Nano-photonic structures ofer a highly interesting platform to enhance light-mater interaction on a nanometer scale. Recently, high-index dielectric structures have gained increasing atention as possible low-loss alternatives to plasmonic nano-antennas made from noble metals. Furthermore, since non-linear efects ofer many unique functionalities like the coherent up-conversion of photons, including the generation of harmonics, many eforts are being made to exploit such phenomena in nano-photonics. In this thesis, an analysis is presented on nonlinear optical efects in individual dielectric structures, speciically in silicon nanowires (SiNWs). Nanowires develop strong optical resonances in the visible and infrared spectral range. In this context, strong enhancement of the optical near-ield together with a large surface to volume ratio support the appearance of nonlinear efects. We show that, compared to bulk Si, a two orders of magnitude increase in second harmonic generation (SHG) is feasible and furthermore unravel diferent polarization and size-dependent contributions at the origin of the SHG. Numerical simulations are carried out to reairm these experimental indings for which a numerical technique is presented to describe nonlinear efects on the basis of the Green Dyadic Method (GDM). In the last part of the thesis, the GDM is used together with evolutionary optimization (EO) algorithms to tailor and optimize optical properties of photonic nano-structures. We eventually fabricate samples, based on EO design, and successfully verify the predictions of the optimization algorithm. It turns out that EO is an extremely versatile tool and has a tremendous potential for many kinds of further applications in nano-optics.
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Résumé

La nano-optique est un vaste domaine permetant d'étudier et d'exalter l'interaction lumièrematière à l'échelle nanométrique. Ce domaine couvre notamment la plasmonique, mais depuis quelques années, un efort est porté sur les nanostructures diélectriques à fort indice de réfraction (typiquement des semiconducteurs comme le silicium). Des efets similaires aux nanoparticules plasmoniques peuvent être obtenus, tels un comportement d'antenne et l'exaltation de phénomènes non linéaires (génération d'harmoniques), avec l'avantage de faibles pertes. Dans cete thèse, une analyse des propriétés optiques linéaires et non linéaires de nanostructures individuelles. Une première partie est dédiée aux nanoils de silicium qui supportent de fortes résonances optiques dont le nombre et la gamme spectrale, du proche UV au proche IR, sont fonction de leur diamètre. Dans ces conditions, l'exaltation du champ proche optique et un rapport surface sur volume élevé favorisent l'apparition de processus non linéaires. Ainsi la génération de seconde harmonique (SHG) par rapport au silicium massif est augmentée de deux ordres de grandeur. En outre, diférentes contributions à l'origine de la SHG peuvent être adressées individuellement en fonction de la polarisation du laser d'excitation et de la taille des nanoils. Les résultats expérimentaux sont confrontés à des simulations numériques (méthode dyadique de Green, GDM), qui permetent d'identiier les diférentes contributions. Dans une seconde partie, la méthode dyadique de Green est couplée à des algorithme évolutionnistes (EO) pour la conception et l'optimisation de propriétés optiques choisies de nanostructures semiconductrices ou métalliques, par exemple difusion résonnante de diférentes longueurs d'ondes pour diférentes polarisations. Des échantillons de nanostructures de silicium, réalisés à partir des résultats de l'EO, vériient avec succès les prédictions de l'algorithme d'optimisation, démontrant l'énorme potentiel de l'EO pour de nombreuses applications en nanophotonique requérant une optimisation simultanée de diférents paramètres.
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Chapter Introduction and Motivation

. Nano-Optics N is a ield which is increasingly drawing atention of researchers worldwide. In general, nano-optics is the research ield on efects of light-mater interaction occurring at subwavelength dimensions -thus at the nanometer scale for visible and nearinfrared light. Usually, all phenomena can be described by classical electrodynamics, i.e. by the set of Maxwell's equations [ ]. In this chapter we give an overview of diferent material systems and of the current research progress on photonic nano-structures and their applications. A comparison between plasmonic structures and high-index dielectric antennas motivates more profound investigations on the later material system. Finally we give a brief review on nonlinear efects in nano-optics.

. . Plasmonics

One of the main driving forces in nano-optics is the ield of plasmonics [ , ]. Interaction of electromagnetic waves with metals can launch collective oscillations of free electrons from the conduction band. he dielectric constant of metals is negative (see Fig. . b), leading to an imaginary wavevector. Fields are therefore evanescent and conined within a small region at the surface, called "skin-depth" [ ]. In consequence, collection oscillations of the electrons propagate along the surface and are called surface plasmon polaritons (SPP) [ -]. In small metal particles, the propagation of SPPs is hindered due to the spatial coninement and localized modes appear, so-called localized surface plasmon (LSP) resonances (see Fig. . a). For an extensive introduction on plasmonics, we refer the reader to reference [ ]. hese conined plasmon oscillations allow to squeeze light into tiny volumes of subwavelength size, far below the difraction limit and yield extremely high local ield enhancements [ ]. In the visible spectral range this results in characteristic sizes of several tenths to a few hundreds of nanometers. Such plasmonic particles are oten referred to as "optical antennas" [ -].

A multitude of designs for such antennas have been proposed for various purposes. It is for example possible to obtain spectrally well deined resonances which may be used for coloriltering and -rendering or printing at the difraction limit [ -] or, on the other hand, to create broadband antennas [ ]. Other designs allow either polarization-sensitivity or -insensitivity [ , , ] and polarization conversion [ , ]. Furthermore it is possible to create interferences between modes resulting in Fano-like resonances [ ] or enhancement of higher multipolar radiative transitions that would usually be too weak for observation [ ]. Also chiral responses can be tailored to react sensitive to let-or right-circular polarized light [ -]. Another example is strong directivity in the scatered angular intensity distribution that can for example be achieved with antenna arrangements similar to radio-frequency antennas [ -]. Also forward/backward anisotropic scatering can be obtained [ ] and even the possibility of wavelength-dependent switching of directionality has been reported [ ]. Larger twodimensional antennas pronounce higher order spatial modes with complex, tailorable ield distributions that can be resolved for example using two-photon luminescence (TPL) [ -] or electron energy loss spectroscopy (EELS) techniques [ ]. Acoustic vibrations can be optically excited in nano-antennas, that have been used as nano-sources for hypersound generation [ , ].

Applications range from signal processing [ , ] over surface enhanced spectroscopies where strong plasmonic ield enhancements are exploited to boost signals from few or even single molecules, from weak luorescent transitions or from molecular vibrations [ , -] to biomedical applications in which plasmonic particles are used as nano-biosensors for speciic biomolecules [ ], as biomarkers [ , ] or for local thermal treatment [ , ] and drug delivery [ ]. Sharp resonances can be used for tuning [ ] and sensing [ , ] in optomechanical plasmonic resonators.

. . Photonic Particles from High-Index Dielectric Materials he main focus of this work will be put on another type of photonic nanostructures, namely highrefractive index dielectric nanoparticles. Usually, the later materials comprise semiconductors such as germanium or silicon (Si refractive index in the visible n ≈ 3.5 -4). he decisive diference to plasmonics is the lack of free carriers. his results in a positive real part of the dielectric function (see Fig. . b) which means that light can actually propagate inside the material. Under electric ields, the material is polarized due to a displacement of the bound carriers relative to their latice atoms and this polarization is proportional to the dielectric contrast with the environment (see also appendix . . ).

In the past several years, many functionalities of plasmonic systems have been made accessi-ble also from high-index dielectric nanostructures -with the advantage of very low absorptive losses [ , ].

.

. . Individual Structures

In the early 's, the possibility to use horizontal silicon nanowires (SiNWs) as antennas for visible light was irst exploited in the context of enhanced absorption [ ] and Raman spectroscopy [ ]. By simply changing the diameter, optical resonances can be tuned all over the UV and visible spectrum up to the infrared [ , ]. An optical darkield microscopy image of diferent large NWs is shown in Fig. . a, where the size-dependent redshit of the resonance wavelength is clearly visible. It was then shown, that also the material composition is a convenient parameter for tuning the resonance positions [ ]. In nanowires, these resonances are strongly polarization dependent, as is their nearield distribution [ ], a property that can be used for polarization ilters [ ] or to obtain spectrally enhanced and strongly polarized photoluminescence from direct bandgap semiconductor NWs [ ]. A multitude of structures has been studied in the meantime, such as low aspect ratio [ , ] and vertical nanowires [ ], nanospheres [ ], nanodiscs [ ], hollow nanocylinders [ ] coupled dimers [ -] or even complex bio-inspired structures [ ]. Also heterostructures composed of mixed materials have been investigated [ ]. For example the absorption eiciency of NWs could be increased signiicantly by using amorphous-/crystalline-Si [ ] or Ge/Si core/shell structures [ ].

Similar functionalities as with plasmonic antennas have been realized on the high-index dielectrics platform. Guiding light for all-optical signal processing is a commercially established application of silicon nanostructures [ , ] and eforts are being made to couple other dielectric materials to the CMOS platform [ ]. Nanowires are also used to guide single photons or entangled photon pairs e.g. for quantum computing [ ]. Apart from wave-guiding, numerous other possible applications exist. he possibility to obtain well deined optical resonances in high-index nanowires can be used to create single-NW lasers [ ] and achieve mode-iltered lasing from such individual NWs [ ]. Recently an optical diode for circularly polarized light has been proposed [ ] which is a step towards all-optical logical elements. It is also possible to create forwards/backwards selective uni-directional scatering [ -] or even scatering towards arbitrary angles [ ] by taking advantage of interferences between degenerate resonance modes. he aforementioned possibility to tune the resonance wavelengths is similarly lexible as in plasmonic antennas and is supposed to be very valuable for solar cell applications [ -]. It has been also shown, that high-index dielectric nano antennas can be used as alternatives to metal particles in surface enhanced luorescence spectroscopy (SEF) and surface enhanced Raman spectroscopy (SERS) [ ]. While ield-enhancement is several times lower compared to metal antennas, larger ield volumes and by far lower losses may compensate this drawback in many applications [ ].

. . . Dielectric Metamaterials

When individual nano-structures are put together and are arranged orderly on large areas, such surfaces can have very surprising macroscopic optical properties -that, very importantly, are tailorable to individual needs. Such so-called metasurfaces or metamaterials [ ] are oten made of plasmonic elements [ ], but here we will focus on an introduction to all-dielectric metamaterials [ , ].

In direct analogy to the optical properties of individual nanostructures, metasurfaces with spectrally well deined resonances can be designed. In this way, optical band-pass ilters [ ], full-color holograms [ ], highly absorptive surfaces [ ], polarization converters [ ] or, by puting the individual dielectric elements on a lexible substrate, mechanically tunable metamaterials [ ] have been created. By tuning spectrally the ratio of forward and backward scatering, metasurfaces with particularly high relectance [ -] or transmitance [ ] have been reported, as well as metasurfaces designed for ultra-fast optically induced transparency [ ]. he ability to spatially tune the phase of an incident beam allows wavefront shaping, polarization control e.g. for radially polarized beam generation or focusing from planar structures [ , ]. A generalized Brewster efect can be obtained from surfaces composed of silicon nanospheres which has been used for the tailoring of directional scatering [ ]. Directionality has also been used to vertically couple light from a waveguide to free space, which opens perspectives for applications in optical signal processing [ ]. Even materials can be designed that allow optical cloaking, i.e invisibility of small objects [ ] (for details on cloaking, see [ ] or [ ]).

. . . Beyond Optics

High-index dielectric nanostructures are also promising for possible multi-purpose applications. For instance thermal rectiication in telescopic Si NWs -which basically represent diodes for heat transport -has been demonstrated recently for NWs with diameters ≈ 10 nm [ ]. hermoelectric properties could be enhanced in dielectric metamaterials by artiicially increasing the ratio of electric over heat conductivity [ ]. Another research group used resistance hysteresis in silicon nanowires with encoded abrupt doping-proiles to implement non-volatile memory [ ]. Such efects could be exploited simultaneously to the unique optical properties of dielectric nanoparticles with manifold imaginable applications.

. . High-Index Dielectric vs. Plasmonic Nanostructures

In the preceding introduction, we focused mainly on the similarities of plasmonic and dielectric materials. Let us now compare the diferences between them in some more detail in order to expose advantages and drawbacks of the two material systems.

. . . Fabrication

We will start with some words on the fabrication of nanostructures. Plasmonic structures consist of metals, usually gold, silver or aluminum. hey are either evaporated on a substrate with a subsequent lithographic step and lit-of [ ] or chemically synthesized [ -]. Colloidal particles have been orderly arranged with DNA origami templates [ ] or larger chemically synthesized crystalline lakes can be very rapidly structured by interferometric lithography [ ]. he irst approach sufers from the relatively poor and oten polycrystalline quality of evaporated metals whereas the mono-crystalline metal nanoparticles from the later technique usually cannot be up-scaled to obtain large-area substrates.

High-index dielectric materials can also be evaporated or sputered with the same drawbacks that hold for the metal case. Silicon nanowires can be grown by vapor-liquid-solid (VLS) epitaxy, which is a technique that can be easily up-scaled. A key advantage of the VLS-method is that it allows a very accurate deinition of the size and aspect ratio of a large quantity of simultaneously grown nanowires [ ]. In particular for silicon, another common approach is the lithographic deinition of structures on the crystalline silicon layer on a silicon-on-insulator (SOI) substrate [ , ]. A key advantage in this context is the almost perfect control of structure deinitions thanks to the compatibility to state-of-the art CMOS technology procedures.

. . . Losses

A major disadvantage of plasmonic nanostructures for ield enhanced spectroscopy are the signiicant losses associated to the large imaginary part of the dielectric permitivity in metals. hese losses are responsible for signiicant heat generation in the particles which can be lethal for fragile biomolecules. If the emiters survive the heating, their weak signals might be directly re-absorbed by the lossy metal particle, neutralizing the efect of enhanced emission. Although high-index dielectrics yield signiicantly lower ield enhancements, the associated losses are even by several orders of magnitude smaller (see also Fig. . ). For structures of comparable ield enhancements, the diference in temperature gradients between plasmonic and dielectric particles can reach several 100 • C [ , ] (see Fig. . c).

he very low losses are a key advantage of dielectric materials when it comes to spectroscopy applications. However, the dissipation in plasmonic antennas can be used for localized heat generation at a nanometer scale [ ] which on the other hand is not possible with dielectric nanostructures.

. . . Electric Field Enhancement

Field enhanced spectroscopy is one of the main applications for plasmonic particles. High ield enhancements are necessary in order to boost the weak signals from few or even single molecules. Field enhancement in the vicinity of high-index semiconductor nanoparticles is essentially proportional to the dielectric contrast between the particle (ϵ r,1 ) and its environment (ϵ r,0 ). his is a result of the continuity conditions for ields across dielectric interfaces (see appendix A. )

E ∥,0 = E ∥,1 ϵ r,0 E ⊥,0 = ϵ r,1 E ⊥,1 . ( . )
he normal component of the electric ield close to the particle is enhanced by the ratio of the permitivities and possibly further ampliied due to the presence of resonant modes. For many semiconductors, strong ield enhancement in the order of ≈ 100-fold ampliication of the ield intensities are possible (ϵ r > 10), where resonant optical modes further increase the efect [ , , ] (see Fig. . ). Also a tightly focused excitation can increase the ield enhancement and lower the efective volume of high ield concentration [ ]. he enhancement factors are nevertheless signiicantly lower than in plasmonics, where three orders of magnitude in intensity enhancement can easily be achieved [ ]. While in plasmonics generally the strongest nearields can be obtained, dielectric particles ofer larger volumes of ield enhancement [ ], which, under circumstances, can be advantageous. he range of the strongest ield enhancement is in the order of ≈ 1 nm for plasmonic antennas and ≈ 10 nm in dielectric nano-particles. his is in particular advantageous when it comes to the fabrication of nano-particles featuring such small gaps. Reported gain in luorescence rate using dielectric particles range from values he magnetic resonances in dielectric nanoantennas can be used to tailor the magnetic local density of states [ ]. Furthermore they can lead to behavior similar to magnetic media in actually non-magnetic (µ r = 1) media. Because the magnetic resonances can be tuned to be of comparable strength with the electric resonances, the so-called Kerker-condition (µ r = ϵ r , [ ]) can be fulilled even in dielectric media where clearly µ r ϵ r , leading to strongly directional scatering [ , , -]. Apart from the visible spectral range, strong magnetic ields have been demonstrated in highindex dielectric particles also for GHz [ ] and THz frequencies [ ].

. . . Scatering

Finally, despite very strong ield enhancements, scatering to the farield from plasmonic antennas is limited [ ] and oten outperformed by their dielectric counterparts [ ], as demonstrated by the numerical simulations comparing the scatering eiciencies from gold and silicon dimers, shown in Fig. . . In summary, dielectric antennas may be equal or even favorable alternatives to plasmonic systems, dependent on the targeted application.

. . Hybrid Plasmonic-Dielectric Nanostructures

In many regards, the plasmonic and dielectric platforms ofer complementary properties. It is therefore not surprising, that eforts are being made to bring together both systems into hybrid plasmonic-dielectric nanostructures and combine their mutual advantages. High-index particles have been used for example as "sensors" for plasmons, coupling propagating SPPs on metal surfaces to the farield [ ]. Inversely, metal particles were incorporated in dielectric waveguides to ilter frequencies in the waveguide transmission around the plasmonic particles' resonance [ ]. In diferent works, the coupling between plasmonic particles and dielectric nanowires was used to circumvent the polarization-anisotropy in scatering from semiconductor nanowires [ , ]. In this context, metal/dielectric nanospheres were proposed as "super-scaterers" with remarkably high scatering eiciencies due to superposition of multiple resonances [ ] or inversely "super-absorbers" were designed by decorating silicon nanowires with plasmonic gold particles [ ]. In quantum dot doped NWs, lasing from sub difraction-limit mode-volumes was realized by coupling to SPPs [ ]. Plasmonic antennas were employed to boost photoluminescence from III-V semiconductor nanostructures via strong ield enhancement [ ]. Hybrid waveguides were suggested that ofer spectrally broad high power transmissions and could be promising for scanning-tip microscopy applications like SNOM in order to guide light to few square-nanometer small sample improve directional emission have also been proposed on the basis of hybrid plasmonics. Compared to an all-metal design [ ], enhanced directivity could be achieved using a metal antenna as driving element and a low-loss dielectric antenna as director [ ]. In a similar work the signiicantly lower losses have been pointed out, using a dielectric component to reduce re-absorption [ ]. Also, diiculties associated with the weak optical magnetism of plasmonic particles can be avoided using mixed metal-dielectric structures [ ]. his might be an important concept if strong magnetic ields are desired in the vicinity of metal structures. Finally, promising applications can also be found in photovoltaics. For example, paterned metal-ilms with embedded silicon nano-pillars showed drastically increased absorption compared to non-paterned ilms, while the low electrical resistance of the metal ilm was maintained [ ].

. Nonlinear Efects

All properties and applications of nano-photonic particles described above were based on a linear optical response. If the amplitude of the exciting electromagnetic ield is high enough, nonlinear optical efects occur, that can ofer a large range of unique functionalities beyond linear optics. Probably the most popular nonlinear optical efect is harmonics he link between nonlinear optics and nano-antennas is the need of high ield amplitudes in the former and the possibility to strongly enhance electric ields in the later. herefore nanophotonic structures seem ideal candidates to evoke nonlinear efects and increasing interest is being put on nonlinear nano-optics. In this section, we give an overview on current research and on applications of nonlinear efects in nanometric plasmonic and dielectric systems.

. . Nonlinear Plasmonics

Following the outline of the previous section, we will start with some brief examples of current research on nonlinear efects in plasmonics.

In gold, which is a centrosymmetric crystal, second order nonlinear efects such as SHG vanish in the dipolar approximation [ ]. Nevertheless, by breaking the symmetry at the level of the nano-structure design, signiicant SHG can be obtained from gold plasmonic antennas [ ]. It turned out, that SHG can even be further enhanced using multi-resonant antennas with modes at λ 0 and λ 0 /2 [ -], but the eiciency of propagation of SHG to the farield remains crucially dependent on microscopic symmetries [ , ]. It has been shown, that by using a control beam at λ 0 /2, the directionality and scatering eiciency of SHG can be controlled [ ]. Furthermore, size dependent polarization efects occur in SHG from nanoparticles, that arise from diferent physical processes at the origin of the nonlinear radiation [ , ]. Equally to SHG, also THG can be heavily enhanced in resonant plasmonic antennas [ ]. Other nonlinear efects like sumor diference-frequency generation and four-wave mixing can also be enhanced [ , ]. Apart from enhancement of nonlinear processes, the incoherent character of two photon luminescence can be used to image spatial mode distributions in larger two-dimensional plasmonic resonators [ , , , ]. A more extensive overview on nonlinear plasmonics can be found in reviews on this topic, e.g. by Kauranen and Zayats [ ] or by Butet et al. [ ].

Despite all recent progresses in nonlinear plasmonics it has been shown that the eiciency of nonlinear processes in metal nano-particles is inherently limited, mainly due to dissipation processes [ ].

. . Nonlinear Efects in Dielectric Nanostructures

Because of lower losses and other advantages like compatibility to CMOS technology (for silicon), high-index dielectric structures may also be promising alternatives to nonlinear plasmonics. Particularly nonlinear photonics on the silicon platform are subject of current research, with the goal of implementing all-optical signal processing in Si-based microelectronic devices [ ]. hird-order nonlinear efects are very promising in this context, because of the inherently high χ (3) of silicon. his allows enhanced third harmonic generation with factors of up to 10 5 compared to bulk Si using photonic crystals [ ] or dielectric nano-antennas [ -]. Harmonic light can be produced, intense enough to be visible with the bare human eye [ ].

. . . SHG from Non-Centrosymmetric Materials

Despite the great prospects of third order efects, they can be experimentally inconvenient because the fundamental frequency has to be chosen in the infrared in order to obtain a response in the visible. herefore, second order efects and in particular second harmonic generation (SHG) are subject of current research. In this context, dielectrics with a non-centrosymmetric crystal ofer a great advantage over plasmonics, because SHG can be generated from the bulk crystal itself.

Strong second harmonic light could be for example generated from subwavelength small Al-GaAs cylinders and was found to be enhanced by magnetic Mie resonances [ ]. Using this strong SHG in nonlinear farield-microscopy was used to reveal the spatial paterning of hybrid guided-/ Mie-modes (see also [ ]) in GaAs nanowires [ ]. Control on properties of nonlinear efects has also been reported. For example the directionality of the (strongly enhanced) SHG from ZnTe NWs [ ] or AlGaAs nanodiscs [ ] can be controlled by means of the incident beam polarization and the particle's aspect ratio. Also the polarization of the SH light in the farield could be controlled by modal engineering in GaP nanopillars [ ].

. . . SHG from Centrosymmetric Materials

Elemental silicon is among the experimentally most convenient materials. Unfortunately, like all elemental crystals with face-centered cubic (fcc) latice, bulk Si has an inversion symmetry and therefore doesn't support second order nonlinear efects in the dipolar approximation.

Nevertheless, second order nonlinear efects and particularly SHG is still of interest in centrosymmetric nano-particles. Due to a breaking of the inversion symmetry at interfaces and with large surface-to-volume ratios in small particles, the efective nonlinear susceptibility is actually non-zero. Furthermore, ield-gradients can arise due to tight focusing or resonant optical modes, that also break the symmetry locally and support a second-order nonlinear response. herefore, a lot of theoretical work has been done for SHG from nanoparticles of centrosymmetric materials [ -]. Experimentally, enhancement of SHG has been reported for example from SiNW arrays (> ×50 compared to bulk) [ ]. Also Si photonic crystals can enhance SHG and THG signiicantly, even under cw excitation suiciently strong ields could be obtained to generate measurable second harmonic light. Radiation paterns conirmed in these experiments, that THG is indeed generated within the bulk, while SHG is a surface efect [ ]. As SHG requires a breaking of the symmetry at some point, strained dielectric slabs have been studied in this context as well. And indeed, a good enhancement of SHG from strained silicon [ , ] or germanium waveguides [ ] was found. However, it has been recently reported that the inluence of strain on the bulk second order susceptibility of silicon had been overestimated earlier [ ].

. . Hybrid Plasmonic/Dielectric Structures

Also in nonlinear nano-optics, atempts are being made to combine advantages of plasmonics and high-index dielectrics. A tremendous increase of THG by a factor of 10 6 could be achieved by coupling indium-tin-oxide (ITO) to the enhanced nearield of a plasmonic antenna [ ]. In an other work, the eiciency of FWM (Fig. . d) could be increased using a hybrid silicon/plasmonic waveguide [ ].

. . Applications

Probably the best motivation for further investigations on nonlinear properties are the manifold possible applications of nonlinear optical efects in nano-structures. he fact that SHG from centrosymmetric crystals is a surface efect is widely exploited for macroscopic surface characterization [ -]. But also on a nanometer scale, characteristic surface signatures can be obtained from SHG spectroscopy. he surface second harmonic light from gallium-nitride (GaN) nanowires for example contains a signature of the surface orientation [ ] or aluminum grain boundary interfaces can be analyzed by SHG microscopy [ ]. Nonlinear optical efects are also widely used in signal processing based on silicon photonics [ ]. As an example, a passive optical modulator was realized thanks to a strain-induced increase in nonlinearity by one order of magnitude in silicon waveguides [ ]. Also ultrafast all-optical switching can be obtained in silicon nano-structures, making use of a spectral shit of the magnetic dipole resonance caused by two-photon absorption [ ]. Apart from quantum computing, where a lot of efort is put in both linear [ -] and nonlinear [ ] optical techniques, optical computing might also be done in a more classical way, basing on optical switching. An optical transistor would require some nonlinear optical phenomena in order to achieve a switching behavior. Such a device has been proposed as early as by Jain and Prat Jr. [ ] who suggested that a refractive-index perturbation induced by a "base" beam could be used to nonlinearly control the intensity of SHG from the device by a variation of the phase-matching condition. In this device, the equivalent to the collector would be the fundamental incident beam and the emited SHG would correspond to a transistor's emiter. More recently, a polarization controlled logical element was proposed using TPL from plasmonic nanostructures supporting higher-order spatial modes [ ].

Equivalently to surface second harmonic generation, SHG is highly sensitive to small changes of the nano-particle geometry, which has been proposed to be exploited for far-ield measurements of few nanometer small distances using a kind of optical "nano-ruler" [ ]. Infraredexcited SHG from dielectric GaP nanoparticles has been proposed as femtosecond nanometer light source at visible frequencies for applications related to bio-imaging [ ]. In such nano-probes, engineering of the geometry allows to shape the modes and thereby the harmonic nearield as well as its polarization state. In the context of nano-scale localized sensing, it has been shown that a nonlinear response can ofer about one order of magnitude higher sensitivity to changes in the refractive index compared to linear optical refractive index sensing [ ]. An other work-group used cadmium-sulide (CdS) NWs as nanometer scale optical correlators which opens perspectives for on-chip ultrafast optical technologies [ ]. Finally, nonlinear efects can be used in bio-medical applications. SiNWs were used as biomarkers and excited with an infrared fs-laser. he detected THG provides not only the biomarkers' positions but also information on their orientation due to anisotropic THG as a result from the high aspect ratio of the NWs [ ].

. Scope of this Work he focus in this work will be put on nonlinear efects in dielectric structures, in particular in silicon nanowires. In the irst part (page and following), the fundamental electro-dynamical theory will be introduced and an introduction to nonlinear optical efects will be given. We will give an overview on the Green dyadic method (GDM), a technique for the numerical modeling of the response of nano-objects to an excitation by electromagnetic ields. In this context, also for nonlinear optical efects a numerical description will be presented and discussed (page and following).

In the second part (page and following), a thorough study of the optical behavior of silicon nanowires (SiNWs) in the visible spectral range will be performed. At irst, the linear optical properties will be discussed. Subsequently the nonlinear optical response will be subject of an experimental and theoretical analysis. Finally, second harmonic generation (SHG) will be examined in detail and we will ind, that the origin of the frequency doubling in SiNWs depends on the polarization of the fundamental ield as well as on the size of the nanowires, which opens interesting perspectives for further studies of surface SHG from nanowires or for applications which require control of the harmonic emission.

In the last part (page and following), we will discuss the more technological problem of nanostructure design. As described above, optical properties of photonic nanostructures can be tailored to speciic needs. For this, usually some reference design is chosen by intuitive considerations. By a systematic analysis of the system, the desired properties are maximized subsequently. However, inding optimum geometries for a given problem is not trivial, and oten trade-ofs have to be made. We therefore tackle the problem in an inverse way: Ater deining the desired optical properties, a corresponding geometry is searched using evolutionary optimization algorithms. We show, that using a thorough deinition of the problem and structure model, this technique can be used for the optimization and automatic design of photonic nanostructures with regards to various optical properties. To demonstrate the approach, we apply evolutionary optimization on silicon nanostructures to obtain maximum SHG as well as on plasmonic nanoantennas for directional scatering. At last, we employ an even more general multi-objective evolutionary algorithm in order to simultaneously maximize scatering at two target wavelengths in multi-resonant dielectric nano-scaterers. he optimized structures are inally fabricated by electron-beam lithography and the predictions of the experiment are veriied experimentally.

Chapter

Modeling Optical Efects at the Nanoscale W James Clark Maxwell worked out his groundbreaking equations in the s [ ], he noticed that they naturally describe a fundamental property of electromagnetic ields: he ability to propagate as waves at the speed of light -even in vacuum, independent of any carrying medium. Electromagnetic waves in a range of wavelengths from the ultraviolet to the far infrared (some 10 nm to several 10 μm) are usually referred to as light, including the visible light from around 400 nm to 700 nm. he description of efects from the interaction of light with subwavelength small particles will be the scope of this chapter.

. Definition of the Problem

Generally, the goal of nano-optical problems is to ind the electric (and / or magnetic) ields in a particular nanostructure under external excitation, like illustrated in igure . a. he nanostructure is usually placed in a homogeneous environment and oten lies on top of a substrate. he external excitation is usually realized by a laser beam. Other possible fundamental ields such as electron beam excitation [ ] are outside the scope of this work but can be treated formally equal to "classical" electromagnetic ields [ ].

he response of a nanoparticle to an illumination is obtained by resolving Maxwell's equations for the given system. In the irst part of this chapter we will introduce the fundamental electrodynamical theory. We then present a volume integral approach for the numerical resolution of Maxwell's equations based on Green's dyadic functions. In the last part we give an introduction to nonlinear optics and present an extension of the numerical model for the description of Second Harmonic Generation.

. Electrodynamics . . Maxwell's Equations

All kind of electromagnetic phenomena are entirely explained by the four Maxwell's equations which write (in SI units):

divD = ρ ( . a) rotE = - ∂ B ∂t ( . b) divB = 0 ( . c) rotH = ∂ D ∂t + j ( . d)
with the current density j, the charge density ρ, the electric ield E and electric displacement D as well as the magnetic ield B and the magnetizing ield H. All above ields are functions of space (r) and time (t). Interaction of mater with light is described by solutions for the electromagnetic ields that fulill Maxwell's equations for the considered system. Most commonly, the electric displacement is related to the electric ield using the electric polarization density P D = ϵ 0 E + P ( . )

and the magnetizing ield to the magnetic ield using the magnetization density

M H = 1 µ 0 B -M ( . )
he response of material to ields is represented by this electric polarization and magnetization (see igure . a). hey are deined as the electric dipole moment dp and the magnetic moment dm per volume element dV , respectively (for details, see e.g. [ , chapter . and . ]):

P = dp dV = ϵ 0 χ E ( . a) M = dm dV = χ m H ( . b)
Like the ields, both the polarization and the magnetization are functions of space and time. he right-hand side terms are irst-order Taylor expansions of P and M as function of the electric and magnetizing ields, respectively. hese linear approximations are valid only for linear materials. We will see in section . , that we can describe non-linear efects by introducing higher-order terms to the equations for the polarization and magnetization. Its response to incident electromagnetic ields E 0 , B 0 can be described by the polarization P and the magnetization M. In (b) a nano-object which is small compared to the wavelength is shown, whereas in (c) a particle is shown with large size compared to the wavelength.

. . Dielectric Permitivity

he above equations together with eq. ( .) and ( . ) yield the so called constitutive relations [ , chapter . ]

D = ϵ 0 ϵ r E ( . a) B = µ 0 µ r H ( . b)
with χ = ϵ r -1 and χ m = µ r -1. ϵ r and µ r are the relative dielectric permitivity and magnetic permeability, respectively. hey are deined as the ratios of the material's permitivity and permeability relative to the vacuum values ϵ 0 and µ 0 .

For simplicity, we will consider in the following only non-magnetic media, i.e. we assume µ r = 1 and consequently M = 0. he dielectric permitivity describes the wavelength dependent response of a material to electromagnetic ields. All interplaying physical efects are phenomenologically combined in this material constant. he refractive index is linked to ϵ r and µ r by

n = √ ϵ r µ r = √ ϵ r (non-magnetic media) ( . )
Note that ϵ r is complex in our notation, the imaginary part is responsible for energy dissipation. For details see for example [ , chapter . ].

In the following, we will give a brief comparison of the dielectric behavior of metals and dielectrics. .

. . Metals

In metals, an impinging electromagnetic wave induces collective oscillations of the conduction electrons, so-called surface plasmon polaritons (SPP) [ ]. Because of electromagnetic screening due to the free carriers at visible frequencies, those oscillations are bound to a small volume at the surface of the metal, characterized by the skin-depth [ ] (see eq. ( .)). he screening efect is described by a negative real part of the dielectric permitivity, leading to purely evanescent ields inside metals. he collective electron oscillations can be driven to a resonance at the so-called plasma frequency ω p . he permitivity of gold (from [ ]) is shown as an example in Fig. . a. he non-zero Im(ϵ r ) is responsible for thermal dissipation. As consequence of this, together with the negative real part of ϵ r , the imaginary part of the refractive index n is much larger than its real part. his generally relects the fact that electromagnetic waves are strongly damped inside the metal.

he relative permitivity of metals can be roughly approximated by the Drude model [ ]. Following the notation of Johnson and Christy [ ], the permitivity can be writen using a Lorentzian oscillator model

ϵ r (ω) = ω 2 p ω 2 p -ω 2 -iω/τ e ( . )
with the electron relaxation time τ e and the plasma frequency ω p [ , chapter ]

τ e = mσ N e e 2 , ω p = √ N e e 2 ϵ 0 m ( . )
where ϵ 0 is the vacuum permitivity, σ the Drude conductivity, N e the electron number density, e the electron charge and m its efective mass. For frequencies suiciently far below the plasmon resonance at ω p , this is a reasonable approximation.

. . . Dielectrics

In dielectrics, the absence of free charge carriers results in an entirely diferent dispersion relation. Dielectrics respond to electric ields by a local displacement of bound charges relative to the latice atoms. No screening takes place and electromagnetic ields can propagate inside the medium. herefore, the relative permitivity is positive in dielectrics. In Fig.

. b, the dispersion of silicon (from [ ]) is shown as an example. If the photon energy is lower than the direct band gap (in Si at around 370 nm), the dielectric constant is mainly real and positive valued. he refractive index is also almost purely real and very high -between 3 and 4 throughout the visible and infrared. In consequence silicon absorbs very litle compared to metals. If the photon energy is higher than the direct bandgap, free carriers can be excited and the dielectric permitivity is not necessarily positive anymore. his can be seen in the silicon dispersion below λ ≈ 370 nm Generally, the dispersion of dielectrics can also be described by an oscillator model, formally equal to equation ( . ). For silicon, very accurate dispersion models for the visible spectral range exist, using multiple oscillators [ , ].

.

. uasistatic Approximation

Before we elaborate a way to obtain general solutions of Maxwell's equations, let's consider a particular case of light-mater interaction. In structures whose dimensions are much smaller than the wavelength, thus d ≪ λ 0 , efects induced by a varying ield amplitude along a structure (so-called retardation) can usually be neglected. Such a situation is shown in igure . b. he electric ield over the whole particle is regarded as totally in phase. his is referred to as the quasistatic approximation, in which the displacement current ∂D/∂t is neglected and equation ( . d) simpliies to rotH ≈ j ( . )

which is known as Ampere's law.

For metal nanoparticles, the ield decays exponentially from the surface towards the bulk core. In this case, the quasistatic approximation requires the further condition that the size of the nanoparticle is small compared to the skin depth [ ]

d skin = λ 0 2π √ ϵ 0 + ϵ r ϵ 2 0 ( . )
which is given here for a particle of permitivity ϵ r placed in vacuum. For metal structures significantly smaller than d skin , the internal ield can be considered homogeneous over the nanoparticle and proportional to the external ield. Many theoretical models in nano-optics are based on this approximation. A prominent example is the so called Rayleigh scatering, scatering from very small subwavelength particles in the quasistatic limit [ ]. Rayleigh scatering is responsible for the blue color of the sky. As we will see in more detail in section . , also second harmonic generation from dielectric nanoparticles can be analytically described by making simpliications like the assumption of quasistatic ields [ , ]. .

. Problems Including Retardation Efects

he quasistatic approximation can only be applied on particles whose size is signiicantly smaller than the wavelength of the incident light. For particles large compared to the wavelength like the one illustrated in igure . c, retardation efects occur and Maxwell's equations must be solved rigorously in order to describe the resulting phenomena.

. . . Time Harmonic Fields in Phasor Representation

We will see that it is of enormous practical advantage to consider monochromatic ields. his is not such a restriction as it might occur in the irst place because the use of harmonic waves as ansatz for the solution of Maxwell's equations can subsequently be generalized to arbitrarily time-dependent ields by a superposition of harmonic ields and inverse Fourier transformation.

In the following, we will therefore express all ields using complex exponentials:

E(r, t ) = Ê0 (r) e i(-ωt +ϕ ) ( . )
with the amplitude Ê0 , the wavevector k 0 , the angular frequency ω and a phase ϕ. As we treat harmonic oscillations, the angular frequency is a convenient way to express the wavelength λ and writes:

ω = 2πc λ = k 0 c ( . )
with the wavenumber k 0 = |k 0 | and the speed of light

c c = 1 √ ϵ 0 µ 0 ( . )
It is possible to separate the phase ϕ from the argument of the exponential in eq. ( .) and include it in the complex amplitude: . ) he amplitude E 0 (r) = Ê0 (r) e iϕ is called a phasor or, more literally, a complex amplitude. he imaginary part of E 0 contains the total phase information which is given by the angle in the complex plane

E(r, t ) = Ê0 (r) e -iωt e iϕ = E 0 (r) e -iωt ( 
ϕ(r) = atan ( Im ( E 0 (r) ) , Re ( E 0 (r) ) ) . ( . )
ϕ is also a function of space. he real part of the complex ield E(r, t ) represents the physical amplitude of the electric ield at time t. We note that it is possible to sum, substract or diferentiate phasors without limiting the generality. he above expressions hold equally for the magnetic ield of electromagnetic waves.

. . . Wave Equation he time-harmonicity of the ields can now be used to explicitly perform the diferentiation ∂/∂t in equations ( . ) which leads to the macroscopic, Fourier transformed Maxwell's equations (compare with [ , chapter . ]):

divD(r, ω) = ρ (r, ω) ( . a) rotE(r, ω) = iωB(r, ω) ( . b) divB(r, ω) = 0 ( . c) rotH(r, ω) = -iωD(r, ω) + j(r, ω) ( . d)
Maxwell's equations represent a coupled system of linear, partial diferential equations. hey can be decoupled by applying the vectorial curl operator (rotA = ∇ × A) on equation ( . b) and substituting with eq. ( . d). By then making use of the relations between the electric ield and the displacement and between magnetizing ield and magnetization (Eqs. ( . ) and ( . )), we obtain rot(rotE) = iω rotB

= iωµ 0 ( rot(H + M) ) = iωµ 0 (-iωD + j) = iωµ 0 (-iωϵ 0 ϵ r E + j) = ϵ r ω 2 c 2 E + iωµ 0 j ( . )
We consider non-magnetic media and therefore M = 0. Using the identity

∇ × (∇ × A) = ∇(∇A) -∆A ( . )
and

D = ϵ 0 E + P ⇒ divD = ϵ 0 divE + divP = 0 ( . ) we ind ϵ r ω 2 c 2 E + ∆E = -1 ϵ 0 ϵ r ∇(divP) -iωµ 0 j. ( . )
Eq. ( .) means that we consider only media with vanishing free charge density (ρ f = 0 → ρ = ρ b ), in order to be able to make some further simpliications .

ρ b is the bound charge density where by deinition holds ρ b = -divP, see for example [ , chapter . . ] he reason why the simpliication of a dielectric constant works also in the case of metals where free carriers seem to exist is because the dielectric function is based on the macroscopic Maxwell's equations (Eqs. ( . )). When With the speed of light c 2 = (ϵ 0 µ 0 ) -1 and the wavenumber inside the non-magnetic medium

k = √ ϵ r k 0 = √ ϵ r ωc -1 this becomes (∆ + k 2 )E = -1 ϵ 0 ϵ r ∇∇P -iωµ 0 j. ( . )
In linear materials, dipolar approximations of the bound charge density ρ b (r, ω) and the current density j(r, ω) can be developed by means of the electric polarization ( . a)

ρ b = -∇P ( . ) j = ∂ ∂t P = -iω P. ( . )
While the later relation is evident because we are assuming time-harmonic ields, Eq. ( . ) can be easily derived from the deinition of the electric polarization density (see for example [ , chapter . . ]). Inserting ( . ) in equation ( . ) (we included Eq. ( . ) in our derivation already using Eq. ( .)) eventually brings us to the wave equation for the electric ield:

(∆ + k 2 )E = - 1 ϵ 0 ϵ r ∇∇P + ω 2 µ 0 P ( . ) (∆ + k 2 )E = - 1 ϵ 0 ϵ r ( k 2 + ∇∇ ) P. ( . )
We want to point out, that this equation is formally identical to the mechanical wave equation describing for example an oscillating string [ , chapter . ]. In the case of the electromagnetic wave equation, the speed of the propagation is the speed of light c which eq. ( . ) contains implicitly through the wavenumber k. Furthermore the waveequation is found to be a more general form of Poissons' equation in electrostatics, which it becomes in the static case, i.e. when

k = 0 [ ].
While we will limit our considerations to non-magnetic media, we point out as a inal note that an analogous wave equation can be found likewise for the magnetic ield (see for example [ , chapter . ]).

. . Green's Functions

In order to solve an inhomogeneous linear partial diferential equation like the wave equation, the concept of Green's functions is a versatile tool. At irst we want to illustrate the basic idea. For this we start with a diferential equation

LA(x ) = д(x ) ( . )
integrating the macroscopic system, free charge carriers only exist if the metal is actually charged. If this is not the case, a dielectric function can indeed be used to describe the metal's optical properties including plasmonic efects.

where L is an arbitrary linear diferential operator and д(x ) the inhomogeneity of the diferential equation. It would be pleasant to obtain something like an inverse of the diferential operator L in order to write A(x ) = L -1 д(x ). Unfortunately, the operator L can in general not be inverted . he principle idea is therefore to search an operator G for which holds

LG = 1 ( . )

If it is possible to ind such an operator G, we obtain also a particular solution of eq. ( . ):

LA(x ) = (LG)д(x ) = L(Gд(x )) ⇒ A(x ) = Gд(x ) ( . )
Instead of searching an operator G for the inhomogeneity "1" as we did in eq. ( . ) for our demonstration, it turns out to be of more general use to consider a point-source-like inhomogeneity deined by a Dirac delta function δ (xx ′ )

LG

(x, x ′ ) = δ (x -x ′ ) ( . )
Note that in general, the Green's function G deined by eq. ( .) is not only dependent on the parameter of the diferential equation (here x), but also on the position of the inhomogeneity x ′ . Multiplication with the original inhomogeneity and integration of eq. ( . ) leads to

∫ LG (x, x ′ )д(x )dx = ∫ δ (x -x ′ )д(x )dx = д(x ) = LA(x ) ( . )
Making use of the linearity of L we inally have:

A(x ) = ∫ G (x, x ′ )д(x )dx ( . )
hus we solved the diferential equation for arbitrary inhomogeneities д(x ), provided that G can be found from eq. ( . ). Note that we assumed here that L can be pulled out of the integral in eq. ( . ).

. . Green's Function for the Electromagnetic Wave Equation

Let's write again the wave equation for the electric ield (eq. ( .))

(∆ + k 2 )E = - 1 ϵ 0 ϵ r ( k 2 + ∇∇ ) P ( . )
By assuming time-harmonic ields, we could eliminate the time-derivatives in Maxwell's equations which rendered eq. ( . ) to the form of a Helmholtz equation: ) or the Method of Green's functions is simply much easier to employ or yields a more general solution

(∆ + k 2 ) A(x ) = д(x ) ( .
As depicted in section . . , the associated Green's function G 0 is deined by considering a Dirac function as inhomogeneity:

(∆ + k 2 ) G 0 (x, x ′ ) = δ (x -x ′ ). ( . )
From this deinition, G 0 is found to be

G 0 (r, r ′ ) = 1 4π • e ± ik |r-r ′ | |r -r ′ | = e ± ik R 4πR . ( . )
In the later equation, we replaced the parameter x by the distance R = |R| = |rr ′ | between source point r ′ and observation position r. For a detailed derivation of eq. ( . ) see for example [ , chapter . ] or [ , chapter . ]. he scalar Green's Function for the wave equation (equation ( .)) corresponds to an incoming (minus sign) or outgoing (plus sign) spherical wave. Ater equation ( . ), solutions of the wave equation can be writen as an integral over this scalar Green's function. his is equivalent to a superposition of spherical waves and thus identical to the Huygens-Fresnel principle.

. . Dyadic Green's Function

An electric dipole oscillating in X direction will in general induce an electric ield with x, y and z components. As a consequence, the scalar Green's function (eq ( . )) is not fully suicient to develop solutions of the wave equation. We therefore need to extend the scalar Green's function to a notation that corresponds to the vectorial character of the ields. Following [ , chapter . ], we can deine a Green's function for each component of the electric ield

(∆ + k 2 ) G x (r, r ′ , ω) = n x • δ (r -r ′ ) ( . )
where G x is a vector composed of scalar Green's Functions and n x is the unit vector in X direction. By doing the same for the Y and Z direction and the according components of the electric polarization, we can write

(∆ + k 2 ) G dyad (r, r ′ , ω) = I • δ (r -r ′ ) ( . )
with the unit tensor I. G dyad (in bold type) is a tensor with 3 × 3 components (because we are dealing with three-dimensional ields) and is called a Green Dyad, Green tensor or Dyadic Green's function. Dyadic Green's functions are a tight notation for N N -dimensional Green's functions.

In the following, we will deine the Dyadic Green's function slightly diferently. he concept however is identical to the here presented description.

. Green Dyadic Method

Ater having presented the theoretical basis of electrodynamics and a short introduction to Green's formalism in the previous section, we now want to explicitly solve the wave equation for an arbitrary object placed in a homogeneous environment. For simplicity, we continue considering monochromatic (i.e. time-harmonic) waves propagating in linear, isotropic, homogeneous and non-magnetic media.

We will start with the derivation of the "Lippmann-Schwinger equation", which deines the self-consistent problem associated to the depicted coniguration. We will develop the explicit form of Green's Dyad for a homogeneous environment and will subsequently present a method for the numerical resolution of the optical Lippmann-Schwinger equation. he generic term for the resolution of the wave equation by means of Green Dyadic functions is, for obvious reasons, Green Dyadic Method.

. . Lippmann-Schwinger Equation

By deining two operators (following the way of proceeding of Girard [ ])

A = ∆ + k 2 B = - 1 ϵ r ( k 2 + ∇∇ ) ( . )
we can write the wave equation for the electric ield (eq. ( .)) in a more compact form

A E(r, ω) = 1 ϵ 0 B •P. ( . )
We now apply the concept of Green's functions (see section . . )

A G 0 (r, r ′ , ω) = 1 ϵ 0 B δ (r -r ′ ). ( . )
We formally make use of the invertibility of the Laplacian [ , vol. , "elliptic operators"] and write

G 0 (r, r ′ , ω) = 1 ϵ 0 A -1 B δ (r -r ′ ). ( . )
By comparing the later with the particular solution of equation ( . ), we get

E p (r, ω) = 1 ϵ 0 A -1 B •P = 1 ϵ 0 A -1 ∫ B •P(r ′ , ω)δ (r -r ′ )dr ′ = 1 ϵ 0 ∫ G 0 (r, r ′ , ω) • P(r ′ , ω)dr ′ . ( . )
For the general solution of the electric ield, we have to add the solution E 0 of the homogeneous wave equation (in absence of any polarizing material, i.e. with inite electric susceptibility). Usually this will be the incident ield -or in other words, the exciting ield. We get

E(r, ω) = E 0 (r, ω) + 1 ϵ 0 ∫ G 0 (r, r ′ , ω) • P(r ′ , ω)dr ′ . ( . )
his equation signiies a remarkable result: Provided we have an expression for G 0 we now know the emited electric ield at every position in space for arbitrary polarization densities.

If we recall the linear approximation P = ϵ 0 χ E of the polarization as function of the electric ield which we introduced in section . . , we can inally write for linear media

E(r, ω) = E 0 (r, ω) + ∫ G 0 (r, r ′ , ω) • χ E(r ′ , ω)dr ′ ( . )
where the integration is performed over the "source region", which is the volume where material exists with an electric susceptibility other than that of vacuum, i.e. χ 0. Equation ( . ) is the vectorial Lippmann-Schwinger equation for the electric ield -a widely used equation in quantum mechanical scatering theory . uantum mechanics shares many formal ideas with optics -as one example, we remind of the close relation between particle wave functions and electromagnetic waves -so this analogy does not surprise too much.

We note that in a homogeneous and isotropic environment, the electric susceptibility of by themselves (piecewise) isotropic and homogeneous objects placed in this environment can be generalized very easily using their relative electric permitivities

χ rel. (r, ω) =      ϵ r,mat. (r, ω) -ϵ r,env. (ω)
for r inside the object(s) 0 for r in the environment

. . Field Susceptibility for a Homogeneous Environment

For the explicit solution of the Lippmann-Schwinger equation ( . ), we need to ind an analytical expression for the Dyadic Green's function

G 0 (r, r ′ , ω) = 1 ϵ 0 A -1 B δ (r -r ′ ). ( . )
With the scalar Green's function G 0 deined by the Helmholtz equation (see section . . )

A •G 0 (r, r ′ , ω) = δ (r -r ′ ) ( . )
we can write

G 0 (r, r ′ , ω) = A -1 δ (r -r ′ ). ( . )
Multiplication with B yields

B •G 0 (r, r ′ , ω) = B • A -1 δ (r -r ′ ) = A -1 • B δ (r -r ′ ) ( . )
where we used the commutability of partial diferentiation of continuous functions in the last step [ , chapter . ].

Comparison with eq. ( . ) and using the outgoing variant of the scalar Green's function (plus sign in eq. ( .)) leads us to the relation between the scalar and the Dyadic Green's function and To be precise: uantum mechanics uses it's scalar counterpart, describing probability densities for particle positions with that to the explicit form of the later

G 0 (r, r ′ , ω) = 1 ϵ 0 B •G 0 (r, r ′ , ω) = 1 ϵ 0 B • e +ik R 4πR = 1 4πϵ 0 ϵ r ( -k 2 T 1 (R) -ikT 2 (R) + T 3 (R) ) e ik R ( . )
where we used again the abbreviations R = rr ′ and R = |R|. In analogy to related literature [ , , ], we introduced the three tensors

T 1 (R) = RR -IR 2 R 3 ( . ) T 2 (R) = 3RR -IR 2 R 4 ( . ) T 3 (R) = 3RR -IR 2 R 5 ( . )
where RR is the tensor-dot-product of the two vectors. Note that T 1 describes farield efects while T 2 and T 3 account for the nearield with (T 2 ) and without retardation (T 3 -quasistatic approximation, see section . . ). he Green's Dyad G 0 is also referred to as the ield susceptibility, because it can be seen as a generalization of the electric susceptibility. If we multiply G 0 (r, r ′ , ω) with a dipole p at r ′ the result is the ield at position r, emited by this dipole. his is also why G 0 is furthermore called a propagator -it mathematically propagates the electric ield of a source into free space.

. . . Objects in Multi-Layer Environments he above derived ield susceptibility G 0 describes polarizing material in a homogeneous environment. One of the main advantages of Green's Dyadic Method is the possibility to easily add analytically solvable constraints to the observation system like for example a substrate (such as illustrated in ig. . ). For doing so, we can make use of the required linearity of G 0 and simply add the Green's Dyadic function describing the inluence of additional boundaries like a substrate

G tot. = G 0 + G substrate ( . )
Such a surface Dyad can be found for instance using the method of mirror charges. For details and descriptions of eicient computational methods, we refer to the works of Cai and Yu [ ] or Paulus et al. [ ] where also a generalization to multi-layered systems is presented.

. . . Periodic Structures

In the same manner like multi-layered environments, periodically repeated structures can be treated: By including a Bloch periodicity in the Ansatz for the electric ield, a Dyadic Green's function can be derived that correctly accounts for interference efects from a two-dimensional in terms of Physics, the linearity of an operator describes the superposition principle array made of an elementary computation cell [ -]. he GDM is therefore also a powerful tool in the design and simulation of metasurfaces.

. . . Two-Dimensional Problems

Using appropriate Green's functions, also two-dimensional problems can easily be treated, i.e. ininitely long structures with arbitrary cross-sections [ , ]. his technique is useful as a mode solver for waveguides [ ]. Also particles with very high aspect-ratios like silicon nanowires can be approximated using the GDM-2D technique with very rapid convergence. his will be used later in this thesis.

. . Volume Discretization

For arbitrarily shaped objects, the integral in the Lippmann-Schwinger equation ( . ) can generally not be solved analytically. In the following we describe a numerical approach for its solution which requires the transition from the integral to a sum over inite size volume elements (see also [ ]):

E(r i , ω) = E 0 (r i , ω) + χ (ω) N ∑ j=1 G tot. (r i , r j , ω) • E(r j , ω) • V cell ( . )
where we discretized the nano-object using N cubic volume elements as illustrated in igure . , with side length d and thus V cell = d 3 . For reasons of clarity the dependency on the frequency ω will be omited in the following. We can rewrite eq. ( . ) as follows

E 0 (r i ) = E(r i ) -χ N ∑ j=1 G tot. (r i , r j ) • E(r j ) • V cell = N ∑ j=1 ( δ i j I -χV cell • G tot. (r i , r j ) ) • E(r j ) ( . )
where δ i j is the Kronecker delta and I the Cartesian unitary tensor.

Let us now deine two 3N -dimensional vectors containing the ensemble of all electric ield vectors in the discretized nano-object E 0,obj. = ( E 0,x (r 1 ), E 0,y (r 1 ), E 0,z (r 1 ), E 0,x (r 2 ), . . . , . . . , E 0,z (r N ) ) ( . )

E obj. = ( E x (r 1 ), E y (r 1 ), E z (r 1 ), E x (r 2 ), . . . , . . . , E z (r N ) ) . ( . )
Together with the 3N × 3N matrix M composed of 3 × 3 sub-matrices

M i j = δ i j I -χV cell G tot. (r i , r j ) ( . )
we obtain a coupled system of 3N linear equations

E 0,obj. = M • E obj. . ( . )
If we are able to determine the inverse of the matrix M deined by eq. ( . ), we can calculate the ield E inside the structure for all possible incident ields E 0 (at frequency ω) by means of a simple matrix-vector multiplication:

E obj. = M -1 • E 0,obj. . ( . )
In the following, we will use the symbol K for the inverse matrix Finally, with equation ( . ), we can use the ield susceptibility with the ield inside the particle in order to calculate the total electric ield at any point outside the nanostructure.

K(ω) = M -1 (ω) ( 

. . . Renormalization of Greens Dyadic Function

When integrating the source region, we integrate scalar Green's functions of the form of spherical waves

f (r, r ′ ) = e ik |r-r ′ | |r -r ′ | . ( . )
Obviously, this function diverges if r = r ′ , which occurs when the ield of a point dipole pδ (r-r ′ ) is being evaluated at the dipole's position r ′ . As a consequence, in order to remove this singularity we need to apply a regularization scheme when integrating the polarization distribution in equation ( . ) over the volume of its extension [ ]. For a three dimensional cubic mesh, a simple renormalization rule for the free-space Green's Dyad is found [ , section . ] A hexagonal compact mesh in 3D can be regularized analogously using [ , section . ]

G cube 0 (r i , r i ) = -1 3ϵ r,env
G hex 0 (r i , r i ) = - √ 2 3ϵ r,env d 3 I ( . )
with d the stepsize of the volume discretization. While a cubic cell has a volume of V cell = d 3 , in the hexagonal compact case, the volume of a cell equals V cell = d 3 / √ 2 and also must be accordingly adapted in Eq. ( . ). Because it treats the ield of a dipole at the location of the dipole itself, the sub-matrix M ii is also called "self-term".

he choice of an appropriate mesh can be crucial for the convergence of the method. When curved structures like wires of circular section are modeled, a hexagonal mesh should usually be preferred. On the other hand, for structures with lat surfaces and normal angles cubic meshing yields beter results. Figure . a shows a pathological comparison of scatering spectra for a plane-wave excited silicon nanowire of diameter D = 60 nm, discretized using cubic and hexagonal meshing with equal nominal stepsize (8 nm). Cross-sections of the wire structure models are shown in igures . b and . c.

We note that a regularization method for inite tetrahedral volume elements of variable size and shape has been proposed by Kotmann and Martin [ ].

. . . Paraxial Fields

We now have developed a mathematical scheme to solve the wave-equation for time-harmonic, monochromatic ields. For any incident ield -which is what corresponds to the homogeneous solution E 0 (r, t ) of the wave-equation -we are able to calculate the electric ield distribution inside an arbitrary nano-particle. In order to entirely simulate optical efects in nanoscale structures we need to describe the incident electric ield. c) is in the center of the plots. X -direction is the horizontal axis along which the light is linearly polarized. he vertical direction corresponds to the Z -axis with incidence along -Z .

k 0 -E 0 E 0 (a) Plane Wave k 0 -E 0 E 0 (b) Focused Plane Wave k 0 -E 0 E 0 (c) Paraxial Gaussian
In addition to monochromaticity and time harmonicity, it is oten convenient in numerical simulations to consider ields that propagate uniformly in one single direction only. Such ields are called paraxial.

Plane Wave he probably most simple representative is a plane wave, i.e. a wave that has uniform ields on all planes perpendicular to its propagation vector k 0 , as shown in igure . b. Using a complex amplitude (see Eq. ( .)), it writes:

E 0 (r, t ) = E 0 e i(k 0 r-ωt ) ( . )
Plane waves have interesting physical properties which makes them also particularly convenient for calculations. If we insert equation ( . ) in Maxwell's equation for the curl of the electric ield (Eq. ( . b)) it follows that

B 0 = k 0 ω ( k 0 k 0 × E 0 ) ( . )
which means

|B 0 | = 1 c |E 0 |. ( . )
Plane waves waves are obviously transverse with E ⊥ B ⊥ k 0 as illustrated in igure . and a relation between their amplitudes exists. his is a good approximation in the far-ield, at large distances from any discontinuities (like polarizable particles) of the homogeneous environment. Also, in many cases the assumption of plane waves for the incident light on a nano-particle is a suiciently good approximation. Unfocused light from a source located far from the observation position can be usually described using plane waves. his may be for example sunlight on the surface of the earth or light focused by a microscope, where the focal spot is large compared to the examined sample.

However, in situations where the focal spot becomes smaller than the observed area, planewaves are oten no longer adequate to describe the illumination. his is the case for example when doing raster-scan experiments with a tightly focused beam on larger nanoparticles (see section . . . ).

Focused Plane Wave A plane wave with a Gaussian intensity proile may oten be suicient to model efects introduced by focusing optics, as illustrated in igure . b. A focused plane wave in Z -direction (k 0 ∥ e z ) has the form

E 0 (r, t ) = E 0 e i(k 0 r-ωt ) • exp (x -x 0 ) 2 + (y -y 0 ) 2 2w 2 spot ( . )
where w spot is the width of the focused beam and the focal axis is at (x 0 , y 0 ). he full width at half maximum (FWHM) can be calculated from w spot using

w FWHM = w spot • 2 √ 2 ln 2. ( . )
his is in many cases a good approximation for modeling experiments with focused beams.

Paraxial Gaussian Beam Oten, lasers are used as sources of monochromatic, coherent light with high intensity. Light emited from a laser-cavity is however not propagating like a plane wave, but rather as a Gaussian beam (see igure . c). As the intensity proile difers signiicantly from the focused planewave, the use of a model for Gaussian beams may become necessaryparticularly in larger objects, where the curved intensity proile of such a beam induces important ield gradients along the propagation direction. A popular approximation to a real Gaussian beam is the so-called paraxial approximation, where all k-vectors are parallel to one single propagation direction. It can be calculated using the following formula (propagation along Z -axis)

E 0 (r, t ) = E 0 w 0 w (z) exp ( -r 2 w (z) 2
) exp

( -i ( ωt + k ( z + r 2 2R(z) ) -ζ (z) )) ( . )
with the beam width or "waist" w 0 and the squared distance to the beam axis r 2 = ∆x 2 + ∆y 2 .

∆x, ∆y are the distances to the beam axis in X and Y direction, respectively. In equation ( . ) we introduced furthermore the z-dependent beam waist

w (z) = w 0 1 + zλ πw 2 0 2 ( . )
the radius of curvature

R(z) = z 1 + πw 2 0 zλ 2 ( . )
and the Gouy phase which is a result of the shorter path along the curvature close to the waist, compared to the path a plane wave would travel by continuing on a straight line [ ].

ζ (z) = arctan zλ πw 2 0 ( . ) k 0 -E 0 E 0 ( 
Finally we note that, as the name suggests, the wavevectors of all paraxial ields are always parallel to one speciic direction (we generally consider propagation along the Z direction). Effects that rely on the presence of k-vectors in multiple directions can therefore not be described by a paraxial ield. Examples where this approximation may break down are coupling to guided modes with focused ields [ ] or the rigorous description of scatering occurring in dark-ield microscopy [ ].

. . . Tight Focus Correction of the Paraxial Gaussian

Under strong focus, i.e. with large beam curvatures 1/R(z) close to the focal point, the paraxial approximation of a Gaussian beam becomes inaccurate. In particular in the focal region, Maxwell's equation divE = 0 (assuming no free charges) is not being satisied any longer and a correction is required. Assuming a ield propagating along the Z -direction (and therefore E 0,z = 0 in the paraxial approximation), we get by integration of eq. ( . a)

E 0,z = - ∫ ( ∂ E 0,x ∂x + ∂ E 0,y ∂y ) dz. ( . )
With the deinition of the paraxial Gaussian ield we ind

E 0,z (x, y, z) = -2i kw (z) 2 • ( ∆x E 0,x + ∆y E 0,y ) . ( . )
Here, ∆x and ∆y are the distances to the beam's propagation axis in X and Y direction. his equation can easily be adapted for arbitrary k-vectors. In igure . a-b, the real part and the total intensity of the corrected Gaussian ield are ploted. Fig.

. c shows the intensity of the correction term, thus of the ield components along the axial k-vector. For tight focusing (NA 0.8 in the shown example), the correction term can approach around 5 -10% of the total ield amplitude.

For more details on the description of focused electromagnetic ields, see [ , chapter ].

. . . Raster-Scan Simulations

Once the generalized propagator K is known, we can calculate the response of the system to arbitrary (monochromatic) exciting ields by means of a simple matrix-vector multiplication. his can be used to do raster-scan simulations at low numerical cost, by moving a focused incident beam step-by-step over the nano-object, while calculating and eventually post-processing the ield at each position [ ] (see also section . . . ).

.

. Resolution of the Inversion Problem

We saw in the previous section that the electromagnetic response of a nano-particle of arbitrary shape can be calculated by inversion of the matrix M, deined in Eq. ( . ). his inversion can be performed with standard numerical methods like LU-decomposition. An extensive explanation of LU-decomposition and details on its implementation can be found for example in [ , chapter . ]. We use the LU-implementation in the "SuperLU" library for direct inversion of M [ , ]. Another possibility to calculate the inverse for the particular case of the GDM is to use a sequence of Dyson's equations [ ]. A detailed description of the later algorithm can be found in [ , chapter . ]. An advantage of the Dyson's sequence is its very good parallelization capability, superior to parallelized LU-decomposition. However, LU inversion has a beter singlecore performance (see Fig. . b).

. . . Conjugate Gradients

If we have a closer look at the matrix M, we can make an interesting observation: While M is not exactly sparse , most of the entries have signiicantly smaller absolute values than very few large matrix elements. In 

       1 0 0 0 1 0 0 0 1        =        2 1 0 1 2 1 0 1 2        =        1 2 3 4 5 6 7 8 9        = .
( . )

M contains also phase-information and is therefore complex, hence we use the absolute values of the matrix elements for the population paterns. In addition, the maximum of the color-code in Fig.

. a is clipped to % of the maximum absolute value in the matrix to increase the contrast.

Clearly, the matrices contain very few entries with values of more than some % of the overall maximum and yet > 60 % of all elements are generally non-zero.

A sparse matrix consists of mostly zeros and very few non-zero entries It turns out, that such matrices are good candidates for iterative solving using so-called "Krylow-subspace methods". he most popular algorithm of this class is the conjugate gradients (CG) method and its derivations like biconjugate gradients (for non-symmetric problems) or complex CG [ ]. A detailed description of the method can be found in [ , chapter . ]. he main idea of these iterative methods is, that the inverse of the matrix is in many cases not actually required. For simulations that massively make use of the generalized propagator (like raster-scan simulations), the CG technique is therefore not the method of choice. It may be on the other hand an advantageous approach, if we search a solution for E that satisies

M • E = E 0 ( . )
for one single incident ield E 0 . During the CG-iterations, matrix-vector multiplications M • x are performed following a minimization scheme in which M • x converges eventually to E 0 . heoretically, for a N × N matrix CG converge to the exact solution ater N iterations and each iteration itself has a computational cost ∝ N 2 . In reality, the convergence is oten very rapid in the beginning, and a solution with suicient precision can be obtained ater very few iterations, yielding a total computational cost ∝ N 2 instead of a N 3 scaling for exact inversion for example with LU-decomposition. Indeed, we ind a N 3 -scaling for complete inversion by LU or Dyson's sequence and a N 2 dependence when using conjugate gradients (Fig . . . Preconditioning he speed of the convergence of conjugate gradients is crucially dependent on the condition of the matrix M and generally can be massively improved by doing a preconditioning step before starting the actual iterative scheme. Let's assume, A of the equation system

A • x = b ( . )
would be the identity matrix I. hen CG would have converged within the irst iteration. A possible approach for preconditioning is therefore to reshape the problem using a matrix

P A • (P • x) = b. ( . 
)
If P is a close approximation to A -1 , AP will be close to the identity I and the system would converge very quickly under conjugate gradients iterations. Eq. ( .) is called a rightpreconditioned system. Consequently, a good preconditioner for our problem is a close approximation to the inverse of M. Several algorithms exist to search pseudo-inverse matrices for preconditioning. A very popular one is the incomplete LU-decomposition (ILU) [ ] that scales with N 2 and which we use also in our implementation within the Green Dyadic method.

. . . Recycling of the Preconditioner

When calculating spectra using the GDM, the electric ield in a particle is calculated for a large number of closely spaced wavelengths, at each of which the matrix M is (incompletely) inverted.

Most oten, the electric ield distribution changes only marginally for slightly diferent wavelengths and so does the matrix M. Unfortunately, a very similar matrix is of litle use for exact calculations, but we have seen in the preceding section that an approximation to the exact inverse M -1 can be a good preconditioner P for CG. When calculating dense spectra (i.e. many points on the wavelength axis), we can use this fact and signiicantly accelerate the calculation with conjugate gradients by recycling the preconditioner matrix until a certain lower limit for the speedup factor is reached. In other words, we will be using the same P repeatedly for several consecutive wavelengths and only if the acceleration is below a speed-up limit, a new preconditioner is calculated and subsequently re-used for the following wavelengths. In Fig. . a the timing for the calculation of each wavelength is shown for the case of recycling (blue) and re-calculation (red line) of the preconditioner matrix. In the "recycling" case (re-calculation threshold was a minimum speedup-factor of 2), we see that the preconditioner is only calculated a total of 6 times for a spectrum of 100 wavelengths. Particularly at lower frequencies, the electric ield seems to change litle and the preconditioner remains a good approximation to M -1 over a large spectral range (only one recalculation between : (a) shows timings per wavelength for a CG-GDM simulation of a silicon nanowire with a stepsize of 10 nm and 50 nm diameter, consisting of ≈ 2000 dipoles. he preconditioner was either calculated for each wavelength (red) or recycled for multiple wavelengths until the resulting speedup dropped below a factor of 2. In (b) the total speedup for the calculation of the whole spectrum is ploted against the number of wavelengths in the spectrum.

≈ 750 nm and 1500 nm). As shown in Fig.

. b, this technique can divide the total calculation time by more then 2.

Another possible application when preconditioner recycling may be beneicial is in series of simulations with many very similar or slowly transformed nano-structures like antennas of gradually increasing size.

. . Comparison to other Numerical Methods

Other methods than the GDM can be used for solving electrodynamical problems in nano-optics. A widely used frequency domain solver is for example the open source sotware DDSCAT [ ], which implements a frequency domain technique formally equal to the GDM presented above, called the discrete dipole approximation (DDA). However, there exist two main diferences to GDM as employed throughout this work: First, the renormalization problem is circumvented by seting the self-terms to zero and including the corresponding contributions using a physical polarizability for each dipole, corresponding to the mesh geometry. Second, in the DDSCAT implementation of DDA, the matrix M DDSCAT is not stored in memory. he resolution of Eq. ( .) is done by conjugate gradients where the elements M DDSCAT,i j are computed in-time during the calculation of the vector-matrix products M DDSCAT •x. To speed up the process, an FFT-scheme to decrease the cost of these matrix-vector multiplications is used [ ]. A drawback is that without storing M, eicient preconditioning is very diicult. Convergence of the DDSCAT conjugate gradient iterative scheme is therefore relatively slow and only given for very ine discretization meshes, further slowing down the procedure due to large sizes of the coupled dipole matrix

M DDSCAT .
Maxwell's equations can be reformulated as a set of surface-integral equations. It is therefore possible to develop a similar formalism as the above explained volume integral method in which only the surfaces of a nanostructure are discretized instead of the volume [ ]. A great advantage of this so-called boundary element method (BEM) is the smaller amount of discretization cells, which however is only valid if the ields inside the structure are not required. With MNPBEM a free BEM-implementation exists, developed by Hohenester and Trügler [ ].

Another very popular technique for electrodynamical simulations is the inite-diference timedomain (FDTD) method. As the name suggests, the calculation is performed in the time domain, which means that Maxwell's equations are iteratively evolved by small steps in time. An incoming wave travels time-step by time-step along the region of interest and when the pulse has passed or turn-on efects fully decayed (for plane wave illumination), the actual numerical measurement is performed. he obvious disadvantage is the additional dimension (time), that needs to be discretized. In particular for 3D problems, this usually leads to far higher computational costs compared to frequency domain simulations. A further disadvantage is that no tabulated permitivity data can be used which makes many dispersive media like metals diicult to be treated. he dispersion has to be taken from analytical models or the permitivity set constant. On the other hand, using short and therefore spectrally broad pulses, a whole spectrum can be obtained in a single simulation run. Frequency domain techniques require each wavelength to be calculated separately. A powerful open source implementation that comes with a rich toolbox is the sotware "MEEP" [ ]. For a general introduction on inite diferences methods, see for example [ , chapter ]. A review on diferent numerical techniques in nanooptics, including benchmarks, can be found in ref

.

. Post-Processing: Analysis of the GDM Results

Subsequent to the calculation of the excited ield inside the structure, this information is usually further processed to obtain experimentally accessible physical quantities.

. . . Electric Nearfield Outside the Nanostructure

With the ield susceptibility (Eq. ( .)), the ield induced at any point r outside at the exterior of the particle can be calculated from the electric polarization inside it:

E(r outside ) = E 0 (r outside ) + 1 ϵ 0 N cells ∑ i G 0 (r outside , r i ) • χV cell E(r i ) ( . )
where the sum is carried out over all N meshpoints at positions r i .

At the example of a silicon dimer, nearield maps 20 nm below the structure are shown for wavelengths at and of resonance in igure . a.

Note that also scanning near-ield optical microscopy (SNOM) signals can be calculated from GDM simulations. In this case, the presence of the scanning tip needs to be taken into account [ , ].

.

. . Magnetic Nearfield

An oscillating dipole emits a propagating electromagnetic wave with an electric and a magnetic component. Consequently, also a magnetic nearield is induced in the vicinity of electromagnetically excited media, even if the material is non-magnetic. Ater Faraday's induction law from Maxwell's equations, the magnetic ield can be obtained from the electric ield in the nanoparticle (Eq. ( . b)). For time-harmonic ields, we get

← x → ← y → λ = 600 nm 0 18 |E | 2 / |E 0 | 2 λ = 900 nm 0 4 |E | 2 / |E 0 | 2 ( 
B(r, ω) = ∇ × E(r, ω) iω ( . )
which can be solved numerically via inite diferentiation (see e.g. Fig. . ).

Alternatively, a propagator G HE [ ] can be used to obtain the magnetic ield outside the source region. In this way it is possible to calculate nearield maps or ield enhancement spectra for the magnetic ield (see for instance . . . Extinction Spectra from the Nearfield in a Nanostructure he linear response in the farield can be characterized by the scatered and absorbed light, which in sum is called the "extinction". Usually these values are given as cross sections σ scat. , σ abs. and σ ext. which have the unit of an area. he extinction and scatering cross sections can be calculated from the nearield in the discretized structure [ ]

σ ext = 2πn λ 0 • |E 0 | 2 N cells ∑ i=1 Im ( E * 0,i • P i ) ( . ) σ abs = 2πn λ 0 • |E 0 | 2 N cells ∑ i=1 ( Im ( P i • E * i ) - 2 3 k 3 |P i | 2 ) . ( . )
he scatering cross section inally is the diference of extinction and absorption

σ scat = σ ext -σ abs .
( . )

E i and P i are the ield and electric polarization at meshpoint i, respectively, induced by an excitation with a fundamental ield E 0,i . Complex conjugation is indicated with a superscript asterisk ( * ). Note that the prefactor of the above sums is k/|E 0 | 2 with the wavenumber in the source region k. he upper plot in igure . b shows spectra for a planewave excited silicon dimer calculated from the nearield.

. . . Farfield Patern of the Scatered Light he complex electric ield in the farield radiated from an arbitrary polarization distribution can be calculated using a corresponding Greens Dyad G f (assuming a dipolar emission from each of the N meshpoints):

E f (r j ) = N cells ∑ i G f (r i , r j ) • P(r i ) ( . )
Using the farield term T 1 (equation ( .)) we can ind the following Green's tensor for an oscillating dipole in vacuum (vacuum wavenumber k 0 )

G f,vac. (r, r 0 , ω) = k 2 0 exp(ik 0 R) R • exp ( -ik 0 sin(θ ) ( cos(ϕ) • x 0 + sin(ϕ) • y 0 ) ) exp ( -ik 0 cos(θ ) • z 0 ) •        1 -sin 2 (θ ) cos 2 (ϕ) -sin 2 (θ ) cos(ϕ) sin(ϕ) -sin(θ ) cos(θ ) cos(ϕ) -sin 2 (θ ) cos(ϕ) sin(ϕ) 1 -sin 2 (θ ) sin 2 (ϕ) -sin(θ ) cos(θ ) sin(ϕ) -sin(θ ) cos(θ ) cos(ϕ) -sin(θ ) cos(θ ) sin(ϕ) sin 2 (θ )        ( . )
where for convenience the observation point r in the farield was transformed to spherical coordinates (θ, ϕ, R) while the location of the source dipole r is deined in Cartesian coordinates (dipole at (x 0 , y 0 , z 0 )). Note that the presence of the illuminated nano-structure is fully taken into account also at the reemission, due to the self-consistent nature of the Green's formalism. Also a substrate can again be included by means of an according Dyadic Green's function. An analytic approximation for a farield-propagator to a layered system has been derived e.g. by Novotny [ ]. Making use of the superposition principle, the radiation of single dipoles using the propagator Eq. ( .) can be generalized to the total farield radiation of an ensemble of N dipole-emiters, as shown in equation ( . ).

he farield radiation patern in the (XZ )-plane is shown in igure . c for an incident planewave on the exemplary silicon dimer along the negative Z -direction. For λ = 600 nm (red), a strong anisotropic scatering in forward direction is observed, while of resonance (λ = 900 nm, blue) the scatering is more or less uni-directional. A drawback of the calculation of the spectra from the nearield-distribution as described in section . . . becomes obvious: hese spectra do not contain any information about the directionality of the scatering. Let us assume we would try to measure scatering from the example silicon dimer in backscatering geometry. We would ind a spectrum corresponding to the red dashed line ("BW scat. ") in the lower plot of Fig. . b, which difers signiicantly from the total scattering cross section (red solid line). Fortunately, information on directionality can be accessed using the farield-propagator and we can calculate scatering spectra by re-propagating the electric polarization of the structure to the farield at every wavelength of the spectrum. Hence, on the cost of additional computation time, the polarization of scatered light in the farield and its directionality can be revealed.

. Nonlinear Optics

Until now, we have dealt with linear optical phenomena, hence efects related to a response of mater to light that can be described in the context of the linear electric polarization as introduced in equation ( . a).

In the following we will give a short introduction to the basic concepts of nonlinear optics and put a particular focus on Second Harmonic Generation (SHG) from surfaces. We will present a technique to describe SHG within the framework of the Green Dyadic method, which can easily be extended to other nonlinear processes.

For a detailed introduction to nonlinear optics, we refer for example to reference [ ].

.

. Expansion of the Electric Polarization

As long as the excitation ields are weak compared to the latice potential of the media, optical phenomena can be explained by a linear response. We mentioned in section . . , that the electric polarization is the result of a Taylor expansion around E = 0, which is stopped ater the irst order term in the approximation of linear media. his resulted in the equation

P (t ) ≈ ϵ 0 χ E (t ) [ +O(E 2 ) ] ( . )
For simplicity, scalar values are given. he linear electric susceptibility in isotropic, homogeneous media is the constant factor χ = ϵ r -1. It relates the electric polarization of the medium to the electric ield. For non-isotropic media, the susceptibility χ is a tensor of rank 2, consisting of Fourier transforms from frequency to time-domain, if the medium is dispersive.

In the linear regime, the returning force acting on charges, oscillating around their nuclei at the frequency of illumination ω (see Fig. . a), is a linear function of the charge displacement relative to the nucleus and thus described by a harmonic potential, as depicted in the plots on the let of Fig. . . he nucleus, having a large mass compared to the electrons, is considered static. In reality, the potential is not harmonic (see examples in Fig. . center andright) and the linear approximation fails at suiciently high photon rates. In consequence, if a medium is excited by an oscillating ield of very high amplitude, the electron oscillations are becoming sensitive to the nonlinearity of the latice potential and new phenomena occur. A comparison of driven oscillations in harmonic and anharmonic potentials is shown in igure . a for diferent driving strengths: With increasing amplitude of the excitation ield, the oscillation in an anharmonic potential is more and more deviating from an ideal harmonic oscillator. hese deviations give rise to so-called nonlinear efects. hey are usually classiied according to the order of the nonlinearity in terms of the expansion of the electric polarization:

P i (t ) = ϵ 0 ∑ j χ (1)
i j E j (t ) ) which is oten writen in a compact form for the tensor products

+ ϵ 0 ∑ j,k χ (2) i jk E j (t )E k (t ) + ϵ 0 ∑ j,k,l χ (3) i jkl E j (t )E k (t )E l (t ) + . . . ( . 
P tot. = ϵ 0 χ (1) E Linear, =P (1) + ϵ 0 χ (2) E 2 . Order, =P (2) + ϵ 0 χ (3) E 3 . Order, =P (3) + . . . ( . )
he susceptibilities χ (n) are tensors of rank n + 1. For reasons of causality, in dispersive media they involve inverse Fourier transforms from frequency to time-domain to take account of the full electric ield evolution before the observation time t.

. . . Symmetric Potentials: Odd-Order Nonlinearities

Let us carry out some symmetry considerations at this point. he latice potential in the bulk of a material has the same symmetry as the crystal latice. It follows conclusively that media with an inversion-symmetric latice like elemental fcc-semiconductors (e.g. silicon) have also a symmetric latice potential as depicted in the center column of Fig. . . For symmetry reasons, even-order terms of the electric polarization like P (2) vanish in symmetric potentials: .

-P (2) = ϵ 0 χ (2) ( -E ) 2 = ϵ 0 χ (2) E 2 = P (2) ⇒ χ (2) ! = 0.

. Second Harmonic Generation

In the following we will focus on second harmonic generation (SHG). SHG is the coherent upconversion of two photons of a fundamental frequency ω into one photon at twice the incident frequency ω SHG = 2ω (i.e. half wavelength λ SHG = λ/2), as illustrated in igure . b. As indicated in this sketch, there are no real electronic states involved, the absorption and reemission happen instantaneously. .

. . Phase-matching

Harmonic generation is a coherent nonlinear process which means that a ixed phase-relation between input and output photons exist. Due to this phase relation, SHG is usually ineicient because the phase between second harmonic light generated at diferent positions in the crystal latice cause an overall destructive interference -the phase is determined by the fundamental ield and therefore has a value of π at the harmonic wavelength. So-called phase-matching between the incident and the harmonic waves is required for eicient SHG from bulk crystals (see also [ , chapter ]). Among other possible techniques, birefringence in crystals can be used to obtain a phase-condition for constructive SHG interference: he refractive index diference for light propagating at a certain angle with respect to the incident beam (usually along the ordinary and extraordinary axes) is exploited, which was the irst successfully employed method for phase-matching [ ].

When treating sub-wavelength small nanoparticles it is usually not necessary to consider phase-matching, because all harmonic generation processes occur in a very limited volume such that interference between the diferent source-positions has no great inluence on the total emission.

. . . Surface SHG he most commonly used plasmonic particles, as well as many high refractive-index dielectric nano-structures are made from centrosymmetric materials (typical materials are e.g. gold or silver and silicon, respectively). We showed above that second-order efects in centrosymmetric crystals are forbidden as a result of symmetry.

To relax this constraint, locally the latice symmetry can be broken for example by strain applied on one crystal direction [ , ] or by strong ield gradients [ ]. Inversion symmetry is also broken at surfaces and interfaces where even-order nonlinear efects become possible. his surface-SHG has been irst observed by Terhune et al. [ ] very soon ater the discovery of optical harmonic generation [ ]. Because of its local origin at surfaces and interfaces, this form of SHG is oten used for surface characterization [ , , , , -] and has been subject of intense research ever since its discovery [ -].

he second order surface susceptibility tensor has seven non-zero elements of which only three components are independent on isotropic surfaces (C ∞,ν -symmetry) [ ]:

χ (2) ⊥⊥⊥ χ (2) ⊥ ∥ ∥ ≡ χ (2) ⊥ ∥ 1 ∥ 1 = χ (2) ⊥ ∥ 2 ∥ 2 χ (2) ∥ ∥⊥ ≡ χ (2) ∥ 1 ∥ 1 ⊥ = χ (2) ∥ 2 ∥ 2 ⊥ = χ (2) ∥ 1 ⊥ ∥ 1 = χ (2) ∥ 2 ⊥ ∥ 2 ( . )
Subscripts ∥ 1 and ∥ 2 indicate two perpendicular directions tangential on the surface, ⊥ the direction along the surface normal. he second order electric polarization of an isotropic surface then consists of three elements

P (2) sf = P (2) ⊥⊥⊥ + P (2) ⊥ ∥ ∥ + P (2) ∥ ∥⊥ ( . )
that write

P (2) ⊥⊥⊥ = χ (2) ⊥⊥⊥ [E 2 ⊥ ] e ⊥ ( . a) P (2) ⊥ ∥ ∥ = χ (2) ⊥ ∥ ∥ [E 2 ∥ ] e ⊥ ( . b) P (2) ∥ ∥⊥ = χ (2) ∥ ∥⊥ [E ∥ E ⊥ ] e ∥ . ( . 

c)

In the quasistatic approximation, the fundamental ield inside a nano-structure (and at the surface) is considered constant and proportional to the exciting ield. For very small particles compared to the incident ield's wavelength, this approximation simpliies the problem and allows an analytical treatment of surface SHG [ ]. Such theories have been developed for various problems like SHG from ininitely long, thin cylindrical nanowires [ , ] or from small nanospheres [ , ]. In this context arrays of small nano-spheres [ ] as well as individual nanospheres [ ] were investigated with extensions to tightly focused excitation. Further analytical work has been done, among others, on SHG from inite length cylindrical nanoparticles [ ], metal tips [ ] or small nanostructures of arbitrary shape [ ].

Beyond the quasistatic approximation, extensions for the analytical Mie theory have been developed, e.g. for the case of SHG from ininitely long cylinders [ ] or from metal spheres [ ]. In igure . , an example of second order nonlinear surface polarization is shown, calculated by Mie theory for a silicon nanowire of 100 nm diameter. uiver-plots of the nonlinear polarization are compared to the fundamental electric ield intensity inside the nanowire. A planewave is incident at normal angle from the top, polarized perpendicularly ( . a, "TE") and parallel ( . b, "TM") to the NW axis. While for TM illumination all terms except the P (2) ⊥ ∥ ∥ contribution vanish due to the cylindrical geometry, in the TE case all three contributions are generally non-zero (see for details section . . ). For TE excitation

P (2) ⊥⊥⊥ is shown because in silicon χ (2)
⊥⊥⊥ is supposed to be the largest component of the second order susceptibility tensor [ ].

Likewise, χ (2) ⊥⊥⊥ is the largest component of the second order susceptibility tensor in gold and silver [ , ], hence P (2) ⊥⊥⊥ usually dominates the second harmonic generation process and oten only this polarization component is taken into account

[ , , ]. If P (2)
⊥⊥⊥ is weak due to geometrical reasons, also other surface terms can contribute signiicantly to the overall second harmonic signal and need to be considered [ ].

he above cited theoretical works treat objects of high symmetry with analytical descriptions. he general case of surface SHG from particles of arbitrary shape is most conveniently treated by numerical means. An approach using the GDM will be given later in this section.

. . . Bulk Contributions to Surface-SHG

Although SHG is forbidden from the bulk of inversion symmetric crystals (see section . . . ), a second order polarization can occur from higher order terms like dipolar magnetic or quadrupolar electric components. he irst non-vanishing order of these contributions, that can be expressed in terms of ield gradients of the fundamental ield, comprises four source terms [ , , ]:

P (2) sf,bulk = P (2) γ + P (2) β + P (2) δ + P (2) ζ ( . )
where

P (2) γ = γ ∇[E 2 ] ( . a) P (2) β = β E[∇ • E] ( . b) P (2) δ = δ [E • ∇]E ( . c) P (2) ζ ,i = ζ E i ∇ i E i . ( . d)
Here, γ , β, δ and ζ are phenomenological susceptibility components that can be expressed in terms of χ (2) elements [ , section . ]. In many cases, these bulk contributions can be neglected. For instance under planewave illumination in the quasistatic approximation, the ields are constant and therefore P (2) sf,bulk = 0. However, if resonant modes like LSP [ ] or leaky mode resonances [ ] exist, or if an incident beam is tightly focused onto the sample [ ], ield gradients arise and bulk contributions may become signiicant. It has been shown, that bulk contributions in centrosymmetric media can indeed become important enough to interfere with the local surface contributions to SHG [ , , , ]. In this context, the so-called non-separable or surface-like γ -bulk contribution [ ] can be writen as a superposition of local surface contributions. However, employing suitable geometrical conditions allows to distinguish certain non-local bulk contributions from the local surface SHG using appropriate polarization selection rules [ ].

. . SHG in the GDM

We will describe in the following how surface SHG from nano-particles can be calculated in the framework of the Green Dyadic method (see Sec. . ).

. . . Second Harmonic Surface Nonlinear Polarization he most signiicant contribution to SHG from centrosymmetric nano-structures is usually a local nonlinear polarization of the particle's surface (see above). In order to calculate surface SHG, the ield inside the particle excited by the fundamental incident beam is determined in a irst step using the GDM (explained in detail in the previous section).

Subsequently, the surface of the nano-structure has to be identiied and a geometrical basis of one normal and two tangential unit-vectors has to be established at each point of the surface. In order to be applicable for particles of arbitrary shape, this can be done by counting the number of next neighbors N nn of each meshpoint, either by a bruteforce method, or using sorting strategies like the so-called "kd-tree" technique [ ]. he later approach can improve the eiciency particularly in large systems with many meshpoints. An element of a cubic latice is on the surface if, within the radius of one discretization step, it has less than the maximum possible N nn, bulk = 6 neighbors on a three dimensional grid or N nn, bulk, 2D = 4 on a two dimensional grid.

Once the surface meshpoints have been determined, unit vectors normal on the surface can be determined from the relative positions of the next neighbors. he unit-vectors pointing from each neighbor towards the surface element are added and the total vector is normalized, resulting in a perpendicular unit vector. his technique is illustrated in igure . b (blue highlighted region). Using only the next neighbors limits the angles of surface vectors to multiples of 45 • , which restricts the precision of the result particularly on curved surfaces. To improve the normal surface vectors on curved surfaces, a larger volume (2D: area) around the surface element can be used for the vector calculation. he green highlighted regions in igure . show an example, where all elements in a radius of R sf.-vec. = 3 stepsizes were taken into account. he later technique however may be disadvantageous at sharp angles between lat surfaces, where some smoothing of the edge will occur for large R sf.-vec. . he choice of R sf.-vec. should therefore be some small value like ≈ 2 -3 stepsizes.

For a homogeneous and isotropic surface, the second order susceptibility components are identical for all tangential directions (Eq. ( . )). he unitary tangential surface vectors can then be deined as two arbitrary orthogonal vectors, perpendicular to the normal surface vector e ⊥ . For convenience, the projection of the electric ield vector on the surface (at the considered surface position) can be taken ) which reduces the problem to only two orthogonal vectors e ⊥ and e ∥ with

e ⊥ ⊥ e ∥ 1 ⊥ e ∥ 2 ( . ) E(ω) (a) Fundamental Field R sf.-vec. = 1 • step R sf.-vec. = 3 • step = | | (b) Calculating Surface Vectors e ⊥ R sf.-vec. = 1 • step R sf.-vec. = 3 • step e ⊥ e (c) Surface Vectors R sf.-vec. = 1 • step R sf.-vec. = 3 • step e ⊥ E(ω) P ( 
E ∥ = E - ( E • e ⊥ ) e ⊥ ( .
e ∥ = E ∥ |E ∥ | . ( . )
Once e ⊥ and e ∥ are known, the nonlinear polarizations can be calculated by inserting them in equations ( . ), with

E ⊥ = E • e ⊥ E ∥ = E • e ∥ .
( . )

On the example of a coarsely discretized, two dimensional (ininitely long) half-cylinder of radius 

r cyl =

. . . Bulk Contributions to Surface SHG

In order to be applicable in the most general possible way, the bulk contributions to surface SHGwhich arise from ield gradients -are calculated numerically using inite diferences derivatives. We use in particular center-diferentiation [ , chapter . ]:

∂ f (x ) ∂x = lim ϵ →0 f (x + ϵ ) -f (x -ϵ ) 2ϵ ≈ f (x + ∆x ) -f (x -∆x ) 2∆x ( . )
In the case of the GDM, ∆x will usually be equal to the stepsize used for the discretization of the particle. Accordingly, this approximation will become worse for large discretization steps, in addition to the loss of precision already occurring at the calculation of the fundamental ield.

As an example, intensity maps of P (2) γ for a silicon nanowire of diameter D = 100 nm, calculated by numerical derivatives of ields from Mie theory, are shown in igure . (right plots).

. . . Self-Consistent Nonlinear Polarization

In the following, the ield due to the excitation at λ 0 will be referred to as the fundamental ield, the ield due to the second harmonic generation at λ 0 /2 as the harmonic ield. he nonlinear polarizations calculated following sections . . . and . . . take into account the optical properties of the particle only at the fundamental wavelength. A possible resonant response of the structure at the harmonic wavelength is not considered in the calculation, which may signiicantly boost or -in the case of an absorption-resonance -reduce the efective nonlinear efect. he presence of the structure should therefore be rigorously taken into account also at the harmonic ield.

Approaches based on Green's Dyadic functions that consider the presence of the nanostructure at the harmonic ield have been proposed in the modeling of nearield microscopy [ -]. We will describe a very similar formalism, utilizing the techniques introduced in section .

So far, we calculate the fundamental ield in the structure by solving the optical Lippmann-Schwinger equation (Eq. ( .))

E(r, ω) = E 0 (r, ω) + ∫ G 0 (r, r ′ , ω) • χ E(r ′ , ω)dr ′ ( . )
From this linear response we calculated the nonlinear surface polarizations of centrosymmetric SHG. With their frequency dependencies they write

P (2) ⊥⊥⊥ (r, 2ω) = χ (2) ⊥⊥⊥ [ E ⊥ (r, ω) 2 ] e ⊥ P (2) ⊥ ∥ ∥ (r, 2ω) = χ (2) ⊥ ∥ ∥ [ E ∥ (r, ω) 2 ] e ⊥ P (2) ∥ ∥⊥ (r, 2ω) = χ (2) ∥ ∥⊥ [E ∥ (r, ω)E ⊥ (r, ω)] e ∥ ( . )
Note, that the bulk contributions to surface SHG with their expressions in Eqs. ( . ) can be treated in the same way as the local surface components.

To rigorously take into account the inluence of the particle on the nonlinear ield, we need to calculate the self-consistent ield induced in the particle by the nonlinear polarization. In a irst step we consider the nonlinear polarizations P (2) (r, 2ω) as the source of an "efective incident ield" at the harmonic frequency. We calculate the ield within the nanostructure induced by the nonlinear polarization using the ield susceptibility at the harmonic frequency (Eq. ( .)). At the example of the χ (2) ⊥⊥⊥ -contribution this yields

E (2) 0,⊥⊥⊥ (r, 2ω) = 1 ϵ 0 ∫ V G 0 (r, r ′ , 2ω)P (2) ⊥⊥⊥ (r, 2ω)dr ′ ( . )
with the ield susceptibility tensor G 0 at the harmonic frequency 2ω.

We assume that there is no external incident ield E 0 (2ω) at the harmonic wavelength and hence E (2) 0,⊥⊥⊥ is the only driving ield at 2ω. In a second step, we propagate the "efective incident ield" inside the particle using the generalized propagator K (Eq. ( . )) at the harmonic frequency:

E (2) sc,⊥⊥⊥ (r, 2ω) = ∫ V K(r, r ′ , 2ω)E (2) 0,⊥⊥⊥ (r ′ , 2ω)dr ′ . ( . )
he subscript "sc" indicates self-consistent ields. Finally we obtain the self-consistent nonlinear polarization by a multiplication with the linear susceptibility at the harmonic frequency

P (2) sc,⊥⊥⊥ (r, 2ω) = χ (2ω) • E (2) sc,⊥⊥⊥ (r, 2ω) ( . )
We see that the generalized propagator has to be calculated at both, the fundamental and the harmonic wavelength. As a consequence, self-consistent SHG is twice as expensive in terms of computational cost, compared to the calculation of only the non-linear polarization. A step-bystep illustration of SHG calculation is shown in igure . . From this linear response, the nonlinear surface polarization (P (2) ⊥⊥⊥ in the shown example) is calculated by irst selecting the meshpoints at the particle's surface and determining the surface normal unit vectors (e). Using these, the nonlinear polarization is calculated from the fundamental ield at the surface (f) and selfconsistently propagated using the ield susceptibility at the harmonic wavelength (g). Finally, the self-consistent nonlinear polarization can be propagated to the farield (h) in order to calculated for example polar plots of the SHG (i) captured by a given numerical aperture (the green solid angle in (h) denotes NA 0.8). he inset in (i) shows a sketch of the dimer orientation with respect to the polar plot.

his approach can be easily adapted to other nonlinear processes. A third harmonic nonlinear polarization for example can be calculated directly from the fundamental ield if a uniform χ (3) tensor in the bulk can be assumed. Using non-uniform χ (n) tensors would involve a slightly more complicated, yet straight-forward individual treatment of ield-vector components. he self-consistent propagation can be done for other nonlinear processes exactly in the same way as shown above. he only prerequisite is that a nonlinear electric polarization can be approximated from the fundamental ield.

As inal remark we note that the components of the nonlinear susceptibility tensor χ (2) are oten not known and then set = 1. In this case an absolute comparison of the diferent contributions to SHG is prohibited.

. . Examples

In the last section of this chapter, we will give some examples of SHG from nanoparticles of centrosymmetric media, calculated with the technique described above. In the following we will refer to the "simple" nonlinear polarization if the self-consistent re-propagation of P (2) has been omited, in contrast to the "self-consistent SHG" calculated using P (2) sc .

.

. . Surface Vectors

In a irst example, we compare the self-consistent SHG using P (2) sc,⊥⊥⊥ from ininitely long silicon nanowires in vacuum of squared (Fig. Stepsizes were d = 6.7 nm and d = 7.5 nm for the square and cylindrical wire, respectively. We calculated the normal surface vectors using diferent amounts of next neighbors (see Fig. ⊥⊥⊥ ) SHG calculation (dashed lines). he structure is placed in the origin, illumination is incident from the top.

We can observe, that for lat surfaces (squared wire), the calculation of the surface vectors seems satisfactory already using only the closest meshpoints, limiting the vector directions to multiples of 45 • . If a large amount of neighbors is taken into account, artiicial inclination of the vector close to the edges occurs, which impacts on the farield radiation patern. herefore, in the case of lat surfaces, not too large amounts of neighbors should be taken for surface SHG calculation. On the other hand, in geometries which imply round surfaces, this conditions seems to reverse: he irst-neighbor surface polarization is visually noncontinuous and results in signiicant backward-SHG. In all other cases (also in the squared wire), mainly forward-SHG is obtained, which has also been reported for plasmonic nano-particles [ ]. We conclude that at round surfaces it is important to approximate the surface normal by a higher precision than ±22.5 • , which is obtained by considering only next neighbors.

the diameter D squa. of the squared wire corresponds to the side-length of the square

(i) fundamental E (ii) 1 st neighbors (iii) + diagonal neighbors (vi) +2 nd neighbors (v) 100 closest cells P (2) ⊥⊥⊥ P (2) sc,⊥⊥⊥ (a) Surface SHG from Squared Silicon Nanowire (i) fundamental E (ii) 1 st neighbors (iii) + diagonal neighbors (vi) +2 nd neighbors (v) 100 closest cells P (2) ⊥⊥⊥ P (2) sc,⊥⊥⊥ (b) Surface SHG from Cylindrical Silicon Nanowire Figure . : P (2)
sc,⊥⊥⊥ is shown for an ininitely long nanowire (radius 55 nm) of squared crosssection in (a), and for a cylindrical wire (radius 70 nm) in (b). Incidence from the top, linearly polarized along X (⊥ wire axis), λ 0 = 800 nm. From let to right are shown the fundamental ield and

P (2)
sc,⊥⊥⊥ , calculated using 4, 8 or 12 next neighbors or all cells in an 11 × 11 square-steps large area ("100 closest cells"). Below the vector plots, radiation paterns are given for simple (P (2) ⊥⊥⊥ , dashed) and self-consistent (solid line) SHG calculation.

Finally, we notice that in this example the self-consistent calculation is not absolutely necessary. he farield radiation paterns are almost identical for the simple and the self-consistent second harmonic calculations.

. . . Self-Consistent SHG

As shown in Fig. . it seems that in most cases the additional numerical efort of self-consistent nonlinear ield calculation does not improve the numerical precision signiicantly.

We will therefore study self-consistent second-harmonic generation in comparison to using the "simple" nonlinear polarization on two more examples. ⊥⊥⊥ contribution to surface second harmonic generation for a 180 × 180 × 140 nm 3 silicon nano-block. (a) shows XY -projections of the nearield in (blue arrows) and 30 nm below the particle, X -polarized planewave incidence in -Z direction. Ploted areas are 400 × 400 nm 2 ). In (b) the linear scatering is compared to SHG intensity in the farield and second harmonic forward/backward emission ratio for simple (dashed) and self-consistent SHG calculation.

Silicon Nano-Cuboid

We start with SHG from a cuboidal silicon nano-block of dimensions 180×180×140 nm 3 (L×W × H ). In igure . a, the second order nonlinear nearield distribution is shown for a fundamental wavelength below (λ 1 ), on (λ 2 ) and above (λ 3 ) the TM 01 -like resonance. Fields in the structure (blue arrows) and the ield-intensity on a plane 30 nm below the particle are ploted for P (2) ⊥⊥⊥ (top row) and P (2) sc.,⊥⊥⊥ (botom row). he plots show XY -projections of the 3D structure, a planewave is incident from positive Z -direction, polarized along X . As before, the self-consistent calculation difers only marginally from the nonlinear polarization calculated from the fundamental ield.

If we have a look at the farield in Fig.

. b, the similarity between "simple" and self-consistent way of SHG calculation persists (dashed vs. solid blue line). For comparison, the scatering cross section σ scat. is ploted (red line) as well as the forward-to-backward (FW/BW) SHG directionality. Total SHG intensity as well as second harmonic forward scatering have a maximum at the fundamental resonance. he second harmonic resonance has a smaller linewidth compared to the fundamental spectrum, which is in agreement with the second order dependence on the ield amplitude. On resonance the FW/BW ratio has a maximum value of ≈ 3 while of resonance, the directionality is more or less uniform.

Gold Nano-Rod

In a second example, we have a closer look on a plasmonic particle, namely a gold nano-rod of 180 × 180 × 140 nm 3 (L ×W × H ) in size. Like above, the spectral nearield and farield response is shown in igure . . In this particular structure, P (2) -and P (2) sc.

-SHG (dashed and solid lines, respectively, in Fig. . b) deviate signiicantly within a certain spectral range close to the localized surface plasmon resonance at λ 1 ≈ 1000 nm. While the non-self-consistent SHG farield intensity follows the linear scatering (again with a smaller linewidth), the self-consistent calculation reveals a ⊥⊥⊥ contribution to surface second harmonic generation for a 240 × 50 × 50 nm 3 gold nanorod. (a) shows XY -projections of the nearield in (blue arrows) and 30 nm below the particle, X -polarized planewave incidence in -Z direction. Ploted areas are 400 × 400 nm 2 ). In (b) the linear scatering is compared to SHG intensity in the farield and second harmonic forward/backward emission ratio for simple (dashed) and self-consistent SHG calculation second maximum of the second harmonic around λ 2 = 1160 nm. Interestingly, this has no large inluence on the forward-to-backward scatering ratio for SHG.

Having a look at the nearield distributions at selected wavelengths (Fig.

. a), we see that when the excitation hits the plasmon resonance, P (2) and P (2) sc. have a very similar distribution. At the two other considered wavelengths λ 2 and λ 3 however, the self-consistent calculation reveals a signiicant linear response of the nanorod to the nonlinear polarization, which persists in the farield and can be detected in the form of a peak of SHG intensity and directionality (for λ 2 and λ 3 , respectively). However, the closer examination of this observation lies outside the scope of this thesis.

. . . Conclusions

In conclusion we presented a method to calculate and analyze surface second harmonic generation from arbitrary nano-particles of centrosymmetric materials like silicon or gold using the Green Dyadic method.

From several examples we could deduce, that the "simple" nonlinear polarization P (2) gives usually a good approximation to SHG i.e. it is oten not necessary to take into account the presence of the structure at the harmonic frequency. As predicted by the Lorentz reciprocity theorem [ , , ], the optical properties at the harmonic wavelength have a linear inluence on the total nonlinear scatering. his "self-consistent" contribution to the second order efects is opposed by a squared dependence on the fundamental ield [ , , ]. Hence we conclude that, if a resonance at the fundamental frequency exists, P (2) does not difer signiicantly from the self-consistent ield P (2) sc. . he expensive self-consistent computation of the nonlinear polarization is only necessary in particular cases with strong optical response at the harmonic In electrodynamics, reciprocity states for example that the gain of an antenna is universally describing the capability of reception as well as of emission frequency. However, it is oten diicult to judge in advance whether or not the structure's linear response to its nonlinear polarization is important, and if the self-consistent calculation needs to be performed.

Chapter SHG from Individual Silicon Nanowires S (SHG) from silicon is weak from the bulk and in the past has therefore mainly been used for surface characterization [ -]. More recently it was reported that SHG can be obtained from high ield enhancement in silicon photonic crystals [ ] or by a strain-induced breaking of the latice symmetry [ , , ]. Nanostructures, having large surface to volume ratios, can furthermore exhibit resonant modes with high ield enhancements. Hence, nanostructures seem to be promising candidates to obtain SHG from silicon, and indeed enhanced SHG was observed on arrays of silicon nanowires (SiNWs) [ ].

Due to silicon's non-zero χ In this section we investigate in more detail on second harmonic generation from silicon nanowires. In the irst part, the linear optical properties will be summarized, before an experimental analysis and a subsequent interpretation of the results is presented.

Copyright Statement he following chapter is based in parts on the publications [ , ]. Some passages have been quoted verbatim. hese reprints are with permission of the American Physical Society. Reference [ ] was co-authored by Arnaud Arbouet, Houssem Kallel, Priyanka Periwal, hierry Baron and Vincent Paillard, copyright by the American Physical Society. Reference [ ] was co-authored by Arnaud Arbouet, Christian Girard, hierry Baron and Vincent Paillard, copyright by the American Physical Society.

.

Linear Optical Response

Before the discussion of nonlinear optical phenomena in SiNWs, we will start with an overview of their linear optical properties. he response of SiNWs to electromagnetic ields can be analytically treated with the "Lorenz-Mie theory" (usually simply referred to as Mie theory), originally developed for spherical particles [ ]. Mie theory can be adapted to ininitely long, homogeneous cylinders using vector cylindrical harmonics for the ield expansion series (see e.g. [ ]).

.

. Leaky Mode Resonances

It turns out, that optical resonances occur in small cylinders of higher refractive index than the environment. Due to their lossy character they are called "leaky mode resonances" (LMR). In an intuitive image, the electric ield undergoes multiple relections inside the particle and the leaky mode resonance occurs if these relective "round-trips" constructively interfere (for an illustrative support of this explanation, see the curled ields at the resonances shown in Fig. . ). he spectral positions λ LMR of the LMRs are therefore roughly proportional to the perimeter of the nanowire
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k • λ LMR ∝ n • 2Rπ ( . )
where k is an integer number and n the refractive index of the cylinder of radius R.

In igure . the electric and magnetic ield intensity-distributions inside an ininitely long SiNW are shown for planewave excitation at λ = 600 nm, polarized perpendicular (transversal electric, "TE") or parallel (transversal magnetic, "TM") to the wire axis. Diameters are chosen such that the wire is resonantly excited. Diameters are (a) D = 45 nm, corresponding to a TM 01 resonance, (b) D = 115 nm (TE 01 /TM 11 ) and (c) D = 175 nm (TE 11 /TM 21 ). he real part of the ields (if non-zero in plane of the NW section) is ploted as small black arrows. Simulations are performed by two-dimensional GDM (see Sec. . ).

In the TM 01 mode (Fig.

. a), the fundamental magnetic resonance, a curled magnetic ield corresponding to a single oscillating electric dipole along the NW axis occurs. For TE excitation on the other hand, the ields are uniform within the nanowire and can be described by the quasistatic approximation (see section . . ). he electric counterpart is the TE 01 mode (Fig. . b). his mode is degenerate with the second order magnetic TM 11 resonance. A double-curled magnetic ield is induced in the plane of the NW section, corresponding to two electric dipoles along the wire axis (Fig. . b,botom). Again, the electric equivalent, the TE 11 mode (shown in Fig. . c), has a very similar curled electric ield distribution and two magnetic dipoles oscillating with opposite phase along the nanowire axis. he later mode is degenerate with the magnetic TM 21 resonance, corresponding to four electric dipoles with alternating phase. hese dipoles close to the surface can be seen as a result of the multiple relections at the inner surface of the nanowire. Along with these azimuthal modes, higher order radial modes exist (corresponding index j in TE/TM i j ). Electric ield distributions of some more selected modes are shown in small insets of igure . .

. . Scatering and Absorption

he LMRs in dielectric nanowires induce -as a consequence of their "leaky" character -resonances in the farield scatering. As a measure for the ability to scater light, the scatering eiciency Q scat can be used, which is the ratio of the scatering cross section σ scat over the geometrical cross section σ geo .

Q scat = σ scat σ geo . ( . )
he same can be done with the absorption cross section σ abs to calculate an absorption eiciency

Q abs = σ abs σ geo . ( . )
In the case of an ininitely long nanowire (2-dimensional problem), the nanowire diameter is taken as reference size parameter and also σ scat and σ abs , calculated as described in section . . . , are of the dimension of a length in this case.

the geometrical cross section corresponds to the "footprint" of an object Scatering and absorption eiciency spectra of ininitely long SiNWs are ploted as function of the incident wavelength and nanowire diameter in igure . , calculated both, from Mie theory (a, b) and using the GDM (c, d). he incident plane wave is linearly TE (a, c) or TM (b, d) polarized. he numerical simulations are in excellent agreement with the analytical results, justifying the use of the GDM for the description of high-index nano-particles in general. he branches, corresponding to the modes illustrated in igure . are indicated by labels, where the degeneration of TM 11 /TE 01 and TM 21 /TE 11 becomes once more obvious, as the scatering branches are at the same positions in the diameter/wavelength plots for the respective incident polarizations.

Finally, we note that for photon energies suiciently below the direct band-gap of silicon (λ ≈ 450 nm), absorption becomes generally very weak. his renders high-index particles like SiNWs very interesting for applications which require low losses and is one of the key diferences to plasmonic nanostructures [ , , , ].

. . Nearfield Enhancement

At resonance the electric ield inside as well as in the vicinity of the nanowire is enhanced. In igure . , the maximum ield intensity enhancement inside a SiNW is ploted against wavelength and diameter for TE (a) and TM (b) polarized plane wave excitation. Light blue lines indicate the maxima of the far-ield scatering eiciency. he shit between near-and far-ield spectra can be explained by the damping term of a driven oscillator model [ , ]. A detailed discussion of scatering and absorption as well as of the nearield enhancement in the vicinity of SiNWs can be found for example in the PhD thesis of Kallel [ ].

. . Directional Scatering

As explained in chapter , interferences of ields occurring when simultaneously exciting electric and magnetic resonances in dielectric particles, allow to fulill the irst Kerker condition (µ r = ϵ r , [ ]) for nonmagnetic media, leading to purely forward directional scatering [ , ]. We saw, that in larger nanowires degenerate magnetic / electric LMRs occur, leading to both, strong electric and magnetic ield enhancement. As a consequence, anisotropic scatering appears, which turns out to be oriented mostly in the forward direction (the same accounts for other high-index nanoparticles, see e.g. [ , ]). he ratios of forward to backward (FW/BW) and backward to forward (BW/FW) scatering are ploted in igure . for TE (a) and TM (b) excitation. he maxima of the total scatered intensity are indicated with red and blue lines. In agreement with the not fulilled Kerker condition, no directionality is obtained for the nondegenerate, purely magnetic TM 01 -mode.

Some scatered ields around SiNWs and corresponding far-ield radiation paterns are shown in igure . c-f. For TE polarization, an excitation of the forward-(c) and backward-scatering (d) branch is shown (slightly below and above the TE 01 -resonance in terms of NW diameter, respectively). A transition of forward-to mainly backward scatering takes place. For an incident plane wave polarized along the axis, scatering under excitation of the TM 01 (e) and the TM 11 (f) mode is shown. While unidirectional scatering occurs at the fundamental magnetic mode, almost pure forward scatering is obtained at the TM 11 resonance.

. . Influence of Diferent Geometrical Cross Sections

From a numerical point of view, round surfaces such as the whole interface of a cylindrical Mienanowire, are technically demanding to be treated and oten cause numerical artifacts. Under bad conditions, this can even lead to signiicant convergence problems and distort the simulation results (see for example Fig. . ). In a cubic discretization scheme it is therefore favorable to use lat surfaces.

Furthermore, lithographically deined nanowires are of square or rectangular cross section which raises the question, how the optical response changes if the cross section difers from a circle or hexagonal shape of VLS grown nanowires (see section . . ).

In igure . , scatering from ininitely long nanowires of diferent cross sectional shape is ploted. Circular (a,b), hexagonal (c,d), square (e,f) and triangular (g,h) sections are compared for TE (let) and TM (right) excitation. Obviously, apart from a slight spectral shit, low order cylinder LMRs are relatively insensitive to a change of the 2-dimensional section (see also [ ]). However, deviations occur for higher order modes, which is obvious when square and circular wires are compared. Scatering eiciencies from hexagonal wires seem to stay close to the behavior of their circular counterparts for higher order modes. Also the ield distributions at the resonant modes (see insets in Figs. . ) are in good qualitative agreement. Modes from triangular wires inally are shited to larger diameters and longer wavelengths, which can be atributed to the lower amount of material per size parameter. Interestingly, the degeneracy of the TM 11 and the TE 01 mode seems to be relaxed in triangular wires, the TE 01 mode is occurring for larger triangular sections We note, that the second Kerker condition under which pure backward scatering occurs (when the irst order magnetic and electric Mie coeicients are equally large and of opposite sign: compared to the TM 11 resonance. However, spatial ield distributions are very resembling for all geometries and similar modal paterns are found in all cases.

a 1 = -b 1 ) requires spherical particles [ ].
We conclude, that a circular wire can be modeled in good approximation using a hexagonal or square section. In the following we will use square nanowires which have proven to provide the best numerical stability. As a inal remark we note, that VLS grown SiNWs are in fact of hexagonal shape, so inversely we can deduce that Mie theory is a good approximation for such nanowires but a small shit of the resonances has to be kept in mind if comparing experimental spectra with simulations.

. . Influence of a Substrate

It is diicult to perform experiments on nanostructures in a homogeneous environment, since nanostructures are usually lying on a substrate. he presence of a substrate should therefore be taken into account in numerical modeling. his cannot be done in analytical Mie theory but is easily possible within the GDM (see section . . . ). To get an idea of the impact of a substrate on farield scatering, scatering eiciency spectra are ploted as function of the cylindrical NW diameter in igure . for SiNWs in vacuum (i), on a n = 1.5 (ii) and on a n = 3.5 substrate. While a substrate of low refractive index (e.g. SiO 2 has n ≈ 1.45 in the visible spectral range [ ]) has only a minor inluence on the spectral response of a silicon nanowire, a severe impact on the optical behavior is observed when the refractive index of both the NW and the substrate are nearly equal (such as for SiNW on Si). he damping and broadening of the resonances might be explained by an increased "leaking" of the optical ield at the interface to the substrate due to the refractive index matching, which consequently lowers the relectivity at the interface between wire and environment.

We conclude that a low-index substrate will only weakly modify the analytical solution from a homogeneous environment and interpretations of results from nanowires on glass substrates can be done in good approximation using Mie theory.

. . Nanowires of Finite Length

In inite length cylinders the Mie resonances become hybridized with guided modes [ ]. It has been shown, that the LMR contribution to the resonant behavior is dominant for nanowires with large aspect ratios (aspect ratio L/D ≳ 10) [ , ].

.

Sample and Experimental Setup

Ater having discussed the linear optical properties of silicon nanowires, we will investigate on the nonlinear optical response in more detail. At irst, we briely present the samples and the experimental setup.

.

. VLS Grown Silicon Nanowires

In the following we show results obtained from vapor-liquid-solid (VLS) grown crystalline silicon nanowires (growth along the [ ] direction). he nanowire growth is performed at LTM Grenoble, in the group of Dr. hierry Baron [ ]. he VLS process is a chemical vapor phase epitaxial technique in which nanowires are grown from a precursor gas on a substrate, mediated by catalytic nanodroplets (usually gold). It allows for an accurate control of the diameter by adapting the size of the gold nanoparticles used as catalyst [ ]. Ater the removal of the gold catalyst on top of the grown wires, the NWs are dispersed in solution by leaving the as-grown sample in an ultra-sonic bath for about 30 s. We deposited nanowires of three diferent diameters on transparent glass substrates (refractive index n ≈ 1.5). he nanowires can then be characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) or darkield microscopy (DF) and comparison with Mie theory. Illustrative results are shown in Figs. . a,b,c. he range of NW sizes in the three selected samples are listed in table . . Lithographic markers on the substrates allowed subsequent measurements on the identical nanowires. Using Raman spectroscopy we also veriied that no χ (2) components are induced by strain [ , ]. For this, we compared the Raman shit of a NW SiNW with a bulk [ ]-Si substrate. Lorenzian its to the data result in an identical Raman shit at the Si-line at 521 cm -1 [ ], as shown in Fig. . d.

Sizes are chosen such that a single resonance is present in the visible spectrum for the smallest nanowires NW . his resonance is non-degenerate and only appears under TM excitation. Under TE excitation, there is no mode in the visible spectral range. NW have the TM 01 resonant mode around 700 -800 nm and a second degenerate mode below 500 nm occurs (TM 11 /TE 01 ). he large NW with diameters > 200 nm inally have multiple resonances. For more details on the linear optical properties, see the previous section . .

. . Nonlinear Microscopy Setup

he nonlinear experiments were performed on a home-made nonlinear microscopy setup. he heart of the system is a pulsed femtosecond Ti:Sapphire laser (Coherent Chameleon Ultra II), tunable in a range from 680 nm to 1080 nm. At a repetition rate of 80 MHz, the pulse length at λ = 800 nm is τ pulse ≈ 150 fs (see also appendix A. ) and the time-averaged output power is P avg. ≈ 4 W at this wavelength. Assuming a rectangular pulse shape, this results in a peak laser power of P avg. ≈ 0.33 GW. In the following we will stick to average powers as they can easily be converted to peak powers or energy per pulse. he linear polarization of the fs-pulsed beam can be rotated by a λ/2 waveplate and is focused on the sample using a high numerical aperture (NA) microscope objective. If not noted otherwise, we used a ×50, NA 0.8 air objective. To beneit from a larger working distance, some measurements have been performed using a LWD ×100, NA 0.8 air objective. Both objectives have around 90 % transmitivity at the second harmonic wavelength, slightly decreasing towards the infrared. Lower transmitance at the fundamental frequency when using the ×100 objective is accounted for by increasing the incident laser power accordingly.

he backscatered nonlinear emission is collected by the same microscope objective and separated from the fundamental beam by a dichroic mirror ("Semrock nm edge BrightLine"). Residual laser light is removed using bandpass colorilters (3 mm Schot BG ) before the signal is directed onto the detection system, for which is used either a photomultiplier tube ("PMT", Hamatsu h

) coupled to a lock-in ampliier (laser beam mechanically chopped at 6 kHz) or a spectrometer with a high-sensitivity CCD (Andor Shamrock + Andor iDus CCD). he samples are lying on a x/y piezo stage with a closed-loop feedback positioning controller, allowing for nanometer-precise displacement of the nanostructures. he sample can be moved sotware-controlled below the focused laser beam in order to perform cartographic raster-scan acquisitions (see also Fig. . b). In such map-scan experiments, the (nonlinear) signal is recorded at each position of the x/y stage, allowing to draw a 2-dimensional intensity map of the nonlinear signal. 

. Enhanced Nonlinear Optical Response . . Spectrum of Nonlinear Response

In a irst step, the nonlinear signal from a crystalline silicon nanowire (NW ) was spectrally analyzed and compared to reference samples, namely to a silicon-on-uartz (SOQ) ilm of 200 nm thickness and a LiNbO 3 single-crystal with high χ (2) for a pure second order nonlinear response [ , ]. A BG colorilter was inserted prior the spectrometer to remove residual fundamental laser light from the detection path and avoid damage of the sensitive CCD.

Measured spectra are shown in Fig.

. a for an excitation at λ 0 = 840 nm. he silicon samples were excited with an average power of 3.8 mW/μm 2 , the LiNbO 3 crystal with 0.9 mW/μm 2 . While the LiNbO 3 shows a purely second harmonic spectral response (sharp peak at λ 0 /2), the silicon samples feature an additional large multi-photon photoluminescence (MPPL) band, covering the full spectral range between the SH peak and the cutof of the BG colorilter at around 600 nm. Interestingly, the MPPL band is much stronger in case of TM excitation than for a TE polarized incident beam. We can atribute this to the stronger ield enhancement inside the NW for the TM case (see also Fig. . ).

. . Involved Nonlinear Efects

We found that the nonlinear response of individual SiNWs consists of diferent contributions: Second harmonic generation and a spectrally broad nonlinear luminescence, which we call multiphoton photoluminescence (MPPL). In the following we will therefore study these diferent spectral bands in more detail. We will ind that the observed peak at λ 0 /2 is very easily atributed to SHG. he analysis of the MPPL band, however, is not as unambiguous as it is concerning SHG, therefore we will use diferent characterization methods to corroborate our interpretation. .

. . Profile Width of Line-Scans

In order to gain a irst insight about the order of the nonlinearity responsible for the measured signal, raster-scan measurements were performed on the NW sample. An illustration of the raster-scan type of measurements is shown in Fig. . b. From the widths of the intensity proiles, we draw conclusions on the order of the nonlinearity at the origin of the luminescence. To estimate the spatial extension of a difraction limited nonlinear response of order N to a Gaussian proile, we compare a Gaussian and the N th power of a Gaussian

f (x ) = exp -x 2 2w 2 elastic ←→ f (x ) N = exp N -x 2 2w 2 elastic ( . )
where w elastic is the difraction limited spotsize of the focused laser beam. Comparison of the letand right-hand side in Eq. ( . ) yields for the width of the nonlinear Gaussian

w order N = w elastic √ N ( . )
which is illustrated in igure . a (i [red] linear, ii [blue] nonlinear response). his means for a second and third order nonlinear response:

w nd Order = 1 √ 2 • w elastic ≈ 1 1.414 • w elastic w rd Order = 1 √ 3 • w elastic ≈ 1 1.732 • w elastic = 2 √ 6 • w nd Order ≈ 1 1.225 • w nd Order ( . )
A nonlinear intensity map of NW is shown in Fig. . b(ii), the corresponding elastic scattering is shown in (i). he former was acquired with a BG ilter, the later without BG ilter and strongly reduced laser power. We observe that the width of the nonlinear signal is too small to be caused by a second order nonlinear response, hence the observed nonlinear emission is not a consequence of SHG. To study this observation in more detail, we used a homemade monochromator setup, which we characterized with a calibrated white lamp and an Ocean Optics USB + spectrometer. An investigation on the smaller nanowires NW and NW yielded good agreement with a second order nonlinear response at the SHG wavelength and a third order nonlinear scaling for the broad MPPL. he results are summarized in table . . he width of the nonlinear raster-scan across a SiNW (NW ) is shown as function of the detected wavelength in Fig. . a. he spectral transmission window was ≈ 10 nm large, indicated by horizontal errorbars. he vertical errorbars are standard deviations from the Gaussian it to the linescan perpendicular to the NW axis. Interestingly, the width for detection at the SHG wavelength is about as large as we would assume for the scatering of the fundamental wavelength of λ 0 = 900 nm. On the other hand, far from the SHG wavelength the measured proile widths across the wire correspond to a third order nonlinear response, in agreement with the smaller NWs.

In Fig.

. b proiles across the NW from a detection at the SHG wavelength (±5 nm) are shown for diferent excitation powers. In these plots we can observe two features with diferent behaviors: On the one hand a signal from the NW borders as well as a second contribution from the NW center on the other hand, whose intensity increases much faster as function of the excitation power compared to the border signal. his can be explained by a strong second order response when the laser is focused on the NW borders, superimposed with a higher order nonlinear contribution which is strongest if the laser beam is focused on the NW center. For lower excitation powers, the higher-order response in the center is then invisible, but it increases more rapidly with rising incident power, such that it becomes dominant at a certain excitation strength. A it to the linescans of We conclude that the NW are large enough to have a nonlinear optical response with several distinct features, resolvable by (nonlinear) optical microscopy. In consequence, Eq. ( . ) cannot be applied, because it is based on the assumption of a difraction limited signal.

. . . Power Dependence

In order to verify the inding of SHG at λ 0 /2 and a third order broad luminescence, we performed a spectrally resolved series of measurements using increasing excitation powers, which is shown in are ploted as guide-to-the-eye and conirm a second order for the peak at the second harmonic wavelength as well as the hypothesis of a third order nonlinear process responsible for the MPPL.

. . . Autocorrelation Measurements

Finally we performed a third series of measurements, to conirm the orders of nonlinear processes: We did autocorrelation measurements using two excitation beam paths with variable time-delay, controllable via a servomotor driven delay stage. he two beams are uniied by a beam spliter before being focused on the sample by the same microscope objective. For the its to the autocorrelation data, a chirp-free, Fourier limited Gaussian wave packet was assumed. he pulse-width of the laser at the fundamental wavelength τ pulse was determined by a it to autocorrelation data from a reference LiNbO 3 crystal, having a pure second order response, and was found to be τ pulse ≈ 150 fs. Experiments were carried out with excitation at λ 0 = 810 nm using Table . : Results for its to autocorrelation measurements on a SiNW "NW ", iltered using color ilters at the SHG wavelength λ SHG = 405 nm and at the large multi-photon luminescence 435 nm ≲ bandpass ilters (405 ± 5 nm for SHG and > 435 nm for MPPL), as well as using the monochromator setup at an excitation wavelength of λ 0 = 840 nm. he results are listed in tables . and . , respectively, conirming the second order nonlinear scaling for SHG as well as a third order response for the MPPL.

For a detailed description of the autocorrelation measurement technique, the theoretical modelling and iting, the two-pump optical setup as well as for results of the reference measurements, see appendix A. .

. . . Coherent and Incoherent Nonlinear Processes

Finally we want to analyse if the observed MPPL in the silicon nanowires is of coherent nature. Coherent nonlinear efects are excited instantaneously with no intermediate states involved. Often, the concept of a virtual state is used: his state (which in reality doesn't exist8) is populated by a irst photon and instantaneously further excited by a simultaneous second photon, as shown in igure . a. he particularity of such a coherent nonlinear process is that -as the name suggests -the phase of the incident light is conserved. An incoherent nonlinear process on the other hand involves real intermediate states with inite lifetimes (Fig. . b). In the later case, the process can still be observed if the incident photons have a certain time-delay in the order of the intermediate state's lifetime, but their phase information is lost.

Using two time-delayed incident coherent beams (usually from a beamsplited pulsed laser, equivalent to the autocorrelation measurement setup, see appendix A. ), intermediate states can be probed when measuring the nonlinear signal vs. time delay between the two beams. Attention has to be payed on the autocorrelation signal, which has to be cropped entirely. Such measurements revealed no detectable inite lifetime for the case of SiNWs, while the lifetime of gold nanoparticles, previously reported by Biagioni et al. [ ] to be in the order of 1 ps, could be reproduced. We conclude that the MPPL in SiNWs is driven by a coherent excitation process, possibly by THG in the bulk silicon.

. . . Conclusions on Involved Nonlinear Processes

In summary, we conclude that the peak at λ 0 /2, observed in nonlinear spectra from fs-pulse excited SiNWs, is indeed due to second harmonic generation and that the spectrally broad MPPL is a coherently excited third-order nonlinear process, probably a three-photon-induced photoluminescence .

Silicon has a large bulk χ (3) , and consequently third order processes are relatively eicient [ , , , ]. he large luminescence could be a three photon absorption induced photoluminescence ( PPL) from the silicon. Direct PL from silicon lies in the spectral range between 450 nm and 600 nm [ ], which corresponds to the observed wavelength range of the third order MPPL. It has also been reported that silicon nanowires can enhance luminescence from oxygen defects in SiO 2 [ ]. Hence, the large luminescent band could be from the nanowire's thin shell of native silicon-oxide or from the glass substrate [ ], excited e.g. by THG from the SiNW . Further investigations e.g. with SiNWs deposited on diferent substrates should be performed to clarify the origin of the spectrally large luminescence.

. . Second Harmonic Generation Microscopy

We now leave aside the third order nonlinear photoluminescence and focus in the following section on second harmonic generation from individual SiNWs as function of their size.

. . . SHG Line-Scans along SiNWs

In Fig. . a, typical raster-scan maps of a NW are shown, excited at λ 0 = 810 nm and iltered at the second harmonic wavelength (λ SHG = 405 nm). In (i) the incident polarization was perpendicular to the NW axis (TE) and in (ii) parallel to the wire (TM). SHG intensity proiles along the SiNW are shown for both incident polarizations in (iii). While a homogeneous second harmonic signal is detected along the axis under TE excitation, a strong anisotropy occurs in the TM case, where the SHG intensity has a distinct maximum at the NW tips.

his efect can be explained by simple considerations on the continuity conditions at the interface of two dielectric media, which is described by the dielectric contrast i.e. by the diference of the relative permitivity. For a dielectric medium of permitivity ϵ r placed in vacuum (ϵ 0 ), we get [ ] (see also appendix . . )

E ∥ = E 0, ∥ ( . ) E ⊥ = E 0,⊥ 2ϵ 0 ϵ 0 + ϵ r ( . )
Comparable to two-photon photoluminescence (TPL) in gold, which however is an incoherently excited process, since Au lacks a bandgap and real electronic states exist For excitation wavelengths of 800 nm ≲ λ 0 ≲ 900 nm, THG lies in the UV. We cannot detect the corresponding light directly due to the limited sensitivity of the detectors where E ∥ and E ⊥ are the tangential and normal ield components and E 0 is the incident ield amplitude. he parallel ield component is continuous over the interface, while the normal component is scaled by the dielectric contrast. his, together with the fact that χ (2) ⊥⊥⊥ (P (2) ⊥⊥⊥ ∝ E 2 ⊥ ) is supposed to be the largest component of the second order susceptibility tensor for silicon [ ], can explain the anisotropy of the SH intensity distribution in the TM case: he normal ield component discontinuity occurs only at the tips, not along the NW where all ield components are purely tangential.

Interestingly, this qualitative anisotropy appears only for SHG. When the third order MPPL is mapped, also for TE incidence the nonlinear signal increases under excitation on the NW tips compared to the signal intensity when focusing the laser along the NW. his is a further indication for the predominant role of χ (2) ⊥⊥⊥ and shown in Fig. . b, where the fundamental wavelength is varied between 780 nm ≲ λ 0 ≲ 840 nm, while the detection is ixed using colorilters at λ det. = 405 ± 5 nm (solid lines) or λ det. ≳ 435 nm (dashed lines). Only when the second harmonic wavelength matches the color-ilter's transmission line at λ det. = 405 nm, the intensity peaks at the NW edges disappear, outshined by the more intense second harmonic light.

As noted above, this behavior can be explained by the dominating χ (2) ⊥⊥⊥ component for second harmonic generation, boosting the signal from the perpendicular ield components along the NW ⊥⊥⊥ (iii, iv) and the GDM-simulated fundamental nearield on a plane 20 nm below the NW (v, vi). (b) shows an illustration of the rasterscans, performed in experiment and GDM simulations (i-iv).

axis under TE illumination. For the case of the χ (3) -induced MPPL this anisotropic contribution of certain ield components to the nonlinear emission does no longer take place and the signal along the axis decreases strongly. he general enhancement of MPPL from the tips is a result of the dielectric contrast and probably further enhanced by guided light coupled into the wire, increasing the local density of photonic states (LDOS) .

his hypothesis is in agreement with the intensity evolution of the λ det. = 405 nm-iltered TE signal in 

. . . Nearfield and SHG Rasterscan Simulations

To conirm that a χ (2) ⊥⊥⊥ induced SHG in SiNWs results in the observed polarization-dependent anisotropy of the raster-scan maps, we performed GDM simulations of the fundamental nearield distribution and of a farield raster-scan using only P (2) ⊥⊥⊥ . he fundamental wavelength was set to λ 0 = 810 nm, a focused planewave (see section . . . ) of difraction limited diameter ater the Rayleigh criterion (d spot ≈ 1.22λ 0 /NA) is used for the raster-scan simulations, a plane wave for the near-ield distributions which are calculated 20 nm below the NW. he structure model was a 2 μm long silicon nanowire of rectangular section with diameter D = 100 nm. A square section is a valid approximation to cylindrical nanowires, as we showed in section . . : At lower order modes a rectangular wire behaves equivalently to a Mie nanowire, except for a small shit in the spectral positions of the resonances. he results of GDM rasterscan simulations are shown in igure . a (iii and iv for TE and TM incidence, respectively) and compared to measurements on a similarly long nanowire NW for TE (i) and TM (ii) incident polarization. Maps of the he contribution of guided modes in crystalline NWs is further supported by recent measurements on lithographic wires (etched surfaces): Far less pronounced SHG and MPPL from the tips was observed in this case, which we atribute to imperfect surfaces, hindering the eicient coupling of light in the NW. he SHG simulations using only perpendicular surface ield components reproduce with good qualitative agreement the homogeneous SHG along the wire for TE excitation as well as the enhanced SHG from the NW tips for TM polarized illumination. In the later case, no SHG is generated from the wire center, because only ield components parallel to the wire surface exist. Finally, a comparison to the nearield closely below the nanowire reveals an interesting analogy between the farield SHG mappings and the nearield distribution: While the ield intensity is homogeneous along the wire for TE polarized incidence, in the TM case a strong ield enhancement at the NW tips occurs. his is in agreement with reported experimental characterization of the optical nearield in the vicinity of SiNWs [ ].

. . . SHG and Resonant Modes

In the following we explore the inluence of resonant modes on the second harmonic generation. herefore we focus on the smaller nanowires NW and NW , featuring a limited number of resonant optical modes in the visible spectral range. NW has one, respectively no optical resonance under TM and TE excitation. NW has one resonance for TE incidence and supports two modes for TM illumination (see also While always SHG was measured if a Mie mode was close to the fundamental wavelength (NW and TM excited NW ), no detectable second harmonic light was obtained from NW under TE excitation. From the corresponding scatering spectrum we see that there is no interaction of the nanowire with the exciting ield. A comparison with Fig.

. a shows furthermore that the electric ield inside the nanowire is close to zero, which explains the lack of SHG in the absence of a resonance. his is in agreement with nonlinear scatering theory, predicting highest SHG for a maximum spatial overlap of resonant modes at both, fundamental (squared proportionality) and harmonic wavelength (linear proportionality) [ , , ] (see also Sec. . . . ). Hence, particularly in the absence of a resonance at the excitation wavelength, SHG is supposed to be very weak. he results in igure . are individually normalized, corresponding absolute values are given in table . where the results of NW and NW are furthermore compared to values from NW as well as to a bare glass substrate, a silicon substrate and a LiNbO 3 reference crystal (χ (2) bulk 0, excitation power reduced by a factor of 10).

. . . Comparison of SHG from SiNWs to bulk Materials

In the experiment the difraction limited minimal spot radius r spot ≈ 0.61λ 0 /NA ≈ 620 nm (for λ 0 = 810 nm) is always signiicantly larger than the radius of the SiNW. We therefore calculate a scaling coeicient using the ratio between the illuminated area of the nanowire and the (nonlinear) area of the focused laser spot

K spot = S onNW S spot, NL ( . )
with the area governed by the second order nonlinear response to the focused laser spot (taking into account the quadratic intensity-scaling of the SH nonlinear response by the factor 1/ √ 2)

S spot, NL = π (r spot / √ 2) 2 ( . )
and the intersection of spot and NW surface

S onNW =d NW • 2r spot √ 2 . ( . )
To obtain the normalized SHG yield, we divide the photocurrent by the scaling coeicient K spot , which then allows a comparison of the SHG signal from nanowires and bulk samples. Corre-Assuming the Rayleigh criterion is a good approximation.

sponding values are given in the rightmost column of table . . We observe that the strongest SHG per illuminated area is obtained from NW , being more than two orders of magnitude stronger than SHG from a bulk silicon crystal.

. . Conclusions

In conclusion, we found that the nonlinear response of silicon nanowires in the visible spectral range under femtosecond pulsed excitation in the near infrared consists of two main contributions: Second harmonic generation (SHG) on the one hand and a spectrally broad multi-photon induced photoluminescence (MPPL) on the other hand. While we could conirm the peak at λ 0 /2 to be SHG, the later contribution was found to be the result of a third order nonlinear efect, possibly a third harmonic induced luminescence. As for the SHG, we observed a polarization dependent anisotropy in raster-scan mappings. For an incident light linearly polarized normal to the wire axis, a homogeneous SHG all along the NW was observed, while for a polarization parallel to the axis, an enhancement of the SHG on the nanowire tips occured. We could track this behavior down to a mainly χ (2) ⊥⊥⊥ -induced surface SHG in the SiNWs which we conirmed by numerical raster-scan simulations. Finally we observed a dependence of the SHG on the presence of resonant modes. In the absence of any resonance at the fundamental frequency, no SHG was observed. On the other hand, if Mie modes exist in the spectral vicinity of the fundamental wavelength, a SHG enhancement of more than two orders of magnitude can be obtained compared to bulk Si. In this context, further work with NWs of several diferent diameters, supporting resonances at either fundamental or harmonic frequency, as well as at both frequencies, should be very interesting. As SHG from silicon is normally forbidden in the dipole approximation (see section . . . ), the enhanced SHG renders SiNWs interesting for second order nonlinear photonic applications compatible to state-of-the-art CMOS technology. Furthermore, the possibility to tailor a polarization controlled on/of-switching behavior by the presence or absence of resonant modes might be exploited in various ways.

.

Origin of Second Harmonic Generation

As shown in section . . , SHG from centrosymmetric materials can be due to diferent processes. In this context, the source of the largest contribution to SHG has led to controversial conclusions. Oten, second order efects in centrosymmetric nanostructures are modeled assuming the χ (2) ⊥⊥⊥ surface contribution from ield components normal to the surface to be most signiicant, neglecting other possible sources (e.g. [ , , ]). In the previous section we found, that the χ (2)

⊥⊥⊥ component can describe SHG also from SiNWs in a irst, qualitative approximation. Nevertheless, we will see in the following that several phenomena we observed cannot be explained by

χ (2)
⊥⊥⊥ -SHG and we will ind that, depending on the NW diameter and excitation conditions, contributions from tangential ields at the surface as well as from strong ield gradients in the bulk have to be considered.

. . Introduction: Contributions to Surface SHG

Studies on the magnitude of other contributions have been performed on homogeneous surfaces [ , ] as well as on metal nanoparticles like nanospheres [ , ]. A geometrical study on the selection rules for local surface and non-local bulk contributions to SHG from metal nano-tips under planewave excitation pointed out a purely surface-like SHG in collinear measurements [ ]. Nonlocal bulk contributions to SHG (Sec. . . . ) can be induced by ield gradients due to resonant modes or tightly focused laser beams. For instance, the consequence of strong ield gradients from focused excitation has been theoretically described for low-index spherical nanoparticles and a characteristic signature in the far-ield emission patern has been predicted [ ]. A study on arrays of small Si spheres excited under tight focus found comparably strong bulk and surface contributions to SHG, and a scheme using polarization analysis of the harmonic emission was suggested to separate and identify those contributions [ ]. Motivated by those publications, we will try in this section to understand the origin of SHG from SiNWs.

. . Experimental Results

Following the suggestion of a polarization analysis to separate SHG contributions [ ], we ilter the linear polarization state of SHG prior detection. Apart from this, we use the same experimental setup as in the preceding section (see Sec. . . and Fig. . ). In igure . typical experimental results for representative nanowires of (a) NW , (b) NW and (c) NW are shown. On the let of each subplot, second harmonic raster-scan maps along the NWs are shown. On the right, SH polar plots (farield) are shown, recorded under excitation on the nanowire centers. Polar its to the intensity of (partially) polarized light are shown as well, using the formula for the intensity of a superposition of two perpendicular, linearly polarized ields where ϕ corresponds to the angle of the polarization ilter and θ is the angle of the second harmonic light's linear polarization, obtained from the it.

I (ϕ) = A sin 2 (ϕ -θ ) + B cos 2 (ϕ -θ ) ( . )
he laser spot radius is about 620 nm at a wavelength of λ 0 = 810 nm. As we already observed in the previous section, TE excitation produces a homogeneous SHG along the NW axis and TM excitation leads to enhanced SHG from the NW tips, however with a signiicant remaining signal when the laser is focused on the nanowire axis.

As can be seen in the SH polarization polar plots of Fig. . , a 90 • lip of the polarization direction occurs in the TM coniguration. Under TE excitation on the other hand, the SH light is always polarized perpendicularly to the nanowire axis, following the incident polarization. his general trend of SH polarization was conirmed by investigating over 20 diferent SiNWs. he polarization angles from its using Eq. ( .) to the data are shown in 

. . Theoretical Considerations

To interpret the experimental observation of a size-dependent lip of SHG polarization under TM excitation, we carry out some theoretical considerations on SHG from sub-wavelength small cylinders of centrosymmetric material.

. . . Local Surface Contributions

Second order electric polarization in centrosymmetric materials can be writen as a superposition of surface and bulk polarizations [ ] (see also Sec. . . )

P (2) cs = P (2) sf + P (2) bulk ( . )
where for homogeneous and isotropic surfaces, P (2) sf is a superposition of three independent nonzero components:

P (2) ⊥⊥⊥ = χ (2) ⊥⊥⊥ [ E 2 ⊥ ]
e ⊥ ( . a)

P (2) ⊥ ∥ ∥ = χ (2) ⊥ ∥ ∥ [ E 2 ∥ ] e ⊥ ( . b) P (2) ∥ ∥⊥ = χ (2) ∥ ∥⊥ [E ⊥ E ∥ ] e ∥ ( . c)
where E is the ield amplitude at the fundamental frequency ω, ∥ and ⊥ denote the directions parallel and perpendicular to the local NW surface and for simplicity we set ϵ 0 = 1. Let us consider the case of an ininite cylinder. For an incident ield normal to the cylinder axis (TE), it turns out that the three surface terms lead to a nonlinear polarization perpendicular to the nanowire axis. his is obvious for equations ( . a) and ( . b). In addition, as for TE polarization e ∥ in Eq. ( . c) corresponds to e ϕ in the cylindrical coordinate system of the wire, it is as well perpendicular to the NW axis. If the incident ield is parallel to the axis (TM case), no ield component E ⊥ normal to the ininite cylinder surface exists, so that both P (2) ⊥⊥⊥ and P (2) ∥ ∥⊥ vanish (see also appendix B. for a numerical conirmation). As a consequence, equation ( . b) alone describes the surface SHG in the TM case, which is polarized along e ⊥ , thus perpendicularly to the nanowire. his leads to the insight, that under excitation far from the NW tips, surface SH polarization under either TE or TM excitation should always be perpendicular to the NW axisa inding that is in contradiction with the TM polar plots shown in Fig . a-b, where both SH and fundamental light polarizations are parallel to the NW axis (see also NW and NW in Fig. . ).

. . . Non-Local Bulk Contributions

Let us therefore inspect the nonlinear bulk polarization, induced by ield gradients in the material. Due to both, the presence of leaky mode resonances and a tightly focused laser beam, we presume that strong ield gradients may exist in the SiNWs, so that bulk efects can not be neglected from the start. In irst non-vanishing order, the bulk polarization consists of three terms [ ]

P (2) bulk = γ ∇ [ E 2 ] + β E [∇ • E] + δ [E • ∇] E ( . )
Note that we omited the ζ -term proportional to E i ∇ i E i (Eq. ( .)), whose susceptibility equals zero for homogeneous media [ ]. It has been shown that the γ -term can be included in equations ( . a) and ( . b) using efective susceptibilities [ , ]

χ (2,ef) ⊥⊥⊥ = χ (2) ⊥⊥⊥ - γ ϵ r (ω) • ϵ r (2ω) ( . )
and

χ (2,ef) ⊥ ∥ ∥ = χ (2) ⊥ ∥ ∥ - γ ϵ r (2ω) . ( . )
hanks to its surface-like behavior, it is oten referred to as the non-separable bulk contribution, which becomes small for high-index semiconductors (large ϵ r ) due to the electric permitivity in the denominator of the additional terms in the χ (2,ef) . We can also neglect the β-term in Eq. ( .), as ∇ • E vanishes in the bulk of a homogeneous medium [ , ]. Concerning the δ -term in Eq. ( . ), we ind that under TE polarization strong ield gradients appear only for large diameters because no ield component exists along the axis , and the inplane ields normal to the axis can be considered constant for diameters below the appearance of the irst resonant mode . At λ 0 = 810 nm this is valid for D ≲ 150 nm (see Fig. . ). In consequence, the last term in Eq. ( .) is supposed to vanish for suiciently small NWs in the TE coniguration. Under TM illumination, ield components normal to the cylinder axis are zero and the bulk polarization reduces to

P (2) bulk,TM = δ ( E z ∂E z ∂z ) e z ( . )
where z denotes the axial direction. his means that for TM incidence, the δ -bulk contribution is the sole SH source able to generate a nonlinear polarization along the NW axis. We consequently Note that ield gradients along the axis in the case of a TE excited incidence cancel in the scalar product

(E • ∇), because E z = 0 (Z ∥ NW axis).
Corresponding to the quasistatic approximation for small NWs. Furthermore, the irst resonance is a nondegenerate TM-mode, hence does not exist under TE illumination assume that SHG under TM excitation on the center of NW and NW (igures . a, . b and . ) can be atributed to the (E•∇)E bulk contribution. For larger NWs the surface term P (2) ⊥ ∥ ∥ seems to become more signiicant, leading to the observed lip of the polarization (igures . c and . ).

. . . Conclusions

In summary, three contributions to SHG remain under consideration to explain our experimental results: he surface terms P (2) ⊥⊥⊥ and P (2) ⊥ ∥ ∥ , resulting in a nonlinear polarization perpendicular to the NW axis, and the (E • ∇)E bulk source ("δ "), creating a polarization along the NW axis. We also found that for a cylindrical geometry, the later contribution only exists in the TM case.

In the case of silicon χ (2) ⊥⊥⊥ is considered to dominate SHG (see also Sec. . ), while the weaker surface terms (χ (2) ⊥ ∥ ∥ , χ (2) ∥ ∥⊥ ) and the separable bulk susceptibilities are supposed to be of comparable magnitude [ ]. In the following, we will therefore examine the diferent contributions in more detail. his will be done using electro-dynamical simulations with the Green Dyadic Method (GDM).

. . Simulations . . . Simulation Method and Model

We model SHG using the GDM, as explained in detail in section . . he incident ield at wavelength λ 0 = 810 nm is modeled as a focused planewave with a difraction limited spot-size corresponding to NA 0.8 used in the experiments (see section . . . ). he δ -bulk contribution is calculated using central diferences to approximate the gradients in Eq. ( . ). Finally, each meshpoint is considered as an emiter at λ 0 /2 = 405 nm and the radiation of the ensemble to the far-ield is calculated using a propagator taking into account the presence of the substrate (see Sec. . . . ). he harmonic far-ield intensity is integrated over the collecting solid angle of the NA 0.8, and optionally analyzed for its linear polarization state.

In order to simplify the numerical work and reduce numerical artifacts from round surfaces in cubic discretization, all 3-dimensional simulations have been performed using wires of rectangular cross section. We have shown in section . . that for lower order modes, the diference between cylindrical and square sections is only a spectral shit of the resonances, while the resonance number and qualitative ield distribution is conserved (see also [ ]). he validity of this assumption is veriied when comparing Mie theory for an ininite cylinder to simulated elastic scatering spectra of our square-wire 3D-model (Fig. . a,i). Finally, we have shown in section . . . , that the numerical SHG calculation is less error-prone using lat surfaces. To allow comparison with Mie theory, the simulated wires were chosen to be long compared to the spot size of the incident beam (L > 2 μm, see also section . . ).

hroughout this section we stick to the "simple" SHG description, neglecting the inluence of the presence of the structure on the harmonic ield. A comparison of self-consistent and "simple" SHG calculus on SiNWs can be found in appendix B. . ⊥⊥⊥ surface term, is shown for a NW of diameter d = 100 nm. We observed from comparison with experimental data, that the global trend of homogeneous SHG for TE and tip-enhanced SHG for TM can be reproduced using only the normal surface contribution. Similar results are obtained for simulations using both, smaller and larger diameters. However, as pointed out above, two experimental phenomena can not be explained by only Eq. ( . a): ( ) TM-excited SHG from illumination of the NW center and ( ) SH light polarized along the NW axis.

. . . Diameter-dependence of SHG contributions

In order to verify the hypothesis of mainly P (2) ⊥⊥⊥ generated-SH in the TE case on the one hand and mixed ⊥∥ ∥-surface / δ -bulk SH for the TM case on the other hand, we carried out diameterdependent SHG simulations, shown in igure . . To include the bulk-contribution in our investigation, it was necessary to perform 3D GDM simulations using a focused incident beam which induces ield gradients due to the Gaussian intensity distribution. As discussed earlier, nanowires of square section were used for these simulations.

A focused (NA . ) incident beam at λ 0 = 810 nm, either polarized TE ( SH intensities in the far-ield were calculated for the P (2)

⊥⊥⊥ and P (2) ⊥ ∥ ∥ surface terms, as well as for the δ -bulk contribution. Each contribution is normalized to the highest intensity value within both incident polarizations. Note that absolute comparison of SH intensities is only possible within simulations of each contribution, and not between separate components, because we set the susceptibility components individually = 1.

he ⊥⊥⊥-surface contribution under TE excitation exceeds the case of TM incidence on the entire diameter range by several orders of magnitude. As χ (2) ⊥⊥⊥ is supposed to surpass the other second order susceptibility components (see section . , [ ]), we conclude that SHG under TE excitation is dominated by the normal surface component, whereas under TM excitation the ⊥⊥⊥-surface contribution seems to be negligible over the whole simulated range, which is in agreement with the theoretical prediction.

While the normal surface term vanishes for incident ields along the axis, ⊥∥∥-surface and δbulk contributions are radiated more eiciently than in the TE case. We also see in Fig. . a,iii that the surface term grows more rapidly with increasing diameters when compared relatively to the bulk term. his supports our assumption that SHG from TM illumination on the NW center is due to P (2) ⊥ ∥ ∥ and/or δ -bulk contributions, depending on the diameter range. We show in for diferent NW diameters are qualitatively similar. Like above, the exciting beam is tightly focused on the NW center. he total intensity on the detector in the experiment corresponds to the integrated intensity over the area delimited by the NA of the microscope objective (indicated by dashed circles). As expected due to the symmetry of the system, the intensity in the center of the maps is zero. he data is normalized to the global maximum of each contribution, which reveals the polarization direction of the total collected harmonic emission.

While both, the TE excited P (2) ⊥⊥⊥ contribution and the TM excited P (2) ⊥ ∥ ∥ surface contribution result in mainly "TE" polarized SHG (perpendicular to the NW axis), the TM excited P (2) δ -bulk has a nonlinear emission mainly polarized along the NW axis ("TM" polarized), conirming our earlier considerations. Furthermore, the residual TM-iltered SHG in the surface contributions show, that the igure-of-eight paterns in the polar plots can be more or less open also for a single contribution, as can be seen in the polar plots in δ -bulk -response under TM excitation, for each contribution the same colorscaling was used. In the upper plots TE-polarization (perpendicular to the NW axis) iltered SH emission patern is shown and TM (along NW axis) iltered SH is given in the lower plots. he polar angle corresponding to NA 0.8 is indicated by dashed circles. he orientation of the nanowire with respect to the polar angle is indicated by a bar in the center of the polar plots. he incident polarization and analyzed polarization direction are indicated by small sketches at the igure borders.

. . . Eficiency of SHG Epi-Collection

It may appear rather counterintuitive that SHG in small diameter nanowires occurs due to the δ -bulk contribution, while the surface sources increase with increasing diameter -hence for decreasing surface over volume ratio. Resonant optical modes have an inluence on the relative weight of the nonlinear contributions, as can be seen in igure . a, by a comparison to the linear Mie modes. A second important factor on the eiciency of the SH radiation to the far-ield can be microscopic symmetries of the nonlinear polarization. Actually, strong silencing of farield SHG is expected due to the high symmetry of the nanowires [ , ]. By analyzing the nonlinear polarization vectors (see igures . b), we indeed ind a strong microscopic cancellation for the surface contributions while retardation among the more distant bulk polarization vectors circumvents the cancellation of oppositely radiating dipoles to the far-ield.

To give an illustrative explanation for the observation of bulk efects dominating for small nanowires while surface efects occur only for larger structures, we consider in a simpliied scenario two oppositely oscillating "efective" dipoles for the nonlinear polarizations P (2) ⊥⊥⊥ , P (2)

⊥ ∥ ∥ and P (2) δ . he far-ield radiation intensity through solid angles corresponding to diferent numerical apertures is ploted as a function of the inter-dipole distance between "dp " and "dp " in igure . b. While for small distances cancellation is almost perfect, the radiation becomes observable in the far-ield only for distances corresponding to a major fraction of the wavelength. In contrast to the local surface nonlinear polarization, the bulk contribution is mainly induced by the ield gradient from tight focusing. Hence the average distance of dipoles oscillating with opposite phase will mainly be determined by the focal spot size which is of constant value. In order to verify that this assumption is valid for the cases of P (2) ⊥ ∥ ∥ and P (2) δ in TM excited nanowires, we reduce the nonlinear polarization to two efective dipoles, oscillating with opposite phase. We deine their positions using the weighted averages

r ef. = ∑ i r i |P (2) i | ∑ i |P (2) i | ( . )
of all dipoles P (2) i at r i in two symmetric fractions of the structure as illustrated in igure . a. In this rough approximation we neglect retardation efects in the summation by taking the modulus of each complex polarization vector. he distance between the two efective dipoles is ploted in igure . c as a function of the nanowire diameter. We observe that the surface polarization has always an efective spacing corresponding to the nanowire diameter. he δ -bulk nonlinear polarization on the other hand is found to be characterized by two efective dipoles with a separating distance always larger than the focal spot size. his behavior is in agreement with our initial hypothesis and can explain the observation of surface efects exclusive to large NW diameters, while bulk SHG is observed for small nanowires. We note that this efect is further reducing SHG in small NWs from P (2) ⊥⊥⊥ under TE excitation. Together with the lack of an optical resonance, farield SHG due to χ (2) ⊥⊥⊥ is then entirely suppressed.

In igure . we plot the (normalized) ratio of bulk vs. surface SHG (under TM excitation) as function of the collecting numerical aperture at the example of diameters D = 50 nm (a), D = 100 nm (b) and D = 250 nm (c). We see that generally, a higher sensitivity to the δ -bulk contribution is obtained when the collecting solid angle is decreased. his is due to the more sidewards radiation of surface-SHG compared to the bulk-term (see Fig. . ). On the other hand, the total collected intensity decreases for lower NAs. In consequence for very low collection angles, neither surface nor bulk contributions would be detected. Finally, we observe that the surface contribution is detected more eiciently for smaller NA in the case of large nanowires (see Fig. . c), which further supports the transition from bulk to surface second harmonic generation for increasing NW sizes, eventually resulting in the lip of the polarization.

We note that the nonlinear polarization is calculated from an excitation with a ixed NA 0.8. In backscatering geometry, the excitation is done with the same microscope objective as the collection, which might have an additional impact on the ratio between bulk and surface SHG.

. . Conclusions

In conclusion, our study of SHG from individual SiNWs showed that P (2) ⊥⊥⊥ dominates SHG for TE polarized excitation, resulting in a SH polarization normal to the NW axis, which is in agreement with former observations of χ (2) ⊥⊥⊥ as leading source of second-order susceptibility [ ]. For TM excitation on the other hand, P (2) ⊥⊥⊥ vanishes as soon as the laser spot leaves the NW tips, giving the opportunity to examine the P (2) ⊥ ∥ ∥ surface source and the δ -bulk contribution in more detail. A diameter-dependent lip of the SH polarization was observed in this case, which we studied using numerical simulations. he later conirmed a changeover in the leading contribution from bulk ((E • ∇)E) SHG for small NWs to surface (P (2) ⊥ ∥ ∥ ) SHG for larger NWs with diameters ≳ 150 nm. We concluded that radiation from both P (2)

⊥ ∥ ∥ and P (2) δ is of comparable magnitude and can be individually addressed by simply adjusting the diameter of the nanowire, which is particularly interesting as the δ -bulk contribution is supposed to be diicult to isolate from the other SHG terms from planar surfaces [ , , ]. We showed that, because of their geometry and optical properties, SiNWs provide a highly promising research platform to gain insight in the relations between surface and bulk contributions of SHG from centrosymmetric materials in general. his allow to separate diferent contributing χ (2) terms also for other materials, though accurate quantiication of the χ (2) elements is a diicult task, due to strong silencing of the nanoscopic nonlinear polarization because of the high symmetry of the NWs and many other inluences like the collection eiciency for detection parallel to the excitation direction.

Chapter

Design of Photonic Nanostructures by Evolutionary Optimization I w the focus will move towards the speciic tailoring of optical properties in photonic nanoparticles. he rational design of photonic nanostructures usually consists in anticipating their optical response from simple models or as variations of reference systems, which are then studied systematically. his strategy, however, is oten limited by the capabilities of the initially chosen geometry and even more demanding when diferent objectives are simultaneously targeted. In consequence, it is diicult to ind the optimum geometry for speciic optical functionalities and usually trade-ofs between design simplicity and performance have to be made.

. Design of Nanostructures as Optimization Problem

As it comes to applications, a more convenient approach is to deine the requested optical properties and design a nanostructure that optimally exhibits the desired features. For the later approach, a structure model has to be developed, which, based on a certain set of parameters, can describe in a generic way a large variety of particle geometries. However, this leads to huge parameter spaces which usually cannot be explored systematically within reasonable time. Also trial-and-error is normally not an eicient search strategy.

Root-inding or maximization algorithms seem promising at a irst thought, however it is dificult to describe nanoparticle geometries by analytical, continuous and diferentiable models, required e.g. by derivatives of Newton's method. Additionally, it is likely to obtain a functionlandscape with countless local extrema (see Fig. . a-b), which further restricts the applicability of classical optimization algorithms, since they get stuck in local extreme points and in consequence fail to converge to the global optimum, as illustrated in igure . a at the example of a one-dimensional minimization problem.

. . Evolutionary Optimization

More promising techniques are evolutionary optimization (EO) strategies which, by mimicking natural selection, are able to ind itest parameter sets to a complex non-analytical problem [ ].

In the ield of nanophotonics, evolutionary algorithms have been applied to the maximization of ield enhancement [ -], scatering from plasmonic particles [ -], or the design of hybrid plasmonic/dielectric antennas [ ]. Such methods were also successfully used for more technological applications like electron-beam ield emission sources [ ], waveguide couplers Figure . c gives an illustration of how evolutionary optimization mimics the process of natural selection. A population of individuals is deined ("generation n" in Fig. . c), where each individual is in our case a set of parameters describing an antenna morphology. his population undergoes an evaluation and selection procedure in which weak solutions are eliminated and the itest candidates (i.e. the parameter-sets yielding the best target values) are chosen to "mate" with each other. he target value of the optimization is also called the itness. he following process of reproduction usually consists of a step called crossover, where the parameters are exchanged and mixed -just like DNA in nature -and a mutation step, in which some randomly selected parameters are multiplied by or replaced with random numbers (see igure . c, step "reproduction"). Like this, a new population of individuals is generated, the generation "n + 1". his process of selection, reproduction and evaluation is repeated until some stop-criterion is met, like a time limit, a maximum number of iterations or a maximum number of consecutive generations without further improvement.

. Maximization of SHG from Si Nanoparticles

Since the previous part was focused on SHG from silicon nanowires, in our irst example we will try to ind silicon nanostructures for a maximum second harmonic emission. We will verify the outcome of the algorithm by measurements on samples, fabricated following the design of the evolutionary optimization. . . Numerical and Experimental Methods . . . Structure Model he "population" of particle morphologies to be considered in the computation must be diverse enough to explore, ater several generations, a signiicant fraction of possible solutions. However, this requires a very large number of parameters, signiicantly slowing down convergence. Furthermore, the optimized geometries must remain within the limits of fabrication capabilities and have neither too many nor too small features. For these reasons we use a very simple model, based on four individual silicon elements with variable dimensions and positions, placed on a SiO 2 substrate (n ≈ 1.5) within a limited area. A sketch of the model is shown in Fig. . a. Both, the x-and y-dimension of each antenna is allowed to vary between 60 nm and 160 nm, in steps of 20 nm, corresponding to the precision of a state-of-the-art electron-beam lithographic system. he height H is ixed to 100 nm, equal to the silicon overlayer thickness of our silicon-oninsulator (SOI) substrate. he antenna is placed within an area of 600 ×600 nm 2 . his constrained area limits the accessible parameter-range to reduce complexity and facilitate convergence. Furthermore it ensures that the whole particle is illuminated by the incident ield.
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Exemplary spectra of single silicon-cuboids with dimensions corresponding to the size-limits used in our optimizations are shown in igure . b. For simplicity, the positions are discretized in steps of 20 nm. In order to validate this large stepsize, we calculated spectra for the same structures using diferent discretization stepsizes, which yielded comparable results (see igure . a). Overlapping antennas are allowed, corresponding antennas are fused together accordingly. he number of possible parameter combinations in this model is larger than 1 × 10 15 . We conclude that using the simple model described above, it is already inconceivable to use a brute-force strategy (evaluation of all possible combinations). We will therefore employ an EO algorithm, namely a self-adaptive variant of diferential evolution, "jDE" [ ], implemented in the parallel EO toobox "PaGMO/PyGMO" [ ]. .
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. . E-Beam Lithography on SOI

Samples were fabricated in cooperation with LAAS-CNRS in Toulouse by Dr. Guilhem Larrieu and Dr. Aurélie Lecestre. In a top-down approach, Electron Beam Lithography (EBL) was coupled with anisotropic plasma etching. his was used to patern the designed nanostructures [ , ] on a commercial silicon-on-insulator (SOI) wafer as substrate (Si: nm, BOX: nm). he EBL was carried out with a RAITH writer at an energy of keV on a thin ( nm) negativetone resist layer, namely hydrogen silsesquioxane (HSQ). Ater exposure, HSQ was developed by immersion in 25 % tetramethylammonium hydroxide (TMAH) for 1 min. HSQ paterns were subsequently transferred to the silicon top layer by reactive ion etching in a SF /C F plasma based chemistry down to the buried oxide layer.

In the EMO runs, the minimum feature size was set to 60 nm to avoid removing small features of the structures during lit-of. he structures were discretized and placed on a grid by steps of 20 nm to match the precision of the EBL. SEM images and corresponding mask layouts are shown in 

. . . SHG Modeling and Measurement

he particles are excited with a NA 0.8 air objective and SHG is detected in backscatering by the same microscope objective. A more detailed description of the setup and measurement procedure can be found section . . (see also Fig. . ). he numerical modeling for SHG is the "simple" method for SHG modeling, i.e. using P (2) without the self-consistent correction. It is described in detail and used in the previous sections (see Sec. . ) and, by considering the NA 0.8 numerical aperture for both excitation and collection, relects the experimental procedure.

. . Results and Discussion

SHG raster-scan measurements, like shown in igure . c, were performed on structures, corresponding to itest candidates from consecutive generations of the evolutionary optimization. hree copies of identical particles were measured, with quantitatively reproducible results. he average experimental results (blue, errorbars: standard deviation) are compared to the calculated itness (red), which is shown in igure . . Both datasets are normalized to their maximum values. Measured intensity from three copies of identical structures on the sample, errorbars indicate the standard deviation obtained from the sum of the ive highest intensity values from raster-scan measurements on three copies of each nanoparticle (see raster-scan in Fig. . c). Simulation and measured data from the optimized structures (red and blue, respectively) refer to the botom x-scale. Reference measurements of SHG on rectangular silicon nanowires of diferent widths are shown in green color (top x-scale). Heights are constant with H = 95 nm (simulations: H = 100 nm) for all structures, corresponding to the silicon layer thickness of the SOI substrate.

A good agreement of experiment and prediction can be observed. Furthermore a comparison to rod-like reference structures on the same substrate of variable width and ixed length L = 2 μm), shows an increase by a factor ≳ 2 in SHG emission. Corresponding data is shown in green in Fig. . , scaled equally to the SHG intensity measured from the optimized particles. When the data is normalized considering the intersection of the exciting beam and the structures' geometrical cross section, the enhancement factor compared to the best wire-structure is even as high as ≈ 5 (for the normalization procedure, see also section . . . ).

. Optimization of Plasmonic Antennas: Directional Scatering

A great advantage of the GDM is, that it can be adapted to diferent media in a straightforward way: It is suicient to use the corresponding dielectric function for the description of an arbitrary material. In contrast to time-domain methods, no analytical model for the electric permitivity is required and tabulated data can be used.

Our nano-photonic evolutionary optimization approach is based on the Green Dyadic Method and inherits therefore all conveniences of this technique. In order to demonstrate the versatility of this tool, we will employ EO on a model describing a plasmonic nanoantenna made from gold -in contrast to the previously optimized silicon nanoparticle. EO has manifold potential applications, constrained only by possible limitations of the numerical method for the electrodynamical simulations. We will therefore also target a diferent optimization objective than SHG and try to design a nano-antenna for directional scatering in the following section. ). Each of the blocks are modeled by 2 × 2 × 2 dipoles with a stepsize of d = 20 nm. he free parameters are the positions (x i , y i ) of the blocks, which are bound to an area of 1 × 1 μm 2 , in order to limit the numerical complexity. Additionally, the positions of the blocks have to lie on a grid with steps of 40 nm in order to avoid problems from partly overlapping bricks. Fully overlapping blocks are treated as a single block, hence the material of the antenna is not necessarily ixed.

. . . Problem: Directional Scatering he goal of the optimization is to ind a plasmonic antenna with strongly directional scatering at a certain wavelength. A linearly X -polarized planewave is incident from the top and the scattering from the nanostructure is calculated as described in section . . . . he radiated intensity is separated in two parts: First the intensity I direct , scatered through a solid angle of polar and azimuthal dimensions ∆ϕ = 30 is the target of maximization via EO. Like in the previous section, we use the self-adaptive diferential evolution algorithm "jDE" for this purpose. Because we have as much as 80 free parameters, a large population is necessary to assure a diverse gene pool. herefore we make use of the so-called "generalized island model" [ ], provided by the PaGMO toolkit: Several independent populations are in parallel evolved on diferent "islands", to make use of the multiple CPU cores in modern computers. Ater the reproduction of a new generation, DNA is exchanged between the islands in order to guarantee a high diversity of the total population.

. . Results and Discussion

. . . Analysis of Evolution he full population in our case consists of 10 × 50 individuals, distributed over 10 "islands". We observed that for smaller populations, the optimization does not always converge to the best directionality of R direct ≈ 12. It seems, in the case of a small population the diversity may decrease too rapidly until it gets eventually stuck in a sub-optimal branch of the evolution (which almost shows the best solution, taken from the 50 th generation.

To verify the reproducibility of the method, we performed the same optimization multiple times. For suiciently large populations (≳ 10 × 40 individuals), the EO yields always similarly high directionality ratios of R direct ≈ 12 and also the antenna morphologies are always similar, as can be seen in igure . b.

. . . Analysis of Optimum Antenna

A sketch of the itest candidate from the last generation is shown in igure . a together with a 3D representation of the radiation patern of scatered light, where the incident planewave's wave vector is indicated by a blue arrow. he directionality of the scatering is obvious from the cone of radiation (see also Fig. . ). Interestingly, the result of the optimization visually resembles much the well-known Yagi-Uda antenna design [ ], an antenna geometry which is famous for its capability of directional emission and reception. By a closer look on the nano-antenna, three main functional constituents can be diferentiated, as shown in igure . b: A driving element in the center (blue), a relector on the let (green) as well as a director element on the right end of the antenna (red). he distances of the centers of gravity of relector ∆x rel. ≈ 0.16λ 0 and director ∆x dir. ≈ 0.11λ 0 to the driving dipole correspond to typical suggestions in literature with ∆x rel. > ∆x dir. . Finally, an analysis of the phase of the electric ield's x-component E x reveals a diference of π between the driving element and the director / relector parts, as shown in Fig. . c. his phase diference persists in the propagating ields away from the antenna, resulting in cancellation of the electric ield in backward direction and in a constructive interference of the contributions in forward direction (see Fig. . a). his is in agreement with the Yagi-Uda antenna design template, where interference of phase-shited ields yields a strongly anisotropic scatering [ ].

We note in this context, that Novotny [ ] showed that it is possible to scale antennas to optical frequencies by using an efective wavelength scaling, which considers the electron-plasma occurring in small metal particles. Following this principle, nano Yagi-Uda antennas have been fabricated and their directional emission was conirmed [ ].

Finally we analyzed the antenna performance as function of the position of the director element (red in Fig. . b), shown in igure . b. he evolutionary algorithm could maximize indeed the directionality ratio as far as the director position is concerned. We also ind, that dependent on the director position, the scatering angle can be tuned by around 15 • . Finally we observe that the scatered intensity might be enhanced by a factor of ≈ 2, simply by repositioning the director component. he reason for this inding is, that the presented optimization targeted the directionality ratio of forward scatering with respect to uniformly scatered light -no interest was placed on the intensity of the scatering. In future work, the above results could be compared with an EO of the absolute scatered intensity towards a certain solid angle.

. . Conclusions

In the design of radio frequency antennas, evolutionary optimization is actually common practice [ ], although in corresponding applications the global design of the antenna is normally imposed. he free parameters describe then usually minor variations of a given antenna system. In our approach on the other hand, initially the design of the structure is completely free, within the limits of possible geometries built by 40 equal metal blocks. In conclusion, it is remarkable that an antenna design is found -fully automatically and with very good reproducibility -which corresponds to well known design-principles from radio-frequency antennas. We deduce, that from the results of such optimizations, general design principles can be derived for the optimum geometries with respect to the target properties. In our case, we could verify that common design rules from directional radio-frequency antennas apply also in plasmonic nano-antennas at optical wavelengths. We want to note that the working principle of the EO antenna is also identical to nano Yagi-Uda antennas discussed in a former study on directional plasmonic antennas [ ].

. Multi-Objective Optimization of High-Index Dielectric Particles

In the last section of this chapter, we want to go even one step further. Most studies using evolutionary optimization in the context of nano-optics were limited to the maximization of one target property at a speciic wavelength and polarization. Such single-objective scenarios represent the simplest case of an optimization problem, while a structure that concurrently matches multiple objectives will be in general more diicult to design. Evolutionary multi-objective optimization (EMO) strategies [ , ] are a promising approach to tackle such problems. hey are used for example for the optimization of trajectories of space-crats in order to deliver a maximum possible load to some location in space within reasonable traveling time [ ], for the design of radio-frequency antennas [ ] or for the design of telescope objectives [ ]. In a recent work, genetic multi-objective optimization was used on plasmonic waveguides. A igure of merit describing the waveguide and its robustness against geometrical variations were maximized simultaneously [ ].

EMO could lead to considerable improvements in the design of wavelength dependent (multi-) directional scatering, multiresonant antennas or polarization dependent tailored optical behavior. Nanoantennas possessing multiple resonances, for instance at the fundamental and harmonic frequencies, may also be optimized by EMO to enhance nonlinear efects.

In the following, we present a combination of EMO with the Green Dyadic Method (GDM) for self-consistent full-ield electro-dynamical simulations (see chapter ). We apply the EMO-GDM technique to design dielectric (silicon) nanoantennas that concurrently maximize the scatering at diferent wavelengths, dependent on the polarization of the incident light. With the computed EMO design, Si nanostructures are then fabricated on a SOI substrate and their optical response is measured by confocal dark-ield scatering microscopy. hese experiments show that the scattering properties are in excellent agreement with the optimization predictions. We illustrate the EMO-GDM technique with the scatering eiciency Q scat as target property.

Q scat is deined as the ratio between the scatering cross-section σ scat and the geometrical crosssection σ geom (the "footprint"). Our goal is to maximize the scatering eiciency at a wavelength λ X , for an incident linear polarization along the X -axis, and simultaneously at a second wavelength λ Y , for polarization along the Y -axis. While this problem is mainly chosen for practical reasons -scatering and polarization are easily accessible values in the experiment -applications exist like holographic color-ilters [ ] or color rendering and printing close to the difraction limit. he later has been demonstrated either using plasmonics [ , , ] [ ]). Dielectric nanostructures on the contrary oten support high order and degenerate modes, occurring in a narrow spectral range. herefore an EMO scheme is of particular interest for the design of multiresonant dielectric nanostructures.

. . . Evolutionary Multi-Objective Optimization

In an optimization with a single objective, the initial population is evolved until eventually the parameter-set that yields the best itness is considered the optimum solution (see also section . . and Fig. . c). In multi-objective problems however, the parameters describe not a single objective alone, but yield several target values that are all in parallel subject of the optimization. In our case, the target values are the scatering eiciencies at λ X and λ Y . During the EMO evolution, this itness-vector is therefore stored in an archive and remembered for comparison during the optimization. Once the evolution inished, the inal solution is not trivially determined neither: A whole M-dimensional set of non-dominated solutions exists, with M = (Nr. of objectives -1). his inal set of individuals is called the Pareto-front, which is the set of solutions that cannot be further optimized in one of the objectives, without worsening at least one other target value. here is no guarantee that the inal solution converged to the absolute optimum but, due to the complexity of many problems, EMO is oten the best possible approach. An illustration of EMO at the example of nano-scaterer optimization is shown in Figure . .

. . . EMO-GDM Interfacing

We use the python interface of the parallel evolutionary multi-objective optimization toolkit paGMO/pyGMO [ ] and in particular its implementation of the "SMS-EMOA" algorithm [ ].

A comprehensive introduction to evolutionary multi-objective optimization can be found in reference [ ].

For the electro-dynamical simulations, we use the Green Dyadic method, a volume integral technique in the frequency domain, described in detail in Chap. . It is implemented in fortran to yield high computational speed. All interfacing between the EMO and the electro-dynamical full-ield solver is implemented in python.

. . . Structure Model

Since it has proven to be compatible with electron-lithographic fabrication on SOI, we will use the same model as initially in this chapter for the maximization of SHG. For details, see Sec. 

. . . Measurements by Confocal Dark-Field Microscopy

Confocal optical dark-ield microscopy was performed on a conventional spectrometer (Horiba XploRA). A spectrally broad white lamp was focused on the sample by a ×50, NA 0.45 dark-ield objective, backscatered, polarization iltered and dispersed by a 300 grooves per mm grating onto an Andor iDus CCD. he intensity distribution of the lamp as well as the spectral response of the optical components was accounted for by subtracting the background measured on bare SOI and normalizing the measured spectra to a white reference sample. he outermost individuals on the Pareto-front (particles ( ) and ( )) correspond to equivalent results of a single-objective optimization using one target wavelength and polarization. We observe in these cases, that all four sub-antennas are combined during the evolution to form a single rod-like antenna along the target polarization direction. In agreement with literature, this yields an optimum scatering eiciency with respect to the considered polarization direction (" ": Y , " ": X ) -at the expense of a very low scatering for the respective perpendicular polarization [ ]. To obtain comparably high scatering eiciencies for both polarizations (particle " " and neighbors), the evolution produces cross-like antennas. We note, that the convergence and reproducibility of the EMO of silicon nano-scaterers have been carefully checked by repeatedly running the same optimization with diferent randomized initial populations, which always yielded similar results (test case was λ X = λ Y = 630 nm). By monitoring the Pareto-front during the evolution, we found convergence usually ater less than 100 generations. In order assure convergence in all cases, the optimizations were run for as much 200 iterations.

Q scat (λ X ) Q scat (λ Y ) c)

. . . Doubly Resonant Nanostructures by EMO-GDM

In a next step we study the maximization of Q scat at two diferent wavelengths λ X = 550 nm and λ Y = 450 nm for mutually crossed polarizations. he randomly initialized population of 20 individuals at the beginning of the evolution (red), the Pareto-front (green) and selected structure designs as well as corresponding spectra are shown in igure . a. he individuals at the Pareto-front borders, labeled ( ) and ( ), correspond to single-objective optimizations for λ Y and λ X , respectively. Inspecting the three selected structures in more detail leads to the following observations.

Obviously twin structures like ( ) and ( ) seem to be preferred, because they result in an increase of the overall scatering eiciency. Indeed, structures ( ) and ( ) both consist of two dimer antennas that, if taken individually, have about 30 %, respectively 10 %, lower Q scat at the target wavelength of λ Y = 450 nm compared to the twin structure. Furthermore, the peak positions in the scatering spectra are slightly shited and match the target wavelengths only in the combined antenna.

We point out that the rather symmetric relative positioning of the two dimers is crucial for an optimum scatering eiciency. he coniguration found by the evolutionary optimization is very close to the ideal positions. A marginally stronger scatering can be obtained for both structures ( ) and ( ), when the dimers are placed on the same horizontal axis but the possible gain is as low as about 3 % and 1 %, respectively. At last, particle ( ) in Fig.

. a consists only of a single dimer structure, which we atribute to the constrained maximum antenna size in our model. he maximization of the scatering at the longer target wavelength (λ X = 550 nm) requires a larger amount of material compared to shorter wavelength λ Y . We carried out EMO simulations allowing the algorithm to use larger constituents and found that the scatering eiciency can be further improved and indeed is limited by the constrained amount of silicon.

. . . Polarization Encoded Micro Images

To illustrate the previous results we produced small images, only few micrometers large, composed of EMO-optimized antennas. he absolute scatering cross section σ scat was used as the optimization target. An additional spacing of 250 nm is used between the individual particles, which results in pixel sizes of 850 × 850 nm 2 (≈ 30000 dpi), close to the difraction limit.

Polarization-iltered dark ield images are shown in igure . b. Depending on the orientation of the polarization ilter (let: X , right: Y ), one single arrow is visible, pointing in the corresponding direction while the second arrow vanishes in a blue background. Furthermore, the logos of the CNRS and CEMES laboratory are nested into one image, encoded in perpendicular polarizations. A scheme of the lithographic mask (red) and a SEM image (grey) of a zoom into the logos, indicated by small yellow squares, is shown at the botom. We atribute the slightly reminiscent signatures of the hidden motifs to intensity-variations due to the arrangement of the antennas in grating-like D-arrays.

. . . Tuning the Resonances of Silicon Nanoantennas

For a further illustration of the EMO-GDM technique, we perform several multi-objective optimizations for diferent combinations of target wavelengths. he wavelength λ X = 550 nm is ixed, while the other (λ Y ) is varied from 450 nm to 650 nm in steps of 10 nm. Each simulation consists of an initial population of random individuals, which is evolved for generations. At the end of the evolution, the structure with the most similar Q scat (λ X ) and Q scat (λ Y ) is chosen from each simulation (like structure ( ) in Fig. . a).

In Figure . , we show the resulting structures (a) and their GDM-simulated spectra for X -and Y -polarized incidence (b). he diferent λ Y are indicated by a color coding from blue (λ Y = 450 nm) to red (λ Y = 650 nm). As explained in the previous subsection, for increasing wavelengths, the four sub-antennas tend to combine in only two structures (instead of more constituents for the shortest wavelengths), which is due to the limited amount of allowed material. For the same reason, at wavelengths above 600 nm all sub-antennas are even merged into one single structure, and for the longest wavelengths the available material is not suicient to yield a satisfactory maximization. Indeed, if more material is allowed for the algorithm to be used, a distinct peak in the scatering spectra can be obtained also for larger wavelengths, as shown in By a closer look on the individual structures, we observe that the "symmetric" optimization with λ X = λ Y = 550 nm results in a non-symmetric particle. We would intuitively expect a pointsymmetric antenna (i.e. of S 2 symmetry group) to be ideally suited for equally strong scatering a) λ Y = 300 nm 450 nm 460 nm 470 nm 480 nm 490 nm 500 nm 510 nm 520 nm 530 nm 540 nm 550 nm 560 nm 570 nm 580 nm 590 nm 600 nm 610 nm 620 nm 630 nm 640 nm 650 nm c) λ Y = 300 nm 450 nm 460 nm 470 nm 480 nm 490 nm 500 nm 510 nm 520 nm 530 nm 540 nm 550 nm 560 nm 570 nm 580 nm 590 nm 600 nm 610 nm 620 nm 630 nm 640 nm 650 nm under both, X -and Y -polarization. he evolutionary optimization, being a non-analytic routine, should at least result in some "quasi"-symmetric structures, which is however not the case here. As before, this can be explained by the inite amount of material available in our structure model. Because the T-shaped part of the antenna already consists of three of the four sub-antennas, the fourth sub-antenna is added as a square block of maximum allowed dimension, and it is impossible for the algorithm to generate a symmetric structure within the given constraints.

A simulation with λ X = λ Y = 450 nm results in quasi-symmetric structures, like intuitively expected (see Fig. . c). Again, for λ X = λ Y = 550 nm, interference between both parts of the antenna results in an optimum scatering eiciency at the target wavelength and therefore exact positioning of the constituents is crucial: We ind from a look at the scatering eiciency as function of the X /Yshit of the T-shaped sub-antenna (shown in Fig. . c), that the relative positioning is indeed the ideal solution, as a displacement in any direction results in a decrease of either Q scat,X or Q scat,Y . A change of the spacing between the T-shaped and squared sub-structures by ∆x = 100 nm for example, already results in a decrease of more than 5 % in scatering eiciency for at least one polarization.

In summary, we emphasize that despite the simplicity of the designs generated by the EMO, all the parameters (sizes, positions, distances) were nearly perfectly optimized by the evolutionary algorithm. he EMO-GDM technique is able to ind ideal nanostructures even within narrow constraints on parameters like the size, the available amount of material or discrete step-sizes for compatibility with nanofabrication technology. We applied the method on silicon nanostructures which are are of great interest as alternatives to plasmonic particles. Due to their multi-modal optical behavior it is oten diicult to ind appropriate geometries. For this problem, we successfully applied an evolutionary optimization scheme and inally veriied the results experimentally with very good agreement to the predictions.

. Conclusions

In conclusion, evolutionary (multi-objective) optimization coupled to full-ield electro-dynamical simulations is very promising for the automatic design of many diferent kinds of photonic nanostructures. We successfully applied the method for the optimization of SHG from silicon nanoparticles, on a plasmonic antenna for directional scatering and for the design of polarization-dependent dual-resonant silicon nano-pixels. We demonstrated that an evolutionary optimization approach is able to realize complex photonic characteristics like dual-resonant behavior even within a very simple and strongly constrained structure-model. For a maximum compatibility with fabrication methods, technological limitations were included as boundary conditions in the model. Due to these technological considerations, we were able to produce samples on SOI substrate using the outcome of the optimizations for a lithographic mask. With SHG measurements and polarization iltered dark-ield microscopy we inally conirmed the agreement between samples and simulations.

A great advantage of EO/EMO coupled to GDM is its lexibility and the ability to self-adapt to arbitrary limitations. Additional constraints can easily be implemented because no analytical treatment of the input model needs to be performed. Inadequate structures, inconsistent with the constraint functions, are being discarded automatically during the evolution and only technologically convenient designs are generated. he method can also be easily extended for the rigorous design of metasurfaces, where interference between the unit cells needs to be considered. Periodic boundary conditions can be included in the GDM by means of an appropriate Green's Dyad (see section . . . ). In this way, the distance between substructures on the metasurface may also be included as a free parameter in the optimization. Evolutionary (multi-objective) optimization of photonic nanostructures has a tremendous potential for many kinds of possible applications both, in near-and far-ield nano-optics for example in the design of multiresonant or broadband particles for light harvesting, or of nonlinear nanostructures.

Chapter Conclusion

P

, made of noble metals, sufer from dissipative losses due to a large imaginary part in the dielectric function. High index dielectric materials have recently atracted atention as possible low-loss alternatives. he advantages and complementary characteristics of the two material platforms were subject of a detailed review in chapter and motivated further investigations on silicon-based nanostructures, particularly with regard to non-linear optical phenomena.

In chapter , a brief introduction to classical electrodynamics was given before particular focus was set on the numerical description of light-mater interaction at a sub-wavelength scale. he Green Dyadic Method was presented as versatile numerical framework, applicable to both, plasmonic and high-index dielectric nanoobjects. Furthermore, ater an introduction to nonlinear optics and in particular to surface second harmonic generation, an expansion of the GDM for the self-consistent description of nonlinear efects was described and applied to selected examples.

In the following, the optical response of high-index dielectric nanostructures in the visible and near-infrared spectral range was studied at the example of silicon nanowires in chapter . At irst, the linear optical properties were summarized and the appearance of resonant optical modes was explained. In this context, we compared Mie heory to GDM simulations in order to justify the further excessive use of GDM simulations for the interpretation of the measurement results. We studied in particular the inluence of the geometrical section of silicon nanowires on their modal response and found that circular, hexagonal and squared cross sections provide a very similar resonant behavior for lower-order modes (up to orders of about 3 or 4), before more severe deviations occur at higher order resonances. Subsequently, the nonlinear optical response of SiNWs in the spectral region of visible wavelengths was studied in great detail. We found a multiphoton induced photoluminescence as well as second harmonic generation, which we showed is dependent on the existence of resonant modes and can be enhanced by more than two orders of magnitude, compared to SHG from a bulk silicon surface. In agreement with literature, we deduced from experimental observations, that χ (2) ⊥⊥⊥ leads to the strongest contribution to SHGsimilar to other centrosymmetric materials like gold. However, dependent on the nanowire size and the incident polarization, SHG in SiNWs was found to contain several diferent contributions and is either due to surface SHG or as a consequence of strong ield gradients in the bulk-core of the nanowires. In conclusion, due to their geometry nanowires ofer an interesting platform for the distinction of diferent contributions to surface SHG. his is of particular interest since on planar surfaces, the bulk contribution is diicult to isolate from the surface terms, which can be achieved more easily using nanowires.

In the last chapter (Chap. ), we pursue an alternative approach for the tailoring of optical properties in plasmonic and dielectric nanostructures. Commonly, a reference system is studied e.g. by small variations of its design, in order to tailor the optical properties. his, however, is an inherently limited approach since the optical properties are more or less imposed by the initial choice of the particle geometry. In order to overcome these limitations, we employ evolutionary optimization algorithms, coupled to the GDM, on a generic structure model. We showed on diferent examples the remarkable potentials of such methods. By including technological constraints, we inally succeeded to actually fabricate the structures, designed by evolutionary optimization and verify the outcomes of the algorithm.

Evolutionary optimization clearly has tremendous potentials for direct applications, since any possible kind of constraint like technological limitations can be included in optimizations of many diferent possible problems. However, evolutionary strategies might also be exploited to design particular platforms for more fundamental investigations. For example the maximization of SHG originating from individual χ (2) elements might be helpful in the quantiication of the components of nonlinear susceptibility tensors. Another possible application could be the evolutionary design of eicient magnetic ield enhancement with a concurrently suppressed electric ield amplitude in nanometer small cavities. Such system would be an interesting platform for research on magnetic-ield driven phenomena. In conclusion, countless possible applications of EO exist which are limited only by the capacities of the numerical method for the description of the optimization target.

Chapter

French Summary / Résumé Français Par la suite un résumé de la thèse sera donné, chapitre par chapitre, en langue française.

Propriétés Optiques Linéaires et Non-Linéaires de Nanostructures Diélectriques à Haut Indice de Réfraction .

Introduction et Motivation

Seulement des éléments de la bibliographie du chapitre seront ici donnés. Pour une liste exhaustive des références, le lecteur est renvoyé au chapitre entier en langue anglaise.

La nano-optique est un domaine de recherche qui atire de plus en plus l'atention des chercheurs du monde entier. En général, la nano-optique traite les efets qui se produisent à l'interaction de la lumière avec la matière à des dimensions inférieures à la longueur d'onde. Ainsi -pour la lumière du visible et du proche infrarouge -nous nous trouvons à l'échelle du nanomètre. Dans ce chapitre, un aperçu des systèmes de diférents matériaux sera donné et le progrès de la recherche actuelle sur les nano-structures photoniques et de leurs applications sera résumé. Une comparaison entre les structures plasmoniques et celles aux diélectriques à haut indice de réfraction motivera des investigations plus approfondies sur ce dernier système de matériel. Enin, nous allons donner un bref aperçu des efets non-linéaires et de leurs applications dans la nano-optique.

. . Diélectriques à Haut Indice vs. Plasmonique . . . Plasmonique La principale force motrice en nano-optique est probablement le domaine de la "plasmonique" [ , ]. L'interaction des ondes électromagnétiques avec des métaux peut lancer des oscillations collectives des électrons libres. La constante diélectrique des métaux est négatif et par conséquence les vecteurs d'onde à leur intérieur sont imaginaires. Les champs sont donc évanescents et coninés dans une petite région à la surface, ce qui s'appelle "l'efet de peau" [ ]. En conséquence, les oscillations du collectif des électrons se propagent le long de la surface, ce qui s'appelle polaritonplasmons de surface (Anglais: Surface plasmon polaritons, "SPP") [ -]. En outre, dans de petites particules de métal, la propagation des SPP est entravée à cause du coninement spatial et des modes localisés apparaissent, nommés en Anglais "localized surface plasmon (LSP) resonances". Ces LSPs permetent de serrer la lumière en volumes de taille netement plus petite que la longueur d'onde, et loin en dessous de la limite de difraction. En plus des fortes exaltations du champ locale apparaissent [ ]. Dans le domaine spectral visible les tailles caractéristiques se trouvent entre plusieurs 10 nm et quelques 100 nm. Grâce à leur forte réponse aux champs électromagnétiques du visible, les particules plasmoniques sont souvent appelées "antennes optiques" qui, par des variations de géométrie, peuvent être taillées sur mesure pour répondre aux besoins variés (Anglais: "tailoring" of optical properties) [ -]. Pour une introduction approfondie sur la plasmonique, nous renvoyons le lecteur à la référence [ ].

. . . Nanostructures de Diélectriques à Haut Indice Toutefois, l'atention de ce travail sera principalement ixée sur un autre type de nanostructures: Des particules composées de diélectriques à haut indice de réfraction. En règle générale, ces dernières comprennent des matériaux semi-conducteurs tels que le germanium ou le silicium (indice de réfraction du Si dans le visible: n ≈ 3.5 -4). En conséquence, la diférence décisive en comparaison avec la plasmonique est l'absence de charges libres. Il en résulte une partie réelle de la fonction diélectrique qui -contrairement aux métaux -est positive ce qui signiie que la lumière peut se propager eicacement à l'intérieur du matériau. Irradié par des champs électromagnétiques, le matériau est polarisé à cause d'un déplacement des électrons liés par rapport à leurs atomes. Cete polarisation électrique est proportionnelle au contraste diélectrique avec l'environnement (voir aussi annexe . . ).

Par ailleurs, dans des structures avec des dimensions inférieures ou comparable à la longueur d'onde de la lumière incidente, des fortes résonances optiques apparaissent [ , ], comparable aux résonances plasmons, décrites précédemment. Figure . a démontre une image de microscopie en champ sombre des nanoils de silicium de diférente largeur. Le changement de couleur est due aux résonances optiques qui varient spectralement en fonction de la taille du nano-objet.

. . . Comparaison des Plates-Formes

Comparons maintenant les diférences entre les nano-particules plasmoniques et diélectriques ain d'exposer les points forts et les désavantages des deux systèmes de matériels.

Exaltation du champ électrique La spectroscopie à champ exalté est l'une des applications principales des particules plasmoniques. Ain de stimuler les signaux faibles de quelques ou même d'une unique molécule(s), une exaltation élevée de champ électrique est indispensable. Pour l'essentiel, l'exaltation du champ électrique au voisinage de particules de haut indice de réfraction est proportionnelle au contraste diélectrique entre la particule (ϵ r,1 ) et son environnement (ϵ r,0 ). Ceci est le résultat des conditions de continuité à des interfaces diélectriques (voir annexe A. ) Pertes Un désavantage majeur des nano-structures plasmoniques, ce sont les pertes importantes liées à la partie réelle négative et à la partie imaginaire large de la permitivité diélectrique des métaux. Ces pertes sont responsables de dissipation importante. Il en résulte une forte production de chaleur qui peut être mortelle par exemple pour des biomolécules fragiles en spectroscopie à champ exalté. Bien que les diélectriques à haut indice donnent des exaltations de champ 

E ∥,0 = E ∥,1 ϵ r,0 E ⊥,0 = ϵ r,1 E ⊥,1 . ( 

. . Efets Non-Linéaires

Toutes les propriétés et les applications des nano-particules photoniques décrites précédemment sont basées sur une réponse optique linéaire. Par contre, si l'amplitude d'un champ électromagnétique excitant est assez élevée, des efets optiques non-linéaires se produisent, qui peuvent ofrir une large gamme de fonctionnalités uniques au-delà de l'optique linéaire. L'efet optique nonlinéaire le plus populaire probablement est la génération d'harmoniques [ ]. Parmi cela, les exemples les plus marquants sont la génération de seconde harmonique (Anglais: Second harmonic generation, "SHG", illustré sur la igure . a) et la génération de troisième harmonique (Anglais: hird harmonic generation, "THG", igure . c): Deux (ou trois) photons d'une longueur d'onde fondamentale (λ 0 ) sont convertis de manière cohérente à un seul photon avec λ SHG = λ 0 /2 (ou λ THG = λ 0 /3).

Outre la génération d'harmoniques, une multitude d'autres phénomènes non-linéaires existe, parmi eux le mélange à quatre ondes (Anglais: Four-wave mixing, "FWM", igure . d), utilisé par exemple dans les oscillateurs et ampliicateurs paramétriques optiques [ , ], ou la photoluminescence induite par deux photons (Anglais: Two photon induced photo-luminescence, "TPL", voir igure . b). Ce dernier est une conversion incohérente de deux photons incidents à un photon de longueur d'onde plus courte (avec λ 0 > λ TPL > λ 0 /2), impliquant des états intermédiaires réels avec des durées de vie limitées [ , ].

le processus se produit instantanément, il n'y a pas d'états intermédiaires

. Simulations Numériques de Phénomènes Nano-Optiques

Les ondes électromagnétiques dans une gamme de longueur d'onde de l'ultraviolet à l'infrarouge lointain (d'environ 10 nm à plusieurs 10 μm) sont généralement appelées lumière, y compris la lumière visible d'environ 400 nm à 700 nm. Dans le chapitre , des efets ainsi que leur modélisation sont discutés qui se produisent à l'interaction de la lumière avec des particules plus petites que la longueur d'onde.

. . Description de la Réponse Linéaire .

. . Définition du Problème

En règle générale, l'objectif en nano-optique est de trouver le champ électrique (et / ou magnétique) dans une nano-structure donnée sous excitation externe, comme illustré dans la igure . a. La nano-structure est normalement placée dans un milieu homogène et se trouve souvent audessus d'un substrat. La réponse d'une nanoparticule à un éclairement est obtenue en résolvant les équations de Maxwell (voir équations ( . )) pour le système donné. Dans la première partie de ce chapitre, nous présentons une approche pour la résolution numérique des équations de Maxwell par intégrales de volume. Elle est basée sur des fonctions dyadiques de Green, pour cete raison appelée "méthode dyadique de Green" (Anglais: Green Dyadic Method, "GDM"). Dans la deuxième partie, nous donnerons une introduction à l'optique non-linéaire et nous présenterons une extension du modèle numérique pour la description de la génération de seconde harmonique. 

(∆ + k 2 )E = - 1 ϵ 0 ϵ r ( k 2 + ∇∇ ) P ( . )
qui inalement conduit à une équation "Lippmann-Schwinger" optique

E(r, ω) = E 0 (r, ω) + ∫ G 0 (r, r ′ , ω) • χ E(r ′ , ω)dr ′ . ( . )
Cela relie le champ électrique incident (E 0 ) et la réponse de la structure (E) de manière autocohérente et peut être résolue par la méthode des fonctions de Green (voir par exemple [ , chapitre . ]). Pour décrire des champs en espace 3D, des tenseurs de Green équivalents aux vecteurs sont déinis, appelés fonctions dyadiques de Green (G 0 dans éq. ( . )).

Pour une résolution numérique du problème, la nanoparticule cible est discrétisée sur un maillage cubique en N points de volume d 3 . Pour chacun d'eux une réponse dipolaire est supposée. Cete approche conduit inalement à un système de 3N équations couplées qui relie le champ électrique incident E 0 au champ dans la particule E en réponse à l'excitation:

E 0 = M • E.
( . )

Le champ dans la structure peut alors être obtenu par une inversion de la matrice M qui est composée de sous-matrices de rang 3 × 3

M i j = δ i j I -χ i (ω)V i G(r i , r j , ω). ( . )
Ici, I est le tenseur unitaire cartésien, δ i j le symbole de Kronecker et χ la susceptibilité électrique relative à l'environnement. V i est le volume de chaque cellule, donc dans notre cas V i = d 3 . Un grand avantage de la GDM est que la présence d'un substrat peut être prise en compte par une fonction dyadique de Green appropriée, et donc à presque aucun coût de calcul supplémentaire. G 0 dans l'équation ( . ) est simplement remplacé par une dyade G plus générale, qui est composée d'un terme de vide et d'un terme de surface

G(r i , r j , ω) = G 0 (r i , r j , ω) + G surf (r i , r j , ω).
( . )

Pour une expression analytique, voir par exemple [ ]. Pour tenir compte de la divergence de la fonction de Green à r i = r j , un système de normalisation Toutefois, en réalité le potentiel n'est pas harmonique et l'approximation linéaire échoue dès que les taux de photons sont vivement élevés. Par conséquent, si un médium est excité par un champ électromagnétique de très forte amplitude, les oscillations d'électrons deviennent sensibles à la non-linéarité du potentiel et des nouveaux phénomènes se produisent. Dans le cadre d'une approche perturbative, ce genre d'efets non-linéaires peut être décrit par une expansion de type "Taylor" de la polarisation électrique: ) où les susceptibilités χ (n) sont des tenseurs du rang n + 1 (n est l'ordre de la non-linéarité). réseaux cristallins non symétriques. Cela se trouve par exemple dans des semiconducteurs III-V (GaAs, GaP, InP, …) ou dans d'autres matériaux composés, tels que LiNbO 3 . Cependant, il est possible d'obtenir de la SHG depuis des cristaux centrosymétriques (comme le silicium) à partir des ruptures locales de la symétrie du réseau. Ceci peut être réalisé par exemple au niveau des surfaces, ou en raison de forts gradients de champ. La polarisation électrique de deuxième ordre de surface se compose de trois éléments indépendants [ ]: Le premier ordre non-nul des contributions par gradients de champ (appelées "contributions du volume"), comprend quatre termes sources [ , ]: ) et qui, d'après équations ( . ), permetent de calculer directement la polarisation de surface de second ordre.

G 0 (r i , r i , ω) = I C (ω) ( 
P tot. = ϵ 0 χ (1) E Linear, =P (1) + ϵ 0 χ (2) E 2 . Order, =P (2) + ϵ 0 χ (3) E 3 . Order, =P (3) + . . . ( . 
P (2) sf = P (2) ⊥⊥⊥ + P (2) ⊥ ∥ ∥ + P (2) ∥ ∥⊥ ( . ) qui sont P (2) ⊥⊥⊥ = χ (2) ⊥⊥⊥ [E 2 ⊥ ] e ⊥ ( . a) P (2) ⊥ ∥ ∥ = χ (2) ⊥ ∥ ∥ [E 2 ∥ ] e ⊥ ( . b) P (2) ∥ ∥⊥ = χ (2) ∥ ∥⊥ [E ∥ E ⊥ ] e ∥ . ( . 
P (2) sf,bulk = P (2) γ + P (2) β + P (2) δ + P (2) ζ ( . ) où P (2) γ = γ ∇[E 2 ] ( . a) P (2) β = β E[∇ • E] ( . b) P (2) δ = δ [E • ∇]E ( . c) P (2) ζ ,i = ζ E i ∇ i E i . ( . 
E ⊥ = E • e ⊥ E ∥ = E • e ∥ . ( . 
Or, l'inluence de la présence de la nanoparticule à la fréquence harmonique doit être prise en compte: Nous devons calculer le champ auto-cohérent induit dans la nanostructure par la polarisation non-linéaire. Dans une première étape, nous considérons les polarisations nonlinéaires P (2) (r, 2ω) comme la source d'un "champ incident efectif" à la fréquence harmonique. A l'exemple de χ (2) ⊥⊥⊥ cela donne

E (2) 0,⊥⊥⊥ (r, 2ω) = 1 ϵ 0 ∫ V G 0 (r, r ′ , 2ω)P (2) ⊥⊥⊥ (r, 2ω)dr ′ ( . )
avec le tenseur de Green G 0 à la fréquence harmonique.

Nous supposons qu'il n'y a pas de champ incident externe E 0 (2ω) à la longueur d'onde harmonique et donc que E (2) 0,⊥⊥⊥ est le seul champ à 2ω. Dans une deuxième étape, nous propageons le "champ incident efectif" à l'intérieur de la particule -à la fréquence harmonique -comme décrit ci-dessus

E (2) sc,⊥⊥⊥ (r, 2ω) = ∫ V M -1 (r, r ′ , 2ω)E (2) 0,⊥⊥⊥ (r ′ , 2ω)dr ′ . ( . )
M -1 est l'inverse de la matrice déinie par équation ( . ). L'indice "sc" signiie qu'il s'agit du champ auto-cohérent (Anglais: "self-consistent"). Enin, nous obtenons la polarisation nonlinéaire auto-cohérente par une multiplication avec la susceptibilité électrique linéaire, à la fréquence harmonique ⊥⊥⊥ dans cet exemple) est calculée. Cela est fait par la sélection des point de maillage sur la surface dans un premier pas et puis par la détermination des vecteurs localement normaux à la surface (e). Avec ces vecteurs, la polarisation non-linéaire peut-être calculée depuis le champ fondamental au même endroit pour chaque point de surface (f). Cete polarisation non-linéaire est ensuite re-propagée de façon auto-cohérente en utilisant la susceptibilité du champ à la fréquence harmonique (g). Enin, la polarisation non-linéaire de second ordre peut être propagée vers le champ lointain (h) ain de calculer par exemple des plots polaires de la SHG (i) capturée par une certaine aperture numérique (l'angle solide en vert dans (h) correspond à une NA 0.8). L'inset dans (i) est un schéma illustrant l'orientation du dimère de silicium par rapport au plot polaire.

P (2) sc,⊥⊥⊥ (r, 2ω) = χ (2ω) • E (2) sc,⊥⊥⊥ (r, 2ω) ( . ) 
Une illustration du calcul de SHG par GDM est donnée, étape par étape, dans la igure . à l'exemple de P (2) ⊥⊥⊥ .

Contributions du Volume Pour être applicable dans la manière la plus générale possible, les contributions du volume à la SHG de surface sont calculées numériquement en utilisant des dérivés par diférences inies. Nous utilisons notamment le diférentiel central [ , chapter . ]:

∂ f (x ) ∂x = lim ϵ →0 f (x + ϵ ) -f (x -ϵ ) 2ϵ ≈ f (x + ∆x ) -f (x -∆x ) 2∆x ( . )
Dans le cas de la GDM ∆x sera généralement égal à la taille du pas de discrétisation.

. Réponse Optique Non-Linéaire de Nanofils de Silicium

Dans le chapitre nous étudions en détail la réponse optique non-linéaire de nanoils individuels de silicium. Particulièrement la génération de seconde harmonique est détaillée. Puisque la SHG est interdite dans le volume du silicium, la surface est la seule source de seconde harmonique. Il se trouve que les nanoils sont des candidats prometeurs pour renforcer cet efet, car le rapport supericie/volume élevé ainsi que des champs fortement exaltés par des résonances optiques sont en faveur de la SHG de surface.

. . Réponse Linéaire Avant d'étudier en détail les phénomènes optiques non-linéaires dans les nanoils de Si, nous élaborons leurs propriétés linéaires. La réponse de nanoils aux champs électromagnétiques est traité analytiquement dans le cadre de la "théorie de Lorenz-Mie" (ou simplement la théorie de Mie) développée à l'origine pour des particules sphériques [ ]. La héorie de Mie peut être adaptée aux cylindres (de longueur ininie) en utilisant des harmoniques cylindriques vectorielles pour la série d'expansion du champ (voir par exemple [ ]).
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Il se trouve que des résonances optiques se produisent dans de petits cylindres d'indice de réfraction supérieur à celui de l'environnement. En Anglais ces résonances sont appelées "leaky mode resonances" (LMR). Dans une image intuitive, le champ électrique subit des rélexions multiples à l'intérieur de la particule et des résonances se produisent quand ces "circulations de lumière" interfèrent de manière constructive. Pour un support illustratif de cete explication, voir les champs bouclés dans la igure . . Par conséquent, les positions spectrales λ LMR des LMRs sont à peu près proportionnelles au périmètre du nanoil

k • λ LMR ∝ n • 2Rπ ( . )
où k est un numéro entier et n l'indice de réfraction du cylindre de radius R. Dans la igure . , les intensités des champs électriques et magnétiques à l'intérieur d'un nanoil de longueur ininie sont présentés pour les LMRs des trois premiers ordres. L'excitation par ondes planes à λ = 600 nm est polarisée perpendiculairement (transversal électrique, "TE") ou parallèlement (transversal magnétique, "TM") à l'axe du il. On peut voir à partir des échelles de couleurs, qu'en résonance le champ électrique à l'intérieur du nanoil est fortement exalté .

Le rapport de supericie/volume élevé, aussi que l'exaltation du champ proche, peuvent stimuler la réponse non-linéaire de nanoils de silicium. À cause de ces conditions favorables, nous allons étudier de façon plus détaillée les efets non-linéaires depuis des nanoils de silicium.

. . Réponse Non-Linéaire Tous les résultats ont été obtenus sur des nanoils de silicium cristallin, crû par la méthode "vapeur-liquide-solide" (VLS) (croissance selon la direction [ ]). La méthode VLS est une technique chimique de croissance en phase vapeur, dans laquelle les nanoils sont crû sur un substrat à partir d'un gaz précurseur, médiée par les goutes catalytiques (habituellement de l'or) de taille nanométrique [ ]. Les nanoils peuvent ensuite être caractérisées par exemple par microscopie à force atomique (Anglais: Atomic force microscopy, "AFM") ou par spectroscopie en champ sombre (Anglais: Dark ield, "DF") en comparaison avec la théorie de Mie. Voir igure . pour des exemples.

Par la suite, trois groupes de nanoils seront étudiés. Les dimensions pour les plus petits nanoils sont choisies telle qu'une seule résonance est présente dans le visible "NW ". Cete résonance est non dégénérée et apparaît seulement sous excitation "TM", i.e. en polarisation parallèle à l'axe du il. En "TE" (polarisation perpendiculaire au nanoil), il n'y a aucun mode dans la gamme spectrale du visible. Le deuxième groupe étudié, "NW ", a une résonance TM 01 autour de 700 -800 nm et un second mode dégénéré (TM 11 / TE 01 ) au-dessous de 500 nm. Enin, un d'ailleurs ainsi que à leur voisinage troisème groupe de très grands nanoils "NW ", avec des diamètres > 200 nm, est caractérise, qui produit plusieurs résonances à travers le visible. Des spectres typiques des nanoils étudiés sont présentés dans la igure . b.

. . . Dispositif du Microscope Non-Linéaire Le dispositif expérimental est composé d'un laser Ti:Sa accordable, émetant avec une largeur d'impulsion d'environ 150 femtosecondes (fs) et un taux de répétition de 80 MHz. Le faisceau du laser est focalisé sur l'échantillon par une ouverture numérique NA 0.8 (Anglais: Numerical aperture, "NA"). Il est utilisé à des longueurs d'onde autour de λ 0 = 800 nm. La puissance moyenne à l'arrière de l'objectif est dans l'ordre de 10 mW. En utilisant une lame demi-onde, la polarisation linéaire de la lumière incidente peut être contrôlée. Étant déposé sur une table piézo, l'échantillon est positionné avec une précision de ≈ 1 nm. L'émission non-linéaire est collecté en rétro-difusion et inalement réléchie vers le détecteur par une lame séparatrice dichroïque. Le détecteur est soit un photomultiplicateur connecté à un ampliicateur synchrone, ou un spectromètre avec un capteur CCD de haute sensibilité. Filtres de couleur à bande étroite sont introduits devant le détecteur ain de sélectionner des parties particulières d'émission non-linéaire (par exemple la SHG). ⊥⊥⊥ est toujours la contribution principale à la SHG. Ce comportement est en outre conirmé par des simulations numériques.

En résumé, la SHG dans les nanoils de petits diamètres est due à une contribution de volume, tandis que les sources de surface augmentent avec un diamètre croissant -donc pour une diminution du rapport supericie/volume. Malgré le fait que ceci est plutôt contre-intuitif, le phénomène peut être expliqué par une annulation microscopique de la polarisation non-linéaire, à cause d'une phase localement opposée [ , ]. En efet, en analysant les vecteurs de la polarisation non-linéaire, on constate une forte annulation microscopique pour les contributions de surface. Cete annulation s'afaiblit quand le diamètre du nanoil augmente. uant à la contribution δ du volume par contre, des efets de retard contournent partiellement l'annulation du rayonnement vers le champ lointain.

. Optimisation Évolutionniste de Nano-Structures Photoniques

Dans le chapitre nous nous éloignons des propriétés optiques fondamentales et l'accent est mis sur la conception et l'adaptation d'atributs optiques de nanoparticules. La conception de nanostructures photoniques consiste habituellement à anticiper leur réponse optique à partir de modèles simples ou par des variations de systèmes de référence. Ces systèmes sont ensuite étudiés systématiquement. Cete stratégie est limitée par les capacités de la géométrie choisie initialement. En outre, si diférents objectifs sont simultanément ciblés, le problème devient encore plus compliqué (voir aussi igure . c). Des techniques plus prometeuses sont des stratégies d'optimisation évolutionniste (Anglais: Evolutionary optimization, "EO"). Ces méthodes, imitant la sélection naturelle, sont en mesure de trouver les plus aptes ensembles de paramètres face à un problème complexe [ ] (voir la igure . c). Dans le domaine de la nano-optique, les algorithmes évolutionnistes ont été appliqués ain de maximiser l'exaltation de champ proche [ -] ou la difusion de lumière depuis des particules plasmoniques [ -], ainsi qu'à la conception d'antennes hybrides plasmoniques/diélectriques [ ], pour citer quelques exemples.

. . Algorithmes d'Optimisation Évolutionniste

Dans l'EO, une population d'individus est déinie ("génération n" dans la igure . c), où chaque individu constitue un ensemble de paramètres pour la fonction de l'objectif. Dans notre cas, les ensembles de paramètres décrivent des morphologies d'antenne nano-photonique. Cete population subit une procédure d'évaluation et de sélection dans laquelle les solutions faibles sont éliminées. Ensuite, les candidats les plus aptes (i.e. les ensembles de paramètres donnant les meilleures valeurs cibles) sont choisis pour la reproduction. Ce dernier processus consiste en une étape appelée croisement (Anglais: Crossover), où les paramètres sont échangés et mélangés , et une étape de mutation, dans laquelle certains paramètres choisis au hasard sont remplacés par des nombres aléatoires (voir igure . c, étape "reproduction"). De cete manière, une nouvelle population d'individus est générée. Ce processus de sélection, de reproduction et d'évaluation est répété jusqu'à ce qu'un critère d'arrêt soit satisfait.

. . Optimisation de Nano-Antenne Directionnelle Ain de démontrer l'optimisation évolutionniste en nano-photonique, nous employons l'EO sur un modèle de nano-antenne plasmonique, fabriqué avec de l'or. Avec ceci, nous voulons concevoir une nano-antenne pour la difusion directionnelle de la lumière. Les candidats les plus aptes au cours de l'optimisation sont présentés dans la igure . ainsi que les diagrammes de rayonnement de la difusion élastique. La lumière incidente est réalisée par une onde plane de λ 0 = 800 nm, polarisée linéairement selon la direction de difusion souhaitée. (a-f) montrent des itérations au cours des premières 20 générations, et (g) montre la solution inale, trouvée après 50 itérations.

L'antenne inale montre une difusion fortement directionnelle et son principe de fonctionnement est égal au fonctionnement des antennes directionnelles utilisées pour les fréquences radio. Sachant qu'initialement la conception de la structure est complètement libre, il est remarquable qu'une disposition d'antenne ait été trouvée -tout à fait automatiquement et avec comme les gènes dans la nature une très bonne reproductibilité -qui correspond aux principes de fonctionnement bien connus provenant d'antennes des fréquences radio.

. . Optimisation de Pixels Double-Résonants a) λ Y = 300 nm 450 nm 460 nm 470 nm 480 nm 490 nm 500 nm 510 nm 520 nm 530 nm 540 nm 550 nm 560 nm 570 nm 580 nm 590 nm 600 nm 610 nm 620 nm 630 nm 640 nm 650 nm c) λ Y = 300 nm 450 nm 460 nm 470 nm 480 nm 490 nm 500 nm 510 nm 520 nm 530 nm 540 nm 550 nm 560 nm 570 nm 580 nm 590 nm 600 nm 610 nm 620 nm 630 nm 640 nm 650 nm Dans la dernière partie, nous voulons aller encore plus loin. La plupart des études appliquant l'optimisation évolutionniste dans le contexte de la nano-optique ont été limitées à la maximisation d'une seule propriété cible et cela à une longueur d'onde et à polarisation bien spéciique. De tels scénarios à objectif unique représentent le cas le plus simple d'un problème d'optimisation. Une structure qui remplit simultanément plusieurs objectifs sera en général plus diicile à concevoir. Des stratégies d'optimisation évolutionniste à objectifs multiples (Anglais: Evolutionary multi-objective optimization, "EMO") [ , ] sont une approche prometeuse pour contrer ces problèmes. Dans cete partie, nous présentons une combinaison de EMO avec la GDM que nous appliquons à la conception de structures diélectriques multi-résonantes. Notre objectif est de maximiser l'eicacité de la difusion Q scat à une longueur d'onde λ X pour une polarisation incidente linéaire le long de la direction X , et en même temps de maximiser la difusion à une deuxième longueur d'onde λ Y , polarisée en Y .

Nous efectuons plusieurs optimisations à objectifs multiples pour de diférentes combinaisons de longueurs d'onde cibles. La longueur d'onde λ X = 550 nm reste ixe, tandis que l'autre objectif (λ Y ) varie de 450 nm à 650 nm en incréments de 10 nm. Chaque simulation est constituée d'une population de 20 individus, initialisée aléatoirement et subséquemment évoluée pendant 200 générations. À la in de chaque évolution, la structure avec les plus proches Q scat (λ X ) et Q scat (λ Y ) est choisie.

Dans la igure . , nous montrons les structures résultantes (a) et leurs spectres simulés par GDM pour illumination polarisée le long des directions X et Y (b). Les diférents λ Y sont indiqués par un code couleur allant du bleu (λ Y = 450 nm) au rouge (λ Y = 650 nm). Pour une vériication expérimentale, nous avons fabriqué des structures de silicium correspondantes aux nano-antennes EMO. Des images de microscopie électronique à balayage (igure . c) et des spectres de difusion, iltrés en polarisation (igure . d, en haut: iltré X , en bas: iltré Y ) sont présentés à gauche de igure . . Dans les insets, des images des structures optimisées, obtenues par microscopie optique en champ sombre, iltrée en polarisation, démontrent le changement de couleurs en fonction de la polarisation de la lumière.

B. Model Assuming Unchirped Gaussian Wave Packets

Remark: he pulse widths are given as the Gaussian's width w of the pulse envelope, i.e. the duration during which the amplitude is larger than E • 1/e, with E the maximum ield amplitude and e Euler's number. To obtain the width of the pulse's intensity, the width of the electric ield has to be divided by √ 2 (because I = E 2 ). Finally, from the Gaussian width w, the full width at half maximum is found by FWHM = w • 2 √ 2 ln 2. We assume a Gaussian shape for the envelope of the traveling wave packets, sent by the pulsed laser

A(x, t ) = A 0 • exp -2 (x -v д t ) 2 (τ pulse • c) 2 (B. )
where τ pulse is the Gaussian width of the pulse in time domain and v д its group velocity. he time and space-dependent ield amplitude of the pulse is the product of A(x, t ) with a plane wave u (x, t ) u (x, t ) = u 0 • exp (±i (kxkct )) (B. )

(k = ω/c, ω = 2π f = 2πc/λ) and writes

E (x, t ) = E 0 • u (x, t ) • A(x, t ) (B. )
as illustrated in Fig. B. a,i. For a description in time domain, the space coordinate x of the ield can be substituted by x = t • c (for more details on wave packets, see e.g. [ , chapter . ]). Now we assume two coherent Gaussian wave packet-like pulses (E p and E p ) with a time delay δ between each other (illustrated in Fig. B. a,iii). For a given delay, the experimentally accessible value, the intensity of the ields, is obtained by integrating both pulses over the entire time-range

I meas. (δ ) = ∞ ∫ -∞ [ E p (t ) + E p (t -δ ) ] 2 dt . (B. )
If a signal from an interaction of the two pulses with a nonlinear medium is acquired, the inte- grand has to be taken to the power of N , where N is the order of the nonlinearity

I meas., NL (δ ) = ∞ ∫ -∞ [ E p (t ) + E p (t -δ ) ] 2 N dt . (B. )
In experiment, the signal I meas., NL (δ ) can be measured as a function of the time-delay δ going from negative to positive values. Usually, a crystal with signiicant nonlinear susceptibility is used as reference sample, hence the order N is known. For a numerical calculation of the autocorrelation signal, we replace the integral and the differential dt by a sum over small time-steps ∆t:

∫ f (t )dt → ∑ f (t )∆t (B. )
In order for Eq. B. to be a valid approximation, several assumptions have to be made:

. a Gaussian wave packet is a good approximation for the laser-pulse . both beams have equal width and amplitude . all observed light is generated due to the same physical efect ⇒ the same order of nonlinear response can be assumed for the minimum as well as the maximum occuring ield amplitudes . the laser-pulse has only a negligible chirp, although it is very likely that there is some amount of chirp (Chirped pulse, see Fig. B. a,ii. For the inluence of a chirp on the autocorrelation signal, see below)

Assuming these conditions are met, the measured intensity can be writen as a function of the pulse width τ pulse , the pulse amplitude E 0 and the order of (nonlinear) response N . For iting the numercially obtained autocorrelation function, an additional delay-ofset ∆δ is included to take account of the zero delay position in experiment. he function for the interferometric autocorrelation intensity 

I

B. . Influence of Chirp on Gaussian Model

A chirp means, that the wavelength changes with time during a single pulse (see illustration of a chirped pulse in Fig. B. a,ii and scheme of two superposed identical, chirped pulses in Fig. B. a,iv). From intensity and interferometric autocorrelation measurements, the chirp cannot be unambiguously accessed and therefore assumptions on it have to be made. For all its in the following, a chirp-free pulse has been assumed. he inluence of a linear chirp on the autocorrelation signal via a second order nonlinearity is shown in igure B. b,ii in comparison to the envelope of unchirped IAC (using a highly exaggerated chirp). A chirp can make the pulse durations in IAC measurements appearing shorter than they are in reality. In (a) a power-law was ited to the data, conirming a second order nonlinear response. In (b) a it to the envelope of the autocorrelation signal was performed in order to obtain the optical pulse width, ixing the order of the nonlinearity to N = 2.

B. Power Series on LiNbO 3

To verify the nonlinearity of the reference LiNbO 3 crystal, a measurement of SHG as function of the incident laser power was performed. he data is shown in Fig. B. a together with a power-law it. he result of the it conirms the second-order power-dependence of a χ (2) nonlinearity.

B. Pulse Width Characterization Using LiNbO 3 Reference

In order to it the envelope of the autocorrelation measurements and in this way obtain the order of the response's nonlinearity, we need to determine the laser-pulse width in a reference measurement. Conirmed by the power-dependence measurement, the order of the nonlinear response of the LiNbO he experimental setup used for interferometric autocorrelation measurements is shown in igure B. . he pulses emited by the fs-laser are split by a beam-spliter, travelling on two equally long optical paths. One of those paths is equipped with a micro-motor controlled time-delay stage, which allows to shorten or enlarge the distance traveled by the photons, thus controlling the time delay between the two optical pulses. cos 4 (ϕ) and sin 4 (ϕ) are ploted for comparison in (vii, x) and (viii, xi), respectively. Polarization directions for TM (along the wire axis, ϕ = 0, π ) and TE (normal to the wire axis, ϕ = π /2) with respect to the NW axis are illustrated in (b) by red arrows.
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  Figure . : (a) sketch of localized surface plasmons in gold nanospheres induced by an electromagnetic ield and (b) real part of the relative permitivity of gold and silicon.

  Figure . : (a): Darkield image of 5 μm long SOI-etched silicon nanowires with widths from 30 nm at the let to 400 nm at the right. (b) sketch of magnetic ield generation in metal split-ring resonators (let) and dielectric nanospheres (right), reprinted from Kuznetsov et al. [ ]. Copyright ( ) CC BY. (c) comparison of heat dissipation in gold (let) and gallium phosphide dimers (right), adapted with permission from Albella et al. [ ]. Copyright ( ) American Chemical Society.

  ≈ 5 [ ] to ≈ 35 [ ]. . . . Magnetic Field Enhancement Another noteworthy diference are strong magnetic resonances in dielectric nanoparticles, which are hard to obtain in plasmonic antennas [ , -]. Magnetic dipolar resonances in dielectric dimers can yield an ≈ 100-fold increase of magnetic ield intensities at visible frequencies [ ], similarly strong as the electric ield enhancement. In plasmonics, comparable performances are achievable only with complex asymmetric particle arrangements [ ] or in the infrared using split-ring resonators [ ] (see also Fig. . b). he performance of magnetic ield enhancement generally sufers from strong losses in plasmonic particles in the visible spectral range [ ].

  Figure . : Extinction and scatering eiciency spectra (top) as well as nearield enhancement (botom: Eield: red, B-ield: blue) in the gap of (a) a dimer of two silicon spheres with radius R = 80 nm and (b) a gold dimer with R = 40 nm. Gap is R/4 in both cases. Sizes were chosen to obtain resonances around λ = 600 nm. Incident planewave polarized along dimer axis. Dimers are placed in vacuum. A sketch of the model and numerical mesh used in the simulations for the gold and silicon dimers is shown above the plots.

Figure . :

 . Figure . : Schemes illustrating (a) second harmonic generation, (b) two photon induced photoluminescence, (c) third harmonic generation and (d) one possible interaction diagram of four-wave mixing.

  generation [ ]. Among this, the most prominent examples are second harmonic (SHG, illustrated in Fig. . a) and third harmonic generation (THG, Fig. . c): Two (or three) photons of a fundamental wavelength λ 0 are coherently up-converted (i.e. the process happens instantaneously, there are no intermediate states) to a single photon with λ SHG = λ 0 /2 (or λ THG = λ 0 /3). Apart from harmonics generation, other widely exploited nonlinear phenomena are: Sum-and diference-frequency generation (not shown), four-wave mixing (FWM, Fig. . d) used for example in optical parametric oscillators and ampliiers [ , ], or two photon induced photoluminescence (TPL, see Fig. . b), which is an incoherent conversion of two incident photons to one photon of shorter wavelength (with λ 0 > λ TPL > λ 0 /2), involving intermediate states with inite lifetimes [ , ].

ϵ 0 , µ 0 E 0

 00 Figure . : (a) shows an arbitrary object placed in vacuum made of a material characterized by ϵ r and µ r .Its response to incident electromagnetic ields E 0 , B 0 can be described by the polarization P and the magnetization M. In (b) a nano-object which is small compared to the wavelength is shown, whereas in (c) a particle is shown with large size compared to the wavelength.

Figure . :

 . Figure . : Dispersion of gold (a) and silicon (b). he permitivity is drawn in red, the refractive index in black color. he respective real parts are shown with solid, imaginary parts with dashed lines.

  Figure . : Sketch of a monochromatic electromagnetic wave.

  Figure . : (b) shows a cubic volume discretization of an arbitrary nanostructure, illustrated in (a), which is composed of multiple elements lying on a substrate.

  . ) which we will call the generalized ield propagator as introduced by Martin et al. [ ].

  Figure . : (a) shows the calculated scatering spectra of a silicon nanowire discretized using cubic and hexagonal meshes. he meshes are shown in (b) and (c) perpendicular to the long axis of the wire.

Figure . :

 . Figure . : Real parts of diferent paraxial ields (ield directions indicated by small black arrows). he focal point of (b) and (c) is in the center of the plots. X -direction is the horizontal axis along which the light is linearly polarized. he vertical direction corresponds to the Z -axis with incidence along -Z .

  Figure . : divE corrected ield of a linear polarized tightly focused Gaussian beam. Field directions are indicated by small black arrows. In (b) and (c) time-averaged intensities are shown to illustrate where the value of the longitudinal ield component (i.e. along the propagation direction) is largest. Linear scale between contour lines. Focal point in the center of the plots. X -direction is the horizontal axis along which the light is linearly polarized. he vertical direction corresponds to the Z -axis with incidence along -Z .

  Fig. . a we show plots of the population of matrix M for some selected nano-structures. hese population plots work as illustrated in the following examples:

  Figure . : In (a), population paterns of matrices M are shown at λ = 1 μm for a selection of structures (stepsize 10 nm, same scale for all sketches). he structures are one layer of mesh-points high, in order to keep the number of matrix-elements low. White corresponds to an absolute value of 0, black to ≥ 10 % of the matrix's largest element. (b) shows timings of nanowire-simulations for spectra with 30 wavelengths as a function of the number of meshpoints. Dyson's sequence, LU-decomposition and conjugate gradients are compared and ited by a power-law (resulting power given on the botom right). (c) shows the speedup when comparing conjugate gradients to LU-decomposition as a function of meshpoints.

  . . b). Particularly for larger numbers of meshpoints, this can result in a signiicant speedup, as shown in Fig. . c.

  Figure .: (a) shows timings per wavelength for a CG-GDM simulation of a silicon nanowire with a stepsize of 10 nm and 50 nm diameter, consisting of ≈ 2000 dipoles. he preconditioner was either calculated for each wavelength (red) or recycled for multiple wavelengths until the resulting speedup dropped below a factor of 2. In (b) the total speedup for the calculation of the whole spectrum is ploted against the number of wavelengths in the spectrum.

Figure . :

 . Figure . : In (a), the considered silicon dimer structure is shown (top, XY -Plane), where the incident polarization is indicated by a blue arrow and the scalebar is 100 nm. he center and botom plot show nearields at λ = 600 nm and λ = 900 nm, respectively. Calculated 20 nm below the structure. Corresponding extinction, scatering and absorption spectra are shown in (b), calculated from the nearield (top) and by propagation to the farield of the meshpoints as dipolar sources (botom). he later allows to distinguish directional scatering (forward (FW) and backward (BW) scatering is shown). (c) shows radiation paterns in the XZ -Plane of the scatering for incidence at λ = 600 nm and (red) λ = 900 nm (blue). Incident planewave from positive Z (0 • ), polarized along X .

  Fig. . ).

  Figure . : In (a), the oscillation of an electron around its nucleus under electromagnetic excitation is illustrated. Sketches of SHG (b) and THG (c) are shown as examples of second and third order nonlinear processes, respectively.

  Figure . : Harmonic (let), symmetric anharmonic (center), asymmetric anharmonic (right) potentialsand corresponding restoring forces (botom row), which become nonlinear functions of the position for anharmonic potentials. For comparison, the harmonic potential and the corresponding force are ploted as dashed lines in the plots of the asymmetric potentials.

  Figure . : (a) shows the amplitude over time for low (top), high (center) and very high (botom) drivingamplitudes. Oscillation in a symmetric (solid green) and an asymmetric (solid red) potential is compared to the case of a harmonic potential (dashed blue line). In (b), Fourier spectra corresponding to a driven oscillation in a symmetric (top) and an asymmetric (botom) potential energy function are shown. Both are again compared to a harmonic oscillation (dashed blue line).

Figure . :

 . Figure . : Crosssections of the fundamental ield inside an ininitely long silicon nanowire (let colorplots), surface SHG (let vector-ields) and SHG γ -bulk contribution (∇(E 2 ), right colorplots) calculated from Mie theory. Diameter D = 100 nm. Normal incidence with a polarization of the electric ield perpendicular (a) and parallel (b) to the NW axis.

  Figure . : Numerical calculation of the surface-vectors and second order surface nonlinear polarization at the example of an ininitely long half-cylinder of radius r cyl = 150 nm. 2D sections in the XZ -plane are shown. he fundamental ield (λ = 800 nm) under excitation polarized along the horizontal axis is shown in (a). In (b), the procedure for calculating the surface-normal unitvectors (black) is depicted using only next neighbors (blue circle) and using dipoles within a radius of R sf.-vec. = 3 discretization steps (green circle). (c) shows the normal and tangential surface vectors obtained with R sf.-vec. = 1 and R sf.-vec. = 3 discretization steps (blue and green highlighted regions) and in (d) the inal nonlinear polarization (P (2) ⊥⊥⊥ ) from the surface ields is shown.

  150 nm, parallel and perpendicular surface unit vectors are shown in Fig. . c. he fundamental ield in the structure for an excitation at λ = 800 nm, polarized perpendicularly to the long axes, is shown in Fig. . a. he surface ield components as well as the nonlinear surface polarization P (2) ⊥⊥⊥ are shown in Fig. . d.

  Figure . : Illustration of the procedure for simulating SHG with the GDM at the example of a silicon dimer with dimensions 2× 250×100×100 nm 3 (2× L ×W ×H ) separated by a gap G = 75 nm. he investigated particle structure (a) is discretized (b) and the ield induced by an incident beam is calculated using the GDM (c-d).From this linear response, the nonlinear surface polarization (P (2) ⊥⊥⊥ in the shown example) is calculated by irst selecting the meshpoints at the particle's surface and determining the surface normal unit vectors (e). Using these, the nonlinear polarization is calculated from the fundamental ield at the surface (f) and selfconsistently propagated using the ield susceptibility at the harmonic wavelength (g). Finally, the self-consistent nonlinear polarization can be propagated to the farield (h) in order to calculated for example polar plots of the SHG (i) captured by a given numerical aperture (the green solid angle in (h) denotes NA 0.8). he inset in (i) shows a sketch of the dimer orientation with respect to the polar plot.

  .

  b) and circular (Fig. . a) cross sections. he diameters of D squa. = 110 nm and D cyl. = 140 nm are chosen such that under planewave excitation with λ 0 = 800 nm and linear polarization along X (⊥ to the axis, transverse electric ["TE"]), a similar fundamental ield distribution occurs in both geometries (see red quiver plots (i) in Figs. . ).

  .

  ): First neighbors (ii, calc. like blue area in Fig.. b), irst and diagonal neighbors (iii), up to second neighbors (iv) and meshpoints from a large area (11 × 11 neighbors) around the surface position. Farield radiation paterns are shown below the nearield plots for self-consistent (solid lines) and simple (from P(2) 

Figure

  Figure . : χ (2)⊥⊥⊥ contribution to surface second harmonic generation for a 180 × 180 × 140 nm 3 silicon nano-block. (a) shows XY -projections of the nearield in (blue arrows) and 30 nm below the particle, X -polarized planewave incidence in -Z direction. Ploted areas are 400 × 400 nm 2 ). In (b) the linear scatering is compared to SHG intensity in the farield and second harmonic forward/backward emission ratio for simple (dashed) and self-consistent SHG calculation.
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  Figure . : χ (2)⊥⊥⊥ contribution to surface second harmonic generation for a 240 × 50 × 50 nm 3 gold nanorod. (a) shows XY -projections of the nearield in (blue arrows) and 30 nm below the particle,

  (3) tensor [ ], recent research on nonlinear optical efects from silicon nanoparticles focused on third harmonic generation (THG). THG was obtained for example from Fano resonances in metasurfaces [ ], individual nanowires [ ], nanodiscs [ ] or nanodisc oligomers [ ].

  Figure . : GDM-calculated ield intensities for leaky mode resonances in silicon nanowires. (a): TM 01 (NW of D = 45 nm), (b): TE 01 /TM 11 (NW of D = 115 nm) and (c): TE 11 /TM 21 (NW of D = 175 nm). Electric (let) and magnetic (right) ield intensities are shown for TE (top) and TM (botom) polarized planewave excitation. If in-plane ield components exist, the real-part is illustrated by small black arrows. Incident plane wave from top with λ = 600 nm.

  Figure . : Comparison between Mie theory (a, b) and GDM simulations (c, d) for scatering (i) and absorption (ii) eiciencies of ininitely long silicon nanowires. Linearly polarized planewave excitation. (a, c) TE and (b, d) TM. Local maxima of scatering (absorption) are indicated in the plots for Q abs as purple (respectively black) doted lines.

  Figure . : Maximum nearield intensity enhancement inside silicon nanowire for planewave TE (a) and TM (b) excitation. he maxima of the scatering eiciency spectra are indicated with light blue lines for comparison.

  Figure . : Ratio of forward to backward scatering (i: FW/BW, ii: BW/FW) for a silicon nanowire, illuminated by a TE (a) and TM (b) polarized planewave. (iii) FW (red) and BW (blue) scatering spectra for a SiNW with diameter d = 100 nm, indicated by a dashed line in (i) and (ii). Local maxima of the corresponding total scatering eiciency spectra (Fig. . ) are indicated in the plots by doted lines. (c-f) show the absolute amplitude of the scatered electric ield (| Re(E scat )|) in the vicinity of the nanowire for diferent modes. Scalebar corresponds to λ 0 . In the insets the normalized radiation paterns for the farield (|E scat | 2 ) are shown. Incidence from the top, the NW axis is in the center of each plot and is pointing towards the reader.

  Figure . : Inluence of a substrate on the scatering eiciency from SiNW for planewave TE (a) and TM (b) excitation. he case of no substrate (i) is compared with substrates of refractive index n = 1.5 (ii) and n = 3.5 (iii). Im(n) = 0.

  Figure . : Characterization of the VLS grown SiNWs by SEM (a) and AFM (b) (scalebars are 200 nm and 500 nm, respectively), as well as optically using darkield scatering in comparison with Mie theory (c) and Raman spectroscopy (d) In the later, the dashed black line indicates the silicon Raman line at 521 cm -1 [ ].

Figure . :

 . Figure . : Sketch of the nonlinear microscopy experimental setup. A linearly polarized beam is incident from the top (red), its polarization can be controlled via a λ/2 waveplate. It is focused on the sample, which lies on a x/y piezo stage. he backscatered light (blue) is collected by the focusing optics and separated from the incident beam by a dichroic mirror. hen it is iltered and inally sent on a detector. he blue luminescent "cloud" around the SiNW is an artistic representation of the SHG.

  Figure . : (a) shows a spectral comparison of the nonlinear emission from TE/TM excited NW (top) to a 200 nm thick Si-on-uartz ilm ([ ] surface orientation) and a bulk LiNbO 3 nonlinear crystal (botom). In (b), spectra for NW are shown with increasing excitation power (average power). Power-law plots of the highlighted zones are shown in Fig. . a.

  Figure . : (a) shows a sketch of the nonlinear response of order N (ii) to a difraction limited gaussian proile (i). In (b) an experimental SiNW raster-scan map is shown. (i) elastic scatering and (ii) nonlinear signal.

  Figure . : (a) shows a the scan width of the nonlinear emission of NW as function of the detection wavelength (like indicated by dashed lines in Figs. . ). Excitation at λ 0 = 900 nm (λ SHG = λ 0 /2 is highlighted green). Precision of the monochromator is ±5 nm (horizontal errorbars).In (b) proiles of the luminescence at the harmonic wavelength are shown across the NW for increasing excitation power. A it to the data using three superposed Gaussians is shown as well as the individual Gaussian contributions to the it. (i): lowest to (vi): highest average incident power. TM excitation of NW .

  Fig. . b using a superposition of three Gaussians reveals indeed a convolution of two Gaussians of larger width at the borders and one more narrow Gaussian placed in between. he large values for the scan-width around λ 0 /2 in Fig. . a are the result of of the superposition of several nonlinear sources and can therefore not be used to estimate the order of the nonlinear efect.

  Fig. . b. he corresponding peak intensities as function of the excitation power are shown in Fig. . a on a logarithmic scale (log-log plot). Power-law lines for N = 2 (blue) and N = 3 (red)

λ

  Figure . : Investigation on the order of the nonlinear processes in silicon NWs. (a) powerlaw plot of the nonlinear signal iltered at the SHG wavelength (blue) and around the MPPL (red), as indicated in Fig. . b. Power-law functions x N for N = 2 and N = 3 are ploted as guides to the eye. In (b) interferometric autocorrelation measurements are shown for TE (i, iii) and TM (ii, iv) excited NW .Colorilters for SHG (i, ii) and the spectrally broad MPPL (iii, iv) were added prior detection. Autocorrelation its to the envelope are ploted as solid lines, results are given in table . .

  Figure . : Linescans along SiNW axis. (a) shows SHG-iltered 2D rasterscan of NW for TE (i) and TM (ii) excitation. Proiles extracted along the wire axis are shown in (iii). In (b), proiles along the NW axis are shown for diferent excitation wavelengths, iltered at λ ilter = 405 ± 5 nm (solid lines) and at 435 nm ≲ λ ilter ≲ 600 nm (dashed lines). TE (blue) and TM (green) excitation are shown in the let and the right column, respectively.

Figure . :

 . Figure . : In (a) the TE (i) and TM (ii) SHG mapping from experiment on a NW are compared to GDM rasterscan simulations using P (2)⊥⊥⊥ (iii, iv) and the GDM-simulated fundamental nearield on a plane 20 nm below the NW (v, vi). (b) shows an illustration of the rasterscans, performed in experiment and GDM simulations (i-iv).

  Fig. . b. Similar SHG anisotropies due to the contribution of only speciic ield components have also been reported from NWs of other materials like ZnSe [ ] and gold [ ].

  Figure . : Let: Polarization iltered darkield spectra of NW (a) and NW (d), measured (solid) and calcuated by Mie theory (dashed) for TE (red) and TM (blue) excitation. SHG-iltered rasterscan maps are shown at the right for TE (TM) excited NW (b, respectively c) and NW (e: TE, f: TM). Scalebars correspond to 500 nm.

  Fig. . c). In igure . , typical results of NW and NW are shown. (a) for NW and (d) for NW show polarization iltered elastic scatering spectra (solid lines) compared to Mie theory (dashed lines) for TE (red) and TM (blue) polarization. Individually normalized SHG raster-scan measurements on the exact same SiNWs are shown in (b-c) for NW and (e-f) for NW , excited at λ 0 = 810 nm with corresponding polarizations (indicated by small arrows).

  Figure . : Scheme illustrating the renormalization of the SHG signal: Spotsize with respect to the illuminated NW area. K spot = S onNW /S spot .

  photo

  Fig. . . Few NWs of the NW group showed atypical polarization behavior, which was possibly caused by partial illumination of one of the NW tips due to their relatively shorter length L ≈ 2 μm.

  Figure . : All data for an incident wavelength of λ 0 = 810 nm. (b, i): Elastic scatering intensities from Mie theory (dashed) and GDM simulations (solid) for TE (red) and TM (blue) excitation. GDM simulated SHG far-ield intensities are ploted in (ii) for TE and (iii) for TM excitation. Surface (pointed: ⊥⊥⊥, dashed: ⊥∥∥) and bulk SHG (δ -term, solid lines) are pairwise normalized to their overall (TE / TM) maximum. he insets show zooms on the region of small diameters. In (b) are shown the nonlinear polarizations P (2) (real parts, dense vector plots in blue color) and SH far-ield polarizations (polar plots) for (i) TE excited ⊥⊥⊥, (ii) TM excited ⊥∥ ∥ and (iii) TM excited bulk (δ ) for a D = 50 nm and a D = 120 nm NW (top and botom respectively).

  Fig. . a,ii) or TM (Fig. . a,iii) was set on the center of a NW model, whose diameter was progressively increased.

  Fig. . b simulated P (2) near-ields (top row) and their polarization paterns ater radiation to the far-ield (botom row) for D = 50 nm and D = 120 nm. he behavior of the SH polarization is identical for all sizes of simulated wires. he P (2) ⊥⊥⊥ case under TE excitation shown in Fig. . b,i is in agreement with the experimental results. P (2) ⊥ ∥ ∥ and the δ -bulk term under TM excitation are shown in Fig. . b,ii and Fig. . b,iii, respectively. hese simulations show the 90 • lip of the far-ield polarization patern with respect to the NW axis. his is in agreement with the experimental plots of Fig. . and conirms ultimately the axis-parallel polarization emited by the δ -bulk term, which is hence the main contribution to SHG from NW . . . . Maps of SHG Farfield Intensity Distribution he maps shown in Fig. . are calculated from a NW with diameter d = 100 nm, but results

  Fig. . b. his can explain relatively "open" measured polar plots, as shown for instance in Fig. . . he SH intensity distribution in the far-ield also shows that reducing the objective NA can enhance the detection of the δ -bulk contribution with respect to the surface components (surface SHG emits more to the "sides").

  Figure . : GDM simulation of the angular resolved farield intensity distribution of SHG from a d = 100 nm SiNW. (a) P (2) ⊥⊥⊥ -response under TE excitation, (b) P (2) ⊥ ∥ ∥ -response under TM excitation and (c) P (2)δ -bulk -response under TM excitation, for each contribution the same colorscaling was used. In the upper plots TE-polarization (perpendicular to the NW axis) iltered SH emission patern is shown and TM (along NW axis) iltered SH is given in the lower plots. he polar angle corresponding to NA 0.8 is indicated by dashed circles. he orientation of the nanowire with respect to the polar angle is indicated by a bar in the center of the polar plots. he incident polarization and analyzed polarization direction are indicated by small sketches at the igure borders.

  Figure . : (a) Sketch illustrating the data analysis. he nonlinear polarization is separated in two areas with respect to a symmetry plane. In each area, an average dipole is calculated, neglecting retardation efects. he detecting optics are placed in direction towards the reader. (b) Farield intensity of two coherently radiating dipoles of equal amplitude and opposite phase in normal direction to their polarization vector as function of the distance between the two dipoles. he intensity is integrated over diferent solid angles where NA . corresponds to the objective used in the experiments. he inset shows a sketch of the considered geometry. (c) Distance of two "efective" dipoles for surface (blue) and bulk (green) nonlinear polarization under TM excitation, calculated from the simulation data. he dips observed for the bulk dipole-distance correspond to the resonance positions (see Fig. . ).

  Figure . : Normalized ratio of detected bulk and surface farield-SHG (red dashed line) for SiNWs of diferent diameter as function of the collecting numerical aperture. Normalized δ -bulk and P (2) ⊥ ∥ ∥ -surface contributions (blue and green lines, respectively) are ploted for comparison. Focused TM-excitation on the NW center at λ 0 = 810 nm.

  Figure . : Illustration of evolutionary optimization. (a) Dilemma of classical local optimization algorithms: If local extrema exist, the minimization gets stuck and does not converge to the global minimum (same holds for maximization). (b) Case of two input parameters, where the optimization problem becomes drastically more complex. (c) Illustration of the iteration cycle in evolutionary optimization algorithms.

Figure . :

 . Figure . : Structure model for EO. a) Example of silicon block arrangement forming a pixel. b) Scatering eiciencies calculated for individual silicon blocks of the minimum allowed size (let), minimum width and maximum length (center), and maximum possible size (right). he constraints are L min. = W min. = 60 nm and L max. = W max. = 160 nm, the height is ixed to H = 100 nm.

Figure . :

 . Figure . : Evolutionary optimization of Si nanostructure for χ (2) ⊥⊥⊥ SHG. (a) Mask with itest structures of consecutive iterations of the evolutionary optimization. (b) SEM images of the corresponding sample fabricated on SOI. (c) SHG raster-scan measurement of the sample. Fundamental wavelength is λ 0 = 810 nm, linearly polarized along the horizontal axis (X -direction).

  Fig. . a-b.

Figure . :

 . Figure . : Fitness vs. measured SHG intensity for consecutive generations of evolutionary optimization.Measured intensity from three copies of identical structures on the sample, errorbars indicate the standard deviation obtained from the sum of the ive highest intensity values from raster-scan measurements on three copies of each nanoparticle (see raster-scan in Fig.. c). Simulation and measured data from the optimized structures (red and blue, respectively) refer to the botom x-scale. Reference measurements of SHG on rectangular silicon nanowires of diferent widths are shown in green color (top x-scale). Heights are constant with H = 95 nm (simulations: H = 100 nm) for all structures, corresponding to the silicon layer thickness of the SOI substrate.

  Figure . : (a) Structure model for EO of directional scatering from a plasmonic antenna. 40 gold-blocks ("B i "), each 40 × 40 × 40 nm 3 large are placed on an area of 1 × 1 μm 2 . (b) Sketch of the directionality problem: Maximize the ratio of scatering through a small window (green) with respect to the remaining solid angle (red). Target scatering direction is chosen to be in X direction and centered at a polar angle of 45 • . Polar and azimuthal widths are 30 • and 45 • , respectively.

Figure . :

 . Figure . : (a) Fitnesses of the individuals (blue dots) of a large population vs. generation number. Best (green line) and population average itness (red line) are indicated as well. (b) Demonstration of reproducibility: Antenna designs and directivity ratios from 5 independent runs of the optimization.

  Figure . : Analysis of itest evolutionary optimized directional antenna. (a) Sketch of the evolutionary optimized gold antenna with highest directionality. 3D radiation patern is shown in light blue. Planewave incidence from the top, indicated by blue arrow. λ 0 = 800 nm, polarized along X (direction of scatering). (b) he antenna can be divided into three functional constituents: A main driving element in the center (blue) as well as a relector (green, on the let) and a director (red, right). he centers of gravity are indicated by dashed lines of the corresponding colors and the distance to the driving element edges are given at the top. Scalebar is 200 nm. (c) Color-plot of the relative phase of the E x component of the electric ield, with respect to the driving element's center. he horizontal direction corresponds to the X -axis. Same scaling as (b).

  Figure . : Analysis of directional antenna found by EO (see Fig. . ). (a) Scatering in backward (let column) and forward (right column) direction. (i-ii): Scatering radiation patern, indicating the analyzed proile-path by a dashed red line (along angles of 140 • and 40 • , respectively). (iii-iv): Electric ield amplitude E x and (v-vi): Total intensity as function of distance from the nano-antenna in backward, respectively forward direction. (b) Directionality ratio R direct (i), maximum scatering angle (ii) and maximum scatered intensity (iii) as function of an xdisplacement of the antenna's director element (red part in Fig. . b).

  Figure . : Illustration of evolutionary multi-objective optimization (EMO). a) Initialization step of pixelpopulations for the EMO algorithm. b) Evolution of the pixel-population (see also Fig. . c). c) Optimum pixel-population at the end of the evolution. d) Nanofabrication and characterization of the polarization dependent color-pixels.

  . . . . Fabrication of the structures is done on SOI substrates by EBL, like explained in Sec. . . . . SEM images of individual structures are shown and are compared to the mask-layout in Figs. . b, . a and c as well as in . b.

  Figure . : (a) Spectra for cuboidal silicon blocks of height H = 100 nm and width / length combinations corresponding to the minimal and maximal allowed dimensions. Simulations were performed with diferent discretization step-sizes S = 20 nm (i-iii), S = 15 nm (iv-vi) and S = 10 nm (viiix). (b) Spectra for X -(blue) and Y -polarization (red) of EMO with λ X = λ Y = 450 nm. (c) Spectra for X -(blue) and Y -polarization (red) of EMO with λ X = 550 nm and λ Y = 450 nm with more available material to the algorithm. Insets: Sketch of structure (shown areas: 600× 600 nm 2 in b and 700 × 700 nm 2 in c). . . Results and Discussion . . . Proof of Principle: λ X = λ Y = 630 nm In a irst step, we test the EMO-GDM technique on a simple problem. A single target wavelength λ max. = 630 nm is selected, at which σ scat is maximized simultaneously for X and Y polarization. he structures of the inal population and the corresponding Pareto-front ater an evolution over 200 generations are shown in Fig. . a and . c. In igure . a the geometries of the initial population (top) are furthermore compared to those on the Pareto-front (botom). he geometries found by evolutionary optimization are also transformed into a lithographic mask, which we use to produce the silicon nanostructures on a SOI substrate (see Methods). Fig. . b shows a comparison of the design with SEM images of the sample. Simulated (Fig. . e-f) and experimental spectra (Fig. . g-h) are in very good agreement. he good agreement is also demonstrated by a comparison of simulated (lines) and measured (crosses) scatering eiciencies, shown in Fig. . d.he outermost individuals on the Pareto-front (particles ( ) and ( )) correspond to equivalent results of a single-objective optimization using one target wavelength and polarization. We observe in these cases, that all four sub-antennas are combined during the evolution to form a single

  Figure . : Results of EMO-GDM for identical target wavelengths λ X = λ Y = 630 nm. (a) Structures of the randomized initial population (top) compared to the optimized Pareto-set of solutions (botom). (b) Structures of the Pareto-front and corresponding SEM images. Blue, green, purple and orange dots are used to highlight the positions of the sub-blocks the structures consist of. All ields in (a) and (b) are 600 × 600 nm 2 large. (c) Pareto-front (green) and randomized initial population (red). (d) Comparison of scatering from simulation (lines) and experiment (markers). (e-h) Scatering spectra for X (let) and Y polarization (right). Simulated and experimental spectra are shown in the top and botom rows, respectively.

  Figs . a for structure ( ) and in Fig. . b for structure ( ).

  Figure . : Blue highlighted parts in the structure sketches (right sides, areas are 600 × 600 nm 2 ) are shited in X -and Y -direction. Zero-shit coresponds to the positioning as found by EMO. he scatering eiciency of the shited structure is shown on the right sides for the target wavelengths. he maximum is indicated by a red cross. (a) Single objective optimization at λ Y = 450 nm (" " in Fig. . a). (b) Optimization at λ X = 550 nm and λ Y = 450 nm (" " in Fig. . a). (c) Optimization at λ X = λ Y = 550 nm (see Fig. . ).

  Fig. . c for an optimization using λ X = 550 nm and λ Y = 550 nm. For an experimental veriication, we fabricated Si-structures corresponding to the optimized color-tuned nanoantennas. SEM images (Fig. . c) and polarization iltered dark-ield spectra (Fig. . d, top: ilter along X , botom: along Y ) are shown in igure . . Polarization iltered dark-ield images (Fig. . d and insets in Fig. . d) of color-switching pictograms, composed of the optimized structures, demonstrate the polarization dependence of the scatered wavelengths.

Figure . :

 . Figure . : Experimental demonstration of several dual-resonant Si structures based on EMO-GDM simulations. (a) EMO design of multi-resonant dielectric particles and (b) simulated scatering spectra for λ X = 550 nm (indicated by a black dashed line) and various λ Y . (c) SEM images and (d) polarization iltered scatering spectra of the corresponding nanofabricated sample. Insets in (d) show polarization iltered dark-ield microscopy images of the full set of structures (4 × 20 μm 2 ) Areas in (a) and (c) are 600 × 600 nm 2 .

  Figure . : (a): Image en champs sombre des nanoils de silicium d'une longueur de 5 μm, gravés dans SOI. Les largeurs augmentent de 30 nm à gauche jusqu'à 400 nm à droite. (b) illustration de la génération des champs magnétiques dans des anneaus brisés plasmoniques (gauche) et des nanosphères diélectriques (droite), reproduction de Kuznetsov et al. [ ]. Copyright ( ) CC BY. (c) comparaison de la dissipation de chaleur dans des dimères d'Or (gauche) et de phosphure de gallium (droit). Adapté avec permission de Albella et al. [ ]. Copyright ( ) American Chemical Society.
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 00 Figure . : (a) Structure aléatoire dans le vide, caractérisée par ϵ r et µ r . Sa réponse à un champ électromagnétique incident E 0 , B 0 peut être décrite par sa polarisation P et sa magnétisation M. (b) Illustration de discrétisation du volume en maillage cubique d'une structure aléatoire.

.

  . . Méthode Dyadique de Green À partir des équations de Maxwell transformées en espace Fourier divD(r, ω) = ρ (r, ω) ( . a) rotE(r, ω) = iωB(r, ω) ( . b) divB(r, ω) = 0 ( . c) rotH(r, ω) = -iωD(r, ω) + j(r, ω) ( . d) il est possible d'en déduire une équation d'onde pour le champ électrique

  Figure . : (a) Schéma de l'oscillation des électrons autour de leur noyau, pilotée par un champ électromagnétique externe. (b) Spectre de Fourier correspondant à une oscillation piloté dans un potentiel anharmonique symétrique (haut) et asymétrique (bas) en comparaison avec une oscillation dans un potentiel harmonique (ligne bleu pointillée).

  c) Les indices ∥ et ⊥ désignent les directions parallèles et perpendiculaires à l'élément de surface locale avec des vecteurs unitaires e ∥ et e ⊥ .

  Figure . : Illustration de la procédure de simulation de SHG par GDM à l'exemple d'un dimère de silicium de dimensions 2 × 250 × 100 × 100 nm 3 (2 × L × W × H ) séparé par un gap de G = 75 nm. La particule (a) est discrétisée (b) et le champ induit par un faisceau incident est calculé par GDM (c-d). Depuis cete réponse linéaire, la polarisation non-linéaire de surface (P (2)⊥⊥⊥ dans cet exemple) est calculée. Cela est fait par la sélection des point de maillage sur la surface dans un premier pas et puis par la détermination des vecteurs localement normaux à la surface (e). Avec ces vecteurs, la polarisation non-linéaire peut-être calculée depuis le champ fondamental au même endroit pour chaque point de surface (f). Cete polarisation non-linéaire est ensuite re-propagée de façon auto-cohérente en utilisant la susceptibilité du champ à la fréquence harmonique (g). Enin, la polarisation non-linéaire de second ordre peut être propagée vers le champ lointain (h) ain de calculer par exemple des plots polaires de la SHG (i) capturée par une certaine aperture numérique (l'angle solide en vert dans (h) correspond à une NA 0.8). L'inset dans (i) est un schéma illustrant l'orientation du dimère de silicium par rapport au plot polaire.

Figure . :

 . Figure . : Intensités de champ pour les premières résonances de Mie dans un nanoil de silicium (résonances de mode "Leaky"), calculées par GDM: (a): TM 01 , (b): TE 01 /TM 11 et (c): TE 11 /TM 21 . Intensités de champ électrique (à gauche) et magnétique (à droite) après excitation en onde plane, polarisée TE (en haut) et TM (en bas). Si des composantes du champ dans le plan existent, la partie réelle est indiquée par des petites lèches en couleur noire. Incidence par en haut.

  Figure . : Characterisation des nanoils VLS de silicium par microscopie à force atomique (a) (barre est 500 nm), et en microscopie optique champ sombre en comparaison avec la théorie de Mie (b).

  Figure . : (a) Spectres obtenus depuis NW pour diférentes puissances de l'excitation (puissance moyenne du laser pulsé). (b) Plot double-logarithmique pour les intensités dans les zones indiquées par couleur bleue (SHG) et rouge (bande large). Des Lois de puissance en ordres N = 2 et N = 3 sont indiquées comme "guide pour l'oeil". Dans une première étape, le spectre du signal non-linéaire d'un nanoil de silicium (NW ) est analysé. Sur la igure . a, des spectres expérimentaux sont tracés pour diférentes puissances du laser. L'excitation est à λ 0 = 840 nm et polarisée en TM. Les intensités correspondantes aux zones rouge et bleu sont tracées en fonction de la puissance d'excitation dans la igure . b sur une échelle logarithmique (échelle log-log). Des lois de puissances sont indiquées comme "guide pour l'oeil" pour N = 2 (bleu) et N = 3 (rouge). Les résultats conirment un ordre 2 pour le signal

  Figure . : Schéma du principe d'optimisation évolutionniste. (a) Dilemme des algorithmes d'optimisation locales "classiques": Si des points extrêmes locaux existent, la minimisation reste coincé et ne converge pas vers le minimum global. (b) Illustration d'un problème complexe en deux dimensions. (c) Illustration du cycle de reproduction parcourue par un algorithme d'optimisation évolutionniste. uant à des applications, une approche plus pratique est de d'abord déinir les propriétés optiques requises et de concevoir une nanostructure qui présente les caractéristiques souhaitées de manière optimale. Les algorithmes classiques de maximisation ou de recherche d'un zéro d'une fonction semblent prometeurs de prime abord. Cependant, il est diicile de décrire les géométries de nanoparticules par des fonctions analytiques, nécessaires par exemple pour des dérivés quant à la méthode de Newton. De plus, il est fort probable que la fonction de l'objectif possède d'innombrables points extrêmes locaux (voir la igure . a-b.). Cela limite encore plus l'applicabilité des algorithmes d'optimisation classiques, car ils se coincent dans les points extrêmes locaux. Par conséquent la solution ne convergera pas vers l'optimum global, comme illustré dans la igure . a à l'exemple d'un problème de minimisation en une dimension.Des techniques plus prometeuses sont des stratégies d'optimisation évolutionniste (Anglais: Evolutionary optimization, "EO"). Ces méthodes, imitant la sélection naturelle, sont en mesure

Figure . :

 . Figure . : Itérations sélectionnées de l'évolution d'une antenne plasmonique directionnelle. Le diagramme de rayonnement en plan XZ est démontré en haut, où un segment vert indique l'angle solide de l'objectif. Les structures plasmoniques correspondantes aux diagrammes de rayonnement sont démontrées en bas (en plan XY ). (a) Structure initiale aléatoire. (b-f) Meilleurs candidats depuis des générations intermédiaires. (g) Meilleur candidat de la population inal. La barre est de 200 nm.

Figure . :

 . Figure . : Démonstration expérimentale des structures double-résonnantes, trouvées par optimisation évolutionniste. (a) Modèle de structure EMO des particules diélectriques double-résonnantes et (b) spectres de difusion correspondantes avec λ X = 550 nm (indiqué par ligne noire pointillée) et diférents λ Y . (c) Images SEM des structures nano-fabriquées et (d) spectres correspondantes mesurées en champ sombre et iltrés en polarisation. Les insets dans (d) démontrent des images du set des structures, obtenues par microscopie en champ sombre iltré en polarisation (4 × 20 μm 2 ). Les zones dans (a) et (c) sont de 600 × 600 nm 2 .
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  Figure B. : (a) illustration of an unchirped (i) and a chirped (ii) pulse, as well as a partial temporal superposition of two such pulses ((iii) and (iv), respectively). (b) interferometric autocorrelation of two unchirped pulses from second (i) and third order (iii) nonlinear response, as well as a second order chirped autocorrelation igure (ii). Red dashed lines show the (unchirped) envelope to the IAC plots. he intensity enhancement factors between ininite and zero time-delay are indicated at the right.

Figure

  Figure B. : Experimental setup for interferometric autocorrelation measurements.

  meas. (δ ) = I meas. (δ, E 0 , τ pulse , N , ∆δ ) (B. ) can be used to simulate the autocorrelation signal. he interferometric autocorrelation is calculated by usingE (x, t ) = E 0 • u (x, t ) • A(x, t ) (B. )as shown in Fig. B. b (solid lines), whereas the envelope to this signal is obtained using only a Gaussian for the electric ield (red dashed lines in Fig. B. b)E (x, t ) = E 0 • A(x, t ). (B. )he later can be obtained by so-called "intensity autocorrelation" measurements. Fur further details and a broader overview on autocorrelation measurement techniques, we refer to the tutorial on ultrashort pulse shaping byMonmayrant et al. [ ]. 

  photocurrent (nA) 

  3 reference sample is ixed to N = 2. Similar pulse widths aorund τ pulse ≈ 150 fs were obtained for the investigated wavelengths λ 0 = 750 nm (Fig. B. a), λ 0 = 810 nm (Fig. B. b) and λ 0 = 840 nm (Fig. B. b).

  Figure B. : Interferometric autocorrelation measurements on a LiNbO 3 crystal at (a) λ 0 = 750 nm and (b)λ 0 = 840 nm. For the it the order of the nonlinearity was ixed to N = 2.

  

Table . :

 . Characteristics of investigated VLS grown silicon NWs.

	sample name average diameter of gold droplets measured SiNW diameters d VLS [nm] d SiNW [nm]
	NW NW NW	50 100 250	45 -60 95 -120 250 -310

Table . :

 . Comparison of measured widths (all data from TM excitation) of several proiles to the nonlinear signal of SiNWs, iltered at SHG or MPPL. All widths indicate the FWHM. Physical diameters from comparison of Mie theory to linear scatering spectra.

	NW	D physical w elastic w SHG w Broad [nm] [nm] [nm] [nm]	w elastic w SHG	w elastic w Broad	w SHG w Broad
	NW # NW # NW # NW		. . . .	. . . .	. . . .

Table . :

 . 

						2.4			
	ω 2 ω 1 no lifetime (τ=0) ω nonlinear virtual state Δt=0	ω 2 intermediate state with ω nonlinear ω 1 finite lifetime τ Δt	nonlinear signal (a.u.)	1.0 1.2 1.4 1.6 1.8 2.0 2.2				gold dimer silicon NW
	ground state		ground state				1.0	1.5	2.0	2.5	3.0	3.5	4.0
									delay (ps)
	(a) Coherent Process	(b) Incoherent Process			(c) Two-Pump Experiment
	Figure . : (a) and (b) show schemes of a coherent and incoherent second order nonlinear process, re-spectively. In (c) two-pump time-delay measurements are shown comparing TPL from a gold nano-dimer and a silicon nanowire (NW ). Data is normalized to the intensity at large time-
				NW	#			NW	#
		λ det (nm)	TE Tip Center Tip Center TE TM TM	TE Tip Center Tip Center TE TM TM
		(SH)	. . . ----	. . -----	. . . . . . -	. . . . . . -	-. -----	-. -----		. . . . . . .	-. --. . .

Results for its to autocorrelation measurements at several detection wavelengths using a monochromator setup for wavelength range selection (transmiting a spectral window of λ ilter ± 5 nm). Excitation at λ 0 = 840 nm. delay. No additional color-ilter was added apart from a BG ilter for residual fundamental light. he gold data (red) is in agreement with results published by

Biagioni et al. [ ]. 

No inite lifetime could be probed for SiNWs.

Table . :

 . Comparison of SHG signals for diferent samples and diferent experimental conditions. In the last column, the photocurrent is normalized to the illuminated area of the sample (K spot , see Fig..). Laser power and wavelength were ixed at . mW/μm 2 and

	(except . Mie theory.	mW/μm 2 for LiNbO 3 ). he scatering eiciency Q scat. at			nm, respectively nm is calculated using
	Sample		Laser Pos. Polarization Q scat. K spot I photo (nA)	I photo K spot	(nA)
	LiNbO 3 Glass substrate Si bulk ( ) nm Si ( ) on uartz	----	----		----		.	. .		.	. .
	NW		Tip Center Tip Center	TE TM	.	.	.	. .		. .	. .	. .
	NW		Tip Center Tip Center	TE TM	.	.	.		. .	. .	. .	. .
	NW		Tip Center Tip Center	TE TM		. .	.			. . . .	. . .	.

  or dielectric nanostructures [ ]. Polarization dependent, dualcolor pixels have been recently reported using plasmonic nanoapertures [ ]. he advantage of plasmonic nanoantennas is the capability to provide widely tunable single mode responses using simple geometries (pillars in ref. [ ], bent stripes in ref. [ ], cuboids in ref. [ ] and crosses in ref.

  . ) La composante normale (indice ⊥) du champ électrique à la proximité de la particule est exaltée par le rapport des permitivités et éventuellement encore ampliiée si des modes de résonance existent. Une exaltation de l'intensité de champ dans l'ordre de ≈ 100 est possible[ , , ].Ceci est néanmoins netement inférieur au cas de la plasmonique, où trois ordres de grandeur peuvent facilement être ateints pour l'exaltation des intensités de champ [ ]. En in de compte, alors que dans la plasmonique l'exaltation des champs est généralement beaucoup plus forte, les particules diélectriques ofrent de plus grands volumes d'extension du champ [ ]. En ce qui la composante tangentielle (indice ∥) par contre est constante.

  , les pertes associées sont même de plusieurs ordres de grandeur plus faibles. Pour le cas de structures plasmoniques et diélectriques qui possèdent d'une exaltation du champ comparable, la diférence de la hausse de température entre les particules plasmoniques et diélectriques peut ateindre plusieurs 100 • C [ , ] (voir la igure . c).Les très faibles pertes sont un avantage-clé des matériaux diélectriques quant à des applications comme la spectroscopie à champ exalté. Cependant, la dissipation dans les antennes plasmoniques peut être utilisé de manière constructive pour la production de chaleur localisée à une échelle nanométrique [ ]. D'autre part, ce chaufage local n'est pas possible avec des nanostructures diélectriques.

	virtual states		intermediate states	virtual states		virtual states	
	ω	2ω	ω	ω TPL band edge	ω	3ω	ω 1	ω 3
			ω				ω 2	ω 4
	ground state		ground state	ground state	ground state	
	(a) SHG			(b) TPL	(c) THG		(d) FWM	
	Figure . : Illustrations de (a) génération de seconde harmonique (SHG), (b) photoluminescence induit par deux photons (TPL), (c) génération de troisième harmonique (THG) et (d) possibilité d'interaction dans un mélange à quatre ondes (FWM).

inférieures

  Tant que les champs considérés sont faibles par rapport au potentiel du réseau cristallin des médias, les phénomènes optiques peuvent être expliqués par une réponse linéaire. Dans le régime linéaire, la force de rappel agissant sur les électrons qui oscillent autour de leurs noyaux (l'oscillation est à la fréquence ω d'éclairage, voir la igure . a) est une fonction linéaire du déplacement des charges relatives à leur noyau. Le noyau, ayant une masse importante par rapport aux électrons, est considéré statique. Cela peut être décrit par un potentiel harmonique.

	est introduit. Pour un maillage cubique cela donne	
	C (ω) =	-1 3ϵ env. (ω)V i	( . )
	ce qui doit être adapté en même temps que le volume de la cellule, si un maillage diférent est utilisé, comme par exemple un maillage hexagonal compact [ ]. Enin, l'inversion de la matrice est fait par des techniques standards comme la décomposition LU [ , chapitre . ].
	. . . Traitement des Résultats		
	À partir du champ E à l'intérieur de la particule, une multitude de valeurs physiques peut être cal-culée. Par exemple les rendements de difusion et absorption [ ], le champ électrique (à travers équation ( . )) ou magnétique [ ] à l'extérieur de la particule, le diagramme de rayonnement de la difusion [ ] ou les dissipations de chaleur [ ].
	. . Optique Non-Linéaire		
		. )	

  d) γ , β, δ et ζ sont des coeicients phénoménologiques qui peuvent être exprimés en termes d'éléments de χ (2) [ , section . ].. . . SHG avec la GDM SHG de Surface Pour la description de la SHG de surface, dans un premier pas les vecteurs unitaires parallèles et normaux à la surface sont calculés numériquement à chaque élément de surface. Avec ceci, les composantes correspondantes du champ s'écrivent

Nous étudions également l'inluence des résonances optiques sur la génération de seconde harmonique sur les petits nanoils NW et NW . Sous excitation TM, ces ils disposent d'un et de deux modes respectivement. Pour un incidence polarisé TE, aucune, respectivement une seule résonance de Mie se produit dans les nanoils NW et NW (voir aussi la igure . b). Dans la igure . a et d, des spectres iltrés en polarisation sont présentés et comparés à des cartes de balayage de SHG.Bien que de la SHG ait été toujours mesurée si un mode de Mie existait proche de la longueur d'onde fondamentale (NW et NW excité en TM), aucune lumière de seconde harmonique ne pouvait être obtenue depuis NW sous excitation polarisée TE, en l'absence de toute résonance. Des simulations GDM montrent en outre que le champ électrique à l'intérieur du nanoil est quasiment nul dans ce dernier cas. Cela explique le manque de SHG en absence de résonances optiques. Les résultats montrés dans la igure . sont normalisés individuellement sur les valeurs maximales. Une comparaison des valeurs absolues a montré qu'une exaltation de la SHG par plus que deux ordres de grandeur est obtenue par rapport à un cristal de silicium en vrac. La SHG la plus forte est observée pour les nanoils NW , où des résonances paraissent à la longueur d'onde fondamentale ainsi qu'à la harmonique.Enin, on observe que la SHG est exaltée aux bouts des nanoils sous excitation "TM" alors que, en cas de TE, l'intensité de la SHG est homogène tout le long de l'axe du il. Ce comporte-

Acknowledgements . . Conclusions

En conclusion, l'optimisation évolutionniste reliée aux simulations électro-dynamiques est très prometeuse pour la conception automatique de divers types de nano-structures photoniques. Nous avons démontré qu'une approche d'optimisation évolutionniste est en mesure de réaliser des objectifs photoniques complexes comme des résonances multiples, même au sein d'un modèle très simple et fortement restreint. Pour une bonne compatibilité avec des méthodes de fabrication, les limitations technologiques peuvent être incluses dans l'algorithme. Grâce à de tels considérations technologiques, nous avons pu produire des échantillons sur substrat SOI en utilisant les résultats des optimisations évolutionnistes. Avec la microscopie en champ sombre, iltrée en polarisation, nous avons inalement pu conirmer l'accord entre les propriétés optiques des échantillons et les simulations.

L'optimisation évolutionniste de nano-structures photoniques a un potentiel énorme pour de nombreux types d'applications dans la nano-optique du champ proche et du champ lointain. Des exemples imaginables se trouvent dans la conception des particules multi-résonantes ou à large bande pour des capteurs de lumière ou quant aux nano-structures pour l'optique non-linéaire.

Appendix A Dielectric Interfaces A. Continuity Conditions

To calculate the continuity conditions at the interface between two dielectric materials, we start with the Maxwell equations for homogeneous, isotropic and constant media:

with D = ϵ 0 ϵ r E and B = µ 0 µ r H. Furthermore, we will use Gauss' integral theorem for vector ields V

where S (∆V ) is the surface around the volume ∆V , as well as Stokes' integral theorem:

with ∂F the path around the area S.

To ind the continuity conditions for the E-ield component normal to the interface, we integrate the Maxwell equation for the divergence of the electric ield over a cuboid around the interface between two dielectric media ϵ r 0 and ϵ r 1 (see ig. A. a). With Gauss' integral theorem (A. ), we get

and

with σ the surface charge at the interface which we assume to be zero. From eq. (A. ) and (A. ) we get:

To ind the tangential component's continuity condition, we integrate over an area around the interface using Stokes' theorem (A. ):

where the notation from igure A. b is used and êli are unitary vectors in path direction. Analogously, the Maxwell equations of the magnetic ield (A. ) can be integrated to obtain the corresponding continuity conditions. Finally we have four continuity conditions, for the normal ((A. ), (A. )) and parallel ((A. ), (A. )) components of the electric and the magnetic ield respectively:

We see, that the normal component of the electric displacement ield D as well as the electric ield E's tangential component are continuous over the interface. Analogously, the magnetic and the demagnetizing ields' (B and H) normal and tangential components are conserved.

A. Reflected Field Amplitudes

From the above derived continuity conditions, the relectivity and transmitance coeicients at the interface can be calculated. Again, we assume normal incidence (n ⊥ E ⊥ B), so equations (A. ) and (A. ) are already fulilled. Furthermore, the vector products of the ields in equations (A. ) and (A. ) can be replaced by scalar products of the ield amplitudes. he electric ield in the material with index "0" can be writen as a superposition of a forward (E 0 ) and a backward (E 0,r ) traveling component (see ig. A. ). With equation (A. ) can be writen as

We know that

with the refractive index n = √ ϵ r µ r . We see, that for normal incidence k 0,r = -k 0 . By inserting (A. ) in equation (A. ), we obtain

For non-magnetic media (µ r = 1 → n = √ ϵ r ), we can now calculate the relectance and the transmitance at the interface by taking equation (A. ) into account (E 1 = E 0 + E 0,r ):

he deduction of the relectivity for the general case of non-normal incidence is analogue to the calculation above and can be found in literature (e.g. [ ]). Finally we note that an additionrule for the relectivities of several successive layers can be derived using a substitution of the form r = tanh s [ ]. In analogy to quantum mechanics transfer-matrix methods can be used alternatively, to obtain the relectivity of or ield amplitudes in multi-layer systems [ , ].

Appendix B Autocorrelation Measurements

Interferometric autocorrelation (IAC) measurements can be used to obtain the order of the nonlinear response. In order to perform a it to the IAC measurements, we need to describe the signal mathematically.

SiNW Surface SHG Polarization Dependence

We want to numerically study the polarization dependence of the diferent contributions to surface SHG from an ininitely long, plane wave illuminated cylindrical nanowire (in vacuum) in more detail, in order to conirm our theoretical considerations from section . . . he wavelength of the normally incident light is λ 0 = 810 nm, hence λ SHG = 405 nm.

In Fig. C. SHG from "simple" P (2) ⊥⊥⊥ , P (2) ⊥ ∥ ∥ , P (2) ∥ ∥⊥ (top row; blue solid lines) as well as from their self-consistent counterparts (second row; blue dashed lines) is shown as a function of the incident polarization and the NW diameter. A logarithmic color-scale is used to increase the visual contrast. 1D plots for a D = 100 nm and a D = 150 nm SiNW are shown in (vii-xii).

Obviously, for an incidence polarized along the wire axes (transverse magnetic, "TM"), only

⊥ ∥ ∥ is non-zero, conirming our conclusion from section . . . . For a polarization normal to the axis ("TE") on the other hand, this component is vanishing (at least for diameters D ≲ 230 nm), while the other contributions are non-zero. We can observe, that P (2) ⊥⊥⊥ follows perfectly a sin 4 (ϕ), which its Malus' law for a second order nonlinear response. Also P (2) ⊥ ∥ ∥ follows Malus' law for smaller nanowires, but at a diameter D = 150 nm irst deviations from the ploted cos 4 (ϕ)line occur and it inally becomes non-zero for TE incidence at large diameters . P (2) ∥ ∥⊥ inally reaches its highest value somewhere between pure TE and pure TM incidence, for a maximum of the product of the perpendicular and parallel ield components E ∥ • E ⊥ . As a consequence it doesn't obey Malus' law. In the quasistatic approximation, the ield inside the particle is proportional to the incident ield. For small nanowires, P (2) ∥ ∥⊥ therefore reaches its maximum at a polarization of 45

Note that the "simple" as well as a self-consistent SHG calculation give similar results. However, for small nanowire diameters, signiicant diferences can be observed, which can be attributed to the optical coupling of the nonlinear polarization to the modal response of the nanowire. Away from the NW tips, P (2) ⊥⊥⊥ and P (2) ⊥ ∥ ∥ result in a nonlinear polarization ⊥ to the NW axis, which hence couple to the TE-response of the nanowire at the harmonic wavelength. For TE however, only a weak optical response exists at the harmonic frequency for small diameters D ≲ 50 nm (see Fig. . or Fig. . ). In consequence, the scatering of the harmonic to the far-ield is suppressed for small NWs in the self-consistent calculation.

he suppression of surface-SHG also supports the observation of the bulk contribution for SiNWs of small diameter. In contrast to the "TE-type" surface contributions, a nonlinear bulk polarization with ield components along the wire axis can couple eiciently to the far-ield via the TM modes at the harmonic wavelength.

Appendix D SHG from Lithographic Silicon Wires

We present some preliminary results of SHG from lithographic silicon wires etched in SOI (for details on the fabrication, see Sec. . . . ). he height of the SOI silicon layer is H = 95 nm, the length of the lithographic wires is ixed to L = 3 μm and the width is varied. In igure D. , SHG results from TM-excited silicon wires are shown (details on the measurement procedure can be found in Sec. . . ). Intensity-proiles across the nanowires are given in the top, the data was acquired in a single measurement, the intensities are therefore directly comparable and a signature of a modal response can clearly be observed. SHG rasterscan mappings are shown in the center, revealing an interesting behavior: For larger rectangular wires, the SHG is strongest under excitation of the wire borders. A similar observation has been already made for VLS grown SiNWs with large diameter (see Sec. . . ). Finally, polar plots, resolving the far-ield polarization of the backscatered SHG are shown in the botom row, where once again the lip in polarization is observed, from perpendicular to parallel with respect to the wire axis. Also rectangular, non-symmetric nanowires seem therefore suitable for a distinction of bulkand surface contributions to SHG by means of size-variations (see Sec. . . ).

he inluence of resonant modes on SHG is demonstrated on the leters "CNRS", composed of diferently large SiNW, shown in