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INTRODUCTION

In 1916 the German mathematician Ludwig Bieberbach firstly stated his famous conjecture, so-called Bieberbach's conjecture, which provide a necessary condition on Taylor coefficients of univalent functions on the unit disk. The conjecture says that: If f belongs to the class S, i.e, a univalent function on the unit disk D and has the Taylor series n≥0 a n z n with the normalization a 0 = 0, a 1 = 1 then

|a n | ≤ n.
Bieberbach proved the conjecture in the case of n = 2 in the same year. This conjecture was then partly proved by many mathematicians (n = 3, 4, 5) before the French mathematician Louis de Branges finished its journey with a complete proof in 1985. Today Bieberbach's conjecture is a classical theorem of complexe analysis. For approximately 70 years of Bieberbach's theorem's history, beside its intrinsic value, the efforts to prove it have contributed important results and new theories to mathematics. One of these contributions is the Loewner's theory introduced by Karl Loewner in 1923 to solve Bieberbach's probleme for n = 3. Indeed, de Branges has used Loewner's theory as a crucial argument in his famous proof. The original idea of Loewner is to imbed the univalent function into a special flow governed by a nice vector field for which good estimates of the coefficients are available and then recover estimates for the initial function.

Loewner introduced a representation of the subset of S which consists of functions whose image are slit domains in C. This subset is dense in S in the topology of locally uniform convergence. He showed that a function in this subset can be embedded in to a family of functions (f t (z)) t≥0 ⊂ S

f t (z) = e t z + ∞ n=2 a n z n , f 0 (z) = f (z).
Moreover, the family (f t (z)) t≥0 satisfies the equation

∂ ∂t f t (z) = z ∂ ∂z f t (z) λ(t) + z λ(t) -z , (1) 
where λ : [0, ∞) → ∂D is a continuous function on the unit circle. With the sole information that |λ(t)| = 1, ∀t, he could prove that |a 3 | ≤ 3|a 1 |. Interestingly, the derivation of Eq. ( 1) above is only half of the story. There is indeed a converse: given any continuous function λ : [0, +∞[→ C with |λ(t)| = 1
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Figure 1 -Loewner map z → f t (z) from D to the slit domain Ω t = C\γ([t, ∞)) (here slit by a single curve γ([t, ∞)) for SLE κ≤4 ). One has f t (0) = 0, ∀t ≥ 0. At t = 0, the driving function λ(0) = 1, so that the image of z = 1 is at the tip γ(0) = f 0 (1) of the curve. Source: [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] for t ≥ 0, the the Loewner equation [START_REF] Beliaev | Integral means spectrum of whole-plane sle[END_REF], supplemented by the boundary ("initial") condition, lim t→+∞ f t (e -t z) = z, has a solution (t, z) → f t (z), such that (f t (z)) t≥0 is a chain of Riemann maps onto simply connected domains (Ω t ) that are increasing with t.

In 1999, in his work on the planar uniform spanning tree (UST) and the planar loop-erased random walk (LERW) probabilistic processes, Schramm [START_REF] Schramm | Scaling limits of loop-erased random walks and uniform spanning trees[END_REF] introduced into the Loewner equation the random driving function,

λ(t) := e i √ κBt , (2) 
where B t is standard one dimensional Brownian motion and κ a non-negative parameter, thereby making Eq. (1) a stochastic PDE, and creating the celebrated Schramm-Loewner Evolution SLE κ . Schramm-Loewner Evolution were proved to be the scaling limit of some stochastic processes in plane and conjectured to describe the scaling limit of various other processes. Because of its importance, Schramm-Loewner Evolution have become one of the most interested objects in statistical mechanic. A generalization of Schramm-Loewner Evolution, so-called Lévy-Loewner Evolution, is also concurrently investigated. This is a stochastic growth process defined to be a solution of the Loewner equation [START_REF] Beliaev | Integral means spectrum of whole-plane sle[END_REF] with the driving function λ(t) = e iLt , where L t is a Lévy process. The above introduction is aimed at giving an overview about Schramm-Loewner
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Evolution which is the object of research in this thesis. In the rest of this introduction section, we present our particular problems as well as delineate the contents and structures of the chapters of the thesis. The thesis includes four chapters that respectively deal with the generalization of moments of SLE maps, the generalized integral mean spectrum of SLE and the generalized universal spectrum, the Schwarzian derivative of SLE, McMullen's question on the relation between Minkovski dimension and asymptotic variance for SLE map.

The starting motivation of Chapter 2 is to revisite the Bieberbach's conjecture, namely, the Milin's conjecture in the framework of Schramm-Loewner Evolution. For this purpose, we study the logarithmic coefficients of whole-plane SLE κ and the generalizations thereof, which are obtained by introducing generalized moments for the whole-plane SLE map, E(|f ′ (z)| p /|f (z)| q ), for (p, q) ∈ R 2 . We generalize the properties obtained in Ref. [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF], [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], [START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF], [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF] to the mixed moments, along integrability curves in the moment plane (p, q) ∈ R 2 depending continuously on κ, by extending the so-called Beliaev-Smirnov equation to this case. The generalization of this integrability property to the m-fold transform of f is also given.

In chapter 3, with results obtained from chapter 2 we proceed an analysis of the generalized spectrum of SLE maps. We define a generalized integral means spectrum, β(p, q; κ), corresponding to the singular behavior of the mixed moments above. The average generalized spectrum of whole-plane SLE takes four possible forms, separated by five phase transition lines in the moment plane R 2 . The manifold identities so obtained in the (p, q)-plane encompass all previous results. Rigorous and non-rigorous analyises will be presented to check this manifold of spectrum.

Chapter 4 deals with the expectation of Schwarzian derivative of SLE map. Let f be a holomorphic function, its Schwarzian derivative is defined by

(Sf )(z) = f ′′ (z) f ′ (z) ′ - 1 2 f ′′ (z) f ′ (z) 2 = f ′′′ (z) f ′ (z) - 3 2 
f ′′ (z) f ′ (z) 2 .
Schwarzian derivative plays an important role in the theory of univalent function and conformal mapping. It is known that |(Sf )(z)| ≤

(1-|z| 2 ) 2 whenever f is univalent in D. As a consequence of Nehari's criterion of univalence, we also have a sufficient condition on Schwarzian derivative for a meromorphic function in D to be univalent, that is

|(Sf )(z)| ≤ 2 (1 -|z| 2 ) 2 .
In their paper [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF] (see also [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]), the authors posed for the first time the problem of considering Schwarzian derivative of SLE. They calculated E(|(Sf )(0)| 2 ) for f being the whole-plane SLE map and showed that E(|(Sf )(0)| 2 ) ≤ 4 is reached for κ ≥ 8. They then asked for the interpretative meaning of this fact. In chapter 3 we give an approach to the problem of considering expectations of Schwarzian derivative of SLE and its second moment throughout differential equations. We start with a generalization of the main results in the first chapter to a more general moment function depending on parameters. The point is that for some particular restrictions of this generalized moment function we have quantities that are related to Schwarzian derivatie and its second moment by limitations. We are thus able to CONTENTS perform equations satisfied by these quantities from those of the moment function and obtain an exact formula of expectation of Schwarzian derivative of SLE.

The next problem considered in this thesis is the question asked by McMullen on the the relation between Minkovski dimension and asymptotic variance concerning a family of conformal mappings. In 2008, when working on the Weil-Peterson metric, McMullen [START_REF] Curtis T Mcmullen | Thermodynamics, dimension and the weil-petersson metric[END_REF] used the thermodynamic formalism to connect dynamical features of some special holomorphic families of conformal maps ϕ t : D * → C, ϕ 0 (z) = z, where D * = {z : |z| > 1}.

One of those is the relation between the infinitesimal growth of the Hausdorff dimension of the Jordan curves ϕ t (S 1 ) and the asymptotic variance of v = dϕt dt t=0

2 d 2 dt 2 t=0 H.dimϕ t (S 1 ) = σ 2 (v ′ ). (3) 
Here σ 2 is the McMullen's asymptotic variance of a Bloch function given by

σ 2 (b) = lim sup r→1 - 1 2π| log(1 -r)| 2π 0 |b(re iθ )|dθ, .
McMullen also asked: Under what conditions of holomorphic families of conformal mappings the identity ( 3) is true?

To answer this question for inside of the disc, M.Zinsmeister and THN.Le [START_REF] Le | On minkowski dimension of jordan curves[END_REF] considered the mappings φ t (z) = z 0 e tb(u) du b ∈ B : set of Bloch functions. [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF] and used a probability argument to describe a relatively large class of functions in B for which (ϕ t ) defined by ( 4) satisfies [START_REF] Duplantier | Logarithmic coefficients and multifractality of whole-plane sle[END_REF], where the Hausdorff dimension is replaced by the Minkovski dimension. In fact, they dealt with the following identity

d 2 dt 2 t=0 M. dim φ t (S 1 ) = lim r→1 - 1 4π| log(1 -r)| |z|=1 |b(z)| 2 |dz|, (5) 
and the equivalent equality

lim p→0 2β(p, φ) p 2 = lim r→1 - 1 4π| log(1 -r)| |z|=1 |b(z)| 2 |dz|, (6) 
where β(p, φ) is the integral mean spectrum of the function φ defined by φ ′ (z) = exp(b(z)). In the same article they also constructed a Bloch function b and showed that (5) doesn't holds for the family (ϕ t ) (4) corresponding to this b.

In chapter 4 we show that ( 6) is true in a sense of expectation for SLE 2 . Indeed, we obtain the explicit expression of E(| log f ′ (z)| 2 ) where f = f 0 is the interior whole-plane SLE 2 map at time 0 and the equality lim p→0 2 β(p)

p 2 = lim r→1 - 1 4π| log(1 -r)| 2π 0 E(| log f ′ (re i θ)| 2 )dθ, (7) 
CONTENTS where β(p) is the average integral mean spectrum of the interior whole-plane SLE 2 map. To do that we firstly use the martingale argument to get an equation satisfied by tE(| log f ′ (z)| 2 ). Note that this equation is performed for a arbitrary κ. We then solve the equation in the case of κ = 2 by inductive method applied for Taylor coefficients of the solution.

The results presented in this thesis are based on joint works of the author with others. Namely, Chap 2 and Chapter 3 are from joint works with B.Duplantier, TB.Le and M.Zinsmeister. Chapter 4 is from a joint work with M.Zinsmeister. Chapter 5 is from a joint work with TB.Le and M.Zinsmeister.

Chapter 1 STOCHASTIC LOEWNER EVOLUTION

In this chapter, we will provide mathematical backgrounds and introduce essential notions of Loewner's theory. In particular, we focus on various variants of Loewner equation which encode properties of growing (or shrinking) domains generated by Jordan arcs. We then introduce the setting of O. Schramm to establish the Schamm-Loewner evolution, a stochastic version of Loewner evolution. Some properties of Stochastic-Loewner evolutions which are necessary for the next chapters will also be given.

Simply connected domains

An arc in a metric space X is a continuous mapping γ : Intuitively, within that space, every closed arc cannot continuously degenerate to a single point. When X is a planar domain we have the following equivalent characterizations of simply connected domains: (i) Ω is simply connected, (ii) C \ Ω is connected, (iii) For any closed arc γ whose image lies in Ω and any z / ∈ Ω, Ind(z, γ) = 0.

Here, Ind(z, γ) is the index of z with respect to γ which stands for the variation of the argument (measured in number of turns) of γ(t)z along [a, b]. When γ is piecewise C 1 this quantity is also equal to

1 i2π b a γ ′ (s) γ(s) -z ds = 1 i2π γ 1 ζ -z dζ.
1.2. CARATHEODORY CONVERGENCE THEOREM Theorem 1.1.2. (Riemann). Let Ω is a simply connected proper subdomain of C and w ∈ Ω. Then there exists a unique biholomorphic map g : Ω → D such that g(w) = 0, g ′ (w) > 0.

An equivalent statement is that there exists a unique holomorphic bijection f : D → Ω sending 0 to z 0 ∈ Ω and f ′ (0) > 0. This specific map is called the Riemann map of Ω for z 0 .

We have also a slight different version of Riemann mapping theorem which states for domains containing ∞. Definition 1.1.2. A set K ∈ C is called CCF-set or CCF-compact if it is compact, connected with connected complement, containing 0 but not reduced to this point. Definition 1.1.3. The complement in C of a CCF-set is called a CCF-domain.

In order to state a Riemann mapping theorem for these domains we define the holomorphicity at ∞ for a mapping fixing ∞, using the structure at ∞. Definition 1.1.4. If Ω = C\K, where K is a CCF -compact, and f : Ω → C\{0} is a mapping fixing ∞, we say that f is holomorphihc at ∞ if the mapping

f (z) = 1 f (1/z)
is holomorphic at 0.

The limit lim z→∞ f (z)

z exists and equals to 1 f ′ (0) whenever f is holomorphihc at ∞. We denote this limit by f ′ (∞).

By using the reference CCF-domain ∆ = C\D, we now introduce another version of Riemann mapping theorem: Theorem 1.1.3. If K is a CCF-compact then there exists a unique holomorphic bijection f : ∆ → Ω such that f (∞) = ∞ and f ′ (∞) > 0.

We also say that f is the Riemann map of Ω. The quantity f ′ (∞) is called the logarithmic capacity of K and is denoted by cap(K). The following property justifies the denomination: Proposition 1.1.1. The quantity cap(K) is increasing in the sense that if K 1 K 2 are two distint CCF-compact then cap(K 1 ) < cap(K 2 ).

Caratheodory convergence theorem

Definition 1.2.1. Let (U n ) n≥0 is a sequence of a open sets in C containing 0. Let V n is the connected component of the interior of ∩ k≥n U k containing 0.
The kernel of the sequence is defined to be the union of the V ′ n s, provided it is non-empty; otherwise it is defined to be {0}.

Since the definition, the kernel is either a connected open set containing 0 or the one point set {0}.

For the case of domain containing ∞, the definition of the kernel is similar. We now state the Caratheodory convergence theorem:

Theorem 1.2.1. (Caratheodory convergence theorem). Let (f n ) be a sequence of holomorphic univalent functions on the unit disk D, normalized so that f n (0) = 0 and f ′ n (0) > 0. Then f n converges uniformly on compacta in D to a function f if and only if U n = f n (D) converges to its kernel and this kernel is not C.

If the kernel is {0}, then f = 0. Otherwise the kernel is a connected open set U , f is univalent on D and f (D) = U .
There is another version of this theorem for the case of domains containing ∞: Theorem 1.2.2. Let (Ω n ) be a sequence of CCF-domains and (f n ) the corresponding sequence of Riemann maps. The the sequence (f n ) is uniformly convergent on compact sunsets of ∆ if and only if Ω n converges in sense of Caratheodory to a kernel distinct from C \ {0}. If Ω n converges and Ω denotes its kernel then

(i) If Ω = ∞ then f n → ∞ uniformly on compact subsets of ∆. (ii) If Ω = C \ {0} then f n → 0 uniformly on compact subsets of ∆ \ {∞}.
(iii) Otherwise, f n converges to f , the Riemann mapping of Ω.

Loewner equation

Radial Loewner equation

In this section we will introduce two versions of a Loewner evolution variant, socalled radial Loewner evolution. The first concerns biholomorphic mappings from the unit disk onto its subdomains whereas the second concerns biholomorphic mappings from the outside of the unit disk onto its subdomains. We prefer firstly deal with the exterior case because it is the historical one considered by Loewner.

Exterior radial evolution

The central objects of Loewner's theory are special families of univalent functions, called Loewner chain. The definition of Loewner chains is based on the notion of subordination.

Definition 1.3.1. Let f, g : ∆ → C be two holomorphic functions with f (∞) = ∞, g(∞) = ∞.
We say f is subordinate to g (denoted f ≺ g) if and only if there exists ϕ : ∆ → ∆ holomorphic and fixing ∞ such that

f (z) = g(ϕ(z))
for all z ∈ ∆.

LOEWNER EQUATION

We now define a Loewner chain:

Definition 1.3.2. The family (f t ) t≥0 of holomorphic univalent mappings from ∆ to C is called a Loewner chain if: (i) f t (z) = e t z + b 0 (t) + b 1 (t) z + ..., (ii) f t ≺ f s if 0 ≤ s ≤ t.
Let γ : [0, +∞) → ∆ is a Jordan arc in ∆ which is starting from a point γ(0) on the unit circle and growing to ∞. We denote K t := D ∪ γ([0, t]) and Ω t := C \ K t . (Ω t ) t≥0 is then a decreasing family of CCF-subdomains of ∆. The Riemann mapping theorem implies that for each CCF-domain Ω t , there is a biholomorphic map

f t : ∆ → Ω t such that f t (∞) = ∞ and f ′ t (∞) > 0. We may write f t (z) = c(t)z + b 0 (t) + b 1 (t)
z + ..., c(t) > 0 where c(t) is the logarithmic capacity of K t . Because (K t ) t≥0 is a strictly increasing family of CCF-sets, the function c(t) is strictly decreasing in t.

It is also easy to see that the family (Ω t ) t≥0 is continuous in the sense of Caratheodory convergence. By mean of Caratheodory convergence theorem, the family (f t ) t≥0 is continuous in t for the topology of uniform convergence on compact sets in ∆. In particular, the function t → c(t) is continuous.

We now make the following assumptions: lim t→+∞ c(t) = +∞ and c(0) = 1. Frequently we will assume that Ω 0 = ∆. With these conditions, one may perform a time-change and assume that c(t) = e t . We also have f t ≺ f s for 0 ≤ s < t with the holomorphic function ϕ in Definition 1.3.1 is now f -1 s • f t . The family (f t ) t≥0 is thus a Loewner chain. Loewner proved that a Loewner chain is not only continuous but also absolutely continuous in time, therefore almost everywhere differentiable. He also proved that a Loewner chain can be described by a partial differential equation, in particular, Theorem 1. 3.1. (Loewner 1923). Let f t (z) defined as above, then there exists a continuous function λ : [0, +∞) → ∂D such that almost everywhere in t we have for all z ∈ ∆,

∂f t (z) ∂t = -z ∂f t (z) ∂z λ(t) + z λ(t) -z , f 0 (z) = z, (1.1) 
In fact,

λ(t) = f -1 t (γ(t)) for t ∈ [0, +∞). It is noticed that one can extend f -1 t by continuity to γ(t), so that f -1 t (γ(t)
) is well-defined. The equation (1.1) is called Loewner equation. We also say that λ(t) is the driving function of the Loewner chain (f t ) t≥0 .

Let g t : Ω t → ∆ is the inverse function of f t , then g t (z) is the unique solution of the equation

∂g t (z) ∂t = g t (z) λ(t) + g t (z) λ(t) -g t (z) , g 0 (z) = z. (1.2)
The Loewner's theory contains another important fact on the Loewner equation: Theorem 1.3.1 has a converse. If λ : [0, +∞) → ∂D is a continuous function then there is a unique Loewner chain (f t ) t≥0 such that it is a solution of Eq. (1.1). This Loewner chain corresponds to a decreasing family of CCF-domains Ω t = C \ K t in 1.3. LOEWNER EQUATION ∆. However, the CCF-sets K t , in this case, do not have to be D ∪ γ([0, t]) for some Jordan arc γ.

We now introduce a notion which is the case of the stochastic version of Loewner chains considered in the next chapters:

Definition 1.3.3. Let γ : [0, +∞) → ∆ be a continuous curve such that |γ(0)| = 1.
We say that the process (Ω) t≥0 is generated by γ if for t ≥ 0 we have that Ω t is the unbounded component of the complement of D ∪ γ([0, t]). 

∂f t (z) ∂t = -z ∂f t (z) ∂z λ(t) + z λ(t) -z , f 0 (z) = z, (1.3) 
where z ∈ D and λ : [0, +∞) → ∂D is a continuous function.

The family (f t ) t≥0 includes the Riemann mappings of domains Ω t such that (Ω t ) t≥0 is a continuously decreasing family of subdomains containing 0 of the unit disk. Every function f t (z) may be written as

f t (z) = e -t z + a 2 (t)z 2 + a 3 (t)z 3 .... Let g t : Ω t → D is the inverse function of f t , then g t (z) is the unique solution of the equation ∂g t (z) ∂t = g t (z) λ(t) + g t (z) λ(t) -g t (z) , g 0 (z) = z. (1.4)
We have also the notion of processes generated by a curve Definition 1.3.5. Let γ : [0, +∞) → D be a continuous curve such that |γ(0)| = 1.

We say that the process (Ω) t≥0 is generated by γ if for t ≥ 0 we have that Ω t is the component containing 0 of D \ γ([0, t]).

Whole-plane Loewner equation

We introduce another variant of Loewner evolutions. There are also two versions corresponding to the inside and the outside of the unit disk.

Interior whole-plane Loewner evolution

Definition 1.3.6. Let f and g be holomorphic univalent functions on the unit disk D with f (0) = 0, g(0) = 0. We say f is subordinate to g (denoted f ≺ g) if and only if there is a univalent mapping ϕ : D → D fixing 0 such that

f (z) = g(ϕ(z)) for all |z| < 1. 1.3. LOEWNER EQUATION Definition 1.3.7. The family (f t ) t≥0 of holomorphic univalent mappings from D to C is called a Loewner chain if: (i) f t (z) = e t z + a 2 (t)z 2 + a 3 (t)z 3 + ..., (ii) f s ≺ f t if 0 ≤ s ≤ t.
Let γ : [0, +∞) → C is a Jordan arc joining a point γ(0) on C to ∞ and not containing 0. If we denote by Ω t the complement of γ([t, +∞)) then (Ω t ) t≥0 is a increasing family of domains. The Riemann mapping theorem implies that for each domain Ω t , there is a biholomorphic map

f t : D → Ω t such that f t (0) = 0 and f ′ t (0) > 0. We may write f t (z) = c(t)z + a 2 (t)z 2 + a 3 (t)z 3 ...., c(t) > 0.
Because the family (Ω t ) t≥0 is continuous in the sense of Caratheodory convergence, the family (f t ) t≥0 is continuous in t for the topology of uniform convergence on compact subsets of D. As a consequence, we have the continuity in t of c(t). Moreover, for 0 ≤ s < t, by considering the function f -1 t • f s : D → D and using the Swchwarz's lemma, one may prove that c(s) < c(t). We now make the following assumptions: c(0) = 1 and lim t→+∞ c(t) = +∞. By a change of variable if necessary, we may assume that c(t) = e t . This setting together with the fact that f s ≺ f t for 0 ≤ s < t implies that (f t ) t≥0 is a Loewner chain.

As in the radial case, the Loewner's theory show that f t (z) is absolutely continuous in t, in particular almost everywhere differentiable, and can be described by a differential equation.

Theorem 1.3.2. Let f t (z) defined as above, then there exists a continuous function λ : [0, +∞) → ∂D such that almost everywhere in t we have for all z ∈ D,

∂f t (z) ∂t = z ∂f t (z) ∂z λ(t) + z λ(t) -z . (1.5)
The continuous function λ(t) is determined by λ(t) = f -1 t (γ(t)), the continuity extension of f -1 t to the point γ(t). The equation (1.5) is called Loewner equation. We also say that λ(t) is the driving function of the Loewner chain (f t ) t≥0 .

Inversely, let λ : [0, +∞) → ∂D be a continuous function, then there is a unique Loewner chain (f t ) t≥0 which satisfies the equation (1.5). Moreover (f t ) t≥0 includes the Riemann mappings of a increasing family (Ω t ) t≥0 of domains in C which continuously grows to the whole-plane. We also have the notion of a interior whole-plane Loewner evolution generated by a curve: Definition 1.3.8. Let γ : [0, +∞) → C be a continuous curve joining a point γ(0) in C to ∞ and not containing 0. We say that the process (Ω) t≥0 is generated by γ if for t ≥ 0 we have that Ω t is the unbounded component of C \ γ([t, +∞)).

Exterior whole-plane evolution

Definition 1.3.9. The unique solution of the following differential equation is called an exterior whole-plane Loewner evolution

∂f t (z) ∂t = -z ∂f t (z) ∂z λ(t) + z λ(t) -z , z ∈ ∆, (1.6) 
where λ : [0, +∞) → ∂D is a continuous function.

The family (f t ) t≥0 includes the Riemann mappings of CCF-domains Ω t such that (Ω t ) t≥0 continuously grows to C \ {0}. Every function f t (z) may be written as

f t (z) = e t z + b 0 (t) + b 1 (t) z + ....
The notion of processes generated by a curve in this case is defined in the frequent manner, i.e, domains of the evolution are the component containing ∞ of the complement of a Jordan arc.

Chordal Loewner equation

Let H be the upper half-plane {x + iy : y > 0}. Let γ : [0, +∞) → H is a Jordan arc in H which is starting from the origin and growing to ∞. We denote by Ω t the complement of γ[0, t] in H. (Ω t ) t≥0 is then a decreasing family of subdomains of H. With helps of Riemann mapping theorem and Schwarz reflection principle, one can prove that there exists a unique biholomorphic map g t : Ω t → H such that lim z→∞ g t (z)z = 0. In this case, we say that g t satisfies the hydrodynamic normalization. These normalized functions play a role as Riemann mappings in the radial case. Moreover, one can also write

g t (z) = z + b 1 (t) z + ..., b 1 (t) > 0.
The Schwarz reflection principle extends each g t to a Riemann mapping of a neighborhood of ∞. By mean of the Caratheodory convergence theorem, the family of the functions f t = g -1 t is continuous for topology of uniform convergence on compact sets. As a consequence, b 1 (t) is continuous. Since the theory of half-plane capacity, b 1 (t) is also increasing. We now make an assumption: lim t→+∞ b 1 (t) = +∞. Changing variable if necessary, we may assume that b 1 (t) = 2t.

The Loewner's theory shows that g t (z) is described by an ordinary differential equation Theorem 1.3.3. Let g t (z) defined as above, then there exists a continuous function λ : [0, +∞) → R such that almost everywhere in t we have for all z ∈ Ω t ,

∂g t (z) ∂t = 2 g t (z) -λ(t) , g 0 (z) = z. (1.7)
As in the radial case, there also exists a converse: If λ : [0, +∞) → R is a continuous function, then the equation (1.7) has a unique solution g t (z). This solution is such that (g t ) t≥0 includes the hydrodynamic normalized functions of a decreasing family of domains in H. The notion of processes generated by a curve is also defined in a similar way as previous cases.

Stochastic Loewner evolution

In 1999, in his work on the planar uniform spanning tree (UST) and the planar loop-erased random walk (LERW) probabilistic processes, O.Schramm [START_REF] Schramm | Scaling limits of loop-erased random walks and uniform spanning trees[END_REF] introduced into the Loewner equation a random driving function to create the celebrated 1.4. STOCHASTIC LOEWNER EVOLUTION Schramm-Loewner Evolution SLE κ . In the following definition, the stochastic setting is carried out for the radial Loewner equation in the unit disc. Definition 1.4.1. The radial Shramm-Loewner evolution or radial Stochastic-Loewner evolution(of parameter κ), denoted SLE κ , in the unit disc is the solution of the stochastic PDE:

∂f t (z) ∂t = -z ∂f t (z) ∂z λ(t) + z λ(t) -z , f 0 (z) = z, (1.8) 
where λ(t) := e i √ κBt with B t is the standard one dimensional Brownian motion and κ is a non-negative parameter.

In the above definition, the Brownian motion is a stochastic process characterized by the three fundamental properties: i. Stationarity: if 0 ≤ s ≤ t then B t -B s has the same law as B t-s .

ii. Markov property: if 0 ≤ s ≤ t then B t -B s is independent of B t-s .

iii. Gaussianity: B t has a normal distribution with mean 0 and variance t. One can substitute the same random driving function λ(t) := e i √ κBt into Eq. (1.1), Eq. (1.5), Eq. (1.6) to respectively define the exterior radial version as well as the versions of whole-plane variant of Schramm-Loewner evolution. In the chordal case, the corresponding driving function is λ(t) = √ κB t .

Rhode and Schramm proved that the Schamm-Loewner evolution processes are almost surely generated by a curve for κ = 8. Moreover, there are phase transitions in parameter κ, namely, the curve is almost surely simple (does not intersect itself) for κ ≤ 4, the curve has double points for 4 < κ < 8 and when κ ≥ 8 the curve is a space-filling curve. These curves are also proved or conjectured to be the scaling limit of some two-dimensional lattice models in statistical mechanics, for instance, κ = 2 corresponds to the loop-erased random walk, SLE κ with κ = 8/3 is conjectured to be the scaling limit of self-avoiding random walks, κ = 4 corresponds to the path of the harmonic explorer and contour lines of the Gaussian free field, SLE κ with κ = 6 is the scaling limit of critical percolation on the triangular lattice.... As was remarked in [START_REF] Gregory | Conformally invariant processes in the plane[END_REF] (Remark 4.18 and Section 4.3), if U : (-∞, +∞) → R is a continuous function then (1.3) with λ(t) = e iU (t) can be solved for time variable t ∈ (-∞, +∞), or equivalently, (1.4) can be solved for t ∈ (-∞, +∞). In the equation (1.8) of the definition of interior radial SLE, one may consider the driving function λ(t) = e i √ κBt with a two-side Brownian motion B t , -∞ < t < +∞. By following the same arguments, one can have an analogue of Lemma 1 in [START_REF] Beliaev | Harmonic measure and sle[END_REF] (where the authors deal with the exterior radial SLE) for the interior version, i.e, the processes f t = g -1 t and g -t have the same law (up to conjugation by e i √ kBt ). We then redefine a radial SLE as ft (z) := g -t (z) 

(law) = e -i √ kBt g -1 t (e i √ kBt ), t ∈ R. ( 1 
(law) = f 0 (z).
Since SLE is a conformally invariant process, the exterior SLE κ map ft and the interior SLE κ map f t are related by the inversion ft (z)

(law) = 1 f t ( 1 z ) , z ∈ ∆.
A generalization of Schramm-Loewner Evolution, so-called Lévy-Loewner Evolution, is also concurrently investigated. These are stochastic processes defined to be solutions of the Loewner equations with the driving function λ(t) = e iLt , where L t is a Lévy process. Lévy processes generalize Brownian motions since they are assumed to satisfy only the two properties of Brownian motion: Stationary and Markov property. The essential difference with Brownian motions is that jumps are then allowed. The characteristic function of a Lévy process L t has the form E(e iξLt ) = e -tη(ξ) , (1.12) where η (called the Lévy symbol) is a continuous complex function of ξ ∈ R, satisfying (in addition to necessary Bchner-type conditions) η(0) = 0, and η(-ξ) = η(ξ).

In the case of SLE κ , the corresponding Lévy symbol is

η(ξ) = κξ 2 2 .
We denote

η k := η(k), k ∈ Z.
Chapter 2

GENERALIZED MOMENTS OF SLE

2.1 Logarithmic coefficients of SLE

Introduction

Let f be a univalent function in the class S then one can define the logathimic function

log f (z) z = 2 ∞ n=1 γ n z n .
The coefficients γ n , called logarithmic coefficients of f (z), plays an important role in the theory of univalent functions as well as the geometric functions theory. A classical result on logarithmic coefficients is the Milin's conjecture which provides an inequality involving the these coefficients. This inequality possesses an special importance because it is a key link in the frame of de Brange's proof of the Bieberbach's conjecture on coefficients of univalent functions in the unit disk. It is known that before de Branges, many methods were applied to attack the Bieberbach's conjecture but no one could completely prove it. Even so, the early approaches provided key ideas to the complete proof of de Branges. One of these contributions was made by Littlewood and Paley in 1932 when they showed that for an odd univalent function h(z) = ∞ n=1 c n z n in S, there exists a positive constant A independent to h and n such that

|c n | ≤ A.
They rather confidently conjectured that the universal bound A is 1 reached for the square root transform of the Koebe function. It is remarkable that if the conjecture of Littlewood and Paley is true then it immediately implies the Bieberbach's conjecture because the coefficients of a univalent function f (z) = ∞ n=1 a n z n is related to those of its square root transformation z f (z 2 )/z 2 = ∞ k=1 c 2k-1 z 2k-1 , which is an odd function, by

a n = n k=1 c 2(n-k)+1 .c 2k-1 .
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However, by using Loewner's method Fekete and Sgezö in 1933 could showed that max Although the original conjecture of Littlewood and Paley was wrong, their idea of estimating the coefficients of an univalent functions through those of its square root transform was very valuable. This idea was caught by Roberson and in 1936 he gave a weaker conjecture for coefficients c n of odd functions in

S n k=1 |c 2k-1 | 2 ≤ n,
which also implies the Bieberbach's conjecture as a consequence of Cauchy-Schwarz inequality. In order to find the solution to Bieberbach's conjecture, the next step should then be attacking the Roberson's conjecture. For this step, principle contributions is due to the two soviet mathematicians Lebedev and Milin. In their works on the relations between the Taylor series of a function and that of its logarithm, Lebedev and Milin proved that: If ψ(z) = ∞ k=0 β k z k with β 0 = 1 has positive radius of convergence, then the same is true for ϕ(z) := log ψ(z) = ∞ k=1 α k z k , and the following coefficient relation is valid:

1 n + 1 n k=0 |β k | 2 ≤ exp 1 n + 1 n k=1 (n + 1 -k) k|α k | 2 - 1 k .
The equality holds for Koebe function and its rotated versions. This fact together with the fact that both Roberson's conjecture and Lebedev-Milin inequality state about upper bounds for means of quadratic moments suggested to Milin an approach to the Roberson's conjecture. We, for a univalent function

f ∈ S, set h(z) = z f (z 2 )/z 2 = ∞ k=1 c 2k-1 z 2k-1 and log f (z) z = 2 ∞ n=1 γ n z n . From the definitions, one have log h(z) z = 1 2 log f (z 2 ) z 2 = ∞ n=1 γ n z 2n .
The Lebedev-Milin inequality then implies

1 n + 1 n+1 k=1 |c 2k-1 | 2 ≤ exp 1 n + 1 n k=1 (n + 1 -k) k|γ k | 2 - 1 k .
Here if we make the following assumption

n k=1 (n + 1 -k) k|γ k | 2 - 1 k ≤ 0,
then it is followed that

1 n + 1 n+1 k=1 |c 2k-1 | 2 ≤ 1.
This is exactly the inequality conjectured by Roberson. The assumed essential inequality is called Milin's conjecture. The famous proof of Bieberbach's conjecture 2.1. LOGARITHMIC COEFFICIENTS OF SLE established by de Branges in 1984 has the above approach as its frame. He indeed proved the Milin's conjecture.

In the framework of the Schamm-Loewner evolution, the studying of logarithmic coefficients of SLE maps was started by [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF]. The authors firstly realized that one can obtain an differential equation satisfied by the logarithmic function log ft(z) z of the SLE map f t (z) from the Loewner's equation [START_REF] Beliaev | Integral means spectrum of whole-plane sle[END_REF]. This equation then gives ordinary differential equations in time variable whose solutions are the logarithmic coefficients. By mean of the strong Markov property of Brownian process, they calculated the expectations of some first logarithmic coefficients as well as the expectations of their second moment. A theorem which states about explicit formulas for expected logarithmic coefficients of SLE maps and its proof were also eshtablised. In this section, we claim to continue the work [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF], namely:

-In the first part of the section, we will give explicit formulas for the expected logarithmic coefficients of a Lévy-Loewner evolution. This result generalizes the main theorem in [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF]. -In the rest, we will exactly formulate the expectations of the second moments of logarithmic coefficients of SLE 2 which are involved in a theorem and make a sketch for its proof. With this result we revisit the famous Milin's conjecture.

Expected logarithmic coefficients

We recall the calculations made in [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF] to obtain the expectations of some first logarithmic coefficients of SLE κ maps. The notation f t (z) will stand for the wholeplane SLE map at time t throughout this chapter except that sometimes, it will be used to denote LLE maps in parts concerning Lévy-Loewner evotution. If h(z) := log ft(z) z then the derivatives of h(z) with respect to t and z are respectively

ḣ = ḟt f t , h ′ = f ′ t f t - 1 z ,
where ḣ, h ′ are used to replace ∂h ∂t , ∂h ∂z for reasons of concision. From Loewner equation (1), one gets an equation satisfied by h

ḣ = zh ′ λ(t) + z λ(t) -z + λ(t) + z λ(t) -z . ( 2 

.1)

Assume that h has the Taylor series

log f t (z) z = t + 2 n≥1 γ n z n .
The logarithmic Loewner equation (2.1) then gives us differential recurrences of γ n , namely,

γ1 (t) -γ 1 (t) = λ(t), (2.2 
) k + δ) for all n ≥ 1, where δ = 0.3118... is the Milin constant, as a consequence of the well-known Milin's lemma [START_REF] Pl Duren | Univalent functions[END_REF]. Therefore by integrating both sides of (2.4), (2.5) on [0, +∞) one arrive at

γn (t) -nγ n (t) = 2 n-1 k=1 kγ k (t)λ(t) n-k + λ(t) n , n ≥ 2. ( 2 
γ 1 (t) = -e t ∞ t e -s λ(s)ds, (2.6 
)

γ n (t) = -e nt 2 n-1 k=1 k ∞ t e -ns γ k (s)λ(s) n-k ds + ∞ t e -ns λ(s) n ds , n ≥ 2. (2.7)
Next, in order to obtain the expectation of a paticular γ n (t) one should notice that the integrals appearing in (2.6), (2.7) can be written as the linear combination of integrals of the form

∞ t ds 1 e -iα 1 √ κBs 1 -β 1 s 1 ∞ s 1 ds 2 e -iα 2 √ κBs 2 -β 2 s 2 ... ∞ s k-1 ds k e -iα k √ κBs k -β k s k . (2.8) 
By mean of the Fubini's theorem, these multiple integrals are integrals on the do-

mains {t ≤ s 1 ≤ s 2 ≤ ... ≤ s k < +∞} of the k-variable function e -iα 1 √ κBs 1 -iα 2 √ κBs 2 ...-iα k √ κBs k e -β 1 s 1 -β 2 s 2 ...-β k s k .
One may write this function as

e -iθ 1 √ κ(Bs 1 -Bs 2 ) e -iθ 2 √ κ(Bs 2 -Bs 3 ) ...e -iθ n-1 √ κ(Bs n-1 -Bs n ) e -iθn √ κBs n e -β 1 s 1 -β 2 s 2 ...-β k s k
and then respectively use the strong Markov property, the stationary property as well as the characteristic function of Brownian motion to obtain the expectation of the integrals (2.8) and therefore of γ n (t). For instance, one has, for n = 1,

E(γ 1 (t)) = E -e t ∞ t e -i √ κBs-s ds = -e t ∞ t E(e -i √ κBs )e -s ds = -e t ∞ t e -ks 2 e -s ds = - 2 κ + 2 e -κt 2 .
In the case of n = 2, we can more clearly see the steps of the process mentioned above:

E(γ 2 (t)) = E -e 2t 2 ∞ t e -i √ κBs-2s γ 1 (s)ds + ∞ t e -i2 √ κBs-2s ds = E -e 2t -2 ∞ t e -i √ κBs 1 -s 1 ds 1 ∞ s 1 e -i √ κBs 2 -s 2 ds 2 + ∞ t e -i2 √ κBs-2s ds = E -e 2t -2 ∞ t ∞ s 1 e -i √ κ(Bs 1 -Bs 2 ) e -2i √ κBs 2 e -s 1 -s 2 ds 2 ds 1 + ∞ t
e -i2 √ κBs-2s ds .

Since the strong Markov property of Brownian motion, i.e, B s 1 -B s 2 and B s 2 are independent for all s 1 > s 2 ≥ 0, it is implied that E(e -i √ κ(Bs 1 -Bs 2 ) e -2i √ κBs 2 ) = E(e -i √ κ(Bs 1 -Bs 2 ) )E(e -2i √ κBs 2 ) and therefore

E(γ 2 (t)) = -e 2t -2 ∞ t ∞ s 1 E(e -i √ κ(Bs 1 -Bs 2 ) )E(e -2i √ κBs 2 )e -s 1 -s 2 ds 2 ds 1 + ∞ t E(e -i2 √ κBs) e -2s ds = -e 2t -2 ∞ t ∞ s 1 e -κ(s 1 -s 2 ) 2 e -2κs 2 e -s 1 -s 2 ds 2 ds 1 + ∞ t E(e -2κs e -2s ds = - κ -2 2(κ + 1)(κ + 2) e -2κt .
We used the stationary of Brownian motion: for B s 1 -B s 2 has the same law as

B s 1 -s 2 for s 1 ≥ s 2 ≥ 0.
By the same method, one can also obtain

E(γ 3 (t)) = - (κ -2)(κ -1) 2(κ + 1)(κ + 2)( 9κ 2 + 3) e -9κt 2 .
In [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF], the authors looked at the above specific cases and relized that

E(γ 1 (t)) = - κ 2 -1 κ 2 + 1 e -κt 2 κ 2 -1 , E(γ 2 (t)) = - 4κ 2 -2 4κ 2 + 2 κ 2 -1 κ 2 + 1 e -2κt 4κ 2 -2 , E(γ 3 (t) = - 9κ 2 -3 9κ 2 + 3 4κ 2 -2 4κ 2 + 2 κ 2 -1 κ 2 + 1 e -9κt 2 9κ 
2 -3 This fact led them to the following formulation for which they then also gave a proof: Theorem 2.1.1. (Le). Let (f t (z)) t≥0 , z ∈ D, be the interior Schramm-Loewner whole-plane process driven by λ(t) = e i √ κBt in Eq. (1). We write

log f t (z) z = t + 2 n≥1 γ n (t)z n . Then E(γ n (t)) = - n-1 j=0 (n-j) 2 κ 2 -(n -j) (n-j) 2 κ 2 + (n -j) × e -n 2 t 2 n 2 κ 2 -n .
We now introduce a generalization of Theorem 2.1.1:

Theorem 2.1.2. Let (f t ) t≥0 be the interior Loewner whole-plane process driven by the Lévy process L t with real Lévy symbol η and η j ≥ 0 for all positive integers j. We write

log f t (z) z = t + 2 n≥1 γ n (t)z n .
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Then, the logarithmic function with stochastically rotated argument log ft(e iL t z) e iL t z has the same law as log f 0 (z) z up to a difference t, i.e., e niLt γ n (t)

(law) = γ n (0). Setting γ n = γ n (0), we have E(γ 1 ) = - 1 η 1 + 1 , E(γ n ) = - n-1 k=1 η k -k n k=1 η k + k , n ≥ 2.
The idea of our proof for this theorem originates in the proof of Theorem 3.1 in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF].

Proof. Recall that the Loewner equation for Lévy-Loewner maps f t (z) has the same type as that of SLE maps. The difference between them is just that in the Lévy setting, the driving function involves an Lévy process, namely λ(t) = e -iLt , instead of a Brownian motion. The equations (2.2) and (2.3) of logarithmic coefficients are thus obtained by the same arguments as in the SLE case. For n = 1, since the reservation of the validity of (2.2) one also has that of (2.6). Recall that a Lévy process has a strong Markov property, which states that: ∀s ≥ t, L s (law) = L t + Ls-t , where Ls ′ is an independent Lévy process, also started at L0 = 0. The equation (2.6) is, by a change of variable s → s + t, rewritten as

γ 1 (t) (law) = -e -Lt ∞ 0 e -s e -i Ls ds (law) = e -Lt γ 1 (0).
(2.9)

The expectation of γ 1 (0) can be obtained by setting t = 0 in (2.6) and making a short calculation of integral:

E(γ 1 (0)) = E -e t ∞ 0 e -iLs-s ds = -e t ∞ 0 E(e -iLs )e -s ds = -e t ∞ 0 e -η 1 s e -s ds = - 1 η 1 + 1 e -η 1 t .
In order to deal with the case of n ≥ 2, we now put u n (t) := γ n (t)e -nt and X t := e -t-iLt . From the equation (2.3), we have

un (t) = 2 n-1 k=1 kX n-k t u k (t) + X n t , n ≥ 2. (2.10) It is then implied that for n ≥ 3, un (t) = X t [ un-1 + 2(n -1)u n-1 ].
(2.11)
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On the other hand, as a consequence of the combination of (2.10) and the fact that u1 (t) = X t which is implied by (2.2), the identity (2.11) also holds for n = 2. Now, by considering u n (t) of the form

u n (t) = - +∞ t dsX s v n (s), (2.12) 
we have v 1 (s) = 1 and from (2.11),

v n (t) = X t v n-1 (t) -2(n -1) +∞ t dsX s v n-1 (s), n ≥ 2. (2.13)
Let us define multiplicative and integral operators

X v(t) := X t v(t), (2.14) 
J v(t) := - +∞ t dsX s v(s). (2.15)
Then (2.12) and (2.13) permit us to rewrite u n (t), for n ≥ 2, as

u n (t) = J v n (t) = J • n-1 k=1 •(X + 2kJ ) • ✶, (2.16) 
where ✶ is the constant function of value 1.

By making again use of the strong Markov property of Lévy process, we have that X t satisfies the identity in law:

X s (law) = X t Xt-s , s ≥ t, (2.17) 
where Xs ′ := e -s ′ -Ls ′ , s ′ ≥ 0, is an independent copy of that process, with X0 = 1. The operator J (2.15) can be rewritten as

J v(t) (law) = -X t +∞ 0 ds Xs v(s + t) (2.18) = X • J v(t), (2.19) with J v(t) := - +∞ 0
ds Xs v(s + t). By iteration of the use of Markov property, Eq. (2.16) can be written as

u n (law) = J • [X (1 + 2(n -1) J [n-1] )] • ... • [X (1 + 2 J [1] )] • ✶ (2.20) (law) = J • n-1 k=1 • [X (1 + 2k J [k] )] • ✶, (2.21)
where the integral operators

J [k] , k = 1, ..., n -1, involve successive independent copies, X[k] s k , k = 1, ..., n -1,
of of the original exponential Lévy process X s . We therefor arrive at the following explicit representation of the solution (2.16):

u n (t) (law) = - +∞ t dsX n s n-1 k=1 1 -2k +∞ 0 ds k ( X[k] s k ) k . (2.22) 2.
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Using again the identity in law (2.17) in (2.22), we arrive at

e inLt γ n (t) (law) = - +∞ 0 ds Xn s n-1 k=1 1 -2k +∞ 0 ds k ( X[k] s k ) k (law) = γ n (0). (2.23)
All factors in (2.23) involve successive independent copies of the Lévy process, and their expectations can now be taken independently. Recalling that the characteristic function of a Lévy process is E(e iξLt ) = e -tη(ξ) , we then have

E[( Xs ) k ] = e -(η k +k)s . Thus, for n ≥ 2 E[γ n (0)] = - +∞ 0 dsE[ Xn s ] n-1 k-1 1 -2k +∞ 0 ds k (E[ X[k] s k ) k ] = - 1 η n + n n-1 k=1 1 - 2k η k + k = - n-1 k=1 η k -k n k=1 η k + k . (2.24) Remark 2.1.1. Because e niLt γ n (t) (law)
= γ n (0) and L t is independent to L 0 (therefore e -niLt is independent to γ n (0) for all n ≥ 1), the expectation of γ n (t) can be obtained as

E(γ 1 (t)) = E(γ 1 (0))E(e -iLt ) = - 1 η 1 + 1 e -tη 1 , (2.25) 
E(γ n (t)) = E(γ n (0))E(e -niLt ) = - n-1 k=1 η k -k n k=1 η k + k e -tηn , n ≥ 2. (2.26)
The results in [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF] turn out to be consequences by the Brownian setting η n = κn 2 2 .

Moment of order 2

The arguments in the first part of section 2.1.2 does not only make one able to evaluate the expectations of a particular SLE logarithmic coefficient but also the expectation of its second moment. While a logarithmic coefficient is the linear combination of multiple integrals of the form (2.8), the second moment of this coefficient is a linear combination of products of such integrals with complex conjugate of others. Each of such products may of course be written as the sum of integrals (2.8).
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Therefore the problem of evaluating the expectation of second moment of logarithmic coefficients turns back to that of calculating the expectations of integrals of the form (2.8), which one can do with given steps using the elementary properties of Brownian motion. By this way, the followings were obatined in [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF] 

E(|γ 1 (t)| 2 ) = 2 κ + 2 , E(|γ 2 (t)| 2 ) = κ 2 + 16κ + 12 4(κ + 1)(κ + 2)(κ + 6)
.

The independence of these expectations to t can be justified by Theorem 2.1.2 which

states that e ni √ κBt γ n (t)

(law)
= γ n (0). Follow the preceding section, we expect that a general formula can be found from specific cases. However, a essential difficulty appears in the calculation: A great number of integrals (2.8) to evaluate! If the linear representation of γ n (t) has k integrals of the form (2.8), its second moment contains k 2 products of these integrals with the complex conjugate of others. Moreover, if a such product is the product of an integral of a k-variable function with the conjugate of that of an l-variable function then this product is the sum of C k k+l integrals of the form (2.8). The total number of integrals becomes large and quickly increases in n. We thus need helps from computers. There is a computer programming, called dynamic programming1 , which allows us more quickly evaluate our expectations. This programming was used to solve a similar problem in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. Although we, with helps of computers, obtained values for some specific cases, we have not touched a general formula for all n and κ yet. It maybe impossible to find that formula. Interestingly, with κ = 2 we obtain remarkable values of expectations: for n = 1...5

E(|γ n (0)| 2 ) = 1 2n 2 .
(2.27)

We generally formulate this fact in the following theorem Theorem 2.1.3. Let (f t (z)) t≥0 , z ∈ D, be the interior Schramm-Loewner wholeplane process driven by λ(t) = e i √ κBt in Eq. (1) and let f (z

) := f 0 (z), such that log f (z) z = 2 n≥1 γ n z n ; (2.28) then, for κ = 2, E(|γ n | 2 ) = 1 2n 2 , ∀n ≥ 1. Proof.
One firstly differentiates both sides of (2.28) to get

d dz log f (z) z = f ′ (z) f (z) - 1 z . ( 2 

.29)

This equation implies the Taylor series of the moment of order

2 |zf ′ (z)/f (z)| 2 : z f ′ (z) f (z) 2 = 1 + 2 n≥1 nγ n (z n + zn ) + n≥1 m≥1
nmγ n γm z n zm .

(2.30)

MOMENT PROBLEM AND MARTINGALE METHOD

Observe that the coefficient of z n zn in the right-hand side of (2.30) is

n 2 |γ n | 2 . One thus has the value of E(|γ n | 2 ) for all n ≥ 1 whenever he knows E(|zf ′ (z)/f (z)| 2 ).
In the next section where generalized moments of SLE map are considered, we will show Theorem 2.1.4. Let f be the interior whole-plane SLE κ map, in the same setting as in Theorem 2.1.3; then for κ = 2,

E z f ′ (z) f (z) 2 = (1 -z)(1 -z) 1 -z z .
Since Theorem 2.1.4, one has the series development

E z f ′ (z) f (z) 2 = (1 -z)(1 -z) (1 -z z) = 1 - n≥0 z n+1 zn - n≥0 z n zn+1 + 2 n≥1 z n zn . (2.31)
A identification of the coefficients in z n zn of (2.30) and (2.31) finally leads us to

E(|γ n | 2 ) = 1 2n 2 , n ≥ 1.
Remark 2.1.2. By identifying the other coefficients of (2.30) and (2.31), one gets

E(γ 1 ) = -1/2, E(γ n ) = 0, n ≥ 2, E(γ n γn+1 ) = - 1 n(n + 1) , E(γ n γn+k ) = 0, n ≥ 1, k ≥ 2, Remark 2.1.3. Since Theorem 2.1.3, one have for SLE 2 E n m=1 m k=1 k|γ k | 2 - 1 k = - 1 2 n m=1 m k=1 1 k = - n + 1 2 n+1 k=2 1 k < 0,
which confirms the validity "in expectation" of the Milin conjecture.

Moment problem and Martingale method

A rich algebraic structure of whole-plane SLE and Belyaev-Smirnov equations

In their work [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF] of revisiting the Bieberbach conjecture in the framework of interior whole-plane SLE and LLE, the authors performed computations of E(|a n | 2 ) for small n where a n are the Taylor coefficients of the interior whole-plane SLE map at time 0

f (z) := f 0 (z) = z + ∞ n=2 a n z n .
(2.32)

Since the obtained results, they then conjectured that: ∀n ≥ 2

E(|a n | 2 ) = 1 for κ = 6 (2.33) E(|a n | 2 ) = n for κ = 2 (2.34)
This conjecture was proved by I.Loutsenko in [START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF] (see also [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF]). He used the Hasting's method [START_REF] Matthew | Exact multifractal spectra for arbitrary laplacian random walks[END_REF] to derive a differential equation obeyed by the function

F (z, z) = E(f (z) p 2 f (z) p 2
) with parameter p ∈ R, which he called the correlation function.

Using ∂ := ∂ z , ∂ := ∂ z , this differential equation is written as - κ 2 (z∂ -z ∂) 2 F + z + 1 z -1 z∂F + z + 1 z -1 z ∂F -p 1 (z -1) 2 + 1 (z -1) 2 -2 F = 0. (2.35)
It is easy to see that if one can solve Eq. (2.35) in the case of p = 2, corresponding to

E(|f (z)| 2 ), then explicit formulas of E(|a n | 2 )
are obtained for all n by a identification of coefficients. Loutsenko considered the series form of the correlation function and transformed the differential equation into recursions of coefficients. He indeed showed that these recursions are solvable for κ = 6, 2 and arrived at (2.33),(2.34).

After their earlier draft [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF], B.Duplantier, TTN.Nguyen, TPC.Nguyen and M. Zinsmeister [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] used a different method to obtain the same differential equation (2.35) as in [START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF]. This method is based on a martingale argument and uses the Markov property of the SLE map as well as Lemma 1.4.2 as important ingredients. Namely, the authors consider the martingale

E(| f ′ t (z)| p |F s )
, where ft is the (conjugate, inverse) interior radial SLE κ map at time t defined by (1.9) and F s denotes the σ-algebra generated by {B τ : τ ≤ s}. By using the Markov property, they showed that

E(| f ′ t (z)| p |F s ) = | f ′ s (z)| p F (z s , t -s) with F (z, t) = E(| f ′ t (z)| p ), z s = fs (z)/λ(s).
The fact that the ds drif term vanishes in the Itô derivative of a martingale made them able to obtain an equation obeyed by F . An application of Lemma 1.4.2 on this equation finally led to Eq. (2.35). It is also noted in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] that the variables z and z can be considered as two independent complex variables in (2.35). Therefore, by setting z = 0, one has an equation satisfied by

F (z, 0) = E[(f ′ 0 (z)) p/2 ] κ 2 (z∂) 2 F (z, 0) + z + 1 z -1 z∂F (z, 0) -p 1 (z -1) 2 -1 F (z, 0) = 0.
(2.36)

The authors then considered special forms of solutions of (2.36), (2.35) and proved the following 

E[(f ′ 0 (z)) p/2 ] = (1 -z) α , (2.37) E[|f ′ 0 (z)| p ] = (1 -z) α (1 -z) α (1 -z z) β , (2.38)
for the special sets of exponents p = κα(α + 1)/6 = (6 + κ)(2 + κ)/8κ, with α = (6 + κ)/2κ and β = κα 2 /2 = (6 + κ) 2 /8κ.

MOMENT PROBLEM AND MARTINGALE METHOD

Obviously, the equation (2.33) and (2.34) are consequences of this theorem. Note that Eq. (2.38) was also obtained by Loutsenko and Yermolayema in [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF].

The above host of closed form results hints that the SLE κ process, in its interior whole-plane version, has a rich algebraic structure. It is also notied that in order to derive these closed form results, differential equations obeyed by the moments

E[(f ′ 0 (z)) p/2 ] or E[|f ′ 0 (z)| p ],
called Belyaev-Smirnov equations, play an important role. The denomination comes from the fact that these equations (as well as the martingale method) were originally considered by D.Belyaev and S.Smirnov [START_REF] Beliaev | Harmonic measure and sle[END_REF] to study the average integral means spectrum of the exterior whole-plane SLE κ map. Since the Belyaev-Smirnov equations encode the expected moments of SLE κ maps, they are not only useful for studying coefficient problems in the framework of SLE processes but also for studying other problems concerning moments of the derivative of SLE κ maps, such as to determine integral mean spectra.

Martingale method

In this section, we will reintroduce the martingale method by using it to compute some expectations which are connected to the logarithmic coefficients of SLE κ maps. In particular, we will prove Theorem 2.1.4, an important ingredient in the proof of Theorem 2.1.3.

A martingale computation

Proposition 2.2.1. Let f (z) = f 0 (z) be the interior whole-plane SLE 2 map at time 0, in the same setting as in Theorem 2.1.3; we then have

E z f ′ (z) f (z) = 1 -z.
A consequence of Proposition 2.2.1 is explicit formulas of the expected logarithmic coefficients of the SLE 2 map. Namely, one may multiply the both sides of (2.29) by z and then identifies the Taylor coefficients of their expectations to derive Corollary 2.2.1. Let f (z) be the whole-plane SLE κ map, in the same setting as in Theorem 2.1.3; then for κ = 2, We now give the proof of Proposition 2.2.1:

E(γ n ) = -1/2, n = 1, 0, n ≥ 2. Remark 2.
Proof. We firstly define 

G(z) := E z f ′ (z) f (z) . ( 2 
G(z, t) := E z f ′ t (z) ft (z) , (2.40) 
where ft is a modified radial SLE map at time t defined by (1.9). Owing to Lemma 1.4.2, we have

lim t→+∞ G(z, t) = G(z). (2.41)
We then use a martingale technique to obtain an equation satisfied by G(z, t).

For s ≤ t, define M s := E f ′ t (z) ft(z)
|F s , where F s is the σ-algebra generated by {B u , u ≤ s}. (M s ) s≥0 is by construction a martingale. Because of the Markov property of SLE, we have

M s = E f ′ t (z) ft (z) |F s = E f ′ s (z) λ(s) f ′ t-s ( fs (z)/λ(s)) ft-s ( fs (z)/λ(s)) |F s = f ′ s (z) fs (z) E fs (z) λ(s) f ′ t-s ( fs (z)/λ(s)) ft-s ( fs (z)/λ(s)) |F s = f ′ s (z) fs (z) G(z s , τ ),
where z s := fs (z)/λ(s), and τ := ts.

We will need the derivatives of f ′ s , f ′ s and z s . From Eq. (1.10), we have

∂ s f ′ s = ∂ z ∂ s fs = ∂ z fs fs + λ(s) fs -λ(s) = f ′ s fs + λ(s) fs -λ(s) - 2λ(s) fs ( fs -λ(s)) 2 = f ′ s 1 - 2 (1 -z s ) 2 ,
(2.42)

∂ s fs = fs fs + λ(s) fs -λ(s) = fs z s + 1 z s -1 , (2.43 
)

dz s = z s z s + 1 z s -1 - κ 2 ds -iz s √ κdB s . (2.44)
Consider M s as an Itô drift-diffusion process which is the composition of a twice differentiable scalar function and the vector ( f ′ s , fs , z s ) of Itô processes, then the coefficient of the ds-drift term of the Itô derivative of M s is obtained from the above as,

f ′ s (z) fs (z) - 2z s (1 -z s ) 2 + z s z s + 1 z s -1 - κ 2 ∂ zs -∂ τ - κ 2 z 2 s ∂ 2 zs G(z s , τ ), (2.45) 
and vanishes by the (local) martingale property. Because fs is univalent, f ′ s does not vanish in D, therefore the bracket above vanishes.

MOMENT PROBLEM AND MARTINGALE METHOD

Owing to the existence of the limit (2.41), we can now take the τ → +∞ limit in the above, and obtain the ODE,

P(∂)[G(z)] := - 2z (1 -z) 2 G(z) + z z + 1 z -1 - κ 2 G ′ (z) - κ 2 z 2 G ′′ (z) (2.46) = - 2z (1 -z) 2 + z z + 1 z -1 ∂ z - κ 2 (z∂ z ) 2 G(z) = 0.
We have exchanged the limit (2.41) and the derivatives ∂ z , ∂ 2 z , ∂ τ . It is justified by Lemma 1.4.2 and the dominated convergence theorem where the domination comes from Koebe distortion theorem.

Following Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], we now look for solutions to Eq. (2.46) of the form ϕ α (z) := (1z) α . We have

P(∂)[ϕ α ] = A(2, 2, α)ϕ α + B(2, α)ϕ α-1 + C(2, α)ϕ α-2 ,
where, in anticipation of the notation that will be introduced in Section 2.3 below,

A(2, 2, α) := α - κ 2 α 2 , B(2, α) := 2 -3 + κ 2 α + κα 2 , C(2, α) := -2 + 2 + κ 2 α - κ 2 α 2 ,
with, identically, A + B + C = 0. The linear independence of ϕ α , ϕ α-1 , ϕ α-2 thus shows that P(∂)[ϕ α ] = 0 is equivalent to A = B = C = 0, which yields κ = 2, α = 1, and G(z) = 1z.

Proof of Theorem 2.1.4

As in section 2.2.2.1, we firstly introduce the function

G(z, z) = E z f ′ (z) f (z) 2 , (2.47) 
and an auxiliary, time-dependent, radial variant of G 

G(z, z) = E z f ′ (z) f (z) 2 . ( 2 
M s = E f ′ t (z) ft (z) 2 |F s = E f ′ s (z) λ(s) f ′ t-s ( fs (z)/λ(s)) ft-s ( fs (z)/λ(s)) 2 |F s = f ′ s (z) fs (z) 2 E fs (z) λ(s) f ′ t-s ( fs (z)/λ(s)) ft-s ( fs (z)/λ(s)) 2 |F s = f ′ s (z) fs (z) 2 G(z s , zs , τ ),
where z s := fs (z)/λ(s), and τ := ts.

We have that

∂ s log | f ′ s | = ∂ s ℜ(log f ′ s ) = ℜ 1 f ′ s ∂ z fs fs + λ(s) fs -λ(s) = ℜ fs + λ(s) fs -λ(s) - 2λ(s) fs ( fs -λ(s)) 2 = 1 - 1 (1 -z s ) 2 - 1 (1 -zs ) 2 ,
(2.50)

∂ s log | fs | = ∂ s ℜ(log fs ) = ℜ ∂ s fs fs = ℜ fs + λ(s) fs -λ(s) = 1 + 1 z s -1 + 1 zs -1 .
(2.51)

These equations imply that

∂ s | f ′ s | = | f ′ s |∂ s log | f ′ s | = | f ′ s | 1 - 1 (1 -z s ) 2 - 1 (1 -zs ) 2 ,
(2.52)

∂ s | fs | = | fs |∂ s log | fs | = | fs | 1 + 1 z s -1 + 1 zs -1 . (2.53)
Thank to Itô's lemma, we also have

dz s = z s z z + 1 z s -1 - κ 2 ds -iz s √ κdB s , (2.54 
) 

dz s = zs zs + 1 zs -1 - κ 2 ds + iz s √ κdB s . ( 2 
f ′ s (z) fs (z) 2 - 2 (1 -z s ) 2 - 2 (1 -zs ) 2 + 2 1 -z s + 2 1 -zs + z s z s + 1 z s -1 - κ 2 ∂ zs + zs zs + 1 zs -1 - κ 2 ∂ zs -∂ τ - κ 2 z 2 s ∂ 2 zs - κ 2 
f ′ s (z) fs (z) 2 - 2 (1 -z s ) 2 - 2 (1 -zs ) 2 + 2 1 -z s + 2 1 -zs + z s z s + 1 z s -1 ∂ zs + zs zs + 1 zs -1 ∂ zs -∂ τ - κ 2 (z s ∂ zs -zs ∂ zs ) 2 G(z s , zs , τ ). (2.57)
The (local) martingale property of the martingale M s implies that the above quantity vanishes. Because fs is univalent, f ′ s does not vanish in D, therefore the bracket above vanishes.

We now take the τ → +∞ limit in the above and make use of the limit (2.49) to arrive at the PDE,

P(D)[G(z, z)] = - κ 2 (z∂ -z ∂) 2 G - 1 + z 1 -z z∂G - 1 + z 1 - z z ∂G + - 2 (1 -z) 2 - 2 (1 -z) 2 + 2 1 -z + 2 1 -z G = 0. (2.58)
Following again Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], we look for solutions to Eq. (2.58) of the form ϕ α (z)ϕ α (z)P (z z) where ϕ α (z) := (1z) α . We have

P(∂)[ϕ α φα P ] =z zϕ α-1 φα-1 κα 2 P -2(1 -z z)P ′ + (A(2, 2, α)ϕ α + B(2, α)ϕ α-1 + C(2, α)ϕ α-2 ) φα P + A(2, 2, α)ϕ α + B(2, α)ϕ α-1 + C(2, α)ϕ α-2 ϕ α P. (2.59)
Since the consideration of the coefficients A(2, 2, α), B(2, α), C(2, α) in section 2.2.2.1, when κ = 2, α = 1 the two last lines of (2.59) vanish. We now consider the first line, in particular, the ODE

κα 2 P (X) -2(1 -X)P ′ (X) = 0.
(2.60)

It is followed from the definition of G that G(0, 0) = 1, therefore P (0) = 1. The ODE (2.60) with the initial condition P (0) = 1 can be solved to obtain the unique solution

P (X) = 1 (1 -X) κα 2 2 
.

(2.61)

This fact together with the later fact on the vanishing of the two last lines of (2.59) leads us to the conclusion of Theorem 2.1.4.

SLE one-point function

Let us now turn to the natural generalization of Proposition 2.2.1.

Theorem 2.3.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ map at time zero, in the same setting as in Theorem 2.1.3. Consider the curve R, defined parametrically by In addition to the origin, the q = 0 intersection point with the p-axis is at p(κ

p = - κ 2 γ 2 + 2 + κ 2 γ, 2p -q = 1 + κ 2 γ, γ ∈ R. (2.62) 2.3. SLE ONE-POINT FUNCTION (a) κ = 2 (b) κ = 6
) := (6 + κ)(2 + κ)/8κ, with p(2) = p(6) = 2 [5, 12].
On R, the whole-plane SLE κ one-point function has the integrable form,

E (f ′ (z)) p 2 (f (z)/z) q 2 = (1 -z) γ .
Remark 2.3.1. Eq. (2.62) describes a parabola in the (p, q) plane (see Fig. 2.1), which is given in Cartesian coordinates by

2κ 2p -q 2 + κ 2 -(4 + κ) 2p -q 2 + κ + p = 0, (2.63) 
with two branches,

γ = γ ± 0 (p) := 1 2κ 4 + κ ± (4 + κ) 2 -8κp , p ≤ (4 + κ) 2 8κ , q = 2p -1 + κ 2 γ ± 0 (p).
(2.64)

or, equivalently,

2p = q + 2 + κ 8κ 6 + κ ± (6 + κ) 2 -16κq , q ≤ (6 + κ) 2 16κ . (2.65)
Proof. Our aim is to derive an ODE satisfied by the whole-plane SLE one-point function,

G(z) := E z q 2 (f ′ (z)) p 2 (f (z)) q 2
, (2.66) which, by construction, stays finite at the origin and such that G(0) = 1.

SLE ONE-POINT FUNCTION

Let us introduce the shorthand notation,

X t (z) := ( f ′ t (z)) p 2 ( ft (z)) q 2 , (2.67)
where ft is the conjugate, reversed radial SLE process in D, as introduced by (1.9), and such that by Lemma 1.4.2, the limit, lim t→+∞ e t ft (z)

(law)
= f 0 (z), is the same in law as the whole-plane map at time zero. Applying the same method as in the previous section, we consider the time-dependent function

G(z, t) := E z q 2 X t (z) , (2.68) such that lim t→+∞ exp p -q 2 t G(z, t) = G(z).
(2.69)

Consider now the martingale (M s ) t≥s≥0 , defined by

M s = E(X t (z)|F s ).
By the SLE Markov property we get, setting z s := fs (z)/λ(s),

M s = X s (z) G(z s , τ ), τ := t -s. (2.70) 
As before, the partial differential equation satisfied by G(z s , τ ) is obtained by expressing the fact that the ds-drift term of the Itô differential of Eq. (2.70),

dM s = G dX s + X s d G,
vanishes. The differential of X s is simply computed from Eqs. (2.42) and (2.43) above as:

dX s (z) = X s (z)F (z s )ds, F (z) := p 2 1 - 2 (1 -z) 2 - q 2 1 - 2 1 -z . (2.71)
The Itô differential d G brings in the ds terms proportional to ∂ zs G, ∂ 2 zs G, and ∂ τ G; therefore, in the PDE satisfied by G, the latter terms are exactly the same as in the PDE (2.45). We therefore directly arrive at the vanishing condition of the overall drift term coefficient in dM s ,

X s (z) F (z s ) + z s z s + 1 z s -1 - κ 2 ∂ z -∂ τ - κ 2 z 2 s ∂ 2 z G(z s , τ ) = 0. (2.72)
Since X s (z) does not vanish in D, the bracket in (2.72) must identically vanish:

F (z s ) + z s z s + 1 z s -1 ∂ z -∂ τ - κ 2 (z s ∂ z ) 2 G(z s , τ ) = 0, (2.73) 
where we used z∂ z + z 2 ∂ 2 z = (z∂ z ) 2 . To derive the ODE satisfied by G(z) (2.66), we first recall its expression as the limit (2.68), which further implies

lim τ →+∞ exp p -q 2 τ ∂ τ G(z, τ ) = - p -q 2 G(z).
Multiplying the PDE (2.72) satisfied by G by exp( p-q 2 τ ) and letting τ → +∞, we get

P(∂)[G(z)] := - κ 2 (z∂ z ) 2 - 1 + z 1 -z z∂ z + F (z) + p -q 2 G(z) = - κ 2 (z∂ z ) 2 - 1 + z 1 -z z∂ z - p (1 -z) 2 + q 1 -z + p -q G(z) = 0.
(2.74)

We now look specifically for solutions to (2.74), together with the boundary condition G(0) = 1, of the form ϕ α (z) = (1z) α . This function satisfies the simple differential operator algebra [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] 

P(∂)[ϕ α ] = A(p, q, α)ϕ α + B(q, α)ϕ α-1 + C(p, α)ϕ α-2 , (2.75) 
where

A(p, q, α) := p -q + α - κ 2 α 2 , (2.76) 
B(q, α) := q -3 + κ 2 α + κα 2 , (2.77) C(p, α) := -p + 2 + κ 2 α - κ 2 α 2 .
(2.78)

Obviously, one has A + B + C = 0. Because ϕ α , ϕ ϕ-1 , ϕ α-2 are linearly independent, the condition P(∂)[ϕ γ ] = 0 is equivalent to the system A = B = C = 0, or equivalently A = C = 0, hence C(p, γ) = 0 and A(p, q, γ)-C(p, γ) = 2p-q-(1+κ/2)γ = 0. It yields precisely the parabola parametrization (2.62) given in Theorem 2.3.1, and has for solution (2.64).

SLE two-point function

Beliaev-Smirnov type equations

In this section, we will determine the mixed moments of moduli, E |z| q |f ′ (z)| p |f (z)| q , for (p, q) belonging to the same parabola R as in Theorem 2.3.1, and where f = f 0 is the (time zero) interior whole-plane SLE κ map.

In contradistinction to the method used in Refs. [START_REF] Beliaev | Harmonic measure and sle[END_REF][START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] for writing a PDE obeyed by E(|f ′ (z)| p ), we shall use here a slightly different approach, building on the results obtained in Section 2.3. We shall study the SLE two-point function for z 1 , z 2 ∈ D,

G(z 1 , z2 ) := E z q 2 1 (f ′ (z 1 )) p 2 (f (z 1 )) q 2 z q 2 2 (f ′ (z 2 )) p 2 (f (z 2 )) q 2 .
(2.79)

SLE TWO-POINT FUNCTION

As before, we define a time-dependent, auxiliary two-point function,

G(z 1 , z2 , t) := E   z q 2 1 ( f ′ t (z 1 )) p 2 ( ft (z 1 )) q 2 z q 2 2 ( f ′ t (z 2 )) p 2 ( ft (z 2 )) q 2   = E z q 2 1 X t (z 1 )z q 2 2 X t (z 2 ) , (2.80) 
where as above ft is the reverse radial SLE κ process 1.9, and where we used the shorthand notation (2.67). This time, the two-point function (2.79) is the limit

lim t→+∞ e (p-q)t G(z 1 , z2 , t) = G(z 1 , z2 ). (2.81)
Let us define the two-point martingale (M s ) t≥s≥0 , with

M s := E(X t (z 1 )X t (z 2 )|F s ).
By the Markov property of SLE,

E X t (z 1 )X t (z 2 )|F s = X s (z 1 )X s (z 2 ) G(z 1s , z2s , τ ), τ := t -s, (2.82) 
where

z 1s := fs (z 1 )/λ(s); z2s := fs (z 2 )/λ(s) = fs (z 2 )λ(s). (2.83) 
Their Itô differentials, dz 1s and dz 2s , are as in (2.54), (2.55)

dz 1s = z 1s z 1s + 1 z 1s -1 - κ 2 ds -i √ κ z 1s dB s , dz 2s = z2s z2s + 1 z2s -1 - κ 2 ds + i √ κ z2s dB s .
(2.84)

As before, the partial differential equation satisfied by G(z 1s , z 2s , τ ) is obtained by expressing the fact that the ds-drift term of the Itô differential of Eq. (2.82),

dM s = [dX s (z 1 )X s (z 2 ) + X s (z 1 )dX s (z 2 )] G + X s (z 1 )X s (z 2 ) d G, (2.85) 
vanishes.

The differentials of X s , X s are as in Eq. (2.71) above:

dX s (z 1 ) = X s (z 1 )F (z 1s )ds, dX s (z 2 ) = X s (z 2 )F (z 2s )ds, F (z) := p 2 - q 2 - p (1 -z) 2 + q 1 -z . ( 2 

.86)

We thus obtain the simple expression

dM s = X s (z 1 )X s (z 2 ) [F (z 1s ) + F (z 2s )] G ds + d G , (2.87) 
and the vanishing of the ds-drift term in dM s requires that of the drift term in the right-hand side bracket in (2.87), since X s (z) does not vanish in D.

SLE TWO-POINT FUNCTION

The Itô differential of G(z 1s , z2s , τ ) can be obtained from Eqs. (2.84) and Itô calculus as

d G(z 1s , z2s , τ ) =∂ 1 G dz 1s + ∂2 G dz 2s -∂ τ G ds (2.88) - κ 2 z 2 1s ∂ 2 1 G ds - κ 2 z2 2s ∂2 2 G ds + κz 1s z2s ∂ 1 ∂2 G ds,
where use was made of the shorthand notations, ∂ 1 := ∂ z 1 and ∂2 := ∂ z2 . We observe that the only coupling between the z 1s , z2s variables arises in the last term of (2.88), the other terms simply resulting from the independent contributions of the z 1s and z2s parts.

Using again the Itô differentials (2.84), we can rewrite (2.88) as

d G = -i √ κ z 1s ∂ 1 -z2s ∂2 G dB s (2.89) + z 1s + 1 z 1s -1 z 1s ∂ 1 G ds + z2s + 1 z2s -1 z2s ∂2 G ds -∂ τ G ds - κ 2 (z 1s ∂ 1 -z2s ∂2 ) 2 G ds,
where we used the obvious formal identity

(z 1 ∂ 1 ) 2 + (z 2 ∂2 ) 2 -2z 1 ∂ 1 z2 ∂2 = (z 1 ∂ 1 -z2 ∂2 ) 2 .
(2.90) At this stage, comparing the computations (2.87) and (2.89) above with those in the one-point martingale study in Section 2.3, it is clear that the PDE obeyed by G = G(z 1s , z2s , τ ) is obtained as two duplicates of Eq. (2.73), completed as in (2.90) by the derivative coupling between variables z 1s , z2s :

F (z 1s )+z 1s z 1s + 1 z 1s -1 ∂ 1 +F (z 2s )+ z2s z2s + 1 z2s -1 ∂2 -∂ τ - κ 2 (z 1s ∂ 1 -z2s ∂2 ) 2 G = 0. (2.
91)

The existence of the limit (2.81) further implies that of

lim τ →∞ e (p-q)τ ∂ τ G(z 1 , z2 , τ ) = -(p -q)G(z 1 , z2 ).
Multiplying the PDE (2.91) satisfied by G by exp((pq)τ ) and letting τ → +∞, then gives the expected PDE for G(z 1 , z2 ). It can be most compactly written in terms of the ODE (2.74) as

P(∂ 1 ) + P( ∂2 ) + κz 1 ∂ 1 z2 ∂2 G(z 1 , z2 ) = 0, (2.92) 
and its fully explicit expression is

P(D)[G(z 1 , z2 )] = - κ 2 (z 1 ∂ 1 -z2 ∂2 ) 2 G - 1 + z 1 1 -z 1 z 1 ∂ 1 G - 1 + z2 1 -z2 z2 ∂2 G (2.93) + - p (1 -z 1 ) 2 - p (1 -z2 ) 2 + q 1 -z 1 + q 1 -z2 + 2p -2q G = 0.
2.4. SLE TWO-POINT FUNCTION

Moduli one-point function

Note that one can take the z 1 = z 2 = z case in Definition (2.79) above, thereby obtaining the moduli one-point function,

G(z, z) = E |z| q |f ′ (z)| p |f (z)| q .
(2.94)

Because of Eq. ( 2.93), it obeys the corresponding ODE,

P(D)[G(z, z)] = - κ 2 (z∂ -z ∂) 2 G - 1 + z 1 -z z∂G - 1 + z 1 - z z ∂G (2.95) + - p (1 -z) 2 - p (1 -z) 2 + q 1 -z + q 1 - z + 2p -2q G = 0,
which is the generalization to q = 0 of the Beliaev-Smirnov equation (2.35) studied in Refs. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] and [START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF].

Integrable case

Lemma 2.4.1. The space of formal series

F (z 1 , z2 ) = k,ℓ∈N a k,ℓ z k 1 zℓ 2 ,
with complex coefficients and that are solutions of the PDE (2.93), is one-dimensional.

Proof. We assume that F is a solution to (2.93) with F (0, 0) = 0; it suffices to prove that, necessarily, F = 0. We argue by contradiction: If not, consider the minimal (necessarily non constant) term a k,l z k zℓ in the series of F , with a k,ℓ = 0 and k + ℓ minimal (and non vanishing). Then P(D)[F ] (2.93) will have a minimal term, equal to -a k,ℓ κ

2 (k -ℓ) 2 + k + ℓ z k 1 zℓ
2 , which is non-zero, contradicting the fact that P(D)[F ] vanishes.

As a second step, following Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], let us consider the action of the operator P(D) of (2.93) on a function of the factorized form ϕ(z 1 )ϕ(z 2 )P (z 1 , z2 ), which we write, in a shorthand notation, as ϕ φP . By Leibniz's rule, it is given by

P(D)[ϕ φP ] = - κ 2 ϕ φ(z 1 ∂ 1 -z2 ∂2 ) 2 P -κ(z 1 ∂ 1 -z2 ∂2 )(ϕ φ)(z 1 ∂ 1 -z2 ∂2 )P + κ(z 1 ∂ 1 ϕ)( z2 ∂2 φ)P -ϕ φ 1 + z 1 1 -z 1 z 1 ∂ 1 P -ϕ φ 1 + z2 1 -z2 z2 ∂2 P - κ 2 φ(z 1 ∂ 1 ) 2 ϕ + κ 2 ϕ( z2 ∂2 ) 2 φ + φ 1 + z 1 1 -z 1 z 1 ∂ 1 ϕ + ϕ 1 + z2 1 -z2 z2 ∂2 φ P + - p (1 -z 1 ) 2 - p (1 -z2 ) 2 + q 1 -z 1 + q 1 -z2 + 2p -2q ϕ φP.
Note that the operator z 1 ∂ 1 -z2 ∂2 is antisymmetric with respect to z 1 , z2 ; therefore, if we choose a symmetric function, P (z 1 , z2 ) = P (z 1 z2 ), the first line of P(D)[ϕ φP ] above identically vanishes.

One then looks for solutions to (2.93) of the particular form,

G(z 1 , z2 ) = ϕ α (z 1 )ϕ α (z 2 )P (z 1 z2 ), (2.96) 
2.4. SLE TWO-POINT FUNCTION where, as before, ϕ α (z) = (1z) α . The action of the differential operator then takes the simple form,

P(D)[ϕ α φα P ] =z 1 z2 ϕ α-1 φα-1 κα 2 P -2(1 -z 1 z2 )P ′ + P(∂ 1 )[ϕ α ] φα P + P(∂ 2 )[ φα ]ϕ α P,
where P ′ is the derivative of P with respect to z 1 z2 , and P(∂) is the so-called boundary operator (2.74) [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. The ODE, κα 2 P (x) -2(1x)P ′ (x) = 0 with x = z 1 z2 and P (0) = 1, has for solution P (z 1 z2 ) = (1z 1 z2 ) -κα 2 /2 . It is then sufficient to pick for α the value γ = γ ± 0 (p) (2.64) such that P(∂)[ϕ γ ] = 0, as obtained in the proof of Theorem 2.3.1, to get a solution of the PDE, P(D)[ϕ γ φγ P ] = 0 (2.93). By uniqueness of the solution with G(0, 0) = 1, it gives the explicit form of the SLE two-point function,

G(z 1 , z2 ) = ϕ γ (z 1 )ϕ γ (z 2 )(1 -z 1 z2 ) -κγ 2 /2 .
We thus get: Theorem 2.4.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ map in the setting of Theorem 2.1.3; then, for (p, q) belonging to the parabola R defined in Theorem 2.3.1 by Eqs. (2.62) or (2.63) or (2.64), and for any pair

(z 1 , z 2 ) ∈ D × D, E z q 2 1 (f ′ (z 1 )) p 2 (f (z 1 )) q 2 z q 2 2 (f ′ (z 2 )) p 2 (f (z 2 )) q 2 = (1 -z 1 ) γ (1 -z2 ) γ (1 -z 1 z2 ) β , β = κ 2 γ 2 .
Corollary 2.4.1. In the same setting as in Theorem 2.4.1, we have for z ∈ D,

E |z| q |f ′ (z)| p |f (z)| q = (1 -z) γ (1 -z) γ (1 -z z) β , β = κ 2 γ 2 , for γ = γ ± 0 (p) := 1 2κ 4 + κ ± (4 + κ) 2 -8κp , p ≤ (4 + κ) 2 8κ , q = 2p -1 + κ 2 γ ± 0 (p).
Let us stress some particular cases of interest. First, the p = 0 case gives some integral means of f . Corollary 2.4.2. The interior whole-plane SLE κ map has the integrable moments

E   f (z 1 ) z 1 (2+κ)(4+κ) 4κ f (z 2 ) z2 (2+κ)(4+κ) 4κ   = (1 -z 1 ) 4+κ κ (1 -z2 ) 4+κ κ (1 -z 1 z2 ) (4+κ) 2 2κ , E f (z) z (2+κ)(4+κ) 2κ = (1 -z) 4+κ κ (1 -z) 4+κ κ (1 -z z) (4+κ) 2 2κ
.

Second, taking p = q yields the logarithmic integral means we started with: 

E z 1 f ′ (z 1 ) f (z 1 ) 2+κ 2κ z2 f ′ (z 2 ) f (z 2 ) 2+κ 2κ = (1 -z 1 ) 2 κ (1 -z2 ) 2 κ (1 -z 1 z2 ) 2 κ , E z f ′ (z) f (z) 2+κ κ = (1 -z) 2 κ (1 -z) 2 κ (1 -z z) 2 κ
.

Theorem 2.1.4 describes the κ = 2 case of the latter result.

Processes with m-fold symmetry

The results of Section 2.4 may be generalized to functions with m-fold symmetry, with m a positive integer, as was studied in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. For f in class S, f [m] (z) is defined as being the holomorphic branch of f (z m ) 1/m whose derivative is equal to 1 at 0. These are the functions in S whose Taylor series is of the form f (z) = k≥0 a mk+1 z mk+1 . The m = 2 case corresponds to odd functions that play a crucial role in the theory of univalent functions.

One can also extend this definition to negative integers m, by considering then the m-fold transform of the outer whole-plane SLE as the conjugate by the inversion z → 1/z of the (-m)-fold transform of the inner whole-plane SLE:

f [m] (z) = 1/f [-m] (1/z) for m ∈ Z \ N and z ∈ C \ D. The m = -1 case is of special interest: f [-1]
maps the exterior of the unit disk onto the inverted image of f (D), which is a domain with bounded boundary. Actually, for f (z) the interior whole-plane SLE κ map considered in Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] and here, f [-1] (z -1 ) is precisely the exterior whole-plane SLE κ map introduced in Ref. [START_REF] Beliaev | Harmonic measure and sle[END_REF].

The moments,

E(|(f [m] ) ′ (z)| p ) (for m ∈ N \ {0}
), as well as their associated integral means spectra were studied in Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. Using Itô calculus, a PDE satisfied by these moments was derived for each value of m. The introduction of mixed (p, q) moments allows us to circumvent these calculations in a unified approach. To see this, notice that

(f [m] ) ′ (z) = z m-1 f ′ (z m )f (z m ) 1 m -1 .
As a consequence,

|z| q |(f [m] ) ′ (z)| p |f [m] (z)| q = |z| q+p(m-1) |f ′ (z m )| p |f (z m )| p+ q-p m ,
so that we identically have 

E |z| q |(f [m] ) ′ (z)| p |f [m] (z)| q = G(z m ; p, q m ), (2.97) 
q m = q m (p, q) := p + q -p m , ( 2 
G(z; p, q) := G(z, z) = E |z| q |f ′ (z)| p |f (z)| q , (2.99)
where we have made explicit the dependence on the (p, q) parameters of the SLE moduli one-point function (2.94) introduced in Section 2.3. From Theorem 2.4.1, we immediately get the following.

Theorem 2.5.1. Let f [m] be the m-fold whole-plane SLE κ map, m ∈ Z \ {0}, with z ∈ D for m > 0 and z ∈ C \ D for m < 0. Then,

E |z| q |(f [m] ) ′ (z)| p |f [m] (z)| q = (1 -z m ) α (1 -zm ) α (1 -(z z) m ) κ 2 α 2 ,
for (p, q) belonging to the m-dependent parabola R [m] , given in parametric form by

p = 2 + κ 2 α - κ 2 α 2 , q = m + 2 + κ 2 α - κ 2 (m + 1)α 2 , α ∈ R.
(2.100)

In Cartesian coordinates, an equivalent statement is

α = (m + 1)p -q m 1 + κ 2 , with q = (m + 1)p -m 2 + κ 4κ 4 + κ ± (4 + κ) 2 -8κp , p ≤ (4 + κ) 2 8κ ,
or,

p = q m + 1 + m (m + 1) 2 2 + κ 4κ 2m + 4 + κ ± (2m + 4 + κ) 2 -8(m + 1)κq , q ≤ (2m + 4 + κ) 2 8(m + 1)κ .
As for logarithmic coefficients, first observe that trivially, 

log f [m] (z) z = 1 m log f (z m ) z m . ( 2 
log f [m] (z) z = 2 n≥1 γ [m] n z n ; (2.102) then E(|γ [m] n | 2 ) = 1 2n 2 n = mk, k ≥ 1 0 otherwise.
We can also see this result as a corollary of Theorem 2.5.1, which, for the logarithmic case p = q, and for any value of m, yields p = q = 2 for κ = 2 as the only integrable case.

Chapter 3 INTEGRAL MEAN SPECTRUM OF SLE κ

Introduction

In this chapter we aim at generalizing to the setting of the present work the integral means spectrum analysis of Refs. [START_REF] Beliaev | Harmonic measure and sle[END_REF], [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], [START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF], [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF] concerning the wholeplane SLE. The original work by Beliaev-Smirnov [START_REF] Beliaev | Harmonic measure and sle[END_REF] dealt with the exterior version, whereas Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] and this work concern the interior case. We thus look for the singular behavior of the integral,

r∂D E |f ′ (z)| p |f (z)| q |dz|, (3.1) 
for r → 1 -, where f stands for the interior whole-plane SLE map (at time zero). The integral means spectrum β(p, q) corresponding to this generalized moment integral is the exponent such that

r∂D E |f ′ (z)| p |f (z)| q |dz| (r→1 -) ≍ (1 -r) -β(p,q) , (3.2) 
in the sense of the equivalence of the logarithms of both terms.

As mentioned in Section 1.4, it is interesting to remark that the map

f := f [-1] , ζ ∈ C \ D → f [-1] (ζ) := 1/f (1/ζ),
is just the exterior whole-plane map from C \ D to the slit plane considered by Beliaev and Smirnov in Ref. [START_REF] Beliaev | Harmonic measure and sle[END_REF]. We identically have for 0 < r < 1:

r -1 ∂D E | f ′ (ζ)| p |dζ| = r 2p-2 r∂D E |f ′ (z)| p |f (z)| 2p |dz|. (3.3) 
We thus see that the standard integral mean of order (p, q = 0) for the exterior whole-plane map studied in Ref. [START_REF] Beliaev | Harmonic measure and sle[END_REF] coincides (up to an irrelevant power of r) with the (p, q) integral mean (3.1) for q = 2p, for the interior whole-plane map.
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Remark 3.1.1. Exterior-Interior Duality. More generally, we obviously have

r -1 ∂D E | f ′ (ζ)| p | f (ζ)| q ′ |dζ| = r 2p-2 r∂D E |f ′ (z)| p |f (z)| 2p-q ′ |dz|, (3.4) 
so that the (p, q ′ ) exterior integral means spectrum coincides with the (p, q) interior integral means spectrum for q + q ′ = 2p. In particular, the (p, 0) interior derivative moments studied in Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] correspond to the (p, 2p) mixed moments of the Beliaev-Smirnov exterior map.

Hence the general setting introduced in this work unifies the integral means spectrum studies of Refs. [START_REF] Beliaev | Harmonic measure and sle[END_REF] and [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] in a broader framework, that also covers the p = q = q ′ logarithmic case, as well as the integral means of the map f (or f ) itself, in the (0, q) (or (0, -q)) case.

Modified One-Point Function

Let us now consider the modified SLE moduli one-point function,

F (z, z) := 1 |z| q G(z, z) = E |f ′ (z)| p |f (z)| q . ( 3.5) 
Because of Eq. (2.95), it obeys the modified PDE,

P(D)[F (z, z)] = - κ 2 (z∂ -z ∂) 2 F - 1 + z 1 -z z∂F - 1 + z 1 - z z ∂F (3.6) + - p (1 -z) 2 - p (1 -z) 2 + 2p -q F (z, z) = 0,
which, of course, differs from Eq. (2.95). We can rewrite it as

P(D)[F (z, z)] = - κ 2 (z∂ -z ∂) 2 F - 1 + z 1 -z z∂F - 1 + z 1 - z z ∂F (3.7) -p 1 (1 -z) 2 + 1 (1 -z) 2 + σ -1 F = 0,
in term of the important new parameter, σ := q/p -1.

(3.8)

This PDE then exactly coincides with Eq. (106) in Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], where σ was meant to represent ±1, whereas here σ ∈ R.

The value σ = +1 corresponds to the original Beliaev-Smirnov case, where the 3.1. INTRODUCTION integral means spectrum successively involves three functions [START_REF] Beliaev | Harmonic measure and sle[END_REF]:

β tip (p, κ) := -p -1 + 1 4 (4 + κ -(4 + κ) 2 -8κp), (3.9) 
for p ≤ p ′ 0 (κ) := -1 -3κ 8 ;

(3.10)

β 0 (p, κ) := -p + 4 + κ 4κ (4 + κ -(4 + κ) 2 -8κp), (3.11) 
for p ′ 0 (κ) ≤ p ≤ p 0 (κ);

β lin (p, κ) := p - (4 + κ) 2 16κ , (3.12) 
for p ≥ p 0 (κ

) := 3(4 + κ) 2 32κ . (3.13) 
As shown in Refs. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF][START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF][START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF] in the σ = -1 interior case, because of the unboundedness of the interior whole-plane SLE map, there exists a phase transition at p = p * (κ), with

p * (κ) := 1 16κ (4 + κ) 2 -4 -2 2(4 + κ) 2 + 4 = 1 32κ 2(4 + κ) 2 + 4 -6 2(4 + κ) 2 + 4 + 2 . (3.14) 
The integral means spectrum is afterwards given by

β(p, κ) := 3p - 1 2 - 1 2 1 + 2κp, for p ≥ p * (κ). (3.15) 
Since p * (κ) < p 0 (κ) (3.13), this transition precedes and supersedes the transition from the bulk spectrum (3.11) towards the linear behavior (3.12). The singularity analysis given in Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] led us to introduce the σ-dependent function

β σ + (p, κ) = (1 -2σ)p - 1 2 1 + 1 -2σκp . (3.16) 
For σ = -1, it recovers the integral means spectrum (3.15) above for the interior whole-plane SLE, while for σ = +1 it introduces a new spectrum,

β (+1) + (p, κ) = -p - 1 2 1 + 1 -2κp , (3.17) 
the relevance of which for the exterior whole-plane SLE case is analyzed in a joint work of D. Beliaev, B. Duplantier and M. Zinsmeister [START_REF] Beliaev | Integral means spectrum of whole-plane sle[END_REF].

For general real values of σ (3.8), we can rewrite (3.16) as a function of (p, q, κ),

β σ + (p, κ) = β 1 (p, q; κ) := 3p -2q - 1 2 - 1 2 1 + 2κ(p -q). (3.18)
We claim that the spectrum generated by the integral means (3.1) in the general (p, q) case will involve the standard multifractal spectra (3.9), (3.11), (3.12), that are independent of q, and also the new (p, q)-dependent multifractal spectrum (3.18).
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Phase transitions between these spectra will occur along lines drawn in the (p, q) plane.

Let us first describe the corresponding partition of the (p, q) plane into the respective domains of validity of the four spectra above. We thus need to determine the boundary curves where pairs (possibly triplets) of these spectra coincide, which are signaling the onset of the respective transitions.

Phase transition lines

The best way is perhaps to recall the analytical derivation of the various multifractal spectra as done in Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], which was based on the use of functions A (2.76), B (2.77) and C (2.78). It will be convenient to use the notation [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF],

A σ (p, γ) := - κ 2 γ 2 + γ -σp, (3.19) 
such that for σ = q/p -1 (3.8),

A σ (p, γ) = A(p, q; γ) = p -q + γ - κ 2 γ 2 , (3.20) 
as well as

B(q, γ) = q -3 + κ 2 γ + κγ 2 , (3.21) C(p, γ) = - κ 2 γ 2 + 2 + κ 2 γ -p, (3.22) 
β(p, γ) := κ 2 γ 2 -C(p, γ) = κγ 2 -2 + κ 2 γ + p, (3.23) 
where the last function, β(p, γ), is the so-called "spectrum function" [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. Recall also that this function possesses an important duality property [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], 11) and ( 12) in Ref. [START_REF] Beliaev | Harmonic measure and sle[END_REF]) are obtained from the equations (see Ref. [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]),

β(p, γ) = β(p, γ ′ ), γ + γ ′ := 2 κ + 1 2 . ( 3 
C(p, γ 0 ) = 0; β 0 = β(p, γ 0 ) = κγ 2 0 /2. ( 3 

.25)

The two solutions to (3.25) are γ ± 0 (p) as in Eq. (2.64), where the lower branch γ 0 := γ - 0 is the one selected for the bulk spectrum, β 0 (p) = 1 2 κγ - 0 (p) 2 . This spectrum (3.11) is defined only to the left of a vertical line in the (p, q) plane, as given by (see Fig. 3.1) The solutions to Eq. (3.27) are

∆ 0 := p = (4 + κ) 2 8κ , q ∈ R . ( 3 
γ σ ± (p) = 1 κ 1 ± 1 -2σκp , (3.28) 
β σ ± (p) = (1 -2σ)p - κ 2 γ σ ± (p) = (1 -2σ)p - 1 2 1 ± 1 -2σκp . (3.29)
The multifractal spectrum (3.16) is then given by the upper branch β σ + (p) [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. Note also that this spectrum is defined only for 2σκp ≤ 1, hence for points in the (p, q) plane below the oblique line (Fig. 3.1): The bulk spectrum β 0 (p) and the generalized spectrum β 1 (p, q) coincide along the arc (3.34) of red parabola between its tangency points T 0 and T 1 with ∆ 0 and ∆ 1 (thick red line). They also coincide along the infinite left branch (3.38) of the green parabola, up to its tangency point T 2 to ∆ 1 (thick green line). The β 0 (p) spectrum and the linear one β lin (p) coincide along D 0 , whereas β 1 (p, q) and β lin (p) coincide along D 1 .

∆ 1 := (p, q) ∈ R 2 , q = p + 1 2κ . ( 3 
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The Red Parabola

The parabola R of Theorems 2.3.1 and 2.4.1, which we shall hereafter call (and draw in) red (see Fig. 3.1), is given by the simultaneous conditions,

A σ (p, γ) = A(p, q, γ) = 0, C(p, γ) = 0, (3.31) 
hence also B(q, γ) = 0, which recovers the parametric form (2.62)

p = p R (γ) := 2 + κ 2 γ - κ 2 γ 2 , q = q R (γ) := 3 + κ 2 γ -κγ 2 , γ ∈ R. (3.32)
By construction, the associated spectrum β(p, γ) is therefore both of the B-S type, β ± 0 (p), and of the novel type, β σ ± (p). We successively have:

γ = γ σ -(p) = γ - 0 (p); β σ -(p) = β - 0 (p), γ ∈ (-∞, 1/κ] , (3.33) γ = γ σ + (p) = γ - 0 (p); β σ + (p) = β - 0 (p), γ ∈ [1/κ, 2/κ + 1/2] , (3.34) γ = γ σ + (p) = γ + 0 (p); β σ + (p) = β + 0 (p), γ ∈ [2/κ + 1/2, +∞) , (3.35) 
where the change of analytic branch from the first to the second line corresponds to a tangency at T 1 of the red parabola to the boundary line ∆ 1 , whereas the change from second to third corresponds to a tangency at T 0 to the vertical boundary line ∆ 0 . The interval where the multifractal spectra coincide, i.e., when β σ + (p) = β - 0 (p), is thus given by line (3.34) in the equations above.

In Cartesian coordinates, the red parabola R (3.32) has for equation (2.63).

The Green Parabola

A second parabola in the (p, q) plane, hereafter called green (see Fig. 3.1) and denoted by G, is such that the multifractal spectra β - 0 (p) and β σ + (p) = β(p, q; κ) coincide on part of it. We use the duality property (3.24) of the spectrum function [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF], and set the simultaneous seed conditions,

A σ (p, γ ′ ) = A(p, q, γ ′ ) = 0, C(p, γ ′′ ) = 0, γ ′ + γ ′′ = 2/κ + 1/2, (3.36) 
where γ ′ and γ ′′ are dual of each other and such that β(p, γ ′ ) = β(p, γ ′′ ).

Eqs. (2.76) and (2.78) immediately give the parametric form for the green parabola,

p = p G (γ ′ ) := (4 + κ) 2 8κ - κ 2 γ ′2 , q = q G (γ ′ ) := (4 + κ) 2 8κ + γ ′ -κγ ′2 , γ ′ ∈ R.
(3.37)

Along this locus, we successively have:

γ ′ = γ σ -(p), γ ′′ = γ + 0 (p); β σ -(p) = β + 0 (p), γ ′ ∈ (-∞, 0] , γ ′ = γ σ -(p), γ ′′ = γ - 0 (p); β σ -(p) = β - 0 (p), γ ′ ∈ 0, κ -1 , γ ′ = γ σ + (p), γ ′′ = γ - 0 (p); β σ + (p) = β - 0 (p), γ ′ ∈ κ -1 , +∞ , (3.38) 
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where the changes of branches correspond to a tangency of the green parabola to ∆ 0 followed by a tangency to ∆ 1 . The multifractal spectra coincide when β σ + (p) = β - 0 (p), which corresponds to the third line (3.38) in the equations above, i.e., to the domain where γ ′ ≥ 1/κ.

Quadruple point

The intersection of the red and green parabolas (3.32) and (3.37) can be found by combining the seed equations (3.31) and (3.36). We find either γ = γ ′ = 1/κ + 1/4, or γ = 2/κ + 1/4, γ ′ = -1/4, which lead to the two intersection points,

P 0 : p 0 = p 0 (κ) = 3(4 + κ) 2 32κ , q 0 = (4 + κ)(8 + κ) 16κ , (3.39) 
P 1 : p 1 = (8 + κ)(8 + 3κ) 32κ , q 0 = (4 + κ)(8 + κ) 16κ . (3.40)
Note that these points have same ordinate, while the abscissa of the left-most one, P 0 , is p 0 (κ) (3.13), where the integral means spectrum transits from the bulk form (3.11) to its linear form (3.12). Through this intersection point P 0 further pass two important straight lines in the (p, q) plane. Definition 3.1.1. D 0 and D 1 are, respectively, the vertical line and the slope one line passing through point P 0 , of equations

D 0 := {(p, q) : p = p 0 }, (3.41) 
D 1 := (p, q) : qp = q 0p 0 = 16κ 2 32κ .

(3.42)

A key property of D 1 is the following. The difference,

β 1 (p, q; κ) -β lin (p, κ) = 1 κ κ 4 -1 + 2κ(p -q) 2 , (3.43) 
is always positive, and vanishes only on line D 1 , where

∀(p, q) ∈ D 1 , β 1 (p, q; κ) = β lin (p, κ) = p - (4 + κ) 2 16κ .
(3.44)

The Blue Quartic

A third locus, the blue quartic Q, will also play an important role, that is where the tip-spectrum, β tip (p; κ) (3.9), coincides with the novel spectrum, β σ + (p) = β 1 (p, q; κ). The tip spectrum is given by β tip (p; κ) = β(p, γ 0 ) -2γ 0 -1, where γ 0 is solution to C(p, γ 0 ) = 0 and such that the tip contribution is positive, 2γ 0 + 1 ≤ 0 [START_REF] Beliaev | Harmonic measure and sle[END_REF][START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]; this corresponds to the tip condition (3.10) [START_REF] Beliaev | Harmonic measure and sle[END_REF]. In the (p, q) plane, this descibes the domain to the left of the straight line D ′ 0 (Fig. 3.2), defined by The generalized spectrum is given by β σ + (p) = β(p, γ) where γ is solution to A σ (p, γ) = 0. We therefore look for simultaneous solutions to the seed equations,

D ′ 0 := {(p, q) : p = p ′ 0 (κ) = -1 -3κ/8} . ( 3 
β(p, γ) = β(p, γ 0 ) -2γ 0 -1, 2γ 0 + 1 ≤ 0, A σ (p, γ) = 0, C(p, γ 0 ) = 0.
(3.46) Using Eq. (3.20), we first find, as for the red and green parabolae,

q -p = γ - κ 2 γ 2 , (3.47) 
and from (3.23) and (3.22), by substitution in the above,

2p -q + 1 2 = κ 4 (γ + γ 0 ), (3.48) 4 + κ 2 γ -κγ 2 -1 = 8 + κ 2 γ 0 -κγ 2 0 . (3.49)
Solving for γ 0 in terms of γ gives

γ 0 = γ ± 0 := 8 + κ 4κ ± 1 2κ ∆ 1 2 (γ), (3.50) 
∆(γ) := 4κ 2 γ 2 -2κ(4 + κ)γ + 1 4 (8 + κ) 2 + 4κ, (3.51) 
with ∆(γ) > 0, ∀γ ∈ R. The tip relevance inequality in (3.46), 2γ 0 + 1 ≤ 0, implies the choice of the negative branch in (3.50): γ 0 = γ - 0 . We thus get the desired explicit 3.1. INTRODUCTION parameterization of that branch of the quartic, We successively have along the branch (3.52) of the blue quartic:

p = p Q (γ) := κ 16 + 1 + κ 4 γ - κ 2 γ 2 - 1 8 ∆ 1 2 (γ), q = q Q (γ) := p Q (γ) + γ - κ 2 γ 2 , γ ∈ R.
γ = γ σ -(p); β σ -(p) = β tip (p), γ ∈ (-∞, 1/κ] , γ = γ σ + (p); β σ + (p) = β tip (p) < β - 0 (p), γ ∈ [1/κ, 1 + 2/κ] , (3.53) γ = γ σ + (p); β σ + (p) = β tip (p) ≥ β - 0 (p), γ ∈ [1 + 2/κ, +∞) , (3.54) 
The intersection of the blue quartic (3.52) with the red parabola R (3.32) is located at

Q 1 : p ′ 0 = -1 - 3κ 8 , q = - 1 2 (3 + κ); γ = γ 0 = - 1 2 , (3.55) 
followed by a second intersection at the origin, p = q = 0, for γ = 2 κ and γ 0 = 0. The intersection of the blue quartic (3.52) with the green parabola G (3.37) is located at The tip spectrum and the generalized one coincide in both γ-intervals (3.53) and (3.54), which together parameterize the branch of the quartic located below its contact with ∆ 1 (see Fig. 3.2). Because of the tip relevance condition (3.10), only the interval (3.54) describing the lower infinite branch of the quartic located to the left of Q 0 will matter for the integral means spectrum.

Q 0 : p ′ 0 = -1 - 3κ 8 , q ′ 0 := -2 - 7κ 8 ; γ = γ ′ = 1 + 2 κ , γ 0 = - 1 2 . ( 3 
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Summary

Let us briefly summarize the results of Section 3.1.2. We know from Eq. (3.34) that the bulk spectrum β 0 (p) and the mixed spectrum β 1 (p, q) coincide along the finite sector of parabola R located between tangency points T 0 and T 1 (Fig. 3.1). From Eq. (3.38), we also know that they coincide along the infinite left branch of parabola G below the tangency point T 2 (Fig. 3.1).

The linear bulk spectrum β lin (p) coincides with β 0 (p) along line D 0 and supersedes the latter to the right of D 0 (Fig. 3.1). We know from (3.44) that β lin (p) and β 1 (p, q) coincide along the line D 1 (Fig. 3.1).

INTRODUCTION

The tip spectrum β tip (p) coincides with β 0 (p) along line D ′ 0 , and supersedes it to the left of D ′ 0 . We finally know from Eq. (3.54) that this tip spectrum β tip (p) coincides with β 1 (p, q) along the lower branch of the blue quartic located below point Q 0 (3.56) (Fig. 3.2).

The only possible scenario which thus emerges to construct the average generalized integral means spectrum by a continuous matching of the 4 different spectra along the phase transition lines described above, is the partition of the (p, q) plane in 4 different regions as indicated in Fig. 3.3:

-a part (I) to the left of D ′ 0 and located above the blue quartic up to point Q 0 , where the average integral means spectrum is β tip (p); -an upper part (II) bounded by lines D ′ 0 , D 0 , and located above the section of the green parabola between points Q 0 and P 0 , where the spectrum is given by β 0 (p); -an infinite wedge (III) of apex P 0 located between the upper half-lines D 0 and D 1 , where the spectrum is given by β lin (p);

-a lower part (IV) whose boundary is the blue quartic up to point Q 0 , followed by the arc of green parabola between points Q 0 and P 0 , followed by the half-line D 1 above P 0 where the spectrum is β 1 (p, q).

The two wings T 1 P 0 and P 0 T 0 of the red parabola (Fig. 3.1), where we know from Theorem 2.4.1 that the average spectrum is given by β 0 (p) = β 1 (p, q), can thus be seen as the respective extensions of region IV into II and of region II into IV. This is summarized by the following theorem.

Theorem 3.1.1. Separatrix curves for the generalized integral means spectrum of whole-plane SLE κ are in the (p, q) plane (Fig. 3.3):

-(i) the vertical half-line D 0 above P 0 = (p 0 , q 0 ) (3.39), where p 0 = 3(4 + κ) 2 /32κ, q 0 = (4 + κ)(8 + κ)/16κ; -(ii) the unit slope half-line D 1 originating at P 0 , whose equation is qp = (16κ 2 )/32κ with p ≥ p 0 ; -(iii) the section of green parabola, with parametric coordinates p G (γ), q G (γ)

(3.37) for γ ∈ [1/4 + 1/κ, 1 + 2/κ], between P 0 and Q 0 = (p ′ 0 , q ′ 0 ) (3.56), where p ′ 0 = -1 -3κ/8, q ′ 0 = -2 -7κ/8; -(iv) the vertical half-line D ′ 0 above point Q 0 ; -(v) the branch of the blue quartic from Q 0 to ∞, with parametric coordinates p Q (γ), q Q (γ) (3.52) for γ ∈ [1 + 2/κ, +∞).

The B-S line

As mentioned above, the whole-plane SLE case studied by Beliaev and Smirnov corresponds to the q = 2p line. Because of Eq. ( 2.63), it intersects the red parabola R only at p = 0. The green parabola G (3.37) has for Cartesian equation, p,q). The thin straight line (coral) q = 2p corresponds to the version of whole-plane SLE studied in Ref. [START_REF] Beliaev | Harmonic measure and sle[END_REF]. It does not intersect the lower domain where β 1 holds. which shows that it intersects the B-S line at [START_REF] Beliaev | Integral means spectrum of whole-plane sle[END_REF] p = p ′′ 0 (κ) := -

κ 2 (2p -q) 2 - 1 8 (4 + κ) 2 (2p -q) + p + 1 128 (4 + κ) 2 (8 + κ) = 0, ( 3 
1 128 (4 + κ) 2 (8 + κ), (3.58)
which is to the left of the tip transition line at p ′ 0 (κ) = -1 -3 8 κ (3.10). The quartic

Q (3.52) obeys 2p -q - κ 16 2 - c 4 2p -q -1 - κ 8 (2p -q) = κ 2 (p -q) 2p -q - 1 4 - κ 8 2 c = c(κ) := 1 64 (8 + κ) 2 + κ 4 , (3.59) 
which immediately shows that the B-S line q = 2p intersects Q only at the origin and stays above its lower branch. The B-S line therefore does not intersect the segment of green parabola G between P 0 and Q 0 , nor the quartic Q below Q 0 (Fig. 3.3). Thus the novel spectrum β 1 does not a priori appear in the version of whole-plane SLE considered in Ref. [START_REF] Beliaev | Harmonic measure and sle[END_REF]. The B-S line nevertheless intersects G at p ′′ 0 (3.58) to the left of Q 0 , in a domain lying above the quartic and where the integral mean receives a non-vanishing contribution from the SLE tip. But if that integral mean is restricted to avoid a neighborhood of z = 1, whose image is the tip, only the bulk spectrum remains, and a phase transition will take place from β 0 to β 1 when the line q = 2p crosses G.

INTEGRAL MEAN SPECTRUM ON THE RED PARABOLA

Integral mean spectrum on the red parabola

From Corollary 2.4.1, we have Theorem 3.2.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ map in the setting of Theorem 2.1.3; then, for (p, q) belonging to the parabola R defined in Theorem 2.3.1 by Eqs. (2.62) or (2.63) or (2.64),

β(p, q, κ) = κ 2 γ 2 -2γ -1 γ ≤ -1 2 κ 2 γ 2 γ > -1 2 .
From (3.33),(3.34),(3.35), we can rewrite the spectrum on R as

β(p, q, κ) =      β - 0 (p) -2γ -1 γ = γ - 0 (p) ≤ -1 2 β - 0 (p) -1 2 < γ = γ - 0 (p) ≤ 1 κ + 1 4 β σ + (p) γ = γ σ + (p) > 1 κ + 1 4 ,
or in term of β tip , β 0 , β 1 , as

β(p, q, κ) =      β tip (p) γ ≤ -1 2 β 0 (p) -1 2 < γ ≤ 1 κ + 1 4 β 1 (p, q) γ > 1 κ + 1 4 .
It is therefore yielded that the generalized spectrum β is the tip spectrum on the arc of the red parabola R lying on the left of the vertical line D ′ 0 , is the bulk spectrum on the arc of R between D ′ 0 and the section of the green parabola G jointing P 0 and Q 0 , is the β 1 spectrum on the arc of R lying on the right of that section of the green parabola G.

Integral mean spectrum on a family of parabolas

The initial motivation of this section is to give precise values of the spectrum on a infinite family of parabolas in the (p, q)-plane, which has the parabola R as a member. The original idea of this section is from [START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF], [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF]. It should be noticed that the analysis presented here is heuristic and some points are not rigorous, which should be more rigorously considered. We will obtain results which are consistent with the manifold of spectrum introduced in the Section 3.1

New parabolas

We recall that

G(z, z) = E |z| q |f ′ (z)| p |f (z)| q (3.60) 3.3. INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS is a solution of the ODE P(D)[G(z, z)] = - κ 2 (z∂ -z ∂) 2 G - 1 + z 1 -z z∂G - 1 + z 1 - z z ∂G (3.61) + - p (1 -z) 2 - p (1 -z) 2 + q 1 -z + q 1 - z + 2p -2q G = 0.
We now consider solutions of (3.61) of the form

G(z, z) = (1 -z) γ (1 -z) γ Θ(z, z) =: ϕ γ (z)ϕ γ (z)Θ(z, z), (3.62) with γ satisfying p = - κ 2 γ 2 + (2 + κ 2 )γ, (3.63) 
which means C(p, γ) = 0, where C(p, γ) is defined by (2.78). This condition can get rid of many singular terms in (3.61) (see also [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] and [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF]). By the Liebnitz's rule, the action of P(D) on ϕ γ (z)ϕ γ (z)Θ(z, z) is given by

P(D)(ϕ γ φγ Θ) ϕ γ-1 φγ-1 = - κ 2 (1 -z)(1 -z)(z∂ -z ∂) 2 Θ + (κγ -1)(z -z)(z∂ -z ∂)Θ -(1 -z z)(z∂ + z ∂)Θ + [(kγ 2 + 2A)z z -(2A + B)(z + z) + 2(A + B)]Θ. (3.64)
Here A, B are shorthand notations standing for A(p, q, γ), B(q, γ) defined by (2.76), (2.77). Since A + B + C = 0 and C(p, γ) = 0, the last term in the coefficient of Θ vanishes. By plugging (2.76),(2.77),(2.78) into (3.64), one then arrives at

P(D)(ϕ γ φγ Θ) ϕ γ-1 φγ-1 = - κ 2 (1 -z)(1 -z)(z∂ -z ∂) 2 Θ + (κγ -1)(z -z)(z∂ -z ∂)Θ -(1 -z z)(z∂ + z ∂)Θ + [V z z + U (z + z)]Θ, (3.65) 
where

U = U (q, γ) := q -(3 + κ 2 )γ + κγ 2 (3.66) V = V (q, γ) := -2q + (6 + κ)γ -κγ 2 . (3.67) From above we see that G(z, z) = ϕ γ (z)ϕ γ (z)Θ(z, z
) is a solution of (3.61) if and only if Θ(z, z) obeys the equation

- κ 2 (1 -z)(1 -z)(z∂ -z ∂) 2 Θ + (κγ -1)(z -z)(z∂ -z ∂)Θ -(1 -z z)(z∂ + z ∂)Θ + [V z z + U (z + z)]Θ = 0. (3.68)
Assuming that Θ(z, z) has the series expansion as C l,k i,j θ i-l,j-k = 0, θ 1,1 = 1, θ i,j = 0 for i ≤ 0 or j ≤ 0, (3.70) with

Θ(z, z) = ∞ i=1 ∞ j=1 θ i,j (γ, q, κ)z i-1 zj-1 , θ 1,1 = 1, ( 3 
C 0,0 i,j = - κ 2 (i -j) 2 -(i + j -2), (3.71) C 0,1 i,j = κ 2 (i -j + 1) 2 -(κγ -1)(i -j + 1) + U, C 1,0 i,j = C 0,1 j,i , (3.72) C 1,1 i,j = - κ 2 (i -j) 2 + (i + j -4) + V. (3.73)
These recursions imply that if one set

q = -κγ 2 + 3 + 1 -2M 2 κ γ - M 2 κ 2 + M, (3.74) 
then θ i,j = 0 for |i -j| > M , or equivalently, the coefficient matrix .

(θ i,j ) is 2M + 1-diagonal.
(3.75)

The coefficient matrix (θ i,j ) is then diagonal, as implied by the above series analysis. By considering γ as a parameter, the points (p, q) determined by (3.63) and (3.74) perform a parabola in the (p, q)-plane for each M . We denote these parabolas by P M , M = 0, 1, .... The parabola R defined in Theorem 2. 

Integral mean spectrum as eigenvalues

In the previous section, we have showed that the 2M + 1-truncations of the coefficient matrix (θ i,j ) correspond to parabolas in the (p, q)-plane. We now show that on those parabolas, the integral mean spectrum β(p, q) is determined by a eigenvalue of a tridiagonal matrix.

In the case of 2M + 1-truncations, one can write Θ(z, z) as

Θ(z, z) = M n=-M f n (z z)z n , f -n (ξ) = ξ n f n (ξ). (3.76)
Because Θ is real, the coefficients θ i,j are real and therefore f n is real for n = -M, ..., M .
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Substitute (3.76) into (3.68), one obtains

M n=-M - κ 2 n 2 + n + V ξf n (ξ) + - κ 2 n 2 -n f n (ξ) + 2ξ(ξ -1)f ′ n (ξ) z n + M n=-M κ 2 n 2 + (κγ -1)n + U f n (ξ)z n+1 + M n=-M κ 2 n 2 -(κγ -1)n + U ξf n (ξ)z n-1 = 0. (3.77)
By identifying "coefficients" of z n for n = -M + 1, ..., M -1 in the both sides of (3.77), one arrives at

ξA n+1 f n+1 + A -n+1 f n-1 + [B n + (1 -ξ)C n ]f n + 2ξ(ξ -1)f ′ n = 0, (3.78) 
where

A n = κ 2 n 2 -(κγ -1)n + U, (3.79) 
B n = -κn 2 + V, (3.80) 
C n = κ 2 n 2 -n -V. (3.81)
Similarly, identifying "coefficients" of z -M and z M yields

- κ 2 M 2 -M + V ξ + - κ 2 M 2 + M f -M + κ 2 (-M + 1) 2 -(κγ -1)(-M + 1) + U ξf -M +1 + 2ξ(ξ -1)f ′ -M = 0 (3.82) and - κ 2 M 2 + M + V ξ + - κ 2 M 2 -M f M + κ 2 (M -1) 2 + (κγ -1)(M -1) + U ξf M -1 + 2ξ(ξ -1)f ′ M = 0. (3.83)
The functional vector (f n ) n=-M..M is a solution of the linear system of 2M + 1 first order ODEs (3.78), (3.82), (3.83). It is worth to note that if we have the additional condition f -n (ξ) = ξ n f n (ξ), which is satisfied by the "coefficients" f n of Θ, then this system is reduced to M + 1 ODEs corresponding to n = 0, ..., M . It is also noticed that from these M + 1 ODEs of f 0 , f 1 , ..., f M one can obtain a M + 1-th order ODE for each f n , which has polynomial coefficients and singularities at 1, 0, ∞. We consider the first two cases of M = 0 and M = 1 as examples. When M = 0 the linear system includes the only ODE

κγ 2 ξf 0 (ξ) + 2ξ(ξ -1)f ′ 0 (ξ) = 0.
(3.84)
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Note that f 0 coincides with the function P considered in the Section 2.4.3 and (3.84) is equivalent to the ODE obeyed by P in that section. These equations have the solution f 0 (ξ) = (1ξ) -κγ 2 /2 . When M = 1, with the additional condition f -n (ξ) = ξ n f n (ξ) the linear system includes two ODEs

-4(κγ -1)f 1 + (κγ 2 + 2κγ + κ -2)f 0 + 2(ξ -1)f ′ 0 = 0 (3.85) (-κγ - κ 2 + 1)f 0 + κ 2 -1 + κγ 2 + 2κγ ξ - κ 2 -1 f 1 + 2ξ(ξ -1)f ′ 1 = 0. (3.86)
We now study the asymptotic behavior of the 2M +1-band solutions (3.76) near the unit circle, i.e. at ξ → 1. Assume that f n has the expansion at ξ = 1 as

f n (ξ) = (1 -ξ) -βn d n + ..., d n = 0 n = -M, ..., M, (3.87) 
then by putting β := max n=-M..M βn , one may write f n as

f n (ξ) = (1 -ξ) -β ψ n + ..., n = -M, ..., M. (3.88)
These expansions are such that there is at least one coefficient ψ n = 0. By substituting (3.88) into the system (3.78), (3.82),(3.83), one obtains equations whose left hand sides are O((1ξ) -β ). After dividing both sides of these equations by (1ξ) -β and letting ξ → 1, it yields

(-κM 2 + V )ψ -M + κ 2 (M -1) 2 + (κγ -1)(M -1) + U ψ -M +1 = 2 βψ -M (3.89) A n+1 ψ n+1 + A -n+1 ψ n-1 + B n ψ n = 2 βψ n , n = -M + 1, ..., M -1 (3.90) κ 2 (M -1) 2 + (κγ -1)(M -1) + U ψ M -1 + (-κM 2 + V )ψ M = 2 βψ M .
(3.91)

The power β and the vector (ψ n ) n=-M..M are thus respectively an eigenvalue and a corresponding eigenvector of the coefficient matrix (upto factor 1 2 ) of the system (3.89),(3.90),(3.91) which is tridiagonal.

It is worth to note that the above tridiagonal matrix is symmetric with respect to n, therefore its eigenvectors are either symmetric or antisymmetric with respect to n. In the case of 2M + 1-truncations, because Θ is symmetric in z, z, if ψ n are related to Θ by (3.76) and (3.88) then ψ -n = ψ n . In this case, (ψ n ) n=-M..M is a symmetric (with respect to n) eigenvector of the tridiagonal matrix.

We introduce the function

Ψ(ϕ) := M n=-M
ψ n e inϕ .

(3.92)

In the case of 2M + 1-truncations, the fact that ψ n are real and ψ -n = ψ n implies Ψ are real and even. Moreover, it follows from (3.88)

Ψ(ϕ) = lim r→1 - Θ(re iϕ , re -iϕ ) (1 -r 2 ) - β .
(3.93)
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From (3.62) as well as the fact that (1z) γ (1z) γ is no longer integrable when γ < 1 2 , we have

β(p, q, κ) = β -2γ -1 γ < -1 2 β γ ≥ -1 2 , (3.94) 
provided that ψ(ϕ)(0) does not vanish in the case of γ < -1 2 . If ψ(ϕ)(0) = 0 when γ < -1 2 then β-spectrum is less than β -2γ -1, as we will see, this is the case. Therefore, the integral mean spectrum of whole-plane SLE κ is determined by an eigenvalue of the tridiagonal matrix (3.89),(3.90),(3.91) .

Computation of eigenvalues

In this section, we will compute exact values of the eigenvalues of the tridiagonal matrix in the case of 2M + 1-truncations.

From the system (3.89),(3.90),(3.91), one can perform an equation for Ψ by multiplying both sides of the n-th equation by e inϕ and then making the summation of these equation for n from -M to M . Namely, one can obtain

κ 2 (-e -iϕ -e iϕ + 2)∂ 2 ϕϕ Ψ + i(κγ -1)(e -iϕ -e iϕ )∂ ϕ Ψ + [(e -iϕ + e iϕ )U + V -2 β]Ψ + - κ 2 M 2 -(κγ -1)M -U e -i(M +1)ϕ ψ -M + - κ 2 M 2 -(κγ -1)M -U e i(M +1)ϕ ψ M = 0. (3.95) 
One then uses the condition of 2M + 1-truncations (3.74) and the definition of U (3.66) to reduce the above equation to

κ 2 (-e -iϕ -e iϕ + 2)∂ 2 ϕϕ Ψ + i(κγ -1)(e -iϕ -e iϕ )∂ ϕ Ψ + [(e -iϕ + e iϕ )U + V -2 β]Ψ = 0.
(3.96) This equation can be rewriten as

κ(1 -cos(ϕ))∂ 2 ϕϕ Ψ + 2(κγ -1) sin(ϕ)∂ ϕ Ψ + [2 cos(ϕ)U + V -2 β]Ψ = 0. (3.97)
As was mentioned in the previous section, an eigenvector (ψ n ) n=-M..M of the system (3.89),(3.90),(3.91) is either symmetric or antisymmetric in n, i.e., either ψ -n = ψ n or ψ -n = -ψ n . In the first case, Ψ is a polynomial of cos(ϕ). After a change of variable x = 1-cos(ϕ) 2 , Ψ is a polynomial in x and Eq. (3.97) becomes

2κx 2 (1 -x)Ψ ′′ + x[κ + 4(κγ -1) -2(κ + 2(κγ -1))x]Ψ ′ + (2U + V -2 β -4U x)Ψ = 0, (3.98 
) where the notation Ψ denotes the same function as in (3.97) and Ψ ′ , Ψ ′′ respectively stand for the first and the second derivatives of Ψ with respect to x. In the second case, Ψ can be written as

Ψ(ϕ) = sign(sin(ϕ)) 1 -cos 2 (ϕ) 4 Ψ 1 (ϕ). (3.99) 3.3. 
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with Ψ 1 is a polynomial of cos(ϕ). From (3.97) and the fact that the derivative of the sign function is 0 expect at 0, the function Ψ 2 (ϕ) := 1-cos 2 (ϕ) 4 Ψ 1 (ϕ) obeys the equation (3.97). By changing again variable x = 1-cos(ϕ)

2

, the function Ψ 2 is a solution of (3.98). Note that with this change of variable, Ψ 1 is a polynomial in x and

Ψ 2 = x(1 -x)Ψ 1 .
Conversely, if the equation (3.98) with a value of parameter β has a solution Ψ which is a polynomial of x, then β is a eigenvalue of the system (3.89),(3.90),(3.91) with a corresponding symmetric eigenvector. This eigenvector can be found from the solution Ψ by changing variable x = 1-cos(ϕ) 2 and the relation (3.92). Also, if the equation (3.98) with a value of parameter β has a solution of the form

x(1x)Ψ 1 where Ψ 1 is a polynomial of x, then β is a eigenvalue of the system (3.89),(3.90),(3.91) with a corresponding antisymmetric eigenvector. This eigenvector can be found from the solution Ψ by changing variable x = 1-cos(ϕ) 2 and the relations (3.99), (3.92).

Next, we will determine 2M + 1 different values of β such that for each of them, there is a solution of (3.98) which is a polynomial of x or the product of a polynomial of x with x(1x). Therefore we will determine all eigenvalues of the system (3.89),(3.90), (3.91).

Consider the solutions of (3.98) of the form

Ψ(x) = x λ/2 g(x). (3.100) 
By substituting (3.100) into (3.98), one obtains an equation obeyed by g(x)

κx 2 (1 -x)g ′′ + x[κλ + A -(κλ + B)x]g ′ κ λ 2 λ 2 -1 + λ 2 A + U + V 2 -β + -κ λ 2 λ 2 -1 - λ 2 B -2U x g = 0, (3.101) 
where P = κ 2 + 2(κγ -1) and

Q = κ + 2(κγ -1). If we set β = κ λ 2 λ 2 -1 + λ 2 P + U + V 2 =: β(λ) (3.102) 
then (3.101) becomes a hypergeometric equation

x(1 -x)g ′′ + λ + P κ -λ + Q κ x g ′ + - λ 2 λ 2 -1 - λ 2 Q κ - 2U κ g = 0. (3.103)
One can rewrite this equation as

x(1 -x)g ′′ (x) + [c -(a + b + 1)x]g ′ (x) -abg(x) = 0, (3.104) 
where

a = λ 2 -M, b = λ 2 + 2γ - 2 κ + M, c = a + b + 1 2 . (3.105) 
Solutions of (3.104) has the general form

g = C 1 g 1 + C 2 g 2 , (3.106) 
with

g 1 (x) = 2 F 1 (a, b, a + b + 1 2 ; x), g 2 (x) = √ 1 -x 2 F 1 (a + 1 2 , b + 1 2 , 3 2 ; 1 -x). (3.107)
Since a = λ 2 -M , we see that if λ = 2n for n = 0, ..., M then g 1 is a polynomial of x, whereas if λ = 2n + 1 for n = 0, ..., M -1 then g 2 is the product of √ 1x and a polynomial of x. Corresponding to these values of λ and these forms of g, by (3.100), the solution Ψ of (3.98) is a polynomial of x or a product of x(1x) and a polynomial of x. Therefore, β(2n), n = 0, ..., M and β(2n+1), n = 0, ..., M -1 are the eigenvalues of the tridiagonal matrix (3.89),(3.90),(3.91). Moreover, β(2n), n = 0, ..., M correspond to symmetric eigenvectors, which is the case of the 2M + 1-truncation solution (3.76).

Phase transition of integral mean spectrum

In the previous section, we have proved that the eigenvector β which determines β-integral mean spectrum by (3.94) takes value among β(2n), n = 0, ..., M

β(2n) = n κ n + 2γ - 1 2 -2 + kγ 2 2 . (3.108) 
Because of the factor x λ 2 in (3.100), where x = 1-cos(ϕ) 2 which vanishes as z → 1, we have that if β = β(2n) then

β(p, q, κ) = max{ β, β -2γ -1 -n} γ < -1 2 β γ ≥ -1 2 .
(3.109)

Obviously, with M = 0, β coincides with β(0) = κγ 2 2 . We thus have the β-spectrum in this case as in Theorem 3.2.1. However, when M ≥ 1, β does not have to coincide with a β(2n) for all γ but may change continuously in γ from one to others of β(2n), n = 0, ..., M . Indeed, we will use the non-negativity and the continuity of β-spectrum to show that it is determined by the biggest among β(2n) which is either β(0) or β(2M ). It will be showed that there is a new phase transition of β-spectrum.

We firstly prove that there is a point γ M such that for γ > γ M , the eigenvalue β(2M ) is the biggest among β(2n), n = -M, ..., M and it is strictly bigger than the others, whereas for γ < γ M , the eigenvalue β(0) is the biggest and strictly bigger than the others. We have

β(2n 2 ) -β(2n 1 ) = κ 2 (n 2 -n 1 ) n 1 + n 2 + 2γ - 2 κ - 1 2 . (3.110) 
Let n 2 = M, n 1 = 0, one obtain the point γ M for which β(2M ) = β(0) as 

γ M = - M 2 + 1 κ + 1 4 . ( 3 
≤ n 1 ≤ M -1 β(2M ) -β(2n 1 ) > κ 2 (M -n 1 )n 1 ≥ 0. (3.112) 
When γ < γ M , also from (3.110), one have for n 2 = 0 and

1 ≤ n 1 ≤ M β(0) -β(2n 1 ) > -κn 1 2 (n 1 -M ) ≥ 0. (3.113)
Therefore the biggest eigenvalue is either β(0) or β(2M ) with a phase transition at γ M . Recall that our work in the present section and the previous section is based on the 2M + 1-truncation condition (3.74). We now represent this condition as

κ = 2(M + 3γ -q) M 2 + 2M γ + 2γ 2 -γ , (3.114) 
and consider κ as a quantity depending on the two parameters γ, q. The condition κ > 0 is then equivalent to γ > -M +q

3

. With this representation of the 2M + 1-truncation condition (3.74), one has

β(2n) = - 2M 2 n -M γ 2 -2M n 2 -3γ 3 -8γ 2 n + γ 2 q -6γn 2 + 4γnq + 2n 2 q + M n + γn -qn M 2 + 2M γ + 2γ 2 -γ , (3.115) 
therefore,

β(2n 2 ) -β(2n 1 ) = (n 2 -n 1 )(8γ 2 + (6n 1 + 6n 2 -4q -1)γ -2M 2 + 2M n 1 + 2M n 2 -2qn 1 -2qn 2 -M + q) M 2 + 2M γ + 2γ 2 -γ (3.116) 
and

γ M = - 3 8 M + q 4 + 1 16 + 1 16 36M 2 + 16M q + 16q 2 + 20M -24q + 1. (3.117)
The quantity under the square root symbol is always positive for M ≥ 1 and q ∈ R.

In fact, for n 2 = M, n 1 = 0, (3.116) has two zeros, that are γ M and another value

γ ′ M γ ′ M = - 3 8 M + q 4 + 1 16 - 1 16 36M 2 + 16M q + 16q 2 + 20M -24q + 1. (3.118) However, the fact that γ ′ M < -M +q 3 < γ M for M ≥ 1, q ∈ R implies that γ ′ M is irrelevant.
One still has the dominations of β(0) and β(2M ) respectively on ( -M +q 3 , γ M ) and (γ M , +∞). Our purpose is to determine the β-spectrum on the parabola P M in the (p, q)plane for all κ > 0, in other word, on a surface in a half space κ > 0 of the (p, q, κ)- space. To do that, we fix a real value of q and determine β-spectrum on the curve (3.63), (3.114) in the (p, κ)-plane. Figure 3.4 gives an example of these curves corresponding to q = 0.

Firstly, we consider the cases of q ≥ q 0 := M -3 2 , which is equivalent to -1 2 ≤

-M +q 3

. Because the relevant value of the parameter γ is in ( -M +q 3 , +∞), from (3.94), the β-spectrum is determined by the eigenvalue β by

β(p, κ) = β, for -M + q 3 < γ < +∞. (3.119) 
It is important to note that the non-negativity and continuity of β in γ imply those of β. We will use these properties of β as crucial arguments. The analysis in the previous sections has showed that β can only take one value among β(2n), n = 0, ..., M for each γ. By substituting γ = -M +q (3.122)

It is then implied that β(0), β(2M ) > β(2n) for n = 1, ..., M -1 in a neigborhood of γ M . As a consequence of the continuity, β can only take value among β(0) and β(2M ) in the right part of that neighborhood with respect to γ M . It is noticed that, because of the continuity of β and the fact that β(2M ) > β(0) whenever γ > γ M , β identifies with either β(0) or β(2M ) in all that right neighborhood. We will show that only β(2M ) is suitable for this identity. For this purpose, we consider the non-negativity of the function g = g 1 (3.100), (3.107) corresponding to the parameter β = β(0) of the equation (3.101). As was mentioned in the previous sections, corresponding to the 2M + 1-truncations solution (3.76), (3.92), (3.100) , g = g 1 is non-negative and is a polynomial. We will indeed prove that there exists a right neighborhood of γ M such that the corresponding polynomial g = g 1 (3.100), (3.107) of β(0) is negative at x = 1. Let us set β = β(0) in (3.101), then from (3.107),

g 1 (1) = Γ( 1 2 )Γ(a + b + 1 2 ) Γ(a + 1 2 )Γ(b + 1 2 ) , (3.123) 
where a, b are defined by (3.105). At γ = γ M , one has

a + 1 2 = -M + 1 2 , b + 1 2 = 1, a + b + 1 2 = -M + 1. (3.124) 
One also has that a + 1 2 , b + 1 2 , a + b + 1 2 are continuous functions in γ and a + b

+ 1 2 is increasing in a neigborhood of γ M . It follows that a + 1 2 γ→γ M -→ -M + 1 2 , (3.125 
) b + 1 2 γ→γ M -→ 1, (3.126) 
a + b + 1 2 γ→γ M -→ -M + 1 + 0 + (3.127)
Therefore, the sign properties of the Gamma function imply the existence of a enough small right neighborhood of γ M such that g 1 (1) is negative.

We have showed that the eigenvalue β cannot coincide with β(0) in a right neigborhood of γ M , therefore, it coincides with β(2M ) in a right neigborhood of γ M . Because of the continuity of β and β(2M ) > β(2n) for every n = 0, ..., M -1 on the right of γ M , we have β = β(2M ) in (γ M , +∞).

From the above analysis, we finally have, for q ≥ M -3 2 ,

β(p, κ) = β = β(0) -M +q 3 < γ < γ M β(2M ) γ ≥ γ M , (3.128) 
where β(0), β(2M ) are defined by (3.115) and γ M is defined by (3.117).

INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS

vertical segment jointing T ′ 0 and the point (γ ′ 0 , q). The second side is the horizontal segment from (γ ′ 0 , q) to (γ, q). The continuity of the βspectrum in q, γ and the fact that β(2) > β(0) on the region located to the right of the curve γ 1 (q) imply that β = β(2) on the polygon, therefore, at the point (γ, q). By combining the two cases q ≥ M -3 2 and q < M -3 2 , we finally have for the case M = 1

β(p, κ) =      β(0) -2γ -1 -1+q 3 < γ < -1 2 β(0) -1 2 ≤ γ < γ 1 β(2) γ ≥ γ 1 . (3.131) 
We now turn to the case of M ≥ 2. In this case, we have

- 1 2 < γ M when q > - 8M -5 2(2M -3) (3.132) - 1 2 = γ M when q = - 8M -5 2(2M -3) (3.133) - 1 2 > γ M when q < - 8M -5 2(2M -3) . (3.134) 
We firstly consider -8M -5 2(2M -3) ≤ q < M -3 2 . One still has the validity of the arguments in the analysis for the case of M = 1 and q < M -3 2 for this case. Here, we note that β(0) > β(2n) for n = 1, ..., M in the region bounded by the three lines

q = M -3 2 , q = -8M -5 2(2M -3) , γ = -M +q 3
and the curve γ M (q) whereas β(2M ) > β(2n) for n = 0, ..., M -1 in the region located between the two lines q = M - 3 2 , q = -8M -5

2(2M -3)
and to the right of the curve γ M (q) in the (γ, q)-plane. The β-spectrum is then determined as

β(p, κ) =      β(0) -2γ -1 -M +q 3 < γ < -1 2 β(0) -1 2 ≤ γ < γ M β(2M ) γ ≥ γ M . (3.135) 
Similarly, we can apply the same arguments for the case of q = -8M -5 2(2M -3) , or equivalently, -M +q 3

< -1 2 = γ M . It then yields β(p, κ) = β(0) -2γ -1 -M +q 3 < γ < -1 2 = γ M β(2M ) γ ≥ -1 2 = γ M . (3.136) 
In the case of q < -8M -5 2(2M -3) , or equivalently, -M +q 3 < γ M < -1 2 , the polygon argument can only be applied for -M +q 3 < γ ≤ γ M and γ ≥ - 1 2 . Namely, we obtain

β(p, κ) = β(0) -2γ -1 -M +q 3 < γ < γ M β(2M ) γ ≥ -1 2 .
(3.137) The curve γ M (q) intersects the vertical line γ = -1 2 at q = -8M -5 2(2M -3) .

At γ = -1 2 , one has β(2M ) = max{ β(2M ), β(2M ) -2γ -1 -M } (3.138) β(2M ) > max{ β(2n), β(2n) -2γ -1 -n}.
Because β(2n), n = 0, M are continuous functions in γ, we can have the β-spectrum in a neighborhood of γ = -1 2 . Namely, in this neighborhood the βspectrum coincides with β(2M ): there exists a ǫ > 0 such that

β(p, κ) = β(2M ), - 1 2 -ǫ < γ < - 1 2 . (3.140)
Note that we are using the presentation (3.114) of the 2M + 1-truncations condition (3.74) (and, correspondingly, also using (3.115), (3.117)). We now turn back to the original presentation (3.74) of this condition, where q is a quantity depending on the positive parameter κ, to rewrite the β-spectrum on the parabolas P M as:

If -1 2 < -M 2 + 1 κ + 1 4 = γ M , then β(p, q) =      β(0) -2γ -1 γ < -1 2 β(0) -1 2 ≤ γ < γ M β(2M ) γ ≥ γ M . (3.141) If -1 2 = -M 2 + 1 κ + 1 4 = γ M , then β(p, q) = β(0) -2γ -1 γ < -1 2 = γ M β(2M ) γ ≥ -1 2 = γ M . (3.142) If -1 2 > -M 2 + 1 κ + 1 4 = γ M
, then the spectrum has not been completely found yet on all the parabola P M ,

β(p, q) = β(0) -2γ -1 γ < γ M β(2M ) γ M < -1 2 -ǫ < γ. (3.143)
Chapter 4

FOUR-POINT GENERALIZED FUNCTION AND SCHWARZIAN DERIVATIVE OF SLE

Let us recall the definition of Schwarzian derivative of a holomorphic function f , that is the quantity defined by

(Sf )(z) = f ′′ (z) f ′ (z) ′ - 1 2 f ′′ (z) f ′ (z) 2 = f ′′′ (z) f ′ (z) - 3 2 f ′′ (z) f ′ (z) 2 .
One of the most important properties of Schwarzian derivative is the invariance under möbius transformations, e.i., rational functions of the form az+b cz+d where a, b, c, d ∈ C and adbc = 0. This property is a consequence of the fact that (Sf )(z) = 0 if and only if f is a möbius transformation which also indicates that Schwarzian derivative can be a tool to precisely measure the degree to which a function fails to be a möbius transformation.

In this chapter we continue using martingale techniques to perform equations satisfied by average Schwarzian derivative of SLE and its second moment, then obtain an explicit formula for the expectation of Schwarzian derivative. The main idea proceeds from the following observation: Let f is an univalent function in the unit disc, we introduce the function of two complexe variables

L(z, w) := log f (z) -f (w) z -w , (4.1) 
it second mixed partial derivative is given by

∂ 2 L(z, w) ∂z∂w = f ′ (z)f ′ (w) (f (z) -f (w)) 2 - 1 (z -w) 2 , (4.2) 
and the Schwarzian derivative of f is given by the formula We will firstly perform an equation of

(Sf )(z) = 6 ∂ 2 L(z,
E f ′ (z)f ′ (w) (f (z)-f (w)) 2 -1 z-w
where f , as in above chapters, denotes the whole-plane SLE map at time 0. The martingale argument is again used for this step. Then we use the relation (4.3) in order to obtain an equation satisfied by E(Sf ) (up to a constant factor). This equation is a non-homogeneous differential equation of order two with known initial conditions. Solving this equation gives us an exact formula of the expectation of Schwarzian derivative of SLE. The same argument is applied to obtain an equation for the expectation of the second moment of Schwarzian derivative. When working on the first step of the above process, we consider the quantities

E (z -w) 2 f ′ (z)f ′ (w) (f (z) -f (w)) 2 and E |z -w| 4 |f (z) -f (w)| 4 |f ′ (z)| 2 |f ′ (w)| 2 . (4.4)
It is remarkable that we can indeed go further to get a closed form of the following expectation

E (z 1 -z ′ 1 ) q 2 (f (z 1 ) -f (z ′ 1 )) q 2 (f ′ (z 1 )) p 2 (f ′ (z ′ 1 )) p ′ 2 (z 2 -z ′ 2 ) q 2 (f (z 2 ) -f (z ′ 2 )) q 2 (f ′ (z 2 )) p 2 (f ′ (z ′ 2 )) p ′ 2 , (4.5) 
which generalizes Theorem 2.3.1 and Theorem 2.4.1 in Chapter 2. This result is presented in the first section of the present chapter.

Four-point generalized function

The first motivation of this section is to obtain explicit formula of the quantities (4.4). We are interested in these quantities because of their relations with some important quantities such as the Schwarzian derivative, Grunsky's coefficients and Grunsky's matrix of the whole-plane SLE κ map. Namely, from (4.2) and (4.3), they are related to the Schwarzian derivative of whole-plane SLE κ map f by

E(S(f )(z)) = 6 lim w→z 1 (z -w) 2 E (z -w) 2 f ′ (z)f ′ (w) (f (z) -f (w)) 2 -1 , (4.6) 
E(|S(f )(z)| 2 ) = 36 lim w→z 1 |z -w| 4 E |z -w| 4 |f (z) -f (w)| 4 |f ′ (z)| 2 |f ′ (w)| 2 + 1 -E (z -w) 2 f ′ (z)f ′ (w) (f (z) -f (w)) 2 -E (z -w) 2 f ′ (z)f ′ (w) (f (z) -f (w)) 2 . (4.7)
Assume that the logarithmic function (4.1) has a series expansion as

log f (z) -f (w) z -w = ∞ k=0 ∞ l=0 b k,l z k w l , (4.8) 
the b k,l is called the Grunsky's coefficient of f and the matrix ( √ klb k,l ) is the corresponding Grunsky's matrix. From (4.2), the Grunsky's coefficients of the wholeplane SLE κ map f and the quantities (4.4) are related by 

∞ k=1 ∞ l=1 E(b k,l )klz k-1 w l-1 = 1 (z -w) 2 E (z -w) 2 f ′ (z)f ′ (w) (f (z) -f (w)) 2 -1 , z, w ∈ D. ( 4 

SLE four-point function and Belyaev-Smirnov equation

The purpose of this section is to perform Belyaev-Smirnov type equations for the general moments (4.5). We will show that Proposition 4.1.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ and

H(z 1 , z2 , z ′ 1 , z′ 2 ) = E (z 1 -z ′ 1 ) q 2 (f (z 1 ) -f (z ′ 1 )) q 2 (f ′ (z 1 )) p 2 (f ′ (z ′ 1 )) p ′ 2 (z 2 -z ′ 2 ) q 2 (f (z 2 ) -f (z ′ 2 )) q 2 (f ′ (z 2 )) p 2 (f ′ (z ′ 2 )) p ′ 2 .
(4.10) Then H is a solution of the equation

- κ 2 (z 1 ∂z 1 -z2 ∂z 2 + z ′ 1 ∂z ′ 1 -z′ 2 ∂z ′ 2 ) 2 H - 1 + z 1 1 -z 1 z 1 ∂z 1 H - 1 + z2 1 -z2 z2 ∂z 2 H - 1 + z ′ 1 1 -z ′ 1 z ′ 1 ∂ z ′ 1 H - 1 + z′ 2 1 -z′ 2 z′ 2 ∂z ′ 2 H + - p (1 -z 1 ) 2 - p (1 -z2 ) 2 - p ′ (1 -z ′ 1 ) 2 - p ′ (1 -z′ 2 ) 2 + q (1 -z 1 )(1 -z ′ 1 ) + q (1 -z2 )(1 -z′ 2 ) + 2(p + p ′ ) -2q H = 0. (4.11)
The following corollaries are obtained when we make specific settings on the variables z 1 , z ′ 1 , z 2 , z ′ 2 in Proposition 4.1.1: By taking limits z 2 → 0, z ′ 2 → 0 in (4.37) and letting z 1 = z, z ′ 1 = ζ, it yields Corollary 4.1.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ and

F (z, ζ) = E (z -ζ) q 2 (f (z) -f (ζ)) q 2 (f ′ (z)) p 2 (f ′ (ζ)) p ′ 2 . (4.12)
Then F is a solution of the equation

- κ 2 (z∂z + ζ∂ζ) 2 F - 1 + z 1 -z z∂zF - 1 + ζ 1 -ζ ζ∂ζF + - p (1 -z) 2 - p ′ (1 -ζ) 2 + q (1 -z)(1 -ζ) + p + p ′ -q F = 0. (4.13) If we choose z 1 = z 2 = z, z ′ 1 = z ′ 2 = ζ, it yields
Corollary 4.1.2. Let f (z) = f 0 (z) be the interior whole-plane SLE κ and 

G(z, z, ζ, ζ) = E |z -ζ| q |f (z) -f (ζ)| q |f ′ (z)| p |f ′ (ζ)| p ′ . ( 4 
dX s (z 1 , z ′ 1 ) = X s (z 1 , z ′ 1 )L(z 1s , z ′ 1s )ds, (4.20 
)

dX s (z 2 , z ′ 2 ) = X s (z 2 , z ′ 2s )L(z 2s , z′ 2s )ds, (4.21) 
where

L(z, ζ) := - p (1 -z) 2 - p ′ (1 -ζ) 2 + q (1 -z)(1 -ζ) + p 2 + p ′ 2 - q 2 .
In addition, by using Itô formula we also have

d H = -∂ τ Hds + ∂ 1 Hdz 1s + ∂ 2 Hdz 2s + ∂ 3 Hdz ′ 1s + ∂ 4 Hdz ′ 2s + κ 2 (-∂ 2 1 -∂ 2 2 -∂ 2 3 -∂ 2 4 -2∂ 1 ∂ 3 -2∂ 2 ∂ 4 + 2∂ 1 ∂ 2 + 2∂ 1 ∂ 4 + 2∂ 2 ∂ 3 + 2∂ 3 ∂ 4 ) Hds,
where

∂ 1 , ∂ 2 , ∂ 3 , ∂ 4 respectively stand for ∂ z 1s , ∂ z2s , ∂ z ′ 1s , ∂ z′ 2s . dz 1s = z 1s z 1s + 1 z 1s -1 - κ 2 ds -i √ κ z 1s dB s , dz ′ 1s = z ′ 1s z ′ 1s + 1 z ′ 1s -1 - κ 2 ds -i √ κ z ′ 1s dB s , dz 2s = z2s z2s + 1 z2s -1 - κ 2 ds + i √ κ z2s dB s , dz ′ 2s = z′ 2s z′ 2s + 1 z′ 2s -1 - κ 2 ds + i √ κ z′ 2s dB s .
Hence dM s can be rewriten as the product of X s (z 1 , z ′ 1 ).X s (z 2 , z ′ 2 ) and the following

L(z 1s , z ′ 1s ) + L(z 2s , z′ 2s ) -∂ τ H - 1 + z 1s 1 -z 1s z 1s ∂ 1 H - 1 + z2s 1 -z2s z2s ∂ 2 H - 1 + z ′ 1s 1 -z ′ 1s z ′ 1s ∂ 3 H - 1 + z′ 2s 1 -z′ 2s z2s ∂ 4 H - κ 2 (z 1s ∂ 1 -z2s ∂ 2 + z ′ 1s ∂ 3 -z′ 2s ∂ 4 ) 2 H ds -i √ κ(z 1s ∂ 1 -z2s ∂ 2 + z ′ 1s ∂ 3 -z′ 2s ∂ 4 ) HdB s .
Because ds-term of dM s vanishes as (M s ) s≥0 is a martingale, we get the equation

L(z 1s , z ′ 1s ) + L(z 2s , z′ 2s ) -∂ τ H - 1 + z 1s 1 -z 1s z 1s ∂ 1 H - 1 + z2s 1 -z2s z2s ∂ 2 H - 1 + z ′ 1s 1 -z ′ 1s z ′ 1s ∂ 3 H - 1 + z′ 2s 1 -z′ 2s z2s ∂ 4 H - κ 2 (z 1s ∂ 1 -z2s ∂ 2 + z ′ 1s ∂ 3 -z′ 2s ∂ 4 ) 2 H = 0.
Finally, we apply (4.16) to obtain the equation satisfied by H in Proposition 4.1.1.

Dual points and integrable case

From the equations obtained in the previous section, in this section, we give the explicit formula of general moments (4.5).

Theorem 4.1.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ map in the setting of Theorem 2.1.3; then, for dual pairs (p, q) and (p ′ , q) both belonging to the parabola R defined in Theorem 2.3.1 by Eqs. (2.62) or (2.63) or (2.64), and for any quadruple 

(z 1 , z 2 , z ′ 1 , z ′ 2 ) ∈ D 4 , E (z 1 -z ′ 1 ) q 2 (f ′ (z 1 )) p 2 (f (z 1 ) -f (z ′ 1 )) q 2 (f ′ (z ′ 1 )) p ′ 2 (f ′ (z 2 )) p 2 (z 2 -z ′ 2 ) q 2 (f ′ (z ′ 2 )) p ′ 2 (f (z 2 ) -f (z ′ 2 )) q 2 (4.22) = (1 -z 1 ) γ (1 -z2 ) γ (1 -z ′ 1 ) γ ′ (1 -z′ 2 ) γ ′ (1 -z 1 z2 ) β (1 -z 1 z′ 2 ) β ′ (1 -z ′ 1 z2 ) β ′ (1 -z ′ 1 z′ 2 ) β ′′ , β = κ 2 γ 2 , β ′ = κ 2 γγ ′ , β ′′ = κ 2 γ ′2 .
E (z -ζ) q 2 (f (z) -f (ζ)) q 2 (f ′ (z)) p 2 (f ′ (ζ)) p ′ 2 = (1 -z) γ (1 -ζ) γ ′ . ( 4 
G(z, z, ζ, ζ) := E |z -ζ| q |f (z) -f (ζ)| q |f ′ (z)| p |f ′ (ζ)| p ′ (4.24) = (1 -z) γ (1 -z) γ (1 -ζ) γ ′ (1 -ζ) γ ′ (1 -z z) β (1 -z ζ) β ′ (1 -ζ z) β ′ (1 -ζ ζ) β ′′ , β = κ 2 γ 2 , β ′ = κ 2 γγ ′ , β ′′ = κ 2 γ ′2 .
Although that Corollary 4.1.4 is a consequence of Theorem 4.1.1, we prefer to proceed firstly the proof of Corollary 4.1.4 for avoiding a redundancy of notations. The proof Theorem 4.1.1 will follow as an analogue.

Proof. We put By continuing to apply Leibnitz's rule to the other terms of P(D)(G) and finally using a summation, we then obtain

G(z, z, ζ, ζ) = E |z -ζ| q |f (z) -f (ζ)| q |f ′ (z)| p |f ′ (ζ)| p ′ . Recall Corollary 4.1.2, G is a solution of the following equation - κ 2 (z∂ z -z ∂z + ζ∂ ζ -ζ ∂ζ) 2 G - 1 + z 1 -z z∂ z G - 1 + z 1 - z z ∂z G - 1 + ζ 1 -ζ ζ∂ ζ G - 1 + ζ 1 - ζ ζ ∂ζG + - p (1 -z) 2 - p (1 -z) 2 - p ′ (1 -ζ) 2 - p ′ (1 -ζ) 2 + q (1 -z)(1 -ζ) + q (1 -z)(1 -ζ) + 2(p + p ′ ) -2q G = 0.
P(D)(ABCD) = P 1 (D)(A)BCD + P 2 (D)(B)ACD -κ(z∂ z A.ζ∂ ζ B + z ∂z A. ζ ∂ζB -z∂ z A. ζ ∂ζB -z ∂z A.ζ∂ ζ B)CD - 2z ζ(1 -z ζ) (1 -z)(1 -ζ) ABC ′ D - 2zζ(1 -zζ) (1 -z)(1 -ζ) ABCD ′ + q 1 (1 -z)(1 -ζ) + 1 (1 -z)(1 -ζ) - 1 1 -z - 1 1 - z - 1 1 -ζ - 1 1 - ζ + 2 ABCD (4.29)
where

P 1 (D) := - κ 2 (z∂ z -z ∂z ) 2 - 1 + z 1 -z z∂z - 1 + z 1 - z z ∂z + - p (1 -z) 2 - p (1 -z) 2 + q 1 -z + q 1 -z + 2p -2q (4.30) 
and

P 2 (D) := - κ 2 (ζ∂ ζ -ζ ∂ζ) 2 - 1 + ζ 1 -ζ z∂ζ - 1 + ζ 1 - ζ ζ ∂ζ + - p ′ (1 -ζ) 2 - p ′ (1 -ζ) 2 + q 1 -ζ + q 1 -ζ + 2p ′ -2q . ( 4 

.31)

Let us now consider A and B of the forms

A(z, z) = ϕ γ (z)ϕ γ (z) (1 -z z) β , (4.32) B(ζ, ζ) = ψ γ ′ (ζ)ψ γ ′ ( ζ) (1 -ζ ζ) β ′′ , (4.33) 
where

ϕ γ (z) = (1 -z) γ , ψ γ ′ (ζ) = (1 -ζ) γ ′ .
Here the notations ϕ, ψ are used to distinguish considered variables. Namely, ϕ is corresponding to the variables z, z and ψ is corresponding to ζ, ζ. In this setting, the three last lines of (4.29) is the product of

1 (1-z z) β 1 (1-ζ ζ) β ′′ and z ζϕ γ-1 φγ ψ γ ′ ψγ ′ -1 D[κγγ ′ C + 2(z ζ -1)C ′ ] + zζϕ γ φγ-1 ψ γ ′ -1 ψγ ′ C[κγγ ′ D + 2(zζ -1)D ′ ] + [q -κγγ ′ ][ϕ γ-1 φγ ψ γ ′ -1 ψγ ′ + ϕ γ φγ-1 ψ γ ′ ψγ ′ -1 -ϕ γ-1 φγ ψ γ ′ ψγ ′ -ϕ γ φγ-1 ψ γ ′ ψγ ′ -ϕ γ φγ ψ γ ′ -1 ψγ ′ -ϕ γ φγ ψ γ ′ ψγ ′ -1 + 2ϕ γ φγ ψ γ ′ ψγ ′ ]CD.
(4.34)

We then rewrite (4.29) as

P(D)(ABCD) = P 1 (D)(A)BCD + P 2 (D)(B)ACD + z ζϕ γ-1 φγ ψ γ ′ ψγ ′ -1 D[κγγ ′ C + 2(z ζ -1)C ′ ] + zζϕ γ φγ-1 ψ γ ′ -1 ψγ ′ C[κγγ ′ D + 2(zζ -1)D ′ ] + [q -κγγ ′ ][ϕ γ-1 φγ ψ γ ′ -1 ψγ ′ + ϕ γ φγ-1 ψ γ ′ ψγ ′ -1 -ϕ γ-1 φγ ψ γ ′ ψγ ′ -ϕ γ φγ-1 ψ γ ′ ψγ ′ -ϕ γ φγ ψ γ ′ -1 ψγ ′ -ϕ γ φγ ψ γ ′ ψγ ′ -1 + 2ϕ γ φγ ψ γ ′ ψγ ′ ]CD. (4.35) 
Note that if (γ, p, q), (γ ′ , p ′ , q) are dual points on the parabola R defined in Theorem 2.3.1 by Eqs. (2.62) and A, B are respectively of the forms (4.32), (4.33) where β = κγ 2 2 , β ′′ = κγ ′2 2 , then P 1 (D)(A) = 0, P 2 (D)(B) = 0 and qκγγ ′ = 0.

The first two identities are immediately implied from Theorem 2.4.1, whereas the third one is a consequence of the fact that γ, γ ′ are solutions of Eq. (2.62).

On the other hand the ODE κγγ ′ P + 2(X -1)P ′ = 0 with the initial condition P (0) = 1 has the solution

P (X) = 1 (1 -X) β ′ where β ′ = κγγ ′ 2 . ( 4 

.36)

These facts imply that for

G(z, z, ζ, ζ) = ϕ γ (z)ϕ γ (z) (1 -z z) β ψ γ ′ (ζ)ψ γ ′ ( ζ) (1 -ζ ζ) β ′′ 1 (1 -z ζ) β ′ 1 (1 -zζ) β ′
with γ, p, γ ′ , p ′ , q, β, β ′′ , β ′ as above, P(D)(G) = 0, or equivalently, G is a solution of (4.25).

Proof of Theorem 4.1.1 Let

H(z 1 , z2 , z ′ 1 , z′ 2 ) = E (z 1 -z ′ 1 ) q 2 (f (z 1 ) -f (z ′ 1 )) q 2 (f ′ (z 1 )) p 2 (f ′ (z ′ 1 )) p ′ 2 (z 2 -z ′ 2 ) q 2 (f (z 2 ) -f (z ′ 2 )) q 2 (f ′ (z 2 )) p 2 (f ′ (z ′ 2 )) p ′ 2 .

SCHWARZIAN OF SLE

Equation of expected Schwarzian

An equation obeyed by the Schwarzian of the whole-plane SLE κ map is derived as is stated in the following proposition Proposition 4.2.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ and (Sf )(z) is its Schwarzian derivative. Then E((Sf )(z)) is a solution of the equation

- κ 2 (z∂ z ) 2 S - 1 + z 1 -z + 2κ z∂ z S -2 2 (1 -z) 2 + k -1 S - 12 (1 -z) 4 = 0. (4.39) Proof. We put F (z, ζ) := E (z -ζ) 2 f ′ (z)f ′ (ζ) (f (z) -f (ζ)) 2 . ( 4 

.40)

In Corollary 4.1.1, by setting p = p ′ = 2, q = 4, we have that F is a solution of the equation

- κ 2 (z∂ z + ζ∂ ζ ) 2 F - 1 + z 1 -z z∂ z F - 1 + ζ 1 -ζ ζ∂ ζ F + - 2 (1 -z) 2 - 2 (1 -ζ) 2 + 4 (1 -z)(1 -ζ) F = 0. (4.41) 
Let us define a two-point auxiliary function 

F aux (z, ζ) := E f ′ (z)f ′ (ζ) (f (z) -f (ζ)) 2 - 1 (z -ζ) 2 , ( 4 
- κ 2 (z∂ z +ζ∂ ζ ) 2 F aux - 1 + z 1 -z + 2κ z∂ z F aux - 1 + ζ 1 -ζ + 2κ ζ∂ ζ F aux -2 2 (1 -z)(1 -ζ) + k -1 F aux - 2 (1 -z) 2 (1 -ζ) 2 = 0. ( 4 
Sf )(z) = 6 lim ζ→z f ′ (z)f ′ (ζ) (f (z) -f (ζ)) 2 - 1 (z -ζ) 2 = 6 lim ζ→z F aux (z, ζ). ( ( 
- κ 2 (z∂ z ) 2 S - 1 + z 1 -z + 2κ z∂ z S -2 2 (1 -z) 2 + k -1 S - 12 (1 -z) 4 = 0.

Initial conditions

The equation (4.39) is an ODE of order two which can be solved to get a unique solution with given initial conditions. We now proceed calculations of the expectations E((Sf )(0)) and E((Sf ) ′ (0)) and then provide initial conditions to Eq. (4.39), namely, we will prove the following Proposition 4.2.2.

E((Sf

)(0)) = -6 κ + 1 , E((Sf ) ′ (0)) = - 32κ (3κ + 2)(κ + 1) . ( 4 

.46)

Proof. Assume that f (z) has a Taylor series

f (z) = z + a 2 z 2 + a 3 z 3 + ... = z + ∞ n=2 a n z n .
We then have Let us recall that the expectation of SLE map f (z) was obtained in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. The authors also established a more general result for an LLE, concretely,

(Sf )(0) = f ′′′ (0) f ′ (0) - 3 2 f ′′ (0) f ′ (0) 2 = 6(a 3 -a 2 2 ), (4.47) 
(Sf ) ′ (0) = f (4) (0) f ′ (0) -4 f ′′ (0)f ′′′ (0) (f ′ (0)) 2 + 3 f ′′ (0) f ′ (0) 3 = 24(a 4 -2a 2 a 3 + a 3 2 ).
E(a n ) = n-2 k=0 η k -k -2 η k+1 + k + 1 , n ≥ 3, (4.51) 
where η is the Lévy symbol and η k = η(k), k ∈ N. We thus, in our setting, have The first integral involves a 2 which has the integral form (4.56). The formula for a 3 (0) then reduces to

E(a 3 ) = - κ -6 (κ + 1)(κ + 2) , (4.52) E(a 4 ) = - 4 3 (κ -6)(κ -2) (κ + 1)(κ + 2)(3κ + 2) . ( 4 
a 3 (0) = 4 +∞ 0 e -s λ(s)ds 2 -2 +∞ 0 e -2s λ2 ds = a 2 2 -2 +∞ 0 e -2s λ2 ds. (4.59) 
From (4.57), we have

a 2 2 = 4 ∞ 0 ∞ 0 e -s 1 -s 2 λ(s 1 ) λ(s 2 )ds 1 ds 2 = 4 ∞ 0 ∞ 0 e -s 1 -s 2 e -i √ κ(Bs 1 +Bs 2 ) ds 1 ds 2 = 8 ∞ 0 s 1 0 e -s 1 -s 2 e -i √ κ(Bs 1 -Bs 2 ) e -2i √ κBs 2 ds 1 ds 2 . (4.60) 
Thank to Fubini's theorem and the characteristic function of Brownian motion, we then arrive at e -s 1 -s 2 -s 3 e -i √ κ(Bs 1 -Bs 2 ) e -2i √ κ(Bs 2 -Bs 3 ) e -3i √ κBs 3 ) ds 1 ds 2 ds 3 , (4.63) whereas (4.57) together with (4.59) implies

E(a 2 2 ) = 8 ∞ 0 s 1 0 e -s 1 -s 2 E(e -i √ κ(Bs 1 -Bs 2 ) )E(e -2i √ κBs 2 )ds 1 ds 2 = 8 ∞ 0 s 1 0 e -(1+ κ 2 )s 1 e -(1+
a 2 a 3 = a 3 2 + I, (4.64) 
where

I = 4 +∞ 0 +∞ 0 e -s 1 -2s 2 λ(s 1 ) λ2 (s 2 )ds 1 ds 2 = 4 +∞ 0 +∞ 0 e -s 1 -2s 2 e -i √ κ(Bs 1 +2Bs 2 ) ds 1 ds 2 . (4.65) 
Corresponding to the partition of the quadrant

R + ×R + = (s 1 , s 2 ) : 0 ≤ s i < +∞ into (s 1 , s 2 ) ∈ R + × R + , s 1 > s 2 and (s 1 , s 2 ) ∈ R + × R + , s 1 < s 2 ,

the quantity

I can be rewriten as the sum of I 1 and I 2 :

I 1 = +∞ 0 s 1 0
e -s 1 -2s 2 e -i √ κ(Bs 1 -Bs 2 ) e -3i √ κBs 2 ds 2 ds 1 (4.66)

I 2 = +∞ 0 s 2 0 e -s 1 -2s 2 e -2i √ κ(Bs 2 -Bs 1 ) e -3i √ κBs 1 ds 1 ds 2 . (4.67) 
Apply again Fubini's theorem to (4.63) and make use of the characteristic function of Brownian motion, we obtain 

E(a 3 2 ) = -48 +∞ 0 s 1 0 s 2 0 e -(1+ κ 2 )s 1 e -(1+ 3 2 κ)s 2 e -(1+

Second moduli moment of Schwarzian

The same idea as in the previous section can be applied to obtain an equation satisfied by E(|(Sf )(z)| 2 ). In this section, we will prove the following Theorem 4.2.2. Let f (z) = f 0 (z) be the interior whole-plane SLE κ map at time 0 and (Sf )(z) is its Schwarzian derivative. Then

E(|(Sf )(z)| 2 ) is a solution of the equation - κ 2 (z∂ z -z∂ z ) 2 M - 1 + z 1 -z z∂ z M - 1 + z 1 - z z∂ z M -4 1 (1 -z) 2 + 1 (1 -z) 2 -1 M - 12 S (1 -z) 4 - 12S (1 -z) 4 = 0, (4.73) 
where S(z) = E((Sf )(z)) is the expected Schwarzian derivative of f .

Proof. Define the auxiliary function

G aux (z, z, ζ, ζ) = f ′ (z)f ′ (ζ) (f (z) -f (ζ)) 2 - 1 (z -ζ) 2 2 = |f ′ (z)| 2 |f ′ (ζ)| 2 |f (z) -f (ζ)| 4 + 1 |z -ζ| 4 - 1 (z -ζ) 2 f ′ (z)f ′ (ζ) (f (z) -f (ζ)) 2 - 1 (z -ζ) 2 f ′ (z)f ′ (ζ) (f (z) -f (ζ)) 2 , (4.74) 
then, from (4.3) we have

|(Sf )(z)| 2 = 36 lim ζ→z, ζ→z G aux (z, z, ζ, ζ). ( 4 

.75)

We consider the function

G(z, z, ζ, ζ) = E |z -ζ| 4 |f (z) -f (ζ)| 4 |f ′ (z)| 2 |f ′ (ζ)| 2 . (4.76) From Corollary 4.1.2, G is a solution of the equation - κ 2 (z∂z -z ∂z + ζ∂ ζ -ζ ∂ζ) 2 G - 1 + z 1 -z z∂zG - 1 + z 1 - z z ∂z G - 1 + ζ 1 -ζ ζ∂ζG - 1 + ζ 1 - ζ ζ ∂ζG + - 2 (1 -z) 2 - 2 (1 -z) 2 - 2 (1 -ζ) 2 - 2 (1 -ζ) 2 + 4 (1 -z)(1 -ζ) + 4 (1 -z)(1 -ζ) G = 0. (4.77)
Chapter 5

ASYMPTOTIC VARIANCE OF SLE

Let (φ t ), t ∈ U, a general analytic family of conformal maps on the unit disc with φ 0 = id and φ t (0) = 0, ∀t ∈ U where U is a neighborhood of 0. Then one may write

φ t (z) = z 0 e log φ ′ t (u) du, z ∈ D and ∂ ∂t φ t (z) = z 0 ∂ ∂t (log φ ′ t (u))e log φ ′ t (u) du. The function b(z) = V ′ (z) = ∂ ∂t (log φ ′ t (z))| t=0 belongs to the Bloch space B which is defined by B = {b holomorphic in D, sup D (1 -|z| 2 )|b ′ (z)| < ∞}.
In [START_REF] Curtis T Mcmullen | Thermodynamics, dimension and the weil-petersson metric[END_REF], McMullen asked under what conditions on the family (φ t ) it is true that is an analytic family. There exists a neighborhood U of 0 such that if t ∈ U then φ t is a conformal map with quasiconformal extension.

2 d 2 dt 2 H.dimφ t (∂D) t=0 = σ 2 (b), (5.1) 
In [START_REF] Le | On minkowski dimension of jordan curves[END_REF], by using a probability argument M.Zinsmeister and THN.Le described a relatively large class of functions in B for which (ϕ t ) defined by (5.2) satisfies (5.1), where the Hausdorff dimension is replaced by the Minkovski dimension

d 2 dt 2 t=0 M. dim φ t (∂D) = lim r→1 - 1 4π| log(1 -r)| |z|=1 |b(z)| 2 |dz|. (5.3)
or the equivalent equation,

- κ 2 z∂ 2 zz F + z + 1 z -1 - κ 2 ∂ z F + 2(z -2) (z -1) 2 = 0. (5.8) It follows that ∂ z (z)F = E f ′′ (z) f ′ (z) = 4 κ (1 -z) κ 4 z 2 κ +1 z 0 u 2 κ (u -2) (1 -u) 4 κ +2 du.
(5.9)

Proof. Let us firstly introduce the time-dependent, auxiliary function

F (z, t) := E(log ft ) (5.10)
where ft is the reverse radial SLE κ process 1.9. As a consequence of lemma 1.4.2, the function F is the limit in law

lim t→+∞ (t + F (z, t)) (law) 
= F (z).

(5.11)

We now consider the conditional expectation 

M s := E(log f ′ t |F s ). ( 5 
Thus M s = log f ′ s (z) + F (τ, z s ), (5.14) 
where τ := ts et F (t, z) := E(log f ′ t ). We know that (M s ) t≥s≥0 is a martingale. This fact implies that the ds-drift term of the Itô derivative of M s vanishes, that permits us to obtain an equation satisfied by F . We now calculate that ds-drift term. By regarding M s as a stochastic process governed by the two processes log f ′ s (z) and z s , the Itô derivative of M s is determined by

dM s = d log f ′ s (z) -∂ τ F ds + ∂ zs F dz s + 1 2 ∂ 2 zszs F dz s dz s . (5.15) 
Since the Itô differentials d log f ′ and dz s are written in term of ds and dB s as

d log f ′ s (z) = 1 - 2 (z s -1) 2 ds
(5.16)

dz s = z s z s + 1 z s -1 - κ 2 ds -i √ κz s dB s , (5.17) 
we obtain the coefficient of the drift term of dM s

Psing (D)( F ) := 1 - 2 (z s -1) 2 -Fτ + z s + 1 z s -1 - κ 2 z s ∂ zs F - κ 2 z 2 s ∂ 2 zszs F . (5.18)

Second logarithmic moment

In order to obtain the value of the asymptotic variance we need the integral means on circles {|z| = r} of the second moduli logarithmic moment E(| log f ′ | 2 ). For this motivation, in this section we continue following the martingale argument to find an equation satisfied by G(z)

:= E(| log f ′ | 2 ). Next, we consider G of a special form G(z, z) = F (z)F (z) + R(z, z) (5.30)
and show that R is the solution of a differential equation, intuitively, which may be easier to deal with than one satisfied by G.

We now consider the martingale (N s ) t≥s≥0 defined by

N s := E(| log f ′ t | 2 |F s ).
(5.31)

Recall that the martingale argument is based on the fact that the ds-drift term in Itô derivative of a martingale vanishes. As in the preceding sections, we firstly calculate the ds term of N s to find an equation of the auxiliary function G which is defined as following

G(t, z, z) := E(| log f ′ t | 2 ), (5.32) 
where ft is the reverse radial SLE κ process (1.9). We rewrite N s by using the Markov property of SLE

N s = | log f ′ s (z)| 2 + G(τ, z s , zs ) + log f ′ s (z) F (τ, z s ) + log f ′ s (z) F (τ, z s ). (5.33) 
It is noted that F is defined in the preceding section by (5.10).

For reasons of concision, we hereafter use the acronym dsCoeff for the phrase "coefficient of ds in Itô derivative". Thank to the linearity of Itô derivative, one can perform the ds term of dN s as the sum of those of the three terms in the right hand side of (5.33) (5.37)

We recall that this quantity vanishes since N s is a martingale. One thus has an equation satisfied by G P prin (D)( G) + 1 -2 (1z s ) 2 F (τ, z s ) + 1 -2 (1zs ) 2 F (τ, z s ) = 0.

(5.38)

We continue by putting (5.38) into the limitation as τ tends to +∞ and using Lemma CONCLUSIONS AND PERSPECTIVES

Conclusions

In this thesis, we studied the following problems: Firstly, we continued the work started in [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF] on consideration the logarithmic coefficients of the interior whole-plane SLE maps. In that work, the authors had given an explicit formula for the expected logarithmic coefficients and proceeded calculations of some first moduli second moments of these coefficients. Here, we mimicked the proof given in [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF] to generalize the explicit formula of the expected logarithmic coefficients for the interior whole-plane LLE maps. We also proved a general result for SLE 2 by giving an explicit formula to the moduli second moments of all logarithmic coefficients. With this result, we revisited the Milin's conjecture in the case of SLE 2 , namely, we arrived at the conclusion of the conjecture in a sense of expectation. It is noticed that in order to have an explicit formula to the moduli second moments of all logarithmic coefficients of the SLE 2 map, we calculated the expectation E |z| 2 f ′ (z)

f (z) 2 .
Secondly, we generalize the results on moments of the interior whole-plane SLE map in [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF], [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. By using a martingale method and considering the so-called Beliaev-Smirnov equations, we yielded a closed form of the expected general moments

E z q 2 (f ′ (z)) q 2 ) (f (z)) q 2 ) , E |z| q |f ′ (z)| p |f (z)| q and E z q 2 1 (f ′ (z 1 )) p 2 (f (z 1 )) q 2 z q 2 2 (f ′ (z 2 )) p 2 (f (z 2 )) q 2
for (p, q) belonging to a parabola R in the real (p, q)-plane. This result is then extent to a more general type of mixed moment

E (z 1 -z ′ 1 ) q 2 (f ′ (z 1 )) p 2 (f (z 1 ) -f (z ′ 1 )) q 2 (f ′ (z ′ 1 )) p ′ 2 (f ′ (z 2 )) p 2 (z 2 -z ′ 2 ) q 2 (f ′ (z ′ 2 )) p ′ 2 (f (z 2 ) -f (z ′ 2 )) q 2
, namely, for a pair (p, q) ∈ R, the Beliaev-Smirnov type equations and closed forms of the above expected moment are derivied. We introduced the generalized integral means spectrum, β(p, q; κ), corresponding to the singular behavior of the mixed moments above. This generalized integral 6.2. PERSPECTIVES means spectrum includes the standard integral means spectrum of interior wholeplane SLE and the standard integral means spectrum of exterior whole-plane SLE as specific cases when one respectively sets q = 0 and q = 2p. These standard spectrum were explicitly calculated in term of the spectrum β tip (p), β 0 (p), β 1 (p, q), β lin (p) introduced in [1], [START_REF] Beliaev | Harmonic measure and sle[END_REF], [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. In this thesis, we proposed a manifold of the spectrum in the moment (p, q)-plane , in which the average generalized spectrum of whole-plane SLE take four possible above forms, separated by five phase transition lines. We checked conjecture for (p, q) on the above parabola R by the obtained closed form of E |z| q |f ′ (z)| p |f (z)| q and applied the method introduced in [START_REF] Loutsenko | Average harmonic spectrum of the whole-plane sle[END_REF] to check the conjecture for an infinite family of parabolas in the (p, q)-plane.

We also calculated explicitly the expectation of the Schwarzian derivative of the interior whole-plane SLE map by considering the Beaev-Smirnov type equation obeyed by E (zw) 2 f ′ (z)f ′ (w) (f (z)-f (w)) 2 and a relation between the function in the expectation and the Schwarzian derivative of f (z). The same argument was applied to obtain an equation satisfied by the moduli second moment of the Schwarzian derivative. This equation allows us to recover a result obtained in [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF], that is the value of the moduli second moment of the Schwarzian derivative of the interior whole-plane SLE map at the origin.

Finally, we made use of the martingale method to reduce an explicit formula of E(| log f ′ (z)| 2 ) and then proved the relation where f (z) is the interior whole-plane SLE 2 map at time 0 and β is the corresponding average integral means spectrum. This relation is an analogue of that considered in [START_REF] Le | On minkowski dimension of jordan curves[END_REF] concerning a question raised by McMullen in [START_REF] Curtis T Mcmullen | Thermodynamics, dimension and the weil-petersson metric[END_REF].

Perspectives

The investigation of moments or logarithmic coefficients of the interior wholeplane SLE map began with computer calculations of Taylor coefficients [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF] or logarithmic coefficients [START_REF] Binh | Around Milin's conjecture and SLE maps[END_REF] of small indexes. The exciting results obtained by these calculations have motivated the analytic studies. However, as was mentioned in Section 2.1.3, the quantity of computations increases quickly as the index increases. This fact requires that the algorithm of computing programmings should be improved, we then may expect interesting explicit values of coefficients of higher indexes which motivate more analytic studies.

In this thesis, the problem of studying moments of the interior whole-plane SLE maps is considered for real values of moments. The extension of results obtained here and the applications the method used for the real moments case to the complex moments case will be an interesting and considerable problem.

In Chapter 3, the conjecture on the average integral means spectrum was proposed for all pairs (p, q) in the plane R 2 . That conjecture was checked for subsets of 6.2. PERSPECTIVES the moment (p, q)-plane, namely, for the parabola R and for an infinite family of parabolas by rigorous and non-rigorous methods. In [START_REF] Duplantier | Logarithmic coefficients and multifractality of whole-plane sle[END_REF], the authors also rigorously proved that the conjecture is true for a "large" part of the moment plane. The work of making rigorous some obtained results and proving the conjecture for the uncovered parts of the moment plane should be continued. As the integral means spectrum and the generalized integral means spectrum may be defined with complex arguments (corresponding to complex order of moments), a considerable future work is to study these spectrum in a complex setting of arguments.

It is showed that the expected moduli second moment of the Schwarzian derivative of the interior whole-plane SLE map satisfies a PDE. This fact suggests an approach to the study of that Schwarzian derivative. To exploite the PDE encoding the the expected moduli second moment of the Schwarzian derivative of the interior whole-plane SLE map will give more informations about the Schwarzian derivative and the SLE and the SLE map itself. It is noticed that the above PDE was obtained from another PDE obeyed by a mixed moment and a relation between that mixed moment and the Schwarzian derivative. As we have a host of PDEs satisfied by mixed moments (Propositions 4.1.1, Corollary 4.1.1, Corollary 4.1.2), if a quantity is related to a mixed moments obeying one of these equations then one may expect results on that quantity by exploiting the PDE obeyed by the corresponding mixed moments, for instance, one may investigate the Grunsky coefficients by considering the PDE satisfied by E (zw) 2 f ′ (z)f ′ (w) (f (z)-f (w)) is obtained for f being the interior whole-plane SLE 2 map. To arrive at this result, we have solved the equation (5.52) (therefore solved Eq (5.48)) for κ = 2. For a general positive κ, it may be impossible to have an explicit formula of the solution of (5.52) (or (5.48)) as in the case of κ = 2, however, an asymptotic behavior of the solution as r → 1 is sufficient to prove or disprove the above relation. We believe that the relation is true for all κ > 0 and to prove that should be an interesting future work.

Xuan Hieu HO

SUR LA MUTIFRACTALITÉ, LA DÉRIVÉE SCHWARZIENE ET LA VARIANCE ASYMPTOTIQUE DE WHOLE-PLANE SLE

Résumé : Soit f une instance du whole-plane SLE κ : on sait que pour certaines valeurs de κ, p les moments dérivés E(|f ′ (z)| p ) peuvent être écrits sous une forme fermée, étude qui a permis de mettre au jour une nouvelle phase du spectre des moyennes intégrales. Le but de cette thèse est une étude des moments généralisés |f ′ (z)| p |f (z)| q : cette étude permet de confirmer la structure algébrique riche du whole-plane SLE. On montre que les formes fermées des moments mixtes E |f ′ (z)| p |f (z)| q apparaissent sur une famille dénombrable de paraboles du plan (p, q), en étendant les équations de Beliaev-Smirnov à ce cas. Nous introduisons également le spectre généralisé β(p, q; κ), correspondant au comportement asymptotiques des moyennes intégrales mixtes. Le spectre généralisé moyen du whole-plane SLE prend quatre formes possibles, séparés par cinq séparatrices dans R 2 . Nous proposons également une approche semblable pour la dérivée Schwarziene S(f )(z) de l'application de SLE. Les calculs sur les équations de can be obtained on a countable family of parabolas in the moment plane (p, q), by extending the so-called Beliaev-Smirnov equation to this case. We also introduce the generalized integral means spectrum, β(p, q; κ), corresponding to the singular behavior of the mixed moments. The average generalized spectrum of whole-plane SLE takes four possible forms, separated by five phase transition lines in R 2 . We also propose a similar approach for the Schwarzian derivative S(f )(z) of SLE maps. Computations on the Beliaev-Smirnov equation of a certain general form of moment lead to an explicit formula of E(S(f )(z)). We finally study the McMullen asymptotic variance and prove a relation between the infinitesimal growth of the integral mean spectrum and the asymptotic variance in an expectation sense for SLE 
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 2111 [a, b] ⊂ R → X. If γ(a) = γ(b) then the arc is called closed. Two arcs γ 1 , γ 2 defined on the same interval [a, b] are said to be homotopic if there exists Γ : [a, b] × [0, 1] → X continuous such that ∀s ∈ [a, b], Γ(s, 0) = γ 1 , Γ(s, 1) = γ Definition The space X is called simply connected if it is connected and every closed arc γ : [a, b] → X is homotopic to a constant arc γ 0 : [a, b] → γ(a).

Theorem 1 . 1 . 1 .

 111 For a connected open subset Ω of C the followings are equivalent:

1. 3 . 1 . 2

 312 Interior radial Loewner evolution Definition 1.3.4. The unique solution of the following differential equation is called an interior radial Loewner evolution

h∈S odd |c 5 |

 5 = 1/2 + e -2/3 = 1.0134... > 1 and thus disproved the Littlewood-Paley conjecture.

Theorem 2 . 2 . 1 .

 221 (B.Duplantier, TTN.Nguyen, TPC.Nguyen, M.Zinsmeister). The whole-plane SLE κ map f 0 (z) has derivative moments

Figure 2 . 1 -

 21 Figure 2.1 -Integral curves R of Theorem 2.3.1, for κ = 2 and κ = 6.In addition to the origin, the q = 0 intersection point with the p-axis is at p(κ) := (6 + κ)(2 + κ)/8κ, with p(2) = p(6) = 2[START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF][START_REF] Loutsenko | Sleκ: correlation functions in the coefficient problem[END_REF].
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 5243 PROCESSES WITH M -FOLD SYMMETRYCorollary The interior whole-plane SLE κ map f (z) = f 0 (z) has the integrable logarithmic moment

.98) 2 . 5 .

 25 PROCESSES WITH M -FOLD SYMMETRY with the notation,

2 . 5 . 1 .

 251 .101) From this, and Theorem 2.1.3, we thus get Corollary Let f [m] (z) be the m-fold whole-plane SLE 2 map and

.24) Remark 3 . 1 . 2 .

 312 The B-S parameter γ 0 , and bulk spectrum (3.11) β 0 := β(p, γ 0 ), (corresponding to Eqs. (

Remark 3 . 1 . 3 .

 313 The σ-dependent spectrum (3.16) is obtained from the equationsA σ (p, γ) = 0; β(p, γ) = κγ 2 /2 -C(p, γ).(3.27)

Figure 3 . 1 -

 31 Figure 3.1 -Red parabola R (3.32) and green parabola G (3.37) (for κ = 6). From the intersection point P 0 (3.39) originate the two (half )-lines D 0 (3.41) and D 1 (3.42).The bulk spectrum β 0 (p) and the generalized spectrum β 1 (p, q) coincide along the arc (3.34) of red parabola between its tangency points T 0 and T 1 with ∆ 0 and ∆ 1 (thick red line). They also coincide along the infinite left branch (3.38) of the green parabola, up to its tangency point T 2 to ∆ 1 (thick green line). The β 0 (p) spectrum and the linear one β lin (p) coincide along D 0 , whereas β 1 (p, q) and β lin (p) coincide along D 1 .

Figure 3 . 2 -

 32 Figure 3.2 -The blue quartic (3.52) for κ = 6. It intersects the green parabola at point Q 0 (3.56) and the red parabola at point Q 1 (3.55) (not marked), both of abscissa p ′ 0 (κ) = -1 -3κ/8.

Remark 3 . 1 . 4 .

 314 Note that because of the very choice to parameterize the parabolae and the quartic by γ, such that A (3.20) vanishes, Eq. (3.47) holds for each of the pairs of parametric equations.

  .56) Notice that these two intersection points have same abscissae, p ′ 0 (κ) (3.10), where the transition for γ 0 = -1 2 from the bulk spectrum β 0 to the tip spectrum β tip takes place. They are found by combining Eqs. (3.31) or Eqs. (3.36) with (3.46).

Figure 3 . 3 -

 33 Figure 3.3 -Respective domains of validity of integral means spectra β tip (p), β 0 (p), β lin (p), and β 1 (p, q). The thin straight line (coral) q = 2p corresponds to the version of whole-plane SLE studied in Ref.[START_REF] Beliaev | Harmonic measure and sle[END_REF]. It does not intersect the lower domain where β 1 holds.

.69) 3 . 3 . 1 k=0 1 l=0

 3311 INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS then the equation (3.68) give us the following recursions of θ i,j

1 ( 1 -z z) κγ 2 2

 112 For instance, in the case of M = 0, Eq. (3.74) becomes the second equation in (2.62), which together with (3.63), from Corollary 2.4.1, imply Θ(z, z) =

.111) 3 . 3 .

 33 INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS When γ > γ M , from (3.110), one have for n 2 = M and 0

Figure 3 . 4 -

 34 Figure 3.4 -The curves defined by (3.63), (3.114) in the plane q = 0. The left dashed line, p = -1 -3κ 8 , marks the phase transition at γ = -1 2 . The right dashed curve marks the phase transition at γ = γ M . Note that the case M = 0 corresponds to the union of the red curve and the haft line {(0, κ) : κ > 0}.

3 into ( 3 . 3 for n = 1 , 3 , 3 .

 333133 115), one has β(2n) = -2n, n = 0, ..., M. (3.120) Since β(2n) is a continuous function in γ for each n, β(2n) is negative in a neighborhood of γ = -M +q ..., M . Whereas, since β(0) is increasing in a neighborhood of γ = -M +q β(0) is non-negative in a right neighborhood of that point. The non-negativity of β implies that β = β(0), (3.121) in a right neighborhood of γ = -M +q Because β(0) is strictly bigger than every β(2n) for n = 1, ..., M in the interval ( -M +q 3 , γ M ), it follows from the continuity of β that β = β(0) on ( -M +q 3 , γ M ].

3. 3 .

 3 INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS Next, we determine values of the eigenvalue β (3.88) in a right neighborhood of γ M . From (3.112) and (3.3.4), at γ = γ M , one has β(0) = β(2M ) > β(2n), n = 1, ..., M -1.

3 .Figure 3 . 6 -

 336 Figure3.6 -The (γ, p)-plane in the case of M = 2. The curve γ M (q) intersects the vertical line γ = -1 2 at q = -8M -5 2(2M -3) .

Corollary 4 . 1 . 3 .

 413 In the same setting as in Theorem 4.1.1, we have for z, ζ ∈ D,

.23) Corollary 4 . 1 . 4 .

 414 In the same setting as in Theorem 4.1.1, we have for z, ζ ∈ D,

  (4.25) Let us denote the differential operator in the the left hand side of (4.25) by P(D).

4. 1 .

 1 FOUR-POINT GENERALIZED FUNCTION We now consider the action of P(D) on the function G of the form G(z, z, ζ, ζ) = A(z, z)B(ζ, ζ)C(z ζ)D(zζ). (4.26) Observe that (z∂ zz ∂z + ζ∂ ζ -ζ ∂ζ) 2 = (z∂ zz ∂z )

  .42) then F (z, ζ) = (zζ) 2 F aux (z, ζ) + 1. (4.43) After taking (4.43) into Eq. (4.41), we obtain an equation satisfied by F aux as

  .44) One has the following relation between the Schwarzian derivative of f and the function F aux

  .45) Because of this relation, by taking ζ → z in (4.44), we arrive at an equation for (Sf )(z) as

  Sf ) ′ (0)) = 24E(a 4 -2a 2 a 3 + a 3 2 ).(4.50)

ee

  -s 1 -s 2 -s 3 λ(s 1 ) λ(s 2 ) λ(s 3 )ds 1 ds 2 ds 3 -s 1 -s 2 -s 3 e -i √ κ(Bs 1 +Bs 2 +Bs 3 ) ds 1 ds 2 ds 3

2 (

 2 where H.dimφ t (∂D) is the Hausdorff dimension of φ t (∂D) and σ 2 (b) is the McMullen's asymptotic variance of a Bloch function b given by σ iθ )|dθ. Conversely, if b is a Bloch function, then the family of functions φ t (z) =

2 ( 1 -

 21 z s ) 2 , ∂ s log f ′ s = 1 -2 (1zs ) 2 .In addition, by applying again Itô formula to G(τ, z s , zs ), we also getdsCoeff of G(τ, z s , zs ) = z s + 1 z s -1 z s ∂ zs G + zs + 1 zs -1 zs ∂zs G -∂ τ G -κ 2 (z s ∂ zszs ∂zs ) 2 G.(5.36) Let us denote the differential operator in the right hand side of (5.36) by P prin (D). The quantity (5.35) then equals to P prin (D)( G) + 1 -2 (1z s ) 2 F (τ, z s ) + 1zs ) 2 F (τ, z s ).

1 . 4 .

 14 2 to get an equation of G. Before doing that, let us rewrite| log f ′ τ | 2 as following | log f ′ τ | 2 = | log e τ f ′ τ | 2τ (log f ′ τ + log f ′ τ )τ 2 .(5.39)This identity implies that∂ zs G = ∂ zs E(| log e τ f ′ τ | 2 )τ ∂ zs F (τ, z s ) (5.40) ∂ zs G = ∂ zs E(| log e τ f ′ τ | 2 )τ ∂ zs F (τ, z s ) (5.41) ∂ 2 zszs G = ∂ 2 zszs E(| log e τ f ′ τ | 2 )τ ∂ 2 zszs F (τ, z s ) (5.42) ∂ 2 zs zs G = ∂ 2 zs zs E(| log e τ f ′ τ | 2 )τ ∂ 2 zs zs F (τ, z s ) (5.43) ∂ 2 zs zs G = ∂ 2 zs zs E(| log e τ f ′ τ | 2 ) (5.44) ∂ τ G = ∂ τ E(| log e τ f ′ t | 2 ) -E(log e τ f ′ τ )τ ∂ τ F (τ, z s ) -E(log e τ f ′ τ )τ ∂ τ F (τ, z s ).(5.45)Chapter 6

  log f ′ (re i θ)| 2 )dθ,

  log f ′ (re i θ)| 2 )dθ,

  Beliaev-Smirnov d'une certaine générale forme de moment mène à une formulation explicite de E(S(f )(z)). Nous étudions finalement la variance asymptotique de McMullen et démontrons une relation entre la croissance infinitésimale du spectre de la moyenne intégrale et la variance asymptotique pour SLE 2 . Mots clés : Whole-plane SLE, moment logarithmique, equation de Beliaev-Smirnov, généralisé spectre de la moyène intégrale, dérivée Schwarziene, variance asymptotique de McMullen. ON MULTIFRACTALITY, SCHWARZIAN DERIVATIVE AND ASYMPTOTIC VARIANCE OF WHOLE-PLANE SLE Abstract : Let f an instance of the whole-plane SLE κ conformal map from the unit disk D to the slit plane: We know that for certain values of κ, p the derivative moments E(|f ′ (z)| p ) can be written in a closed form, study that has updated a new phase of the integral means spectrum. The goal of this thesis is a study on generalized moments |f ′ (z)| p |f (z)| q : This study permit confirm the rich algebraic structure of the whole-plane version of SLE. It will be showed that closed forms of the mixed moments E |f ′ (z)| p |f (z)| q

2 .

 2 Keywords : Whole-plane SLE, logarithmic moment, Beliaev-Smirnov equation, generalized integral means spectrum, Schwarzian derivative, McMullen's asymptotic variance. MAPMO UMR 6628 -CNRS Rue de Chartres -BP6759 45067 ORLÉANS CEDEX

  The kernel of a sequence (Ω n ) n≥0 of CCF-domains is the union of all domains U ⊂ C such that ∞ ∈ U and U ⊂ Ω n for n large enough. If no such domain exists we say that the kernel is ∞.

	Definition 1.2.3. A sequence of open sets in C (or CCF-domains) is said to con-
	verge to a kernel if each subsequence has the same kernel.

1.3. LOEWNER EQUATION Definition 1.2.2.

  2.1. Corollary 2.2.1 confirms the validity of Theorem 2.1.1 and Theorem 2.1.2 in the case of SLE 2 .

  .55) Consider M s as an Itô drift-diffusion process which is the composition of a twice differentiable scalar function and the vector (| f ′ s |, | fs |, z s , zs ), then the coefficient of the ds-drift term of the Itô derivative of M s is obtained from (2.

	52),(2.53),(2.54),
	(2.55) as,

  .9)4.1. FOUR-POINT GENERALIZED FUNCTIONTo compute the quantities (4.4) we reuse the arguments which were applied to the proofs of Theorem 2.3.1 and Theorem 2.4.1. We indeed, with that method, give a more general result covering also Theorem 2.3.1 and Theorem 2.4.1, that is, Theorem 4.1.1.

  .14) 4.1. FOUR-POINT GENERALIZED FUNCTION On the other hand, from the fact that the Itô drift-diffusion process X s (z i , z ′ i ) is the composition of a twice differentiable scalar function and the vector of Itô processes ( f ′ s (z i ), f ′ s (z ′ i ), fs (z i ), fs (z ′ i )) and the equations (2.42), (2.43), the Itô differentials dX s (z 1 , z ′ 1 ) and dX s (z 2 , z ′ 2 ) are obtained as

  2 + (ζ∂ ζ -ζ ∂ζ) 2 + 2(zζ∂ zζ + z ζ∂ z ζz ζ∂ z ζ -zζ∂ zζ ). κ(z∂ z A.ζ∂ ζ B + z ∂z A. ζ ∂ζB -z∂ z A. ζ ∂ζBz ∂z A.ζ∂ ζ B)CD (4.28)

	The setting (4.26) together with Leibnitz's rule thus give us the development of -κ 2 (z∂ z -z ∂z + ζ∂ ζ -ζ ∂ζ) 2 G as
	-	κ 2	(z∂ z -z ∂z ) 2 A.BCD -	κ 2	(ζ∂ ζ -ζ ∂ζ) 2 B.ACD	(4.27)

  Next, let us consider a3 2 and a 2 a 3 . The identity (4.57) implies that

	4.2. SCHWARZIAN OF SLE	
			3 2 κ)s 2 ds 1 ds 2
	=	8 (κ + 2)(κ + 1)	.		(4.61)
	As we now have the formulas (4.52), (4.61), plugging them into (4.49) yeilds
		E((Sf )(0)) = 6E(a 3 -a 2 2 ) =	-6 κ + 1	.	(4.62)

  5 2 κ)s 3 ds 3 ds 2 ds 1

	4.2. SCHWARZIAN OF SLE				
	The equations (4.53), (4.68) and (4.71) permit us to obtain
	E((Sf ) ′ (0)) = 24E(a 4 -2a 2 a 3 + a 3 2 ) = -	32κ (3κ + 2)(κ + 1)	.	(4.72)
	By solving the ODE (4.39) with the two initial conditions (4.46), we obtain a
	unique solution (4.38) which gives a explicit formula of the expected Schwarzian
	derivative of the whole-plane SLE κ map.				
	=	-32 (3κ + 2)(κ + 2)(κ + 1)	.		(4.68)
	Similarly, from (4.66) and (4.67) we also have
			E(I 1 ) =	4 3	1 (κ + 2)(3κ + 2)	,	(4.69)
			E(I 2 ) =	1 3	1 (κ + 1)(3κ + 2)	.	(4.70)
	Therefore						
	E(a 2 a 3 ) =	-32 (3κ + 2)(κ + 2)(κ + 1)	+	4 3	5κ + 6 (3κ + 2)(κ + 1)(κ + 2)	.	(4.71)

  . Since the coefficients of ds in d| log f ′ s (z)| 2 , d log f ′ s (z) F (τ, z s ) and dlog f ′ s (z) F (τ, z s ) are respectively∂ s log f ′ t (z)log f ′ t (z) + log f ′ t (z)∂ s log f ′ t (z) ∂ s log f ′ t (z) F (τ, z s ) + log f ′ t (z).dsCoeff of F (τ, z s ) ∂ s log f ′ t (z) F (τ, z s ) + log f ′ t (z).dsCoeff of F (τ, z s ),the ds-coefficient of dN s is obtained asdsCoeff of G(τ, z s , zs ) + ∂ s log f ′ t (z) F (τ, z s ) + ∂ s log f ′ t (z) F (τ, z s ) (5.34) + log f ′ t (z)(∂ s log f ′ t (z) + dsCoeff of F (τ, z s )) + log f ′ t (z)(∂ s log f ′ t (z) + dsCoeff of F (τ, z s )).vanish because the first is the coefficient of the ds-drift term in Itô derivative of the martingale (M s ) t≥s≥0 defined by (5.12) while the second is the complex conjugate of the first one. The ds-drift term coefficient of dN s is thus reduced as dsCoeff of G(τ, z s , zs ) + ∂ s log f ′ t (z) F (τ, z s ) + ∂ s log f ′ t (z) F (τ, z s ).

	Note that We now expand the terms appear in (5.35). Namely, we have ∂ (5.35) ∂ s log f ′ s = ∂ z fs fs+λ(s) fs-λ(s) f ′ s = fs + λ(s) fs -λ(s) 2λ(s) fs -( fs -λ(s)) 2

s log f ′ t (z) + dsCoeff of F (τ, z s ) and ∂ s log f ′ t (z) + dsCoeff of F (τ, z s ))

We would like to thank Nguyen Thi Thuy Nga for her explanations on the dynamic programming.

Remerciements

INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS

Figure 3.5 -The (γ, p)-plane in the case of M = 1. The curve γ M (q) never intersects the vertical line γ = - 1 2 .

We continue with studying the cases of q < M -3 2 which is equivalent to -M +q 3 < - 1 2 . Here, it is more convenient to separately consider the cases M = 1 and M ≥ 2.

In the case of M = 1, we always have -1 2 < γ 1 = γ M for all q ∈ R, in particular, in the (γ, q)-plane the curve γ 1 (q) does not intersect the vertical line γ = - 1 2 and located to the right of that line and below the line γ = -1+q 3 = -M +q 3 (see Figure 3.5). For a q such that q < -1 2 = M -3 2 , one has -1+q 3 < -1 2 < γ 1 . If - 1 2 ≤ γ ≤ γ 1 then the point (γ, q) can be jointed to a fixed point T 0 (γ 0 , -1 2 ) in the segment {(γ, - 1 2 ) : -1 2 < γ < γ 1 (-1 2 )} by a vertical segment. The continuity of the β-spectrum in q and the fact that β(0) > β [START_REF] Beliaev | Harmonic measure and sle[END_REF] in the region between the vertical line γ = - 1 2 and the curve γ 1 (q) implies that β = β(0) on the segment, in particular, at the point (γ, q).

If -M +q 3 = -1+q 3 < γ < -1 2 then the point (γ, q) can be jointed to the above fixed point T 0 (γ 0 , - 1 2 ) by a polygon of two sides with the first side jointing (γ, q) and (γ 0 , q), the second side jointing (γ 0 , q) and (γ 0 , - 1 2 ). By the same reason as in the previous paragraph, the β-spectrum at (γ 0 , q) is β(0). The continuity of β-spectrum in γ implies that it coincides with β(0) on the horizontal segment jointing (γ 0 , q) and (- 1 2 , q). On the horizontal segment from the point (-1 2 , q) to the point (γ, q), one has

From these facts and the continuity of the β-spectrum, it yields β = β(0) -2γ -1 on the segment jointing (-1 2 , q) and (γ, q), in particular, at the point (γ, q). If γ > γ 1 (q) then the point (γ, q) can be jointed to a fixed point

2 )} by a polygon of two sides. The first side is the where ǫ is a positive constant. Here, β(0) and β(2M ) are defined by (3.108).

Remark 3.3.1. On the parabolas P M , we have the following identities

where β tip , β 0 , β 1 are defined above. Therefore the results obtained in this work are consistant with the scheme of the generalized spectrum introduced in Section 3.1 .

FOUR-POINT GENERALIZED FUNCTION

Then G is a solution of the equation

Let us now prove Proposition 4.1.1.

Proof. We firstly introduce a four-point auxiliary function

where ft is the reverse radial SLE κ process (1.9). In the view point of Lemma 1.4.2, the function H is the limit in law

Let us now define, for s ≤ t, the conditional expectation

where F s is the σ-algebra generated by {B u , u ≤ s}. Thank to Markov property of SLE, we can rewrite M s as

and τ := ts. Note that, by its construction (M s ) s≥0 is a martingale and hence the ds-drift term in Itô derivative of M s vanishes. We will use this fact to obtain an equation satisfied by H. From (4.18) we can represent the Itô derivative of dM s in term of those of the factors in the right-hand side as 

Schwarzian of SLE

In this section, we present the following results:

-An explicit formula of the expectation of the Schwarzian derivative of the SLE κ map.

-An PDE obeyed by the expected second moduli moment of the Schwarzian derivative of the SLE κ map with that we recover results obtained in [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF] (see also [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]) on this object.

Expectation of Schwarzian

The main result of this section is the following Theorem 4.2.1. Let f (z) = f 0 (z) be the interior whole-plane SLE κ map at time 0 and S(f

The proof of Theorem 4.2.1 is two-fold: First, we use the relation (4.3) and Corollary 4.1.1 to find a ODE obeyed by the expected Schwarzian derivative (up to a constant factor) of the SLE κ map f (z) := f 0 (z).

Second, we provide initial conditions to the above ODE and solve it to obtain an explicit formula of E(f (z)).

SCHWARZIAN OF SLE

Because G and G aux are related by

where F is defined by (4.40), from Eq. ( 4.77) we can obtain an equation satisfied by G aux . By plugging (4.78) into (4.77), we arrive at an equation satisfied by The first equality in (4.46) implies

Hence Theorem 4.2.2 recovers the result obtained in [START_REF] Duplantier | Coefficient estimates for whole-plane sle processes[END_REF] on the Schwarzian derivative of the SLE κ map.

LOGARITHMIC EXPECTATION OF SLE

Namely, they proved that

which is, in this setting of φ t , equivalent to (5.3). Here β(p, φ) is the integral means spectrum of φ, φ ′ (z) = exp(b(z)), defined by

The starting motivation of this chapter is to prove (5.4) in expectation for the interior whole plane SLE 2 map. Concretely, we will prove the following Theorem 5.0.1. Let f := f 0 be the interior whole-plane SLE κ map at time 0 and β(p) be the average integral means spectrum of f defined by

(

The average integral means spectrum of the interior whole-plane SLE κ was obtained in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF]. Therefore, to prove Theorem 5.0.1, we have to determined the right hand side of (5.6). For this purpose, we will proceed the two following steps:

-Using martingale techniques to derive an equation satisfied by

for SLE 2 (as we will see, one can derive that for all κ > 0).

-Solving the equation obtained in the first step for κ = 2 by a consideration of its series form to get an explicit expression of E(| log f ′ (z)| 2 ). This expression verifies the relation (5.6).

Logarithmic expectation of SLE

In this section we present results concerning the logarithmic expectation F (z) := E(log f ′ (z)) including a differential equation satisfied by F and the exact formula of the derivative of F (hence F ). These results will be useful to find the equation of the second logarithmic moment E(| log f ′ (z)| 2 ) and to find it solutions with that we deal in the two next sections.

Theorem 5.1.1. Let f := f 0 be the interior whole-plane SLE κ map at time 0 and F (z) = E(log f ′ (z)), then F satisfies the equation

LOGARITHMIC EXPECTATION OF SLE

The vanishing of this quantity give us the equation

Finally we use (5.11) to find the equation satisfied by

(5.20)

After eliminating the factor z, it yields an equivalent equation

This equation is an ODE of order one of ∂ z F with the initial condition ∂ z F (0) = -8 2+κ , obtained by substituting z = 0 into (5.21). One may use the integrating factor method to solve this equation and get the expression (5.9) of ∂ z F . From Theorem 5.1.1, simple formulas can be obtained for particular cases. For example, in the case of κ = 2,

for κ = 1,

for κ = 4, by putting w

(5.24)

The exact formula of F can also be obtained for certain values of κ by integrating both sides of (5.9). For instance, with κ = 2 we have

(5.26)

.27)

where P n is a polynomial of degree n.

Remark 5.1.2. For general κ

(5.29)

SECOND LOGARITHMIC MOMENT

In (5.38) by replacing the terms that appear in the left-hand side of the above identities by their corresponding right-hand side terms, we arrive at

(5.46)

Note that Psing ( F )(τ, z s ) is the ds-term coefficient in dM s , therefore vanishes. One can thus get rid of the second line of (5.46) and obtains 

(5.48)

We now consider function G of the form

where F is the solution of Eq. (5.7) and F (z) is its complex conjugate. By replacing G(z, z) by F (z)F (z) + R(z, z), the left hand side of (5.48) becomes

(5.50) Since Eq. (5.1.1), the two last lines vanish. The quantity (5.50) is thus simplified as

That leads us to the following Proposition 5.2.2.

(5.52)

Asymptotic variance of SLE 2

The function R is analytic in the bi-disk D × D, we thus write it in a series form

Since the normalization of SLE map f , a 0,0 = 0. The equation (5.52) give us recurrent relations of the coefficients a n,m . In the case of κ = 2, these recurrent relations make us able to obtain easily an explicit formula of R and thus of G. Let us set κ = 2 and put the series form (5.53) of R into Eq. (5.52) then after identifying the two sides of the equation, we obtain

(5.56) By using the inductive method, we can prove that a 1,1 = 4 (5.57)

a n,m = 0 otherwise.

(5.60)

These identities are equivalent to

(5.61) and hence

The equation (5.62) directly implies the main result of this section 

(5.64)

The Plancherel's theorem then yields

(5.66)

Return to Theorem 5.0.1, let us recall that the average integral mean spectrum of the interior whole-plane SLE κ was obtained in [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] as

where

) ). One has f t (0) = 0, ∀t ≥ 0. At t = 0, the driving function λ(0) = 1, so that the image of z = 1 is at the tip γ(0) = f 0 (1) of the curve. Source: [START_REF] Duplantier | The coefficient problem and multifractality of whole-plane sle & lle[END_REF] . . . . . .