
HAL Id: tel-01581003
https://theses.hal.science/tel-01581003

Submitted on 4 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design process for the optimization of embedded
software architectures on to multi-core processors in

automotive industry
Wenhao Wang

To cite this version:
Wenhao Wang. Design process for the optimization of embedded software architectures on to multi-
core processors in automotive industry. Automatic. Université de Cergy Pontoise, 2017. English.
�NNT : 2017CERG0867�. �tel-01581003�

https://theses.hal.science/tel-01581003
https://hal.archives-ouvertes.fr

Thèse de Doctorat
En vue de l’obtention du grade de

Docteur de l’Université de Cergy-Pontoise

Design process for the optimization
of embedded software architectures

onto multi-core processors
in automotive industry

Présentée et soutenue par

Wenhao WANG
École doctorale : Science et Ingénierie (SI)

Unité de recherche : Equipes Traitement de l’Information et Systèmes (ETIS)

Soutenance soutenue le 10 Juillet 2017

Devant le jury composé de :

M. Pierre BOULET Professeur Université de Lille Rapporteur
M. Laurent GEORGE Professeur ESIEE Paris Rapporteur
M. Daniel CHILLET Professeur Université de Rennes 1 Examinateur
Dr. Fabrice GRAVEZ Ingénieur Continental AG Cergy Examinateur
Dr. Sylvain COTARD Ingénieur KRONO-SAFE Orsay Invité
M. Olivier ROMAIN Professeur Université de Cergy-Pontoise Directeur
M. Benoît MIRAMOND Professeur Université Nice Sophia Antipolis Directeur adjoint
M. Fabrice CAMUT Ingénieur Valeo GEEDS Créteil Encadrant industriel

I

Acknowledgement

Les travaux présentes dans ce mémoire ont été réalisés dans le cadre d’une thèse

CIFRE entre le Labo d’Equipes Traitement de l’Information et Systèmes (ETIS),

unité de recherche commune au CNRS (UMR 8051), et du Groupe Valeo.

Je tiens à remercier M. Benoît Miramond,, mon directeur de thèse, pour la

confiance qu’il m’a témoigné et l’opportunité qu’il m’a donnée. Je lui remercie

pour ses conseils, son soutien et son disponibilité. Ses expériences et son expertise

ont été essentielles au bon déroulement d mes travaux.

Je tiens à exprimer toute ma gratitude à M. Fabrice Camut, mon encadrant

industriel chez Valeo, pour son investissement durant ma thèse, son soutien

continu, sa disponibilité et ses conseils avisés. Je tiens à lui remercier pour le temps

qu’il m’a consacré et sa pédagogie qui m’ont été très utiles.

Je remercie également M. Sylvain Cotard, grâce à qui ma thèse pouvait démarrer

sans encombre dans l’équipe « multicœur ».

J’exprime ma profonde gratitude à M. Daniel CHILLET, professeur à l’Université

de Rennes 1 pour m’avoir fait l’honneur de présider mon jury de thèses. Je

remercie également M. Pierre BOULET, professeur à l’Université de Lille, et M.

Laurent GEORGE, professeur à l’Ecole ESIEE Paris, pour avoir rapporté mon

manuscrit de thèse. Enfin, je remercie également Oliver Romain, professeur à

l’Université de Cergy-Pontoise et Dr. Fabrice Gravez, ingénieur chez Continental

AG Cergy d’avoir de participer à mon jury de thèse.

Je tiens aussi à remercier mes collègues chez Valeo et à l’ETIS, Ludovic Pintard,

Bruno Montane, Yunfei GAO, Sascha TENKLEVE, Laurent Benchadi, Jerome

Hugot, Jean-Jaque Cabrera, avec qui j’ai pu passer trois ans dans une ambiance

agréable.

Enfin, je remercie ma famille et mes amis qui sont essentiels dans la réussite de

mes projets et l’accomplissement de ce travail. Je remercie surement mon pote

Yohan, doctorat à l’ETIS, avec qui j’ai partagé des moments sportives et sympas.

Je remercie mes parents pour leur soutien.

II

Abstract

The recent migration from single-core to multi-core platforms in the automotive domain reveals great

challenges for the legacy embedded software design flow. First of all, software designers need new

methods to fill the gap between applications description and tasks deployment. Secondly, the use of

multiple cores has also to remain compatible with real-time and safety design constraints. Finally,

developers need tools to assist them in the new steps of the design process. Face to these issues, we

proposed a method integrated in the AUTOSAR (AUTomotive Open System ARchitecture) design

flow for partitioning the automotive applications onto multi-core systems. The method proposes the

partitions solution that contains allocation of application as well as scheduling policy simultaneously.

The design space of the partitioning is explored automatically and the solutions are evaluated thanks

to our proposed objective functions that consider certain criteria such as communication overhead

and global jitters. For the scheduling part, we present a formalization of periodic dependencies

adapted to this automotive framework and propose a scheduling algorithm taking into account this

specificity. Our defined constraints from real-time aspect as well as functional aspect make sure the

applicability of our method on the real life user case. We leaded experiments with a complex and

real world control application onto a concrete multi-core platform.

Résumé

La migration récente des plateformes mono-cœur vers le multi-cœur, dans le domaine automobile,

révèle de grands changements dans le processus de développement du logiciel embarqué. Tout

d’abord, les concepteurs de logiciel ont besoin de nouvelles méthodes leur permettant de combler le

fossé entre la description des applications (versus Autosar) et le déploiement de tâches.

Deuxièmement, l’utilisation du multi-cœur doit assurer la compatibilité avec les contraintes liées aux

aspects temps-réel et à la Sûreté de fonctionnement. Au final, les développeurs ont besoins d’outils

pour intégrer de nouveaux modules dans leur système multi-cœur. Confronter aux complexités ci-

dessus, nous avons proposé une méthodologie afin de repartir, de manière optimale, les applications

sous forme de partitions logiques. Nous avons ainsi intégré dans notre processus de développement,

un outil de distribution des traitements d’un système embarqué sur différents processeurs et

compatible avec le standard AUTOSAR (AUTomotive Open System ARchitecture). Les solutions

de partitionnement traitent simultanément l’allocation des applications ainsi que la politique

d’ordonnancement. Le périmètre d’étude du partitionnement est automatique, les solutions trouvées

étant évaluées par des fonctions de coût. Elles prennent aussi en compte des critères tels que, le coût

de communication inter-cœur, l’équilibrage de la charge CPU entre les cœurs et la gigue globale.

Pour la partie ordonnancement, nous présentons une formalisation des dépendances sous forme

périodiques pour répondre au besoin automobile. L’algorithme d’ordonnancement proposé prend en

compte cette spécificité ainsi que les contraintes temps-réel et fonctionnelles, assurant l’applicabilité

de notre méthodologie dans un produit industriel. Nous avons expérimenté nos solutions avec une

application de type contrôle moteur, sur une plateforme matérielle multi-cœur.

III

IV

Content

Acknowledgement... I

Abstract ... II

Résumé.. II

Content...IV

List of Figures ..VIII

List of Tables .. XII

Glossary ..XIV

Chapter 1 Introduction... 1

1.1 E/E automotive system .. 2

1.2 AUTOSAR Standard .. 3

1.2.1 AUTOSAR architecture overview.. 5

1.2.2 AUTOSAR approach overview .. 6

1.2.3 AUTOSAR Toolchain .. 7

1.3 Tendency in automotive industry and Multi-core systems .. 8

1.3.1 Multi-core architecture categories... 9

1.3.2 AUTOSAR in multi-core ... 10

1.3.3 Modeling details of AUTOSAR.. 10

1.4 Safety.. 15

1.5 Contribution and Thesis overview ... 15

Chapter 2 Relative works & problem formalization .. 18

2.1 Combinatorial Optimization.. 19

2.1.1 Simulated Annealing ... 21

2.1.2 Tabu Search ... 23

2.1.3 Evolutionary Algorithm ... 24

2.2 Formalization of the distribution problem ... 29

2.2.1 Architecture modeling .. 29

2.2.2 Application modeling .. 30

2.2.3 Partitioning .. 34

2.2.4 Cost function and constraint formalization... 35

2.2.5 Description of the optimum solutions searching method 36

V

2.2.6 Design space exploration .. 38

2.3 Autosar Application ... 40

2.3.1 Communication overhead in Autosar application ... 40

2.4 Related works in automotive domain .. 49

Conclusion.. 51

Chapter 3 Real-Time System scheduling .. 52

3.1 Real-time System scheduling overview.. 53

3.1.1 Basic notations ... 53

3.1.2 Real-Time Scheduling algorithms overview .. 55

3.1.3 Real-Time examination ... 62

3.1.4 Resource sharing .. 63

3.2 Dependant tasks scheduling ... 63

3.2.1 Related works on real-time scheduling of dependent tasks 63

3.2.2 Model of periodic precedence ... 65

3.2.3 Communication semantics in AUTOSAR: Explicit & Implicit.................................. 67

3.2.4 Dependent tasks scheduling in Single-core systems .. 69

3.2.5 Dependent tasks scheduling in Multi-core systems ... 76

3.3 Experimental results .. 81

Conclusion.. 84

Chapter 4 Developing process in automotive industry.. 87

4.1 Working process .. 88

4.1.1 Step I-Application description.. 89

4.1.2 Step II – Dependencies analysis – Model synthesis.. 90

4.1.3 Step III – Software distribution tool ... 92

4.1.4 Step IV - Configuration of the executive layer ... 96

4.1.5 Step V– Validation of execution ... 98

4.1.6 Prospective Step – Feedback and updates .. 99

4.2 Use case demonstration ..104

4.2.1 Application description and analysis ...105

4.2.2 Distribution results: Allocation ...106

4.2.3 Distribution results: Scheduling ..108

4.2.4 Validation on the target ...110

Chapter 5 Conclusion & Perspectives ...115

Conclusion...115

VI

Prospective ...116

ANNEX 1 ...117

Publications...135

Bibliography ...136

VII

VIII

List of Figures

Figure 1-An example of E/E Architecture... 3

Figure 2-Development revolution driven by AUTOSAR ... 4

Figure 3-AUTOSAR organization ... 4

Figure 4-Layered Software architecture of AUTOSAR (AUTOSAR, 2017).................................. 5

Figure 5-AUTOSAR methodology (AUTOSAR, 2017) ... 6

Figure 6-AUTOSAR Toolchain ... 7

Figure 7-Functionalities in vehicles.. 8

Figure 8-MBD approach with AUTOSAR.. 11

Figure 9-SWC description ... 12

Figure 10-BSW allocation example .. 14

Figure 11-Working process ... 16

Figure 12-One-point, two-point, and uniform crossover methods ... 28

Figure 13-Illustration of uniform order crossover .. 29

Figure 14-Hardware Architecture... 30

Figure 15-Variable access model ... 32

Figure 16-General transition model .. 32

Figure 17-Sources duplication for case1 ... 33

Figure 18-Sources duplication for case2 ... 33

Figure 19-Sources duplication for case3 ... 33

Figure 20-Sources duplication for case4 ... 33

Figure 21-Communications Bus... 34

Figure 22-Explanation for objective function. (a) Application; (b) Hardware model; (c) and (d)

Solutions considering different criteria. .. 36

Figure 23-An example of search result by SA ... 37

Figure 24-Synchronization example ... 38

Figure 25-Illustration of data mapping into memories ... 39

Figure 26-Communication in Autosar .. 42

Figure 27-Different levels of categories for communications ... 43

Figure 28-Distribution of the transitions for two chains ... 45

Figure 29- Determination period for non-periodic runnable R_A (assumption1) 48

Figure 30-Determination period for non-periodic runnable R_A (assumption 2) 48

Figure 31-Determination period for non-periodic runnable R_A (assumption 3) 48

Figure 32-Approach proposed by parMerasa .. 51

Figure 33-Task model ... 53

Figure 34-The scheduling of task (1, 3, 6, 6) ... 54

Figure 35-Periodic precedence 𝜏𝑖𝑀𝑖, 𝑗𝜏𝑗... 67

Figure 36-AUTOSAR communication: explicit read ... 67

Figure 37-AUTOSAR communication: implicit read... 68

Figure 38-AUTOSAR communication: explicit write .. 68

Figure 39-AUTOSAR communication: implicit write ... 68

Figure 40-AUTOSAR communication semantics influence on the dependency model................. 69

file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991411
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991416

IX

Figure 41-Example of start time... 71

Figure 42-Scheduling process .. 74

Figure 43-Example application .. 75

Figure 44-Generated schedule table ... 76

Figure 45- Example-I application in multi-core case ... 77

Figure 46-Scheduling multi-core example-I .. 78

Figure 47-Example-II application in multi-core case ... 79

Figure 48-Scheduling multi-core example-II... 79

Figure 49-Example of a highly parallelizable application architecture .. 80

Figure 50-Optimal makespan for the applications from an ideal architecture............................... 81

Figure 51-Experimental results obtained with synthetic applications: global jitter according to the

connection ratio for single-core and multi-core cases .. 82

Figure 52-Experimental results obtained with synthetic applications: make span according to the

connection ratio for single-core and multi-core cases .. 83

Figure 53-Comparison of approaches that consider different ordering metrics: the number of

schedulable applications .. 83

Figure 54-Working process for partitioning automotive application onto multi-core architectures 88

Figure 55-Integrated AUTOSAR Tool Environment ... 89

Figure 56-Example of sequence ... 92

Figure 57-Software distribution tool... 93

Figure 58-Preparation of graph .. 95

Figure 59-V-Model of development process ... 96

Figure 60-Generation RTE & OS codes by EB Tresos... 97

Figure 61-An example of re-working architecture for RTE configuration 97

Figure 62-An example of re-mapping the runnables to tasks .. 98

Figure 63-Execution time analysis per runnable (e.g. from a single-core platform) 99

Figure 64-Communications for runnable “RE_EngMGslT_018_TEV”......................................101

Figure 65-Execution time distribution of the runnables “RE_EngMGslT_018_TEV” for 6 solutions

...104

Figure 66-Statistic of transition (The left side is App_2 and the right APP_3)106

Figure 67-Distribution of the costs of all the partitioning solutions for application 𝐴𝑝𝑝_1. The cost

bands on the left represent the subset of solutions found by the GA, SA and TS methods. 106

Figure 68-Scalability of the execution time of SA and GA optimization methods.108

Figure 69-The count of transition for each series by periods of P_Runnables (EB-Mivie).119

Figure 70-The count of transition for communication type by periods of P_Runnables (EB-Mivie).

...120

Figure 71-The count of transition for each series by periods of P_Runnables (TDP).120

Figure 72-The count of transition for communication type by periods of P_Runnables (TDP).120

Figure 73-The count of transition compared the speed of producer to threshold (EB-Mivie).121

Figure 74-Sent data rate isolated by period of producer runnables (EB-Mivie).122

Figure 75-Sent data rate isolated by period of producer runnables (TDP).122

Figure 76-Sent data rate accumulated by period (EB-Mivie) ...122

Figure 77-Sent data rate accumulated by period (TDP)...123

Figure 78-Received data rate isolated by period of producer runnables (EB-Mivie).123

Figure 79-Received data rate isolated by period of producer runnables (TDP)............................124

file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991417
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991419
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991420
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991421
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991422
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991423
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991424
file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991433

X

Figure 80-Received data rate accumulated by period (EB-Mivie). ...124

Figure 81-Received data rate accumulated by period (TDP)..124

Figure 86-Communications between chains ...127

Figure 83-Distribution of the transitions in two chains ...128

file:///C:/Users/wenhao%20wang/Documents/Manuscrit/Manuscrit_WWANG_V6.docx%23_Toc489991458

XI

XII

List of Tables

Table 1-Physical unit of data ... 47

Table 2-Known bounds on worst-case achievable utilization (denoted U) for the different classes of

scheduling algorithms (Carpenter, et al., 2004) ... 58

Table 3-Tasks criteria ... 75

Table 4-Instances to be considered... 75

Table 5-Dependencies... 75

Table 6-Scheduling result.. 75

Table 7-Scheduling result for multi-core for example-I ... 78

Table 8-Scheduling result for multi-core for example-II .. 79

Table 9-Jitter of the example application .. 80

Table 10-Synthetic applications sets... 82

Table 11-Global jitter for different ordering metrics .. 84

Table 12-Allocations of the runnables that communicate with runnable

“RE_EngMGslT_018_TEV” ..104

Table 13-Applications information ...105

Table 14 Optimization results for application 𝐴𝑝𝑝_1by GA, SA and TS meta-heuristics.107

Table 15-Optimization results for application and by SA and GA meta-heuristic 107

Table 16 - Comparison of different scheduling policies for the generation of schedule tables. (Non

Sched =No Schedulable) ..109

Table 17-Estimation and validation results of the communication overhead on the Aurix TriCore

target ..111

Table 18-Estimation results on the CPU loads on the Aurix TriCore target111

Table 19-Constructional information of applications ..117

Table 20- Results of classification...118

Table 21-Transitions count in Class1 Series 1 ..118

Table 22-Transitions count in Class1 Series 2 ..118

Table 23-Transitions count in Class1 Series 3 ..119

Table 24-Physical unit of data ..126

Table 25-sequences results ...127

Table 26-Transitions analysis in two chains ...128

Table 27-data rate information of communications between chains for application TDP132

Table 28-data rate information of communications between chains for application TDP134

XIII

XIV

Glossary

ACO Ant Colony Optimization

ADAS Advanced Driver Assistance System

AMP Asymmetric Multi-Processing

API Application Programming Interface

ARXML AutosaR XML

ASIL Automotive Integrity Safety Level

AUTOSAR AUTomotive Open System ARchitecture

AWF Almost Worst-Fit

BF Best-Fit

BSW Basic SoftWare

CA Certification Authority

CAE Computer Aided Engineering

CAN Control Area Network

CO Combinatorial Optimization

CPU Central Processing Unit

CX Cycle Crossover

DAG Directed Acyclic Graph

DAS Distributed Application Subsystem

DM Deadline Monotonic

DMA Direct memory access

DRE Data Received Event

DSE Design Space Exploration

DSP Digital Signal Processor

E/E Electrical/Electronic

EA Evaluation Algorithms

EC Evolutionary Computation

ECU Electronic Control Unit

EDF Earliest Deadline First

EMS Engine Management System

EP Evolutionary Programming

ES Evolutionary Strategies

FAS Feedback Arc Set

FF First-Fit

GA Genetic Algorithms

XV

HiL Hardware in the Loop

HW HardWare

I/O Input/Output

IDE Integrated Development Environment

ILP Integer Linear Programming

IMA Integrated Modular Avionics

IOC Inter OS-Application Communicator

IRV Inter Runnable Variables

LIN Local Interconnect Network

LLF Least Laxity First

MBD Model-Based Design

MCAL MicroController Abstraction Layer

MMU Memory Management Unit

MoC Model of Computation

MOSA Multiobjective Simulated Annealing

MPU Memory Protection Unit

MSE Mode Switch Event

NF Next-Fit

NP Non-deterministic Polynomial

NSGA Non-dominated Sorting Genetic Algorithm

OEM Original Equipment Manufacturer

OIE Operation Invoked Event

OS Operating System

OSEK,
OSEK/VDX

Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug,
“Open Systems and the Corresponding Interfaces for Automotive Electronics”

PMX Partially Matched Crossover

P-OS Partitioned OS

QAP Quadratic Assignment Problem

RM Rate Monotonic

RTE RunTime Environment

RTOS Real-Time Operating System

SA Simulated Annealing

SDF Synchronous Data Flow

SMP Symmetric Multi-Processing

SMT Satisfiablity Modulo Theories

SPB System Peripheral Bus

SRI Shared Resource Interconnect

SWAT SoftWare Allocation Tools

XVI

SWC SoftWare Component

TEV Timing Event

TS Tabu Search

TSP Traveling Salesman Problem

VFB Virtual Functional Bus

WCET Worst Case Execution Time

WDGM WatchDoG Module

WF Worst-Fit

XVII

Chapter 1 Introduction

1.1 E/E automotive system... 2

1.2 AUTOSAR Standard .. 3

1.2.1 AUTOSAR architecture overview.. 5

1.2.2 AUTOSAR approach overview .. 6

1.2.3 AUTOSAR Toolchain .. 7

1.3 Tendency in automotive industry and Multi-core systems ... 8

1.3.1 Multi-core architecture categories... 9

1.3.2 AUTOSAR in multi-core ... 10

1.3.3 Modeling details of AUTOSAR.. 10

1.4 Safety.. 15

1.5 Contribution and Thesis overview.. 15

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

2

1.1 E/E automotive system

Over the past 20 years, a new way to design vehicles has been adopted in the automotive

industry. Many of the conventional mechanical and hydraulic control systems in vehicle have

been replaced by mechatronic system. The design of automotive systems is no longer one

single discipline issue; instead, it involves a multidisciplinary field of expertise such as

mechanical engineering, electronics, computer science, telecommunications technologies

and system/control engineering. The emergence of mechatronic authorizes the design of

automatic systems in order to control complex systems and also allows to minimize the

development cost compared to odd pure mechanical systems.

The Electrical/Electronic (E/E) system is a major constituent of mechatronic, which

regroups the electronics material and software in order to drive intelligently the mechanical

components as well as hydraulic components such that their functionalities could be

accomplished. In the automotive domain, the E/E architectures usually implement a

number of composite functions, which consist in all the vehicle’s components such as

sensors, input devices, ECUs with embedded control software, actuators, displays and

speakers, harnesses for data and power, battery and generator/alternator (Weber, 2009).

These individual components communicate with each other via the signals. Figure 1 shows

a typical example of E/E architecture, which is composed of sensors, processing

components and actuators. The actuators reacts according to the input generated by a sensor

(or given by other input devices) and controlled by the processing component. The E/E

hardware architecture provides the infrastructures where the applications accomplish their

functions. The typical criteria when studying the hardware include the computation power,

the number of cores, the number of I/O, etc. In automotive, the E/E hardware architecture

is composed of ECUs that are distributed in the car and are assigned with additional

hardware. The communications between ECUs are achieved via buses with a specific

protocol such as LIN (Local Interconnect Network), CAN (Control Area Network),

FlexRay, etc. The components are assigned to the ECUs and the signals are assigned to the

corresponding ECU if the relative components are allocated to the same ECU or assigned

to buses if they are allocated to different ECUs.

The E/E architecture is also evaluated according to the cost/bill of material that is governed

by the ECU cost and the cable between them. Another criterion to evaluate the E/E

architecture is ECU complexity that defines the average number of components allocated

to one ECU.

The traditional E/E architecture in automotive industry is designed in a federal way. It limits

the complexity of implantation as each major function is deployed to one dedicated ECU

and is provided as a black box by first-tier supplier. In addition to the clear responsibility of

allocation, the federal architecture has remarkable advantage as it facilitates fault

containment. The error propagation is limited thanks to its physical separation. Unless there

is direct functionality dependency between two functions, a faulty task in one ECU will not

affect other distant ECUs. The federal approach allows the system to integrate the different

distributed application subsystems (DAS) from different suppliers. However, the addition

Chapter 1 Introduction

3

of new DASs in the system imposes the addition of new ECUs and cables, which in turn

increases the number of ECUs in the cars and the complexity of communication in terms

of the physical infrastructure.

Figure 1-An example of E/E Architecture

Interestingly, the rapid increase of functional complexity as well as the potential cost saving

from system integration drives a fundamental shift in automotive architecture system from

federal architecture to the integrated architecture (Natale & Sangiovanni-Vincentelli, 2010).

This revolution allows the implementation of several DASs that are developed by different

suppliers into a single ECU in order to reduce the number of ECUs and connection points.

The integrated approach results in a decreasing cost both in terms of infrastructure and

maintenance. However, the integration of different DASs into single unit removes the

physical barriers that contribute to isolate the fault propagation. By consequence, the

decrease of the hardware complexity necessitates compensation from software effort to deal

with the safety issue, which in turn increases the software complexity. Coincidently, in

avionics domain, as said in (Hammett, 2002), the ideal future avionics systems would

combine both the complexity advantage from federal approach and the hardware efficiency

benefits from integrated architecture. Since more than one decade, a lot of works have been

done and the domain-dedicated standards have been proposed to design the integrated

architecture that remains the same composability, fault containment properties as federal

approach but still support the integration of multi-functions in a single entity (ex: ECU).

The main example is the combination of Integrated Modular Avionics (IMA) with safety

DO-178B/C in the aerospace domain and AUTOSAR (AUTomotive Open System

ARchitecture) elaboration with safety standard ISO26262 in the automotive domain (this

will be introduced later).

1.2 AUTOSAR Standard

Without defining a common standard, the integration of different DASs provided by

different first-tier suppliers meet the constraints of interaction as each supplier applies their

own standard of development and implementation. In automotive domain, the conventional

development shows a vague frontier between applications and infrastructure (see the left

Sensor

Components

Processing Component Actuator

Components

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

4

side of the Figure 2), i.e. the applications are dependent of the hardware, which increase the

complexity of development process.

Figure 2-Development revolution driven by AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR), developed by leading automobile

companies and first-tier suppliers, contributes to meet the increasing complexity in

nowadays’ automotive electrical and electronic systems. To achieve the technical goals of

modularity, scalability, transferability, and function reusability, AUTOSAR standardizes the

software development in automotive domain by separating the application and

infrastructure which allows for a model-driven architecture like methodology. That is,

applications can exist and communicate independently of a particular infrastructure as

shown in the right side of Figure 2. AUTOSAR standard is maintained by a consortium that

regroups the general OEM (Original equipment manufacturer), generic Tier 1-supplier,

software and service vendors, which contains core partners, premium members and

development members. An overview organization of AUTOSAR consortium is shown in

Figure 3, where Valeo is belonging to the premium members.

Figure 3-AUTOSAR organization

Software

Hardware

Application Software

Hardware

Conventional development AUTOSAR

standardized

HW-specific

Chapter 1 Introduction

5

1.2.1 AUTOSAR architecture overview

AUTOSAR mitigates the problems existing in the system design process thanks to its

standardized three-layer architecture: the Application layer, the Basic SoftWare layer and the

RunTime Environment layer (RTE). The AUTOSAR layered architecture ensures the

decoupling of functionality from the supporting hardware and software service, as shown

in Figure 4 in which the purpose of each layer is given as follows:

• Application layer: this layer provides a standard description format for application

which consists in the SoftWare Components. Application layer is totally independent

of the hardware.

• Basic SoftWare layer: This layer contains two sub-layers. The first is the

MicroController Abstraction Layer (MCAL), which is hardware dependent. The

second layer provides services to the AUTOSAR SoftWare Components and is

necessary to run the functional part of the software, which include the AUTOSAR

OS (Operating System) and service stacks such as communication stack, memory

stack and so on.

• RunTime Environment (RTE): this intermediate layer acts as a communication

center for inter- and intra-ECU information exchange.

Figure 4-Layered Software architecture of AUTOSAR (AUTOSAR, 2017)

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

6

1.2.2 AUTOSAR approach overview

AUTOSAR proposes the approach for the development that is based on the concept of

AUTOSAR Software Component (SWC). The approach (shown in Figure 5) contains:

• Software Component Description: In AUTOSAR the applications are

encapsulated into SWCs that runs on the AUTOSAR infrastructure. For example,

Software Component Description can describe a SWC, the data/service, its data sent

and received, its internal behavior in AUTOSAR XML (ARXML) format. Almost

everything a software developer needs to understand to integrate his component into

the system can be provided by Software Component Description.

• Virtual Functional Bus (VFB): The SWC are integrated and interconnected thanks

to the Virtual Functional Bus, which allows the abstract description of

communications and the deployment phase independently. The virtual function bus

provides a virtual infrastructure that is independent from any actual underlying

infrastructure, which facilitates the concept of relocatability in AUTOSAR. The

services required for a virtual interaction between AUTOSAR components provided

by VFB will be latterly implemented by the underlying hardware infrastructure.

• ECU description & System constraints: The ECU is described and is

independent from the SWC descriptions. All the constraints existing in the system

are also described by AUTOSAR.

• ECU mapping: The SWCs have to be mapped to ECU network, which includes

the configuration and generation of RTE and BSW modules on the concrete ECU.

Figure 5-AUTOSAR methodology (AUTOSAR, 2017)

Chapter 1 Introduction

7

1.2.3 AUTOSAR Toolchain

Here we present our Toolchain and working process for the implementation of the

AUTOSAR approach as shown in Figure 6.

Figure 6-AUTOSAR Toolchain

At System level, the information of application such as SoftWare Component description

and System Constraint Description are described using the Authoring tool (ex: AUTOSAR

Builder), which is the Eclipse-based tool suite for the design and development of

AUTOSAR-compliant systems and software. Two aspects of information can be provided

at this level: one is SoftWare Component APIs, i.e., header file of application generated

during the RTE contract phase. Another aspect of information provided by system level

and required for the ECU description step is the mapping of the SWCs onto network of

ECUs.

At Configuration level, we perform two steps: ECU description and ECU configuration.

ECU description involves the mapping of SWCs onto network of ECUs. ECU

configuration step contains OS configuration, communication configuration and memory

configuration. The configuration of OS includes the terms of priority definition, task

content, partition, allocation of resource and communication. This step is implemented by

the ECU configuration tool (ex: Tresos) that allows complete ECU basic software

configuration. The BSW configuration files are prepared for BSW generators and MCAL

generators, they are also used to prepare the RTE generator by combining the component

API provided by the system level.

At Implementation level, the application description is involved, which can be done by

tool like MATLAB Simulink. The runnables’ codes can be generated directly from this

description. Finally based on the runnables functional codes generated by APP generator,

RTE codes by RTE generator, low layer codes by BSW generator and MCAL generator, the

binary code for the whole application can be generated.

Authoring tool
AUTOSAR System

configuration

Binary

Implementation
level

Configuration
level

System
level

Authoring tool
ECU description

ECU configuration
tool

Applicative model

RTE
generation

BSW/MCAL
generation

App
generation

AUTOSAR Builder 1

System Desk 2

ARTOP

ECU Designer 3

Tresos 4

ARTOP

Matlab/Simulink 5

1 Dassault Systèmes
2 dSpace
3 See4sys Technology
4 Elektrobit
5 Matworks

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

8

1.3 Tendency in automotive industry and Multi-core

systems

With the emergence of the mechatronic, almost all the functions in automotive are

electronically controlled and also interlinked. Nowadays, the automotive industry integrates

more and more innovative functions to make the vehicles intelligent, comfortable and safe.

Figure 7 shows an example of the typical functions in the vehicles. The following facts as

described in (Weber, 2009) give the quantified information.

• 2500 functions are controlled by software representing 10 million lines of codes are

integrated in the cars.

• These functions are realized by up to 80 ECUs that communicate via up to 5

different types of systems busses.

• 90% of all innovations are enabled by electronics and software.

• Up to 40% of a vehicle’s costs are determined by electronics and software.

• 50-70% of the development costs for ECU are related to software

By consequence, the number of ECUs embedded in each cars increases dramatically in order

to meet the requirements for the functionalities such as the engine control, body, chassis

control. Besides, the new functionalities that involve data processing and ADAS (Advanced

Driver Assistance Systems) make it even more complex for tomorrow’s vehicles: that the

cars are becoming autonomous and connected. The increase of software complexity makes

it unavoidable for automotive industry to require more and more computing power.

Figure 7-Functionalities in vehicles

The traditional way to satisfy these requirements is mainly on two axes: the miniaturization

of transistors and the frequency scaling in single-core systems. However, both of the

Chapter 1 Introduction

9

solutions mentioned above have reached their bottleneck. Though the miniature of the

transistors allows integrating more transistors on one single chip according to Moore’s law,

it might case the hit dissipation issue. The frequency scaling benefits the system by executing

more instructions in a given time, but it could invoke power consumption problems as the

power of the core is proportionate to the frequency. A feasible way to avoid the issues above

is the increasingly widespread use of ECU with multi-core, where each core is not obligated

to have a high performance. But an efficient cooperation between these cores will make the

system reach a high performance. The multicore systems can avoid the issues arising in the

usage of tradition approaches based on single-core. However, it still remains a great

challenge for the developers to solve the interaction issues existing in the mechanism of a

highly efficient cooperation between cores.

Another reason for multi-core is that according to the supplier’s roadmap, the high power

single core controllers have been replaced by multicore, where the efficient cooperation

between low power cores can provide a high performance. The semiconductor

manufacturers that mainly used in Valeo like Freescale and Infineon propose the multi-core

architecture platform, where the cores permit execution of the application codes in two

modes: the lockstep mode and decoupled mode.

The lockstep mode involves executing the same instructions on all the cores. The generated

results will then be compared to detect errors. If a difference between the cores is detected,

the system enters a fail safe mode. The lockstep targets the safety-critical applications, which

provides tolerance against the transitory fault on hardware. However it is not tolerant for

the hardware faults that are permanent.

Unlike the lockstep mode that is still logically single-core execution, in the decouple mode,

each core is independent and can be used to execute their own programs. However the

safety advantages in this case is lost.

1.3.1 Multi-core architecture categories

Generally the multi-core architecture can be classified into three categories:

• Heterogeneous architecture: The processors are different. These processors use

different set of instruction and the computing power of each core is different. For

example, the microcontroller Ti Vision Mid is a heterogeneous microcontroller, its

architecture contain a core A8 and 4 DSP.

• Homogeneous architecture: The processors are identical. They use the same set of

instruction and the computing power of each core is identical. Microcontroller

Leopard MPC5643L with 2 identical cores is an example.

• Uniform architecture: The instruction set in all processors is the same, but the

computing power for each core may be different. One example for uniform

architecture is Freescale Bolero MPC5644C with two different cores (z0 and z4),

while these two cores follow the same set of instructions.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

10

1.3.2 AUTOSAR in multi-core

Since AUTOSAR release 4.0, multicore specifications are available in AUTOSAR

specifications. On multicore, the cores are prioritized in one master core and several slave

cores. The master core is started first by hardware. The master core then triggers the start

of the other (slave) cores by Software calls. The AUTOSAR Multi-core OS specification

requires a system with master-slave start-up behavior, either supported directly by the

hardware or emulated in software. The master core is defined as the core that requires no

software activation, whereas a slave core requires activation by software (AUTOSAR,

2014a). The multi-core architecture explores the notion of OS-Application. Since

AUTOSAR 3.x, memory protection has been available in AUTOSAR. This capability

requires to introduce a new OS object called OS-Applications, which clusters a set of OS

objects (ex. task, alarms, etc). In the Autosar application, no OS objects exist in an isolated

way out of the OS-Applications boundary. It is worth noting that OS-Applications are not

dedicated to multicore architectures but become mandatory for the design of multicore

applications. This new granularity means that the RTE generator must be aware of the

allocations into OS-Applications.

Mainly, multicore features impact specifications of:

• The RunTime Environment (RTE): RTE has to be aware of multi-core capabilities.

It manages the protection of shared objects by spinlock. A spinlock is a busy waiting

mechanism that polls a (lock) variable until it becomes available. Typically, this

requires an atomic “test and set” functionality, which is implementation specific.

• The Operating System (OS): The OS provides the new services in order to activate

tasks or a set of events across cores, and also to synchronize or protect shared

objects. AUTOSAR OS in multi-core is Partitioned OS (P-OS), which means that

an instance of the AUTOSAR OS runs on each core. When a core makes a system

call, this core switches to kernel mode and executes the OS code.

The multi-core OS configuration is different between the Symmetric Multi-Processing

(SMP) and Asymmetric Multi-Processing (AMP):

In AMP, each core runs an OS, the OS between the core may be the same or different. The

different cores do not share the code and data. Each core has its designated task set.

AUTOSAR OS belongs to this type as it is the partitioning OS (P-OS) where each core runs

one P-OS.

In SMP, the cores share the same task set, which means a task may run on different cores

dynamically. The different cores are managed by one same OS. The cores share the same

memory space.

1.3.3 Modeling details of AUTOSAR

Model-Based Design (MBD) development process is specifically attractive in embedded

domains like automotive thanks to its capabilities to support early design

Chapter 1 Introduction

11

verification/validation through formal functional modes that are composed of the

functional blocks and the capabilities to generate software implementations from those

functional blocks. MATLAB/Simulink is a widely used Computer Aided Engineering

(CAE) tool for model-based design that allows simulating system behavior, tracing and

verifying requirements and generating software for prototyping and production. Model

based approach provides an automated software synthesis flow that turns functional models

to correct, predictable and optimal software tasks implementation on various embedded

platforms. Within AUTOSAR standard, this flow includes firstly the encapsulation of the

functional blocks into software components (SWCs) composed of a set of runnables, and

the mapping of the runnables into real-time tasks as shown in Figure 8. In multi-core

context, it introduces the new steps such as the mapping of tasks to cores and

synchronization between cores.

Figure 8-MBD approach with AUTOSAR

In this part, we give the details in each layer of AUTOSAR architecture presented in Figure

4.

1.3.3.1 Application Layer

The application layer is standardized in AUTOSAR. The application is split into SoftWare

Components (SWCs) that interact through the Virtual Function Bus (VFB) as shown in top

of Figure 5. Software Components are logical groups of functionalities of the application.

Each AUTOSAR SoftWare Component (SWC) is a so-called “Atomic SoftWare

Component”, which implicates that each instance of an AUTOSAR SoftWare Component

cannot be distributed over AUTOSAR ECUs. Furthermore, according to the

recommandation of AUTOSAR 1 , an AUTOSAR SoftWare Component cannot be

distributed over cores in multicore systems either.

1 This restriction might be released i n the future version of AUTOSAR.

Functional
Model

Software
Model

Hardware
Model

SWC_1

SWC_n

SWC_2

Functional block

Task_1

Task_2

Task_3

Task_4

Task_n
Tasks deployment

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

12

SWCs are composed of the objects described as follows, which is illustrated in Figure 9:

Figure 9-SWC description

• Runnable

The Runnables are the atomic functional components in the SWC, which cannot be

further divided. The Runnables are composed of the pieces of functional codes and can

communicate to other runnables in the same SWC by IRVs (Inter Runnable Variables)

or runnables in the other SWCs by interface and Ports.

The main functions of a Runnable are Read (read the external variables by ports or the

internal variable by IRV), Execution and Write (write the external variables by ports or

the internal variable by IRV). Runnables can execute and be scheduled independently

from the other Runnable Entities of the same Atomic Software-Component.

Runnables are executed in the context of an OS task; their execution is triggered by RTE

Events. There are several types of Event, such as Timing Event (TEV) for the periodic

runnables; Mode Switch Event (MSE) for runnables that exchange the execution

modes; Data Received Event (DRE) for the runnables that are active when the relative

data are available; Operation Invoked Event (OIE) for the server runnables that provide

a service, and so on. Every event has its own parameters, for example: TEV with

PERIOD, MSE with mode, DRE with Port and the OIE with operations. Every Event

relates to a Runnable, whereas each Runnable can relate to several Events.

• Ports

The ports can implement all the type of interfaces so as to access the information l ike

data, operation or modes in the different type of interfaces described before. The

components have two types of ports: Provided ports (P-Port) and Requited port (R-

Port).

• Interfaces

The Interface defines the information exchanged between SWCs and/or BSW modules.

It makes it possible to implement the communication between SWCs by Ports. The main

Application SWC

R-Port

Client

Receiver

P-Port

Sender

Server

Runnable

Runnable

IRV

TEV

OIE

Chapter 1 Introduction

13

types of interfaces are SenderReceiver Interface, ClientServer Interface and ModeSwitch

Interface.

1.3.3.1.1 Communication between AUTOSAR SWC

Autosar SWCs communicate through well-defined ports and the behavior is statically

defined by attributes. The ports are described by the Port Interface. There are two important

communication types:

• Sender-Receiver communication is realized via SenderReceiver Interface like P-Port

from provider SWC to R-Port from consumer SWC. The object transferred is the

data of different types (see section 2.3). This type of connections supports both 1:

N and N: 1 communications.

• Client-Server communication is built from a server P-Port to a client R-Port via

ClientServer Interface, where client runnable requires the service provided by the

server runnable. Unlike Sender-Receiver communication, Client-Server connection

support only N: 1 communication, it is impossible for a client to invoke multiple

servers with a single request.

1.3.3.1.2 SWC internal communication

Communication between runnables insides the same SWC, also known as the

communication intra SWC, is done by using Inter Runnable Variables (IRV). IRV are the

variables that can be written and read by the Runnables in the same SWC, which means that

the IRVs exist only in the SWC they belong to.

1.3.3.2 Basic Software Layer

The Basic Software is standardized software that does not have any functionality from the

application view but offers hardware-dependent and hardware-independent services to

applications. This is realized through the use of Application Programming Interfaces (API,

see Figure 4). This layer itself is not entirely hardware independent but makes the upper

software layers independent of the hardware. In basic software layer there are several items:

1) Microcontroller Abstraction Layer (MCAL): this layer provided by smelters is a

hardware specific component that provides access to the actual physical signals of

the microcontroller.

2) BSW Stacks: The BSW Stacks includes communication stack, the memory stack and

I/O stack.

3) Operation System (OS): OS in Autosar is based on the OSEK/VDX (OSEK/VDX,

2005). It supports multicore architecture since the version 4.x of AUTOSAR is

released. The OS is responsible for the execution of real-time tasks containing

runnable entities. AUTOSAR adopts static priority for the tasks in the system and

static scheduling.

Basic Software consists in main functions and services that can be called by tasks. In the

single core system, the main function is executed in an OS task and BSW calls are done in

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

14

the context of the calling task. When coming into multi-core systems, the main functions

and services could be allocated separately in different cores. BSW allocation is done during

the Operating System configuration (see Figure 6).

• Most BSW activations, i.e. BSW APIs calls, are done in the context of the calling

task. It might have several calls from different cores.

• The main functions can be allocated to different cores (as shown in Figure 10). The

coupling between the main functions and services might cause delays or bottlenecks.

Figure 10-BSW allocation example

1.3.3.3 Runtime environment (RTE)

Runtime environment (RTE) handles the information exchange between the application

software components and connects the application software components to the right BSW

services. This layer decouples the application software components from the hardware as

well as the application software components from themselves. RTE provides an actual

representation of the virtual concepts of the VFB for one specific ECU, which means that

there exists one implementation (ex, in C-code) of the VFB per ECU. In order to do that,

it requires knowing where runnables (from SWCs) are allocated. For example, runnables

allocated to the same ECU communicate using the RTE while runnables allocated to

different ECUs use the AUTOSAR communication stack. Besides, RTE also involves the

generation and realization of all the RTE events that activate the behavior of runnables.

It is worth noting that all configurations are static, as a result, the components have been

located statically at the phase of implementation. Components that are mapped onto one

ECU will communicate through shared memories and the components mapped onto

different ECU will communicate by the communication stack (i.e., bus CAN, LIN, FlexRay).

The RTE can be seen as a static implementation of specialized communication topologies.

Chapter 1 Introduction

15

1.4 Safety

Safety is a property of a system that will not endanger human life or the environment. Many

safety-critical systems are also real-time systems, where “the correctness of the system

behavior depends not only on the logical results of the computations, but also on the

physical time when these results are produced” (Kopetz, 2011). The safety-critical systems

have to be certified. Certification phase is standard-based, which depends on the application

area. For example, DO-178B/C is for the airborne systems. In today’s cars several ECUs

may control safety relevant actuators depending on the functionality in the vehicle. The

ISO26262 is the norm which describes how the development of such ECUs shall be

performed to realize a safe system. This norm defines four “Automotive Integrity Safety

Levels” (ASIL) which classify levels of safety required for these systems. Based on the

identified risks, specific (Safety) requirements of the system are derived. These requirements

may be related to hardware or software or both. We mainly focus on software, so the

hardware part will be considered as platform based design. Be aware that an ASIL is always

defined for a system, which means hardware and software, and with respect to software

application software and basic software.

AUTOSAR, up to Release 4.1, supports safety systems (ISO 26262) by offering different

base mechanisms which are typically required in such ECUs. The following list contains the

main safety mechanisms:

• Partitioning of SWCs to support the isolation in space. This means that it is possible

to separate SWCs of different ASIL from each other and to make sure that the SWCs

are not able to write to other SWCs data. The realization requires hardware support

(a memory protection unit (MPU) or memory management unit (MMU)) and is

realized in the OS module and used by the RTE.

• Timing and control flow supervision to monitor executing entities and to detect

faults caused by blocking or wrong execution. In AUTOSAR the OS and the relative

modules (ex: watchdog module) take care of this issue.

• A safe communication via end-to-end protection is possible between ECUs (and

even inside an ECU). This guarantees e.g. that the data which is send is not modified

between the sender and the receiver(s). The responsible module is the E2E library.

Some other modules support additional mechanisms which are also useful in safety systems

(e.g. CoreTest or RamTest) (AUTOSAR, 2014b).

1.5 Contribution and Thesis overview

The shift towards multi-core systems in the automotive industry has revived the challenge

of application partitioning to enhance productivity, reusability and predictability. The

introduction of multi-core in AUTOSAR leads to additional works in the process of

automotive development:

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

16

• Software component (SWC) to cores: the SWC/runnables have to be distributed

into different cores

• Tasks definition and configuration: in order to be executed by OS, the runnables

have to be mapped into different real-time tasks. Therefore a set of tasks has to be

defined and configured properly. This step exists already in single-core system.

However in the multi-core, the runnables have to be remapped according to the new

position, thus the execution order in each task changes as well.

• Data allocation: the data exchange between the components has to be distributed

in different type of memories.

• Synchronization: the execution flows in different cores have to be synchronized

such that the entire system behaves correctly.

The traditional way to migrate to multi-core platform in Valeo software team was

accomplished manually, which necessitates a high level knowledge of application especially

in the aspect of functionality. Each time a new application is targeted, a lot of repetitive

work is unavoidable, which introduce a significant workload and time consuming process.

Moreover, the manual solution prevents the optimization of criteria such as CPU loads,

communication overheads, jitter and so on.

Confront to these issues, this thesis proposes a method and tools dedicated to the migration

of the automotive applications into multi-core architectures. The method acts as a decision

guide environment for the partitioning of embedded software modeled with the AUTOSAR

specificities onto multi-core systems. The proposed method automates the migration

process and was fully thought into an industrial V-cycle development process as shown in

Figure 11.

Figure 11-Working process

Chapter 1 Introduction

17

The working process shows the contributions of this thesis that contains:

1) Automate the allocation of automotive applications: the automotive applications are

compliant with AUTOSAR standard. We model the applications and analyze the

dependencies level between the execution entities (runnables) in order to provide

the necessary information for the distribution of the applications into multi-cores.

We adopt the meta-heuristic algorithms as the solver to search the design space

efficiently and effectively. The distribution solutions are optimized and evaluated by

the proposed cost function that takes a set of criteria into account. The solutions

respect the pre-defined constraints that could be, from the hardware aspect, real-

time, functional and is extendable to the new features (ex, the safety aspects). More

details are presented in Chapter 2.

2) Propose the scheduling for the dependent real-time task sets. Most of the work for

real time scheduling in the state of the art is targeted to tasksets that are independent.

However, this ideal theoretical model shows its limit in the real-life industrial use

case, where the applications are strongly inter-connected and the tasks are

dependent. In this thesis, we propose the scheduling approach that considers the

dependent tasks. Based on the defined dependent model, the method generates the

schedule table that contains the execution order of the instance for the

task/runnables and the start date for them. The scheduling is static and respects the

real-time constraints. The evaluation of the scheduling considers the ability of

schedulability and other criteria such as jitters and makespan. Chapter 3 presents this

part of work.

3) Integrate in the process of development. In Chapter 4 we show another contribution

of this thesis: the SoftWare Allocation Tools (SWAT) is our developed Toolchain

that integrate our methods into a real-life development process in the automotive

industrial. The process is compliant with AUTOSAR Toolchain.

4) The conclusion and the prospective are presented in Chapter 5.

Chapter 2 Relative works & problem

formalization

2.1 Combinatorial Optimization.. 19

2.1.1 Simulated Annealing ... 21

2.1.2 Tabu Search ... 23

2.1.3 Evolutionary Algorithm ... 24

2.2 Formalization of the distribution problem.. 29

2.2.1 Architecture modeling .. 29

2.2.2 Application modeling .. 30

2.2.3 Partitioning .. 34

2.2.4 Cost function and constraint formalization... 35

2.2.5 Description of the optimum solutions searching method 36

2.2.6 Design space exploration .. 38

2.3 Autosar Application.. 40

2.3.1 Communication overhead in Autosar application ... 40

2.4 Related works in automotive domain .. 49

Conclusion .. 51

Chapter 2 Relative works & problem formalization

19

2.1 Combinatorial Optimization

Many optimization problems of theoretical as well as practical importance consist in the

search for the “best” configuration of a set of variables to achieve some objectives. Among

those where solutions are encoded with discrete variables we find a class of problems called

Combinatorial Optimization (CO) problems as introduced in (Papadimitriou & Steiglitz,

1982). According to the introduction in (Papadimitriou & Steiglitz, 1982), in CO problems,

we are looking for an optimal object from a finite (or possibly countable infinite) set of

objects. These objects are encoded with discrete variables such as integer numbers, subsets,

permutations, graph structures etc. A model 𝑃 = (𝑆,Ω,𝑓) of a CO problem consists in:

• S: a search space where a finite set of discrete variables 𝑋𝑖 , 𝑖 = 1,… , 𝑛. are defined;

• Ω: a feasible domain defined by a set of constraints;

• ƒ: an objective function to be minimized.

A feasible solution 𝑠 ∈ 𝑆 is a complete assignment of values to variables that satisfies all

constraint in Ω. A solution 𝑠∗𝜖𝑆 is called a global optimum if and if: 𝑓(𝑠∗) ≤ 𝑓(𝑠) ∀ 𝑠 ∈ 𝑆.

Examples for CO problems are the Traveling Salesman problem (TSP), the Quadratic

Assignment problem (QAP), Timetabling and Scheduling problems. Owing to the practical

importance of CO problems, many algorithms to tackle them have been developed. These

algorithms can be classified as either exact or approximate algorithms.

Exact algorithms (or complete algorithms) are guaranteed to find for every finite size

instance of a CO problem an optimal solution in bounded time. Despite the progress

achieved by the exact algorithms, the problems likely to be resolved by the algorithms are

quite restricted however (Woeginger, 2003). In fact, the exact algorithms are often

impractical for large problems due to prohibitive search times. Effectively, for CO problems

that are 𝒩𝒫 − ℎ𝑎𝑟𝑑 (Garey & Johnson, 1990), if 𝒫 ≠ 𝒩𝒫, there is no polynominal-time

constant-factor algorithm exists. Therefore, exact algorithms might need exponential

computation time in the worst-case. Thus, the use of approximate algorithms to solve CO

problem has received more and more attentions in the last 30 years. In approximate

algorithms we sacrifice the guarantee of finding optimal solutions for the purpose of

obtaining good solutions (not optimal) in a significantly reduced amount of time.

Among the basic approximate methods we usually distinguish between constructive methods

and local search methods. Constructive methods involve in building a solution to the problem

literally step by step from scratch. Usually constructive methods are deterministic and they

are typically the fastest approximate methods, yet they often return solutions of inferior

quality when compared to local search algorithms. In contrast to the constructive method

that begin with an empty solution, local search algorithms start from some feasible solutions

called initial solutions of the problem and tries to progressively improve it by replacing

iteratively the current solution with a better solution from an appropriately defined

neighborhood of the current solution.

http://www.linguee.fr/anglais-francais/traduction/effectively.html

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

20

Definition 1 A neighborhood structure is a function 𝒩: 𝑆 → 2𝑆 that assigns to every

solution 𝑠 ∈ 𝑆 a set of neighborhood 𝒩(𝑠) ⊆ 𝑆. 𝒩(𝑠) is called the neighborhood of 𝑠.

The choice of an appropriate neighborhood structure is crucial for the performance of a

local search algorithm and is problem-specific. The neighborhood of a solution s describes

the subset of solutions which can be reached from s in the next step. The solution found by

a local search algorithm may only be guaranteed to be optimal with respect to local changes

and will generally not be a globally optimal solution.

Definition 2 A local optimum for a minimization problem, a locally minima solution (or

local minimum) with respect to a neighborhood structure 𝒩 is a solution such that a

solution �̂� such that ∀ 𝑠 ∈ 𝒩(�̂�): 𝑓(�̂�) < 𝑓(𝑠) . Similarly, a local optimum for a

maximization problem, a locally maxima solution (or local maximum) is a solution such that

a solution �̂� such that ∀ 𝑠 ∈ 𝒩(�̂�): 𝑓(�̂�) > 𝑓(𝑠).

A disadvantage of single-run algorithms like constructive methods or local search is that

they either generate only a very limited number of different solutions, which is the case of

constructive methods or they stop at local optima, which is the case of local search. Several

general approaches, which are nowadays often called meta-heuristics, have been proposed

to bypass these problems. This class of algorithms includes – but is not restricted to –

Simulated Annealing (SA), Tabu Search (TS), Evolutionary Computation (EC) including

Genetic Algorithms (GA), and Ant Colony Optimization (ACO). Up to now there is no

commonly accepted definition for the term metaheuristic, while the fundamental properties

which characterize metaheuristics can be outlined (Blum & Roli, 2003):

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore the search space in order to find (near-) optimal

solutions.

• Techniques which constitute metaheuristic algorithms range from simple local

search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in confined areas of the

search space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form of heuristics

that are controlled by the upper level strategy.

• Today’s more advanced metaheuristics use search experience (embodied in some

form of memory) to guide the search.

The following methods use generally a large amount of parameters with the value configured

based on a lot of experiment results.

Chapter 2 Relative works & problem formalization

21

2.1.1 Simulated Annealing

Simulated Annealing (SA) is deduced from the physical annealing process of solids, which

is commonly said to be the oldest among the metaheuristics and surely one of the first

algorithms that had an explicit strategy to escape from local minima (Kirkpatrick, Gelatt Jr,

& Vecchi, 1983). The fundamental idea of escaping from local minima is to allow moves to

solutions of worse quality than the current solution (also called as uphill moves) in order to

escape from local minima. The acceptance probability which is the probability of doing such

a move is decreased during the search. As descript in the Algo. 1.

The algorithm starts by generating an initial solution (either randomly or heuristically

constructed) and by initializing the parameter T that signifies temperature. Beginning at the

initial solution, the algorithm performs the searching process iteration by iteration until the

terminated condition is met. At each iteration, a solution 𝒔′ ∈ 𝓝(𝒔) is randomly sampled

in the defined neighborhood structure and it will be accepted as a new current solution

depending on the conditions:

➢ If the objective function is improved, i.e. 𝒇(𝒔′)< 𝒇(𝒔), 𝑠′is accepted as a new

accurent solution.

➢ If the objective function is degraded, i.e. 𝒇(𝒔′)> 𝒇(𝒔), s′ is accepted as a new

solution with an acceptance probability that is related to 𝒇(𝒔), 𝒇(𝒔′) and T.

At the end of each iteration, the temperature parameter T is updated with a tendency of

decreasing principally, each step of the updating is not necessarily decreasing however. So

the progress of algorithm depends on three parts:

2.1.1.1 Probability of accepting uphill

The probability of accepting a degraded solution is a function of 𝒇(𝒔′) − 𝒇(𝒔) and T. This

function is typically computed following the Boltzmann distribution 𝒆𝒙𝒑(−
𝒇(𝒔′)−𝒇(𝒔)

𝜯
).

The probability of accepting a new solution is then determined by two factors: the difference

between the costs of the two solutions 𝒇(𝒔′) − 𝒇(𝒔)and the temperature T. On the one hand,

for a fixed temperature, the worse the new solution performs, the smaller the possibility of

s ← GenerateInitialSolution ()

𝑇 ← 𝑇0

while termination conditions not met do

 𝑠′ ← 𝑃𝑖𝑐𝑘𝐴𝑡𝑅𝑎𝑛𝑑𝑜𝑚(𝒩(𝑠))
 if (𝑓(𝑠 ′) < 𝑓(𝑠)) then

 𝑠 ← 𝑠′ % 𝑠′ replaces 𝑠
 else

 Accept 𝑠 ′as new solution with probability 𝑝(𝛵, 𝑠 ′ , 𝑠)
 endif

 Update (𝛵)

endwhile

Algo. 1-Algorithm: Simulated Annealing (SA)

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

22

acceptance of this solution is. On the other hand, it is more possible to accept a worse

solution at a high temperature, which is quite common at the beginning as the temperature

is relative high. With the decreasing of the temperature, the algorithm converges gradually

to an improvement research. The entire search process contains two phase of strategies: the

random walk and iterative improvement. At the beginning of the search, the algorithm

encourages an erratic move which permits an exploration of the searching space. Then in

the second phase of search, the random is decreasing gradually and the search process

concentrates to the improvement that leads to exploitation for the minimum.

2.1.1.2 Cooling rule

The choice of an appropriate cooling rate is essential part of SA as it determinate the

performance of the algorithm. A high cooling rate leads to degraded results because of the

lack of representative states, while a low cooling rate results in the increasing of computation

time to get the convergent state. Two choices have to be made when implementing the SA:

the initial value of temperature T0 and the cooling schedule.

A quite high value T0 permits capture the entire solution space, while it may increase the

number of iteration, which might not necessarily give the better solutions. Generally, the

initial value of temperature is chosen by experimentation that depends on the nature of

problem.

The cooling schedule characterizes the change of temperature in functional form so that the

value of T at each iteration k can be determined. The cooling schedule is presented as 𝛵k+1 =

𝒬(𝛵k, k), where 𝒬(𝛵k, k)is a function of the temperature in the last state and the iteration

number. Three important cooling scheduling are logarithmic, Cauchy and exponential. SA

converges to the global minimum of the cost function if the change of temperature follows

a logarithmic law (Geman & Geman, 1984): 𝑇𝑘 =
𝑇0
log𝑘⁄ . This schedule requires the move

to be drawn from a Gaussian distribution. For the practical purposes, this cooling scheduling

are too slow unfortunately. Cauchy schedule performs a faster convergence, where 𝑇𝑘 =
𝑇0
𝑘
⁄ with the moves are drawn from a Cauchy distribution (Szu, 1987). The fastest schedule

among the three is exponential or geometric schedule in which 𝑇𝑘 = 𝑇0𝑒𝑥𝑝(−𝐶𝑖) where

𝐶𝑖 is a constant (Azencott, 1992). In practical case, one of the most used schedules follows

the geometric law: 𝑇𝑘+1 = 𝛼𝑇𝑘 , where α is cooling factor with constant value varies

between 0.80 and 0.99, which performs an exponential decay of the temperature. There are

also non-monotonic cooling schedules, which are characterized by alternating phases of

cooling and reheating, thus providing an oscillating balance between diversification and

intensification. The initial value of temperature and cooling schedule should be adapted to

the concrete problem instance appropriately, as the balance of the diversification and

intensification influents the capability of escape from local minimum that depends on the

structure of the search landscape.

Chapter 2 Relative works & problem formalization

23

2.1.1.3 Terminated condition

The termination of the algorithm depends on the number of iterations, which contains the

total number of iterations and number of iteration for each temperature. The total number

of iterations adopted depends on the complexity of problem. The number of iterations at

each temperature is chosen so that the system is sufficiently close to the stationary

distribution at that temperature.

2.1.2 Tabu Search

Tabu Search (TS) is created by Fred W. Glover (Glover, Future paths for integer

programming and links to artificial intelligence, 1986). It is among the most cited and used

metaheuristics for combinatorial problems. The strategy of TS is to maintain a tabu list that

memorizes the history of the search in order to escape local optimum as well as facilitate

the exploration in the searching space. A description of this algorithm can be found in

(Glover & Laguna, Tabu Search, 1997). The process of TS is described briefly as follows:

starting with an initial solution (generated either randomly or heuristic constructed), the

algorithm looks for the best solution 𝒔’ in the neighborhood structure 𝒩(s). If solution 𝒔′is

not already existed in the Tabu list or if it satisfies the condition to ignore the tabu rule

(noted as Aspiration criteria that will be introduced later), it is accepted as a new solution.

Before beginning the next iteration, the tabu list is updated by adding this solution and

removing a solution according to different policies (usually in a FIFO order) if the list is

already full. The Aspiration criteria shall be updated as well, as described in Algo. 2.

2.1.2.1 Tabu list and Aspiration criteria

The simple TS performs a best improvement local search as basic ingredient and meanwhile

maintains a short term memory for the sake of escaping from the local optimum as well as

preventing the cycles of search. The short term memory is implemented as a tabu list that

keeps track of the most recently visited solutions, so the move towards the solutions existed

in this list is forbidden, which help filter the solutions in the neighborhood and generate

allow set. However, the implementation of the short term memory as a tabu list that contains

a set of complete solutions is not practical, as the management of this list with full

information is quite inefficient. Therefore, instead of storing the solutions themselves, the

tabu list chooses the representative attribute such as the components of solution, differences

between solutions, move or other brief information. For more attributes to be considered,

a tabu list is created for each of them. So multiple tabu lists can be used simultaneously and

are sometimes advisable.

Although the storing of the attributes instead of the complete solutions is effective, it might

lead to the loss of information potentially. As an attribute might present more than one

solution, the forbidden of the attribute would filter several solutions that attached to it,

which increase the possibility to exclude the unvisited solution with good quality. That is

why TS defines Aspiration criteria to overcome this problem. Aspiration criteria contain

the solutions that are allowed to be considered by the algorithm even if they are forbidden

by the tabu list. The condition that considers solutions to be included in the aspiration

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

24

criteria is called aspiration condition. A typical condition is to choose the solutions that are

the best found so far solutions.

2.1.2.2 Memory

The memory structures in TS are dimensioned by four principles: recency, frequency, quality

and influence.

Recency-based memory of TS constitutes a form of aggressive exploration in the search

space that targets at the best moves possible, the most common used short term memory

keeps track of attribute of solutions that have been considered recently, just as tabu list does.

Frequency-based memory keeps track of the frequency of each solution (or attribute) has

been visited. This information identifies the regions (or the subsets) of the solution space

where the search was confined, or where it stayed for a high number of iterations. This kind

of information about the past is usually exploited to diversify the search. Recency-based and

frequency-based memories complement each other.

Quality-based memory refers to the accumulation and extraction of information from the

search history in order to identify good solution components. Quality plays a role to

reinforce actions that lead to good solutions and penalizes the actions to poor solutions,

which can be usefully integrated in the solution construction. This principle is used explicitly

by other metaheuristics to learn about good combinations of solution components.

Influence-based memory considers the impact of the choices made during the search

process both on the quality and structure. The information can be used to indicate which

choices have shown to be the most critical.

In general, the TS field is a rich source of ideas and strategies, many of which have been and

are currently adopted by other metaheuristics.

2.1.3 Evolutionary Algorithm

Evaluation Algorithms are in the category of population-based methods that deal in each

iteration of the algorithm with a set of solutions instead of considering only one single

Algo. 2-Tabu Search (TS)

s ← GenerateInitialSolution ()

Initialize TabuLists (TL1… TLr)

k ← 0

while termination conditions not met do

 AllowedSet(s, k) ← {
𝑠 ′ ∈ 𝒩(𝑠)| 𝑠 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑎 𝑡𝑎𝑏𝑢 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ,

 𝑜𝑟 𝑖𝑡 𝑠𝑎𝑡𝑖𝑓𝑖𝑒𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑎𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
}

 s ← ChooseBestOf (AllowedSet(s, k))

 Update TabuList & AspirationConditions ()

k ← k + 1

endwhile

Chapter 2 Relative works & problem formalization

25

solution in each iteration like SA and TS do. The set of solutions that are treated at each

iteration is called population, which facilitates the algorithms to explore the search space in

a natural and intrinsic way. The manipulation of the populations determines the final

performance of the algorithms. Evaluation algorithms concern an area of computer science

that uses ideas from biological evolution to solve computational problem. Evolution is a

method of searching among an enormous number of possibilities – e.g., the set of possible

gene sequences – for “solutions” that allow organisms to survive and reproduce in their

environments. Evolution can also be seen as a method for adapting to changing

environments. And, viewed from a high level, the “rules” of evolution are remarkable

simple: Species evolve by means of random variation (via mutation, recombination, and

other operators), followed by natural selection in which the fittest tend to survive and

reproduce, thus propagating their genetic material to future generations. Yet these simple

rules are thought to be responsible for the extraordinary variety and complexity we see in

the biosphere.

There has been a variety of slightly different EA proposed over the years. Basically they fall

into three different categories which have been developed independently from each other.

There are Evolutionary Programming (EP), Evolutionary Strategies (ES) and Genetic

Algorithms (GA). The most widely used form of evolutionary algorithms is GA (Goldberg,

1989), which will be the main focus in this dissertation.

2.1.3.1 Introduction of GA

The simplest version of a genetic algorithm consists of the following components:

1. A population of candidate solutions to a given problem, each encoded according to

a chosen representation scheme. The encoded candidate solutions in the population

are referred to metaphorically as chromosomes, and units of the encoding are

referred to as genes. The candidate solutions are typically haploid rather than diploid.

2. A fitness function that assigns a numerical value to each chromosome in the

population measuring its quality as a candidate solution to the problem at hand.

3. A set of genetic operators to be applied to the chromosomes to create a new

population. These typically include selection, in which the fittest chromosomes are

chosen to produce offspring; crossover, in which two parent chromosomes

recombine their genes to produce one or more offspring chromosomes; and

mutation, in which one or more genes in an offspring are modified in some random

fashion.

A typical GA (as shown in Algo. 3) carries out the following steps:

1. Start with a randomly generated population of n chromosomes.

2. Calculate the fitness f(x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the

probability of selection increasing as a function of fitness.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

26

b. With probability 𝑝𝑐 (the crossover probability), cross over the pair by taking

part of the chromosome from one parent and the other part from the other

parent. This form q single offspring.

c. Mutate the resulting offspring at each locus with probability 𝑝𝑚 (the

mutation probability) and place the resulting chromosome in the new

population. Mutation typically replaces the current value of a locus with

another value.

4. Replace the current population with the new population.

5. Go to step 2.

Each iteration of this process is called a generation. A genetic algorithm is typically iterated

for anywhere from 50 to 500 or more generations. The entire set of generations is called a

run. At the end of a run, there are typically one or more highly fit chromosomes in the

population. Since randomness plays a large role in each run, two runs with different random-

number seeds will generally produce different detailed behaviors.

The simple procedure just described is the basic for most applications of GAs. There are a

number of details to fill in, such as how the candidate solutions are encoded, the size of the

population, the details and probabilities of the selection, crossover, and mutation operators,

and the maximum number of generations allowed. The success of the algorithm depends

greatly on these details.

2.1.3.2 Selection Methods

Individuals for producing offspring are chosen using a selection strategy after evaluating the

fitness value of each individual in the selection pool. Each individual in the selection pool

receives a reproduction probability depending on its own fitness value and the fitness value

of all other individuals in the selection pool. This fitness is used for the actual selection step

afterwards. Some of the popular selection schemes are discussed below.

a) Roulette-wheel selection. The simplest selection scheme is the roulette-wheel

selection, also called stochastic sampling with replacement. This technique is analogous to

Initialize Chromosomes

while termination conditions not met do

 repeat

 if crossover condition satisfied then

 {select parent chromosomes;

 choose crossover parameters;

 perform crossover};

 If mutation condition satisfied then

 {choose mutation points;

 perform mutation};

 evaluate fitness of offspring

 until sufficient offspring created;

select new population;

endwhile

Algo. 3-A genetic algorithm template

Chapter 2 Relative works & problem formalization

27

a roulette wheel with each slice proportional in size to the fitness. The individuals

are mapped to contiguous segments of a line such that each individual’s segment is

equal in size to its fitness. A random number is generated and the individual whose

segment spans the random number is selected. The process is repeated until the

desired number of individuals is obtained.

b) Rank-based fitness assignment. In rank-based fitness assignment, the population

is sorted according to the objective values. The fitness assigned to each individual

depends only on the position of the objective values in the individual’s rank. Ranking

introduces a uniform scaling across the population.

c) Tournament selection. In tournament selection, a number of individuals are

chosen randomly from the population and the best individual from this group is

selected as the parent. This process is repeated as often until there are sufficient

individuals to choose. These selected parents produce uniformly random offspring.

The tournament size which is the parameter for tournament selection will often

depend on the problem, population size, and so on. Tournament size takes values

ranging from two to the total number of individuals in the population.

d) Elitism. When creating a new population by crossover and mutation, there is a big

chance that we will lose the best chromosome. Elitism is the name of the method

that first copies the best chromosome (or a few best chromosomes) to the new

population. The rest is done in the classical way. Elitism can very rapidly increase

performance of GA because it prevents losing the best-found solution.

There are also other selection methods. The choice of these methods has certain impact on

the performance of the searching results. More detail can be referred in (Mitchell, 1998).

2.1.3.3 Recombination (Crossover) Operators

Crossover selects genes from parent chromosomes and creates a new offspring.

a) K-point Crossover. One-point and two-point crossovers are the simplest and most

widely applied crossover methods. In one-point crossover, illustrated in Figure 12, a

crossover site is selected at random over the string length, and the alleles on one side

of the site are exchanged between the individuals. In two-point crossover, two

crossover sites are randomly selected. The alleles between the two sited are

exchanged between the two randomly paired individuals (as shown also in Figure

12). The concept of one-point crossover can be extended to k-point crossover,

where k crossover points are used, rather than just one or two.

b) Uniform Crossover. Another common recombination operator is uniform

crossover. In uniform crossover, see in Figure 12, every allele is exchanged between

the pair of randomly selected chromosomes with a certain probability, 𝑝𝑒 known as

the swapping probability. Usually the swapping probability value is taken to be 0.5.

c) Uniform Order-Based Crossover. In order-based crossover, two parents (say 𝑃1

and 𝑃2) are randomly selected and a randol binary template is generated (see in

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

28

Figure 13). Some of the genes for offspring 𝐶1 are filled by taking the genes from

parent 𝑃1 where ther is a “1” in the template. At this point we have 𝐶1 partially filled.

The genes of parent 𝑃1 in the positions corresponding to “0” in the template are

taken and sorted in the same order as they appear in parent 𝑃2. The sorted list is

used to fill the gaps in 𝐶1. Offspring 𝐶2 is created by using a similar process.

The k-point and uniform crossover methods described above are not well suited for search

problems with permutation codes such as the ones used in the traveling salesman problem.

They often create offspring that represent invalid solutions for the search problem.

Therefore when solving search problems with permutation codes, a problem-specific repair

mechanism is often required (and used) in conjunction with the above recombination

methods to always create valid candidate solutions. Another alternative is to use

recombination methods developed specifically for permutation codes, which always

generate valid candidate solutions. The uniform order-based crossover described above is

such crossover techniques and there are other crossover which always generates valid

candidate solutions, such as order-based Crossover, partially Matched Crossover (PMX) and cycle

Crossover (CX).

Figure 12-One-point, two-point, and uniform crossover methods

0 0 1 0 0 1

1 0 0 1 0 1

0 0 1

0 0 11 0 0

1 0 1

Crossover point

Parent chromosomes Offspring chromosomes

One point crossover

0 0 1 0 0 1

1 0 0 1 0 1

0 0

1 0 0 11 0

0 1 0 1

Crossover point

Parent chromosomes Offspring chromosomes

Two point crossover

0 0 1 0 0 1

1 0 0 1 0 1 0

0

1

0 0

1

1

0

0

1 0

1

Parent chromosomes Offspring chromosomes

Uniform crossover

Chapter 2 Relative works & problem formalization

29

Figure 13-Illustration of uniform order crossover

2.1.3.4 Mutation Operators

If we use a crossover operator, such as one-point crossover, we may get better and better

chromosomes but the problem is, if the two parents (or worse, the entire population) has

the same allele at a given gene then one-point crossover will not change that. In other words,

that gene will have the same allele forever. Mutation is designed to overcome this problem

in order to add diversity to the population and ensure that it is possible to explore the entire

search space.

In Evolutionary Strategies, mutation is the primary variation/search operator. Unlike

evolutionary strategies, mutation is often the secondary operator in GAs, performed with a

low probability. One of the most common mutations is the bit-flip mutation. In bitwise

mutation, each bit in a binary string is changed (a 0 is converted to 1, and vice versa) with a

certain probability, 𝑃𝑚 known as the mutation probability. As mentioned earlier, mutation

performs a random walk in the vicinity of the individual. Other mutation operators, such as

problem-specific ones, can also be developed and are often used in the literature.

2.2 Formalization of the distribution problem

2.2.1 Architecture modeling

The multi-core architecture is composed of a set of cores {𝜋1, … , 𝜋𝐾} and a set of

memories {𝑀1 ,… ,𝑀𝐿}, with 𝐿 > 𝐾 and 𝑀1 to 𝑀𝑘 are attached to the local memories of

cores 𝜋1to 𝜋𝐾 , while 𝑀𝑘+1to 𝑀𝐿 represent the shared memories. The communications

between the cores are realized by buses. An example of this kind of architecture is TC27x

that we choose as our hardware multi-core platform. TC27x is a tri-core microcontroller.

As shown in Figure 14, there are two category memories: the local memories attached to

each core and the global memories. For the record, all the memories can be accessed by any

cores.

B E G A D F C

0 0 1 1 0 1 0

A B C D E F G

B E C D G F A

B C G A D F E

Parent P1

Parent P2

Child C1

Child C2

Template

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

30

Figure 14-Hardware Architecture

There are three cores in this architecture, two identical cores TC1.6P and another core

TC1.6E. All these three cores execute the same set of instructions. As described before, this

multicore architecture can be seen as a uniform architecture.

There are two independent on-chip buses in the tri-core architecture: Shared Resource

Interconnect (SRI) and System Peripheral Bus (SPB). The SRI is the crossbar based high

speed system bus for TC 1.6.x CPU based devices. The SPB connects the TC1.6 CPUs and

the general purpose DMA module to the medium and low bandwidth peripherals. More

details can be referred to the manual (Infineon, TC27x 32-Bit Single-Chip Microcontroller,

User's Manual, 2012).

For respecting the HW platform, the model should consider different type of memories.

There are two types of memories in multicore architecture: memories attached to each core

and memories shared by all the cores. The time for one core to access its attached memory

is shorter to the memories attached to other cores. And the time to access to shared

memories is a compromising way. The caches in this dissertation are considered inhibited.

2.2.2 Application modeling

The software architecture is modeled using a directed graph 𝐺(𝑉,𝐸), such that 𝑉 is a set of

nodes and 𝐸 is a set of edges, also called transitions (links between nodes). A node is

modeled as an execution time, a trig mode, a period. A transition has a weight that depends

on the size of data transmitted, the period of the producer, etc. The graph size is optimized

by the creation of buses between nodes.

Chapter 2 Relative works & problem formalization

31

The node can be periodic or triggered by some events. For the periodic nodes, we assume

that they are associated with a period 𝑇𝑖. Each node 𝜌𝑖 ∈ 𝑉 is also associated with execution

information that contains two parts: execution time 𝐶𝑖 and variable accessing time 𝐴𝑖.

The execution time 𝐶𝑖 represents the time for a node to execute some instructions. 𝐶𝑖 is

influenced by two factors. One is the performance of the core on which the node is located

in. The higher computing power, the faster the node will finish its corresponding execution.

In a real-life automotive system, the real-time constraints also depend on the execution

modes, such as the engine speed or driving modes. E.g. the amount of executed codes

depends on the vehicle speed. In the following we denote these contexts cases, and it is the

second factor that influences 𝐶𝑖 . A weight 𝜔 is associated to each case to model its

importance in the system (high value of 𝜔 means high importance). So for a given node its

execution time varies with its location and the contexts case.

The accessing time 𝐴𝑖 mentions the time for a node to read or write its related variables

located in the memories. In our multi-core architecture, each core is associated with a local

distributed memory. Nodes can also access data in shared memories. It is worth to mention

that all the memories can be accessed by all the nodes distributed to all the cores, which

implies that the accessing time for a node to write or read a variable varies with the location

of the node as well as the location of its variable. It is obvious that 𝐴𝑖 is much shorter if we

locate its accessed variables into the local memory of the core where this node is located.

Accessing a variable in the local memory of another core is much slower; and accessing to

shared memory is dedicated to data exchanged between cores.

2.2.2.1 Variable access model

For each node 𝜌𝑖, its accessed variables {𝜃𝑖} contain a list of variable it writes {𝜃𝑖𝑤} and a

list of variable it reads {𝜃𝑖𝑟}: {𝜃𝑖} = {𝜃𝑖𝑤} ∪ {𝜃𝑖𝑟} (shown in Figure 15(a)). Each variable is

composed of several attributes:

• Data size: the size of a data prototype. For example: for an irv data prototype with

type of SInt16, its size is 2 byte.

• Data position: in our multi-core platforms, the data can be distributed in the shared

memories or the local memories. The local data are the data that are distributed to

the shared memories and the global data are those distributed to the local memories.

• Data rate: the total size of data transferred between runnables in a transition in a unit

of time. For a transition between runnable 𝜌𝑖 and 𝜌𝑗, the period of 𝜌𝑖 is 𝑇𝑖 and the

period of 𝜌𝑗 is 𝑇𝑗. The variables transferred in this transition are denoted as 𝜃𝑖→𝑗:

𝜃𝑖→𝑗 ∈ 𝜃𝑖𝑤 and 𝜃𝑖→𝑗 ∈ 𝜃𝑗𝑟. So the sent data rate for this transition is 𝜃𝑖→𝑗/𝑇𝑖 and

the received data rate is 𝜃𝑖→𝑗/𝑇𝑗 (shown in Figure 15(b)).

• Data unit: the physical unit of each variable. Some data unit varies dramatically over

time and some data varies rarely. There are also some units varying depending on

the data.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

32

Figure 15-Variable access model

2.2.2.2 General transition model

The communications between nodes are presented as transitions 𝐸. Each transition 𝐸𝑖,𝑗

contains two nodes 𝜌𝑖 and 𝜌𝑗 , (𝜌𝑖, 𝜌𝑗 ∈ 𝑉), model 𝜌𝑖 → 𝜌𝑗 presents the dependency

between 𝜌𝑖 and 𝜌𝑗 , where 𝜌𝑖 is the predecessor of 𝜌𝑗 and 𝜌𝑗 is the successor of 𝜌𝑖 . The

predecessor 𝜌𝑖 sends a set of variables that are received by the successors. Similarly, the

successor 𝜌𝑗 receives a set of variables from predecessor. Therefore, without specifying the

granularity or the type of communications, a transition can be modeled as shown in Figure

16.

Figure 16-General transition model

2.2.2.2.1 Enumeration of transitions

The general transition model imposes of enumerating all the transitions in the unique way.

The examples below illustrate how to transform the original graphs such that it appears the

transitions each of which is associated with one single predecessor and one single successor.

• Case1: A predecessor accesses a transferred object that is consumed by multi-

successors (Figure 17).

Predecessor Successor

Transferred
Objects

Chapter 2 Relative works & problem formalization

33

Figure 17-Sources duplication for case1

• Case2: A predecessor accesses different transferred objects that are consumed by

multi- successors (Figure 18).

Figure 18-Sources duplication for case2

• Case3: A successor accesses a transferred object that is produced by multi-

predecessors (Figure 19).

Figure 19-Sources duplication for case3

• Case4: A successor accesses different transferred objects that are produced by multi-

predecessors (Figure 20).

Figure 20-Sources duplication for case4

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

34

2.2.2.2.2 Communication Bus

If multi-objects are transferred between a source and a destination, the transitions are

encapsulated in a communication bus to simplify the presentation as shown in Figure 21.

Figure 21-Communications Bus

2.2.3 Partitioning

The partitioning involves the distribution of a set of nodes {𝜌1 ,… , 𝜌𝐼} to the cores and also

a set of variables {𝜃1 ,… , 𝜃𝐽 } to the memories. We note 𝜌𝑖,𝑘when the 𝑖𝑡ℎ node is distributed

to 𝑘𝑡ℎ core and 𝜃𝑗,𝑙 when the 𝑗𝑡ℎ variable is distributed to 𝑙𝑡ℎ memory. 𝐴𝜃𝑗(𝑘, 𝑙)

mentions the accessing time for the node located on the 𝑘𝑡ℎ core to access the variable

𝜃𝑗located on 𝑙𝑡ℎ memory. We also define a set of contexts cases {𝐾1 ,… , 𝐾𝑁}, and 𝜔𝑛 is the

weight for the 𝑛𝑡ℎ case. Then, 𝐶𝑖(𝑘, 𝑛)represents the execution time for 𝑖𝑡ℎ runnable

located in the 𝑘𝑡ℎ core and in the 𝑛𝑡ℎ case. Thus when we distribute a node 𝜌𝑖 to core 𝜋𝑘,

based on its execution time, accessing time and period, this runnable results in a load 𝑢𝜌𝑖,𝑘:

𝑢𝜌𝑖,𝑘 =
∑ 𝐴𝜃𝑗(𝑘, 𝑙)𝑗 +𝐶𝑖(𝑘,𝑛)

𝑇𝑖

The load of core 𝜋𝑘 is the sum of the loads caused by the runnables distributed to this core,

mentioned as 𝑢𝜋𝑘:

𝑢𝜋𝑘 =∑𝑢𝜌𝑖,𝑘
𝑖

The inter-core communications represent the main challenge to pass from single-core to

multi-core architectures. The overhead introduced by inter-core communications is one of

main raisons that degrade the performance of multi-core system. In order to minimize this

overhead, the applications have to be analyzed in a fine degree. The overhead of inter-core

communication is estimated by summing the number of data access per millisecond. We

define a notion of FetchSize for each variable (data) transferred by transition. The fetchsize

depends on the size of variable as well as features of concrete hardware: for a transition 𝐸𝑖𝑗

with variable 𝜃𝑖→𝑗, we denote the size (in bit) of variable as 𝑆(𝜃𝑖→𝑗) and the size of the

P S

P S

S

S

P

P E3:

E2:

E1:

P S

Bus
E1
E2

E3

Bus

A

A

B B

CC

Predecessor Successor Transferred object Ei: Transition i

Chapter 2 Relative works & problem formalization

35

target hardware is 𝑆(𝐻). Thus the fetchsize of this transition is ℱ𝒮(𝐸𝑖,𝑗) = ⌊
𝑆(𝜃𝑖→𝑗)

𝑆(𝐻)
⌋. For

example, the fetchsize of a transition that transfers data with size of 16 bit is 1 if the target

platform is a 32-bit microcontroller. The overhead caused by a transition that crosses the

cores is

𝑢𝐸𝑖,𝑗 =
 휀𝑤+ℱ𝒮(𝐸𝑖,𝑗)×ℱ𝒞×𝒞𝒯

𝑇𝑖
+
 휀𝑟+ℱ𝒮(𝐸𝑖,𝑗)×ℱ𝒞×𝒞𝒯

𝑇𝑗

Where ℱ𝒞 is the number of cycles taken by each fetch, and 𝒞𝒯 is the time taken by each

cycle. ℱ𝒞 and 𝒞𝒯 are specified by the target hardware. 휀𝑤 and 휀𝑟 are two constants for the

writing and reading delay, the values depend on the communication mechanism. For

example, in the Autosar application, these can be the delay caused by the creation of IOC

channel by RTE.

In resume, the objective function ℱ is defined based on the above notions:

ℱ =∑𝑢𝐸𝑖,𝑗 ,

𝑢𝐸𝑖,𝑗 = {

 휀𝑤+ℱ𝒮(𝐸𝑖,𝑗)×ℱ𝒞×𝒞𝒯

𝑇𝑖
+
 휀𝑟+ℱ𝒮(𝐸𝑖,𝑗)×ℱ𝒞×𝒞𝒯

𝑇𝑗
, 𝑖𝑓 𝑖 ≠ 𝑗

0, 𝑒𝑙𝑠𝑒

2.2.4 Cost function and constraint formalization

For objective function or cost function, we consider different criteria. In this chapter, we

consider the criterion of inter-core communication overhead. We will present other criteria

in the next chapter.

We denote the cost of transitions that cross the cores as 𝐸𝑖,�̃� , the objective function is:

ℱ =∑𝑢𝐸𝑖,�̃�

The load of the multicore distribution must be well balanced, with a tolerated deviation of 𝛼.

It appears as the main design constraint in the optimization formulation:

Ω: 𝑢𝑚𝑎𝑥−𝑢𝑚𝑖𝑛 ≤ 𝛼

Where 𝑢𝑚𝑎𝑥 are the loads of the core that is most occupied and 𝑢𝑚𝑖𝑛 is the load of the core

that is least occupied.

It is obvious that different ways of partitioning will change the cost value of objective

function. Figure 22(a) shows a simple example: the application contains 3 runnables 𝜌1, 𝜌2

and 𝜌3. 𝜌1 send variable 𝜃1to 𝜌2 and 𝜃2 to 𝜌3. The hardware model shown in Figure 22(b)

consists in a 2-core system with a shared memory 𝑀3. Besides, each core is attached to a

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

36

local memory 𝑀1 and 𝑀2. We assume that the execution time for each runnable at each

core is identical. The objective is to distribute the application to this 2-core system. Solution

in Figure 22(c) allocates all the runnables in one core, and distributes the variables in its local

memory. This could minimize the accessing time, so the communication overhead is low.

But the loads of CPU are not well balanced as the other core is empty. Solution in Figure

22(d) allocates the runnable 𝜌3 to the other core, so when runnable 𝜌1 finishes its

execution, 𝜌2 and 𝜌3 can execute in parallel. Therefore the loads of CPU are better

balanced. However, the communication overhead is increased as the accessing time for the

variables allocated at the shared memory is much longer. This compromise is considered in

our objective function.

Figure 22-Explanation for objective function. (a) Application; (b) Hardware model; (c) and (d)

Solutions considering different criteria.

In this work, we aim at developing a practical policy for partitioning software applications,

composed of several hundreds of nodes, onto multiple cores that will minimize this

objective function, while respecting the dependencies and the constraints in AUTOSAR.

2.2.5 Description of the optimum solutions searching method

The partitioning solution is represented as a vector in which each element represents the

position for runnables or variables. The vector is an ordered list with the length of 𝑙 = 𝐽 +

𝐼, where the 𝐽 represents the number of the variables and 𝐼 is the number of nodes to be

distributed. In the position 𝑝 of the vector, 𝑝 ∈ [0, 𝐽), a memory is distributed for the

corresponding variable and in position 𝑝, 𝑝 ∈ [𝐽, 𝑙), a core is attached to the corresponding

node. The different combinations of the memories and cores will change the value of

objective function. In order to deal with this combinatorial optimization problem, we take

the metaheuristic algorithms as a solver. The method to search the optimum solution is

described as follows:

θ1

θ2

π1 π2

M3

M1 M2

θ1 θ2 θ1

θ2

(c) (d)

(a) (b)

ρ1

ρ2

ρ3

ρ3ρ3 ρ2ρ2 ρ1ρ1

Chapter 2 Relative works & problem formalization

37

• Initial solution can be obtained in a random way as well as by heuristic guide. The

quality of the initial solution would affect final solution;

• Neighborhood structure of a solution defines its possible move direction for

improvement, which involves 2 operators: operator N1 changes only the memory

attached to one single variable to another memory or operator N2 changes only the

core attached to one single node to another core. The move will choose one operator

randomly each time;

• Constraints guarantee the viability of solutions on each move proposed by the

neighborhood operator: all the solutions (including the initial solution) shall respect

all the defined constraints;

• Metaheuristic algorithms provide the searching policies to find the optimum (or

good) solutions in an efficient way: starting at the initial solution, the improvement

is effectuated by a single move (defined by neighborhood structure) each iteration.

In this work, we apply three metaheuristic algorithms: SA, GA and TS. All the algorithms

share the same framework such as initial solution, neighborhood structure. Each algorithm

performs different searching policies to find the final solution. The evolution of solutions

iteration by iteration is illustrated in Figure 23, which shows the convergence of optimization

process by our objective function with two goals: benefit the acceleration of performance

from single-core and respect the real-time constraints on the dependent tasks.

Figure 23-An example of search result by SA

The results obtained with this method show the contributions of our work:

Quality of the solutions explored according to the cost function;

Diversity of the solutions around the optimum at the convergence of the method. This

diversity will provide the designer the guide needed to take its final choice (Miramond &

Delosme, 2005) ;

Interesting

solutions

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

38

Scalability of the method over complex AUTOSAR applications potentially composed of

several hundreds of runnables and several thousands of transitions.

2.2.6 Design space exploration

The partitioning of automotive applications in multi-core systems requires a design space

exploration with many parameters to be considered. From the software point of view, it

includes the follow points:

• Software Allocation. How to decompose the allocations into partitions and

distribute the partitions on different cores?

• Task-set definition. What is the set of tasks that should be used for an efficient

and secure scheduling?

• Sequencing definition. How executable entities should be ordered in tasks? And

which parameters should be assigned to tasks, in order to comply with real-time and

functional requirements?

In single-core system, scheduling configuration can be computed using the design

of the implementation model (e.g., a model from MATLAB/SIMULINK can be

used to generate a scheduler). In multi-core system however, the implementation

model should take into consideration parallelism before doing this step, which is not

done when porting single core application onto multi-core. When we consider multi-

core only at SW level, this leads to a very complicated task.

• Application synchronization. Cooperation between cores requires specific inter-

core synchronization mechanisms. E.g. the synchronization points in Figure 24 shall

be guaranteed to make sure the correcte cooperation between the two cores.

Figure 24-Synchronization example

It is worth to note that the points of task-set definition and sequencing definition already

exist in the single core system.

From the hardware point of view, the following points that exist already in the single-core

context are impacted by multi-core.

Chapter 2 Relative works & problem formalization

39

• Data mapping into memories (SWCs). Microcontrollers have several levels of

memories (e.g. one local memory per core and one shared memory). Each

architecture has its own hierarchical composition of the cores and memories, e.g. tri-

core architecture in Figure 25 consists in 3 cores, each core with a local memory.

Besides, there is one shared memory that can be accessed by all the cores. This kind

of multi-core architecture imply three type of accessing time: the accessing time to

the local memory, the accessing time to the distant memory (local memory of

another core) and the accessing time to the shared memory. The 𝑇𝑖→𝑗 in Figure 25

means the accessing time from Core-i to the memory 𝑗.

Figure 25-Illustration of data mapping into memories

• Hardware safety mechanisms. Microcontrollers have a set of features that can be

activate in order to comply with ASIL X (ISO 26262). Mainly Memory Protection

Unit (MPU) has a significant impact on multicore especially on the aspect of the

communication time.

These parameters interact with each other: The SW allocation choices drive data allocation

and in return, data allocation also impacts SW behavior. E.g., a first allocation can be

provided by considering a same accessing time to data. After that, the data accessing time

will be corrected to obey the real case. This correction changes several features of allocation

such as CPU loads, communication overhead and so on, which can impact the choices of

SW allocation.

SW synchronization problem is influenced by SW allocation choices. We make the

distinction between fine grain synchronization, which correspond to data protection and

coarse grain synchronization (much more difficult) that target software flow mastering. For

example:

• Data allocation impacts synchronization problem as the data protection mechanism

is needed for assuring data consistency

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

40

• An appropriate choice of SW allocation with few synchronization points will

facilitate the synchronization process.

Safety requirements (ISO 26262) also affect directly or indirectly the SW allocation and data

allocation. For example:

• Some safety mechanisms might require the separation of SWCs of different

Automotive Integrity Safety Levels (ASIL) from each other (e.g. spatial isolation

made by allocated for separation of concerns). This isolation in space can be use to

make sure that the SWCs are not able to write to other SWCs data (partitioning)

using software/hardware support such as a memory protection or memory

management unit (which also influences the data allocation).

• Microcontroller architecture should comply with safety requirement. For example,

ASIL D application should be allocated to cores that run in lockstep.

The interdependence between these parameters as shown above exacerbates the design

complexity. The design space needs to be explored by considering these entire requirements.

Therefore, design space exploration should be formulized as optimization problems and

powerful optimization techniques are needed. We adopt Meta-heuristic algorithms as solver

to deal with these optimizations problems that are formulized as combinatorial

optimizations (CO) problem. The relative theories are previously presented in section 2.1.

2.3 Autosar Application

The main work of this dissertation is to integrate seamlessly our partitioning method into

an AUTOSAR development process. For doing that, we model the application of

AUTOSAR in order to allow automatic exploration of its deployment onto multi -core

architectures adapted with our model presented earlier. Basically, AUTOSAR development

process can be divided in two steps:

A system is described at higher level without knowing if it will be allocated on several ECUs

or only to one ECU and so on, without knowledge on the core in which software will be

executed.

At configuration level, SWCs have to be allocated to cores. This allocation is done using the

operating system configuration, by allocating runnables to tasks, tasks to OS-Applications,

and OS-Applications to cores. We recall that a given OS-Application is statically assigned to

a core.

2.3.1 Communication overhead in Autosar application

In order to consider of inter-core communication overhead to the Autosar applications, we

analyze and model the communications in the architecture of Autosar application.

Communication model in AUTOSAR

According to the AUTOSAR Methodology, there are three types of communication:

Chapter 2 Relative works & problem formalization

41

• Inter ECU communication: already available using well defined APIs of the

communication stack (COM) ;

• Intra OS-Application communication: always handled within the RTE ;

• Inter OS-Application Communication: The communication channel depends on

the set of software mechanisms used for data protection:

o IOC (Inter OS-Application Communicator) is used when we need to cross

memory protection boundaries (e.g. when MPU is used for safety reason). The

IOC is an operating service, executed in supervisor mode (i.e. a system call has

to be done before performing a communication);

o RTE is used when the communication can be performed in shared memory

mode. In that case, the IOC service provided by the operating system is not

required.

Manipulated data also need to be protected. In fact, with a 32-bits hardware architecture,

only 32-bits can be manipulated atomically. For greater size, a lock (e.g., spinlock) has to be

taken. That implies that 4 kinds of communications can be used for inter-OS-Application

communications (order by time required to perform the data access).

• By RTE without spinlock, the fastest way to handle data access (no protection);

• By RTE with spinlock, if data is too big to be manipulated atomically (data

consistency is handled);

• By IOC without spinlock, memories regions protected by MPU (safety);

• By IOC with spinlock, memories regions protected by MPU and data handled > 32

bit.

Runtime behavior impact depends on the kind of communication. For example, the time

required to access data in a memory protected by spinlock is lower than the time required

to access data in a memory protected by spinlock and by MPU (additional System Calls).

This directly impact WCET of tasks and CPU load, which can be significant at ECU level.

Do not forget that an inter OS-Application communication may not necessarily require a

cross core communication. E.g., it is possible to allocate some OS-Applications to a same

core.

It is also worth noting that OS-Application have been created to tackle memory protection

problems; i.e. most of inter-OS-Application should be performed by the IOC. However, an

OS-Application cannot be splitted into cores, so we have at least one OS-Application per

core.

In AUTOSAR, there is no restriction of the protection level of inter-core inter-OS-Application

communication. The different kinds of communication are illustrated on Figure 26.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

42

Figure 26-Communication in Autosar

2.3.1.1 Classes of communication

The communication of application is presented by a set of transitions between runnables.

There are three levels of categories for these transitions: the SW architecture level, the

RTEEvent triggering level and partitioning level as shown in Figure 27.

• SW Architecture level: at this level, the communications are categorized into 2

groups: the communication realized by the Ports and Interfaces and the

communication realized by the IRV.

• RTEEvent triggering level: this level classifies the transitions into several classes

according to the RTEEvents that activate the runnables

• Partitioning level: at this level the communication are managed by IOC or by RTE.

Chapter 2 Relative works & problem formalization

43

Figure 27-Different levels of categories for communications

2.3.1.1.1 SW Architecture level

At SW Architecture level, the transitions can be categorized into 2 groups: inter-SWC

connection and intra-SWC connection.

• Inter-SWC connection represents the transitions between two runnables from

different SWCs. These transitions are implemented by Ports and Interface. The

Interface has three types: the SenderReceiverInterface, ClientServerInterface and

ModeSwitchInterface. For now, the ModeSwitchInterface that provides several

modes is not in our concern. SenderReceiverInterface provides data that can be

written by producer runnables and be read by consumer runnables. While

ClientServerInterface contains several services (functions calls) that are provided by

server runnables to response the call of client runnables. To build such inter-SWC

connection, a runnable that writes variables or provides services connects the

provided Port attached to the related Interface and in the other side, another

runnable that reads these variables or calls these services connects the required Port

attached to the same Interface.

• Intra-SWC connection, on the other hand, represents the transitions between

runnables from the same SWC. These transitions are implemented by IRV, where

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

44

the communications are realized by writing and reading the IRV-data by runnables.

This level of communication is shown in the top of Figure 27.

2.3.1.1.2 RTEEvent triggering level

RTEEvent triggering level classifies the transitions into 4 classes according to the RTEEvent

type that activates the runnables.

• Class 1: both producer runnable and consumer runnable are activated by Timing

Event.

This means that both runnables are periodic. By comparing the period of producer

runnable (noted as Tp) and the period of consumer runnable (noted as Tc), Class 1

can be further classified into 3 series, where

- Series 1: Tp = Tc, that the periods for both runnables are identical. Thus, the

data rate can be presented by size of data (byte) / (Tp or Tc).

- Series 2: Tp < Tc, this is under-sampling case that the periods of producer

runnables is grater, which will result in data loss. Two type of data rate are

considered: producer data rate (data size by Tp) and consumer data rate (data

size by Tp). The data loss rate is Tp/Tc.

- Series 3: Tp > Tc, over-sampling case that the periods of producer is smaller,

which will result in data duplication. Like series 2, two type of data rate are

considered and the data duplication rate is Tp/Tc.

• Class 2: either producer or consumer runnable is activated by Timing Event, but not

both.

Class 2 can be further classified into 2 series:

- Series 1: Producer runnables is periodic.

- Series 2: Consumer runnables is periodic.

• Class 3: Neither producer nor consumer runnable is activated by Timing Event.

• Class 4: this class focuses on the communication between server runnable and client

runnable and the RTEEvent type of server is OperationInvokedEvent (OIE).

The relation with implementation level is shown in Figure 27.

We did a quantitative analysis of the transitions in automotives applications. The complete

statistic results can be referred in Annex 1. Here we show in Figure 28 the distribution of

the transitions in terms of their classification. The concerned application represents a

portion of full application of Engine Control System, which contains two chains of SWC:

air chain and advance chain. We can notice that the SWCs in chains air are strongly

connected by class1 series1 (as to high quantity of class2 series 2, this is due to the mode

switch connection, which we don’t study in this dissertation.). When allocating the SW, the

transitions of class1 series1 shall be considered as strong connection.

Chapter 2 Relative works & problem formalization

45

Figure 28-Distribution of the transitions for two chains

2.3.1.1.3 Partitioning level

The implementation level and RTEEvent trigging level already exist in the context of single-

core, while with the intention to migrate to multi-core platform, the communication inside

the core can be managed by RTE while the communication pass between cores should be

managed by IOC, which derive the partitioning level: the transitions passed by RTE and the

transitions passed by IOC.

The determination of the partitioning level for transitions is part of multicore SW

distribution, which requires balancing several elements:

• Classification from RTEEvent triggering level: each transition belongs to one

of 4 classes presented in part 2.8.1.2.2. For each class, the requirement for

partitioning is different.

1) Class 4: The IOC provides sender-receiver (signal passing) communication only.

For the communication in class 4 that are composed of client-server

communications, the RTE translates Client-Server invocations and response

transmissions into Sender-Receiver communication

2) Class 1 series 1: the overhead for IOC is quite high. In order to reduce the

number of IOC transitions in the multi-core software solution, our model will

associate an extreme high cost to this type of transitions. This point has been

described in the 2.3.1.1.2.

Between chains Chain Air Chain Advance

Classe1Series1: Tp = Tc 2 214 0

Classe1Series2: Tp < Tc 1 37 0

Classe1Series3: Tp > Tc 0 56 0

Classe2Series1: non-Tc 29 15 1

Classe2Series2: non-Tp 9 357 2

Classe3: non-Tp&Tc 31 14 98

Classe4: Client&Server 0 10 0

0

50

100

150

200

250

300

350

400
Tr

an
si

ti
o

n
 c

o
u

n
t

Transition analysis in details

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

46

3) Class 1 series 2 & series 3: the overhead for IOC is decreasing when data loss

rate or data duplication rate is augmented.

4) Other classes: the restriction of IOC can be relaxed.

• Physic unit of data

As detailed in Annex 1, we reanalyzed a quantitative study of the variability of data

on the target automotive applications. The details of the unit are summarized in

Table 1. For the data unit for whose values vary dramatically, it is discouraged to

manage this kind of transition via IOC, while for those varying rarely over time,

managed by IOC will not bring further overhead for communication. However, the

variation of some data units is depends on the data, which requires best knowledge

of the functional behavior of the applications.

Unit

Count

Designation

Variability

(Fast/Slow/Depend
on data)

EBDT TDP

Without unit 155 49 Without unit Depend on data

kW 1 Power Slow

g/mol 1 1 Slow

1/s 2 2 Fast

kg/s 29 49 Fast

RPM/s 4
Revolutions per
minute

Fast

kg 24 31 Mass Fast

s.kg/Pa 1 1 Fast

m² 14 6 Surface Depend on data

kg/s/Pa 1 1 Depend on data

Pa 77 114 Pressure Depend on data

N.m 142 Moment Fast

% 31 Percentage Depend on data

. 218 26

(K)^1/2 1 3

- 305 104

m/s2 1 Acceleration Fast

°Vil 2 Fast

mOhm 1 Resistance Slow

° 1 Depend on data

K^(1/2) 1 1 Depend on data

1/Pa 4 6 Depend on data

Chapter 2 Relative works & problem formalization

47

km/h 6 Speed Slow

A 7 Current Depend on data

s.u. 1

J 1 Inertia Slow

K 43 61 Depend on data

Nm 10 Moment Fast

W 3 Puissance Fast

V 16 Tension Slow

mg 3 Mass Fast

_ 4

m^2 3 3 Surface Depend on data

°C 9 Temperature Depend on data

RPM.N.m/s 1 Depend on data

s/m.K^(1/2) 1 1 Depend on data

km/h/1000RPM 1 Slow

°/s 1 Depend on data

Pa/s 1 1 Depend on data

m 1 Distance Fast

V/s 8 Slow

s 45 11 Temps Fast

m/s^2 23 Depend on data

°Ck 17 14 Fast

RPM 22 4 Tours Fast

m/s^3 1 Depend on data

bool 6 Slow

N.m/s 6 Depend on data

kg/h 2 Slow

Table 1-Physical unit of data

• Data size

Data size is the size of data transferred between transitions. For example: for an irv

data prototype with type of SInt16, its size is 2 byte.

• Data rate

This is the total size of data transferred between runnables in a transition in a unit

time. The high data rate causes high overhead for IOC. In order to facilitate the

allocation according to varying elements like data rate, load of CPU, the knowledge

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

48

of the period for each runnable is mandatory. Follows are the rules for the

association of the period for each runnable.

A. For the runnables activated by periodic RTEEvent – timing event, they are

periodic and the period is determined by its related timing event.

B. For the runnables activated by other RTEEvent, for example, the runnables

existing in class 2, class3 and class4, they are not periodic. The determination

for these runnables depends on different assumptions:

Assumption_1 For a runnable activated by non-periodic event, for
example by data receive event, and if it receives the variable only by
another producer runnable activated by periodic event (Figure 29), its
period is equal to the period of this producer runnable.

 Figure 29- Determination period for non-periodic runnable R_A (assumption1)

Assumption_2 If it receives the variable only by another producer runnable
activated by non-period event, its period is equal to the period of that non-
periodic runnable. This implies the research for an event chains (in Figure 30)
to find the runnables in the assumption 1.

 Figure 30-Determination period for non-periodic runnable R_A (assumption 2)

Assumption_3 If it receives simultaneously by several runnables, its
period is equal to the minimum period of these received runnables (in
Figure 31).

 Figure 31-Determination period for non-periodic runnable R_A (assumption 3)

Chapter 2 Relative works & problem formalization

49

Assumption_4 For a server runnable, its period is equal to its client
runnable.

These elements shall be balanced to determine the cost level for a transition managed by
IOC. Besides, the cost of spinlock shall be considered if presented.

2.4 Related works in automotive domain

The theoretical formulation of application partitioning has been widely studied in the past

either in the domain of multiprocessor computing (Yi, Han, Zhao, Erdogan, & Arslan, 2009)

or in hardware/software co-design (Miramond & Delosme, Design space exploration for

dynamically reconfigurable architectures, 2005). But the proposed partitioning methods

rapidly faced a major limitation considering the lack of real use cases integrated in a full

industrial working process. The explored solutions at high-level were too abstract to be really

considered. Moreover, when considered alone, the formal optimization clears out the

designer from the problem and neglects that not all the design considerations can be

theoretically formulated.

In recent years, the adoption of multicore architectures in critical embedded systems has

revived the need of design flows fully integrating the exploration phase. So, several works

have dealt with the partitioning problem of IMA applications for the avionic domain as well

as AUTOSAR applications for automotive domain onto multi-core systems. So, in (Monot,

Navet, & Bavoux, 2012) authors developed heuristic algorithms for mapping runnables into

different cores. In this paper, runnables are grouped into clusters before being distributed

across cores by optimizing a specific objective function. The works of Faragardi et. al

(Faragardi, Lisper, & Nolte, 2013) and Saidi et. al (Saidi, Cotard, Chaaban, & Marteil, 2015)

proposed a heuristic algorithm to create a task set according to the mapping of runnables

on the cores. With the goal of minimizing the communications between runnables, the

problem is classically formulated as an Integer Linear Programming (ILP). Therefore,

conventional ILP solvers can be easily applied to derive a solution. In (Sailer, et al., 2013),

Genetic Algorithms (GA) are applied to partition the application in an optimal way. The

results of task allocation are evaluated by their simulation tool TA-Toolsuit that is a vendor

tool developed by enterprise Timing Architect. Similar tools are developed by other

development companies such as SymtaVision. This kind of vendor tools proposes validation

at simulation level. Based on an allocation solution given by user, the tools simulate a set of

tasks deployed onto multi-core architecture, which check a set of constraints (e.g.: real time

constraints, contention between the shared resources, etc.). The designer can analyze the

Gantt diagram of the scheduling and the corresponding data dependencies or summarize

the overhead of the communication load. The simulation is close to the real Hardware model

and the analysis results could help for the (slight) modification of the allocation (proposed

by the tool this time). However, the allocation choice might still not be optimal, and the

automatic exploration of the allocation step from these tools is very limited.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

50

There are several European projects that work on the multi-core systems such as

AMALTHEA (AMALTHEA, 2012), parMerasa (parMERASA, 2011) and EMC2 (EMC²,

2014). The AMALTHEA project proposes the methods that evaluate the allocation

solutions using a set of cost functions. Applying a metaheuristic algorithm such as genetic

algorithms, the tool explores the solution space to find the best solution that satisfies the

condition of the input cost functions. However: The definition of the cost functions from

the tool is mainly based on the real-time criteria: the metric for quantifying the deadline

compliance on system level, resource consumption and data-communication overhead. The

aspect of sequences of execution such as event chains and execution orders is not considered

by the tool (Sailer, et al., 2013). Moreover, they do not propose approaches for scheduling.

The project parMerasa takes the dependency of components into account. However: The

overhead of communication between cores is not considered. The task configuration

maintains the same from single-core architecture, which does not benefit enough from the

multi-core (Panic, et al., 2014). Take the application presented in (Panic, et al., 2014) as an

example, the dependencies between the runnables are shown in Figure 32(a). In single-core

case, it clusters the runnables with the same period into same task as shown in Figure 32(b)

and one feasible scheduling is shown in Figure 32(c) that respects the dependencies exigency

(tasks with period of 1 ms shall be executed before other two tasks). According to their

approach, when migrate to multi-core, only the runnables in the same tasks can be

parallelized to different cores in order to maintain the same sequence of task execution as

to the single core. Therefore, Figure 32(d) shows a result when migrate the example

application into a 2-core system, where we can see the execution order of tasks is maintained,

i.e. task with period of 1ms execute before tasks with 4 ms and tasks with 5 ms. Their

approach does not need additional validation stage as it keeps the original configuration

such that the development cost is not increased for multi-core platform. However, this

approach can introduce large idle intervals due to a long critical path inside a task (Kehr, et

al., 2016), for example, the R_idle in (d). Moreover, the communication overhead is not

considered in their approach, for example, the communication between R2 and R5.

Chapter 2 Relative works & problem formalization

51

Figure 32-Approach proposed by parMerasa

Conclusion
The problem of distribution into multi-core system has been launched in the automotive

industry with the explosion of the standard functionalities as well as ADAS. In spite of the

existence of the solutions in the literature for solving this optimization problem, it has not

yet existed the satisfactory solutions that are adapted to the automotive context as well as

the AUTOSAR standard.

Compared to the existing solutions in the literatures, the method proposed in the following

chapters will bring the following contributions:

• Consider the sequences of event chains in Chapter 3 by minimizing the global jitter

during the scheduling.

• The proposed scheduling approach works both on single-core and multi-core

platform and is compliant with AUTOSAR applications.

• Integrate the multi-core distributions in a validation loop based on hardware

concerns (Hardware in the Loop) in Chapter 4.

Chapter 3 Real-Time System

scheduling

3.1 Real-time System scheduling overview .. 53

3.1.1 Basic notations ... 53

3.1.2 Real-Time Scheduling algorithms overview .. 55

3.1.3 Real-Time examination ... 62

3.1.4 Resource sharing .. 63

3.2 Dependant tasks scheduling ... 63

3.2.1 Related works on real-time scheduling of dependent tasks 63

3.2.2 Model of periodic precedence ... 65

3.2.3 Communication semantics in AUTOSAR: Explicit & Implicit.................................. 67

3.2.4 Dependent tasks scheduling in Single-core systems .. 69

3.2.5 Dependent tasks scheduling in Multi-core systems ... 76

3.3 Experimental results... 81

Conclusion .. 84

Chapter 3 Real-Time System scheduling

53

3.1 Real-time System scheduling overview
A classification of scheduling algorithms is presented in (Cheng, Stankovic, &

Ramamritham, 1989). Before introducing some typical algorithms both in single-core and

multi-core system, we first introduce some basic notions and notations.

3.1.1 Basic notations

The real-time system is composed of a set of real-time tasks, each task is made up of a set

of execution entities called jobs, which execute sequentially on processors and respect the

temporal constraints. Based on the way of the jobs recurring over a period of time, the real-

time tasks could be classified into 3 categories:

• Periodic tasks: the time interval of the activation time between two jobs is fixed.

This fixed time interval is called period.

• Sporadic tasks: the time interval of the activation time between two jobs is not

fixed, but it exist the minimum interval.

• Aperiodic tasks: similar to the case of sporadic tasks, but there is no minimum

value of the time interval between two jobs.

The model of the periodic tasks proposed by Liu and Layland of (Liu & Layland, 1973) is

the most widely used in the real-time systems modeling as shown in Figure 33. The

parameters for a periodic task τi = (ri
0 ,Ci , Di ,Ti) are:

𝑟𝑖
0 (release time) : the first activation time of the task τi. If the first activation time

of all the tasks is given, then these tasks are concrete tasks. Otherwise they are non-

concrete tasks.

𝐶𝑖 (Computing time): The execution time for task τi. This parameter is considered

usually as the worst case execution time in the target processor.

𝐷𝑖 (Deadline): the relative deadline to each activation of the task.

𝑇𝑖 (Period): the time interval between the adjective jobs of the task.

Figure 33-Task model

The constraints on deadlines of tasks are classified into three categories:

• Implicit deadlines: all task deadlines are equal to their periods. Di = Ti,

• Constrained deadlines: all task deadlines are less than or equal to their

periods. Di ≤ Ti,

𝑟𝑖
1+ 𝐷𝑖

𝑇𝑖

𝑟𝑖
1

𝐶𝑖

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

54

• Arbitrary deadlines: no relation constraints exist between the deadlines and periods

for all the tasks.

Although the principal scheduling issue tackled in real-time system is the respect of the

deadline of tasks, there are some other metrics that are worth to be taken into consideration

for scheduling analysis as shown in Figure 34.

Job 𝜏𝑖
𝑛 denotes the nth instance of task τi.

Release time of job 𝜏𝑖
𝑛 is denoted as 𝑟𝑖

𝑛: so we have 𝑟𝑖
𝑛 = 𝑟𝑖

0 +𝑛×𝑇𝑖 .

Relative deadline of job 𝜏𝑖
𝑛 is denoted as 𝑑𝑖

𝑛: so we have 𝑑𝑖
𝑛 = 𝑟𝑖

𝑛 +𝐷𝑖.

Start time of a job 𝜏𝑖
𝑛 is denoted as 𝑠𝑖

𝑛: the time on which the job begins for the

first time to execute the resources. The start time of the first job in Figure 34 is 2.

End time of a job 𝜏𝑖
𝑛 is denoted as 𝑓𝑖

𝑛 : the time on which the job terminates its

execution. The end time of the second job in Figure 34 is 12.

Response time of a job 𝜏𝑖
𝑛 is denoted as 𝑅𝑖

𝑛 : it corresponds to the difference

between the release time of a job and its end date.

Response time of a task 𝜏𝑖 is denoted as 𝑅𝑖 : it corresponds to the maximal

response time of job among all the jobs of this task.

Instantaneous latency of a job 𝜏𝑖
𝑛 is denoted as ℒ𝑖

𝑛: the difference between the

considered instant and the deadline of the job.

Instantaneous laxity of a job 𝜏𝑖
𝑛 is denoted as 𝔩𝑖

𝑛 : the difference between the

latency and the rested time for terminating the execution of the job.

Entry/exit delay of a job: the difference between the job start time and the job end

time.

Jitter of a job 𝜏𝑖
𝑛 is denoted as 𝛿𝑖

𝑛: it represents the delay between the release time

and start time for job 𝜏𝑖
𝑛.

Figure 34-The scheduling of task (1, 3, 6, 6)

Response time

Latency at 3
Entry/Exit delay

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Jitter

Laxity at 3

Chapter 3 Real-Time System scheduling

55

3.1.2 Real-Time Scheduling algorithms overview

3.1.2.1 Scheduling in single-core system

This section presents some scheduling algorithms in single-core real-time system. For the

partitioned scheduling in multi-core system, each core uses the single-core scheduling, which

will be presented in the following section. If each task is attached with a single fixed priority

and this priority is applied to all the jobs of this task, this priority is called fixed task priority.

The scheduling algorithms Rate Monotonic (RM) (Liu & Layland, 1973) and Deadline

Monotonic (DM) (Leung & Whitehead, 1982) are the examples for fixed task priority. If the

fixed priorities attached to each job of task are not the same, this is termed as fixed job

priority. The example scheduling algorithms in this case is Earliest Deadline First (EDF)

(Liu & Layland, 1973). If the priorities attached to each job of the task may change at

different times, it is termed as dynamic priority. The example for this is Least Laxity First

(LLF) (Mok, 1983) scheduling.

3.1.2.1.1 Fixed Task Priority Scheduling

The priority fixe to tasks is the priority that does not vary during the execution of the tasks.

3.1.2.1.1.1 Rate Monotonic (RM)

The scheduling algorithm RM is proposed by Liu and Layland in 1973. RM is very

commonly used for scheduling real-time tasks in practical applications. Basic support is

available in almost all commercial RTOS for developing applications using RM. According

to RM, the static priorities are assigned on the basis of the period of the task: the shorter

the period is, the higher is the task's priority. The RM is optimal under the preemptive

scheduling model and implicit deadlines constraints. A sufficient test of schedulability for n

tasks is given by:

∑
𝐶𝑖
𝑇𝑖

𝑛

𝑖=1

≤ 𝑛(2
1
𝑛− 1)

3.1.2.1.1.2 Deadline Monotonic (DM)

The scheduling algorithm DM is proposed by Leung and Whitehead in 1982. According to

DM, the static priorities are assigned on the basis of the relative deadline: the shorter the

deadline is, the higher is the task's priority. Unlike RM that no longer remains an optimal

scheduling algorithm for constraint deadline constraint, the DM is optimal under the

preemptive scheduling model and constraint deadlines constraints. A sufficient test of

schedulability for n tasks 𝜞𝒏 is given by:

∀𝜏𝑖 ∈ Γn ,Ci + ∑ ⌈
𝐷𝑖
𝑇𝑗
⌉.𝐶𝑖

𝑗∈ℎ𝑝(𝜏𝑖)

≤ 𝐷𝑖

where ℎ𝑝(𝜏𝑖) is the set of tasks in Γn with the priorities no smaller than 𝜏𝑖 .

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

56

3.1.2.1.1.2.A Analysis of response time

The response time of tasks could be used to analyze the schedulability. A sufficient and

necessary condition of schedulability is proposed, which is based on the calculation of the

worst case of response time. For a set of tasks 𝛤𝑛 , the worst case of response time 𝑅𝑖 for

task 𝜏𝑖 ∈ 𝛤𝑛 is given by:

𝑅𝑖 = 𝐶𝑖+ ∑ ⌈
𝑅𝑖
𝑇𝑗
⌉×𝐶𝑖

𝑗∈ℎ𝑝(𝜏𝑖)

with ℎ𝑝(𝜏𝑖) is the set of tasks with higher priority than τi. in the taskset 𝛤𝑛 . The taskset 𝛤𝑛

with fixed priority is schedulable if and only if:

∀𝜏𝑖 ∈ Γ𝑛,𝑅𝑖 ≤ 𝐷𝑖

3.1.2.1.2 Job-Fix Priority Scheduling

The job-fix priority means that the priority of each job remains the same at its execution.

The most studied job-fix priority scheduling algorithm is Earliest Deadline First (EDF),

which is proposed by Liu and Layland in 1973. EDF assigns the priority to each task

according to their absolute deadline. The highest priority at the time 𝒕 is assigned to the

task with the absolute deadline that is most closed to 𝒕. EDF is optimal for the independent

tasks in the single-core system. One exact test of schedulability for n tasks 𝜞𝒏 with implicit

deadlines constraints is given by:

∀𝜏𝑖 ∈ Γn ,∑
𝐶𝑖
𝑇𝑖

𝑛

𝑖=1

≤ 1

However, this condition is only sufficient for the constrained-deadline sporadic task sets.

There are certain advantages for EDF compare to FP (Fixed-Priority). EDF can schedule

all the tasks that can be scheduled by FP, while conversely, it is not the case. In spite of the

extra computation for the absolute deadline, EDF introduces less context switches.

Therefore, EDF performances are better for the overhead of runtime (Buttazzo, 2003).

EDF allows full utilization the processor, while FP performs more idle time. Taking RM as

an example, when the number of tasks 𝑛 → ∞ , the maximal system utilization

is ln2 ≈ 0.69.

However, the disadvantages of EDF are not negligible, which leads to the reason that it is

not applicable in the commercial RTOS. EDF is less predictable and controllable: the

response time of tasks in FP is always constant and we can always minimize the response

time (if it is possible) by increasing its priority. While in EDF, they are variable, and the

priority is not reconfigurable. EDF requires more overhead for implementation. For

example, it might require a long data structure to deal with the absolute deadline for each

job of all the tasks. In the case of non schedulable, i.e. the response time of the task exceed

its predicted execution time, PF is more predictable as only lower priority tasks miss their

Chapter 3 Real-Time System scheduling

57

deadlines. While EDF generates domino effect (Liu & Layland, 1973): all the tasks missed

their deadline almost at the same time.

3.1.2.1.3 Dynamic priority Scheduling

The dynamic priority varies during the execution of an instance. The most utilized

scheduling algorithm of dynamic priority is Least Laxity First (LLF) algorithm, which is

proposed by Mok in 1983 (Mok, 1983) . LLF is based on the laxity of each job (instance),

i.e. the task with the smallest laxity is the highest priority to be scheduled in the runtime.

The condition of schedulability of LLF is the same to that of EDF (COTTET, 2000), which

means one exact test of schedulability for n tasks 𝜞𝒏 with implicit deadlines constraints is

given by:

∀𝜏𝑖 ∈ Γn ,∑
𝐶𝑖
𝑇𝑖

𝑛

𝑖=1

≤ 1

LLF scheduling is optimal both on single-core system and multi-core system in the

condition that the release times of all tasks are identical (Herrtwich, 1990), which means

LLF scheduling is not optimal if the ready times (release time) are not the same for all tasks.

Although LLF scheduling may yield better results in terms of schedulability, it is less efficient

than EDF scheduling such as the larger quantities of process switches and requirement of

several reevaluations of the scheduling criterion.

3.1.2.2 Scheduling for multi-core systems

The scheduling algorithm for multi-core systems determinates i) for each task in the system

the processor it will execute at and ii) for each processor the execution date and order of

the tasks. The first part is also considered as allocation problem that was studied in the

previous chapter. In this chapter we focus on the second part: the problem of scheduling in

multi-core systems with a limited number of processors (for a system with non-fixed

number of processors, there will not be any problem of scheduling as we can add as much

number of processor to make sure the tasks are schedulable: each task in a processor in an

extreme example). The scheduling problem for multicore-systems is formulated in the first

time by Liu in 1969 (Liu & Layland, 1973). It does not exist an optimal scheduling algorithm

with a polynomial complexity. De-facto, the majority of scheduling problem in multi-core

systems is NP-complete. Besides, the solutions for scheduling problems in multi-core

system are certainly not the trivial extensions of the solutions from single-core system.

Multicore system scheduling can be classified according to the degree of migration allowed

such as:

a. No migration: Each task is allocated to one processor and cannot be migrated to

other processors in the runtime.

b. Task-level migration: Also called as restricted migration where the jobs

(instances) of a task are allowed to be allocated to different cores. But the migration

of job during the runtime is forbidden.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

58

c. Job-level migration: Also called as full migration where no restriction for the

migration, each job of each task can be migrated to different processors.

For each degree of migration allowed, similar to the case of single-core system, the

scheduling can be further categorized according to the priority attachment such as task-fix

priority, job-fix priority and dynamic priority. By combining the dimension of migration

and priority, there are 9 classes of scheduling algorithms. Carpenter et al. summarized the

bound of utilization for each class in (Carpenter, et al., 2004) as shown in Table 2, where

only full migration with dynamic priorities can promise a full utilization of system (utilization

𝑼 is equal to the number of cores 𝒎).

 No migration Restricted migration Full migration

Task-fix

Priorities
(√𝟐 − 𝟏)𝒎 ≤ 𝑼 ≤

𝒎+ 𝟏

𝟏 +𝟐
𝟏
𝒎+𝟏

 𝑼 ≤
𝒎+ 𝟏

𝟐
 𝑼 =

𝒎+ 𝟏

𝟐

Job-fix

Priorities
𝑼 =

𝒎+ 𝟏

𝟐
 𝒎− 𝜶(𝒎 − 𝟏) ≤ 𝑼 ≤

𝒎+ 𝟏

𝟐
 𝒎− 𝜶(𝒎 − 𝟏) ≤ 𝑼 ≤

𝒎+ 𝟏

𝟐

Dynamic

Priorities

𝒎²

𝟑𝒎 − 𝟐
≤ 𝑼 ≤

𝒎+ 𝟏

𝟐

𝒎²

𝟐𝒎 − 𝟏
≤ 𝑼 ≤

𝒎+ 𝟏

𝟐

𝑼 = 𝒎

Table 2-Known bounds on worst-case achievable utilization (denoted U) for the different classes of

scheduling algorithms (Carpenter, et al., 2004)

Scheduling algorithms where no migration is permitted are referred as partitioned

scheduling, while the migration allowed scheduling algorithms are referred as global

scheduling. The majority of research for global scheduling focuses on the job-level

migration.

It is worth to mention that it is neither comparable nor opposed between partitioned and

global scheduling in the majority cases. In the example of (Leung & Whitehead, 1982) for

the periodic taskset, the scheduling is accomplished by a partitioned based algorithm, while

no global approach can be found to realize a feasible scheduling. On the other hand, there

are also systems of periodic taskset that can only be scheduled by global scheduling

algorithm.

In addition to partitioned scheduling and global scheduling, there are also some hybrid

approaches that contribute to combine the advantages of partitioned and global scheduling.

The examples for hybrid approaches contain semi-partitioned scheduling and clustering

scheduling. We introduce these approaches briefly in the following parts of the section.

3.1.2.2.1 Partitioned scheduling

The strategy of partitioned scheduling (Andersson & Jonsson, 2000) (Baker & Baruah, 2006)

consists in portioning a set of 𝑛 tasks Γ𝑛 into 𝑚 disjointed subset Γ1 ,Γ2 ,… , Γ𝑚 such that

⋃ Γ𝑖 = Γ𝑛
𝑚
𝑖=1 and 𝑚 is the processors’ count. Then in each processor 𝜋𝑗 , a single-core

scheduling approach can be performed for the subset Γ𝑖 that is allocated to it. Therefore,

there is a scheduler for each processor. The tasks allocated to each processor are forbidden

to migrate to other processor during the runtime; neither can preemption result in migration.

Chapter 3 Real-Time System scheduling

59

The partitioned scheduling has the advantage of dividing the scheduling of multi-processor

into several scheduling of single-core where it exist already a lot of works in the literature,

and it is the multiprocessor real-time scheduling approach the most commonly used in

practice. The partitioning of the tasks to different processors is equivalent to the “Bin-

Packing” problem that has been studied by a lot of works since 1970. The problem of bin

packing is a classic intractable problem to solve which is NP-hard in the strong sense (Garey

& Johnson, 1990) (E. G. Coffman, Garey, & Johnson, 1996). Therefore, there is no

polynomial or pseudo-polynomial algorithm to solve this problem by finding the minimum

processors for allocation of tasks.

Bin-packing problem consists of packing a set of 𝑛 items Β𝑛 = (𝑏1 ,… , 𝑏𝑛), each with a

size 𝑠(𝑏𝑖) ∈ (0,1], into a minimum number of unit-capacity bins. To do that, the items are

partitioned into a minimum number of 𝑚 subsets B1 , B2 ,… , B𝑚 such that ∑ 𝑠(𝑏𝑖)𝑏𝑖∈𝐵𝑗
≤

1, 1 ≤ 𝑗 ≤ 𝑚.

Despite of the intrinsic complexity of bin-packing problem, the optimal solution is not

always required. This is quite common in the industrial case, i.e. the solutions that meet the

schedulability requirement in each core are considered as good solutions.

Most of the heuristics of allocation are the greedy algorithms that are based on two steps:

Step 1 - Sort: sort the list of tasks by certain orders. A principal rule in this step is sorting

the tasks by the decreasing of their utilizations.

Step 2 - Distribution: place the tasks one by one with the order defined in step 1 to the

processors. The target processors are chosen by their features of utilization. Several rules

for placing the tasks are proposed to distribute the tasks to different cores. Considering the

current task τi, the typical rules (E. G. Coffman, Garey, & Johnson, 1996) for allocating it to

a set of processors that are sorted by increase order of their indexes are:

• First-Fit (FF): allocate the task τi to the first processor that can contain it.

• Best-Fit (BF): allocate the task τi to the processor with the greatest feature of

utilization that can contain it.

• Worst-Fit (WF): allocate the task τi to the processor with the smallest feature of

utilization that can contain it.

• Almost Worst-Fit (AWF): similar to WF but the processor with the second smallest

feature of utilization is chosen.

• Next-Fit (NF): the latest processor that is chosen to receive the task is defined as

current processor. The task τi is allocated to the current processor. If the current

processor is not available to receive it, next processor is chosen as the current

processor.

More details for these heuristics can be referred in (E. G. Coffman, Garey, & Johnson,

1996).

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

60

After the allocation step, each processor can perform single-core scheduling policy as

described in the earlier part of this chapter.

In the literature, the study of the partitioned scheduling approach in real-time systems is

started by Dhal and Liu in 1978 (Dhall & Liu, 1978). The authors in this paper propose 2

scheduling algorithms RM-NF (Rate Monotonic Next-Fit) and RM-FF (Rate Monotonic

First-Fit) for a set of periodic and independent tasks. The tasks are preemptive and the

priorities are attached in the task level. According to their approaches, the allocation of the

tasks are achieved by next-fit and first-fit heuristic respectively, to do that, the tasks are

sorted by the increasing order of the period of the tasks before the execution. Then on each

processor, the rate monotonic (RM) policy is performed to schedule the tasks allocated to

each processor. These two approaches are then improved by rectifying an error on the

evaluation of performances in (Oh & Son, 1993). In this paper, a scheduling method that

based on RM-BF (Rate Monotonic Best-Fit) is presented. Another task-fix priority

scheduling approach is proposed in (Davari & Dhall, 1986), where a RM First-Fit with

decreasing utilization order factor is adopted.

As for the scheduling approaches for job-fix priority taskset, Lopez et al. in (López J. M.,

García, Díaz, & García, 2003) presented scheduling algorithms EDF-NF, EDF-FF and

EDF-WF (worst-fit) for the preemptive taskset. And in (López, García, Díaz, & García,

2000), the authors adopted EDF-FF and EDF-BF as the scheduling approach for a set of

preemptive tasks. Besides, in (P. Regnier, 2011) algorithm RUN that is optimal

multiprocessor Real-time Scheduling via Reduction to Uniprocessor is proposed, which

transforms the multiprocessor scheduling problem into an equivalent set of uniprocessor

problems. RUN allows reducing the preemptions bound as well as showing a well scalability

when the number of tasks and processors increase.

3.1.2.2.2 Global scheduling

The global approach applies the scheduling algorithm in a global way for the multi -core

architectures. Conceptually, all processors share a single ready queue that contains all the

tasks in the systems. The tasks are priority-driven. I.e.in each iteration, 𝑚 tasks with highest

priorities in the queue are selected to be executed in the 𝑚-core multi-core architecture,

which can be achieved for example by RM or EDF. Global scheduling allows the migration

of the tasks. A task that is preempted by another task with higher priority can resume in

another processor. For the implicit-deadline tasks, there exist optimal global schedulers,

whereas no optimal schedulers exist for constrained-deadline and arbitrary-deadline tasks

(Fisher, Goossens, & Baruah, 2010). Obviously, the global scheduling eliminates the need

to resolve the tasks allocations issues, which is the source of capacity loss in the partitioned

scheduling. Therefore, global schedulings performs better for the utilization of the

processors. However, the inconvenient of global scheduling is not negligible, including the

overhead introduced by migration and Dhall effect (Dhall & Liu, 1978).

Dhall effect was introduced in (Dhall & Liu, 1978) that considers global scheduling of a set

of periodic tasks with implicit deadline on 𝑚-core systems. The taskset contains one long

period task with utilization of 1 and 𝑚 short period tasks with infinitesimal utilization such

Chapter 3 Real-Time System scheduling

61

that the total utilization of the system is 1 + 휀. The global scheduling based on EDF or FP

is not feasible for this taskset as the long period task will always be scheduled lastly and

hence exceed its deadline. This so-called Dhall effect can be solved by partitioned scheduling,

which led to a perceived superiority of partitioned approach. That is why a majority of

research on real-time scheduling for multi-core system focused on partitioned approach

during a period. This superiority was eventually disproved by (Leung & Whitehead, 1982)

(Baruah S. , 2007), that the partitioned scheduling and global scheduling are incomparable

both for fixed task priority and fixed job priority systems.

There exist a lot of works for global scheduling that are based on task-fix priorities or job-

fix priorities systems. For task-fix priorities cases (gFP), (Andersson, Baruah, & Jonsson,

2001) presented algorithms based on RM and in (Baker T. P., 2003) the algorithm based on

DM was proposed. As to the job-fix priorities cases, there are a lot of works that based on

EDF approaches (gEDF) (Goossens, Funk, & Baruah, 2003) (Baruah S. K., 2004) (Danne

& Platzner, 2006). Authors in (Srinivasan & Baruah, 2002) presented a scheduling algorithm

that modified the traditional EDF approach by adopting a condition: if 𝑢𝑖 ≤
𝑚
(2𝑚 − 1)⁄

, where 𝑢𝑖is the utilization for task 𝜏𝑖and 𝑚 is the number of processor, then the approach

applies EDF policy; otherwise if 𝑢𝑖 >
𝑚
(2𝑚 − 1)⁄ , the jobs in task 𝜏𝑖 are attached with

the highest priority.

The Proportionate Fair (PFair) (Andersson & Jonsson, 2003) (Anderson, 2000) is a global

scheduling algorithm with a different conception that based on the notion of fairness of

proportion, where each task makes progress proportional to its utilization. To do that, each

task is divided into sections, and each section executes in the interval called window with

the identical size. The PFair algorithm is the only known algorithm that is optimal for the

multi-core scheduling. However, only theoretical results can be found in the literature. This

algorithm has not yet been applied in the real-life user case. De-facto, at each boundary of

the window, the algorithm has to make decision for scheduling and the tasks have to be

preempted quite often to guarantee the optimality. Therefore, PFair incurs very high

overheads in the system (Jung & Park, 2005).

3.1.2.2.3 Hybrid approaches

As mentioned in the previous section, the global scheduling might introduce

communication overheads due to the quantities of migration of jobs. Despite the fact that

partitioned scheduling can mitigate this kind of overhead incurred from global scheduling,

its algorithmic inherent capacity loss limits the maximum utilization to 50%. Here we

introduce some hybrid approaches that contribute to combine the advantages of partitioned

and global scheduling.

3.1.2.2.3.1 Semi-partitioned scheduling

Semi-partitioned scheduling is obtained by combining the partitioned and global scheduling.

According to semi-partitioned approaches, most tasks can be allocated to the processors in

the similar way of the partitioned scheduling. However, for some tasks that satisfy some

conditions, for example, some tasks cannot be allocated to any processor without exceed

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

62

their deadline, they can be shared by more than one processor. Thus migration is allowed

for these “special” tasks. However, as the migration is only reserved for the minority tasks,

the communication overhead introduced in global scheduling can be minimized in semi-

partitioned approaches.

Different types of semi-partitioned scheduling are proposed in the literatures, for example

in (Kato & Yamasaki, 2008), at most 𝑚−1 tasks (𝑚 is the number of processors in the

system) are permitted to migrate between the particular processors. The scheduling is based

on EDF, but their approach performs better system utilization compared to the traditional

EDF-based algorithm. The scheduling is based on DM in (Lakshmanan, Rajkumar, &

Lehoczky, 2009), where the task with the highest priority in each processor can be split

across more than one processor. There are also scheduling algorithm named U-EDF that

extends the main principles of EDF based on the unfairness property. U-EDF is optimal in

multi-processor both on periodic tasks (G. Nelissen, 2011) and sporadic task set (Dragomir

Milojevic, 2012), which allow benefiting from a substantial reduction in the number of

preemptions and tasks migrations.

3.1.2.2.3.2 Clustered scheduling

Clustered approach is another hybrid scheduling that combines the advantages of

partitioned and global scheduling. Actually, clustered scheduling can be categorized as a

generalization of both partitioned and global scheduling: if there is only one single cluster,

it is equivalent to partitioned scheduling; and if the number of cluster is identical to the

number of processor, then it yields global scheduling. Since neither partitioned nor global

strategies dominate over the other, cluster-based scheduling is a natural direction for

research towards achieving improved utilization bounds (Shin, Easwaran, & Lee, 2008).

The simple principle of the clustered scheduling is that the tasks can be scheduling in the

way of global approach but cannot cross the boundary of the clusters that they are allocated

at on offline partitioning phase in the way of partitioned scheduling. The cluster may contain

more than one processor, thus the tasks are scheduled globally between them in a certain

way. Clusters are transformed into tasks and are globally scheduled on the multi-core system.

More details can be found in (Calandrino, Anderson, & Baumberger, 2007) (Shin, Easwaran,

& Lee, 2008).

3.1.3 Real-Time examination

A set of tasks are called to be feasible if there exists some scheduling algorithms that respect

the deadlines of all the jobs generated by the task set.

A scheduling algorithm is called optimal if it can always find a solution to schedule all the

tasks without missing the deadline if these tasks are feasible.

A task is referred to as schedulable if its worst case response time does not exceed its

deadline according to a given scheduling algorithm.

The analysis of schedulability is the test to verify if a set of tasks are schedulable by a

scheduling algorithm. The test is sufficient if it guarantees that all the tasks are deemed

Chapter 3 Real-Time System scheduling

63

schedulable by this test are in fact schedulable. The test is necessary if all the tasks are

deemed unschedulable by this test are in fact unschedulable. The test is exact if it is both

sufficient and necessary.

3.1.4 Resource sharing

In multicore system, there are several ways to guarantee the data consistency when there are

parallel accesses to the shared resources.

Lock-based: The task will be blocked when it tries to access the shared resource that has

been already taken by another task. The blocked task can be suspended (i.e., (Rajkumar,

1990)) or keep spinning (i.e., (Gai, Lipari, & Natale, 2001)).

Lock-free: The tasks can access to the shared resource without blocking. At the end of the

operation, a check will be performed and the task will re-access if the check shows an

inconsistent result.

Wait-free: This mechanism needs multiple copies of the shared resources.

3.2 Dependant tasks scheduling

In this work, we focus on scheduling applications driven by control and data flow (e.g.

engine control, brake control etc.). For that type of command and control applications the

order in which the individual statements are executed is very important and the proportion

of parallel code is often hard to identify. In consequence, the partitioning of automotive

applications into multiple cores requires a fine analysis of the dependencies between

runnables and tasks. It then needs to ensure that these dependencies are respected by the

scheduling policy. It corresponds to a scheduling problem related to both periodic and

dependent tasks.

3.2.1 Related works on real-time scheduling of dependent tasks

The theoretical formulation of application scheduling has been widely studied in the past

either in the domain of single-core or multi-core computing (Davis & Burns, 2011). Among

the proposed methods, optimal policies are particularly interesting because they are able to

find a correct ordering when it exists. In multi-core systems, several schedulability tests were

also developed in the real-time scheduling theory to easily determine the minimum number

of processors needed to schedule a set of applications (Davis & Burns, 2011). But the

problem of scheduling periodic and dependent tasks onto multi-core systems is more

complex since it needs to express the dependencies according to a particular Model of

Computation (MoC) adapted to the execution properties of the application domain. For

example, few run-time scheduling solutions exist which support applications modeled using

a MoC and provide hard-real-time services. Most of the existing works assume the

applications are modeled as Synchronous Data Flow graphs (SDF) (Bekooij, et al., 2005)

(Gantel, et al., 2012) and adapted the existing scheduling algorithms (Lee & Messerschmitt,

1987) to the multi-core case. Bekooij et al. presented a dataflow analysis for embedded real-

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

64

time multiprocessor systems (Bekooij, et al., 2005) . They analyzed the impact of time

division multiplexing on applications modeled as SDF graphs. The work presented in

(Bamakhrama & Stefanov, 2011) extended the SDF model to Cyclo-Static Data Flow model

(CSDF) in order to support cyclically varying (but predefined) production/consumption

rates.

But most of the proposed approaches need an exponentially complex conversion from SDF

to HSDF (Homogeneous SDF). In the same way, in real-time scheduling, when the tasks

are synchronous it is necessary to reason on the hyper-period and unfold the tasks into a set

of jobs, as with classical branch-and-bound based approaches (Xu & Parnas, 1990). For that

reason, authors in (Miramond & Cucu-Grosjean, Generation of static tables in embedded

memory with dense scheduling, 2010) proposed a dense scheduling technique to reduce the

size of static schedule tables in embedded memory. On the other hand, single-processor

policies have been adapted to the multiprocessor case, as partitioned scheduling. EDF, for

example, which is known to be optimal for scheduling arbitrary task sets on a uniprocessor

system has its multiprocessor version: the Partitioned Earliest-Deadline-First (PEDF)

algorithm (López J. M., García, Díaz, & García, 2003) . EDF scheduling of data-dependent

tasks was also tackled in (Forget & Frédéric Boniol, 2010)by adjusting deadlines and release

times to respect the dependencies.

Hence, a lot of theoretical solutions have been already explored in the literature and were,

for example, adapted to massively parallel execution architectures (Zhang, Gao, & Qiu,

2015). But such techniques have only been applied to the AUTOSAR context very recently

(Kehr, Quiñones, Böddeker, & Schäfer, 2015). In (Sagstetter, et al., 2014), authors propose

integration framework for solving large and complex scheduling problem in automotive

multi-ECU systems connecting via timing triggered Ethernet. The authors generate local

schedules for each independent subsystem by SMT (Satisfiablity Modulo Theories)

approach and integrate them into a global schedule. For the case where no feasible solution

exists, they present a conflict refinement to adapt individual subsystem. Compared to ILP

solver, they show a better performance in terms of runtime when the complexity of the

system increases. However, this work does not target on multi-core context.

Authors in (G.Georgia, Stoimenov, Huang, & Thiele, 2013) propose a scheduling policy for

mixed-criticality multi-core systems with the consideration of sharing resource. In order to

prevent the interference between the tasks of different levels, they proposed policy allowing

only the tasks of the same criticality run at the same time. Therefore, the contention among

the tasks with different criticality can be delimited such that the CA (Certification Authority)

is proved. Their approach optimizes in the same time the task mapping and scheduling,

where the design space is explored by SA.

Authors in (Giannopoulou, Stoimenov, Huang, & Thiele, 2014) target a mixed-criticality

multi-core system, where they optimize the data allocation in the shared memory such that

the access to the memory in parallel from different cores will not delay each other. They

pinpoint that the interdependence exist between the task mapping and schedule that are

Chapter 3 Real-Time System scheduling

65

studied in their work (G.Georgia, Stoimenov, Huang, & Thiele, 2013) and the data mapping

and propose an integration of these two steps.

In (Kehr, Quiñones, Böddeker, & Schäfer, 2015) authors introduce a so called timed implicit

communication (TIC) for decoupling task communication to allow parallel execution of

producer and consumer, while the same data-flow is achieved on all MCEs (Multi-Core

ECUs). However, the overhead communication is introduced that may reduce the new

opportunity of parallelization.

Our approach differs from the cited works in several points. First of all, it considers periodic

dependencies expressed as AUTOSAR transitions which differ from the SDF semantics, as

explained in following parts of this section. Secondly, we have separated the assignment and

the scheduling problem. So that we search a multi-core feasible scheduling solution for a

given software distribution. This separation also relives the problem of the hyper-period

complexity. Finally, few of them have been integrated in an industrial software design flow

and validated onto real-life applications.

3.2.2 Model of periodic precedence

The tasks can be independent or dependent. If it exist the dependency between two tasks,

we call these tasks dependent tasks, otherwise they are independent tasks. The majority of

scheduling studies in the lecture are targeted on the independent task model. However, from

a practical point of view, results on how to schedule tasks with precedence and mutual

exclusion constraints are much more important than the analysis of the independent task

model. Normally, the concurrently executing tasks must exchange information and access

common data resources to cooperate in the achievement of the overall system objective.

The observation of given precedence and mutual exclusion constraints is rather the norm

than the exception in multi-core real time system.

In this dissertation, we work on the dependent tasks model. There are two types of

dependency between two tasks τi and τj: the dependency of precedence and dependency of

data. The dependency of precedence between (τi, τj) imposes that τj cannot execute until the

end of execution of τi. τi is called the predecessor of τj, and τj is called successor of τi. The

dependency of data indicates that the task τi produces the data that are consumed by τj. This

dependency involves also the dependency of precedence. We note 𝑝𝑟𝑒𝑑𝑠(𝜏𝑖) and

𝑠𝑢𝑐𝑐𝑠(𝜏𝑖) the predecessors and successors of τi, so 𝜏𝑖 ∈ 𝑝𝑟𝑒𝑑𝑠(𝜏𝑗) and 𝜏𝑗 ∈ 𝑠𝑢𝑐𝑐𝑠(𝜏𝑖).

The scheduling of the dependent tasks shall consider the constraints of dependency. For

the constraints from the aspect of precedent dependency, there are mainly two approaches

exiting today: first one is based on the semaphores: a semaphore is allocated to each

predecessor of (τi, τj), and the successor τj shall wait the predecessor τi release the semaphore

before its execution. The second one is based on the modification of the priorities and the

date of the first activation of the task. For the constraints from the aspect of data

dependency, addition to the constraints imposed by the precedent dependency, the handling

of the data transfer and shared resources has to be taken into consideration.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

66

In the AUTOSAR applications, there are large numbers of transitions that transfer the data

in asynchronous way or synchronous way. The dependencies existing in Autosar application

belong to the category of data dependency.

Here we present our proposed scheduling approach by considering the dependency

constraints in the system. We consider static scheduling as the pre-run-time scheduling is

often the only practical means of providing predictability in a complex system, which

requires the timing constraint. One of the weaknesses of static scheduling is the assumption

of strictly periodic tasks. Although the majority of tasks in real-time applications are

periodic, there are still some sporadic requests for services that have hard deadline

requirements. To confront this issue, there are 3 methods to increase the flexibility of static

scheduling:

• The transformation of sporadic requests into periodic requests (Mok, 1983),

• The introduction of a sporadic server task (Sprunt, Sha, & Lehoczky, 1989),

• The execution of mode changes (Fohler, 1992).

We use the notations defined in (Forget & Frédéric Boniol, 2010) for the precedent

dependency. The precedence between two periodic task τi and τj corresponds to a set of

precedence between the instances of the two tasks. For the 𝑛𝑡ℎ instance of task τi and 𝑛′𝑡ℎ

instance of task τj, 𝜏𝑖
𝑛 → 𝜏𝑗

𝑛′ denote the precedence from 𝜏𝑖
𝑛 to 𝜏𝑗

𝑛′.

Definition 1: Instance Precedence: For any 𝑘 ∈ ℕ, let ℐ𝑘 denote the set of integers of the

interval [0, 𝑘[. Let 𝑙𝑐𝑚(𝑛, 𝑛′) denote the least common multiple of 𝑛 and 𝑛′. For two task

τi and τj, let 𝑝𝑖,𝑗 = 𝑙𝑐𝑚(𝑇𝑖, 𝑇𝑗) , the precedence 𝜏𝑖
𝑛→𝜏𝑗

𝑛′ as the following set of task

instance precedence is defined as 𝜏𝑖
𝑀𝑖,𝑗
→ 𝜏𝑗 where:

𝑀𝑖,𝑗 ⊆ {(𝑛,𝑛
′)|𝜏𝑖

𝑛 → 𝜏𝑗
𝑛′
, (𝑛,𝑛′) ∈ ℐ𝑝𝑖,𝑗/𝑇𝑖×ℐ𝑝𝑖,𝑗/𝑇𝑗} (1)

Hence, the precedence now appears in a repetitive pattern and we can define the periodic

precedence as follows:

Definition 2: Periodic Precedence: The periodic precedence 𝜏𝑖
𝑛→𝜏𝑗

𝑛′ is defined as 𝜏𝑖
𝑀𝑖,𝑗
′

→ 𝜏𝑗 that is based on 𝜏𝑖
𝑀𝑖,𝑗
→ 𝜏𝑗 such that:

 𝑀𝑖,𝑗
′ = {(𝑛,𝑛′)|∃𝑘 ∈ ℕ,(𝑚,𝑚′) ∈ 𝑀𝑖,𝑗, (𝑛,𝑛

′) = (𝑚,𝑚′) + (𝑘
𝑝𝑖,𝑗

𝑇𝑖
, 𝑘
𝑝𝑖,𝑗

𝑇𝑗
)} (2)

The precedence expresses all the possible communication between instances of task τi and

τj. For example in Figure 35 (a): the 𝑀𝑖,𝑗 = {(0,0)}, so according to equation 2, the periodic

precedence 𝜏𝑖
𝑀𝑖,𝑗
′

→ 𝜏𝑗 is 𝜏𝑖
0 → 𝜏𝑗

0, 𝜏𝑖
2 → 𝜏𝑗

1 , etc. Similarly in Figure 35 (b), the 𝑀𝑖,𝑗 =

Chapter 3 Real-Time System scheduling

67

{(0,0), (1,1), (3,2)} , so the periodic precedence 𝜏𝑖
𝑀𝑖,𝑗
′

→ 𝜏𝑗 is 𝜏𝑖
0→ 𝜏𝑗

0,𝜏𝑖
1 → 𝜏𝑗

1 , 𝜏𝑖
3 →

𝜏𝑗
2 ,𝜏𝑖

4 → 𝜏𝑗
3 , 𝜏𝑖

5 → 𝜏𝑗
4 , 𝜏𝑖

7 → 𝜏𝑗
5, etc.

3.2.3 Communication semantics in AUTOSAR: Explicit & Implicit

When the communication involves the writing and reading of the data, e.g. Sender-Receiver

communications and IRV communications, the Autosar defines different semantics of

communication. Explicit data access (data reception and data transmission) means that

when a runnable sends or receives data elements, it immediately access to RTE buffer by

using corresponding RTE API. While implicit data access means that a runnable does not

actively initiate the reception or transmission of data. More precisely:

• Explicit read. When a runnable reads the data from a buffer, it might receive different

copies of the data if there is updating of data in this buffer during the execution of

the runnable. Figure 36 shows an example, where Runnable1 reads the buffer (data

element) several times during one instance of its execution. When the buffer updates

the data, Runnable 1 reads immediately the new version of the data as shown in

Figure 36.

Figure 36-AUTOSAR communication: explicit read

• Implicit read. When a runnable reads the data from a buffer, it gets a stable copy

from the buffer when the runnable starts. Several calls inside the runnable always

return the same value even if the data in the buffer has been updated by other

runnables. The value is therefore stable and data coherency can be ensured. As

A B C D

B CInstance of Runnable 1

Void Runnable1(Void)
{
…
Status = Rte_Read_XXX (& Data Element);
…
Status = Rte_Read_XXX (& Data Element);
…
Status = Rte_Read_XXX (& Data Element);

} Data Element

B D

Figure 35-Periodic precedence 𝜏𝑖
𝑀𝑖,𝑗
→ 𝜏𝑗

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

68

shown in Figure 37, the Runnable 1 can always get the same copy of data during its

execution.

Figure 37-AUTOSAR communication: implicit read

• Explicit write. When a runnable writes on a buffer, the buffer updates the data

immediately during the execution of the runnable. In Figure 38, the Runnable 1

executes several writing instruction on buffer Data Element during its execution.

Each time it writes, the buffer updates the data immediately.

Figure 38-AUTOSAR communication: explicit write

• Implicit write. The data is available only when the runnable that writes on this buffer

returns. If several data writing accesses to the same data element on the buffer are

performed inside a runnable during the runnable execution, only the last value is sent

(also known as last-is-best semantics). So in the Figure 39, the buffer of Data

Element only considers the last value written by Runnable 1 during one execution.

Figure 39-AUTOSAR communication: implicit write

The precedent dependency model defined in section is under the influence of these

semantics. For 𝜏𝑖
𝑀𝑖,𝑗
→ 𝜏𝑗 , the different semantics might result in different value of 𝑀𝑖,𝑗. For

example, we define the period of 𝜏𝑖 is 3 time units and the period of 𝜏𝑗 is 6 time units, in

the explicit semantic, in a hyper period, the first instance of 𝜏𝑗 have to be activated after the

A B C D

A A

Void Runnable1(Void)
{
…

Status = Rte_IRead_XXX (& Data Element);
…
Status = Rte_IRead_XXX (& Data Element);
…
Status = Rte_IRead_XXX (& Data Element);

} Data Element

AInstance of Runnable 1

A B C

C

Void Runnable1(Void)
{
DataElement = ‘B’
Status = Rte_Write_XXX (& Data Element);

DataElement = ‘C’
Status = Rte_Write_XXX (& Data Element);

DataElement = ‘D’
Status = Rte_Write_XXX (& Data Element);

}

B D

D

Instance of Runnable 1

Data Element

Void Runnable1(Void)
{
DataElement = ‘B’

Status = Rte_IWrite_XXX (& Data Element);
DataElement = ‘C’
Status = Rte_IWrite_XXX (& Data Element);

DataElement = ‘D’
Status = Rte_IWrite_XXX (& Data Element);

} A

CB D

DData Element

Instance of Runnable 1

Chapter 3 Real-Time System scheduling

69

last instance of 𝜏𝑖 .While in the implicit semantic, the first instance of 𝜏𝑗 can be activated

just after the finish of the first instance of 𝜏𝑖, as only the first copy of data in the buffer is

consider in the implicit read semantic. Figure 40 shows this example.

However, these communication semantics are not sufficient to determine all values of Mi,j

for the complete systems. The complementary information to determine all the value of in

the entire system could be obtained from high level model of the applications (Klikpo,

Khatib, & Munier-Kordon, 2016).

3.2.4 Dependent tasks scheduling in Single-core systems

The first release time of task τi is the first activation time of this task, i.e. the reslease time

of its fisrt instance. Normally, the first release time is defined by the system of tasks. In the

first step in our hypothese, we consider the set of tasks with identic release time with value

of 0. The release time for the nth instance in system 𝑆 = {𝜏𝑖} can be thereby deduced by

equation 3.

𝑟𝑖
𝑛 = 𝑟𝑖

0+𝑛×𝑇𝑖 , ∀𝜏𝑖 ∈ 𝑆 (3)

The start time of each instance in the schedule table indicates the date when it begins to

execute and use the resources. For the dependent tasks, the start time of each instance (job)

not only depends on its release time, but also depends on the end time of its precedent jobs

in other tasks if there is a precedence constraint between them. Besides, for the jobs that do

not have precedence constraint between them, they cannot be executed simultaneously in

the same core. As a result, the start time of one job might be delayed by other jobs that have

been already activated by the scheduling policy. This delay is constructed from additional

delay element γ. The delay element contribute to avoid the overlap between instances

independent of each other that are allocated in the same processor

The start time of the 𝑛′𝑡ℎ instance in task τj is given by:

𝑠𝑗
𝑛′
= max (𝑟𝑗

𝑛,𝑚𝑎𝑥(𝑛,𝑛′)∈𝑀𝑖,𝑗
′ (𝑠𝑖

𝑛+𝐶𝑖),γ
∗) (4)

(b)Implicit communication
𝑀𝑖,𝑗 = {(0,0)}

(a) Explicit communication
𝑀𝑖,𝑗 = {(1,0)}

𝜏𝑗
1 𝜏𝑗

0

𝜏𝑖
3 𝜏𝑖

2 𝜏𝑖
1 𝜏𝑖

0

0 1 2 3 4 5 6 7 8 9 10 11 12

𝜏𝑖
0

𝜏𝑗
1 𝜏𝑗

0

𝜏𝑖
3 𝜏𝑖

2 𝜏𝑖
1

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 40-AUTOSAR communication semantics influence on the dependency model

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

70

The delay element γ will be updated each time the calculation of starting time of instance is

finished in the scheduling to avoid the overlap. So for a non-preemptive system, each time

𝑠𝑖
𝑛′is calculated, the γ is updated by:

𝛾∗ = max (𝛾, 𝑠𝑖
𝑛′
+ 𝐶𝑖) (5)

We now give is an example to illustrate how the method generates schedules by using

equation 4 and 5: the system 𝑺 contains 3 tasks as show in Figure 41, where the precedence

is defined as: 𝑀𝑖,𝑗 = {(0,0)}, 𝑀𝑗,𝑘 = {(0,0)}. The hyper period ℋ for the system is the

least common multiple of the period for all the task: ℋ = 𝑙𝑐𝑚(∀𝑇𝑖). So for the system in

Figure 41 (a), the hyper period is 16. In this hyper period, the instances for each task

are: {𝜏𝑖
0,𝜏𝑖

1 ,𝜏𝑖
2 , 𝜏𝑖

3 ,𝜏𝑗
0 , 𝜏𝑘

0 ,𝜏𝑘
1} . Now we illustrate one by one the calculation of start time of

these instances. The initial value of γ = 0. For job 𝜏𝑖
0 : as it has no precedence, and its release

time is 0, so 𝑠𝑖
0 = max(0, 0, 0) = 0, and we have to update γ by equation 5 each time the

calculation of start time is finished, so 𝛾 = max(0, 0 + 1) = 1. Then for job 𝜏𝑗
0: its release

time is 0; there is precedence between 𝜏𝑖
0and 𝜏𝑗

0 as 𝑀𝑖,𝑗 = {(0,0)}, so by equation 4, we

compute start time for 𝜏𝑗
0 , 𝑠𝑗

0 = max(0, 𝑠𝑖
0+ 1, 1) = 1, 𝛾 = max(1, 1 + 4) = 5 ; for

other instances we repeat the same steps and the result is illustrated as:

 𝑠𝑘
0 = max(0, 5, 5) = 5, 𝛾 = max(5, 5 + 1) = 6

 𝑠𝑖
1 = max(4, 0, 6) = 6, 𝛾 = max(6, 6 + 1) = 7

 𝑠𝑖
2 = max(8, 0, 7) = 8, 𝛾 = max(8, 8 + 1) = 9

 𝑠𝑘
1 = max(8, 5, 9) = 9, 𝛾 = max(9, 9 + 1) = 10

 𝑠𝑖
3 = max(12, 0, 10) = 12, 𝛾 = max(12, 12 + 1) = 13

So the schema for the scheduling is shown in Figure 41 (b):

Obviously, the order of instances considered in equation 4 and equation 5 change the

scheduling result. In this example we assume the following order of the

instances: {𝜏𝑖
0 ,𝜏𝑗

0 , 𝜏𝑘
0 ,𝜏𝑖

1 ,𝜏𝑖
2 ,𝜏𝑘

1 , 𝜏𝑖
3}. We explore in section 3.2.4.1 and section 3.3 several

ordering policies and their impact on the quality of scheduling.

Chapter 3 Real-Time System scheduling

71

Typically, the tasks allocated in a core are scheduled in a repeated way. For example, if all

the tasks are periodic, the scheduling will be repeated in a time interval that equals the least

common multiple of the periods of the entire tasks. This time interval is called pattern. The

makespan is defined for each pattern with a set of tasks that the time between the start time

of the first instance of the first executing task and the last instance of the last executing task.

The makespan might vary in different patterns, especially in the case where the sporadic

tasks exist. Hence there exist a maximum makespan among all these patterns.

For each pattern with an interval time Ρ = [𝑡𝑎,𝑡𝑏) , the makespan for the tasks

executed during Ρ is given by the value of delay element 𝛾. For the example shown in Figure

41, the pattern is the hyper period and the makespan is the value of 𝛾, which is 13.

3.2.4.1 Determinate order

The order of calculating the start time for all the instances of the tasks in hyper period ℋ is

not obvious. This is usually caused by the instances that do not have precedent dependency

between them. For example, the instance 𝜏𝑖
3 and 𝜏𝑘

1 shown in Figure 41 are not depended.

The change of their order will influence the makespan as the delay element is updated

immediately at the end of each calculation of start time. Therefore, if we calculate the start

time of 𝜏𝑖
3 before 𝜏𝑘

1, the 𝜏𝑘
1 will be delayed to the date 13 to start, and as a result the

makespan is lengthened to 15. To avoid this kind of indeterminism, we propose 3

dimensions of ordering metric to determine the calculation order for the instances.

3.2.4.1.1 First dimension: Precedent dependency

The precedent dependency is the first ordering metric to determinate the order between

instances. For example, for 𝜏𝑖
𝑛 and 𝜏𝑗

𝑛′ , if (𝑛,𝑛′) ∈ 𝑀𝑖,𝑗 , then the order between

 𝜏𝑖
𝑛 and 𝜏𝑗

𝑛′in the scheduling tables is 𝜏𝑖
𝑛→ 𝜏𝑗

𝑛′, i.e. 𝑠𝑖
𝑛 has to be calculated before 𝑠𝑗

𝑛′. So

for the example in Figure 41, the order between instances 𝜏𝑖
0 ,𝜏𝑗

0, 𝜏𝑘
0 is 𝜏𝑖

0 → 𝜏𝑗
0⟶𝜏𝑘

0.

Figure 41-Example of start time

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

72

3.2.4.1.2 Second dimension: Release time

When there is no precedent dependency between instances, the order between them is

determined by their release time: the smaller the release time of an instance is, the earlier it

will be executed. For instances 𝜏𝑖
𝑛 and 𝜏𝑗

𝑛′such that (𝑛, 𝑛′) ∉ 𝑀𝑖,𝑗, if 𝜏𝑖
𝑛 < 𝜏𝑗

𝑛′
, then the

order between 𝜏𝑖
𝑛 and 𝜏𝑗

𝑛′ is 𝜏𝑖
𝑛→𝜏𝑗

𝑛′ . For example in Figure 41, between instance 𝜏𝑖
3

and 𝜏𝑘
1, as the release time of 𝜏𝑘

1 is 8 which is smaller than release time of 𝜏𝑖
3 (which is 12),

so we calculate the start time for 𝜏𝑘
1 before 𝜏𝑖

3. Similarly, we calculate the start time of 𝜏𝑘
0

before 𝜏𝑖
1. For instances with identical release time, e.g. 𝜏𝑖

2 and 𝜏𝑘
1 have the identical release

time 8, we adopt third dimension to decide their order.

3.2.4.1.3 Third dimension: Priority

This dimension is ordered by priority of the instances.

In this work we use fixed task priority policy. If each task is attached with a single fixed

priority and this priority is applied to all the jobs (instances) of this task, this priority is called

fixed task priority. The priority of each task is assigned on the basis of the relative deadline:

the shorter the deadline is, the higher is the task's priority. This scheduling algorithms is

called Deadline Monotonic (DM) (Leung & Whitehead, 1982) proposed by Leung and

Whitehead as presented in the previous section.

When precedence constraints exist, “the relative urgency of a task depends both on its

deadline and on the deadlines of its successors” as presented in (Chetto, Silly, &

Bouchentouf, 1990). Hence, the deadline of a task can be adjusted as what was proposed in

(Chetto, Silly, & Bouchentouf, 1990):

𝐷𝑖
∗ = min (𝐷𝑖 ,min(𝐷𝑗

∗−𝐶𝑗)𝜏𝑗∈𝑠𝑢𝑐𝑐𝑠(𝜏𝑖)
 (6)

The calculation of the adjusting deadline for each task can be done one time at the

elaboration of the application graph. The instances that belong to the same runnables have

the same adjusting deadline. Based on adjusting deadline, the priority for each task can be

attached according to DM. Therefore for instances 𝜏𝑖
𝑛 and 𝜏𝑗

𝑛′
such that(𝑛,𝑛′) ∉ 𝑀𝑖,𝑗 ∩

 𝜏𝑖
𝑛 = 𝜏𝑗

𝑛′, if 𝐷𝑖
∗ < 𝐷𝑗

∗, then the order between 𝜏𝑖
𝑛 and 𝜏𝑗

𝑛′
 is 𝜏𝑖

𝑛→ 𝜏𝑗
𝑛′

. So for the example

shown in Figure 41, the order between instance 𝜏𝑖
2 and 𝜏𝑘

1 is 𝜏𝑖
2→ 𝜏𝑘

1, as 𝜏𝑖
2 has higher

priority.

With the three dimensions to determine the instance order, we can calculate one by one the

start time of them as shown in Figure 41 (b). But in the case where two instances are

identically characterized, i.e. they are independent and possess the same release time and

adjusting deadline. Then we firstly execute the instance with shorter execution time in order

to minimize the jitters.

Chapter 3 Real-Time System scheduling

73

3.2.4.2 Schedulability

The analysis of schedulability is the test to verifier if a set of tasks are schedulable by a

scheduling algorithm. To do that, each instance in the taskset has to meet their deadline:

∀𝜏𝑖
𝑘 : 𝑠𝑖

𝑘+ 𝐶𝑖 ≤ 𝑟𝑖
𝑘 +𝐷𝑖 (7)

3.2.4.3 Scheduling process

Based on the elements presented before, we introduce our scheduling process for a set of

tasks. The process is shown in Figure 42.

Step a: For each task τi in the taskset, we calculate its adjusting deadline 𝐷𝑖
∗ by the equation

6.

Step b: If there exist a task with a negative adjusting deadline, i.e. ∃𝜏𝑖: 𝐷𝑖
∗ ≤ 0, the taskset

are not schedulable. Therefore the process is terminated.

Step c: In the interval of hyper period ℋ = 𝑙𝑐𝑚(∀𝑇𝑖), all the instances of each task {𝜏𝑖
𝐾} =

{𝜏𝑖
𝑘|∀𝜏𝑖: 𝑘 ∈

ℋ

𝑇𝑖
} are constructed into a list ℒ where their order is determined by the three

dimensions presented in Section 3.2.4.1.

Step d: Starting from the first instance in list ℒ, the starting time is calculated by

equation 4. Each time the computing of starting time is finished, the delay element is

updated by equation 5 immediately such that the overlap between independents instances is

avoided.

Step e: Each instance has to be tested by equation 7 to make sure the real-time constraint

is respected, aka the deadline compliance.

Step f: If all the instances respect this test then the process can be successfully terminated.

Step g: The output contains a scheduling table for all the instances and the

makespan with value of γ.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

74

Figure 42-Scheduling process

Example

Here we demonstrate our process with an example shown in Figure 43, which is composed

of periodic taskset. The criteria values for each task are present in Table 3. The calculating

result of adjusting deadline for each task is also shown in this table. As we can see, there is

no negative value for the adjusting deadline. So the next step is to construct a sorted list for

the instances in the hyper period.

Chapter 3 Real-Time System scheduling

75

Table 3-Tasks criteria

Tas

k

Executio

n

Time

Perio

d

Deadlin

e

Adjustin

g

Deadline

A 1 6 6 4

B 1 8 8 8

C 1 12 12 5

D 1 12 12 11

E 1 6 6 6

F 1 12 12 12

Table 4-Instances to be considered

Task
Instances in one

hyper period

A 𝜏𝐴
0, 𝜏𝐴

1,𝜏𝐴
2𝜏𝐴
3

B 𝜏𝐵
0, 𝜏𝐵

1, 𝜏𝐵
2

C 𝜏𝐶
0, 𝜏𝐶

1

D 𝜏𝐷
0 , 𝜏𝐷

1

E 𝜏𝐸
0, 𝜏𝐸

1, 𝜏𝐸
2𝜏𝐸
3

F 𝜏𝐹
0, 𝜏𝐹

1

Table 5-Dependencies

Dependency
Enumeration in the hyper

period

𝑀𝐴,𝐵 = {(0,0)} 𝜏𝐴
0→ 𝜏𝐵

0

𝑀𝐴,𝐶 = {(0,0)} 𝜏𝐴
0→ 𝜏𝐶

0, 𝜏𝐴
2→ 𝜏𝐶

1

𝑀𝐵,𝐷 = {(0,0)} 𝜏𝐵
0 → 𝜏𝐷

0

𝑀𝐶,𝐸 = {(0,0)} 𝜏𝐶
0→ 𝜏𝐸

0, 𝜏𝐶
1→ 𝜏𝐸

2

𝑀𝐷,𝐹 = {(0,0)} 𝜏𝐷
0 → 𝜏𝐹

0,𝜏𝐷
1 → 𝜏𝐹

1

𝑀𝐸,𝐹 = {(0,0)} 𝜏𝐸
0 → 𝜏𝐹

0, 𝜏𝐸
1→ 𝜏𝐹

1

The hyper period of this example is ℋ = 𝑙𝑐𝑚(6,8,12) = 24, so for each task the instances

are considered as assumed in Table 4. We defined the dependencies for each transition,

which are resumed in Table 5.

Now we sort all the instances shown in Table 4 by considering the three ordering metrics:

1) the dependencies in Table 5; 2) the release time of each instance; and 3) the priority of

the task that each instance belongs to (depend on the adjusting deadline shown in Table 3).

The sorted result is shown in Table 6, where the order is from left column to the right. The

release time for each instance is also shown in the second row of this table.

Ordering

Instance
𝜏𝐴
0 𝜏𝐶

0 𝜏𝐸
0 𝜏𝐵

0 𝜏𝐷
0 𝜏𝐹

0 𝜏𝐴
1 𝜏𝐸

1 𝜏𝐵
1 𝜏𝐴

2 𝜏𝐶
1 𝜏𝐸

2 𝜏𝐷
1 𝜏𝐹

1 𝜏𝐵
2 𝜏𝐴

3 𝜏𝐸
3

Release

Time
0 0 0 0 0 0 6 6 8 12 12 12 12 12 16 18 18

Starting

Time
0 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19

Delay

Element
1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20

Table 6-Scheduling result

The next step is to calculate the start time of each instance by equation 4 orderly in Table 6.

Each time the calculation is finished for an instance, the delay element γ is updated by

equation 5. Besides, for the real-time aspect, the schedulability is tested for each instance by

equation 7. In this example, all the instances respect their deadline constraint. The starting

time values and delay element values are also shown in Table 6.

A

B D

E

F

C

Figure 43-Example application

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

76

Finally, the scheduling result can be visualized in Figure 44.

3.2.5 Dependent tasks scheduling in Multi-core systems

The delay element γ has to be updated each time the calculation of starting time of an

instance is finished. This is because in single-core system, the instances cannot be executed

simultaneously. Therefore in a non-preemptive system, an instance will execute until its

termination once it starts. Thus the equation 5 is performed immediately each time the start

time of an instance is determined. However, in the multi-core system, as the instances

allocated in the different cores can execute simultaneously, the delay element is no longer a

global variable. Instead, there is one delay element for each core. The updating for the delay

element for each core is similar to the single core system.

3.2.5.1 Extensions for multi-core system

Here we extend some notations introduced in the precedent section to adapt multi-core

systems.

The multi-core architecture is composed of a set of cores denoted as {𝜋1 ,… , 𝜋𝐾}. So the

task 𝜏𝑖 ∈ {𝜏1 ,𝜏2 ,… 𝜏𝐼} defined before can be extended as 𝜏𝑖,𝑘 , if it is located to core 𝜋𝑘.

Similarly, the extension can be done respectively for the execution time 𝐶𝑖,𝑘 and job 𝜏𝑖,𝑘
𝑛 ,

and its release time 𝑟𝑖 ,𝑘
𝑛 , start time 𝑠𝑖,𝑘

𝑛 , jitter 𝜎𝑖,𝑘
𝑛 , etc. Each core 𝜋𝑘 constructs a delay

element 𝛾𝑘 . The release time is similar to equation 3, only with a bit modification on the

indices such that:

𝜏𝐴
0

𝜏𝐶𝐴
0

𝜏𝐸
0

𝜏𝐵
0

𝜏𝐷
0

𝜏𝐹
0

𝜏𝐴
1

𝜏𝐸
1

𝜏𝐵
1

𝜏𝐴
2

𝜏𝐶
1

𝜏𝐸
2

𝜏𝐷
1

𝜏𝐹
1

𝜏𝐵
2

𝜏𝐴
3

𝜏𝐸
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

𝜏𝐴

𝜏𝑐

𝜏𝐸

𝜏𝐵

𝜏𝐷

𝜏𝐹

Figure 44-Generated schedule table

Chapter 3 Real-Time System scheduling

77

𝑟𝑖,𝑘
𝑛 = 𝑟𝑖 ,𝑘

0 + 𝑛×𝑇𝑖 (8)

As to the start time of an instance 𝑠𝑗,𝑘
𝑛′

 , the calculation is done by equation 9 instead of

equation 4:

𝑠𝑗,𝑘
𝑛′
= max (𝑟𝑗,𝑘

𝑛′ ,𝑚𝑎𝑥(𝑛,𝑛′)∈𝑀𝑖,𝑗
′ (𝑠𝑖,𝑙

𝑛 +𝐶𝑖,𝑙+𝜎𝑙,𝑘),γk) (9)

where 𝜎𝑙,𝑘 indicates the communication time between 𝜋𝑙 and 𝜋𝑘.

The delay element γ
k
 will be updated each time the starting time of an instance that is

allocated in the same core is calculated in the scheduling. So for a non preemptive system,

each time 𝑠𝑖,𝑘
𝑛 is calculated, the γ

k
is updated by:

𝛾𝑘
∗= max (𝛾𝑘 ,𝑠𝑖,𝑘

𝑛 + 𝐶𝑖,𝑘) (10)

Schedulability of the generated schedule table can be tested on each instance to verify the

respect of its deadline by extension of equation 7:

∀𝜏𝑖,𝑘
𝑛 ∶ 𝑠𝑖,𝑘

𝑛 +𝐶𝑖,𝑘 ≤ 𝑟𝑖,𝑘
𝑛 +𝐷𝑖 (11)

3.2.5.2 Quality of scheduling solutions

The process of determining the scheduling for multi-core system is the same as the process

presented in Section 3.2.4.3, only the calculation of the start time of each instance and the

updating of delay element have to be changed to equation 10 and 11. The equations 10, 11

and 12 also imply that the position of each task has to be determined before the scheduling

process, i.e. the partitioning of application in the multi-core system. The partitioning method

is studied in Chapter 2.

We evaluate the embedded solutions by considering the influence of scheduling decisions

on the execution of one or several sequences of dependent tasks or runnables for the

application compliant with AUTOSAR. The quality of scheduling solutions is evaluated by

Global Jitter. In a temporal interval ℋ, for example the hyper period of the tasks in the

system, Global Jitter 𝒥 is the sum of jitter for all instances:

𝒥 = ∑𝛿𝑖,𝑘
𝑛 = ∑(𝑠𝑖,𝑘

𝑛 − 𝑟𝑖 ,𝑘
𝑛), ∀𝜏𝑖,𝑘

𝑛 ∈ ℋ (12)

3.2.5.3 Demonstration

Here we show the example of the same application presented in Figure 43, the allocation of

the nodes in the multi-core is shown in . The criteria values and adjusting deadline value for

the task remains the same as shown in Table 3.

A

B D

E

F

C

Core_0

Core_1

Figure 45- Example-I application in multi-core case

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

78

The list of instances is sorted in the same order as it did in single-core case, while the start

time for each instance will change as the delay element is updated locally in each cores, the

result is shown in the Table 7.

Ordering

Instance
τA
0 τC

0 τE
0 τB

0 τD
0 τF

0 τA
1 τE

1 τB
1 τA

2 τC
1 τE

2 τD
1 τF

1 τB
2 τA

3 τE
3

Release

Time
0 0 0 0 0 0 6 6 8 12 12 12 12 12 16 18 18

Starting

Time
0 1 2 1 2 3 6 6 8 12 13 14 13 15 16 18 18

γcore_0 1 2 3 7 9 13 14 17 19

γcore_1 2 3 4 7 14 15 16 19

Table 7-Scheduling result for multi-core for example-I

Compared to the single core, we can observe that the makespan is reduced thanks to the

load balancing of multi-core. The scheduling can be visualized in Figure 46. Compared to

Figure 44, the average jitter is reduced as well.

The different allocation will change the scheduling result. Here we show another example

of the same application presented in Figure 43, the allocation of the nodes in the multi-core

is shown in Figure 47. The criteria values and adjusting deadline value for the task remains

the same as shown in Table 3.

𝜏𝐴
0

𝜏𝐶𝐴
0

𝜏𝐸
0

𝜏𝐵
0

𝜏𝐷
0

𝜏𝐹
0

𝜏𝐴
1

𝜏𝐸
1

𝜏𝐵
1

𝜏𝐴
2

𝜏𝐶
1

𝜏𝐸
2

𝜏𝐷
1

𝜏𝐹
1

𝜏𝐵
2

𝜏𝐴
3

𝜏𝐸
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

𝜏𝐴

𝜏𝑐

𝜏𝐸

𝜏𝐵

𝜏𝐷

𝜏𝐹

Figure 46-Scheduling multi-core example-I

Chapter 3 Real-Time System scheduling

79

The list of instances is sorted in the same order as it did in single-core case, while the start

time for each instance will change as the delay element is updated locally in each cores, the

result is shown in the Table 8.

Ordering

Instance
τA

0 τC
0 τE

0 τB
0 τD

0 τF
0 τA

1 τE
1 τB

1 τA
2 τC

1 τE
2 τD

1 τF
1 τB

2 τA
3 τE

3

Release Time 0 0 0 0 0 0 6 6 8 12 12 12 12 12 16 18 18

Starting Time 0 1 2 2 3 4 6 6 8 12 13 14 15 16 16 18 18

γcore_0 1 2 3 7 9 13 14 17 19

γcore_1 3 4 5 7 15 16 17 19

Table 8-Scheduling result for multi-core for example-II

The scheduling can be visualized in Figure 48.

By comparing to the single-core case and two multi-core cases in Table 9, we can observe

that:

A

B D

E

F

C

Core_0 Core_1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

𝜏𝐴

𝜏𝑐

𝜏𝐸

𝜏𝐵

𝜏𝐷

𝜏𝐹

𝜏𝐷
0

𝜏𝐴
0

𝜏𝐶𝐴
0

𝜏𝐸
0

𝜏𝐹
0

𝜏𝐴
1

𝜏𝐸
1

𝜏𝐵
1

𝜏𝐴
2

𝜏𝐶
1

𝜏𝐸
2

𝜏𝐷
1

𝜏𝐹
1

𝜏𝐵
2

𝜏𝐴
3

𝜏𝐸
3

𝜏𝐵
0

Figure 47-Example-II application in multi-core case

Figure 48-Scheduling multi-core example-II

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

80

From single-core to multi-core, global jitter is reduced. Thanks to the parallelism of the

multi-core, the delay element does not need to be updated each time that the start time of

an instance is calculated. Only the instances in the same core will drive the updating in order

to avoid the overlap between the independent instances. As a result, the global amount of

delay between start time and release time is reduced and can be estimated early in the design

process.

A change in the allocation results in the variation of jitter. For different multi-core solutions,

even if the load balancing and inter-communication overhead are identical (we suppose that

the load of all the tasks and all the transitions are identical), there is always an allocation

allowing to reduce the global jitter. In our automotive context, these solutions are

considered to be safer since it also minimizes the system laxity. For example solution Multi-

core-I provides a better jitter value, as it considers the execution chain in the allocation

decision.

 Single-core Multi-core-I Multi-core-II

Makespan 20 19 19

Total jitter 28 16 22

Average jitter 1.65 0.94 1.29

Table 9-Jitter of the example application

Actually, the performance of our proposed scheduling approach depends on the parallelism

degree of the applications. For a highly parallelizable architecture as shown in Figure 49,

where all the nodes can execute parallel except the source node and the sink node, the

optimal makespan can be reduced from single-core to multi-core systems.

Figure 49-Example of a highly parallelizable application architecture

To simply the process, we suppose all the nodes in Figure 49 are associated with the same

criteria: the execution time is 1 time unit; the communication time is 0 and the period of

each node is 𝑰 + 𝟏such that this application is schedulable in the single-core system, where

𝑰 is the number of the nodes. We distribute the applications into homogenous multi-core

system where the number of cores is 𝑲. Each node is presented by a task when we perform

the scheduling approach. With the increase of the applications’ size as well as the quantity

SinkSource

Node_1

Node_n

Node_2

Chapter 3 Real-Time System scheduling

81

of cores, the optimal makespan is shown in Figure . Multi-core systems allow reducing the

makespan for this ideal model of application architecture. However, we cannot always

benefit from the multi-core when the applications are strongly connected, in the next

section, we present the experiment results by applying our scheduling approach to a set of

applications that the parallelism degree is not easy to be identified.

Figure 50-Optimal makespan for the applications from an ideal architecture

3.3 Experimental results

In order to analyze the results of the method, we have developed a customizable random

generator of task sets. The generator takes the following parameters as input:

• Imax, the maximum number of runnables into generated node set,

• Tmax such as task periods are randomly generated in [1, 𝑇𝑚𝑎𝑥],

• K, the number of cores.

The system then generates randomly connections between tasks, resulting for each set to a

connection ratio ℰ computed as 𝐼 𝐸⁄ , where 𝐸 is the total number of generated transitions.

The execution time 𝐶𝑖 of each task is also generated such that the system

utilization ∑
𝐶𝑖
𝑇𝑖
⁄ < 𝑘.𝑈𝑚𝑎𝑥

𝐼
𝑖=1 , where 𝑘 is the number of cores and 𝑈𝑚𝑎𝑥 is the

maximum utilization enabling schedulable solutions when considering dependencies onto

single-core systems. 𝑈𝑚𝑎𝑥 has been experimentally set to 0.3 on real-life applications (see

the Chapter 4).

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of nodes

M
a
k

e
sp

a
n

Number of cores

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

82

Each synthetic application is then characterized by the following features: the number of

tasks 𝐼, the number of transitions 𝐸, the ratio ℰ = 𝐼 𝐸⁄ , the utilization of each core 𝑈 ∈

]0,𝑈𝑚𝑎𝑥] and the number of cores 𝑘. By this way, we were looking to evaluate the impact

of periodic dependencies onto the system schedulability and onto the quality of the

generated schedule tables computed as the global jitter 𝒥 , see section 3.2.5.2. A scheduling

is considered as not feasible if a deadline constraint is not respected by at least one instance

of task. We measure the schedulability as the rejection rate of a given application which is

computed as the number of conflicting instances over the total number of instances.

Here we generate about 960 applications distributed onto multi-core systems with [2,5)

cores. The system utilization is from about 0.6 to 1.2. The connection ratios of these

applications are between 0.1 and 0.8, which means these applications are generally strongly

connected. The parameters of the synthetic applications are summarized in the Table 10.

Applications
quantities

Connection
ratio

System utilization Node quantities Cores
quantities

960 (0.1,0.8) [0.6,1.2] [15, 60] [2,4]

Table 10-Synthetic applications sets.

We firstly apply our scheduling approach by distributed these applications into different

cores, the global jitters and makespan values for each distributions are presented by blue

curves in Figure 51 and Figure 52. For the raison of comparison, we show in the same figures

the results of single-core cases, which are presented by red curve in the relative figures. We

can observe that from single core to multi-core, the global jitters as well as makespan reduce.

Figure 51-Experimental results obtained with synthetic applications: global jitter according to the

connection ratio for single-core and multi-core cases

0

1000

2000

3000

4000

5000

6000

0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6

Multi-core case

Single-core case

Puissance (Multi-core case)

Puissance (Single-core case)

Chapter 3 Real-Time System scheduling

83

Figure 52-Experimental results obtained with synthetic applications: make span according to the

connection ratio for single-core and multi-core cases

In our scheduling approach, we consider the adjusting deadline as the third ordering metric,

which take the schedulability as the highest priority. To prove that, we apply the applications

set to 2 other approaches that take the maximum laxity and deadline as the third metric. The

quantities of the schedulable applications among these generated applications for both

multi-core and single-core cases can be thus compared, which is shown in Figure 53. For the

generated applications set, our approaches allow the greatest chance to find the schedulable

solutions.

Figure 53-Comparison of approaches that consider different ordering metrics: the number of

schedulable applications

235

235,5

236

236,5

237

237,5

238

238,5

239

239,5

240

0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6

Multi-core case

Single-core case

Puissance (Multi-core case)

Puissance (Single-core case)

Multi-core Single-Core

Adjusting deadline 77 34

Maximum laxity 66 27

Deadline 69 28

0

10

20

30

40

50

60

70

80

90

Q
u

an
ti

ti
e

s
o

f s
ch

e
d

u
la

b
le

 a
p

p
li

at
io

n
s

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

84

Besides, among these three approaches, we take different measurement to evaluate the

ordering metric.

Results confirm that the rejection rate increases with the system utilization 𝑈 and inversely

with the connection ratio ℰ .The more the scheduling is constrained by the periodic

dependencies, the more the rejection rate is.

More interestingly, we can compare the differences between three scheduling policies:

Earliest Deadline, Maximum laxity (𝐷𝑖 −𝐶𝑖) and adjusting deadlines as proposed in Section

3.2.4.1. These 3 policies are considered as the third ordering metric to determinate the

execution order of all instances in the schedule tables.

First of all, we can observe that global jitter mainly depends on the connection ratio and to

a lesser extent on the system utilization. Secondly, Table 11 gives the details on the

comparison of the average measured global jitters for the three scheduling. Adjusting

deadline takes a better advantage of the reduction of the connection ratio (and thus of the

system constraints) to reduce the jitter and finally provides better results when generating

the schedule tables of synthetic applications. This is mainly because the adjusting deadline

contributes to firstly schedule the instance whose successors have small maximum laxity

((𝐷𝑗
∗ −𝐶𝑗)𝜏𝑗∈𝑠𝑢𝑐𝑐𝑠(𝜏𝑖)

 in equation 6). Therefore, for the instances with same execution time

and deadline, the scheduler takes the subsequent execution chains of each instance into

consideration as well. We will confirm this result on a real application in the following

chapter.

Ordering Metrics Adjusting deadline Maximum laxity Deadline

Average 2173 2378 2359

Number of schedulable

application
77 66 69

C
o

n
n

e
c
ti

o
n

 R
a

ti
o

Ɛ < 0.2 2940 3005 2990

Ɛ < 0.3 1567 1610 1657

Ɛ < 0.4 1193 1169 1196

Ɛ < 0.5 855 933 920

Ɛ < 0.6 714 808 808

Table 11-Global jitter for different ordering metrics

Conclusion
In this chapter, we have defined the static scheduling method in multi-core systems, which

is adapted to the model of automotive application compliant with AUTOSAR standard. The

method supposes on an a priori allocation of the tasks on different cores. We will then

integrate this scheduling method into a complete development flow for industrial software

in the next chapter. The flow proposes an exploration step of software distribution. One

scheduling shall then be generated for each explored solution.

Chapter 3 Real-Time System scheduling

85

Chapter 4 Developing process in

automotive industry

 4.1 Working process .. 88

4.1.1 Step I-Application description.. 89

4.1.2 Step II – Dependencies analysis – Model synthesis.. 90

4.1.3 Step III – Software distribution tool ... 92

4.1.4 Step IV - Configuration of the executive layer ... 96

4.1.5 Step V– Validation of execution ... 98

4.1.6 Prospective Step – Feedback and updates .. 99

4.2 Use case demonstration ..104

4.2.1 Application description and analysis ...105

4.2.2 Distribution results: Allocation ...106

4.2.3 Distribution results: Scheduling ..108

4.2.4 Validation on the target ...110

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

88

In this chapter, we present our developed tool suit SWAT (SoftWare Allocation Tool suit)

that is integrated seamlessly in our automotive developing process. The process is shown in

the Figure 54. We present this process and how each part of SWAT works in the first part.

And then in the second part, we demonstrate the experiments results on several real-life

industrial use cases.

Figure 54-Working process for partitioning automotive application onto multi-core architectures

4.1 Working process

We have developed a method for the distribution of the automotive applications into multi-

core architectures. The automotive applications could be compliant with AUTOSAR

standards, in that case, the method acts as a decision guide environment for the partitioning

of embedded software modeled with the AUTOSAR specifications onto multi-core systems.

The proposed method was seamlessly integrated into an industrial V-cycle development

process. This process, as shown in Figure 54, is composed of 5 main design phases:

1. Application description

2. Dependency analysis

3. Design space exploration

4. Configuration of the executive layer

5. Validation onto the target device

①

③

④

⑤

Metaheuristic
Solver

SWC
ARXML

Application description
I - Dependency Analysis

✓RTE

✓OS

III - Configuration

Partitioning Tool

Validation
On

Target

Execution

✓Cost functions (∑)

✓Constraints (Ω)

②

II - Distribution

Chapter 4 Developing process in automotive industry

89

We give the detailed description of this working process in the following parts. Besides, as

mentioned before, the software architecture is compatible with AUTOSAR standard.

However, the application processed by our tools and process is NOT AUTOSAR specific.

4.1.1 Step I-Application description

This step consists in the description of the targeted applications in order to integrate them

in the process. Therefore, this step plays the role of interface between the input applications

and our developed toolset. As the automotive applications might be in varies forms, i.e.

AUTOSAR or not, this step is application type dependant. That means, for different type

of various applications, this step should perform different way to import/export the

application. For the following part, we focus on the AUTOSAR application that is the user

case in our project, although our process is not AUTOSAR specific. The Autosar

applications are represented in the form of ARXML file (AutosaR XML). An ARXML file

is a XML file that describes the interface of a software component (SWC). The format of

this file is defined by the AUTOSAR specification and contains information like: the

description of data that are read or written by a module; the description of entries points of

the modules and the calling mode; etc. The versioning of the format is correlated with the

AUTOSAR release. For example, in our different projects, there are the version 2.0.2, 3.1.2

and 4.0.3.

Figure 55-Integrated AUTOSAR Tool Environment

So for the AUTOSAR application, the application description step requires the tool to be

able to parse ARXML files. To do that, there already exist the authoring tools such as

SystemDesk, AUTOSAR Builder and Artop to edit the applications compliant with

AUTOSAR standard. SystemDesk (SystemDesk, 2017) that is developed by German

company dSPACE is a system architecture tool for modeling AUTOSAR architecture and

systems for application software. Besides of the application level, it also allows generating

virtual ECUs for the dSPACE simulation platforms. AUTOSAR Builder is another

authoring and simulation toolset for AUTOSAR applications. It is part of the CATIA

Systems Engineering solution from French company Dassault Systèmes (AUTOSAR

Builder, 2017). Besides, there exist also other similar commercial tools, e.g . DaVinci from

VECTOR company, that dedicate to design the architecture of AUTOSAR software

components. Unlike SystemDesk and AUTOSAR Builder, which are the commercial

Commercial AUTOSAR Tool SWAT
Commercial/
Competitive Layer

Artop User Group

Development
Environment

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

90

tools that require paying for licenses as they are profitable products for the companies, the

Artop (AUTOSAR Tool Platform) (Artop, 2017) is an open source project that includes its

sources codes and is available free of charge to all AUTOSAR members and partners. Artop

is an implementation of common base functionality for AUTOSAR development tools like

SystemDesk, AUTOSAR Builder and others. Artop is based on Eclipse Platform that is

well-suited to develop domain-specific integrated development environment (IDE). The

layered architecture for a complete AUTOSAR tool is briefly shown in Figure 55. The top

layer is commercial or competitive layer where the tool vendors develop proprietary plug-

ins commercially. These plug-ins adapt Artop to end-users’ needs and complement the

functionalities of Artop in the middle layer. The Eclipse Platform is located at bottom layer,

including Eclipse technologies such as the Eclipse Modeling Framework (EMF) that the

Artop library is base on.

The applications description in our process is accomplished by our developed tool that is

located in the top layer of Figure 55. This tool is a part of the entire tool suit SWAT. The

tool is developed based on the internal libraries that encapsulate all the functionalities of

Artop library and allow using it without the Eclipse environment. The libraries are initially

defined by the software team in Valeo for the purpose of integrating AUTOSAR software

component in software, which allow to generate standard human interface, parse ARXML

files, import/export the excel files, etc. Based on these internal libraries, our tool is capable

of editing completely the AUTOSAR applications that represented by ARXML files. More

precisely, it allows reading Autosar configuration files, creating empty AUTOSAR

configuration files and populating AUTOSAR configuration files. Compared to the

commercial tools, our developed tool requires less resources than commercial tools that

provide more functions like simulation, virtualization and others, which exceed the require

for the application description step. Additionally, our tool provides the dedicated functions

for our needs, for example, the synthesis results for the targeted applications provided by

the tool can be used for the next step: the dependencies analysis step. And certainly, our

developed tool does not require the additional cost for paying the licenses of commercial

tool.

4.1.2 Step II – Dependencies analysis – Model synthesis

In our work, we focus on partitioning applications driven by control and data flow (e.g.

engine control, brake control, etc.). For that type of command and control applications the

order in which the individual statements executed is very important and the enforcing by

functional constraints makes it difficult to identify the parallelism degree. As the high

sensibility of the execution order and low proportion of parallelism might exist in the

targeted applications, the partitioning of automotive applications into multiple cores

requires a fine analysis of the dependencies between functional elements. The dependencies

analysis step is accomplished by Dependencies Analyzer, a tool that is a part of SWAT

toolset.

The Dependencies Analysis Tool is based on Eclipse. Written in Java, it allows to analyze

a software application by parsing the xml description files (e.g. *.arxml – AutosaR XML –

Chapter 4 Developing process in automotive industry

91

in an AUTOSAR context), which is done in the application description step. The tool

analyzes the features by the following steps:

1 – Modeling the software architecture:

▪ As described in the Chapter 2, the software architecture is modeled

using a directed graph 𝑮 (𝑽,𝑬), such that 𝑽 is a set of nodes (set of

runnables for Autosar application) and 𝑬 is a set of transitions (links

between runnables). A node 𝑽 is modeled as an execution time, a trig

mode, a period. A transition 𝑬 has a weight that depends on the size of
data transmitted, the period of the producer, etc.;

▪ The graph size is optimized by the creation of buses between nodes.

2 – Determines the levels of dependency. Build statistics on transitions between
executable entities (called runnable in AUTOSAR). Each transition belongs to one of
these four classes that have been already presented in detail in the Chapter 2, here we
just give a briefly description:

▪ Class 1: Periodic transition:
 Serie1: same period for producer and consumer;
 Serie2: producer period smaller than the period of the consumer;
 Serie3: producer period greater than the period of the consumer;

▪ Class 2: Producer OR consumer (exclusive) is periodic:

 Serie1: producer is periodic;
 Serie2: consumer is periodic);

▪ Class 3: No periodicity: neither producer nor consumer is periodic;

▪ Class 4: Transitions invoked on events (e.g. Mode Switch Event,
Client/server operations).

▪ If AUTOSAR is targeted, two levels of granularities are allowed:
analysis at SWC level or analysis at runnable level (if AUTOSAR is
used, component level for all other cases). This facility can be used to
decrease the complexity of analysis, and so, decrease the time to find a
solution;

3 – Analyze the data information for each transition such as data size, data rate, data
unit, as described previously in section 2.3.1.1.3;

4 – Identifies the sequences of communications (extraction of data flows of same
rates).

Inputs of the tool: Cooperating with application description tool, the input is the software

architecture that consists in

• The set of components (e.g. in AUTOSAR, this is a set of Applicative SWCs)

• The composition that structures these components and forms hierarchies.

It is worth noting that as the software architecture (also called static architecture) is given as

an input, the analysis is done only once, and is excluded of the iterative process.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

92

The BSW (Basic SoftWare) and HW (i.e.: the bus CAN etc.) are not included in this analysis

for software allocation, but during the validation, BSW and HW impacts are implicitly taken

into account in measurements.

Outputs of the tool: The outputs of the tools are listed as follows (take AUTOSAR

applications as example). These information will then be used to perform the distribution

into multi-cores.

• The transition information: the producer runnable and consumer runnable, the
SWCs that contain them and their associated RTEEvent and Ports, the Interface
and the transited data;

• The classification of the transition: each transition is classified into categories,
according to the criteria of associated RTEEvents for producer and consumer
runnables;

• The data information: the information of data for each transition contain: data
size, data unit, data type, and data rate;

• The sequence chains: for the granularities of runnables or SWCs. An example
for the sequence is shown in Figure 56.

Figure 56-Example of sequence

The results of the analysis of dependencies drive the distribution step (Step III), e.g.:

• The classification information and data information are used to evaluate the
communication overhead that is one of the criteria to evaluate the distribution
solutions;

• The sequences of execution guide the distribution tool to determinate the response
time for execution chains. It is also important for determining the execution order
for the scheduling approach.

4.1.3 Step III – Software distribution tool

The software distribution tool performs Design Space Exploration (DSE) of the graph

designed in Step II to distribute the applications into multi-core systems. The main work of

this step contains two parts: 1) Partitioning. The tool searches optimized allocation of the

applications into different cores automatically, including the mapping of runnables and tasks

into different cores. This part is presented in detail in the Chapter 2. 2) Scheduling. For

Chapter 4 Developing process in automotive industry

93

each allocation solution, the tool generates a scheduling table that defines the order of the

instances of all tasks and the start time of each instance. This part is presented in the Chapter

3.

As stated in Chapter 2, the problem is formalized as a Combinatorial Optimization (CO)

problem, which mainly relies on the definition of objective functions with respect to a given

set of constraints. Therefore, two essential elements are considered by this tool as shown in

Figure 57: The constraints that need to be respected and the objective functions that need

to be optimized.

Constraints are static parameters that should be validated for each possible solution. These

constraints can take into consideration as well real-time features (e.g. load of each core<1,

load balancing, deadline compliance) as implementation strategies (e.g. forbid a slit of a

client and its server).

Objective functions (or cost function) are computed from the following key elements:

• CPU utilization;

• Communication overhead as presented in Chapter 2;

• Response time for execution chains (makespan);

• Global jitters for the scheduling as presented in Chapter 3.

Supplementary inputs

In addition to the dependencies analysis resulting from step II, other supplementary

information coming from the execution on the hardware platform of previous versions are

necessary as other types of inputs to compute the cost function. It includes:

• Execution time for each execution entity. In the AUTOSAR context, the real-time
tasks managed and scheduled by operating systems (RTOS) are composed of
runnables. The execution time of tasks is related to the execution time of the
runnables that are mapped to it. However the execution time is not constant at the
run time, which requires an estimation value for the process. In the state of the art,
the estimation of execution time can be done under 4 formats:

• The worst execution time

• The average execution time

• Probabilistic model

• Standard deviation

Figure 57-Software distribution tool

II - Dependencies

analysis

Classification of

transitions

III – Software

distribution tool

✓ Cost functions (∑)

✓ Constraints (φ)
Operating System configuration and

mapping

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

94

The worst execution time and average execution time are available for our approach,
the decision to consider which of the two depends on the exigencies of the
applications. For the future version, the probabilistic model is interesting to be
integrated in our process.

• Accessing time to data. The accessing time for data could be used to evaluate the
communication overhead especially the communication between partitions by the
accessing time for global data.

• The feedback information from the measurement results on the target boards. For
the iteration N, the feedback information is available from the N-1 iteration. At
iteration 1, these inputs are computed using a runtime analysis of the single-core
reference platform (on same target). These results are then updated after the iteration
of the process.

Working process of distribution carried out by the tool contains two principal parts.

These two parts contribute to make sure that the methods presented separately in the

previous chapters can be manipulated with the concrete industrial use case and integrated

in our development process seamlessly. The two parts are presented as follows:

Preparation of the graph (model of the application): The software architecture is

modeled as a directed graph G (V, E). However, the automotive applications especially

the control applications are often strongly connected. One example is given in (Kehr,

Quiñones, Böddeker, & Schäfer, 2015), where a lot of cycle exists in their application of

engine management system (EMS). The existence of the cycles makes it difficult to apply

the scheduling approach presented in Chapter III, as it is impossible to determinate the

order of the instances only based on the applications description (presented by ARXML

files) without supplementary information from functional aspect. Hence in order to

compute the response time for execution chains, the makespan and the global jitter, the

application model shall be a directed acyclic graph (DAG). The preparation step is to

transfer the original graph into acyclic graph. To do that, it involves to solve the

minimum feedback arc set (FAS) problem.

A feedback arc set in a directed graph is a subset of its arc or transitions whose removal

makes the graph acyclic (Demetrescu & Finocchi, 2003). An example is shown in Figure

58, where the red arrows are the feedback arcs. The minimum feedback set problem is

NP-complete both on directed and undirected graphs (Karp, 1972), but the study of the

minimization of FAS problem is out of the scope of this dissertation however.

The process of the preparation of graph is as follows:

1) Place the nodes on a horizontal line with forward arcs being drawn on and
above this line whereas the backward arcs appear below this line (as shown
in Figure 58 (a)).

2) Change the order of the nodes in order to find a sequence with minimum or
few enough backward arcs (as shown in Figure 58 (b)).

3) Cut the backward arcs, the rest of the graph is a directed acyclic graph.

Chapter 4 Developing process in automotive industry

95

In order to find the sequence that minimizes the backward arcs in part 2), the tool

performs simulated annealing (SA) algorithm thanks to its simplicity and effectiveness

(more details of this algorithm can be referred in Chapter 2). During the process of the

exploration, each sequence is evaluated by the objective function, which is related to

the quantity of the feedback arcs. More precisely, each transition is related to a weight

according to its classification analyzed by step II such that the objective function is:

ℱ = ∑ 𝜔𝑖𝑖 (1)

where 𝜔𝑖 is the weight of the backward transition 𝑖 . Typically, we penalize the
consideration of a transition into a feedback arc by increasing its weight such that the
cost for this solution is high enough to be avoided to be adopted.

Also in this step, dependencies such as precedence constraints are taking into account.
The set of nodes that are strongly connected will not be split on different cores. This is
transformed as the constraints for the searching process.

Figure 58-Preparation of graph

Optimization: Based on the directed acyclic graphs generated by the graph preparation

step, optimization step involves the allocating of nodes from the graph into different cores

of the multi-core platform. This step consists in two degrees of optimization:

o The degree of loads balancing involves optimizing the loads when
distributing the nodes of the graph into different cores. This degree of
optimization can be evaluated by several criteria such as the CPU load of
each core, the communication overhead (communication loads) between the
core and so on. More details are presented in the Chapter 2.

o The degree of performance involves optimizing the makespan for each core
or the global jitters in the systems, which optimizes the execution order of
nodes in each core. Based on this degree, the tool proposes scheduling tables
as presented in Chapter 3 .

These two degrees of optimization can be solved by a design space exploration (DSE)

approach. And the tool adopts the Metaheuristic as solver, where the optimization solution

is evaluated by objectives functions, and the search of the solution that minimizes the costs

of these functions can be carried out by multi-objective meta-heuristic algorithms such as

MOSA, NSGA-II, etc.

http://www.linguee.fr/anglais-francais/traduction/effectiveness.html

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

96

Output of the distribution step contains the mapping solution in XML files and a

scheduling table in XML or EXCEL files, which will be integrated in the process to generate

the configuration files for the next step.

4.1.4 Step IV - Configuration of the executive layer

Before the release of AUTOSAR version that support the multi-core systems, it already

existed a previous version of development process based on the single-core platform.

Actually, the existing process was not multi-core dedicated. Especially, the upper layer such

as system functional design & validation was not aware of the existence of multi-core. Figure

59 presents a typical V-Model for the development process in the automotive industrial,

where the hatched part represents the system/function designer’s point of view, and the

blue part the software designer’s point of view. The last one has then no knowledge of the

functional constraints. That is why the application architecture designed based on the

functional aspect is not aware of multi-core issues. As a result, the multi-core solutions that

are proposed and generated by the proposed distribution step cannot be directly integrated

into the process of industrial projects without adaption and updating.

Figure 59-V-Model of development process

However, close to functional architecture, the design of software architecture for multi-core

leaves few degree of liberty. Only the implementation phase such as the configuration of

RTE (Real-Time Environment) and OS (Operating System) can be re-worked in order to

integrate the multi-core solution. Therefore, in this step, we mainly consider the

configuration of OS and RTE. The updated configurations files done by our tool will be

imported in the commercial tool EB Tresos Studio (Tresos, 2017) to generate the new

functional codes for all the modules to adapt the multi-core environment. Figure 60 shows

this process, which contains two main parts:

Software Designer Working Scope

Specification

System/
functional

Design

Software
design

Implementation
/Configuration

Integration
test

Functional
Validation

Chapter 4 Developing process in automotive industry

97

Figure 60-Generation RTE & OS codes by EB Tresos

Re-working the configuration of RTE is mainly based on the mapping information from

the distribution step. The mapping solutions, represented in XML files, indicate the mapping

information such as the location of the nodes/runnables. The tool updates the RTE

configuration file in order to correlate with the mapping solution.

However, updating the RTE is not trivial for the real-life industrial use case as strict

constraints exist. Take the communication via Mode Switch interface as an example, the

separation of the runnables that communicate by Mode Switch Event into different cores is

forbidden by EB Tresos Studio. In order to adapt to EB Tresos Studio, the tool re-work

the application architecture by adding the satellite component, which involves the creation

of new components and change the composition to integrate them in the architecture. More

precisely:

1) Create on each relative core a satellite software component.
2) “Cut” the communication that links via Mode Switch interface (MSE_IF in Figure

61).
3) Connect each side of the component with the created satellite component in the

same core.
4) Build the connection between the satellite components via Sender Receiver interface

(S/R_IF in Figure 61).

Figure 61-An example of re-working architecture for RTE configuration

Re-working the configuration of OS involves the re-mapping of the runnables to the

tasks. It also creates new tasks if necessary. The principal steps contain:

1) Create equivalent task in the correspondent core
2) Allocate the runnables to the equivalent core
3) Remove the empty task.

Figure 62 shows an example, where left side represents a single core reference with 2

software components (SWC_0 and SWC_1). Each SWC contains several runnables that are

mapped to different tasks (Task1_Core0 and Task2_Core0). Right side shows a multi-core

Generation of RTE&OSExisted

Configuration

Multi-core

allocation

solution

OS Rte

Updating

OS, RTE

RTE

Other

Modules

OS

Satellite

SWC

Core0

SWC0

SWC1

SWC2

SWC0

SWC1 SWC2

Satellite

SWC

Core1

Core0 Core1
MSE_IF

S/R_IF
MSE_IF MSE_IF

Core0

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

98

distribution solution, where each SWC is allocated to each core (SWC_1 remains in Core_0

and SWC_0 is moved to Core_1). Thus, the runnables that are belonging to SWC_0 have

to be re-mapped to the other tasks: it creates the Task1_Core1 to map the runnables that

were mapped previously to Task1_Core0 and Task2_Core1 for runnables from

Task2_Core0. As there is no more runnables in the Task_Core0, the tool removes this

empty task.

Figure 62-An example of re-mapping the runnables to tasks

4.1.5 Step V– Validation of execution

After the configuration step, the embed source codes can be generated, compiled and

downloaded on the target architecture for the validation step of the real-time exigencies.

The evaluation of the given solution requires a complete verification of functional and real-

time behavior. The inputs for validation could be the requirements from specifications

(already used in step III for SW allocation decisions), e.g. one of the inputs required in step

III is the execution time of runnables.

1. At iteration number 1, the execution time of runnables is computed using a runtime
analysis on the single-core platform. For each runnable, the distribution of the
execution time for a lot of executions is computed, and statistic results are provided
(Average execution time, minimum measured execution time, maximum measured
execution time, standard deviation, etc.). An example of such distribution is given
on Figure 63.

Old Configuration

✓RTE Configuration

✓OS Configuration

IV - Configuration

OS

Rte

Solution** Adapted

Configuration

OS.xdm Rte.xdm

Execution

Others

Allocation

Solution**Core_0

Task2_Core0Task1_Core0

Runnable

SWC_0

SWC_1

Core_0

Task2_Core0

SWC_1

Core_1

Task2_Core1Task1_Core1

SWC_0

Runnable Runnable

Runnable

Runnable

Runnable

Runnable

Runnable

Runnable Runnable

Chapter 4 Developing process in automotive industry

99

Figure 63-Execution time analysis per runnable (e.g. from a single-core platform)

2. At iteration > 1, the distribution of runnable execution is computed for the multi-
core platform generated from the given solution. The real-time impacts in terms of
execution distribution will be then analyzed and taken into consideration for future
iterations (see the prospective step).

The same thing is done for the services used to communicate between cores (IOCs services

in AUTOSAR). As this APIs are mainly responsible of additional cost, the load of inter -

core communication is monitored (at runtime). We take advantage of the HIL (Hardware

in the Loop) validation in order to be very close to the real environment.

4.1.6 Prospective Step – Feedback and updates

This step has not yet been integrated in the existing process. However it plays an important

role for the future works. The results coming from the validation step can be used to

evaluate the performance of solutions and to update the inputs of distribution tool. The

feedback/update metric model for the evaluation is constructed by the following criteria

(not complete list):

• The execution time of runnables: for each runnable, its execution time might be
changed. The global CPU load should be optimized. The speed-up parameter is
computed for each distribution (How much time can I increase the performance
with a multi-core comparing to a single-core).

• The communication overhead: the accessing time for data might be changed
especially for the IOC channel service.

• The response time of execution chains (makespan):

• The robustness of the application due to the addition of an additional overhead

• Etc.

Feedback/update metric model

0

50

100

150

200

250

300

101,5 102,5 103,5 105 105,5 106 106,5 107 107,5 108 109 109,5 110 110,5 111 111,5 112,5 113,5 114,5 115 116 116,5 117,5 118 118,5 119

N
u

m
b

e
r
o

f
o

c
c
u

re
n

c
e
s

Execution time (µs)

Average

execution time

Minimum

execution time

Maximum

execution time

110.165 101.17 118.948

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

100

The deviation for the criteria 𝜃 such as execution time and data accessing time between

output and input can be given by distance function 𝐷(𝜃):

𝐷(𝜃) = 𝑙𝑜𝑔
𝑂𝑢𝑡(𝜃)

𝐼𝑛(𝜃)

where 𝑂𝑢𝑡(𝜃) is the output value of 𝜃 and 𝐼𝑛(𝜃) is input value of 𝜃.

If the two values are close, the distance will be around 0. The performance of a solution can

be determined by a defined threshold that imposes the maximum of the sum of distance.

Based on the feedback/update metric model, the updated inputs could be used to restart a

new loop of the exploration process.

And finally, go back to step 2 if required.

The estimation of execution time is important to improve the performance of the

distribution process. To establish the feedback model for the criteria of execution time, we

have chosen 6 multi-core solutions and apply them on the target board to measure the

execution time of the runnables. Our idea is to study the elements that might impact on the

execution time of the runnables. For one runnable, its execution time might be under

influence of the positions of the runnables that communicate with it. To study that, we

chose one runnable (with name of “RE_EngMGslT_018_TEV”) and measured its

execution time for the 6 solution. These runnables have 14 predecessors and 26 successors

as shown in the Figure 64.

Chapter 4 Developing process in automotive industry

101

Figure 64-Communications for runnable “RE_EngMGslT_018_TEV”

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

102

The positions of all its 14 predecessors and 26 successors for the 6 solutions are presented

in Table 12, where we focus on the number of runnables that are allocated to the different

core of runnable “RE_EngMGslT_018_TEV”.

 Solution1 Solution2 Solution3 Solution4 Solution5 Solution6

RE_EngMGslT_018_TEV Core1 Core0 Core0 Core0 Core1 Core0

Predecessors of RE_EngMGslT_018_TEV

OP_LibAirEfc* Core0 Core0 Core0 Core0 Core1 Core2

OP_LibEngCylPrm* Core0 Core0 Core0 Core0 Core1 Core2

RE_EngMGslT_001_MSE Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_001_MSE Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_001_MSE Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_001_MSE Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_012_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_012_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_012_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_ExMGslT1_003_TEV Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT1_005_MSE Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT2_001_MSE Core0 Core2 Core0 Core2 Core0 Core1

RE_ExMGslT2_007_TEV Core0 Core2 Core0 Core2 Core0 Core1

RE_InMdlT_020_TEV Core2 Core1 Core2 Core0 Core2 Core0

RE_InMdlT_020_TEV Core2 Core1 Core2 Core0 Core2 Core0

RE_InMdlT_020_TEV Core2 Core1 Core2 Core0 Core2 Core0

RE_InMdlT_043_MSE Core2 Core1 Core2 Core0 Core2 Core0

RE_InMdlT_043_MSE Core2 Core1 Core2 Core0 Core2 Core0

RE_InMdlT_043_MSE Core2 Core1 Core2 Core0 Core2 Core0

RE_InThMdlT_001_MSE Core2 Core1 Core2 Core2 Core2 Core2

RE_InThMdlT_007_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_InThMdlT_007_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_UsThrMT_004_MSE Core2 Core1 Core2 Core2 Core2 Core2

RE_UsThrMT_010_TEV Core2 Core1 Core2 Core2 Core2 Core2

Total number 17 15 13 7 15 9

Chapter 4 Developing process in automotive industry

103

Successors of RE_EngMGslT_018_TEV

RE_AdvCordT_002_DRE Core1 Core0 Core1 Core1 Core1 Core1

RE_AdvMaxT_002_DRE Core0 Core0 Core2 Core1 Core0 Core2

RE_AdvMinT_002_DRE Core1 Core0 Core1 Core1 Core1 Core1

RE_AdvMinT_006_DRE Core1 Core0 Core1 Core1 Core1 Core1

RE_AdvOptmT_002_DRE Core2 Core0 Core0 Core2 Core0 Core1

RE_AdvOptmT_003_DRE Core2 Core0 Core0 Core2 Core0 Core1

RE_AdvOptmT_003_DRE Core2 Core0 Core0 Core2 Core0 Core1

RE_AdvOptmT_003_DRE Core2 Core0 Core0 Core2 Core0 Core1

RE_AdvOptmT_003_DRE Core2 Core0 Core0 Core2 Core0 Core1

RE_AdvOptmT_003_DRE Core2 Core0 Core0 Core2 Core0 Core1

RE_AdvPrevKnkT_002 Core0 Core1 Core0 Core0 Core0 Core1

RE_AirSysAir_003_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_003_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_004_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_004_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_005_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_005_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_005_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_AirSysAir_005_TEV Core0 Core0 Core0 Core1 Core0 Core0

RE_EngLimTqT_004_DRE Core0 Core0 Core2 Core2 Core2 Core2

RE_EngLimTqT_010_TEV Core0 Core0 Core2 Core2 Core2 Core2

RE_EngMGslLim_003_TEV Core2 Core1 Core2 Core0 Core2 Core2

RE_EngMGslLim_003_TEV Core2 Core1 Core2 Core0 Core2 Core2

RE_EngMGslT_002_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_002_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_002_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_002_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_002_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_024_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_024_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_024_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_026_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_026_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_EngMGslT_026_TEV Core1 Core0 Core0 Core0 Core1 Core0

RE_ExMGslT1_002_TEV Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT1_002_TEV Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT1_002_TEV Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT1_002_TEV Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT1_002_TEV Core0 Core2 Core1 Core0 Core0 Core0

RE_ExMGslT2_007_TEV Core0 Core2 Core0 Core2 Core0 Core1

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

104

RE_ExMGslT2_007_TEV Core0 Core2 Core0 Core2 Core0 Core1

RE_InMdlT_014_TEV Core2 Core1 Core2 Core0 Core2 Core0

RE_InMdlT_032_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_InThMdlT_006_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_InThMdlT_007_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_InThMdlT_008_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_UsThrM_008_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_UsThrMT_006_TEV Core2 Core1 Core2 Core2 Core2 Core2

RE_UsThrMT_008_DRE Core2 Core1 Core2 Core2 Core2 Core2

Total number 35 18 21 28 35 23

*It concern the Client-Server communications

Table 12-Allocations of the runnables that communicate with runnable

“RE_EngMGslT_018_TEV”

We measure the execution time of the runnable “RE_EngMGslT_018_TEV” on our target

board for the 6 solutions. The execution time is presented as the distribution of the

occurrence number according to time (in µs) and is shown in Figure 65, where we put the 6

solutions together for a clear comparison. We also put the execution time from single-core

reference in this figure. We can notice that for this runnable, its execution time degrade

when the number (these numbers are also shown in Figure 65 for each solution) of its

predecessors that are allocated to different cores increases (except solution 3 which need

further study). This might inspire us for establish of estimation model of the execution time

for the next iteration, which is interested for the future works.

Figure 65-Execution time distribution of the runnables “RE_EngMGslT_018_TEV” for 6 solutions

4.2 Use case demonstration

In this part, we present the results by applying some industrial applications on our working

process. The presentation is done following the order of the process in Figure 54.

Chapter 4 Developing process in automotive industry

105

4.2.1 Application description and analysis

We now describe the experiments leaded to determine the optimization method the best

adapted to our context and to validate the explored solutions.

The method has been evaluated with three application descriptions. The first one labeled as

𝐴𝑝𝑝_1 is composed of a small amount of components. This application is built in a random

way and the exploration space for this application is exhaustive thanks to its small quantity.

Besides, this application contains 3 context cases for the execution time. We have two other

applications (labeled as 𝐴𝑝𝑝_2 and 𝐴𝑝𝑝_3) corresponding to bigger real industrial use-cases

which represent a portion of a full application of engine control. For these two applications,

we consider only one running execution mode, therefore there is only one context case:

• 𝐴𝑝𝑝_1 contains 15 SWCs with 32 runnables. After analyzing this application, the

tool generates 6 CpuEntities with 7 variables;

• 𝐴𝑝𝑝_2 contains 25 SWCs and 208 runnables, the tool generates 14 CpuEntities with

about 493 variables;

• 𝐴𝑝𝑝_3 contains 68 SWCs and 562 runnables, the tool generates 21 CpuEntities with

about 1358 variables.

The tool also analyzes the transitions information for each application and classifies these

transitions according to the different levels of dependency. The results for the three tests

are shown in Table 13.

Applications Number of

SWC

Number of

runnables

Number of

transitions

Connection

Ratio

Portion of

EMS

𝑨𝒑𝒑_𝟏 15 32 27 1.19 NA
𝑨𝒑𝒑_𝟐 25 208 1558 0.13 5%

𝑨𝒑𝒑_𝟑 68 562 6826 0.08 10%

Table 13-Applications information

For the applications 𝐴𝑝𝑝_2 and 𝐴𝑝𝑝_3 from the real use-case, we present in Figure 66 the

data rate information for each runnable in these two applications. As presented in the

Chapter 2, runnables produce or consume a set of data. Therefore, we present in the figure

the size of data for each runnable classified by their periods. From where we can notice that,

the runnables with period of 10ms access to the data at a high frequency. These results will

help the tool to determine the dependency level for these transitions. These results also

justify the importance of evaluating the cost of inter-core communication in the objective

functions.

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

106

Figure 66-Statistic of transition (The left side is App_2 and the right APP_3)

4.2.2 Distribution results: Allocation

The next step consists in distributing the application into a specific multi-core architecture.

Our targeted multi-core architecture contains 3 cores, a shared memory and each core is

assigned to a local memory. In order to distribute these applications into multi-core systems,

the tool applies the selected metaheuristics: SA, TS and GA. The small application 𝐴𝑝𝑝_1

allows us to obtain independently all the possible combinations and to calculate their cost

based on cost function. Thus we can identify the optimal solution with the smallest cost

values among all the potential solutions. The distribution of cost values for all the

partitioning solutions of 𝐴𝑝𝑝_1 is illustrated in Figure 67. The figure exposes the complexity

of the problem even when considering an AUTOSAR application composed of only 32

runnables. The number of feasible solutions exceed several hundreds of thousands solutions

(279888 exactly), and so the optimal solution (with value of cost at the left side in Figure 67)

only represents 0.0357% of the landscape.

Figure 67-Distribution of the costs of all the partitioning solutions for application 𝐴𝑝𝑝_1. The cost

bands on the left represent the subset of solutions found by the GA, SA and TS methods.

Chapter 4 Developing process in automotive industry

107

We then apply each algorithm 10 times on application 𝐴𝑝𝑝_1. The cost bands of solutions

found by each algorithm are compared to the previous distribution of cost values as shown

in Figure 67. Only GA works on a population size of 10. SA and TS only explore 1 solution

per iteration. The more precise results are shown in Table 14. GA (in red rectangle in Figure

67) always finds the optimal solution. SA also finds the optimum and other solutions with

a cost between 4.02 and 4.2. Finally TS never find the optimal solution, but only solutions

with costs between 4.1 and 4.25.

Algorithms Deviation to

best solution

Optimal solution

finding times/10

Average

Run Time

(ms)

Number of

explored solutions

SA 0.0 4 243.52 106

GA 0.0 10 279362.09 10X106
TS 1.97% 0 7467.08 106

Table 14 Optimization results for application 𝐴𝑝𝑝_1by GA, SA and TS meta-heuristics.

From these results, we can notice that GA can always find the best solution in a longer

running time. SA runs faster with a chance less than 50% to find the optimal solution.

Considering TS, unfortunately, we never get the optimal solution, but solutions very close

to it.

For the two other applications, we considered real-life industrial use-cases and focus on

quantitative results. We applied only SA and GA, as TS does not show its capability to find

the optimum for the small application. We remind that we consider constraints of loads

balancing for each solution, data for inter-core communication are allocated in the shared

memory, and the cost function minimizes inter-core communication overhead (using IOC).

With the growth of the application size, it becomes impossible to obtain all the solutions in

the exhaustive way as we did on the small application. So, the optimal solution cannot be

exactly determined. Thus, we used a different criterion to evaluate the quality criteria of the

optimization methods.

We focused on the standard deviation between the costs of solutions obtained by each

algorithm and the cost of the best solution it ever found. The results for the two applications

are shown in Table 15. From these results, GA can no longer find better solutions than SA.

Besides, the run time of GA is much longer. The average run time for both algorithms

increases with the size of application, this is shown in Figure 68, where the average run time

is plotted according to the application complexity. This figure specifies the average measured

values.

Algorithms

Deviation to best
found solution

Best solution
found

Average Run Time
(ms)

Number of
explored
solutions 𝐴𝑝𝑝_2 𝐴𝑝𝑝_3 𝐴𝑝𝑝_2 𝐴𝑝𝑝_3 𝐴𝑝𝑝_2 𝐴𝑝𝑝_3

SA 0.12% 21.23% 8 1 35305 752202 1000000X1

GA 2.83% 10.48% 7 0 663305 14355694 1000000X10

Table 15-Optimization results for application and by SA and GA meta-heuristic

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

108

As previously explained, the goal of our partitioning tool is not to still reach the optimum

but rather to prune the design space, and only present to the designer the most promising

solutions according to a specific objective function. Only the designer can then identify

feasible solutions and take the final decision. Nevertheless, from the optimization point of

view, these experiments allowed to identify the algorithm the best adapted to this design

problem, even if each of them could be tuned to reach better results. Hence, for this use

case, SA shows its ability to provide both the optimal solution and a set of other solutions

approaching the optimal one. SA also seems to better scale with the application complexity.

The analysis of performances metrics (cores loads, memory occupation, execution time…)

then allows finer selection.

Figure 68-Scalability of the execution time of SA and GA optimization methods.

4.2.3 Distribution results: Scheduling

In the second part of the distribution, we apply the proposed scheduling method on

application 𝐴𝑝𝑝_2 that represents a portion of a full application of engine control. Our

objective is to migrate this application into multicore platform without the intervention of

application designer. However, as the application is single-core originally, which is designed

in a sequential way and strongly synchronized, the parallelization of the application increases

the cost due to this synchronization. Previously, the migration to multicore was done

manually, which necessitates a high level knowledge of applications from the SW designer.

Moreover, each time for a new application, it introduces a lot of repetitive work for the

migration into multi-core. In addition to these significant workloads, the manual migration

also prevents the optimization of criteria such as CPU loads, jitters and so on.

We choose 3 allocation solutions to evaluate the scheduling algorithm:

• Solution_S1 Single-core case: all the runnables are allocated in the same core.

• Solution_S2 Multi-core case: the allocation is a previous mapping solution to

3 cores that was done manually.

Chapter 4 Developing process in automotive industry

109

• Solution_S3 Multi-core case: the runnables are allocated into 3 cores, the

allocation is optimized mapping solution obtained by our tool by considering

inter-core communication overhead as criteria

The source code of these solutions (and more generally all the solutions found by the

exploration tool) can be generated and associated to the code of the embedded executive

layers. Once compiled, the binary file is downloaded onto the device. The target hardware

platform is a TC27x tri-core micro-controller from Infineon and measurements are done

onto the platform using Trace32 tool from Lauterbach. The trace of execution are extracted

and analyzed in a pseudo-automatic manner. We can for example compute the average load

per core and the execution time of each instance, or the jitter of each instance during a

period of time. More detail about the platform will be described later in the section 4.2.4.

Here we present in Table 16 the measured jitters for the three solutions specifically studied

Chapter 3, where the schedule tables are compared in terms of CPU loads and total jitters

(in µs). We compared the three scheduling policies for the three solutions.

Solutions Solution_S1 Solution_S2 Solution_S3

CPU loads / Core 21.9% 20.1% 16.1%

O
r
d

e
r
in

g

m
e
tr

ic
s

Deadline 16055 Non Sched. Non Sched.

Maximum Laxity 15227 Non Sched. Non Sched.

Adjusting Deadline 15927 33009 29761

Table 16 - Comparison of different scheduling policies for the generation of schedule tables.

(Non Sched =No Schedulable)

Compared to the preceding results that apply the method in a set of synthetic applications

as presented in Chapter 3, the real application 𝐴𝑝𝑝_2 has a connection ratio 휀 =

0.13, which makes it a really difficult scheduling problem (see the rejection ratio on).

Secondly, during phase 4 of the working process (Figure 54), additional code is generated

for the RTE and the IOC management on each core.

IOC stands for inter-core communication function and is responsible for the

communication inter-core. It results that the total CPU load increases when considering

multicore distribution, even if the local load is reduced on each core. The results are

synthesized in Table 16, where we can see that with the increase of CPU loads (from single-

core to multi-core solution), the scheduling policies such as Earliest Deadline, Maximum

laxity (𝐷𝑖 −𝐶𝑖) show no longer the capability of finding a feasible scheduling. While

adjusting time, that considers the schedulability as a high priority, provides a scheduling

result even in the case of high CPU loads. De-facto in this application, the runnable with

the smallest period easily exceeds its deadline, (3ms compared to the maximum period that

is 3s), which makes it very critical to find a feasible order. As a result, the order of the

instance in the schedule table is very important and only the consideration of the complete

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

110

execution chain by adjusting deadline allows to find a feasible scheduling and an efficient

embedded schedule table.

However, the global jitter increases when distributing the application onto multiple cores.

This is due to the high number of inter-core communications in the particular case of this

application. Despite this constraint the optimal solution automatically obtained with our

method exhibits better results than manual distributions and reduced CPU loads compared

to single-core execution.

4.2.4 Validation on the target

After the distribution phase, the embedded source code of the solution is generated,

compiled and downloaded on the target architecture for the final validation of both the real-

time and the functional exigencies.

The target hardware platform is a TC27x tri-core microcontroller. There are two categories

of memories: the local memories attached to each core and the global memories. There are

three cores in this architecture, two identical cores TC1.6P and another core TC1.6E. All

these three cores execute the same set of instruction. There are two independent on-chip

buses in the tri-core architecture: Shared Resource Interconnect (SRI) and System Peripheral

Bus (SPB). The SRI is the crossbar based high speed system bus for TC 1.6.x CPU based

devices. The SPB connects the TC1.6 CPUs and the general purpose DMA module to the

medium and low bandwidth peripherals. More details can be seen in (Infineon, TriCore

Microcontroller, 2017).

We deployed the application 𝐴𝑝𝑝_2 onto this multi-core platform to measure the

communication overheads and CPU loads for several distributions. After starting the

execution, the trace information was obtained by the vendor tool - Lauterbach Trace32. We

present in this section the results obtained for two specific solutions:

• Initial solution: it is the first generated solution from which the metaheuristic

algorithms search the near-optimal distributions;

• Optimized solution: the best solution founded by SA and GA. As shown in the

section V-B, the two algorithms could find the same optimized solution for

this 𝐴𝑝𝑝_2. .

The source code of all the solutions found by the exploration tool can be generated and

associated to the code of the embedded executive layers. Once compiled, the binary file is

downloaded onto the device. We aim at comparing the estimated and real (measured)

performances of the explored solutions. The measured communication overhead for the

two solutions specifically studied in this paper are given in Table 17. Estimated values are

given by considering the number of data access per millisecond (taking into account the

number of fetches required to get data, i.e. the size of data). Measurements are done onto

the platform using Trace32 tool and provide the exact amount of time used for inter-core

communication. It appears in Table 17 as a percentage of the total application execution

time. The trace of execution are extracted and analyzed in a pseudo-automatic manner. We

Chapter 4 Developing process in automotive industry

111

can for example compute the average load per inter-core communication functions (called

IOC), and per core by identifying the individual IOC calls, and their execution time, during

a period of time.

Initial Solution Optimized Solution

Transition
counts

Estimated
overhead

Measured
overhead

Transition
counts

Estimated
overhead

Measured
overhead

Core_0 144 26.25 3.25% 114 26.03 2.0%
Core_1 99 37.20 3.23% 67 22.68 0.94%

Core_2 110 23.50 1.37% 78 15.00 1.2%
Total 353 86.95 7.85% 259 63.71 4.14%

Gain 26.63% 26.73% 47.26%
Table 17-Estimation and validation results of the communication overhead on the Aurix TriCore

target

By comparing real values with estimated values, we can observe that the optimization done

by the tool is confirmed by the experiments despite an estimation error. More precisely,

• Table 17 represents the inter-core communication cost for each source core

(executing the producers of data)

• Table 18 shows the associated core loads,

both for the initial and optimized solutions.

 Initial solution Optimized solution

 Estimated Measured Estimated Measured

Core_0 4.62% 21.8% 5.34% 20.0%

Core_1 6.51% 21.1% 4.66% 13.3%

Core_2 4.66% 14.4% 5.78% 15.6%

Total 15.79% 57.3% 15.78% 48.9%

Table 18-Estimation results on the CPU loads on the Aurix TriCore target

More precisely, we present in Table 17 the following results of the inter6core

communications for both solutions:

• the transition counts represent the number of transitions between cores. Each

transition is related to 2 IOC functions: send and receive;

• the estimated overhead considers the number of data access per millisecond (taking

into account the number of fetches required to get data, i.e. the size of data);

• the measured overhead is the load of IOC functions measured on the target. We can

observe in this table that measured overhead is correlated with both transition counts

and estimated overhead.

These results show a systematic reduction of the communication and the load metrics, and

allow evaluating the error of estimation.

Firstly, according to the Table 17, the optimized solutions are better, about 26% more

efficient from the partitioning tool point of view, and about 47% in the real platform. It

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

112

corresponds to about 26% of minimization of the number of inter-core transitions. Even if

communications are not represented with the same unit in Table 17 we can observe a

difference in the global gain.

This error of estimation is not very surprising. Performance estimation is currently

computed only from the amount of data exchanged between cores. In fact, the count of

transitions impacts also the communication overhead. This explains why in Table 17 the

decrease of estimated overhead does not necessarily improve the measured overhead while

the transition count is increased. Besides, additional features such as the OS services and

the memory protection unit (MPU) increase the communication overhead. These overheads

should be modeled in the next version of the tool.

Moreover, the on-board profiling showed that, as a system call is done each time the

application needs an inter-core communication, it could be more efficient to have 2 data

accesses in one communication channel than having 2 communication channels with 1 data

access in each. This new optimization will be added as a new type of move (in Chapter 2)

during the exploration.

Secondly, Table 18 shows the estimated CPU load for initial and optimized solution. The

partitioning tool considers the CPU load balancing as one of the design constraints, and

ensures a global load balancing between cores (with a 1% tolerated deviation). The results

show that this constraint is respected by the partitioning tool, since based on estimations.

The load of cores is measured with Trace32 using dedicated scripts whereas we only

consider the load generated by applicative runnables in the estimations. The loads of these

runnables were previously measured with Trace 32 onto a single-core distribution (without

inter-core communication) and back annotated into the application description file.

Thus, the other parts of code executed by the application, such as BSW, OS and other stacks

are not considered in the estimations computed by the partitioning tool. On the other hand,

real CPU loads are obtained on-board by measuring the time spent in the idle task, and by

subtracting the load dedicated to the BSW tasks (main functions). If the current measure

provides a best precision compared to high-level estimations, it can still be improved since

OS features and other modules are counted in the application load. This explains the

differences in the results presented in Table 18. Precisely, we can observe a constant global

load according to estimations whereas measures point out the consequences of the

distribution onto the core load, due to OS and communication overheads. The execution

time of the functional code of the runnables only represents 30% of the global load of this

automotive system.

We are now working on adding an intermediate fast validation phase between the

distribution and the validation phase to improve the quality of our estimations during

exploration. We are developing a SystemC transactional simulator of the multicore software

distribution. Besides, similarities between the SystemC language and AUTOSAR have

already been demonstrated (Krause, Bringmann, Hergenhan, Tabanoglu, & Rosentiel,

2007). At this level, the hardware architecture can be essentially abstracted. The concurrency

is modeled at the core level, the goal being to reduce the estimation error on communication

Chapter 4 Developing process in automotive industry

113

costs, to explore more accurately the scheduling of tasks, and to identify in the early phase

of the design the conflict of resources. This new simulation step will allow short and long

validation cycles in the same multicore design flow.

115

Chapter 5 Conclusion & Perspectives

Conclusion
The multi-core dimension introduces additional challenges that are still difficult to deal with

in real world industrial domains where applications exhibit high complexity and special cases

features that do not always fit with theoretical models. Thus, the shift towards multi-core

systems in the automotive industry has revived the challenge of application partitioning to

enhance productivity, re-usability and predictability.

In this dissertation, we described the issues in the partitioning and scheduling of engine

control applications in multi-core automotive systems. The proposed partitioning method

is the first one fully compatible with the constraints imposed by the AUTOSAR architecture

both in terms of software architecture and design process.

For the scheduling part, we focus on the periodic and dependent tasks of engine control

applications. The notion of periodic dependencies has been redefined to support the

transitions expressed between runnables in an AUTOSAR description. A scheduling

algorithm has then been proposed to generate schedule tables on a multi-core MCU, as a

total order of the instances assigned to each core.

In order to identify schedulable total orders from the partial order imposed by periodic

dependencies, several scheduling policies were explored and compared. This study

demonstrated that only adjusting deadlines enables to maximize the rate of feasible solutions.

The proposed scheduling method is fully compatible with the constraints imposed by the

AUTOSAR architecture both in terms of software architecture and design process. The

results obtained on the entire working process showed the benefits of the schedule table

generation phase.

The corresponding partitioning tool can thus be integrated in a seamless AUTOSAR design

flow, from application description to software deployment onto multi-core architectures.

Hence, classical optimization methods have been adapted to the automotive context and its

specific real-time constraints in an efficient exploration tool. The entire working process has

been validated onto real world applications from the AUTOSAR descriptions to the on-

board profiling. The results obtained on complex motor control applications show the

benefits of the optimization phase. A gain has been obtained by minimizing the inter-core

communication.

After having proposed a pseudo-automatic top-down refinement process, we aim at

recovering the results obtained by real measurements up to the portioning tool in order to

improve the precision of the performance estimations. We first defined the loads of cores

as the quality measurement of the distribution of control applications, but other metrics will

Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

116

be explored for others parts of the vehicle. The experimental results showed that only one

metaheuristic algorithm scale with high dimension applications.

Thanks to a multi-criteria formulation of the assignment problem, we will be able to take

into account the scheduling decision during the design exploration phase, and then evaluate

multi-core distributions in terms of average jitter, OS overhead, memory usage, resource

conflicts and safety.

Prospective
Just as shown in the prospective step of our working process presented in section 4.1.6 of

Chapter 4, the different distributions impact on the execution time of the runnables/tasks.

The exact elements that influence on this variation are not clear. After the study as shown

in Figure 65 and Table 12 in section 4.1.6 of Chapter 4, we can obtain a clue that for a

runnable, the allocation positions of its predecessors impact on its execution time. Therefore,

the more quantized study needs to be integrated in the future version of the Tools.

These first results, obtained on the recent inter-core release of AUTOSAR, also point out

an increase of the cores load when migrating from a single-core to a multicore deployment.

The IOC loads introduced in multi-core systems are the main reason for these supplemental

loads. As mentioned before, our targeted applications are strongly connected, which is

unavoidable to introduce these supplemental loads. Besides, the experiment results also

shown the difficulty to find a schedulable solution and in the mean time optimize the

makespan due to these special applications very synchronized. Therefore, it will be

interesting to go up the top lay for re-designing and optimizing the architecture of

applications, which is conscious of multi-core conception.

Moreover, thanks to a multi-criteria formulation of the future version of the cost function,

we will be able to take into account several criteria to evaluate multicore distributions such

as OS overhead, memory usage, resource conflicts, safety criteria...

An intermediate multicore simulation phase will also be added in the design process. In the

future version of the tool, the designer will be able to navigate into the cost landscape,

among the best solutions identified by the optimization method, and to validate them in

simulation before the code generation of the embedded software.

117

ANNEX 1

This part presents the statistic result for the applications. The applications contain 2 user cases:

• EB-Mivie: the application represents 40% of the ECU.

• TDP: this application represents 5-10% of the ECU.

Both applications contain two chains of SWCs: air chain and advance chain. Analyzed by the tool,

the structural information for the two applications is summarized in Table 19. From which we can

notice that the TDP user case is smaller. Among these SWCs, several SWCs listed as follows are

omitted because these components are not interested for the dependencies analysis:

• Virtual Component plays the role of interface between AUTOSAR application and non-
AUTOSAT application. It contains virtual runnables, which do not exist for real. This virtual
component provides several functions to the other SWCs and also calls for services from
them

• IoHwAbsIn provides the stimulus for the entire application.

• IoHwAbsOut fetches the outputs of the entire application.

User

Cases

Omitted

Components

SWC

Count

Runnable

Count

Variable

Count

Transitions

Transitions (non-Bus) Bus Total

EB-Mivie VirtualComponent 67 562 1358 1893 981 6826

TDP

VirtualComponent

EcuStateManager

IoHwAbsIn

IoHwAbsOut

26 208 493 543 255 1558

Table 19-Constructional information of applications

The analysis result for all the categories of transitions is synthesized in Table 20:

Classes

Application EB-Mivie Application TDP

Transition Count Transition Count

Inter-SWC Intra-SWC Total Inter-SWC Intra-SWC Total

Class1

Series1 986 273 1259 216 63 279

Series2 173 112 258 38 33 71

Series3 146 56 229 56 14 70

Class2
Series1 228 144 372 45 26 71

Series2 1604 802 2406 368 303 671

Class3 617 1427 2044 143 198 341

118

Class4 258 258 55 55

Total 4012 2814 6826 921 637 1558

Table 20- Results of classification

The result in Table 20 contains both the granularity of runnables and that of SWC (in the columns of

Inter-SWC).

Class1

The class 1 contains the connections between runnables periodic, which is very important for the

application. Therefore, the tool further analyses this class in the following scopes.

By series

1) In the series 1, the period of P_Runnable and R_Runnable are identical. The transitions
information of series 1 for both applications is shown in table 8.

Tp (ms)

Number of transitions in series 1 (Tp = Tc)

Application EB-Mivie Application TDP

Inter – SWC

(by Port)

Intra – SWC

(by IRV)
Total

Inter – SWC

(by Port)

Intra – SWC

(by IRV)
Total

5
61 43 104

61 43 104

10
882 220 1102 155 20 175

20
2 0 2

40
25 0 25

100
5 3 8

200
11 7 18

Table 21-Transitions count in Class1 Series 1

2) In the series 2, the period of P_Runnable is smaller than that of R_Runnable. The transitions
information of series 2 for both applications is shown in Table 22.

Tp (ms)

Number of transitions in series 2 (Tp < Tc)

Tc/Tp

Application EB-Mivie Application TDP

Inter – SWC

(by Port)

Intra – SWC

(by IRV)

Total

Inter – SWC

(by Port)

Intra – SWC

(by IRV)

Total

5
2 44 19 63 28 19 47

4 1 0 1

10

2 22 12 34 2 5 14

4 60 14 74 1 0 1

10 25 0 25

20 10 2 12

100 1 0 1

400 3 0 3 3 0 3

20
5 2 0 2

50 1 0 1

40

2.5 1 0 1

5 1 0 1

100 1 0 1 1 0 1

100
2 0 12 12

10 0 19 19

200 5 1 34 35

Table 22-Transitions count in Class1 Series 2

119

3) In the series 3, the period of P_Runnable is greater than that of R_Runnable. The transitions
information of series 3 for both applications is shown in Table 23.

Tp (ms)

Number of transitions in series 3 (Tp >Tc)

Tp/Tc

Application EB-Mivie Application TDP

Inter – SWC

(by Port)

Intra – SWC

(by IRV)
Total

Inter – SWC

(by Port)

Intra – SWC

(by IRV)

Total

10 2 29 0 29 25 0 25

20
4 2 0 2 2 0 2

2 22 12 34 5 12 17

40
8 6 0 6 6 0 6

4 67 2 69 13 0 13

100
10 10 0 10

5 0 2 2

200

20 0 2 2

5 0 1 1

2 1 3 4

1000

100 1 0 1

50 2 0 2

25 1 0 1

10 0 8 8

5 0 24 24

4000
800 2 0 2 2 0 2

400 3 2 5 3 2 5

Table 23-Transitions count in Class1 Series 3

The histograms for the tables above are shown in the following figures. The Figure 69 and Figure 70

are the histograms for the application EB-Mivie and Figure 71 and Figure 72 are those for the

application TDP. The Figure 69 and Figure 71 are the histograms distingue by the 3 series and the

Figure 70 and Figure 72 are distingue by inter/intra communications.

Figure 69-The count of transition for each series by periods of P_Runnables (EB-Mivie).

0

200

400

600

800

1000

1200

1400

5ms 10ms 20ms 40ms 100ms 200ms 1000ms 4000ms

Tr
an

si
ti

o
n

 c
o

u
n

t

Periods of P_Runnables

Tp > Tr

Tp < Tr

Tp = Tr

120

Figure 70-The count of transition for communication type by periods of P_Runnables (EB-Mivie).

Figure 71-The count of transition for each series by periods of P_Runnables (TDP).

Figure 72-The count of transition for communication type by periods of P_Runnables (TDP).

Conclusion: From the results for both applications, it is obvious that the connections in class1 series1
with a period of 10ms and 5ms play an important role in the applications as the majorities transitions
are belong to this group. The strong connection in this group restricts partitioning of the application

0

200

400

600

800

1000

1200

1400

5ms 10ms 20ms 40ms 100ms 200ms 1000ms 4000ms

Tr
an

si
ti

o
n

s
co

u
n

t

Period of P_Runnables

Intra-SWC

Inter-SWC

0

50

100

150

200

250

5ms 10ms 20ms 40ms 4000ms

Tr
an

si
ti

o
n

 c
o

u
n

t

Periods of P_Runnables

Tp > Tr

Tp < Tr

Tp = Tr

0

50

100

150

200

250

5ms 10ms 20ms 40ms 4000ms

Tr
an

si
ti

o
n

s
co

u
n

t

Period of P_Runnables

Intra-SWC

Inter-SWC

121

when decoupling the links between the nodes in this group.

By thresholds

This scope bases on the speed of producer runnable: the high speed transitions are those with Tp

smaller than the thresholds and the low speed transitions are those with Tp bigger than it. The number

of transitions bases on different thresholds for the application internship is shown in the Figure 73.

Figure 73-The count of transition compared the speed of producer to threshold (EB-Mivie).

Conclusion: when the threshold increases, i.e. from 50ms to 500ms, the disequilibrium between the
high speed transitions and low speed transitions is becoming evident. Therefore, the threshold of
50ms is considered as a reasonable threshold.

Data rate analysis

There are two types of data rate: one is isolated by periods of producer runnables, which means in

each period of producer runnables, only the data accessed by the producer runnables with this period

is considered. Another one is accumulated data rate, which means during a certain period; all the data

accessed by the producer runnables that completely finished will be considered.

Sent data rate

The sent data rate is relayed on the period of producer runnable, so this analysis is based on the class

1 and class 2-series 1. The tool gives the sent data rate isolated by periods of producer runnables

information shown in Figure 74 for application EB-Mivie and Figure 75 for application TDP. Figure

76 and Figure 77 give the results of sent data rate accumulated by periods of producer runnables for

both applications.

1500

1550

1600

1650

1700

1750

1800

50ms 500ms 900ms 2000ms

Tr
an

si
ti

o
n

s
co

u
n

t

Thresholds

lowSpeed

highSpeed

122

Figure 74-Sent data rate isolated by period of producer runnables (EB-Mivie).

Figure 75-Sent data rate isolated by period of producer runnables (TDP).

Figure 76-Sent data rate accumulated by period (EB-Mivie)

0

500

1000

1500

2000

2500

3000

0.0050 0.01 0.02 0.04 0.1 0.2 1.0 4.0

Se
n

t
d

at
a

(b
yt

e
)

Periods of P_Runnables (s)

0

100

200

300

400

500

600

700

0.0050 0.01 0.02 0.04 4.0

Se
n

t
d

at
a

(b
yt

e
)

Periods of P_Runnables (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.0050 0.01 0.02 0.04 0.1 0.2 1.0 4.0

Se
n

t
d

at
a

(b
yt

e
)

Periods of producer runnables (ms)

123

Figure 77-Sent data rate accumulated by period (TDP)

Received data rate

Similar to the sent data rate, the received data rate is relayed on the period of consumer runnable, so

this analysis is based on the class 1 and class 2-series 2. The tool gives the received data rate isolated

by periods of consumer runnables information shown in Figure 78 for application EB-Mivie and

Figure 79 for application TDP. From where we can notice that, the period of 10ms result in a high

frequented accessing data. Figure 80 and Figure 81 give the received of sent data rate accumulated

by periods of consumer runnables for both applications.

Figure 78-Received data rate isolated by period of producer runnables (EB-Mivie).

0

200

400

600

800

1000

1200

1400

5ms 10ms 20ms 40ms 4000ms

Se
n

t
d

at
a

(b
yt

e
)

Periods of producer runnables (ms)

0

1000

2000

3000

4000

5000

6000

0.0050 0.01 0.02 0.04 0.1 0.2 1.0 4.0

R
e

ce
iv

e
d

 d
at

a
(b

yt
e

)

Periods of consumer runnables (s)

124

Figure 79-Received data rate isolated by period of producer runnables (TDP).

Figure 80-Received data rate accumulated by period (EB-Mivie).

Figure 81-Received data rate accumulated by period (TDP).

Conclusion for data rate analysis

0

200

400

600

800

1000

1200

1400

1600

1800

0.0050 0.01 0.02 0.04 4.0

R
e

ce
iv

e
d

 d
at

a
(b

yt
e

)

Periods of consumer runnables (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.0050 0.01 0.02 0.04 0.1 0.2 1.0 4.0

R
e

ce
iv

e
d

 d
at

a
(b

yt
e

)

Periods of consumer runnables (ms)

0

500

1000

1500

2000

2500

3000

3500

5ms 10ms 20ms 40ms 4000ms

R
e

ce
iv

e
d

 d
at

a
(b

yt
e

)

Periods of consumer runnables (ms)

125

For the application EB-Mivie, the data rate in the period of 10ms for both production and

consummation is much greater than other periods.

For the application TDP, the data rate in the period of 10ms and 5ms for both production and

consummation is much greater than other periods.

When allocating the SW, the transitions with a high data rate shall be considered as strong

connection.

Data Unit

The information of physical unit is in the a2L file. To obtain this information, the tool reads this file

by the Perl scripting. The result of physical unit for each data is show in the Table 24 .

Unit
Count

Designation
Variability

(Fast/Slow/Depend on data) EBDT TDP

Without unit 155 49 Without unit Depend on data

kW 1 Power Slow

g/mol 1 1 Slow

1/s 2 2 Fast

kg/s 29 49 Fast

RPM/s 4
Revolutions per
minute

Fast

kg 24 31 Mass Fast

s.kg/Pa 1 1 Fast

m² 14 6 Surface Depend on data

kg/s/Pa 1 1 Depend on data

Pa 77 114 Pressure Depend on data

N.m 142 Moment Fast

% 31 Percentage Depend on data

. 218 26

(K)^1/2 1 3

- 305 104

m/s2 1 Acceleration Fast

°Vil 2 Fast

mOhm 1 Resistance Slow

° 1 Depend on data

K^(1/2) 1 1 Depend on data

1/Pa 4 6 Depend on data

km/h 6 Speed Slow

126

A 7 Current Depend on data

s.u. 1

J 1 Inertia Slow

K 43 61 Depend on data

Nm 10 Moment Fast

W 3 Puissance Fast

V 16 Tension Slow

mg 3 Masse Fast

_ 4

m^2 3 3 Surface Depend on data

°C 9 Temperature Depend on data

RPM.N.m/s 1 Depend on data

s/m.K^(1/2) 1 1 Depend on data

km/h/1000RPM 1 Slow

°/s 1 Depend on data

Pa/s 1 1 Depend on data

m 1 Distance Fast

V/s 8 Slow

s 45 11 Temps Fast

m/s^2 23 Depend on data

°Ck 17 14 Fast

RPM 22 4 Tours Fast

m/s^3 1 Depend on data

bool 6 Slow

N.m/s 6 Depend on data

kg/h 2 Slow

Etat (énuméré) 2

Booléen ou
énuméré(état)

 1

Compteur (entier) 1

Table 24-Physical unit of data

The sequences

The result of sequences for both granularities is summarized in Table 25.

127

Granularity Number of

sequences

The max length

of sequences

Ratio of the

application

SWCs 512 41 41/68

Runnables 2638 ~110 110/588

Table 25-sequences results

The sequence with the max length is the principle sequence and the ratio of the application is the

max length on the application.

Data rate analysis between SWC chains in application TDP

The tool analyzes the application at the granularity of SWCs. There are two types of chains for SWCs:

chain of advance and chain of air. The communication between components cross the two chains is

shown in Figure 82.

The transitions involved in these two chains occupies about 95% of transition inter SWC of the

application, as shown in Table 26.

Figure 82-Communications between chains

128

Classes

Application TDP

Transition Count

2 Chains Inter-SWC Intra-SWC Total

Class1

Series1 216 216 63 279

Series2 38 38 33 71

Series3 56 56 14 70

Class2
Series1 45 45 26 71

Series2 368 368 303 671

Class3 143 143 198 341

Class4 10 55 55

Total 876 921 637 1558

Table 26-Transitions analysis in two chains

Figure 83 give the distribution of the transitions involved in two chains in the terms of classifications.

Figure 83-Distribution of the transitions in two chains

From Figure 83, we can notice that the SWCs in chains air are strongly connected by class1 and

class2 series 2, where 94.8% of transitions in the classe2 series2 are MSE-TEV connection.

Table 27 and Table 28 synthesize the sent data rate of the transition across the two chains presented

in the Figure 82.

Air Advance Period
Data (data in green color

mean accessed by DRE)

Data

type
Count

Size

(Byte)

Between chains Chain Air Chain Advance

Classe1Series1: Tp = Tc 2 214 0

Classe1Series2: Tp < Tc 1 37 0

Classe1Series3: Tp > Tc 0 56 0

Classe2Series1: non-Tc 29 15 1

Classe2Series2: non-Tp 9 357 2

Classe3: non-Tp&Tc 31 14 98

Classe4: Client&Server 0 10 0

0

50

100

150

200

250

300

350

400

Tr
an

si
ti

o
n

 c
o

u
n

t

Transition analysis in details

129

AirSysAir AdvPrevKnkT

10ms AirSys_rAirLdReq UInt16 1 2

Non-

Period
AirSys_rAirLdReq UInt16 1 2

AirSysAir AdvMinT

10ms AirSys_bActStraLimSurge Boolean 1 1

Non-

Period
AirSys_bActStraLimSurge Boolean 1 1

EngMGslT AdvMinT

10ms EngM_rAirLdCor UInt16 2 4

Non-

Period
EngM_rAirLdCor UInt16 2 4

EngMGslT AdvMaxT

10ms EngM_rAirLdCor UInt16 1 1

Non-

Period
EngM_rAirLdCor UInt16 1 1

EngMGslT AdvOptmT

10ms

EngM_rAirLdCor UInt16 2

12

EngM_mBurnCor UInt16 1

EngM_mAirCor UInt16 1

EngM_tMixtCylCor UInt16 1

EngM_rItBurnRateCor UInt16 1

Non-

Period

EngM_rAirLdCor UInt16 2

12

EngM_mBurnCor UInt16 1

EngM_mAirCor UInt16 1

EngM_tMixtCylCor UInt16 1

EngM_rItBurnRateCor UInt16 1

EngMGslT EngLimTqT

5ms EngM_rAirLdPred UInt16 1 2

10ms

EngM_mAirEngCylMax UInt32 1

20

EngM_mAirPresUsThr UInt32 1

130

EngM_rAirLdCor UInt16 1

EngM_mAirCor UInt16 1

EngM_mAirEngCylTrbMax UInt32 1

EngM_mAirEngCylMin UInt32 1

Non-

Period

EngM_rAirLdPred UInt16 1

22

EngM_mAirEngCylMax UInt32 1

EngM_mAirPresUsThr UInt32 1

EngM_rAirLdCor UInt16 1

EngM_mAirCor UInt16 1

EngM_mAirEngCylTrbMax UInt32 1

EngM_mAirEngCylMin UInt32 1

EngMGslT AdvPrevKnkT

5ms EngM_rAirLdPred UInt16 1 2

10ms

EngM_rAirLdCor UInt16 1

6

EngM_rMaxTotLd UInt16 1

Non-
Period

EngM_rAirLdPred UInt16 1

6 EngM_rAirLdCor UInt16 1

EngM_rMaxTotLd UInt16 1

EngMGslT AdvCordT

10ms EngM_rAirLdCor UInt16 1 2

Non-

Period
EngM_rAirLdCor UInt16 1 2

131

ExMGslT1 AdvMinT

10ms ExM_tExDyn UInt16 1 2

Non-

Period
ExM_tExDyn UInt16 1 2

ExMGslT1 AdvOptmT

10ms ExM_molMassInMixt UInt16 2 4

Non-

Period
ExM_gmaInMixt UInt16 2 4

ExMGslT2 AdvSpT

20ms ExM_tUsMainOxCEstim UInt16 1 2

Non-

Period
ExM_tUsMainOxCEstim UInt16 1 2

InMdlT AdvPrevKnkT

5ms

InM_pDsThrCor UInt16 1

4

InM_concEGREstim UInt16 1

Non-

Period

InM_pDsThrCor UInt16 1

6 InM_concEGREstim UInt16 1

InM_concEGREstim UInt16 1

InMdlT AdvOptmT

5ms InM_mEGREstim UInt32 1 4

Non-

Period

InM_mEGREstim UInt32 1
8

InM_mEGREstim UInt32 1

InThMdlT AdvPrevKnkT

10ms InThM_tAirUsInVlvEstim UInt16 1 2

Non-

Period
InThM_tAirUsInVlvEstim UInt16 1 2

UsThrMT AdvPrevKnkT

10ms UsThrM_pAirExt UInt16 1 2

Non-

Period
UsThrM_pAirExt UInt16 1 2

EngMGslLim EngLimTqT
Non-

Period

IgSys_rMaxIgEfc UInt16 1
4

IgSys_rMaxIgEfc UInt16 1

132

ExMGslT2 EngLimTqT
Non-

Period

IgSys_rDynIgSpEfc UInt16 1
4

IgSys_rDynIgSpEfc UInt16 1

ExMGslT1 EngLimTqT

10ms IgSys_lamClc UInt32 1 4

Non-

Period

IgSys_lamClc UInt32 1

8 IgSys_rDynIgSpEfc UInt16 1

IgSys_rDynIgSpEfc UInt16 1

Table 27-data rate information of communications between chains for application TDP

Air Advance Period
Size

(Byte)

Figure (y:size; x: non period for

red)

AirSysAir AdvPrevKnkT

10ms 2

Non-Period 2

AirSysAir AdvMinT

10ms 1

Non-Period 1

EngMGslT AdvMinT

10ms 4

Non-Period 4

EngMGslT AdvMaxT

10ms 1

Non-Period 1

EngMGslT AdvOptmT

10ms 12

Non-Period 12

0

1

2

3

10ms NonPeriod

0

0.5

1

1.5

10ms NonPeriod

0

2

4

6

10ms NonPeriod

0

0.5

1

1.5

10ms NonPeriod

0

5

10

15

10ms NonPeriod

133

EngMGslT EngLimTqT

5ms 2

10ms 22

Non-Period 22

EngMGslT AdvPrevKnkT

5ms 2

10ms 6

Non-Period 6

EngMGslT AdvCordT

10ms 2

Non-Period 2

ExMGslT1 AdvMinT

10ms 2

Non-Period 2

ExMGslT1 AdvOptmT

10ms 4

Non-Period 4

ExMGslT2 AdvSpT

20ms 2

Non-Period 2

InMdlT AdvPrevKnkT

5ms 4

Non-Period 6

0

10

20

30

5ms 10ms NonPeriod

0

5

10

5ms 10ms NonPeriod

0

1

2

3

10ms NonPeriod

0

1

2

3

10ms NonPeriod

0

2

4

6

10ms NonPeriod

0

1

2

3

20ms NonPeriod

0

5

10

5ms NonPeriod

134

InMdlT AdvOptmT

5ms 4

Non-Period 8

InThMdlT AdvPrevKnkT

10ms 2

Non-Period 2

UsThrMT AdvPrevKnkT

10ms 2

Non-Period 2

EngMGslLi

m
 EngLimTqT Non-Period 4

ExMGslT2 EngLimTqT Non-Period 4

ExMGslT1 EngLimTqT

10ms 4

Non-Period 8

Table 28-data rate information of communications between chains for application TDP

0

5

10

5ms NonPeriod

0

1

2

3

10ms NonPeriod

0

1

2

3

10ms NonPeriod

0

2

4

6

NonPeriod

0

2

4

6

NonPeriod

0

5

10

10ms NonPeriod

135

Publications

W. Wang, B. Miramond, F. Camut Generation of Schedule Tables on Multi-core Systems

for AUTOSAR Applications Conference on Design and Architectures for Signal and Image
Processing, DASIP 2016, Rennes, France, October 12-14th, 2016

W. Wang, S. Cotard, F. Gravez, Y. Chambrin, B. Miramond. Optimizing Application

Distribution on Multi-Core Systems within AUTOSAR Embedded Real-Time Software and
Systems, ERTS² 2016, Toulouse, France, January 27-29th, 2016

W. Wang, B. Miramond, S. Cotard, F. Gravez, Y. Chambrin. Distribution of Real-Time

Software on Multi-Core Architectures in Automotive Systems Conférence d’informatique

en Parallélisme, Architecture et Système, Compas’ 2016, Lorient, France, July 5 – 8th, 2016

W. Wang, B. Miramond, F. Camut (Poster) Distribution of Real-Time Software on Multi-

Core Architectures in Automotive Systems Groupement de Recherche SoC-SiP (GDR

SoCSiP), Nantes, France, Juin 8-10th, 2016

S. Cotard, W. Wang, F. Camut, B. Miramond, Procédé hors ligne d’allocation d’un

logiciel embarqué temps réel sur une architecture multi-cœur, et son utilisation pour des

applications embarquées dans un véhicule automobile Patent in soumission: MFR9019 –

ID N° 3713

136

Bibliography

AMALTHEA. (2012). Retrieved from http://www.amalthea-project.org/

Anderson, J. H. (2000). Pfair scheduling: Beyond periodic task systems. Proceedings of the 7th

International Conference on Real-Time Computing Systems and Applications, (pp. 297-

306).

Andersson, & Jonsson, J. (2003). The utilization bounds of partitioned and pfair static-priority

scheduling on multiprocessors are 50%. Proceedings of the 15th Euromicro Conference on

Real-Time Systems, ECRT'03.

Andersson, B., & Jonsson, J. (2000). Fixed-priority preemptive multiprocessor scheduling: to

partition or not to partition. Proceedings of 7th Real-Time Computing Systems and

Applications.

Andersson, B., Baruah, S., & Jonsson, J. (2001). Static-Priority Scheduling on Multiprocessors.

Proceedings of the 22nd IEEE Real-Time Systems Symposium RTSS '01.

Artop. (2017). Retrieved from https://www.artop.org

AUTOSAR. (2014a). Specification of Operating System, Release 4.2.2.

AUTOSAR. (2014b). Guide to BSW Distribution, Release 4.2.1.

AUTOSAR. (2017). Technical Overview. Retrieved from AUTOSAR:

https://www.autosar.org/about/technical-overview/

AUTOSAR Builder. (2017). Retrieved from http://www.3ds.com/products-

services/catia/products/autosarbuilder/

Azencott, R. (1992). Simulated annealing: speed of convergence and acceleration techniques. In R.

Azencott, Simulated annealing : Parallelization techniques (pp. 1-10). Intersciences,Wiley.

Baker, T. P. (2003). Multiprocessor EDF and Deadline Monotonic Schedulability Analysis.

Proceedings of the 24th IEEE International Real-Time Systems Symposium RTSS '03, (p.

120).

Baker, T. P., & Baruah, S. K. (2006). Schedulability Analysis of Multiprocessor Sporadic Task

Systems. In I. Lee, J. Y.-T. Leung, & S. H. Son, Handbook of Real-Time and Embedded

Systems. Chapman & Hall/CRC.

Bamakhrama, M., & Stefanov, T. (2011). Hard-real-time scheduling of data-dependent tasks in

embedded streaming applications. Proceedings of the ninth ACM international conference

on Embedded software EMSOFT '11, (pp. 195-204).

Baruah, S. (2007). Techniques for Multiprocessor Global Schedulability Analysis. Proceedings of

the 28th IEEE International Real-Time Systems RTSS '07, (pp. 119-128). Washington, DC.

137

Baruah, S. K. (2004). Optimal Utilization Bounds for the Fixed-Priority Scheduling of Periodic Task

Systems on Identical Multiprocessors. IEEE Transactions on Computers, 781-784.

Bekooij, M., Hoes, R., Moreira, O., Poplavko, P., Pastrnak, M., Mesman, B., . . . Meerbergen, J.

(2005). Dataflow analysis for real-time embedded multiprocessor system design. Dynamic

and Robust Streaming between Connected Devices.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys (CSUR), 268-308.

Buttazzo, G. C. (2003). Rate Monotonic vs. EDF: Judgment Day. Proceedings Third International

Conference, EMSOFT , (pp. 67-83). Philadelphia.

Calandrino, J. M., Anderson, J. H., & Baumberger, D. P. (2007). A Hybrid Real -Time Scheduling

Approach for Large-Scale Multicore Platforms. Proceedings of the 19th Euromicro

Conference on Real-Time Systems ECRTS '07, (pp. 247-258).

Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., & Baruah, S. (2004). A

Categorization of Real-time Multiprocessor Scheduling Problems and Algorithms. In

Handbook on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca.

Cheng, S.-C., Stankovic, J.-A., & Ramamritham, K. (1989). Scheduling algorithms for hard real -time

systems: a brief survey. In Tutorial: hard real-time systems (pp. 150-173). Los Alamitos,

CA, USA: IEEE Computer Society Press.

Chetto, H., Silly, M., & Bouchentouf, T. (1990). Dynamic scheduling of real-time tasks under

precedence constraints. Real-Time Systems, 181-194.

COTTET, F. (2000). Ordonnancement temps réel : cours et exercices corrigés. Hermès.

Danne, K., & Platzner, M. (2006). An EDF schedulability test for periodic tasks on reconfigurable

hardware devices. Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on

Language, compilers, and tool support for embedded systems LCTES '06, (pp. 93-102).

Davari, S., & Dhall, S. K. (1986). An on line algorithm for real-time allocation. Proceedings of IEEE

Real-Time Systems Symposium, (pp. 194-200).

Davis, R. I., & Burns, A. (2011). A survey of hard real-time scheduling for multiprocessor systems.

ACM Computing Surveys (CSUR).

Demetrescu, C., & Finocchi, I. (2003). Combinatorial algorithms for feedback problems in directed

graphs. Information Processing Letters, 129-136.

Dhall, S. K., & Liu, C. L. (1978). On a Real-Time Scheduling Problem. Operations Research, 127-140.

Dragomir Milojevic, J. G. (2012). U-EDF: An Unfair But Optimal Multiprocessor Scheduling

Algorithm for Sporadic Tasks. 24th Euromicro Conference on Real-Time Systems (ECRTS

2012), (pp. 13-23).

138

E. G. Coffman, J., Garey, M. R., & Johnson, D. S. (1996). Approximation algorithms for bin packing:

a survey. In Approximation algorithms for NP-hard problems (pp. 46 - 93). Boston: PWS

Publishing Co.

EMC². (2014). Retrieved from http://www.artemis-emc2.eu/

Faragardi, H. R., Lisper, B., & Nolte, T. (2013). Towards a communication-efficient mapping of

AUTOSAR runnables on multi-cores. IEEE 18th Conference on Emerging Technologies &

Factory Automation (ETFA), 2013.

Fisher, N., Goossens, J., & Baruah, S. (2010). Optimal online multiprocessor scheduling of sporadic

real-time tasks is impossible. Real-Time Systems, 26-71.

Fohler, G. (1992). Realizing Changes of Operational Modes with a Pre Run-Time Scheduled Hard

Real-Time System. In Responsive Computer Systems (pp. 287-300).

Forget, J., & Frédéric Boniol, E. G. (2010). Scheduling Dependent Periodic Tasks Without

Synchronization Mechanisms. 16th IEEE Real-Time and Embedded Technology and

Applications Symposium, (pp. 301-310). Stockholm.

G. Nelissen, V. B. (2011). Reducing preemtions and migrations in real -time multiprocessor

scheduling lgorithms by releasing the fairness. RTCSA'11, (pp. 15-24).

G.Georgia, Stoimenov, N., Huang, P., & Thiele, L. (2013). Scheduling of mixed-criticality

applications on resource-sharing multicore systems. Proceedings of the Eleventh ACM

International Conference on Embedded Software EMSOFT '13.

Gai, P., Lipari, G., & Natale, M. D. (2001). Minimizing Memory Utilization of Real-Time Task Sets in

Single and Multi-Processor Systems-on-a-Chip. Proceedings of the 22nd IEEE Real-Time

Systems Symposium RTSS '01, (p. 73).

Gantel, L., Khiar, A., Miramond, B., Benkhelifa, M. E., Kessal, L., Lemonnier, F., & Rhun, J. L. (2012).

Enhancing reconfigurable platforms programmability for synchronous data-flow

applications. Transactions on Reconfigurable Technology and Systems.

Garey, M. R., & Johnson, D. S. (1990). Computers and Intractability; A Guide to the Theory of NP-

Completeness. New York: W. H. Freeman & Co.

Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-6, 721-741.

Giannopoulou, G., Stoimenov, N., Huang, P., & Thiele, L. (2014). Mapping mixed-criticality

applications on multi-core architectures. Proceedings of the conference on Design,

Automation & Test in Europe DATE '14, (pp. 1-6). Leuven.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research - Special issue: Applications of integer programming,

13, 533-549.

139

Glover, F., & Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Boston:

Addison-Wesley Longman Publishing.

Goossens, J., Funk, S., & Baruah, S. (2003). Priority-Driven Scheduling of Periodic Task Systems on

Multiprocessors. Real-Time Systems, 187-205.

Hammett, R. (2002). Flight-critical distributed systems - design considerations. The 21st Digital

Avionics Systems Conference, (pp. 13B3-1-13B3-8).

Herrtwich, R. G. (1990). An Introduction to Real-time Scheduling. RT-90-035 Int. Comp. Science

Instit. califonia.

Infineon. (2012). TC27x 32-Bit Single-Chip Microcontroller, User's Manual.

Infineon. (2017). TriCore Microcontroller. Retrieved from http://www.infineon.com/

Jung, K. J., & Park, C. (2005). A technique to reduce preemption overhead in real-time

multiprocessor task scheduling. Proceedings of the 10th Asia-Pacific conference on

Advances in Computer Systems Architecture ACSAC'05, (pp. 566-579). Heidelberg.

Karp, R. M. (1972). Reducibility among Combinatorial Problems. In Complexity of Computer

Computations (pp. 85-103).

Kato, S., & Yamasaki, N. (2008). Portioned EDF-based scheduling on multiprocessors. Proceedings

of the 8th ACM international conference on Embedded software EMSOFT '08, (pp. 139-

148). New York.

Kehr, S., Panić, M., Quiñones, E., Böddeker, B., Sandoval, J. B., Abella, J., . . . Schäfer, G. (2016).

Supertask: Maximizing runnable-level parallelism in AUTOSAR applications. 2016 Design,

Automation & Test in Europe Conference & Exhibition (DATE) , (pp. 25-30). Dresden.

Kehr, S., Quiñones, E., Böddeker, B., & Schäfer, G. (2015). Parallel execution of AUTOSAR legacy

applications on multicore ECUs with timed implicit communication. Proceedings of the

52nd Annual Design Automation Conference DAC '15.

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220(4598), 533-549.

Klikpo, E. C., Khatib, J., & Munier-Kordon, A. (2016). Modeling Multi-Periodic Simulink Systems by

Synchronous Dataflow Graphs. 2016 IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), (pp. 1-10).

Kopetz, H. (2011). Real-Time Systems: Design Principles for Distributed Embedded. SpringeR.

Krause, M., Bringmann, O., Hergenhan, A., Tabanoglu, G., & Rosentiel, W. (2007). Timing

Simulation of Interconnected AUTOSAR Software-Components. Design, Automation &

Test in Europe Conference & Exhibition, 2007. DATE '07.

140

Lakshmanan, K., Rajkumar, R., & Lehoczky, J. (2009). Partitioned Fixed-Priority Preemptive

Scheduling for Multi-core Processors. 21st Euromicro Conference on Real-Time Systems

ECRTS '09.

Lee, E. A., & Messerschmitt, D. G. (1987). Static scheduling of synchronous data flow programs for

digital signal processing. IEEE Transactions on Computers.

Leung, J. Y.-T., & Whitehead, J. (1982). On the complexity of fixed-priority scheduling of periodic,

real-time tasks. Performance Evaluation, 237-250.

Liu, C. L., & Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment. Journal of the ACM (JACM), 46-61 .

López, García, M., Díaz, J. L., & García, D. F. (2000). Worst-case utilization bound for EDF

scheduling on real-time multiprocessor systems. Proceeding of the 12th Euromicro

conference on Real-time systems Euromicro-RTS'00, (pp. 25-33).

López, J. M., García, M., Díaz, J. L., & García, D. F. (2003). Utilization Bounds for Multiprocessor

Rate-Monotonic Scheduling. Real-Time Systems, 5-28.

Miramond, B., & Cucu-Grosjean, L. (2010). Generation of static tables in embedded memory with

dense scheduling. Design and Architectures for Signal and Image Processing .

Miramond, B., & Delosme, J. -M. (2005). Decision guide environment for design space exploration.

10th IEEE Conference on Emerging Technologies and Factory Automation ETFA 2005.

Miramond, B., & Delosme, J.-M. (2005). Design space exploration for dynamically reconfigurable

architectures. Proceedings Design, Automation and Test in Europe.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge: MIT Press.

Mok, A. K. (1983). Fundamental design problems of distributed systems for the hard-real-time

environement. Technical Report.

Monot, A., Navet, N., & Bavoux, B. (2012). Multisource Software on Multicore Automotive ECUs—

Combining Runnable Sequencing With Task Scheduling. IEEE Transactions on Industrial

Electronics .

Natale, M. D., & Sangiovanni-Vincentelli, A. L. (2010, April). Moving From Federated to Integrated

Architectures in Automotive: The Role of Standards, Methods and Tools,. Proceeding of

the IEEE, 98(4), 603-620.

Oh, Y., & Son, S. H. (1993). Tight Performance Bounds of Heuristics for a Real-Time Scheduling

Problem. University of Virginia Charlottesville.

OSEK/VDX. (2005). OSEK/VDX - Operating system. v2.2.3.

P. Regnier, G. L. (2011). RUN: Optimal Multiprocessor Real-Time Scheduling via Reduction to

Uniprocessor. 32nd Real-Time Systems Symposium RTSS'11, (pp. 104-115).

141

Panic, M., Kehr, S., Quiñones, E., Böddeker, B., Abella, J., & Cazorla, F. J. (2014). RunPar: an

allocation algorithm for automotive applications exploiting runnable parallelism in

multicores. ACM International Conference on Hardware/Software Codesign and System

Synthesis (CODES).

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©1982.

parMERASA. (2011). Retrieved from http://www.parmerasa.eu/

Rajkumar, R. (1990). Real-time synchronization protocols for shared memory multiprocessors .

Proceedings of 10th International Conference on Distributed Computing Systems.

Sagstetter, F., Andalam, S., Waszecki, P., Lukasiewycz, M., Stähle, H., Chakraborty, S., & Knoll, A.

(2014). Schedule Integration Framework for Time-Triggered Automotive Architectures.

Proceedings of the 51st Annual Design Automation Conference DAC'14, (pp. 1-6). New

York.

Saidi, S. E., Cotard, S., Chaaban, K., & Marteil, K. (2015). An ILP approach for mapping AUTOSAR

runnables on multi-core architectures. Proceedings of the 2015 Workshop on Rapid

Simulation and Performance Evaluation: Methods and Tools.

Sailer, A., Schmidhuber, S., Deubzer, M., Alfranseder, M., Mucha, M., & Mottok, J. (2013).

Optimizing the task allocation step for multi-core processors within AUTOSAR.

International Conference on Applied Electronics (AE).

Shin, I., Easwaran, A., & Lee, I. (2008). Hierarchical Scheduling Framework for Virtual Clustering of

Multiprocessors . Proceedings of the 2008 Euromicro Conference on Real-Time Systems

ECRTS '08, (pp. 181-190).

Sprunt, B., Sha, L., & Lehoczky, J. (1989). Aperiodic task scheduling for Hard-Real-Time systems.

Real-Time Systems, 27-60.

Srinivasan, A., & Baruah, S. (2002). Deadline-based scheduling of periodic task systems on

multiprocessors. Information Processing Letters, 93-98.

SystemDesk. (2017). Retrieved from

https://www.dspace.com/en/pub/home/products/sw/system_architecture_software/sys

temdesk.cfm

Szu, H. (1987). Fast simulated annealing. AIP Conference Proceedings 151 on Neural Networks for

Computing, (pp. 420-425). Utah.

Tresos. (2017). EB tresos Studio. Retrieved from https://www.elektrobit.com/products/ecu/eb-

tresos/studio/

Weber, J. (2009). E/E System Development. In J. Weber, Automotive Development Processes (pp.

53-78). Springer Berlin Heidelberg.

142

Woeginger, G. J. (2003). Exact algorithms for np-hard problems: a survey. In Combinatorial

optimization (pp. 185-207). New York: Springer-Verlag New York, Inc.

Xu, J., & Parnas, D. (1990). Scheduling Processes with Release Times, Deadlines, Precedence and

Exclusion Relations. IEEE Transactions on Software Engineering.

Yi, Y., Han, W., Zhao, X., Erdogan, A. T., & Arslan, T. (2009). An ILP formulation for task mapping

and scheduling on multi-core architectures. Proceeding DATE '09 Proceedings of the

Conference on Design, Automation and Test in Europe, (pp. 33-38).

Zhang, P., Gao, Y., & Qiu, M. (2015). A Data-Oriented Method for Scheduling Dependent Tasks on

High-Density Multi-GPU Systems. Proceedings of the 2015 IEEE 17th International

Conference on High Performance Computing and Communications HPCC-CSS-ICESS '15.

