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ABSTRACT 

This thesis develops and discusses farmers’ decision-making modeling approaches for representing the 

adaptation of farming to global changes and water policies: their effects on agricultural economics and 

practices and water resources comprise critical information for decision makers. After a summary, six 

articles are presented. 

The first article reviews bio-economic and bio-decision models, in which strategic and tactical 

decisions are included in dynamic adaptive and expectation-based processes, in 40 literature articles. 

The second article describes the case-study and presents a typology of Indian farmers from a survey 

including 684 farms in Berambadi, an agricultural watershed in South India.  

The third article presents a step-by-step approach that combines decision-making analysis with a 

modeling approach inspired by cognitive sciences and software-development methods. This 

methodology bridges the gap between field observations and the design of the decision model. It is a 

useful tool to guide modelers in building decision model in farming system.  

The fourth article describes the conceptual model NAMASTE, which was conceived to represents 

farmers adaptation processes under uncertainty. Since NAMASTE was designed in an extreme case of 

highly vulnerable agriculture, its generic framework and formalisms can be used to conceptually 

represent many other farm production systems. 

The fifth article investigates the role of water management policies on groundwater resource depletion 

under climate change conditions. We built a stochastic dynamic programming farm model. The model 

reproduced decision on irrigation investment and cropping system made each year with the concern of 

future impacts on water availability for irrigation.  

The sixth article describes the NAMASTE dynamic simulation model developed to model farming 

systems for evaluation and test of water management policies.  

Key-words: farmers’ decision-making, farm typology, conceptual model, stochastic programming, 

water management policies, climate change, Berambadi watershed. 
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RESUME EN FRANÇAIS 

Cette thèse développe et discute une approche de modélisation des processus de décision des 

agriculteurs qui prend en compte l'adaptation des pratiques aux changements globaux et aux politiques 

de l'eau. En effet ces changements ont des effets sur l'économie et les pratiques agricoles ainsi que sur 

les ressources en eau et sont des informations essentielles pour la prise de décision. Après un 

synoptique de thèse, six articles sont présentés. 

Le premier article est une revue de littérature d’une quarantaine d’articles sur les modèles bio-

économiques et bio-décisionnels, dans laquelle les processus d’adaptation sont inclus dans les 

décisions stratégiques et tactiques. 

Le deuxième article décrit le cas d’étude et présente une typologie des agriculteurs indiens déterminée 

à partir de 684 enquêtes d’exploitations agricoles dans le bassin versant agricole du Berambadi, au 

sud-ouest de l’Inde.  

Le troisième article présente une méthodologie qui combine l'analyse des processus de décision avec 

une approche de modélisation inspirée des sciences cognitives et des méthodes de développement 

informatique. Cette méthodologie permet le passage entre les observations de terrain et la conception 

du modèle de décision. Il s’agit d’un outil utile pour les modélisateurs qui les guide dans la 

construction de modèles de décision pour les systèmes agricoles.  

Le quatrième article décrit le modèle conceptuel NAMASTE, conçu pour représenter les processus 

adaptatifs de décision des agriculteurs dans un environnement incertain. Puisque NAMASTE a été 

conçu dans un cas extrême d'agriculture très vulnérable, son cadre et ses formalismes génériques 

peuvent être utilisés pour représenter conceptuellement de nombreux autres systèmes de production 

agricole. 

Le cinquième article étudie le rôle des politiques de gestion de l'eau sur la baisse des ressources en eau 

souterraine dans des conditions de changement climatique. Nous avons construit un modèle agricole 

de programmation dynamique stochastique. Le modèle reproduit les décisions annuelles 

d'investissement en irrigation et de choix de systèmes de cultures réalisées avec le souci des impacts 

futurs sur la disponibilité de l'eau pour l'irrigation. 

Le sixième article décrit le modèle dynamique de simulation NAMASTE développé pour l'évaluation 

et le test de politiques de l’eau sur les processus de décision des agriculteurs et la nappe phréatique. 

Mots-clés: processus de décision des agriculteurs ; typologie des exploitations agricoles ; modèle 

conceptuel ; programmation stochastique dynamique ; politiques de gestion de l'eau ; changement 

climatique ; bassin versant du Berambadi. 
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PREFACE 

I chose to present my thesis in an original way. As my written restitution is based on six articles either 

submitted or close to be submitted, and as it could be quite tedious to read and reread the article 

introductions that globally deal with the same theme (the one of my thesis), I chose to make a synoptic 

document of the thesis. This document of forty pages, gives in one hand the major advances (key 

messages found in the articles), and in the other hand deals with the introduction, the research 

approach and discussion-perspectives on the work that I conducted in depth. The reader can thus have 

an overview of the work done and go, if necessary, read the different articles. I also chose to provide a 

number of appendixes which could not be added to the articles but which can help understanding 

methodological items that could also be used by other researchers. 
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1.1. GENERAL INTRODUCTION 

1.1.1. Today’s and tomorrow’s challenges for the agriculture 

Agriculture is facing many challenges both in terms of productivity and revenue and in terms of 

environmental and health impacts. Agriculture must thus face a demand for increasing production 

regarding quantity, quality, accessibility and availability to secure food production and improve 

product quality to cope the needs of the world’s growing population (Meynard et al. 2012; Hertel 

2015; McKenzie and Williams 2015). The FAO (Food and Agriculture Organization of the United 

Nations) estimates that global agricultural production must increase by nearly 60% from 2005/2007 to 

2050 to meet the food demand of the estimated 9 billion people by 2050 while ensuring fair incomes 

for farmers (FAO 2012). Increasing agricultural productivity is all the more important to face the 

increasing competition for land, water and investment between urban, agricultural and industrial 

sectors (FAO 2011).  

However, increasing agricultural productivity must be made within a framework of environmental and 

health constraints. First it should consider limiting the impact on the environment, by reducing the 

impacts on water and aquatic environments (nitrate, pesticide, drug residue pollutions through 

leaching and runoff), on air (nitrous oxide, methane, ammonia and other greenhouse gas) and finally 

on soil (soil structural discontinuity, compacted areas, risk of leaching and erosion, decline in soil 

biodiversity). It should also consider limiting habitat modification to encourage and maintain 

biodiversity. Second, agricultural productivity should take into account the scarcity of resources 

mobilized by agricultural production such as water resources, phosphorus and fossil energy 

(particularly for the production of nitrogen fertilization) (FAO 2011; Brown et al. 2015).  

These agricultural challenges also have to be considered within the known context of climate change. 

Under climate change conditions, warmer temperatures, changes of rainfall patterns and increased 

frequency of extreme weather are expected to occur. The global mean temperature expected by the end 

of this century could be 1.8° to 4.0°C warmer than at the end of the previous century within an uneven 

pattern across the globe. Climate change could lead to extreme climatic events, such as increased 

intensity and frequency of hot and cold days, storms, cyclones, droughts and flooding (Anwar et al. 

2013).  Climate change alters weather conditions and thus has direct, biophysical effects on 

agricultural production and would negatively affects crop yields and livestock (Nelson et al. 2014). 

Sea-level rises will increase the risk of flooding of agricultural land in coastal regions. Changes in 

rainfall patterns may support the growth of weeds, pests and diseases (Lapeyre de Bellaire and al. 

2016).  
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1.1.2. Designing farming systems 

Facing the aforementioned challenges, conventional farming systems have their limitations and a 

particular attention is made on the dynamics of innovations likely to consider and resolve the former 

issues (Novak 2008). In a broad sense, innovation is seen as the action of "transforming a discovery on 

a technique, a product or a conception of social relationship into new practices" (Alter 2000).  

In agronomy, innovation is generally defined as a process which promotes the introduction of new 

changes and leading to its spread and its recognition through applications cases (INRA Sens 2008; 

Klerkx et al. 2010). Innovation requires a design process based on scientific and / or empirical 

knowledge. The design process is conducted by agricultural and development research institutes in 

close collaboration with farmers to address their needs, their constraints and their knowledge on 

agricultural production systems (Le Gal et al. 2011).  

Two ways of designing systems are distinguished: i) the rule-based design  aims at  gradually 

improving existing technologies and systems, based on predefined objectives and standardized 

evaluation processes (Meynard et al. 2012); ii) the innovative design is built to meet completely new 

expectations initially undetermined but getting more and more specific as the exploration process 

takes shape (Meynard et al. 2012; Lefèvre et al. 2014). In an uncertain and changing environment, 

traditional rule-based analytical frameworks are challenged. The adaptable design approaches that take 

into account varying objectives, skills and modes of validation and do not need to be specified in 

advance may be preferable (Meynard et al. 2012). 

Different tools and methods have already been developed to address the issue of farming system 

designs. Loyce and Wery (2006) classified them into three groups:  (i) diagnosis (e.g. Doré et al. 1997) 

allows to understand and evaluate agricultural systems from field measurements and surveys, (ii) 

prototyping (e.g. Vereijken 1997) consists in designing a limited number of systems based on expert-

knowledge, in testing and evaluating them, and in adapting the prototypes; (iii) model and simulation 

based approaches (e.g. Romera et al. 2004) where the model allows to design a simplified 

representation of a real system and  the simulation allows to change the state of the system in order to 

understand and evaluate its behavior. 

Given the complexity of the agricultural production systems, simulation modeling is a commonly used 

tool for the design and the evaluation of innovative agricultural production systems (Bergez et al. 

2010). Indeed, systemic modeling and dynamic simulations appear to be powerful tools to represent 

the dynamic interactions between biological and technical processes at different time and space scales 

and to assess and quantify the performances of a variety of alternative systems for a diversity of 

production contexts (Bergez et al. 2013). 
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1.1.3. Agricultural production systems and complex systems 

Definition and organization of farming systems 

An agricultural production system is defined as a complex system of resources, technical activities, 

biological processes and decisional processes that aims at meeting farm production objectives by 

producing agricultural goods (Tristan et al. 2011). The agricultural production system is a complex 

matrix of interdependent items that are partially controlled by the farm manager or the farm household 

subjected to a socio-economic and climatic external environment (Figure 1.1). 

Dury et al. (2013) identified five categories of objectives that drive decisional processes within 

farming systems: 1) financial like maintain, secure, increase or maximize farm income, 2) workload by 

decreasing, minimizing, maintaining or spreading working hours, 3) farm status considering the future 

of the farm, 4) technical aspects on crop management techniques, 5) environmental aspects with 

reasoning on biodiversity and pollution. 

Decisional processes aim at developing a resource management strategy that transforms land, capital, 

labor resources into agricultural products taking into consideration infrastructure and intuitional 

constraints such as equipment, storage and transportation, marketing facilities and farm credits. This 

transformation is the result of farmer’s short-term technical activities on the farm. The farmer 

mobilizes knowledge to make decisions based on know-how, skills and specific observations made 

previously on his production system. 

Agricultural production system may be composed of several production sub-systems with specific 

production objectives. Three main production subsystems are identified in Coléno et al., (2005): crop 

production, animal production and transformation unit. These sub-systems are interrelated since the 

end product and wastes of one sub-system may be used as inputs in others (Figure 1.1). 
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Figure 1.1 : Agricultural production system organized into three integrated production subsystems (from Coléno et al. 2005).  

Management of farming system 

The farmer dynamically plans and coordinates his technical activities on his farm at different time and 

space scales. However agricultural production systems are facing new challenges due to a constantly 

changing global environment that is a source of risk and uncertainty, and in which past experience is 

not sufficient to gauge the odds of a future negative event. Concerning risk, farmers are exposed to 

production risk mostly due to climate and pest conditions, to market risk that impact input and output 

prices, and institutional risk through agricultural, environmental and sanitary regulations (Hardaker 

2004). Farmers may also face uncertainty due to rare events affecting, e.g. labor, production capital 

stock, and extreme climatic conditions, which add difficulties to the production of agricultural goods 

and calls for re-evaluating current production practices. To remain competitive, farmers have no 

choice but to adapt and adjust their daily management practices (Hémidy et al. 1996; Hardaker 2004; 

Darnhofer et al. 2010; Dury 2011). 

Based on his past experience and on forecasts on weather and market prices, the famer can anticipate 

some events and production conditions. Thus he is able to plan several management options to face 

these different production conditions. However, given the limitations of human cognition to anticipate 
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the future, everything cannot be anticipated (Chavas 2012). The farmer must therefore be able to 

establish a reflexive analysis on the observations he made on his environment in order to instantly 

review his initial management plan and if necessary his production objectives. The farmer's decision-

making process is therefore a dynamic sequence of planning, observation, reflection, adaptation, 

implementation as technical activities and learning processes (Risbey et al. 1999; Le Gal et al. 2011). 

This variable and uncertain production context justifies why a management plan repeated over several 

years won’t give the same production results and why different management plans may lead to the 

same production results.  Farmer’s decision-making is a continuous process in time and space. 

Farmers make decisions based on his visibility and expectations on the production context that impact 

his management on the long-, medium- or short-term. Decisions may affect the whole agricultural 

production system, a production sub-system or even smaller spatial unit such as the plot (Cerf and 

Sebillotte 1988; Papy et al. 1988; Osman 2010). For instance, investing in equipments, in buildings or 

in lands are decisions that reflect a willingness to expand or modernize the farm. These decisions have 

long-term consequences because 1) loans are often over several years, 2) the farm structure and 

infrastructures are changed for the coming years (life duration of a tractor, building, etc.). However, 

decisions on selecting varieties and crop management techniques have an impact on the short term and 

at a local scale corresponding to the production season and the plot. Finally, deciding to delay the 

sowing, to extend the water turns or to apply pesticide treatment will have an immediate effect on the 

biophysical system because these decisions correspond to technical activities executed on each plot. 

Specificities of irrigated farming systems 

A production system is considered as irrigated when water supply other than rainfall is provided on 

one or several plots. The irrigation water is pumped from a water point and distributed to the fields 

through appropriate water transport infrastructure. In irrigated production systems, crops benefit from 

both the contribution of rainfall and irrigation water to cover their water needs. Irrigation is an 

effective management tool against the variability and uncertainty of rainfall events. The irrigation 

water can come from surface water fed by the rainfall runoff like streams, rivers, ponds, lakes and 

dams. Irrigation water can also come from the aquifer that is fed by the rainfall drained into the 

ground. The deep aquifers are located between two impermeable layers leading to slow recharge 

compared to surface water reservoirs.  

Irrigation water can come from different sources considered as collective when multiple users are 

identified or individual. Except for individual rainfall reservoirs, the other sources of irrigation are 

often subject to conflicts and management issues (Gleick 1993; Wolf 2007). Conflicts over rivers 

between upstream and downstream users are commonly seen as the upstream pumping will impact the 

downstream flow (Chokkakula 2015). On a reservoir, tensions appear when pumping exceeds the 

rainfall recharge from run-off particularly in drought conditions (Rajasekaram and Nandalal 2005). 
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For groundwater, pumping may exceed rainfall recharge. Moreover, lateral flows conduct the water 

table level to rebalance so that intensive pumping by one farmer impacts the yield of the neighbor’s 

borewell (Janakarajan 1999). 

1.1.4. Global challenges in designing agricultural production systems 

The production of knowledge on agricultural production system is an important issue while designing 

such system. Several types of knowledge have to be produced to understand the complexity of 

systems: 1) knowledge on the system structure to understand its organization and composition; 2) 

knowledge on internal processes e.g. decision processes, biophysical processes; and 3) knowledge on 

inputs and outputs to understand the exchanges of information and matters within the system and with 

the external environment as well as the impact of an entity on another entity (how climate change 

impacts on farmers’ decision making processes). The use of appropriate tools to collect and organize 

knowledge is important to ensure the quality of the knowledge production process. 

Another challenge in designing agricultural production systems is to properly define the limits of the 

system to be designed. Agricultural production systems are too complex to be entirely designed as 

they are.  The level of specificities and details to be considered depend on the initial research question. 

Designing agricultural production systems requires considering the time and space scales at which 

processes should be represented. Some processes may occur at several time and space scales (e.g. 

decision processes), others are specific to only one scale (e.g. sowing is made a defined date on a 

defined plot). An interesting issue in designing systems is to be able to upscale or downscale a 

representation. 

1.2. THESIS PROJECT 

1.2.1. Research context 

The Indian agriculture 

India is the most populous country in the world after China. India has 17.5% of the global population 

with 1.26 billion people in 2015. The growth rate of its population was 1.2% in 2014. A third of the 

Indian population (212 million) is undernourished and lives below the extreme poverty line (Central 

Intelligence Agency 2016). Famine and poverty remain a major obstacle to the country development. 

India is the world’s fourth-ranking agricultural power. In 2014, Indian agriculture accounted for 17.8% 

of GDP and employed 49.7% of the workforce. India has an important agricultural area of over 190 

million hectares of which 37% is irrigated. Climatic gradient, topographic and soil diversity allow a 

wide range of crops (India Brand Equity Foundation 2016). The main agricultural products are wheat, 
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millet, rice, corn, sugarcane, tea, potato, cotton. Productivity and yields have risen sharply since the 

1950s after the Green Revolution with the development of irrigation, the use of high-yield seeds and 

fertilizers and the availability of bank loans. However, subsistence farming is still dominant in India 

today. Farm households grow on small plots and crops are partly self-consumed (Dorin and Landy 

2002). Indian farms have an average size of 1.5 hectares. This fragmentation of holdings is inheritance 

of the land reform made in 1947 after the Independence from the British that had the aim to 

redistribute land to poor farmers by restricting the size of the landed property (Chandra 2000). This 

fragmentation contributes to the low mechanization of farming where animal traction and manual 

labor are still dominant in Indian agriculture.  

Three seasons regulate the farm cropping system: i) kharif (June to September) which corresponds to 

the South-West monsoon season, when almost all the cropping area is cultivated, either exclusively 

rainfed or with complementary irrigation; ii) rabi (October to January), the North-East monsoon 

season or winter season, when most of the plots where irrigation is possible are cultivated; and iii) 

Summer (February to May), the hot and dry season, when only few irrigated plots are cultivated. 

Despite the development of irrigation promoted by the Green Revolution, two-thirds of Indian 

agricultural production are still heavily dependent on the monsoon and are produced in kharif. 

Investments in infrastructure are also limited. Storage and conservation facilities of agricultural 

products are lacking in the rural area of the country and cause huge losses of up to 40% of crops for 

fruits and vegetables (Dorin and Landy 2002). After harvest, farmers are compelled to sell 

immediately their products and often at low prices. The lack of maintenance of irrigation canals and 

wells are causing the loss of over a third of transported water (Aubriot 2013). In this context of 

increasing population and industrial development, conflicts over the water resource use are increasing 

(Chokkakula 2015). 

The Green Revolution also led to the main problems that the agricultural sector is facing today. The 

intensification of agricultural production with the massive use of fertilizers and pesticides heavily 

distorted the soil and led to a soil depletion with significant loss of nutrients (Dorin and Landy 2002). 

The intensive drilling and the development of submersible pumps caused a significant drop in the 

natural groundwater resources (Aubriot 2013). Climate change and rising temperatures are also 

encouraging intensifying irrigation. This intensification of practices and input uses increased the 

production cost of farmers who had to heavily borrow money. In addition, farmers still greatly rely on 

local merchants and wholesalers who push them to sell at low prices. Therefore, farmers are subject to 

multiple pressures that led some to desperate situations and even suicide. In recent years, the farmers' 

suicide rate has terribly increased (Mishra 2007). In 2014, the number of suicides has been estimated 

at 12 360, taking into account the population of farm owners and farm workers (National Crime 

Reports Bureau 2015). 
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The AICHA project 

In the context of climate change and of agriculture increasingly relying on groundwater irrigation, it is 

crucial to develop reliable methods for sustainability assessment of current and alternative agricultural 

systems. The multi-disciplinary Indo-French research project AICHA (Adaptation of Irrigated 

Agriculture to Climate Change) (2013-2017) has aimed to develop an integrated model (in agronomy, 

hydrogeology and economics) to simulate interactions between agriculture, hydrology and economics 

and to evaluate scenarios of the evolution of climate, agricultural systems and water management 

policies.  

The AICHA project is supported by the Indo-French Centre for the Promotion of Advanced Research 

(CEFIPRA), and the INRA flagship program on Adaptation to Climate Change of Agriculture and 

Forest (ACCAF),and includes researchers from the Indian Institute of Sciences (IISc), the Indo-French 

Cell on Water Science (IFCWS), Ashoka Trust for Research in Ecology and the Environment 

(ATREE), the French National Center of Scientific Research (CNRS) (UMR COSTEL)  and the 

French National Institute for Agricultural Research (INRA) (UMR SAS, UMR LERNA, UMR AGIR, 

UMR EMMAH, UR RECORD). 

The Berambadi watershed situated in the south west of India, with an area of 84 km², is an ideal site 

for this project. The Berambadi watershed is small enough to allow fine monitoring and large enough 

to include a large part of the variability of agricultural systems. It has been developed as a research 

observatory since 2002 by the Indo-French Cell of the Water Science Cell (LMI IFCWS − IISc/IRD) 

in Bangalore. It belongs to the Kabini river basin (about 7000 km², southwest of Karnataka), which is 

a tributary of the Kaveri River basin.  

Due to the rain shadow of the Western Ghats on the South West monsoon rains, the Kabini basin 

exhibits a steep rainfall gradient, from the humid zone in the west with more than 5000 mm of rain per 

year to the semi-arid zone in the East with less than 700 mm of rain per year. The Berambadi 

watershed being in towards the East of the Kabini, its climate is tropical sub-humid (aridity index 

P/PET of 0.7) with a rainfall of 800 mm/year and PET of 1100 mm on average (Sekhar et al. 2016). A 

moderate East-West rainfall gradient is observed at the scale of the watershed, with around 900mm 

rainfall per year upstream (West) and less than 700mm rainfall per year downstream (East). 

For the past 50 years the climate variability has intensified in this region (Jogesh & Dubash 2014). 

Predictions for 2030 announced an increase in temperature of 1.8 to 2.2 ° C, associated with lower 

annual rainfall especially during the monsoon (Jogesh & Dubash 2014). For a region such as southern 

India whose farm production heavily depends on monsoon and winter months, climate change will 

have severe repercussions on natural resources and on the agricultural economy. 
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Black soil (Vertisols and Vertic intergrades), red soil (Ferrasols and Chromic Lusivols) and 

rocky/weathered soil are the main soil types in the area and are representative soil types for 

granitic/gnessic lithology found in South India. These are representative of the soil types for 

granitic/gnessic lithology found in South India (Barbiéro et al. 2007). The hard rock aquifer is 

composed of fissured granite underlain by a 5-20 m layer of weathered material. Groundwater 

transmissivity and borewell yields decrease with water table depth (Maréchal et al. 2010).  

During centuries, the traditional system of “tanks” has been efficiently used to extend the cropping 

season with the water stored during monsoon (Dorin and Landy 2002). However, poor maintenance of 

the water tanks and increasing silt deposition decreased its efficiency over time. At the Indian 

independence from the British in 1947, Prime Minister Jawaharlal Nehru decided that developing 

agriculture would be the priority of the country. He promoted huge irrigation projects based on the 

construction of large dams. This fundamentally altered the demand for irrigation in the Cauvery 

watershed and shifted the focus from not only using water flowing into the sea but also to dividing 

water resources (Pani 2009). The significance of this technological change was intensified by the 

growing demand for water. In the rural economy, the Green Revolution strategy that started in the 

1960s was based on high yield seeds, chemical fertilizers and irrigated agriculture, which meant 

increasing the demand for water. The development of submersible pump technology in the 1990s 

resulted in a dramatic increase in borewell irrigation (Sekhar et al. 2006; Javeed et al. 2009). However, 

the fissured structure of the hard rock aquifer lowers the success ratz of drilled borewells. Indeed, 

whatever the borewell depth, it has to cross a fissure to get water in (Figure 1.2). 

 

Figure 1.2 : Hard rock aquifer composed of fissured granite underlain by a 5-20 m layer of weathered material: only two 
borewells have access to groundwater (from Jacoby, 2015). 

This shift from collective tanks to individual borewells has been largely encouraged by public policies 

that provide free electricity to farmer for groundwater irrigation. Thus, it led to considerable 

dependency from agriculture practices on irrigation groundwater. Increasing pumping combined with 

the low productivity of the aquifer lead to a rapid decline in the water table level (Dewandel et al. 
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2010; Perrin et al. 2011) and a decrease of borewell yields (Ruiz et al. 2015). As a consequence, 

continuous pumping leads to groundwater table drawback and reduces the availability of groundwater 

for irrigation (Dewandel et al. 2010; Perrin et al. 2011). This feedback makes predefined land-use 

scenarios unrealistic, since farmers need to adapt their actions continually according to groundwater 

availability (Ruiz et al. 2015). 

The main originality of the project lies on its multidisciplinary approach that combines on the one 

hand the economic impacts on agricultural production and on the hydrological regime and on the other 

hand the feedback effects of the hydro-climatic-economic impact on farming practices, on land use 

and on agricultural productivity. The project involves several scientific issues. It aims at developing an 

integrated eco-agro-hydrological model able to take into account the direct effects of agricultural 

practices on water resources and the feedback effects by considering the adaptive behavior of farmer 

to climate change, resource availability and market development. This integrated modeling approach 

also answers the question of optimal water resource management in a context of increasing scarcity. It 

also deals with the issue of distribution of water resources and agricultural land in the context of 

climate change. The AICHA project analyzes scientific questions such as: 

• modeling the hydrological transfers and their relationship with agricultural practices 

• coupling of economic models with agronomic simulators 

• testing alternative scenarios of water resource management policies at the watershed scale. 

1.2.2. Thesis objectives 

Agricultural production systems are facing new challenges due to an ever changing global 

environment that is a source of risk and uncertainty. To adapt to these environmental changes, farmers 

must adjust their management strategies and remain competitive while also satisfying societal 

preferences for sustainable food systems. Representing and modeling farmers’ decision-making 

processes by including adaptation is therefore an important challenge for the agricultural research 

community. Three issues are at the core of this research: 

Represent farmers’ decision-making and adaptation processes  

 What are the engaged processes in farmers’ decision-making? 

Farmers’ decision-making processes are a combination of decision stages: i) the strategic decision 

stage, with a long-term effect (years to decades) on whole-farm organization (e.g., decisions about 

equipment investment, infrastructure development or farm expansion); ii) the tactical decision 

stage, with a medium-term effect (several months or seasons) on the farm cropping system and its 

resource management; and iii) the operational decision stage, with a short-term effect restricted to 
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specific plots and describing daily adjustments to crop management practices (Risbey et al. 1999; 

Le Gal et al. 2011). Some models focus on one particular type of decision – mainly strategic 

(Barbier and Bergeron 1999; Berge and Ittersum 2000; Hyytiäinen et al. 2011) or operational 

(Martin-Clouaire and Rellier 2006; Merot et al. 2008; Martin et al. 2011a; Aurbacher et al. 2013; 

Moore et al. 2014). Some others model two decision levels – strategic and tactical (Trebeck and 

Hardaker 1972; Adesina 1991; Mosnier et al. 2009) or strategic and operational (Navarrete and 

Bail 2007; Dury 2011; Taillandier et al. 2012a; Gaudou and Sibertin-Blanc 2013). However, to the 

best of our knowledge, the scientific literature does not offer models that include a decision model 

with the three decision stages within the same model. 

 How can we integrate adaptive behaviors in farmers’ decision-making processes?  

In the early 1980s, Petit developed the theory of the “farmer’s adaptive behavior” and claimed that 

farmers have a permanent capacity for adaptation (Petit 1978). Adaptation refers to adjustments in 

agricultural systems in response to actual or expected stimuli through changes in practices, 

processes and structures and their effects or impacts on moderating potential modifications and 

benefiting from new opportunities (Grothmann and Patt 2003; Smit and Wandel 2006). Another 

important concept in the scientific literature on adaptation is the concept of adaptive capacity or 

capability (Darnhofer 2014). This refers to the capacity of the system to resist evolving hazards 

and stresses (Ingrand et al. 2009; Dedieu and Ingrand 2010) and it is the degree to which the 

system can adjust its practices, processes and structures to moderate or offset damages created by 

a given change in its environment (Brooks and Adger 2005; Martin 2015). For authors in the early 

1980s such as Petit (1978) and Lev and Campbell (1987), adaptation is seen as the capacity to 

challenge a set of systematic and permanent disturbances. Moreover, decision-makers integrate 

long-term considerations when dealing with short term changes in production. Both claims lead to 

the notion of a permanent need to keep adaptation capability under uncertainty. Holling (2001) 

proposed a general framework to represent the dynamics of a socio-ecological system based on 

both ideas above, in which dynamics are represented as a sequence of “adaptive cycles”, each 

affected by disturbances. Depending on whether the latter are moderate or not, farmers may have 

to reconfigure the system, but if such redesigning fails, then the production system collapses. 

Adaptive behaviors in farming systems have been considered (modeled) in bio-economic and bio-

decision approaches. Formalisms describing proactive behavior and anticipation decision-making 

processes and formalisms representing reactive adaptation decision-making processes are used to 

model farmers’ decision-making processes in farming systems. There is a need to include 

adaptation and anticipation to uncertain events in modeling approaches of the decision-making 

process. 
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 How can we represent interactions between different dimensions of decision-making 

processes? 

Some of the most common dimensions in adaptation research on individual behavior refer to the 

timing and the temporal and spatial scopes of adaptation (Smit et al. 1999; Grothmann and Patt 

2003). The first dimension distinguishes proactive versus reactive adaptations. Proactive 

adaptation refers to anticipated adjustment, which is the capacity to anticipate a shock (change that 

can disturb farmers’ decision-making processes); it is also called anticipatory or ex-ante 

adaptation. Reactive adaptation is associated with adaptation performed after a shock; it is also 

called responsive or ex-post adaptation (Attonaty et al. 1999; Brooks and Adger 2005; Smit and 

Wandel 2006). The temporal scope distinguishes strategic adaptations from tactical adaptations, 

the former referring to the capacity to adapt in the long term (years), while the latter are mainly 

instantaneous short-term adjustments (seasonal to daily) (Risbey et al. 1999; Le Gal et al. 2011). 

The spatial scope of adaptation opposes localized adaptation versus widespread adaptation. In a 

farm production context, localized adaptations are often at the plot scale, while widespread ones 

concern the entire farm. Temporal and spatial scopes are easily considered in farmers’ decision-

making processes; however, incorporating the timing scope of farmers’ adaptive behavior is a 

growing challenge when designing farming systems. 

Conceive a flexible and resilient agricultural production system 

 How can we design agricultural production systems from field observations? 

The agricultural research community has a particular interest in modeling farming systems to 

simulate opportunities for adaptation that ensure flexibility and resilience of farming systems. To 

account for actors and their actions in the environment, it is essential to precisely represent their 

decision-making processes. Some methods have been developed to describe farmers’ decision-

making processes such as the “model for actions” (Aubry et al. 1998a), rule-based models (Bergez 

et al. 2006; Donatelli et al. 2006) and activity-based models (Clouaire and Rellier 2009; Martin et 

al. 2013). However none precisely specifies the process between farmers’ decision-making and the 

modeling activity. There is no clear guiding framework explaining how to proceed from field 

studies to designing a model.  

 Which representation should be used in conceptual modeling of farming systems? 

A conceptual model is a non-software description of a computer simulation model. It is the bridge 

between the real system and a computer model (Robinson 2008) and therefore requires 

simplification and abstraction (Robinson 2010). We identified three main ideas in the scientific 

literature that are interesting to consider when modeling a farming system:  i) a systemic 
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representation is relevant (Martin et al. 2011b; Tanure et al. 2013), ii) dynamic processes bring the 

farming system to life (Bellman 1954; Mjelde 1986; Cerf and Sebillotte 1988; Papy et al. 1988; 

Osman 2010), and iii) farmers’ decision-making processes are flexible and adaptive over time and 

space (Grothmann and Patt 2003; Smit and Wandel 2006; Darnhofer 2014). However, to the best 

of our knowledge, there is no representation of farming systems that integrates these three aspects 

into a conceptual model. 

 How should the conceptual representation of farming system be implemented for 

computerized simulation? 

Conceptual modeling is followed by software implementation that codes the conceptual results. In 

the past decade, several conceptual generic frameworks have been proposed for farm systems 

modeling (Bergez et al. 2013). To overcome problems which arise when building, simulating and 

reusing models (Reynolds and Acock 1997; Acock et al. 1999), generic computing platforms have 

been created to propose model repositories to facilitate their use and re-use (e.g. CropSyst (Van 

Evert and Campbell 1994) or ICASA (Bouma and Jones 2001)). The RECORD integrated 

modeling platform gathers, links and provides models and companion tools to answer new 

agricultural questions (Bergez et al. 2013). Coupling models representing the different entities of 

our agricultural production system should be facilitated by the use of such platform. 

Consider a context of water scarcity and climate change  

 How can we account for the effect of groundwater level on farming practices and simulate the 

retro-action of farming practices and in particular irrigation, on the variability of the aquifer? 

In the Berambadi watershed, groundwater transmissivity and borewell yields decrease with water 

table depth (Maréchal et al. 2010). As a consequence, continuous pumping leads to severe water 

table drawdowns especially in hard rock aquifers and reduces the availability of groundwater for 

irrigation (Dewandel et al. 2010; Perrin et al. 2011). This feedback makes predefined land-use 

scenarios unrealistic, since farmers need to adapt their actions continually according to 

groundwater availability (Ruiz et al. 2015). Water table levels display a pattern that is atypical in 

hydrology: valley regions have deeper groundwater table levels than topographically higher zones. 

Thus, an unusual groundwater level gradient is observed; with a shallow groundwater table 

upstream and deep groundwater table downstream (Figure 1.3). This pattern results from intensive 

groundwater pumping  since the early 1990s in villages located in the valley (where soils were 

more fertile) (Sekhar et al. 2011). Low costs of pumping water and subsidies for irrigation 

equipments encouraged farmers to drill even more borewells (Shah et al. 2009). This dramatic 

evolution is closely linked to the spatial distribution of soil type and groundwater availability, as 
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well as farming practices, access to the market, new agricultural technologies and technical know-

how, and government aid (Sekhar et al. 2011). Modeling how farmer practices depend on 

groundwater availability and how the global impact of pumping, farming practices and climate 

change impact on groundwater variability is important to understand the retro-action dynamic 

between practices and natural resource in particular. 

A) Stream drainage and depth to 

groundwater level 

B) Topographic elevation and water 

table level 

  

Figure 1.3 Groundwater level (GWL) in the Berambadi watershed. A) Stream drainage and depth to groundwater level, B) 
topographic elevation and water table level. 

 Which scenarios should be tested for water management policies?  

The motivation is to assess the future level of groundwater in the Berambadi watershed. The 

challenge is then to identify, design, and evaluate policies that encourage a better management of 

groundwater by farmers in a context of climate change. In concrete terms this means the adoption 

of alternative management options or adaptations that can be achieved at minimal social cost. 

Essentially, there are two types of instruments that may be adopted by policy makers. The first 

type encompasses quantity-control instruments, such as norms or quota-based instruments that 

limit the withdrawals of groundwater. The second type includes price-based instruments such as 

taxes or, conversely, subsidies intended to encourage the adoption of good practices and 

technologies. Price-based instruments act as incentives to reduce water use.  

The first part of this thesis project focused on establishing a state-of-the-art of modeling approaches in 

agricultural systems, by taking into account the adaptation in the decision-making process of the 

farmer. The second phase of the thesis aimed to analyze real operating systems in order to achieve a 

conceptual modeling. Given the lack of stabilized methodologies in the scientific literature, it was 
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necessary to establish a methodology to move from case studies to the conceptual based model. The 

last phase of the thesis allowed the passage of the conceptual model to the computer implementation. 

This computer model was used to simulate scenarios of climate change and water management 

policies in order to identify farmers’ leverages and policy instruments to face these changes. 

1.3. THESIS PROCEEDINGS 

The main steps of the thesis can be summarized by the spiral cycle for the development of expert 

systems  of Boehm (1988). The development of the simulation model NAMASTE (Figure 1.4) began 

with the expression of the needs formulated by the AICHA project to agree on what should be done in 

the model. An analysis of these needs helped formulating the project definition. Following the 

literature review (Chapter 2) and familiarization with the Berambadi basin (Chapter 3), we considered 

that the analysis and modeling of agricultural production systems in uncertain environment require 

taking into account the whole process of farmers’ decisions in integrating the different temporal and 

spatial scales of decision making. 

The conceptual model design formalizes the problem and chooses the functional specifications of the 

simulation model using a conceptual framework (Chapter 4 and 5). The farm was formalized with 

three entities (the decision-making system, the operating system and the biophysical system 3.4). The 

decision-making system has been described with the beliefs, desires, intentions formalism (BDI). The 

conceptual model was formulated in UML graphics to facilitate understanding between researchers, 

modelers, IT professionals and stakeholders of the project. 

Conceptual modeling is followed by the computer implementation of the model on a simulation 

platform. Software development is done by coding the results of the design and functionality of the 

model highlighted in the previous steps. A first computer approach provides the economic decision 

model. A second computer approach adds the operation decision model coupled to the whole system. 
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Figure 1 4 : Main steps of the thesis inspired by the spiral cycle of Boehm (1988). 

1.4. THESIS RESULTS 

1.4.1. Literature review on adaptation in decision models 

Agricultural production systems are facing new challenges due to a constantly changing global 

environment that is a source of risk and uncertainty, and in which past experience is not sufficient to 

gauge the odds of a future negative event. Concerning risk, farmers are exposed to production risk 

mostly due to climate and pest conditions, to market risk that impacts input and output prices, and 

institutional risk through agricultural, environmental and sanitary regulations (Hardaker 2004). 

Farmers may also face uncertainty due to rare events affecting, e.g. labor, production capital stock, and 

extreme climatic conditions, which add complexities to producing agricultural goods and calls for re-

evaluating current production practices. To remain competitive, farmers have no choice but to adapt 

and adjust their daily management practices (Hémidy et al. 1996; Hardaker 2004; Darnhofer et al. 

2010; Dury 2011). Facing the aforementioned challenges, conventional farming systems have their 

limitations and a particular attention is made on the dynamics of innovations likely to consider and 

resolve the former issues (Novak 2008). The agricultural research community has a particular interest 

in modeling farming systems to simulate opportunities for adaptation that ensure flexibility and 

resilience of farming systems. In this context of global change, it is important to include adaptation to 

model farmers’ decision-making processes. 
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To review the way adaptive behaviors in farming systems has been considered (modeled) in bio-

economic and bio-decision approaches; we analyzed approximately 40 scientific references. This work 

reviews several modeling formalisms that have been used in bio-economic and bio-decision 

approaches, comparing their features and selected relevant applications. We chose to focus on the 

formalisms rather than the tools as they are the essence of the modeling approach (Figure 1.5).  

The major points are: adaptability, flexibility and dynamic processes are common ways to characterize 

farmers' decision-making. Adaptation is either a reactive or a proactive process depending on farmer 

flexibility and expectation capabilities.  Various modeling methods are used to model decision stages 

in time and space, and some methods can be combined to represent a sequential decision-making 

process. Sequential representation is particularly interesting and appropriate to model the entire 

decision-making processes from strategic to tactical and operational decisions. Strategic adaptations 

and decisions influence tactical adaptations and decisions and vice-versa. Decisions made at one of 

these levels may disrupt the initial organization of resource availability and competition among 

activities over the short term (e.g., labor availability, machinery organization, irrigation distribution) 

but also lead to reconsideration of long-term decisions when the cropping system requires adaptation 

(e.g., change in crops within the rotation, effect of the previous crop). In the current agricultural 

literature, these consequences on long- and short-term organizations are rarely considered, even 

though they appear as an important driver of farmers’ decision-making (Daydé et al. 2014). 

Combining several formalisms within an integrated model in which strategic and tactical adaptations 

and decisions influence each other is a good starting point for modeling adaptive behavior within 

farmers’ decision-making processes. 

 

Figure 1.5 : Typology of models to manage adaptive decision-making processes according to model type, approach, and 
formalism. 
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1.4.2. The Berambadi watershed 

In semi-arid regions, agricultural production systems depend greatly on irrigation and encounter 

increasing challenges: growing uncertainty about response to climate change, severe depletion of 

natural resources, high price volatility in agricultural markets, rise in energy costs, greater pressure 

from public regulations (agricultural, environmental and health policies), and conflicts about sharing 

common water resources. Modeling farming systems while accounting for their flexibility is needed to 

assess water management policies targeted for specific geographical areas. 

While modeling farming systems for assessing the development of such targeted water management 

policies, typifying farming systems is a fundamental step (Köbrich et al. 2003). Indeed, modeling all 

individual farms within a territory is rarely feasible if the number of farms is large and if the 

distribution of farming systems is heterogeneous. Typologies have been presented as a convenient tool 

to simplify the diversity of farming systems while effectively describing their heterogeneity (Valbuena 

et al. 2008; Daloğlu et al. 2014). As farm types are adapted to local constraints such as resource 

availability, the identification of their spatial distribution or location factors is also needed (Clavel et 

al. 2011). 

Farmers’ investment decisions in irrigation and adopting cropping systems are inherently dynamic and 

are modified by changes in climate and agronomic, economic and social, and institutional conditions. 

To represent this diversity, we developed a typology of Indian farmers from a survey including 684 

farms in Berambadi. The questionnaire answers provided information on the farm structure, cropping 

systems and farm practices, irrigation water management, and the economic performances of the farm. 

Descriptive statistics and multivariate analysis (Multiple Correspondences Analysis and 

Agglomerative Hierarchical Clustering) were used to analyze the relationships between observed 

factors,and to establish the farm typology. We identified three main types of farms: 1) large, 

diversified and productivist farms, 2) small and marginal rainfed farms, and 3) small, irrigated 

marketing farms (Figure 1.6). This typology represents the heterogeneity of farms in the Berambadi 

watershed. Used within a simulation model for the watershed, this typology should enable policy 

makers to better assess the potential impacts of agricultural and water management policies on 

farmers’ livelihood and groundwater table. 
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Figure 1. 6: Groundwater table gradient (colors) and farm typology (pir chart) for each of the five villages (V1 to V5) on the 
Berambadi watershed. TYPE 1 is large, diversified and productivist farms; TYPE 2 is small and marginal rainfed farms; and 
TYPE 3 is small, irrigated marketing farms. 

1.4.3. A methodology to guide the design of a conceptual model of farmers’ decision-making processes 

The agricultural research community has a particular interest in decision-making processes design in 

farming systems but does not have a clear framework to guide it in how to proceed from field studies 

to designing the conceptual model. We identified a gap between field observations and the design of a 

conceptual decision model by modelers. Thus, we provide a necessary, original, and useful step-by-

step methodology that guides data acquisition and analysis, incorporation of farmers’ knowledge, and 

model design. Developing a methodology for model design is necessary to ensure model transparency. 

It is essential to include information about the process followed to develop the conceptual or 

simulation model. This helps reproduce the work so that future researches can test any insights found 

or replicate the process in another study. 

We propose an original and readily applicable methodology to formalize the conceptual modeling of 

the farmer agent underlying decision-making processes in farming system (CMFDM) and to guide 

data acquisition and analysis, the incorporation of expert knowledge, and the design of a model. The 

methodology combines techniques for system description based on field research in natural settings 

and techniques from the software engineering field regarding the use of software engineering language 

to support the development of a model. Theory building from cases is used to obtain a relevant theory 

from observing actual practices in a natural setting (Glaser and Strauss 1967; Eisenhardt 1989; Yin 

2013). Cognitive-Task Analysis (CTA) is used to analyze and model the cognitive processes that gave 

rise to farmers’ task performance in farming systems (Jonassen 1997; Chipman et al. 2000). Unified 
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Modeling Language (UML) is used to represent the decision-making problem in a standard and readily 

usable form for computer programming  (Booch et al. 1996; Papajorgji and Pardalos 2006). 

Our methodology is made of four steps (Figure 1.7): 

 The first step is problem definition with the definition of the context and the initial research 

question.  

 The second step consists in selecting the population likely to exhibit the research focus and 

select the case studies. As in statistical research, it is essential to control variations and define 

the limits of the generalization process.  

 The third step is data collection and analysis of individual case studies.  

 The last step is the transition from individual case studies to a generic model.  It is an iterative 

process of cross-cases analysis, enfolding of literature, and incorporation of expert knowledge.  

The case-study approach enables building a conceptual model with a higher level of refinement than 

statistical methods. Statistical studies combine dissimilar cases to obtain a large sample and run the 

risk of conceptual stretching (George and Bennett 2005), whereas case studies can reach a high level 

of validity with a smaller number of cases. Combining both a bottom-up (from farmers) and a top-

down (from experts and modelers) approach is a pragmatic way to develop consistent and reusable 

models based on shared concepts (Milton and Shadbolt 1999; Beck et al. 2010). We used UML as a 

unique formal language that facilitates iterations and feedback between different methodological steps. 

It also ensures consistency and transparency during the process from knowledge transcription to 

decision-model application. 

Our research may provide a useful tool for modelers looking for clear guidance on how to build the 

agent sub-model in a farming system model.  
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Figure 1.7 : The four methodological steps to conceptualize a farming systems and to guide data acquisition and analysis, 
integration of expert knowledge, and computer implementation.CTA=Cognitive Task Analysis, UML = Unified Modelling 
Language. 

1.4.4.  The conceptual model NAMASTE 

We identified three main ideas in the scientific literature that are interesting to consider when 

modeling a farming system:  i) a systemic representation is relevant (Martin et al. 2011b; Tanure et al. 

2013), ii) dynamic processes bring the farming system to life (Bellman 1954; Mjelde 1986; Cerf and 

Sebillotte 1988; Papy et al. 1988; Osman 2010), and iii) farmers’ decision-making processes are 

flexible and adaptive over time and space (Grothmann and Patt 2003; Smit and Wandel 2006; 

Darnhofer 2014). We developed an original representation of farming systems that integrates these 

aspects into a new conceptual model (Figure 1.8).  

The production system is divided into three interactive sub-systems: i) the decision sub-system 

(manager or agent), which describes the farmer’s decision process as a combination of knowledge 
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about the system, objectives, and decisions; ii) the operating sub-system (technical system), which 

translates the decision orders into action execution and dynamics of farm resources; and, iii) the 

biophysical sub-system, which describes interactions between physical and biological items, in 

particular the relations between ground water, soil, and plant growth and development (Clouaire and 

Rellier 2009; Le Gal et al. 2010; Dury 2011; Akplogan 2013). We considered farmers as cognitive 

agents able to think, memorize, analyze, predict and learn to face future events and plan their actions 

(Le Bars et al. 2005). We used the as Belief-Desire-Intention (BDI) framework to represent this 

cognitive agents (Bratman 1987a; Rao and Georgeff 1991). 

One original feature of our model is the decision sub-model that covers three stages of decisions and 

adaptations: 

 Each year, farmers decide whether to invest in irrigation equipment (e.g. dig a new borewell, 

get a new pump) to optimize their profit. They also select the corresponding cropping system 

and associated crop management operations (e.g. land preparation, sowing, fertilization, 

irrigation, harvest) that will ensure the best income for their long-term climatic and price 

expectations. This decision stage has a long-term effect on the entire farm due to the long 

duration of loans and equipment life. 

 Each season, farmers make a decision that will have a medium-term effect on the entire season 

and establishes the cropping system adopted for the season. Farmers integrate new observed 

knowledge about climate and prices so that the cropping system initially selected at the 

beginning of the year may no longer best optimize their income. They review their crop 

selection and match the best practices to obtain the best cropping system for the known 

farming conditions.   

 From the cropping system selected at the beginning of the season, farmers decide and adjust 

their daily crop operations in each plot depending on climate conditions and resource 

constraints. This decision stage covers the entire season at a daily time step 

To model three stages of decision, we combined economic, decision-rule, and activity-based models. 

Sequential representation is particularly interesting and appropriate to model the entire decision-

making processes from strategic to tactical and operational decision (Risbey et al. 1999; Le Gal et al. 

2011). Another original feature is the integrated dynamic interaction of different sub-systems that 

build the farm production system.  
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Figure 1.8 : The farming system as a Decision-Operating-Biophysical System framework. Presentation of the sub-models 
used in the conceptual model. The Beliefs, Desires, and Intentions framework provides structure to the decision sub-system. 
It breaks the system down the system into these three entities, each composed of several items. Beliefs are composed of 
structural, procedural, and observable knowledge, as well as strategic, tactical and operational intentions (adapted from 
Rao & Georgeff, 1991). Dynamic flow of information exchanged during the decision-making process from strategic to 
tactical and operational decisions. 

1.4.5. Strategic decisions on investments and cropping systems modeled with a stochastic dynamic 

programming approach 

Long-term investment decisions in borewell irrigation and on cropping system are modeled by a 

stochastic dynamic programming approach. The model is based on season-specific crop choice and 

medium-run (yearly) investment (or effort) decisions) in irrigation facilities (or capital stock). We 

assume that farmers optimize their profit over a long period of time and account for the consequences 

of today's decisions regarding investment in irrigation on future water availability (because the latter 

ultimately determines future crop output, hence future profit flows). The fact that the farmer is allowed 

to decide both on crop allocation and irrigation investment makes the problem fully dynamic, because 

today's decisions on investment will affect water availability in future periods (years). 

The objective function aims at selecting the investment in irrigation 𝐼𝑡 and the cropping system c that 

maximizes the profit π of the farmer based on expectations on rainfalls, available water for irrigation 

𝑊𝑡, crop price, crop costs, crop yields and crop failure: 

max{𝐼𝑡} ∑ (1 + 𝑟)−𝑡𝑇
𝑡=1 {max{𝛿𝑏𝑐𝜏}[∑ ∑ ∑ 𝛿𝑏𝑐𝜏 𝜋𝑏𝑐𝜏

𝑆2
𝜏=𝑆1

𝐶
𝑐=1

𝐵
𝑏=1 ] − 𝐼𝑡} , 



Chapter 1  Marion Robert 

25 
 

where r is a constant discount rate, and 𝛿𝑏𝑐𝜏 = 1 if crop c is grown on plot b at season 𝜏 and 0 

otherwise.  

The stochastic dynamic programming problem can be solved using a variety of methods. We assume 

here that, since no condition is imposed a priori on the terminal level of water availability or irrigation 

capital stock, we have an infinite horizon problem. A popular way of solving such infinite-horizon 

problem is the collocation method applied to the Bellman equation for dynamic programming. 

It is well known that the problem above can be written equivalently in terms of a value function 

𝑉(𝑊𝑡): 

𝑉(𝑊𝑡) = max𝐼𝑡
{𝜋𝑡

∗(𝐼𝑡, 𝑊𝑡) + 𝛽 𝐸�̃�𝑉(𝑊𝑡+1)}, ∀𝑡,    

where 𝑉(𝑊𝑡) is the value function (the maximum of current and future revenues) with the state 

variable as its argument, whose (dynamic) transition equation is 

  𝑊𝑡+1 = 𝑓(𝑊𝑡, 𝐼𝑡),       

𝛽 is a discount factor and 𝜋𝑡
∗(𝐼𝑡, 𝑊𝑡) is the current year’s profit function. 

This decision model is generic and independent of the rest of the NAMASTE global model. It allows 

producing marketable knowledge in other research contexts. For example, for NAMASTE this model 

is clibrated for farming systems in the hard rock aquifer of the Berambadi watershed. However, this 

model could also be used for areas of the Gangetic plain with alluvial aquifer. 

The model was used to test water management policies aiming at limiting the groundwater table 

depletion under climate change. Three scenarios were tested: 1) subsidies for rainfed crops, 2) 

payment of electricity, 3) taxes on piezometric level. In condition of climate change, taxes on 

piezometric level are the best approaches to maintain the groundwater level (Figure 1.9) and limit the 

decline of farmers’ profit (Figure 1.10).  
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Figure 1 9 : Groundwater level over the planning horizon – baseline and scenarios results. 

 

Figure 1.10 : Farmers’ profit over the planning horizon – baseline and scenarios results. 

Another common policy used on watershed for water resource management (e.g. the Beauce plain, 

Graveline (2013)) are individual quotas where farmers paid a tax for any volume of water pumped in 

addition to their initial quota. This approach will require a control of pumping with water meter which 

are not commonly present on the watershed. Future work may be on combining several water 

management policies. 

1.4.6. The computer model NAMASTE 

My last chapter presents the simulation model NAMASTE that model the interaction between 

investment and management decisions, the technical activities implemented on plots and biophysical 

processes in response to external factors such as weather, prices and availability of resources. 
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The implementation of the conceptual model was done using the modeling and simulation platform 

RECORD (INRA Toulouse) dedicated to the study of agro-ecosystems (Bergez et al. 2013; Bergez et 

al. 2016). The two main originalities of the NAMASTE model are: 1) the decision model that simulate 

farmers’ decision-making processes describes dynamic sequential decisions with adaptation processes 

to the biophysical environment; 2) it couples decisional, economical, biophysical and hydrological 

systems in order to include the whole consequences and spillover of human decisions on natural 

systems. NAMASTE is used to simulate a virtual village of two virtual farms that share resources 

(equipment and labor) at different time frames (Figure 1.11). 

NAMASTE simulates the decisions and adaptations of farmers at different time (strategic, tactical, 

operational) and space (from the farm to the plot) scales. It also represents the interactions between 

farmers for resource uses such as water, labor and equipment. The model emphasizes the feedback and 

retroaction between farming practices and changes in the water table (impact of pumping on 

groundwater availability and impact of water availability on farming practices). 

Like many agent-based models that aim in representing a complete system (An 2012), coupling 

decisional, economical, biophysical and hydrological models was necessary to model and quantify the 

spatio-temporal variability of water resources and the interactions between groundwater on the one 

hand, and agricultural practices and crop growth on the other hand. The difficulty encountered was to 

associate independent models that were originally developed for a specific purpose at different space 

and time scales (Kraucunas et al. 2015). Calibrating and validating the global model is an important 

and time-consuming step that is still in process (we encountered 94 parameters directly accessible in 

the global model, AMBHAS (Assimilation of Multi-satellite data at Berambadi watershed for 

Hydrology And land Surface experiment – hydrological model) and STICS (Simulateur 

multidisciplinaire pour les cultures standard – crop growth model) also have numerous internal 

parameters that lead to tedious calibration). 

Our model provides tools for analyzing, evaluating, and optimizing agronomic, environmental and 

economic criteria. We tested a baseline scenario to simulate current farming practices in the 

Berambadi watershed and predict their influences on the groundwater level for a virtual village made 

of two farms. Modeling agricultural production scenarios can effectively help stakeholders make 

decisions about regulations and resource restrictions and encourage new practices to be recommended 

to farmers.  
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Figure 1.11 NAMASTE simulator - a virtual village composed of two virtual farms (F1 and F2) both having access to ground 
water on the same AMBHAS cell. Each farm is simulate by two individual DEVS atomic decision model (strategic and tactic) 
and a common operational decision model using the VLE decision extension of RECORD that describes individual 
operational decisions for the whole village. The WEATHER model, the MARKET model and the ELECTRICITY model 
constrain the same way both farms. P1, P2 are the plots of farm 1. P3, P4 are the plots of farm2. 

1.5. DISCUSSIONS AND PROSPECTS 

1.5.1. Review on the thesis results 

The objectives of this thesis were to represent farmers’ decision-making and adaptation processes, and 

conceive a flexible and resilient agricultural production system under a context of water scarcity and 

climate change. Following this work an operating model was proposed in order to meet some of the 

expectations of the AICHA project. 

To illustrate the progress of the thesis, we refer the spiral cycle for the development of expert systems  

of Boehm (1988) presented in part 1.3. The spiral cycle therefore provides for the delivery of 

prototypes, e.g. incomplete versions of the product. Prototypes are considered as vertical prototypes 

where each prototype adds partially functional parts (Abdelhamid et al. 1997; Mosqueira-Rey and 

Moret-Bonillo 2000) (Figure 1.12). 
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Figure 1.12 : The spiral cycle adapted from Boehm (1988) and the delivery of prototypes from demonstration prototype to 
production model. The yellow part corresponds to the progress of my thesis. 

The thesis started by identifying the necessary knowledge to understand the operation of farms and 

decision-making processes of farmers. After a review of literature on adaptive behavior in farmers’ 

decision-making processes (Chapter 2) and the familiarization with the case of Indian study (Chapter 

3), we decided to take into account the whole process of farmers’ decision and to integrate the 

different temporal and spatial scales of decision making. Thus in our Indian case, three types of 

decisions and various adaptation options have been identified taking place at three different levels 

(strategic, tactical and operational). These functional specifications led to a first demonstration 

prototype.  

Then it was important to have the tools to organize and to integrate farming system knowledge into the 

production system design process. I set up a step-by-step methodology (Chapter 4), to move from case 

studies to a conceptual model. This conceptual model was used as research prototype. It precisely 

defined the processes I wanted to take into account to meet the thesis objectives and AICHA project 

expectations. The conceptual model presented in this thesis (Chapter 5) focused on the description and 

definition of the decision model in interaction with other models of the operating system and external 

system. This research prototype must be clear and understandable by all. The conceptual model is 

based on an ontology that provides a common vocabulary for all individuals involved in the project 

(researchers, modelers and experts). This allowed to discuss the model and to validate the model by 

the majority of participants of the AICHA project. This research prototype was the basis for the 

computer implementation of the model on the RECORD simulation platform. A first field prototype 
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provides the economic decision model. A second field prototype adds the operation decision model 

coupled to the whole system. Functional tests have validated first each entity of the model 

independently before validating the entire model. The final field prototype that I obtained 

corresponded to  a computer model useful to run scenarios of climate change, agricultural policy and 

resources scarcity and to identify the levers used by farmers to cope with these changes in a qualitative 

point of view. Improvements and deepening will be needed later to reach the production model that 

will meet the expectations of AICHA project. 

1.5.2. From the demonstration prototype to the production model 

Selecting the biophysical model 

In farm systems, decisions are translated into technical operations impacting the biophysical system. 

These decisions are dependent on farmer’s observations on the state of the biophysical system. Thus in 

NAMASTE, strategic and tactical decisions rely on crop yields while operational decisions depend on 

soil conditions, crop stage and germination rate. Technical operations impacting on the biophysical 

system are soil preparation, sowing, fertilization, irrigation and harvesting. Two major types of crop 

simulation models are often used: 1) empirical or statistical models that consider relationship between 

yields and components of yields with climate and environmental settings as correlation equation or 

regression ; and 2) the mechanistic or functional models that describe both the relationships and 

mechanisms between soil-plant systems, and climate decision (Basso et al. 2013). To simulate daily 

and dynamically plant growth, use of water and crop management operations, we selected the 

mechanistic model STICS to be coupled with our decision model (Brisson et al. 1998). 

Three main limitations are identified: 

1) Even if STICS is meant to be a generic crop model able to simulate several types of crops, its 

calibration is difficult and brings a significant amount of uncertainty concerning the validity of 

the model. 

2) STICS does not take into account biotic processes such as pests, diseases and weeds that have 

a significant impact on plant growth (Bergez et al. 2010). 

3) Crop rotation is not directly considered in STICS. The crop model must be coupled with a 

crop rotation model that loads a simulation unit for each new cultural plan launched by the 

decision model. 

The simplest alternative would be to consider the yield and the water used as the only parameters to be 

considered in the decision, instead of simulating the dynamic aspect of the model. This approach is 

acceptable for the strategic and tactical decisions as they are based on an expected average yield and 

average production costs. However it is not acceptable for operational decisions because the 



Chapter 1  Marion Robert 

31 
 

conditions of the technical operations depend on these dynamic crop settings. In this case, only the 

rain and the availability of resources should constrain the decision to run a technical operation. Other 

simplified functional models and calibrated for Indian crops exist as AquaCrop FAO (Raes et al. 2011) 

but are based on a single process e.g. the water balance and exclude other environmental outputs e.g. 

nitrogen and carbon footprints and the biotic and abiotic stresses affecting yields. 

The decision model: an integrated model? 

The sequential representation is particularly suited to represent the whole decision making process 

from strategic decisions to tactical and operational decisions (Cerf and Sebillotte 1988; Papy et al. 

1988; Osman 2010). The strategic decisions influence the tactical and operational decisions and vice 

versa disrupting the availability of resources and generating competition between activities in the short 

term but also by challenging rotations and crop sequences (Daydé et al. 2014). The description of 

these processes requires the development of a decision model at three levels built like we proposed in 

NAMASTE. However, the current model does not fully describe this integration. Starting from 

independently developed models, there remains some work regarding the coupling of the different 

levels of decisions to make the global model dynamically integrated. 

Strategic and tactic decisions are based on farmer’s expectations on events, occurrences, levels of 

certain variables and parameters affecting decisions. Each new piece of information received may 

impact farmers’ expectations and makes them reconsider and review their expectations. For instance, 

the strategic decision model is mainly based on climate, market prices, production costs and yields 

expectations. Through learning and appropriation processes of observed information, farmers review 

their expectations by integrating it to their own knowledge database. This implies that observed 

information at operational level are dynamically transferred to the farmer's knowledge database and 

integrated into the algorithm that formulates farmer’s expectations. For example, in our strategic 

decision model the farmer refers to probabilities of occurrence of year more or less rainy set by the last 

40 years of climate data. Running the operational decision model with new climate data is not going to 

change the probabilities of occurrence at the strategic level. The model should dynamically integrate 

the new information in its formalism to compute these probabilities of occurrence. Bayesian 

approaches are commonly used for the revision of parameters in dynamic systems (Stengel 1986). 

Concerning yields, a higher level of integration could be expected between economic and operational 

models and between tactical and operational models. At the strategic level, yields are currently 

estimated from simple production functions depending on level of irrigation and are calibrated for 

several climate occurrences. Given the use of a functional crop model for the operational level it is 

unfortunate that we did not to include it in the upper levels to obtain yields. Thus each loop testing 

crop profits should use the operational level over many representative years to obtain an average yield 

which would include the intra- seasonal variability of rainfalls. 
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The decision model: a generic model? 

In order to model the different types of farms identified in Chapter 3, some parameters of the 

NAMASTE model must be made more generic and flexible. A critical point is the possible change of 

number of plots of a farm within a planning horizon. Indeed, changing the number of plots should 

automatically change the structure of the strategic and tactic models in terms of possible iterations and 

crop combinations. It should also change the operational model by adding plots (or STICS models) 

and linking them to the operating system and the corresponding decision model.  

Another issue that deals with the possible change of number of plots is the management of the soil 

characteristics from year to year. Soil status is simulated by the STICS models. Right now, we 

consider that at each simulation the hydrological and mineral state of the soil is re-initiated to the 

initial conditions. However, technical practices and crop types impact on soil status. When plot sizes 

and plot number are fixed, it is easy to take in consideration these year-to-year impacts. However, 

when plots are changing, it becomes difficult to know from which STICS model should the values 

come from.  

Also calibration of new crops will allow better describing farm types depending on rainfed and 

irrigated conditions or on crop objectives of sale or self-consumption. For now, it is the irrigated farms 

with cash crops that are the best addressed in NAMASTE.  

Finally, the generic characteristic of the structure and formalisms used in this model depend on the 

ease to use it in other cases studies. The systemic representation is suitable for any type of farm system 

where the farm is considered made of a decision component in interaction with a biophysical 

component under variable and uncertain environment conditions. The structure and sequential 

representation of the farmers’ decision-making processes is also generic and reusable in other 

contexts. Other combinations of strategic / tactical / operational decisions can be described with this 

approach. However, the adaptation to other case studies requests a facility on the instruction of new 

decision rules and constraints. With today’ model, these adaptations are possible but require precise 

documentation on the steps and methodologies to implement. 

Improvements and deepening for the NAMASTE model 

Climate scenarios and water management policies have been tested during my thesis. However many 

improvements in the computer implementation are possible and could not be done during my PhD for 

lack of time. First to reconsider the points made in the previous paragraph, farm structure and 

initialization parameters are not fully scalable. Later on, the model will be able to dynamically create 

one or more farms from an input file.  
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Second, the technical management practices (ITK) are described in csv files, read by an R script that 

turns them into plan files mobilized by the RECORD decision plugin. For the same crop, several ITK 

are possible depending on the intensification of practices in terms of fertilization and irrigation. 

Howeverr, given the current model architecture, each ITK is also specific to the operation through the 

resources (labor and equipment) to be mobilized for the execution of technical operations. Thus there 

are currently nearly 100 plan files (5 x 10 crop intensification practices x 2 farms) to load at the 

beginning of each simulation which dramatically slows down the simulation process. Subsequently, 

the plan file creation should be dynamic so that plan files are not specific to farms (in terms of 

resources) and that only those mobilized for the simulation are loaded in the simulator. 

The duration of technical activities is also a point on which modeling time should be spent. So far, the 

simulator considers that each activity takes place in one day and systematically releases resources for 

the next day. However, certain activities such as sowing, weeding and harvesting can take place over 

several days depending on the availability of the workforce. Subsequently, the operating system 

should be able to set the duration of a technical activity depending on the resource needs and on the 

available resources. It should also maintain the mobilization of resources during the whole activity 

duration. 

To deal with the issue on soil state and plot changes, one solution may be to sub-divide a farm into 

smaller-sized sub-plots. Then a plot will be a combination of sub-plots and will have several STICS 

models running independently to simulate a crop growth. 

Moreover, the management of alternative crops at a sowing or germination failures does not allow to 

reuse the initial rotation as the replacement crop is added to the rotation, which implies that the 

rotation is modified and subsequently integrates the alternative crops. However a rotation is assumed 

to be fixed. Even if adjustments are possible during rotation they should not be maintained for the next 

rotation. The management of the rotation is done at two levels: 1) at the decision level, 2) at the 

biophysical level. The problem lies in the biophysical system. The rotator is a model in charge to load 

the subsequent simulation unit (USM) for the STICS model. At the beginning of the simulation, the 

same crop list is provided to the decision model and the rotator. When the replacement crop is 

introduced, the rotator receives an alert from the decision model to inform him about the replacement 

of one culture by another. The rotator will then insert this new crop in its crop list but is not able to 

identify this new crop as a temporary crop. 

Finally, the setting of the model makes it difficult to test alternative scenarios in terms of new 

practices and policies. Indeed, the setting of crops under STICS is tedious and requires a lot of field 

data. Integrating new ITK requires describing new decision rules, new predicates, and new constraints. 

Add a new policy requires changing the script and the parameter files of the strategic and tactic model. 



Chapter 1  Marion Robert 

34 
 

1.5.3. Verification and validation 

Verification and validation in the model development process 

Each prototypes developed during the development cycle of the agricultural production system is 

followed by verification and validation phases to obtain a valid simulation model (Borenstein 1998; 

Sargent 2013; Augusiak et al. 2014) (Figure 1.13). Conceptual validation follows the development of 

the conceptual model (or research prototype) and this process is repeated until the conceptual model is 

sufficient to meet the objectives of the initial problem and its modeling. The verification of the 

computer models ensures that the computer models (field prototype 1 and 2) are correctly 

implemented in relation to the conceptual model. Finally the operational validation is conducted on the 

computer model to determine if the outputs of the simulation are adequate for simulation purposes. For 

each step, data validation ensures the adequacy of the data to build the model, to evaluate the model, to 

test the simulation model. 

 

 

Figure 1. 13 : Verification and validation processes according to Sargent (2013). 

Data validation 

Data plays an important role in the construction and the validation of the simulation model. Data helps 

to identify the theories and relationships observed in the real world and in developing the formalisms 

and mathematical algorithms describing them. The use of assumptions and parameter estimations are 
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also based on these data. The data also helps to validate the model during the operational validation 

phase by comparing the observed trends to the model outputs (Arlot and Celisse 2010).  

Therefore it is important to properly collect and organize them in a database (Law 2008). 

Relationships between variables should be maintained when the variables are not directly those 

collected in the field.  Outliners or extreme values should also be considered in order to understand if 

there is potentially an erroneous value or extreme behaviors 

However, it is difficult to obtain appropriate and conclusive data. NAMASTE was developed based on 

data from farmer surveys (27 surveys oriented on technical practices and 684 surveys on farm 

characteristics) and surveys of the village heads and input sellers.  It also used experimental plots data, 

meteorological data and market prices from the watershed or the state (Karnataka). Despite the large 

number of data source, these data were not always sufficient to the model development and its 

validation. The most critical data in our approach are those related to crops. Only five crops from over 

twenty were followed in experimental plots, no data on crop rotation, crop sequences and crop 

precedence effects were obtained for two main reasons: 1) the technical practices are not archived, and 

the literature review is very limited; 2) Indian farmers are not familiar with these agronomic concepts. 

In addition to a quantitatively limited calibration, data on system behavior are not available because of 

the archiving problem of the technical activities and crop choices made from one year to another. This 

limitation reconsiders the reliability of the model and its calibration. Today NAMASTE is considered 

qualitatively acceptable but will need further calibration and assessments to be considered 

quantitatively representative. 

Conceptual validation 

Conceptual validation is essential to ensure that the assumptions,  theories and simplifications used to 

build the conceptual model are sufficiently accurate and relevant to meet the stakeholders’ 

requirements and the objectives of the study (Costal et al. 1996; Borenstein 1998; Liu et al. 2011).  To 

validate the conceptual model, we used: i) face validation that consists in asking experts and 

knowledgeable individuals about the study objectives to evaluate the conceptual model and determine 

whether it is correct and reasonable for the study purpose; and ii) traces techniques that consists in 

tracking entities through each sub-model and the overall model to determine whether the model’s logic 

and the necessary accuracy are maintained (Robinson 2010; Sargent 2010; Robinson 2014). 

Conceptual validation is inherently an informal process referring to subjective and human judgement.  

Each sub-model and the overall model must be evaluated to determine if they are reasonable and 

correct. First, we applied White-Box validation to the sub-models to determine whether each 

constituent part of the conceptual model represents the real world with sufficient accuracy to meet the 

study objectives (Robinson 2014). Each sub-system was validated by experts in the associated 
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research field. Both experts and modelers were essential to build the decision sub-model. Modelers 

ensure that decision processes are appropriately designed into the chosen framework and formalisms. 

Indian agronomic researchers validated the decision rules for crop management and adaption. We also 

asked Indian researchers from the research project to participate to the validation of each sub-model as 

main stakeholders on the project and to certify the representation and data used to build the external 

system. 

Second, we applied Black-Box validation to the overall model to determine whether the model provide 

a sufficiently accurate representation of the real world for the intended purpose of the study (Robinson 

2014). The entire system was validated by experts on the different sub-systems, modelers and the 

Indian researchers.  They worked on the consistency between inputs and outputs of each sub-system to 

ensure rational interactions between systems. Specification of each sub-model was circulated among 

those who have a detailed knowledge of the system. They shared feedbacks on whether the model was 

relevant by determining if the appropriate details and aggregate relationships were used for the 

model’s intended purpose. 

Basically, the conceptual validation used in NAMASTE involves a subjective process based on 

informal intuitive human judgment. Conceptual validation is essential to reduce the risk of distortions 

and errors on further model development steps; however conceptual validation is not enough to the 

validation of the final production model. It must be supported by mathematical validation and 

statistical validation approaches during the next steps of model development. 

Computer model verification 

The verification of the computer model ensures that its implementation matches the expectations of 

the conceptual model. Simulation models are often large computer models that can be the subject of 

computer bugs or coding errors. The verification therefore ensures the absence of coding errors and 

verifies that the simulation language used has been properly implemented in computer programming 

(Borenstein 1998). 

We used two basic approaches for the verification of NAMASTE: the static approach and the dynamic 

approach. The first approach leads to include anti-bugs and unitary tests all along the code that locally 

checks locally the program. The second one consists of running the program in different conditions 

and analyzes the outputs to ensure the proper behavior of the model and to reveal possible 

implementation errors.  

However, we should consider that errors identified during the computer model verification may be due 

to the conceptual model itself, to the computer program with coding errors or non-optimization of the 

programming language or to the data used in the dynamic approach (Whitner and Balci 1986). 
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Operational validation 

The operational validation determines whether the behavior of the final simulation model has the 

required accuracy to meet the expectations and primary research objectives (Kleijnen 1995). The 

operational validation uses the developed simulation model, which implies that any malfunction can 

come from what has been developed in the preceding steps of model development, as well as from the 

assumptions, the theories or the data (Refsgaard and Knudsen 1996).  

The operational validation can be done objectively by comparing the behavior of the simulation model 

outputs to the observed system or other models with statistical tests or subjectively without statistical 

test (Sargent 2013).  

The first objective validation approach uses hypothesis tests to compare means, variances and 

distributions between output variables and the observed system or other already validated models. The 

second objective validation approach uses confidence intervals based on means and standard 

deviations for each set of data obtained from system observations. 

In NAMASTE, operational validation was mainly conducted subjectively. The first subjective 

validation approach uses graphical comparison between simulation results and observed system such 

as box plots, histograms and graphs that describe variables behavior. The second approach of 

subjective validation explores the simulation model behavior by analyzing the outputs of the 

simulation model. This exploration was done qualitatively by defining whether the directions and the 

magnitudes of the output variables are acceptable. Subjective validation may also be done 

quantitatively by precisely analyzing the directions and magnitudes of these variables. We used 

sensibility analyses to examine the behavior of the NAMASTE model. 

1.5.4. A decision model for the AICHA project 

Scaling up an agricultural production model 

Upscaling from the farm level to catchment, regional and national level is a common approach in 

studying system behavior and dynamics such as farm adaptation to climate change (Gibbons et al. 

2010), land use and land cover change to climate change (Rounsevell et al. 2014), ecosystem changes 

to biotic and abiotic processes (Nash et al. 2014). Peters et al. (2007) identified three domains of 

scales: 1) “fine” at the scale of an individual; 2) “intermediate” at the scale of groups of individuals 

and, 3) “broad” at the scale of large spatial extents such as landscape, region and the whole globe.  

The appropriate scale is defined by the question or hypothesis of research and often requires the 

upscaling or downscaling of existing models (Gibbons et al. 2010). We consider the problem of 

upscaling from the perspective of modeling the retro-action of farmers’ adaptation to climatic change 
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and groundwater evolution. We emphasize upscaling from the farm level to the catchment level. The 

underlying scale is the farm level where farmers’ decision making occurs and resources are allocated. 

To study the global impact and retro-action of groundwater evolution and climate change on farmers’ 

practices we upscale the farm model developed during this thesis.  

Two main methods of upscaling can be used: 1) simple model replication of the farm models for each 

unit (farms) modeled; 2) model aggregation. The first approach is computationally intensive and 

requires sufficient data and knowledge of farmers’ characteristics for the farm model specification and 

calibration (Rounsevell et al. 2014). We will use the aggregation approach by globally representing all 

individual farmers and classifying them according to a limited number of clearly defined decision-

making strategies, following the typology proposed in Chapter 3.  

The aggregation or upscaling challenge is to determine which fine-scale details actually matter at 

intermediate or broad scales. Research questions are different depending on the scale. At the farm 

scale, we focused on decision-making processes of farmers and their adaptation to uncertain changes 

(e.g. climate, resource availability). At the watershed scale the issue is to look at the effect of decision 

making on groundwater table rather than the process of decision making itself and to consider 

interactions between individuals for shared resources. At the watershed scale, relative trends become 

more important than absolute levels. For instance at the watershed level, we will be more interested in 

total catchment used of groundwater for irrigation rather than individual farm uses.  

Toward the spatialization of the decision model at the watershed scale 

Based on the typology established in Chapter 3, the three types of farms 1) large, diversified and 

productivist farms, 2) small and marginal rainfed farms, and 3) small, irrigated marketing farms, are 

spatialized on the watershed (Figure 1.6).  

The required data for the calibration of the farm model are: the farm size, the number of plot, the 

number of available resources (owned by the farm and hired from the village), the number of hours of 

electricity available, the type of soil, the water table depth (Table 1.1). 

 

 

Table 1.1 Summary of farm characteristics by farm type and village 

  variables V1 V2 V3 V4 V5 

Type1 

proportion 7% 4% 36% 15% 6% 

farm size (ha) 3 3 3 3 3 

# plots 4 4 4 4 4 

# male from household 2 2 2 2 2 

# female from household 1 1 1 1 1 
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# tractor from household 0 0 0 0 0 

# bullock from household 1 1 1 1 1 

Type2 

proportion 1% 28% 44% 67% 92% 

farm size (ha) 1 1 1 1 1 

# plots 1 1 1 1 1 

# male from household 2 2 2 2 2 

# female from household 1 1 1 1 1 

# tractor from household 0 0 0 0 0 

# bullock from household 2 2 2 2 2 

Type3 

proportion 92% 68% 20% 18% 2% 

farm size (ha) 2 2 2 2 2 

# plots 2 2 2 2 2 

# male from household 2 2 2 2 2 

# female from household 1 1 1 1 1 

# tractor from household 0 0 0 0 0 

# bullock from household 2 2 2 2 2 

Village 

# labor male 2000 2000 870 1170 380 

# labor female 1800 1500 710 822 340 

# tractor  15 13 41 14 7 

# bullock  60 200 306 424 128 

hours of electricity kharif 3 3 4 4 4 

hours of electricity rabi 3 3 3 3 3 

soil type 

Clay/sandy 
loam/loamy 
sand/ sandy 
clay loam 

Sandy clay 
loam/clay/loamy 
sand/sandy 
loam/gravely 
loamy sand  

Sandy clay 
loam/clay/loamy 
sand/sandy 
loam/gravely 
loamy sand 

Clay 
loam/clay/sandy 
clay loam/sandy 
loam/gravely 
loamy sand 

Sandy clay 
loam/gravely 
loamy sand/clay 
loam/clay/sandy 
loam 

groundwater level (m) [46,60] [36,45] [26 ;35] [7,15] [16,25] 

 

A total of 1352 farms were identified by the Bhoomi - Tahasildar Office (Gundlupet) in the village 

V1, 1052 farms in V2, 1545 farms in V3, 1041 farms in V4 and 471 farms in V5. Crossed to the 

characteristics of the farm types presented below, it corresponds to 2881 crop plots in V1, 1893 crop 

plots in V2, 3522 crop plots in V3, 1697 crop plots in V4 and 565 crop plots in V5. 

The modeling of the groundwater in the basin Berambadi (84 km²) corresponds to 8400 AMBHAS 

cells of a hectare with different characteristics in terms of initial water table depth, porosity and 

transmissivity (lateral flow of water between cells). By spatializing farms on this AMBHAS grid cells, 

farms of type 1 are located on three AMBHAS cells, those of type 2 are on one AMBHAS cell and 

those of type 3 are on two AMBHAS cells.  

At the watershed scale, we have to consider the borewell location when a farm is located on several 

AMBHAS cells in order to spatialize the village model developed in the thesis, Indeed, given the 

different characteristics of the AMBHAS cells, a well dug on a certain cell does not behave in the 

same manner as on the neighboring cell. The spatialized model will therefore need to maximize 
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borewell locations on the farm. To do so, it will be necessary to integrate the characteristics of the 

different cells (initial water table height, table height variation equation) into the strategic decision 

model (Chapter 6) to optimize and locate the borewells on the AMBHAS cell. Interference between 

borewells will be taken into account when several borewells are drilled on the same AMBHAS cell. 

Indeed the discharge of two borewells is less than twice the discharge of one borewell (the flow rate of 

the borewell is affected by the pumping of other borewell on the same AMBHAS cell, which implies 

that the overall flow of the two borewells is less than twice the unitary rate). 

Soil type also varies within the same village. Thus, each cell of one hectare should be associated with 

a specific soil type (Figure 1.14). 

 

Figure 1.14 : Soil map over the Berambadi watershed showing the intra- and inter-village heterogeneity. 

From a modeling perspective, spatialization on the watershed involves as many strategic and tactical 

models as farms to be represented (5461 farms), five models of operational decisions for the 

management of resources (one per village), as many STICS crop model as plots which represents 

10558 STICS models. 

A West-East weather gradient is also observed in the catchment area from a humid climate at the west 

(data from the Maddur weather station) to a semi-humid climate at the east (data from the Kannegala 

weather station). The modeling of the watershed should consider this climate gradient. 

To run these simulations we should use a 200 GB RAM for a running time of 24 to 72 hours for 626 

days of simulation. 

This long simulation time could be an issue for the rest of the project. Approaches aiming at 

decreasing the simulation time can be considered: 1) change the grid resolution of the watershed, 2) 

reduce the study area by dividing the watershed into subzones. The first approach makes important 

assumptions on the homogeneity of soil consistency, behavior of the groundwater table and climate on 
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each grid cell. The second approach implies ignoring the exchange between sub-basins in terms of 

lateral flow and assumes that subzones are independent. 

Scenarios at the watershed scale 

In order to design tools for effective management of groundwater (limiting depletion and pollution of 

the groundwater resource) and of innovative, robust and resilient agricultural production systems, the 

scenarization on the watershed will be based on a participatory design process involving both 

agricultural stakeholders and decision makers or farm advisors (Leenhardt et al. 2015; Murgue et al. 

2015). This approach engages a social learning process that will allow the negotiation of satisfactory 

solutions rather than optimized solutions for a single purpose (Giampetro 2002; Pahl-Wostl and Hare 

2004; Newig et al. 2008; Sterk et al. 2009). The challenge will be to get participants to express as 

clearly as possible their views on possible changes at the catchment scale in order to identify the 

concepts and objectives for evaluation. This evaluation of scenarios will be made by running the 

simulation model for each proposed scenario. It will allow seeing the effects of these possible changes 

on the quantitative and qualitative evolution of groundwater on the Berambadi watershed. 

Possible scenarii based on my thesis work are: 

 Climate change scenario: a report published by the Bangalore Climate Change Initiative - 

Karnataka (BCCI-K) in 2011 predicts a decline of 1.85% of annual rainfall and a rise of 

1.96°C in average temperatures associated with higher drought frequency in the district 

Chamaraja Najar between 2021 and 2050. 

 Crop subsidies: rainfed cropping systems may be encouraged by the establishment of 

subsidies to cover the risks incurred without the support of irrigation. Crops such as pulses 

(lentils, chickpeas) which are the basis of Indian food have been neglected these last years in 

favor of more lucrative cash crops. Between 2015 and 2016, India imported 5.8 million tonnes 

of pulses mainly produced in Africa. Subsidies encouraging local production of pulses can 

also be considered. 

 Piezometric taxation: this global tax evolving with the decline of the groundwater table, 

impacts all irrigating farmers on the same water table regardless of pumping intensity. It can 

be a good policy to limit groundwater extraction. 

 Electricity management: even if the access to electricity is limited to few hours per day on the 

watershed, free electricity does not limit over-consumption behaviors. Charging electricity 

could makes farmers aware of resource depletion. 

 Irrigation quota: quotas are a fairly common practice in water management policies (Graveline 

2013), however they require that each borewell / pump is equipped with a water meter. 
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 Collecting rainfall for irrigation: the use of water retention basin (ponds) is an ancient 

technique in the watershed that was abandoned in favor of individual pumping. Subsidies for 

the establishment or upgrading of the status of individual or collective ponds can encourage 

the collection and use of rainwater for irrigation. 

 Collection of rainfall water for direct recharge of the aquifer: collected rainfall water (runoff 

from roofs, retention pond) could be conducted to the old open wells for the direct recharge of 

the aquifer. 

1.6. CONCLUSION 

The objectives of this thesis were to represent farmers’ decision-making and adaptation processes, and 

conceive a flexible and resilient agricultural production system under a context of water scarcity and 

climate change.  

We provided a necessary, original, and useful step-by-step methodology that guides data acquisition 

and analysis, incorporation of farmers’ knowledge, and model design. 

We identified three main ideas in the scientific literature that are interesting to consider when 

modeling a farming system:  i) a systemic representation is relevant, ii) dynamic processes bring the 

farming system to life (Bellman 1954; Mjelde 1986; Cerf and Sebillotte 1988; Aubry et al. 1998a; 

Osman 2010), (Bellman 1954; Mjelde 1986; Cerf and Sebillotte 1988; Papy et al. 1988; Osman 

2010)(Bellman 1954; Mjelde 1986; Cerf and Sebillotte 1988; Papy et al. 1988; Osman 2010)(Bellman 

1954; Mjelde 1986; Cerf and Sebillotte 1988; Papy et al. 1988; Osman 2010)and iii) farmers’ 

decision-making processes are flexible and adaptive over time and space (Grothmann and Patt 2003; 

Smit and Wandel 2006; Darnhofer 2014)(Grothmann and Patt 2003; Smit and Wandel 2006; 

Darnhofer 2014)(Grothmann and Patt 2003; Smit and Wandel 2006; Darnhofer 2014)(Grothmann and 

Patt 2003; Smit and Wandel 2006; Darnhofer 2014). We developed an original representation of 

farming systems that integrates these aspects into a new conceptual model.  

NAMASTE simulates the decisions of farmers in different time (strategic, tactical, operational) and 

space (from the farm to the plot) scales. It represents the interactions between farmers for resource 

uses such as water, labor and equipment. The model also emphasizes the feedback and retroaction 

between farming practices and changes in the water table (e.g. pumping impact on groundwater 

availability, water availability impact on farming practices). 

The model was initially developed to address critical issues of groundwater depletion and farming 

practices in a watershed in southwestern India. Its structure, frameworks and formalisms can be used 

in other agricultural contexts. Our application focused on water management in semi-arid agricultural 
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systems, but it can also be applied to other farming systems to confirm the re-usability and 

applicability of the framework.  

For the AICHA project, we proposed a farm model that will be useful for future upscaling at the 

watershed scale.  
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Agricultural production systems should evolve fast to cope with risks induced by climate change. 

Farmers should adapt their management strategies to stay competitive and satisfy the societal demand 

for sustainable food systems. It is therefore important to understand decision-making processes used 

by farmers for adaptation. Processes of adaptation are in particular addressed by bio-economic and 

bio-decision models. 

 Here we review bio-economic and bio-decision models, in which strategic and tactical decisions are 

included in dynamic adaptive and expectation-based processes, in 40 literature articles. The major 

points are: adaptability, flexibility and dynamic processes are common ways to characterize farmers' 

decision-making. Adaptation is either a reactive or a proactive process depending on farmer flexibility 

and expectation capabilities.  Various modeling methods are used to model decision stages in time and 

space, and some methods can be combined to represent a sequential decision-making process. 

 

Keywords: farmers’ decision-making, bio-economic model, bio-decision model, uncertainty, 

adaptation
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2.1. INTRODUCTION 

Agricultural production systems are facing new challenges due to a constantly changing global 

environment that is a source of risk and uncertainty, and in which past experience is not sufficient to 

gauge the odds of a future negative event. Concerning risk, farmers are exposed to production risk 

mostly due to climate and pest conditions, to market risk that impact input and output prices, and 

institutional risk through agricultural, environmental and sanitary regulations (Hardaker 2004). 

Farmers may also face uncertainty due to rare events affecting, e.g. labor, production capital stock, and 

extreme climatic conditions, which add difficulties to producing agricultural goods and calls for re-

evaluating current production practices. To remain competitive, farmers have no choice but to adapt 

and adjust their daily management practices (Hémidy et al. 1996; Hardaker 2004; Darnhofer et al. 

2010; Dury 2011) (Figure 2.1). In the early 1980s, Petit developed the theory of the “farmer’s adaptive 

behavior” and claimed that farmers have a permanent capacity for adaptation (Petit 1978). Adaptation 

refers to adjustments in agricultural systems in response to actual or expected stimuli through changes 

in practices, processes and structures and their effects or impacts on moderating potential 

modifications and benefiting from new opportunities (Grothmann and Patt 2003; Smit and Wandel 

2006). Another important concept in the scientific literature on adaptation is the concept of adaptive 

capacity or capability (Darnhofer 2014). This refers to the capacity of the system to resist evolving 

hazards and stresses (Ingrand et al. 2009; Dedieu and Ingrand 2010) and it is the degree to which the 

system can adjust its practices, processes and structures to moderate or offset damages created by a 

given change in its environment (Brooks and Adger 2005; Martin 2015). For authors in the early 

1980s such as Petit (1978) and Lev and Campbell (1987), adaptation is seen as the capacity to 

challenge a set of systematic and permanent disturbances. Moreover, agents integrate long-term 

considerations when dealing with short term changes in production. Both claims lead to the notion of a 

permanent need to keep adaptation capability under uncertainty. Holling (2001) proposed a general 

framework to represent the dynamics of a socio-ecological system based on both ideas above, in which 

dynamics are represented as a sequence of “adaptive cycles”, each affected by disturbances. 

Depending on whether the latter are moderate or not, farmers may have to reconfigure the system, but 

if such redesigning fails, then the production system collapses. 

Some of the most common dimensions in adaptation research on individual behavior refer to the 

timing and the temporal and spatial scopes of adaptation (Smit et al. 1999; Grothmann and Patt 2003). 

The first dimension distinguishes proactive vs. reactive adaptation. Proactive adaptation refers to 

anticipated adjustment, which is the capacity to anticipate a shock (change that can disturb farmers’ 

decision-making processes); it is also called anticipatory or ex-ante adaptation. Reactive adaptation is 

associate with adaptation performed after a shock; it is also called responsive or ex-post adaptation 

(Attonaty et al. 1999; Brooks and Adger 2005; Smit and Wandel 2006). The temporal scope 
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distinguishes strategic adaptations from tactical adaptations, the former referring to the capacity to 

adapt in the long term (years), while the latter are mainly instantaneous short-term adjustments 

(seasonal to daily) (Risbey et al. 1999; Le Gal et al. 2011). The spatial scope of adaptation opposes 

localized adaptation versus widespread adaptation. In a farm production context, localized adaptations 

are often at the plot scale, while widespread adaptation concerns the entire farm. Temporal and spatial 

scopes of adaptation are easily considered in farmers’ decision-making processes; however, 

incorporating the timing scope of farmers’ adaptive behavior is a growing challenge when designing 

farming systems.  

System modeling and simulation are interesting approaches to designing farming systems which allow 

limiting the time and cost constraints (Rossing et al. 1997; Romera et al. 2004; Bergez et al. 2010) 

encountered in other approaches, such as diagnosis (Doré et al. 1997), systemic experimentation 

(Mueller et al. 2002) and prototyping (Vereijken 1997). Modeling adaptation to uncertainty when 

representing farmers’ practices and decision-making processes has been addressed in bio-economic 

and bio-decision approaches (or management models) and addressed at different temporal and spatial 

scales.  

The aim of this paper is to review the way adaptive behaviors in farming systems has been considered 

(modeled) in bio-economic and bio-decision approaches. This work reviews several modeling 

formalisms that have been used in bio-economic and bio-decision approaches, comparing their 

features and selected relevant applications. We chose to focus on the formalisms rather than the tools 

as they are the essence of the modeling approach.  

Approximately 40 scientific references on this topic were found in the agricultural economics and 

agronomy literature. This paper reviews approaches used to model farmers’ adaptive behaviors when 

they encounter uncertainty in specific stages of, or throughout, the decision-making process. There is a 

vast literature on technology adoption in agriculture, which can be considered a form of adaptation, 

but which we do not consider here, to focus on farmer decisions for a given production technology. 

After presenting some background on modeling decisions in agricultural economics and agronomy and 

the methodology used, we present formalisms describing proactive behavior and anticipation decision-

making processes and formalisms for representing reactive adaptation decision-making processes. 

Then we illustrate the use of such formalisms in papers on modeling farmers’ decision-making 

processes in farming systems. Finally, we discuss the need to include adaptation and anticipation to 

uncertain events in modeling approaches of the decision-making process and discuss adaptive 

processes in other domains. 
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2.2. BACKGROUND ON MODELING DECISIONS IN AGRICULTURAL ECONOMICS AND 

AGRONOMY 

Two main fields dominate decision-making approaches in farm management: agricultural economics 

(with bio-economic models) and agronomy (with bio-decision models) (Pearson et al. 2011). 

Agricultural economists are typically interested in the analysis of year-to-year strategical (sometimes 

tactical) decisions originating from long-term strategies (e.g., investment and technical orientation). In 

contrast, agronomists focus more on day-to-day farm management described in tactical decisions. The 

differences in temporal scale are due to the specific objective of each approach. For economists, the 

objective is to efficiently use scarce resources by optimizing the configuration and allocation of farm 

resources given farmers’ objectives and constraints in a certain production context. For agronomists, it 

is to organize farm practices to ensure farm production from a biophysical context  (Martin et al. 

2013). Agronomists identify relevant activities for a given production objective, their interdependency, 

what preconditions are needed to execute them and how they should be organized in time and space. 

Both bio-economic and bio-decision models represent farmers’ adaptive behavior.  

Bio-economic models integrate both biophysical and economic components (Knowler 2002; Flichman 

2011). In this approach, equations describing a farmer’s resource-management decisions are combined 

with those representing inputs to and outputs from agricultural activities (Janssen and van Ittersum 

2007). The main goal of farm-resource allocation in time and space is to improve economic 

performance of farming systems, usually along with environmental performance. Bio-economic 

models indicate the optimal management behavior to adopt by describing agricultural activities. 

Agricultural activities are characterized by an enterprise and a production technology used to manage 

the activity. Technical coefficients represent relations between inputs and outputs by stating the 

amount of inputs needed to achieve a certain amount of outputs (e.g., matrix of input-output 

coefficients, see Janssen and van Ittersum 2007). Many farm-management decisions can be formulated 

as a multistage decision-making process in which farmer decision-making is characterized by a 

sequence of decisions made to meet farmer objectives. The time periods that divide the decision-

making process are called stages and represent the moments when decisions must be made. Decision 

making is thus represented as a dynamic and sustained process in time (Bellman 1954; Mjelde 1986; 

Osman 2010). This means that at each stage, technical coefficients are updated to proceed to the next 

round of optimization. Three major mathematical programming techniques are commonly used to 

analyze and solve models of decision under uncertainty: recursive models, dynamic stochastic 

programming, and dynamic programming (see Miranda and Fackler 2004). Agricultural economic 

approaches usually assume an idealized situation for decision, in which the farmer has clearly 

expressed goals from the beginning and knows all the relevant alternatives and their consequences. 

Since the farmer’s rationality is considered to be complete, it is feasible to use the paradigm of  utility 
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maximization (Chavas et al. 2010). Simon (1950) criticized this assumption of full rationality and 

claimed that decision-makers do not look for the best decision but for a satisfying one given the 

amount of information available. This gave rise to the concept of bounded and adaptive rationality 

(Simon 1950; Cyert and March 1963), in which the rationality of decision-makers is limited by the 

information available, cognitive limitations of their minds and the finite timing of the decision.  In 

bounded rationality, farmers tend to look for satisfactory rather than utility maximization when 

making relevant decisions (Kulik and Baker, 2008). From complete or bounded rationality, all bio-

economic approaches are characterized by the common feature of computing a certain utility value for 

available options and then selecting the one with the best or satisfactory value. In applied agricultural 

economics, stochastic production models are more and more commonly used to represent the 

sequential production decisions by farmers, by specifying the production technology through a series 

of operational steps involving production inputs. These inputs have often the dual purpose of 

controlling crop yield or cattle output level on the one hand, and controlling production risk on the 

other (Burt 1993; Maatman et al. 2002; Ritten et al. 2010). Furthermore, sequential production 

decisions with risk and uncertainty can also be specified in a dynamic framework, to account for 

intertemporal substitutability between inputs (Fafchamps 1993). Dynamic programming models have 

been used as guidance tools in policy analysis and to help farmers identify irrigation strategies (Bryant 

et al. 1993). 

Biophysical models have been investigated since the 1970s, but the difficulty in transferring 

simulation results to farmers and extension agents led researchers to investigate farmers’ management 

practices closely and develop bio-decision models (Bergez et al. 2010). A decision model, also known 

as a decision-making process model or farm-management model, comes from on-farm observations 

and extensive studies of farmers’ management practices. These studies, which show that farmers’ 

technical decisions are planned, led to the “model for action” concept (Matthews et al. 2002), in which 

decision-making processes are represented as a sequence of technical acts. Rules that describe these 

technical acts are organized in a decision schedule that considers sequential, iterative and adaptive 

processes of decisions (Aubry et al. 1998). In the 1990s, combined approaches represented farming 

systems as bio-decision models that link the biophysical component to a decisional component based 

on a set of decision rules (Aubry et al. 1998b; Attonaty et al. 1999; Bergez et al. 2006; Bergez et al. 

2010). Bio-decision models describe the appropriate farm-management practice to adopt as a set of 

decision rules that drives the farmer’s actions over time (e.g., a vector returning a value for each time 

step of the simulation). Bio-decision models are designed (proactive) adaptations to possible but 

anticipated changes. By reviewing the decision rules, these models also describe the farmer’s reactive 

behavior.  
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2.3. METHOD 

To achieve the above goal, a collection of articles was assembled through three steps. The first step 

was a search on Google Scholar using the following combination of keywords: Topic = ((decision-

making processes) or (decision model) or (knowledge-based model) or (object-oriented model) or 

(operational model)) AND Topic = ((bio-economics or agricultural economics) or (agronomy or bio-

decision)) AND Topic = ((adaptation) or (uncertainty) or (risk)). The first topic defines the tool of 

interest: only work using decision-making modeling (as this is the focus of this paper). Given that 

different authors use slightly different phrasings, the present paper incorporated the most-commonly 

used alternative terms such as knowledge-based model, object-oriented model, and operational model. 

The second topic restricts the search to be within the domains of bio-economics and agronomy. The 

third topic reflects the major interest of this paper, which relates to farmer adaptations facing uncertain 

events. This paper did not use “AND” to connect the parts within topics because this is too restrictive 

and many relevant papers are filtered out.  

The second step was a classification of formalisms referring to the timing scopes of the adaptation. We 

retained the timing dimension as the main criteria for the results description in our paper. The timing 

dimension is an interesting aspect of adaptation to consider when modeling adaptation in farmers’ 

decision-making processes. Proactive processes concern the ability to anticipate future and external 

shocks affecting farming outcomes and to plan corresponding adjustments. In this case, adaptations 

processes are time-invariant and formalisms describing static processes are the most appropriate since 

they describe processes that do not depend explicitly on time. Reactive processes describe the farmer’s 

capacity to react to a shock. In this case, adaptation concerns the ability to update the representation of 

a shock and perform adaptations without any anticipation. In this case adaptation processes are time-

dependent and formalisms describing dynamic processes are the most appropriate since they describe 

processes that depend explicitly on time (Figure 2.2). Section 4 presents these results. 

The third step was a classification of articles related to farm management in agricultural economics 

and agronomy referring to the temporal and spatial scopes of the adaptation. This last step aimed at 

illustrating the use of the different formalisms presented in the fourth section to model adaptation 

within farmer decision-making processes. This section is not supposed to be exhaustive but to provide 

examples of use in farming system literature. Section 5 presents these results. 

2.4. FORMALISMS TO MANAGE ADAPTIVE DECISION-MAKING PROCESSES  

This section aims at listing formalisms used to manage adaptive decision-making processes in both 

bio-economic and bio-decision models. Various formalisms are available to describe adaptive 

decision-making processes. Adaptation processes can be time-invariant when it is planned beforehand 
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with a decision tree, alternative and optional paths and relaxed constraints to decision processes. 

Adaptation processes can be time-varying when it is reactive to a shock with dynamic internal changes 

of the decision process via recursive decision, sequential decision or reviewed rules. We distinguish 

proactive or anticipated processes to reactive processes. Six formalisms were included in this review.  

2.4.1. Formalisms in proactive adaptation processes 

In proactive or anticipated decision processes, adaptation consists in the iterative interpretation of a 

flexible plan built beforehand. The flexibility of this anticipatory specification that allows for 

adaptation is obtained by the ability to use alternative paths, optional paths or by relaxing constraints 

that condition a decision.  

Anticipated shocks in sequential decision-making processes 

When decision-making process is assumed to be a succession of decisions to make, it follows that 

farmers are able to integrate new information about the environment at each stage and adapt to 

possible changes occurring between two stages. Farmers are able to anticipate all possible states of the 

shock (change) to which they will have to react. In 1968, Cocks stated that discrete stochastic 

programming (DSP) could provide solutions to sequential decision problems (Cocks 1968). DSP 

processes sequential decision-making problems in discrete time within a finite time horizon in which 

knowledge about random events changes over time (Rae 1971; Apland and Hauer 1993). During each 

stage, decisions are made to address risks. One refers to “embedded risk” when decisions can be 

divided between those initially made and those made at a later stage, once an uncertain event has 

occurred (Trebeck and Hardaker 1972; Hardaker 2004). The sequential and stochastic framework of 

the DSP can be represented as a decision tree in which nodes describe the decision stages and 

branches describe anticipated shocks. Considering two stages of decision, the decision-maker makes 

an initial decision (𝑢1) with uncertain knowledge of the future. After one of the states of nature of the 

uncertain event occurs (k), the decision-maker will adjust by making another decision (𝑢2𝑘) in the 

second stage, which depends on the initial decision and the state of nature k of the event. Models can 

become extremely large when numerous states of nature are considered; this “curse of dimensionality” 

is the main limitation of these models (Trebeck and Hardaker 1972; Hardaker 2004). 

Flexible plan with optional paths and interchangeable activities 

In manufacturing, proactive scheduling is well-suited to build protection against uncertain events into 

a baseline schedule (Herroelen and Leus 2004; Darnhofer and Bellon 2008). Alternative paths are 

considered and choices are made at the operational level while executing the plan. This type of 

structure has been used in agriculture as well, with flexible plans that enable decision-makers to 
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anticipate shocks. Considering possible shocks that may occur, substitutable components, 

interchangeable partial plans, and optional executions are identified and introduced into the nominal 

plan. Depending on the context, a decision is made to perform an optional activity or to select an 

alternative activity or partial plan (Clouaire and Rellier 2009). Thus, two different sequences of events 

would most likely lead to performing two different plans. Some activities may be cancelled in one 

case but not in the other depending on whether they are optional or subject to a context-dependent 

choice (Bralts et al. 1993; Castellazzi et al. 2008; Dury et al. 2010; Castellazzi et al. 2010). 

Relaxed constraints on executing activities 

Management operations on biophysical entities are characterized by a timing of actions depending on 

their current states. The concept of bounded rationality, presented earlier, highlights the need to obtain 

satisfactory results instead of optimal ones. Following the same idea, Kemp and Michalk (2007)point 

out that “farmers can manage more successfully over a range than continually chasing optimum or 

maximum values”. In practice, one can easily identify an ideal time window in which to execute an 

activity that is preferable or desirable based on production objectives instead of setting a specific 

execution date in advance (Shaffer and Brodahl 1998b; Aubry et al. 1998b; Taillandier et al. 2012b). 

Timing flexibility helps in managing uncontrollable factors. 

2.4.2.  Formalisms in reactive adaptation processes 

In reactive decision processes, adaptation consists in the ability to perform decisions without any 

anticipation by integrating gradually new information. Reactivity is obtained by multi-stage and 

sequential decision processes and the integration of new information or the set-up of unanticipated 

path within forehand plan.  

Gradual adaptation in a repeated process 

The recursive method was originally developed by Day (1961) to describe gradual adaptation to 

changes in exogenous parameters after observing an adjustment between a real situation and an 

optimal situation obtained after optimization (Blanco-Fonseca et al. 2011). Recursive models 

explicitly represent multiple decision stages and optimize each one; the outcome of stage n is used to 

reinitialize the parameters of stage n+1. These models consist of a sequence of mathematical 

programming problems in which each sub-problem depends on the results of the previous sub-

problems (Day 1961; Day 2005; Janssen and van Ittersum 2007; Blanco-Fonseca et al. 2011). In each 

sub-problem, dynamic variables are re-initialized and take the optimal values obtained in the previous 

sub-problem. Exogenous changes (e.g., rainfall, market prices) are updated at each optimization step. 

For instance, the endogenous feedback mechanism for a resource (e.g., production input or natural 
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resource) between sub-periods is represented with a first-order linear difference equation: 𝑅𝑡 = 

𝐴𝑡−1G𝑋𝑡−1
∗  + Y𝑅𝑡−1 + 𝐶𝑡,where the resource level of period t (𝑅𝑡 ) depends on the optimal decisions 

(𝑋𝑡−1
∗ ) and resource level at t-1 (𝑅𝑡−1) and on exogenous variables (𝐶𝑡). The Bayesian approach is the 

most natural one for updating parameters in a dynamic system, given incoming period-dependent 

information. Starting with an initial prior probability for the statistical distribution of model 

parameters, sample information is used to update the latter in an efficient and fairly general way 

(Stengel 1986). The Bayesian approach to learning in dynamic systems is a special but important case 

of closed-loop models, in which a feedback loop regulates the system as follows: depending on the 

(intermediate) observed state of the system, the control variable (the input) is automatically adjusted to 

provide path correction as a function of model performance in the previous period.  

Adaptation in sequential decision-making processes 

In the 1950s, Bellman presented the theory of dynamic programming (DP) to emphasize the sequential 

decision-making approach. Within a given stage, the decision-making process is characterized by a 

specific status corresponding to the values of state variables. In general, this method aims to transform 

a complex problem into a sequence of simpler problems whose solutions are optimal and lead to an 

optimal solution of the initial complex model. It is based on the principle of optimality, in which “an 

optimal policy has the property that whatever the initial state and decisions are, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from the first decisions” 

(Bellman 1954). DP explicitly considers that a decision made in one stage may affect the state of the 

decision-making process in all subsequent stages. State-transition equations are necessary to link the 

current stage to its successive or previous stage, depending on whether one uses a forward or 

backward DP approach, respectively. In the Bellman assumptions (backward DP), recursion occurs 

from the future to the present, and the past is considered only for the initial condition. In forward DP, 

stage numbering is consistent with real time. The optimization problem defined at each stage can 

result in the application of a wide variety of techniques, such as linear programming (Yaron and Dinar 

1982) and parametric linear programming (Stoecker et al. 1985). Stochastic DP is a direct extension of 

the framework described above, and efficient numerical techniques are now available to solve such 

models, even though the curse of dimensionality may remain an issue (Miranda and Fackler 2004). 

Reactive plan with revised and new decision rules 

An alternative to optimization is to represent decision-making processes as a sequence of technical 

operation organized through a set of decision rules. This plan is reactive when rules are revised or 

newly introduced after a shock. Revision is possible with simulation-based optimization, in which the 

rule structure is known and the algorithm looks for optimal indicator values or thresholds. It generates 
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a new set of indicator thresholds to test at each new simulation loop (Nguyen et al. 2014). For small 

discrete domains, the complete enumeration method can be used, whereas when the optimization 

domain is very large and a complete enumeration search is no longer possible, heuristic search 

methods are considered, such as local searching and branching methods. Search methods start from a 

candidate solution and randomly move to a neighboring solution by applying local changes until a 

solution considered as optimal is found or a time limit has passed. Metaheuristic searches using 

genetic algorithms, Tabu searches and simulated annealing algorithms are commonly used (Nguyen et 

al. 2014). Control-based optimization is used to add new rules to the plan. In this case, the rule 

structure is unknown, and the algorithm optimizes the rule’s structure and optimal indicator values or 

thresholds. Crop-management decisions can be modeled as a Markov control problem when the 

distribution of variable 𝑋𝑖+1 depends only on the current state 𝑋𝑖 and on decision 𝐷𝑖 that was applied 

at stage i. The decision-making process is divided into a sequence of N decision stages. It is defined by 

a set of possible states s, a set of possible decisions d, probabilities describing the transitions between 

successive states and an objective function (sum of expected returns) to be maximized. In a Markov 

control problem, a trajectory is defined as the result of choosing an initial state s and applying a 

decision d for each subsequent state. The DSP and DP methods provide optimal solutions for Markov 

control problems. Control-based optimization and metaheuristic searches are used when the 

optimization domain is very large and a complete enumeration search is no longer possible. 

2.5. MODELING ADAPTIVE DECISION-MAKING PROCESSES IN FARMING SYSTEMS 

This section aims at illustrating the use of formalisms to manage adaptive decision-making processes 

in farming systems both in bio-economic and bio-decision models. Around 40 papers using the six 

formalisms on adaptation have been found. We distinguish strategic adaptation at the farm level, tactic 

adaptation at the farm and plot scale and strategic and tactic adaptation both at the farm and plot scale. 

2.5.1. Adaptations and strategic decisions for the entire farm 

Strategic decisions aim to build a long-term plan to achieve farmer production goals depending on 

available resources and farm structure. For instance, this plan can be represented in a model by a 

cropping plan that selects the crops grown on the entire farm, their surface area and their allocation 

within the farmland. It also offers long-term production organization, such as considering equipment 

acquisition and crop rotations. In the long-term, uncertain events such market price changes, climate 

events and sudden resource restrictions are difficult to predict, and farmers must be reactive and adapt 

their strategic plans.  

Barbier and Bergeron (1999) used the recursive process to address price uncertainty in crop and 

animal production systems; the selling strategy for the herd and cropping pattern were adapted each 



Chapter 2  Marion Robert 

56 
 

year to deal with price uncertainty and policy intervention over 20 years. Similarly, Heidhues (1966) 

used a recursive approach to study the adaptation of investment and sales decisions to changes in crop 

prices due to policy measures. Domptail and Nuppenau (2010) adjusted in a recursive process herd 

size and the purchase of supplemental fodder once a year depending on the available biomass that 

depended directly on rainfall. In a study of a dairy-beef-sheep farm in Northern Ireland, Wallace and 

Moss (2002) examined the effect of possible breakdowns due to bovine spongiform encephalopathy 

on animal-sale and machinery-investment decisions over a seven-year period with linear programming 

and a recursive process.  

Thus, in the operation research literature, adaptation of a strategic decision is considered a dynamic 

process that should be modeled via a formalism describing a reactive adaptation processes (Table 2.1). 

2.5.2. Adaptation and tactic decisions  

Adaptation for the agricultural season and the farm 

At the seasonal scale, adaptations can include reviewing and adapting the farm’s selling and buying 

strategy, changing management techniques, reviewing the crop varieties grown to adapt the cropping 

system and deciding the best response to changes and new information obtained about the production 

context at the strategic level, such as climate (Table 2.1). 

DSP was used to describe farmers’ anticipation and planning of sequential decision stages to adapt to 

an embedded risk such as rainfall. In a cattle farm decision-making model, Trebeck and Hardaker 

(1972) represented adjustment in feed, herd size and selling strategy in response to rainfall that 

impacted pasture production according to a discrete distribution with “good”, “medium”, or “poor” 

outcomes. After deciding about land allocation, rotation sequence, livestock structure and feed source, 

Kingwell et al. (1993) considered that wheat-sheep farmers in western Australia have two stages of 

adjustment to rainfall in spring and summer: reorganizing grazing practices and adjusting animal feed 

rations. In a two-stage model, Jacquet and Pluvinage (1997) adjusted the fodder or grazing of the herd 

and quantities of products sold in the summer depending on the rainfall observed in the spring; they 

also considered reviewing crop purposes and the use of crops as grain to satisfy animal-feed 

requirements. Ritten et al. (2010) used a dynamic stochastic programming approach to analyze optimal 

stocking rates facing climate uncertainty for a stocker operation in central Wyoming. The focus was 

on profit maximization decisions on stocking rate based on an extended approach of predator-prey 

relationship under climate change scenarios. The results suggested that producers can improve 

financial returns by adapting their stocking decisions with updated expectations on standing forage 

and precipitation. Burt (1993) used dynamic stochastic programming to derive sequential decisions on 

feed rations in function of animal weight and accommodate seasonal price variation; he also 
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considered decision on selling animals by reviewing the critical weight at which to sell a batch of 

animals. In the model developed by Adesina (1991), initial cropping patterns are chosen to maximize 

farmer profit. After observing low or adequate rainfall, farmers can make adjustment decisions about 

whether to continue crops planted in the first stage, to plant more crops, or to apply fertilizer. After 

harvesting, farmers follow risk-management strategies to manage crop yields to fulfill household 

consumption and income objectives. They may purchase grain or sell livestock to obtain more income 

and cover household needs. To minimize deficits in various nutrients in an African household, 

Maatman et al. (2002) built a model in which decisions about late sowing and weeding intensity are 

decided after observing a second rainfall in the cropping season. 

Adaptation of the cropping system was also described using flexible plans for crop rotations. Crops 

were identified to enable farmers to adapt to certain conditions. Multiple mathematical approaches 

were used to model flexible crop rotations: Detlefsen and Jensen (2007) used a network flow, 

Castellazzi et al. (2008) regarded a rotation as a Markov chain represented by a stochastic matrix, and 

Dury (2011) used a weighted constraint-satisfaction-problem formalism to combine both spatial and 

temporal aspects of crop allocation. 

Adaptation of daily activities at the plot scale 

Daily adaptations concern crop operations that depend on resource availability, rainfall events and task 

priority. An operation can be cancelled, delayed, replaced by another or added depending on the 

farming circumstances (Table 2.1). 

Flexible plans with optional paths and interchangeable activities are commonly used to describe the 

proactive behavior farmers employ to manage adaptation at a daily scale. This flexibility strategy was 

used to model the adaptive management of intercropping in vineyards (Ripoche et al. 2011); 

grassland-based beef systems (Martin et al. 2011b); and whole-farm modeling of a dairy, pig and crop 

farm (Chardon et al. 2012). For instance, in a grassland-based beef system, the beef production level 

that was initially considered in the farm management objectives might be reviewed in case of drought, 

and decided  a voluntary underfeeding of the cattle (Martin et al. 2011b). McKinion et al. (1989) 

applied optimization techniques to analyze previous runs and hypothesize potentially superior 

schedules for irrigation decision on cotton crop. Rodriguez et al. (2011) defined plasticity in farm 

management as the results of flexible and opportunistic management rules operating in a highly 

variable environment. The model examines all paths and selects the highest ranking path. 

Daily adaptations were also represented with timing flexibility to help manage uncontrollable factors. 

For instance, the cutting operation in the haymaking process is monitored by a time window, and 

opening predicates such as minimum harvestable yield and a specific physiological stage ensure a 

balance between harvest quality and quantity (Martin et al. 2011a). The beginning of grazing activity 
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depends on a time range and activation rules that ensure a certain level of biomass availability (Cros et 

al. 1999). Shaffer and Brodahl (1998) structured planting and pesticide application event time 

windows as the outer-most constraint for this event for corn and wheat. Crespo et al. (2011) used time-

window to insert some flexibility to the sowing of southern African maize.  

2.5.3. Sequential adaptation of strategic and tactical decisions 

Some authors combined strategic and tactical decisions to consider the entire decision-making process 

and adaptation of farmers (Table 2.1). DP is a dynamic model that allows this combination of temporal 

decision scales within the formalism itself: strategic decisions are adapted according to adaptations 

made to tactical decisions. DP has been used to address strategic investment decisions. Addressing 

climate uncertainty, Reynaud (2009) used DP to adapt yearly decisions about investment in irrigation 

equipment and selection of the cropping system to maximize farmers’ profit. The DP model 

considered several tactical irrigation strategies, in which 12 intra-year decision points represented the 

possible water supply.  To maximize annual farm profits in the face of uncertainty in groundwater 

supply in Texas, Stoecker et al. (1985) used results of a parametric linear programming approach as 

input to a backward DP to adapt decisions about investment in irrigation systems. Duffy and Taylor 

(1993) ran DP over 20 years (with 20 decision stages) to decide which options for farm program 

participation should be chosen each year to address fluctuations in soybean and maize prices and 

select soybean and corn areas each season while also maximizing profit.  

DP was also used to address tactic decisions about cropping systems. Weather uncertainty may also 

disturb decisions about specific crop operations, such as fertilization after selecting the cropping 

system. Hyytiäinen et al. (2011) used DP to define fertilizer application over seven stages in a 

production season to maximize the value of the land parcel. Bontems and Thomas (2000) considered a 

farmer facing a sequential decision problem of fertilizer application under three sources of uncertainty: 

nitrogen leaching, crop yield and output prices. They used DP to maximize the farmer’s profit per 

acre. Fertilization strategy was also evaluated in Thomas (2003), in which DP was used to evaluate the 

decision about applying nitrogen under uncertain fertilizer prices to maximize the expected value of 

the farmer’s profit. Uncertainty may also come from specific products used in farm operations, such as 

herbicides, for which DP helped define the dose to be applied at each application (Pandey and Medd 

1991). Facing uncertainty in water availability, Yaron and Dinar (1982) used DP to maximize farm 

income from cotton production on an Israeli farm during the irrigation season (80 days, divided into 

eight stages of ten days each), when soil moisture and irrigation water were uncertain. The results of a 

linear programming model to maximize profit at one stage served as input for optimization in the 

multi-period DP model with a backward process. Thus, irrigation strategy and the cotton area irrigated 

were selected at the beginning of each stage to optimize farm profit over the season. Bryant et al. 

(1993) used a dynamic programming model to allocate irrigations among competing crops, while 
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allowing for stochastic weather patterns and temporary or permanent abandonment of one crop in dry 

periods is presented. They considered 15 intra-seasonal irrigation decisions on water allocation 

between corn and sorghum fields on the southern Texas High Plains. Facing external shocks on weed 

and pest invasions and uncertain rainfalls, Fafchamps (1993) used DP to consider three intra-year 

decision points on labor decisions of small farmers in Burkina Faso, West Africa for labor resource 

management at planting or replanting, weeding and harvest time.  

Concerning animal production, decisions about herd management and feed rations were the main 

decisions identified in the literature to optimize farm objectives when herd composition and the 

quantity of biomass, stocks and yields changed between stages. Facing uncertain rainfall and 

consequently uncertain grass production, some authors used DP to decide how to manage the herd. 

Toft and O’Hanlon (1979) predicted the number of cows that needed to be sold every month over an 

18-month period. Other authors combined reactive formalisms and static approaches to describe the 

sequential decision-making process from strategic decisions and adaptations to tactical decisions and 

adaptations. Strategic adaptations were considered reactive due to the difficulty in anticipating shocks 

and were represented with a recursive approach, while tactical adaptations made over a season were 

anticipated and described with static DSP. Mosnier et al. (2009) used DSP to adjust winter feed, 

cropping patterns and animal sales each month as a function of anticipated rainfall, beef prices and 

agricultural policy and then used a recursive process to study long-term effects (five years) of these 

events on the cropping system and on farm income. Belhouchette et al. (2004) divided the cropping 

year into two stages: in the first, a recursive process determined the cropping patterns and area 

allocated to each crop each year. The second stage used DSP to decide upon the final use of the cereal 

crop (grain or straw), the types of fodder consumed by the animals, the summer cropping pattern and 

the allocation of cropping area according to fall and winter climatic scenarios. Lescot et al. (2011) 

studied sequential decisions of a vineyard for investing in precision farming and plant-protection 

practices. By considering three stochastic parameters  infection pressure, farm cash balance and 

equipment performance  investment in precision farming equipment was decided upon in an initial 

stage with a recursive process. Once investments were made and stochastic parameters were observed, 

the DSP defined the plant-protection strategy to maximize income. 

2.6. DISCUSSION  

2.6.1. Adaptation: reactive or proactive process? 

In the studies identified by this review, adaptation processes were modeled to address uncertainty in 

rainfall, market prices, and water supply, but also to address shocks such as disease. In the long term, 

uncertain events are difficult to anticipate due to the lack of knowledge about the environment. A 

general trend can be predicted based on past events, but no author in our survey provided quantitative 
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expectations for future events. The best way to address uncertainty in long-term decisions is to 

consider that farmers have reactive behavior due to insufficient information about the environment to 

predict a shock. Adaptation of long-term decisions concerned the selling strategy, the cropping system 

and investments. Thus, in the research literature on farming system in agricultural economics and 

agronomy approaches, adaptation of strategic decisions is considered a dynamic process. In the 

medium and short terms, the temporal scale is short enough that farmers’ expectations of shocks are 

much more realistic. Farmers observed new information about the environment, which provided more 

self-confidence in the event of a shock and helped them to anticipate changes. Two types of tactical 

adaptations were identified in the review: 1) medium-term adaptations that review decisions made for 

a season at the strategic level, such as revising the farm’s selling or technical management strategies, 

and changing the cropping system or crop varieties; and 2) short-term adaptations (i.e., operational 

level) that adapt the crop operations at a daily scale, such as the cancellation, delay, substitution and 

addition of crop operations. Thus, in the research literature, adaptations of tactical decisions are 

mainly considered a static process. 

2.6.2. Decision-making processes: multiple stages and sequential decisions 

In Simon (1976), the concept of the decision-making process changed, and the idea of a dynamic 

decision-making process sustained over time through a continuous sequence of interrelated decisions 

(Cerf and Sebillotte 1988; Papy et al. 1988; Osman 2010) was more widely used and recognized. 

However, 70% of the articles reviewed focused on only one stage of the decision: adaptation at the 

strategic level for the entire farm or at the tactical level for the farm or plot. Some authors used 

formalisms such as DP and DSP to describe sequential decision-making processes. In these cases, 

several stages were identified when farmers have to make a decision and adapt a previous strategy to 

new information. Sequential representation is particularly interesting and appropriate when the author 

attempts to model the entire decision-making processes from strategic to tactical and operational 

decisions; i.e., the complete temporal and spatial dimensions of the decision and adaptation processes 

(see section 2.5.3). For these authors, strategic adaptations and decisions influence tactical adaptations 

and decisions and vice-versa. Decisions made at one of these levels may disrupt the initial 

organization of resource availability and competition among activities over the short term (e.g., labor 

availability, machinery organization, irrigation distribution) but also lead to reconsideration of long-

term decisions when the cropping system requires adaptation (e.g., change in crops within the rotation, 

effect of the previous crop). In the current agricultural literature, these consequences on long- and 

short-term organization are rarely considered, even though they appear an important driver of farmers’ 

decision-making (Daydé et al. 2014). Combining several formalisms within an integrated model in 

which strategic and tactical adaptations and decisions influence each other is a good starting point for 

modeling adaptive behavior within farmers’ decision-making processes. 
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2.6.3. What about social sciences? 

Adaptation within decision-making processes had been studied in many other domains than 

agricultural economics and agronomy. Different researches of various domains (sociology, social 

psychology, cultural studies) on farmer behavior and decision-making have contributed to identify 

factors that may influence farmers’ decision processes including economic, agronomic and social 

factors (Below et al. 2012; Wood et al. 2014; Jain et al. 2015). 

We will give an example of another domain in social sciences that also uses these formalisms to 

describe adaptation. Computer simulation is a recent approach in the social sciences compared to 

natural sciences and engineering (Axelrod 1997). Simulation allows the analysis of rational as well as 

adaptive agents. The main type of simulation in social sciences is agent-based modeling. According to 

Farmer and Foley (2009) “An agent-based model is a computerized simulation of a number of 

decision-makers (agents) and institutions, which interact through prescribed rules.” In agent-based 

models, farms are interpreted as individual agents that interact and exchange information, in a 

cooperative or conflicting way, within an agent-based systems (Balmann 1997). Adaptation in this 

regard is examined mostly as a collective effort involving such interactions between producers as 

economic agents, and not so much as an individual process. However, once the decision making 

process of a farmer has been analyzed for a particular cropping system, system-specific agent-based 

systems can be calibrated to accommodate for multiple farmer types in a given region (Happe et al. 

2008). In agent-based models, agents are interacting with a dynamic environment made of other agents 

and social institution. Agents have the capacity to learn and adapt to changes in their environment (An 

2012). Several approaches are used in agent-based model to model decision-making including 

microeconomic models and empirical or heuristic rules. Adaptation in these approaches can come 

from two sources (Le et al. 2012): 1) the different formalisms presented earlier can be used directly to 

describe the adaptive behavior of an agent, 2) the process of feedback loop to assimilate new situation 

due to change in the environment. In social sciences, farmers’ decision-making processes are looked at 

a larger scale (territory, watershed) than articles reviewed here. Example of uses on land use, land 

cover change and ecology are given in the reviews of Matthews et al. (2007 and An (2012). 

2.6.4. Uncertainty and dynamic properties 

The dynamic features of decision-making concern: 1) uncertain and dynamic events in the 

environment, 2) anticipative and reactive decision-making processes, 3) dynamic internal changes of 

the decision process. In this paper we mainly talked about the first two features such as being in a 

decision-making context in which the properties change due to environmental, technological and 

regulatory risks brings the decision-maker to be reactive in the sense that he will adapt his decision to 

the changing environment (with proactive or reactive adaptation processes). Learning aspects are also 

a major point in adaptation processes. Learning processes allow updating and integrating knowledge 
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from observation made on the environment. Feedback loops are usually used in agricultural economics 

and agronomy (Stengel 2003) and social sciences (Le et al. 2012). In such situations, learning can be 

represented by Bayes’ theorem and the associated updating of probabilities. Two concerns have been 

highlighted on this approach: 1) evaluation of rare events, 2) limitation of human cognition (Chavas 

2012). The state contingent approach presented by Chambers and Quiggin (2000; 2002) can provide a 

framework to investigate economic behavior under uncertainty without probability assessments. 

According to this framework, agricultural production under uncertainty can be represented by 

differentiating outputs according to the corresponding state of nature. This yields a more general 

framework than conventional approaches of production under uncertainty, while providing more 

realistic and tractable representations of production problems (Chambers and Quiggin 2002). These 

authors use state-contingent representations of production technologies to provide theoretical 

properties of producer decisions under uncertainty, although empirical applications still remain 

difficult to implement (see O’Donnell and Griffiths 2006 for a discussion on empirical aspects of the 

state-contingent approach). Other learning process approaches are used in artificial intelligence such 

as reinforcement learning and neuro-DP (Bertsekas and Tsitsiklis 1995; Pack Kaelbling et al. 1996). 

2.7. CONCLUSION 

A farm decision-making problem should be modeled within an integrative modeling framework that 

includes sequential aspects of the decision-making process and the adaptive capability and reactivity 

of farmers to address changes in their environment. Rethinking farm planning as a decision-making 

process, in which decisions are made continuously and sequentially over time to react to new available 

information, and in which the farmer is able to build a flexible plan to anticipate certain changes in the 

environment, is important to more closely simulate reality. Coupling optimization formalisms and 

planning appears to be an interesting approach to represent the combination of several temporal and 

spatial scales in models. 
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TABLE CAPTION 

Table 2.1: Modeling adaptive decision-making processes in farming systems; typology of the literature 
according to adaptation dimensions (temporal scope, spatial scope and timing scope) (DSP: discrete 
stochastic programming; DP: dynamic programming) 

Adaptation dimensions 
Authors Year Formalis

m type Formalism 
Temporal 

Scope 
Spatial 
Scope 

Timing 
dimension 

Strategic 
decisions  
(years) 

Farm Reactive Barbier and Bergeron 1999 Dynamic Recursive 
Farm Reactive Heidhues  1966 Dynamic Recursive 
Farm Reactive Domptail and Nuppenau 2010 Dynamic Recursive 
Farm Reactive Wallace and Moss 2002 Dynamic Recursive 

Tactical 
decision 
(season) 

Farm Proactive Trebeck and Hardaker  1972 Static DSP 
Farm Proactive Kingwell et al.  1993 Static DSP 
Farm Proactive Jacquet and Pluvinage 1997 Static DSP 
Farm Proactive Adesina and Sanders  1991 Static DSP 
Farm Proactive Burt 1993 Static DSP 

Farm Proactive Maatman and 
Schweigman 2002 Static DSP 

Farm Proactive Ritten et al. 2010 Static DSP 
Farm Proactive Detlefsen and Jensen  2007 Static Flexible crop-sequence 
Farm Proactive Castellazzi et al. 2008 Static Flexible crop-sequence  
Farm Proactive Dury  2011 Static Flexible crop-sequence  

Tactical 
decision 
(daily) 

Plot Proactive Ripoche et al. 2011 Static Optional execution  
Plot Proactive Martin et al. 2011 Static Optional execution  
Plot Proactive Chardon et al. 2012 Static Optional execution  
Plot Proactive Martin et al. 2011 Static Optional execution  
Plot Proactive McKinion et al. 1989 Static Proactive adjustments 
Plot Proactive Ripoche et al. 2011 Static Proactive adjustments 
Plot Proactive Martin et al. 2011 Static Proactive adjustments 
Plot Proactive Chardon et al. 2012 Static Proactive adjustments 
Plot Proactive Rodriguez et al. 2011 Static Proactive adjustments 
Plot Proactive Shaffer and Brodahl 1998 Static Time windows 
Plot Proactive Cros et al. 1999 Static Time windows 
Plot Proactive Crespo et al. 2011 Static Time windows 
Plot Proactive Martin et al. 2011 Static Time windows 

Strategic & 
tactical 
decision 
(years & 
season) 

Farm & 
Plot Reactive Reynaud 2009 Dynamic DP 

Farm & 
Plot Reactive Stoecker et al. 1985 Dynamic DP 

Farm & 
Plot Reactive Bryant et al. 1993 Dynamic DP 

Farm & 
Plot Reactive Duffy and Taylor 1993 Dynamic DP 

Farm & 
Plot Reactive Fafchamps 1993 Dynamic DP 
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Farm & 
Plot Reactive Hyytiäinen et al. 2011 Dynamic DP 

Farm & 
Plot Reactive Bontems and Thomas 2000 Dynamic DP 

Farm & 
Plot Reactive Thomas 2003 Dynamic DP 

Farm & 
Plot Reactive Pandey and Medd 1991 Dynamic DP 

Farm & 
Plot Reactive Yaron and Dinar 1982 Dynamic DP 

Farm & 
Plot Reactive Toft and O’Hanlon  1979 Dynamic DP 

Farm & 
Plot 

Reactive & 
Proactive Mosnier et al. 2009 Dynamic 

& Static Recursive & DSP 

Farm & 
Plot 

Reactive & 
Proactive Belhouchette et al.  2004 Dynamic 

& Static Recursive & DSP 

Farm & 
Plot 

Reactive & 
Proactive Lescot et al.  2011 Dynamic 

& Static Recursive & DSP 
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FIGURE CAPTION 

Figure 2.1: Adaptation of maize outputs after drought condition. At the beginning of the season, the 

farmer aims at growing maize for grain production. Due to dry conditions and low grass growth, the 

farmer has to use forage stocks to feed the herd, so that the stocks decrease. To maintain the stocks, 

the farmer has to adapt and change his crop orientation to maize silage. 

FigureFigure  2.2: Typology of models to manage adaptive decision-making processes according to 

model type, approach, and formalism.  
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Farmers’ production decisions and agricultural practices directly and indirectly influence the quantity 

and quality of natural resources, some being depleted common resources such as groundwater. 

Representing farming systems while accounting for their flexibility is needed to evaluate targeted, 

regional water management policies. Farmers’ decisions regarding investing in irrigation and adopting 

cropping systems are inherently dynamic and must adapt to changes in climate and agronomic, 

economic and social, and institutional, conditions. To represent this diversity, we developed a 

typology of Indian farmers from a survey of 684 farms in Berambadi, an agricultural watershed in 

southern India (state of Karnataka). The survey provided information on farm structure, the cropping 

system and farm practices, water management for irrigation, and economic performances of the farm. 

Descriptive statistics and multivariate analysis (Multiple Correspondence Analysis and Agglomerative 

Hierarchical Clustering) were used to analyze relationships between observed factors and establish the 

farm typology. We identified three main types of farms: 1) large diversified and productivist farms, 2) 

small and marginal rainfed farms, and 3) small irrigated marketing farms. This typology represents the 

heterogeneity of farms in the Berambadi watershed. Used within a simulation model of the watershed, 

this typology should enable policy makers to better assess potential impacts of agricultural and water 

management policies on farmers’ livelihood and the groundwater table. 

Keywords: farm typology, Multiple Correspondence Analysis, Agglomerative Hierarchical Clustering, 

Berambadi watershed 
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3.1. INTRODUCTION 

In semi-arid regions, agricultural production systems depend greatly on irrigation and encounter 

increasing challenges: growing uncertainty about how to respond to climate change, severe depletion 

of natural resources, high volatility in market prices, rises in energy costs, greater pressure from public 

regulations (agricultural, environmental, and health policies), and conflicts about sharing communal 

water resources (Ragab and Prudhomme 2002). Policies to improve agricultural water use efficiency 

are often found to be inefficient when there are designed without taking into account the whole 

system, including farmer’s choices, as shown for example by Fishman, Devineni, and Raman (2015) 

in the case of irrigation technologies. Modeling farming systems at regional scale is a relevant 

approach to assess “ex-ante” targeted water management policies (Valverde et al. 2015; Graveline 

2016). However, as modeling all individual farms within a region is usually not feasible, such 

approaches  requires building a farm typology (Köbrich et al. 2003) representing in a simplified way 

the existing diversity of farming systems while accounting to the possible differential response of farm 

types to management policies. 

A typology is an artificial way to define different homogeneous groups, categories or types based on 

specific criteria in order to organize reality from a viewpoint relevant to the objectives of the model 

(Duvernoy 2000; Andersen et al. 2007; Valbuena et al. 2008). Typologies are a convenient tool to 

simplify the diversity of farming systems while effectively describing their heterogeneity (Poussin et 

al. 2008; Valbuena et al. 2008; Daloğlu et al. 2014). Since farm types are adapted to local restrictions 

such as resource availability, it is also necessary to identify their spatial distribution or location factors 

(Clavel et al. 2011). 

Building such typologies is particularly challenging in the case of India. During the “green revolution” 

that started in the 1970s, development of irrigation was mostly concentrated in the command area of 

dams, and the construction of large dams has been promoted (Pani 2009). Later, the development of 

submersible pump technology in the 1990s resulted in a dramatic increase of the irrigated agricultural 

area (Sekhar et al. 2006; Javeed et al. 2009). This shift from collective ponds (Dorin and Landy 2002; 

Chandrasekaran et al. 2009) to individual borewells has been largely encouraged by public policies 

that provide farmers free electricity for groundwater irrigation (Shah et al. 2012). This shift caused 

agricultural practices to depend heavily on irrigation from groundwater (Aubriot 2013) and induced a 

well-identified “groundwater crisis” with tremendous impacts on water resources and ecosystems. 

Today, millions of small farms (less than one hectare, on average) owning individual borewells, with 

great diversity in practices and strategies (Sekhar et al. 2011) are spread in areas where only rainfed 

agriculture was possible few years ago. In such a context, modeling and quantifying spatio-temporal 

variability in water resources and interactions among groundwater, agricultural practices and crop 
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growth, which is an essential component of integrated and comprehensive water resource 

management, is a challenge (Venot et al. 2010; Ruiz et al. 2015).  

In this article, we generate a typology of farms and spatialize farm types in the Berambadi watershed 

(84 km²), located in Southern India. This site was selected because it is small enough for accurate 

monitoring and large enough to include a large portion of the variability in agricultural systems within 

the region. Identifying and understanding variability in farm characteristics and farming practices on 

the watershed, based on farmer surveys, provide us relevant criteria for proposing possible scenarios 

of farming system evolution in the watershed, that could be later simulated in watershed models.   

3.2. MATERIALS AND METHODS 

3.2.1. Case study: Hydrological and morphological description of the watershed  

Berambadi (11°43'00” to 11°48'00" N, 76° 31'00" to 76° 40'00" E) is an 84 km² watershed located in 

southwestern India. It belongs to the South Gundal basin, 816 km2, part of the Kabini River basin 

(approximately 7000 km², southwestern Karnataka state), which is a tributary of the Kaveri River 

basin (Figure 3.1). Biophysical variables have been intensively monitored since 2009 in the 

Berambadi watershed, under the Environmental Research Observatory ORE BVET (http://bvet.obs-

mip.fr/en) and the AMBHAS observatory (Sekhar et al. 2016; Tomer et al. 2015, www.ambhas.com). 

Due to the rain shadow of the Western Ghats during the southwestern monsoon rains, the Kabini basin 

exhibits a steep rainfall gradient, from a humid zone in the west with more than 5000 mm of rain per 

year to a semi-arid zone in the east with less than 700 mm of rain per year. Since the Berambadi 

watershed is located in the eastern Kabini basin, its climate is tropical sub-humid (aridity index P/PET 

of 0.7), with rainfall of 800 mm/year and PET of 1100 mm per year, on average (Sekhar et al. 2016). 

A moderate east-west rainfall gradient is observed at the watershed scale, with approximately 900 mm 

rainfall per year upstream (west) and less than 700 mm rainfall per year downstream (east). Three 

seasons regulate the cropping systems: 1) kharif (June to September), which is the southwestern 

monsoon season, when almost all plots are cultivated and are either exclusively rainfed or have 

supplemental irrigation; 2) rabi (October to January), the northeasten monsoon or winter season, when 

most of the plots where irrigation is possible are cultivated; and 3) summer (February to May), the hot 

and dry season, when only few irrigated plots are cultivated.  

Black soil (Vertisols and Vertic intergrades), red soil (Ferrasols and Chromic Lusivols) and 

rocky/weathered soil are the main soil types in the area and represent the granitic/gnessic lithology 

found in southern India (Barbiéro et al. 2007). The hard-rock aquifer is composed of fissured granite 

underlain by a 5-20 m layer of weathered material. Groundwater transmissivity and borewell yields 

decrease with groundwater table depth (Maréchal et al. 2010). As a consequence, continuous pumping 
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causing groundwater table drawdown leads to a disproportionate decrease of the amount of 

groundwater available for irrigation  (Dewandel et al. 2010; Perrin et al. 2011). This positive feedback 

loop makes predefined land-use scenarios unrealistic, since farmers need to adapt their actions 

continually according to groundwater availability (Ruiz et al. 2015). 

Water table levels display a pattern that is atypical in hydrology: valley regions have deeper 

groundwater table levels than topographically higher zones. Thus, an unusual groundwater level 

gradient is observed; with a shallow groundwater table upstream and deep groundwater table 

downstream (Figure 3.1). This pattern is the result of intensive groundwater pumping since the early 

1990s in villages located in the valley (where soils are more fertile) (Sekhar et al. 2011). The low cost 

of pumping water and subsidies for irrigation equipment encouraged farmers to drill more borewells 

(Shah et al. 2009). This dramatic change is closely linked to the spatial distribution of soil types and 

groundwater availability, as well as farming practices, access to the market, knowledge, new 

agricultural and know-hows, and government aid (Sekhar et al. 2011).  

An increasing number of farmers report borewell failures for two main reasons: borewells have run 

dry after excessive pumping, or no water was found in newly drilled borewells (González Botero and 

Bertran Salinas 2013). The decrease in groundwater table level disconnected groundwater table from 

river beds, turning main permanent rivers into ephemeral streams, which has occurred to other rivers 

in the region (Srinivasan et al. 2015). Wells have recently been drilled in upland areas, where 

groundwater irrigation is increasing. 

3.2.2. Survey design and sampling 

The farmland ownership register (Bhoomi) of Karnataka lists farmers and land ownership for each 

village in Karnataka. The Berambadi watershed contains 5461 farm households distributed in 12 

villages. To identify how many and which farms to survey in this agrarian community, we used 

purposive stratified proportional sampling. This sampling procedure is used to estimate distribution 

parameters for a heterogeneous population (Laoubi and Yamao 2009; Levy and Lemeshow 2013). The 

main advantage of this sampling approach is a better representation of the population than other 

probability methods like simple random sampling or systematic sampling (Laoubi and Yamao 2009). 

Indeed, with stratified sampling, even the smallest subgroup in the population can be represented 

while selecting a relatively small sample size (Rossi et al. 2013). This ensures that every category of 

the population is represented in the sample. A stratified sample recreates the statistical features of the 

population on a smaller scale (Cochran 1953). In stratified proportional sampling, the sample size of 

each stratum must be proportional to the population size of the stratum meaning that each stratum has 

the same sampling fraction. The size of the sample selected from each stratum per village was 

proportional to the relative size of that stratum in the farmer population. As such, the sampling 

procedure is self-weighting and an equal-probability-of-selection method. The same sampling 
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proportion was applied to each stratum, giving each element in the population an equal chance of 

selection. In our farmer population, we stratified the farmers based on the land ownership of farmers. 

That is, farmers were considered as marginal, small, medium or large owners (e.g. variable 

totalHHSize in Table 3.1). 

The samples were purposefully selected to represent the caste diversity in the region. In total, 684 farm 

households, which represent 12.5% of farms on the watershed, were interviewed from September 2014 

to March 2015. The survey consisted of a face-to-face interview lasting 2-3 hours. The survey was 

divided into three parts. The first part focused on household characteristics, farm structure, assets, 

partnerships, and farm objectives. In the second part, we asked farmers about their performances and 

practices over the past two years (2013-2014). The absence of a record of past practices made it 

difficult to obtain data on past cropping systems and farm activities that occurred more than two years 

ago. Incomes from selling crops were available for 2013. Concerning farm expenditure, farmers were 

comfortable in providing information for the most recent cropping season – kharif 2014. In the last 

part, in-depth questions were asked about irrigation, borewells, and rainfall. Since no yearly records 

were kept by farmers, information about historical management went no further than the past two 

years.  

3.2.3. Analysis method 

First, we identified variability in farm characteristics and farming practices on the watershed, based on 

farmer surveys.  Four dimensions were analyzed: 1) farm structure, 2) the cropping system and farm 

practices, 3) water management for irrigation, and 4) economic performances of the farm.  To examine 

the variability and spatial pattern of each dimension on the watershed, we used the village as the 

spatialized indicator. To determine the overall significance of differences among villages, the means 

of the qualitative variables were compared by an analysis of variance (ANOVA) permutation test 

whereas the independence between qualitative variables were tested by  chi-square tests.  We 

considered the differences among villages significant at the 95% level. Analyses were performed with 

the R language and environment for statistical computing (R Core Team 2013).  

Second, we used the results of the previous analysis to establish a typology of farms based on the farm 

characteristics and farming practices describing some variability on the watershed.  We performed a 

two-step statistical analysis. The first step used the nominal categorical data technique of Multiple 

Correspondence Analysis (MCA). MCA is an extension of correspondence analysis for more than two 

variables. Compared to principal component analysis, MCA allows the use of both quantitative and 

qualitative variables. The non-correlated quantitative variables were converted into qualitative 

variables with associated modalities (classes) and then used for MCA analysis. (Le Roux and Rouaner 

2004; Husson et al. 2010).  However, transforming quantitative variables into qualitative ones may 

lead to a loss of some of its properties as well as the measurement precision. The principle of MCA is 
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to define factors representing an optimized quantitative summary of the relationships between 

variables (Di Franco 2016). Compared to other statistical methods, MCA has some interesting 

advantages. The MCA procedure does not require any preconditions on variables (such as multivariate 

normality or linearity) and it offers statistical results that can be seen both analytically and visually. 

The MCA is a preprocessing step for the classification or typology purposes. It provides qualitative 

values derived from categorical variables needed in deterministic cluster analysis (Kristensen et al. 

2004). The principal components of the MCA were then used as input variables in an Agglomerative 

Hierarchical Clustering (AHC) algorithm.  It starts with as many clusters as farms and progressively 

sorts the farm by building up a tree from successive merges of the two nearest clusters. The AHC 

procedure is often represented by a two dimensional diagram (dendrogram) which illustrates the 

classification obtained at each successive stage of the analysis. This method successively groups the 

closest farms into clusters, which then are grouped into larger clusters of higher rank (farm types) by 

partitioning farms based on their factorial coordinates using the Ward’s minimum-variance 

aggregation method criterion for minimizing intra-cluster variance and maximizing variance between 

clusters (Omran et al. 2007; Kaufman and Rousseeuw 2009). 

The farm types can then be described by the quantitative variables with the coefficient of 

determination and the p-value of the F-test in a one-way ANOVA (assuming homoscedasticity). 

3.3. VARIABILITY AND SPATIALIZATION OF FARM CHARACTERISTICS AND 

PRACTICES 

3.3.1. Farm structure 

Household characteristics 

At the Berambadi watershed scale, three gram Panchayats2 were identified: i) Bheemanabeedu gram 

panchayat for the eastern villages, ii) Kannagala gram panchayat for the central villages and iii) 

Berambadi gram panchayat for the western villages. The eastern portion of the watershed is 

statistically dominated by the Upparas sub-caste, and the central and western portions consist mainly 

of the Schedule Caste and Lingayat (Figure 3.2). 

The average household in the watershed is composed of four adults (2 men and 2 women) and one 

elder person (> 60 years old). Overall, 86% of households investigated are headed by a man of 58 

                                                      
2 The Panchayat is the system of local self-government. The basic unit of the Panchayats in India is known as the 
'gram Panchayat' (Paul and Chakravarty 2016), namely the village council that is elected in the popular voting 
system. The principal functions performed by the gram Panchayats are maintaining roads, wells, schools, 
burning and burial grounds, sanitation, public health, libraries, reading rooms, community centers, etc. 
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years of age, on average, who is usually illiterate (61% of heads-of-household are illiterate). Men 

usually work full-time on the farm, while women work part-time on the farm and perform the 

domestic work. Agricultural labor is a secondary occupation for 16% of the interviewed population. 

Few people migrate to work in other places during rabi season (people migrate in only 4% of 

households). Households in the Berambadi gram panchayat are statistically smaller, with three adult 

members and one elderly person. A larger percentage of farmers are better educated in the Kannegala 

gram panchayat, and over 50% attended at least pre-primary school (vs. 20% in the rest of the 

watershed) (Figure 3.2).  

Land holding 

Average farm size in the watershed is 1.2 hectares and varies from 0.01-9.3 hectares. Most farms are 

small (48% have 0.8-2 hectares) or marginal (32% have < 0.8 hectares). Only 17% of farms have more 

than 2 hectares, while 3% have more than 4 hectares. Farmers own their farmland. A field with 

adjacent agricultural plots cultivated by the same farmer is called a “jeminu”. A farm can comprise 

several “jeminus”, which may or may not be located nearby each other; they can even be located in 

different villages. Overall, 45% of farmers have only one jeminu, while 26% have 2, 13% have 3 and 

16% have more than 3. The entire jeminu can be dedicated to one crop each season (54%) or divided 

into several crop plots (31% with 2 crop plots, 14% with 3-5 crop plots). On average, a crop plot is 0.4 

hectare but varies from 0.01-2.4 hectares. 

Land holding is variable on the watershed. Statistically, more marginal farms (< 0.8 ha) exist in the 

Beemanabeedu gram panchayat (42%, vs. 23% in the rest of the watershed), where farms are more 

fragmented (80% of farms in the Beemanabeedu gram panchayat have more than 1 jeminus vs. 55% in 

the rest of the watershed). Farms in the Berambadi gram panchayat are less diversified: 80% cultivate 

only one plot with one crop (vs. 60% in the rest of the watershed) (Figure 3.2). 

Livestock and equipment  

Even though livestock production is usually a secondary activity, farmers have animals for traction, 

milk, meat and breeding. To represent the livestock intensity we built a coefficient of Tropical 

Livestock Unit (TLU) where cows, oxens, buffalos, and bulls are 1 TLU and sheep and goats equal 0.2 

TLU (Meyer 2016). Farmers have an average of 2 TLU. 

The traditional equipment for soil operations is based on animal traction. Motorization recently spread, 

and plowing with a tractor now commonly supplements the traditional animal work. However, tractors 

are expensive, and most farmers (94%) prefer to rent from a tractor owner in the village rather than 

obtaining a loan to buy one. Farmers use oxen, bulls and buffalos along with a plow (96% use a plow 

and 87% own one). Farmers who own animals for traction usually have only one pair of animals. A 
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pesticide sprayer is the most common equipment used for farming operations in the Berambadi 

watershed (88% use a sprayer and 61% own one). Seeders, weeders and rotovators are rarely owned or 

used in the watershed. Seeding, fertilizing, weeding and harvesting are usually performed manually 

and do not require specific equipment.  

Equipment use varies spatially across the watershed. The percentage of farmers owning buffalos is 

statistically the highest in the Kannegala and Berambadi gram panchayats. Statistically, a pesticide 

sprayer is owned mainly by farmers in the Beemanabeedu and Berambadi gram panchayats. Livestock 

ownership varies statistically across the watershed: more than 50% of farmers own at least 2 TLU in 

the Kannegala and Berambadi gram panchayats, while 20% of farmers own at least TLU in the 

Beemanabeedu gram panchayat (Figure 3.2).  

Labor 

Because many technical operations are manual, farming practices are highly labor-intensive. Only two 

farmers employ permanent workers; they hire workers on a daily basis or based on crop-operation 

contracts. Women typically perform sowing, weeding and harvesting, and men typically perform soil 

preparation, fertilization, pesticide treatment and irrigation. In 2013 and 2014, 40 male workers and 84 

female workers were hired on average per hectare for the cropping season. No significant spatial 

variability was found in labor per hectare across the watershed. 

3.3.2. Farm practices  

Input use 

The amount of input purchased per unit of cultivated area decreases on a northwest-southeast gradient. 

Villages from the Berambadi gram panchayat have higher expenses for pesticides (3750 Rs/hectare) 

and chemical fertilizers (6250 Rs/hectare). The percentage of farms that do not use manure is also 

statistically higher (40-80%) in villages from the Berambadi gram panchayat, which reinforces 

dependency on chemical inputs. While the purchase of pesticides strongly decreases along this 

gradient (reaching only 750 Rs/hectare in the Beemanabeedu gram panchayat), the decrease in the 

purchase of chemical fertilizer is lower (from 6250 to 4500 Rs/hectare) (Figure 3.2). 

Crop yield performances 

Crop yields vary greatly among fields. However, high-input villages from Berambadi gram panchayat 

and low-input villages from Beemanabeedu gram panchayat have particularly low yields (< 2.5 

t/hectare, on average, for rainfed sorghum, or irrigated maize). Villages in the Kannegala gram 
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panchayat have statistically better results, (> 2.5 t/hectare, on average and up to 10 t/hectare for for the 

same crops) (Figure 3.2). In villages from the Kannegala and Berambadi gram panchayats, more than 

30 and 35% of farming areas are grown for subsistence whereas only 5% of the farming areas of 

villages from the Beemanabeedu gram panchayat are grown for subsistence. 

3.3.3. Water management for irrigation 

Access to irrigation 

Overall, 59% of farms have access to irrigation. Irrigated farms have on average more jeminus than 

non-irrigated farms: 32% of irrigated farms vs. 63% of non-irrigated farms have only one jeminu. 

Farms with only one jeminu are mainly rainfed (58%), while 73% of farms with more than one jeminu 

are irrigated. For 63% of irrigated farms, all the jeminus have access to irrigation. All the surveyed 

farms with access to irrigation directly use groundwater on their fields or temporarily store it in 

individual farm ponds. We observed only a few cases of exchange or sale of water between farmers. 

Statistically, more irrigated farms exist in the Beemanabeedu gram panchayat, where they represent 

approximately 80% of the farms.  

Borewells 

The first borewells in the watershed were drilled in the 1970s, and borewell drilling has increased 

dramatically since the mid-1990s. In our sample, 31 borewells were drilled before 1995, and 470 

borewells were drilled after 1995. In the 1970s and 1980s, most borewells were drilled in the 

Beemanabeedu and Kannegala gram panchayats, while in the Berambadi gram panchayat well drilling 

occurred mainly in the 2000s. In addition to the increasing number of borewells, technology has 

allowed drilling deeper wells. The maximum depth of wells drilled before 1995 was 150 m, while 15% 

of the borewells drilled from 1995-2010 were deeper than 150 m. Among the 214 borewells drilled 

after 2010, 25% were deeper than 150 m, with the deepest reaching 250 m.  

From the survey sample of 1192 borewells, 33% were working at the time of the survey, while 58% 

had failed (i.e. produced no water), and 9% had been temporarily stopped since 2013. No relation was 

found between the depth of a borewell and whether it worked, had been stopped or had failed. There 

are as many farms with at least one no working borewell as farms on which all borewells work (115 

and 105 farms, respectively, of the 245 farms that had drilled at least one borewell). Overall, 49 farms 

(7%) that attempted to drill borewells never got groundwater for irrigation. 

Figure 3.3 summarizes the spatial distribution of irrigated farms and their borewell characteristics 

within the watershed. Each farm has drilled approximately 3 borewells in the Beemanabeedu gram 

panchayat vs. less than one in the Berambadi gram panchayat, which is consistent with irrigated farms 
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being located predominantly in the Beemanabeedu gram panchayat villages. However, borewell 

failure has occurred predominantly in the Beemanabeedu gram panchayat villages (more than 65% of 

borewells drilled in the Beemanabeedu gram panchayat villages have failed, vs. 53% in the Kannegala 

gram panchayat villages, and 35% in Berambadi gram panchayat villages), which results in a 

relatively uniform number of working borewells per farm within the watershed. 

Pumps and access to electricity 

Farmers use electric pumps, mostly of 7.5 horse power (HP). Farmers who need electricity, i.e. those 

with at least one working borewell, have approximately 3-4 hours of electricity per day during kharif 

and 2-3 hours per day during rabi, with on average 2-4 power outages per day. The duration of 

electricity supply during kharif is statistically higher in the Kannegala gram panchayat villages, where 

69% of farms have more than 4 hours of power per day. Electricity is usually available less than 4 

hours per day in the rest of the watershed (Figure 3.2).  

Farm ponds 

Farm ponds are shallow ponds in which farmers store pumped water for distribution throughout the 

day, especially during power outages at critical times. It takes 2-9 hours to fill a farm pond. 

Approximately 290 individual farm ponds exist on the surveyed farms, and only 36% of farms have 

one. No relationship was found between farm pond ownership and location on the watershed. 

Irrigation methods 

Among irrigated farms, 81% use only one irrigation method. Furrow irrigation is by far the most 

common method (75% of irrigated farms), mainly as the only irrigation method (58%), and more 

rarely is used in combination with a sprinkler or drip (17%). Among alternative methods of irrigation, 

sprinklers (17% of the jeminus) are used more often than drip irrigation (3% of the jeminus) or flood 

irrigation (2% of the jeminus).  Sprinkler irrigation statistically occurs more in the Beemanabeedu 

gram panchayat villages (37-78% of jeminus, depending on the village), while the Berambadi gram 

panchayat villages almost exclusively used furrow irrigation (94% of jeminus) (Figure 3.2).  

3.3.4. Economic performances of the farm 

Investment in farm structure 

Considering investments in equipment and livestock, farmers owned an average of 4500 Rs/hectare of 

equipment 18,670 Rs/TLU of livestock at the time of the survey. On average in 2013-2014, farmers 
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hire 22,100 Rs/hectare of labor each cropping season, with male wages fixed at 250 Rs/day and female 

labor at 150 Rs/day. The only clear statistical difference in investment in farm structure is the 

livestock investment, which is slightly higher in the Kannegala and Berambadi gram panchayat 

villages than in the Beemanabeedu gram panchayat villages due to greater use of animal traction for 

cultivation. 

Cropping systems’ products and expenses 

Fertilizers and pesticides cost approximately 12,700 Rs/hectare during kharif 2014. Overall, 99% of 

farmers buy some or all of their inputs from retailers, 8% purchase some of their inputs from a 

cooperative and 64% obtain them from government suppliers. A higher percentage of farmers obtain 

inputs from a cooperative in the Berambadi gram panchayat villages (> 25%), whereas a lower 

percentage do so in the Kannegala and Beemanabeedu gram panchayat villages. Selling crops during 

kharif yield an average of 39,900 Rs/hectare in 2013. For kharif, no difference is observed across the 

watershed. Only 74% and 9% of farmers sell cash crops during rabi and summer, respectively. Rabi 

crops earn approximately 9630 Rs/hectare, while summer crops earn approximately 25,750 Rs/hectare 

in 2013. A statistically higher percentage of farmers grow cash crops during rabi in the Beemanabeedu 

gram panchayat villages, where more than 50% earn more than 12,500 Rs/hectare during rabi, vs. less 

than 30% in the Berambadi gram panchayat villages. 

Investment in irrigation 

Investment in a borewell is based on its depth. The deeper the borewell is, the more it will cost to drill. 

However, borewell drilling has a fixed cost per meter (approximately 410 Rs), regardless of the depth 

at which drilling begins. Farmers typically maintain a borewell five years after drilling it (62% of 

borewells, while 24% are maintained 5-10 years after drilling). Maintenance costs approximately 6000 

Rs per borewell over the borewell life. Investment in pumps varies. The main investment is 7.5 HP 

pumps (61%), which at approximately 28,000 Rs, cost 3000-7000 Rs more than pumps with less HP. 

Investments linked to water management do not vary across the watershed.  

3.4. TYPOLOGY OF FARMS IN THE BERAMBADI WATERSHED 

3.4.1. Characteristics of farm typology 

The survey identified nearly 50 qualitative and quantitative variables on the farming context, farm 

performance and farming practices. Following the previous analysis and after checking for correlation 

and homogeneity among the households, we tested 12 variables in the MCA (Table3.1). The variables 

that had less weight on the four first axes were used as complementary variables. Variables that 
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describe the farming context included those related to the spatial location of the farm and resources for 

the farmland, irrigation and animals. Farm location is described by the village. The 12 villages in the 

watershed were combined into five ‘big’ villages (V1, V2, V3, V4, V5) based on similarities in their 

groundwater tables. The land-resource variables (3) are farm size, number of jeminus and number of 

plots. The irrigation-resource variables (4) are access to irrigation, the number of failed and working 

borewells and hours of electricity available per day for pumping. The animal resource is summarized 

into the class of livestock variable. Variables that describe the farm performances include those related 

to production costs (input costs spent per hectare in kharif 2014) and incomes (rabi incomes per 

hectare in 2013). Farming practices are included in the cropping system variable, which distinguishes 

cropping systems by irrigation practice and crop purpose (cash crop or subsistence).  

The first two components of the MCA explain 25.9 % of the total variability in individuals (Figure 

3.4). The third and fourth components explain 8.1 % and 7.1% of the total variability in individuals, 

respectively. The first axis discriminates 1) rainfed farms that grow rainfed crops without access to 

irrigation water and 2) irrigated farms that grow mixed crops based on irrigation water from borewells 

and access to electricity (Figure 3.4). The second axis discriminates 1) large farms (S(+)) with several 

jeminus (J3+) and several plots that use water from borewells located in the center of the watershed 

(V3 and V4), where electricity is more available (hours(4+)) and that grow irrigated and rainfed crops 

for cash and subsistence purposes (CS5 and CS2) from 2) smaller farms (S(-) and S(--)) located in the 

eastern and western portions of the watershed (V1, V2 and V5) that grow crops on one or two plots (J1 

and J2) as a cash crop (CS4 and CS3) and have less available electricity (hours(2-3) and hours(4)). 

The MCA allowed us to reduce the number of dimensions in the qualitative data by selecting the first 

12 components of the MCA, which collectively explained 79.1% of the total variation. The first 12 

principal components in an AHC algorithm were then used as input variables in an Agglomerative 

Hierarchical Clustering (AHC) algorithm. The choice of the number of clusters for the partition was 

made relative to the general shape of the tree, the gain of inertia between the clusters when adding a 

cluster and the interpretability of the clusters. To identify the number of farm types (clusters) we 

identified the maximum jump in between-cluster inertia (Norusis 2012) (Figure 3.5). We obtained a 

typology with three farm types (Figure 3.5). Three groups are clearly distinguishable on the projection 

of individuals in the plane of the first complete MCA (Figure 3.6). 

3.4.2. Characteristics of the farm types 

Characteristics and homogeneity of the three farm types identified based on the survey data are 

presented in Table 3.2. 
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Farm type 1: Large diversified and productivist farms 

Type 1 farms are located mainly in the center of the watershed (73% of type 1 farms are in V3, where 

36% of farms are type 1) (Figure 3.7 and Table 3.2). This type represents all large farms in the sample 

and some medium farms (39% of type 1 farms are medium) with the highest amount of electricity 

available for pumping (56% of type 1 farms have > 4 hours per day). Overall, 56% of type 1 farms 

have more than 2 hectares of land. These large farms are often composed of several jeminus where 

farmers can easily cultivate several plots. Nearly all type 1 farms have the same water access. Overall, 

97% of these farms are irrigated from one or more borewells. However, access to groundwater for 

irrigation is risky and costly; 64% of these farms also experienced borewell. Overall, 88% of these 

farms graze livestock to provide animal traction and manure. Input costs and income from selling cash 

crops are diversified in this farm type. Farming practices are diversified, with cropping systems that 

mix irrigated and rainfed crops grown as cash crops or for subsistence (53% in CS5) or as cash crops 

only (19% in CS3 and CS4).  

Farm type 2: Small and marginal rainfed farms 

Type 2 includes marginal and small rainfed farms located in the central (39% of type 2 farms are in 

V3) and western portions of the watershed (45% of type 2 farms are in V4 and V5) (Figure 3.7 and 

Table 3.2). More than 90% of these farms have less than 2 hectares on one jeminu and operate on 1-2 

plots. They have no access to irrigation, and few have ever attempted to drill a borewell. Due to the 

absence of irrigation, it is difficult to grow crops during rabi (62% earned < 37,000 Rs/hectare in 

2013). These small farms have the lowest farming expenditures (64% invested < 7,400 Rs/hectare in 

fertilizers and pesticides during kharif in 2014). While 65% grow only cash crops, the other 35% grow 

also subsistence crops to cover household needs. 

Farm type 3: Small irrigable marketing farms 

Type 3 consists of small irrigated farms located in the eastern portion of the watershed (72% are in V1 

and V2) (Figure 3.7 and Table 3.2). Overall, 85% of type 3 farms have less 2 hectares on one jeminu 

and operate on 1-2 plots. Farmers have at least one borewell, and 67% have experienced a failed 

borewell. Electricity for pumping is less available in this portion of the watershed than in the center 

(type 1). In general, farmers have medium to large expenses balanced by medium to large incomes 

from selling crops. Cropping systems are diversified by mixing irrigated and rainfed crops, but all 

production is reserved for cash crops (91% of farms in CS3 and CS4). 
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3.5. DISCUSSION  

Irrigation technology developed after 1995 greatly influenced groundwater table depletion in the 

Berambadi watershed. In addition to this technological development, expected future change in 

regional climate might lead to higher evapotranspiration which could result in decrease of 

groundwater recharge. To preserve the depth of the groundwater table and minimize its depletion due 

to agricultural practices, a variety of policy interventions are possible for promoting water-

management practices that reduce pumping and groundwater depletion, including changing the 

conditions of electricity supply for irrigation or promoting water-efficient crops or irrigation 

techniques. However, to be efficient and accepted by farmers they should be adapted to farm 

characteristics and objectives. 

Farm typologies are critical for representing while also simplifying the diversity of farms in a large 

area. Specifically, farm typologies are critical to effectively represent the heterogeneity of farmers’ 

objectives and socio-eco-agronomic conditions relative to their decision-making processes regarding 

farm management. The sample selection and statistical analysis used to generate the typology may 

influence the latter’s quality. Access to the Karnataka land-ownership register was critical for 

identifying a sample that statistically represented the population of the watershed based on farmers’ 

land ownership. The survey process was in the local language, which made it difficult to understand 

specific agronomic terms and concepts. The absence of a record of past practices made it difficult to 

obtain data on past cropping systems and farm activities that occurred more than two years ago. The 

data obtained were based mainly on farmers’ reports. Except for village affiliation, no other spatial 

indicator was collected in the survey. An important issue in the field was obtaining the exact location 

of a farm within a village. 

The combination of multivariate statistical techniques and cluster analysis is widely used in 

characterization studies and farm-typology studies (e.g. Goswami et al. 2014; Laoubi & Yamao 2009; 

Milán et al. 2006; Kristensen et al. 2004). Goswami et al. (2014) combined principal component 

analysis with a hierarchical method and a K-means clustering method to develop a typology of farms 

and economic characteristics in India. Laoubi & Yamao (2009) used MCA and AHC to develop a 

typology of irrigated farms in Algeria. Milán et al. (2006) used MCA and cluster analysis to develop a 

typology of beef-cattle farms in Spain. Kristensen et al. (2004) developed a typology of farms, farmer 

characteristics and landscape changes in Denmark by combining MCA and AHC. 

The Berambadi watershed is a small region where farms had certain characteristics that were relatively 

similar, unlike other studies conducted at state or district levels. For instance, household composition 

and organization (i.e. family size, family members’ main occupation, and migration) were similar in 

the Berambadi watershed. Goswami et al. (2014) conducted a study at the district level in the South 24 

Parganas district in West Bengal, and Senthilkumar et al. (2012) conducted a study at the state level in 
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Tamil Nadu (the neighboring state to the south of Karnataka). Both studies showed that family size 

and off-farm income were heterogeneous in larger regions. Seasonal migration of rural labor is a 

common problem in rural India (Deshingkar and Start 2003; Chandrasekhar et al. 2015; Dodd et al. 

2016) but was not observed in our survey. However, farm ownership is an inheritance of the land 

reform in 1947, which redistributed land to poor farmers by restricting the size of landed property 

(Chandra 2000). 

The development of borewells observed in the Berambadi watershed since the 1970s also occurred in 

other parts of India, especially in other hard-rock aquifer areas such as Madhya Pradesh, were the 

number of borewells increased by nearly eleven times from 1986-2001 (Bassi 2014). This trend 

generated a high density of borewells that caused them to interfere with each other (Aubriot 2013). 

Borewell interference occurs when a borewell’s area of influence comes into contact with or overlaps 

that of a neighboring borewell (Aubriot 2013; Bassi 2014). Borewell interference may be one reason 

for the high percentage of borewell failures. Borewell failure is often due to failure in identifying the 

exact water-bearing zones or aquifers, which is common in hard-rock regions in India (Ballukraya and 

Sakthivadivel 2002; Bassi 2014). Results showed that technological developments increased borewell 

depth over the past 10 years in the Berambadi watershed. However, a recent study on hard-rock 

aquifers in Karnataka demonstrated that nearly 70% of all fractures occur within a depth of 100 m, and 

the probability of encountering fractures decreases considerably below 100 m (Sivaramakrishnan et al. 

2015). Aubriot (2013) indicated that farmers’ willingness to drill deeper may be linked to social and 

prestige-related aspects.  

The spatialization of the typology was based on the village which is recognized as an important 

criterion for spatialization to consider for instance the social structure (see panchayat). Other criteria 

may be interesting for spatialization such as the distances to main roads, the soil properties and the 

groundwater level at the farm location to discuss the access to markets and crop outlets as well as 

constraints to crop choices and farming practices.  Farm-type locations in the watershed follow an 

east-west gradient, with more irrigated farms in the east and more rainfed farms in the west (Figure 

3.7). This farm-type distribution is linked to the trend in investing in irrigation since the 1990s which 

caused the unusual inverse gradient of the groundwater table (Sekhar et al. 2006; Javeed et al. 2009).  

The typology presented here was based on farming context, farm performances and farming practices. 

We identified three types of farms: 1) large diversified and productivist farms located mainly in the 

center of the watershed, 2) small and marginal rainfed farms located in the central and western 

portions of the watershed, and 3) small irrigable marketing farms located in the eastern portion. This 

typology is similar to the one generated in Tamil Nadu (Senthilkumar et al. 2009; Senthilkumar et al. 

2012) where a first type, including the wealthiest farms with large irrigated land holdings (average = 6 

hectares), were distinguished from a second type, including medium wealth with an average land 
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holding of 3 hectares, and from two other types of farms considerably poorer and marginal at meeting 

their family food requirements based on rainfed crops grown during the monsoon season. 

This typology makes it possible to simplify and represent farm diversity across the watershed. The 

study’s results are specific to its purpose and study area. The farm types identified cannot necessarily 

be extrapolated to a larger context outside the Berambadi watershed. For instance, the farm typology 

developed in West Bengal (Goswami et al. 2014) differs from ours mainly because of the diversity of 

farming systems identified there. While we identified five cropping systems based on access to 

irrigation (irrigated and/or rainfed cropping systems) and crop orientation (cash and/or subsistence 

cropping systems), they distinguished four farming systems based on the sources of farmers’ 

maximum gross income. These included rice, vegetables, fish and off-farm based farming systems. 

However, the two-step method combining MCA and AHC is subject to generalization for even larger 

regions (Kristensen et al. 2004; Milán et al. 2006; Laoubi and Yamao 2009; Goswami et al. 2014).  

This study predicts two scenarios for the watershed: 1) farmers, especially on small, irrigated 

marketing farms and large productivist irrigated farms, may continue to maximize profits by 

producing high water-demanding crops and cash crops; and 2) irrigation technology may continue to 

spread toward the western portion of the watershed and convert small rainfed farms into small 

irrigable marketing farms. Simulation models may help determining whether these scenarios may be 

sustainable in terms of groundwater depletion and farmers’ incomes. 

3.6. CONCLUSION 

The typology presented here should enable policy makers to better assess the potential influence of 

agricultural and water-management policies on farmers’ livelihoods and the groundwater table. The 

typology can be used in simulation models to predict impacts of climate change, specifically higher 

evapotranspiration, on farming practices and the groundwater level. Such simulation models are useful 

to test policies aiming to slow groundwater-table depletion and limit income risks due to crop failure. 

For example, simulation models could explore policies to maintain small rainfed farms (e.g. 

subsidizing rainfed crops, especially subsistence crops such as pulses) or policies to encourage farmers 

to adopt better water management in cropping systems, (e.g. decreasing the area of crops that consume 

large amounts of water, such as banana, sugar cane and turmeric, or modifying electricity availability 

or subsidizing drip irrigation or less water consuming crops or varieties).  
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TABLE CAPTION 

Table 3.1. Definition of variables for farming context, farm performance and farming practices used to generate the farm 
typology 

Category Code Definition Class Abbreviation 
Farming context  
Spatial village Kuthanur village 1 V1 

Bheemanabeedu, Mallaianapura village 2 V2 
Kannagala, Gopalpura, Maddaiana Hundi, Haggadahalli, Hangala 
Hosahalli, Kallipura, Kunagahalli, Honnegowdanahal, Devarahalli 

village 3 V3 

Berambadi, Berambadi Colony, Navilgunda, Kaggalada Hundi, 
Bechanahalli, Lakkipura 

village 4 V4 

Maddur, Maddur Colony, Channamallipura village 5 V5 
Land 
resource 

nbJeminu number of plots (jeminu) of the farm  1 jeminu J1 
2 jeminus J2 
3 jeminus J3 
>3 jeminus J3+ 

nbPlot2013 number of plots cultivated in 2013  1 plot P1 
2 plots P2 
3 plots P3 
>3 plots P3+ 

totalHHSize total farm size in hectares <0.8 hectares S(--) 
]0.8 hectares;2 hectares]  S(-) 
]2 hectares;4 hectares]  S(+) 
>4 hectares S(++) 

Irrigation 
resource 

isIrrigated at least one jeminu irrigated  no rainfed 
yes irrigated 

nbWorkingBorewell number of working borewells in 2014 none W(0) 
1 borewell W(1) 
>1 borewell W(1+) 

nbFailedBorewell number of failed borewells in 2014 none fail(0) 
1-2 borewells fail(1-2) 
3 borewells fail(3) 
>3 borewells fail(3+) 

hoursKharif number of hours of electricity per day during kharif in 2014 none hours(0) 
[2 hours;3 hours] hours(2-3) 
]3 hours;4 hours] hours(4) 
]4 hours;8 hours] hours(4+) 

Animal 
resource 

TLU number of livestock on the farm {oxen, bull, buffalo, cow}=1, 
{sheep, goat}=0.2 

none TLU(0) 
]0 TLU;2 TLU] TLU(1-2) 
>2 TLU TLU(2+) 

Farm performances  
Production 
costs 

CostInput2014 cost of farming per hectare during kharif in 2014  [0 Rs-3700 Rs] C(--) 
]3700 Rs-7400 Rs] C(-) 
]7400 Rs-14800 Rs] C(+) 
>14800 Rs C(++) 

Production 
incomes 

IncomeRabi2013 income from selling crops per hectare during rabi in 2013  [0 Rs-18500 Rs] I(--) 
]18500 Rs-37000 Rs] I(-) 
]37000 Rs-74000 Rs] I(+) 
>74000 Rs I(++) 

Farming practices  
Cropping 
system 

CS type of cropping system in 2014 rainfed, only cash crops CS1 
rainfed, cash and subsistence 
crops 

CS2 

irrigated, only cash crops CS3 
irrigated and rainfed, only 
cash crops 

CS4 

irrigated and rainfed, cash 
and subsistence crops 

CS5 
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Table 3.2. Specificities and homogeneities of the farm types  

  TYPE 1 TYPE 2 TYPE 3 
Category Code Class Specificity Homogeneity Specificity Homogeneity Specificity Homogeneity 
Farming context  
Spatial village V1 7% 5% 1% 0% 91% 29% 

V2 4% 5% 28% 16% 68% 43% 
V3 36% 73% 44% 39% 20% 20% 
V4 15% 13% 67% 25% 18% 8% 
V5 6% 3% 92% 20% 2% 0% 

Land resource nbJeminu J1 7% 16% 62% 64% 31% 37% 
J2 22% 30% 30% 18% 48% 33% 
J3 24% 17% 38% 12% 38% 13% 
J3+ 43% 36% 16% 6% 41% 17% 

nbPlot2013 P1 6% 16% 59% 62% 35% 42% 
P2 19% 20% 36% 17% 46% 25% 
P3 18% 21% 36% 18% 46% 26% 
P3+ 67% 43% 10% 3% 23% 7% 

totalHHSize S(--) 4% 7% 54% 40% 42% 35% 
S(-) 14% 37% 46% 52% 40% 50% 
S(+) 44% 39% 23% 9% 33% 14% 
S(++) 100% 17% 0% 0% 0% 0% 

Irrigation resource isIrrigated rainfed 1% 3% 94% 88% 5% 5% 
irrigated 31% 97% 9% 12% 61% 95% 

nbWorkingBorewell W(0) 6% 17% 75% 91% 19% 27% 
W(1) 27% 56% 10% 9% 64% 66% 
W(1+) 63% 27% 2% 0% 35% 7% 

nbFailedBorewell fail(0) 12% 36% 65% 83% 23% 33% 
fail(1-2) 31% 31% 17% 7% 52% 26% 
fail(3) 21% 11% 21% 5% 59% 15% 
fail(3+) 26% 22% 13% 5% 61% 26% 

hoursKharif h(0) 3% 8% 91% 90% 6% 7% 
h(2-3) 15% 22% 7% 4% 78% 57% 
h(4) 15% 14% 9% 4% 75% 34% 
h(4+) 86% 56% 7% 2% 7% 2% 

Animal resource globalAU AU(0) 8% 12% 53% 33% 39% 28% 
AU(1-2) 18% 33% 40% 32% 43% 39% 
AU(2+) 28% 55% 40% 34% 33% 32% 

Farm performances  
Production costs CostInput2014 C(--) 14% 17% 54% 28% 32% 18% 

C(-) 19% 34% 46% 36% 34% 30% 
C(+) 21% 31% 39% 26% 40% 30% 
C(++) 20% 17% 29% 11% 51% 22% 

Production 
incomes 

OutputRabi2013 I(--) 13% 15% 56% 27% 30% 17% 
I(-) 16% 23% 54% 35% 30% 22% 
I(+) 20% 32% 41% 28% 39% 31% 
I(++) 26% 30% 19% 9% 54% 30% 

Farming practices  
Cropping system CS CS1 1% 2% 92% 65% 7% 5% 

CS2 3% 2% 97% 24% 0% 0% 
CS3 17% 9% 10% 4% 73% 38% 
CS4 17% 10% 11% 7% 72% 53% 
CS5 87% 53% 1% 0% 12% 3% 

Note: Specificity means “x% of the farms with this class belong to this farm type” (columns sum to 100%), while 

Homogeneity means “x% of the farms belonging to this farm type have this class” (lines sum to 100%). 
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FIGURE CAPTION 

Figure 3.1. Location of the case study. The Berambadi watershed belongs to the South Gundal watershed 

located in southern Karnataka state. GW is the ground water level below ground (m). The GW level comes from 

extrapolation of data measured on 600 disused borewells at the end of 2012 monsoon. 

Figure 3.2. Spatialization of statistically different farm characteristics on the watershed. Black lines refer to 

gram panchayat borders, grey lines refer to village borders, green area describes the forest. 

Figure 3.3. Distribution of irrigated farms and number of borewells per farm on the watershed. The maps 

present for the 12 villages 1) the distribution of irrigated farms, 2) the average number of borewells drilled per 

farm, 3) the average number of working borewells per farm and 4) the average number of failed borewells per 

farm. 

Figure 3.4. A) Projection of the variables used to generate the farm typology in the plane of the first 

two factors of Multiple Correspondence Analysis (MCA); B) Projection of the class of variables used 

to generate the farm typology in the plane of the first two factors of the MCA. Variables and class are 

described in Table 3.1.. 

Figure 3.5. Dendrogram of individuals from Agglomerative Hierarchical Clustering performed on the first 12 

components of the Multiple Correspondence Analysis. Type 1 are large, diversified and productivist farms. Type 

2 are small, marginal rainfed farms. Types 3 are small, irrigable marketing farms. Using the first 12 principal 

components in an AHC algorithm, we obtained a typology with three farm types (red line). Jump in between-

cluster inertia is represented in the right corner.  

Figure 3.6. Individuals of the three farm types projected on the plane of the first two dimensions of the Multiple 

Correspondence Analysis. Type 1 are large, diversified and productivist farms. Types 2 are small, marginal 

rainfed farms. Type 3 are small, irrigable marketing farms. 

Figure 3.7. Groundwater table gradient (colors) and farm typology (pie chart) for each of the five villages (V1 

to V5) on the Berambadi watershed. Type 1 are large, diversified and productivist farms. Type 2 are small, 

marginal rainfed farms. Type 3 are small, irrigable marketing farms. Grey lines refer to the borders of the 12 

villages, green area describes the forest. The ground water level was obtained using disused borewells and 

mesured at the end of 2012 monsoon (NB: no borewell was monitored in the forest and close by the forest 

leading to a partial map of ground water level). 
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The agricultural research community offers languages and approaches to model farmers’ decision-

making processes but does not often clearly detail the steps necessary to build an agent model 

underlying farmers’ decision-making processes. We propose an original and readily applicable 

methodology for modelers to guide data acquisition and analysis, incorporate expert knowledge, and 

conceptualize decision-making processes in farming systems using a software engineering language to 

support the development of the model. We propose a step-by-step approach that combines decision-

making analysis with a modeling approach inspired by cognitive sciences and software-development 

methods. The methodology starts with case-based analysis to study and determine the complexity of 

decision-making processes and provide tools to obtain a generic and conceptual model of the 

decisional agent in the studied farming system. A generic farm representation and decision diagrams 

are obtained from cross-case analysis and are modeled with Unified Modeling Language. We applied 

the methodology to a research question on water management in an emerging country (India). Our 

methodology bridges the gap between field observations and the design of the decision model. It is a 

useful tool to guide modelers in building decision model in farming system.  

 

Keywords: decision modeling, farming systems, water management, case-based analysis, cognitive 

task analysis, UML 
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4.1. INTRODUCTION 

The agricultural research community has a particular interest in modeling farming systems to simulate 

opportunities for adaptation that ensure flexibility and resilience of farming systems. To account for actors 

and their actions in the environment, it is essential to precisely represent their decision-making processes. 

Some methods have been developed to describe farmers’ decision-making processes such as the “model 

for actions” (Aubry et al. 1998a), rule-based models (Bergez et al. 2006; Donatelli et al. 2006) and 

activity-based models (Clouaire and Rellier 2009; Martin et al. 2013). However none specifies precisely 

the process between farmers’ decision-making and the modeling activity. In the real world, people do not 

exhibit optimal behavior like that described in well-structured and controlled experimental settings. One 

major contribution of the naturalistic decision making (NDM) community is in describing how people 

make decisions in real-world settings (Klein 2008). NDM starts with field research. NDM asserts that the 

structure and content of decision-making processes are defined by the organization of the domain in which 

the decision maker is acting (Zsambok and Klein 2014). It is therefore pointless to develop a decision 

model without a detailed understanding and formal representation of the relationship between the 

knowledge farmers have in a specific domain and the decisions they make. Building a conceptual model is 

a standard step in model development. It describes the model without programming language and 

facilitates communication between modelers and analysts. However, these conceptual representations are 

often oriented towards a computerized implementation of the model. Consequently, they do not detail the 

structure of the system and how it functions (Lamanda et al. 2012). 

The objective of our paper is to propose an original and readily applicable methodology to formalize the 

conceptual modeling of the farmer agent underlying decision-making processes in farming system 

(CMFDM) and to guide data acquisition and analysis, the incorporation of expert knowledge, and the 

design of a model. The methodology combines techniques for system description based on field research 

in natural settings and techniques from the software engineering field regarding the use of software 

engineering language to support the development of a model. Our research may provide a useful tool for 

modelers looking for clear guidance on how to build the agent sub-model in a farming system model.  

4.2. FOUNDING PRINCIPLES OF THE METHODOLOGY 

Our conceptual modeling of farmers’ decision-making processes in farming system methodology 

(CMFDM) is based on three founding principles: 1) Theory building from cases is used to obtain a 

relevant theory from observing actual practices in a natural setting (Glaser and Strauss 1967; Eisenhardt 
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1989; Yin 2013). Theory building from case studies is a research process using qualitative and 

quantitative methods to gather data from one or more case studies in a single natural setting, considering 

contextual and time aspects of the current phenomenon studied without any experimental control or 

manipulation (Meredith 1998). The use of case studies is the basis for developing the theoretical 

constructs and propositions from empirical evidence. Theory is emergent in the sense that it develops from 

cross-case analysis and the recognition of patterns of relationship within and across cases. Theory building 

is a recursive cycling process among the case data, the emerging theory and the literature. The first part of 

the process is inductive going from cases to new theory while the second part of the process is deductive 

seeking to test the theory previously build  with another set of data (Carroll and Swatman 2000; Carlile 

and Christensen 2005; Eisenhardt and Graebner 2007). The process is totally iterative since it constantly 

involves backward and forward iterations between case comparison, and theory implementation. 

Grounded theory research, case researches according to Yin (1994) and Eisenhardt (1989) are well 

established empirical methodologies for theory building from case (Steenhuis and Bruijn 2006) ; 2) 

Cognitive-Task Analysis (CTA) is used to analyze and model the cognitive processes that gave rise to 

farmers’ task performance in farming systems (Jonassen 1997; Chipman et al. 2000). CTA provides 

information about knowledge, cognitive processes, and goal structures needed to solve complex problems 

and perform tasks (Zsambok and Klein 2014). With the help of CTA, the analyst looks at the system from 

the perspective of the person performing the task. An important part of the analysis is tracking past critical 

events that shape a person’s feelings or expectations about the task (Schraagen et al. 2000). CTA includes 

a step to map the different tasks, identify the critical decision points and cluster, link and prioritize them 

and characterize the strategy used to face them (Klein 1989). CTA has a wide and varied pool of methods 

among which the most frequently used are structured interviews, verbal protocol analysis (‘think-aloud’ 

protocols, retrospective verbal protocols), and critical decision methods (Klein 1989) ; 3) Unified 

Modelling Language (UML) is used to represent the decision-making problem in a standard and readily 

usable form for computer programming  (Booch et al. 1996; Papajorgji and Pardalos 2006). UML is a 

standardized object-oriented modeling language in the software engineering field (Booch et al. 1996; 

Papajorgji and Pardalos 2006).UML is an efficient way to transcribe and abstract information for 

modeling purposes due to its similarity to knowledge objects  (Milton and Kazmierczak 2006). UML has 

been used as ontology language (Cranefield and Purvis 1999; Pinet et al. 2009). Classes, concepts and 

relationships are defined and form a common vocabulary for analysts, and modelers who need to share 

information on the domain (Beck et al. 2010). The ontology is a “formal explicit specification of a shared 

conceptualization” (Gruber 1993). The visual representation of UML graphs facilitates the design process 

of the ontology.  
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Based on these three founding principles, we defined a standardized methodology aiming at guiding the 

translation of selected case-study observations into a conceptual representation of a generic decision 

model of the farming system. It is organized into four steps that are combined in an iterative process 

(Figure 4.1). 

4.3. THE CMFDM METHODOLOGY 

4.3.1. Step 1: problem definition 

The first step is problem definition. Ideally, the theory building from cases research should start without 

any theory or hypothesis to test under consideration. However, it is truly impossible to reach this ideal but 

it is important to attempt to approach it in order to avoid bias and limits in the findings because of 

preordained theoretical perspectives. Thus, the definition of the context and the initial research question is 

important in theory building from cases to not become overwhelmed by the volume of data. Moreover, a 

priori framework can be designed to shape the initial design of the theory building research that can 

potentially specify some important variables identified in the literature but it should be done by avoiding 

any consideration of relationship between variables or hypothesis. 

4.3.2. Step 2: case study selection  

The second step is the selection of case studies. As in statistical researches, selecting the population likely 

to exhibit the research focus is essential to control variations and define the limits of the generalization 

process. The appropriate population is characterized by satisfying criteria for the research question defined 

earlier.  However the sampling of cases from the appropriate population is particular and  is based on a 

theoretical sampling approach driven by the search for diversity instead of a statistical search for 

representativeness (Glaser and Strauss 1967; Eisenhardt and Graebner 2007). Case studies may be 

selected to replicate previous cases, extend the emergent theory, or fill theoretical categories. Random 

selection is not advised given the limited number of cases studied, but selection of extreme cases or polar 

types is preferred. 

4.3.3. Step 3: data collection and analysis of individual case studies 

The third step is data collection and analysis of individual case studies based on CTA and UML. Five sub-

steps are followed. First, based on the prior definition of the context, the initial research question and the 

framework potentially advanced in STEP 1, the analyst is able to shortlist multiple data collection 

methods and tools that can be both qualitative and quantitative. Tools used are usually interviews, surveys, 
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observations, document analysis and standard quantitative measure like questionnaires. Using multiple 

data collection method presents two main advantages: 1) it makes possible the triangulation between 

collected data providing stronger evidences of theory constructs and hypothesis; 2) it overlaps data 

analysis and allows the analyst to take advantage of flexible data collection and to make adjustment during 

this process. These adjustments ensures some flexibility and arises new data collection opportunities to 

probe emergent themes or new theoretical insights in order to understand each individual case as much 

deep as possible.  Secondly, based on the prior definition of the context, the initial research question and 

the framework potentially advanced in STEP 1, appropriate UML representations for the important 

variables identified in the literature are selected among the list of UML structural and behavioral 

diagrams.  This step ensures that the representation maps directly to the information reached by a specific 

data collection method and provides direction and order to identify sub-variables and relationship between 

variables. Thirdly, data is collected in the field. In one hand, data collection is dedicated to become more 

familiar with the individual context by identifying specific characteristics of individual environment and 

the sequence of activities or tasks realized by each individual. This information are obtained from 

document analysis and direct interaction with the farmer through survey and questionnaire that help 

identifying farmer’s knowledge on the farming context.  On the other hand, data collection aims at 

capturing the cognitive processes set up to realize tasks. In this purpose, critical decision method (Klein, 

1989) is used as a knowledge-elicitation method to collect farmer’s knowledge and identify critical 

incidents that disrupt farming management and allow adaptive behavior elicitation. Data collection is 

emergent in theory building from cases. That means what the analyst learns from the data collected from 

one individual case often is used to determine subsequent data collection. Fourthly, individual cases are 

analyzed and verified. An initial transcription using UML representation is made of the information 

collected and then presented to the concerned farmer for verification, refinement, and revision during a 

second meeting. This ensures that representation of a task and the underlying cognitive components are 

sufficiently complete and accurate to format into a formal individual conceptual model. Finally, verified 

individual conceptual model on farmers’ knowledge and cognitive processes are formally represented with 

UML diagrams. This step allows the unique pattern of each case to emerge before generalizing patterns 

across cases. 

4.3.4. Step 4: the generic conceptual model 

The last step is the transition from individual case studies to a generic model.  It is an iterative process of 

cross-cases analysis, enfolding of literature, and incorporation of expert knowledge. One way to do the 

cross-cases analysis is to list similarities and differences between individual analysis and UML graphs. 

Another way is by selecting dimensions and to compare cases related to these dimensions. Concepts and 
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relationship between variables emerge from cross-cases analysis shaping hypothesis and theories. It is 

essential to compare the emergent results from cross-cases analysis with the extant literature in order to 

improve the theory validity and enlarge its generalizability. Relationship and concepts that are replicated 

across most or all of the cases or at least validated by the literature are retained to ensure robustness and 

generalizability. Experts and modelers are also used to strengthen development of the generic model by 

formulating and adding more complex and meta concepts. It leads to the addition of abstract classes that 

are not usually used by farmers. In that respect, the generalization of classes is an important process in 

object oriented modeling (Papajorgji and Pardalos 2006). The generic conceptual model is formatted with 

the UML graphs and leads to an ontological analysis that formalizes and efficiently specifies concepts and 

relationships among these concepts.  

4.4. METHODOLOGY IMPLEMENTATION IN A CASE STUDY 

4.4.1. Step 1: problem definition 

We applied the methodology to farming systems in the context of irrigation water management under 

water scarcity. We chose to focus the application of our methodology on the conceptual representation of 

a farmer. We consider farmers as cognitive agents able to think, memorize, analyze, predict, and learn to 

manage future events and plan their actions (Le Bars et al. 2005). In artificial intelligence and cognitive 

sciences, cognitive agents have been commonly represented as Belief-Desire-Intention (BDI) agents 

(Bratman 1987b; Rao and Georgeff 1991). The concept of Belief represents the farmer’s knowledge of the 

system. Desires are the objectives or satisfying goals of the farmer. Intentions are actions plan to achieve 

the farmer’s objectives (Desires). The BDI framework is founded on the well-known theory of rational 

action in humans. BDI agents are considered as having an incomplete view of their environment. We used 

the BDI to structure the formal knowledge produced by the CMFDM. Our conceptual representation of a 

farmer included the knowledge on the farm structure and on the decision-making processes and 

adaptations. Contrary to normative approaches, BDI is a practical reasoning representation used to 

simulate bounded rationality and is an intuitive representation of the human decision-making process. 

Compared to fully rational approaches, its descriptive capacity enables the representation of decision 

processes that are the closest to reality. To provide the BDI structure, we agree with Rider (2012) that 

cognitive task analysis is an efficient transition between farmers’ decision processes in the real world and 

its representation. 
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4.4.2. Step 2: case study selection  

CMFDM was applied, inter alia, on water management of small farm holders in an emerging country 

(India). In the Berambadi watershed (Karnataka state, southern India), farmers are facing increasing 

temperatures, unpredictable rainfall, and groundwater depletion. Agriculture depends greatly on rainfall 

and access to irrigation. While groundwater access is nearly free and limited only by the availability of 

electricity, many farmers encounter dry and temporarily non-functioning borewells. Water table levels 

display a non-standard pattern, hydrogeologically speaking; valley regions have deeper groundwater 

levels than topographically higher zones. Thus an unusual groundwater level gradient is observed with 

shallow water in the upstream and deep water in the downstream. Farms are really small, less than one 

hectare, with mainly manual and animal traction work capacity. Farms are composed of jeminus (plots) 

subdivided into beles (crop plots) that change from year to year. The cropping system is organized around 

three seasons: i) the rainy season, when most of the crop is grown (kharif); ii) the winter season, when 

mainly irrigated crops are grown (rabi); and iii) the dry season, when little cultivation occurs (summer). 

Monsoon rainfall is a key determinant for crop choice. Crops may be under contract, directly sold to 

agents or markets, or are for subsistence. Farmers are highly in debt due to investing in irrigation systems. 

Government subsidies greatly reduce the price of chemical fertilizers and provide affordable inputs. The 

methodology was used to identify farmers’ knowledge and crop management decisions in a context of 

changes in rainfall and groundwater level. The main concern was to understand and model the adaptation 

processes of the farmers who face these changes. The population was local crop farmers on the watershed. 

The farmer population is characterized by the following criteria: location, farm size, and access to 

irrigation.  We interviewed 27 farmers from 10 villages spread across the Berambadi watershed selected to 

have farms from all over the watershed in area where the water table is really deep or really shallow and in 

transitional zone. We selected very big farms as well as very small farms that could be irrigated or rainfed. 

4.4.3. Step 3: data collection and analysis of individual case studies 

Firstly we shortlisted the data collection methods and tools to use for our case study in India. Document 

analysis on farming context on the watershed, at the state level or at the country level was important to get 

familiar with the Indian field prior to the survey stage. We reviewed the literature on crop management 

practices, irrigation practices, water issues, water management, and market and climate trends in 

Karnataka. We met with extension service agents and researchers to gather general and specific 

information about the watershed. The survey process was based on a questionnaire to frame the interview 

process and to get quantitative measures shared by all survey done. We constructed a questionnaire based 

on the three parts of the BDI: 1) the farmers’ beliefs (farm structures and characteristics), It focused on 

household characteristics, the farm structure, assets, and partnerships, In-depth questions were asked about 



Chapter 4 Marion Robert 

107 
 

C
hapter 4 

M
arion Robert  

C
hapter 4 

M
arion Robert  

irrigation, borewells, and rainfall; 2) the farmers’ desires (objectives and cropping pattern). We asked 

farmers about their objectives and crop production over the past three years. Since no records were kept 

from year to year, information about historical management went no further than three years in the past; 3) 

the farmers’ intentions (decisions and adaptations). It aimed to reveal the farmers’ actions, reactions and 

adaptations to different events. We questioned farmers about how they foresee their cropping-plan and 

asked them to describe the sequence of decisions concerning cropping-plan decisions made the year 

before sowing. At this stage, farmers usually describe a general decision plan for optimum conditions. 

Comparing this plan to the past cropping system showed that crops actually grown can differ from the 

given cropping system. We encouraged farmers to point out events that make them change their cropping 

system.  To depict farmers’ practices and support the cognitive elicitation process, we used a timeline 

chart on which the farmers placed stickers to represent farm activities and decision timing. The farmers 

indicated when specific events occurred and explained what was done to address them. The survey 

process also combines extensive maps and direct observations. Cadastral maps and district maps were 

used to mediate the farm data collection process at the watershed scale. We realized direct observation and 

took notes on physical farm characteristics like plot organization, building and borewell locations, 

distance to roads, etc. After details about household organization, farm assets, and farm marketing 

position, we asked farmers about their objectives and crop production over the past three years. We 

mediated this step by extensive use of farm maps.  

Secondly, we selected UML representations for the collected data. Structural diagram are appropriate to 

represent the static aspect of the system. We used object diagrams for the representation of the farm 

structure. Behavioral diagrams basically capture the dynamic aspect of a system. We used activity 

diagrams to represent the decision-making processes, sequence diagrams to represent the interaction and 

flow of information exchanged between the diverse entities of the farming system, use case diagram to 

represent the relationships among the functionalities and their internal/external actors like farmers’ 

partnership, relationships with sellers and buyers. 

Thirdly, data was collected in the field. A preliminary test of the questionnaire showed that farmers were 

not responsive to open-ended questions. Since interviewers were not researchers or farmers, we limited 

open-ended questions with multiple-choice questions that included ranking preferences. Specific terms for 

agronomic concepts such as “crop sequence”, “crop rotation”, and “previous-crop effect” were avoided 

and addressed using examples. We avoided controversial questions about potential costs and water or 

electricity fees. Beyond the questionnaire, the survey data collection process was adapted to each farmer 

depending on previous interviews, on farmer’s answer, and on observations made. Thus questions were 

added to look deeper into some farmer’s answers or to react to field observations. For instance, when 
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unexpected crops were mentioned while asking for the crops grown in 2012, 2013 and 2014, the 

interviewer asked for complementary explanation to justify the farmer’s crops choice made during these 

years. Also the interviewer added references to other interviews while talking to the farmer to ask the 

farmer’s opinion on why he is behaving differently. For instance he asked why a certain farmer was not 

growing any sunflower when most of the other farmers interviewed are.   

Fourthly, we build an initial transcription of the knowledge collected and returned to ask farmers to verify, 

refine, confirm and revise our preliminary results and emerging rules. This helped to introduce actions that 

are obvious to farmers, such as growing sorghum depending on family grain stocks and not officially 

including it in a crop rotation.  

Finally, individual conceptual model on farmers’ knowledge and cognitive processes are formally 

represented with UML diagrams. To illustrate individual conceptual models, we focus in this part on 1) 

the representation and structure of the knowledge of the farmer with object diagrams; 2) the representation 

of the decision-making processes with activity diagrams.  

1) The farmer described the farm as a structure using four or five types of resources: land, labor, 

equipment, livestock and, water (for irrigated farms). To illustrate the method, we focus on farmland 

representation. We constructed individual object diagrams that depict farmers’ representation of their 

farmland organization. Two examples include: 

 For Indian farmer In1 (Figure 4.2A), land organization differed between seasons in a fully rainfed 

system. The number and size of plots changed from kharif to rabi due to high dependency on 

rainfall in winter. Part of the land was more fertile due to application of tank-bed silt two years 

previously. The farmer preferred to grow cash crops on the fertile land and subsistence crops on 

the less-fertile part. 

 For Indian farmer In2, farmland (20 acres) was divided into two jeminus (Figure 4.2B). The 

management differed on each jeminu. One was irrigated, and the other was fully rainfed. He grew 

cash crops on the irrigated jeminu and preferred subsistence crops on the rainfed one. His land 

organization during rabi was less sensitive to rainfall since water from a borewell enabled crop 

growth during that season. 

2) Concerning the decision-making processes of farmers, our analysis revealed that drought and water 

restrictions, market prices, access to contracts, and delay in rainfall or monsoons in India were critical 

incidents that push farmers to adapt. We asked them to explicitly describe alternative decisions that are 

made when these changes occur. We identified two typical adaptation phases. At the beginning of the 

season before any crop operations occur, farmers observe changes in the environment that lead them to 
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adapt some or all of the cropping system. After starting land preparation, the farmer may change a crop at 

the plot scale. Le Gal et al. (2011) and Risbey et al. (1999) described the first level of intra-annual 

decisions as “tactical” and daily decisions as “operational”. We offer an example on an Indian farmer: 

 Indian farmer In2 adapted his cropping system based on borewell yield, sunflower market prices, 

and sorghum family grain stocks (Figure 4.3). During kharif, he set the irrigated area for long-

term crops (turmeric) and short-term crops (garlic) based on observing his borewell and 

estimating how much water it would provide. In the case of a deep water table, the farmer 

replaced crops having high water requirements with cash crops having low water requirements. In 

rainfed conditions, sunflower price and sorghum family grain stocks influenced the area planted in 

sunflower. For rabi, the farmer decided to cultivate or fallow his land based on borewell yield and 

expected rainfall. 

4.4.4. Step 4: the generic conceptual model 

For the Indian case study, we built a generic decision model. We compared individual analysis and graphs 

to each other, referred to the literature, and asked experts and modelers to participate in the model 

development.  

We selected the following dimensions to highlight patterns in terms of similarities or differences between 

cases:  irrigation access, farm size, number of jeminu, village, and cash crop production. At this stage, 

irrigation access clearly shows differences in land managements between fully rainfed farms and irrigable 

farms. Kharif is the main cropping season to cultivate in the watershed. We focused on kharif cropping 

systems to identify similarities between farms. Rainfed farmers are small to marginal farms going from 

0.12 hectares to 2 hectares. We observed two behaviors: growing only crop to sell or growing also 

subsistence crops. Cross-case in the irrigable farms highlights three types of farms: farms fully irrigated 

and growing only cash crops, farms growing cash crops in irrigated and rainfed conditions, and farms 

growing cash and subsistence crops in irrigated and rainfed conditions. 

Concerning the representation of farm structure knowledge, the individual analysis from step 3 highlights 

concepts used by farmers to organize their land and define their cropping system (Figure 4.4). Concepts 

mentioned by most or all the Indian farmers were “season”, “soil fertility”, “jeminu”, “crop type”, 

“irrigability” and “bele” (see farmers In1 and In2). One also talked about “ownership” saying he had 

different practices on owned land and on rented land and another about “temporary plot” by having a 

jeminu located in the Berambadi tank that is usable only when the water level in the tank is low enough. 

We did not retain the last two concepts that were not relevant for the other farmers. We complemented the 

bottom-up incorporation from farmers with top-down incorporation from experts and modelers. Modelers 
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and experts used abstract classes to summarize concepts. We generalized the concepts “Season”, “Soil”, 

“Jeminu”, into TemporalUnit, BiophysicalUnit, and PhysicalUnit, respectively.  The “bele” is considered 

as the ManagementUnit where crop practices are effective. “Irrigability” and “crop type” were included 

with the ManagementUnit. Farmers can develop several cropping systems with different crop management 

practices, which we called CropManagementBlock.  

Concerning the representation of decision-making processes and adaptation, we aim at getting generic 

decision frame for each group; we crossed individual tactic decision UML activity diagrams (Figure 4.3) 

to build a generic model (Figure 4.5). For instance, we focus on Indian farmers growing cash and self-

consumption crops under irrigated and rainfed conditions.   

 All farmers mentioned borewell yield as the primary factor that could change their cropping system and 

cause them to reassess their irrigable area and long-term and short-term irrigated crops. Market prices and 

available water for irrigation may influence their crop choice at the beginning of each season. 

Management of the rainfed land depends on sorghum and finger millet stocks, and prices. Half of the 

farmers also mentioned that the farm location from a local market or a main road influenced their crop 

choice. They explained that they have higher chance to get contracts on beetroots or cabbages when their 

farm is along a main road. Half of them also considered marigold contracts offered by marigold the 

cropping season which ensure minimum revenue. An important part of farmers also mentioned rainfall 

expectations or monsoon expectation as a condition for selecting rainfed crops. Deep root crops are 

favored when rainfalls are expected to be low. Two farmers mentioned religious festivals as a motivation 

for growing watermelon and one mentioned possible swaps of subsistence crops with his neighbor to 

justify not selecting sorghum crop.  We did not retain the last two concepts that were not relevant for the 

other farmers. We complemented the bottom-up incorporation from farmers with top-down incorporation 

from experts and modelers. Irrigated crops are classified in either long-term (11-month to three-year) and 

high water- demanding crops (turmeric, sugar cane and banana), short-term crops (less than 11 months) 

with high water requirements (garlic and onion), or short-term crops with low water requirements 

(watermelon, beetroot, cabbage and other vegetables) (Figure 4.5). Rainfed crops are for selling 

(sunflower, marigold, horse gram, and groundnut) or for subsistence (sorghum and finger millet). The 

generic decision frame of Indian farmers growing cash and self-consumption crops under irrigated and 

rainfed conditions (Figure 4.5) consider first the borewell yield to estimate the proportion of irrigated and 

rainfed land. Then for the irrigated plots, water is distributed to the different crop types identified by the 

experts and modelers. Farm location and market prices are the next levels to select irrigated crops. 

Concerning rainfed crops, grain stock status determines whether the farmer will grow subsistence crops. 

Then marigold contracts and market prices control the rainfed crop choice. Farmers look at crop prices 
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proposed by marigold companies while selecting their rainfed crops which is the only crops with prices 

fixed at the beginning of season.  

The methodology also provided generic plans for crop-management decisions and adaptations at sowing 

and germination times to allow farmers to adapt in case of the inability to sow or low germination. 

4.5. DISCUSSION - CONCLUSION 

The agricultural research community has a particular interest in decision-making processes design in 

farming systems but does not have a clear framework to guide it in how to proceed from field studies to 

designing the conceptual model. We identified a gap between field observations and the design of a 

conceptual decision model by modelers. In this article, we provided a necessary, original, and useful step-

by-step methodology that guides data acquisition and analysis, incorporation of farmers’ knowledge, and 

model design. Developing a methodology for model design was necessary to ensure model transparency. 

It is essential to include information about the process followed to develop the conceptual or simulation 

model. This helps reproduce the work so that future researches can test any insights found or replicate the 

process in another study.  

We offered an original methodology that combines several widely used frameworks to elicit and represent 

a cognitive agent behaving in interaction with its environment to go toward computer modeling. Our 

methodology belongs to the range of qualitative methodologies that aim at understanding a particular 

phenomenon from the perspective of those experiencing it (Ryan and Bernard 2000). Similarly to the 

ethnographic decision modeling, our methodology aims at studying behavior and practices in a natural 

setting using triangulation of the multiple data collection approaches. However, the step-by-step 

methodology proposed by Gladwin (1989) aims to not generate theories from cases but to understand 

farmers’ behavior from a cultural perspective in terms of patterns of learned and shared behavior and 

beliefs of a particular social, ethnic, or age group. Thus in ethnographic decision modeling focus is usually 

made on one particular aspect of the reality setting rather than the whole context.  

The case-study approach enables building a conceptual model with a higher level of refinement than 

statistical methods. Statistical studies combine dissimilar cases to obtain a large sample and run the risk of 

conceptual stretching (George and Bennett 2005), whereas case studies can reach a high level of validity 

with a smaller number of cases. Case studies help to obtain a relevant theory from observing actual 

practices. In fully understanding the nature and complexity of the decision-making process, it helps to 

answer the why rather than just the what and how. Combining both a bottom-up (from farmers) and a top-

down (from experts and modelers) approach is a pragmatic way to develop consistent and reusable models 
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based on shared concepts (Milton and Shadbolt 1999; Beck et al. 2010). The sampling of case studies is an 

important step in the methodology; the diversity criteria must be supported by existing literature. The 

intervention of external experts during the generalization process is also an important methodological 

element to prevent an overflow of too many case-specific details. CTA enables farmers to express their 

knowledge in its most natural and intuitive form – their spoken language (Rider 2012). However, the use 

of knowledge-acquisition techniques to elicit farmers’ representations is not straightforward and is time-

consuming (Hoffman and Lintern 2006). The need for direct observations and the use of multiple methods 

and tools add difficulties to the methodology. The selection of cases is essential to the approach but can 

lead to selection bias. The researcher must not select cases that promote a favored hypothesis or exclude 

cases that conflict with initial theories. 

To model farmers and their perspective of the world it is important to consider farmers’ representation of 

their environment, their objectives and their intentions and decisions to achieve the desire state. Both 

farmers’ knowledge and decisions have to be modeled within a generic decision models.  

Unlike ethnographic decision modeling that predicts behavioral choices under specific circumstances 

displayed in decision trees (Gladwin 1989; Ryan and Bernard 2006), decision tables (Mathews and Hill 

1990) or a set of rules in the form of if-then statements (Ryan and Martinez 1996), our methodology 

considers also farmers’ knowledge and representation using a unique and formal language. Like Becu et 

al. (2003), we argue that the use of the formal language UML is an effective way to transcribe and abstract 

information for modeling purposes because of the similarity between knowledge objects and UML 

methods (Milton and Shadbolt 1999). We could have used other tools since UML was not initially used 

for ontology development, like the ontology web language (Lacy 2005). However, UML has a rapidly 

growing community with strong support and has already been successfully tested for ontology building 

(Kogut et al. 2002). We used UML as a unique formal language that facilitates iterations and feedback 

between different methodological steps. It also ensures consistency and transparency during the process 

from knowledge transcription to decision-model application. We used UML instead of cognitive maps 

(Mackenzie et al. 2006; Voinov and Bousquet 2010) or decision trees for knowledge and dynamic 

decision representation because UML represents the decision-making problem in a standard and readily 

usable form for computer programming. It enables efficient programming and data storage while limiting 

distortions between the conceptual and computer models due to programming constraints (Papajorgji and 

Pardalos 2006).  

This methodology was successfully used to design a conceptual model for the simulation model CRASH 

(Crop Rotation and Allocation Simulator using Heuristics) to plan, simulate and analyze cropping-plan 

decision- making at the farm scale in France (Dury 2011) and the decision model NAMASTE (Numerical 
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Assessments with Models of Agricultural Systems integrating Techniques and Economics), which 

simulates Indian farmers’ decision-making processes at tactical and operational levels (Robert et al. 2015; 

Robert et al. (Under Review)). 
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FIGURE CAPTION 

Figure 4.1: The four methodological steps to conceptualize a farming systems and to guide data 

acquisition and analysis, integration of expert knowledge, and computer implementation. 

Figure 4.2: Farmland organization described with a Unified Modelling Language (UML) object diagram: 

(A) Indian farmer in the northeast of the Berambadi watershed: cropping-system allocation depends on the 

season and soil type; (B) Indian farmer in the middle of the Berambadi watershed: cropping-system 

allocation depends on the jeminu (plot), irrigation equipment, and the season. 

Figure 4.3: Decision rules described with a Unified Modelling Language (UML) activity diagram for an 

Indian farmer in the middle of the Berambadi watershed: the farmer adapts his cropping system depending 

on borewell yield, sunflower market prices, and sorghum family grain stocks. 

Figure 4.4: Generic Farmland organization using a Unified Modelling Language (UML) class diagram. 

Rectangles with thin borders represent concepts from the bottom-up integration. Rectangles with thick 

borders represent abstract classes from the top-down approach. 

Figure 4.5: Generic decision framework for Indian farmers growing cash and subsistence crops in irrigated 

and rainfed conditions during the kharif season described with Unified Modelling Language (UML) 

activity diagrams. Farmers adapt their crops at the beginning of the season depending on market prices, 

rainfall, access to contracts, and family grain stocks.  
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Farming systems are complex structures with several dimensions interacting in a dynamic and 

continuous manner around farmers’ management strategies. This complexity peaks in semi-arid 

regions of India, where small farms encounter a highly competitive environment for markets and 

resources, especially unreliable access to water from rainfall and irrigation. To represent such 

strategies, we propose the conceptual model NAMASTE, which was conceived and based on data 

collected in the Berambadi watershed in southern India. The most relevant and novel aspects of 

NAMASTE are i) the system-based representation of farm production systems, ii) the description of 

dynamic processes through management flexibility and adaptation, and iii) the representation of steps 

in farmers’ decision-making processes at various temporal and spatial scales. Since NAMASTE was 

designed in an extreme case of highly vulnerable agriculture, its generic framework and formalisms 

can be used to conceptually represent many other farm production systems. 

 

 

Keywords: conceptual model, farmer decision-making process, system-based representation, 

adaptation, irrigation.  
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5.1. INTRODUCTION 

Modeling farming systems and how these systems change and adapt to external changes and 

opportunities is particularly interesting for the agricultural research community to better assess their 

flexibility and resiliency. A variety of conceptual representations have been developed to represent 

decision-making processes with diverse levels of complexity in the system (plot to farm) and the 

adaptation process (from days to years). Examples include the “model for actions” at the cropping 

system level and mainly for tactical adaptation (Cerf and Sebillotte 1988; Aubry et al. 1998a), rule-

based models (Bergez et al. 2006; Moore et al. 2014; Snow et al. 2014; Holzworth et al. 2015) and 

activity-based models (Clouaire and Rellier 2009; Martin et al. 2013).  

Farmers’ decision-making processes, planned at three different temporal and spatial scales, are a 

combination of decision stages: i) the strategic decision stage, with a long-term effect (years to 

decades) on whole-farm organization (e.g., decisions about equipment investment, infrastructure 

development or farm expansion); ii) the tactical decision stage, with a medium-term effect (several 

months or seasons) on the farm cropping system and its resource management; and iii) the operational 

decision stage, with a short-term effect restricted to specific plots and describing daily adjustments to 

crop management practices (Risbey et al. 1999; Le Gal et al. 2011). Some models focus on one 

particular type of decision – mainly strategic (Barbier and Bergeron 1999; Berge and Ittersum 2000; 

Hyytiäinen et al. 2011) or operational (Martin-Clouaire and Rellier 2006; Merot et al. 2008; Martin et 

al. 2011a; Aurbacher et al. 2013; Moore et al. 2014). Others model two decision levels – strategic and 

tactical (Trebeck and Hardaker 1972; Adesina 1991; Mosnier et al. 2009) or strategic and operational 

(Navarrete and Bail 2007; Dury 2011; Taillandier et al. 2012a; Gaudou and Sibertin-Blanc 2013). 

However, to the best of our knowledge, the scientific literature does not offer models that include a 

decision model with the three decision stages within the same model. To understand the ability and 

possibility to adapt farming systems, it is essential to consider the entire decision-making process. 

Ignoring one decision stage can bias evaluation of the impact of changes on a farm production system 

and miss possible options for farming system adaptation.  

In semi-arid regions, agricultural production systems depend greatly on irrigation and encounter 

increasing challenges: growing uncertainty about how to respond to climate change, severe depletion 

of natural resources, high volatility in market prices, rise in energy costs, and greater pressure from 

public regulations (agricultural, environmental, and health policies). In the Deccan Plateau in India, 

the development of submersible pump technology in the 1990s resulted in a dramatic increase in 

borewell irrigation (Sekhar et al. 2006; Javeed et al. 2009). However, the low productivity of the 

aquifer (Dewandel et al. 2010; Perrin et al. 2011) and a rapid decline in the water table level led to 

decreasing borewell yields (Ruiz et al. 2015), which means that groundwater-irrigated agriculture still 

largely depends on rainfall. Climate variability has increased over the last 50 years in this region 
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(Jogesh and Dubash 2014). Predictions indicate a 1.8-2.2 °C increase in temperature by 2030, and 

southwestern regions of Karnataka are projected to suffer from a decrease in annual rainfall, especially 

during the monsoon season (Jogesh and Dubash 2014). For a region that largely depends on monsoon 

patterns and winter months to maintain agricultural production, any shift in climatic conditions would 

have a severe impact on natural resources and the economy. This highly complex and competitive 

environment requires farmers to continuously adapt their farming system and management practices 

(Hardaker 2004), and it is a place where explicitly considering the three stages of farmer decisions is 

critical to accurately represent production systems.  

The objective of this article is to introduce the conceptual model NAMASTE (Numerical Assessments 

with Models of Agricultural Systems integrating Techniques and Economics) and detail the explicit 

integration of the three decision stages: strategic, tactical and operational. A conceptual model is a 

non-software description of a computer simulation model. It is the bridge between the real system and 

a computer model (Robinson 2008) and therefore requires simplification and abstraction (Robinson 

2010). NAMASTE is well suited to agricultural systems in semi-arid regions highly dependent on 

irrigation. One original feature of our model is the decision sub-model that covers three stages of 

decisions and adaptations. Another original feature is the integrated dynamic interaction of different 

sub-systems that build the farm production system. We first present the methodology used to build the 

conceptual model. Then, we outline the decision sub-system and its interactions with the biophysical 

sub-system and the external system. We discuss the key modeling choices and present several insights 

on how to move from the conceptual model to a computer simulation model. 

5.2. MODELING PROCESSES 

5.2.1. Indian case study 

The design of the conceptual model was based on data collected in the Berambadi watershed 

(11°43'00” to 11°48'00" N, 76° 31'00" to 76° 40'00" E) in southern India, where biophysical variables 

have been intensively monitored since 2009 under the Environmental Research Observatory ORE 

BVET. Since 2013, the multi-disciplinary Indo-French project CEFIPRA (Centre for the Promotion of 

Advanced Research) AICHA (Adaptation of Irrigated Agriculture to Climate Change) has aimed to 

develop an integrated model to simulate interactions between agriculture, hydrology and economics 

and to evaluate scenarios of the evolution of climate, agricultural systems and water management 

policies at the watershed scale. The Berambadi watershed (84 km²) belongs to the Kabini River basin, 

which is part of the South Gundal River basin (816 km²) (southwest of Karnataka). Its climate is 

dominated by a monsoon regime that generates a strong rainfall gradient with decadal trends, strong 

inter-annual variability and recurrent droughts (Ruiz et al. 2015). Three seasons regulate the farm 

cropping system: i) kharif (June to September), the rainy season (monsoon), when most of the 
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cropping area is cultivated; ii) rabi (October to January), the winter season, when most irrigated plots 

are cultivated; and iii) summer (February to May), the hot and dry season, when only few plots are 

cultivated.  

On average, farm size in the Berambadi watershed is 3.6 acres. 47% of the household on the watershed 

have water access for irrigation. In kharif, crops mainly grown in rainfed condition are sorghum, 

maize, sunflower, marigold, and in irrigated conditions are turmeric, onion, garlic, and banana. 20% of 

the cropping area is dedicated to subsistence crops such as sorghum, millet and pulses. In rabi, mainly 

maize, horse gram and vegetables are grown in irrigated conditions. In summer almost 90% of the 

crop land is fallow land. 

The hard rock aquifer is composed of fissured granite underlain by a 5-20 m layer of weathered 

material. Hydraulic conductivity and borewell yields decrease with water table depth. As a 

consequence, continuous pumping leads to groundwater table drawback and reduces the availability of 

groundwater for irrigation. This feedback makes predefined land-use scenarios unrealistic, since 

farmers need to adapt their actions continually according to groundwater availability. In addition, 

water table levels display a non-standard pattern, hydrogeologically speaking; valley regions have 

deeper groundwater levels than topographically higher zones (Figure 5.2). This pattern results from 

intensive groundwater pumping since the early 1990s in villages located in the valley (Sekhar et al. 

2011) that disconnected groundwater from streams, which now run dry most of the year. Low costs of 

pumping water and subsidies for irrigation equipment encouraged farmers to drill even more 

borewells. This dramatic evolution is closely linked to the spatial distribution of soil type and 

groundwater availability, as well as farming practices, access to the market, knowledge, new 

technologies and government aid (Sekhar et al. 2011). An increasing number of  farmers report well 

failures and give two reasons for this: either wells have run dry after excessive pumping, or no water 

was found in newly drilled borewells (González Botero and Bertran Salinas 2013).  

The NAMASTE model aims at simulating farmers’ adaptation to climate change, water table 

depletion, economic context and agrarian changes such as government subsidies. Its hierarchical 

structure is described in Figure 5.1. 

5.2.2. Modeling steps 

To build the conceptual model we followed a three-step method: 

Step 1: We identified events, concepts and knowledge that are relevant to the conceptual model. 

Knowledge acquisition helps to understand and describe the real system. We surveyed farmers 

in the watershed in 2014 and 2015. The first survey targeted 27 farmers to obtain detailed data 

about their practices, in particular their decisions and the process of adapting their decisions. 

The second survey targeted 680 farmers and obtained broad data about farm characteristics 
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and social, economic and agronomic environment. This survey led to a typology of farmers on 

the watershed based on biophysical factors (e.g. farm location, soil type, ground water 

accessibility), on economic factors (e.g. farm size, labor, equipment), on social factors (e.g. 

castes, family structure, education, off-farm job) (details are found in Robert et al. (in Prep.)). 

We surveyed seed retailers and Panchayats (village leaders) to learn about recommended crop 

management practices and village organization. Additionally, 52 experimental plots were 

monitored over three years, which provided observed quantitative data about crop production 

and crop management. These data helped supplement the verbal information provided by 

farmers during surveys. Meteorological data were obtained from a meteorological station and 

water gauges installed on the watershed. Prices and costs were obtained from farmers and 

from official district data from the Indian Ministry of Agriculture and Cooperation 

(Directorate of Economics and Statistics) and the National Informatics Center (Agricultural 

Census Division). 

Step 2: We used the case study CMFDM method (standing for Conceptual Modeling of the Farmer 

agent underlying Decision-Making processes) (Robert et al. 2016a) to identify system 

components and the interactions between them that structure and organize farming processes 

in a coherent systemic representation. CMFDM underpins the development of a conceptual 

model by combining both a bottom-up from empirical data by observing actual practices in a 

natural setting and a top-down from experts and modelers. It uses multiple data collection 

which makes possible the triangulation between collected data providing stronger evidences of 

theory constructs and hypothesis. Case study method provides a deep understanding of the 

complex processes used in decision-making processes. Two main systems were identified: i) a 

farming system, which is complex and composed of interacting or interdependent sub-systems 

(mainly, decision and biophysical sub-systems), themselves made up of interacting and 

interdependent entities; and ii) an external system, which is a set of independent entities that 

describe uncertain and uncontrolled events that influence the production process.  

Step 3: We selected the formalisms and frameworks to simulate the target processes. To facilitate the 

design and coding of the computer model that follows the conceptual model, selected 

formalisms and frameworks were implemented in the French National Institute of Agronomy 

(INRA) RECORD (Renovation and COORDination of agro-ecosystem modeling) modeling 

and simulation software platform within a multidisciplinary approach (e.g. agronomy, soil 

science, bioclimatology, epidemiology, management science, statistics, applied mathematics 

and computer science) (Bergez et al. 2013).  

The first framework described the systemic representation of the farm production system 

(Figure 5.3). The production system is divided into three interactive sub-systems: i) the 

decision sub-system (manager or agent), which describes the farmer’s decision process as a 
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combination of knowledge about the system, objectives, and decisions; ii) the operating sub-

system (technical system), which translates the decision orders into action execution and 

dynamics of farm resources; and, iii) the biophysical sub-system, which describes interactions 

between physical and biological elements, in particular the relations between ground water, 

soil, and plant growth and development (Clouaire and Rellier 2009; Le Gal et al. 2010; Dury 

2011; Akplogan 2013). The farming system interacts with an external system that simulates 

pressure and conditions in the farming environment such as rainfall (WEATHER) and market 

prices (MARKET), and specifically in an Indian context, such as electricity service 

(ELECTRICITY) and the village source of labor and equipment (VILLAGE).  

The second framework aimed to organize the decision sub-system (Figure 5.3). We considered 

farmers as cognitive agents able to think, memorize, analyze, predict and learn to face future 

events and plan their actions (Le Bars et al. 2005). In artificial intelligence and cognitive 

sciences, cognitive agents are commonly represented as Belief-Desire-Intention (BDI) agents 

(Bratman 1987a; Rao and Georgeff 1991). “Belief” represents the agent’s knowledge of the 

system. We considered that farmers have three types of knowledge (Beliefs). The first two are 

structural knowledge, concerning farm structure, its organization and its characteristic 

resources (e.g., land, labor, equipment, and water), and procedural knowledge, concerning 

farmers’ know-how about farming. With experience, farmers have a basis for deciding and 

planning their actions. In our approach, procedural knowledge corresponds to the plan library 

of Georgeff’s Procedural Reasoning System (Rao and Georgeff 1991). The third type is 

observed knowledge, describing the data that farmers obtain by observing and monitoring 

changes in the farming environment (e.g., field observations, market monitoring, weather 

predictions, opportunities to hire labor and rent equipment). “Desires” represents the farmer’s 

objectives or satisfying goals. The 27 interviewed Indian farmers of the first survey asserted 

they manage their farms to maximize profits and improve their financial situation by selling 

cash crops. Optimizing crop production can encourage farmers to improve or invest in 

irrigation systems. They face a delicate tradeoff among investing in a borewell, adopting new 

technologies to increase income with a more productive cropping system, accumulating debts, 

and risking system failures. “Intentions” represents the farmer’s plans for actions to achieve 

objectives (Desires) by knowing the status of the system (Beliefs). “Intentions” are the 

decisions farmers must make at strategic, tactical and operational stages.  

5.2.3. Conceptual validation  

Conceptual validation is essential to ensure that the assumptions,  theories and simplifications used to 

build the conceptual model are sufficiently accurate and relevant to to meet the stakeholders’ 

requirements and the objectives of the study (Costal et al. 1996; Borenstein 1998; Liu et al. 2011).  To 
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validate the conceptual model, we used: i) face validation that consists in asking experts and 

individuals knowledgeable about the study objectives to evaluate the conceptual model and determine 

whether it is correct and reasonable for the study purpose; and ii) traces techniques that consists in 

tracking of entities through each sub-model and the overall model to determine whether the model’s 

logic and the necessary accuracy maintained (Robinson 2010; Sargent 2010; Robinson 2014). 

Conceptual validation is inherently an informal process referring to subjective and human judgement.  

Each sub-model and the overall model must be evaluated to determine if they are reasonable and 

correct. First, we applied White-Box validation to the sub-models to determine whether each 

constituent part of the conceptual model represents the real world with sufficient accuracy to meet the 

study objectives (Robinson 2014). Each sub-system was validated by experts in the associated 

research field. Experts and modelers were essential for building the decision sub-model. Modelers 

ensure that decision processes are appropriately designed into the chosen framework and formalisms. 

Indian agronomic researchers validated the decision rules for crop management and adaption. We also 

asked Indian researchers from the research project to participate to the validation of each sub-model as 

main stakeholders on the project and to certify the representation and data used to build the external 

system. 

Second, we applied Black-Box validation to the overall model to determine whether the model provide 

a sufficiently accurate representation of the real world for the intended purpose of the study (Robinson 

2014). The entire system was validated by experts on the different sub-systems, modelers and the 

Indian researchers.  They worked on the consistency between inputs and outputs of each sub-system to 

ensure rational interactions between systems. Specifications of each sub-model were circulated among 

those who have a detailed knowledge of the system. They shared feedbacks on whether the model was 

appropriate by determining if the appropriate detail and aggregate relationships were used for the 

model’s intended purpose. 

Finally, information-technology engineers from the RECORD platform verified the feasibility of the 

model for future computer implementation. Once the conceptual model will be implemented under the 

modeling and simulation RECORD platform, the validation of the conceptual model will also be 

expanded with model simulation validation technique. 

5.3. A CONCEPTUAL MODEL OF PRODUCTION SYSTEMS ON INDIAN FARMS 

5.3.1. What should be modeled  

Three major decisions to represent 

We identified three major technical decisions that need to be represented in the model.  
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Type 1: Investing in access to irrigation is essential to expect increase farm irrigation capacity and 

improve farm productivity. However, it is expensive, and farmers must consider if it is worth 

becoming indebted to increase their income from irrigated cash crops. Hence, it is a crucial 

decision that would impact the entire farm production system in the long term.  

Type 2: The choice of crops and the design of the cropping system are major decisions in crop 

farming. Crop rotations are usually defined in the long-term but can be adapted once 

information about weather and prices becomes more accurate.  

Type 3: The realization of crop management operations depends on major decisions on cropping 

practices, timing and adaptation. Adjusting the timing of crop operations and the amount of 

inputs are key mechanisms for farmers when adapting to unpredicted weather events and labor 

and equipment availability. In addition, at our study site, it is not uncommon for farmers, to 

ensure a minimum income, to decide to destroy a failed crop after a few weeks and sow a 

shorter-cycle crop, as soon as enough time remains within the season. Resource-use conflicts 

between operations force the farmer to make daily decisions about the type, timing and 

location of operations. 

Three temporal dimensions of decision-making processes to represent 

Farmers make decisions at different stages of the decision-making process.  

Stage 1: The strategic decision stage is the moment when farmers make a decision at the beginning of 

the year that will have a long-term effect on organization of the entire farm for the next 15-20 

years.  During this stage, farmers decide whether to invest in irrigation equipment to optimize 

their profit. They also select the corresponding cropping system and associated crop 

management operations (e.g. land preparation, sowing, fertilization, irrigation, harvest) that 

will ensure the best income for their long-term climatic and price expectations. For practical 

reasons we fixed the beginning of the year at the 1st of January. 

Stage 2: The tactical decision stage is the moment when farmers make a decision at the beginning of 

each cropping season (1st of June in kharif, 1st of October in rabi and 1st of February in 

summer) that will have a medium-term effect on the entire season. This stage establishes the 

cropping system adopted for the season. Farmers integrate new observed knowledge about 

climate and prices so that the cropping system initially selected in the strategic stage may no 

longer best optimize their income. They review their crop selection and match the best 

practices to obtain the best cropping system for the known farming conditions.   
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Stage 3: The operational decision stage covers the entire season at a daily time step. From the cropping 

system selected in the tactical stage, farmers decide and adjust their daily crop operations in 

each plot depending on climate conditions and resource constraints. 

In NAMASTE, information is exchanged between systems as follows (Figure 5.3): 

1) At the beginning of the year (1st of January), farmers review their expectations by observing 

the trends in rainfall, prices and groundwater level. Information is forwarded from the external 

system to the decisional part of the agent through the operating system. Farmers update their 

observed knowledge and select the best investment to meet their objectives. 

2) At the beginning of the kharif season, farmers search for recent information about rainfall, 

market prices and groundwater level. Farmers obtain more accurate forecasts of rainfall3 than 

the general trend for the monsoon provided at the beginning of the year. Farmers also monitor 

market prices and borewell yield before a crop season begins. An expectation of higher crop 

prices or irrigation water availability helps them decide whether they will favor high market-

value crops (e.g. cash crops) or high water-demand crops (e.g. long-term crops such as 

turmeric, banana, and sugarcane). The decision to adapt their cropping systems is based not 

only on maximizing profit but also on social, economic, and environmental constraints. Their 

decisions may depend on their farm structure (e.g. equipment type, plot organization, farm 

size), their resources (e.g. access to irrigation, water-resource diversification), their farm 

geographic features (e.g. village; proximity to forest, roads, and markets) and their social 

characteristics (e.g. castes, family structure, education, off-farm job). Once again they update 

their observed knowledge and review the list of crops to grow for each plot (bele) for the 

given season. 

3) Farmers check the rainfall and groundwater daily to decide when to start an operation (e.g. 

land preparation, sowing, fertilization, and irrigation). They manage labor and equipment 

resource allocation between plots via the operating system. Some labor comes from members 

of the household who work full- or part-time on the farm. However, most are hired from the 

village. Farmers have to check that enough labor is available in the village for each operation. 

Some farmers have their own tractor and bulls and are not constrained by this resource for 

land preparation; others must rent a tractor and/or the bulls to prepare the land. Like for labor, 

they depend on the availability of equipment at the village level. Based on their updated 

observed knowledge, they decide and send an operation to the operating sub-system. The 

operating system interacts with the crop and soil system to perform the action. The crop 

system returns updates on crop growth and soil characteristics to the operating sub-system. 

Observations of operation success or failure allow farmers to proceed or not toward the next 
                                                      
3 The India Meteorological Department and private weather forecasting companies provide seasonal forecasts on 
their websites at national and regional scales. 
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operation and re-initiate the observation-update-action-execution-crop loop. The water 

pumped daily and the phenomena of recharge and percolation are transferred to the 

groundwater system.    

4) At the beginning of the rabi season, the model re-runs the tactical decision processes. Once 

crops are selected, the operational decision processes lead to crop operations from land 

preparation to harvest. At the beginning of the summer season, the model re-runs the tactical 

decision processes, followed by the operational decision processes when it is decided to grow 

crops. 

The entire process is repeated the following year (i.e. strategic, tactical, and operational kharif; tactical 

and operational rabi; and tactical and operational summer).  

5.3.2. Modeling in NAMASTE 

Three formalisms to describe the three decisions 

1) Formalism 1: Stochastic dynamic programming formalism for the investment decision  

We developed an economic model to represent the decision about irrigation equipment and to simulate 

cropping system adaption after the investment (details are found in Robert, Bergez, et al. (in Prep.). To 

simplify the notation (Table 5.1), we present the formalism for a single, representative farmer so that 

the only indexes used are for time periods (year indexed by t, season indexed by τ). Each year t, t= 1, 

2,…,T, farmers must decide whether to invest in irrigation equipment. Investment 𝐼𝑡 can include 

redrilling an existing borewell to have a higher water column so that irrigation lasts longer without 

changing pumping yield, drilling a new borewell to have an additional source of water for irrigation 

and increase pumping yield, or purchasing a new pump to increase pumping capacity. Investment in 

irrigation is an additional component of the existing irrigation capital stock which, in the extreme case 

of non-irrigation, can be zero. The unit cost of investment in irrigation at year t, denoted 𝑟𝐼𝑡, 

corresponds to the interest rate on loans for investment. Investing in a borewell takes time and is 

costly, which implies that farmers obtain loans, and we assume that only one investment is possible 

each year. We make the simplifying assumption that investment only occurs at the beginning of the 

year, i.e., 1st of January 

Farmers optimize their decisions over a long time period and consider the consequences of today’s 

decisions about investment in irrigation on future water availability, denoted �̅�𝑡, and cropping 

systems. Farms have a set of plots (bele) indexed by b, b = 1, 2, …, B. Crop failure is common due to 

difficult cropping conditions (e.g. drought, delayed monsoon, animal damage). To account for crop 

failure, we divided agricultural seasons into six sub-seasons, two per main season: τ = 𝑘1, 𝑘2, 𝑟1, 𝑟2, 

𝑠1, 𝑠2. A crop c, c=1, 2, …, C can be irrigated and/or rainfed, grown in kharif and/or rabi and/or 
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summer, which generates several management plans (see section 3 entitled “Formalism 3: Graph of 

activities for crop management decisions”), on operational decisions). Crop selection is highly 

influenced by the farmers’ expectations for rainfall and water available for irrigation. Farmers preview 

and organize their irrigated area. The irrigable area depends on the type of crops grown. Borewell 

water is distributed to irrigated crops. Irrigated crops are long-term crops (11-month to three-year 

crops such as turmeric, banana, sugar cane) or short-term crops (less than 11 months). Long-term 

crops are high water- demanding crops. Short-term crops may (onion, garlic) or may not be (cabbage, 

beetroot, other vegetables) high water-demanding. Rainfed crops are for selling (sunflower, marigold, 

watermelon) or for subsistence (sorghum, finger millet, pulses). Field evidence from the 27 interviews 

and the 52 experimental plots indicates that priority is given to long-term crops, then to high-water-

demanding short-term crops and finally to other irrigated short-term crops. 

Available water volume for farmer �̅�𝜏 and season τ depends on several technical features, including 

daily electricity distribution (hours per day), depth of the well, water pump horsepower, and water 

table level. �̅�𝜏 is provided by the model pump from the biophysical sub-system of the farm. 𝐶𝑊𝜏 

denotes unit cost of water (excluding possible loan repayments) at time τ. Older irrigation equipment 

is more prone to failure and to need repairs and is likely to lose efficiency over time. Consequently, we 

expect total available water �̅�𝑡 to decline over time if capital remains unchanged. 

Choice of investment is a long-term decision based on farmer’s expectations for rainfall, prices, and 

seasonal water table changes. Expectations for rainfall and the water table are considered qualitative 

expectations, indexed by a. Farmers expect a season’s rainfall and groundwater level to be either poor, 

below average, average, above average, or good. We represented qualitative expectations with a 

discrete distribution: 

𝐸𝑡−1(𝑅�̃�) = 1

𝐴
 ∑ 𝜃𝑎𝜏

𝐴
𝑎=1 𝑅𝑎�̃�  and 𝐸𝑡−1(𝐺𝑊𝜏

̃ ) = 1

𝐴
 ∑ 𝜑𝑎𝜏

𝐴
𝑎=1 𝐺𝑊𝑎�̃�  

where 𝜃𝑎𝜏 is the subjective probability of the discrete realization of the climate event 𝑅𝑎�̃�, and 𝜑𝑎𝜏 is 

the subjective probability of the discrete realization of the groundwater level event 𝐺𝑊𝑎�̃�. Concerning 

the farmer’s expectations for future crop prices, we assumed they are based on past market prices 

𝑃𝑐,𝑡−1 at year t-1 on crop c, such as myopic expectations for prices: 

𝐸𝑡−1(𝑃𝑐,�̃�) = 𝑃𝑐,𝑡−1. 

The farmer’s strategic decision is fully dynamic because today’s decision about investment will 

influence water availability in future periods and thus the crop choice. The dynamic model is written 

straightforwardly as a stochastic dynamic programming problem by considering that 𝑊𝑡 is an observed 

state variable, and that investment 𝐼𝑡, crop choice c and the proportion of available water 𝑃𝑊𝑏𝜏 to each 

plot b are control (discrete and continuous) variables.  

The farmer’s strategic decision is written: 
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max𝐼𝑡
𝐸�̃� 𝐸𝐺�̃�𝐸�̃� ∑ (1 + 𝑟)−𝑡𝑇

𝑡=1 {max𝛿𝑏𝑐𝜏
[∑ ∑ ∑ 𝛿𝑏𝑐𝜏𝜋𝑐𝑏𝜏

𝐶
𝑐=1

𝐵
𝑏=1

𝑠2
𝜏=𝑘1

] − 𝑟𝐼𝑡𝐼𝑡}, 

where r is a known discount rate, 

𝜋𝑏𝑐𝜏 = [𝜽𝑷𝒄,�̃�
𝑃𝑐,�̃� ∗ 𝜽𝒚𝒄𝒃𝝉

𝑦𝑐𝑏𝜏(𝑅�̃�, 𝑊𝑏𝑐𝜏, 𝑋𝑐𝑏𝜏) − 𝑟𝑋𝑐𝑏𝜏
𝜽𝑿𝒃𝒄𝝉

𝑋𝑏𝑐𝜏 − 𝐶𝑊𝜏𝑊𝑏𝑐𝜏], 

Such that  

∑ ∑ 𝛿𝑏𝑐𝜏𝑊𝑏𝑐𝜏

𝐶

𝑐=1

𝐵

𝑏=1

≤  �̅�𝜏 , ∀𝜏 

where  

𝛿𝑏𝑐𝜏 = {1 if crop 𝑐 is grown on plot 𝑏 at time τ
0 otherwise                                                  

 

𝑦𝑐𝑏𝜏 denotes the yield at time τ for crop c on plot b that depends on rainfall 𝑅�̃�, irrigation 𝑊𝑏𝑐𝜏 and 

production costs 𝑋𝑐𝑏𝜏 (inputs). Variables 𝜃𝑃𝑐,�̃�
, 𝜃𝑦𝑐𝑏𝜏

, 𝜃𝑋𝑏𝑐𝜏
 are penalty factors on crop prices, yield 

and production costs, respectively, due to social, economic, and environmental constraints. These 

factors are used to introduce additional farm-specific fixed costs on inputs and/or farm- and crop-

specific crop yield factors and/or shifts in crop price; their purpose is to incorporate a more realistic 

representation of cost and crop yield beyond the representative farmer paradigm. These penalty factors 

are discussed in more detail in section 2 entitled “Formalism 2: IF-THEN-ELSE decision rules for 

crop selection and adaptation”), on tactical decisions.  

Crop yield 𝑦𝑐𝑏𝜏 results from agricultural management rules that are operational decisions made at a 

daily scale and detailed in section  3 entitled “Formalism 3: Graph of activities for crop management 

decisions”). The strategic model interacts with the operational model. It provides specific cropping 

conditions for a crop as input data to the operational model and receives the output data on yield. 

Let 𝜋𝑡
∗(𝐼𝑡, 𝑊𝑡 , 𝑅𝑡 , 𝑃𝑡) be the maximum profit for a given investment in irrigation 𝐼𝑡 for year t,  

𝜋𝑡
∗(𝐼𝑡, 𝑊𝑡 , 𝑅𝑡 , 𝑃𝑡) = max𝛿𝑏𝑐𝜏

[∑ ∑ ∑ 𝛿𝑏𝑐𝜏𝜋𝑐𝑏𝜏⃒ 𝐼𝑡 , 𝑊𝑡  𝐶
𝑐=1

𝐵
𝑏=1

𝑠2
𝜏=𝑘1

] . 

The stochastic dynamic programming problem can be solved using a variety of methods. Since no 

condition is imposed a priori on the terminal level of water availability or irrigation capital stock, we 

assume that it is an infinite horizon problem. A typical way to solve an infinite-horizon problem is the 

collocation method applied to the Bellman equation for dynamic programming. The problem above 

can be written equivalently in terms of the value function V(𝑊𝑡):  

V(𝑊𝑡)  =  max𝐼𝑡
{𝜋∗(𝐼𝑡, 𝑊𝑡 , 𝑅𝑡 , 𝑃𝑡) − 𝑟𝐼𝑡𝐼𝑡 + (1 + 𝑟)−1𝐸�̃�𝐸𝐺�̃�𝐸�̃�V(𝑊𝑡+1) }  ∀𝑡, 

where  

𝑊𝑡+1 =  𝐸�̃�𝐸𝐺�̃�𝑓(𝑊𝑡 , 𝐼𝑡, 𝑅𝜏+1̃, 𝐺𝑊𝜏+1)̃ . 
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The value function, taking the state variable as a single argument, is conveniently approximated by a 

widely-used method based on Chebychev polynomials (see Bertsekas, 2011). The optimization 

problem is solved simultaneously in the optimal values of control variables and the Chebychev 

coefficients of the parametric approximation of the value function. 

Each year farmers make decisions about irrigation investment and crop allocation to achieve the 

highest long-term profit, given the impact of current investment on future income streams (through 

modified water availability from investment in irrigation).  

Based on the 27 interviewed farmers and expert assessments, crop choices were clearly dependent on 

irrigation water access. The survey of 680 farms showed that some farmers had till 12 borewells on 

their farm. We deduced that increase the farm irrigation capacity is an implicit decision in farmers’ 

strategy.  To structure our model, we identified four steps in the farmers’ investment decision plan: 

Step 1: Farmers form expectations for future crop prices, rainfall and water table level in their 

borewell.  

Step 2: They decide whether to invest in upgrading their irrigation equipment.  

Step 3: Given the possibly upgraded equipment, farmers decide which crops to grow on their plots for 

each sub-season τ that will not only maximize their profit in the long term but also consider the social, 

economic, and environmental constraints that may influence crop price, production costs and yield 

(penalty factors) (see section 2 entitled “Formalism 2: IF-THEN-ELSE decision rules for crop 

selection and adaptation”), on tactical decisions).  

Step 4: On each plot and for each sub-season τ, given the irrigation equipment and the selected crop, 

farmers apply a set of agricultural management rules (see section 3 entitled “Formalism 3: Graph of 

activities for crop management decisions”), on operational decisions) to obtain the “best” crop yield, 

conditional on actual climatic and groundwater table conditions.  

2) Formalism 2: IF-THEN-ELSE decision rules for crop selection and adaptation 

A formal way to describe decision-making in the medium- or short-term in a simulation model is to 

state decision behavior through a set of decision rules. Decision rules use a specific descriptive 

language whose syntax is based on formal IF-THEN-ELSE rules, which have three main sections 

(Donatelli et al. 2006): i) an input or indicator, which refers to the state of the system (e.g. 

physiological state, air temperature, leaf area index); ii) a parameter or threshold (e.g., minimum 

temperature, soil moisture threshold to trigger irrigation); and, iii) a true/false output leading to an 

action (e.g., start irrigation, start sowing). It is written as a Boolean condition: 

“IF<indicator><operator><threshold> THEN <action1> ELSE <action2>”. A decision rule forms the 

elementary block of a decision model, and the aggregation of elementary rules builds the structure of 

the decision rule-based model.  
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Decision rules describe decision-making processes by dynamically relating the state of the simulated 

system (input or indicator) to decisions that trigger actions (true/false output) based on predefined 

conditions and threshold values (Bergez et al. 2006). The actions performed are considered to 

originate from a reactive behavior of the decision-maker since they depend on climatic conditions, the 

state of the system, and the calendar date. 

The analysis of the 680 surveys and associated typology showed that crop choice depends on social 

characteristics such as the caste, the panchayat, the structure of the household, and the farmer 

education. The 27 interviewed farmers also highlighted economic and agronomic necessary conditions 

for their crop choice decisions such farm size, market prices, contract opportunities offered by 

marigold companies, grain stocks, farm location from a local market,  a main road, or a forest,  rainfall 

expectations or monsoon expectation,  borewell yield and  farm equipment. 

We give three examples of decision rules to better explain this concept: 

 In kharif, when farmers have plot b near road 𝑏𝑟𝑜𝑎𝑑, they will likely grow beetroot, with the 

expectation of obtaining harvest contracts when the crop ripens. Otherwise, they will grow a 

vegetable that is expected to bring a higher profit (i.e., tomato, bean, potato), which is an easy 

option for obtaining cash rapidly by being sold at local markets. We translated this into the 

following decision rules: 

IF 𝑏𝐾1
= 𝑏𝑟𝑜𝑎𝑑  {   

           𝑐𝑏𝐾1
=  beetroot}  

𝐸𝐿𝑆𝐸 {  

            IF 𝜋𝑡𝑜𝑚𝑎𝑡𝑜 𝑏𝜏 > 𝜋𝑏𝑒𝑎𝑛 𝑏𝜏 & 𝜋𝑡𝑜𝑚𝑎𝑡𝑜 𝑏𝜏  >   𝜋𝑝𝑜𝑡𝑎𝑡𝑜 𝑏𝜏 {     

          𝑐𝑏𝐾1
=  tomato}  

           𝐸𝐿𝑆𝐸 {  

                     IF 𝜋𝑏𝑒𝑎𝑛 𝑏𝜏 >  𝜋𝑡𝑜𝑚𝑎𝑡𝑜 𝑏𝜏   & 𝜋𝑏𝑒𝑎𝑛 𝑏𝜏  >   𝜋𝑝𝑜𝑡𝑎𝑡𝑜 𝑏𝜏 {   

                                                                             𝑐𝑏𝐾1
=  bean}  

                      𝐸𝐿𝑆𝐸 {   

                                 𝑐𝑏𝐾1
=  potato}                       

        }  

            }  

 If farmers use drip irrigation, they prefer to grow banana rather than turmeric because it is 

easier and cheaper to maintain drip irrigation in the same plot for three years (the banana 

growth period) than to remove and replace the irrigation lines after 11 months (the turmeric 

growing period). We translated this into: 

IF 𝐸𝑄𝑈𝐼𝑃𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 =  drip {   

    𝑐𝑏𝜏
=  banana}  
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𝐸𝐿𝑆𝐸 {    

  𝑐𝑏𝜏
=  turmeric}   

 Farms located a distance d less than one kilometer from the forest experience wild animal 

damage that dramatically reduces their yields of cereals and millets (sorghum and finger 

millet). Thus, on rainfed plots, farmers prefer to grow fiber crops (cotton) or flowers under 

contracts (marigold). We translated this into: 

IF d ≤  1 &  𝜋𝑚𝑎𝑟𝑖𝑔𝑜𝑙𝑑 𝑏𝜏  > 𝜋𝑐𝑜𝑡𝑡𝑜𝑛 𝑏𝜏{        

       𝑐𝑏𝐾1
=  marigold}   

𝐸𝐿𝑆𝐸 {  

 IF d ≤  1 & 𝜋𝑐𝑜𝑡𝑡𝑜𝑛 𝑏𝜏   > 𝜋𝑚𝑎𝑟𝑖𝑔𝑜𝑙𝑑 𝑏𝜏 {         

       𝑐𝑏𝐾1
=  cotton}   

 𝐸𝐿𝑆𝐸 { 

            𝑐𝑏𝐾1
=  sorghum}  

}  

Decision rules express the conditions under which farmers favor one crop over another. These 

conditions influence crop price, production costs and yield to the point that they economically force 

farmers to favor a specific crop. In the first example, proximity to the road increases the chances that 

passing merchants will offer harvest contracts when beetroots ripen. These contracts ensure that 

farmers have a fixed price and free them from harvesting; so, no labor or time costs occur at harvest. 

Fixing the price minimizes risks of variability at selling, reduces labor and time at harvest, and 

decreases production costs. In the second example, selecting three-year crops, such as banana, allows 

farmers to maintain the drip equipment during the entire production time, while with yearly crops, 

irrigation lines must be removed and replaced each year. Thus, maintaining lines for a longer time 

reduces investment in new lines, is less time consuming, and reduces production costs. Wildlife 

damage to cereals and millet decreases crop yield, which directly determines profit.  

We integrated these tactical decision rules into the strategic model via penalty factors on crop prices, 

yield and production costs (θPc,τ̃
, θycbτ

, θXbcτ
, respectively). It ensures that the strategic model selects 

a cropping system though an economic approach constrained by social, agronomic and economic 

characteristics other than just prices and costs like it is common in profit optimization approaches (see 

section 1 entitled “Formalism 1: Stochastic dynamic programming formalism for the investment 

decision”). Thus, it incorporates a more realistic representation of cost and crop yield beyond the 

representative farmer paradigm. 

Crop selection is planned in two steps: 
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Step 1: At the beginning of each season (kharif or rabi or summer), farmers update their expectations 

for future crop prices, rainfall and water table level in the borewell based on the new information they 

obtained from the biophysical and external systems.  

Step 2: Depending on whether their expectations for borewell yield, rainfall, and prices for the season 

have changed since the beginning of the year (1st of January), they review their cropping system. 

Farmers apply the decision framework used to determine the strategic decisions. They select the 

cropping system that maximizes their profit while following decision rules that were formerly 

expressed through penalty factors during the optimization process.  

3) Formalism 3: Graph of activities for crop management decisions 

Operational decisions lead to the technical production activities that the farmer performs at the plot 

level. Based on prior experiences, goals and the expected likelihood of significant events, the farmer 

reflects on a work plan that coordinates the combination of activities to be performed and manages 

resources at the farm scale. Hence, we considered work activity the basic unit of analysis. To identify 

crop management activities, we used data from multiple surveys and studies. First, the 52 monitored 

experimental plots provided observed quantitative data about crop production and crop management. 

Then the interviews of 27 farmers helped in identifying decision rules for crop operations. We also 

surveyed seed retailers and Panchayats (village leaders) to learn about recommended crop 

management  

The design of the conceptual operational decision model is greatly supported by the decision 

formalism in the RECORD platform (Bergez et al. 2013). In RECORD’s decision formalism, the 

agent system is composed of a knowledge base and a graph of activities. The knowledge base collects 

information that the farmer obtains from the biophysical sub-system when monitoring and observing 

the environment. The graph of activities represents the farmer’s work plan and relies on the knowledge 

base to activate or disable technical operations. An activity denotes a task, which is something to be 

done to a biophysical object or location (e.g. sowing operation). Rules control the start of the activity 

by ensuring conditions necessary to perform the operation. A deeper description of this formalism is 

found in Bergez et al. (2016).   

Integrated into the graph of activities is the well-known sequence of crop management: land 

preparation, sowing, irrigation, fertilization, pest treatment, weeding and harvest. Take the example of 

a simplified crop management composed of two steps: sowing and harvesting. Under rainfed 

conditions in the Berambadi watershed, sunflower should be sown between April 8 and June 20. Three 

rules may determine the shift in state from “wait” to “start”. The first tests for optimal conditions, the 

second relaxes the conditions, and the third forces the activity to start. Ideally, the farmer will start 

sowing when soil characteristics (moisture and temperature in the upper 15 cm) are favorable for seed 
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germination and if at least 40 mm of rain fell in the past 10 days. If sowing has not occurred by June 1, 

the farmer relaxes the threshold condition for rainfall to 10 mm. In the worst case, if sowing has not 

occurred by June 19, the farmer will sow on June 20 regardless of the soil and weather conditions. The 

sowing activity is written as follows: 

Activity = sowing 

State = wait 

Precedence effect = start when previous harvest is finished 

Earliest beginning date =April 8 

Latest beginning date = June 20 

Optimal rule: 

Soil moisture: soil water reserve/soil capacity>= 0.6 

Soil temperature: temperature>= 6 𝐶 ̊ 

Rainfall: ∑ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙(𝑑𝑎𝑦 − 𝑗) ≥ 40 𝑚𝑚10
1   

Relaxed rule: 

Relaxed date = June 1 

Rainfall: ∑ 𝑃𝑃(𝑑𝑎𝑦 − 𝑗) ≥ 10 𝑚𝑚10
1  

Forced rule: 

Forced date: June 20 

Output Function: 

Sowing density: density = 16 seeds/m² 

Sowing depth: depth = 6 cm 

Harvest makes sense only if sowing has occurred (precedence effect). It can start from August 8 to 

October 15; the crop stage should last 80-110 days after sowing, and no rain can have fallen in the past 

two days. In bad conditions, the farmer will always harvest after 110 days after sowing. The harvest 

activity is written as follows: 

Activity = harvest 

State = wait 

Precedence effect = start when sowing is finished 

Earliest beginning date =August 8 

Latest beginning date = October 15 

Optimal rule: 

Minimum crop stage = sowing date + 80 days 

Maximum crop stage = sowing date + 110 days 

Rainfall: ∑ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙(𝑑𝑎𝑦 − 𝑗) < 1 𝑚𝑚2
1   

Forced rule: 

Forced crop stage: sowing date + 110 days 
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Besides having flexibility in timing, Indian farmers adapt their plans when the risk of crop failure is 

too high. Farmers check the sowing conditions and, instead of forcing sowing, change the crop. After 

sowing, farmers monitor germination and check whether it is worth letting the crop grow. They may 

reseed the crop, remove it and change the crop, or leave it as-is. This reactive behavior can be modeled 

into the graph of activities. When sowing cannot be performed within the time window, the activity is 

detected to have failed. Then, the output functions cancel the subsequent planned activities and load a 

new plan for the new crop. At germination, the farmer considers field observation as an activity to 

perform after sowing. The Boolean condition tests whether the germination rate exceeds 60%. If false, 

the output function will likewise cancel subsequent activities and load a new plan to manage the new 

crop. The germination activity check is written: 

Activity = check germination 

State = wait 

Precedence effect = start when sowing is finished 

Earliest beginning date =April 18 

Latest beginning date = June 30 

Optimal rule: 

Minimum crop stage = sowing date + 10 days 

Maximum crop stage = sowing date + 10 days 

Germination: germination rate ≥ 60%  

Output function: 

Fail plan: for all activities with state=wait, do state=failed 

Load new plan: load new graph of activities 

We summarized the crop management plan of the three activities described above (sowing – 

germination check – harvest) as a decision tree to help see all possible situations that depend on the 

conditions (Figure 5.4). Notice that when germination fails, the subsequent activity of the plan 

(harvest) also fails; in this case, a new graph of activities (crop management plan) is loaded.  

To ensure consistency with the dynamic process of investment decisions (see section 1 entitled 

“Formalism 1: Stochastic dynamic programming formalism for the investment decision”) ,yields 

within the profit function come from the graph of activities process used to decide about crop 

operations. 

The farmer’s crop management decision plan is as follows: 

Step 1: Once farmers choose the crop to grow on each plot at the beginning of the season (kharif or 

rabi or summer), they check external and biophysical conditions daily to decide whether conditions are 

favorable to start land preparation.  

Step 2: When conditions are favorable, they check whether resources (labor and equipment) are 

available to perform the operation.  
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Step 3: When conditions are favorable and resources are available, farmers plow the plot; otherwise, 

the operation’s priority for the resource increases so that the next time conditions are favorable, it has 

first priority. 

Step 4: Once an operation is performed or the time window in which the operation should have 

occurred is over, the next operation (sowing) may start. Once again, farmers check conditions and 

resources to decide when to initiate it. 

Farmers repeat these steps until the end of the plan (i.e., harvest). 

Integrating formalisms within the three dimensions of the decision-making process 

In NAMASTE, the three stages of the decision-making process are described as three decision models 

(Figure 5.5). 

1) The strategic model simulates the strategic decision stage of the farmer. The model integrates the 

three formalisms so that at the beginning of the year (1st of January), the strategic decision phase 

for investment in irrigation equipment uses the crop selection and decisions about cropping 

operations to estimate yield, production costs, income, and profit. 

2) The tactical model simulates the tactical decision stage of the farmer. The model integrates the 

three formalisms so that at the beginning of the season (kharif, rabi or summer), the profit 

optimization formalism is re-run with the irrigation investment chosen and uses the crop selection 

and decisions about cropping operations to estimate yield, production costs, income, and profit 

using updated information about the environment. 

3) The operational model simulates the operational decision stage of the farmer. The model uses the 

formalism for cropping operations each simulated day to decide about crop management. 

5.3.3. Description of the other systems in the model 

The biophysical system 

1) The crop model 

The crop and soil system is represented by the STICS model. STICS is a dynamic model that 

simulates, at a daily time-step, the operating of a crop-soil system over one or several crop cycles 

(Brisson et al. 1998). It was selected for its adaptability to many crop types, its robustness in a wide 

range of soil and climate conditions and its modularity (Brisson et al. 2003). It has been successfully 

used in spatially explicit applications and coupled with hydrological models at the watershed scale 

(Beaujouan et al. 2001). 
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During a simulation, STICS considers the crop, crop-management practices and environmental limits, 

such as water and nitrogen stress. It predicts crop growth and harvest and environmental dynamics, 

such as water drainage and nitrogen leaching. 

Using the Generalized Likelihood Uncertainty Estimation approach, crop parameters for leaf area 

index, biomass and yield production were estimated for the main crops of the Berambadi watershed so 

that the calibrated STICS simulated crops and root-zone soil moisture relatively accurately (Sreelash et 

al. 2013). STICS receives the crop operations and parameters applied to the plot from the operational 

decision model. It returns information about crop stage, yield, soil characteristics and water uses and 

drainage. 

2) The hydrological system  

The hydrological system is represented by two coupled models: 

 AMBHAS (Tomer 2012) is a distributed groundwater model that simulates dynamics of daily 

groundwater level. The model is based on equations from McDonald & Harbaugh (1988). It 

predicts daily groundwater level, actual net recharge and discharge. Net recharge is predicted 

from the amounts of water drained below the soil profile and required for crop irrigation 

predicted by STICS. 

 The PUMP model couples STICS and AMBHAS to predict the water available for irrigation, 

based on the groundwater level predicted by AMBHAS and the electricity available from the 

ELECTRICITY model. First, it calculates water table depth below the  soil surface as: 

 WaterTableDepth = max (0.0, Altitude – H (-1)) 

It estimates pump flow as: 

 PumpFlow = 0 if WaterTableDepth > WellDepth 

 PumpFlow = max(0, 79.9308 × WaterTableDepth−0.728) 

Finally, it predicts the water available for irrigation based on the pump flow and pumping 

duration: 

 AvailableWater = max(0.0, PumpFlow() × PumpingDuration() 

The operating sub-system 

The operating sub-system transforms the farmer’s decisions into executable actions on the biophysical 

sub-system. Executing the decision is a physical process that disrupts the biophysical system. The 

operating system is the physical part of the agent, while the decision system is the cognitive part of the 

agent. It represents the physical act of going to the plot and executing an action (Cros et al. 2003; 

Martin-Clouaire and Rellier 2003; Cerf et al. 2009). 
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Each time the decision sub-system is activated, the decided activity and its requirements are handed 

over to the operating sub-system by posting an event to be performed in its agenda. The operating sub-

system looks for specific variables from the biophysical and external systems that are used by the 

execution conditions (predicates) of an activity and checks that requirements are met to execute the 

operation. The operating sub-system observes the external variables and calculates the data used by the 

predicates to verify whether the conditions allow the activity to be executed. 

The operating sub-system also manages allocation of the farm’s physical resources. It operates as a 

mediator that dynamically manages conflicts between activities by using rules to allocate resources 

and determine the order in which activities will be executed.  Prioritization is supervised by rules that 

define a temporal ranking among activities that may be executed simultaneously (e.g. sowing has 

priority to harvest, irrigation has priority to weeding) . Ranks can be reviewed by other rules that 

update the priority.   

The operating sub-system informs the decision system that an activity has been executed or failed to 

be executed so that the decision system can proceed with the plan or adapt it. It also serves as the 

interface that monitors the plot and observes the biophysical and external systems. Observations 

concern the effects of activities on the biophysical sub-system and on the pool of resources, and also 

on the natural changing states of the systems. 

The external system 

1) The climate 

Daily and expected rainfalls are simulated by the WEATHER model. Climatic series are obtained 

from a local meteorological station and water gauges. Concerning future climate, farmers form 

subjective distribution that takes the form of a discrete distribution based on past events.   

2) The market 

Current and expected crop market prices are simulated by the MARKET model. Price series are 

obtained from the Indian Department of Agricultural Marketing and Karnataka State Agricultural 

Marketing Board. For each market, the model provides the commodity, the variety, the grade, and the 

volume of arrivals on the market and the minimum, maximum and median prices for the day.   

Expectations formed by farmers on future crop prices are myopic and based on past realizations of 

market prices. 
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3) The village 

Each village has a labor pool and an equipment pool for crop production. All farmers in the village use 

labor and equipment from the village. Certain activities, such as weeding and harvesting, require so 

much labor that two or three farmers can use all of the day’s available labor. Farming activities depend 

on neighboring farmers’ practices. We observed a rotation of labor and equipment among farms in the 

village. The VILLAGE model manages the labor and equipment among all village farmers. It acts as a 

resource manager and attributes resources to the first enquirer. This resource planning is performed at 

the village scale and interacts with the operating decision model of each farmer in the village.  

4) The power supply 

The ELECTRICITY model predicts the number of hours of electricity available daily. The model is 

particularly useful when testing scenarios of the temporal distribution and fees of electricity.   

5.4. DISCUSSION  

The agricultural research community has a particular interest in modeling farming systems. We 

identified three main ideas in the scientific literature that are interesting to consider when modeling a 

farming system:  i) a systemic representation is relevant (Martin et al. 2011b; Tanure et al. 2013), ii) 

dynamic processes bring the farming system to life (Bellman 1954; Mjelde 1986; Cerf and Sebillotte 

1988; Papy et al. 1988; Osman 2010), and iii) farmers’ decision-making processes are flexible and 

adaptive over time and space (Grothmann and Patt 2003; Smit and Wandel 2006; Darnhofer 2014). 

We developed an original representation of farming systems that integrates these aspects into a new 

conceptual model. Although it was built to address critical issues of groundwater management and 

farming practices in the semi-arid region of the Berambadi watershed, its structures and formalisms 

are well-suited to other farming systems. Indeed, the systemic representation of the farming system 

can be applied to any farming system that considers the farm as being composed of decisional and 

biophysical components that interact with an external system that simulates the pressure and 

conditions of the farming environment. The biophysical system is usually simplified to a crop growth 

model but can also include a groundwater or river model for irrigation systems. Climate and crop 

market prices are the basic components of the external system. 

An increasing amount of research considers farm management as a flexible and dynamic process. 

Basically, farmers adapt their practices to the biophysical sub-system and the external system. Our 

model allows the adaption of decisions in time (delay an operation) and considers crop failure for 

some operations (e.g., sowing, germination). Our approach would be particularly useful for models in 

semi-arid and arid areas with limited irrigation water access and high evaporative stress. The most 

interesting part of our model for future work is the decision sub-model itself. We used the basic 
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definition of Le Gal et al. (2011), which divides a decision into a set of interconnected decisions made 

over time and at multiple spatial scales.  

Sequential representation is particularly interesting and appropriate to model the entire decision-

making processes from strategic to tactical and operational decision (Risbey et al. 1999; Le Gal et al. 

2011). Decisions made at one of these levels may disrupt the initial organization of resource 

availability and competition among activities over the short term (e.g., labor availability, machinery 

organization, irrigation distribution) but also lead to reconsideration of long-term decisions when the 

cropping system requires adaptation (e.g., change in crops within the rotation, consequences on the 

effect of the previous crop). In the current agricultural literature, these consequences on long- and 

short-term organization are rarely considered, even though they appear an important driver of farmers’ 

decision-making (Daydé et al. 2014).  

In the long term, uncertain events are difficult to anticipate due to the lack of knowledge about the 

environment. A common way to address uncertainty in long-term decisions is to consider that farmers 

have reactive behavior due to insufficient information about the environment to predict a shock and 

should be modeled with a dynamic model (Heidhues 1966; Barbier and Bergeron 1999; Wallace and 

Moss 2002; Domptail and Nuppenau 2010). In the medium and short terms, the temporal scale is short 

enough that farmers’ expectations of shocks are much more realistic. Farmers observed new 

information about the environment, which provided more self-confidence in the event of a shock and 

helped them to anticipate changes. Anticipation is considered as a static process that is often modeled 

with a static model (Cros et al. 1999; Ripoche et al. 2011; Martin et al. 2011b; Chardon et al. 2012). 

We proposed in this paper to combine several formalisms within an integrated model in which 

strategic and tactical adaptations and decisions influence each other to model adaptive behavior within 

farmers’ decision-making processes. To model three stages of decision, we combined economic, 

decision-rule, and activity-based models. This structure can be used to model normal decision 

situations, such as selecting a cropping system for the long term, the variety and management 

associated with it in the medium term, and then daily crop-management practices. 

This integrated structure combine models of both complete rationality (clearly expressed goals from 

the beginning and knows all the relevant alternatives and their consequences (Couture and Martin-

Clouaire 2013)) and bounded rationalities (limited by the information available, cognitive limitations 

of the mind and the finite timing of the decision (Simon 1950; Cyert and March 1963)). The economic 

model describes long-term decisions of farmers whose concerns are mainly with the strategic 

positioning and sustainability of the farms while the decision-rule, and activity-based models describe 

medium and short term decisions of farmers whose concern are mainly with implementation than 

sustainability addressing issues at increasingly greater details and more localized levels.  
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A fundamental principle when building a model is to produce a simplified representation of the reality. 

First, the case based study done over 27 farmers revealed that the caste, the panchayat, the structure of 

the household, the farm size and the farmer education contribute to the farmer behavior. However, the 

economically rational decision described in the strategic model of NAMASTE is not at first glance the 

best appropriate in accounting for diverse rationalities that different types of farmers employ in real 

life while making decision on farm management (Karali et al. 2011; Feola et al. 2015).This choice was 

necessary to consider our approach of farm modeling within the AICHA project. The micro-economic 

assumptions on individual rationality, homogeneity and single minded utility maximization offer 

analytical tractability and readily extrapolation to the watershed scale. Our model is mainly based on 

economics and natural science and partially uses social sciences other than economics. We refer to 

social embeddedness of farmer behavior through the use of a typology and penalty factors on crop 

prices, yield and production costs that reflect the social, economic, and environmental constraints that 

motivate farmers’ decisions as embedded in specific agricultural systems. Second, even if the majority 

of farmers surveyed answered that maximizing profit was their main objective while farming, the 

literature and expert assert that in South India, farmers  also seek to secure a balanced food supply for 

the household which justify why an important part of them are also growing subsistence crops. 

This conceptual model was essential to move toward a computer model useful for future simulations. 

The model is under implementation in the RECORD platform. Frameworks and formalisms developed 

in our conceptual model are appropriate and implementable in this platform. It provides tools for 

analyzing, evaluating, and optimizing agronomic, environmental and economic criteria. A baseline 

scenario will be developed to simulate current farming practices in the Berambadi watershed and 

predict their influences on the groundwater level. Then scenarios with changes in climate, groundwater 

table, and government subsidies will be developed to predict their impacts on cropping systems and 

the water table. Modeling agricultural production scenarios can effectively help stakeholders make 

decisions about regulations and resource restrictions and encourage new practices to be recommended 

to farmers.  

5.5. CONCLUSION 

We developed an original conceptual model of a farming system that combines relevant principles 

highlighted in the scientific literature. The model was initially developed to address critical issues of 

groundwater depletion and farming practices in a watershed in southwestern India. Its structure, 

frameworks and formalisms can be used in other agricultural contexts. Our application focused on 

water management in semi-arid agricultural systems, but it can also be applied to other farming 

systems to confirm the re-usability and applicability of the framework.  
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TABLE CAPTION 

Table 5.1: Definitions of symbols in section 0 

Symbol Definition 

t Year 

τ Season 

𝐼𝑡  Investment in irrigation equipment 

𝑟𝐼𝑡  Unit cost of investment in irrigation 

�̅�𝑡  Water available for irrigation 

b Bele 

c Crop 

𝐶𝑊𝜏    Unit cost of water 

𝑅𝑎�̃�  Climate event (rainfall) 

𝐺𝑊𝑎�̃�  Groundwater level  

𝑃𝑐,�̃�  Crop prices 

𝑃𝑊𝑏𝜏  Proportion of water available to each plot   

r Discount rate 

𝜋𝑏𝑐𝜏  Profit  

𝑦𝑐𝑏𝜏  Crop yield 

𝑋𝑐𝑏𝜏  Production costs 

𝜃𝑃𝑐,�̃�
  Penalty factors on crop prices 

𝜃𝑦𝑐𝑏𝜏
  Penalty factors on yield 

𝜃𝑋𝑏𝑐𝜏
  Penalty factors on production costs 
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FIGURE CAPTION 

Figure 5.1: Overview of the conceptual model from data collection to coupled models. Data and 

statistical analysis used on the 680 farmer surveys as well as the farm typology are described in 

section 2.2. Step1.  The CMFDM method (standing for Conceptual Modeling of the Farmer agent 

underlying Decision-Making processes) is described in section 2.2.Step2. Two main systems are 

identified: the production system and the external system. Focus is made on the production system. 

The Production system framework and the Belief-Desire-Intention (BDI) framework are described in 

section 2.2.Step3. The decision sub-model is characterized by three technical decisions (investment, 

crop choice, crop operations) (section 3.1.1). The formalisms used to represent these decisions are 

described in section 3.2.1. The three temporal dimensions of the decision process (strategic, tactic, 

operational) are described in section 3.1.2. The final model is composed of a decision sub-model 

(section 3.2.), a biophysical sub-model (section 3.3.1) and an external system (section 3.3.3). 

Figure 5.2: Groundwater level (GWL) in the Berambadi watershed. A) Stream drainage and depth to 

groundwater level, B) topographic elevation and water table level. 

Figure 5.3: The farming system as a Decision-Operating-Biophysical System framework. Presentation 

of the sub-models used in the conceptual model. The Beliefs, Desires, and Intentions framework 

provides structure to the decision sub-system. It breaks the system down the system into these three 

entities, each composed of several items. Beliefs are composed of structural, procedural, and 

observable knowledge, as well as strategic, tactical and operational intentions (adapted from Rao & 

Georgeff, 1991).Dynamic flow of information exchanged during the decision-making process from 

strategic to tactical and operational decisions. 

Figure 5.4: Decision tree describing a simplified crop management plan: sowing, germination check, 

and harvest. Rules, predicates and output functions are summarized in the text.  

Figure 5.5: Three integrated stages of decisions in time, with broad knowledge at the beginning of the 

year that becomes more precise as time passes from seasons to days. The strategic decision about 

investing in irrigation equipment uses formalisms for crop selection and cropping operations. 

Decisions about crop selection are re-used at the tactical decision stage based on updated knowledge 

and expectations for the environment over the coming season. Decisions about cropping operations are 

re-used at the operational decision stage based on daily observations of the environment. 
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Figure 5.2  
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Figure 5.3  
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Figure 5.4  
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Figure 5.5 
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Agricultural sustainability under climate change is a major challenge in semi-arid countries, mainly 

due to rare or depleted water resources. This article explores short- and long-term consequences of 

farmers’ adaptation decisions about groundwater resources under several climate change scenarios. 

We modeled farmer decisions about crop choice, investment in irrigation and water application rates 

using a stochastic dynamic programming model with discrete time and control variables. We also 

investigated the performance of water management policies for groundwater resource depletion, and 

considered adaptive farmer decisions about irrigation and crop systems. Several sources of risk were 

considered: rainfall average and variability, crop market prices, crop yield and borewell failure. Policy 

simulations were performed with a calibrated version of the stochastic dynamic model, using data 

from a field survey in the Berambadi watershed, Karnataka state, southern India. The most relevant 

and novel aspects of our model are i) the consideration of investment decisions about irrigation over a 

long-term horizon, ii) the consideration of several water management policies, iii) the detailed 

description of farmers’ water practices and representation of crop choice based on the agricultural 

season.  

Keywords: (D) OR in agriculture; (I) Stochastic programming; (D) OR in environment and climate 

change; (D) Strategic planning; (B) Scenarios.  
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6.1. INTRODUCTION 

Climate change is a significant challenge for sustainable agricultural production in the coming 

decades, especially since global food demand is expected to double by the year 2050. Predictions of 

climate change impacts indicate a reduction in most crop yields under both irrigated and rainfed 

conditions, an increase in weeds, diseases and pests and changes in crop development and pollination 

periods (Kahil et al. 2015).  

Agricultural systems in semi-arid areas depend greatly on irrigation and encounter increasing 

challenges due to climate change (e.g. growing uncertainty about the performance of strategies for 

adapting to climate change, severe depletion of natural resources), high volatility in crop market 

prices, rises in energy costs and greater pressure from public regulations (e.g. agricultural, 

environmental and health policies). In the Deccan Plateau in India, aided by state policy that 

subsidizes electricity and improved irrigation technology (e.g. new drilling and submersible pump 

techniques), the countryside has witnessed the proliferation of individual, electrical pump-driven 

borewells that abstract water from underground aquifers (Sekhar et al. 2006; Javeed et al. 2009). This 

led to claims of a “democratization of irrigation”, with smallholder farmers accessing irrigation water 

(Taylor 2013). However, the low productivity of the aquifer (Dewandel et al. 2010; Perrin et al. 2011) 

and a rapid decline in the groundwater table level led to decreasing borewell yields (Ruiz et al. 2015), 

implying that (groundwater)-irrigated agriculture still largely depends on rainfall. Climate variability 

has increased over the last 50 years in this region (Jogesh and Dubash 2014); predictions indicate a 

1.8-2.2°C increase in temperature by 2030, and southwestern regions of Karnataka state (southern 

India) are projected to experience a decrease in annual rainfall, especially during the monsoon season 

(Jogesh and Dubash 2014). For a region that largely depends on monsoon patterns and winter months 

to maintain agricultural production, any shift in climate conditions would have a severe impact on 

natural resources and the economy. Over the past two decades, agrarian India has been in the midst of 

a considerable crisis, manifested by increasing levels of indebtedness and most tragically exemplified 

by the wave of farmer suicides that have plagued the countryside of the Deccan Plateau in particular. 

The need to cope with upcoming debt payments induces farmers to shift towards irrigated cash crops, 

and gaining control over water access is central to maintain household sustainability. Accessing 

groundwater may be a solution to provide water for crops on a more regular basis, but this solution 

must also consider social and cultural aspects of farmer indebtedness, including a new temporal 

horizon for debt repayment and accounting for the risk of failed wells (Taylor 2013). 

In this article, we model adaptive decisions of farmers facing climate change: long-term decisions 

about investment in borewell irrigation and short-term decisions about cropping systems and the 

irrigation water application rate for crops. We use a stochastic dynamic model of farmers’ decisions to 

test socio-economic and water management policies under several climate change scenarios. Various 
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policies are considered (i.e. subsidizing rainfed crops, reforming subsidized energy for irrigation, a 

water charge indexed to ambient groundwater level), and their impacts on farmer profit and 

groundwater level are compared. Each scenario is considered along with a climate change scenario to 

evaluate the potential of each policy to mitigate the climate’s impact on groundwater level. 

6.2. LITERATURE REVIEW ON LONG-TERM FARMER DECISIONS UNDER 

UNCERTAINTY 

Several fields in the literature have discussed models of farmers’ decisions under risk and uncertainty, 

including irrigation management, ranging from environmental and resource economics to applications 

of operational research to hydrological issues. Krishnamurthy (2016) presented a theory that clarifies 

the properties of water management models under risk and uncertainty. Sekhri (2014) explored 

implications of groundwater irrigation on poverty in rural India using a detailed survey of agricultural 

wells. 

It is essential to consider risk and uncertainty when representing irrigation management and cropping 

system decisions because of the uncertain nature of water availability for irrigation and crop yield 

resulting from climate conditions. Iglesias & Garrote (2015) provided a literature review on 

agricultural adaptation to climate change in Europe that describes the possible drivers of adaptation 

and policy implications. 

Two main approaches are distinguished in the agricultural economics literature (Robert et al. 2016b). 

First, in stochastic programming, uncertainty and risk are incorporated as non-embedded risk into the 

objective function, i.e., in prices, yields and revenues, or in constraints, to represent stochastic 

resource availability (McCarl et al. 1999; Briner and Finger 2013; Graveline 2016). Second, in 

discrete stochastic programming, uncertainty and risk are incorporated as embedded risks, including 

both risk anticipation and adjustments, which allows for recourse in the decision. 

In stochastic programming, the main advantage of incorporating risk is to consider stochastic variables 

such as prices, yields, borewell recharge and water availability for irrigation, which are all related to 

uncertain weather. In this way, relationships between farm production variables and climate are better 

considered and represented in models. Fernandez et al. (2016) used stochastic programming to model 

economic impacts of changes in water availability in small-scale agriculture in the Vergara River 

Basin, Chile. They applied a calibration method for risk programming models with mean-variance 

model specification developed by Petsakos & Rozakis (2015) to include risk in the objective function 

of agricultural models. Blanco-Gutierrez et al. (2013) used a risk-based economic optimization model 

and a hydrologic water management simulation model to model a vulnerable drought-prone agro-

ecological area in the Middle Guadiana River Basin, Spain. Similarly, Foster et al. (2014) predicted 

optimal irrigation strategies under variable levels of groundwater supply for irrigated maize production 
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in the Texas High Plains region of the United States, and assessed the limits of existing models for 

predicting farmers’ land and groundwater use decisions. 

In discrete stochastic programming, the decision problem is broken down into several decision stages 

in which new information is available. It can be represented by decision trees. The typical case treated 

with discrete stochastic programming is cropping pattern planning under weather and/or water 

uncertainty. For instance, McCarl et al. (1999), Mejías et al. (2004) and Connor et al. (2009) defined 

an initial stage that models the choice of long-term capital investments that remain fixed for several 

years regardless of annual stochastic variations (water allocation and water price). The second stage 

addresses short-term (annual) decisions, such as water application rates and land for crops or fallow.  

The use of dynamic programming to represent and solve water, nutrient or animal feed management 

problems in agriculture has a long history. Burt (1993) considered an expected present value problem 

and from dynamic programming generated a set of sequential decision rules for optimal feed rations 

and marketed animal weights. Randomness in input and output prices was considered, and properties 

of the stochastic model were examined for two cases of model application: infinite sequence and 

single batch. However, no empirical application was presented. Bryant et al. (1993) used a dynamic 

programming model to explore allocation of irrigation among crops under random climate conditions. 

During dry periods, a crop can be abandoned temporarily or permanently. Intra-seasonal irrigation 

rules were considered for maize and sorghum in the Texas High Plains. These authors also used a crop 

simulator to “simplify” decision rules for crop choice and irrigation application rates. Only two plots 

of fixed size were set, and a fixed irrigation volume was allocated to only one crop. 

Ritten et al. (2010) developed a stochastic dynamic programming model for purposes similar to those 

of Burt (1993), i.e., to solve for optimal stocking rates under climate change. More precisely, they 

considered farmers’ decisions when rainfall is unknown before the start of the growing season. 

Farmers maximized the current net value of their land, and the (random) dynamic state variable was 

vegetation density. When climate scenarios were introduced profitability decreased as rainfall 

variability increased compared to the baseline climate. 

Maatman et al. (2002) also considered a stochastic programming model to represent farmers' 

sequential decisions in response to changes in expected rainfall and introduced a food security 

condition into the problem. More precisely, the farmer’s objective was to minimize nutrient deficits at 

the household level and during several periods (i.e. beginning of the growing season, later in the the 

growing season and after harvesting). They presented one of the first examples in the literature of 

application of stochastic programming with an explicit subsistence strategy for farmers and adaptation 

to climate change in an intra-seasonal setting. The method, two-stage stochastic models and multiple-

recourse models differed, however, from nonlinear stochastic dynamic programming, and no 

investment decisions in irrigation were considered. 
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In the present article, we combine several features of the models discussed above into a model that 

describes farmer decision rules for groundwater irrigation in more detail, with southern India as an 

empirical application. Specifically, we consider climate scenarios allowing for changes in rainfall 

distribution and farmer long-term decisions about investment in irrigation, short-term intra-seasonal 

decisions about crops and plot size, and water application rates. We developed a dynamic stochastic 

programming model to study these multiple decisions and improve description of the variety of 

adaptation pathways to climate change. 

6.3. METHODS 

6.3.1. The farmer’s production problem 

We consider a representative farmer who makes decisions about irrigation and crop choice, and 

considers consequences of his current decisions on future water availability (because the latter 

ultimately determines future crop output, hence future profits). Our framework is based on a bio-

economic model with season-specific crop choice and an annual investment decision about irrigation 

strategies.  

The multiple stages of the farmer decision-making process are described as follows: 

 At the beginning of the planning horizon, the farmer forms an expectation about several random 

variables: future climate, future market prices for crops and groundwater availability (for 

irrigation). 

 At the beginning of the year, the farmer decides whether or not to invest in irrigation, or to rely on 

rainfall for the coming year. 

 At the beginning of each growing season, the farmer decides which crops to grow on the farm and 

the associated land area for each plot (plot size varies). 

  For each growing season, the farmer decides the irrigation-water application rate for each crop, 

given total water availability and observed rainfall. 

 For each growing season, given the irrigation equipment and selected crops, the farmer follows a 

set of irrigation rules to obtain the “best” crop yield, conditional on actual climate conditions. 

Given the irrigation equipment, selected crops and irrigation practices, the farmer selects the plot 

size so the most profitable crop is grown on a larger area than less profitable crops. In particular, 

when a dry climate is expected, farmers are likely to grow multiple crops to diversify the risk of 

crop failure. 

The farmer’s objective is to select the sequence of investment in irrigation equipment and season-

specific crops that maximize the discounted stream of future revenue across the planning horizon 
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based on expectations on rainfall, available water for irrigation, crop prices, crop costs, crop yields and 

crop failure. 

Farmers maximize seasonal profit as a function of crop choice, plot size and water application rate for 

each crop (which is a percentage of total available water). Once investment in irrigation and crop 

choice decisions are made, water input for crops is determined by combining irrigation from 

groundwater and rainfall. More precisely, water availability (from expected rainfall and expected 

groundwater level) triggers the decision to grow particular crops and, during the agricultural season, 

farmers adjust water for plant needs on a daily (or weekly) basis. The adjustment is made according to 

agronomic “rules”, and input or output prices and other economic variables are assumed not to 

influence these decisions. However, the marginal cost of irrigation water may still depend upon the 

amount of water abstracted (excluding irrigation investment cost). The farmer makes decisions about 

crop allocation and irrigation investment, which makes the problem fully dynamic because today's 

investment decisions will affect water availability in the future. We denote the planning horizon by T 

(years). 

Formal representation of the problem is as follows. The representative farmer has B plots, on which C 

crops can be planted. Crops can be grown during two cropping seasons (the season index is τ, with τ = 

S1, S2) of duration 𝑆𝑒𝑎𝑠𝑜𝑛1𝑙𝑒𝑛𝑔𝑡ℎ and 𝑆𝑒𝑎𝑠𝑜𝑛2𝑙𝑒𝑛𝑔𝑡ℎ, respectively. Farmer decisions depend on, 

among other things, expected rainfall, which is distributed according to a discrete distribution of five 

profiles (poor, below average, average, above average or good). Each rainfall regime is associated 

with an average, season-specific rainfall level denoted 𝑟𝑎𝑖𝑛𝑆1 and 𝑟𝑎𝑖𝑛𝑆2, respectively, and the 

probability of occurrence of each rainfall regime at the beginning of each year is denoted 𝑝𝑟𝑆1 and 

𝑝𝑟𝑆2, respectively. 

The farmer’s annual decisions about investment in irrigation include the decision to drill a new 

borewell, the well’s depth (𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ) and the power of the (electrical) pump (HP). Assuming the 

farmer benefits from a m-year loan with a fixed interest rate of r%, the annual investment cost is 

𝐼𝑡 = (1 + 𝑟) (
1

𝑚
) (𝐶𝑂𝑆𝑇𝑤𝑒𝑙𝑙 + 𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝) + 𝐶𝑂𝑆𝑇𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒,   (1) 

where 𝐶𝑂𝑆𝑇𝑤𝑒𝑙𝑙, 𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝 and 𝐶𝑂𝑆𝑇𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 are the costs of borewell construction, purchasing 

the electrical pump and annual borewell maintenance, respectively. 

In hard rock aquifers, drilling a borewell is risky because of possible failure when the borewell does 

not reach a water fissure. 𝐹𝐴𝐼𝐿𝑤𝑒𝑙𝑙 denotes the probability of borewell failure (implying that 

investment in borewell irrigation may well exceed the construction cost of a single borewell); the 

actual construction cost for an operating borewell (𝐶𝑂𝑆𝑇𝑤𝑒𝑙𝑙) is inflated by 𝐹𝐴𝐼𝐿𝑤𝑒𝑙𝑙 and is a function 

of borewell depth (𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ). 
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The irrigation capacity of the farm also depends on the depth of the groundwater table (𝑊𝑇𝑑𝑒𝑝𝑡ℎ) and 

the time available for pumping (hours of electricity available per day in the first season, 

𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆1, and the second season, 𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆2). The flow rate (FR) of the well provides the 

maximum water abstraction capacity of the irrigation system and is defined as follows: 

𝐹𝑅 = ℎ(𝐻𝑃, 𝑊𝑇𝑑𝑒𝑝𝑡ℎ, 𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ) 
> 0 if  𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ > 𝑊𝑇𝑑𝑒𝑝𝑡ℎ,

0 otherwise.
   (2) 

The flow rate is considered the state variable of our dynamic model, in which it is denoted W. W is 

both dynamic and stochastic because it depends on borewell yield, the rainfall recharge factor and 

depreciation of irrigation capital stock (with a factor of 𝑅𝐴𝑇𝐸𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛). 

The expected water available for irrigation in the first and second seasons (�̅�𝑆1 and �̅�𝑆2 ) is 

determined from the flow rate, daily power supply available for pumping (𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆1 and 

𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆2) and the number of days per season (𝑆𝑒𝑎𝑠𝑜𝑛1𝑙𝑒𝑛𝑔𝑡ℎ and 𝑆𝑒𝑎𝑠𝑜𝑛2𝑙𝑒𝑛𝑔𝑡ℎ): 

�̅�𝑆1 =  𝑊 × 𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆1 × 𝑆𝑒𝑎𝑠𝑜𝑛1𝑙𝑒𝑛𝑔𝑡ℎ  

and  �̅�𝑆2 = 𝑊 × 𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆2 × 𝑆𝑒𝑎𝑠𝑜𝑛2𝑙𝑒𝑛𝑔𝑡ℎ (3) 

Therefore, total irrigation capacity expected for the year is �̅� = �̅�𝑆1 + �̅�𝑆2 and is distributed among 

plots according to a season-specific vector 𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛. The cost of pumping groundwater to 

irrigate crops (𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝𝑖𝑛𝑔) depends on the number of hours of pumping (𝐻𝑂𝑈𝑅𝑆𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛), the 

electric power used (𝑃𝑂𝑊𝐸𝑅𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛) and the cost of electricity (𝐶𝑂𝑆𝑇𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦): 

𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝𝑖𝑛𝑔 =  𝐻𝑂𝑈𝑅𝑆𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛  × 𝑃𝑂𝑊𝐸𝑅𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ×  𝐶𝑂𝑆𝑇𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,  (4) 

Where 𝐻𝑂𝑈𝑅𝑆𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = (𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆1 × 𝑆𝑒𝑎𝑠𝑜𝑛1𝑙𝑒𝑛𝑔𝑡ℎ + 𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆2 × 𝑆𝑒𝑎𝑠𝑜𝑛2𝑙𝑒𝑛𝑔𝑡ℎ) ×

𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛. 

Regarding the choice of the cropping system and irrigation practices, crops can be irrigated or rainfed 

or both, may be grown during both seasons or only during the monsoon season and can be short-term 

(only one season) or long-term (over two seasons) crops. When selecting crops, the farmer estimates 

the chance of crop failure (𝑅𝐴𝑇𝐸𝑓𝑎𝑖𝑙𝑢𝑟𝑒) and plans to grow another crop (c_replace) if the first crop 

fails. For a given irrigation capital stock, crop choice and irrigation practices are decided by comparing 

crop-specific and season-specific expected profits, with the expectation considered among the five 

rainfall regimes mentioned previously. 𝜋𝑏𝑐𝜏.denotes expected profit from crop c in season 𝜏 on plot b, 

and we approximate 𝜋𝑏𝑐𝜏 as: 

𝜋𝑏𝑐𝜏 ≅ ∑ 𝑝𝑟𝜏,𝑖[

5

𝑖=1

(1 − 𝑅𝐴𝑇𝐸𝑓𝑎𝑖𝑙𝑢𝑟𝑒)[𝑃𝑅𝐼𝐶𝐸𝑐𝜏(�̃�𝜏)𝑌𝐼𝐸𝐿𝐷𝑏𝑐𝜏(�̃�𝜏, 𝑊𝑏𝑐𝜏) ×  𝑆𝐼𝑍𝐸𝑝𝑙𝑜𝑡 − 𝐶𝑂𝑆𝑇𝑐

− 𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝𝑖𝑛𝑔] 
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+ (𝑅𝐴𝑇𝐸𝑓𝑎𝑖𝑙𝑢𝑟𝑒) [
𝑃𝑅𝐼𝐶𝐸𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝜏(�̃�𝜏)𝑌𝐼𝐸𝐿𝐷𝑏,𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝜏 (�̃�𝜏, 𝑊𝑏,𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝜏)  𝑆𝐼𝑍𝐸𝑝𝑙𝑜𝑡 − 𝐶𝑂𝑆𝑇𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒

−𝐶𝑂𝑆𝑇𝑐 − 𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝𝑖𝑛𝑔

],

      (5) 

where �̃�𝜏 denotes random rainfall in season 𝜏, crop yield (𝑌𝐼𝐸𝐿𝐷𝑏𝑐𝜏) and crop price (𝑃𝑅𝐼𝐶𝐸𝑐𝜏) are 

stochastic variables that depend on rainfall, 𝑊𝑏𝑐𝜏 is irrigation water applied to crop c, and  𝑆𝐼𝑍𝐸𝑝𝑙𝑜𝑡 is 

the size of the plot (fixed or adjusted by the farmer). Because we focus on irrigation, we consider other 

crop management practices (e.g. fertilizer, seed, labor) as constant; thus, crop cost 𝐶𝑂𝑆𝑇𝑐 is a fixed 

parameter. Expected profit among rainfall regimes is approximated as the average profit earned during 

the five rainfall regimes, weighted by their probabilities of occurrence at the beginning of each year 

(vectors 𝑝𝑟𝐾 and 𝑝𝑟𝑅). We assume crop yield is a quadratic function of irrigation water distributed to 

the crop, which is the minimum between total available water for the crop (𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 × �̅�𝑆1 for 

the first season and 𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 × �̅�𝑆2 for the second season) and the optimal amount of water the 

crop needs to reach optimal yield (𝐼𝑟𝑟𝑖𝑐). 

For crop c (dropping indexes b and 𝜏 for the sake of simplicity): 

𝑌𝐼𝐸𝐿𝐷𝑐(�̃�, 𝑊) =  𝑎𝑐 + 𝑏𝑐 min[(𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛,𝑐  (�̃�) × �̅�𝑆1 , 𝐼𝑟𝑟𝑖𝑐 (�̃�)] 

+ 𝑑𝑐  min[𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛,𝑐 (�̃�) × �̅�𝑆1 , 𝐼𝑟𝑟𝑖𝑐  (�̃�)],
2  (6) 

where 𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛,𝑐  ∈ [0,1], ∀𝑐, 𝑐 = 1, … , 𝐶. 

Because crop price in local markets is likely to depend on climate conditions beyond the farmer’s 

control (because farmers are “price takers”), we assume that crop price is determined from a reference 

price (𝑅𝐸𝐹𝑐) multiplied by crop price elasticity with respect to rainfall. Hence, price decreases by a 

factor of α when rainfall shifts to the next rainfall regime, and the random price for crop c under 

rainfall regime 𝑖, 𝑖 = 1, … ,5 is 

𝑃𝑅𝐼𝐶𝐸𝑐 = 𝑅𝐸𝐹𝑐× 𝛼𝑖.     (7) 

The farmer’s problem over the T years of the planning horizon is 

max{𝐼𝑡} ∑ (1 + 𝑟)−𝑡𝑇
𝑡=1 {max{𝛿𝑏𝑐𝜏}[∑ ∑ ∑ 𝛿𝑏𝑐𝜏 𝜋𝑏𝑐𝜏

𝑆2
𝜏=𝑆1

𝐶
𝑐=1

𝐵
𝑏=1 ] − 𝐼𝑡} ,  (8) 

where r is a constant discount rate, and 𝛿𝑏𝑐𝜏 = 1 if crop c is grown on plot b in season 𝜏 (otherwise 0). 

We assume that since no a priori condition is imposed on the terminal level of water availability or 

irrigation capital stock, we have an infinite-horizon problem. To solve this stochastic dynamic 

programming problem, the Bellman approach is commonly used in the literature (Bertsekas 2011). To 

simplify notation, we denote 𝜋𝑡
∗(𝐼𝑡, 𝑊𝑡) as the profit obtained in year t from optimal control variables 

for problem (8), with year-dependent state variable 𝑊𝑡 and control variable 𝐼𝑡. Note that optimal 

control variables that are season-specific, i.e., crop choice, irrigation application rate and plot size, are 
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implicitly assumed with this notation. The maximization problem is thus equivalently expressed as the 

following Bellman equation for time period t: 

𝑉(𝑊𝑡) = max𝐼𝑡
{𝜋𝑡

∗(𝐼𝑡, 𝑊𝑡) + 𝛽 𝐸�̃�𝑉(𝑊𝑡+1)}, ∀𝑡,   (9) 

where 𝑉(𝑊𝑡) is the value function (the maximum of current and future revenues) with the state 

variable as its argument, whose (dynamic) transition equation is 

  𝑊𝑡+1 = 𝑓(𝑊𝑡, 𝐼𝑡),      (10) 

𝛽 is a discount factor and 𝜋𝑡
∗(𝐼𝑡, 𝑊𝑡) is the current year’s profit function. 

A popular way of solving such infinite-horizon problems is a colocation method (e.g., Bertsekas 

(2011) and Miranda & Fackler (2004)) applied to Equation (9). The unknown value function is 

approximated through contraction mapping involving Chebyshev polynomials whose associated 

coefficients are solved iteratively from a value-function colocation technique. If the order of 

Chebyshev polynomials for approximating the value function is p, we form the following system of p 

equations with p unknowns evaluated for a given value of the state variable, 𝑊𝑝: 

∑ 𝑐𝑝Φ𝑝(𝑊𝑝) = max {𝜋∗(𝐼, 𝑊𝑝) +  𝛽𝐸�̃� ∑ 𝑐𝑝Φ𝑝[𝑓(𝑊𝑝)]𝑃
𝑝=1 }𝑃

𝑝=1 , 𝑝 = 1, … , 𝑃,  (11) 

where Φ𝑝 and 𝑐𝑝 is the Chebyshev polynomial of order p and its associated coefficient (to be 

evaluated), respectively. In the system above, we drop reference to a particular sequence of years (t 

and t+1) because we are looking to approximate the value function at the steady state. For this reason, 

the maximization problem is considered for any pair of subsequent values of the state variable, 𝑊𝑝 and 

𝑊′ = 𝑓(𝑊𝑝). The algorithm for solving the problem above starts by selecting a series of p 

approximation points (the Chebyshev nodes) for which optimal controls are calculated. Given optimal 

values of the control variables, the Chebyshev coefficients are updated in an intermediate stage, and 

the process continues until convergence in both optimal control values and Chebyshev coefficients. 

6.3.2. Data 

The model is applied to a representative farmer from the Berambadi watershed in Karnataka, India, 

who specializes in arable crops, with turmeric, sunflower, marigold, sorghum and maize as major 

crops grown on two plots. The Berambadi watershed (84 km²) belongs to the Kabini River Basin, 

which is part of the South Gundal River Basin (816 km²) (southwestern Karnataka). Its climate is 

dominated by a monsoon regime that generates a strong rainfall gradient with decadal trends, strong 

inter-annual variability and recurrent droughts (Ruiz et al. 2015). Three seasons regulate the farm 

cropping system: i) kharif (June to September), the rainy season (monsoon), when most of the 

cropping area is cultivated; ii) rabi (October to January), the winter season, when most irrigated plots 

are cultivated; and iii) summer (February to May), the hot and dry season without cultivation.  
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During kharif, farmers cultivate sunflower, marigold, and maize in rainfed or irrigated conditions and 

sorghum in rainfed conditions. They also plant irrigated turmeric during this season and harvest it at 

the end of the next season (rabi). During rabi, farmers grow irrigated maize. If a crop fails during 

kharif, farmers try to grow maize as a replacement crop to ensure a minimum revenue for the season.  

The hard rock aquifer is composed of fissured granite underlain by a 5-20 meter layer of weathered 

material. In these conditions, using pumps with more horse power is not a solution to increase the 

amount of irrigation water, due to the low lateral recharge rate, nor is drilling deeper borewells, since 

this depends on the structure of the fissured granite. In the Berambadi watershed, electricity for 

irrigation is fully subsidized except for an annual fixed charge of approximately 330 Rs per horse 

power. Therefore, the marginal cost of power supply for irrigation can be considered 0, even though 

there are some maintenance costs (discussed above). 

Most data were collected from farmer surveys, while some variables were quantified using values 

from official Indian reports. We surveyed farmers in the watershed in 2014 and 2015. The first survey 

targeted 27 farmers to obtain detailed data about their practices, in particular their decisions and the 

process of adapting their decisions. The second survey targeted 680 farmers and obtained general data 

about farm characteristics and farmers’ social, economic and agronomic environment. Data from this 

survey were used to generate a typology of farmers on the watershed based on biophysical factors (e.g. 

farm location, soil type, ground water accessibility), economic factors (e.g. farm size, labor, 

equipment), and social factors (e.g. caste, family structure, education, off-farm employment). 

Additionally, 52 experimental plots were monitored over three years, which provided observed 

quantitative data about crop production and management. These data supplemented the verbal 

information farmers provided during surveys. Meteorological data were obtained from a 

meteorological station and water gauges installed on the watershed. Prices and costs were obtained 

from farmers and from official district data from the Indian Ministry of Agriculture and Cooperation 

(Directorate of Economics and Statistics) and the National Informatics Center (Agricultural Census 

Division). Several values from the surveys were used to calibrate model parameters (Table 1). 

6.4. SIMULATIONS AND RESULTS 

6.4.1. Scenarios 

To evaluate impacts of scenarios of changes in climate and water management policies on farmers’ 

decisions at the farm scale, several simulations are performed over a planning horizon of 30 years 

(assumed to be the average lifetime of a borewell). 
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Baseline scenario 

In the baseline scenario, parameters describing the climate, crop marketing conditions (prices and 

costs) and water pumping conditions (hours of electricity, cost of pumping) are set to average values 

obtained from farmer surveys. 

Climate change scenarios 

Scenario 1 describes the cropping system under climate change conditions in which drier weather (less 

rainfall) would occur more often. We introduce three additional parameters: 1) 𝑠ℎ𝑖𝑓𝑡𝑃𝐸𝑅𝐶 describes 

the additional weight associated with the rain regimes, in percentage; 2) 𝑠ℎ𝑖𝑓𝑡𝑇𝑌𝑃𝐸 indicates more 

weight on the drier rain regimes when it is equal to two or on the wetter rain regimes when it is equal 

to one; and 3) 𝑠ℎ𝑖𝑓𝑡𝑂𝐶𝐶𝑈 indicates more weight on the first two rain regimes of a given type when it is 

equal to 2 or to the first rain regime when it is equal to 1. In all climate change scenarios, we assumed 

that the proportions of both low and below-average rain regimes would increase by 1% each year ( and 

the proportions of the other rain regimes would decrease by (1-[(pr(poor)*1.01)+pr(below 

average)*1.01)])/(pr(average)+pr(above average)+pr(good)). This would increase the chance of drier 

rain regimes by 30% after 30 years of simulation (Table 2). 

Water management policy scenario: subsidized rainfed crops 

Scenario 2 describes the cropping system under climate change conditions and a water management 

policy that aims to limit groundwater abstraction by encouraging farmers to grow crops under rainfed 

conditions. The policy provides a subsidy to farmers for each unit of land managed under rainfed 

conditions. Seven levels of subsidies 𝑟𝑎𝑖𝑛𝑓𝑒𝑑𝑆𝑈𝐵𝑆 are tested every 1000 Rs/ha from 1000-7000 Rs/ha, 

associated only with rainfed crops (Table 2). 

 

Water management policy scenario: subsidized energy supply 

Scenario 3 describes the cropping system under climate change conditions and a water management 

policy which aims to limit groundwater abstraction by establishing a user fee for supplying electricity 

to farmers. The policy sets a user fee for electricity for agricultural purposes. Five levels of fee 

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐹𝐸𝐸 are tested every 0.50 Rs/kWh from 0.50-3.50 Rs/kWh (Table 2). 
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Water management policy scenario: water charge based on groundwater level 

Scenario 4 describes the cropping system under climate change conditions and a water management 

policy that aims to limit groundwater abstraction by establishing an ambient tax on farmers (Segerson 

1988; Graveline 2013) based on groundwater level. The policy specifies an ambient water charge 

based on measured groundwater level, and all farmers located on the same aquifer will have the same 

tax, regardless of their individual water abstraction. Groundwater level is impacted by total water use 

of the shared aquifer. The annual tax is applicable when groundwater level has decreased by more than 

10% from its initial depth (at the beginning of the planning horizon) and has decreased between the 

beginning and the end of the given year. In these conditions, the ambient tax 𝑊𝑇𝑇𝐴𝑋 is proportional to 

groundwater depletion when the latter exceeds 𝑊𝑇𝐷𝐸𝐶𝑅𝐸𝐴𝑆𝐸  = 10%. Nine tax levels are tested every 100 

Rs/% from 200-1000 Rs/% (Table 2). 

6.4.2. Results 

The dynamic stochastic problem program described in Equation (11) is solved with p=10 as the order 

of Chebychev polynomials and approximation nodes. The convolution converged in 111 iterations and 

took 64 minutes and 47 seconds on a 2 GHz desktop computer. The criterion for convergence is that 

the sum of squared errors between polynomial coefficients of two consecutive iterations must be less 

than 0.0001. 

The simulation results depend greatly on the validity and quality of the input assumptions and data. 

The model’s predictions should be considered more as trends rather than absolute values. 

Baseline scenario 

Under the baseline scenario (Figure 6.1), the farmer invests in a borewell during the first year of 

simulation. Investing in a borewell allows him to switch from rainfed marigold to irrigated sunflower 

and turmeric in kharif and from rainfed maize to irrigated maize in rabi. The total amount of pumped 

water allowed by the borewell flow rate is used each year. The deeper the groundwater table, the lower 

the pump flow, which requires the farmer to reconsider plot and water allocation between sunflower 

and turmeric. In the 19th year, the water in the first borewell becomes extremely low due to the low 

flow rate, and the farmer has to decrease the area of turmeric in favor of sunflower, which decreases 

profits. The first borewell becomes dry after 20 years of pumping. To maintain this irrigated system, 

the farmer has no choice but to invest in a second borewell, deeper than the first, at the beginning of 

the 21st year. Groundwater level decreases from 60 to 116 m.b.g.l. during the planning horizon. 

Increasing groundwater depth by 56 m over 30 years is an extremely severe scenario. 
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Scenario1 : Climate change scenario 

Under the climate change scenario, the farmer’s investment behavior is similar to that in the baseline 

scenario, except that the first borewell becomes dry at the end of the 19th year of pumping, prompting 

the farmer to drill a second borewell in the 20th year (one year earlier than in the baseline scenario) 

(Figure 6.2). The 20th year is disastrous for the farmer because his first borewell is dry and he still has 

one year of loan repayment left for it, in addition to the new loan obtained for the second borewell. 

With a higher probability of a dry weather, expected groundwater recharge decreases, prompting the 

farmer to reduce the area of turmeric in favor of sunflower earlier than in the baseline scenario. Profits 

are thus lower in this scenario. The groundwater level decreases from 60 to 118 m.b.g.l. during the 

planning horizon. As in the baseline case, increasing groundwater depth by 58 m over 30 years is an 

extremely severe scenario. 

Scenario2: Climate change and subsidized rainfed crops 

For subsidies up to 3000 Rs/ha, farmer behavior is similar to that in the climate change scenario 

without a water management policy (Figure 6.3). The farmer invests in a borewell the first year to 

grow irrigated turmeric and sunflower in kharif. In the 19th year, instead of growing both turmeric and 

sunflower, the farmer grows only irrigated sunflower, providing one additional year of pumping 

(compared to the climate-change-only scenario) before the borewell dries up. Instead of drilling a 

second borewell, the farmer benefits from the subsidy by growing rainfed marigold. Receiving the 

subsidy is more profitable than investing in a new borewell. Annual profit in each of the last ten years 

ranges from 8400-15,900 Rs/ha with a subsidy of 1000 Rs/ha of rainfed land, compared to 6400-7900 

Rs/ha under the climate change scenario without a water management policy. From 4000-6000 Rs/ha, 

irrigated sunflower is replaced by rainfed marigold. All available water is used on turmeric until the 

19th year. From there, water use goes from 70 to 65 percent of available water in kharif but stops in 

rabi season, corresponding to the volume of water recharge from rainfall in kharif and rabi. As a result, 

the borewell is not even dry after 30 years of pumping. This scenario leads to a depletion of 40 m of 

groundwater table height after the 30-year planning horizon. For a subsidy of 7000 Rs/ha of rainfed 

crops, the farmer postpones the decision to invest in a borewell until the 15th year. In that year, the 

groundwater table reaches 45 m.b.g.l., with 15 m of recharge from rainfall. The groundwater table is 

high enough to grow turmeric on three-quarters of the land under optimal cropping conditions, and 

profit from the crop will cover drilling of the borewell and even ensure extra revenue in the first year 

of investment. Unfortunately, pumping influences groundwater level faster than recharge from rainfall, 

and water for irrigation rapidly decreases, pushing the farmer to decrease the area of turmeric. Finally, 

with a subsidy of 7000 Rs/ha, groundwater depth increases by only 27 m after 30 years, and with a 

subsidy of 8000 Rs/ha, the farmer does not drill a borewell. 
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Scenario 3: Climate change and power supply fees 

When electricity costs 0.50 Rs/kWh, farmers invest in a borewell the first year to irrigate a cropping 

system consisting of turmeric and sunflower as much as possible during kharif (Figure 6.4).  Pumping 

at this rate causes the borewell to dry up after 25 years, after which the farmer grows only sunflower 

and pumps only an amount of water equal to the recharge from rainfall. When electricity costs 1.00-

1.50 Rs/kWh, farmers drill borewells in the first year and grow maize during rabi under rainfed 

conditions to use all water during kharif for turmeric and sunflower. At 2.00 Rs/kWh, farmer behavior 

is similar to that at 1.00-1.50 Rs/kWh, except farmers begin to grow only sunflower in the 19th year 

and only irrigate as much as the recharge to maintain the borewell level at 82 m.b.g.l. From 2.50 

Rs/kWh, farmers delay investing in a borewell, which leads to groundwater table recharge from 

rainfall. At 2.50 Rs/kWh, a borewell is drilled in the 6th year, and the groundwater level is maintained 

at 66 m.b.g.l. from the 14th year, with the farmer growing only sunflower with an amount of water 

equal to the recharge from rainfall. At 3.00 Rs/kWh, a borewell is drilled in the 14th year, and the 

groundwater level is maintained at 48 m.b.g.l. from the 18th year. At 3.50 Rs/kWh, the borewell is dug 

in the 21st year, and the groundwater level is maintained at 36 m.b.g.l. 

Electricity cost influences profit greatly as soon as farmers invest in a borewell. Farmers first stop 

irrigating during rabi and then begin to decrease irrigation during kharif to use only part of their 

pumping capacity.  

Scenario 4: Climate change and water charge based on groundwater level 

Since groundwater level is allowed to decrease slightly, the first decision a famer makes is to drill a 

borewell in the first year (Figure 6.5). As long as the groundwater level does not fall “too much”, 

growing irrigated crops is profitable. Once the 10% threshold is reached, the farmer decreases water 

abstraction until he pumps only the equivalent of recharge from rainfall during kharif,and stops 

pumping during rabi so that the groundwater level no longer declines. When this occurs, only irrigated 

sunflower is planted. For instance, with a water tax at 200 Rs per percentage of groundwater depletion 

below 10%, the farmer will pump from the borewell until it falls to 79 m.b.g.l. in the 9th year, yielding 

a maximum tax of approximately 4330 Rs/year. After this year, the farmer changes the cropping 

system from turmeric-sunflower to sunflower-sunflower, irrigating with a volume equal to borewell 

recharge. At 600 Rs/%, the threshold becomes 70 m.b.g.l. in the 6th year, which yields a maximum tax 

of 4600 Rs/year. At 1000 Rs/%, the farmer grows only sunflower starting in the 5th year so that water 

in the borewell does not decrease below 68 m.b.g.l., which yields a maximum tax of 3330 Rs/year. 
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6.5. DISCUSSION  

Uncertainty and risk significantly influence farmers’ decisions and should be considered when 

modeling decision-making processes in farming systems. In agricultural economics, two main 

modeling approaches treat risk and uncertainty as factors either non-embedded in stochastic 

programming or embedded in discrete stochastic programming. In the present study, a dynamic 

stochastic programming model with recursive programming was built to study decisions about 

investment in borewell irrigation and about cropping systems under climate risk. 

The model tested water management policies aiming at limiting groundwater table depletion. Given 

hypothesis and simplifications used to describe our representative Indian farmer, it showed that under 

climate change, a tax on the ambient groundwater level could be an appropriate approach to stabilize 

groundwater level and limit a decline in farmers’ profits. Another common policy in watersheds to 

manage water resources (e.g., the Beauce plain in France (Graveline, 2013)) is an individual quota 

policy in which farmers pay a fixed charge for any water pumped beyond their initial quota. This 

approach requires using water meters to monitor the volume of water pumped, which is costly. 

This study adds to the literature on irrigation management and agricultural adaptation to climate 

change in semi-arid countries involving a dynamic bio-economic representation of farmer decisions 

under climate change in a dynamic setting. First, we consider investment decisions about irrigation 

over a long-term horizon, which is similar to the horizon for impacts of climate change and therefore 

relevant. This helps assess expected impacts of specific climate scenarios (average rainfall intensity 

and rainfall distribution) and benefits of long-term decisions about irrigation infrastructure, while 

using the same bio-economic decision model for crop choice and irrigation water application rate. 

Second, we consider several policies that provide farmers with incentives to manage water abstraction 

in an optimal manner. Third, we combine climate and economic scenarios to explore the robustness of 

farmer adaptation strategies to changes in the outlook of agricultural markets. Fourth, the description 

of farmers’ water practices (including borewell characteristics and water application rate) is as detailed 

as the representation of crop choice based on the agricultural season. Most references in the literature 

focus on only one of these two dimensions. This accurate description of farmer behavior allows us to 

explore a wider range of adaptation strategies in response to climate or market events. Our decision 

model encompasses a significant range of possible farmer decisions, especially during agricultural 

seasons within a year, in a way that better represents options available to Indian farmers for adapting 

to climate change. Because our representation of agricultural production technology using 

groundwater irrigation is more detailed than that of most articles in the literature, it is able to capture 

implications of farmer decisions for revenue and the groundwater level more accurately. More 

precisely, the flexibility of the production model, in which plot size, crop choice, crop succession and 

irrigation application rate can be optimized, is expected to provide a more realistic representation of 
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the sensitivity of farmer revenues to market prices and policy instruments. It is well known (e.g., 

Chavas, 2012) that, according to the Le Chatelier-Samuelson principle, the sensitivity of an agent’s 

decisions to external pressures is higher if more degrees of freedom exist (for instance, more control 

variables) (Samuelson 1961). In its more popular version, this principle states that elasticity of input 

demand or output supply is lower in the short-term, when all technological dimensions are fixed, than 

in the long-term, when decisions can include production technology. When models represent 

production technology as less flexible than it really is, they are likely to under-estimate sensitivity to 

prices or policy instruments. For instance, when crop choice and plot size are decision variables, an 

increase in access cost to irrigation is likely to require more adaptation by the farmer than when crop 

systems are fixed. Additionally, a farmer may be more sensitive to changes in irrigation cost in the 

long-term, when irrigation capital becomes a control variable, than in the short-term, when only 

season-specific decisions are feasible. Representing more decision variables is necessary to better 

evaluate impacts of changes in market variables and the performance of policy instruments that 

influence farmers’ decisions. 

There are several caveats to our analysis. First, the generic nature of the bio-economic and 

groundwater irrigation model is limited due to the need to calibrate many agricultural and hydrological 

parameters. Even the representation of irrigation technology is based on hard rock fractured aquifers, 

and the list of possible crops is also specific to the watershed considered in our case study. The 

simulations yield solutions that depend greatly on the validity and quality of the input assumptions and 

data. The model’s predictions should be considered more as trends rather than absolute values. 

However, the structure of the bio-economic model may be used for a wide range of agricultural 

settings, as long as decisions about crop choice and irrigation are of similar nature, and provided that 

the model can be calibrated with survey and/or technical data. Second, the model was built to be 

applicable to other settings and research on investment decisions that influence future decisions about 

farm management. An important issue regarding farmers’ decisions that the model does not address is 

the importance of subsistence crops. These crops are not grown to be sold but to be consumed by the 

household. Their cultivation depends on household needs and current stocks of grain. One way to 

address this limitation is to allocate one plot to a subsistence crop (sorghum), the size of whose plot 

will be optimized to fill the stock for the coming year. Another possibility is to estimate the cost of 

buying all subsistence grain at the market to cover family needs and ensure that the farm has enough 

capital to purchase it each season and each year. Third, we restricted farmers’ risk and uncertainty 

preferences to risk neutrality and non-ambiguity. Farmers are assumed to maximize expected profit 

based on decision variables in the long- and short-terms, but they are not risk averse and therefore do 

not adapt production strategies to hedge against production or price risks. Extending our model by 

considering the expected-utility framework or prospect theory to avoid limitations of the expected-
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utility framework (e.g., Bocquého, Jacquet, & Reynaud (2013)) is certainly feasible, provided risk 

preferences can be inferred from field surveys or the literature (Ridier, Chaib, & Roussy, 2016). 

6.6. CONCLUSION 

We developed an original dynamic stochastic programming model with recursive programming to 

study decisions about investment in borewell irrigation and about cropping systems under climate risk. 

We used the model to test socio-economic and water management policies under climate change 

scenarios. The model was initially developed to address critical issues surrounding groundwater 

depletion and farming practices in a watershed in southwestern India. Its structure can be used in other 

agricultural settings. 
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TABLE CAPTION 

Table 6.1. Calibration parameters. Information in parentheses describes either the type of input parameter used in the model 
or its unit. 

FARM CHARACTERISTICS 
𝑁𝑝𝑙𝑜𝑡 (int) Number of plots 2 
𝑆𝐼𝑍𝐸𝑓𝑎𝑟𝑚 (double) farm size (ha) 2.0 
SEASON CHARACTERISTIC 
𝑆𝑒𝑎𝑠𝑜𝑛1𝑙𝑒𝑛𝑔𝑡ℎ (double) Length of the first season  (days) 180.0 
𝑆𝑒𝑎𝑠𝑜𝑛2𝑙𝑒𝑛𝑔𝑡ℎ (double) Length of the second season  (days) 120.0 
RAINFALL REGIMES 
𝑟𝑎𝑖𝑛𝑁 (int) Number of rain regimes 5 
𝑟𝑎𝑖𝑛𝑁𝐴𝑀𝐸  (vector of strings, 
of dimension 𝑟𝑎𝑖𝑛𝑁) 

Name of the rain regimen  Poor 
Below average 
Average 
Above average 
Good 

𝑟𝑎𝑖𝑛𝐶𝑂𝐷𝐸  (vector of integer, 
of dimension 𝑟𝑎𝑖𝑛𝑁) 

Code of rain regimes 1 
2 
3 
4 
5 

𝑟𝑎𝑖𝑛𝑆1 (vector of double, of 
dimension 𝑟𝑎𝑖𝑛𝑁) 

Rainfall in the first season (mm) 560.5 
624.62 
784.33 
859.6 
934.6 

𝑟𝑎𝑖𝑛𝑆2 (vector of double, of 
dimension 𝑟𝑎𝑖𝑛𝑁) 

Rainfall in the second season (mm) 297.82 
354.55 
427.19 
558.0 
635.50 

𝑝𝑟𝑆1 (vector of double, of 
dimension 𝑟𝑎𝑖𝑛𝑁) 

Proportions of rain regimes in the first 
season 

0.073 
0.220 
0.463 
0.220 
0.024 

𝑝𝑟𝑆2 (vector of double, of 
dimension 𝑟𝑎𝑖𝑛𝑁) 

Proportions of rain regimes in the second 
season 

0.024 
0.195 
0.512 
0.195 
0.073 
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WELL CHARACTERISTICS  
𝑊𝐸𝐿𝐿𝑁 (int) Number of cases for 𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ 3 
𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ (vector of 
double, of dimension 
𝑊𝐸𝐿𝐿𝑁) 

Depth of borewell (m) 100.0 
150.0 
200.0 

𝑊𝑇𝑑𝑒𝑝𝑡ℎ (double) Ground water depth level (m.b.g.l.) 60.0   
𝐹𝐴𝐼𝐿𝑤𝑒𝑙𝑙  (double) Probability of well failure  0.2 
𝐶𝑂𝑆𝑇𝑤𝑒𝑙𝑙  Cost of drilling a well (Rs) dynamic 
𝑅𝐴𝑇𝐸𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 (double) Depreciation rate of irrigation facility 0,95 
𝐶𝑂𝑆𝑇𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  Maintenance cost (Rs) dynamic 
FR, W, W’ Flow rate (𝑚3/h) dynamic 
SI  (double) Borewell specific yield 0.021 
𝐹𝑅 (double) Rainfall recharge factor 0.054 
�̅� Total water available (mm/ha) dynamic 
�̅�𝑆1 Available water the first season (mm/ha) dynamic 
�̅�𝑆2 Available water the second season (mm/ha) dynamic 
𝐼𝑅𝑅𝐼𝑁 (int) Number of values for 𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛  11 
𝑅𝐴𝑇𝐸𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 (vector of 
double, of dimension 𝐼𝑅𝑅𝐼𝑁) 

Proportion of available water to plots 0.0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1 

PUMP CHARACTERISTICS 
𝐻𝑃𝑁 (int) Number of cases for HP 3 
HP (vector of double, of 
dimension 𝐻𝑃𝑁) 

Pump horse power (HP) 0.0 
7.0 
14.0 

𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝 Pump purchase cost (Rs) dynamic 
𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆1 (double) Power in the first season (h/day) 4.0 
𝑃𝑜𝑤𝑒𝑟_𝑑𝑎𝑦𝑆2 (double) Power in the second season  (h/day) 3.0 



Chapter 6 Marion Robert 

178 
 

CROP CHARACTERISTICS 
𝑐𝑟𝑜𝑝𝑁 (int) Number of cases for 𝑐𝑟𝑜𝑝𝑁𝐴𝑀𝐸  5 
𝑐𝑟𝑜𝑝𝑁𝐴𝑀𝐸  (vector of strings, 
of dimension 𝑐𝑟𝑜𝑝𝑁) 

Crop names Maize  
Sunflower  
Sorghum  
Turmeric  
Marigold  

𝑐𝑟𝑜𝑝𝐶𝑂𝐷𝐸  (int) Crop codes 1 
2 
3 
4 
5 

𝑌𝐼𝐸𝐿𝐷𝑐  Crop yield (t/ha) dynamic 
𝑃𝑅𝐼𝐶𝐸𝑐 Crop price (Rs/t) dynamic 
𝐶𝑂𝑆𝑇𝑐 (vector of double, of 
dimension 𝑐𝑟𝑜𝑝𝑁) 

Crop cost (Rs/ha) 6058.0 
9642.0 
1110.0 
45566.0 
23584.0 

𝑅𝐴𝑇𝐸𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (vector of 
double, of dimension 
𝑐𝑟𝑜𝑝𝑁*𝑟𝑎𝑖𝑛𝑁) 

Crop failure rate 0.50 0.60 0.50 0.80 0.70 
0.30 0.40 0.30 0.50 0.50 
0.15 0.15 0.15 0.15 0.15 
0.10 0.10 0.10 0.10 0.10 
0.05 0.05 0.05 0.05 0.05 

𝑅𝐸𝐹𝑐 (vector of double, of 
dimension 𝑐𝑟𝑜𝑝𝑁) 

Reference crop prices (Rs/t) 10436.0 
29190.0 
10664.0 
71810.0 
10000.0 

α Price elasticity factor 0,1 
T Planning horizon (years) 30 
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Table 6.2: Experimental design for simulations 

Control Variables Baseline Scenario1 Scenario2 Scenario3 Scenario4 

𝑠ℎ𝑖𝑓𝑡𝑃𝐸𝑅𝐶 

𝑠ℎ𝑖𝑓𝑡𝑇𝑌𝑃𝐸 

𝑠ℎ𝑖𝑓𝑡𝑂𝐶𝐶𝑈 

0.0 

1 

1 

1% 

2 

2 

1% 

2 

2 

1% 

2 

2 

1% 

2 

2 

𝑟𝑎𝑖𝑛𝑆𝑈𝐵𝑆 0.0 0.0 [1000-7000 Rs/ha] 0.0 0.0 

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐹𝐸𝐸 0.0 0.0 0.0 [0.5-3.5 Rs/kWh] 0.0 

𝑊𝑇𝐷𝐸𝐶𝑅𝐸𝐴𝑆𝐸 

𝑊𝑇𝑇𝐴𝑋 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

10% 

[200-1000 Rs/%] 
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FIGURE CAPTION 

Figure 6.1: Baseline scenario over the planning horizon (30 years): A) groundwater level, B) farmer 
profit and C) relative crop area in kharif (irrigated maize replaces irrigated sunflower in rabi) 
(blue columns indicate investment years). 

Figure 6.2: Climate change scenario: A) groundwater level, B) farmer profit and C) relative crop area 
in kharif (irrigated maize replaces irrigated sunflower in rabi) (blue columns indicate investment 
years). 

Figure 6.3: Climate change and subsidized rainfed crops scenario: A) groundwater level, B) farmer 
profit, C) relative crop area in kharif for 7,000 Rs of subsidies D) relative crop area in kharif for 
4,000 Rs of subsidies and E) relative crop area in kharif for 1,000 Rs of subsidies (irrigated 
maize replaces irrigated sunflower in rabi) (blue columns indicate investment years).  

Figure 6.4: Climate change and power supply fee scenario: A) groundwater level, B) farmer profit, C) 
relative crop area in kharif for 3.50 Rs/kWh of fee D) relative crop area in kharif for 2.00 
Rs/kWh of fee and E) relative crop area in kharif for 0.50 Rs/kWh of fee (irrigated maize 
replaces irrigated sunflower in rabi) (blue columns indicate investment years). 

Figure 6.5: Climate change and water tax based on groundwater level: A) groundwater level, B) 
farmer profit, C) relative crop area in kharif for 1000 Rs/% of tax D) relative crop area in kharif  
for 600 Rs/% of tax and E) relative crop area in kharif for 200 Rs/% of tax (irrigated maize 
replaces irrigated sunflower in rabi) (blue columns indicate investment years). 
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Farming systems are complex and have several dimensions that interact in a dynamic and continuous 

manner depending on farmers’ management strategies. This complexity peaks in Indian semi-arid 

regions, where small farms encounter a highly competitive environment for markets and resources, 

especially unreliable access to water from rainfall and irrigation. NAMASTE, a dynamic computer 

model for water management at the farm level, was developed to reproduce interactions between 

decisions (investment and technical) and processes (resource management and biophysical) under 

scenarios of climate-change, socio-economic and water-management policies. The most relevant and 

novel aspects are i) system-based representation of farming systems, ii) description of dynamic 

processes via management flexibility and adaptation, iii) representation of farmers’ decision-making 

processes at multiple temporal and spatial scales, iv) management of shared resources. NAMASTE’s 

ability to simulate farmers’ adaptive decision-making processes is illustrated by simulating a virtual 

Indian village composed of two virtual farms with access to groundwater. 

 

Keywords: farmer’s decision-making process, adaptation, modeling, climate change, water 

management policy  
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7.1. INTRODUCTION 

Agriculture faces many challenges regarding its productivity, revenue and environmental and health 

impacts, challenges that must be considered within the known context of climate change. Agriculture 

also faces demands to increase the quantity, quality, accessibility and availability of production to 

secure food production and improve product quality to address needs of the world’s growing 

population (Meynard et al. 2012; Hertel 2015; McKenzie and Williams 2015). Agricultural 

productivity must increase within a framework of environmental and health concerns. To do so, 

agriculture should decrease its environmental impacts on water, air, soil and aquatic environments and 

consider the scarcity of resources such as water, phosphorus and fossil fuels (especially for production 

of nitrogen fertilizers) (FAO 2011; Brown et al. 2015). Under climate change, warmer temperatures, 

changes in rainfall patterns and increased frequency of extreme weather are expected to occur. 

Consequently, it has direct, biophysical effects on agricultural production and can negatively affect 

crop yields and livestock (Nelson et al. 2014). Rising sea-level will increase risks of flooding of 

agricultural land in coastal regions, while changes in rainfall patterns could increase growth of weeds, 

pests and diseases (De Lapeyre de Bellaire et al. 2016). 

On the Deccan Plateau in India, the countryside has witnessed the proliferation of individual, electrical 

pump-driven borewells that abstract water from underground aquifers (Sekhar et al. 2006; Javeed et al. 

2009). The low productivity of the aquifer (Dewandel et al. 2010; Perrin et al. 2011) and a rapid 

decline in the water table level has decreased borewell yields (Ruiz et al. 2015), indicating that 

(groundwater) irrigated agriculture still largely depends on rainfall. For a region that depends largely 

on monsoon and winter rainfall to maintain agricultural production, any shift in climate would have a 

severe impact on natural resources and the economy. Drilling borewells to gain control over water 

access is crucial to maintain household sustainability; however, it also entails the risk of failed 

borewells and intractable debts (Taylor 2013). 

Modeling and quantifying spatio-temporal variability in water resources and interactions among 

groundwater, agricultural practices and crop growth is an essential component of integrated and 

comprehensive water resource management (Ruiz et al. 2015). Simulating scenarios of climate change 

and water management policies is an essential tool to identify mechanisms that farmers can use and 

policies that can be implemented to address these challenges (White et al. 2015). In these modeling 

and simulation approaches, farmers’ decision-making processes should be considered to assess how 

agricultural production systems change and adapt to external changes and opportunities. Farm 

management requires farmers to make a set of interconnected and successive decisions over time and 

at multiple spatial scales (Risbey et al. 1999; Le Gal et al. 2011). In the long term, farmers decide on 

possible investments and marketing strategies to select or adapt to best fulfill their objectives. 

Decisions about cropping systems also impact the farm. Decisions about crop rotation and allocation 
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are considered at the whole-farm level (Detlefsen and Jensen 2007; Castellazzi et al. 2008; Dury et al. 

2010) and can be investigated in the long term and/or adapted for shorter periods. Once a crop is 

chosen, farmers must make (intra-) annual decisions to choose crop management techniques and the 

varieties to sow in the coming year. This decision can be made before cultivation and adapted, if 

necessary (tactical decisions). Generally, this decision concerns the whole farm to ensure that practices 

are consistent or to maintain a minimum of crop diversity on the farm. However, tactical decisions do 

not provide enough detail about daily management tasks to be operational; therefore, farmers must 

define specific ways to execute their tactical plans. Farmers decide on crop operations and resource 

management and even change the purpose of their crops when conditions are not conducive to the 

initial plan. A farm decision-making model should include sequential aspects of the decision-making 

process and farmers’ abilities to adapt and react (Figure 7.1 7.1) (Akplogan 2013). According to a 

review of modeling adaptive processes in farmers’ decision-making (Robert et al. 2016b), 70% of the 

articles reviewed focused on only one stage of the decision: adaptation at the strategic level for the 

entire farm or at the tactical level for the farm or plot. We suggest reconsidering farm management as 

a decision-making process in which decisions and adaptations are made continuously and sequentially 

over time (the 3D approach: strategic Decisions / tactical Decisions / operational Decisions) to 

simulate reality more closely. 

These considerations prompted development of a simulation model able to reproduce interactions 

between decisions (investment and technical) and processes (resource management and biophysical) 

under scenarios of climate-change, socio-economic and water-management policies. This article 

presents this farming system model and an example of its application to a semi-arid region in 

Karnataka state, southwestern India. We first introduce the conceptual model and the modeling and 

simulation platform. We then describe the model  NAMASTE  in detail and illustrate its capabilities 

by applying it to a case study in southern India. Finally, we discuss the key modeling choices and 

present several insights on how to upscale the model from the farm level to watershed, regional and 

national levels. 

7.2. MATERIALS AND METHODS 

7.2.1. Conceptual modelling 

We divided the systemic representation of the farming system into three interactive systems: i) 

decision system, which describes farmers’ continuous and sequential decision process; ii) operating 

system (technical system), which translates decisions ordered by the decision system into instructions 

to execute tasks which is an action to perform on a biophysical object or location (e.g. sowing 

operation) ; and iii) biophysical system, which describes crop and soil dynamics and their interactions, 
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especially relations between groundwater, soil, and plant development, using a crop model (Clouaire 

and Rellier 2009; Le Gal et al. 2010; Dury 2011; Akplogan 2013; Robert et al. 2016c) (Figure 7.2 7.2). 

For the decision model, we consider farmers as cognitive agents able to think, memorize, analyze, 

predict, and learn to manage future events and plan their actions (Le Bars et al. 2005). In artificial 

intelligence and cognitive sciences, agents are commonly represented as Belief-Desire-Intention (BDI) 

agents (Bratman 1987b; Rao and Georgeff 1991). The BDI framework is founded on the well-known 

theory of rational action in humans. BDI agents are considered to have an incomplete view of their 

environment (Simon 1950; Cyert and March 1963). The concept of Belief represents a farmer’s 

knowledge of the farming system and its environment. Desires are a farmer’s objectives (goals that 

meet production or management goals). Intentions are action plans that achieve a farmer’s objectives 

(Desires). 

Farmers are represented as BDI agents at several levels of the conceptual model of the farming system. 

Farmers’ beliefs and desires are the basis of the production processes in the farming systems. Farmers 

manage their farms based on their knowledge and objectives. Farmers have different types of 

knowledge about their farms: structural (i.e. farming structure and organization), procedural (i.e. 

know-how of farming practices), and observable (i.e. observations about their environment). 

Observing social and economic environments is important to be able to quickly respond to changes 

and uncertainties in the production context. The climate, prices of crops and inputs, and availability of 

external resources such as groundwater, labor or shared equipment are common uncontrollable data 

farmers use to make decisions. They also adapt their practices based on recent outputs of production 

systems, such as yields. Decision models provide the plans that farmers will execute in their 

production systems based on their observations and objectives, which translates into actions (invest, 

perform a crop operation, etc.) that correspond to intentions of the BDI agent. Contrary to these 

actions, which are direct outputs of the farming system, other outputs are consequences of these 

actions on the biophysical system, such as impact on groundwater: water consumption due to the 

volume of water pumped and drainage due to the natural return of excess water from rainfall and 

irrigation (for more details, see Robert et al. (2016b)). 

7.2.2. RECORD: a modeling and simulation computer platform 

Overview 

The RECORD platform is a modeling and simulation computer platform devoted to the study of agro-

ecosystems (Bergez et al. 2013). RECORD facilitates design of both atomic and coupled models and 

enables using different temporal and spatial scale within models. It is based on the Virtual Laboratory 

Environment (VLE), a free and open-source multi-modeling and simulation platform based on the 
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Discrete Event System Specification (DEVS) formalism that derives from the theory defined by 

Zeigler et al. (2000) on modeling and simulation for dynamic systems with discrete events. VLE 

provides a simulation engine, modeling tools, software libraries, and an integrated development 

environment to the RECORD platform. Specific extensions have been developed in RECORD to 

bridge the gap between the generic VLE and the framework adapted to the domain of agro-

ecosystems. These extensions help modelers in developing their models in the formalism they are used 

or which is the most suitable (see Bergez et al. (2013) for an extended description of the platform). In 

this study, two VLE extensions (“Decision” and “DifferenceEquation”) were used to build the model, 

and a specific package (RVLE) for the statistical software R (R Core Team, 2016) was used to help 

perform simulations. 

VLE extension “Decision” 

To represent farmers’ operational decision-making processes, the “Decision” extension (Bergez et al. 

2016) implements the “decision” portion of the model in the “decision system/operating 

system/biophysical system” approach. During simulations, the decision model captures identifies the 

state of the environment (e.g. weather, plant, soil, resource availability) and sends orders to the 

connected models (e.g. a biophysical crop model) according to a flexible work plan of activities (i.e. 

the tasks to be achieved). 

The work plan of activities contains the following: 

i) a knowledge base composed of information about the system used to reach a decision. The 

information includes dynamics of biophysical processes, availabilities of human and material 

resources, and spatial information about farm structure. They are organized as a set of 

variables whose values evolve during the simulation to update the knowledge base at each 

time step. 

ii) tasks to be executed and associated conditions (predicates, rules and time windows)  

iii) temporal relations between tasks (for details of the “Decision” extension, see Bergez et al. 

(2016)) 

Recently, resource constraints were added to the conditions associated to the tasks. A set of available 

discrete resources is defined and structured by categories within the knowledge base. Resource 

constraints are defined for each task by a needed quantity, possible alternatives and priorities. During 

simulation, the resource allocation is sequentially managed depending on resource availability and 

task priorities.  
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VLE extension “DifferenceEquation” 

The VLE extension “DifferenceEquation” extension formulates time-discrete models that calculate 

values of real variables at time t as a function of the value of variables in the system at time t-∆, t-2∆, 

etc. (e.g. VarX(t+1) = f(VarX(t))). The expected parameters for an atomic model using 

“DifferenceEquation” are i) the simulation time-step (∆t), which must be the same for all equations; ii) 

the mode (either “name”, in which all external variables share one input port, or “port”, in which each 

external variable has its own input port); and iii) the variables (a list of state variables and their initial 

values). 

RVLE: a user-friendly tool in the RECORD platform  

RVLE (www.vle-project.org) is an R package that calls VLE’s application-programming interface 

from R. It can open packages and read model structure (VPZ files), assign experimental conditions to 

models, call the simulator, build experimental frames and turn simulation results into an R object such 

as a matrix or dataframe. It is especially useful for analyzing simulation results and performing 

statistics. It also allows users to manipulate models from the simpler environment of R. 

7.3. DESCRIPTION OF THE FARMING SYSTEM MODEL 

7.3.1. Models used to build the farming system model 

The decision system 

3D: three integrated decision models 

The novelty of the decision system is that we developed three integrated decision models to represent 

farmers’ strategic, tactical and operational decisions and adaptations. The strategic model simulates 

farmers’ strategic decisions, which include decisions about investment and cropping systems. The 

tactical model simulates farmers’ tactical decisions, especially adaptation of cropping systems. The 

operational model simulates farmers’ operational and crop management decisions.  

We used three modeling formalisms to describe farmers’ decisions throughout the decision process. 

Decisions about investment and cropping systems that are influenced by economic return (maximizing 

profit) were expressed using dynamic stochastic programming. Decisions about establishing cropping 

systems that are influenced by motivations besides economic return (e.g. proximity to a market, 

equipment) were implemented via a decision-rule modeling approach using a specific descriptive 

language whose syntax is based on formal IF-THEN-ELSE rules written as a Boolean condition: 

http://www.vle-project.org/


Chapter 7  Marion Robert 

194 
 

 C
hapter 7 

M
arion Robert  

“IF<indicator><operator><threshold> THEN <action1> ELSE <action2>”. Decisions about crop 

management were described by a knowledge base and an activity graph supported by the “Decision” 

extension in the RECORD platform. The knowledge base collects information that the farmer obtains 

from the biophysical subsystem when monitoring and observing the environment. The activity graph 

represents the farmer’s work plan and relies on the knowledge base to activate or disable technical 

operations (Figure 7.3A). An activity denotes a task. Rules control the start of the activity by checking 

whether conditions necessary to perform the operation exist (Figure 7.3B) (for details of this 

formalism, see Bergez et al. (2016)). 

Modeling resource management in the operational decision model 

From a modeling viewpoint, two types of resources were distinguished in the farming system: i) 

conditional, discrete and returnable resources, which are necessary to execute an operation and can be 

used and then returned once the operation is finished (e.g. labor, tractor); and ii) unconditional and 

consumable resources, which are not necessary to execute an operation and are consumed and not 

returned after use in an operation (e.g. irrigation water). These resources are managed differently in 

the model. The operating system manages the unconditional and consumable resources. For example, 

following an order to execute irrigation, the decision system returns each day the amount of water 

needed to irrigate the farm. The operating system compares the water needed to the water available 

and executes the order to irrigate by transferring the larger of the two values (water needed or water 

available) to the biophysical system.  

Conflicts between activities requiring the same resources at the same time are dynamically managed 

using rules to allocate resources and determine the order in which activities are executed. Prioritization 

is managed by rules that temporally rank activities that can be executed simultaneously. Ranks can be 

reviewed and updated by other rules.   

The operating system 

The operating system translates decision orders into executable and timed actions. It calculates the 

duration of each activity based on the quantity and type of resources that an operation uses and the 

speed with which each resource executes an operation (entered in the experimental conditions of the 

simulation). The operating system can also transform certain data transferred from the decision system 

so that data units correspond to those expected by the receiving model. The operating system is 

implemented using difference equations in RECORD.  
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The biophysical model 

The STICS model, which represents the crop and soil system, simulates dynamics of a crop-soil 

system over one or more crop cycles at a daily time-step (Brisson et al. 1998). We selected STICS for 

its adaptability to many crop types, robustness in a wide range of soil and climate conditions and 

modularity (Brisson et al. 2003). It has been successfully used in spatially explicit applications and 

coupled with hydrological models at the watershed level (Beaujouan et al. 2001). STICS receives the 

crop operations and parameters applied to the plot from the operating system, which executes orders 

provided by the decision system. STICS returns information about crop stage, yield, soil 

characteristics, water use and drainage. The FORTRAN code in STICS was wrapped into an atomic 

model using difference equations in RECORD (Bergez et al. 2014). 

7.3.2. Model structure 

The model is composed of one decision system and one operating system, the latter of which interacts 

with one biophysical system (Figure 7.2). The biophysical system can be made up of several crop 

models. For example, an independent STICS model represents the crop and soil of each plot of the 

modeled farm. For each plot, the decision system has a work plan with specific activities listed for the 

plot’s crop. Several work plans may run in parallel when the modeled farm has several plots.  

The resource manager must manage conditional, discrete and returnable resources both among 

activities in a given work plan and among work plans. In this case, prioritization is used to rank all 

activities temporally. Unconditional and consumable resources are distributed by an intermediary 

model that, for example, allocates irrigation water to plots when the decision system sends several 

irrigation orders on the same day. Available water is distributed according to priorities assigned to 

work plans. To simulate the cropping system over several years, several work plans for the same plot 

must be run sequentially; the next one is loaded when the last activity of a given work plan is 

completed.  

7.3.3. Dynamic functioning 

In systemic modeling, models must be able to interact with each other to provide feedback and other 

types of interactions. Two types of variables are identified in models: state variables, which are 

managed by the model itself, and external variables, which are managed by other models.  

The sequence diagram (Figure 7.4) illustrates the event flow and communications established between 

models for systemic modeling of a farming system. Strategic decisions are made once a year at the 

beginning of the calendar year, while tactical decisions are made at the beginning of each cropping 

season. Operational decisions are made daily, and return events occur only when operation orders are 

effective. In this example, we considered two cropping seasons (days 100-250 and 251-355) and two 
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operations (sowing on day 130 and harvest on day 240. External events (e.g. rainfall, market prices, 

electricity availability) and availability of resources (e.g. labor, equipment, irrigation water) are 

summarized in the INPUTS model (Figure 7.4). 

At the beginning of the year, the strategic model receives information from INPUTS so that strategic 

decisions about investment and long-term cropping systems are based on farmers’ knowledge and 

objectives. These two types of strategic decisions are forwarded to the tactical and operational models, 

respectively. At the beginning of the cropping season, the tactical model receives information from 

INPUTS so that farmers’ knowledge is updated. This new information prompts the tactical model to 

update the cropping system and forward the adapted cropping system to the operational model. At the 

operational level, decisions are based on the appropriate agronomic context and the farmers’ updated 

knowledge. Once both types of information meet the requirements for executing an operation and are 

forwarded to the operational model, an operation order (sowing on day 130) is transferred to the 

operating system, which translates it into a task execution so that the operation is performed in the plot 

one day after the decision is made (day 131). At the end of the operation, the crop model returns the 

agronomic context to the operational model. The same process occurs for the second activity, harvest, 

on day 240. After harvest, the operational model informs the tactical model that the cropping season is 

over. When the tactical model automatically wakes up on day 250 (official end of the season), it 

receives information about the successful harvest and updated knowledge about the system, processes 

and updates the cropping system for the second season and forwards this updated cropping system to 

the operational model. At the end of the second season, the same process occurs, and soon after the 

second year begins.  

7.4. APPLICATION CASE: THE NAMASTE SIMULATION MODEL 

NAMASTE simulates farmers’ adaptations to uncertain events such as climate change, water table 

depletion, the economic environment and agricultural reforms. We applied NAMASTE to a case study 

located in Karnataka state, India, in the Berambadi watershed. The cropping system is organized 

around three seasons: i) the rainy season (kharif), when most crops are grown; ii) the winter season 

(rabi), when mainly irrigated crops are grown and iii) the dry season, when little cultivation occurs 

(summer). Monsoon rainfall is a key determinant of crop choice. Farmers make three types of 

decisions: i) whether to invest in an irrigation system, ii) crop selection and iii) crop management and 

operations. All farmers in the watershed pump irrigation water from the same aquifer, and those from 

the same village share labor and equipment.  

To illustrate NAMASTE’s ability to simulate farmers’ adaptive decision-making processes under 

conditions of both limited and shared resources, we ran a baseline scenario over a 10-year planning 

horizon in which the parameters that describe the climate, crop market conditions (prices and costs), 
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and water pumping conditions (i.e. hours of electricity available each day, cost of pumping) were 

based on those obtained from farmer surveys. 

7.4.1. Coupling the farming system model to the hydrological model 

Rainfall, market prices, and availability of electricity, labor, equipment, and irrigation water are inputs 

to the farming system. They are modeled as subsystems of an external system that limits the farming 

system (Figure 7.5).  

Hydrological sub-system 

AMBHAS (Tomer 2012) is a spatially explicit groundwater model that simulates dynamics of daily 

groundwater level based on equations from McDonald & Harbaugh (1988). It predicts daily 

groundwater level, actual net recharge and discharge. Net recharge is predicted from the amount of 

water drained below the soil profile and required for crop irrigation predicted by STICS for a 1 ha cell. 

The PYTHON code in AMBHAS was wrapped into an atomic model using difference equations in 

RECORD. 

Climate, market and power supply sub-systems 

The WEATHER model simulates expected and actual rainfall each day. The MARKET model 

simulates expected and actual crop market prices. The ELECTRICITY model simulates the number of 

hours of electricity available each day. These sub-models are implemented in an atomic model using 

difference equations in RECORD. 

7.4.2. NAMASTE simulaton 

When resources are shared, interactions are important to an individual farmer’s decision-making 

process. To integrate resource constraints into the farming system model, our experimental model 

simulates a virtual village composed of two virtual farms that have access to groundwater in the same 

AMBHAS cell of 3 ha (Figure 7.5). The first farmer manages 1 ha of land organized into two crop 

plots and owns one bullock for cropping operations; the second manages 2 ha of land organized into 

two crop plots and owns two bullocks. Neither farmer owns a tractor. On each farm, both the farmer 

and his wife work. Both farms can hire labor and rent equipment from the village (i.e. 110 female 

laborers, 90 male laborers, 4 bullocks, 1 tractor). Because a borewell can be drilled on each plot, this 

NAMASTE simulation consisted of four borewell models. During simulation, the strategic decision 

model may change the parameters for pump horsepower and well depth. The net recharge (water 

drained minus water pumped) returned to the AMBHAS cell is calculated by an intermediate model 

that calculates the difference between total drainage and pumping flows of all plots.  
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NAMASTE simulation of two farms in one village proceeds as follows. Each farm is simulated by a 

decision system, which includes strategic, tactical and operational decision models. NAMASTE 

considers farm characteristics (e.g. number of plots, soil type, amount of labor and equipment), crop 

management files and initial farm status as initial conditions. The operational decision model manages 

the village’s labor and equipment that is used for crop production. It functions as a resource manager 

and attributes resources to the first enquirer. The operational model interacts with the operating 

system, while the biophysical system has as many STICS models as there are plots in the village. The 

external system (i.e. WEATHER, MARKET and ELECTRICITY models) constrains both farms in the 

same way, and we assume that farmers’ individual or combined decisions do not influence it. The 

same AMBHAS cell simulates the irrigation water available to both farms. 

At the beginning of the year, in the strategic model, each farmer makes decisions about investment and 

the cropping system for the next ten years independent of other farm decisions. Investment in a 

borewell determines parameters of the borewell model for each plot. At the beginning of the cropping 

season, in the tactical model, each farmer independently updates the cropping system based on new 

information on prices, rainfall and groundwater level. This updated cropping system is then entered 

into the operational model, which defines the crop rotation and the management of each crop. The 

operational model determines when conditions necessary for crop operations are met and requests 

resources from its resource manager. Farmers’ practices interact at this level, which means that one 

farmer’s crop operations may be restricted by the other’s when both need labor and equipment at the 

same time. Irrigation water may also be a source of conflict between farmers, since the water that one 

farmer withdraws from the aquifer is no longer available to the other (Figure 7.5). 

7.4.3. Calibration and validation 

The model was calibrated with data from two farm surveys conducted in the Berambadi watershed. 

Farmers on the watershed were surveyed in 2014 and 2015. The first survey targeted 27 farmers to 

obtain detailed data about their practices, especially their decisions and how they adapted them. The 

second survey targeted 684 farmers to obtain broad data on farm characteristics and the social, 

economic and agronomic environments. This survey enabled creation of a typology of farmers on the 

watershed based on biophysical factors (e.g. farm location, soil type, groundwater accessibility), 

economic factors (e.g. farm size, labor, equipment) and social factors (e.g. castes, family structure, 

education, off-farm job) (for more details, see Robert et al. (submitted)). We surveyed seed retailers 

and village leaders (panchayats) to learn about recommended crop management practices and village 

organization. Additionally, 52 experimental plots were monitored over three years, which provided 

empirical data on crop production and management. These data helped supplement the verbal 

information that farmers provided during surveys. Meteorological data were obtained from a 

meteorological station and water gauges installed on the watershed. Prices and costs were obtained 
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from farmers and official district data from the Indian Ministry of Agriculture and Cooperation 

(Directorate of Economics and Statistics) and the National Informatics Center (Agricultural Census 

Division). 

The model was validated using computerized model verification and operational validation. 

Computerized model verification checks whether the computer implementation corresponds to the 

conceptual model representation (Whitner and Balci 1986; Sargent 2013). It verifies that the computer 

code has no coding errors or computer bugs and that the simulation language is implemented well. We 

used two main approaches for computerized model verification: i) static, which tests the main script at 

multiple points, allowing for local checks during encoding, and ii) dynamic, which executes the script 

with several sets of data and experimental conditions to verify the accuracy of outputs. In contrast, 

operational validation checks whether the behavior of the final simulation model is accurate enough to 

fulfill the research objectives. The model was validated mainly by subjectively exploring its behavior 

(Sargent 2013). First, we graphically compared model predictions to observed data, verifying that 

predicted yields lay within the ranges of observed yields in the watershed. We also qualitatively 

analyzed model behavior, verifying that predicted variables moved in the same directions as observed 

variables. For example, we verified that crop choice, management and yield correctly responded to 

climate variations; that investment in irrigation corresponded to economic and climate environments; 

and that the groundwater table correctly responded to rainfall and irrigation. 

7.4.4. Simulation results 

Sequential decision making and adaptation at different temporal and spatial scales 

To illustrate decision processes and adaptations, we describe the sequential decision-making processes 

the first farmer followed to cultivate 1 ha of land (Figure 7.6). At the beginning of the 10-year 

planning horizon, the farmer has expectations for the future climate (i.e. percentage chances that a year 

will have good, above-average, average, below-average or poor rainfall). Farmers’ expectations for the 

climate influence those for socio-economic and hydrological conditions (crop prices and groundwater 

level, respectively). Based on these expectations, the farmer plans long-term investment (e.g. adding a 

borewell) associated with an optimal cropping system choice (first column, Figure 7.6). At the tactical 

level, the farmer knows what kind of climate to expect (i.e. average rainfall) but is uncertain about the 

seasonal distribution of rainfall throughout the year. The farmer observes the groundwater level (H) at 

the beginning of each year (initially 60 m.b.g.l.; simulated observations in later years come from the 

operational decision model) and has expectations for how it will change throughout the year (i.e. 

expected H). The farmer reviews the cropping system decision (second column, Figure 7.6) and begins 

daily crop operations (operational decisions) (third column, Figure 7.6).  



Chapter 7  Marion Robert 

200 
 

 C
hapter 7 

M
arion Robert  

The farmer can adapt crops and/or practices when conditions are not suitable. In the fourth year, which 

had below-average rainfall, the farmer adapted crop choice at the tactical level. The farmer, knowing 

that low rainfall during the cropping season impacts rainfed crops in particular and observing a 

groundwater level much higher (12.4 m higher) than expected at the beginning of the planning 

horizon, changed 0.1 ha of rainfed marigold to irrigated sunflower (to go with the 0.9 ha of irrigated 

tumeric). 

In the third year, which had above-average rainfall, the farmer adapted crop choice at the operational 

level. The farmer planned to grow 0.9 ha of turmeric and 0.1 ha of marigold. Both crops have similar 

sowing windows (30 March1 May) and conditions (rules): soil moisture must be low enough to bear 

loads (rule: < 75% of field capacity) but high enough for seeds to germinate (rule: > 60% of field 

capacity) and rain must not be forecast for two consecutive days (since sowing can last two days) 

(rule: total expected rainfall for two consecutive days must not exceed 5 mm). Five days in April (6, 7, 

8, 9 and 11) had acceptable soil moisture (60-75% of field capacity), but April’s high rainfall (147 

mm) prevented sowing. Because sowing turmeric and marigold was not possible, the farmer had to 

review the cropping plan and sow only maize, which has a wider sowing window (April -June). 

In the sixth year, which had above-average rainfall, the farmer adapted practices at the operational 

level. Unlike in the third year, turmeric and sunflower could be sown in April; however, frequent 

rainfall events after sowing decreased the number of irrigation events planned for turmeric. Four 

planned irrigation events were cancelled because irrigation rules recommend irrigating when total 

rainfall during the past three days is < 50 mm and < 5 mm of rainfall is expected in the next two days.  

Tactical and operational adaptations influenced the groundwater level and the farmer’s profit (Figure 

7.7). Due to generally adequate rainfall during the planning horizon (except the 4th, 9th and 10th years), 

pumping was lower and recharge was higher than predicted at the strategic level. Thus, the 

groundwater level did not decrease as much as expected, and the borewell did not go dry during the 

planning horizon. Concerning profit, rainfall induced economically disastrous years (i.e. 3rd and 9th 

years), by preventing the farmer’s initial cropping system plan and requiring maize to be sown, or 

highly profitable years (i.e. the 6th year), by being above average and well distributed during crop 

growth. In at least one year (i.e. the 10th) irrigation was able to compensate for the below-average 

rainfall and provide a profit. 

Resource management: between scarcity and sharing 

NAMASTE considers situations in which resources may be limited because they are scarce and 

limited and/or used by another farmer. In these conditions, farmers adapt their daily practices, delaying 

crop operations until resources become available. Competition for resources can be internal, when 
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operations occur at the same time in two plots of the same farm, or external, when competition due to 

another farmer’s practices. 

To illustrate resource management in NAMASTE, we describe management of village resources 

(female and male labor, a tractor and bullocks) in the first year of the planning horizon (Figure 7.8). 

The first farmer planned to grow turmeric on 0.9 ha with 16 irrigation events and rainfed marigold on 

0.1 ha. The second farmer planned to grow turmeric on 1.6 ha with 12 irrigation events and rainfed 

marigold on 0.4 ha. Three types of resource conflicts were observed (Figure 7.8):  

i) Conflicts over use of the tractor to plow land. Turmeric and marigold plots must be plowed 

during the same window (1-23 March) and according to the same conditions (rules). Since 

turmeric has a higher priority index than marigold, the resource manager allocates the tractor 

to the turmeric plots first (e.g. the first tractor plowing occurs on 10-11 March for turmeric 

plots and 15-16 March for marigold plots). Between turmeric plots, the resource is randomly 

attributed. For example, for turmeric, the first tractor plowing occurs on March 10th on farm 1 

and March 11th on farm 2 and the second tractor plowing occurs on March 20th on farm 1 and 

on March 21st on farm 2.  

ii) Conflicts over use of female labor to weed turmeric (10 April5 September). Since both 

turmeric plots were sown on 13 April, they had the same time windows for weeding events 

(10-35, 55-65, 85-95 and 115-125 days after sowing). For each weeding event, the first farmer 

needed 21 male and 52 female laborers, and the second farmer needed 36 male and 91 female 

laborers. Since the village had only 110 female laborers, both farmers could not weed their 

plots at the same time. The resource is randomly attributed. 

iii) Conflicts over use of both female and male labor to harvest turmeric. The first farmer needed 

49 male and 58 female laborers, and the second farmer needed 87 male and 103 female 

laborers to harvest their turmeric plots. Since both female and male labor was limited, one of 

the farmers had to delay harvest. 

7.5. DISCUSSION 

Understanding farmers’ decision-making processes and relationships with the biophysical system is 

necessary to understand farming system complexity at multiple scales. NAMASTE is a simulation 

model able to reproduce interactions between decisions (investment and technical) and processes 

(resource management and biophysical) under scenarios of climate-change, socio-economic and water-

management policies. The model has two main innovations: i) its decision model simulates farmers’ 

decision-making processes by describing dynamic sequential decisions via adaptation to the 

biophysical environment and ii) it couples decisional, economic, biophysical and hydrological systems 

to predict effects and spillover of human decisions on natural systems. 
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Research increasingly considers farm management as a flexible and dynamic process. In recent 

agricultural literature, however, consequences on long- and short-term farm organization are rarely 

considered, even though they appear to influence farmers’ decision-making greatly (Daydé et al. 

2014). We used the basic definition of Le Gal et al. (2011), which divides a decision into a set of 

interconnected decisions made over time and at multiple spatial scales. Sequential and dynamic 

representation is particularly useful and appropriate for modeling entire processes for making strategic, 

tactical and operational decisions (Risbey et al. 1999; Le Gal et al. 2011). 

Like many agent-based models that represent a complete system (An 2012), coupling decisional, 

economic, biophysical and hydrological models was necessary to model and quantify spatio-temporal 

variability in water resources and interactions among groundwater, agricultural practices and crop 

growth. One difficulty in modeling these processes is combining independent models that were 

originally developed for specific purposes at different spatial and temporal scales (Kraucunas et al. 

2015). The biophysical model used in NAMASTE was developed to simulate fixed practices such as 

sowing, irrigation and harvest on one plot for one cropping season. The hydrological model simulates 

groundwater dynamics of a large territory. The decision model describes farmers’ decisions and 

practices on their farms. Meaningful model integration requires consistency in the underlying system 

boundaries, assumptions and scale of analysis of these diverse models in the global model. As Kling et 

al. (2016) suggested, it is necessary to develop “bridge” models that convert outputs of one model into 

inputs of another. This approach enables models to be connected at different scales and to operate 

together by downscaling outputs from global to local models (e.g. AMBHAS) and by upscaling 

outputs from local to global models (e.g. decision and biophysical models). This can ensure that 

component models are manageable and provide outputs at both local and global scales (Hibbard and 

Janetos 2013). 

In this study, operational validation was performed mainly by subjectively and qualitatively exploring 

model behavior (Sargent 2013). We developed a simulation model able to reproduce interactions 

between decisions (investment and technical) and processes (resource management and biophysical) 

under scenarios of climate-change, socio-economic and water-management policies. Nonetheless, 

quantitative simulation results for the Berambadi case study still have high uncertainty. Calibrating 

and validating the global model is an important and time-consuming step that is still underway (94 

parameters are directly accessible in the global model, and AMBHAS and STICS have many internal 

parameters that require tedious calibration). 

Upscaling from the farm level to watershed, regional and national levels is a common approach for 

studying system behavior and dynamics, such as farm adaptations to climate change (Gibbons et al. 

2010), land use and land cover changes in response to climate change (Rounsevell et al. 2014) and 

ecosystem changes in response to biotic and abiotic processes (Nash et al. 2014). Peters et al. (2007) 

identified three types of scales: “fine” (one individual), “intermediate” (groups of individuals) and 
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“broad” (large spatial extents such as the landscape, region and planet). The appropriate scale is 

defined by the research question or hypothesis and often requires upscaling or downscaling existing 

models (Gibbons et al. 2010). We consider the upscaling issue from the perspective of modeling  

consequences of farmers’ adaptations to changes in climate and groundwater. The challenge of 

aggregation or upscaling is to determine which fine-scale details matter most at intermediate or broad 

scales. Research questions differ according to the scale. At the farm scale, we focused on farmers’ 

decision-making processes and their adaptation to uncertain changes (e.g. climate and resource 

availability). The watershed level requires exploring the influence of decision making on the 

groundwater table rather than the process of decision making itself and to consider interactions 

between individuals for shared resources. At the watershed level, relative trends are more important 

than absolute values. For example, at the watershed level we are more interested in the total amount of 

groundwater used for irrigation in the watershed than on individual farms.  

Our model provides tools to analyze, evaluate, and optimize agronomic, environmental and economic 

criteria. We tested the model with a baseline scenario to simulate current farming practices in the 

Berambadi watershed and predict influence of the latter on groundwater level in a virtual village 

composed of two farms. Modeling agricultural production scenarios can help stakeholders make 

decisions about regulations and resource restrictions and encourage new practices to recommend to 

farmers.  

7.6. CONCLUSION 

We developed an original simulation model of a farming system that combines relevant principles 

highlighted in the scientific literature. The model was initially developed to address critical issues of 

groundwater depletion and farming practices in a watershed in southwestern India. Its structure, 

frameworks and formalisms can be applied to other agricultural contexts. Our application focused on 

water management in semi-arid agricultural systems, but the model can also be applied to other 

farming systems to confirm the reusability and robustness of the framework.  
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FIGURE CAPTION 

Figure 7.1. Representation of farmers’ decision-making processes at multiple temporal and spatial 

scales, indicating processes to adjust farm management to the farm environment. 

Figure 7.2. Conceptual representation of the farming system based on integration of three systems. 

Based on knowledge, farmers make decisions that the operating system translates into executable 

actions. These actions modify the state of the biophysical system. Specific outputs for irrigation 

management provide information about water consumption and natural drainage of groundwater. 

Figure 7.3. A) Activity plan of the sequence of sorghum operations created with the decision 

extension. B) Rules and associated predicates for the activity plan of the sequence of sorghum 

operations.  

Figure 7.4. Sequence diagram of the event flow in systemic modeling of the farming system. We 

considered two cropping seasons (days 100-250 and 251-355) and two operations (sowing order on 

day 130 and harvest order on day 240. O.S. = operating system, LT = long-term 

Figure 7.5. NAMASTE model: a virtual village composed of two virtual farms (F1 and F2), each 

having access to ground water on the same AMBHAS cell. Each farm is simulated by two individual 

DEVS atomic decision model (strategic and tactic) and a common operational decision model using 

the VLE decision extension of RECORD that describes individual operational decisions for the whole 

village. The WEATHER model, the MARKET model and the ELECTRICITY model constrain the 

same way both farms. Farm 1 contains two plots P1 and P2, Farm 2 contains two plots P1 and P2. GW 

= groundwater, HP = horsepower 

Figure 7.6. Decisions and adaptations of one farmer during the 10-year planning horizon (each line 

describes one year). The first column describes the farmer’s strategic decisions about investment in 

irrigation. The second column describes the farmer’s tactical decisions and adaptations at the 

beginning of each year after observing the weather and the groundwater level. The third column 

describes the farmer’s operational decisions about and adaptations to crop choice and irrigation after 

observing daily rainfall. Numbers in brackets indicate the number of irrigation events for each crop. 

CS = cropping system, π = profit, Rs = Indian rupees, H = groundwater level, m.b.g.l. = meters below 

ground level. 

Figure 7.7. Groundwater level and profit of one farmer during the 10-year planning horizon – 

comparison of expected values at the strategic level (optimal profit and expected groundwater level 

from strategic decisions) and final values at the operational level. H = groundwater level, m.b.g.l. = 

meters below ground level, Rs = Indian rupees (bleu drops describe rainfall types: 1 drop is poor 

rainfall, 2 drops is below-average rainfall, 3 drops is average rainfall, 4 drops is above-average 

rainfall, 5 drops is good rainfall). 



Chapter 7  Marion Robert 

206 
 

 C
hapter 7 

M
arion Robert  

Figure 7.8. Resource management in a village composed of two farms – example of available (in %) 

village resources (female and male labor, bullocks and tractor) during the first year of the planning 

horizon. Three conflicts are identified (1, 2, 3). Activities of one farm were postponed when resource 

conflicts occurred.   
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APPENDIX 2: DATA USED IN NAMASTE DEVELOPMENT 

Knowledge acquisition helps to understand and describe the real system.  

1) We surveyed farmers in the watershed in 2014 and 2015.  

2) We surveyed seed retailers and Panchayats (village leaders)  

3) 52 experimental plots  

4) Meteorological data  

5) Crop prices and costs  

 

1. Farm surveys 

The first survey targeted 27 farmers to obtain detailed data about their practices, in particular their 

decisions and the process of adapting their decisions. The second survey targeted 680 farmers and 

obtained broad data about farm characteristics and social, economic and agronomic environment. This 

survey led to a typology of farmers on the watershed based on biophysical factors (e.g. farm location, 

soil type, ground water accessibility), on economic factors (e.g. farm size, labor, equipment), on social 

factors (e.g. castes, family structure, education, off-farm job) (details are found in Robert et al. (in 

Prep.)).  

Questionnaire and survey work has been done under Dr Srinivas Badiger and Iswar Patil supervision 

(Ashoka Trust for Research in Ecology and the Environment, ATREE). A first draft of the 

questionnaire has been proposed prior to my arrival and then adapted to the Indian context and tested 

in the field with the ATREE team. In parallel, the “Big” survey targeting 600 households on the 

Berambadi watershed has been reviewed to fit the main expectations of the different INRA teams 

(EMMAH, AGIR, LERNA) and simplified to be applicable to the field. 

1.1. The Case-based survey in the Berambadi watershed 

The case-based survey aimed at getting detailed information concerning decision-making and rules 

that direct the decision process of the farmers in the Berambadi watershed.  

1.1.1. Questionnaire design 

We aimed at identifying the farmers’ objectives, their strategic cropping system plan, and to 

understand how they perceive their resources (land, labor, irrigation water, material). We also 

wondered which indicators of change in the environment farmers are looking at, and how and when 

they are monitoring these changes (prices, weather, GW level). We supposed that farmers have 

leeways to adapt and face these changes such as obtaining temporary labor, using several sources of 

water, borrowing material, etc. We believed that farmers make decisions during the growing season in 
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order to face and deal with the changing environment, and we wondered when these decisions are 

made, and how they are taken to identify decision-rules.  

 Initial questionnaire 

The questionnaire was composed of six main parts (Figure Appendix 2.1) – i) the objectives of the 

farmer, ii) his strategic plan and cropping pattern characteristics, iii) his crop management practices 

and decision rules, iv) his resources, v) his marketing system, and vi) his climate change 

consideration. A temporal graph (Figure Appendix 2.2) and stickers with decisions taken and crop 

operations was proposed to support the crop management part of the questionnaire.  

 

Figure Appendix 2. 1 Case-Based Survey Brainstorming 
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 Adaptation to the Berambadi case 

A six-hour preliminary test of the questionnaire had been done after reviewing the vocabulary and the 

meaning of each question with the ATREE team, concluding that the survey was way to long and 

numerous questions needed to be reviewed.  

First, it appeared that farmers had difficulties answering open questions and needed numerous 

explanations and examples to answer. We decided to limit the number of open questions (79% in the 

first questionnaire draft, and 15% in the final questionnaire), and proposed instead multiple choices. 

To avoid situation where the farmer will agree with all the choices, we asked the farmer to rank his 

answers from the more likely to the less likely. 

Then, it has been advised to avoid conflicting questions on costs and water/electricity fees to not 

antagonize some farmers. 

Examples were preferred to agronomic vocabulary. Crop sequence, crop rotation, crop precedent 

effects are examples of agronomical concepts that farmers had difficulties to understand. 

The use of the temporal graph was not encouraged fearing that some illiterate farmers got lost or 

ashamed during this exercise.  

Figure Appendix 2. 2 Temporal Graph 
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Finally, during the training of the enumerators, each question had been rewritten in a simple way to 

facilitate the understanding of the enumerators. 

At the end, the questionnaire had been shortening to one and half hour to optimize the attention of the 

farmer. 

1.1.2. Sample selection 

The initial questionnaire was built with the idea that it will follow the 

« big » survey, so that general questions on household characteristics, 

and farm structure would not need to be asked again. Given that the 

« big » survey was started in the same time than the case-based 

survey, we decided to focus on farms with experimental plots 

followed by IISc. A demographic survey was done in June 2013 to 

gather general household information, farm structure and general crop 

management practices on the other beles of the farm. 

 

We selected 27 farmers over the 52 followed by IISc (Figure Appendix 2.4). The sampling of cases 

was driven by a search for diversity rather than the search for representativeness. We selected 

candidates over 5 axes of diversification: ground water (GW) level gradient, access to irrigation, farm 

size, heterogeneous soil type, and location on the watershed. 

 

 

 

 

 

 

 

 

 

 

Figure Appendix 2. 3 Definition - Jeminu, Bele 

Figure Appendix 2. 4 Sample Farms Location 
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1.1.3. Interview process 

Two enumerators who participated in the demographic survey in June 2013, surveyed the 27 farmers 

from the 24th of September to the 9th of October 2014. These persons were farmers’ sons with a 

bachelor in education but limited knowledge in agronomy and farm practices in general. 

Farmers were surveyed at their farm or their house depending on the time of the interview. One 

enumerator was asking questions in Kanada while the other was writing back the answers in English. 

In general, it was hard to keep the farmer concentrated for one and half hour, and some of them 

required to stop the interview and come back the day after so that they won’t get delay too much in 

their daily farm tasks. 

After a quick glance to the filled questionnaire, several issues had been lighted out: i) enumerators 

seemed to not understand the concepts of crop sequence, crop rotation and climate change in general, 

which bring the answers quite incoherent, ii) farms with temporary not working borewells for the past 

3 years were considered as rainfed while most of them got water back in the borewell after the 2014 

monsoon and so plan to irrigate in kharif 2015, iii) numerous questions where specifications were 

asked have not been filled up.  

In order to check on the accuracy of certain information and complete some questions, we built a 

complementary questionnaire of 30 minutes specific to each farms. We targeted information on 

strategic/tactic decision-rules for crop choice, and crop allocation, and on operational decision-rules 

for sowing, fertilization, pest, and irrigation practices. We added questions on irrigation equipement 

investments and costs and type of labor contracts. We asked again questions on climate change and 

adaptations. Farmer also drawn their jeminus and beles, locates their irrigation sources, buildings, 

roads. This complementary study was led by Iswar who has the capacity and knowledge to engage a 

discussion with the farmer based on these questions. Farmers appeared to be more cooperative and 

interested in this type of exchanges. It also helped in checking decision sequences graphs issued from 

the first survey. 
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The aim of the project is to develop scenarios of water consumption by agriculture in changing 
climate. It is therefore necessary to understand farming practices that impact water use  
 

Start the interview by describing the purpose of the survey: for academic research only, accurate 
answers are important and gratefully acknowledged, etc. 

We are going to ask you some questions about your farm, the way you organise your production, the 
source of information you use, and about yourself and the family members involved in production. All 
is which will be treated confidentially. 

1. Basic Information 

Date   

Plot number  

Name of Village  

Panchayat Name  

Name of household head  

Caste  

Religion  

Farming Experience  

 

2. Household Information: 
2.1. General information 

Name 

Relation 
with 
HH 
head* 

Gender 
Age 
in 
years 

Educatio
n 

Occupation** Members 
fulltime 
work in 
own farm 

Members 
temporarily 
work in own 
farm Primary Secondary 

         
         
         

 

* Head=1, Wife/Husband=2, Son/Daughter=3, Grandchild=4, Father/Mother=5, Sister/Brother=6, 
Niece/Nephew=7,Uncle/Aunt=8, Son/Daughter-In-Law=9,Father/Mother-In-Law=10, Brother/Sister-
In-Law=11, Grandparent=12, others=13 
 
** Own agriculture work=1, Agriculture labour=2, Petty business=3, Dairy farming=4, Plantation 
worker=5, NTFP collecting=6, Livestock grazing=7, Factory worker=8, Pension earner (social 
security/Job pension)=9, Rural crafts (carpentry, blacksmith, pottery, weaving, goldsmith, basket 
making, leather work, etc.)=10, Government job=11, Commission agent=12, Contractor=13, Quarry 
worker=14, Bee keeper=15, Student=16, Domestic work (cleaning, cooking, water fetching, child 
care, fire making, washing clothes, etc) =17, Driver=18, Not working (Children/Aged/physical 
disable/illness etc.)=19, Mason= 20, Other=21 (specify) 
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2.2. Skill Training 

Skill training 

received by HH 

member 

Yes

=1 

No

=0 

Who? Training 

received 

year 

Name of the 

training Center 

Subject matter of 

Training 

 

Farm Related      

Dairy Related      

Livelihood 

Related 

     

 

2.3. Sources of Farm related Information 

Sources of information Information available 
Agricultural Cooperative society  
Agricultural Extension service  
Agricultural school or University   
Farmer union   
Agricultural retailers   
Family and friends  
Press and media  
Farmers  
Krishi Mela  
Other specify  
 

3. General Farm characteristics 
3.1. objective of farm 

Objective of farming YES NO Rank at least 4 
Maintain income and livelihood stable    
Maintain farm in the family    
Minimize production cost     
Maintain crop diversity    
Maximize income    
Environmental friendly agriculture    
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3.2. Specific Farm Characteristics:  

 

3.3. Manpower 

Inform the number of labor needed in kharif 2014: 

Activity wise Labour use Number of 

Own Labour 

Number of 

Hired Labour 

Number of 

Permanent 

labour 

No of 

Mutual 

Labour 

Wage Paid(Average) 

 

Male            female Male Female 

Land Preparation        

Sowing        

Weeding        

Manure Application        

Fertilizer  Application        

Harvest        

Threshing        

 

 

a.  Number of farms in different 
location and location identity 

FARM 1 
 

FARM 2 

b. Farm Size (in acre)   
c. Farm ownership    

e. From how many years  do you 
operate the farms  

  

g. Farm soil type   

h. Farm Buildings Type    
h.1. No of buildings    
h.2. Year of farm building 
constructed 

   

i. Farm distance from your home in 
Km 

  

j. Is farm has irrigation source?      

k. ownership of irrigation 
source(Own/Joint/Neighbor/Governm
ent) 

  

l. Irrigation method of each farm   

m. Do you have farm pond/Farm 
tank? 

  

n. Water Source for Pond/farm tank   

o. How many hours it take to fill? -  
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Inform the number of labor needed in rabi 2013: 

Activity wise 

Labour use 

Number 

of Own 

Labour 

Number of 

Hired Labour 

Number 

of 

Permane

nt labour 

No of 

mutual 

labour 

Wage 

Paid(Average) 

 

Male        female 

Male Female 

Land Preparation      

Sowing      

Weeding      

Manure Application      

Fertilizer  

Application 

     

Harvest      

Threshing      

 

3.4. Farm assets 

Material type Number of 
equipment 

Owned=1  
rent=2 

Person using it 

Tractor    
Tractor and implements           

Bullocks and implements    
Wooden plough                          
Iron plough                                 
Seeder        
Weeder    
Pesticide sprayer                        
Wheel barrow                            
Treshing machine                      
Organic manure pit                    

 

3.5. Livestock Information:  

Type* Number Present value Reasons for keeping** 
- - - - 
*Bulls=1, oxen=2, cow=3, buffalo=4, sheep=5, goat=6, poultry=8, pig=9 

**own cultivation/Hiring out=1, manure=2, fuel (cooking) =3, milk=4, meat=5, egg=6 

 

 



CASE-BASED SURVEY 
 

254 
   

3.5.1. How do you manage manure from cattle? 
□ Use on land 
□ Give or sell to others 
□ Fuel (cooking) 
□ Others (be specific) 

 

4. Decision rules 
 

4.1. For the choice of your crops  
4.1.1. How do you choose your crops?  

(give 4 reasons and order) 

□ Crop choice is made according to water availability 
□ Crop choice depends on input costs 
□ The market for the crop is more accessible/crop easier to sell  
□ The price you expect is the leading factor 
□ You are familiar with growing these crops 
□ Crop choice depends on labour available (minimize working hours?) 
□ Suit to soil 
□ High yield 
□ Other (be specific 

 

4.1.2. What are the crops usually grow for self-use purpose and cash purpose?  

 

4.1.3. What is the usual crop sequence that you follow (e.g. Marigold – Maize – Marigold 
– Maize)   in kharif?  In rabi? 

 

 

 

 

 

 

 

 

 

 

Need base crops Crop name Percentage 

cash crops 

 
  

Self-consumption crops   

 Crop sequence (KHARIF)  

RAINFED plots  

IRRIGATED plots  

 Crop sequence (RABI) 

RAINFED plots  

IRRIGATED plots  
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4.1.4. In general, what motivates you to change your crop sequence?  

(order if several) 

□ Change in market price  
□ Water availability low 
□ Weather (drought, erratic rainfall) 
□ Contract opportunities 
□ Neighbor’s action 
□ Pest and disease pressure 
□ Weed pressure 
□ Other (be specific) 

 

4.1.5. If answer “change in market price” in 4.1.4. , which price are you referring to?  
□ Market price from last year 
□ Market price from last season 
□ Market price at the time of buying the seed 

 

4.2. Cropping and Marketing information  
4.1.1. Year 2014  

 

4.2.1.1. When have you selected your crops for kharif 2014? (month, week) 

 

 

4.2.1.2. When have you selected your crops for rabi 2014? (month, week) 

 

 

4.2.1.3. When do you decide whether or not you will grow crops in summer? 

 

 

4.2.1.4. When do you look for possible marigold contracts with companies 
(month, week)? 
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4.2.1.5. List the crops you grew in kharif, and plan to grow in rabi and summer this year: 

Year 2013 

2013KHARIF 

Plot 
ID 

5.5.4. 
Crop 
planted in 
2013 
 

Irrigated 
(I) 
Rainfed 
(R) 
 

acres successfu
l 

failed 5.5.6.  
Quantity  
Harveste
d 
(Quintal) 

5.5.7.  
Sold=1 
Partly sold=2 
Keep for own use=3 
 

5.5.8.  
Price 
received/Quintal 

         
         
         

2013 RABI 

Plot 
ID 

5.5.4. 
Crop 
planted in 
2013 
 

Irrigated 
(I) 
Rainfed 
(R) 
 

acres successfu
l 

failed 5.5.6.  
Quantity  
Harveste
d 
(Quintal) 

5.5.7.  
Sold=1 
Partly sold=2 
Keep for own use=3 
 

5.5.8.  
Price 
received/Quintal 

         
         
         

Year 2012 

2012 KHARIF 

Plot ID 5.5.4. Crop 
planted in 2012 
 

Irrigated (I) 
Rainfed (R) 
 

acres successful failed 

      
      
      
      

2012 RABI 

Plot 
ID 

5.5.4. 
Crop 
planted 
in 2012 
 

Irrigated 
(I) 
Rainfed 
(R) 
 

acres successful failed 5.5.6.  
Quantity  
Harvested 
(Quintal) 

5.5.7.  
Sold=1 
Partly sold=2 
Keep for own 
use=3 
 

5.5.8.  
Price received/Quintal 

         
         
         

Plot 
ID 

 5.5.1.Crop 
planted this 
season 
2014  
KHARIF 
 

Acres Irrigated 
(I) 
Rainfed 
(R) 
 

.5.2. Crop to 
be planted 
this season 
2014  
RABI 

Acres Irrigate
d (I) 
Rainfed 
(R) 
 

5.5.3. Crop to 
be planted this 
season 2015 
SUMMER 
 

Acre
s 

Irrigated 
(I) 
Rainfed 
(R) 
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Year 2011 

2011 KHARIF 

Plot 
ID 

5.5.4. 
Crop 
planted 
in 2011 
 

Irrigated 
(I) 
Rainfed 
(R) 
 

acres successful failed 5.5.6.  
Quantity  
Harvested 
(Quintal) 

5.5.7.  
Sold=1 
Partly sold=2 
Keep for own 
use=3 
 

5.5.8.  
Price 
received/Quint
al 

         
         
         

2011 RABI 

Plot ID 5.5.4. Crop 
planted in 2012 
 

Irrigated (I) 
Rainfed (R) 
 

acres successful failed 

      
      
      

4.2.2. Why do you grow watermelon in Kharif and cowpea in Rabi each year? 
 

 

 

4.2.3. Why do you prefer to grow only one crop per season? 

 

 

4.2. Farm Technical operations  
 

4.3.1. Crop operation  KHARIF 2014 
For your crops grown in kharif 2014, inform: 

 Crop1 Crop2 Crop3 Crop4 
When did you do your land 
preparation? (month, week) 

    

When did you sow? (month, week)     
When did you buy your fertilizers? 
(month, week) 

    

When did you buy your pesticides? 
(month, week) 

    

When did you weed ? (month, week)     
When did you harvest ? (month, 
week) 

    

When will you sell your crops?     
 

4.3.2. Do you check the fertilizer and pesticide prices before buying it (be specific) or only 
when you buy it? 
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4.3.3. Do the pesticide and fertilizer prices influence your choice of crops? 

 

 

4.3.4. Crop constraints Found in KHARIF 2014 

Crop name Type of constraint 
Seed 
defect 

Late 
sowing 

Delayed 
rain  

Heavy 
rain 

Long 
dry spell 

weed Disease Pests Animal 
Pressure 

a. 
         

b. 
         

c. 
         

d. 
         

 

4.3.5. What have you done to face these crop constraints (see 4.3.4.)? 

Crop name Action done to face crop constraints 

a. 
 

b. 
 

c. 
 

d. 
 

 

4.3.6. At which time in kharif do you have the most amount of work to do? Why? in which 
order do you deal with your crops? 

Time in kharif 2013 YES / NO  Crops priority order: 
Land Preparation YES / NO  
Sowing YES / NO  
Weeding YES / NO  
Manure Application YES / NO  
Fertilizer  Application YES / NO  
Harvest YES / NO  
Threshing YES / NO  
 

4.3.7. Crop operation  RABI 2013 
For your crops grown in rabi 2013, inform: 

 Crop1 Crop2 Crop3 Crop4 
When did you do your land preparation? 
(month, week) 

    

When did you sow? (month, week)     
When did you buy your fertilizers? (month, 
week) 

    

When did you buy your pesticides? (month, 
week) 

    

When did you weed ? (month, week)     
When did you harvest ? (month, week)     
When will you sell your crops?     
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4.3.8. Crop constraints Found in RABI 2013 

Crop name Type of constraint 
Seed 
defect 

Late 
sowing 

Delayed 
rain  

Heavy 
rain 

Long 
dry spell 

weed Disease Pests Animal 
Pressure 

a. 
         

b. 
         

c. 
         

d.          
 

4.3.8.1. What have you done to face these crop constraints (see 4.3.8.)? 

Crop name Action done to face crop constraints 

a. 
 

b. 
 

c. 
 

d. 
 

 

4.3.9. At which time in Rabi do you have the most amount of work to do? Why? in which order 
do you deal with your crops? 

Time in Rabi 2013 YES / NO  Crops priority order: 
Land Preparation YES / NO  
Sowing YES / NO  
Weeding YES / NO  
Manure Application YES / NO  
Fertilizer  Application YES / NO  
Harvest YES / NO  
Threshing YES / NO  
 

4.4. Concerning the location of the crops on the plot 
From kharif 2013 to kharif 2014, precise which crop was grown in kharif 2013 at this place? 

 

plot Crop kharif 2013 Crop kharif 2014 
   
   
   
 

From Kharif 2014 to Rabi 2014 precise which crop will be plant in Rabi 2014 at this place? 

 

 

plot Crop kharif 2014 Crop rabi 2014 
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4.5. Concerning the soil quality of your crop plots: 
Do you have some crop plots: YES / NO Which crops to do like to grow on it? 
More fertile YES / NO  
Less fertile YES / NO  
Close to tank/stream YES / NO  
In coconut garden YES / NO  
In tree shadow plots YES / NO  

 

4.6. Concerning the location of your crops: 
Do you prefer grow certain crop: YES / NO Which crops to do like to 

grow on it? 
Why? 

Closer to the road YES / NO   
Closer to the house YES / NO   

 

4.7. For your land preparation 
4.7.1. How do you determine when to start land preparation? 

□ Same month/week every year (if so which month/week) 
□ After the start of first rain? (if so how many days after first rain) 
□ Based on groundwater availability (ground water level) 
□ Other  

 
4.7.2. What is the gap (no of days) between harvest of kharif and sowing in rabi? 

 

4.8. For your irrigation system 
 

4.8.1. How do you determine when to irrigate?   
□ Fixed interval (once in a week or once in 10 days) 
□ Soil humidity inferior to  
□ Take in consideration the groundwater level 
□ Physical aspect of the plant 
□ No rain for           days 
□ You follow the manufacturer’s recommendations (specify his name) 
□ You follow the agricultural technician advice (specify his name) 

 

4.8.2. How do you organize the distribution of water among the different fields? (how do you 
define which field get irrigated first, second...) 

□ all the fields are irrigated the same day, the same way 
□ rotate irrigation between fields depending on the stage of the plant 
□ irrigate fields where the plant seems to need water 

 

4.8.3. How do you determine the amount of water you apply?  
□ Same amount of irrigation for all crops 
□ Based on crop water requirement 
□ Based on crop type (commercial, self-consumption) 
□ Based on crop duration 
□ Based on water holding capacity of the soil 
□ Based on expected income crops 
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4.8.4. What crops have the highest irrigation priority?   
□ crop more sensitive to drought (list the crops……………………………………….……..) 
□ higher expected income (list the crops……………………………………………………..) 
□ crops for self-consumption (list the crops…….……………………………………………) 

 

4.8.5. What do you do if the water available in the borewell is decreasing and not enough to 
irrigate the whole irrigated land?  
□ Change frequency (be specific) 
□ Change quantity (be specific) 
□ Borrow water resource from a neighbor  
□ Change irrigation techniques (be specific) 
□ Stop irrigating 
□ Other (be specific) 

 

4.9. For your fertiliser operations 
  

4.9.1. Do you apply manure?  

Crop kharif 2014 Crop rabi 2013 
 Yes / No  Yes / No 

 Yes / No  Yes / No 

 Yes / No  Yes / No 

 Yes / No  Yes / No 

 

4.9.2. How do you allocate farm manure to the different crops in kharif and rabi season? 
□ Equally distributed 
□ Depending on crop needs 
□ Depending on crop giving higher expected income 
□ Other (be specific)  

 

4.9.3. Do you apply chemical fertilizer to each field?  YES / NO 
 

4.9.4. Do you adapt these applications to your soil characteristics?  YES / NO 
 

4.9.5. How do you determine the quantities and number of fertilization applications? 
□ It depends on the market price of fertilizer 
□ It depends on the availability of farm yard manure  
□ You follow the agricultural department advice(specify the name) 
□ You follow the manufacturer’s recommendations (specify the name) 
□ You decide based on your past experience 
□ Other  (be specific) 

 

4.9.6. What crops have the highest fertilization priority?  Why? 

  

priority crop reasons 
1   
2   
3   
4   
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4.10. For your pesticide operations 
 

4.10.1. How do you determine the quantities and number of pesticide applications? 
□ You decide based on your past experience 
□ You follow the agricultural technician advice (specify his name) 
□ You follow the manufacturer’s recommendations (specify his name) 
□ Decide based disease type 

 

4.10.2. When do you decide to treat? 
□ do a systematic treatment (specify when, and plant stage) 
□ treat only if pest attack 

4.11.  What would you do if you were unable to sow the planned crop in time (e.g. because of 
erratic rains, late monsoon)? 

□ grow the next season crop (specify which one) 
□ grow a shorter season crop (specify which one) 
□ make a temporary fallow 
□ other (be specific) 

 

4.12.  What would you do if the crop does not come up well? 
□ Resow the same crop 
□ grow a shorter season crop (specify which one) 
□ keep it like it is  
□ make a temporary fallow 
□ other (be specific) 

 

4.13. Residue management     
□ Not Managing    
□ Burn in the filed/Through out of field 
□ De-composting in the field 
□ Use for fuel  
□ Others 

 

4.14. Does late or early monsoon influence your choice of crop to grow in kharif?    YES / NO 
 

4.15. In kharif, if the monsoon has been delayed, do you: 
□ Reduce your soil preparation  
□ Increase seed density 
□ Change crops for the season (specify which ones)  
□ Select short duration and resistant varieties 

 

4.16. In rabi, if the rain in kharif has been good and the water level in the borewell is high, do 
you: 

□ Grow additional short duration cash crops (specify which ones) 
□ Increase the area of the higher expected income crops (specify % area increase) 
□ Don’t change your usual crop sequence 
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4.17. In Rabi, if the rain in Kharif has been poor and the water level in the borewell is low, do 
you: 

□ Grow only less water requirement crops (specify which ones) 
□ Do Fallow 
□ Grow only higher expected income crops (specify which ones) 
□ Don’t change your usual crop sequence 
□ Select short duration and resistant varieties 

 

5. Perception / ressources / contraints 
 

5.1.  Market system and agro food chain 

5.1.1. Where do you get your inputs (seeds, fertilizers, pesticides)?  
 

inputs Retailer/cooperative/company/government agro shop (give name if possible) 

seeds  

fertilizers  

pesticides  

 
5.1.2. Where do you sell your crops? 

 

 crops 
Cooperative   
Marketing board(specify name)  

Local market  

Local agent  

Company  

Others (specify)  
             

5.2. Water 
5.2.1. Borewell information     

Sl 
No. 

Farm 
location 
Number 

Borewell 
installed 
year 

Total 
depth of 
borewell 

Working/Fail/yet 
to start 

When  was 
bore well 
failed  

Motor 
fitted/Motor 
not fitted 

Pump HP 

1        
2        
3        

 

5.2.2. How many hours during the day is power supplied to your farm:  
Total Hours …………. in kharif, 

Total hours…………..in rabi 

Total hours ………….in summer 

 

5.2.3. Does your access to water limit the area that you cultivate in any season of the 
year? YES / NO 

 

5.2.4.Does irrigation water availability affect your decision about the type of crop grown?YES/NO 
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5.2.5. what will you do if your borewell fails? 
□ Buy water 
□ Increase tank and rain water storage 
□ Change your crop choice (specify which crops to stop, new crops) 
□ Changes in irrigation system (changes in equipment) 
□ Get crop insurance  
□ Dig a deepper well 
□ Other (be specific) 

 

5.2.6. Do you buy water?  YES/NO (if yes, from who?) 
 

5.3. Climate 
5.3.5. Have you heard of climate change?  YES / NO 

 

5.3.6. Have you identified current changes in climate?     YES / NO 
 

5.3.7. What are the main climatic risks you have already encountered? 

Climatic risks kharif / rabi year Number of days Adaptation code* 
Flood kharif / rabi    
Drough kharif / rabi    
Delayed monsoon kharif / rabi    
Wind kharif / rabi    
High temperature kharif / rabi    
Low temperature kharif / rabi    
Rainy season end sooner kharif / rabi    
Less rain kharif / rabi    
 

In a climate change scenario, the conditions would be warmer, with less rainfall in Kharif and 

more dry spell in Rabi. 

5.3.8. What would you change in your farming practices to face climate change? 

Changes crops YES / NO 
Select more resistant varieties YES / NO 
Change sowing dates YES / NO 
Do more intercropping crops YES / NO 
Plant shade trees YES / NO 
Change your irrigation equipment YES / NO 
Migrate to other area YES / NO 
Get crop insurances YES / NO 
Diversify your crops (grow more crops but on smaller area) YES / NO 

 

 

 

 

 

 

* Change in crop variety=1, Decrease irrigation=2, Increase irrigation=3, Form pond construct=4, Dig new borewell=5, Stop 

irrigation=6, Reduce livestock=7, Keep improved livestock=8, Migration to other area=9, Lease out land=10, Purchase 

water=11, Plant shade trees=12, Change sowing time=13, Others=14 (specify) 

v 

 



Appendix 2  Marion Robert 

265 
   

1.2. The global survey in the Berambadi watershed  

1.2.1. Questionnaire design 

The questionnaire was divided into three parts on farming context, farm performances and farming 

practices and techniques. The first part of the questionnaire focused on household characteristics, farm 

structure, assets, partnerships, and farm objectives. After details about household organization, farm 

assets, and farm marketing position, we asked farmers about their performances and their practices 

over the past two years. In-depth questions were asked about irrigation, borewells, and rainfall. Since 

no records were kept from year to year, information about historical management went no further than 

two years in the past. 

1.2.2. Sample selection 

The farmer land ownership register (Bhoomi) of Karnataka provided the list of farmers per village in 

the watershed and the land ownership of farmers. 5461 farm households are listed on the watershed. 

To identify how many and which farms should be surveyed in this heterogeneous agrarian community, 

we used a purposive stratified proportional sampling method. This sampling procedure is used when 

the purpose of the research is to estimate a population’s parameters. In proportionate stratified 

sampling, the number of elements allocated to the various strata is proportional to the representation of 

the strata in the target population. In our farmer population, we stratified the farmers based on the land 

ownership of farmers. That is, farmers were considered as small, medium or large owners.  The size of 

the sample selected from each stratum per village is proportional to the relative size of that stratum in 

the farmer population. As such, it is a self-weighting and equal probability of selection method 

(EPSEM) sampling procedure. The same sampling fraction is applied to each stratum, giving every 

element in the population an equal chance to be selected. The resulting sample is a self-weighting 

sample. The samples were purposefully selected to represent the caste diversity in the region. In total 

684 farm households had been interviewed from September 2014 to March 2015 on the watershed 

which represent 12.5% of the farm population. 

1.2.3. Interview process 

The enumerators were organized into four teams of two peoples. Interview process on the watershed 

was conduct village by village. The survey consisted in a face-to-face interview lasting two to three 

hours in the local language. 
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The aim of the project is to develop scenarios of water consumption by agriculture in changing 
climate. It is therefore necessary to understand farming practices that impact water use  

Start the interview by describing the purpose of the survey: for academic research only, 

accurate answers are important and gratefully acknowledged, etc. 

We are going to ask you some questions about your farm, the way you organise your 

production, the source of information you use, and about yourself and the family members 

involved in production. All is which will be treated confidentially. 

1. Basic Information 

1. Name of Village______________________ 

2. Panchayat Name__________________________ 

3. Household Number ______________________ 

 

4. Name of household head ________________________ 

 

5. Respondent Name_______________________________ 

 

6. Caste_________________________________ 

 

6. Interviewer ____________________________________ 

 

7. Date_________________ 

 

8. Interview start time _____________ Interview End time___________ 
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2. Household Information: 

2.1 How many members presently residing in the home? _______ 

Sl. 

Name 

Relation 
with 
HH 
head 

Gender 
Age 
in 
years* 

Education 

Occupation** Training 
on farm 
activities  

Training 
on dairy 
activities  

Income 
form 
off-
farm 
activity 

Primary Secondary 

1           
2           
3           
4           
5           
6           
7           
8            
9           
10           
* For a child below one year code is 0 

Relationship code: 

Head=1, Wife/Husband=2, Son/Daughter=3, Grandchild=4, Father/Mother=5, Sister/Brother=6, 

Niece/Nephew=7,Uncle/Aunt=8, Son/Daughter-In-Law=9,Father/Mother-In-Law=10, Brother/Sister-In-

Law=11, Grandparent=12, others=13 

Education code: 

Illiterate=1, Read and write=2, Pre-Primary School (1-5)=3, Upper primary (6-8)=4, High School (9-10)=5, 

PUC - (11-12), Diploma Course=6, Graduation=7, Post-Graduation and above=8, Technical Degree (medical, 

engineering, agriculture, etc.)=9, Other professional courses (TCH/Bed/Med)=10 

**Occupation code: 

Own agriculture work=1, Agriculture labour=2, Petty business=3, Dairy farming=4, Plantation worker=5, NTFP 

collecting=6, Livestock grazing=7, Factory worker=8, Pension earner (social security/Job pension)=9, Rural crafts 

(carpentry, blacksmith, pottery, weaving, goldsmith, basket making, leather work, etc.)=10, Government job=11, 

Commission agent=12, Contractor=13, Quarry worker=14, Bee keeper=15, Student=16, Domestic work (cleaning, 

cooking, water fetching, child care, fire making, washing clothes, etc) =17, Driver=18, Not working 

(Children/Aged/physical disable/illness etc.)=19, Mason= 20, Other=21 (specify) 

 

2.2. Manpower 

1. How many family members work permanently on the farm, including yourself? ________ 

Persons 
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2. How many family members work temporary on the farm, including yourself? _______ 

Persons 

3. Do you have permanently workers (that are not family members) on your farm? Yes/No.   

If yes, number of ______Persons 

4. Did you hire temporary workers on the farm during the last year? Yes/No. if yes, number of 

________persons 

5. At what wage were they paid/day   Male Worker Rs._______Day   Female worker 

Rs.__________Day 

6. Were you helped by neighbours during the last season? Yes/No.   if yes number 

of___________ Persons and Number of days  helped_________ 

7. How many family members working as agriculture labours(2013)?________________ 

8. Approximate labour work days in a week  

1. kharif : 

2. rabi   :  

3. summer :  

9. Number of month work days in a Season 

1. kharif : 

2. rabi  :  

3. summer : 

10. Any of your family members temporarily migrating (2013)? Yes/No 

If yes, 

1. Period of migration______________ 

2. Place of Migration_________________ 

3. Nature of work did during migration________________ 

4. Total net savings from Migration_____________________ 

 

2.3. Skill Manpower 

1. Did you or member of your family receive any training on farm activities?  Yes/NO   if yes, 

Number of days/week/month/years of training taken-------------- 

1. a. Date of the last training____________  
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2. Did you or member of your family receive any training on dairy activities?  Yes/NO   if 

yes, Number of days/week/month/years of training taken--------------- 

2. a. Date of the last training ____________       

3. What institution was in charge of the training? 

3.1 Farm Related 3.2 Dairy related 

a. Agricultural University a. Agricultural University 

b. Agriculture department b. NGO 

c. Horticulture department c. Milk co-operative societies 

d. NGO d. others 

e. Farm companies  

f. Farm co-operative societies   

g. Others  

 

4. Did the training include      

1. Land preparation 

2. Crop choice 

3. Fertiliser use 

4. Irrigation 

5. Seed management and selection 

6. Extreme weather management 

7. Others, specify ……………….. 

 
5. Did you find the training useful    0. No 
        1. Yes 
If no, specify ………………………………………………………………………………. 

 

6. Integration in farmer networks and source of information 

 

a. Are you part of a farmer network?   0. No 

       1. Farmer union (identify it) 

       2. Cooperative (name it and locate it) 

       3. Other, specify 
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b. What are your main sources of information? 0. No information needed 

       1. Cooperative (name it and locate it) 

       2. Extension services (name and locate it) 

       3. Agricultural school or institute (name it 

           and locate it) 

       4. Farmer union (name it and locate it) 

       5. Agricultural retailers (name and locate 

it) 

       6. Family and friends 

       7. Other farmers 

       8. Press and media 

       9. Other, specify ………………………… 

c. Formal institutional membership network 

1) Member in SHG                           Y/N            M/F          Number of persons _________ 

2) Member in Dairy Farm               Y/N            M/F          Number of persons _________ 

3) Member in SDMC                        Y/N            M/F          Number of persons _________ 

4) Member in JFPM                         Y/N            M/F          Number of persons _________ 

5) Member in JSYS (TWUA)            Y/N            M/F          Number of persons _________ 

6) Member in NREGP                      Y/N            M/F          Number of persons__________ 

7) Any other membership (specify) ________________________________________ 

 

d. informal institutions Networks 

1. farmer-to-farmer extension     Yes/No 

2. Number of Close Farmers________ 

 

e.Trust Index 

1. “Most farmers who live in this village can be trusted.” 

a. Do trust = 1  
b. Do not trust =0  
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2.  Do you think over the last few years this level of trust has gotten better, gotten worse, or stayed 
about the same?  

a. Better =2  
b. The same= 1  
c. Worse=0  

 

f.Cooperativeness 

Cooperativeness in this study can be understood degree to which a Farmers share mutual 

labour, Farm equipments, Rapier farm roads,  

1, sharing mutual farm Labour  

2. Not sharing mutual farm labour 

3. Sharing farm equipments 

4. Not sharing farm equipments 

5. Repair farm road mutually 

6. Not repair farm road mutually 

g. Do you use external information (if any) in your decisions? 0. No, they are not useful 

         1. Yes, partly 

3. Farm assets 

Material type Use/Not use Owned=1  
rent=2* 

Cost (purchase 
and 
rent/day/hour) 

Loans taken? 

Wooden plough                       Y/N    

Iron plough                              Y/N    

Tractor drawn cultivator          Y/N    

Seeder     Y/N    

Weeder Y/N    

Pesticide sprayer                     Y/N    

Wheel barrow                         Y/N    

Treshing machine                   Y/N    

Organic manure pit                 Y/N    
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3.1 Please Fill the Below Table 

 Plot 
ID 

B.30. 
Tractor/bullock 
used on this plot 
0. None 
1. own tractor 
2.rented tractor 
3. owned 
bullock 
4. rented 
Bullock 
 

B.31. Number of hours used on this plot last season 
1. For tilling 
 

For spraying 
manure, 
fertilizers, 
pesticides 

3. For 
carrying 
harvest 
 

4. For other 
 

5. Total 

       
       
       
       
       
 

4. Livestock Information:  

Type* Number Present value Reasons for keeping** Income per year(2013) 
1.     
2.     
3.     
4.     
5.     
6.     
7.     
*Bulls=1, oxen=2, cow=3, buffalo=4, sheep=5, goat=6, poultry=8, pig=9 
**own cultivation/Hiring out=1, manure=2, fuel (cooking) =3, milk=4, meat=5, egg=6 
4. A. How do you manage manure from cattle? 

0. No particular management 
1. Use on land 
2. Give or sell to others 
3. Fuel (cooking) 

4. B. Did our cattle stock change since last year?   

0. No 
1. Increased: ……… animals 
2. Decreased: … …animals 

 

5. General Farm Characteristics: 

1. Do you have Farm Land?          Yes          No 
2. In how many places your farm lands located? (Including lease in/Share cropping 
land_________ 
3. Total Rainfed land__________ (Acre) 
4. Total irrigated land_________ (Acre) 
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5.1. Specific Farm Characteristics:  

a.  Number of farms in 
different location and 
location identity 

One(   ) Two (  ) Three (  ) Four (  ) 

b. Farm Size (in acre)     

c. Farm ownership  Own/Lease /Share 

 

Own/Lease/ Share Own/Lease /Share Own/Lease/ Share 

d. Source of ownership of 
your own farm 

Parents/Purchase/Gift/G
overnment 

Parents/Purchase/Gift/Go
vernment 

Parents/Purchase/Gift/G
overnment 

Parents/Purchase/Gift/G
overnment 

e. From how many years  
do you operate the farms  

    

 

 

f. Is there any change in 
farm size over the last five 
years 

Increase/Decrease/Same Increase/Decrease/Same  Increase/Decrease/Same Increase/Decrease/Same 

 

If yes, How many acres?  If yes, How many acres? If yes, How many acres? If yes, How many acres? 

g. Farm soil type     

 

h. Farm Buildings 

 

Farmhous
e 

Pump 
house 

 

Farmhous
e 

Pump 
house 

Farmhous
e 

Pump 
house 

Farmhous
e 

Pump 
house 

 

h.1. No of buildings One/two/ 
three 

One/two/ 
three 

One/two/ 
three 

One/two/ 
three 

One/two/ 
three 

One/two/ 
three 

One/two/ 
three 

One/two/ 
three 

 

h.2. Recently constructed 
farm building (mention 
year) 

        

 

 

h.3. Oldest farm 
building(mention year) 

        

 

i. Farm distance from your 
home in Km 

    

 

 

j. Is farm has irrigation 
source? 

Yes/No Yes/No Yes/No Yes/No 

 

k. ownership of irrigation 
source(Own/Joint/Neighbo
r/Government) 

    

 

 

l. Irrigation method of each 
farm 

Flood/Furrow/Sprinkler/
drip 

Flood/Furrow/Sprinkler/
drip 

Flood/Furrow/Sprinkler/
drip 

Flood/Furrow/Sprinkler/
drip 

 

m. Do you have farm 
pond/Farm tank? 

Yes/No Yes/No Yes/No Yes/No 

 

n. Water Source for 
Pond/farm tank 

Own well/Rainwater Own well/Rainwater Own well/Rainwater Own well/Rainwater 

o. How many hours it take 
to fill? 
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5.2 What changes made in farm investments, farm size and crop pattern from past 5 

years? And why? 

a. Machinery investment? 
b. Livestock investments? 
c. Irrigation investment and uses? 
d. Other infrastructure investments? 
e. Changes in land preparation? 
f. Introduction of new crops? Stop others? (e.g. Marigold) 
g. Increase or decrease cropping land area? 
 

5.3 General objective of farm 

5.3. A. What would you say the general objective of your farm is  

 1. Earn a livelihood for my family 
       2. Maintain the farm in the family 
       3. I prefer farming to any other activity 
 

5.3. B. Would you say your farm has an adequate size?  1. Farm is too small 
         2. Farm is Medium 
         3. Farm is too big 
5.4 Crop management 

a. Do you follow a crop pattern defined over several years?  Y/N 

If yes, which one:......... 

b. Which crops do you try to grow each year and why? 

Cash crops: 
Self-consumption crops: 

 

5.5 Cropping and Marketing information  

Year 2014  

Plot 
ID 

 5.5.1.Crop 
planted this 
season 2014  
KHARIF 
Crop code 
(see 
appendix) 

Acres 5.5.2. Crop to 
be planted this 
season 2014  
RABI 
Crop code (see 
appendix) 

Acres 5.5.3. Crop to be planted 
this season 2015  
SUMMER 
Crop code (see appendix) 

Acres 
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2013KHARIF 

Plot 
ID 

5.5.4. 
Crop 
planted in 
2013 
Crop code 
(see 
appendix) 

5.5.5. Was 
the crop 
successful? 
1. Yes 
0.No, 
specify 
…… 

5.5.6.  
Quantity  
harveste
d 

5.5.7.  
Unit 

5.5.8.  
Price 
recei
ved 
(RS / 
ton or 
kg) 

5.5.8. a. 
Price 
received  
(more/exp
ected/Less 

                5.5.9. 
       Sold to 
whom(specify name) 

0. Used on farm 
1. Cooperative 

(specify name) 
2. Marketing 

board(specify 
name) 

3. Local market 
(specify name) 

4. Other, specify 
        
        
        
        
        
2013 RABI 

Plot 
ID 

5.5.10. 
Crop 
planted in 
2013 
Crop code 
(see 
appendix) 

5.5.11. Was 
the crop 
successful? 
1. Yes 
0. No, 
specify 
…… 

5.5.12.  
Quantity  
harveste
d 

5.5.13.  
Unit 

5.5.14
.  
Price 
receiv
ed 
(RS / 
ton or 
kg) 

5.5.14. a. 
Price 
received  
(more/expe
cted/Less 

5.5.15. 
Sold to whom 

5. Used on farm 
6. Cooperative 

(specify name) 
7. Marketing 

board(specify 
name) 

8. Local market 
(specify name) 

0. Other, specify 
        
        
        
        
        
2013 SUMMER 

 
Plot 
ID 

5.5.16. 
Crop 
planted in 
2013 
Crop code 
(see 
appendix) 

5.5.17. Was 
the crop 
successful? 
1. Yes 
0.No, 
specify 
…… 

5.5.18.  
Quantity  
harveste
d 

5.5.19.  
Unit 

5.5.20.  
Price 
receiv
ed 
(RS / 
ton or 
kg) 

5.5.20. a. 
Price 
received  
(more/expe
cted/Less 

5.5.21. 
Sold to whom 

9. Used on farm 
10. Cooperative 

(specify name) 
11. Marketing 

board(specify 
name) 

12. Local market 
(specify name) 

          0. Other, specify 
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2012KHARIF 

 
Plot 
ID 

5.5.22. 
Crop 
planted in 
2012 
Crop 
code (see 
appendix) 

5.5.23. 
Was the 
crop 
successful? 
1. Yes 
0. No, 
specify 
…… 

5.5.24  
Quantity  
harvested 

5.5.25.  
Unit 

5.5.26  
Price 
received 
(RS / ton 
or kg) 

5.5.27 
Sold to whom (specify name) 

13. Used on farm 
14. Cooperative (specify name) 
15. Marketing board(specify 

name) 
16. Local market (specify 

name) 
0. Other, specify 

       
       
       
       
       
2012 RABI 

 
Plot 
ID 

5.5.28. 
Crop 
planted in 
2012 
Crop 
code (see 
appendix) 

5.5.29. 
Was the 
crop 
successful? 
1. Yes 
0. No, 
specify 
…… 

5.5.30.  
Quantity  
harvested 

5.5.31  
Unit 

5.5.32  
Price 
received 
(RS / ton 
or kg) 

5.5.33 
Sold to whom(specify name) 
 Used on farm 

17. Cooperative (specify name) 
18. Marketing board(specify 

name) 
19. Local market (specify 

name) 
0. Other, specify 

        
       
       
       
       
2012 SUMMER 

 
Plot 
ID 

5.5.34. 
Crop 
planted in 
2012 
Crop 
code (see 
appendix) 

5.5.35. 
Was the 
crop 
successful? 
1. Yes 
0. No, 
specify 
…… 

5.5.36.  
Quantity  
harvested 

5.5.37.  
Unit 

5.5.38.  
Price 
received 
(RS / ton 
or kg) 

5.5.39 
Sold to whom(specify name) 

20. Used on farm 
21. Cooperative (specify name) 
22. Marketing board(specify 

name) 
23. Local market (specify 

name) 
0. Other, specify 
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5.6 Farm Technical operations 

 

Please fill the graph below (2013 cropping season) 

For each crop, place the main operations  

 land preparation (e.g. ploughing, hoeing, etc) 
 sowing (indicate density) 
 fertilizer including manure (indicate amounts of manure, quantity of N, P, K or of 

product in that case give the name of the brand) 
 pesticides (indicate quantity and specify reasons and type of pesticide) 
 irrigation (volume apply in m3 or hours) 
 harvest 

Indicate any unexpected constraints such as a decease, animal pressure, erratic rains, and 

drought 

Indicate period of work peak 

 
April  May June July  Aug Sept Oct Nov Dec Jan Feb Mar 

KHARIF 
crops                         

 Ex :                       
  
 

                        
  
 

                        
  
 

                        
  
 

RABI crops                         

                        
  
 

                        
  
 

                        
  
 

SUMMER 
crops                         

                        
  
 

                        
  
 

                        
  
 

Work peak 

(hours and 

number of 

people 

needed)                         
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Please fill the graph below: 

5.6. A. For your sowing: 

How do you determine when to start land preparation/sowing? 

 1. After the start of first rain? (if so how many days after first rain) 
 2. Based on groundwater availability (ground water level) 
 3. Same month/week every year (if so which month/week) 
 4. What is the gap (no of days) between harvest of kharif and sowing in rabi? 
 

5.6. B .For your irrigation system 

a. How do you determine when to irrigate?   

1. No rain for....days 
2. Fixed interval (once in a week or once in 10 days 
3. Soil humidity inferior to.... 
4. Take in consideration the groundwater level 
5. Physical aspect of the plant 
6. You follow the manufacturer’s recommendations (specify his name) 

 7. You follow the agricultural technician advice (specify his name) 
 

 
May  

Jun
e July Aug  Sept Oct Nov Dec Jan Feb Mars 

Apr
il May 

Indicate when decisions 
are made, and 
information received                       
information on input 
prices                           
information on output 
prices                           
Information on electricity 
price              
Establish contract with 
cooperatives                           
select crops for kharif                           
select crops for rabi                           
select crops for summer                           
buy seeds for kharif                           
Buy seeds for rabi                           
Buy seeds for Summer                           
Define time-window to 
saw in kharif                           
Define time-window to 
saw in rabi                           
Define time-window to 
saw in summer                           
Buy fertilizers                           
buy pesticides                           
sell outputs                           
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b. How do you organize the distribution of water among the different crops? (how do 

you define which field get irrigated first, second...) 

 

c. To which crops is irrigation uppermost assigned?  Why? 

1. Higher expected income 
2. Crop more sensitive to drought 
3. Crops for self-consumption 

 

5.6. C. For your fertiliser operations,   

a. How do you determine the quantities and number of applications? 

  1. You follow the manufacturer’s recommendations (specify his name) 
 2. You follow the agricultural technician advice (specify his name) 
 3. You decide based on your past experience 

4. It depends on the market price 
5. It depends on the availability of farm yard manure  

b. Do you adapt these applications to your soil characteristics? 

To which crops is fertilization uppermost assigned?  Why? 

1. Higher expected income 
2. Order of priority of crops (1. Turmeric, 2. Sunflower ….. Etc) 

 

c. Do you make side dressing fertiliser applications?    

 0. No 
 1. Yes   
      
5.6. D. For your pesticide operations, 

a. How do you determine the quantities and number of applications? 

            1. You follow the manufacturer’s recommendations (specify his name) 
 2. You follow the agricultural technician advice (specify his name) 
 3. You decide based on your past experience 
 4. Decide based decease type 



GLOBAL FARM SURVEY 

280 
   

b. For your fertiliser and pesticide operations, do you decide according to the aspect of 

leaves, soil…    0. No  

      1. Yes 

c. How do you manage pest?  

 1. Spraying pesticide  
 2. Planting pest control plants 
 3. Early sowing crops (mature before pest attack starts) 
 4. Removing decease plants  
 5. Not taken any action 
5.6. E. For the choice of your crops (rank here)  

  1. The price you expect is the leading factor (max profit, secure profit, repay loan 
(ST/LT), children’s education?) 
 2. The market for the crop is more accessible/crop easier to sell 
 3. You are used to grow these crops 
 4. Crop choice is made according to water availability 
 5. Crop choice depends on input costs 
 6. Crop choice depends on labour available (minimize working hours?) 
 7. To meet household food grain needs 
 8. To produce livestock grain 
 9. Need for diversification 
 

5.6. F. For the choice of the plots where to grow the wanted crops (rank here)  

.  1. Proximity to roads    
2. Irrigable characteristic of the plot 

 3. Soil characteristics 
 4. Passed crop 
 5. Use to grow this crop at a certain place 

a. What would you do if you were unable to sow the planned crop in time (e.g. because 

of erratic rains, late monsoon)? 

1. Change crop (which one, and why?) 
2. Make a temporary fallow 
3. Grow a shorter growth crop 
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b. What would you do if the crop does not come up well? 

1. Change crop (which one, and why?) 
2. Make a temporary fallow 
3. Grow a shorter growth crop 
4. Keep it like it is 

 

C. Residue management     

0.No    
1. Leave on the farm 
2. Cut and carry for cattle 
3. Other, specify 

 

5.6. G. Market system and agro food chain 

These questions deal with your relationship with suppliers of agricultural inputs and buyers of 

your products 

a. Where from you buy agricultural inputs ?(fertiliser, pesticide, seed)  

1.From a retailer 
2. from a cooperative 
3. Other, specify  

 

b. Indicate your expenditures on the following inputs for the previous season and for all your 

crops 

Inputs Value (RS) Finance source (own 
saving=1,Crop loan=2,Hand 
loan=3,Business 
income=4,Dairy income, Loan 
from farm company=5,Loan 
from merchants=6, others=7 

Quantity Unit (kg, etc.) 

1.Seed     

2.Fertiliser     

3.Pesticide     

4.Veterinary     
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c. In general, you sell your production to  1. A marketing board (name it and locate it) 
      2. A cooperative (name it and locate it) 
      3. Another type of buyer (name it and locate it) 
      4. A local market (name it and locate it) 
      5. Other, specify ………………. 
d. Do you feel free to decide where to sell   0. No 

        1. Yes 

e. In deciding where to sell 1. A high expected price is the leading factor 
    2. I can sell more of my production 
    3. I can have a guaranteed price 
    4. I have more interesting input prices when I sell to the same  
       agent  
f. Do you have a contract with a marketing board or a cooperative/company?  0. No 
            1. Yes 
g. If yes, do you have a guaranteed price before growing the crop   0. No 
           1. Yes 
h. If yes, what part of your total agricultural revenue is coming from such a contract 
         1. Less than  1/4 
         2. between 1 /4  and 1/2 
         3. More than ½ 

i. Access to credit and level of indebtedness 

SL. 
No Year Sources of Loan 

Amount 
of loan 
taken 

Purpose of loan 
taken Repaid Remark 

1       
2       
3       
4       

 

 

 

 

 

 

 



GLOBAL FARM SURVEY 

283 
   

Section 3. Natural capital  

[Only applicable for farmers with irrigated land] 

6.  Borewell Information: 

Sl 

No. 

Farm 

location 

Number 

Borewell 

installed 

year 

Total 

depth of 

borewell 

Working/Fail/yet 

to start 

When  

was 

bore 

well 

failed  

Total 

Cost of 

each  

failed 

borewell 

Total 

Cost of 

working 

borewell 

(except 

pump 

cost) 

Motor 

fitted/Motor 

not fitted 

Pump 

HP 

Pump 

Purchase 

year 

Pump 

Price 

Finance source for 

bore well( Own 

savings=1, Loan 

taken on Gold=2, 

Hand loan on 

Interest=3,Land 

leaseout=4, 

Livestock sold=5, 

Bank crop loan=6, 

Gangakalyan 

Yojana=7, 

Relatives/Friends=8( 

tick three main 

sources)  

1             

2             

3             

4             

5             

6             

7             

8             

9             

10             

11             

12             

13             

14             

15             
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6. A. When was the last repair made? _______________________________ 

6. B. What kind of repair made? ____________________________________ 

6. C. How much money spent for repair? _____________________________ 

6.2. Factors that force farmer to go for multiple borewells/Re-bored/digging new 

borewell 

1, Capable to manage financial Burden-         Yes/No 

2. Misleading by local water diviner/Borewell agents/Friends and relatives -     Yes/No 

3. Gut feeling of farmers that he certainly getting water/god shake-   Yes/No 

4. Less aware/No awareness of geological condition of the area- Yes/No 

5. Deeper borewell may be getting water--- Yes/No 

6. Want to irrigate more crop area/to bring rainfed land into irrigation ---Yes/No 

7. Neighboring farmers owning multiple borewells-------Yes/No  

8. Want grow more commercial crops----Yes/No 

9. Limited hour supply of electricity hence one borewell not sufficient for irrigation—Yes/No 

10. Low water in existing borewell/other problem in existing borewells (not deep, Boulders 

etc) Yes/No 

6.3. Farmer’s satisfaction over working borewells:  

Working 
Borewells 

Satisfied Not Satisfied Some how ok Reason for not satisfied( Low discharge=1, 
Frequent Repair=2, Stop working in 
summer=3, water quality not good=4, 
Motor burn frequently=5, Problem in bore 
hole=6, Low pump capacity=7( tick three 
main reasons) 

1     

2     

3     

4     

5     

6     
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6.3. A.  How many hours during the day is power supplied to your farm:  

Total Hours …………. in kharif 

Total hours………. in rabi/summer 

6.3. B. How many time power shut down during specified time of three phase power supply? 

_________ 

6.3. C. Does your access to water limit the area that you cultivate in any season of the year?  

Yes/No 

If yes, how much area really limits among total irrigable area(2013)? In 

1. Kharif : 
2. Rabi  : 
3. Summer  : 

 

6.3. D. Does irrigation water availability affect your decision the type of crop you grow?  

Yes/No 

 

If yes, which crop you give the priority?  

1. ______________ 
2. ______________ 
3. ______________ 

6.4. E. If Irrigation water availability not affects your decision of crop selection, which crops 

give the priority?   

1. ______________ 
2. ______________ 
3. ______________ 

 
7. Possible adaptations/leeway  to face Climate Change  

To be asked necessarily after characterization of current practices (otherwise risk of bias) 

To be discussed: Open or multiple choice questions ? (Proposal: open question, but possible 

answers "a priori" are proposed in dotted boxes:  if the farmer has no idea, propose a list of 

these possible choices) 

7.1. Adaptations to encountered climatic risks 

A.1 What are the main climatic risks you have already encountered? Specify in which 

season and for how long 

1. Flood, 2. Drought, 3. Delayed monsoon, 4. Wind, 5. High temperature, 6. Low 
temperature, 7. Other (specify) 
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A. 2 What do you change in your practices when such events occur? 

(Possible Changes 

1. Crop choice, 1.a crops discarded (specify), 1.b. new crops (specify)  
2. Cropping calendars (2.a.sowing dates,   2.b late or early maturing crop varieties depending 
on the available growing season) 
3. Irrigation management: 3.a amount, 3.b timing,  
4. Cropping systems redesign (4.a. crop rotation, 4.b intercropping, 4.c multi-storey cropping, 
4.d inclusion of perennial in dry lands, 4.e other (specify).  
5. Changes in irrigation system, 5.a Changes in equipment 
6 Water conservation or harvesting practices: 6.a Conservation furrows, 6.b micro catchments 
for tree systems, 6.c Conservation tillage, 6.d crop residue management, 6.e Other (specify) 
7. Crop insurance  
…) 

A.3 What are the main climatic risks you fear ? 

1. Flood, 2. Drought, 3. Delayed monsoon, 4. Wind, 5. High temperature, 6. Low 
temperature , 7. other (specify) 

7.2. Farmers perception of Climate change 

A.4 Have you heard of climate change? 

0. No 
1. Yes 

A.5 what changes are you excepting due to climate change? 

1. Flood, 2. Drought, 3. Delayed monsoon, 4. Wind, 5. High temperature, 6. Low 
temperature , 7. other (specify) 

7.3. Quick description of expected climate changes 

More accurate bibliographical review needed 

Warmer conditions ( around +2°C in annual mean), reduced amount of rainfall annually, 
during kharif season (-5%, June-Sept)  during rabi season (-23% Jan--Feb)  , uncertainties on 
the possible increase of drought  (daily rainfall < 2.5 mm for 40 or more contiguous days ) 
frequency in Rabi season (September-February) 
NB : HadCM3 model , inconsistency between table 2.5 and fig 2.8, contrasted results on 
Mysore districts for drougth frequency (fig 2.10) 
Slightly delayed monsoon, less precipitation in summer (Asfaq 2009 cited in AICHA 
introduction slides)  
Consequences on crops : phenology, water  availability ? 
(http://www.metoffice.gov.uk/climate-change/policy-relevant/obs-projections-impacts) 
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7.4. Leeway- possible adaptations 

A.6 what would be the problems encountered in case of climate change scenario? 

A.7 what would you change in your farming practices to face climate events due to climate 

change? 

(Possible Changes 

1. Crop choice, 1.a crops discarded (specify), 1.b. new crops (specify)  

2. Cropping calendars (2.a.sowing dates,   2.b late or early maturing crop varieties depending 

on the available growing season) 

3. Irrigation management: 3.a amount, 3.b timing,  

4. Cropping systems redesign (4.a. crop rotation, 4.b intercropping, 4.c multi-storey cropping,  

4.d inclusion of perennial in dry lands, 4.e other (specify).  

5. Changes in irrigation system, 5.a Changes in equipment 

6 Water conservation or harvesting practices: 6.a Conservation furrows, 6.b micro catchments 

for tree systems, 6.c Conservation tillage, 6.d crop residue management, 6.e other (specify) 

7. Crop insurance  

…) 

 

A.8. what would be impossible to change? Why? 
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Appendix 1: crop codes 

1 Marygold 
2 Horsegram 
3 Turmeric 
4 Onion 
5 Watermelon 
6 Beetroot 
7 Maize 
8 Jowar 
9 Ginger 
10 tsinees 
11 Ragi 
12 Sunflower 
13 Coconut 
14 Vegetables 
15 Beans 
16 Benise 
17 Tomato 
18 Carrot 
19 Bengalgram 
20 Banana 
21 Cotton 
22 Cowpeas 
23 Redgram 
24 Cabbage 
25 Chilly 
26 Garlic 
27 Paddy 
28 Potato 
29 Sugarcane 
30 Castrot 
31 Groundnut 
32 Brizal 
33 Arese 
34 Feildnet 
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2. Retailers and panchayat surveys 

We surveyed seed retailers and Panchayats (village leaders) to learn about recommended crop 

management practices and village organization.  
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KANNEGALA 
How many farm labors are available in your village?  

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
GOPALPURA 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
BERAMBADI 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
CHANAMALLIPURA 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  
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MADDUR 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
MADDUR COLONY 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
BECHANAHALLI 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
CHANNAMALLIPURA 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
 



GENERAL QUESTIONS TO PANCHAYAT 
 

292 
   

LAKKIPURA 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
KUNAGAHALLI 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
KALLIPURA 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
HONNEGOWDANAHALLI 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  
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BEEMANABEEDHU 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  

 
KUTHANUR 
How many farm labors are available in your village? 

Man labor  
Woman labor  

 
How many tractors (+cultivator), bullocks, seeder, weeder, threshing machine can be hired in your 
village? 

Tractor + cultivators  
Bullocks   
Seeder  
Weeder  
Threshing machine  
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SEED COMPANY – Gonga Kaveri, AVT (marigold), MAICO 

FERTILIZER COMPANY – DIP, AVT 

PESTICIDE COMPANY – ROGER, TRYPSIL, AVT, RACKET, HEADLINE 

 

Crop name Soil preparation Sowing 
 

Fertilize Pesticide Weed irrigation Soil management Harvest 

 Period: 
 
#: 
 
Comments: 

Period: 
 
Density: 
 
Plant to plant: 
 
Row: 
 
Deth: 

Manure 
1st: 
Q1: 
 
2nd: 
Q2: 
 
Chemical 
1st: 
Fert1: 
Q1: 
 
2nd: 
Fert2: 
Q2: 
 
3rd: 
Fert3: 
Q3: 
 
4th: 
Fert4: 
Q4: 

Pest 1: 
Pesticide 1 : 
Q1 : 
 
Pest 2: 
Pesticide 2 : 
Q2 : 
 
Pest 3: 
Pesticide 3 : 
Q3 : 
 
Pest 4: 
Pesticide 4 : 
Q4 : 

1st : 
 
2nd : 
 
3rd : 

1st : 
Q1 : 
 
2nd : 
Q2 : 
 
3rd : 
Q3 : 
 
4th : 
Q4: 
 
5th: 
Q5: 

Earthing up: 
 
 
Thinning: 

Days: 
 
 
Signs: 

Comments: 
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3. Experimental plots 

Additionally, 52 experimental plots were monitored over three years (2011-2012-2013) (Figure 4), 

which provided observed quantitative data about crop production and crop management (Table 1). 

These data helped supplement the verbal information provided by farmers during surveys.  

 

Figure Appendix 2. 5 Location of the experimental plots 

Table Appendix 2. 1 Variable list 

 

 

Village name Contract Harvest Cost Harvest month of main Crop code

Plot Number Fertilizer Type inter crop Yield- (Q)

Respondent name Quantity Applied (kg)   Sold Price

Contact number Total Fertilizer cost main crop yield (Q)

Number of Plots FYM (Tractor) Sold price/Q

Plot area in Acre/Gunta Cost of FYM Type of Irrigation

Plot Area (in acre/Cents) Pestcide-Type Seedling method Row to Row  (infeet) Note:Intercrop only

Crop year Pestcide quantity Seedling method Depth in inches)Note: Intercrop only

Season Cost of Pesticide Seedling method Row to Row  (infeet) Note:Main crop only

Name of the crop No of Traction (Tractor) Crop Verity       ( intercrop)

Crop area in Acre/Gunta Tractor Traction cost ( if own) (liters of disel used) Crop verity (maincrop)

Crop area (in acre/cents) Tractor Traction cost in rupees (if hired) Number of Irrigations given ( inter crop only)

Sowing Month No of Traction-  (Bullock pair) Irrigation Intreval    (in days) (Intercrop only

Sowing week Traction cost of Bullock Number of  Irrigation (Main crop only)

Labor-male  intensityPest Problem Code Irrigation interval   ( in days) Main crop only

Labor-Female No of time Weed remove Seed/plant used in Q( intercrop)

Total labors Intensity of weed Problem code Cost of Seed/plant(intercrop)/Q

Total labor cost ( only hired labor) Harvest Month of inter crop code 
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4. Meteorological data 

Meteorological data were obtained from a meteorological station and water gauges installed on the 

watershed.  

5. Price and cost data 

Prices and costs were obtained from farmers and from official district data from the Indian Ministry of 

Agriculture and Cooperation (Directorate of Economics and Statistics) and the National Informatics 

Center (Agricultural Census Division). 
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APPENDIX 3: CONCEPTUAL MODEL AND ONTOLOGY 

This appendix aims at providing details on the UML representation of farming system in the 

Berambadi watershed (Figure Appendix 3.1) obrained with the CMFDM methodology. 

 

 

Figure Appendix 3. 1 UML representation of farming system in the Berambadi watershed 

First we have a farm with specific characteristics that is managed by a farm-manager who belong to a 

household. This farm has several ressources : its labor, its water resource, its farmland, its equipment, 

its animals and have access to electricity (4 to 6 hours depending on the season and distributed in 3 

phases) (Figure Appendix 3.2). 

 

 

Figure Appendix 3. 2 Zoom on farming system representation 



Appendix 3  Marion Robert 

300 
  

Looking in more details to the labor resource (Figure Appendix 3.3), need for labor varies with the 

season (more important in kharif than rabi or summer), the crops grown and the crop management 

operation concerned. For instance, the harvest is in general the operation that requires more labor in 

the season. The labor can be permanent or temporary. Permanent labor refers to family members 

working on the farm as primary activity, or permanent employees. Temporary labor can be mutual 

labor from a neighbor, family members working on the farm as a second activity, hired persons. 

Farmer can contract a group of labor by field work or hire individual labor (payed per day). The 

temporary hired labor comes from the village and neighbor villages (people looking for jobs because 

of monsoon onset delay, or other climatic events impacting on their own crop production) and 

represent a limited labor resource, so that when one farmer hires labor, the other farmers have less 

labor available which can constrain them to delay their operations. 

 

Figure Appendix 3. 3 Zoom on labor organization. 

The water resource is defined by the sources of the water dedicated to irrigation, its storage capacity, 

and depends on access to electricity (see Figure Appendix 3.4). 

Water sources can be collective like tanks or individual like wells and borewells. Farmers may store 

some water from pumping groundwater or rainfall with individual ponds.  

Ground water irrigation volume depends on the borewell status (depth, working, temporary stop, 

failed), the pump power, the pipe diameter, and the electricity. With numerous power cuts during the 

specified time of three phase power, farmers prefer using automatic pumps that start as soon as 

electricity goes back on. This feature makes the estimation of water used for irrigation difficult.. 
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Figure Appendix 3. 4 Zoom on water resource 

Most of the farmers on the watershed own their farm land. Three main unit are identified (Figure 

Appendix 3.5): 1) management unit caracterized the type of land from an irrigated access point of 

view; 2) biophysical unit distinguished area by their soil type, 3) physical unit distinguished area by 

their physical location in terms of jeminu. Notice that another unit could be distinguished, temporal 

unit that distinguished area basically on the time operation is executed on the land. Crossing these 

units, management blocks can be identified with specific cropping systems. Each block is composed of 

plots or beles where a unique crop is grown each season.  
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Figure Appendix 3. 5 Zoom on land organization. 

Farmers use different equipements depending on the activity they realize (Figure Appendix 3.6). For 

instance, cultivation works are mainly done with a tractor and its implements, weeding, tilling, and 

levelling are often done with plough and animal traction or by hand, pesticide sprayers are used to 

treat pests and diseases, and irrigation requires specific equipement. 

The farmer can owned his equipment or hire it (like for the labor, farmers that hire a tractor for 

cultivation will organize their field work depending on the other farmers’ action). 

Irrigation equipement can be fixed (drip) or movable (sprinkler) delimiting whether the irragable area 

is changing in time. 
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Figure Appendix 3. 6 Zoom on equipment management. 

Owning animals is important for Indian farmers (Figure Appendix 3.7). First, an important part of the 

cultivation work is done by animal traction (bullocks or bulls that can be owned by the household or 

hired from the village). Second, animals are a source of food for the household providing milk and 

meat. Notice that the manure is also used to spray in the field as farm yard manure. 

 

Figure Appendix 3. 7 Zoom on animal organization. 
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APPENDIX 4:  ECONOMIC MODEL - MODEL EQUATIONS 

Construction cost of borewells (Rs): 

𝐶𝑂𝑆𝑇𝑤𝑒𝑙𝑙 = (1 + 100 × 𝐹𝐴𝐼𝐿𝑤𝑒𝑙𝑙) × (486.33 × 𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ - 0.00824 × 𝑊𝐸𝐿𝐿𝑑𝑒𝑝𝑡ℎ²). 

Pump cost (Rs): 

The pump cost 𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝 depends on the pump’s total horse power HP:  

𝐶𝑂𝑆𝑇𝑝𝑢𝑚𝑝 = 3570 × HP 

Flow rate (m3/h): 

The flow rate (FR) is 

FR = 79.93 × 𝑊𝑇𝑑𝑒𝑝𝑡ℎ
−0.728 

However, the existence of several borewells within a short distance of one another, as occurs among 

Indian farms, influences total flow rate; thus, maximum water abstraction capacity is not directly 

proportional to the number of borewells. 

FR = (1+ 0.38 × ((HP - 7) / 7)) × 79.93 × 𝑊𝑇𝑑𝑒𝑝𝑡ℎ
−0.728 

The flow rate over a specific time-period (W) is considered the state variable of our dynamic model. 

The flow rate expected for the next time period (W’) is stochastic because it considers borewell 

recharge (𝑅𝐴𝑇𝐸𝑟𝑢𝑛𝑜𝑓𝑓) from expected rainfall (𝑟𝑎𝑖𝑛𝑆1 and 𝑟𝑎𝑖𝑛𝑆2) and wear on the equipment 

(𝑅𝐴𝑇𝐸𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛): 

𝑊′𝑆1= 𝑝𝑟𝑆1×𝑅𝐴𝑇𝐸𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛×79.93×(𝑊𝑇𝑑𝑒𝑝𝑡ℎ − 𝑟𝑎𝑖𝑛𝑆1 × 𝑅𝐴𝑇𝐸𝑟𝑢𝑛𝑜𝑓𝑓)−0.728 and  

𝑊′𝑆2= 𝑝𝑟𝑆2×𝑅𝐴𝑇𝐸𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛×79.93×(𝑊𝑇𝑑𝑒𝑝𝑡ℎ − 𝑟𝑎𝑖𝑛𝑆2 × 𝑅𝐴𝑇𝐸𝑟𝑢𝑛𝑜𝑓𝑓)−0.728 

Depreciation rate: 

Like any other capital asset of production, borewells and pumps wear out over time. The depreciation 

rate (𝑅𝐴𝑇𝐸𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛) is estimated as 0.05.  

Irrigation maintenance cost (Rs): 

The irrigation maintenance cost 𝐶𝑂𝑆𝑇𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 is estimated as a function of the potential amount of 

water used �̅�: 

𝐶𝑂𝑆𝑇𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 6598 ×  �̅�0.16 

Electric power (kWh): 

The electric power used for irrigation(𝑃𝑂𝑊𝐸𝑅𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛) is 

𝑃𝑂𝑊𝐸𝑅𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = 745.7 × 𝐻𝑃
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APPENDIX 5: ECONOMIC MODEL - YIELD ESTIMATIONS AND CLIMATIC 

EXPECTATIONS 

1. Objective 

The economic model uses yields to estimate the income from selling crops within the profit function 

depending on farmers’ expectations on climate for the coming seasons. We aim at providing a yield 

matrix where yields depend on climate, irrigation and fertilization intensification. This matrix is an 

input to the economic model. 

Five crops are used:  
 Kharif: sunflower, marigold, sorghum, maize 
 Rabi: maize 
 Kharif and Rabi: turmeric 

Six soils are used: 

 soil11: loamy sand 
 soil12: sandy loam 
 soil13: gravely loamy sand 
 soil14: sandy clay loam 
 soil15: clay loam 
 soil16: clay 

 
2. Climatic expectations 

Based on the five crops and the season and cropping duration of each crop type, we need to estimate 

total rainfalls in kharif (110-250 Julian days), rabi (240-400 Julian days) and for the year (kharif and 

rabi, 110-360 Julian days).  

NB: time windows for the rainfalls are the minimum and maximum Julian days obtain from the STICS 

files that were calibrated and used by Avignon team and for the pump model calibration. 

We used the climatic serial of Maddur enter in RECORD. Daily rainfalls are provided from 1973 to 

2013.  Kharif and rabi rainfalls are approximate by lognormal function (kharif: meanlog=6.181978, 

sdlog=0.2735082; rabi: meanlog=5.714544, sdlog=0.3949741) and the “year” is approximate by a 

normal function (mean=811.2707, sd=185.8911). 

Years can be considered poor, below average, average, above average, good (Table Appendix 4.1). 
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Table Appendix 4. 1 List of year depending on rainfall types and season.  

Kharif 
 

 
  poor below average average above average good 

<600 600-730 730-870 700-1000 >1000 
2002 1987 2000 1997 2010 1975 
1976 1981 1985 1995 2007 

 2003 2012 1989 1974 1992 
 

 
2001 1982 1980 1993 

 
 

2008 1983 2009 1991 
 

 
1990 2006 1973 2011 

 
 

1999 1998 1979 1978 
 

 
1984 1996  1994 

 
 

2005 1977  2013 
 

  
1986  

  
  

1988  
  

  
2004  

  Rabi 
 

 
  poor below average average above average good 

<600 600-730 730-870 700-1000 >1000 
1973 2001 1982 2013 1981 1977 

 
2002 1999 2006 1994 2005 

 
1983 1974 2011 2008 2000 

 
1989 1985 1975 1996 

 
 

1990 1980 2004 1984 
 

 
1998 1995 1978 2009 

 
 

1988 1991 2010 1987 
 

 
2003 1997 2007 1986 

 
  

1976 1979 
  

  
2012  

  
  

1993  
  

  
1992  

  Kharif+Rabi 
 

 
  poor below average average above average good 

<600 600-730 730-870 700-1000 >1000 
2001 1973 1974 2004 1977 1975 
2002 1976 1979 2006 1978 

 2003 1981 1980 2007 1994 
 

 
1982 1984 2008 2000 

 
 

1983 1986 2009 2005 
 

 
1985 1987 2010 

  
 

1988 1991 2011 
  

 
1989 1992 2013 

  
 

1990 1993  
  

 
1998 1995  

  
 

1999 1996  
  

 
2012 1997  
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3. Yield expectations 

Irrigation can be optimal, 75%, 50% 25% or none. 

Based on experimental plots, we fixed irrigation dose to 15mm. 

3.1. Optimal irrigation 

Optimal irrigation is estimated by the automatic irrigation on STICS. 

STICS automatically calculates water inputs so as to satisfy water requirements at the level of the 

RATIOL parameter (water stress index): the model triggers irrigation each time the stomatal stress 

index (SWFAC) is less than RATIOL. Irrigation amounts (AIRG) are then calculated so as to 

replenish the soil water reserve (HUR) to field capacity (HUCC) down to the rooting front (ZRAC) 

without exceeding the maximum dose authorized by the irrigation system (DOSIMX). Irrigation is 

applied only if AIRG > DOSEIRRIGMIN (the minimal dose allowed to do an irrigation). We force 

irrigation dose to be 15mm (DOSIMX = DOSEIRRIGMIN = 15). At the time of sowing, irrigation is 

provided if it has no rained, to enable germination. Irrigation at sowing is 15mm (IRRLEV) or less 

depending on soil water reserve. 

STICS optimal irrigation provides the optimal number of irrigation and associated doses. The overall 

volume of water provided to the plant by irrigation is the sum of all irrigations during crop growth. 

Since STICS is supposed to cover the plant water need, the yield function is expected to be uniform 

for all climates (see graphs below for soil11). The marigold is not uniform for soil 11, over 430mm of 

rainfall, it seems like the marigold yield is decreasing. Marigold is sensitive to water logging, in rainy 

season, well internal drainage is important. For the other crops, not having a uniform function can be 

explained by abundant rainfalls happening when the crop do not need much water. 

3.2. Non-optimal irrigations: 75%, 50%, 25%  

Each year, STICS optimal irrigation gave the number of irrigation and total irrigation volume 𝑉𝑜𝑝𝑡 

provided to the plant. We can deduce non-optimal irrigations as: 

𝑉75% = 0.75*𝑉𝑜𝑝𝑡 and #irrigation = 𝑉75% / 15mm 

𝑉50% = 0.50*𝑉𝑜𝑝𝑡 and #irrigation = 𝑉50% / 15mm 

𝑉25% = 0.25*𝑉𝑜𝑝𝑡 and #irrigation = 𝑉25% / 15mm 

To estimate yields from non-optimal irrigations, we use a decision model coupled with STICS and a 

climate model. The decision model describes simple management practices with time of sowing and 

harvest fixed. Number of irrigation and fertilization doses depends on the intensification of the 

management practices. 108 management practices (ITK) are identified. Crossing with the 6 soils, 5 
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crops and 5 types of climate, we obtained 960 simulations to run with the simulator 

"decision/STICS/climate". 

NB: Fertilization intensification was defined from the experimental plots. Analysis from the big survey 

should highlight other levels of intensification. Due to time consideration, we will keep the first levels 

of intensification for the thesis. (sorghum= no fertilization/fertilization ; maize, sunflower, 

marigold=1level of fertilization, turmeric=2levels of fertilization).  

3.3. Results 

Table Appendix 4. 2 Yield equation for the crops and rainfall regimens. 

MAIZE RABI 
Poor Y =  0.4284 +0.00223*V-0.0000042*V² 
Below average Y = 0.6091 +00145*V-0.0000041*V² 
Average Y = 0.9595 +0.00161*V-0.0000077*V² 
Above average Y = 1.0938 +0.00156*V-0.0000085*V² 
good Y = 1.1769 +0.00160*V- 0.0000095*V² 
MAIZE KHARIF 
Poor Y =  0.5584 +0.00228*V-0.00000547*V² 
Below average Y = 0.5584 +0.00228*V-0.00000547*V² 
Average Y = 0.6368 +0.00229*V-0.0000061*V² 
Above average Y = 0.8461 +0.0021*V-0.0000094*V² 
good Y = 0.9641 +0.00221*V-0.0000118*V² 
SUNFLOWER 
Poor Y = 0.35691 +0.00426*V-0.0000198*V² 
Below average Y = 0.35691 +0.00426*V-0.0000198*V² 
Average Y = 0.4068 +0.0065*V-0.0000375*V² 
Above average Y = 0.4068 +0.0065*V-0.0000375*V² 
good Y = 0.4965 +0.0057*V-0.000040*V² 
SORGHUM 
Poor Y = 0.4882 
Below average Y = 0.5752 
Average Y = 0.6429 
Above average Y = 0.7190 
good Y = 0.7692 
TURMERIC 
Poor Y = 0.133259 +0.004687*V-0.00000751*V² 
Below average Y = 0.18425 +0.0055710*V-0.0000101*V² 
Average Y = 0.214807 +0.006250*V-0.0000120*V² 
Above average Y = 0.224425 +0.009054*V-0.0000195*V² 
good Y = 0.240615 +0.01097*V-0.0000250*V² 
MARIGOLD 
Poor Y = 1.8898 +0.01246*V-0.00005048*V² 
Below average Y = 2.3424 +0.01129*V-0.00005644*V² 
Average Y = 2.5974 +0.0106*V-0.000059*V² 
Above average Y = 2.5974 +0.0106*V-0.000059*V² 
good Y = 2.5974 +0.0106*V-0.000059*V² 
 

  



 

 



 

 



Appendix 6  Marion Robert 

313 
   

APPENDIX 6: OPERATIONAL DECISION AND MODELING  

The agent sub-system represents an activity plan that is the different technical operations to be 

performed and consists of a graph of tasks and relations between tasks. Formally, the activity plan is a 

direct multi-graph without loop (G=(V, E)), where V represents the tasks and E the links or relations 

between the tasks. The tasks are defined as tuples: 

Preconditions represent the requirements for executing task. Preconditions are a set of predicate 

functions, each of which queries the knowledge base. An example can be: “Did it rain in the last three 

days?” This function returns TRUE or FALSE. If all predicates are TRUE, then the preconditions are 

valid. 

 Status describes the current phase of the task as one of the following: {WAITED, STARTED, 

ENDED, FINISHED, or FAILED}. 

Time windows represent the earliest and latest starting and ending dates.  

Links represent relations between two tasks. A link can be valid or invalid according to the status of 

the source and target tasks. Like tasks, links are defined as tuples: 

– Types represent the relation between tasks i and j. A type can be one of the following: 

{SiSj,FiSj,FiFj}, indicating 

whether one task must start (S) or finish(F) before the other. 

– Time lag window defines the time lag in the relation between tasks, for example, ensuring that task j 

can start 

after two units of time after the end of task i. 

A crop management decision model is then defined by(i) a set of variable members of KB and 

associated facts (update functions); (ii) tasks and associated predicates, rules, and time windows; and 

(iii) temporal relations between tasks. 

A knowledge base (KB) contains all information about the system that the farmer can use to reach a 

decision: dynamics of the state variables, state of the resources, and also spatial information about 

farm structure using geographic information system (GIS) (Dury 2011). Observations received by the 

decision model update the KB using functions called“facts.” 
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1.  Management operation description 

Twelve activities are identified: 

1- FYM 

This activity describes the farmer applying farm yard manure to his field. Manure is applied before 

any land preparation work at the beginning of the cropping season, after the first rains. Farm yard 

manure application requests the load capacity of the soil good enough to allow the tractor to pass in 

the field. Dose is measured in tractor load/ac (will be convert into T/ha).  

2- Tractor plough campaign 

After applying farm yard manure, the farmer will start his land preparation. Most of the farmer who do 

not have a tractor will hire one. We suppose in our model that at least one tractor plough (and at max 3 

tractor plough) is done. Tractor plough may be repeated several times depending on the soil structure 

and the cost of it. We suppose that farmer will repeat their tractor ploughing until they reach an 

optimal soil structure (to be determine in term of STICS variables (da(30cm) for instance) and 

optimal/acceptable threshold). In the decision model, tractor plough is described as a tractor ploughing 

campaign. The decision model inform the Operating System that the campaign has start and it is the 

Operating System that determine if ploughing should be done depending on soil structure. Tractor 

ploughing is done after rainfall when the load capacity is good and the soil humidity enough high for 

the plough to go deep enough. 

3- Bullock plough campaign 

If the soil structure need for the crop (deep roots or superficial roots) is not good enough, then farmers 

practice more land preparation by animal traction and wooden or iron plough. Once again we suppose 

that all farmers can do bullock ploughing with their own bullocks or by hiring some. Bullock 

ploughing may not be done if the soil structure is good enough for sowing. In the other case, farmers 

can pass up to 3 times the bullocks. In the decision model, tractor plough is described as a bullock 

ploughing campaign. The decision model inform the Operating System that the campaign has start and 

it is the Operating System that determine if ploughing should be done depending on soil structure. 

Animal ploughing is done after rainfall when the load capacity is good and the soil humidity enough 

high for the plough to go deep enough. 

4- Sowing 

Once the soil structure is reached for sowing, farmers prepare the furrows and the seed bed. Crop 

species and variety had been selected at the beginning of the season (in our model we suppose they use 

only one variety). Advices on plant-to-plant and row-to-row space are obtained from websites, as well 

as depth of the seedling. Surveys provide weight of seeds sown for 1 acre. To get the sowing density 

from surveys we need to know the weight of one seed so that we can deduce the number of plant per 
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hectare. Or we can use the website recommendation to deduce the variable density plants/ha. Sowing 

is done when humidity is apparent in at least 6inch of soil. We need to translate this information into 

STICS variable, maybe with HUM for a soil layer of 15cm. Most of sowing has to be done in clement 

temperature. Some crops need several days without rain after sowing (e.g. beetroot). If the conditions 

for sowing are not met, then the farmer adapts and can change crop or fallow his land (dynamically 

load a new plan or fail the rest of the plan). 

5- Sowing check point 

Farmers check the sowing possibility. When the sowing could not be done in time because of 

unsatisfactory conditions, they will sow another crop.  

6- Germination check point 

Farmers check the crop germination. When the germination rate is lower than an optimal value, they 

may resow the same crop, remove and sow another crop or keep it like this. Germination is favorable 

when no stress is encountered the first month of plant growth. We consider the hydric and nitrogen 

stress.  

7- 7-   8-  Fertilization_N, Fertilization_P, Fertilization_K 

Amount of fertilizer was provided in all 3 surveys (big surveys, 27 surveys and experimental plot 

surveys). From the name of the fertilizer we were able to deduce the N, P, K quantity applied on plots. 

Information on time and crop stage of application was only provided for rainfed experimental plots. 

We crossed this information with crop management practices advised on the web. We defined 3 levels 

of fertilization intensification based on nitrogen application: high fertilization, low fertilization, none 

(value kgN/ha). Nitrogen fertilization may be applied in 1, 2 or 3 times. Phosphate and potassium 

fertilization are depending on soil type. We suppose in our model that P and K fertilization is applied 

only once as basal application. Fertilization is done at specific crop stage and no rainfall for 2days 

after application is preferred in optimal conditions. The fertilization operation has a fixed number of 

applications for each crop. Thus it may be better to have an activity for each application (for example: 

fertilization at sowing, fertilization at 25 days) 

8- Irrigation campaign 

In surveys, irrigation was described as a number of irrigation given per crops and an interval between 

two irrigations. In case of rainfall in the coming days, irrigation is supposed to be cancelled for this 

time. Volume applied at irrigation is not clearly expressed by the farmers. It seems like when they 

have electricity, the electric pump activate and pump from the borewell until the electricity shut down. 

When they have a tank, they will pump and store water directly to the tank, then will irrigate from the 

tank. Two possibilities: 1- we suppose they pump water all time long they have electricity, 2- we fixed 

a soil humidity threshold for which they stop pumping even if they still have electricity. As the model 
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is a 1 day time step, we do not care about the different electricity time shift happening during the day. 

Concerning tank storage, two possibilities: 1- farmers distribute all their water during the day (in this 

case the tank do not need to be modeled in the model), 2- water can be stored until the next irrigation 

period, the pumping is then reduce due to the water volume already available in the tank (in this case, 

we need to model the tank (evaporation, recharge with rain, and get information on size and storage 

capacity). A campaign of irrigation is initiated and the operating system starts the irrigation if the 

rainfall conditions, the interval and the number of time of application are respected. 

9-   11-  Pest treatment and weeding campaigns 

Pest treatment and weeding is applied only when farmers estimate those pests and weeds are 

threatening their crops. In the surveys, pest and weed pressure are quantified as “no problem”, “low”, 

“medium”, and “high”. Pest and weed are not managed into the STICS model. A pest and weed model 

will be created to send a pressure value to the decision model. We will use a function modeling pest 

and weed pressure increasing with time and going back to zero when pesticide or weeding are done by 

the farmer. In the decision model, the activities will be pest and weed campaigns where several 

operations can be done. The decision model informs the Operating System that the campaign has 

started, and it is the Operating system that will decide when to act depending on the pressure rate 

provided by the pest and weed models. 

10- Harvest 

Farmers harvest their crops when it reaches an optimal stage of maturity. When the harvest is done 

over several days, then the farmer need to be sure that it won’t rain. Some crops have sequential 

harvest (marigold, sunflower, cotton, beans, chili, tomato...), for STICS (simulate a crop plot at the 

same stage) we will consider that harvest is done only in one time for all crops. 

 

2. Activities, rules, predicates and the decision plugin of RECORD 

We use the plugin decision within the RECORD platform. Before going to RECORD, we need to 

clearly express different part of the decision: activities, activity parameters, activity time windows, 

rules and predicates, activities precedence relations and effects (Bergez et al. 2016). 
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Activities and parameters 

Activities have time-windows (start date – end date) 
Table Appendix 5. 1 Description of activities and parameters used. 

Activity Type Effect Parameters 

FYM fertilization Dose(T/ha) 

Tractor Plough campaign Land preparation Depth(cm) 

Min passing* 

Max passing* 
Bullock Plough campaign 

Sowing sowing Density (plant/m2) 

Sowing Check check Fail plan, load plan** 

Germination Check check Fail plan, load plan** 

Fertilization-N fertilization 

 Dose(kg/ha) Fertilization-P 

Fertilization-K 

Irrigation campaign 
irrigation Number of irrigation* 

Interval* 

Pest treatment campaign Pest treatment Re-initialize pest function to 0** 

Weeding campaign Weeding  

Harvest harvest  

*parameters used by the operating system 

**dynamic effect  
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Predicates and Rules 

Table Appendix 5. 2 Description of predicates  used in rules. 

Predicates Description Model dynamic  Variables sign 
CropStageMin Minimum crop stage  STICS BBCH > 
CropStageMax Maximum crop stage STICS BBCH < 
LoadCapacity Ground load capacity STICS HUR/HUCC <= 

SoilHumidity 

Soil humidity on sowing 
horizon (15cm) 

STICS HUR/HUCC > 

Densite 

Average (Min (TURFAC, 
INNLAI)) for 10 last days 

STICS Average 
(Min(TURFAC;INNLAI)) 

>= 

PredictedRainfall 

Sum of the rainfall of day j, 
j+1, j+2 

CLIMATE Rain(j)+rain(j+1)+rain(j+2) < 

MinPast Rainfall 

Sum of the rainfall of day j-1 
to j-10 

CLIMATE Rain(j)+rain(j+1)+rain(j+2)+ 
Rain(j+3)+rain(j+4)+rain(j+5)+ 
Rain(j+6)+rain(j+7)+rain(j+8)+ 
Rain(j+9)+rain(j+10) 

>= 

PastRainfall 

Sum of the rainfall of day j-1, 
j-2, j-3 

CLIMATE Rain(j-1)+rain(j-2)+rain(j-3) < 

PestPressure Pest pressure PEST Ppest > 
ClementTemperature Clement temperature CLIMATE Tmax > 

Deadline 

Force activity at the end of 
the time-window 

CLIMATE date > 

 

Optimal rules: rules for optimal conditions 

Relaxed rules: rules for acceptable conditions (relaxed predicate thresholds).  
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Table Appendix 5. 3 Description of rules used by activities. 

Activity  Rules Predicates 

FYM 
Optimal/acceptable rule 
 

Load capacity 
PastRainfall 

Deadline rule Deadline 

Tractor Plough campaign 
Optimal/acceptable rule 
 

Load capacity 
SoilHumidity 

Deadline rule Deadline 

Bullock Plough campaign 
Optimal/acceptable rule 
 

Load capacity 
SoilHumidity 

Deadline rule Deadline 

Sowing 

Optimal/acceptable rule 
 

Load capacity 
SoilHumidity 
MinPastRainfall 
PredictedRainfall 
ClementTemperature 

Deadline rule Deadline 

Germination Check 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
densite 

Deadline rule Deadline 

Fertilization-N 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
PredictedRainfall 

Deadline rule Deadline 

Fertilization-P 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
PredictedRainfall 

Deadline rule Deadline 

Fertilization-K 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
PredictedRainfall 

Deadline rule Deadline 

Irrigation campaign 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
PredictedRainfall 
PastRainfall 

Deadline rule Deadline 

Pest treatment campaign 
Optimal/acceptable rule 
 

PredictedRainfall 
PestPressure 

Deadline rule Deadline 

Weeding campaign 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
PredictedRainfall 

Deadline rule Deadline 

Harvest 

Optimal/acceptable rule 
 

CropStageMin 
CropStageMax 
PredictedRainfall 

Deadline rule Deadline 
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Relationship between activities 

 Precedence relationship between activities can be established with rules: FS (Finish-Start), SS (Start-

Start), FF (Finish-Finish) and a time lapse (minimum and/or maximum time between activities). 

Table Appendix 5. 4 Precedence constraints between activities 

Activity Previous activity 

FYM Previous crop harvested 
Tractor Plough campaign FYM 
Bullock Plough campaign Tractor Plough 
Sowing Tractor Plough or Bullock Plough 
Sowing Check Sowing 
Germination Check Sowing Check 
Fertilization-N Sowing Check 
Fertilization-P Sowing Check 
Fertilization-K Sowing Check 
Irrigation campaign Sowing Check 
Pest treatment campaign Sowing Check 
Weeding campaign Sowing Check 
Harvest  Germination Check 
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3. Example for Turmeric: 

Table Appendix 5. 5 Predicates and threshold values used for the turmeric. 

ACTIVITY INITIAL PREDICATES MODEL PREDICATES 
FYM "after the first rains of the monsoon" PastRainfall>1mm 

"pass with the tractor" LoadCapacity<=1.2 
Tractor plough 
Campaign 

"pass with the tractor" LoadCapacity<=1.2 

"enough soil humidity to plough" SoilHumidity>0.9 
Bullock plough 
Campaign 

"pass with the tractor" LoadCapacity<=1.2 

"enough soil humidity to plough" SoilHumidity>0.9 
Planting "at least 6inch humidity" SoilHumidity>0.6 

"rained last past days" MinPastRainfall<=30mm 
 

"rained last past days" PastRainfall>1mm 
 

"sow at good temperature" ClementTempenrature>12 
Germination 
check 

"average stress over the 10 last days” densite>=0.5 

Fertilization_N " rain for coming 2days" PredictedRaindall>1mm 
Fertilization_P " rain for coming 2days" PredictedRaindall>1mm 
Fertilization_K " rain for coming 2days" PredictedRaindall>1mm 
Irrigation 
Campaign 

"did not rain much last days" MinPastRainfall<50 
"won’t rain much next days" PredictedRainfall<1mm 

pest treat 
campaign 

"treat when pest” PestPressure=1 

Weed treat 
campaign 

"after a good rain" PastRainfall=rain(j-1)+rain(j-
2)>30mm 

harvest  "when crop is mature" CropStageMax=BBCH<97 
"when crop is mature" CropStageMin=BBCH>85 
"no rain during harvest" PredictedRaindall<1mm 
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APPENDIX 7: COUPLED MODEL – A VILLAGE WITH TWO FARMS 

The experiment model simulates a virtual village composed of two virtual farms (F1 and F2) both 

having access to ground water on the same AMBHAS cell. Both farms have two plots (F1P1, F1P2 

and F2P1, F2P2) of variable size (size_F1P1, size_F1P2 and size_F2P1, size_F2P2) from year to year. 

The first farmer operates one hectare land (size_F1P1 + size_F1P2) and has 1 bullock to cultivate; the 

second has two heactares of land (size_F2P1 + size_F2P2) to cultivate and two bullocks. None of 

them has tractor. The farmer and his wife are both working on the farm for both farms. Both farms can 

hire labor and rent equipment from the village (110 female labor, 90 male labor, 4 bullocks, 1 tractor). 

A borewell can be drilled on each plot and is defined by its HP and well depth (HP_F1P1, HP_F1P2, 

HP_F2P1, HP_F2P2, Well_Depth_F1P1, Well_Depth_F1P2, Well_Depth_F2P1, and 

Well_Depth_F2P2). 

 

Figure Appendix 6. 1 : NAMASTE top model – Strategic_F1, Strategic_F2 are the strategic decision models; Tactic_F1 and 
Tactic_F2 are the tactic decision models; Village include the operational decision models.  

The three levels of decision are simulated in the model. The strategic (Strategic_F1 and Strategic_F2) 

and tactic (Tactic_F1 and Tactic_F2) decisions are independent dynamic stochastic models from the 

economic approach presented in chapter 6. The operational decisions are represented by the Village 

sub-model (Figure Appendix 6.1). Strategic and tactic models are coded in C, other models are 
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integrated within the RECORD platform. The coupling was done in C. An improvement will be to 

wrap up the economic models within the RECORD platform. 

First, the strategic models run over 10 years of planning horizon. From the initial groundwater level 

obtained from the AMBHAS model and the expectations on climate obtained by the Meteo model, the 

strategic models decide the best investment in irrigation (HP and well_Depth).  

Then, strategic decisions are sent to the tactic model that will reviews the cropping system (rotation 

and Size) depending on updated information and knowledge on climate (annual_rainfall) and 

groundwater level (H).  

Finally, the cropping system (rotation and size) data are sent to the village model that updates 

parameters of wells and crops before running daily simulations. 

In this appendix, we mainly detail the Village model used for the daily simulations at the operational 

level (Figure Appendix 6.2). 

 

Figure Appendix 6. 2 : the Village model used for the daily simulations at the operational level. Boxes describe sub-models, 
lines are connections between models. 
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The Village model is made of three main parts: 1) hydrological part to estimate the available water for 

irrigation; 2) decisional part with daily technical operations; 3) biophysical part from operation 

execution to crop growth and water flows in the soil. 

1) Hydrological part 

The hydrological part is made of five types of sub-models to get available water for irrigation per plot 

from the groundwater (Figure Appendix 6.3).  

 

 

Figure Appendix 6. 3 : The Village model – details on the hydrological parts made of fives types of sub-models to get 
available water for irrigation per plot from the groundwater.  

 PumpingDuration 

The PumpingDuration sub-model provides the number of hours of electricity available for pumping. 

Hours in kharif and rabi are entered in the parameters of the model so that it may be changed for 

scenario purpose. 
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Table Appendix 6. 1 : Description of inputs, outputs, parameters and equations used in the PumpingDuration sub-model. 

Inputs Parameters Outputs 
  PumpingDurationK = 4  

(hours of electricity in kharif) 
PumpingDuration Hours of 

electricity 
available for 
pumping  

  PumpingDurationR = 3 
(hours of electricity in rabi) 

  

Equation 
  

 

 Pump@F1, Pump2@F1, Pump@F2,Pump2@F2 

Four pump models estimate the maximum amount of water a single pump can extract from 

groundwater each day. Based on the groundwater level provided by AMBHAS and the pumping 

duration provided by the PumpingDuration model, it estimates the available water obtained by 

operating the pump. First it converts the groundwater level into water table depth from the ground. 

Then it calculates the pump flow based on the empirical relationship between groundwater and 

borewell yield established in Berambadi watershed (Figure Appendix 6.4).  

 

Figure Appendix 6. 4 : Borewell yield (pump flow) in the Berambadi watershed.  

 
The units for the borewell yield in the empirical relationship are in L/s but in the pump model they are 

converted in m3/h. So the first coefficient is multiplied by a conversion factor of 3.6 (3600/1000) so 

that the pump flow is PumpFlow=79.9308×WaterTableDepth−0.728.  

Interference between borewells is considered with CoeffC so that when two borewells are on less than 

2 hectares, the total available water is 1.3 the pump flow instead of 2 when there is no interference 

between borewells. 
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Table Appendix 6. 2 : Description of inputs, outputs, parameters and equations used in the Pump sub-models. 

Inputs Parameters Outputs 
H Groundwater 

level from 
AMBHAS (in 
meter above sea 
level) 

Altitude = 700m AvailableWater Available 
water for 
irrigation 
(m3/day) 

PumpingDuration Hours of 
pumping from 
PumpingDuration 
model 

CoeffA = 79.9308   

  CoeffB = -0.728   
  CoeffC = 1 if first 

borewell, 0.3 if second 
borewell due to 
interference effects 
between wells. 

  

  WellDepth = 
Well_Depth from 
Tactic Model 

  

Equation 
WaterTableDepth = max(0.0, Altitude - H(-1));       
   If WaterTableDepth() > WellDepth { 
      PumpFlow = 0 }; 
      else { PumpFlow = max(0.0, CoeffA * WaterTableDepth() CoeffB ; } 
 AvailableWater = max(0.0, PumpFlow() * PumpingDuration() * mCoeffC ); 
 

 SumAvailableWater@F1, SumAvailableWater@F2 

SumAvailableWater sub-models sum the available water provided by the two pumps on the farm. 

Table Appendix 6. 3 : Description of inputs, outputs, parameters and equations used in the SumAvailableWater sub-models. 

Inputs Parameters Outputs 
AvailableWater@P1 Available water 

from pump 1 
(m3/day) 

 update Total 
available 
water for 
the farm 
(m3/day) 

AvailableWater@P2 Available water 
from pump 2 
(m3/day) 

   

Equation 
Update = AvailableWater@P1 + AvailableWater@P2 
 

 Irrigation@F1, Irrigation@F2 

The Irrigation sub-models sum the water demanded for irrigation from the STICS models. It is used in 

the hydrological part to determine when irrigation occurs. 
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Table Appendix 6. 4 : Description of inputs, outputs, parameters and equations used in the Irrigation sub-models. 

Inputs Parameters Outputs 
Irrigation@F1P1 or 
Irrigation@F2P1 

Airg(n) from 
SticsOut (water 
needed for 
irrigation) 
(L/m²/day) 

 update Total water 
needed for 
irrigation 
(L/m²/day) 

Irrigation@F1P2 or 
Irrigation@F2P2 

Airg(n) from 
SticsOut (water 
needed for 
irrigation) 
(L/m²/day) 

   

Equation 
Update = Irrigation@F1P1 + Irrigation@F1P2 or Update = Irrigation@F2P1 + Irrigation@F2P2 
 

 CurrentAvailableWater@F1, CurrentAvailableWater@F2 

CurrentAvailableWater sub-models determine the total available water for irrigation. We consider the 

water can be stocked for n days before being used for irrigation. This hypothesis is used to cover the 

observation that farmers are irrigated every day a part of their field but do not have enough water to 

irrigate the entire plot in one day. When irrigation occurs the water stock is reinitiated to zero. The 

available water is the minimum between the summations of the amount of water extract during n days 

and the ground water volume (AMBHAS). This water amount is distributed equally between plots. An 

improvement may be to attribute the quantity of water available depending on the water demand by 

each plot. 

Table Appendix 6. 5 : Description of inputs, outputs, parameters and equations used in the CurrentAvailableWater sub-
models. 

Inputs Parameters Outputs 
GWVol Groudwater volume 

from AMBHAS 
(m3/day) 

n = 10 
(number of days that 
water is stocked for 
the future irrigation) 

AvailableWater Available 
water for 
irrigation 
for each 
plots (m3) 

Irrigation Update from 
Irrigation model 
(L/m²/day) 

   

PumpFlow Update from 
SumAvailableWater 
(m3/day) 

   

Equation 
if (Irrigation(-1) > 0) { 
        Water = 0 ;        } 
     
    Water = PumpFlow(); 
    AvailableWater = ∑ 𝑊𝑎𝑡𝑒𝑟𝑛  
     
    AvailableWater = min(AvailableWater, GWVol(-1)); 
    AvailableWater = AvailableWater/2.; 
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2) Decisional part 

The decisional part is made of three types of sub-models to get technical activities (Figure Appendix 

6.5).  

 

 

Figure Appendix 6. 5 : The Village model – details on the decisional part made of three types of sub-models to get technical 
activities  

 ObsITK 

It is a very simple model to observe all operations done one day. The state of the model is a simple 

string. In this string all the events (operations) of the day are concatenated. This model is util, and 

convenient to observe this aspect of the system. 

 ActivitiesDuration 

ActivitiesDuration sub-model manages duration of activities based on the parameter “duration” in the 

Namaste model. It receives the AckOut function from the Namaste model that informs the beginning 

of a technical activity and it sends a “end” message to the Namaste model once the activity is 
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supposed to be finished. If no duration is indicated in Namaste, the duration is considered to be one 

day. An improvement to this model may be to allow different durations for the different activities. 

Table Appendix 6. 6 : Description of inputs, outputs, parameters and equations used in the ActivitiesDurationr sub-model. 

Inputs Parameters Outputs 
input AckOut from 

Namaste model 
 end Signal the 

end of the 
activity 

Equation 
 if (parameter ("duration") exists in Namaste) { 
            duration = get("duration")); 
        } else { 
            duration = 1.0; }     
 

 Namaste 

The Namaste model manages the operational decisions of the farmer. It receives information from the 

SticsOut, ppest and the meteo models for the rules. It returns sowing, soil preparation, nitrogen 

fertilization and irrigation characteristics to be applied in SticsOut model. The crop management plan 

used to replace initial plan when sowing or germination failed is entered in the parameters of the 

model. The rotations and its durations and the plot sizes for each plots are provided by the Tactic 

models.   

Table Appendix 6. 7 : Description of inputs, outputs, parameters and equations used in the Namaste sub-model. 

Inputs Parameters Outputs 
Ack End from 

activitiesDuration 
model 

PlanReplace_Kharif_F
1 = Plan MK_replace 

AckOut Acknowledgment of 
activity start 

codebbch@F1P1 Bbch code from 
SticsOut model 
F1P1 

PlanReplace_Kharif_F
2 = Plan MK_replace 

Out_DensitySowing
@F1P1 

Sowing density F1P1 
(grains/m²) 

codebbch@F1P2 Bbch code from 
SticsOut model 
F1P2 

Rotation (FIP1 ; F1P2 ; 
F2P1 ; F2P2) = rotation 
from Tactic_F1 and 
Tactic_F2 models 

Out_DensitySowing
@F1P2 

Sowing density F1P2 
(grains/m²) 

codebbch@F2P1 Bbch code from 
SticsOut model 
F2P1 

Duration = 1 Out_DensitySowing
@F2P1 

Sowing density F2P1 
(grains/m²) 

codebbch@F2P2 Bbch code from 
SticsOut model 
F2P2 

surfaceF1P1 = 
size_F1P1 from 
tactic_F1 model 

Out_DensitySowing
@F2P2 

Sowing density F2P2 
(grains/m²) 

densite@F1P1 Average from 
moyen_densite 
model F1P1 

surfaceF1P2 = 
size_F1P2 from 
tactic_F1 model 

Out_DepthLandPrepa
ration@F1P1 

Tillage depth F1P1 
(cm) 

densite@F1P2 Average from 
moyen_densite 
model F1P2 

surfaceF2P1 = 
size_F2P1 from 
tactic_F2 model 

Out_DepthLandPrepa
ration@F1P2 

Tillage depth F1P2 
(cm) 

densite@F2P1 Average from 
moyen_densite 

surfaceF2P2= 
size_F2P2 from 

Out_DepthLandPrepa
ration@F2P1 

Tillage depth F2P1 
(cm) 
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model F2P1 tactic_F2 model 
densite@F2P2 Average from 

moyen_densite 
model F2P2 

 Out_DepthLandPrepa
ration@F2P2 

Tillage depth F2P2 
(cm) 

hurHucc@F1P1 hurHucc code 
from SticsOut 
model F1P1 

 Out_Fertilization@F
1P1 

Nitrogen dose F1P1 
(kg/ha) 

hurHucc@F1P2 hurHucc code 
from SticsOut 
model F1P2 

 Out_Fertilization@F
1P2 

Nitrogen dose F1P2 
(kg/ha) 

hurHucc@F2P1 hurHucc code 
from SticsOut 
model F2P1 

 Out_Fertilization@F
2P1 

Nitrogen dose F2P1 
(kg/ha) 

hurHucc@F2P2 hurHucc code 
from SticsOut 
model F2P2 

 Out_Fertilization@F
2P2 

Nitrogen dose F2P2 
(kg/ha) 

ppest@F1P1 Update from ppest 
model F1P1 

 Out_Harvest@F1P1 Harvest in F1P1 

ppest@F1P2 Update from ppest 
model F1P2 

 Out_Harvest@F1P2 Harvest in F1P2 

ppest@F2P1 Update from ppest 
model F2P1 

 Out_Harvest@F2P1 Harvest in F2P1 

ppest@F2P2 Update from ppest 
model F2P2 

 Out_Harvest@F2P2 Harvest in F2P2 

rainForecast@F1
P1 

rainForecast from 
Meteo model 

 Out_Irrig@F1P1 Irriagtion dose F1P1 
(mm) 

rainForecast@F1
P2 

rainForecast from 
Meteo model 

 Out_Irrig@F1P2 Irriagtion dose F1P2 
(mm) 

rainForecast@F2
P1 

rainForecast from 
Meteo model 

 Out_Irrig@F2P1 Irriagtion dose F2P1 
(mm) 

rainForecast@F2
P2 

rainForecast from 
Meteo model 

 Out_Irrig@F2P2 Irriagtion dose F2P2 
(mm) 

Ts10cm@F1P1 TS(1) from 
SticsOut model 
F1P1 

 Out_ilev@F1P1 day of the emergence 
stage F1P1 

Ts10cm@F1P2 TS(1) from 
SticsOut model 
F1P2 

 Out_ilev@F1P2 day of the emergence 
stage F1P2 

Ts10cm@F2P1 TS(1) from 
SticsOut model 
F2P1 

 Out_ilev@F2P1 day of the emergence 
stage F2P1 

Ts10cm@F2P2 TS(1) from 
SticsOut model 
F2P2 

 Out_ilev@F2P2 day of the emergence 
stage F2P2 

Equation 
RECORD decision plugin (see appendix 5) 

 

3) Biophysical part 

The biophysical part is made of five types of models that execute technical operations and translate 

them into crop growth parameter and hydrological flux into the soil (Figure Appendix 6.6 and 6.7). 
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Figure Appendix 6. 6: The Village model – details on the biophysical part made of five types of models that execute technical 
operations and translate them into crop growth parameter and hydrological flux into the soil. 

 

 
Figure Appendix 6. 7 : Details of the Plot model made of four sub-models. 
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 SO 

The operating system SO model translates the decision orders from the Namaste model into action 

execution for the STICS model. 

Table Appendix 6. 8 : Description of inputs, outputs, parameters and equations used in the SO sub-model. 

Inputs Parameters Outputs 
Fertilization Out_Fertilization from 

Namaste (kg/ha) 
 Fertilization Nitrogen 

dose 
(kg/ha) 

Irrigation Out_Irrig from Namaste 
(mm) 

 Irrigation Irriagtion 
dose (mm) 

Recolte Out_Harvest from Namaste  Recolte Harvest 
(remove 
crop and 
load next 
USM) 

Semis Out_DensitySowing from 
Namaste (grains/m²) 

 Semis Sowing 
density 
(grains/m²) 

TravailSol Out_DepthLandPreparation 
from Namaste (cm) 

 TravailSol Tillage 
depth (cm) 

ilev Out_ilev from Namaste  ilev day of the 
emergence 
stage 

Equation 
Semis = semis * 1000 
 

 Moyen_densite 

Table Appendix 6. 9 : Description of inputs, outputs, parameters and equations used in the Moyen_densite  sub-model. 

Inputs Parameters Outputs 
DailyValue  Densite from SticsOut 

model 
n = 10 Average Mean value 

of densite 
Equation 
Average = mean (DailyValue (j) to DailyValue (j-n)) 
 

 Ppest 

This model is supposed to simulate pest attacks. It was not used during the thesis. An improvement 

will be to simulate pest attack as a random events sending 1 when there is an attack, 0 otherwise. 

Table Appendix 6. 10: Description of inputs, outputs, parameters and equations used in the Ppest sub-model. 

Inputs Parameters Outputs 
   update Pest attack  
Equation 
0 
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 Plot 

Plot sub-model is made of two parts: the rotator and STICS (Figure Appendix 6.8). 

 

Figure Appendix 6. 8: Details of the Plot sub-model model made of two sub-models – the rotator and STICS. 

The rotator allows simulating several crops one after another. Each crop is simulated by a STICS 

model that uses the final state of the previous USM as initial state. Rotations and plot size (converted 

from ha to m²) are entered as parameter and are from the Tactic model.  

The SticsOut model simulates crop growth and hydrological flux in the soil. 

Table Appendix 6. 11: Description of inputs, outputs, parameters and equations used in the Plot  sub-models. 

Inputs Parameters Outputs 
AvailableWater Available water for 

irrigation from 
CurrentAvailableWater 
model (m3/day to be 
converted into mm/ha/day) 

 AZnit(1) amount of  NO3-
N in the soil 
horizon 1 (kg.ha-
1) 

CO2 Carbon dioxide from the 
meteo model 

 AZnit(2) amount of  NO3-
N in the soil 
horizon 2 (kg.ha-
1) 

ETP Potential evaporation from 
the meteo model 

 AZnit(3) amount of  NO3-
N in the soil 
horizon 3 (kg.ha-
1) 

RG Radiation from the meteo 
model 

 Densite daily stress (0-1) 

Rain Rainfall from the meteo 
model 

 HR(1) water content of 
the soil horizon 1   
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(% dry weight)   
Tmax Maximum temperature 

from the meteo model 
 HR(2) water content of 

the soil horizon 2   
(% dry weight)   

Tmin Minimum temperature 
from the meteo model 

 HR(3) water content of 
the soil horizon 3  
(% dry weight)   

   RsurRU Fraction of 
available water 
reserve (R/RU) 
over the entire 
profile (0-1) 

   TS(1) mean soil 
temperature (in 
horizon 1) 
(degreeC) 

   Airg(n) daily  amount of 
irrigation water 

(mm/day) 
   azomes amount of NO3-

N in soil over the 
depth "profmes" 
(kg/ha) 

   codebbch Bbch code 
   drain daily amount of 

water drained at 
the base of the 
soil profile 
(mm/day) 

   hurHucc Soil water reserve 
compared to filed 
capacity (%) 

   Innlai reduction factor 
on leaf growth 
due to nitrogen 
deficiency (0-1) 

   Lai(n) leaf area index 
(m²/m²) 

   Mafruit biomass of 
harvested organs 
(T/ha) 

   Masec(n) biomass of 
aboveground 
plant (T/ha) 

   NetRecharge Net recharge 
(m3/day) 

   Rdtint biomass of 
harvested organs 
(T/ha) 

   turfac turgescence water 
stress index (0-1) 

Equation 
PlotArea = Size * 10000 ; // convert from ha to m² 
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AvailableWater = AvailableWater * 1000; // convert from m3/day to mm/m²/day 
AvailableWater = AvailableWater / PlotArea; // convert from mm/m²/day to mm/day 
Airg(n) = min (AvailableWater ; irrigation); 
hurHucc = hur / hucc; 
densite = min (TURFAC ; INNLAI); 
net_recharge= (drain – airg(n)) * PlotArea ; // convert from mm/day to mm/m²/day 
net_recharge= net_recharge / 1000 ; // convert from mm/m²/day to m3/day 
 

 Net_recharge_village 

The net_recharge_village model cumulates the net_recharge from the different plots to return a global 

recharge to AMBHAS. 

Table Appendix 6. 12 : Description of inputs, outputs, parameters and equations used in theNet_recharge_village sub-
models. 

Inputs Parameters Outputs 
Net_recharge@F1P1 Net recharge F1P1 

(m3/day) 
 Net_recharge_village Net 

recharge 
total  
(m3/day)  

Net_recharge@F1P2 Net recharge F1P2 
(m3/day) 

   

Net_recharge@F2P1 Net recharge F2P1 
(m3/day) 

   

Net_recharge@F2P2 Net recharge F2P2 
(m3/day) 

   

Equation 
Net_recharge_village = Net_recharge@F1P1+Net_recharge@F1P2+Net_recharge@F2P1+ 
Net_recharge@F2P2 
 

4) AMBHAS 

AMBHAS is a distributed groundwater model that simulates dynamics of daily groundwater level. The 

PYTHON code of AMBHAS has been wrapped into a difference equation atomic model in RECORD. 

Table Appendix 6. 13: Description of inputs, outputs, parameters and equations used in the AMBHAS  sub-model. 

Inputs Parameters Outputs 
Potental_net_recharge Net_recharge_village 

from 
net_recharge_village 
model (m3/day) 

RechargeConversionFactor 
= 1 

GWVol Groudwater 
volume 
(m3/m²) 

  Sy = 0.21 (specific yield) h Groundwater 
level 
(m.a.s.l) 

  T = 20 (transmissivity) discharge Discharge 
(m3/m²/day) 

  doPlot = 0   
  Dt = 0 (time step in 

seconds) 
  

  hini = 600 m (groundwater   
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level initial) 
  hmin = 580 m 

(groundwater level 
corresponding to 0 
discharge) 

  

  n = 1   
  Par_discharge = 0.9995 

(parameter controlling the 
discharge) 

  

Equation 
PixelArea = PlotArea@F1P1+ PlotArea@F1P2+ PlotArea@F2P1+ PlotArea@F2P2; 
potential_net_recharge=potential_net_recharge / PixelArea; // convert from m3/day to m3/m²/day 
GWVol = max(0., (h - hmin) * Sy * PixelArea); 
If (hini<hmin), { 
   discharge = (1-par_discharge)*(hini-hmin)*Sy} 
else { 
    discharge= 0}; 
h = hini + (potential_net_recharge – discharge)/(Sy*PixelArea); 
 

5) Meteo 

The meteo model simulates daily and expected rainfalls, carbon dioxide content, and potential 

evaporation, and radiation, maximum and minimum temperatures. 

Table Appendix 6. 14: Description of inputs, outputs, parameters and equations used in the Meteo  sub-model. 

Inputs Parameters Outputs 
   CO2 Carbon 

dioxide 
content 
(ppm) 

   ETP Potential 
evaporation 
(mm/day) 

   RG Radiation 
(MJ/m²/day) 

   Rain Rainfall 
(mm) 

   RainForecast Rainfall 
forecasts 
(mm) 

   Tmax Maximum 
temperature 
(degreeC) 

   Tmin Minimum 
temperature 
(degreeC) 

Equation 
 



 

 
 



 

 
 

Modélisation des décisions adaptatives de l’agriculteur : Un modèle économique et décisionnel 
intégré, avec un cas d’étude en Inde 

Dans les régions semi-arides, les systèmes de production agricole dépendent fortement de l'irrigation 
et font face à des difficultés croissantes (épuisement des ressources naturelles, forte volatilité des prix 
du marché, hausse des coûts de l'énergie, incertitude sur les changements climatiques). Modéliser ces 
systèmes agricoles et la façon dont ils s’adaptent est important  pour les décideurs politiques afin de 
mieux évaluer leur flexibilité et leur résilience. Pour comprendre la capacité des systèmes agricoles à 
s’adapter, il est essentiel de considérer l'ensemble du processus de décision : des décisions sur le long-
terme à l’échelle de l’exploitation aux décisions de court-terme à l’échelle de la parcelle. Pour ce faire, 
cette thèse conçoit un système de production agricole adaptable dans un contexte de diminution de 
l'eau et de changement climatique. Elle fournit une méthodologie guidant l'acquisition de données, leur 
analyse et la conception de modèle. Elle présente le modèle de simulation NAMASTE représentant les 
décisions des agriculteurs, les interactions entre agriculteurs pour l'utilisation des ressources 
communes et met l'accent sur la rétroaction entre pratiques agricoles et évolution de la nappe 
phréatique. Le modèle a été initialement développé pour résoudre les problèmes critiques de baisse des 
eaux souterraines liés aux pratiques agricoles dans un bassin versant du sud-ouest de l'Inde. Sa 
structure, ses cadres conceptuels et ses formalismes peuvent être utilisés dans d'autres contextes 
agricoles. 

MOTS-CLES : processus de décision; typologie; modèle conceptuel ; programmation stochastique 
dynamique ; politiques de gestion de l'eau ; changement climatique ; bassin versant du Berambadi. 
 

 
Modeling adaptive decision-making of farmer: An integrated economic and management model, 
with an application to smallholders in India 

In semi-arid regions, agricultural production systems depend greatly on irrigation and encounter 
increasing challenges (depletion of natural resources, high volatility in market prices, rise in energy 
costs, growing uncertainty about climate change). Modeling farming systems and how these systems 
change and adapt to these challenges is particularly interesting for policy makers to better assess their 
flexibility and resiliency. To understand the ability of farming systems to adapt, it is essential to 
consider the entire decision-making process: from long-term decisions at the farm scale to short-term 
decisions at the plot level. To this end, the thesis conceives a flexible and resilient agricultural 
production system under a context of water scarcity and climate change. It provides a step-by-step 
methodology that guides data acquisition and analysis and model design. It proposes a simulation 
model NAMASTE that simulates the farmers’ decisions in different time and space scales, represents 
the interactions between farmers for resource uses and emphasizes the feedback and retroaction 
between farming practices and changes in the water table. The model was initially developed to 
address critical issues of groundwater depletion and farming practices in a watershed in southwestern 
India. Its structure, frameworks and formalisms can be used in other agricultural contexts.  

KEYWORDS: farmers’ decision-making, farm typology, conceptual model, stochastic dynamic 
programming, water management policies, climate change, Berambadi watershed. 
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