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Nothing in life is to be feared, it is only
to be understood. Now is the time to
understand more, so that we may fear
less.

Marie Curie
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Introduction

Conventional particle accelerators

The matter we know and that makes up all stars and galaxies only accounts for 5% of the
content of the universe. What about the other 95 %? This remaining 95 % is constituted of
27 % of dark matter and 68 % of dark energy that we know little about. Does the dark matter
contain particles that move in the similar three dimensional space that we are familiar with,
or does it also exist in higher dimensions? Can the dark matter be made up of vibrating
strings? The 27 km-circumference Large Hadron Collider (LHC) in CERN (Fig. 1) is designed
to help answer these questions.

Figure 1: A bird’s-eye view of CERN (Conseil européen pour la recherche nucléaire) that
comprises of LHC (Large Hadron Collider) and SPS (Super Proton Synchrotron), and ex-
periments such as LHCb (Large Hadron Collider beauty), ALICE (A Large Ion Collider
Experiment), ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid).

In this machine, particles are made to collide together at close to the speed of light,
this collision creates more particles that physicists study to gain in-depth knowledge on
how particles interact, and provides insights into the fundamental laws of nature. The
discovery of the Higgs boson on the 4" of July 2012 at LHC validated the Brout-Englert-
Higgs mechanism in the Standard model, which explains how fundamental particles interact,
governed by four fundamental forces. Particle accelerators are like a racetrack for particles,
to accelerate these particles, two “track” configurations can be considered: the circular track
and the linear track.

Circular racetracks like the LHC contain accelerating structures extending over certain
sections in the ring, gradually accelerating particles to high energy when these particles pass
through it. For instance, protons in the LHC make 11,000 laps every second for 20 minutes
before they reach their collision energy (7—8 TeV) [1]. These particles are guided by magnets
around the bends to keep them on course, but their energy is limited by the curves in the
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Introduction

accelerator. As a matter of fact, charged particles radiate energy when they are accelerated,
more commonly known as the synchrotron radiation. In the case of electrons, the energy
loss by synchrotron radiation is so high that they cannot be accelerated to reach the collision
energy in a circular racetrack configuration. The energy loss of a charged particle, &, due
to synchrotron radiation is proportional to S;fart / Rinachine Where Roachine is the radius of the
circular accelerator. To push the high-energy frontier, machines larger than the LHC need
to be built. A study on a Future Circular Collider (FCC) is underway. This worldwide
international project involves building an 80 — 100 km circumference tunnel to accelerate
protons to 100 TeV [2]. The cost review for this project is expected to be revealed in 2018
but it will obviously be more expensive than the LHC which has cost $8 billion to build,
$1 billion/year to operate.

Linear accelerators do not face the same problem as circular accelerators. The only limi-
tation to the particles’ energy is the length of the track where they pass through accelerating
structures to reach their desired energy. The longest linear accelerator (linac) is at SLAC
(Stanford Linear Accelerator Center) which extends to 2.6 km, capable of delivering electron
and positron beams with peak currents of approximately 20kA that are focused down to
below 30 x 30 um transverse spot size at 20 GeV using the rf (radiofrequency) cavities at
FACET (Facility for Advanced Accelerator Experimental Tests) [3]|. In theory, the acceler-
ating gradients in conventional rf linear accelerators are currently limited to ~ 100MV /m,
partly due to the breakdown that occurs on the walls of the structure [4]. To accelerate
particles to 10 TeV for instance, the linac length is required to be ~ 100 km, which is at least
as challenging as the 100 km circular racetrack.

The LHC has been instrumental in answering questions about the universe but in order to
look deeper and further back toward the start of the universe, higher energy particles need to
be created. If we rely on the same technology, particle accelerators will become prohibitively
large and expensive. But we still want to continue answering these fundamental questions,
therefore a change of technology is required. One option is to develop accelerating structure
techniques to rapidly and effectively accelerate particles in linacs over a short distance. Or
we can design and build stronger magnets that can bend ultra-high energy particles around
the curves in circular accelerators. Research is ongoing in both areas. Our group focuses on
the former, where we work on a novel accelerating structure that is plasma-based.

Other applications also benefit from accelerated particles. The betatron movement of
the electron beam generates radiation in the X-ray region, with numerous applications in
medicine, biology, material science etc.

Plasma-based accelerator: an alternative to the conven-
tional accelerator

As the fourth state of matter, plasmas consist of electrons, ions and neutral atoms, usually
at temperatures above 10* K. The sun and stars are plasmas, so are the earth’s ionosphere,
Van Allen belts, magnetosphere, etc. Indeed, plasmas make up much of the known matter
in the universe. Their density and temperature span a huge range. Plasmas are also char-
acterized by their dominating long-range electromagnetic interactions over their short range
interatomic or intermolecular forces among a large number of particles. This gives rise to a
collective behavior which depends not only on local perturbations but also on the state of
the plasma in remote regions. There are three main parameters that characterize plasmas:

e thermal velocity, vy,: plasmas are in general high temperature entities, some of their



properties are connected with thermal effects,

e plasma frequency, w,: a simple unmagnetized plasma oscillates at a certain frequency
when the charge distribution is locally perturbed from its equilibrium. This frequency
has the expression w, = \/(noe?/meey), where ny is the ambient electron number
density, e is the elementary charge, m. is the electron mass and ¢ is the vacuum
permittivity,

e Debye length, A\p : the distance a thermal particle travels during a plasma period.
Its expression is A\p = +/ekpT,./nge?, where kg is the Boltzmann constant, T, is the

electron temperature.

Plasma-based accelerators rely on the electrostatic fields associated to plasma waves
to accelerate electron beams. These plasma waves are driven by a force that perturbs
locally the density of the plasma electrons and creates charge separation from ions. This
force can be generated by several means, by the ponderomotive force of a single laser pulse
[5], the mechanism is then known as the Laser WakeField Acceleration (LWFA); by the
ponderomotive force due to the beating of two laser pulses, also known as the Plasma Beat
Wave Acceleration (PBWA) [6, 7, 8]; or by the ponderomotive force using a self-modulated
laser pulse, known as the Self-Modulated Laser WakeField Acceleration (SM-LWFA); or also
by an electron beam (PWFA) [9]. This research work will focus on the single laser-driven
plasma based accelerator (or LWFA).

The idea of using plasmas as a medium in an accelerator is of great interest because
of their ability to sustain extremely large acceleration gradients, Eo(V/m) = cmew,/e ~
964/no(cm=3), where c is the speed of light. This electric field is known as the cold non-
relativistic wave breaking field [10] and it will be introduced in Chapter 1. Considering
ng = 108 cem™3, Ey ~ 96 GV /m, which is nearly 1000 times higher than the accelerating
gradients in conventional rf linacs. This implies that we can build particle accelerators that
are cost-efficient and more compact.

Apart from the high accelerating gradients, the plasma wavelength or \,(um) ~ 3.3 x
1019/ /ng(em=2), e.g. A\, = 33 um for ng = 10'® cm ™3, the electron bunch length will be less
than half the plasma wavelength, which is two magnitudes shorter than those provided by
photoinjectors. This opens up a whole lot of other applications that require short electron
beams, e.g. in material science, the ultrashort duration of this electron bunch and radiation
beam will provide time resolved measurements down to the motion of electrons on atomic
scales. Coherent diffraction on single molecules will then become accessible, opening an
entire new field of research [11].

Significant progress has been made over the last two decades on LWFA. The acceleration
of electron beams in preformed plasma channels from capillary discharge waveguides up to
1 GeV has been demonstrated with 40 TW peak power laser pulses [12]. Subsequently,
experiments have demonstrated > 1 GeV electron beams in non-preformed plasmas with a
200 TW laser [13]. Using petawatt class lasers, electron beams were accelerated up to 2 GeV
in a 7 cm-long gas cell [14]. Beams with energy tails up to 3 GeV were observed using a dual
gas jet system of 1.4 cm [15]. The latest record in this race is the production of a 4.2 GeV
electron beam using 16 J of laser energy in a preformed plasma channel waveguide produced
by a 9 cm-long capillary discharge.

Although high beam energy is important for particle colliders, one must not neglect the
control of the beam quality. In this context, much effort has been channeled in produc-
ing quasi-monoenergetic electron beams since the publication of [16, 17, 18]. Our group is
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involved in the optimization of electron beams both experimentally and via plasma simula-
tions. One of the goals of the group is to determine a set of laser plasma parameters that
produce electron beam with narrow energy spread suitable for injection into a plasma accel-
erator, with high charge and low emittance. The specification of these properties depend on
applications, but most applications require an energy spread of < 10 %, a charge of > 10 pC
and a transverse emittance of ~ 0.1 mm mrad.

Multi-stage laser-plasma accelerators

Acceleration of an electron beam in a single laser plasma accelerator stage is limited to a
length determined by diffraction, depletion of the laser driver, or the dephasing of electrons
(details are given in Chapter 1). For a 1 m-long preformed plasma fixed at ng = 107 cm=3
providing laser guiding, an electron beam energy of 10 GeV can be delivered in theory.
This energy is still insufficient for the particle collider application which requires particle
energy of the order of TeV. Hence to reach this energy level, the proposed solution is a
multi-stage accelerator. A proposed strategy consists of putting 100 LWFA modules in
cascade. In this scheme, the electron beam is extracted from one module and injected into
the subsequent module for further acceleration. Recently, Steinke et al. have succeeded
in coupling two LWFA modules that are independently driven by two synchronized laser
pulses [19]. This represents a milestone in the development of laser-driven, plasma-based
accelerators for particle colliders, and for any other LWFA application that requires electron
energies beyond the limits of single stages.

Transport
line

Flrst BIOW_Out reglme "sesssssssssnnnnnnnnns s nnnnnnnnnnnnnnnnnn 6 ----- .--I-.-----------t ---------------------
i uasi-linear regime
stage in the gas cell Second

| in a dielectric capillary
aser stage laser

Figure 2: A schematic view of a two-stage laser plasma accelerator. The first stage is the
injector stage where the electron beam is generated in a nonlinear regime in the gas cell. The
electron beam is transported to the second stage, the accelerator stage via a transport line.
In the second stage, the electron beam will be further accelerated in a quasi-linear regime in
a dielectric capillary.

In Europe, there are several projects aiming at the demonstration of reliable multi-stage
accelerators. The CILEX (Centre Interdisciplinaire Lumiére Extréme) project which aims to
develop an interdisciplinary research center using the Apollon-10P laser source is currently
developed on the Plateau de Saclay by a consortium of French institutions. The Apollon-
10P laser is expected to deliver two beams of 1PW and 10 PW, > 15fs laser pulses, which
will be used to test a two-stage LWFA [20] among other applications. Fig. 2 shows the
configuration of a two-stage LWFA. The first stage laser creates a nonlinear plasma wave in
a gas cell to generate an electron beam. This electron beam is then reshaped and transported
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via a transport line to the second stage, where the second laser drives a quasi-linear plasma
wave to avoid further generation of electron beam, in a dielectric capillary so that the laser
pulse is guided. The second stage further accelerates the electron beam from the first stage
to a higher energy.

The European project EuPRAXIA [21] is a 4-year project, started on the 1°* November
2015 and aiming to deliver a conceptual design report for the worldwide first 5 GeV energy
plasma-based accelerator that can provide industrial beam quality and user areas. It acts as
the intermediate step between proof-of-principle experiments and ultra-compact accelerators
for science, industry, medicine or the energy frontier.

Our group is one of the partners in both of these projects. We are actively involved in
experimental and modeling work on the acceleration of electrons in the LWFA. The group
conducts experiments at the UHI100 laser facility situated at CEA Saclay, France and at
the Lund Laser Center (LLC), Sweden.

Particle-in-Cell (PIC) simulations, a tool for analysis and
prediction

Three categories of plasma models can be used to describe laser-plasma interactions in the
high-intensity (of the order of > 10" W/cm?), short pulse(< 1ps) context, namely static,
fluid or kinetic:

e Static model. The static approach treats the plasma as a passive medium created
or altered as the laser pulse propagates through it. Through the modification of the
electron density and the relativistic factor due to the laser pulse, the plasma has its
dielectric constant modified. This will in turn influence the laser pulse propagation.
This approach is well adapted to low density systems where the plasma period A\, =
27 /w, is long relative to the interaction time. However, a static model can only be
used for describing the laser propagation. The dynamics of the plasma particles is not
included, so that this model cannot be used to determine the plasma wave properties.

e Fluid model. The fluid, or hydrodynamic modeling, is adapted to treat specific cases
for which the velocity distribution function can be independently determined, with two
limiting approximations. In the first one, the cold fluid approximation, the velocity
distribution function is a delta function. That is all the particles of one species at one
position have the same velocity, in amplitude and direction. This approximation has
been used to describe the plasma wave in the quasi-linear regime of LWFA accelerator.
It breaks down in the strongly non-linear regime, where there are many crossing of
trajectories. Note also that in the case of an accelerator stage, the fluid model has
to be combined to a kinetic one in order to describe the dynamics of the accelerated
electrons. In this case one speaks of a hybrid model. The second type of approximation
introduced in a fluid model is to use a Maxwellian velocity distribution function. This
approximation is justified when particle-particle collisions play a dominant role. It is
related to the study of the large-scale dynamic behavior of the plasma, for example
under the influence of external electric and magnetic field, or heating by laser and/or
particle beams. Timescales of interest are longer because they are governed by the ion
motion, typically above picoseconds and up to several nanoseconds for laser-plasmas.

e Kinetic model. The kinetic model determines the particle distributions self-consistently.
It is typically used in simulations of laser propagation, highly nonlinear plasma wave
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generation where oscillation amplitudes are large, and some form of wave-particle in-
teraction is present, i.e. trapping, wavebreaking. Particle-in-cell (PIC) is the mostly
used numerical method to solve such model. It follows the evolution of the laser pulse
on the short timescale associated with the laser period and simulates motion of charged
particles, or plasma accordingly.
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Figure 3: Typical PIC simulation snapshot shows the normalized laser field, eE,/m.cwy
(in light blue), the normalized wakefield eE,/m.cmax(w,) (in red) and the energy, £/25 of
electrons (represented by a set of points) in a nonlinear regime. The color bar represents the
charge density. The simulation is performed using Warp.

The physics of interest in LWFA concerns the plasma wave driven by the laser pulse,
the transport of the laser pulse in the plasma and the dynamics of relativistic electrons that
are trapped and/or accelerated by the plasma wave. The interaction of the electron beam
with the wakefield often involves nonlinear effects which can only be taken into account by a
kinetic model. This is the reason why the community working on the design and optimization
of LWFA experiments has opted for this approach.

All simulations in this thesis were carried out using the PIC code Warp [22]. It is an
open-source code, co-developed by the team led by Dr. Jean-Luc Vay in Lawrence Berkeley
National Lab (LBNL). Warp is a three-dimensional time-dependent multiple-species PIC
framework, with the addition of an accelerator lattice description. In the recent years, novel
modules have been included in Warp to efficiently model LWFA experiments.

One example snapshot of a LWFA simulation using Warp illustrating a nonlinear plasma
wave and beam loading effects is illustrated in Fig. 3. It shows the normalized laser field,
ek, /mecwy (in light blue), the normalized wakefield eE,/memax(w,) (in red) and the en-
ergy, £ of electrons (represented by a set of points). The color bar represents the charge
density. From this figure, several important points have to be stressed. We observe that
the accelerating field, can be as large or even larger than its wave breaking limit, indicating
that the regime is highly nonlinear. Close to the z—axis position at which the density of
accelerated electrons is maximum, we observe a ‘small’ bump in the longitudinal field curve.



This bump is due to beam loading effects, a process by which the field produced by the
accelerated electrons significantly modifies the fields of the accelerating plasma wave. In
fact, the density of the accelerated electrons become larger than the plasma density. This
has a significant effect on the dispersion in energy. As will be shown in Chapter 5, when
injection is performed through the ionization of a a gaseous medium with impurities, the
relative contribution of the beam loading effect in the acceleration process can be clearly
identified. As a final remark, the bunch of accelerated electrons is very close to the laser
pulse. In some cases, corresponding to experimental situations, the relativistic electrons can
interact with the tail of the laser pulse during a significant part of the acceleration process.
The possible influence of this interaction should be carefully determined and will be discussed
in Chapter 5.

The above discussion with Fig. 3 gives us a first illustration on the importance of the
accuracy of the numerical scheme used in the numerical modeling. Due to the accumulation
during the interaction process, even an a-priori small amount of error or numerical noise can
have significant effect on the final properties of the electron bunch. That is why a lot of effort
has been devoted in recent years in order to derive new numerical schemes, yielding better
accuracy and lower noise. Most of these optimal schemes are implemented in Warp and have
been used for our calculation. For a given numerical scheme, and in a cylindrical geometry,
there are mainly three parameters, which value will control the numerical accuracy: widths
of the numerical cell Az, Ar in longitudinal and transverse directions and, to a lesser extend,
the number of macro-particles per cell. Due to the fact that the time step is fixed by Az (see
Chapter 2) the computational time for a full calculation scales as 1/ (Az? x Ar). A typical
calculation on the optical injector performed in this thesis has required ~ 20000 CPU-Hours.
Most of our calculations have been performed using Az = \g/30 and Ar = \g/4, where \g
is the laser wavelength. From the scaling law it becomes obvious that parametric studies
are not feasible with smaller Az and Ar. Although we can get some guidelines from the
accumulated expertise, the strong nonlinearity of our problem prevents us from getting an
a-priori quantitative estimate of the accuracy of one calculation. This accuracy can only be
derived by studying the convergence of the results with respect to numerical parameters.
This convergence study can only be performed on an example of a given class of configuration,
the results of which being then extrapolated to the whole class. An example of such study
is given in Chapter 4. Globally we can assert that the aforementioned resolution used in
our calculations, is sufficient to evaluate with a good accuracy first order properties of an
accelerated electron beam such as the average energy and the energy spread but in the
evaluation of the second-order beam properties, e.g the beam emittance, some uncertainties
persist. A few calculations, with higher resolution, have been performed to determine second-
order beam properties with a good accuracy for specific configurations.

The numerical grid size has already imposed an important number of CPU-hours required
for a PIC simulation. In order to limit this amount, the simulation box size has to be reduced
to its minimum. For that, open boundaries are crucial to ensure waves and disturbances
originating with the model domain to leave the domain without affecting the interior solution
in a way that is not physically realistic. For instance, in simulating a moderate power laser
pulse propagating in a plasma longer than the Rayleigh length, the laser will start to diffract,
some part of the wave will hit the transverse boundary. If no special treatment is done at
this boundary, the wave will get reflected and impact the components that are still in the
simulation box. One efficient implementation of open boundaries is Bérenger’s Perfectly
Matched Layer (PML) [23]. Study of its efficiency is done in the standard Yee scheme
but not systematically at higher order. In Chapter 3, we demonstrate that the PML is
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even more efficient in high-order finite-difference time-domain (FDTD) and pseudo-spectral
time-domain (PSTD) electromagnetic (EM) solvers than in the standard Yee-solver.

From the previous paragraphs, we learn that the shortest scale in LWFA simulations is
the laser wavelength, however the plasma response in Fig. 3 takes place at a scale length
of 20 pum. Running a simulation of such resolution implies an over resolution of the plasma
wave. The mixing of these very disparate length scales introduces a huge challenge to PIC
simulations. In fact, a full three-dimensional (3D) PIC simulation for a 10 GeV stage, which
sees the laser of \g = 0.8 um propagating through a 30 cm plasma at 10" cm ™3, requiring at
least 1 Million time-steps is still out of reach.

Several reduced models that approximate some physics elements were proposed to ef-
ficiently describe plasma-based acceleration in an accessible computational time. These
include the moving window method [24], quasistatic methods [25, 26, 27|, the ponderomo-
tive guiding center (PGC) method [28, 29| for modeling laser propagation. In some cases,
these methods are combined, i.e. quasistatic field equations are combined with the PGC
approximation in QuickPIC [26, 27| in LWFA modeling. Each of these methods allows for
a significant speedup compared to full 3D PIC simulations because of approximations in
the physical description of the system. They may be lacking in some important elements
in physics, e.g. the quasistatic methods cannot accurately model self-injection, the PGC
approximation cannot model full pump depletion distances for extremely high laser intensi-
ties, therefore the use of these models is very problem dependent. Another reduced method
that takes into account the symmetry of the laser-plasma interaction in underdense plasmas
in cylindrical coordinates (r,z) has been introduced in [30]. It is well adapted to LWFA
simulations as long as the laser pulse is nearly axis-symmetrical. This method allows a 3D
description of the laser plasma interaction at a computational cost that is equivalent to the
one of a 2D PIC simulation. Since this method offers such advantages, we used it to perform
most simulations for the analysis and optimization work presented in Chapter 5.

Another method to reduce the computational time of a PIC simulation is by running it
in an optimal Lorentz-boosted frame (LBF) [31]. This approach exploits the properties of
space and time dilation and contraction associated with the Lorentz transformation, without
alteration to the fundamental equations of particle motion or electrodynamics. Due to the
fact that the ratio of longest to shortest space and time scales of a system of two or more
components crossing at relativistic velocities is not invariant under such a transformation,
the number of computer operations (e.g. time-steps) becomes proportional to the ratio of the
longest to shortest timescale of interest. In LWFA simulations, choosing a boosted frame
moving at the group velocity of the laser will have the laser wavelength dilated, and the
plasma length contracted, resulting in a reduction of time-steps because the crossing time
between the laser and the plasma has become shorter. Being able to speed up simulations is
not the end of the story, the simulated results have to be accurate. With this motivation in
mind, the study of convergence of results obtained using the Lorentz-boosted frame technique
is one of the research objectives of this thesis (see Chapter 4).

Objectives and Outline

This dissertation has two main objectives. Firstly, to carry out studies aiming to provide
more accurate, more reliable and faster PIC simulations with PML and the Lorentz-boosted
frame technique. Secondly, to analyze experimental results on the electron injector ELISA
(ELectron Injector for compact Stage high energy Accelerator) [32] obtained at the Lund
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Laser Center and at the UHI100 facility, and to prepare an optimized design for the laser-
plasma injector in the frame of the CILEX and EuPRAXIA projects via simulations using
realistic laser-plasma parameters. This thesis is organized as follows:

Chapter 1 details the basic physics of laser-plasma interaction relevant to wakefield ac-
celeration and summarizes results which underlie current work.

Chapter 2 describes the state-of-the-art numerical tools and techniques used for LWFA
simulations. It elaborates the PIC model and its features which construct the basis of the
code framework Warp used in our studies.

Chapter 3 describes the Perfectly Matched Layer (PML) that is essential to efficiently
treat the boundary of the simulation box. An efficiency analysis, using the coefficient of
reflection as the figure of merit, on the PML in a high-order FDTD and a PSTD EM solvers
is conducted. A theoretical model to quantify the coefficient of reflection is also given.

Chapter 4 studies and discusses the accuracy of simulation results using the Lorentz-
boosted frame technique in the high laser intensity case where self-injection of electrons is
susceptible to take place.

Chapter 5 first demonstrates the capability of Warp in producing reliable results us-
ing the azimuthal Fourier decomposition algorithm in cylindrical coordinates (r, z). In the
second part, we report on PIC simulations performed with Warp to optimize the electron
injector in order to obtain an electron beam that corresponds to the specifications defined in
the CILEX project.

This three-and-a-half-year research work was performed in close collaboration between
Laboratoire de la Physique des Gaz et Plasmas (LPGP) and Lawrence Berkeley National Lab
(LBL). At LPGP, I worked closely with experimentalists, Brigitte Cros, Frédéric Desforges
and Thomas Audet to analyze and understand experimental results obtained at the UHI100
facility and at the Lund Laser Center. I have had very fruitful and insightful discussions
on the simulation results and also on the optimization work on the electron injector with
Gilles Maynard. For a total period of one year, I was in LBL working with Jean-Luc Vay
and Rémi Lehe on the efficiency of the PML and the accuracy of the Lorentz-boosted frame
technique applied to LWFA simulations in the nonlinear regime.
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Chapter 1
Physics of LWFA

Ever since Tajima and Dawson [5] published their article on laser plasma acceleration in
1979, suggesting the use of an intense electromagnetic pulse to create a wake of plasma
oscillations to accelerate trapped electrons, there has been a lot of research work in this area.
Theories have been established to describe the generation of the wakefield, the nonlinear
effects due to the interaction between the laser pulse and the plasma, electron trapping and
injection mechanisms and the acceleration limits of this concept. This chapter serves as an
introduction to the state-of-the-art of LWFA and it covers all the physics concepts required
to understand the body of work of the thesis. Since the quality of the accelerated electron
beam appears recurrently, figures of merit used for its quantification such as the energy
spread and the emittance are also included.

Contents

1.1 Qualitative picture . . . . . . . . . .. ... .. 00 12
1.2 Ponderomotive force . . ... ... ... .00 00 14
1.3 Wakefield generation . .. ... ... ... ... ... ..., 16
1.3.1 Nonlinear plasma waves and wave breaking limit in a cold plasma 16
1.3.2 Plasma waves driven by a laser pulse . . . . . . . .. ... .. ... 20
1.3.3 Regimes of plasma wave excitation . . . . . . ... ... ... ... 24
1.4 Electron Trapping and Injection . .. ... ............ 27
1.4.1  One-dimensional Hamiltonian model . . . . . . .. . .. ... ... 28
1.4.2 Injection mechanisms . . . . . . .. .. .. ... ..., 29
1.5 Acceleration limits . . . . . ... ... 0 o000 39
1.5.1 Laser diffraction . . . . . . . .. .. ... 39
1.5.2 Laser pump depletion . . . . . ... ... ... ... ... ... 41
1.5.3 Electron dephasing . . . . . . .. ... o L 42

1.5.4 Influence of laser diffraction, pump depletion and electron dephasing
on an injector . . . . ... 43
1.5.5 Beamloading . . . . . . . . . ... ... 44
1.6 Properties of an accelerated electron bunch. . .. ... ... .. 44
1.6.1 Emergy spread. . . . . . . . . .. 45
1.6.2 Emittance . . . . . . ... 46




Chapter 1. Physics of LWFA

1.1 Qualitative picture

Well before lasers were invented, scientists have recognized that under certain restrictive
conditions no net energy gain is possible for an electron when interacting with an elec-

tromagnetic field. These restrictive conditions constitute the Lawson-Woodward theorem
[33, 34, 35|, it assumes:

e the laser field is in vacuum, with no interfering walls or boundaries,
e the electron is highly relativistic (5 = v/c — 1) along the acceleration path,
e no static electric or magnetic fields are present,

e the region of interaction is infinite,

The introduction of a plasma in LWFA violates nearly all the Lawson-Woodward as-
sumptions, thus electrons are susceptible to gain net energy by this means of acceleration.

LWFA relies on an underdense plasma to transfer the energy from a laser beam to a
trailing bunch of electrons, either injected internally or externally. Its underlying physics is
that the ponderomotive force of a laser pulse moving through the plasma pushes electrons
ahead of the pulse and to the sides [36, 37, 38|, creating a periodic trailing structure of
rarefaction and concentration of electrons. This electronic density perturbation results in
a Langmuir or plasma wave which is characterized by strong electric and magnetic fields,
known as the wakefields. For example, a plasma density of ng = 10'® cm™ yields an electric

field of £, ~ 96 GV /m.
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Figure 1.1: The trajectory of a single electron upon interacting with the laser field, Ep,
polarized in the y—direction in a plasma. FE is normalized to its maximum value and
represented in the plane (k,&/2m,y). On the short time scale, the electron quivers while
traversing the laser pulse; on the long time scale, the electron is removed from the axis due
to the radiation or ponderomotive force.
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1.1. Qualitative picture

In Fig. 1.1 is plotted the laser field, F; (normalized to its maximum value) propagating
in the z—direction, represented in the plane (k,£/27,y), with £ = 2z — v,t, where v, is the
group velocity of the laser pulse, indicating that we are in the laser frame and k, is the
plasma wavenumber. An electron that is on the axis of a focused laser spot experiences a
push away from the axis by the laser electric field and when the field reverses, it experiences
a smaller push inward because the intensity is higher near the center. Over several cycles of
the laser field, the electron migrates further outward. Interaction of this oscillation with the
laser magnetic field also results in an axial force which pushes electrons ahead of the pulse
(see Sec. 1.2 for quantitative derivation).

Electron motion can be separated into two time scales. On a short time scale, the
electrons experience the oscillating electric and magnetic field of the laser pulse and acquire
a momentum directly from it, known as the quiver momentum. On a long time scale,
the average force associated with the laser pulse envelope, namely the ponderomotive force
displaces the electrons while ions remain immobile.

The interaction between an intense laser pulse and a plasma is illustrated in Fig. 1.2.
The figure shows the electronic density map represented in the coordinates (k,&/27, x), with
the laser that propagates from left to right. The movement of electrons upon interacting
with the laser pulse creates a low electronic density region in the plasma at the rear of the
laser pulse. ITons, being much heavier than electrons, are not significantly displaced in the
time scale corresponding to the electron motion. The electric field induced by the electronic
density perturbation causes the electron density to oscillate behind the laser pulse, creating
a plasma wave that co-moves with the laser pulse, similar to the wake behind a speedboat.
The laser pulse moves at a group velocity' vy, ~ ¢ with v, = ¢(1 — w2/2w3), wy the laser
frequency and c the speed of light. The plasma wave driven by the laser pulse will also move
at vy, =~ ¢, with v, the phase velocity of the plasma wave, because the laser pulse travels
near speed of light through the plasma [39, 5.

Let’s consider a one-dimensional (1D) perturbation following the z-axis, such that all
plasma electrons at equilibrium situated at z = z are displaced by a distance £(zo,t) at
instant ¢, the ions remain at rest and the electron thermal motion is neglected relative to
motion induced by the perturbation. This displacement causes a rarefaction of electrons on
the right hand side of z = 25 + £(20,t) at instant ¢, resulting in a charge separation. The
charge separation induces an electric field E, at 25+ that can be calculated using the Gauss
theorem, giving

BS— nOeS§(zo,t)’ (1.1)

€0
where S is the area parallel to the transverse plane (z,y), ng is the ambient electron number
density or plasma density, e is the elementary charge and ¢; is the permittivity constant in
vacuum. In the non-relativistic case, Newton’s law states that m.0%¢/0t> = —ekE,, where
me is the electron mass. Upon substituting E, of Eq. 1.1 into Newton’s equation, we obtain

a harmonic oscillator equation describing the Lagrangian displacement &(zo, t):

0% nge?

ﬁ €EgMMe

£=0. (1.2)

with a characteristic frequency of w, = \/nge?/eym., more commonly known as Langmuir
or electron plasma frequency.

IThe laser group velocity is obtained by applying the definition dwg/dkg on the dispersion relation wg =
k262 + 02,
P
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Figure 1.2: The interaction between an intense laser pulse (traveling from left to right) and
a plasma creates an electronic density perturbation. The electronic density is represented in
the plane (z, k,¢/2m), a low electron density region in the plasma is created at the rear of
the laser pulse (in bright tone), followed by a high electron density region (in darker tone),
forming a periodic structure.

The plasma wave depends weakly on the shape of the pulse. The amplitude of the plasma
wave is maximized for laser pulse length ¢, ~ A,, where 77 is the laser pulse duration
[40, 41, 5]. We refer ¢, ~ A, as the resonant condition.

Fig. 1.3 shows the longitudinal and the radial electric fields F, and FE, of the plasma wave
represented in the plane (k,§/2m, ), with £ = z — ct, in the frame following the laser pulse.
This figure is useful to describe the force exerted on relativistic electrons. The transverse
component of the force is F'| = —e(E, —v,By)e, = —eE,e,, this force is focusing in the first
half-wavelength of the wakefield (0 < k,& < 7) and defocusing in the second half-wavelength
(m < k€ < 2m). By Panofsky-Wenzel theorem, the longitudinal component is expressed by
F, = —eFE,, so it is decelerating in the first quarter-wavelength (0 < k,§ < m/2) and ac-
celerating in the second quarter-wavelength (7/2 < k,& < m). Hence relativistic electrons
placed in the second quarter-wavelength (indicated by the delimited zone) are both accel-
erated longitudinally and focused transversely. This allows confinement and acceleration of
the electrons over long distances.

1.2 Ponderomotive force

As noted qualitatively in Sec. 1.1, the ponderomotive force results from the laser energy
gradient. The laser field can be defined by the following wave vector:

Al@.t) = aof(t = —)gl@)cose. (1.3)

where ¢ = wot — koz is the phase of the wave, with wy the laser frequency and kq the laser
wavenumber; g(x_ ) is a function with radial dependence; aq is the maximum amplitude of
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1.2.  Ponderomotive force
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Figure 1.3: Longitudinal electric field F, and radial electric field E, colormaps represented in
the plane (k,&/2m, x). The laser pulse propagates from left to right (not shown here), thus the
first period of the generated wakefield is situated on the right of each plot. The dotted lines
delimit the second quarter-wavelength which is both the focusing and accelerating phase.

the normalized vector potential. In terms of the peak intensity [y, it is given by

ap = 0.85 x 1072 \g[pum] I7 [W cm 2], (1.4)

assuming linear polarization [4], where \q is the laser wavelength in vacuum.

Since the laser field is transverse, the vector potential A is perpendicular to the direction
of propagation z. f(t) is a function considered to be slowly varying relative to the laser
cycle, such that df /dt < wof.

The starting point of this demonstration is the electron fluid momentum equation in the
cold fluid limit, governed by the Lorentz equation

@:—e(E—f—'va), (1.5)
dt
where E are the electric field, B the magnetic field, p = ym.v, with v the velocity and
2 = (14 (p/mec)?), with p the momentum.

We use relations E = —0A/0t, B = V x A from vectorial analysis. Introducing the
normalization @ = eA/m.c. Eq. 1.5 becomes

op 1
at  ym.

0
(p-V)p:meca—j—sprxa, (1.6)

Electrons interact with the radiation electric field in two separate ways. First, they
quiver in response to the high frequency laser field. Second, they respond to the low frequency
ponderomotive potential of the laser field, creating a nonlinear wake following the laser pulse.
In this regard, we can separate the time scales of the electron motion into p = p¥ + p*, with
p’ the fast component, which scales as 1/wy and is considered as first order, and p® the
slow component which scales as 1/w, and is considered as second order. Note that w, < wy.
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Chapter 1. Physics of LWFA

To the lowest order, the fast (transverse) component of the electron momentum follows
the vector potential : pf = m.ca, which is the quiver momentum, as integrated from
Op’ /ot = —eE. On the other hand, the slow or the second order component reads

2 2

op | mec a'V)a:—m;C axV xa. (1.7)

ot v (
Using the identity a x V x @ = Vl]a|*/2 — (a- V) a, we obtain

s m C2
F,= 5 = -5Vlal, (18)
where Fj, is the ponderomotive force. This negative expression implies that the pondero-
motive force tends to push electrons away from regions of locally higher intensity. As the
electrons are being expelled by the center of the focused laser beam, they pick up a velocity
equivalent to the quiver velocity in the process, v/ = pf /ym,.
There are more rigorous derivations of the ponderomotive force with more sophisticated
analyses in the literature, such as using covariant [42] or Lagrangian [43| formulations and
they lead to the same expression.

1.3 Wakefield generation

From the previous section, we have seen that the ponderomotive force is derived from the
envelop of the laser pulse, which is slowly varying in time. The nonlinear ponderomotive
force is responsible for the generation of wakefield in plasmas. Over the years, several theories
on the modeling of the wakefield have been established and these models are valid in certain
regimes. Depending on the strength of the nonlinear ponderomotive force characterized by
the normalized vector potential a?, two regimes are identified [4]: the quasi-linear regime
(a* < 1) and the nonlinear regime (a* > 1).

The quasi-linear regime can be described analytically in three dimensions using plasma
fluid theory [44, 41, 40|, which is valid provided that the perturbed density d,, = (n. —ng) <
ng, where n, is the electronic density. Within the nonlinear regime, for a broad pulse
(kyrr, > 1), where ry, is the laser spot radius, the plasma fluid model given in 44, 41, 40| can
be generalized and adapted to model the wakefield analytically in the 1D limit. However,
for a radially bounded pulse in three dimensions (k,r; < 1), the wakefield must typically be
modeled numerically, e.g. using particle-in-cell (PIC) code. This high intensity 3D regime
has been referred to as the cavitation regime because it generates cavities where electrons
are almost completely or completely evacuated. In the case where electrons are completely
evacuated, it is referred to as the blowout or bubble regime. In addition to the wakefield
generation, a fraction of plasma electrons can be self-trapped in the cavity and can be
accelerated to high energies [17, 16, 18|.

In this section, we will first establish the expressions that govern the propagation of
waves in a cold plasma. Then, we will describe the generalized plasma fluid theory that is
valid to model the quasi-linear regime and also the nonlinear regime in the 1D limit.

1.3.1 Nonlinear plasma waves and wave breaking limit in a cold
plasma

The theory of wave motion of an electron plasma was pioneered by Akhiezer and Polovin
[45] in 1956. They have investigated the oscillatory behavior of the plasma quite generally,
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1.3. Wakefield generation

for arbitrary velocities. This section provides expressions of the accelerating field based on
their work.

The starting equations are the Lorentz equation of motion for the electrons in a cold,
unmagnetized plasma, plus the Maxwell’s equations. The ions are treated as a homogeneous
neutralizing background: Zn; = ng, with Z the atomic number and n; the ion density. The
plasma has a density that is lower than the critical density, defined as n. = eym.w?/e* and
written in an engineering formula: n.[cm™3] = 1.1 x 10*! /X\o[zm]?. In an underdense plasma
(ng < n.), the thermal motion is often neglected because the temperature remains small
(few eV) compared to the typical oscillation energy (multi-keV) which the electrons acquire
from the oscillation in the laser field.

Op

a—l—(v-V)p:—e(E—l—va), (1.9)
V-E = M7 (1.10)
€o
0B
E=—— 1.11
1 0F
V x B= —UpENV + C_QE’ (112)
V-B=0, (1.13)
where we have directly inserted the expressions p = e(ng — n.) and J = —en,v.

The objective is to solve the wave equation, giving solutions of the form f (wt —k-x) or
f(7), where 7 = t —k-x /v4, and v, is the phase velocity of the plasma. Temporal and spatial
derivatives can then be written as 9/01 = 8/0t, V- = —kd/0vyr, Vx = —kd/0vsT X, where
k=k /k is the unit vector in the direction of propagation. With this new set of coordinates,
the set of equations Eqs. 1.9-1.13 write

d k-
—p<1— v>:—e(E—|—v><B), (1.14)
dr Vg
- dE  evy(ng — ne)
k=27 ¢ 1.15
dr €0 ’ (1.15)
B:i/%xE+BO, (1.16)
Vg
~ dB vy dE
—k X E = —HpEUyNV + C_2%’ (117>
. dB
k-— =0. 1.1
dr 0 (1.18)

Note that the partial derivatives are now replaced by total derivatives in the variable
7. The term By represents an external magnetic field, which is not considered in our case,
therefore By = 0. From Eq. 1.16 and Eq. 1.18, it is shown that k-B=E-B=0 indicating
that the B—field is perpendicular to the wave vector and E—field. For simplicity, we
specify the wave vector k to be in the z-direction. Thus, we have k=z /z, k-V =V, and
kxV = (—V,, Vi, 0) where V' represents any vector.

Taking the dot product of Eq. 1.17 with the direction vector k, we may eliminate F
using Eq. 1.15. Defining 3 = v/c¢ we obtain an equation for the density:

Bpno

Bp_ﬁz7

(1.19)

Ne =
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Chapter 1. Physics of LWFA

where (3, = v,/c. From this expression, we deduce the salient feature of a nonlinear plasma
wave: in regions where the fluid velocity approaches the phase velocity, the electron density
n. becomes very large.

We obtain the transverse B—field by taking the cross-product of the direction vector
with Eq. 1.14, then using Eq. 1.11, therefore we arrive at an explicit equation for B, namely:

B=-——kx? (1.20)

In a similar fashion, taking the cross product of the direction vector with Eq. 1.17 and
making use of Eq. 1.16, we obtain an expression for dB/dr which reads

dB HoeheVs ¢
dr — p2—1

X v, (1.21)

B can now be eliminated by subtracting Eq. 1.21 from Eq. 1.20, leaving a transverse
wave equation

d*p fo€ ne%k

k x
d7'2+ 5;—1

x v =0. (1.22)

Taking the transverse x and y components of Eq. 1.22 and making use of Eq. 1.19,

together with the equations of plasma frequency, wg = nge?/meco, we obtain the coupled
transverse wave equations:

d*p, N weBy BpBe
dTQ 6;% —1 Bp - Bz

d2py + w127/812 Bpﬂy
dTQ 6}% —1 Bp - 5z

=0, (1.23)

= 0. (1.24)

Here p is normalized to m.c.

The longitudinal component of the fluid motion can be derived by differentiating k-(1.14),
then B can be eliminated using Eq. 1.20. Similarly n. can be eliminated using Eq. 1.19, this
gives

2 L. . “ ~
a k:_'v_l i dp| _ cvono K v _Ld {v dp (k:v) <k@>} - (1.25)
dr Vg dr € vy—k-v Uy dr dr dr

In order to make this equation more tractable, we rewrite this equation considering z as
the longitudinal component, thus giving

dpy} _ bl (1.26)

By — B

Eqgs. 1.23, 1.24 and 1.26 are in agreement with the equation in [45]. They represent a
closed set of equations for nonlinear plasma of arbitrary amplitude and fixed phase velocity,
vg. Once p is solved, E and B (normalized to m.wyc/e and m.w,/e respectively) can be
obtained.

d
p {(ﬁ /3p) +Bx +ﬁy
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1.3. Wakefield generation

o Transverse B-fields. We use Eq. 1.20 for the transverse B-fields, thus giving

1
B, — Ly (1.27)
Bp dw,T
1 dp,
B, = —— . 1.28
Y Bp dw,T ( )

e Transverse E-fields. With Faraday’s law, we derive the transverse E-fields, they

write
dps
BBy dw,T ( )
dp
E,=—-3,B, = —~. 1.30
Y B dw,T ( )

e Longitudinal B-field. With Gauss law, the longitudinal B-field, B, is obtained
straightforwardly
B. = 0. (1.31)

e Longitudinal E-field. To derive the longitudinal E-field, E., we take 12:-(1.14), using
the energy equation dvy/dt = —v-E to eliminate E, and E, from the resulting equation

for dp, /dr

1 d oy 1
B= g <5ppz — (1+p?) ) . (1.32)

A rather simple equation for the potential can be found by setting E, = 3, 'd¢/dw,T in
Eq. 1.32. We can proceed by integration, assuming that ¢ =p, =0 and y=1at 7 = —o0
(the laser pulse has not encountered the plasma), thus ¢ is expressed as

¢:Py—ﬁppz_ 1. (133)

The full set of fluid equations can in general not be solved analytically. Various limiting
cases can be found in the original work of [45]. A thorough account of the types of solutions
can be found in the review of Decoster (1978) [46]. Having the novel particle acceleration
concepts in mind, Noble [47] has analyzed these cold plasma equations. In his work, the
analysis that is of particular relevance to short pulse propagation is the study on pure
longitudinal plasma oscillations. By setting p, = p, = 0, Eq. 1.26 simplifies to

d dp.] w58
— (63 _ Bp) I G A0
dr dr Bp — B
Using the relation p, = v3, = 5./+/1 — B2, the LHS of the above equation can be written

as

(1.34)

d? we B3 8.
_ 1 — —_ppe 1.
d7'2 [7( 6pﬁz)] 6;0 _ Bz ( 35)
Eq. 1.35 can be integrated once to give
1[d E
5 |7 A =BBIl| = Bpwy (v =), (1.36)

19



Chapter 1. Physics of LWFA

where 7, = (1—32)""? and B, = (v./€)mae: the maximum oscillation velocity of the wave.
The waveform can thus be determined from the solution of :

by (1= B8] = %360y (i — ) (1.37)

Once (3, is found, the density and F, can be determined using Eq. 1.19 and Eq. 1.32
respectively, leading to

. 6pn0
ne(r) = 3 —B.(7) (1.38)
E.(r) = £V2 (Ym — )2 (1.39)

In finding the maximum electric field, Eq. 1.39 tells us that the fluid velocity ~,, cannot
exceed the phase velocity v4(7); otherwise, according to Dawson’s one dimensional plasma
model [48], the electron charge sheets may cross each other, and there will be fine-scale
mixing of the various parts of the oscillation, leading to its destruction. In other words, the
wave breaks. We can therefore define the relativistic wave breaking limit by taking 3, = [,
or equivalently v,, = 7. An extremum of the electric field occurs for v = 1, corresponding
to the point in the oscillation where the electrons are momentarily stationary, therefore

Eq. 1.39 becomes
Einas = ==23/2 (3, = 1)'/2. (1.40)

e

The non relativistic phase velocities can be obtained straightforwardly considering -, —
1~ f37/2, thus

Emax - EO = Ma (141)
(&

which is also known as the ‘cold wave-breaking limit’, a term coined by Dawson and Oberman
[49]. In their derivation, they used a more physically motivated Lagrangian sheet model. In
this picture, wavebreaking can be thought of as the crossing of neighboring charge sheets,
accompanied by a density singularity.

1.3.2 Plasma waves driven by a laser pulse

In the previous section, we have only described the behavior of nonlinear waves in a cold
plasma. In this section, we include a laser pulse as the driver of plasma waves. The following
theory is valid for both the linear regime and the nonlinear regime in the 1D limit.

The laser propagation is described by the transverse wave equations as given by Eqs. 1.23-1.24,
which are coupled with the longitudinal wave equation Eq. 1.26 through nonlinear terms.

Relativistic effects become important for electron quiver momenta p,/m.c ~ 1. For
intensities beyond 10'® W/cm? or p,/mec > 1, a fully nonlinear model, valid for arbitrary
plasma densities is needed. Several studies focused on this aspect, among the pioneers,
Sprangle et al. [50] formulated a fully nonlinear ODE for the wake potential in the limit
vy = ¢. Similar 1D formulations are presented in [51, 52, 53]. The generalization to arbitrary
transformation velocity, i.e. v, or vy instead of ¢, was the focus of the work presented in
[54, 55, 56, 57]. The main properties of the strong relativistic regime will be outlined in the
following. The solution of equations describing this regime is generally found with the help
of numerical simulation.
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1.3. Wakefield generation

The starting equations are the Lorentz equation Eq. 1.9 and the Maxwell’s equations
Eqgs. 1.10-1.13.

To get a better understanding of the physical effects, the 1D case is described here. The
geometry is chosen so that the laser wave propagates along the z-axis: Ej = (0, E,,0),
B, = (B,;,0,0). We can solve for the transverse momentum p, by expressing these in terms
of the vector potential A,.

It is often convenient to introduce the scalar and vector potentials in solving Maxwell
equations, expressing the E— and B—fields using the relationships E = —0A /0t — V - ¢
and B =V x A, and adapting them to our geometry, gives the following equations

0A
E,=-—r 1.42
Y at ) ( )
0A,
= ——. 1.43
% (1.43)
Substituting the above equations Eqgs. 1.42-1.43 in Eq. 1.9 gives
dpy dA,
—2 =e—=. 1.44
it~ at (1.44)
If there is no initial drift in the y-direction, then p, = eA,.
Likewise the longitudinal component of Eq. 1.9 gives us:
dp. 0¢p 0A,
=—e|—— —= 1.4
dt ¢ ( 0z o 0z (1.45)

Using the identity of Eq. 1.44 and normalizing p, to mec, ¢ to m.c?/e and A, to m.c/e,
we obtain
d’)/ﬂz o a¢ & 8@2

where 3, = v, /c.
The relativistic factor v = (1 — 52)_1/ 2 can be separated into longitudinal and transverse
components, thus:

1+ a?
TEVN TS zh (1.47)

As in most problems involving fluids, we can write down a continuity equation for the
mass or in this case, the charge density

one
873‘ + V- (n.w) =0,
rendering it to 1D, the equation writes
one 0
T \lePz) = 0. 1.48
oo (nef) (1.45)

In the same manner, we introduce the potentials into Ampere’s law, Eq. 1.12 and then
make use of the Coulomb gauge V- A = 0 to obtain an equation for the electromagnetic
modes. After some algebra, we obtain

1 9’°A 10
g 12 — VZA = — €N,V — gav . gb (149)
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Chapter 1. Physics of LWFA

In general, the scalar potential V - 9¢/dc*t is negligible with respect to the transverse
current, ppenev. In 1D, it vanishes exactly. Therefore Eq 1.49 written in 1D is

1 9%4,
2 Ot?
The choice of the Coulomb gauge implies that A, = 0, which we implicitly assume while

deriving Eq. 1.46. Normalizing as before, with v, = eA,/m.y = ac/y and n = n./ngy, Eq.1.49
can be re-written as:

V2A, = —poen.v,. (1.50)

0%a

2w2, _ _ 2nd
w —c¢*V<a = —(JJPT. (151)
Eqgs. 1.46-1.51 together with the Poisson’s equation written in normalized units
0%¢
s k2 (n—1), (1.52)

constitute a closed set for the coupled electromagnetic and plasma waves.

To further our analysis, we use the quasistatic (QSA) [50] approximation with the follow-
ing transformations: 7 = t; £ = z —v,t. Our partial derivatives then become : 9/0z = 9/¢,
d/0t = 0/0T — v,0/0¢.

The QSA assumes that the characteristic time for the laser pulse to evolve is sufficiently
short (0/017 = 0) compared with the electron transit time through the laser pulse. The
laser wavelength (frequency) is much smaller (greater) than all other characteristic lengths
(times) in the system, i.e. w, < wp and w(z) > ¢/wy where w(z) is the laser spot radius with
respect to the position z. The laser spot radius evolves according to w(z) = wo(1+2%/Z%)"/2,
where wy is the minimum spot radius in the focal plane located at z = 0, also known as the
laser waist and Zr = kqw?/2 is the Rayleigh length. The evolution timescale 7 of the pulse
envelope is typically the Rayleigh diffraction time, tg:

. QZR _ k’owg

th = > 7, (1.53)

c
where 7, is the laser pulse duration. This inequality allows us to neglect 0/07 relative to
0/0¢ ~ iky, given that the vector potential has the form a = a(&,r,7)exp (iko) in the
co-moving frame. The quasistatic approximation is only valid for plasma electrons with
sufficiently low energy. It fails for electrons which have been accelerated to high energy and
traveling with the laser pulse.

Applying the new transformation coordinates, Eq. 1.46 becomes

d 0 0 0
L= (202 v,

o0& o0&
0p ¢ Oa®
=c— - ——. 1.54
“o¢ T 2y B¢ (1.54)
Using the identity in Eq. 1.47 to substitute da?/9¢ and letting 3, = v,/c, Eq. 1.54 writes
10 0
- =—lo—7(1— . 1.
Likewise, the continuity equation in these new coordinates becomes
10n 0
-zl — . 1.
car ~ og M= B2l (1.56)
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1.3. Wakefield generation

We proceed by applying this QSA to fluid equations; this consists of setting /07 = 0 in
Eq. 1.56 and in Eq. 1.55 and integrating to yield the following conservation relations
By
ﬁg - Bz,

n =

(1.57)

requiring that n(§ = +o00) = 1, and
¢ =7 (1= fBef:) +1=0, (1.58)

considering that ¢ = 8, = 0 in the absence of a plasma wave (when 5, =0 at £ — o00).

With these manipulations, we observe that the set of PDE for the fluid variables 3., n
and ¢ have been reduced to one ODE for ¢. The algebraic expressions Eq. 1.47, Eq. 1.57 and
Eq. 1.58 are useful to relate 3., n, ¢ and the normalized vector potential a. As in the QSA,
the laser is considered as being fixed on the fluid timescale 7, all the wakefield quantities
can be determined independently of the laser evolution. We can therefore express the fluid
quantities entirely in terms of the normalized vector potential a.

From Eq. 1.58, we can solve for /3, in terms of a and ¢, giving

5g - w
f. = , 1.59
1 - 5gw ( )
where
1+ a? ’
Vg (1+9)
Using Eq. 1.59 to eliminate S, from Eq. 1.57, we find the density:
1

n= 7359 (E - 59) : (1.61)

Then we substitute Eq. 1.61 into Poisson’s equation Eq 1.52 in the co-moving coordinates,
we obtain the nonlinear ODE for the wake potential in the QSA:

0?2 14a? )
%:k@; B, (1—ﬁ) 1Y (1.62)

This expression can be integrated numerically for a given pulse amplitude a(§) at a given
time 7. Once solved for ¢(§), we can immediately obtain 3, and n from Eq. 1.59 and Eq. 1.61.

Here we notice that there are similarities between solutions derived using QSA and non-
linear plasma wave solutions of Akhiezer and Polovin [45] given in Section 1.3.1. Comparing
Eq. 1.33 with Eq. 1.58, and Eq. 1.38 with Eq. 1.57, we realize that if we let 5, — 3, and
T = =&, these two expressions are identical. This symmetry can be explained by the fact
that the plane wave ansatz explicitly excludes spatial derivatives (0/0¢ = 0), resulting in
all variables being a function of the retarded time variable 7 = ¢ — z/v, only, while the
QSA excludes times derivatives (0/07 = 0) in the wake following the pulse. These two
pictures are equivalent, suggesting that the transverse laser pulse can be introduced into the
longitudinal equation Eq. 1.35 as a slowly varying envelope p, = a(7) without violating the
initial plane wave ansatz.

In some sense, these nonlinear features for wakefield generation by short pulse derived
using QSA are already included in the original works by Akhiezer and Polovin [45], and in
the subsequent analysis by Noble [47]. One advantage of the QSA version is that it is more
readily accessible in terms of physics. Generalization to include a laser pulse in two and
three dimensions are featured in [58, 59].
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Chapter 1. Physics of LWFA

1.3.3 Regimes of plasma wave excitation

Regimes in LWFA are controlled by the laser pulse strength. Three regimes can be identified:
the quasi-linear regime, the nonlinear regime and the blowout regime.

Quasi-linear regime
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Figure 1.4: Normalized envelope of the laser vector potential ¢, the associated wakefield,
E./Ey and perturbed density dn as a function of the normalized phase for ay = 0.5, 7, =
16.99 fs.

The numerical solution of Eq. 1.62 with these parameters give us an immediate insight to
the nature of these generated plasma waves. Once solved for ¢, E,/FEy and n can be deduced
from FE, = —V¢ and from the Poisson’s equation Eq. 1.52 respectively. In the linear regime
(a* < 1), we consider a laser vector potential a = agexp (—£2?/c*r?). The linear response
of the plasma wave using the plasma fluid theory is illustrated for a maximum amplitude
of the normalized vector potential ay = 0.5 and a laser pulse duration of 7, = 16.99fs in
Fig. 1.4. This figure shows the classical linear Langmuir wave with normalized electric field,
E./Ey and the normalized perturbed density dn = (n. — ng)/ng, which is 90° out of phase.

This regime provides regular plasma wave and symmetric regions of acceleration-deceleration
and focusing-defocusing as shown in Fig. 1.3, and it ensures no self-injected electrons into
the wakefields since the accelerating gradient does not attain the cold wave-breaking limit,
E. < Fy. Consider the Gaussian laser pulse with the aforementioned parameters: ag = 0.5,

7, = 16.99fs, the required plasma density evaluated with the resonant condition w,7, ~ 2
gives ng = 4.35 x 10" cm™3. The amplitude of the accelerating field of the plasma wave
is approximately F,/Ey =~ 0.76(a2/2v,) for a resonant Gaussian laser pulse [60|, where
v1 = (14 a2/2). In the considered configuration in Fig. 1.4, F, ~ 20 GV/m < Ej.

The quasi-linear (a3 ~ 1) regime offers attractive features for the design of an accelerator.
Its main drawback is that the Gaussian laser pulse will diffract after a distance of propagation
on the order of Rayleigh length, Zg. Since the energy gain is evaluated with & = —eF, L.,
where L,.. is the acceleration length, to ensure that electrons gain the maximum energy
possible, the acceleration length should be the electron dephasing length, Ly defined as the
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1.3. Wakefield generation

length for electrons in the accelerating phase of the wakefield to outrun it and slip into
the decelerating phase (see Sec. 1.5 for more details). Generally, Zr < L, therefore some
sort of laser guiding e.g. plasma channel (parabolic transverse plasma density transition) is
necessary.

Nonlinear regime
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Figure 1.5: Upper panel: Wake potential, ¢ by solving the ODE in Eq. 1.62. The laser
parameters are ag = 2.0, 7, = 16.99fs. E,/FE, shows a sawtooth behavior with a stronger
pump. Bottom panel: The normalized perturbed density dn shows a cavitation of electrons
in the region following the laser pulse and then a high electronic density peak.

The generated plasma waves evaluated in the nonlinear regime (a? > 1) using the 1D
nonlinear plasma fluid theory are shown Fig. 1.5. Here we consider ay = 2. In Fig. 1.5,
we observe a sawtooth electric field and spiked density perturbation, accompanied by a
lengthening of the oscillation period by a factor < v, compared to the unperturbed plasma
period due to the enhanced inertia of electrons as their velocity becomes relativistic. With
E. > Ey, this suggests that electron self-trapping is susceptible to occur. However this is
not a strict rule, the wakefield amplitude measured in several experiments [61] appears to
be in the range E,/Ey ~ 10 — 30%, well below the cold wave breaking-limit, suggesting that
additional laser plasma instabilities such as the coupling of Raman backscatter (RBS) and
Raman sidescatter (RSS) [62] may play a role in lowering the effective amplitude for electron
self-trapping.

This regime is particularly interesting for both the design of an injector and an accelerator.
In fact, it is the simplest scheme for an electron injector as self-injection is based on the
crossing of electron charge sheets. In ionization-induced injection scheme, the required value
of ag is determined by the intensity necessary to ionize heavier atoms added to the light
background gas. For nitrogen atoms, an ag of ~ 2 is required for K-shell ionization, hence
the interaction occurs in the nonlinear regime. Injection techniques will be developed further
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Chapter 1. Physics of LWFA

in Sec. 1.4. Since this thesis is about the optimization of the electron beam properties in an
electron injector using ionization injection scheme via PIC simulations, we will essentially
be working in the nonlinear regime.

Blowout regime

So far, most analytical theories used in describing the nonlinear plasma waves and wakefield
excitation have either been restricted to linear fluid theory [39] or the 1D nonlinear fluid
theory [45, 10]. These one dimensional models give a good description of the plasma waves,
however most LWFA experiments generating self-injected electrons [16, 63, 17| take place in
the blowout regime. Neither fluid nor one-dimensional (axial) theory applies in this regime
because in addition to wave steepening and period lengthening, the radial structure of the
plasma wave can exhibit nonlinearities. One such effect is that the wave front of the plasma
wave can be curved and the greater the distance behind the laser driver, the more severe
the curvature becomes, resulting in a nonlinear plasma wavelength that is greater on axis
than off axis. Moreover, the laser intensity can be sufficiently high so as to expel all plasma
electrons away from the vicinity of the axis [64, 65, 66|, leaving a cavity behind the laser
pulse instead of a periodic plasma wave as observed in the linear regime. These plasma waves
are complicated because their fields are electromagnetic, relativistic mass are important and
trajectory crossing occurs.
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Figure 1.6: Electron density map represented in the (z — ct, x) plane. The red and yellow
laser pulse is superposed onto the electron density map. A white dashed circle with a blowout
radius r,, highlights the shape of the blown out region. Courtesy of R. Lehe [67].

The study of LWFA using a 3D PIC simulations was first investigated by Pukhov et al.
[68]. He used the term “bubble” regime instead of the blowout regime because of the spherical
shape of the cavity driven by the laser. Subsequently, a phenomenological theory in this
regime was proposed [69]. Lu et al. have proposed phenomenological [70] and nonlinear [66]
theories for relativistic plasma wakefields in this regime. In order to get some insights on
electron dynamics in this nonlinear regime, the plasma wave can be described entirely in
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1.4. FElectron Trapping and Injection

terms of the cavity radius, 7,(¢). The maximum blowout radius r,, is determined from force
balance and the equation of motion can then be used to determine the shape of the cavity
behind the laser. An illustration of the blowout electron density map is shown in Fig. 1.6.

In this regime, the two forces that need to be balanced are the space-charge force of
electrons and the ponderomotive force of the laser. For a given laser power P and plasma
density n., there is a matched spot radius that provides spherical density boundary. The
estimate of the matched spot radius is given by k,r,, ~ 2,/ao where the factor of 2 is deduced
from full PIC simulation [66]. In the case of unmatched spot radius, if the spot radius is
much larger than this matched radius, the maximum amplitude of the normalized vector
potential ag will be too small to cause blowout initially. Conversely, if the laser is focused
to a spot radius smaller than the matched radius, the normalized vector potential blows
out all electrons at the laser edge and little ponderomotive force is felt by the electrons,
consequently, they move very little, resulting in a very wide sheath. Furthermore, the laser
will diffract because its spot radius is too small to be guided.

This regime is equally considered in the design of an accelerator because the focusing
forces for electrons inside the cavity are linear and uniform for all phases as F', = —mewf)r /2
[66], and the accelerating field is independent of the transverse position with respect to the
cavity axis.

In [70], some scaling laws have been established according to the phenomenological theory
in the current regime. The laser depletes (pump depletion length) after a distance

(,UQ

L,q~ w—gCTL, (1.63)
0
and the distance that the trapped electrons travel before they outrun the wave (dephasing
length) is
2w

Ld: g;ﬁ,. (164)

P

To calculate the energy gain, we consider £ = qF, 49Lqacc, Where E, 4,4 is the average
accelerating field of the beam loaded plasma wave, L,. is the acceleration length. The
desired acceleration length is the dephasing length, so we impose L,; > L4. The bubble is
roughly spherical and consider that the electrons are either self-injected or externally injected
at the rear, the electrons then travel a relative distance r, before they dephase. The peak
accelerating field is E. e = y/aoEo, with Ey = mecw,/e. Since the wakefield is roughly
linear, the average accelerating field becomes E. 4,4 = \/agEo/2. The approximate equation
for the energy gain can therefore be written as:

2 o [ Wo 2
Ewgmec — | ap. (1.65)

Wp

1.4 Electron Trapping and Injection

In a laser-wakefield accelerator, only electrons located in the accelerating and focusing phase
of the wakefield propagating at a relativistic velocity along the axis of propagation, z will be
accelerated. A resting electron would slip back with respect to the propagating wakefield,
experience a succession of accelerating and decelerating wakefields and end up without any
net energy gain. It is clear that to obtain accelerated electrons, the first step is to inject
electrons in the wakefield. The injection process consists of placing a fraction of electrons
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that have already a sufficient initial velocity in the accelerating and focusing region of the
wakefield, so that they remain trapped in it. The study of electron trapping can be carried
out using a one-dimensional Hamiltonian model.

1.4.1 One-dimensional Hamiltonian model

With the one-dimensional Hamiltonian model, together with QSA, we derive analytically the
trajectories of electrons in a laser field and plasma waves. In Sec. 1.3.2, we have obtained
Eq. 1.62 which represents the plasma wakefield. We assume a laser vector potential, polarized
in the y—direction, given by

a = a(&) cos p ey, (1.66)

where a represents the longitudinal shape of the pulse and ¢ = wyt — kgz We assume a
Gaussian shape for a so that a(¢) = agexp (—&%/c*73).
The Hamiltonian for an electron interacting with a laser and plasma wave |71] writes

H=~—¢(z—vgt) =\/1+p3 + P2 — d(z — vyt), (1.67)

where p, = p,/mec, p, = p./mec. The Hamiltonian depends on £ = z — v,t, we change
the variables using a canonical transformation (z,p,) — (§,p.). We use a second type
generating function Fy(&,p,) = p,&, thus satisfying z = 0F»/0p, and 0F,/0¢ = p,. the new
Hamiltonian, denoted by H’ reads

H = - P
c )
=\/L+D1 + 52— b(&) — DBy (1.68)
In 1D, the transverse canonical momentum is conserved such that p, = —9H Jor, =0,

therefore the perpendicular component gives p, (§) — a, () = po, where ug is a constant of
motion representing the initial perpendicular momentum of the electron; py = 0 if electron
has just been ejected from an atom via multiphoton ionization. In the case of an electron
initially at rest in front of the laser pulse, ; = +00, p, (§) = a(§), the index i denotes initial.

Eq. 1.68 does not contain time explicitly, that is dH'/dt = 0 = H' = constant, so the
energy is conserved along an electron trajectory. As a result, for an electron with an initial
energy Hy, one can solve for its longitudinal momentum and the expression writes

Be = B2 (Hy + 6(6) + /22 (Hj + 6 (€)° — 7. (1.69)

This equation describes the electron trajectory in (£, p.) phase space once a(§) and ¢(§) are
known.

From Fig. 1.7, three types of trajectories can be distinguished depending on the electron
initial position and momentum. The first one are electrons situated initially at rest in the
front of the laser pulse, i.e. { = 400 and p, (&) = p. (&) = 0, the Hamiltonian, H) = 1. The
trajectory of such electrons are referred to as the fluid orbit and contribute to the formation
of the plasma wakefield (shown in red in Fig. 1.7). They are not trapped and oscillate in the
plasma wakefield with low energies.

The second trajectory is defined by electrons initially located at a minimum potential
&(Emin) = Pmin < 0 and moving along z with p,(&min) = 7,0,. This special trajectory
is denominated the separatrix, it separates the trapped and the untrapped orbits (drawn
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Figure 1.7: A picture of the phase space. The y—axis is plotted in log-scale and to avoid
any negative values, 1+ p, — min(p, fuiq) is plotted, where w, f1,q is the fluid orbit. The red
line represents the trajectory of electrons that contribute to the plasma wakefield formation,
p. = 0, the blue line represents the separatrix, which separates the trapping and non-
trapping orbits, p, = 7,/8,. The gray lines represent the trajectory of trapped electrons. The
parameters are ag = 2, ne/n. = 0.44%, A = 0.8 yum and 7, = 16.99fs.

in blue). Conservation of canonical momentum gives p,(&{min) = @(&min), leading to the
Hamiltonian H,)
1 + (12 (fmm)
Tp
The third trajectory refers to electrons that are found in the trapped orbits (drawn in
light gray). Trapped orbits are obtained when the Hamiltonian satisfies Hiqppea < Hsep.
Consider a trapped electron behind the laser pulse at phase & qpped and moving along z at
Dz (&rapped) = YpBp- At this point in phase space, the plasma wave potential is such that
O(Etrapped) = Ptrapped > Pmin- Following Eq. 1.68, the Hamiltonian for a trapped electron can
be written as

H,yep = — Dmin- (1.70)

Htrzzpped = I+ Vgﬁg - ¢trapped - Vpﬂgv
1
- — = thrapped‘ (171)
Tp

Since @rrapped < Pmin, the necessary and sufficient condition for trapping is therefore
Htrapped S Hsep-

1.4.2 Injection mechanisms
Self-injection

In the previous section (Sec. 1.4.1), we have described the basic trajectories. Our interest
lies on the one of trapped electrons. They are considered to be initially located in the
front of the laser pulse and possess an initial longitudinal momentum greater than the initial
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momentum of the separatrix, i.e. p,(4+00) > P, sep(+00). According to Eq. 1.69, this is simply
Dz sep(+00) = prgHsep — Yo/ Va2, — 1, therefore electrons with initial energy & > Erapped
will be trapped and accelerated in the wakefield, for

Exep = Ewrappea = M1+ {Bsep (+00)12 = 1), (L.72)
1.4
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Figure 1.8: Energy thresholds for trapping with respect to ¢,,;, which represents the ampli-
tude of the wake for different phase velocities of the plasma, ,.

Fig. 1.8 shows the variation of the energy threshold as a function of the minimum plasma
wave amplitude ¢,,;, of which it is achieved for different values of the plasma wave Lorentz
factor 7,. It is clear that the trapping is easier when the wake amplitudes are large and slow.
Interestingly, we also observe that when ¢, — —1, Erappea — 0, implying that electrons
that are initially at rest, located at this high-amplitude of wake, get injected into the plasma
wave. In fact, this is correlated to the fact that the longitudinal electric field reaches the
relativistic cold wave-breaking limit, F,,,, (defined earlier in Sec 1.3.1). More complicated
three-dimensional models for self-injection were developed to fully capture the physics and
can be found in |69, 72, 73, 74, 75].

In three-dimensional models, wave breaking happens for ultrarelativistic intense laser
pulses shorter than A,. These laser pulses are intense enough to break the plasma wave just
after the first plasma wave period. From 3D PIC simulations, it has been observed that
injected electrons are in general located at one laser waist from the axis (r ~ wy), where
wy is the laser waist in vacuum. These electrons circulate around the laser pulse and the
bubble, and attain a velocity larger than the wake-phase velocity when reaching the axis
at the rear of the bubble [74, 73, 76]; this injection mechanism is called transverse self-
injection. Conversely, electrons that are close to the axis feel a weak radial ponderomotive
force, therefore they are weakly deviated when crossing the laser pulse and remain in the
region of largest accelerating field E,. These electrons are likely to catch up with the plasma
wave and be injected [75|. This injection mechanism is called longitudinal self-injection.

These two injection mechanisms have advantages and drawbacks. The transverse self-
injection is well suited for applications that require a high charge (> 100pC) but can cope
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with little stability, and produce electron bunches with large energy spread (10%) and a
poor emittance. In contrast, longitudinal self-injection is ideal for applications in which low
emittance is essential but low bunch charges are expected.

Ionization-induced injection

We have seen in the previous section that wave breaking contributes to the injection of
electrons in the plasma wave. Another injection scheme proposed in |77, 78, 13|, requires
the use of gas medium composed of low Z gas usually hydrogen or helium and a trace of high
atomic number (Z) atoms usually oxygen, nitrogen, or argon. Instead of relying on wave
breaking, this injection scheme uses the laser field to control the injection process into the
wakefield, achieved by ionizing deeply bound electrons from a the high-Z gas at a proper
phase inside the laser-driven wakefield, such that they reside above the wake separatrix
and, therefore, are trapped and accelerated. This additional degree of freedom allows the
trapping of electrons at lower plasma densities, using lower laser intensities as compared to
the self-injection scheme.

This scheme relies on the ionization conditions of heavy atoms in the laser fields. We
thus start by recalling ionization of atoms in the laser field before describing the trapping
conditions for the electrons created inside the laser pulse.

Tunneling photo-ionization. The required laser intensity to ionize K-shell is approxi-
mately two orders of magnitude stronger than the intensity matching the binding strength of
the electron to the atom (I, &~ 3.51 x 10'6 W cm™2); the associated laser field will therefore
distort the Coulomb field felt by the electron.

a fraction of the
bound electrons

are tunnel ionized
&

Figure 1.9: Schematic picture of tunneling by a strong external electric field, F,. The
resulting potential ¢ as a function of the distance x is plotted, electrons situated at x = 0
are the bound electrons and electrons which are found at = > z,,.. are electrons that have
undergone the tunneling-ionization process.

We use a classical picture of this phenomenon [79], in which the Coulomb potential is
modified by a stationary homogeneous electric field. The resulting potential ¢(z) can be

expressed as:

o(z) = —2762 —eb,, (1.73)

where z is the distance.
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In Fig. 1.9 is illustrated a schematic picture of tunneling photo-ionization where the
resulting potential ¢ as a function the distance x is plotted, electrons situated at = 0
are the bound electrons and electrons which are found at = > x,,.,, are electrons that have
undergone the tunneling-ionization process. We see that the Coulomb barrier has been
suppressed by a strong external electric field, F, for x > 0. For x > x,,4., the modified
Coulomb barrier is lower than the electron binding energy, so that the electron may tunnel
through this barrier with some finite probability [80] with an initial energy £, given by

2o Bx L iE
w(€) exp{ 3 L\Ca 7K|EL Gl + o | (1.74)

where Ep(7) is the laser field, By = m.c*ko/e, vk = (U;/2U,)Y? = (ay/a)(U;/Un)"? is
the Keldysh parameter, with Uy = 13.6eV the ionization potential of hydrogen, U; is the
lonization potential, U, = m.c?a?/4 is the laser ponderomotive potential, oy = €*/hc ~
1/137 is the fine structure constant, and A\¢ = h/m.c = 2.4263 x 107'%m is the Compton
wavelength. In the high-field limit, v < 1, tunneling ionization is dominant.

In Eq. 1.74, we have omitted the initial momentum along the laser propagation direction
because it is negligible with respect to the one along the laser polarization direction. In
explicit PIC modeling, the implementation of a tunnel photo-ionization module is based on
the direct current (DC) ionization rate model because the sub-wavelength scale of the laser
is well-resolved and the simulation time-step is much smaller than the laser period [81], i.e.
At < Ty, where At is the simulation time-step and Ty = Ag/c is the laser period. Within
each simulation time-step, the laser field can be approximated as a DC field.

Eq. 1.74 indicates that a large number of electrons will be ionized at the peak of the
laser electric field. Since the transverse canonical momentum will be conserved, p, =eA |,
electrons ionized at the peak of the laser field have zero transverse momentum upon exiting
the laser, allowing them to be trapped in the longitudinal field of the plasma wave. On the
other hand, electrons ionized off-peak of the laser electric field exit the laser with a residual
transverse momentum, thus contributing to the increase of transverse emittance.

In Fig. 1.10(a) is plotted the modulus of the laser potential a, as defined by Eq. 1.66 and
the ionization probability Pioni, = 1 — exp(—cdf[w(E)]|Tp), where cdf stands for cumulative
distribution function and Ty = Ag/c the laser period. We consider a gas medium composed
of hydrogen atoms and a small fraction (< 10%) of nitrogen atoms. The leading edge of the
laser pulse with an intensity typically below 10*® W em™2, is intense enough to fully ionize
hydrogen atoms and the outer five electrons of nitrogen. These electrons then contribute
to the formation of the plasma wave. The large difference of the ionization potential (IP)
between the 5% (L-shell) electron (IP 98eV) and the two K-shell electrons (IP 552 and
667eV) of nitrogen atom is the key point to this scheme. Ionization from the K-shell occurs
at higher intensities typically for I > 10'¥Wem ™2, so these electrons are born at rest in
regions of strong fields, often at the laser peak intensity. These newly ionized electrons slip
backwards relative to the laser pulse and the wakefield. If they gain enough energy from
the longitudinal electric field, E, to move at the phase velocity of the wakefield, they are
trapped and will gain additional energy from the wakefield as they move forward.

Fig. 1.10(b) shows the ionization probability, Pi.ui, plotted with respect to the maximum
amplitude of the normalized vector potential ag for two K-shell electrons of nitrogen. A
lower ay is required to start the ionization process N°* — Nb* as compared to the ionization
process N®* — N7*. For the rest of this thesis, we call the 6" electron the electron created
from the ionization process N°* — N6+ and the 7" electron from N®*+ — N7+,
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Figure 1.10: (a) Ionization probability P, of a nitrogen atom as a function of normalized
position: the first five electrons, from N* to N°* appear at the front of the laser pulse, while
electrons from Nt — N6+ and N6 — N7* appear at the peak of the laser envelope. The
normalized laser vector potential a follows the Gaussian distribution. Here aq = 2, 7, =
16.99 fs, Ao = 0.8 um. (b) Ionization probability, Pjuu, of the ionization processes N°* — N6+
(in green) and N — N7 (in red)as a function of the peak value of laser envelope ag.

Trapping conditions. We now determine the condition under which the 6'* and the
7t electrons will be trapped. For simplicity, since we are considering a small concentration
of high-Z gas, we will neglect the modification of the wakefield due to ionization process of
nitrogen atoms, therefore Eq. 1.62 is still valid [82].

An electron will be trapped provided H < H,,. An electron ionized at a wake phase §;
witnesses the corresponding laser amplitude a(&;). Since ionization occurs mostly at the peak
of the laser field in linear polarization, a(&;) = 0, therefore in the case of an ionized electron
born at rest, conservation of canonical momentum reads p; (§) = a(§) — a(&) ~ a(§). The
initial Hamiltonian of such electrons can be found from Eq. 1.68 as

Hi=1-¢, (1.75)

the trajectory of the electron can be computed using Eq. 1.69. This trajectory is shown in
gray in Fig. 1.11(a). The conditions for trapping can be summarized in two key points:

e the intensity at position & should be large enough for ionizing a given electron level,
i'e' a(gz) > Athress

e the electron should be born on a trapped orbit, i.e. H; < Hgep.

In practice, electron trapping in this scheme requires a moderately high intensity laser pulse
(typically @ > 1) and a large amplitude plasma wave obtained with laser pulse length
CTr, ~ >\p-

Fig. 1.11(a) shows a phase space picture of the fluid orbit (in red), the separatrix (in
blue) and the typical trajectory of trapped ionized electrons in the first period of the wake-
field (in gray). This illustrates the local injection volume, defined as the volume in phase

33



Chapter 1. Physics of LWFA

(a) 103:

10%

10" b

14+p,— min(f)z,ﬂuid)

109

(b) 2.5
2.0

1.5 =

1.0

0.5

0.0
-0.5
-1.0

Injzone ||

¢
EZ/EO

kpé/2m

Figure 1.11: (a) A phase space picture showing the fluid orbit (in red), the separatrix (in
blue) and the typical trajectory of trapped ionized electrons in the first period of the wakefield
(in gray). (b) Laser pulse with normalized vector potential a drives the wakefield, £, and
gives rise to the wake potential, ¢. An electron ionized in the region colored in cyan will
be injected and trapped in the wakefield. The parameters are ay = 2, n./n. = 0.44%,
Ao = 0.8 um and 7, = 16.99 fs.

space, delimited by the separatrix where electrons satisfy trapping conditions at a given
time; whereas the global injection volume is the local injection volume integrated over time.
The number of injected and accelerated electrons and the energy spread of the bunch are
determined over the global injection volume in phase space. Large global injection volume
leads to bunches with large injected charge and large energy spread; small global injection
volume might overcome the energy spread at the detriment of the injected charge.

Fig. 1.11(b) shows a laser pulse with normalized vector potential a driving a plasma wave,
the potential of the plasma wave, ¢ and the wakefield F,/FEy. An electron ‘born’ in the local
injection zone (in cyan) satisfies trapping conditions and therefore is susceptible to be trapped
in the wakefield. The local injection zone is governed by the wakefield amplitude and the
ionization threshold. Experiments have demonstrated the concept of ionization injection
using nitrogen and argon [77, 78|. Results obtained show broad energy distributions due
to the fact that ionization injection occurs all along the propagation. In fact, ionization
injection occurs as long as the laser intensity exceeds the threshold intensity assuming that
the amplitude of the plasma wave is large. This is the major drawback of this injection
mechanism.

As pointed out in [82], there is a linear correlation between the energy spread and the
mixed gas length provided that trapping conditions are satisfied throughout the interaction
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length, implying that the beam quality can be improved by reducing the gas length. Several
experimental studies implement a mixed gas length reduced to a few mm in structured
targets [83, 84, 85, 15, 14]; yet the generated electrons straight out of the injector still have
a large energy spread, signifying that the mixed gas length is still longer than optimum and
efficiency of coupling to the accelerating stage can be improved. In this respect, much efforts
were directed to tailoring the gas-density profile [86, 87| and to using moderate power pulses
[88] to limit the injection volume, showing promising results.

Density gradient based injection

Another method of controlling the injection process is by tailoring the plasma density, which
gives us control over the plasma wave phase velocity, vs. We have seen previously that
the lower the phase velocity, the lower the trapping threshold, as illustrated in Fig. 1.8.
Therefore, injection can be triggered in a local manner by inducing a local decrease in the
phase velocity. For example, this can be achieved by sending the laser pulse through a
downward density ramp, which causes the wakefield to slow down. Note that v, # v,.
Density gradient based injection schemes can be characterized by the density scale length
L = ng/|dno/dz| and the plasma skin depth k' = vy/w,, where v, &~ c is the laser group
velocity. Two categories can be identified:

e smooth density down ramp (L, > k') [89];
e sharp downward density transition (L, < k,*)[90].

Injection in smooth density down ramp. This injection scheme takes place when
wave breaking occurs, where the electric field is equivalent to E,,,. as in Eq. 1.40. In the
one-dimensional case, wave breaking can either completely destroy the regular structure
of the wave, or it can develop gently, with only a small portion of the wave involved in
the break. The latter serves the purpose of injecting a portion of the electrons into the
accelerating phase in the wake behind the laser pulse. One way to make this happen is to
introduce a plasma with inhomogeneous density. The plasma wave wavenumber depends
on time ¢ through the relationship 0k,/0t = —0w,/0z. The resulting growth over time of
the wavenumber results in the break of a small portion of the wave even when the initial
wave amplitude is below the wavebreaking threshold, possibly resulting in the injection of
electrons into the wakefield.

The Hamiltonian model described in Sec 1.4.1 no longer holds in a density transition
because the wakefield potential also depends on z, as ¢(z,£). To provide some physical intu-
ition of the process, a simple fluid model is developed here. Consider the weakly relativistic
case (a* < 1) and a smooth density gradient k,Ls > 1. The plasma equation in the QSA
limit reads

0 (2| 6= 2
| o= 2 @), (L.76
where (a?) is the é—averaged peak intensity of the laser pulse. Using a Green’s function,
Eq. 1.76 can be integrated and the solution behind the laser pulse has the form

¢(§) = do(2) sin [kp(2) (2 — vyt)] (1.77)
where the wakefield amplitude is ¢o(z) = —(v/7/4)ao(2)?k,(2)cTr exp|—(kp(2)crr/2)?] and

its phase is ¢ = k,(2)(z — v4t), so that one can compute the local oscillation frequency and
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wavevector:
dp
W= o ky(2)vy = wp(2), (1.78)
_O0p Oky(2) B
k= 5 ky(2) 9 (z — vgt). (1.79)

In a downward density gradient where 0k,/0z < 0 and z — vyt < 0 behind the laser pulse,
the wavevector increases with time while the plasma frequency does not depend on time,
ie. w = w,(z). As a result of this time-varying wavevector, the phase velocity v,(z,t) =

wy(2)/k(z,t) becomes
z — v tdk,(z
vg(2,t) = vg/<1 + @TZ;%) . (1.80)
Consequently the phase velocity decreases as the wavevector increases, creating a favorable
condition for the injection to occur behind the laser pulse as the wakefield becomes slow
enough to trap plasma background electrons.

Several experiments have been conducted to study electron trapping in wakefields with
a gentle density downramp gradient [91, 92, 93, 94|. Outcomes of these experiments have
all shown more stable beams with an energy spread in the range of 10%.

Injection in sharp downward density transition. The smooth density downramp
has shown promising results but in the quest of reducing the energy spread, Suk [90] has
introduced a sharp, localized density gradient. Due to the sharp transition in the density,
this injection method is more commonly known as shock-front injection.

In this scheme, a single short laser pulse is sent through an underdense plasma with a
sharp downward density transition with k,L; < 1; two distinct regions are distinguished:
(I) a dense upstream region, (II) a less dense downstream region, as shown in Fig. 1.12(a),
where the density ng/max(ng) is shown with respect to the laser propagation axis z. A sharp,
localized density transition of length Ly = 0.6/k, is shown in the region in blue. Fig. 1.12(b)
shows the laser in red-orange and the wakefield cavity is delimited by thick black lines in
regions (I) and (IT).

The mechanism of injection [95] can be explained as follows:

1. As shown in Fig. 1.12(b)(I), when the laser propagates in the high density region (I),
it drives a cavity or a nonlinear plasma wave of wavelength A, ;. Here, the amplitude
of the plasma wave is assumed to be below the threshold for self-injection, therefore
no electron is injected in the cavity.

2. Upon entering the region of lower density (II), electrons remain at the same distance
behind the laser pulse due to the sharpness of the transition.

3. In the low density region (II), the driven plasma wave has a wavelength A\, 11 > A, 1,
the cavity expands and electrons created at a previous position in z are now located

in the accelerating phase, where some of them are trapped and accelerated, as shown
in Fig. 1.12(b)(II).

In the shock-front injection scheme, plasma electron trapping occurs in the first rarefied
cavity, due to localized nonlaminar motion near the sharp density transition, and at plasma
wave amplitudes well below conventional wavebreaking.

Several research groups have performed experiments by creating a shock in the gas flow
[96, 95|, or by using another laser pulse to create a density perturbation [92]. The resulting
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beam energy has shown some tuning abilities by controlling the injection location [95, 97].
Furthermore, the trend observed in these experiments show that the lower the energy spread,
the lower the charge, implying that the reduction of energy spread comes at the expense of
charge.
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Figure 1.12: Principle of injection with a sharp downward density transition. Labels I and
IT indicate regions of high and low density. (a) Normalized longitudinal density profile,
no/max(ng). Lsk, = 0.6. Adapted from [87]. (b) Laser in red-orange and the wakefield
delimited by black circle. In region I, a plasma cavity is formed but no trapping is observed.
Once the laser enters region II, the plasma cavity expands, electrons from the initial wave
are trapped in the accelerating phase of the cavity.

Optical injection

Another way to inject electrons into wakefield structure is by using optical injection tech-
niques. These techniques trigger the injection in a precise local manner using several laser
pulses: the first pulse generates the wakefield (pump pulse), and the second one triggers
injection of electrons in wakefield (injection pulse).
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Optical injection was first proposed in [98]. In this scheme, injection is triggered by
an injection pulse coming perpendicularly to the pump pulse. When the injection pulse
collides with the wakefield, the transverse ponderomotive force of the pulse provides some
electrons with the necessary momentum to cross the wakefield separatrix and be trapped in
the wakefield structure.

Another scheme using three pulses was proposed in [54]. This scheme is known as the
colliding pulse optical injection scheme. In this scheme, an intense pump pulse generating
a large wakefield (20 GV/m), and two counterpropagating injection pulses are used. The
pump pulse generates a fast (v,0 ~ ¢) wakefield while the injection pulses collide at some
distance behind the pump and generate a slow ponderomotive beat wave with a phase
velocity vy, &~ Aw/2kp. As a result, the beatwave due to the overlapping between the
injection pulses injects electrons into the fast wakefield structure (generated by the pump
pulse) for acceleration to high energies. This technique allows for the use of lower injection
pulse intensities, i.e. 2 orders of magnitude less intensity than required in [98] and offers
a detailed control of the injection process, i.e. the injection phase can be controlled via
the position of the forward injection pulse, the beat phase velocity via Aw, the injection
energy via the pulse amplitudes and the number of trapped electrons via the backward pulse
duration.

Further simplification on the colliding pulse optical injection scheme by keeping the
collinear geometry but only using two pulses has been done in [63, 99, 100, 101|. In order
to inject low energy electrons directly into the wakefield structure, Davoine et al.[102]| has
introduced the use of two counterpropagating laser pulses, with a very low-energy second
pulse so that the longitudinal electron motion remains frozen and electrons can enter into
the propagating plasma wave, at a position allowing their injection. The above mentioned
injection schemes produce energy dispersions of the order of 5 — 10%, however in the regime
of parameters that were hitherto tested, the injected and accelerated electron beam has a
charge (a few tens of pC) [63].

Another technique uses the pulse collision to trigger a transient and fast deformation of
the bubble (as seen in Injection in sharp downward density transition) to control
transverse injection [103]. This technique, known as the optical transverse injection has
been studied using PIC simulations. Results from simulations show that it can generate
electron beam that meets the requirements of low emittance (~ 0.17 mm.mrad), relatively
high charge (~ 50 — 100 pC) while retaining the low energy dispersion (2%) associated with
colliding-pulse schemes.

Although self-injection scheme generates electron bunch with high charge but it lacks
shot-to-shot stability 75| and it requires a high laser strength ag to enable trapping of
electrons in wakefield. Gradient-based injection scheme does not require a high aq for injec-
tion and offers a narrow energy spread in the case of shock-front injection, but it reduces the
charge and requires high technical skills to tailor a precise density gradient. Optical injection
techniques offer a precise control on the injection of electrons in the plasma wave, however
in practice they are difficult to be implemented experimentally because the laser pulses have
to be synchronized. Ionization-induced injection scheme generates electron bunch with high
charge (higher charge than self-injection scheme in the same conditions) and requires only a
moderate laser pulse, however continuous injection might occur as long as ag is greater than
the injection threshold, a control on aq is therefore necessary. Our group has chosen to study
in details the ionization injection scheme because of the easy experimental implementation
and the given additional control parameter which is the concentration of the low Z gas, and
works on optimizing the generated electron beam properties in experiments and via PIC
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simulations (refer to Chapter 5).

Mixed techniques

In recent years, novel injection schemes have been proposed by making use of the best
features from various injection schemes. Some of them are presented in the following para-
graphs.

One can obtain an electron beam with optimum characteristics by having control on its
formation. This has been one of the core research topics in our group. By selecting the
focal spot position in vacuum along a density tailored profile, the position where ionization
injection occurs can be controlled [104]. In fact, the position of the laser focal plane causes
self-focusing of the laser pulse while propagating in the plasma, which in turn modifies the
laser vector potential along the propagation axis.

Work on combining both density tailoring and ionization injection schemes was also
carried out. Golovin et al. [105] have demonstrated an independent control of laser-wakefield
acceleration and injection in two overlapped composite gas jets: the first gas jet containing
only Ny acts as the injector; the second gas jet containing only Hy acts as the accelerator. In
addition, Vargas et al. [106] have used a stereolithography based 3D printer to produce two-
stage gas targets for LWFA experiments on the HERCULES laser system at the University
of Michigan. With these configurations, electron trapping was confined to the injector and
the trapped electrons were then accelerated to high energy in the accelerator, resulting in
tunable electron beams with reduced energy spread. In the same line of thought, our work
on the tailoring of the density profile in the accelerating phase [107] shows that the electron
bunch energy can also be tuned while having its energy spread preserved. In both articles,
the energy spread remains in the range of 10% at FWHM (Full Width at Half Maximum),
a great improvement as compared to the ionization injection scheme alone.

Another mixed technique that combines ionization injection and a sharp downward den-
sity transition [87] has generated more stable shot-to-shot electron beams than those obtained
in a shock front injection. Compared to ionization injection, this technique ensures electron
trapping in a small region, leading to the injection of electron beams with rather low energy
spread, the charge is of the order of 30 pC, more than as obtained using only the sharp
density transition.

1.5 Acceleration limits

Several mechanisms can limit the energy gain in a LWFA, namely laser diffraction, electron
dephasing, pump depletion and laser-plasma instabilities. Other effects such as beam loading
can affect the beam charge and the beam quality. Therefore, one has to work around these
limits to produce a high current, high energy and high quality electron beam.

1.5.1 Laser diffraction

In vacuum a laser pulse undergoes Rayleigh diffraction, therefore some form of guiding is
necessary; otherwise the laser-plasma interaction distance will be limited to Zg before it gets
diffracted. Various methods of optical guiding, including relying on the self-focusing [108] of
the laser pulse, using preformed plasma density channels [109, 110, 111, 112, 113, 114, 17,
115] or dielectric capillaries [116, 117, 118, 119|. For this thesis, we will only focus on the
diffraction and the self-focusing of the laser pulse.
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Geometric optics picture of self-focusing and diffraction

(b) phase fronts

\4

plasma plasma

Figure 1.13: (a) Geometrical view of (i): the diffraction; (ii): the self-focusing of the Gaussian
laser beam. (b) Phase front bending due to refraction. Adapted from [120].

The geometrical schematic picture in Fig. 1.13(a) introduces key parameters governing
nonlinearity effects that take place while the laser propagates in a plasma. It shows the
Gaussian envelope as a function of the direction of propagation of a laser pulse with radial
profile a(r) = agexp(—r?/2w?) focused to a laser waist wy (determined in vacuum) inside
a region of uniform, underdense plasma. In the absence of nonlinear effects the beam will
diffract, as shown in Fig. 1.13(a)(i) with a divergence angle [121]

_df w2 (1.81)
dz ZR ko’wo

At high intensities, the dispersion relation of the laser electromagnetic wave is altered due

to the effective relativistic mass increase of electrons in the plasma, therefore

O

2
w

wy = kg + -2, (1.82)
0

where aﬁ /70 is the effective plasma frequency. The corresponding refractive index writes

%
1/2°
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From Eq. 1.83, we observe that 7(r) is peaked on axis, i.e. dn/dr < 0, which represents a
positive or focusing lens in optic terminology, in contrast with the divergent refractive index
where dn/dr > 0.

We can further evaluate the condition where diffraction is compensated by self-focusing.
Considering a? < 1, we first approximate the phase velocity of the wave fronts passing
through the medium using Eq. 1.83, that yields

vg(r) _ 1 “y a*(r)
=—-=1 1— 1.84
c n * 2wk 4 )7 (1.84)

(1.83)

Fig. 1.13(b) shows the phase fronts being bent due to refraction. The phase fronts of the
beam profile travels more slowly at the center than at the edge, the velocity difference,

Avy(r) is given by ;
A 2
valr) _ ag exp (w—r> : (1.85)
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The curvature of the phase front bends the rays proportional to their relative path difference
and the maximum path difference is given by

A’U¢

AL = |Avg|maat = 7 = aR, (1.86)

max

where Avy is maximum on axis r = 0, a and R are geometrical quantities shown in Fig. 1.13.
This implies that the maximum focusing angle is

w2

P= P 1.87
“ 8wia? (187)

Laser diffraction will therefore be canceled by self-focusing effects if o > 62, yielding

a2 (“‘%’")2 > 3. (1.88)
This relationship can be re-written as a function of laser power since P, ~ 21.5(wpag/M\o)?
where a linearly polarized laser field with a Gaussian radial profile is assumed. The condition
for laser self-focusing is P, > Pg, where Po = 16.2wg /w [GW] [122] is the critical power for
relativistic self-focusing. Other approaches solving the nonlinear Schrédinger equation leads
to the same results [40, 123, 124].

1.5.2 Laser pump depletion

The laser depletes its energy into the plasma wave over a distance where the energy deposited
in the wake equals the laser pulse energy. The aforementioned distance is known as the
pump depletion length L,; and it can be estimated by equating the laser pulse energy to the
energy left behind in the wakefield, Ecry =~ EZ, . Lpq, where E is the laser field [125, 126],
E. o = max(E,) the maximum electric field amplitude of the plasma wave behind the laser
pulse.

We evaluate the order of magnitude of the laser depletion length using the plasma fluid
theory. Consider a square laser pulse profile (ag = constant for 0 < £ < \,/2 and ay =
0 elsewhere), with optimal length for plasma wave excitation (cr;, ~ A,/2). The driven
wakefield F., 0, is written in terms of ag: E. az/Fo = (a0/2)?/(1+ a3 /2) [127, 128]. where
Ejy is the cold wave breaking limit, as recalled here Ey = m.cw,/e. In the quasi-linear regime
(a2 < 1), E. naz/Fo can be approximated as a2/2, therefore

Ficry
pd — E2
_ (wormecao/e)*(Ap/2)
(wpmec/e)*(ag/4)
3
Ay
agAg
Similarly, considering the previous square laser pulse profile, we evaluate the dephasing
length in the nonlinear regime (a2 > 1). Here, the optimal length for plasma wave excitation
is c1r, & Anp/2, where Ay, is the nonlinear plasma wavelength [52, 50, 51, 4] and it writes

L

=2

(1.89)
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Performing the same calculation as before, we obtain L,y = (v/2/7) (A3/A8)ao in the nonlinear
regime.

The above results are obtained assuming constant laser amplitude, plasma density and
wakefield throughout the propagation. An evolving plasma wave amplitude and 3D effects
alter these results. For example, [129] showed that the effects of laser diffraction can lead
to a more restrictive trapping condition for linear plasma waves. Since the laser pump
depletion is dependent on the pulse profile, hence the depletion length is generally written
as Lpg o ()\2//\(2))a52 for aj < 1 and Lyq o< (A3/A5)ag for af > 1.

Analytic solutions are unavailable for multidimensional nonlinear regime or for realistic
pulse profiles, in these cases we turn to numerical simulations to obtain the plasma response
and particle behavior. Such simulations are described in Chapter 5. Although simulations
and scaling laws from previous experiments help us choose appropriate laser plasma pa-
rameters to obtain beam of certain properties in experiments and to interpret data from
experiments, the linear and 1D nonlinear theories still provide useful guides to establish op-
erating regime. Once pump depletion occurs, staging with a fresh pump pulse is necessary.

1.5.3 Electron dephasing

Since the plasma wave travels at the group velocity of the laser v, < ¢, electrons in the
accelerating phase of the wakefield will eventually outrun it and slip into the decelerating
phase over a length referred to as the electron dephasing length, L, [5, 130, 131, 39]. This
effect limits the energy gain to the dephasing length.

To evaluate the exact dephasing length requires to know the exact acceleration dynamics.
Here we assume that the acceleration dynamics is constant throughout the propagation,
we can then develop a lower limit by considering the propagation distance L, it takes a
hypothetical test particle to travel across the accelerating and focusing phase. The slippage
is defined by the difference in velocity times the time taken, yielding:

(1.91)

where Awv is the velocity difference between the particle and the wave.
For a particle moving close to ¢, and the laser traveling at group velocity vy, Av = (c—v,),
Eq. 1.91 becomes

Ay

Lg= 2.
TNz

(1.92)

Notice that for ag = 1 — 2, the electron dephasing and the pump depletion lengths are nearly
equal. This statement assumes that particles are already injected when the laser starts
propagating in the plasma and at an energy of several rest mass, i.e. velocity c.

The limitation due to dephasing could in principle be overcome by staging the laser-
plasma accelerator, such that when the electron bunch outruns the plasma wave, it is re-
injected into a new plasma wave at the appropriate phase.
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1.5. Acceleration limits

1.5.4 Influence of laser diffraction, pump depletion and electron
dephasing on an injector

The acceleration limits have to be taken into account in the design and optimization of
present and future LWFA experiments. For example, the production of multi-GeV elec-
tron bunches in cm-scale plasmas [132, 133, 15] depends strongly on the properties of the
laser-driven plasma wave, more specifically, the plasma-wave velocity which determines the
dephasing length, and, hence the maximum energy gain for electrons. In the production of
high quality electron bunches with low energy spread and low emittance, one can rely on
the phase space rotation when high energy electrons are decelerated once they attain the
dephasing length [134].

One of the objectives of our group is to optimize the laser-plasma injector in order to pro-
duce a high quality electron beam with narrow energy spread, high charge and low emittance
in multi-stage laser-plasma acceleration schemes as described in the frame of the CILEX
project [20]. For that, we can first use the acceleration limits based on linear, 1D nonlin-
ear theories and scaling laws of previous experiments or from the phenomenological theory
[70] to guide us in choosing laser-plasma parameters, then proceed with PIC simulations to
validate the chosen parameters.

Here we’ll apply these scaling laws to determine the adapted configuration for an injector
that generates an electron beam with energy range between 50 — 200 MeV. We consider the
laser parameters of our collaborators at the Lund Laser Center (LLC). This facility delivers
a 35 TW Gaussian-shaped laser pulse with ~ 800mJ at the focal plane, an optimized waist
of wg = 16 pm, a pulse length of ¢y = 10.2 um, a wavelength of Ay = 0.8 um. With these
parameters, Zr ~ 1 mm. We first evaluate the optimum laser-plasma parameters necessary
for the trapping of electrons in wakefield using ionization injection scheme. Recall that the
two conditions for electron trapping are the normalized vector potential and the plasma
wave amplitude:

e an ag of 2 to create 6 and 7" nitrogen electrons (see Fig. 1.10),

e a large amplitude plasma wave creates a favorable condition for the trapping of elec-
trons. This is obtained using k,wy = 2,/ag, thus the optimum plasma density can be
deduced, ng = 8.8 x 10" cm 3.

Based on these parameters, we calculate the pump depletion and electron dephasing
lengths, giving L,q ~ Lg =~ 2.2cm. Once again, the length above is valid only for electrons
already injected and at energy of several rest masses (hence velocity =~ ¢). This simple
analysis suggests that acceleration of electrons over the longest possible distance, i.e. the
dephasing length, requires guiding of the drive pulse beyond Zg (as Zr < Lg4) for our laser
parameters.

The maximum energy an electron can gain from the wakefield can be estimated using
E = el qglq if the drive pulse is guided. Using 1D nonlinear regime theory, we solve
Eq. 1.62 numerically and deduce the average electric field amplitude of the plasma wave,
E. awg/Eo = 0.6, with Ey = mecw,/e. Assuming that E, .., stays constant throughout
the laser propagation in the plasma, then £ = 1.2GeV. However, in the design study of
the injector as described in the CILEX project, the specification in terms of electron beam
energy is in the range of 50 — 200 MeV, therefore an acceleration length of ~ 3.6 mm is
sufficient to obtain 200 MeV. The guiding of the drive pulse through laser self-focusing,
though hardly controllable, is usually sufficient to attain the required acceleration length
because a(w,wo/c)? ~ 32. The analysis here fulfilled the energy requirement for the electron
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bunch of the injector, however the energy spread and the emittance are yet to be determined
with PIC simulations. Simulations of this sort are included in Chapter 5.

1.5.5 Beam loading

A trapped electron bunch with a relativistically large mass can exert a space charge force
and displace plasma electrons which are of relativistically lighter mass and generate its own
wakefield. The plasma wave generated by the bunch can significantly modify the fields of
the accelerating plasma wave and eventually place severe limitations on the beam current
that can be accelerated, and the efficiency of the plasma-based accelerator. This process is
known as beam loading [130, 135].

It is insightful to compare the amount of charge that can be loaded in linear and nonlinear
plasma waves. Consider a linear plasma wave with an effective area of ~ ¢? /wﬁ, which is
required for high efficiency and good beam quality [130], we have

E 1\ B}
@b L (B (1.93)
Amegmec®/re 8™ \ ng E§
where the subscript [ represents quantities in the linear regime, @); is the charge, r. =
e?/(4megmec?) is the classical electron radius, n;/ng is the normalized density perturbation
and in the linear regime n;/ny < 1. In the nonlinear regime [135], the expression for the
charge writes
OniEN 1 1
—— = — (kyr 1.94
dregmec? [T, 43 (ko) (1.94)
where the subscript NI refers to quantities in the nonlinear regime. In the blowout regime,
the total accelerating force scales with the fourth power of the blowout radius ry, i.e a radius
k,ry, ~ 5 leads to a total force ~ 1000 times larger than in the linear regime. Written as an
engineering formula, Eq. 1.94 reads

QNI eENl 1016 cm—3 4
- ~ 0.047 | —— (k . 1.95
InC mecw, Ny (kprs) (1.95)

Although beam loading has limits severely on the energy that trapped relativistic elec-
trons might gain, it has proven to be beneficial to prohibit the injection process in the
ionization injection scheme and to reduce the energy spread of the electron beam [107].
More details will be given in Chapter 5.

1.6 Properties of an accelerated electron bunch

Convenient figures of merit for designating the quality of a beam are related to energy spread
and emittance.

For a number of potential applications of laser wakefield accelerators, narrow energy
spread and low emittance electron bunch are required. For instance, in the hope of building
compact high-energy colliders with LWFA [136, 60], the key requirements are electron bunch
with low energy spread and high brightness, which in turn requires low emittance [137]. Ra-
diation therapy, more particularly in Very High-Energy Electron Therapy (VHEET) which
requires an electron bunch of energy in the range between 50 and 250MeV for treatment
of deep-seated tumors (> 10cm) [138, 139], favors narrow energy spread and low emittance
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in order to deliver the dose only to a small targeted tumor area [140|. Finally, the quality
requirement is even more critical for a prospective LWFA-based free-electron laser (FEL)
[141]. The FEL mechanism requires both a small transverse size so as to preserve the high
intensity of the bunch and a low divergence for coherence purposes, these two requirements
can be again summed up to a low emittance (< 7 mmmrad) [142]. These quantities are
defined in the following sections.

1.6.1 Energy spread

There are several ways to define the energy spread. The most commonly used definitions are
the root-mean-square (rms) and the full-width at half-maximum (FWHM) if the distribution
of the electron bunch can be fitted with the Gaussian distribution.

The rms energy spread, A&, is given by the following expression

Aims = V((AE — (AE))?), (1.96)

where () defines the average value of the particle distribution.
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Figure 1.14: Energy spectrum curve d@)/d€ vs. €. This energy spectrum follows a Gaussian
distribution function of a mean energy (£) = 100 MeV and a standard deviation o = 2 MeV.
The delimited width in light blue area is the energy spread at full-width at half-maximum
(FWHM).

The energy spread at full-width at half-maximum (FWHM) is formally defined by the
width of the energy spectrum curve measured between those points on the y—axis which
are half the maximum amplitude. Fig. 1.14 shows the energy spectrum curve of an electron
bunch that follows a Gaussian distribution function. The delimited width in the light blue
region indicates the energy spread at FWHM, Afpwnay. This particular electron bunch
shows an energy peaked at E,cqr = 100 MeV and an energy spread of Alpwum/Epear = 4.5%.
In terms of rms energy spread, we have A&,s/Epear = 3.3%. For the rest of the thesis,
A&pwinm/Epear Will simply be noted as AE/E.
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Energy spread degradation

There are several sources of degradation of the energy spread in the electron injector. The
following is not an exhaustive list.

e Degradation due to large injection volume. In ionization injection mechanism,
as long as the laser intensity is high enough to produce the 6* and 7" electrons and
the wake amplitude large enough for trapping, electrons will be continuously injected
into the wakefields. In this case, the global injection volume is large. These electrons
might not all be injected at the same phase in the wakefields. The difference in the
accelerating force experienced by the front and the back of the bunch will tend to
increase the bunch energy spread.

e Degradation due to betatron oscillation. Electron bunch that undergoes strong
transverse focusing forces F| = —m.c?K?r in plasma waves exhibit betatron oscillation
[143] where K is the focusing constant. Individual electrons oscillate with a frequency
ws = wp/v/27 (known as the betatron frequency) and it is dependent on the electron
energy. This oscillation results in synchrotron radiation that causes energy loss, since
electrons do not all oscillate at the same frequency, some might lose more energy than
others, as a result the energy spread degrades.

1.6.2 Emittance

The beam emittance provides a quantitative basis for describing the quality of the beam, its

measure is equivalent to the product of the beam width and divergence, where the divergence

relates to the velocity spread [144, 145|. By convention, the transverse beam emittance ¢ is

usually represented by an ellipse that contains the whole particle distribution in trace space

(x1,2' ), where ', = p, /p|, such that the trace space area A = me. In the following, we

consider only x—direction, all formulas apply equivalently to quantities in y—direction.
Since the ellipse equation is written as:

V2 4 20,1 + Bo’? = e, (1.97)

where x and 2’ are the particle coordinates in the phase space and the coefficients «,(z),
Bz(2), 7:(2) are called Twiss parameters, generally related by the geometrical condition:

In simulations, we use a statistical approach to evaluate the beam emittance. The def-
inition that we employ is the r.m.s normalized emittance, €, ,n,s for which the transverse
momentum p, = p,x’ = m.cfyz’ is used instead of the divergence, the equation is written
as:

1
Exn,rms = MeC O—%O—Igz o ngw
1 ~ ~ (2
_ 2\ (752 _ 1.99
V@) ) - G (1.99)
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Here 7 = x — (z). The term o, reflects a correlation between 2 and p, which occurs, for
instance when the beam is converging or diverging.
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The reason for introducing a normalized emittance is that the divergences of the particles
x' = p./p, are reduced during acceleration as p, increases. Thus, acceleration reduces
the “un-normalized emittance”, but does not affect the normalized emittance. Assuming a
small energy spread within the beam, the normalized and “un-normalized emittances” can be
approximated by €, ms = (57) €rms. This approximation, which is often used in conventional
accelerators, may be strongly misleading when adopted for describing beams with significant
energy spread, like those presently produced by LWFA. In [146], the author gave a detailed

explanation on the relationship between normalized and “un-normalized emittance”.

Emittance degradation

The transverse emittance of electron bunches generated and trapped in laser-wakefield accel-
erators using ionization injection is given directly by the laser vector potential at ionization
[147]. Further emittance growth in the plasma can be due to several factors.

e Degradation by finite energy spread. In Sec. 1.6.1, we mentioned that synchrotron
radiation results in growth of energy spread, this in turn will degrade the emittance.
As individual electrons rotate around the origin of the (z,p,) phase space with the
betatron frequency, this suggests that low-energy electrons will rotate faster than high-
energy electrons in phase space. This difference in frequencies results in an increased
emittance at a later time via a phenomenon known as decoherence [148].

e Degradation by nonlinear focusing forces. Nonlinear focusing forces in the trans-
verse directions can degrade emittance. For instance, nonlinear force due to focusing
fields of a linear laser plasma waves affect electrons traveling very far from the axis
(refer to Fig. 1.3). Note that this does not happen in the blowout regime because the
focusing forces are always linear in r and independent of £ as long as the electrons
remain inside the ion cavity. As a consequence, electrons experience different focusing
fields depending on their transverse positions, altering their distribution in the phase
space, thus degrading the emittance of the electron bunch.

e Degradation by direct interaction with the laser pulse. Direct Laser Acceler-
ation (DLA) where electrons gain energy due to the laser transverse electric field has
been demonstrated to be an additional acceleration mechanism [149]. In this configu-
ration, the betatron oscillations of the electrons in the plane of the laser polarization
lead to an energy transfer from the laser transverse electric field to the transverse mo-
mentum of the electrons [150]. Though DLA brings additional gain to the electron
bunch energy, it also increases transverse momentum of the electrons. As a result, this
increase in the transverse momentum jeopardizes the emittance of the electron bunch.
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Chapter 2
Particle-In-Cell (PIC) Code

We have presented in the previous chapter the main physical processes occurring in LWFA.
We have also analyzed these processes through an analytical approach, which can only
provide information of qualitative nature. Accurate quantitative analysis or prediction of
an experiment can only be obtained via numerical modeling. Due to the complexity of the
considered physics, LWFA simulations might require a large amount of computing resources,
thus limiting the number of parametric studies. Optimization in both the physical model
and numerical solvers has thus become necessary.

In this chapter, we will first introduce the full kinetic approach for LWFA modeling.
The following section is devoted to the numerical implementation of this physical model
through the Particle In Cell (PIC) method. Then, we address the issue on the reduction of
the numerical noise due to the projection on a finite size grid in the standard PIC model
through high-order and pseudo-spectral solvers. Finally, we introduce the specific technique
of azimuthal Fourier decomposition in a cylindrical geometry that is used for the modeling
of the laser-plasma injector.
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2.1 Governing equations

The interaction between a high intensity laser pulse with a plasma has three aspects: the
propagation of the laser pulse, the evolution of the charge and current densities induced by
the interaction between the laser pulse and the plasma, and the generation of an electromag-
netic field by these charge and current densities. In the strong nonlinear regime encountered
in the laser-plasma injector, the amplitude of the plasma wakefield can be as large as the
laser electric field. The ionization rate of the outer-shell bound electrons, through tunnel ion-
ization, reaches the fs~! rate at laser intensity of about 10'* W cm ™2, whereas the considered
range of maximum laser intensity in LWFA is above 10 Wem™2. The plasma is there-
fore highly ionized, hence the polarization effect of bound electrons can be safely neglected.
Moreover, the loss of laser energy through ionization is also negligible, therefore charge and
current densities are only produced by free electrons and ions. The governing equations of
our physical system will therefore describe the relations between the electromagnetic fields
and the dynamics of free charges (electrons and ions).

2.1.1 Description of the electromagnetic fields

The evolution of the total electromagnetic fields are derived from none other than the
Maxwell’s equations, as recalled here:

% =~V x E(a,1), (2.1)
% — PV x B(a, 1) — ElJ (1), (2.2)
V. B(z,t) =0, (2.3)
V-E(z,t) = p(":’t>, (2.4)

where E |, B are the electric and magnetic fields and p, J the local statistical average
of the charge and current densities, which can be expressed in terms of the sum over the
single-particle distribution of all species:

px,t) = qu/fs(a:,p,t)dp, (2.5)
J(x,t) = qu/vfs(w,p,t)dp, (2.6)

where f; is the single-particle distribution function of the species s with charge ¢;. The
velocity v is calculated from the momentum p through v = p/~s, with -, the Lorentz factor
vs = /1 + (p/(msc))?. In describing the particle dynamics in the injector, the Lorentz factor
of the accelerated electrons can be much larger than 1, implying that relativistic effects have
to be fully taken into account. Ions, on the other hand, are non-relativistic due to their large
mass.

The Maxwell’s equations can also be written in an alternative, but equivalent way by
introducing the vector and scalar potentials A and ¢:

E(xz,t) = —% - V-0, (2.7)
B(z,t) =V x A. (2.8)
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Combined with the Lorenz gauge VA + d¢/dc*t = 0, the Maxwell’s equations yield the
standard wave equations for the two potentials:

(W - 0_12%) Az t) = —pod (,1), (2.9)
<v2 _ C%%) 6 (1) = —p(Z’ 23 (2.10)

Although the wave and the Maxwell’s equations are physically equivalent, their numerical
implementation can be quite different. Furthermore some approximations can be more easily
introduced in the wave equations.

The choice of the physical framework is made based on the ratio between some char-
acteristic times (lengths): the laser period T;, = 27/wy (laser wavelength Ay = ¢17p), the
laser duration 77, (laser length ly = ¢7p,), the plasma period T, = 27/w, (plasma wavelength
Ay = cT},) and the characteristic time 7, related to the change in the laser amplitude during its
propagation, defined by 7, = Zr/c, Zr being the Rayleigh length. For the regimes currently
explored in the injector, the maximum electron number density is around 10' cm =3, which
is 1000 times smaller than the critical density at Ay = 0.8 um. Hence, the laser propagates in
an underdense plasma and we have ¢; = Ty, /Tp < 1. To maintain the quasi-resonant condi-
tion so that the laser pulse creates a large amplitude of accelerating field, the laser duration
should be slightly less than the plasma period: 77, ~ T}, so that e; = Ty, /7, < 1. Using the
relation Zp = mw3 /AL, one obtains €3 = 7, /7, ~ T,,/7, < 1. Several approximations, based
on €123 can now be introduced.

With ¢; < 1 and 71, ~ T}, one can distinguish two non-overlapping frequency domains:
a high frequency domain for the laser angular frequency wy and a low frequency domain for
the plasma frequency w,. Since €3 < 1, the spectral width of the high frequency field is
relatively small: dwyp/wy, < 1. Taking all these into consideration, one can describe more
efficiently the evolution of the laser amplitude by putting aside the high frequency variation
of its phase, and using the Slowly Varying Envelope Approximation (SVEA). Under the
SVEA approximation, the laser propagation is determined by solving the wave equations
as given in Eq. 2.9 for the envelope described by its vector potential. The J-term in this
equation is determined by calculating the velocity of electrons acted upon by the laser field
only. Moreover, as wg/\g > 1, the paraxial approximation can be combined with the SVEA
to simplify the resolution of the wave equation.

The previous paragraph concerns the laser propagation, here we focus on the interaction
between the laser and the plasma. The laser ponderomotive force creates charge separation
in the plasma, which in turn induces low frequency electromagnetic fields, as derived in
the preceding chapter. The evolution of these fields are then determined by solving the
Maxwell’s equations.

The main advantage of this technique is that the characteristic time for the evolution of
the fields is much larger than the laser period, allowing for a large time-step, leading to a large
speedup in numerical simulations. This method has been implemented in several numerical
codes, such as Inf&rno [28] and Wake [25]. It is well adapted when considering the quasi-
linear regime in the low density plasma of a LWFA acceleration stage. When compared with
the simulation results produced using Wake [25|, we observed that the wave propagation is
still well reproduced in most of the considered situations for the laser-plasma injector. Some
problems however arise when considering higher plasma densities (~ 10'® cm™2), which have
been experimentally investigated at the UHI100 laser facility. At such high densities, non-
linear effects such as self-focusing and self-steepening are severe, increasing the values of €33
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and reducing the validity of the SVEA and the paraxial approximation. For instance, in the
case of ionization-injection scheme, the injection process, which can be very fast, generates
harmonics of the laser frequency, and the injected electrons can interact continuously with
the laser field over large distances. The modeling of such cases by the previous proposed
technique (separation of the low and high frequency terms in the electron dynamics) is no
longer possible. For these reasons, we have chosen to solve the Maxwell’s equations directly
to model the laser-plasma injector. In Chapter 4, we will introduce a numerical technique
that allows increase, by a large factor, of the numerical time-step, yielding a numerical effi-
ciency comparable to the envelope method, even in the highly nonlinear regime of an injector
stage.

2.1.2 Description of the particle dynamics

As shown by Egs. 2.5-2.6, the single-particle distribution functions f; (x,p,t) are the basic
quantities necessary to determine the source terms of the Maxwell’s equations. The charac-
teristics of the accelerated beam is also determined by a single-particle distribution function
fe (x,p,t). When considering the highly nonlinear processes occurring during laser-plasma
interaction in the injector, a full kinetic approach is mandatory in order to describe in details
the properties of the injected and accelerated electrons. The basic equations are then either
the Boltzmann or the Vlasov equations depending on the importance of close collisions. We
describe the interaction process in the injector in a domain of a length of the order of a
few \,. The parameter that defines the importance of collision is thus I' = (v,/w,) %3, v,
being the mean electron-ion collision frequency for momentum transfer, I' is also known as
the plasma coupling parameter. As v, scales as n./ T 2, where n, is the electron density
and T, the electron temperature, the domain of strongly correlated plasmas (I > 1), is only
reached at very high densities, close to the solid one, and at low temperature of a few eV.
The operating regime in LWFA is low in density and high in average energies, therefore
[' < 1, consequently collisions are negligible in the interaction process.

An important property of kinetic plasmas (I' < 1) is that the characteristic length of
collective effect is much larger than the average distance between two plasma particles, that
is Np = nAy > 1, with \p = Uy /wp, where Np is the Debye number, Ap is the Debye
length and vy, the average thermal velocity of the electrons. At relativistic velocities, in
particular for a perturbation propagating at ¢ > vy, we obtain \p = ¢/w, = A, yielding
ne)\f; > 1. Note that for \g = 0.8 um and at n, = 10® cm™2, which is less than the
lowest considered density in the injector, n.\j is still > 1. More generally, using A\p as
the characteristic length to represent the variation of the electromagnetic fields inside the
plasma of a laser-plasma injector, we can assert that

Np = n A} > 1. (2.11)

This inequality plays a central role in the numerical scheme described in the following section.

From the previous paragraphs, we have shown that binary collisions are negligible, the
Vlasov equation becomes naturally the adapted equation to determine particle distribution
functions of free electrons and ions during the interaction of a high intensity laser pulse
with the plasma in the injector. The Vlasov equation also should take into account the
relativistic effects for electrons and the generation of new particles through tunnel-ionization
when considering injection through ionization, represented by the source term G,. The
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Vlasov equation for the function fs (x,p,t) can be written as

a S I at
f (gtp ) 0Vt @0, 1)+ Fy (2, 9.8) -V f = Gy (@,p,1) . (2.12)
where
_ P
Y et (2.13)
2
Vs = 1+< ° ) (2.14)
meC
FS (wapvt)ZQS [E(w,t)—i-va(zc,t)] (215)

In Eq. 2.12, the source term G is related to tunnel ionization, for which the generated
electron is at rest in the reference frame of the parent ion.

From the above equations, it is clear that due to their much lower mass, electrons play
the dominant role in the dynamics of the charged particles. Then comes the question of
completely neglecting the ion motions, that is to use the so-called Jellium model in which
the ion contribution is only introduced through a uniform neutralizing background. However,
in the case of the injector, even a small density modification close to the laser propagation
axis can induce a non-negligible effect on the characteristics of the accelerated electron beam,
which might have a very small transfer size. That is why the dynamics of the ions have also
been included in our calculations. In fact, due to their slow motion, the dynamics of the ions
introduce only a small additional cost in the numerical modeling.

2.2 Introduction to the PIC method

The numerical implementation of the Maxwell-Vlasov equation solve the following problem:
Starting at a given time ¢(™ at which the state of the physical system is known at specific
times ¢t where t(") < ¢ we calculate the new values of the physical parameters at time
t+D = () 1 At, with At the time-step, which in the PIC simulation has a constant value.

The greatest strength of the PIC method is that the calculation can be separated into
two distinct independent steps:

1. solve the Maxwell’s equations for the fields, for known source terms;

2. solve the Vlasov equation in order to derive the evolution of the source terms, for
known values of the electromagnetic fields.

In the following sections, we will first describe these two steps independently, then we
will show how they are combined in the full PIC calculation.

2.2.1 Numerical implementation of the Maxwell’s equations

Within the physical model described in the previous section, all numerical methods intro-
duce a numerical grid in position in order to solve the Maxwell’s curl equations given by
Eqgs. 2.1-2.2. This numerical grid is used either to perform a projection of specific functions
within spectral methods, as will be detailed in Chapter 3, or in the more standard finite-
difference (Yee) or non-standard finite-difference (NSFD) methods, as will be described in
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the present chapter. Here we consider Cartesian coordinates, the cylindrical coordinates will
be considered later in Sec. 2.5 and the laser is propagating along the z axis.

The numerical grid is uniform with a cell width of Az, Ay, Az. The interaction process
is described over a length of L, of a few \,, whereas its duration is given by Lyjasma/c, where
Lpiasma 1s the plasma length in the injector. For the laser-plasma injector, A, < 50 um,
whereas Lyjqasmq can reach several mm. In order to reduce the spatial domain to be computed,
the technique of a moving window is used. This technique consists of a fixed-size simulation
box of a few A, in length, co-moving at the speed of light like the laser pulse to only describe
the interaction process. This is done by adding continuously new cells in the front of the
box and destroying the same amount at the back. Note however that within the box, the
Maxwell’s equations are still solved in the laboratory frame.

The Maxwell’s equations are solved on the numerical grid using the Finite-Difference
Time-Dependent (FDTD) method, with a second-order accurate explicit solver. This second-
order accuracy is obtained by centering the differentiation both in time and in space, implying
that both the fields and the charge and current densities are evaluated at specific times, and
positions. For the time integration, the leap-frog scheme, shown in Fig. 2.1 is used. In this
scheme, the values of the physical parameters are calculated at time ¢ + At, knowing the
values of their time derivative at time t + At/2:

or

By combining Eq. 2.16 with Eqgs. 2.1-2.2, we deduce that the current density and the
magnetic field should be calculated at At/2 away from the electric field. Furthermore, from
the continuity equation

Fla,t+At) = F(z,t) + At (M) . (2.16)
T=t+At/2

Ip (z,1)
ot
it is deduced that the charge density should be evaluated at the same time as the electric
field. The global time ordering of the fields and densities is then the one represented in Fig.
2.1. The leap-frog scheme is commonly used since it is fast as compared to other higher-order
integration methods (e.g. Runge-Kutta), it is sufficiently accurate for plasma modeling and
it allows the separation of the Maxwell’s and Vlasov equations.

= —VJ(x,1), (2.17)

Grid B’”r*'/2 E™ Bn,+1/2 gl Bnt3/2
1 1 3
n—5 At (n) At n-|—5 At (n+1)At n+5 At
---------------- O ® O ® >
. Jn,—1/2 pzl J@+1/2 pn+1 J,,Jr:;/’g
Macro-particles " » / m 7:“ " »
Dl / x" ,Uzlﬂ/z z" o732

Figure 2.1: Temporal layout of field and macro-particle quantities used in the FDTD treat-
ment of the Maxwell’s equations. The known values at the current time-step are colored in
red and blue, unknown values are colored in gray. The objective in one time-step calculation
is to determine the unknown values from the known ones. Adapted from [67].

In order to get a second-order accuracy for the spatial derivatives in the Maxwell’s
equation, the fields have to be evaluated at specific positions. These positions are given by
the Yee lattice [151], which provides centered spatial derivative, with second-order accuracy.
We show this lattice in Fig. 2.2 as an illustration for the TM (transverse magnetic) mode,
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k-B = 0, with z— axis the propagation axis. In this mode only F., F, and B, components
in Cartesian coordinates have non-zero values. Similar approach can be applied in the TE
(transverse electric) mode or the TEM (transverse electric and magnetic) mode.

| < Az > |
' .
]—|‘1 : x
.
1
1
+ <>J$’Em ;By A
R Y T == Az
2 Bx :EyaJy
1
1
1
P 1J, B, Y
J B.
1
1
k k?—i—g k+1

Figure 2.2: Spatial layout of field quantities EZ and B on the two-dimensional grid, together
with the source terms J and p.

In the following, we describe the numerical implementation of the explicit forward inte-
gration scheme [152, 153, 154] of the Maxwell’s equations with the time and spatial layout
of Figs. 2.1-2.2 for the TM mode. Let us first introduce some notations to make the writing
more tractable. The time derivatives become (for any E— and B—fields):

En+1 — E™
DEy" = — — — 2.18
(D.E) — (2.18)
Bn+1/2 . Bn71/2
D:B)" = . 2.19
(D.B) - (2.19)

As for the spatial derivatives accurate to the second-order, we have (for any fields and source
terms F):

Fj ipw—Fy_q1
Az ’

Fjpiro— Fi_q)2
Ay ’

(D.F)yp0 = (2.20)

(DyF)j’,k’ =

(2.21)

where j' and k' are related to the position in x and z respectively and can be integers or
half-integers.

With these notations, the different Maxwell’s equations Eqgs. 2.1 and 2.2 in the TM mode
are written as follows

n+1/2 n+1/2
(DiEe)i 1ok = —c*(D.B, + MOJZ’)j+1//27k7 (2.22)
n+1/2 n+1/2
(DtEZ)j7k+1/2 = CQ(DmBy - Mojz)j7k+1/27 (223)
n+1/2 o n+1/2
(DeBy)jirjaprrse = (DeBo = Dolla)jiipa g jo- (2.24)
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Taking Eq. 2.22 as an example, once E", By™/? and Ji™/? are known, E™*! can be
determined. Writing the expansion of this equation explicitly leads to

Byn+1//2k ) _Byn+1//2k ) /
el 9 j4+1/2,k+1/2 J+1/2,k—1/2 n+1/2 n
Efﬁj:l/?,k = —c"At ( Az + M0J$j+l/2,k> + Ti+1/2,k" (225)

The update of fields E and B alternates, beginning with E, then B, as shown in Fig. 2.1.

2.2.2 Numerical implementation of the Vlasov equation

Knowing the electromagnetic fields in the plasma, the dynamics of the free plasma elec-
trons and ions is given by the equations Eqgs. 2.12-2.15. Since the electromagnetic fields are
evaluated only at specific positions on the numerical grid, it is tempting to evaluate the
single-particle distribution function f; (x, p,t) on the same position grid. This implies that
the velocities are also calculated on the numerical grid to cover the full 6 dimensions of the
phase space. In fact, this approach is known as the Vlasov calculations and it has been
implemented in [155, 156]. These Vlasov simulations are proven to be almost noise-free,
however they are very time consuming, even one-dimensional problems require the use of
parallel computers. The reason why these simulations are computationally heavy is depicted
in Fig. 2.3(a). It shows a phase space (z, p,). The shaded area represents the region occupied
by plasma particles, where the associated two-dimensional distribution function f(x,p,) is
non-zero whereas the unshaded area is void of particles.

(a) 'y (b) §*

A
Sampling by numerical

macro-particles

Plasma distribution Plasma distribution
function function

Figure 2.3: Kinetic plasma simulations: (a) Vlasov method, using an Eulerian grid in the
phase space; (b) PIC method, sampling by numerical particles to mark the distribution
function.

In the Vlasov method, one has to process these empty regions and maintain them as parts
of the numerical arrays, leading to a waste of computational time and computer memory.
This problem has been partially solved using sophisticated numerical methods, such as the
used of an adaptive phase-space grid [156]. Nevertheless, as the efficiency of the Vlasov
method reduces exponentially with the number of dimensions, presently only 1D and 2D
Vlasov simulations have been proposed. To perform a calculation in a 3D position space,
which is mandatory for the modeling of the injector in LWFA, a more computationally
effective method has to be used.
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Looking at the Vlasov equation Eq. 2.12, for a fixed value of the electromagnetic fields,
it is identical to the Louiville’s equation of charged particles moving in an external electro-
magnetic field excluding the source term. However, in order to make the connection with
the Maxwell’s equations in which the values of the charge and current densities are required
on the numerical grid, the point-like particles have to be replaced by the so called macro-
particles, which should have a size larger or equal to the dimension of the grid cells. This
is the basic feature of the Particle In Cell (PIC) method [153, 157|. Therefore, in a PIC
calculation, the single-particle distribution functions of the charged particles are written as

(z,p,1 Z WS [ = @ ()]0 [p — P, (1)] (2.26)

In this equation, S(x — x,,) is the shape factor or the support function centered at the
position of the macro-particle, ws,, is the weight of the macro-particles, and Ny(t) is the
total number of macro-particles in the considered interaction domain. In order to simplify
the calculation, the shape factor is a fixed function, which is identical for all macro-particles
of all species and is normalized through the relation

/S(a: —x,,)dr = 1. (2.27)

In Eq. 2.26, the 0 [p — p,,(t)] term ensures that there is no deformation of S(x — x,,)
during the propagation. The weighting factor ws,, can depend on the species and also on
the spatial position at which the macro-particle is created. In particular, it is through w,,
that the longitudinal and transverse density profile of the plasma can be taken into account.

The introduction of Eq. 2.26 in the Vlasov equation Eq. 2.12 yields

{ vl e 0]5[p—pu )] G (@)} ..

S o (0 ) VS — 8]0~ 1)

Z W (Fs (2,0,1) — D) S [T — 2,0(1)] Vo [p — D, (1)] ¢ = 0. (2.28)

In Eq. 2.28, the first bracket indicates that the variation of the number of macro-particles
is given by the source term, G4. For tunnel-ionization, which is the only source term con-
sidered here, the electron is generated at zero velocity in the reference of the parent ion.
Besides, the total charge is conserved during the ionization process:

qu s(x,p,t) =0 (2.29)

Therefore, a parent macro-particle with a weight w, corresponding to the ion with a charge
¢, that goes through a tunnel-ionization process will be destroyed and a new pair of electron-
ion macro-particle will be created, both the new macro-particles will have the same weight
and the ion will have a charge of ¢ + 1.

In the second bracket of Eq. 2.28, the presence of the 0 [p — p,,(t)] yields

d Pm
— XLy, = Uy, =

dt MsYs,m

(2.30)
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Considering now the last bracket of Eq. 2.28, due to the fact the force F, depends on the
position and the shape factor has a finite size, the expression F; (x,p,t) — dp,,/dt cannot
cancel exactly. An optimized value of dp,,/dt is obtained by integration over space, yielding

dp,,/dt = F (2.31)

F,=E(z,) + v, x B(z,), (2.32)
E(z,) = /dm S(x —x,)E(x), (2.33)
B(x,,) - / iz S(z — x,,) B(). (2.34)

In order to reduce the error introduced by the difference between Fy and F' the size in
each direction of the shape factor should be much less than that of the characteristic length
for field variation along this direction. In addition, because the single-particle distribution
represents a statistical average over the particle trajectories, the size of the shape function
should also be large compared to the average distance between two plasma particles. These
two conditions are in fact compatible in our case of a kinetic plasma, thanks to the condition
established by Eq. 2.11 given in the previous section.

In order to be consistent with the numerical treatment of the Maxwell’s equations, the
trajectory of the macro-particles are determined by solving the two equations of motion as
given by Eq. 2.30 in the second-order time-centered leap-frog scheme:

T (t+ AL) =, (1) + (mp;” ) (t+ At/2) At (2.35)
p,, (t+At)=p, (t)+ F,(t + At/2) At (2.36)

2.2.3 Overview of the global PIC algorithm

We have seen in the two previous sections, the numerical implementation of the Maxwell and
Vlasov equations in two separated steps. We now show how these two steps are combined
to perform a full PIC calculation. It begins with the relation in the spatial domain and then
the time ordering of the various equations. To make the notation less cluttered, we use the
word “particles” to refer to macro-particles in the rest of the thesis. In this section, we keep
the same definition of the spatial domain which is 2D Cartesian coordinates in the (z, z)
plane, and the laser propagates along the z—axis.

Interpolation between the grid and the particle positions

In the numerical treatment of the Maxwell’s equations, the charge and current densities,
as well as the electromagnetic fields are evaluated on the numerical grid, whereas for the
Vlasov equation, all quantities are calculated at the particle position. There is thus a need to
make an interpolation between these two spatial frameworks and this interpolation should
be consistent with the shape function S(x — x,,) of the particles. In most PIC codes, this
shape function is written as a product of one-dimensional functions. In our case it gives

S(x—xp) = Sp (x — ) S, (2 — 2im) (2.37)
/ Sy (T)dr =1, (2.38)
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so that the projection can be performed independently in both directions. Moreover, for
symmetry reason, .S, and S, should be odd functions. Note however that S, and S, are not
necessarily equal.

Consider the grid positions x;; = (jAz, kAz) and P;j, (,,) the projector that will allow
calculation of the charge and current densities from the particles through the relations

Ny
1 S

Pjk = V_” Z qs Z ws,mpj,k (wm> (239)
ce s m=1
1 ol

Jj,k = V. Z qs Z ws,mvaj,k (mm) ) (240)
cell s me1

where V.., = AxAz is the area of the cell of the numerical grid. From Egs. 2.37-2.38, we
can deduce that
P (@m) = Pj (xm) Py (2m) , (2.41)

and

> Pi(xm) =) Pil(zm) =1 (2.42)
J k

A straightforward solution to determine the projectors is obtained by integrating the
shape function around the grid-points on a length given by the cell width :

zj+Ax/2
P (xy,) = / Sy (z — ) do (2.43)
z;—Ax/2
z+Az/2
Py (2) = / S. (2 — 2) dz, (2.44)
2 —Az/2

these equations satisfy Eq. 2.42.
In a similar way, in order to solve the equation of motion Eq. 2.31, one needs to determine
the average fields of Eqs. 2.33-2.34 acting on the particle from their values on the grid.
Following the same procedure as above, we get

E(@) =Y P (xm) P (2m) Ej (2.45)
ik

B(wm> = Z Pj (zm) Py (2m) Bk, (2.46)
jk

where the functions P; and P are given by Eqgs. 2.43-2.44. It is important to note that the
projectors used in Eqgs. 2.45-2.46 for the projection from the grid to the particles positions
are the same as those used in Egs. 2.39-2.40 for the interpolation from the particle positions
to the grid. Otherwise, the asymmetry will introduce nonphysical self-generated fields. In
other words, without a symmetrical procedure, a particle can be accelerated by the generated
field of its own.

It remains now to specify the optimal size and form of the shape functions. We have seen
that this size should be small compared with the characteristic length of the field variation.
This is also true in the FDTD approach for the width of the numerical cell because to
calculate the derivative, we use the first-order expansion in Eqs. 2.20-2.21. Therefore the
size of the shape function should be of the same order as the size of the numerical cell.
However there are two additional considerations that have to be taken into account: (i) As
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will be discussed in detailed later, the value of the time-step is mainly related to the cell
dimension in the direction of laser propagation. As a consequence, in many situations, the
constraint in the time-step imposes a much smaller cell size in the propagation direction
than in the transverse ones (see Chapter 4). Thus in the propagation direction, the shape
function can be significantly larger than the cell size. (ii) The motions of the finite number
of particles provoke a statistical fluctuation both in the charge and the current densities,
which in turn introduce a fluctuation into electromagnetic fields and then the force acting
on the particles. This fluctuation is due to the fact that depending on the form of the shape
function, the derivative 0" P;, (1) /OT" can become infinite at some specific positions. The
importance of these fluctuations, also called numerical noise, can be reduced by increasing
the number of particles. However a general rule in statistics is that the amplitude of the
noise scales only as the inverse of the square root of the number of particles. Hence, a more
efficient way to reduce the numerical noise, can be to increase the ratio between the size of
the shape function and of the numerical cell, and to choose a form so that the lowest orders
derivative of the projector are continuous everywhere.

In a finite-difference solver, the order of the derivative is directly related to the number
of invoked points in the grid, that is the ratio between the size of the cell function and the
one of the numerical cell. Consequently, one or more grid cells that are of the immediate
neighborhood of the particles will contribute to the interpolation. Several canonical expres-
sions for S can be found in [157, 153]. They include the Nearest-Grid-Point (NGP) method,
also known as the zero-order weighting; the Cloud-In-Cell (CIC) method, also known as the
first-order weighting or area weighting; the Triangular-Shaped density Cloud (TSC). Below
we present the expression for the 1D shape function S, for the three cases.

The simplest shape factor to assign the weight of the fields to the particles is to assign to
its nearest-grid-point. For this method, the expression of the assignment function S, writes:

1if | 2] < 4,
0 otherwise.

Se(u) = { (2.47)

The NGP method introduces a discontinuity in field assignment to the particles, it is therefore
seldom used.

The CIC method gives a better approximation at the cost of number of arithmetic op-
erations per particle per time-step as compared to the NGP method. The improvement of
accuracy is brought about by assigning two grid-points rather than one. The corresponding
assignment function S, writes

Sx(u):{ L— a5 i |25] <1, (2.48)

0 otherwise.

In the CIC method, the discontinuity in the projection occurs only at the first derivation
level.

The TSC method further improves the accuracy of interpolation of field quantities to
particles. It involves the contribution of three grid-points, implying that the cost of number
of arithmetic operations per particle per time-step is higher than in the CIC method. The
expression of its assignment function writes

ol sl <d
Se(w) =9 3 (G- 10" ifs <|H <3 (2.49)
0 otherwise.
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Here we see that the discontinuity occurs only at the second-order level. The choice of
the interpolation method depends on the average number of particles per numerical cell.
In some situations, the single-particle distribution function has locally a very broad energy
spectrum, hence a large number of particles are already required to describe the phase space.
In that case, a priori one does no need to introduce a high-order interpolation scheme. In
other situations, in particular when the cell width is much smaller than the characteristic
size of field variations, the number of particles per cell can be limited, which implies using a
high-order interpolation procedure for reducing the numerical noise. In our simulations, we
have used either the CIC or the TSC methods, depending on the considered cases.

PIC time cycle

We have shown the procedure in PIC calculations that links the particle quantities and
quantities on the numerical grid in the spatial domain. Here we address the question of
the time ordering of the two systems of equations. We will show that one of the greatest
strengths of the PIC method is that it yields to four independent routines, that can be
performed sequentially at each time-step, as shown in Fig. 2.4.

Solve fields
(p,J); — (E,B);

time, At
Maxwell
Deposit charge/current Gather forces
(CB,’U)m — (p,J)j (E,B)] — F7n

Push particles

m index of the macro-particle
F — vm — @n j index of the grid

Newton-Lorentz

Figure 2.4: The PIC cycle: Illustration of four components that constitute one time-step.
The particles are numbered m = 1,2...; the grid index is j, which becomes vectors in two
and three dimensions.

We start at a given time-step n corresponding to the situation indicated by red and
blue quantities in Fig. 2.1. The electric fields E™ is known at the time t" = nAt, while the
magnetic fields B" /% and B"*'/? are known at times t"*'/2 = (n41/2)At. For both fields,
their values are evaluated on the Yee spatial grid represented in Fig. 2.2. To be consistent
with the times related to the charge and the current densities indicated in Fig. 2.1, we
assume that the position of the particles " and ™ are known at ¢" and ¢"™! while their

m
velocities v/ /% are known at $"*1/2,
Based on Fig. 2.4, we will go through each routine one at a time.

e Deposit charge/current. The first step of the calculation is to determine the values
of the charge density p", p"™! and the current density J n£1/2 at specific positions on
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the Yee grid from the particle positions and velocities using the projection formulas as
given by Eq. 2.39 and Eq. 2.40.

Solve fields. All the required quantities are now known in order to solve the Maxwell’s
equations (Eqs. 2.22-2.24), from which we deduce the values of E"™ and of B"3/2.

Gather forces. We interpolate the values of the fields from the Yee grid to the
particle positions, through the projection formulas Eqs. 2.45-2.46. To use the leap-frog
scheme for the evolution of the particle velocity from time ¢"*1/2 to time ¢"*3/2 one
needs to calculate the force at the time ¢t"*!. For that, we need the values of both
E™! (™) and of BHH(:B:;“). For B"™ we use the time average value B"*! =
(B2 4 B™3/2) /2. To illustrate this procedure we show the corresponding formulas
in a 2D Cartesian Yee lattice:

EnJrl(w%H) = Z [Pj+%,k(w2j1)Em?j__l L€x + P k(T nH)Ey;LZley
7,k

TPy (x ”“)Ez";ilez}, (2.50)
Bt .n 1 n+1 n+3 n+3
B (@) = 35 | P @) (Bali 2, + B2 ) e
7.k
n+2

+ Py ey (@) (ff3y+2,k+

n—i—%
B ) e

+ Py (et (Bz LB k) e.. (2.51)

Push particles. Once the fields EnH( 1) and of B"" (") are determined at

3
time ¢"*1, it remains to calculate vy, "2 and ™2 of the particles using Egs. 2.35 - 2.36.
With the notation u = p/my = v,,,v, we obtain

un+2 un+2 q un+2 + un+2
m - Wm o n+l, nii m Sn+1l, ni1
= (E (@) + =g < B @l )) . (252

where (772 = 1+ (u"™ /¢)?, with u"*! = (w24 u"+1/2) /2 Notice that Eq. 2.52
is implicit. The name ‘implicit’ arises because u"+3/2 appears on both sides of the
equation. Hence, one way of solving Eq. 2.52 is by using an implicit method. However,
as pointed out in [152] while calculating the trajectory of particles in the presence of
constant E— and B—ficlds, the orbits generated by this algorithm are not exact, a
correction to the E x B drift is expected. Boris [152] introduced another method that
separates the electric and magnetic forces completely by substituting

E" At
'U,n+% =u -— QT, (253)
) EnJrlAt
u"+% = ’U;+ + qT (254)

Putting these equations into Eq. 2.52, E" is eliminated completely, leaving

ut —us q ntt

(u+ +u—) < B (2.55)
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This equation is the discretized version of an equation of motion describing the rotation
about an axis parallel to B""! with a uniform angular velocity. It can then be solved
exactly. The following steps to compute u™t3/2 are then:

e add half the E—field to u™t'/? using Eq. 2.53 to obtain u ™,
e rotate u~ according to Eq. 2.55 to obtain u™,

e add the remaining half of the E—field to u* using Eq. 2.54 to obtain w"*/2.

The drawback of this method arises if we apply a constant non-zero E— and B—fields
in such a way that their mutual contributions cancel, i.e. E + u x B/y = 0. Using
the Boris method, it is found that the particle undergoes a spurious force in the case
where E # 0 and B # 0. In response, Vay has proposed a method to mitigate this
effect (refer to [158] for more details).

Regardless of the method used to obtain w™*3/2, the position is then updated from the
velocity v"3/2 = 4" +3/2 ) An+3/2 with (7’”%)2 =1+ (u”Jr%/c)2 by applying Eq. 2.35,
giving

"2 = 2" "I AL (2.56)

After having calculated Eq. 2.35, all physical quantities are now determined at time
t + At. The calculation can then further continue by repeating the four steps described in
this section. This constitutes the PIC time cycle, as shown in Fig. 2.4.

The presented PIC cycle can lead to nonphysical errors because, due to discretization,
the continuity equation (0;p+ V+J = 0) is not exactly satisfied. The scheme is therefore not
charge conserving, leading to a possible accumulation of errors during the interaction process.
To resolve this, Marder has introduced an added term known as the “pseudo-current” [159],
F' in the Maxwell-Ampere equation to correct the buildup of error. This term is defined as
F(x,t) = V- E — p. For the numerical solution, Maxwell-Ampere equation Eq. 2.2 is thus
altered to include the “pseudo-current” as a correction term. Another method to conserve
charge in the PIC method is by the Esirkepov algorithm [160], which is the generalization of

the method developed by Villasenor and Buneman [161]. This algorithm calculates J;Zl/ 2

knowing p?jgl. In Villasernor and Buneman, CIC particle shape factor is assumed whereas
in the Esirkepov’s method, it is extended to any arbitrary particle shape factor assuming
that the particle trajectory over one time-step is linear.

In one-time cycle of the PIC calculation, some recurrence relations are used involving
values defined at several previous times. The question then arises on how to initialize the
calculation at the initial time ¢ = 0. In fact this problem is greatly simplified by starting
the calculation in vacuum, at some distances before the entrance into the plasma. However,
even in vacuum, the initialization process is not trivial because the analytical formula for the
laser amplitude that are usually applied, i.e. of a Gaussian pulse, are not exact solutions of
the Maxwell’s equations and even less of its discretized form. In Warp, an original method
has been implemented to solve this problem. The input field is first transcribed as a source
term of current density, and the field generated by this source is directly determined from
the Maxwell’s equation.

Accuracy and stability of the time integration scheme

By studying how the plane electromagnetic waves are reproduced in the vacuum, i.e. we
consider the source terms without the self-consistent dynamics of the charged particles,
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therefore J = 0 in the Maxwell-Ampere’s equation, one could have an insight on the accuracy
and stability of the FDTD solver used in the PIC simulation. This type of study is known
as the numerical dispersion analysis.

The procedure for the numerical dispersion analysis involves substitution of plane monochro-
matic traveling-wave trial solution into the discretized Maxwell’s equations Eqs. 2.22-2.24.
After some algebraic manipulation, an equation will be derived that relates the numerical
wave-vector components, k, the wave frequency, w, and the grid space and time increments,
Ax and At respectively. This equation, also known as the numerical dispersion relation
is then numerically solved for several different sets of grid discretization, wave-vector, and
wave frequency to illustrate the key nonphysical modeling results associated with numerical
dispersion.

Assuming that the fields are of the form (E, B) = (E,, By) exp(ik+x — iwt). For the
following demonstration, we take TM mode as an example, same results are obtained in
other electromagnetic modes, i.e. TE and TEM modes. In the TM mode, the discretized
monochromatic traveling-wave trial solutions yield

E.5 = By exp (iwnAt —i(k,Ar + k. Az)), (2.57)
ik = By exp (lwnAt —i(k, Az + k. Az)), (2.58)
By = By, exp (iwnAt —i(k, Az + k. Az)), (2.59)

where k, and k, are, respectively, the x— and z—components of the wavenumbers, j and k
being, respectively, the indices specifying the sampling points in the z— and z—directions.
Substituting the traveling-wave expressions into the difference equations Eqs. 2.22-2.24 and
considering propagation in vacuum, one gets
E. - _C2AtBy0 si.n(kl,Ax/Q)7 (2.60)
Ax sin(wAt/2)
AAt _ sin(k,Az/2)

Bay == Az By sin(wAt/2) (261)
B sin(k,Az/2) sin(k,Az/2)

Upon substituting E,, of Eq. 2.60 and E,, of Eq. 2.61 into Eq. 2.62, we obtain

(] [m (] [ ()] o

which is the numerical dispersion relation in the leap-frog scheme, accurate to the second-
order, for propagation in vacuum.

From this relation, we first recover the exact vacuum dispersion relation k2 + k? = w?/c
in the limiting case where wAt, k,Ax and k,Az are all < 1. However the projection of
the particle motions on the grid induces some numerical noise in the source terms of the
Maxwell’s equations, which can have a broad spectrum both on spatial and time domains.
The fields induced by this noise should propagate without amplification, otherwise the time
integration scheme becomes instable. If we impose that a real value of w has to be a solution
of Eq. 2.63 for any values of the wavenumber, we obtain the relation

(3:) + (&)

2

1> (cAt)? , (2.64)
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or cAt < Az/v/2 for Az = Az, which is the well-known Courant-Friedrichs-Lewy (CFL)
[162]| condition. If the CFL condition (Eq. 2.64) is violated, then sin(wAt/2) exceeds unity
for k, Az, k.Az near 7. In that case, the complex w roots give a growth of instability which
can be very rapid, resulting in an error in phase or magnitude of the E— and B—fields. All
these effects are a direct result of the discretization in space and time.

I | | | | |
3.0 cAt/Az .
— 0.2
25H — 0.4 —
— 0.6
20 — 0.8
% — 1.0
q 15 1.2 -
3
1.0 f= -
0.5 p= -
0.0 1 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kAz

Figure 2.5: One-dimensional vacuum dispersion solution of Maxwell’s equations for finite
Az, At, from Eq. 2.63. No dispersion error is observed for ¢At/Az = 1.0, at which one
retrieve the correct value of the phase velocity in vacuum.

The CFL condition gives us an upper limit for the time-step in order to get a stable
integration scheme. It is also important to analyze whether we gain in accuracy by reducing
the time-step. For simplicity, we consider only the 1D case. Figure 2.5 shows a plot of
curves wAz/c vs. kAz satisfying Eq. 2.63 at different values of cAt/Az. We observe
that w < kc when cAt < Az, meaning that the phase velocity v, = w/k is smaller than
c. More importantly, we observe that v, decreases with the time-step, dropping as low as
2¢/m = 0.637c¢ for the smallest value of At, which corresponds to a value for the electron
Lorentz factor 7. as low as 1.3. When v4 < ¢, relativistic particles may have v > v, at
large wave-vectors (or short wavelengths), generating nonphysical particle-wave growths,
or Cerenkov emission [163, 164]. An examination on the collective instabilities involving
interaction between relativistic electron beams and these short light waves was performed
in Godfrey’s work [165, 166, 167|. The reason why Cerenkov effect is a numerical artifact
in LWFA becomes clear when we draw a parallel between the numerical and the physical
Cerenkov emissions. As explained in [168], the Cerenkov effect can occur when a relativistic
charged particle travels through a medium in which the phase velocity of light v, is lower
than c. Hence if the particle travels faster than the phase velocity, i.e v > vy, it will emit a
characteristic radiation, known as the Cerenkov emission. This effect can happen in dielectric
media, such as air or water, but it can never occur neither in vacuum (vs = ¢) nor in plasma
(vg > c¢) because a relativistic particle cannot travel at the speed of light, ¢. Thus the
Cerenkov effect is physically impossible in any configurations of laser wakefield-acceleration.
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In LWFA, the trapped and accelerated electrons have ~, larger, and even much larger for
the accelerator stage, over a large part of the interaction process. Using ¢ — vy ~ 1/(272) ,
we observe that ¢ — vy has to be very small, that is why the time-step is fixed at its CFL
limit in most PIC simulations with FDTD solvers.

In most calculations related to LWFA, the grid dimension along the axis of laser propa-
gation is much smaller in the transverse plane. As a consequence, an important conclusion
from the above stability analysis, is that the optimized value of the time-step should satisfy
At ~ Az/c, so that there is a strong correlation between the time-step and the longitudinal
dimension of a grid cell. This is a strong restriction, which is a consequence of the FDTD
approach.

2.2.4 Conclusions on the FDTD Cartesian PIC method

The FDTD PIC method with a Cartesian grid described above has several advantages in
order to optimize the numerical implementation of a LWFA simulation:

e Due to the second-order scheme for spatial derivative, direct correlation between nu-
merical cells is restricted to the neighboring cells. This allows the use of very efficient
parallel algorithms based on spatial decomposition, because the overlapping region be-
tween domains is small. In fact PIC codes such as Warp have a very good parallel
efficiency over thousands of computing nodes.

e The leap-frog scheme has also reduced the length of correlation between the various
time-steps. As a consequence, less data have to be kept in memory, simplifying the
treatment of large domains.

e Most of the calculations are made through basic operations over large dimensional
vectors or tables. This encourages the development of efficient algorithms to optimize
vectorization.

The FDTD method on a Cartesian grid also comes with some disadvantages, that can induce
severe constraints on LWFA numerical simulation:

e While 2D Cartesian calculations can be used to obtain information on a qualitative
level, a 3D approach is mandatory in order to get accurate quantitative results. How-
ever, a direct full 3D simulation of the interaction process over several mm requires a
huge amount of numerical resources, typically of the order of 10° CPU-hours produc-
ing more than 10'? bytes of binary data. This limits the number of parametric studies
that can be done over the large number of physical parameters in LWFA using the
3D Cartesian FDTD solver. To resolve this problem, two numerical techniques have
been proposed: (i) a quasi-3D approach in cylindrical geometry [30]. This approach,
which will be detailed in Sec. 2.5 has been implemented in Warp. It is a very efficient
technique to simulate axisymmetric physical cases and has been used in this thesis
for the modeling of the laser-plasma injector; (ii) in cases where there is no identified
symmetry, a full 3D PIC simulation remains mandatory but a numerical technique
using a relativistic boosted-frame can reduce the computational time. This technique
will be presented and analyzed in Chapter 4.

e As shown in the previous subsection, the second-order finite-difference solver induces
severe constraints in the numerical resolution to ensure stability and accuracy of a
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simulation. For instance, in LWFA, the accelerated electrons can become highly rela-
tivistic, possibly leading to spurious numerical Cerenkov effect, which can become the
most important limiting factor for the determination of the grid size. In that case,
NSFD, high-order FDTD or spectral solvers can become more efficient. This point will
be discussed in the next sections.

2.3 Non-Standard Finite-Difference (NSFD) solver

Non-Standard Finite-Difference (NSFD) solvers were introduced to solve discrete ODEs
because they bring about higher efficiency and better accuracy as compared to standard
FDTD (Yee) solver. In their formulation, the denominators of the derivative terms are
modified according to the expected form of the solution. In [169, 170], Cole introduced an
implementation of the source-free Maxwell’'s wave equations for narrow-band applications
based on NSFD. Karkkainen et al. adapted it for wideband applications in [171]. The “Cole-
Karkkainen” (or CK) [171] solver enlarges the stencil, therefore allowing a larger timestep
than with the Yee solver. In addition, at the CFL limit for the time-step and for a given
set of parameters, the stencil proposed has no numerical dispersion along the principal axes,
provided that the cell size is the same along each dimension, i.e. cubic cells in 3D.

The implementation of the CK solver in a PIC code must introduce the source term into
CK source-free formulation in a consistent manner, however it is challenging to modify the
NSFD formulation of the Maxwell-Ampere equation to include the source term in a way
consistent with the current deposition scheme. In Warp, this problem is mitigated by only
applying the enlarged stencil on the Maxwell-Faraday equation, which is source-free while
the Maxwell-Ampere equation is discretized in the same way as in the Yee solver. The
discretized Maxwell’s equations read:

DB =-V*x E, (2.65)
mEzévXB—i, (2.66)
€0
v.-E="2], (2.67)
€o
[V*B = 0. (2.68)

Egs. 2.67-2.68 are not solved explicitly if the continuity equation dp/0t + VJ = 0 is
satisfied. In 2D, assuming the plane (x,z), the differential operators are defined as

V=D,2+D.z, (2.69)
V*=D;x+ D.z, (2.70)
with the finite-difference and sum operators being respectively
D! = (a+ BS) Dy, Dt = (a+ S.) D., (2.71)
and
(SeF)ji o = Flipropw + Fiy o (2.72)
(S2F)5 o =Fj iayo + Flio 1y, (2.73)

where j' and k' are related to the position in x and z respectively and can be integers or
half-integers. F' is a sample vector component, while o and ( are constants that verify
a+ 28 = 1. The derivation for the 3D case can be found in [172].
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Accuracy and stability of the CK solver

The numerical dispersion relation for the CK solver following the analysis in Sec. 2.2.3 is

given by , ) ,
(Si:;%) -, Cm;;%) +C. (SmA%> (2.74)
with
C, = a+2fcos(k.Az), (2.75)
C, = a+ 25 cos(k,Ax). (2.76)

The determination of the CFL condition is given by

sin (WTN) <1 (2.77)

We make the ansatz that the most unstable modes propagate at the Nyquist wavelength
along the cell (3D) diagonal, the cell faces (2D) diagonal or the main axes. Considering
the 2D case, we obtain k,Ax = k,Az for the cell faces diagonal, therefore sin(k,Ax/2) =
sin(k,Az/2) = 1 and cos(k,Az) = cos(k.Az) = —1, leading to C, = C, = a — 2. With
these equalities, we can solve for Eqs. 2.74 and 2.77, the CFL condition in 2D reads

At < 1/\/(a — 28) [(1/Az)2 + (1/A2)7. (2.78)

Assuming Az = Az and taking o = 3/4 and 5 = 1/8, we obtain ¢cAt = Az. As a result,
there is no dispersion along the principal axes. The 3D formulation of the CFL condition
for the CK solver in given in [172].

2.4 High-Order and Pseudo-Spectral Solvers

As shown in the previous section, the numerical Cerenkov emission, which is a well-known
artifact in the PIC community [167], can impose a severe limitation on the applicability of
the FDTD solver. In particular, it can have dire consequences in flowing plasma simulations,
in which the whole plasma is moving at a relativistic speed [173]. Examples of simulations
that operate under such condition are simulations of astrophysical shocks [174, 175] and
boosted-frame simulations [31, 176, 177]. At first view, the Numerical Cerenkov effect is
less dramatic in standard LWFA simulations as only a small part of the plasma, i.e. the
trapped electron bunch, travels at an ultra-relativistic speed but these trapped electrons,
the most susceptible to be affected by the Cerenkov effect, constitute the part that we are
most interested in. That is why its effect, within the LWFA context, has been analyzed
in recent works [178, 179]. We have seen that the Cerenkov effect, within the second-order
FDTD solver, impose severe constraints in defining the size of the numerical cell and the
time-step. The objective of higher-order or spectral methods is to propose a method able to
reduce these constraints, in order to increase the numerical efficiency.

For a given numerical cell dimension and time-step, one way to reduce the Numerical
Cerenkov radiation in simulations is to extend the FDTD solver by introducing higher order
terms in the calculation of the spatial derivatives. It reduces the discretization errors hence
more stable with regard to Numerical Cerenkov, at the expanse of a computational cost that
rises with the order of accuracy. Beyond a certain order which depends on the details of
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implementation and the hardware used for the simulations, it is well known that pseudo-
spectral methods become eventually more efficient than finite-difference methods [180]. In
fact the pseudo-spectral formulations can be established by taking the limit to infinite order
in the high-order solvers. In the following, we will introduce the high-order and the pseudo-
spectral solver for the formulation of the Maxwell’s equations.

2.4.1 High-Order Finite-Difference solvers

The spatial derivatives defined by Eqgs. 2.20-2.21 when extended to a higher order (presum-
ably infinite) have the following formulations:

(Do F)jip = Aix |ColF iy = i) + Cr(F g = Fiogi) + ..

= é ; ColF iy gy = Fyp_mn )| (2.79)
(DF)yae = 5 [ColFy sy = i) + CilEy gy = Frag) +

= é; [Cp(Fj,,k,ﬂ% _ Fj,,k,_gpi;l)} , (2.80)

where j’', k" can be integers or half-integers, C, are the coefficients of discretization given by
an algorithm due to Fornberg [181], which are given in Table 2.1 for orders 2 to 20, and
at the limit of infinite order, with 25:0(21) + 1)C, = 1. These coefficients are applied to
equispaced staggered grids [181] only. For example, applying this differentiation operator
(extended to order N) to Eq. 2.22 gives us the following expanded expression

Titgk T Titgk Yitg .kt Yits

. . At
g2 _p 1/2_6252019 (Bn it — B, 1k—2”—;1>' (2.81)
p=0

More specifically, if we limit the extension to the 6 order, F, can be expressed as

n+1/2 n—1/2 2 At n n
By =B = g (1719 (B ey~ Bly)
00651 (B, 1 g3 = Bylyss) 400047 (B o= Byl o )] (282)

From Table 2.1, it is observed that the coefficients of discretization depend on the or-
der of accuracy. For a solver that is accurate to the second-order, only the nodes adjacent
to the centered node are included, whereas for higher orders, more distant nodes are in-
cluded. The more distant the nodes are from the centered node, the smaller the coefficient
of discretization, indicating that the weight of the distant grid nodes are weak.

2.4.2 Pseudo-Spectral solvers

In 1973, Haber et al. presented a pseudo-spectral solver that integrates analytically the
solution over a finite time-step, under the assumption that the source is constant over that
time-step [163]. Haber’s pseudo-spectral analytical time-domain (PSATD) algorithm has
various advantages over the FDTD as it solves the vacuum Maxwell’s equations exactly, has
no CFL time-step limit, offers substantial flexibility in plasma and particle beam simulations
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Table 2.1: Coeflicients of discretization generated from Fornberg’s algorithm centered at

grid node 0.
Order of Grid nodes
accuracy 1/2 3/2 5/2 7/2 9/2 11/2  13/2  15/2  17/2  19/2
2 1.0000
4 1.1250 -.0417
6 1.1719 -.0651 .0047
8 1.1963 -.0798 .0096 -7.0e~*
10 1.2112 -.0897 .0138 -1.8¢7% 1.2¢7*
12 1.2213 -.0969 .0174 -3.0¢ % 3.6e=* -2.2¢7°
14 1.2286 -.1024 .0205 -4.2¢7% 6.9¢* -7.7e™® 4.2¢ 76
16 1.2341 -.1066 .0230 -5.3¢=3 1.le™* -1.6e=* 1.7¢7® -85e 7
18 1.2384 -.1101 .0252 -6.4e3 1.5e * -2.9e¢* 4.1e® -38 6 187
20 1.2418 -.1129 .0271 -7.4e™® 1.9¢* -43e* 7.7¢® -1.0e® 88 7 -3.7¢8
limit n — oo | 1.2732 -.1415 .0509 -.0206 .0157 -.0105 .0075 -.0057 .0044 -.0035

and is more stable with regard to Numerical Cerenkov radiation [165, 166, 167]. The other
commonly used pseudo-spectral time-domain (PSTD) algorithm offers similar advantages
except for a restrictive CFL limit.

Pseudo Spectral Analytical Time Domain (PSATD) algorithm

In the PSATD implementation, the Fourier transformation is used in the calculation of the
spatial difference in the k—space, while the leap-frog method is retained for the temporal
differentiation. Maxwell’s equations in the k—space are given by

OE - -

a—_[z—leiXB—J, (283)

0B -

E = —ick X E, (284)
[ikz-E ~ 7, (2.85)
[ik: .B =0, (2.86)

where a is the Fourier Transform of the quantity a. Similarly to the real space formulation,
if the continuity equation 0p/0t + ik - J = 0 is satisfied, then Eq. 2.85 and Eq. 2.86 will
automatically be satisfied, thus is is unnecessary to integrate them explicitly.

The PSATD formulation ensues by decomposing the electric field and the current into
longitudinal and transverse components, such that E = E,+E;=k(k-E)—kx (kxE)
and J = J, + Jp = k(k-J) —k x (k x J), where k = k/k and k? = k2 + k2. With these
decomposed quantities, Eq. 2.83 and Eq. 2.84 become

OEr - -
8tT —ick x B — Jr, (2.87)
OE; -
T —J, (2.88)
OB . ~
E = —ick X ET. (289)
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The above system of equations can be solved analytically under the assumption that the
sources are constant over a time interval At. The original formulation is given in [163] and
more detailed derivation is featured in [182]. The discretized analytical solutions are

By = CEy+iSkxB" - %J”+2, (2.90)
B AL (2.91)
~n ~ ~ ~n 1— n+1

B"" = CB" —iSk x Ej +i Ck: Jne, (2.92)

with C' = cos(kcAt) and S = sin(kcAt).
Combining the transverse and longitudinal components, gives

E" =CE" +iSk x B" —%J (1 —C)E(E-E”)

+k (k:~J ) <% — At) : (2.93)

~n ~ ~n 1— ~ ~n+ i
H_0B Sk B it R (2.94)
&

The above PSATD formulation applies to the field components located at the grid nodes,
they can be easily recast on a staggered Yee grid by multiplication by the appropriate
phase factors that shift them from the collocated (as in E— and B—fields are both taken
at the same temporal node) to the staggered times (see Fig. 2.1). In the staggered time
configuration, the system of equations writes

~n ~n ~ ~ 7N, 1 2 (0 Fn 2
B B 2isk x BT B g (B i) (2 ar) (2.95)
ck ke
~n+ti ~p—1 ~ ~n 1— ~ ~n+1 ~n—1
B =B"? —2iSk x E" +i kChkzx<J+2—J ) (2.96)
&

where S), = sin(kcAt/2) and Cj, = cos(kcAt/2).

Pseudo Spectral Time Domain (PSTD) algorithm

The PSTD formulation is a specific case of the PSATD formulation. As demonstrated in
[182], by Taylor expanding the coefficients S;, and C), and keeping only the leading terms,
the PSATD formulation reduces to the PSTD formulation [183, 184]:

~n+1 ~n+%

E" =E" +icAtkx B2 — AtJ"? (2.97)
BB —icAtk x BT (2.98)

We can write this system of equations for the TM mode, where only three components
are involved, namely F., E, and By, therefore giving:

1

~ n+1 5 = n+2

E,7 =E," —iceAth.B," T — AL, (2.99)
B =B ieAth, B, — AtLT?, (2.100)
< el _1

B, =B, —icAt (kE — kB, ) (2.101)

Eqgs. 2.99-2.101 are convenient for the numerical dispersion analysis that we are perform-
ing in the next section.
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Accuracy and stability of the time integration

In the following paragraph, we will perform numerical dispersion analysis for the high-order
and pseudo-spectral solvers to examine their accuracy and stability.

The procedure for this analysis is similar to the one in Sec. 2.2.3. The numerical dispersion
relation given by Eq. 2.63 extended to a higher order, i.e. N order, yields

2
1 wAt\T? [ 1 &K L @+ D) kA
LAtsm( 2 )} - sz Cpsm( 2 )

ZOp 1n< 2])—}—12)]{3 AZ)

where C), are the coefficients of discretization given by an algorithm due to Fornberg [181],
as in Table 2.1.

For the numerical analysis in vacuum on the pseudo-spectral solvers, we neglect J because
there is no contribution from the self-consistent dynamics of the charged particles.

2

, (2.102)

.
.

wAz/c

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kAz

Figure 2.6: One-dimensional vacuum dispersion relation of Maxwell’s equations where we
have only considered the z—axis. All curves shown are plotted for cAt/Az = 0.2. Numbers
in the legend represent the order of accuracy in the high-order solver.

The PSATD algorithm is free from any numerical dispersion and is not subject to a
CFL condition. The solution is exact for any time-step provided that the current source is
assumed to be constant over the time-step.

We also perform the numerical dispersion analysis in vacuum on the PSTD algorithm
by substituting the traveling wave trial equations Eqs. 2.57-2.59 into Eqs. 2.99-2.101. After
some modest amount of algebra, we obtain the following numerical dispersion relation

sin (“At> _ kel (2.103)

2 2
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2.5. PIC method in the cylindrical coordinates

Unlike the PSATD algorithm, the PSTD algorithm is subject to numerical dispersion for a
finite time-step and to a CFL condition that is given by

2 1 1 1
At < — 2.104
¢ _ﬂ\/Ax2+Ay2+A22’ (2.104)

in three dimensions.

Fig. 2.6 shows a plot of wAz/c vs. kAz for a fixed cAt/Az = 0.2. The numerical
dispersion relation of various orders of accuracy spanning from 2 to 128 are evaluated. At
the infinite order, we obtain the solution for the PSTD algorithm, constituting the asymptote
for the solutions of the high-order solver. At the second-order, we retrieve the result of Fig.
2.5, with a phase velocity v, = 0.637c < ¢ when kAz — m, implying that relativistic
particles of v > v, might generate nonphysical Cerenkov radiation at large wave-vectors,
k. We observe also in Fig. 2.6, that vy increases with the order of derivation, the highest
value being obtained with the PSTD solver. In this regard, other things being equal, the
high-order FDTD solver reduces numerical dispersion errors and offers a more stable solution
regarding the Numerical Cerenkov emission. With a high-order of accuracy, the numerical
dispersion solution in vacuum tends to the ideal solution, given by the asymptote of the
numerical dispersion relation from the PSTD algorithm.

2.5 PIC method in the cylindrical coordinates

In the modeling of the injector of the LWF A in the regimes currently explored in experiments,
the physics of interest is highly nonlinear and intrinsically three-dimensional. In order to
capture all physical phenomena to bring a realistic description of the process, we are often
left with the option of carrying out full 3D PIC simulations, which are computationally
intensive and often push existing computers to their limits.

Recently, an alternative to full 3D PIC codes that takes advantage of the symmetry of
the laser-plasma interaction in underdense plasmas in cylindrical coordinates, (r,z,#) has
been developed [30]. This method applies a Fourier decomposition in 6 on the fields and
currents in azimuthal harmonics modes ¢?. The complex amplitudes of the fundamental
and subsequent harmonics depending on r and z are then used to advance the particles as
described in the PIC cycle (see Fig. 2.4). For a linearly polarized laser interacting with a
target with cylindrical symmetry, if the laser amplitude also satisfies a cylindrical symmetry,
then only three angular modes are required to describe the interaction process. In this case,
the use of an angular Fourier decomposition in a PIC model reduces the computational
load to roughly three times that of a two-dimensional simulation while capturing the three-
dimensional nature of the interaction. It is therefore about two orders of magnitude faster
than a full 3D calculation. Moreover, Lifschitz has shown a quantitative agreement between
simulations using this model and full 3D calculations [30]. We will also show in Chapter 5
that a good quantitative agreement is obtained while comparing the simulated results with
the experimental ones [185].

In this section, we will first introduce the mathematical formulation of the model in
cylindrical coordinates, then we will describe its implementation in WARP.

73



Chapter 2. Particle-In-Cell (PIC) Code

2.5.1 Mathematical formulation of the angular Fourier decomposi-
tion algorithm in PIC code

We begin by decomposing the electromagnetic fields, the charge p and current densities J,
expressed in cylindrical coordinates (r, z, 6), into a Fourier series in 6,

F(r,z0) (ZFlrz 119)

= F(r,z) + R (F") cos(d) — S (F") sin(0) (2.105)
+ R (F?) cos(20) — S (F?) sin(26)
+ ...

The amplitudes of each Fourier harmonic (for all fields) F' are complex, whereas the
physical fields they are describing, F', are real. The major advantage of this expansion
is that it allows modeling of a linearly polarized laser with only the first harmonic (I=1)
[30, 186]. For a linearly polarized field, the axis-symmetric laser fields, with amplitude
a(r, z,t) and propagating along z are expressed as:

E(r,z,0,t) =a(r,z,t)y
B(r,z,0,t) = a(r, z,t)

alsin(@)e, + cos(6)ey],
= alcos(0)é, — sin(0)éy).

(2.106)

%3>

By equating the fields in the set of equations Eqgs. 2.106 to the expansion in Eq. 2.105,
one obtains:

Ej(r, z,t) = —ia(r, z,t),
B}(r, z,t) = a(r, z,1), '
Bel(r,z,t) ia(r, z,t)

where only the mode, [ = 1 contributes. This can be generalized to circularly or elliptically
polarized lasers, by combining two linearly polarized lasers.

Once we have the electromagnetic fields, E and B properly defined, we can describe
their time evolution using Maxwell-Faraday and Maxwell-Ampere equations Egs. 2.1-2.2.
Substituting the expansions for each field into these equations gives the following set of
equations, for each mode I:

OB il , OFE)
AR (2108)
OB, OE. OF!

__9b, 2 2.1
a1 o2 " or (2.109)
dB! 10 il
= _Fa_(rEG) + —E, (2.110)
OEL il _, OB} .

r_ W _ 2.111
ot TBZ 0z Ir ( )
oE, 0B. 0B.

_ 95, 95 2.112

ot 0z or T ( )
OEL 10, . i,
= _FE< B)—;BT—JZ, (2.113)
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2.5. PIC method in the cylindrical coordinates

where all quantities are complex functions of (7, z).

We can see that the Eqgs. 2.108-2.113 are linear, so that the only coupling between the
modes has to come through the source term J. In particular, each mode propagates indepen-
dently in vacuum, and in a linear medium. However, modes coupling appears either if the
medium is non-uniform in the transverse plane (not considered here) or from nonlinearities
in the current.

In the PIC model, the current is given by the sum of the contributions of particles. These
particles obey the relativistic equations of motion Eqs. 2.30-2.32.

From these equations of motion, we see that nonlinearities appear from non-local effects,
the laser intensities being non uniform, and from relativistic effect through the term v x B.
Note that these nonlinearities depend on the field modules, which are independent of the
polarization direction and remain mainly axis-symmetric, implying that even with a signifi-
cant level of nonlinearity, the symmetry of the physical system is still conserved. However
this is no longer the case in high density plasma and at ultra-high laser intensities. In all
LWFA modeling in this thesis, yet to be shown in Chapter 5, we only consider plasmas with
densities much lower than the critical density and laser intensities lower than 10 W em=2.
In such cases, keeping only the [ = 0,1 modes is well justified. Codes that are based on this
algorithm are said to be “quasi-cylindrical” (or “quasi-3D” by some authors [186]) because
they are able to take into account the strong axial symmetry of the physical configuration,
in opposition to 2D Cartesian codes; and modes with [ > 0, in contrast to purely cylindrical
codes, which assume that all fields are 6 independent, thus only mode [ = 0 is retained.

2.5.2 Implementation of the quasi-cylindrical model in Warp

In Warp, the numerical implementation of this algorithm consists of solving Eqs. 2.108-2.113.
These equations are discretized with a special care for the quantities on axis before intro-
ducing them into equations of dynamics (Eqs. 2.35-2.36). It follows the description given in
[186].

Discretized Maxwell’s equations

The Maxwell’s equations written in the cylindrical coordinates Eqs. 2.108-2.113 are dis-
cretized on the Yee lattice [151]. The spatial layout of the field quantities are shown in
Fig. 2.7.

We define the following numerical operators D,., D, (for any fields and source terms F'):

F. — F.
l _ T /2K J'=1/2,k'
(DTF)j/7k/ = Ar 9 (2.114)

F. — F.
l _ T gL k+1)2 J' k' —1/2
(DZF)j/,k/ = AZ 3 (2.115)

where 7' and k' can be integers or half-integers.

The discretized equations written in terms of operators D, (defined earlier by Eqgs. 2.18-2.19,
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Figure 2.7: Spatial layout of field quantities in the cylindrical coordinates on the Yee lattice.
E!, B!, Bl and J! lie on the cylindrical axis of the axial cell.

D, and D, read

il
n,l n,l
(DtBT)jH%— A Ejk+1—|—(D Eg)jk+1, (2.116)
n,l )
(DBy)"™ il (DZET)j+%7 + (D, E ) Ll (2.117)
1
n,l . n,l .,
DB =~ Gy ar (6+ 0 st )
2
il !
+ S 2.118
G+ 1) ar it (241
for the magnetic field components, and
ntil 1l nt+il nt+il n+il
(DtE )j+ k _mBZ]'i‘;k - (DZB9)3+l2,k - Jrj—‘r;k” (2119)
n+3,l n+s,l n+s,l n+=,l
(DtEg)]; =(D.B,)}), ! _(p.B Dk ol Jgjz : (2.120)
n+ N 1 1 n+2 . 1 ntil
(DE:), k+ ~jAr (<] + 2) Bej+§,lc+§ - (j B 5) Baj—f,k+§>
il n+211 n+il

for the electric field components. Notice that due to singularities in some of the terms
containing the factor 1/r on axis (r = 0), they are being replaced by specific boundary
conditions, which are based on the symmetry properties of the fields. More details are given
in [30].

The motion of the particles are still calculated in Cartesian coordinates. The transfor-
mation between Cartesian (x,y, z) and cylindrical (r, z, #) coordinates is simplified by noting
that exp(if) = = + iy so that there is no need to introduce trigonometric functions. The
shape function introduced in Eq. 2.26 is now written as

S(x—xm) =5, (r—rm)S.(z2—2m) S (0 —6,), (2.122)
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2.5. PIC method in the cylindrical coordinates

where S, and S, are given by one of the equations Eqs. 2.47-2.49 depending on the chosen
order of projection, whereas to facilitate the projection on the exp(ilf) functions, Sy is taken
as the delta function.

The time cycle of the PIC calculation is identical to the one shown in Fig. 2.4 for Cartesian
coordinates, with the same four steps: solving Maxwell’s equations, projecting the fields to
the particle position, pushing the particles and finally interpolating from the particle position
to the numerical grid in order to get the charge and current densities. Here again the standard
current deposition method is not charge conserving. This problem can be solved by using
the Esirkepov algorithm as described in Sec. 2.2.3.
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Chapter 3

Ensuring the correctness of the
simulation

Computer simulation is crucial in the development of plasma theory, due to the complex
nature of the encountered problems. But one might ask how meaningful is the physics
produced by simulations? Just how meaningful depends on our understanding on numerical
effects. Once a numerical effect has been identified and quantified, a theoretical model is
often developed for error prediction in future simulations.

The numerical problem that will be discussed in this chapter is the reflection observed
in open boundaries. The technique used for the implementation is Bérenger’s Perfectly
Matched Layer (PML) [23|. Numerical studies on the FDTD scheme have been done but
not systematically extended to high-order FDTD nor PSTD schemes. This chapter first
introduces the PML medium, then presents its implementation in the high-order FDTD and
PSTD schemes. Finally, an analytical evaluation of the coefficient of reflection is performed
and compared with the one evaluated via simulations.
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3.1 PML medium

3.1.1 Overview

When performing simulations with PIC codes in LWFA, open boundaries are crucial to
ensure waves and disturbances originating within the model domain (or simulation box)
to leave the domain without affecting the interior solution in a way that is not physically
realistic. Fig. 3.1 shows an electromagnetic (EM) pulse that propagates from bottom to top
in a model domain and arrives at the top boundary. Without any special treatment, the
EM pulse is reflected and interferes with the remaining EM pulse that is still in the model
domain, leading to its deformation as shown in Fig. 3.1(a). On the contrary, treatment
at boundaries with PML enables efficient absorption of the waves at the top boundary, as
shown in Fig. 3.1(b).

Figure 3.1: Simulation of an electromagnetic (EM) pulse with and without treatment at
boundaries. (a) Simulation of an EM pulse exhibits reflections at the boundaries without
special treatment, resulting in the deformation of the EM pulse. (b) Application of PML
enables efficient absorption of waves at the boundaries.

In some cases, simulation results will be rendered useless if PML is not included. This
is the case for LWFA simulations in cylindrical coordinates (see Sec. 2.5). The laser pulse
propagating in the plasma will diffract, part of it will hit the radial boundary and be reflected
on the axis. Since most of the physical interaction between the laser pulse and the plasma
particles takes place on axis, the buildup of numerical errors in this region modifies completely
the physical interpretation of the results.

Various techniques to model open boundaries have been used such as the one-way ap-
proximation of the wave equation (initially exhibited for acoustic waves) by Engquist and
Majda [187], or Bérengers more efficient PML technique which consists in surrounding the
computational domain with an absorbing medium whose impedance matches that of free-
space. While a PML medium absorbs waves at all wavelength and angle of incidence at the
infinitesimal limit, spurious reflections occur due to discretization. The amount of reflection
as a function of wavelength and angle of incidence has been evaluated numerically and an-
alytically at low order discretization [188] but not systematically at higher order. While an
implementation of the PML in a PSTD solver was given by Ohmura et al. [189], the esti-
mates of the coefficients of reflection with respect to wavelength and angle were not given.
The analysis carried out in this article focuses on Bérengers split field original formulation
of Maxwells equations of PML medium, as it is the implementation that is currently used
in the targeted plasma simulation code.
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3.1. PML medium

The exponential convergence of the PML solution to the unbounded domain has been
demonstrated in previous work [190] at the infinitesimal limit. This, however, does not
guarantee high absorption rates at any angle and frequency with the discretized form of the
PML. In particular, since the PML condition is local, it is nonetheless necessary to study
carefully its efficiency when used with high-order stencils, when the extent of the stencil
can exceed the PML thickness, and especially with pseudo-spectral algorithms that involve
global FFT operations. In this study, we extend the theoretical and numerical analysis of
the coefficient of reflection of PML to solvers of any order of accuracy, taking the limit of
infinite order to obtain the solutions for the pseudo-spectral formulations.

3.1.2 Formulation

We consider, for simplicity and without loss of generality, the transverse electric (TE) mode,
which involves in Cartesian coordinates the field components F,, E, and B,. Notice that z-
and y—axes constitute the transverse directions, and z—axis is the longitudinal direction.

A PML medium involves an electric conductivity ¢ and a magnetic conductivity ¢*, with
a split of the Maxwells equations, and writes as follows for the TE mode [23]:

% +o,E, = 0268—%, (3.1)
% +0.EB, = — CQ%, (3.2)
82” +0;B,, = — %, (3.3)
a(%y toiB., = aa%, (3.4)

with 0/0z and 0/0y partial differentials respectively in x— and y—directions, and B, =
B., + B.,. This medium absorbs electromagnetic waves at any wavelength and angle of
incidence if its impedance matches the one of vacuum, which happens when o, /ey = 0/ 1o
and o,/eg = 0, /o (also known as the matching conditions) [23]. If these conditions are
satisfied, the impedance of a plane wave in the medium equals its impedance in vacuum. A
remark that can be made when looking at the system Egs. 3.1-3.4 is that if 0, = 0, = 0, =
o, = 0, it reduces to the Maxwell’s equations of vacuum; if o, = 0, = 0, it reduces to the
equations of a conductive medium and finally, if o} = 0 = 0 and o}, = 0, = 0, it reduces to
the equations of the absorbing medium presented in [151].

3.1.3 PML technique

The general frame of the PML technique is pointed out in Fig 3.2. The Maxwell’s equations
are being solved inside a computational domain in which lies a source of outgoing waves.
We have an absorbing layer which is an aggregate of the PML media surrounding the
computational domain whose properties will be defined in the following paragraph. The
domain is finally ended by perfectly conducting conditions.

On both the left and right sides of the computational domain, the absorbing layers
are matched PML(o,,0%,0,0) media, the outgoing waves can propagate without reflection
through the interfaces normal to x. Similarly, matched PML(0, 0, oy, a;j) media are used on
both upper and lower sides of the computational domain so that the outgoing waves can

propagate without reflection through the interfaces normal to y. At the four corners of the
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Figure 3.2: General frame of the PML technique. The outgoing waves coming from the wave
source hit the PML media with different properties surrounding the computational domain.

domain, the absorbing layers are made of PML(c,, 0}, 0y, 0;) media having conductivities
equal to those of the adjacent (o.,0%,0,0) and (0,0,Jy,ch) media. As a result, there is
theoretically no reflection at the interfaces lying between the side layers and the corner
layers.

3.1.4 Discretization of the PML
The FDTD discretization of this set of equations Eqs. 3.1-3.4 is given by

n+1 n n+1 n
ij+1/2,k THwil/2,k . Exj+1/2,k + Eajiijon
At Y 2
n+1/2 n+1/2
— 2 sz+1/2,k+1/2 - BZj+1/2,k—1/2 (3 5)
Ay ’ )
n+1 n n+1 n
Ey] k+1/2 Eyg k+1/2 g Ey],k+1/2 + Eyj k+1/2
At ‘ 2
n+1/2 n+1/2
— 2 Bz]'+1/2,k+1/2 B Bz] 1/2,k+1/2 (3 6)
Az ’ '
n+1/2 n—1/2 n+1/2 n—1/2
ij+1/2,k+1/2 - Bzxj+1/2,k+1/2 . Bzwj+1/2,k+1/2 + Bzwj+1/2,k+1/2
At v 2
o Eijrl k+1/2 E:L/J k+1/2 <3 7)
Az ’ )
n+1/2 n—1/2 n+1/2 n—1/2
Bzyj+1/2,k+1/2 - Bzyj+1/2,k+1/2 o Bzyj+1/2,k+1/2 + Bzyj+1/2,k+1/2
At Y 2
_ Bojrrjpner — Eajiayon (38)
Ay . .
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3.1. PML medium

After some algebraic manipulation, equations in Eqgs. 3.5-3.8 can be written in their
explicit linear forms for implementation in a simulation code:

n+1 _ n n+1/2 . n+1/2
Erj+1/2,k - amErj+1/2,k + Bz (BZj+1/2,k+1/2 B2j+1/2,k—1/2 ) (3.9)
n+1 _ n n+1/2 . n+1/2
Eyjriie = wByjriry + By (BZj+1/2,k+1/2 B s gt1y2) s (3.10)
n+1/2 % n—1/2 * n n
Berji1jamire = %Berjijanirye T P (Eyjﬂ,kﬂ/g - Eyj,kﬂ/g) ; (3.11)
Bzyj+1/2,k+1/2 - O‘szyj+1/2,k+1/2 + ﬁy ( Tj+1/2,k+1 T ffj+1/2,k) ) (3'12>
where
( _ 2—oy At
Qg = 240y At?
_ 2—og At
Qy = 2o AL
B, = 22 At
z 240y At Ay?
B, = - 22 At
Y 240, At Az’
« 2ot At (3.13)
Oy = 240 At
£ 2—0’§At
(8% = —_—
Y 2+0;At’
B = __2 At
x 2+0iAt Az
B = _2 At
\ "y 240X At Ay”

3.1.5 Extension to higher order

Following the general expression for high order spatial derivatives established in Eq. 2.81,
the extension to order N of the explicit linear form can be written as the following general
expression for discretization following the x—direction

nt+1 n n+1/2 n+1/2 n+1/2 n+1/2
Bt = ooy + B, [Co (By = By ) + O (BY i — By ) + -]

= QL) 1 + e Zivzo Cp (B;Lfitéiﬂ)/z,kf - Bjnfjéiﬂ)/z,k/)) )

(3.14)
where j" and k' can be either integers or half-integers, £/ and B represent any components of
E— and B—fields respectively, a,, 3, are coefficients in Eq. 3.13 and C,, are the coefficients
of finite-difference approximation due to Fornberg [181|, which are given in Table 2.1 for
orders 2 to 20, and at the limit (zrfl}glﬁnite order, and apply to equispaced staggered-grids. A

similar expression applies to By ok discretized following the x—direction written as

N
x* pn—1/2 * n+1/2 n+1/2
Bj’+1/27k’ = amBj’—H/Q,k’ + 51 Z Op (Ej/+p+1,k' - Ejurp,k') ) (3'15)
P

where o and 3} are coefficients in Eq. 3.13. Discretization in the y—direction for both E—
and B—fields is rather straightforward.

3.1.6 Application to staggered-grid PSTD solvers

The PSTD formulation is given in Sec. 2.4.2. In the PSTD implementation, the Fourier
transformation is used for the calculation of the spatial differentiation in k-space, while the
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Leapfrog method is retained for the temporal differentiation. Following the notations given
in [189] the PSTD formulation of the set of equations Eqs. 3.1-3.4 is given by:

0F

S+ oy =c* [F ik, (FB.)] . (3.16)

% t0,B, = — & [Flik, (FB.)]., (3.17)
aaB;x +0:B,, = — [F ik (FE,)], (3.18)
aaBtzy + 03B,y = [F ik, (FE,)] (3.19)

where F and F~! are respectively the forward and inverse Fourier transformations, and k,
and k, are the wavenumbers in the z— and y—directions respectively.

Assuming the use of a staggered-grid (Yee discretization|[151]), the discretized form can
be written in its explicit linear form, giving

Bt g =0a Bl + B | Flikye 202 (PRI (3.20)
Ey;?jg}rm =y By 1 T By [f—likxe—iszx/Q (]—“Bzﬁi/fﬂ)] : (3.21)
Bzw?://zz,kﬂ/z :&;Bzx?;ll//;k—i-l/Q + 5, [-FﬁlikmeikIAz/Q (FEy?+1/2,k+1/2)} ; (3.22)
Bzy;‘lill//;,kﬂ/z :O‘ZBzy?J:ll//QZ,kH/z + B, [FtikyetvBv/ ( 212 kr/2) ] (3.23)
The terms e*+2%/2 and e*v2¥/2 are respectively the shifts in space in z— and y—directions

on the staggered-grid for E, and E,, while the terms e~*=27/2 and e~hvAv/2

the shifts in space in z- and y—directions on the staggered-grid for B,.
The coefficients of (az, By vy, By, o, Brs o, B;) are the same as shown in the set Eq. 3.13.

are respectively

3.2 Reflection of a plane wave striking the entire PML

Following [188], the coefficient of reflection of a plane wave propagating in the z-direction
perpendicularly to the interface of the PML can be computed with the same analogy to the
interferometer of Fabry-Perot by integrating over the multiple transmissions ¢ and reflections
r of rays between two rows of the grid (two plates in the interferometer).

Calculating the coefficient of reflection for the entire layer requires knowledge of the
coefficients of reflection at each plane of the layer (nodes j, j +1/2, j+ 1, ...).

3.2.1 Coefficients of reflection at individual planes

We begin by evaluating the coefficient of reflection at a row passing through a node situated
at one of the slices in the PML media. The rest of the space is described by centered finite
difference of the wave equation in vacuum. We assume that only the plane where the PML
scheme applies generates reflections. The basic procedure for the derivation of the coefficient
of reflection involves substitution of plane monochromatic traveling wave trial solutions into
an expression that consists of only the components of a particular field. For instance, in
the derivation of the coefficient of reflection on the full-node, we would like to obtain an
expression consisting of only components of the field, £,, implying that all components
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3.2.  Reflection of a plane wave striking the entire PML

of B, have to be eliminated. Hence, the method consists of deriving the finite difference
expression for the second derivative in time of £, and then eliminate B, by substituting the
finite difference expression for the first time derivative of B, in two adjacent nodes. It is
instructive to follow the details of the derivation, therefore a walk-through is given in the
following paragraphs.

One-dimensional case

Firstly, we express the finite difference expression for the second derivative in time of E,,
given by

N
n+l __ n n+1/2 n+1/2
By =y By + B, ) G (B s = B iy o) (3.24)
p=0
N
n __ n n—1/2 n—1/2
B} =ayByj + 58,3 Gy <BZj+(2p+1)/2 - Bij<2p+1)/2> ! (3.25)
p=0

where N € N.
Without lack of generality, we consider the second-order for simplicity. Subtracting
Eq. 3.25 from Eq 3.24, we obtain

n n n n— n+1/2 n—1/2 n+1/2 n—1/2
Byt = Eyj =« (Eyj — By 1) b |:sz+1/2 — Bejpe = Bejlip + Bejoy| - (3.20)

On the other hand, we also have

n+1/2 n—1/2 n n

B2 —B 2y ( S — Eyj> , (3.27)
n+1/2 n—1/2 n n

B =B v (B - B, (3.28)

where V = ¢?At/Ax.

The elimination of B, is obtained by insertions of Eqs. 3.27-3.28 in Eq. 3.26 eliminates,
yielding

B 4+ (-1 —a+28V) B +aBE,) " = BVE" | — BVE," | =0. (3.29)

We now assume a plane monochromatic traveling-wave trial solution of amplitude ¢#(@At—k=42)
striking the PML slice at normal incidence. We also assume that the norm of k, is con-
served by the transmitted and the reflected waves and we define the coefficient of reflec-
tion as the complex number r. Under these conditions, the transmitted wave is given by
(1 —r)e!@At=kA2) “and the signal in front of the slice is the sum of the incident wave and
the reflected one, giving e@WAt=keA2) _ peilwAttheAz) -~ Agsuming that the PML is applied at
the slice located at j, we have

Ey?;]% =(1-7) ethiwAthliszx7 (3.30)

Ey;l:ﬁ; —(1-7) eNtiwAt—Nzisz:v7 (3.31)
Ey?__(%ﬁl) = NiwAH(Ne A 1)ike Az _ o= NeiwAt—(Na1)ike Az (3.32)
Ey?f(%vﬁl) —NeiwAtH(No+l)ikoda o NiiwAt—(Nat1)iks Az (3.33)

where N; € N and N, € N.
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By inserting the plane monochromatic traveling-wave trial solutions, we obtain, to lead-
ing order, the coefficient of reflection at a full-node, 7,04.:

a—2b Z;io Ccoupledp COs (pkxAl’>

Tnode = — ¢ 2;70:0 Ccoupledpe_ipkxAz ) (3.34)
where
. aiwA —iwA
{ Z; zﬁy‘;— 1 — oy + e ™2 (3.35)
Ccoupledp are the coupled Fornberg’s coefficients, defined by
i c?, ifp=0,
Compety = { yamzrd CiCim B0 <0 <o (3.30)

2 Znorde'r C O q 1) lf Norder S p < 2n0rde7* - 1,
Znorder 02

q=1 q’ lfp = 2Norder — 1,

where n,,4¢- i the order of discretization, and C' are the coefficients from Fornberg’s algo-
rithm [191] as in Table 2.1.

The derivation of the coefficient of reflection at an inter-node 7;,ter—node (not detailed here)
proceeds similarly and gives an expression of the same form as Eq. 3.34, after replacement
of o, by ay and 8, by 3 in the definition of a and b.

Two-dimensional case

The derivation of the coefficient of reflection at higher dimension requires more algebraic ma-
nipulation. As in the previous section, the derivation of the coefficient of reflection involves
the substitution of plane monochromatic traveling-wave trial solutions into an expression
that consists of only the components of a particular field.

The equations to be solved at a node are given by

n+1 n+1/2 n+1/2
Ey] —]L_—&—I/Q —OéyEyj k+1/2 51} Z O < Zj4(2p+1)/2,k+1/2 szf(2p+1)/2,k+1/2> y (337)

n n Az n .
Eyg k+1/2 Eyj k+1/2 + A_y ( Ti41/2,k41 Exj+1/27k)
Az n+1/2 n—1/2
At (BZJH/? k+1/2 ~ Bejiap, k+1/2) ! (3.38)
i =g," ! n+1/2 n+1/2
Eoiitjoner =Eaj g +Va Z Cp < Zit1/2,+(2p+1)/2 T Bziﬂ/ljf(zpﬂ)ﬂ) , (3.39)

where V, = ?At/Ay.

A different approach is applied to derive the coefficient of reflection on the inter-node,
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3.2.  Reflection of a plane wave striking the entire PML

for which the following set of equations is solved

N
n+1 n n+1/2 n+1/2
Ex]j-_l/Q kT Ti4+1/2,k + ‘/;/ Z Cp (sz+1/2,k+(2p+l)/2 - sz+1/2,kf(2p+1)/2> s (340)

n+1 n+1/2 n+1/2
Eyj,—l::_+1/2 y]k+1/2 —Va ZC ( 24 (2p+1)/2,k+1/2 BZj—(2p+1)/2,k+1/2>> (3.41)

n+1/2 o n+1/2 n+1/2
sz+1/2,k+1/2 _Bzxj+1/2,k+1/2 + Bzyj+1/2 k+1/27 (3'42)

n+1/2 o n—1/2 n
Beajirjanrrys =0aBeaiiijsjirys = Ba ZC ( yitr ke~ By p,k+1/2> (3.43)

n+1/2 n—1/2 n
Bzy]+1/2 k+1/2 Bzyj+1/2,k+1/2 Z C :c;+1/2 k+(p+1) — Exj+1/2,k—p) ) (3.44)

where V, = ¢?At/Ax and V, = 2At/Ay.
Solving the systems of equations given above leads to the same form for the expression
of the coefficient of reflection at the node and the inter-node, which reads (for a node):

a— b3 7 Ceoupled,, €08 (PhyAy) — ¢ 322 Ceoupled,, 08 (ki Az)

Tnode = 5 — ' 7 3.45
a—"b Zp:() C(coupledp COSs (pkyAy) —cC Zp:O Ccoupledpe_Zpk”Ax ( )
where ' | |
a = ezwAt _ (2 + ay) + e—zwAt (1 + 2ay) _ aye_2Z“At,
b= 2%% (1 — aemiwht) | (3.46)

c= 2@,% (1 — e‘“At) )

To determine the coefficient of reflection on an inter-node, 7;nier—node 1S Obtained by
replacing a, with o} and 8, with 3; in the definition of a, b and c.

To guide the reader, the details of the derivation of these equations are given for the
second-order case in Appendices A and B, at the node and the inter-node respectively. A
table summarizing the coefficients of reflections at grid nodes in various cases is tabulated
in Table 3.1 with the corresponding coefficients a, b and ¢ given in Eq. 3.35 for the 1D
case, and in Eq. 3.46 for the 2D case. The coefficient of reflection at grid inter-nodes are
expressed similarly as expressions at grid nodes, with coefficients (o, ay, 55, 8,) replaced by

(a3, oy, Bz, By)-

Table 3.1: Key equations of the coefficients of reflection in PML.

Order of Plane wave at normal incidence (1D) | Plane wave at oblique incidence (2D)

accuracy
9 r — a—b(—1+4cos(k;Ax)) r _ a—bcos(kyAy)—ccos(kzAx)
node = T Th(—1ye- Rz AT) node — T T cos(k:yAy) ce~tha Ax
~9 _ a_bzgo:o Ccoupledpcos(pkwAl’) _a= pr 0 coupled Cos(pkyAU) CZP 0 coupled cos(kz Az)
T'node = —q—p3> Ceoupled,e”"Prede T'node = 45522 Ceoupie cd, c08(phy Ay)—c 327 o Ceoupled e~ PFz A=

3.2.2 Coefficient of the entire PML, R

Following [188|, we apply the PML from j, to jo + Ny, where jo is the index where the
interface of vacuum and the PML media lies and N, is the depth of the PML (in number of
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nodes). The knowledge of the coefficients of reflection and transmission of two consecutive
slices, say slices at jo+ Ny —1/2 and jo+ Ny, allows us to calculate the coefficient of reflection
R+, —1/2 because of the coupling of these two slices.

PML

Incoming A

R AD

v

T: —Atlrztle_ikwa

d
<

T : Transmitted
R : Reflected

jo=1 jo+1/2=2

Figure 3.3: A plane wave striking a PML generates multiple reflections inside the layer that
must be taken into account to calculate the coefficient of reflection.

Fig. 3.3 illustrates the reflections and transmissions of the wave of the two consecutive

slices.

Rjo-I-NL—l/Q =7 — tlr2tle_ikIAI + tlTQtle_ikIAx (Tnge_ikmAx)
— tlTQtleilszx(Tﬂ“QGilszx)z - 3 47)
=7 — tlrztleflkIAm Z;:O:O(rl,r,Qefzszz)n ( .
= — tlrztle_ikﬂvA:c
— 1 1+7‘17”267“€1AI .

To calculate the coefficient of reflection of the entire layer, Iz, we iterate backward from
7 =Jo+ N to j = jo using the recursive formula

—ikz Az
tiRj 1)t €

— . . 3.48
1+ TjRj+1/ge_Zk’”Aw ( )

Ry =r;
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3.2.  Reflection of a plane wave striking the entire PML

This formula is valid at all dimensions and, under the assumptions of the model, at all
orders.

3.2.3 Coefficient of reflection via numerical simulations

For the evaluation of the coefficient of reflection via numerical experiments, an electromag-
netic pulse is injected at ¢ = 0 at the left-hand side of the simulation region, in a vacuum
region preceding the PML that is situated at the right-hand side. Periodic boundaries are
applied to the upper and lower sides. The simpler case of a plane wave at normal incidence
to the PML media is studied first, followed by a study of a plane wave traveling at an angle
of incidence to the PML.

Lol Ny 7
0.0 02 04 06 0.8 1.0

ct/L 7]

0.0 0.5 1.0 1k5 2.0 2.5 3.0

Figure 3.4: Fourier transform of F'(w,t,k, = 0) with respect to the wavenumber k& shows
that the signal is nearly monochromatic. Inset: Harris function H(t) and F(w,t, k, = 0)
plotted versus time normalized by L/c.

The injected signal is imposed at the left-hand side Eyg = F(w,t, k,) has the form

H(t)sin(wt + kyy), if0<t<Zk

) (3.49)
0, otherwise,

F(w,t k) :{

with y = kAy, where k is the index in the transverse (y—) direction, and H(t) the Harris
function

) (3.50)
0, otherwise,

H(t) = { 35 (10 — 15 cos(25%) 4 6 cos(5%) — cos(F4)), if0 <t < £,
where L. = Ax N, represents the position at which the interface between the vacuum and the
PML lies and c is the speed of the waves. A plot of this function versus time is reproduced
in Fig. 3.4. The product of the sinwt function with the Harris function enables a precise
inspection of the coefficient of reflection as a function of frequency.

For convenience, a signal injected with a wavenumber kg, the transverse wavenumber £,
is set for a grid with NN, cells and periodic boundary condition in the transverse dimension,

89



Chapter 3. Ensuring the correctness of the simulation

such that k, = 20 N/(N,Ay) where N € N. The longitudinal wavenumber is thus given by
k2 = ki — k7 and the angle of incidence 6 is defined as 6 = arctan (k,/k,)

Once the injected pulse fills the vacuum region preceding the PML, the electric and mag-
netic field components E;,. , £y, . and B.;,. are recorded, while the reflected components
Eyreps Eypes and B, are recorded after the incident pulse has been fully reflected by the
PML. The coefficient of reflection is then computed as

Zj<Nac Zk<Ny <E$ref + Eyref + CQBzref>
2 2 2 5
Ej<Nz Zk<Ny (Exmc + Eyinc + C2Bzinc)

where the subscript “ref” signifies reflected and “inc” signifies incident, 7 and k are respec-
tively the grid indices in the transverse directions.

R(w,0) = (3.51)

3.3 Results
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Figure 3.5: Coefficient of reflection, R with respect to the normalized wavelength of a plane
wave striking a PML at normal incidence (lines: analytical integration; markers: numerical
simulations), for different orders going from 2 to infinity (= pseudo-spectral).

In this section, we compare the coefficient of reflection from a PML for the FDTD solver
(of orders 2 to higher orders) and the PSTD solver, as a function of wavelengths and angles,
in the case Az = Ay. To ensure stability at any order, the time-step was chosen to be
cAt/Ax = 0.4, which is slightly below the Courant condition of the PSTD solver when
Az = Ay. Following [23], we define

jAz\"
0j = Omax T )
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Figure 3.6: Coefficient of reflection, R of a plane wave with respect to its angle of incidence
with the PML, for (a) \g/Az =4 and (b) A\g/Axz = 8 (lines: analytical integration; markers:
numerical simulations).

with j € [0; Ny| where Ny is the depth of the PML (in number of nodes). The choice of
Ny, is based on the theoretical coefficient of reflection such that it is large enough, for a
given profile of conductivity, that the reflections that occur on this last cell are negligible.
Setting o = 4/Ax, 6 = 5Ax and n = 2, together with N, = 14, lead to absorptions of
the incident waves by orders of magnitude at any angle, for all wavelength Ay > Az/4. In
defining o*, one must take into account the half a step in the space grid since E and B are
staggered in space, therefore o* = 0;,1/s.

Fig. 3.5 presents the coefficient of reflection of a plane wave that is striking a PML at
normal incidence, as a function of wavelength. Figs. 3.6(a) and 3.6(b) show the coefficient
of reflection of a plane wave with respect to the angle of incidence for a given wavelength,
while Figs. 3.7(a) and 3.7(b) show the theoretical estimates for larger wavelengths. The
results show that the efficiency of the PML is preserved at any order and even improved at
short wavelengths with higher orders. This is also verified by the PSTD solver for which,
as expected, the coefficients of reflection are very close to the ones of the FDTD solver at
very high order. Tests on other wavelengths and time-steps (not shown here) show the same
trend.

There is generally a good agreement between the analytical calculation (represented by
solid lines) and the numerical results (represented by markers), but with some discrepancies
at higher orders. In fact, at high order, more neighboring grid nodes are taken into account,
these nodes are also wave sources themselves, known as “secondary sources”. With the
current model, these secondary sources are not taken into account, resulting in the mismatch.
This is the reason why the discrepancies increase with the order of discretization. Evaluation
of improved analytical estimates has been conducted by Vincenti et al. [192].
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Figure 3.7: Theoretical estimates of the coefficient of reflection, R with respect to angle of
incidence with the PML, for (a) A\g/Az = 32 and (b) A\g/Axz = 1024.

3.4 Conclusion

Through this work, we have extended the theoretical and numerical analysis of the coefficient
of reflection of PML layers to solvers of any order of accuracy, including at the limit of the
infinite order that represents the pseudo-spectral formulations. Results from the analysis,
confirmed by numerical simulations, show that the efficiency of PML layers is preserved at
high order, and with the PSTD solver.

The analytical expressions that were developed here can be used to predict the coefficients
of reflection in various situations with relatively high accuracies. This provides a tool for
optimizing the absorption profile in PML layers. The mismatch between the analytical and
numerical solutions comes from the fact that only the primary source is considered at high
orders [192]. For a fixed LWFA simulation configuration, these analytical expressions can be
used to compute an optimal choice of numerical parameters, e.g. the stencil order, space and
time-steps so that the solution can be computed in a minimum time and with a guaranteed
accuracy.
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Chapter 4

Speeding up the simulation

In 2014, Leemans et al. have demonstrated experimentally with supporting numerical mod-
eling the generation of electron beams with an energy of 4.2 GeV using 16 J of laser energy
in a 9 cm-long-capillary, a new energy record in LWFA [132]|. This is not only challenging
experimentally but also in numerical modeling. In this particular case, simulations using
the measured laser pulse temporal and spatial profiles propagating in 9 cm-long-capillary
were carried out using PIC code INF&RNO [28] in 2D cylindrical coordinates. A typical
2simulation of such has taken ~ 1Million Core-Hours (CH) in the case with the highest
resolution (N, /Ay = 400, N,./A\g = 10), where N, and N, refer to the number of grid-points
in the longitudinal and transverse directions respectively.

The tremendous increases in laser power and energy, permitting beam energies beyond
10 GeV in the next decade implies that more computational time will be required. To
scale up with this, two approaches may be considered: (i) simulations with reduced model,
(ii) advances in high performance computing. This chapter focuses a method that curtails
computational time by several orders of magnitude: the Lorentz-boosted frame technique
[31]. We will first give a brief introduction on the concept, then carry on discussing the
accuracy and the speedup for a 100 MeV electron bunch modeling.
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4.1 OVervIiew . . v v i i e e e e e e e e e e e e e e e e e e e e e 94
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4.4.2 PSATD solver . . . . . . . . . 104
4.4.3 Runtime analysis . . . . . ... ... o 105
4.5 Conclusion. . . . . . . . L e e e 109

2This information is obtained through private communication with the author.
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4.1 Overview

Modeling LWFA experiments using PIC algorithm consist of resolving the evolution of a
laser driver and an accelerated particle beam into a plasma structure that is of orders of
magnitude longer and wider than the accelerated beam. The laser wavelength is usually on
the scale of 1 um while the length of the plasma structure can be on the scale of 1 to 10° mm,
this disparity in cell size and propagation distance results in very computationally intensive
simulations.

Customarily, a moving window that follows the driver, the plasma wave and the accel-
erated beam is commonly used to save computational time by avoiding meshing the entire
plasma that is orders of magnitude longer than other length scales of interest. In a moving
window, grid-points in front of the laser are added and grid-points far behind the laser are
removed so that the number of grid-points to be resolved is always the same throughout the
simulation. However, despite the use of the moving window, a full 3D PIC simulation of a
laser plasma accelerator can still be very demanding computationally, as many time-steps
are needed to resolve the crossing of the short driver beam with the plasma structure.

The scale gap between the laser pulse and the plasma structure can be reduced by
choosing an optimal frame of reference that travels close to the speed of light in the direction
of the laser pulse [31], this optimal frame is known as the Lorentz-boosted frame. This change
of frame of reference leads to Lorentz contraction and dilation of space and time: the laser
pulse wavelength increases and the plasma length shortens, leading to gains both in space
and in time, as the crossing time between the laser pulse and the plasma column is reduced.
In addition, the plasma column drifts relativistically towards the laser pulse. The choice
of the optimal frame is constrained by the resolution required in the Lorentz-boosted frame
to capture the relevant plasma structures, and thus depends on the physical problem under
consideration.

As previously mentioned in Sec. 2.2.3, the relativistic flowing plasma results in Numerical
Cerenkov instability that disrupts the simulation. Several solutions that involve strong
smoothing of the currents and fields [193, 172, 194, 178, 195, 196], or arbitrary numerical
corrections [197, 198, 199], and the use of Galilean coordinates [200, 201] have been proposed
to mitigate this problem.

Another issue that requires equal attention is the accuracy of the simulation results
using the Lorentz-boosted frame technique. Simulations with external injection [194| was
previously studied and the results on the evolution of the laser and electron beam properties
have a 99% agreement between simulations using various reference frames. In [202], the
author has studied the convergence of the evolution of the laser between the laboratory
(lab) frame in quasi-3D geometry and in the boosted frame, results obtained demonstrated
nice agreement in the case without self-injection, however some discrepancies are observed
in the case with self-injection of electrons.

In general, the modeling of the self-injection regime poses some challenges due to the
strong nonlinear particle dynamics. The choice of the velocity of the boosted frame is
normally chosen to be the velocity of the laser group velocity in the linear regime, but in
the nonlinear regime, no analytical theory is provided to estimate this quantity, therefore
we measure the laser group velocity from existing simulations in the nonlinear regime to
determine the optimal velocity of the boosted frame.

The community is also convinced that an accurate result can be obtained with a high
number of macro-particles in the injected bunch to allow for significant statistics [176, 202].
These articles only consider the electron bunch charge and energy, while analysis on the
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beam emittance, which is sensitive to the numerical resolution [203| is not presented. Here
we will show that simulations using the Lorentz-boosted frame technique at high resolution
retains the accuracy in the self-injection regime with significant speedup.

4.2 Concept

The Lorentz-boosted frame technique requires one to choose a frame moving near the speed
of light in the direction of the laser pulse. This approach exploits the properties of space and
time dilation and contraction associated with the Lorentz transformation without alteration
to the fundamental equations of particle motion or electrodynamics. The Lorentz transfor-
mation results in the expansion of waves emitted by the plasma in the forward direction and
the contraction of the ones emitted in the backward direction, indicating that this approach
may not resolve all backward propagating waves.

(a) Laboratory frame (b) Lorentz-boosted frame

Flowing
Plasma at rest
plasma
>
Ao
/

1 + Bb) Ao
Lplasma plasma — Lplasma/’Yb

+—>

A
v

Figure 4.1: Principle of the Lorentz-boosted frame technique. (a) A LWFA simulation which
consists of a laser pulse of wavelength \y propagating through a plasma at rest of length
L iasma that is of orders of magnitude longer requires a very large number of time-steps. (b)
Choosing a frame of reference that is moving close to the speed of light, 7, in the direction
of the laser pulse results in a new longer laser wavelength, \{j and a shorter plasma length,

vlasma- Lhe relativistic transformation of space and time reduces the disparity of scales
and thereby the number of time-steps to complete the simulation, by orders of magnitude.
Adapted from [204].

Fig 4.1 illustrates the concept of the Lorentz-boosted frame technique. Fig 4.1(a) shows
that modeling a laser pulse with a wavelength of Ay on the order of ~ 1 um traversing the
plasma at rest of length L,jqsmq on the order of ~ 1 mm in the lab frame requires at least 108
time-steps. Recasting this simulation in a Lorentz-boosted frame at velocity v, = Syc or in
the Lorentz factor 7, where v, = (1— ;) /2 observes a dilation of Ay by a factor of (1+ )V
and a contraction of Lyasma by @ factor of 7, as shown in Fig 4.1(b), thus the number of
time-steps that is needed to simulate the laser pulse of A through a plasma of Lplasma is
reduced by a factor of 47(1 + 3;)? (see below for the details of the speedup derivation).

The physics of interest in LWFA is the plasma wave driven by the laser pulse, the
laser pulse and the accelerated electron beams, the backscatter is weak in the short pulse
regime and does not interact strongly with the electron beams as do the forward propagating
waves, therefore it can be neglected in the modeling of the plasma accelerator stages. Once
the backward-propagating waves arrive at the boundary on the 3left, it can be efficiently
taken care of by the PML (details in Chapter 3). Since all the components of interest
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propagate in the forward direction, simulating LWFA experiments in the Lorentz-boosted
frame technique is therefore very well adapted.

4.2.1 Theoretical speedup dependency with the Lorentz-boosted
frame

The derivation of the speedup reproduced here follows the one given in [205], an extension
of [31], which takes into account the group velocity of the laser.

Assuming that the number of plasma periods is fixed in the simulation box, implying the
use of the moving window following the laser-driven plasma wave and accelerated electron
beam, the speedup is given by the time taken by the laser pulse and the plasma to cross each
other, divided by the shortest time scale of interest, that is the laser period. For instance,
according to the plasma fluid theory, the plasma wave velocity vy is set by the laser group
velocity in the linear regime, v, = ¢(1 — w?/w3)'/2. Therefore the Lorentz factor of the
boosted frame 7, can be chosen to be v, = (1 — (v,/c)?)~ /2,

In practice, the stopping condition of a simulation is set in a way such that the last
electron beam macro-particle exits the plasma, a measure of the total time of the simulation
is then given by

T — Lplasma + n)\p7 (41)

Vg — Vg

where A, is the plasma wave wavelength, L,jqsmq is the plasma length, v, and v, are respec-
tively the group velocity of the laser pulse and the phase velocity of the plasma wave relative
to the frame of reference, and 7 is an adjustable parameter that determines the fraction of
the plasma wave to be considered which exits the plasma at the end of the simulation. For
instance, an electron beam injected into the n'™ bucket, n would be set to n — 1/2. The
numerical cost R; is thus defined by the ratio of the total time to the shortest time scale of

interest:
Tc - (Lplasma + nAp)

R — ¢ _ , 4.2
o (Bg = Bs) Ao (42)
where 5, = v,/c and B, = vy/c.
In the lab frame v, = 0 because the plasma is at rest, the expression simplifies to
(Lplasma + n)\p)
ab — . 4.
Ry = (e (4.3
In a frame moving at ¢, the quantities become
(
Ay = Ao/ (1= Byb)
L;lasma = Lplasma//yb
)\8 =% (1 + 61;) )\0
By = (Bg = Bb) [ (1 = ByPBe) (4.4)

vy, = —Be
T" = (L;lasma + 7]/\2) /(U; o U;)
R; =T/ = (Lijgama +175) / (85 + Bo) g

\

3By default, the forward propagating waves travel to the right and the backward propagating waves
travel to the left in a simulation.
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where v, = 1/4/1 — (2.
The estimated speedup from performing the simulation in a boosted frame is given by

the ratio of R, to R

Rlab o (1 + ﬁb) (Lplasma + n)\p)

R;fk Lplasma (1 - ﬁbﬁg) + 77/\13

If we assume [, ~ 1 (which is a valid approximation for most practical cases of interest)
and that v < v,, the expression Eq. 4.5 tends to the expression derived in [31] for the LWFA
case which states that Ry = aR;/(1 + ) with a = (1 — 8+ lo/Lpiasma)/ (1 + lo/ Lpiasma),
where [ is the laser length and is proportional to nA,, and S = R;/R;. In general, we aim
for higher values of 7, for maximum speedup.

For accelerator applications, the energy gain is limited by the electron dephasing length
[60] that scales as ~ A3 /2AF (refer to Sec. 1.5). Acceleration is compromised beyond Lq and in
practice, the plasma length is proportional to the dephasing length, i.e. Lyiqsma = kL4, where
k is an adjustable factor. In most cases, 73 > 1, thus we can approximate 8, ~ 1 — \3/ 2/\}277
and Lpiasma = KX /205 = K] Ap/2 > 1), s0 that Eq. 4.5 becomes

S = (4.5)

fwg
K2 4+ (1+ Bo) 72 (k)2 + 21)

Eq. 4.6 can be reduced to a more tractable form according to the scenarios as shown in
Table 4.1.

S = (1+ B}

(4.6)

Table 4.1: Speedups, S according to values of v,

S (Bq. 4.6)
W <Yy | (L4 B) A2
W=V | TR
P =0 | e

Since 1 and « are of order unity, and most regimes for accelerator applications in LWFA
satisfy 7, > 1, the speedup that is obtained by using the frame of the plasma wave will
be near the maximum obtainable value given by Sy, o = 47 /(1 4 4n/x). However, in
the laser-plasma injector, the physics is highly nonlinear, no analytical theories exist, for
the moment, that allows a precise determination of 7,, therefore a lower v, than the one
predicted using the linear plasma fluid theory is considered, so is the choice for -, [206]. To
ensure accuracy in results using the Lorentz-boosted frame technique, we choose, in practice,
a 7, that is ~ 20% of ~, predicted based on the linear plasma fluid theory. Although the
speedup will only scale as (1 + (3,)?7Z, low 7, reduces the risk of having numerical Cerenkov
instability that disrupts the simulation.

Notice that without the use of a moving window, the relativistic effects that are at play
in the time domain would also be at play in the spatial domain [31], and the 7? scaling would
become ~*. If high ~, is used, the optimal velocity of the moving window may vanish (i.e
no moving window) or even reverse.

4.3 Simulation setups

This section presents the modeling of the dynamics of the self-injected electrons in the
blowout regime in 2-1/2D using the Lorentz-boosted frame technique implemented in Warp.
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Table 4.2: List of parameters for a LWFA electron injector simulation at 100 MeV

Plasma density on axis no 10 cm =3
Plasma longitudinal profile Flat
Plasma transverse profile Uniform
Plasma length Lyiasma 500 pm
Plasma entrance ramp profile linear
Plasma entrance ramp length 50 pm
Laser profile 4bi-Gaussian
Laser polarization linear (in y—direction)
Laser focal position 2f 0 mm
Peak normalized laser field strength — ag(zy) 5
Laser wavelength Ao 0.8 pm
Normalized laser spot size ko 5.3
Normalized laser length k,L 2
Number of grid-points in x 600

Open boundaries in

Boundary conditions xr—, z—directions with PML

Stencil order (for PSATD solver) 32

Cell size in x 0.083 pm

Cell size in z Xo/128 — X\y/16
Time-step At the CFL limit
Particle deposition order Cubic

Number of plasma particles/cell 4 x 4 (in x—, z—directions)

The main physical and numerical parameters of the simulations are given in Table 4.2.
They were chosen to be close (though not identical) to a case reported in [207, 193], with
the main difference being the value of ag = 5. In fact, the main aim here is to trigger
electron self-injection in the wakefield in order to study its dynamics, thus a high aq allows
for wavebreaking, a necessary condition for electron self-injection. These simulations are for
a fully resolved 100 MeV stage at a density of 10! cm™2, which can be scaled to describe a
1 GeV stage at a density of 10'® ecm™3. The latter is one of the configurations that is being
considered as the first stage in the EuPRAXIA project [21]. These simulations are run using
both the CK and the PSATD solvers, and with the 4-pass stride-1 filter plus compensation
[172]. The CK solver is chosen instead of the standard Yee solver because it improves the
dispersion properties while at the same time increasing the stable time-step to At = Az/c.
All conducted simulations do not show any sign of numerical instabilities with the settings
reported here.

The laser group velocity evaluated for the given parameters using the linear plasma fluid
theory is v, ~ 13.2. Warp simulations are performed for -, between 1 and 13 and for
longitudinal resolutions ranging from N,/)\y = 16 to N,/A\o = 128. Note that 7, = 1 is
the lab frame. The plasma wave simulated in a boosted frame associated with a specific ~,
approaching v, in the laboratory is expected to travel at low velocity. The physical features
observed in the boosted frame are somewhat different from the ones in the lab frame, in
accordance with the properties of the Lorentz transformation [172, 193], rendering direct
comparison impossible. Thus to enable comparison between simulations with different ~;,
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we have to make use of the inverse Lorentz transformation to convert boosted frame data
back to the lab frame data. The reconstruction of the lab frame data from the boosted frame
data is described in the following section.

4.3.1 Correlation between lab and boosted frame data

Conversion of boosted frame quantities back to lab quantities is necessary in order to ap-
ply the boosted frame technique to experimental modeling. The relations that make this
conversion possible are the inverse Lorentz transformations:

ct= y(ct' + 5p2'),

/

’ 4.7
y= v, (4.7)
s= W+ Buet).

8
I
8

Temporal snapshots in Temporal snapshots in
boosted frame lab frame
! 4/
(2',) (2,1)
/
tma:r
A
v
/
tmin
/ P ~ / 2 < > >
Rmin € » Zmax min € » Zimax

Figure 4.2: Reconstruction of a lab temporal snapshot from a sequence of temporal snapshots
in the boosted frame. For instance, a laboratory snapshot at time ¢ requires data from a
time range t .. to ¢, .. in the boosted frame. Adapted from [176].

man max

As shown in Fig. 4.2, several boosted frame snapshots of time ranging from ¢, . to ¢/
are necessary to reconstruct a temporal snapshot in the lab frame of time . The boosted
frame quantities have to be first inversely Lorentz transformed and then recombined to yield
the laboratory snapshot. To achieve this, two approaches can be used: (i) implement this
directly in the simulation code such that the laboratory snapshots are built from boosted
quantities in runtime, (ii) set up some fixed diagnostic stations in the laboratory planes, then
store the histories at these planes. Regardless of the approach, some quantities, e.g. charge
or dimensions perpendicular to the boost velocity are Lorentz invariant. Those quantities
are therefore readily available from standard diagnostics in the boosted frame calculations.
Quantities which do not fall into this category are obtained by simple Lorentz transformation
by assuming time invariance. In Warp, the implementation uses Approach (ii) [193|. Since
the space-time locations generally do not coincide with the space-time positions of the macro-

particles and grid nodes used for the calculation in a boosted frame, some interpolation is

4Gaussian in temporal and spatial profiles
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performed at runtime during data collection process. This manipulation induces a negligible
loss of accuracy. To prevent further loss of information, boosted quantities that have crossed
the diagnostic stations are saved in a buffer at each time iteration, and dumped at regular
interval for post-processing.

4.4 Results

4.4.1 Cole-Karkkainen solver

Simulations were conducted using the CK solver with the parameters shown in Table 4.2.
These parameters are chosen to enable self-injection of electrons. Simulations using Warp
are performed for relativistic boost factor v, € [1,2, 3,4, 5,10, 13] and for each ~,;, a sweep of
the longitudinal resolution, N, /X, from 16 to 128 is carried out.
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Figure 4.3: A series of plots showing wakefield at z = 200 um. Each panel corresponds to
a specific longitudinal resolution given in the box on the upper left corner. In each panel is
shown the wakefield of 2-1/2D simulations in the CK solver carried out with ~, € [1,2,3].
Note that 4, = 1 represents the simulation in the lab frame.

Preliminary results show that the convergence is not attained for -, > 3, therefore
those results will not be included here. As mentioned earlier, the high nonlinear effects
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in this regime, such as self-compression or self-focusing of the laser pulse put a constraint
on the choice of the ~,. In this regard, v, cannot be given directly by the laser group
velocity predicted by the linear plasma fluid theory, however using a heuristic approach and
measurements from existing simulations, 7, can be estimated to be 0.27,, with v, predicted
by the linear plasma fluid theory. Because of this low ;, no evidence of numerical Cerenkov
instabilities is observed.
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Figure 4.4: Evolution of the injected electron bunch properties with respect to z, the distance
of propagation in the plasma. Each plot illustrates simulations using different v, € [1,2, 3] at
a specific longitudinal resolution, N, /)¢ € [32, 64, 128] as indicated by the legend. Evolution
of the electron bunch charge, @ is shown in (a-c); the average energy, (£) in (d-f); the rms
energy spread, (AE/E),ms in (g-1); transverse emittance ¢, in (j-1).

Fig. 4.3 shows a layout of the wakefield, E, captured at z = 200 um. Each panel cor-
responds to a specific longitudinal resolution. Wakefield of simulations carried out with
v € [1,2,3] are compared in each panel. Results show some discrepancies among the
wakefield especially at the back of the first blow-out structure at N,/ < 48, however for
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N, /X > 48, we observe a convergence of all wakefield, and at N,/\g = 128, a nice agreement
is obtained for all 43, . The effect of beam loading is also visible for N, /\q > 24 at z = 175 um,
confirming that the amplitude and the phase of beam loading are correctly recovered. This
is further confirmed by the plot of the evolution of the injected bunch properties with respect
to the propagation distance, z in the lab frame (see Fig. 4.4).

We now look at the evolution of the injected and accelerated electron bunch. Here we
only consider electrons trapped in the first period plasma wave (or first bucket). Fig. 4.4
shows the evolution of the electron bunch properties as it propagates through the plasma
for v, € [1,2,3]. For each electron bunch property, only results for longitudinal resolution,
N, /o € [32,64,128] are shown. From Fig. 4.4(a-c), it is observed that the injection happens
from z = 100 to 200 um. For z > 200 um, the electron bunch charge remains constant,
implying that self-injection of electrons in the first plasma period has ended. In Fig. 4.4(d-f)
is shown the evolution of the average electron bunch energy. Once the electron bunch
is injected, it is accelerated throughout the plasma to an average energy of 160 MeV at
z = 450 um. The average accelerating field, (E,) is estimated at 5.3 GeV /cm. The evolution
of the rms energy spread, (AE/E),ms of the electron bunch shown in Fig. 4.4(g-i) suggests
that it first reaches a maximum value at z = 200 pum, then it decreases due to the increase of
the average energy of the electron bunch. Finally it plateaus off to a rms energy spread of ~
10%. Fig. 4.4(j-1) shows the evolution of the transverse emittance, ¢, of the injected electron
bunch. A rapid emittance growth is observed during the injection, this is because electrons
circulate the spherical cavity before being injected, thus gaining transverse momentum along
the trajectory in the self-injection scheme. As a result, the non-zero transverse momentum
contributes to the rapid emittance growth. Once the injection phase is over, the emittance
growth slows down. This slow growth is explained by the betatron movement of electrons.
Since the betatron frequency depends on the energy of the individual electron, they do
not all oscillate synchronously, resulting in the slow growth of the emittance. &, reaches
~ 4.5mmmrad at z = 450um.

Fig. 4.4 shows some discrepancies between results given by simulations with N,/\g €
[32, 64] especially for second-order beam properties such as the energy spread and the emit-
tance. In particular, the transverse emittance at N,/\g = 32 (Fig. 4.4(b)), we observe a
difference of the order of ~ 10% between v, = 1 and 7, = 3, this gives an indication that the
longitudinal resolution at NV, /Ay = 32 might not be sufficient to provide accurate modeling
of the emittance. On the contrary, a nice agreement is observed for N, /), = 128, suggesting
that the higher the longitudinal resolution, the better the agreement between results from
simulations with different +,. A convergence analysis is provided further in this section to
enable quantitative comparison. For this analysis, we consider the average result from all
considered relativistic boosted frames at N,/A\g = 128 as the reference. We choose next
to focus on a specific frame (at z = 200um) for further and more thorough studies since
results in Fig. 4.4 have shown that all electron bunch properties are modeled correctly at all
distances of propagation, z for the highest longitudinal resolution N, /X, = 128.

Fig. 4.5 shows the injected and accelerated electron bunch (a) charge, (b) average energy,
(c) rms energy spread, and (d) transverse emittance at frame z = 200pum with respect to the
longitudinal resolution, N,/)\¢. Each plot shows results from simulations with ~, € [1, 2, 3].
Notice that v, = 1 corresponds to the lab frame. There is a convergence of results obtained
from simulations with different ~, for all electron bunch properties. Taking the average value
of all considered relativistic boosted frames N, /Ao = 128 as the reference, it is observed that
a resolution of N, /Ay = 64 is required to be within 1% of difference even for the simulation
in the lab frame. Results from v, = 2 and 3 converge within 1% of difference at N, /)y = 48
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Figure 4.5: Properties of injected and accelerated electron bunch evaluated at z = 200 um
with respect to the longitudinal resolution for v, € [1,2,3]. Simulations were carried out
using Warp in 2-1/2D CK solver. Note that 7, = 1 corresponds to the simulation in the
lab frame. (a) Electron bunch charge, @, (b) average energy, (£), (c) rms energy spread,
(AE/E)rms and (d) tranverse emittance with respect to longitudinal resolution, N,/\, are
illustrated.

for the electron bunch average energy, the rms energy spread and the transverse emittance
as shown in Fig. 4.5(b-d). Convergence for the bunch charge within 1% of difference is
obtained at a higher resolution N,/\g = 128. The slow convergence in the electron bunch
charge is due to a lack of transverse resolution, and we have verified that convergence was
improving with increasing transverse resolution (not shown here).

We complete the analysis by presenting the difference in convergence among simulations
of all considered 7. The convergence analysis takes the average of all considered relativistic
factors at N, /Ao = 128 as the reference case. This choice is made based on the fact that
a convergence for all beam properties is attained at this resolution as shown in Fig. 4.5.
Fig. 4.6(a-d) show the difference for each electron bunch properties represented in log scale
in the y-axis with respect to N,/X\o. We observe that the difference in beam quantities
decreases with respect to the resolution, implying that high longitudinal resolution helps in
attaining convergence. For v, = 1 (lab frame) and v, = 2, the difference is less than 1% when
N./X\o > 64 for all bunch properties except the beam emittance where a higher resolution
(N./Xo = 128) is required to attain this difference margin. As for v, = 3, the difference drops
to less than 1% for N,/\g > 64 for electron bunch average energy and rms energy spread,
however a higher resolution (N,/Ag = 128) is required to attain this difference margin for
electron bunch charge and transverse emittance. We have verified that higher transverse
resolution can help in reducing the required longitudinal resolution to attain convergence.
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Figure 4.6: Convergence analysis of the results obtained from simulations using the Lorentz-
boosted frame technique. The reference case is taken as the average of all considered relativis-
tic factors. Each plot corresponds to different electron bunch properties: (a) the difference
in electron bunch charge 6Q)/mean(Q); (b) in average energy, 6 (£) /mean((£)); (c¢) in rms
energy spread, 0(AE/E)/mean(AE/E); (d) in transverse emittance, de, /mean(e,).

4.4.2 PSATD solver

Simulations with the laser-plasma parameters as shown in Table 4.2 using the PSATD solver
in 2-1/2D are carried out. The stencil order is set to 32. Here we only perform simulations
using the Lorentz-boosted frame technique with 7, € [2, 3], simulations in the lab frame are
not performed. The study approach is the same as the previous case. A sweep of longitudinal
resolution is done for each relativistic factor of the boosted frame.

We first evaluate the wakefield at z = 200 ym obtained from simulations with boosted
frames at various longitudinal resolution as shown in Fig. 4.7. In each plot is illustrated
the wakefield from simulations with -, € [2,3] for a specific longitudinal resolution. Apart
from the case with N,/\g = 16, where we observe some discrepancies in the second period
of the excited plasma wave, the agreement is excellent for other longitudinal resolutions.
For N,/A¢ = 32 onwards, all wakefield structures for boosted frames with v, € [2, 3] look
identical. The beam loading effects at z = 175um are also captured in simulations using the
Lorentz-boosted frame technique. The validity of the beam loading effects will be further
confirmed by the injected electron bunch properties in the following paragraphs.

Fig. 4.8 shows the evolution of the injected electron bunch properties for high longitudinal
resolutions, N, /g € [32,64, 128]. These bunch properties are electron bunch charge, average
energy, rms energy spread and transverse emittance represented by Fig. 4.8(a-d) respectively.
The injected electron bunch has a charge of 17.5 uC, an average energy of 160 MeV, a rms
energy spread of ~ 10% and a transverse emittance of 4.2 mmmrad at z = 450 um. These
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Figure 4.7: A series of plots showing wakefield at 2 = 200 um. Each panel corresponds to
a specific longitudinal resolution given in the box on the upper left. In each panel is shown
the wakefield of 2-1/2D simulations using the PSATD solver carried out with ~, € [2, 3].

results are comparable to the ones obtained using the CK solver, showing a convergence
between the CK and the PSATD solvers.

The excellent agreement of the electron bunch properties with respect to distance of
propagation, z in Fig. 4.8 for N,/\g € [32,64,128] allows us to further our analysis by
choosing a specific frame, z = 200 um. Fig. 4.9 shows the electron bunch properties at
z = 200 pm with respect to N, /)y for various 7,. Results on the electron bunch charge as
illustrated by Fig. 4.9(a) show some discrepancies even for IV, /Ao = 128. These discrepancies
are within percentage level. For other electron bunch properties as shown in Fig. 4.8(b-d),
we observe a convergence of results for both 7, from N,/\; = 48 onwards. As compared to
the CK solver (refer to Sec. 4.4.1), the convergence is established at a lower NV, /) using the
PSATD solver.

4.4.3 Runtime analysis

An analysis on the runtime gives an insight on the speedup of the simulations performed
using the Lorentz-boosted frame. All simulations are carried out using CPUs of the Cray
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X(C30 supercomputer at NERSC. In this analysis, the time for the diagnostics is subtracted

from the total running time.

Fig. 4.10 shows the runtime expressed in Core-Hours (CH) with respect to the longitudinal
resolution N,/\g. We observe that modeling LWFA in a 500 um plasma with Warp using
the CK solver in 2-1/2D lab frame at a decent longitudinal resolution (N,/\y = 64) requires
10* Core-Hours. Performing the same simulation in a boosted frame with , = 3, reduces
the computational cost by ~ 20 for the CK and the PSATD solvers, while retaining the
difference within the percentage level as shown in Fig. 4.6. Note that the PSATD solver
implemented in Warp is still a prototype, its implementation is yet to be optimized, this
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Figure 4.9: Properties of injected and accelerated electron bunch evaluated at z = 200 um
with respect to the longitudinal resolution for 7, € [2,3]. Simulations were carried out using
Warp in 2-1/2D PSATD solver with 32 stencil orders. (a) Electron bunch charge, @, (b)
average energy, (£), (c¢) rms energy spread, (AE/E),ms, (d) tranverse emittance with respect
to longitudinal resolution, N, /A are illustrated.

explains why simulations using the PSATD solver are more computationally intensive here
as compared to simulations using the CK solver.

We evaluate the analytical speedup for both the CK and the PSATD solvers. The CFL
condition for the CK solver is given by

cAt < Azy/(a—2p8) [(1/Az)2 4 (1/Az)?] (4.8)

in 2D, where At is the time-step and Ax, Az are the computational grid cell sizes in x and
z, o = 3/4, B = 1/8, are the coefficients for the CK solver. As ~, varies, the transverse
resolution is kept constant, while the longitudinal resolution is kept at a constant fraction
of the incident laser wavelength Az = (\g, where ( = 1/(N./X). In a boosted frame,
Az =Ny = C(1+ By)wAo. Consequently, the speedup becomes, when using the CK solver

_ AY(a—2p) [(1/Az)* + (1/Az)?]
Azy/(a=28)[(1/A2)? + (1/A2)7]

where oo = 3/4 and = 1/8. Although there is no CFL condition for the PSATD solver, we
have chosen the same CFL condition as the one of the CK solver for all simulations with the
PSATD solver so that we can make a direct comparison between the two, thus we obtain
Spsarp = Sck-

In Fig. 4.11 are plotted the analytical and numerical (with Warp) speedups for the CK
solver. The speedup obtained with Warp simulations is in the same order of magnitude

Sck (4.9)
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Figure 4.10: Runtime of the simulations expressed in Core-Hours (CH) performed using
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y—axis is plotted in log-scale.
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Figure 4.11: Speedup with respect to the longitudinal resolution for v, € [2,3]. The ana-
lytical speedups are given by Eq. 4.9 and the measured speedups are obtained from Warp
simulations using the CK solver.

as the one given by the scaling obtained analytically. The speedup for the PSATD solver
cannot be calculated since simulations in the lab frame were not performed, however based
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on the analytical speedup, the result should be close to the one given by Scg.

4.5 Conclusion

This chapter gave an overview on the Lorentz-boosted frame technique, which consists of
performing simulations in a frame moving near the speed of light in the direction of the
laser pulse. The properties of space and time dilation and contraction due to the Lorentz
transformation allow large speedup, resulting in the reduction of the computational cost.

Two main issues are identified while using this approach, namely numerical Cerenkov
instabilities and accuracy of the modeling in the self-injection scheme. This work addresses
the latter. For this study, we modeled a 100 MeV stage at a density of 10'® cm ™2, which can
be subsequently scaled to describe a 10 GeV stage at a density of 1017 cm™ [207]. To trigger
self-injection of electrons in the wakefield, aq is set to 5.

With the theoretical speedup developed in [193], we are able to predict the speedup given
the relativistic factor of the boosted frame =y, and the numerical resolution. The correlation
between lab and boosted frame data are also described in this chapter. Although some
interpolation is performed at runtime during data collection process, the induced error is
minimal. To ensure no further loss of information, field and particle diagnostics are carried
out at each time-step, and then dumped at regular interval for post-processing.

Simulations were performed using the CK and the PSATD solvers. Results obtained
demonstrated accurate modeling of the evolution of the plasma wakefield, electron bunch
properties such as the charge, the average energy, the energy spread and the transverse
dynamics with agreement at 99 % percentage level between simulations using various rela-
tivistic factor in the Lorentz boosted frame as long as the longitudinal resolution is sufficient,
e.g. N,/\o = 64. Convergence of results is attained at a lower longitudinal resolution using
the PSATD solver as compared to the case using the CK solver. The agreement between re-
sults using the CK and the PSATD solvers also agree at 99 % percentage level at the highest
longitudinal resolution N, /Ao = 128. The scaling of the speedup is confirmed, validating our
understanding of the Lorentz-boosted frame technique scaling with 7, and N, /Ag. Although
simulations in this regime put a constraint on the choice of the relativistic factor of the
boosted frame, we still obtain a significant speedup, e.g. S ~ 36 with v, = 3 at N,/\g = 128
while retaining differences at the percentage level.

Analysis on the accuracy and the speedup for 1 GeV and subsequently 10 GeV stages are
left for future work.

109



Chapter 4. Speeding up the simulation

110



Chapter 5

Simulation of the dynamics of electron
injection and acceleration

Our group has been developing an experimental program on LWFA experiments to produce
electron beams that conform with the specifications established in the CILEX project. Ex-
periments were performed at the Lund Laser Center and at the UHI100 laser facility, CEA
Saclay. Simulations were conducted in parallel to analyze experimental results and used
as a prediction tool to investigate regimes not yet being explored in experiments. Since
the currently explored regimes in experiments are strongly nonlinear and intrinsically three
dimensional, a realistic description of the process requires the use of a three-dimensional,
kinetic approach. 3D PIC simulations provide detailed information about the laser-plasma
interaction, but demand extreme computer resources. An alternative that is based on the
azimuthal Fourier decomposition algorithm [30] is instead used, as it provides a quasi-3D de-
scription with a computational load reduced to the one similar to bi-dimensional calculations
(refer to Sec. 2.5).

The first part of this chapter demonstrates the capability of Warp in producing reliable
results. The second part is devoted to the optimization of the injector. In the final part
some results on the extension to higher energy electron bunch will be presented.

Contents
5.1 Simulations using Fourier decomposition algorithm . . .. . .. 112
5.1.1 Electron beam characteristics . . . . . ... .. .. .. ... ... 113
5.1.2 Beam dynamics . . . . . . .. ..o 114
5.2 Optimization of the injector by tailoring density profiles . . . . 117
5.2.1 Choice of parameters . . . . . . . . . ... ... 119
5.2.2  Electron beam properties . . . .. ... ... .. ... L. 120
5.2.3 Tuning electron beam energy while preserving energy spread . . . 126
5.2.4 Discussion . . . . . ... 130
5.3 Extension to higher energy electron beam. . . . ... ... ... 132
5.3.1 Choice of parameters . . . . . . .. ... oo 133
5.3.2 Electron beam properties . . . .. . ... ... ... 136
5.3.3 Detailed study with Cn, =1.5% . . . ... ... ... .. ... .. 139
54 Conclusion. . . . . . . .. L e e e e e 142




Chapter 5. Simulation of the dynamics of electron injection and acceleration

5.1 Simulations using Fourier decomposition algorithm

We have performed Warp simulations with the Fourier decomposition algorithm taking as
input data values of experimental parameters close to the ones described in [104]. The
experimental diagnostics have only provided global parameters such as energy, duration,
waist and maximum intensity at the focal position in vacuum and the energy distribution of
the accelerated electron bunch as the output. In the calculation, since we had to specify the
temporal and spatial forms of the laser amplitude, therefore in all presented results, the laser
intensity was assumed to be axisymmetric and Gaussian in time and in the radial direction.
In this configuration only two angular Fourier modes were required, leading to a much lower
computational load than a full 3D calculation.

Ne/max(neo)
(arb. units)

0 500 1000 1500 2000 2500
z (pm)

Figure 5.1: Normalized ELISA longitudinal density profile for an inner cell length of L. =
500pm. Gray areas indicate the locations of the entrance and exit plates in which holes are
drilled. The gas inlet is located on the top and the laser propagates from left to right.

As for the longitudinal density profile, we used the so-called ELISA [32] profile, the
density profile achieved in a gas cell developed as an injector medium for multi-stage exper-
iments planned in the frame of the CILEX project [20]. Fig. 5.1 shows the ELISA profile
computed by 3D FLUID simulations performed using openFOAM [208], and characterized
experimentally [32]. The 500 ym gray areas represent the locations of the entrance and exit
plates of the gas cell in which holes are drilled. The gas inlet is located on the top. It is
considered as the reference profile for the numerical studies presented here. As will be seen
below, the density profile has a strong influence on the electron trapping and acceleration
processes.

For experiments described in [104], the plasma is a mixture of gases (Hs + N3). To model
this, a field ionization module based on the ADK model [80] was introduced in Warp to model
ionization dynamics. A summary of the parameters used in our calculations is given in Table
5.1. In this table ag(zf) is the peak normalized laser amplitude reached in vacuum at z;.
The value of 1.1 is attained in the focal plane z = z¢, in vacuum.
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5.1.

Stmulations using Fourier decomposition algorithm

Maximum electron

number density on axis max(np) 7.8 x 10% cm™*
Longitudinal density profile ELISA profile
Plasma length Lpiasma 2.5mm
Gas composition 99%H, + 1%N,
Laser profile bi — Gaussian®
Peak normalized laser amplitude  ag(zy) 1.1
Laser wavelength Ao 0.8 pm
Laser radius at 1/¢? TL 17 pm
Laser duration (FWHM) T 40 fs
Laser focal position 2f 0.9mm
Laser polarization linear

(in y—direction)
Number of Fourier modes 2
Number of particles/cell 36 macro
Cell size in r Ar Ao/2
Cell size in z Az Ao /50

“Gaussian in temporal and spatial profiles

Table 5.1: List of parameters.

5.1.1 Electron beam characteristics
Electron beam energy spectrum

We first compare, in Fig. 5.2, the experimental electron beam energy spectrum with the
simulated one, determined at the exit of the gas cell, 2 = Lyjzsmq = 2.5 mm.

We observe in this figure that the electron beam has a rather large energy distribution
suggesting continuous injection of electrons, with the highest energy extending to &~ 150 MeV.
The simulated spectrum has a maximum energy within the experimental error bars, it also
reproduces well, above 56 MeV, the experimental shape of the curve. This shows a good
agreement between the experimental and the simulated results. Moreover, the simulation
exhibits a peak at 17 MeV with a FWHM energy spread, AE/E ~ 69%, a piece of information
that cannot be obtained with the experimental setup used.

In Fig. 5.3, is plotted the contribution of the different origin of electrons in the total
spectrum at 2 = Lpgsme. In the simulation, all electrons are tagged and can be sorted
according to their origin: the blue dashed line represents the charge density of electrons
ionized from N°T — N®F and the red dashed-dotted line represents the charge density of
electrons ionized from N®* — N7, We observe that only the two electrons, initially in
the K-shell of nitrogen, are accelerated to high energies. The other electrons coming either
from outer shells of nitrogen or from hydrogen are not trapped but contribute in building
the plasma wake. This is in agreement with the 3D OSIRIS particle-in-cell code results
[77]. Note also that the 6 electrons yield the main contribution to the highest part of the
spectrum, while the 7% electrons contribute mainly to the low energy peak.
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Figure 5.2: Comparison between simulated and experimental electron beam energy spectrum.
The experimental result has an energy cutoff at 56 MeV, thus the simulated energy spectrum
is normalized by the experimental energy spectrum value at 56 MeV. Blue horizontal lines
are the experimental error bars.

Beam emittance

As mentioned in Chapter 1, the divergence and emittance are two important characteristics
of the emitted electron beam. We have plotted in Fig. 5.4, electron distributions in phase
space in (z, p,) and (y, p,) at the exit of the gas cell, the electron momentum being normalized
by mec. From these data are measured a rms divergence of 4.6 mrad in x—direction and
24 mrad in y—direction, whereas the emittance, are respectively of ¢, = 0.6 mmmrad and
ey = 17.1mmmrad. The higher values in the y—direction are related to the polarization of
the laser field: after tunnel ionization the electron acquires a quiver velocity in the direction
of the polarization.

5.1.2 Beam dynamics
Correlation between the injection and acceleration processes

In order to analyze the results presented in Sec. 5.1.1, we have looked at the correlation be-
tween the injection process and the acceleration one. Here we back-tracked 20000 randomly
sampled trapped electrons (10000 for N5+ — N6+ and 10000 for N6+ — N7*) beginning from
Zezit Dack to their ionization position, also corresponding to the position of their first appear-
ance in the simulation.

In Fig. 5.5, we have plotted the final energy of the electrons as a function of their trapping
position for (a) the 6/ and (b) the 7" electrons. As the trapping position increases, electrons
are trapped further away from the gas cell entrance, the length of acceleration decreases;
only electrons trapped at the early stage are accelerated to the highest energy because their
acceleration length is longer than those trapped at the later stage. In particular the 7
electrons have lower energies, in accordance with Fig. 5.3, because they are trapped later.
We observe also in Fig. 5.5 that the position-energy correlation is not linear, in particular,
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Figure 5.3: Energy spectrum for different electron population depending on their origin: the
6" electrons (dashed line), the 7' electrons (dashed-dotted line) and the sum of all electrons
(solid line) at z = Lyjasma-

for the high energy part, e.g. electrons with & = 120 MeV at 2 = Lyjasma- For these electrons,
the trapping positions spread over more than 100 ym in the trapping positions, yet they still
obtain the same final energy.

Laser amplitude and plasma wave

In order to explain the data of Figs. 5.3 and 5.5, we now look at the evolution of the laser
amplitude and of the plasma wave, which are responsible for both the trapping and for
the acceleration processes. In Fig. 5.6, we have plotted the evolution of ag(z) in vacuum
(green dotted line) and during the laser propagation in the plasma with ELISA density
profile (gray dashed line). The focal plane of the laser zf in vacuum, is located at 900 pym.
The entrance of the gas cell, where the density starts increasing rapidly is positioned at zy.
Relativistic self-focusing dominates over diffraction when Pr/Pc(z) 2 1 (see Chapter 1),
Py, being the maximum value of the laser power and Pg(z) the value at z, of the critical
power for relativistic self-focusing. Close to the gas cell entrance, P;, remains constant while
Po(z), being inversely proportional to the density, strongly decreases with z. Therefore
P/ Pc(2) increases rapidly and becomes higher than 1. The value of P;/Pc(z) however
remains relatively modest, therefore the self-focusing is rather smooth, the maximum of
intensity being reached close to the gas cell exit. In Fig. 5.6 vertical lines mark 3 positions,
corresponding to (1) the start of the trapping process, (2) the maximum value of ag(z) and
(3) the end of the trapping process. We can observe that the trapping region corresponds
also to the domain of high plasma density. Therefore, in our conditions, the density profile
appears as the dominant parameter controlling the trapping process.

In Figs. 5.7 are plotted the laser fields and the plasma wave amplitudes on axis at the
three positions labeled in Fig. 5.6. At position (1) the interaction occurs in a quasi-linear
regime, where the laser envelope is still Gaussian and the plasma wave quasi-periodic. At the
maximum of the laser intensity, in position (2), nonlinearities become apparent, both on the
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Figure 5.4: A set of points representative of an electron beam in the a) (z,p,)—, b)
(y, py)—phase space. The color bar represents the relative density of the electrons.

plasma wave and also on the deformation of the laser pulse. The accelerating field amplitude
has increased, taking into account the additional normalization factor which depends on the
density, and a peak at z = 1402 um corresponding to the back of the first oscillation behind
the laser is visible. This peak is due to the field generated by trapped electrons. Beam
loading effects are therefore significant in this case. Position (3) is similar to the second one.
However, due to the decrease in density, and also in ag(z), the amplitude of the wakefield has
decreased, while the relative contribution of the beam loading effect has increased because
the accumulated trapped charges have generated their own field that distorted the wakefield
significantly. Information on the transverse properties of the laser and plasma wave structure
at the three positions is given in Fig. 5.8.

Fig. 5.8 shows the electronic density map with the laser amplitude at the three positions
mentioned earlier. Fig. 5.8(1) confirms that a quasi-linear regime is at the beginning of the
injection, in particular the transverse size of the plasma wave is similar to the laser pulse
one. At this position, the laser ponderomotive force is not strong enough to expel all plasma
electrons from the vicinity of the axis. On the contrary, at position (2), the transverse size
of the laser pulse is minimum leading to the highest field amplitude ag &~ 3. A full matched
blown-out structure can then be formed, yielding the highest accelerating field. At position
(3) the transverse size of the laser pulse has increased, diffraction becoming dominant over
self-focusing, leading to a decrease of the laser intensity.

Concerning the trapping of the 7% electrons, the simulation shows that, due to their
strong binding energy, these ions are ionized only for the highest values of ag(z). The
principal trapping condition for these electrons become simply that they first have to be
generated, but once created they are even more easily trapped than the 6t electrons.

The fact that electrons with quite different trapping position obtain the same final energy
can be explained by the following: the first trapped electrons when accelerated, move toward
the front of the cavity, whereas newly generated electrons are trapped at the back of the
cavity where the accelerating field reached a higher value, therefore the electrons trapped at
the later stage can reach the same energy as the electrons trapped at the earlier stage.
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Figure 5.5: Trapped electrons final energy is plotted against injection position for (a) the
6" and (b) the 7% electrons. Electrons are chosen with an energy, £ > 10MeV at the exit
of the plasma, z = 2.5 mm.

Conclusion

In this section, we have presented the modeling of a laser-driven plasma acceleration ex-
periment with Warp using the azimuthal Fourier decomposition algorithm. The use of the
realistic density profile has allowed to perform direct comparisons with experimental results,
which show good agreement. This is also the case for the other experimental data (not
shown here), using the same set-up and presented in [104]. In [104], the author has per-
formed an experiment on the influence of the laser focal positions on the generated electron
bunch in a gas cell using the ionization-induced injection scheme, the supporting simulations
using Warp with the azimuthal Fourier decomposition algorithm have produced precisely
the experimental energy distribution of the electron bunch. Therefore the validity of the
code is confirmed, and in particular the fact that, in the considered conditions, accurate
results can be obtained with only two Fourier harmonics. A detailed analysis of the simu-
lation results has allowed to get more insights of electron trapping and acceleration process
when the ionization-induced injection and density gradient effects are combined. The high
efficiency of the quasi-3D model has allowed to perform a direct parametric investigation for
optimizing electron beam properties.

5.2 Optimization of the injector by tailoring density pro-
files

We have shown in the previous section that Warp simulations using azimuthal Fourier
decomposition algorithm produce reliable results. We have then performed numerical studies
using the same code framework to determine optimized conditions for controlled ionization
injection using a moderate power laser pulse, propagating in a gas cell. Previous simulations
have also given indications on the choice of parameters for optimization. In Fig 5.6 the
shaded area corresponds to the injection length of 726 pm; in this case, the corresponding
spectra exhibit a large energy spread, indicating that the length is too long. In order to
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Figure 5.6: Evolution of ag, we define three positions: (1) the beginning of injection, (2) the
ap is maximum, (3) the end of injection. The blue shaded region represents the injection
range, and the range is of 726 um. The green dotted line represents the evolution of ag in
vacuum, the maximum value of ag is at zy = 900 um. The black line shows the longitudinal
density profile of the gas cell.
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Figure 5.7: Vector potential of the laser, A normalized to m.c/e and the wakefield, F,
normalized to m.cw,/e at positions (1), (2) and (3) as shown in Fig. 5.6.
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Figure 5.8: Normalized electronic density map together with the normalized laser field at
the three positions reported in Fig. 5.6. All quantities are normalized to their maximum.

control the energy spread, a shorter injection length is necessary. Several methods can be
considered to control this injection length, either by shortening the plasma length or by
focusing the laser pulse near the exit of the gas cell, leading to a slow growth of agy, hence
delaying the ionization injection process.

By analyzing the dynamics of electron injection and acceleration in this moderately non-
linear regime, we identify the mechanisms controlling the beginning and the end of injec-
tion, and propose a way of tuning finely the electron beam energy while preserving its energy
spread, by tailoring the longitudinal density profile of the last acceleration zone. This method
produces electron beams with a FWHM energy spread, AE of ~ 9MeV for a peak energy of
82.6 MeV.

5.2.1 Choice of parameters

Laser and plasma parameters are chosen in order to achieve electron acceleration to energies
in the range of 50 — 200 MeV, well suited for an injector. The lower limit at 50 MeV ensures
that space charge effects will not be dominant at the exit of the plasma, and that the
influence of the energy spread can be minimized as it scales as 1/4% The upper limit is
fixed at 200 MeV to allow for a compact transport line for electron beam manipulation
before coupling to the first accelerating structure as is planned in the CILEX project. In
addition, the electron beam is required to have a small normalized transverse emittance of
e, ~ lmmmrad, a small energy spread (typically less than 10%) and a large enough charge
(> 10 pC).

The parameters used in our calculations are very similar to the ones in Table 5.1, with
Lpigsma 1reduced to 2.4mm and zy extended to 1.9mm. These modifications allow us to
control the evolution of ag which in turn controls the injection of electrons in the wakefield.
More details will be given further in this section. The plasma electron density, ng, is chosen
to be in the range of (10'® — 10') cm™3. In this range, the density is high enough for self-
focusing of the laser pulse to be achieved, while low enough for the dephasing length L,
La o (A3/A§)ag o noy’? (where a constant of order unity has been neglected), to be in the
mm-range and allow for electron acceleration to energies in the required range.

Fig. 5.9 shows the evolution of ay, the maximum amplitude of the normalized vector
potential of the laser pulse (red solid line), and the plasma electron density normalized to
its maximum (gray dashed line, ELISA profile), with respect to the propagation axis z.

The shaded region of length ~ 630 um represents the window of electron injection in
the laser wakefield structure. Four positions are marked: z, representing the beginning of
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Figure 5.9: Evolution of ag with respect to the propagation axis z. The gray dashed line
shows the longitudinal density profile of the gas cell, or ELISA profile. The shaded area
represents the injection range of length ~ 630 um. We define four markers in the injection
zone: zp, the position where injection begins; z;, a position between zy and z3; 25 the position
where aq is maximum; z3, the position where injection stops.

electron injection, z; a position in the region between the beginning of electron injection and
the position where ay reaches its maximum value z,, and 23 the end of electron injection.
The laser pulse with moderate power, and normalized vector potential, ag, is incident with a
focus position in vacuum at 1.9 mm, a position located in the down-ramp of ELISA profile.
The reasons for using a moderate laser power are two-fold: as can be seen in Fig. 5.9, it
leads to a slow growth of ag due to self-focusing of the laser pulse in the smooth up-ramp
of density before reaching a maximum, thus delaying the trigger of the ionization-induced
injection mechanism, and controlling the start of the injection to limit the energy spread; it
prevents ag from reaching a value high enough for self-injection of electrons. The values of
ag € [1.5,2.7] during the trapping of electrons are in agreement with previous observations of
ionization-induced injection and are below the self-injection threshold [77]. The combination
of laser focal position and density tailoring controls the evolution of ay.

5.2.2 Electron beam properties

In this section we discuss the properties of the resulting electron beam obtained with the
parameters shown in Sec. 5.2.1.

Electron beam energy distribution

The electron beam energy distribution is analyzed at the exit of the gas cell at the z—axis,
Zexit, €qual to the total plasma length: zeuit = Lpigsme = 2.4mm. In Fig. 5.10 the charge
density of the accelerated electron beam (black solid line) is plotted as a function of electron
energy.

The energy distribution is shown for £ > 10 MeV, corresponding to the minimum energy
of trapped electrons. This energy is linked to the structure of the generated wakefield,
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Figure 5.10: The blue dashed line shows the energy spectrum of the 6 electrons, whereas
the red, dashed-dotted line shows the energy spectrum of the 7% electrons. The black solid
line represents the sum of the two spectra. Only K-shell electrons contribute to the electron
beam energy spectrum at z..;. Other electrons are not trapped but contribute to building
the plasma wake. An energy cutoff at 10 MeV is applied.

depending strongly on the interaction between the laser and the longitudinal density profile
shown in Fig. 5.9. For an electron to be trapped in the wakefield, its Lorentz factor v is
required to fulfill the condition [77]

AV +1=—, (5.1)

where AU = e(U; —U,)/(mec?), 75 = (1 —v42/c?)71/2, and v, is the wake phase velocity. ¥
is the wake potential and the subscripts ¢ and f denote the ionization and trapped positions,
respectively. Consider the end of the injection phase z = 23, we take the value of ~, at
this position. Assuming that all trapped electrons are ionized at the maximum of the laser
envelope, and trapped at the back of the first period of the plasma wave, ¥; and ¥ are then
taken at the corresponding positions. Using Eq. 5.1, we evaluate the value of v at z = 23
and infer that the trapped electrons have at least v ~ 20 at the end of the injection phase.
For this reason, the following analysis will focus on electrons with v > 20.

As shown in Fig. 5.10, the electron spectrum is peaked at 65.7 MeV with a FWHM energy
spread, AE/E = 13.1%. The highest energy extends to ~ 74 MeV. Only electrons initially in
the K-shell of nitrogen are accelerated to higher energies as shown by the dashed blue line and
red dashed-dotted line. Other electrons coming either from nitrogen or from hydrogen are
not trapped but contribute to building the plasma wake. Similar to the simulation presented
in Sec. 5.1, the 6! electrons yield a higher charge and are the dominant contributors to the
higher energy range of the energy spectrum, while the 7" electrons yield a lower charge and
are dominant contributors to the lower energy range.
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Chapter 5. Simulation of the dynamics of electron injection and acceleration

Dynamics of electron injection

Following the same analysis technique as in Sec. 5.1.2, we study the correlation between the
energy of electrons at z.,; and their position of ionization, as shown in Fig. 5.11.
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Figure 5.11: Trapped K-shell electrons energy at z..; as a function of their ionization posi-
tion; a) blue crosses: electrons from N° — N® b) red asterisks: electrons from N6+ — N7+,
Two regions are marked in the distributions: distribution I has energy larger than 55 MeV
and a position of ionization smaller than z = 1480 um; distribution I exhibits a decrease of
energy for increased position of ionization.

In Fig. 5.11 is shown the energy of trapped electrons at z..; from (a) N°F — N+ and
(b) N6+ — N7*. The trapped K-shell electrons are ionized in the range from 1250 um to
1880 pm. Two kinds of electron distributions can be identified: Distribution I corresponds to
electrons that have an energy higher than ~ 55 MeV and a position of ionization smaller that
z = 1480 pm, while Distribution II corresponds to electrons with energy at z..; decreasing
with respect to their position of ionization. The 6 electrons are ionized earlier in the
propagation than the 7" electrons, due to a lower ionization potential, 552 and 667 eV,
respectively. The total charge is evaluated by taking into account both the 6! and the
7" electrons. In Distribution I, the total charge is 42.6 pC, and 41.6 pC in Distribution II,
indicating that Distribution I represents 50.6% of the total number of trapped electrons.

Distribution I has a position of ionization between 1250 ym and 1480 pum, an energy at
Zezit 1IN the range of 55 — 74 MeV, and the spectrum is peaked at 65.7MeV as shown in
Fig. 5.10. The line dividing the two distributions is located at z = 1480 pym, and corre-
sponds to the position of the change of slope in the density down-ramp of the ELISA profile
(see Fig. 5.9), indicating that the shape of the density profile has a major influence at the
distribution of injected electrons.

For distribution I, the 6! electrons contribute a charge of 35.6 pC while only 7.0 pC is
provided by the 7% electrons. No obvious correlation between the ionization position and
the electron energy at z..; is discerned for distribution I, i.e. electrons that are ionized
later in this interval can have the same energy as earlier ionized electrons, inferring that the
injection and the acceleration processes are independent.
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5.2.  Optimization of the injector by tailoring density profiles

Distribution II starts at z = 1480 um and ends at z = 1880 um. A clear correlation
between the electron ionization position and electron energy at the exit of the plasma is
observed, i.e. higher energy electrons are ionized first, implying continuous injection and
acceleration of electrons. In this distribution, the 7% electrons, as shown in Fig. 5.11(b),
provide a charge of 27.8 pC while the 6! electrons provide a charge of 13.8 pC, as shown in
Fig. 5.11(a).

Dynamics of beam loading

We further investigate the correlation between injection and acceleration processes by looking
into the amplitude of accelerating wave structures.

In Fig. 5.12 are plotted the normalized laser field (blue), the normalized longitudinal
wakefield (red) and the energy of electrons divided by 40 MeV (represented by a set of
points with color scale for charge density) as a function of space around three positions in
the density profile z; = 1435 pum, 25, and z3 as marked in Fig. 5.9. The laser propagates from
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Figure 5.12: Evolution of the normalized laser field, eE, /2mcw, (in light blue), the normal-
ized wakefield, eE,/mecmax(wp) (in red) and the energy, £ of electrons (represented by a
set of points) for the three positions of interest z;_3 as marked in Fig. 5.9. The color bar
represents charge density. The black rectangle at z3 represents electrons in the high charge
density region, with energy above 50 MeV.

left to right. Electrons that satisfy the trapping condition, given by Eq. 5.1 are trapped in
the first bucket, defined by the region of negative F, bounded by zero crossing.

At z;, the laser envelope is already deformed due to self-focusing, and the nonlinear
accelerating wakefield is distorted due to the wakefield of injected electrons. Ionized electrons
that satisfy the trapping condition are trapped and accelerated at the back of the bucket.
However the widening of accelerating structures causes later trapped electrons to lag behind
earlier injected ones; the latter are accelerated to a higher energy as compared to the former,
an evidence of continuous injection of electrons in the bucket.

At the position of maximum laser intensity, zo, we observe an increase in the charge
density as compared to the previous position z;, suggesting that more electrons are trapped
in the bucket, and the wake is severely modified due to beam loading effects. Electrons at
the back of the bucket experience a strong accelerating field, therefore their energy quickly
catches up with previously injected electrons, consequently forming two high energy distri-
butions. At the end of the ionization region, at z3, the accelerating plasma wave structure
is heavily beam loaded, resulting in the inhibition of further injection. The flattened nor-
malized wakefield, Enjporm = 0.22, giving Fy; = 59.1 GV /m, accelerates a rather energetic,
homogenized electron beam with a central energy of 62.6 MeV in the highest charge density
region, corresponding to the peak observed in the spectrum of Fig. 5.10.
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Figure 5.13: Electron density in the (z,z) plane at zy, with superimposed laser amplitude
and injected electron beam. The horizontal color bar represents the normalized electron
density in arbitrary unit and the vertical color bar depicts the energy of trapped electrons.
A black dashed circle of 4.7 um radius is superimposed on the map to show the shape of the
blown-out region.

Fig. 5.13 shows a 2D map in the = — 2z plane of the electron density at position z;. The
laser amplitude is located between z = 1628 ym and z = 1638 um. A black dashed-line circle
is superimposed to delimit the blown-out region. Trapped electrons are located in a region
extending from the sheath of high density at the back of the cavity to the center of the
blown-out region. The charge of the injected electron beam in this structure is Q) = 37.2 pC.
This value can be compared to the analytical prediction for the amount of charge that can
be loaded in the nonlinear wakes given by Eq. 1.94. At z,, the simulation gives k,R, = 1.74
and Eninorm = 0.55, giving En; = 147.7GV/m. Inserting these values in Eq. 1.94, we
obtain QQn; = 28.5pC. This analytical prediction is of the same order of magnitude as the
amount of charge calculated in the simulation, thus confirming that the operating regime is
a beam-loaded blown-out regime.

At the end of the injection region, z3, the high-energy electron beam has a peak energy
of 62.6 MeV and a FWHM energy spread, AE/E = 14.2%. Considering only high energy
electrons in the energy range above 50 MeV, their charge Quin = 43.6 pC and they are
distributed over a length, fyeamn, = 6 pm. The charge of electrons with an energy of > 10 MeV
at Zezir 18 @>10mev = 84.1 pC. The ratio of Qpigh/@>10mev ~ 0.52, indicating that a significant
amount of charge is found in the peak at z3. Fig. 5.14 shows the evolution of the charge
density with respect to the electron energy for three positions during the injection process.
At z1, the injection process has just begun, the spectrum exhibits a decrease of charge density
with respect to electron energy, a characteristic of the continuous injection process. At zs,
a peak with a central energy of 32 MeV is formed. At z3, an increase of the population of
electrons in the peak energy region is observed. Electrons injected earlier are now situated at
the center of the bucket and form the bulk of the peak; they experience smaller accelerating
wakefield compared to later injected electrons, some of which caught up with the initially
injected ones and ended up populating the peak region.

At the exit of the gas cell, z..;; the same electron beam has increased its peak energy
to Epear = 65.7MeV, and its FWHM energy spread is reduced to AE/E = 13.1%. On one
hand, the accelerating wakefield remains relatively flat throughout the length of the electron
beam up to the exit of the plasma gas cell, therefore the energy spread is preserved. On
the other hand, due to the decrease in density along the propagation axis, the accelerating
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Figure 5.14: Evolution of the charge density with respect to the energy with an energy cutoff
at 10 MeV at three different positions: z;_3 corresponding to the cases of Fig. 5.12.

wakefield becomes weaker, so that the energy gained by the electron beam between z3 and
Zegit 18 small, &~ 3.1 MeV.

The accelerating field, E, can be deduced directly with the equation AE = eL,..F.. The
length over which most of acceleration occurs, L. is the distance between the beginning and
end of position of ionization of the trapped electrons, respectively 1250 pm and 1880 pm (see
Fig. 5.11). For A€ = 65.7MeV with Ly = 630 um, E, = 104.3 GV /m, which corresponds
to the average field in the injection zone.

The presented results can be explained by the same mechanism as described previously in
Sec. 5.1. The fact that electrons with quite different trapping positions reach the same final
energy is due to the strong increase and the deformation of the accelerating fields during the
trapping of electrons due to nonlinear effects, this leads to the homogenization of energy of
the initially trapped and later trapped electrons.

Beam emittance

Here we evaluate the normalized beam emittance following Eq. 1.99 along each axis. The
emittance in x— and in y— directions are plotted as functions of electron energy in Fig. 5.15(a)
and (b) respectively; the insets of Fig. 5.15(a) and (b) show the distribution of electrons in
(x,p,;)— and in (y, p,)— phase space at the exit of the plasma, zey.

Considering all electrons with £ > 10MeV in the first bucket, €, s = 0.33 mm mrad
and €y ,ms = 2.09 mmmrad. €, ., is larger than €, ,,,s because of the oscillation of electrons
in the laser polarization y—direction. Defining the rms divergence as 0, = Ap, ;yms/pj, gives
0, = 6.9 mrad and 0, = 18.5 mrad at position zeg.

Figs. 5.15(a) and (b) show that the emittance along the z— and y— axis are roughly con-
stant with respect to electron energy, indicating that only the ionization process contributes
to electron position ; yms and momentum p; yps.
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Figure 5.15: Emittance of the electron beam at the exit of the plasma, z..;; as a function
of electron energy in (a) x— and in (b) y— directions. The energy bin interval is 6.4 MeV.
Insets of (a) and (b) represent the distribution of electrons with &€ > 10MeV in (z,p,)—
and in (y, p,)— phase space. The color bars represent the electron density normalized to its
maximuim.

5.2.3 Tuning electron beam energy while preserving energy spread

Experimental results [105] in two overlapping gas jets show that tailoring the density profile
leads to the separation of the processes of electron injection and acceleration and permits
independent control of both. The results in the previous section give indications on the ways
to control injection and acceleration processes independently in a single gas target. In this
section we explore the energy tunability of the electron beam with preservation of its energy
spread.

Starting from the results obtained at z3, the position where the injection stops for the
ELISA profile, we tailor the density profile along the z-axis for z > z3 in order to tune
electron energy. The high energy part of the spectrum with £ > 50 MeV and the largest
electron charge are selected at the end of the injection process (z = 1900 ym), as indicated
by the black rectangle in Fig. 5.12(23). As pointed out in Sec. 5.2.2; this electron beam
represents a significant portion (52%) of the total trapped electrons.

The strategy to maximize the energy gain of this electron beam while preserving its energy
spread is to achieve the largest possible, flat accelerating wakefield while maintaining the
electron beam in the acceleration phase. Numerical experiments were performed to further
investigate this idea by tailoring the longitudinal density profile in the acceleration phase.

Flat density

A first example is illustrated in Figs. 5.16-5.17. The longitudinal density profile of interest is
shown in Fig. 5.16. This density profile is chosen as an attempt to maximize the accelerating
field after the injection process without alteration of the plasma wave wavelength.

In Fig. 5.17(a) are plotted the electron beam distribution together with the laser field and
the wakefield at z4, and at z.,; in Fig. 5.17(b). Although electrons have gained ~ 20 MeV
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Figure 5.16: Tailored longitudinal density profile with a constant density extended from the
end of the injection process. Three positions are marked, 23, the end of the injection process;
z4, intermediate position between the end of the injection and the exit of the gas cell, z..;.
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Figure 5.17: Two distinct instants z4 and z..; of the normalized laser fields, eE, /2m.cwy (in
light blue), the normalized wakefield, eE, /m.cmax(wp) (in red) and the energy, € of traced
electrons (€ > 50 MeV at z3) represented by a set of points, are shown in (a) and (b).

between z3 and z4, the accelerating wakefield is no longer flat, and electrons at the head
and the tail of the beam experience weaker accelerating wakefield as compared to the center
part, resulting in the growth of energy spread in both these areas. As ag becomes ~ 1, the
plasma wave is gradually becoming a regular sinusoidal oscillation with frequency w,(z).
From Fig. 5.12, the longitudinal accelerating wakefield at z3 is bounded between 1868 um
and 1885 pum, having a length of 18 um. However this length is reduced significantly at z4
Or Zezir- At 24, the accelerating wakefield is bounded between 2227 ym and 2236 ym and at
Zexit, the accelerating wakefield is bounded between 2356 pm and 2365 pym, giving a length of
9 pm in both cases. This results in the tail of the electron beam slipping into the decelerating
wakefield; as a consequence, the tail of the beam is being decelerated while the head is still
being accelerated, resulting in an asymmetrical growth of the energy spread.

Fig. 5.18 shows the spectra of accelerated electrons with energy £ > 30 MeV at different
positions z3, z4 and z..;. These spectra show that the electron beam energy is increased, as
well as the charge at the peak energy between z3 and z4, thus improving the FWHM AE/E
to 11.5%; however a decrease of 14.4% of the charge at the peak energy and an increase in
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Figure 5.18: Charge density of accelerated electrons having & > 30 MeV with respect to
electron energy obtained from the simulation using the longitudinal density profile featured
in Fig. 5.16 at different positions z3, z4 and 2.

the FWHM AE/E to 12% for the spectrum at z..; results from the fact that some electrons
are decelerated. This observation is explained by the shrinkage of the accelerating fields
structure, leading to the subsequent slippage of electrons into the decelerating wakefield, as
shown in Fig. 5.17(c).

The evolution of the laser vector potential, aq for this case is similar to the one represented
in Fig. 5.9, inferring that the variation in the density profile between z3 and z..; has no
great influence on the laser propagation.

The energy gain starting from the end of the injection process z3 up to the exit of the gas
cell zepir is AE = 28.2 MeV, corresponding to an average accelerating field in the acceleration
phase of E, = 56.4 GV /m.

In Fig. 5.19 are plotted the emittance along x— and y— directions with respect to electron
energy, corresponding to the profile of Fig. 5.16. ¢, and ¢, . are preserved, their values
are comparable to those shown in Fig. 5.15. This result also confirms that there is no
significant influence on the emittance caused by the interaction occurring between the tail
of the laser pulse and the head of the electron beam, as observed in Fig. 5.17.

Linear density down-ramp

The slippage of the tail of the electron beam into the decelerating wakefield as shown in
Fig. 5.17(b) leads to the growth of energy spread. Phase slippage in increasing density taper
has been proposed [130, 209, 210, 211, 212] for controlling electron energy. Conversely, the
decrease of longitudinal plasma density is used here to minimize the growth of energy spread.
In order to maintain the electron beam in the plasma wave focusing and accelerating phase
up to Zesit, the plasma wave extension has to be larger than the beam extension i.e. A,(2)/4 2

Cheam- FOr lheam ~ 6um, with A\ [um] ~ 3.3 x 101 /n.[cm—3], it gives n, < 1.94 x 10'® cm™3.

From Fig. 5.17(a) it can be observed that the plasma wave is approaching the linear regime
and that the electron beam begins to slip into the decelerating wakefield. We can therefore
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Figure 5.19: Normalized beam emittances, ¢, .. (blue solid line) and ¢,,, . (dashed red line)
simulated with the longitudinal density profile in Fig. 5.16 with respect to energy. The
energy bin interval is 6.8 MeV.

impose n.(z4) = 1.94 x 10"¥ cm™ and use a linear density gradient from z3 as shown in
Fig. 5.20.
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Figure 5.20: Tailored longitudinal density profile with a linear density down-ramp extended
from the end of the injection process to the plasma exit. Three positions are marked, z3, the
end of the injection process; z4, intermediate position between the end of the injection and
the exit of the gas cell, z.ui.

In Fig. 5.21(a) and (b) are plotted the evolution of the electron beam distribution, to-
gether with the laser field and wakefield at two distinct positions z4 and z..;;. The gradual
decrease of density increases A, and helps the electron beam to stay in the accelerating
phase of the wakefield; the symmetry of this electron beam is preserved over a longer dis-
tance compared to the case with a flat density shown in Fig. 5.17. Also, due to the weaker
accelerating wakefield as the density is decreased, the energy gain of the electron beam

is reduced, AE = 17MeV, with an average accelerating field in the acceleration phase of
E,=34GV/m.
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Figure 5.21: Two distinct instants z4 and ze.; of the normalized laser fields, eE, /2mcwy (in
light blue), the normalized wakefield, eE,/mcmax(wp) (in red) and the energy, £ of traced
electrons (€ > 50 MeV at z3) represented by a set of points, are shown in (a) and (b).

Fig. 5.22 depicts the evolution of the spectrum of the electron beam at z3, z4 and z..;:.
Between z3, 24, the energy of the electron beam and the charge at the peak both increase,
while the FWHM AC£ is preserved. The comparison of spectra at z;, and z..; shows that the
peak energy is increased by 20 MeV, therefore FWHM AE/E is reduced from 14.2% (at z3)
to 11.0% (at zewit)-

5.2.4 Discussion

The normalized beam emittances with respect to energy shown in Fig. 5.23 are very similar
to those in Fig. 5.19. Using profiles in Fig. 5.16 and 5.20, ¢,,,.. and €,,,.. in both cases are
preserved.

Fig. 5.24 summarizes the energy distribution of the electron beams in the peak for each
of the three longitudinal density profiles. The final charge remains at ) = 43.6 pC for all
three simulations, implying that no electron loss during the acceleration process.

In this simulation, the evolution of the laser vector potential, ag remains similar to the
one represented in Fig. 5.9. This suggests that the tailored density profile in this region has
no great influence on the laser propagation.

Table 5.2 summarizes the values of peak energy and energy spread for the three cases.
For the simulation with profile (a), Epear at Zezit is lower due to the decreasing accelerating

Table 5.2: Comparison of the peak energy, & and FWHM AE/E of the accelerated electron
beams in different longitudinal density profile.

Longitudinal Peak energy, FWHM
density profile Epeat(MeV)  AE/E(N)

(a) ELISA profile 65.7 13.1
(b) Descending gradient 82.6 11.0
(c) Plateau 90.8 12.0

wakefield in the descending phase of the density. The simulation with profile (c¢) gives the
highest Epeqr and the FWHM AE/E at zei: is decreased to 12%. The result that offers the
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Figure 5.22: Charge density of the accelerated electrons with respect to the electron energy
simulated using the longitudinal density profile featured in Fig. 5.20 at different positions
23, z4 and Zegip -

best compromise with the considered parameters is from the simulation with profile (b), the
FWHM AE/E is decreased to 11% and the &,eq is increased by ~ 16.9 MeV as compared to
the result from the initial longitudinal density profile, depicted by profile (a).

From the presented results, the growth in FWHM AE/E observed in Fig. 5.17(c) is mainly
caused by the evolution from nonlinear, beam-loaded accelerating wakefield to sinusoidal
oscillations when aq declines. This effect is mitigated using a descending gradient with the
appropriate density predicted using the linear theory. Simulations with this longitudinal
density profile show a decrease in the FWHM energy spread.

Conclusion

We have presented a detailed analysis of electron dynamics in the injection and acceleration
processes. With the chosen laser plasma parameters, simulation results produce an electron
beam with E,cqr of 65.7MeV, a FWHM energy spread AE/E of 13.1% and a charge of
43.6 pC, where the FWHM energy spread is yet to be improved. The moderate power laser
pulse restricts the injection to only ionization-induced injection and a focal position in the
descending gradient of the longitudinal density profile allows a slow growth of the vector
potential, ag, delaying the ionization processes, resulting in the shortening of the injection
range as compared to the plasma length. In this parameter range, beam loading effects
are responsible for two distinct phenomena: the inhibition of the injection process and the
homogenization of the energy distribution of the trapped electron beam.

By separating injection and acceleration processes, an additional degree of control is
gained in the acceleration process. We tailored the longitudinal density profile starting from
the position of the end of the injection process up to the end of the plasma, in order to
accelerate the electron beam to a higher energy while preserving its energy spread.

The presented method demonstrates a way to optimize the energy and the energy spread
of electron beams needed for injection into a multi-stage plasma-based accelerator. Other
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Figure 5.23: Normalized beam emittances, €, ,ms (blue solid line) and &, ,,s (dashed red
line) simulated with the longitudinal density profile in Fig. 5.20 with respect to energy.
Only electrons of £ > 25 MeV are depicted. The energy bin interval is 6.7 MeV.

beam parameters should also be optimized before they could be used in high energy appli-
cations, such as the beam charge, to be increased by at least a factor of 2, and the beam
emittance, to be reduced to Ilmm mrad or less. Optimization of these two parameters while
maintaining the energy spread is foreseen through tailoring of the driving laser beam distri-
bution and is the goal of future work.

Results from Warp simulations using three Fourier modes in the azimuthal Fourier de-
composition algorithm show no significant modification in the beam properties, confirming
the accuracy of simulations using two Fourier modes, as presented here. The best possi-
ble result with the considered parameters is obtained using the descending gradient in the
longitudinal density profile. This approach takes into consideration the maximization of
the accelerating wakefield and the rephasing of the electron beam to minimize the FWHM
energy spread. It is shown that both the charge and the emittance in x— and y— directions
of the electron beam are preserved and the FWHM AE/E is reduced.

5.3 Extension to higher energy electron beam

In the previous section, we have optimized the longitudinal density profile. In the best case
which involves using a linear density down-ramp in the acceleration phase, simulations gave
us an electron beam of peak energy 82.6 MeV, a FWHM energy spread AE/E of 11% and
a charge of 43.6 pC. In this section, we determine the laser-plasma parameters that allow
electron beam energy to extend to the 200 MeV energy range while maintaining or improving
the other parameters. This study aims to prepare future experiments at the Apollon-10P
facility in the CILEX project [20]. Preliminary experiments are carried out at the UHI100
laser facility (CEA-Saclay) to test and possibly determine an optimized configuration for the
control of electron injection using the ionization-induced injection mechanism, that would
subsequently be implemented on Apollon-10P facility as an injector for multistage experi-
ments. At the UHI100 laser facility, a Ti:Sa laser system delivers 100 TW pulses with 25 fs
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Figure 5.24: Energy distribution of the traced electron beam (€ > 50MeV at z3) at the
exit of the gas cell, z..;, the onsets above each spectrum show the corresponding tailored
longitudinal density profile: (a) with ELISA profile, (b) with a descending gradient, (c¢) with
a plateau.

pulse duration, at 10 Hz repetition rate. The laser-plasma parameters chosen for the study
presented in this section are close to the ones of this facility for comparison with future
experiments.

5.3.1 Choice of parameters

Considering that the energy gain is AE = eF, Lye.. In order to increase the beam energy to ~
200 MeV, the approach is either to increase the laser strength ay which in turn increases F,, or
to extend the acceleration length L., which is approximately the dephasing length L,;. Since
the chosen injection mechanism is the ionization injection, a fine control on the evolution of
ap is necessary to avoid continuous injection of electrons in the wakefield, in order to prevent
any degradation of the energy spread of the electron beam. As observed in Fig. 1.10(b), the
ionization process N°* — N6+ is triggered when ag ~ 1.2 whereas N6t — N7t is triggered
when ag ~ 1.5. As a result, the value of a¢ has to be kept moderate throughout the plasma
length, indicating that the initial ag and the maximum electron number density on axis have
to be set relatively low to avoid strong self-focusing of the laser, which would lead to a strong
increase of ag. This will also prevent the injection of electrons via self-injection mechanism.
Another parameter that allows for the control of ay evolution is the laser focal position. By
having the focal position in the down-ramp of the density profile, we are able to delay the
triggering of the ionization-induced injection, hence controlling the start of injection to limit
the energy spread.

The proposed longitudinal plasma profile for this study considers a realistic geometry of
a gas cell as shown by the gray dashed line in Fig. 5.25. The entrance of the gas cell is
located at z = 1500 um and the exit is located at z = 3000 um. A smooth up-ramp and
down-ramp of the plasma density are included to model the gas leakage when the gas cell
is filled. The presence of the gradual increase of the plasma density in the gas cell can be
translated as a gradual decrease of the plasma wave wavelength. Consequently, injected
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electrons will always be kept at the back of the bucket so that they always experience the
highest accelerating gradient in the nonlinear plasma wave. This longitudinal density profile
can be manufactured by making the diameter of the entrance larger than the one of the exit.

We have seen in Sec. 5.2 that beam loading effect has a strong influence in the trapping
and acceleration processes. One advantage of the injection through ionization is that we
can get some control on the dynamic of beam loading through a specific parameter, which is
the concentration of Ny. In order to analyze more closely the influence of this parameter on
electron beam properties, calculations were performed by varying the concentration of Ny
between 0.5% and 3%, while having other parameters kept constant.
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Figure 5.25: Evolution of aq for different Cy, with respect to the propagation axis z. The
gray dashed line shows a predicted longitudinal density profile. The shaded area represents
the injection range of length ~ 780 pum.

In Fig. 5.25 is shown the evolution of ag for 5 different Cy, and the same longitudinal
density profile, the maximum value of the free electron density being n, = 4.48 x 10'8 cm 3.
Note that this value of density corresponds to the sum of electrons coming both from hy-
drogen and from the L-shell of nitrogen. Here again, we observe that the evolution of ag
depends strongly on the longitudinal density profile. ag first increases slowly at the up-ramp
where the density is low and when the laser enters the higher density region (z > 1500 pm),
laser self-focusing takes place and the ag increases to 3.25 at z = 2500 um, then the laser
starts to diffract. However the density is still high at z = 3000 ym, leading to another turn
of self-focusing, thus we observe an increase of ay to 2.37 at z = 3200 um before decreasing
till 2 = Lyjasma = 4.5mm. Regardless of Cl,, the evolution of ay is very similar, implying
that ag is weakly correlated to Cy,.

In Fig. 5.25, we have indicated by a shaded area the electron injection range of 780 ym
wide, starting from z = 2100 gm. No further injection in the first bucket is detected after
2880 ym due to beam loading effects. Evidence will be given in the following paragraphs
to demonstrate that the inhibition of electron injection in the wakefield is due to beam
loading effects. These electrons are then accelerated in the remaining plasma length to

attain 200 MeV.
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Table 5.3.1 shows a summary of the parameters used in our calculations. Note that for
this preliminary study, we are interested in the energy and trapped charge of the injected and
accelerated electron beam, the numerical resolution in both directions are fixed at relatively
low values so that results can be obtained in a shorter time.

Table 5.3: List of parameters.

Plasma length Lpiasma 4.5mm
Laser profile bi — Gaussian?®
Peak normalized laser

amplitude ao(2y) 15
Laser wavelength Ao 0.8 pm
Laser spot radius at 1/¢? rr 16.1 pm
Laser duration (FWHM) T 23.78fs
Laser focal position 2f 3 mm

linear

aser polarization (in y—direction)

Number of Fourier modes 2
Number of particles/cell 64 macro
Cell size in r Ar Xo/2
Cell size in z Az Ao/20

“Gaussian in temporal and spatial profiles

Table 5.4 shows Cy, and the corresponding atomic density of the gas mixture. This
atomic density is determined such that the total electron number of the background plasma
remains the same after ionization processes for the different gas compositions studied. For
example, we set the atomic density (nq:)(3%N,) (the subscript 3% Ny refers to the gas compo-
sition 97.0% Hy +3.0% Ny) to 4 x 10'® cm™3. When all L-shell electrons of the nitrogen atom
are ionized, the background plasma has an electron density of (1 x 0.97 + 5 x 0.03)(ng) =
4.48 x 10" em™®. We can now deduce the required initial (r4)e%N,) such that the back-
ground plasma has the same electron density of 4.48 x 10*® cm™=3:

(1 X 0.98+5 x 0.02)(nar) 2%, = 4.48 x 10" cm ™
(Tat) (2% Ny) = 4.148 x 10" cm ™2,

Table 5.4: Atomic density on axis for each gas composition

Atomic density

Gas composition (Tat) [ 10" cm ™3]

99.5% Hy 4 0.5% No 4.391
99.0% Hy 4+ 1.0% N, 4.307
98.5% Hy 4+ 1.5% N» 4.226
98.0% Hy 4 2.0% No 4.148
97.0%H, + 3.0% Ny 4.0
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5.3.2 Electron beam properties

Simulations corresponding to different C, as shown in Table 5.4 were carried out. In this
section, we present the properties of the resulting electron beam.

Electron beam charge

We evaluate the injected and accelerated electron beam charge. Fig. 5.26 shows the relation
between the beam charge and the plasma length for all C,. The injected beam charge is
evaluated for electrons that satisfy the trapping condition, H < H, and are contained in the
FWHM of the electron beam energy distribution.
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Figure 5.26: Evolution of the trapped beam charge with respect to the plasma length z for
different Cy,. The beam charge is evaluated for electrons that satisfy the trapping condition,
H < H, and are contained in the FWHM of the electron beam energy distribution.

Fig. 5.26 shows that, at the early stage of the interaction, the charge exhibits a peak for
position z < 3000 um for cases with Cx, > 0.5%, we also observe that the higher the Ny
concentration, the higher the accelerated electron beam charge. This peak charge is followed
by a decrease of the trapped electron beam charge versus z, due to beam loading effects.
In fact the space charge of the trapped electron beam cancels the laser-driven wakefield,
inhibiting further injection of electrons. In addition to saturating the amount of trapped
charge, the initially injected electrons are lost as z increases. This can be explained by
studying the injection volume in phase space. During the injection process, the injection
volume in phase space is large, electrons that satisfy the trapping condition are trapped and
accelerated in one of the trapping orbits depending on the phase of their ionization. Beam
loading effects shrink the injection volume, causing electrons previously trapped near the
separatrix to be removed from the trapping orbits. These findings are in agreement with the
findings in [82]. In a second phase of the acceleration process, the charge remains constant
starting from z = 3300 pm till the exit of the plasma at 2 = Lyjusmqe. At 2 = 4.5mm, the
charge evaluated for Cx, > 0.5% is @ = 31 pC whereas for Cy, = 0.5 %, the beam charge is
@ = 26.3pC. As a consequence of a lower charge, beam loading effects are less significant.
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Figure 5.27: Normalized E,, I, fields and £ for two nitrogen concentration to show evidence
of beam loading effects for different Cy,: (a) Cx, = 0.5%, (b) Cx, = 2%. The beam loading
effects are more important in (b) than in (a) as the generated space charge field by trapped
electrons has distorted the plasma wave field to the point it changes its sign.

Fig. 5.27 shows the normalized E,, E, fields and £ for two Cy,: (a) Cx, = 0.5%, (b)
Cn, = 2%. In both cases, the longitudinal length of the relativistic electron bunch length
is comparable to the characteristic length of the field variation, implying that the electron
bunch is sensitive to any variation in the accelerating field. We observe a bump in the
accelerating wakefield, £, (in red) at z = 3162 um in Fig. 5.27(a) and z = 3158 um in
Fig. 5.27(b) due to beam loading effects. In fact, a significant amount of electrons is trapped
in the wakefield, and they in turn generate a space charge field that is larger than the plasma
wave electrostatic field. In Fig. 5.27(b), this space charge field is so large that it alters the
sign of E,. Electrons that are located in this positive E, will now be removed from the
accelerating structure and their energy diminishes.

Electron beam energy distribution

The electron beam energy distribution is analyzed at z = Lyjqsma. Fig. 5.28 shows the charge
density of the accelerated electron beam as a function of electron energy for each Cy,. The
electron energy spans from 100 to 300 MeV. The energy cutoff at 100 MeV is determined
following the same analysis as discussed in Sec. 5.2.2.

Fig. 5.28 shows that, for Cy, > 0.5 %, the electron spectra peak around 229.1—244.5 MeV,
whereas for Cx, = 0.5 %, the electron spectrum peaks around 261.3 MeV. Spectra for the
cases with strong beam loading effects (Cyn, > 0.5%) are very similar whereas the case
with weak beam loading effects (Cy, = 0.5 %) exhibits a higher electron beam peak energy.
This again is tied to the distortion of the laser-driven wakefield due to beam loading effects.
This distortion causes a diminution in the accelerating field experienced by the injected
electrons, resulting in lower electron beam peak energy in the case with strong beam loading
effects. The exact value of the electron beam peak energy and the energy spread evaluated
at 2 = Lpiqsma corresponding to the different gas composition is given in Table 5.5.

In Fig. 5.29(a) is plotted the evolution of the injected electron beam peak energy with
respect to the position z according to the plasma longitudinal density profile for different Ny
concentrations. A linear increase of the & is observed for all Cy, between z = 2500pm and
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Figure 5.28: Each line shows the energy spectrum of electrons evaluated at 2 = Lyjgsma for
different Ny concentrations comprised in [0.5 %, 1.0 %, 1.5 %, 2.0 %, 2.5 %]. An energy cutoff
at 100MeV is applied.

Table 5.5: Peak energy, E,car and FWHM AE/E evaluated at z = Lyjasma-
Gas composition  Peak energy, Eycar (MeV) FWHM AE/E (%)

99.5% Hy 4+ 0.5% No 261.3 15.9
99.0% Hy + 1.0% Ny 244.5 10.3
98.5% Hy 4+ 1.5% Ny 236.1 9.5
98.0% Hy 4+ 2.0% N, 232.3 10.3
97.0% Hy 4+ 3.0% N, 229.1 12.0

z = 3160 pum, the accelerating field E,, for Cx, = 0.5% is 228 GV/m, and for Cx, > 0.5%
of the order of 215GV /m. &,eqr remains constant for z > 3600 ym because the laser-
driven accelerating wakefield is becoming weak due to the density down-ramp. The linear
increase of &peqr With respect to z can be used as a scaling law to tune the electron bunch
peak energy. For instance, in the EuPRAXIA project, the required energy range of the
electron bunch for the injector is 150 MeV. To achieve this using the scaling law, we have
to reduce the acceleration length to 3000 um, however the energy spread might be larger,
e.g AE/E =13% for Cn, = 1.5% at z = 3000 um. In practice, we can tailor the density of
the acceleration phase z > 2880 pum of the density profile (Fig. 5.25) by removing the region
between z = 3000 pm and z = 3500 um, resulting in a steeper down-ramp and a shorter
plasma length.

Fig. 5.29(b) shows the evolution of the injected electron beam FWHM energy spread
with respect to the plasma length z for different Ny concentrations. FWHM AE/E decrease
in all cases between z = 2500 yum and z = 3240 um, then plateau-off for z > 3300 pum. The
diminution of the energy spread can be explained by the following causes:

e the distortion of the laser-driven wakefield due to beam loading effects remove electrons
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that are trapped near the separatrix. Therefore, by getting rid of these low energy
electrons, the energy spread is improved.

e the injection of electrons in the wakefield is inhibited when beam loading becomes
significant as observed in Fig. 5.26, this will eliminate the growth of FWHM A& due
to injection. Moreover, due to beam loading, the variation with z of the longitudinal
field is smaller, yielding an additional reduction in the growth of FWHM AE. Simul-
taneously, electrons are accelerated once they get injected in the wakefield, leading to
the increase of E,eqr, resulting in an improved ratio AE/Epear-
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Figure 5.29: Evolution of the injected (a) electron beam peak energy, Epear, (b) electron
beam FWHM energy spread, AE/E with respect to the plasma length z for different Ny
concentration comprised in [0.5 %, 1.0 %, 1.5 %, 2.0 %, 2.5 %].

The FWHM AE/E remains quasi-constant for z > 3300 um because electrons experi-
ence a weaker laser-driven accelerating field due to the density down-ramp. As shown in
Fig. 5.29(a), electrons are not gaining much energy beyond this plasma length.

Among all Cy,, the case with Cy, = 0.5% delivers an accelerated electron beam with
the lowest charge and the highest energy spread, therefore it is not the most optimal con-
centration. With higher C,, we are able to increase the beam charge and reduce the energy
spread due to beam loading effects. Since the accelerated electron beam in these cases have
very similar charge and peak energy, we therefore consider the case that offers the smallest
energy spread. From Table 5.5, we see that Cx, = 1 — 2% corresponds to our optimum
configuration. The following is a more detailed study devoted to this case.

5.3.3 Detailed study with Cx, = 1.5%

For this study with Cy, = 1.5 %, in order to get accurate results for all the characteristics of
the accelerated electrons we performed a new calculation with a high accuracy. In particular
the grid sizes in both directions have been reduced: N,/\g = 50 and N,./A\g = 6. This is
necessary to ensure the convergence of the results, as emphasized in Chapter 4.

139



Chapter 5. Simulation of the dynamics of electron injection and acceleration

Electron beam energy distribution
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Figure 5.30: The blue dashed line shows the energy spectrum of electrons from N+ — N6+,
whereas the red, dashed-dotted line shows the energy spectrum of electrons from the ion-
ization of N® — N7*. The black solid line represents the sum of the two spectra. Only
K-shell electrons contribute to the electron beam energy spectrum at z..;;. Other electrons
are not trapped but contribute to building the plasma wake. An energy cutoff at 100 MeV
is applied.

Fig. 5.30 shows the electron beam energy distribution given at z = Lyjgsmq = 4.5 mm.
The charge density of the accelerated electron beam is plotted as a function of electron
energy. Electrons are tagged in the simulation, therefore we are able to trace the origin
of these injected electrons. In blue is the contribution of the 6 electrons, in red is the
contribution of the 7% electrons and in black is the sum of both contributions. Only K-shell
electrons are injected into the wakefield. Note that the high energy electrons that populate
the peak are the 6! electrons.

As compared to Fig. 5.28, Epeqr is now 240.9 MeV and its corresponding d@/d€ has
decreased by a factor of 20%. The FWHM energy spread has increased to 12 %; the total
charge, however, remains at ~ 30 pC considering electrons contained in the FWHM of the
energy distribution.

Beam emittance

Here we evaluate the beam emittance of the electron beam at z = Lyusme. Consider-
ing all electrons contained in the FWHM energy spread, £ € [221.2,248.6] MeV, €, pms =
4.2mmmrad, €, ,ms = 4.4mmmrad. We deduce also the transverse rms divergence, 0, ypms =
5.3mrad, 0, ,,s = 5.5mrad. Contrary to the previous case in Sec. 5.2, the emittance and
divergence are of the same order of magnitude in both directions. This can be explained by
the space charge effect (see Fig 5.32).

Figs. 5.31(a) and 5.31(b) shows the emittance with respect to electron energy evaluated
at 2 = Lpiasma- The emittance along the x— and y—axes are roughly constant with respect
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Figure 5.31: Emittance of the electron bunch at the exit of the plasma, 2 = Lpgsma, as a
function of electron energy in (a) z— and in (b) y—directions. Insets of (a) and (b) represent
the distribution of electrons contained in the FWHM energy spread in (z, p,) and in (y, py)
phase space. The color bars represent the electron density normalized to its maximum.

to electron energy and the distribution of electrons in the phase space in both directions are
also very similar.

Fig. 5.32 shows the evolution of the emittance with respect to z for electrons that are
contained in the FWHM energy spread. We observe that z < 3000 ym, the values of the
emittance are close to the ones found in Sec. 5.2, that is < 1mmmrad in the z—direction
and ~ 2mmmrad in the y—direction. However, for z > 3000 ym, we observe an increase of
the emittance in both directions. This increase can be due to several effects: (i) the space
charge field, (ii) the non-adiabatic evolution of the plasma-wave due to the density gradient,
(iii) the interaction with the tail of the laser field; (iv) the numerical noise. Concerning
the space charge, -the volume of the bunch is of the order of 8 X (0, X 0y X 0,)pms =
8 x 0.48 x 0.77 x 0.6 um?® while its charge is of 42.7pC, leading to an electron density of
about 1.5 x 10?° cm™3, which is much larger than the plasma density, therefore the space
charge effect is important during the acceleration phase. Even at z = L,j4ema, Where the
volume has increased up to 8 x (0, X gy X 0;)pms = 8 X 3.7 X 3.9 x 0.53 pum? the average
density of the bunch is still 4.4 x 10'® cm=3.

The duration of the laser pulse, was determined from the experimental specification of the
UHI100 facility. For this duration, as can be seen in Fig. 5.27(a-b), there is some overlapping
between the electron bunch and the tail of the laser pulse, which can have a non-negligible
effect on the emittance growth. For both the space charge and the interaction with the
laser, their influence on the electron bunch should be strongly reduced by the relativistic
effect. However, a more detailed analysis is required when considering a combination of the
two. The reduction through relativistic effect is due to a cancellation of the electric field
contribution by the magnetic field one. In the FDTD scheme used to solve the Maxwell’s
equations, the numerical implementation can lead to a loss in accuracy in estimating this
cancellation. This point can only be tested, looking at the convergence of the results, as
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Figure 5.32: Evolution of the emittance of the electron with respect to z. In blue shows
Ezrms and in red shows €, .

presented in Chapter 4. That is why a complete convergence study for our considered case
remains to be done. However, the present calculation was performed at high resolution, the
increase of the emittance by a factor of two between z = 2500 um and z = 4500 um as shown
in Fig. 5.32 is unlikely to be only due the numerical implementation.

Conclusion

In this section, we have studied the effect of the concentration of Ny on the electron beam
properties. From this study, the optimal case, which is the case with Cx, = 1.5% has been
determined. This concentration gives the highest charge together with the lowest energy
spread. We then provided a more detailed analysis of this case performed with a high
numerical resolution of (NV,/Ag = 50, N,./\g = 6).

The principal finding is that beam loading effects can be beneficial in helping to inhibit
the injection process, therefore limiting the energy spread. The obtained results for the
charge and for the distribution in energy of the relativistic electrons are in accordance with
the specifications as stated in CiLEX and EuPRAXIA projects. The flip side of the coin is
that space charge effects in high Ny concentration also become more significant, resulting
in emittance and divergence growths in the down-ramp of the longitudinal plasma density
profile. The optimum values we get for the emittance and divergence at the exit of the
plasma, z = Lyjasma are respectively €, ,ms = 4.2mmmrad, €, s = 4.4mmmrad, 0, ;s =
5.3mrad and 6, ,,,, = 5.5mrad. These values do not yet conform with the specifications
as stated in CiLEX and EuPRAXIA projects, therefore mitigation of the emittance and the
divergence growths will be the focus of future work.

5.4 Conclusion

In this chapter, we have shown that Warp with the azimuthal Fourier decomposition is
capable of producing reliable results for ionization-induced injection. The benchmark that
we have done with the experimental result of the group shows a very good agreement.
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We proceeded by using the same technique to optimize our electron injector by tailoring
density profiles. In this study, beam loading effects played two roles: the inhibition of the
injection process and the homogenization of the energy distribution of the trapped electron
beam. This resulted in the separation of injection and acceleration processes. We then tai-
lored the density in this acceleration zone to tune the peak energy of the electron beam while
preserving all other beam properties. The optimal case is to have a descending gradient in
the acceleration zone, in which we succeeded in producing an electron beam of () = 43.6 pC,
Epea = 82.6 MeV, FWHM AE/E = 11%, €4 rms = 0.33mmmrad, €, s = 2.09 mm mrad.
€y.rms 15 larger due to the oscillation of electrons in the laser polarization (y—direction).

Finally, we studied the influence of the Ny concentration on the beam properties. In
this study, we aimed to produce a higher energy electron beam, extended to > 200 MeV. A
realistic longitudinal density profile was used in the simulation. Results show that strong
beam loading effects have led to electrons that were trapped near the separatrix to be re-
moved and decelerated, improving the energy spread around the peak energy distribution.
The optimal Cy, from this study is 1.5 %. We then analyzed in detail this case with higher
numerical resolutions. As beam loading effects inhibited the injection process, the trapped
electrons produced a space charge force that was larger than the transverse Lorentz force in
the plasma wave, resulting in emittance growth. The emittances in both transverse direc-
tions at 2 = Lpjasmae are similar, €, pms = €y pms ~ 4.3 mmmrad.

The electron beams generated in Secs. 5.2 and 5.3 satisfy the charge and the energy
requirements specified in CILEX and EuPRAXIA projects. However the emittance is larger
than the specified one. As for future work, optimization will be carried out to discover a
configuration to lower the emittance to ~ 1mm mrad.

143



Chapter 5. Simulation of the dynamics of electron injection and acceleration

144



Conclusion

This body of research work focuses on the modeling of the injector using the PIC code Warp
and on the numerical methods such as the Lorentz-boosted frame to speedup calculations
and the Perfectly Matched Layer (PML) to ensure the precision in numerical calculations.

The outcome of this thesis has demonstrated the efficiency of the PML in the high-order
FDTD and the pseudo-spectral solvers. Besides, it has also demonstrated the convergence
of the results performed in simulations using the Lorentz-boosted frame technique. This
technique speeds up simulations by a large factor (~ 36) while preserving their accuracy.
The modeling work in this thesis has allowed analysis and understanding of experimental
results, as well as prediction of results for future experiments. Ways to optimize the laser-
plasma injector to deliver an electron bunch that conforms with the specifications of future
accelerators were also presented.

Main findings

In this section we summarize the main findings of this thesis.

Convergence of simulated results for a 100 MeV stage in the nonlinear
regime using the Lorentz-boosted frame technique

Simulations with the Lorentz-boosted frame technique consist of choosing the optimal frame
of reference that travels close to the speed of light in the direction of the laser pulse. The
direct consequence of this change of frame is the Lorentz contraction and dilation of space and
time. With the laser pulse wavelength being extended and the plasma length being shortened,
the crossing time between both the components is also reduced, leading to a large speedup.
Simulations of external injection into the wakefield with Warp in 3D Cartesian coordinates
or without self-injection with OSIRIS using azimuthal Fourier decomposition algorithm were
previously studied and the results obtained were very similar to the ones obtained using a
full 3D PIC code in the lab frame. However, the modeling of the self-injection regime poses
some challenges due to strong nonlinear particle dynamics. In this thesis, we modeled the
dynamics of self-injected electrons in the blowout regime at a plasma density of 101 cm™ at
various relativistic factors in the Lorentz-boosted frame. The obtained results demonstrate
accurate modeling of the evolution of the plasma wakefield, and of electron bunch properties
such as the charge, the average energy, the energy spread and the transverse dynamics with
agreement at > 99 % level between simulations using various relativistic factor in both the
Cole-Karkkainen (CK) and the Pseudo Spectral Analytical Time Domain (PSATD) solvers.
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Conclusion

Efficiency of the PML in the high-order FDTD and the PSTD solvers
is preserved

Bérenger’s Perfectly Matched Layer is the state-of-the-art for solving unbounded electromag-
netic problems with the FDTD method. It ensures waves and disturbances originating with
the model domain to leave the domain without affecting the interior solution in a way that is
not physically realistic. Through this work, we have extended the theoretical and numerical
analysis of the coefficient of reflection of the PML to solvers of any order of accuracy, includ-
ing at the limit of the infinite order that represents the pseudo-spectral formulations. The
theoretical and numerical analysis conducted demonstrated the preservation of the efficiency
of the PML for the high-order FDTD and the PSTD solvers. Using the PML with a suitable
numerical resolution and depth of the PML, the induced error is of the order of < 1073,

Validation of simulated results with Warp using azimuthal Fourier
decomposition algorithm

The azimuthal Fourier decomposition algorithm takes advantage of the symmetry of the
laser-plasma interaction in underdense plasmas in cylindrical coordinates (r,z,60). This
method applies a Fourier decomposition in # on the fields and currents in azimuthal har-
monics modes e?. It offers a quasi-3D description of the LWFA with a computational
load that is similar to bi-dimensional calculations, enabling parametric studies to be carried
out. We have modeled a laser-plasma injector working in the ionization-induced injection
scheme with a realistic density profile and experimental laser-plasma parameters using this
algorithm in Warp. Results from the comparison between simulated and experimental re-
sults have shown very good agreement. A detailed analysis of simulation results has also
given more insights of electron trapping and acceleration processes when ionization-induced

injection and density gradient schemes are combined.

Optimization of the laser-plasma injector by tailoring density profiles

Using Warp with azimuthal Fourier decomposition algorithm, we have performed simulations
to optimize a laser-plasma injector. Laser-plasma parameters are chosen in order to achieve
electron acceleration in the range of 50 — 200 MeV, an energy spread < 10 %, a normalized
emittance of ~ 1 mm mrad and a charge of > 10 pC. Using first the laser-plasma parameters
of experiments performed at the Lund Laser Center, the model was shown to reproduce
experimental results. Then L,jqsmq Was reduced and the laser was focused at the down-ramp
of the ELISA profile to delay the triggering of the ionization-induced injection, a reduction
of the global injection volume was achieved. As a result, we obtained an electron beam
with a FWHM energy spread of 13.1 %, peak energy of 65.7 MeV, a charge of 43.6 pC and
normalized emittances of €, ;s = 0.33mmmrad, €, ,ms = 2.09 mmmrad. The difference in
Ezrms AN €y s 1s due to the fact that electrons gain momentum under the laser polarization
effect in the y—direction. We then separated the injection and acceleration processes to gain
an additional degree of control on the electron beam properties. By tailoring the longitudinal
density profile starting from the position of the end of the injection process up to the exit of
the plasma, we were able to tune the electron beam peak energy while preserving its energy
spread. The best possible result with the considered parameters was obtained using the
descending gradient in the longitudinal density profile, the electron beam has a peak energy
of 82.6 MeV and a FWHM energy spread of 11 %, the other properties are preserved.
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Optimization of the laser-plasma injector by studying the influence
of the N, concentration in the plasma

To better prepare for future experiments at Apollon-10P facility in the frame of the CILEX
project, experiments are carried out at the UHI100 laser facility at CEA Saclay to explore
laser-plasma configurations able to achieve a 200 MeV peak energy electron beam. Simu-
lations were conducted in parallel with experiments. Parameters are chosen to be close to
the ones of this facility. From the study of the role of the longitudinal density profile, the
laser focal position and the plasma length, we gained a better understanding of the dynamics
of ionization-induced injected electrons in a realistic longitudinal density profile. We have
further studied the influence of the concentration of nitrogen (Cy,), another key parameter
for the electron beam properties. We showed that a high Cy, induces strong beam loading
effects that can limit the energy spread around the peak energy, however it also causes the
space charge effect to be more significant in the accelerated electron beam, resulting partly in
the emittance growth in the down-ramp of the longitudinal density profile where the plasma
density is decreasing. For the optimal case, which is with Cx, = 1.5%, the obtained elec-
tron beam at the exit of the plasma, z = Lyj4sma, has a charge of 30.7pC, a peak energy of
240.9MeV, a FWHM energy spread of 12% and a normalized emittance of ~ 4.3 mm mrad
in both transverse directions.

Future prospects

The research work presented in this thesis has opened up several prospects in the modeling
of the laser-plasma injector both in the numerical and physical aspects.

Numerical aspect
Extension of the PML efficiency study to the PSATD solver

In this thesis, we have provided an approximative theoretical model for the evaluation of
the PML efficiency in the high-order FDTD and the PSTD solvers. Following this work,
Henri et al. [192] have presented a more accurate model for these two solvers. This proposed
model takes into account secondary sources. The theoretical and numerical analysis of the
PML is now extended on the PSATD solver, the study is currently underway.

Implementation of the PML in cylindrical coordinates

In this thesis, we have shown that PIC simulations with azimuthal Fourier decomposition al-
gorithm are very reliable to model LWFA. A typical simulation requires ~ 20000 CPU-hours
with reasonable numerical resolutions. In the explored configuration, we took a transverse
box size that is of 6.25 x 7, to avoid any reflection onto the axis when the diffracted laser field
reaches the radial box boundary. As a result, this increases significantly the number of grids
to be computed in the radial direction. Implementing the PML in cylindrical coordinates
based on the formulation described in [213] will allow us to reduce the number of grids in
the radial direction, and subsequently computational time.
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Conclusion

Convergence of simulated results for a 1 GeV stage in the nonlinear regime using
the Lorentz-boosted frame technique

Convergence studies for the 100 MeV stage at 10 cm™ in the nonlinear regime have shown
promising results in 2-1/2D simulations with Warp using the Lorentz-boosted frame tech-
nique. Since the regime currently explored for injectors is at few times 10'® cm™3, which
allows for a 1 GeV stage modeling, performing a convergence study both in the CK and the
PSATD solvers at this condition will interest the LWFA community. This will encourage
more parametric studies with the Lorentz-boosted frame technique as the computational
cost is substantially reduced. Furthermore, this future work will provide optimal numerical
parameters to produce accurate results in simulations using the Lorentz-boosted frame tech-
nique in the nonlinear regime. We will therefore be one-step closer to performing a full 3D
PIC simulation for 10 GeV-stage and beyond for our future collider application.

More accurate modeling of the laser-electron beam interaction in LWFA simu-
lations with ionization-induced injection scheme

LWFA simulations with ionization-induced injection scheme come with their own challenges.
As can be seen in Fig. 5.27, there is an overlap between the electron bunch and the back
of the laser pulse, which can induce a non-negligible emittance growth to the accelerated
electron bunch. In our study, two contributors to this emittance growth have been identified:
the space charge effect and the interaction of the laser pulse, however the presence of the
relativistic effect should reduce the contribution of these factors with the cancellation of
the electric field by the magnetic field. In fact this cancellation might not be exact due
to the numerical implementation in the standard FDTD solver. Therefore a convergence
study as presented in Chapter 4 should be performed to test out the optimal numerical
resolution. Another envisaged solution is to perform simulations using a third-order accurate
interpolation method to improve the interpolation of the B—field as proposed in [67, 203,
instead of the standard second-order accurate method in time.

Physical aspect

Mitigation of the emittance growth at the end of the injection process in a laser-
plasma injector

While modeling the currently explored regime for a 200 MeV electron bunch, we have en-
countered an emittance growth which is partly due to the interaction between the laser pulse
and the accelerated electron bunch. To avoid this interaction, one solution is to reduce the
laser duration and readjust the plasma density to satisfy the resonant condition (crz, ~ A,).
Simulations with a shorter pulse are currently ongoing and they have already shown some
promising results. The best emittance values obtained in the optimization work in this thesis
are £, = 0.33mmmrad and ¢, = 2.09 mm mrad, which are still larger than ~ 1 mm mrad as
required for accelerator applications. Thus a novel configuration to reduce the emittance to
~ 1 mm mrad constitutes one of the future work.

More realistic simulations with measured laser spatiotemporal profile

A recent article on the space-time characterization of ultra-intense femtosecond laser beams
[214] has demonstrated experimentally a spatiotemporal reconstruction of the laser field
E;(r,t). These new measurements allow an in-depth characterization and optimization of
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ultra-intense lasers and ultimately to the advanced control of relativistic motion of electrons
in LWFA. Inserting these measurements in PIC simulations enables a more realistic descrip-
tion of the interaction between laser and plasma, and provides a better understanding of the
experiments.

Modeling of the coupling between the injector, the transport system and the
accelerator

One of the key objectives in the design of a laser-plasma based particle accelerator is to
conduct a start-to-end simulation of the multi-stage accelerator. In this thesis, an extensive
study on the injector has been conducted, the next step consists of extracting the accelerated
electron bunch and injecting it in the transport system. Two methods can be considered
for the modeling of the transport system: the electrostatic solver in Warp or some particle
tracking codes. For the modeling of the accelerator stage, which consists of a long plasma
medium (~ 1m), operating in a quasi-linear regime (no self-injection should be expected),
some of the suitable tools for its modeling are the Lorentz-boosted frame technique [31], or
quasi-static methods such as WAKE [25].
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Appendix A

Derivation of the coefficient of reflection
at the grid nodes

The explicit derivation of the coefficient of reflection at the grid nodes is given in this
appendix for the second order case, where we consider

1 ifp=1
C, = Hp=2 (A.1)
0 otherwise.

The set of equations Egs. 3.37-3.39 is solved by first differencing Eq. 3.38 in time, giving

Ey?+1,k+1/2 - Ey?J:ll,k+l/2 - Ey;kﬂ/z - Eyﬁ}ruQ
32 Eafprjoprs = Befrajon — ol o + Ewﬁf/zk)
—AF (B e = 2B o + B aiga)
(A.2)
followed by differencing Eq. 3.39 according to the transverse y—direction
$?+1/2,k+1 - r?+1/2,k = Er;:f/zkﬂ - Err;:f/zk (A.3)

n—1/2 n—1/2 n—1/2
‘H/y (sz+1/2,k;+3/2 o 2BZj+1/2,k+1/2 + sz+1/2,k:—1/2> )

where V,, = ?At/Ay.
Eliminating F, in Eq. A.2 by using Eq. A.3, yields

n n—1 n n—1
Eyj+1,k+1/2 - Eyj+1,k+1/2 = Eyj,k+1/2 - Eyj,k+1/2
Az n—1/2 n—1/2 n—1/2
+3, Y (sz+1/2,k+3/2 = 2B 012 T BZj+1/2,k—1/2> (A4)

Az n+1/2 n—1/2 n—3/2
At <BZj+1/2,k+1/2 - 232j+1/2,k+1/2 + BZj+1/2,k+1/2) )

Differencing then Eq. A.4 in the x—direction, gives

n n—1 n n—1
Eyj+1,k+1/2 - Eyj+1,k+1/2 _Eyj,k+1/2 + Eyj,k+11/2
n—

= y?,k+1/2 - Eyj,k+1/2 - Eyglfl,k+1/2 + Eyyjll,k+1/2

"‘ﬁ_z% BZ?J://;,H?,Q - 2322;11//22,“1/2 + Bzg':ll//;,k—nz

82V, (B M akrase = 2B awne + Bl i) Y
=3 (Bfiv/oarne = 2B ann e + Bt ania

Az n+1/2 n—1/2 n—3/2
+ar BZj—1/2,k+1/2 - 2BZj—1/2,k+1/2 + BZj—l/Q,k+1/2 )
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Appendiz A. Derivation of the coefficient of reflection at the grid nodes

where V,, = ?At/Ay.
Finally, Eq. 3.38 is used to eliminate B, from A.5, giving

n+1 En En Enl T Enl En2
] b
B, k+1/2 Yjk+1/2 Yjk+1/2 Yjk+1/2 v\ Evjprie T Byjpia)e
A n—1 n n—1
_O‘yA;V (Ey J+3/2 2Ey”+1/2+Ey]k 1/2
A n
+A_§,Vu By yian = 2By 0 + BY, k—1/2> (A.6)

At
+5yﬂ Ey?ﬂ k+1/2 2Ey7k+1/2 + EY] 1,k+1/2
At 1 1
—ﬁyﬂ Ey?+1 k+1/2 QEyg k+1/2 + Ey? 1 k+1/2>
where (v, 8,) are given in Eq. 3.13, V, = 2At/Ay.

Expression A.6 now consists only of £, enabling the substitution of a plane monochro-
matic traveling wave trial-solutions for the evaluation of the coefficient of reflection, 7,04e.
Assuming a trial solution of the form e«At=ikeAz+kyAY) " and that the norms k, and k, are
conserved by the transmitted and the reflected waves, so the transmitted wave is given by
(1 — r)ewAt=ilheAztkyAy) and the signal in front of the slice in x—direction is defined as a

sum of the incident wave and the reflected one, giving e@at—i(kaAethyAy) _ paiwAtti(ks Aztky Ay)
(where r represents the coefficient of reflection).
Considering that the slice is at j, we have
Ey?;luuz — (1 — p)oieAtilkyby/2)
Eyj k:+1/2 = (I-r)e ~iky Ay/Q
Ey] e = (1 — p)oiwat=i kyAy/2)’
By = (L—r)edv/2),
y?;}rlm = (1 r)e At kyAy/2)
Ey] k+1/2 — (1 — e 2iwAt-ilkyAy/2)
Ey] k+3/2 — (1 e wAt-iBk/Ay/2)
E?J] k-1/2 — (1- T)e_wm i kyAym
Eyiiispe = (1—r)e™” BRvA0/2,
Eyiikiy = (1— r)e (TheAemkAn/2
Ey]-i—l w1 = (- r)e WAtk Ak A2,
By iy = o i(ha Bty Ay/2) _ . o—ilhe Arthy Ay/2)
Ey] Lonp = oA —i(—ky Azthy Ay/2) _ .o —iwAt—i(ke Aty Ay/2) (A7)

Inserting the plane monochromatic traveling-wave trial solutions of A.7 in Eq. A.6, and
solving yields the coefficient of reflection at the grid nodes, 7,04e-
a — beos(k,Ay) — ccos(k,Ax)

a — cos(k,Ay) — ce~thar 7

(A.8)

Tnode =

where ' , .
a = ezwAt . (2 + ay) + efzwAt(l + 2ay) + Odyef%wAt’

b= Q%A (1 — aye™A1)
c= Qﬂym (1 —emwAt) .
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Appendix B

Derivation of the coefficient of the
reflection at the grid inter-node

The explicit derivation of the coefficient of reflection at the grid nodes is given in this
appendix for the second order case, where we consider

1 ifp=1
Cp:{ = (B.1)

0 otherwise.
The set of equations Eqs. 3.40-3.44 is solved by first differencing Eq.3.43.

B n—+1/2 B n—1/2 o (B n—1/2 B n—3/2 )

2xiy1/2,541/2 ~ Prmiy1/254+1/2 z 2Ti41/2,541/2  TRTi41/2,541/2

* n n n—1 n—1
_5x Eyi+1,j+1/2 - Eyi,j+1/2 B Eyi+1,j+1/2 + Eyi,j+1/2> ’
(B.2)

where (o, 8) are coefficients in Eq. 3.13.

x?

. n+1/2 oy ntl)/2 n+1/2 .
Then, by using Bzwj+1/27k+1/2 = sz+1/27k+1/2 — Bzyj+1/2,k+1/2 in B.3, we get
n+1/2 n—1/2 _ * n—1/2 n—3/2
BZj+1/2,k+1/2 - BZj+1/2,k+1/2 = 4 (BZj+1/2,k+1/2 - BZj+1/2,k+1/2>
* n+1/2 n—1/2
—Qy <Bzyj+1/2,k+1/2 - Bzyj+1/2,k+1/2>
n—1/2 n—3/2
+Bzyj+1/2,k+1/2 - Bzyi+1/27k+1/2
* n n n—1 n—1
_595 Eyj+1,k+1/2 - Eyj,k+1/2 o Eyj+1,k+1/2 + Eyj,k+1/2> :
(B.3)
Using equation 3.44, we obtain
n+1/2 n—1/2 o * n—1/2 n—3/2
BZj+1/2,k+1/2 - sz+1/27k+1/2 = Qg <BZj+1/2,k:+1/2 - BZj+1/2,k+1/2>
* At n—1 n—1
TRy (ij+1/2,k+1 - Exjﬂ/z,k)
At n n
+A_y ( Tj41/2,k+1 Exj+1/2,k)
* n n n—1 n—1
—0; (Eyj+1,j+1/2 o Eyj,k+1/2 o Eyj+1,k+1/2 + Eyj,k+1/2> :
(B.4)
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Appendixz B. Derivation of the coefficient of the reflection at the grid inter-node

In order to express equation B.4 only by B., we eliminate £, and E, by differencing in

time and by substituting £, of Eq.

3.41 and E, of Eq. 3.40,which gives

n+1/2 n—1/2 n—1/2 n—3/2
BZj+1/2,k+1/2 - sz+1/2 k+1/2 — sz+1/2,k+1/2 - BZJ-I—I/Q k+1/2
Lo (B n—1/2 _ 2B, 3/2 B n—5/2 )
z \ Pzjr1/2k+1/2 J+1/2,k+1/2 Zj4+1/2,k+1/2
At n—3/2 n—3/2 n—3/2
- V;JAy <BZj+1/2,k+3/2 2BZ;+1/2 k12 T sz+1/2,j71/2>
A n—1/2 n—1/2 n—1/2
+Vya, (BZj+1/2,k+3/2 = 2B ka2t Bejiajan- 1/2)
% n—1/2 n—1/2 n—1/2
+6:Va (B Zj43/2,k+1/2 —2B. Zj4+1/2,k+1/2 + B. 2j—1/2,k+1/2
* n—3/2 n—3/2 n—3/2
—BiVe BZj+3/2,k+1/2 - 282j+1/2,k+1/2 + sz71/2,k+1/2

Assuming a plane monochromatic traveling-wave trial solution as of the form e

one has

n+1/2

B a1 = =(l—re

B 1/2 —(1—
Zi41/2,k41/2 (1—r)e
n—3/2

Bk = =(—re
n—>5/2 _

BZj+1/2 k+1/2 — (1 T)e
n—3/2

B i1 akian = =(L—r)e
n—3/2

sz+1/2k /2 = =(1-r)e

B 1/2 1—
Zj41/2,k+3/2 — = ( r)e

B 1/2 1—
Zj41/2k—1/2 = ( r)e

B 1/2 1—
2j4+3/2k+1/2 =(1=r)e
n—3/2 _

sz+3/2 k+1/2 = =(1—r)e
n—1/2 _—iwAt/2—

szfl/Z,k+1/2 =¢ g

B n—3/2

Zj-1/2,k+1/2 —

—3iwAt/2—i(—ks Ax+kyAy/2)

(B.5)

twAt—i(kg Az+kyAy)
)

twAt/2—i(ke Ax+kyAy) /2
)

—iwAt/2—i(ks Az+kyAy)/2
)

—3iwAt/2—i(ke Ax+kyAy) /2
)

—5iwAt/2—i(ke Ax+kyAy) /2
)

—3iwAt/2—i(ke Ax+3kyAy) /2
’

—3iwAt/2—i(ks Ax—kyAy) /2
)

—iwAt/2—i(ke Ax+3ky Ay) /2
)

—iwAt/2—i(kg Az—kyAy)/2
)

—iwAt/2—i(3ks Ax+kyAy) /2
)

3iwAt/2—i(3ks Ax+kyAy)/2
’

i(—ke Azthy Ay/2)

—iwAt/2—i(ks Ax+kyAy/2)
—Tre s

o Biw A/ 2ilks Aa-thy Ay/2) (B.6)

By inserting the plane monochromatic traveling-wave trial solutions of B.6 in equation
B.5, we deduce the coefficient of reflection on the inter-node, r;,ter—node-

a — bcos(k,Ay) — ccos(k,Ax)

inter—node — - y B.7
Vinter—nod a — cos(kyAy) — ce~tkaAz (B7)
where

a=ewht — (24 a;) + e WA (] 4 20) + o@e_%“m,

b =2V, 2L (1 —age ™a),

c=2 ;% (1 — e*"“m) )
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Appendix D

Résumé

L’accélérateur & base de plasma: une alternative a D’accélérateur
conventionnel

L’accélération par sillage laser (ASL) repose sur linteraction entre un faisceau laser de
haute intensité et un plasma sous-dense. Au travers de cette interaction, le mouvement
des électrons crée une région de basse densité électronique dans le plasma aprés le passage
du laser. Les ions, étant plus lourds que les électrons, sont peu déplacés dans 1’échelle
du mouvement d’électrons. Le champ électrique induit par cette perturbation de densité
électronique fait osciller la densité a l'arriére du faisceau laser, créant ainsi une onde de
plasma qui se propage avec le faisceau laser.

L’idée d’utiliser un plasma comme milieu d’accélération des électrons a suscité un grand
intérét parce qu’il peut supporter un grand champ accélérateur, Ey(V/m) = cmew,/e =
96+/10(cm™3), avec w, la longueur d’onde de I'onde plasma, c la vitesse de la lumiére, m, la
masse d’électron, e la charge électronique et ng la densité de plasma. Ce champ accélérateur
est appelé le champ électrique limite de déferlement non-relativiste des plasmas froids [48]. Si
I'on considére ng = 10 cm ™3, Ey &~ 96 GV /m, qui est de trois ordres de grandeur plus élevé
que celui d'un accélérateur radio-fréquence linéaire conventionnel, rendant envisageable la
réalisation de futurs accélérateurs plus compacts.

En plus de ce champ accélérateur élevé, 'onde de plasma a pour une longueur d’onde
de A\y(um) = 3.3 x 10'°/4/no(ecm=3), e.g. A\, ~ 33 um pour ng = 10® cm™3. Quant a la
longueur du faisceau d’électrons généré, elle sera la moitié de celle derniére. Cette longueur
est de deux ordres de grandeur plus courte que celle du faisceau d’électrons générée par les
photo-injecteurs. Cela ouvre de nouvelles applications dans les domaines qui nécessitent des
faisceaux d’électrons de courte durée, e.g. en science des matériaux, ou la courte durée du
faisceau permet la mesure des mouvements d’électrons en échelle atomique.

Il y a eu des progrés dans ces deux derniéres décennies sur I’ASL. Les électrons ont pu
atteindre une énergie d’1 GeV dans les canaux a plasma préformés a partir de la décharge
dans un capillaire. Cela a été démontré avec un faisceau laser de 40 TW puissance créte
[12]. D’autres expériences ont également démontré une accélération de faisceau d’électrons
> 1GeV dans un plasma non-préformé avec un laser de 200 TW [13]. En utilisant les lasers
de classe Petawatt, les faisceaux d’électrons peuvent atteindre 2 GeV dans une cellule de gaz
de 7cm [14]. Le faisceau avec une queue de 3 GeV dans sa distribution a été observé dans
un systéme de double jets de gaz de 1.4 cm [15]. Le dernier record est détenu par [132] avec
une production de faisceau d’électrons de 4.2 GeV avec un laser de 16J dans un canal de
plasma guidé préformé par une décharge dans un capillaire de 9 cm.
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Pour la conception d’un collisionneur des particules, il est impératif d’avoir un fais-
ceau de haute énergie et de bonne qualité. Dans cette optique, beaucoup d’efforts on été
versé pour la production des faisceaux d’électrons quasi-monoénergetique |16, 17, 18]. Notre
groupe est impliqué dans l'optimisation des faisceaux d’électrons expérimentalement et via
les simulations. Un des objectifs est de déterminer un jeu de paramétres laser-plasma pour
générer un faisceau d’électrons de petite dispersion en énergie, convenant a l'injection a un
étage accélérateur laser-plasma, avec grande charge et basse émittance. La spécification
de ces propriétés dépend des applications, mais la plupart des applications nécessitent une
dispersion en énergie de < 10%, une charge de > 10pC et une émittance transverse de
0.1 mm mrad.

L’accélérateur laser-plasma dans un schéma multi-étages

L’accélération d’un faisceau d’électrons dans un étage accélérateur laser-plasma est limitée
a une longueur imposée par la diffraction, ’épuisement du faisceau laser, et le déphasage
des électrons. Pour un plasma préformé de 1m a ng = 10'” ecm ™3, avec un guide d’onde, un
faisceau d’électron de 10 GeV devrait étre généré en principe. Toutefois, cette énergie est
encore insuffisante pour le collisionneur des particules. Pour arriver a 1’énergie suffisante pour
un collisionneur qui est de I’ordre de quelque TeV, la solution consiste a accélérer ce faisceau
d’électrons dans un schéma multi-étages. Un schéma multi-étages est composé d’'un injecteur
ou les électrons sont injectés dans le sillage laser, d’une ligne de transport ou le faisceau
d’électrons de I'injecteur et mis en forme et transporté a I'étage suivant et d’un accélérateur
ou le faisceau d’électrons est accéléré davantage a4 une plus grande énergie. Récemment,
Steinke et al. ont réussi a coupler deux étages indépendants d’ASL, ceci représente une
étape importante dans le développement de 'accélérateur de particules & base de plasma et
pour les autres applications nécessitant des électrons d’énergie au-dela de I’énergie que peut
produire par un seul étage.

En Europe, plusieurs projets qui portent sur la démonstration d’un accélérateur multi-
étages fiable sont en cours. Le projet CILEX (Centre Interdisciplinaire Lumiére Extréme) qui
a pour l'objectif de mettre en place, sur le site de I'Orme des Merisiers, un centre de recherche
interdisciplinaire, au meilleur niveau international, autour d’un laser multi-faisceaux multi-
PW APOLLON. Ce centre sera dédié¢ aux lasers ultra-brefs de forte puissance (1PW et
10PW, > 15fs) a I'étude de ’ASL multi-étages parmi d’autres études. Dans ce projet, un
premier laser crée une onde plasma non linéaire dans une cellule de gaz pour générer un
faisceau d’électrons. Ce faisceau d’électrons est ensuite mis en forme et transportée via une
ligne de transport au second étage, ot un deuxiéme laser crée une onde de plasma quasi-
linéaire pour éviter la génération de faisceaux d’électrons secondaires dans un capillaire
diélectrique. Le capillaire diélectrique sert de guide d’onde laser. Le second étage accélére le
faisceau d’électrons du premier étage & une énergie plus élevée.

Le projet européen EuPRAXIA [21] en est un autre dédié a I’étude de ’ASL. Ce projet
dure 4 ans, débuté au 1°* novembre 2015. L’objectif de ce projet est de livrer un rapport
d’études conceptuelles pour un accélérateur a base de plasma capable de générer un faisceau
d’électrons de 5 GeV de qualité industrielle. Il agit comme une étape intermédiaire entre les
expériences destinées pour la preuve de principe et des accélérateurs ultra-compacts pour la
science, 'industrie ou la médecine.

Notre groupe est un des partenaires dans ces deux projets. Nous sommes impliqués
dans les travaux expérimentaux et numériques sur l'accélération d’électrons dans I’ASL. Les
expériences sont réalisés a 'installation laser d’"UHI100 située au CEA Saclay, en France, et
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au centre de laser de Lund (LLC) en Suéde.

Simulations Particle-in-Cell (PIC), un outil pour ’analyse et la pré-
diction

Trois catégories de modeéles plasmiques peuvent étre utilisées pour décrire les interactions
laser-plasma dans le cas d’un laser de haute intensité (de 'ordre de > 10™®W /cm?, et de
courte durée (< 1ps). Ces modéles sont les modéles statique, fluide et cinétique. Pour
décrire ’ASL, 'approche cinétique est souvent utilisée. L’approche cinétique détermine
la distribution des particules de fagon auto-cohérente. Elle est souvent utilisée dans les
simulations pour décrire la propagation de laser, 'onde de plasma fortement non linéaire
ou l'amplitude des ondes est grande, avec la présence des interactions entre les ondes et
les particules, e.g. les phénoménes de piégeage et du déferlement. La méthode PIC est la
méthode la plus utilisée parmi toutes les méthodes dans cette approche. Il suit I’évolution
du faisceau laser sur une courte durée, associée a la période de laser et simule le mouvement
des particules chargées, ou du plasma en conséquence.

Dans I’ASL, la physique qui nous intéresse concerne l’onde de plasma générée par le
faisceau de laser, son transport dans le plasma et la dynamique des électrons relativistes qui
sont piégés et/ou accélérés par 'onde de plasma. L’interaction entre le faisceau d’électrons
et le sillage manifeste des effets non linéaires qui ne peuvent étre pris en compte que par le
modéle cinétique. Celle-ci constitue la raison pour laquelle la communauté travaillant dans
la conception et 'optimisation des expériences de I’ASL a opté pour cette approche.

Toutes les simulations dans ces travaux de thése sont effectuées avec le code PIC Warp
[22]. Warp est un code open-source, co-développé par le groupe mené par Dr. Jean-Luc
Vay au Laboratoire National de Lawrence Berkeley (LBNL). C’est un code tri-dimensionnel,
dépendant du temps, et capable de décrire plusieurs espéces, avec une description du réseau
d’accélérateur. Depuis ces derniéres années, 1’ajout des nouveaux modules dans Warp a
permis une modélisation efficace des expériences de I’ASL.

Plusieurs défis se présentent dans le travail de la modélisation. Il est surtout important
d’utiliser un schéma numérique qui assure la précision des calculs car la présence des erreurs
qui sont & priori petites s’accumulent deés les premiers pas de calcul et cela pourrait avoir un
effet non négligeable sur les propriétés finales du faisceau d’électrons. Dans cette optique,
beaucoup d’efforts ont été consacrés pour dériver des nouveaux schémas numériques ces
derniéres années afin d’améliorer encore la précision des calculs. La plupart de ces schémas
optimisé sont implémentés dans Warp et ils sont utilisées dans nos calculs. Pour un schéma
numérique donné, en géométrie cylindrique, il y a trois paramétres principaux, qui jouent
le role de réglage de précision dans un calcul: la largeur de la cellule numérique Az, Ar
dans la direction longitudinale et transverse, et le nombre de macro-particules par cellule.
Le pas de temps étant fixé par Az, le temps de calcul pour un calcul complet est donc
proportionnel & 1/(Az? x Ar). Un calcul typique pour l'injecteur effectué dans cette these
a nécessité ~ 20000 d’heures CPU. La plupart des calculs sont effectués avec une résolution
de Az = X\g/30 et Ar = X\g/4, avec )\ la longueur d’onde laser. D’apreés cette loi d’échelle, il
est évident que les études paramétriques ne sont plus faisables avec des pas Az et Ar plus
petits. Bien que nous puissions obtenir quelques indications a partir de I'expertise accumulée
dans la communauté, la forte non linéarité de notre problématique nous empéche a obtenir
les estimations quantitatives de la précision d’un calcul. Cette précision ne peut étre mise
en évidence que par I’étude de convergence sur un exemple d'une classe de configuration
donnée. Cette étude de convergence fait I'objet d’étude de cette these. En générale, nous
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pouvons affirmer que les résolutions choisies dans nos calculs sont suffisantes pour évaluer
avec une grande précision les propriétés du premier ordre d’un faisceau d’électrons telles que
I’énergie moyenne et la dispersion en énergie, par contre dans I’évaluation des propriétés
du second ordre telles que I’émittance, quelques incertitudes persistent. Certains calculs
pour des configurations spécifiques ont été effectués en haute résolution pour déterminer
précisément les propriétés du second ordre.

Couche absorbante parfaite de Bérenger (PML)

La résolution numérique choisie a déja imposé 'utilisation d’un grand nombre d’heures CPU
pour une simulation PIC. Afin de réduire ce nombre, la taille de la boite de simulation devrait
étre réduite au minimum. Pour ce faire, la condition & frontiéres ouvertes est importante
pour assurer 1’absorption de toutes les ondes sortant d’un domaine de calcul sans les renvoyer
dans ce domaine. Par exemple, dans la simulation de la propagation d'un faisceau laser de
puissance moyenne dans un plasma plus long que la longueur de Rayleigh, nous verrons le
faisceau laser qui diffracte, une partie de cette onde va atteindre les interfaces transverses
du domaine de calcul. S’il n’y a pas de traitement spécial aux interfaces, les ondes de laser
se réfléchiront et affecteront les composants qui sont encore dans le domaine de calcul. Une
des implémentations la plus efficace pour résoudre les problémes & frontiéres ouvertes est la
couche absorbante parfaite de Bérenger (PML) [23]. La propriété essentielle d’'une PML qui
la distingue d’'un matériau absorbant ordinaire est le fait qu’elle est congue de telle sorte
que les ondes incidentes 'atteignant depuis un matériau non PML ne se réfléchissent pas a
I'interface. Les études de lefficacité de la PML dans un schéma standard de Yee [151] ont
été réalisées mais non pas systématiquement aux ordres élevés. Une partie de cette thése
est donc dédiée a ’étude de l'efficacité de la PML implémentée dans la méthode FDTD aux
ordres élevés et dans la méthode spectrale.

Pour cette étude de l'efficacité, nous avons mesuré a partir des simulations numériques,
les coefficients de réflexion d’une onde qui atteint la PML dans deux cas de figure: (i)
I'onde atteint U'interface de la PML perpendiculairement, (ii) I'onde atteint 'interface avec
un angle incident. Nous avons également développé un modéle théorique pour estimer ces
coefficients de réflexion en nous basant sur l'interférométre de Fabry-Perrot. Les résultats
obtenus montrent qu’il y a un excellent accord entre les résultats numériques et théoriques.
De plus, ils montrent aussi que 'efficacité de la PML est conservée dans la méthode FDTD
aux ordres élevés et dans la méthode spectrale. Le modeéle développé ici permet donc de
prédire avec une bonne précision les coefficients de réflexion, qui pourra ensuite étre utilisé
pour optimiser les paramétres numériques d’une simulation d’ASL, e.g. le pas de grille et de
temps, ainsi que 'ordre de stencil afin d’effectuer un calcul PIC en un temps le plus court
possible tout en garantissant la précision.

Technique de Lorentz-boosted frame

Les paragraphes précédents nous apprennent que la plus petite échelle dans les simulations
d’ASL est la longueur d’onde de laser, alors que la longueur d’onde de plasma est de 2 & 3 fois
plus grande. Une telle différence dans les échelles pose un grand défi dans les simulations PIC.
En effet, une simulation PIC en 3D pour un étage de 10 GeV, consistant en la propagation
d’un laser de longueur d’onde Ay = 0.8 ym dans un plasma de 30 cm a une densité de plasma
de 107 cm™3 nécessite au moins 1 million pas de calculs. Avec la puissance d’ordinateur
dont nous disposons aujourd’hui, nous ne sommes pas encore en mesure de le réaliser; des
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optimisations numériques s’avérent donc nécessaires.

Une technique pour réduire le temps de calcul d’'une simulation PIC est la technique de
Lorentz-boosted frame (LBF). Cette approche tire parti des propriétés de la dilatation et
la contraction d’espace-temps associées a la transformation de Lorentz, sans modification
des équations fondamentales de mouvement des particules ou de ’électrodynamique. Cette
approche se base sur la non variance de la transformation de Lorentz appliquée aux deux
ou plus de composants de différent ratio en espace et en temps qui se croisent a une vitesse
relativiste, le nombre de pas de calcul est donc proportionnel au ratio de la plus grande échelle
de temps d’intérét sur la plus petite échelle. Dans les simulations d’ASL, en choisissant une
fenétre qui se déplace a la vitesse du groupe de laser, la longueur d’onde de laser sera
dilaté et la longueur de plasma sera contracté, par conséquent le temps de croisement entre
ces deux composants sera raccourci, ainsi que le temps de calcul. Un des objectifs de ma
these est d’assurer que cette technique donne des résultats précis, les études de convergence
sont donc effectuées. Cette étude consiste en la comparaison des résultats présentés avec
des figures de mérite pour les simulations effectuées avec et sans la technique de Lorentz-
boosted frame en fonction de la résolution numérique. L’étude de convergence dans le régime
linéaire et non linéaire avec l'injection externe des électrons a été réalisée [205], et a montré
une convergence remarquable. Dans [202], a été réalisée la simulation de ’ASL dans le
régime non linéaire avec ’auto-injection des électrons, les résultats obtenus montrent qu’il
y a quelques incertitudes avec la technique de Lorentz-boosted frame. Dans le cadre de ma
these, je me suis focalisé a I'étude de convergence dans le régime non linéaire avec 1'auto-
injection en utilisant la méthode FDTD et la méthode spectrale. Avec cette étude, nous
répondons aux trois problématiques:

e Est-ce que les simulations avec la technique de Lorentz-boosted frame donnent des
résultats précis dans le régime non linéaire avec auto-injection?

e Est-ce que les simulations avec la méthode FDTD et la méthode spectrale convergent?
e Quelle est I'accélération que nous pourrions obtenir?

A partir des résultats obtenus, nous avons démontré que la technique de Lorentz-boosted
frame permet de modéliser précisément 1’évolution du champs de sillage, les propriétés
du faisceau d’électrons telles que l’énergie moyenne, la dispersion en énergie et la dy-
namique transverse avec 99 % de concordance pour les résolutions numériques suffisantes,
e.g. N,/Ag = 64 sont obtenues. La convergence est atteinte avec une résolution plus faible
pour la méthode spectrale comparée a la méthode FDTD. Il y a aussi une concordance a 99 %
entre les résultats obtenus pour ces différentes méthodes de calcul a la plus haute résolution
longitudinale N,/A\g = 128. La loi d’échelle de I'accélération de calcul est aussi confirmée,
cela a validé notre compréhension de la technique de Lorentz-boosted frame en fonction des
facteurs relativistes de la fenétre v, et IV, /Ag. Bien que les simulations dans ce régime aient
imposé des contraintes sur le choix de 75, nous obtenons quand-méme une accélération sig-
nificative, e.g. S & 36 avec v, = 3 et N./A\g = 128 tout en gardant un faible écart de moins
de 1%.

Simulation de la dynamique d’injection et d’accélération d’électrons

L’activité principale de notre équipe est centrée sur le développement des programmes ex-
périmentaux pour I’ASL afin de produire des faisceaux d’électrons qui conforment aux spéci-
fications établies dans le cadre du projet CILEX. Des expériences ont été effectuées a Lund
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Laser Center en Suéde et a l'installation d’UHI100 au CEA Saclay. Les simulations sont
réalisées en paralléle avec les expériences pour analyser les résultats expérimentaux et pour
prédire les régimes qui n’ont pas encore été explorés dans les expériences. Les régimes qui
sont actuellement explorés dans les expériences sont fortement non linéaires et intrinséque-
ment tridimensionnels. Pour avoir une description réaliste de cette interaction fait appel a
I’approche cinétique en 3D. Les simulations PIC en 3D fournissent les informations détaillées
de l'interaction laser plasma, mais elles demandent des ressources de calculs exorbitantes.
Une alternative consiste donc a utiliser les modéles réduits.

Plusieurs modéles réduits avec approximations des éléments physiques ont été proposés
pour décrire I'interaction laser-plasma dans le cadre d’une simulation d’ASL en un temps de
calcul accessible. Parmi ces méthodes sont la méthode de la fenétre glissante [24], les méth-
odes quasi-statiques [25, 26, 27|, la méthode pondéromotive centre guidé (PCG) [28, 29|
pour la modélisation de la propagation du faisceau laser. Dans certains cas, ces méthodes se
combinent, i.e. les équations du champ quasi-statique sont intégrées dans l'approximation
PCG dans QuickPIC [26, 27]. Chacune de ces méthodes permet une accélération par rapport
a la simulation PIC compléte en 3D grace aux approximations dans la description physique
du systéme. Ces approximations pourraient manquer des éléments importants en physique,
e.g. les méthodes quasi-statiques ne modélisent pas correctement 1’auto-injection, I'approx-
imation PCG ne permet pas de modéliser la longueur d’épuisement pour les faisceaux laser
de haute intensité, I'utilisation de ces approximations dépendra donc a la problématique
étudiée. Un autre modele réduit tirant parti de la symétrie de 'interaction laser-plasma
dans un plasma sous-dense en coordonnées cylindriques (r, z) [30] a été proposé, appelé le
modeéle quasi-3D. Cette méthode est bien adaptée pour les simulations d’ASL avec suppo-
sition que le faisceau laser est quasi-symétrique par rapport ’axe. Cet algorithme fait une
décomposition Fourier en direction azimutale sur les champs et les courants lors de la ré-
solution des équations de Maxwell. Le plus grand avantage de cette approche est qu’elle
permet une description tri-dimensionnelle de l'interaction laser-plasma a un temps de calcul
comparable a celui de la simulation PIC en 2D. Vu les avantages de ce nouvel algorithme,
il est utilisé dans toutes les simulations pour les travaux d’analyse et d’optimisation.

Dans un premier temps, une simulation avec le code Warp en utilisant le modéle quasi-
3D, et comme parameétres d’entrées les parametres proches de ceux utilisés dans I'expérience
effectuée lors de la campagne d’expériences a LLC a été réalisée. Ces expériences portaient sur
I’étage d’injecteur o les électrons sont piégés dans le sillage en utilisant le schéma d’injection
par ionisation. L’expérience consiste en tirant un faisceau de laser dans une cellule de gaz
de longueur variable, appelée ELISA [32] remplie de Hy et quelque pourcentage de Ny. Son
profil de densité est bien caractérisé expérimentalement et avec les simulations de type fluide
(openFOAM).

La confrontation numérique-expérience montre que les résultats issus de la simulation et
de I'expérience sont assez semblables. En examinant la distribution des électrons en fonction
d’énergie du faisceau d’électrons accélérés, la simulation a réussi a reproduire la tendance
globale de cette distribution. Nous avons aussi comparé le résultat d'une série de simulations
correspondant a différents cas de figure réalisés en expérience, il y a eu un trés bon accord
entre la simulation et I’expérience, cela montre que le code Warp avec le modéle quasi-3D
est un outil fiable pour la modélisation de I’ASL. Une analyse détaillée de la simulation a
également donné un apergu sur la dynamique de piégeage et daccélération d’électrons dans
le sillage dans le cas de couplage de deux schémas d’injection: l'injection par ionisation
et l'injection par gradient descendant, que nous exploiterons par la suite pour le travail
d’optimisation de faisceau d’électrons.
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Optimisation de I’injecteur laser-plasma

Il existe de nombreux paramétres pouvant étre optimisés dans I’ASL, nous en avons choisi
deux qui sont: 'influence de gradient descendant et le pourcentage d’azote. Les paramétres
laser-plasma sont choisis de facon a obtenir un faisceau d’électron d’une énergie entre 50 —
200 MeV, une dispersion en énergie < 10 % et une émittance normalisée de ~ 1 mm mrad et
une charge de > 10pC. Les paramétres laser-plasma sont proches de ceux de I'expérience
a LLC mais pour limiter la dispersion en énergie, la longueur de plasma Lyjgsmq est réduite
et le laser est focalisé au gradient descendant du profil d’ELISA. Ces deux ajustements ont
pour objectif retarder le déclenchement de l'injection par ionisation, par conséquent nous
réduisons le volume d’injection, ainsi que la dispersion en énergie. La simulation avec ce jeu
de paramétres a généré un faisceau d’électron d’une dispersion en énergie évaluée en largeur a
mi hauteur (FWHM) de 13.1 %, une énergie de pointe a 65, 7MeV, une charge de 43.6 pC, et
des émittances normalisées €, ,ms = 0.33 mmmrad et €, ,,,s = 2.09 mmmrad. La différence
entre €, ,ms €t €y rms est due & l'effet de polarisation de laser selon la direction y, cet effet
a mené a un gain de moment des électrons dans cette direction. Nous avons ensuite séparé
la partie d’injection et d’accélération, cela nous donne un degré de liberté de plus sur le
controle des propriétés de faisceau d’électrons. En modifiant le profil de densité longitudinal
a partir de la position qui marque la fin de I'injection jusqu’a la sortie de la cellule de gaz,
nous avons pu régler I’énergie de pointe du faisceau d’électrons accéléré tout en conservant
sa dispersion en énergie. Le meilleur résultat obtenu parmi tous les paramétres considérés
est celui avec un gradient descendant dans la partie d’accélération du profil de densité. Le
faisceau d’électrons a une énergie de pointe de 82.6 MeV et une dispersion en énergie de 11 %,
les autres parameétres sont conservés.

Afin de mieux préparer les futures expériences a l'installation Apollon-10P dans le cadre
du projet CILEX, les expériences sont réalisées a 'installation UHI100 au CEA Saclay pour
explorer les configurations laser-plasma capables de générer un faisceau d’électrons avec une
énergie de pointe de 200 MeV. Les simulations sont effectuées en paralléle avec les expéri-
ences. Dans les simulations, les parameétres sont choisis de telle sorte qu’ils soient proches
de ceux de l'installation UHI100. Les études précédentes sur le role du profil longitudinal de
densité, le point focal du laser et la longueur de plasma ont amélioré notre compréhension
sur la dynamique des électrons injectés par ionisation dans un profil longitudinal de densité
réaliste. Ensuite, nous avons étudié I'influence de la concentration d’azote (Cl,), un autre
paramétre clé pour controler les propriétés d’électron. A partir de cette étude, nous avons
montré que quand Cy, est élevée, cela induit un fort effet charge d’espace qui dégrade la
dispersion en énergie autour de ’énergie de pointe. Toutefois, il existe une concentration
optimale, dans notre cas, Cy, = 1.5 %. Le faisceau d’électrons obtenu a la sortie de la cellule,
2 = Lpiasma @ une charge de 30.7 pC, une énergie de pointe de 240.9 MeV, une dispersion en
énergie évaluée & FWHM de 12 %, et une émittance normalisée de ~ 4.3 mm mrad dans les
deux directions transverses.

Perspectives

Ces travaux de recherche ont ouvert des perspectives dans la physique et la modélisation
numérique de l'injecteur laser-plasma.

En ce qui concerne l'aspect numérique, nous pourrons réduire le temps de calcul des
simulations d’ASL en appliquant la technique de Lorentz-boosted frame et en implémentant
la PML en coordonnées cylindriques. Afin de décrire les structures fines dues a 'interaction
laser-plasma, nous pourrions opter pour une implémentation du raffinement de maillage.
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Appendiz D. Résumé

En terme de physique, il est essentiel d’améliorer la compréhension de ’émittance dans un
injecteur laser-plasma pour pouvoir la réduire davantage. Dans les futures simulations, nous
mettrons directement le profil spatio-temporel du laser pour étudier 'influence des défauts
de laser sur les propriétés du faisceau d’électrons généré. Par la suite, nous simulerons le
couplage entre l'injecteur, la ligne de transport et 'accélérateur dans le schéma d’accélérateur
multi-étages.

164



ay

Nomenclature

the ratio of laser power and critical 7

power, Pr/Pc

fine structure constant
standard deviation

vector potential
normalized vector potential
magnetic field

incident B—field

reflected F—field

electric field

incident F—field

reflected E—field

fast component momentum
slow component momentum

momentum

TK

0

Vg

A€pwam energy spread at full-width at half- g

A& s
on
At
Av

maximum

root-mean-square energy spread

normalized perturbed density

time-step

velocity differential

computational grid cell size in y
computational grid cell size in y

computational grid cell size in z

permittivity constant

gpeak

gbeam

CFL
CIC
CK
DC

adjustable parameter that determines
the fraction of the plasma wave to be
considered which exits the plasma at
the end of the simulation

Lorentz factor
Keldysh parameter

Loretnz factor of the Lorentz-boosted
frame

Lorentz factor of the laser group veloc-
ity

factor of the dephasing length

laser wavelength

laser wavelength in the boosted frame
Compton wavelength

Debye length

plasma wavelength

mean energy

energy

peak energy

length of the electron beam
Courant-Friedrichs-Lewy
Cloud-In-Cell

Cole-Karkkainen

direct current

FDTD Finite-Difference Time-Dependent

LHS

left-hand-side

LWFA Laser Wakefield Acceleration
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Nomenclature

NGP Nearest-Grid-Point By, laser magnetic field

NSFD Non-Standard Finite-Difference c speed of light

ODE Ordinary Differential Equation Cn, concentration of Ny

Pioniz ionization probability C, Fornberg coefficients

PDE Partial Differential Equation e elementary charge

PIC particle-in-cell E;  laser electric field

PML Perfectly Matched Layer E, e maximum electric field amplitude of

the plasma wave
PSATD Pseudo-Spectral Analytical Time Do-

main H Harris function
PSTD Pseudo-Spectral Time-Domain 1 imaginary number
RHS right-hand-side I, electron binding strength
SVEA Slowly Varying Envelope Approxima- K focusing constant
tion
ko laser wavenumber
TSC Triangular-Shaped density Cloud
kg Boltzmann constant
140 permeability constant
k, plasma wavenumber
\Y% nabla operator
[ azimuthal harmonic mode
V?  Laplacian
L asma length of the plasma structure in the
V. mean electron-ion collision frequency boosted frame
Wo laser frequency lo laser length
Wy plasma frequency Ly electron dephasing length
10) scalar potential Ly density scale length
\J wake potential L. acceleration length

U,  wake potential at trapped position Ly gas cell length

v, wake potential at ionization position L,; pump depletion length

TI laser duration Lpiasma length of the plasma structure
P normalized momentum L, interaction length
En,rms Normalized emittance Me electron mass
© wave phase ng plasma density or ambient electron num-
ber density
ag maximum amplitude of the normalized
vector potential Ne critical density
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To

Ty

rL

Tm

Debye number
electron density
ion density

depth of the PML

number of grid-points in the radial di-
rection

number of grid-points in the longitudi-
nal direction

projector function

critical power

laser power

charge

charge in the linear regime
charge in the nonlinear regime
minimum laser spot radius
blowout radius

laser spot radius

maximum blowout radius

Tinter—node CO€fficient of reflection at the grid

Tnode

inter-node

coefficient of reflection at the grid node
speedup

total time of the simulation

electron temperature

laser period

plasma period

ionization potential of hydrogen
ionization potential

laser ponderomotive potential

velocity of the Lorentz-boosted frame

Vo
Uth

Wo

group velocity
phase velocity
thermal velocity
laser waist
atomic number

Rayleigh length
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Résumé : L’accélération par sillage laser (ASL)
repose sur l'interaction entre un faisceau laser in-
tense et un plasma sous-dense. Au travers de cette
interaction, une onde de plasma est générée avec un
fort champ accélérateur, de trois ordres de grandeur
plus élevé que celui d’un accélérateur convention-
nel, rendant envisageable la réalisation d’accéléra-
teurs futurs plus compacts. Pour la conception d’'un
futur accélérateur, un faisceau d’électrons de forte
charge, faible dispersion en énergie et faible émit-
tance doit étre accéléré a des grandes énergies. Pour
ce faire, la solution consiste & accélérer ces électrons
dans un schema multi-étages, qui est composé de
trois étages: un injecteur, une ligne de transport et
un accélérateur.

Ce travail de thése porte sur la modélisation de I'in-
jecteur avec le code PIC Warp et sur les méthodes
numériques telles que la technique de Lorentz-

boosted frame pour diminuer le temps de calcul et
la couche absorbante parfaite de Bérenger (PML)
pour assurer la précision des calculs numériques.
Ce travail de thése a démontré l'efficacité de la
PML dans les schemas FDTD & des ordres élevés
et pseudo-spectral. Il a aussi démontré la conver-
gence des résultats des simulations réalisées avec
la technique de Lorentz-boosted frame dans un ré-
gime fortement non-linéaire de I'injecteur, permet-
tant d’accélérer les calculs d’un facteur important
(~ 36) tout en assurant leur précision. La modéli-
sation effectuée dans cette thése a permis d’analy-
ser et de comprendre les résultats expérimentaux,
ainsi que de prédire les résultats des futures expé-
riences. Plusieurs méthodes d’optimisation de I'in-
jecteur ont également été proposées pour la géné-
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cifications d’un futur accélérateur.

Title :

Modeling of a laser-plasma injector for the multi-stage accelerator

Keywords : laser wakefield acceleration, PIC code, Warp, Lorentz-boosted frame technique, Perfectly

Matched Layer (PML)

Abstract : Laser Wakefield Acceleration (LWFA)
relies on the interaction between an intense laser
pulse and an under-dense plasma. This interaction
generates a plasma wave with a strong accelera-
ting field, which is three orders of magnitude hi-
gher than the one of the conventional accelerator;
more compact accelerator is therefore theoretically
possible. In the design of a future accelerator, a
high quality electron bunch with a high charge, low
energy spread and low emittance has to be accelera-
ted to high energies. A solution for this is a multi-
stage accelerator, which consists of an injector, a
transport line and accelerator stages.

This research work focuses on the modeling of the
injector using the PIC code Warp and on the nu-
merical methods such as the Lorentz-boosted frame

to speedup calculations and the Perfectly Matched
Layer (PML) to ensure the precision in numerical
calculations. The outcome of this thesis has de-
monstrated the efficiency of the PML in the high-
order FDTD and the pseudo-spectral solvers. Be-
sides, it has also demonstrated the convergence
of the results performed in simulations using the
Lorentz-boosted frame technique. This technique
speeds up simulations by a large factor (~ 36) while
preserving their accuracy. The modeling work in
this thesis has allowed analysis and understanding
of experimental results, as well as prediction of re-
sults for future experiments. This thesis has also
shown ways to optimize the injector to deliver an
electron bunch that conforms with the specifica-
tions of future accelerators.
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