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Abstract

The recent migration from single-core to multi-core platforms in the automotive domain reveals great
challenges for the legacy embedded software design flow. First of all, software designers need new
methods to fill the gap between applications description and tasks deployment. Secondly, the use of
multiple cores has also to remain compatible with real-time and safety design constraints. Finally,
developers need tools to assist them in the new steps of the design process. Face to these issues, we
proposed a method integrated in the AUTOSAR (AUTomotive Open System ARchitecture) design
flow for partitioning the automotive applications onto multi-core systems. The method proposes the
partitions solution thatcontains allocation of application aswell as scheduling policy simultaneously.
The design space of the partitioning is explored automatically and the solutions are evaluated thanks
to our proposed objective functions that consider certain criteria such as communication overhead
and global jitters. For the scheduling part, we present a formalization of periodic dependencies
adapted to this automotive framework and propose a scheduling algorithm taking into account this
specificity. Our defined constraints from real-time aspect as well as functional aspect make sure the
applicability of our method on the real life user case. We leaded experiments with a complex and
real world control application onto a concrete multi-core platform.

Résumé

La migration récente des plateformes mono-cceur vers le multi-cceur, dans le domaine automobile,
révele de grands changements dans le processus de développement du logiciel embarqué. Tout
d’abord, les concepteurs de logiciel ont besoin de nouvelles méthodes leur permettant de combler le
fossé entre la description des applications (versus Autosar) et le déploiement de taches.
Deuxi¢mement, I'utilisation du multi-cceur doit assurer la compatibilité avec les contraintes liées aux
aspects temps-réelet a la Shreté de fonctionnement. Au final, les développeurs ont besoins d’outils
pour intégrer de nouveaux modules dans leur systeme multi-cceur. Confronter aux complexités ci-
dessus, nous avons proposé une méthodologie afin de repartir, de maniére optimale, les applications
sous forme de partitions logiques. Nous avons ainsi intégré dans notre processus de développement,
un outil de distribution des traitements d’un systéeme embarqué sur différents processeurs et
compatible avec le standard AUTOSAR (AUTomotive Open System ARchitecture). Les solutions
de partitionnement traitent simultanément T’allocation des applications ainsi que la politique
d’ordonnancement. Le périmétre d’étude du partitionnement est automatique, les solutions trouvées
étant évaluées par des fonctions de codt. Elles prennent aussi en compte des critéres tels que, le colt
de communication inter-cceur, I’équilibrage de la charge CPU entre les cceurs et la gigue globale.
Pour la partie ordonnancement, nous présentons une formalisation des dépendances sous forme
périodiques pour répondre au besoin automobile. L’algorithme d’ordonnancement proposé prend en
compte cette spécificité ainsi que les contraintes temps-réel et fonctionnelles, assurant I’applicabilité
de notre méthodologie dans un produit industriel. Nous avons expérimenté nos solutions avec une
application de type contréle moteur, sur une plateforme matérielle multi-cceur.
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Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

1.1 E/E automotive system

Over the past 20 years, a new way to design vehicles has been adopted in the automotive
industry. Many of the conventional mechanical and hydraulic control systems in vehicle have
been replaced by mechatronic system. The design of automotive systems is no longer one
single discipline issue; instead, it involves a multidisciplinary field of expertise such as
mechanical engineering, electronics, computer science, telecommunications technologies
and system/control engineering. The emergence of mechatronic authorizes the design of
automatic systems in order to control complex systems and also allows to minimize the

development cost compared to odd pure mechanical systems.

The Electrical/Electronic (E/E) system is a major constituent of mechatronic, which
regroups the electronics material and software in order to drive intelligently the mechanical
components as well as hydraulic components such that their functionalities could be
accomplished. In the automotive domain, the E/E architectures usually implement a
number of composite functions, which consist in all the vehicle’s components such as
sensors, input devices, ECUs with embedded control software, actuators, displays and
speakers, harnesses for data and power, battery and generator/alternator (Weber, 2009).
These individual components communicate with each other via the signals. Figure 1 shows
a typical example of E/E architecture, which is composed of sensors, processing
componentsand actuators. The actuators reacts according to the input generated by a sensor
(or given by other input devices) and controlled by the processing component. The E/E
hardware architecture provides the infrastructures where the applications accomplish their
functions. The typical criteria when studying the hardware include the computation power,
the number of cores, the number of I/ O, etc. In automotive, the E/E hardware architecture
is composed of ECUs that are distributed in the car and are assigned with additional
hardware. The communications between ECUs are achieved via buses with a specific
protocol such as LIN (Local Interconnect Network), CAN (Control Area Network),
FlexRay, etc. The components are assigned to the ECUs and the signals are assigned to the
corresponding ECU if the relative components are allocated to the same ECU or assigned
to buses if they are allocated to different ECUs.

The E/E architectureis also evaluated according to the cost/bill of material that is governed
by the ECU cost and the cable between them. Another criterion to evaluate the E/E
architecture is ECU complexity that defines the average number of components allocated
to one ECU.

The traditional E/ Eatchitecture in automotiveindustryis designed in a federal way. It limits
the complexity of implantation as each major function is deployed to one dedicated ECU
and is provided as a black box by first-tier supplier. In addition to the clear responsibility of
allocation, the federal architecture has remarkable advantage as it facilitates fault
containment. The error propagationislimited thanks to its physical separation. Unless there
is direct functionality dependency between two functions, a faulty task in one ECU will not
affect other distant ECUs. The federal approach allows the system to integrate the different
distributed application subsystems (DAS) from different suppliers. However, the addition
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of new DASs in the system imposes the addition of new ECUs and cables, which in turn
increases the number of ECUs in the cars and the complexity of communication in terms
of the physical infrastructure.

Sensor Processing Component Actuator
Components Components

|

m=

- e
E

Figure 1-An example of E/E Architecture

Interestingly, the rapid increase of functional complexity as well as the potential cost saving
from system integration drives a fundamental shift in automotive architecture system from
federal architecture to the integrated architecture (Natale & Sangiovanni-Vincentelli, 2010).
This revolution allows the implementation of several DASs that are developed by different
suppliers into a single ECU in order to reduce the number of ECUs and connection points.
The integrated approach results in a decreasing cost both in terms of infrastructure and
maintenance. However, the integration of different DASs into single unit removes the
physical barriers that contribute to isolate the fault propagation. By consequence, the
decrease of the hardware complexity necessitates compensation from software effort to deal
with the safety issue, which in turn increases the software complexity. Coincidently, in
avionics domain, as said in (Hammett, 2002), the ideal future avionics systems would
combine both the complexity advantage from federal approach and the hardware efficiency
benefits from integrated architecture. Since more than one decade, alot of works have been
done and the domain-dedicated standards have been proposed to design the integrated
architecture that remains the same composability, fault containment properties as federal
approach but still support the integration of multi-functions in a single entity (ex: ECU).
The main exampleis the combination of Integrated Modular Avionics (IMA) with safety
DO-178B/C in the aerospace domain and AUTOSAR (AUTomotive Open System
ARchitecture) elaboration with safety standard ISO26262 in the automotive domain (this
will be introduced later).

1.2 AUTOSAR Standard

Without defining a common standard, the integration of different DASs provided by
different first-tier suppliers meet the constraints of interaction as each supplier applies their
own standard of developmentand implementation. In automotive domain, the conventional
development shows a vague frontier between applications and infrastructure (see the left
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side of the Figure 2), i.e. the applications are dependent of the hardware, which increase the
complexity of development process.

Conventional development AUTOSAR

Application Software

ﬁ ][ ﬁ}standar{gized|

AUTO SAR)]
{}
ﬁ HW-specific |

Software

Hardware

Hardware

Figure 2-Development revolution driven by AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR), developed by leading automobile
companies and first-tier suppliers, contributes to meet the increasing complexity in
nowadays’ automotive electrical and electronic systems. To achieve the technical goals of
modularity, scalability, transferability, and function reusability, AUTOSAR standardizes the
software development in automotive domain by separating the application and
infrastructure which allows for a model-driven architecture like methodology. That is,
applications can exist and communicate independently of a particular infrastructure as
shown in the right side of Figure 2. AUTOSAR standard is maintained by a consortium that
regroups the general OEM (Original equipment manufacturer), generic Tier 1-supplier,
software and service vendors, which contains core partners, premium members and
development members. An overview organization of AUTOSAR consortium is shown in

Figure 3, where Valeo is belonging to the premium members.
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1.2.1

AUTOSAR mitigates the problems existing in the system design process thanks to its
standardized three-layer architecture: the Applicationlayer, the Basic SoftWarelayer and the
RunTime Environment layer (RTE). The AUTOSAR layered architecture ensures the
decoupling of functionality from the supporting hardware and software service, as shown

AUTOSAR architecture overview

in Figure 4 in which the purpose of each layer is given as follows:

Application layer: this layer provides a standard description format for application
which consists in the SoftWare Components. Applicationlayer is totallyindependent

of the hardware.

Basic SoftWare layer: This layer contains two sub-layers. The first is the
MicroController Abstraction Layer (MCAL), which is hardware dependent. The
second layer provides services to the AUTOSAR SoftWare Components and is
necessary to run the functional part of the software, which include the AUTOSAR
OS (Operating System) and service stacks such as communication stack, memory

stack and so on.

RunTime Environment (RTE): this intermediate layer acts as a communication

center for inter- and intra-ECU information exchange.

4 i
AUTOSAR Interface AUTOSAR Interface AUTOSAR Interface AUTOSAR Interface

¢ & &  AUTOSARMiddeware
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Figure 4-Layered Software architecture of AUTOSAR (AUTOSAR, 2017)
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automotive industry

1.2.2

AUTOSAR approach overview

AUTOSAR proposes the approach for the development that is based on the concept of
AUTOSAR Software Component (SWC). The approach (shown in Figure 5) contains:

Software Component Description: In AUTOSAR the applications are
encapsulated into SWCs that runs on the AUTOSAR infrastructure. For example,
Software Component Description can describea SWC, the data/service, its data sent
and received, its internal behavior in AUTOSAR XML (ARXML) format. Almost
everything a software developer needs to understand to integrate his componentinto
the system can be provided by Software Component Description.

Virtual Functional Bus (VFB): The SWC are integrated and interconnected thanks
to the Virtual Functional Bus, which allows the abstract description of
communications and the deployment phase independently. The virtual function bus
provides a virtual infrastructure that is independent from any actual underlying
infrastructure, which facilitates the concept of relocatability in AUTOSAR. The
services required for a virtual interactionbetween AUTOSAR components provided
by VFB will be latterly implemented by the underlying hardware infrastructure.

ECU description & System constraints: The ECU is described and is

independent from the SWC descriptions. All the constraints existing in the system
are also described by AUTOSAR.

ECU mapping: The SWCs have to be mapped to ECU network, which includes
the configuration and generation of RTE and BSW modules on the concrete ECU.

VFB view

Virtual Functional Bus

’ ‘ Tool supporting deployment of SW components

MAPPING

RTE

Basic
Software

pasic Saftwar‘e

Figure 5-AUTOSAR methodology (AUTOSAR, 2017)
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1.2.3 AUTOSAR Toolchain

Here we present our Toolchain and working process for the implementation of the

AUTOSAR approach as shown in Figure 6.

Authoring tool
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configuration AUTOSAR Builder!:

level 'System Desk 2
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Figure 6-AUTOSAR Toolchain

At System level, the information of application such as SoftWare Component description
and System Constraint Description are described using the Authoring tool (ex: AUTOSAR
Builder), which is the Eclipse-based tool suite for the design and development of
AUTOSAR-compliant systems and software. Two aspects of information can be provided
at this level: one is SoftWare Component APIs, i.e., header file of application generated
during the RTE contract phase. Another aspect of information provided by system level
and required for the ECU description step is the mapping of the SWCs onto network of
ECUs.

At Configuration level, we perform two steps: ECU descriptionand ECU configuration.
ECU description involves the mapping of SWCs onto network of ECUs. ECU
configuration step contains OS configuration, communication configuration and memory
configuration. The configuration of OS includes the terms of priority definition, task
content, partition, allocation of resource and communication. This step is implemented by
the ECU configuration tool (ex: Tresos) that allows complete ECU basic software
configuration. The BSW configuration files are prepared for BSW generators and MCAL
generators, they are also used to prepare the RTE generator by combining the component

API provided by the system level.

At Implementation level, the application descriptionis involved, which can be done by
tool like MATLAB Simulink. The runnables’ codes can be generated directly from this
description. Finally based on the runnables functional codes generated by APP generator,
RTE codes by RTE generator, low layer codes by BSW generator and MCAL generator, the

binary code for the whole application can be generated.
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1.3 Tendency in automotive industry and Multi-core
systems

With the emergence of the mechatronic, almost all the functions in automotive are
electronically controlled and also interlinked. Nowadays, the automotive industry integrates
more and more innovative functions to make the vehicles intelligent, comfortable and safe.
Figure 7 shows an example of the typical functions in the vehicles. The following facts as
described in (Weber, 2009) give the quantified information.

e 2500 functions are controlled by software representing 10 million lines of codes are

integrated in the cars.

e These functions are realized by up to 80 ECUs that communicate via up to 5
different types of systems busses.

e 90% of all innovations are enabled by electronics and software.
e Up to 40% of a vehicle’s costs are determined by electronics and software.

e 50-70% of the development costs for ECU are related to software

By consequence, the number of ECUs embedded ineach carsincreases dramaticallyinorder
to meet the requirements for the functionalities such as the engine control, body, chassis
control. Besides, the new functionalities that involve data processing and ADAS (Advanced
Driver Assistance Systems) make it even more complex for tomorrow’s vehicles: that the
cars are becoming autonomous and connected. The increase of software complexity makes

it unavoidable for automotive industry to require more and more computing power.
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Figure 7-Functionalities in vehicles

The traditional way to satisfy these requirements is mainly on two axes: the miniaturization
of transistors and the frequency scaling in single-core systems. However, both of the
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solutions mentioned above have reached their bottleneck. Though the miniature of the
transistors allows integrating more transistors on one single chip according to Moore’s law,
it might case the hit dissipationissue. The frequency scaling benefits the system by executing
more instructions in a given time, but it could invoke power consumption problems as the
power of the coreis proportionate to the frequency. A feasible way to avoid the issues above
is the increasingly widespread use of ECU with multi-core, where each core is not obligated
to have a high performance. But an efficient cooperation between these cores will make the
system reach a high performance. The multicore systems can avoid the issues arising in the
usage of tradition approaches based on single-core. However, it still remains a great
challenge for the developers to solve the interaction issues existing in the mechanism of a
highly efficient cooperation between cores.

Another reason for multi-core is that according to the suppliet’s roadmap, the high power
single core controllers have been replaced by multicore, where the efficient cooperation
between low power cores can provide a high performance. The semiconductor
manufacturers that mainly used in Valeo like Freescale and Infineon propose the multi-core
architecture platform, where the cores permit execution of the application codes in two
modes: the lockstep mode and decoupled mode.

The lockstep mode involves executing the same instructions onall the cores. The generated
results will then be compared to detect errors. If a difference between the cores is detected,
the system enters a fail safe mode. The lockstep targets the safety-critical applications, which
provides tolerance against the transitory fault on hardware. However it is not tolerant for
the hardware faults that are permanent.

Unlike the lockstep mode that is still logically single-core execution, in the decouple mode,
each core is independent and can be used to execute their own programs. However the

safety advantages in this case is lost.

1.3.1 Multi-core architecture categories

Generally the multi-core architecture can be classified into three categories:

e Heterogeneous architecture: The processors are different. These processors use
different set of instruction and the computing power of each core is different. For
example, the microcontroller 77 Vision Midis a heterogeneous microcontroller, its
architecture contain a core A§and 4 DSP.

e Homogeneous architecture: The processors are identical. They use the same set of
instruction and the computing power of each core is identical. Microcontroller
Leopard MPC5643L with 2 identical cores is an example.

e Uniform architecture: The instruction set in all processorsis the same, but the
computing power for each core may be different. One example for uniform
architecture is Freescale Bolero MPC5644C with two different cores (z0and z4),
while these two cores follow the same set of instructions.
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1.3.2 AUTOSAR in multi-core

Since AUTOSAR release 4.0, multicore specifications are available in AUTOSAR
specifications. On multicore, the cores are prioritized in one master core and several slave
cores. The master core is started first by hardware. The master core then triggers the start
of the other (slave) cores by Software calls. The AUTOSAR Multi-core OS specification
requires a system with master-slave start-up behavior, either supported directly by the
hardware or emulated in software. The master coreis defined as the core that requires no
software activation, whereas a slave core requires activation by software (AUTOSAR,
2014a). The multi-core architecture explores the notion of OS-Application. Since
AUTOSAR 3.x, memory protection has been available in AUTOSAR. This capability
requires to introduce a new OS object called OS-Applications, which clusters a set of OS
objects (ex. task, alarms, etc). In the Autosar application, no OS objects exist in an isolated
way out of the OS-Applications boundary. It is worth noting that OS-Applications are not
dedicated to multicore architectures but become mandatory for the design of multicore
applications. This new granularity means that the RTE generator must be aware of the
allocations into OS-Applications.

Mainly, multicore features impact specifications of:

e The RunTime Environment (RTE): RTE has to be aware of multi-core capabilities.
It manages the protection of shared objects by spinlock. A spinlock is a busy waiting
mechanism that polls a (lock) variable until it becomes available. Typically, this
requires an atomic “test and set” functionality, which is implementation specific.

e The Operating System (OS): The OS provides the new services in order to activate
tasks or a set of events across cores, and also to synchronize or protect shared
objects. AUTOSAR OS in multi-core is Partitioned OS (P-OS), which means that
an instance of the AUTOSAR OS runs on each core. When a core makes a system

call, this core switches to kernel mode and executes the OS code.

The multi-core OS configuration is different between the Symmetric Multi-Processing
(SMP) and Asymmetric Multi-Processing (AMP):

In AMP, each core runs an OS, the OS between the core may be the same or different. The
different cores do not share the code and data. Each core has its designated task set.
AUTOSAR OS belongs to this typeas itis the partitioning OS (P-OS) where each core runs
one P-OS.

In SMP, the cores share the same task set, which means a task may run on different cores
dynamically. The different cores are managed by one same OS. The cores share the same

memory space.

1.3.3 Modeling details of AUTOSAR

Model-Based Design (MBD) development process is specifically attractive in embedded
domains like automotive thanks to its capabilities to support early design
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verification/validation through formal functional modes that are composed of the
functional blocks and the capabilities to generate software implementations from those
functional blocks. MATLAB/Simulink is a widely used Computer Aided Engineering
(CAE) tool for model-based design that allows simulating system behavior, tracing and
verifying requirements and generating software for prototyping and production. Model
based approachprovidesan automated software synthesis flow that turns functional models
to correct, predictable and optimal software tasks implementation on various embedded
platforms. Within AUTOSAR standard, this flow includes firstly the encapsulation of the
functional blocks into software components (SWCs) composed of a set of runnables, and
the mapping of the runnables into real-time tasks as shown in Figure 8. In multi-core
context, it introduces the new steps such as the mapping of tasks to cores and

synchronization between cores.

4\ MathWorks:

Fupctional block

Functional
Model

Software
Model

Tasks deployment

Hardware
Model " " " '.

Figure 8-MBD approach with AUTOSAR

In this part, we give the details in each layer of AUTOSAR architecture presented in Figure
4.

1.3.3.1 Application Layer

The applicationlayer is standardized in AUTOSAR. The applicationis split into SoftWare
Components (SWCs) that interact through the Virtual Function Bus (VFB) as shown in top
of Figure 5. Software Components are logical groups of functionalities of the application.
Each AUTOSAR SoftWare Component (SWC) is a so-called “Atomic SoftWare
Component”, which implicates that each instance of an AUTOSAR SoftWare Component
cannot be distributed over AUTOSAR ECUs. Furthermore, according to the
recommandation of AUTOSAR !, an AUTOSAR SoftWare Component cannot be
distributed over cores in multicore systems either.

1 This restriction mightbe releasedinthe future version of AUTOSAR.
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SWCs are composed of the objects described as follows, which is illustrated in Figure 9:

12

| Application SWC |
R-Port P-Port

Client ) > Sender
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Figure 9-SWC description

e Runnable

The Runnables are the atomic functional components in the SWC, which cannot be
further divided. The Runnables are composed of the pieces of functional codes and can
communicate to other runnables in the same SWC by IRV's (Inter Runnable Variables)
or runnables in the other SWCs by interface and Ports.

The main functions of a Runnable are Read (read the external variables by ports or the
internal variable by IRV), Execution and Write (write the external variables by ports or
the internal variable by IRV). Runnables can execute and be scheduled independently
from the other Runnable Entities of the same Atomic Software-Component.

Runnables are executed in the context of an OS task; their execution s triggered by RTE
Events. There are several types of Event, such as Timing Event (TEV) for the periodic
runnables; Mode Switch Event (MSE) for runnables that exchange the execution
modes; Data Received Event (DRE) for the runnables that are active when the relative
dataare available; OperationInvoked Event (OIE) for the server runnables that provide
a service, and so on. Every event has its own parameters, for example: TEV with
PERIOD, MSE with mode, DRE with Port and the OIE with operations. Every Event
relates to 2 Runnable, whereas each Runnable can relate to several Events.

e Ports

The ports can implement all the type of interfaces so as to access the information like
data, operation or modes in the different type of interfaces described before. The
components have two types of ports: Provided ports (P-Port) and Requited port (R-
Port).

e Interfaces

The Interface defines the information exchanged between SWCs and/or BSW modules.
It makes it possible to implement the communication between SWCsby Ports. The main
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types of interfaces are SenderReceiver Interface, ClientServer Interface and ModeSwitch
Interface.

1.3.3.11 Communication between AUTOSAR SWC
Autosar SWCs communicate through well-defined ports and the behavior is statically
defined byattributes. The portsare described by the PortInterface. There are two important

communication types:

e Sender-Receiver communicationis realized via SenderReceiver Interface like P-Port
from provider SWC to R-Port from consumer SWC. The object transferred is the
data of different types (see section 2.3). This type of connections supports both 1:
N and N: 1 communications.

e C(Client-Server communication is built from a server P-Port to a client R-Port via
ClientServer Interface, where client runnable requires the service provided by the
server runnable. Unlike Sender-Receiver communication, Client-Server connection
support only N: 1 communication, it is impossible for a client to invoke multiple

servers with a single request.

1.3.3.1.2 SWC internal communication

Communication between trunnables insides the same SWC, also known as the
communication intra SWC, is done by using Inter Runnable Variables (IRV). IRV are the
variables that can be written and read by the Runnables in the same SWC, which means that
the IRV exist only in the SWC they belong to.

1.3.3.2 Basic Software Layer

The Basic Software is standardized software that does not have any functionality from the
application view but offers hardware-dependent and hardware-independent services to
applications. This is realized through the use of Application Programming Interfaces (AP],
see Figure 4). This layer itself is not entirely hardware independent but makes the upper
software layers independent of the hardware. In basic software layer there are several items:

1) Microcontroller Abstraction Layer (MCAL): this layer provided by smelters is a
hardware specific component that provides access to the actual physical signals of
the microcontroller.

2) BSW Stacks: The BSW Stacks includes communication stack, the memory stack and
1/ O stack.

3) OperationSystem (OS): OS in Autosar is based on the OSEK/ VDX (OSEK/VDX,
2005). It supports multicore architecture since the version 4.x of AUTOSAR is
released. The OS is responsible for the execution of real-time tasks containing
runnable entities. AUTOSAR adopts static priority for the tasks in the system and
static scheduling.

Basic Software consists in main functions and services that can be called by tasks. In the
single core system, the main function is executed in an OS task and BSW calls are done in

13
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the context of the calling task. When coming into multi-core systems, the main functions
and services could be allocated separately in different cores. BSW allocationis done during
the Operating System configuration (see Figure 6).

e Most BSW activations, i.e. BSW APIs calls, are done in the context of the calling

task. It might have several calls from different cores.

e The main functions can be allocated to different cores (as shown in Figure 10). The

coupling between the main functions and services might cause delays or bottlenecks.

0OS-Application Core 1 OS-Application Core 2

[BSW calls are done on the core 2

tionned RTE _ Partitionned RTE | |
— — -
STACKA |———= T o
Main_function | <— — — ’ s ——— ——— — I
a4 P-0S | shack
£o8 Core2 .
Core1 | 1
[Main function is executed by Core 1 ] |_ 1 ‘:’
i ]
Core1 Core2

Figure 10-BSW allocation example

1.3.3.3 Runtime environment (RTE)

Runtime environment (RTE) handles the information exchange between the application
software components and connects the application software components to the right BSW
services. This layer decouples the application software components from the hardware as
well as the application software components from themselves. RTE provides an actual
representation of the virtual concepts of the VFB for one specific ECU, which means that
there exists one implementation (ex, in C-code) of the VEB per ECU. In order to do that,
it requires knowing where runnables (from SWCs) are allocated. For example, runnables
allocated to the same ECU communicate using the RTE while runnables allocated to
different ECUs use the AUTOSAR communication stack. Besides, RTE also involves the

generation and realization of all the RTE events that activate the behavior of runnables.

It is worth noting that all configurations are static, as a result, the components have been
located statically at the phase of implementation. Components that are mapped onto one
ECU will communicate through shared memories and the components mapped onto
different ECU will communicate by the communicationstack (i.e.,bus CAN, LIN, FlexRay).

The RTE can be seen as a static implementation of specialized communication topologies.
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1.4 Safety

Safety is a property of a system that will not endanger human life or the environment. Many
safety-critical systems are also real-time systems, where “the correctness of the system
behavior depends not only on the logical results of the computations, but also on the
physical time when these results are produced” (Kopetz, 2011). The safety-critical systems
have to be certified. Certification phase is standard-based, which depends on the application
area. For example, DO-178B/C s for the airborne systems. In today’s cars several ECUs
may control safety relevant actuators depending on the functionality in the vehicle. The
18026262 is the norm which describes how the development of such ECUs shall be
performed to realize a safe system. This norm defines four “Automotive Integrity Safety
Levels” (ASIL) which classify levels of safety required for these systems. Based on the
identified risks, specific (Safety) requirements of the system are derived. These requirements
may be related to hardware or software or both. We mainly focus on software, so the
hardware part will be considered as platform based design. Be aware that an ASIL is always
defined for a system, which means hardware and software, and with respect to software
application software and basic software.

AUTOSAR, up to Release 4.1, supports safety systems (ISO 26262) by offering different
base mechanisms which are typically required in such ECUs. The following list contains the
main safety mechanisms:

e Partitioning of SWCs to support the isolation in space. This means that itis possible
to separate SWCs of different ASIL from each other and to make sure that the SWCs
are not able to write to other SWCs data. The realization requires hardware support
(a memory protection unit (MPU) or memory management unit (MMU)) and is
realized in the OS module and used by the RTE.

e Timing and control flow supervision to monitor executing entities and to detect
faults caused by blocking or wrong execution. In AUTOSAR the OS and the relative
modules (ex: watchdog module) take care of this issue.

e A safe communication via end-to-end protection is possible between ECUs (and
even inside an ECU). This guaranteese.g. that the data which is send is not modified
between the sender and the receiver(s). The responsible module is the E2E library.

Some other modules support additional mechanisms which are also useful in safety systems

(e.g. CoreTestor RamTest) (AUTOSAR, 2014b).

1.5 Contribution and Thesis overview

The shift towards multi-core systems in the automotive industry has revived the challenge
of application partitioning to enhance productivity, reusability and predictability. The
introduction of multi-core in AUTOSAR leads to additional works in the process of

automotive development:
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e Software component (SWC) to cores: the SWC/runnables have to be distributed
into different cores

e Tasks definition and configuration: in order to be executed by OS, the runnables
have to be mapped into different real-time tasks. Therefore a set of tasks has to be
defined and configured properly. This step exists already in single-core system.
Howeverin the multi-core, the runnables have to be remapped according to the new

position, thus the execution order in each task changes as well.

e Data allocation: the data exchange between the components has to be distributed

in different type of memories.

e Synchronization: the execution flows in different cores have to be synchronized

such that the entire system behaves correctly.

The traditional way to migrate to multi-core platform in Valeo software team was
accomplished manually, which necessitates a high level knowledge of application especially
in the aspect of functionality. Each time a new application is targeted, a lot of repetitive
work is unavoidable, which introduce a significant workload and time consuming process.
Moreover, the manual solution prevents the optimization of criteria such as CPU loads,
communication overheads, jitter and so on.

Confront to these issues, this thesis proposesa method and tools dedicated to the migration
of the automotive applications into multi-core architectures. The method acts as a decision
guide environment for the partitioning ofembedded software modeled withthe AUTOSAR
specificities onto multi-core systems. The proposed method automates the migration
process and was fully thought into an industrial V-cycle development process as shown in
Figure 11.

Application description

ARXML

Solver ¥ Constraints (Q)

1l - Configuration
YRTE

®
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Figure 11-Working process
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The working process shows the contributions of this thesis that contains:

1)

2)

3)

4

Automate the allocation of automotive applications: the automotive applications are
compliant with AUTOSAR standard. We model the applications and analyze the
dependencies level between the execution entities (runnables) in order to provide
the necessary information for the distribution of the applications into multi-cores.
We adopt the meta-heuristic algorithms as the solver to search the design space
efficiently and effectively. The distribution solutions are optimized and evaluated by
the proposed cost function that takes a set of criteria into account. The solutions
respect the pre-defined constraints that could be, from the hardware aspect, real-
time, functional and is extendable to the new features (ex, the safety aspects). More
details are presented in Chapter 2.

Propose the scheduling for the dependent real-time task sets. Most of the work for
real time scheduling in the state of the art is targeted to tasksets that are independent.
However, this ideal theoretical model shows its limit in the real-life industrial use
case, where the applications are strongly inter-connected and the tasks are
dependent. In this thesis, we propose the scheduling approach that considers the
dependent tasks. Based on the defined dependent model, the method generates the
schedule table that contains the execution order of the instance for the
task/runnables and the start date for them. The scheduling is static and respects the
real-time constraints. The evaluation of the scheduling considers the ability of
schedulabilityand other criteria such as jitters and makespan. Chapter 3 presents this
part of work.

Integrate in the process of development. In Chapter 4 we show another contribution
of this thesis: the SoftWare AllocationTools (SWAT) is our developed Toolchain
that integrate our methods into a real-life development process in the automotive
industrial. The processis compliant with AUTOSAR Toolchain.

The conclusion and the prospective are presented in Chapter 5.
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Chapter 2 Relative works & problem formalization

2.1 Combinatorial Optimization

Many optimization problems of theoretical as well as practical importance consist in the
search for the “best” configuration ofa set of variables to achieve some objectives. Among
those where solutions are encoded with discreze variables we find a class of problems called
Combinatorial Optimization (CO) problems as introduced in (Papadimitriou & Steiglitz,
1982). According to the introductionin (Papadimitriou & Steiglitz, 1982), in CO problems,
we are looking for an optimal object from a finite (or possibly countable infinite) set of
objects. These objects are encoded with discrete variables such as integer numbers, subsets,
permutations, graph structures etc. A model P = (S, (), f) of a CO problem consists in:

e S asecarch space where a finite set of discrete variables X;, i = 1, ..., n. are defined;
e 2 afeasible domaindefined by a set of constraints;
e /i anobjective function to be minimized.

A feasible solutions € S is a complete assignment of values to variables that satisfies all
constraint in . A solution $*€S is called a global optimumifand if: f(s*) < f(s) Vs € S.

Examples for CO problems are the Traveling Salesman problem (TSP), the Quadratic
Assignment problem (QAP), Timetabling and Scheduling problems. Owing to the practical
importance of CO problems, many algorithms to tackle them have been developed. These
algorithms can be classified as either exact or approximate algorithms.

Exact algorithms (or complete algorithms) are guaranteed to find for every finite size
instance of a CO problem an optimal solution in bounded time. Despite the progress
achieved by the exact algorithms, the problems likely to be resolved by the algorithms are
quite restricted however (Woeginger, 2003). In fact, the exact algorithms are often
impractical forlarge problems due to prohibitive searchtimes. Effectively, for CO problems
that ate NP — hard (Garey & Johnson, 1990),if P # NP, there is no polynominal-time
constant-factor algorithm exists. Therefore, exact algorithms might need exponential
computation time in the worst-case. Thus, the use of approximate algorithms to solve CO
problem has received more and more attentions in the last 30 years. In approximate
algorithms we sacrifice the guarantee of finding optimal solutions for the purpose of
obtaining good solutions (not optimal) in a significantly reduced amount of time.

Among the basic approximate methods we usually distinguish between constructive methods
and /Jocalsearch methods. Constructive methodsinvolve in building a solutionto the problem
literally step by step from scratch. Usually constructive methods are deterministic and they
are typically the fastest approximate methods, yet they often return solutions of inferior
quality when compared to local search algorithms. In contrast to the constructive method
that beginwith an empty solution, local search algorithms start from some feasible solutions
called initial solutions of the problem and tries to progressively improve it by replacing
iteratively the current solution with a better solution from an appropriately defined
neighborhood of the current solution.
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Definition 1 A neighborhood structure is a function N: § = 25 that assigns to every
solution s € S a set of neighborhood N (s) € S. V() is called the neighborhood of s.

The choice of an appropriate neighborhood structure is crucial for the performance of a
local search algorithm and is problem-specific. The neighborhood of a solution's describes
the subset of solutions which can be reached from sin the next step. The solution found by
a local search algorithm may only be guaranteed to be optimal with respect to local changes
and will generally not be a globally optimal solution.

Definition 2 A local optimum for a minimization problem, a locally minima solution (or
local minimum) with respect to a neighborhood structure V' is a solution such that a
solution § such that V s € N (8): f(8) < f(s). Similarly, a local optimum for a
maximization problem, alocally maxima solution (or local maximum) is a solution such that

a solution § such that V s € N'(8): f(8) > f(s).

A disadvantage of single-run algorithms like constructive methods or local search is that
they either generate only a very limited number of different solutions, which is the case of
constructive methods or they stop at local optima, which is the case of local search. Several
general approaches, which are nowadays often called meta-heuristics, have been proposed
to bypass these problems. This class of algorithms includes — but is not restricted to —
Simulated Annealing (SA), Tabu Search (TS), Evolutionary Computation (EC) including
Genetic Algorithms (GA), and Ant Colony Optimization (ACO). Up to now there is no
commonly accepted definition for the term metaheuristic, while the fundamental properties
which characterize metaheuristics can be outlined (Blum & Roli, 2003):

e Metaheuristics are strategies that “guide” the search process.

e The goalis to efficiently explore the search space in order to find (near-) optimal

solutions.

e Techniques which constitute metaheuristic algorithms range from simple local

search procedures to complex learning processes.
® Metaheuristic algorithms are approximate and usually non-deterministic.

e They may incorporate mechanisms to avoid getting trapped in confined areas of the

search space.
e The basic concepts of metaheuristics permit an abstract level description.
® Metaheuristics are not problem-specific.

® Metaheuristics may make use of domain-specific knowledge in the form of heuristics

that are controlled by the upper level strategy.

e Today’s more advanced metaheuristics use search experience (embodied in some
form of memory) to guide the search.

The following methodsuse generallya largeamount of parameters with the value configured

based on a lot of experiment results.
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2.1.1 Simulated Annealing

Simulated Annealing (SA)is deduced from the physical annealing process of solids, which
is commonly said to be the oldest among the metaheuristics and surely one of the first
algorithms that had an explicit strategy to escape from local minima (Kirkpatrick, Gelatt Jr,
& Vecchi, 1983). The fundamental idea of escaping from local minima is to allow moves to
solutions of worse quality than the current solution (also called as uphill moves) in order to
escape fromlocal minima. The acceptance probability whichis the probability of doing such
a move is decreased during the search. As descriptin the Algo. 1.

S « GeneratelnitialSolution ()

T« T,

while termination conditions not met do
s' < PickAtRandom (N (s))

if (f(s) < f(s)) then
s s’ % s'replaces s
else
Accept s as new solution with probability p(T,s’, s)
endif
Update (T)
endwhile

Algo. 1-Algorithm: Simulated Annealing (SA)

The algorithm starts by generating an initial solution (either randomly or heuristically
constructed) and by initializing the parameter 7T that signifies temperature. Beginning at the
initial solution, the algorithm performs the searching processiteration by iteration until the
terminated conditionis met. At each iteration, a solution s" € N'(s) is randomly sampled
in the defined neighborhood structure and it will be accepted as a new current solution
depending on the conditions:

» If the objective function is improved, i.e. f(s") < f(s),s'is accepted as a new
accurent solution.

» If the objective function is degraded,ie. f(s')> f(s),s'is accepted as a new
solution with an acceptance probability that is related to f(s), f(s') and T:

At the end of each iteration, the temperature parameter 7T is updated with a tendency of
decreasing principally, each step of the updating is not necessarily decreasing however. So
the progress of algorithm depends on three parts:

2.1.1.1 Probability of accepting uphill

The probability of accepting a degraded solutionis a function of f(s") — f(s) and T This

_ f(S')—f(S)).
T

The probability ofaccepting a new solution is then determined by two factors: the difference

between the costs of the two solutions f(s’) — f(s)and the temperature 7. On the one hand,
for a fixed temperature, the worse the new solution performs, the smaller the possibility of

function is typically computed following the Boltzmann distribution exp(
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acceptance of this solution is. On the other hand, it is more possible to accept a worse
solution ata high temperature, which is quite common at the beginning as the temperature
is relative high. With the decreasing of the temperature, the algorithm converges gradually
to an improvement research. The entire search process contains two phase of strategies: the
random walk and iterative improvement. At the beginning of the search, the algorithm
encourages an erratic move which permits an exploration of the searching space. Then in
the second phase of search, the random is decreasing gradually and the search process
concentrates to the improvement thatleads to exploitation for the minimum.

2.1.1.2 Cooling rule

The choice of an appropriate cooling rate is essential part of SA as it determinate the
performance of the algorithm. A high cooling rate leads to degraded results because of the
lack of representative states, while a low cooling rate results in the increasing of computation
time to get the convergent state. Two choices have to be made when implementing the SA:

the initial value of temperature Tpand the cooling schedule.

A quite high value Ty permits capture the entire solution space, while it may increase the
number of iteration, which might not necessarily give the better solutions. Generally, the
initial value of temperature is chosen by experimentation that depends on the nature of

problem.

The cooling schedule characterizes the change of temperaturein functional form so that the
value of T at each iteration kcan be determined. The cooling schedule is presented as Ty, =
9(Ty, k), where Q(T;, K)is a function of the temperature in the last state and the iteration
number. Three important cooling scheduling are logarithmic, Cauchy and exponential. SA

converges to the global minimum of the cost function if the change of temperature follows
alogarithmiclaw (Geman & Geman, 1984): T}, = To / loghk' This schedule requires the move

to be drawn froma Gaussian distribution. For the practical purposes, this cooling scheduling

are too slow unfortunately. Cauchy schedule performs a faster convergence, where Tj, =

Ty / j With the movesare drawn from a Cauchy distribution (Szu, 1987). The fastest schedule

among the three is exponential or geometric schedule in which T, = Tyexp(—C;) where
C;is a constant (Azencott, 1992). In practical case, one of the most used schedules follows
the geometric law: Ty 1 = aT}, , where o is cooling factor with constant value varies
between 0.80 and 0.99, which performs an exponential decay of the temperature. There are
also non-monotonic cooling schedules, which are characterized by alternating phases of
cooling and reheating, thus providing an oscillating balance between diversification and
intensification. The initial value of temperature and cooling schedule should be adapted to
the concrete problem instance appropriately, as the balance of the diversification and
intensification influents the capability of escape from local minimum that depends on the

structure of the search landscape.
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2.1.1.3 Terminated condition

The termination of the algorithm depends on the number of iterations, which contains the
total number of iterations and number of iteration for each temperature. The total number
of iterations adopted depends on the complexity of problem. The number of iterations at
each temperature is chosen so that the system is sufficiently close to the stationary
distribution at that temperature.

2.1.2 Tabu Search

Tabu Search (TS) is created by Fred W. Glover (Glover, Future paths for integer
programming and links to artificial intelligence, 1980). It is among the most cited and used
metaheuristics for combinatorial problems. The strategy of TS is to maintain a tabu list that
memorizes the history of the search in order to escape local optimum as well as facilitate
the exploration in the searching space. A description of this algorithm can be found in
(Glover & Laguna, Tabu Search, 1997). The process of TS is described briefly as follows:
starting with an initial solution (generated either randomly or heuristic constructed), the
algorithmlooks for the bestsolution s’ in the neighborhood structure N (s). If solution s'is
not already existed in the Tabu list or if it satisfies the condition to ignore the tabu rule
(noted as Aspiration criteria that will be introduced later), it is accepted as a new solution.
Before beginning the next iteration, the tabu list is updated by adding this solution and
removing a solution according to different policies (usually in a FIFO order) if the list is
already full. The Aspiration criteria shall be updated as well, as described in Algo. 2.

2.1.2.1 Tabu list and Aspiration criteria

The simple TS performsa best improvementlocal search as basic ingredient and meanwhile
maintains a short term memory for the sake of escaping from the local optimum as well as
preventing the cycles of search. The short term memory is implemented as a tabu list that
keeps track of the most recently visited solutions, so the move towards the solutions existed
in this list is forbidden, which help filter the solutions in the neighborhood and generate
allow set. However, the implementation of the short term memoryas a tabulist that contains
a set of complete solutions is not practical, as the management of this list with full
information is quite inefficient. Therefore, instead of storing the solutions themselves, the
tabu list chooses the representative attribute such as the components of solution, differences
between solutions, move or other brief information. For more attributes to be considered,
a tabu list is created for each of them. So multiple tabu lists can be used simultaneously and

are sometimes advisable.

Although the storing of the attributes instead of the complete solutions is effective, it might
lead to the loss of information potentially. As an attribute might present more than one
solution, the forbidden of the attribute would filter several solutions that attached to it
which increase the possibility to exclude the unvisited solution with good quality. That is
why TS defines Aspiration criteria to overcome this problem. Aspiration criteria contain
the solutions that are allowed to be considered by the algorithm even if they are forbidden
by the tabu list. The condition that considers solutions to be included in the aspiration
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criteria is called aspiration condition. A typical conditionis to choose the solutions that are
the best found so far solutions.

s « GeneratelnitialSolution ()

Initialize TabulLists (TL1... TLr)

k<0

while termination conditions not met do
Allowedset(s, K (_{ s'enN(s)]s d.oes 1%015 violate a tabu confiiti?n, N }

or it satifies at least one aspiration condition

s « ChooseBestOf (AllowedSet(s, k))
Update TabuList & AspirationConditions ()
Kek+1

endwhile

Algo. 2-Tabu Search (TS)

2.1.2.2 Memory
The memory structuresin TS are dimensioned by four principles: recency, frequency, quality

and influence.

Recency-based memory of TS constitutes a form of aggressive exploration in the search
space that targets at the best moves possible, the most common used short term memory
keeps track of attribute of solutions that have been considered recently, just as tabu list does.

Frequency-based memory keeps track of the frequency of each solution (or attribute) has
been visited. This information identifies the regions (or the subsets) of the solution space
where the search was confined, or where it stayed for a high number of iterations. This kind
ofinformation about the pastis usually exploited to diversify the search. Recency-based and
frequency-based memories complement each other.

Quality-based memory refers to the accumulation and extraction of information from the
search history in order to identify good solution components. Quality plays a role to
reinforce actions that lead to good solutions and penalizes the actions to poor solutions,
which can be usefully integrated in the solutionconstruction. This principleis used explicitly

by other metaheuristics to learn about good combinations of solution components.

Influence-based memory considers the impact of the choices made during the search
process both on the quality and structure. The information can be used to indicate which

choices have shown to be the most critical.

In general, the TS field is a rich source of ideas and strategies, many of which have been and
are currently adopted by other metaheuristics.

213 Evolutionary Algorithm

Evaluation Algorithms are in the category of population-based methods that deal in each
iteration of the algorithm with a set of solutions instead of considering only one single
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solution in each iterationlike SA and TS do. The set of solutions that are treated at each
iteration s called population, which facilitates the algorithms to explore the search space in
a natural and intrinsic way. The manipulation of the populations determines the final
performance of the algorithms. Evaluation algorithms concern an area of computer science
that uses ideas from biological evolution to solve computational problem. Evolution is a
method of searching among an enormous number of possibilities — e.g., the set of possible
gene sequences — for “solutions” that allow organisms to survive and reproduce in their
environments. Evolution can also be seen as a method for adapting to changing
environments. And, viewed from a high level, the “rules” of evolution are remarkable
simple: Species evolve by means of random variation (via mutation, recombination, and
other operators), followed by natural selection in which the fittest tend to survive and
reproduce, thus propagating their genetic material to future generations. Yet these simple
rules are thought to be responsible for the extraordinaryvariety and complexity we see in

the biosphere.

There has been a variety of slightly different EA proposed over the years. Basically they fall
into three different categories which have been developed independently from each other.
There are Evolutionary Programming (EP), Evolutionary Strategies (ES) and Genetic
Algorithms (GA). The most widely used form of evolutionary algorithms is GA (Goldberg,
1989), which will be the main focus in this dissertation.

2.1.3.1 Introduction of GA
The simplest version of a genetic algorithm consists of the following components:

1. A population of candidate solutions to a given problem, each encoded according to
a chosen representation scheme. The encoded candidate solutions in the population
are referred to metaphorically as chromosomes, and units of the encoding are

referred to as genes. The candidate solutions are typically haploid rather than diploid.

2. A fitness function that assigns a numerical value to each chromosome in the

population measuring its quality as a candidate solution to the problem at hand.

3. A set of genetic operators to be applied to the chromosomes to create a new
population. These typically include selection, in which the fittest chromosomes are
chosen to produce offspring; crossover, in which two parent chromosomes
recombine their genes to produce one or more offspring chromosomes; and

mutation, in which one or more genes in an offspring are modified in some random

fashion.
A typical GA (as shown in Algo. 3) carries out the following steps:
1. Startwith a randomly generated population of n chromosomes.
2. Calculate the fitness f(x) of each chromosome x in the population.
3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the
probability of selection increasing as a function of fitness.
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b. With probability p, (the crossover probability), cross over the pair by taking
part of the chromosome from one parent and the other part from the other

parent. This form q single offspring.

c. Mutate the resulting offspring at each locus with probability p,, (the
mutation probability) and place the resulting chromosome in the new
population. Mutation typically replaces the current value of a locus with
another value.

4. Replace the current population with the new population.

5. Go tostep 2.

Initialize Chromosomes
while termination conditions not met do
repeat
if crossovercondition satisfied then
{select parent chromosomes;
choose crossover parameters;
perform crossover};
If mutation condition satisfied then
{choose mutation points;
perform mutation};
evaluate fitness of offspring
until sufficient offspring created,;
select new population;
endwhile

Algo. 3-A genetic algorithm template

Each iteration of this process is called a generation. A genetic algorithm is typically iterated
for anywhere from 50 to 500 or more generations. The entire set of generations is called a
run. At the end of a run, there are typically one or more highly fit chromosomes in the
population. Since randomness playsa large role in each run, two runs with different random-
number seeds will generally produce different detailed behaviors.

The simple procedure just described is the basic for most applications of GAs. There are a
number of details to fill in, such as how the candidate solutions are encoded, the size of the
population, the details and probabilities of the selection, crossover, and mutation operators,
and the maximum number of generations allowed. The success of the algorithm depends
greatly on these details.

2.1.3.2 Selection Methods

Individuals for producing offspring are chosen using a selection strategy after evaluating the
fitness value of each individualin the selection pool. Each individual in the selection pool
receives a reproduction probability depending onits own fitness value and the fitness value
of all other individuals in the selection pool. This fitness is used for the actual selection step
afterwards. Some of the popular selection schemes are discussed below.

a) Roulette-wheel selection. The simplest selection scheme is the roulette-wheel
selection, also called stochastic sampling with replacement. This technique is analogous to
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b)

d)

a roulette wheel with each slice proportional in size to the fitness. The individuals
are mapped to contiguous segments of a line such that each individual’s segment is
equal in size to its fitness. A random number is generated and the individual whose
segment spans the random number is selected. The process is repeated until the
desired number of individuals is obtained.

Rank-based fitness assignment. In rank-based fitness assignment, the population
is sorted according to the objective values. The fitness assigned to each individual
depends only on the positionof the objective valuesin the individual’s rank. Ranking
introduces a uniform scaling across the population.

Tournament selection. In tournament selection, a number of individuals are
chosen randomly from the population and the best individual from this group is
selected as the parent. This process is repeated as often until there are sufficient
individuals to choose. These selected parents produce uniformly random offspring;
The tournament size which is the parameter for tournament selection will often
depend on the problem, population size, and so on. Tournament size takes values

ranging from two to the total number of individuals in the population.

Elitism. When creating a new population by crossover and mutation, there is a big
chance that we will lose the best chromosome. Elitism is the name of the method
that first copies the best chromosome (or a few best chromosomes) to the new
population. The rest is done in the classical way. Elitism can very rapidly increase

performance of GA because it prevents losing the best-found solution.

There are also other selection methods. The choice of these methods has certainimpact on

the performance of the searching results. More detail can be referred in (Mitchell, 1998).

2.1.3.3

Recombination (Crossover) Operators

Crossover selects genes from parent chromosomes and creates a new offspring.

a)

b)

K-point Crossover. One-point and two-point crossovers are the simplest and most
widely applied crossover methods. In one-point crossover, illustrated in Figure 12, a
crossover site is selected at randomover the stringlength, and the alleles on one side
of the site are exchanged between the individuals. In two-point crossover, two
crossover sites are randomly selected. The alleles between the two sited are
exchanged between the two randomly paired individuals (as shown also in Figure
12). The concept of one-point crossover can be extended to A-point crossovet,
where £ crossover points are used, rather than just one or two.

Uniform Crossover. Another common recombination operator is uniform
crossover. In uniform crossover, see in Figure 12, every allele is exchanged between

the pair of randomly selected chromosomes witha certain probability, p, known as

the swapping probability. Usually the swapping probability value is taken to be 0.5.

Uniform Order-Based Crossover. In order-based crossover, two parents (say P,

and P,) are randomly selected and a randol binary template is generated (see in
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Figure 13). Some of the genes for offspring C; are filled by taking the genes from
parent P; where therisa “1”in the template. Atthis pointwe have C; partially filled.
The genes of parent P; in the positions corresponding to “0” in the template are
taken and sorted in the same order as they appear in parent P,. The sorted list is

used to fill the gapsin C;. Offspring C, is created by using a similar process.

The k-point and uniform crossover methods described above are not well suited for search
problems with permutation codes such as the ones used in the traveling salesman problem.
They often create offspring that represent invalid solutions for the search problem.
Therefore when solving search problems with permutation codes, a problem-specific repair
mechanism is often required (and used) in conjunction with the above recombination
methods to always create valid candidate solutions. Another alternative is to use
recombination methods developed specifically for permutation codes, which always
generate valid candidate solutions. The uniform order-based crossover described above is
such crossover techniques and there are other crossover which always generates valid
candidate solutions, such as order-based Crossover, partially Matched Crossover (PMX) and cycle
Crossover (CX).

One point crossover

Crossover point

lofo[1]o]o[1] > lojof1]1]of1]
[1]ofo[1]0]1] [1[ofofofo]1]
Parent chromosomes Offspring chromosomes .
Crossover point Two point crossover ’
[ofof1][o]o]1] > loJoJo[1[o]1]
[1][ofo]1]o[1] [1]of1]ofo[1]

Parent chromosomes Offspring chromosomes

Uniform crossover

[o]of1]ofo]1] , [1]ofofofo]1]

[1]ofoj1]o]1] [oJofa]1]o]1]

Parent chromosomes Offspring chromosomes .

Figure 12-One-point, two-point, and uniform crossover methods
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ParentP, |A|B|C|D|E|F|G
Parent P, BlE|G D|IF|C
Template |0|0|1]1]/0(1/|0
Child C, B C/IDIG|F|A
Child C, BIC|G|A|D|F|E

Figure 13-1llustration of uniform order crossover

2.1.3.4 Mutation Operators

If we use a crossover operator, such as one-point crossover, we may get better and better
chromosomes but the problem s, if the two parents (or worse, the entire population) has
the same allele at a given gene then one-pointcrossover will not change that. In other words,
that gene will have the same allele forever. Mutationis designed to overcome this problem
in order to add diversity to the population and ensure that it is possible to explore the entire
search space.

In Evolutionary Strategies, mutation is the primary variation/search operator. Unlike
evolutionary strategies, mutation is often the secondary operator in GAs, performed witha
low probability. One of the most common mutations is the bit-flip mutation. In bitwise
mutation, each bit in a binary string is changed (a 0 is converted to 1, and vice versa) with a
certain probability, P, knownas the mutation probability. As mentioned earlier, mutation
performs a random walk in the vicinity of the individual. Other mutation operators, such as

problem-specific ones, can also be developed and are often used in the literature.
2.2 Formalization of the distribution problem

2.2.1 Architecture modeling

The multi-core architecture is composed of a set of cores {7‘[1, - TL’K} and a set of
memories {Mj, ..., M, }, with L > K and M, to M,, are attached to the local memories of
cores T to Ty, while My, to M, represent the shared memories. The communications
between the cores are realized by buses. An example of this kind of architecture is TC27x
that we choose as our hardware multi-core platform. TC27x is a tri-core microcontroller.
As shown in Figure 14, there are two category memories: the local memories attached to
each core and the global memories. For the record, all the memories can be accessed by any
cores.
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XBAR

Abbreviations:

ICACHE: Instruction Cache
DCACHE Data Cache

DSPR: Data Scratch-Pad RAM
PSPR: Program Scratch-Pad RAM
BROM: Boot ROM

PFlash: Program Flash

DFilash: Data Flash (EEEPROM)

: SRI Slave Interface
: SRI Master Interface

System Peripheral Bus(SPB) )

¢
TC1.6P
CPU2
t |(XBar_SRI)

' Related memories

Figure 14-Hardware Architecture

There are three cores in this architecture, two identical cores TC1.6P and another core
TC1.6E. All these three cores execute the same set of instructions. As described before, this
multicore architecture can be seen as a uniform architecture.

There are two independent on-chip buses in the tri-core architecture: Shared Resource
Interconnect (SRI) and System Peripheral Bus (SPB). The SRI is the crossbar based high
speed system bus for TC 1.6.x CPU based devices. The SPB connects the TC1.6 CPUs and
the general purpose DMA module to the medium and low bandwidth peripherals. More
details can be referred to the manual (Infineon, TC27x 32-Bit Single-Chip Microcontroller,
User's Manual, 2012).

For respecting the HW platform, the model should consider different type of memories.
There are two types of memories in multicore architecture: memories attached to each core
and memories shared by all the cores. The time for one core to access its attached memory
is shorter to the memories attached to other cores. And the time to access to shared
memories is a compromising way. The caches in this dissertation are considered inhibited.

2.2.2 Application modeling

The software architecture is modeled using a directed graph G(V, E), such that V is a set of
nodes and E is a set of edges, also called transitions (links between nodes). A node is
modeled as an execution time, a trig mode, a period. A transition has a weight that depends
on the size of data transmitted, the period of the producer, etc. The graph size is optimized
by the creation of buses between nodes.
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The node can be periodic or triggered by some events. For the periodic nodes, we assume
that they are associated with a period T;. Eachnode p; € V is also associated with execution

information that contains two parts: execution time C; and variable accessing time A;.

The execution time C; represents the time for a node to execute some instructions. C; is
influenced by two factors. One is the performance of the core on which the node is located
in. The higher computing power, the faster the node will finish its corresponding execution.
In a real-life automotive system, the real-time constraints also depend on the execution
modes, such as the engine speed or driving modes. E.g. the amount of executed codes
depends on the vehicle speed. In the following we denote these contexts cases, and it is the
second factor that influences C;. A weight w is associated to each case to model its
importance in the system (high value of w means high importance). So for a given node its
execution time varies with its location and the contexts case.

The accessing time A; mentions the time for a node to read or write its related variables
located in the memoties. In our multi-core architecture, each core is associated with a local
distributed memory. Nodes can also access data in shared memories. It is worth to mention
that all the memories can be accessed by all the nodes distributed to all the cores, which
implies that the accessing time for a node to write or read a variable varies with the location
of the node as well as the location of its variable. Itis obvious that 4; is much shorter if we
locate its accessed variables into the local memory of the core where this node is located.
Accessing a variable in the local memory of another core is much slower; and accessing to
shared memoryis dedicated to data exchanged between cores.

2.2.2.1 Variable access model

For each node p;, its accessed variables {8;} contain a list of variable it writes {6;,,}and a
list of variable it reads {6;,-}: {6;} = {6;,} U {6},-} (shown in Figure 15(a)). Each variable is
composed of several attributes:

e Data size: the size of a data prototype. For example: for an irv data prototype with
type of SInt16, its size is 2 byte.

e Data position: in our multi-core platforms, the data can be distributed in the shared
memoties or the local memories. The local data are the data that are distributed to
the shared memories and the global data are those distributed to the local memories.

e Data rate: the total size of data transferred between runnables in a transitionina unit
of time. For a transition between runnable p; and pj, the period of p; is T; and the
period of pjis T;. The variables transferred in this transition are denoted as ;. :
0;.j € O, and 0;,; € 6, So the sent datarate for this transitionis 6;_,;/T; and
the received data rateis 6;_,;/T; (shown in Figure 15(b)).

e Data unit: the physical unit of each variable. Some data unit varies dramatically over
time and some data varies rarely. There are also some units varying depending on
the data.
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Reading \':\."r.itilr;l'g
Variabl ariable
e Nodep, —>  {6,}

(a) Variable model

Sent data rate : B, /T,
Wiriting Variable ent data rate : 8,,,/T, Reading Varlable

Modep, ——> {91_...} ; = > {9_"} —){ Node p;

Received data rate : 8,,/T,

.., 1< 16..) .o,

(b) Data rate model
Figure 15-Variable access model

2.2.2.2 General transition model

The communications between nodes are presented as transitions E. Fach transition E; ;
contains two nodes p; and p;, (p;, pj € V), model p; = p;presents the dependency
between p; and pj, where p; is the predecessor of p; and pjis the successor of p; . The
predecessor p; sends a set of variables that are received by the successors. Similarly, the
successor p; receives a set of variables from predecessor. Therefore, without specifying the
granularity or the type of communications, a transition can be modeled as shown in Figure
16.

Transferred
Objects

Predecessor | Successor

Figure 16-General transition model

22221 Enumeration of transitions
The general transition model imposes of enumerating all the transitions in the unique way.

The examples below illustrate how to transform the original graphs such that it appears the
transitions each of which is associated with one single predecessorand one single successor.

e C(Casel: A predecessor accesses a transferred object that is consumed by multi-

successors (Figure 17).
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A

g oy 5 L 2 E—la]
Transition A

m Duplication EZ: P | })@

Predecessor |:| Successor | Transferred object Ei: Transition i

Figure 17-Sources duplication for casel

e (Case2: A predecessor accesses different transferred objects that are consumed by
multi- successors (Figure 18).

Predecessor |:| Successor | Transferred object Ei: Transition i

Figure 18-Sources duplication for case2

e C(Case3: A successor accesses a transferred object that is produced by multi-
predecessors (Figure 19).

A
Pl a l E: Pl } .
|:—” S o
Transition A
P2 | Duplication E,: P2 | P) S
Predecessor I:l Successor I Transferred object Ei: Transition

Figure 19-Sources duplication for case3

e Case4: A successor accesses different transferred objects that are produced by multi-
predecessors (Figure 20).

A
by A —El: P1 })s
S

B
P2 E,: | P2

Predecessor I:l Successor | Transferred object Ei: Transitioni

Figure 20-Sources duplication for case4
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2.2.2.2.2 Communication Bus
If multi-objects are transferred between a source and a destination, the transitions are
encapsulated in a communication bus to simplify the presentation as shown in Figure 21.

AT\
A El:| P ——> S

> B s | mmp E2 P‘BP)EqP
C E3: P‘CP’E

Predecessor D Successor | Transferred object Ei: Transition i - Bus

s

Figure 21-Communications Bus

2.2.3 Partitioning

The partitioning involves the distribution of a set of nodes {py, ..., p;} to the cores and also
a set of variables {91, e 9]} to the memories. We note p; ywhen the ith node is distributed
to kth core and 6;; when the jth variable is distributed to [th memory. Agj (k, D)

mentions the accessing time for the node located on the kth cote to access the variable
6located on lth memory. We also define a set of contexts cases {Kj, ..., Ky}, and @, is the
weight for the nth case. Then, C;(k, n)represents the execution time for ith runnable
located in the kth core and in the nth case. Thus when we distribute a node p; to core 1y,
based on its execution time, accessing time and period, this runnable results in a load Up,

%, Ag; (e D) + C; (k)
upi,k = Ti

The load of core T}, is the sum of the loads caused by the runnables distributed to this core,

Um = Z Up; i

2

mentioned as Ug, :

The inter-core communications represent the main challenge to pass from single-core to
multi-core architectures. The overhead introduced by inter-core communications is one of
main raisons that degrade the performance of multi-core system. In order to minimize this
overhead, the applications have to be analyzed in a fine degree. The overhead of inter-core
communication is estimated by summing the number of data access per millisecond. We
define a notion of Fe#chSize for each variable (data) transferred by transition. The fezchsize

depends on the size of vatiable as well as features of concrete hardware: for a transition Ej;

with variable 0;_, ;, we denote the size (in bit) of variableas § ( 0 j) and the size of the
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0 i
target hardware is S(H). Thus the fetchsize of this transition is FS (E i j) = lS(S (;1)] )

example, the fetchsize of a transition that transfers data with size of 16 bit is 1 if the target

. For

platformis a 32-bit microcontroller. The overhead caused by a transition that crosses the
cores is

eyt TS(EL-J-)X?CXC’T_I_ er+ FS(E;j)XFCXCT

Ug, . =
E;j T, T,

Where FC is the number of cycles taken by each fetch, and CT is the time taken by each
cycle. FC and CT are specified by the targethardware. €, and &, are two constants for the
writing and reading delay, the values depend on the communication mechanism. For

example, in the Autosar application, these can be the delay caused by the creation of IOC
channel by RTE.

In resume, the objective function F is defined based on the above notions:

F = Z uEi'j,

&y +FS(E ;) xFCXCT s FS(E;;)XFCXCT

Jifi#E]
Ug,, = T; T / !
0,else
2.24 Cost function and constraint formalization

For objective function or cost function, we consider different criteria. In this chapter, we
consider the criterion of inter-core communication overhead. We will present other criteria
in the next chapter.

We denote the cost of transitions that cross the coresas E, |, the objective function is:

T=ZuETJ

The load of the multicore distributionmust be well balanced, with a tolerated deviationof .

It appears as the main design constraint in the optimization formulation:

Q: Umax —Umin < @

Where U, are the loads of the core that is most occupied and Uy, is the load of the core
that is least occupied.

It is obvious that different ways of partitioning will change the cost value of objective
function. Figure 22(a) shows a simple example: the application contains 3 runnables p;, p,
and p3. p; send variable 8,to p, and 6, to p5. The hardware model shown in Figure 22(b)

consists in a 2-core system with a shared memory M5. Besides, each core is attached to a
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local memory M; and M,. We assume that the execution time for each runnable at each
core is identical. The objective is to distribute the application to this 2-core system. Solution
in Figure 22(c) allocates all the runnables in one core,and distributes the variablesinits local
memory. This could minimize the accessing time, so the communication overhead is low.
But the loads of CPU are not well balanced as the other core is empty. Solution in Figure
22(d) allocates the runnable ps; to the other core, so when runnable p; finishes its
execution, P, and Pz can execute in parallel. Therefore the loads of CPU are better
balanced. However, the communication overhead is increased as the accessing time for the
variables allocated at the shared memory is much longer. This compromise is considered in
our objective function.

0 @ n, mn,
(%) —> M, M,

6,
(c) (d)

Figure 22-Explanation for objective function. (a) Application; (b) Hardware model; (c) and (d)
Solutions considering different criteria.

In this work, we aim at developing a practical policy for partitioning software applications,
composed of several hundreds of nodes, onto multiple cores that will minimize this
objective function, while respecting the dependencies and the constraintsin AUTOSAR.

2.2.5 Description of the optimum solutions searching method

The partitioning solution is represented as a vector in which each element represents the
position for runnables ot variables. The vector is an ordered list with the length of | = ] +
I, where the | represents the number of the variablesand I is the number of nodes to be
distributed. In the position p of the vector, p € [0,]), a memory is distributed for the
corresponding variable and in position p, p € [J, ), a core is attached to the corresponding
node. The different combinations of the memories and cores will change the value of
objective function. In order to deal with this combinatorial optimization problem, we take
the metaheuristic algorithms as a solver. The method to search the optimum solution is
described as follows:
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Initial solution can be obtained in a random way as well as by heuristic guide. The
quality of the initial solution would affect final solution;

Neighborhood structure of a solution defines its possible move direction for
improvement, which involves 2 operators: operator N1 changes only the memory
attached to one single variable to another memory or operator N2 changes only the
coreattached to one single node to another core. The move will choose one operator

randomly each time;

Constraints guarantee the viability of solutions on each move proposed by the
neighborhood operator: all the solutions (including the initial solution) shall respect

all the defined constraints;

Metaheuristic algorithms provide the searching policies to find the optimum (or
good) solutions in an efficient way: starting at the initial solution, the improvement

is effectuated by a single move (defined by neighborhood structure) each iteration.

In this work, we apply three metaheuristic algorithms: SA, GA and TS. All the algorithms

share the same framework such as initial solution, neighborhood structure. Each algorithm

performs different searching policies to find the final solution. The evolution of solutions

iterationbyiterationis illustrated in Figure 23, which shows the convergence of optimization

process by our objective function with two goals: benefit the acceleration of performance

from single-core and respect the real-time constraints on the dependent tasks.

Function costs

500 000 4
450 000
400 000
350 000
300 000 §
250 000 4
200 000 +
150 000 -

100 000 J1 |

50 000

Interesting
solutions

0

T T T T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7 000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000

lteration numbers

Figure 23-An example of search result by SA

The results obtained with this method show the contributions of our work:

Quality of the solutions explored according to the cost function;

Diversity of the solutions around the optimum at the convergence of the method. This

diversity will provide the designer the guide needed to take its final choice (Miramond &
Delosme, 2005) ;
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Scalability of the method over complex AUTOSAR applications potentially composed of
several hundreds of runnables and several thousands of transitions.

2.2.6

Design space exploration

The partitioning of automotive applications in multi-core systems requires a design space

exploration with many parameters to be considered. From the software point of view, it

includes the follow points:

Software Allocation. How to decompose the allocations into partitions and
distribute the partitions on different cores?

Task-set definition. What is the set of tasks that should be used for an efficient
and secure scheduling?

Sequencing definition. How executable entities should be ordered in tasks? And
which parameters should be assigned to tasks, in order to comply with real-time and
functional requirements?

In single-core system, scheduling configuration can be computed using the design
of the implementation model (e.g., a model from MATLAB/SIMULINK can be
used to generate a scheduler). In multi-core system however, the implementation
model should take into considerationparallelism before doing this step, which is not
done when porting single core application onto multi-core. When we consider multi-

core only at SW level, this leads to a very complicated task.

Application synchronization. Cooperation between cores requires specific inter-
core synchronization mechanisms. E.g. the synchronization points in Figure 24 shall
be guaranteed to make sure the correcte cooperation between the two cores.

Corel

* ® Points of

Core2 . Synchronization

Figure 24-Synchronization example

It is worth to note that the points of task-set definition and sequencing definition already

exist in the single core system.

From the hardware point of view, the following points that exist already in the single-core

context are impacted by multi-core.
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Data mapping into memories (SWCs). Microcontrollers have several levels of
memories (e.g. one local memory per core and one shared memory). Each
architecture has its own hierarchical compositionof the coresand memories, e.g. tri-
core architecture in Figure 25 consists in 3 cores, each core with a local memory.
Besides, there is one shared memory that can be accessed by all the cores. This kind
of multi-core architecture imply three type of accessing time: the accessing time to
the local memory, the accessing time to the distant memory (local memory of
another core) and the accessing time to the shared memory. The T;_,; in Figure 25

means the accessing time from Core-7to the memory j.

An example of AUTOSAR
SW Architecture

+ 2000 runnables

«20 000 data

«>> 20 000 data accesses

1]
D %.
E T

Set of data Set of data Set of data Set of data

Data mapplng into memories

T1$2 ‘ |

Local memory Local memory
Core2 Core3

Shared
memeory

T1$1

Local memory
Core1

Tisg

Figure 25-1llustration of data mapping into memories

Hardware safety mechanisms. Microcontrollers have a set of features that can be
activate in order to comply with ASIL X (ISO 26262). Mainly Memory Protection
Unit (MPU) has a significant impact on multicore especially on the aspect of the
communication time.

These parameters interact with each other: The SW allocation choices drive data allocation
and in return, data allocation also impacts SW behavior. E.g., a first allocation can be

provided by considering a same accessing time to data. After that, the data accessing time

will be corrected to obey the real case. This correction changes several features of allocation

such as CPU loads, communication overhead and so on, which can impact the choices of
SW allocation.

SW synchronization problem is influenced by SW allocation choices. We make the

distinction between fine grain synchronization, which correspond to data protection and

coarse grain synchronization (much more difficult) that target software flow mastering. For

example:

Data allocationimpacts synchronization problem as the data protection mechanism
is needed for assuring data consistency
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e An appropriate choice of SW allocation with few synchronization points will
facilitate the synchronization process.

Safety requirements (ISO 26262) also affect directly or indirectly the SW allocation and data
allocation. For example:

e Some safety mechanisms might require the separation of SWCs of different
Automotive Integrity Safety Levels (ASIL) from each other (e.g. spatial isolation
made by allocated for separation of concerns). This isolation in space can be use to
make sure that the SWCs are not able to write to other SWCs data (partitioning)
using software/hardware support such as a memory protection or memoty
management unit (which also influences the data allocation).

e Microcontroller architecture should comply with safety requirement. For example,
ASIL D application should be allocated to cores that run in lockstep.

The interdependence between these parameters as shown above exacerbates the design
complexity. The designspace needs to be explored by considering these entire requirements.
Therefore, design space exploration should be formulized as optimization problems and
powerful optimization techniques are needed. We adopt Meta-heuristic algorithms as solver
to deal with these optimizations problems that are formulized as combinatorial
optimizations (CO) problem. The relative theories are previously presented insection 2.1.

2.3 Autosar Application

The main work of this dissertationis to integrate seamlessly our partitioning method into
an AUTOSAR development process. For doing that, we model the application of
AUTOSAR in order to allow automatic exploration of its deployment onto multi-core
architectures adapted with our model presented earlier. Basically, AUTOSAR development
process can be divided in two steps:

A system is described at higher level without knowing if it will be allocated on several ECUs
or only to one ECU and so on, without knowledge on the core in which software will be
executed.

At configurationlevel, SWCs have to be allocated to cores. This allocation is done using the
operating system configuration, by allocating runnables to tasks, tasks to OS-Applications,
and OS-Applications to cores. We recall that a given OS-Application is statically assigned to

a core.

2.3.1 Communication overhead in Autosar application

In order to consider of inter-core communication overhead to the Autosar applications, we
analyze and model the communications in the architecture of Autosar application.

Communication model in AUTOSAR
According to the AUTOSAR Methodology, there are three types of communication:
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e Inter ECU communication: already available using well defined APIs of the
communication stack (COM) ;

e Intra OS-Application communication: always handled within the RTE ;

e Inter OS-Application Communication: The communication channel depends on

the set of software mechanisms used for data protection:

o IOC (Inter OS-Application Communicator) is used when we need to cross
memory protection boundaries (e.g. when MPU is used for safety reason). The
IOC is an operating service, executed in supervisor mode (i.e. a system call has
to be done before performing a communication);

o RTE is used when the communication can be performed in shared memory
mode. In that case, the IOC service provided by the operating system is not
required.

Manipulated data also need to be protected. In fact, with a 32-bits hardware architecture,
only 32-bits can be manipulated atomically. For greater size, a lock (e.g., spinlock) has to be
taken. That implies that 4 kinds of communications can be used for inter-OS-Application
communications (order by time required to perform the data access).

e By RTE without spinlock, the fastest way to handle data access (no protection);

e By RTE with spinlock, if data is too big to be manipulated atomically (data
consistency is handled);

e By IOC without spinlock, memories regions protected by MPU (safety);

e By IOC with spinlock, memories regions protected by MPU and data handled > 32
bit.

Runtime behavior impact depends on the kind of communication. For example, the time
required to access data in a memory protected by spinlock is lower than the time required
to access data in a memory protected by spinlock and by MPU (additional System Calls).
This directly impact WCET of tasks and CPU load, which can be significant at ECU level.

Do not forget that an inter OS-Application communication may not necessarily require a
cross core communication. E.g., it is possible to allocate some OS-Applications to a same
core.

It is also worth noting that OS-Application have been created to tackle memory protection
problems; i.e. most of inter-OS-Application should be performed by the IOC. However, an
OS-Application cannot be splitted into cores, so we have at least one OS-Application per
core.

In AUTOSAR, thereis no restriction of the protectionlevel of znter-core inter-OS-Application
commmunication. The different kinds of communication are illustrated on Figure 26.
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Figure 26-Communication in Autosar

2.3.1.1 Classes of communication

The communication of applicationis presented by a set of transitions between runnables.
There are three levels of categories for these transitions: the SW architecture level, the
RTEEvent triggering level and partitioning level as shown in Figure 27.

e SW Architecture level: at this level, the communications are categorized into 2
groups: the communication realized by the Ports and Interfaces and the
communication realized by the IRV.

e RTEEvent triggering level: this level classifies the transitions into several classes
according to the RTEEvents that activate the runnables

e Partitioning level: at this level the communication are managed by IOC or by RTE.
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Figure 27-Different levels of categories for communications

level

23.1.11 SW Architecture level
At SW Architecture level, the transitions can be categorized into 2 groups: inter-SWC

connection and intra-SWC connection.

Inter-SWC connection represents the transitions between two runnables from
different SWCs. These transitions are implemented by Ports and Interface. The
Interface has three types: the SenderReceiverInterface, ClientServerInterface and
ModeSwitchlnterface. For now, the ModeSwitchInterface that provides several
modes is not in our concern. SenderReceiverInterface provides data that can be
written by producer runnables and be read by consumer runnables. While
ClientServerInterface contains several services (functions calls) that are provided by
server runnables to response the call of client runnables. To build such inter-SWC
connection, a runnable that writes variables or provides services connects the
provided Port attached to the related Interface and in the other side, another
runnable that reads these variables or calls these services connects the required Port
attached to the same Interface.

Intra-SWC connection, on the other hand, represents the transitions between
runnables from the same SWC. These transitions are implemented by IRV, where
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the communications are realized by writing and reading the IRV -data by runnables.
This level of communication is shown in the top of Figure 27.

2.3.1.1.2 RTEEventtriggering level
RTEEvent triggeringlevel classifies the transitions into 4 classes according to the RTEEvent

type that activates the runnables.

Class 1: both producer runnable and consumer runnable are activated by Timing

Event.

This means that both runnables are periodic. By comparing the period of producer
runnable (noted as Tp) and the period of consumer runnable (noted as Tc), Class 1
can be further classified into 3 series, where

- Series 1: Tp = Tc, that the periods for both runnables are identical. Thus, the
data rate can be presented by size of data (byte) / (Tp or Tc).

- Series 2: Tp < Tk, this is under-sampling case that the periods of producer
runnables is grater, which will result in data Joss. Two type of data rate are
considered: producer data rate (data size by Tp) and consumer data rate (data
size by Tp). The dataloss rateis Tp/Tc.

- Series 3: Tp > Tc, over-sampling case that the periods of produceris smaller,
which will result in data duplication. Like series 2, two type of data rate are
considered and the data duplication rate is Tp/Tc.

Class 2: either producer or consumer runnable is activated by Timing Event, but not

both.
Class 2 can be further classified into 2 series:
- Series 1: Producer runnables is periodic.
- Series 2: Consumer runnables is periodic.
Class 3: Neither producer nor consumer runnable is activated by Timing Event.

Class 4: this class focuses on the communication between server runnable and client
runnable and the RTEEvent type of server is Operationlnvoked Event (OIE).

The relation with implementationlevel is shown in Figure 27.

We did a quantitative analysis of the transitions in automotives applications. The complete

statistic results can be referred in Annex 1. Here we show in Figure 28 the distribution of
the transitions in terms of their classification. The concerned application represents a

portion of full application of Engine Control System, which contains two chains of SWC:

air chain and advance chain. We can notice that the SWCs in chains air are strongly

connected by class1 series] (as to high quantity of class2 series 2, this is due to the mode

switch connection, which we don’t study in this dissertation.). When allocating the SW, the

transitions of class1 series1 shall be considered as strong connection.

44



Chapter 2 Relative works & problem formalization

Transition analysis in details
400
350
- 300
§ 250
: 200
S 150
= 100
& 50 I
- 0
Between chains Chain Air Chain Advance
M ClasselSeries1: Tp=Tc 2 214 0
M ClasselSeries2: Tp<Tc 1 37 0
W ClasselSeries3: Tp >Tc 0 56 0
M Classe2Series1: non-Tc 29 15 1
M Classe2Series2: non-Tp 9 357 2
M Classe3: non-Tp&Tc 31 14 98
Classe4: Client&Server 0 10 0

Figure 28-Distribution of the transitions for two chains

23.1.13 Partitioning level

The implementationlevel and RTEEvent trigginglevel already exist in the context of single-
core, while with the intention to migrate to multi-core platform, the communication inside
the core can be managed by RTE while the communication pass between cores should be
managed by IOC, which derive the partitioning level: the transitions passed by RTE and the
transitions passed by IOC.

The determination of the partitioning level for transitions is part of multicore SW
distribution, which requires balancing several elements:

e C(lassification from RTEEvent triggering level: cach transition belongs to one
of 4 classes presented in part 2.8.1.2.2. For each class, the requirement for
partitioning is different.

1) Class 4: The IOC provides sender-receiver (signal passing) communication only.
For the communication in class 4 that are composed of client-server
communications, the RTE translates Client-Server invocations and response
transmissions into Sender-Receiver communication

2) Class 1 series 1: the overhead for IOC is quite high. In order to reduce the
number of IOC transitions in the multi-core software solution, our model will

associate an extreme high cost to this type of transitions. This point has been
described in the 2.3.1.1.2.
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3) Class 1 series 2 & series 3: the overhead for IOC is decreasing when data loss
rate or data duplication rate is augmented.

4) Other classes: the restriction of IOC can be relaxed.
Physic unit of data

As detailed in Annex 1, we reanalyzed a quantitative study of the variability of data
on the target automotive applications. The details of the unit are summarized in
Table 1. For the data unit for whose values vary dramatically, it is discouraged to
manage this kind of transition via IOC, while for those varying rarely over time,
managed by IOC will not bring further overhead for communication. However, the
variation of some data units is depends on the data, which requires best knowledge
of the functional behavior of the applications.

Count Variability
Unit espT | TOP Designation (Fastésr:%\,;gepend
Without unit | 155 49 Without unit Depend on data
kwW 1 Power Slow
g/mol 1 1 Slow
1/s 2 2 Fast
kgls 29 49 Fast
RPM/s 4 Revolltions per | pagt
kg 24 31 Mass Fast
s.kg/Pa 1 1 Fast
m2 14 6 Surface Depend on data
kg/s/Pa 1 1 Depend on data
Pa 77 114 Pressure Depend on data
N.m 142 Moment Fast
% 31 Percentage Depend on data
218 26
(K)™N1/2 1 3
- 305 104
m/s2 1 Acceleration Fast
°Vil 2 Fast
mOhm 1 Resistance Slow
° 1 Depend on data
KN (1/2) 1 1 Depend on data
1/Pa 4 6 Depend on data
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km/h 6 Speed Slow

A 7 Current Depend on data
S.u. 1

J 1 Inertia Slow
K 43 61 Depend on data

Nm 10 Moment Fast

W 3 Puissance Fast

\ 16 Tension Slow

mg 3 Mass Fast

B 4

mn2 3 3 Surface Depend on data
°C 9 Temperature Depend on data
RPM.N.m/s 1 Depend on data
sImKNL/2) |1 1 Depend on data

km/h/1000RPM | 1 Slow
°/s 1 Depend on data
Pa/s 1 1 Depend on data

m 1 Distance Fast

VI/s 8 Slow

S 45 11 Temps Fast
m/s”?2 23 Depend on data

°Ck 17 14 Fast

RPM 22 4 Tours Fast
m/s”"3 1 Depend on data

bool 6 Slow
N.m/s 6 Depend on data

kg/h 2 Slow

Table 1-Physical unit of data

Data size

Data size is the size of data transferred between transitions. For example: for an irv
data prototype with type of SInt10, its size is 2 byte.

Data rate

This is the total size of data transferred between runnables in a transition in a unit
time. The high data rate causes high overhead for IOC. In order to facilitate the
allocation according to varying elements like data rate, load of CPU, the knowledge
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of the period for each runnable is mandatory. Follows are the rules for the
association of the period for each runnable.

A. For the runnables activated by periodic RTEEvent — timing event, they are
periodic and the period is determined by its related timing event.

B. For the runnables activated by other RTEEvent, for example, the runnables
existing in class 2, class3 and class4, they are not periodic. The determination
for these runnables depends on different assumptions:

Assumption 1 For a runnable activated by non-periodic event, for
example by data receive event, and if it receives the variable only by
another producer runnable activated by periodic event (Figure 29), its
period is equal to the period of this producer runnable.

X I Periodic runnable with period of X _ Event-driven runnable

:____X_--_I : Selected runnable for determining the period of R_A

Figure 29- Determination period for non-periodic runnable R_A (assumptionl)

Assumption 2 Ifit receives the variable only by another producer runnable
activated by non-period event, its period is equal to the period of that non-
periodic runnable. This implies the research for an event chains (in Figure 30)
to find the runnables in the assumption 1.

| X I Periodic runnable with period of X - Event-driven runnable

I ]
:l_ - _X_---I : Selected runnable for determining the period of R_A

Figure 30-Determination period for non-periodic runnable R_A (assumption 2)

Assumption 3 If it receives simultaneously by several runnables, its
period is equal to the minimum period of these received runnables (in
Figure 31).

X I Periodic runnable with period of X - Event-driven runnable

e —— .
i - .
X I : Selected runnable for determining the period of R_A

Figure 31-Determination period for non-periodic runnable R_A (assumption 3)
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Assumption 4 For a server runnable, its period is equal to its client
runnable.

These elements shall be balanced to determine the cost level for a transition managed by
IOC. Besides, the cost of spinlock shall be considered if presented.

2.4 Related works in automotive domain

The theoretical formulation of application partitioning has been widely studied in the past
either in the domain of multiprocessor computing (Yi, Han, Zhao, Erdogan, & Arslan, 2009)
ot in hardware/softwatre co-design (Miramond & Delosme, Design space exploration for
dynamically reconfigurable architectures, 2005). But the proposed partitioning methods
rapidly faced a major limitation considering the lack of real use cases integrated in a full
industrial working process. The explored solutions athigh-level were too abstractto be really
considered. Moreover, when considered alone, the formal optimization clears out the
designer from the problem and neglects that not all the design considerations can be
theoretically formulated.

In recent years, the adoption of multicore architectures in critical embedded systems has
revived the need of design flows fully integrating the exploration phase. So, several works
have dealt with the partitioning problem of IMA applications for the avionic domain as well
as AUTOSAR applications for automotive domain onto multi-core systems. So, in (Monot,
Navet, & Bavoux, 2012) authors developed heuristic algorithms for mapping runnables into
different cores. In this paper, runnables are grouped into clusters before being distributed
across cores by optimizing a specific objective function. The works of Faragardi et. al
(Faragardi, Lisper, & Nolte, 2013) and Saidi et. al (Saidi, Cotard, Chaaban, & Marteil, 2015)
proposed a heuristic algorithm to create a task set according to the mapping of runnables
on the cores. With the goal of minimizing the communications between runnables, the
problem is classically formulated as an Integer Linear Programming (ILP). Therefore,
conventional ILP solvers can be easily applied to derive a solution. In (Sailer, et al., 2013),
Genetic Algorithms (GA) are applied to partition the applicationin an optimal way. The
results of task allocation are evaluated by their simulation tool TA -Toolsuit that is a vendor
tool developed by enterprise Timing Architect. Similar tools are developed by other
development companies such as SymtaVision. This kind of vendor tools proposes validation
at simulationlevel. Based on an allocation solution given by user, the tools simulate a set of
tasks deployed onto multi-core architecture, which check a set of constraints (e.g.: real time
constraints, contention between the shared resources, etc.). The designer can analyze the
Gantt diagram of the scheduling and the corresponding data dependencies or summarize
the overhead of the communicationload. The simulationis close to the real Hardware model
and the analysis results could help for the (slight) modification of the allocation (proposed
by the tool this time). However, the allocation choice might still not be optimal, and the
automatic exploration of the allocation step from these tools is very limited.

49



Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

There are several European projects that work on the multi-core systems such as

AMALTHEA (AMALTHEA, 2012), parMerasa (parMERASA, 2011) and EMC2 (EMC?
2014). The AMALTHEA project proposes the methods that evaluate the allocation
solutions using a set of cost functions. Applying a metaheuristic algorithm such as genetic
algorithms, the tool explores the solution space to find the best solution that satisfies the
condition of the input cost functions. However: The definition of the cost functions from
the tool is mainly based on the real-time criteria: the metric for quantifying the deadline
compliance on system level, resource consumption and data-communication overhead. The
aspectof sequences of execution such as event chains and execution ordersisnot considered
by the tool (Sailer, et al., 2013). Moreover, they do not propose approaches for scheduling.

The project parMerasa takes the dependency of components into account. However: The
overhead of communication between cores is not considered. The task configuration
maintains the same from single-core architecture, which does not benefit enough from the
multi-core (Panic, et al., 2014). Take the application presented in (Panic, et al., 2014) as an
example, the dependencies between the runnables are shown in Figure 32(a). In single-core
case, it clusters the runnables with the same period into same task as shown in Figure 32(b)
and one feasible scheduling is shown in Figure 32(c) that respects the dependencies exigency
(tasks with period of 1 ms shall be executed before other two tasks). According to their
approach, when migrate to multi-core, only the runnables in the same tasks can be
parallelized to different cores in order to maintain the same sequence of task execution as
to the single core. Therefore, Figure 32(d) shows a result when migrate the example
applicationinto a 2-core system, where we can see the executionorder of tasks is maintained,
i.e. task with period of 1ms execute before tasks with 4 ms and tasks with 5 ms. Their
approach does not need additional validation stage as it keeps the original configuration
such that the development cost is not increased for multi-core platform. However, this
approach can introduce large idle intervals due to a long critical path inside a task (Kehr, et
al., 20106), for example, the R_idle in (d). Moreover, the communication overhead is not
considered in their approach, for example, the communication between R2 and R5.
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W | | w

= Cycle1 1 1" Cycle 4 1" Cycle 5

Task 1ms

Core 0 | R1 ——| R3 |
Core 1 Ridle |

Figure 32-Approach proposed by parMerasa

Conclusion

The problem of distribution into multi-core system has been launched in the automotive
industry with the explosion of the standard functionalities as well as ADAS. In spite of the
existence of the solutions in the literature for solving this optimization problem, it has not

yet existed the satisfactory solutions that are adapted to the automotive context as well as
the AUTOSAR standard.

Compared to the existing solutions in the literatures, the method proposed in the following
chapters will bring the following contributions:

e Consider the sequences of event chains in Chapter 3 by minimizing the global jitter
during the scheduling.

e The proposed scheduling approach works both on single-core and multi-core
platform and is compliant with AUTOSAR applications.

e Integrate the multi-core distributions in a validation loop based on hardware
concerns (Hardware in the Loop) in Chapter 4.
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3.1 Real-time System scheduling overview
A classification of scheduling algorithms is presented in (Cheng, Stankovic, &
Ramamritham, 1989). Before introducing some typical algorithms both in single-core and

multi-core system, we first introduce some basic notions and notations.

3.1.1 Basic notations

The real-time system is composed of a set of real-time tasks, each task is made up of a set
of execution entities called jobs, which execute sequentially on processors and respect the
temporal constraints. Based on the way of the jobs recurring over a period of time, the real-
time tasks could be classified into 3 categories:

e DPeriodic tasks: the time interval of the activation time between two jobs is fixed.
This fixed time interval is called period.

e Sporadic tasks: the time interval of the activation time between two jobs is not
fixed, but it exist the minimum interval.

e Aperiodic tasks: similar to the case of sporadic tasks, but there is no minimum

value of the time interval between two jobs.

The model of the periodic tasks proposed by Liu and Layland of (Liu & Layland, 1973) is
the most widely used in the real-time systems modeling as shown in Figure 33. The

parameters for a periodic task T; = (r2,C;, D;, Ty) are:

10 (release time) : the first activation time of the task 7 If the first activation time
of all the tasks is given, then these tasks are concrete tasks. Otherwise they are non-
concrete tasks.

C; (Computing time): The execution time for task 7z This parameter is considered
usually as the worst case execution time in the target processor.

D; (Deadline): the relative deadline to each activation of the task.
T; (Period): the time interval between the adjective jobs of the task.

A
T;
h 1 1 i
._ >
1 e » 1
T; < > rm+ D;
1 1
C

Figure 33-Task model

The constraints on deadlines of tasks are classified into three categories:

e Implicit deadlines: all task deadlines are equal to their periods. D; = T,
e Constrained deadlines: all task deadlines are less than or equal to their
periods. D; < T,
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Arbitrary deadlines: no relationconstraints exist between the deadlines and periods
for all the tasks.

Although the principal scheduling issue tackled in real-time system is the respect of the

deadline of tasks, there are some other metrics that are worth to be taken into consideration

for scheduling analysis as shown in Figure 34.

54

Job T denotes the n™ instance of task 1.
Release time of job T/ is denoted as 1;™: so we have 1;* = 1,0 + nxT;.
Relative deadline of job 7/* is denoted as d*: so we have df* = 1"* + D;.

Start time of a job 7[" is denoted as s{*: the time on which the job begins for the
first time to execute the resources. The start time of the first job in Figure 34 is 2.

End time of a job 7' is denoted as f;": the time on which the job terminates its
execution. The end time of the second job in Figure 34 is 12.

Response time of a job 7' is denoted as R?*: it corresponds to the difference
between the release time of a job and its end date.

Response time of a task 7; is denoted as R;: it corresponds to the maximal
response time of job among all the jobs of this task.

Instantaneous latency of a job 7' is denoted as L% the difference between the
considered instant and the deadline of the job.

Instantaneous laxity of a job 7' is denoted as [}': the difference between the
latency and the rested time for terminating the execution of the job.

Entry/exit delay of a job: the difference between the job start time and the job end
time.

Jitter of a job 7' is denoted as &]*: it represents the delay between the release time

and start time for job T/

A

[
>

Response time, |

1 22 3% 4 5 & 7 8 9 100 11! 12

! ' | ' | Jittey) ' '
| ——— | Laxity at 3,: ' Entry/Exit delay

v

Later'\cy at3

Figure 34-The scheduling of task (1, 3, 6, 6)



Chapter 3 Real-Time System scheduling

3.1.2 Real-Time Scheduling algorithms overview

3.1.2.1 Scheduling in single-core system

This section presents some scheduling algorithmsin single-core real-time system. For the
partitioned scheduling in multi-core system, each core uses the single-core scheduling, which
will be presented in the following section. If each task is attached with a single fixed priority
and this priority is applied to all the jobs of this task, this priority is called fixed task priority.
The scheduling algorithms Rate Monotonic (RM) (Liu & Layland, 1973) and Deadline
Monotonic (DM) (Leung & Whitehead, 1982) are the examples for fixed task priority. If the
fixed priorities attached to each job of task are not the same, this is termed as fixed job
priority. The example scheduling algorithms in this case is Earliest Deadline First (EDF)
(Liu & Layland, 1973). If the priorities attached to each job of the task may change at
different times, it is termed as dynamic priority. The example for this is Least Laxity First
(LLF) (Mok, 1983) scheduling.

3.1.2.1.1 Fixed Task Priority Scheduling
The priority fixe to tasks is the priority that does not vary during the execution of the tasks.

31.21.1.1  RateMonotonic (RM)

The scheduling algorithm RM is proposed by Liu and Layland in 1973. RM is very
commonly used for scheduling real-time tasks in practical applications. Basic support is
available in almost all commercial RTOS for developing applications using RM. According
to RM, the static priorities are assigned on the basis of the period of the task: the shorter
the period is, the higher is the task's priority. The RM is optimal under the preemptive
scheduling model and implicit deadlines constraints. A sufficient test of schedulability for n

ici< A
Ti_n(n )

i=1

tasks is given by:

31.21.1.2  Deadline Monotonic (DM)

The scheduling algorithm DM is proposed by Leung and Whitehead in 1982. According to
DM, the static priorities are assigned on the basis of the relative deadline: the shorter the
deadline is, the higher is the task's priority. Unlike RM that no longer remains an optimal
scheduling algorithm for constraint deadline constraint, the DM is optimal under the
preemptive scheduling model and constraint deadlines constraints. A sufficient test of
schedulability for n tasks I';, is given by:

D.
vr; €T,,G + z [F‘l.cisz)i
jehp(zy ' 7

where hp(t;) is the set of tasks in I}, with the priorities no smaller than T; .
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3.1.2.1.1.2.A Analysis of response time

The response time of tasks could be used to analyze the schedulability. A sufficient and
necessary condition of schedulability is proposed, which is based on the calculation of the
worst case of response time. For a set of tasks [, the worst case of response time R; for

task 7; € I, is given by:

R;
Ri=C;+ Z F X C;
jénp@ "

with hp(7;) is the set of tasks with higher priority than z.in the taskset I,. The taskset I,
with fixed priority is schedulable if and only if:

Vt; €T, R; < D;

3.1.2.1.2 Job-Fix Priority Scheduling

The job-fix priority means that the priority of each job remains the same at its execution.
The most studied job-fix priority scheduling algorithm is Earliest Deadline First (EDF),
which is proposed by Liu and Layland in 1973. EDF assigns the priority to each task
according to their absolute deadline. The highest priority at the time ¢ is assigned to the
task with the absolute deadline that is most closed to £. EDF is optimal for the independent
tasks in the single-core system. One exact test of schedulability for n tasks I',, with implicit
deadlines constraints is given by:

n

vVt €Ty, ﬂ <1
T,

i=1 '

However, this conditionis only sufficient for the constrained-deadline sporadic task sets.

There are certain advantages for EDF compare to FP (Fixed-Priority). EDF can schedule
all the tasks that can be scheduled by FP, while conversely, it is not the case. In spite of the
extra computation for the absolute deadline, EDF introduces less context switches.
Therefore, EDF performances are better for the overhead of runtime (Buttazzo, 2003).
EDF allows full utilization the processor, while FP performs more idle time. Taking RM as
an example, when the number of tasks m — o0, the maximal system utilization

isIn2 = 0.609.

However, the disadvantages of EDF are not negligible, which leads to the reason that it is
not applicable in the commercial RTOS. EDF is less predictable and controllable: the
response time of tasks in FP is always constant and we can always minimize the response
time (if it is possible) by increasing its priority. While in EDF, they are variable, and the
priority is not reconfigurable. EDF requires more overhead for implementation. For
example, it might require a long data structure to deal with the absolute deadline for each
job of all the tasks. In the case of non schedulable, i.e. the response time of the task exceed
its predicted execution time, PF is more predictable as only lower priority tasks miss their
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deadlines. While EDF generates domino effect (Liu & Layland, 1973): all the tasks missed
their deadline almost at the same time.

3.1.2.1.3 Dynamic priority Scheduling

The dynamic priority varies during the execution of an instance. The most utilized
scheduling algorithm of dynamic priority is Least Laxity First (LLF) algorithm, which is
proposed by Mok in 1983 (Mok, 1983) . LLF is based on the laxity of each job (instance),
L.e. the task with the smallest laxity is the highest priority to be scheduled in the runtime.
The condition of schedulability of LLF is the same to that of EDF (COTTET, 2000), which
means one exact test of schedulability for n tasks I'y, with implicit deadlines constraints is

n
Ci
V1; € Fn,zFS 1
=1

LLF scheduling is optimal both on single-core system and multi-core system in the

given by:

condition that the release times of all tasks are identical (Herrtwich, 1990), which means
LLF scheduling is not optimal if the ready times (release time) are not the same for all tasks.
Although LLF scheduling may yield better resultsin terms of schedulability, it is less efficient
than EDF scheduling such as the larger quantities of process switches and requirement of
several reevaluations of the scheduling criterion.

3.1.2.2 Scheduling for multi-core systems

The scheduling algorithm for multi-core systems determinates i) for each task in the system
the processor it will execute at and ii) for each processor the execution date and order of
the tasks. The first part is also considered as allocation problem that was studied in the
previous chapter. In this chapter we focus on the second part: the problem of scheduling in
multi-core systems with a limited number of processors (for a system with non-fixed
number of processors, there will not be any problem of scheduling as we can add as much
number of processor to make sure the tasks are schedulable: each task in a processor in an
extreme example). The scheduling problem for multicore-systems is formulated in the first
time by Liuin 1969 (Liu & Layland, 1973). It does not exist an optimal scheduling algorithm
with a polynomial complexity. De-facto, the majority of scheduling problem in multi-core
systems is NP-complete. Besides, the solutions for scheduling problems in multi-core

system are certainly not the trivial extensions of the solutions from single-core system.

Multicore system scheduling can be classified according to the degree of migration allowed

such as:

a. No migration: Each task is allocated to one processor and cannot be migrated to
other processors in the runtime.

b. Task-level migration: Also called as restricted migration where the jobs
(instances) of a task are allowed to be allocated to different cores. But the migration
of job during the runtime is forbidden.
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c. Job-level migration: Also called as filll migration where no restriction for the
migration, each job of each task can be migrated to different processors.

For each degree of migration allowed, similar to the case of single-core system, the
scheduling can be further categorized according to the priority attachment such as task-fix
priority, job-fix priority and dynamic priority. By combining the dimension of migration
and priority, there are 9 classes of scheduling algorithms. Carpenter et al. summarized the
bound of utilization for each class in (Carpenter, et al., 2004) as shown in Table 2, where
only full migrationwith dynamic priorities can promise a full utilizationof system (utilization

U is equal to the number of cores m).

No migration Restricted migration Full migration
Task-fix m+1 m+1 m+1
Priorities (VZ-1)m<vU < 1 U< 2 U= >

1+ 2m+1

Job-fix m+1 m+1 m+1
Priorities U= 5 m—-alm-1)<U< m—-alm-1)<U<
Dynamic m? m+1 m? m+1 U=m
Priorities 3m—2 =sUs 2 2m—1 =sUs 2

Table 2-Known bounds on worst-case achievable utilization (denoted U) for the different classes of
scheduling algorithms (Carpenter, et al., 2004)

Scheduling algorithms where no migration is permitted are referred as partitioned
scheduling, while the migration allowed scheduling algorithms are referred as global
scheduling. The majority of research for global scheduling focuses on the job-level
migration.

It is worth to mention that it is neither comparable nor opposed between partitioned and
global scheduling in the majority cases. In the example of (Leung & Whitehead, 1982) for
the periodic taskset, the scheduling is accomplished by a partitioned based algorithm, while
no global approach can be found to realize a feasible scheduling. On the other hand, there
are also systems of periodic taskset that can only be scheduled by global scheduling
algorithm.

In addition to partitioned scheduling and global scheduling, there are also some hybrid
approaches that contribute to combine the advantages of partitioned and global scheduling.
The examples for hybrid approaches contain semi-partitioned scheduling and clustering
scheduling. We introduce these approaches briefly in the following parts of the section.

3.1.2.21 Partitioned scheduling

The strategy of partitioned scheduling (Andersson& Jonsson, 2000) (Baker & Baruah, 2000)
consists in portioning a set of n tasks [, into m disjointed subset I'},T'2, ..., T™ such that
Uz, = [, and m is the processors’ count. Then in each processor T,
scheduling approach can be performed for the subset T that is allocated to it. Therefore,

a single-core

there is a scheduler for each processor. The tasks allocated to each processor are forbidden

to migrate to other processor during the runtime; neither can preemptionresultin migration.
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The partitioned scheduling has the advantage of dividing the scheduling of multi-processor
into several scheduling of single-core where it exist already a lot of works in the literature,
and it is the multiprocessor real-time scheduling approach the most commonly used in
practice. The partitioning of the tasks to different processors is equivalent to the “Bin-
Packing” problem that has been studied by a lot of works since 1970. The problem of bin
packing s a classic intractable problem to solve which is NP-hard in the strong sense (Garey
& Johnson, 1990) (E. G. Coffman, Garey, & Johnson, 1996). Therefore, there is no
polynomial or pseudo-polynomial algorithm to solve this problem by finding the minimum

processors for allocation of tasks.

Bin-packing problem consists of packing a set of n items B,, = (b4, ..., b,,), each with a
size s(b;) € (0,1], into 2 minimum number of unit-capacity bins. To do that, the items are
partitioned into 2 minimum number of m subsets B, B2, ..., B™ such that Zbiij s(h;) <

L1<j<m.

Despite of the intrinsic complexity of bin-packing problem, the optimal solution is not
always required. This is quite commonin the industrial case, i.e. the solutions that meet the
schedulability requirement in each core are considered as good solutions.

Most of the heuristics of allocation are the greedy algorithms that are based on two steps:

Step 1- Sort: sort the list of tasks by certain orders. A principal rule in this step is sorting
the tasks by the decreasing of their utilizations.

Step 2 - Distribution: place the tasks one by one with the order defined in step 1 to the
processors. The target processors are chosen by their features of utilization. Several rules
for placing the tasks are proposed to distribute the tasks to different cores. Considering the
current task z, the typical rules (E. G. Coffman, Garey, & Johnson, 1996) for allocating it to

a set of processors that are sorted by increase order of their indexes are:

e Tirst-Fit (FF): allocate the task 7/ to the first processor that can contain it.

e Best-Fit (BF): allocate the task 7/ to the processor with the greatest feature of
utilization that can contain it.

e Worst-Fit (WF): allocate the task 7/ to the processor with the smallest feature of
utilization that can contain it.

e Almost Worst-Fit (AWF): similar to WF but the processor with the second smallest
feature of utilizationis chosen.

e Next-Fit (NF): the latest processor that is chosen to receive the task is defined as
current processor. The task 77 is allocated to the current processor. If the current
processor is not available to receive it, next processor is chosen as the current
processof.

More details for these heuristics can be referred in (E. G. Coffman, Garey, & Johnson,
1996).
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After the allocation step, each processor can perform single-core scheduling policy as
described in the earlier part of this chapter.

In the literature, the study of the partitioned scheduling approachin real-time systems is
started by Dhal and Liuin 1978 (Dhall & Liu, 1978). The authors in this paper propose 2
scheduling algorithms RM-NF (Rate Monotonic Next-Fit) and RM-FF (Rate Monotonic
First-Fit) for a set of periodic and independent tasks. The tasks are preemptive and the
priorities are attached in the task level. According to their approaches, the allocation of the
tasks are achieved by next-fit and first-fit heuristic respectively, to do that, the tasks are
sorted by the increasing order of the period of the tasks before the execution. Then on each
processort, the rate monotonic (RM) policyis performed to schedule the tasks allocated to
each processor. These two approaches are then improved by rectifying an error on the
evaluation of performances in (Oh & Son, 1993). In this paper, a scheduling method that
based on RM-BF (Rate Monotonic Best-Fit) is presented. Another task-fix priority
scheduling approachis proposed in (Davari & Dhall, 1986), where a RM First-Fit with
decreasing utilization order factor is adopted.

As for the scheduling approaches for job-fix priority taskset, Lopez et al. in (Lépez J. M.,
Garcia, Diaz, & Garcfa, 2003) presented scheduling algorithms EDF-NF, EDF-FF and
EDF-WF (worst-fit) for the preemptive taskset. And in (Lopez, Garcia, Diaz, & Garcia,
2000), the authors adopted EDF-FF and EDF-BF as the scheduling approach for a set of
preemptive tasks. Besides, in (P. Regnier, 2011) algorithm RUN that is optimal
multiprocessor Real-time Scheduling via Reduction to Uniprocessor is proposed, which
transforms the multiprocessor scheduling problem into an equivalent set of uniprocessor
problems. RUN allows reducing the preemptions bound as well as showing a well scalability
when the number of tasks and processors increase.

3.1.2.2.2 Global scheduling

The global approach applies the scheduling algorithm in a global way for the multi-core
architectures. Conceptually, all processors share a single ready queue that contains all the
tasks in the systems. The tasks are priority-driven. Le.in eachiteration, m tasks with highest
priorities in the queue are selected to be executed in the m-core multi-core architecture,
which can be achieved for example by RM or EDF. Global scheduling allows the migration
of the tasks. A task that is preempted by another task with higher priority can resume in
another processor. For the implicit-deadline tasks, there exist optimal global schedulers,
whereas no optimal schedulers exist for constrained-deadline and arbitrary-deadline tasks
(Fisher, Goossens, & Baruah, 2010). Obviously, the global scheduling eliminates the need
to resolve the tasks allocations issues, which is the source of capacity loss in the partitioned
scheduling. Therefore, global schedulings performs better for the utilization of the
processors. However, the inconvenient of global scheduling is not negligible, including the
overhead introduced by migration and Dhall effect(Dhall & Liu, 1978).

Dhall effectwas introduced in (Dhall & Liu, 1978) that considers global scheduling ofa set
of periodic tasks with implicit deadline on m-core systems. The taskset contains one long

period task with utilization of 1 and m short period tasks with infinitesimal utilization such
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that the total utilization of the system is 1 + €. The global scheduling based on EDF or FP
is not feasible for this taskset as the long period task will always be scheduled lastly and
hence exceed its deadline. This so-called Dhall effect can be solved by partitioned scheduling,
which led to a perceived superiority of partitioned approach. That is why a majority of
research on real-time scheduling for multi-core system focused on partitioned approach
during a period. This superiority was eventually disproved by (Leung & Whitehead, 1982)
(Baruah S., 2007), that the partitioned scheduling and global scheduling are incomparable
both for fixed task priority and fixed job priority systems.

There exist a lot of works for global scheduling that are based on task-fix priorities or job-
fix priorities systems. For task-fix priorities cases (gFP), (Andersson, Baruah, & Jonsson,
2001) presented algorithms based on RM and in (Baker T. P., 2003) the algorithm based on
DM was proposed. As to the job-fix priorities cases, there are a lot of works that based on
EDF approaches (gEDF) (Goossens, Funk, & Baruah, 2003) (Baruah S. K., 2004) (Danne
& Platzner, 2000). Authorsin (Srinivasan & Baruah, 2002) presented a scheduling algorithm

that modified the traditional EDF approach by adopting a condition: if u; < ™ / 2m—1)

, where u;is the utilization for task T;and m is the number of processor, then the approach
applies EDF policy; otherwise if u; > m/(Zm —1) the jobs in task T; are attached with

the highest priority.

The Proportionate Fair (PFair) (Andersson & Jonsson, 2003) (Anderson, 2000) is a global
scheduling algorithm with a different conception that based on the notion of fairness of
proportion, where each task makes progress proportional to its utilization. To do that, each
task is divided into sections, and each section executes in the interval called window with
the identical size. The PFair algorithm is the only known algorithm that is optimal for the
multi-core scheduling. However, only theoretical results can be found in the literature. This
algorithm has not yet been applied in the real-life user case. De-facto, at each boundary of
the window, the algorithm has to make decision for scheduling and the tasks have to be
preempted quite often to guarantee the optimality. Therefore, PFair incurs very high
overheads in the system (Jung & Park, 2005).

3.1.2.2.3 Hybrid approaches

As mentioned in the previous section, the global scheduling might introduce
communication overheads due to the quantities of migration of jobs. Despite the fact that
partitioned scheduling can mitigate this kind of overhead incurred from global scheduling,
its algorithmic inherent capacity loss limits the maximum utilization to 50%. Here we
introduce some hybrid approaches that contribute to combine the advantages of partitioned

and global scheduling.

3.1.2.2.3.1  Semi-partitioned scheduling

Semi-partitioned scheduling is obtained by combining the partitioned and global scheduling.
According to semi-partitioned approaches, most tasks can be allocated to the processors in
the similar way of the partitioned scheduling. However, for some tasks that satisfy some
conditions, for example, some tasks cannot be allocated to any processor without exceed
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their deadline, they can be shared by more than one processor. Thus migrationis allowed
for these “special” tasks. However, as the migration is only reserved for the minority tasks,
the communication overhead introduced in global scheduling can be minimized in semi-
partitioned approaches.

Different types of semi-partitioned scheduling are proposed in the literatures, for example
in (Kato & Yamasaki, 2008), at most m — 1 tasks (m is the number of processorsin the
system) are permitted to migrate between the particular processors. The scheduling is based
on EDF, but their approach performs better system utilization compared to the traditional
EDF-based algorithm. The scheduling is based on DM in (Lakshmanan, Rajkumar, &
Lehoczky, 2009), where the task with the highest priority in each processor can be split
across more than one processor. There are also scheduling algorithm named U-EDF that
extends the main principles of EDF based on the unfairness property. U-EDF is optimal in
multi-processor both on periodic tasks (G. Nelissen, 2011) and sporadic task set (Dragomir
Milojevic, 2012), which allow benefiting from a substantial reduction in the number of
preemptions and tasks migrations.

3.1.22.3.2  Clustered scheduling

Clustered approach is another hybrid scheduling that combines the advantages of
partitioned and global scheduling. Actually, clustered scheduling can be categorized as a
generalization of both partitioned and global scheduling: if there is only one single cluster,
it is equivalent to partitioned scheduling; and if the number of cluster is identical to the
number of processor, then it yields global scheduling. Since neither partitioned nor global
strategies dominate over the other, cluster-based scheduling is a natural direction for
research towards achieving improved utilization bounds (Shin, Faswaran, & Lee, 2008).

The simple principle of the clustered scheduling is that the tasks can be scheduling in the
way of global approach but cannot cross the boundary of the clusters that they are allocated
aton offline partitioning phasein the way of partitioned scheduling. The cluster may contain
more than one processor, thus the tasks are scheduled globally between them in a certain
way. Clustersare transformed into tasks and are globally scheduled on the multi-core system.
Moredetails can be found in (Calandrino, Anderson, & Baumberger, 2007) (Shin, Easwaran,
& Lee, 2008).

3.1.3 Real-Time examination

A set of tasks are called to be feasibleif there exists some scheduling algorithms that respect
the deadlines of all the jobs generated by the task set.

A scheduling algorithm is called optimal if it can always find a solution to schedule all the
tasks without missing the deadline if these tasks are feasible.

A task is referred to as schedulable if its worst case response time does not exceed its

deadline according to a given scheduling algorithm.

The analysis of schedulability is the test to verify if a set of tasks are schedulable by a
scheduling algorithm. The test is sufficient if it guarantees that all the tasks are deemed
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schedulable by this test are in fact schedulable. The test is necessary if all the tasks are
deemed unschedulable by this test are in fact unschedulable. The testis exactif it is both

sufficient and necessary.

3.1.4 Resource sharing

In multicore system, there are several ways to guarantee the data consistency when there are
parallel accesses to the shared resources.

Lock-based: The task will be blocked when it tries to access the shared resource that has
been already taken by another task. The blocked task can be suspended (i.e., (Rajkumar,
1990)) or keep spinning (i.e., (Gai, Lipari, & Natale, 2001)).

Lock-free: The tasks can access to the shared resource without blocking. At the end of the
operation, a check will be performed and the task will re-access if the check shows an

inconsistent result.

Wait-free: This mechanism needs multiple copies of the shared resources.

3.2 Dependant tasks scheduling

In this work, we focus on scheduling applications driven by control and data flow (e.g
engine control, brake control etc.). For that type of command and control applications the
order in which the individual statements are executed is very important and the proportion
of parallel code is often hard to identify. In consequence, the partitioning of automotive
applications into multiple cores requires a fine analysis of the dependencies between
runnables and tasks. It then needs to ensure that these dependencies are respected by the
scheduling policy. It corresponds to a scheduling problem related to both periodic and
dependent tasks.

3.2.1 Related works on real-time scheduling of dependent tasks

The theoretical formulation of application scheduling has been widely studied in the past
either in the domain of single-core or multi-core computing (Davis & Burns, 2011). Among
the proposed methods, optimal policies are particularly interesting because they are able to
find a correctordering when it exists. In multi-core systems, several schedulability tests were
also developed in the real-time scheduling theory to easily determine the minimum number
of processors needed to schedule a set of applications (Davis & Burns, 2011). But the
problem of scheduling periodic and dependent tasks onto multi-core systems is more
complex since it needs to express the dependencies according to a particular Model of
Computation (MoC) adapted to the execution properties of the application domain. For
example, few run-time scheduling solutions exist which support applications modeled using
a MoC and provide hard-real-time services. Most of the existing works assume the
applications are modeled as Synchronous Data Flow graphs (SDF) (Bekooij, et al., 2005)
(Gantel, et al., 2012) and adapted the existing scheduling algorithms (Lee & Messerschmitt,
1987) to the multi-core case. Bekooij et al. presented a dataflow analysis for embedded real-
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time multiprocessor systems (Bekooij, et al., 2005) . They analyzed the impact of time
division multiplexing on applications modeled as SDF graphs. The work presented in
(Bamakhrama & Stefanov, 2011) extended the SDF model to Cyclo-Static Data Flow model
(CSDF) in otder to supportt cyclically varying (but predefined) production/consumption

rates.

But most of the proposed approaches need an exponentially complex conversion from SDF
to HSDF (Homogeneous SDF). In the same way, in real-time scheduling, when the tasks
are synchronous it is necessary to reason on the hyper-period and unfold the tasks into a set
of jobs, as with classical branch-and-bound based approaches (Xu & Parnas, 1990). For that
reason, authors in (Miramond & Cucu-Grosjean, Generation of static tables in embedded
memory with dense scheduling, 2010) proposed a dense scheduling technique to reduce the
size of static schedule tables in embedded memory. On the other hand, single-processor
policies have been adapted to the multiprocessor case, as partitioned scheduling. EDF, for
example, which is known to be optimal for scheduling arbitrary task sets on a uniprocessor
system has its multiprocessor version: the Partitioned Earliest-Deadline-First (PEDF)
algorithm (Lépez J. M., Garcia, Diaz, & Garcia, 2003) . EDF scheduling of data-dependent
tasks was also tackled in (Forget & Frédéric Boniol, 2010) by adjusting deadlines and release
times to respect the dependencies.

Hence, a lot of theoretical solutions have been already explored in the literature and were,
for example, adapted to massively parallel execution architectures (Zhang, Gao, & Qiu,
2015). But such techniques have only been applied to the AUTOSAR context very recently
(Kehr, Quinones, Boddeker, & Schifer, 2015). In (Sagstetter, et al., 2014), authors propose
integration framework for solving large and complex scheduling problem in automotive
multi-ECU systems connecting via timing triggered Ethernet. The authors generate local
schedules for each independent subsystem by SMT (Satisfiablity Modulo Theories)
approach and integrate them into a global schedule. For the case where no feasible solution
exists, they present a conflict refinement to adapt individual subsystem. Compared to ILP
solver, they show a better performance in terms of runtime when the complexity of the
system increases. However, this work does not target on multi-core context.

Authors in (G.Georgia, Stoimenov, Huang, & Thiele, 2013) propose a scheduling policy for
mixed-criticality multi-core systems with the consideration of sharing resource. In order to
prevent the interference between the tasks of different levels, they proposed policy allowing
only the tasks of the same criticality run at the same time. Therefore, the contention among
the tasks with different criticality can be delimited such that the CA (Certification Authority)
is proved. Their approach optimizes in the same time the task mapping and scheduling,
where the design space is explored by SA.

Authors in (Giannopoulou, Stoimenov, Huang, & Thiele, 2014) target a mixed-criticality
multi-core system, where they optimize the data allocation in the shared memory such that
the access to the memory in parallel from different cores will not delay each other. They
pinpoint that the interdependence exist between the task mapping and schedule that are
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studied in their work (G.Georgia, Stoimenov, Huang, & Thiele, 2013) and the data mapping
and propose anintegration of these two steps.

In (Kehr, Quifones, Boddeker, & Schifer, 2015) authors introduce a so called timed implicit
communication (TIC) for decoupling task communication to allow parallel execution of
producer and consumer, while the same data-flow is achieved on all MCEs (Multi-Core
ECUs). However, the overhead communication is introduced that may reduce the new

opportunity of parallelization.

Our approachdiffers from the cited works in several points. First of all, it considers periodic
dependencies expressed as AUTOSAR transitions which differ from the SDF semantics, as
explained in following parts of this section. Secondly, we have separated the assignment and
the scheduling problem. So that we search a multi-core feasible scheduling solution for a
given software distribution. This separation also relives the problem of the hyper-period
complexity. Finally, few of them have been integrated in an industrial software design flow

and validated onto real-life applications.

3.2.2 Model of periodic precedence

The tasks can be independent or dependent. If it exist the dependency between two tasks,
we call these tasks dependent tasks, otherwise they are independent tasks. The majority of
scheduling studies in the lecture are targeted on the independent task model. However, from
a practical point of view, results on how to schedule tasks with precedence and mutual
exclusion constraints are much more important than the analysis of the independent task
model. Normally, the concurrently executing tasks must exchange information and access
common data resources to cooperate in the achievement of the overall system objective.
The observation of given precedence and mutual exclusion constraints is rather the norm
than the exceptionin multi-core real time system.

In this dissertation, we work on the dependent tasks model. There are two types of
dependency between two tasks 77 and 77: the dependency of precedence and dependency of
data. The dependency of precedence between (, ) imposes that 7 cannot execute until the
end of execution of 7. # is called the predecessor of 7, and 7 is called successor of z. The
dependency of data indicates that the task z produces the data that are consumed by 7. This
dependency involves also the dependency of precedence. We note preds(t;) and

succs(t;) the predecessors and successors of 7, so T; € preds (Tj) and 7; € suces(t;).

The scheduling of the dependent tasks shall consider the constraints of dependency. For
the constraints from the aspect of precedent dependency, there are mainly two approaches
exiting today: first one is based on the semaphores: a semaphore is allocated to each
predecessor of (7, 7), and the successor 7 shall wait the predecessor zrelease the semaphore
before its execution. The second one is based on the modification of the priorities and the
date of the first activation of the task. For the constraints from the aspect of data
dependency,additionto the constraints imposed by the precedentdependency, the handling
of the data transfer and shared resources has to be taken into consideration.
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In the AUTOSAR applications, there are large numbers of transitions that transfer the data
in asynchronous way or synchronous way. The dependencies existing in Autosar application
belong to the category of data dependency.

Here we present our proposed scheduling approach by considering the dependency
constraints in the system. We consider static scheduling as the pre-run-time scheduling is
often the only practical means of providing predictability in a complex system, which
requires the timing constraint. One of the weaknesses of static scheduling is the assumption
of strictly periodic tasks. Although the majority of tasks in real-time applications are
periodic, there are still some sporadic requests for services that have hard deadline
requirements. To confront this issue, there are 3 methods to increase the flexibility of static
scheduling:

e The transformation of sporadic requests into periodic requests (Mok, 1983),
e The introduction of a sporadic server task (Sprunt, Sha, & Lehoczky, 1989),
e The execution of mode changes (Fohler, 1992).

We use the notations defined in (Forget & Frédéric Boniol, 2010) for the precedent
dependency. The precedence between two periodic task z and 7 corresponds to a set of
precedence between the instances of the two tasks. For the nth instance of task z and n'th

! !
instance of task 7, 7' = Tj* denote the precedence from 7' to 7}* .

Definition 1: Instance Precedence: For any k € N, let Jj, denote the set of integers of the
interval [0, k[. Let lem(n,n") denote the least common multiple of n and n'. For two task

uand g let p;; = lcm(Ti,Tj) , the precedence T/ —>T}ll as the following set of task

M;
: . J
instance precedence is defined as T; — 7; where:

M;; c {(n,n/)

(e (nn) € Ty i/ Xgpl-,,-/T,-} 1)

Hence, the precedence now appearsin a repetitive pattern and we can define the periodic
precedence as follows:

. . ! .
Definition 2: Periodic Precedence: The periodic precedence 7;" = 7" is defined as T;

!

L] . L]
— 7 that is based on 7; — 7; such that:

Mi"j = {(n,n')|5lk €N, (m,m') € M;;, (n,n') = (mm) + (ka—i;j,ka—i;_j>} 2

The precedence expresses all the possible communication between instances of task z and
7. For example in Figure 35 (a): the M; ; = {(0,0)}, so according to equation 2, the periodic

b i 40 0
precedence T, — T; is T; = T;

; ?,tf > 1}, ctc. Similarly in Figure 35 (b), the M;; =
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!

{(0,0),(1,1),(3,2)}, so the periodic precedence T; - Tj is 70— ‘L']Q,‘ri1 - le, 3 -
7,1 = T3, 17 > 1h 1] > T ete
T Lﬂ T w . T_P‘ { i'?‘ L’Tj -
v L L b
L 7} - 7 7 er‘
01234567 89101112 0123 4567 85101112
(a) r; = (0,1,3,3),7; = (0,1,6,6) (b)7;=(0133),7; = (0,1,4,4)
M; ;= 1{(0,0)} M;; = {(0,0),(1,1),(3,2)}
. . M, j
Figure 35-Periodic precedence t; — t;
3.2.3 Communication semantics in AUTOSAR: Explicit & Implicit

When the communication involves the writing and reading of the data, e.g. Sender-Receiver
communications and IRV communications, the Autosar defines different semantics of
communication. Explicit data access (data reception and data transmission) means that
when a runnable sends or receives data elements, it immediately access to RTE buffer by
using corresponding RTE API While implicit data access means that a runnable does not
actively initiate the reception or transmission of data. More precisely:

e Explicitread. When a runnable reads the data froma buffer, it might receive different
copies of the dataif there is updating of data in this buffer during the execution of
the runnable. Figure 36 shows an example, where Runnablel reads the buffer (data
element) several times during one instance ofits execution. When the buffer updates
the data, Runnable 1 reads immediately the new version of the data as shown in

Figure 36.

Void Runnable1(Void)
{

Status = Rte_Read_XXX ( & Data Element); Instance of Runnable 1 m
Status = Rte_Read_XXX ( & Data Element);

Status = Rte_Read_XXX ( & Data Element);
) Data Elemenc [ AN BN

Figure 36-AUTOSAR communication: explicit read

e Implicit read. When a runnable reads the data from a bulffer, it gets a stable copy
from the buffer when the runnable starts. Several calls inside the runnable always
return the same value even if the data in the buffer has been updated by other

runnables. The value is therefore stable and data coherency can be ensured. As
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shown in Figure 37, the Runnable 1 can always get the same copy of data during its
execution.

Void Runnablel(Void)
{

Status = Rte_IRead_XXX ( & Data Element); Instance of Runnable 1 - - I

Status = Rte_IRead_XXX ( & Data Element);

Status = Rte_IRead_XXX ( & Data Element);
) DataElement AN [BN e o7 ]

Figure 37-AUTOSAR communication: implicit read

e Explicit write. When a runnable writes on a buffer, the buffer updates the data
immediately during the execution of the runnable. In Figure 38, the Runnable 1
executes several writing instruction on buffer Data Element during its execution.
Each time it writes, the buffer updates the data immediately.

Void Runnablel(Void)
{
DataElement = ‘B’
Status = Rte_Write_XXX ( & Data Element); Instance of Runnable 1 I - I
DataElement =‘C’

Status = Rte_Write_XXX ( & Data Element);
DataElement = ‘D’
Status = Rte_Write_XXX ( & Data Element); y

} Data Element - -]

Figure 38-AUTOSAR communication: explicit write

e Implicit write. The datais available only when the runnable that writes on this buffer
returns. If several data writing accesses to the same data element on the buffer are
performed inside a runnable during the runnable execution, only the last value is sent
(also known as last-is-best semantics). So in the Figure 39, the buffer of Data
Element only considers the last value written by Runnable 1 during one execution.

Void Runnablel(Void)
{

DataElement = ‘B’

Status = Rte_IWrite_XXX ( & Data Element);

DataElement = ‘C’ Instance of Runnable 1 I - - I
Status = Rte_IWrite_XXX ( & Data Element);
DataElement = ‘D’

Status = Rte_IWrite_XXX ( & Data Element);

} Data Element I:- -]

Figure 39-AUTOSAR communication: implicit write

The precedent dependency model defined in section is under the influence of these

. M j : . . o
semantics. For 7; — 7;, the different semantics might result in different value of M; ;. For
example, we define the period of 7;is 3 time units and the period of 7; is 6 time units, in
the explicit semantic, in a hyper period, the first instance of 7; have to be activated after the
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last instance of 7;.While in the implicit semantic, the first instance of 7; can be activated
just after the finish of the first instance of 7;, as only the first copy of datain the buffer is
consider in the implicit read semantic. Figure 40 shows this example.

1 2 3 d
a t i .‘TL Li

v v \ 4 A 4

1
ﬂ DIN ;f“ ?;{ _

=
59
.:‘; !

01234567 89101112 01234567 89101112
(a) Explicit communication (b)Implicit communication
M;; ={(1,0)} M;; ={(0,00}

Figure 40-AUTOSAR communication semantics influence on the dependency model

However, these communication semantics are not sufficient to determine all values of M;;

for the complete systems. The complementary information to determine all the value of in
the entire system could be obtained from high level model of the applications (Klikpo,
Khatib, & Munier-Kordon, 2016).

3.2.4 Dependent tasks scheduling in Single-core systems

The first release time of task z is the first activation time of this task, i.e. the reslease time
of its fisrtinstance. Normally, the first release time is defined by the system of tasks. In the
first step in our hypothese, we consider the set of tasks with identic release time with value
of 0. The release time for the n#h instance in system S = {7;} can be thereby deduced by
equation 3.

=12 +nXxT, Vv, €S (3

The start time of each instance in the schedule table indicates the date when it begins to
execute and use the resources. For the dependent tasks, the start time of each instance (job)
not only depends onits release time, but also depends on the end time of its precedent jobs
in other tasks if there is a precedence constraint between them. Besides, for the jobs that do
not have precedence constraint between them, they cannot be executed simultaneously in
the same core. As a result, the start time of one job might be delayed by other jobs that have
been already activated by the scheduling policy. This delay is constructed from additional
delay element y. The delay element contribute to avoid the overlap between instances

independent of each other that are allocated in the same processor
The start time of the n'th instance in task 7 is given by:

sy = maX(Tjn,max(n,n’)eMi'_j(sin + Ci),v") (4)
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The delay element y will be updated each time the calculation of starting time of instance is
finished in the scheduling to avoid the overlap. So for a non-preemptive system, each time

Sl-”’is calculated, the y is updated by:

y* = max(y, s* + C) )

We now give is an example to illustrate how the method generates schedules by using

equation 4 and 5: the system § contains 3 tasks as show in Figure 41, where the precedence
is defined as: M; ; = {(0,0)}, M, = {(0,0)}. The hyper period H for the system is the

least common multiple of the period for all the task: H = lem(VT;). So for the system in
Figure 41 (a), the hyper periodis 16. In this hyper period, the instances for each task

are: {17,7},77,77,7), 74,74} . Now we illustrate one by one the calculation of start time of
these instances. The initial value of y = 0. For job T{ : as it has no precedence, and its release
time is 0, so s? = max(0,0,0) = 0, and we have to update y by equation 5 each time the
calculation of start time is finished, so ¥ = max (0,0 + 1) = 1. Then for job T ]Q: its release
time is 0; there is precedence between 7Pand T as M;; = {(0,0)}, so by equation 4, we
compute start time for 7, s = max(O, sd+1, 1) =1,y =max(1,14+4) =5; for
other instances we repeat the same steps and the result is illustrated as:

s? = max(0,5,5) =5, y =max(5,5+1) =6

s} = max(4,0,6) = 6, Yy =max(6,6 +1) =7

s? =max(8,0,7) =8, y =max(8,8+1) =9

st =max(8,59) =9, y =max(9,9+1) =10

s? =max(12,0,10) = 12, y =max(12,12+ 1) =13

So the schema for the scheduling is shown in Figure 41 (b):

Obwviously, the order of instances considered in equation 4 and equation 5 change the
scheduling result. In this example we assume the following order of the
instances: {z,77, 7,7}, 77,75, 77 }. Weexplore in section3.2.4.1 andsection 3.3 several

ordering policies and their impact on the quality of scheduling.
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Figure 41-Example of start time

Typically, the tasks allocated in a core are scheduled in a repeated way. For example, if all
the tasks are periodic, the scheduling will be repeated in a time interval that equals the least
common multiple of the periods of the entire tasks. This time interval is called pattern. The
makespanis defined for each patternwith a set of tasks that the time between the start time
of the first instance of the first executing task and the last instance of the last executing task.
The makespan might vary in different patterns, especially in the case where the sporadic
tasks exist. Hence there exist a maximum makespan among all these patterns.

For each pattern with an interval time P = [t,t;), the makespan for the tasks
executed during P isgiven by the value of delay element y. For the example shown in Figure
41, the patternis the hyper period and the makespan is the value of y, which is 13.

3.2.4.1 Determinate order

The order of calculating the start time for all the instances of the tasks in hyper period H is
not obvious. This is usually caused by the instances that do not have precedent dependency
between them. For example, the instance 7§ and T3 shown in Figure 41 are not depended.
The change of their order will influence the makespan as the delay element is updated
immediately at the end of each calculation of start time. Therefore, if we calculate the start
time of 77 before T, the T will be delayed to the date 13 to start, and as a result the
makespan is lengthened to 15. To avoid this kind of indeterminism, we propose 3
dimensions of ordering metric to determine the calculation order for the instances.

3.24.11 First dimension: Precedent dependency

The precedent dependency is the first ordering metric to determinate the order between

. , .
instances. For example, for 7{* and T} , if (n,n') € M;;, then the order between

J o
,. . . ! . !
7{* and 7}* in the scheduling tables is T{' = 7}' , i.e. ;" has to be calculated before sj* . So

for the example in Figure 41, the order between instances T} ,T]Q, T0is 10 —> ‘L']Q — 7P

71



Design process for the optimization of embedded software architectures onto multi-core processors in
automotive industry

3.241.2 Second dimension: Release time

When there is no precedent dependency between instances, the order between them is
determined by their release time: the smaller the release time of an instance is, the earlier it

. . ! . !
will be executed. For instances 7{* and 7}* such that (n,n") € M, ;, if 7" < 7}*, then the

JJ>

, . ! . . .
order between 7]' and 7]* is T/ > T]' . For example in Figure 41, between instance 7}

and T}, as the release time of T} is 8 which is smaller than release time of T3 (which is 12),
so we calculate the start time for T} before 772, Similarly, we calculate the start time of T
before T}. For instances with identical release time, e.g. T# and T} have the identical release
time 8, we adopt third dimension to decide their order.

3.24.1.3 Third dimension: Priority
This dimensionis ordered by priority of the instances.

In this work we use fixed task priority policy. If each task is attached with a single fixed
priorityand this priorityis applied to all the jobs (instances) of this task, this priorityis called
fixed task priority. The priority of each task is assigned on the basis of the relative deadline:
the shorter the deadline is, the higher is the task's priority. This scheduling algorithms is
called Deadline Monotonic (DM) (Leung & Whitehead, 1982) proposed by Leung and

Whitehead as presented in the previous section.

When precedence constraints exist, “the relative urgency of a task depends both on its
deadline and on the deadlines of its successors” as presented in (Chetto, Silly, &

Bouchentouf, 1990). Hence, the deadline of a task can be adjusted as what was proposed in
(Chetto, Silly, & Bouchentouf, 1990):

D; = min(D;, min(D; — Cf)f,-ESuccs(m (6)
The calculation of the adjusting deadline for each task can be done one time at the

elaboration of the application graph. The instances that belong to the same runnables have
the same adjusting deadline. Based on adjusting deadline, the priority for each task can be

attached according to DM. Therefore for instances 7;" and 7}* such that(n,n') €M;; N

r o, " '
7i* = 1}, if Df < Dj, then the order between 7{* and 7" is 7' = 7}*. So for the example

shown in Figure 41, the order between instance 77 and T is ¥ = T, as T has higher
priority.

With the three dimensions to determine the instance order, we can calculate one by one the
start time of them as shown in Figure 41 (b). But in the case where two instances are
identically characterized, i.e. they are independent and possess the same release time and

adjusting deadline. Then we firstly execute the instance with shorter execution time in order
to minimize the jitters.
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3.2.4.2 Schedulability
The analysis of schedulability is the test to verifier if a set of tasks are schedulable by a
scheduling algorithm. To do that, each instance in the taskset has to meet their deadline:

vikisk+ ¢ <+ D; ()

— 1

3.2.4.3 Scheduling process
Based on the elements presented before, we introduce our scheduling process for a set of
tasks. The processis shown in Figure 42.

Step a: For each task # in the taskset, we calculate its adjusting deadline D;" by the equation
0.

Step b: If there exista task with a negative adjusting deadline, i.e. 37;: Dj < 0, the taskset
are not schedulable. Therefore the process is terminated.

Step c: In the interval of hyper period H = lcm(VT;), all the instances of each task {T K } =
{T{‘|V‘Ci: ke TE} are constructed into a list £ where their order is determined by the three
dimensions presented in Section 3.2.4.1.

Step d: Starting from the first instance in list £, the starting time is calculated by

equation 4. Each time the computing of starting time is finished, the delay element is
updated by equation 5 immediately such that the overlap betweenindependents instances is
avoided.

Step e: Each instance has to be tested by equation 7 to make sure the real-time constraint
1s respected, aka the deadline compliance.

Step f: If all the instances respect this test then the process can be successfully terminated.

Step g: The output contains a scheduling table for all the instances and the
makespan with value of y.
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Adjusting deadline
(AD) calculation

C | Ordering all instance

!

d |For each instance in the list:
»{a) Computing starttime
b) Update delay elementy

Instance
schedulable?

Is this the
lastinstance?

Y
Mo schedulable

Output Schedule table
Makespan=y

Figure 42-Scheduling process

Example

Here we demonstrate our process with an example shown in Figure 43, which is composed
of periodic taskset. The criteria values for each task are present in Table 3. The calculating
result of adjusting deadline for each task is also shown in this table. As we can see, there is
no negative value for the adjusting deadline. So the next step is to construct a sorted list for
the instances in the hyper period.
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Executio Adjustin
Tas n Perio | Deadlin g
ONONRE 17
Time Deadline
Q F A 1 6 6 4
B 1 8 8 8
(—() o S VS
_ ~— D 1 12 12 11
Figure 43-Example application E 1 6 6 6
F 1 12 12 12
Table 3-Tasks criteria
i Enumeration in the hyper
Task Instances |n_ one Dependency . Yp
hyper period period
A |ttt Myp = {(0,0)} 0o Tp
B |tdtl 12 My = {(0,0)} T4 T T DTG
C Tg,‘[é Mgp = {(0,0)} Tg - Tg
D rg,ré Mcg = {(0,0)} Tg - Tgrfé - Tf‘
E |121h 121 Mp = {(0,0)} ) = TRTH > Th
Fo|zot}h Mg =1{(0,0)} R R

Table 4-Instances to be considered Table 5-Dependencies

The hyper period of this exampleis H = lcm(6,8,12) = 24, so for each task the instances
are considered as assumed in Table 4. We defined the dependencies for each transition,
which are resumed in Table 5.

Now we sortall the instances shown in Table 4 by considering the three ordering metrics:
1) the dependencies in Table 5; 2) the release time of each instance; and 3) the priority of
the task that each instance belongs to (depend on the adjusting deadline shown in Table 3).
The sorted result is shown in Table 6, where the order is from left column to the right. The

release time for each instance is also shown in the second row of this table.

S I R R R R o R R R R R R A R R R
Release |\ o 1 gl glololo|el|6l|s]|12]12|12]12]12]16]18] 18
Time
Starting | o1 3 | 2| 3|4a|5|6|7|8]|12]13]|14]15]16]17]18] 19
Time
Dely 1 1ol 3lals|6|7|8|9|13]|14a]l15|16]17]18]19]20
Element

Table 6-Scheduling result

The next step is to calculate the start time of each instance by equation 4 orderly in Table 6.
Each time the calculation is finished for an instance, the delay element y is updated by
equation 5. Besides, for the real-time aspect, the schedulability is tested for each instance by
equation 7. In this example, all the instances respect their deadline constraint. The starting

time values and delay element values are also shown in Table 6.
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Finally, the scheduling result can be visualized in Figure 44.
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Figure 44-Generated schedule table

3.2.5 Dependent tasks scheduling in Multi-core systems

The delay element y has to be updated each time the calculation of starting time of an
instance is finished. This is because in single-core system, the instances cannot be executed
simultaneously. Therefore in a non-preemptive system, an instance will execute until its
termination once it starts. Thus the equation 5 is performed immediately each time the start
time of an instance is determined. However, in the multi-core system, as the instances
allocated in the different cores can execute simultaneously, the delay element is no longer a
global variable. Instead, there is one delay element for each core. The updating for the delay

element for each core is similar to the single core system.

3.2.5.1 Extensions for multi-core system
Here we extend some notations introduced in the precedent section to adapt multi-core

systems.

The multi-core architecture is composed of a set of cores denoted as {7y, ..., T }. So the
task 7; € {74,7,,... 7;} defined before can be extended as Ty, if it is located to core my.
Similarly, the extension can be done respectively for the execution time C;j, and job Tf},
and its release time 7}, start time Sf}, jitter 0]}, etc. Each core ), constructs a delay
element ¥;,. The release time is similar to equation 3, only with a bit modification on the

indices such that:
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As to the start time of an instance S} , the calculation is done by equation 9 instead of

equation 4:
' !
s}}k = max(qf}c,max(n,nv)e Mi"j(sz,’l +Ciy+ o1k V) 9

where 0y, indicates the communication time between 1, and .

The delay element y, will be updated each time the starting time of an instance that is
allocated in the same coreis calculated in the scheduling. So for a non preemptive system,
each time $/} is calculated, the vy, is updated by:

Vie" = max (yi,siy + Cix) (10)

Schedulability of the generated schedule table can be tested on each instance to verify the
respect of its deadline by extension of equation 7:

3.2.5.2 Quality of scheduling solutions

The process of determining the scheduling for multi-core system is the same as the process
presented in Section 3.2.4.3, only the calculation of the start time of each instance and the
updating of delay element have to be changed to equation 10 and 11. The equations 10, 11
and 12 also imply that the position of each task has to be determined before the scheduling
process, i.e. the partitioning ofapplicationin the multi-core system. The partitioning method
is studied in Chapter 2.

We evaluate the embedded solutions by considering the influence of scheduling decisions
on the execution of one or several sequences of dependent tasks or runnables for the
application compliant with AUTOSAR. The quality of scheduling solutions is evaluated by
Global Jitter. In a temporal interval H, for example the hyper period of the tasks in the
system, Global Jitter [ is the sum of jitter for all instances:

3.2.5.3 Demonstration

Here we show the example of the same application presented in Figure 43, the allocation of
the nodes in the multi-core is shown in . The criteria values and adjusting deadline value for
the task remains the same as shown in Table 3.

Figure 45- Example-I application in multi-core case 77
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The list of instances is sorted in the same order as it did in single-core case, while the start
time for each instance will change as the delay element is updated locally in each cores, the
result is shown in the Table 7.

Ordering
nstance. | A | TC | TB| TR | TH | R | TA | TE |TE | TA|TE | TE |Th | TF | TR | TA|TE
Rel

clease oloolololols |6 |8 |12|12|12]12]12]16]|18]18
Time
Starting o1 2112 |3|6 |6 |8 |12|13|14|13|15|16]|18] 18
Time
ycore 0 1 2 |3 7 9 |13 14 17 |1 19
ycore 1 2 |3 4 7 14 | 15 16 19

Table 7-Scheduling result for multi-core for example-I

Compared to the single core, we can observe that the makespan is reduced thanks to the
load balancing of multi-core. The scheduling can be visualized in Figure 46. Compared to

Figure 44, the average jitter is reduced as well.
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Figure 46-Scheduling multi-core example-I

The different allocation will change the scheduling result. Here we show another example
of the same application presented in Figure 43, the allocation of the nodes in the multi-core
is shown in Figure 47. The criteria values and adjusting deadline value for the task remains

the same as shown in Table 3.
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Figure 47-Example-11 application in multi-core case

The list of instances is sorted in the same order as it did in single-core case, while the start

time for each instance will change as the delay element is updated locally in each cores, the

result is shown in the Table 8.
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Table 8-Scheduling result for multi-core for example-11

The scheduling can be visualized in Figure 48.
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Figure 48-Scheduling multi-core example-I1

By comparing to the single-core case and two multi-core cases in Table 9, we can observe

that:
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From single-core to multi-core, global jitter is reduced. Thanks to the parallelism of the
multi-core, the delay element does not need to be updated each time that the start time of
an instance is calculated. Only the instances in the same core will drive the updatingin order
to avoid the overlap between the independent instances. As a result, the global amount of
delay between start time and release time is reduced and can be estimated early in the design
process.

A change in the allocationresults in the variationof jitter. For different multi-core solutions,
even if the load balancing and inter-communication overhead are identical (we suppose that
the load of all the tasks and all the transitions are identical), there is always an allocation
allowing to reduce the global jitter. In our automotive context, these solutions are
considered to be safer since it also minimizes the system laxity. For example solution Multi-

core-1 provides a better jitter value, as it considers the execution chain in the allocation

decision.
Single-core | Multi-core-1 | Multi-core-I11
Makespan 20 19 19
Total jitter 28 16 22
Average jitter | 1.65 0.94 1.29

Table 9-Jitter of the example application

Actually, the performance of our proposed scheduling approach depends on the parallelism
degree of the applications. For a highly parallelizable architecture as shown in Figure 49,
where all the nodes can execute parallel except the source node and the sink node, the

optimal makespan can be reduced from single-core to multi-core systems.

Node_1 '

Source

Figure 49-Example of a highly parallelizable application architecture

To simply the process, we suppose all the nodes in Figure 49 are associated with the same
criteria: the execution time is 1 time unit; the communication time is 0 and the period of
each node is I + 1such that this applicationis schedulable in the single-core system, where
I is the number of the nodes. We distribute the applications into homogenous multi-core
system where the number of cores is K. Each node is presented by a task when we perform

the scheduling approach. With the increase of the applications’ size as well as the quantity
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of cores, the optimal makespan is shown in Figure . Multi-core systems allow reducing the
makespan for this ideal model of application architecture. However, we cannot always
benefit from the multi-core when the applications are strongly connected, in the next
section, we present the experiment results by applying our scheduling approach to a set of
applications that the parallelism degree is not easy to be identified.
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Figure 50-Optimal makespan for the applications from an ideal architecture

3.3 Experimental results

In order to analyze the results of the method, we have developed a customizable random
generator of task sets. The generator takes the following parameters as input:

®  Imay, the maximum number of runnables into generated node set,
®  Tmaxsuch as task periods are randomly generated in [1, Ty, ],

e K the number of cores.

The system then generates randomly connections between tasks, resulting for each set to a
connection ratio & computed as [ / > Whete E is the total number of generated transitions.

The execution time C; of each task is also generated such that the system

utilization 21— C"/T. < k.U,qy, where k is the number of cores and U, , is the
L

maximum utilization enabling schedulable solutions when considering dependencies onto

single-core systems. U, has been experimentally set to 0.3 on real-life applications (see
the Chapter 4).
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Each synthetic application is then characterized by the following features: the number of
tasks I, the number of transitions E, the ratio € = I / E> the utilization of each coreU €

10, U,,05] and the number of cores k. By this way, we were looking to evaluate the impact
of periodic dependencies onto the system schedulability and onto the quality of the
generated schedule tables computed as the globaljitter J , see section 3.2.5.2. A scheduling
is considered as not feasible if a deadline constraint is not respected by at least one instance
of task. We measure the schedulability as the rejection rate of a given application which is

computed as the number of conflicting instances over the total number of instances.

Here we generate about 960 applications distributed onto multi-cotre systems with [2,5)
cores. The system utilization is from about 0.6 to 1.2. The connection ratios of these
applications are between 0.1 and 0.8, which means these applications are generally strongly
connected. The parameters of the synthetic applications are summarized in the Table 10.

Applications | Connection | System utilization | Node quantities | Cores
quantities ratio quantities

960 (0.1,0.8) [0.6,1.2] [15, 60] [2,4]
Table 10-Synthetic applications sets.

We firstly apply our scheduling approach by distributed these applications into different
cores, the global jitters and makespan values for each distributions are presented by blue
curves in Figure 51 and Figure 52. For the raison of comparison, we show in the same figures
the results of single-core cases, which are presented by red curve in the relative figures. We
can observe that from single core to multi-core, the globaljitters as well as makespan reduce.

6000

< & Multi-core case
5000 —+ —
00 Single-core case

Puissance (Multi-core case)

Puissance (Single-core case)

2000

1000

0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6

Figure 51-Experimental results obtained with synthetic applications: global jitter according to the
connection ratio for single-core and multi-core cases
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Figure 52-Experimental results obtained with synthetic applications: make span according to the

connection ratio for single-core and multi-core cases

In our scheduling approach, we consider the adjusting deadline as the third ordering metric,
which take the schedulability as the highest priority. To prove that, we apply the applications

set to 2 other approaches that take the maximumlaxity and deadlineas the third metric. The

quantities of the schedulable applications among these generated applications for both

multi-core and single-core cases can be thus compared, which is shown in Figure 53. For the
generated applications set, our approaches allow the greatest chance to find the schedulable

solutions.
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BAdjusting deadline 77 34
B Maximum laxity 66 27
HDeadline 69 28

Figure 53-Comparison of approaches that consider different ordering metrics: the number of

schedulable applications
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Besides, among these three approaches, we take different measurement to evaluate the
ordering metric.

Results confirm that the rejection rate increases with the system utilization U and inversely
with the connection ratio €. The more the scheduling is constrained by the periodic

dependencies, the more the rejection rate is.

More interestingly, we can compare the differences between three scheduling policies:
Earliest Deadline, Maximum laxity (D; — C;) and adjusting deadlines as proposed in Section
3.2.4.1. These 3 policies are considered as the third ordering metric to determinate the

execution order of all instances in the schedule tables.

First of all, we can observe that global jitter mainly depends on the connection ratio and to
a lesser extent on the system utilization. Secondly, Table 11 gives the details on the
comparison of the average measured global jitters for the three scheduling. Adjusting
deadline takes a better advantage of the reduction of the connection ratio (and thus of the
system constraints) to reduce the jitter and finally provides better results when generating
the schedule tables of synthetic applications. This is mainly because the adjusting deadline
contributes to firstly schedule the instance whose successors have small maximum laxity

((Dfk —-C ) in equation 6). Therefore, for the instances with same execution time
J 1z j€esuces(ty)

and deadline, the scheduler takes the subsequent execution chains of each instance into
consideration as well. We will confirm this result on a real application in the following
chapter.

Ordering Metrics Adjusting deadline Maximum laxity Deadline
Average 2173 2378 2359
Numberof_schedulable 77 66 69
application
2 £<0.2 2940 3005 2990
5:: £<0.3 1567 1610 1657
'§ £<04 1193 1169 1196
£ £<05 855 933 920
© £<0.6 714 808 808
Table 11-Global jitter for different ordering metrics
Conclusion

In this chapter, we have defined the static scheduling method in multi-core systems, which
is adapted to the model of automotive applicationcompliant with AUTOSAR standard. The
method supposes on an a priori allocation of the tasks on different cores. We will then
integrate this scheduling method into a complete development flow for industrial software
in the next chapter. The flow proposes an exploration step of software distribution. One
scheduling shall then be generated for each explored solution.
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In this chapter, we present our developed tool suit SWAT (SoftWare Allocation Tool suit)
that is integrated seamlessly in our automotive developing process. The process is shown in
the Figure 54. We present this process and how each part of SWAT works in the first part.
And then in the second part, we demonstrate the experiments results on several real-life

industrial use cases.

I Ppartitioning Tool

@ &)

Application description

|
I |- Dependency Analysis

- i
ARXML
Metaheuristic  m—) v Cost functions (3)
Solver v'Constraints (Q)
\___‘___‘__/

1l - Configuration
v'RTE
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®

|
|
|
|
|
|
|
|
|
|
|
|
Il - Distribution 1
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 54-Working process for partitioning automotive application onto multi-core architectures

4.1 Working process

We have developed a method for the distribution of the automotive applications into multi-
core architectures. The automotive applications could be compliant with AUTOSAR
standards, in that case, the method acts as a decision guide environment for the partitioning
of embedded software modeled with the AUTOSAR specifications onto multi-core systems.
The proposed method was seamlessly integrated into an industrial V-cycle development
process. This process, as shown in Figure 54, is composed of 5 main design phases:

Application description
Dependency analysis

Design space exploration
Configuration of the executive layer

RAEE N e

Validation onto the target device
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We give the detailed description of this working process in the following parts. Besides, as
mentioned before, the software architecture is compatible with AUTOSAR standard.
However, the application processed by our tools and process is NOT AUTOSAR specific.

4.1.1 Step I-Application description

This step consists in the description of the targeted applications in order to integrate them
in the process. Therefore, this step plays the role of interface between the input applications
and our developed toolset. As the automotive applications might be in varies forms, i.e.
AUTOSAR or not, this step is application type dependant. That means, for different type
of various applications, this step should perform different way to import/export the
application. For the following part, we focus on the AUTOSAR application thatis the user
case in our project, although our process is not AUTOSAR specific. The Autosar
applications are represented in the form of ARXML file (AutosaR XML). An ARXML file
is a XML file that describes the interface of a software component (SWC). The format of
this file is defined by the AUTOSAR specification and contains information like: the
description of data that are read or written by a module; the description of entries points of
the modules and the calling mode; etc. The versioning of the formatis correlated with the
AUTOSAR release. For example, in our different projects, there are the version 2.0.2, 3.1.2

and 4.0.3.
Commercial/ y
YA Commercial AUTOSAR Tool SWAT

Artop User Group ﬁ /\t/\/\
r p AUTOSAR Tool Platform User Group

Development acli pse
Environment

Figure 55-Integrated AUTOSAR Tool Environment

So for the AUTOSAR application, the application description step requires the tool to be
able to parse ARXML files. To do that, there already exist the authoring tools such as
SystemDesk, AUTOSAR Builder and Artop to edit the applications compliant with
AUTOSAR standard. SystemDesk (SystemDesk, 2017) that is developed by German
company dSPACE is a system architecture tool for modeling AUTOSAR architecture and
systems for application software. Besides of the applicationlevel, it also allows generating
virtual ECUs for the dSPACE simulation platforms. AUTOSAR Builder is another
authoring and simulation toolset for AUTOSAR applications. It is part of the CATIA
Systems Engineering solution from French company Dassault Systemes (AUTOSAR
Builder, 2017). Besides, there exist also other similar commercial tools, e.g. DaVinci from
VECTOR company, that dedicate to design the architecture of AUTOSAR software
components. Unlike SystemDesk and AUTOSAR Builder, which are the commercial
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tools that require paying for licenses as they are profitable products for the companies, the
Artop (AUTOSAR Tool Platform) (Artop,2017) is an open source project that includes its
sources codesand is available free of charge to all AUTOSAR membersand partners. Artop
is an implementation of common base functionality for AUTOSAR development tools like
SystemDesk, AUTOSAR Builder and others. Artop is based on Eclipse Platform thatis
well-suited to develop domain-specific integrated development environment (IDE). The
layered architecture for a complete AUTOSAR toolis briefly shown in Figure 55. The top
layer is commercial or competitive layer where the tool vendors develop proprietary plug-
ins commercially. These plug-ins adapt Artop to end-users’ needs and complement the
functionalities of Artop in the middlelayer. The Eclipse Platformislocated at bottomlayer,
including Eclipse technologies such as the Eclipse Modeling Framework (EMF) that the
Artop library is base on.

The applications descriptionin our process is accomplished by our developed tool that is
located in the top layer of Figure 55. This toolis a part of the entire tool suit SWAT. The
tool is developed based on the internal libraries that encapsulate all the functionalities of
Artop library and allow using it without the Eclipse environment. The libraries are initially
defined by the software team in Valeo for the purpose of integrating AUTOSAR software
component in software, which allow to generate standard human interface, parse ARXML
files, import/export the excel files, etc. Based on these internal libraries, our tool is capable
of editing completely the AUTOSAR applications that represented by ARXML files. More
precisely, it allows reading Autosar configuration files, creating empty AUTOSAR
configuration files and populating AUTOSAR configuration files. Compared to the
commercial tools, our developed tool requires less resources than commercial tools that
provide more functions like simulation, virtualization and others, which exceed the require
for the application description step. Additionally, our tool provides the dedicated functions
for our needs, for example, the synthesis results for the targeted applications provided by
the tool can be used for the next step: the dependencies analysis step. And certainly, our
developed tool does not require the additional cost for paying the licenses of commercial
tool.

4.1.2 Step Il - Dependencies analysis - Model synthesis

In our work, we focus on partitioning applications driven by control and data flow (e.g
engine control, brake control, etc.). For that type of command and control applications the
order in which the individual statements executed is very importantand the enforcing by
functional constraints makes it difficult to identify the parallelism degree. As the high
sensibility of the execution order and low proportion of parallelism might exist in the
targeted applications, the partitioning of automotive applications into multiple cores
requires a fine analysis of the dependencies between functional elements. The dependencies
analysis step is accomplished by Dependencies Analyzer, a tool that is a part of SWAT
toolset.

The Dependencies Analysis Toolis based on Eclipse. Written in Java, it allows to analyze

a software application by parsing the xml description files (e.g. *.arxml — AutosaR XML —
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in an AUTOSAR context), which is done in the application description step. The tool
analyzes the features by the following steps:

1—-Modeling the software architecture:

. As described in the Chapter 2, the software architecture is modeled
using a directed graph G (V,E), such that V is a set of nodes (set of
runnables for Autosar application) and E is a set of transitions (links
between runnables). A node V is modeled as an execution time, a trig
mode, a period. A transition E has a weight that depends on the size of
data transmitted, the period of the producer, etc.;

" The graph size is optimized by the creation of buses between nodes.

2 — Determines the levels of dependency. Build statistics on transitions between
executable entities (called runnable in AUTOSAR). Each transition belongs to one of
these four classes that have been already presented in detail in the Chapter 2, here we
just give a briefly description:

. Class 1: Periodic transition:
Seriel: same period for producer and consumer;
Serie2: producer period smaller than the period of the consumer;
Serie3: producer period greater than the period of the consumer;
. Class 2: Producer OR consumer (exclusive) is periodic:
Seriel: producer is periodic;
Serie2: consumer is periodic);
. Class 3: No periodicity: neither producer nor consumer is periodic;
o Class 4: Transitions invoked on events (e.g. Mode Switch Event,
Client/server operations).
" If AUTOSAR is targeted, two levels of granularities are allowed:
analysis at SWC level or analysis at runnable level (if AUTOSAR is
used, component level for all other cases). This facility can be used to

decrease the complexity of analysis, and so, decrease the time to find a
solution;

3 — Analyze the data information for each transition such as data size, data rate, data
unit, as described previously in section 2.3.1.1.3;

4 — Identifies the sequences of communications (extraction of data flows of same
rates).

Inputs of the tool: Cooperating with application description tool, the input is the software
architecture that consists in

e  The set of components (e.g. in AUTOSAR, thisis a set of Applicative SWCs)

° The composition that structures these components and forms hierarchies.

It is worth noting that as the software architecture (also called static architecture) is given as

an input, the analysis is done only once, and is excluded of the iterative process.
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The BSW (Basic SoftWare) and HW (i.e.: the bus CAN etc.) are not included in this analysis
for software allocation, but during the validation, BSW and HW impacts are implicitly taken
into account in measurements.

Outputs of the tool: 'The outputs of the tools are listed as follows (take AUTOSAR

applications as example). These information will then be used to perform the distribution

into multi-cores.

e The transition information: the producer runnable and consumer runnable, the
SWCs that contain them and their associated RTEEvent and Ports, the Interface
and the transited data;

e 'The classification of the transition: each transition is classified into categories,
according to the criteria of associated RTEEvents for producer and consumer
runnables;

e The data information: the information of data for each transition contain: data
size, data unit, data type, and data rate;

e The sequence chains: for the granularities of runnables or SWCs. An example
for the sequence is shown in Figure 56.

—— ClasslSeries 1

E — 5 Class2Series 1

20 bytes/ms 2 bytes/ms ——» Class4

Sbytes/ms  / \ 10 bytes/ms

A——> B >
TN T 00—
10 bytes/ms
~ \
&_—'—*‘-—-—)L
10 bytes/ms

10 bytes/ms

Figure 56-Example of sequence

The results of the analysis of dependencies drive the distribution step (Step III), e.g.:

e The classification information and data information are used to evaluate the
communication overhead that is one of the criteria to evaluate the distribution
solutions;

e The sequences of execution guide the distribution tool to determinate the response
time for execution chains. It is also important for determining the execution order

for the scheduling approach.

4.1.3 Step III - Softwaredistribution tool

The software distribution tool performs Design Space Exploration (DSE) of the graph
designed in Step II to distribute the applications into multi-core systems. The main work of
this step contains two parts: 1) Partitioning. The tool searches optimized allocation of the
applicationsinto different cores automatically, including the mapping of runnables and tasks
into different cores. This partis presented in detailin the Chapter 2. 2) Scheduling. For
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each allocation solution, the tool generates a scheduling table that defines the order of the
instances of all tasks and the start time of each instance. This partis presented in the Chapter
3.

As stated in Chapter 2, the problemis formalized as a Combinatorial Optimization (CO)
problem, which mainly relies on the definition of objective functions with respect to a given
set of constraints. Therefore, two essential elements are considered by this tool as shown in
Figure 57: The constraints that need to be respected and the objective functions that need
to be optimized.

Il - Dependencies

analysis Il - Software
distribution tool D D
; = |:> v' Cost functions (5) |:>

. Operating System configuration and
Classification of v" Constraints (¢)

- mapping
transitions

Figure 57-Software distribution tool

Constraints are static parameters that should be validated for each possible solution. These
constraints can take into considerationas well real-time features (e.g. load of each core<l,
load balancing, deadline compliance) as implementation strategies (e.g. forbid a slit of a
client and its server).

Objective functions (or cost function) are computed from the following key elements:

e CPU utilization;
e Communication overhead as presented in Chapter 2;
e Response time for execution chains (makespan);

e Globaljitters for the scheduling as presented in Chapter 3.

Supplementary inputs

In addition to the dependencies analysis resulting from step I, other supplementary
information coming from the executionon the hardware platform of previous versions are
necessary as other types of inputs to compute the cost function. It includes:

e Execution time for each execution entity. In the AUTOSAR context, the real-time
tasks managed and scheduled by operating systems (RTOS) are composed of
runnables. The execution time of tasks is related to the execution time of the
runnables that are mapped to it. However the execution time is not constant at the
run time, which requires an estimation value for the process. In the state of the art,
the estimation of execution time can be done under 4 formats:

e The worst execution time

e The average execution time
e Probabilistic model

e Standard deviation
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The worst execution time and average execution time are available for our approach,
the decision to consider which of the two depends on the exigencies of the
applications. For the future version, the probabilistic model is interesting to be
integrated in our process.

® Accessing time to data. The accessing time for data could be used to evaluate the
communication overhead especially the communication between partitions by the
accessing time for global data.

® The feedback information from the measurement results on the targetboards. For
the iteration IV, the feedback information is available from the N-1iteration. At
iteration 1, these inputs are computed using a runtime analysis of the single-core
reference platform (on same target). These results are then updated after the iteration
of the process.

Working process of distribution carried out by the tool contains two principal parts.
These two parts contribute to make sure that the methods presented separately in the

previous chapters can be manipulated with the concrete industrial use case and integrated

in our development process seamlessly. The two parts are presented as follows:
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Preparation of the graph (model of the application): The software architecture is
modeled as a directed graph G (V, E). However, the automotive applications especially

the control applications are often strongly connected. One example is given in (Kehr,
Quifiones, Boddeker, & Schifer, 2015), where a lot of cycle exists in their application of
engine managementsystem (EMS). The existence of the cycles makes it difficult to apply
the scheduling approach presented in Chapter III, as it is impossible to determinate the
order of the instances only based on the applications description (presented by ARXML
files) without supplementary information from functional aspect. Hence in order to
compute the response time for execution chains, the makespan and the global jitter, the
application model shall be a directed acyclic graph (DAG). The preparation step is to
transfer the original graph into acyclic graph. To do that, it involves to solve the
minimum feedback arc set (FAS) problem.

A feedback arc set in a directed graphis a subset of its arc or transitions whose removal
makes the graph acyclic (Demetrescu & Finocchi, 2003). An example is shown in Figure
58, where the red arrows are the feedback arcs. The minimum feedback set problem is
NP-complete both on directed and undirected graphs (Karp, 1972), but the study of the
minimization of FAS problem is out of the scope of this dissertation however.

The process of the preparation of graphis as follows:

1) Place the nodes on a horizontal line with forward arcs being drawn on and
above this line whereas the backward arcs appear below this line (as shown
in Figure 58 (a)).

2) Change the order of the nodes in order to find a sequence with minimum or
few enough backward arcs (as shown in Figure 58 (b)).

3) Cut the backward arcs, the rest of the graphis a directed acyclic graph.
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In order to find the sequence that minimizes the backward arcs in part 2), the tool
performs simulated annealing (SA) algorithm thanks to its simplicity and effectiveness
(more details of this algorithm can be referred in Chapter 2). During the process of the
exploration, each sequence is evaluated by the objective function, which is related to
the quantity of the feedback arcs. More precisely, each transitionis related to a weight
according to its classification analyzed by step II such that the objective function is:

F=2iw; (1)
where w; is the weight of the backward transition i. Typically, we penalize the
consideration of a transition into a feedback arc by increasing its weight such that the
cost for this solutionis high enough to be avoided to be adopted.

Also in this step, dependencies such as precedence constraints are taking into account.

The set of nodes that are strongly connected will not be split on different cores. This is
transformed as the constraints for the searching process.

SRR
(a) (b)

Figure 58-Preparation of graph

Optimization: Based on the directed acyclic graphs generated by the graph preparation
step, optimization step involves the allocating of nodes from the graphinto different cores
of the multi-core platform. This step consists in two degrees of optimization:

o The degree of loads balancing involves optimizing the loads when
distributing the nodes of the graph into different cores. This degree of
optimization can be evaluated by several criteria such as the CPU load of
each core, the communication overhead (communication loads) between the
core and so on. More details are presented in the Chapter 2.

o The degree of performance involves optimizing the makespan for each core
or the globaljitters in the systems, which optimizes the execution order of
nodes in each core. Based on this degree, the tool proposes scheduling tables
as presented in Chapter 3 .

These two degrees of optimization can be solved by a design space exploration (DSE)
approach. And the tool adopts the Metaheuristic as solver, where the optimization solution
is evaluated by objectives functions, and the search of the solution that minimizes the costs
of these functions can be carried out by multi-objective meta-heuristic algorithms such as
MOSA, NSGA-IT, etc.
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Output of the distribution step contains the mapping solution in XML files and a
scheduling tablein XML or EXCEL files, which will be integrated in the process to generate
the configuration files for the next step.

4.1.4 Step IV - Configuration of the executive layer

Before the release of AUTOSAR version that support the multi-core systems, it already
existed a previous version of development process based on the single-core platform.
Actually, the existing process was not multi-core dedicated. Especially, the upper layer such
as system functional design& validation was not aware of the existence of multi-core. Figure
59 presents a typical V-Model for the development process in the automotive industrial,
where the hatched part represents the system/function designet’s point of view, and the
blue part the software designer’s point of view. The last one has then no knowledge of the
functional constraints. That is why the application architecture designed based on the
functional aspect is not aware of multi-core issues. As a result, the multi-core solutions that
are proposed and generated by the proposed distribution step cannot be directly integrated
into the process of industrial projects without adaption and updating.

/ Specification /

.

Software Integration
design test

Implementation
/Configuration

Software Desigher Working Scope

AUTSO SAR

Figure 59-V-Model of development process

However, close to functional architecture, the designof software architecture for multi-core
leaves few degree of liberty. Only the implementation phase such as the configuration of
RTE (Real-Time Environment) and OS (Operating System) can be re-worked in order to
integrate the multi-core solution. Therefore, in this step, we mainly consider the
configuration of OS and RTE. The updated configurations files done by our tool will be
imported in the commercial tool EB Tresos Studio (Tresos, 2017) to generate the new
functional codes for all the modules to adapt the multi-core environment. Figure 60 shows
this process, which contains two main parts:
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Existed

Configuration

Generation of RTE&OS
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solution L

Other
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Figure 60-Generation RTE & OS codes by EB Tresos

Re-working the configuration of RTE is mainly based on the mapping information from

the distributionstep. The mapping solutions, represented in XML files, indicate the mapping
information such as the location of the nodes/runnables. The tool updates the RTE
configuration file in order to correlate with the mapping solution.

However, updating the RTE is not trivial for the real-life industrial use case as strict
constraints exist. Take the communication via Mode Switch interface as an example, the
separation of the runnables that communicate by Mode Switch Event into different coresis
forbiddenby EB Tresos Studio. In order to adapt to EB Tresos Studio, the tool re-work
the application architecture by adding the satellite component, which involves the creation
of new componentsand change the compositionto integrate them in the architecture. More
precisely:

1) Create on each relative core a satellite software component.

2) “Cut” the communication that links via Mode Switch interface (MSE_IF in Figure

61).
3) Connect each side of the component with the created satellite component in the

same Cofre.

4) Build the connection between the satellite components via Sender Receiver interface
(S/R_IF in Figure 61).

Core0 Core0 Corel
MSE_IF
—» SWC1 ‘ SWC1

-—L»-—D

MSE_IF SR IF MSE_IF

Figure 61-An example of re-working architecture for RTE configuration

Re-working the configuration of OS involves the re-mapping of the runnables to the

tasks. It also creates new tasks if necessary. The principal steps contain:

1) Create equivalent task in the correspondent core
2) Allocate the runnables to the equivalent core
3) Remove the empty task.

Figure 62 shows an example, where left side represents a single core reference with 2
software components (SWC_0and SWC_1). Each SWC contains several runnables that are
mapped to different tasks (Taskl_Core0 and Task2_Core0). Right side shows a multi-core
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distribution solution, where each SWC is allocated to each core (SWC_1 remains in Core_0
and SWC_01s moved to Core_1). Thus, the runnables that are belonging to SWC_0 have
to be re-mapped to the other tasks: it creates the Taskl_Corel to map the runnables that
were mapped previously to Taskl_Core0 and Task2 Corel for runnables from
Task2_Core0. As there is no motre runnables in the Task_Core0, the tool removes this
empty task.

Core 0 Core_ O Core_1
(o)
(Taskl_cljreo ) (Taskz_COreO ) Task2_CoreO (Taskl_COrel ) (Taskz_Corel )
SW(d_o0 SW(d_0
—>
I Runnable I I Runnable I I Runnable I I Runnable I
swd_1 SWC_1
= < / < 4 - N\ J

Figure 62-An example of re-mapping the runnables to tasks

4.1.5 Step V- Validation of execution

After the configuration step, the embed source codes can be generated, compiled and
downloaded on the target architecture for the validation step of the real-time exigencies.

The evaluation of the given solution requires a complete verification of functional and real-
time behavior. The inputs for validation could be the requirements from specifications
(already used in step III for SW allocation decisions), e.g. one of the inputs required in step

1T is the execution time of runnables.

1. Atiteration number 1, the execution time of runnables is computed using a runtime
analysis on the single-core platform. For each runnable, the distribution of the
execution time for a lot of executions is computed, and statistic results are provided
(Average execution time, minimum measured execution time, maximum measured
execution time, standard deviation, etc.). An example of such distributionis given
on Figure 63.
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Figure 63-Execution time analysis per runnable (e.g. from a single-core platform)

2. Atiteration > 1, the distribution of runnable execution is computed for the multi-
core platform generated from the given solution. The real-time impacts in terms of
execution distribution will be then analyzed and taken into consideration for future
iterations (see the prospective step).

The same thing is done for the services used to communicate between cores (IOCs services
in AUTOSAR). As this APIs are mainly responsible of additional cost, the load of inter-
core communication is monitored (at runtime). We take advantage of the HIL. (Hardware

in the Loop) validationin order to be very close to the real environment.

4.1.6 Prospective Step - Feedback and updates

This step has not yet been integrated in the existing process. However it plays an important
role for the future works. The results coming from the validation step can be used to
evaluate the performance of solutions and to update the inputs of distribution tool. The
feedback/update metric model for the evaluation is constructed by the following critetia
(not complete list):

e The executiontime of runnables: for each runnable, its execution time might be
changed. The global CPU load should be optimized. The speed-up parameter is
computed for each distribution (How much time can I increase the performance
with a multi-core comparing to a single-core).

e The communication overhead: the accessing time for data might be changed
especially for the IOC channel service.

e The response time of execution chains (makespan):

e The robustness of the application due to the addition of an additional overhead

e FEtc.

Feedback/update metric model
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The deviation for the criteria 6 such as execution time and data accessing time between
output and input can be given by distance function D(6):

Out(0)

In(6)

D(6) =log

where Out(6) is the output value of 8 and In(6) is input value of 6.

If the two values are close, the distance will be around 0. The performance ofa solution can
be determined by a defined threshold that imposes the maximum of the sum of distance.

Based on the feedback/update metric model, the updated inputs could be used to restart a
new loop of the exploration process.

And finally, go back to step 2 if required.

The estimation of execution time is important to improve the performance of the
distribution process. To establish the feedback model for the criteria of execution time, we
have chosen 6 multi-core solutions and apply them on the target board to measure the
execution time of the runnables. Our ideais to study the elements that might impact on the
execution time of the runnables. For one runnable, its execution time might be under
influence of the positions of the runnables that communicate with it. To study that, we
chose one runnable (with name of “RE EngMGsIT 018 TEV’) and measured its
execution time for the 6 solution. These runnables have 14 predecessors and 26 successors
as shown in the Figure 64.
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RE_EngMGsIT_018_TEV

RE_USTWMT_008_DRE

RE_AdvOptmT_002_DRE

RE_AdvCordT_002_DRE

RE_EngMGsIT_001_MSE

RE_USTMT_004_MSE RE_AdvMaxT_002_DRE

RE_InThMdIT_001_MSE

RE_InMdIT_043_MSE

RE_ExMGsIT2_001_MSE RE_EngLimTqT_004_DRE

RE_AdvMinT_006_DRE
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RE_AdvOptmT_003_DRE

Figure 64-Communications for runnable “RE_EngMGsIT_018 TEV”
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The positions of all its 14 predecessors and 26 successors for the 6 solutions are presented
in Table 12, where we focus on the number of runnables that are allocated to the different
core of runnable “RE_EngMGsIT_018_TEV™.

Solutionl Solution2 - Solution4 | Solution5
RE_EngMGsIT_018_TEV Corel Core0 Core0 Core0 Corel Core0
Predecessors of RE_EngMGsIT_018_TEV
OP_LibAirEfc* Core0 Core0 Core0 Corel Corel Core2
OP_LibEngCylPrm* Core0 Corel Corel Core0 Corel Core2
RE_EngMGsIT_001_MSE Corel Core0 Core0 Core0 Corel Core0
RE_EngMGsIT_001_MSE Corel Core0 Core0 Core0 Corel Core0
RE_EngMGsIT_001_MSE Corel Core0 Core0 Core0 Corel Core0
RE_EngMGsIT_001_MSE Corel Core0 Core0 Core0 Corel Core0
RE_EngMGsIT_012_TEV Corel Core0 Core0 Core0 Corel Core0
RE_EngMGsIT_012_TEV Corel Core0 Core0 Core0 Corel Core0
RE_EngMGsIT_012_TEV Corel Core0 Core0 Core0 Corel Core0
RE_ExMGsIT1_003_TEV Core0 Core2 Corel Core0 Core0 Core0
RE_ExMGslIT1_005 MSE Core0 Core2 Corel Core0 Corel Core0
RE_ExMGsIT2_001_MSE Core0 Core2 Core0 Core2 Core0 Corel
RE_ExMGsIT2_007_TEV Core0 Core2 Core0 Core2 Core0 Corel
RE_InMdIT 020 TEV Core2 Corel Core2 Core0 Core2 Core0
RE_InMdIT_020_TEV Core2 Corel Core2 Core0 Core2 Core0
RE_InMdIT_020_TEV Core2 Corel Core2 Core0 Core2 Core0
RE_InMdIT 043 MSE Core2 Corel Core2 Core0 Core2 Core0
RE_InMdIT 043 MSE Core2 Corel Core2 Core0 Core2 Core0
RE_InMdIT_043_MSE Core2 Corel Core2 Core0 Core2 Core0
RE_InThMdIT_001_MSE Core2 Corel Core2 Core2 Core2 Core2
RE_InThMdJIT_007_TEV Core2 Corel Core2 Core2 Core2 Core2
RE_InThMJIT 007 TEV Core2 Corel Core2 Core2 Core2 Core2
RE_UsThrMT_004_MSE Core2 Corel Core2 Core2 Core2 Core2
RE_UsThrMT _010_TEV Core2 Corel Core2 Core2 Core2 Core2
Total number 17 15 13 7 15 9
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Successors of RE_EngMGsIT_018_TEV

RE_AdvCordT_002_DRE Corel Core0 Corel Corel Corel Corel
RE_AdvMaxT_002_DRE Corel Corel Core2 Corel Corel Core2
RE_AdvMinT 002_DRE Corel Corel Corel Corel Corel Corel
RE_AdvMinT _006_DRE Corel Corel Corel Corel Corel Corel
RE_AdvOptmT_002_DRE Core2 Corel Core0 Core2 Corel Corel
RE_AdvOptmT_003_DRE Core2 Corel Core0 Core2 Corel Corel
RE_AdvOptmT_003_DRE Core2 Corel Core0 Core2 Corel Corel
RE_AdvOptmT_003_DRE Core2 Corel Core0 Core2 Corel Corel
RE_AdvOptmT_003_DRE Core2 Corel Core0 Core2 Corel Corel
RE_AdvOptmT_003_DRE Core2 Corel Core0 Core2 Corel Corel
RE_AdvPrevKnkT 002 Corel Corel Core0 Corel Corel Corel
RE_AirSysAir 003 TEV Corel Corel Core0 Corel Corel Core0
RE_AirSysAir_003_TEV Corel Corel Core0 Corel Corel Corel
RE_AirSysAir 004 TEV Corel Corel Core0 Corel Corel Corel
RE_AirSysAir_004 TEV Corel Corel Corel Corel Corel Corel
RE_AirSysAir_005_TEV Corel Corel Core0 Corel Corel Corel
RE_AirSysAir_005_TEV Corel Core0 Core0 Corel Corel Core0
RE_AirSysAir_005_TEV Corel Core0 Core0 Corel Corel Core0
RE_AirSysAir_005_TEV Corel Corel Corel Corel Corel Corel
RE_EngLimTqT_004_DRE Corel Corel Core2 Core2 Core2 Core2
RE_EngLimTqT_010_TEV Core0 Core0 Core2 Core2 Core2 Core2
RE_EngMGslLim_003_TEV Core2 Corel Core2 Corel Core2 Core2
RE_EngMGslLim_003_TEV Core2 Corel Core2 Corel Core2 Core2
RE_EngMGsIT_002_TEV Corel Corel Core0 Corel Corel Core0
RE_EngMGsIT_002_TEV Corel Corel Core0 Corel Corel Corel
RE_EngMGsIT_002_TEV Corel Corel Core0 Corel Corel Corel
RE_EngMGsIT_002_TEV Corel Core0 Core0 Core0 Corel Corel
RE_EngMGsIT_002_TEV Corel Corel Core0 Corel Corel Corel
RE_EngMGsIT_024_TEV Corel Corel Core0 Corel Corel Corel
RE_EngMGsIT_024_TEV Corel Corel Core0 Corel Corel Core0
RE_EngMGsIT_024_TEV Corel Corel Core0 Corel Corel Corel
RE_EngMGsIT_026_TEV Corel Corel Core0 Corel Corel Corel
RE_EngMGsIT_026_TEV Corel Core0 Core0 Core0 Corel Corel
RE_EngMGsIT_026_TEV Corel Corel Core0 Corel Corel Corel
RE_ExMGsIT1_002 TEV Corel Core2 Corel Corel Corel Core0
RE_ExMGsIT1_002_TEV Corel Core2 Corel Corel Core0 Core0
RE_ExMGsIT1_002 TEV Corel Core2 Corel Corel Corel Corel
RE_ExMGsIT1_002 TEV Corel Core2 Corel Corel Corel Corel
RE_ExMGsIT1_002 TEV Corel Core2 Corel Core0 Corel Corel
RE_ExMGsl1T2_007_TEV Corel Core2 Core0 Core2 Corel Corel
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RE_ExMGsIT2_007_TEV Corel Core2 Corel Core2 Corel Corel
RE_InMdIT_014 TEV Core2 Corel Core2 Corel Core2 Corel
RE_InMdIT_032 TEV Core2 Corel Core2 Core2 Core2 Core2
RE_InThMdIT 006_TEV Core2 Corel Core2 Core2 Core2 Core2
RE_InThMdIT 007_TEV Core2 Corel Core2 Core2 Core2 Core2
RE_InThMdIT _008_TEV Core2 Corel Core2 Core2 Core2 Core2
RE_UsThrM_008_TEV Core2 Corel Core2 Core2 Core2 Core2
RE_UsThtMT_006_TEV Core2 Corel Core2 Core2 Core2 Core2
RE_UsThtMT_008_DRE Core2 Corel Core2 Core2 Core2 Core2
Total number 35 18 21 28 35 23
*It concern the Client-Server communications

Table 12-Allocations of the runnables that communicate with runnable
“RE_EngMGsIT_018 TEV”

We measure the execution time of the runnable “RE_EngMGsIT_018_TEV” on our target
board for the 6 solutions. The execution time is presented as the distribution of the
occurrence number according to time (in us) and is shown in Figure 65, where we put the 6
solutions together for a clear comparison. We also put the execution time from single-core
reference in this figure. We can notice that for this runnable, its execution time degrade
when the number (these numbers are also shown in Figure 65 for each solution) of its
predecessors that are allocated to different cores increases (except solution 3 which need
further study). This might inspire us for establish of estimation model of the execution time

for the next iteration, which is interested for the future works.
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Figure 65-Execution time distribution of the runnables “RE_EngMGsIT 018 TEV” for 6 solutions

4.2 Use case demonstration

In this part, we present the results by applying some industrial applications on our working
process. The presentationis done following the order of the process in Figure 54.

104



Chapter 4 Developing process in automotive industry

4.2.1 Application description and analysis

We now describe the experiments leaded to determine the optimization method the best
adapted to our context and to validate the explored solutions.

The method has been evaluated with three application descriptions. The first one labeled as
App_1is composed of a small amount of components. This applicationis builtin a random
way and the exploration space for this applicationis exhaustive thanks to its small quantity.
Besides, this application contains 3 context cases for the execution time. We have two other
applications (labeled as App_2 and App_3) corresponding to bigger realindustrial use-cases
which representa portionofa full applicationof engine control. For these two applications,
we consider only one running execution mode, therefore there is only one context case:

e App_1 contains 15 SWCs with 32 runnables. After analyzing this application, the
tool generates 6 CpuEntities with 7 variables;

e App_2 contains 25 SWCs and 208 runnables, the tool generates 14 CpuEntities with
about 493 variables;

e App_3 contains 68 SWCs and 562 runnables, the tool generates 21 CpuEntities with
about 1358 variables.

The tool also analyzes the transitions information for each applicationand classifies these
transitions according to the different levels of dependency. The results for the three tests
are shown in Table 13.

Applications Number of Number of Number of Connection  Portion of

SWC runnables transitions Ratio EMS
App_1 15 32 27 1.19 NA
App_2 25 208 1558 0.13 5%
App_3 63 562 6826 0.08 10%

Table 13-Applications information

For the applications App_2 and App_3 from the real use-case, we present in Figure 66 the
data rate information for each runnable in these two applications. As presented in the
Chapter 2, runnables produce or consume a set of data. Therefore, we present in the figure
the size of data for each runnable classified by their periods. From where we can notice that,
the runnables with period of 10ms access to the data at a high frequency. These results will
help the tool to determine the dependency level for these transitions. These results also
justify the importance of evaluating the cost of inter-core communication in the objective
functions.

105



Design process for the optimization of embedded software architectures onto multi-core processors in

automotive industry
700 3000
. 600 — 2500
1 Q
_% = _% 2000
= 400 +— =
§ 300 = E 1500
€ 200 +— £ 100
a 100 +— - @ 500 .
0 0
0.0050 0.01 0.02 0.04 4.0 0.0050 0.01 0.2 0.04
Periods of predecessors (s) Periods of predecessors (s)
(a) (b)
2000 __ 6000
[ [}
2 5 5000
3 1500 T
o ©
% 1000 — ¥ 3000
el o
] - 2000
2 80 2 1000
§ 0 § 0 ,. — s e e
£« 0.0050 0.01 0.02 0.04 4.0 e 0.0050 001 002 004 0.1 0.2 1.0 4.0
Periods of successors(s) Periods of successors(s)
(c) (d)
Figure 66-Statistic of transition (The left side is App_2 and the right APP_3)
4.2.2 Distribution results: Allocation

The next step consists in distributing the applicationinto a specific multi-core architecture.
Our targeted multi-core architecture contains 3 cores, a shared memory and each core is
assigned to a localmemory. In order to distribute these applications into multi-core systems,
the tool applies the selected metaheuristics: SA, TS and GA. The small application App_1
allows us to obtain independently all the possible combinations and to calculate their cost
based on cost function. Thus we can identify the optimal solution with the smallest cost
values among all the potential solutions. The distribution of cost values for all the
partitioning solutions of App_1 is illustrated in Figure 67. The figure exposes the complexity
of the problem even when considering an AUTOSAR application composed of only 32
runnables. The number of feasible solutions exceed several hundreds of thousands solutions
(279888 exactly), and so the optimal solution (with value of cost at the left side in Figure 67)
only represents 0.0357% of the landscape.
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Figure 67-Distribution of the costs of all the partitioning solutions for application App_1. The cost
bands on the left represent the subset of solutions found by the GA, SA and TS methods.
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We then apply each algorithm 10 times on application App_1. The cost bands of solutions
found by each algorithm are compared to the previous distribution of cost values as shown
in Figure 67. Only GA works on a population size of 10. SA and TS only explore 1 solution
per iteration. The more precise results are shown in Table 14. GA (in red rectangle in Figure
67) always finds the optimal solution. SA also finds the optimum and other solutions with
a cost between 4.02 and 4.2. Finally TS never find the optimal solution, but only solutions
with costs between 4.1 and 4.25.

Algorithms Deviationto Optimal solution Average Number of
bestsolution finding times/10 Run Time  explored solutions
(ms)
SA 0.0 4 243.52 108
GA 0.0 10 279362.09 10X108
TS 1.97% 0 7467.08 108

Table 14 Optimization results for application App_1lby GA, SA and TS meta-heuristics.

From these results, we can notice that GA can always find the best solution in a longer
running time. SA runs faster with a chance less than 50% to find the optimal solution.
Considering TS, unfortunately, we never get the optimal solution, but solutions very close

to it.

For the two other applications, we considered real-life industrial use-cases and focus on
quantitative results. We applied only SA and GA, as TS does not show its capability to find
the optimum for the small application. We remind that we consider constraints of loads
balancing for each solution, data for inter-core communication are allocated in the shared
memory, and the cost function minimizes inter-core communication overhead (using IOC).
With the growth of the application size, it becomes impossible to obtain all the solutions in
the exhaustive way as we did on the small application. So, the optimal solution cannot be
exactly determined. Thus, we used a different criterion to evaluate the quality criteria of the
optimization methods.

We focused on the standard deviation between the costs of solutions obtained by each
algorithm and the cost of the best solutionit ever found. The results for the two applications
are shown in Table 15. From these results, GA can no longer find better solutions than SA.
Besides, the run time of GA is much longer. The average run time for both algorithms
increases with the size of application, this is shown in Figure 68, where the average run time
is plotted according to the application complexity. This figure specifies the average measured

values.
Deviation to best Best solution Average Run Time Number of
Algorithms found solution found (ms) explored
App.2 | App3 | App.2 | App 3| App2 | App3 | solutions
SA 0.12% | 21.23% 8 1 35305 752202 | 1000000X1
GA 2.83% | 10.48% 7 0 663305 | 14355694 | 1000000X10

Table 15-Optimization results for application and by SA and GA meta-heuristic
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As previously explained, the goal of our partitioning toolis not to still reach the optimum
but rather to prune the design space, and only present to the designer the most promising
solutions according to a specific objective function. Only the designer can then identify
teasible solutions and take the final decision. Nevertheless, from the optimization point of
view, these experiments allowed to identify the algorithm the best adapted to this design
problem, even if each of them could be tuned to reach better results. Hence, for this use
case, SA shows its ability to provide both the optimal solution and a set of other solutions
approaching the optimal one. SA also seems to better scale with the application complexity.
The analysis of performances metrics (cores loads, memory occupation, execution time...)

then allows finer selection.
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Figure 68-Scalability of the execution time of SA and GA optimization methods.

4.2.3 Distribution results: Scheduling

In the second part of the distribution, we apply the proposed scheduling method on
application App_2 that represents a portion of a full application of engine control. Our
objective is to migrate this application into multicore platform without the intervention of
application designer. However, as the application is single-core originally, which is designed
in a sequential way and strongly synchronized, the parallelization ofthe applicationincreases
the cost due to this synchronization. Previously, the migration to multicore was done
manually, which necessitates a high level knowledge of applications from the SW designer.
Moreover, each time for a new application, it introduces a lot of repetitive work for the
migration into multi-core. In addition to these significant workloads, the manual migration
also prevents the optimization of criteria such as CPU loads, jitters and so on.

We choose 3 allocation solutions to evaluate the scheduling algo rithm:

e Solution_S1 Single-core case: all the runnables are allocated in the same core.

e Solution_S2 Multi-core case: the allocationis a previous mapping solution to

3 cores that was done manually.
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e Solution_S3 Multi-core case: the runnables atre allocated into 3 cores, the
allocation is optimized mapping solution obtained by our tool by considering

inter-core communication overhead as criteria

The source code of these solutions (and more generally all the solutions found by the
exploration tool) can be generated and associated to the code of the embedded executive
layers. Once compiled, the binary file is downloaded onto the device. The target hardware
platform is a TC27x tri-core micro-controller from Infineon and measurements are done
onto the platformusing Trace32 tool from Lauterbach. The trace of execution are extracted
and analyzed in a pseudo-automatic manner. We can for example compute the average load
per core and the execution time of each instance, or the jitter of each instance during a
period of time. More detail about the platform will be described later in the section 4.2.4.
Here we presentin Table 16 the measured jitters for the three solutions specifically studied
Chapter 3, where the schedule tables are compared in terms of CPU loads and total jitters
(in us). We compared the three scheduling policies for the three solutions.

Solutions Solution_S1 | Solution_S2 | Solution_S3
CPU loads / Core 21.9% 20.1% 16.1%
>, Deadline 16055 Non Sched. | Non Sched.
% ‘é Maximum Laxity 15227 Non Sched. | Non Sched.
Adjusting Deadline 15927 33009 29761

Table 16 - Comparison of different scheduling policies for the generation of schedule tables.
(Non Sched =No Schedulable)

Compared to the preceding results that apply the method in a set of synthetic applications
as presented in Chapter 3, the real application App_2 has a connection ratio € =
0.13, which makes it a really difficult scheduling problem (see the rejection ratio on ).

Secondly, during phase 4 of the working process (Figure 54), additional code is generated
for the RTE and the IOC management on each core.

IOC stands for inter-core communication function and is responsible for the
communication inter-core. It results that the total CPU load increases when considering
multicore distribution, even if the local load is reduced on each core. The results are
synthesized in Table 16, where we can see that with the increase of CPU loads (from single-
core to multi-core solution), the scheduling policies such as Earliest Deadline, Maximum
laxity (D; — C;) show no longer the capability of finding a feasible scheduling. While
adjusting time, that considers the schedulability as a high priority, provides a scheduling
result even in the case of high CPU loads. De-facto in this application, the runnable with
the smallest period easily exceeds its deadline, (3ms compared to the maximum period that
is 3s), which makes it very critical to find a feasible order. As a result, the order of the
instance in the schedule tableis very important and only the consideration of the complete
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execution chain by adjusting deadline allows to find a feasible scheduling and an efficient
embedded schedule table.

However, the global jitter increases when distributing the application onto multiple cores.
This is due to the high number of inter-core communications in the particular case of this
application. Despite this constraint the optimal solution automatically obtained with our
method exhibits better results than manual distributions and reduced CPU loads compared

to single-core execution.

4.2.4 Validation on the target

After the distribution phase, the embedded source code of the solution is generated,
compiled and downloaded on the targetarchitecture for the final validationof both the real-
time and the functional exigencies.

The target hardware platformis a TC27x tri-core microcontroller. There are two categories
of memories: the local memories attached to each core and the global memories. There are
three cores in this architecture, two identical cores TC1.6P and another core TC1.6E. All
these three cores execute the same set of instruction. There are two independent on-chip
buses in the tri-core architecture: Shared Resource Interconnect (SRI) and System Peripheral
Bus (SPB). The SRI is the crossbar based high speed system bus for TC 1.6.x CPU based
devices. The SPB connects the TC1.6 CPUs and the general purpose DMA module to the
medium and low bandwidth peripherals. More details can be seen in (Infineon, TriCore
Microcontroller, 2017).

We deployed the application App_2 onto this multi-core platform to measure the
communication overheads and CPU loads for several distributions. After starting the
execution, the trace information was obtained by the vendor tool - Lauterbach Trace32. We

present in this section the results obtained for two specific solutions:

e Initial solution: it is the first generated solution from which the metaheuristic
algorithms search the near-optimal distributions;

e Optimized solution: the best solution founded by SA and GA. As shown in the
section V-B, the two algorithms could find the same optimized solution for
this App_2. .

The source code of all the solutions found by the exploration tool can be generated and
associated to the code of the embedded executive layers. Once compiled, the binary file is
downloaded onto the device. We aim at comparing the estimated and real (measured)
performances of the explored solutions. The measured communication overhead for the
two solutions specifically studied in this paper are given in Table 17. Estimated values are
given by considering the number of data access per millisecond (taking into account the
number of fetches required to get data, i.e. the size of data). Measurements are done onto
the platform using Trace32 tool and provide the exact amount of time used for inter-core
communication. It appearsin Table 17 as a percentage of the total application execution
time. The trace of execution are extracted and analyzed in a pseudo-automatic manner. We
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can for example compute the average load per inter-core communication functions (called
10C), and per core by identifying the individual IOC calls, and their execution time, during
a period of time.

Initial Solution Optimized Solution
Transition Estimated Measured Transition Estimated Measured
counts overhead overhead counts overhead overhead
Core 0 144 26.25 3.25% 114 26.03 2.0%
Core 1 99 37.20 3.23% 67 22.68 0.94%
Core 2 110 23.50 1.37% 78 15.00 1.2%
Total 353 86.95 7.85% 259 63.71 4.14%
Gain 26.63% 26.73% 47.26%
Table 17-Estimation and validation results of the communication overhead on the Aurix TriCore
target

By comparing real values with estimated values, we can observe that the optimization done
by the toolis confirmed by the experiments despite an estimation error. More precisely,

e Table 17 represents the inter-core communication cost for each source core
(executing the producers of data)

e Table 18 shows the associated core loads,

both for the initial and optimized solutions.

Initial solution Optimized solution

Estimated | Measured | Estimated | Measured
Core 0| 4.62% 21.8% 5.34% 20.0%
Core 1| 6.51% 21.1% 4.66% 13.3%
Core 2| 4.66% 14.4% 5.78% 15.6%

Total 15.79% 57.3% 15.78% 48.9%
Table 18-Estimation results on the CPU loads on the Aurix TriCore target

More precisely, we present in Table 17 the following results of the interGcore
communications for both solutions:

e the transition counts represent the number of transitions between cores. Fach
transitionis related to 2 IOC functions: send and receive;

e the estimated overhead considers the number of data access per millisecond (taking
into account the number of fetches required to get data, i.e. the size of data);

e the measured overhead is the load of IOC functions measured on the target. We can

observein this table that measured overhead is correlated with both transition counts
and estimated overhead.

These results show a systematic reduction of the communication and the load metrics, and

allow evaluating the error of estimation.

Firstly, according to the Table 17, the optimized solutions are better, about 26% more
efficient from the partitioning tool point of view, and about 47% in the real platform. It
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corresponds to about 26% of minimization of the number of inter-core transitions. Even if
communications are not represented with the same unit in Table 17 we can observe a

difference in the global gain.

This error of estimation is not very surprising. Performance estimation is currently
computed only from the amount of data exchanged between cores. In fact, the count of
transitions impacts also the communication overhead. This explains why in Table 17 the
decrease of estimated overhead does not necessarily improve the measured overhead while
the transition count is increased. Besides, additional features such as the OS services and
the memory protectionunit (MPU) increase the communication overhead. These overheads

should be modeled in the next version of the tool.

Moreover, the on-board profiling showed that, as a system call is done each time the
application needs an inter-core communication, it could be more efficient to have 2 data
accesses in one communication channel than having 2 communication channels with 1 data
access in each. This new optimization will be added as a new type of move (in Chapter 2)
during the exploration.

Secondly, Table 18 shows the estimated CPU load for initial and optimized solution. The
partitioning tool considers the CPU load balancing as one of the design constraints, and
ensures a globalload balancing between cores (with a 1% tolerated deviation). The results
show that this constraint is respected by the partitioning tool, since based on estimations.
The load of cores is measured with Trace32 using dedicated scripts whereas we only
consider the load generated by applicative runnables in the estimations. The loads of these
runnables were previously measured with Trace 32 onto a single-core distribution (without

inter-core communication) and back annotated into the application description file.

Thus, the other parts of code executed by the application, such as BSW, OS and other stacks
are not considered in the estimations computed by the partitioning tool. On the other hand,
real CPU loads are obtained on-board by measuring the time spent in the idle task, and by
subtracting the load dedicated to the BSW tasks (main functions). If the current measure
provides a best precision compared to high-level estimations, it can still be improved since
OS features and other modules are counted in the application load. This explains the
differences in the results presented in Table 18. Precisely, we can observe a constant global
load according to estimations whereas measures point out the consequences of the
distribution onto the core load, due to OS and communication overheads. The execution
time of the functional code of the runnables only represents 30% of the global load of this
automotive system.

We are now working on adding an intermediate fast validation phase between the
distribution and the validation phase to improve the quality of our estimations during
exploration. We are developing a SystemC transactional simulator of the multicore software
distribution. Besides, similarities between the SystemC language and AUTOSAR have
already been demonstrated (Krause, Bringmann, Hergenhan, Tabanoglu, & Rosentiel,
2007). At this level, the hardware architecture can be essentially abstracted. The concurrency
is modeled at the core level, the goal being to reduce the estimationerror on communication
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costs, to explore more accurately the scheduling of tasks, and to identify in the early phase
of the design the conflict of resources. This new simulation step will allow short and long

validation cycles in the same multicore design flow.
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Chapter 5 Conclusion & Perspectives

Conclusion

The multi-core dimension introduces additional challenges that are still difficult to deal with
in real world industrial domains where applications exhibit high complexity and special cases
features that do not always fit with theoretical models. Thus, the shift towards multi-core
systems in the automotive industry has revived the challenge of application partitioning to
enhance productivity, re-usability and predictability.

In this dissertation, we described the issues in the partitioning and scheduling of engine
control applications in multi-core automotive systems. The proposed partitioning method
is the first one fully compatible with the constraints imposed by the AUTOSAR architecture

both in terms of software architecture and design process.

For the scheduling part, we focus on the periodic and dependent tasks of engine control
applications. The notion of periodic dependencies has been redefined to support the
transitions expressed between runnables in an AUTOSAR description. A scheduling
algorithm has then been proposed to generate schedule tables on a multi-core MCU, as a

total order of the instances assigned to each core.

In order to identify schedulable total orders from the partial order imposed by periodic
dependencies, several scheduling policies were explored and compared. This study
demonstrated that only adjusting deadlines enables to maximize the rate of feasible solutions.
The proposed scheduling method is fully compatible with the constraints imposed by the
AUTOSAR architecture both in terms of software architecture and design process. The
results obtained on the entire working process showed the benefits of the schedule table

generation phase.

The corresponding partitioning tool can thus be integrated ina seamless AUTOSAR design
flow, from application description to software deployment onto multi-core architectures.
Hence, classical optimization methods have been adapted to the automotive context and its
specific real-time constraints in an efficient explorationtool. The entire working process has
been validated onto real world applications from the AUTOSAR descriptions to the on-
board profiling. The results obtained on complex motor control applications show the
benefits of the optimization phase. A gain has been obtained by minimizing the inter-core

communication.

After having proposed a pseudo-automatic top-down refinement process, we aim at
recovering the results obtained by real measurements up to the portioning tool in order to
improve the precision of the performance estimations. We first defined the loads of cores
as the quality measurement of the distribution of control applications, but other metrics will
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be explored for others parts of the vehicle. The experimental results showed that only one
metaheuristic algorithm scale with high dimension applications.

Thanks to a multi-criteria formulation of the assignment problem, we will be able to take
into account the scheduling decision during the design exploration phase, and then evaluate
multi-core distributions in terms of average jitter, OS overhead, memory usage, resource

conflicts and safety.

Prospective

Just as shown in the prospective step of our working process presented in section 4.1.6 of
Chapter 4, the different distributions impact on the execution time of the runnables/ tasks.

The exact elements that influence on this variation are not clear. After the study as shown
in Figure 65 and Table 12 in section 4.1.6 of Chapter 4, we can obtain a clue that for a
runnable, the allocationpositions of its predecessorsimpact onits executiontime. Therefore,
the more quantized study needs to be integrated in the future version of the Tools.

These first results, obtained on the recent inter-core release of AUTOSAR, also point out
an increase of the coresload when migrating from a single-core to a multicore deployment.
The IOC loadsintroduced in multi-core systems are the main reason for these supplemental
loads. As mentioned before, our targeted applications are strongly connected, which is
unavoidable to introduce these supplemental loads. Besides, the experiment results also
shown the difficulty to find a schedulable solution and in the mean time optimize the
makespan due to these special applications very synchronized. Therefore, it will be
interesting to go up the top lay for re-designing and optimizing the architecture of

applications, which is conscious of multi-core conception.

Moreover, thanks to a multi-criteria formulation of the future version of the cost function,
we will be able to take into account several criteria to evaluate multicore distributions such

as OS overhead, memory usage, resource conflicts, safety criteria...

An intermediate multicore simulation phase will also be added in the design process. In the
future version of the tool, the designer will be able to navigate into the cost landscape,
among the best solutions identified by the optimization method, and to validate them in
simulation before the code generation of the embedded software.
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ANNEX 1

This part presents the statistic result for the applications. The applications contain 2 user cases:

o EB-Mivie: the application represents 40% of the ECU.

e TDP:this application represents 5-10% of the ECU.
Both applications contain two chains of SWCs: air chain and advance chain. Analyzed by the tool,
the structural information for the two applications is summarized in Table 19. From which we can
notice that the TDP user case is smaller. Among these SWCs, several SWCs listed as follows are
omitted because these components are not interested for the dependencies analysis:

e Virtual Component plays the role of interface between AUTOSAR application and non-
AUTOSAT application. It contains virtual runnables, which do not exist for real. This virtual
component provides several functions to the other SWCs and also calls for services from
them

e loHwADsIn provides the stimulus for the entire application.
e loHwADbsOut fetches the outputs of the entire application.

User Omitted SWC | Runnable | Variable | Transitions
Cases Components Count | Count Count Transitions (non-Bus) | Bus | Total
EB-Mivie | VirtualComponent | 67 562 1358 1893 981 | 6826
VirtualComponent
EcuStateManager
TDP 26 208 493 543 255 | 1558
loHwWADbsIn
loHWAbsOut
Table 19-Constructional information of applications
The analysis result for all the categories of transitions is synthesized in Table 20:
Application EB-Mivie Application TDP
Classes Transition Count Transition Count
Inter-SWC | Intra-SWC | Total | Inter-SWC | Intra-SWC | Total
Series1 | 986 273 1259 | 216 63 279
Class1 | Series2 | 173 112 258 38 33 71
Series3 | 146 56 229 | 56 14 70
Seriesl | 228 144 372 | 45 26 71
Class?2
Series2 | 1604 802 2406 | 368 303 671
Class3 617 1427 2044 | 143 198 341
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Class4

258

Total

4012

2814

258

55

6826

921

637

55

1558

Table 20- Results of classification

The result in Table 20 contains both the granularity of runnables and that of SWC (in the columns of

Inter-SWC).

Class1

The class 1 contains the connections between runnables periodic, which is very important for the
application. Therefore, the tool further analyses this class in the following scopes.

By series

1) In the series 1, the period of P_Runnable and R_Runnable are identical. The transitions

information of series 1 for both applications is shown in table 8.
Number of transitions in series 1 (Tp = Tc)
Tp (ms) Application EB-Mivie Application TDP
Inter — SWC | Intra — SWC Total Inter — SWC | Intra — SWC Total
(by Port) (by IRV) (by Port) (by IRV)
. 61 43 104 61 43 104
10 882 220 1102 155 20 175
20 2 0 2
40 25 0 25
100 5 3 8
200 11 7 18

Table 21-Transitions count in Class1 Series 1

2) In the series 2, the period of P_Runnable is smaller than that of R_Runnable. The transitions
information of series 2 for both applications is shown in Table 22.
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Table 22-Transitions count in Class1 Series 2

Number of transitions in series 2 (Tp < Tc)
Application EB-Mivie Application TDP
TP M) | ¢/7p [ inter — swc [ intra — sw [ Total Inter — SWC | Intra—swc | Total
(by Port) (by IRV) (by Port) (by IRV)

2 44 19 63 28 19 47
5 4 1 0 1

2 22 12 34

4 60 14 74

10 25 0 25
10 20 10 2 12

100 1 0 1

400 3 0 3

5 2 0 2
20 50 1 0 1

25 1 0 1
40 5 1 0 1

100 1 0 1

2 0 12 12
100 10 0 19 19
-~ 5 1 34 35




3) In the series 3, the period of P_Runnable is greater than that of R_Runnable. The transitions
information of series 3 for both applications is shown in Table 23.

Number of transitions in series 3 (Tp >Tc)
Application EB-Mivie Application TDP
TP M) | o/7e | inter — swc | intra — swc Total | Inter —SWC | Intra —swc | Total
(by Port) (by IRV) (by Port) (by IRV)
10 2 29 0 29 25 0 25
4 2 0 2 2 0 2
20 2 22 12 34 |5 12 17
8 6 0 6 6 0 6
40 4 67 2 69 |13 0 13
10 10 0 10
100 5 0 2 2
20 0 2 2
200 5 0 1 1
2 1 3 4
100 1 0 1
50 2 0 2
1000 25 1 0 1
10 0 8 8
5 0 24 24
800 2 0 2 2 0 2
4000 200 |3 2 5 3 2 5

Table 23-Transitions count in Classl Series 3

The histograms for the tables above are shown in the following figures. The Figure 69 and Figure 70
are the histograms for the application EB-Mivie and Figure 71 and Figure 72 are those for the
application TDP. The Figure 69 and Figure 71 are the histograms distingue by the 3 series and the
Figure 70 and Figure 72 are distingue by inter/intra communications.
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Figure 69-The count of transition for each series by periods of P_Runnables (EB-Mivie).
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Figure 70-The count of transition for communication type by periods of P_Runnables (EB-Mivie).
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Figure 71-The count of transition for each series by periods of P_Runnables (TDP).
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Figure 72-The count of transition for communication type by periods of P_Runnables (TDP).
Conclusion: From the results for both applications, it is obvious that the connections in class1seriesl

with a period of 10ms and 5ms play an important role in the applications as the majorities transitions
are belong to this group. The strong connection in this group restricts partitioning of the application
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when decoupling the links between the nodes in this group.
By thresholds

This scope bases on the speed of producer runnable: the high speed transitions are those with Tp
smaller than the thresholds and the low speedtransitions are those with Tp bigger than it. The number
of transitions bases on different thresholds for the application internship is shown in the Figure 73.

1800

1750
1700 -

1650 -
M [owSpeed
1600 -
B highSpeed

Transitions count

1550 -

1500 -
50ms 500ms 900ms 2000ms

Thresholds

Figure 73-The count of transition compared the speed of producer to threshold (EB-Mivie).

Conclusion: when the threshold increases, i.e. from 50ms to 500ms, the disequilibrium between the
high speed transitions and low speed transitions is becoming evident. Therefore, the threshold of
50ms is considered as a reasonable threshold.

Data rate analysis

There are two types of data rate: one is isolated by periods of producer runnables, which means in
each period of producer runnables, only the data accessed by the producer runnables with this period
is considered. Another one is accumulated data rate, which means during a certain period; all the data
accessed by the producer runnables that completely finished will be considered.

Sent data rate

The sent data rate is relayed on the period of producer runnable, so this analysis is based on the class
1 and class 2-series 1. The tool gives the sent data rate isolated by periods of producer runnables
information shown in Figure 74 for application EB-Mivie and Figure 75 for application TDP. Figure
76 and Figure 77 give the results of sent data rate accumulated by periods of producer runnables for
both applications.
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Figure 74-Sent data rate isolated by period of producer runnables (EB-Mivie).
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Figure 75-Sent data rate isolated by period of producer runnables (TDP).
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Figure 76-Sent data rate accumulated by period (EB-Mivie)
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Figure 77-Sent data rate accumulated by period (TDP)

Received data rate

Similar to the sent data rate, the received data rate is relayed on the period of consumer runnable, so
this analysis is based on the class 1 and class 2-series 2. The tool gives the received data rate isolated
by periods of consumer runnables information shown in Figure 78 for application EB-Mivie and
Figure 79 for application TDP. From where we can notice that, the period of 10ms result in a high
frequented accessing data. Figure 80 and Figure 81 give the received of sent data rate accumulated
by periods of consumer runnables for both applications.
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Figure 78-Received data rate isolated by period of producer runnables (EB-Mivie).
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Figure 79-Received data rate isolated by period of producer runnables (TDP).
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Figure 80-Received data rate accumulated by period (EB-Mivie).
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Figure 81-Received data rate accumulated by period (TDP).

Conclusion for data rate analysis
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For the application EB-Mivie, the data rate in the period of 10ms for both production and
consummation is much greater than other periods.

For the application TDP, the data rate in the period of 10ms and 5ms for both production and
consummation is much greater than other periods.

When allocating the SW, the transitions with a high data rate shall be considered as strong

connection.

Data Unit

The information of physical unit is in the a2L file. To obtain this information, the tool reads this file
by the Perlscripting. The result of physical unit for each data is show in the Table 24 .

Count Variability
Unit Designation
EBDT TDP (Fast/Slow/Depend on data)
Without unit 155 49 Without unit Dependondata
kw 1 Power Slow
g/mol 1 1 Slow
1/s 2 2 Fast
kg/s 29 49 Fast
RPM/s 4 r'lei:’]ﬁ't‘;tions per Fast
kg 24 31 Mass Fast
s.kg/Pa 1 1 Fast
m? 14 6 Surface Dependondata
kg/s/Pa 1 1 Dependondata
Pa 77 114 Pressure Dependondata
N.m 142 Moment Fast
% 31 Percentage Dependondata
218 26
(K)r1/2 1 3
- 305 104
m/s2 1 Acceleration Fast
°Vil 2 Fast
mOhm 1 Resistance Slow
° 1 Dependondata
K™ (1/2) 1 1 Dependondata
1/Pa 4 6 Dependondata
km/h 6 Speed Slow
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A 7 Current Dependondata
s.u. 1
J 1 Inertia Slow
K 43 61 Dependondata
Nm 10 Moment Fast
w 3 Puissance Fast
Vv 16 Tension Slow
mg 3 Masse Fast
_ 4
mA2 3 3 Surface Dependondata
°C 9 Temperature Dependondata
RPM.N.m/s 1 Dependondata
s/m.Kn(1/2) 1 1 Dependondata
km/h/1000RPM | 1 Slow
°fs 1 Dependondata
Pa/s 1 1 Dependondata
m 1 Distance Fast
V/s 8 Slow
s 45 11 Temps Fast
m/s"2 23 Dependondata
°Ck 17 14 Fast
RPM 22 4 Tours Fast
m/s"3 1 Dependondata
bool 6 Slow
N.m/s 6 Dependondata
kg/h 2 Slow
Etat (énuméré) 2
Booléenou 1
énuméré(état)
Compteur (entier) 1

The sequences

Table 24-Physical unit of data

The result of sequences for both granularities is summarized in Table 25.
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Granularity Number of The max length Ratio of the
sequences of sequences application

SWCs 512 41 41/68

Runnables 2638 ~110 110/588

Table 25-sequences results

The sequence with the max length is the principle sequence and the ratio of the application is the
max length on the application.
Data rate analysis between SWC chains in application TDP

The tool analyzes the application atthe granularity of SWCs. There are two types of chains for SWCs:
chain of advance and chain of air. The communication between components cross the two chains is
shown in Figure 82.

Air

AnEfcEngCylPrmT
EngMGsIT
AunSysTrb

InMdIT
ExMGsIT1
ArSysAir
InThMdIT
UsTluMT
ExXMGsIT2
ThrSpT
TrbActGsl
TrbActMgt

TrbActSys

EngMGsILim

Figure 82-Communications between chains

The transitions involved in these two chains occupies about 95% of transition inter SWC of the
application, as shown in Table 26.
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Application TDP
Classes Transition Count
2 Chains Inter-SWC Intra-SWC Total
Series1 | 216 216 63 279
Class1 | Series2 | 38 38 33 71
Series3 | 56 56 14 70
Series1 | 45 45 26 71
Class2 -
Series? | 368 368 303 671
Class3 143 143 198 341
Class4 10 55 55
Total 876 921 637 1558

Table 26-Transitions analysis in two chains

Figure 83 give the distribution of the transitions involved in two chains in the terms of classifications.

Transition analysis in details

400
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- 300
S
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(8]
c 200
2
k= 150
e
® 100
- 50
BN ==
0
Between chains Chain Air Chain Advance
M ClasselSeriesl: Tp=Tc 2 214 0
B ClasselSeries2: Tp < Tc 1 37 0
W ClasselSeries3: Tp >Tc 0 56 0
B Classe2Series1: non-Tc 29 15 1
M Classe2Series2: non-Tp 9 357 2
H Classe3: non-Tp&Tc 31 14 98
Classe4: Client&Server 0 10 0

Figure 83-Distribution of the transitions in two chains

From Figure 83, we can notice thatthe SWCs in chains air are strongly connected by class1 and
class2 series 2, where 94.8% of transitions in the classe2 series2 are MSE-TEV connection.

Table 27 and Table 28 synthesize the sent data rate of the transition across the two chains presented
in the Figure 82.

Air

Advance

Period

Data (data in green color
mean accessed by DRE)

Data
type

Size

Count (Byte)
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10ms AirSys_rAirLdReq Ulnt16 2
AirSysAir AdvPrevKnkT
Non- . .
Period AirSys_rAirLdReq UlInt16 2
10ms AirSys_bActStraLimSurge | Boolean 1
AirSysAir AdvMinT
Non- . .
Period AirSys_bActStraLimSurge | Boolean 1
10ms EngM_rAirLdCor Ulnt16 4
EngMGsIT AdvMinT
Non- .
Period EngM_rAirLdCor Ulnt16 4
10ms EngM_rAirLdCor Ulnt16 1
EngMGsIT AdvMaxT
Non- EngM_ rAirLdCor Uint16 1
Period
EngM_rAirLdCor UlInt16
EngM_mBurnCor Ulnt16
10ms EngM_mAirCor Uint16 12
EngM_tMixtCylCor Ulnt16
EngM_rItBurnRateCor UlInt16
EngMGsIT AdvOptmT
EngM_rAirLdCor Ulnt16
EngM_mBurnCor Uint16
Non- EngM_mAirCor Ulnt16 12
Period gVl
EngM_tMixtCylCor Ulint16
EngM_rItBurnRateCor Uint16
5ms EngM_rAirLdPred Uint16 2
EngMGsIT EngLimTqT EngM_mAirEngCyIMax Ulnt32
10ms 20
EngM_mAirPresUsThr Ulnt32
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EngM_rAirLdCor Ulnt16
EngM_mAirCor Ulnt16
EngM_mAIirEngCyITrbMax | UInt32
EngM_mAirEngCyIMin Ulnt32
EngM_rAirLdPred Ulnt16
EngM_mAirEngCyIMax Ulnt32
EngM_mAirPresUsThr Ulnt32
Non- EngM_rAirLdCor Uint16 22
Period
EngM_mAirCor Uint16
EngM_mAirEngCyITrbMax | Ulnt32
EngM_mAirEngCyIMin Ulnt32
5ms EngM_rAirLdPred Ulnt16 2
EngM_rAirLdCor Uint16
10ms 6
EngM_rMaxTotLd Uint16
EngMGsIT AdvPrevKnkT
EngM_rAirLdPred Ulnt16
Nor.1— EngM_rAirLdCor Ulint16 6
Period
EngM_rMaxTotLd Ulnt16
10ms EngM_rAirLdCor Ulnt16 2
EngMGsIT AdvCordT
Non- EngM_ rAirLdCor Uint16 2
Period
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10ms ExM_tExDyn Ulnt16
BMGsIT1 AdvMinT
Non-
Period ExM_tExDyn Uint16
10ms ExM_molMassInMixt Uint16
BEXMGsIT1 AdvOptmT
Non- .
Period ExM_gmalnMixt Uint16
20ms ExM_tUsMainOxCEstim Uint16
BXMGsIT2 AdvSpT
Non- 1 B\ tUsMainOXCEstim | Ulnt16
Period
InM_pDsThrCor Uint16
5ms
InNM_concEGREstim Uint16
InMdIT AdvPrevKnkT
d dvPrev InM_pDsThrCor Uint16
Non- .
Period InM_concEGREstim Uint16
INM_concEGREstim UlInt16
5ms InM_mEGREstim Ulnt32
InMdIT AdvOptmT _
Non- InM_mEGREstim Ulnt32
Period INM_mEGREstim Uint32
10ms INThM_tAirUsInVIVEstim Uint16
INThMdIT AdvPrevKnkT
Non- |\ Thm_tAirUsinVivEstim | Ulnt16
Period
10ms UsThrM_pAirExt Uint16
UsThrMT AdvPrevKnkT
Non- .
Period UsThrM_pAirExt Ulnt16
) ) Non- IgSys_rMaxigEfc Uint16
EngMGsILim EngLimTqT :
Period IgSys_rMaxlgEfc Uint16
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Non- IgSys_rDynlgSpEfc Ulnt16 1
BEXMGsIT2 EngLimTqT -
Period IgSys_rDynlgSpEfc Ulint16 1
10ms IgSys_lamClc Ulnt32 1
BMGsIT1 EngLimTqT IgSys_lamClc Ulnt32 1
Non-
Period IgSys_rDynlgSpEfc Uint16 1
IgSys_rDynlgSpEfc Uint16 1

Table 27-data rate information of communications between chains for application TDP

Air Advance Period Size Figure (y:size; x non period for
(Byte) red)
3
10ms 2
2
AirSysAir AdvPrevKnkT 1
- 0
Non-Period 2
10ms NonPeriod
10ms 1
AirSysAir AdvMinT
Non-Period 1
10ms NonPeriod
6
10ms 4
4
EngMGsIT AdvMiInT 2
. 0
Non-Period 4
10ms NonPeriod
1.5
10ms 1
1
EngMGsIT AdvMaxT 05
. 0
Non-Period 1
10ms NonPeriod
10ms 12
EngMGsIT AdvOptmT
Non-Period 12
10ms NonPeriod
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5ms 2 30
20
EngMGsIT EngLimTqT 10ms 22 10
O .
Non-Period 22 5ms 10ms NonPeriod
5ms 2 10
5
EngMGsIT AdvPrevKnkT 10ms 6 . .
Non-Period 6 5ms 10ms NonPeriod
3
10ms 2
2
EngMGsIT AdvCordT 1
i 0
Non-Period 2
10ms NonPeriod
3
10ms 2
2
BEXMGsIT1 AdvMinT 1
i 0
Non-Period 2
10ms NonPeriod
6
10ms 4
4
BEXMGsIT1 AdvOptmT 2
. 0
Non-Period 4
10ms NonPeriod
3
20ms 2
2
BEXMGsIT2 AdvSpT 1
i 0
Non-Period 2
20ms NonPeriod
10
5ms 4
InMdIT AdvPrevKnkT
Non-Period 6

5ms NonPeriod
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10

5ms 4
5
0 .
Non-Period 8 5ms NonPeriod
3
10ms 2
p
INThMdIT AdvPrevKnkT 1
. 0
Non-Period 2
10ms NonPeriod
3
10ms 2
i
UsThrMT AdvPrevKnkT 1
. 0
Non-Period 2
10ms NonPeriod
6
- 4 i
0 .
NonPeriod
BXMGsIT2 EngLimTqT Non-Period 4
NonPeriod
10ms 4 10
i 5
EXMGsIT1 EngLimTqT
0 -
Non-Period 8

10ms NonPeriod

Table 28-data rate information of communications between chains for application TDP
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