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INTRODUCTION

In 1916 the German mathematician Ludwig Bieberbach firstly stated his famous
conjecture, so-called Bieberbach’s conjecture, which provide a necessary condition
on Taylor coefficients of univalent functions on the unit disk. The conjecture says
that: If f belongs to the class S, i.e, a univalent function on the unit disk D and
has the Taylor series

∑
n≥0 anz

n with the normalization a0 = 0, a1 = 1 then

|an| ≤ n.

Bieberbach proved the conjecture in the case of n = 2 in the same year. This
conjecture was then partly proved by many mathematicians (n = 3, 4, 5) before the
French mathematician Louis de Branges finished its journey with a complete proof
in 1985. Today Bieberbach’s conjecture is a classical theorem of complexe analysis.
For approximately 70 years of Bieberbach’s theorem’s history, beside its intrinsic
value, the efforts to prove it have contributed important results and new theories
to mathematics. One of these contributions is the Loewner’s theory introduced by
Karl Loewner in 1923 to solve Bieberbach’s probleme for n = 3. Indeed, de Branges
has used Loewner’s theory as a crucial argument in his famous proof. The original
idea of Loewner is to imbed the univalent function into a special flow governed by a
nice vector field for which good estimates of the coefficients are available and then
recover estimates for the initial function.

Loewner introduced a representation of the subset of S which consists of functions
whose image are slit domains in C. This subset is dense in S in the topology of locally
uniform convergence. He showed that a function in this subset can be embedded in
to a family of functions (ft(z))t≥0 ⊂ S

ft(z) = etz +
∞∑

n=2

anz
n,

f0(z) = f(z).

Moreover, the family (ft(z))t≥0 satisfies the equation

∂

∂t
ft(z) = z

∂

∂z
ft(z)

λ(t) + z

λ(t)− z
, (1)

where λ : [0,∞) → ∂D is a continuous function on the unit circle. With the sole
information that |λ(t)| = 1, ∀t, he could prove that |a3| ≤ 3|a1|.

Interestingly, the derivation of Eq. (1) above is only half of the story. There is
indeed a converse: given any continuous function λ : [0,+∞[→ C with |λ(t)| = 1

1
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Figure 1 – Loewner map z 7→ ft(z) from D to the slit domain Ωt = C\γ([t,∞)) (here
slit by a single curve γ([t,∞)) for SLEκ≤4). One has ft(0) = 0, ∀t ≥ 0. At t = 0,
the driving function λ(0) = 1, so that the image of z = 1 is at the tip γ(0) = f0(1)
of the curve. Source: [5]

for t ≥ 0, the the Loewner equation (1), supplemented by the boundary (“initial”)
condition, limt→+∞ ft(e

−tz) = z, has a solution (t, z) 7→ ft(z), such that (ft(z))t≥0

is a chain of Riemann maps onto simply connected domains (Ωt) that are increasing
with t.

In 1999, in his work on the planar uniform spanning tree (UST) and the planar
loop-erased random walk (LERW) probabilistic processes, Schramm [15] introduced
into the Loewner equation the random driving function,

λ(t) := ei
√
κBt , (2)

where Bt is standard one dimensional Brownian motion and κ a non-negative pa-
rameter, thereby making Eq. (1) a stochastic PDE, and creating the celebrated
Schramm-Loewner Evolution SLEκ. Schramm-Loewner Evolution were proved to be
the scaling limit of some stochastic processes in plane and conjectured to describe
the scaling limit of various other processes. Because of its importance, Schramm-
Loewner Evolution have become one of the most interested objects in statistical
mechanic. A generalization of Schramm-Loewner Evolution, so-called Lévy-Loewner
Evolution, is also concurrently investigated. This is a stochastic growth process
defined to be a solution of the Loewner equation (1) with the driving function
λ(t) = eiLt , where Lt is a Lévy process.

The above introduction is aimed at giving an overview about Schramm-Loewner
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Evolution which is the object of research in this thesis. In the rest of this introduc-
tion section, we present our particular problems as well as delineate the contents
and structures of the chapters of the thesis. The thesis includes four chapters that
respectively deal with the generalization of moments of SLE maps, the generalized in-
tegral mean spectrum of SLE and the generalized universal spectrum, the Schwarzian
derivative of SLE, McMullen’s question on the relation between Minkovski dimen-
sion and asymptotic variance for SLE map.

The starting motivation of Chapter 2 is to revisite the Bieberbach’s conjecture,
namely, the Milin’s conjecture in the framework of Schramm-Loewner Evolution.
For this purpose, we study the logarithmic coefficients of whole-plane SLEκ and
the generalizations thereof, which are obtained by introducing generalized moments
for the whole-plane SLE map, E(|f ′(z)|p/|f(z)|q), for (p, q) ∈ R2. We generalize
the properties obtained in Ref. [4], [5], [12], [13] to the mixed moments, along
integrability curves in the moment plane (p, q) ∈ R2 depending continuously on κ,
by extending the so-called Beliaev–Smirnov equation to this case. The generalization
of this integrability property to the m-fold transform of f is also given.

In chapter 3, with results obtained from chapter 2 we proceed an analysis of
the generalized spectrum of SLE maps. We define a generalized integral means
spectrum, β(p, q;κ), corresponding to the singular behavior of the mixed moments
above. The average generalized spectrum of whole-plane SLE takes four possible
forms, separated by five phase transition lines in the moment plane R2. The manifold
identities so obtained in the (p, q)-plane encompass all previous results. Rigorous
and non-rigorous analyises will be presented to check this manifold of spectrum.

Chapter 4 deals with the expectation of Schwarzian derivative of SLE map. Let
f be a holomorphic function, its Schwarzian derivative is defined by

(Sf)(z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

=
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.

Schwarzian derivative plays an important role in the theory of univalent function and
conformal mapping. It is known that |(Sf)(z)| ≤ 6

(1−|z|2)2 whenever f is univalent
in D. As a consequence of Nehari’s criterion of univalence, we also have a sufficient
condition on Schwarzian derivative for a meromorphic function in D to be univalent,
that is

|(Sf)(z)| ≤ 2

(1− |z|2)2 .

In their paper [4] (see also [5]), the authors posed for the first time the problem
of considering Schwarzian derivative of SLE. They calculated E(|(Sf)(0)|2) for f
being the whole-plane SLE map and showed that E(|(Sf)(0)|2) ≤ 4 is reached for
κ ≥ 8. They then asked for the interpretative meaning of this fact. In chapter
3 we give an approach to the problem of considering expectations of Schwarzian
derivative of SLE and its second moment throughout differential equations. We
start with a generalization of the main results in the first chapter to a more general
moment function depending on parameters. The point is that for some particular
restrictions of this generalized moment function we have quantities that are related
to Schwarzian derivatie and its second moment by limitations. We are thus able to

3
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perform equations satisfied by these quantities from those of the moment function
and obtain an exact formula of expectation of Schwarzian derivative of SLE.

The next problem considered in this thesis is the question asked by McMullen on
the the relation between Minkovski dimension and asymptotic variance concerning a
family of conformal mappings. In 2008, when working on the Weil-Peterson metric,
McMullen [14] used the thermodynamic formalism to connect dynamical features of
some special holomorphic families of conformal maps

ϕt : D
∗ → C, ϕ0(z) = z, where D∗ = {z : |z| > 1}.

One of those is the relation between the infinitesimal growth of the Hausdorff di-

mension of the Jordan curves ϕt(S1) and the asymptotic variance of v = dϕt

dt

∣∣∣∣
t=0

2
d2

dt2

∣∣∣∣
t=0

H.dimϕt(S1) = σ2(v′). (3)

Here σ2 is the McMullen’s asymptotic variance of a Bloch function given by

σ2(b) = lim sup
r→1−

1

2π| log(1− r)|

∫ 2π

0

|b(reiθ)|dθ, .

McMullen also asked: Under what conditions of holomorphic families of conformal
mappings the identity (3) is true?

To answer this question for inside of the disc, M.Zinsmeister and THN.Le [9]
considered the mappings

φt(z) =

∫ z

0

etb(u)du b ∈ B : set of Bloch functions. (4)

and used a probability argument to describe a relatively large class of functions in B
for which (ϕt) defined by (4) satisfies (3), where the Hausdorff dimension is replaced
by the Minkovski dimension. In fact, they dealt with the following identity

d2

dt2

∣∣∣∣
t=0

M. dim φt(S
1) = lim

r→1−

1

4π| log(1− r)|

∫

|z|=1

|b(z)|2|dz|, (5)

and the equivalent equality

lim
p→0

2β(p, φ)

p2
= lim

r→1−

1

4π| log(1− r)|

∫

|z|=1

|b(z)|2|dz|, (6)

where β(p, φ) is the integral mean spectrum of the function φ defined by φ′(z) =
exp(b(z)). In the same article they also constructed a Bloch function b and showed
that (5) doesn’t holds for the family (ϕt) (4) corresponding to this b.

In chapter 4 we show that (6) is true in a sense of expectation for SLE2. Indeed,
we obtain the explicit expression of E(| log f ′(z)|2) where f = f0 is the interior
whole-plane SLE2 map at time 0 and the equality

lim
p→0

2β̄(p)

p2
= lim

r→1−

1

4π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ, (7)

4
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where β̄(p) is the average integral mean spectrum of the interior whole-plane SLE2

map. To do that we firstly use the martingale argument to get an equation satisfied
by tE(| log f ′(z)|2). Note that this equation is performed for a arbitrary κ. We then
solve the equation in the case of κ = 2 by inductive method applied for Taylor
coefficients of the solution.

The results presented in this thesis are based on joint works of the author with
others. Namely, Chap 2 and Chapter 3 are from joint works with B.Duplantier,
TB.Le and M.Zinsmeister. Chapter 4 is from a joint work with M.Zinsmeister.
Chapter 5 is from a joint work with TB.Le and M.Zinsmeister.

5





Chapter 1

STOCHASTIC LOEWNER

EVOLUTION

In this chapter, we will provide mathematical backgrounds and introduce es-
sential notions of Loewner’s theory. In particular, we focus on various variants of
Loewner equation which encode properties of growing (or shrinking) domains gener-
ated by Jordan arcs. We then introduce the setting of O. Schramm to establish the
Schamm–Loewner evolution, a stochastic version of Loewner evolution. Some prop-
erties of Stochastic–Loewner evolutions which are necessary for the next chapters
will also be given.

1.1 Simply connected domains

An arc in a metric space X is a continuous mapping γ : [a, b] ⊂ R → X. If
γ(a) = γ(b) then the arc is called closed. Two arcs γ1, γ2 defined on the same interval
[a, b] are said to be homotopic if there exists Γ : [a, b] × [0, 1] → X continuous such
that

∀s ∈ [a, b],Γ(s, 0) = γ1,Γ(s, 1) = γ2.

Definition 1.1.1. The space X is called simply connected if it is connected and
every closed arc γ : [a, b] → X is homotopic to a constant arc γ0 : [a, b] → γ(a).

Intuitively, within that space, every closed arc cannot continuously degenerate
to a single point. When X is a planar domain we have the following equivalent
characterizations of simply connected domains:

Theorem 1.1.1. For a connected open subset Ω of C the followings are equivalent:

(i) Ω is simply connected,

(ii) C \ Ω is connected,

(iii) For any closed arc γ whose image lies in Ω and any z /∈ Ω, Ind(z, γ) = 0.

Here, Ind(z, γ) is the index of z with respect to γ which stands for the variation
of the argument (measured in number of turns) of γ(t) − z along [a, b]. When γ is
piecewise C1 this quantity is also equal to

1

i2π

∫ b

a

γ′(s)

γ(s)− z
ds =

1

i2π

∫

γ

1

ζ − z
dζ.

7



1.2. CARATHEODORY CONVERGENCE THEOREM

Theorem 1.1.2. (Riemann). Let Ω is a simply connected proper subdomain of C
and w ∈ Ω. Then there exists a unique biholomorphic map g : Ω → D such that
g(w) = 0, g′(w) > 0.

An equivalent statement is that there exists a unique holomorphic bijection f :
D→ Ω sending 0 to z0 ∈ Ω and f ′(0) > 0. This specific map is called the Riemann
map of Ω for z0.

We have also a slight different version of Riemann mapping theorem which states
for domains containing ∞.

Definition 1.1.2. A set K ∈ C is called CCF-set or CCF-compact if it is compact,
connected with connected complement, containing 0 but not reduced to this point.

Definition 1.1.3. The complement in C of a CCF-set is called a CCF-domain.

In order to state a Riemann mapping theorem for these domains we define the
holomorphicity at ∞ for a mapping fixing ∞, using the structure at ∞.

Definition 1.1.4. If Ω = C\K, where K is a CCF−compact, and f : Ω → C\{0}
is a mapping fixing ∞, we say that f is holomorphihc at ∞ if the mapping

f̃(z) =
1

f(1/z)

is holomorphic at 0.

The limit limz→∞
f(z)
z

exists and equals to 1
f̃ ′(0)

whenever f is holomorphihc at

∞. We denote this limit by f ′(∞).
By using the reference CCF-domain ∆ = C\D, we now introduce another version

of Riemann mapping theorem:

Theorem 1.1.3. If K is a CCF-compact then there exists a unique holomorphic
bijection f : ∆ → Ω such that f(∞) = ∞ and f ′(∞) > 0.

We also say that f is the Riemann map of Ω. The quantity f ′(∞) is called the
logarithmic capacity of K and is denoted by cap(K). The following property justifies
the denomination:

Proposition 1.1.1. The quantity cap(K) is increasing in the sense that if K1  K2

are two distint CCF-compact then cap(K1) < cap(K2).

1.2 Caratheodory convergence theorem

Definition 1.2.1. Let (Un)n≥0 is a sequence of a open sets in C containing 0. Let
Vn is the connected component of the interior of ∩k≥nUk containing 0. The kernel of
the sequence is defined to be the union of the V ′

ns, provided it is non-empty; otherwise
it is defined to be {0}.

Since the definition, the kernel is either a connected open set containing 0 or the
one point set {0}.

For the case of domain containing ∞, the definition of the kernel is similar.

8



1.3. LOEWNER EQUATION

Definition 1.2.2. The kernel of a sequence (Ωn)n≥0 of CCF-domains is the union
of all domains U ⊂ C such that ∞ ∈ U and U ⊂ Ωn for n large enough. If no such
domain exists we say that the kernel is ∞.

Definition 1.2.3. A sequence of open sets in C (or CCF-domains) is said to con-
verge to a kernel if each subsequence has the same kernel.

We now state the Caratheodory convergence theorem:

Theorem 1.2.1. (Caratheodory convergence theorem). Let (fn) be a sequence of
holomorphic univalent functions on the unit disk D, normalized so that fn(0) = 0
and f ′

n(0) > 0. Then fn converges uniformly on compacta in D to a function f if
and only if Un = fn(D) converges to its kernel and this kernel is not C.
If the kernel is {0}, then f = 0.
Otherwise the kernel is a connected open set U , f is univalent on D and f(D) = U .

There is another version of this theorem for the case of domains containing ∞:

Theorem 1.2.2. Let (Ωn) be a sequence of CCF-domains and (fn) the correspond-
ing sequence of Riemann maps. The the sequence (fn) is uniformly convergent on
compact sunsets of ∆ if and only if Ωn converges in sense of Caratheodory to a kernel
distinct from C \ {0}. If Ωn converges and Ω denotes its kernel then

(i) If Ω = ∞ then fn → ∞ uniformly on compact subsets of ∆.

(ii) If Ω = C \ {0} then fn → 0 uniformly on compact subsets of ∆ \ {∞}.
(iii) Otherwise, fn converges to f , the Riemann mapping of Ω.

1.3 Loewner equation

1.3.1 Radial Loewner equation

In this section we will introduce two versions of a Loewner evolution variant, so-
called radial Loewner evolution. The first concerns biholomorphic mappings from the
unit disk onto its subdomains whereas the second concerns biholomorphic mappings
from the outside of the unit disk onto its subdomains. We prefer firstly deal with
the exterior case because it is the historical one considered by Loewner.

1.3.1.1 Exterior radial evolution

The central objects of Loewner’s theory are special families of univalent functions,
called Loewner chain. The definition of Loewner chains is based on the notion of
subordination.

Definition 1.3.1. Let f, g : ∆ → C be two holomorphic functions with f(∞) =
∞, g(∞) = ∞. We say f is subordinate to g (denoted f ≺ g) if and only if there
exists ϕ : ∆ → ∆ holomorphic and fixing ∞ such that

f(z) = g(ϕ(z))

for all z ∈ ∆.

9



1.3. LOEWNER EQUATION

We now define a Loewner chain:

Definition 1.3.2. The family (ft)t≥0 of holomorphic univalent mappings from ∆ to
C is called a Loewner chain if:

(i) ft(z) = etz + b0(t) +
b1(t)
z

+ ...,

(ii) ft ≺ fs if 0 ≤ s ≤ t.

Let γ : [0,+∞) → ∆ is a Jordan arc in ∆ which is starting from a point γ(0)
on the unit circle and growing to ∞. We denote Kt := D ∪ γ([0, t]) and Ωt :=
C \Kt. (Ωt)t≥0 is then a decreasing family of CCF-subdomains of ∆. The Riemann
mapping theorem implies that for each CCF-domain Ωt, there is a biholomorphic
map ft : ∆ → Ωt such that ft(∞) = ∞ and f ′

t(∞) > 0. We may write ft(z) =

c(t)z + b0(t) +
b1(t)
z

+ ..., c(t) > 0 where c(t) is the logarithmic capacity of Kt.
Because (Kt)t≥0 is a strictly increasing family of CCF-sets, the function c(t) is strictly
decreasing in t.

It is also easy to see that the family (Ωt)t≥0 is continuous in the sense of Caratheodory
convergence. By mean of Caratheodory convergence theorem, the family (ft)t≥0 is
continuous in t for the topology of uniform convergence on compact sets in ∆. In
particular, the function t 7→ c(t) is continuous.

We now make the following assumptions: limt→+∞ c(t) = +∞ and c(0) = 1.
Frequently we will assume that Ω0 = ∆. With these conditions, one may perform a
time-change and assume that c(t) = et.
We also have ft ≺ fs for 0 ≤ s < t with the holomorphic function ϕ in Definition
1.3.1 is now f−1

s ◦ ft. The family (ft)t≥0 is thus a Loewner chain.
Loewner proved that a Loewner chain is not only continuous but also absolutely

continuous in time, therefore almost everywhere differentiable. He also proved that
a Loewner chain can be described by a partial differential equation, in particular,

Theorem 1.3.1. (Loewner 1923). Let ft(z) defined as above, then there exists a
continuous function λ : [0,+∞) → ∂D such that almost everywhere in t we have for
all z ∈ ∆,

∂ft(z)

∂t
= −z∂ft(z)

∂z

λ(t) + z

λ(t)− z
, f0(z) = z, (1.1)

In fact, λ(t) = f−1
t (γ(t)) for t ∈ [0,+∞). It is noticed that one can extend f−1

t

by continuity to γ(t), so that f−1
t (γ(t)) is well-defined.

The equation (1.1) is called Loewner equation. We also say that λ(t) is the driving
function of the Loewner chain (ft)t≥0.

Let gt : Ωt → ∆ is the inverse function of ft, then gt(z) is the unique solution of
the equation

∂gt(z)

∂t
= gt(z)

λ(t) + gt(z)

λ(t)− gt(z)
, g0(z) = z. (1.2)

The Loewner’s theory contains another important fact on the Loewner equation:
Theorem 1.3.1 has a converse. If λ : [0,+∞) → ∂D is a continuous function then
there is a unique Loewner chain (ft)t≥0 such that it is a solution of Eq. (1.1). This
Loewner chain corresponds to a decreasing family of CCF-domains Ωt = C \Kt in
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∆. However, the CCF-sets Kt, in this case, do not have to be D ∪ γ([0, t]) for some
Jordan arc γ.

We now introduce a notion which is the case of the stochastic version of Loewner
chains considered in the next chapters:

Definition 1.3.3. Let γ : [0,+∞) → ∆ be a continuous curve such that |γ(0)| = 1.
We say that the process (Ω)t≥0 is generated by γ if for t ≥ 0 we have that Ωt is the
unbounded component of the complement of D ∪ γ([0, t]).

1.3.1.2 Interior radial Loewner evolution

Definition 1.3.4. The unique solution of the following differential equation is called
an interior radial Loewner evolution

∂ft(z)

∂t
= −z∂ft(z)

∂z

λ(t) + z

λ(t)− z
, f0(z) = z, (1.3)

where z ∈ D and λ : [0,+∞) → ∂D is a continuous function.

The family (ft)t≥0 includes the Riemann mappings of domains Ωt such that
(Ωt)t≥0 is a continuously decreasing family of subdomains containing 0 of the unit
disk. Every function ft(z) may be written as

ft(z) = e−tz + a2(t)z
2 + a3(t)z

3....

Let gt : Ωt → D is the inverse function of ft, then gt(z) is the unique solution of the
equation

∂gt(z)

∂t
= gt(z)

λ(t) + gt(z)

λ(t)− gt(z)
, g0(z) = z. (1.4)

We have also the notion of processes generated by a curve

Definition 1.3.5. Let γ : [0,+∞) → D be a continuous curve such that |γ(0)| = 1.
We say that the process (Ω)t≥0 is generated by γ if for t ≥ 0 we have that Ωt is the
component containing 0 of D \ γ([0, t]).

1.3.2 Whole-plane Loewner equation

We introduce another variant of Loewner evolutions. There are also two versions
corresponding to the inside and the outside of the unit disk.

1.3.2.1 Interior whole-plane Loewner evolution

Definition 1.3.6. Let f and g be holomorphic univalent functions on the unit disk
D with f(0) = 0, g(0) = 0. We say f is subordinate to g (denoted f ≺ g) if and only
if there is a univalent mapping ϕ : D→ D fixing 0 such that

f(z) = g(ϕ(z))

for all |z| < 1.

11
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Definition 1.3.7. The family (ft)t≥0 of holomorphic univalent mappings from D to
C is called a Loewner chain if:

(i) ft(z) = etz + a2(t)z
2 + a3(t)z

3 + ...,

(ii) fs ≺ ft if 0 ≤ s ≤ t.

Let γ : [0,+∞) → C is a Jordan arc joining a point γ(0) on C to ∞ and not
containing 0. If we denote by Ωt the complement of γ([t,+∞)) then (Ωt)t≥0 is a
increasing family of domains. The Riemann mapping theorem implies that for each
domain Ωt, there is a biholomorphic map ft : D → Ωt such that ft(0) = 0 and
f ′
t(0) > 0. We may write ft(z) = c(t)z + a2(t)z

2 + a3(t)z
3...., c(t) > 0.

Because the family (Ωt)t≥0 is continuous in the sense of Caratheodory conver-
gence, the family (ft)t≥0 is continuous in t for the topology of uniform convergence
on compact subsets of D. As a consequence, we have the continuity in t of c(t).
Moreover, for 0 ≤ s < t, by considering the function f−1

t ◦ fs : D→ D and using the
Swchwarz’s lemma, one may prove that c(s) < c(t).
We now make the following assumptions: c(0) = 1 and limt→+∞ c(t) = +∞. By a
change of variable if necessary, we may assume that c(t) = et. This setting together
with the fact that fs ≺ ft for 0 ≤ s < t implies that (ft)t≥0 is a Loewner chain.

As in the radial case, the Loewner’s theory show that ft(z) is absolutely contin-
uous in t, in particular almost everywhere differentiable, and can be described by a
differential equation.

Theorem 1.3.2. Let ft(z) defined as above, then there exists a continuous function
λ : [0,+∞) → ∂D such that almost everywhere in t we have for all z ∈ D,

∂ft(z)

∂t
= z

∂ft(z)

∂z

λ(t) + z

λ(t)− z
. (1.5)

The continuous function λ(t) is determined by λ(t) = f−1
t (γ(t)), the continuity

extension of f−1
t to the point γ(t).

The equation (1.5) is called Loewner equation. We also say that λ(t) is the driving
function of the Loewner chain (ft)t≥0.

Inversely, let λ : [0,+∞) → ∂D be a continuous function, then there is a unique
Loewner chain (ft)t≥0 which satisfies the equation (1.5). Moreover (ft)t≥0 includes
the Riemann mappings of a increasing family (Ωt)t≥0 of domains in C which contin-
uously grows to the whole-plane. We also have the notion of a interior whole-plane
Loewner evolution generated by a curve:

Definition 1.3.8. Let γ : [0,+∞) → C be a continuous curve joining a point γ(0)
in C to ∞ and not containing 0. We say that the process (Ω)t≥0 is generated by γ if
for t ≥ 0 we have that Ωt is the unbounded component of C \ γ([t,+∞)).

1.3.2.2 Exterior whole-plane evolution

Definition 1.3.9. The unique solution of the following differential equation is called
an exterior whole-plane Loewner evolution

∂ft(z)

∂t
= −z∂ft(z)

∂z

λ(t) + z

λ(t)− z
, z ∈ ∆, (1.6)
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where λ : [0,+∞) → ∂D is a continuous function.

The family (ft)t≥0 includes the Riemann mappings of CCF-domains Ωt such that
(Ωt)t≥0 continuously grows to C \ {0}. Every function ft(z) may be written as

ft(z) = etz + b0(t) +
b1(t)

z
+ ....

The notion of processes generated by a curve in this case is defined in the frequent
manner, i.e, domains of the evolution are the component containing ∞ of the com-
plement of a Jordan arc.

1.3.3 Chordal Loewner equation

Let H be the upper half-plane {x+ iy : y > 0}. Let γ : [0,+∞) → H is a Jordan
arc in H which is starting from the origin and growing to ∞. We denote by Ωt

the complement of γ[0, t] in H. (Ωt)t≥0 is then a decreasing family of subdomains
of H. With helps of Riemann mapping theorem and Schwarz reflection principle,
one can prove that there exists a unique biholomorphic map gt : Ωt → H such that
limz→∞ gt(z)−z = 0. In this case, we say that gt satisfies the hydrodynamic normal-
ization. These normalized functions play a role as Riemann mappings in the radial
case. Moreover, one can also write gt(z) = z + b1(t)

z
+ ..., b1(t) > 0.

The Schwarz reflection principle extends each gt to a Riemann mapping of a neigh-
borhood of ∞. By mean of the Caratheodory convergence theorem, the family of
the functions ft = g−1

t is continuous for topology of uniform convergence on compact
sets. As a consequence, b1(t) is continuous. Since the theory of half-plane capacity,
b1(t) is also increasing.
We now make an assumption: limt→+∞ b1(t) = +∞. Changing variable if necessary,
we may assume that b1(t) = 2t.

The Loewner’s theory shows that gt(z) is described by an ordinary differential
equation

Theorem 1.3.3. Let gt(z) defined as above, then there exists a continuous function
λ : [0,+∞) → R such that almost everywhere in t we have for all z ∈ Ωt,

∂gt(z)

∂t
=

2

gt(z)− λ(t)
, g0(z) = z. (1.7)

As in the radial case, there also exists a converse: If λ : [0,+∞) → R is a con-
tinuous function, then the equation (1.7) has a unique solution gt(z). This solution
is such that (gt)t≥0 includes the hydrodynamic normalized functions of a decreasing
family of domains in H.
The notion of processes generated by a curve is also defined in a similar way as
previous cases.

1.4 Stochastic Loewner evolution

In 1999, in his work on the planar uniform spanning tree (UST) and the planar
loop-erased random walk (LERW) probabilistic processes, O.Schramm [15] intro-
duced into the Loewner equation a random driving function to create the celebrated

13



1.4. STOCHASTIC LOEWNER EVOLUTION

Schramm-Loewner Evolution SLEκ. In the following definition, the stochastic setting
is carried out for the radial Loewner equation in the unit disc.

Definition 1.4.1. The radial Shramm–Loewner evolution or radial Stochastic–Loewner
evolution(of parameter κ), denoted SLEκ, in the unit disc is the solution of the
stochastic PDE:

∂ft(z)

∂t
= −z∂ft(z)

∂z

λ(t) + z

λ(t)− z
, f0(z) = z, (1.8)

where λ(t) := ei
√
κBt with Bt is the standard one dimensional Brownian motion and

κ is a non-negative parameter.

In the above definition, the Brownian motion is a stochastic process characterized
by the three fundamental properties:

i. Stationarity: if 0 ≤ s ≤ t then Bt −Bs has the same law as Bt−s.

ii. Markov property: if 0 ≤ s ≤ t then Bt − Bs is independent of Bt−s.

iii. Gaussianity: Bt has a normal distribution with mean 0 and variance t.

One can substitute the same random driving function λ(t) := ei
√
κBt into Eq. (1.1),

Eq. (1.5), Eq. (1.6) to respectively define the exterior radial version as well as the
versions of whole-plane variant of Schramm–Loewner evolution. In the chordal case,
the corresponding driving function is λ(t) =

√
κBt.

Rhode and Schramm proved that the Schamm-Loewner evolution processes are
almost surely generated by a curve for κ 6= 8. Moreover, there are phase transitions
in parameter κ, namely, the curve is almost surely simple (does not intersect itself)
for κ ≤ 4, the curve has double points for 4 < κ < 8 and when κ ≥ 8 the curve is a
space-filling curve. These curves are also proved or conjectured to be the scaling limit
of some two-dimensional lattice models in statistical mechanics, for instance, κ = 2
corresponds to the loop-erased random walk, SLEκ with κ = 8/3 is conjectured to
be the scaling limit of self-avoiding random walks, κ = 4 corresponds to the path of
the harmonic explorer and contour lines of the Gaussian free field, SLEκ with κ = 6
is the scaling limit of critical percolation on the triangular lattice....

As was remarked in [10] (Remark 4.18 and Section 4.3), if U : (−∞,+∞) → R

is a continuous function then (1.3) with λ(t) = eiU(t) can be solved for time variable
t ∈ (−∞,+∞), or equivalently, (1.4) can be solved for t ∈ (−∞,+∞). In the
equation (1.8) of the definition of interior radial SLE, one may consider the driving
function λ(t) = ei

√
κBt with a two-side Brownian motion Bt,−∞ < t < +∞. By

following the same arguments, one can have an analogue of Lemma 1 in [2] (where the
authors deal with the exterior radial SLE) for the interior version, i.e, the processes

ft = g−1
t and g−t have the same law (up to conjugation by ei

√
kBt). We then redefine

a radial SLE as

f̃t(z) := g−t(z)
(law)
= e−i

√
kBtg−1

t (ei
√
kBt), t ∈ R. (1.9)

Then (conjugate, inverse) radial SLE process f̃t satisfies the ODE

∂tf̃t(z) = f̃t(z)
f̃t(z) + λ(t)

f̃t(z)− λ(t)
, f̃0(z) = z. (1.10)

We have the following Markov property
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Lemma 1.4.1.

f̃t(z) = λ(s)f̃t−s(f̃s(z)/λ(s)). (1.11)

A relation between the whole-plane SLE and the radial SLE is the following

Lemma 1.4.2. The limit in law, limt→+∞ etf̃t(z), exists, and has the same law as
the (time zero) interior whole-plane random map f0(z):

lim
t→+∞

etf̃t(z)
(law)
= f0(z).

Since SLE is a conformally invariant process, the exterior SLEκ map f̂t and the
interior SLEκ map ft are related by the inversion

f̂t(z)
(law)
=

1

ft(
1
z
)
, z ∈ ∆.

A generalization of Schramm-Loewner Evolution, so-called Lévy-Loewner Evolu-
tion, is also concurrently investigated. These are stochastic processes defined to be
solutions of the Loewner equations with the driving function λ(t) = eiLt , where Lt is
a Lévy process. Lévy processes generalize Brownian motions since they are assumed
to satisfy only the two properties of Brownian motion: Stationary and Markov prop-
erty. The essential difference with Brownian motions is that jumps are then allowed.
The characteristic function of a Lévy process Lt has the form

E(eiξLt) = e−tη(ξ), (1.12)

where η (called the Lévy symbol) is a continuous complex function of ξ ∈ R, satis-
fying (in addition to necessary Bchner-type conditions) η(0) = 0, and η(−ξ) = η(ξ).
In the case of SLEκ, the corresponding Lévy symbol is

η(ξ) =
κξ2

2
.

We denote ηk := η(k), k ∈ Z.

15





Chapter 2

GENERALIZED MOMENTS OF

SLE

2.1 Logarithmic coefficients of SLE

2.1.1 Introduction

Let f be a univalent function in the class S then one can define the logathimic
function

log
f(z)

z
= 2

∞∑

n=1

γnz
n.

The coefficients γn, called logarithmic coefficients of f(z), plays an important role
in the theory of univalent functions as well as the geometric functions theory. A
classical result on logarithmic coefficients is the Milin’s conjecture which provides
an inequality involving the these coefficients. This inequality possesses an special
importance because it is a key link in the frame of de Brange’s proof of the Bieber-
bach’s conjecture on coefficients of univalent functions in the unit disk.
It is known that before de Branges, many methods were applied to attack the Bieber-
bach’s conjecture but no one could completely prove it. Even so, the early approaches
provided key ideas to the complete proof of de Branges. One of these contributions
was made by Littlewood and Paley in 1932 when they showed that for an odd univa-
lent function h(z) =

∑∞
n=1 cnz

n in S, there exists a positive constant A independent
to h and n such that

|cn| ≤ A.

They rather confidently conjectured that the universal bound A is 1 reached for the
square root transform of the Koebe function. It is remarkable that if the conjecture of
Littlewood and Paley is true then it immediately implies the Bieberbach’s conjecture
because the coefficients of a univalent function f(z) =

∑∞
n=1 anz

n is related to those

of its square root transformation z
√
f(z2)/z2 =

∑∞
k=1 c2k−1z

2k−1, which is an odd
function, by

an =
n∑

k=1

c2(n−k)+1.c2k−1.
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However, by using Loewner’s method Fekete and Sgezö in 1933 could showed that
max
h∈Sodd

|c5| = 1/2 + e−2/3 = 1.0134... > 1 and thus disproved the Littlewood-Paley

conjecture.
Although the original conjecture of Littlewood and Paley was wrong, their idea of
estimating the coefficients of an univalent functions through those of its square root
transform was very valuable. This idea was caught by Roberson and in 1936 he gave
a weaker conjecture for coefficients cn of odd functions in S

n∑

k=1

|c2k−1|2 ≤ n,

which also implies the Bieberbach’s conjecture as a consequence of Cauchy-Schwarz
inequality. In order to find the solution to Bieberbach’s conjecture, the next step
should then be attacking the Roberson’s conjecture. For this step, principle contri-
butions is due to the two soviet mathematicians Lebedev and Milin.
In their works on the relations between the Taylor series of a function and that of its
logarithm, Lebedev and Milin proved that: If ψ(z) =

∑∞
k=0 βkz

k with β0 = 1 has pos-
itive radius of convergence, then the same is true for ϕ(z) := logψ(z) =

∑∞
k=1 αkz

k,
and the following coefficient relation is valid:

1

n+ 1

n∑

k=0

|βk|2 ≤ exp

(
1

n+ 1

n∑

k=1

(n+ 1− k)

(
k|αk|2 −

1

k

))
.

The equality holds for Koebe function and its rotated versions. This fact together
with the fact that both Roberson’s conjecture and Lebedev-Milin inequality state
about upper bounds for means of quadratic moments suggested to Milin an approach
to the Roberson’s conjecture. We, for a univalent function f ∈ S, set h(z) =

z
√
f(z2)/z2 =

∑∞
k=1 c2k−1z

2k−1 and log f(z)
z

= 2
∑∞

n=1 γnz
n. From the definitions,

one have

log
h(z)

z
=

1

2
log

f(z2)

z2
=

∞∑

n=1

γnz
2n.

The Lebedev-Milin inequality then implies

1

n+ 1

n+1∑

k=1

|c2k−1|2 ≤ exp

(
1

n+ 1

n∑

k=1

(n+ 1− k)

(
k|γk|2 −

1

k

))
.

Here if we make the following assumption

n∑

k=1

(n+ 1− k)

(
k|γk|2 −

1

k

)
≤ 0,

then it is followed that
1

n+ 1

n+1∑

k=1

|c2k−1|2 ≤ 1.

This is exactly the inequality conjectured by Roberson. The assumed essential
inequality is called Milin’s conjecture. The famous proof of Bieberbach’s conjecture
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established by de Branges in 1984 has the above approach as its frame. He indeed
proved the Milin’s conjecture.

In the framework of the Schamm–Loewner evolution, the studying of logarithmic
coefficients of SLE maps was started by [11]. The authors firstly realized that one can

obtain an differential equation satisfied by the logarithmic function log ft(z)
z

of the
SLE map ft(z) from the Loewner’s equation (1). This equation then gives ordinary
differential equations in time variable whose solutions are the logarithmic coefficients.
By mean of the strong Markov property of Brownian process, they calculated the
expectations of some first logarithmic coefficients as well as the expectations of
their second moment. A theorem which states about explicit formulas for expected
logarithmic coefficients of SLE maps and its proof were also eshtablised. In this
section, we claim to continue the work [11], namely:

— In the first part of the section, we will give explicit formulas for the expected
logarithmic coefficients of a Lévy–Loewner evolution. This result generalizes
the main theorem in [11].

— In the rest, we will exactly formulate the expectations of the second moments
of logarithmic coefficients of SLE2 which are involved in a theorem and make a
sketch for its proof. With this result we revisit the famous Milin’s conjecture.

2.1.2 Expected logarithmic coefficients

We recall the calculations made in [11] to obtain the expectations of some first
logarithmic coefficients of SLEκ maps. The notation ft(z) will stand for the whole-
plane SLE map at time t throughout this chapter except that sometimes, it will be
used to denote LLE maps in parts concerning Lévy–Loewner evotution. If h(z) :=

log ft(z)
z

then the derivatives of h(z) with respect to t and z are respectively

ḣ =
ḟt
ft
, h′ =

f ′
t

ft
− 1

z
,

where ḣ, h′ are used to replace ∂h
∂t
, ∂h
∂z

for reasons of concision. From Loewner equation
(1), one gets an equation satisfied by h

ḣ = zh′
λ(t) + z

λ(t)− z
+
λ(t) + z

λ(t)− z
. (2.1)

Assume that h has the Taylor series

log
ft(z)

z
= t+ 2

∑

n≥1

γnz
n.

The logarithmic Loewner equation (2.1) then gives us differential recurrences of γn,
namely,

γ̇1(t)− γ1(t) = λ(t), (2.2)

γ̇n(t)− nγn(t) = 2
n−1∑

k=1

kγk(t)λ(t)
n−k

+ λ(t)
n
, n ≥ 2. (2.3)
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These equations are equivalent to

∂

∂t
(e−tγ1(t)) = e−tλ(t), (2.4)

∂

∂t
(e−ntγn(t)) = 2e−nt

n−1∑

k=1

kγk(t)λ(t)
n−k

+ e−ntλ(t)
n
, n ≥ 2. (2.5)

We know that |γn(t)| ≤
√

1
k
(
∑n

k=1
1
k
+ δ) for all n ≥ 1, where δ = 0.3118... is the

Milin constant, as a consequence of the well-known Milin’s lemma [6]. Therefore by
integrating both sides of (2.4), (2.5) on [0,+∞) one arrive at

γ1(t) = −et
∫ ∞

t

e−sλ(s)ds, (2.6)

γn(t) = −ent
[
2

n−1∑

k=1

k

∫ ∞

t

e−nsγk(s)λ(s)
n−k

ds+

∫ ∞

t

e−nsλ(s)
n
ds

]
, n ≥ 2. (2.7)

Next, in order to obtain the expectation of a paticular γn(t) one should notice that
the integrals appearing in (2.6), (2.7) can be written as the linear combination of
integrals of the form
∫ ∞

t

ds1e
−iα1

√
κBs1−β1s1

∫ ∞

s1

ds2e
−iα2

√
κBs2−β2s2 ...

∫ ∞

sk−1

dske
−iαk

√
κBsk

−βksk . (2.8)

By mean of the Fubini’s theorem, these multiple integrals are integrals on the do-
mains {t ≤ s1 ≤ s2 ≤ ... ≤ sk < +∞} of the k−variable function

e−iα1
√
κBs1−iα2

√
κBs2 ...−iαk

√
κBske−β1s1−β2s2...−βksk .

One may write this function as

e−iθ1
√
κ(Bs1−Bs2 )e−iθ2

√
κ(Bs2−Bs3 )...e−iθn−1

√
κ(Bsn−1−Bsn )e−iθn

√
κBsne−β1s1−β2s2...−βksk

and then respectively use the strong Markov property, the stationary property as
well as the characteristic function of Brownian motion to obtain the expectation of
the integrals (2.8) and therefore of γn(t). For instance, one has, for n = 1,

E(γ1(t)) = E

(
− et

∫ ∞

t

e−i
√
κBs−sds

)

= −et
∫ ∞

t

E(e−i
√
κBs)e−sds

= −et
∫ ∞

t

e−
ks
2 e−sds = − 2

κ+ 2
e−

κt
2 .

In the case of n = 2, we can more clearly see the steps of the process mentioned
above:

E(γ2(t)) = E

[
− e2t

(
2

∫ ∞

t

e−i
√
κBs−2sγ1(s)ds+

∫ ∞

t

e−i2
√
κBs−2sds

)]

= E

[
− e2t

(
− 2

∫ ∞

t

e−i
√
κBs1−s1ds1

∫ ∞

s1

e−i
√
κBs2−s2ds2 +

∫ ∞

t

e−i2
√
κBs−2sds

)]

= E

[
− e2t

(
− 2

∫ ∞

t

∫ ∞

s1

e−i
√
κ(Bs1−Bs2 )e−2i

√
κBs2e−s1−s2ds2ds1 +

∫ ∞

t

e−i2
√
κBs−2sds

)]
.
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Since the strong Markov property of Brownian motion, i.e, Bs1 − Bs2 and Bs2 are
independent for all s1 > s2 ≥ 0, it is implied that E(e−i

√
κ(Bs1−Bs2 )e−2i

√
κBs2 ) =

E(e−i
√
κ(Bs1−Bs2 ))E(e−2i

√
κBs2 ) and therefore

E(γ2(t))

= −e2t
(
− 2

∫ ∞

t

∫ ∞

s1

E(e−i
√
κ(Bs1−Bs2 ))E(e−2i

√
κBs2 )e−s1−s2ds2ds1 +

∫ ∞

t

E(e−i2
√
κBs)e−2sds

)

= −e2t
(
− 2

∫ ∞

t

∫ ∞

s1

e−
κ(s1−s2)

2 e−2κs2e−s1−s2ds2ds1 +

∫ ∞

t

E(e−2κse−2sds

)

= − κ− 2

2(κ+ 1)(κ+ 2)
e−2κt.

We used the stationary of Brownian motion: for Bs1 − Bs2 has the same law as
Bs1−s2 for s1 ≥ s2 ≥ 0.
By the same method, one can also obtain

E(γ3(t)) = − (κ− 2)(κ− 1)

2(κ+ 1)(κ+ 2)(9κ
2
+ 3)

e−
9κt
2 .

In [11], the authors looked at the above specific cases and relized that

E(γ1(t)) = −
κ
2
− 1

κ
2
+ 1

e−
κt
2

κ
2
− 1

,

E(γ2(t)) = −
4κ
2
− 2

4κ
2
+ 2

κ
2
− 1

κ
2
+ 1

e−2κt

4κ
2
− 2

,

E(γ3(t) = −
9κ
2
− 3

9κ
2
+ 3

4κ
2
− 2

4κ
2
+ 2

κ
2
− 1

κ
2
+ 1

e−
9κt
2

9κ
2
− 3

This fact led them to the following formulation for which they then also gave a proof:

Theorem 2.1.1. (Le). Let (ft(z))t≥0, z ∈ D, be the interior Schramm–Loewner
whole-plane process driven by λ(t) = ei

√
κBt in Eq. (1). We write

log
ft(z)

z
= t+ 2

∑

n≥1

γn(t)z
n.

Then

E(γn(t)) = −
n−1∏

j=0

(n−j)2κ
2

− (n− j)
(n−j)2κ

2
+ (n− j)

× e−
n2t
2

n2κ
2

− n
.

We now introduce a generalization of Theorem 2.1.1:

Theorem 2.1.2. Let (ft)t≥0 be the interior Loewner whole-plane process driven by
the Lévy process Lt with real Lévy symbol η and ηj ≥ 0 for all positive integers j.
We write

log
ft(z)

z
= t+ 2

∑

n≥1

γn(t)z
n.
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Then, the logarithmic function with stochastically rotated argument log ft(eiLtz)

eiLtz
has

the same law as log f0(z)
z

up to a difference t, i.e., eniLtγn(t)
(law)
= γn(0). Setting

γn = γn(0), we have

E(γ1) = − 1

η1 + 1
,

E(γn) = −

n−1∏

k=1

ηk − k

n∏

k=1

ηk + k

, n ≥ 2.

The idea of our proof for this theorem originates in the proof of Theorem 3.1 in
[5].

Proof. Recall that the Loewner equation for Lévy–Loewner maps ft(z) has the same
type as that of SLE maps. The difference between them is just that in the Lévy
setting, the driving function involves an Lévy process, namely λ(t) = e−iLt , instead
of a Brownian motion. The equations (2.2) and (2.3) of logarithmic coefficients are
thus obtained by the same arguments as in the SLE case.
For n = 1, since the reservation of the validity of (2.2) one also has that of (2.6).
Recall that a Lévy process has a strong Markov property, which states that: ∀s ≥
t, Ls

(law)
= Lt+L̃s−t, where L̃s′ is an independent Lévy process, also started at L̃0 = 0.

The equation (2.6) is, by a change of variable s 7→ s+ t, rewritten as

γ1(t)
(law)
= −e−Lt

∫ ∞

0

e−se−iL̃sds
(law)
= e−Ltγ1(0). (2.9)

The expectation of γ1(0) can be obtained by setting t = 0 in (2.6) and making a
short calculation of integral:

E(γ1(0)) = E

(
− et

∫ ∞

0

e−iLs−sds

)

= −et
∫ ∞

0

E(e−iLs)e−sds

= −et
∫ ∞

0

e−η1se−sds = − 1

η1 + 1
e−η1t.

In order to deal with the case of n ≥ 2, we now put un(t) := γn(t)e
−nt and Xt :=

e−t−iLt . From the equation (2.3), we have

u̇n(t) = 2
n−1∑

k=1

kXn−k
t uk(t) +Xn

t , n ≥ 2. (2.10)

It is then implied that for n ≥ 3,

u̇n(t) = Xt[u̇n−1 + 2(n− 1)un−1]. (2.11)
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On the other hand, as a consequence of the combination of (2.10) and the fact that
u̇1(t) = Xt which is implied by (2.2), the identity (2.11) also holds for n = 2.
Now, by considering un(t) of the form

un(t) = −
∫ +∞

t

dsXsvn(s), (2.12)

we have v1(s) = 1 and from (2.11),

vn(t) = Xtvn−1(t)− 2(n− 1)

∫ +∞

t

dsXsvn−1(s), n ≥ 2. (2.13)

Let us define multiplicative and integral operators

X v(t) := Xtv(t), (2.14)

J v(t) := −
∫ +∞

t

dsXsv(s). (2.15)

Then (2.12) and (2.13) permit us to rewrite un(t), for n ≥ 2, as

un(t) = J vn(t) = J ◦
n−1∏

k=1

◦(X + 2kJ ) ◦ ✶, (2.16)

where ✶ is the constant function of value 1.
By making again use of the strong Markov property of Lévy process, we have that
Xt satisfies the identity in law:

Xs
(law)
= XtX̃t−s, s ≥ t, (2.17)

where X̃s′ := e−s′−L̃s′ , s′ ≥ 0, is an independent copy of that process, with X̃0 = 1.
The operator J (2.15) can be rewritten as

J v(t) (law)
= −Xt

∫ +∞

0

dsX̃sv(s+ t) (2.18)

= X ◦ J̃ v(t), (2.19)

with J̃ v(t) := −
∫ +∞
0

dsX̃sv(s+ t). By iteration of the use of Markov property, Eq.
(2.16) can be written as

un
(law)
= J ◦ [X (1 + 2(n− 1)J̃ [n−1])] ◦ ... ◦ [X (1 + 2J̃ [1])] ◦ ✶ (2.20)

(law)
= J ◦

n−1∏

k=1

◦ [X (1 + 2kJ̃ [k])] ◦ ✶, (2.21)

where the integral operators J̃ [k], k = 1, ..., n − 1, involve successive independent
copies, X̃

[k]
sk , k = 1, ..., n − 1, of of the original exponential Lévy process Xs. We

therefor arrive at the following explicit representation of the solution (2.16):

un(t)
(law)
= −

∫ +∞

t

dsXn
s

n−1∏

k=1

(
1− 2k

∫ +∞

0

dsk(X̃
[k]
sk
)k
)
. (2.22)
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Using again the identity in law (2.17) in (2.22), we arrive at

einLtγn(t)
(law)
= −

∫ +∞

0

dsX̃n
s

n−1∏

k=1

(
1− 2k

∫ +∞

0

dsk(X̃
[k]
sk
)k
)

(law)
= γn(0). (2.23)

All factors in (2.23) involve successive independent copies of the Lévy process, and
their expectations can now be taken independently. Recalling that the characteristic
function of a Lévy process is E(eiξLt) = e−tη(ξ), we then have E[(X̃s)

k] = e−(ηk+k)s.
Thus, for n ≥ 2

E[γn(0)] = −
∫ +∞

0

dsE[X̃n
s ]

n−1∏

k−1

(
1− 2k

∫ +∞

0

dsk(E[X̃
[k]
sk
)k]

)

= − 1

ηn + n

n−1∏

k=1

(
1− 2k

ηk + k

)

= −

n−1∏

k=1

ηk − k

n∏

k=1

ηk + k

. (2.24)

Remark 2.1.1. Because eniLtγn(t)
(law)
= γn(0) and Lt is independent to L0 (therefore

e−niLt is independent to γn(0) for all n ≥ 1), the expectation of γn(t) can be obtained
as

E(γ1(t)) = E(γ1(0))E(e
−iLt) = − 1

η1 + 1
e−tη1 , (2.25)

E(γn(t)) = E(γn(0))E(e
−niLt) = −

n−1∏

k=1

ηk − k

n∏

k=1

ηk + k

e−tηn , n ≥ 2. (2.26)

The results in [11] turn out to be consequences by the Brownian setting ηn = κn2

2
.

2.1.3 Moment of order 2

The arguments in the first part of section 2.1.2 does not only make one able to
evaluate the expectations of a particular SLE logarithmic coefficient but also the
expectation of its second moment. While a logarithmic coefficient is the linear com-
bination of multiple integrals of the form (2.8), the second moment of this coefficient
is a linear combination of products of such integrals with complex conjugate of oth-
ers. Each of such products may of course be written as the sum of integrals (2.8).
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Therefore the problem of evaluating the expectation of second moment of logarith-
mic coefficients turns back to that of calculating the expectations of integrals of the
form (2.8), which one can do with given steps using the elementary properties of
Brownian motion. By this way, the followings were obatined in [11]

E(|γ1(t)|2) =
2

κ+ 2
,E(|γ2(t)|2) =

κ2 + 16κ+ 12

4(κ+ 1)(κ+ 2)(κ+ 6)
.

The independence of these expectations to t can be justified by Theorem 2.1.2 which

states that eni
√
κBtγn(t)

(law)
= γn(0).

Follow the preceding section, we expect that a general formula can be found
from specific cases. However, a essential difficulty appears in the calculation: A
great number of integrals (2.8) to evaluate! If the linear representation of γn(t) has k
integrals of the form (2.8), its second moment contains k2 products of these integrals
with the complex conjugate of others. Moreover, if a such product is the product
of an integral of a k−variable function with the conjugate of that of an l−variable
function then this product is the sum of Ck

k+l integrals of the form (2.8). The total
number of integrals becomes large and quickly increases in n. We thus need helps
from computers. There is a computer programming, called dynamic programming 1,
which allows us more quickly evaluate our expectations. This programming was used
to solve a similar problem in [5]. Although we, with helps of computers, obtained
values for some specific cases, we have not touched a general formula for all n and κ
yet. It maybe impossible to find that formula. Interestingly, with κ = 2 we obtain
remarkable values of expectations: for n = 1...5

E(|γn(0)|2) =
1

2n2
. (2.27)

We generally formulate this fact in the following theorem

Theorem 2.1.3. Let (ft(z))t≥0, z ∈ D, be the interior Schramm–Loewner whole-
plane process driven by λ(t) = ei

√
κBt in Eq. (1) and let f(z) := f0(z), such that

log
f(z)

z
= 2

∑

n≥1

γnz
n; (2.28)

then, for κ = 2,

E(|γn|2) =
1

2n2
, ∀n ≥ 1.

Proof. One firstly differentiates both sides of (2.28) to get

d

dz
log

f(z)

z
=
f ′(z)

f(z)
− 1

z
. (2.29)

This equation implies the Taylor series of the moment of order 2 |zf ′(z)/f(z)|2:
∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣
2

= 1 + 2
∑

n≥1

nγn(z
n + z̄n) +

∑

n≥1

∑

m≥1

nmγnγ̄mz
nz̄m. (2.30)

1. We would like to thank Nguyen Thi Thuy Nga for her explanations on the dynamic program-

ming.
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Observe that the coefficient of znz̄n in the right-hand side of (2.30) is n2|γn|2. One
thus has the value of E(|γn|2) for all n ≥ 1 whenever he knows E(|zf ′(z)/f(z)|2).
In the next section where generalized moments of SLE map are considered, we will
show

Theorem 2.1.4. Let f be the interior whole-plane SLEκ map, in the same setting
as in Theorem 2.1.3; then for κ = 2,

E

(∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣
2)

=
(1− z)(1− z̄)

1− zz̄
.

Since Theorem 2.1.4, one has the series development

E

(∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣
2)

=
(1− z)(1− z̄)

(1− zz̄)
= 1−

∑

n≥0

zn+1z̄n −
∑

n≥0

znz̄n+1 + 2
∑

n≥1

znz̄n. (2.31)

A identification of the coefficients in znz̄n of (2.30) and (2.31) finally leads us to

E(|γn|2) =
1

2n2
, n ≥ 1.

Remark 2.1.2. By identifying the other coefficients of (2.30) and (2.31), one gets

E(γ1) = −1/2, E(γn) = 0, n ≥ 2,

E(γnγ̄n+1) = − 1

n(n+ 1)
, E(γnγ̄n+k) = 0, n ≥ 1, k ≥ 2,

Remark 2.1.3. Since Theorem 2.1.3, one have for SLE2

E

( n∑

m=1

m∑

k=1

(
k|γk|2 −

1

k

))
= −1

2

n∑

m=1

m∑

k=1

1

k
= −n+ 1

2

n+1∑

k=2

1

k
< 0,

which confirms the validity "in expectation" of the Milin conjecture.

2.2 Moment problem and Martingale method

2.2.1 A rich algebraic structure of whole-plane SLE and Belyaev-

Smirnov equations

In their work [4] of revisiting the Bieberbach conjecture in the framework of
interior whole-plane SLE and LLE, the authors performed computations of E(|an|2)
for small n where an are the Taylor coefficients of the interior whole-plane SLE map
at time 0

f(z) := f0(z) = z +
∞∑

n=2

anz
n. (2.32)
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Since the obtained results, they then conjectured that: ∀n ≥ 2

E(|an|2) = 1 for κ = 6 (2.33)

E(|an|2) = n for κ = 2 (2.34)

This conjecture was proved by I.Loutsenko in [12] (see also [13]). He used the Hast-
ing’s method [7] to derive a differential equation obeyed by the function F (z, z̄) =

E(f(z)
p
2 f(z)

p
2 ) with parameter p ∈ R, which he called the correlation function.

Using ∂ := ∂z, ∂̄ := ∂z̄, this differential equation is written as

−κ
2
(z∂− z̄∂̄)2F +

z + 1

z − 1
z∂F +

z̄ + 1

z̄ − 1
z∂̄F −p

[
1

(z − 1)2
+

1

(z̄ − 1)2
−2

]
F = 0. (2.35)

It is easy to see that if one can solve Eq. (2.35) in the case of p = 2, corresponding to
E(|f(z)|2), then explicit formulas of E(|an|2) are obtained for all n by a identification
of coefficients. Loutsenko considered the series form of the correlation function
and transformed the differential equation into recursions of coefficients. He indeed
showed that these recursions are solvable for κ = 6, 2 and arrived at (2.33),(2.34).

After their earlier draft [4], B.Duplantier, TTN.Nguyen, TPC.Nguyen and M.
Zinsmeister [5] used a different method to obtain the same differential equation
(2.35) as in [12]. This method is based on a martingale argument and uses the
Markov property of the SLE map as well as Lemma 1.4.2 as important ingredients.
Namely, the authors consider the martingale E(|f̃ ′

t(z)|p|Fs), where f̃t is the (conju-
gate, inverse) interior radial SLEκ map at time t defined by (1.9) and Fs denotes the
σ–algebra generated by {Bτ : τ ≤ s}. By using the Markov property, they showed
that

E(|f̃ ′
t(z)|p|Fs) = |f̃ ′

s(z)|pF̃ (zs, t− s)

with F̃ (z, t) = E(|f̃ ′
t(z)|p), zs = f̃s(z)/λ(s). The fact that the ds drif term vanishes

in the Itô derivative of a martingale made them able to obtain an equation obeyed by
F̃ . An application of Lemma 1.4.2 on this equation finally led to Eq. (2.35). It is also
noted in [5] that the variables z and z̄ can be considered as two independent complex
variables in (2.35). Therefore, by setting z̄ = 0, one has an equation satisfied by
F (z, 0) = E[(f ′

0(z))
p/2]

κ

2
(z∂)2F (z, 0) +

z + 1

z − 1
z∂F (z, 0)− p

[
1

(z − 1)2
− 1

]
F (z, 0) = 0. (2.36)

The authors then considered special forms of solutions of (2.36), (2.35) and proved
the following

Theorem 2.2.1. (B.Duplantier, TTN.Nguyen, TPC.Nguyen, M.Zinsmeister). The
whole-plane SLEκ map f0(z) has derivative moments

E[(f ′
0(z))

p/2] = (1− z)α, (2.37)

E[|f ′
0(z)|p] =

(1− z)α(1− z̄)α

(1− zz̄)β
, (2.38)

for the special sets of exponents p = κα(α + 1)/6 = (6 + κ)(2 + κ)/8κ, with α =
(6 + κ)/2κ and β = κα2/2 = (6 + κ)2/8κ.
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Obviously, the equation (2.33) and (2.34) are consequences of this theorem. Note
that Eq. (2.38) was also obtained by Loutsenko and Yermolayema in [13].

The above host of closed form results hints that the SLEκ process, in its interior
whole-plane version, has a rich algebraic structure. It is also notied that in order
to derive these closed form results, differential equations obeyed by the moments
E[(f ′

0(z))
p/2] or E[|f ′

0(z)|p], called Belyaev-Smirnov equations, play an important
role. The denomination comes from the fact that these equations (as well as the
martingale method) were originally considered by D.Belyaev and S.Smirnov [2] to
study the average integral means spectrum of the exterior whole-plane SLEκ map.
Since the Belyaev-Smirnov equations encode the expected moments of SLEκ maps,
they are not only useful for studying coefficient problems in the framework of SLE
processes but also for studying other problems concerning moments of the derivative
of SLEκ maps, such as to determine integral mean spectra.

2.2.2 Martingale method

In this section, we will reintroduce the martingale method by using it to compute
some expectations which are connected to the logarithmic coefficients of SLEκ maps.
In particular, we will prove Theorem 2.1.4, an important ingredient in the proof of
Theorem 2.1.3.

2.2.2.1 A martingale computation

Proposition 2.2.1. Let f(z) = f0(z) be the interior whole-plane SLE2 map at time
0, in the same setting as in Theorem 2.1.3; we then have

E

(
z
f ′(z)

f(z)

)
= 1− z.

A consequence of Proposition 2.2.1 is explicit formulas of the expected logarith-
mic coefficients of the SLE2 map. Namely, one may multiply the both sides of (2.29)
by z and then identifies the Taylor coefficients of their expectations to derive

Corollary 2.2.1. Let f(z) be the whole-plane SLEκ map, in the same setting as in
Theorem 2.1.3; then for κ = 2,

E(γn) =

{
−1/2, n = 1,
0, n ≥ 2.

Remark 2.2.1. Corollary 2.2.1 confirms the validity of Theorem 2.1.1 and Theorem
2.1.2 in the case of SLE2.

We now give the proof of Proposition 2.2.1:

Proof. We firstly define

G(z) := E

(
z
f ′(z)

f(z)

)
. (2.39)
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Let us introduce the auxiliary, time-dependent, radial variant of the SLE one-point
function G(z) above,

G̃(z, t) := E

(
z
f̃ ′
t(z)

f̃t(z)

)
, (2.40)

where f̃t is a modified radial SLE map at time t defined by (1.9). Owing to Lemma
1.4.2, we have

lim
t→+∞

G̃(z, t) = G(z). (2.41)

We then use a martingale technique to obtain an equation satisfied by G̃(z, t).

For s ≤ t, define Ms := E
(

f̃ ′

t(z)

f̃t(z)
|Fs

)
, where Fs is the σ-algebra generated by

{Bu, u ≤ s}. (Ms)s≥0 is by construction a martingale. Because of the Markov
property of SLE, we have

Ms = E

(
f̃ ′
t(z)

f̃t(z)
|Fs

)
= E

(
f̃ ′
s(z)

λ(s)

f̃ ′
t−s(f̃s(z)/λ(s))

f̃t−s(f̃s(z)/λ(s))
|Fs

)

=
f̃ ′
s(z)

f̃s(z)
E

(
f̃s(z)

λ(s)

f̃ ′
t−s(f̃s(z)/λ(s))

f̃t−s(f̃s(z)/λ(s))
|Fs

)

=
f̃ ′
s(z)

f̃s(z)
G̃(zs, τ),

where zs := f̃s(z)/λ(s), and τ := t− s.
We will need the derivatives of f̃ ′

s, f̃
′
s and zs. From Eq. (1.10), we have

∂sf̃
′
s = ∂z∂sf̃s = ∂z

(
f̃s
f̃s + λ(s)

f̃s − λ(s)

)

= f̃ ′
s

(
f̃s + λ(s)

f̃s − λ(s)
− 2λ(s)f̃s

(f̃s − λ(s))2

)
= f̃ ′

s

(
1− 2

(1− zs)2

)
, (2.42)

∂sf̃s = f̃s
f̃s + λ(s)

f̃s − λ(s)
= f̃s

zs + 1

zs − 1
, (2.43)

dzs = zs

[
zs + 1

zs − 1
− κ

2

]
ds− izs

√
κdBs. (2.44)

Consider Ms as an Itô drift-diffusion process which is the composition of a twice
differentiable scalar function and the vector (f̃ ′

s, f̃s, zs) of Itô processes, then the
coefficient of the ds-drift term of the Itô derivative of Ms is obtained from the
above as,

f̃ ′
s(z)

f̃s(z)

[
− 2zs

(1− zs)2
+ zs

(
zs + 1

zs − 1
− κ

2

)
∂zs − ∂τ −

κ

2
z2s∂

2
zs

]
G̃(zs, τ), (2.45)

and vanishes by the (local) martingale property. Because f̃s is univalent, f̃ ′
s does

not vanish in D, therefore the bracket above vanishes.
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Owing to the existence of the limit (2.41), we can now take the τ → +∞ limit
in the above, and obtain the ODE,

P(∂)[G(z)] := − 2z

(1− z)2
G(z) + z

(
z + 1

z − 1
− κ

2

)
G′(z)− κ

2
z2G′′(z) (2.46)

=

[
− 2z

(1− z)2
+ z

(
z + 1

z − 1

)
∂z −

κ

2
(z∂z)

2

]
G(z) = 0.

We have exchanged the limit (2.41) and the derivatives ∂z, ∂
2
z , ∂τ . It is justified by

Lemma 1.4.2 and the dominated convergence theorem where the domination comes
from Koebe distortion theorem.

Following Ref. [5], we now look for solutions to Eq. (2.46) of the form ϕα(z) :=
(1− z)α. We have

P(∂)[ϕα] = A(2, 2, α)ϕα +B(2, α)ϕα−1 + C(2, α)ϕα−2,

where, in anticipation of the notation that will be introduced in Section 2.3 below,

A(2, 2, α) := α− κ

2
α2,

B(2, α) := 2−
(
3 +

κ

2

)
α + κα2,

C(2, α) := −2 +
(
2 +

κ

2

)
α− κ

2
α2,

with, identically, A + B + C = 0. The linear independence of ϕα, ϕα−1, ϕα−2 thus
shows that P(∂)[ϕα] = 0 is equivalent to A = B = C = 0, which yields κ = 2, α = 1,
and G(z) = 1− z.

2.2.2.2 Proof of Theorem 2.1.4

As in section 2.2.2.1, we firstly introduce the function

G(z, z̄) = E

(∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣
2)
, (2.47)

and an auxiliary, time-dependent, radial variant of G

G̃(z, z̄) = E

(∣∣∣∣∣z
f̃ ′(z)

f̃(z)

∣∣∣∣∣

2)
. (2.48)

From Lemma 1.4.2, the functions G and G̃ are related by

lim
t→+∞

G̃(z, z̄, t) = G(z, z̄). (2.49)

We now define Ms := E

(∣∣∣∣
f̃ ′

t(z)

f̃t(z)

∣∣∣∣
2

|Fs

)
, where Fs is the σ-algebra defined as in

section 2.2.2.1. Then (Ms)s≥0 is a martingale. One can use the Markov property to
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represent Ms as

Ms = E

(∣∣∣∣
f̃ ′
t(z)

f̃t(z)

∣∣∣∣
2

|Fs

)
= E

(∣∣∣∣
f̃ ′
s(z)

λ(s)

f̃ ′
t−s(f̃s(z)/λ(s))

f̃t−s(f̃s(z)/λ(s))

∣∣∣∣
2

|Fs

)

=

∣∣∣∣
f̃ ′
s(z)

f̃s(z)

∣∣∣∣
2

E

(∣∣∣∣
f̃s(z)

λ(s)

f̃ ′
t−s(f̃s(z)/λ(s))

f̃t−s(f̃s(z)/λ(s))

∣∣∣∣
2

|Fs

)

=

∣∣∣∣
f̃ ′
s(z)

f̃s(z)

∣∣∣∣
2

G̃(zs, z̄s, τ),

where zs := f̃s(z)/λ(s), and τ := t− s.
We have that

∂s log |f̃ ′
s| = ∂sℜ(log f̃ ′

s) = ℜ
[
1

f̃ ′
s

∂z

(
f̃s
f̃s + λ(s)

f̃s − λ(s)

)]

= ℜ
[
f̃s + λ(s)

f̃s − λ(s)
− 2λ(s)f̃s

(f̃s − λ(s))2

]

= 1− 1

(1− zs)2
− 1

(1− z̄s)2
, (2.50)

∂s log |f̃s| = ∂sℜ(log f̃s) = ℜ
(
∂sf̃s

f̃s

)

= ℜ
(
f̃s + λ(s)

f̃s − λ(s)

)
= 1 +

1

zs − 1
+

1

z̄s − 1
. (2.51)

These equations imply that

∂s|f̃ ′
s| = |f̃ ′

s|∂s log |f̃ ′
s| = |f̃ ′

s|
(
1− 1

(1− zs)2
− 1

(1− z̄s)2

)
, (2.52)

∂s|f̃s| = |f̃s|∂s log |f̃s| = |f̃s|
(
1 +

1

zs − 1
+

1

z̄s − 1

)
. (2.53)

Thank to Itô’s lemma, we also have

dzs = zs

[
zz + 1

zs − 1
− κ

2

]
ds− izs

√
κdBs, (2.54)

dz̄s = z̄s

[
z̄s + 1

z̄s − 1
− κ

2

]
ds+ iz̄s

√
κdBs. (2.55)

Consider Ms as an Itô drift-diffusion process which is the composition of a twice
differentiable scalar function and the vector (|f̃ ′

s|, |f̃s|, zs, z̄s), then the coefficient of
the ds-drift term of the Itô derivative of Ms is obtained from (2.52),(2.53),(2.54),
(2.55) as,
∣∣∣∣
f̃ ′
s(z)

f̃s(z)

∣∣∣∣
2[

− 2

(1− zs)2
− 2

(1− z̄s)2
+

2

1− zs
+

2

1− z̄s
+ zs

(
zs + 1

zs − 1
− κ

2

)
∂zs

+ z̄s

(
z̄s + 1

z̄s − 1
− κ

2

)
∂z̄s − ∂τ −

κ

2
z2s∂

2
zs −

κ

2
z̄2s∂

2
z̄s + κzsz̄s∂zs∂z̄s

]
G̃(zs, z̄s, τ). (2.56)
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One can rewrite (2.56) as
∣∣∣∣
f̃ ′
s(z)

f̃s(z)

∣∣∣∣
2[

− 2

(1− zs)2
− 2

(1− z̄s)2
+

2

1− zs
+

2

1− z̄s

+ zs
zs + 1

zs − 1
∂zs + z̄s

z̄s + 1

z̄s − 1
∂z̄s − ∂τ −

κ

2
(zs∂zs − z̄s∂z̄s)

2

]
G̃(zs, z̄s, τ). (2.57)

The (local) martingale property of the martingale Ms implies that the above quan-
tity vanishes. Because f̃s is univalent, f̃ ′

s does not vanish in D, therefore the bracket
above vanishes.

We now take the τ → +∞ limit in the above and make use of the limit (2.49)
to arrive at the PDE,

P(D)[G(z, z̄)] =− κ

2
(z∂ − z̄∂̄)2G− 1 + z

1− z
z∂G− 1 + z̄

1− z̄
z̄∂̄G

+

[
− 2

(1− z)2
− 2

(1− z̄)2
+

2

1− z
+

2

1− z̄

]
G = 0. (2.58)

Following again Ref. [5], we look for solutions to Eq. (2.58) of the form ϕα(z)ϕα(z)P (zz̄)
where ϕα(z) := (1− z)α. We have

P(∂)[ϕαϕ̄αP ] =zz̄ϕα−1ϕ̄α−1

(
κα2P − 2(1− zz̄)P ′)

+ (A(2, 2, α)ϕα +B(2, α)ϕα−1 + C(2, α)ϕα−2)ϕ̄αP

+ A(2, 2, α)ϕα +B(2, α)ϕα−1 + C(2, α)ϕα−2ϕαP. (2.59)

Since the consideration of the coefficientsA(2, 2, α), B(2, α), C(2, α) in section 2.2.2.1,
when κ = 2, α = 1 the two last lines of (2.59) vanish. We now consider the first line,
in particular, the ODE

κα2P (X)− 2(1−X)P ′(X) = 0. (2.60)

It is followed from the definition of G that G(0, 0) = 1, therefore P (0) = 1. The
ODE (2.60) with the initial condition P (0) = 1 can be solved to obtain the unique
solution

P (X) =
1

(1−X)
κα2

2

. (2.61)

This fact together with the later fact on the vanishing of the two last lines of (2.59)
leads us to the conclusion of Theorem 2.1.4.

2.3 SLE one-point function

Let us now turn to the natural generalization of Proposition 2.2.1.

Theorem 2.3.1. Let f(z) = f0(z) be the interior whole-plane SLEκ map at time
zero, in the same setting as in Theorem 2.1.3. Consider the curve R, defined para-
metrically by

p = −κ
2
γ2 +

(
2 +

κ

2

)
γ, 2p− q =

(
1 +

κ

2

)
γ, γ ∈ R. (2.62)
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2.3. SLE ONE-POINT FUNCTION

(a) κ = 2 (b) κ = 6

Figure 2.1 – Integral curves R of Theorem 2.3.1, for κ = 2 and κ = 6. In ad-
dition to the origin, the q = 0 intersection point with the p-axis is at p(κ) :=
(6 + κ)(2 + κ)/8κ, with p(2) = p(6) = 2 [5, 12].

On R, the whole-plane SLEκ one-point function has the integrable form,

E

(
(f ′(z))

p
2

(f(z)/z)
q
2

)
= (1− z)γ.

Remark 2.3.1. Eq. (2.62) describes a parabola in the (p, q) plane (see Fig. 2.1),
which is given in Cartesian coordinates by

2κ

(
2p− q

2 + κ

)2

− (4 + κ)
2p− q

2 + κ
+ p = 0, (2.63)

with two branches,

γ = γ±0 (p) :=
1

2κ

(
4 + κ±

√
(4 + κ)2 − 8κp

)
, p ≤ (4 + κ)2

8κ
,

q = 2p−
(
1 +

κ

2

)
γ±0 (p).

(2.64)

or, equivalently,

2p = q +
2 + κ

8κ

(
6 + κ±

√
(6 + κ)2 − 16κq

)
, q ≤ (6 + κ)2

16κ
. (2.65)

Proof. Our aim is to derive an ODE satisfied by the whole-plane SLE one-point
function,

G(z) := E

(
z

q
2
(f ′(z))

p
2

(f(z))
q
2

)
, (2.66)

which, by construction, stays finite at the origin and such that G(0) = 1.
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Let us introduce the shorthand notation,

Xt(z) :=
(f̃ ′

t(z))
p
2

(f̃t(z))
q
2

, (2.67)

where f̃t is the conjugate, reversed radial SLE process in D, as introduced by (1.9),

and such that by Lemma 1.4.2, the limit, limt→+∞ etf̃t(z)
(law)
= f0(z), is the same

in law as the whole-plane map at time zero. Applying the same method as in the
previous section, we consider the time-dependent function

G̃(z, t) := E
(
z

q
2Xt(z)

)
, (2.68)

such that

lim
t→+∞

exp

(
p− q

2
t

)
G̃(z, t) = G(z). (2.69)

Consider now the martingale (Ms)t≥s≥0, defined by

Ms = E(Xt(z)|Fs).

By the SLE Markov property we get, setting zs := f̃s(z)/λ(s),

Ms = Xs(z)G̃(zs, τ), τ := t− s. (2.70)

As before, the partial differential equation satisfied by G̃(zs, τ) is obtained by ex-
pressing the fact that the ds-drift term of the Itô differential of Eq. (2.70),

dMs = G̃ dXs +Xs dG̃,

vanishes. The differential of Xs is simply computed from Eqs. (2.42) and (2.43)
above as:

dXs(z) = Xs(z)F (zs)ds,

F (z) :=
p

2

[
1− 2

(1− z)2

]
− q

2

[
1− 2

1− z

]
.

(2.71)

The Itô differential dG̃ brings in the ds terms proportional to ∂zsG̃, ∂
2
zsG̃, and ∂τ G̃;

therefore, in the PDE satisfied by G̃, the latter terms are exactly the same as in the
PDE (2.45). We therefore directly arrive at the vanishing condition of the overall
drift term coefficient in dMs,

Xs(z)

[
F (zs) + zs

(
zs + 1

zs − 1
− κ

2

)
∂z − ∂τ −

κ

2
z2s∂

2
z

]
G̃(zs, τ) = 0. (2.72)

Since Xs(z) does not vanish in D, the bracket in (2.72) must identically vanish:

[
F (zs) + zs

zs + 1

zs − 1
∂z − ∂τ −

κ

2
(zs∂z)

2

]
G̃(zs, τ) = 0, (2.73)
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where we used z∂z + z2∂2z = (z∂z)
2.

To derive the ODE satisfied by G(z) (2.66), we first recall its expression as the
limit (2.68), which further implies

lim
τ→+∞

exp

(
p− q

2
τ

)
∂τ G̃(z, τ) = −p− q

2
G(z).

Multiplying the PDE (2.72) satisfied by G̃ by exp(p−q
2
τ) and letting τ → +∞, we

get

P(∂)[G(z)] :=

[
−κ
2
(z∂z)

2 − 1 + z

1− z
z∂z + F (z) +

p− q

2

]
G(z)

=

[
−κ
2
(z∂z)

2 − 1 + z

1− z
z∂z −

p

(1− z)2
+

q

1− z
+ p− q

]
G(z) = 0.

(2.74)

We now look specifically for solutions to (2.74), together with the boundary
condition G(0) = 1, of the form ϕα(z) = (1− z)α. This function satisfies the simple
differential operator algebra [5]

P(∂)[ϕα] = A(p, q, α)ϕα +B(q, α)ϕα−1 + C(p, α)ϕα−2, (2.75)

where

A(p, q, α) := p− q + α− κ

2
α2, (2.76)

B(q, α) := q −
(
3 +

κ

2

)
α + κα2, (2.77)

C(p, α) := −p+
(
2 +

κ

2

)
α− κ

2
α2. (2.78)

Obviously, one has A+B+C = 0. Because ϕα, ϕϕ−1, ϕα−2 are linearly independent,
the condition P(∂)[ϕγ] = 0 is equivalent to the system A = B = C = 0, or equiva-
lently A = C = 0, hence C(p, γ) = 0 and A(p, q, γ)−C(p, γ) = 2p−q−(1+κ/2)γ = 0.
It yields precisely the parabola parametrization (2.62) given in Theorem 2.3.1, and
has for solution (2.64).

2.4 SLE two-point function

2.4.1 Beliaev–Smirnov type equations

In this section, we will determine the mixed moments of moduli, E
(
|z|q |f ′(z)|p

|f(z)|q

)
,

for (p, q) belonging to the same parabola R as in Theorem 2.3.1, and where f = f0
is the (time zero) interior whole-plane SLEκ map.

In contradistinction to the method used in Refs. [2, 5] for writing a PDE obeyed
by E(|f ′(z)|p), we shall use here a slightly different approach, building on the results
obtained in Section 2.3. We shall study the SLE two-point function for z1, z2 ∈ D,

G(z1, z̄2) := E

(
z

q
2
1

(f ′(z1))
p
2

(f(z1))
q
2

[
z

q
2
2

(f ′(z2))
p
2

(f(z2))
q
2

])
. (2.79)
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As before, we define a time-dependent, auxiliary two-point function,

G̃(z1, z̄2, t) := E


z

q
2
1

(f̃ ′
t(z1))

p
2

(f̃t(z1))
q
2

[
z

q
2
2

(f̃ ′
t(z2))

p
2

(f̃t(z2))
q
2

]


= E

(
z

q
2
1Xt(z1)z

q
2
2Xt(z2)

)
,

(2.80)

where as above f̃t is the reverse radial SLEκ process 1.9, and where we used the
shorthand notation (2.67). This time, the two-point function (2.79) is the limit

lim
t→+∞

e(p−q)tG̃(z1, z̄2, t) = G(z1, z̄2). (2.81)

Let us define the two-point martingale (Ms)t≥s≥0, with

Ms := E(Xt(z1)Xt(z2)|Fs).

By the Markov property of SLE,

E
(
Xt(z1)Xt(z2)|Fs

)
= Xs(z1)Xs(z2) G̃(z1s, z̄2s, τ), τ := t− s, (2.82)

where

z1s := f̃s(z1)/λ(s); z̄2s := f̃s(z2)/λ(s) = f̃s(z2)λ(s). (2.83)

Their Itô differentials, dz1s and dz̄2s, are as in (2.54), (2.55)

dz1s = z1s

[
z1s + 1

z1s − 1
− κ

2

]
ds− i

√
κ z1s dBs,

dz̄2s = z̄2s

[
z̄2s + 1

z̄2s − 1
− κ

2

]
ds+ i

√
κ z̄2s dBs.

(2.84)

As before, the partial differential equation satisfied by G̃(z1s, z2s, τ) is obtained by
expressing the fact that the ds-drift term of the Itô differential of Eq. (2.82),

dMs = [dXs(z1)Xs(z2) +Xs(z1)dXs(z2)] G̃+Xs(z1)Xs(z2) dG̃, (2.85)

vanishes.
The differentials of Xs, Xs are as in Eq. (2.71) above:

dXs(z1) = Xs(z1)F (z1s)ds, dXs(z2) = Xs(z2)F (z̄2s)ds,

F (z) :=
p

2
− q

2
− p

(1− z)2
+

q

1− z
.

(2.86)

We thus obtain the simple expression

dMs = Xs(z1)Xs(z2)
[
[F (z1s) + F (z̄2s)] G̃ ds+ dG̃

]
, (2.87)

and the vanishing of the ds-drift term in dMs requires that of the drift term in the
right-hand side bracket in (2.87), since Xs(z) does not vanish in D.
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The Itô differential of G̃(z1s, z̄2s, τ) can be obtained from Eqs. (2.84) and Itô
calculus as

dG̃(z1s, z̄2s, τ) =∂1G̃ dz1s + ∂̄2G̃ dz̄2s − ∂τ G̃ ds (2.88)

− κ

2
z21s ∂

2
1G̃ ds−

κ

2
z̄22s ∂̄

2
2G̃ ds+ κz1s z̄2s ∂1∂̄2G̃ ds,

where use was made of the shorthand notations, ∂1 := ∂z1 and ∂̄2 := ∂z̄2 . We observe
that the only coupling between the z1s, z̄2s variables arises in the last term of (2.88),
the other terms simply resulting from the independent contributions of the z1s and
z̄2s parts.

Using again the Itô differentials (2.84), we can rewrite (2.88) as

dG̃ = −i√κ
(
z1s∂1 − z̄2s∂̄2

)
G̃ dBs (2.89)

+
z1s + 1

z1s − 1
z1s∂1G̃ ds+

z̄2s + 1

z̄2s − 1
z̄2s∂̄2G̃ ds− ∂τ G̃ ds

− κ

2
(z1s∂1 − z̄2s ∂̄2)

2G̃ ds,

where we used the obvious formal identity

(z1∂1)
2 + (z̄2 ∂̄2)

2 − 2z1∂1z̄2 ∂̄2 = (z1∂1 − z̄2 ∂̄2)
2. (2.90)

At this stage, comparing the computations (2.87) and (2.89) above with those
in the one-point martingale study in Section 2.3, it is clear that the PDE obeyed by
G̃ = G̃(z1s, z̄2s, τ) is obtained as two duplicates of Eq. (2.73), completed as in (2.90)
by the derivative coupling between variables z1s, z̄2s:

[
F (z1s)+z1s

z1s + 1

z1s − 1
∂1+F (z̄2s)+z̄2s

z̄2s + 1

z̄2s − 1
∂̄2−∂τ−

κ

2
(z1s∂1−z̄2s∂̄2)2

]
G̃ = 0. (2.91)

The existence of the limit (2.81) further implies that of

lim
τ→∞

e(p−q)τ∂τ G̃(z1, z̄2, τ) = −(p− q)G(z1, z̄2).

Multiplying the PDE (2.91) satisfied by G̃ by exp((p − q)τ) and letting τ → +∞,
then gives the expected PDE for G(z1, z̄2). It can be most compactly written in
terms of the ODE (2.74) as

[
P(∂1) + P(∂̄2) + κz1∂1z̄2∂̄2

]
G(z1, z̄2) = 0, (2.92)

and its fully explicit expression is

P(D)[G(z1, z̄2)] = −κ
2
(z1∂1 − z̄2∂̄2)

2G− 1 + z1
1− z1

z1∂1G− 1 + z̄2
1− z̄2

z̄2∂̄2G (2.93)

+

[
− p

(1− z1)2
− p

(1− z̄2)2
+

q

1− z1
+

q

1− z̄2
+ 2p− 2q

]
G = 0.
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2.4.2 Moduli one-point function

Note that one can take the z1 = z2 = z case in Definition (2.79) above, thereby
obtaining the moduli one-point function,

G(z, z̄) = E

(
|z|q |f

′(z)|p
|f(z)|q

)
. (2.94)

Because of Eq. (2.93), it obeys the corresponding ODE,

P(D)[G(z, z̄)] = −κ
2
(z∂ − z̄∂̄)2G− 1 + z

1− z
z∂G− 1 + z̄

1− z̄
z̄∂̄G (2.95)

+

[
− p

(1− z)2
− p

(1− z̄)2
+

q

1− z
+

q

1− z̄
+ 2p− 2q

]
G = 0,

which is the generalization to q 6= 0 of the Beliaev–Smirnov equation (2.35) studied
in Refs. [5] and [12].

2.4.3 Integrable case

Lemma 2.4.1. The space of formal series F (z1, z̄2) =
∑

k,ℓ∈N ak,ℓz
k
1 z̄

ℓ
2, with complex

coefficients and that are solutions of the PDE (2.93), is one-dimensional.

Proof. We assume that F is a solution to (2.93) with F (0, 0) = 0; it suffices to
prove that, necessarily, F = 0. We argue by contradiction: If not, consider the
minimal (necessarily non constant) term ak,lz

kz̄ℓ in the series of F , with ak,ℓ 6= 0
and k + ℓ minimal (and non vanishing). Then P(D)[F ] (2.93) will have a minimal
term, equal to −ak,ℓ

[
κ
2
(k − ℓ)2 + k + ℓ

]
zk1 z̄

ℓ
2, which is non-zero, contradicting the

fact that P(D)[F ] vanishes.

As a second step, following Ref. [5], let us consider the action of the operator
P(D) of (2.93) on a function of the factorized form ϕ(z1)ϕ(z̄2)P (z1, z̄2), which we
write, in a shorthand notation, as ϕϕ̄P . By Leibniz’s rule, it is given by

P(D)[ϕϕ̄P ] =− κ

2
ϕϕ̄(z1∂1 − z̄2∂̄2)

2P − κ(z1∂1 − z̄2∂̄2)(ϕϕ̄)(z1∂1 − z̄2∂̄2)P

+ κ(z1∂1ϕ)(z̄2∂̄2ϕ̄)P − ϕϕ̄
1 + z1
1− z1

z1∂1P − ϕϕ̄
1 + z̄2
1− z̄2

z̄2∂̄2P

−
[
κ

2
ϕ̄(z1∂1)

2ϕ+
κ

2
ϕ(z̄2∂̄2)

2ϕ̄+ ϕ̄
1 + z1
1− z1

z1∂1ϕ+ ϕ
1 + z̄2
1− z̄2

z̄2∂̄2ϕ̄

]
P

+

[
− p

(1− z1)2
− p

(1− z̄2)2
+

q

1− z1
+

q

1− z̄2
+ 2p− 2q

]
ϕϕ̄P.

Note that the operator z1∂1− z̄2∂̄2 is antisymmetric with respect to z1, z̄2; therefore,
if we choose a symmetric function, P (z1, z̄2) = P (z1z̄2), the first line of P(D)[ϕϕ̄P ]
above identically vanishes.

One then looks for solutions to (2.93) of the particular form,

G(z1, z̄2) = ϕα(z1)ϕα(z̄2)P (z1z̄2), (2.96)
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where, as before, ϕα(z) = (1−z)α. The action of the differential operator then takes
the simple form,

P(D)[ϕαϕ̄αP ] =z1z̄2ϕα−1ϕ̄α−1

(
κα2P − 2(1− z1z̄2)P

′)

+ P(∂1)[ϕα]ϕ̄αP + P(∂2)[ϕ̄α]ϕαP,

where P ′ is the derivative of P with respect to z1z̄2, and P(∂) is the so-called
boundary operator (2.74) [5].

The ODE, κα2P (x) − 2(1 − x)P ′(x) = 0 with x = z1z̄2 and P (0) = 1, has for
solution P (z1z̄2) = (1 − z1z̄2)

−κα2/2. It is then sufficient to pick for α the value
γ = γ±0 (p) (2.64) such that P(∂)[ϕγ] = 0, as obtained in the proof of Theorem
2.3.1, to get a solution of the PDE, P(D)[ϕγϕ̄γP ] = 0 (2.93). By uniqueness of the
solution with G(0, 0) = 1, it gives the explicit form of the SLE two-point function,

G(z1, z̄2) = ϕγ(z1)ϕγ(z̄2)(1− z1z̄2)
−κγ2/2.

We thus get:

Theorem 2.4.1. Let f(z) = f0(z) be the interior whole-plane SLEκ map in the
setting of Theorem 2.1.3; then, for (p, q) belonging to the parabola R defined in
Theorem 2.3.1 by Eqs. (2.62) or (2.63) or (2.64), and for any pair (z1, z2) ∈ D×D,

E

(
z

q
2
1

(f ′(z1))
p
2

(f(z1))
q
2

[
z

q
2
2

(f ′(z2))
p
2

(f(z2))
q
2

])
=

(1− z1)
γ(1− z̄2)

γ

(1− z1z̄2)β
, β =

κ

2
γ2.

Corollary 2.4.1. In the same setting as in Theorem 2.4.1, we have for z ∈ D,

E

(
|z|q |f

′(z)|p
|f(z)|q

)
=

(1− z)γ(1− z̄)γ

(1− zz̄)β
, β =

κ

2
γ2,

for

γ = γ±0 (p) :=
1

2κ

(
4 + κ±

√
(4 + κ)2 − 8κp

)
, p ≤ (4 + κ)2

8κ
,

q = 2p−
(
1 +

κ

2

)
γ±0 (p).

Let us stress some particular cases of interest. First, the p = 0 case gives some
integral means of f .

Corollary 2.4.2. The interior whole-plane SLEκ map has the integrable moments

E



[
f(z1)

z1

] (2+κ)(4+κ)
4κ

[
f(z2)

z̄2

] (2+κ)(4+κ)
4κ


 =

(1− z1)
4+κ
κ (1− z̄2)

4+κ
κ

(1− z1z̄2)
(4+κ)2

2κ

,

E

(∣∣∣∣
f(z)

z

∣∣∣∣

(2+κ)(4+κ)
2κ

)
=

(1− z)
4+κ
κ (1− z̄)

4+κ
κ

(1− zz̄)
(4+κ)2

2κ

.

Second, taking p = q yields the logarithmic integral means we started with:
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Corollary 2.4.3. The interior whole-plane SLEκ map f(z) = f0(z) has the inte-
grable logarithmic moment

E

([
z1
f ′(z1)

f(z1)

] 2+κ
2κ

[
z̄2
f ′(z2)

f(z2)

] 2+κ
2κ )

=
(1− z1)

2
κ (1− z̄2)

2
κ

(1− z1z̄2)
2
κ

,

E

(∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣

2+κ
κ
)

=
(1− z)

2
κ (1− z̄)

2
κ

(1− zz̄)
2
κ

.

Theorem 2.1.4 describes the κ = 2 case of the latter result.

2.5 Processes with m−fold symmetry

The results of Section 2.4 may be generalized to functions with m-fold symmetry,
with m a positive integer, as was studied in [5]. For f in class S, f [m](z) is defined as
being the holomorphic branch of f(zm)1/m whose derivative is equal to 1 at 0. These
are the functions in S whose Taylor series is of the form f(z) =

∑
k≥0 amk+1z

mk+1.
The m = 2 case corresponds to odd functions that play a crucial role in the theory
of univalent functions.

One can also extend this definition to negative integersm, by considering then the
m-fold transform of the outer whole-plane SLE as the conjugate by the inversion z 7→
1/z of the (−m)-fold transform of the inner whole-plane SLE: f [m](z) = 1/f [−m](1/z)
for m ∈ Z \ N and z ∈ C \ D. The m = −1 case is of special interest: f [−1] maps
the exterior of the unit disk onto the inverted image of f(D), which is a domain
with bounded boundary. Actually, for f(z) the interior whole-plane SLEκ map
considered in Ref. [5] and here, f [−1](z−1) is precisely the exterior whole-plane SLEκ

map introduced in Ref. [2].
The moments, E(|(f [m])′(z)|p) (for m ∈ N \ {0}), as well as their associated

integral means spectra were studied in Ref. [5]. Using Itô calculus, a PDE satisfied
by these moments was derived for each value of m. The introduction of mixed (p, q)
moments allows us to circumvent these calculations in a unified approach. To see
this, notice that

(f [m])′(z) = zm−1f ′(zm)f(zm)
1
m
−1.

As a consequence,

|z|q|(f [m])′(z)|p
|f [m](z)|q = |z|q+p(m−1) |f ′(zm)|p

|f(zm)|p+ q−p
m

,

so that we identically have

E

(
|z|q |(f

[m])′(z)|p
|f [m](z)|q

)
= G(zm; p, qm), (2.97)

qm = qm(p, q) := p+
q − p

m
, (2.98)
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with the notation,

G(z; p, q) := G(z, z̄) = E

(
|z|q |f

′(z)|p
|f(z)|q

)
, (2.99)

where we have made explicit the dependence on the (p, q) parameters of the SLE
moduli one-point function (2.94) introduced in Section 2.3. From Theorem 2.4.1,
we immediately get the following.

Theorem 2.5.1. Let f [m] be the m-fold whole-plane SLEκ map, m ∈ Z \ {0}, with
z ∈ D for m > 0 and z ∈ C \ D for m < 0. Then,

E

(
|z|q |(f

[m])′(z)|p
|f [m](z)|q

)
=

(1− zm)α(1− z̄m)α

(1− (zz̄)m)
κ
2
α2 ,

for (p, q) belonging to the m-dependent parabola R[m], given in parametric form by

p =
(
2 +

κ

2

)
α− κ

2
α2, q =

(
m+ 2 +

κ

2

)
α− κ

2
(m+ 1)α2, α ∈ R. (2.100)

In Cartesian coordinates, an equivalent statement is

α =
(m+ 1)p− q

m
(
1 + κ

2

) ,

with

q = (m+ 1)p−m
2 + κ

4κ

(
4 + κ±

√
(4 + κ)2 − 8κp

)
, p ≤ (4 + κ)2

8κ
,

or,

p =
q

m+ 1
+

m

(m+ 1)2
2 + κ

4κ

(
2m+ 4 + κ±

√
(2m+ 4 + κ)2 − 8(m+ 1)κq

)
,

q ≤ (2m+ 4 + κ)2

8(m+ 1)κ
.

As for logarithmic coefficients, first observe that trivially,

log
f [m](z)

z
=

1

m
log

f(zm)

zm
. (2.101)

From this, and Theorem 2.1.3, we thus get

Corollary 2.5.1. Let f [m](z) be the m-fold whole-plane SLE2 map and

log
f [m](z)

z
= 2

∑

n≥1

γ[m]
n zn; (2.102)

then

E(|γ[m]
n |2) =

{
1

2n2 n = mk, k ≥ 1
0 otherwise.

We can also see this result as a corollary of Theorem 2.5.1, which, for the loga-
rithmic case p = q, and for any value of m, yields p = q = 2 for κ = 2 as the only
integrable case.
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Chapter 3

INTEGRAL MEAN SPECTRUM

OF SLEκ

3.1 Introduction

In this chapter we aim at generalizing to the setting of the present work the
integral means spectrum analysis of Refs. [2], [5], [12], [13] concerning the whole-
plane SLE. The original work by Beliaev–Smirnov [2] dealt with the exterior version,
whereas Ref. [5] and this work concern the interior case. We thus look for the
singular behavior of the integral,

∫

r∂D

E

( |f ′(z)|p
|f(z)|q

)
|dz|, (3.1)

for r → 1−, where f stands for the interior whole-plane SLE map (at time zero). The
integral means spectrum β(p, q) corresponding to this generalized moment integral
is the exponent such that

∫

r∂D

E

( |f ′(z)|p
|f(z)|q

)
|dz| (r→1−)≍ (1− r)−β(p,q) , (3.2)

in the sense of the equivalence of the logarithms of both terms.
As mentioned in Section 1.4, it is interesting to remark that the map f̂ := f [−1],

ζ ∈ C \ D 7→ f [−1](ζ) := 1/f(1/ζ),

is just the exterior whole-plane map from C \ D to the slit plane considered by
Beliaev and Smirnov in Ref. [2]. We identically have for 0 < r < 1:

∫

r−1∂D

E
(
|f̂ ′(ζ)|p

)
|dζ| = r2p−2

∫

r∂D

E

( |f ′(z)|p
|f(z)|2p

)
|dz|. (3.3)

We thus see that the standard integral mean of order (p, q = 0) for the exterior
whole-plane map studied in Ref. [2] coincides (up to an irrelevant power of r) with
the (p, q) integral mean (3.1) for q = 2p, for the interior whole-plane map.
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Remark 3.1.1. Exterior-Interior Duality. More generally, we obviously have

∫

r−1∂D

E

(
|f̂ ′(ζ)|p
|f̂(ζ)|q′

)
|dζ| = r2p−2

∫

r∂D

E

( |f ′(z)|p
|f(z)|2p−q′

)
|dz|, (3.4)

so that the (p, q′) exterior integral means spectrum coincides with the (p, q) interior
integral means spectrum for q + q′ = 2p. In particular, the (p, 0) interior derivative
moments studied in Ref. [5] correspond to the (p, 2p) mixed moments of the Beliaev–
Smirnov exterior map.

Hence the general setting introduced in this work unifies the integral means
spectrum studies of Refs. [2] and [5] in a broader framework, that also covers the
p = q = q′ logarithmic case, as well as the integral means of the map f (or f̂) itself,
in the (0, q) (or (0,−q)) case.

3.1.1 Modified One-Point Function

Let us now consider the modified SLE moduli one-point function,

F (z, z̄) :=
1

|z|qG(z, z̄) = E
( |f ′(z)|p
|f(z)|q

)
. (3.5)

Because of Eq. (2.95), it obeys the modified PDE,

P(D)[F (z, z̄)] =− κ

2
(z∂ − z̄∂̄)2F − 1 + z

1− z
z∂F − 1 + z̄

1− z̄
z̄∂̄F (3.6)

+

[
− p

(1− z)2
− p

(1− z̄)2
+ 2p− q

]
F (z, z̄) = 0,

which, of course, differs from Eq. (2.95). We can rewrite it as

P(D)[F (z, z̄)] =− κ

2
(z∂ − z̄∂̄)2F − 1 + z

1− z
z∂F − 1 + z̄

1− z̄
z̄∂̄F (3.7)

− p

[
1

(1− z)2
+

1

(1− z̄)2
+ σ − 1

]
F = 0,

in term of the important new parameter,

σ := q/p− 1. (3.8)

This PDE then exactly coincides with Eq. (106) in Ref. [5], where σ was meant to
represent ±1, whereas here σ ∈ R.

The value σ = +1 corresponds to the original Beliaev–Smirnov case, where the
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integral means spectrum successively involves three functions [2]:

βtip(p, κ) :=− p− 1 +
1

4
(4 + κ−

√
(4 + κ)2 − 8κp), (3.9)

for p ≤ p′0(κ) := −1− 3κ

8
; (3.10)

β0(p, κ) :=− p+
4 + κ

4κ
(4 + κ−

√
(4 + κ)2 − 8κp), (3.11)

for p′0(κ) ≤ p ≤ p0(κ);

βlin(p, κ) := p− (4 + κ)2

16κ
, (3.12)

for p ≥ p0(κ) :=
3(4 + κ)2

32κ
. (3.13)

As shown in Refs. [5, 12, 13] in the σ = −1 interior case, because of the un-
boundedness of the interior whole-plane SLE map, there exists a phase transition at
p = p∗(κ), with

p∗(κ) :=
1

16κ

(
(4 + κ)2 − 4− 2

√
2(4 + κ)2 + 4

)

=
1

32κ

(√
2(4 + κ)2 + 4− 6

)(√
2(4 + κ)2 + 4 + 2

)
. (3.14)

The integral means spectrum is afterwards given by

β(p, κ) := 3p− 1

2
− 1

2

√
1 + 2κp, for p ≥ p∗(κ). (3.15)

Since p∗(κ) < p0(κ) (3.13), this transition precedes and supersedes the transition
from the bulk spectrum (3.11) towards the linear behavior (3.12).

The singularity analysis given in Ref. [5] led us to introduce the σ-dependent
function

βσ
+(p, κ) = (1− 2σ)p− 1

2

(
1 +

√
1− 2σκp

)
. (3.16)

For σ = −1, it recovers the integral means spectrum (3.15) above for the interior
whole-plane SLE, while for σ = +1 it introduces a new spectrum,

β
(+1)
+ (p, κ) = −p− 1

2

(
1 +

√
1− 2κp

)
, (3.17)

the relevance of which for the exterior whole-plane SLE case is analyzed in a joint
work of D. Beliaev, B. Duplantier and M. Zinsmeister [1].

For general real values of σ (3.8), we can rewrite (3.16) as a function of (p, q, κ),

βσ
+(p, κ) = β1(p, q;κ) := 3p− 2q − 1

2
− 1

2

√
1 + 2κ(p− q). (3.18)

We claim that the spectrum generated by the integral means (3.1) in the general
(p, q) case will involve the standard multifractal spectra (3.9), (3.11), (3.12), that are
independent of q, and also the new (p, q)-dependent multifractal spectrum (3.18).
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Phase transitions between these spectra will occur along lines drawn in the (p, q)
plane.

Let us first describe the corresponding partition of the (p, q) plane into the re-
spective domains of validity of the four spectra above. We thus need to determine
the boundary curves where pairs (possibly triplets) of these spectra coincide, which
are signaling the onset of the respective transitions.

3.1.2 Phase transition lines

The best way is perhaps to recall the analytical derivation of the various multi-
fractal spectra as done in Ref. [5], which was based on the use of functions A (2.76),
B (2.77) and C (2.78). It will be convenient to use the notation [5],

Aσ(p, γ) := −κ
2
γ2 + γ − σp, (3.19)

such that for σ = q/p− 1 (3.8),

Aσ(p, γ) = A(p, q; γ) = p− q + γ − κ

2
γ2, (3.20)

as well as

B(q, γ) = q −
(
3 +

κ

2

)
γ + κγ2, (3.21)

C(p, γ) = −κ
2
γ2 +

(
2 +

κ

2

)
γ − p, (3.22)

β(p, γ) :=
κ

2
γ2 − C(p, γ) = κγ2 −

(
2 +

κ

2

)
γ + p, (3.23)

where the last function, β(p, γ), is the so-called “spectrum function” [5]. Recall also
that this function possesses an important duality property [5],

β(p, γ) = β(p, γ′), γ + γ′ :=
2

κ
+

1

2
. (3.24)

Remark 3.1.2. The B–S parameter γ0, and bulk spectrum (3.11) β0 := β(p, γ0),
(corresponding to Eqs. (11) and (12) in Ref. [2]) are obtained from the equations
(see Ref. [5]),

C(p, γ0) = 0; β0 = β(p, γ0) = κγ20/2. (3.25)

The two solutions to (3.25) are γ±0 (p) as in Eq. (2.64), where the lower branch
γ0 := γ−0 is the one selected for the bulk spectrum, β0(p) =

1
2
κγ−0 (p)

2.

This spectrum (3.11) is defined only to the left of a vertical line in the (p, q)
plane, as given by (see Fig. 3.1)

∆0 :=

{
p =

(4 + κ)2

8κ
, q ∈ R

}
. (3.26)
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Remark 3.1.3. The σ-dependent spectrum (3.16) is obtained from the equations

Aσ(p, γ) = 0; β(p, γ) = κγ2/2− C(p, γ). (3.27)

The solutions to Eq. (3.27) are

γσ±(p) =
1

κ

(
1±

√
1− 2σκp

)
, (3.28)

βσ
±(p) = (1− 2σ)p− κ

2
γσ±(p) = (1− 2σ)p− 1

2

(
1±

√
1− 2σκp

)
. (3.29)

The multifractal spectrum (3.16) is then given by the upper branch βσ
+(p) [5]. Note

also that this spectrum is defined only for 2σκp ≤ 1, hence for points in the (p, q)
plane below the oblique line (Fig. 3.1):

∆1 :=

{
(p, q) ∈ R2, q = p+

1

2κ

}
. (3.30)

0

T
2

T
1

1
D

0 0

D
1

(  )
0
p

P
0

p

T

q

Figure 3.1 – Red parabola R (3.32) and green parabola G (3.37) (for κ = 6). From the
intersection point P0 (3.39) originate the two (half)-lines D0 (3.41) and D1 (3.42).
The bulk spectrum β0(p) and the generalized spectrum β1(p, q) coincide along the
arc (3.34) of red parabola between its tangency points T0 and T1 with ∆0 and ∆1

(thick red line). They also coincide along the infinite left branch (3.38) of the green
parabola, up to its tangency point T2 to ∆1 (thick green line). The β0(p) spectrum
and the linear one βlin(p) coincide along D0, whereas β1(p, q) and βlin(p) coincide
along D1.
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3.1.2.1 The Red Parabola

The parabola R of Theorems 2.3.1 and 2.4.1, which we shall hereafter call (and
draw in) red (see Fig. 3.1), is given by the simultaneous conditions,

Aσ(p, γ) = A(p, q, γ) = 0, C(p, γ) = 0, (3.31)

hence also B(q, γ) = 0, which recovers the parametric form (2.62)

p = pR(γ) :=
(
2 +

κ

2

)
γ − κ

2
γ2,

q = qR(γ) :=
(
3 +

κ

2

)
γ − κγ2, γ ∈ R.

(3.32)

By construction, the associated spectrum β(p, γ) is therefore both of the B–S type,
β±
0 (p), and of the novel type, βσ

±(p). We successively have:

γ = γσ−(p) = γ−0 (p); β
σ
−(p) = β−

0 (p), γ ∈ (−∞, 1/κ] , (3.33)

γ = γσ+(p) = γ−0 (p); β
σ
+(p) = β−

0 (p), γ ∈ [1/κ, 2/κ+ 1/2] , (3.34)

γ = γσ+(p) = γ+0 (p); β
σ
+(p) = β+

0 (p), γ ∈ [2/κ+ 1/2,+∞) , (3.35)

where the change of analytic branch from the first to the second line corresponds to
a tangency at T1 of the red parabola to the boundary line ∆1, whereas the change
from second to third corresponds to a tangency at T0 to the vertical boundary line
∆0. The interval where the multifractal spectra coincide, i.e., when βσ

+(p) = β−
0 (p),

is thus given by line (3.34) in the equations above.
In Cartesian coordinates, the red parabola R (3.32) has for equation (2.63).

3.1.2.2 The Green Parabola

A second parabola in the (p, q) plane, hereafter called green (see Fig. 3.1) and
denoted by G, is such that the multifractal spectra β−

0 (p) and βσ
+(p) = β(p, q;κ)

coincide on part of it. We use the duality property (3.24) of the spectrum function
[5], and set the simultaneous seed conditions,

Aσ(p, γ′) = A(p, q, γ′) = 0, C(p, γ′′) = 0,

γ′ + γ′′ = 2/κ+ 1/2,
(3.36)

where γ′ and γ′′ are dual of each other and such that β(p, γ′) = β(p, γ′′).
Eqs. (2.76) and (2.78) immediately give the parametric form for the green

parabola,

p = pG(γ
′) :=

(4 + κ)2

8κ
− κ

2
γ′2,

q = qG(γ
′) :=

(4 + κ)2

8κ
+ γ′ − κγ′2, γ′ ∈ R.

(3.37)

Along this locus, we successively have:

γ′ = γσ−(p), γ
′′ = γ+0 (p); β

σ
−(p) = β+

0 (p), γ
′ ∈ (−∞, 0] ,

γ′ = γσ−(p), γ
′′ = γ−0 (p); β

σ
−(p) = β−

0 (p), γ
′ ∈
[
0, κ−1

]
,

γ′ = γσ+(p), γ
′′ = γ−0 (p); β

σ
+(p) = β−

0 (p), γ
′ ∈
[
κ−1,+∞

)
, (3.38)
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where the changes of branches correspond to a tangency of the green parabola to ∆0

followed by a tangency to ∆1. The multifractal spectra coincide when βσ
+(p) = β−

0 (p),
which corresponds to the third line (3.38) in the equations above, i.e., to the domain
where γ′ ≥ 1/κ.

3.1.2.3 Quadruple point

The intersection of the red and green parabolas (3.32) and (3.37) can be found by
combining the seed equations (3.31) and (3.36). We find either γ = γ′ = 1/κ+ 1/4,
or γ = 2/κ+ 1/4, γ′ = −1/4, which lead to the two intersection points,

P0 : p0 = p0(κ) =
3(4 + κ)2

32κ
, q0 =

(4 + κ)(8 + κ)

16κ
, (3.39)

P1 : p1 =
(8 + κ)(8 + 3κ)

32κ
, q0 =

(4 + κ)(8 + κ)

16κ
. (3.40)

Note that these points have same ordinate, while the abscissa of the left-most one,
P0, is p0(κ) (3.13), where the integral means spectrum transits from the bulk form
(3.11) to its linear form (3.12).

Through this intersection point P0 further pass two important straight lines in
the (p, q) plane.

Definition 3.1.1. D0 and D1 are, respectively, the vertical line and the slope one
line passing through point P0, of equations

D0 := {(p, q) : p = p0}, (3.41)

D1 :=

{
(p, q) : q − p = q0 − p0 =

16− κ2

32κ

}
. (3.42)

A key property of D1 is the following. The difference,

β1(p, q;κ)− βlin(p, κ) =
1

κ

(κ
4
−
√
1 + 2κ(p− q)

)2
, (3.43)

is always positive, and vanishes only on line D1, where

∀(p, q) ∈ D1, β1(p, q;κ) = βlin(p, κ) = p− (4 + κ)2

16κ
. (3.44)

3.1.2.4 The Blue Quartic

A third locus, the blue quartic Q, will also play an important role, that is
where the tip-spectrum, βtip(p;κ) (3.9), coincides with the novel spectrum, βσ

+(p) =
β1(p, q;κ). The tip spectrum is given by βtip(p;κ) = β(p, γ0)− 2γ0 − 1, where γ0 is
solution to C(p, γ0) = 0 and such that the tip contribution is positive, 2γ0 + 1 ≤ 0
[2, 5]; this corresponds to the tip condition (3.10) [2]. In the (p, q) plane, this descibes
the domain to the left of the straight line D′

0 (Fig. 3.2), defined by

D′
0 := {(p, q) : p = p′0(κ) = −1− 3κ/8} . (3.45)
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D’

Q

p

q

Figure 3.2 – The blue quartic (3.52) for κ = 6. It intersects the green parabola at
point Q0 (3.56) and the red parabola at point Q1 (3.55) (not marked), both of abscissa
p′0(κ) = −1− 3κ/8.

The generalized spectrum is given by βσ
+(p) = β(p, γ) where γ is solution toAσ(p, γ) =

0. We therefore look for simultaneous solutions to the seed equations,

β(p, γ) = β(p, γ0)− 2γ0 − 1, 2γ0 + 1 ≤ 0,

Aσ(p, γ) = 0, C(p, γ0) = 0.
(3.46)

Using Eq. (3.20), we first find, as for the red and green parabolae,

q − p = γ − κ

2
γ2, (3.47)

and from (3.23) and (3.22), by substitution in the above,

2p− q +
1

2
=
κ

4
(γ + γ0), (3.48)

4 + κ

2
γ − κγ2 − 1 =

8 + κ

2
γ0 − κγ20 . (3.49)

Solving for γ0 in terms of γ gives

γ0 = γ±0 :=
8 + κ

4κ
± 1

2κ
∆

1
2 (γ), (3.50)

∆(γ) := 4κ2γ2 − 2κ(4 + κ)γ +
1

4
(8 + κ)2 + 4κ, (3.51)

with ∆(γ) > 0, ∀γ ∈ R. The tip relevance inequality in (3.46), 2γ0 + 1 ≤ 0, implies
the choice of the negative branch in (3.50): γ0 = γ−0 . We thus get the desired explicit
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parameterization of that branch of the quartic,

p = pQ(γ) :=
κ

16
+
(
1 +

κ

4

)
γ − κ

2
γ2 − 1

8
∆

1
2 (γ),

q = qQ(γ) := pQ(γ) + γ − κ

2
γ2, γ ∈ R.

(3.52)

Remark 3.1.4. Note that because of the very choice to parameterize the parabolae
and the quartic by γ, such that A (3.20) vanishes, Eq. (3.47) holds for each of the
pairs of parametric equations.

We successively have along the branch (3.52) of the blue quartic:

γ = γσ−(p); β
σ
−(p) = βtip(p), γ ∈ (−∞, 1/κ] ,

γ = γσ+(p); β
σ
+(p) = βtip(p) < β−

0 (p), γ ∈ [1/κ, 1 + 2/κ] , (3.53)

γ = γσ+(p); β
σ
+(p) = βtip(p) ≥ β−

0 (p), γ ∈ [1 + 2/κ,+∞) , (3.54)

The intersection of the blue quartic (3.52) with the red parabola R (3.32) is located
at

Q1 : p
′
0 = −1− 3κ

8
, q = −1

2
(3 + κ); γ = γ0 = −1

2
, (3.55)

followed by a second intersection at the origin, p = q = 0, for γ = 2
κ

and γ0 = 0.
The intersection of the blue quartic (3.52) with the green parabola G (3.37) is

located at

Q0 : p
′
0 = −1− 3κ

8
, q′0 := −2− 7κ

8
; γ = γ′ = 1 +

2

κ
, γ0 = −1

2
. (3.56)

Notice that these two intersection points have same abscissae, p′0(κ) (3.10), where
the transition for γ0 = −1

2
from the bulk spectrum β0 to the tip spectrum βtip takes

place. They are found by combining Eqs. (3.31) or Eqs. (3.36) with (3.46).
The tip spectrum and the generalized one coincide in both γ-intervals (3.53)

and (3.54), which together parameterize the branch of the quartic located below its
contact with ∆1 (see Fig. 3.2). Because of the tip relevance condition (3.10), only
the interval (3.54) describing the lower infinite branch of the quartic located to the
left of Q0 will matter for the integral means spectrum.

3.1.3 Whole-plane SLEκ generalized spectrum

3.1.3.1 Summary

Let us briefly summarize the results of Section 3.1.2. We know from Eq. (3.34)
that the bulk spectrum β0(p) and the mixed spectrum β1(p, q) coincide along the
finite sector of parabola R located between tangency points T0 and T1 (Fig. 3.1).
From Eq. (3.38), we also know that they coincide along the infinite left branch of
parabola G below the tangency point T2 (Fig. 3.1).

The linear bulk spectrum βlin(p) coincides with β0(p) along line D0 and super-
sedes the latter to the right of D0 (Fig. 3.1). We know from (3.44) that βlin(p) and
β1(p, q) coincide along the line D1 (Fig. 3.1).
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The tip spectrum βtip(p) coincides with β0(p) along line D′
0, and supersedes it

to the left of D′
0. We finally know from Eq. (3.54) that this tip spectrum βtip(p)

coincides with β1(p, q) along the lower branch of the blue quartic located below point
Q0 (3.56) (Fig. 3.2).

The only possible scenario which thus emerges to construct the average gener-
alized integral means spectrum by a continuous matching of the 4 different spectra
along the phase transition lines described above, is the partition of the (p, q) plane
in 4 different regions as indicated in Fig. 3.3:

— a part (I) to the left of D′
0 and located above the blue quartic up to point Q0,

where the average integral means spectrum is βtip(p);

— an upper part (II) bounded by lines D′
0, D0, and located above the section of

the green parabola between points Q0 and P0, where the spectrum is given by
β0(p);

— an infinite wedge (III) of apex P0 located between the upper half-lines D0 and
D1, where the spectrum is given by βlin(p);

— a lower part (IV) whose boundary is the blue quartic up to point Q0, followed
by the arc of green parabola between pointsQ0 and P0, followed by the half-line
D1 above P0 where the spectrum is β1(p, q).

The two wings T1P0 and P0T0 of the red parabola (Fig. 3.1), where we know from
Theorem 2.4.1 that the average spectrum is given by β0(p) = β1(p, q), can thus be
seen as the respective extensions of region IV into II and of region II into IV.

This is summarized by the following theorem.

Theorem 3.1.1. Separatrix curves for the generalized integral means spectrum of
whole-plane SLEκ are in the (p, q) plane (Fig. 3.3):

— (i) the vertical half-line D0 above P0 = (p0, q0) (3.39), where
p0 = 3(4 + κ)2/32κ, q0 = (4 + κ)(8 + κ)/16κ;

— (ii) the unit slope half-line D1 originating at P0, whose equation is
q − p = (16− κ2)/32κ with p ≥ p0;

— (iii) the section of green parabola, with parametric coordinates
(
pG(γ), qG(γ)

)

(3.37) for γ ∈ [1/4+ 1/κ, 1+ 2/κ], between P0 and Q0 = (p′0, q
′
0) (3.56), where

p′0 = −1− 3κ/8, q′0 = −2− 7κ/8;

— (iv) the vertical half-line D′
0 above point Q0;

— (v) the branch of the blue quartic from Q0 to ∞, with parametric coordinates(
pQ(γ), qQ(γ)

)
(3.52) for γ ∈ [1 + 2/κ,+∞).

3.1.3.2 The B–S line

As mentioned above, the whole-plane SLE case studied by Beliaev and Smirnov
corresponds to the q = 2p line. Because of Eq. (2.63), it intersects the red parabola
R only at p = 0. The green parabola G (3.37) has for Cartesian equation,

κ

2
(2p− q)2 − 1

8
(4 + κ)2 (2p− q) + p+

1

128
(4 + κ)2(8 + κ) = 0, (3.57)
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Figure 3.3 – Respective domains of validity of integral means spectra βtip(p), β0(p),
βlin(p), and β1(p, q). The thin straight line (coral) q = 2p corresponds to the version
of whole-plane SLE studied in Ref. [2]. It does not intersect the lower domain where
β1 holds.

which shows that it intersects the B–S line at [1]

p = p′′0(κ) := − 1

128
(4 + κ)2(8 + κ), (3.58)

which is to the left of the tip transition line at p′0(κ) = −1− 3
8
κ (3.10). The quartic

Q (3.52) obeys

[(
2p− q − κ

16

)2
− c

4

](
2p− q − 1− κ

8

)
(2p− q) =

κ

2
(p− q)

(
2p− q − 1

4
− κ

8

)2

c = c(κ) :=
1

64
(8 + κ)2 +

κ

4
,

(3.59)

which immediately shows that the B–S line q = 2p intersects Q only at the origin
and stays above its lower branch.

The B–S line therefore does not intersect the segment of green parabola G be-
tween P0 and Q0, nor the quartic Q below Q0 (Fig. 3.3). Thus the novel spectrum
β1 does not a priori appear in the version of whole-plane SLE considered in Ref.
[2]. The B–S line nevertheless intersects G at p′′0 (3.58) to the left of Q0, in a do-
main lying above the quartic and where the integral mean receives a non-vanishing
contribution from the SLE tip. But if that integral mean is restricted to avoid a
neighborhood of z = 1, whose image is the tip, only the bulk spectrum remains, and
a phase transition will take place from β0 to β1 when the line q = 2p crosses G.
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3.2 Integral mean spectrum on the red parabola

From Corollary 2.4.1, we have

Theorem 3.2.1. Let f(z) = f0(z) be the interior whole-plane SLEκ map in the
setting of Theorem 2.1.3; then, for (p, q) belonging to the parabola R defined in
Theorem 2.3.1 by Eqs. (2.62) or (2.63) or (2.64),

β(p, q, κ) =

{
κ
2
γ2 − 2γ − 1 γ ≤ −1

2
κ
2
γ2 γ > −1

2
.

From (3.33),(3.34),(3.35), we can rewrite the spectrum on R as

β(p, q, κ) =





β−
0 (p)− 2γ − 1 γ = γ−0 (p) ≤ −1

2

β−
0 (p) −1

2
< γ = γ−0 (p) ≤ 1

κ
+ 1

4

βσ
+(p) γ = γσ+(p) >

1
κ
+ 1

4
,

or in term of βtip, β0, β1, as

β(p, q, κ) =





βtip(p) γ ≤ −1
2

β0(p) −1
2
< γ ≤ 1

κ
+ 1

4

β1(p, q) γ > 1
κ
+ 1

4
.

It is therefore yielded that the generalized spectrum β is the tip spectrum on the arc
of the red parabola R lying on the left of the vertical line D′

0, is the bulk spectrum
on the arc of R between D′

0 and the section of the green parabola G jointing P0 and
Q0, is the β1 spectrum on the arc of R lying on the right of that section of the green
parabola G.

3.3 Integral mean spectrum on a family of parabo-

las

The initial motivation of this section is to give precise values of the spectrum
on a infinite family of parabolas in the (p, q)−plane, which has the parabola R as
a member. The original idea of this section is from [12], [13]. It should be noticed
that the analysis presented here is heuristic and some points are not rigorous, which
should be more rigorously considered. We will obtain results which are consistent
with the manifold of spectrum introduced in the Section 3.1

3.3.1 New parabolas

We recall that

G(z, z̄) = E

(
|z|q |f

′(z)|p
|f(z)|q

)
(3.60)
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is a solution of the ODE

P(D)[G(z, z̄)] = −κ
2
(z∂ − z̄∂̄)2G− 1 + z

1− z
z∂G− 1 + z̄

1− z̄
z̄∂̄G (3.61)

+

[
− p

(1− z)2
− p

(1− z̄)2
+

q

1− z
+

q

1− z̄
+ 2p− 2q

]
G = 0.

We now consider solutions of (3.61) of the form

G(z, z̄) = (1− z)γ(1− z̄)γΘ(z, z̄) =: ϕγ(z)ϕγ(z̄)Θ(z, z̄), (3.62)

with γ satisfying

p = −κ
2
γ2 + (2 +

κ

2
)γ, (3.63)

which means C(p, γ) = 0, where C(p, γ) is defined by (2.78). This condition can get
rid of many singular terms in (3.61) (see also [5] and [13]).
By the Liebnitz’s rule, the action of P(D) on ϕγ(z)ϕγ(z̄)Θ(z, z̄) is given by

P(D)(ϕγϕ̄γΘ)

ϕγ−1ϕ̄γ−1

=

− κ

2
(1− z)(1− z̄)(z∂ − z̄∂̄)2Θ+ (κγ − 1)(z − z̄)(z∂ − z̄∂̄)Θ− (1− zz̄)(z∂ + z̄∂̄)Θ

+ [(kγ2 + 2A)zz̄ − (2A+B)(z + z̄) + 2(A+B)]Θ. (3.64)

Here A, B are shorthand notations standing for A(p, q, γ), B(q, γ) defined by (2.76),
(2.77). Since A + B + C = 0 and C(p, γ) = 0, the last term in the coefficient of Θ
vanishes. By plugging (2.76),(2.77),(2.78) into (3.64), one then arrives at

P(D)(ϕγϕ̄γΘ)

ϕγ−1ϕ̄γ−1

=− κ

2
(1− z)(1− z̄)(z∂ − z̄∂̄)2Θ+ (κγ − 1)(z − z̄)(z∂ − z̄∂̄)Θ

− (1− zz̄)(z∂ + z̄∂̄)Θ + [V zz̄ + U(z + z̄)]Θ, (3.65)

where

U = U(q, γ) := q − (3 +
κ

2
)γ + κγ2 (3.66)

V = V (q, γ) := −2q + (6 + κ)γ − κγ2. (3.67)

From above we see that G(z, z̄) = ϕγ(z)ϕγ(z̄)Θ(z, z̄) is a solution of (3.61) if and
only if Θ(z, z̄) obeys the equation

− κ

2
(1− z)(1− z̄)(z∂ − z̄∂̄)2Θ+ (κγ − 1)(z − z̄)(z∂ − z̄∂̄)Θ

− (1− zz̄)(z∂ + z̄∂̄)Θ + [V zz̄ + U(z + z̄)]Θ = 0. (3.68)

Assuming that Θ(z, z̄) has the series expansion as

Θ(z, z̄) =
∞∑

i=1

∞∑

j=1

θi,j(γ, q, κ)z
i−1z̄j−1, θ1,1 = 1, (3.69)
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then the equation (3.68) give us the following recursions of θi,j

1∑

k=0

1∑

l=0

C l,k
i,j θi−l,j−k = 0, θ1,1 = 1, θi,j = 0 for i ≤ 0 or j ≤ 0, (3.70)

with

C0,0
i,j = −κ

2
(i− j)2 − (i+ j − 2), (3.71)

C0,1
i,j =

κ

2
(i− j + 1)2 − (κγ − 1)(i− j + 1) + U, C1,0

i,j = C0,1
j,i , (3.72)

C1,1
i,j = −κ

2
(i− j)2 + (i+ j − 4) + V. (3.73)

These recursions imply that if one set

q = −κγ2 +
(
3 +

1− 2M

2
κ

)
γ − M2κ

2
+M, (3.74)

then θi,j = 0 for |i − j| > M , or equivalently, the coefficient matrix (θi,j) is 2M +
1−diagonal. For instance, in the case of M = 0, Eq. (3.74) becomes the second
equation in (2.62), which together with (3.63), from Corollary 2.4.1, imply

Θ(z, z̄) =
1

(1− zz̄)
κγ2

2

. (3.75)

The coefficient matrix (θi,j) is then diagonal, as implied by the above series analysis.
By considering γ as a parameter, the points (p, q) determined by (3.63) and (3.74)
perform a parabola in the (p, q)−plane for each M . We denote these parabolas by
PM ,M = 0, 1, .... The parabola R defined in Theorem 2.3.1 by Eqs. (2.62) or (2.63)
or (2.64) coincides with P0.

3.3.2 Integral mean spectrum as eigenvalues

In the previous section, we have showed that the 2M + 1−truncations of the
coefficient matrix (θi,j) correspond to parabolas in the (p, q)−plane. We now show
that on those parabolas, the integral mean spectrum β(p, q) is determined by a
eigenvalue of a tridiagonal matrix.

In the case of 2M + 1−truncations, one can write Θ(z, z̄) as

Θ(z, z̄) =
M∑

n=−M

fn(zz̄)z
n, f−n(ξ) = ξnfn(ξ). (3.76)

Because Θ is real, the coefficients θi,j are real and therefore fn is real for n =
−M, ...,M .
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Substitute (3.76) into (3.68), one obtains

M∑

n=−M

[(
− κ

2
n2 + n+ V

)
ξfn(ξ) +

(
− κ

2
n2 − n

)
fn(ξ) + 2ξ(ξ − 1)f ′

n(ξ)

]
zn

+
M∑

n=−M

(
κ

2
n2 + (κγ − 1)n+ U

)
fn(ξ)z

n+1

+
M∑

n=−M

(
κ

2
n2 − (κγ − 1)n+ U

)
ξfn(ξ)z

n−1 = 0. (3.77)

By identifying "coefficients" of zn for n = −M + 1, ...,M − 1 in the both sides of
(3.77), one arrives at

ξAn+1fn+1 + A−n+1fn−1 + [Bn + (1− ξ)Cn]fn + 2ξ(ξ − 1)f ′
n = 0, (3.78)

where

An =
κ

2
n2 − (κγ − 1)n+ U, (3.79)

Bn = −κn2 + V, (3.80)

Cn =
κ

2
n2 − n− V. (3.81)

Similarly, identifying "coefficients" of z−M and zM yields

[(
− κ

2
M2 −M + V

)
ξ +

(
− κ

2
M2 +M

)]
f−M

+

[
κ

2
(−M + 1)2 − (κγ − 1)(−M + 1) + U

]
ξf−M+1 + 2ξ(ξ − 1)f ′

−M = 0 (3.82)

and
[(

− κ

2
M2 +M + V

)
ξ +

(
− κ

2
M2 −M

)]
fM

+

[
κ

2
(M − 1)2 + (κγ − 1)(M − 1) + U

]
ξfM−1 + 2ξ(ξ − 1)f ′

M = 0. (3.83)

The functional vector (fn)n=−M..M is a solution of the linear system of 2M + 1 first
order ODEs (3.78), (3.82),(3.83). It is worth to note that if we have the additional
condition f−n(ξ) = ξnfn(ξ), which is satisfied by the "coefficients" fn of Θ, then this
system is reduced to M + 1 ODEs corresponding to n = 0, ...,M . It is also noticed
that from these M +1 ODEs of f0, f1, ..., fM one can obtain a M +1−th order ODE
for each fn, which has polynomial coefficients and singularities at 1, 0,∞.

We consider the first two cases of M = 0 and M = 1 as examples. When M = 0
the linear system includes the only ODE

κγ2ξf0(ξ) + 2ξ(ξ − 1)f ′
0(ξ) = 0. (3.84)

57



3.3. INTEGRAL MEAN SPECTRUM ON A FAMILY OF PARABOLAS

Note that f0 coincides with the function P considered in the Section 2.4.3 and (3.84)
is equivalent to the ODE obeyed by P in that section. These equations have the
solution f0(ξ) = (1− ξ)−κγ2/2.

When M = 1, with the additional condition f−n(ξ) = ξnfn(ξ) the linear system
includes two ODEs

−4(κγ − 1)f1 + (κγ2 + 2κγ + κ− 2)f0 + 2(ξ − 1)f ′
0 = 0 (3.85)

(−κγ − κ

2
+ 1)f0 +

[(
κ

2
− 1 + κγ2 + 2κγ

)
ξ − κ

2
− 1

]
f1 + 2ξ(ξ − 1)f ′

1 = 0. (3.86)

We now study the asymptotic behavior of the 2M+1−band solutions (3.76) near
the unit circle, i.e. at ξ → 1. Assume that fn has the expansion at ξ = 1 as

fn(ξ) = (1− ξ)−β̃ndn + ..., dn 6= 0 n = −M, ...,M, (3.87)

then by putting β̃ := maxn=−M..M β̃n, one may write fn as

fn(ξ) = (1− ξ)−β̃ψn + ..., n = −M, ...,M. (3.88)

These expansions are such that there is at least one coefficient ψn 6= 0.
By substituting (3.88) into the system (3.78), (3.82),(3.83), one obtains equations

whose left hand sides are O((1− ξ)−β̃). After dividing both sides of these equations

by (1− ξ)−β̃ and letting ξ → 1, it yields

(−κM2 + V )ψ−M +

[
κ

2
(M − 1)2 + (κγ − 1)(M − 1) + U

]
ψ−M+1 = 2β̃ψ−M (3.89)

An+1ψn+1 + A−n+1ψn−1 +Bnψn = 2β̃ψn, n = −M + 1, ...,M − 1 (3.90)
[
κ

2
(M − 1)2 + (κγ − 1)(M − 1) + U

]
ψM−1 + (−κM2 + V )ψM = 2β̃ψM . (3.91)

The power β̃ and the vector (ψn)n=−M..M are thus respectively an eigenvalue and
a corresponding eigenvector of the coefficient matrix (upto factor 1

2
) of the system

(3.89),(3.90),(3.91) which is tridiagonal.
It is worth to note that the above tridiagonal matrix is symmetric with respect

to n, therefore its eigenvectors are either symmetric or antisymmetric with respect
to n. In the case of 2M + 1−truncations, because Θ is symmetric in z, z̄, if ψn are
related to Θ by (3.76) and (3.88) then ψ−n = ψn. In this case, (ψn)n=−M..M is a
symmetric (with respect to n) eigenvector of the tridiagonal matrix.

We introduce the function

Ψ(ϕ) :=
M∑

n=−M

ψne
inϕ. (3.92)

In the case of 2M + 1−truncations, the fact that ψn are real and ψ−n = ψn implies
Ψ are real and even. Moreover, it follows from (3.88)

Ψ(ϕ) = lim
r→1−

Θ(reiϕ, re−iϕ)

(1− r2)−β̃
. (3.93)
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From (3.62) as well as the fact that (1 − z)γ(1 − z̄)γ is no longer integrable when
γ < 1

2
, we have

β(p, q, κ) =

{
β̃ − 2γ − 1 γ < −1

2

β̃ γ ≥ −1
2
,

(3.94)

provided that ψ(ϕ)(0) does not vanish in the case of γ < −1
2
. If ψ(ϕ)(0) = 0 when

γ < −1
2

then β−spectrum is less than β̃ − 2γ − 1, as we will see, this is the case.
Therefore, the integral mean spectrum of whole-plane SLEκ is determined by an
eigenvalue of the tridiagonal matrix (3.89),(3.90),(3.91) .

3.3.3 Computation of eigenvalues

In this section, we will compute exact values of the eigenvalues of the tridiagonal
matrix in the case of 2M + 1−truncations.

From the system (3.89),(3.90),(3.91), one can perform an equation for Ψ by
multiplying both sides of the n-th equation by einϕ and then making the summation
of these equation for n from −M to M . Namely, one can obtain

κ

2
(−e−iϕ − eiϕ + 2)∂2ϕϕΨ+ i(κγ − 1)(e−iϕ − eiϕ)∂ϕΨ+ [(e−iϕ + eiϕ)U + V − 2β̃]Ψ

+

(
− κ

2
M2 − (κγ − 1)M − U

)
e−i(M+1)ϕψ−M

+

(
− κ

2
M2 − (κγ − 1)M − U

)
ei(M+1)ϕψM = 0. (3.95)

One then uses the condition of 2M + 1−truncations (3.74) and the definition of U
(3.66) to reduce the above equation to

κ

2
(−e−iϕ− eiϕ+2)∂2ϕϕΨ+ i(κγ− 1)(e−iϕ− eiϕ)∂ϕΨ+[(e−iϕ+ eiϕ)U +V − 2β̃]Ψ = 0.

(3.96)
This equation can be rewriten as

κ(1− cos(ϕ))∂2ϕϕΨ+ 2(κγ − 1) sin(ϕ)∂ϕΨ+ [2 cos(ϕ)U + V − 2β̃]Ψ = 0. (3.97)

As was mentioned in the previous section, an eigenvector (ψn)n=−M..M of the
system (3.89),(3.90),(3.91) is either symmetric or antisymmetric in n, i.e., either
ψ−n = ψn or ψ−n = −ψn. In the first case, Ψ is a polynomial of cos(ϕ). After a

change of variable x = 1−cos(ϕ)
2

, Ψ is a polynomial in x and Eq. (3.97) becomes

2κx2(1−x)Ψ′′+x[κ+4(κγ−1)−2(κ+2(κγ−1))x]Ψ′+(2U +V −2β̃−4Ux)Ψ = 0,
(3.98)

where the notation Ψ denotes the same function as in (3.97) and Ψ′, Ψ′′ respectively
stand for the first and the second derivatives of Ψ with respect to x.
In the second case, Ψ can be written as

Ψ(ϕ) = sign(sin(ϕ))

√
1− cos2(ϕ)

4
Ψ1(ϕ). (3.99)
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with Ψ1 is a polynomial of cos(ϕ). From (3.97) and the fact that the derivative

of the sign function is 0 expect at 0, the function Ψ2(ϕ) :=
√

1−cos2(ϕ)
4

Ψ1(ϕ) obeys

the equation (3.97). By changing again variable x = 1−cos(ϕ)
2

, the function Ψ2 is a
solution of (3.98). Note that with this change of variable, Ψ1 is a polynomial in x
and Ψ2 =

√
x(1− x)Ψ1.

Conversely, if the equation (3.98) with a value of parameter β̃ has a solution Ψ
which is a polynomial of x, then β̃ is a eigenvalue of the system (3.89),(3.90),(3.91)
with a corresponding symmetric eigenvector. This eigenvector can be found from
the solution Ψ by changing variable x = 1−cos(ϕ)

2
and the relation (3.92).

Also, if the equation (3.98) with a value of parameter β̃ has a solution of the form√
x(1− x)Ψ1 where Ψ1 is a polynomial of x, then β̃ is a eigenvalue of the system

(3.89),(3.90),(3.91) with a corresponding antisymmetric eigenvector. This eigenvec-

tor can be found from the solution Ψ by changing variable x = 1−cos(ϕ)
2

and the
relations (3.99),(3.92).

Next, we will determine 2M +1 different values of β̃ such that for each of them,
there is a solution of (3.98) which is a polynomial of x or the product of a polynomial
of x with

√
x(1− x). Therefore we will determine all eigenvalues of the system

(3.89),(3.90),(3.91).
Consider the solutions of (3.98) of the form

Ψ(x) = xλ/2g(x). (3.100)

By substituting (3.100) into (3.98), one obtains an equation obeyed by g(x)

κx2(1− x)g′′ + x[κλ+ A− (κλ+B)x]g′
[
κ
λ

2

(
λ

2
− 1

)
+
λ

2
A+ U +

V

2
− β̃ +

(
− κ

λ

2

(
λ

2
− 1

)
− λ

2
B − 2U

)
x

]
g = 0,

(3.101)

where P = κ
2
+ 2(κγ − 1) and Q = κ+ 2(κγ − 1).

If we set

β̃ = κ
λ

2

(
λ

2
− 1

)
+
λ

2
P + U +

V

2
=: β̃(λ) (3.102)

then (3.101) becomes a hypergeometric equation

x(1− x)g′′ +

[
λ+

P

κ
−
(
λ+

Q

κ

)
x

]
g′ +

[
− λ

2

(
λ

2
− 1

)
− λ

2

Q

κ
− 2U

κ

]
g = 0. (3.103)

One can rewrite this equation as

x(1− x)g′′(x) + [c− (a+ b+ 1)x]g′(x)− abg(x) = 0, (3.104)

where

a =
λ

2
−M, b =

λ

2
+ 2γ − 2

κ
+M, c = a+ b+

1

2
. (3.105)

Solutions of (3.104) has the general form

g = C1g1 + C2g2, (3.106)
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with

g1(x) = 2F1(a, b, a+ b+
1

2
; x), g2(x) =

√
1− x 2F1(a+

1

2
, b+

1

2
,
3

2
; 1− x). (3.107)

Since a = λ
2
−M , we see that if λ = 2n for n = 0, ...,M then g1 is a polynomial of

x, whereas if λ = 2n+1 for n = 0, ...,M − 1 then g2 is the product of
√
1− x and a

polynomial of x. Corresponding to these values of λ and these forms of g, by (3.100),
the solution Ψ of (3.98) is a polynomial of x or a product of

√
x(1− x) and a polyno-

mial of x. Therefore, β̃(2n), n = 0, ...,M and β̃(2n+1), n = 0, ...,M−1 are the eigen-
values of the tridiagonal matrix (3.89),(3.90),(3.91). Moreover, β̃(2n), n = 0, ...,M
correspond to symmetric eigenvectors, which is the case of the 2M + 1−truncation
solution (3.76).

3.3.4 Phase transition of integral mean spectrum

In the previous section, we have proved that the eigenvector β̃ which determines
β−integral mean spectrum by (3.94) takes value among β̃(2n), n = 0, ...,M

β̃(2n) = n

[
κ

(
n+ 2γ − 1

2

)
− 2

]
+
kγ2

2
. (3.108)

Because of the factor x
λ
2 in (3.100), where x = 1−cos(ϕ)

2
which vanishes as z → 1, we

have that if β̃ = β̃(2n) then

β(p, q, κ) =

{
max{β̃, β̃ − 2γ − 1− n} γ < −1

2

β̃ γ ≥ −1
2
.

(3.109)

Obviously, with M = 0, β̃ coincides with β̃(0) = κγ2

2
. We thus have the β−spectrum

in this case as in Theorem 3.2.1. However, when M ≥ 1, β̃ does not have to coincide
with a β̃(2n) for all γ but may change continuously in γ from one to others of
β̃(2n), n = 0, ...,M . Indeed, we will use the non-negativity and the continuity of
β−spectrum to show that it is determined by the biggest among β̃(2n) which is
either β̃(0) or β̃(2M). It will be showed that there is a new phase transition of
β−spectrum.

We firstly prove that there is a point γM such that for γ > γM , the eigenvalue
β̃(2M) is the biggest among β̃(2n), n = −M, ...,M and it is strictly bigger than the
others, whereas for γ < γM , the eigenvalue β̃(0) is the biggest and strictly bigger
than the others. We have

β̃(2n2)− β̃(2n1) =
κ

2
(n2 − n1)

(
n1 + n2 + 2γ − 2

κ
− 1

2

)
. (3.110)

Let n2 =M,n1 = 0, one obtain the point γM for which β̃(2M) = β̃(0) as

γM = −M
2

+
1

κ
+

1

4
. (3.111)
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When γ > γM , from (3.110), one have for n2 =M and 0 ≤ n1 ≤M − 1

β̃(2M)− β̃(2n1) >
κ

2
(M − n1)n1 ≥ 0. (3.112)

When γ < γM , also from (3.110), one have for n2 = 0 and 1 ≤ n1 ≤M

β̃(0)− β̃(2n1) >
−κn1

2
(n1 −M) ≥ 0. (3.113)

Therefore the biggest eigenvalue is either β̃(0) or β̃(2M) with a phase transition at
γM .

Recall that our work in the present section and the previous section is based on
the 2M + 1−truncation condition (3.74). We now represent this condition as

κ =
2(M + 3γ − q)

M2 + 2Mγ + 2γ2 − γ
, (3.114)

and consider κ as a quantity depending on the two parameters γ, q. The condition
κ > 0 is then equivalent to γ > −M+q

3
. With this representation of the 2M +

1−truncation condition (3.74), one has

β̃(2n) =

− 2M2n−Mγ2 − 2Mn2 − 3γ3 − 8γ2n+ γ2q − 6γn2 + 4γnq + 2n2q +Mn+ γn− qn

M2 + 2Mγ + 2γ2 − γ
,

(3.115)

therefore,

β̃(2n2)− β̃(2n1) =

(n2 − n1)(8γ
2 + (6n1 + 6n2 − 4q − 1)γ − 2M2 + 2Mn1 + 2Mn2 − 2qn1 − 2qn2 −M + q)

M2 + 2Mγ + 2γ2 − γ
(3.116)

and

γM = −3

8
M +

q

4
+

1

16
+

1

16

√
36M2 + 16Mq + 16q2 + 20M − 24q + 1. (3.117)

The quantity under the square root symbol is always positive for M ≥ 1 and q ∈ R.
In fact, for n2 = M,n1 = 0, (3.116) has two zeros, that are γM and another value
γ′M

γ′M = −3

8
M +

q

4
+

1

16
− 1

16

√
36M2 + 16Mq + 16q2 + 20M − 24q + 1. (3.118)

However, the fact that γ′M < −M+q
3

< γM for M ≥ 1, q ∈ R implies that γ′M
is irrelevant. One still has the dominations of β̃(0) and β̃(2M) respectively on
(−M+q

3
, γM) and (γM ,+∞).

Our purpose is to determine the β−spectrum on the parabola PM in the (p, q)−
plane for all κ > 0, in other word, on a surface in a half space κ > 0 of the (p, q, κ)−
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Figure 3.4 – The curves defined by (3.63), (3.114) in the plane q = 0. The left dashed
line, p = −1 − 3κ

8
, marks the phase transition at γ = −1

2
. The right dashed curve

marks the phase transition at γ = γM . Note that the case M = 0 corresponds to the
union of the red curve and the haft line {(0, κ) : κ > 0}.

space. To do that, we fix a real value of q and determine β−spectrum on the curve
(3.63), (3.114) in the (p, κ)−plane. Figure 3.4 gives an example of these curves
corresponding to q = 0.

Firstly, we consider the cases of q ≥ q0 := M − 3
2
, which is equivalent to −1

2
≤

−M+q
3

. Because the relevant value of the parameter γ is in (−M+q
3

,+∞), from (3.94),

the β−spectrum is determined by the eigenvalue β̃ by

β(p, κ) = β̃, for
−M + q

3
< γ < +∞. (3.119)

It is important to note that the non-negativity and continuity of β in γ imply those
of β̃. We will use these properties of β̃ as crucial arguments. The analysis in the
previous sections has showed that β̃ can only take one value among β̃(2n), n =
0, ...,M for each γ. By substituting γ = −M+q

3
into (3.115), one has

β̃(2n) = −2n, n = 0, ...,M. (3.120)

Since β̃(2n) is a continuous function in γ for each n, β̃(2n) is negative in a neigh-
borhood of γ = −M+q

3
for n = 1, ...,M . Whereas, since β̃(0) is increasing in a

neighborhood of γ = −M+q
3

, β̃(0) is non-negative in a right neighborhood of that

point. The non-negativity of β̃ implies that

β̃ = β̃(0), (3.121)

in a right neighborhood of γ = −M+q
3

.

Because β̃(0) is strictly bigger than every β̃(2n) for n = 1, ...,M in the interval
(−M+q

3
, γM), it follows from the continuity of β̃ that β̃ = β̃(0) on (−M+q

3
, γM ].
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Next, we determine values of the eigenvalue β̃ (3.88) in a right neighborhood of
γM . From (3.112) and (3.3.4), at γ = γM , one has

β̃(0) = β̃(2M) > β̃(2n), n = 1, ...,M − 1. (3.122)

It is then implied that β̃(0), β̃(2M) > β̃(2n) for n = 1, ...,M −1 in a neigborhood of
γM . As a consequence of the continuity, β̃ can only take value among β̃(0) and β̃(2M)
in the right part of that neighborhood with respect to γM . It is noticed that, because
of the continuity of β̃ and the fact that β̃(2M) > β̃(0) whenever γ > γM , β̃ identifies
with either β̃(0) or β̃(2M) in all that right neighborhood. We will show that only
β̃(2M) is suitable for this identity. For this purpose, we consider the non-negativity
of the function g = g1 (3.100), (3.107) corresponding to the parameter β̃ = β̃(0) of
the equation (3.101). As was mentioned in the previous sections, corresponding to
the 2M +1−truncations solution (3.76), (3.92), (3.100) , g = g1 is non-negative and
is a polynomial. We will indeed prove that there exists a right neighborhood of γM
such that the corresponding polynomial g = g1 (3.100), (3.107) of β̃(0) is negative
at x = 1. Let us set β̃ = β̃(0) in (3.101), then from (3.107),

g1(1) =
Γ(1

2
)Γ(a+ b+ 1

2
)

Γ(a+ 1
2
)Γ(b+ 1

2
)
, (3.123)

where a, b are defined by (3.105). At γ = γM , one has

a+
1

2
= −M +

1

2
, b+

1

2
= 1, a+ b+

1

2
= −M + 1. (3.124)

One also has that a+ 1
2
, b+ 1

2
, a+ b+ 1

2
are continuous functions in γ and a+ b+ 1

2

is increasing in a neigborhood of γM . It follows that

a+
1

2

γ→γM−→ −M +
1

2
, (3.125)

b+
1

2

γ→γM−→ 1, (3.126)

a+ b+
1

2

γ→γM−→ −M + 1 + 0+ (3.127)

Therefore, the sign properties of the Gamma function imply the existence of a enough
small right neighborhood of γM such that g1(1) is negative.

We have showed that the eigenvalue β̃ cannot coincide with β̃(0) in a right
neigborhood of γM , therefore, it coincides with β̃(2M) in a right neigborhood of γM .
Because of the continuity of β̃ and β̃(2M) > β̃(2n) for every n = 0, ...,M − 1 on the
right of γM , we have β̃ = β̃(2M) in (γM ,+∞).

From the above analysis, we finally have, for q ≥M − 3
2
,

β(p, κ) = β̃ =

{
β̃(0) −M+q

3
< γ < γM

β̃(2M) γ ≥ γM ,
(3.128)

where β̃(0), β̃(2M) are defined by (3.115) and γM is defined by (3.117).
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Figure 3.5 – The (γ, p)-plane in the case of M = 1. The curve γM(q) never intersects
the vertical line γ = −1

2
.

We continue with studying the cases of q < M− 3
2

which is equivalent to −M+q
3

<
−1

2
. Here, it is more convenient to separately consider the cases M = 1 and M ≥ 2.
In the case of M = 1, we always have −1

2
< γ1 = γM for all q ∈ R, in particular,

in the (γ, q)−plane the curve γ1(q) does not intersect the vertical line γ = −1
2

and

located to the right of that line and below the line γ = −1+q
3

= −M+q
3

(see Figure

3.5). For a q such that q < −1
2
=M − 3

2
, one has −1+q

3
< −1

2
< γ1.

If −1
2
≤ γ ≤ γ1 then the point (γ, q) can be jointed to a fixed point T0(γ0,−1

2
)

in the segment {(γ,−1
2
) : −1

2
< γ < γ1(−1

2
)} by a vertical segment. The continuity

of the β−spectrum in q and the fact that β̃(0) > β̃(2) in the region between the
vertical line γ = −1

2
and the curve γ1(q) implies that β = β̃(0) on the segment, in

particular, at the point (γ, q).
If −M+q

3
= −1+q

3
< γ < −1

2
then the point (γ, q) can be jointed to the above

fixed point T0(γ0,−1
2
) by a polygon of two sides with the first side jointing (γ, q)

and (γ0, q), the second side jointing (γ0, q) and (γ0,−1
2
). By the same reason as

in the previous paragraph, the β−spectrum at (γ0, q) is β̃(0). The continuity of
β−spectrum in γ implies that it coincides with β̃(0) on the horizontal segment
jointing (γ0, q) and (−1

2
, q). On the horizontal segment from the point (−1

2
, q) to the

point (γ, q), one has

β̃(0)− 2γ − 1 = max{β̃(0), β̃(0)− 2γ − 1} (3.129)

β̃(0)− 2γ − 1 > max{β̃(2), β̃(2)− 2γ − 1− n}. (3.130)

From these facts and the continuity of the β−spectrum, it yields β = β̃(0)− 2γ − 1
on the segment jointing (−1

2
, q) and (γ, q), in particular, at the point (γ, q).

If γ > γ1(q) then the point (γ, q) can be jointed to a fixed point T ′
0(γ

′
0,−1

2
) on

the half line {(γ,−1
2
) : γ > γ1(−1

2
)} by a polygon of two sides. The first side is the
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vertical segment jointing T ′
0 and the point (γ′0, q). The second side is the horizontal

segment from (γ′0, q) to (γ, q). The continuity of the β − spectrum in q, γ and the
fact that β̃(2) > β̃(0) on the region located to the right of the curve γ1(q) imply
that β = β̃(2) on the polygon, therefore, at the point (γ, q).

By combining the two cases q ≥ M − 3
2

and q < M − 3
2
, we finally have for the

case M = 1

β(p, κ) =





β̃(0)− 2γ − 1 −1+q
3

< γ < −1
2

β̃(0) −1
2
≤ γ < γ1

β̃(2) γ ≥ γ1.

(3.131)

We now turn to the case of M ≥ 2. In this case, we have

− 1

2
< γM when q > − 8M − 5

2(2M − 3)
(3.132)

− 1

2
= γM when q = − 8M − 5

2(2M − 3)
(3.133)

− 1

2
> γM when q < − 8M − 5

2(2M − 3)
. (3.134)

We firstly consider − 8M−5
2(2M−3)

≤ q < M − 3
2
. One still has the validity of the

arguments in the analysis for the case of M = 1 and q < M − 3
2

for this case. Here,

we note that β̃(0) > β̃(2n) for n = 1, ...,M in the region bounded by the three lines
q =M− 3

2
, q = − 8M−5

2(2M−3)
, γ = −M+q

3
and the curve γM(q) whereas β̃(2M) > β̃(2n) for

n = 0, ...,M−1 in the region located between the two lines q =M− 3
2
, q = − 8M−5

2(2M−3)

and to the right of the curve γM(q) in the (γ, q)−plane. The β−spectrum is then
determined as

β(p, κ) =





β̃(0)− 2γ − 1 −M+q
3

< γ < −1
2

β̃(0) −1
2
≤ γ < γM

β̃(2M) γ ≥ γM .

(3.135)

Similarly, we can apply the same arguments for the case of q = − 8M−5
2(2M−3)

, or

equivalently, −M+q
3

< −1
2
= γM . It then yields

β(p, κ) =

{
β̃(0)− 2γ − 1 −M+q

3
< γ < −1

2
= γM

β̃(2M) γ ≥ −1
2
= γM .

(3.136)

In the case of q < − 8M−5
2(2M−3)

, or equivalently, −M+q
3

< γM < −1
2
, the polygon

argument can only be applied for −M+q
3

< γ ≤ γM and γ ≥ −1
2
. Namely, we obtain

β(p, κ) =

{
β̃(0)− 2γ − 1 −M+q

3
< γ < γM

β̃(2M) γ ≥ −1
2
.

(3.137)

At γ = −1
2
, one has

β̃(2M) = max{β̃(2M), β̃(2M)− 2γ − 1−M} (3.138)

β̃(2M) > max{β̃(2n), β̃(2n)− 2γ − 1− n}. (3.139)
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Figure 3.6 – The (γ, p)-plane in the case of M = 2. The curve γM(q) intersects the
vertical line γ = −1

2
at q = − 8M−5

2(2M−3)
.

Because β̃(2n), n = 0,M are continuous functions in γ, we can have the β−spectrum
in a neighborhood of γ = −1

2
. Namely, in this neighborhood the β − spectrum

coincides with β(2M): there exists a ǫ > 0 such that

β(p, κ) = β̃(2M), −1

2
− ǫ < γ < −1

2
. (3.140)

Note that we are using the presentation (3.114) of the 2M + 1−truncations
condition (3.74) (and, correspondingly, also using (3.115), (3.117)). We now turn
back to the original presentation (3.74) of this condition, where q is a quantity
depending on the positive parameter κ, to rewrite the β−spectrum on the parabolas
PM as:
If −1

2
< −M

2
+ 1

κ
+ 1

4
= γM , then

β(p, q) =





β̃(0)− 2γ − 1 γ < −1
2

β̃(0) −1
2
≤ γ < γM

β̃(2M) γ ≥ γM .

(3.141)

If −1
2
= −M

2
+ 1

κ
+ 1

4
= γM , then

β(p, q) =

{
β̃(0)− 2γ − 1 γ < −1

2
= γM

β̃(2M) γ ≥ −1
2
= γM .

(3.142)

If −1
2
> −M

2
+ 1

κ
+ 1

4
= γM , then the spectrum has not been completely found yet

on all the parabola PM ,

β(p, q) =

{
β̃(0)− 2γ − 1 γ < γM

β̃(2M) γM < −1
2
− ǫ < γ.

(3.143)
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where ǫ is a positive constant. Here, β̃(0) and β̃(2M) are defined by (3.108).

Remark 3.3.1. On the parabolas PM , we have the following identities

— If γ < −1
2

then β̃(0)− 2γ − 1 = βtip.

— If γ < γM then β̃(0) = β0.

— If γ > γM then β̃(2M) = β1,

where βtip, β0, β1 are defined above. Therefore the results obtained in this work are
consistant with the scheme of the generalized spectrum introduced in Section 3.1 .
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Chapter 4

FOUR-POINT GENERALIZED

FUNCTION AND SCHWARZIAN

DERIVATIVE OF SLE

Let us recall the definition of Schwarzian derivative of a holomorphic function f ,
that is the quantity defined by

(Sf)(z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

=
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.

One of the most important properties of Schwarzian derivative is the invariance under
möbius transformations, e.i., rational functions of the form az+b

cz+d
where a, b, c, d ∈ C

and ad− bc 6= 0. This property is a consequence of the fact that (Sf)(z) = 0 if and
only if f is a möbius transformation which also indicates that Schwarzian derivative
can be a tool to precisely measure the degree to which a function fails to be a möbius
transformation.

In this chapter we continue using martingale techniques to perform equations
satisfied by average Schwarzian derivative of SLE and its second moment, then
obtain an explicit formula for the expectation of Schwarzian derivative. The main
idea proceeds from the following observation: Let f is an univalent function in the
unit disc, we introduce the function of two complexe variables

L(z, w) := log

(
f(z)− f(w)

z − w

)
, (4.1)

it second mixed partial derivative is given by

∂2L(z, w)

∂z∂w
=

f ′(z)f ′(w)

(f(z)− f(w))2
− 1

(z − w)2
, (4.2)

and the Schwarzian derivative of f is given by the formula

(Sf)(z) = 6
∂2L(z, w)

∂z∂w

∣∣∣∣∣
z=w

= 6 lim
w→z

∂2L(z, w)

∂z∂w
. (4.3)
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We will firstly perform an equation of E

(
f ′(z)f ′(w)

(f(z)−f(w))2
− 1

z−w

)
where f , as in above

chapters, denotes the whole-plane SLE map at time 0. The martingale argument is
again used for this step. Then we use the relation (4.3) in order to obtain an equation
satisfied by E(Sf) (up to a constant factor). This equation is a non-homogeneous
differential equation of order two with known initial conditions. Solving this equation
gives us an exact formula of the expectation of Schwarzian derivative of SLE. The
same argument is applied to obtain an equation for the expectation of the second
moment of Schwarzian derivative.

When working on the first step of the above process, we consider the quantities

E

(
(z − w)2

f ′(z)f ′(w)

(f(z)− f(w))2

)
and E

( |z − w|4
|f(z)− f(w)|4 |f

′(z)|2|f ′(w)|2
)
. (4.4)

It is remarkable that we can indeed go further to get a closed form of the following
expectation

E

(
(z1 − z′1)

q
2

(f(z1)− f(z′1))
q
2

(f ′(z1))
p
2 (f ′(z′1))

p′

2
(z2 − z′2)

q
2

(f(z2)− f(z′2))
q
2

(f ′(z2))
p
2 (f ′(z′2))

p′

2

)
, (4.5)

which generalizes Theorem 2.3.1 and Theorem 2.4.1 in Chapter 2. This result is
presented in the first section of the present chapter.

4.1 Four-point generalized function

The first motivation of this section is to obtain explicit formula of the quantities
(4.4). We are interested in these quantities because of their relations with some
important quantities such as the Schwarzian derivative, Grunsky’s coefficients and
Grunsky’s matrix of the whole-plane SLEκ map. Namely, from (4.2) and (4.3), they
are related to the Schwarzian derivative of whole-plane SLEκ map f by

E(S(f)(z)) = 6 lim
w→z

1

(z − w)2

[
E

(
(z − w)2

f ′(z)f ′(w)

(f(z)− f(w))2

)
− 1

]
, (4.6)

E(|S(f)(z)|2) = 36 lim
w→z

1

|z − w|4
[
E

( |z − w|4
|f(z)− f(w)|4 |f

′(z)|2|f ′(w)|2
)
+ 1

− E
(
(z − w)2

f ′(z)f ′(w)

(f(z)− f(w))2

)
− E

(
(z − w)2

f ′(z)f ′(w)

(f(z)− f(w))2

)]
. (4.7)

Assume that the logarithmic function (4.1) has a series expansion as

log

(
f(z)− f(w)

z − w

)
=

∞∑

k=0

∞∑

l=0

bk,lz
kwl, (4.8)

the bk,l is called the Grunsky’s coefficient of f and the matrix (
√
klbk,l) is the cor-

responding Grunsky’s matrix. From (4.2), the Grunsky’s coefficients of the whole-
plane SLEκ map f and the quantities (4.4) are related by
∞∑

k=1

∞∑

l=1

E(bk,l)klz
k−1wl−1 =

1

(z − w)2

[
E

(
(z − w)2

f ′(z)f ′(w)

(f(z)− f(w))2

)
− 1

]
, z, w ∈ D.

(4.9)
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To compute the quantities (4.4) we reuse the arguments which were applied to the
proofs of Theorem 2.3.1 and Theorem 2.4.1. We indeed, with that method, give a
more general result covering also Theorem 2.3.1 and Theorem 2.4.1, that is, Theorem
4.1.1.

4.1.1 SLE four-point function and Belyaev-Smirnov equation

The purpose of this section is to perform Belyaev-Smirnov type equations for the
general moments (4.5). We will show that

Proposition 4.1.1. Let f(z) = f0(z) be the interior whole-plane SLEκ and

H(z1, z̄2, z
′
1, z̄

′
2) = E

(
(z1 − z′1)

q
2

(f(z1)− f(z′1))
q
2

(f ′(z1))
p
2 (f ′(z′1))

p′

2
(z2 − z′2)

q
2

(f(z2)− f(z′2))
q
2

(f ′(z2))
p
2 (f ′(z′2))

p′

2

)
.

(4.10)
Then H is a solution of the equation

− κ

2
(z1∂z1 − z̄2∂̄z̄2 + z′1∂z

′
1 − z̄′2∂̄z̄′2)

2H

− 1 + z1
1− z1

z1∂z1H − 1 + z̄2
1− z̄2

z̄2∂̄z̄2H − 1 + z′1
1− z′1

z′1∂z′1H − 1 + z̄′2
1− z̄′2

z̄′2∂̄z̄′2H

+

[
− p

(1− z1)2
− p

(1− z̄2)2
− p′

(1− z′1)
2
− p′

(1− z̄′2)
2
+

q

(1− z1)(1− z′1)
+

q

(1− z̄2)(1− z̄′2)

+ 2(p+ p′)− 2q

]
H = 0. (4.11)

The following corollaries are obtained when we make specific settings on the
variables z1, z

′
1, z2, z

′
2 in Proposition 4.1.1:

By taking limits z2 → 0, z′2 → 0 in (4.37) and letting z1 = z, z′1 = ζ, it yields

Corollary 4.1.1. Let f(z) = f0(z) be the interior whole-plane SLEκ and

F (z, ζ) = E

(
(z − ζ)

q
2

(f(z)− f(ζ))
q
2

(f ′(z))
p
2 (f ′(ζ))

p′

2

)
. (4.12)

Then F is a solution of the equation

− κ

2
(z∂z + ζ∂ζ)2F − 1 + z

1− z
z∂zF − 1 + ζ

1− ζ
ζ∂ζF

+

[
− p

(1− z)2
− p′

(1− ζ)2
+

q

(1− z)(1− ζ)
+ p+ p′ − q

]
F = 0. (4.13)

If we choose z1 = z2 = z, z′1 = z′2 = ζ, it yields

Corollary 4.1.2. Let f(z) = f0(z) be the interior whole-plane SLEκ and

G(z, z̄, ζ, ζ̄) = E

( |z − ζ|q
|f(z)− f(ζ)|q |f

′(z)|p|f ′(ζ)|p′
)
. (4.14)
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Then G is a solution of the equation

− κ

2
(z∂z − z̄∂̄z̄ + ζ∂ζ − ζ̄ ∂̄ζ̄)

2G− 1 + z

1− z
z∂zG− 1 + z̄

1− z̄
z̄∂̄z̄G− 1 + ζ

1− ζ
ζ∂ζG− 1 + ζ̄

1− ζ̄
ζ̄ ∂̄ζ̄G

+

[
− p

(1− z)2
− p

(1− z̄)2
− p′

(1− ζ)2
− p′

(1− ζ̄)2
+

q

(1− z)(1− ζ)
+

q

(1− z̄)(1− ζ̄)

+ 2(p+ p′)− 2q

]
G = 0. (4.15)

Let us now prove Proposition 4.1.1.

Proof. We firstly introduce a four-point auxiliary function

H̃(z1, z̄2, z
′
1, z̄

′
2, t) =

E

(
(z1 − z′1)

q
2

(f̃t(z1)− f̃t(z′1))
q
2

(f̃ ′
t(z1))

p
2 (f̃ ′

t(z
′
1))

p′

2
(z2 − z′2)

q
2

(f̃t(z2)− f̃t(z′2))
q
2

(f̃ ′
t(z2))

p
2 (f̃ ′

t(z
′
2))

p′

2

)
,

where f̃t is the reverse radial SLEκ process (1.9). In the view point of Lemma 1.4.2,
the function H is the limit in law

lim
τ→+∞

(ep+p′−qH̃(z1, z̄2, z
′
1, z̄

′
2, τ))

(law)
= H(z1, z̄2, z

′
1, z̄

′
2). (4.16)

Let us now define, for s ≤ t, the conditional expectation

Ms := E

(
(f̃ ′

t(z1))
p
2 (f̃ ′

t(z
′
1))

p′

2

(f̃t(z1)− f̃t(z′1))
q
2

(f̃ ′
t(z2))

p
2 (f̃ ′

t(z
′
2))

p′

2

(f̃t(z2)− f̃t(z′2))
q
2

∣∣∣∣Fs

)
, (4.17)

where Fs is the σ-algebra generated by {Bu, u ≤ s}. Thank to Markov property of
SLE, we can rewrite Ms as

Ms = Xs(z1, z
′
1)Xs(z2, z′2)H̃(z1s, z̄2s, z

′
1s, z̄

′
2s, τ). (4.18)

The quantities Xs(zi, z
′
i), zis, z

′
is, i = 1, 2 are defined by

Xs(zi, z
′
i) :=

(f̃ ′
s(zi))

p
2 (f̃ ′

s(z
′
i))

p′

2

(f̃s(zi)− f̃s(z′i))
q
2

,

zis := f̃s(zi)/λs, z′is := f̃s(z
′
i)/λs,

and τ := t− s.
Note that, by its construction (Ms)s≥0 is a martingale and hence the ds-drift

term in Itô derivative of Ms vanishes. We will use this fact to obtain an equation
satisfied by H̃. From (4.18) we can represent the Itô derivative of dMs in term of
those of the factors in the right-hand side as

dMs = dXs(z1, z
′
1).Xs(z2, z′2)H̃ +Xs(z1, z

′
1)dXs(z2, z′2)H̃ +Xs(z1, z

′
1)Xs(z2, z′2)dH̃.

(4.19)
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On the other hand, from the fact that the Itô drift-diffusion process Xs(zi, z
′
i) is

the composition of a twice differentiable scalar function and the vector of Itô pro-
cesses (f̃ ′

s(zi), f̃
′
s(z

′
i), f̃s(zi), f̃s(z

′
i)) and the equations (2.42), (2.43), the Itô differen-

tials dXs(z1, z
′
1) and dXs(z2, z′2) are obtained as

dXs(z1, z
′
1) = Xs(z1, z

′
1)L(z1s, z

′
1s)ds, (4.20)

dXs(z2, z′2) = Xs(z2, z′2s)L(z̄2s, z̄
′
2s)ds, (4.21)

where

L(z, ζ) := − p

(1− z)2
− p′

(1− ζ)2
+

q

(1− z)(1− ζ)
+
p

2
+
p′

2
− q

2
.

In addition, by using Itô formula we also have

dH̃ =− ∂τH̃ds+ ∂1H̃dz1s + ∂2H̃dz̄2s + ∂3H̃dz
′
1s + ∂4H̃dz̄

′
2s

+
κ

2
(−∂21 − ∂22 − ∂23 − ∂24 − 2∂1∂3 − 2∂2∂4 + 2∂1∂2 + 2∂1∂4 + 2∂2∂3 + 2∂3∂4)H̃ds,

where ∂1, ∂2, ∂3, ∂4 respectively stand for ∂z1s , ∂z̄2s , ∂z′1s , ∂z̄′2s .

dz1s = z1s

[
z1s + 1

z1s − 1
− κ

2

]
ds− i

√
κ z1s dBs,

dz′1s = z′1s

[
z′1s + 1

z′1s − 1
− κ

2

]
ds− i

√
κ z′1s dBs,

dz̄2s = z̄2s

[
z̄2s + 1

z̄2s − 1
− κ

2

]
ds+ i

√
κ z̄2s dBs,

dz̄′2s = z̄′2s

[
z̄′2s + 1

z̄′2s − 1
− κ

2

]
ds+ i

√
κ z̄′2s dBs.

Hence dMs can be rewriten as the product of Xs(z1, z
′
1).Xs(z2, z′2) and the following

[
L(z1s, z

′
1s) + L(z̄2s, z̄

′
2s)− ∂τH̃ − 1 + z1s

1− z1s
z1s∂1H̃ − 1 + z̄2s

1− z̄2s
z̄2s∂2H̃

− 1 + z′1s
1− z′1s

z′1s∂3H̃ − 1 + z̄′2s
1− z̄′2s

z̄2s∂4H̃ − κ

2
(z1s∂1 − z̄2s∂2 + z′1s∂3 − z̄′2s∂4)

2H̃

]
ds

− i
√
κ(z1s∂1 − z̄2s∂2 + z′1s∂3 − z̄′2s∂4)H̃dBs.

Because ds-term of dMs vanishes as (Ms)s≥0 is a martingale, we get the equation

L(z1s, z
′
1s) + L(z̄2s, z̄

′
2s)− ∂τH̃ − 1 + z1s

1− z1s
z1s∂1H̃ − 1 + z̄2s

1− z̄2s
z̄2s∂2H̃

− 1 + z′1s
1− z′1s

z′1s∂3H̃ − 1 + z̄′2s
1− z̄′2s

z̄2s∂4H̃ − κ

2
(z1s∂1 − z̄2s∂2 + z′1s∂3 − z̄′2s∂4)

2H̃ = 0.

Finally, we apply (4.16) to obtain the equation satisfied by H in Proposition 4.1.1.
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4.1.2 Dual points and integrable case

From the equations obtained in the previous section, in this section, we give the
explicit formula of general moments (4.5).

Theorem 4.1.1. Let f(z) = f0(z) be the interior whole-plane SLEκ map in the
setting of Theorem 2.1.3; then, for dual pairs (p, q) and (p′, q) both belonging to the
parabola R defined in Theorem 2.3.1 by Eqs. (2.62) or (2.63) or (2.64), and for any
quadruple (z1, z2, z

′
1, z

′
2) ∈ D4,

E

(
(z1 − z′1)

q
2 (f ′(z1))

p
2

(f(z1)− f(z′1))
q
2

(f ′(z′1))
p′

2

[
(f ′(z2))

p
2

]
[
(z2 − z′2)

q
2 (f ′(z′2))

p′

2

(f(z2)− f(z′2))
q
2

])
(4.22)

=
(1− z1)

γ(1− z̄2)
γ(1− z′1)

γ′

(1− z̄′2)
γ′

(1− z1z̄2)β(1− z1z̄′2)
β′(1− z′1z̄2)

β′(1− z′1z̄
′
2)

β′′
, β =

κ

2
γ2, β′ =

κ

2
γγ′, β′′ =

κ

2
γ′2.

Corollary 4.1.3. In the same setting as in Theorem 4.1.1, we have for z, ζ ∈ D,

E

(
(z − ζ)

q
2

(f(z)− f(ζ))
q
2

(f ′(z))
p
2 (f ′(ζ))

p′

2

)
= (1− z)γ(1− ζ)γ

′

. (4.23)

Corollary 4.1.4. In the same setting as in Theorem 4.1.1, we have for z, ζ ∈ D,

G(z, z̄, ζ, ζ̄) := E

( |z − ζ|q
|f(z)− f(ζ)|q |f

′(z)|p|f ′(ζ)|p′
)

(4.24)

=
(1− z)γ(1− z̄)γ(1− ζ)γ

′

(1− ζ̄)γ
′

(1− zz̄)β(1− zζ̄)β′(1− ζz̄)β′(1− ζζ̄)β′′
, β =

κ

2
γ2, β′ =

κ

2
γγ′, β′′ =

κ

2
γ′2.

Although that Corollary 4.1.4 is a consequence of Theorem 4.1.1, we prefer to
proceed firstly the proof of Corollary 4.1.4 for avoiding a redundancy of notations.
The proof Theorem 4.1.1 will follow as an analogue.

Proof. We put

G(z, z̄, ζ, ζ̄) = E

( |z − ζ|q
|f(z)− f(ζ)|q |f

′(z)|p|f ′(ζ)|p′
)
.

Recall Corollary 4.1.2, G is a solution of the following equation

− κ

2
(z∂z − z̄∂̄z̄ + ζ∂ζ − ζ̄ ∂̄ζ̄)

2G

− 1 + z

1− z
z∂zG− 1 + z̄

1− z̄
z̄∂̄z̄G− 1 + ζ

1− ζ
ζ∂ζG− 1 + ζ̄

1− ζ̄
ζ̄ ∂̄ζ̄G

+

[
− p

(1− z)2
− p

(1− z̄)2
− p′

(1− ζ)2
− p′

(1− ζ̄)2
+

q

(1− z)(1− ζ)
+

q

(1− z̄)(1− ζ̄)

+ 2(p+ p′)− 2q

]
G = 0. (4.25)

Let us denote the differential operator in the the left hand side of (4.25) by P(D).
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We now consider the action of P(D) on the function G of the form

G(z, z̄, ζ, ζ̄) = A(z, z̄)B(ζ, ζ̄)C(zζ̄)D(z̄ζ). (4.26)

Observe that

(z∂z − z̄∂̄z̄ + ζ∂ζ − ζ̄ ∂̄ζ̄)
2 =

(z∂z − z̄∂̄z̄)
2 + (ζ∂ζ − ζ̄ ∂̄ζ̄)

2 + 2(zζ∂zζ + z̄ζ̄∂z̄ζ̄ − zζ̄∂zζ̄ − z̄ζ∂z̄ζ).

The setting (4.26) together with Leibnitz’s rule thus give us the development of
−κ

2
(z∂z − z̄∂̄z̄ + ζ∂ζ − ζ̄ ∂̄ζ̄)

2G as

− κ

2
(z∂z − z̄∂̄z̄)

2A.BCD − κ

2
(ζ∂ζ − ζ̄ ∂̄ζ̄)

2B.ACD (4.27)

− κ(z∂zA.ζ∂ζB + z̄∂̄z̄A.ζ̄∂̄ζ̄B − z∂zA.ζ̄∂̄ζ̄B − z̄∂̄z̄A.ζ∂ζB)CD (4.28)

By continuing to apply Leibnitz’s rule to the other terms of P(D)(G) and finally
using a summation, we then obtain

P(D)(ABCD) = P1(D)(A)BCD + P2(D)(B)ACD

− κ(z∂zA.ζ∂ζB + z̄∂̄z̄A.ζ̄∂̄ζ̄B − z∂zA.ζ̄∂̄ζ̄B − z̄∂̄z̄A.ζ∂ζB)CD

− 2zζ̄(1− zζ̄)

(1− z)(1− ζ̄)
ABC ′D − 2z̄ζ(1− z̄ζ)

(1− z̄)(1− ζ)
ABCD′

+ q

[
1

(1− z)(1− ζ)
+

1

(1− z̄)(1− ζ̄)
− 1

1− z
− 1

1− z̄
− 1

1− ζ
− 1

1− ζ̄
+ 2

]
ABCD

(4.29)

where

P1(D) :=

[
− κ

2
(z∂z − z̄∂̄z̄)

2 − 1 + z

1− z
z∂z − 1 + z̄

1− z̄
z̄∂̄z̄

+

(
− p

(1− z)2
− p

(1− z̄)2
+

q

1− z
+

q

1− z̄

)
+ 2p− 2q

]
(4.30)

and

P2(D) :=

[
− κ

2
(ζ∂ζ − ζ̄ ∂̄ζ̄)

2 − 1 + ζ

1− ζ
z∂ζ − 1 + ζ̄

1− ζ̄
ζ̄ ∂̄ζ̄

+

(
− p′

(1− ζ)2
− p′

(1− ζ̄)2
+

q

1− ζ
+

q

1− ζ̄

)
+ 2p′ − 2q

]
. (4.31)

Let us now consider A and B of the forms

A(z, z̄) =
ϕγ(z)ϕγ(z̄)

(1− zz̄)β
, (4.32)

B(ζ, ζ̄) =
ψγ′(ζ)ψγ′(ζ̄)

(1− ζζ̄)β′′
, (4.33)
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where ϕγ(z) = (1 − z)γ, ψγ′(ζ) = (1 − ζ)γ
′

. Here the notations ϕ, ψ are used to
distinguish considered variables. Namely, ϕ is corresponding to the variables z, z̄
and ψ is corresponding to ζ, ζ̄. In this setting, the three last lines of (4.29) is the
product of 1

(1−zz̄)β
1

(1−ζζ̄)β′′
and

zζ̄ϕγ−1ϕ̄γψγ′ψ̄γ′−1D[κγγ′C + 2(zζ̄ − 1)C ′] + z̄ζϕγϕ̄γ−1ψγ′−1ψ̄γ′C[κγγ′D + 2(z̄ζ − 1)D′]

+ [q − κγγ′][ϕγ−1ϕ̄γψγ′−1ψ̄γ′ + ϕγϕ̄γ−1ψγ′ψ̄γ′−1

− ϕγ−1ϕ̄γψγ′ψ̄γ′ − ϕγϕ̄γ−1ψγ′ψ̄γ′ − ϕγϕ̄γψγ′−1ψ̄γ′ − ϕγϕ̄γψγ′ψ̄γ′−1 + 2ϕγϕ̄γψγ′ψ̄γ′ ]CD.
(4.34)

We then rewrite (4.29) as

P(D)(ABCD) = P1(D)(A)BCD + P2(D)(B)ACD

+ zζ̄ϕγ−1ϕ̄γψγ′ψ̄γ′−1D[κγγ′C + 2(zζ̄ − 1)C ′] + z̄ζϕγϕ̄γ−1ψγ′−1ψ̄γ′C[κγγ′D + 2(z̄ζ − 1)D′]

+ [q − κγγ′][ϕγ−1ϕ̄γψγ′−1ψ̄γ′ + ϕγϕ̄γ−1ψγ′ψ̄γ′−1

− ϕγ−1ϕ̄γψγ′ψ̄γ′ − ϕγϕ̄γ−1ψγ′ψ̄γ′ − ϕγϕ̄γψγ′−1ψ̄γ′ − ϕγϕ̄γψγ′ψ̄γ′−1 + 2ϕγϕ̄γψγ′ψ̄γ′ ]CD.
(4.35)

Note that if (γ, p, q), (γ′, p′, q) are dual points on the parabola R defined in
Theorem 2.3.1 by Eqs. (2.62) and A,B are respectively of the forms (4.32), (4.33)

where β = κγ2

2
, β′′ = κγ′2

2
, then

P1(D)(A) = 0, P2(D)(B) = 0 and q − κγγ′ = 0.

The first two identities are immediately implied from Theorem 2.4.1, whereas the
third one is a consequence of the fact that γ, γ′ are solutions of Eq. (2.62).

On the other hand the ODE κγγ′P + 2(X − 1)P ′ = 0 with the initial condition
P (0) = 1 has the solution

P (X) =
1

(1−X)β′
where β′ =

κγγ′

2
. (4.36)

These facts imply that for

G(z, z̄, ζ, ζ̄) =
ϕγ(z)ϕγ(z̄)

(1− zz̄)β
ψγ′(ζ)ψγ′(ζ̄)

(1− ζζ̄)β′′

1

(1− zζ̄)β′

1

(1− z̄ζ)β′

with γ, p, γ′, p′, q, β, β′′, β′ as above, P(D)(G) = 0, or equivalently, G is a solution of
(4.25).

Proof of Theorem 4.1.1

Let

H(z1, z̄2, z
′
1, z̄

′
2) = E

(
(z1 − z′1)

q
2

(f(z1)− f(z′1))
q
2

(f ′(z1))
p
2 (f ′(z′1))

p′

2
(z2 − z′2)

q
2

(f(z2)− f(z′2))
q
2

(f ′(z2))
p
2 (f ′(z′2))

p′

2

)
.
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Proposition 4.1.1 gives us the equation satisfied by H

− κ

2
(z1∂z1 − z̄2∂̄z̄2 + z′1∂z

′
1 − z̄′2∂̄z̄′2)

2H

− 1 + z1
1− z1

z1∂z1H − 1 + z̄2
1− z̄2

z̄2∂̄z̄2H − 1 + z′1
1− z′1

z′1∂z′1H − 1 + z̄′2
1− z̄′2

z̄′2∂̄z̄′2H

+

[
− p

(1− z1)2
− p

(1− z̄2)2
− p′

(1− z′1)
2
− p′

(1− z̄′2)
2
+

q

(1− z1)(1− z′1)
+

q

(1− z̄2)(1− z̄′2)

+ 2(p+ p′)− 2q

]
H = 0. (4.37)

Obviously, Eq. (4.37) and Eq. (4.25) are symbolically almost the same except that
G is replaced by H and z, z̄, ζ, ζ̄ are respectively replaced by z1, z̄2, z

′
1, z̄

′
2. Another

noticeable point is that the variables z, z̄, ζ, ζ̄ are considered as independent variables
in the proof of Corollary 4.1.4. Hence the next steps of the proof are completely
a analogue of the proof of Corollary 4.1.4 but with new settings of functions and
variables.

4.2 Schwarzian of SLE

In this section, we present the following results:

— An explicit formula of the expectation of the Schwarzian derivative of the SLEκ

map.

— An PDE obeyed by the expected second moduli moment of the Schwarzian
derivative of the SLEκ map with that we recover results obtained in [4] (see
also [5]) on this object.

4.2.1 Expectation of Schwarzian

The main result of this section is the following

Theorem 4.2.1. Let f(z) = f0(z) be the interior whole-plane SLEκ map at time 0
and S(f)(z) is the Schwarzian derivative of f(z), then

E((Sf)(z)) =

− 3(κ+ 2)

2(3κ+ 8)
(−1)

1
2

√
κ2−24κ+16−κ−4

κ (z − 1)−
1
2

√
κ2−24κ+16−κ−4

κ 2F1

[−1
2

√
κ2−24κ+16−κ

κ
,−1

2

√
κ2−24κ+16−κ−4

κ
κ+2
κ

; z

]

+
3

2(3κ+ 8)

(κ+ 2)z2 − (2κ+ 12)z + κ+ 2

(z − 1)2
. (4.38)

The proof of Theorem 4.2.1 is two-fold:
First, we use the relation (4.3) and Corollary 4.1.1 to find a ODE obeyed by the

expected Schwarzian derivative (up to a constant factor) of the SLEκ map f(z) :=
f0(z).

Second, we provide initial conditions to the above ODE and solve it to obtain
an explicit formula of E(f(z)).
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4.2. SCHWARZIAN OF SLE

4.2.1.1 Equation of expected Schwarzian

An equation obeyed by the Schwarzian of the whole-plane SLEκ map is derived
as is stated in the following proposition

Proposition 4.2.1. Let f(z) = f0(z) be the interior whole-plane SLEκ and (Sf)(z)
is its Schwarzian derivative. Then E((Sf)(z)) is a solution of the equation

−κ
2
(z∂z)

2S −
(
1 + z

1− z
+ 2κ

)
z∂zS − 2

(
2

(1− z)2
+ k − 1

)
S − 12

(1− z)4
= 0. (4.39)

Proof. We put

F (z, ζ) := E

(
(z − ζ)2

f ′(z)f ′(ζ)

(f(z)− f(ζ))2

)
. (4.40)

In Corollary 4.1.1, by setting p = p′ = 2, q = 4, we have that F is a solution of the
equation

− κ

2
(z∂z + ζ∂ζ)

2F − 1 + z

1− z
z∂zF − 1 + ζ

1− ζ
ζ∂ζF

+

[
− 2

(1− z)2
− 2

(1− ζ)2
+

4

(1− z)(1− ζ)

]
F = 0. (4.41)

Let us define a two-point auxiliary function

Faux(z, ζ) := E

(
f ′(z)f ′(ζ)

(f(z)− f(ζ))2
− 1

(z − ζ)2

)
, (4.42)

then
F (z, ζ) = (z − ζ)2Faux(z, ζ) + 1. (4.43)

After taking (4.43) into Eq. (4.41), we obtain an equation satisfied by Faux as

−κ
2
(z∂z+ζ∂ζ)

2Faux −
(
1 + z

1− z
+ 2κ

)
z∂zFaux −

(
1 + ζ

1− ζ
+ 2κ

)
ζ∂ζFaux

− 2

(
2

(1− z)(1− ζ)
+ k − 1

)
Faux −

2

(1− z)2(1− ζ)2
= 0. (4.44)

One has the following relation between the Schwarzian derivative of f and the func-
tion Faux

(Sf)(z) = 6 lim
ζ→z

(
f ′(z)f ′(ζ)

(f(z)− f(ζ))2
− 1

(z − ζ)2

)
= 6 lim

ζ→z
Faux(z, ζ). (4.45)

Because of this relation, by taking ζ → z in (4.44), we arrive at an equation for
(Sf)(z) as

−κ
2
(z∂z)

2S −
(
1 + z

1− z
+ 2κ

)
z∂zS − 2

(
2

(1− z)2
+ k − 1

)
S − 12

(1− z)4
= 0.
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4.2.1.2 Initial conditions

The equation (4.39) is an ODE of order two which can be solved to get a unique
solution with given initial conditions. We now proceed calculations of the expecta-
tions E((Sf)(0)) and E((Sf)′(0)) and then provide initial conditions to Eq. (4.39),
namely, we will prove the following

Proposition 4.2.2.

E((Sf)(0)) =
−6

κ+ 1
, E((Sf)′(0)) = − 32κ

(3κ+ 2)(κ+ 1)
. (4.46)

Proof. Assume that f(z) has a Taylor series

f(z) = z + a2z
2 + a3z

3 + ... = z +
∞∑

n=2

anz
n.

We then have

(Sf)(0) =
f ′′′(0)

f ′(0)
− 3

2

(
f ′′(0)

f ′(0)

)2

= 6(a3 − a22), (4.47)

(Sf)′(0) =
f (4)(0)

f ′(0)
− 4

f ′′(0)f ′′′(0)

(f ′(0))2
+ 3

(
f ′′(0)

f ′(0)

)3

= 24(a4 − 2a2a3 + a32). (4.48)

Passing to expectations leads to

E((Sf)(0)) = 6E(a3 − a22), (4.49)

E((Sf)′(0)) = 24E(a4 − 2a2a3 + a32). (4.50)

Let us recall that the expectation of SLE map f(z) was obtained in [5]. The authors
also established a more general result for an LLE, concretely,

E(an) =
n−2∏

k=0

ηk − k − 2

ηk+1 + k + 1
, n ≥ 3, (4.51)

where η is the Lévy symbol and ηk = η(k), k ∈ N. We thus, in our setting, have

E(a3) = − κ− 6

(κ+ 1)(κ+ 2)
, (4.52)

E(a4) = −4

3

(κ− 6)(κ− 2)

(κ+ 1)(κ+ 2)(3κ+ 2)
. (4.53)

To arrive at the values of (4.49), (4.50), we now calculate E(a22),E(a2a3) and E(a32).
From Loewner equation (1), we have the following differential equations

ȧ2 − a2 = 2λ̄, (4.54)

ȧ3 − 2a3 = 4a2λ̄+ 2λ̄2. (4.55)
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The first differential equation (4.54) (together with the uniform bound, ∀t ≥ 0, |a2(t)| ≤
C2 < +∞) yields

a2(t) = −2

∫ +∞

t

e−sλ̄(s)ds, (4.56)

therefore

a2(0) = −2

∫ +∞

0

e−sλ̄(s)ds. (4.57)

In the same way, the second one (4.55) leads to

a3(0) = −4

∫ +∞

0

e−2sa2(s)λ̄(s)ds− 2

∫ +∞

0

e−2sλ̄2ds. (4.58)

The first integral involves a2 which has the integral form (4.56). The formula for
a3(0) then reduces to

a3(0) = 4

(∫ +∞

0

e−sλ̄(s)ds

)2

− 2

∫ +∞

0

e−2sλ̄2ds

= a22 − 2

∫ +∞

0

e−2sλ̄2ds. (4.59)

From (4.57), we have

a22 = 4

∫ ∞

0

∫ ∞

0

e−s1−s2λ̄(s1)λ̄(s2)ds1ds2

= 4

∫ ∞

0

∫ ∞

0

e−s1−s2e−i
√
κ(Bs1+Bs2 )ds1ds2

= 8

∫ ∞

0

∫ s1

0

e−s1−s2e−i
√
κ(Bs1−Bs2 )e−2i

√
κBs2ds1ds2. (4.60)

Thank to Fubini’s theorem and the characteristic function of Brownian motion, we
then arrive at

E(a22) = 8

∫ ∞

0

∫ s1

0

e−s1−s2E(e−i
√
κ(Bs1−Bs2 ))E(e−2i

√
κBs2 )ds1ds2

= 8

∫ ∞

0

∫ s1

0

e−(1+κ
2
)s1e−(1+ 3

2
κ)s2ds1ds2

=
8

(κ+ 2)(κ+ 1)
. (4.61)

As we now have the formulas (4.52), (4.61), plugging them into (4.49) yeilds

E((Sf)(0)) = 6E(a3 − a22) =
−6

κ+ 1
. (4.62)
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Next, let us consider a32 and a2a3. The identity (4.57) implies that

a32 = −8

∫ +∞

0

∫ +∞

0

∫ +∞

0

e−s1−s2−s3λ̄(s1)λ̄(s2)λ̄(s3)ds1ds2ds3

= −8

∫ +∞

0

∫ +∞

0

∫ +∞

0

e−s1−s2−s3e−i
√
κ(Bs1+Bs2+Bs3 )ds1ds2ds3

= −48

∫ +∞

0

∫ s1

0

∫ s2

0

e−s1−s2−s3e−i
√
κ(Bs1−Bs2 )e−2i

√
κ(Bs2−Bs3 )e−3i

√
κBs3 )ds1ds2ds3,

(4.63)

whereas (4.57) together with (4.59) implies

a2a3 = a32 + I, (4.64)

where

I = 4

∫ +∞

0

∫ +∞

0

e−s1−2s2λ̄(s1)λ̄
2(s2)ds1ds2

= 4

∫ +∞

0

∫ +∞

0

e−s1−2s2e−i
√
κ(Bs1+2Bs2 )ds1ds2. (4.65)

Corresponding to the partition of the quadrant R+×R+ =

{
(s1, s2) : 0 ≤ si < +∞

}

into

{
(s1, s2) ∈ R+×R+, s1 > s2

}
and

{
(s1, s2) ∈ R+×R+, s1 < s2

}
, the quantity

I can be rewriten as the sum of I1 and I2:

I1 =

∫ +∞

0

∫ s1

0

e−s1−2s2e−i
√
κ(Bs1−Bs2 )e−3i

√
κBs2ds2ds1 (4.66)

I2 =

∫ +∞

0

∫ s2

0

e−s1−2s2e−2i
√
κ(Bs2−Bs1 )e−3i

√
κBs1ds1ds2. (4.67)

Apply again Fubini’s theorem to (4.63) and make use of the characteristic function
of Brownian motion, we obtain

E(a32) = −48

∫ +∞

0

∫ s1

0

∫ s2

0

e−(1+κ
2
)s1e−(1+ 3

2
κ)s2e−(1+ 5

2
κ)s3ds3ds2ds1

=
−32

(3κ+ 2)(κ+ 2)(κ+ 1)
. (4.68)

Similarly, from (4.66) and (4.67) we also have

E(I1) =
4

3

1

(κ+ 2)(3κ+ 2)
, (4.69)

E(I2) =
1

3

1

(κ+ 1)(3κ+ 2)
. (4.70)

Therefore

E(a2a3) =
−32

(3κ+ 2)(κ+ 2)(κ+ 1)
+

4

3

5κ+ 6

(3κ+ 2)(κ+ 1)(κ+ 2)
. (4.71)
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The equations (4.53), (4.68) and (4.71) permit us to obtain

E((Sf)′(0)) = 24E(a4 − 2a2a3 + a32) = − 32κ

(3κ+ 2)(κ+ 1)
. (4.72)

By solving the ODE (4.39) with the two initial conditions (4.46), we obtain a
unique solution (4.38) which gives a explicit formula of the expected Schwarzian
derivative of the whole-plane SLEκ map.

4.2.2 Second moduli moment of Schwarzian

The same idea as in the previous section can be applied to obtain an equation
satisfied by E(|(Sf)(z)|2). In this section, we will prove the following

Theorem 4.2.2. Let f(z) = f0(z) be the interior whole-plane SLEκ map at time
0 and (Sf)(z) is its Schwarzian derivative. Then E(|(Sf)(z)|2) is a solution of the
equation

− κ

2
(z∂z − z̄∂z̄)

2M − 1 + z

1− z
z∂zM − 1 + z̄

1− z̄
z̄∂z̄M

− 4

(
1

(1− z)2
+

1

(1− z̄)2
− 1

)
M − 12S̄

(1− z)4
− 12S

(1− z̄)4
= 0, (4.73)

where S(z) = E((Sf)(z)) is the expected Schwarzian derivative of f .

Proof. Define the auxiliary function

Gaux(z, z̄, ζ, ζ̄) =

∣∣∣∣
f ′(z)f ′(ζ)

(f(z)− f(ζ))2
− 1

(z − ζ)2

∣∣∣∣
2

=
|f ′(z)|2|f ′(ζ)|2
|f(z)− f(ζ)|4 +

1

|z − ζ|4 − 1

(z − ζ)2

(
f ′(z)f ′(ζ)

(f(z)− f(ζ))2

)
− 1

(z̄ − ζ̄)2
f ′(z)f ′(ζ)

(f(z)− f(ζ))2
,

(4.74)

then, from (4.3) we have

|(Sf)(z)|2 = 36 lim
ζ→z,ζ̄→z̄

Gaux(z, z̄, ζ, ζ̄). (4.75)

We consider the function

G(z, z̄, ζ, ζ̄) = E

( |z − ζ|4
|f(z)− f(ζ)|4 |f

′(z)|2|f ′(ζ)|2
)
. (4.76)

From Corollary 4.1.2, G is a solution of the equation

− κ

2
(z∂z − z̄∂̄z̄ + ζ∂ζ − ζ̄ ∂̄ζ̄)

2G− 1 + z

1− z
z∂zG− 1 + z̄

1− z̄
z̄∂̄z̄G− 1 + ζ

1− ζ
ζ∂ζG− 1 + ζ̄

1− ζ̄
ζ̄ ∂̄ζ̄G

+

[
− 2

(1− z)2
− 2

(1− z̄)2
− 2

(1− ζ)2
− 2

(1− ζ̄)2
+

4

(1− z)(1− ζ)
+

4

(1− z̄)(1− ζ̄)

]
G = 0.

(4.77)
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Because G and Gaux are related by

G = |z − ζ|4Gaux + F + F̄ − 1, (4.78)

where F is defined by (4.40), from Eq. (4.77) we can obtain an equation satisfied
by Gaux. By plugging (4.78) into (4.77), we arrive at an equation satisfied by Gaux

− κ

2
(z∂z − z̄∂̄z̄ + ζ∂ζ − ζ̄ ∂̄ζ̄)

2Gaux

− 1 + z

1− z
z∂zGaux −

1 + z̄

1− z̄
z̄∂̄z̄Gaux −

1 + ζ

1− ζ
ζ∂ζGaux −

1 + ζ̄

1− ζ̄
ζ̄ ∂̄ζ̄Gaux

+ 2

[
2(zz̄ζζ̄ − zz̄ζ − zz̄ζ̄ − zζζ̄ − z̄ζζ̄ + zz̄ + ζζ̄ + zζ̄ + z̄ζ − 1)

(1− z)(1− z̄)(1− ζ)(1− ζ̄)

−
(

1

1− z
− 1

1− ζ

)2

−
(

1

1− z̄
− 1

1− ζ̄

)2]
Gaux

− 2Faux

(1− z)2(1− ζ)2
− 2Faux

(1− z̄)2)(1− ζ̄)2
= 0, (4.79)

where the function Faux is defined by (4.42). Finally, letting ζ → z, ζ̄ → z̄ in (4.79)
and using (4.75) as well as (4.45) lead us to the equation (4.73) obeyed by M(z, z̄)
in Theorem 4.2.2.

Remark 4.2.1. In Eq. (4.73), if we set z = z̄ = 0, then it yields

M(0, 0) = −3(S(0) + S(0)).

The first equality in (4.46) implies

E(|(Sf)(0)|2) =M(0, 0) =
36

κ+ 1
.

Hence Theorem 4.2.2 recovers the result obtained in [4] on the Schwarzian derivative
of the SLEκ map.
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Chapter 5

ASYMPTOTIC VARIANCE OF SLE

Let (φt), t ∈ U, a general analytic family of conformal maps on the unit disc with
φ0 = id and φt(0) = 0, ∀t ∈ U where U is a neighborhood of 0. Then one may write

φt(z) =

∫ z

0

elog φ
′

t(u)du, z ∈ D

and
∂

∂t
φt(z) =

∫ z

0

∂

∂t
(log φ′

t(u))e
log φ′

t(u)du.

The function b(z) = V ′(z) = ∂
∂t
(log φ′

t(z))|t=0 belongs to the Bloch space B which is
defined by

B = {b holomorphic in D, sup
D

(1− |z|2)|b′(z)| <∞}.

In [14], McMullen asked under what conditions on the family (φt) it is true that

2
d2

dt2
H.dimφt(∂D)

∣∣∣∣
t=0

= σ2(b), (5.1)

where H.dimφt(∂D) is the Hausdorff dimension of φt(∂D) and σ2(b) is the McMullen’s
asymptotic variance of a Bloch function b given by

σ2(b) = lim sup
r→1−

1

2π| log(1− r)|

∫ 2π

0

|b(reiθ)|dθ.

Conversely, if b is a Bloch function, then the family of functions

φt(z) =

∫ z

0

etb(u)du (5.2)

is an analytic family. There exists a neighborhood U of 0 such that if t ∈ U then φt

is a conformal map with quasiconformal extension.
In [9], by using a probability argument M.Zinsmeister and THN.Le described a

relatively large class of functions in B for which (ϕt) defined by (5.2) satisfies (5.1),
where the Hausdorff dimension is replaced by the Minkovski dimension

d2

dt2

∣∣∣∣
t=0

M. dim φt(∂D) = lim
r→1−

1

4π| log(1− r)|

∫

|z|=1

|b(z)|2|dz|. (5.3)
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5.1. LOGARITHMIC EXPECTATION OF SLE

Namely, they proved that

lim
p→0

2β(p, φ)

p2
= lim

r→1−

1

4π| log(1− r)|

∫

|z|=1

|b(z)|2|dz|, (5.4)

which is, in this setting of φt, equivalent to (5.3). Here β(p, φ) is the integral means
spectrum of φ, φ′(z) = exp(b(z)), defined by

β(p, φ) = lim sup
r→1−

log(
∫ 2π

0
|φ′(reiθ)|pdθ)

| log(1− r)| , p ∈ R. (5.5)

The starting motivation of this chapter is to prove (5.4) in expectation for the
interior whole plane SLE2 map. Concretely, we will prove the following

Theorem 5.0.1. Let f := f0 be the interior whole-plane SLEκ map at time 0 and
β̄(p) be the average integral means spectrum of f defined by

β̄(p) = lim sup
r→1−

log(
∫ 2π

0
E(|f ′(reiθ)|p)dθ)

| log(1− r)| , p ∈ R,

then, for κ = 2,

lim
p→0

2β̄(p)

p2
= lim

r→1−

1

4π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ. (5.6)

The average integral means spectrum of the interior whole-plane SLEκ was ob-
tained in [5]. Therefore, to prove Theorem 5.0.1, we have to determined the right
hand side of (5.6). For this purpose, we will proceed the two following steps:

— Using martingale techniques to derive an equation satisfied by E(| log f ′(z)|2)
for SLE2 (as we will see, one can derive that for all κ > 0).

— Solving the equation obtained in the first step for κ = 2 by a consideration of
its series form to get an explicit expression of E(| log f ′(z)|2). This expression
verifies the relation (5.6).

5.1 Logarithmic expectation of SLE

In this section we present results concerning the logarithmic expectation F (z) :=
E(log f ′(z)) including a differential equation satisfied by F and the exact formula of
the derivative of F (hence F ). These results will be useful to find the equation of
the second logarithmic moment E(| log f ′(z)|2) and to find it solutions with that we
deal in the two next sections.

Theorem 5.1.1. Let f := f0 be the interior whole-plane SLEκ map at time 0 and
F (z) = E(log f ′(z)), then F satisfies the equation

−κ
2
z2∂2zzF + z

(z + 1

z − 1
− κ

2

)
∂zF + 2

(
1− 1

(z − 1)2

)
= 0, (5.7)
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5.1. LOGARITHMIC EXPECTATION OF SLE

or the equivalent equation,

−κ
2
z∂2zzF +

(z + 1

z − 1
− κ

2

)
∂zF +

2(z − 2)

(z − 1)2
= 0. (5.8)

It follows that

∂z(z)F = E
(f ′′(z)

f ′(z)

)
=

4

κ

(1− z)
κ
4

z
2
κ
+1

∫ z

0

u
2
κ (u− 2)

(1− u)
4
κ
+2
du. (5.9)

Proof. Let us firstly introduce the time-dependent, auxiliary function

F̃ (z, t) := E(log f̃t) (5.10)

where f̃t is the reverse radial SLEκ process 1.9. As a consequence of lemma 1.4.2,
the function F is the limit in law

lim
t→+∞

(t+ F̃ (z, t))
(law)
= F (z). (5.11)

We now consider the conditional expectation

Ms := E(log f̃
′
t |Fs). (5.12)

By Markov property of SLE

log f̃ ′
t(z) = log f̃ ′

s(z) + log f̃ ′
t−s(zs), zs :=

f̃s(z)

λs
. (5.13)

Thus
Ms = log f̃ ′

s(z) + F̃ (τ, zs), (5.14)

where τ := t− s et F̃ (t, z) := E(log f̃ ′
t).

We know that (Ms)t≥s≥0 is a martingale. This fact implies that the ds-drift term
of the Itô derivative of Ms vanishes, that permits us to obtain an equation satisfied
by F̃ . We now calculate that ds-drift term.

By regarding Ms as a stochastic process governed by the two processes log f̃ ′
s(z)

and zs, the Itô derivative of Ms is determined by

dMs = d log f̃ ′
s(z)− ∂τ F̃ ds+ ∂zsF̃ dzs +

1

2
∂2zszsF̃ dzsdzs. (5.15)

Since the Itô differentials d log f̃ ′ and dzs are written in term of ds and dBs as

d log f̃ ′
s(z) =

(
1− 2

(zs − 1)2

)
ds (5.16)

dzs = zs

(zs + 1

zs − 1
− κ

2

)
ds− i

√
κzsdBs, (5.17)

we obtain the coefficient of the drift term of dMs

P̃sing(D)(F̃ ) := 1− 2

(zs − 1)2
− F̃τ +

(zs + 1

zs − 1
− κ

2

)
zs∂zsF̃ − κ

2
z2s∂

2
zszsF̃ . (5.18)
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The vanishing of this quantity give us the equation

P̃sing(D)(F̃ ) = 1− 2

(zs − 1)2
− F̃τ +

(zs + 1

zs − 1
− κ

2

)
zs∂zsF̃ − κ

2
z2s∂

2
zszsF̃ = 0. (5.19)

Finally we use (5.11) to find the equation satisfied by F

2
(
1− 1

(z − 1)2

)
+
(z + 1

z − 1
− κ

2

)
z∂zF − κ

2
z2∂zzF = 0. (5.20)

After eliminating the factor z, it yields an equivalent equation

−κ
2
z∂2zzF +

(z + 1

z − 1
− κ

2

)
∂zF +

2(z − 2)

(z − 1)2
= 0. (5.21)

This equation is an ODE of order one of ∂zF with the initial condition ∂zF (0) =
−8
2+κ

,
obtained by substituting z = 0 into (5.21). One may use the integrating factor
method to solve this equation and get the expression (5.9) of ∂zF .

From Theorem 5.1.1, simple formulas can be obtained for particular cases. For
example, in the case of κ = 2,

∂zF (z) = −4

3
+

2

3

1

z − 1
, (5.22)

for κ = 1,

∂zF (z) =
7

15
z − 28

15
+

4

5

1

z − 1
, (5.23)

for κ = 4, by putting w :=
√
z

∂zF (z) =
w2 − 1

8w3

(10w − 6w3

(w2 − 1)2
+ 5 log

1− w

1 + w

)
. (5.24)

The exact formula of F can also be obtained for certain values of κ by integrating
both sides of (5.9). For instance, with κ = 2 we have

F (z) = −4

3
z +

2

3
log(1− z), (5.25)

with κ = 1

F (z) =
7

30
z2 − 28

15
z +

4

5
log(1− z). (5.26)

Remark 5.1.1. If κ = 2
n

then

F (z) = Pn(z) +
2n

2n+ 1
log(1− z), (5.27)

where Pn is a polynomial of degree n.

Remark 5.1.2. For general κ

∂zF (z) ∼
4

4 + κ

1

z − 1
, z → 1 (5.28)

so

F (z) ∼ 4

4 + κ
log(1− z), z → 1. (5.29)

88



5.2. SECOND LOGARITHMIC MOMENT

5.2 Second logarithmic moment

In order to obtain the value of the asymptotic variance we need the integral
means on circles {|z| = r} of the second moduli logarithmic moment E(| log f ′|2).
For this motivation, in this section we continue following the martingale argument to
find an equation satisfied by G(z) := E(| log f ′|2). Next, we consider G of a special
form

G(z, z̄) = F (z)F (z) +R(z, z̄) (5.30)

and show that R is the solution of a differential equation, intuitively, which may be
easier to deal with than one satisfied by G.

We now consider the martingale (Ns)t≥s≥0 defined by

Ns := E(| log f̃ ′
t |2|Fs). (5.31)

Recall that the martingale argument is based on the fact that the ds-drift term in Itô
derivative of a martingale vanishes. As in the preceding sections, we firstly calculate
the ds term of Ns to find an equation of the auxiliary function G̃ which is defined
as following

G̃(t, z, z̄) := E(| log f̃ ′
t |2), (5.32)

where f̃t is the reverse radial SLEκ process (1.9).
We rewrite Ns by using the Markov property of SLE

Ns = | log f̃ ′
s(z)|2 + G̃(τ, zs, z̄s) + log f̃ ′

s(z)F̃ (τ, zs) + log f̃ ′
s(z)F̃ (τ, zs). (5.33)

It is noted that F̃ is defined in the preceding section by (5.10).
For reasons of concision, we hereafter use the acronym dsCoeff for the phrase

"coefficient of ds in Itô derivative". Thank to the linearity of Itô derivative, one
can perform the ds term of dNs as the sum of those of the three terms in the right

hand side of (5.33). Since the coefficients of ds in d| log f̃ ′
s(z)|2, d log f̃ ′

s(z)F̃ (τ, zs)

and dlog f̃ ′
s(z)F̃ (τ, zs) are respectively

∂s log f̃
′
t(z)log f̃

′
t(z) + log f̃ ′

t(z)∂slog f̃
′
t(z)

∂s log f̃
′
t(z)F̃ (τ, zs) + log f̃ ′

t(z).dsCoeff of F̃ (τ, zs)

∂slog f̃ ′
t(z)F̃ (τ, zs) + log f̃ ′

t(z).dsCoeff of F̃ (τ, zs),

the ds-coefficient of dNs is obtained as

dsCoeff of G̃(τ, zs, z̄s) + ∂s log f̃
′
t(z)F̃ (τ, zs) + ∂slog f̃ ′

t(z)F̃ (τ, zs) (5.34)

+ log f̃ ′
t(z)(∂s log f̃

′
t(z) + dsCoeff of F̃ (τ, zs))

+ log f̃ ′
t(z)(∂slog f̃

′
t(z) + dsCoeff of F̃ (τ, zs)).

Note that

∂s log f̃
′
t(z) + dsCoeff of F̃ (τ, zs)

and ∂slog f̃ ′
t(z) + dsCoeff of F̃ (τ, zs))
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vanish because the first is the coefficient of the ds-drift term in Itô derivative of the
martingale (Ms)t≥s≥0 defined by (5.12) while the second is the complex conjugate
of the first one. The ds-drift term coefficient of dNs is thus reduced as

dsCoeff of G̃(τ, zs, z̄s) + ∂s log f̃
′
t(z)F̃ (τ, zs) + ∂slog f̃ ′

t(z)F̃ (τ, zs). (5.35)

We now expand the terms appear in (5.35). Namely, we have

∂s log f̃
′
s =

∂z

[
f̃s

f̃s+λ(s)

f̃s−λ(s)

]

f̃ ′
s

=
f̃s + λ(s)

f̃s − λ(s)
− 2λ(s)f̃s

(f̃s − λ(s))2

= 1− 2

(1− zs)2
,

∂slog f̃ ′
s = 1− 2

(1− z̄s)2
.

In addition, by applying again Itô formula to G̃(τ, zs, z̄s), we also get

dsCoeff of G̃(τ, zs, z̄s) =
zs + 1

zs − 1
zs∂zsG̃+

z̄s + 1

z̄s − 1
z̄s∂̄z̄sG̃− ∂τ G̃− κ

2
(zs∂zs − z̄s ∂̄z̄s)

2G̃.

(5.36)
Let us denote the differential operator in the right hand side of (5.36) by Pprin(D).
The quantity (5.35) then equals to

Pprin(D)(G̃) +
(
1− 2

(1− zs)2

)
F̃ (τ, zs) +

(
1− 2

(1− z̄s)2

)
F̃ (τ, zs). (5.37)

We recall that this quantity vanishes since Ns is a martingale. One thus has an
equation satisfied by G̃

Pprin(D)(G̃) +
(
1− 2

(1− zs)2

)
F̃ (τ, zs) +

(
1− 2

(1− z̄s)2

)
F̃ (τ, zs) = 0. (5.38)

We continue by putting (5.38) into the limitation as τ tends to +∞ and using Lemma
1.4.2 to get an equation of G. Before doing that, let us rewrite | log f̃ ′

τ |2 as following

| log f̃ ′
τ |2 = | log eτ f̃ ′

τ |2 − τ(log f̃ ′
τ + log f̃ ′

τ )− τ 2. (5.39)

This identity implies that

∂zsG̃ = ∂zsE(| log eτ f̃ ′
τ |2)− τ∂zsF̃ (τ, zs) (5.40)

∂z̄sG̃ = ∂z̄sE(| log eτ f̃ ′
τ |2)− τ∂z̄sF̃ (τ, zs) (5.41)

∂2zszsG̃ = ∂2zszsE(| log eτ f̃ ′
τ |2)− τ∂2zszsF̃ (τ, zs) (5.42)

∂2z̄sz̄sG̃ = ∂2z̄sz̄sE(| log eτ f̃ ′
τ |2)− τ∂2z̄sz̄sF̃ (τ, zs) (5.43)

∂2zsz̄sG̃ = ∂2zsz̄sE(| log eτ f̃ ′
τ |2) (5.44)

∂τ G̃ = ∂τE(| log eτ f̃ ′
t |2)− E(log eτ f̃ ′

τ )− τ∂τ F̃ (τ, zs)− E(log eτ f̃ ′
τ )− τ∂τ F̃ (τ, zs).

(5.45)
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In (5.38) by replacing the terms that appear in the left-hand side of the above
identities by their corresponding right-hand side terms, we arrive at

Pprin(D)(E(| log eτ f̃ ′
τ |2)) + 2

(
1− 1

(1− z̄s)2

)
E(log eτ f̃ ′

τ ) + 2
(
1− 1

(1− zs)2

)
E(log eτ f̃ ′

τ )

− τ P̃sing(D)(F̃ )(τ, zs)− τ P̃sing(D)(F̃ )(τ, zs) = 0. (5.46)

Note that P̃sing(F̃ )(τ, zs) is the ds-term coefficient in dMs, therefore vanishes. One
can thus get rid of the second line of (5.46) and obtains

Pprin(D)(E(| log eτ f̃ ′
τ |2) + 2

(
1− 1

(1− z̄s)2

)
E(log eτ f̃ ′

τ )

+ 2
(
1− 1

(1− zs)2

)
E(log eτ f̃ ′

τ ) = 0. (5.47)

Finally, the Lemma 1.4.2 is used to derive an equation satisfied by G.

Proposition 5.2.1. Let f := f0 be the interior whole-plane SLEκ map at time 0
and G(z, z̄) = E(| log f ′|2), then G satisfies the equation

Pprin(D)(G) + 2
(
1− 1

(z̄ − 1)2

)
F (z) + 2

(
1− 1

(z − 1)2

)
F (z) = 0 (5.48)

where

Pprin(D) =
z + 1

z − 1
z∂z +

z̄ + 1

z̄ − 1
z̄∂z̄ −

κ

2
(z∂z − z̄∂z̄)

2.

We now consider function G of the form

G(z, z̄) = F (z)F (z) +R(z, z̄), (5.49)

where F is the solution of Eq. (5.7) and F (z) is its complex conjugate. By replacing
G(z, z̄) by F (z)F (z) +R(z, z̄), the left hand side of (5.48) becomes

Pprin(D)(R) + κzz̄∂zF∂z̄F̄

+

[
− κ

2
z2∂2zzF + z

(z + 1

z − 1
− κ

2

)
∂zF + 2

(
1− 1

(z − 1)2

)]
F̄

+

[
− κ

2
z2∂2zzF + z

(z + 1

z − 1
− κ

2

)
∂zF + 2

(
1− 1

(z − 1)2

)]
F. (5.50)

Since Eq. (5.1.1), the two last lines vanish. The quantity (5.50) is thus simplified
as

Pprin(D)(R) + κzz̄∂zF∂z̄F̄ . (5.51)

That leads us to the following

Proposition 5.2.2.

Pprin(D)(R) = −κzz̄∂zF∂z̄F (z). (5.52)
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5.3 Asymptotic variance of SLE2

The function R is analytic in the bi-disk D×D, we thus write it in a series form

R(z, z̄) =
∑

n≥0

an,mz
nz̄m. (5.53)

Since the normalization of SLE map f , a0,0 = 0.
The equation (5.52) give us recurrent relations of the coefficients an,m. In the

case of κ = 2, these recurrent relations make us able to obtain easily an explicit
formula of R and thus of G. Let us set κ = 2 and put the series form (5.53) of R
into Eq. (5.52) then after identifying the two sides of the equation, we obtain

a1,0 = a0,1 = a2,0 = a0,2 = 0, (5.54)

a1,1 = 4, a2,2 =
14

9
, (5.55)

an,m =
1

(n−m)2 + n+m

[(
(n−m− 1)2 − n+m+ 1

)
an−1,m

+

(
(n−m+ 1)2 + n−m+ 1

)
an,m−1 +

(
− (n−m)2 + n+m− 2

)
an−1,m−1

]
.

(5.56)

By using the inductive method, we can prove that

a1,1 = 4 (5.57)

an,n =
4

3

(
4

n2
+

1

3n

)
∀n ≥ 2 (5.58)

an,n+1 = an+1,n =
−8

3n(n+ 1)
∀n ≥ 1 (5.59)

an,m = 0 otherwise. (5.60)

These identities are equivalent to

R(z, z̄) =
4

3

[
−4

3
zz̄+

2(z + z̄)

zz̄

∫ zz̄

0

log(1−u)du−4

∫ zz̄

0

log(1− u)

u
du−1

3
log(1−zz̄)

]
,

(5.61)
and hence

G(z, z̄) =

(
− 4

3
z +

2

3
log(1− z)

)(
− 4

3
z̄ +

2

3
log(1− z̄)

)
(5.62)

+
4

3

[
− 4

3
zz̄ +

2(z + z̄)

zz̄

∫ zz̄

0

log(1− u)du− 4

∫ zz̄

0

log(1− u)

u
du− 1

3
log(1− zz̄)

]
.

The equation (5.62) directly implies the main result of this section

Theorem 5.3.1. Let f := f0 be the interior whole-plane SLE2 map at time 0 then

lim
r→1−

1

4π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ = 2

9
. (5.63)

92



5.3. ASYMPTOTIC VARIANCE OF SLE2

Proof. By using the Maclaurin expansion of the logarithmic function log(1− z)

log(1− z) = −
∞∑

n=1

zn

n
, |z| < 1,

one rewrite the function G(z, z̄) (5.62) as

G(z, z̄) =
8

9

(
z

∞∑

n=1

z̄n

n
+ z̄

∞∑

n=1

zn

n

)
+

4

9

∞∑

n=1

zn

n

∞∑

n=1

z̄n

n

−8

3
(z + z̄)

∞∑

n=1

(zz̄)n

n(n+ 1)
+

16

3

∞∑

n=1

(zz̄)n

n2
− 4

9
log(1− zz̄). (5.64)

The Plancherel’s theorem then yields

1

2π

∫ 2π

0

E(| log f ′(reiθ)|2)dθ = 16

9
r2 +

52

9

∞∑

n=1

r2n

n2
− 4

9
log(1− r2), r < 1. (5.65)

It follows that

lim
r→1−

1

4π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ = lim
r→1−

16

9
r2 +

52

9

∞∑

n=1

r2n

n2
− 4

9
log(1− r2)

−2 log(1− r)

=
2

9
. (5.66)

Return to Theorem 5.0.1, let us recall that the average integral mean spectrum
of the interior whole-plane SLEκ was obtained in [5] as

β̄(p) =





βtip(p, κ) p < p′0(κ)

β0(p, κ) p′0(κ) ≤ p < p∗(κ)

β1(p, κ) p∗(κ) ≤ p,

(5.67)

where

βtip(p, κ) = −p− 1 +
1

4
(4 + κ−

√
(4 + κ)2 − 8κp), (5.68)

β0(p, κ) = −p+ 4 + κ

4κ
(4 + κ−

√
(4 + κ)2 − 8κp), (5.69)

β1(p, κ) = 3p− 1

2
− 1

2

√
1 + 2κp (5.70)

and

p′0(κ) = −1− 3κ

8
, (5.71)

p∗(κ) =
1

32κ

(√
2(4 + κ)2 + 4− 6

)(√
2(4 + κ)2 + 4 + 2

)
. (5.72)
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It follows that the development of β̄ at p = 0 is

β̄(p) =
2κ

(4 + κ)2
p2 + o(p2). (5.73)

In particular, with κ = 2 , we have that

lim
p→0

2β̄(p)

p2
=

2

9
. (5.74)

This fact together with Theorem 5.3.1 conclude the proof of Theorem 5.0.1.
We believe that the relation (5.6) is true for SLEκ for all κ > 0. However, we

have not arrived at a proof of this general result yet.
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Chapter 6

CONCLUSIONS AND

PERSPECTIVES

6.1 Conclusions

In this thesis, we studied the following problems:
Firstly, we continued the work started in [11] on consideration the logarithmic

coefficients of the interior whole-plane SLE maps. In that work, the authors had
given an explicit formula for the expected logarithmic coefficients and proceeded
calculations of some first moduli second moments of these coefficients. Here, we
mimicked the proof given in [11] to generalize the explicit formula of the expected
logarithmic coefficients for the interior whole-plane LLE maps. We also proved a
general result for SLE2 by giving an explicit formula to the moduli second moments
of all logarithmic coefficients. With this result, we revisited the Milin’s conjecture
in the case of SLE2, namely, we arrived at the conclusion of the conjecture in a sense
of expectation. It is noticed that in order to have an explicit formula to the moduli
second moments of all logarithmic coefficients of the SLE2 map, we calculated the

expectation E

(
|z|2
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣
2)

.

Secondly, we generalize the results on moments of the interior whole-plane SLE
map in [4], [5]. By using a martingale method and considering the so-called Beliaev-
Smirnov equations, we yielded a closed form of the expected general moments

E

(
z

q
2
(f ′(z))

q
2 )

(f(z))
q
2 )

)
, E

(
|z|q |f ′(z)|p

|f(z)|q

)
and E

(
z

q
2
1

(f ′(z1))
p
2

(f(z1))
q
2

[
z

q
2
2

(f ′(z2))
p
2

(f(z2))
q
2

])
for (p, q) belonging

to a parabola R in the real (p, q)−plane. This result is then extent to a more general
type of mixed moment

E

(
(z1 − z′1)

q
2 (f ′(z1))

p
2

(f(z1)− f(z′1))
q
2

(f ′(z′1))
p′

2

[
(f ′(z2))

p
2

]
[
(z2 − z′2)

q
2 (f ′(z′2))

p′

2

(f(z2)− f(z′2))
q
2

])
,

namely, for a pair (p, q) ∈ R, the Beliaev-Smirnov type equations and closed forms
of the above expected moment are derivied.

We introduced the generalized integral means spectrum, β(p, q;κ), correspond-
ing to the singular behavior of the mixed moments above. This generalized integral
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means spectrum includes the standard integral means spectrum of interior whole-
plane SLE and the standard integral means spectrum of exterior whole-plane SLE
as specific cases when one respectively sets q = 0 and q = 2p. These standard spec-
trum were explicitly calculated in term of the spectrum βtip(p), β0(p), β1(p, q), βlin(p)
introduced in [1],[2],[5]. In this thesis, we proposed a manifold of the spectrum in
the moment (p, q)−plane , in which the average generalized spectrum of whole-plane
SLE take four possible above forms, separated by five phase transition lines. We
checked conjecture for (p, q) on the above parabola R by the obtained closed form

of E

(
|z|q |f ′(z)|p

|f(z)|q

)
and applied the method introduced in [13] to check the conjecture

for an infinite family of parabolas in the (p, q)−plane.
We also calculated explicitly the expectation of the Schwarzian derivative of

the interior whole-plane SLE map by considering the Beaev-Smirnov type equation

obeyed by E

(
(z−w)2 f ′(z)f ′(w)

(f(z)−f(w))2

)
and a relation between the function in the expec-

tation and the Schwarzian derivative of f(z). The same argument was applied to
obtain an equation satisfied by the moduli second moment of the Schwarzian deriva-
tive. This equation allows us to recover a result obtained in [4], that is the value of
the moduli second moment of the Schwarzian derivative of the interior whole-plane
SLE map at the origin.

Finally, we made use of the martingale method to reduce an explicit formula of
E(| log f ′(z)|2) and then proved the relation

lim
p→0

2β̄(p)

p2
= lim

r→1−

1

4π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ,

where f(z) is the interior whole-plane SLE2 map at time 0 and β is the corresponding
average integral means spectrum. This relation is an analogue of that considered in
[9] concerning a question raised by McMullen in [14].

6.2 Perspectives

The investigation of moments or logarithmic coefficients of the interior whole-
plane SLE map began with computer calculations of Taylor coefficients [4] or log-
arithmic coefficients [11] of small indexes. The exciting results obtained by these
calculations have motivated the analytic studies. However, as was mentioned in Sec-
tion 2.1.3, the quantity of computations increases quickly as the index increases. This
fact requires that the algorithm of computing programmings should be improved,
we then may expect interesting explicit values of coefficients of higher indexes which
motivate more analytic studies.

In this thesis, the problem of studying moments of the interior whole-plane SLE
maps is considered for real values of moments. The extension of results obtained
here and the applications the method used for the real moments case to the complex
moments case will be an interesting and considerable problem.

In Chapter 3, the conjecture on the average integral means spectrum was pro-
posed for all pairs (p, q) in the plane R2. That conjecture was checked for subsets of
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the moment (p, q)−plane, namely, for the parabola R and for an infinite family of
parabolas by rigorous and non-rigorous methods. In [3], the authors also rigorously
proved that the conjecture is true for a "large" part of the moment plane. The
work of making rigorous some obtained results and proving the conjecture for the
uncovered parts of the moment plane should be continued. As the integral means
spectrum and the generalized integral means spectrum may be defined with complex
arguments (corresponding to complex order of moments), a considerable future work
is to study these spectrum in a complex setting of arguments.

It is showed that the expected moduli second moment of the Schwarzian deriva-
tive of the interior whole-plane SLE map satisfies a PDE. This fact suggests an
approach to the study of that Schwarzian derivative. To exploite the PDE encoding
the the expected moduli second moment of the Schwarzian derivative of the interior
whole-plane SLE map will give more informations about the Schwarzian derivative
and the SLE and the SLE map itself. It is noticed that the above PDE was obtained
from another PDE obeyed by a mixed moment and a relation between that mixed
moment and the Schwarzian derivative. As we have a host of PDEs satisfied by
mixed moments (Propositions 4.1.1, Corollary 4.1.1, Corollary 4.1.2), if a quantity
is related to a mixed moments obeying one of these equations then one may expect
results on that quantity by exploiting the PDE obeyed by the corresponding mixed
moments, for instance, one may investigate the Grunsky coefficients by considering

the PDE satisfied by E

(
(z − w)2 f ′(z)f ′(w)

(f(z)−f(w))2

)
.

The equation

lim
p→0

2β̄(p)

p2
= lim

r→1−

1

4π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ,

is obtained for f being the interior whole-plane SLE2 map. To arrive at this result,
we have solved the equation (5.52) (therefore solved Eq (5.48)) for κ = 2. For a
general positive κ, it may be impossible to have an explicit formula of the solution
of (5.52) (or (5.48)) as in the case of κ = 2, however, an asymptotic behavior of the
solution as r → 1 is sufficient to prove or disprove the above relation. We believe
that the relation is true for all κ > 0 and to prove that should be an interesting
future work.
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Xuan Hieu HO

SUR LA MUTIFRACTALITÉ, LA DÉRIVÉE SCHWARZIENE ET LA
VARIANCE ASYMPTOTIQUE DE WHOLE-PLANE SLE

Résumé :

Soit f une instance du whole-plane SLEκ: on sait que pour certaines valeurs de κ, p les moments dérivés

E(|f ′(z)|p) peuvent être écrits sous une forme fermée, étude qui a permis de mettre au jour une nouvelle phase

du spectre des moyennes intégrales. Le but de cette thèse est une étude des moments généralisés
|f ′(z)|p

|f(z)|q : cette

étude permet de confirmer la structure algébrique riche du whole-plane SLE. On montre que les formes fermées

des moments mixtes E
( |f ′(z)|p

|f(z)|q

)
apparaissent sur une famille dénombrable de paraboles du plan (p, q), en

étendant les équations de Beliaev-Smirnov à ce cas. Nous introduisons également le spectre généralisé β(p, q;κ),
correspondant au comportement asymptotiques des moyennes intégrales mixtes. Le spectre généralisé moyen

du whole-plane SLE prend quatre formes possibles, séparés par cinq séparatrices dans R2. Nous proposons

également une approche semblable pour la dérivée Schwarziene S(f)(z) de l’application de SLE. Les calculs

sur les équations de Beliaev-Smirnov d’une certaine générale forme de moment mène à une formulation explicite

de E(S(f)(z)). Nous étudions finalement la variance asymptotique de McMullen et démontrons une relation

entre la croissance infinitésimale du spectre de la moyenne intégrale et la variance asymptotique pour SLE2.

Mots clés : Whole-plane SLE, moment logarithmique, equation de Beliaev-Smirnov, généralisé spectre de la

moyène intégrale, dérivée Schwarziene, variance asymptotique de McMullen.

ON MULTIFRACTALITY, SCHWARZIAN DERIVATIVE AND
ASYMPTOTIC VARIANCE OF WHOLE-PLANE SLE

Abstract :

Let f an instance of the whole-plane SLEκ conformal map from the unit disk D to the slit plane: We know that

for certain values of κ, p the derivative moments E(|f ′(z)|p) can be written in a closed form, study that has

updated a new phase of the integral means spectrum. The goal of this thesis is a study on generalized moments
|f ′(z)|p

|f(z)|q : This study permit confirm the rich algebraic structure of the whole-plane version of SLE. It will be

showed that closed forms of the mixed moments E
( |f ′(z)|p

|f(z)|q

)
can be obtained on a countable family of parabolas

in the moment plane (p, q), by extending the so-called Beliaev–Smirnov equation to this case. We also introduce

the generalized integral means spectrum, β(p, q;κ), corresponding to the singular behavior of the mixed

moments. The average generalized spectrum of whole-plane SLE takes four possible forms, separated by five

phase transition lines in R2. We also propose a similar approach for the Schwarzian derivative S(f)(z) of SLE
maps. Computations on the Beliaev–Smirnov equation of a certain general form of moment lead to an explicit

formula of E(S(f)(z)). We finally study the McMullen asymptotic variance and prove a relation between the

infinitesimal growth of the integral mean spectrum and the asymptotic variance in an expectation sense for SLE2.

Keywords : Whole-plane SLE, logarithmic moment, Beliaev-Smirnov equation, generalized integral means spec-

trum, Schwarzian derivative, McMullen’s asymptotic variance.
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