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Abstract

The statistical analysis of Next-Generation Sequencing (NGS) data has
raised many computational challenges regarding modeling and inference.
High-throughput technologies now allow to monitor the expression of thou-
sands of genes while considering a growing number of individuals, such as
hundreds of single cells. Despite the increasing number of observations, ge-
nomic data remain characterized by their high-dimensionality. The research
directions that will be explored in this manuscript concern hybrid dimen-
sion reduction methods that rely on both compression (representation of the
data into a lower dimensional space) and variable selection. Developments
are made concerning: i) the sparse Partial Least Squares (PLS) regression
framework for supervised classification, and ii) the sparse matrix factoriza-
tion framework for unsupervised exploration. In both situations, our main
purpose will be to focus on the reconstruction and visualization of the com-
plex organization of the data.

In this regard, we tackle particular challenges regarding the development
of methods to analyze high-dimensional data, since the dimensionality di-
rectly interferes with the optimization procedures. In a first part, we will de-
velop a sparse PLS approach, based on an adaptive sparsity-inducing penalty,
that is suitable for logistic regression, e.g. to predict the label of a discrete
outcome, such as the fate of patients or the specific type of unidentified sin-
gle cells based on gene expression profiles. The main issue in such framework
is to account for the response when discarding irrelevant variables. We will
highlight the direct link between the derivation of the algorithms and the
reliability of the results.

In a second part, motivated by questions regarding single-cell data anal-
ysis, we will consider the framework of matrix factorization for count data.
We propose a model-based approach that is very flexible, and that accounts
for over-dispersion as well as zero-inflation (both characteristic of single-cell
data). Our matrix factorization method relies on a hierarchical model for
which we derive an estimation procedure based on variational inference. In
this scheme, we consider variable selection based on a spike-and-slab model
suitable for count data. The interest of our procedure for data reconstruc-
tion, visualization and clustering will be illustrated in simulation experiments
and by presenting preliminary results of an on-going analysis of single-cell
data. All proposed statistical methods were implemented into two R packages
plsgenomics and CMF based on high performance computing.

Keywords: Computational Statistics, High-dimensional data, Dimen-
sion reduction, Compression, Variable selection, Logistic regression, Sparse
Partial Least Squares, Probabilistic matrix factorization, Zero-inflated data,
Gamma-Poisson model, Variational inference, Next-Generation Sequencing
data, Single-cell data.
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Résumé

L’analyse statistique de données de séquençage à haut débit (NGS ) pose
des questions computationnelles importantes. Il est aujourd’hui possible d’en-
registrer l’expression de milliers de gènes pour un nombre croissant d’indi-
vidus, comme des centaines de cellules individuelles. Malgré cette augmen-
tation de la taille des échantillons, les données de génomique sont toujours
caractérisées par leur grande dimension. Les travaux de recherche présen-
tés dans ce manuscrit portent sur des méthodes de réductions de dimension
hybrides, basées sur des approches de compression (représentation dans un
espace de faible dimension) et de sélection de variables. Des développements
sont menés concernant : i) la régression Partial Least Squares parcimonieuse
pour la classification supervisée, et ii) les méthodes de factorisation parci-
monieuse de matrices pour l’exploration de données non supervisée. Dans les
deux cas, nous nous concentrerons sur la reconstruction et la visualisation
des données.

Nous aborderons le développement de méthodes pour l’analyse de don-
nées en grande dimension. Les questions de dimensionnalité interfèrent direc-
tement avec les procédures d’optimisation. Dans une première partie, nous
développerons une approche de type PLS parcimonieuse, basée sur une pé-
nalité adaptative, pour la régression logistique (réponse discrète). Cette ap-
proche sera par exemple utilisée pour des problèmes de prédiction (devenir
de patients ou type cellulaire) à partir de profils d’expression de gènes. Ici, la
principale problématique sera de prendre en compte la réponse pour écarter
les variables non intéressantes. Nous mettrons en avant le lien direct entre
la construction des algorithmes et la fiabilité des résultats.

Dans une seconde partie, motivés par des questions relatives à l’analyse
de données single-cell, nous considérerons des méthodes de factorisation par-
cimonieuse de matrices de comptages. Nous proposerons une approche basée
sur un modèle hiérarchique flexible qui prend en compte la sur-dispersion
et l’amplification des zéros ou zero-inflation (caractéristiques des données
single-cell) et pour lequel nous dérivons une procédure d’estimation basée
sur l’inférence variationnelle. Nous introduirons également une procédure de
sélection de variables basée sur un modèle spike-and-slab. L’intérêt de notre
méthode pour la reconstruction, la visualisation et le clustering de données
sera illustré par des simulations et par des résultats préliminaires concer-
nant une analyse de données single-cell. Par ailleurs, toutes les méthodes
proposées sont implémentées dans deux packages R : plsgenomics et CMF.

Mots-clés : Statistiques computationnelles, Données en grande dimen-
sion, Réduction de dimension, Compression, Sélection de Variables, Régres-
sion logistique, Partial Least Squares parcimonieuse, Factorisation probabi-
liste de matrices, Modèle Gamma-Poisson, Inférence variationnelle, Données
de séquençage à haut débit, Données single-cell.
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Summary (French)

Depuis 10 ans, le séquençage de nouvelle génération ou Next Generation
Sequencing (NGS) a connu un essor sans précédent. Grâce à la réduction des
coups des technologies “haut débit”, il est maintenant possible d’enregistrer
l’expression de milliers de gènes tout en considérant un nombre croissant
d’individus. Les technologies les plus récentes permettent même de capturer
le matériel génétique de cellules uniques (données single cell). Ceci repré-
sente une opportunité sans précédent d’explorer la diversité inter-cellulaire
dans un organisme ou un tissu. Néanmoins, malgré l’explosion de la taille
des échantillons disponibles, les données génomiques restent caractérisées
par leur grande dimension, c’est-à-dire que le nombre de variables enregis-
trées est plus grand que le nombre d’observations dans l’échantillon. Dans
ce contexte, il est nécessaire de considérer les données dans leur globalité à
l’aide d’analyses multivariées afin de gérer au mieux les dépendances com-
plexes qui sont présentes dans ces données.

Une première étape dans l’analyse de donnée concerne généralement la
visualisation, en particulier pour fournir une représentation de ces données
dans un espace de petite dimension, laquelle correspondra à un résumé de
l’organisation complexe des données. Idéalement, l’étape de visualisation per-
met de comprendre la structure sous-jacente et les potentielles dépendances
dans les données, c’est-à-dire quels individus présentent des caractéristiques
analogues ou quelles variables se comportent de manière similaire. En consé-
quence, la visualisation pose la question du choix d’une géométrie appropriée.
Par exemple, Aggarwal et al. (2001) ont étudié le comportement contre-
intuitif de différentes métriques dans des espaces de grande dimension. Pour
guider ce choix, l’approche du statisticien est souvent de reformuler le pro-
blème et de chercher un modèle statistique approprié qui induira une géomé-
trie adaptée à la représentation des données. Dans certains cas, considérer
une approche géométrique est équivalent à considérer une approche basée
sur un modèle. Par exemple, dans le cas gaussien, la géométrie euclidienne
standard est directement liée à la formulation de la log-vraisemblance du
modèle. D’autres types de modèles, comme ceux appropriés aux données de
comptage, sont liés à d’autres types de géométrie. En particulier, la formula-
tion “moindre carrés” classique ne respectent pas les contraintes spécifiques
qui correspondent à des données de comptage ou binaires.

Une fois le modèle statistique spécifié, les approches probabilistes ou
model-based reposent sur des procédures d’inférence, dans les cas supervi-
sés comme non supervisés. Ces deux framework sont généralement basés sur
des méthodes d’optimisation qui sont spécifiquement conçues en fonction
du type de modèle considéré ou de la géométrie associée. Dans le contexte
de données en grande dimension, la dimensionnalité interfère directement
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avec les processus d’optimisation, à cause de singularités numériques ou de
problèmes d’identifiabilité. Ainsi, développer des méthodes appropriées pour
l’analyse de données en grande dimension reste un défi d’un point de vue
statistique (Donoho, 2000). Des approches de réduction de dimension basées
sur différents paradigmes ont été proposées pour surmonter ces probléma-
tiques. Nous allons nous concentrer sur deux types de méthodes pour réduire
la dimension : i) les méthodes de compression qui cherchent à représenter les
données dans un espace de dimension inférieure, et ii) les méthodes de sélec-
tion de variables qui sont basées sur une hypothèse de parcimonie, à savoir
que parmi tous les variables enregistrées, nombreuses ne sont pas informa-
tives, elles peuvent être considérées comme du bruit et ne doivent pas être
prises en compte dans le modèle. L”objectif dans les deux cas est d’apprendre
la structure sous-jacente ou de sélectionner automatiquement les variables
pertinentes. Le domaine des Statistiques en grande dimension est très actif
depuis une dizaine d’année, notamment avec l’explosion des volumes de don-
nées dans de nombreux secteurs. Aujourd’hui, un large spectre de méthodes
existent pour traiter les problématiques liées à la grande dimension. Utiliser
de telles méthodologies est maintenant un prérequis à toute analyse.

Dans cette thèse, nous nous concentrons sur des méthodes hybrides, les-
quelles combinent compression et sélection de variables dans un processus
efficace de réduction de dimension. L’intérêt d’un tel schéma est spécifique-
ment d’améliorer la réduction de dimension en exploitant les avantages de
chaque approche (compression et sélection). Par exemple, dans un contexte
d’analyse supervisée, la PLS parcimonieuse ou sparse PLS (Chun & Ke-
leş, 2010) est une extension de la régression Partial Least Squares (PLS),
introduisant une étape de sélection dans une procédure de compression. La
régression PLS est en effet conçue pour trouver des directions latentes (dans
les données) qui expliquent une réponse. En particulier, nous avons développé
une approche sparse PLS appropriée pour la régression logistique, c’est-à-
dire pour prédire le label d’une réponse discrète. Nous avons utilisé cette
méthode pour prédire le sort de patients, à partir de l’expression de gènes
de tissus tumoraux, ou pour prédire le type cellulaire de cellules uniques non
identifiées à partir de leurs profils d’expression. La principale problématique
ici est de comprendre comment prendre en compte la réponse (discrète) pour
écarter des variables. Une procédure de seuillage éliminant les variables non
pertinentes doit spécifiquement dépendre du modèle. De plus, l’intégration
d’une telle procédure dans un algorithme d’estimation est un point crucial
afin de garantir la stabilité et la fiabilité de notre méthode. Aussi, nous met-
tons en avant le lien direct existant entre la construction des algorithmes
d’estimation et la qualité de l’analyse, spécifiquement à propos de l’interpré-
tation des résultats.

xviii



En outre, les algorithmes d’optimisation doivent être conçus avec précau-
tion afin de garantir que leur résultat correspond effectivement à la solution
du problème statistique considéré. Cette question est au cœur du champs
des statistiques computationnelles, spécifiquement pour le développement et
l’implémentation de méthodologies qui seront adaptées à l’analyse de don-
nées à grande échelle. Dans le traitement d’un problème complexe, il est
souvent possible d’introduire des approximations qui simplifient la construc-
tion des procédures d’optimisation. Cependant, cela peut également intro-
duire des imprécisions qui auront un impact sur les résultats de l’analyse. En
particulier, les algorithmes d’optimisation sont souvent basés sur des procé-
dures itératives. Dans ce cas, il faut s’assurer que les itérations successives
conduisent bien à la solution du problème d’optimisation posé. Par exemple,
dans un contexte de problème supervisé, combiner les modèles linéaires géné-
ralisés ou GLM (McCullagh & Nelder, 1989) avec une méthode de réduction
de dimension n’est pas direct. Dans le pire des cas, il devient même impos-
sible de garantir la validité des résultats et la stabilité de la méthode.

De telles questions au sujet de l’optimisation sont aussi posées dans le
contexte d’analyses non supervisées. Motivés par des problématiques de re-
présentation et de clustering de données non-gaussiennes comme des profils
d’expression de gènes, nous avons également travaillé sur le framework de
la factorisation de matrice parcimonieuse. Généralement définie d’un point
de vue algébrique, la factorisation de matrice peut aussi être définie d’un
point de vue statistique, dans une optique de réduction de dimension. Afin
d’analyser des données de comptage, comme des profils d’expression de gènes,
nous avons développé des approches model-based qui sont très flexibles. Nous
avons conçu une procédure de factorisation de matrice basée sur des modèles
adaptés aux comptages. En particulier, notre modèle prend en compte la sur-
dispersion et l’amplification des zéros ou zero-inflation (proportion élevée de
valeurs nulles dans les données), lesquelles sont des caractéristiques des don-
nées d’expression de cellules uniques. Cette formulation est notamment liée
à une géométrie sous-jacente qui est adaptée à des données de comptage
sur-dispersées et zero-inflated.

Plus spécifiquement, notre méthode de factorisation de matrice s’appuie
sur un modèle hiérarchique, lequel requiert de développer un schéma d’in-
férence approprié. Dans ce contexte, les méthodes d’estimation standards
comme le maximum de vraisemblance ne sont pas utilisables à cause de la
complexité du modèle. Cependant, il est possible d’utiliser des méthodes al-
ternatives, notamment pour inférer la distribution a posteriori des variables
latentes. Aussi, il est crucial d’introduire les approximations appropriées dans
le schéma d’inférence afin de construire des algorithmes computationnelle-
ment efficaces. En particulier, si les approximations utilisées sont contrôlées,
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il est possible de garantir la validité de la procédure d’optimisation. Dans
cette optique, nous avons utilisé le framework de l’inférence variationnelle.
Cette approche est une alternative aux méthodes dites Markov Chain Monte
Carlo (MCMC) qui ont généralement un coût prohibitif en terme de calcul. À
l’inverse, l’inférence variationnelle est utilisée pour inférer une approximation
de la distribution a posteriori dans le modèle. Ce framework est performant
en terme de calcul et est particulièrement adapté pour construire des algo-
rithmes d’inférence qui seront utilisés pour analyser des données en grande
dimension comme des données de génomique.

–

De manière plus détaillée, ce travail de thèse est décomposé en deux
grandes parties. La première concerne les problèmes de classification su-
pervisée en grande dimension, dans le contexte de la régression logistique.
Nous avons introduit une approche innovante basée sur la sparse PLS et les
modèles linéaires généralisés. Nous avons également développé une nouvelle
procédure de sélection à l’aide d’une pénalité adaptative dans le problème
définissant la sparse PLS. Nous avons combiné cette étape de réduction de
dimension avec un algorithme d’estimation régularisé pour la régression logis-
tique. L’intérêt de nos développements méthodologiques est illustré sur des
simulations et sur des données expérimentales (expression de gènes, stan-
dard et single-cell), en particulier concernant la stabilité et l’efficacité de
notre approche.

La seconde partie se concentre sur des problématiques liées à l’exploration
de données de génomique les plus récentes comme des données d’expression
de cellules uniques (single-cell). De telles questions semblent standards mais
peuvent s’avérer être, en réalité, complexes dans le cas de données zero-
inflated. L’hypothèse de normalité n’est pas appropriée pour des données
de comptage, ce qui a motivé le développement d’alternatives à l’Analyse en
Composante Principale (ACP) et à l’algorithme de décomposition en valeurs
singulières (SVD) pour factoriser des matrices de comptage. Nous avons dé-
veloppé une méthode de factorisation probabiliste de matrice, adaptée aux
comptages, en utilisant un modèle à facteurs cachés Gamma-Poisson. Nous
avons étendu ce modèle pour traiter le cas de données zero-inflated. En com-
plément, nous avons étendu notre approche au cadre de la factorisation par-
cimonieuse de matrice à l’aide de modèle de sélection de variables probabi-
liste de type spike and slab. L’inférence d’un tel modèle est réalisé à l’aide
d’un nouvel algorithme de type variational EM que nous avons développé.
L’intérêt de notre approche pour la reconstruction et la visualisation de don-
nées ainsi que pour le clustering est illustré sur des simulations et par des
résultats préliminaires d’une analyse en cours de données de cellules uniques.
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Les travaux de recherche réalisés pendant ce doctorat ont également
mené à la réalisation de deux librairies pour le logiciel et environnement
de développement R. Les approches basées sur la sparse PLS ont été in-
tégrées dans la librairie plsgenomics qui est disponible en ligne (https:
//cran.r-project.org/). La méthode de factorisation de matrice de comp-
tage est implémentée dans une nouvelle librairie nommé CMF (pour “Count
Matrix Factorization”) et sera bientôt disponible en ligne.
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Introduction

For 10 years, Next-Generation Sequencing has been on the rise. Thanks to the reduction
of the costs of high-throughput technologies, it is now possible to monitor the expression
of thousands of genes while considering a growing number of individuals. Some recent
technologies are even able to amplify the genetic material of individual cells, leading
to the emerging field of single-cell data analyses. This represents an unprecedented
possibility to explore the inter-cellular diversity within an organism or a tissue. Although
the number of observations that is considered has been increasing quickly, genomic data
remain characterized by their high-dimensionality, meaning that the number of recorded
variables is larger than the size of the sample. In this context, considering the data
globally through multivariate analysis is necessary to handle the complex dependencies
that are present in such data.

A first step when analyzing data generally concerns visualization, in particular to provide
a representation in a lower dimensional space that will summarize the complex organi-
zation of the data. Ideally, the visualization step will allow to understand the latent
structure and the potential dependencies in the data, i.e. which individuals present
similar features or which variables behave similarly. Consequently, visualization raises
the question of the choice of an appropriate geometry. On this matter, Aggarwal et al.
(2001) studied the counter-intuitive behavior of different metrics in high dimensional
space. To guide this choice, the statistician’s perspective is often to restate the problem,
and to search for an appropriate statistical model that will induce a suitable geometry
to represent the data. In some cases, considering a geometric approach or a model-based
approach are equivalent. For instance, in the Gaussian case, the standard Euclidean
geometry is directly linked to the likelihood formulation. Other types of models, for
example appropriate for count data, are related to other types of geometries. In partic-
ular, the least-squares formulation, if not constrained, does dot comply with the specific
constraints that correspond to binary or count data.

Once the statistical model has been specified, model based-approaches rely on inference
procedures, in supervised or unsupervised cases. Both frameworks are generally based on
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optimization procedures, that are specifically designed depending on the type of model or
on the associated geometry. In the context of high-dimensional data, the dimensionality
directly interferes with the optimization methods, due to numerical singularities or identi-
fiability issues. Consequently, developing methods suitable to analyze high-dimensional
data remains a statistical challenge (Donoho, 2000). Dimension reduction approaches
based on different paradigms have been proposed to overcome such an issue. We will
mainly consider two types of dimension reduction methods: i) Compression methods that
search for a lower dimensional space on which the data can be represented, and ii) Vari-
able selection that is rather based on a parsimony hypothesis, meaning that among all
recorded variables, a lot are supposed to be uninformative and can be considered as noise
to be removed from the model. The objective of both frameworks it to learn the latent
structure or select the relevant variables automatically. This field of high dimensional
Statistics has been extremely active in the last ten years, especially with the explosion
of the volume of data in many domains. Nowadays, a wide variety of methods exist
to handle issues related to the high-dimensionality and using such methodologies is a
prerequisite to any analysis.

In this manuscript, we will focus on hybrid methods that combine compression and vari-
able selection for an efficient dimension reduction process. The interest of such framework
is especially to enhance the dimension reduction by exploiting the advantages of both
compression and selection. For instance, in a context of supervised analysis, the sparse
PLS (Chun & Keleş, 2010) extends the Partial Least Squares (PLS) regression by in-
troducing a variable selection step into a compression procedure. The PLS was indeed
designed to find latent directions (in the data) that explain the response. In particular,
we will develop a sparse PLS approach that is suitable for logistic regression, i.e. to
predict the label of a discrete outcome. Such a method will be used to predict the fate of
a patient, based on the expression of genes coming from tumorous tissues, or to predict
the specific type of unidentified single cells, based on their expression profiles. The main
issue in such problems is to understand how to account for the response when discarding
some variables. A thresholding procedure to cut out irrelevant variables should specifi-
cally depend on the model. Integrating such procedure to an estimation algorithm is a
crucial point to ensure the stability and reliability of the method. Indeed, we will high-
light the direct link between the derivation of the estimation algorithms and the quality
of the analysis, especially regarding the interpretation of the results.

Furthermore, optimization algorithms should be derived cautiously to ensure that their
output will correspond to the solution of the considered statistical problem. This question
is at the core of computational statistics, especially to develop and implement method-
ologies that will be appropriate for the analysis of large-scale data. When considering a
complex problem, it is always tempting to introduce approximations to cut corners and
simplify the derivation of the estimation procedures. However, it sometimes remains haz-
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ardous to use heuristics or approximations. For example, optimization are often based
on iterative procedures. Thus, iterative algorithms have to be derived with caution to
ensure that they correspond to the resolution of the considered optimization question. In
our supervised problem based on sparse PLS, we will see that combining the framework
of Generalized Linear Models (McCullagh & Nelder, 1989) with dimension reduction ap-
proaches is tricky. In a bad-case scenario, it even becomes impossible to guarantee the
validity of the output, especially regarding the stability of the results.

Such questions about optimization are also raised in the context of unsupervised analyses.
Motivated by questions regarding the representation and the clustering of non-Gaussian
data such as sequencing-based gene expression profiles, we will also consider the frame-
work of sparse matrix factorization methods that are particularly suitable for compression
and selection. The framework of matrix factorization is generally defined in an algebraic
context. Nonetheless, it can also be formulated within a statistical framework. To ana-
lyze count data such as expression profiles, we will use model-based approaches that are
very flexible. We will derive a matrix factorization procedure based on count-specific dis-
tributions. In particular, our model will account for over-dispersion (greater variability
than expected) and zero-inflation (abnormal proportion of zeros in the data) that partic-
ularly characterize single-cell data for example. Such formulation is particularly related
to an underlying geometry suitable for zero-inflated and over-dispersed count data.

As we will see, our matrix factorization method will rely on complex hierarchical models
which also requires to develop appropriate inference frameworks. In such context, using
standard estimation methods such as Maximum Likelihood Estimation is often compro-
mised because of the complexity of the model. However, solutions exist, especially to
infer the posterior distribution of the latent variables. In this context, the question about
introducing appropriate approximations in the inference procedure is central in order to
derive computationally efficient algorithms. We will show that if the scope of the consid-
ered approximation is controlled, it is possible to ensure the validity of the optimization
procedure. In this regard, we will use variational inference. This approach avoids using
Markov Chain Monte Carlo procedures that may have an important computational cost.
Instead, the variational framework is used to infer an approximation of the posterior dis-
tribution in the model. It is computationally efficient and particularly suitable to derive
inference algorithms that can be used to analyze high dimensional data such as genomic
data.

This manuscript is organized into two main parts. Part I will concern problems of super-
vised classification in high-dimension. Chapter 1 will be dedicated to the introduction
of dimension reduction methodologies in the context of Generalized Linear Models. We
will especially define the principle of the sparse PLS regression. The potential issues in
the existing methods that use sparse PLS for classification will be explained to motivate
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the development of our approach. We will also expound the interest of such an approach
in the context of genomic data analysis. Chapter 2 will focus on the framework that we
propose. It is based on a new adaptive selection step in sparse PLS that is combined
to an existing regularization of the estimation algorithm for logistic regression. The in-
terest of our methodological developments will be illustrated by simulations to assess its
performance and by their application to two different experimental data analyses. Fi-
nally, the third chapter will conclude the first part of this manuscript and presents some
perspectives of work concerning the sparse PLS.

Part II will focus on the problems regarding data exploration in most recent genomic data
such as single-cell expression data. Such problems seem quite standard but remain quite
problematic in the case of zero-inflated count data. In Chapter 4, we will introduce the
framework of matrix factorization and explain the functioning of the historical methods
such as Principal Component Analysis to decompose the signal in the data. We will
also present the specificity of the single-cell data from the statistical point of view that
will motivate the development of a specific dimension reduction method. Chapter 5 will
explain why the Gaussian framework is not appropriate for count data. Based on this
assessment, we will present the alternatives for model-based matrix factorization suitable
for count data, especially by using a Gamma-Poisson factor model. The inference of such
model will also be discussed to motivate our choice for variational inference. Finally,
sparse matrix factorization and model-based variable selection will be introduced. In
Chapter 6, we will detail our Gamma-Poisson factor model and derive a new variational-
EM algorithm suitable for the inference of the model. We will then extend the model to
account for zero-inflation or to enforce sparsity in the factors and derive the associated
inference frameworks. The interest of our procedure for data reconstruction, visualization
and clustering will be illustrated in simulation experiments and by presenting preliminary
results of an on-going analysis of single-cell data. Eventually, Chapter 7 will conclude
the second part and consider some potential directions that we will investigate regarding
the improvement of our matrix factorization approach.

The research work during this PhD project leads to the development of two packages for
the statistical software R. The sparse PLS related approach has been incorporated into
the existing plsgenomics package that is currently available on the CRAN (https://
cran.r-project.org/). The method for factorization of count matrices is implemented
in a new package named CMF (for Count Matrix Factorization) that is currently in testing
phase and that will be released on the CRAN very soon.
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Part I

Supervised
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Chapter 1

Prediction in the context of genomic
data

In supervised statistical problems, an observed outcome, denoted as the response, is re-
lated to numerous variables, usually called regressors, predictors or covariates. Depending
on the type of the outcome, there exists different types of methods to solve various sta-
tistical problems such as regression (quantitative outcome) or classification (qualitative
outcome). In the first part of this manuscript, we will focus on classification problems,
generally dealing with high-dimensional data, i.e. when the number of covariates is larger
than the number of observations. We will develop a dimension reduction approach in the
context of the Generalized Linear Model that combines a projection of the data into a
lower dimensional space with a selection of the relevant covariates. The development of
such methodology is motivated by the analysis of genomic data, characterized by their
high-dimensionality.

In the following, we will address issues related to the classification of high-dimensional
data, mainly concerning:

– algorithm combination: how to combine dimension reduction methods and clas-
sification frameworks in order to ensure the convergence and the stability of the
procedure;

– calibration: concerns about the tuning of the hyper-parameters in complex models;

– efficiency: how to control the computational cost in the case of large-scale and
high-dimensional data sets.
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1.1 Supervised analysis in transcriptomics

The functioning of living cells is based on the synthesis of proteins (Alberts et al., 2007).
The genome of each organism is composed of genes that encode for specific proteins. In
particular, the protein synthesis is driven by the expression of genes thanks to the fol-
lowing process: during the transcription, the DeoxyriboNucleic Acid (DNA) that carries
genes is copied into messenger RiboNucleic Acid (mRNA), that is then translated into
proteins. In this context, monitoring the expression of genes is a proxy to characterize
the cell activity.

The field of transcriptomics studies how genes are expressed in the cell(s) of an organism
in order to understand the cellular activity depending on the time and environmental
conditions. Since nearly twenty years, it has been possible to measure simultaneously the
expression level of numerous genes (up to thousands). Replacing microarray technologies
(Brown & Botstein, 1999), high-throughput technologies also known as Next-Generation
Sequencing (NGS) (Hawkins et al., 2010; Reuter et al., 2015) have given access to gene
expression profiles regarding hundreds of samples (McGettigan, 2013; Wolf, 2013). When
analyzing such data, one of the objectives is to understand the expression patterns that
are related to a specific biological or a medical condition. For instance, molecular char-
acterization of diseases like cancer has been a hot topic for 15 years (Alon et al., 1999;
Dudoit et al., 2002; Guedj et al., 2012) and there has been a huge effort regarding the
prediction of the fate of cancer patient (Wang et al., 2015). In standard NGS data, the
signal corresponds to an averaged measure over a population of cells (as a sample from
a tissue). Thus, the expression levels account for inter-tissue or inter-group variability,
contrary to single-cell data data, which will be the subject of Part II, that allow the
quantification of the within-population variability.

Different supervised statistical problems are involved when integrating transcriptomic
data, such as regression or classification. The objective is especially to relate a quan-
titative or qualitative response with the expression of genes. This response can be a
physiological measure, a patient or tissue status (binary, tumorous vs non-tumorous), a
type of disease, etc. For instance, when dealing with a qualitative outcome (classification
problem), the objective is to find differences of expression between conditions. A first
approach is to consider differential expression analysis (Anders & Huber, 2010) that is
based on univariate statistics. Genes are scored and ranked (Bullard et al., 2010) depend-
ing on the differences in their expression regarding a condition. However, genomic data
are usually composed of thousands of genes but much less individuals, i.e. the number
of recorded variables p (as gene expression) is far larger than the sample size n. This
situation is known as a high dimensional case. Such data are characterized by complex
dependencies between variables. In this context, we will rather focus on multivariate
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statistical approaches especially suitable for high-dimensional data. Their purpose is to
work simultaneously on numerous genes, in order to determine and highlight the latent
structures within the data. Some dimension reduction procedures have been particularly
developed to analyze genomic data (Antoniadis et al., 2003; Fort & Lambert-Lacroix,
2005; Lê Cao & Le Gall, 2011).

Following the recent advances of sequencing technologies, it is now possible to isolate
and sequence the genetic material from a single cell (Stegle et al., 2015). Single-cell data
give the opportunity to characterize the genomic diversity between the individual cells of
a specific population. Hence, these data are concerned not only by high-dimensionality
but also by increasing sample sizes and the relative questions regarding inter-individual
diversity (and not just variable dependencies). Moreover, the growing number of obser-
vations also constitutes an opportunity to consider more complex models with multi-class
outcomes, e.g. the classification of cells according to their types.

1.2 Introduction to some supervised dimension
reduction methods

Handling high-dimensional data such as expression profiles constitutes a challenge for
classical regression or classification methods (Marimont & Shapiro, 1979; Donoho, 2000).
Indeed, high dimensionality is often associated with spurious dependencies between vari-
ables, leading to singularities in the optimization processes, with neither unique nor stable
solution (Aggarwal et al., 2001; Hastie et al., 2009). This phenomenon is known as the
“curse” of high dimensionality. Statistical analyses in this context are challenging and
calls for the development of specific tools, especially dimension reduction approaches. In
this section, we introduce some statistical approaches that were developed to overcome
high dimensionality issues in the context of the Generalized Linear Models (GLMs).

We briefly introduce some notations that will be necessary for the formal definition of
the statistical concepts in the following. We observe a sample of size n, denoted by
(xi, yi)i=1:n, with yi the response variables and xi = (xi1, . . . , xip)

T a set of observations
of p covariates. In the following, y = (y1, . . . , yn)

T is the response vector of observations
and the matrix X = [xij ] ∈ R

n×p gathers the n observations of the p covariates (i.e.
X = [xT

1 , . . . ,xT
p ]T ). The random variable associated to the response yi is denoted by

Yi, and the response random vector is defined as Y = (Y1, . . . , Yn)
T . We eventually

define the “completed” covariate matrix of dimension n × (p + 1) that is defined as
X̃ = [(1, . . . , 1)T ,X]. The additional column of 1 will be useful to consider the intercept
in regression problem (c.f. below). The rows of X̃ are naturally denoted by x̃i.
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1.2.1 GLMs and supervised statistical problems

When the response y is quantitative, a standard method to model the dependency be-
tween y and the predictors X is the linear regression, see Seber & Lee (2003) for a
complete introduction. The response is assumed to linearly depend on the covariates,
the model can be written as Yi = β0+xT

i β\0+εi (for any i) where β = {β0, β1 . . . , βp} =

{β0,β\0} is the vector of linear coefficients and εi the error term. The model is rewritten
Yi = x̃T

i β + εi (for any i = 1, . . . , n) in order to integrate the intercept β0 in the linear
combination, i.e. matricially Y = X̃β + ε with the vector of errors ε = (ε1, . . . , εn)

T .

The �2 loss corresponds to the log-likelihood when assuming the response (Yi)i=1:n to
be i.i.d.1 Gaussian variables, i.e. Yi ∼ N (x̃T

i β, σ2) with σ2 > 0 constant across i =

1, . . . , n. The concept of Gaussian linear model can be extended to the case of a non-
Gaussian response, especially to any distribution in the exponential family2. The GLM
framework (Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989) covers numerous
usual distributions, including the Bernoulli and multi-categorical distributions suitable
for qualitative and discrete outcomes. We will especially focus on classification problems
where the purpose is to predict the label of the response depending on the covariates.

The logistic regression model

In GLMs, the conditional expectation of the response is supposed to depend on a linear
combination of predictors x̃T

i β (following the notation previously introduced) through
an invertible link function g, i.e.

g−1(E[Yi |xi]) = x̃T
i β ,

for any i = 1, . . . , n. The link function is determined by the parametrization of the
response distribution in the exponential family. When considering the case of a binary
classification problem, the label variables Yi takes their values in {0, 1} (for instance
tumorous versus non-tumorous tissue). The response is therefore assumed to follow
a Bernoulli distribution Yi |xi ∼ B

(
π(xi)

)
conditionally to the observation xi. The

probability π(xi) ∈ [0, 1] depends on xi, however to simplify the notation it will be
denoted as πi. Following the GLM framework, the random response variable Yi is related
to the predictors through the logistic (or logit) link function:

logit(πi) = x̃T
i β ,

1independent and identically distributed
2c.f. Appendix Chapter A
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with πi being the conditional probability P[Yi = 1 |xi]. The logit function is logit(x) =
log(x/(1− x)). The log-likelihood of the model is derived as:

logL(Y |X ; β) =

n∑
i=1

[
yi x̃

T
i β − log{1 + exp

(
x̃T
i β

)
}
]
. (1.1)

The coefficients β are estimated by Maximum Likelihood Estimation (MLE)3 (McCullagh
& Nelder, 1989). We will also consider the multi-class model, also known as multinomial
logistic regression, in the next chapter. It constitutes a direct generalization of the binary
case and will be detailed later.

An example of high dimensionality issue

We present a small example illustrating why the high dimensional case is an issue for
standard statistical tools.

In the linear model defined previously, the coefficients β ∈ R
p+1 can be estimated by

Ordinary Least Squares (OLS), i.e. the estimate β̂OLS minimizes the quadratic error4

‖y− X̃β‖ 2
2 . This problem admits a closed-form solution: β̂OLS = (X̃T X̃)−1X̃Ty. How-

ever, as soon as p + 1 > n, the matrix X̃T X̃ becomes singular and the estimate β̂OLS

is not defined. In practice, this corresponds to an identifiability issue, indeed, ŷ defined
as X̃β̂ is the projection of y onto the subspace generated by the columns of X̃. Thus,
if p + 1 > n (or if the covariates are highly correlated), the columns of X̃ are not lin-
early independent and the coefficients β̂ are not uniquely defined. In this case, another
approach is needed to estimate the coefficients.

Regularization

A first option is to consider penalized approaches. It consists in adding a penalty on
the vector of parameter β when optimizing the loss function associated to a considered
methods, e.g. the log-likelihood. Penalized problem are generally written as:

β̂ = argmin
β∈Rp

{
logL(Y |X ; β) + ν Pen(β)

}
,

with ν > 0 being a constant of penalization to be tuned. The penalty term Pen(β) is
defined depending on the purpose of the penalization.

3The reader may refer to Aldrich (1997) for an historical review regarding the introduction
of the MLE by R.A. Fisher in the 1920s.

4‖ · ‖2 is the �2 norm, i.e. ‖a‖ 2
2 = aTa for any vector a ∈ R

n
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For instance, regularization methods based on �2 penalty were developed to overcome
numerical singularities. In this context, the Ridge regression (Hoerl & Kennard, 1970)
also known as the Tikhonov regularization is defined with a penalty on the �2-norm of the
vector of parameters, i.e. Pen(β) = ‖β‖ 2

2 . The Ridge-penalized least squares problem
for regression5 admits a closed-form solution6. The matrix X̃T X̃ is regularized to avoid
the singularity issue.

1.2.2 Dimension reduction methods

Different other methodologies based on different paradigms exist to resolve the issues
related to high dimensionality. We first recall some of the main strategies for dimension
reduction and then introduce a framework known as the Partial Least Squares (PLS)
regression that we will adapt to our classification problem.

Compression methods

Compression approaches are based on the assumption that high dimensional data may
be represented in a much lower dimensional space. Their aim is to retrieve this lower
dimensional structure. The principle is to project the observations into a lower dimen-
sional space and to find the directions that summarize the information contained in the
different variables. The standard example is the Principal Component Regression (PCR)
where the response is regressed on a few principal components instead of the covariates
directly (Jolliffe, 1982). These components are obtained thanks to the Principal Compo-
nent Analysis (PCA) that construct directions of maximal variability in the data (Abdi
& Williams, 2010).

In the first part of this manuscript, we will mainly work with the PLS regression (Wold,
1975; Wold et al., 1983). It solves a linear regression problem and is particularly suitable
to deal with highly correlated covariates. PLS constructs new components as linear
combinations of the predictors that maximize their covariance with the response. The
advantage of the PLS regression over the PCR for instance is that it finds the latent
directions within the data that explain the response at best. Such framework is an
alternative to least squares estimation in high-dimensional case. Moreover, as in PCA,
the PLS components can be used for data representation and visualization.

The PLS regression and its derivatives for classification will be more precisely introduced

5β̂Ridge = argminβ∈Rp+1

{
‖y − X̃β‖ 2

2 + ν ‖β‖ 2
2

}
6β̂Ridge = (X̃T X̃+ ν Idp+1)

−1X̃Ty where Idp+1 is the identity matrix.
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in the following. Moreover, there is a wide diversity of methods that focus on dimension
reduction by compression in the unsupervised context. This will be extensively considered
in Part II.

Variable selection

Another option to reduce the dimension is to select only some variables that will be
assumed to be relevant for the considered problem. In particular, variable selection
methods are based on a hypothesis of parsimony within the data. It assumes that only
a few relevant variables contribute to the model fit and a huge number of covariates are
useless for the model. In this context, the purpose is to “select” these relevant variables
and discard the non pertinent ones from the model. In this regard, it is possible to use
another class of penalized methods which consist in sparsity-inducing approaches. An
example is the Lasso (Tibshirani, 1996), with its �1 penalty constraint on the norm of
the coefficients. It was first introduced in the case of linear regression. When considering
the MLE, the optimization problem is written such as:

β̂ = argmin
β∈Rp+1

{
logL(Y |X ; β) + ν |β|1

}
,

where |β|1 =
∑

j |βj |. The interest of this penalization is that coefficients of the less
relevant variables are shrunk to zero (Bach et al., 2012). It can be noted that, since the
Lasso, other penalized approaches have been developed for variable selection, e.g. SCAD
(Fan & Li, 2001), the Fused Lasso (Tibshirani et al., 2005), the adaptive Lasso (Zou,
2006) or the Group Lasso (Yuan & Lin, 2006).

Combination of compression and variable selection

More recently, some methodologies have been developed based on a combination of a
compression approach and a variable selection procedure, in order to benefit from the
abilities of both framework. In this regard, the sparse PLS regression (Lê Cao et al., 2008;
Chun & Keleş, 2010) is a combination of compression and variable selection approaches.
It introduces a selection step based on the Lasso in the PLS framework, constructing
new components as sparse linear combinations of predictors. Chong & Jun (2005) have
empirically shown that using the PLS to rank covariates for variable selection gives better
results regarding the accuracy of selection than the Lasso. It occurs as well that combin-
ing compression with a “sparse” approach improves the efficiency of prediction and the
accuracy of selection. Chun & Keleş (2010) and Chung & Keleş (2010) obtained empir-
ical results that showed better performance of the sparse PLS over the Lasso regarding
prediction and selection.

13



In Part I (Chapters 1 to 3), we will consider the extension of sparse PLS to classification
and its incorporation as a dimension reduction approach into the GLM framework (espe-
cially for logistic regression). In this context, the main issue is related to the convergence
of the estimation algorithm and especially how to ensure the stability of the procedure
when combining a dimension reduction approach as sparse PLS (that is already a com-
bination of two approaches) and the estimation procedure for the GLMs.

1.2.3 Definition of the sparse Partial Least Squares
regression

Before introducing their extension to the framework of GLMs, we present the PLS and
sparse PLS approaches in the context of regression.

PLS regression

The PLS regression was first introduced in the field of chemometrics (Wold, 1975; Wold
et al., 1983). It has been then widely used in different domains, including genomic data
analysis (Boulesteix & Strimmer, 2007). The PLS is a compression method suitable
for linear regression (Höskuldsson, 1988; Tenenhaus, 1998), particularly in the case of
correlated covariates. The PLS constructs new components tk ∈ R

n (for k = 1, . . . ,K)
as linear combinations of the predictors, i.e. tk = Xwk with the weight vectors wk ∈ R

p,
or equivalently tik =

∑
j xij wjk for any i = 1, . . . , n.

The weight vectors wk are defined to maximize the empirical covariance between the
new components tk and the continuous response y, defined as Ĉov(tk,y) ∝ w T

k (Xc)
Tyc,

where Xc and yc are the respective centered versions of X and y. The optimization
problem associated to the PLS also assumes that ‖wk‖2 = 1 and orthogonality between
components, i.e. ⎧⎪⎪⎨⎪⎪⎩

wk = argmin
w∈Rp

w T (Xc)
Tyc ,

‖wk‖2 = 1 ,

tk orthogonal to t1, . . . , tk−1 .

(1.2)

Some implementations consider an objective defined by the squared covariance (leading
to the same solution), i.e. w T (Xc)

Tyc(yc)
TXcw (Boulesteix & Strimmer, 2007).

Using matrix notations, tk and wk are the respective columns of the matrix Tn×K and
the matrix Wp×K so that T = XW. The PLS algorithm is iterative, the first weight
vector w1 is computed by using the covariance maximization problem with Xc and yc.
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Then, the second weight vector w2 is computed using the “deflated” version of Xc and
yc, i.e. the residuals of the respective regression of Xc and yc onto t1, and so on until
the components K. At each step k, the covariance maximization problem admits a
closed-form solution, wk is the dominant singular vector of the empirical covariance
matrix Ĉov(X(k),y(k)) ∝ (X(k))Ty(k) where X(k) and y(k) are the respective deflated
counterparts of Xc and yc at step k > 1.

Eventually, the response y is regressed against the K components (tk)k=1:K , by consid-
ering the linear model y = Tq+ ε̃, where q ∈ R

K is the vector of coefficients and ε̃ ∈ R
n

the vector of errors. When plug-in the relation T = XW in the previous model, i.e.
y = XWq+ ε̃, the estimation of the coefficients in the original linear model y = Xβ+ε

is given by β̂ = Wq̂.

When the matrix X is singular7, β cannot be estimated by least squares optimization,
however the dimension K is generally chosen so that K < min(n, p), therefore the regres-
sion of y onto T is more likely to be resolvable and used to estimate the linear coefficients
in the high dimensional model. Another interest of the PLS is that the components T and
weights W describe the individuals and covariates (respectively) in a lower dimensional
subspace (Phatak & De Jong, 1997), highlighting directions that explain the response.
Hence, the PLS components can be used for data representation8.

The PLS algorithm is able to handle a multivariate response, however we will restrain
our analysis to univariate response (a less complex case when defining sparse PLS) as we
will see in the next paragraph.

Sparse PLS

The covariates that are not relevant to explain the response are characterized by near
zero weights in the PLS components. However, in high-dimension the cumulative con-
tribution of numerous non-pertinent variables may exceed the contributions of the few
important covariates, introducing an inherent noise in the model. Selecting the pertinent
predictors in the data X can be a solution to avoid this problem. For instance, Dai et al.
(2006) showed that selecting covariates before running PLS improve the results regarding
prediction9

More recently, it was proposed to directly integrate the selection process in the PLS
framework by using a sparsity-inducing approach. Indeed, Lê Cao et al. (2008) or Chun

7For instance when the covariates are correlated or in high dimension (i.e. when p > n)
8similarly to the components from PCA (Abdi & Williams, 2010)
9Their application concerned classification of gene expression data.
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& Keleş (2010) introduced the sparse PLS regression. The principle is to add a variable
selection step within the PLS algorithm. The components are constructed from sparse
weight vectors, whose coordinates are required to be null for covariates that are irrelevant
to explain the response. The shrinkage of these weights to zero is achieved by using a
�1 norm penalty in the covariance maximization problem, following the Lasso principle
(Tibshirani, 1996), i.e.

⎧⎨⎩ ŵ(ν) = argmin
w∈Rp

{
− Ĉov(Xw,y) + νS |w|1

}
,

‖w‖2 = 1 ,
(1.3)

where νS > 0 is the sparsity penalty parameter. For the moment, we will focus on the
computation of the first weight vector w1. The computation of the weights w2, . . . ,wK is
also constrained so that the SPLS components are orthogonal. In particular, the following
components t2, . . . , tK are derived by replacing X and y by their deflated counterparts
in the problem (1.3) as in the standard PLS algorithm. Since the deflated variables are
the residuals from the regression of y and X onto the components t1, . . . , tk−1, it ensures
that the components tk will be orthogonal to t1, . . . , tk−1.

The main issue with the objective function of the problem (1.3) is that it is not convex10

and quite difficult to optimize. To overcome this issue, Lê Cao et al. (2011) proposed to
use a sparse Singular Value Decomposition (SVD) of the covariance matrix (Xc)

Tyc at
each iteration of the PLS algorithm. Their approach is inspired from the sparse PCA by
Shen & Huang (2008). The SVD11 of a matrix A is a procedure that finds the eigenvector
of ATA. Therefore, the PLS weight vector w can be derived by computing the SVD of
(Xc)

Tyc. The idea of the sparse SVD is to find sparse approximation of the eigenvec-
tors, so the algorithm from Lê Cao et al. (2011) uses sparse SVD to approximate the
dominant eigenvectors of (Xc)

Tyc under sparsity constraint. However, in this procedure,
the covariance maximization problem does not admit a closed-form solution, and the
construction of each SPLS component tk requires an iterative optimization to compute
the weight vector wk.

Another method was proposed by Chun & Keleş (2010). They used the alternate di-
rection method (Eckstein & Yao, 2012) to decompose the problem (1.3). The loss in
Equation (1.3) is the sum of two terms, a concave loss and a convex penalty, that can
be easily optimized separately. The approach consists in separating each term in the
objective function with two different arguments. The difference between these two argu-
ments is penalized so that they remain close to each other. The optimization problem

10as a sum of a convex term and a concave term
11c.f. Chapter 4
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associated to the sparse PLS by Chun & Keleş (2010) is therefore:

argmin
a∈Rp, c∈Rp

{
− τ aTMTMa+ (1− τ)(c− a)TMTM(c− a) + νS

p∑
j=1

|cj |
}
, (1.4)

where c ∈ R
p and a ∈ R

p are the two arguments separating the objective function. The
matrix M = (Xc)

Tyc is proportional to the empirical covariance matrix, the product
MTM corresponds to the squared covariance. The parameter τ ∈ [0.5, 1] regulates the
penalization on the difference between the two arguments a and c. The parameter ν > 0

is as usual the penalty parameters on the �1 norm of the vector c. Chung & Keleş (2010)
introduce weighted sparse PLS algorihtm that extended this formulation to the weighted
�2 metric case, taking into account heteroskedasticity by using a weighted matrix product,
i.e. M = (Xc)

TVyc, where V ∈ R
n×n is a weighting matrix.

The sparse weight vector w is given by the optimal c. When the response is univari-
ate, the problem in Equation (1.4) admits a closed-form solution independent from the
parameter τ , based on the soft-thresholding operator applied to the coordinates of the
covariance vector12 M = (mj)j=1:p = (Xc)

Tyc. Hence, the coordinates of the vector w

are defined as
wj = sgn(mj)

(
|mj | − ν

)
+
,

where the soft-thresholding operator is defined as x �→ sgn(x) (|x| − ν)+ for any x ∈ R

and (·)+ = max(0, ·).

In Appendix Chapter B, we present a new demonstration of this results, based on prox-
imal operators.

1.3 Computational challenges for dimension
reduction in GLMs

The PLS and sparse PLS have shown excellent performance in the case of regression with
a continuous response (Chun & Keleş, 2010). Therefore, it seems quite natural to ques-
tion the possible extension of the PLS framework to deal with non-continuous response.
However, we will show that this adaptation to classification is not straightforward. We
now present the state-of-the-art regarding the use of (sparse) PLS for classification and
especially its integration into the GLM framework.

12The covariance matrix Ĉov(X,y) is a vector when y is univariate.
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1.3.1 Potential issues with logistic regression

We consider the model of logistic regression introduced in Section 1.2.1.

The IRLS algorithm

The optimization of the likelihood in logistic regression13 relies on a gradient descent
(McCullagh & Nelder, 1989). The iterative optimization constructs a sequence of vectors

of coefficients (β̂
(m)

)m≥1, whose limit β̂
∞

(if it exists) is the estimation of β. In par-

ticular, a Newton-Raphson-based algorithm gives an explicit formulation of (β̂
(m)

)m≥1.

Each β̂
(m)

corresponds to the coefficient in a weighted regression of a pseudo-response,
denoted by ξ(m), onto the predictors X. At the iteration m, the pseudo-response is a
continuous variable that depends linearly on the predictor thanks to β̂

(m−1)
. The It-

eratively Reweighted Least Squares (IRLS) algorithm introduced by Green (1984) was
therefore defined as the following successive weighted regression:∣∣∣∣∣∣

β̂
(m+1)

= (X̃TV(m)X̃)−1X̃TV(m)ξ(m) ,

ξ(m+1) = X̃β̂
(m)

+
(
V(m)

)−1 [
y − μ̂(m)

]
.

(1.5)

The pseudo-response ξ(m) also depends on the vector of estimated probabilities for each
observation π̂(m) = (π̂

(m)
i )i=1:n with π̂

(m)
i = logit−1

(
x̃T
i β̂

(m))
. The weighting matrix

V(m) = diag(v(m)
i )i=1:n is the diagonal empirical variance matrix of the true response Y

at the step m, i.e. v
(m)
i = π̂

(m)
i (1 − π̂

(m)
i ), and the regression is weighted by the matrix

V(m).

Recalling the solution of the linear regression problem (c.f. Section 1.2.1), this iterative
optimization achieves the successive resolution of a weighted linear regression of the
pseudo-response ξ(m) onto the covariates X̃. It is noticeable that following the definition
of ξ(m) computed at each iteration, the IRLS algorithm produces a pseudo-response ξ∞

as the limit of the sequence (ξ(m))m≥1, which is of the form ξ∞ = X̃β̂
∞
+ ε̃ where β̂

∞
is

the solution of the likelihood optimization, and ε̃ is a noise vector of covariance matrix
(V∞)−1 with V∞ the limit of the matrix sequence (V(m))m≥1.

13c.f. Equation (1.1)
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Convergence issues

The question of the convergence of the IRLS algorithm is a crucial issue when estimating
parameters. Non-convergent methods may lead to unstable and unreliable estimations,
impacting analysis interpretation and reproducibility. Even in the case p < n, the MLE
may not exist (Albert & Anderson, 1984). Moreover, the definition of the IRLS algorithm
is an issue in the high-dimensional case as it relies on the inversion of the singular matrix
XTX. Nonetheless, it is not a GLM-specific problem as other classification methods are
affected by high-dimensionality such as k-Nearest Neighbours (k-NN) (Hinneburg et al.,
2000) or Linear Discriminant Analysis (LDA) (Bickel & Levina, 2004). Using dimension
reduction approaches is necessary to overcome the dimensionality issue. Especially, it has
been proposed to use PLS to reduce dimension in the context of logistic regression. How-
ever, such combination raises questions regarding algorithmics to ensure the convergence
and the stability of the procedure.

As mentioned, the (sparse) PLS is a tool built to solve linear regression problems. We
now address the question of its extension to binary classification and logistic regression.

1.3.2 Combining PLS and GLMs

The integration of dimension reduction approaches in the GLM framework is a sensitive
question (Antoniadis et al., 2003; Fort et al., 2005). Indeed estimation in the GLM is
based on iterative optimization. There exist potential issues regarding convergence of
the procedure.

To overcome the convergence issue in the IRLS algorithm, Marx (1996) proposed to
solve the weighted least square problem at each iteration of the IRLS algorithm with a
weighted PLS regression. This algorithm follows the IRLS scheme but defines β̂

(m+1)
as

estimated by a PLS regression of the pseudo-response ξ(m) onto the covariates X, i.e.∣∣∣∣∣∣
β̂
(m+1) ← PLSw(ξ

(m), X̃) ,

ξ(m+1) = X̃β̂
(m)

+
(
V(m)

)−1 [
y − μ̂(m)

]
,

(1.6)

where PLSw corresponds to the weighted PLS algorithm where the metric in the observa-
tion space, i.e. in R

n, is weighted by the variance matrix V(m). However, it is not clear if
such iterative scheme corresponds to the optimization of an objective function, and if so,
what would be this objective function. Therefore, there is no guarantee that a solution
provided by this method is a good approximation of the MLE. Moreover, the lack of an
optimization framework does not ensure that the sequence (β̂

(m)
)m≥1 will converge14.

14This point is illustrated in the next chapter.
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Another approach was proposed by Wang et al. (1999) and Nguyen & Rocke (2002).
Instead of introducing the PLS inside the IRLS algorithm, they proposed to achieve the
dimension reduction before the logistic regression. Their algorithm uses the PLS regres-
sion as a preliminary compression step. The components (tk)k=1:K in the subspace of
dimension K are then used in the logistic regression instead of the predictors. There-
fore, the IRLS algorithm does not deal with high dimensional data (as K < p). In this
context, the PLS algorithm treats the discrete response as continuous. Such approach
seems counter-intuitive as it neglects the definition of PLS to resolve a linear regression
problem and it ignores the inherent heteroskedastic context. This algorithm is called
PLS-log in the following. It can be noted that Nguyen & Rocke (2002) or Boulesteix
(2004) also proposed to use discriminant analysis as a classifier after the PLS step15.
This method, known as PLS-DA, is not directly linked to the GLM framework but we
cite it as an alternative for classification with PLS-based approaches because we will use
it as a baseline in our experimental study.

Ding & Gentleman (2005) proposed the Generalized PLS (GPLS) method. They intro-
duced a modification in Marx’s algorithm based on the Firth procedure (Firth, 1993),
in order to avoid the non-convergence and the potential infinite parameter estimation
in logistic regression. However, we will see in our simulations that this algorithm may
not converge, since the iterative patterns does not correspond to the optimization of
an objective function. Hence, on the contrary to the IRLS algorithm that optimizes
the likelihood, the GPLS algorithm is not defined by an explicit optimization criterion
over β.

In order to overcome the optimization issue, Fort & Lambert-Lacroix (2005) proposed to
integrate the dimension reduction step after the IRLS algorithm. Indeed, as previously
introduced, the pseudo-response ξ∞ produced by the IRLS algorithm depends on pre-
dictors through a linear relation ξ∞ = X̃β̂

∞
+ ε̃. Thus, the PLS is appropriate when

considering the regression of ξ∞ onto the predictors X̃. The interest of this framework
is that the pseudo-response may be seen as a continuous approximation of the discrete
outcome y. Therefore, the dimension reduction step (by PLS) constructs latent direc-
tions that explain the qualitative response but without applying the PLS regression in a
non-standard way. The dimension reduction step does not mess with the IRLS iterations
and the procedure benefits from the properties of the standard PLS (Rosipal & Krämer,
2006; Krämer, 2007). Moreover, in order to ensure the convergence of the IRLS algo-
rithm, Fort & Lambert-Lacroix used a Ridge regularization. In the following, we denote
this algorithm by logit-PLS.

15Regarding this matter, Barker & Rayens (2003) investigated the link between PLS and
LDA.
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1.3.3 Combining sparse PLS and GLMs

More recently, the question of combining sparse PLS with the GLM framework was
addressed in different works, as extensions of the previous PLS-based methods. Based
on the sparse PLS algorithm by Chun & Keleş (2010), Chung & Keleş (2010) presented
two different approaches. The first one that is called sparse Generalized PLS (SGPLS) is
a direct extension from the GPLS algorithm by Ding & Gentleman (2005). It solves the
successive weighted least square problems of IRLS using a sparse PLS regression, with
the idea that variable selection reduces the model complexity and helps to overwhelm
numerical singularities. Unfortunately, our simulations will show that convergence issues
remain16. The second approach is a generalization of the PLS-log algorithm and uses
sparse PLS to reduce the dimension before running the logistic regression on the SPLS
components. This method will be called SPLS-log.

Similarly as what was done with the PLS, we cite the SPLS-DA method developed by
(Chung & Keleş, 2010) or Lê Cao et al. (2011) based on the two different implementations
of the sparse PLS that we introduced in the previous section by Chun & Keleş (2010) or
Lê Cao et al. (2008) respectively. They used the sparse PLS as a preliminary dimension
reduction step before a discriminant analysis.

1.3.4 Sparse PLS on a continuous pseudo-response?

Our approach that combines compression and variable selection for logistic regression will
be an extension of the logit-PLS algorithm by Fort & Lambert-Lacroix (2005). Their
framework is the only one that provides guarantees regarding the convergence of the IRLS
algorithm, thanks to the Ridge regularization. Moreover, it allows to directly adapt the
sparse PLS to the logistic regression problem, thanks to the regression of the continuous
pseudo-response. Our method will be called logit-SPLS. An additional interest of such
algorithm is that it can be straightforwardly generalized to other distributions in the
exponential family. In this regard, we will eventually propose an extension of our logit-
SPLS algorithm to the case of a multi-categorical response. Both algorithms will be
detailed and discussed in Chapter 2. We will use the sparse PLS algorithm proposed
by Chun & Keleş (2010) and introduce an adaptive penalization in order to improve the
variable selection step. As a summary to conclude this chapter, the different construction
of algorithms that integrate a dimension reduction step by (sparse) PLS in the framework
of GLMs are summarized in Table 1.1.

16The use of sparse PLS does not resolve the issue link to the absence of an associated
optimization problem.
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Chapter 2

Sparse PLS and logistic regression

In this chapter, we will introduce a specific approach that we developed in order to inte-
grate a dimension reduction step in the framework of the logistic regression. In particular,
we use the sparse PLS to combine compression and variable selection. Our approach ex-
tends the work by Fort & Lambert-Lacroix (2005) based on Partial Least Squares (PLS)
regression. The motivation of our algorithmic choice is to ensure the convergence and sta-
bility of the estimation procedure and thus the reliability of the interpretation. We also
propose an adaptive version of the sparse PLS, inspired from the adaptive Lasso (Zou,
2006), to improve the variable selection accuracy. Using simulations we show the sta-
bility and convergence of our method, compared with other state-of-the-art approaches.
Especially, we empirically show the interest of our algorithm regarding prediction and
selection accuracy. Our method is also more stable regarding the selection of variables
and the choice of hyper-parameters by cross validation, on the contrary to other methods
processing classification with sparse PLS. In particular, it appears that our approach is
the only one that correctly performs considering all criteria (prediction, selection, stabil-
ity), whereas all the other approaches present a weak spot. More generally, we illustrate
the interest of both selection and compression over selection or compression only.

We will eventually present two applications of our approach. The first one will focus on
the prediction of the relapse of breast cancer patients based on gene expression profiles.
We will show interesting results regarding prediction and data visualization, we will
also introduce a new framework regarding the choice of hyper-parameters based on the
concept of stability selection developed by Meinshausen & Bühlmann (2010). The second
application concerns on-going analysis of single-cell expression profiles. Our method
will be used in the context of multi-group classification to identify the phenotype of
lymphocyte T cells.
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In addition, it can be noted that our methods are implemented in a new version of the
plsgenomics R-package, released on the CRAN (https://cran.r-project.org/).

2.1 Compression and selection in the GLM
framework

We define our algorithm that combines logistic regression and sparse PLS. Our objec-
tive is to ensure the convergence of the iterative optimization and achieve dimension
reduction in the context of binary classification. Eventually, we address the question
of hyper-parameter calibration and propose to use cross-validation or stability selection.
Let us recall some notations (c.f. Chapter 1), we observe a sample of size n, denoted
by (xi, yi)

n
i=1, with yi the label variables in {0, 1} and xi = (xi1, . . . , xip)

T a set of
p covariates. In the following, the response and covariates are respectively denoted by
y = (y1, . . . , yn)

T and X = [xT
1 , . . . ,x

T
p ]

T . We also define the matrix X̃ = [(1, . . . , 1)T ,X].

2.1.1 Ridge-based maximum likelihood estimation for
logistic regression

In the Generalized Linear Model (GLM) framework, the Iteratively Reweighted Least
Squares (IRLS) algorithm1 produces a sequence of pseudo-responses (ξ(m))m≥1 whose
limit ξ∞ (if it exists) linearly depends on the predictor X̃. Our first concern is to ensure
the existence of the limit and that the algorithm converges toward it. We use an approach
developed by Eilers et al. (2001) to regularize the logistic regression.

Stabilizing the IRLS algorithm with a Ridge penalty

When p < n, the IRLS algorithm may encounter convergence issues, giving infinite
estimates in the case of completely separate or quasi-completely separate data (Albert
& Anderson, 1984). If p > n, the n × (p + 1) design matrix X̃ is of rank n or less
and therefore not full column-rank. Due to identifiability concerns, it implies that the
Maximum Likelihood Estimation (MLE) is not unique when it exists, and even may not
exist when minimal norm solution is infinite.

1Successive weighted linear regressions where β̂
(m+1)

= (X̃TV(m)X̃)−1X̃TV(m)ξ(m) and

ξ(m+1) = X̃β̂
(m)

+
(
V(m)

)−1 [
y − μ(m)

]
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The convergence of the IRLS procedure can be guaranteed by a Ridge regularization,
i.e. a constraint on the �2-norm of the coefficients. Le Cessie & Van Houwelingen (1992)
introduced the Ridge penalized log-likelihood defined as:

logL(β)− νR
2

βT Σ̂β , (2.1)

with Σ̂ the diagonal empirical variance matrix of X̃ and νR > 0 the Ridge penalty
parameter. Eilers et al. (2001) developed the Ridge IRLS (RIRLS) algorithm to optimize
the criterion (2.1), where the weighted regression at each iteration is replaced by a Ridge
weighted regression, hence:

β̂
(m+1)

= (X̃TV(m)X̃+ νR Σ̂)−1X̃TV(m)ξ(m) .

A unique solution that maximizes the penalized loss (2.1) always exists and is computed

as the limit of the sequence (β̂
(m)

)m≥1. Thus, the Ridge penalization regularizes the
optimization of the logistic likelihood.

2.1.2 Adaptive sparse PLS on a continuous
pseudo-response

The pseudo-response ξ∞ produced by the RIRLS algorithm depends on the predictors
through a linear model, and thus becomes suitable for the sparse PLS regression, following
the approach of Fort & Lambert-Lacroix (2005) that uses standard PLS instead. In this
heteroskedastic case, the �2 metric (in the observation space) is weighted by the empirical
inverse covariance matrix V∞, to account for the heteroskedasticity of the noise. In order
to neglect the intercept in the SPLS step, we now consider the centered version of X and
ξ∞, denoted by Xc and ξ∞c , regarding the metric weighted by V∞. The intercept β0 will
be estimated after the dimension reduction.

Adaptive sparse PLS regression

We propose to adjust the �1 constraint in the covariance maximization problem2 to further
penalize the less significant variables. This is expected to reduce the bias induced by the
sparsity penalty and to produce a more accurate selection process, hence improving the
compression. Such an approach is inspired by component wise penalization as adaptive
Lasso (Zou, 2006) and to our knowledge has not been proposed for sparse PLS yet.

2argminw∈Rp

{
− Ĉov(Xw, ξ) + νS |w|1

}
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We use the weights wPLS
k from the classical PLS (without sparsity constraint) to adapt

the �1 penalty constraint on the weight vector wSPLS
k . The penalized criterion considered

by Chun & Keleş (2010) becomes:

argmin
a∈Rp, c∈Rp

{
− τ aTMTMa+ (1− τ)(c− a)TMTM(c− a) + νS

p∑
j=1

νj |cj |
}
, (2.2)

where M = (Xc)
TV∞ξ∞c is proportional to the weighted covariance matrix and νj =

1/|wPLS
jk | accounts for the significance of the predictor j in the component k, higher

weights in absolute values corresponding to more important variables.

The sparse weight vector w is given by the optimal c. The closed-form solution is still
based on the soft-thresholding operator3 applied to the dominant singular vector of M
but takes into account the adaptive penalty with a penalty term νS × νj for the jth

predictor. We call this method adaptive sparse PLS. It is here presented with a weighted
matrix product to fit our heteroskedastic model, but it can be rewritten as classical sparse
PLS by replacing V∞ by the n× n identity matrix.

The active set of selected variables up to the component k is a subset of {1, . . . , p}, defined
as the variables with a non null weight in at least one of the weight vectors w1, . . . ,wk.
It is denoted by:

Ak = ∪k
�=1{j, wj� 
= 0} .

At the first step, the weight vector w1 is computed as the effective solution of the
problem (2.2). At the step k > 1, wk is computed by solving the adaptive covari-
ance maximization problem with M = (Xc)

TV∞(ξ∞c )(k), where (ξ∞)(k) is a deflated
pseudo-response. It is defined as the residuals in the PLS regression of the response ξ∞c
onto the selected variables in Ak, following the algorithm from Chun & Keleş (2010).

Finally, the estimation β̂
SPLS
\0 of β\0 in the model ξ∞c = Xcβ\0 + ε is given by the

PLS regression of ξ∞c onto the selected variables in the active set AK . The coefficient
β̂SPLS
j is set to zero if the predictor j ∈ {1, . . . , p} is not in the active set. Indeed,

following the definition of the sparse PLS regression, the sparse structure of the weight
vectors (wk)k=1:K directly induces the sparse structure of β̂

SPLS
\0 . The variables selected

to construct the new components (tk)k=1:K are the ones that contribute the most to the
response, corresponding to those with non-null entries in the true vector β\0.

Eventually, the estimates β̂
SPLS
\0 are renormalized to correspond to the non-centered and

non-scaled data4, i.e.
β̂\0 = Σ̂

−1
β̂

SPLS
\0 ,

3c.f. Appendix Chapter B
4where Σ̂ was previously defined as the diagonal empirical variance matrix of X̃.
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where β̂\0 is the estimation of β\0 in the original logistic model E[Yi] = logit−1(β0 +

xT
i β\0). The intercept β0 is estimated by β̂0 = ξ∞−xβ̂\0 where ξ∞ and x are respectively

the sample average of the pseudo-response and the sample average vector of predictors
regarding the metric weighted by V∞. Our method can be summarized as follow:

1. (ξ∞,V∞) ← RIRLS(X,y, νR)

2. Center X and ξ∞ regarding the scalar product weighted by V∞

3.
(
β̂

SPLS
\0 ,AK ,T

)
← SPLS(X, ξ∞,K, νS ,V

∞)

4. Renormalization of β̂ = {β̂0, β̂\0}

The label ŷnew of new observations xnew ∈ R
p (non-centered and non-scaled) is predicted

through the logit function thanks to the estimation β̂ = {β̂0, β̂\0}.

Our method estimates the predictor coefficients β in the logistic model by using the
sparse PLS regression on a pseudo-response, considered as continuous and therefore in
accordance with the theoretical framework of PLS. It completes compression and variable
selection simultaneously. Our approach will be denoted by logit-SPLS in the following
while the method by Fort & Lambert-Lacroix (2005) that inspired us will be denoted by
logit-PLS.

2.1.3 Cross-validation versus stability selection

Calibration of the parameters by cross-validation

Choosing good values for the hyper-parameters of a statistical method is crucial. The
quality of a model depends directly on these hyper-parameters. For instance, the sparsity
parameter induces the degree of sparsity in the coefficient estimates. If wrongly set, the
relative model would be a poor choice to fit the data. Such question of calibration needs
to be cautiously treated.

Our approach depends on a sparsity penalty parameter νS > 0, a Ridge penalty param-
eter νR > 0 and the number of components K ∈ N. A common procedure to choose
these parameter values is cross-validation: for each possible value of hyper-parameters,
learning the model on a sub-part of the training set, calculating the prediction error rate
on the remaining observations, and taking the values that minimize it. To reduce the
sampling dependence, we tune all the parameters by 10-fold cross-validation, meaning
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that we average the prediction error rate over 10 resamplings of the train set with re-
spective sizes of 90%/10% of observations in sample for learning and testing (Boulesteix,
2004).

Stability selection to avoid parameter calibration

We also propose an alternative to cross-validation in order to evaluate the selection
accuracy of the different approaches, based on the concept of stability selection developed
by Meinshausen & Bühlmann (2010). In the context of methods combining compression
and variable selections, applying such framework is innovative. It has been used in an
unsupervised context by Sill et al. (2015), however, it has not been yet applied in the
context of supervised compression methods for classification. We first introduce some
notations to explain the principle of this approach.

The grid of all hyper-parameter values is composed of the sparse parameter νS , the
Ridge parameter νR and the number of components K (depending on the methods). It
is denoted by Λ. The concept of stability selection is the following. When considering a
statistical method that fits a model, instead of choosing the best point λ in the hyper-
parameter grid Λ that defines the best model, the procedure fits the model for all the
point λ ∈ Λ, which is done anyway in the cross-validation step, and selects the variables
depending on the majority vote among all the models.

More explicitly, the model is learned on resamplings of size n/2 (n being the sample size,
here 294) for all points λ ∈ Λ. Then, depending on λ, the probability πλ

j for the covariate
j to be selected is estimated (on the resamplings). Indeed, πλ

j is the probability for the
covariate j to be in the set:

Ŝλ =
{
j : β̂j(λ) 
= 0

}
,

where β̂j(λ) is the corresponding coefficient estimated by the considered method for the
hyper-parameter value λ.

Eventually, the variables that are selected by more than a certain proportion of models
are defined as stable selected variables. Formally, the set of stable selected variables is
defined as

Ŝstable =
{
j : max

λ∈Λ
{π̂λ

j } ≥ πthr
}
,

where π̂λ
j is the estimation of πλ

j over the resamplings and πthr is a threshold value,
meaning that the covariates with high selection frequency over the grid λ are kept and
the covariates with low selection frequency are disregarded.

The average number of selected variables over the entire grid Λ is denoted by qΛ, and
defined as qΛ = E

[
#{∪λ∈ΛŜλ}

]
. Meinshausen & Bühlmann (2010) provided a bound on
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the expected number of wrongly stable selected variables, i.e. the expected number of
false positives in Ŝstable. This bound only depends on the threshold πthr, the expectation
qΛ and the number p of covariates, it is defined as:

E[fp] ≤ 1

2πthr − 1

q2Λ
p

, (2.3)

where fp is the number of false positives i.e. fp = #{S c
0 ∩Ŝstable}, S0 being the unknown

set of true relevant variables and S c
0 its complementary. This results is derived for Λ ⊂ R

+

under two conditions: 1) assuming that the indicators (1{j∈Ŝλ})j∈S c
0

are exchangeable
for any λ ∈ Λ; 2) the original procedure of selection is not worst than random guessing.
The first assumption assumes that the considered method does not “prefer” to select
some covariates rather than some other in the set of the non-pertinent predictors. This
hypothesis seems reasonable in our sparse PLS framework. The second one is verified
according to the results on our simulation (c.f. previous section). Moreover, in the
methods that we consider, the grid of hyper-parameters lies in (R+)2 or (R+)3, however
the parameter that truly influences the sparsity of the estimation is the parameter νS ∈
R
+. Therefore, the sparse PLS appears to be a reasonable framework to apply the

concept of stability selection.

Equation (2.3) determines how wide should be the parameter grid Λ in order to control
the number of false positives (corresponding to a weak �1 penalization). In our study,
the grid Λ is restrained so that qΛ =

√
(2πthr − 1)p× ρerror leading to E[fp] ≤ ρerror,

where ρerror is the maximum number of false positives in the stable selected variable set
Ŝstable. For instance, when the threshold probability πthr is set to 0.9, Λ is defined as a
subset of the parameter grid, so that qΛ =

√
0.8 p ρerror. In practice, qΛ is unknown, but

estimated by the empirical average number of selected variables over all λ ∈ Λ. In this
context, the expected number of false positives will be lower than ρerror.

This control on the averaged number of false positives is very useful when dealing with
experimental data, in which the variables that should be selected are unknown. Thus, it
can be viewed as a quality control of the selection process.

The procedure based on stability selection will be used in the analysis of experimental
breast cancer data.
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2.2 Simulation study

Due to the absence of theoretical results concerning sparse PLS, simulations appear to
be necessary to assess the performance of our method. Thus, we run our approach and
compare it to others on simulated data. The purpose is to control the model design
to evaluate in which data configuration compression and selection are appropriate for
classification. We assess whether our approach performs better or worse than previously
proposed procedures. We also aimed at verifying if our method respects the two crucial
questions about convergence and suitability for prediction and selection.

2.2.1 Design of the experiment

Performance evaluation

In order to assess the performance of our method, we compare it to other state-of-the-art
approaches taking into account sparsity and/or performing compression. We eventually
use a “reference” method, called GLMNET (Friedman et al., 2010), that performs variable
selection, by solving the GLM likelihood maximization penalized by �1 norm penalty for
selection and �2 norm penalty for regularization, also known as the Elastic Net approach
(Zou & Hastie, 2005). In particular, GLMNET is supposed to be appropriate to handle
correlated covariates. Computations were performed using the software environment
for statistics R. The GPLS approach used in our computation comes from the archive
of the former R-package gpls, the methods logit-PLS and PLS-DA from the package
plsgenomics, SGPLS, SPLS-log and SPLS-DA from the R-package spls, GLMNET
from the R-package glmnet. The hyper-parameters of the different approaches are tuned
by using the cross-validation procedures supplied in each package and by using the range
of hyper-parameters recommended by their respective authors.

Block design and logit model

Our simulated data are constructed to assess the interest of compression and variable
selection. The simulations are inspired from Zou et al. (2006), Shen & Huang (2008)
or Chung & Keleş (2010). The purpose is to control the redundancy within predictors,
meaning the degree of multicollinearity, and the relevance of each predictor to explain
the response, meaning the degree of sparsity in the model.

We consider a design matrix X of dimension n × p, with n = 100 fixed, and p =

100, 500, 1000, 2000, so that we examine different high dimensional models. To simu-
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late redundancy within predictors, X is partitioned into k∗ blocks (10 or 50 in practice)
denoted by Gk for block k. Then for each j in the block Gk, Xij is generated depend-
ing on a latent variable Hk as Xij = Hik + Fij , with Hik ∼ N (0, σ2

H) and some noise
Fij ∼ N (0, σ2

F ). The covariate matrix is therefore defined as:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . .
...

...

xi1 xi2
...

...

xn1 xn2 . . .︸ ︷︷ ︸
G1

. . . x1j . . .
...

xij
...

. . . xnj . . .︸ ︷︷ ︸
G2

. . . . . .

. . . . . .

. . . . . . x1p
...

xip
...

. . . . . . xnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Gk∗

For example, Figure 2.1a shows a heatmap of the matrix X100×10000 generated from
k∗ = 10 blocks. In this framework, each Hk is introduced to control the correlation
within the block Gk which is proportional to the ratio σ2

H/σ2
F . The correlation between

the blocks is regulated by σ2
H , the higher σ2

H the less dependency. Figure 2.1b and
Figure 2.1c show the heatmap of the correlation between the p covariates depending on
different values of the ratio σH/σF . Here, k∗ = 15, the blocks on the diagonal of the
correlation matrix represent the groups Gk where the correlation between covariates is
higher. In the following we consider σH/σF = 2 or 1/3.

The true vector of predictor coefficients β∗ is structured according to the blocks of X.
Actually, �∗ blocks in β∗ are randomly chosen among the k∗ ones to be associated with
non null coefficients (with �∗ = 1 or k∗/2), e.g.

β∗ =
(
b, b, . . . ,︸ ︷︷ ︸

G1

T

0, . . . , 0,︸ ︷︷ ︸
G2

b, . . . , b︸ ︷︷ ︸
G3

, . . . ,0, . . . , 0
)

︸ ︷︷ ︸
Gk∗

,

with b 
= 0. In practice, all the coefficients within the �∗ designated blocks are constant
(with value b=1/2). In our model, the relevant predictors contributing to the response
will be those with non zero coefficient, and our purpose will be to retrieve them. The
response variable Yi is sampled as a Bernoulli variable, with parameter πi that follows a
logistic model: πi = logit−1(xT

i β
∗).

The parameter values that are tuned by cross-validation are the following: the number of
components K varies from 1 to 8, the Ridge parameter νR in RIRLS are 31 points that
are log10-linearly spaced in the range [10−2; 103], the sparse parameter νS for all sparse
PLS approach are 10 points that are linearly spaced in the range [0.05; 0.95].
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(a)

(b) (c)

Figure 2.1 – (a) Heatmap of a data matrix Xn×p generated from k∗ = 10 latent variables,
with n = 100 and p = 10000. (b) Heatmap of the correlation between the covariates
from a data matrix X (n = 100, p = 1000 and k∗ = 15) when σH > σF , i.e. the latent
structure is stronger than the noise. (c) Correlation between the covariates from a data
matrix X (n = 100, p = 1000 and k∗ = 15) when σH < σF , i.e. the noise overtakes the
latent structure.
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2.2.2 Guarantee about convergence and stability

Ridge penalty ensures convergence

Convergence is an important issue associated with the IRLS algorithm when estimating
GLM parameters. It is especially a crucial issue when combining PLS and IRLS algorithm
as pointed out by Fort & Lambert-Lacroix (2005). With the analysis of high dimensional
data and the use of selection in the estimating process, it becomes even more essential
to ensure the convergence of the optimization algorithm. As we will see, convergence
issues lead to unreliable results. In particular, non-convergent algorithms will appear
unstable. Thy will induce instability in the prediction and in the variable selection. The
link between convergence and stability will be highlighted in the following. In order to
check the convergence of the different algorithms, we consider the �2 convergence criterion
between two iterations:

∥∥β̂(m+1) − β̂
(m)∥∥

2
. In the following, the algorithm is assumed

to converge if the �2 norm gap becomes lower than 10−12 with a maximum number of a
hundred iterations in order to limit computation time.

Our simulations show that Ridge regularization systematically ensures convergence of the
IRLS algorithm before performing sparse PLS in our method (logit-SPLS), whatever the
configuration of simulation: p = n, p > n, high or low sparsity, high or low redundancy
(see Table 2.1 for an example). On the contrary, approaches that use (sparse) PLS before
or within the IRLS algorithm (resp. SPLS-log and (S)GPLS) do not converge quite often
in some configurations (Table 2.1). To illustrate these convergence issues we studied

the convergence path of
∥∥β̂(m+1) − β̂

(m)∥∥
2

which reveals that our method converges
within fifteen iterations on average whereas other methods do not often converge, and
even encounter cyclic singularities. For instance, Figure 2.2 shows different trajectories
of the criterion

∥∥β̂(m+1) − β̂
(m)∥∥

2
when running the algorithm logit-SPLS and sparse

Generalized PLS (SGPLS) on simulated data where n = 50, p = 500, k∗ = 10, �∗ = 1

and σH/σF = 2.

This point confirms that performing (sparse) PLS before or within the IRLS algorithm
does not avoid convergence issues. On the contrary, it confirms the interest of the Ridge
regularization to ensure the convergence of the IRLS algorithm. Moreover, this conver-
gence seems to be fast, which depicts an interesting outcome for computational time.
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Method p = 100 p = 500 p = 1000 p = 2000

gpls 52 38 40 38

sgpls 68 72 72 68

spls-log 98 42 20 6

logit-spls 100 100 100 100

Table 2.1 – Percentage of model fitting that converged over 75 simulations for different
values of p, when σH/σF = 2, �∗ = 1 and k∗ = 50
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Figure 2.2 – Trajectories of the convergence criterion in 40 different runs of the algorithms
logit-SPLS and SGPLS on simulated data where n = 50, p = 500, k∗10, �∗ = 1 and
σH/σF = 2. Each algorithm ran 3000 iterations, only the first 100 hundred are shown
(the trajectories that do not converge after 100 iterations are still non convergent after
3000).
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Adaptive selection improves cross-validation stability

When choosing the hyper-parameter values for the different methods considered here,
one can expect a certain stability, meaning that when running a procedure many times
on a same sample, the cross-validation process is supposed to return the same values
for parameters. Otherwise, the label prediction and the variable selection become almost
uncertain, hence not suitable for experiment reproducibility. For each configuration of our
simulated data, we consider the precision of the sparse hyper-parameter values returned
by cross-validation, i.e. the inverse of its standard deviation over repetitions of tuning
procedure (the higher precision, the less variability). This scheme shows (Figure 2.3)
that our adaptive method is more stable than other sparse PLS approaches, meaning
that the cross-validation procedure almost always chooses the same sparse parameter λS

values for a given sample (i.e. smaller standard deviation over repetition). It appears
that the choice of components number K and Ridge parameter νR are also very stable
(Figure not shown). On the contrary, cross-validation for methods such as SPLS-log or
SGPLS is more unstable, returning different values, depending on the run.

On the one hand, the cross-validation stability can be linked to the consideration of
convergence. It appears that the procedures (SGPLS, SPLS-log) which do not con-
verge on our simulations present a higher cross-validation instability, whereas our method
(logit-SPLS) converges efficiently and shows a better cross-validation stability. On the
other hand, the variable selection accuracy defined as the proportion of rightly selected
and rightly non-selected variables (Chong & Jun, 2005) is also influenced by the cross-
validation stability, as the accuracy precision (inverse of the standard deviation over 75
repetitions) increases with the cross-validation stability (c.f. Figure 2.3).

Another interesting point is that the cross-validation procedure almost always returns an
optimal number of components K equal to 1. In order to reduce the computation time,
we fixed the number of components to one in our following simulation and performed
the tuning only on the sparsity parameter νS and the Ridge parameter νR. Nonetheless
tuning a supplementary parameter does not account for a bigger time in execution since
our method converges fast, whereas the other ones do not converge hence iterating farther
(until the limit on the number of iterations, fixed in the implementation).
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Figure 2.3 – Precision is the inverse of standard deviation (the higher precision, the
less variability). Precision on the sparse parameter values, i.e. νS , chosen by cross-
validation versus precision on selection accuracy over 75 simulations for different number
p of predictors (from 100 to 2000). Methods: logit-spls-adapt (�), sgpls ( �), spls-log ( �).

2.2.3 Performance in prediction and selection

Selection increases prediction accuracy

To study the importance of combining compression and variable selection, we now focus
on the prediction accuracy defined as the rate of correct classification, evaluated through
the prediction error rate. Thus we compete sparse PLS approaches and their PLS (non
sparse) matching: our method logit-SPLS versus the logit-PLS from Fort & Lambert-
Lacroix (2005), with sparse or non Partial Least Squares after the IRLS algorithm, and
others that perform (sparse) PLS within IRLS loop (GPLS vs SGPLS), or before a
discriminant analysis (PLS-DA vs SPLS-DA); so that we assess the impact of selection
for different methods of compression. In every configuration of simulations (see Table 2.2
for example when p = 2000), the prediction performance of compression methods is stable
or increased by the addition of a selection step, meaning that in any case compression and
selection should be considered for prediction. However methods that are not converging
or not suitable for qualitative response (SGPLS, SPLS-DA, SPLS-log) achieve the same
prediction performance than converging and suitable ones (GLMNET, our logit-SPLS).
This indicates that checking prediction accuracy only may not be a sufficient criterion to
assess the relevance of a method. The GPLS method is however a good example of non-
convergent method (c.f. Table 2.1) that presents a high variability and poor performance
regarding prediction.

Actually, the combination of Ridge IRLS and sparse PLS in our method ensures con-
vergence and provides good prediction performance (prediction error rate at 10% on
average) even in the most difficult configurations n = 100 and p = 2000, which makes it
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Method Av. prediction error (Stand. dev.)

gpls 0.47 (0.32)

pls-da 0.20 (0.09)

logit-pls 0.17 (0.10)

glmnet 0.13 (0.12)

logit-spls 0.10 (0.10)

sgpls 0.10 (0.11)

spls-da 0.12 (0.12)

spls-log 0.11 (0.12)

Table 2.2 – Prediction error rate averaged over all simulation configurations when p =
2000 (and standard deviation), for approaches using sparsity principle or not (delimited
by the line). The resulting variance is not too large except for GPLS which also presents
the worst performance. Our approach logit-SPLS is as good or better than any other
methods

an appropriate framework for classification.

Compression increases selection accuracy

The prediction performance are nevertheless not very useful if the selected variables do
not match with the genuine important predictors to explain the response. To assess
the selection accuracy, we compare the pool of selected predictors returned by sparse
methods (performing compression or not) to the set of relevant ones used to construct
the response, i.e. with a non zero coefficient β∗

j in our model. We thus evaluate the
effect of the compression step on variable selection. To determine if one method selects
too many or not enough variables, we consider sensitivity and specificity (Chong & Jun,
2005), respectively proportion of true positive and true negative regarding correctly or
wrongly selected variables, which illustrates under or over selection phenomenon. We
especially focus on the true positive versus false positive rate, i.e. sensitivity versus
“1 − specificity”, the first one is expected to be close to one, and the second one to be
close to zero.

On our simulations (see Figure 2.4), especially when the number of covariates p grows,
our method logit-SPLS selects less irrelevant predictors as the false positive rate is lower,
compared to other sparse PLS approaches (SGPLS and SPLS-log). These two select
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Figure 2.4 – True positive average rate (i.e. selection sensitivity, the higher the bet-
ter) versus average false positive rate (i.e. 1-specificity, the lower the better) over 75
simulations, for different values of p from 100 to 2000 (average over all repetitions and
configurations of simulations). Methods: glmnet (�), logit-spls-adapt ( �), sgpls ( �),
spls-log (⊗). The trade-off between true positive rate and false positive rate is better
with our method logit-SPLS as we select not too much variables (less false positives) com-
pared to other sparse PLS approaches, but not too few variables (more true positives)
compared to glmnet.

more true positives as their sensitivity is closer to one; however they tend to select too
many variables (with their higher false positive rate), which is confirmed by a higher
averaged number of selected variables for SGPLS and SPLS-log, and especially higher
than the number of true relevant variables in our model (Figure not shown), defined as
#{j, β∗

j 
= 0}.

Our baseline is the GLMNET procedure, which processes selection without compres-
sion, conversely to sparse PLS approach. It shows a lower accuracy, and especially high
specificity (low false positive rate) and very low sensitivity, meaning that it selects only
few variables, avoiding false positives, but excluding to many pertinent variables. The
relative good sensitivity of other sparse PLS approach (SGPLS and SPLS-log) is also
balanced by a selection process less stable than our method as the accuracy standard
deviation is higher (as previously mentioned, see Figure 2.3).

In any case, combining compression and variable selection has a true impact on selection
accuracy, compared to sparse only approach such as GLMNET, which supports our idea
of using sparse PLS over other methods.
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2.3 Classification of breast tumors by sparse PLS
for logistic regression

The problem that motivated the development of our dimension reduction approach for
classification is the analysis of gene expression profiles. The questions raised in this
context concerns for instance the characterization of disease as cancer at the molecular
level. Our objective in this section is to assess the performance of our method in a life-
sized classification situation. In particular, we consider the analysis of an experimental
data set. We especially use our approach to predict the fate of cancer patients based on
the expression of genes coming from a tumorous tissue.

We use a publicly available data set on breast cancer, published by Guedj et al. (2012).
It contains the expression level of 54613 genes for 357 patients affected by breast cancer.
The original work consisted in classifying breast tumors according to the expression of
genes. We rather focus on the relapse after 5 years, considering a {0, 1} valued response,
if the relapse occurred or not. The design matrix X contains the gene expression levels
for the corresponding patients. The outcome is already known for all patients. The
experiment is designed as follows, the model is trained on a part of the data and used
to predict the response on the rest of the data (we consider many resamplings to avoid
over-fitting). Then, it is possible to compare the prediction with the true value of the
response.

Data preprocessing

We restrict the analysis on 294 patients for whom the relapse situation is known. We also
reduce the number of genes by taking away the less differentially expressed genes between
the two conditions (relapse or not). To do so, we determine the p-values associated to
the t-test on the expression of each gene for each condition, then correct these p-values
with the method by Benjamini & Hochberg (1995) for multiple testing. Finally, the genes
are ranked according to the p-values5. We take the 5000 most differentially expressed
genes, corresponding to a confidence level of approximately 70% (not too sharp). The
matrix of pre-selected gene expression is finally centered and scaled to avoid that the
most differentially expressed genes (with higher variance) hide the effect of any other
potential relevant gene.

5The more expressed genes correspond to the smaller p-values
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Method Conv. perc. sparse param. precision

logit-spls-adapt 100 6.44

sgpls 5 5.63

spls-log 1 5.37

Table 2.3 – Convergence percentage versus precision on sparse parameter values chosen
by cross-validation (i.e. inverse of standard deviation, the higher the less variability)
when fitting the model over 100 resamplings with each method.

2.3.1 Convergence and accuracy in prediction

To assess the performance of the different approaches for prediction and dimension reduc-
tion, we applied the methods GLMNET, logit-PLS, logit-SPLS (adaptive or not), SGPLS
and SPLS-log to our data set. Each method is trained and tested over 100 resamplings,
where observations are randomly split into training and test sets with a 70%/30% ra-
tio. On each resampling, the parameter values of each method are tuned by 10-fold
cross-validation on the training set, respecting the following grid K ∈ {1, . . . , 8}, νR in
RIRLS are 31 log10-linearly spaced points in the range [10−2; 103], the sparse parameter
νS for all sparse PLS approach are 10 linearly spaced points in the range [0.05; 0.95]. The
procedure from the package glmnet determines by itself the grid of hyper-parameters.

Convergence and stability with RIRLS and adaptive sparse PLS

As seen in the simulation experiment, the convergence of the different methods is an
important issue. The IRLS algorithm regularized by Ridge (RIRLS) confirms its usual
convergence (see Table 2.3). The other approaches that use sparse PLS within the IRLS
iterations (SGPLS) or before logistic regression (SPLS-log) encounter severe issues and
almost never converge. Following a similar pattern, our adaptive selection is far more
stable under the tuning of the sparsity parameter νS by cross-validation than any other
approach using sparse PLS (Table 2.3). Indeed, the precision6 on the chosen νS (over
the different runs) is the highest for our method. It illustrates the lower variability in
the hyper-parameter tuning over repetitions.

6Inverse of the standard deviation.
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Figure 2.5 – Prediction error rate over 100 resamplings when tuning and fitting the model
on a train subset of the data and predicting the outcome on a different test subset with
each method (the ratio train/test is 70%/30% of the observations).

Adaptive selection increases prediction accuracy

Our approach logit-SPLS performed better for prediction (see Figure 2.5) than its pre-
decessor logit-PLS without variable selection. This point confirms that the combination
of variable selection and compression increases the prediction accuracy. Moreover, the
adaptive version is even better and reaches an average prediction error rate below 20%.
The SGPLS method does not confirm its performance on our simulation with poor and
highly variable results. The instability induced by non-convergent methods is illustrated
here7. A first striking point is that SPLS-log performs as well as our adaptive method.
However this point will be counterbalanced in the following (lower performance regarding
other criteria).

Compression is more efficient to discriminate the response

We now illustrate the interest of our method for data visualization. As in standard PLS,
we represent the coordinates of the first two components constructed by compression
methods, i.e. the observation scores. The points are colored according to their Y -labels.
An efficient compression technique would separate the Y -classes with fewer components.
We compare the logit-PLS, our logit-SPLS procedure, the SGPLS and the SPLS-log
approaches, by tuning and fitting the model on different resamplings of our data set,
the number of components is not tuned and fixed to K = 2. We use an unsupervised
compression method, i.e. the Principal Component Analysis (PCA)8, as a reference for

7In particular, this variability is not caused by a wrong set of hyper-parameter candidate
values, since we used the same cross-validation procedure in the simulations.

8The principle of PCA is explained in Chapter 4.
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Figure 2.6 – Individual scores of each observation on the first two components for the
different methods. The points are shaped according to the value of the response: 0 (•)
and 1 (�). Our approach logit-SPLS and the non sparse related logit-PLS discriminate
the two classes with the first two components whereas other methods do not, including
the PCA. The scale of the components depends on the different normalization in the
output of each methods and are therefore not comparable.

compression and data visualization. Figure 2.6 represents the first two components com-
puted by each methods when fitting a single model. It appears that the first component
produced by our method (logit-SPLS) discriminates the observations between the two
conditions. This is particularly consistent with the fact that the tuning procedure al-
ways chooses K = 1 (as previously mentioned). The first two components from the
corresponding non sparse approach (logit-PLS) are sufficient to easily separate the two
Y -classes. However, the other methods combining sparse PLS and logistic regression
differently (SGPLS and SPLS-log) do not achieve a similar efficiency in the compression
process. The first two components does not separate the Y -labels, indicating that these
two methods need more components to discriminate properly the Y -classes, leading to a
less efficient compression process. Therefore, our method turns out to be very effective
for data visualization, even compared to principal component analysis, whose first two
components explain less than 30% of the total variability in X and do not discriminate
the two classes (c.f. Figure 2.6).

2.3.2 Calibration by stability selection

In order to evaluate the selection accuracy of the different approaches in our experimental
case, we use the concept of stability selection as introduced in Section 2.1.3. The interest
here is to avoid choosing a value for the hyper-parameters. The different model are
learned for all hyper-parameters in a restrained grid of values so that the averaged number
of false positives among selected variables is controlled.
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The stability selection analysis (see Figure 2.7) shows that, when the averaged number
of false positives is fixed, our approach logit-SPLS selects more genes than any other
approach (SGPLS, SPLS-log and GLMNET). This means that, on average, our method
discovers more true positives (because the number of false positives is bounded at the
same level), hence unraveling more relevant genes than other approaches. This again
illustrates the good performance in selection of our procedure. More generally, approaches
that use sparse PLS, i.e. performing selection and compression, select more variables
than GLMNET to reach the same number of false positives, hence retrieving more true
positives than GLMNET which performs only selection. This supports our idea that
combining compression and selection is very suitable for high dimensional data analysis.

2.4 Sparse PLS for multi-group classification

In the two previous sections, we proposed a computational framework for the logistic re-
gression by using sparse PLS. After highlighting the interest of our method for the binary
case, we consider the generalization of the logit-SPLS algorithm for the classification of
multi-categorical data. We first present the model and the estimation procedure, then
we present an on-going data analysis that motivated the development of this approach.

2.4.1 Multinomial sparse PLS

Thanks to the GLM framework, our procedure for logistic regression can be generalized
to handle a multi-categorical response. This problem is known as multinomial logistic
regression or polytomous regression (McCullagh & Nelder, 1989). In this section, we
present the extension of our algorithm, that we called multinomial sparse PLS.

Multinomial logistic regression

The model for multinomial logistic regression is the following (Fahrmeir & Tutz, 2001).
The response yi takes its values in a discrete set {0, . . . , G} corresponding to G + 1

groups or classes of observations. The associated variable Yi (i = 1, . . . , n) follows a
multi-categorical distribution where P(Yi = g |xi) = πig for any class g. Based on
a direct generalization of the logistic model, a class of references is set (generally the
class 0) and for each class g 
= 0, the probability πig that Yi = g depends on a linear
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combination of predictor such as:

log

(
πig
πi0

)
= x̃T

i βg, (2.4)

with a specific vector of coefficient βg ∈ R
p+1 for each class g = 1, . . . , G. Indeed, the

probabilities (πig)g=1:G determine the probability πi0 since
∑G

g=0 πig = 1. As introduced
in Chapter 1, a column of 1 is added in the matrix X̃ to incorporate the intercept in the
linear combination x̃T

i βg. The log-likelihood can be explicitly formulated:

logL
(
(βg)g=1:G

)
=

n∑
i=1

⎧⎨⎩
G∑

g=1

yig x̃
T
i βg − log

(
1 +

∑G
g=1 exp(x̃

T
i βg)

)⎫⎬⎭ , (2.5)

where the binary variable yig = 1{yi=g} indicates9 the class of the observation i.

It is possible to rearrange the data in order to formulate a vectorized version of the
loss (2.5), and express the multinomial logistic regression as a logistic regression of a
binary response Y ∈ {0, 1}nG against a matrix of rearranged covariates X̃ ∈ R

nG×(p+1)G.
The response vector Y of length nG is defined as follows:

Y =
(
(y1g)g=1:G, (y2g)g=1:G, . . . , (yig)g=1:G, . . . , (yng)g=1:G

)T
,

where yig = 1{yi=g} as previously mentioned. The new covariate matrix X̃ of dimension
nG× (p+ 1)G is defined by blocks as:

X̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̃1

...

X̃i

...

X̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where each block i is constructed by G diagonal repetitions of the row x̃i from the original
covariate matrix X̃, i.e.

X̃i =

⎛⎜⎜⎜⎝
1 xi1 . . . xip 0

. . .

0 1 xi1 . . . xip

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭G repeats of the row xT

i ,

91{A} is the indicator function valued in {0, 1}, indicating if the statement A is true (1) or
false (0).
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The coefficient vectors βg ∈ R
p+1 (for g = 1, . . . , G) are also reorganized in the vector

B ∈ R
(p+1)G as:

B =
(
(β0g)g=1:G, (β1g)g=1:G, . . . , (βjg)g=1:G, . . . , (βpg)g=1:G

)T
,

where (βjg)j=0:p are the coordinates of βg, so that the response Y depends on the linear
combination X̃ B.

Thanks to this reformulation, it is possible to adapt the IRLS algorithm to estimate the
coefficients B and infer the probabilities πig that observations yi belongs to the class g.
The algorithm that we call Multinomial IRLS (mIRLS) is detailed in Fort et al. (2005)
and was also regularized by a Ridge penalty to avoid optimization issues.

Dimension reduction with sparse PLS

The vectorized formulation of the multinomial logistic regression allows to use the di-
mension reduction approach introduced at the beginning of this chapter. As in the
binary case, the Multinomial IRLS algorithm (penalized by Ridge) produces a continu-
ous pseudo-response (at the convergence) that is suitable for the sparse PLS regression.
Thus, our approach, called multinomial-SPLS, extends directly our algorithm logit-SPLS
to the multinomial logistic regression. It estimates the linear coefficients B by sparse PLS,
processing compression and variable selection simultaneously. Then, these estimated co-
efficients are used to get an estimation of the probabilities πig. Our procedure is directly
inspired from the approach by Fort et al. (2005) that extended the algorithm logit-PLS
(Fort & Lambert-Lacroix, 2005) to the multi-categorical cases.

It can be noted that Ding & Gentleman (2005) presented a version of the Generalized PLS
suitable for multinomial logistic regression, i.e. the linear regression inside the iteration of
the mIRLS algorithm are processed by weighted PLS regression. Chung & Keleş (2010)
introduced a similar algorithm based on sparse PLS (extension of the sparse Generalized
PLS algorithm). However, we used exclusively our multinomial-SPLS algorithm in the
data analysis. Indeed, based on the conclusions from the binary case, our approach
showed better results regarding prediction performance on an experimental data set.
Moreover, the dimension of the data is drastically increased because of the rearrangement
since the number of observations becomes nG and the number of covariates becomes pG.
It is therefore necessary to account for the computational cost and to give priority to
computationally efficient methods. In particular, thanks to the Ridge penalty, we showed
that our approach converges quickly, hence reducing the time of computation.
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2.4.2 Characterization of T lymphocyte types

Single-cell data

The question of multi-group classification was motivated by a collaboration with Jeff
Mold, a Biologist from the Karolinska Institutet (Stockholm, Sweden). The whole project
aims at studying, at the single-cell level (Stegle et al., 2015; Gawad et al., 2016), the
transcriptomic response of a population of lymphocyte T cells to a vaccine shot. Our
team is in charge of the statistical analysis of the data. Here we will focus on a specific
question that we had to address during the project, concerning the classification of single
cells into different cell types. Indeed, as part of the immune system, the T lymphocyte
can be grouped into different categories, depending on their function.

Like the B cells, the T cells are part of the adaptive immune system. However, the
mechanisms of an efficient T cells response are still largely unknown. Therefore, the fine
understanding of this adaptive immune response is of great interest for the creation of
new vaccines. After a vaccine shot, we expect the formation of two categories of T cells:
the “effector” T cells carrying the immune response against the pathogen and the long-
lasting “memory” T cells that will constitute a repertoire for later secondary immune
responses. In the literature, T cells are described as 4 sub-groups : CM, TSCM (“Mem-
ory”), TEMRA, EM, (“Effector”) based on the measurement of two surface markers10.
However, those 4 sub-groups are defined by drawing non-overlapping gates on the space
defined by those two markers.

This approach ignores the complexity of a T cell population that is sampled from real
blood. This rule, based on a few variables, leads to the selection of a fraction of cells
only, that correspond to cells with the most extreme values of markers. In order to refine
this classification, and to be able to classify (and to study) more cells, we proposed to
develop a multi-categorical classification in order to infer the cell type of the non-identified
cells. To proceed, we considered the measurements of 11 surface markers, along with the
expression of the corresponding genes11. All these measurements were available on the
single-cell basis. Hence the application of the multi-class sparse PLS here is not the in
the high dimensional setting, however these data are expected to be heavily correlated.
Even in this low dimensional case, the use of variable selection will help to improve the
accuracy of the results.

10The surface markers are proteins present in the membrane of the cells.
11The genes that encodes the proteins associated to these markers.
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Data analysis

The full data set is composed of the expression levels of ∼ 20000 genes in ∼ 1000 single
T cells sampled at three different time points after the vaccine shots: 15, 136 and 908
days. At each time point, only a portion of the cells were annotated, i.e. classified in the
different sub-groups of T cells during the experiments. The annotated cells present the
most extremal phenotype12, i.e. the cells that are easily classified. In this context, this
study was based on multinomial SPLS to predict the phenotype of the remaining cells.
The analysis was run on a specific subset of genes as we will explain in the following.
Despite this application not being in high-dimension, variable selection will be useful to
ensure the accuracy of the results. Indeed, we did not consider the whole 20000 genes
because the data are very noisy and numerous genes are not informative regarding the
classification of the cells according to their cell types. As previously mentioned, not only
expression profiles but also measures of other phenotypic markers13 are available for each
cell.

Since this work is part of an international collaboration, we did the methodological
development for the analysis but not the analysis directly that was handled by other
members of our laboratory. The results presented here are not published yet, we just
highlight the main conclusions to illustrate the usefulness of the multinomial-SPLS in
the analysis of present genomic data.

The purpose was to classify the unidentified T cells (i.e. predict their types) and to find
the genes that are associated to the partitioning of the cells into these different groups.
The main issue was that it remained difficult to pre-select the genes that explain the cell
types since a significant number of cells are unidentified. Thus, we first had to classify the
cells according to the original 11 markers that are generally used to predict the cell types.
We did also consider the level of expression of the 11 identified genes that encode for these
markers (for a total of 22 predictors). Based on this prediction step, it was possible to
order and pre-select the genes that are the most differently expressed between the groups
of cells. Eventually, based on this pre-selection, we were able to perform a second round
of classification by using 61 genes in addition to the 11 markers and the 11 associated
genes (for a total of 82 predictors in the model). The pipeline of phenotype prediction is
decomposed as follows:

1. A first round of prediction was performed by considering the measures of the 11
surface markers and the expression of the 11 associated genes. The model based
on the multinomial-SPLS is trained on the subset of cells that are annotated and
used to predict the types of the unknown cells. On the training set, a 5-fold cross-
validation procedure is used to tune the hyper-parameters. The cross-validation

12The phenotype represents the observable characteristics of a cell or an organism.
13i.e. the quantification of the surface markers previously mentioned.
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error14 over the resamplings was ∼ 6%. The interest of the resampling in the
V -fold cross-validation is to avoid over-fitting.

2. Following this first prediction, a Differential Expression Analysis (DEA)15 is run
to find the most differentially expressed genes between the different cell types, by
using the predicted groups from the step 1. The genes are ordered according to
the DEA to pre-select the ones that are more associated with the difference of
phenotype16.

3. Based on the differentially expressed genes, a second round of prediction was per-
formed on all the cells with the multinomial-SPLS. This second analysis is re-
stricted to 61 differentially expressed genes, plus the original 11 markers and 11
associated genes. The cross-validation error rate over resamplings (again 5-fold
cross-validation) reaches ∼ 4% on this second run.

This application highlights the interest of dimension reduction by compression and vari-
able selection, even when dealing with low dimensional data. It can also be noted that,
even when using sparse approaches, a step of pre-selection is always useful, since the num-
ber of observations17 remains small compared to the number of genes, i.e. n = O(102)

versus p = O(105). Indeed, as we showed, variable selection is an interesting tool, however
it cannot make miracles when the data are too noisy because of the numerous irrelevant
covariates.

14i.e. the error rate associated to the best values of hyper-parameters tuned by cross-
validation.

15The model used is introduced in Chapter 4.
16since the cell type is considered as a phenotypic trait.
17even if n grows in the most recent applications
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Chapter 3

Conclusion and perspectives about the
sparse PLS

In the previous chapters, we focused on dimension reduction approaches for supervised
problems, especially when the response is categorical. Such statistical problems represent
a huge interest for the integration of genomic data, in particular for the characterization
of diseases or for the exploration of the genetic diversity between cells.

In this statistical context, important questions are raised regarding modeling or estima-
tion algorithms. We especially discussed the integration of dimension reduction schemes
in the framework of Generalized Linear Models (GLMs). Issues concerning convergence,
calibration or computation time have to be handled, especially to guarantee the stability
of the methods and thus the reliability of the interpretation of the results.

We proposed a method that performs compression and variable selection to solve a classi-
fication problem. It combines the Ridge regularized Iteratively Reweighted Least Squares
(IRLS) algorithm and the sparse PLS in the context of the logistic regression. It is par-
ticularly appropriate for high dimensional data, which appears to be a crucial issue,
especially in genomics. Our main consideration was to ensure the convergence of the
IRLS algorithm, which is a critical point in logistic regression. Another concern was
to properly incorporate a dimension reduction approach such as sparse PLS into the
framework of GLMs. In particular, the algorithmic choice has a direct impact on the
convergence and the stability of the method and thus on the interpretation of the results.
We especially showed that non-convergent methods are unstable and unreliable regarding
prediction and selection accuracy. On the contrary, the Ridge regularization ensures the
convergence of the IRLS algorithm, which is confirmed in our simulations and tests on
experimental data sets.
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Applying adaptive sparse PLS as a second step on the pseudo-response produced by
the IRLS respects the definition of sparse PLS regression to handle continuous response.
Moreover, combining compression and variable selection increases the prediction perfor-
mance and the selection accuracy of our method, which turns out to be more efficient
than state-of-the-art approaches. Such combination also improves the dimension re-
duction, illustrated by the efficiency of our method for data visualization compared to
standard supervised or unsupervised approaches. Furthermore it appears that previous
procedures using sparse PLS with logistic regression encounter convergence issues linked
to a lack of stability in the cross-validation. This point highlights the crucial importance
of convergence when dealing with iterative algorithms.

The performance of our approach were assessed in a life-size situation. We ran an analysis
of an experimental data set where the aim was to predict the relapse for breast cancer
based on gene expression. The results of the simulation experiments were confirmed in
this analysis, especially regarding the prediction performance and the stability of our
method. Moreover, we introduced the use of stability selection to assess the accuracy of
the variable selection in statistical methods combining compression and variable selection.
Eventually, our approach was used in an on-going work to analyze and characterize single
cell data. Single cell sequencing is very recent in the field of genomics and the results
highlight the interest of our dimension reduction method in this context.

Nonetheless, a limitation of our approach is the lack of knowledge regarding the sparse
PLS regression and especially the absence of theoretical results concerning its consistency
or any oracle properties. Deriving such properties would be an interesting point to assess
the underlying statistical properties of our method,

The Partial Least Squares (PLS) regression has been widely studied in the past. A wide
variety of theoretical properties regarding the PLS have been derived. In particular,
Phatak & de Hoog (2002) worked on the link between the optimization problem in the
PLS and the conjugate gradient method (Hestenes & Stiefel, 1952) or with the method
of Lanczoz (Lanczos, 1950) to approximate the extremal eigenvalues of large matrices.
Phatak et al. (2002) studied the asymptotic variance of the PLS estimator. Krämer (2007)
presented insights on the shrinkage properties of the PLS estimator (compared to the
Ordinary Least Squares (OLS) estimator). Eventually, Blazère et al. (2014) introduced
a new framework based on orthogonal polynomials, that allow to retrieve the previous
known results regarding the PLS regression.

However, all this results concern the PLS regression and to our knowledge there does
not exist any work regarding the theoretical properties of the sparse PLS yet, especially
regarding the variable selection. Therefore, an interesting perspective would be to work
on a theoretical characterization of the sparse PLS, first in the Gaussian framework, in
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order to support our empirical results.

A first potential direction to characterize the selection by sparse PLS would be to use
the reformulation of the covariance maximization problem that defines the sparse PLS
as a least squares problem (on the empirical covariance matrix) with an Elastic Net
(EN) penalty. As introduced by Zou & Hastie (2005), it consists in a sum of penalties
on the �1 and �2 norms of the coefficients. The question of the consistency of the EN
regarding prediction and selection has been addressed by Ghosh (2007) and De Mol et al.
(2009). Zou & Zhang (2009) or Jia & Yu (2010) also considered the high-dimensional
case. These results mainly consider the case of an adaptive penalty. The interest here
would be to benefit from the theoretical properties of the Elastic Net in the framework
of the adaptive sparse PLS. However, such formulation would require to explicitly define
a statistical model associated with the PLS. We hopefully will be able to investigate this
point in the next months.

Another possibility to derive some properties about the sparse PLS would be to consider
a particular formulation of the standard PLS regression. In practice, the coefficients1

estimated by the PLS regression (c.f. Chapter 1) are actually the solution of a very spe-
cific least squares problem ‖y −Xβ‖ 2

2 when restraining the potential solutions to lie in
a Krylov subspace, this point is detailed in Rosipal & Krämer (2006) or Krämer (2007).
It could be possible to consider this least squares problem with a �1 penalty as a refor-
mulation of the sparse PLS. However, such formulation raises different issues regarding
the existence of the solution. Moreover, such framework is not constructive, in the sense
that it does not expose a solution. Eventually, it requires a non-convex optimization
procedure that especially works on convex subspaces. Following these different consid-
erations, we will consider the characterization of sparse PLS by using Krylov subspaces
on a longer term.

1from the linear model y = Xβ + ε.
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Part II

Unsupervised
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Chapter 4

Introduction to matrix factorization
for high dimensional data represen-
tation

In the second part of this manuscript, we will focus on unsupervised statistical analysis.
Indeed, the question of data exploration and representation is crucial when analyzing
high-dimensional data. We will focus on the issues related to the analysis of non-Gaussian
data like single-cell expression profiles. We will develop statistical tools to explore the
underlying geometry that is associated to the data, especially regarding the diversity
between individuals and the dependency between variables.

We will present dimension reduction approaches, suitable to handle count data and based
on matrix factorization. In particular, the development of data-specific framework for
data exploration remains a challenging field of computational statistics. Considering
more complex models allows to get a refined understanding of the data, however such
framework raises important questions concerning the model inference, particularly re-
garding the algorithms, the optimization and the computational cost.
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4.1 Matrix factorization for dimension reduction

We first present the interest of matrix factorization for dimension reduction and data
exploration. We then describe how the standard Principal Component Analysis (PCA)
solves a matrix factorization problem. It has to be noted that the questions about
unsupervised approaches for data exploration are far from being recent. In particular, the
PCA was introduced by Pearson (1901) and Hotelling (1933). The concepts about matrix
factorization and low rank approximation were already discussed by Eckart & Young
(1936). However, for fifteen years, these subjects have been back in the spotlight. In
many different fields (genomics, text mining, signal processing, etc.), different issues have
been raised regarding the scale and the dimensionality of the data, but also concerning
the appropriate geometric representation.

4.1.1 Why factorize matrix?

We consider a data matrix X = [xij ] ∈ R
n×p of dimension n×p. Each row xi ∈ R

p of the
matrix represents a vector of observations (among n) of p variables (e.g. gene expression).
For instance, the entry xij stores the read counts (i.e. expression level) of gene j in sample
i. The reader should bring attention to this point: in our formulation, rows correspond
to observations and columns to the recorded variables1 in the data matrix X.

Factorizing a matrix consists in representing the observations and variables as linear
combinations of latent directions. These latent components or factors lie in a lower
dimensional space of dimension K and are assumed to be a good approximation of the
data in a lower and more representable dimension. Singh & Gordon (2008) present
an overview about the definition and interest of matrix factorization, sometimes called
dictionary learning in the literature (Mairal et al., 2012).

In particular, the factorization of the matrix Xn×p consists in searching for two factor
matrices, U = [uik] ∈ R

n×K of dimension n × K and V = [vjk] ∈ R
p×K of dimension

p×K such that:
X ≈ UVT , (4.1)

i.e. for each observation:

xij ≈
K∑
k=1

uik vjk ,

see Figure 4.1. In this decomposition the columns of Un×K represent the coordinates of
the observations in the latent subspace and the columns Vp×K are the contributions of

1This convention is sometimes reversed in the literature regarding matrix factorization.
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the variables to the latent components. Therefore, the columns of U and V summarize
the structure and organization of respectively individuals and variables in the original
(and possibly high-dimensional) space.

The main question about matrix factorization concerns the definition of the approxi-
mation “≈” in Equation (4.1) (Singh & Gordon, 2008; Févotte & Cemgil, 2009). This
point will be the main concern of Part II (Chapters 4 to 7). At first, a reasonable choice
could be the least squares approximation, nonetheless we will see different ways to de-
fine the approximation X ≈ UVT and so to compute the factor matrices U and V.
The dimension reduction is considered to be efficient when the approximation stands
with K � min(n, p). At least, due to algebraic concern, we generally have the relation
K ≤ rank(X) ≤ min(n, p).

The usefulness of matrix factorization to process dimension reduction can be manifold.
First, this is inherently a compression technique as the cumulative dimension of the
factor matrices U and V, i.e. n × K + p × K, is smaller than the dimension n × p of
X as soon as K ≤ 0.5 ×min(n, p). Hence storing U and V instead of X is less costly.
Then, the columns of U or V can be used to understand the organization of respectively
individuals and variables, as they expose hidden structures within the data. For instance,
the latent factors can be a good basis to perform clustering of the variables (e.g. genes)
or of the observations (e.g. cells) in a lower dimensional space (Yeung & Ruzzo, 2001;
Xu et al., 2003; Ding et al., 2005; Lee et al., 2010; Wang et al., 2013). If K is very small,
i.e. K � min(n, p), the columns of U and V represent a particular interest for data
visualization and data exploration (Bishop & Tipping, 1998). Finally it can be used for
matrix completion (Witten et al., 2009) or matrix reconstruction (Meng & De La Torre,
2013).

Matrix factorization has been applied in many domains as image processing and text
mining (Lee & Seung, 1999; Xu et al., 2003), collaborative filtering and user recommen-
dation system (Salakhutdinov & Mnih, 2011; Gopalan et al., 2014), spectral analysis and
signal unmixing (Hoffman et al., 2010; Dikmen & Févotte, 2012), and even transcrip-
tomics (Brunet et al., 2004; Kim & Park, 2007; Wang et al., 2013; Yang & Michailidis,
2016).
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Figure 4.1 – Illustration of the dimension reduction by matrix factorization. The dimen-
sions of the factors U and V are lower than the dimension of the data matrix X.

4.1.2 Behind Principal Component Analysis

A standard approach for data exploration and visualization is the well known and widely
used PCA (Hotelling, 1933, or see Abdi & Williams, 2010 for a review). We first recall
the definition of PCA and then highlight its link with matrix factorization.

The purpose of PCA is to transform the data thanks to a linear projection into a lower
dimensional subspace by maximizing the variance of the projection coordinates. It seeks
for K orthogonal directions called principal components that explain most variability
in the data. The principal components are constructed (for k = 1, . . . ,K) as linear
combination of the data tk = Xwk, i.e. tik =

∑
j xij wjk for i = 1, . . . , n. These relations

can be summarized with the following matrix notation T = XW where the matrix
T = [tik] ∈ R

n×K stores (in columns) the component coordinates or score (tk)k=1:K

and the matrix W = [wjk] ∈ R
p×K stores (in columns) the variable weights or loadings

(wk)k=1:K . This weight vectors w1, . . . ,wK are defined such that the empirical variance
V̂ar(tk) is maximal. The empirical variance is expressed depending on the centered data
matrix Xc and the objective function is therefore:

wk = argmax
w∈Rp

(wk)
T (Xc)

TXcwk , (4.2)

under the constraint of orthogonality between t1, . . . , tK . The resolution gives a closed-
form solution for w1, . . . ,wK , that are the K first dominant eigenvectors of the empirical
covariance matrix (Xc)

TXc.
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Singular Value Decomposition

In practice, the resolution of the eigen-problem in the PCA appears to be equivalent to a
matrix factorization problem. We now explain the link between PCA and Singular Value
Decomposition (SVD). The SVD is an algebraic decomposition of any matrix (Klema &
Laub, 1980). The SVD of the matrix Xn×p is defined as follows:

X = ŨDṼT .

The matrices Ũ, Ṽ and D verify the following properties (c.f. Figure 4.2a):

– Dr×r = diag(δ1, . . . , δr) is the diagonal matrix of ordered singular values δ1 >

. . . > δr of the matrix X. The non-zero singular values correspond to the square
roots of the non-zero eigenvalues of the matrices XTX and XXT .

– The matrices Ũn×r and Ṽp×r are orthonormal, i.e. ŨT Ũ = Idr and ṼT Ṽ = Idr.
The columns of Ũ (resp. Ṽ) are the left-sided (resp. right-sided) singular vectors
of the matrix X, and correspond to the eigenvectors of XXT (resp. XTX).

– r is the rank of the matrix X (and therefore the rank of XTX and XXT ).

Solving the covariance maximization problem defining the PCA, as defined in Equa-
tion (4.2), is actually equivalent to processing the SVD of the centered data matrix Xc.
Indeed, the weight vectors (wk)k=1:K are the dominant eigen-vectors of the empirical
covariance matrix (Xc)

TXc, which correspond to the columns of Ṽ when applying the
SVD to Xc. Hence, when denoting respectively by Ũ1:K , Ṽ1:K , D1:K the matrices com-
posed of the respective K first columns of Ũ, K first columns of Ṽ, and K first rows
and columns of D, the principal components are computed as Tn×K = XcṼ1:K , i.e.
Ũ1:KD1:K by orthogonality of Ṽ1:K .

A least-squares formulation

The SVD of the matrix Xn×p leads to an exact decomposition X = UVT where U = ŨD

and V = Ṽ are respectively the latent components (or scores) and the variable coefficients
(or loadings).

In fact, the SVD has a geometrical interpretation and can be used to find a matrix
UVT that approximates the matrix X (c.f. Figure 4.2b). When setting the dimension
K < rank(X), the matrices U = Ũ1:KD1:K and V = Ṽ1:K verify the following property:
UVT is the matrix of rank K that minimizes its Frobenius distance to the matrix X as
stated by Eckart & Young (1936). Therefore, the matrix UVT verifies:

UVT = argmin
rk(M)=K

‖X−M‖ 2
F , (4.3)
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where the Frobenius norm of a matrix X = [xij ] is defined by

‖X‖ 2
F = trace(XTX) =

∑
i,j (xij)

2 .

Hence, when expending ‖.‖ 2
F , the rows of UVT minimize the �2 distance:

n∑
i=1

‖xi −mi‖ 2
2

between the rows xi of X and the rows mi of M. The vectors mi are interpreted as
the approximations of the observation vectors ai in the lower dimensional subspace of
dimension K.

The PCA applied to a data matrix X (or the SVD of Xc) is therefore a least square
(and low rank) approximation. This point needs to be kept in mind when thinking about
applying the PCA to non-Gaussian data as we will see in Chapters 5 and 6.

Sparse PCA

Following the concept introduced in Part I, it is also possible to consider the hypothesis
of parsimony when developing unsupervised statistical approaches suitable for compres-
sion. In particular, it is possible to combine matrix factorization with variable selection.
When analyzing high-dimensional data, the variable selection process will improve the
dimension reduction since only the pertinent variables will be considered to construct
the latent directions that explain the structure of the data.

In particular, the sparse PCA is formulated as a penalized variance maximization problem
(Jolliffe et al., 2003) with a sparsity-inducing penalty on the weight vectors wk, hence
defining sparse principal components tk. The penalty explicitly concerns the �1-norm of
the weight vectors, i.e.

wk = argmax
w∈Rp

(w)T (Xc)
TXcw + ν

p∑
j=1

|wj | , (4.4)

where ν > 0 is a penalty constant. As in the case of the sparse PLS (see Chapter 1), the
optimization of (4.4) is tricky.

Zou et al. (2006) reformulated the problem (4.4) as a matrix approximation problem.
Similarly, Shen & Huang (2008) introduced the sparse SVD as a low rank approximation
based on a least squares loss function with an �1 penalty i.e.

argmin
u∈Rn,v∈Rp

‖X− uvT ‖ 2
F +

p∑
j=1

penν(vj) ,
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Figure 4.2 – SVD and low rank approximation. (a) SVD of the matrix X or rank r, i.e.
X = ŨDṼT . (b) Low rank approximation based on the SVD, i.e. X ≈ Ũ1:KD1:KṼ1:K .
The × refers to the columns with index K + 1, . . . , r that have been removed.

where penν(·) is a sparsity-inducing penalties (depending on ν > 0), for instance, based
on the �1-norm. Witten et al. (2009) also presented a reformulation of the problem
associated to the SVD under a sparsity constraint. Other approaches similar to sparse
PCA or sparse SVD have been proposed in parallel in the machine learning community,
especially sparse coding and matrix factorization (Bach et al., 2008; Mairal et al., 2009,
2012).
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4.2 New data specificity

The renewal of interest for exploratory statistics is linked to the recent evolution regard-
ing the scale and the specific types of the data in many fields. The questions about
exploration and representation of the data are central in many analysis, especially to get
an insight on the structures organizing the observations and the variables or to explic-
itly visualize the data. Such context constitutes an important issue when dealing with
large-scale and high dimensional data that need to be represented in a tangible way to be
interpreted. For instance, in genomic data analysis, the aim is generally to investigate the
complex dependencies between genes or the influence of the environmental conditions.
As the experimental validation is heavy and expensive in Biology (e.g. to investigate the
role of a pool of genes), the statistical exploration of genomic data is used to get a precise
understanding of the latent configuration of the data.

Moreover, we will deal with a very recent type of genomic data, especially single-cell data.
Whereas standard RNA sequencing (RNA-seq) used to capture the average expression of
genes across a population of cells (called bulk sequencing), it is now possible to monitor
the expression of genes at the level of single cells. As a deeper recording of the molecular
activity in cells, it represents a unique insight on the individual diversity between cells
from a same tissue or organism. The choice of the statistical methods to analyze single-
cell expression profiles depends on the question that needs to be addressed: how the cells
are organized and related to each other? Do they express the same genes in the same
environment and condition? These questions will motivate the use of matrix factorization
to explore the data.

In this section, we briefly introduce a specific single-cell data set and the biological ques-
tions that are related. Then, we explain the specificity of single-cell data from a statistical
point of view. These two points will motivate the development of a specific dimension
reduction framework. In particular, gene expression data are not just concerned by high
dimensionality issues. Indeed, in the framework of Next-Generation Sequencing (NGS),
transcriptomic data are also composed of non continuous signal as counts that quantify
the abundance of some nucleic sequences (like RiboNucleic Acids (RNAs)). For instance,
in the context of heteroskedastic data, the geometry induced by the standard Euclidean
metric may not be suitable to catch the structure of the data. This point will be discussed
in Chapter 5.
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4.2.1 An example of single-cell expression data

Single-cell sequencing is a recent technology (Gawad et al., 2016). The cells are isolated
from each other and their genetic material is individually sequenced. Characterizing
the expression of genes at the single-cell level gives a unique insight on the genomic
diversity between cells of the same organism. As introduced in Chapter 2, our interest
for statistical exploration was motivated by a collaboration with Jeff Mold from the
Karolinska Institutet (Stockholm, Sweden). The project focuses on the study of the
transcriptomic landscape (at the single-cell level) in a population of lymphocyte T cells
that were sampled after a vaccine shot at three time points (15, 136 and 908 days after
the inoculation). The interest is to characterize an immune response from the T cell
point of view, in particular to understand the organization of the population of T cells
through times and qualify its genetic homogeneity or heterogeneity.

Lymphocyte T cells are divided into different groups, tagged as Effector or Memory
cells. These discrimination is based on phenotypic markers. However, T cells are also
structured by genealogical links. Indeed, a unique genetic marker allows to identify all
the cells that originate from a common ascendant after successive divisions. Such group
of cells constitute a clone. One of the main question raised in this study is the differences
between the clonal and phenotypic organization of the cells, especially regarding their
evolution across time. After the vaccine shot, the number of T cells specific to the
antigen in the vaccine rises quickly during a few days, and then this number decreases
within a few hundred of days. However, these T cells does not disappear, a pool of cells
remains so that they can be activated if they encounter their specific antigen during
a future infection. We will focus on the exploration and representation of single-cell
expression profiles to characterize the different levels of structures between cells (clone
versus phenotype) and monitor the evolution of these structure through time.

Single-cell data present different characteristics and their analysis appears to be more
challenging compared to RNA-seq data (Stegle et al., 2015). One of the most specific
pitfall is the abundance of drop-out events in the gene expression profile. Indeed, a
zero count may refers to an absence of read or to a failure in the experiment due to
the short amount of genetic material available in a single cell. Therefore, an unknown
and random proportion of zeros corresponds to unobserved values. In particular, the
sequencing technology used in this project, SMARTseq2 2 is assumed to capture between
40 and 50% of the genetic material in a single cell. Moreover, the proportion of cells from
the same type that express the same genes is very low, because the transcription is a
stochastic process (Marinov et al., 2014). This reflects the high variability of expression

2This technology was published in Picelli et al. (2013), however in this experiment, the
sequencing is based on custom reagents that are not published yet.
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between cells. For instance, Figure 4.3 shows the empirical distribution of the expression
level of four different genes across all cells in our single-cell data set. All these genes
are characterized by a huge number of zeros. However, the distributions may present
different characteristics (uni-modal or bi-modal for instance).

Figure 4.3 – Amplification of the zeros in the read count distribution of different genes

4.2.2 Distributions to model count expression profiles

As previously mentioned, gene expression profiles are count matrices. A first idea to
model such data is to use the Poisson distribution. It has been especially used for NGS
data analysis (Marioni et al., 2008; Srivastava & Chen, 2010; Witten, 2011). However,
the Poisson model is restrictive as a single parameter determines the moments of first
and second orders (i.e. position and dispersion). It lacks flexibility especially since NGS
data are often over-dispersed regarding what would be expected in a Poisson model3

(Anders & Huber, 2010). Based on this assessment, the Negative Binomial distribution
is an alternative to model over-dispersion in NGS count data (Anders & Huber, 2010;
Bonafede et al., 2015). Considering a Negative Binomial X ∼ NB(r, π) with r > 0 and
π ∈ (0, 1), the probability mass function of X is defined4 by:

p(x ; r, π) =
(x+ r − 1) !

x ! (r − 1) !
πr (1− π)x ,

for any integer x > 0. Some estimation methods for the Negative Binomial distribution
are introduced in Johnson et al. (2005) or Karlis (2005).

3In Poisson distributions, the variance is equal to the expectation.
4c.f. appendix Chapter C
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An interesting point is that the Negative Binomial distribution can be formulated as a
hierarchical model4. Indeed, if we consider a Poisson variable X |λ ∼ P(λ) with λ > 0,
we may add a prior distribution on the parameter λ. When choosing a Gamma5 prior,
the model becomes:

λ ∼ Γ(α1, α2) ,

X |λ ∼ P(λ) .
(4.5)

The marginal distribution of X, i.e. p(X ; Ω) with Ω = (α1, α2), can be derived by
integrating the joint likelihood p(X,λ) = p(X |λ) p(λ) over λ. In this case, the marginal
is especially the Negative Binomial distribution NB(α1, α2/(α2 + 1)), hence accounting
for over-dispersion4. This framework was for instance applied by Christiansen & Morris
(1997) for Poisson regression. Such hierarchical model is called the Gamma-Poisson
(GaP) model. We will develop the concept of matrix factorization in this framework in
Chapters 5 and 6. We will especially see how to process dimension reduction in over-
dispersed count data.

4.2.3 Zero-inflated count data

As previously stated, single-cell transcriptomic data are even more specific than over-
dispersed count. They are indeed characterized by drop-out events, i.e. an amplification
of the zeros in the data. This phenomenon defined as zero-inflation (Hall, 2000) may
have a huge impact on statistical analysis and have been a huge concern in single data
analysis with the development of specific methods (Pierson & Yau, 2015).

In zero-inflated data, the signal is a superposition of two sources. In our data, non-
null values especially correspond to an effective signal whereas null values may refer to
a true zero (absence of read) or to an artificial zero (failure of the experiment). The
origin of the zeros (from one source or another) cannot be determined. The underlying
distribution modeling such behavior is therefore a mixture of two distributions, here a
count-generative distribution and a zero-generative distribution. For example, the reader
may refer to Lambert (1992) for an introduction of the zero-inflated Poisson model. In
such context, the count data X is supposed to follow a Dirac-Poisson mixture, i.e.

X ∼ (1− π) δ0 + πP(λ) .

5We use the following standard parametrization of the Gamma distribution Γ(α1, α2) with
parameters α1, α2 > 0 and with the density:

p(u |α1, α2) = uα1−1 (α2)
α1 e−α2 u

Γ(α1)

where Γ(·) is the Gamma function Γ : x > 0 �→
∫
R+

tx−1 e−t dt
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The parameter π ∈ [0, 1] is the probability that the observation is drawn from the Poisson
distribution of parameter λ > 0. We precise that we consider only a zero-inflated model
and not a hurdle model (Dalrymple et al., 2003) because a null value may be a true
observation in the data.

Standard approaches may not respond well to data following such generative process.
For instance, the PCA is based on the measure of covariance, and the addition of many
zeros may totally change the covariance structure in the data. In fact, the PCA is very
sensitive to corrupted observations. Different approaches have been proposed to robustify
the PCA (De La Torre & Black, 2003; Candès et al., 2011; Meng & De La Torre, 2013;
Brooks et al., 2013), however they are based on metrics inappropriate for count data (c.f.
Chapter 5).

We take a small example to illustrate this point. We generate a data matrix with n = 100

observations and p = 10 variables according to the GaP model with latent factors that
we will study in the following chapters. We specifically set different values to the hyper-
parameters to define two groups of observations. We use the PCA to visualize the
data. We plot the first two components (see Figure 4.4a) that explain more than 55%
(∼ 30.8%+ ∼ 26.3%) of the variability in the data6. The latent structure associated with
the first two axis discriminate clearly between the two classes of observations. Now, we
simulate random drop-out events and replace some observations by null values at random
positions in the data (so that the proportion of artificial zeros is between 0.3 and 0.6).
Again, we use the PCA and visualize the first two components (c.f. Figure 4.4b). We
observe that the percentage of explained variability plunges to ∼ 32% (versus ∼ 55%

previously) and the two groups are totally mixed.

Zero-inflated (ZI) data must be handled with caution. In particular, the PCA and
the SVD may not be appropriate to explore such data. For instance, Pierson & Yau
(2015) proposed a latent factor model suitable for zero-inflated Gaussian data. Our
questioning concerns particularly the validity of standard criteria such as least squares
or covariance when the data are far from being Gaussian. This point will be developed
in Chapters 5 and 6. As a teaser, we show the results on the same data set obtained by
the matrix factorization method that we developed, where zero-inflation is accounted for
(see Figures 4.4a and 4.4b). We notice that the data structure is retrieved even in the
case of ZI data with drop-out events, on the contrary to the PCA.

6The variability explained by a component is the ratio between the empirical variance of the
projection of the data on this components and the empirical variance in the data.
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Figure 4.4 – Example of PCA on ZI data. (a) Observation scores from PCA on a data
set with two groups of observations. (b) PCA score with the same data but random
drop-out events add a huge proportion of zero in the data (proportion between 0.3 and
0.6). (c) Example of specific matrix factorization for ZI data on the standard data. (d)
Example of specific matrix factorization for ZI data on the ZI data. (In Fig (c) and (d),
we do not consider the percentage of explained variance since it is not an appropriate
criterion for our approach as we will see in Chapters 5 and 6).
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4.2.4 First developments regarding the single-cell project

Before introducing data-specific dimension reduction methodologies in the following chap-
ters, we present an overview of some results regarding the analysis of the expression
profiles of single T cells with PCA-based methods. Indeed, the PCA has been used
in previous studies regarding single-cell data, see for instance Buganim et al. (2012) or
Gaublomme et al. (2015), thus we did focus on the PCA as a preliminary step for data
exploration.

Although the point of the following chapters will be to explain why it could be appropriate
to use specific dimension reduction methods in the exploratory analysis of non-Gaussian
data, the PCA remains useful as a fast procedure to visualize the latent organization of
large-scale data set. In particular, the single-cell transcriptomic data are non-Gaussian,
however it is possible to transform the counts into a pseudo-continuous signal and apply
standard dimension reduction approaches. For instance, Anders & Huber (2010) or Cley-
nen et al. (2013) discussed the transformation of count expression profiles. Johnson et al.
(2005) detailed useful transformations depending on the data underlying distribution, es-
pecially variance stabilization transformation. The two main transformations used in the
context of count data are the log transform, i.e. x �→ log(x+ 1) or the Anscombe trans-
form, i.e. x �→ 2

√
x+ 3/8. Such transforms are appropriate when the averaged signal is

high in the data. In this case, the transformed counts are expected to be approximately
Gaussian. In our experimental analysis, we did use the Anscombe transform. However,
the transformed signal remains non-Gaussian because of the zero-inflation in single-cell
data.

Adaptive sparse PCA

The question addressed now mainly concerns the characterization of the different organi-
zation of the cells: clonal versus phenotypic. A first issue concerns the number of genes
in the data set (around 20000). Among these thousands of genes, we would like to focus
on the ones that carry an interesting signal and not just noise. To do so, it is possible
to process a differential expression analysis and rank the genes based on their difference
of expression between the conditions: differentially expressed (DE) genes associated to
the clonal effect or DE genes associated to the phenotypic effect. Such analysis if based
on the inference of complex Generalized Linear Models (GLMs)7 and the optimization
process is time consuming. In order to reduce the computation time, we used sparse
PCA as a preselection step to withdraw non-relevant genes.

Based on the formulation of sparse PCA by Witten et al. (2009) and the work introduced
7In particular zero-inflated Negative-Binomial models.
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in Part I, we developed an adaptive version of sparse PCA where the penalty on the �1-
norm of the weight vector wk is adjusted to penalize more the less pertinent variables.
The motivation of such principle is that the contribution of the pertinent variables in the
data representation are softened by the small yet non null contributions of the numerous
non-relevant variables, particularly in high dimensional data. To process a more pre-
cise selection, we want to adapt the selection regarding the relative importance of each
variable. The associated problem can be written as follows:

wk = argmax
w∈Rp

(w)T (Xc)
TXcw + ν

p∑
j=1

νj |wj | , (4.6)

where the penalty constant νj > 0 depends on the variable j. In particular, the �1-
penalty on the weight of the variable j in the component k, i.e. wspca

jk , is regulated by
the term νj = 1/|wpca

jk | where wpca
jk is the weight of the variable j in the component

k in standard PCA. Thus, the variables with small weights wpca
jk in absolute and then

non-informative will be more penalized and therefore discarded.

In practice, we focus on each day separately: “D15” and “D136”8. When dealing with the
full data set on both days conjointly, the sparse PCA will select mostly genes that explain
the day variability, as gene expression seems to be very variable between days. Moreover,
in that case, it would not be possible to identify a situation where genes that discriminate
clones are not the same at each day. Eventually, the idea behind the separation of the
days is to enforce robustness in our results as we repeat the analysis. For each day, we
select (by sparse PCA) among all genes those that contribute the most to the variability:
we obtain 1974 genes for D15 and 1932 genes for D136. An interesting point is that
∼ 99% for D15 and ∼ 90% for D136 of the selected genes are within the top 10% most
differentially expressed genes between clones, hence processing pre-selection with sparse
PCA seems consistent with the results of differential expression analysis, and a less time-
consuming alternative. However, we did not investigate this direction any further in our
experimental study. Indeed, at the moment (as mentioned in the case of the sparse PLS
in Chapter 3), there does not exist any theoretical characterization of the properties of
sparse PCA regarding variable selection. Moreover, as explained in the next chapter,
we decided to focus on model-based approaches for matrix factorization. Besides this
preliminary analysis, we will present some other results regarding data visualization in
Chapter 6.

8The data at “D908” were not available at that time.
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Chapter 5

Principle of PCA on counts

In regression problems, when the response is not Gaussian, we consider Generalized Lin-
ear Models because the linear regression would not comply with the constraints inherent
to the data. For instance, the least squares regression cannot be used to predict a binary
response. The same remark holds in the context of matrix factorization. The Principal
Component Analysis and Singular Value Decomposition are based on a least squares
approximation. Therefore, it cannot be sure that the reconstructed matrix UVT that
approximate the data matrix X will respect the specificity of the data. We are consider-
ing count data, hence discrete and non-negative. To account for the non-negativity, the
Non-negative Matrix Factorization was developed to estimates the factors U and V un-
der constraints of non-negativity. As we will see, the geometry induced by the Euclidean
metric is not the most appropriate for count, thus we will rather consider model-based
matrix factorization approaches, that are based on the concept of Generalized PCA.

As introduced in the previous chapter, genomic data are generally over-dispersed and
this characteristic has to be accounted for when analyzing such data. Therefore, we will
not consider models for matrix factorization based on the Poisson distribution. We will
present a formulation based on the hierarchical Gamma-Poisson model that accounts
for over-dispersion. In this scheme, the factors U and V are considered as latent vari-
ables. Moreover, the standard approaches for estimation as the Maximum Likelihood
Estimation or the Expectation-Maximization algorithm are not appropriate because the
marginal distribution of the data or the posterior distributions of the factors are in-
tractable. To overcome the estimation problems, we use the framework of variational
inference, a method that approximates the posterior distribution of a model. A standard
procedure to infer the posterior would be to use Markov Chain Monte Carlo approaches,
however the variational inference is computationally more efficient.
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Since we generally study high dimensional data, the question of sparsity remains central
especially in the context of dimension reduction procedure. After introducing the model
and the inference scheme, we will eventually present some works regarding variable se-
lection approaches that will guide us in the next chapter to develop a sparse model for
matrix factorization.

Before going any further, in the next two boxes, we introduce some notations about
probability distributions that will be useful in the following.

Likelihood and distributions
For the purpose of notations, the densities of continuous random variables and the prob-
ability mass functions of discrete random variables are similarly denoted. For instance
if a variable X follows a Poisson distribution, i.e. X ∼ P(λ), the associated likeli-
hood is p(x ; λ). Similarly if a random variable U follows a Gamma distribution, i.e.
U ∼ Γ(α1, α2), then its likelihood will be denoted by p(u ; α1, α2). The semi-colon “ ; ”
separates the random variables from the parameters. The lower-case letter argument
always refers to the corresponding upper-case variable, i.e. p(x) is the likelihood of X.
When considering a conditional distribution, the variable are separated from the condi-
tioning by a vertical line “ | ”. For instance, if we consider λ as random, the conditional
distribution associated to X |λ ∼ P(λ) is p(x |λ). A conditional distribution may also
depend on some parameters. In this case, the notations are mixed. For example, let U be
random and v a parameter, we define the conditional distribution of X as a Poisson dis-
tribution of parameters Uv, i.e. P(Uv), then the conditional likelihood of X is denoted
by p(x |U ; v).

Expectation of random variables
We define the different notations that we will use when taking the expectation of random
variables. We consider a hierarchical model where the conditional distribution of the data
X depends on two random variables U and V , i.e. defined by p(x |U, V ). The prior on
U is defined by p(u ; α) and the prior on V by p(v ; β). The expectation of X regarding
its conditional distribution is defined as E[X |U, V ]. The expectation of the marginal
distribution of X, i.e. p(x ;α, β) where the conditioning variables are integrated out,
is E[X]. The expectations of the U and V regarding their prior are respectively E[U ]
and E[V ]. The expectations of U and V regarding some probability distribution q are
respectively Eq[U ] and Eq[V ]. Eventually, the expectation of the posterior distribution of
U and V , i.e. regarding p(u |X) and p(v |X) respectively, are denoted by EU |X [U ] and
EV |X [V ] respectively. Sometimes, in order to have lighter notation, they may be denoted
by E[U |X] and E[V |X] respectively.
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5.1 Data-specific factorization of matrix

We now focus on model-based approaches and review the state-of-the-art regarding data-
driven factorization of matrix, from generalized Principal Component Analysis (PCA) to
Non-negative Matrix Factorization (NMF). We first identify potential issues when apply-
ing the PCA to non-Gaussian data. Then, we present the general framework of matrix
factorization for count data and introduce some statistical and algorithmic considerations
that will drive the development of our own approach.

5.1.1 Matrix factorization and non-Gaussian data

In exploratory statistics, the objective is to explore and represent the organization of
the data, both in the observation and in the variable spaces. To do so, a strategy is to
understand the geometry of the data, for instance to assess which individuals are closed
or distant from each other. Another option is to apprehend how the data are distributed,
i.e. to choose and infer a statistical model fitting the data. Although these two strategies
do not appear to be related at first sight, the frontier between these two worlds is thin,
especially in the case of the PCA (De Leuuw, 1986).

The PCA is defined as a geometrical method that seeks for orthogonal directions ex-
plaining most of the observed variability. It is a linear projection of the data and does
not presume any assumption on the distribution of the data. As seen in Chapter 4, it
can be interpreted as a least squares approximation thanks to the Singular Value Decom-
position (SVD). The standard geometry is based on the Euclidean distance (�2 metric).
In our framework, we want to find a matrix product1 UVT that is the closest to the
data matrix X ∈ R

n×p. The interest of the Gaussian distribution is that, in the case of
homoskedastic multivariate Gaussian data, the geometric approach exactly corresponds
to the model-based approach, since the likelihood associated to such data is the least
squares approximation criterion ‖X−UVT ‖ 2

F , where the Frobenius distance ‖ · ‖F is the
�2 metric between matrices in the Euclidean space. The main question in this context is
to determine if the Euclidean geometry is appropriate for non-Gaussian data, especially
when heteroskedasticity is involved. In particular, Bailey (2012) or Han & Liu (2013)
developed an approach to extend PCA in the case of the heteroskedastic data. More
generally, the underlying geometry that drives count data may be different than the ones
in the Gaussian case (this point will be illustrated in the following).

The geometric question is related to a question about the model. Although, the co-

1with U ∈ R
n×K and V ∈ R

p×K
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variance maximization problem in PCA is defined for any underlying distributions, it is
highly associated with the Gaussian distribution. Indeed, the PCA only considers the
mean (through the centering of the data) and the empirical covariance that are exactly
the two sufficient statistics characterizing the multivariate Gaussian distribution. There-
fore, considering a covariance criterion for non-Gaussian data may not be appropriate
to characterize the data. Actually, the covariance (and therefore correlation) is a mea-
sure of independence in the Gaussian framework as non-correlation equals independence
for multivariate Gaussian variables. This statement is not true anymore when consid-
ering any other distribution. In particular, the absence of correlation does not mean
anything regarding the independence of non-Gaussian variables, hence the PCA may
miss higher-order relations between non-Gaussian variables. For instance, the Indepen-
dent Component Analysis (ICA) by Comon (1994) is a dimension reduction approach
that searches for linear combinations of independent latent factors that fit the data, i.e.
xij ≈

∑
k uik vjk, based on higher-order statistics. Hyvärinen & Oja (2000) reviewed the

different ICA algorithms. This approach is particularly suitable for non-Gaussian yet
continuous data. To finally illustrate the link between Gaussian distribution and PCA,
the reader may refer to the work of Linsker (1988) and Geiger & Kubin (2013) that
studied the optimality of PCA regarding information theory. In the Gaussian case, the
PCA appears to minimize the information loss in the dimension reduction process.

In the following, we will focus on matrix factorization approach that are suitable for
count data. In particular, the NMF was developed to handle positive data. It consists in
searching for factor matrices U and V with non-negative entries so that a positive data
xij is decomposed as a sum of positive factors

∑
k uik vjk. For instance, the SVD may lead

to a decomposition with negative entries in UVT which cannot be a good approximation
of the non-negative data X. The first NMF method was proposed by Paatero (1997)
and popularized by Lee & Seung (1999, 2001). It is nonetheless still based on the least
squares problem but with non-negativity constraints on U and V:⎧⎨⎩ argmin

U∈Rn×K ,V∈Rp×K

‖X−UVT ‖ 2
F ,

U ≥ 0,V ≥ 0 ,
(5.1)

where U ≥ 0 and V ≥ 0 denote the non-negativity constraints2. Lee & Seung (2001)
or Kim & Park (2007) proposed some optimization procedures for this criterion. The
interest of such method that we denote by Least Squares NMF (ls-NMF) stands when
deriving theoretical properties of the matrix factorization such as identifiability of the
factors (Donoho & Stodden, 2003), complexity of the exact factorization (Vavasis, 2009)
or uniqueness of the decomposition (Laurberg et al., 2008). However, it does not eman-

2Matrices with positive entries were specifically called “non-negative” because the concept of
positive matrix has a different meaning in algebra.
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cipate from the Euclidean geometry, therefore model-based NMF procedures were then
introduced.

5.1.2 Poisson Non-negative Matrix Factorization

The Poisson-NMF introduced by Lee & Seung (1999) was the first approach that con-
sidered matrix factorization in the specific context of count data. It was motivated by
applications in text mining or image analysis. It assumes the data to follow a Poisson
model, i.e. each observation xij in the data matrix X is considered to be the realization
of a Poisson random variable Xij ∼ P(λij). Instead of directly factorizing X, the matrix
of Poisson rates Λ = [λij ] ∈ (R+)n×p is factorized as Λ = UVT . This corresponds to
factorizing the expectation3

E[X |Λ] of the matrix X. Such formulation is similar to the
path from linear regression to Generalized Linear Models, where the linear combination
of predictors explains the expectation of the response, instead of the response directly
(c.f. Chapter 1). In this regard, the concept of Generalized PCA (GPCA) was intro-
duced to extend the PCA to the exponential family. If we consider the observations and
variables to be independent, the log-likelihood of such Poisson model is therefore (when
disrupting constant terms):

log p(X;U,V) =

n∑
i=1

p∑
j=1

xij log(u
T
i vj)− uT

i vj , (5.2)

where ui ∈ R
K and vj ∈ R

K represent the respective rows of U and V, and then
λij =

∑
kuik vjk = uT

i vj .

The Poisson-NMF is a dimension reduction method since the Poisson rates λij are not
directly estimated. The procedure estimates U and V which corresponds to n×K+p×K

parameters. As mentioned in Chapter 4, n×K + p×K � n× p when K � min(n, p),
hence avoiding over-parametrization.

The factor matrices U and V are estimated by the Maximum Likelihood Estimation
(MLE) procedure under non-negativity constraints, so that the rate matrix Λ remains
non-negative. Lee & Seung (1999, 2001) proposed iterative optimization procedures
that lead to a local optimum of the log-likelihood (5.2). In order to avoid the non-
negativity constraint, Salmon et al. (2014) have proposed a formulation using the expo-
nential function Xij ∼ P

(
exp(

∑
k uik vjk)

)
, however the optimization scheme seems to

be less straightforward.

3In this matrix notation, the entries of E[X |Λ] are defined as E[Xij |λij ] for any pair (i, j).
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At this point, it has to be noted that the Poisson-NMF has a geometric interpretation.
Sra & Dhillon (2005) or Févotte & Cemgil (2009) reviewed different statistical models
for NMF that specifically correspond to different metric and thus different underlying
geometry. In particular, in the exponential family, the log-likelihood can be interpreted
as a Bregman divergence (Chen et al., 2008) between the data and the parameters of
the data distribution. For instance, the metric suitable for Poisson data Xij ∼ P(λij) is
not the Euclidean distance but rather a generalized Kullback-Leibler divergence, based
on Bregman divergence, defined as:

D(X |λ) =
n∑

i=1

p∑
j=1

xij log

(
xij
λij

)
− xij + λij . (5.3)

In this context, the Poisson-NMF finds the factors U and V that minimize the divergence
between X and UVT , i.e. ⎧⎨⎩ argmin

U∈Rn×K ,V∈Rp×K

D(X |UVT ) ,

U ≥ 0,V ≥ 0 .
(5.4)

The Bregman divergence can be viewed as a generalization of the Euclidean metric to
the exponential family (Banerjee et al., 2005).

The Poisson-NMF also lies in the framework of the GPCA proposed by Collins et al.
(2001). As mentioned previously, based on the formulation of Generalized Linear Models
(GLMs) in the case of non-Gaussian data (c.f. Part I), the PCA is generalized following
the scheme of Poisson-NMF but for any distribution in the exponential family. This
approach uses the Bregman divergence to quantify the proximity between X and UVT .
One of the main interest of such formulation is that it is suitable for any type of data. On
the contrary, when using the least squares approximation ‖X −UVT ‖ 2

F , the estimated
matrix UVT is not guaranteed to satisfy the constraints defining Xij , e.g. a positive
count in our case. The GPCA can be interpreted as a GLM linking Xij to the latent
factors uik and vjk. This formulation is related to the factor models Bartholomew (2004).
In particular, the relation between factor models and matrix factorization have been
investigated in the Gaussian case by Tipping & Bishop (1999) or in the Poisson case by
Lee et al. (2013).
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5.1.3 Gamma-Poisson matrix factorization

As presented in Chapter 4, we will focus on the Negative Binomial distribution in order to
get a model that is more flexible and that accounts for over-dispersion (on the contrary
to the Poisson model). If we consider a Negative Binomial matrix factorization, it is
based on the model Xij ∼ NB(rij , πij) with the parameters4 rij > 0 and πij ∈ (0, 1). It
is necessary to define how to factorize the two sets of parameters [rij ] ∈ R

n×p and [πij ] ∈
R
n×p, and especially to set the relation between the factors in each set of parameters.

Instead, we consider an extension of the Gamma-Poisson (GaP) model introduced in
Chapter 4 to the context of matrix factorization.

In the following, the matrix notations X, U and V may refer, depending on the context,
to the matrices of effective realizations, i.e. [xij ]n×p, [uik]n×K and [vjk]p×K respectively,
or to the collection of associated random variables, i.e [Xij ]n×p, [Uik]n×K and [Vjk]p×K

respectively.

The Poisson model of NMF is extended as follows. The factors Uik and Vjk are viewed as
independent random variables with prior distributions. The set of parameters, denoted
by Ω, of these priors are now the hyper-parameters of the model. We will therefore
consider the Gamma-Poisson factor model. Canny (2004) or Buntine & Jakulin (2006)
proposed a GaP factor model with Gamma priors on only one of the factors U or V. We
will rather consider a GaP factor model with Gamma priors on both factors U and V

(Cemgil, 2009) that is defined as follows:

Xij | (Uik, Vjk)k=1:K ∼ P(
∑

k Uik Vjk) ,

Uik ∼ Γ(αk,1, αk,2) ,

Vjk ∼ Γ(βk,1, βk,2) ,

(5.5)

with the hyper-parameters αk,1, αk,2, βk,1, βk,2 > 0. The observations Xij are assumed
to be conditionally independent and the factors Uik and Vjk to be independent. At this
point, we introduce the following notations: the vectors αk and βk (k = 1, . . . ,K) store
the corresponding prior hyper-parameters, i.e. αk = (αk,1, αk,2)

T and βk = (βk,1, βk,2)
T

respectively. The hyper-parameters of the prior over U and V are respectively gathered
in α = [αk] ∈ R

K×2 and β = [βk] ∈ R
K×2. The whole set of hyper-parameters is

denoted as Ω = (α,β).

The interest to use prior distributions is to consider a refined model that fits the data
more closely. Especially, the recorded variables in X are not supposed to be marginally
independent as in the standard NMF, rather conditionally independent. The structure
of dependency is directly included in the model through the specification of the prior on

4c.f. Appendix Chapter C
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the latent factors. A drawback is that the marginal distribution of Xij is intractable.
Indeed, it would require to integrate the joint likelihood5 p(X,U,V ; α,β) over U and
V. Following the notations introduced at the beginning of this chapter, the marginal is
therefore:

p(X ; α,β) =

∫
(U,V)

p(X |U,V) p(U,V ; α,β) dU dV .

However, the conditional distribution of Xij depends on the Poisson rate
∑

k uik vjk as:

p
(
xij | (uik, vjk)k

)
=

exp
(
−∑

k uik vjk
)(∑

k uik vjk
)xij

xij !

The term
(∑

k uik vjk
)xij may not be factorized because it involves log

(∑
k uik vjk

)
that

is not expandable. This point is an issue when estimating the parameters of the model
as we will see in a moment. Moreover, the distribution of such multiplicative/additive
combination of Gamma distributed random variable does not admit a distribution with
a closed-form density (Moschopoulos, 1985; Coelho & Arnold, 2014). Nonetheless, it
can be proven that such GaP factor model accounts for over-dispersion in the data (c.f.
Appendix Section D.1.1).

The interest of the GaP factor model can be summarized as follows:

– It is a dimension reduction method that is suitable to handle over-dispersed data.

– Following the concept of matrix factorization, it exposes the latent structure within
the data, especially in the observation and in the variable spaces. This point
illustrates the concept of “count-specific PCA”.

– The dependency between variables Xij is integrated in the model, on the contrary
to SVD or NMF-based approaches.

– The model can be adapted to account for zero-inflation or to enforce sparsity in
the factors (this point will be discussed in Chapter 6).

We will especially derive a matrix factorization method based on the GaP factor model.
A wide variety of such model have been developed in the literature, with different strate-
gies regarding the statistical inference, see Canny (2004), Cemgil (2009), Hoffman et al.
(2010), Dikmen & Févotte (2012), Zhou et al. (2012), Gopalan et al. (2014), Paisley
et al. (2014) or Acharya et al. (2015). It can be noted that other GaP models were
also proposed without an explicit formulation depending on latent factors6. Dunson &

5Also known as the complete likelihood. It is explicitly formulated in Appendix Section D.1.2.
6The algorithm from Dunson & Herring (2005) and Titsias (2008) have inspired some of the

references concerning the GaP factor model, especially regarding the inference algorithms.
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Herring (2005) presented a more generalized GaP model with Gamma latent variables
and a regression term involving some covariates. Titsias (2008) worked on an infinite
additive GaP model, i.e. the Poisson rate is an infinite sum of Gamma distributed la-
tent variables, but without considering a latent factor model. In the next sections, we
will detail the different approaches regarding the inference in the Gamma-Poisson factor
model and we will explain the novelty of our procedure.

5.2 Inference in the Gamma-Poisson factor model

When considering a hierarchical model such as the GaP factor model, we have to choose
between computing point estimates or inferring the distribution of U and V. In this
context, point estimation represent a snapshot of the latent variables in a particular data
sample. On the contrary, the inference of the model would correspond to estimate the
complete distribution of the factors U and V. For instance, inferring the posterior, i.e.
the distribution conditionally to the data, gives an insight on the behavior of the latent
variables at the population level. In this section, we will discuss different strategies that
were proposed in the context of the GaP factor model. In particular, some approaches
estimate the factors with a MLE or a Maximum a Posteriori (MAP) procedure. We
recall that the MLE is the mode of the marginal likelihood, as in the Poisson-NMF
algorithm, while the MAP corresponds to the mode of the posterior regarding U and V

(c.f. box below). Other algorithms directly infer the posterior of U and V. In practice,
our method will be based on a computationally efficient approach that is intermediate
between point estimation and posterior inference.
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Estimation and inference
In a model p(x ; θ) with a parameter θ, the MLE is the most probable θ that explains the
data:

θ̂MLE(x) = argmax
θ

p(x ; θ)

If we consider a prior p(θ) over θ, the marginal distribution of the observations x becomes
p(x) =

∫
θ
p(x | θ) p(θ) dθ. Thanks to the Bayes rule, the posterior distribution is:

p(θ |x) = p(x, θ)

p(x)
=

p(x | θ) p(θ)∫
ϑ
p(x |ϑ) p(ϑ) dϑ ∝ p(x | θ) p(θ)

The MAP is the most probable θ knowing the data. The marginal distribution of the
observations p(x) is independent from the parameter θ, hence the MAP estimation cor-
responds to maximizing the joint likelihood p(x, θ) = p(x | θ) p(θ):

θ̂MAP(x) = argmax
θ

p(x | θ) p(θ)∫
ϑ
p(x |ϑ) p(ϑ) dϑ = argmax

θ
p(x | θ) p(θ)

The MLE and the MAP are point estimates. On the contrary, when inferring the posterior,
the hyper-parameter α of the prior p(θ ; α) is accounted for. Thanks to the Bayes formula,
the posterior can be written:

p(θ |x, α) = p(x | θ) p(θ ; α)
p(x ; α)

In this context, the aim of Bayesian inference is to infer the posterior p(θ |x, α) and not
just get a point estimation of θ.

5.2.1 Point estimation?

In the GaP factor model, the first interest is to estimate the factors U and V. As the
model considers some prior over the latent factors, the objective is to find the MAP
estimation of U and V, i.e. the mode of the joint likelihood p(X,U,V). However,
since the log of a sum is not expandable, the main issue when considering such model
is the term log

(∑
k uik vjk

)
that appears in the conditional distribution7 of Xij . It is

especially a pitfall for differentiation in the case of direct optimization, or for integration
when considering the Expectation-Maximization (EM) algorithm (see Dempster et al.
(1977) or next box).

7c.f. Section 5.1.3 and Appendix Chapter D
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EM algorithm
In a model with some data X, some latent variables Z whose prior depends on some hyper-
parameters Ω, the EM algorithm maximizes the expectation of log p(X,Z ; Ω) regarding
the posterior, i.e.:

argmax
Ω

EZ |X ; ˜Ω[log p(X,Z ; Ω)]

where Ω̃ are some fixed values for the hyper-parameters. Indeed, it can be proven that
the optimal point Ω̂ that verifies ∇Ω E[p(X,Z ; Ω)|X] = 0 also verifies ∇Ω p(X ; Ω) = 0
(McLachlan & Krishnan, 2008), which corresponds to the MLE. The optimization is itera-
tive and each iteration is divided into two steps. The E-step consists in computing the ex-
pectation of the joint log-likelihood regarding the posterior, i.e. EZ |X ; ˜Ω[log p(X,Z ; Ω)]

that is maximized in the M-step. The EM algorithm can be modified to estimate the
MAP (McLachlan & Krishnan, 2008) by maximzing EZ |X ; ˜Ω[log p(X,Z ; Ω)] + log p(Z)

in the M-step.

In order to overcome the computational issue, Canny (2004) defined a simplified GaP fac-
tor model. He only set the Gamma prior on the factor V, i.e. on the variable contribution
Vjk ∼ Γ(βk,1, βk,2). The entries uik in the factor U are considered as hyper-parameters
of the model. The joint log-likelihood of this model is therefore:

log p(X,V ; U,β) = log p(X |V ; U) + log p(V ; β) ,

depending on the hyper-parameters U and β. In the E-step of his EM algorithm, Canny
used a sharp multiplicative approximation that allows to expand the term E

[
log

(∑
k uik Vjk

)
|Xij

]
based on E[Vjk |Xij ] and the Taylor-Young development of the function x �→ log(x+ 1).
This trick leads to an explicit M-step to estimate uik. The MAP for Vjk is computed on
the fly during the E-step.

The extension of this trick to the GaP factor model defined in Equation (5.5) is however
not possible because the term E

[
log

(∑
k Uik Vjk

)
|Xij

]
depends on both E[Uik |Xij ] and

E[Vjk |Xij ]. Especially, it is not sure that E[Uik Vjk |Xij ] can be factorized in the product
of both posterior expectations. More generally, the EM algorithm cannot be used to find
the MAP for the factors U and V or at least the MLE for the hyper-parameters α and
β in the GaP factor model because the E-step depends on the following moments8:

E[Uik |Xij ] , E[Vjk |Xij ] ,

E[log(Uik) |Xij ] , E[log(Vjk) |Xij ] ,

E
[
log

(∑
k Uik Vjk

)
|Xij

]
,

that cannot be derived for similar reasons. Other methodologies were proposed to over-
come this issue.

8c.f. Appendix Chapter D
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5.2.2 Posterior inference?

Another strategy would be to infer the posterior and consider E[Uik |Xij ] and E[Vjk |Xij ]

to estimate Uik and Vjk. However, determining the posterior of the latent factors in the
GaP factor model is not straightforward.

If a model is defined with conjugate prior9 (Diaconis et al., 1979; Fink, 1997), the prior
and posterior lie in the same class of distributions in the exponential family. For instance,
the Gamma distribution is the conjugate prior to the Poisson distribution. Therefore,
if the Poisson rate λij follows a Gamma prior, its posterior will also be a Gamma dis-
tribution whose parameters depend on the hyper-parameters of the prior and on the
observations Xij . However, in the GaP factor model, the conjugacy relation is not ver-
ified as the combination λij =

∑
k Uik Vjk does not follow an explicit distribution (c.f.

previously). Therefore, the posterior of Uik and Vjk cannot be determined through the
conjugacy relation between the Gamma and the Poisson distributions. Moreover, it can-
not be directly derived either, because, as previously mentioned, it would require to
integrate the joint likelihood p(X,U,V) over U and V. In general, the potential non-
existence of a closed-form relation mapping from the data to the posterior is a crucial
issue (Orbanz, 2009).

In this context, it is necessary to use Markov Chain Monte Carlo (MCMC) approaches
to infer the posterior (c.f. box below).

MCMC framework
MCMC is used to draw sample from a distribution for which it is not possible to directly
sample or generate realizations. The principle is to iterate through a Markov Chain
whose stationary distribution is the distribution of interest, i.e. the posterior in our
inference problem. Observations are generated at each iteration, and as the iterations
goes the distribution of the observations become closer to the objective distribution. If
the Markov Chain is iterated far enough, it reaches its stationary distribution. MCMC
procedures are the almost only way to sample exactly through the posterior.

Different approaches have been used in the context of the GaP factor model for matrix
factorization. Cemgil (2009) and Dikmen & Févotte (2012) proposed a MCMC-based
inference algorithm for the GaP factor model. They especially implemented a Gibbs
sampling algorithm (Geman & Geman, 1984). In practice, Dikmen & Févotte considered
a modified GaP factor model that we will introduce later. Zhou & Carin (2012) presented
a unified framework for NMF, GaP factor model and Latent Dirichlet Allocation10 that is

9Conjugate prior are based on conjugacy relationships in the exponential family (c.f. Ap-
pendix Chapter A)

10Matrix factorization method for categorical data Blei et al. (2003).
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inspired from Dunson & Herring (2005). The inference in such framework is also based on
MCMC, allowing to consider versatile distributions in the model. Acharya et al. (2015)
even extended the GaP factor model to dynamic count matrices, thanks to an inference
via Gibbs sampling. Eventually, it does not directly concern the GaP factor model but
it can be noted that Schmidt et al. (2009) developed a Bayesian NMF procedure based
on a Gaussian factor model (with exponential prior), again by using a MCMC algorithm
to infer the posterior.

We will not detail any longer MCMC approaches as we will focus on another inference
method. The reason of this choice will be discussed in the next section. In particular, it
is linked to the convergence speed of Markov Chains. In the context of MCMC, it may
require an important number of iterations to reach the stationary distributions.

5.2.3 Variational inference

The main issue when inferring posterior distributions is that the marginal likelihood of
the data is not explicit. If we might be able to integrate:∫

(U,V)
p(X |U,V) p(U,V ; Ω) dU dV ,

the posterior p(U,V |X ; Ω) would be explicit. We recall that Ω = (α,β) are the
hyper-parameters of the model.

Variational inference is a framework that solves this issue based on an approximation of
the posterior. It was introduced by Jaakkola & Jordan (1997) and Jordan et al. (1999).
A complete presentation of this framework can be found in Hoffman et al. (2013) or Blei
et al. (2016). We introduce variational inference in the context of the GaP factor model
defined in Equation (5.5). The complete inference process will be detailed in Chapter 6.

The Evidence Lower Bound

In the GaP factor model, two sets of latent variables are considered, the global ones V

(depending on the p variables) and the local ones U (depending on the n observations).
The main purpose of variational inference is to approximate the posterior p(U,V |X ; Ω)

by a factorizable distribution denoted by q(U,V) and called the variational distribution.

The Kullback-Leibler divergence measures the “difference” between two probability dis-
tributions, hence the variational distribution q(U,V) can be defined as the “closest”
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distribution to the posterior p(U,V |X ; Ω) regarding the Kullback-Leibler divergence
(Hoffman et al., 2013):

q(U,V) = argmin
distribution q̃

KL
(
q̃(U,V)

∣∣ p(U,V |X ; Ω)
)
, (5.6)

where the Kullback-Leibler divergence is defined as:

KL
(
q̃(U,V)

∣∣ p(U,V |X ; Ω)
)
= Eq̃[log q̃(U,V)]− Eq̃[log p(U,V |X ; Ω)] ,

for any probability distribution q̃.

As the posterior is not explicit, the problem (5.6) is reformulated. In practice, minimizing
KL

(
q(U,V)

∣∣ p(U,V |X ; Ω)
)

regarding q is equivalent to maximizing a specific lower
bound on the marginal log-likelihood11. This bound, namely the Evidence Lower Bound
(ELBO), is based on the variational distribution q and defined as (c.f. box below):

J(q) = Eq[log p(X,U,V)]− Eq[log q(U,V)] . (5.7)

The interest is that maximizing the ELBO is equivalent to minimizing the Kullback-
Leibler divergence between q(U,V) and p(U,V |X) regarding q because:

J(q) = log p(X ; Ω)− KL
(
q(U,V)

∣∣ p(U,V |X ; Ω)
)
,

where the marginal p(X ; Ω) is constant regarding q.

Derivation of the Evidence Lower Bound
For any distribution q, the marginal log-likelihood can be rewritten as:

log p(X ; Ω) = log

∫
(U,V)

p(X,U,V ; Ω)
q(U,V)

q(U,V)
dU dV ,

which is equivalent to the following formulation:

log p(X ; Ω) = logEq

[
p(X,U,V ; Ω)

q(U,V)

]
.

The ELBO is derived by applying the Jensen’s inequality on the log (which is concave):

log p(X ; Ω) ≥ Eq

[
log

p(X,U,V ; Ω)

q(U,V)

]
.

11The marginal likelihood is also called the evidence.

86



Mean-field variational family

To optimize the objective function J(q), the distribution q is assumed to lie in the mean-
field variational family (Hoffman et al., 2013), i.e. to be factorisable with independence
between latent variables and between observations:

q(U,V) =

n∏
i=1

K∏
k=1

q(uik ; aik)

p∏
j=1

K∏
k=1

q(vjk ; bjk)

where aik (resp. bjk) are the parameters of the variational distribution of Uik (resp. Vjk).

The notations are heavy between the hyper-parameters of the model and the variational
parameters. From now on, we apply the following convention, the model hyper-parameter
are denoted by a Greek letter, and their corresponding variational parameter by the
corresponding Roman letter. For instance, the Gamma prior on Uik is parametrized by
αk, i.e. p(uik ; αk), and the corresponding variational distribution is q(uik ; aik).

A second assumption states that each q(uik ; aik) lies in the same exponential family as
the complete conditional distribution on Uik. Similarly, each q(vjk ; bjk) is determined
by the complete conditional on Vjk. The complete conditional of the latent variable Uik

is the conditional distributions of Uik knowing the other latent variables and the data,
it is denoted by p(Uik |— ). Similarly, the complete conditional of Vjk is denoted by
p(Vjk |— ).

Deriving the complete conditional is possible in our GaP factor model. Indeed, the
complete conditional of Uik is a Gamma distribution whose parameters ηik(—) ∈ (R+)2.
The “—” is here to recall that ηik depends on the factor V and the data. Similarly, the
complete conditional of Vjk is a Gamma distribution whose parameters ηjk(—) ∈ (R+)2

depends on the factor U and the data. The full derivation of the complete conditional
p(Uik |— ) and p(Vjk |— ) are joined in Appendix Section D.2.1. The proof is based
on the conjugacy between the Poisson and the Gamma distribution. This property is
characteristic of conditionally conjugate prior and such model are called conditionally
conjugate model. As we will see, the complete conditional are also used to optimize the
ELBO.

The variational distribution over U and V are therefore assumed to be Gamma dis-
tributed with parameters aik = (aik,1, aik,2) and bjk = (bjk,1, bjk,2). The variational
parameters regarding U and V are respectively stored in the following objects:

a = [aik] ∈ (R+)n×K×2 and b = [bik] ∈ (R+)p×K×2 .

At this point, we have introduced many different distributions over Uik and Vjk that are
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summarized in Table 5.1. To recap, the standard variational procedure is based on two
assumptions:

– The variational distribution q is factorisable (independence).

– The variational distribution of each latent factor lies in the same exponential family
as the complete conditional of this latent factor.

It can be noted that the validity of the mean field assumption and the quality of the
variational approximation compared to the posterior are discussed in Blei et al. (2016).

Optimization algorithm

The two assumptions previously introduced are used in the optimization of the ELBO,
defined in Equation (5.7), regarding the variational distribution q, i.e. regarding the set
of variational parameters (a,b). Thanks to the formulation in the exponential family
and by using the complete conditional distributions, it is possible to find the exact point
aik and bjk that set the gradient of the ELBO to zero (Hoffman et al., 2013). Indeed,
when considering separately each parameter, here aik and bjk, the objective function
respectively becomes:

J̃(aik) = Eq[log p(Uik |— )]− E[log q(Uik ; aik)] + const ,

J̃(bjk) = Eq[log p(Vjk |— )]− E[log q(Vjk ; bjk)] + const ,

where “const” is a constant term. The complete conditional and the variational term are
known (c.f. previously). Therefore, differentiating J(q) regarding aik or bjk corresponds
to the explicit gradients ∇aik

J̃(aik) or ∇bjk
J̃(bjk) respectively. Based on some proper-

ties of the exponential family (Hoffman et al., 2013), the coordinates of the point in the
space of variational parameters12 that sets the gradient of J(q) to zero can be explicitly
derived13. In particular, this stationary point (a,b) depends on the parametrization
of the complete conditional and the expectation of the latent variables regarding the
variational distribution q, i.e.

aik = Eq[ηik(—)]

bjk = Eq[ηjk(—)]

}
verify ∇(a,b) J(q) = 0 .

Since the stationary point is known, an iterative optimization through a coordinate de-
scent algorithm (Wright, 2015) may then be used to estimate the variational parameters.
The complete formulation of the algorithm will be detailed in Chapter 6.

12We recall that the variational parameters are (a,b) with a ∈ (R+)n×K×2 and b ∈
(R+)p×K×2.

13c.f. Appendix Section D.2.2
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Variational inference in the Gamma-Poisson model

The variational inference inherently infers a distribution q that is an approximation of
the true posterior of the latent factors. Therefore, the latent factors can be estimated by
their expectation regarding the variational distribution, i.e. Eq[U] and Eq[V] respectively.
These can be viewed as a proxy for the posterior expectation, i.e. E[U |X] and E[V |X]

respectively. In this context, it has to be noted that U and V are not estimated as the
mode of the variational distribution q that would correspond to an approximation of the
MAP.

In the case of Gamma distribution14, Uik and Vjk are therefore respectively estimated
by:

Ûik = Eq[Uik] =
aik,1
aik,2

and V̂jk = Eq[Vjk] =
bjk,1
bjk,2

.

The variational framework that we just introduced estimates the hyper-parameters a

and b of the variational distribution q. As we will see in Chapter 6, the values of the
stationary points a and b depend on the values of the hyper-parameters α and β of the
prior distributions set on U and V in the model. The problem here is that such hyper-
parameters are not estimated in this framework and the values of the estimated a and b

directly depend on the arbitrary initial values set to α and β, fixed or tuned by the user.
Cemgil (2009), Hoffman et al. (2010), Gopalan et al. (2014) or Paisley et al. (2014) used
this variational approach in their work regarding the GaP factor model. Zhou & Carin
(2012) introduced a similar method in their unified framework of matrix factorization
but without identifying it as variational inference.

Variational EM

In order to estimate the hyper-parameters Ω = (α,β), the variational inference may also
be used within the E-step of the EM algorithm. For instance, the expectation of the
joint likelihood regarding the posterior is:

E[p(X,U,V ; Ω)|X] .

It is not tractable in our model. However, it can be approximated by:

Eq[p(X,U,V ; Ω)] ,

because the variational distribution q approximate the posterior. Such algorithm was
introduced as the variational-EM algorithm (Beal & Ghahramani, 2003). The E-step

14In the parametrization of the Gamma distribution that we consider, the expectation of
U ∼ Γ(α1, α2) is E[U ] = α1

α2
.
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consists in deriving the variational distribution approximating the posterior and inte-
grating the joint log-likelihood regarding this variational distribution, while the M-step
consists in maximizing Eq[p(X,U,V ; Ω)] regarding the hyper-parameters Ω = (α,β).
This approach produces an approximation of the posterior and a point estimation of the
hyper-parameters.

It can be noted that the variational-EM is an alternative to the Monte Carlo EM (MCEM)
algorithm (Wei & Tanner, 1990) or to the Stochastic Approximation of EM (SAEM) al-
gorithm (Delyon et al., 1999). In particular, these two algorithms are also based on an
approximate computation of the intractable integral E[p(X,U,V ; Ω)|X] at each itera-
tion, either by a Monte Carlo method (MCEM) or by a stochastic averaging procedure
(SAEM).

Dikmen & Févotte (2012) proposed to use the variational-EM algorithm in a modified
GaP factor model. Their approach is based on the following assumptions. The factor
V are supposed to be hyper-parameters of the model (without considering any Gamma
prior). A Gamma prior is only set on the factor U, i.e. Uik ∼ Γ(αk,1, αk,2). Finally, the
parameter αk,1 is fixed so that the shape of the Gamma distribution is set15. The posterior
p(U, |X ;V) is approximated by variational inference16 in the E-step, and the objective
Eq[p(X,U ; V,α2)] is maximized regarding the factor V and the hyper-parameters α2 =

(αk,2)k in the M-step. The interest of this formulation is to discard the inference of U
because the number of parameters in U grows with the number of observations n.

5.3 Sparsity in matrix factorization

On the continuity of Part I, we will also consider variable selection in the context of matrix
factorization. Following the definition of sparse PCA and sparse SVD, this setting relies
on a hypothesis of parsimony. Only a portion of the variables are useful to explain
the latent structure within the data. The objective is to simultaneously select these
important variables and infer the underlying organization of the data. Based on this
framework, the idea is to consider sparse columns in the matrix V that account for the
variable contributions. Therefore, when the observations are decomposed as sparse linear
combination of the factors, i.e. xij ≈

∑
k uik vjk, the variables corresponding to null vjk

are discarded.

In the context of matrix factorization, there are two options to enforce sparsity on the
columns (vk)k=1:K of the factor matrix V. We may either add sparsity-inducing penalties

15c.f. Appendix Chapter A
16They also proposed a MCMC algorithm as previously stated.
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on the vectors vk in the optimization procedures, i.e. following the Lasso methodology
Tibshirani (1996). We can either use sparsity-inducing prior and modify the model as
in the Bayesian Lasso (Park & Casella, 2008), so that the selection is achieved directly
by inferring the model. Both approach have been considered in the literature regarding
matrix factorization. We will rather introduce sparsity-inducing priors in the GaP factor
model.

5.3.1 Sparse NMF

We first recall the different methods for sparse NMF that are based on penalized crite-
ria. Following the definition of the sparse PCA, it has been proposed to constrain the
optimization problem behind the standard NMF to enforce sparsity in the columns vk of
V. Such methodology follows the principle of the Lasso that consists in penalizing the
�1-norm of the parameters. This penalty will shrink the coefficient of the non-pertinent
variables to zero during the optimization.

The first penalized version of NMF was introduced by Hoyer (2002). His Non-Negative
sparse Coding (NNSC) algorithm is based on the optimization of the least square criterion
defining the ls-NMF with an �1 penalty on vk. Kim & Park (2007) then proposed a fast
implementation of this framework. However, such approach is certainly suitable for non-
negative data but not specifically designed to deal with count data, since the geometry
induced by the Euclidean metric is not the most appropriate for count data. To overcome
this issue, Liu et al. (2003) considered a penalized version of the Poisson-NMF formulated
as a Bregman divergence minimization problem17, i.e.

argminU,V D(X |UVT ) + ν
∑

k|vk|1 ,

with ν > 0 and D(· | ·) defined in Equation (5.3). Their algorithm, called sparse NMF
(SNMF), estimates sparse factor vk. The interest is that the Bregman divergence implies
an underlying geometry suitable for count data.

The main sparse approaches for NMF are detailed in Table 5.2. They will be used for
comparison when testing our algorithm. It can be noted that other approaches were
also developed to impose sparsity in the ls-NMF. For instance, Eggert & Korner (2004)
considered a �1-penalty on the factor U. Hoyer (2004) proposed to use a penalty based on
the ratio |vk|1/‖vk‖2. Eventually, Pascual-Montano et al. (2006) developed an approach
that uses weighted matrix product between U and V. However, we will not consider
these procedures since they are based on the Euclidean distance.

17c.f. Section 5.1.2
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Based on this remark, we will now introduce a framework for variable selection in hier-
archical model, that we will extend to the GaP factor model.
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5.3.2 Spike-and-slab in Bayesian settings

The principle of Bayesian variable selection (Mitchell & Beauchamp, 1988; George &
McCulloch, 1993) consists in setting specific prior that will enforce sparsity in the model.
The reader may refer to O’Hara & Sillanpää (2009) for a complete review of the question.
Such approaches have been widely studied in the case of linear regression and have been
called spike-and-slab methods (Ishwaran & Rao, 2005).

To explain this framework, we extend it directly to our model. In the context of continu-
ous probability distribution, a prior that generates true zeros with a non-null probability
among the factors Vjk will be a two-group prior, defined as a mixture between a Dirac
mass at zero δ0 and the Gamma distribution p(vjk ; βk), i.e.

Vjk ∼ (1− πk) δ0(vjk) + πk p(vjk ; βk) .

Parameter πk ∈ [0, 1] regulates the balance between the mass at zero, i.e. the spike, and
the other distribution, i.e. the slab (Malsiner-Walli & Wagner, 2011).

The issue with such formulation is that for a vector vk there exist 2p possible discrete
configurations to distinguish between null and non-null coefficients. This point is a
pitfall in the inference process. It induces tractability problems, especially with large p.
To overcome this issue, it has been proposed to use continuous one-group priors with a
huge mass around zero that play the role of the spike. In this context, the less relevant
coefficient vjk are not exactly set to zero but concentrated around zero. Malsiner-Walli
& Wagner (2011) and Engelhardt & Adams (2014) reviewed the different spike-and-slab
continuous prior (Gaussian-Inverse, Beta, Dirichlet, Laplace). Continuous spike-and-slab
prior can be seen as a continuous relaxation of two-group sparsity inducing prior.

For instance, a famous application is the Bayesian Lasso (Park & Casella, 2008) that uses
a Laplace prior (exponential distribution symmetric around zero) over the coefficients.
In the case of Poisson model, Datta & Dunson (2015) proposed to use sparsity-inducing
one-group prior for Poisson rate inference. We also cite Titsias & Lázaro-Gredilla (2011),
Carbonetto et al. (2012) or Babacan et al. (2014) that use Bayesian variable selection
and spike-and-slab two-group prior in variational inference. Our objective will be now to
use a two-group prior to enforce sparsity over the columns of V in the GaP factor model.

In the context of hierarchical model for matrix factorization, the spike-and-slab approach
have been used in different works, mainly in the Gaussian case, i.e. when the observation
Xij are supposed to follow a multivariate Gaussian distribution. Different studies were
based on a one-group prior over the factors: Fevotte & Godsill (2006) and Lakshmi-
narayanan et al. (2011) (both with T -Student priors), Caron & Doucet (2008) (Gamma
priors), Archambeau & Bach (2009) (Inverse-Gamma priors) and Gao & Engelhardt
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(2012) (3-parameter Beta prior). On the contrary, other studies were based on two-group
priors that exactly set the factors to zero. A series of works by Knowles & Ghahramani
(2007), Knowles & Ghahramani (2011), Bhattacharya & Dunson (2011) and Shah et al.
(2015) considered an infinite factor model18 based on the least squares approximation (in
the Gaussian framework). They considered Dirac-Gaussian mixture priors on the factor
Vjk (or sometimes Uik). In all these approaches, the inference was based on a MCMC
procedure to infer the “sparsity” probability πk. They also considered a Beta prior19 on
πk.

Eventually, Gupta et al. (2012) introduced an infinite sparse GaP factor model, also based
on the Beta-Bernoulli construction and inferred by MCMC. For our part, we will rather
consider a Dirac-Gamma mixture prior on Vjk and infer the model in the variational
framework.

5.4 Novelty for count matrix factorization in the
Gamma-Poisson model

We will introduce a matrix factorization based on the GaP factor model in the next
chapter. Our contributions may be summarized as follows:

– We consider a variational-EM algorithm to infer the latent factor U and V when
considering Gamma prior both on Uik and Vjk. The interest is to infer similarly the
structure within the n observations and within the p variables without distinction.
Such framework is moreover appropriate to handle over-dispersed count data.

– We will extend the GaP to handle zero-inflated data, by using Dirac-Poisson mix-
ture distribution to account for the drop-out events (this point will be detailed
in Chapter 6). Such framework has not been proposed yet in the context of data
exploration with matrix factorization.

– The model will also be extended to impose sparsity among the columns of the
factor V in order to select variables. We will use sparsity-inducing prior. To our
knowledge, such an approach is new in the context of variational inference.

In order to highlight the historical evolution of some count matrix factorization methods,
some of the different approaches based on Poisson or Gamma-Poisson factor models are

18with a theoretical infinite number of factors, in practice K is also estimated during the
inference process.

19Such Beta-Bernoulli hierarchical model corresponds to an Indian Buffet Process, c.f. Grif-
fiths & Ghahramani (2011).
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summarized in Figure 5.1 as graphical models. It is possible to see the difference between
the NMF, where the factors are considered as parameters, and the GaP factor model,
which is based on a hierarchical construction with latent variables.

In our different GaP factor models, the inference will be based on the variational al-
gorithms previously introduced. We choose the variational inference over MCMC ap-
proaches for the following reasons. Contrary to MCMC that potentially lead to an exact
sampling in the posterior (if iterating far enough), variational inference is an approxima-
tion method. However, its main advantage over MCMC concerns the convergence speed.
For instance, Nathoo et al. (2013) observed that the iterative optimization in variational
methods are ∼ 100 times faster to converge than MCMC methods. They considered lin-
ear regression problem and a data set with n = 128 observations and p = 8196 variables.
This scale of data is consistent with what we may encounter in genomics. Dikmen &
Févotte (2012) obtained the similar results in the matrix factorization problem on small
data set (n = p = 50). Shen et al. (2010) also proposed a comparison of variational
inference and MCMC with the same conclusion.

The point here is not to say that MCMC methods are useless and variational inference
is the best option, but rather to motivate our choice for variational approaches. First,
the standard methods in our context of matrix factorization, i.e. PCA, has a very low
computational cost (Klema & Laub, 1980). It seems important that the alternative
approaches that we propose and develop keep low computation time. Then, although
high performance computing is on the rise, heavy computations still have a huge cost (in
time and energy). The efficiency (regarding computation time) of variational inference
is interesting regarding this point. Finally, developing an efficient MCMC procedure is
a complete subject and we decided to focus on optimization-based approaches that suits
more closely to the general topic of this PhD project.

In the next chapter, we will detail our matrix factorization method based on the GaP
factor model that accounts for zero-inflation in the data and enforce sparsity among
variables.
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Chapter 6

Count matrix factorization and sin-
gle cell data analysis

In this chapter, we will specifically derive the inference algorithms suitable for different
Gamma-Poisson (GaP) factor models that account for zero-inflation or that induce spar-
sity. We recall that our objective is to find a factorization UVT of the data matrix X

when considering count data. We will first introduce our new variational-EM algorithm
for the standard GaP factor model. Then, we will present two refinements of this model.
On the one hand, the zero-inflated Gamma-Poisson factor model will account for zero-
inflation in the data. On the other hand, the sparse Gamma-Poisson (sparse-GaP) factor
model will impose sparsity among the factor V, so that only the relevant variables will
be selected to contribute to the latent directions.

We developed a new implementation of the variational-EM algorithm in both cases: zero-
inflated (ZI) and sparse. It can be noted that Simchowitz (2013) proposed a zero-inflated
Poisson matrix factorization method in a student project (that remains unpublished)
where he considered a similar zero-inflated Gamma-Poisson factor model. However, his
variational inference framework is slightly different from the one that we introduced.
Concerning the sparse model, the use of variational inference in the case of spike-and-slab
approach with two-group sparsity-inducing prior is also new since the previous approach
by Gupta et al. (2012) was based on MCMC with an infinite number of factors.

The performance of our approach for dimension reduction and data exploration will
be assessed on simulations. In particular, we will show the interest of such inference
framework for data visualization and clustering, especially in the case of zero-inflated
data. In this regard, we will discuss the robustness of variational inference regarding
corrupted data. Then, we will illustrate the interest of the spike-and-slab approach
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regarding selection accuracy. Eventually, we will present an example of application on
the single-cell data set introduced in Chapter 4.

Our variational framework for matrix factorization is implemented in a R-package, namely
CMF for Count Matrix Factorization, that will be soon available on the CRAN (https:
//cran.r-project.org/). We dedicated time and efforts to implement our algorithms
in C++ to take advantage of the computational performance of this language. The package
is based on R for input-output management and interface the C++ code for computations.
It is currently on a testing phase before the release of a stable version.

6.1 Implementation of the Gamma-Poisson factor
model

In this section, we first briefly give more details about the variational inference algorithm
for the GaP factor model. This framework will be useful in the following when considering
more complex models (zero-inflated or sparse). Then, based on this formulation, we
explicitly introduce the corresponding variational-EM algorithm that we developed.

6.1.1 Recap about the Gamma-Poisson model

We start by recalling the definition of the Gamma-Poisson factor model (Cemgil, 2009)
that we will consider. In order to facilitate the computation, some third-party latent
variables are introduced to quantify the decomposition of the count Xij over the dif-
ferent latent directions. The set of latent variables (Zijk)k=1:K for any fixed i and j

is defined such that Xij =
∑

k Zijk where Zijk follows a conditional Poisson distribu-
tion, i.e. Zijk |Uik, Vjk ∼ P(Uik Vjk). Thus, the conditional distribution of Xij remains
P(

∑
k Uik Vjk) thanks to the additive property of the Poisson distribution. In addition,

the variables Zijk are assumed to be conditionally independent. These quantities will be
very useful when deriving the inference algorithm and are used in different approaches.
To be complete, the factors Uik and Vjk are assumed to be independent. Therefore, the
complete GaP factor model can be summarized as:

Xij =
∑
k

Zijk ,

Zijk |Uik, Vjk ∼ P(Uik Vjk) ,

Uik ∼ Γ(αk,1, αk,2) ,

Vjk ∼ Γ(βk,1, βk,2) .

(6.1)
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The collection of latent variables in this model are therefore Un×K , Vp×K and the set
of all Zijk gathered in the object Z = [Zijk] ∈ R

n×p×K .

The global framework for variational inference is recalled in Figure 6.1. As introduced in
Chapter 5, from the model, we aim at approximating the intractable posterior. To do so,
we define the variational distribution q. The inference of q is based on the optimization
of the Evidence Lower Bound (ELBO) J(q). This optimization requires to derive the
complete conditional distributions of the latent variables.

Complete conditional and variational distributions

We consider the model with the latent variables Zijk, the principle1 of variational infer-
ence is to find a distribution q(U,V,Z) that approximates the posterior p(Z,U,V |X).
Combined with the mean-field assumption, the variational distribution q is factorisable
such as:

q(U,V,Z) =

n∏
i=1

K∏
k=1

q(uik |aik)×
p∏

j=1

K∏
k=1

q(vjk |bjk)

×
n∏

i=1

p∏
j=1

q
(
(zijk)k | (rijk)k

)
,

(6.2)

where the variational parameters are

aik = (aik,1, aik,2) ∈ (R+)2 ,

bjk = (bjk,1, bjk,2) ∈ (R+)2 ,

(rijk)k ∈ [0, 1]K with
∑

k rijk = 1 .

Moreover, as previously mentioned, each term in Equation (6.2) lies in the same ex-
ponential family as the complete conditional of the corresponding latent variables, i.e.
each p(uik |— ) determines the type of each distribution q(uik |aik), and similarly with
p(vjk |— ) for q(vjk |bjk), and with p

(
(zijk)k |—

)
for q

(
(zijk)k | (rijk)k

)
.

It has to be noted that we consider the joint distribution q
(
(zijk)k | (rijk)k

)
over the

vector (Zijk)k=1:K parametrized by (rijk)k ∈ R
K , because it is only possible to derive

the complete conditional p
(
(zijk)k |—

)
, as we will see below.

The objective function that we aim at optimizing is the ELBO J(q). It is defined as:

J(q) = Eq[log p(X,U,V,Z)]− Eq[log q(U,V,Z)] .

1When introducing the variational inference in the previous chapter, we did not consider the
latent Poisson variables Z in order to avoid heavy notations. The principle remains unchanged.
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The model(∗)

Xij =
∑

k Zijk

Zijk |Uik, Vjk ∼ P(Uik Vjk)

Uik ∼ Γ(αk,1, αk,2)

Vjk ∼ Γ(βk,1, βk,2)

−→
Intractable

posterior
−→

Variational

framework

⏐⏐6
Optimization

of J(q)
←−

Approximate

the posterior

by the distrib. q

↙ ↘

Variational distribution

Uik
q∼ Γ(aik,1, aik,2)

Vjk
q∼ Γ(bjk,1, bjk,2)

(Zijk)k
q∼ M

(
Xij, (rijk)k

)
Complete conditional

Uik |— ∼ Γ
(
ηik(—)

)
Vjk |— ∼ Γ

(
ηjk(—)

)
(Zijk)k |— ∼ M

(
Xij, (ρijk)k

)

↘ ↙

Inference of q

(∗) with conditional independence between the Zijk’s and independence between the Uik’s and Vjk’s

Figure 6.1 – Variational inference to approximate the posterior of the model, based on
the optimization of the ELBO that required to derive the complete conditional. The
notation q∼ refers to the variational distribution.
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In order to find a stationary point of the ELBO, J(q) is differentiated regarding each vari-
ational parameter separately2, here aik, bjk and (rijk)k. The formulation of the ELBO
regarding each parameter separately is based on the corresponding complete conditional,
i.e. p(uik |— ), p(vjk |— ) and p

(
(zijk)k |—

)
respectively. Therefore, the ELBO is ex-

plicit regarding each variational parameter and the gradient can be derived in order to
find the coordinate of the stationary point, that corresponds to a local optimum.

As explained in Appendix Section D.2.1, the complete conditionals of Uik and Vjk are
Gamma distributions. The proof is based on the Bayes rule and the distribution of
the latent variables Z, that are actually necessary to derive p(uik |— ) and p(vjk |— ).
The complete conditional of the vector (Zijk)k=1:K is also explicit, being especially a
Multinomial distribution3, i.e. (Zijk)k |— ∼ M

(
Xij , (ρijk)k

)
, with

∑
k ρijk = 1. The

Multinomial probabilities depend on (Uik, Vjk)k and are defined below. This point justi-
fies why the variational distribution is based on the vector (Zijk)k=1:K instead of taking
each Zijk separately.

We summarize the complete conditionals in the GaP factor model, that are respectively
defined as:

Uik |— ∼ Γ(αk,1 +
∑

j zijk, αk,2 +
∑

j vjk) ,

Vjk |— ∼ Γ(βk,1 +
∑

i zijk, βk,2 +
∑

i uik) ,

(Zijk)k |— ∼ M
(
Xij , (ρijk)k

)
,

(6.3)

where the Multinomial probabilities (ρijk)k quantify the contribution of the factor k to
the observations Xij , i.e. ρijk = uikvjk∑

� ui�vj�
. As previously mentioned, the variational dis-

tribution is assumed to lie in the same exponential family as the corresponding complete
conditional, thus:

Uik
q∼ Γ(aik,1, aik,2) ,

Vjk
q∼ Γ(bjk,1, bjk,2) ,

(Zijk)k
q∼ M

(
Xij , (rijk)k

)
.

We recall that q∼ denotes the variational distribution.
2c.f. Appendix Section D.2.2
3This results is explicitly proven in Zhou & Carin (2012)
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An explicit coordinate descent algorithm

Thanks to the formulation in the exponential family, the stationary point of the ELBO
is explicit regarding each variational parameter4. It depends on the parametrization of
the complete conditional and the expectation with respect to the distribution q. For the
factors Uik and Vjk, it is respectively:

aik = Eq

[
(αk,1 +

∑
j Zijk, αk,2 +

∑
j Vjk)

T
]
,

bjk = Eq

[
(βk,1 +

∑
i Zijk, βk,2 +

∑
i Uik)

T
]
,

(6.4)

i.e.
aik =

(
αk,1 +

∑
j Eq[Zijk], αk,2 +

∑
j Eq[Vjk]

)
,

bjk =
(
βk,1 +

∑
i Eq[Zijk], βk,2 +

∑
i Eq[Uik]

)
.

Concerning Zijk, based on the derivation of the stationary point of the ELBO, the opti-
mum values for the probability rijk verifies5:

log(rijk) = Eq[log(ρijk)] ,

which corresponds to the following formulation6:

rijk =
exp

(
Eq[log(Uik)] + Eq[log(Vjk)]

)
∑

� exp
(
Eq[log(Ui�)] + Eq[log(Vj�)]

) (6.5)

Since the coordinates of the point that set the gradient to zero are known, it is possible to
optimize the ELBO through a coordinate descent (or coordinate ascent) algorithm7 which
computes alternate updates of the parameters following the relations in Equation (6.4)
and Equation (6.5), c.f. Algorithm 6.1.

4c.f. Appendix Section D.2.2
5The log corresponds to the natural parametrization of the Multinomial distribution in the

exponential family
6c.f. Appendix Section D.2.2
7See Wright (2015) for a review of this optimization process.
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Moments of the variational distribution

The moments of the different latent variables Zijk, Uik and Vjk regarding the variational
distribution q are required in the algorithm. However, they are known since the varia-
tional distribution is explicit. Recalling the moments of the Multinomial distribution8,
the moments and log-moments of the Gamma distribution9, we have:

Eq[Zijk] = Xij rijk

Eq[Uik] =
aik,1
aik,2

, Eq[Vjk] =
bjk,1
bjk,2

,

Eq[log(Uik)] = ψ(aik,1)− log(aik,2) , Eq[log(Vjk)] = ψ(bjk,1)− log(bjk,2) ,

where ψ(·) is the digamma function, i.e. ψ(x) = ∂
∂x log Γ(x) =

Γ′(x)
Γ(x) for any x > 0.

As previously mentioned, at the end of the optimization process, the factors Uik and
Vjk are not estimated by the mode of q, which would correspond to an approximation
of the Maximum a Posteriori (MAP). Instead, the factors Uik and Vjk are respectively
estimated by Ûik = Eq[Uik] and V̂jk = Eq[Vjk], which approximate the expectation of the
posterior, i.e. E[Uik |Xij ] and E[Vjk |Xij ] respectively.

Input: Hyper-parameter values α, β
Output: Estimates of a, b, Eq[U], Eq[V]

Initialize a = [(aik,1, aik,2)] ∈ R
n×K×2, b = [(bjk,1, bjk,2)] ∈ R

p×K×2

repeat
Multinomial parameters

rijk ←
exp

(
Eq [log(Uik)]+Eq [log(Vjk)]

)
∑

� exp

(
Eq [log(ui�]+Eq [log(vj�)]

)
Gamma parameters

aik ←
(
αk,1 +

∑
j Eq[zijk], αk,2 +

∑
j Eq[Vjk]

)
bjk ←

(
βk,1 +

∑
i Eq[zijk], βk,2 +

∑
i Eq[Uik]

)
until Convergence
return a, b

Algorithm 6.1: Variational algorithm to infer the GaP factor model

8If (Zk)k ∼ M
(
X, (rk)

)
, then E[Zk] = X rk

9If U ∼ Γ(α1, α2), then E[U ] = α1/α2 and E[log(U)] = ψ(α1)− log(α2).
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Convergence

The convergence is assessed by controlling the normalized gap between two iterates. If
we denote by O(t) the vectorized set of the values of all variational parameters in the
model at the iteration t, i.e. O(t) = (a,b), the normalized gap between two iterates is
defined as:

γ(t) =
‖O(t) −O(t−1)‖2

‖O(t−1)‖2
.

Checking the evolution of the objective function is not sufficient when assessing the
convergence because if the optima lie in a part of the space where the objective is near
flat, the variation of the coordinates through the argmax may be huge compared to
the variation of the objective (as for instance high-order monomial). On the contrary,
checking the variations of the objective may lead to wrong estimates of the optimum
point.

6.1.2 Formulation of the variational EM algorithm

E-step

In the Expectation-Maximization (EM) algorithm, the E-step consists in computing the
expectation of the joint likelihood EZ,U,V |X[log p(X,Z,U,V ; α,β)]. As we saw, this
integral is intractable. However, the posterior is approximated by the variational distri-
bution q, hence it is possible to approximate the objective function of the EM algorithm
by the expectation of the joint likelihood regarding the variational distribution:

EZ,U,V |X[log p(X,Z,U,V ; α,β)] ≈ Eq[log p(X |Z)]
+ Eq[log p(Z |U,V)]

+ Eq[log p(U,V ; α,β)] .

(6.6)

The conditional distribution of X knowing Z is deterministic as Xij =
∑

k Zijk. The
term Eq[log p(Z |U,V)] is developed as:

Eq[log p(Z |U,V)] =

n∑
i=1

p∑
j=1

K∑
k=1

{
− Eq[Uik]Eq[Vjk] + Eq[zijk]Eq[log(Uik)]

+ Eq[zijk]Eq[log(Vjk)]− Eq[log Γ(zijk + 1)]
}

which is constant regarding the hyper-parameters α and β and will disappear when
differentiating. The last term in Equation (6.6) is the only one depending on the hyper-
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parameters. The expectation regarding q of the Gamma log-priors are especially:

Eq[log p(U,V ; α,β)] =

n∑
i=1

K∑
k=1

{
(αk,1 − 1)Eq[log(Uik)] + αk,1 logαk,2

− αk,2 Eq[Uik]− log Γ(αk,1)
}

+

p∑
j=1

K∑
k=1

{
(βk,1 − 1)Eq[log(Vjk)] + βk,1 log βk,2

− βk,2 Eq[Vjk]− log Γ(βk,1)
}
.

M-step

The objective function in the M-step of the variational-EM algorithm is formulated as:

Q̃(α,β) = Eq[log p(U,V ; α,β)] + const (6.7)

As detailled in Appendix Section D.2.3, the stationary point that sets the gradient of
Q̃(α,β) to zero verifies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(αk,1) = log(αk,2) +
1

n

n∑
i=1

Eq[log(Uik)] ,

αk,2 = n
αk,1∑n

i=1 Eq[Uik]
,

ψ(βk,1) = log(βk,2) +
1

p

p∑
j=1

Eq[log(Vjk)] ,

βk,2 = p
βk,1∑p

j=1 Eq[Vjk]
,

(6.8)

where the digamma function ψ is defined as ψ(x) = ∂
∂x log Γ(x) for any x > 0.

It can be noted that the prior hyper-parameters are computed so that the prior moment
and log-moment correspond to their respective empirical counterparts regarding q. For
instance, since Uik ∼ Γ(αk,1, αk,2) in the model, we have E[Uik] =

αk,1

αk,2
and E[log(Uik)] =

ψ(αk,1)− log(αk,2). Following Equation (6.8), the updates of (αk,1, αk,2) exactly verify:

ψ(αk,1)− log(αk,2) =
1

n

n∑
i=1

Eq[log(Uik)] ,

αk,1

αk,2
=

1

n

n∑
i=1

Eq[Uik] ,

and similarly for Vjk.
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Algorithm

The variational EM algorithm is defined in Algorithm 6.2. To update αk,1 and βk,1, we
need to invert the digamma function ψ, or at least to resolve the problem y = ψ(x)

regarding x when y is known, fast with high accuracy. We refer to the method by Minka
(2000). It is based on a Newton-Raphson algorithm that finds the root of the equation
y−ψ(x) = 0, which is unique as the digamma function is strictly increasing on R

+. The
convergence is assessed similarly as in Algorithm 6.1 by controlling the normalized gap
between two iterates Õ(t) where Õ(t) = (a,b,α,β) stores the vectorized values of all
variational parameters and hyper-parameters in the model at the iteration t.

Input: /
Output: Estimates of α, β, a, b, Eq[U], Eq[V]

Initialize α = [(αk,1, αk,2)] ∈ R
K×2, β = [(βk,1, βk,2)] ∈ R

K×2

Initialize a = [(aik,1, aik,2)] ∈ R
n×K×2, b = [(bjk,1, bjk,2)] ∈ R

p×K×2

repeat
E-STEP

Multinomial variational parameters

rijk ←
exp

(
Eq [log(Uik)]+Eq [log(Vjk)]

)
∑

� exp

(
Eq [log(ui�]+Eq [log(vj�)]

)
Gamma variational parameters

aik ←
(
αk,1 +

∑
j Eq[zijk], αk,2 +

∑
j Eq[Vjk]

)
bjk ←

(
βk,1 +

∑
i Eq[zijk], βk,2 +

∑
i Eq[Uik]

)
M-STEP

Gamma hyper-parameters
αk,1 ← ψ−1

(
log(αk,2) +

1
n

∑n
i=1 Eq[log(Uik)]

)
αk,2 ← n

αk,1∑n
i=1 Eq [Uik]

βk,1 ← ψ−1
(
log(βk,2) +

1
p

∑p
j=1 Eq[log(Vjk)]

)
βk,2 ← p

βk,1∑p
j=1 Eq [Vjk]

until Convergence
return α, β, a, b

Algorithm 6.2: Variational-EM algorithm to infer the GaP factor model
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Standard variational algorithm versus variational EM algorithm

In order to assess the interest of the variational-EM algorithm compared to the standard
variational algorithm (i.e. Algorithm 6.2 versus Algorithm 6.1 respectively), we generate
synthetic data according to the GaP factor model. We would expect the variational-EM
(var-EM) algorithm to converge faster since it narrows the exploration of the variational
parameter space by updating the hyper-parameters of the model. We consider different
configurations regarding the values of n, p and K∗. The number K∗ will refer to the true
number of factors in the data, whereas K will correspond to the number of factors in
the considered model. For each configuration, each algorithm is run 50 times. Figure 6.2
shows the evolution of the ELBO through iterations for different runs10 of each algorithm
on the same data set for different configurations (n, p,K∗). In all configurations, the
variational-EM algorithm reaches a better local optimum, characterized by higher values
of the ELBO. The interesting point is that the improvements of the optimization does
not seem to have a cost regarding the speed of convergence.

Indeed, Figure 6.2 also shows the evolution of the convergence criterion through iterations
for the same runs. As expected, the empirical convergence speed appears to be a bit
better in the case of the variational-EM algorithm although it updates more parameters
than the standard variational algorithm. It can be noted that even in high dimension
(p > n), the number of iterations to reach the convergence state does not increase.

6.1.3 Initialization of the parameters

The optimization procedures in Algorithm 6.1 and Algorithm 6.2 are based on a co-
ordinate ascent algorithm. Therefore, the optimal values that are returned correspond
to a local optimum. Such procedures are very sensitive to the initialization of the pa-
rameters. For instance, Figure 6.2 shows the different trajectories of the ELBO for 10
different runs of our two algorithms (variational and variational-EM) with different ran-
dom initialization on the same simulated data set. To avoid the potential issues related
to the dependence of the solution on the initial values, which may lead to a “bad” local
optimum, we decided to run the algorithm with multiple initializations and choose the
solution as the one associated with the highest value of the objective function. To re-
duce the computational cost of multiple initializations, our algorithm iterates each run
a hundred times, and then keeps the best seed regarding the value of the ELBO to be
iterated until convergence. The question of initialization will be discussed in Chapter 7
regarding possible improvements of the algorithm in the future.

10For each run, the parameters are randomly initialized, c.f. next section.
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The variational algorithm requires to supply fixed values for the hyper-parameters α

and β. The initial values of the variational parameter a and b are set randomly. In the
variational-EM algorithm, all parameters, i.e. α, β, a and b, are randomly initialized.

6.1.4 Improvements of the convergence speed

The efficiency of the iterative procedure in variational inference may be improved regard-
ing the number of iterations to reach the convergence. Hoffman et al. (2013) proposed
to use stochastic gradient methods based on non-Euclidean geometry. Their purpose
was to process a gradient descent by estimating the gradient at each iteration on a sub-
sample of the observations (reducing the cost of the gradient computation) and explore
more efficiently the parameter space to find the optimum (using a metric suitable for
probability distributions). We tried to use stochastic variational inference in our model.
However, we did not observe any clear improvement regarding speed convergence. It may
be explained by the fact that the sample size that we consider (n = O(102) or n ∼ 103

at most) does not require to use convergence improvement methods, since the standard
variational inference is relatively efficient regarding convergence. For instance, Hoffman
et al. (2013) consider data sets where the number n of individuals reaches orders of 105

or 106.

We also tried to adapt the “epsilon” algorithm to the variational framework. Such method
was developed to accelerate the convergence of slowly converging sequence (Graves-Morris
et al., 2000), especially in the case of the EM algorithm (Wang et al., 2008). However,
the results were not as good as expected, the speed of convergence was not increased.
Sometimes, this procedure even disturbed and delayed the convergence of the variational
algorithm when considering inference in the GaP factor model. Following these tests, we
did choose to use the standard variational-EM algorithm.

6.2 Sparse and zero-inflated matrix factorization

We now define the zero-inflated Gamma-Poisson (ZI-GaP) factor model, based on zero-
inflated Poisson conditional distributions that account for potential drop-out events11.
We derive the associated variational-EM algorithm. Then, we define a sparse Gamma-
Poisson factor model that induces sparsity among the columns of the factor V in order
to select variables. This approach will be based on a spike-and-slab formulation and the
model will also be inferred by a variational-EM algorithm.

11as introduced in Chapter 4
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6.2.1 Zero-inflated model

As previously stated, in zero-inflated data, an unknown proportion of zeros correspond
to drop-out events, i.e. unobserved values. Therefore, the null values in X originate from
the Poisson distribution or from a loss of the signal. To model such patterns, we consider
a Poisson-Dirac mixture Lambert (1992). The conditional distribution of the Xij ’s is the
following:

Xij | (Uik, Vjk)k=1,...,K ∼ (1− πd
j )× δ0 + πd

j × P(
∑

k Uik Vjk) , (6.9)

where δ0 is the Dirac mass function on {0}. The probability πd
j regulates the balance

between drop-out events and the true signal. Thus, 1− πd
j is the probability that Xij is

a drop-out event (the d stands for drop-out). For instance, the conditional probability
that Xij is null becomes:

P
(
Xij = 0 | (Uik, Vjk)k

)
= (1− πd

j ) + πd
j exp

(∑
kuik vjk

)
,

accounting for the two sources of zeros.

The parameters (πd
j )j=1,...,p are considered variable-specific because in our application

regarding gene expression profiles the drop-out rate tends to depend on the genes (Pierson
& Yau, 2015). In order to integrate the zero-inflation in the variational framework, we
consider hidden variables Dij ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , p. Each Dij

indicates the status of the observation Xij for the individual i and gene j. When, Dij is
null, the observation Xij is a drop-out events and then null. On the contrary, when Dij

is equal to 1, the observation Xij (null or not) is the true one (drawn from the Poisson
distribution). The drop-out indicators are binary latent variables following a Bernoulli
distribution, i.e. Dij ∼ B(πd

j ).

To define the model, the drop-out indicators are incorporated in the conditional Poisson
distribution as:

Zijk |Uik, Vjk, Dij ∼ P(Dij Uik Vjk) .

Indeed, the Poisson distribution degenerates in the Dirac mass δ0 when the rate is null,
i.e. when Dij = 0. Thus, this formulation is a rewriting of the following conditional
distribution:

Zijk |Uik, Vjk, Dij ∼ (1−Dij)× δ0 +Dij × P(Uik Vjk) .
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Finally, the ZI-GaP model is summarized as follows:

Xij =
∑
k

Zijk ,

Zijk |Uik, Vjk, Dij ∼ P(Dij Uik Vjk) ,

Uik ∼ Γ(αk,1, αk,2) ,

Vjk ∼ Γ(βk,1, βk,2) ,

Dij ∼ B(πd
j ) ,

(6.10)

with conditional independence between the variables Zijk and independence between the
factors Uik and Vjk. The drop-out indicators Dij are assumed to be independent from the
factors. Following this definition, when integrating Dij out, the conditional distribution
of Xij knowing the latent factors indeed correspond to the Poisson-Dirac mixture (6.9).

The posterior is again approximated thanks to the variational framework. We recall that
we follow the following steps. The variational distribution q is an approximation of the
posterior. The optimization process requires to consider some constraints of independence
on q and to assume the distribution of the different latent variables regarding q. We derive
the complete conditional distributions and finally optimize the ELBO.

We assign a variational distribution q(Dij | pd
ij) to each variable Dij . These are incorpo-

rated into the variational framework and the variational distribution q becomes:

q(U,V,Z,D) =

n∏
i=1

K∏
k=1

q(uik |aik)×
p∏

j=1

K∏
k=1

q(vjk |bjk)

×
n∏

i=1

p∏
j=1

q
(
(zijk)k | (rijk)k

)
×

n∏
i=1

p∏
j=1

q(Dij | pd
ij) .

(6.11)

The variational parameter pd
ij for the variable Dij depends on both i and j, on the

contrary to the prior parameter πd
j . Indeed, in the variational framework, the parameter

pd
ij of q(Dij ; p

d
ij) depends on both (Uik)k and (Vjk)k that are individual and gene specific.

Complete conditional distributions

In order to derive the variational algorithm, we need to compute the complete conditionals
of the different latent variables. Despite the zero-inflated model, the different complete
conditional distributions remain explicit. We can show that the complete conditional
regarding (Zijk)k remains a Multinomial distribution, when Dij = 1. When Dij = 0, it
implies that Xij = 0 so that Zijk are set to zero. In particular, the complete conditional
of (Zijk)k is defined as:

(Zijk)k |— ∼ M
(
Xij , (ρijk)k

)
, (6.12)
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where ρijk = uikvjk∑
� ui�vj�

, for all pairs (i, j) such that Xij 
= 0.

The complete conditional regarding the factors Uik and Vjk are also explicit, especially
the contribution of the individual i and gene j is balanced by the drop-out indicator Dij .
They are Gamma distribution, respectively parametrized as:

Uik |— ∼ Γ(αk,1 +
∑

j Dij zijk, αk,2 +
∑

j Dij vjk) ,

Vjk |— ∼ Γ(βk,1 +
∑

iDij zijk, βk,2 +
∑

iDij uik) .
(6.13)

We prove this point regarding the factor Uik for example. Because of the independence
between latent factors and thanks to the Bayes rule, the complete conditional of Uik can
be reduced to:

p
(
uik | (zijk)j , (vjk)j

)
∝ p

(
(zijk)j |uik, (vjk)j

)
p(uik) .

The (Zijk)j are conditionally independent and each Zijk conditionally follows a Poisson
distribution when Dij 
= 0. Thus, the complete conditional of Uik can be formulated as
a product of Poisson and Gamma densities12:

p(uik |— ) ∝
∏

j,Dij �=0

{
exp

(
− uikvjk + log(uikvjk)zijk

) 1

zijk !

}
× (αk,2)

αk,1

Γ(αk,1)
exp

(
− αk,2 uik + (αk,1 − 1) log(uik)

)
.

When reordering all the terms, it becomes:

p(uik |— ) ∝ exp
((

αk,1 − 1 +
∑

j,Dij �=0 zijk
)
log(uik)

)
× exp

(
− uik

(
αk,2 +

∑
j,Dij �=0 vjk

))
.

This corresponds to the density of a Gamma distribution. Moreover, as Dij takes its
values in {0, 1}, the sums

∑
j,Dij �=0 zijk and

∑
j,Dij �=0 vjk can be rewritten as

∑
j Dij zijk

and
∑

j Dij vjk respectively, so that p(uik |— ) is defined as in Equation (6.13). By the
same reasoning, we can derive the complete conditional of Vjk.

Concerning the complete conditional of the drop-out indicator Dij , the distribution of
a binary variable is either deterministic or Bernoulli. Hence we have to compute the
probability of Dij being 0 or 1 knowing all the other variables in the model. A first
remark is that, when we observe Xij 
= 0, the posterior of Dij is explicit since we
know for sure that Dij = 1. Therefore, in such case, the complete conditional of Dij is

12In the case of discrete random variables as the Zijk, the term density refers to the probability
mass function.
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deterministic and the variational distribution corresponds exactly to the posterior with
pd
ij = 1.

When we observe Xij = 0 in the data, the distribution of Dij is not deterministic because
the zero may originates from the Poisson draw or from a drop-out event. In this case,
thanks to the Bayes rule, we show that:

p(Dij = 1 |— ) ∝ p(Dij = 1)×∏
k p(Zijk = 0 |Uik, Vjk, Dij = 1) ,

which corresponds to:

p(Dij = 1 |— ) ∝ πd
j ×∏

k exp(−Uik Vjk) . (6.14)

We can also show that:
p(Dij = 0 |— ) ∝ (1− πd

j ) . (6.15)

Indeed, the conditional distribution of the variables (Zijk)k knowing Dij = 0 and Xij = 0

is deterministic.

Derivation of the algorithm

The variational-EM algorithm for the ZI-GaP factor model is derived as follows (c.f.
Algorithm 6.3). As previously, in the E-step, we compute the stationary point of the
ELBO, i.e. the point that sets the gradient to zero regarding the parameters of the
variational distribution aik, bjk, (rijk)k and pd

ij . We recall that the stationary condition is
that each variational parameter is equal to the expectation regarding q of the parameters
of the corresponding complete conditional when considering the natural parametrization
in the exponential family. In particular, based on Equations (6.12) and (6.13), for Uik,
Vjk and Zijk, we have respectively:

aik = Eq

[
(αk,1 +

∑
j Dij Zijk, αk,2 +

∑
j Dij Vjk)

T
]
,

bjk = Eq

[
(βk,1 +

∑
iDij Zijk, βk,2 +

∑
iDij Uik)

T
]
,

log(rijk) = Eq[log(ρijk)] ,

(6.16)

where Eq[Dij ] = pd
ij . The other expectations are derived as in the standard algorithm.

Concerning Dij , the natural parametrization of the Bernoulli distribution is based on
the logit13 of the probability of success. Therefore, depending on the values of Xij and
based on Equations (6.14) and (6.15), the stationary point is defined as:⎧⎪⎨⎪⎩

pd
ij = 1 if Xij 
= 0 ,

logit(pd
ij) = log

(
p(Dij = 1 |— )

p(Dij = 0 |— )

)
if Xij = 0 .

13The function logit is defined as logit(π) = log(π)
log(1−π) for any π ∈ (0, 1).
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Finally, when Xij = 0, the update formulation for pd
ij verifies:

log
pd
ij

1− pd
ij

= log
πd
j

(1− πd
j )

−∑
kEq[Uik]Eq[Vjk] . (6.17)

This can be interpreted as correcting the prior probability of Xij being a drop-out event
by the estimated probability that Xij is null if it is drawn from the Poisson distribution.
At a first sight, we may think that the zero-inflated variational formulation is over-
parametrized as we estimate n× p drop-out probabilities. However, such formulation of
pd
ij only depends on the expectation of Uik and Vjk regarding q. We estimate 2 × (n ×

K+p×K) parameters to infer the model, which is lower than the dimension of the data
(n× p) when K � min(n, p), hence avoiding over-parametrization.

In the M-step, the update of the Gamma prior hyper-parameters α and β remain un-
changed. Whereas, the hyper-parameter πd

j is updated as the mean of the corresponding
variational parameters pd

ij :

πd
j =

1

n

n∑
i=1

pd
ij .

To prove this, we just have to write the objective function of the M-step and derive it
regarding πd

j .

6.2.2 Sparsity-inducing prior

We now consider that among all the recorded variables j = 1, . . . , p, only a small pro-
portion carries the signal whereas the others constitute some noise (hypothesis of parsi-
mony). We modify the prior on the factor Vjk to consider a sparse model with a two-group
sparsity-inducing prior:

Vjk ∼ (1− πs
j) δ0 + πs

j Γ(βk,1, βk,2) .

This spike-and-slab formulation ensures that Vjk is either null, i.e. the variable j does not
contribute to the factor k, or drawn from the Gamma distribution, i.e. the contribution
of the variable j to the component k is pertinent. The balance between discarding the
variable and keeping it is regulated by the probability πs

j . This spike-and-slab parameter
(s stands for sparse) depends on j so that πs

j can be seen as the probability that the
variable j is in the model.

In order to properly define the model, we introduce a Bernoulli variable Sjk that indi-
cates if Vjk is ruled by the Gamma or by the Dirac, i.e. Sjk ∼ B(πs

j). To define the
sparse GaP factor model, we use a latent factor Ṽjk that is independent from Sjk and
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Input: /
Output: Estimates of α, β, a, b, Eq[U], Eq[V], (πd

j )j and (pd
ij)ij

Initialize α = [(αk,1, αk,2)] ∈ R
K×2, β = [(βk,1, βk,2)] ∈ R

K×2

Initialize a = [(aik,1, aik,2)] ∈ R
n×K×2, b = [(bjk,1, bjk,2)] ∈ R

p×K×2

repeat
E-STEP

Drop-out variational parameters
pd
ij = logit−1

(
logit(πd

j )−
∑

kEq[Uik]Eq[Vjk]
)

Multinomial variational parameters

rijk ←
exp

(
Eq [log(Uik)]+Eq [log(Vjk)]

)
∑

� exp

(
Eq [log(ui�]+Eq [log(vj�)]

)
Gamma variational parameters

aik ←
(
αk,1 +

∑
j p

d
ij Eq[zijk], αk,2 +

∑
j p

d
ij Eq[Vjk]

)
bjk ←

(
βk,1 +

∑
i p

d
ij Eq[Zijk], βk,2 +

∑
i p

d
ij Eq[Uik]

)
M-STEP

Drop-out hyper-parameters
πd
j = 1

n

∑n
i=1 p

d
ij

Gamma hyper-parameters
αk,1 ← ψ−1

(
log(αk,2) +

1
n

∑n
i=1 Eq[log(Uik)]

)
αk,2 ← n

αk,1∑n
i=1 Eq [Uik]

βk,1 ← ψ−1
(
log(βk,2) +

1
p

∑p
j=1 Eq[log(Vjk)]

)
βk,2 ← p

βk,1∑p
j=1 Eq [Vjk]

until Convergence
return α, β, a, b, (πd

j )j and (pd
ij)ij

Algorithm 6.3: Variational-EM algorithm to infer the ZI-GaP factor model
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follows the Gamma distribution whatever the value of the spike-and-slab indicator Sjk.
The contribution or absence of contribution from the variable j in the component k is
accounted for in the conditional Poisson distribution of Xij , i.e. especially:

Xij |(Uik, Ṽjk, Sjk)k ∼ P(
∑

k Sjk Uik Ṽjk)

Following this definition, the conditional distribution of each Zijk is:

Zijk |Uik, Ṽjk, Sjk ∼ P(Sjk Uik Ṽjk)

Thus, the sparse-GaP model is defined as follows:

Xij =
∑
k

Zijk ,

Zijk |Uik, Ṽjk, Sjk ∼ P(Sjk Uik Ṽjk) ,

Uik ∼ Γ(αk,1, αk,2) ,

Ṽjk ∼ Γ(βk,1, βk,2) ,

Sjk ∼ B(πs
k) ,

(6.18)

with conditional independence between the Zijk and independence between the factors
Uik and Ṽjk. The spike-and-slab indicators Sjk are assumed to be independent from Uik

and Ṽjk.

We follow the same path as previously to infer the model, we define the variational
distribution q:

q(U,V,Z,S) =

n∏
i=1

K∏
k=1

q(uik |aik)×
p∏

j=1

K∏
k=1

q(ṽjk |bjk)

×
n∏

i=1

p∏
j=1

q
(
(zijk)k | (rijk)k

)
×

p∏
j=1

K∏
k=1

q(Sjk | ps
jk) ,

(6.19)

under assumptions of independence and based on the respective complete conditional
distributions.

Complete conditional distributions

In order to derive the inference algorithm, we consider the complete conditional of each
latent variable in the model. As previously, we use variational inference to derive the
E-step of the EM algorithm. The complete conditional regarding (Zijk)k is again a
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Multinomial distribution, that depends on
∑

k Sjk uikvjk. The contribution of the factor
Ṽjk is regulated by the indicator Sjk, hence:

(Zijk)k |— ∼ M
(
Xij , (ρijk)k

)
, (6.20)

where ρijk = Sjk uik ṽjk∑
� Sj� ui� ṽj�

. For a determined variable j, if the Sjk are null for all k, the
vector (Zijk)k is deterministic and takes null values.

Thanks to the conjugacy in the model, the complete conditionals of the factors Uik and
Ṽjk remain Gamma distributions. They are respectively parametrized as:

Uik |— ∼ Γ(αk,1 +
∑

j Sjk zijk, αk,2 +
∑

j Sjk ṽjk) ,

Ṽjk |— ∼ Γ(βk,1 +
∑

i Sjk zijk, βk,2 +
∑

i Sjk uik) .
(6.21)

Indeed, as in the zero-inflated, the proof uses the Bayes rule and the conditional distri-
bution Zijk |Uik, Ṽjk, Sjk ∼ P(Sjk Uik Ṽjk), so that the complete conditional of Vjk for
example verifies:

p(ṽjk |— ) ∝ (ṽjk)
βk,1−1+Sjk

∑
i zijk e−ṽjk (βk,2+Sjk

∑
i uik) .

Concerning the complete conditional of the spike-and-slab indicator Sjk, thanks to the
Bayes rules, we can show that

p(Sjk |— ) ∝ p(Sjk)×
∏

i p(Zijk |Uik, Ṽjk, Sjk) ,

Indeed, only the Poisson variables (Zijk)i depend on Sjk. Thus, the formulation of the
complete conditional is explicit:

p(Sjk |— ) ∝ (πs
j)

Sjk (1− πs
j)

1−Sjk

×∏
i exp(−Sjk Uik Ṽjk) (Sjk Uik Ṽjk)

Zijk × 1

Zijk !
.

(6.22)

Derivation of the algorithm

The variational-EM algorithm for the sparse-GaP factor model is derived as follows (c.f.
Algorithm 6.4). As previously, in the E-step, we compute the stationary point of the
ELBO. In particular, based on Equation (6.21), for Uik, Vjk, we have respectively:

aik = Eq

[
(αk,1 +

∑
j Sjk Zijk, αk,2 +

∑
j Sjk Ṽjk)

T
]
,

bjk = Eq

[
(βk,1 + Sjk

∑
i Zijk, βk,2 + Sjk

∑
i Uik)

T
]
.

(6.23)

119



Regarding Zijk, based on Equation (6.20), we should compute the variational parameter
as log(rijk) = Eq[log(ρijk)]. The issue here is that ρijk is computed as:

ρijk =
Sjk uik ṽjk∑
� Sj� ui� ṽj�

Therefore, Eq[log(ρijk)] involves the expectation Eq[log(Sjk UikṼjk)] which is not tractable
because of the indicator Sjk. To overcome this issue, we update rijk as follows:

rijk =
Ŝjk exp

(
Eq[log(Uik)] + Eq[log(Ṽjk)]

)
∑

� Ŝjk exp
(
Eq[log(Ui�)] + Eq[log(Ṽj�)]

) , (6.24)

where Ŝjk indicates at the current iteration if the variable j contributes to factor k, i.e.
if the current value of variational parameter ps

jk is closer to 0 or to 1. In practice, we set
Ŝjk as:

Ŝjk = 1{ps
jk>πthr} ,

where πthr ∈ (0, 1). This corresponds to thresholding the contribution of Vjk in the
Poisson distribution. On this matter, sparsity-inducing approaches based on a penalized
optimization are generally based on a tuning parameter that regulates the sparsity of
the estimates (c.f. Chapter 1). Although the threshold πthr also has to be chosen by
the user, the interest here is that πthr has a direct interpretation in the model, as the
minimal frequency at which a recorded variable j contributes to the latent factors. In
the algorithm, we choose πthr = 0.5.

Concerning Sjk, the natural parametrization of the Bernoulli distribution is based on the
logit of the probability of success. Therefore, based on Equation (6.22), the stationary
point is defines as:

logit(ps
jk) = logit(πs

j)−
∑

i

{
Eq[Uik]Eq[Ṽjk]

+ Eq[Zijk]
(
Eq[log(Uik)] + Eq[log(Ṽjk)]

)}
.

(6.25)

In the M-step of the variational algorithm, the hyper-parameter πs
j is again updated with

the mean of the corresponding variational parameters:

πd
j =

1

p

p∑
j=1

ps
jk

It can be noted that this update is similar to what would be obtained when considering
πs
j as a latent variable with a Beta prior and by inferring the parameter of this prior in

the variational E-step.

Eventually, the updates of the prior hyper-parameters α and β over U and V are not
affected, thanks to the independence between the spike-and-slab indicator Sjk and Uik

or Ṽjk.
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Input: /
Output: Estimates of α, β, a, b, Eq[U], Eq[V], (πd

j )j and (pd
ij)ij

Initialize α = [(αk,1, αk,2)] ∈ R
K×2, β = [(βk,1, βk,2)] ∈ R

K×2

Initialize a = [(aik,1, aik,2)] ∈ R
n×K×2, b = [(bjk,1, bjk,2)] ∈ R

p×K×2

Initialize (πd
j )j and (pd

ij)ij

repeat
E-STEP

Spike-and-slab indicators
Ŝjk = 1{psjk>πthr}

Multinomial variational parameters

rijk =
Ŝjk exp

(
Eq [log(Uik)]+Eq [log(Ṽjk)]

)
∑

� Ŝjk exp

(
Eq [log(Ui�)]+Eq [log(Ṽj�)]

)
Gamma variational parameters

aik ←
(
αk,1 +

∑
j p

s
jk Eq[zijk], αk,2 +

∑
j p

s
jk Eq[Ṽjk]

)
bjk ←

(
βk,1 + ps

jk

∑
i Eq[zijk], βk,2 + ps

jk

∑
i Eq[Uik]

)
Spike-and-slab variational parameters

ps
jk = logit−1

(
logit(πs

j)−
∑

i

{
Eq[Uik]Eq[Ṽjk]

+ Eq[Zijk]
(
Eq[log(Uik)] + Eq[log(Ṽjk)]

)})
M-STEP

Spike-and-slab hyper-parameters
πs
j =

1
p

∑n
i=1 p

s
jk

Gamma hyper-parameters
αk,1 ← ψ−1

(
log(αk,2) +

1
n

∑n
i=1 Eq[log(Uik)]

)
αk,2 ← n

αk,1∑n
i=1 Eq [Uik]

βk,1 ← ψ−1
(
log(βk,2) +

1
p

∑p
j=1 Eq[log(Ṽjk)]

)
βk,2 ← p

βk,1∑p
j=1 Eq [Ṽjk]

until Convergence
return α, β, a, b, (πs

j)j and (ps
jk)jk

Algorithm 6.4: Variational-EM algorithm to infer the sparse-GaP factor
model
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6.3 Empirical study of the Gamma-Poisson factor
model

We proposed different Gamma-Poisson factor models that correspond to different count
matrix factorization problems, with different constraints depending on the type of the
data (zero-inflated or sparse). We will now assess the performance of our methods for di-
mension reduction and data exploration. We will compare our results with some standard
approaches that we introduced in the previous chapters.

All our computational experiments were processed within the R programming environ-
ment. For performance considerations, our own algorithms are implemented in the C++
language and interfaced with R. The SVD and PCA are natively implemented in R. The
different approaches of Non-negative Matrix Factorization (NMF) that we will consider
are implemented in the NMF R-package. We will especially focus on the Poisson-NMF and
the ls-NMF methods. To avoid issues linked to bad local optima during the optimization,
the implementation in the NMF package is based on multiple runs of the considered algo-
rithm on the data matrix X with different random initializations, so that the estimated
factors Û and V̂ are the averaged estimations over the multiple runs. The questions
about computational efficiency are discussed in Appendix Section D.4.1.

We first focus on standard Gamma-Poisson factor models. Then, we will study the
behavior of our inference algorithm in the case of zero-inflated data.

6.3.1 Generation of the data

In the different experiments, the data are simulated according to the generative process
associated with the GaP factor model. However, we set the hyper-parameters to artifi-
cially create some groups of observations and variables. Thus, we will be able to check if
a method succeeds to reconstruct this latent structure. Precisely, the data are generated
thanks to the following scheme:

– The n individuals are divided into N groups denoted by U1, . . . ,UN . The p variables
are divided into P groups, denoted by V1, . . . ,VP .

– The factors Uik are generated following the Gamma distribution Γ(αk,1, αk,2). The
values of αk,1 and αk,2 are fixed in each group of individuals Ug, i.e. for any i in
Ug, the factors Uik are drawn following the same Gamma prior (for g = 1, . . . , N).

– Similarly, the factors Vjk are drawn from the Gamma distribution Γ(βk,1, βk,2).
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The values of βk,1 and βk,2 are fixed in each group of variables Vg, i.e. for any j in
Vg, the factors Vjk are drawn following the same Gamma prior (for g = 1, . . . , P ).

– The observations Xij are generated following the corresponding Poisson distribu-
tion P(

∑
kuik vjk).

When considering unsupervised statistical approaches, especially for data exploration,
the question about assessing the efficiency of a method to represent the data is tricky,
since there is no quantity as the error of prediction in supervised problem to check how
an algorithm behaves depending on the experimental conditions. The partitioning of the
individuals and variables into different groups in our simulation process is an artificial
framework to enforce the underlying structure of the data, so that it becomes possible
to verify if an algorithm is able to catch this specific structure, i.e. if it represents the
data in a subspace that discriminates between the groups of individuals and variables.
This behavior would be expected when analyzing an experimental data set where the
underlying structure is unknown.

6.3.2 A criterion for comparison?

Comparing different approaches for matrix factorization raises questions about the choice
of a criterion that quantifies the quality of a method. Since we are trying to approximate
the data matrix X by the factor product UVT , measuring the distance between X and
ÛV̂T would be a good indication of the efficiency of the considered approach regarding
dimension reduction. As introduced in Chapter 5, the choice of a metric implies to choose
an underlying geometry that would be appropriate for the data.

Bregman divergence

We decided to not focus on the Euclidean geometry (i.e. �2-metric) since it is not suitable
for count data. Instead, we focus on the Bregman divergence14 D(X | ÛV̂T ) defined in
Chapter 5 that is a generalization of the �2 distance to the Poisson distribution.

The Bregman divergence can also be interpreted as the deviance between the estimated
Poisson model and the saturated Poisson model. The saturated model is the model where
each λij is directly estimated by the corresponding observations xij , so the deviance is
defined as

Dev(X, ÛV̂T ) = −2×
(
log p(X |Λ = ÛV̂T )− log p(X |Λ = X)

)
,

14D(X |λ) =∑n
i=1

∑p
j=1 xij log

(
xij

λij

)
− xij + λij

123



with log p(X |Λ) the Poisson log-likelihood, thus Dev(X, ÛV̂T ) ∝ D(X | ÛV̂T ). Re-
garding this matter, Landgraf & Lee (2015) proposed a generalization of the PCA to the
exponential family that is based on this deviance criterion.

Ordering the factors

In a specific model with K factors, we question how the different matrices Û1:k(V̂1:k)
T

approximate X depending on k = 1, . . . ,K. We recall that the matrix Û1:k is the matrix
with the first k columns of Û, similarly for V̂1:k with the first k columns of V̂. Indeed,
in the context of the PCA, the algorithm gives all the models with K = 1, . . . , rank(X)

in a single run because the models with an increasing K are nested and there exists a
natural order of the factors (by decreasing explained variability). However, it is not the
case in the GaP factor model, or even in the Poisson factor model associated with the
Poisson-NMF. The factors are not ordered and the model are not nested.

Such remark raises two issues. On the one hand, the number of factors K has to be
carefully chosen when fitting the model, because the model with K factors is not included
in the model with K+1 factors. This question will be treated in the next section. On the
other hand, because of the absence of order between factors, it implies that the model
is identifiable up to a permutation of the K factors15. In order to avoid any problem
when comparing the different models, we choose to order the factor according to the
cumulative Bregman divergence, defined as:

k �→ D
(
X | Û1:k(V̂1:k)

T
)
. (6.26)

We precise that we also reorder the factors computed by the Poisson-NMF following
the same criterion, because the order is not set in the ouput of the functions from the
NMF package. Similarly, the factors computed by the ls-NMF are reordered following the
cumulative Euclidean metric k �→ ‖X − Û1:k(V̂1:k)

T ‖ 2
F since it is based on this least

squares criterion. As previously mentioned, the factors from the SVD or the PCA do not
require to be reordered.

15i.e. by permuting the columns in Û and V̂ according to the same reordering.
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Reconstruction of the signal in the standard Gamma-Poisson factor model

We compare both our variational algorithms (EM and standard) to the Poisson-NMF
(based on D(X | ÛV̂T )) and the ls-NMF (based on the Euclidean distance). We study
the evolution of the Bregman divergence between X and Û1:k(V̂1:k)

T depending on
k = 1 . . . ,K as defined in Equation (6.26), for models with different numbers of factors,
i.e. K = 10, 15, 20. We investigate different configurations of data with n = 100,
K∗ = 10 and p = 50, 100, 300, 500. In particular, we generate 50 different data sets for
each configuration and run the different methods on each one with different numbers of
factors K = 10, 15, 20.

We precise that we only display the results from the Poisson-NMF and not the results
from the ls-NMF because they were very similar. Indeed, whereas the ls-NMF is based
on a least squares approximation, it produces a reconstructed matrix ÛV̂T that fits the
data regarding the Bregman divergence as well as the Poisson-NMF.

Figure 6.3 shows the results. A first comment is that the factors estimated by the
variational-EM algorithm better approximate the data than the factors estimated by
the standard variational algorithm. This point again highlights the interest to estimate
the hyper-parameters in the variational framework (c.f. previous section). Then, it
appears clearly that the inference of the GaP factor model gives better results regarding
the reconstruction of the data than the Poisson-NMF in all data configurations. This
empirical result is expected since the data are generated under the GaP factor model.
Nonetheless, it remains necessary to check that the algorithm behaves as expected.

A second comment concerns the evolution of D
(
X | Û1:k(V̂1:k)

T
)

depending on k. For any
total number of K factors in the model, the Bregman divergence reaches a plateau when
k is near the true K∗. This point highlights the particular abilities of our variational
algorithm based on the GaP factor model for compression. As discussed in the next
section, this criterion may be an option to choose the number K of factors.

6.3.3 Choice of the number of factors

As noticed in the previous section, the GaP factor model with an increasing number K

of factors are not nested16. Thus, the choice of K is very sensitive. If K is chosen too
small, the model looses some information with respect to the data. If K is too large, the
number of parameters increases, potentially leading to over-parametrization issue, and
the effect of the different factors are softened in the masses.

16The model associated to the NMF presents the same properties.
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Figure 6.3 – Bregman divergence between X and Û1:k(V̂1:k)
T depending on k = 1 . . . ,K.

The data are generated with n = 100, K∗ = 10 (represented by the vertical dashed line)
and different values p = 50, 100, 300, 500. The different methods are the Poisson-NMF
(nmf_P) and the two variational algorithms (varEm_gap and varinf_gap). For each
configuration, 50 data sets are generated and fitted. The line corresponds to the average
Bregman divergence over the 50 repetitions with the confidence bandwidth in shaded
grey.
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Closest fit to the data

Moreover, in contrast to PCA, testing different values of K requires to fit different mod-
els. For instance, Knowles & Ghahramani (2007) or Bhattacharya & Dunson (2011)
considered models with an infinite number of factors17. Their algorithms both estimate
at which finite level the number K of factors should be reduced (as any other parame-
ters). However, such approaches require more computation time as they explore a large
range of values for K.

We decided to remain in the paradigm of finite models to reduce the computation cost.
A first approach to choose the number of factors is to fit a model with a large K and
verify how the matrix Û1:k(V̂1:k)

T reconstructs X depending on k. This approach is
for instance widely used in PCA by checking the proportion of variability explained by
each component, which is inherently linked to the ordered singular values of the matrix
Xc

18. In our context, the explained variance is not the criteria that we will consider as it
inherently linked to the Gaussian distribution and the Euclidean geometry. In particular,
as mentioned in the previous section, the fit of the model to the data can be measured
by the Bregman divergence k �→ D

(
X | Û1:k(V̂1:k)

T
)

for a model with k = 1, . . . ,K

factors. Furthermore, this measure can be used to empirically find the best K to fit the
model, based on an elbow criterion, i.e. to find the values of K from where adding new
factors does not improve D

(
X | Û1:k(V̂1:k)

T
)
. This determination is however not always

unambiguous and may sometimes lead to some over-fitting, i.e. when considering too
many factors.

To overcome these potential issues, we are currently working on a model selection pro-
cedure to choose K, as we will discuss in Chapter 7.

17They both worked in the Gaussian framework.
18The reader may refer to the PhD manuscript of Chloé Friguet (2010) p. 96 for a review of

the different criteria to choose K in this context.
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An automatic choice of K?

In practice the question of the choice of K may be directly resolved by the variational-
EM algorithm. Indeed, we observe on our simulations that there exists a permutation
of the columns ûk of Û such that the norm of the vector ûk is set to zero as soon as
k becomes higher than a certain threshold. In other words, the procedure of inference
seems to recognize the unnecessary components and ensures that the observations i do
not take part into this supplementary factors.

We checked the evolution of ‖ûk‖2, depending on k = 1, . . . ,K for different models (with
different K). Figure 6.4 shows the results in the case n = 100, p = 100 and K∗ = 10.
We observe that, when U is estimated by our variational-EM algorithm with K > K∗

factors, the value19 of ‖ûk‖2 tends toward 0 when k > K∗. On the contrary, if the
number K of factors in the model is chosen to be smaller than the true K∗, the norm of
‖ûk‖2 is not shrunk toward zero for any k = 1, . . . ,K. This behavior is not observed for
the other approaches: Poisson-NMF, ls-NMF and the standard variational algorithm in
the GaP factor model.

The variational-EM algorithm seems to also learn the number of factors that the model
should consider to be appropriate for the data. Dikmen & Févotte (2012) observed
a similar behavior in their variational-EM algorithm, although their model is slightly
different from our GaP factor model.

6.3.4 Behavior in the presence of zero-inflation

Our interest is mainly to explore zero-inflated single-cell data. Thus, we question the
performance of our algorithm to infer a zero-inflated Gamma-Poisson model. We focus
on different points that are crucial in data exploration: reconstruction of the true signal,
sensitivity to the zero-inflation and reconstruction of the underlying structure. We will
especially consider the questions of data visualization and data clustering.

To do so, we simulate the data as follows. We generate a count matrix Xn×p following
the generative process of the standard GaP model, i.e. without zero-inflation. Then, the
matrix of drop-out events Dn×p is generated with Dij ∼ B(πd

j ). In order to consider
realistic zero-inflated data, the probability πd

j depends on the average of the count j in
X . In particular, when denoting by X̄j the count average of the column j in X , the
probability πd

j is defined as:
πd
j = 1− exp(−μ X̄j) ,

19The columns of U are sorted by decreasing values of their �2 norm, for any K set in the
model
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Figure 6.4 – Evolution of ‖ûk‖2 depending on k = 1, . . . ,K for the different methods
Poisson-NMF (nmf_P), ls-NMF (nmf_ls) and the two variational algorithms (varEm_gap
and varinf_gap) when considering K = 10, 15, 20 factors in the model. The different
trajectories corresponds to the analysis of 50 different data sets generated with n = 100,
p = 100, K = 10 (represented by the vertical dashed line). The columns of Û are sorted
by decreasing value of their norm.
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where μ > 0 is a fixed rate. Thus, the variables j with a lower count average X̄j will
have a higher probability 1 − πd

j of drop-out events. In our simulations, we set μ so
that the drop-out probabilities, i.e. 1−πd

j , lie between 50% and 90%, which corresponds
to an average of 70% over all j. The proportion of drop-out events is therefore high
but consistent with current single-cell technologies20 that catch between 30% and 50%
of the genetic material in a single cell (i.e. πd

j ∈ [0.3 ; 0.5]). Finally, the entries of the
zero-inflated data matrix X (with drop-out events) are constructed as Xij = Xij ×Dij .

Reconstruction of the true signal

The first question when analyzing zero-inflated data is whether or not the considered
statistical method is sensitive to the drop-out events, that correspond to corrupted ob-
servations. In particular, in our count matrix factorization problem, we want to verify
how the true signal X is reconstructed based on the decomposition of the zero-inflated
matrix X. We will especially show that our method that accounts for zero-inflation is
less sensitive to drop-out events that other approaches.

In this regard, we simulate zero-inflated data in different configurations with n = 100,
K∗ = 10 and p = 50, 100, 300, 500. In particular, we again generate 50 different data sets
for each configuration and run the different methods on each one with different numbers
of factors K = 10, 15, 20. All models are fit with the zero-inflated matrix X, however we
check how the estimated factors Û and V̂ reconstruct the true uncorrupted signal X . In
other words, we study:

k �→ D
(
X | Û1:k(V̂1:k)

T
)

Thus, we will see which methods are the most sensitive to drop-out events.

Figure 6.5 shows the results. We fit the different models for different number of factors
K = 10, 15, 20. When comparing the variational-EM algorithm for the ZI-GaP model
and the two NMF approaches (Poisson-NMF and ls-NMF), we clearly observe that our
method reconstructs the true signal X with a better efficiency.

The reader should note that the Bregman divergence are presented in log-scale because
of the huge differences between the three methods. When considering a standard scale,
the shape of the curves are similar to the ones in Figure 6.3, with a high decrease of
k �→ D

(
X | Û1:k(V̂1:k)

T
)

for small k before reaching a plateau when k becomes bigger
than the true K∗. The compression abilities of our methods are again highlighted in
the zero-inflated case. Indeed, the factors estimated by our variational-EM algorithm
efficiently reconstruct the true signal as soon as k > 5, even if the true number of factors

20c.f. Section 4.2.1 in Chapter 4
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is K∗ = 10. Besides, to choose the number of factors K, we can again check the norm
of the columns ûk of Û as it tends toward zero when k is near or bigger the true value
K∗. The figure is joined in Appendix Section D.3.1.

In addition, it can be noted that, even when considering the Euclidean metric, our model-
based approach is better to reconstruct the uncorrupted signal than least-squares-based
methods as the SVD or the ls-NMF. This result is detailed in Appendix Section D.3.2 and
confirms that, as expected, the Euclidean geometry is not appropriate for zero-inflated
count data.

Visualization of zero-inflated data

A standard issue with high dimensional data concerns the question of data visualization.
Indeed, the first step when exploring data is to try to visualize them in 2 dimensions
(or at most 3 dimensions), in order to understand the underlying organization of the
data, for instance regarding the potential existence of groups of observations or groups
of variables. In this case, an option would be to use a method that projects the data in
a 2-dimensional space so that the underlying structure is summarized in 2 dimensions.

A method widely used for data visualization is the PCA. Thus, a visualization tool is
to consider the graph of the observation coordinates regarding the first two components.
In our context of matrix factorization, we recall that it corresponds to constructing the
graph of the scatter plot (ûi1, ûi2)i=1,...,n from the coordinates of the first two columns
û1 and û2 of the matrix Û.

Instead of using PCA to construct the matrix Û, we can use other approaches as the
NMF or our method based on the GaP factor model (or the ZI-GaP factor model in the
context of zero-inflated data). In particular, we assess the ability of the different methods
for data visualization in the case of zero-inflated data. We will see that our variational
framework with the specific ZI-GaP factor model appears to be an interesting tool for
data visualization.

We generate a data set X with n = 100 and p = 1000 with drop-out events as in the
previous section. We set K∗ = 20 and simulate different configurations with 2, 3 or
4 groups of observations by setting different values of hyper-parameters between the
different groups (c.f. Section 6.3.1). We run each method with K = 2 as we want to
represent the first two factors. In particular, we consider the PCA applied to the data
transformed thanks to the Anscombe transform21, the Poisson-NMF and our method.

21By experience with count data, the Anscombe transform generally gives better results than
the log(count + 1) transform or than not transforming the count data.
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Figure 6.5 – Bregman divergence D(X | Û1:k(V̂1:k)
T ) between the true X and

Û1:k(V̂1:k)
T (learned with the zero-inflated data X) depending on k = 1 . . . ,K. The

data are generated with n = 100, K∗ = 10 (represented by the vertical dashed line)
and different values p = 50, 100, 300, 500. The different methods are the Poisson-NMF
(nmf_P), the ls-NMF (nmf_ls) and the variational-EM algorithm for the ZI-GaP model
(varEm_zigap). For each configuration, 50 data sets are generated and fitted. The line
corresponds to the average Bregman divergence over the 50 repetitions with the confi-
dence bandwidth in shaded grey. The y-axis is in log-scale.
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Figure 6.6 shows the representation of the observations regarding the first two factors
for the different methods and depending on the different data configurations (2, 3 or 4
groups). In the case of 2 groups, the factors U estimated by our ZI-specific variational
algorithm clearly identify the 2 groups of observations. Despites the zero-inflation, the
2 groups also appear in the factors estimated by the NMF based on a Poisson model
(Poisson-NMF). In contrast, the principal components from the PCA does not clearly
highlight the 2 groups, as the colored points are not clearly separated. In a real experi-
ment, the PCA would not make it possible to identify the organization of the individuals.

In the case of 3 or 4 groups, the factors from the PCA or from the Poisson-NMF totally
mix the observations, and it becomes totally impossible to distinguish the groups. These
results illustrate the importance to account for the zero-inflation when analyzing such
data. Indeed, our ZI-specific approach catches the underlying structure since the groups
still appear on the graph. When the number of groups increases, the distinction between
the scatter plot from each group becomes less and less clear and some points are mixed
with the wrong groups. Nonetheless, the group organization still remains and the groups
are not totally mixed.

In practice, finding a representation of high-dimensional data in two dimensions that
shows the underlying organization of the data is a huge challenge. Indeed, a 2-dimensional
space is certainly not sufficient to identify complex latent structures with numerous
groups of observations. Our point here is that a method that accounts for the specificity
of the data, as the zero-inflation, will more likely be able to identify the dependencies
and the diversity within a data set, so that such methods should be more widely used
when analyzing such data, or at least should be considered in addition to the PCA. As
we will see in a moment, we may also consider other approaches for data exploration
than 2-dimensional (or 3-D) visualization.

Clustering

In unsupervised problems, the objective is generally to identify clusters of observations
or variables, i.e. in our applications, clusters of cells or genes. Such question is solved by
clustering approaches. An interest of matrix factorization is that is can be viewed as a
dimension reduction procedure that is appropriate for clustering.

We first briefly recall some general concepts about clustering to explain how it is linked
to matrix factorization. Spectral clustering is based on the eigen-decomposition of the
similarity matrix (for instance between observations). In particular, spectral clustering is
related to the standard k-means approach as shown by Dhillon et al. (2004). PCA corre-
sponds to an eigen-decomposition of the empirical covariance matrix, thus if considering
the covariance as a similarity, PCA can be seen as a spectral clustering approach. In this
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Figure 6.6 – Coordinates of the observations when considering two factors. Comparison
of the Poisson-NMF (pnmf), the PCA with a pre-transformation of the data by the
Anscombe transform (pca_anscombe) and our variational-EM algorithm for the ZI-GaP
model (varEM_zigap). All the data set were generated with n = 100, p = 1000 and K∗ =
20. Only the number of groups of observations changed. (a) 2 groups of observations.
(b) 3 groups of observations. (c) 4 groups of observations.
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regard, Ding & He (2004) investigated the link between PCA and k-means clustering.
It can be noted that Yeung & Ruzzo (2001) used PCA to cluster gene expression data.
Regarding matrix factorization, Ding et al. (2005) showed an equivalence between the
ls-NMF and the k-means/spectral clustering. More recently, Lee et al. (2010) proposed
a clustering method based on sparse SVD. Eventually, Wang et al. (2013) introduced a
NMF approach for clustering based on a correntropy criterion instead of the �2 metric or
the Bregman divergence for count data.

Based on these different remarks, we assess the interest of our count matrix factorization
method for the clustering of zero-inflated data. We process as follows. We use the
estimated factor Û to cluster the observations, learned on the same data sets as in the
previous section with n = 100, p = 1000, K∗ = 20 and different groups of observations.
Figure 6.7 shows the heatmap of the matrix Û computed by the different approaches
(PCA with Anscombe transform, Poisson-NMF and our ZI-specific variational algorithm)
where the rows are reorganized following a hierarchical clustering. If factor Û catches
the underlying organization of the data in the observation space, we expect the clusters
to correspond to the groups of observations.

We represent the results for different models with different numbers K of factors for
each method. Figures 6.7 to 6.9 show the results of the clustering as heatmaps of the
matrices Û estimated by the different approaches. The rows are organized according to
the clustering. The colors on the left of the heatmap indicate the original group of the
corresponding observation. We present the results when considering 2 groups (results
with 3 groups are joined in Appendix Section D.3.3)

A first striking point is that the results of the clustering based on our ZI-specific model
do not depend on the number of factors set in the model. Indeed, the clustering retrieves
the original groups of observations when considering models with different values of K.
When K becomes large (>15), we see that some columns of Û are set to zero, as shown
in Section 6.3.3, however it does not affect the result of the clustering. Therefore, the
interest here is that the number of factors can be approximately chosen by checking the
norm of the columns of Û, it will not affect the clustering of the observations.

On the contrary, the choice of K is essential in the case of the Poisson-NMF, since the
clustering varies a lot between the different fitted models. In the case of data generated
with 2 groups, the clusters correspond to the groups when K is small (< 5) but the
clusters change totally when considering larger K. A similar behavior is observed in
the case of 3 original groups in the data. This is a concern because the choice of K

in the case of the Poisson-NMF is not straightforward. For instance, the cumulative
Bregman divergence k �→ D

(
X | Û1:k(V̂1:k)

T
)

decreases regularly with k = 1, . . . ,K (c.f.
Appendix Section D.3.3).
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Eventually, PCA is highly affected by the zero-inflation as the clustering based on the
estimated Û does not retrieve the original groups. We tried even larger number of factors
K for the same results. In this case, determining K based on the cumulative explained
variance is problematic as it regularly increases (impossible to use an elbow criterion).

In addition, we ran k-means clustering of the rows of the matrix Û estimated by the
different methods and the clusters found by the k-means procedure corresponds to the
clusters found by the hierarchical clustering (for all three methods), which confirms the
interest of our approach to identify clusters of observations.

Robust inference in variational framework

The zero-inflated data are an example of corrupted data. Such context raises the question
about the robustness of our statistical analysis. In the previous section, we saw that our
approach is not affected by random drop-out events in the data, in the sense that the
matrix factorization procedure is still able to recover the underlying structure even when
the data are zero-inflated. This question of robustness in the framework of variational
inference is quite recent. In particular, the study of robust variational inference is at
the core of very novel works by Giordano et al. (2015a) and Westling & McCormick
(2015). In the context of matrix factorization, variational inference have been already
used to develop robust version of the PCA based on variational inference in the context
of a Laplacian noise (Gao, 2008; Zhao et al., 2015). However, theoretically studying the
effective robustness of variational matrix factorization of count data is yet to be done.
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Figure 6.7 – Clustering of the rows from Û estimated by our variational-EM algorithm
for the ZI-GaP factor model. The two colors on the left side correspond to the original
two groups of observations. Model with different number of factors: (a) K = 2 (b) K = 4
(c) K = 10 (d) K = 30. All models were fitted on the same zero-inflated data set, where
n = 100, p = 1000 and K∗ = 20.
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Figure 6.8 – Clustering of the rows from Û estimates by Poisson-NMF. The two colors on
the left side correspond to the original two groups of observations. Model with different
number of factors: (a) K = 2 (b) K = 4 (c) K = 10 (d) K = 30. All models were fitted
on the same zero-inflated data set, where n = 100, p = 1000 and K∗ = 20.
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Figure 6.9 – Clustering of the rows from Û estimates by PCA with a pre-transformation
of the data by the Anscombe transform. The two colors on the left side correspond to the
original two groups of observations. We consider different number of factors: (a) K = 2
(b) K = 4 (c) K = 10 (d) K = 30. We analyze the same zero-inflated data set, where
n = 100, p = 1000 and K∗ = 20.
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6.3.5 Variable selection with the sparse Gamma-Poisson
factor model

The sparse-GaP factor model is supposed to determine by itself which variables are
pertinent and which variables should be discarded from the model because of a low
contribution to the factors. We propose to assess the accuracy of the variable selection
in our inference framework on simulations.

We will compare our approach to other state-of-the art methods for sparse matrix factor-
ization. In particular, we will use the sparse PCA (SPCA), as introduced by Witten et al.
(2009) (c.f. Section 4.1.2) that is implemented in the PMA R-package. To be fair, the data
will be transformed thanks to the Anscombe transform at first before running the SPCA.
Regarding sparse NMF (SNMF), we will consider the SNMF/R by Kim & Park (2007)
(c.f. Section 5.3) that is included in the NMF R-package. The SPCA procedure requires a
tuning parameter that is chosen by 5-fold cross-validation, following the recommendation
of the documentation. The cross-validation is based on the reconstruction of the data
regarding the Euclidean metric. On the contrary, the SNMF/R procedure depends on
a penalty parameter, however at the moment there exists no calibration procedure to
choose this parameter. Thus, it would require multiple tries with different values and
decide which one is the best value based on an arbitrary criterion. In our simulation, we
fix a value of this parameter following the recommendation of the authors.

Our results will show that our method selects almost exactly the relevant variables j

when the noise in the model is not too high, even in high dimension. However, our
selection procedure seems sensitive to high noise in the data. Surprisingly, the sparse
PCA responds better when the noise is high in the data. This point will be discussed in
the following.

Model of simulation

The question of simulating data to assess the accuracy of the selection in our context of
matrix factorization is not straightforward. We will generate a sparse matrix V. In this
context, we will impose that some variables j do not contribute to any component k, i.e.
that Vjk is null for any k, so that the recorded variable j (i.e. the jth column in X) will
be irrelevant in the model. However, in this case, if Vjk = 0 for any k, then

∑
k Uik Vjk

is always null for i = 1, . . . , n. Thus, the recorded variable Xij will be deterministic and
null for any observation i. There is no interest to generate null columns in the matrix X,
since it is unnecessary to use a statistical analysis to determine that a column of zeros
will not be informative. This question is not an issue about the formulation of the model,
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but rather concerns the generation of non informative columns in X that will correspond
to null rows in the matrix V.

To overcome this issue, we use the following generative process. We separate the variables
j = 1, . . . , p into a set of active variables, defined as:

A = {j : ∃k, Vjk 
= 0} ,

which corresponds to the recorded variables j that contribute to at least one component.
And we define the set of non relevant variables, that corresponds to the complementary
of A and verifies:

Ac = {j : ∀k, Vjk = 0} ,

i.e. the variables j that never contribute to the latent factors. Once the null entries in
V are defined by Ac, the contributions of the variables j in A are generated as in the
standard GaP model by drawing from a Gamma distribution. The cardinal of the active
set A is denoted p0, hence the cardinal of Ac is p− p0.

To avoid for Xij with j ∈ Ac to be deterministic and null, the data are generated as
Xij ∼ P(εij +

∑
k Uik Vjk), where εij > 0 is a term of noise, so that Xij with j ∈ Ac can

be interpreted as a noisy variable, that we expect to discard from the model.

To be complete, we set n = 100, p0 = 50 and K∗ = 4. The total number of variables
p is set to 100 or 200, so that the ratio p0/p of relevant variables is either 0.5 or 0.25.
We also set different levels of noise that are constant across i and j, i.e. εij = ε with
ε = 2, 4, 20, the higher values correspond to higher noise.

Accuracy of selection

In each different configuration of the data, we generate 50 data sets and run the different
methods. For each method, we define the estimated active set of variables that contribute
to the model:

Â = {j : ∃k, V̂jk 
= 0} .

Based on this estimated active set, we compute the accuracy of each selection procedure
(c.f. Chapter 2), i.e. the percentage of correctly selected and correctly non selected
variables. The results are summarized in Table 6.1.

A first point is that when the noise level is low, the sparse-GaP model inferred by
variational-EM is accurate and retrieves the good variables, i.e. it selects the relevant
ones and discards the irrelevant ones (accuracy near 100%), even when the number of
noisy variables grows (i.e. in both cases p0/p = 0.5 and p0/p = 0.25). However, when the
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noise is high, the model selects all the variables as the accuracy is exactly p0/p, i.e. 50%
when p = 100 and 25% when p = 200. This can be explained by the definition of the
algorithm, the updates for the spike-and-slab variational parameter ps

jk depend on Xij

through Eq[Zijk]. Thus, if the level of the non-pertinent variables becomes high (when
the noise is high), the model wrongly selects these variables. Such property means that
the sparse-GaP model is more appropriate to handle a sparse signal.

A second comment is that the accuracy of our approach does not decrease when the
number of factors K in the model increases. Hence, adding factors in the model is not
a problem and will not lead to a phenomenon of over-selection. For instance, as we will
discuss below, this sparse PCA has a different behavior.

The results of the sparse NMF approach are not informative. Indeed, in any configu-
ration, it selects all the variables, as the accuracy is always p0/p. The problem of such
approach is clearly the absence of calibration for the tuning parameter, such that we
are not sure how to choose it to obtain best results. We did test different values for
this parameter. When increasing its value, matrix V̂ is expected to be more sparse.
Nonetheless, in this case, some columns v̂k are set to zero but all variables j contribute
to the non-null components. Such an approach would require a calibration procedure to
assess its accuracy regarding selection more precisely.

The results of the SPCA are quite surprising too. Indeed, it performs better when
the noise is high: accuracy near 100% when ε = 20 (level of the noise) and K = 2.
On the contrary, when the noise level is low, the accuracy falls near or below 50%. This
point is potentially linked to the calibration of the tuning parameter, the cross-validation
procedure could choose a parameter that does not enforce a strong sparsity in the model.
Another explanation is that, when adding an important noise, the Poisson intensity
used to generate the data becomes higher. In this context, when λ is large, P(λ) can
be approximated by a Gaussian distribution. The sparse PCA is expected to perform
well when the data are near Gaussian. We also observed that the accuracy generally
decreases when the number K of factors increases. In practice, this phenomenon seems
to correspond to a problem of over-selection, i.e. the variables selected to construct
the first components are the more relevant and then the procedure selects less relevant
variables to construct the next components.

As previously mentioned, in our method, the tuning parameter πthr that is linked to the
degree of sparsity is not tuned. This arbitrary choice is natural because it quantifies
the minimal frequency at which a variable j contributes to the factor k. Thus, we
chose πthr = 0.5 because this is how we would predict the label of a random binary
variable depending on its estimated probability (as we do in the logistic regression in
Part I). Changing the values of πthr does not seem to improve the selection in the noisy
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case. To overcome this issue, we are currently considering some modifications about
the model (c.f. Chapter 7). Nonetheless, the good behavior in the non-noisy case is
encouraging. Indeed, the interest of our method compared to the SPCA for instance is
that the tuning parameter can be set without requiring a calibration procedure which
is time consuming and a potential source of instability (as we observed in Chapter 2).
On this matter, we recall that other hyper-parameters of the model (i.e. parameters of
the prior distributions) are estimated within the variational-EM algorithm and do not
require to be calibrated.

6.4 Analysis of single cell data

We will now present an application of our approach for the exploration and the represen-
tation of single-cell data. These are preliminary results as part of an on-going analysis.
We recall some context about the data (c.f. Chapter 4). We have the expression profiles
regarding ∼ 20000 genes for ∼ 1000 single lymphocyte T cells that were sampled on the
same human at three time points after a yellow fever vaccine shot, precisely 15, 136 and
908 days after the injection.

The main question in this context concerns the data visualization. Indeed, the data are
very noisy because of the particular design of the experiment. As we saw, single-cell data
are highly zero-inflated. Moreover, due to the long duration of the experiment (more
than two years and a half between the first and the last sequencing experiments), the
technologies of sequencing slightly evolved, inducing a potential batch effect in the data,
i.e. a technical bias induced by the sequencing machine. To avoid such issue, the data
were normalized to remove this batch effect (based on a zero-inflated Negative Binomial
GLM with a batch factor). All results presented here were derived on the normalized
data.

We will use our specific variational algorithm for zero-inflated data. The objective will
be to reduce the dimension for data exploration and visualization, especially to find and
illustrate the underlying organization and the diversity between cells. We recall that
the single T cells are organized according to their different cell types, i.e. “Effector” or
“Memory” (that were predicted, c.f. Section 2.4). Groups of T cells originating from the
same ascendent after successive divisions were also identified based on a unique genetic
marker that is transmitted during the cellular division.

We will see that there is an important day effect in the data. In particular, the expression
of genes in cells depends on the time since the injection. We will also see that the
composition of the sample regarding the cell types varies across time. In particular,
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Method p Noise K = 2 K = 4 K = 5

var-EM/sparse-GaP

100

2 97.02% 100 % 100 %

4 50% 90.6% 92.3 %

20 50% 50% 49.98 %

200

2 96.23% 100% 100 %

4 25% 84.05% 89.77 %

20 25% 25 % 25 %

SPCA

100

2 48.88% 49.92% 50.00%

4 48.44% 49.52 % 49.96 %

20 99.82% 78.76 % 62.32 %

200

2 54.69% 32.19% 24.98 %

4 66.59% 37.35 % 25.15 %

20 99.89 % 85.95 % 73.72 %

SNMF/R

100

2 50 % 50 % 50 %

4 50 % 50 % 50 %

20 50 % 50 % 50 %

200

2 25 % 25 % 25 %

4 25 % 25 % 25 %

20 25 % 25 % 25 %

Table 6.1 – Accuracy of the variable selection for the different methods: our variational-
EM for the sparse-GaP model (var-EM/sparse-GaP), the sparse PCA (SPCA) and the
sparse NMF (SNMF/R). The data are generated with n = 100, K∗ = 4 and different
values for p = 100, 200. In both configurations, the number of relevant variables is
p0 = 50. The models are fitted with K = 2, 4, 5 factors.
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the differences between T cells from different types are more pronounced as time goes
on. Eventually, we will discuss the visualization of the organization linked to the clonal
structure between cells. The issue here is that the groups of cells are generally very
small, since there are numerous clones that contain only a few cells. The solution in this
specific case will be to use a supervised approach, since neither our method nor PCA were
not able to identify the clonal structure. This point opens a perspective of development
for our matrix factorization framework to incorporate some prior information about the
individuals (c.f. Chapter 7).

In addition, we precise that we will compare the results obtained by our approach and
by the PCA to a dimension reduction method called t-Distributed Stochastic Neighbor
Embedding (t-SNE) that was especially developed for visualization and clustering (van
der Maaten & Hinton, 2008). Such an approach is based on the derivation of a probabil-
ity distribution on pairs of individuals in the high-dimensional space, such that pairs of
similar individuals have a higher probability than pairs of dissimilar individuals. Then,
the algorithm builds a probability distribution on the pairs of individuals in a low dimen-
sional space (for instance in 2-D) such that the low dimensional probability distribution
is the closest to the high dimensional probability distribution. Finally, the individu-
als are positioned in the low dimensional space according to the estimated probability
distribution. Hence, t-SNE can be viewed as a clustering method for data visualization.

In the following, the PCA is always applied to the data transformed by the Anscombe
transform.

6.4.1 Differences between cells across time

We first tried to investigate the difference between the expression in T cells across time.
We considered the ∼ 1000 cells from the 3 time points (“D15”, “D136” and “D908”). We
did not consider the ∼ 20000 genes at once. Indeed, since the data are very noisy, a lot of
genes are not informative and should not be considered. We restrained this first analysis
to ∼ 2000 genes that were the union of the 10% most differentially expressed genes
between cell-types and the 10% most differentially expressed genes between clones (the
differential expression analysis was based on a zero-inflated Negative Binomial model).
Hence, both structures are accounted for in the data matrix that we study.

We run our method based on variational-EM for the sparse-GaP model and the PCA
with K = 2 factors and represent the data according to the columns û1 and û2 of Û in the
observation space (c.f. Figure 6.10a). We also run t-SNE on the same data subset (c.f.
Figure 6.10b). t-SNE depends on a parameter (called perplexity) that we empirically
tuned to find the best representation (i.e. with the best visual clustering).
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A fist striking point is that the day effect is very important in the data since all methods
are able to detect an underlying organization of the data according to the day. Cells at
D15 are mostly very different from the rest of the cells. On the contrary, the cells at D136
and D908 are more similar. This observation is however not surprising. Indeed, directly
after the vaccine shot, the cells are sampled during the primary immune response when
the organism is reacting to the antigen in the vaccine, whereas after 136 and 908 days,
the primary immune response is expected to be over, hence the T lymphocytes specific
to the antigen in the vaccine are not fighting it anymore, but rather waiting for another
infection.

Concerning the comparison of the 3 methods, the signal seems to be very strong between
days as the approaches that do not account for the drop-out events are able to retrieve
the latent structure despite the zero-inflation. The results of our matrix factorization
method is consistent with the results from the PCA and t-SNE that are recognized to
be efficient dimension reduction approaches. This point is comforting about the ability
of our method to be used in real-life analysis.

An additional comment can be made on the organization of the cells in the latent sub-
space. Our method seems to identify groups of similar observations that are more com-
pact. Indeed, since the different scatter plots are normalized to the same scale, we can
visually identify two compact clusters of cells (one from “D15” and the other from both
“D136” and “D908”). The scatter plots from the other two methods are more uniformly
spread in the space. This point could somehow be an advantage for clustering as we will
see in a moment.
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Figure 6.10 – Day effect. Data visualization in 2-dimension. Each method is learned on ∼
1000 cells and ∼ 2000 differentially expressed genes. (a) PCA with a pre-transformation
of the data by the Anscombe transform (pca_anscombe) and variational-EM for the
ZI-GaP model (varEM_zigap). (b) t-SNE with a perplexity parameter of 40.
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6.4.2 Representation of the different T cell types

We consider the same subset of the data as in the previous section but we are now
interested in the composition of the data regarding the different T cell types. We consider
the two main categories of cells “Effector” and “Memory” that have very different functions
in the immune system.

Figure 6.11 shows the same cell coordinates in the latent subspace than Figure 6.10 but
colored by the cell types predicted in Section 2.4. On this matter, the results of t-SNE
are identifiable up to a symmetry or a rotation of the axes, which explains the difference
between Figures 6.10b and 6.10b. The day effect is apparently stronger than the cell type
effect. Indeed, when comparing Figures 6.10 and 6.11, “Memory” cells at “D15” appear
more similar to “Effector” cells at “D15” than to “Memory” cells at the other time points,
according to the underlying structure reconstructed by all methods. This is specifically
identifiable on the graph based on our variational-EM approach. On the contrary, our
approach identifies “Memory” cells from “D136” and “D908” that are visually grouped in
a compact cluster.

It can also be noted that the T cell populations are not balanced between the different
cell types across time. At “D15”, a short time after the injection, there is a majority
of “Effector” cells that are recruited during the primary immune response. Then, as
time goes on, the proportion of “Memory” cells increases until “D908” when they are a
majority, these cells are the one conserved across time so that the immune system is able
to respond to an infection by a similar antigen in the future.

In order to assess more precisely the interest of our methods regarding the question of the
reconstruction of the groups of cells, we considered the clustering of the cells according
to the rows of the matrix Û learned by the PCA and by our variational-EM algorithm.
When considering cells from all days, the clustering (hierarchical or k-means) retrieves
clusters of cells that correspond either to “D15” or to a mix of “D136” and “D908” (which
is consistent with the 2-dimensional representation in the previous section). Therefore,
we consider each day separately, to study the cell type organization in each sub-sample
of cells (that were sampled in the same conditions).

We focus on “D908” and consider ∼ 200 cells and ∼ 3000 differentially expressed genes (for
the cell type effect only). Figure 6.12 shows the results of the clustering as a heatmap
of the matrix Û whose rows are reordered according to a hierarchical clustering. We
choose to consider 3 components in our model based on the normed of the factors (as
developed in Section 6.3.3). Regarding the PCA, it was more difficult to choose a number
of components as the cumulative proportion of explained variance increases regularly with
the number of components K. We did try various different numbers of components but
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Figure 6.11 – Cell type effect. Data visualization in 2-dimension. Each method is
learned on ∼ 1000 cells and ∼ 2000 differentially expressed genes. (a) PCA with a pre-
transformation of the data by the Anscombe transform (pca_anscombe) and variational-
EM for the ZI-GaP model (varEM_zigap). (b) t-SNE with a perplexity parameter of
40.
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we cannot obtain satisfying results regarding the clustering. Thus, we show an example
with 3 components as well.

The main point here is that the clustering based on the matrix Û estimated by our
method allows to find two large clusters of observations that are clearly identified in the
dendrogram in Figure 6.12a concerning the clustering of the observations. A first cluster
corresponds to the “Memory” cells and the second to majority of “Effector”.

On the one hand, this results highlight the efficiency of our method for dimension re-
duction, as it constructs a space of dimension 3 that summarizes the information within
∼ 3000 genes. On the other hand, this result potentially shows that the prediction of the
cell types is not perfect and that some cells are potentially misclassified. We will have
to investigate this point more precisely.

Concerning the other time points, i.e. “D15” and ‘908”, both methods were not able to
retrieve the groups of cells. This result is somehow expected, since the T cells appears
to be more and more different across time regarding their expression profiles. Thus, it
seems complicated to expect to identify the group structure in the early day sample.
This point will be completed in the next section.
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6.4.3 Identification of the clones

Eventually, we did focus on the clonal structure. Working with ∼ 1000 differentially
expressed genes between clones, we tried to use our approach and the PCA to recon-
struct the underlying organization linked to the clones of cells. Unfortunately, the latent
subspace reconstructed by all methods (variational-EM for the ZI-GaP model, PCA and
t-SNE) does not highlight a clear clustering of the cells according to the clones.

In order to find the latent directions that explain the clonal organization, we had to
use a supervised approach. Indeed, since there are numerous clones (i.e. group of cells
originating from the same ascendents) with only a few members, we assume that the
signal structuring the clonal groups is not sufficiently strong in the data so that an
unsupervised approach may catch it.

As stated, we were able to find the latent structure associated to the clonal organization
thanks to a supervised approach, that accounts for the classes of observations but that is
not suitable for prediction. The Between-Class Analysis (BCA) (Baty et al., 2006) that
we considered corresponds to a PCA decomposition of the matrix of clone centroids, i.e.
the matrix of averaged expression for each gene by clone. After constructing the latent
subspace associated to the clone centroids, the observations, i.e. the expression profiles
of the single cells, are projected in this subspace. The coordinates of the cells can be
visualized as in the standard PCA. Averaging the expression over the clones reduces the
effect of the zero-inflation in the data which explains why PCA-based methods can be
appropriate in this specific case.

Figure 6.13 shows the results of the BCA at “D908” when considering ∼ 75 cells and
∼ 1000 differentially expressed genes between clones. In practice, the analysis is re-
stricted to the clones with at least 3 cells, which corresponds to 14 clones. The ellipses
correspond to the different clones, they are colored according to the majority cell types
in the clones. The points corresponding to the cells are colored according to the cell
types. We also represent the coordinate of the genes that contribute the most to the first
two components. The interest here is to identify the genes that are associated to the
inter-clone variability.

These results clearly highlight the interest of supervised approaches in the case of com-
plex organization by groups (numerous groups with few individuals). As discussed in
Chapter 7, we project to adapt our GaP factor model in order to consider an a priori
information on the data.

In addition, we precise that the differences between clones appear more and more clear
across time. The figures at “D15” and “D136” are not joined but we comment the results.

152



Indeed, in the BCA at “D15”, the clones are all similar since there is no distinction
between the ellipse identifying the clones. At “D136”, the BCA find that the clones are
more distinct but remains visually concentrated in the 2-dimensional space, whereas the
differences clearly appears at “D908” (c.f. Figure 6.13).
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Figure 6.13 – BCA based on the clonal organization with ∼ 75 cells and ∼ 1000 differen-
tially expressed genes between clones. The points correspond to the coordinates of the
cells in the subspace learned with the centroids of the clones. The ellipses gather the cells
from the same clones and are colored according to the majority cell types in the clones.
The points (i.e. the cells) are colored according to their cell type. The arrows represent
the coordinates of the genes that contribute the most to the first two components.
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Chapter 7

Conclusion and perspectives about count
matrix factorization

In the second part of this manuscript, we focused on dimension reduction approaches in
an unsupervised context. In particular, we presented the interest of matrix factorization
for data exploration and data visualization. The question of representing the data is
always central in any analysis, in particular to understand the underlying organization
between observations and between the recorded variables. This point is particularly
crucial in the case of high-dimensional data since it can be very complicated to represent
the entire complexity of a high-dimensional space in 2 or 3-dimensions.

Different methods for matrix factorization exist, some are based on a geometric criterion,
other an a model-based formulation. Their purpose is essentially to approximate a data
matrix X by the product UVT where U and V lie in a low dimensional subspace. The
Principal Component Analysis (PCA) is a geometrical approach that is widely used for
unsupervised dimension reduction and data visualization. We explained how the PCA
is linked to the Euclidean geometry and the Singular Value Decomposition (SVD) that
finds U and V by a least squares approximation ‖X−UVT ‖ 2

F . Although it is not defined
with a model, the PCA is highly appropriate to analyze Gaussian data, because of the
link between the Euclidean geometry and the Gaussian model.

When dealing with other types of data involving other distributions in the exponential
family, model-based approaches are another solution to develop a method for matrix
factorization. This framework is more rich and flexible to comply with the specific
nature of the data and model the complex dependencies within the data. We saw that
recent genomic data associated to Next-Generation Sequencing (NGS) are typically non-
Gaussian. In particular, gene expression profiles are over-dispersed count data. Thus,
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we presented a Gamma-Poisson (GaP) factor model that accounts for over-dispersion.
The hierarchical formulation does not require for the variables Xij to be marginally
independent. In practice, the use of prior onto the latent factors Uik and Vjk allows to
incorporate the structure of dependencies within the model.

The question of the estimation of the parameters is central in model-based approaches.
In our case, standard methods such as the Maximum Likelihood Estimation (MLE)
or the Expectation-Maximization (EM) algorithm are intractable due to the complex
hierarchical formulation of the model. Instead of point estimation, the Bayesian inference
aims at computing the posterior distribution of the latent variables in the model, here
the latent factors U and V. To do so, Markov Chain Monte Carlo (MCMC) methods are
able to approximate the exact posterior but have a computational cost that cannot be
ignored, especially when developing a concurrent to the PCA that is instantaneous, even
in the case of high dimensional data. Therefore, we turned to the framework of variational
inference that allows to approximate the posterior of the model. This approximation of
the posterior regarding the Kullback-Leibler (KL) divergence is shown to be equivalent to
minimizing a lower bound on the marginal likelihood, namely the Evidence Lower Bound
(ELBO). To be tractable, the variational distribution that approximate the posterior is
assumed to comply with a mean-field assumption (regarding independence and the type
of distribution in the exponential family).

We derived a variational-EM algorithm that approximates the posterior and estimates
the hyper-parameters of the Gamma priors in the GaP factor model. After focusing on
the convergence of our procedure, we showed on simulations the interest of our model for
dimension reduction in the context of count data, in particular compared to other count
specific approaches.

Single-cell sequencing is a recent technology that allows to capture the genetic material
of a single cell, for instance to quantify the gene expression in each individual cell of a
population. Such data are characterized by drop-out events, which correspond to random
missing observations quantified as null values in X. The statistical analysis of such zero-
inflated (ZI) data represents a challenge since the huge proportions of corrupted zeros
may have an effect on the dimension reduction process. The interest of our GaP factor
model for matrix factorization is that it can be refined to account for the zero-inflation
in the data. We explicitly derived a variational inference algorithm for this model and
show the interest of such an approach for data visualization and clustering on simulated
data. In addition, we compare our method to existing procedures for matrix factorization
that do not account for zero-inflation. As expected, our zero-inflated Gamma-Poisson
(ZI-GaP) model is more appropriate to reconstruct the true signal in data corrupted by
drop-out events.

156



Following the paradigm that we also developed in Part I, we developed a variable selection
procedure for matrix factorization based on sparsity-inducing, also known as spike-and-
slab, priors in the GaP factor model. We assessed the performance regarding selection
accuracy of this method on simulated data. It did show particular abilities to distinguish
pertinent variables from irrelevant ones, even in high dimension, however it appeared
to be very sensitive to the noise in the data, as it reacted poorly in the case of highly
noisy data. This point calls for some improvements as discussed below. Nonetheless, the
interest of such an approach compared so standard procedure as sparse PCA (SPCA) is
that the tuning parameter (πthr) is interpretable and can be set without using a time-
consuming calibration procedure.

Eventually, we proposed an application of our method to an experimental data set. As
part of an on-going study, we worked on the expression profiles of single lymphocytes T
cells that were sampled at different time points after a vaccine shot. The global interest
of the study is to characterize an immune response at the molecular level. Our part in
this work was to develop a framework for data exploration and visualization that allows
to understand the latent organization in the data. Because of the complexity of the
data (single-cells sampled at very different time), it appears very difficult to find latent
directions that clearly explain the organization of the cells (between cell types, etc.). Our
method clearly identified the evolution of the cells across time (effect of the sampling date
in the data). We could also cluster the cells and partially retrieve the cell types that
were predicted previously (c.f. Chapter 2). Compared to other standard procedures as
PCA or t-SNE, our approach seems to identify more compact clusters of similar cells.
However, the limits of unsupervised methods appeared when considering an organization
based on numerous small groups of observations. In this case, the only possibility was to
use a supervised procedure.

Our contribution in this part can be summarized as follows. We developed a zero-inflated
version and a sparse version of the GaP factor model for matrix factorization. We derived
an inference algorithm based on the variational-EM framework, that is computationally
efficient to infer the model. In our simulations and experimental analysis, we highlighted
the interest of our approach for dimension reduction but also some of the limits of our
model. Therefore, we will investigate different options in order to improve the perfor-
mance of our approach. In the same time, we will continue to work on the single-cell data
analysis. The experimental results were not as good as the results on the simulations.
These specific data are very particular due to the complexity of the experiment. Thus,
we plan to apply our approach to other single-cell data to verify how it may behave
in other contexts. In addition, the collaboration regarding the T cell data is not over
yet. We just presented some preliminary results here. In particular, we did not apply
our variable selection procedure to the single-cell data set. We first have to completely
redefine a sparse and zero-inflated GaP model, since we encountered an identifiability
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issue between the drop-out parameter πd
j and the spike-and-slab parameter πs

j . Indeed,
in some cases, it cannot be possible to differentiate between a drop-out event or a variable
that should be discarded from the model. We will have to find a trick to overcome this
issue. It can be noted that such combination of sparsity and zero-inflation has never been
proposed in the literature. In addition, we will investigate the different following points.

Introducing structure in the model

A first refinement of our GaP model would be to discard the assumptions about the
independence between the latent factors. For instance, we could consider a model where
the observations are structured thanks to a prior information. This would require to
consider a multivariate distribution on the factors Uik. Some generalizations of the
Gamma distribution to the multivariate case exist, e.g. the Wishart distribution. The
derivation of the inference algorithm will not be as straightforward as in our GaP model.
Thus, we would have to consider a variational framework that relaxes the mean-field
assumption, especially regarding the independence in the variational distribution. On
this matter, some approaches that consider dependency in the variational framework
have been recently proposed, see Hoffman & Blei (2014) and Giordano et al. (2015b),
and will possibly be adapted to our framework.

Variable selection

Regarding variable section in the sparse Gamma-Poisson (sparse-GaP) factor model, in
the very short-term, we plan to run simulations at larger scale in order to assess the
sensibility of our variational algorithm to the signal-to-noise ratio (SNR). In particular,
the sense of the SNR is not clear in the context of Poisson distribution compared to
the Gaussian case. Based on the results of our simulations, we should also integrate a
quantification of the noise in the sparse model, to avoid phenomenon of over-selection
when the noise is high, as observed on our simulations.

Meanwhile, we will also focus on the on-going analysis of the single-cell data set. Ques-
tions remain, especially regarding the selection of genes that are linked to the underlying
organization of the cells regarding the clonal and the phenotypic structures. In particu-
lar, our interest here would be to assess the contribution of the differentially expressed
genes to the latent structures. In the same time, we have to investigate the differences
between the results of the prediction of the cell type by the sparse PLS (c.f. Section 2.4)
and the results of the clustering based on the matrix factorization of the single-cell ex-
pression profiles (c.f. Section 6.4). Knowing the genes that are relevant to explain the
underlying geometry of the data would be an advantage to refine the identification of the
cells regarding their phenotype.
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On a longer-term, we project to work on a model with a a structuring of the spike-and-
slab formulation between the different factors Vjk. The idea here would be to generalize
the notion of structured penalty, following the framework of the group-Lasso (Yuan &
Lin, 2006) or the fused Lasso (Tibshirani et al., 2005; Rinaldo, 2009). In the context
of regression, these two approaches are respectively based on a penalization of groups
of coefficients (to enforce the selection or non-selection of groups of variables together)
and on a penalization of the difference between coefficients on groups of variables (so
that related variables have the same effect on the response). To do so, we could consider
joined spike-and-slab indicators for different factors Vjk. Such approach would require
to leave the mean-field family and the independence between the variational distribution
regarding the factors Vjk (as previously mentioned).

Initialization and local optima

The optimization framework in variational inference leads to a local optimum of the
ELBO. Thus, the estimated values depend on the initialization of the iterative scheme.
To overcome this potential issue, we proposed to use multi-random initialization that
are iterated for hundred iterations, the run associated to the best value of the objective
function is then iterated until convergence. We saw that such procedure is relatively
stable as there is not much variability when measuring the reconstruction of the data by
the model (based on the Bregman divergence).

Another option would be to consider an optimization based on a simulated annealing
procedure. The reader may refer to Kirkpatrick et al. (1983) and Brooks & Morgan (1995)
for a detailed introduction. The objective of this framework is to find an approximation
of the global optimum of an objective function. The principle consists in adding a
stochastic perturbation in the trajectory of the parameters every N th iterations (N has
to be chosen), so that the iterative procedure will not get stuck near a bad local optimum
(i.e. that is far from being the global optimum), and may possibly jump to another local
optimum, until finding the best local optimum. The amplitude of the perturbation, also
called the temperature, decreases with the growing number of iterations, so that the
algorithm explores a wide range of candidate values at the beginning and then narrows
its research around the potential global optimum.

Such an approach would slow down the convergence, however if the temperature is cor-
rectly set, the interest is that it finds a good approximation of the global optimum. In
the context of variational inference, simulated annealing have been recently considered,
see Obermeyer et al. (2014) and Gultekin et al. (2015), and can be integrated in our
optimization framework.
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Model selection

The question about the choice of the number of components in the GaP factor model
admits different answers. At the moment, the procedure to choose K is empirical and
based on the construction of the matrix Û. The model appears to cut out the unnecessary
factors by setting the norm of the associated column ûk in Û to zero. However, the
question of comparing different models with different numbers of factors remains unclear.
Indeed, at the moment, we fit the model with a large number of factors. Depending on
the number of factors with a null norm, we can refit the model with a more appropriate
number of components.

We plan to develop an automatic procedure to choose K based on a model selection
criterion. The Bayesian Information Criterion (BIC) introduced by Schwarz (1978) is
a criterion based on the penalized marginal log-likelihood, the penalty depends on the
number of parameters in the model so that it counter-balances the phenomenon of over-fit.
The BIC is derived thanks to a Laplace approximation (Tierney & Kadane, 1986) when
integrating the marginal likelihood over the parameters. The BIC is finally computed
with the MLE of the parameters of the model. Thus, it could be used to choose K in
the case of the Non-negative Matrix Factorization (NMF) as the factors U and V are
parameters of the model, hence the marginal likelihood is explicit. On the contrary, in
our hierarchical GaP model, the marginal and the MLE are intractable.

To overcome such an issue, Biernacki et al. (2000) derived the Integrated Completed
Likelihood (ICL) criterion1 that is based on a Laplace approximation of the integral of
the joint likelihood over the hyper-parameters of the model. The interest of such an
approach is to derive a BIC-like penalty that accounts for the hierarchy in the model.
Using an ICL formulation for model selection would require to investigate the asymptotic
validity of the Laplace approximation in our model. In the case of the standard GaP
factor model, the main interest of such a method is that deriving the asymptotic behavior
regarding the number of observations n when the number of variables p is fixed would
lead to an heuristic in the case of p growing and n fixed. Indeed, thanks to the definition
of the model, the role of Uik and Vjk are symmetrical in the joint likelihood. However,
such a property would not be expected in the ZI-GaP or sparse-GaP factor models, since
the role of Uik and Vjk are not symmetrical anymore.

1See also Biernacki et al. (2010).
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Multiple discriminant analysis

Eventually, we project to explore the possibility to derive a supervised approach, simi-
lar to the Between-Class Analysis (BCA) introduced in the previous chapter or to the
Multiple Discriminant Analysis (MDA). The purpose of such approaches is to find latent
directions that explain the partitioning of the observations in different classes. In this
supervised framework, the objective remains data exploration (and visualization) and
not prediction. The BCA is based on an eigen-decomposition of the matrix of the class
centroids, and especially thanks to a PCA applied to matrix of averaged observations by
groups. The MDA constructs the latent components that maximize the between-class
variability and minimize the intra-class variability.

Such approaches are still based on the Euclidean geometry. Following our reasoning
from the previous chapter, we aim at generalizing such framework to count data, by
considering an appropriate underlying geometry. To do so, we could consider a GaP factor
model where the prior hyper-parameters depend on the classes of observations. We could
even imagine using structured multivariate priors that account for the difference between
classes. The objective here is clearly to infer models that account for the organization of
the data in groups. For example, we saw in our application that considering an a priori
on the data organization is necessary to process an efficient dimension reduction and
retrieve small groups of observations (the clones in our application on single-cell data).
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Appendix A

Natural parametrization in the expo-
nential family

In this chapter, we recall some definitions and notations about the natural parametriza-
tion in the exponential family and about some probability distributions that are used in
this manuscript.

A.1 The natural exponential family

We first focus on the natural parametrization of the exponential family. A random vari-
able U follows a distribution of parameters θ in the exponential family and is parametrized
following the natural parametrization of the exponential family if the density (or the
probability mass function if U is discrete) of U is defined such as:

q(u ; θ) = h(u) exp
(
θT t(u)− a(θ)

)
,

where:

– h(·) is the base measure;

– a(·) is the log-normalizer;

– θ are the natural parameters;

– t(·) is the vector of sufficient statistics.
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Then, we introduce some distributions in the exponential family that are used in this
manuscript.

The Gamma distribution

Let U be a continuous random variable that follows a Gamma distribution of parameters
α1 > 0 (shape) and α2 > 0 (scale). We denote U ∼ Γ(α1, α2). The natural parametriza-
tion of the Gamma distribution in the exponential family is defined as follows:

θ =

⎛⎝α1 − 1

−α2

⎞⎠ , h(u) = 1 ,

t(u) =

⎛⎝log u

u

⎞⎠ , a(θ) = log Γ(α1)− α1 log(α2) ,

where Γ(·) is the Gamma function, defined by Γ : z �→
∫ +∞
0 tz−1 e−t dt for any z > 0.

The usual density function of U is defined on R>0 such as:

p(u ; α1, α2) = uα1−1 (α2)
α1 e−α2 u

Γ(α1)
.

Hence, the log-density is:

log p(u ; α1, α2) = (α1 − 1) log(u) + α1 log(α2)− α2 u− log Γ(α1)

The expectation, variance and log-moment of U are respectively:

E[U ] =
α1

α2
,

Var(U) =
α1

(α2)2
,

E[log(U)] = ψ(α1)− log(α2) .

where ψ is the digamma function, defined as ψ(x) = d
dx log Γ(x) =

Γ′(x)
Γ(x) .
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The Poisson distribution

The Poisson distribution is a discrete distribution on the integer. Let X be a Poisson ran-
dom variable of intensity (or rate) λ > 0, then X ∼ P(λ). The natural parametrization
of the Poisson distribution in the exponential family is:

θ = log(λ) , h(x) =
1

x !
,

t(x) = x , a(θ) = eθ = λ .

Hence, the usual probability mass function of the Poisson distribution is:

p(x ; λ) = e−λ λx

x !

and the log-likelihood is therefore

log p(x ; λ) = −λ+ x log(λ)− log Γ(x+ 1) ,

by recalling that x ! = Γ(x + 1) for any integer x. The expectation and variance are
respectively:

E[X] = λ

Var(X) = λ

The multinomial distribution

Let Z = (Z1, . . . , ZK) a random vector of dimension K that follows a multinomial dis-
tribution M(N,p) where N ∈ N and p = (p1, . . . , pK) ∈ [0, 1]K with

∑
k pk = 1. The

multinomial distribution is a generalization of the binomial distribution. The likelihood
of the vector Z, assuming z ∈ N

K with
∑

k zk = N is then:

p(z ; N,p) = 10

(
N −

∑
k

zk

)
× exp

(
log Γ(N + 1) +

∑
k

(
zk log pk − log Γ(zk + 1)

))
,

where 10(x) = 1 if x = 0. This corresponds to the following natural parametrization in
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the exponential family:

θ =

⎛⎜⎜⎜⎝
log(p1)

...

log(pK)

⎞⎟⎟⎟⎠ , h(z) =
N !∏
k zk

,

t(u) =

⎛⎜⎜⎜⎝
z1
...

zK

⎞⎟⎟⎟⎠ , a(θ) = 0 .

The expectation and variance of each Zk are respectively:

E[Zk] = N pk ,

Var(Zk) = N pk (1− pk) ,

Indeed, it is possible to show that the marginal distribution of each Zk is a binomial
distribution B(N, pk). Eventually, the log-likelihood of Z is:

log p(z ; N,p) = log

(
10

(
N −

∑
k

zk

))
+ log Γ(N + 1)

+
∑
k

(
zk log pk − log Γ(zk + 1)

)
.

The Bernoulli distribution

A variable Y following the Bernoulli distribution of parameter p ∈ [0, 1] takes its values
in {0, 1}. It is denoted by Y ∼ B(p). The natural parametrization in the exponential
family is:

θ = log
p

1− p
, h(y) = 1 ,

t(y) = y , a(θ) = − log(1− p)
,

which corresponds to the standard Bernoulli distribution:

p(y ; p) = py (1− p)1−y .

The log-likelihood is thus:

log p(y ; p) = y log(p) + (1− y) log(1− p) .
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A.2 Conjugacy in the exponential family

In this section, we briefly remind the concept of conjugate prior. We consider a hierar-
chical model with some data x, a parameter θ. The data are assumed to be drawn from
a conditional distribution p(x | θ) depending on θ. We also consider a prior distribution
on the parameter θ that is p(θ ; α) where α is an hyper-parameter.

Thanks to the Bayes rule, the posterior distribution of θ is defined as:

p(θ |x ; α) = p(x | θ) p(θ ; α)∫
ϑ p(x |ϑ) p(ϑ ; α) dϑ

.

If the posterior p(θ |x ; α) is explicit and lies in the same exponential family as the prior,
then the prior distribution is called a conjugate prior for the conditional distribution
p(x | θ). In this case, if the conjugate prior is defined in the natural parametrization of
the exponential family such as:

p(θ ; α) = h(θ) exp
(
αT t(θ)− a(α)

)
,

then the posterior can be derived as:

p(θ |x ; α) = h(θ) exp
(
η(x, α)T t(θ)− a(η(x, α))

)
,

where the base measure h(θ) and the sufficient statistics t(θ) remain unchanged, but the
parameter η(x, α) depends on the data and the prior.
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Appendix B

Optimization in the sparse PLS

Reformulation of sparse PLS

As introduced in Chapter 1, the sparse PLS constructs components as sparse linear
combination of the covariates. When considering the first components, i.e. t1 = Xw1,
the weight vector w1 ∈ R

p is defined to maximize the empirical covariance between the
component and the response, i.e. Ĉov(Xw,y) ∝ wTXTy (X and y being centered) with
a penalty on the �1-norm of w1 to enforce sparsity in the weights. Thus, the weight
vector w1 is computed as the solution of the following optimization problem:⎧⎪⎨⎪⎩

argmin
w∈Rp

−wTXTy + ν
∑
j

|wj | ,

‖w‖2 = 1 (additional constraint) ,
(B.1)

with ν > 0. The problem (B.1) is equivalent to the following, when denoting the standard
scalar product by 〈·, ·〉:⎧⎪⎨⎪⎩

argmin
w∈Rp

− 2
〈
w , XTy

〉
+ ‖w‖ 2

2 + 2ν
∑
j

|wj | ,

‖w‖2 = 1 ,

because the term ‖w‖2 is constant thanks to the additional constraint. This new problem
remains equivalent to the following:⎧⎪⎨⎪⎩

argmin
w∈Rp

‖XTy‖ 2
2 − 2

〈
w , XTy

〉
+ ‖w‖ 2

2 + 2ν
∑
j

|wj | ,

‖w‖2 = 1 ,
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since the norm of the empirical covariance ‖XTy‖ 2
2 is constant. Then, thanks to the

Euclidean norm properties, it can be rewritten as:⎧⎨⎩ argmin
w∈Rp

‖C−w‖ 2
2 + 2ν |w|1

‖w‖2 = 1

with C = XTy. Applying the method of Lagrange multipliers, the problem finally
becomes:

argmin
w∈Rp

‖C−w‖ 2
2 + ν ′ |w|1 + μ (‖w‖ 2

2 − 1), (B.2)

where ν ′ = 2ν. We have thus reformulated the problem defining the sparse PLS as a
least squares problem with an Elastic Net penalty.

Actually, in the case of a univariate response, the formulation (B.2) is natural. Indeed, in
the standard (non-sparse) PLS, the optimal weight vector w is the normalized dominant
singular vector of the covariance matrix XTy. However, when the response is univariate,
the matrix XTy is a vector and the solution for w is the vector XTy (normalized to 1).
This corresponds exactly to the solution of the problem:

argmin
w∈Rp

‖C−w‖ 2
2 + μ (‖w‖ 2

2 − 1)

(without the �1 penalty).

The solution of the penalized problem (B.2) defines the first component of the sparse
PLS.

Proximal operator

The problem (B.2) may be solved by the proximal gradient method. This approach uses
proximal operator. We will not detail the theory here but introduce a few examples to
explain our interest in such optimization methodology. A complete presentation can be
found in Bach et al. (2012).

We considered the least squares problem consisting in finding the vector v ∈ R
p that is

the most close to a fixed vector u ∈ R
p when considering a sparse-inducing penalty on

the �1-norm of v:

argmin
v∈Rp

1

2
‖u− v‖ 2

2 + ν

p∑
j=1

|vj | .

It appears that the solution of this problem is given by the proximal operator Prox ν |·|1
(Bach et al., 2012), defined such that the jth coordinate of the solution is:[

Prox ν |·|1(u)
]
j
= uj

(
1− ν

|uj |
)
+
,
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where (·)+ = max(0, ·). This correspond exactly to applying the soft-thresholding oper-
ator1 to the coordinates of u.

We now consider the same least squares problem but with a penalty on the �2-norm of
v, i.e. a Ridge penalty:

argmin
v∈Rp

1

2
‖u− v‖ 2

2 +
μ

2

p∑
j=1

|vj |2 .

The solution is given by the proximal operator Prox μ

2
‖·‖2

(Bach et al., 2012) such that:

Prox μ

2
‖·‖2

(u) =
1

1 + μ
u ,

as we would expect in the case of a least squares problem regularized by Ridge.

In fact, the proximal operators for the �1 and the �2 problems will be useful to solve the
following Elastic Net problem:

argmin
v∈Rp

1

2
‖u− v‖ 2

2 + ν
μ

2

p∑
j=1

|vj |2 + ν

p∑
j=1

|vj | . (B.3)

The closed-form solution is given by the proximal operator Prox νμ

2
‖·‖2+ν |·|1 that is in

particular the composition of Prox νμ

2
‖·‖2

and Proxν |·|1 previously defined (Bach et al.,
2012):

Prox νμ

2
‖·‖2+ν |·|1(u) = Prox νμ

2
‖·‖2

◦ Proxν |·|1(u) .

The coordinates of the solution are then:[
Prox νμ

2
‖·‖2+ν |·|1(u)

]
j
=

1

1 + νμ
sgn(uj)

(
|uj | − ν

)
+
. (B.4)

The problem (B.3) is exactly the Elastic Net problem (B.2) that defines the sparse PLS
with u = C and the argument v = w. The constant μ in (B.3) just has to be chosen
so that ‖w‖2 = 1. Therefore, the weight vector of the sparse PLS is indeed given by
the soft-thresholding operator applied to the empirical covariance vector C = XTy and
then normalized as stated by Chun & Keleş (2010). In their work, they proposed another
proof of this result.

1The soft-thresholding operator is defined as x �→ sgn(x)
(
|x| − ν

)
+

for any x ∈ R where
ν > 0 is a penalty constant and (·)+ = max(0, ·).
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Appendix C

The Negative Binomial distribution

We consider a random variable X that follows a Negative Binomial distribution NB(r, π)
with the parameter r is a non-null positive integer and the probability π ∈ (0, 1). The
distribution of X is therefore defined as:

p(x ; r, π) =
(x+ r − 1) !

x ! (r − 1) !
πr (1− π)x .

The expectation of the Negative Binomial distribution can be derived as follows:

E[X] =

+∞∑
x=0

x
(x+ r − 1) !

x ! (r − 1) !
πr (1− π)x

= 0 +

+∞∑
x=1

x
(x+ r − 1) !

x ! (r − 1) !
πr (1− π)x

=

+∞∑
x=1

(x+ r − 1) !

(x− 1) ! (r − 1) !
πr (1− π)x

We set the change of variable x′ = x− 1, then:

E[X] =

+∞∑
x′=0

(x′ + r) !

(x′) ! (r − 1) !
πr (1− π)x

′+1

= r
(1− π)

π

+∞∑
x′=0

(x′ + r) !

(x′) ! r !
πr+1 (1− π)x

′

The sum corresponds to the integral of the probability function of a distribution NB(r+
1, π) and thus sums up to 1. Finally, the expectation is:

E[X] = r
(1− π)

π
.

A-13



Similarly, the variance can be computed as:

Var(X) = r
(1− π)

π2
.

After deriving a few properties of the Negative Binomial distribution, we show that it
is equivalent to a Gamma-Poisson (GaP) model. In particular, we now suppose that
X follows a conditional Poisson distribution P(λ) and consider a prior distribution
Γ(α1, α2) on the Poisson rate λ (with α1, α2 > 0), i.e.

λ ∼ Γ(α1, α2) ,

X |λ ∼ P(λ) .

We show that the marginal distribution of the variable X in such model is a Negative
Binomial distribution. The marginal distribution p(x) of X can be formulated as

p(x) =

∫
R

p(x, λ) dλ

=

∫
R

p(x |λ) p(λ) dλ

Based on the density of the Gamma distribution that is valued on R>0 (c.f. Chapter A),
the integral is explicitly:

p(x) =

∫
R>0

e−λ (λ)x

x !
λα1−1 (α2)

α1 e−α2 λ 1

Γ(α1)
dλ

=
1

x ! Γ(α1)
(α2)

α1

∫
R>0

λx+α1−1 e−λ(1+α2) dλ

In the previous integral, we set the change of variable: λ′ = λ (1 + α2). When recalling
the definition of the Gamma function1, the integral is computed as:∫

R>0

λx+α1−1 e−λ(1+α2) dλ =

(
1

1 + α2

)x+α1
∫
R>0

(λ′)x+α1−1 e−λ′
dλ′

=

(
1

1 + α2

)x+α1

Γ(x+ α1)

Thus, the marginal distribution of X can be rewritten:

p(x) =
Γ(x+ α1)

x ! Γ(α1)

(
1

1 + α2

)x ( α2

1 + α2

)α1

.

1defined as Γ : z �→
∫
R>0

tz−1 e−t dt for any z > 0

A-14



When recalling that for any non-null positive integer k, we have k ! = Γ(k), we can
conclude that:

X ∼ NB
(
α1,

α2

1 + α2

)
.

The moments are explicitly computed based on the conditional expectation of X:

E[X] = E
[
E[X |λ]

]
= E[λ]

=
α1

α2

and
Var(X) = E

[
E[X2 |λ]

]
− (E[X])2

= E[λ+ λ2]− (E[X])2

=
α1

α2
+

α1

(α2)2
+

(
α1

α2

)2

−
(
α1

α2

)2

=
α1 (1 + α2)

(α2)2

The expectation and variance verify therefore E[X] < Var(X) as expected.
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Appendix D

Gamma-Poisson factor model and vari-
ational inference

In this chapter, we derive some properties about the GaP factor model (standard, zero-
inflated or sparse) introduced in Chapters 5 and 6 and some complementary results about
the inference algorithms.

We first recall the definition of the standard GaP factor model:

Xij =
∑
k

Zijk ,

Zijk |Uik, Vjk ∼ P(vjk uik) ,

Uik ∼ Γ(αk,1, αk,2) ,

Vjk ∼ Γ(βk,1, βk,2) ,

where the latent variables Zijk are conditionally independent and the latent factors Uik

and Vjk are independent.
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D.1 Some properties of the Gamma-Poisson

D.1.1 Moments of the marginal distribution

Using conditional expectation, we can compute the moments of the marginal distribution
of Xij even if it is not explicit. The first-order moment is:

E[Xij ] = E
[
E[Xij |λij ]

]
with the Poisson rate λij=

∑
k uik vjk

= E[λij ]

because the expectation of a Poisson variable is its rate

= E[
∑

k Uik Vjk]

=
∑
k

E[Uik]E[Vjk]

by linearity and independence between the factors

=
∑
k

αk,1

αk,2

βk,1
βk,2

based on the expectation of the Gamma distributions

Similarly, the second-order moment is:

E
[
(Xij)

2
]
= E

[
E[(Xij)

2 |λij ]
]

= E[(λij)
2 + λij ]

based on the moment of second-order from a Poisson variable

The variance will then be:

Var(Xij) = E
[
(λij)

2 + λij

]
−
(
E[λij ]

)2
.

We treat each term separately. We begin with the squared expectation:

(
E[λij ]

)2
=

(∑
k

E[Uik]E[Vjk]
)2

=
∑
k

{(
E[Uik]

)2 (
E[Vjk]

)2}
+
∑
k �=�

{(
E[Uik]E[Vjk]

) (
E[Ui�]E[Vj�]

)}
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Then, we handle the expectation of the squared Poisson rate:

E
[
(λij)

2
]
= E

[(∑
kUik Vjk

)2]
= E

[∑
k(Uik)

2 (Vjk)
2
]
+ E

[∑
k �=�

(
Uik Vjk

) (
Ui� Vj�

)]
=

∑
k

{
E
[
(Uik)

2
]
E
[
(Vjk])

2
]}

+
∑
k �=�

{(
E[Uik]E[Vjk]

) (
E[Ui�]E[Vj�]

)}
by linearity and independence between the factors

Eventually, thanks to the subtraction:

Var(Xij) =
∑
k

{
E[Uik]E[Vjk]

}
+
∑
k

{
E
[
(Uik)

2
]
E
[
(Vjk])

2
]}

−
∑
k

{(
E[Uik]

)2 (
E[Vjk]

)2}
=

∑
k

{αk,1

αk,2

βk,1
βk,2

}
−
∑
k

{(αk,1)
2

(αk,2)2
(βk,1)

2

(βk,2)2

}
+
∑
k

{( αk,1

(αk,2)2
+

(αk,1)
2

(αk,2)2

)( βk,1
(βk,2)2

+
(βk,1)

2

(βk,2)2

)}
thanks to the second-order moment of Gamma distribution

=
∑
k

{αk,1

αk,2

βk,1
βk,2

}
+
∑
k

{ αk,1

(αk,2)2
βk,1

(βk,2)2

}
+
∑
k

{ αk,1

(αk,2)2
(βk,1)

2

(βk,2)2

}
+
∑
k

{(αk,1)
2

(αk,2)2
βk,1

(βk,2)2

}

We have finally proven that E[Xij ] < Var(Xij). The GaP factor model is therefore
suitable to model over-dispersed data (compared to the Poisson-NMF).
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D.1.2 Joint log-likelihood

When not considering the latent Poisson variable Z, the joint log-likelihood of the GaP
factor model is:

log p(X,U,V ; Ω) = log p(X |U,V) + log p(U ; ,α) + log p(V ; β)

=

n∑
i=1

p∑
j=1

log p(xij |ui,vj)

+

n∑
i=1

K∑
k=1

log p(uik ; αk)

+

p∑
j=1

K∑
k=1

log p(vjk ; βk) ,

where p(xij |ui,vj) is the conditional distribution of Xij knowing (Uik)k=1:K and (Vjk)k=1:K .
The prior over Uik (resp. Vjk) is p(uik ; αk) (resp. p(vjk ; βk)). The vectors αk

and βk (k = 1, . . . ,K) store the corresponding prior hyper-parameters. For Gamma
distributions, they are two-dimensional positive vectors, respectively αk = (αk,1, αk,2)

and βk = (βk,1, βk,2). As previously, the whole set of hyper-parameters is denoted as
Ω = (α,β). The hyper-parameter of the prior over U and V are respectively gathered
in α = [αk] ∈ R

K×2 and β = [βk] ∈ R
K×2. Based on the model, the joint log-likelihood

explicitly becomes:

log p(X,U,V ; Ω) =

n∑
i=1

p∑
j=1

{
xij log(

∑
kuik vjk)− (

∑
kuik vjk)− (xij !)

}

+

n∑
i=1

K∑
k=1

{
(αk,1 − 1) log(uik) + αk,1 logαk,2

− αk,2 uik − log Γ(αk,1)
}

+

p∑
j=1

K∑
k=1

{
(βk,1 − 1) log(vjk) + βk,1 log βk,2

− βk,2 vjk − log Γ(βk,1)
}
.

In any attempt to integrate over U and V in order to derive the marginal distribution
of Xij or the posterior of the factors, the problematic term is the non-expandable log,
i.e. log(

∑
kuik vjk). Indeed, as stated in Chapter 5, the distribution of a multiplicative

and additive combination of variables following Gamma distributions does not admit a
closed-form formulation.
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When considering the latent Poisson variable Z, the joint log-likelihood of the GaP factor
model is more simple and defined as follows:

log p(X,Z,U,V ; Ω) = log p(X |Z) + log p(Z |U,V)

+ log p(U ; ,α) + log p(V ; β)

=

n∑
i=1

p∑
j=1

log p(xij | (zijk)k)

+

n∑
i=1

p∑
j=1

K∑
k=1

log p(zijk |uik, vjk)

+

n∑
i=1

K∑
k=1

log p(uik ; αk)

+

p∑
j=1

K∑
k=1

log p(vjk ; βk) ,

The term p(xij | (zijk)k) is deterministic because Xij =
∑

k Zijk. Concerning each Zijk,
the Poisson conditional log-likelihood is:

log p(zijk |uik, vjk) = zijk log(uik vjk)− (uik vjk)− (zijk !) .

In particular, the term log(
∑

k uik vjk) disappears, however it remains impossible to
derive the marginal and the posterior. Nonetheless, it will be more simple to derive the
variational algorithm thanks to the variables Zijk.

D.2 Variational inference for the Gamma-Poisson
factor model

D.2.1 Complete conditional distribution

In our model for matrix factorization, the posteriors are not explicit, however it is possible
to exactly compute the complete conditional distributions of the latent variables, i.e.
the conditional distributions of each variable knowing the other latent variables and
the data. To do so, third-party latent variables are introduced to quantify the Poisson
decomposition of the count Xij over the different latent directions (Cemgil, 2009). The
set of latent variables (Zijk)k=1:K for any fixed i and j is defined such that Xij =

∑
k Zijk

with the following conditional distribution

Zijk |Uik, Vjk ∼ P(Uik Vjk) .
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Hence, the conditional distribution of the data remains P(
∑

k Uik Vjk) thanks to the
additive property of the Poisson distribution. The object Z = [zijk] ∈ R

n×p×K collects
the realization zijk or variables Zijk depending on the context.

The complete conditional regarding each Uik, Vjk and Zijk admits closed-form formula-
tion. Indeed, concerning Z, the complete conditional of the random vector (Zijk)k is a
Multinomial distribution (Zhou et al., 2012):

(Zijk)k |Xij , (Uik)k, (Vjk)k ∼ M
(
Xij , (ρijk)k

)
,

with ρijk = uikvjk∑
� ui�vj�

and therefore
∑

k ρijk = 1.

Regarding the factor Uik, because of the independence between latent factors and thanks
to the Bayes rule, the complete conditional of Uik can be reduced to:

p
(
uik | (zijk)j , (vjk)j

)
∝ p

(
(zijk)j |uik, (vjk)j

)
p(uik) ,

i.e.
p(uik |— ) ∝

∏
j

{
exp

(
− uikvjk + log(uikvjk)zijk

) 1

zijk !

}
× (αk,2)

αk,1

Γ(αk,1)
exp

(
− αk,2 uik + (αk,1 − 1) log(uik)

)
.

When reordering all the terms, the complete conditional becomes:

p(uik |— ) ∝ exp
((

αk,1 − 1 +
∑
j

zijk
)
log(uik)

)
× exp

(
− uik

(
αk,2 +

∑
j

vjk
))

.

This corresponds explicitly to the density of a Gamma distribution, hence:

Uik | (Zijk)j , (Vjk)j ∼ Γ(αk,1 +
∑

j zijk, αk,2 +
∑

j vjk) .

The property that the prior and the complete conditional lie in the same exponential
family is characteristic of conditionally conjugate prior. Such models are called condi-
tionally conjugate model. Similarly the complete conditional over the factor Vjk, i.e.
p
(
vjk | (zijk)i, (uik)i

)
, is:

Vjk | (Zijk)i, (Uik)i ∼ Γ(βk,1 +
∑

i zijk, βk,2 +
∑

i uik) .

The complete conditional distribution will be useful to infer the posterior distributions
of the latent factors.
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The parametrization of the Gamma complete conditionals for Uik and Vjk are respectively
denoted by:

ηik

(
(zijk)j , (vjk)j

)
=

(
αk,1 +

∑
j zijk, αk,2 +

∑
j vjk

)T
,

ηjk

(
(zijk)i, (uik)i

)
=

(
βk,1 +

∑
i zijk, βk,2 +

∑
i uik

)T
,

(D.1)

respectively for Uik and Vjk. It depends explicitly on the natural parametrization of the
Gamma distribution in the exponential family and will be useful in the following.

D.2.2 Stationary point

We derive the stationary point of the Evidence Lower Bound (ELBO). For instance,
regarding Uik, with the notation in the exponential family, we have:

Prior p(uik ; αk) = h(uik) exp
(
αT

k t(u)− a(αk)
)
,

Variational q(uik ; aik) = h(uik) exp
(
aT
ik t(u)− a(aik)

)
,

Complete conditional p(uik |— ) = h(uik) exp
(
ηik(—)T t(u)− a

(
ηik(—)

))
,

where αk ∈ R
2 are the prior hyper-parameters, aik ∈ R

2 are the variational parameters
and ηuik

(—) ∈ R
2 are the parameters of the complete conditional that especially depend

on the other latent variables and the data (c.f. previous section). These three different
distributions lie in the same exponential family (here Gamma distributions), therefore
the base measure h(·) and the log-normalizer a(·) are the same, only the parameters
change.

When considering the ELBO with respect to Uik, the objective J(q) becomes:

J̃(aik) = Eq

[
ηik(—)T t(vik)− a(ηik(—))

]
− Eq

[
aTik t(vik)− a(aik)

]
+ const

= Eq

[
ηik(—)

]T
Eq

[
t(vik)

]
− Eq

[
a(ηik(—))

]︸ ︷︷ ︸
const

− aTik Eq

[
t(vik)

]
− a(aik)

+ const .

Following a property of the exponential family, we have Eq

[
t(vik)

]
= ∇aik

a(aik), hence
the previous objective function is finally:

J̃(aik) = Eq

[
ηik(—)

]T ∇aik
a(aik)− aTik ∇aik

a(aik)− a(aik) + const .
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Taking the gradient:

∇aik
J̃ = ∇2

aik
a(aik) ·

(
Eq

[
ηik(—)

]T − aik

)
.

Eventually, at the optimum:
aik = Eq

[
ηik(—)

]
.

When considering the latent variables Vjk, we may show similarly that the stationary
points bjk verify:

bjk = Eq

[
ηjk(—)

]
,

where ηjk(—) ∈ R
2 are the parameters of the complete conditional Vjk |— .

Regarding the latent variables Zijk, the parametrization in the exponential family of the
Multinomial distribution is based on the log of the probability parameters. Therefore,
the stationary points (rijk)k similarly verify:

log(rijk) = Eq[log(ρijk)] ,

for any k = 1, . . . ,K, where (ρijk)k are the parameters of the complete conditional
regarding (Zijk)k. Then, when expending the term log(ρijk), it follows that:

log(rijk) = Eq[log(Uik) + log(Vjk)]− Eq[log(
∑

k Uik Vjk)] .

We apply the exponential to obtain the formulation

rijk ∝ exp
(
Eq[log(Uik)] + Eq[log(Vjk)]

)
Finally, as the probabilities rijk sum up to 1:

rijk =
exp

(
Eq[log(Uik)] + Eq[log(Vjk)]

)
∑

� exp
(
Eq[log(Ui�)] + Eq[log(Vj�)]

)

D.2.3 Variational EM

We explicitly derive the M-step in the variational Expectation-Maximization (EM) algo-
rithm. The E-step corresponds to the inference of the variational distribution q so that
α and β are updated in the M-step as the values that maximize the following criterion:

Eq[log p(X,Z,U,V ; α,β)] .
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Based on the density of the Gamma distribution, this objective function can be reformu-
lated as:

Q̃(α,β) = Eq[log p(U,V ; α,β)] + const

=

n∑
i=1

K∑
k=1

{
(αk,1 − 1)Eq[log(Uik)] + αk,1 logαk,2

− αk,2 Eq[Uik]− log Γ(αk,1)
}

+

p∑
j=1

K∑
k=1

{
(βk,1 − 1)Eq[log(Vjk)] + βk,1 log βk,2

− βk,2 Eq[Vjk]− log Γ(βk,1)
}
.

(D.2)

When deriving Q̃(α,β) regarding the hyper-parameters α and β, we get1:

∂

∂αk,1
Q̃(α,β) =

n∑
i=1

{
Eq[log(Uik)]

}
+ n log(αk,2)− nψ(αk,1) ,

∂

∂αk,2
Q̃(α,β) = n

αk,1

αk,2
−

n∑
i=1

Eq[Uik] ,

∂

∂βk,1
Q̃(α,β) =

p∑
j=1

{
Eq[log(Vjk)]

}
+ p log(βk,2)− pψ(βk,1) ,

∂

∂βk,2
Q̃(α,β) = p

βk,1
βk,2

−
p∑

j=1

Eq[Vjk] .

Setting the gradient to zero, the stationary point is defined as:

ψ(αk,1) = log(αk,2) +
1

n

n∑
i=1

Eq[log(Uik)] ,

αk,2 = n
αk,1∑n

i=1 Eq[Uik]
,

ψ(βk,1) = log(βk,2 +
1

p

p∑
j=1

Eq[log(Vjk)] ,

βk,2 = p
βk,1∑p

j=1 Eq[Vjk]
.

To invert the digamma function, we use the procedure explained in the box below.

1The digamma function ψ is defined as ψ(x) = ∂
∂x log Γ(x) for any x > 0.
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Inversion of the digamma function ψ
See Minka (2000). The objective is to find the root of the problem ψ(x) − y = 0. The
digamma function is strictly increasing on R

+, hence the root is unique. The Newton-
Raphson iterative algorithm is defined such that:

x(n+1) = x(n) − ψ(x(n))− y

ψ′(x(n))

The convergence is quadratic if the starting point is well chosen. We use the following
asymptotic formula for ψ(x):

ψ(x) ≈

⎧⎨⎩ log(x− 1/2) if x ≥ 0.6

− 1

x
+ ψ(1) if x < 0.6

Hence we approximate ψ−1 to get the starting point:

ψ−1(y) ≈ x(0) =

⎧⎨⎩
exp(y) + 1/2 if y ≥ −2.22

− 1

y − ψ(1)
if y < −2.22

D.3 Variational inference for the zero-inflated
Gamma-Poisson model

We present here some complementary results regarding the analysis of simulated zero-
inflated count data.

D.3.1 Norm of factors

As in the standard case, the variational-EM algorithm determines the number of factors
that have to be considered in the zero-inflated Gamma-Poisson (ZI-GaP) model. As
shown in Figure D.1, the norm of the column ûk of Û is shrunk toward zero when k

become larger than the true value K∗. This is observed for different number K of factors
in the model. On the contrary, the Poisson-NMF and the ls-NMF do not reproduce this
behavior.

A-26



K=10 K=15 K=20

2e−01

4e−01

2e+03

4e+03

0e+00

2e+02

4e+02

6e+02

nm
f_ls

nm
f_P

varE
M

_zigap

5 10 5 10 15 5 10 15 20
k=1:K

no
rm

 o
f U

_k

method
nmf_ls

nmf_P

varEM_zigap

Figure D.1 – Evolution of ‖ûk‖2 depending on k = 1, . . . ,K for the different methods
Poisson-NMF (nmf_P), ls-NMF (nmf_ls) and the variational EM algorithm for the ZI-
GaP model (varEm_zigap) when considering K = 10, 15, 20 factors in the model. The
different trajectories corresponds to the analysis of 50 different zero-inflated data sets
generated with n = 100, p = 100, K∗ = 10 (represented by the vertical dashed line).
The columns of Û are sorted by decreasing value of their norm.

D.3.2 Reconstruction of the signal regarding Euclidean
metric

In order to illustrate the fact that the underlying geometry associated with the Euclidean
distance is not appropriate when dealing with non-Gaussian data, we now focus on the
�2 distance between the true signal matrix X and Û1:k(V̂1:k)

T , based on the Frobenius
norm:

k �→ ‖X − Û1:k(V̂1:k)
T ‖F ,
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when the factors Û and V̂ are learned on the zero-inflated data matrix X. We consider the
SVD that finds the best approximation UVT of X regarding the least squares criterion,
the ls-NMF method that is also based on the least squares criterion and we compare
their results to our approach (not based on the Euclidean geometry). Figure D.2 shows
the results. Our variational method finds the factors Û and V̂ that reconstruct the true
signal at best, better than the SVD and the ls-NMF. Concerning the SVD, the least
squares criterion seems constant but its decreasing is just too small to be seen at this
scale. This point is not surprising as the SVD approximates the corrupted X at best and
the least squares criterion just reflects the difference between the corrupted signal and
the true signal, illustrating the fact that the geometry induced by the Euclidean distance
will not be appropriate when considering zero-inflated count data. On the contrary,
when considering more factors in the ZI-GaP model, ‖X − Û1:k(V̂1:k)

T ‖F significantly
decreases. When k < 3, the reconstruction of the SVD is better, however as soon as
k > 3 (for any values of K), the reconstruction thanks to our method becomes better.
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Figure D.2 – Euclidean distance ‖X−Û1:k(V̂1:k)
T ‖F between the true X and Û1:k(V̂1:k)

T

(learned with the zero-inflated data X) depending on k = 1 . . . ,K. The data are gener-
ated with n = 100, K∗ = 10 (represented by the vertical dashed line) and different values
p = 50, 100, 300, 500. The different methods are the SVD (svd), the ls-NMF (nmf_ls)
and the variational EM algorithm for the ZI-GaP model (varEm_zigap). For each con-
figuration, 50 data sets are generated and fitted. The line corresponds to the average
Euclidean distance over the 50 repetitions with the confidence bandwidth in shaded grey.
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D.3.3 Clustering on the simulated data

We show the results of the clustering based on the rows of the matrix Û when analyzing
a data matrix X with zero-inflation, generated with n = 100, p = 1000, K∗ = 20 and
3 groups of observations. We only show the results (c.f. Figure D.3) when considering
K = 4 factors in the following methods: variational-EM algorithm for the ZI-GaP factor
model, Poisson-NMF, PCA with a pre-transformation of the data by the Anscombe
transform. When considering more factors, K = 5, 10, 15, 20, 25, we get similar results.
The original groups are identified by our ZI-GaP model but not by the Poisson-NMF or
the PCA. However, it can be noted that considering 2 factors is not sufficient to identify
the original groups, even with our ZI-GaP model.

A-30



2
4

1
3

26331147209341215616332230172113510119272811253242981822324635742365549516561414340455464396644376056673847355362504648585259968491729285977499958388708186799069787589777110
0

989394826887807673
X1

1 2 3

20406080

(a
)

2
1

3
4

1018133485574036626974979337768878675633943679324916553559309882949620939078836599271970119510
0

7189522854151425058613756464891456717267538466548825807331926422441524184714768233872601329122142
X1

1 2 3

010
0

20
0

30
0

40
0

(b
)

P
C

1
P

C
3

P
C

4
P

C
2

6445492206042546847668880185549255038132431986376212945612379646154432522614816561232989788240634933987225951307948916710
0

9073351758192877210817533419592771707783118685136965975384744362995736

X1
1 2 3

−1
50

−1
00

−5
0

05010
0

15
0

(c
)

F
ig

ur
e

D
.3

–
C

lu
st

er
in

g
of

th
e

ro
w

s
fr

om
Û
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D.4 Complementary results

D.4.1 Computational cost

Since one of our objective was to control the computational cost of our method, we
compared our variational EM algorithm to the Poisson-NMF and the SVD regarding
computational time. The SVD is our baseline as its computation is almost instantaneous.
For fair comparison, we fixed the same rules for the different methods. In order to
improve its results, the algorithm from the NMF R-package propose to run multiple times
and supply the estimated matrix Û and V̂ as the averaged estimations over the multiple
runs. We set the Non-negative Matrix Factorization (NMF) to run ten times on each
data set. Therefore, we ran our variational EM with 10 random initializations. The
slight difference is that, in our method, these 10 runs are not pursued until convergence.
However, we decided to compare the “stock” implementation of each different algorithm
that is supposed to give the best results.

Another comment is that each algorithm (which includes the multiple runs) was run se-
quentially. The NMF package provides a parallel implementation, so that the different runs
are processed simultaneously. However, our computations were massively distributed on
a large-scale cluster, which corresponds to a parallelization by the data, so that each
individual process was running on a single core. Nonetheless, we will also implement a
parallel version of our algorithm, so that it will be possible to compare the performance
in the same conditions. As expected, the computational cost of the SVD is negligible
and does not increase with p. It is also constant regarding the number of factor K as
a single run provide all the decomposition for K = 1, . . . , rank(X). The computational
cost of our variational algorithm is larger and increases2 with p and K, however it re-
mains reasonable compared to the computational cost of the Poisson-NMF when p and
K become larger. The multiple runs 3 to fit an averaged estimation of U and V have a
huge impact on the computational performance.

To be complete, it can be noted that, when running on a realistic data set, i.e. n = 100

and p = 1000, our variational-EM algorithm (to infer a model with K = 20 factors) only
takes a few minutes to converge, precisely ∼ 180 seconds which corresponds to 10 runs of
100 iterations (for the multiple initializations) and then ∼ 400 iterations on the best seed
until convergence. These computational performances are directly related to an efficient
implementation in C++.

2It similarly increases with the number of observations n, but we display the results for a
fixed n.

3In the documentation, it is recommended to use much more than 10 runs.
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Figure D.4 – Computational time (in seconds) on a single core, depending on the number
p of variables in the data (with n = 100 and K∗ = 10) and the number K of factors in
the model, for the different approaches: Poisson-NMF (pnmf), SVD (svd) and variational
EM (varEM_gap).

A-33


