is captured correctly, this technique is interesting to study the velocity
�uctuations of the CESAM-HP combustor.

5.1 Introduction

Particle Image Velocimetry (PIV) is today one of the standard measurement
techniques for measuring velocity �elds in reacting and non-reacting �ows (Adrian
(1991); Adrian (2005)). It has the advantage of being non-intrusive and of mea-
suring velocities in two or nowadays even three dimensions. In this thesis, PIV
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is used with two aims. The �rst aim is to determine the mean and RMS ve-
locity �elds of the CESAM-HP test bench. These �elds allow to obtain �rst
insights about the �ow �eld geometries, such as the swirl cone angle. The RMS
velocity �elds also allow to determine the areas with the highest aerodynamic
activity in the burner. The analysis of the mean and RMS velocity �elds have
been presented and described in chapter 2. The second application of PIV was
shown in chapter 4 and concerns the study of the main combustion instabilities
in the CESAM-HP test bench. This was done by putting forward the coupling
between velocity �uctuations, pressure �uctuations and the �uctuations in lo-
cal heat release in various locations in the combustor. For this purpose the
spectra of these measurements were compared especially in regions where all
three phenomena were measured.

In PIV, particles are seeded into the �ow and are supposed to move along with
it. The particles are illuminated by a laser sheet and scatter the light. The
illumination is of very short duration (a few nanoseconds) and is hence called
laser pulse. In classical PIV two pulsed lasers are used to illuminate the seeded
�ow with a time span of a few microseconds in between. The Mie scattering
is captured by a camera with a pair of images corresponding to two successive
pulses. The studied region is separated into a grid of smaller windows and a
cross correlation algorithm is used to determine the displacement of each win-
dow during the time span between two laser pulses.

The sampling frequency of a PIV system is determined by the time span be-
tween two pairs of images and has increased over the years, allowing researchers
to extend the application �elds of PIV. Three application �elds can be iden-
ti�ed for PIV. (1) For a determination of the mean and RMS velocity �elds,
a PIV system of a low sampling frequency is su�cient. The high laser power
levels allow for a large region of interest and the low sampling frequency leads
to a higher statistical quality due to the long duration of acquisition. (2) In
experiments with turbulent �ames in a con�ned space and with swirling mo-
tions, acoustic phenomena and instabilities can be observed at frequencies of
typically up to 1 kHz (Candel (2002); Candel et al. (2014)). The conse-
quent pressure �uctuations in the combustor lead to velocity �uctuations at
the same frequencies. In order to capture these velocity oscillations, an even
higher acquisition frequency is required. In order to ful�l the Nyquist-Shannon
theorem, at least 2 kHz are needed, and for a characterisation of higher quality,
even 10 kHz are preferable. Today's high speed PIV systems are able to achieve
these frequencies. (3) The third application is the following of turbulent struc-
tures, such as wakes in the �ow. These require higher sampling frequencies as
will be demonstrated now. In the example of a turbulent �ame with a high swirl
value, such as in a gas turbine combustor, tangential velocities can reach the
same orders of magnitude as longitudinal ones. (Candel et al. (2014)). When
assuming a swirling combustion with 40 m/s longitudinal and transverse veloc-
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ity and a laser sheet of 20 mm width and 0.4 mm thickness, a particle would
need 500 µs to cross the laser sheet longitudinally. For Nyquist-Shannon's the-
orem one would need 4 kHz to capture this particle and 20 kHz for a high
quality characterization. These frequencies already exist in actual high speed
PIV systems. However, due to the high transverse velocity, it would take the
particle only 10 µs to cross this laser sheet transversally. If now a wake of 5 mm
diameter is considered to propagate in transverse direction at the same velocity
of 40 m/s, it would need 125 µs to cross the laser sheet. Consequently it can
only be captured at a sampling frequency of 16 kHz for Nyquist-Shannon and
between 40 and 80 kHz for a high quality acquisition.

Current high speed PIV systems at sampling frequencies up to 20 kHz attain
their limits when turbulent structures of high speed swirling �ames need to
be followed. Only recently, sampling frequencies of 100 kHz were reached by
using PIV based on pulse-burst lasers, however this technique is very costly
and requires special treatment (Miller et al. (2016)). This work has the aim
to narrow this gap by presenting and validating a novel velocimetry technique
which can reach frequencies up to 100 kHz in an economic and ergonomic way.
To do so, a continuous wave laser is used as the light source and the image
pairs are obtained with the opening and closing of the shutter of a high speed
camera. The time resolved velocities are then determined with the same cross-
correlation algorithms that are used for PIV. This approach has been used very
recently for high-speed measurements in non-reacting environments (Willert
(2015)) with a very small region of interest. However due to the relatively low
power of the continuous wave laser, no attempt was made yet to use this kind
of laser for velocity measurements on laboratory scale combustors. Such an
attempt is made here. The results of this study were already presented during
the Gordon Research Conference 2015 (Mazur et al. (2015)) and are detailed
further in this chapter.

5.2 Presentation of the new velocimetry technique

The functionning of this new technique, named PCMV (Planar Continuous
laser-based Mie scattering Velocimetry) in the following, is shown in �gure 5.1.
As described before, the PCMV system is characterized by the use of a continu-
ous wave laser. The laser energy is hence constant over the time. Consequently,
the PIV measurement is in�uenced by four timing parameters of the high speed
camera, which are shown in the �gure.

• The time δt is the time span between each image acquisition made by the
high speed camera. It directly corresponds to the sampling frequency
of the camera.
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• The time t0 corresponds to the shutter opening time per image acqui-
sition. It in�uences the image quality. While a high t0 leads to higher
image intensities due to a longer time of illumination, the image be-
comes less sharp. This is due to the fact, that the particles are moving
at a certain velocity. At high velocities and high t0 the particles are cap-
tured as "traces" rather than "dots". This e�ect is also called smearing
in literature (Tropea et al. (2007)). For example, at maximum veloc-
ities of 40 m/s, at a spatial resolution of 10 px/mm and at a δt of 10
µs (which corresponds to a sampling frequency of 100 kHz), this would
lead to a trace length of around 4 pixels. Taking into account that at
these con�gurations these traces would have a thickness of 1 to 2 pixels,
the smearing e�ect is not negligible.

• dt is the time between the images chosen to perform the PIV algorithm.
It is thus the time between two images that make up an "image pair".
The time has an in�uence on the image displacement and is chosen
according to the 25 % rule for PIV. This classical rule says that the
highest particle displacements should not exceed 25 % of the chosen
PIV window size. (Keane and Adrian (1990))

• The time ∆t corresponds to the time between two image pairs. It deter-
mines the actual sampling frequency of the HSPIV system Fs = 1/∆t.

These four parameters can be chosen accordingly to the optical system and to
the studied application.

Figure 5.1: Description of PCMV with continuous laser source and the di�erent
timing parameters of the technique

It has been chosen to rename the technique due to its fundamental di�erences to
PIV. Because of the long exposure duration, which is necessary due to the rela-
tively low laser power, the particles are captured as "traces" rather than "dots",
as shown in �gure 5.2. This has important e�ects on the technique. While the
cross-correlation algorithm does not di�erentiate between dot or trace and cal-
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culates for both the most probable displacement, the particle images of PIV
and PCMV are physically not the same. In PIV the exposure duration is very
short and the Mie scattering images thus show the instantaneous position of
the particles. In PCMV on the other hand, the exposure duration is longer
and the Mie scattering images represent the path that the particle passed dur-
ing this time. Therefore, when the cross-correlation algorithm calculates the
displacement between a time span, it calculates the displacement of these two
particle paths, or di�erently spoken, of the mean position of the particles in
this path.

Figure 5.2: Left: Displacement of a particle that is captured as a dot by classic PIV.
Right: Displacement of a article that is captured as a trace by PCMV

The fundamental di�erences between PCMV and PIV can be also demonstrated
mathematically. For this, it is compared, how the instantaneous velocity be-
tween two successive windows is calculated for both techniques when using
classical cross-correlation algorithms on the acquired images. Figure 5.3 shows
the di�erent time steps that are important for this demonstration:

• t1,1 is the starting time of the camera shutter opening of the �rst image
for PCMV. It also corresponds to the timing of the �rst laser pulse for
PIV. Since the pulse duration is only of a few ns, the pulse is assumed
to be a Dirac.

• t1,2 is the ending time of the camera shutter opening of the �rst image
for PCMV.

• t2,1 is the starting time of the camera shutter opening of the second
image for PCMV and the timing of the second laser pulse for PIV.

• t2,2 is the ending time of the camera shutter opening of the second image
for PCMV.

In this demonstration, only the displacement U in x-direction is regarded, since
the demonstration for the z direction is done analogously.
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Figure 5.3: Di�erent time steps that are relevant for PIV and PCMV

For PIV, the instantaneous velocity between two images corresponds to the
displacement of the particle divided by the time between the two pulses:

UPIV =
x(t2,1)− x(t1,1)

t2,1 − t1,1
(5.1)

The velocity calculation for PCMV is more complicated since here, the dis-
placement of two trajectories is calculated. The velocity corresponds to the
di�erence of the x-positions of the mean point of the trajectories, divided by
the time span of the moments where the camera shutter is opening:

UPCMV =
(x(t2,1) + 1

2

∫ t2,2
t2,1

u(t)dt)− (x(t1,1) + 1
2

∫ t1,2
t1,1

u(t)dt)

t2,1 − t1,1
(5.2)

When subtracting Eq. (5.1) from Eq. (5.2), one obtains the di�erence between
the instantaneous velocity that is obtained by the two techniques:

UPCMV − UPIV =
1

2

∫ t2,2
t2,1

u(t)dt−
∫ t1,2
t1,1

u(t)dt

t2,1 − t1,1
(5.3)

The di�erence between the velocity obtained by PIV and by PCMV thus in
theory is due to the integrating e�ect of the long exposure duration. However,
in classical velocimetry measurements in �uid mechanics, the time between two
images is very short, of the order of 10 µm. If it is assumed, that the velocity
u(t) = u is constant is such a short time span, Eq. (5.2) is simpli�ed to:

UPCMV − UPIV =
1

2
u

(t2,2 − t2,1)− (t1,2 − t1,1)
t2,1 − t1,1

(5.4)

Since the shutter opening time stays equal during image acquisition, t2,2−t2,1 is
equal to t1,2− t1,1 and the di�erence between UPCMV and UPIV becomes zero.
The technique is thus used under the hypothesis that the velocity is constant
between two time steps.
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The hypothesis can be validated by calculating Eq. (5.4) for an example. For
this a velocity oscillation between -40 m/s and +40 m/s at a frequency of 2.5
kHz is supposed. At this frequency the velocity needs 0.0002 s to change from
its smallest to its highest value. If assuming that the velocity increases linearly,
this corresponds to an acceleration of a = 800000m/s2. This acceleration is
used in u = a · t in Eq. (5.4). When calculating this equation, the resulting
di�erence between the velocity measured by PIV and by PCMV would be re-
solved to 1.8 ·10−5 m/s, which is a very small value. This di�erence is therefore
negligible.

The application of this PCMV technique has been enabled due to advances in
laser technology. These have increased the stability and intensity of the laser
system. However, in order to reach image intensities close to those of pulsed
systems, t0 is chosen at the biggest value that is permitted by the camera sys-
tem at the chosen sampling frequency. In this work, t0 has a value of 9 µs
at a δt of 10 µs (The resulting 1 µs closing time corresponds to the minimal
shutter closing time of the used camera). This long exposure time does not �x
the particle position, but classical PIV algorithms can still be applied on the
images, since the cross correlation can be calculated independently from the
shape of the captured particles.

The image intensity of the present PCMV system is compared with that with
existing PIV systems from literature with di�erent arrangements as shown in
table 5.1. The aim is to show that at the chosen parameters, the PCMV
technique can reach intensities that are close to existing PIV systems. These
studied systems are two HSPIV (High speed PIV) techniques with a pulsed
laser source (Providakis et al. (2013); Boxx et al. (2009)), one classic low
speed PIV (PIV) technique (Letty et al. (2013)), and one HSPIV technique
with continuous laser source but a non-reacting �ow (Willert (2015)). The com-
parison is conducted by calculating a normalized laser intensity Inorm, since the
laser sheets have di�erent dimensions in the di�erent works. Inorm is expressed
by the following equation, which takes into account the laser energy and the
laser sheet dimensions:

Inorm ∝
Eper−image

wt
(5.5)

Eper−image is the laser energy per image. In a pulsed laser it corresponds
directly to the laser pulse energy. In a continuous wave laser it is the product
of the constant laser power and the camera shutter opening duration. The
variables w and t stand respectively for the laser sheet width and the laser
sheet thickness. The comparison between the di�erent PIV systems (table 5.1)
shows that while the normalized intensity of the present PCMV is below that
of a classic PIV, it attains the levels of other HSPIV techniques from literature,
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where velocity measurements were conducted successfully. This is due to three
factors: (1) As explained before, continuous laser sources have become more
performing over the years. (2) The shutter opening time has been chosen as
long as possible. (3) The laser sheet dimensions were chosen smaller than in
the other arrangements. While this reduces the region of interest which can
be studied, it remains su�cient for the compact structure of the �ame in this
work.

Work Present 1 2 3 4
Type c p p c p
Fs [kHz] 100 5 1.4 20 LS
Eper−image [mJ] 0.18 5 0.4 0.05 120
w [mm] 20 80 32 7.2 80
t [mm] 0.4 1 0.5 0.2 0.5
Inorm [µJ/mm2] 22.5 62.5 25.0 34.7 3000

Table 5.1: Comparison of the present laser system with existing systems from litera-
ture. c: Continuous laser source, p: Pulsed laser source, LS: low speed, Fs: Sampling
frequency, Eper−image: Energy per image, tlaser: Laser opening duration per image, w:
Laser sheet width, t: Laser sheet thickness, Inorm: Normalized Intensity. 1: Providakis
et al. (2013). 2: Boxx et al. (2009). 3: Willert (2015). 4: Letty et al. (2013).

Apart from the increased sampling frequency, the proposed PCMV technique
has other advantages. The system is easier to handle than traditional two-shot
systems as the laser intensity is kept constant over the time. Hence the prob-
lems of aligning two laser sources and of synchronizing them with each other
and the camera do not exist. Equally the problem with intensity di�erences
between the two sources is solved. Besides, the high sampling frequency al-
lows to acquire large quantity of data in a very short time. While this can
create issues in terms of statistic quality, it is advantageous in highly con�ned
systems, where particle deposition on the windows degrades the image quality
considerably already after a few seconds.

However, as explained in the previous sections, the PCMV system is obtaining
the velocity from images where the particles are smeared. Di�erently spoken,
PCMV is physically not the same as PIV. Therefore it needs to be veri�ed,
whether the velocities obtained with PCMV are correct. This veri�cation is
conducted in the following section.

5.3 Experimental procedure for validation

As explained in the previous sections, the PCMV system is characterized by
smeared particles due to the long exposure time per shot. It must be therefore
veri�ed, whether the velocities obtained by PCMV are quantitatively correct .
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The most evident way would be to conduct instantaneous and synchronous
velocity measurements with a PCMV and a PIV system and to compare the
obtained velocities. However these measurements are not available. Therefore
the approach presented in the following has been chosen.

Two steps are conducted. In a �rst step, the instantaneous velocities are mea-
sured by the presented PCMV, and the topology of the velocity �eld is investi-
gated. Secondly, the mean and RMS velocity �elds determined by PCMV are
compared to those obtained by a classic PIV system on the CESAM-HP test
bench.

Figure 5.4: Schematic drawing of the CESAM-HP combustor also showing the posi-
tion of the PIV laser sheet

The PCMV/PIV is installed at the entry of the combustion chamber of the
CESAM-HP test bench, as displayed in �gure 5.4. The properties of the test
bench were described in the previous chapters. The validation is conducted on
the operating point Op16-0-2.

The used laser system for PCMV is a COHERENT Verdi G20 continuous wave
Nd:Yag laser with a maximal light power of 20 W and a wave length of 532 nm.
The high speed camera is a Photron FASTCAM SA-X2 with a maximal resolu-
tion of 1024 × 1024 pixels. During acquisition at 100 kHz the camera resolution
is reduced to 256 × 440 pixels. At the used arrangement this leads to a spatial
resolution of 9.3 pixels/mm. The laser sheet width is 20 mm and its thickness
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is 0.4 mm at its focal line, both measured with photographic paper. The �ow is
seeded with ZrO2 particles of 1 µm size and a seeder of cyclone type (Melling
(1997)). The properties of the PCMV system are summarized in table 5.1

In this arrangement no intensi�er is mounted because it would increase image
noise. This noise would be perceived as white dots on the images. It would
thus be interpreted as particles by the cross correlation algorithm and increase
the error of the determined displacements.

The following timing parameters were chosen for the PCMV system:

• δt = 10µs, hence a camera acquisition rate of 100 kHz,

• t0 = 9µs, thus the maximal shutter opening time,

• dt = 10µs in order to capture high �ow velocities and

• ∆t = 10µs, which results in a PIV sampling frequency of 100 kHz.

The acquisitions are taken during 200 ms, hence 20000 samples are obtained.

The PIV system consists of a CONTINUUM Surelite Nd:Yag laser, with a
power of 100 mJ per shot, a pulse duration of 8 ns and a sampling frequency
of 10 Hz. The timespan between two shots is 10 µs, thus equal to that of the
PCMV system. The laser sheet dimensions are equal to those of the PCMV
system, as the lens and mirror arrangement was kept for both experiments. The
used camera is of type Dantec Flowsense with a resolution of 1600x1200 pix-
els. The system has a spatial resolution of 14.1 px/mm. The PIV tests were
performed with 1600 image pairs, hence during 160 s.

The images of each image pair are split spatially with a chosen interrogation
window size Ws. It has been chosen 16x16 pixels for PCMV and 32x32 pixels
for PIV due to the spatial resolutions of the respective cameras. The windows
are chosen with 40 % overlap in order to increase the spatial resolution of the
velocity �elds. Then a cross-correlation map is calculated for each interrogation
window with the following equation, based on previous work (Taylor et al.
(2010)):

Φ = FFT−1(FFT (I∗a) ∗ FFT (I∗b )) (5.6)

with I∗i = Ii − Ii the intensities of the interrogation window Ii minus their
spatial mean value Ii. The index i is chosen as a for the image at a time t
and b at a time t+ dt. This equation is a simpli�ed form of the classical cross
correlation equation (presented in Theunissen (2013)), which allows for a sim-
pler application and lower computation durations. Due to these advantages it
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is commonly used in open-source (Taylor et al. (2010)) and commercial PIV
(Dantec DynamicStudio) software. The resulting cross-correlation map indi-
cates the probability of di�erent displacements from −Ws to +Ws in x and z
directions. Its highest peak thus shows the most probable displacement in both
directions.

The displacement determined with this equation is in the precision of one pixel.
As this is a very crude estimation, the peak position is determined by a subpixel
interpolation. This is achieved by assuming the cross-correlation peak to be
gaussian. It is then compared with its surrounding, which allows obtain a
displacement below the pixel scale. The used equation is the following, in this
case for the x displacement (Theunissen (2013); Taylor et al. (2010)):

δx =
0.5(logΦmp−l,np − logΦmp+l,np)

logΦmp−l,np − 2logΦmp,np + logΦmp+l,np

(5.7)

with Φmp+i,np = Φ(mp + i, np).

As a �nal step, false vectors are detected and removed. For this the peak ratio
is calculated, i.e. the ratio of the main peak and the second peak in the cross-
correlation map. It is typically chosen to be at least 1.2. Peaks with a lower
peak ratio are systematically refused and the velocity is chosen to be zero in
this �eld. Finally, excessively high velocities which di�er extremely from their
neighbours and have unrealistically high values are also removed.

The comparison of the two velocimetry techniques is accompanied with an error
estimation. The aim is to determine error bars in order to visualize possible
deviations from the found results. Previous works (Xue et al. (2013); Xue et al.
(2014)) have shown that the displacement error has two sources: (1) The signal
to noise ratio (SNR) and (2) the existence of false vectors. As false vectors were
removed in the �rst place, the second term is estimated zero. For this simpli�ed
case the size of the error bar depends only on the signal to noise ratio of the
correlation map. The exact value would be very di�cult to obtain. Charonko
and Vlachos (2013) also suggest to estimate the error using the simple function
1/SNR. Even though this is a crude estimate, it is shown in Charonko and
Vlachos (2013) that it gives fair trends. This choice makes it easy to compare
the error associated with the di�erent methods and test cases. The signal to
noise ratio itself is determined for each interrogation window by dividing the
value of the cross correlation peak by the mean of the remaining values of the
cross-correlation map.
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Figure 5.5: Left: Example of the instantaneous Mie scattering at the studied operating
point. The images are taken at 8 bits and the maximum intensity is thus 255. Right:
Example of the instantaneous velocity vectors of the studied operating point at the same
time step.

5.4 Results

In a �rst step, the instantaneous velocity obtained by PCMV is examined. This
is done by observing the Mie scattering images that are acquired with the high
speed camera as well as the velocity �elds that are calculated from these Mie
scattering images.

Figure 5.5 shows an example of an instantaneous �eld of Mie scattering and the
corresponding velocity vectors obtained by the correlation algorithm presented
in section 5.3. In the Mie-scattering image, a high particle density can be
observed along a line that corresponds to the high velocity region in the vector
�eld of the same �gure. As described in section 5.2, the particles are smeared
and represented as traces in the image. These traces have a thickness up to
2 pixels and a length up to several pixels due to their high velocity and the
long exposure time. In the other regions, this smearing cannot be observed.
Here the particles are represented as dots of up to 2 pixels diameter. This is
probably due to the di�erence in density between fresh and burnt gases and is
explained in previous works (Picano et al. (2011)).
The particle density is considerably lower in this region. As described by
Melling (1997), this is probably due to the increased centrifugal forces in the
high velocity part. These draw the particles out of the central recirculation
zone towards the high velocity regions.

Figure 5.5 also shows the instantaneous velocity �eld that is calculated from
the presented Mie scattering image and that in the following time step. It can
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Figure 5.6: Example of the instantaneous velocity �eld in x-direction and z-direction
for the studied operating point

be seen that the quantity of false vectors is low (as a reminder, the refused false
vectors are set to zero), nevertheless a few outliers can still be observed, since
vector corrections are limited to a minimum (no �ltering etc.). However their
quantity is su�ciently low so that their in�uence is supposed to be negligible.
The velocity �eld has features, that are typical for a swirled premixed �ame
(Providakis et al. (2013); Candel et al. (2014)). It has a high velocity region
of conical shape and recirculation zones at the chamber axis and outside the
swirling cone. The regions between the high and low velocity zones feature
vortices that are a transition between these zones.

Quantitative results of the same instantaneous velocity �eld are shown in �gure
5.6. The �gure contains the mean velocity in x and z direction. The velocities
in the swirling cone reach values up to 30 m/s in x and up to 15 m/s in z direc-
tion. In the low velocity recirculation zones; the velocities stay well below 10
m/s in x and in z directions. Taking into account that for the studied operating
point the bulk velocity (calculated by ṁ = ρAv) is around 20 m/s, these values
seem realistic and not excessively low or high.

In a second step the statistic quality of PCMV is veri�ed by comparing its
results with those obtained by PIV. The velocity �elds of the two techniques
are compared quantitatively by tracing velocity pro�les at three axial positions.

The mean and RMS velocity pro�les at di�erent x-positions are shown in �g-
ures 5.7 to 5.10. These �gures show reasonable agreement between the two
techniques in terms of �ow topology. As with the instantaneous velocity �eld,
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the mean and RMS �elds show features that are typical for a swirling �ame.
Furthermore, the z position of the region with the highest mean or RMS ve-
locities is equal for all pro�les. This means that the cone angle is represented
correctly. Discrepancies are found in the values of the velocities. In low velocity
regions this error accounts for up to 1 m/s. While in terms of percentage this
is a high value (up to 50 %), in terms of pixel displacement error it is low with
an error of below 0.2 px. The error in the high speed regions is slightly higher
but results in lower error percentages up to 20 %.
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Figure 5.7: Mean velocity pro�les in x direction for di�erent axial positions for
PCMV and PIV



Part II - Development of optical diagnostics 119

−5 0 5 10 15
0

5

10

15

20

25

Velocity [m/s]

z 
[m

m
]

x = 6.13 mm

−5 0 5 10 15
0

5

10

15

20

25

Velocity [m/s]

x = 10.18 mm

−5 0 5 10 15
0

5

10

15

20

25

Velocity [m/s]

x = 12.94 mm

 

 

PIV
PCMV

Figure 5.8: Mean velocity pro�les in z direction for di�erent axial positions for
PCMV and PIV
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Figure 5.9: RMS velocity pro�les in x direction for di�erent axial positions for PCMV
and PIV
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Figure 5.10: RMS velocity pro�les in z direction for di�erent axial positions for
PCMV and PIV

The results show that the proposed PCMV technique globally characterizes
the �ow correctly in this test bench. Nevertheless, the error is non-negligible.
The discrepancies can be due to a variety of reasons, that are discussed in the
following paragraphs

A possible error source is the long exposition duration that is necessary for
PCMV. As discussed in section 5.2, this means that PCMV and PIV are deter-
mining the velocities from images that represent physically not exactly the same
phenomena. In PIV the exposure duration is very short and the Mie scattering
images thus show the instantaneous position of the particles. In PCMV on the
other hand, the exposure duration is longer and the Mie scattering images rep-
resent the path that the particle passed during this time. Therefore, when the
cross-correlation algorithm calculates the displacement between a time span,
it calculates the displacement of these two particle paths. The problem is the
fact, that during this long exposure durations particles have the time to leave
the image plane, or other ones have the time to enter it. This is especially
an issue for swirling �ows with a high tangential velocity component. A third
point is the possibility that particle trajectories can be divided when the region
of interest is separated into interrogation windows. In this case the mean posi-
tion of the "shortened" trace is not estimated perfectly correctly. Mazur et al.
(2017) have however found by numerical simulation that this contribution is
rather weak.

Other possible errors could exist due to alignment: The laser systems of the two
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techniques might not be aligned perfectly equally. Even more the two lasers of
the PIV might have di�erences in alignment and laser shot intensity.

Due to the high sampling frequency of PCMV and the limited camera mem-
ory, the acquisition duration is very short, in this case only 200 ms, which
can have an in�uence on statistics. In the velocity �elds presented here the
PCMV mean and rms velocities converge at less than 10000 time steps. The
chosen 20000 time steps thus lead to well converged mean and RMS velocity
�elds. Another consequence is the fact that very slow phenomena are di�cult
to capture as they occur only a few times during this short acquisition duration.

Due to the low sampling frequency of PIV, the acquisition duration is much
longer. However, as particle rapidly deposit on the chamber windows (after a
few seconds), the image quality is strongly degraded. As mentioned before, this
issue is due to the strong con�nement of the chamber.

Another aspect is that the applied cross-correlation algorithm is very basic. No
advanced algorithms were used, such as window re�nement and deformation
or adaptive window size. Equally, no �lters were applied. This choice was
made in order to keep the comparison close to the level of the raw images.
Each additional algorithm would add other incertitudes. On the other hand
however their use could possibly improve the quality of the calculated velocities.

Due to their scope these issues are not treated and the comparison is limited to
this basic statistic study. However, the results are already close and su�cient
for the applications in this thesis. PCMV is used here for two purposes:
As a �rst point, the planar velocity measurements are used to obtain the statis-
tic aerodynamic behaviour, thus the mean and RMS velocity �elds of the com-
bustor (cf. chapter 2). These have the aim to identify the mean topology of
the velocity �eld and to identify the regions with the strongest velocity �uctu-
ations.
The second application is the local determination of the main velocity �uctu-
ation frequencies. This application depends on a correct determination of the
instantaneous velocity �eld, which is di�cult to validate. However, chapter 4
shows that the main frequencies in the velocity �elds determined by PCMV cor-
respond to the frequencies obtained by pressure and OH* chemiluminescence
measurements. This leads to the conclusion that the present PCMV technique
is able to capture the same dynamics as the two other diagnostics.
While for both applications it is important that the diagnostic correctly cap-
tures the topology of the �ow �elds, some error in terms of absolute numbers
is acceptable. Therefore the technique is adequate for a use in this work.
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5.5 Conclusion

In this chapter, a novel planar velocimetry technique is proposed. It is named
PCMV (Planar Continuous laser-based Mie scattering Velocimetry) and char-
acterized by the use of a continuous laser source and a high speed camera. This
arrangement can attain sampling frequencies up to 100 kHz.

Besides the high sampling frequency, the PCMV technique o�ers the advantage
of a simpler and less costly arrangement. Also due to the short acquisition du-
ration, image quality degradation due to particle deposition on windows is not
an issue here.

The PCMV technique is validated in two steps. First, the topology of the
instantaneous �ow �elds is regarded. They feature a high velocity region of
conical shape and recirculation zones next to it. This topology corresponds to
that found in literature for similar �ames. This leads to the assumption that
the main features are captured by the PCMV technique. Second, the results
of the PCMV measurements are compared with those obtained from a classical
PIV technique. To do so, mean and RMS velocity �elds are determined on
the CESAM-HP combustion chamber with both techniques. The comparison
of the resulting velocity pro�les on di�erent axial positions shows good agree-
ment between the two techniques. The swirl angle is represented correctly and
the displacement error lies in the order of a few tenth of pixels, thus close to
the limits of PIV measurements. Nevertheless this error is non-negligible, as it
reaches percentages of up 20 %, especially for the RMS. Di�erent reasons for
this error are presented and discussed afterwards. Nevertheless, the presented
PCMV allows to obtain mean and RMS velocity �elds that are of a quality suf-
�cient for this thesis. Additionally the Fourier processing of the instantaneous
velocity �elds in chapter 4 shows that the observed frequencies correspond to
those detected by the in-chamber pressure and OH* chemiluminescence mea-
surement. This observation does not validate the diagnostic for all possible
experimental con�gurations, but it shows that the presented PCMV technique
allows to detect the phenomena that are looked for in this thesis.

In order to validate the correctness of the PCMV technique in general, the in-
stantaneous �elds need to be validated quantitatively. This could be achieved
by two di�erent approaches: The �rst approach would be to conduct simulta-
neous experiments to obtain the velocity �elds, for example by using PCMV
and PIV in parallel and synchronously. In terms of experimentation this ap-
proach is not trivial especially due to the rapid degradation of image quality
due to particle deposition on the windows. Furthermore, other possible error
sources, such as errors due to alignment cannot be excluded. The second ap-
proach would thus be the use of numerical simulation. LES simulations could
be used to calculate the velocity �elds and particle displacement of a particle
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laden swirling �ow. From the results, synthetic images could be created that
represent the Mie scattering of particles that are illuminated by a laser shield.
Since LES calculations typically have time steps of a few nanoseconds, the ex-
posure times of a classic PIV (10 ns) and that of the present PCMV (9 µs) could
be simulated with the synthetic particle image. Finally, the cross-correlation
algorithm presented in section 5.2 could be applied to calculate the velocity
�elds. By comparing these velocity �elds, one can �nally examine the e�ect of
the exposition duration, which is theoretically the main di�erence between the
proposed PCMV and classic pulsed PIV techniques. This approach is presented
in Mazur et al. (2017) and suggests that the in�uence of the smearing is not
excessively high.





Chapter 6

Visualization of the density

�uctuations with focusing

Schlieren

In this chapter, the density �uctuations in the �ame and the burnt gases
are visualized in the CESAM-HP test bench with the help of focusing
Schlieren. The technique allows to acquire images of density �uctua-
tions on a �eld of view of small thickness at high sampling frequencies.
The imaging is conducted for the three known operating points and the
results are analysed by calculating the PSD of the Schlieren image inten-
sity. In a �nal step, the determined frequencies in the burnt gases are
compared with line of sight integrated density measurements obtained by
LIV in the same position in the burner.

6.1 Presentation of focusing Schlieren as a technique
to visualize density �uctuations

In chapter 8, the density �uctuations in the burnt gases are determined quan-
titatively with the help of Laser Interferometric Vibrometry (LIV). The results
show that the main frequencies of the density �uctuations in the burnt gases are
dominated by the low frequency phenomena presented in the other chapters of
this thesis. While these measurements allow to obtain the separation of direct
and indirect combustion noise, they have certain limitations. Being a line of
sight technique, LIV has the risk to neglect phenomena by averaging over the
entire measuring path. Thus for example it also takes into account phenomena
like temperature inhomogeneities of the chamber windows. The second issue is
the fact, that the vibrometry measurement is taken on one point. Thus no con-
clusion can be made about what the density �uctuations and hence the entropy
waves actually look like. In this chapter, a technique is applied that shows the
density �uctuations on a 2D �eld with a �eld depth of only a few millimetres.
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Density gradients in �ows are classically obtained experimentally with the
Schlieren technique. Schlieren is well explained by Settles (2001) and will be
presented here. The technique is based on the de�ection of light due to gradi-
ents of refractive index created by gradients in density of a �ow. This relation
is expressed by the Gladstone-Dale relation:

n = 1 +Gρ (6.1)

with n the refractive index, G the Gladstone-Dale coe�cient and ρ the �uid
density. Changes in density will lead to a bending of the passing light. The
associated de�ection angle εx is expressed by the following equation:

εx =
L

n0

∂n

∂x
=

L

n0
G
∂ρ

∂x
(6.2)

with n0 the refractive index of the medium, x the direction perpendicular to the
optical axis of the light beam and L the length of the regarded region. In clas-
sical Schlieren, a knife edge is used to cover a part of the de�ected light. Due
to this, the density gradients are displayed as the typical dark and light images.

Figure 6.1: Schematic drawing of the focusing Schlieren technique (based on Floryan
et al. (2012))
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Figure 6.2: Layout of the source grid and the cut-o� grid (Weinstein (1993)). The
dimensions of the source grid are chosen freely and are oriented on the optical com-
plement of the cut-o� grid, thus taking into account the zoom of the camera lens.

A special variation of Schlieren is the focusing Schlieren technique, also called
lens-and-grid Schlieren. It was developed by Weinstein (1993) and reviewed
in a later work (Weinstein (2010)). A schematic drawing of the technique is
presented in �gure 6.1. The system is constituted of a light source, a Fresnel
lens, two optically complementary grids (the source and the cut-o� grid, cf.
�gure 6.2 for their layout) and a camera lens. The particularity of this system
is that it only shows the density �uctuation of a chosen �eld of view of a few
millimetres thickness. Weinstein (1993) explains that the focussing e�ect of the
Schlieren system is due to the combination of grids with the camera lens. In
the source grid, each slit corresponds to a separate light source. In the cut-o�
grid on the other hand, each bar represents a Schlieren knife edge for the cor-
responding light source. Thus due to these grids the system is a combination
of multiple separate Schlieren systems. Due to the focussing properties of the
camera lens, the resulting images of these separate Schlieren systems are com-
bined on the image plane. While the density visualizations in the focal plane
are added up, the visualizations outside this plane eliminate each other. The
e�ect is that only the density �uctuations of a zone of only a few millimetres
thickness is visible on the image plane.

The thickness of this visible zone as well as the sensitivity and the image qual-
ity depend on the grid dimensions, the camera lens and the chosen distances.
These parameters have to be chosen with care in a trade-o� between high im-
age sensitivity, high image resolution and low focal plane thickness. For the
dimensioning of the focusing Schlieren system, Weinstein (1993) developed a
set of equations, that are presented in the following.
As shown in �gure 6.1 and 6.2, the system has the following parameters: a
and b correspond to the grid dimension shown in �gure 6.2. L is the distance
between source grid and camera lens, L′ between camera lens and cut-o� grid.
l is the distance between observed �ow and the camera lens, while l′ is the
distance between camera lens and image plane. Finally A is the aperture of the
camera lens.
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The lengths L, L′, l and l′ are determined by the focusing of the camera lens.
In the focusing Schlieren system L and L′ are chosen in a way, that the image
of the source grid is focussed on the cut-o� grid. Only then, the cut-o� grid
will be able to act as a collection of Schlieren knive edges. The distances l and
l′ on the other hand are determined by the focusing of the observed �ow on the
image plane.

The sensitivity of the focusing Schlieren system is described by the following
equation:

εmin = 20626a
L

L′(L− l)
arcsec, (6.3)

which expresses the smallest de�ection angle that can be detected as an in-
tensity di�erence in the Schlieren image. As explained at the beginning of
this section, the angle ε is the de�ection angle of a light beam due to a den-
sity gradient on its path. As the de�ected beams are partly blocked by the
knife edge, this gradient results in changes of intensity. In Eq. (6.3), Weinstein
(1993) assumes that the smallest detectable change in intensity is 10 %. Since
εmin corresponds to the minimal de�ection that is detectable by the focusing
Schlieren system, it is desirable that its value is low. The drive for a high in-
tensity explains the necessity for very �ne grids with a low value for a.

The resolution of the Schlieren system is expressed by the following equation:

w = 2
(l′ − L′)λ

mb
(6.4)

with w the smallest �ow dimension that can be observed, λ the wave length
of the used light, b the grid dimension according to �gure 6.2 and m = l′/l
the image magni�cation due to zooming by the camera lens. In this equation,
the value w needs to be small in order to obtain a high degree of detail in the
Schlieren image and capture small �ow features. The equation shows that this
can be achieved by a wide grid spacing b. However, if the grid is too widely
spaced, the �nal image is constituted of a low quantity of points. The out-of-
focus grid lines then can be observed as unsharp images. The number of used
lines is determined by the following equation:

Φ = An
l′ − L′

2l′
(6.5)

with n the amount of grid lines per millimetre for the cut-o� grid. Φ needs to
have a high value (at least 5, according to Weinstein (1993)), which is achieved
by a high n, thus a low b. The grid dimension b needs thus to be chosen as a
trade-o� between image resolution as of eq. 6.4 and image quality as of eq. 6.5.
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Finally, the depth of focus of the Schlieren system is determined by two equa-
tions de�ned by Weinstein (1993). They express the sharp focus depth DS and
the unsharp focus depth DU as following:

DS = 2Rw (6.6)

DU = 4R (6.7)

with R = l/A the distance between �ow �eld and camera lens divided by the
camera aperture. This equation shows that the camera lens should have a low
focal length (resulting in low distances of the Schlieren system) and a high
aperture.

Table 6.1: Summary of the Schlieren system parameters

Variable Value
L 250 mm
L′ 180 mm
l 125 mm
l′ 950 mm
f 105 mm
A 58.3 mm
a 80 µ m
b 320 µ m
n 2.5 1/mm
λ 532 nm
m 7.6
R 2.14

εmin 18.3 arcsec
w 0.34 mm
Φ 59.0
DS 1.46 mm
DU 8.56 mm

The dimensions of the focusing Schlieren system used in this work are summa-
rized in table 6.1. The focusing Schlieren system, shown in �gure 6.1, is set up
with grids with dimensions of a = 80µm and b = 320µm, produced by KLOE.
The grids were produced by lithography and are constituted of a carrier of glass,
which is transparent for visible light, and on which the grids are produced as
a non-re�ecting metallic deposit. The advantage of this solution is the high
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precision (of the order of µm) and the resistance against high temperatures.
For the process of �nding the most appropriate grid dimensions, test versions
of the grids can be fabricated very rapidly by printing on transparent plastic
sheets with a common laser printer. The camera lens is a Nikkon lens with a
focal length of 105 mm and an aperture of f/1.8, thus 58.3 mm. As a light
source, a COHERENT Verdi G20 continuous wave laser is used, with a power
of up to 20 W and a wave length of 532 nm. The laser source is followed by
a diverging lens in order to simulate a point light source. This arrangement
corresponds to that used by Kouchi et al. (2015) and has the advantage of a
low heat release compared to the light intensity. Due to the coherent character
of the laser light, a di�user is installed between the Fresnel lens and the source
grid. The Schlieren images are captured with a Photron SA-X2 high speed
camera at a sampling frequency of 10 kHz.

With these chosen parameters, the main performance numbers can be calcu-
lated by the Eq. (6.3), (6.4), (6.5), (6.6) and (6.7). The values are summarized
in table 6.1 and are close to those of the focusing Schlieren system applied
by Kouchi et al. (2015). The smallest detectable density di�erence is linked
to the beam deviation ε0, which has a value of 18.3 arcsec. While this value is
rather high, it was similar in the work of Kouchi et al. (2015), which showed re-
sults of su�cient sensitivity. This value can also be used to crudely estimate the
smallest detectable temperature �uctuations. This is done by using Eq. (6.2),
where n0 is calculated by Eq. (6.1). It assuming that Schlieren is performed in
the burnt gases with a mean temperature of around 1900 K, a mean density of
about 0.4 kg/m3 (see chapter 8 for more details) and a Gladstone-Dale index
of 2.5 · 10( − 4) m3/kg (Giuliani et al. (2009)). dx corresponds to the spatial
resolution w and L corresponds to the distance between focusing plane and
Schlieren lens, as can be seen in �gure 6.1. Eq. (6.2) thus becomes:

εx =
l

1 +Gρ̄
G
ρ′

w
(6.8)

with the bar describing the mean value and the prime the �uctuation value.
For the chosen parameters the smallest detectable density �uctuation is 0.00094
kg/m3, thus 0.235 % of the mean value. If the ideal gas law p = ρrT is used
and the pressure, density and temperature are supposed to be the sum of the
mean and �uctuating part, one obtains following:

p′

p̄
=
T ′

T̄
+
ρ′

ρ̄
(6.9)

If a constant pressure is assumed, the equation shows that a density change
of 0.235 % leads to a temperature change of the same percentage. At a mean
burnt gas temperature of 1900 K, this would correspond to a minimal detectable
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temperature di�erence of less than 5 K.

The spatial resolution w shows that the smallest phenomena that can be de-
tected are of 0.34 mm. This value is su�cient as the technique is especially
interesting for the burnt gases. In these gases the density �uctuations are sup-
posed to have a smaller spatial gradient than for example in a �ame. The value
Φ is 59 and thus well above the required 5. Weinstein (2010) also described that
best image qualities are obtained when Φ is a multiple of 0.5. This is the case
in the presented con�guration. Finally, the sharp and unsharp focal depth, DS
and DU respectively are rather small, with respectively 1.46 mm and 8.56 mm.
Better sensitivities and focal depths could be easily achieved by decreasing the
grid parameter a, however this would result in a lower light intensity due to
the reduced slit size in the source grid. Another possibility would be to use a
camera lens with higher apertures, however the value of 1.8 is already close to
the lower limit of commercially available lenses at the chosen focal length.

As demonstrated by Kouchi et al. (2015), the obtained Schlieren images require
image pre-processing in order to obtain a visualization of good quality. In this
work, it is performed in two steps. First, the background is subtracted from
the Schlieren images, which increases the visibility of the density �uctuations.
In a second step the laser noise is removed by applying a spatial low-pass �lter
on the images. In this case, a circular averaging �lter with a radius of 9 pixels
is used. The e�ects of the two pre-processing stages are shown in �gure 6.3.
The shown Schlieren image was taken at the burner lip. More details can be
found in section 6.2.1 and are not decribed here, since at this stage only the
pre-processing is shown.
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Figure 6.3: Di�erent stages of pre-processing of the Focusing Schlieren visualization.
The image is taken at the burner lip of the CESAM-HP combustor for Op16-0-2.
Top: Raw image, Middle: Image after background subtraction, Bottom: Image after
background subtraction and spatial �ltering
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Figure 6.3 shows two issues for the raw images, which were also observed by
Kouchi et al. (2015): (1) inhomogeneous illumination due to the laser source
and (2) high image noise. While the �rst issue is resolved with the background
subtraction, the second one is resolved by the spatial �ltering. The e�ect of the
latter measured on the image seems limited, however the �ltering is crucial in
regions with less sharp density gradients. The background subtraction on the
other hand has the consequence that the image intensity is not proportional to
the density ρ, but to the density deviation ρ′. Therefore it is di�cult to obtain
information about the actual densities in the di�erent regions.

Before conducting the Schlieren visualizations on the CESAM-HP test bench,
the focal depth of the system is tested with a basic experimental setup, which
is shown in �gure 6.4. Two high speed jets from choked tubes of 2 mm diameter
are crossed in the focal plane of the Schlieren system. As the air is at room
temperature and the tubes are choked, the �ow velocity is at the speed of
sound of about 340 m/s. Therefore the air mass �ow can be estimated with the
equation ṁ = ρAv to 1,28 g/s. Since the tubes are choked, the �ow features
shocks in diamond shape, such as observed by Kouchi et al. (2015). While one
of the two jets is kept in the focal plane, the other is displaced longitudinally on
the Schlieren system axis. As shown in �gure 6.5, the second jet is unfocused
quickly when leaving the focal plane. Already 2 mm from the focal plane, the
jet visualization loses its sharpness. At 5 mm distance, the shock diamonds
cannot be recognized any more, with an even increased blurring at 10 mm. At
20 mm, the jet is not visible any more. This experiment shows that the Schlieren
system indeed focuses over a plane of only a few millimetres and is not too far
from the calculated focus depths DS and DU. While the �ow disappears only
just after 10 mm from the focal plane, this system is considered su�cient since
the density gradients of these shocks are very high. It can be supposed that for
example the density gradients in the burnt gases are lower and thus according
to Eq. (6.2), the intensity di�erence of the captured Schlieren image is also
lower. The intensity di�erence would disappear thus already closer from the
focal plane.
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Figure 6.4: Validation experiment for the focusing Schlieren system. Both jets come
from a choked tube of 2 mm diameter. While one jet is kept in the focal plane of the
Schlieren system, the other is displaced on the Schlieren system axis. In this image dx
corresponds to the distance from the focal plane.

Figure 6.5: Results of the validation experiment for the focusing Schlieren system.
The results are equal for a positive or negative displacement.

In general, the Schlieren images capture the �ow of an area of around 20 mm× 20 mm.
This limited region is chosen in order to preserve a su�ciently high laser
intensity. Other limits for a larger �eld of view are the size of the grids
(45 mm × 45 mm) and the aperture of the camera lens. The region that
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can be studied is rather limited, however Schlieren images taken at the injector
and in the combustion chamber allow to observe the density �uctuations in
these regions. The resulting Schlieren images are described in sections 6.2.1
and 6.2.2.

6.2 Experimental results

6.2.1 Density gradeints at the burner lip

Figure 6.6: Schematic drawing of the CESAM-HP test bench with the applied coor-
dinate system. The system is a right-hand coordinate system, thus the y coordinate
is showing away from the reader. The �gure also includes the two regions where the
Schlieren imaging is applied.

In order to obtain the Schlieren images in the injector, the Schlieren system is
aligned around the lower burner lip (which itself is located at z = −15 mm),
with x being between 3 mm and 22 mm and z between -27 mm and -5 mm (see
�gure 6.6 for the coordinate system). The focal plane is chosen to go through
the burner axis at y = 0 mm. As in the other chapters of this work, Op16-0-2,
Op16-2-0 and Op13.4-4.6-0 are chosen as operating points
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Figure 6.7: Focusing Schlieren visualization taken at the burner lip of the CESAM-
HP combustor for Op16-0-2 (top), Op16-2-0 (middle) and Op13.4-4.6-0 (bottom).
The images were pre-processed for a better visibility of the density gradients.
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Examples for the focusing Schlieren visualization for the three operating points
at the burner lip are shown in �gure 6.7. The Schlieren images feature two
zones. (1) The �rst zone is a high density gradient that is located diago-
nally at a straight line with an angle of around 30 degrees to the burner axis
(around 20 degrees for Op13.4-4.6-0). This angle is close to the swirl cone
angle identi�ed in chapter 2. It can thus be assumed that this area is related to
the high speed rotational region that is characteristic for a swirling �ame. In
this region the density gradient is particularly high. Together with the �ame
visualizations in chapter 2 these observations allow to suggest that this region
is the �ame front. It is interesting that vortices can be observed in this re-
gion, which is an indicator for a high resolution of the Schlieren system. (2)
The second region is closer to the burner axis. It is constituted of a high-low
intensity regions ()at very weak gradients) that propagate longitudinally at a
velocity of around 20 m/s (as is visible in videos of this acquisition). If assum-
ing these to be harmonic waves, they would have a wave length of about 4.7 mm.

These observations lead to various conclusions. As a �rst conclusion, the image
is a proof of concept of the focusing Schlieren technique for this experimental
setup. If the Schlieren technique was not focused on a small thickness, then the
wave-like phenomenon would not be visible. It would be covered by the high
speed swirling cone due to the integration over the line of sight. The second
conclusion is, that from the central region a characteristic frequency can be
calculated, associated to the wave-like phenomenon. To do so, the following
equation is applied:

c = λ · f (6.10)

with c the propagation velocity of the waves, λ the wave length and f the
frequency.
With the mentioned velocity and wave length, a frequency of around 4.2 kHz
is obtained. In order to �nd other frequencies and in order to compare the
calculated frequency with other existing frequencies, Fourier analysis is con-
ducted. For this the Schlieren images are acquired at a sampling frequency
of 10 kHz during 4 s. The PSD of the Schlieren signal is calculated on regions
of 2 mm × 2 mm (around 40 px × 40 px) using Welch's algorithm with Ham-
ming windows with 2048 points and 50 % overlap.

The same equation can be applied for the 127 Hz mode. If assuming the same
longitudinal velocity of 20 m/s, this frequency would correspond to a wave-
length of 166 mm, thus longer than the combustion chamber itself.
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Table 6.2: overview of the regions at the injector, where the Intensity PSD of the
Schlieren images was calculated. y = 0 mm for all regions. The indicated x and z
coordinate correspond to the central point of the 2 mm × 2 mm region.

Number x [mm] z [mm] Op16-0-2 Op16-2-0 Op13.4-4.6-0

1a 11 -23 X X
1b 12 -22 X X
2 15 -12 X X X

Two regions were chosen, which are summarized in table 6.2. The �rst region
is located in the zone associated with the high velocity swirling cone. It is
divided into 1a for Op16-0-2 and Op16-2-0 and 1b for Op13.4.6-0. With
this division, the di�erent positions of the �ame front are taken into account.
The second region is located closer to the burner axis and has thus the aim to
observe the wave-like phenomenon.

The PSD of the three operating points for region 1 is shown in �gure 6.8. The
spectrum also contains a fourth curve which correspond to a reference case at
no combustion and thus exclusively related to the measurement system. The
spectra show, that the measuring system accounts for the major part of the
very low frequency �uctuations (below 30 Hz). Besides, peaks of 50 Hz and its
harmonics are visible for the reference curve. These are probably related to the
electric system. The main visible frequencies for the three operating points are
the low frequencies that were already observed in chapter 4. This indicates that
the �ame is probably located in this region. It is thus consistent with chapter 4
that the found frequencies correspond to those already found before. At high
frequencies, on the other hand, no frequency could be detected in this region.
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Figure 6.8: PSD of the Focusing Schlieren visualization taken at the burner lip of
the CESAM-HP combustor for Op16-0-2, Op16-2-0 and Op13.4-4.6-0 in region 1.
The fourth diagram corresponds to a reference point taken at no combustion. It can be
seen that the low frequency �uctuations associated with the combustion instability are
well represented. The 4.2 kHz frequency, which is detected in the 2D Schlieren images,
seems to be masked by other phenomena.

The PSD spectrum of region 2 is shown in �gure 6.9. Similarly to that of
region 1, the spectrum features the low frequency peaks associated to the main
combustion instability. On the other hand, no activity can be observed at
higher frequencies.
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Figure 6.9: PSD spectra of the Focusing Schlieren visualization taken at the burner
lip of the CESAM-HP combustor for Op16-0-2, Op16-2-0 and Op13.4-4.6-0 in
region 2. The fourth diagram corresponds to a reference point taken at no combustion.

It can be summarized that two frequencies could be identi�ed: (1) A low fre-
quency peak around 127 Hz (or 100 Hz for Op13.4-4.6-0, which corresponds
to the eigenfrequency of the combustion instability, and (2) A frequency around
4.2 kHz, which seems to be associated with the wave-like phenomenon inside
the swirling cone. While this frequency can be observed in the Schlieren im-
ages, its amplitude is extremely weak. Furthermore this frequency cannot be
seen in the PSD graphs. This means that this density �uctuation at 4.2 kHz is
very weak compared to the density �uctuations directly on the �ame front.

In a second step, 2D PSD spectra of these two frequencies are calculated. The
PSD is calculated similar as before, except that it is calculated for each pixel
of the Schlieren visualizations. The aim is to localize the regions where the
respective mode is dominating.

The resulting 2D PSD images are shown in �gure 6.10 to 6.12. Each of the
three �gures contains the 2D PSD amplitude for the low frequency associated
to the combustion instability on the top of the �gure. On the bottom of each
�gure, the 2D PSD amplitude for 4.2 kHz is shown. It can be seen that both
modes have a fundamentally di�erent structure. The low frequency mode has
its highest amplitude inside the swirling cone. The bottom image shows a
periodic change between low and high intensity with the same distance as de-
termined before, thus at 4.2 kHz.
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Figure 6.10: 2D PSD of the Focusing Schlieren visualization taken at the burner lip
of the CESAM-HP combustor for Op16-0-2. The top image corresponds to the 127
Hz mode and the bottom image to the 4.2 kHz mode.
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Figure 6.11: 2D PSD of the Focusing Schlieren visualization taken at the burner lip
of the CESAM-HP combustor for Op16-2-0. The top image corresponds to the 127
Hz mode and the bottom image to the 4.2 kHz mode.
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Figure 6.12: 2D PSD of the Focusing Schlieren visualization taken at the burner lip
of the CESAM-HP combustor for Op13.4-4.6-0. The top image corresponds to the
98 Hz mode and the bottom image to the 4.2 kHz mode.

6.2.2 Density gradients in the burnt gases

In a second step, the Schlieren system is aligned at the exhaust region, with
x being between 92 mm and 114 mm and z between -2 mm and 21 mm (see
�gure 6.6 for the coordinate system). The focal plane is equally chosen to go
through the burner axis at y = 0 mm. The study is conducted for Op16-0-2,
Op16-2-0 and Op13.4-4.6-0.



144 Chapter 6 - Visualization of the density fluctuations with focusing

Schlieren

x [mm]

z 
[m

m
]

95 100 105 110

0

5

10

15

20

x [mm]

z 
[m

m
]

95 100 105 110

0

5

10

15

20

x [mm]

z 
[m

m
]

95 100 105 110

0

5

10

15

20

Figure 6.13: Focusing Schlieren visualization taken at the exit of the CESAM-HP
combustor for Op16-0-2 (top), Op16-2-0 (middle) and Op13.4-4.6-0 (bottom)
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Figure 6.14: Focusing Schlieren visualization taken at the exit of the CESAM-HP
combustor for Op16-0-2 (top), Op16-2-0 (middle) and Op13.4-4.6-0 (bottom) with
an increased contrast
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An example for the focusing Schlieren visualization at the exhaust region is
shown in �gure 6.13. Since the �ow features are very di�cult to distinguish
due to the low density gradients (compared to that in the injector area), the
same images with increased contrast are depicted in �gure 6.14. Both �gures
show that, contrary to the region at the burner lips, the Schlieren image is
constituted of wave-like phenomena that propagate longitudinally at a velocity
of 6.5 m/s and have a wavelength of about 1.5 mm. If Eq. (6.10) is applied on
these data, a frequency of 4.2 kHz is obtained. This frequency is equal to that
found close to the injector.

Furthermore, the 6.5 m/s can be justi�ed by a simple assumption for the �ow
velocity u of the burnt gases using the following equation:

u =
ṁ

ρA
(6.11)

with ṁ the total mass �ow, A the combustion chamber section and ρ the density
of the burnt gases. The density can be estimated with the ideal gas law:

p = ρrT (6.12)

with p the chamber pressure, r the ideal gas constant and T the burnt gas
temperature.

When assuming a total mass �ow of 19 g/s and a burnt gas temperature of
1900 K, the burnt gas velocity is calculated to around 8 m/s, thus in the order
of magnitude of the velocity observed from the Schlieren images. This wave-like
phenomenon might thus be the density �uctuations transported by the burnt
gases, thus entropy waves accordingly to the description by Marble and Can-
del (1977). However further tests need to be conducted in order to verify this
assumption.

Another interesting observation is made on the �lms which are made from these
images: These harmonic wave-like phenomena appear and disappear periodi-
cally at a frequency of around 100 Hz. This might be associated with the main
instability frequency, however this needs to be veri�ed as well.

For this veri�cation, a Fourier analysis is conducted. To do so the Schlieren
images are taken at a sampling frequency of 10 kHz during 4 s. The PSD of the
Schlieren signal is calculated on regions of 2 mm× 2 mm (around 40 px× 40 px)
with Welch's algorithm with Hamming windows with 2048 points and 50 %
overlap. In this test, one 2 mm × 2 mm region is chosen. It has its central
point at x = 95 mm and y = z = 0 mm. The same eigen frequencies are
obtained in the other regions of the Schlieren images, thus only the results of
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this chosen region are presented here.

The PSD spectrum of the three operating points for the chosen region is shown
in �gure 6.15. The spectrum also contains a fourth curve which correspond to
a reference case. This reference spectrum is again obtained at no combustion
and is thus exclusively related to the measurement system. The spectra show
high activities below 30 Hz and peaks related to the 50 Hz electric system. The
low frequency peak associated with the combustion instability is visible for the
three operating points, however its amplitude is very weak. For Op16-0-2 and
Op16-2-0 no harmonics are visible. Nevertheless, the low frequencies are equal
to those observed in section 6.2.1 and to the results in chapter 4. This means
that appearing and disappearing of the wave-like phenomena described before
can be associated with these low frequencies. These phenomena therefore seem
to appear in "packets" at the frequency of the main combustion instability.

The second visible frequency is a strong peak at 4.2 kHz for all three operating
points. This frequency corresponds to that of the wave-like phenomena, which
is observed in the Schlieren visualizations.
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Figure 6.15: PSD spectra of the Focusing Schlieren visualization taken at the exit
of the CESAM-HP combustor for Op16-0-2, Op16-2-0 and Op13.4-4.6-0. The
fourth diagram corresponds to a reference point taken at no combustion.

It can be summarized that two frequencies can be distinguished: (1) A low fre-
quency peak around 127 Hz (or 100 Hz forOp13.4-4.6-0, which corresponds to
the eigenfrequency of the combustion instability), and (2) A frequency around
4.2 kHz, which is associated with the wave-like phenomenon that propagates
at the burnt gas velocity.
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In the following step, 2D PSD spectra of these two frequencies are calculated.
The PSD is calculated similar as for the diagrams, except that it is calculated
for each pixel of the Schlieren visualizations. (taking into account that the im-
ages were pre-processed) The aim is to localize the regions where the respective
mode is dominating.

The resulting 2D PSD images are displayed in �gures 6.16 to 6.18. Each of
the three �gures contains the 2D PSD amplitude for the low frequency associ-
ated to the combustion instability on the top of the �gure. At the bottom of
each �gure, the 2D PSD amplitude for 4.2 kHz is shown. It can be seen that
both modes have a fundamentally di�erent structure. For the low frequency
mode, the regions of high amplitude are distributed arbitrarily. This would
correspond to the observation that these wave-like phenomena appear and dis-
appear at this frequency. Some kind of franges seem to be visible at a higher
wave length (around 5 mm), however this wavelength is not associated with the
acoustic waves or any other waves. At a speed of sound of 800 m/s, the wave
length would be of more than one meter.

The 2D PSD image for the 4.2 kHz mode seems to have a more distinct peri-
odicity. Furthermore, the distance in x direction between the high amplitude
regions is around 1.5 mm, thus equal to the identi�ed wave length when as-
suming a velocity that corresponds to the mass �ow rate of the burnt gases.
However for a downstream propagating wave, these fringes would not be visi-
ble (only for a standing wave for example). The consequence is, that further
proof needs to be found for the existence of the 4.2 kHz mode in the burnt gases.
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Figure 6.16: 2D PSD of the Focusing Schlieren visualization taken at exhaust of the
CESAM-HP combustor for Op16-0-2. The top image corresponds to the 127 Hz mode
and the bottom image to the 4.2 kHz mode.
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Figure 6.17: 2D PSD of the Focusing Schlieren visualization taken at the exhaust of
the CESAM-HP combustor for Op16-2-0. The top image corresponds to the 127 Hz
mode and the bottom image to the 4.2 kHz mode.
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Figure 6.18: 2D PSD of the Focusing Schlieren visualization taken at exhaust of the
CESAM-HP combustor for Op13.4-4.6-0. The top image corresponds to the 98 Hz
mode and the bottom image to the 4.2 kHz mode.

To sum up, the Schlieren measurements allow to identify two major frequen-
cies for the density �uctuations in the plane. The �rst frequency is a low
frequency associated with the main combustion instability. It is clearly domi-
nating in the injector region, which is consistent with the results in chapter 4.
It is thus probably uniquely related to the pressure �uctuations in the com-
bustor. Besides, a wave-like movement can be observed that is propagating
downstream and has a frequency of around 4.2 kHz - however its amplitude is
too low to be detected in the PSD spectra, where other phenomena are proba-
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bly more dominating. These two frequencies are also observed in the burnt gas
region. The low frequencies correspond to a periodic apparition and dispari-
tion of wave packets. As demonstrated in chapter 8, the density oscillations
at low frequencies has two contributors in the burnt gases - the density �uc-
tuations associated with the pressure �uctuations, and those associated with
the entropy waves. Furthermore, the 4.2 kHz frequency can be clearly asso-
ciated to the downstream wave-like movement. It is also observed that these
fringes propagate at around 6 m/s downstream (which corresponds to the debit
velocity of the burnt gases) and have a wavelength of about 1.5 mm. The ob-
served phenomenon might be the density �uctuations transported by the burnt
gases, thus entropy waves accordingly to the description by Marble and Can-
del (1977). However further tests need to be conducted in order to verify this
assumption. This is done in the next section, where the results of the Schlieren
measurements in the burnt gases are compared to vibrometry measurements.

6.2.3 Comparison with LIV measurements

The focusing Schlieren technique allows to obtain 2D images of the density
�uctuations of the burnt gases. Their analysis showed that two phenomena are
dominating, the low frequency combustion instability as well as the propaga-
tion of a wave-like phenomenon with a frequency of around 4.2 kHz. As this
high frequency phenomenon has not been visualized experimentally before, it
is necessary to validate the found frequency with a known technique. In this
work, Laser Interferometric Vibrometry (LIV) is used to measure density �uc-
tuations in the burnt gases (chapter 8). While its results are integrated over the
line of sight, the technique is extremely precise and reaches the same sampling
frequencies as the here presented Schlieren acquisitions. LIV is thus used to
indicate, whether the Schlieren measurements correctly retrieve the oscillation
frequencies of the density in the burnt gases.

The vibrometry measurements are conducted only in the burnt gas region, thus
x = 95 mm and z = 0 mm. It would be interesting to perform these measure-
ments also in the �ame region. However the �ame is of conical shape and due
to the integrating character of LIV, the strong dynamics of the �ame would be
dominating and no other phenomena could be observed.

A detailed description of LIV can be found in chapter 8 and is not repeated here.
The vibrometer measurements are acquired at a sampling frequency of 25 kHz
during 4 s. The PSD spectra are obtained using Welch's algorithm with Ham-
ming windows of 8192 points per window and 50 % overlap. It is reminded that
the measurements are conducted at the same position as the spectra shown in
�gure 6.15.

The resulting PSD sprectra of the LIV and Schlieren measurements for the three
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operating points are shown in �gures 6.19 to 6.21. For all the three operating
points the two frequencies described in section 6.2.2 are visible. The peak asso-
ciated with the low frequency combustion instability is visible in the Schlieren
as well as the Vibrometer spectra. However, the amplitude is far higher for
the Vibrometer spectra. Even more, the Vibrometer spectra of Op16-0-2 and
Op16-2-0 feature some of the harmonics of this low frequency. The second fre-
quency visible with both diagnostics is the high frequency above 4 kHz. While
this peak is sharp and of high amplitude for the Schlieren measurements, it is
of more broadband nature in the LIV spectrum and has a very low amplitude.

Other peaks are visible in the Vibrometer measurements, that are not detected
by Schlieren. On the one hand there is the broadband region around 1.5 kHz.
On the other hand, there is a sharp peak around 800 Hz and two equi-distanced
peaks around it. While no explanation can be found for the �rst peak, the
second one can be explained when conducting a LIV measurements without
combustion. In that case, the 800 Hz peak and the peaks around still exist
and have a similar amplitude. These peaks are thus related to the measuring
system. (See also chapter 8 for more details)
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Figure 6.19: PSD spectra of the Schlieren and Vibrometry measurements for Op16-
0-2 atx = 95 mm and z = 0 mm. Top: Focusing Schlieren measurements; Bottom:
LIV measurement
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Figure 6.20: PSD spectra of the Schlieren and Vibrometry measurements for Op16-
2-0 at x = 95 mm and z = 0 mm. Top: Focusing Schlieren measurements; Bottom:
LIV measurement
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Figure 6.21: PSD spectra of the Schlieren and Vibrometry measurements for
Op13.4-4.6-0 at x = 95 mm and z = 0 mm. Top: Focusing Schlieren measure-
ments; Bottom: LIV measurement

The fact that both techniques allow to retrieve the low frequency instability
as well as the 4.2 kHz frequency peak allow to assume that the phenomena
shown by the focussing Schlieren system are physically correct. However, big
di�erences can be observed for both phenomena, especially in terms of peak
amplitude. While the low frequency peak is shown clearer by Vibrometry,
the focussing Schlieren technique gives a stronger peak for the 4.2 kHz phe-
nomenon. The reason for this di�erence is probably the fact, that the LIV
result is integrated over the line of sight, while Schlieren images are not. The
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consequence is, that Vibrometry takes into account more phenomena: The tem-
perature �uctuations outside the focal plane y = 0 mm, including glass window
inhomogeneities and interactions between burnt gases and the glass walls (at
y = ±35 mm). Furthermore, at some instances even the tip of the swirling
�ame can arrive to the chosen x value. Due to the line-of-sight character, the
low frequency instability leads to stronger peaks for the LIV spectra because the
combustion instability is a phenomenon that acts on the combustion chamber
as a global. Chapter 4 shows that the low frequency heat release �uctuations
happen in particular at instability frequency in most of the chamber regions.
Logically, these low frequency �uctuations are passed to the burnt gases by the
entire �ame. It is thus probable that these �uctuations are detected in all of
the burnt gases and are thus added up by the vibrometer measurements. The
4.2 kHz on the other hand seems to be a more local phenomenon. It does not
appear in the glass window and is also weak close to the �ame as shown in
section 6.2.1. Thus this phenomenon is detected by both diagnostics, however
it appears masked by other phenomena in the LIV measurements. This is due
to the integrating nature of LIV and leads to these very low amplitudes.

6.3 Conclusion

In this chapter, the density �uctuations are visualized with the help of a focus-
ing Schlieren technique. This technique is constituted of two optically comple-
mentary grids and a camera lens, which lead to a �eld of view of only a few
millimetres thickness. It is thus complementary to LIV, which measures line
of sight integrated density �uctuations (see chapter 8 for more details). The
focusing Schlieren technique is presented in this chapter and its focusing ability
is demonstrated by visualizing two crossed supersonic jets.

The focusing Schlieren technique is then applied on the CESAM-HP test bench
on the three operating points Op16-0-2, Op16-2-0 and Op13.4-4.6-0. The
Schlieren imaging is conducted in two regions, near the combustion chamber
entry and in the region of the burnt gases. In the chamber entry, the dynamics
are dominated by the low frequency combustion instability that was already
described in chapter 4. It is especially strong in the conical �ame front that
can be observed in the instantaneous images. In these images also a wave-like
phenomenon at 4.2 kHz propagating downstream can be observed, however the
phenomenon is too weak to be detected in the PSD spectra. These frequencies
are also observed at the chamber exit. The wave-like phenomenon of 4.2 kHz
is visible and can be detected in the PSD spectra, while the spectra of the
combustion instability peaks is weaker. In the instantaneous images, these low
frequencies can be observed in the appearing and disappearing of these wave-
like phenomena.



158 Chapter 6 - Visualization of the density fluctuations with focusing

Schlieren

In a �nal step, the Schlieren measurements of the burnt gases are compared with
LIV measurements in the same region for the three operating points. The spec-
tra obtained from the measurements with both diagnostics feature two peaks:
One low frequency peak corresponding to the combustion instability and one
high frequency peak around 4.2 kHz associated with the wave-like phenomenon.
A high di�erence between both diagnostics can be observed in the amplitudes
of the peaks. However this can be explained by the integrating character of the
Vibrometry and the focusing of the applied Schlieren system.

A crude estimation shows, that the wave-like phenomenon propagates down-
stream at the velocity of the burnt gases. It can thus been assumed that the
obtained density �uctuations correspond to the density inhomogeneities of the
burnt gases. These density �uctuations can be associated with the downstream
propagation of the entropy waves, however they can also be caused by the pres-
sure �uctuation.

The results show that focusing Schlieren is useful to visualize already small
density inhomogeneities. Also phenomena close to the swirling �ame can be
observed and are not covered by the �ame itself, as it would be the case in
classical Schlieren. The Schlieren images are however very noisy and especially
the 4.2 kHz oscillations are very close to the noise of the measurement system.
It would be important to optimize the arrangement in order to increase the
signal to noise ratio.

Another perspective would be to quantify the observed density or tempera-
ture �uctuations. Indeed due to its high sampling frequencies and its focusing
Schlieren can become a performing technique with the capability to obtain 2D
temperature gradient �elds. However, the intensities of Schlieren visualizations
depend on the alignment of a system. This is a process which is di�cult to
be exactly repeatable due to the human factor. It would be thus interesting
to develop a calibration process that allows to inject air �ow with well de�ned
temperature �uctuations and determine a calibration curve at the �xed optical
setting. This optical setting would then be kept when conducting the Schlieren
experiments during combustion.
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Summary

The �nal part is dedicated to the determination of combustion noise on the
CESAM-HP test bench with the help of experiments and analytical calcula-
tions. Two approaches are presented in chapter 7 and 8.

In chapter 7 the direct combustion noise is determined with the help of a pho-
tomultiplier probe. It is used to measure the heat release �uctuations of the
�ame. From these, the direct combustion noise contribution is estimated with
an analytical calculation.

A di�erent approach is used in chapter 8. Here, the indirect combustion noise is
determined experimentally. For this, Laser Interferometric Vibrometry (LIV)
is used to measure the line of sight averaged density �uctuations in the exhaust
region of the combustion chamber. From these the temperature �uctuations
are calculated. The temperature �uctuations, together with the simultane-
ously measured in-chamber pressure �uctuations, are then used to determine
the direct and indirect combustion noise contributions analytically.
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Chapter 7

Estimation of direct combustion

noise

In this chapter the direct combustion noise contribution is analysed ex-
perimentally. This is done by comparing the chamber pressure �uctua-
tions with the global heat release �uctuation, measured by a photomul-
tiplier probe. The heat release �uctuations are used to determine the
theoretical pressure �uctuations related to the �ame motion. This is
conducted using a simpli�ed form of the wave equation. The compari-
son of this theoretical pressure �uctuations with the measured pressure
�uctuation shows a strong coherence between these two signals. This
leads to the assumption that the testbench is essentially dominated by
direct combustion noise.

7.1 Introduction

The previous chapters show that the CESAM-HP combustor is dominated by a
strong combustion instability. While in chapter 3 this instability is linked to the
feeding lines of the burner, chapter 4 puts into evidence the other mechanisms
that characterize this instability by the coupling between the �uctuations of
pressure, velocity and heat release. The time and spatial analyses show that
the strongest �uctuations are at low frequency and that the eigen frequen-
cies are equal for the three measured quantities. These observations lead to the
assumption that direct combustion noise must be dominating in the combustor.

In this chapter, the focus is put on the experimental determination of direct
combustion noise. The approach is based on the link between direct combustion
noise generation and the heat release �uctuations of the �ame (Candel et al.
(2009); Schuller et al. (2002)). With this approach, a theoretical pressure is
estimated from the measured heat release rate of the �ame. Finally a criterion
is de�ned in order to compare the direct combustion noise generation with the
total pressure �uctuations measured in the combustion chamber.
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7.2 Theoretical approach to determine direct com-
bustion noise

This section presents the method to calculate the direct combustion noise con-
tribution from the measured pressure and heat release rate �uctuations. Direct
combustion noise is generated by the �uctuations of the �ame surface and hence
the heat release rate. This heat release rate is proportional to the signal mea-
sured with a photomultiplier probe (PM). The idea is thus to use this signal to
calculate a theoretical pressure pcal which is exclusively associated to the �ame
dynamics. For this approach, the strong hypothesis is made, that all direct
combustion noise is directly proportional to the heat release rate of the �ame.
The comparison of pcal with the measured pressure pmeas can help to draw con-
clusions about the direct combustion noise contribution. Other hypotheses are
that the combustion instabilities, which lead to the heat release �uctuations,
are entirely related to direct combustion noise, and that the acoustic �uctua-
tions all correspond to aerodynamic �uctuations.

The relation between heat release rate and pressure �uctuations can be taken
from the simpli�ed wave equation (Hassan (1974)):

∇.(c20∇p′)−
∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t
(7.1)

c0 represents the speed of sound, p′ the pressure �uctuation and q̇′ the heat
release rate �uctuation.
In the case of the present con�guration it is assumed that the spatial gradients of
the pressure �uctuations are small in the combustion chamber. This approach
is justi�ed when regarding the following equation for the acoustic waves:

c0 = λf (7.2)

with λ the wave length and f the frequency of the acoustic wave. When as-
suming a speed of sound of 800 m/s in the burnt gases, an acoustic wave at 120
Hz would have a wave length of 6.7 m, thus far above the chamber length of
0.14 m. Even an acoustic wave of 1000 Hz would have a wave length of 0.8 m,
thus �ve times more than the chamber length. These calculations are backed by
the observations made in chapter 3. There, the acoustic modes are calculated
analytically and presented in �gure 3.7. The acoustic modes are also con�rmed
by the in-chamber pressure measurements on two di�erent positions. Figure 3.7
shows that for frequencies up to 1000 Hz the pressure �uctuations are on the
same level all along the chamber. These observations con�rm that the spatial
gradients of the pressure �uctuations are small. However, this approach would
be only valid for low frequencies up to 1000 Hz.

The two terms of the left hand side of Eq. (7.1) can be compared directly when
using the pressures which were measured on two positions in the combustion
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chamber (position 2 and 4, see chapter 1). In this case the left term can be
assumed by calculating the RMS of the di�erence between the two measured
pressures, divided by the square of the distance of the two pressure sensors and
multiplied by the square of the speed of sound. It thus becomes:

c20 ·RMS
(p′x=122.5mm − p′x=52.5mm)2

(122.5mm− 52.5mm
)2) (7.3)

The second term can be estimated by calculating RMS of the second derivative
of one of the pressure sensors times the square of a chosen frequency. It therefore
becomes:

f2 ·RMS(
∂2p′

∂t2
) (7.4)

If the speed of sound is assumed as 800 m/s, then the second term is bigger
than the �rst one for all frequencies. The consequence of this reasoning is that
the �rst term of Eq. (7.1) is set to zero. Eq. (7.1) is thus simpli�ed to:

∂2p′

∂t2
= (γ − 1)

∂q̇′

∂t
(7.5)

It was demonstrated in previous work that the heat release rate is propor-
tional to the PM intensity, under the hypothesis of small �uctuation ampli-
tudes (Schuller et al. (2002)):

q̇′ = kI ′ (7.6)

with I ′ the �uctuations of the PM signal intensity and k a constant which
depends from the experimental system. Applying this into the wave equation
and summarizing all constants as K one obtains

∂2p′

∂t2
= K

∂I ′

∂t
(7.7)

with K = (γ−1)k. The theoretical pressure can be obtained from this equation
by integrating twice:

p′cal ≡ K
∫
I ′dt (7.8)

The pressure �uctuations associated to direct combustion noise can thus be
obtained by integrating the intensity. This operation is conducted numerically,
however a value for the proportionality constant K is needed in order to have
the link between PM intensity and the pressure �uctuations. In Schuller et al.
(2002), the constant K is obtained by determining the heat release �uctuations
from the �ame surface (based on the approach of Clavin and Siggia (1991)). In
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that work, the �ame surface was determined with OH-PLIF on a laminar and
radially symmetric �ame. This approach cannot be applied in this work, since
OH-PLIF measurements are not available. But even if they were, the �ame
surface could not have been determined correctly since the �ame is highly tur-
bulent and non-symmetric.

Thus K is chosen to have the value 1, and pcal and pmeas are compared in terms
of shape of the measured time series and PSD as well as the coherence between
these two pressures. While this does not allow to quantify pcal, it allows to put
into evidence the coupling between those two pressures.

The measured and calculated signals are �ltered with a 5th degree Butterworth
low pass �lter with a cut-o� frequency of 1000 Hz in order to stay in the limits
of the theoretical approach. The Pressure PSD are calculated using Welch's
algorithm with Hanning windows with a window size of 2048 and an overlap of
about 50 %.

Finally, the coherence is calculated between the two signals. It describes, to
what extent they are linked in the frequency domain and is determined by the
equation:

C12 =
|G12|2

G11G22
(7.9)

with G12 the cross spectral density between two signals and G11 and G22 the
autospectral density of each of the signals. The advantage of this approach
is that it does not depend on the amplitudes of the signals. It can be thus
calculated correctly without having a value for K.

7.3 Applied diagnostics

The direct combustion noise contribution is determined using a pressure sensor
and a photomultiplier probe. Their functioning and installation is presented in
chapter 1 and is not repeated here. Their positions are summarized in table 7.1,
taking into account the coordinate system shown in �gure 7.1.
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Figure 7.1: Applied coordinate system including the regions described in table 7.1.
The coordinate system is right-handed. The y-coordinate is therefore showing away
from the reader.

Table 7.1: Positions of the applied pressure sensor and PMs

Sensor x [mm] y [mm] z [mm]

Kistler 4045A sensor 122.5 0 -35
OH* photomultiplier - total 0 to 110 line-of-sight -35 to 35

The in-chamber static and dynamic pressures are determined by a sensor of type
KISTLER 4045A, as described in chapter 1. The sensor is located 122.5 mm
downstream of the dump plane, close to the exhaust nozzle. The pressure data
is acquired at a 25 kHz sampling frequency during 4 s. The PSD is determined
using Welch's algorithm, with windows of 2048 samples each and 50 % window
overlapping. This corresponds to a frequency resolution of around 12 Hz

The global heat release rate is obtained by using a photomultiplier probe (PM)
with a 313 nm �lter, as described in chapter 1. This sensor has the aim to
observe the entire combustion chamber. As done with the pressure signal, the
OH* spectra are determined by applying Welch's algorithm, with windows of
2048 samples each and 50 % window overlapping.

7.4 Experimental results

7.4.1 Description of the acoustic and OH* emission spectra

The pressure signal and the PM signal are shown in �gures 7.2 to 7.4 for the
three operating points Op16-0-2, op16-2-0 and Op13.4-4.6-0. The �gures
also contain their PSD. Both signals are drawn on the same diagram with two
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separate axes in order to allow for an easier comparison. The scales of the PSD
spectra were adapted in order to have a same amplitude at 1000 Hz and for the
strongest PSD peak around 120 Hz.
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Figure 7.2: Top: Measured pressure and PM signal for Op16-0-2. Bottom: PSD
pressure and PSD PM signal for the same operating point.
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Figure 7.3: Top: Measured pressure and PM signal for Op16-2-0. Bottom: PSD
pressure and PSD PM signal for the same operating point.
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Figure 7.4: Top: Measured pressure and PM signal for Op13.4-4.6-0. Bottom:
PSD pressure and PSD PM signal for the same operating point.

The �gures show that the pressure and PM signal �uctuations for Op16-0-2
and Op16-2-0 are dominated by a low frequency �uctuation at a frequency of
around 120 Hz. These can also be identi�ed in the PSD spectra shown in the
same �gures. In the spectra, the same low frequency instability peak and its
harmonics can be detected, however the relative amplitudes are not the same
for the harmonics. It can also be observed that the low frequency broadband
part has higher relative amplitudes in the pressure spectrum.
The amplitudes for Op13.4-4.6-0 for both measurements are twice as high.
Both signals are periodic and have a similar main frequency. However, the
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similarity between pressure and PM signal are not as close as for the two other
operating points. The PSD image shows for both measured quantities a broad-
band low frequency peak. In the low frequency region, the relative amplitudes
of the pressure �uctuations are higher than those of the PM signal �uctuations.
Moreover, a slight di�erence in amplitude can be identi�ed between 300 and
500 Hz.

As presented and discussed in chapter 4, the distinct peaks in the pressure and
PM signal spectra correspond to a low frequency combustion instability. For
Op16-0-2 and Op16-2-0, the peak around the 120 Hz is the main peak and
the following are its harmonics. These peaks cannot be observed for Op13.4-
4.6-0, where only one broad low frequency peak can be seen. As suggested in
the previous chapters, this peak can be associated to a strong axial �apping
motion of the �ame.

The OH* results are an indicator for the global heat release dynamics in the
test bench. The link between both was demonstrated in previous works (Hig-
gins et al. (2001); Schulz and Sick (2005)). These works show that the PM
intensity is proportional to the global heat release rate in the case of a lean
premixed �ame. This explains the similarity between the pressure and OH*
measurements, which can be seen in �gures 7.2 to 7.4.
Especially for Op16-0-2 and Op16-2-0, the time pro�les and spectra of the
pressure and heat release rate are very similar. This allows to suggest that most
of the pressure �uctuations in the combustor are associated with the sound gen-
erated directly by the �ame, which means that direct combustion noise should
be dominating. Furthermore, one can see that the pressure and OH* signal are
almost in phase. According to the Rayleigh criterion (?), this would mean that
the oscillations are associated with a combustion instability (as demonstrated
in chapter 4. This would thus lead to a high direct combustion noise contribu-
tion.
In Op13.4-4.6-0, the similarity between pressure and heat release pro�le are
not that close. Using the same reasoning as for the two other operating points,
this would be an indicator for a higher indirect combustion noise contribution.
Also here, the phase shift between the two signals seems to be zero, however it
is not that clear. According to ?, direct noise should thus be dominant here as
well, but not as strong.

7.4.2 Theoretical determination of the direct combustion noise
contribution

Based on the obtained data, the direct combustion noise estimation is deter-
mined with the approach presented in section 7.2, taking into account that the
factor K cannot be obtained for this con�guration. The theoretical pressure
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pcal is calculated, by applying the integral Eq. (7.8) on the entirely acquired
data (4 s at 25 kHz). The resulting pcal for the three operating points as well
as their PSL are shown in �gure 7.5 to 7.7. The �gures also show the measured
pressures pmeas and their PSD spectra. pcal is plotted in arbitrary unit, since
the factor K is not known.

Op16-0-2 and Op16-2-0 have very similar pressure pro�les. The temporal
pressure diagrams show that pcal and pmeas have a very close shape for both
operating points. The PSD are equally very similar for these points. For
Op13.4-4.6-0 the di�erence between the time pro�les of the measured and
calculated pressure are globally similar. The PSD results stay very close even
for this point.
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Figure 7.5: Comparison of calculated and measured pressure for Op16-0-2 and the
deduced PSD pressure
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Figure 7.6: Comparison of calculated and measured pressure for Op16-2-0 and the
deduced PSD pressure
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Figure 7.7: Comparison of calculated and measured pressure for Op13.4-4.6-0 and
the deduced PSD pressure

In order to quantify the coupling between pcal and pmeas, the coherence between
these two signals is regarded. It is shown in �gure 7.8 and has a value very
close to 1 for all the three operating points. For the main instability frequencies
of 120 Hz and its �rst harmonic 240 Hz the coherence even reaches a value of
exactly 1. On the other hand it is low for frequencies below 100 Hz and are
also reduced around 600 Hz.
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Figure 7.8: Coherence of pcalc and pmeas for Op16-0-2, Op16-2-0 and Op13.4-

4.6-0

The coherence corresponds to the observations that were made when compar-
ing the measured pressure signal pmeas with the PM signal. It was shown that
the relative pressure �uctuations below 100 Hz are higher than the relative PM
�uctuations. This might be linked to low frequency pressure �uctuations in the
combustor that are not directly linked to the heat release �uctuations of the
�ame (such as low frequency chamber vibrations).

The reduced coherence around 600 Hz seems to coincide with the fourth har-
monic of the main instability peak, especially for Op16-0-2 and Op16-2-0.
The more this peak is attenuated, the lower the coherence becomes in this re-
gion. Therefore it is lowest for Op13.4-4.6-0. The spectra of pmeas and the
PM signal have slight di�erences in this frequency range. This might be re-
lated to di�erent phenomena, however there is no mean available to study this
di�erence further.
However, even in these regions the coherence is still above 0.8, thus even here
the pressure and heat release �uctuations are strongly related.
In spite of these two regions with reduced coherence, the results suggest that
the pressure �uctuations are strongly coupled with the heat release �uctuation.
This observation was also made in chapter 4 and leads to the suggestion that
the three operating points are mostly dominated by direct combustion noise.
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7.5 Conclusion

This chapter presents an approach that allows to calculate the direct combus-
tion noise contribution. This is done by calculating a theoretical pressure pcal
that is based on the OH* chemiluminescence measurements. pcal is based ex-
clusively on the �uctuations of the �ame surface and is hence associated with
direct combustion noise. The OH* chemiluminescence is measured with a pho-
tomultiplier probe, while the pressure is measured with in-chamber pressure
sensors at the same time.

The presented analysis is conducted on the three operating points Op16-0-
2, Op16-2-0 and Op13.4-4.6-0. The pressure spectra of the three studied
operating points are dominated by the low frequency peak and its harmonics.
Besides, higher eigen frequencies could be observed. The PM spectra on the
other hand only show the low frequency phenomena.

The theoretical pressure �uctuations p′cal are obtained by the presented ap-
proach and compared with the measured ones. The comparison shows large
similarities in the low-frequency regions for Op16-0-2 and Op16-2-0 and
Op13.4-4.6-0. The spectra between the measured and calculated pressure
�uctuations are also very similar. These results suggest that all the three op-
erating points are dominated by the low frequency �uctuations explained in
chapter 3.

Finally, the coherence between the two signals is calculated between the theoret-
ical and the measured pressure signals. The results show that for all operating
points, both signals have correlations of almost 1. The results con�rm the obser-
vations made before and also suggest a high direct noise contribution. However,
this is a very crude estimation due to the strong hypotheses and simpli�cations
made for this study. It equally does not allow to give a correct quanti�cation
since the linear factor between OH* intensity and heat release rate cannot be
determined here. Thus for a correct quanti�cation of the indirect combustion
noise contribution, the temperature �uctuations of the burnt gases need to be
known. This quanti�cation is carried out in chapter 8 with the help of Laser
Interferometric Vibrometry (LIV).





Chapter 8

Quantitative determination of

direct and indirect combustion

noise contributions

This chapter describes the experimental determination of direct and in-
direct combustion noise. It is based on synchronous measurements of
in-chamber pressure and the temperature �uctuations in the burnt gases.
The latter are measured by laser interferometric vibrometry, a technique
which allows to capture temperature �uctuations at very high frequen-
cies. The direct and indirect combustion noise contributions are ob-
tained by the application of an analytical model of the choked nozzle.
The results show that the frequencies of the temperature �uctuations
correspond to the main combustion instability frequencies. Finally, the
analytical calculation shows that direct combustion noise is the main
contributor in the CESAM-HP test bench.

8.1 Introduction

In this chapter, the quantitative determination of direct and indirect com-
bustion noise contributions is described. This is done in two steps: (1) The
temperature �uctuations of the burnt gases are measured with the help of
Laser Interferometric Vibrometry (LIV). (2) The direct and indirect combus-
tion noise contributions are determined by performing a plane wave separation
and using the work of Marble and Candel (1977). This part of the project was
conducted under the leadership of Nancy Kings and was presented on various
occasions. (Kings et al. (2015); Kings et al. (2016)).
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8.2 Experimental procedure

Figure 8.1: Functioning of LIV (Li (2012); Kings et al. (2015))

In this work, the temperature �uctuations in the burnt gases are measured by
Laser Interferometric Vibrometry (LIV). The functioning of the diagnostic is
shown in �gure 8.1. A detailed description of the technique was made by Li
(2012) and is summarized here.

LIV is traditionally a measurement technique applied to measure vibrations
of solid surfaces. In this technique, a continuous laser beam is separated into
two beams by a beam splitter. The �rst beam is re�ected by a reference sur-
face that is moving periodically ("reference beam" in the �gure). The second
beam is re�ected by the solid surface, that is being measured ("object beam"),
towards the vibrometer. The optical sensor in the vibrometer measures the
light intensity which itself depends on the phase shift between the two laser
beams and gives out this intensity as an electric voltage. The phase shift can
be determined from the refractive indices that are integrated along the laser
path:

φ(x, y, t) =
2π

λ0

∫
object

n(x, y, z, t)dz − 2π

λ0

∫
reference

n(x, y, z, t)dz (8.1)

with z the direction of the laser beam, λ0 its wavelength and n the refractive
index. x and y are constant in this arrangement. If the refractive index is
constant one can easily deduce from this equation that the phase shift is pro-
portional to ∆z, thus the displacement of the solid object surface.

For the measurements of density �uctuations, the re�ecting surface ("Re�ector"
in �gure 8.1) is a �xed mirror. The phase shift hence depends exclusively on



Part III - Determination of direct and indirect combustion noise 181

the properties of the medium, in particular the refractive index over the entire
beam path, as shown in Eq. (8.1). Thus now the output voltage signal of the
vibrometer corresponds to the line-of-sight integrated changes in the refractive
index. This is useful for the measurement of densities (and �nally temperatures)
in gases due to the link between refractive index and �uid density, which is
expressed by the Gladstone-Dale relation (Leitgeb et al. (2013); Mayrhofer
and Woisetschläger (2001)):

n− 1 = Gρ (8.2)

with n the refractive index of the gas integrated along the beam line, ρ the
gas density and G the Gladstone-Dale coe�cient. The presented technique can
be thus applied to measure line-of-sight integrated density �uctuations on the
CESAM-HP test bench.

Figure 8.2: Schematic Drawing of the CESAM-HP test bench with the applied coor-
dinate system

The LIV measurement is conducted close to the exhaust nozzle, at x = 122.5 mm (Fig-
ure 8.2). The vibrometer is of type LSV 2500 from SION Messtechnik GmbH.
It can theoretically capture maximal frequencies of up to 500 kHz (GmbH
(2006)), thus well above the here studied frequencies and faster than thermo-
couples (Childs (2003)).

Data acquisition is conducted during 10 s at a sampling frequency of 16384 Hz.
The PSD are calculated by conducting Welch's algorithms with Hamming win-
dows, a window size of 16384 elements and a window overlap of around 50 %.

Since the measured density is line-of-sight integrated, it can be expressed as
follows (where < ... > is used to write the line-of-sight integrated value in the
following):

< ρ′ >=
1

L

∫ L

0
ρ′dy (8.3)
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Giuliani et al. (2009) has shown, that the voltage signal of the vibrometer is
proportional to the line-of-sight integrated density. Taking into account the
integration in Eq. (8.3), they obtained the following:

U(t) = Gkg < ρ′ > L (8.4)

with U(t) the vibrometer voltage signal, kg = 1000 V/µm the adjusted vi-
brometer gain and G = 2.5 · 10−4 m3/kg the constant Gladstone-Dale coe�-
cient (Giuliani et al. (2009)), which depends only on the wavelength of the
used laser. The term < ρ′ > L thus expresses the integral of the local density
�uctuations over the line of sight. Typically, Abel transform is applied in order
to obtain the density �uctuation at one point. (Giuliani et al. (2009); Köberl
et al. (2010); Peterleithner et al. (2015)). In this work however, this approach
is not justi�ed due to the radial non-symmetry of the �ame and �ow. Indeed,
the temperature pro�le calculated for this test bench by Tao (2015) and shown
in �gure 8.3 leads to the conclusion that radial symmetry cannot be assumed.

Figure 8.3: Temperature distribution on the y-z-plane at x = 122.5mm, calculated
by LES (Tao (2015))

In the here presented calculations, the pressure, temperature and density are
respectively decomposed into mean and �uctuating parts:

ρ = ρ̄+ ρ′ (8.5)

p = p̄+ p′ (8.6)

T = T̄ + T ′ (8.7)
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with the bar indicating the mean part and the prime indicating the �uctuating
part.

The measured, line-of-sight averaged density �uctuations ρ′tot have three con-
tributors: (1) The density �uctuations which are caused by acoustic perturba-
tions ρ′a; (2) The density �uctuations related to temperature inhomogeneities
in the burnt gases ρ′T ; and (3) A reference value of the measuring system ρ′ref ,
which corresponds to the measurement noise of the vibrometer. The vibrations
of the test bench are neglected in this work. The contributions of the totally
measured density �uctuations ρ′tot are additive in the temporal as well as in the
frequency domain due to their linearity and are thus:

ρ′tot = ρ′ref + ρ′a + ρ′T (8.8)

The density �uctuations due to composition heterogeneities are not taken into
account, since su�cient premixing is assumed. When calculating the line-of-
sight average of this equation, one obtains the following:

1

L

∫ L

0
ρ′totdy =

1

L

∫ L

0
ρ′refdy +

1

L

∫ L

0
ρ′ady +

1

L

∫ L

0
ρ′Tdy (8.9)

It has to be taken into account that the measured density �uctuations ρ′tot
and ρ′ref are integrated due to the nature of the measurement technique. It is
also assumed, that the acoustic and entropy waves are plane waves and that
therefore the temperature, density and pressure �uctuations are constant in
transverse direction. This hypothesis is typical in entropy noise analysed and
has also been used by Kings et al. (2016). With these points, one obtains
following:

< ρ′tot >=< ρ′ref > +ρ′a + ρ′T (8.10)

The equation shows that in order to obtain the spectra of the temperature
�uctuations, the reference signal and the acoustic contributors need to be sub-
tracted from the measured signal.
The reference signal ρ′ref is obtained by conducting measurements without �ow
using the vibrometer (Kings et al. (2016)). The acoustic contribution is cal-
culated from the measured pressure signal (by the Kistler 4045A sensor on
position 4) by the equation:

ρ′a = p′a/c̄
2 (8.11)

with p′a the measured pressure �uctuations, taken by a KISTLER 4045A sensor
on the same axial position as the vibrometer measuring location. The speed of
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sound c is calculated based on the mean burnt gas temperature, determined by
an R-type thermocouple at the same axial position. The mean temperatures
are 1920 K for Op16-0-2 and Op16-2-0 as well as 1930 K for Op13.4-4.6-0.
Due to the use of the thermocouple, the incertitude is not negligible, however
it is assumed here for the sake of simplicity.

The measured line-of-sight averaged density �uctuations are used to determine
the temperature �uctuations based on the calculations presented in the follow-
ing.

In a �rst step, the de�nition of entropy is used:

s′ = cv ln
p

ργ
(8.12)

This equation can be transformed into the following by using basic logarithm
rules:

s′ = cv(ln(p)− γ ln(ρ)) (8.13)

The entropy �uctuations can be determined with the derivation of entropy,
which results in the following equation:

s′ =
ds

dp

∣∣∣∣
ρ

p′ +
ds

dρ

∣∣∣∣
p

ρ′ (8.14)

When this derivation is applied on Eq. (8.13), the following equation is obtained:

s′ = cv
p′

p̄
− cp

ρ′

ρ̄
(8.15)

when applying γ = cp/cv, the ideal gas law p̄ = ρ̄rT̄ and the equation for the
speed of sound c =

√
γrT̄ , one obtains the following equation, which can also

be found in Leitgeb et al. (2013) and Crighton et al. (1992):

ρ′ =
p′

c̄2
− ρ̄

cp
s′ (8.16)

with ρ the density, c the speed of sound, p the pressure and s′ the entropy
�uctuations.

In a second step, Gibb's equation is used:

T̄ s′ = cvT
′ − p̄

ρ̄2
ρ′ (8.17)
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Taking into account γ = cp/cv and cp = γr/(γ − 1), this equation becomes

s′ =
cp
γ

T ′

T̄
− p̄ρ′

ρ̄2T̄
(8.18)

The density �uctuations can be obtained when combining the decompositions
into mean and �uctuation part of density, pressure and temperature (Eq. (8.5)
to (8.7)) with the ideal gas law p̄ = ρ̄rT̄ . This combination leads to following
equation:

p′

p̄
=
ρ′

ρ̄
+
T ′

T̄
(8.19)

When Eq. (8.19) is applied into Eq. (8.18), one obtains following:

s′ =
cp
γ

T ′

T̄
− p̄

ρ̄T̄
(
p′

p̄
− T ′

T̄
) (8.20)

When simplifying this equation arithmetically and applying cp = γr/(γ − 1),
one �nally obtains the following expression for the entropy �uctuations:

s′ = cp
T ′

T̄
− cp

γ − 1

γ

p′

p̄
(8.21)

When combining Eq. (8.16) and (8.21), one obtains the following equation:

ρ′ =
p′

c2
− ρ̄T

′

T̄
+
γ − 1

γ

p′

p̄
ρ̄ (8.22)

Taking into account the ideal gas law p̄ = ρ̄rT̄ , the equation for the speed of
sound c =

√
γrT̄ and Eq. (8.11), one obtains the following:

−T
′

T̄
=
ρ′

ρ̄
− γ ρ

′
a

ρ̄
(8.23)

The line of sight averaged expression of this equation becomes:

− 1

L

∫ L

0

T ′

T̄
dy =

1

L

∫ L

0

ρ′

ρ̄
dy − 1

L

∫ L

0
γ
ρ′a
ρ̄
dy (8.24)

Taking into account that the pressure is measured for the entire chamber, the
equation becomes following (following the same reasoning as for Eq. (8.10)):

−< T ′ >

T̄
=
< ρ′ >

ρ̄
− γ ρ

′
a

ρ̄
(8.25)
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In this case, < ρ′ > corresponds to the measured line integrated density �uc-
tuations minus the reference signal, thus < ρ′ >=< ρ′tot > − < ρ′ref>. In
the present study, the Fourier transforms of the temperature �uctuations are
searched for. Using the de�nition of the Fourier transform this leads to:

FT (− < T ′ >) =
1√
2π

∫ ∞
−∞

T̄

ρ̄
(< ρ′ > −γρ′a)e−iωt (8.26)

Since the mean temperature and density are constant, they can be taken out
of the integral. Equally, the linearity of the Fourier transform can be used to
separate the sum. If this is done, one obtains �nally following:

FT (− < T ′ >) = −FT (< T ′ >) =
T̄

ρ̄
(FT (< ρ′ >)−γ ·FT (< ρ′a >)) (8.27)

Finally, the entropy related temperature �uctuations T ′e can be calculated. If
assuming that the pressure oscillations do not generate any entropy oscillations,
T ′e can be obtained by the following equation:

−T
′
e

T̄
= −ρ

′
e

ρ̄
(8.28)

Using Eq. (8.8) and p′a/(γp̄) = ρ′a/(ρ̄) (isentropy), one obtains the following
equation:

−T
′
e

T̄
= −

ρ′tot − ρ′ref
ρ̄

+
p′a
γp̄

(8.29)

On this equation, the same line-of-sight averaging and Fourier calculation are
applied as on Eq. (8.27).
Data acquisition is conducted during 10 s at a sampling frequency of 16384 Hz.
The Fourier transforms are calculated with the classic FFT algorithm. While
this has the disadvantage of a high noise level (higher than that of the Welch
algorithm for example), it keeps the information about the phase.

8.3 Temperature �uctuations of the burnt gases

The measured raw density pro�les < ρ′tot > of Op16-0-2, Op16-2-0 and
Op13.4-4.6-0 are respectively shown in �gures 8.4 to 8.6. They also include
the calculated density �uctuations due to pressure and temperature �uctua-
tions ρ′a and ρ

′
T . Besides, they include the measured reference signal < ρ′ref >.

The diagrams are shown in linear scale in order to compare the amplitudes of
the di�erent contributors. The �gures show the norm of the signals in order to
compare the intensities of the �uctuations.
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Figure 8.4: Top: Raw density spectrum of Op16-0-2 measured by LIV, including
the contribution of the measurements system vibrations. Bottom: Density �uctuations
calculated from in-chamber pressure �uctuations and the temperature �uctuations
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Figure 8.5: Top: Raw density spectrum of Op16-2-0 measured by LIV, including
the contribution of the measurements system vibrations. Bottom: Density �uctuations
calculated from in-chamber pressure �uctuations and the temperature �uctuations
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Figure 8.6: Top: Raw density spectrum of Op13.4-4.6-0 measured by LIV, including
the contribution of the measurements system vibrations. Bottom: Density �uctuations
calculated from in-chamber pressure �uctuations and the temperature �uctuations

For the three operating points, most of the oscillations are observed for frequen-
cies below 1 kHz. The sharp low frequency peaks observed in Op16-0-2 and
Op16-2-0 are at around 120 Hz and their harmonics were already observed
in chapter 3 and 4. Op13.4-4.6-0 equally features its main activity in the
low frequency region around 100 Hz. The FFT spectrum has a broad band
contribution, which was also seen in chapter 4 for this point. An important
peak can be observed at 700 Hz, however it has the same intensity for ρtot and
ρref and therefore is probably associated to the measurement system. Besides
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these peaks, the measurements show activity in the very low frequency region
below 25Hz for all three operating points, however no explanation was found
for it. As shown in the modal analysis in chapter 3, this frequency does not
belong to the detected ones and thus cannot be linked to combustor acoustics.
The �gures also show, that the pressure-related density �uctuations are well
above those that are associated with the temperature �uctuations.

The line-of-sight averaged temperature spectra are obtained from these density
spectra by the procedure described at the end of section 8.2. Therefore the test
bench vibrations and the density �uctuations due to acoustics are subtracted
from the raw vibrometer signal.
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Figure 8.7: Temperature spectrum of Op16-0-2 measured by LIV
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Figure 8.8: Temperature spectrum of Op16-2-0 measured by LIV
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Figure 8.9: Temperature spectrum of Op13.4-4.6-0 measured by LIV
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Figure 8.10: Entropy related temperature spectrum of Op16-0-2 measured by LIV
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Figure 8.11: Entropy related temperature spectrum of Op16-2-0 measured by LIV
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Figure 8.12: Entropy related temperature spectrum of Op13.4-4.6-0 measured by
LIV

The Fourier transforms of the integrated temperature �uctuations are shown
in �gures 8.7 to 8.9 for the three operating points. The spectra are dominated
by the low frequency oscillations. The comparison between the density and
temperature spectra of Op16-0-2 and Op16-2-0 shows that in particular the
harmonics of the main low frequency peaks are attenuated. Equally, for all
three operating points the very low frequency dynamics are reduced. The �rst
observation allows for the estimation, that this is due to the subtraction of
the acoustic part, where these harmonics are strong. The second observation
con�rms the assumption that the very low frequency phenomena below 25 Hz
are partly associated with the measuring system vibrations.

The Fourier transform of the entropy related line-of-sight integrated temper-
ature �uctuations are shown in �gures 8.10 to 8.12. They feature the same
frequency peaks as the other temperature spectra however their amplitude is
lower, at around 10 K for all operating points. Furthermore, the harmonics are
stronger for this case.

The spectra also show that the temperature �uctuations are low for all three
operating points. They have values below 40 K for Op13.4-4.6-0 and even be-
low 20 K for the two other operating points. Furthermore, these temperature
spectra have the same peak structure as observed in the study of the combus-
tion instability in chapter 4. The same low frequency dynamics are dominating
the velocity �elds, the �ame chemiluminescence visualisations and the pressure
measurements. These dynamics are associated with a low frequency combus-
tion instability, which causes direct combustion noise. Indeed, the acoustic and
aerodynamic �uctuations of the �ame might not only cause the strong tempera-
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ture �uctuations of the �ame itself but generate the heat release �uctuations in
the burnt gases. Finally these results lead to the assumption that the generated
indirect combustion noise is rather low.
Finally the time signals of the temperature �uctuations are obtained by directly
calculating Eq. (8.27). Figures 8.13 to 8.15 show this temperature signal for
the three operating points, as well as the pressure signal. Both are measured
at the same axial position x=122.5 mm.
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Figure 8.13: Time signal of the pressure and the temperature for Op16-0-2. The
red horizontal line shows the phase shift between the two signals.
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Figure 8.14: Time signal of the pressure and the temperature for Op16-2-0. The
red horizontal line shows the phase shift between the two signals.
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Figure 8.15: Time signal of the pressure and the temperature for Op13.4-4.6-0.
The red horizontal line shows the phase shift between the two signals.

The �gures show that the main oscillation frequency of the temperature signal
is equal to that of the pressure signal. This is obvious, since already the FFT
spectra have shown that the pressure and temperature �uctuations have the
same eigen frequency. But the temperature signal has also oscillations of higher
frequencies. These seem to be related to measurement noise, as distinct peak
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can be observed above 1 kHz in the temperature spectra.
It can also be seen that the temperature and pressure signals do not have the
same phase, which is due to the di�erent velocities of the acoustic and entropy
waves. When assuming that both are generated in the injector dump plane
x=0 mm, they cross a distance of 122.5 mm until they arrive to the location
where the pressure and temperature �uctuations are measured. At a speed of
sound of around 670 m/s (see table 8.1), this leads to a propagation duration of
0.18 ms. The entropy waves propagate at the �ow velocity of the burnt gases.
When assuming a total mass �ow rate of 19 g/s and a burnt fas temperature
of 1900 K and a square chamber section of 70 mm × 70 mm, the burnt gas
velocity is calculated to around 8 m/s. Therefore, the temperature �uctuations
need around 15.31 ms to propagate until the position where the temperature
�uctuations are measured. The phase di�erence in the �gures is thus 15.13
ms. This correspond to more than one and a half periods of the 120 Hz eigen
frequency, which corresponds to around 11.4 rad.

8.4 Determination of direct and indirect combustion
noise contribution

Figure 8.16: Representation of the approach to determine direct and indirect com-
bustion noise contributions (Kings et al. (2015)). The re�ections at both ends are
neglected.

As indicated in the beginning of this chapter, the measured temperature �uc-
tuations can be used to determine the indirect combustion noise contribution.
The approach is presented in �gure 8.16 and consists of three steps: (1) The
in-chamber acoustics are separated into upstream and downstream character-
istic waves. (2) The entropy �uctuations are calculated from the determined
temperature �uctuations. (3) The combustion noise resulting from the acoustic
and the entropy wave propagating through the exhaust nozzle are calculated
using the results of Marble and Candel (1977).
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The plane wave separation is based on the work of Chung and Blaser (1980)
and the pressures measured by the in-chamber pressure sensors. The pressure
measured by each sensor is normalized to P = p/(γp̄) (Marble and Candel
(1977)) and expressed as follows in the frequency domain for the sensor positions
2 and 4:

p̂′2 = P+e−ik+(x2−x0) + P−eik−(x2−x0) (8.30)

p̂′4 = P+e−ik+(x4−x0) + P−eik−(x4−x0) (8.31)

with p̂′2 and p̂′4 the measured pressure �uctuations in the frequency domain,
P+ and P− the amplitudes of the up- and downstream propagating pressure
wave, (x2−x0) and (x4−x0) the axial distance of the respective pressure sensor
from the origin and k+ and k− the wave numbers of the up- and downstream
propagating pressure wave. These wave numbers are expressed as follows:

k+ =
k

1 +M1
(8.32)

k− =
k

1−M1
(8.33)

with k the wave number and M1 the Mach number of the burnt gases just
before entering the exhaust nozzle.

Based on Marble and Candel (1977) the normalized downstream entropy wave
can be calculated by

σ =
s′1
cp

=
T ′

T̄
− γ − 1

γ

p′

p̄
(8.34)

where all values are either measured in the testbench or nature constants.
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Figure 8.17: Spectra of the pressure oscillations of the up- and downstream prop-
agating acoustic wave as well as of the downstream propagating entropy wave in the
combustion camber for Op16-0-2
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Figure 8.18: Spectra of the pressure oscillations of the up- and downstream prop-
agating acoustic wave as well as of the downstream propagating entropy wave in the
combustion camber for Op16-2-0
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Figure 8.19: Spectra of the pressure oscillations of the up- and downstream prop-
agating acoustic wave as well as of the downstream propagating entropy wave in the
combustion camber for Op13.4-4.6-0

The pressure �uctuations of up- and downstream propagating pressure wave in
the combustor and of the generated entropy wave in the combustor are shown
in �gures 8.17 to 8.19. The pressure waves feature the low frequency oscillations
that could also be identi�ed in the other parts of this work. Furthermore, their
amplitude is rather high, almost as high as the measured in-chamber pressure.
The upstream propagating pessure wave indicate the strong combustion insta-
bility, while the high amplitudes of the downstream propagating pressure waves
indicate a high direct combustion noise contribution. The entropy oscillations
in the combustor on the other hand are rather low and have their strongest
amplitudes at the combustion instability frequency.
Finally the downstream acoustic wave P+

1a and the downstream entropy wave
σ1 are used to calculate the direct and indirect combustion noise contribution
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Table 8.1: Calculation of the Mach values for the three operating points

Op16-0-2 Op16-2-0 Op13.4-4.6-0

γ[−] 1.27
r[J/kgK] 187

Tm[k] 1920 1920 1930
c[m/s] 675 675 677

ρ[kg/m3] 0.66 0.66 0.65
v1[m/s] 10.49 10.49 10.67

M1[−] 0.0155 0.0155 0.0158

M2[−] 1.57 1.57 1.57

P+
2a and P

+
2s (Marble and Candel (1977)):

P+
2a =

1 + 1
2(γ − 1)M2

1 + 1
2(γ − 1)M1

· P+
1 (8.35)

P+
2s =

M2 −M1

2
·

1
2σ

1 + 1
2(γ − 1)M1

(8.36)

In these equations, the Mach number before entering the nozzleM1 is estimated
with the help of the total gas mass-�ow rate and the speed of sound calculated
with the help of the measured gas temperature. The Mach number downstream
of the exhaust nozzle M2 is calculated assuming an isentropic nozzle with a
choked throat:

A

A∗
=

1

M
[

2

γ + 1
(1 +

γ − 1

2
)M2]

γ+1
2(γ−1) (8.37)

with A the surface of the regarded nozzle section and A∗ the surface of the
nozzle throat. The equation has two solutions, a subsonic and a supersonic
solution. Since the nozzle throat is supposed to be choked, the �ow leaving the
nozzle is supersonic, thus M2 > 1. The resulting Mach numbers are summa-
rized in table 8.1.

The Fourier transforms of the resulting combustion noise contributions are
shown in �gure 8.20 to 8.22. They contain the total combustion noise (P+

2a+P+
2s)

as well as the direct (P+
2a) and indirect combustion noise (P+

2s) contributions
for the three operating points.
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Figure 8.20: Direct, indirect and total combustion noise spectra of Op16-0-2
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Figure 8.21: Direct, indirect and total combustion noise spectra of Op16-2-0
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Figure 8.22: Direct, indirect and total combustion noise spectra of Op13.4-4.6-0

In these diagrams, the coloured line corresponds to the total combustion noise,
while the gray dashed line corresponds to the indirect combustion noise con-
tribution. The full green line corresponds to the direct combustion noise con-
tribution. The diagrams show, that the direct combustion noise is well above
the indirect combustion noise contribution for almost the entire frequency span
and has its highest amplitudes at frequencies below 1 kHz. The highest peaks
for direct and thus also total combustion noise are at 120 Hz for Op16-0-2 and
Op16-2-0 and around 100 Hz for Op13.4-4.6-0. Indirect combustion noise
can also be perceived especially at these frequencies. Besides, a small indirect
combustion noise dominated peak can be detected around 800 Hz. However
its amplitude is far below those of the principal low frequency peaks. Indeed,
�gures 8.10 to 8.12 show that the temperature �uctuations at these frequencies
are only up to around 1 K. They are hence negligible compared to the other
combustion noise contributors.

8.5 Conclusion

In this chapter a technique is proposed to determine direct and indirect com-
bustion noise contributions. It is based on the measurements of temperature
�uctuations with the help of laser interferometric vibrometry (LIV). The ad-
vantage of this technique is that it allows to measure temperature �uctuations
at very high frequencies while being non-intrusive.

The obtained temperature spectra show that the temperature �uctuations of
the burnt gases are strongly linked with the main combustion instability. In-
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deed, the main peaks correspond to the peaks observed and explained in the
previous chapters. The separation of direct and indirect combustion noise con-
tributions con�rms this observation. Its results show that direct combustion
noise is clearly dominating over almost the entire frequency range. This is
probably related to the strong combustion instability that is put into evidence
in chapter 3 and 4.

However the technique has several drawbacks. One disadvantage is the fact
that it measures a line-of-sight averaged temperature. Yet, the calculated tem-
perature distribution shown in �gure 8.3 suggests a temperature distribution
which is far from being homogeneous. Furthermore, other e�ects are taken into
account, such as inhomogeneities in the glass windows. Another disadvantage
is the fact, that the measurement is done only on one point. A possibility to
visualize planar density �uctuations without integrating on the line of sight is
shown in chapter 6. The measurements there are based on a focusing Schlieren
technique which allows to observe 2D density �uctuations on a �eld depth of a
few millimetres.



Conclusion

The present thesis had the aim to study direct and indirect combustion noise
experimentally in a combustor that is close to actual gas turbine combustors.
For this, an appropriate test bench was designed, its �ame and �ow charac-
terized experimentally and an experimental separation of direct and indirect
combustion noise was conducted. Finally, work was done on di�erent diagnos-
tics that have a potential to be suitable for future studies of combustion noise
and �ame dynamics.

Speci�cally for this project, the so-called CESAM-HP test bench was designed.
The design was chosen taking into account a variety of objectives: (1) The
combustor architecture needs to be close to that of an actual gas turbine com-
bustor. (2) The generation of indirect combustion noise must be high compared
to that of direct combustion noise. (3) The acoustic boundary conditions need
to be well de�ned (4) The combustion chamber needs to allow the use of di�er-
ent in-chamber and laser-based diagnostics in order to observe the �ame and
�ow as well as acoustics; (5) The combustor needs to be operated in a safe and
reproducible way.

The objectives are met by the di�erent choices that were made during the de-
sign process. The test bench features lean premixed swirling combustion, which
is close to an actual gas turbine combustor. The premixture is of propane and
air and injected tangentially. While this is a simpli�cation compared to actual
aeronautic combustors, it allows to simplify the con�guration and to concen-
trate on acoustics. The combustor has a pressure of up to 2.5 bar at the targeted
operating points. This is well below that of actual combustors, but it is suf-
�cient for this application. The pressure increase is achieved by an exhaust
nozzle, which is choked at the targeted operating points. The exhaust nozzle
geometry has been optimized in order to achieve maximal entropy noise gener-
ation. The acoustic boundary conditions are �xed upstream of the combustion
chamber by an impedance control system and downstream by the choked ex-
haust nozzle. The impedance control system consists of a perforated plate with
a bias �ow backed by a cavity of adjustable length. It also features a direct
axial injection. The combustion chamber has large optical access that allows
for observation with optical diagnostics and di�erent ports for in-chamber pres-
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sure and temperature measurements. Finally, the combustor is water cooled in
order to enable safe and reproducible operation.

Di�erent tests on the CESAM-HP combustor show a wide operation range,
with di�erent �ame types depending on the �ow repartition and the global
equivalence ratio. In this work three operating points were chosen with di�er-
ent air �ow splits between tangential injection, direct axial injection and axial
injection via the perforated plate of the ICS. In the operating point Op16-0-2,
most of the air is injected tangentially, while a small part is injected through the
perforated plate. In Op16-2-0 the same air quantity is injected tangentially,
while the axial air is completely injected through the direct axial air injection.
Finally in Op13.4-4.6-0, a bigger part of air is injected by the direct air in-
jection. In these three operating points, all fuel is injected tangentially at an
equal global equivalence ratio. The di�erences in �ow split lead to di�erent
PSD pressure spectra of the in-chamber pressure, with Op16-0-2 featuring a
low frequency peak at 120 Hz, Op13.4-4.6-0 a more broadband peak around
100 Hz, and Op16-2-0 a peak structure in between.

In the following part, the statistical behaviour of �ow and �ame is examined
experimentally. The aim was to gain insight about the �ame shape and po-
sition and to identify the regions with the strongest heat release and velocity
�uctuations.
For these purposes, planar velocity measurements and OH* chemiluminescence
imaging on the three operating points are conducted and the mean and RMS
�elds are examined. The experiments show that the �ow and �ame dynamics
are essentially dominated by the strong swirling motion that results from the
tangential injection. This leads to a conical shape of the �ame that is typical
for combustors of the chosen arrangement. The velocity �elds have a topology
which is typical for the present con�guration. They feature a high velocity re-
gion of conical shape and the low velocity inner and outer recirculation zones.
The OH* and velocity �elds were determined for the three operating points.
Both �elds are similar forOp16-0-2 andOp16-2-0. ForOp13.4.6-0 however,
the swirling motion is not that distinct and strong axial velocity �uctuations
can be observed.

In the following chapter, the acoustic modes of the CESAM-HP test bench
are determined. For this, a mixed approach of experimentation and analytical
modelling was applied. The combustor was modelled analytically by di�erent
cavities and acoustic boundary conditions were either determined experimen-
tally or also calculated analytically. The results of this approach show that the
feeding lines have a strong in�uence on the acoustic behaviour and are one of
the sources of the main instability in the combustor. Other modes are related
to the combustion chamber and premixer geometries.
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The low frequency combustion instability in the CESAM-HP combustor is anal-
ysed by �nding experimental evidence for the di�erent driving and coupling
mechanisms. For this purpose, time and spatially resolved measurements of
pressure, velocity and OH* chemiluminescence are conducted. From these ex-
perimental data, the PSD is calculated for chosen regions of the combustor.
The results show that the studied operating points Op16-0-2 and Op16-2-0
are dominated by a 120 Hz instability, that can be detected in the studied re-
gions by all the used diagnostics. Op13.4-4.6-0 features a strong peak around
80 Hz, that is detected by all applied diagnostics as well.
Two mechanisms that are driving the combustion instability in the combustor
are proposed, the interaction between the �ame and the chamber walls and the
interaction between �ame and vortices. Besides, two coupling mechanisms are
proposed, the e�ect of pressure �uctuations on the feeding lines and the e�ects
of the pressure �uctuations on the entire combustor and the �ame. These cou-
pling mechanisms lead to a positive feedback circuit, which leads to the strong
amplitudes of the present combustion instability.

Another part of the thesis is dedicated to the work on di�erent laser-based
diagnostics. While they have the potential to be a useful mean to investigate
the sources of combustion noise, further work needs to be done. In particular
they need to be validated for more general cases. Two techniques are treated
here, high speed planar velocimetry at 100 kHz and focusing Schlieren.

The new high speed velocimetry is named PCMV and is based on the use of
a continuous wave laser as a light source. The Mie scattering images are ac-
quired with a high-speed camera at 100 kHz with a constant time between
each frame. The velocity �elds are then obtained by applying classical PIV
algorithms on successive particle scattering images. PCMV retrieves the �ow
topology in the combustor correctly, however a more quantitative validation is
needed. For this, the PCMV technique was compared with classical low speed
PIV system. This was done by conducting experiments with both systems on
the CESAM-HP test bench and by comparing the mean and RMS of the ob-
tained velocity �elds. The results show reasonable agreement between the two
techniques with errors in the order of magnitude up to 0.2 pixels, however this
error is non-negligible. Nevertheless, together with a correct capturing of the
main dynamics of the combustor, this technique is suitable for the qualitative
studies and the spatially resolved determination of the eigen frequencies of ve-
locity �elds.

The second diagnostic worked on in this thesis is focusing Schlieren, which is
used to visualize the density �uctuations in the �ame and the burnt gases. The
technique is rather recent (from the 1990s) and has until then mostly been used
to visualize shocks in supersonic wind tunnels.
The technique allows to acquire images of density �uctuations on a �eld of view
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of small thickness at high sampling frequencies (contrary to classical Schlieren,
where the images are integrated over the line of sight). The imaging was con-
ducted for the three known operating points at the �ame front and at the
combustion chamber exit. The results were analysed by calculating the PSD
of the Schlieren image intensity. The density �uctuations in the �ame area are
dominated by the low frequency combustion instability that was also observed
with the other diagnostics. In the burnt gases two main frequencies are de-
tected, that belong to the low frequency instability and another one at around
4 kHz. According to the imaging, the instability frequency corresponds to the
frequency of apparition of wave packets. These wave packets propagate at �ow
velocity and have a wavelength corresponding to the 4 kHz peak and probably
are entropy waves. In a �nal step, the determined frequencies in the burnt gases
were validated by conducting Vibrometry measurements in the same position
in the burner.

The �nal part of this thesis deals with the actual determination of direct and
indirect combustion noise. They are determined with two approaches that are
presented in the following.

In the �rst approach, the direct combustion noise contribution is analysed ex-
perimentally. This is done by comparing the chamber pressure �uctuations with
the global heat release �uctuation, measured by a photomultiplier probe. The
heat release �uctuations are used to determine the theoretical pressure �uctu-
ations related to the �ame motion. This is conducted using a simpli�ed form
of the wave equation. This theoretical pressure is compared with the measured
ones by regarding the PSD as well as the coherence between the two signals.
It was shown that the test bench is essentially dominated by direct combustion
noise, since the coherence is very high between the two signals, especially at
the instability frequencies. However this method is only a crude estimation,
since the wave equations are strongly simpli�ed in this approach. Furthermore,
the amplitudes of direct combustion noise could not be determined, because
the factor between the photomultiplier voltage signal and the pressure was not
available.

A more precise possibility for an experimental determination of direct and in-
direct combustion noise is proposed with the second approach. It is based on
synchronous measurements of in-chamber pressure �uctuation and the tem-
perature �uctuation of the burnt gases. The latter are measured by laser
interferometric vibrometry, a technique which allows to capture temperature
�uctuations at very high frequencies. The direct and indirect combustion noise
contributions are obtained by the application of an analytical model of the
choked nozzle. The results show that the frequencies of the temperature �uc-
tuations correspond to the main combustion instability frequencies. However,
indirect combustion noise accounts for a very small part of total combustion
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noise. Indeed, the combustion noise generation is dominated by the pressure
oscillations associated with the low frequency instability, thus direct combus-
tion noise.

With the present results, the main research goals of this work were ful�lled to
a large extent. A combustor test bench could be designed, which is close to
the stated design objectives. Furthermore, di�erent diagnostics were used and
developed further to characterize the �ame and �ow dynamics of the combustor
and to �nally quantify direct and indirect combustion noise contribution.
However the results have also shown that the indirect combustion noise con-
tribution is far lower that it was aimed for. This is due to the strong direct
combustion noise contribution, which is associated with the low frequency com-
bustion instability.

Di�erent measures can be taken in order to increase indirect combustion noise.
(Two possible ones, partially premixed operation and secondary air injection
through the chamber walls, are analysed in annex A and not presented further
here.)
In general, in order to increase indirect combustion noise, the pressure �uctu-
ations associated with the movement of the �ame must be kept low, while the
density �uctuations that are transmitted to the burnt gases need to stay high.
Furthermore, the pressure �uctuations generated from these density oscillations
need to be the highest possible.
The latter point is already ensured, due to the optimized shape of the exhaust
nozzle.
In order to decrease the pressure �uctuations generated by the �ame, the com-
bustion instability and its e�ects need to be damped. One possible measure
could be to increase the chamber width and height or to increase the chamber
pressure in order to obtain a more compact �ame. Ideally, this would reduce
the interaction between the �ame and the chamber walls. Another measure
would be to change the design of the injection system, however there are nu-
merous possibilities to do so.
In order to increase the generation of sound from the entropy waves, the density
�uctuations, which arrive to the exhaust nozzle need to be the highest possible.
A possible measure to increase their amplitude (or rather to reduce their de-
creasing) would be to decrease the chamber length. By this, the entropy waves
would be dissipated less until arriving at the nozzle. This could be especially
done in combination with a pressure increase as well as a stabilisation of the
�ame, which both would lead to a more compact �ame.
A further measure to increase indirect combustion noise would be to increase
the chamber pressure. When keeping the same air and fuel mass �ow rates,
this could only be realized by reducing the nozzle throat diameter. This would
then increase the nozzle exit Mach number, which according to Marble and
Candel (1977) lead to an increase of noise generated from the acceleration of
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the entropy waves.

Another point which requires further work is the identi�cation of the di�erent
combustion instability mechanisms in the combustor. While the applied diag-
nostics give evidence about the existence of those, they are not su�cient to
clearly identify them. A possibility to do so would be to conduct OH-PLIF
measurements, synchronously with planar velocimetry measurements. These
would allow observe the interaction between �ame and vortices in the �ame
and also to observe the �ame surface �uctuations, especially in the chamber
walls.

Other possible points of further works can be found in the diagnostics that were
worked on and used.
The here presented PCMV method still requires quantitative validation, due
to its di�erent nature from classic PIV. The most recent advancements can
be found in Mazur et al. (2017), however an experimental comparison of in-
stantaneous velocity �elds taken by PIV and PCMV simultaneously and syn-
chronously is still to be done.
The focusing Schlieren technique shows interesting perspectives as a diagnostic
for planar time-resolved temperature measurements. To do so, a method must
be found which allows to �nd the link between the Schlieren image intensity
and the temperature gradient. Using those gradients, together with an instan-
taneous temperature measured somewhere in the combustor, one would obtain
2D temperature �elds.



Appendix A

Potential improvements of the

test bench

In this chapter, three modi�cations of the CESAM-HP testbench are
proposed. The purpose is to increase the indirect combustion noise con-
tribution. The modi�cations are the following: (1) The stabilisation
of the �ame via a rod that acts as a �ame holder, (2) a separate fuel
injection in order to test the e�ects of a partially premixed operation,
and (3) secondary air injected through the chamber walls in order to
increase the inhomogeneities of the burnt gases. The three modi�ca-
tions are presented and tested in order to evaluate their e�ectiveness.
During the tests, di�erent variations of air �ow splits are compared in
terms of RMS pressure, direct combustion noise contribution and static
and dynamic �ashback. The tests show that the �ame holder rod only
has very limited e�ects on �ame dynamics and on indirect combustion
noise. The partially premixed operation leads to a strong increase of
instabilities however direct combustion noise contribution seems to de-
crease. Secondary air injection leads systematically to a little decrease
of direct noise contribution and is thus equally interesting.

A.1 Proposed modi�cations of the test bench

This chapter is motivated by previous results of this thesis. Chapter 3 and 5
show that the �ow and �ame dynamics of the three operating pointsOp16-0-2,
Op16-2-0 and Op13.4-4.6-0 are dominated by a low frequency combustion
instability. The time and spatially resolved measurements of pressure, veloc-
ity and heat release in chapter 5 show in particular that the PSD of all these
measurements have their strongest peaks at the same frequencies. For the two
former points this frequency corresponds to the 120 Hz combustion instabil-
ity and the harmonics of this peak. For the latter point the main instability
frequency around 80 Hz is also associated with a axial �apping motion. Due
to these strong dynamics in the injector region, most of the combustor noise
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is generated by the �ame surface �uctuations. Indeed, chapter 4 and 8 show
quantitatively, that the indirect combustion noise contribution accounts for
only around 5 % of total combustion noise.
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Figure A.1: PSD of the pressure signal recorded in the CESAM-HP test bench with
the three operating points Op16-0-2, Op16-2-0 and Op13.4-4.6-0. The highest
activity can be observed in the low frequency region below 1000 Hz with distinct peaks
that are associated with a combustion instability and a high direct combustion noise
contribution.

Two reasons can be identi�ed for the low indirect combustion noise contribu-
tion: (1) As described in the previous paragraph the strongest velocity and
heat release �uctuations in the combustor can be observed in the injector re-
gion. The resulting combustion instability generates pressure oscillations with
amplitudes of several orders of magnitude larger than combustion noise (cf. the
SPL diagram in �gure A.1). Thus the direct combustion noise contribution is
far above the indirect combustion noise one. (2) Classic aeronautic combustion
chambers feature a secondary air injection which helps to cool the chamber
walls and the burnt gases. As a second e�ect, temperature inhomogeneities are
added to the burnt gases. These are accelerated in the �rst turbine stages and
lead to indirect combustion noise generation. The present combustion chamber
does not feature such a secondary injection through the chamber walls for the
sake of simplicity.

Based on these observations, three combustor modi�cations are proposed: (1)
The installation of a �ame holder at the chamber entry. The idea is that the
�ame would stabilize on the �ame holder and thus have a more constant posi-
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tion in the chamber. This would decrease the heat release �uctuations of the
�ame and thus direct combustion noise. (2) A separate fuel injection in or-
der to change the combustion to partially premixed. While previous work has
shown that this leads to an increase of the noise emission of the �ame (Singh
et al. (2005); Duchaine et al. (2009)), no attempts were made to estimate the
contributions of direct and indirect combustion noise. For example �uctuations
in equivalence ratio would lead an oscillation of the reaction rate in the �ame.
This would ultimately lead to �uctuations of density in the �ame and thus also
of density in the burnt gases. Since these are accelerated by the exhaust nozzle,
these density �uctuations would �nally lead to increased �uctuations of indirect
combustion noise. However, this contribution cannot be quanti�ed beforehand.
Hence this type of �ame is tested here. The associated modi�cation of the
combustor and its veri�cation are presented in section A.5. (3) Introduction of
a secondary air�ow via the chamber walls. The aim is to increase the temper-
ature �uctuations of the burnt gases by injecting cold air downstream of the
�ame. This modi�cation is presented in section A.6.

A.2 Experimental procedure to verify the e�ective-
ness of the modi�cations

In order to evaluate the e�ectiveness of the proposed modi�cations, several
indicators are chosen. These need to be able to easily compare di�erent modi�-
cations and operating points. To do so, the following aspects need to be taken
into account:

• The RMS of the pressure �uctuations

• The contribution of direct and indirect combustion noise

• The tendency of the �ame to �ashback into the injector

The level of pressure �uctuations is determined by the RMS of the measured
pressure signal pmeas. This indicator has the aim to give insight about the in-
tensity of the combustion instability. The results in chapter 4 and 7 show that
in general it is stronger than all other acoustic phenomena. In the present ex-
periments, the sensor is installed on the closest position to the exhaust nozzle,
on position 4. The functioning and installation of the in-chamber KISTLER
sensors is presented in chapter 1 and is not repeated here.

The contribution of direct and indirect combustion noise is based on the theo-
retical chamber pressure pcal calculated from the signal of the photomultiplier
observing the entire combustion chamber. Its functioning, as well as the method
to calculate the theoretical pressure, is presented in chapter 7. The direct com-
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bustion noise contribution is estimated by calculating the mean coherence be-
tween these two pressure signals. As a reminder, the coherence describes, to
what extent they are linked in the frequency domain and is determined by the
equation:

C12 =
|G12|2

G11G22
(A.1)

with G12 the cross spectral density between two signals and G11 and G22 the
autospectral density of each of the signals. The advantage of this approach is
that it does not depend on the amplitudes of the signals. In his case the two
signals are pmeas and pcal, taking into account that pcal does not have the cor-
rect magnitude (as described in chapter 7). Therefore, the coherence between
those two signals is regarded, since it does not depend on the magnitude.

Flashback is a phenomenon which can lead to excessive heating of the injector
and possibly to its damaging. The strong tendencies for �ashback of this test-
bench was demonstrated in a joint numerical and experimental study (Lapeyre
et al. (2016)). Thus this criterion is relevant for the analysis in this chapter.
The existence of the �ame in the injector is veri�ed experimentally. This is done
with an optical �ber with direct optical access in the injector which is linked
with a PM probe. As described in chapter 1, the presence of the �ame leads to
an increase of the PM signal. In this chapter, two values are regarded, the mean
PM intensity and the RMS PM intensity. The mean PM intensity accounts for
the mean position of the �ame and allows to draw conclusions about static
�ashback of the �ame. The RMS PM intensity is related to �uctuations of the
�ame base and thus to dynamic �ashback. The obtained PM signal is kept in
Volts, as it only observes a small part of the �ame. It is thus not possible to
create an equation which links the PM signal intensity and another physical
variable quantitatively.

Three measurements are taken simultaneously during the experiments: (1) The
in-chamber pressure via a Kistler 4045A piezo-sensor, (2) the OH* chemilumi-
nescence in the combustion chamber via the PM "total" (as described in chap-
ter 1) and (3) the OH* chemiluminescence in the injector via the PM connected
to the optical �ber. In these tests, the only parameters that are varied are the
direct air injection ṁjet and the bias air injection through the perforated plate
of the ICS ṁICS . A description of these two injections can be found in chap-
ter 1. These two air�ows are varied in 0.5 g/s steps and the experiments are
conducted for all their combinations. In these experiments, ṁjet is varied from
0 g/s to 4 g/s and ṁICS from 0 g/s to 2 g/s. Other parameters are kept con-
stant in these experiments. For all the tested variations, the global equivalence
ratio is 0.85 and the total air mass �ow is 18 g/s, which corresponds to a power
level of 45 kW.
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A.3 Measurements in the fully premixed case with-
out secondary air

A.3.1 Presentation of the test case

The fully premixed case without secondary air corresponds to the default con-
�guration of the CESAM-HP test bench. The aim is to generate a set of data
that can be used as a reference in order to test the e�ectiveness of the proposed
modi�cations.

A.3.2 Experimental results

Figure A.2 shows the RMS pressure depending on the two mass �ow rates ṁjet

and ṁICS . The �gure shows that the pressure RMS increases equally when
ṁjet or ṁICS are increased and reaches values of over 10 kPa.
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Figure A.2: RMS pressure map of the fully premixed case

The PSD of pmeas and pcal are shown for four chosen operating points in �gure
A.3, as well as the coherence of the two signals. The chosen points are the
followings:

• Fully premixed, 0 g/s air through the central jet and 0 g/s air through
the ICS

• Fully premixed, 0 g/s air through the central jet and 2 g/s air through
the ICS

• Fully premixed, 2 g/s air through the central jet and 0 g/s air through
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the ICS

• Fully premixed, 2 g/s air through the central jet and 2 g/s air through
the ICS

The PSD show that the four operating points are dominated by the low fre-
quency instability that was already described in this thesis. It can also be seen
that the spectra of pmeas and pcal are vey similar. This can also be seen in
the coherence diagram, where very high values are reached for most of the fre-
quency range. Especially for the instability frequency and its harmonics, the
coherence between the two signals is almost 1, while it is slightly lower in the
broadband part.
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Figure A.3: PSD at 0 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.

Figures A.4 and A.5 present respectively the mean and RMS intensity of the
PM that is installed in the injector. Both have a small value when the sum
of axial �ows is around 2 g/s and increases for all other values. Especially the
RMS increases with an increasing jet mass �ow rate.
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Figure A.4: Mean injector PM intensity map of the fully premixed case
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Figure A.5: RMS injector PM intensity map of the fully premixed case

The increasing RMS pressure shows that the axial air �ow, whether it is ṁjet

or ṁICS , leads to an increase in the chamber pressure �uctuations. As demon-
strated in chapter 7 these �uctuations are mostly caused by the dynamics of
the �ame itself. The increase of axial air �ow seems to increase �uctuations in
the �ame surface, especially in the injector, as can be seen by the increasing
RMS PM intensity there. These increasing dynamics mean, that the gener-
ated pressure oscillations are probably related to direct combustion noise. The
results of pmeas and pcal con�rm this assumption as their coherence is almost
everywhere above 0.7 and increases (even when very slightly) with increasing
axial mass �ow rates. Also, the intensity of the PM measurements in the in-



Appendix A - Potential improvements of the test bench 219

jector indicates the position of the �ame in the injector. Both values increase
when ṁjet or ṁICS are increased. This means that the �ame �ashes back into
the injector in two ways. On one hand the increase of the mean PM intensity
shows that the mean �ame position is more upstream in the injector. On the
other hand the increase of the RMS PM intensity shows that the �ame �uctua-
tions in the injector are stronger. Especially the former observation is striking,
since the axial injection has the aim to counterbalance �ashback. The results in
this section however show, that too high axial air �ows have the contrary e�ect.

A.4 E�ects of �ame stabilisation by a �ame holder
rod in the injector

A.4.1 Presentation of the modi�cation

One of the proposed modi�cations is the use of a rod as a �ame holder. The
aim is to achieve a stabilization of the �ame on the rod. This assumption is
based on previous works that have shown that the use of a blu� body (such as
the rod) leads to the creation of a recirculation zone around the body (Kovitz
and Fu (1961)). This zone stabilizes the �ame and thus not only leads to lower
�ame surface �uctuations, but also prevents the �ame from �ashing upstream
into the injector. The former e�ect leads �nally to lower heat release �uctua-
tions of the �ame and thus possibly to less direct combustion noise. The latter
e�ect is important for operational safety, since �ashback can lead to damages
of the injector.

A schematic drawing of the injection system with the installed �ame holder rod
can be seen in �gure A.6. The central rod is �xed in the central jet arrangement
and its tip is located 10 mm upstream of the combustion chamber entry. The
consequence of this installation is that ṁjet cannot be varied for the partially
premixed cases. Thus the only varied air mass �ow rate is ṁICS

Figure A.6: Modi�ed injector with the �ame holder rod



220Appendix A - Effects of flame stabilisation by a flame holder rod in

the injector

A.4.2 Experimental results

The RMS pressure depending on the axial air mass �ow rate through the ICS
is shown in �gure A.7. The �gure shows that, apart from 0g/s axial �ow, the
installation of the rod leads to a reduction of the RMS pressure of around 20
to 30 %.
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Figure A.7: RMS pressure in dependence from the ICS bias air �ow rate for fully
premixed combustion with and without �ame holder rod

The PSD of pmeas and pcal are shown for three chosen operating points in �gure
A.8, as well as the coherence of the two signals. For each operating point, the
results with and without �ame holder rod are shown. The chosen points are
following:

• Fully premixed, 0 g/s air through the central jet and 0 g/s air through
the ICS

• Fully premixed, 0 g/s air through the central jet and 1 g/s air through
the ICS

• Fully premixed, 0 g/s air through the central jet and 2 g/s air through
the ICS

The PSD show that all operating points are dominated by the low frequency
instability that was already described in this thesis, independently on the ex-
istence of the rod. The spectra do not seem to depend from the existence of
the rod, except for the �rst operating point, where the peak amplitude slightly
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increases. It can also be seen that the spectra of pmeas and pcal are very similar.
The same observation is made in the coherence diagram, where very high val-
ues are reached for most of the frequency range and are not changed by the rod.
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Figure A.8: PSD at 0 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.

The e�ect of the �ame holder rod on static and dynamic �ashback is shown in
�gure A.9 and A.10. These show respectively the mean and the RMS intensity
of the PM signal measured in the injector. The measurements show that the
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rod leads to a systematic reduction of both, mean and RMS signals.
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Figure A.9: Mean injector PM signal in dependence from the ICS bias air �ow rate
for fully premixed combustion with and without �ame holder rod
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Figure A.10: RMS injector PM signal in dependence from the ICS bias air �ow rate
for fully premixed combustion with and without �ame holder rod

The results suggest that the �ame holder rod indeed leads to a stabilization of
the �ame. The decrease in RMS pressure indicates that the �ame generates
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lower pressure �uctuations. Since these are also related to a periodic move-
ment of the �ame (as shown and discussed in chapter 4) these results would
mean that the �ame is more stabilized. These assumptions are supported by
the �ndings with the PM installed in the injector. As the RMS intensity of the
signal measured by the PM is reduced, it can be deduced that the movement
of the oscillations of the �ame position in the injector are probably reduced as
well. This means that the �ame base is probably attached to the �ame holder
rod. The mean signal measured with the PM supports this, as it shows that
the �ame holder rod leads to a reduction of the mean signal. The �ame base
is thus positioned more downstream than it would be without the rod.

However this stabilisation seems not to have an impact on the direct combus-
tion noise contribution. The comparison of pmeas and pcal shows that it barely
depends on the existence of the rod or not. This means that it does not have an
in�uence on the coherence of the measured pressure signal and the theoretically
calculated one. This possibly means that the �ame rod does not in�uence the
repartition of the generated direct and indirect combustion noise. As the heat
release �uctuations of the �ame are reduced by this measure, the heat release
�uctuations in the burnt gases are probably reduced in the same extent. The
e�ect is thus that the repartition of total combustion noise into its direct and
indirect parts remains unchanged.

A.5 E�ects of �ame stabilisation by a �ame holder
rod in the injector and partially premixed oper-
ation due to separate fuel injection

A.5.1 Presentation of the modi�cation

Figure A.11: Modi�ed injector including the separate fuel injection. The fuel injec-
tion is installed in the last element before the combustor. The drawing also includes
the �ame holder that stabilizes the �ame.
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Figure A.12: Schematic drawing of the fuel injector element including the �ow di-
rections of the fuel.

As described before, the separate injection of fuel and air has the aim to obtain
a partially premixed operation. A schematic drawing of the injector with the
modi�ed fuel injection system is shown in �gure A.11. It is inspired from an
arrangement previously used by Peterleithner et al. (2016). The drawing shows
that the tangential stage only injects air, while all fuel is injected by an injector
right before the combustion chamber. This fuel injector stage consists of a
plenum which allows for an equal distribution of the fuel over the diameter (see
�gure A.12). The fuel is injected from this plenum over eight equally distributed
ori�ces with a diameter of 2mm each. The dimensions have been chosen in a way
that the fuel entry velocity has a value of around 20 m/s and hence corresponds
to the bulk air velocity. As presented by Gruber et al. (1995) the quality of
premixing depends on the ratio of the momentums of the bulk air �ow and the
injected fuel:

J =
ρfuel · u2fuel
ρair · u2air

(A.2)

with ρfuel and ρair respectively the density of fuel and air and ufuel and uair
respectively the velocity of the injected fuel and the velocity of the bulk air
�ow. When assuming an equal velocity for both �ows, a density of 2 g/s for
the fuel and 1.2 g/s for air, the equation results to 1.67. The momentums of
both �ows are thus close to each other. This condition enhances the mixing as
shown by Schetz and Billig (1966).
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The presented fuel injector replaces the most downstream piece of the original
injector right before the combustion chamber. As a consequence all lengths and
dimensions of the combustor remain the same.

First tests however show that the �ame cannot be maintained under this con-
�guration. This issue is solved by the central �ame holder rod that is presented
in section A.4 and stabilizes the �ame. The central rod is �xed in the central jet
arrangement and its tip is located 10 mm upstream of the combustion chamber
entry. As in section A.4, the consequence of this installation is that ṁjet cannot
be varied for the partially premixed cases. Thus the only varied air mass �ow
rate is ṁICS

A.5.2 Experimental results

In literature it is described that the partially premixed case is less stable than
the fully premixed one. This explains the necessity of the central body which
acts as a �ame holder. Without this modi�cation, no �ame can be sustained.
The consequence is that only the air �ow coming through the ICS ṁICS can
be varied.

Figure A.13: Flame shape of Op16-0-2 at fully premixed and partially premixed
functioning

Figure A.13 shows photographs of the fully premixed and partially premixed
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�ame for Op16-0-2. It can be seen on the �gures that both �ames have a
conical shape. However a variety of di�erences can be observed compared to
the partially premixed �ame. Its colour is di�erent and less blue, which is due
to the fact that it is not fully premixed. Besides, the �ame length is higher than
in the fully premixed case. Indeed, the �ame plume �lls the entire combustion
chamber for partially premixed operation. Furthermore, a red glowing can be
observed in the injector. This glowing belongs to the �ame holder rod that is
heated up by the �ame.

The e�ects of partial premixing are shown in �gures A.14 to A.17. In these
experiments, only ṁICS is varied due to the installation of the �ame holder.

The RMS pressures are compared in �gure A.14. It can be seen, that the par-
tially premixed �ames have a far higher RMS pressure than the fully premixed
ones. It attains values which are twice to three times as high.
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Figure A.14: RMS pressure in dependence from the ICS bias air �ow rate for fully
premixed and the partially premixed case

The PSD of pmeas and pcal are shown for six chosen operating points in �gure
A.15, as well as the coherence of the two signals. Two parameters are varied, the
axial air �ow rate through the ICS and whether the �ame is fully or partially
premixed. The chosen points are thus the following:

• Fully premixed, 0 g/s air through the central jet and 0 g/s air through
the ICS
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• Partially premixed, 0 g/s air through the central jet and 0 g/s air
through the ICS

• Fully premixed, 0 g/s air through the central jet and 1 g/s air through
the ICS

• Partially premixed, 0 g/s air through the central jet and 1 g/s air
through the ICS

• Fully premixed, 0 g/s air through the central jet and 2 g/s air through
the ICS

• Partially premixed, 0 g/s air through the central jet and 2 g/s air
through the ICS

The PSD show that all operating points are dominated by the low frequency
instability that was already described in this thesis, whether the �ame is fully
or partially premixed. However the partially premixed case has far higher am-
plitudes. It can also be seen that the spectra of pmeas and pcal are very similar.
However a big di�erence can be seen above 600 Hz, where pcal has higher am-
plitudes in the peaks than pmeas. The consequence is that the coherence is low
in these frequencies for the fully premixed case. Apart from this, the coherence
in general attains the value of almost 1 at the instability frequency and its
harmonics.
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Figure A.15: PSD at 0 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.

The mean and RMS of the measurements of the injector PM are shown in
�gure A.16 and A.17. The values are above the values of the fully premixed
case, independently of ṁICS . Another interesting observation is that for the
partially premixed �ame, an increase of ṁICS leads to a decrease of the mean
and RMS injector PM signal.
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Figure A.16: Mean injector PM signal in dependence from the ICS bias air �ow rate
for fully premixed and the partially premixed case
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Figure A.17: RMS injector PM signal in dependence from the ICS bias air �ow rate
for fully premixed and the partially premixed case

The high pressure RMS corresponds to the �rst observation that the separate
fuel injection leads to a more unstable �ame. The pressures pmeas and pcal
and their coherence give insight about the in�uences of the modi�cation on
direct combustion noise. The modi�cation of the injection system clearly leads
to a decrease of the coherence between these two signals. This means that
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for partially premixed combustion, a smaller part of the measured pressure
�uctuations can be associated with the heat release �uctuations of the �ame.
These results could be an indicator for an increase in indirect combustion noise,
however the measurements taken here are not su�cient to draw this conclusion.

The �ashback behaviour can be deduced from the injector PM measurements.
The mean and RMS values are below the values of the fully premixed case. The
explanation for the low static �ashback is straightforward: As fuel and air get
in contact just before the entry of the combustion chamber, it is not possible
that the �ame �ashes back into the injector. Another interesting observation is
the fact, that an increase of the axial air �ow decreases �ashback. This means
that while the axial �ow pushes the partially premixed �ame downstream, it
seems to destabilize the fully premixed �ame.

A.6 E�ects of secondary air injection through the
chamber walls

A.6.1 Presentation of the modi�cation

Figure A.18: Schematic drawing of the CESAM-HP testbench updated by the sec-
ondary air injection through the chamber walls.

The secondary air injection through the combustion chamber walls has the aim
to increase the temperature inhomogeneities in the burnt gases. A schematic
drawing of the CESAM-HP test bench with the secondary air injection is shown
in �gure A.18. The injection is integrated in the pressure sensor ports of the
chamber walls. Their geometry is presented in chapter 1. The secondary air is
injected in sensor position 3 (at x = 87.5 mm) on the upper and lower cham-
ber walls. This position has been chosen in order to inject more downstream
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than the �ame in order to increase the temperature �uctuations in the burnt
gases. Besides, the choice of the position takes into account that a pressure
sensor is already installed at position 4. The total secondary air�ow is limited
by the diameter of the ori�ces in the chamber walls and has been chosen equal
to 0.25 g/s per entry, thus 0.5 g/s in total. This accounts for less than 3 % of
the total air mass �ow of 18 g/s. With a diameter of 2 mm of the injection ori-
�ces, the mass �ow rate of the secondary air injection corresponds to a velocity
of about 66 m/s at ambient conditions.

Knowing the �ow velocities, the ratio of momentums can be estimated with the
following equation (Gruber et al. (1995)):

J =
ρsecair · u2secair
ρburnt · u2burnt

(A.3)

with ρsecair and ρburnt respectively the density of air and the burnt gases and
usecair and uburnt respectively the velocity of the secondary air jets and the ve-
locity of the burnt gases. When assuming a velocity 8 m/s for the burnt gases,
a density of 0.3 g/s for the burnt gases and 1.2 g/s for air, the equation results
to 272. The momentums of secondary jets is thus far above that of the bulk �ow.

Three cases are tested with the secondary air injection, the con�guration with
fully premixed combustion without �ame holder rod, the con�guration with
fully premixed combustion with �ame holder rod and the con�guration with
partly premixed combustion with �ame holder rod.

A.6.2 Experimental results of the fully premixed case with sec-
ondary air injection

The �gures A.19 to A.22 show the di�erent measurements with ṁICS going
from 0 g/s to 2 g/s and ṁjet from 0 g/s to 3.5 g/s. For ṁjet values above 3.5 g/s,
no stable �ame can be achieved due to blowing out.

The RMS pressures for this case are presented in �gure A.19. They have the
same tendency as without the secondary air injection (see section A.3), but with
a higher level for all cases. Indeed, the pressures reach values above 12000 Pa,
which is an increase of 20 % compared to the case without secondary injection.
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ṁ
I
C
S
[g
/s
]

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

R
M

S
 P

re
s

s
u

re
 [

P
a

]

0

5000

10000

15000

Figure A.19: RMS pressure map of the fully premixed case with secondary air injec-
tion

The PSD of pmeas and pcal are shown for eight chosen operating points in �gure
A.20, as well as the coherence of the two signals. Two parameters are varied,
the axial air �ow rate through the ICS and whether �ame is fully or partially
premixed. The chosen points are thus the following:

• Fully premixed, 0 g/s air through the central jet and 0 g/s air through
the ICS

• Fully premixed with secondary air injection through the chamber walls,
0 g/s air through the central jet and 0 g/s air through the ICS

• Fully premixed, 0 g/s air through the central jet and 2 g/s air through
the ICS

• Fully premixed with secondary air injection through the chamber walls,
0 g/s air through the central jet and 2 g/s air through the ICS

• Fully premixed, 2 g/s air through the central jet and 0 g/s air through
the ICS

• Fully premixed with secondary air injection through the chamber walls,
2 g/s air through the central jet and 0 g/s air through the ICS

• Fully premixed, 2 g/s air through the central jet and 2 g/s air through
the ICS

• Fully premixed with secondary air injection through the chamber walls,
2 g/s air through the central jet and 2 g/s air through the ICS
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The PSD show that all operating points are dominated by the low frequency
instability that was already described in this thesis. It can also be seen that
the spectra of pmeas and pcal are very similar. However the secondary air in-
jection seems to damp the instability peaks slightly. The consequence is that
the coherence is slightly reduced in these frequencies. Apart from this, the
coherence in general attains the value of almost 1 at the instability frequency
and its harmonics.
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Figure A.20: PSD at 0 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.
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The mean and RMS intensity of the PM in the injector is shown in �gures A.21
and A.22 and features similar values for low axial air �ows. At higher ṁjet,
particularly the RMS intensity is increasing.
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Figure A.21: Mean injector PM intensity map of the fully premixed case with sec-
ondary air injection
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Figure A.22: RMS injector PM intensity map of the fully premixed case with sec-
ondary air injection

These observations show that the axial injection has a non-negligible in�uence
on the overall acoustic level, as the RMS is increasing independently from the
�ow split between ṁjet and ṁICS . The coherences between pmeas and pcal on
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the other hand stay the same, which means that this measure seems to have
almost no impact on direct combustion noise contribution. This might be re-
lated to the fact, that the combustion instability, that was put into evidence in
chapter 4 is acting on the entire �ow and �ame. Thus even if the wall injected
air enters at very high velocities, it probably experiences the same combustion
instability related velocity �uctuations as the rest of the combustion chamber.

As elaborated in section A.2, the mean and RMS intensity of the injector PM
are associated with static and dynamic �ashback respectively. The measure-
ments show that especially at higher jet �ows, dynamic �ashback is increasing.
A possible reason might be the direct interaction between the secondary �ows
and the �ame. Indeed, the �ame visualizations in chapter 2 show that a high
jet �ow rate leads to a lower swirl angle and a longer �ame with stronger axial
�uctuations. Hence, contrary to the cases with lower axial air �ow rates, the
�ame might reach the axial position of the secondary injections. This might
also be an explication for the decreased functioning range, however this hy-
pothesis is not regarded further here.

A.6.3 Experimental results of the test with secondary air in-
jection when using a �ame holder rod and/or a separate
fuel and air injection

As described before, the partially premixed �ame can only be operated with
a rod as a �ame holder. Thus the only mass �ow rate that is varied is ṁICS .
The experimental data obtained for this variation are presented in �gure A.23
to A.25. These diagrams include the six possible combinations:

• Fully premixed combustion without �ame holder rod or secondary air
injection

• Fully premixed combustion without �ame holder rod and with secondary
air injection

• Fully premixed combustion with �ame holder rod and without secondary
injection

• Fully premixed combustion with �ame holder rod and with secondary
injection

• Partially premixed combustion with �ame holder rod and without sec-
ondary injection

• Partially premixed combustion with �ame holder rod and with sec-
ondary injection
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The RMS pressures are presented in �gure A.23. It can be seen, that the sec-
ondary air �ow leads to a slight increase of the pressure RMS when ṁICS is
increased. However, the di�erence is far below the di�erence due to the change
of the fuel injection system. It can also be seen that the fully premixed test
cases have similar RMS pressures, independently from the existence of the �ame
holder rod.
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Figure A.23: RMS pressure in dependence from the ICS air �ow rate for the di�erent
con�gurations

The injector PM measurements are shown in �gure A.24 and A.25. For fully
premixed operation mean and RMS PM intensities are a weakly a�ected by the
existence of the secondary air injection. The only exception is at an ṁICS of
0.5 g/s, where the secondary air injection leads to a decrease of the PM signal
RMS by almost 50 %. This observation is made during several repetitions of
the experiment, however no explanation can be given. For fully premixed com-
bustion the �ame holder rod leads to a decrease in the mean PM signal. For
partially premixed operation the secondary air injection through the chamber
walls decreases the mean injectior PM signal, but even more the RMS.
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Figure A.24: Mean injector PM signal in dependence from the ICS air �ow rate for
the di�erent con�gurations
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Figure A.25: RMS injector PM signal in dependence from the ICS air �ow rate for
the di�erent con�gurations

The �ashback behaviour can be deduced from the injector PM measurements,
since the magnitude of the signal indicates the presence of the �ame in the
injector. It is shown that for fully premixed �ames the secondary air injection
has no in�uence, neither on static nor on dynamic �ashback. The reason can
be the fact that the �ame is rather compact (as shown in �gure A.13) and thus
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not in direct contact with the secondary air injection. Therefore, its existence
should not have any in�uence on the behaviour in the injector. An exception
can be observed for an ṁICS of 0.5 g/s. However no explanation can be given
here. The installation of the �ame holder rod in general decreases the mean
intensity that is measured by the PM. This is probably related to the fact that
the premixed �ame is �xed on the rod and has thus a lower tendency to �ash
back further upstream. In partially premixed �ames the secondary air injec-
tion decreases both the mean and RMS intensity of the PM signal. This means
that the �ame base is more downstream and �uctuates less. A reason for this
in�uence might be the higher length of the partially premixed �ame, as can be
seen in �gure A.13. However this does not explain why the secondary air leads
to a decrease of both. This question is not answered here as it is out of the
scope of this thesis.

A.7 Analysis of the PSD of measured and theoretical
pressure for all tested con�gurations

In this section the PSD of the measured and the theoretically calculated pres-
sure as well as their coherence are analysed for all tested cases in order to obtain
insight about direct and indirect combustion noise contribution. The chosen
variations are the following:

• Fully premixed combustion without �ame holder rod or secondary air
injection

• Fully premixed combustion without �ame holder rod and with secondary
air injection

• Fully premixed combustion with �ame holder rod and without secondary
injection

• Fully premixed combustion with �ame holder rod and with secondary
injection

• Partially premixed combustion with �ame holder rod and without sec-
ondary injection

• Partially premixed combustion with �ame holder rod and with sec-
ondary injection

For this test, the axial air mass �ow rate through the ICS ṁICS is varied from
0 to 2 g/s by steps of 1 g/s. The �gures thus show the PSD for the test cases
described in section A.6.3.
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The PSD and the coherence for the operating point with 0 g/s ICS air are
shown in �gure A.26. All spectra show similarities, especially the fact that
they feature the low frequency peak associated to the combustion instability
and its harmonics. The PSD for the theoretical and the measured pressure are
in particular similar for all fully premixed cases. The secondary air injection
through the chamber walls on the other hand seems to damp the low frequency
peaks for the case with �ame holder rod. The PSD amplitudes are far higher
for the partially premixed cases. Two other interesting observations can be
made for these two cases: (1) The existence of the secondary air injection leads
to a slight decrease of the main eigen frequency and thus also its harmonics.
(2) While the distinct peaks are well represented in the spectra for both the
measured and the theoretical pressures below 600 Hz, this is not the case for
higher frequencies. At higher frequency the peaks have a higher relative ampli-
tude for the theoretically calculated pressure while for the measured pressure
they are almost completely damped.

These observations made on the PSD have an e�ect on the coherence of the
two pressures. The coherence is in general high at the frequencies of the dis-
tinct peaks, where its value reaches 1. Outside these peaks, the coherence is
lower, in particular for the partially premixed cases at frequencies above 600
Hz. This is probably due to the fact that these peaks are of lower amplitude
for the measured pressure. The fully premixed cases, on the other hand have a
high coherence over the biggest part of the regarded frequency span.
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Figure A.26: PSD at 0 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.

The PSD and the coherence for the operating point with 1 g/s ICS air are shown
in �gure A.27. The observations are very similar to that of the operating point
0g/s axial air mass �ow rate. The di�erence is that the low frequency peaks
have a higher amplitude for the premixed cases. Besides, the secondary air
injection through the chamber walls still seems to damp these peaks, however
to a lower extent. Also it can be observed that the existence of the �ame holder
rod as well as of the secondary air injection lead to a small shift of the main low
frequency peak and its harmonics. The observations made for the coherence
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are similar to that for �gure A.26.
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Figure A.27: PSD at 1 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.

The other operating point shown in �gure A.28 shows a similar tendency as
described for the two previous ones. With increasing axial mass �ow rate, the
amplitudes of the fully premixed cases without secondary mass �ow rate are
slightly increasing while the frequency shift is decreasing. The increase of the
axial mass �ow rate also leads to a higher PSD amplitude which is closer to
that of partially premixed case. The coherences displayed in these �gures sys-
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tematically increase with an increasing axial mass �ow rate, especially for the
fully premixed cases.
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Figure A.28: PSD at 2 g/s axial air �ow through the perforated plate of the measured
pressure (top image) and the theoretically calculated pressure (middle image) for the
di�erent con�gurations. The bottom image shows the coherence of these two pressures.

The observations made for the spectra and the coherences can be related to the
results in section A.6.3. The results show for the fully premixed cases, that the
�ame holder rod does not have a big in�uence on the PSD and the coherence.
The only di�erence is a small reduction of the PSD amplitude when using the
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�ame holder rod. This corresponds to the stabilisation of the �ame on the rod,
which leads to a reduction of the �ame movement and thus to lower oscilla-
tions of heat release and �nally pressure. However the coherence stays almost
the same for this modi�cation for the entire frequency range, which probably
means that the in�uence on the distribution of combustion noise on its direct
and indirect parts is limited.

The secondary air injection also has very limited in�uence on the PSD. It leads
to a reduction of the PSD amplitudes for the fully premixed cases and even
more it leads to a small frequency shift of the distinct peaks. A possible expla-
nation can be a decrease of temperature for the partially premixed case, which
decreases the speed of sound and thus the frequency.

The partially premixed cases on the other hand have a very low coherence,
especially for frequencies above 600 Hz. This is related to the fact that at
these frequencies, the peaks have di�erent amplitudes for the theoretical and
the measured pressure.

A.8 Conclusion

In this chapter, three major modi�cations of the CESAM-HP test bench are
presented and their e�ectiveness is tested. They have the aim to increase overall
indirect combustion noise contribution. The motivation is the fact, that indi-
rect combustion noise makes up only around 5 % of total combustion noise (cf.
chapter 4). The �rst modi�cation is the installation of central �ame holder
rod for �ame stabilization. The second one is a separate fuel injection. This
changes the combustor functioning to a partially premixed operation. The third
modi�cation is the introduction of a secondary air injection through the cham-
ber walls. The goal is to add inhomogeneities to the burnt gases, which would
directly increase indirect combustion noise.

The modi�cations are veri�ed by testing di�erent combinations of direct air
�ow ṁjet and ICS bias air �ow ṁICS . The results show that the installation
of a separate fuel injection in general increases the pressure �uctuations, how-
ever the peak amplitudes between the theoretically calculated pressure (related
to direct combustion noise) and the measured pressure PSD are di�erent at
frequencies above 600 Hz. This might be an indicator for a di�erent source
than direct combustion noise, however the conducted test do not allow to make
further conclusions. The secondary air �ow and the �ame holder rod, on the
other hand decrease direct noise contribution by only very little.

These results allow for the conclusion that non premixed operation can be an
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interesting perspective in order to increase the indirect combustion noise gen-
eration in the combustor. However, further experiments need to be conducted
in order to verify whether the added sound contribution is indeed indirect com-
bustion noise. Di�erent geometries and �ow rates would be needed to be tested,
also with laser-based diagnostics in order to identify the di�erences in �ow �eld
and �ame. Also the other two modi�cations need to be tested more in-depth
(with di�erent blu� body geometries and di�erent air mass �ow rates through
the chamber walls); since the chosen con�gurations only cover one of many
possible variations and con�gurations. Therefore the here performed tests do
not allow yet for a �nal conclusion concerning the e�ectiveness of these modi-
�cations.
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Titre : Etude expérimentale du bruit de combustion dans un foyer de type aéronautique 

Mots clés : Bruit de combustion, bruit entropique, instabilité de combustion, diagnostics à haute 

cadence 

Résumé : Le bruit de combustion est devenu un 

contributeur de plus en plus important dans le 

bruit total de moteur d'avion. Ce bruit global a 

deux composantes: Le bruit direct et le bruit 

indirect. Le premier est issu des fluctuations de 

dégagement de chaleur dans la flamme elle-

même. Le deuxième a pour origine les 

inhomogénéités de température dans les gaz 

brûlés. L'objectif de ce travail est la conception 

d'un banc de combustion sous pression avec une 

flamme pauvre, prémélangée swirlée dont les 

paramètres d'injection permettront d'obtenir des 

grandes quantités de bruit indirect. 

 

Il est nécessaire de caractériser ce banc et 

d'établir quelle est la part du bruit direct et de 

l'indirect afin d'identifier les sources de ces 

contributions. Pour cette caractérisation il est 

nécessaire d'utiliser différents diagnostics, de 

prendre en compte la résolution temporelle. Ces 

diagnostics à haute cadence permettent de 

caractériser les champs de vitesse et les 

dynamiques de flamme, les instabilités de 

combustion dans le système et ainsi évaluer les 

contributions du bruit direct et indirect. 

 

 

 

Title : Experimental study of combustion noise in an aeronautic type combustion chamber 

Keywords : Combustion noise, entropy noise, combustion instability, high-speed diagnostics 

Abstract : Combustion noise has become an 

increasing contributor of overall aircraft engine 

noise. It consists of two major parts, direct and 

indirect combustion noise. The former is 

generated by the heat release fluctuations of the 

flame itself. The latter is generated by the 

temperature inhomogeneities in the burnt gases, 

which are accelerated in the turbine stages or 

nozzle following the combustion chamber. 

The aim of this work is to design and build a 

pressurized lean swirling combustor test bench, 

in order to quantify the two contributions. 

The combustor is thus supposed to generate high 

quantities of indirect combustion noise. The 

second aim is then to determine the 

contributions of direct and indirect combustion 

noise quantitatively and to gain insight about the 

sources of the two contributions. These analyses 

are conducted by different high-speed 

diagnostics, which were worked on during this 

work. These diagnostics allow to characterize 

the flow fields and flame dynamics, to put 

forward the combustion instability in the system 

and finally to quantify the direct and indirect 

combustion noise contributions.  
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