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Abstract

Nano-photonic structures offer a highly interesting platform to enhance light-matter interaction
on a nanometer scale. Recently, high-index dielectric structures have gained increasing attention
as possible low-loss alternatives to plasmonic nano-antennas made from noble metals. Further-
more, since non-linear effects offer many unique functionalities like the coherent up-conversion
of photons, including the generation of harmonics, many efforts are being made to exploit such
phenomena in nano-photonics. In this thesis, an analysis is presented on nonlinear optical effects
in individual dielectric structures, specifically in silicon nanowires (SINWs). Nanowires develop
strong optical resonances in the visible and infrared spectral range. In this context, strong en-
hancement of the optical near-field together with a large surface to volume ratio support the
appearance of nonlinear effects. We show that, compared to bulk Si, a two orders of magnitude
increase in second harmonic generation (SHG) is feasible and furthermore unravel different po-
larization and size-dependent contributions at the origin of the SHG. Numerical simulations are
carried out to reaffirm these experimental findings for which a numerical technique is presented
to describe nonlinear effects on the basis of the Green Dyadic Method (GDM). In the last part
of the thesis, the GDM is used together with evolutionary optimization (EO) algorithms to tailor
and optimize optical properties of photonic nano-structures. We eventually fabricate samples,
based on EO design, and successfully verify the predictions of the optimization algorithm. It
turns out that EO is an extremely versatile tool and has a tremendous potential for many kinds
of further applications in nano-optics.
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Résumeé

La nano-optique est un vaste domaine permettant d’étudier et d’exalter I'interaction lumiére-
matiére a 'échelle nanométrique. Ce domaine couvre notamment la plasmonique, mais depuis
quelques années, un effort est porté sur les nanostructures diélectriques a fort indice de réfrac-
tion (typiquement des semiconducteurs comme le silicium). Des effets similaires aux nanopar-
ticules plasmoniques peuvent étre obtenus, tels un comportement d’antenne et I'exaltation de
phénomeénes non linéaires (génération d’harmoniques), avec ’avantage de faibles pertes. Dans
cette thése, une analyse des propriétés optiques linéaires et non linéaires de nanostructures in-
dividuelles. Une premiére partie est dédiée aux nanofils de silicium qui supportent de fortes
résonances optiques dont le nombre et la gamme spectrale, du proche UV au proche IR, sont
fonction de leur diamétre. Dans ces conditions, I’exaltation du champ proche optique et un rap-
port surface sur volume élevé favorisent ’apparition de processus non linéaires. Ainsi la généra-
tion de seconde harmonique (SHG) par rapport au silicium massif est augmentée de deux ordres
de grandeur. En outre, différentes contributions a 'origine de la SHG peuvent étre adressées
individuellement en fonction de la polarisation du laser d’excitation et de la taille des nanofils.
Les résultats expérimentaux sont confrontés a des simulations numériques (méthode dyadique
de Green, GDM), qui permettent d’identifier les différentes contributions. Dans une seconde
partie, la méthode dyadique de Green est couplée a des algorithme évolutionnistes (EO) pour
la conception et 'optimisation de propriétés optiques choisies de nanostructures semiconduc-
trices ou métalliques, par exemple diffusion résonnante de différentes longueurs d’ondes pour
différentes polarisations. Des échantillons de nanostructures de silicium, réalisés a partir des ré-
sultats de I’EO, vérifient avec succes les prédictions de I’algorithme d’optimisation, démontrant
I'énorme potentiel de 'EO pour de nombreuses applications en nanophotonique requérant une
optimisation simultanée de différents parametres.
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Chapter 1

Introduction and Motivation

1.1 Nano-Optics

ANO-OPTICS is a field which is increasingly drawing attention of researchers worldwide.
N In general, nano-optics is the research field on effects of light-matter interaction occur-
ring at subwavelength dimensions — thus at the nanometer scale for visible and near-

infrared light. Usually, all phenomena can be described by classical electrodynamics, i.e. by the
set of Maxwell’s equations [1]. In this chapter we give an overview of different material sys-
tems and of the current research progress on photonic nano-structures and their applications.
A comparison between plasmonic structures and high-index dielectric antennas motivates more
profound investigations on the latter material system. Finally we give a brief review on nonlinear

effects in nano-optics.

1.1.1 Plasmonics

One of the main driving forces in nano-optics is the field of plasmonics [2, 3]. Interaction of
electromagnetic waves with metals can launch collective oscillations of free electrons from the
conduction band. The dielectric constant of metals is negative (see Fig. 1.1b), leading to an imag-
inary wavevector. Fields are therefore evanescent and confined within a small region at the sur-
face, called “skin-depth” [4]. In consequence, collection oscillations of the electrons propagate
along the surface and are called surface plasmon polaritons (SPP) [5-8]. In small metal particles,
the propagation of SPPs is hindered due to the spatial confinement and localized modes appear,
so-called localized surface plasmon (LSP) resonances (see Fig. 1.1a). For an extensive introduc-
tion on plasmonics, we refer the reader to reference [2]. These confined plasmon oscillations
allow to squeeze light into tiny volumes of subwavelength size, far below the diffraction limit
and yield extremely high local field enhancements [9]. In the visible spectral range this results in
characteristic sizes of several tenths to a few hundreds of nanometers. Such plasmonic particles
are often referred to as “optical antennas” [10-13].

A multitude of designs for such antennas have been proposed for various purposes. It is
for example possible to obtain spectrally well defined resonances which may be used for color-
filtering and -rendering or printing at the diffraction limit [14-19] or, on the other hand, to create
broadband antennas [20]. Other designs allow either polarization-sensitivity or -insensitivity
[16, 21, 22] and polarization conversion [23, 24]. Furthermore it is possible to create interfer-
ences between modes resulting in Fano-like resonances [25] or enhancement of higher mul-
tipolar radiative transitions that would usually be too weak for observation [26]. Also chiral
responses can be tailored to react sensitive to left- or right-circular polarized light [27-29].
Another example is strong directivity in the scattered angular intensity distribution that can
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Figure 1.1: (a) sketch of localized surface plasmons in gold nanospheres induced by an electromagnetic
field and (b) real part of the relative permittivity of gold and silicon.

for example be achieved with antenna arrangements similar to radio-frequency antennas [30-
35]. Also forward/backward anisotropic scattering can be obtained [36] and even the possibil-
ity of wavelength-dependent switching of directionality has been reported [37]. Larger two-
dimensional antennas pronounce higher order spatial modes with complex, tailorable field dis-
tributions that can be resolved for example using two-photon luminescence (TPL) [38-41] or
electron energy loss spectroscopy (EELS) techniques [42]. Acoustic vibrations can be optically
excited in nano-antennas, that have been used as nano-sources for hypersound generation [43,
44].

Applications range from signal processing [45, 46] over surface enhanced spectroscopies
where strong plasmonic field enhancements are exploited to boost signals from few or even
single molecules, from weak fluorescent transitions or from molecular vibrations [20, 47-49] to
biomedical applications in which plasmonic particles are used as nano-biosensors for specific
biomolecules [50], as biomarkers [51, 52] or for local thermal treatment [53, 54] and drug deliv-
ery [55]. Sharp resonances can be used for tuning [56] and sensing [57, 58] in optomechanical
plasmonic resonators.

1.1.2 Photonic Particles from High-Index Dielectric Materials

The main focus of this work will be put on another type of photonic nanostructures, namely high-
refractive index dielectric nanoparticles. Usually, the latter materials comprise semiconductors
such as germanium or silicon (Si refractive index in the visible n ~ 3.5 - 4). The decisive difference
to plasmonics is the lack of free carriers. This results in a positive real part of the dielectric
function (see Fig. 1.1b) which means that light can actually propagate inside the material. Under
electric fields, the material is polarized due to a displacement of the bound carriers relative to their
lattice atoms and this polarization is proportional to the dielectric contrast with the environment
(see also appendix 6.4.4).

In the past several years, many functionalities of plasmonic systems have been made accessi-



ble also from high-index dielectric nanostructures — with the advantage of very low absorptive
losses [59, 60].

1.1.2.1 Individual Structures

In the early 2000’s, the possibility to use horizontal silicon nanowires (SiNWs) as antennas for vis-
ible light was first exploited in the context of enhanced absorption [61] and Raman spectroscopy
[62]. By simply changing the diameter, optical resonances can be tuned all over the UV and visi-
ble spectrum up to the infrared [63, 64]. An optical darkfield microscopy image of different large
NWs is shown in Fig. 1.2a, where the size-dependent redshift of the resonance wavelength is
clearly visible. It was then shown, that also the material composition is a convenient parameter
for tuning the resonance positions [65]. In nanowires, these resonances are strongly polarization
dependent, as is their nearfield distribution [66], a property that can be used for polarization fil-
ters [67] or to obtain spectrally enhanced and strongly polarized photoluminescence from direct
bandgap semiconductor NWs [68]. A multitude of structures has been studied in the meantime,
such as low aspect ratio [69, 70] and vertical nanowires [71], nanospheres [72], nanodiscs [73],
hollow nanocylinders [74] coupled dimers [75-77] or even complex bio-inspired structures [78].
Also heterostructures composed of mixed materials have been investigated [79]. For example the
absorption efficiency of NWs could be increased significantly by using amorphous-/crystalline-Si
[80] or Ge/Si core/shell structures [81].

Similar functionalities as with plasmonic antennas have been realized on the high-index di-
electrics platform. Guiding light for all-optical signal processing is a commercially established
application of silicon nanostructures [82, 83] and efforts are being made to couple other dielec-
tric materials to the CMOS platform [84]. Nanowires are also used to guide single photons or
entangled photon pairs e.g. for quantum computing [85]. Apart from wave-guiding, numer-
ous other possible applications exist. The possibility to obtain well defined optical resonances
in high-index nanowires can be used to create single-NW lasers [86] and achieve mode-filtered
lasing from such individual NWs [87]. Recently an optical diode for circularly polarized light
has been proposed [88] which is a step towards all-optical logical elements. It is also possible
to create forwards/backwards selective uni-directional scattering [89—92] or even scattering to-
wards arbitrary angles [93] by taking advantage of interferences between degenerate resonance
modes. The aforementioned possibility to tune the resonance wavelengths is similarly flexible
as in plasmonic antennas and is supposed to be very valuable for solar cell applications [94-
97]. It has been also shown, that high-index dielectric nano antennas can be used as alternatives
to metal particles in surface enhanced fluorescence spectroscopy (SEF) and surface enhanced
Raman spectroscopy (SERS) [98]. While field-enhancement is several times lower compared to
metal antennas, larger field volumes and by far lower losses may compensate this drawback in
many applications [99].

1.1.2.2 Dielectric Metamaterials

When individual nano-structures are put together and are arranged orderly on large areas, such
surfaces can have very surprising macroscopic optical properties — that, very importantly, are
tailorable to individual needs. Such so-called metasurfaces or metamaterials [100] are often made
of plasmonic elements [101], but here we will focus on an introduction to all-dielectric metama-
terials [102, 103].



In direct analogy to the optical properties of individual nanostructures, metasurfaces with
spectrally well defined resonances can be designed. In this way, optical band-pass filters [104],
full-color holograms [105], highly absorptive surfaces [106], polarization converters [107] or, by
putting the individual dielectric elements on a flexible substrate, mechanically tunable metamate-
rials [108] have been created. By tuning spectrally the ratio of forward and backward scattering,
metasurfaces with particularly high reflectance [109-111] or transmittance [112] have been re-
ported, as well as metasurfaces designed for ultra-fast optically induced transparency [113]. The
ability to spatially tune the phase of an incident beam allows wavefront shaping, polarization
control e.g. for radially polarized beam generation or focusing from planar structures [114, 115].
A generalized Brewster effect can be obtained from surfaces composed of silicon nanospheres
which has been used for the tailoring of directional scattering [116]. Directionality has also been
used to vertically couple light from a waveguide to free space, which opens perspectives for ap-
plications in optical signal processing [117]. Even materials can be designed that allow optical
cloaking, i.e invisibility of small objects [118] (for details on cloaking, see [119] or [120]).

1.1.2.3 Beyond Optics

High-index dielectric nanostructures are also promising for possible multi-purpose applications.
For instance thermal rectification in telescopic Si NWs — which basically represent diodes for
heat transport — has been demonstrated recently for NWs with diameters ~ 10 nm [121]. Ther-
moelectric properties could be enhanced in dielectric metamaterials by artificially increasing the
ratio of electric over heat conductivity [122]. Another research group used resistance hystere-
sis in silicon nanowires with encoded abrupt doping-profiles to implement non-volatile memory
[123]. Such effects could be exploited simultaneously to the unique optical properties of dielectric
nanoparticles with manifold imaginable applications.

1.1.3 High-Index Dielectric vs. Plasmonic Nanostructures

In the preceding introduction, we focused mainly on the similarities of plasmonic and dielectric
materials. Let us now compare the differences between them in some more detail in order to
expose advantages and drawbacks of the two material systems.

1.1.3.1 Fabrication

We will start with some words on the fabrication of nanostructures. Plasmonic structures con-
sist of metals, usually gold, silver or aluminum. They are either evaporated on a substrate with
a subsequent lithographic step and lift-off [124] or chemically synthesized [125-128]. Colloidal
particles have been orderly arranged with DNA origami templates [129] or larger chemically syn-
thesized crystalline flakes can be very rapidly structured by interferometric lithography [130].
The first approach suffers from the relatively poor and often polycrystalline quality of evapo-
rated metals whereas the mono-crystalline metal nanoparticles from the latter technique usually
cannot be up-scaled to obtain large-area substrates.

High-index dielectric materials can also be evaporated or sputtered with the same drawbacks
that hold for the metal case. Silicon nanowires can be grown by vapor-liquid-solid (VLS) epitaxy,
which is a technique that can be easily up-scaled. A key advantage of the VLS-method is that it
allows a very accurate definition of the size and aspect ratio of a large quantity of simultaneously
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Figure 1.2: (a): Darkfield image of 5 pm long SOI-etched silicon nanowires with widths from 30 nm at the
left to 400 nm at the right. (b) sketch of magnetic field generation in metal split-ring resonators
(left) and dielectric nanospheres (right), reprinted from Kuznetsov et al. [72]. Copyright (2012)
CC BY. (c) comparison of heat dissipation in gold (left) and gallium phosphide dimers (right),
adapted with permission from Albella et al. [75]. Copyright (2014) American Chemical Society.

grown nanowires [131]. In particular for silicon, another common approach is the lithographic
definition of structures on the crystalline silicon layer on a silicon-on-insulator (SOI) substrate
[132, 133]. A key advantage in this context is the almost perfect control of structure definitions
thanks to the compatibility to state-of-the art CMOS technology procedures.

1.1.3.2 Losses

A major disadvantage of plasmonic nanostructures for field enhanced spectroscopy are the sig-
nificant losses associated to the large imaginary part of the dielectric permittivity in metals.
These losses are responsible for significant heat generation in the particles which can be lethal
for fragile biomolecules. If the emitters survive the heating, their weak signals might be directly
re-absorbed by the lossy metal particle, neutralizing the effect of enhanced emission. Although
high-index dielectrics yield significantly lower field enhancements, the associated losses are even
by several orders of magnitude smaller (see also Fig. 1.3). For structures of comparable field en-
hancements, the difference in temperature gradients between plasmonic and dielectric particles
can reach several 100 °C [75, 99] (see Fig. 1.2¢).

The very low losses are a key advantage of dielectric materials when it comes to spectroscopy
applications. However, the dissipation in plasmonic antennas can be used for localized heat
generation at a nanometer scale [134] which on the other hand is not possible with dielectric
nanostructures.



1.1.3.3 Electric Field Enhancement

Field enhanced spectroscopy is one of the main applications for plasmonic particles. High field
enhancements are necessary in order to boost the weak signals from few or even single molecules.
Field enhancement in the vicinity of high-index semiconductor nanoparticles is essentially pro-
portional to the dielectric contrast between the particle (¢,,1) and its environment (¢, o). This is
a result of the continuity conditions for fields across dielectric interfaces (see appendix A.1)

Ejo=Ej1 €r0ELo=€1E11. (1.1)

The normal component of the electric field close to the particle is enhanced by the ratio of the
permittivities and possibly further amplified due to the presence of resonant modes. For many
semiconductors, strong field enhancement in the order of ~ 100-fold amplification of the field
intensities are possible (¢, > 10), where resonant optical modes further increase the effect [66,
76, 98] (see Fig. 1.3). Also a tightly focused excitation can increase the field enhancement and
lower the effective volume of high field concentration [135]. The enhancement factors are nev-
ertheless significantly lower than in plasmonics, where three orders of magnitude in intensity
enhancement can easily be achieved [75]. While in plasmonics generally the strongest nearfields
can be obtained, dielectric particles offer larger volumes of field enhancement [98], which, under
circumstances, can be advantageous. The range of the strongest field enhancement is in the order
of ~ 1 nm for plasmonic antennas and ~ 10 nm in dielectric nano-particles. This is in particular
advantageous when it comes to the fabrication of nano-particles featuring such small gaps. Re-
ported gain in fluorescence rate using dielectric particles range from values ~ 5 [136] to = 35

[98].

1.1.3.4 Magnetic Field Enhancement

Another noteworthy difference are strong magnetic resonances in dielectric nanoparticles, which
are hard to obtain in plasmonic antennas [72, 137-140]. Magnetic dipolar resonances in dielectric
dimers can yield an ~ 100-fold increase of magnetic field intensities at visible frequencies [76],
similarly strong as the electric field enhancement. In plasmonics, comparable performances are
achievable only with complex asymmetric particle arrangements [141] or in the infrared using
split-ring resonators [142] (see also Fig. 1.2b). The performance of magnetic field enhancement
generally suffers from strong losses in plasmonic particles in the visible spectral range [72].

The magnetic resonances in dielectric nanoantennas can be used to tailor the magnetic local
density of states [143]. Furthermore they can lead to behavior similar to magnetic media in
actually non-magnetic (1, = 1) media. Because the magnetic resonances can be tuned to be of
comparable strength with the electric resonances, the so-called Kerker-condition (¢, = €,, [144])
can be fulfilled even in dielectric media where clearly y, # ¢,, leading to strongly directional
scattering [89, 91, 145-147].

Apart from the visible spectral range, strong magnetic fields have been demonstrated in high-
index dielectric particles also for GHz [148] and THz frequencies [149].

1.1.3.5 Scattering

Finally, despite very strong field enhancements, scattering to the farfield from plasmonic anten-
nas is limited [150] and often outperformed by their dielectric counterparts [75], as demonstrated
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Figure 1.3: Extinction and scattering efficiency spectra (top) as well as nearfield enhancement (bottom: E-
field: red, B-field: blue) in the gap of (a) a dimer of two silicon spheres with radius R = 80 nm
and (b) a gold dimer with R = 40 nm. Gap is R/4 in both cases. Sizes were chosen to obtain
resonances around 4 = 600 nm. Incident planewave polarized along dimer axis. Dimers are
placed in vacuum. A sketch of the model and numerical mesh used in the simulations for the
gold and silicon dimers is shown above the plots.

by the numerical simulations comparing the scattering efficiencies from gold and silicon dimers,
shown in Fig. 1.3. In summary, dielectric antennas may be equal or even favorable alternatives
to plasmonic systems, dependent on the targeted application.

1.1.4 Hybrid Plasmonic-Dielectric Nanostructures

In many regards, the plasmonic and dielectric platforms offer complementary properties. It is
therefore not surprising, that efforts are being made to bring together both systems into hybrid
plasmonic-dielectric nanostructures and combine their mutual advantages.

High-index particles have been used for example as “sensors” for plasmons, coupling propa-
gating SPPs on metal surfaces to the farfield [151]. Inversely, metal particles were incorporated
in dielectric waveguides to filter frequencies in the waveguide transmission around the plas-
monic particles’ resonance [152]. In different works, the coupling between plasmonic particles
and dielectric nanowires was used to circumvent the polarization-anisotropy in scattering from
semiconductor nanowires [153, 154]. In this context, metal/dielectric nanospheres were pro-
posed as “super-scatterers” with remarkably high scattering efficiencies due to superposition
of multiple resonances [155] or inversely “super-absorbers” were designed by decorating sili-
con nanowires with plasmonic gold particles [156]. In quantum dot doped NWs, lasing from
sub diffraction-limit mode-volumes was realized by coupling to SPPs [157]. Plasmonic anten-
nas were employed to boost photoluminescence from III-V semiconductor nanostructures via
strong field enhancement [158]. Hybrid waveguides were suggested that offer spectrally broad
high power transmissions and could be promising for scanning-tip microscopy applications like
SNOM in order to guide light to few square-nanometer small sample areas [159]. Concepts to
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Figure 1.4: Schemes illustrating (a) second harmonic generation, (b) two photon induced photolumines-
cence, (c) third harmonic generation and (d) one possible interaction diagram of four-wave
mixing.

improve directional emission have also been proposed on the basis of hybrid plasmonics. Com-
pared to an all-metal design [30], enhanced directivity could be achieved using a metal antenna as
driving element and a low-loss dielectric antenna as director [160]. In a similar work the signifi-
cantly lower losses have been pointed out, using a dielectric component to reduce re-absorption
[161]. Also, difficulties associated with the weak optical magnetism of plasmonic particles can
be avoided using mixed metal-dielectric structures [162]. This might be an important concept if
strong magnetic fields are desired in the vicinity of metal structures. Finally, promising appli-
cations can also be found in photovoltaics. For example, patterned metal-films with embedded
silicon nano-pillars showed drastically increased absorption compared to non-patterned films,
while the low electrical resistance of the metal film was maintained [163].

1.2 Nonlinear Effects

All properties and applications of nano-photonic particles described above were based on a linear
optical response. If the amplitude of the exciting electromagnetic field is high enough, nonlinear
optical effects occur, that can offer a large range of unique functionalities beyond linear op-
tics. Probably the most popular nonlinear optical effect is harmonics generation [164]. Among
this, the most prominent examples are second harmonic (SHG, illustrated in Fig. 1.4a) and third
harmonic generation (THG, Fig. 1.4¢c): Two (or three) photons of a fundamental wavelength Ag
are coherently up-converted (i.e. the process happens instantaneously, there are no interme-
diate states) to a single photon with Asgyg = A0/2 (or Atgg = A¢/3). Apart from harmonics
generation, other widely exploited nonlinear phenomena are: Sum- and difference-frequency
generation (not shown), four-wave mixing (FWM, Fig. 1.4d) used for example in optical para-
metric oscillators and amplifiers [165, 166], or two photon induced photoluminescence (TPL, see
Fig. 1.4b), which is an incoherent conversion of two incident photons to one photon of shorter
wavelength (with Ag > ArpL > A¢/2), involving intermediate states with finite lifetimes [167,
168].

The link between nonlinear optics and nano-antennas is the need of high field amplitudes in
the former and the possibility to strongly enhance electric fields in the latter. Therefore nano-
photonic structures seem ideal candidates to evoke nonlinear effects and increasing interest is



being put on nonlinear nano-optics. In this section, we give an overview on current research and
on applications of nonlinear effects in nanometric plasmonic and dielectric systems.

1.2.1 Nonlinear Plasmonics

Following the outline of the previous section, we will start with some brief examples of current
research on nonlinear effects in plasmonics.

In gold, which is a centrosymmetric crystal, second order nonlinear effects such as SHG vanish
in the dipolar approximation [169]. Nevertheless, by breaking the symmetry at the level of the
nano-structure design, significant SHG can be obtained from gold plasmonic antennas [170]. It
turned out, that SHG can even be further enhanced using multi-resonant antennas with modes at
Ao and Ag/2 [171-175], but the efficiency of propagation of SHG to the farfield remains crucially
dependent on microscopic symmetries [176, 177]. It has been shown, that by using a control beam
at 1g/2, the directionality and scattering efficiency of SHG can be controlled [178]. Furthermore,
size dependent polarization effects occur in SHG from nanoparticles, that arise from different
physical processes at the origin of the nonlinear radiation [179, 180]. Equally to SHG, also THG
can be heavily enhanced in resonant plasmonic antennas [181]. Other nonlinear effects like sum-
or difference-frequency generation and four-wave mixing can also be enhanced [182, 183]. Apart
from enhancement of nonlinear processes, the incoherent character of two photon luminescence
can be used to image spatial mode distributions in larger two-dimensional plasmonic resonators
[38, 39, 184, 185]. A more extensive overview on nonlinear plasmonics can be found in reviews
on this topic, e.g. by Kauranen and Zayats [186] or by Butet et al. [187].

Despite all recent progresses in nonlinear plasmonics it has been shown that the efficiency
of nonlinear processes in metal nano-particles is inherently limited, mainly due to dissipation
processes [188].

1.2.2 Nonlinear Effects in Dielectric Nanostructures

Because of lower losses and other advantages like compatibility to CMOS technology (for sili-
con), high-index dielectric structures may also be promising alternatives to nonlinear plasmon-
ics. Particularly nonlinear photonics on the silicon platform are subject of current research, with
the goal of implementing all-optical signal processing in Si-based microelectronic devices [189].
Third-order nonlinear effects are very promising in this context, because of the inherently high
x3) of silicon. This allows enhanced third harmonic generation with factors of up to 10° com-
pared to bulk Si using photonic crystals [190] or dielectric nano-antennas [191-194]. Harmonic
light can be produced, intense enough to be visible with the bare human eye [195].

1.2.2.1 SHG from Non-Centrosymmetric Materials

Despite the great prospects of third order effects, they can be experimentally inconvenient be-
cause the fundamental frequency has to be chosen in the infrared in order to obtain a response in
the visible. Therefore, second order effects and in particular second harmonic generation (SHG)
are subject of current research. In this context, dielectrics with a non-centrosymmetric crystal
offer a great advantage over plasmonics, because SHG can be generated from the bulk crystal
itself.



Strong second harmonic light could be for example generated from subwavelength small Al-
GaAs cylinders and was found to be enhanced by magnetic Mie resonances [196]. Using this
strong SHG in nonlinear farfield-microscopy was used to reveal the spatial patterning of hybrid
guided- / Mie-modes (see also [69]) in GaAs nanowires [197]. Control on properties of nonlinear
effects has also been reported. For example the directionality of the (strongly enhanced) SHG
from ZnTe NWs [198] or AlGaAs nanodiscs [199] can be controlled by means of the incident
beam polarization and the particle’s aspect ratio. Also the polarization of the SH light in the
farfield could be controlled by modal engineering in GaP nanopillars [200].

1.2.2.2 SHG from Centrosymmetric Materials

Elemental silicon is among the experimentally most convenient materials. Unfortunately, like all
elemental crystals with face-centered cubic (fcc) lattice, bulk Si has an inversion symmetry and
therefore doesn’t support second order nonlinear effects in the dipolar approximation.

Nevertheless, second order nonlinear effects and particularly SHG is still of interest in cen-
trosymmetric nano-particles. Due to a breaking of the inversion symmetry at interfaces and with
large surface-to-volume ratios in small particles, the effective nonlinear susceptibility is actually
non-zero. Furthermore, field-gradients can arise due to tight focusing or resonant optical modes,
that also break the symmetry locally and support a second-order nonlinear response. Therefore,
a lot of theoretical work has been done for SHG from nanoparticles of centrosymmetric materi-
als [201-206]. Experimentally, enhancement of SHG has been reported for example from SINW
arrays (> x50 compared to bulk) [207]. Also Si photonic crystals can enhance SHG and THG
significantly, even under cw excitation sufficiently strong fields could be obtained to generate
measurable second harmonic light. Radiation patterns confirmed in these experiments, that THG
is indeed generated within the bulk, while SHG is a surface effect [195]. As SHG requires a break-
ing of the symmetry at some point, strained dielectric slabs have been studied in this context as
well. And indeed, a good enhancement of SHG from strained silicon [208, 209] or germanium
waveguides [210] was found. However, it has been recently reported that the influence of strain
on the bulk second order susceptibility of silicon had been overestimated earlier [211].

1.2.3 Hybrid Plasmonic/Dielectric Structures

Also in nonlinear nano-optics, attempts are being made to combine advantages of plasmonics
and high-index dielectrics. A tremendous increase of THG by a factor of 10 could be achieved
by coupling indium-tin-oxide (ITO) to the enhanced nearfield of a plasmonic antenna [212]. In an
other work, the efficiency of FWM (Fig. 1.4d) could be increased using a hybrid silicon/plasmonic
waveguide [213].

1.2.4 Applications

Probably the best motivation for further investigations on nonlinear properties are the mani-
fold possible applications of nonlinear optical effects in nano-structures. The fact that SHG from
centrosymmetric crystals is a surface effect is widely exploited for macroscopic surface char-
acterization [214-218]. But also on a nanometer scale, characteristic surface signatures can be
obtained from SHG spectroscopy. The surface second harmonic light from gallium-nitride (GaN)
nanowires for example contains a signature of the surface orientation [219] or aluminum grain
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boundary interfaces can be analyzed by SHG microscopy [220]. Nonlinear optical effects are
also widely used in signal processing based on silicon photonics [189]. As an example, a passive
optical modulator was realized thanks to a strain-induced increase in nonlinearity by one order
of magnitude in silicon waveguides [221]. Also ultrafast all-optical switching can be obtained in
silicon nano-structures, making use of a spectral shift of the magnetic dipole resonance caused
by two-photon absorption [222]. Apart from quantum computing, where a lot of effort is put in
both linear [223-225] and nonlinear [226] optical techniques, optical computing might also be
done in a more classical way, basing on optical switching. An optical transistor would require
some nonlinear optical phenomena in order to achieve a switching behavior. Such a device has
been proposed as early as 1976 by Jain and Pratt Jr. [227] who suggested that a refractive-index
perturbation induced by a “base” beam could be used to nonlinearly control the intensity of SHG
from the device by a variation of the phase-matching condition. In this device, the equivalent to
the collector would be the fundamental incident beam and the emitted SHG would correspond
to a transistor’s emitter. More recently, a polarization controlled logical element was proposed
using TPL from plasmonic nanostructures supporting higher-order spatial modes [40].
Equivalently to surface second harmonic generation, SHG is highly sensitive to small changes
of the nano-particle geometry, which has been proposed to be exploited for far-field measure-
ments of few nanometer small distances using a kind of optical “nano-ruler” [228]. Infrared-
excited SHG from dielectric GaP nanoparticles has been proposed as femtosecond nanome-
ter light source at visible frequencies for applications related to bio-imaging [200]. In such
nano-probes, engineering of the geometry allows to shape the modes and thereby the harmonic
nearfield as well as its polarization state. In the context of nano-scale localized sensing, it has
been shown that a nonlinear response can offer about one order of magnitude higher sensitivity
to changes in the refractive index compared to linear optical refractive index sensing [229]. An
other work-group used cadmium-sulfide (CdS) NWs as nanometer scale optical correlators which
opens perspectives for on-chip ultrafast optical technologies [230]. Finally, nonlinear effects can
be used in bio-medical applications. SINWs were used as biomarkers and excited with an infrared
fs-laser. The detected THG provides not only the biomarkers’ positions but also information on
their orientation due to anisotropic THG as a result from the high aspect ratio of the NWs [231].

1.3 Scope of this Work

The focus in this work will be put on nonlinear effects in dielectric structures, in particular in
silicon nanowires. In the first part (page 13 and following), the fundamental electro-dynamical
theory will be introduced and an introduction to nonlinear optical effects will be given. We will
give an overview on the Green dyadic method (GDM), a technique for the numerical modeling of
the response of nano-objects to an excitation by electromagnetic fields. In this context, also for
nonlinear optical effects a numerical description will be presented and discussed (page 39 and
following).

In the second part (page 55 and following), a thorough study of the optical behavior of silicon
nanowires (SINWs) in the visible spectral range will be performed. At first, the linear optical
properties will be discussed. Subsequently the nonlinear optical response will be subject of an
experimental and theoretical analysis. Finally, second harmonic generation (SHG) will be exam-
ined in detail and we will find, that the origin of the frequency doubling in SINWs depends on
the polarization of the fundamental field as well as on the size of the nanowires, which opens
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interesting perspectives for further studies of surface SHG from nanowires or for applications
which require control of the harmonic emission.

In the last part (page 89 and following), we will discuss the more technological problem of
nanostructure design. As described above, optical properties of photonic nanostructures can be
tailored to specific needs. For this, usually some reference design is chosen by intuitive con-
siderations. By a systematic analysis of the system, the desired properties are maximized sub-
sequently. However, finding optimum geometries for a given problem is not trivial, and often
trade-offs have to be made. We therefore tackle the problem in an inverse way: After defining the
desired optical properties, a corresponding geometry is searched using evolutionary optimiza-
tion algorithms. We show, that using a thorough definition of the problem and structure model,
this technique can be used for the optimization and automatic design of photonic nanostructures
with regards to various optical properties. To demonstrate the approach, we apply evolutionary
optimization on silicon nanostructures to obtain maximum SHG as well as on plasmonic nanoan-
tennas for directional scattering. At last, we employ an even more general multi-objective evo-
lutionary algorithm in order to simultaneously maximize scattering at two target wavelengths
in multi-resonant dielectric nano-scatterers. The optimized structures are finally fabricated by
electron-beam lithography and the predictions of the experiment are verified experimentally.
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Chapter 2

Modeling Optical Effects at the Nanoscale

he noticed that they naturally describe a fundamental property of electromagnetic

fields: The ability to propagate as waves at the speed of light — even in vacuum,
independent of any carrying medium. Electromagnetic waves in a range of wavelengths from
the ultraviolet to the far infrared (some 10 nm to several 10 pm) are usually referred to as light,
including the visible light from around 400 nm to 700 nm. The description of effects from the
interaction of light with subwavelength small particles will be the scope of this chapter.

WHEN James Clark Maxwell worked out his groundbreaking equations in the 1860s [1],

2.1 Definition of the Problem

Generally, the goal of nano-optical problems is to find the electric (and / or magnetic) fields in a
particular nanostructure under external excitation, like illustrated in figure 2.1a. The nanostruc-
ture is usually placed in a homogeneous environment and often lies on top of a substrate. The
external excitation is usually realized by a laser beam. Other possible fundamental fields such
as electron beam excitation [232] are outside the scope of this work but can be treated formally
equal to “classical” electromagnetic fields [233].

The response of a nanoparticle to an illumination is obtained by resolving Maxwell’s equations
for the given system. In the first part of this chapter we will introduce the fundamental electro-
dynamical theory. We then present a volume integral approach for the numerical resolution of
Maxwell’s equations based on Green’s dyadic functions. In the last part we give an introduction
to nonlinear optics and present an extension of the numerical model for the description of Second
Harmonic Generation.
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2.2 Electrodynamics

2.2.1 Maxwell’s Equations

All kind of electromagnetic phenomena are entirely explained by the four Maxwell’s equations
which write (in SI units):

divD = p (2.1a)
B
rotE = —(;—t (2.1b)
divB =0 (2.1¢)
D
rotH = (36_1‘ +j (2.1d)

with the current density j, the charge density p, the electric field E and electric displacement D as
well as the magnetic field B and the magnetizing field H. All above fields are functions of space
(r) and time (¢). Interaction of matter with light is described by solutions for the electromagnetic
fields that fulfill Maxwell’s equations for the considered system. Most commonly, the electric
displacement is related to the electric field using the electric polarization density P

D=¢E+P (2.2)

and the magnetizing field to the magnetic field using the magnetization density M

1
H=—B-M (2.3)
Ho
The response of material to fields is represented by this electric polarization and magnetization
(see figure 2.1a). They are defined as the electric dipole moment dp and the magnetic moment dm
per volume element dV, respectively (for details, see e.g. [234, chapter 4.1 and 6.1]):

d
= £ = GOXE (2-43)
dm
M= i XmH (2.4b)

Like the fields, both the polarization and the magnetization are functions of space and time. The
right-hand side terms are first-order Taylor expansions of P and M as function of the electric and
magnetizing fields, respectively. These linear approximations are valid only for linear materials.
We will see in section 2.4, that we can describe non-linear effects by introducing higher-order
terms to the equations for the polarization and magnetization.
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er(), pr(w) (b) Slowly Varying Field

P(r, w), M(r, )

(a) Nano-Object in Vacuum (c) Rapidly Varying Field

Figure 2.1: (a) shows an arbitrary object placed in vacuum made of a material characterized by €, and y,.
Its response to incident electromagnetic fields Eg, Bg can be described by the polarization P
and the magnetization M. In (b) a nano-object which is small compared to the wavelength is
shown, whereas in (c) a particle is shown with large size compared to the wavelength.

2.2.2 Dielectric Permittivity

The above equations together with eq. (2.2) and (2.3) yield the so called constitutive relations [235,
chapter 2.3]

D = ¢ye E (2.5a)
B = popr H (2.5b)

with y = ¢, — 1 and ym = pr — 1. € and p, are the relative dielectric permittivity and mag-
netic permeability, respectively. They are defined as the ratios of the material’s permittivity and
permeability relative to the vacuum values €y and py.

For simplicity, we will consider in the following only non-magnetic media, i.e. we assume
Uy = 1 and consequently M = 0.

The dielectric permittivity describes the wavelength dependent response of a material to elec-
tromagnetic fields. All interplaying physical effects are phenomenologically combined in this
material constant. The refractive index is linked to ¢, and y, by

n = el = Ve, (non-magnetic media) (2.6)

Note that €, is complex in our notation, the imaginary part is responsible for energy dissipation.
For details see for example [235, chapter 2.6].

In the following, we will give a brief comparison of the dielectric behavior of metals and di-
electrics.
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Figure 2.2: Dispersion of gold (a) and silicon (b). The permittivity is drawn in red, the refractive index in
black color. The respective real parts are shown with solid, imaginary parts with dashed lines.

2.2.2.1 Metals

In metals, an impinging electromagnetic wave induces collective oscillations of the conduction
electrons, so-called surface plasmon polaritons (SPP) [5]. Because of electromagnetic screening
due to the free carriers at visible frequencies, those oscillations are bound to a small volume at
the surface of the metal, characterized by the skin-depth [4] (see eq. (2.10)). The screening effect is
described by a negative real part of the dielectric permittivity, leading to purely evanescent fields
inside metals. The collective electron oscillations can be driven to a resonance at the so-called
plasma frequency wy.

The permittivity of gold (from [236]) is shown as an example in Fig. 2.2a. The non-zero Im(e,)
is responsible for thermal dissipation. As consequence of this, together with the negative real
part of €,, the imaginary part of the refractive index n is much larger than its real part. This
generally reflects the fact that electromagnetic waves are strongly damped inside the metal.

The relative permittivity of metals can be roughly approximated by the Drude model [237].
Following the notation of Johnson and Christy [236], the permittivity can be written using a
Lorentzian oscillator model

w2
p
er(w) = S 5 (2.7)
wp — W — iw/7,
with the electron relaxation time 7z, and the plasma frequency w, [238, chapter 1]
mo N,e?
Te = —2’ a)p = 4 (2.8)
N.e egm

where ¢ is the vacuum permittivity, ¢ the Drude conductivity, N, the electron number density,
e the electron charge and m its effective mass. For frequencies sufficiently far below the plasmon
resonance at wp, this is a reasonable approximation.
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2.2.2.2 Dielectrics

In dielectrics, the absence of free charge carriers results in an entirely different dispersion rela-
tion. Dielectrics respond to electric fields by a local displacement of bound charges relative to
the lattice atoms. No screening takes place and electromagnetic fields can propagate inside the
medium. Therefore, the relative permittivity is positive in dielectrics.

In Fig. 2.2b, the dispersion of silicon (from [239]) is shown as an example. If the photon energy
is lower than the direct band gap (in Si at around 370 nm), the dielectric constant is mainly real
and positive valued. The refractive index is also almost purely real and very high — between 3
and 4 throughout the visible and infrared. In consequence silicon absorbs very little compared
to metals. If the photon energy is higher than the direct bandgap, free carriers can be excited
and the dielectric permittivity is not necessarily positive anymore. This can be seen in the silicon
dispersion below A ~ 370 nm

Generally, the dispersion of dielectrics can also be described by an oscillator model, formally
equal to equation (2.7). For silicon, very accurate dispersion models for the visible spectral range
exist, using multiple oscillators [240, 241].

2.2.3 Quasistatic Approximation

Before we elaborate a way to obtain general solutions of Maxwell’s equations, let’s consider a
particular case of light-matter interaction. In structures whose dimensions are much smaller
than the wavelength, thus d <« A, effects induced by a varying field amplitude along a structure
(so-called retardation) can usually be neglected. Such a situation is shown in figure 2.1b. The
electric field over the whole particle is regarded as totally in phase. This is referred to as the qua-
sistatic approximation, in which the displacement current 9D /0t is neglected and equation (2.1d)
simplifies to

rotH = j (2.9)

which is known as Ampere’s law.

For metal nanoparticles, the field decays exponentially from the surface towards the bulk core.
In this case, the quasistatic approximation requires the further condition that the size of the
nanoparticle is small compared to the skin depth [4]

/1() €y + €
dskin =5 2 (2'10)
21 €5

which is given here for a particle of permittivity €, placed in vacuum. For metal structures signif-
icantly smaller than dg,, the internal field can be considered homogeneous over the nanoparticle
and proportional to the external field.

Many theoretical models in nano-optics are based on this approximation. A prominent exam-
ple is the so called Rayleigh scattering, scattering from very small subwavelength particles in the
quasistatic limit [242]. Rayleigh scattering is responsible for the blue color of the sky. As we
will see in more detail in section 2.4, also second harmonic generation from dielectric nanopar-
ticles can be analytically described by making simplifications like the assumption of quasistatic
fields [202, 243].
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Figure 2.3: Sketch of a monochromatic electromagnetic wave.

2.2.4 Problems Including Retardation Effects

The quasistatic approximation can only be applied on particles whose size is significantly smaller
than the wavelength of the incident light. For particles large compared to the wavelength like the
one illustrated in figure 2.1c, retardation effects occur and Maxwell’s equations must be solved
rigorously in order to describe the resulting phenomena.

2.2.4.1 Time Harmonic Fields in Phasor Representation

We will see that it is of enormous practical advantage to consider monochromatic fields. This
is not such a restriction as it might occur in the first place because the use of harmonic waves
as ansatz for the solution of Maxwell’s equations can subsequently be generalized to arbitrarily
time-dependent fields by a superposition of harmonic fields and inverse Fourier transformation.
In the following, we will therefore express all fields using complex exponentials:

E(r, t) = Eo(r) @) (2.11)

with the amplitude E, the wavevector ko, the angular frequency w and a phase ¢. As we treat
harmonic oscillations, the angular frequency is a convenient way to express the wavelength A

and writes: 5
W= % = kgc (2.12)

with the wavenumber kg = |ko| and the speed of light ¢

1
VeoHo

It is possible to separate the phase ¢ from the argument of the exponential in eq. (2.11) and
include it in the complex amplitude:

c= (2.13)

E(r, t) = Eo(r) e 9 e = Eo(r) e ¢ (2.14)

The amplitude Eq(r) = Eq(r) €' is called a phasor or, more literally, a complex amplitude. The
imaginary part of Eg contains the total phase information which is given by the angle in the
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complex plane
o(r) = atanz(Im (Bo(@)), Re (Eo(r))). (2.15)

@ is also a function of space. The real part of the complex field E(r, t) represents the physical
amplitude of the electric field at time t. We note that it is possible to sum, substract or differentiate
phasors without limiting the generality.

The above expressions hold equally for the magnetic field of electromagnetic waves.

2.2.4.2 Wave Equation

The time-harmonicity of the fields can now be used to explicitly perform the differentiation
0/0t in equations (2.1) which leads to the macroscopic, Fourier transformed Maxwell’s equa-
tions (compare with [235, chapter 2.4]):

divD(r, w) = p(r, ) (2.16a)
rotE(r, 0) = iwB(r, w) (2.16b)
divB(r,w) =0 (2.16¢)
rotH(r, w) = —iwD(r, w) + j(r, ) (2.16d)

Maxwell’s equations represent a coupled system of linear, partial differential equations. They
can be decoupled by applying the vectorial curl operator (rotA = V X A) on equation (2.16b)
and substituting with eq. (2.16d). By then making use of the relations between the electric field
and the displacement and between magnetizing field and magnetization (Egs. (2.2) and (2.3)), we

obtain
rot(rotE) = iw rotB

iwpg (rot(H + M))

= iwpp(—iwD +j) (2.17)
= iwpo(—iwege  E + j)
2
= erw—QE + iwpoj
c
We consider non-magnetic media and therefore M = 0. Using the identity
Vx(VxA)=V(VA) - AA (2.18)
and
D=¢E+P = divD = ¢divE + divP =0 (2.19)
we find
w? -1
e&r—E+AE = V(divP) — iwpgj. (2.20)
c €0€r

Eq. (2.19) means that we consider only media with vanishing free charge density (pf =0 — p =
pp'), in order to be able to make some further simplifications.

1 pyp is the bound charge density where by definition holds p, = —divP, see for example [234, chapter 4.2.1]
2 The reason why the simplification of a dielectric constant works also in the case of metals where free carriers
seem to exist is because the dielectric function is based on the macroscopic Maxwell’s equations (Egs. (2.17)). When
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With the speed of light ¢? = (epup) ™! and the wavenumber inside the non-magnetic medium
k = /e, ko = +fer wc™! this becomes

-1

€0€Er

(A +Kk*E = VVP — iwpgj. (2.21)
In linear materials, dipolar approximations of the bound charge density py,(r, ©) and the current
density j(r, w) can be developed by means of the electric polarization (2.4a)

pp =—-VP (2.22)
.0 :
j= EP = —iw P. (2.23)
While the latter relation is evident because we are assuming time-harmonic fields, Eq. (2.22) can
be easily derived from the definition of the electric polarization density (see for example [234,
chapter 4.2.1]).
Inserting (2.23) in equation (2.21) (we included Eq. (2.22) in our derivation already using
Eq. (2.19)) eventually brings us to the wave equation for the electric field:

(A +k*)E = ——VVP + 0P (2.24)
€0Er
2 1 2
(A+Kk)E=-— (k*+VV)P. (2.25)
€0€Er

We want to point out, that this equation is formally identical to the mechanical wave equation
describing for example an oscillating string [234, chapter 9.1]. In the case of the electromagnetic
wave equation, the speed of the propagation is the speed of light ¢ which eq. (2.25) contains
implicitly through the wavenumber k. Furthermore the waveequation is found to be a more
general form of Poissons’ equation in electrostatics, which it becomes in the static case, i.e. when
k =0 [244].

While we will limit our considerations to non-magnetic media, we point out as a final note
that an analogous wave equation can be found likewise for the magnetic field (see for example

[234, chapter 9.2]).

2.2.5 Green’s Functions

In order to solve an inhomogeneous linear partial differential equation like the wave equation,
the concept of Green’s functions is a versatile tool. At first we want to illustrate the basic idea.
For this we start with a differential equation

LA(x) = g(x) (2.26)

integrating the macroscopic system, free charge carriers only exist if the metal is actually charged. If this is not the
case, a dielectric function can indeed be used to describe the metal’s optical properties including plasmonic effects.
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where L is an arbitrary linear differential operator and g(x) the inhomogeneity of the differential
equation. It would be pleasant to obtain something like an inverse of the differential operator L
in order to write A(x) = L™!g(x). Unfortunately, the operator L can in general not be inverted®.
The principle idea is therefore to search an operator G for which holds

LG=1 (2.27)
If it is possible to find such an operator G, we obtain also a particular solution of eq. (2.26):
LA(x) = (LG)g(x) = L(Gg(x)) = Alx) = Gy(x) (2.28)

Instead of searching an operator G for the inhomogeneity “1” as we did in eq. (2.27) for our
demonstration, it turns out to be of more general use to consider a point-source-like inhomo-
geneity defined by a Dirac delta function §(x — x”’)

LG(x,x") = 8(x — x’) (2.29)

Note that in general, the Green’s function G defined by eq. (2.29) is not only dependent on the
parameter of the differential equation (here x), but also on the position of the inhomogeneity x’.
Multiplication with the original inhomogeneity and integration of eq. (2.29) leads to

fLG(x,x’)g(x)dx =f5(x—x/)g(x)dx

= 9(x) (30
= LA(x)
Making use of the linearity of L we finally have:
Ax) = f G(x,x")g(x)dx (2.31)

Thus we solved the differential equation for arbitrary inhomogeneities g(x), provided that G can
be found from eq. (2.29). Note that we assumed here that L can be pulled out of the integral in

eq. (2.30).

2.2.6 Green’s Function for the Electromagnetic Wave Equation

Let’s write again the wave equation for the electric field (eq. (2.25))

(A+k*)E=-— (k> +VV)P (2.32)

€0Er

By assuming time-harmonic fields, we could eliminate the time-derivatives in Maxwell’s equa-
tions which rendered eq. (2.32) to the form of a Helmholtz equation:

(A + k%) A(x) = g(x) (2.33)

! or the Method of Green’s functions is simply much easier to employ or yields a more general solution
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As depicted in section 2.2.5, the associated Green’s function G is defined by considering a Dirac
function as inhomogeneity:

(A +Kk?) Go(x,x") = 8(x — x7). (2.34)

From this definition, Gy is found to be

1 et ik |r—1’| et ikR

Go(r,r’) = — - = . .
o(r,1") Py - R (2.35)

In the latter equation, we replaced the parameter x by the distance R = |R| = |r — r’| between
source point r’ and observation position r. For a detailed derivation of eq. (2.35) see for example
[244, chapter 6.4] or [245, chapter 1.2].

The scalar Green’s Function for the wave equation (equation (2.35)) corresponds to an incom-
ing (minus sign) or outgoing (plus sign) spherical wave. After equation (2.31), solutions of the
wave equation can be written as an integral over this scalar Green’s function. This is equivalent
to a superposition of spherical waves and thus identical to the Huygens-Fresnel principle.

2.2.7 Dyadic Green’s Function

An electric dipole oscillating in X direction will in general induce an electric field with x, y and
z components. As a consequence, the scalar Green’s function (eq (2.35)) is not fully sufficient to
develop solutions of the wave equation. We therefore need to extend the scalar Green’s function
to a notation that corresponds to the vectorial character of the fields. Following [235, chapter
2.10], we can define a Green’s function for each component of the electric field

(A + k%) Gy(r,r’, 0) =1, - 8(r — 1) (2.36)

where G is a vector composed of scalar Green’s Functions and n, is the unit vector in X direc-
tion. By doing the same for the Y and Z direction and the according components of the electric
polarization, we can write

(A +K?) Ggyad(r,7’,0) =1- 8(r - 1) (2.37)

with the unit tensor I. Ggyaq (in bold type) is a tensor with 3 X 3 components (because we are
dealing with three-dimensional fields) and is called a Green Dyad, Green tensor or Dyadic Green’s
function. Dyadic Green’s functions are a tight notation for N N-dimensional Green’s functions.

In the following, we will define the Dyadic Green’s function slightly differently. The concept
however is identical to the here presented description.

2.3 Green Dyadic Method

After having presented the theoretical basis of electrodynamics and a short introduction to
Green’s formalism in the previous section, we now want to explicitly solve the wave equation for
an arbitrary object placed in a homogeneous environment. For simplicity, we continue consid-
ering monochromatic (i.e. time-harmonic) waves propagating in linear, isotropic, homogeneous
and non-magnetic media.
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We will start with the derivation of the “Lippmann-Schwinger equation”, which defines the
self-consistent problem associated to the depicted configuration. We will develop the explicit
form of Green’s Dyad for a homogeneous environment and will subsequently present a method
for the numerical resolution of the optical Lippmann-Schwinger equation. The generic term for
the resolution of the wave equation by means of Green Dyadic functions is, for obvious reasons,
Green Dyadic Method.

2.3.1 Lippmann-Schwinger Equation

By defining two operators (following the way of proceeding of Girard [246])

A=NA+k> P (k> +vv) (2.38)

&

we can write the wave equation for the electric field (eq. (2.25)) in a more compact form

1
AE(r, w) = < B -P. (2.39)

We now apply the concept of Green’s functions (see section 2.2.5)
’ 1 ’
AGo(r,v’,0) = —B6(r-r1'). (2.40)
€0

We formally make use of the invertibility of the Laplacian [247, vol. 3, “elliptic operators”] and
write

1
Go(r,v’,w) = p ALTBSr-1). (2.41)

By comparing the latter with the particular solution of equation (2.39), we get

1
E,(r,0) = < A8 P

1
=— AL | BP0 —1')dr’ (2.42)
0
1
= —fGo(r,r’,a))-P(r’,w)dr’.
€0

For the general solution of the electric field, we have to add the solution Ej of the homogeneous
wave equation (in absence of any polarizing material, i.e. with finite electric susceptibility).
Usually this will be the incident field — or in other words, the exciting field. We get

E(r,w) = Eo(r, 0) + 1 f Go(r,r’,w) - P(r’, w)dr’. (2.43)
€0

This equation signifies a remarkable result: Provided we have an expression for Gy we now know
the emitted electric field at every position in space for arbitrary polarization densities.
If we recall the linear approximation P = ¢g yE of the polarization as function of the electric
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field which we introduced in section 2.2.1, we can finally write for linear media

E(r,0) = Eo(r, 0) + f Go(r,r’, 0) - YE(r', 0)dr’ (2.44)

where the integration is performed over the “source region”, which is the volume where material
exists with an electric susceptibility other than that of vacuum, i.e. y # 0. Equation (2.44)
is the vectorial Lippmann-Schwinger equation for the electric field — a widely used equation in
quantum mechanical scattering theory'. Quantum mechanics shares many formal ideas with
optics — as one example, we remind of the close relation between particle wave functions and
electromagnetic waves — so this analogy does not surprise too much.

We note that in a homogeneous and isotropic environment, the electric susceptibility of by
themselves (piecewise) isotropic and homogeneous objects placed in this environment can be
generalized very easily using their relative electric permittivities

€r.mat.(Ts ©) — €7 env.(®) for r inside the object(s)

0 for r in the environment

Xrel.(r’ w) = {

2.3.2 Field Susceptibility for a Homogeneous Environment

For the explicit solution of the Lippmann-Schwinger equation (2.44), we need to find an analytical
expression for the Dyadic Green’s function

1
Go(r,r/,0) = — A LB -1). (2.45)

€0
With the scalar Green’s function Gg defined by the Helmholtz equation (see section 2.2.6)
A -Go(r,r’,0) =6(r —1') (2.46)
we can write
Go(r,r’,w) = A 5 —1). (2.47)
Multiplication with 8B yields

B -Gy(r,r’,0) = B-A 6@ -1)

A B -1 (2.48)

where we used the commutability of partial differentiation of continuous functions in the last
step [248, chapter 1.13].

Comparison with eq. (2.41) and using the outgoing variant of the scalar Green’s function (plus
sign in eq. (2.35)) leads us to the relation between the scalar and the Dyadic Green’s function and

! To be precise: Quantum mechanics uses it’s scalar counterpart, describing probability densities for particle positions
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with that to the explicit form of the latter

Go(r,r’, w)

1
— B-Gy(r,1’, 0)
€0

1 e+ikR

e . 2.
EOB R (2.49)

| .
( — k2T, (R) — ikT5(R) + Tg(R))e‘kR
drepe,

where we used again the abbreviations R = r —r” and R = |R|. In analogy to related literature
[246, 249, 250], we introduced the three tensors

RR - IR?

Ti(R) = B (2.50)
3RR - IR?

Ty (R) = — i (2.51)
3RR - IR?

T3(R) = — = (2.52)

where RR is the tensor-dot-product of the two vectors. Note that T; describes farfield effects
while Ty and T3 account for the nearfield with (T2) and without retardation (T3 — quasistatic
approximation, see section 2.2.3).

The Green’s Dyad Gy is also referred to as the field susceptibility, because it can be seen as a
generalization of the electric susceptibility. If we multiply Go(r,r’, w) with a dipole p at r’ the
result is the field at position r, emitted by this dipole. This is also why G is furthermore called
a propagator — it mathematically propagates the electric field of a source into free space.

2.3.2.1 Objects in Multi-Layer Environments

The above derived field susceptibility Gg describes polarizing material in a homogeneous envi-
ronment. One of the main advantages of Green’s Dyadic Method is the possibility to easily add
analytically solvable constraints to the observation system like for example a substrate (such as
illustrated in fig. 2.4). For doing so, we can make use of the required linearity' of Gg and simply
add the Green’s Dyadic function describing the influence of additional boundaries like a substrate

G"tot. = GO + Gsubstrate (2'53)

Such a surface Dyad can be found for instance using the method of mirror charges. For details
and descriptions of efficient computational methods, we refer to the works of Cai and Yu [251]
or Paulus et al. [252] where also a generalization to multi-layered systems is presented.

2.3.2.2 Periodic Structures

In the same manner like multi-layered environments, periodically repeated structures can be
treated: By including a Bloch periodicity in the Ansatz for the electric field, a Dyadic Green’s
function can be derived that correctly accounts for interference effects from a two-dimensional

! in terms of Physics, the linearity of an operator describes the superposition principle

25



(a) Arbitrary Nanostructure (b) Cubic Volume Discretization

Figure 2.4: (b) shows a cubic volume discretization of an arbitrary nanostructure, illustrated in (a), which
is composed of multiple elements lying on a substrate.

array made of an elementary computation cell [253-256]. The GDM is therefore also a powerful
tool in the design and simulation of metasurfaces.

2.3.2.3 Two-Dimensional Problems

Using appropriate Green’s functions, also two-dimensional problems can easily be treated, i.e. in-
finitely long structures with arbitrary cross-sections [257, 258]. This technique is useful as a mode
solver for waveguides [259]. Also particles with very high aspect-ratios like silicon nanowires
can be approximated using the GDM-2D technique with very rapid convergence. This will be
used later in this thesis.

2.3.3 Volume Discretization

For arbitrarily shaped objects, the integral in the Lippmann-Schwinger equation (2.44) can gen-
erally not be solved analytically. In the following we describe a numerical approach for its so-
lution which requires the transition from the integral to a sum over finite size volume elements
(see also [246]):

N
E(ri, ) = Bo(ri,0) + () ) Guor.(ris1j,0) - B(r), 0) - Vea (2:54)
=1

where we discretized the nano-object using N cubic volume elements as illustrated in figure 2.4,
with side length d and thus V.. = d®. For reasons of clarity the dependency on the frequency
will be omitted in the following. We can rewrite eq. (2.54) as follows

N
Eo(ri) = B(r:) - x )| Guor (v 1)) - B(r)) - Vea
= (2.55)

(5ijI = X Veell - Gtot‘(ri,rj)) - E(r))

M-

~.
Il
—
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where §;; is the Kronecker delta and I the Cartesian unitary tensor.
Let us now define two 3N-dimensional vectors containing the ensemble of all electric field
vectors in the discretized nano-object

Eo,obj. = (Eo,x(rl), Eg,y(r1), Eo,2(r1), Eox(r2), s ey Eo,z(rN)) (2-56)
By, = (Bx (1), By (r1), Ex(r0) L R X ) R =
Together with the 3N x 3N matrix M composed of 3 X 3 sub-matrices
M;; = 6i1 = xVeenGior. (ri, 1) (2.58)
we obtain a coupled system of 3N linear equations
Eo,obj. = M - Ep;. . (2-59)

If we are able to determine the inverse of the matrix M defined by eq. (2.58), we can calculate
the field E inside the structure for all possible incident fields Eq (at frequency w) by means of a
simple matrix-vector multiplication:

Eobj. =M. EO,obj. . (2.60)

In the following, we will use the symbol K for the inverse matrix
K(w) = M (w) (2.61)

which we will call the generalized field propagator as introduced by Martin et al. [260].
Finally, with equation (2.44), we can use the field susceptibility with the field inside the particle
in order to calculate the total electric field at any point outside the nanostructure.

2.3.3.1 Renormalization of Greens Dyadic Function

When integrating the source region, we integrate scalar Green’s functions of the form of spherical

waves
eik r—r’|

f(r,r') = (2.62)

r—1/|
Obviously, this function diverges if r = r’, which occurs when the field of a point dipole pd(r—r’)
is being evaluated at the dipole’s position r’. As a consequence, in order to remove this singu-
larity we need to apply a regularization scheme when integrating the polarization distribution
in equation (2.43) over the volume of its extension [261]. For a three dimensional cubic mesh, a
simple renormalization rule for the free-space Green’s Dyad is found [262, section 4.3]

-1

G (ry,r;) = ——1L (2.63)
0 67‘,envd3
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Figure 2.5: (a) shows the calculated scattering spectra of a silicon nanowire discretized using cubic and
hexagonal meshes. The meshes are shown in (b) and (c) perpendicular to the long axis of the
wire.

A hexagonal compact mesh in 3D can be regularized analogously using [250, section 3.1]

-V2

Ghex rr)= ———
0 <l l) 3er,envd3

(2.64)
with d the stepsize of the volume discretization. While a cubic cell has a volume of Vi =
d3, in the hexagonal compact case, the volume of a cell equals Ve = d3/V2 and also must be
accordingly adapted in Eq. (2.58). Because it treats the field of a dipole at the location of the
dipole itself, the sub-matrix M;; is also called “self-term”.

The choice of an appropriate mesh can be crucial for the convergence of the method. When
curved structures like wires of circular section are modeled, a hexagonal mesh should usually be
preferred. On the other hand, for structures with flat surfaces and normal angles cubic mesh-
ing yields better results. Figure 2.5a shows a pathological comparison of scattering spectra for a
plane-wave excited silicon nanowire of diameter D = 60 nm, discretized using cubic and hexag-
onal meshing with equal nominal stepsize (8§ nm). Cross-sections of the wire structure models
are shown in figures 2.5b and 2.5c.

We note that a regularization method for finite tetrahedral volume elements of variable size
and shape has been proposed by Kottmann and Martin [257].

2.3.3.2 Paraxial Fields

We now have developed a mathematical scheme to solve the wave-equation for time-harmonic,
monochromatic fields. For any incident field — which is what corresponds to the homogeneous
solution Eq(r, t) of the wave-equation — we are able to calculate the electric field distribution
inside an arbitrary nano-particle. In order to entirely simulate optical effects in nanoscale struc-
tures we need to describe the incident electric field.
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(a) Plane Wave (b) Focused Plane Wave (c) Paraxial Gaussian

Figure 2.6: Real parts of different paraxial fields (field directions indicated by small black arrows). The focal
point of (b) and (c) is in the center of the plots. X-direction is the horizontal axis along which
the light is linearly polarized. The vertical direction corresponds to the Z-axis with incidence
along —Z.

In addition to monochromaticity and time harmonicity, it is often convenient in numerical
simulations to consider fields that propagate uniformly in one single direction only. Such fields
are called paraxial.

Plane Wave The probably most simple representative is a plane wave, i.e. a wave that has
uniform fields on all planes perpendicular to its propagation vector kg, as shown in figure 2.6b.
Using a complex amplitude (see Eq. (2.14)), it writes:

Eo(r, t) = Egelkor=e?) (2.65)

Plane waves have interesting physical properties which makes them also particularly convenient
for calculations. If we insert equation (2.65) in Maxwell’s equation for the curl of the electric field
(Eq. (2.1b)) it follows that

ko (k
BO = il (—0 X EQ) (2.66)
w k()
which means )
|Bol = ZIEol- (2.67)

Plane waves waves are obviously transverse with E L B L kg as illustrated in figure 2.3 and a
relation between their amplitudes exists. This is a good approximation in the far-field, at large
distances from any discontinuities (like polarizable particles) of the homogeneous environment.

Also, in many cases the assumption of plane waves for the incident light on a nano-particle is a
sufficiently good approximation. Unfocused light from a source located far from the observation
position can be usually described using plane waves. This may be for example sunlight on the
surface of the earth or light focused by a microscope, where the focal spot is large compared to
the examined sample.
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However, in situations where the focal spot becomes smaller than the observed area, plane-
waves are often no longer adequate to describe the illumination. This is the case for example
when doing raster-scan experiments with a tightly focused beam on larger nanoparticles (see
section 2.3.3.4).

Focused Plane Wave A plane wave with a Gaussian intensity profile may often be sufficient
to model effects introduced by focusing optics, as illustrated in figure 2.6b. A focused plane wave
in Z-direction (kg || e;) has the form

(2.68)

. )2 4 (4 — u)?
Eo(r,t) = B elkor-o?) -exp<(x X0)” + (y = yo) )

2W52p0t
where wgpot is the width of the focused beam and the focal axis is at (xo, yo). The full width at
half maximum (FWHM) can be calculated from wgpot using

WEWHM = Wspot * 2V21n 2. (2.69)

This is in many cases a good approximation for modeling experiments with focused beams.

Paraxial Gaussian Beam Often, lasers are used as sources of monochromatic, coherent light
with high intensity. Light emitted from a laser-cavity is however not propagating like a plane
wave, but rather as a Gaussian beam (see figure 2.6¢). As the intensity profile differs significantly
from the focused planewave, the use of a model for Gaussian beams may become necessary —
particularly in larger objects, where the curved intensity profile of such a beam induces important
field gradients along the propagation direction. A popular approximation to a real Gaussian beam
is the so-called paraxial approximation, where all k-vectors are parallel to one single propagation
direction. It can be calculated using the following formula (propagation along Z-axis)

Eo(r,t) = By —2 " otk (24 =) () (2.70)
r,t) = E) ——ex exp |-i|w z -{(z 2.70
0 "Wz TP\ wiz)?) P 2R(2) 7
with the beam width or “waist” wg and the squared distance to the beam axis r> = Ax? + Ay?.
Ax, Ay are the distances to the beam axis in X and Y direction, respectively. In equation (2.70)
we introduced furthermore the z-dependent beam waist

2
w(z) = woy|1 + (Z—AQ) (2.71)
TW;
the radius of curvature
w2\’
R(z)==z|1+ z_)LO (2.72)
and the Gouy phase
A
{(z) = arctan(z—2) (2.73)
Wi
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Figure 2.7: divE corrected field of a linear polarized tightly focused Gaussian beam. Field directions are
indicated by small black arrows. In (b) and (c) time-averaged intensities are shown to illustrate
where the value of the longitudinal field component (i.e. along the propagation direction) is
largest. Linear scale between contour lines. Focal point in the center of the plots. X-direction
is the horizontal axis along which the light is linearly polarized. The vertical direction corre-
sponds to the Z-axis with incidence along —Z.

which is a result of the shorter path along the curvature close to the waist, compared to the path
a plane wave would travel by continuing on a straight line [263].

Finally we note that, as the name suggests, the wavevectors of all paraxial fields are always
parallel to one specific direction (we generally consider propagation along the Z direction). Ef-
fects that rely on the presence of k-vectors in multiple directions can therefore not be described
by a paraxial field. Examples where this approximation may break down are coupling to guided
modes with focused fields [264] or the rigorous description of scattering occurring in dark-field
microscopy [265].

2.3.3.3 Tight Focus Correction of the Paraxial Gaussian

Under strong focus, i.e. with large beam curvatures 1/R(z) close to the focal point, the parax-
ial approximation of a Gaussian beam becomes inaccurate. In particular in the focal region,
Maxwell’s equation divE = 0 (assuming no free charges) is not being satisfied any longer and
a correction is required. Assuming a field propagating along the Z-direction (and therefore
Ey,, = 0 in the paraxial approximation), we get by integration of eq. (2.16a)

dEox OEny
Ep,=— ——X 4 Y4z )
0, f( ax T By ) z (2.74)

With the definition of the paraxial Gaussian field we find

ED,z(x’ Y, Z) = : (Ax EO,x + Ay EO,y) . (2-75)

-2i
kw(z)?2
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Here, Ax and Ay are the distances to the beam’s propagation axis in X and Y direction. This
equation can easily be adapted for arbitrary k-vectors. In figure 2.7a-b, the real part and the total
intensity of the corrected Gaussian field are plotted. Fig. 2.7¢ shows the intensity of the correction
term, thus of the field components along the axial k-vector. For tight focusing (NA 0.8 in the
shown example), the correction term can approach around 5 — 10% of the total field amplitude.
For more details on the description of focused electromagnetic fields, see [235, chapter 3].

2.3.3.4 Raster-Scan Simulations

Once the generalized propagator K is known, we can calculate the response of the system to
arbitrary (monochromatic) exciting fields by means of a simple matrix-vector multiplication. This
can be used to do raster-scan simulations at low numerical cost, by moving a focused incident
beam step-by-step over the nano-object, while calculating and eventually post-processing the
field at each position [185] (see also section 3.3.3.2).

2.3.4 Resolution of the Inversion Problem

We saw in the previous section that the electromagnetic response of a nano-particle of arbitrary
shape can be calculated by inversion of the matrix M, defined in Eq. (2.58). This inversion can be
performed with standard numerical methods like LU-decomposition. An extensive explanation
of LU-decomposition and details on its implementation can be found for example in [266, chapter
2.3]. We use the LU-implementation in the “SuperLU” library for direct inversion of M [267,
268]. Another possibility to calculate the inverse for the particular case of the GDM is to use
a sequence of Dyson’s equations [260]. A detailed description of the latter algorithm can be
found in [249, chapter 2.4]. An advantage of the Dyson’s sequence is its very good parallelization
capability, superior to parallelized LU-decomposition. However, LU inversion has a better single-
core performance (see Fig. 2.8b).

2.3.4.1 Conjugate Gradients

If we have a closer look at the matrix M, we can make an interesting observation: While M is
not exactly sparse’, most of the entries have significantly smaller absolute values than very few
large matrix elements. In Fig. 2.8a we show plots of the population of matrix M for some selected
nano-structures. These population plots work as illustrated in the following examples:

1 00 2 0 1 2 3
ool -Fme o) -BRg ol G
0 01 0 2 7T 8 9

M contains also phase-information and is therefore complex, hence we use the absolute values of
the matrix elements for the population patterns. In addition, the maximum of the color-code in
Fig. 2.8a is clipped to 10 % of the maximum absolute value in the matrix to increase the contrast.
Clearly, the matrices contain very few entries with values of more than some % of the overall
maximum and yet > 60 % of all elements are generally non-zero.

— N

! A sparse matrix consists of mostly zeros and very few non-zero entries
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Figure 2.8: In (a), population patterns of matrices M are shown at A = 1 pm for a selection of structures
(stepsize 10 nm, same scale for all sketches). The structures are one layer of mesh-points high,
in order to keep the number of matrix-elements low. White corresponds to an absolute value of
0, black to > 10 % of the matrix’s largest element. (b) shows timings of nanowire-simulations
for spectra with 30 wavelengths as a function of the number of meshpoints. Dyson’s sequence,
LU-decomposition and conjugate gradients are compared and fitted by a power-law (resulting
power given on the bottom right). (c) shows the speedup when comparing conjugate gradients
to LU-decomposition as a function of meshpoints.

It turns out, that such matrices are good candidates for iterative solving using so-called
“Krylow-subspace methods”. The most popular algorithm of this class is the conjugate gradi-
ents (CG) method and its derivations like biconjugate gradients (for non-symmetric problems)
or complex CG [269]. A detailed description of the method can be found in [266, chapter 2.7].
The main idea of these iterative methods is, that the inverse of the matrix is in many cases not
actually required. For simulations that massively make use of the generalized propagator (like
raster-scan simulations), the CG technique is therefore not the method of choice. It may be on
the other hand an advantageous approach, if we search a solution for E that satisfies

M-E=E, (2.77)

for one single incident field Eg. During the CG-iterations, matrix-vector multiplications M - x
are performed following a minimization scheme in which M - x converges eventually to Ey.
Theoretically, for a N X N matrix CG converge to the exact solution after N iterations and each
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iteration itself has a computational cost oc N2. In reality, the convergence is often very rapid in
the beginning, and a solution with sufficient precision can be obtained after very few iterations,
yielding a total computational cost o N? instead of a N* scaling for exact inversion for example
with LU-decomposition. Indeed, we find a N3-scaling for complete inversion by LU or Dyson’s
sequence and a N? dependence when using conjugate gradients (Fig. 2.8b). Particularly for larger
numbers of meshpoints, this can result in a significant speedup, as shown in Fig. 2.8c.

2.3.4.2 Preconditioning

The speed of the convergence of conjugate gradients is crucially dependent on the condition of
the matrix M and generally can be massively improved by doing a preconditioning step before
starting the actual iterative scheme. Let’s assume, A of the equation system

A-x=b (2.78)

would be the identity matrix I. Then CG would have converged within the first iteration. A
possible approach for preconditioning is therefore to reshape the problem using a matrix P

A-(P-%)=b. (2.79)

If P is a close approximation to A™!, AP will be close to the identity I and the system
would converge very quickly under conjugate gradients iterations. Eq. (2.79) is called a right-
preconditioned system. Consequently, a good preconditioner for our problem is a close approx-
imation to the inverse of M. Several algorithms exist to search pseudo-inverse matrices for
preconditioning. A very popular one is the incomplete LU-decomposition (ILU) [270] that scales
with N2 and which we use also in our implementation within the Green Dyadic method.

2.3.4.3 Recycling of the Preconditioner

When calculating spectra using the GDM, the electric field in a particle is calculated for a large
number of closely spaced wavelengths, at each of which the matrix M is (incompletely) inverted.
Most often, the electric field distribution changes only marginally for slightly different wave-
lengths and so does the matrix M. Unfortunately, a very similar matrix is of little use for exact
calculations, but we have seen in the preceding section that an approximation to the exact inverse
M~! can be a good preconditioner P for CG.

When calculating dense spectra (i.e. many points on the wavelength axis), we can use this fact
and significantly accelerate the calculation with conjugate gradients by recycling the precondi-
tioner matrix until a certain lower limit for the speedup factor is reached. In other words, we
will be using the same P repeatedly for several consecutive wavelengths and only if the accel-
eration is below a speed-up limit, a new preconditioner is calculated and subsequently re-used
for the following wavelengths. In Fig. 2.9a the timing for the calculation of each wavelength is
shown for the case of recycling (blue) and re-calculation (red line) of the preconditioner matrix.
In the “recycling” case (re-calculation threshold was a minimum speedup-factor of 2), we see
that the preconditioner is only calculated a total of 6 times for a spectrum of 100 wavelengths.
Particularly at lower frequencies, the electric field seems to change little and the preconditioner
remains a good approximation to M~! over a large spectral range (only one recalculation between
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Figure 2.9: (a) shows timings per wavelength for a CG-GDM simulation of a silicon nanowire with a step-
size of 10 nm and 50 nm diameter, consisting of = 2000 dipoles. The preconditioner was either
calculated for each wavelength (red) or recycled for multiple wavelengths until the resulting
speedup dropped below a factor of 2. In (b) the total speedup for the calculation of the whole
spectrum is plotted against the number of wavelengths in the spectrum.

~ 750 nm and 1500 nm). As shown in Fig. 2.9b, this technique can divide the total calculation
time by more then 2.

Another possible application when preconditioner recycling may be beneficial is in series of
simulations with many very similar or slowly transformed nano-structures like antennas of grad-
ually increasing size.

2.3.5 Comparison to other Numerical Methods

Other methods than the GDM can be used for solving electrodynamical problems in nano-optics.
A widely used frequency domain solver is for example the open source software DDSCAT [271],
which implements a frequency domain technique formally equal to the GDM presented above,
called the discrete dipole approximation (DDA). However, there exist two main differences to
GDM as employed throughout this work: First, the renormalization problem is circumvented
by setting the self-terms to zero and including the corresponding contributions using a physical
polarizability for each dipole, corresponding to the mesh geometry. Second, in the DDSCAT
implementation of DDA, the matrix Mppgcar is not stored in memory. The resolution of Eq. (2.59)
is done by conjugate gradients where the elements Mppscar,ij are computed in-time during the
calculation of the vector-matrix products Mppscar-x. To speed up the process, an FFT-scheme to
decrease the cost of these matrix-vector multiplications is used [272]. A drawback is that without
storing M, efficient preconditioning is very difficult. Convergence of the DDSCAT conjugate
gradient iterative scheme is therefore relatively slow and only given for very fine discretization
meshes, further slowing down the procedure due to large sizes of the coupled dipole matrix
Mbppscar-

Maxwell’s equations can be reformulated as a set of surface-integral equations. It is there-
fore possible to develop a similar formalism as the above explained volume integral method in
which only the surfaces of a nanostructure are discretized instead of the volume [273]. A great
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advantage of this so-called boundary element method (BEM) is the smaller amount of discretiza-
tion cells, which however is only valid if the fields inside the structure are not required. With
MNPBEM a free BEM-implementation exists, developed by Hohenester and Triigler [274].

Another very popular technique for electrodynamical simulations is the finite-difference time-
domain (FDTD) method. As the name suggests, the calculation is performed in the time domain,
which means that Maxwell’s equations are iteratively evolved by small steps in time. An in-
coming wave travels time-step by time-step along the region of interest and when the pulse has
passed or turn-on effects fully decayed (for plane wave illumination), the actual numerical mea-
surement is performed. The obvious disadvantage is the additional dimension (time), that needs
to be discretized. In particular for 3D problems, this usually leads to far higher computational
costs compared to frequency domain simulations. A further disadvantage is that no tabulated
permittivity data can be used which makes many dispersive media like metals difficult to be
treated. The dispersion has to be taken from analytical models or the permittivity set constant.
On the other hand, using short and therefore spectrally broad pulses, a whole spectrum can be
obtained in a single simulation run. Frequency domain techniques require each wavelength to
be calculated separately. A powerful open source implementation that comes with a rich toolbox
is the software “MEEP” [275]. For a general introduction on finite differences methods, see for
example [266, chapter 17]. A review on different numerical techniques in nanooptics, including
benchmarks, can be found in ref. [276].

2.3.6 Post-Processing: Analysis of the GDM Results

Subsequent to the calculation of the excited field inside the structure, this information is usually
further processed to obtain experimentally accessible physical quantities.

2.3.6.1 Electric Nearfield Outside the Nanostructure

With the field susceptibility (Eq. (2.43)), the field induced at any point rqyside at the exterior of
the particle can be calculated from the electric polarization inside it:

Neells
E(routside) = Eg (routside) + 5 Z Go (routsidev I',') : XVcellE(ri) (2'80)
L
where the sum is carried out over all N meshpoints at positions r;.
At the example of a silicon dimer, nearfield maps 20 nm below the structure are shown for
wavelengths at and off resonance in figure 2.10a.
Note that also scanning near-field optical microscopy (SNOM) signals can be calculated from
GDM simulations. In this case, the presence of the scanning tip needs to be taken into account
(277, 278].

2.3.6.2 Magnetic Nearfield

An oscillating dipole emits a propagating electromagnetic wave with an electric and a magnetic
component. Consequently, also a magnetic nearfield is induced in the vicinity of electromag-
netically excited media, even if the material is non-magnetic. After Faraday’s induction law
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Figure 2.10: In (a), the considered silicon dimer structure is shown (top, XY-Plane), where the incident
polarization is indicated by a blue arrow and the scalebar is 100 nm. The center and bottom
plot show nearfields at A = 600nm and A = 900 nm, respectively. Calculated 20 nm below
the structure. Corresponding extinction, scattering and absorption spectra are shown in (b),
calculated from the nearfield (top) and by propagation to the farfield of the meshpoints as
dipolar sources (bottom). The latter allows to distinguish directional scattering (forward (FW)
and backward (BW) scattering is shown). (c) shows radiation patterns in the XZ-Plane of the
scattering for incidence at A = 600 nm and (red) A = 900 nm (blue). Incident planewave from
positive Z (0°), polarized along X.

from Maxwell’s equations, the magnetic field can be obtained from the electric field in the nano-
particle (Eq. (2.16b)). For time-harmonic fields, we get

V X E(r, )
1w

B(r,w) = (2.81)
which can be solved numerically via finite differentiation (see e.g. Fig. 3.1).

Alternatively, a propagator GFE [279] can be used to obtain the magnetic field outside the
source region. In this way it is possible to calculate nearfield maps or field enhancement spectra
for the magnetic field (see for instance Fig. 1.3).

2.3.6.3 Extinction Spectra from the Nearfield in a Nanostructure

The linear response in the farfield can be characterized by the scattered and absorbed light, which
in sum is called the “extinction”. Usually these values are given as cross sections ycat., Gaps. and
Oext. Which have the unit of an area. The extinction and scattering cross sections can be calculated
from the nearfield in the discretized structure [280]

Ncells
2rn
= Im(E: .- P; 8
Oext = 3P i; m( 0.i 1) (2.82)
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> (Im (P; - E) - §k3lPi|2) . (2.83)

i=1

2mn

O.abs = T - 9
Ao - |Eol?

The scattering cross section finally is the difference of extinction and absorption

Oscat = Oext — Oabs- (2'84)

E; and P; are the field and electric polarization at meshpoint i, respectively, induced by an exci-
tation with a fundamental field Eg ;. Complex conjugation is indicated with a superscript aster-
isk (*). Note that the prefactor of the above sums is k/|Eg|? with the wavenumber in the source
region k.

The upper plot in figure 2.10b shows spectra for a planewave excited silicon dimer calculated
from the nearfield.

2.3.6.4 Farfield Pattern of the Scattered Light

The complex electric field in the farfield radiated from an arbitrary polarization distribution can
be calculated using a corresponding Greens Dyad Gy (assuming a dipolar emission from each of

the N meshpoints):
Neells

Eq(r)) = ) Galrs,r)) - P(r;) (285)
i
Using the farfield term T (equation (2.50)) we can find the following Green’s tensor for an os-
cillating dipole in vacuum (vacuum wavenumber kg)

ikoR
G"ff,Vac. (I', ro, a)) = kg %10)

- exp ( - ikosin(6) cos(p) - xo + 5in(p) - yo) ) exp ( ko cos(6) - z0) (2.86)

1 —sin?(0) cos®(p)  —sin?(0) cos(p) sin(p) —sin(8) cos(8) cos(yp)
—sin(8) cos(¢) sin(p) 1 —sin?(8) sin?(p) —sin(0) cos(0) sin(p)
—sin(0) cos(0) cos(p)  —sin(f) cos(0) sin(p) sin?(0)

where for convenience the observation point r in the farfield was transformed to spherical co-
ordinates (0, ¢, R) while the location of the source dipole r is defined in Cartesian coordinates
(dipole at (xg, yo, z0)). Note that the presence of the illuminated nano-structure is fully taken
into account also at the reemission, due to the self-consistent nature of the Green’s formalism.

Also a substrate can again be included by means of an according Dyadic Green’s function. An
analytic approximation for a farfield-propagator to a layered system has been derived e.g. by
Novotny [281]. Making use of the superposition principle, the radiation of single dipoles using
the propagator Eq. (2.86) can be generalized to the total farfield radiation of an ensemble of N
dipole-emitters, as shown in equation (2.85).

The farfield radiation pattern in the (XZ)-plane is shown in figure 2.10c for an incident
planewave on the exemplary silicon dimer along the negative Z-direction. For A = 600 nm (red),
a strong anisotropic scattering in forward direction is observed, while off resonance (4 = 900 nm,
blue) the scattering is more or less uni-directional.

38



virtual states virtual states
atom

w
2w T

VAVAW 3w

VW, NN T LN
AN
N 4 T v
ground state ground state

(a) Polarization of Medium (b) Scheme SHG (c) Scheme THG

Figure 2.11: In (a), the oscillation of an electron around its nucleus under electromagnetic excitation is
illustrated. Sketches of SHG (b) and THG (c) are shown as examples of second and third order
nonlinear processes, respectively.

A drawback of the calculation of the spectra from the nearfield-distribution as described in sec-
tion 2.3.6.3 becomes obvious: These spectra do not contain any information about the directional-
ity of the scattering. Let us assume we would try to measure scattering from the example silicon
dimer in backscattering geometry. We would find a spectrum corresponding to the red dashed
line ("BW scat”) in the lower plot of Fig. 2.10b, which differs significantly from the total scat-
tering cross section (red solid line). Fortunately, information on directionality can be accessed
using the farfield-propagator and we can calculate scattering spectra by re-propagating the elec-
tric polarization of the structure to the farfield at every wavelength of the spectrum. Hence, on
the cost of additional computation time, the polarization of scattered light in the farfield and its
directionality can be revealed.

2.4 Nonlinear Optics

Until now, we have dealt with linear optical phenomena, hence effects related to a response of
matter to light that can be described in the context of the linear electric polarization as introduced
in equation (2.4a).

In the following we will give a short introduction to the basic concepts of nonlinear optics and
put a particular focus on Second Harmonic Generation (SHG) from surfaces. We will present a
technique to describe SHG within the framework of the Green Dyadic method, which can easily
be extended to other nonlinear processes.

For a detailed introduction to nonlinear optics, we refer for example to reference [282].

2.4.1 Expansion of the Electric Polarization

As long as the excitation fields are weak compared to the lattice potential of the media, optical
phenomena can be explained by a linear response. We mentioned in section 2.2.1, that the electric
polarization is the result of a Taylor expansion around E = 0, which is stopped after the first order
term in the approximation of linear media. This resulted in the equation

P(t) ~ ey E(t)  [+O(E?)] (2.87)
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For simplicity, scalar values are given. The linear electric susceptibility in isotropic, homoge-
neous media is the constant factor y = €, — 1. It relates the electric polarization of the medium
to the electric field. For non-isotropic media, the susceptibility y is a tensor of rank 2, consisting
of Fourier transforms from frequency to time-domain, if the medium is dispersive.

In the linear regime, the returning force acting on charges, oscillating around their nuclei at
the frequency of illumination w (see Fig. 2.11a), is a linear function of the charge displacement
relative to the nucleus and thus described by a harmonic potential, as depicted in the plots on
the left of Fig. 2.12. The nucleus, having a large mass compared to the electrons, is considered
static. In reality, the potential is not harmonic (see examples in Fig. 2.12 center and right) and
the linear approximation fails at sufficiently high photon rates. In consequence, if a medium
is excited by an oscillating field of very high amplitude, the electron oscillations are becoming
sensitive to the nonlinearity of the lattice potential and new phenomena occur. A comparison of
driven oscillations in harmonic and anharmonic potentials is shown in figure 2.13a for different
driving strengths: With increasing amplitude of the excitation field, the oscillation in an anhar-
monic potential is more and more deviating from an ideal harmonic oscillator. These deviations
give rise to so-called nonlinear effects. They are usually classified according to the order of the
nonlinearity in terms of the expansion of the electric polarization:

Pi(t) = GOZX()E

+@Zxﬂumm

(2.88)
+%Zx Ej (1) Ex (i (1)
J.k,1
+ ...
which is often written in a compact form for the tensor products
Py = 60)((1) E + 60)((2) E? + 6())((3) E3 + ... (2.89)

Linear, =P(1) 2. Order, =P(2) 3. Order, =P®)

The susceptibilities y(™ are tensors of rank n + 1. For reasons of causality, in dispersive media
they involve inverse Fourier transforms from frequency to time-domain to take account of the
full electric field evolution before the observation time ¢.

2.4.1.1 Symmetric Potentials: Odd-Order Nonlinearities

Let us carry out some symmetry considerations at this point. The lattice potential in the bulk
of a material has the same symmetry as the crystal lattice. It follows conclusively that media
with an inversion-symmetric lattice like elemental fcc-semiconductors (e.g. silicon) have also a
symmetric lattice potential as depicted in the center column of Fig. 2.12. For symmetry reasons,
even-order terms of the electric polarization like P?) vanish in symmetric potentials:

2
PO =y (-E)° = ey?E2=p® o)
2.90

= y?=0.
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Figure 2.12: Harmonic (left), symmetric anharmonic (center), asymmetric anharmonic (right) potentials
and corresponding restoring forces (bottom row), which become nonlinear functions of the
position for anharmonic potentials. For comparison, the harmonic potential and the corre-
sponding force are plotted as dashed lines in the plots of the asymmetric potentials.

In figure 2.13a the amplitude of an oscillation in a symmetric potential is shown as function of
time (green line). The corresponding frequency-domain spectrum obtained by Fourier transfor-
mation is given in Fig. 2.13b. Like expected, the Fourier spectrum of an oscillation in a symmet-
ric potential contains only odd-order harmonic frequencies, like for example the third harmonic
(THG, depicted in Fig. 2.11c).

2.4.1.2 Asymmetric Potentials: Even-Order Nonlinearities

Even-order nonlinearities comprise effects explained by the terms P®,P®, ... which include
second harmonic generation (SHG, see Fig. 2.11b) or fourth harmonic generation. The constraint
to odd-order nonlinear effects in symmetric anharmonic potentials is relaxed if the potential is
not symmetric with respect to its energy-minimum (see Fig. 2.12, right). As shown in the lower
plot of figure 2.13b, the Fourier spectrum of a driven oscillation in an asymmetric anharmonic
potential does contain even-order harmonic frequencies. The corresponding time-domain data
is shown in red in Fig. 2.13a. As a consequence, non-centrosymmetric crystals such as III-V
semiconductors (GaAs, GaP, InP, ...) consisting of different atoms do support second order non-
linear effects. The nonlinear phenomena of lowest allowed order usually dominate the nonlinear
response of the medium.

2.4.2 Second Harmonic Generation

In the following we will focus on second harmonic generation (SHG). SHG is the coherent up-
conversion of two photons of a fundamental frequency w into one photon at twice the incident
frequency wspyg = 2w (i.e. half wavelength Asyg = A/2), as illustrated in figure 2.11b. As indi-
cated in this sketch, there are no real electronic states involved, the absorption and reemission
happen instantaneously.
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Figure 2.13: (a) shows the amplitude over time for low (top), high (center) and very high (bottom) driving
amplitudes. Oscillation in a symmetric (solid green) and an asymmetric (solid red) potential
is compared to the case of a harmonic potential (dashed blue line). In (b), Fourier spectra cor-
responding to a driven oscillation in a symmetric (top) and an asymmetric (bottom) potential
energy function are shown. Both are again compared to a harmonic oscillation (dashed blue
line).

2.4.2.1 Phase-matching

Harmonic generation is a coherent nonlinear process which means that a fixed phase-relation
between input and output photons exist. Due to this phase relation, SHG is usually inefficient
because the phase between second harmonic light generated at different positions in the crystal
lattice cause an overall destructive interference — the phase is determined by the fundamental
field and therefore has a value of 7 at the harmonic wavelength. So-called phase-matching be-
tween the incident and the harmonic waves is required for efficient SHG from bulk crystals (see
also [282, chapter 2]). Among other possible techniques, birefringence in crystals can be used to
obtain a phase-condition for constructive SHG interference: The refractive index difference for
light propagating at a certain angle with respect to the incident beam (usually along the ordi-
nary and extraordinary axes) is exploited, which was the first successfully employed method for
phase-matching [283].

When treating sub-wavelength small nanoparticles it is usually not necessary to consider
phase-matching, because all harmonic generation processes occur in a very limited volume such
that interference between the different source-positions has no great influence on the total emis-
sion.

2.4.2.2 Surface SHG

The most commonly used plasmonic particles, as well as many high refractive-index dielectric
nano-structures are made from centrosymmetric materials (typical materials are e.g. gold or
silver and silicon, respectively). We showed above that second-order effects in centrosymmetric
crystals are forbidden as a result of symmetry:.
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To relax this constraint, locally the lattice symmetry can be broken for example by strain
applied on one crystal direction [221, 284] or by strong field gradients [206]. Inversion symmetry
is also broken at surfaces and interfaces where even-order nonlinear effects become possible.
This surface-SHG has been first observed by Terhune et al. [285] very soon after the discovery
of optical harmonic generation [164]. Because of its local origin at surfaces and interfaces, this
form of SHG is often used for surface characterization [214, 215, 218, 220, 286—288] and has been
subject of intense research ever since its discovery [289—292].

The second order surface susceptibility tensor has seven non-zero elements of which only three
components are independent on isotropic surfaces (Co, ,-symmetry) [169]:

2

X111

@ _ .2 _ @
Xom = X = Xilialle (2.91)

@ -, _. o __ @ _

X = X = Xiallor = Xiiat = Aot

Subscripts ||; and ||2 indicate two perpendicular directions tangential on the surface, L the di-
rection along the surface normal. The second order electric polarization of an isotropic surface
then consists of three elements

@ _ p@ @) @)
Pe =P +P )+ Py, (2.92)
that write
2 2 —~
PS_J)_J_ = XJ(_lJ_[Ei]eJ— (2.93a)
P(2) — (2) E2 - b)
T = xylEpler (2.93
2 2 —~
P?|||)L = Xl(lll)_L [EllEJ_]eH' (2.93C)

In the quasistatic approximation, the fundamental field inside a nano-structure (and at the sur-
face) is considered constant and proportional to the exciting field. For very small particles com-
pared to the incident field’s wavelength, this approximation simplifies the problem and allows
an analytical treatment of surface SHG [202]. Such theories have been developed for various
problems like SHG from infinitely long, thin cylindrical nanowires [293, 294] or from small nano-
spheres [201, 295]. In this context arrays of small nano-spheres [296] as well as individual nano-
spheres [206] were investigated with extensions to tightly focused excitation. Further analytical
work has been done, among others, on SHG from finite length cylindrical nanoparticles [204],
metal tips [297] or small nanostructures of arbitrary shape [205].

Beyond the quasistatic approximation, extensions for the analytical Mie theory have been de-
veloped, e.g. for the case of SHG from infinitely long cylinders [298] or from metal spheres [299].
In figure 2.14, an example of second order nonlinear surface polarization is shown, calculated by
Mie theory for a silicon nanowire of 100 nm diameter. Quiver-plots of the nonlinear polarization
are compared to the fundamental electric field intensity inside the nanowire. A planewave is in-
cident at normal angle from the top, polarized perpendicularly (2.14a, “TE”) and parallel (2.14b,
“TM”) to the NW axis. While for TM illumination all terms except the P? contribution vanish

LI
due to the cylindrical geometry, in the TE case all three contributions are generally non-zero (see
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Figure 2.14: Crosssections of the fundamental field inside an infinitely long silicon nanowire (left color-
plots), surface SHG (left vector-fields) and SHG y-bulk contribution (V(E?), right colorplots)
calculated from Mie theory. Diameter D = 100 nm. Normal incidence with a polarization of
the electric field perpendicular (a) and parallel (b) to the NW axis.

for details section 3.4.3). For TE excitation P(fl | is shown because in silicon )(fﬁ | is supposed
to be the largest component of the second order susceptibility tensor [300].

Likewise, )((fﬁ | is the largest component of the second order susceptibility tensor in gold and
silver [301, 302], hence P(fl , usually dominates the second harmonic generation process and
often only this polarization component is taken into account [172, 174, 176]. If P(fi | is weak
due to geometrical reasons, also other surface terms can contribute significantly to the overall
second harmonic signal and need to be considered [195].

The above cited theoretical works treat objects of high symmetry with analytical descriptions.
The general case of surface SHG from particles of arbitrary shape is most conveniently treated

by numerical means. An approach using the GDM will be given later in this section.

2.4.2.3 Bulk Contributions to Surface-SHG

Although SHG is forbidden from the bulk of inversion symmetric crystals (see section 2.4.2.2), a
second order polarization can occur from higher order terms like dipolar magnetic or quadrupolar
electric components. The first non-vanishing order of these contributions, that can be expressed
in terms of field gradients of the fundamental field, comprises four source terms [169, 290, 303]:

p@ _p® , p@ , p?  p®

sthulk — B B) ¢ (2.94)
where
P =y V[EY (2.952)
P}f) = BE[V - E] (2.95b)
P?) =5 [E-V]|E (2.95¢)
PY) = { E\ViE;. (2.95d)

Here, y, B, 6 and { are phenomenological susceptibility components that can be expressed in
terms of y® elements [169, section 2.5]. In many cases, these bulk contributions can be ne-
glected. For instance under planewave illumination in the quasistatic approximation, the fields
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are constant and therefore Pi?,i)ulk = 0. However, if resonant modes like LSP [2] or leaky mode
resonances [304] exist, or if an incident beam is tightly focused onto the sample [206], field gradi-
ents arise and bulk contributions may become significant. It has been shown, that bulk contribu-
tions in centrosymmetric media can indeed become important enough to interfere with the local
surface contributions to SHG [179, 302, 305, 306]. In this context, the so-called non-separable
or surface-like y-bulk contribution [169] can be written as a superposition of local surface con-
tributions. However, employing suitable geometrical conditions allows to distinguish certain
non-local bulk contributions from the local surface SHG using appropriate polarization selection

rules [307].

2.4.3 SHG in the GDM

We will describe in the following how surface SHG from nano-particles can be calculated in the
framework of the Green Dyadic method (see Sec. 2.3).

2.4.3.1 Second Harmonic Surface Nonlinear Polarization

The most significant contribution to SHG from centrosymmetric nano-structures is usually a
local nonlinear polarization of the particle’s surface (see above). In order to calculate surface
SHG, the field inside the particle excited by the fundamental incident beam is determined in a
first step using the GDM (explained in detail in the previous section).

Subsequently, the surface of the nano-structure has to be identified and a geometrical basis of
one normal and two tangential unit-vectors has to be established at each point of the surface. In
order to be applicable for particles of arbitrary shape, this can be done by counting the number of
next neighbors Ny, of each meshpoint, either by a bruteforce method, or using sorting strategies
like the so-called “kd-tree” technique [308]. The latter approach can improve the efficiency par-
ticularly in large systems with many meshpoints. An element of a cubic lattice is on the surface
if, within the radius of one discretization step, it has less than the maximum possible Ny, puik = 6
neighbors on a three dimensional grid or Ny, bulk, 2p = 4 on a two dimensional grid.

Once the surface meshpoints have been determined, unit vectors normal on the surface can be
determined from the relative positions of the next neighbors. The unit-vectors pointing from each
neighbor towards the surface element are added and the total vector is normalized, resulting in a
perpendicular unit vector. This technique is illustrated in figure 2.15b (blue highlighted region).
Using only the next neighbors limits the angles of surface vectors to multiples of 45 °, which
restricts the precision of the result particularly on curved surfaces. To improve the normal surface
vectors on curved surfaces, a larger volume (2D: area) around the surface element can be used
for the vector calculation. The green highlighted regions in figure 2.15 show an example, where
all elements in a radius of Rg.vec. = 3 stepsizes were taken into account. The latter technique
however may be disadvantageous at sharp angles between flat surfaces, where some smoothing
of the edge will occur for large Rsf vec.. The choice of Ryf.yec. should therefore be some small value
like ~ 2 — 3 stepsizes.

For a homogeneous and isotropic surface, the second order susceptibility components are iden-
tical for all tangential directions (Eq. (2.91)). The unitary tangential surface vectors can then be
defined as two arbitrary orthogonal vectors, perpendicular to the normal surface vector €.

e, L 6”1 1 6”2 (2.96)
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Figure 2.15: Numerical calculation of the surface-vectors and second order surface nonlinear polarization
at the example of an infinitely long half-cylinder of radius r.;; = 150 nm. 2D sections in the
XZ-plane are shown. The fundamental field (A = 800 nm) under excitation polarized along the
horizontal axis is shown in (a). In (b), the procedure for calculating the surface-normal unit-
vectors (black) is depicted using only next neighbors (blue circle) and using dipoles within a
radius of Rgf_vec, = 3 discretization steps (green circle). (c) shows the normal and tangential
surface vectors obtained with R vec, = 1 and Rgf.vec. = 3 discretization steps (blue and green
highlighted regions) and in (d) the final nonlinear polarization (P(f}_ ) from the surface fields
is shown.
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For convenience, the projection of the electric field vector on the surface (at the considered sur-
face position) can be taken
E =E-(E-&.)e, (2.97)

which reduces the problem to only two orthogonal vectors e, and € with

~ Ky

e = Byl (2.98)

Once e, and €| are known, the nonlinear polarizations can be calculated by inserting them in
equations (2.93), with
EL = E . 6_]_

_ (2.99)
Ej=E-e.

On the example of a coarsely discretized, two dimensional (infinitely long) half-cylinder of radius
reyl = 150 nm, parallel and perpendicular surface unit vectors are shown in Fig. 2.15¢. The fun-
damental field in the structure for an excitation at A = 800 nm, polarized perpendicularly to the
long axes, is shown in Fig. 2.15a. The surface field components as well as the nonlinear surface
polarization P(fl , are shown in Fig. 2.15d.

2.4.3.2 Bulk Contributions to Surface SHG

In order to be applicable in the most general possible way, the bulk contributions to surface SHG -
which arise from field gradients — are calculated numerically using finite differences derivatives.
We use in particular center-differentiation [266, chapter 5.7]:

0f() _ . flcte) - flx-o)
ox e—0 2e (2.100)
_ flx+ Ax) = f(x - Ax)

2Ax

In the case of the GDM, Ax will usually be equal to the stepsize used for the discretization of
the particle. Accordingly, this approximation will become worse for large discretization steps, in
addition to the loss of precision already occurring at the calculation of the fundamental field.
As an example, intensity maps of P§,2) for a silicon nanowire of diameter D = 100 nm, calcu-
lated by numerical derivatives of fields from Mie theory, are shown in figure 2.14 (right plots).

2.4.3.3 Self-Consistent Nonlinear Polarization

In the following, the field due to the excitation at Ay will be referred to as the fundamental field,
the field due to the second harmonic generation at 1g/2 as the harmonic field. The nonlinear po-
larizations calculated following sections 2.4.3.1 and 2.4.3.2 take into account the optical properties
of the particle only at the fundamental wavelength. A possible resonant response of the structure
at the harmonic wavelength is not considered in the calculation, which may significantly boost
or — in the case of an absorption-resonance — reduce the effective nonlinear effect. The presence
of the structure should therefore be rigorously taken into account also at the harmonic field.
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Approaches based on Green’s Dyadic functions that consider the presence of the nanostructure
at the harmonic field have been proposed in the modeling of nearfield microscopy [309-311]. We
will describe a very similar formalism, utilizing the techniques introduced in section 2.3

So far, we calculate the fundamental field in the structure by solving the optical Lippmann-
Schwinger equation (Eq. (2.44))

E(r,0) = Eo(r, 0) + f Go(r,r’, 0) - YE(r', 0)dr’ (2.101)

From this linear response we calculated the nonlinear surface polarizations of centrosymmetric
SHG. With their frequency dependencies they write

P(2)J_J_J_ (r,20) = X(LQJ)__]_ [EJ_ (r, OJ)2] e,
PP (r,20) = Xfll)ll [E” (r, a))2] € (2.102)
P® L (r,20) = x|7), [Ei(r, 0)EL(r,0)] €

Note, that the bulk contributions to surface SHG with their expressions in Egs. (2.95) can be
treated in the same way as the local surface components.

To rigorously take into account the influence of the particle on the nonlinear field, we need to
calculate the self-consistent field induced in the particle by the nonlinear polarization. In a first
step we consider the nonlinear polarizations P (r, 2w) as the source of an “effective incident
field” at the harmonic frequency. We calculate the field within the nanostructure induced by the
nonlinear polarization using the field susceptibility at the harmonic frequency (Eq. (2.43)). At

the example of the )(fj | -contribution this yields

1 ’ ’
ED | (r.20) = - f Go(r,r’,20)P?) | (r,20)dr (2.103)
4
with the field susceptibility tensor G at the harmonic frequency 2w.
We assume that there is no external incident field Eg(2w) at the harmonic wavelength and
hence Eg)L |, is the only driving field at 2. In a second step, we propagate the “effective in-
cident field” inside the particle using the generalized propagator K (Eq. (2.60)) at the harmonic

frequency:

0,L11

ED | (r,20) = f K(r,1',20)E? (', 20)dr. (2.104)
14

The subscript “sc” indicates self-consistent fields. Finally we obtain the self-consistent nonlinear
polarization by a multiplication with the linear susceptibility at the harmonic frequency

p®

sc, L1l

(r,20) = x(20) - EZ | | (r,20) (2.105)

c,

We see that the generalized propagator has to be calculated at both, the fundamental and the
harmonic wavelength. As a consequence, self-consistent SHG is twice as expensive in terms of
computational cost, compared to the calculation of only the non-linear polarization. A step-by-
step illustration of SHG calculation is shown in figure 2.16.
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(a) Structure (b) Discretization (c) Incident Field

(d) Field Inside Structure (e) Normal Surface Vectors (f) Nonlin. Polarization P

(g) Self-Consistent ng) (h) Farfield Propagation (i) Farfield Polarization

Figure 2.16: llustration of the procedure for simulating SHG with the GDM at the example of a silicon
dimer with dimensions 2x 250x 100x 100 nm?® (2x Lx W x H) separated by a gap G = 75 nm.
The investigated particle structure (a) is discretized (b) and the field induced by an incident
beam is calculated using the GDM (c-d). From this linear response, the nonlinear surface
polarization (P(fl , in the shown example) is calculated by first selecting the meshpoints at
the particle’s surface and determining the surface normal unit vectors (e). Using these, the
nonlinear polarization is calculated from the fundamental field at the surface (f) and self-
consistently propagated using the field susceptibility at the harmonic wavelength (g). Finally,
the self-consistent nonlinear polarization can be propagated to the farfield (h) in order to
calculated for example polar plots of the SHG (i) captured by a given numerical aperture
(the green solid angle in (h) denotes NA 0.8). The inset in (i) shows a sketch of the dimer
orientation with respect to the polar plot.
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This approach can be easily adapted to other nonlinear processes. A third harmonic nonlinear
polarization for example can be calculated directly from the fundamental field if a uniform y(3)
tensor in the bulk can be assumed. Using non-uniform y(™ tensors would involve a slightly
more complicated, yet straight-forward individual treatment of field-vector components. The
self-consistent propagation can be done for other nonlinear processes exactly in the same way as
shown above. The only prerequisite is that a nonlinear electric polarization can be approximated
from the fundamental field.

As final remark we note that the components of the nonlinear susceptibility tensor y(? are
often not known and then set = 1. In this case an absolute comparison of the different contribu-
tions to SHG is prohibited.

2.4.4 Examples

In the last section of this chapter, we will give some examples of SHG from nanoparticles of
centrosymmetric media, calculated with the technique described above. In the following we will
refer to the “simple” nonlinear polarization if the self-consistent re-propagation of P(® has been

omitted, in contrast to the “self-consistent SHG” calculated using ng).

2.4.4.1 Surface Vectors

2? |, from infinitely long silicon

nanowires in vacuum of squared (Fig. 2.17b) and circular (Fig. 2.17a) cross sections. The diameters
of Dgqua. = 110nm and Dy, = 140 nm are chosen such that under planewave excitation with
Ao = 800 nm and linear polarization along X (L to the axis, transverse electric [“TE”]), a similar
fundamental field distribution occurs in both geometries' (see red quiver plots (i) in Figs. 2.17).
Stepsizes were d = 6.7nm and d = 7.5 nm for the square and cylindrical wire, respectively. We
calculated the normal surface vectors using different amounts of next neighbors (see Fig. 2.15):
First neighbors (ii, calc. like blue area in Fig. 2.15b), first and diagonal neighbors (iii), up to second
neighbors (iv) and meshpoints from a large area (11 X 11 neighbors) around the surface position.
Farfield radiation patterns are shown below the nearfield plots for self-consistent (solid lines)

In a first example, we compare the self-consistent SHG using P

and simple (from P(fl 1) SHG calculation (dashed lines). The structure is placed in the origin,
illumination is incident from the top.

We can observe, that for flat surfaces (squared wire), the calculation of the surface vectors
seems satisfactory already using only the closest meshpoints, limiting the vector directions to
multiples of 45°. If a large amount of neighbors is taken into account, artificial inclination of
the vector close to the edges occurs, which impacts on the farfield radiation pattern. There-
fore, in the case of flat surfaces, not too large amounts of neighbors should be taken for surface
SHG calculation. On the other hand, in geometries which imply round surfaces, this conditions
seems to reverse: The first-neighbor surface polarization is visually noncontinuous and results
in significant backward-SHG. In all other cases (also in the squared wire), mainly forward-SHG
is obtained, which has also been reported for plasmonic nano-particles [312]. We conclude that
at round surfaces it is important to approximate the surface normal by a higher precision than
+22.5°, which is obtained by considering only next neighbors.

! the diameter Dsqua, of the squared wire corresponds to the side-length of the square
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a) Surface SHG from Squared Silicon Nanowire
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(b) Surface SHG from Cylindrical Silicon Nanowire

Figure 2.17: ch) ., is shown for an infinitely long nanowire (radius 55 nm) of squared crosssection in
(a), and for a cylindrical wire (radius 70 nm) in (b). Incidence from the top, linearly polarized

along X (L wire axis), g = 800 nm. From left to right are shown the fundamental field and
ng’) | 1> calculated using 4, 8 or 12 next neighbors or all cells in an 11 x 11 square-steps
large area (“100 closest cells”). Below the vector plots, radiation patterns are given for simple

(P(2) dashed) and self-consistent (solid line) SHG calculation.

111

Finally, we notice that in this example the self-consistent calculation is not absolutely neces-
sary. The farfield radiation patterns are almost identical for the simple and the self-consistent
second harmonic calculations.

2.4.4.2 Self-Consistent SHG

As shown in Fig. 2.17 it seems that in most cases the additional numerical effort of self-consistent
nonlinear field calculation does not improve the numerical precision significantly.

We will therefore study self-consistent second-harmonic generation in comparison to using
the “simple” nonlinear polarization on two more examples.
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Figure 2.18: )(izl) | contribution to surface second harmonic generation for a 180 x 180 x 140 nm? silicon

nano-block. (a) shows XY-projections of the nearfield in (blue arrows) and 30 nm below the
particle, X-polarized planewave incidence in —Z direction. Plotted areas are 400 X 400 nm?).
In (b) the linear scattering is compared to SHG intensity in the farfield and second harmonic
forward/backward emission ratio for simple (dashed) and self-consistent SHG calculation.

Silicon Nano-Cuboid

We start with SHG from a cuboidal silicon nano-block of dimensions 180x180x 140 nm? (Lx W x
H). In figure 2.18a, the second order nonlinear nearfield distribution is shown for a fundamental
wavelength below (11), on (12) and above (A3) the TMy; -like resonance. Fields in the structure
(blue arrows) and the field-intensity on a plane 30 nm below the particle are plotted for P(fi | (top
row) and Pg) 11, (bottom row). The plots show XY-projections of the 3D structure, a planewave
is incident from positive Z-direction, polarized along X. As before, the self-consistent calculation
differs only marginally from the nonlinear polarization calculated from the fundamental field.

If we have a look at the farfield in Fig. 2.18b, the similarity between “simple” and self-consistent
way of SHG calculation persists (dashed vs. solid blue line). For comparison, the scattering cross
section oy, is plotted (red line) as well as the forward-to-backward (FW/BW) SHG directional-
ity. Total SHG intensity as well as second harmonic forward scattering have a maximum at the
fundamental resonance. The second harmonic resonance has a smaller linewidth compared to
the fundamental spectrum, which is in agreement with the second order dependence on the field
amplitude. On resonance the FW/BW ratio has a maximum value of ~ 3 while off resonance, the
directionality is more or less uniform.

Gold Nano-Rod

In a second example, we have a closer look on a plasmonic particle, namely a gold nano-rod of
180 x 180 x 140 nm? (L x W x H) in size. Like above, the spectral nearfield and farfield response
is shown in figure 2.19.

In this particular structure, P@- and Pg.)—SHG (dashed and solid lines, respectively, in
Fig. 2.19b) deviate significantly within a certain spectral range close to the localized surface plas-
mon resonance at 4 = 1000 nm. While the non-self-consistent SHG farfield intensity follows
the linear scattering (again with a smaller linewidth), the self-consistent calculation reveals a
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X-polarized planewave incidence in —Z direction. Plotted areas are 400 x 400 nm?). In (b)
the linear scattering is compared to SHG intensity in the farfield and second harmonic for-
ward/backward emission ratio for simple (dashed) and self-consistent SHG calculation

second maximum of the second harmonic around A3 = 1160 nm. Interestingly, this has no large
influence on the forward-to-backward scattering ratio for SHG.

Having a look at the nearfield distributions at selected wavelengths (Fig. 2.19a), we see that
when the excitation hits the plasmon resonance, P and P 23) have a very similar distribution. At
the two other considered wavelengths A5 and A3 however, the self-consistent calculation reveals
a significant linear response of the nanorod to the nonlinear polarization, which persists in the
farfield and can be detected in the form of a peak of SHG intensity and directionality (for A
and A3, respectively). However, the closer examination of this observation lies outside the scope
of this thesis.

2.4.4.3 Conclusions

In conclusion we presented a method to calculate and analyze surface second harmonic gener-
ation from arbitrary nano-particles of centrosymmetric materials like silicon or gold using the
Green Dyadic method.

From several examples we could deduce, that the “simple” nonlinear polarization P gives
usually a good approximation to SHG i.e. it is often not necessary to take into account the pres-
ence of the structure at the harmonic frequency. As predicted by the Lorentz reciprocity theo-
rem' [173, 313, 314], the optical properties at the harmonic wavelength have a linear influence
on the total nonlinear scattering. This “self-consistent” contribution to the second order effects
is opposed by a squared dependence on the fundamental field [174, 183, 315]. Hence we con-
clude that, if a resonance at the fundamental frequency exists, P(?) does not differ significantly
from the self-consistent field sz.). The expensive self-consistent computation of the nonlinear
polarization is only necessary in particular cases with strong optical response at the harmonic

! In electrodynamics, reciprocity states for example that the gain of an antenna is universally describing the capability

of reception as well as of emission
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frequency. However, it is often difficult to judge in advance whether or not the structure’s linear
response to its nonlinear polarization is important, and if the self-consistent calculation needs to
be performed.
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Chapter 3

SHG from Individual Silicon Nanowires

has therefore mainly been used for surface characterization [214-217]. More recently it

was reported that SHG can be obtained from high field enhancement in silicon photonic
crystals [195] or by a strain-induced breaking of the lattice symmetry [208, 209, 221]. Nanos-
tructures, having large surface to volume ratios, can furthermore exhibit resonant modes with
high field enhancements. Hence, nanostructures seem to be promising candidates to obtain SHG
from silicon, and indeed enhanced SHG was observed on arrays of silicon nanowires (SiNWs)
[207].

Due to silicon’s non-zero y® tensor [316], recent research on nonlinear optical effects from
silicon nanoparticles focused on third harmonic generation (THG). THG was obtained for exam-
ple from Fano resonances in metasurfaces [193], individual nanowires [231], nanodiscs [191] or
nanodisc oligomers [192].

In this section we investigate in more detail on second harmonic generation from silicon
nanowires. In the first part, the linear optical properties will be summarized, before an experi-
mental analysis and a subsequent interpretation of the results is presented.

SECOND HARMONIC GENERATION (SHG) from silicon is weak from the bulk and in the past

Copyright Statement The following chapter is based in parts on the publications [317, 318].
Some passages have been quoted verbatim. These reprints are with permission of the Amer-
ican Physical Society. Reference [317] was co-authored by Arnaud Arbouet, Houssem Kallel,
Priyanka Periwal, Thierry Baron and Vincent Paillard, copyright 2015 by the American Physical
Society. Reference [318] was co-authored by Arnaud Arbouet, Christian Girard, Thierry Baron
and Vincent Paillard, copyright 2016 by the American Physical Society.

3.1 Linear Optical Response

Before the discussion of nonlinear optical phenomena in SiNWs, we will start with an overview
of their linear optical properties. The response of SINWs to electromagnetic fields can be analyt-
ically treated with the “Lorenz-Mie theory” (usually simply referred to as Mie theory), originally
developed for spherical particles [319]. Mie theory can be adapted to infinitely long, homoge-
neous cylinders using vector cylindrical harmonics for the field expansion series (see e.g. [304]).

3.1.1 Leaky Mode Resonances

It turns out, that optical resonances occur in small cylinders of higher refractive index than the
environment. Due to their lossy character they are called “leaky mode resonances” (LMR). In
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Figure 3.1: GDM-calculated field intensities for leaky mode resonances in silicon nanowires. (a): TMo
(NW of D = 45nm), (b): TEg1/TM1; (NW of D = 115nm) and (c): TE11/TMy; (NW of D =
175nm). Electric (left) and magnetic (right) field intensities are shown for TE (top) and TM
(bottom) polarized planewave excitation. If in-plane field components exist, the real-part is
illustrated by small black arrows. Incident plane wave from top with A = 600 nm.

an intuitive image, the electric field undergoes multiple reflections inside the particle and the
leaky mode resonance occurs if these reflective “round-trips” constructively interfere (for an
illustrative support of this explanation, see the curled fields at the resonances shown in Fig. 3.1).
The spectral positions A;pr of the LMRs are therefore roughly proportional to the perimeter of
the nanowire

k-Aimr < n- 2R (3.1)

where k is an integer number and n the refractive index of the cylinder of radius R.

In figure 3.1 the electric and magnetic field intensity-distributions inside an infinitely long
SiNW are shown for planewave excitation at A = 600 nm, polarized perpendicular (transversal
electric, “TE”) or parallel (transversal magnetic, “TM”) to the wire axis. Diameters are chosen
such that the wire is resonantly excited. Diameters are (a) D = 45 nm, corresponding to a TMg;
resonance, (b) D = 115nm (TEq1/TM;;) and (¢) D = 175 nm (TE;;/TMa;). The real part of the
fields (if non-zero in plane of the NW section) is plotted as small black arrows. Simulations are
performed by two-dimensional GDM (see Sec. 2.3).

In the TMg; mode (Fig. 3.1a), the fundamental magnetic resonance, a curled magnetic field cor-
responding to a single oscillating electric dipole along the NW axis occurs. For TE excitation on
the other hand, the fields are uniform within the nanowire and can be described by the quasistatic
approximation (see section 2.2.3). The electric counterpart is the TEg; mode (Fig. 3.1b). This mode
is degenerate with the second order magnetic TM1; resonance. A double-curled magnetic field
is induced in the plane of the NW section, corresponding to two electric dipoles along the wire
axis (Fig. 3.1b, bottom). Again, the electric equivalent, the TE{; mode (shown in Fig. 3.1c), has a
very similar curled electric field distribution and two magnetic dipoles oscillating with opposite
phase along the nanowire axis. The latter mode is degenerate with the magnetic TMy; resonance,
corresponding to four electric dipoles with alternating phase. These dipoles close to the surface
can be seen as a result of the multiple reflections at the inner surface of the nanowire. Along
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Figure 3.2: Comparison between Mie theory (a, b) and GDM simulations (c, d) for scattering (i) and ab-
sorption (ii) efficiencies of infinitely long silicon nanowires. Linearly polarized planewave
excitation. (a, ¢) TE and (b, d) TM. Local maxima of scattering (absorption) are indicated in the
plots for Q.ps as purple (respectively black) dotted lines.

with these azimuthal modes, higher order radial modes exist (corresponding index j in TE/TM;;).
Electric field distributions of some more selected modes are shown in small insets of figure 3.5.

3.1.2 Scattering and Absorption

The LMRs in dielectric nanowires induce — as a consequence of their “leaky” character — res-
onances in the farfield scattering. As a measure for the ability to scatter light, the scattering
efficiency Qscat can be used, which is the ratio of the scattering cross section oyc,t over the geo-

metrical cross section’ ogeo.
Oscat

Qscat = .

Ogeo

(3:2)

The same can be done with the absorption cross section gps to calculate an absorption efficiency

Oab
Qabs: =,

Ogeo

(3:3)

In the case of an infinitely long nanowire (2-dimensional problem), the nanowire diameter is
taken as reference size parameter and also oycat and ogps, calculated as described in section 2.3.6.3,
are of the dimension of a length in this case.

! the geometrical cross section corresponds to the “footprint” of an object
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Scattering and absorption efficiency spectra of infinitely long SiNWs are plotted as function of
the incident wavelength and nanowire diameter in figure 3.2, calculated both, from Mie theory (a,
b) and using the GDM (c, d). The incident plane wave is linearly TE (a, ¢) or TM (b, d) polarized.
The numerical simulations are in excellent agreement with the analytical results, justifying the
use of the GDM for the description of high-index nano-particles in general. The branches, cor-
responding to the modes illustrated in figure 3.1 are indicated by labels, where the degeneration
of TM;1/TEg; and TM21/TE1; becomes once more obvious, as the scattering branches are at the
same positions in the diameter/wavelength plots for the respective incident polarizations.

Finally, we note that for photon energies sufficiently below the direct band-gap of silicon (4 =
450 nm), absorption becomes generally very weak. This renders high-index particles like SINWs
very interesting for applications which require low losses and is one of the key differences to
plasmonic nanostructures [75, 76, 99, 320].

3.1.3 Nearfield Enhancement

At resonance the electric field inside as well as in the vicinity of the nanowire is enhanced. In
figure 3.3, the maximum field intensity enhancement inside a SINW is plotted against wavelength
and diameter for TE (a) and TM (b) polarized plane wave excitation. Light blue lines indicate the
maxima of the far-field scattering efficiency. The shift between near- and far-field spectra can be
explained by the damping term of a driven oscillator model [321, 322].

A detailed discussion of scattering and absorption as well as of the nearfield enhancement in
the vicinity of SINWs can be found for example in the PhD thesis of Kallel [323].
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3.1.4 Directional Scattering

As explained in chapter 1, interferences of fields occurring when simultaneously exciting electric
and magnetic resonances in dielectric particles, allow to fulfill the first Kerker condition (i, = ¢,
[144]) for nonmagnetic media, leading to purely forward directional scattering [145, 146]."

We saw, that in larger nanowires degenerate magnetic / electric LMRs occur, leading to both,
strong electric and magnetic field enhancement. As a consequence, anisotropic scattering ap-
pears, which turns out to be oriented mostly in the forward direction (the same accounts for
other high-index nanoparticles, see e.g. [90, 91]). The ratios of forward to backward (FW/BW)
and backward to forward (BW/FW) scattering are plotted in figure 3.4 for TE (a) and TM (b)
excitation. The maxima of the total scattered intensity are indicated with red and blue lines.
In agreement with the not fulfilled Kerker condition, no directionality is obtained for the non-
degenerate, purely magnetic TMg;-mode.

Some scattered fields around SiNWs and corresponding far-field radiation patterns are shown
in figure 3.4c-f. For TE polarization, an excitation of the forward- (c) and backward-scattering (d)
branch is shown (slightly below and above the TE(;-resonance in terms of NW diameter, respec-
tively). A transition of forward- to mainly backward scattering takes place. For an incident plane
wave polarized along the axis, scattering under excitation of the TMy; (e) and the TM; (f) mode
is shown. While unidirectional scattering occurs at the fundamental magnetic mode, almost pure
forward scattering is obtained at the TM;; resonance.

3.1.5 Influence of Different Geometrical Cross Sections

From a numerical point of view, round surfaces such as the whole interface of a cylindrical Mie-
nanowire, are technically demanding to be treated and often cause numerical artifacts. Under
bad conditions, this can even lead to significant convergence problems and distort the simulation
results (see for example Fig. 2.5). In a cubic discretization scheme it is therefore favorable to use
flat surfaces.

Furthermore, lithographically defined nanowires are of square or rectangular cross section
which raises the question, how the optical response changes if the cross section differs from a
circle or hexagonal shape of VLS grown nanowires (see section 3.2.1).

In figure 3.5, scattering from infinitely long nanowires of different cross sectional shape is
plotted. Circular (a,b), hexagonal (c,d), square (e,f) and triangular (g,h) sections are compared for
TE (left) and TM (right) excitation. Obviously, apart from a slight spectral shift, low order cylinder
LMRs are relatively insensitive to a change of the 2-dimensional section (see also [64]). However,
deviations occur for higher order modes, which is obvious when square and circular wires are
compared. Scattering efficiencies from hexagonal wires seem to stay close to the behavior of their
circular counterparts for higher order modes. Also the field distributions at the resonant modes
(see insets in Figs. 3.5) are in good qualitative agreement. Modes from triangular wires finally are
shifted to larger diameters and longer wavelengths, which can be attributed to the lower amount
of material per size parameter. Interestingly, the degeneracy of the TMy; and the TEp; mode
seems to be relaxed in triangular wires, the TEq; mode is occurring for larger triangular sections

! We note, that the second Kerker condition under which pure backward scattering occurs (when the first order
magnetic and electric Mie coefficients are equally large and of opposite sign: a; = —b1) requires spherical particles

[145].

59



NW diameter (nm)

Iscat (a.u.)

4 "
.

600

800

1000 400 600 800

wavelength (nm)

1000

0.8

0.6 |

04 |

0.2

0.0

— FWsat. |

— BWscat.

400

600

800

wavelength (nm)

(a) TE excitation

(c) D < TEO1

(d) D > TEO1

1000

NW diameter (nm)

Iscat (a.u.)

00 BW/FW 15

(i)

f / S

Y / e
R -

L /.///’ g // P _
I./ Vs

A7

L /C L/ // i
s
./ ./ -

-
L L L L
600 800 1000 400 600 800 1000

wavelength (nm)

— Fwsat |
— BWscat. 4

400

(e) TMO1

L L
600 800 1000

wavelength (nm)

(b) TM excitation

| (¥®53)2y|

() TM11
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Figure 3.6: Influence of a substrate on the scattering efficiency from SINW for planewave TE (a) and TM (b)
excitation. The case of no substrate (i) is compared with substrates of refractive index n = 1.5
(i) and n = 3.5 (iii). Im(n) = 0.

compared to the TM7; resonance. However, spatial field distributions are very resembling for all
geometries and similar modal patterns are found in all cases.

We conclude, that a circular wire can be modeled in good approximation using a hexagonal
or square section. In the following we will use square nanowires which have proven to provide
the best numerical stability. As a final remark we note, that VLS grown SiNWs are in fact of
hexagonal shape, so inversely we can deduce that Mie theory is a good approximation for such
nanowires but a small shift of the resonances has to be kept in mind if comparing experimental
spectra with simulations.

3.1.6 Influence of a Substrate

It is difficult to perform experiments on nanostructures in a homogeneous environment, since
nanostructures are usually lying on a substrate. The presence of a substrate should therefore be
taken into account in numerical modeling. This cannot be done in analytical Mie theory but is
easily possible within the GDM (see section 2.3.2.1). To get an idea of the impact of a substrate
on farfield scattering, scattering efficiency spectra are plotted as function of the cylindrical NW
diameter in figure 3.6 for SINWs in vacuum (i), on an = 1.5 (ii) and on a n = 3.5 substrate. While
a substrate of low refractive index (e.g. SiO3 has n ~ 1.45 in the visible spectral range [324]) has
only a minor influence on the spectral response of a silicon nanowire, a severe impact on the
optical behavior is observed when the refractive index of both the NW and the substrate are
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nearly equal (such as for SINW on Si). The damping and broadening of the resonances might be
explained by an increased “leaking” of the optical field at the interface to the substrate due to the
refractive index matching, which consequently lowers the reflectivity at the interface between
wire and environment.

We conclude that a low-index substrate will only weakly modify the analytical solution from
a homogeneous environment and interpretations of results from nanowires on glass substrates
can be done in good approximation using Mie theory.

3.1.7 Nanowires of Finite Length

In finite length cylinders the Mie resonances become hybridized with guided modes [69]. It has
been shown, that the LMR contribution to the resonant behavior is dominant for nanowires with
large aspect ratios (aspect ratio L/D 2 10) [70, 323].

3.2 Sample and Experimental Setup

After having discussed the linear optical properties of silicon nanowires, we will investigate on
the nonlinear optical response in more detail. At first, we briefly present the samples and the
experimental setup.

3.2.1 VLS Grown Silicon Nanowires

In the following we show results obtained from vapor-liquid-solid (VLS) grown crystalline sil-
icon nanowires (growth along the [111] direction). The nanowire growth is performed at LTM
Grenoble, in the group of Dr. Thierry Baron [326]. The VLS process is a chemical vapor phase
epitaxial technique in which nanowires are grown from a precursor gas on a substrate, mediated
by catalytic nanodroplets (usually gold). It allows for an accurate control of the diameter by
adapting the size of the gold nanoparticles used as catalyst [131]. After the removal of the gold
catalyst on top of the grown wires, the NWs are dispersed in solution by leaving the as-grown
sample in an ultra-sonic bath for about 30 s. We deposited nanowires of three different diameters
on transparent glass substrates (refractive index n ~ 1.5). The nanowires can then be charac-
terized using scanning electron microscopy (SEM), atomic force microscopy (AFM) or darkfield
microscopy (DF) and comparison with Mie theory. Illustrative results are shown in Figs. 3.7a,b,c.
The range of NW sizes in the three selected samples are listed in table 3.1. Lithographic markers
on the substrates allowed subsequent measurements on the identical nanowires. Using Raman
spectroscopy we also verified that no y? components are induced by strain [208, 209]. For this,

Table 3.1: Characteristics of investigated VLS grown silicon NWs.

sample name | average diameter of gold droplets | measured SINW diameters

dyLs [nm] dsinw [nm]
NWso0 50 45 - 60
NWi1oo0 100 95 -120
NW2o00 250 250 — 310
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Figure 3.7: Characterization of the VLS grown SiNWs by SEM (a) and AFM (b) (scalebars are 200 nm and
500 nm, respectively), as well as optically using darkfield scattering in comparison with Mie
theory (c) and Raman spectroscopy (d) In the latter, the dashed black line indicates the silicon
Raman line at 521 cm ™! [325].

we compared the Raman shift of a NW200 SINW with a bulk [111]-Si substrate. Lorenzian fits to
the data result in an identical Raman shift at the Si-line at 521 cm™! [325], as shown in Fig. 3.7d.

Sizes are chosen such that a single resonance is present in the visible spectrum for the smallest
nanowires NWso. This resonance is non-degenerate and only appears under TM excitation. Un-
der TE excitation, there is no mode in the visible spectral range. NW100 have the TMg; resonant
mode around 700 — 800 nm and a second degenerate mode below 500 nm occurs (TM11/TEq1).
The large NW200 with diameters > 200 nm finally have multiple resonances. For more details
on the linear optical properties, see the previous section 3.1.

3.2.2 Nonlinear Microscopy Setup

The nonlinear experiments were performed on a home-made nonlinear microscopy setup. The
heart of the system is a pulsed femtosecond" Ti:Sapphire laser (Coherent Chameleon Ultra II),
tunable in a range from 680 nm to 1080 nm. At a repetition rate of 80 MHz, the pulse length
at A = 800 nm is 7pyue ~ 150fs (see also appendix A.2) and the time-averaged output power is
Payg. ~ 4 W at this wavelength. Assuming a rectangular pulse shape, this results in a peak laser

1 1fs=1x10"15s
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Figure 3.8: Sketch of the nonlinear microscopy experimental setup. A linearly polarized beam is incident
from the top (red), its polarization can be controlled via a A/2 waveplate. It is focused on
the sample, which lies on a x/y piezo stage. The backscattered light (blue) is collected by the
focusing optics and separated from the incident beam by a dichroic mirror. Then it is filtered
and finally sent on a detector. The blue luminescent “cloud” around the SINW is an artistic
representation of the SHG.

power of P,yg =~ 0.33 GW. In the following we will stick to average powers as they can easily be
converted to peak powers or energy per pulse.

The linear polarization of the fs-pulsed beam can be rotated by a 1/2 waveplate and is fo-
cused on the sample using a high numerical aperture (NA) microscope objective. If not noted
otherwise, we used a x50, NA 0.8 air objective. To benefit from a larger working distance, some
measurements have been performed using a LWD* X100, NA 0.8 air objective. Both objectives
have around 90 % transmittivity at the second harmonic wavelength, slightly decreasing towards
the infrared. Lower transmittance at the fundamental frequency when using the X100 objective
is accounted for by increasing the incident laser power accordingly.

The backscattered nonlinear emission is collected by the same microscope objective and sep-
arated from the fundamental beam by a dichroic mirror (“Semrock 665 nm edge BrightLine”).
Residual laser light is removed using bandpass colorfilters (3 mm Schott BG39) before the signal
is directed onto the detection system, for which is used either a photomultiplier tube (“PMT”,
Hamatsu h7422) coupled to a lock-in amplifier (laser beam mechanically chopped at 6 kHz) or a
spectrometer with a high-sensitivity CCD (Andor Shamrock 303 + Andor iDus 401 CCD).

The samples are lying on a x/y piezo stage with a closed-loop feedback positioning controller,
allowing for nanometer-precise displacement of the nanostructures. The sample can be moved
software-controlled below the focused laser beam in order to perform cartographic raster-scan
acquisitions (see also Fig. 3.15b). In such map-scan experiments, the (nonlinear) signal is recorded
at each position of the x/y stage, allowing to draw a 2-dimensional intensity map of the nonlinear
signal.

! Long working distance
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Figure 3.9: (a) shows a spectral comparison of the nonlinear emission from TE/TM excited NW200 (top) to
a 200 nm thick Si-on-Quartz film ([100] surface orientation) and a bulk LiNbO3 nonlinear crys-
tal (bottom). In (b), spectra for NW2o00 are shown with increasing excitation power (average
power). Power-law plots of the highlighted zones are shown in Fig. 3.12a.

3.3 Enhanced Nonlinear Optical Response

3.3.1 Spectrum of Nonlinear Response

In a first step, the nonlinear signal from a crystalline silicon nanowire (NW200) was spectrally
analyzed and compared to reference samples, namely to a silicon-on-Quartz (SOQ) film of 200 nm
thickness and a LiINbO3 single-crystal with high y® for a pure second order nonlinear response
[165, 327]. A BG39 colorfilter was inserted prior the spectrometer to remove residual fundamen-
tal laser light from the detection path and avoid damage of the sensitive CCD.

Measured spectra are shown in Fig. 3.9a for an excitation at g = 840 nm. The silicon sam-
ples were excited with an average power of 3.8 mW/um?, the LiNbOj crystal with 0.9 mW/um?.
While the LiNbO3 shows a purely second harmonic spectral response (sharp peak at 1¢/2), the
silicon samples feature an additional large multi-photon photoluminescence (MPPL) band, cov-
ering the full spectral range between the SH peak and the cutoff of the BG39 colorfilter at around
600 nm. Interestingly, the MPPL band is much stronger in case of TM excitation than for a TE
polarized incident beam. We can attribute this to the stronger field enhancement inside the NW
for the TM case (see also Fig. 3.3).

3.3.2 Involved Nonlinear Effects

We found that the nonlinear response of individual SINWs consists of different contributions:
Second harmonic generation and a spectrally broad nonlinear luminescence, which we call multi-
photon photoluminescence (MPPL). In the following we will therefore study these different spec-
tral bands in more detail. We will find that the observed peak at 1q/2 is very easily attributed to
SHG. The analysis of the MPPL band, however, is not as unambiguous as it is concerning SHG,
therefore we will use different characterization methods to corroborate our interpretation.
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Figure 3.10: (a) shows a sketch of the nonlinear response of order N (ii) to a diffraction limited gaussian
profile (i). In (b) an experimental SINW raster-scan map is shown. (i) elastic scattering and
(ii) nonlinear signal.

3.3.2.1 Profile Width of Line-Scans

In order to gain a first insight about the order of the nonlinearity responsible for the measured
signal, raster-scan measurements were performed on the NW200 sample. An illustration of the
raster-scan type of measurements is shown in Fig. 3.15b. From the widths of the intensity profiles,
we draw conclusions on the order of the nonlinearity at the origin of the luminescence. To
estimate the spatial extension of a diffraction limited nonlinear response of order N to a Gaussian
profile, we compare a Gaussian and the Nth power of a Gaussian

42 .2
f(x)=exp(2 > ) f<x>N=exp(N2+) (3.4)

elastic elastic

where Welastic 1S the diffraction limited spotsize of the focused laser beam. Comparison of the left-
and right-hand side in Eq. (3.4) yields for the width of the nonlinear Gaussian

Welastic

VN

which is illustrated in figure 3.10a (i [red] linear, ii [blue] nonlinear response). This means for a
second and third order nonlinear response:

Worder N = (3'5)

1 1

W3nd Order = _2 * Welastic =~ m * Welastic
1 1

Ward Order = @ * Welastic ~ m * Welastic (3'6)
2 1

= —= * Wand Order = * Wand Order

1.225

S

A nonlinear intensity map of NW2oo is shown in Fig. 3.10b(ii), the corresponding elastic scat-
tering is shown in (i). The former was acquired with a BG3g filter, the latter without BG39
filter and strongly reduced laser power. We observe that the width of the nonlinear signal is
too small to be caused by a second order nonlinear response, hence the observed nonlinear emis-
sion is not a consequence of SHG. To study this observation in more detail, we used a homemade
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Figure 3.11: (a) shows a the scan width of the nonlinear emission of NW2o00 as function of the detection
wavelength (like indicated by dashed lines in Figs. 3.10). Excitation at Ay = 900 nm (Aspc =
Ao/2 is highlighted green). Precision of the monochromator is +5 nm (horizontal errorbars).
In (b) profiles of the luminescence at the harmonic wavelength are shown across the NW for
increasing excitation power. A fit to the data using three superposed Gaussians is shown as
well as the individual Gaussian contributions to the fit. (i): lowest to (vi): highest average
incident power. TM excitation of NW200.

monochromator setup, which we characterized with a calibrated white lamp and an Ocean Optics
USB2000+ spectrometer. An investigation on the smaller nanowires NWs50 and NW1oo yielded
good agreement with a second order nonlinear response at the SHG wavelength and a third order
nonlinear scaling for the broad MPPL. The results are summarized in table 3.2.

The width of the nonlinear raster-scan across a SINW (NW200) is shown as function of the
detected wavelength in Fig. 3.11a. The spectral transmission window was ~ 10nm large, indi-
cated by horizontal errorbars. The vertical errorbars are standard deviations from the Gaussian
fit to the linescan perpendicular to the NW axis. Interestingly, the width for detection at the
SHG wavelength is about as large as we would assume for the scattering of the fundamental
wavelength of g = 900nm. On the other hand, far from the SHG wavelength the measured
profile widths across the wire correspond to a third order nonlinear response, in agreement with
the smaller NWs.

In Fig. 3.11b profiles across the NW from a detection at the SHG wavelength (+5nm) are
shown for different excitation powers. In these plots we can observe two features with different

Table 3.2: Comparison of measured widths (all data from TM excitation) of several profiles to the nonlinear
signal of SINWs, filtered at SHG or MPPL. All widths indicate the FWHM. Physical diameters
from comparison of Mie theory to linear scattering spectra.

Dphysical Welastic  WSHG ~ WBroad Welastic Welastic WSHG

NwW

[nm] [nm] [nm] [nm] WSHG WBroad WBroad
NWso #1 47 581 363 286 1.60 2.03 1.27
NWs5o #2 59 542 359 286 1.51 1.90 1.26
NWs5o #3 45 675 410 346 1.65 1.95 1.18
NW1oo0 98 709 520 409 1.36 1.73 1.27
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behaviors: On the one hand a signal from the NW borders as well as a second contribution
from the NW center on the other hand, whose intensity increases much faster as function of
the excitation power compared to the border signal. This can be explained by a strong second
order response when the laser is focused on the NW borders, superimposed with a higher order
nonlinear contribution which is strongest if the laser beam is focused on the NW center. For
lower excitation powers, the higher-order response in the center is then invisible, but it increases
more rapidly with rising incident power, such that it becomes dominant at a certain excitation
strength. A fit to the linescans of Fig. 3.11b using a superposition of three Gaussians reveals
indeed a convolution of two Gaussians of larger width at the borders and one more narrow
Gaussian placed in between. The large values for the scan-width around Ap/2 in Fig. 3.11a are
the result of of the superposition of several nonlinear sources and can therefore not be used to
estimate the order of the nonlinear effect.

We conclude that the NW2oo0 are large enough to have a nonlinear optical response with
several distinct features, resolvable by (nonlinear) optical microscopy. In consequence, Eq. (3.5)
cannot be applied, because it is based on the assumption of a diffraction limited signal.

3.3.2.2 Power Dependence

In order to verify the finding of SHG at Ay/2 and a third order broad luminescence, we performed
a spectrally resolved series of measurements using increasing excitation powers, which is shown
in Fig. 3.9b. The corresponding peak intensities as function of the excitation power are shown in
Fig. 3.12a on a logarithmic scale (log-log plot). Power-law lines for N = 2 (blue) and N = 3 (red)
are plotted as guide-to-the-eye and confirm a second order for the peak at the second harmonic
wavelength as well as the hypothesis of a third order nonlinear process responsible for the MPPL.

3.3.2.3 Autocorrelation Measurements

Finally we performed a third series of measurements, to confirm the orders of nonlinear pro-
cesses: We did autocorrelation measurements using two excitation beam paths with variable
time-delay, controllable via a servomotor driven delay stage. The two beams are unified by a
beam splitter before being focused on the sample by the same microscope objective. For the fits
to the autocorrelation data, a chirp-free, Fourier limited Gaussian wave packet was assumed. The
pulse-width of the laser at the fundamental wavelength 7,,;c was determined by a fit to auto-
correlation data from a reference LiNbOj3 crystal, having a pure second order response, and was
found to be 7,y & 150 fs. Experiments were carried out with excitation at A9 = 810 nm using

Table 3.3: Results for fits to autocorrelation measurements on a SINW “NW200, filtered using color filters
at the SHG wavelength Aspg = 405 nm and at the large multi-photon luminescence 435 nm <
Amppr. < 600 nm. Excitation on the NW tip at 4g = 810nm. Corresponding autocorrelation
plots are shown in Fig. 3.12b.

Adet Order of Nonlinearity
(nm) TE ™

405(SH) | 1.9£0.1  1.9+0.1
> 435 26+0.1 28x0.1
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Figure 3.12: Investigation on the order of the nonlinear processes in silicon NWs. (a) powerlaw plot of

the nonlinear signal filtered at the SHG wavelength (blue) and around the MPPL (red), as
indicated in Fig. 3.9b. Power-law functions xV for N = 2 and N = 3 are plotted as guides to
the eye. In (b) interferometric autocorrelation measurements are shown for TE (i, iii) and TM
(ii, iv) excited NW2o00. Colorfilters for SHG (i, ii) and the spectrally broad MPPL (iii, iv) were
added prior detection. Autocorrelation fits to the envelope are plotted as solid lines, results
are given in table 3.3.

Table 3.4: Results for fits to autocorrelation measurements at several detection wavelengths using a
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monochromator setup for wavelength range selection (transmitting a spectral window of
Afilter £ D nm). Excitation at g = 840 nm.

NW2o00 #1 NW2oo #2

Adet TE TE ™ ™ TE TE ™ ™
(nm) Tip Center Tip Center || Tip Center Tip Center
410 1.7 1.8 1.9 1.7 - - 2.2 -
420 (SH) | 1.7 1.8 1.8 1.8 1.9 1.8 1.9 1.7
450 2.1 - 2.2 2.5 - - 2.3 -
480 - - 3.1 2.7 - - 2.7 -
510 - - 3.1 2.8 - - 2.8 3.4
540 - - 2.9 2.7 - - 2.8 2.7
540 - - - - - - 2.8 3.2




virtual state intermediate state with 2 — gold dimer i
— no lifetime (t=0) finite lifetime t —~ — silicon N\W
s
_ - S 20
A =
w w 9 s
2 2 )
VAVA 5 el
Whonlinear At Whonlinear =1
At=0 1 W\, VW, E 4
=
S 12
AN NN g
W, 1 v W v 10 b
ground state ground state 10 15 20 25 30 35 40
delay (ps)
(a) Coherent Process (b) Incoherent Process (c) Two-Pump Experiment

Figure 3.13: (a) and (b) show schemes of a coherent and incoherent second order nonlinear process, re-
spectively. In (c) two-pump time-delay measurements are shown comparing TPL from a gold
nano-dimer and a silicon nanowire (NW200). Data is normalized to the intensity at large time-
delay. No additional color-filter was added apart from a BG39 filter for residual fundamental
light. The gold data (red) is in agreement with results published by Biagioni et al. [167]. No
finite lifetime could be probed for SINWs.

bandpass filters (405 + 5 nm for SHG and > 435 nm for MPPL), as well as using the monochro-
mator setup at an excitation wavelength of 1 = 840nm. The results are listed in tables 3.3
and 3.4, respectively, confirming the second order nonlinear scaling for SHG as well as a third
order response for the MPPL.

For a detailed description of the autocorrelation measurement technique, the theoretical mod-
elling and fitting, the two-pump optical setup as well as for results of the reference measurements,
see appendix A.2.

3.3.2.4 Coherent and Incoherent Nonlinear Processes

Finally we want to analyse if the observed MPPL in the silicon nanowires is of coherent nature.
Coherent nonlinear effects are excited instantaneously with no intermediate states involved. Of-
ten, the concept of a virtual state is used: This state (which in reality doesn’t exist!) is populated
by a first photon and instantaneously further excited by a simultaneous second photon, as shown
in figure 3.13a. The particularity of such a coherent nonlinear process is that — as the name sug-
gests — the phase of the incident light is conserved. An incoherent nonlinear process on the other
hand involves real intermediate states with finite lifetimes (Fig. 3.13b). In the latter case, the pro-
cess can still be observed if the incident photons have a certain time-delay in the order of the
intermediate state’s lifetime, but their phase information is lost.

Using two time-delayed incident coherent beams (usually from a beamsplitted pulsed laser,
equivalent to the autocorrelation measurement setup, see appendix A.2), intermediate states can
be probed when measuring the nonlinear signal vs. time delay between the two beams. At-
tention has to be payed on the autocorrelation signal, which has to be cropped entirely. Such
measurements revealed no detectable finite lifetime for the case of SINWs, while the lifetime of
gold nanoparticles, previously reported by Biagioni et al. [167] to be in the order of 1 ps, could
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be reproduced. We conclude that the MPPL in SiNWs is driven by a coherent excitation process,
possibly by THG in the bulk silicon.

3.3.2.5 Conclusions on Involved Nonlinear Processes

In summary, we conclude that the peak at Ay/2, observed in nonlinear spectra from fs-pulse ex-
cited SINWs, is indeed due to second harmonic generation and that the spectrally broad MPPL
is a coherently excited third-order nonlinear process, probably a three-photon-induced photolu-
minescence’.

Silicon has a large bulk y®, and consequently third order processes are relatively efficient
[191, 231, 282, 316]. The large luminescence could be a three photon absorption induced photo-
luminescence (3PPL) from the silicon. Direct PL from silicon lies in the spectral range between
450 nm and 600 nm [328], which corresponds to the observed wavelength range of the third order
MPPL. It has also been reported that silicon nanowires can enhance luminescence from oxygen
defects in SiO2 [329]. Hence, the large luminescent band could be from the nanowire’s thin shell
of native silicon-oxide or from the glass substrate [330], excited e.g. by THG from the SINW?.
Further investigations e.g. with SINWs deposited on different substrates should be performed to
clarify the origin of the spectrally large luminescence.

3.3.3 Second Harmonic Generation Microscopy

We now leave aside the third order nonlinear photoluminescence and focus in the following
section on second harmonic generation from individual SINWs as function of their size.

3.3.3.1 SHG Line-Scans along SiNWs

In Fig. 3.14a, typical raster-scan maps of a NW2oo0 are shown, excited at g = 810nm and fil-
tered at the second harmonic wavelength (Asyg = 405 nm). In (i) the incident polarization was
perpendicular to the NW axis (TE) and in (ii) parallel to the wire (TM). SHG intensity profiles
along the SINW are shown for both incident polarizations in (iii). While a homogeneous second
harmonic signal is detected along the axis under TE excitation, a strong anisotropy occurs in the
TM case, where the SHG intensity has a distinct maximum at the NW tips.

This effect can be explained by simple considerations on the continuity conditions at the in-
terface of two dielectric media, which is described by the dielectric contrast i.e. by the difference
of the relative permittivity. For a dielectric medium of permittivity €, placed in vacuum (¢p), we
get [294] (see also appendix 6.4.4)

Ey = Eo,| (3.7)

260 (3.5)

E, = EO,J_
€y + €

! Comparable to two-photon photoluminescence (TPL) in gold, which however is an incoherently excited process,
since Au lacks a bandgap and real electronic states exist

% For excitation wavelengths of 800nm < Ag < 900nm, THG lies in the UV. We cannot detect the corresponding
light directly due to the limited sensitivity of the detectors
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Figure 3.14: Linescans along SINW axis. (a) shows SHG-filtered 2D rasterscan of NW2oo for TE (i) and TM
(ii) excitation. Profiles extracted along the wire axis are shown in (iii). In (b), profiles along
the NW2o0 axis are shown for different excitation wavelengths, filtered at Agjer = 405 £
5nm (solid lines) and at 435 nm < Agye; < 600 nm (dashed lines). TE (blue) and TM (green)
excitation are shown in the left and the right column, respectively.

where E| and E, are the tangential and normal field components and Ej is the incident field
amplitude. The parallel field component is continuous over the interface, while the normal com-
ponent is scaled by the dielectric contrast. This, together with the fact that )(fl N (P(fl L« E?)is
supposed to be the largest component of the second order susceptibility tensor for silicon [300],
can explain the anisotropy of the SH intensity distribution in the TM case: The normal field com-
ponent discontinuity occurs only at the tips, not along the NW where all field components are
purely tangential.

Interestingly, this qualitative anisotropy appears only for SHG. When the third order MPPL
is mapped, also for TE incidence the nonlinear signal increases under excitation on the NW
tips compared to the signal intensity when focusing the laser along the NW. This is a further
indication for the predominant role of Xﬁ) , and shown in Fig. 3.14b, where the fundamental
wavelength is varied between 780 nm < Ag < 840 nm, while the detection is fixed using color-
filters at Aget. = 405 + 5 nm (solid lines) or Ager. = 435 nm (dashed lines). Only when the second
harmonic wavelength matches the color-filter’s transmission line at Aget, = 405 nm, the intensity
peaks at the NW edges disappear, outshined by the more intense second harmonic light.

As noted above, this behavior can be explained by the dominating )(fl , component for second
harmonic generation, boosting the signal from the perpendicular field components along the NW
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Figure 3.15: In (a) the TE (i) and TM (ii) SHG mapping from experiment on a NW1o0 are compared to GDM

rasterscan simulations using P(fl | (iii, iv) and the GDM-simulated fundamental nearfield on
a plane 20 nm below the NW (v, vi). (b) shows an illustration of the rasterscans, performed in
experiment and GDM simulations (i-iv).

axis under TE illumination. For the case of the y®-induced MPPL this anisotropic contribution
of certain field components to the nonlinear emission does no longer take place and the signal
along the axis decreases strongly. The general enhancement of MPPL from the tips is a result
of the dielectric contrast and probably further enhanced by guided light coupled into the wire,
increasing the local density of photonic states (LDOS)".

This hypothesis is in agreement with the intensity evolution of the A4e, = 405 nm-filtered
TE signal in Fig. 3.14b. Similar SHG anisotropies due to the contribution of only specific field
components have also been reported from NWs of other materials like ZnSe [331] and gold [176].

3.3.3.2 Nearfield and SHG Rasterscan Simulations

To confirm that a )(fl |, induced SHG in SiNWs results in the observed polarization-dependent

anisotropy of the raster-scan maps, we performed GDM simulations of the fundamental nearfield
distribution and of a farfield raster-scan using only P(fi - The fundamental wavelength was set
to Ag = 810 nm, a focused planewave (see section 2.3.3.2) of diffraction limited diameter after the
Rayleigh criterion (dspot & 1.2240/NA) is used for the raster-scan simulations, a plane wave for
the near-field distributions which are calculated 20 nm below the NW. The structure model was
a 2 pm long silicon nanowire of rectangular section with diameter D = 100 nm. A square section
is a valid approximation to cylindrical nanowires, as we showed in section 3.1.5: At lower order
modes a rectangular wire behaves equivalently to a Mie nanowire, except for a small shift in the
spectral positions of the resonances. The results of GDM rasterscan simulations are shown in
figure 3.15a (iii and iv for TE and TM incidence, respectively) and compared to measurements
on a similarly long nanowire NW1oo for TE (i) and TM (ii) incident polarization. Maps of the

! The contribution of guided modes in crystalline NWs is further supported by recent measurements on lithographic
wires (etched surfaces): Far less pronounced SHG and MPPL from the tips was observed in this case, which we

attribute to imperfect surfaces, hindering the efficient coupling of light in the NW.
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Figure 3.16: Left: Polarization filtered darkfield spectra of NW50 (a) and NW1oo (d), measured (solid) and
calcuated by Mie theory (dashed) for TE (red) and TM (blue) excitation. SHG-filtered raster-
scan maps are shown at the right for TE (TM) excited NW5o0 (b, respectively ¢) and NW 100
(e: TE, f: TM). Scalebars correspond to 500 nm.

nearfield intensity distribution are shown for the corresponding polarizations in (v) and (vi). A
sketch illustrating the principle of the raster-scans is shown in Fig. 3.15b.

The SHG simulations using only perpendicular surface field components reproduce with good
qualitative agreement the homogeneous SHG along the wire for TE excitation as well as the
enhanced SHG from the NW tips for TM polarized illumination. In the latter case, no SHG is
generated from the wire center, because only field components parallel to the wire surface exist.
Finally, a comparison to the nearfield closely below the nanowire reveals an interesting analogy
between the farfield SHG mappings and the nearfield distribution: While the field intensity is
homogeneous along the wire for TE polarized incidence, in the TM case a strong field enhance-
ment at the NW tips occurs. This is in agreement with reported experimental characterization
of the optical nearfield in the vicinity of SINWs [66].

3.3.3.3 SHG and Resonant Modes

In the following we explore the influence of resonant modes on the second harmonic generation.
Therefore we focus on the smaller nanowires NWs50 and NW1oo0, featuring a limited number of
resonant optical modes in the visible spectral range. NW50 has one, respectively no optical reso-
nance under TM and TE excitation. NW 100 has one resonance for TE incidence and supports two
modes for TM illumination (see also Fig. 3.7¢). In figure 3.16, typical results of NW50 and NW 100
are shown. (a) for NWs5o0 and (d) for NW1o0o show polarization filtered elastic scattering spec-
tra (solid lines) compared to Mie theory (dashed lines) for TE (red) and TM (blue) polarization.
Individually normalized SHG raster-scan measurements on the exact same SiNWs are shown in
(b-c) for NW50 and (e-f) for NW1oo, excited at Ag = 810 nm with corresponding polarizations
(indicated by small arrows).
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Figure 3.17: Scheme illustrating the renormalization of the SHG signal: Spotsize with respect to the illu-
minated NW area. Kgyot = SonNw/Sspot-

While always SHG was measured if a Mie mode was close to the fundamental wavelength
(NW100 and TM excited NW50), no detectable second harmonic light was obtained from NWs5o0
under TE excitation. From the corresponding scattering spectrum we see that there is no inter-
action of the nanowire with the exciting field. A comparison with Fig. 3.3a shows furthermore
that the electric field inside the nanowire is close to zero, which explains the lack of SHG in the
absence of a resonance. This is in agreement with nonlinear scattering theory, predicting highest
SHG for a maximum spatial overlap of resonant modes at both, fundamental (squared propor-
tionality) and harmonic wavelength (linear proportionality) [173, 332, 333] (see also Sec. 2.4.3.3).
Hence, particularly in the absence of a resonance at the excitation wavelength, SHG is supposed
to be very weak. The results in figure 3.16 are individually normalized, corresponding absolute
values are given in table 3.5 where the results of NW50 and NW 100 are furthermore compared to
values from NW200 as well as to a bare glass substrate, a silicon substrate and a LINbO3 reference

crystal ( Xéiik # 0, excitation power reduced by a factor of 10).

3.3.3.4 Comparison of SHG from SiNWs to bulk Materials

In the experiment the diffraction limited minimal spot radius 7gpot ~ 0.614g/NA ~ 620 nm* (for
Ao = 810nm) is always significantly larger than the radius of the SINW. We therefore calcu-
late a scaling coefficient using the ratio between the illuminated area of the nanowire and the
(nonlinear) area of the focused laser spot

SonNW

Kspot = (3'9)

Sspot, NL

with the area governed by the second order nonlinear response to the focused laser spot (taking
into account the quadratic intensity-scaling of the SH nonlinear response by the factor 1/v2)

Sspot, NL = ﬂ'(rspot/\/é)Q (3.10)
and the intersection of spot and NW surface

2r, t
SonNw =dnw - \7%0 . (3.11)

To obtain the normalized SHG yield, we divide the photocurrent by the scaling coefficient Kot
which then allows a comparison of the SHG signal from nanowires and bulk samples. Corre-

! Assuming the Rayleigh criterion is a good approximation.
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sponding values are given in the rightmost column of table 3.5. We observe that the strongest
SHG per illuminated area is obtained from NW 100, being more than two orders of magnitude
stronger than SHG from a bulk silicon crystal.

3.3.4 Conclusions

In conclusion, we found that the nonlinear response of silicon nanowires in the visible spectral
range under femtosecond pulsed excitation in the near infrared consists of two main contribu-
tions: Second harmonic generation (SHG) on the one hand and a spectrally broad multi-photon
induced photoluminescence (MPPL) on the other hand. While we could confirm the peak at 1¢/2
to be SHG, the latter contribution was found to be the result of a third order nonlinear effect,
possibly a third harmonic induced luminescence. As for the SHG, we observed a polarization
dependent anisotropy in raster-scan mappings. For an incident light linearly polarized normal
to the wire axis, a homogeneous SHG all along the NW was observed, while for a polarization
parallel to the axis, an enhancement of the SHG on the nanowire tips occured. We could track
this behavior down to a mainly )(fl) , -induced surface SHG in the SiNWs which we confirmed by
numerical raster-scan simulations. Finally we observed a dependence of the SHG on the presence
of resonant modes. In the absence of any resonance at the fundamental frequency, no SHG was
observed. On the other hand, if Mie modes exist in the spectral vicinity of the fundamental wave-
length, a SHG enhancement of more than two orders of magnitude can be obtained compared to
bulk Si. In this context, further work with NWs of several different diameters, supporting reso-
nances at either fundamental or harmonic frequency, as well as at both frequencies, should be

Table 3.5: Comparison of SHG signals for different samples and different experimental conditions. In the
last column, the photocurrent is normalized to the illuminated area of the sample (Kgpot, see
Fig. 3.17). Laser power and wavelength were fixed at 3.15 mW/pum? and 810 nm, respectively
(except 0.315 mW/pm? for LiNbO3). The scattering efficiency Qscar. at 810 nm is calculated using

Mie theory.
Iphoto
Sample Laser Pos. | Polarization | Qscat. | Kspot | Iphoto (nA) X (nA)
spot
LiNbO3 - - - 55 55
Glass substrate - - - L 0.015 0.015
Si bulk (0o1) - - - 0.19 0.19
200 nm Si (001) on Quartz - - - 0.22 0.22
Tip TE 0.014 0.015 0.20
Center 0.015 0.20
NW5o0 . 0.073
Tip ™ ) 2.5 34.2
Center 33 1.6 21.9
Comer | TE | 00 030 26
NW1o0 Tip 0.116 4.38 41' .
™ 6. ’ ’
Center 34 4.4 37.9
ol e 2|
NW200 Ti 0.436 3.6 12.78
P ™ 1.61 > '
Center 1.6 3.7
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very interesting. As SHG from silicon is normally forbidden in the dipole approximation (see sec-
tion 2.4.2.2), the enhanced SHG renders SiNWs interesting for second order nonlinear photonic
applications compatible to state-of-the-art CMOS technology. Furthermore, the possibility to
tailor a polarization controlled on/off-switching behavior by the presence or absence of resonant
modes might be exploited in various ways.

3.4 Origin of Second Harmonic Generation

As shown in section 2.4.2, SHG from centrosymmetric materials can be due to different processes.
In this context, the source of the largest contribution to SHG has led to controversial conclusions.
Often, second order effects in centrosymmetric nanostructures are modeled assuming the )((3 N
surface contribution from field components normal to the surface to be most significant, neglect-
ing other possible sources (e.g. [176, 178, 300]). In the previous section we found, that the Xﬁ) N
component can describe SHG also from SiNWs in a first, qualitative approximation. Neverthe-
less, we will see in the following that several phenomena we observed cannot be explained by
)((3 ,-SHG and we will find that, depending on the NW diameter and excitation conditions, con-
tributions from tangential fields at the surface as well as from strong field gradients in the bulk

have to be considered.

3.4.1 Introduction: Contributions to Surface SHG

Studies on the magnitude of other contributions have been performed on homogeneous sur-
faces [302, 307] as well as on metal nanoparticles like nanospheres [179, 201]. A geometrical
study on the selection rules for local surface and non-local bulk contributions to SHG from
metal nano-tips under planewave excitation pointed out a purely surface-like SHG in collinear
measurements [297]. Nonlocal bulk contributions to SHG (Sec. 2.4.2.3) can be induced by field
gradients due to resonant modes or tightly focused laser beams. For instance, the consequence
of strong field gradients from focused excitation has been theoretically described for low-index
spherical nanoparticles and a characteristic signature in the far-field emission pattern has been
predicted [206]. A study on arrays of small Si spheres excited under tight focus found compara-
bly strong bulk and surface contributions to SHG, and a scheme using polarization analysis of the
harmonic emission was suggested to separate and identify those contributions [296]. Motivated
by those publications, we will try in this section to understand the origin of SHG from SiNWs.

3.4.2 Experimental Results

Following the suggestion of a polarization analysis to separate SHG contributions [296], we filter
the linear polarization state of SHG prior detection. Apart from this, we use the same experimen-
tal setup as in the preceding section (see Sec. 3.2.2 and Fig. 3.8). In figure 3.18 typical experimental
results for representative nanowires of (a) NWso, (b) NW100 and (c) NW2o00 are shown. On the
left of each subplot, second harmonic raster-scan maps along the NWs are shown. On the right,
SH polar plots (farfield) are shown, recorded under excitation on the nanowire centers. Polar fits
to the intensity of (partially) polarized light are shown as well, using the formula for the intensity
of a superposition of two perpendicular, linearly polarized fields

I(¢) = Asin®(¢ — 0) + Bcos>(¢ — 6) (3.12)
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Figure 3.18: Left columns: Experimental second harmonic maps (no pol. filter), individually normalized

to maximum intensity for (a) NWs5o, (b) NW1o00 and (c) NW2o0. Right columns: SH farfield
polar plots (excitation on NW center; solid lines are fits to the data). Bottom row: Intensity
profiles measured at the center across the NW for TE (red) and TM (blue) incidence. Scalebars
are 0.5 pm.

(E-V)E
(bulk)

«TTT
©d

(eoe)uns)
d

[Iny
(@

Figure 3.19: SH polarization angles of NW5o (triangles), NW1oo0 (circles) and NW2o0o (diamonds) for TE

(red) and TM (blue) excitation, focused on the NW center. Angles are obtained by fits to polar
plots of the farfield SHG polarization like shown in Fig. 3.18. The results are grouped by NW
diameter per radial coordinate. The arrows indicate the orientation of the far field second
harmonic polarization of the nonvanishing contributions.
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where ¢ corresponds to the angle of the polarization filter and 0 is the angle of the second har-
monic light’s linear polarization, obtained from the fit.

The laser spot radius is about 620 nm at a wavelength of Ao = 810 nm. As we already observed
in the previous section, TE excitation produces a homogeneous SHG along the NW axis and TM
excitation leads to enhanced SHG from the NW tips, however with a significant remaining signal
when the laser is focused on the nanowire axis.

As can be seen in the SH polarization polar plots of Fig. 3.18, a 90° flip of the polarization
direction occurs in the TM configuration. Under TE excitation on the other hand, the SH light
is always polarized perpendicularly to the nanowire axis, following the incident polarization.
This general trend of SH polarization was confirmed by investigating over 20 different SINWs.
The polarization angles from fits using Eq. (3.12) to the data are shown in Fig. 3.19. Few NWs of
the NW1o0 group showed atypical polarization behavior, which was possibly caused by partial
illumination of one of the NW tips due to their relatively shorter length L ~ 2 pm.

3.4.3 Theoretical Considerations

To interpret the experimental observation of a size-dependent flip of SHG polarization under
TM excitation, we carry out some theoretical considerations on SHG from sub-wavelength small
cylinders of centrosymmetric material.

3.4.3.1 Local Surface Contributions

Second order electric polarization in centrosymmetric materials can be written as a superposition
of surface and bulk polarizations [169] (see also Sec. 2.4.2)

2 2 2
Py = Pif) + Pt(m)lk (3.13)

. . 2) . . .
where for homogeneous and isotropic surfaces, Pif) is a superposition of three independent non-
zero components:

2 2 _

PS_J)_J_ = XJ(_J)_J_ [Ei e, (3.14a)
2 _ @ 2] ~

PY, = 1 [Er] e (3.14b)
2 2 _

P?III)L = X|(|||)¢ [ELE) ey (3.14¢)

where E is the field amplitude at the fundamental frequency o, || and L denote the directions
parallel and perpendicular to the local NW surface and for simplicity we set g = 1. Let us
consider the case of an infinite cylinder. For an incident field normal to the cylinder axis (TE),
it turns out that the three surface terms lead to a nonlinear polarization perpendicular to the
nanowire axis. This is obvious for equations (3.14a) and (3.14b). In addition, as for TE polarization
e in Eq. (3.14¢) corresponds to €, in the cylindrical coordinate system of the wire, it is as well
perpendicular to the NW axis. If the incident field is parallel to the axis (TM case), no field
component E, normal to the infinite cylinder surface exists, so that both P(fl , and Pﬁ) | vanish
(see also appendix B.3 for a numerical confirmation). As a consequence, equation (3.14b) alone
describes the surface SHG in the TM case, which is polarized along €, thus perpendicularly to
the nanowire. This leads to the insight, that under excitation far from the NW tips, surface SH
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polarization under either TE or TM excitation should always be perpendicular to the NW axis —
a finding that is in contradiction with the TM polar plots shown in Fig 3.18a-b, where both SH
and fundamental light polarizations are parallel to the NW axis (see also NW50 and NW 100 in

Fig. 3.19).

3.4.3.2 Non-Local Bulk Contributions

Let us therefore inspect the nonlinear bulk polarization, induced by field gradients in the material.
Due to both, the presence of leaky mode resonances and a tightly focused laser beam, we presume
that strong field gradients may exist in the SINWs, so that bulk effects can not be neglected from
the start. In first non-vanishing order, the bulk polarization consists of three terms [169]

P2 =yV [E2] +
BE[V-E]+ (3.15)
5§ [E-V]E

Note that we omitted the {-term proportional to E;V;E; (Eq. (2.95)), whose susceptibility equals
zero for homogeneous media [206]. It has been shown that the y-term can be included in equa-
tions (3.14a) and (3.14b) using effective susceptibilities [204, 334]

(2,eff) (2) Y
= S A— 16
Xii1 Xii1 e (©) - & (2) (3.16)
and o y
(2eff) _ (2) _
XLl =X T g (2a)” (3.17)

Thanks to its surface-like behavior, it is often referred to as the non-separable bulk contribution,
which becomes small for high-index semiconductors (large €,) due to the electric permittivity
in the denominator of the additional terms in the y>*® We can also neglect the S-term in
Eq. (3.15), as V - E vanishes in the bulk of a homogeneous medium [302, 307].

Concerning the §-term in Eq. (3.15), we find that under TE polarization strong field gradients
appear only for large diameters because no field component exists along the axis', and the in-
plane fields normal to the axis can be considered constant for diameters below the appearance
of the first resonant mode®>. At Ag = 810nm this is valid for D < 150nm (see Fig. 3.3). In
consequence, the last term in Eq. (3.15) is supposed to vanish for sufficiently small NWs in the
TE configuration. Under TM illumination, field components normal to the cylinder axis are zero
and the bulk polarization reduces to

PbulhTM =0 (Ez E) e, (3.18)

where z denotes the axial direction. This means that for TM incidence, the §-bulk contribution is
the sole SH source able to generate a nonlinear polarization along the NW axis. We consequently

! Note that field gradients along the axis in the case of a TE excited incidence cancel in the scalar product (E - V),
because E; = 0 (Z || NW axis).

2 Corresponding to the quasistatic approximation for small NWs. Furthermore, the first resonance is a non-
degenerate TM-mode, hence does not exist under TE illumination
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assume that SHG under TM excitation on the center of NW50 and NW1oo (figures 3.18a, 3.18b
and 3.19) can be attributed to the (E-V)E bulk contribution. For larger NWs the surface term P(fl)l I
seems to become more significant, leading to the observed flip of the polarization (figures 3.18¢c

and 3.19).

3.4.3.3 Conclusions

In summary, three contributions to SHG remain under consideration to explain our experimental
results: The surface terms P(fl , and P(fl)l | Tesulting in a nonlinear polarization perpendicular to
the NW axis, and the (E - V)E bulk source (“5”), creating a polarization along the NW axis. We
also found that for a cylindrical geometry, the latter contribution only exists in the TM case.

In the case of silicon )(ﬂ | is considered to dominate SHG (see also Sec.3.3), while the weaker

surface terms ( )((f”)”, XI(IQII)L) and the separable bulk susceptibilities are supposed to be of compa-
rable magnitude [300]. In the following, we will therefore examine the different contributions
in more detail. This will be done using electro-dynamical simulations with the Green Dyadic

Method (GDM).

3.4.4 Simulations
3.4.4.1 Simulation Method and Model

We model SHG using the GDM, as explained in detail in section 2.4. The incident field at wave-
length Ag = 810 nm is modeled as a focused planewave with a diffraction limited spot-size corre-
sponding to NA 0.8 used in the experiments (see section 2.3.3.2). The §-bulk contribution is calcu-
lated using central differences to approximate the gradients in Eq. (3.15). Finally, each meshpoint
is considered as an emitter at 1g/2 = 405 nm and the radiation of the ensemble to the far-field is
calculated using a propagator taking into account the presence of the substrate (see Sec. 2.3.6.4).
The harmonic far-field intensity is integrated over the collecting solid angle of the NA 0.8, and
optionally analyzed for its linear polarization state.

In order to simplify the numerical work and reduce numerical artifacts from round surfaces
in cubic discretization, all 3-dimensional simulations have been performed using wires of rect-
angular cross section. We have shown in section 3.1.5 that for lower order modes, the difference
between cylindrical and square sections is only a spectral shift of the resonances, while the reso-
nance number and qualitative field distribution is conserved (see also [146]). The validity of this
assumption is verified when comparing Mie theory for an infinite cylinder to simulated elastic
scattering spectra of our square-wire 3D-model (Fig. 3.20a,i). Finally, we have shown in sec-
tion 2.4.4.1, that the numerical SHG calculation is less error-prone using flat surfaces. To allow
comparison with Mie theory, the simulated wires were chosen to be long compared to the spot
size of the incident beam (L > 2 pm, see also section 3.1.7).

Throughout this section we stick to the “simple” SHG description, neglecting the influence of
the presence of the structure on the harmonic field. A comparison of self-consistent and “simple”
SHG calculus on SiNWs can be found in appendix B.3.
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Figure 3.20: All data for an incident wavelength of Ay = 810 nm. (b, i): Elastic scattering intensities from
Mie theory (dashed) and GDM simulations (solid) for TE (red) and TM (blue) excitation. GDM
simulated SHG far-field intensities are plotted in (ii) for TE and (iii) for TM excitation. Surface
(pointed: L1 1, dashed: L[|||) and bulk SHG (6-term, solid lines) are pairwise normalized to
their overall (TE / TM) maximum. The insets show zooms on the region of small diameters.
In (b) are shown the nonlinear polarizations P() (real parts, dense vector plots in blue color)
and SH far-field polarizations (polar plots) for (i) TE excited L.L1, (ii)) TM excited L|||| and
(iii) TM excited bulk (6) fora D = 50 nm and a D = 120 nm NW (top and bottom respectively).

3.4.4.2 P(flL Surface contribution

In Fig. 3.15, a SHG raster-scan 3D-simulation considering only the P(fl | surface term, is shown
for a NW of diameter d = 100 nm. We observed from comparison with experimental data, that
the global trend of homogeneous SHG for TE and tip-enhanced SHG for TM can be reproduced
using only the normal surface contribution. Similar results are obtained for simulations using
both, smaller and larger diameters. However, as pointed out above, two experimental phenomena
can not be explained by only Eq. (3.14a): (1) TM-excited SHG from illumination of the NW center
and (2) SH light polarized along the NW axis.

3.4.4.3 Diameter-dependence of SHG contributions

In order to verify the hypothesis of mainly P(fl |, generated-SH in the TE case on the one hand
and mixed L ||||-surface / §-bulk SH for the TM case on the other hand, we carried out diameter-
dependent SHG simulations, shown in figure 3.20. To include the bulk-contribution in our in-
vestigation, it was necessary to perform 3D GDM simulations using a focused incident beam
which induces field gradients due to the Gaussian intensity distribution. As discussed earlier,
nanowires of square section were used for these simulations.

A focused (NA 0.8) incident beam at A9 = 810 nm, either polarized TE (Fig. 3.20a,ii) or TM
(Fig. 3.204a,iii) was set on the center of a NW model, whose diameter was progressively increased.
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SH intensities in the far-field were calculated for the P(fl , and P(fl)l | surface terms, as well as for
the §-bulk contribution. Each contribution is normalized to the highest intensity value within
both incident polarizations. Note that absolute comparison of SH intensities is only possible
within simulations of each contribution, and not between separate components, because we set
the susceptibility components individually = 1.

The L1 1-surface contribution under TE excitation exceeds the case of TM incidence on the
entire diameter range by several orders of magnitude. As )((3 | is supposed to surpass the other
second order susceptibility components (see section 3.3, [300]), we conclude that SHG under
TE excitation is dominated by the normal surface component, whereas under TM excitation the
L1 1-surface contribution seems to be negligible over the whole simulated range, which is in
agreement with the theoretical prediction.

While the normal surface term vanishes for incident fields along the axis, L||||-surface and §-
bulk contributions are radiated more efficiently than in the TE case. We also see in Fig. 3.204a,iii
that the surface term grows more rapidly with increasing diameters when compared relatively
to the bulk term. This supports our assumption that SHG from TM illumination on the NW

center is due to P(fl)lll

in Fig. 3.20b simulated P?) near-fields (top row) and their polarization patterns after radiation to
the far-field (bottom row) for D = 50 nm and D = 120 nm. The behavior of the SH polarization is

identical for all sizes of simulated wires. The P(fi L

is in agreement with the experimental results. P(fl)lll and the §-bulk term under TM excitation
are shown in Fig. 3.20b,ii and Fig. 3.20b,iii, respectively. These simulations show the 90 ° flip
of the far-field polarization pattern with respect to the NW axis. This is in agreement with the
experimental plots of Fig. 3.18 and confirms ultimately the axis-parallel polarization emitted by

the §-bulk term, which is hence the main contribution to SHG from NWso.

and/or §-bulk contributions, depending on the diameter range. We show

case under TE excitation shown in Fig. 3.20b,i

3.4.4.4 Maps of SHG Farfield Intensity Distribution

The maps shown in Fig. 3.21 are calculated from a NW with diameter d = 100 nm, but results
for different NW diameters are qualitatively similar. Like above, the exciting beam is tightly
focused on the NW center. The total intensity on the detector in the experiment corresponds to
the integrated intensity over the area delimited by the NA of the microscope objective (indicated
by dashed circles). As expected due to the symmetry of the system, the intensity in the center
of the maps is zero. The data is normalized to the global maximum of each contribution, which
reveals the polarization direction of the total collected harmonic emission.

While both, the TE excited P(fl , contribution and the TM excited P(fl)\ll surface contribution

result in mainly “TE” polarized SHG (perpendicular to the NW axis), the TM excited sz_{mlk
has a nonlinear emission mainly polarized along the NW axis (“TM” polarized), confirming our
earlier considerations. Furthermore, the residual TM-filtered SHG in the surface contributions
show, that the figure-of-eight patterns in the polar plots can be more or less open also for a
single contribution, as can be seen in the polar plots in Fig. 3.20b. This can explain relatively
“open” measured polar plots, as shown for instance in Fig. 3.18. The SH intensity distribution in
the far-field also shows that reducing the objective NA can enhance the detection of the §-bulk

contribution with respect to the surface components (surface SHG emits more to the “sides”).
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Figure 3.21: GDM simulation of the angular resolved farfield intensity distribution of SHG from a d =

100 nm SiNW. (a) P(fl | -response under TE excitation, (b) P(fﬁ j-response under TM excitation

and (c) Pf_{)ulk—response under TM excitation, for each contribution the same colorscaling was

used. In the upper plots TE-polarization (perpendicular to the NW axis) filtered SH emission
pattern is shown and TM (along NW axis) filtered SH is given in the lower plots. The polar
angle corresponding to NA 0.8 is indicated by dashed circles. The orientation of the nanowire
with respect to the polar angle is indicated by a bar in the center of the polar plots. The
incident polarization and analyzed polarization direction are indicated by small sketches at
the figure borders.

3.4.4.5 Efficiency of SHG Epi-Collection

It may appear rather counterintuitive that SHG in small diameter nanowires occurs due to the
d-bulk contribution, while the surface sources increase with increasing diameter — hence for
decreasing surface over volume ratio. Resonant optical modes have an influence on the relative
weight of the nonlinear contributions, as can be seen in figure 3.20a, by a comparison to the linear
Mie modes. A second important factor on the efficiency of the SH radiation to the far-field can be
microscopic symmetries of the nonlinear polarization. Actually, strong silencing of farfield SHG
is expected due to the high symmetry of the nanowires [176, 297]. By analyzing the nonlinear
polarization vectors (see figures 3.20b), we indeed find a strong microscopic cancellation for
the surface contributions while retardation among the more distant bulk polarization vectors
circumvents the cancellation of oppositely radiating dipoles to the far-field.

To give an illustrative explanation for the observation of bulk effects dominating for small

nanowires while surface effects occur only for larger structures, we consider in a simplified sce-
2  p®

nario two oppositely oscillating “effective” dipoles for the nonlinear polarizations P |, N
and PESQ). The far-field radiation intensity through solid angles corresponding to different nu-
merical apertures is plotted as a function of the inter-dipole distance between “dp1” and “dp2” in
figure 3.22b. While for small distances cancellation is almost perfect, the radiation becomes ob-
servable in the far-field only for distances corresponding to a major fraction of the wavelength.
In contrast to the local surface nonlinear polarization, the bulk contribution is mainly induced
by the field gradient from tight focusing. Hence the average distance of dipoles oscillating with

opposite phase will mainly be determined by the focal spot size which is of constant value.
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field intensity of two coherently radiating dipoles of equal amplitude and opposite phase in
normal direction to their polarization vector as function of the distance between the two
dipoles. The intensity is integrated over different solid angles where NA 0.8 corresponds to the
objective used in the experiments. The inset shows a sketch of the considered geometry. (c)
Distance of two “effective” dipoles for surface (blue) and bulk (green) nonlinear polarization
under TM excitation, calculated from the simulation data. The dips observed for the bulk
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dipole-distance correspond to the resonance positions (see Fig. 3.20).

In order to verify that this assumption is valid for the cases of P(f)

M and P(;) in TM excited

nanowires, we reduce the nonlinear polarization to two effective dipoles, oscillating with oppo-
site phase. We define their positions using the weighted averages

Teff,

;mPEQH

| 35

of all dipoles P§2) atr; in two symmetric fractions of the structure as illustrated in figure 3.22a. In
this rough approximation we neglect retardation effects in the summation by taking the modulus
of each complex polarization vector. The distance between the two effective dipoles is plotted in
figure 3.22c as a function of the nanowire diameter.
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Figure 3.23: Normalized ratio of detected bulk and surface farfield-SHG (red dashed line) for SINWs of
different diameter as function of the collecting numerical aperture. Normalized §-bulk and

P(fl)”l—surface contributions (blue and green lines, respectively) are plotted for comparison.

Focused TM-excitation on the NW center at g = 810 nm.

We observe that the surface polarization has always an effective spacing corresponding to the
nanowire diameter. The §-bulk nonlinear polarization on the other hand is found to be charac-
terized by two effective dipoles with a separating distance always larger than the focal spot size.
This behavior is in agreement with our initial hypothesis and can explain the observation of sur-
face effects exclusive to large NW diameters, while bulk SHG is observed for small nanowires.
We note that this effect is further reducing SHG in small NWs from P(fl , under TE excitation.
Together with the lack of an optical resonance, farfield SHG due to )(fl) , is then entirely sup-
pressed.

In figure 3.23 we plot the (normalized) ratio of bulk vs. surface SHG (under TM excitation)
as function of the collecting numerical aperture at the example of diameters D = 50 nm (a),
D = 100nm (b) and D = 250nm (c). We see that generally, a higher sensitivity to the §-bulk
contribution is obtained when the collecting solid angle is decreased. This is due to the more side-
wards radiation of surface-SHG compared to the bulk-term (see Fig. 3.21). On the other hand,
the total collected intensity decreases for lower NAs. In consequence for very low collection
angles, neither surface nor bulk contributions would be detected. Finally, we observe that the
surface contribution is detected more efficiently for smaller NA in the case of large nanowires
(see Fig. 3.23¢c), which further supports the transition from bulk to surface second harmonic
generation for increasing NW sizes, eventually resulting in the flip of the polarization.

We note that the nonlinear polarization is calculated from an excitation with a fixed NA 0.8.
In backscattering geometry, the excitation is done with the same microscope objective as the
collection, which might have an additional impact on the ratio between bulk and surface SHG.

3.4.5 Conclusions

In conclusion, our study of SHG from individual SiNWs showed that P(fi | dominates SHG for TE
polarized excitation, resulting in a SH polarization normal to the NW axis, which is in agreement
with former observations of )(fl) | as leading source of second-order susceptibility [300]. For TM
excitation on the other hand, P(fi | vanishes as soon as the laser spot leaves the NW tips, giving

the opportunity to examine the P(fl)l ! surface source and the §-bulk contribution in more detail. A

diameter-dependent flip of the SH polarization was observed in this case, which we studied using
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numerical simulations. The latter confirmed a changeover in the leading contribution from bulk
((E - V)E) SHG for small NWs to surface (P(z) |) SHG for larger NWs with diameters > 150 nm.

LI
We concluded that radiation from both P(fl)lll and Pg) is of comparable magnitude and can be
individually addressed by simply adjusting the diameter of the nanowire, which is particularly
interesting as the §-bulk contribution is supposed to be difficult to isolate from the other SHG
terms from planar surfaces [302, 306, 307].

We showed that, because of their geometry and optical properties, SINWs provide a highly
promising research platform to gain insight in the relations between surface and bulk contribu-
tions of SHG from centrosymmetric materials in general. This allow to separate different con-
tributing ¥ terms also for other materials, though accurate quantification of the y® elements
is a difficult task, due to strong silencing of the nanoscopic nonlinear polarization because of the
high symmetry of the NWs and many other influences like the collection efficiency for detection

parallel to the excitation direction.
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Chapter 4

Design of Photonic Nanostructures by
Evolutionary Optimization

N THE FOLLOWING CHAPTER the focus will move towards the specific tailoring of optical prop-
I erties in photonic nanoparticles. The rational design of photonic nanostructures usually
consists in anticipating their optical response from simple models or as variations of ref-
erence systems, which are then studied systematically. This strategy, however, is often limited
by the capabilities of the initially chosen geometry and even more demanding when different
objectives are simultaneously targeted. In consequence, it is difficult to find the optimum ge-
ometry for specific optical functionalities and usually trade-offs between design simplicity and

performance have to be made.

4.1 Design of Nanostructures as Optimization Problem

As it comes to applications, a more convenient approach is to define the requested optical prop-
erties and design a nanostructure that optimally exhibits the desired features. For the latter
approach, a structure model has to be developed, which, based on a certain set of parameters,
can describe in a generic way a large variety of particle geometries. However, this leads to huge
parameter spaces which usually cannot be explored systematically within reasonable time. Also
trial-and-error is normally not an efficient search strategy.

Root-finding or maximization algorithms seem promising at a first thought, however it is dif-
ficult to describe nanoparticle geometries by analytical, continuous and differentiable models,
required e.g. by derivatives of Newton’s method. Additionally, it is likely to obtain a function-
landscape with countless local extrema (see Fig. 4.1a-b), which further restricts the applicability
of classical optimization algorithms, since they get stuck in local extreme points and in conse-
quence fail to converge to the global optimum, as illustrated in figure 4.1a at the example of a
one-dimensional minimization problem.

4.1.1 Evolutionary Optimization

More promising techniques are evolutionary optimization (EO) strategies which, by mimicking
natural selection, are able to find fittest parameter sets to a complex non-analytical problem [335].

In the field of nanophotonics, evolutionary algorithms have been applied to the maximization
of field enhancement [336—-340], scattering from plasmonic particles [341-343], or the design of
hybrid plasmonic/dielectric antennas [344]. Such methods were also successfully used for more
technological applications like electron-beam field emission sources [345], waveguide couplers
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Figure 4.1: lllustration of evolutionary optimization. (a) Dilemma of classical local optimization algo-
rithms: If local extrema exist, the minimization gets stuck and does not converge to the global
minimum (same holds for maximization). (b) Case of two input parameters, where the opti-
mization problem becomes drastically more complex. (c) Illustration of the iteration cycle in
evolutionary optimization algorithms.

[346], thermophotovoltaic solar cells [347] or core-shell nanoparticles for optically induced lo-
cal heat-treatment in medicine [54]. EO techniques are furthermore applied in the analysis of
complex, multi-dimensional spectroscopic data from optical experiments [348].

Figure 4.1c gives an illustration of how evolutionary optimization mimics the process of nat-
ural selection. A population of individuals is defined (“generation n” in Fig. 4.1c), where each
individual is in our case a set of parameters describing an antenna morphology. This popula-
tion undergoes an evaluation and selection procedure in which weak solutions are eliminated
and the fittest candidates (i.e. the parameter-sets yielding the best target values) are chosen to
“mate” with each other. The target value of the optimization is also called the fitness. The follow-
ing process of reproduction usually consists of a step called crossover, where the parameters are
exchanged and mixed - just like DNA in nature — and a mutation step, in which some randomly
selected parameters are multiplied by or replaced with random numbers (see figure 4.1c, step
“reproduction”). Like this, a new population of individuals is generated, the generation “n + 1”.
This process of selection, reproduction and evaluation is repeated until some stop-criterion is
met, like a time limit, a maximum number of iterations or a maximum number of consecutive
generations without further improvement.

4.2 Maximization of SHG from Si Nanoparticles

Since the previous part was focused on SHG from silicon nanowires, in our first example we will
try to find silicon nanostructures for a maximum second harmonic emission. We will verify the
outcome of the algorithm by measurements on samples, fabricated following the design of the
evolutionary optimization.
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Figure 4.2: Structure model for EO. a) Example of silicon block arrangement forming a pixel. b) Scattering
efficiencies calculated for individual silicon blocks of the minimum allowed size (left), minimum
width and maximum length (center), and maximum possible size (right). The constraints are
Linin, = Wiin, = 60nm and Ly,ax, = Winax, = 160 nm, the height is fixed to H = 100 nm.

4.2.1 Numerical and Experimental Methods
4.2.1.1 Structure Model

The “population” of particle morphologies to be considered in the computation must be diverse
enough to explore, after several generations, a significant fraction of possible solutions. How-
ever, this requires a very large number of parameters, significantly slowing down convergence.
Furthermore, the optimized geometries must remain within the limits of fabrication capabilities
and have neither too many nor too small features. For these reasons we use a very simple model,
based on four individual silicon elements with variable dimensions and positions, placed on a
SiO9 substrate (n ~ 1.5) within a limited area. A sketch of the model is shown in Fig. 4.2a.

Both, the x- and y-dimension of each antenna is allowed to vary between 60 nm and 160 nm,
in steps of 20 nm, corresponding to the precision of a state-of-the-art electron-beam lithographic
system. The height H is fixed to 100 nm, equal to the silicon overlayer thickness of our silicon-on-
insulator (SOI) substrate. The antenna is placed within an area of 600 X600 nm?. This constrained
area limits the accessible parameter-range to reduce complexity and facilitate convergence. Fur-
thermore it ensures that the whole particle is illuminated by the incident field.

Exemplary spectra of single silicon-cuboids with dimensions corresponding to the size-limits
used in our optimizations are shown in figure 4.2b. For simplicity, the positions are discretized in
steps of 20 nm. In order to validate this large stepsize, we calculated spectra for the same struc-
tures using different discretization stepsizes, which yielded comparable results (see figure 4.11a).
Overlapping antennas are allowed, corresponding antennas are fused together accordingly. The
number of possible parameter combinations in this model is larger than 1 x 10'°. We conclude
that using the simple model described above, it is already inconceivable to use a brute-force
strategy (evaluation of all possible combinations). We will therefore employ an EO algorithm,
namely a self-adaptive variant of differential evolution, “jDE” [349], implemented in the parallel
EO toobox “PaGMO/PyGMO” [350].
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Figure 4.3: Evolutionary optimization of Si nanostructure for )(izﬁ | SHG. (a) Mask with fittest structures
of consecutive iterations of the evolutionary optimization. (b) SEM images of the correspond-
ing sample fabricated on SOL (c) SHG raster-scan measurement of the sample. Fundamental
wavelength is g = 810 nm, linearly polarized along the horizontal axis (X-direction).

4.2.1.2 E-Beam Lithography on SOI

Samples were fabricated in cooperation with LAAS-CNRS in Toulouse by Dr. Guilhem Larrieu
and Dr. Aurélie Lecestre. In a top-down approach, Electron Beam Lithography (EBL) was coupled
with anisotropic plasma etching. This was used to pattern the designed nanostructures [351, 352]
on a commercial silicon-on-insulator (SOI) wafer as substrate (Si: 95 nm, BOX: 145 nm). The EBL
was carried out with a RAITH 150 writer at an energy of 30 keV on a thin (6onm) negative-
tone resist layer, namely hydrogen silsesquioxane (HSQ). After exposure, HSQ was developed
by immersion in 25 % tetramethylammonium hydroxide (TMAH) for 1 min. HSQ patterns were
subsequently transferred to the silicon top layer by reactive ion etching in a SF6/C4F8 plasma
based chemistry down to the buried oxide layer.

In the EMO runs, the minimum feature size was set to 60 nm to avoid removing small features
of the structures during lift-off. The structures were discretized and placed on a grid by steps
of 20 nm to match the precision of the EBL. SEM images and corresponding mask layouts are
shown in Fig. 4.3a-b.

4.2.1.3 SHG Modeling and Measurement

The particles are excited with a NA (0.8 air objective and SHG is detected in backscattering by the
same microscope objective. A more detailed description of the setup and measurement procedure
can be found section 3.2.2 (see also Fig. 3.8). The numerical modeling for SHG is the “simple”
method for SHG modeling, i.e. using P® without the self-consistent correction. It is described
in detail and used in the previous sections (see Sec. 2.4) and, by considering the NA 0.8 numerical
aperture for both excitation and collection, reflects the experimental procedure.

4.2.2 Results and Discussion

SHG raster-scan measurements, like shown in figure 4.3c, were performed on structures, cor-
responding to fittest candidates from consecutive generations of the evolutionary optimization.
Three copies of identical particles were measured, with quantitatively reproducible results. The
average experimental results (blue, errorbars: standard deviation) are compared to the calculated
fitness (red), which is shown in figure 4.4. Both datasets are normalized to their maximum values.
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Figure 4.4: Fitness vs. measured SHG intensity for consecutive generations of evolutionary optimization.
Measured intensity from three copies of identical structures on the sample, errorbars indi-
cate the standard deviation obtained from the sum of the five highest intensity values from
raster-scan measurements on three copies of each nanoparticle (see raster-scan in Fig. 4.3c).
Simulation and measured data from the optimized structures (red and blue, respectively) refer
to the bottom x-scale. Reference measurements of SHG on rectangular silicon nanowires of
different widths are shown in green color (top x-scale). Heights are constant with H = 95 nm
(simulations: H = 100 nm) for all structures, corresponding to the silicon layer thickness of
the SOI substrate.

A good agreement of experiment and prediction can be observed. Furthermore a comparison to
rod-like reference structures on the same substrate of variable width and fixed length L = 2 um),
shows an increase by a factor > 2 in SHG emission. Corresponding data is shown in green in
Fig. 4.4, scaled equally to the SHG intensity measured from the optimized particles. When the
data is normalized considering the intersection of the exciting beam and the structures’ geomet-
rical cross section, the enhancement factor compared to the best wire-structure is even as high
as ~ 5 (for the normalization procedure, see also section 3.3.3.4).

4.3 Optimization of Plasmonic Antennas: Directional Scattering

A great advantage of the GDM is, that it can be adapted to different media in a straightforward
way: It is sufficient to use the corresponding dielectric function for the description of an arbitrary
material. In contrast to time-domain methods, no analytical model for the electric permittivity
is required and tabulated data can be used.

Our nano-photonic evolutionary optimization approach is based on the Green Dyadic Method
and inherits therefore all conveniences of this technique. In order to demonstrate the versatility
of this tool, we will employ EO on a model describing a plasmonic nanoantenna made from gold
- in contrast to the previously optimized silicon nanoparticle. EO has manifold potential applica-
tions, constrained only by possible limitations of the numerical method for the electrodynamical
simulations. We will therefore also target a different optimization objective than SHG and try to
design a nano-antenna for directional scattering in the following section.
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Figure 4.5: (a) Structure model for EO of directional scattering from a plasmonic antenna. 40 gold-blocks
(“B;”), each 40 x 40 x 40nm? large are placed on an area of 1 x 1pum?. (b) Sketch of the
directionality problem: Maximize the ratio of scattering through a small window (green) with
respect to the remaining solid angle (red). Target scattering direction is chosen to be in X
direction and centered at a polar angle of 45 °. Polar and azimuthal widths are 30 ° and 45 °,
respectively.

4.3.1 Problem and Model
4.3.1.1 Model: Cubic Gold Blocks on Substrate

A scheme of the model for a plasmonic nano-antenna is shown in Fig. 4.5a. 40 gold blocks named
B;, each 40 x 40 x 40 nm? in size, are placed on a substrate (n = 1.5). Each of the blocks are
modeled by 2 x 2 x 2 dipoles with a stepsize of d = 20 nm. The free parameters are the positions
(xi,y;) of the blocks, which are bound to an area of 1 X 1 me, in order to limit the numerical
complexity. Additionally, the positions of the blocks have to lie on a grid with steps of 40 nm in
order to avoid problems from partly overlapping bricks. Fully overlapping blocks are treated as
a single block, hence the material of the antenna is not necessarily fixed.

4.3.1.2 Problem: Directional Scattering

The goal of the optimization is to find a plasmonic antenna with strongly directional scattering
at a certain wavelength. A linearly X-polarized planewave is incident from the top and the scat-
tering from the nanostructure is calculated as described in section 2.3.6.4. The radiated intensity
is separated in two parts: First the intensity Igiect, scattered through a solid angle of polar and
azimuthal dimensions A¢ = 30° and A8 = 45 °, centered at ¢ = 45 ° in X-direction (green win-
dow in Fig. 4.5b). And second, the intensity I, scattered through the rest of the semi-sphere
(indicated red in Fig. 4.5b). The ratio of directional and scattering through the rest of the solid
angle
Liivect

(4.1)

Ryirect = 1
rest
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Figure 4.7: Selected iterations of evolutionary optimization of directional scattering. Radiation pattern in
XZ-plane is shown in the top panels by blue lines, where a green segment indicates the opti-
mization target region. Scalebar is 200 nm The corresponding plasmonic structures, composed
of gold cubes, is shown in the bottom panels (lying on a n = 1.5 substrate in the XY plane).
(a) Randomly initialized structure. (b-f) Fittest candidate of intermediate generations during
evolution. (g) Best individual in final population.

is the target of maximization via EO. Like in the previous section, we use the self-adaptive differ-
ential evolution algorithm “jDE” for this purpose. Because we have as much as 80 free parame-
ters, a large population is necessary to assure a diverse gene pool. Therefore we make use of the
so-called “generalized island model” [353], provided by the PaGMO toolkit: Several independent
populations are in parallel evolved on different “islands”, to make use of the multiple CPU cores
in modern computers. After the reproduction of a new generation, DNA is exchanged between
the islands in order to guarantee a high diversity of the total population.

4.3.2 Results and Discussion

4.3.2.1 Analysis of Evolution

The full population in our case consists of 10 X 50 individuals, distributed over 10 “islands”.
We observed that for smaller populations, the optimization does not always converge to the best
directionality of Rgirect ~ 12. It seems, in the case of a small population the diversity may decrease
too rapidly until it gets eventually stuck in a sub-optimal branch of the evolution (which almost
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Figure 4.8: Analysis of fittest evolutionary optimized directional antenna. (a) Sketch of the evolutionary
optimized gold antenna with highest directionality. 3D radiation pattern is shown in light blue.
Planewave incidence from the top, indicated by blue arrow. 1o = 800 nm, polarized along X
(direction of scattering). (b) The antenna can be divided into three functional constituents: A
main driving element in the center (blue) as well as a reflector (green, on the left) and a director
(red, right). The centers of gravity are indicated by dashed lines of the corresponding colors
and the distance to the driving element edges are given at the top. Scalebar is 200 nm. (c)
Color-plot of the relative phase of the E, component of the electric field, with respect to the
driving element’s center. The horizontal direction corresponds to the X-axis. Same scaling as

().

happens around gen. 20 in Fig. 4.6a). The evolution of a sufficiently large population during 50
generations is shown in figure 4.6a. The optimization was stopped after 50 cycles. Each blue dot
corresponds to the fitness of an individual, the green and red lines indicate the best and average
fitness, respectively. The fittest candidates from selected generations and their far-field patterns
of scattered light are shown in Fig. 4.7. (a-f) are individuals from the first 20 iterations and (g)
shows the best solution, taken from the 50" generation.

To verify the reproducibility of the method, we performed the same optimization multiple
times. For sufficiently large populations (2 10 x 40 individuals), the EO yields always similarly
high directionality ratios of Rjirect ~ 12 and also the antenna morphologies are always similar,
as can be seen in figure 4.6b.

4.3.2.2 Analysis of Optimum Antenna

A sketch of the fittest candidate from the last generation is shown in figure 4.8a together with
a 3D representation of the radiation pattern of scattered light, where the incident planewave’s
wave vector is indicated by a blue arrow. The directionality of the scattering is obvious from the
cone of radiation (see also Fig. 4.7). Interestingly, the result of the optimization visually resembles
much the well-known Yagi-Uda antenna design [354], an antenna geometry which is famous for
its capability of directional emission and reception.
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Figure 4.9: Analysis of directional antenna found by EO (see Fig. 4.8). (a) Scattering in backward (left
column) and forward (right column) direction. (i-ii): Scattering radiation pattern, indicating
the analyzed profile-path by a dashed red line (along angles of 140° and 40°, respectively).
(iii-iv): Electric field amplitude E, and (v-vi): Total intensity as function of distance from
the nano-antenna in backward, respectively forward direction. (b) Directionality ratio Rgjrect
(i), maximum scattering angle (ii) and maximum scattered intensity (iii) as function of an x-
displacement of the antenna’s director element (red part in Fig. 4.8b).

By a closer look on the nano-antenna, three main functional constituents can be differentiated,
as shown in figure 4.8b: A driving element in the center (blue), a reflector on the left (green) as
well as a director element on the right end of the antenna (red). The distances of the centers of
gravity of reflector Axeq. ~ 0.161¢ and director Axgi,, ~ 0.11g to the driving dipole correspond
to typical suggestions in literature with Axyen. > Axgi.. Finally, an analysis of the phase of the
electric field’s x-component Ej reveals a difference of 7 between the driving element and the
director / reflector parts, as shown in Fig. 4.8c. This phase difference persists in the propagating
fields away from the antenna, resulting in cancellation of the electric field in backward direction
and in a constructive interference of the contributions in forward direction (see Fig. 4.9a). This
is in agreement with the Yagi-Uda antenna design template, where interference of phase-shifted
fields yields a strongly anisotropic scattering [354].

We note in this context, that Novotny [11] showed that it is possible to scale antennas to op-
tical frequencies by using an effective wavelength scaling, which considers the electron-plasma
occurring in small metal particles. Following this principle, nano Yagi-Uda antennas have been
fabricated and their directional emission was confirmed [30].

Finally we analyzed the antenna performance as function of the position of the director ele-
ment (red in Fig. 4.8b), shown in figure 4.9b. The evolutionary algorithm could maximize indeed
the directionality ratio as far as the director position is concerned. We also find, that dependent
on the director position, the scattering angle can be tuned by around 15°. Finally we observe
that the scattered intensity might be enhanced by a factor of = 2, simply by repositioning the
director component. The reason for this finding is, that the presented optimization targeted the
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directionality ratio of forward scattering with respect to uniformly scattered light — no interest
was placed on the intensity of the scattering. In future work, the above results could be compared
with an EO of the absolute scattered intensity towards a certain solid angle.

4.3.3 Conclusions

In the design of radio frequency antennas, evolutionary optimization is actually common prac-
tice [355], although in corresponding applications the global design of the antenna is normally
imposed. The free parameters describe then usually minor variations of a given antenna system.
In our approach on the other hand, initially the design of the structure is completely free, within
the limits of possible geometries built by 40 equal metal blocks. In conclusion, it is remarkable
that an antenna design is found - fully automatically and with very good reproducibility — which
corresponds to well known design-principles from radio-frequency antennas. We deduce, that
from the results of such optimizations, general design principles can be derived for the optimum
geometries with respect to the target properties. In our case, we could verify that common design
rules from directional radio-frequency antennas apply also in plasmonic nano-antennas at opti-
cal wavelengths. We want to note that the working principle of the EO antenna is also identical
to nano Yagi-Uda antennas discussed in a former study on directional plasmonic antennas [356].

4.4 Multi-Objective Optimization of High-Index Dielectric
Particles

In the last section of this chapter, we want to go even one step further. Most studies using evo-
lutionary optimization in the context of nano-optics were limited to the maximization of one
target property at a specific wavelength and polarization. Such single-objective scenarios repre-
sent the simplest case of an optimization problem, while a structure that concurrently matches
multiple objectives will be in general more difficult to design. Evolutionary multi-objective op-
timization (EMO) strategies [357, 358] are a promising approach to tackle such problems. They
are used for example for the optimization of trajectories of space-crafts in order to deliver a
maximum possible load to some location in space within reasonable traveling time [359], for
the design of radio-frequency antennas [355] or for the design of telescope objectives [360]. In
a recent work, genetic multi-objective optimization was used on plasmonic waveguides. A fig-
ure of merit describing the waveguide and its robustness against geometrical variations were
maximized simultaneously [361].

EMO could lead to considerable improvements in the design of wavelength dependent (multi-)
directional scattering, multiresonant antennas or polarization dependent tailored optical behav-
ior. Nanoantennas possessing multiple resonances, for instance at the fundamental and harmonic
frequencies, may also be optimized by EMO to enhance nonlinear effects.

In the following, we present a combination of EMO with the Green Dyadic Method (GDM) for
self-consistent full-field electro-dynamical simulations (see chapter 2). We apply the EMO-GDM
technique to design dielectric (silicon) nanoantennas that concurrently maximize the scattering
at different wavelengths, dependent on the polarization of the incident light. With the computed
EMO design, Si nanostructures are then fabricated on a SOI substrate and their optical response
is measured by confocal dark-field scattering microscopy. These experiments show that the scat-
tering properties are in excellent agreement with the optimization predictions.
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Figure 4.10: llustration of evolutionary multi-objective optimization (EMO). a) Initialization step of pixel-
populations for the EMO algorithm. b) Evolution of the pixel-population (see also Fig. 4.1c).
¢) Optimum pixel-population at the end of the evolution. d) Nanofabrication and characteri-
zation of the polarization dependent color-pixels.

4.4.1 Optimization Problem and Techniques
4.4.1.1 Optimizing the Scattering Efficiency from Nanostructures

We illustrate the EMO-GDM technique with the scattering efficiency Qscat as target property.
Qscat is defined as the ratio between the scattering cross-section oy, and the geometrical cross-
section ogeom (the “footprint”). Our goal is to maximize the scattering efficiency at a wavelength
Ax, for an incident linear polarization along the X-axis, and simultaneously at a second wave-
length Ay, for polarization along the Y-axis.

While this problem is mainly chosen for practical reasons — scattering and polarization are eas-
ily accessible values in the experiment — applications exist like holographic color-filters [105] or
color rendering and printing close to the diffraction limit. The latter has been demonstrated either
using plasmonics [15, 17, 362] or dielectric nanostructures [63]. Polarization dependent, dual-
color pixels have been recently reported using plasmonic nanoapertures [363]. The advantage of
plasmonic nanoantennas is the capability to provide widely tunable single mode responses using
simple geometries (pillars in ref. [15], bent stripes in ref. [17], cuboids in ref. [362] and crosses in
ref. [363]). Dielectric nanostructures on the contrary often support high order and degenerate
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modes, occurring in a narrow spectral range. Therefore an EMO scheme is of particular interest
for the design of multiresonant dielectric nanostructures.

4.4.1.2 Evolutionary Multi-Objective Optimization

In an optimization with a single objective, the initial population is evolved until eventually
the parameter-set that yields the best fitness is considered the optimum solution (see also sec-
tion 4.1.1 and Fig. 4.1c). In multi-objective problems however, the parameters describe not a
single objective alone, but yield several target values that are all in parallel subject of the op-
timization. In our case, the target values are the scattering efficiencies at Ax and Ay. During
the EMO evolution, this fitness-vector is therefore stored in an archive and remembered for
comparison during the optimization. Once the evolution finished, the final solution is not triv-
ially determined neither: A whole M-dimensional set of non-dominated solutions exists, with
M = (Nr. of objectives — 1). This final set of individuals is called the Pareto-front, which is the set
of solutions that cannot be further optimized in one of the objectives, without worsening at least
one other target value. There is no guarantee that the final solution converged to the absolute
optimum but, due to the complexity of many problems, EMO is often the best possible approach.
An illustration of EMO at the example of nano-scatterer optimization is shown in Figure 4.10.

4-4.1.3 EMO-GDM Interfacing

We use the python interface of the parallel evolutionary multi-objective optimization toolkit
paGMO/pyGMO [350] and in particular its implementation of the “SMS-EMOA” algorithm [364].
A comprehensive introduction to evolutionary multi-objective optimization can be found in ref-
erence [357].

For the electro-dynamical simulations, we use the Green Dyadic method, a volume integral
technique in the frequency domain, described in detail in Chap. 2. It is implemented in fortran
to yield high computational speed. All interfacing between the EMO and the electro-dynamical
full-field solver is implemented in python.

4.4.1.4 Structure Model

Since it has proven to be compatible with electron-lithographic fabrication on SOI, we will use the
same model as initially in this chapter for the maximization of SHG. For details, see Sec. 4.2.1.1.
Fabrication of the structures is done on SOI substrates by EBL, like explained in Sec. 4.2.1.2. SEM
images of individual structures are shown and are compared to the mask-layout in Figs. 4.12b,
4.15a and c as well as in 4.13b.

4.4.1.5 Measurements by Confocal Dark-Field Microscopy

Confocal optical dark-field microscopy was performed on a conventional spectrometer (Horiba
XploRA). A spectrally broad white lamp was focused on the sample by a x50, NA 0.45 dark-field
objective, backscattered, polarization filtered and dispersed by a 300 grooves per mm grating onto
an Andor iDus 401 CCD. The intensity distribution of the lamp as well as the spectral response
of the optical components was accounted for by subtracting the background measured on bare
SOI and normalizing the measured spectra to a white reference sample.
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Figure 4.11: (a) Spectra for cuboidal silicon blocks of height H = 100 nm and width / length combinations
corresponding to the minimal and maximal allowed dimensions. Simulations were performed
with different discretization step-sizes S = 20 nm (i-iii), S = 15 nm (iv-vi) and S = 10 nm (vii-
ix). (b) Spectra for X- (blue) and Y-polarization (red) of EMO with Ax = Ay = 450nm. (c)
Spectra for X- (blue) and Y-polarization (red) of EMO with Ax = 550 nm and Ay = 450 nm
with more available material to the algorithm. Insets: Sketch of structure (shown areas: 600 x
600 nm? in b and 700 x 700 nm? in c).

4.4.2 Results and Discussion
4.4.2.1 Proof of Principle: Ax = Ay = 630 nm

In a first step, we test the EMO-GDM technique on a simple problem. A single target wavelength
Amax. = 630 nm is selected, at which oy, is maximized simultaneously for X and Y polarization.
The structures of the final population and the corresponding Pareto-front after an evolution over
200 generations are shown in Fig. 4.12a and 4.12c. In figure 4.12a the geometries of the initial
population (top) are furthermore compared to those on the Pareto-front (bottom).

The geometries found by evolutionary optimization are also transformed into a lithographic
mask, which we use to produce the silicon nanostructures on a SOI substrate (see Methods).
Fig. 4.12b shows a comparison of the design with SEM images of the sample. Simulated
(Fig. 4.12e-f) and experimental spectra (Fig. 4.12g-h) are in very good agreement. The good agree-
ment is also demonstrated by a comparison of simulated (lines) and measured (crosses) scattering
efficiencies, shown in Fig. 4.12d.

The outermost individuals on the Pareto-front (particles (1) and (40)) correspond to equivalent
results of a single-objective optimization using one target wavelength and polarization. We ob-
serve in these cases, that all four sub-antennas are combined during the evolution to form a single
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Results of EMO-GDM for identical target wavelengths Ax = Ay = 630nm. (a) Structures
of the randomized initial population (top) compared to the optimized Pareto-set of solutions
(bottom). (b) Structures of the Pareto-front and corresponding SEM images. Blue, green, pur-
ple and orange dots are used to highlight the positions of the sub-blocks the structures consist
of. All fields in (a) and (b) are 600 x 600 nm? large. (c) Pareto-front (green) and randomized
initial population (red). (d) Comparison of scattering from simulation (lines) and experiment
(markers). (e-h) Scattering spectra for X (left) and Y polarization (right). Simulated and ex-
perimental spectra are shown in the top and bottom rows, respectively.
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Figure 4.13: (a) Pareto-front example of an optimization run with Ax = 550 nm and Ay = 450 nm. Top:
Spectra of selected antennas (indicated by numbers on Pareto front), where either a single
wavelength is optimized (1 and 3) or both resonance wavelengths are scattered approximately
equally (2). X (Y) polarized illumination is plotted with blue (red) color. The selected struc-
tures are sketched in the insets, showing areas of 600 x 600 nm?. (b) Polarization-filtered
dark-field images of micrometer scale EMO-based pictures. Micrometer scale pictures com-
posed of 24 x 24 (arrows) and 100 x 100 (logos) EMO-GDM designed particles. A linear
polarization filter is added before the camera, oriented along X (top, left) and along Y (top,
right). Arrow images are 15 x 15 pm?, logos 60 x 60 pm? large. Bottom image: Zoom into the
logo-picture. SEM image in grey (scalebar is 500 nm) and sketch of the lithographic mask in
red, highlighted by small yellow squares in the dark-field images. The yellow arrow and blue
emission indicate the incident and scattered light, respectively.

rod-like antenna along the target polarization direction. In agreement with literature, this yields
an optimum scattering efficiency with respect to the considered polarization direction (“1”: Y,
“40”: X) — at the expense of a very low scattering for the respective perpendicular polarization
[69]. To obtain comparably high scattering efficiencies for both polarizations (particle “20” and
neighbors), the evolution produces cross-like antennas.

We note, that the convergence and reproducibility of the EMO of silicon nano-scatterers have
been carefully checked by repeatedly running the same optimization with different randomized
initial populations, which always yielded similar results (test case was Ax = 1y = 630 nm). By
monitoring the Pareto-front during the evolution, we found convergence usually after less than
100 generations. In order assure convergence in all cases, the optimizations were run for as much
200 iterations.
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4.4.2.2 Doubly Resonant Nanostructures by EMO-GDM

In a next step we study the maximization of Qsca at two different wavelengths Ax = 550 nm
and Ay = 450 nm for mutually crossed polarizations. The randomly initialized population of 20
individuals at the beginning of the evolution (red), the Pareto-front (green) and selected struc-
ture designs as well as corresponding spectra are shown in figure 4.13a. The individuals at the
Pareto-front borders, labeled (1) and (3), correspond to single-objective optimizations for Ay and
Ax, respectively. Inspecting the three selected structures in more detail leads to the following
observations.

Obviously twin structures like (1) and (2) seem to be preferred, because they result in an in-
crease of the overall scattering efficiency. Indeed, structures (1) and (2) both consist of two dimer
antennas that, if taken individually, have about 30 %, respectively 10 %, lower Qgcat at the target
wavelength of 1y = 450 nm compared to the twin structure. Furthermore, the peak positions in
the scattering spectra are slightly shifted and match the target wavelengths only in the combined
antenna.

We point out that the rather symmetric relative positioning of the two dimers is crucial for an
optimum scattering efficiency. The configuration found by the evolutionary optimization is very
close to the ideal positions. A marginally stronger scattering can be obtained for both structures
(1) and (2), when the dimers are placed on the same horizontal axis but the possible gain is as low
as about 3 % and 1 %, respectively. Figs 4.14a for structure (1) and in Fig. 4.14b for structure (2).

At last, particle (3) in Fig. 4.13a consists only of a single dimer structure, which we attribute
to the constrained maximum antenna size in our model. The maximization of the scattering at
the longer target wavelength (1x = 550 nm) requires a larger amount of material compared to
shorter wavelength Ay. We carried out EMO simulations allowing the algorithm to use larger
constituents and found that the scattering efficiency can be further improved and indeed is lim-
ited by the constrained amount of silicon.

4.4.2.3 Polarization Encoded Micro Images

To illustrate the previous results we produced small images, only few micrometers large, com-
posed of EMO-optimized antennas. The absolute scattering cross section oy, was used as the
optimization target. An additional spacing of 250 nm is used between the individual particles,
which results in pixel sizes of 850 x 850 nm? (~ 30000 dpi), close to the diffraction limit.

Polarization-filtered dark field images are shown in figure 4.13b. Depending on the orientation
of the polarization filter (left: X, right: Y), one single arrow is visible, pointing in the correspond-
ing direction while the second arrow vanishes in a blue background. Furthermore, the logos of
the CNRS and CEMES laboratory are nested into one image, encoded in perpendicular polariza-
tions. A scheme of the lithographic mask (red) and a SEM image (grey) of a zoom into the logos,
indicated by small yellow squares, is shown at the bottom. We attribute the slightly reminiscent
signatures of the hidden motifs to intensity-variations due to the arrangement of the antennas
in grating-like 2D-arrays.

4-4.2.4 Tuning the Resonances of Silicon Nanoantennas

For a further illustration of the EMO-GDM technique, we perform several multi-objective op-
timizations for different combinations of target wavelengths. The wavelength Ax = 550 nm is
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shifted in X- and Y-direction. Zero-shift coresponds to the positioning as found by EMO.
The scattering efficiency of the shifted structure is shown on the right sides for the target
wavelengths. The maximum is indicated by a red cross. (a) Single objective optimization at
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Ay = 450nm (“1” in Fig. 4.13a). (b) Optimization at Ax = 550 nm and Ay = 450 nm (“2” in
Fig. 4.13a). (c) Optimization at Ax = Ay = 550 nm (see Fig. 4.15).

fixed, while the other (1y) is varied from 450 nm to 650 nm in steps of 10 nm. Each simulation
consists of an initial population of 20 random individuals, which is evolved for 200 generations.
At the end of the evolution, the structure with the most similar Qgc,t(Ax) and Qgcat(Ay) is chosen
from each simulation (like structure (2) in Fig. 4.13a).

In Figure 4.15, we show the resulting structures (a) and their GDM-simulated spectra for
X- and Y-polarized incidence (b). The different Ay are indicated by a color coding from blue
(Ay = 450nm) to red (Ay = 650nm). As explained in the previous subsection, for increasing
wavelengths, the four sub-antennas tend to combine in only two structures (instead of more
constituents for the shortest wavelengths), which is due to the limited amount of allowed mate-
rial. For the same reason, at wavelengths above 600 nm all sub-antennas are even merged into
one single structure, and for the longest wavelengths the available material is not sufficient to
yield a satisfactory maximization. Indeed, if more material is allowed for the algorithm to be
used, a distinct peak in the scattering spectra can be obtained also for larger wavelengths, as
shown in Fig. 4.11c for an optimization using Ax = 550 nm and Ay = 550 nm.

For an experimental verification, we fabricated Si-structures corresponding to the optimized
color-tuned nanoantennas. SEM images (Fig. 4.15¢) and polarization filtered dark-field spectra
(Fig. 4.15d, top: filter along X, bottom: along Y) are shown in figure 4.15. Polarization filtered
dark-field images (Fig. 4.10d and insets in Fig. 4.15d) of color-switching pictograms, composed of
the optimized structures, demonstrate the polarization dependence of the scattered wavelengths.

By a closer look on the individual structures, we observe that the “symmetric” optimization
with Ax = Ay = 550 nm results in a non-symmetric particle. We would intuitively expect a point-
symmetric antenna (i.e. of Sp symmetry group) to be ideally suited for equally strong scattering
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Figure 4.15: Experimental demonstration of several dual-resonant Si structures based on EMO-GDM sim-
ulations. (a) EMO design of multi-resonant dielectric particles and (b) simulated scattering
spectra for Ax = 550 nm (indicated by a black dashed line) and various Ay. (c) SEM images
and (d) polarization filtered scattering spectra of the corresponding nanofabricated sample.
Insets in (d) show polarization filtered dark-field microscopy images of the full set of struc-
tures (4 x 20 um?) Areas in (a) and (c) are 600 x 600 nm?.

under both, X- and Y-polarization. The evolutionary optimization, being a non-analytic routine,
should at least result in some “quasi”-symmetric structures, which is however not the case here.
As before, this can be explained by the finite amount of material available in our structure model.
Because the T-shaped part of the antenna already consists of three of the four sub-antennas,
the fourth sub-antenna is added as a square block of maximum allowed dimension, and it is
impossible for the algorithm to generate a symmetric structure within the given constraints.
A simulation with Ax = Ay = 450 nm results in quasi-symmetric structures, like intuitively
expected (see Fig. 4.11¢).

Again, for Ax = Ay = 550 nm, interference between both parts of the antenna results in an
optimum scattering efficiency at the target wavelength and therefore exact positioning of the
constituents is crucial: We find from a look at the scattering efficiency as function of the X /Y-
shift of the T-shaped sub-antenna (shown in Fig. 4.14c), that the relative positioning is indeed the
ideal solution, as a displacement in any direction results in a decrease of either Qgcat x 0F Qscat, v-
A change of the spacing between the T-shaped and squared sub-structures by Ax = 100 nm for
example, already results in a decrease of more than 5 % in scattering efficiency for at least one
polarization.

106



4.4.3 Conclusions

In summary, we emphasize that despite the simplicity of the designs generated by the EMO,
all the parameters (sizes, positions, distances) were nearly perfectly optimized by the evolution-
ary algorithm. The EMO-GDM technique is able to find ideal nanostructures even within narrow
constraints on parameters like the size, the available amount of material or discrete step-sizes for
compatibility with nanofabrication technology. We applied the method on silicon nanostructures
which are are of great interest as alternatives to plasmonic particles. Due to their multi-modal
optical behavior it is often difficult to find appropriate geometries. For this problem, we success-
fully applied an evolutionary optimization scheme and finally verified the results experimentally
with very good agreement to the predictions.

4.5 Conclusions

In conclusion, evolutionary (multi-objective) optimization coupled to full-field electro-dynamical
simulations is very promising for the automatic design of many different kinds of photonic
nanostructures. We successfully applied the method for the optimization of SHG from sil-
icon nanoparticles, on a plasmonic antenna for directional scattering and for the design of
polarization-dependent dual-resonant silicon nano-pixels. We demonstrated that an evolution-
ary optimization approach is able to realize complex photonic characteristics like dual-resonant
behavior even within a very simple and strongly constrained structure-model. For a maximum
compatibility with fabrication methods, technological limitations were included as boundary
conditions in the model. Due to these technological considerations, we were able to produce sam-
ples on SOI substrate using the outcome of the optimizations for a lithographic mask. With SHG
measurements and polarization filtered dark-field microscopy we finally confirmed the agree-
ment between samples and simulations.

A great advantage of EO/EMO coupled to GDM is its flexibility and the ability to self-adapt
to arbitrary limitations. Additional constraints can easily be implemented because no analytical
treatment of the input model needs to be performed. Inadequate structures, inconsistent with the
constraint functions, are being discarded automatically during the evolution and only technolog-
ically convenient designs are generated. The method can also be easily extended for the rigorous
design of metasurfaces, where interference between the unit cells needs to be considered. Peri-
odic boundary conditions can be included in the GDM by means of an appropriate Green’s Dyad
(see section 2.3.2.2). In this way, the distance between substructures on the metasurface may also
be included as a free parameter in the optimization. Evolutionary (multi-objective) optimization
of photonic nanostructures has a tremendous potential for many kinds of possible applications
both, in near- and far-field nano-optics for example in the design of multiresonant or broadband
particles for light harvesting, or of nonlinear nanostructures.
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Chapter 5

Conclusion

imaginary part in the dielectric function. High index dielectric materials have recently

attracted attention as possible low-loss alternatives. The advantages and complemen-
tary characteristics of the two material platforms were subject of a detailed review in chapter 1
and motivated further investigations on silicon-based nanostructures, particularly with regard
to non-linear optical phenomena.

In chapter 2, a brief introduction to classical electrodynamics was given before particular focus
was set on the numerical description of light-matter interaction at a sub-wavelength scale. The
Green Dyadic Method was presented as versatile numerical framework, applicable to both, plas-
monic and high-index dielectric nanoobjects. Furthermore, after an introduction to nonlinear
optics and in particular to surface second harmonic generation, an expansion of the GDM for the
self-consistent description of nonlinear effects was described and applied to selected examples.

In the following, the optical response of high-index dielectric nanostructures in the visible and
near-infrared spectral range was studied at the example of silicon nanowires in chapter 3. At first,
the linear optical properties were summarized and the appearance of resonant optical modes was
explained. In this context, we compared Mie Theory to GDM simulations in order to justify the
further excessive use of GDM simulations for the interpretation of the measurement results. We
studied in particular the influence of the geometrical section of silicon nanowires on their modal
response and found that circular, hexagonal and squared cross sections provide a very similar
resonant behavior for lower-order modes (up to orders of about 3 or 4), before more severe
deviations occur at higher order resonances. Subsequently, the nonlinear optical response of
SiNWs in the spectral region of visible wavelengths was studied in great detail. We found a multi-
photon induced photoluminescence as well as second harmonic generation, which we showed
is dependent on the existence of resonant modes and can be enhanced by more than two orders

of magnitude, compared to SHG from a bulk silicon surface. In agreement with literature, we
(2

PLASMONIC PARTICLES, made of noble metals, suffer from dissipative losses due to a large

deduced from experimental observations, that || | leads to the strongest contribution to SHG -
similar to other centrosymmetric materials like gold. However, dependent on the nanowire size
and the incident polarization, SHG in SiNWs was found to contain several different contributions
and is either due to surface SHG or as a consequence of strong field gradients in the bulk-core
of the nanowires. In conclusion, due to their geometry nanowires offer an interesting platform
for the distinction of different contributions to surface SHG. This is of particular interest since
on planar surfaces, the bulk contribution is difficult to isolate from the surface terms, which can
be achieved more easily using nanowires.

In the last chapter (Chap. 4), we pursue an alternative approach for the tailoring of optical

properties in plasmonic and dielectric nanostructures. Commonly, a reference system is studied
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e.g. by small variations of its design, in order to tailor the optical properties. This, however,
is an inherently limited approach since the optical properties are more or less imposed by the
initial choice of the particle geometry. In order to overcome these limitations, we employ evolu-
tionary optimization algorithms, coupled to the GDM, on a generic structure model. We showed
on different examples the remarkable potentials of such methods. By including technological
constraints, we finally succeeded to actually fabricate the structures, designed by evolutionary
optimization and verify the outcomes of the algorithm.

Evolutionary optimization clearly has tremendous potentials for direct applications, since any
possible kind of constraint like technological limitations can be included in optimizations of
many different possible problems. However, evolutionary strategies might also be exploited to
design particular platforms for more fundamental investigations. For example the maximization
of SHG originating from individual y® elements might be helpful in the quantification of the
components of nonlinear susceptibility tensors. Another possible application could be the evo-
lutionary design of efficient magnetic field enhancement with a concurrently suppressed electric
field amplitude in nanometer small cavities. Such system would be an interesting platform for
research on magnetic-field driven phenomena. In conclusion, countless possible applications of
EO exist which are limited only by the capacities of the numerical method for the description of
the optimization target.



Chapter 6
French Summary / Résumé Francais

Par la suite un résumé de la thése sera donné, chapitre par chapitre, en langue francaise.

Propriétés Optiques Linéaires et Non-Linéaires de
Nanostructures Diélectriques a Haut Indice de Réfraction

6.1 Introduction et Motivation

Seulement des éléments de la bibliographie du chapitre 1 seront ici donnés. Pour une liste ex-
haustive des références, le lecteur est renvoyé au chapitre entier en langue anglaise.

La nano-optique est un domaine de recherche qui attire de plus en plus lattention des
chercheurs du monde entier. En général, la nano-optique traite les effets qui se produisent a
Pinteraction de la lumiére avec la matiére a des dimensions inférieures a la longueur d’onde.
Ainsi - pour la lumiére du visible et du proche infrarouge — nous nous trouvons a ’échelle du
nanomeétre. Dans ce chapitre, un apercu des systémes de différents matériaux sera donné et
le progres de la recherche actuelle sur les nano-structures photoniques et de leurs applications
sera résumé. Une comparaison entre les structures plasmoniques et celles aux diélectriques a
haut indice de réfraction motivera des investigations plus approfondies sur ce dernier systéme
de matériel. Enfin, nous allons donner un bref apercu des effets non-linéaires et de leurs appli-
cations dans la nano-optique.

6.1.1 Diélectriques a Haut Indice vs. Plasmonique
6.1.1.1 Plasmonique

La principale force motrice en nano-optique est probablement le domaine de la “plasmonique” 2,
3]. L’interaction des ondes électromagnétiques avec des métaux peut lancer des oscillations col-
lectives des électrons libres. La constante diélectrique des métaux est négatif et par conséquence
les vecteurs d’onde a leur intérieur sont imaginaires. Les champs sont donc évanescents et con-
finés dans une petite région a la surface, ce qui s’appelle “I'effet de peau” [4]. En conséquence, les
oscillations du collectif des électrons se propagent le long de la surface, ce qui s’appelle polariton-
plasmons de surface (Anglais: Surface plasmon polaritons, “SPP”) [5-8]. En outre, dans de pe-
tites particules de métal, la propagation des SPP est entravée a cause du confinement spatial
et des modes localisés apparaissent, nommés en Anglais “localized surface plasmon (LSP) reso-
nances”. Ces LSPs permettent de serrer la lumiére en volumes de taille nettement plus petite que
la longueur d’onde, et loin en dessous de la limite de diffraction. En plus des fortes exaltations
du champ locale apparaissent [9]. Dans le domaine spectral visible les tailles caractéristiques



se trouvent entre plusieurs 10 nm et quelques 100 nm. Gréace a leur forte réponse aux champs
électromagnétiques du visible, les particules plasmoniques sont souvent appelées “antennes op-
tiques” qui, par des variations de géométrie, peuvent étre taillées sur mesure pour répondre aux
besoins variés (Anglais: “tailoring” of optical properties) [10—-13]. Pour une introduction appro-
fondie sur la plasmonique, nous renvoyons le lecteur a la référence [2].

6.1.1.2 Nanostructures de Diélectriques a Haut Indice

Toutefois, 'attention de ce travail sera principalement fixée sur un autre type de nanostructures:
Des particules composées de diélectriques a haut indice de réfraction. En regle générale, ces
derniéres comprennent des matériaux semi-conducteurs tels que le germanium ou le silicium
(indice de réfraction du Si dans le visible: n = 3.5 — 4). En conséquence, la différence décisive en
comparaison avec la plasmonique est 'absence de charges libres. Il en résulte une partie réelle
de la fonction diélectrique qui - contrairement aux métaux — est positive ce qui signifie que la
lumiere peut se propager efficacement a I'intérieur du matériau. Irradié par des champs élec-
tromagnétiques, le matériau est polarisé a cause d’'un déplacement des électrons liés par rapport
a leurs atomes. Cette polarisation électrique est proportionnelle au contraste diélectrique avec
Ienvironnement (voir aussi annexe 6.4.4).

Par ailleurs, dans des structures avec des dimensions inférieures ou comparable a la longueur
d’onde de la lumiére incidente, des fortes résonances optiques apparaissent [63, 64], comparable
aux résonances plasmons, décrites précédemment. Figure 6.1a démontre une image de micro-
scopie en champ sombre des nanofils de silicium de différente largeur. Le changement de couleur
est due aux résonances optiques qui varient spectralement en fonction de la taille du nano-objet.

6.1.1.3 Comparaison des Plates-Formes

Comparons maintenant les différences entre les nano-particules plasmoniques et diélectriques
afin d’exposer les points forts et les désavantages des deux systémes de matériels.

Exaltation du champ électrique La spectroscopie a champ exalté est I'une des applications
principales des particules plasmoniques. Afin de stimuler les signaux faibles de quelques ou
méme d’une unique molécule(s), une exaltation élevée de champ électrique est indispensable.
Pour I'essentiel, 'exaltation du champ électrique au voisinage de particules de haut indice de
réfraction est proportionnelle au contraste diélectrique entre la particule (¢,,1) et son environ-
nement (¢, o). Ceci est le résultat des conditions de continuité & des interfaces diélectriques (voir
annexe A.1)

Ejo=Ej1 €r,0Ei0=¢€1EL1. (6.1)

La composante normale (indice L) du champ électrique a la proximité de la particule est exaltée
par le rapport des permittivités® et éventuellement encore amplifiée si des modes de résonance
existent. Une exaltation de I'intensité de champ dans 'ordre de ~ 100 est possible [66, 76, 98].
Ceci est néanmoins nettement inférieur au cas de la plasmonique, ou trois ordres de grandeur
peuvent facilement étre atteints pour I'exaltation des intensités de champ [75]. En fin de compte,
alors que dans la plasmonique 'exaltation des champs est généralement beaucoup plus forte, les
particules diélectriques offrent de plus grands volumes d’extension du champ [98]. En ce qui

! la composante tangentielle (indice ||) par contre est constante.
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(a) Image en Champs Sombre des Nanofils de Silicium

(b) Résonances Magnétiques: Au vs. Si (c) Dissipation de Chaleur: Au vs. GaP

Figure 6.1: (a): Image en champs sombre des nanofils de silicium d’une longueur de 5um, gravés dans
SOL. Les largeurs augmentent de 30 nm a gauche jusqu’a 400 nm a droite. (b) illustration de
la génération des champs magnétiques dans des anneaus brisés plasmoniques (gauche) et des
nanospheéres diélectriques (droite), reproduction de Kuznetsov et al. [72]. Copyright (2012) CC
BY. (c) comparaison de la dissipation de chaleur dans des diméres d’Or (gauche) et de phosphure
de gallium (droit). Adapté avec permission de Albella et al. [75]. Copyright (2014) American
Chemical Society.

concerne les antennes plasmoniques, 'extension de I'exaltation du champ la plus intense est de
Pordre de # 1 nm. Quant aux nano-particules diélectriques, il est possible d’atteindre ~ 10 nm.

Exaltation du champ magnétique En outre, une différence notable est 'occurrence des
fortes résonances magnétiques dans des nano-particules diélectriques, ce qui est difficile a obtenir
avec des antennes plasmoniques [72, 137-140]. Des résonances dipolaires magnétiques dans des
dimeéres diélectriques peuvent exalter I'intensité du champ magnétique dans le visible par un
facteur ~ 100 [76]. En résultat, 'amplitude du champ magnétique peut devenir comparable
ou méme dépasser le champ électrique. Des interférences entres des résonances électriques et
magnétiques peuvent ainsi provoquer des phénomeénes surprenants comme une diffusion de la
lumiére fortement anisotrope [91, 145-147].

En plasmonique, des performances comparables sont possibles uniquement avec des compo-
sitions de particules complexes et asymétriques [141] ou alors dans 'infrarouge, en utilisant des
résonateurs de forme d’anneaux brisés [142] (voir aussi la figure 6.1b). Toutefois, des structures
plasmoniques souffrent généralement de fortes pertes quant a 'exaltation du champ magnétique
dans le visible [72].

Pertes Un désavantage majeur des nano-structures plasmoniques, ce sont les pertes impor-
tantes liées a la partie réelle négative et a la partie imaginaire large de la permittivité diélectrique
des métaux. Ces pertes sont responsables de dissipation importante. Il en résulte une forte pro-
duction de chaleur qui peut étre mortelle par exemple pour des biomolécules fragiles en spectro-
scopie a champ exalté. Bien que les diélectriques a haut indice donnent des exaltations de champ
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Figure 6.2: Illustrations de (a) génération de seconde harmonique (SHG), (b) photoluminescence induit
par deux photons (TPL), (c) génération de troisiéme harmonique (THG) et (d) possibilité
d’interaction dans un mélange a quatre ondes (FWM).

inférieures, les pertes associées sont méme de plusieurs ordres de grandeur plus faibles. Pour le
cas de structures plasmoniques et diélectriques qui possedent d’une exaltation du champ compa-
rable, la différence de la hausse de température entre les particules plasmoniques et diélectriques
peut atteindre plusieurs 100 °C [75, 99] (voir la figure 6.1¢).

Les tres faibles pertes sont un avantage-clé des matériaux diélectriques quant a des appli-
cations comme la spectroscopie a champ exalté. Cependant, la dissipation dans les antennes
plasmoniques peut étre utilisé de maniére constructive pour la production de chaleur localisée
a une échelle nanométrique [134]. D’autre part, ce chauffage local n’est pas possible avec des
nanostructures diélectriques.

6.1.2 Effets Non-Linéaires

Toutes les propriétés et les applications des nano-particules photoniques décrites précédemment
sont basées sur une réponse optique linéaire. Par contre, si 'amplitude d’un champ électromag-
nétique excitant est assez élevée, des effets optiques non-linéaires se produisent, qui peuvent offrir
une large gamme de fonctionnalités uniques au-dela de I'optique linéaire. L’effet optique non-
linéaire le plus populaire probablement est la génération d’harmoniques [164]. Parmi cela, les ex-
emples les plus marquants sont la génération de seconde harmonique (Anglais: Second harmonic
generation, “SHG”, illustré sur la figure 6.2a) et la génération de troisiéme harmonique (Anglais:
Third harmonic generation, “THG”, figure 6.2¢): Deux (ou trois) photons d’une longueur d’onde
fondamentale (1g) sont convertis de maniére cohérente’ a un seul photon avec Agyg = Ao/2 (ou
AtnG = 40/3).

Outre la génération d’harmoniques, une multitude d’autres phénomeénes non-linéaires existe,
parmi eux le mélange a quatre ondes (Anglais: Four-wave mixing, “FWM?”, figure 6.2d), utilisé par
exemple dans les oscillateurs et amplificateurs paramétriques optiques [165, 166], ou la photolu-
minescence induite par deux photons (Anglais: Two photon induced photo-luminescence, “TPL”,
voir figure 6.2b). Ce dernier est une conversion incohérente de deux photons incidents a un pho-
ton de longueur d’onde plus courte (avec Ay > Arpr > Ag/2), impliquant des états intermédiaires
réels avec des durées de vie limitées [167, 168].

! le processus se produit instantanément, il n’y a pas d’états intermédiaires
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Le lien entre I'optique non-linéaire et les nano-structures est la nécessité de fortes ampli-
tudes des champs pour provoquer des effets non-linéaires et la possibilité d’exalter fortement les
champs électriques par des nano-particules photoniques. Par conséquent, les nano-structures
photoniques semblent étre des candidats idéaux pour évoquer des effets non-linéaires. Ceci est
la raison pour l'intérét croissant de la communauté nano-optique dans les effets non-linéaires a
I’échelle sub longueur d’onde.

6.1.2.1 Effets Non-Linéaires dans des Nano-Structures Diélectriques

En conséquence des trés faibles pertes et d’autres avantages comme la compatibilité avec CMOS
(pour le cas du silicium), des structures diélectriques a haut indice sont des alternatives promet-
teuses au structures plasmoniques (voir revue sur plasmonique non-linéaire [186]), qui néan-
moins souffrent particuliérement par des pertes importantes aux courtes longueurs d’ondes, im-
pliquées par les effets non-linéaires [188]. Par conséquence, depuis peu de temps des nano-
structures photoniques — et en particulier sur la plate-forme de silicium - attirent I'intérét de la
recherche en nano-optique sur les effets non-linéaires. Un des buts est de mettre en ceuvre un
traitement de signaux tout-optique, compatible avec des dispositifs micro-électroniques [189].
Des effets non-linéaires de troisiéme ordre sont trés prometteurs dans ce contexte, comme le
silicium posséde d’un y® élevé. Bien que les exaltations du champ sont généralement plus
faibles par rapport a la plasmonique, le grand y® et les pertes réduites permettent de renforcer
la génération de troisiéme harmonique dans les nano-structures de silicium. Par rapport a un
cristal massif de Si, la THG pouvait étre exalté par des facteurs allant jusqu’a 10° en utilisant
des cristaux photoniques [190] ou des nano-antennes diélectriques [191-194]. La lumiére har-
monique produite, peut méme étre assez intense pour étre visible a I'ceil humain nu [195].

En conclusion, I’étude des effets non-linéaires dans les structures diélectriques est trés promet-
teuse afin de trouver des alternatives pour des antennes plasmoniques en ce qui concerne les
effets optiques non-linéaires.
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6.2 Simulations Numériques de Phénomenes Nano-Optiques

Les ondes électromagnétiques dans une gamme de longueur d’onde de 'ultraviolet 4 I'infrarouge
lointain (d’environ 10 nm a plusieurs 10 um) sont généralement appelées lumieére, y compris la
lumiére visible d’environ 400 nm a 700 nm. Dans le chapitre 2, des effets ainsi que leur modélisa-
tion sont discutés qui se produisent a I'interaction de la lumiére avec des particules plus petites
que la longueur d’onde.

6.2.1 Description de la Réponse Linéaire

Eo, Bo

€0, Ho

er(w), pr(w)
P(r,w), M(r, w)

(a) Objet dans le Vide (b) Discrétisation de Volume

Figure 6.3: (a) Structure aléatoire dans le vide, caractérisée par €, et .. Sa réponse a un champ élec-
tromagnétique incident Ey, By peut étre décrite par sa polarisation P et sa magnétisation M.
(b) Mlustration de discrétisation du volume en maillage cubique d’une structure aléatoire.

6.2.1.1 Définition du Probleme

En régle générale, 'objectif en nano-optique est de trouver le champ électrique (et / ou magné-
tique) dans une nano-structure donnée sous excitation externe, comme illustré dans la figure 6.3a.
La nano-structure est normalement placée dans un milieu homogeéne et se trouve souvent au-
dessus d’un substrat. La réponse d’une nanoparticule a un éclairement est obtenue en résolvant
les équations de Maxwell (voir équations (6.2)) pour le systéme donné. Dans la premiére par-
tie de ce chapitre, nous présentons une approche pour la résolution numérique des équations de
Maxwell par intégrales de volume. Elle est basée sur des fonctions dyadiques de Green, pour cette
raison appelée “méthode dyadique de Green” (Anglais: Green Dyadic Method, “GDM”). Dans la
deuxieéme partie, nous donnerons une introduction a 'optique non-linéaire et nous présenterons
une extension du modéle numérique pour la description de la génération de seconde harmonique.
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6.2.1.2 Méthode Dyadique de Green

A partir des équations de Maxwell transformées en espace Fourier

divD(r, 0) = p(r, w) (6.2a)
rotE(r, w) = iwB(r, w) (6.2b)
divB(r,w) =0 (6.2¢)
rotH(r, w) = —iwD(r, w) + j(r, w) (6.2d)

il est possible d’en déduire une équation d’onde pour le champ électrique

(A+k*)E=-— (k> + VV) P (6.3)

€0Er

qui finalement conduit a une équation “Lippmann-Schwinger” optique

E(r,w) = Eo(r, 0) + f Go(r,r’, 0) - YE(r', w)dr’. (6.4)

Cela relie le champ électrique incident (Eg) et la réponse de la structure (E) de maniére auto-
cohérente et peut étre résolue par la méthode des fonctions de Green (voir par exemple [244,
chapitre 6.4]). Pour décrire des champs en espace 3D, des tenseurs de Green équivalents aux
vecteurs sont définis, appelés fonctions dyadiques de Green (G dans éq. (6.4)).

Pour une résolution numérique du probléme, la nanoparticule cible est discrétisée sur un mail-
lage cubique en N points de volume d. Pour chacun d’eux une réponse dipolaire est supposée.
Cette approche conduit finalement a un systéme de 3N équations couplées qui relie le champ
électrique incident Eg au champ dans la particule E en réponse a I'excitation:

Eo=M-E. (6.5)

Le champ dans la structure peut alors étre obtenu par une inversion de la matrice M qui est
composée de sous-matrices de rang 3 X 3

M;; = 651 = xi(w)Vi G(ri, ), ). (6.6)

Ici, I est le tenseur unitaire cartésien, ;; le symbole de Kronecker et y la susceptibilité électrique
relative a I’environnement. V; est le volume de chaque cellule, donc dans notre cas V; = ds.

Un grand avantage de la GDM est que la présence d’un substrat peut étre prise en compte par
une fonction dyadique de Green appropriée, et donc a presque aucun cott de calcul supplémen-
taire. Go dans I’équation (6.4) est simplement remplacé par une dyade G plus générale, qui est
composée d’un terme de vide et d’'un terme de surface

G(ri’rj7 a)) = Go(rierjaw) + Gsurf(ri,rje a)) (67)

Pour une expression analytique, voir par exemple [250]. Pour tenir compte de la divergence de
la fonction de Green a r; = r;, un systéme de normalisation

Go(ri, 1, w) =1C(w) (6.8)
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est introduit. Pour un maillage cubique cela donne

Clw) = !

- 3€env.(0)V; (69)

ce qui doit étre adapté en méme temps que le volume de la cellule, si un maillage différent est
utilisé, comme par exemple un maillage hexagonal compact [250]. Enfin, 'inversion de la matrice
est fait par des techniques standards comme la décomposition LU [266, chapitre 2.3].

6.2.1.3 Traitement des Résultats

A partir du champ E a I'intérieur de la particule, une multitude de valeurs physiques peut étre cal-
culée. Par exemple les rendements de diffusion et absorption [280], le champ électrique (a travers
équation (6.4)) ou magnétique [279] a Pextérieur de la particule, le diagramme de rayonnement
de la diffusion [281] ou les dissipations de chaleur [134].

6.2.2 Optique Non-Linéaire

Tant que les champs considérés sont faibles par rapport au potentiel du réseau cristallin des
médias, les phénomeénes optiques peuvent étre expliqués par une réponse linéaire. Dans le
régime linéaire, la force de rappel agissant sur les électrons qui oscillent autour de leurs noy-
aux (loscillation est a la fréquence w d’éclairage, voir la figure 6.4a) est une fonction linéaire
du déplacement des charges relatives a leur noyau. Le noyau, ayant une masse importante par
rapport aux électrons, est considéré statique. Cela peut étre décrit par un potentiel harmonique.

Toutefois, en réalité le potentiel n’est pas harmonique et I’approximation linéaire échoue dés
que les taux de photons sont vivement élevés. Par conséquent, si un médium est excité par un
champ électromagnétique de trés forte amplitude, les oscillations d’électrons deviennent sensi-
bles a la non-linéarité du potentiel et des nouveaux phénomeénes se produisent. Dans le cadre
d’une approche perturbative, ce genre d’effets non-linéaires peut étre décrit par une expansion
de type “Taylor” de la polarisation électrique:

Piot = eo)((l) E + 60)((2) E®> + eo)((?’) E> + ... (6.10)
[ — [ — ——————
Linear, =P(1) 2. Order, =P(2) 3. Order, =P®)

ot les susceptibilités y™ sont des tenseurs du rang n + 1 (n est 'ordre de la non-linéarité).

6.2.2.1 Génération de Seconde Harmonique de Surface

Pour des raisons de symétrie, les termes d’ordre pair dans 1’équation (6.10) disparaissent dans
des potentiels symétriques. La figure 6.4b démontre les spectres en domaine fréquentiel d’une
oscillation dans des potentiels anharmoniques. Nous constatons que 1'oscillation dans un poten-
tiel symétrique ne contient que des fréquences harmoniques d’ordre impair. En conséquence,
des effets non-linéaires d’ordre pair sont interdits dans des cristaux centrosymétriques. Seuls les
effets d’ordre impair se produisent, comme par exemple la génération de troisiéme harmonique
(THG, voir figure 6.2c). Des effets non-linéaires d’ordre pair (comme la SHG, voir figure 6.2a)
nécessitent un potentiel d’énergie asymétrique et par conséquent ne se produisent que dans des
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Figure 6.4: (a) Schéma de l'oscillation des électrons autour de leur noyau, pilotée par un champ électro-
magnétique externe. (b) Spectre de Fourier correspondant a une oscillation piloté dans un
potentiel anharmonique symétrique (haut) et asymétrique (bas) en comparaison avec une os-
cillation dans un potentiel harmonique (ligne bleu pointillée).

réseaux cristallins non symétriques. Cela se trouve par exemple dans des semiconducteurs III-V
(GaAs, GaP, InP, ...) ou dans d’autres matériaux composés, tels que LiNbOs.

Cependant, il est possible d’obtenir de la SHG depuis des cristaux centrosymétriques (comme le
silicium) a partir des ruptures locales de la symétrie du réseau. Ceci peut étre réalisé par exemple
au niveau des surfaces, ou en raison de forts gradients de champ. La polarisation électrique de
deuxiéme ordre de surface se compose de trois éléments indépendants [169]:

@ _p® 2 )
Psf _P_LJ_J_+PJ_”|| +P||||J_ (6.11)
qui sont
2 2 —~
PE_J)_L = XiJ)_J_[E?_]eJ- (6.12a)
@ _ © p21s
Pl = xlyEiles (6.12b)
@ _ 2 -
P||||J_ - X||||J_[E||El]e||' (6.12¢)

Les indices || et L désignent les directions paralléles et perpendiculaires a I’élément de surface
locale avec des vecteurs unitaires €| et'e; .

Le premier ordre non-nul des contributions par gradients de champ (appelées “contributions
du volume”), comprend quatre termes sources [290, 303]:

2 _p® (2 (2) (2)
Psf,bulk =Py +P/3 +Pg +P§ (6.13)
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ou

P§,2) =y V[E?] (6.14a)
Py = BE[V-E] (6.14b)
PP =5 [E-V]E (6.14¢)
P?) = { E;V;E;. (6.14d)

Y, B, 8 et { sont des coefficients phénoménologiques qui peuvent étre exprimés en termes
d’éléments de y® [169, section 2.5].

6.2.2.2 SHG avec la GDM

SHG de Surface Pour la description de la SHG de surface, dans un premier pas les vecteurs
unitaires paralléles et normaux a la surface sont calculés numériquement a chaque élément de
surface. Avec ceci, les composantes correspondantes du champ s’écrivent

E, =E-e

SoB o (6.15)
E|| =E. €.

et qui, d’aprés équations (6.12), permettent de calculer directement la polarisation de surface de

second ordre.

Or, l'influence de la présence de la nanoparticule a la fréquence harmonique doit étre prise
en compte: Nous devons calculer le champ auto-cohérent induit dans la nanostructure par la
polarisation non-linéaire. Dans une premiere étape, nous considérons les polarisations non-
linéaires P (r, 20) comme la source d’'un “champ incident effectif” a la fréquence harmonique.

A Pexemple de Xfl , cela donne

E®

0,111

(r,20) = 1 f Go(r,r’, 2@)P(fiL(r, 20)dr’ (6.16)
€0 v
avec le tenseur de Green Gy a la fréquence harmonique.
Nous supposons qu’il n’y a pas de champ incident externe E¢(2w) a la longueur d’onde har-
monique et donc que EE)Q)L |, estle seul champ a 2. Dans une deuxiéme étape, nous propageons
le “champ incident effectif” a I'intérieur de la particule — a la fréquence harmonique - comme

décrit ci-dessus
Egiﬁll (r,20) = f M (1, 25L))E§flLL (r', 20)dr’. (6.17)
v

M~! est I'inverse de la matrice définie par équation (6.6). L’indice “sc” signifie qu’il s’agit du
champ auto-cohérent (Anglais: “self-consistent”). Enfin, nous obtenons la polarisation non-
linéaire auto-cohérente par une multiplication avec la susceptibilité électrique linéaire, a la
fréquence harmonique

p®

sc, Ll

(r,20) = y(20) - E?

sc, L1l

(r,2w) (6.18)
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(a) Structure (b) Discrétisation (c) Champ Incident

(d) Champ a l'Intérieur (e) Vecteurs L de Surface (f) Polarisation nonlin. P(®

(2) ng) Auto-Cohérent (h) Propa. Champ Lointain (i) Polar. Champ Lointain

Figure 6.5: Illustration de la procédure de simulation de SHG par GDM a I’exemple d’un dimere de silicium
de dimensions 2 x 250 x 100 x 100nm? (2 X L x W x H) séparé par un gap de G = 75nm.
La particule (a) est discrétisée (b) et le champ induit par un faisceau incident est calculé par
GDM (c-d). Depuis cette réponse linéaire, la polarisation non-linéaire de surface (P(fl , dans
cet exemple) est calculée. Cela est fait par la sélection des point de maillage sur la surface dans
un premier pas et puis par la détermination des vecteurs localement normaux a la surface (e).
Avec ces vecteurs, la polarisation non-linéaire peut-étre calculée depuis le champ fondamental
au méme endroit pour chaque point de surface (f). Cette polarisation non-linéaire est ensuite
re-propagée de facon auto-cohérente en utilisant la susceptibilité du champ a la fréquence har-
monique (g). Enfin, la polarisation non-linéaire de second ordre peut étre propagée vers le
champ lointain (h) afin de calculer par exemple des plots polaires de la SHG (i) capturée par
une certaine aperture numérique (I’angle solide en vert dans (h) correspond a une NA 0.8).
L’inset dans (i) est un schéma illustrant 'orientation du dimére de silicium par rapport au plot
polaire.

121



Une illustration du calcul de SHG par GDM est donnée, étape par étape, dans la figure 6.5 a
2

111

I'exemple de P

Contributions du Volume Pour étre applicable dans la maniére la plus générale possible,
les contributions du volume a la SHG de surface sont calculées numériquement en utilisant des
dérivés par différences finies. Nous utilisons notamment le différentiel central [266, chapter 5.7]:

0f(x) . flxra=flx=e) _flc+A)=flx=Ax)
Ox -0 2¢ - 2Ax

Dans le cas de la GDM Ax sera généralement égal a la taille du pas de discrétisation.

(6.19)
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6.3 Réponse Optique Non-Linéaire de Nanofils de Silicium

Dans le chapitre 3 nous étudions en détail la réponse optique non-linéaire de nanofils individuels
de silicium. Particulierement la génération de seconde harmonique est détaillée. Puisque la SHG
est interdite dans le volume du silicium, la surface est la seule source de seconde harmonique. 11
se trouve que les nanofils sont des candidats prometteurs pour renforcer cet effet, car le rapport
superficie/volume élevé ainsi que des champs fortement exaltés par des résonances optiques sont
en faveur de la SHG de surface.

6.3.1 Réponse Linéaire

00 [E*/1EI*> o1 o IB*/1Bol> 2 oo |EP*/IEI> 18 o [BI*/IB* 75 o IEP/IEI* 5 o IBI*/IBol* 120
_— e e . _— e e . [ e
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77 “\\:\
[ oss— ] [ oss— ]
00 ER/IRIP B0 BI/|Bo2 O EP/IERI> S Y |BI2/|Bo2 O O EP/IEB12 B0 |BI/|Be2 1O
(a) TMo1 (b) TEg1 / TM13 (c) TE11 / TMyy

Figure 6.6: Intensités de champ pour les premieres résonances de Mie dans un nanofil de silicium (réso-
nances de mode “Leaky”), calculées par GDM: (a): TMp1, (b): TEg1/TMi1 et (c): TE11/TMa;.
Intensités de champ électrique (a gauche) et magnétique (a droite) aprés excitation en onde
plane, polarisée TE (en haut) et TM (en bas). Si des composantes du champ dans le plan ex-
istent, la partie réelle est indiquée par des petites fleches en couleur noire. Incidence par en
haut.

Avant d’étudier en détail les phénoménes optiques non-linéaires dans les nanofils de Si, nous
élaborons leurs propriétés linéaires. La réponse de nanofils aux champs électromagnétiques est
traité analytiquement dans le cadre de la “théorie de Lorenz-Mie” (ou simplement la théorie de
Mie) développée a I'origine pour des particules sphériques [319]. La Théorie de Mie peut étre
adaptée aux cylindres (de longueur infinie) en utilisant des harmoniques cylindriques vectorielles
pour la série d’expansion du champ (voir par exemple [304]).

11 se trouve que des résonances optiques se produisent dans de petits cylindres d’indice de
réfraction supérieur a celui de 'environnement. En Anglais ces résonances sont appelées “leaky
mode resonances” (LMR). Dans une image intuitive, le champ électrique subit des réflexions
multiples a I'intérieur de la particule et des résonances se produisent quand ces “circulations de
lumiere” interférent de maniére constructive. Pour un support illustratif de cette explication, voir
les champs bouclés dans la figure 6.6. Par conséquent, les positions spectrales Ajyr des LMRs
sont a peu preés proportionnelles au périmétre du nanofil

k- )LLMR o« n-2Rmr (6.20)
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ou k est un numéro entier et n 'indice de réfraction du cylindre de radius R.

Dans la figure 6.6, les intensités des champs électriques et magnétiques a l'intérieur d’un
nanofil de longueur infinie sont présentés pour les LMRs des trois premiers ordres. L’excitation
par ondes planes a A = 600 nm est polarisée perpendiculairement (transversal électrique, “TE”)
ou parallélement (transversal magnétique, “TM”) a ’axe du fil. On peut voir a partir des échelles
de couleurs, qu’en résonance le champ électrique a intérieur du nanofil est fortement exalté’.

Le rapport de superficie/volume élevé, aussi que I'exaltation du champ proche, peuvent stim-
uler la réponse non-linéaire de nanofils de silicium. A cause de ces conditions favorables, nous
allons étudier de facon plus détaillée les effets non-linéaires depuis des nanofils de silicium.

6.3.2 Réponse Non-Linéaire

6.3.2.1 Echantillons: Nanofils cra par VLS
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Figure 6.7: Characterisation des nanofils VLS de silicium par microscopie a force atomique (a) (barre est
500 nm), et en microscopie optique champ sombre en comparaison avec la théorie de Mie (b).

Tous les résultats ont été obtenus sur des nanofils de silicium cristallin, cri par la méthode
“vapeur-liquide-solide” (VLS) (croissance selon la direction [111]). La méthode VLS est une tech-
nique chimique de croissance en phase vapeur, dans laquelle les nanofils sont crii sur un substrat
a partir d’'un gaz précurseur, médiée par les gouttes catalytiques (habituellement de I’or) de taille
nanomeétrique [131]. Les nanofils peuvent ensuite étre caractérisées par exemple par microscopie
a force atomique (Anglais: Atomic force microscopy, “AFM”) ou par spectroscopie en champ
sombre (Anglais: Dark field, “DF”) en comparaison avec la théorie de Mie. Voir figure 6.7 pour
des exemples.

Par la suite, trois groupes de nanofils seront étudiés. Les dimensions pour les plus petits
nanofils sont choisies telle qu’une seule résonance est présente dans le visible “NWs50”. Cette
résonance est non dégénérée et apparait seulement sous excitation “TM”, i.e. en polarisation par-
alléle a I’'axe du fil. En “TE” (polarisation perpendiculaire au nanofil), il n’y a aucun mode dans la
gamme spectrale du visible. Le deuxiéme groupe étudié, “‘NW100”, a une résonance TMg; autour
de 700 — 800 nm et un second mode dégénéré (TM1; / TEq1) au-dessous de 500 nm. Enfin, un

! d’ailleurs ainsi que & leur voisinage
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troiséme groupe de tres grands nanofils “NW200”, avec des diamétres > 200 nm, est caractérise,
qui produit plusieurs résonances a travers le visible. Des spectres typiques des nanofils étudiés
sont présentés dans la figure 6.7b.

6.3.2.2 Dispositif du Microscope Non-Linéaire

Le dispositif expérimental est composé d’un laser Ti:Sa accordable, émettant avec une largeur
d’impulsion d’environ 150 femtosecondes (fs) et un taux de répétition de 80 MHz. Le faisceau
du laser est focalisé sur I’échantillon par une ouverture numérique NA 0.8 (Anglais: Numeri-
cal aperture, “NA”). 1l est utilisé a des longueurs d’onde autour de 49 = 800 nm. La puissance
moyenne a 'arriére de 'objectif est dans 'ordre de 10 mW. En utilisant une lame demi-onde, la
polarisation linéaire de la lumiére incidente peut étre contrdlée. Etant déposé sur une table piézo,
I’échantillon est positionné avec une précision de * 1 nm. L’émission non-linéaire est collecté
en rétro-diffusion et finalement réfléchie vers le détecteur par une lame séparatrice dichroique.
Le détecteur est soit un photomultiplicateur connecté a un amplificateur synchrone, ou un spec-
trométre avec un capteur CCD de haute sensibilité. Filtres de couleur a bande étroite sont in-
troduits devant le détecteur afin de sélectionner des parties particulieres d’émission non-linéaire
(par exemple la SHG).

6.3.2.3 Spectres de ’Emission Non-Linéaire
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Figure 6.8: (a) Spectres obtenus depuis NW200 pour différentes puissances de Iexcitation (puissance
moyenne du laser pulsé). (b) Plot double-logarithmique pour les intensités dans les zones in-
diquées par couleur bleue (SHG) et rouge (bande large). Des Lois de puissance en ordres N = 2
et N = 3 sont indiquées comme “guide pour I'ceil”.

Dans une premiére étape, le spectre du signal non-linéaire d’un nanofil de silicium (NW200)
est analysé. Sur la figure 6.8a, des spectres expérimentaux sont tracés pour différentes puissances
du laser. L’excitation est a g = 840 nm et polarisée en TM. Les intensités correspondantes aux
zones rouge et bleu sont tracées en fonction de la puissance d’excitation dans la figure 6.8b sur
une échelle logarithmique (échelle log-log). Des lois de puissances sont indiquées comme “guide
pour ceil” pour N = 2 (bleu) et N = 3 (rouge). Les résultats confirment un ordre 2 pour le signal
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a la longueur d’onde de la SHG (1¢/2) tout comme un processus non-linéaire du troisieme ordre
responsable de la luminescence large. Par conséquent, cette derniére bande est probablement
une photoluminescence induite a trois photons, soit du silicium lui-méme, soit de la coquille de
SiOy autour du fil [328-330].

6.3.2.4 Dépendance de SHG sur Résonances Optiques

— Exp.
== Mie Theory

scattered intensity (a.u.)

min IsHG max
| —]

wavelength (nm)

Figure 6.9: Gauche: Spectres de diffusion mesurés en champs sombre et filtrés en polarisation (lignes
solides) depuis NWs5o (a) et NW1o0 (d), comparés avec la théorie de Mie (pointillé) pour une
excitation TE (rouge) et TM (bleu). A droite, des cartes de balayage filtrées pour SHG depuis
NWso (b et ¢) et NW1oo (e et f). Barres correspondent a 500 nm.

Nous étudions également l'influence des résonances optiques sur la génération de seconde
harmonique sur les petits nanofils NW50 et NW1o0o0. Sous excitation TM, ces fils disposent d’un
et de deux modes respectivement. Pour un incidence polarisé TE, aucune, respectivement une
seule résonance de Mie se produit dans les nanofils NWs50 et NW 100 (voir aussi la figure 6.7b).
Dans la figure 6.9a et d, des spectres filtrés en polarisation sont présentés et comparés a des cartes
de balayage de SHG.

Bien que de la SHG ait été toujours mesurée si un mode de Mie existait proche de la longueur
d’onde fondamentale (NW100 et NW50 excité en TM), aucune lumiére de seconde harmonique ne
pouvait étre obtenue depuis NW50 sous excitation polarisée TE, en ’absence de toute résonance.
Des simulations GDM montrent en outre que le champ électrique a l'intérieur du nanofil est
quasiment nul dans ce dernier cas. Cela explique le manque de SHG en absence de résonances
optiques. Les résultats montrés dans la figure 6.9 sont normalisés individuellement sur les valeurs
maximales. Une comparaison des valeurs absolues a montré qu’une exaltation de la SHG par plus
que deux ordres de grandeur est obtenue par rapport a un cristal de silicium en vrac. La SHG
la plus forte est observée pour les nanofils NW1o0, ol des résonances paraissent a la longueur
d’onde fondamentale ainsi qu’a la harmonique.

Enfin, on observe que la SHG est exaltée aux bouts des nanofils sous excitation “TM” alors
que, en cas de TE, l'intensité de la SHG est homogéne tout le long de I’axe du fil. Ce comporte-
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ment peut étre expliqué par le composant )(fl |, étant I'élément dominant dans le tenseur de la

susceptibilité non-linéaire.

6.3.2.5 Origine de la SHG
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Figure 6.10: (a) NW50, (b) NW1o00 et (c) NW2oo0. Excitation TE en rouge, TM en bleu. Colonnes a gauche:
Cartes en balayage de SHG (pas de filtre de polarisation). Toutes cartes sont normalisées a
leur valeur maximale (voir profiles a travers les fils en bas). Barres sont 0.5 um. Colonnes a
droite: Polarisation de SHG au champ lointain, aprés excitation au centre du nanofil. Lignes
solides sont des régressions de courbe sur les données.

Suite a la suggestion d’analyser la polarisation de SHG pour séparer les contributions a son
origine [296], nous effectuons des mesures de génération de seconde harmonique filtrées en po-
larisation linéaire. Des résultats sont présentés dans la figure 6.10, olt nous pouvons observer que
la direction de polarisation de la SHG se retourne par 9o°. Ce phénomeéne se produit sous excita-
tion TM en augmentant la taille du nanofil. Au cas d’excitation TE d’autre part, la lumiére SHG
est toujours polarisée perpendiculairement a I’axe du nanofil, suivant la polarisation incidente.
Des considérations théoriques permettent d’expliquer ce comportement par une transition de
contribution principale a la SHG. Dans les petits nanofils, la SHG est a 'origine de la contribu-
tion § du volume (voir éq. (6.14)), induite par les gradients du champ du a la forte focalisation du
faisceau laser. En augmentant la taille, la contribution de surface P(f”)” s’augmente et finalement
domine la SHG totale. D’autre part, sous éclairage TE, ou, si les extrémités des nanofils sont
éclairées, P(fi | est toujours la contribution principale a la SHG. Ce comportement est en outre
confirmé par des simulations numériques.

En résumé, la SHG dans les nanofils de petits diamétres est due a une contribution de vol-
ume, tandis que les sources de surface augmentent avec un diameétre croissant — donc pour une
diminution du rapport superficie/volume. Malgré le fait que ceci est plutot contre-intuitif, le

phénomeéne peut étre expliqué par une annulation microscopique de la polarisation non-linéaire,
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a cause d’une phase localement opposée [176, 297]. En effet, en analysant les vecteurs de la po-
larisation non-linéaire, on constate une forte annulation microscopique pour les contributions
de surface. Cette annulation s’affaiblit quand le diamétre du nanofil augmente. Quant a la con-
tribution § du volume par contre, des effets de retard contournent partiellement ’annulation du
rayonnement vers le champ lointain.
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6.4 Optimisation Evolutionniste de Nano-Structures Photoniques

Dans le chapitre 4 nous nous éloignons des propriétés optiques fondamentales et ’accent est
mis sur la conception et ’adaptation d’attributs optiques de nanoparticules. La conception de
nanostructures photoniques consiste habituellement a anticiper leur réponse optique a partir
de modeles simples ou par des variations de systémes de référence. Ces systémes sont ensuite
étudiés systématiquement. Cette stratégie est limitée par les capacités de la géométrie choisie
initialement. En outre, si différents objectifs sont simultanément ciblés, le probléme devient
encore plus compliqué (voir aussi figure 6.11c¢).

6.4.1 Algorithmes d’Optimisation Evolutionniste

global max. < )
generation

77 1 H
generation
/V e n \I

fitness

- evaluation selection
initial guess
GDM of best
parameter simulation individuals
(a) Optimisation Locale reproduction
crossover mutation
(b) Points Extrémes en 2D (c) Schéma Optimisation Evolutionniste

Figure 6.11: Schéma du principe d’optimisation évolutionniste. (a) Dilemme des algorithmes

d’optimisation locales “classiques” Si des points extrémes locaux existent, la minimisation
reste coincé et ne converge pas vers le minimum global. (b) Illustration d’un probléme com-
plexe en deux dimensions. (c) Illustration du cycle de reproduction parcourue par un algo-
rithme d’optimisation évolutionniste.

Quant a des applications, une approche plus pratique est de d’abord définir les propriétés op-
tiques requises et de concevoir une nanostructure qui présente les caractéristiques souhaitées
de maniére optimale. Les algorithmes classiques de maximisation ou de recherche d’un zéro
d’une fonction semblent prometteurs de prime abord. Cependant, il est difficile de décrire les
géométries de nanoparticules par des fonctions analytiques, nécessaires par exemple pour des
dérivés quant a la méthode de Newton. De plus, il est fort probable que la fonction de I'objectif
posséde d’innombrables points extrémes locaux (voir la figure 6.11a-b.). Cela limite encore plus
I'applicabilité des algorithmes d’optimisation classiques, car ils se coincent dans les points ex-
trémes locaux. Par conséquent la solution ne convergera pas vers I'optimum global, comme
illustré dans la figure 6.11a a I'exemple d’un probléme de minimisation en une dimension.

Des techniques plus prometteuses sont des stratégies d’optimisation évolutionniste (Anglais:
Evolutionary optimization, “EO”). Ces méthodes, imitant la sélection naturelle, sont en mesure
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de trouver les plus aptes ensembles de parameétres face a un probleme complexe [335] (voir la
figure 6.11¢). Dans le domaine de la nano-optique, les algorithmes évolutionnistes ont été ap-
pliqués afin de maximiser I’exaltation de champ proche [336-340] ou la diffusion de lumiere
depuis des particules plasmoniques [341-343], ainsi qu’a la conception d’antennes hybrides plas-
moniques/diélectriques [344], pour citer quelques exemples.

Dans I’EO, une population d’individus est définie (“génération n” dans la figure 6.11c), ou
chaque individu constitue un ensemble de paramétres pour la fonction de I'objectif. Dans notre
cas, les ensembles de paramétres décrivent des morphologies d’antenne nano-photonique. Cette
population subit une procédure d’évaluation et de sélection dans laquelle les solutions faibles
sont éliminées. Ensuite, les candidats les plus aptes (i.e. les ensembles de paramétres donnant les
meilleures valeurs cibles) sont choisis pour la reproduction. Ce dernier processus consiste en une
étape appelée croisement (Anglais: Crossover), ou les parameétres sont échangés et mélangés’, et
une étape de mutation, dans laquelle certains parameétres choisis au hasard sont remplacés par
des nombres aléatoires (voir figure 6.11c, étape “reproduction”). De cette maniere, une nouvelle
population d’individus est générée. Ce processus de sélection, de reproduction et d’évaluation
est répété jusqu’a ce qu’un critére d’arrét soit satisfait.

6.4.2 Optimisation de Nano-Antenne Directionnelle

f)
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Figure 6.12: Itérations sélectionnées de I’évolution d’une antenne plasmonique directionnelle. Le dia-
gramme de rayonnement en plan XZ est démontré en haut, ou un segment vert indique 'angle
solide de I'objectif. Les structures plasmoniques correspondantes aux diagrammes de rayon-
nement sont démontrées en bas (en plan XY). (a) Structure initiale aléatoire. (b-f) Meilleurs
candidats depuis des générations intermédiaires. (g) Meilleur candidat de la population final.
La barre est de 200 nm.

Afin de démontrer 'optimisation évolutionniste en nano-photonique, nous employons I'EO
sur un modéle de nano-antenne plasmonique, fabriqué avec de l'or. Avec ceci, nous voulons
concevoir une nano-antenne pour la diffusion directionnelle de la lumiére. Les candidats les plus
aptes au cours de 'optimisation sont présentés dans la figure 6.12 ainsi que les diagrammes de
rayonnement de la diffusion élastique. La lumiére incidente est réalisée par une onde plane de
Ao = 800 nm, polarisée linéairement selon la direction de diffusion souhaitée. (a-f) montrent des
itérations au cours des premieres 20 générations, et (g) montre la solution finale, trouvée apreés
o0 itérations.

L’antenne finale montre une diffusion fortement directionnelle et son principe de fonction-
nement est égal au fonctionnement des antennes directionnelles utilisées pour les fréquences
radio. Sachant qu’initialement la conception de la structure est complétement libre, il est re-
marquable qu'une disposition d’antenne ait été trouvée - tout a fait automatiquement et avec

! comme les génes dans la nature
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une trés bonne reproductibilité — qui correspond aux principes de fonctionnement bien connus
provenant d’antennes des fréquences radio.

6.4.3 Optimisation de Pixels Double-Résonants
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Figure 6.13: Démonstration expérimentale des structures double-résonnantes, trouvées par optimisation
évolutionniste. (a) Modéle de structure EMO des particules diélectriques double-résonnantes
et (b) spectres de diffusion correspondantes avec Ax = 550 nm (indiqué par ligne noire pointil-
lée) et différents Ay. (c) Images SEM des structures nano-fabriquées et (d) spectres correspon-
dantes mesurées en champ sombre et filtrés en polarisation. Les insets dans (d) démontrent
des images du set des structures, obtenues par microscopie en champ sombre filtré en polari-
sation (4 X 20 um?). Les zones dans (a) et (c) sont de 600 X 600 nm?.

Dans la derniére partie, nous voulons aller encore plus loin. La plupart des études appliquant
Poptimisation évolutionniste dans le contexte de la nano-optique ont été limitées a la maximisa-
tion d’une seule propriété cible et cela a une longueur d’onde et a polarisation bien spécifique. De
tels scénarios a objectif unique représentent le cas le plus simple d’un probléme d’optimisation.
Une structure qui remplit simultanément plusieurs objectifs sera en général plus difficile & con-
cevoir. Des stratégies d’optimisation évolutionniste a objectifs multiples (Anglais: Evolutionary
multi-objective optimization, “EMO”) [357, 358] sont une approche prometteuse pour contrer
ces problemes. Dans cette partie, nous présentons une combinaison de EMO avec la GDM que
nous appliquons a la conception de structures diélectriques multi-résonantes. Notre objectif est
de maximiser 'efficacité de la diffusion Qg @ une longueur d’onde Ax pour une polarisation
incidente linéaire le long de la direction X, et en méme temps de maximiser la diffusion a une
deuxiéme longueur d’onde Ay, polarisée en Y.
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Nous effectuons plusieurs optimisations a objectifs multiples pour de différentes combinaisons
de longueurs d’onde cibles. La longueur d’'onde Ax = 550 nm reste fixe, tandis que 1’autre ob-
jectif (Ay) varie de 450 nm a 650 nm en incréments de 10 nm. Chaque simulation est constituée
d’une population de 20 individus, initialisée aléatoirement et subséquemment évoluée pendant
200 générations. A la fin de chaque évolution, la structure avec les plus proches Qscat(dx) et
QOscat(Ay) est choisie.

Dans la figure 6.13, nous montrons les structures résultantes (a) et leurs spectres simulés par
GDM pour illumination polarisée le long des directions X et Y (b). Les différents Ay sont in-
diqués par un code couleur allant du bleu (1y = 450 nm) au rouge (Aly = 650nm). Pour une
vérification expérimentale, nous avons fabriqué des structures de silicium correspondantes aux
nano-antennes EMO. Des images de microscopie électronique a balayage (figure 6.13c) et des
spectres de diffusion, filtrés en polarisation (figure 6.13d, en haut: filtré X, en bas: filtré Y) sont
présentés a gauche de figure 6.13. Dans les insets, des images des structures optimisées, obtenues
par microscopie optique en champ sombre, filtrée en polarisation, démontrent le changement de
couleurs en fonction de la polarisation de la lumieére.

6.4.4 Conclusions

En conclusion, 'optimisation évolutionniste reliée aux simulations électro-dynamiques est trés
prometteuse pour la conception automatique de divers types de nano-structures photoniques.
Nous avons démontré qu'une approche d’optimisation évolutionniste est en mesure de réaliser
des objectifs photoniques complexes comme des résonances multiples, méme au sein d’'un mod-
éle trés simple et fortement restreint. Pour une bonne compatibilité avec des méthodes de fab-
rication, les limitations technologiques peuvent étre incluses dans l’algorithme. Gréce a de tels
considérations technologiques, nous avons pu produire des échantillons sur substrat SOI en util-
isant les résultats des optimisations évolutionnistes. Avec la microscopie en champ sombre, fil-
trée en polarisation, nous avons finalement pu confirmer l'accord entre les propriétés optiques
des échantillons et les simulations.

L’optimisation évolutionniste de nano-structures photoniques a un potentiel énorme pour de
nombreux types d’applications dans la nano-optique du champ proche et du champ lointain. Des
exemples imaginables se trouvent dans la conception des particules multi-résonantes ou a large
bande pour des capteurs de lumiére ou quant aux nano-structures pour I'optique non-linéaire.
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Appendix A

Dielectric Interfaces

A.1 Continuity Conditions

To calculate the continuity conditions at the interface between two dielectric materials, we start
with the Maxwell equations for homogeneous, isotropic and constant media:

divD = p rotE =0 (A1)
divB =0 rotH = j (A.2)

with D = ¢pe, E and B = pop, H.
Furthermore, we will use Gauss’ integral theorem for vector fields V

f dr? - divV = f df - v (A.3)

AV S(AV)

where S(AV) is the surface around the volume AV, as well as Stokes’ integral theorem:

f df - rotV = f dr-V (A.q)

S OF

with OF the path around the area S.

To find the continuity conditions for the E-field component normal to the interface, we in-
tegrate the Maxwell equation for the divergence of the electric field over a cuboid around the
interface between two dielectric media €,9 and €,1 (see fig. A.1a). With Gauss’ integral theorem
(A.3), we get

fdr3-divD=fdf-D 220 9AF-n- (Dy - Dy) (A.5)
14 AF
and
fdr3~divD:fdr3-p:0~2AF:O (A.6)
14 14

with o the surface charge at the interface which we assume to be zero. From eq. (A.5) and (A.6)
we get:
n-(D;-Dg) =0 (A7)

To find the tangential component’s continuity condition, we integrate over an area around the
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Figure A.1: At the interface between two dielectrics, integrating over an infinitely small cuboid leads to
the continuity condition for the E-field normal component a, while by integrating over an
infinitely small area the tangential component’s continuity condition is found b.

interface using Stokes’ theorem (A.4):

O:fdf-roth fdr-E A0, Al - (nap X n) - (E; — Eg) (A.8)
AF A(AF)
with Aly - &1 = —Aly - €9 = Al - (nap X n) where the notation from figure A.1b is used and &;;

are unitary vectors in path direction. Analogously, the Maxwell equations of the magnetic field
(A.2) can be integrated to obtain the corresponding continuity conditions.

Finally we have four continuity conditions, for the normal ((A.9), (A.10)) and parallel ((A.11),
(A.12)) components of the electric and the magnetic field respectively:

n-(D;-Dg) =0 (A.9)
n-(B;-Bgp) =0 (A.10)
nx (E; —Eg)=0 (A.11)
nx (H; -Hy) =0 (A.12)

We see, that the normal component of the electric displacement field D as well as the electric
field E’s tangential component are continuous over the interface. Analogously, the magnetic and
the demagnetizing fields’ (B and H) normal and tangential components are conserved.

A.2 Reflected Field Amplitudes

From the above derived continuity conditions, the reflectivity and transmittance coefficients at
the interface can be calculated. Again, we assume normal incidence (n L E 1 B), so equa-
tions (A.9) and (A.10) are already fulfilled. Furthermore, the vector products of the fields in
equations (A.11) and (A.12) can be replaced by scalar products of the field amplitudes. The elec-
tric field in the material with index “0” can be written as a superposition of a forward (Eop) and a
backward (Ey ) traveling component (see fig. A.2). With

k
B=y -H=—xE (A.13)
®
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Figure A.2: Normal reflection at an interface between two dielectric media.

equation (A.12) can be written as

kiE1  koEo + ko,rEo,,

- =0 (A.14)
Hrl Hr0
We know that 5
w T
k= ;n = 7\/€r/lr (A.15)

with the refractive index n = /€, [i;. We see, that for normal incidence k¢ , = —ko. By inserting
(A.15) in equation (A.14), we obtain

El‘( er—l)Z(Eo—Eo,r)'(,leLo) (A.16)
Hrl Hro

For non-magnetic media (4, = 1 — n = 4/¢;), we can now calculate the reflectance and the
transmittance at the interface by taking equation (A.11) into account (E; = Eg + Eo_,):

Eo,, no—-m

ro] = — = —— Aa

e (A.17)
E 2n

o= B 2 (A.19)
Ey ng +ny

The deduction of the reflectivity for the general case of non-normal incidence is analogue to the
calculation above and can be found in literature (e.g. [365]). Finally we note that an addition-
rule for the reflectivities of several successive layers can be derived using a substitution of the
form r = tanhs [366]. In analogy to quantum mechanics transfer-matrix methods can be used
alternatively, to obtain the reflectivity of or field amplitudes in multi-layer systems [367, 368].
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Appendix B
Autocorrelation Measurements

Interferometric autocorrelation (IAC) measurements can be used to obtain the order of the non-
linear response. In order to perform a fit to the IAC measurements, we need to describe the signal
mathematically.

B.1 Model Assuming Unchirped Gaussian Wave Packets

Remark: The pulse widths are given as the Gaussian’s width w of the pulse envelope, i.e. the
duration during which the amplitude is larger than E - 1/e, with E the maximum field amplitude
and e Euler’s number. To obtain the width of the pulse’s intensity, the width of the electric field
has to be divided by V2 (because I = E?). Finally, from the Gaussian width w, the full width at
half maximum is found by FWHM = w - 2V21n 2.

We assume a Gaussian shape for the envelope of the traveling wave packets, sent by the pulsed

laser
(x - vgt)2 )

(Tpulse : C)2 (B.l)

A(x,t) = Ag - exp (—2
where 7,y is the Gaussian width of the pulse in time domain and vy its group velocity. The
time and space-dependent field amplitude of the pulse is the product of A(x, f) with a plane
wave u(x, t)

u(x,t) = ug - exp (xi(kx — kct)) (B.2)

(k=w/c, w=2xf = 2mc/A) and writes
E(x,t) = Eg - u(x,t) - A(x, t) (B.3)

as illustrated in Fig. B.1a,i. For a description in time domain, the space coordinate x of the field
can be substituted by x = ¢ - ¢ (for more details on wave packets, see e.g. [365, chapter 4.3]).

Now we assume two coherent Gaussian wave packet-like pulses (Ep, and Ep,) with a time
delay & between each other (illustrated in Fig. B.1a,iii). For a given delay, the experimentally
accessible value, the intensity of the fields, is obtained by integrating both pulses over the entire
time-range

nss(®) = [ [En )+ Epate = 5)]"at (B.)

If a signal from an interaction of the two pulses with a nonlinear medium is acquired, the inte-
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Figure B.1: (a) illustration of an unchirped (i) and a chirped (ii) pulse, as well as a partial temporal super-
position of two such pulses ((iii) and (iv), respectively). (b) interferometric autocorrelation of
two unchirped pulses from second (i) and third order (iii) nonlinear response, as well as a sec-
ond order chirped autocorrelation figure (ii). Red dashed lines show the (unchirped) envelope
to the IAC plots. The intensity enhancement factors between infinite and zero time-delay are
indicated at the right.

grand has to be taken to the power of N, where N is the order of the nonlinearity

(o8]

Imeas., NL(6) = f ’[Epl(t) + Epz(t - 5)]2‘1\, de. (B5)

—00

In experiment, the signal Ieas. NL(S) can be measured as a function of the time-delay § going
from negative to positive values. Usually, a crystal with significant nonlinear susceptibility is
used as reference sample, hence the order N is known.

For a numerical calculation of the autocorrelation signal, we replace the integral and the dif-
ferential d¢ by a sum over small time-steps At:

f feyde - fAe (B.6)

In order for Eq. B.5 to be a valid approximation, several assumptions have to be made:
1. a Gaussian wave packet is a good approximation for the laser-pulse
2. both beams have equal width and amplitude

3. all observed light is generated due to the same physical effect = the same order of non-
linear response can be assumed for the minimum as well as the maximum occuring field
amplitudes
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Figure B.2: Experimental setup for interferometric autocorrelation measurements.

4. the laser-pulse has only a negligible chirp, although it is very likely that there is some
amount of chirp (Chirped pulse, see Fig. B.1a,ii. For the influence of a chirp on the auto-
correlation signal, see below)

Assuming these conditions are met, the measured intensity can be written as a function of the
pulse width 7,1, the pulse amplitude Ep and the order of (nonlinear) response N. For fitting the
numercially obtained autocorrelation function, an additional delay-offset Ad is included to take
account of the zero delay position in experiment. The function for the interferometric autocor-
relation intensity

Imeas.(8) = Imeas.(J, Eo, Tpulse> N, AS) (B.7)

can be used to simulate the autocorrelation signal. The interferometric autocorrelation is calcu-
lated by using
E(x,t) = Eg - u(x,t) - A(x, t) (B.8)

as shown in Fig. B.1b (solid lines), whereas the envelope to this signal is obtained using only a
Gaussian for the electric field (red dashed lines in Fig. B.1b)

E(x,t) = Eg - A(x, t). (B.9)

The latter can be obtained by so-called “intensity autocorrelation” measurements. Fur further de-
tails and a broader overview on autocorrelation measurement techniques, we refer to the tutorial
on ultrashort pulse shaping by Monmayrant et al. [369].

B.1.1 Influence of Chirp on Gaussian Model

A chirp means, that the wavelength changes with time during a single pulse (see illustration
of a chirped pulse in Fig. B.1a,ii and scheme of two superposed identical, chirped pulses in
Fig. B.1a,iv). From intensity and interferometric autocorrelation measurements, the chirp can-
not be unambiguously accessed and therefore assumptions on it have to be made. For all fits in
the following, a chirp-free pulse has been assumed. The influence of a linear chirp on the au-
tocorrelation signal via a second order nonlinearity is shown in figure B.1b,ii in comparison to
the envelope of unchirped IAC (using a highly exaggerated chirp). A chirp can make the pulse
durations in JAC measurements appearing shorter than they are in reality.
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Figure B.3: (a) SHG intensity as function of incident laser power and (b) interferometric autocorrelation
measurement on a LiNbOj3 crystal at A = 810 nm. In (a) a power-law was fitted to the data,
confirming a second order nonlinear response. In (b) a fit to the envelope of the autocorrela-
tion signal was performed in order to obtain the optical pulse width, fixing the order of the
nonlinearity to N = 2.

B.2 Power Series on LiINbO3

To verify the nonlinearity of the reference LiNbO3 crystal, a measurement of SHG as function of
the incident laser power was performed. The data is shown in Fig. B.3a together with a power-law
fit. The result of the fit confirms the second-order power-dependence of a y‘? nonlinearity.

B.3 Pulse Width Characterization Using LiNbO3 Reference

In order to fit the envelope of the autocorrelation measurements and in this way obtain the
order of the response’s nonlinearity, we need to determine the laser-pulse width in a reference
measurement. Confirmed by the power-dependence measurement, the order of the nonlinear
response of the LiNbOj3 reference sample is fixed to N = 2. Similar pulse widths aorund 7,15 ~
150 fs were obtained for the investigated wavelengths Ag = 750 nm (Fig. B.4a), 19 = 810 nm
(Fig. B.3b) and A9 = 840 nm (Fig. B.4b).

The experimental setup used for interferometric autocorrelation measurements is shown in
figure B.2. The pulses emitted by the fs-laser are split by a beam-splitter, travelling on two equally
long optical paths. One of those paths is equipped with a micro-motor controlled time-delay
stage, which allows to shorten or enlarge the distance traveled by the photons, thus controlling
the time delay between the two optical pulses.
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Appendix C
SiNW Surface SHG Polarization Dependence

We want to numerically study the polarization dependence of the different contributions to
surface SHG from an infinitely long, plane wave illuminated cylindrical* nanowire (in vacuum) in
more detail, in order to confirm our theoretical considerations from section 3.4.3. The wavelength
of the normally incident light is Ag = 810 nm, hence Aspyg = 405 nm.

In Fig. C.1 SHG from “simple” P(fl 1 P(fl)lll’ P?IQH) | (top row; blue solid lines) as well as from
their self-consistent counterparts (second row; blue dashed lines) is shown as a function of the
incident polarization and the NW diameter. A logarithmic color-scale is used to increase the
visual contrast. 1D plots for a D = 100 nm and a D = 150 nm SiNW are shown in (vii-xii).

Obviously, for an incidence polarized along the wire axes (transverse magnetic, “TM”), only
P(fl)l i is non-zero, confirming our conclusion from section 3.4.3.1. For a polarization normal to the
axis (“TE”) on the other hand, this component is vanishing (at least for diameters D < 230 nm),
while the other contributions are non-zero. We can observe, that P(fl , follows perfectly a

sin*(¢), which fits Malus’ law for a second order nonlinear response. Also P(fl)\ll follows Malus’

law for smaller nanowires, but at a diameter D = 150 nm first deviations from the plotted cos*(¢p)-
line occur and it finally becomes non-zero for TE incidence at large diameters?. P?I2II) | finally
reaches its highest value somewhere between pure TE and pure TM incidence, for a maximum
of the product of the perpendicular and parallel field components E|| - E,. As a consequence it
doesn’t obey Malus’ law. In the quasistatic approximation, the field inside the particle is pro-
portional to the incident field. For small nanowires, P?IQII) i therefore reaches its maximum at a
polarization of 45 ° (see D = 100 nm in Fig. C.1a, ix).

Note that the “simple” as well as a self-consistent SHG calculation give similar results. How-
ever, for small nanowire diameters, significant differences can be observed, which can be at-
tributed to the optical coupling of the nonlinear polarization to the modal response of the
nanowire. Away from the NW tips, P(fl , and P(fl)lll result in a nonlinear polarization L to the
NW axis, which hence couple to the TE-response of the nanowire at the harmonic wavelength.
For TE however, only a weak optical response exists at the harmonic frequency for small diam-
eters D < 50 nm (see Fig. 3.16 or Fig. 3.2). In consequence, the scattering of the harmonic to the
far-field is suppressed for small NWs in the self-consistent calculation.

The suppression of surface-SHG also supports the observation of the bulk contribution for
SiNWs of small diameter. In contrast to the “TE-type” surface contributions, a nonlinear bulk
polarization with field components along the wire axis can couple efficiently to the far-field via

the TM modes at the harmonic wavelength.
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Figure C.1: Polarization dependence of surface SHG from infinitely long silicon NW. (a) SHG intensity
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in the farfield (full solid angle) for cylindrical SINWs. Contributions P(fi 1 P? and P

1 1
are shown in the left, center and right column, respectively. (i-iii) show results of ”tll!le “simlllllle”
SHG calculation (P, solid blue lines in the 1D-plots), (iv-vi) for corresponding self-consistent
simulations (ng), dashes blue lines in the 1D-plots). Colormaps are scaled logarithmically.
Exemplary 1D plots are shown for diameters D = 100 nm (vii-ix) and D = 150 nm (x-xii).
cos*(¢p) and sin? (¢) are plotted for comparison in (vii, x) and (viii, xi), respectively. Polarization
directions for TM (along the wire axis, ¢ = 0,7) and TE (normal to the wire axis, ¢ = 7/2)
with respect to the NW axis are illustrated in (b) by red arrows.



Appendix D
SHG from Lithographic Silicon Wires

We present some preliminary results of SHG from lithographic silicon wires etched in SOI (for
details on the fabrication, see Sec. 4.2.1.2). The height of the SOI silicon layer is H = 95 nm, the
length of the lithographic wires is fixed to L = 3 pm and the width is varied.

W=30nm 60nm 80nm 100nm 120nm 140nm 160nm 180nm

TM excitation

IsHG

Figure D.1: SHG from TM excited lithographic SINWs of fixed height (H = 95 nm) and variable widht W.
Top: Intensity profiles across the NW centers. Center: SHG-filtered rasterscan maps. Bottom:
SHG farfield polarization from excitation at the NW center.

In figure D.1, SHG results from TM-excited silicon wires are shown (details on the measure-
ment procedure can be found in Sec. 3.2.2). Intensity-profiles across the nanowires are given
in the top, the data was acquired in a single measurement, the intensities are therefore directly
comparable and a signature of a modal response can clearly be observed. SHG rasterscan map-
pings are shown in the center, revealing an interesting behavior: For larger rectangular wires,
the SHG is strongest under excitation of the wire borders. A similar observation has been already
made for VLS grown SINWs with large diameter (see Sec. 3.4.2). Finally, polar plots, resolving the
far-field polarization of the backscattered SHG are shown in the bottom row, where once again
the flip in polarization is observed, from perpendicular to parallel with respect to the wire axis.
Also rectangular, non-symmetric nanowires seem therefore suitable for a distinction of bulk-
and surface contributions to SHG by means of size-variations (see Sec. 3.4.3).

The influence of resonant modes on SHG is demonstrated on the letters “CNRS”, composed of
differently large SINW, shown in Fig. D.2. Wire widths are chosen such that a resonance under
TE excitation outweighs the TM response and gives rise to a strong SHG for TE excitation. The
widths are W = 60 nm (background) and W = 130 nm (CNRS letters). This makes the letters
appear bright on a dark background for TE incidence (Fig. D.2, top) while under TM excitation
SHG from the background is stronger than the nonlinear signal from the letters (Fig. D.2, bottom).
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(a) SHG Microscopy (b) SEM

Figure D.2: (a) SHG from TE (top) and TM (bottom) excited CNRS letters, composed of lithographic Si
nanowires. Height and length are fixed to H = 95 nm, respectively L = 1pm. Widths are
W = 60 nm (background) and W = 130 nm (CNRS letters), scalebar is 5 pm. (b) SEM image
from the CNRS letters, where both types of wires are shown.

144



Appendix E

Symbols and Abbreviations

Symbols
a,A Scalars
a, A Vectors (or Tensors, by context)

1

Imaginary unit

\% Nabla operator

A Laplace operator

G Green’s Function

G Green’s Dyad

(hkl)  Miller indices of crystal lattice

e ,ht FElectron, hole

® Angular frequency

A Wavelength

k Wave-vector

k Wave-number (|k|)
Ogeom Geometrical cross section
Oext Extinction cross section
Oscat Scattering cross section
Oabs Absorption cross section

Constants

co  Speed of Light

€0 Vacuum Permittivity

to  Vacuum Permeability

mo Electron Mass

e Electron Charge

h Reduced Planck-Constant (h/2r)

T Pi

m
<

z

o gER X

S Z2moex T

Qext
Qscat
Qabs

Rdirect

Dielectric permittivity
Electric susceptibility
N'™ order electric susceptibility
Electric field

Electric displacement
Charge density
Current density
Electric polarization
Magnetic permeability
Magnetic susceptibility
Magnetic field
Magnetizing field
Magnetization
Refractive index

Extinction efficiency
Scattering efficiency
Absorption efficiency
Directionality ratio

2.9979 x 108 m/s?
8.8542 x 1072 F/m
A7 x 1077 N/A?
9.1094 x 1073 kg
1.6022 x 10719 C
1.0546 x 107347 s
3.14159265
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Abbreviations

AFM
BEM
CCD
CG
CMOS
CPU
DDA
(L)DOS
EBL
EELS
EMO
EO
FDTD
FW/BW
FWHM
FWM
GDM
LMR
LSP
(M)IR
MPPL
NA

PL
PMT
QW
SEF
SEM
SERS
SHG
(SHNW
SOI
SPP
(s-)SNOM
THG
TE/TM
TPL
uv
VLS
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Atomic force microscope

Boundary element method

Charge coupled device

Conjugate gradients

Complementary metal-oxide-semiconductor technology
Central processing unit (computer)
Discrete dipole approximation

(Local) density of states

Electron beam lithography

Electron energy loss spectroscopy
Evolutionary multiobjective optimization
Evolutionary optimization

Finite difference time domain

Forward / Backward

Full-width at half-maximum

Four-wave mixing

Green Dyadic Method

Leaky mode resonance

Localized surface plasmon

(Mid-) infrared

Multi-photon induced photoluminescence
Numerical aperture

Photoluminescence

Photon multiplier tube

Quantum well

Surface enhanced fluorescence spectroscopy
Scanning electron microscope

Surface enhanced Raman spectroscopy
Second harmonic generation

(Silicon) Nanowire

Silicon on insulator

Surface plasmon-polariton

(Scattering type) scanning near-field optical microscope
Third harmonic generation

Transverse electric / magnetic
Two-photon induced photoluminescence
Ultraviolet

Vapor-liquid-solid crystal growth
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