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Abstract

Nano-photonic structures ofer a highly interesting platform to enhance light-mater interaction
on a nanometer scale. Recently, high-index dielectric structures have gained increasing atention
as possible low-loss alternatives to plasmonic nano-antennas made from noble metals. Further-
more, since non-linear efects ofer many unique functionalities like the coherent up-conversion
of photons, including the generation of harmonics, many eforts are being made to exploit such
phenomena in nano-photonics. In this thesis, an analysis is presented on nonlinear optical efects
in individual dielectric structures, speciically in silicon nanowires (SiNWs). Nanowires develop
strong optical resonances in the visible and infrared spectral range. In this context, strong en-
hancement of the optical near-ield together with a large surface to volume ratio support the
appearance of nonlinear efects. We show that, compared to bulk Si, a two orders of magnitude
increase in second harmonic generation (SHG) is feasible and furthermore unravel diferent po-
larization and size-dependent contributions at the origin of the SHG. Numerical simulations are
carried out to reairm these experimental indings for which a numerical technique is presented
to describe nonlinear efects on the basis of the Green Dyadic Method (GDM). In the last part
of the thesis, the GDM is used together with evolutionary optimization (EO) algorithms to tailor
and optimize optical properties of photonic nano-structures. We eventually fabricate samples,
based on EO design, and successfully verify the predictions of the optimization algorithm. It
turns out that EO is an extremely versatile tool and has a tremendous potential for many kinds
of further applications in nano-optics.
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Résumé

La nano-optique est un vaste domaine permetant d’étudier et d’exalter l’interaction lumière-
matière à l’échelle nanométrique. Ce domaine couvre notamment la plasmonique, mais depuis
quelques années, un efort est porté sur les nanostructures diélectriques à fort indice de réfrac-
tion (typiquement des semiconducteurs comme le silicium). Des efets similaires aux nanopar-
ticules plasmoniques peuvent être obtenus, tels un comportement d’antenne et l’exaltation de
phénomènes non linéaires (génération d’harmoniques), avec l’avantage de faibles pertes. Dans
cete thèse, une analyse des propriétés optiques linéaires et non linéaires de nanostructures in-
dividuelles. Une première partie est dédiée aux nanoils de silicium qui supportent de fortes
résonances optiques dont le nombre et la gamme spectrale, du proche UV au proche IR, sont
fonction de leur diamètre. Dans ces conditions, l’exaltation du champ proche optique et un rap-
port surface sur volume élevé favorisent l’apparition de processus non linéaires. Ainsi la généra-
tion de seconde harmonique (SHG) par rapport au silicium massif est augmentée de deux ordres
de grandeur. En outre, diférentes contributions à l’origine de la SHG peuvent être adressées
individuellement en fonction de la polarisation du laser d’excitation et de la taille des nanoils.
Les résultats expérimentaux sont confrontés à des simulations numériques (méthode dyadique
de Green, GDM), qui permetent d’identiier les diférentes contributions. Dans une seconde
partie, la méthode dyadique de Green est couplée à des algorithme évolutionnistes (EO) pour
la conception et l’optimisation de propriétés optiques choisies de nanostructures semiconduc-
trices ou métalliques, par exemple difusion résonnante de diférentes longueurs d’ondes pour
diférentes polarisations. Des échantillons de nanostructures de silicium, réalisés à partir des ré-
sultats de l’EO, vériient avec succès les prédictions de l’algorithme d’optimisation, démontrant
l’énorme potentiel de l’EO pour de nombreuses applications en nanophotonique requérant une
optimisation simultanée de diférents paramètres.
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Chapter

Introduction and Motivation

. Nano-Optics

N - is a ield which is increasingly drawing atention of researchers worldwide.
In general, nano-optics is the research ield on efects of light-mater interaction occur-
ring at subwavelength dimensions – thus at the nanometer scale for visible and near-

infrared light. Usually, all phenomena can be described by classical electrodynamics, i.e. by the
set of Maxwell’s equations [ ]. In this chapter we give an overview of diferent material sys-
tems and of the current research progress on photonic nano-structures and their applications.
A comparison between plasmonic structures and high-index dielectric antennas motivates more
profound investigations on the later material system. Finally we give a brief review on nonlinear
efects in nano-optics.

. . Plasmonics

One of the main driving forces in nano-optics is the ield of plasmonics [ , ]. Interaction of
electromagnetic waves with metals can launch collective oscillations of free electrons from the
conduction band. he dielectric constant of metals is negative (see Fig. . b), leading to an imag-
inary wavevector. Fields are therefore evanescent and conined within a small region at the sur-
face, called “skin-depth” [ ]. In consequence, collection oscillations of the electrons propagate
along the surface and are called surface plasmon polaritons (SPP) [ – ]. In small metal particles,
the propagation of SPPs is hindered due to the spatial coninement and localized modes appear,
so-called localized surface plasmon (LSP) resonances (see Fig. . a). For an extensive introduc-
tion on plasmonics, we refer the reader to reference [ ]. hese conined plasmon oscillations
allow to squeeze light into tiny volumes of subwavelength size, far below the difraction limit
and yield extremely high local ield enhancements [ ]. In the visible spectral range this results in
characteristic sizes of several tenths to a few hundreds of nanometers. Such plasmonic particles
are oten referred to as “optical antennas” [ – ].

A multitude of designs for such antennas have been proposed for various purposes. It is
for example possible to obtain spectrally well deined resonances which may be used for color-
iltering and -rendering or printing at the difraction limit [ – ] or, on the other hand, to create
broadband antennas [ ]. Other designs allow either polarization-sensitivity or -insensitivity
[ , , ] and polarization conversion [ , ]. Furthermore it is possible to create interfer-
ences between modes resulting in Fano-like resonances [ ] or enhancement of higher mul-
tipolar radiative transitions that would usually be too weak for observation [ ]. Also chiral
responses can be tailored to react sensitive to let- or right-circular polarized light [ – ].
Another example is strong directivity in the scatered angular intensity distribution that can
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Figure . : (a) sketch of localized surface plasmons in gold nanospheres induced by an electromagnetic
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for example be achieved with antenna arrangements similar to radio-frequency antennas [ –
]. Also forward/backward anisotropic scatering can be obtained [ ] and even the possibil-

ity of wavelength-dependent switching of directionality has been reported [ ]. Larger two-
dimensional antennas pronounce higher order spatial modes with complex, tailorable ield dis-
tributions that can be resolved for example using two-photon luminescence (TPL) [ – ] or
electron energy loss spectroscopy (EELS) techniques [ ]. Acoustic vibrations can be optically
excited in nano-antennas, that have been used as nano-sources for hypersound generation [ ,
].
Applications range from signal processing [ , ] over surface enhanced spectroscopies

where strong plasmonic ield enhancements are exploited to boost signals from few or even
single molecules, from weak luorescent transitions or from molecular vibrations [ , – ] to
biomedical applications in which plasmonic particles are used as nano-biosensors for speciic
biomolecules [ ], as biomarkers [ , ] or for local thermal treatment [ , ] and drug deliv-
ery [ ]. Sharp resonances can be used for tuning [ ] and sensing [ , ] in optomechanical
plasmonic resonators.

. . Photonic Particles from High-Index Dielectric Materials

hemain focus of this workwill be put on another type of photonic nanostructures, namely high-
refractive index dielectric nanoparticles. Usually, the later materials comprise semiconductors
such as germanium or silicon (Si refractive index in the visiblen ≈ 3.5 - 4). he decisive diference
to plasmonics is the lack of free carriers. his results in a positive real part of the dielectric
function (see Fig. . b) which means that light can actually propagate inside the material. Under
electric ields, thematerial is polarized due to a displacement of the bound carriers relative to their
latice atoms and this polarization is proportional to the dielectric contrast with the environment
(see also appendix . . ).

In the past several years, many functionalities of plasmonic systems have been made accessi-



ble also from high-index dielectric nanostructures – with the advantage of very low absorptive
losses [ , ].

. . . Individual Structures

In the early ’s, the possibility to use horizontal silicon nanowires (SiNWs) as antennas for vis-
ible light was irst exploited in the context of enhanced absorption [ ] and Raman spectroscopy
[ ]. By simply changing the diameter, optical resonances can be tuned all over the UV and visi-
ble spectrum up to the infrared [ , ]. An optical darkield microscopy image of diferent large
NWs is shown in Fig. . a, where the size-dependent redshit of the resonance wavelength is
clearly visible. It was then shown, that also the material composition is a convenient parameter
for tuning the resonance positions [ ]. In nanowires, these resonances are strongly polarization
dependent, as is their nearield distribution [ ], a property that can be used for polarization il-
ters [ ] or to obtain spectrally enhanced and strongly polarized photoluminescence from direct
bandgap semiconductor NWs [ ]. A multitude of structures has been studied in the meantime,
such as low aspect ratio [ , ] and vertical nanowires [ ], nanospheres [ ], nanodiscs [ ],
hollow nanocylinders [ ] coupled dimers [ – ] or even complex bio-inspired structures [ ].
Also heterostructures composed of mixed materials have been investigated [ ]. For example the
absorption eiciency of NWs could be increased signiicantly by using amorphous-/crystalline-Si
[ ] or Ge/Si core/shell structures [ ].

Similar functionalities as with plasmonic antennas have been realized on the high-index di-
electrics platform. Guiding light for all-optical signal processing is a commercially established
application of silicon nanostructures [ , ] and eforts are being made to couple other dielec-
tric materials to the CMOS platform [ ]. Nanowires are also used to guide single photons or
entangled photon pairs e.g. for quantum computing [ ]. Apart from wave-guiding, numer-
ous other possible applications exist. he possibility to obtain well deined optical resonances
in high-index nanowires can be used to create single-NW lasers [ ] and achieve mode-iltered
lasing from such individual NWs [ ]. Recently an optical diode for circularly polarized light
has been proposed [ ] which is a step towards all-optical logical elements. It is also possible
to create forwards/backwards selective uni-directional scatering [ – ] or even scatering to-
wards arbitrary angles [ ] by taking advantage of interferences between degenerate resonance
modes. he aforementioned possibility to tune the resonance wavelengths is similarly lexible
as in plasmonic antennas and is supposed to be very valuable for solar cell applications [ –
]. It has been also shown, that high-index dielectric nano antennas can be used as alternatives

to metal particles in surface enhanced luorescence spectroscopy (SEF) and surface enhanced
Raman spectroscopy (SERS) [ ]. While ield-enhancement is several times lower compared to
metal antennas, larger ield volumes and by far lower losses may compensate this drawback in
many applications [ ].

. . . Dielectric Metamaterials

When individual nano-structures are put together and are arranged orderly on large areas, such
surfaces can have very surprising macroscopic optical properties – that, very importantly, are
tailorable to individual needs. Such so-calledmetasurfaces ormetamaterials [ ] are oten made
of plasmonic elements [ ], but here we will focus on an introduction to all-dielectric metama-
terials [ , ].



In direct analogy to the optical properties of individual nanostructures, metasurfaces with
spectrally well deined resonances can be designed. In this way, optical band-pass ilters [ ],
full-color holograms [ ], highly absorptive surfaces [ ], polarization converters [ ] or, by
puting the individual dielectric elements on a lexible substrate, mechanically tunablemetamate-
rials [ ] have been created. By tuning spectrally the ratio of forward and backward scatering,
metasurfaces with particularly high relectance [ – ] or transmitance [ ] have been re-
ported, as well as metasurfaces designed for ultra-fast optically induced transparency [ ]. he
ability to spatially tune the phase of an incident beam allows wavefront shaping, polarization
control e.g. for radially polarized beam generation or focusing from planar structures [ , ].
A generalized Brewster efect can be obtained from surfaces composed of silicon nanospheres
which has been used for the tailoring of directional scatering [ ]. Directionality has also been
used to vertically couple light from a waveguide to free space, which opens perspectives for ap-
plications in optical signal processing [ ]. Even materials can be designed that allow optical
cloaking, i.e invisibility of small objects [ ] (for details on cloaking, see [ ] or [ ]).

. . . Beyond Optics

High-index dielectric nanostructures are also promising for possible multi-purpose applications.
For instance thermal rectiication in telescopic Si NWs – which basically represent diodes for
heat transport – has been demonstrated recently for NWs with diameters ≈ 10 nm [ ]. her-
moelectric properties could be enhanced in dielectric metamaterials by artiicially increasing the
ratio of electric over heat conductivity [ ]. Another research group used resistance hystere-
sis in silicon nanowires with encoded abrupt doping-proiles to implement non-volatile memory
[ ]. Such efects could be exploited simultaneously to the unique optical properties of dielectric
nanoparticles with manifold imaginable applications.

. . High-Index Dielectric vs. Plasmonic Nanostructures

In the preceding introduction, we focused mainly on the similarities of plasmonic and dielectric
materials. Let us now compare the diferences between them in some more detail in order to
expose advantages and drawbacks of the two material systems.

. . . Fabrication

We will start with some words on the fabrication of nanostructures. Plasmonic structures con-
sist of metals, usually gold, silver or aluminum. hey are either evaporated on a substrate with
a subsequent lithographic step and lit-of [ ] or chemically synthesized [ – ]. Colloidal
particles have been orderly arrangedwith DNA origami templates [ ] or larger chemically syn-
thesized crystalline lakes can be very rapidly structured by interferometric lithography [ ].
he irst approach sufers from the relatively poor and oten polycrystalline quality of evapo-
rated metals whereas the mono-crystalline metal nanoparticles from the later technique usually
cannot be up-scaled to obtain large-area substrates.

High-index dielectric materials can also be evaporated or sputered with the same drawbacks
that hold for the metal case. Silicon nanowires can be grown by vapor-liquid-solid (VLS) epitaxy,
which is a technique that can be easily up-scaled. A key advantage of the VLS-method is that it
allows a very accurate deinition of the size and aspect ratio of a large quantity of simultaneously
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Figure . : (a): Darkield image of 5 μm long SOI-etched silicon nanowires with widths from 30 nm at the
let to 400 nm at the right. (b) sketch of magnetic ield generation in metal split-ring resonators
(let) and dielectric nanospheres (right), reprinted from Kuznetsov et al. [ ]. Copyright ( )
CC BY. (c) comparison of heat dissipation in gold (let) and gallium phosphide dimers (right),
adapted with permission from Albella et al. [ ]. Copyright ( ) American Chemical Society.

grown nanowires [ ]. In particular for silicon, another common approach is the lithographic
deinition of structures on the crystalline silicon layer on a silicon-on-insulator (SOI) substrate
[ , ]. A key advantage in this context is the almost perfect control of structure deinitions
thanks to the compatibility to state-of-the art CMOS technology procedures.

. . . Losses

A major disadvantage of plasmonic nanostructures for ield enhanced spectroscopy are the sig-
niicant losses associated to the large imaginary part of the dielectric permitivity in metals.
hese losses are responsible for signiicant heat generation in the particles which can be lethal
for fragile biomolecules. If the emiters survive the heating, their weak signals might be directly
re-absorbed by the lossy metal particle, neutralizing the efect of enhanced emission. Although
high-index dielectrics yield signiicantly lower ield enhancements, the associated losses are even
by several orders of magnitude smaller (see also Fig. . ). For structures of comparable ield en-
hancements, the diference in temperature gradients between plasmonic and dielectric particles
can reach several 100 ◦C [ , ] (see Fig. . c).

he very low losses are a key advantage of dielectric materials when it comes to spectroscopy
applications. However, the dissipation in plasmonic antennas can be used for localized heat
generation at a nanometer scale [ ] which on the other hand is not possible with dielectric
nanostructures.



. . . Electric Field Enhancement

Field enhanced spectroscopy is one of the main applications for plasmonic particles. High ield
enhancements are necessary in order to boost theweak signals from few or even singlemolecules.
Field enhancement in the vicinity of high-index semiconductor nanoparticles is essentially pro-
portional to the dielectric contrast between the particle (ϵr,1) and its environment (ϵr,0). his is
a result of the continuity conditions for ields across dielectric interfaces (see appendix A. )

E ∥,0 = E ∥,1 ϵr,0 E⊥,0 = ϵr,1 E⊥,1. ( . )

he normal component of the electric ield close to the particle is enhanced by the ratio of the
permitivities and possibly further ampliied due to the presence of resonant modes. For many
semiconductors, strong ield enhancement in the order of ≈ 100-fold ampliication of the ield
intensities are possible (ϵr > 10), where resonant optical modes further increase the efect [ ,
, ] (see Fig. . ). Also a tightly focused excitation can increase the ield enhancement and

lower the efective volume of high ield concentration [ ]. he enhancement factors are nev-
ertheless signiicantly lower than in plasmonics, where three orders of magnitude in intensity
enhancement can easily be achieved [ ]. While in plasmonics generally the strongest nearields
can be obtained, dielectric particles ofer larger volumes of ield enhancement [ ], which, under
circumstances, can be advantageous. he range of the strongest ield enhancement is in the order
of ≈ 1 nm for plasmonic antennas and ≈ 10 nm in dielectric nano-particles. his is in particular
advantageous when it comes to the fabrication of nano-particles featuring such small gaps. Re-
ported gain in luorescence rate using dielectric particles range from values ≈ 5 [ ] to ≈ 35
[ ].

. . . Magnetic Field Enhancement

Another noteworthy diference are strongmagnetic resonances in dielectric nanoparticles, which
are hard to obtain in plasmonic antennas [ , – ]. Magnetic dipolar resonances in dielectric
dimers can yield an ≈ 100-fold increase of magnetic ield intensities at visible frequencies [ ],
similarly strong as the electric ield enhancement. In plasmonics, comparable performances are
achievable only with complex asymmetric particle arrangements [ ] or in the infrared using
split-ring resonators [ ] (see also Fig. . b). he performance of magnetic ield enhancement
generally sufers from strong losses in plasmonic particles in the visible spectral range [ ].

he magnetic resonances in dielectric nanoantennas can be used to tailor the magnetic local
density of states [ ]. Furthermore they can lead to behavior similar to magnetic media in
actually non-magnetic (µr = 1) media. Because the magnetic resonances can be tuned to be of
comparable strength with the electric resonances, the so-called Kerker-condition (µr = ϵr , [ ])
can be fulilled even in dielectric media where clearly µr , ϵr , leading to strongly directional
scatering [ , , – ].

Apart from the visible spectral range, strong magnetic ields have been demonstrated in high-
index dielectric particles also for GHz [ ] and THz frequencies [ ].

. . . Scatering

Finally, despite very strong ield enhancements, scatering to the farield from plasmonic anten-
nas is limited [ ] and oten outperformed by their dielectric counterparts [ ], as demonstrated
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Figure . : Extinction and scatering eiciency spectra (top) as well as nearield enhancement (botom: E-
ield: red, B-ield: blue) in the gap of (a) a dimer of two silicon spheres with radius R = 80 nm
and (b) a gold dimer with R = 40 nm. Gap is R/4 in both cases. Sizes were chosen to obtain
resonances around λ = 600 nm. Incident planewave polarized along dimer axis. Dimers are
placed in vacuum. A sketch of the model and numerical mesh used in the simulations for the
gold and silicon dimers is shown above the plots.

by the numerical simulations comparing the scatering eiciencies from gold and silicon dimers,
shown in Fig. . . In summary, dielectric antennas may be equal or even favorable alternatives
to plasmonic systems, dependent on the targeted application.

. . Hybrid Plasmonic-Dielectric Nanostructures

In many regards, the plasmonic and dielectric platforms ofer complementary properties. It is
therefore not surprising, that eforts are being made to bring together both systems into hybrid
plasmonic-dielectric nanostructures and combine their mutual advantages.

High-index particles have been used for example as “sensors” for plasmons, coupling propa-
gating SPPs on metal surfaces to the farield [ ]. Inversely, metal particles were incorporated
in dielectric waveguides to ilter frequencies in the waveguide transmission around the plas-
monic particles’ resonance [ ]. In diferent works, the coupling between plasmonic particles
and dielectric nanowires was used to circumvent the polarization-anisotropy in scatering from
semiconductor nanowires [ , ]. In this context, metal/dielectric nanospheres were pro-
posed as “super-scaterers” with remarkably high scatering eiciencies due to superposition
of multiple resonances [ ] or inversely “super-absorbers” were designed by decorating sili-
con nanowires with plasmonic gold particles [ ]. In quantum dot doped NWs, lasing from
sub difraction-limit mode-volumes was realized by coupling to SPPs [ ]. Plasmonic anten-
nas were employed to boost photoluminescence from III-V semiconductor nanostructures via
strong ield enhancement [ ]. Hybrid waveguides were suggested that ofer spectrally broad
high power transmissions and could be promising for scanning-tip microscopy applications like
SNOM in order to guide light to few square-nanometer small sample areas [ ]. Concepts to
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improve directional emission have also been proposed on the basis of hybrid plasmonics. Com-
pared to an all-metal design [ ], enhanced directivity could be achieved using ametal antenna as
driving element and a low-loss dielectric antenna as director [ ]. In a similar work the signii-
cantly lower losses have been pointed out, using a dielectric component to reduce re-absorption
[ ]. Also, diiculties associated with the weak optical magnetism of plasmonic particles can
be avoided using mixed metal-dielectric structures [ ]. his might be an important concept if
strong magnetic ields are desired in the vicinity of metal structures. Finally, promising appli-
cations can also be found in photovoltaics. For example, paterned metal-ilms with embedded
silicon nano-pillars showed drastically increased absorption compared to non-paterned ilms,
while the low electrical resistance of the metal ilm was maintained [ ].

. Nonlinear Efects

All properties and applications of nano-photonic particles described above were based on a linear
optical response. If the amplitude of the exciting electromagnetic ield is high enough, nonlinear
optical efects occur, that can ofer a large range of unique functionalities beyond linear op-
tics. Probably the most popular nonlinear optical efect is harmonics generation [ ]. Among
this, the most prominent examples are second harmonic (SHG, illustrated in Fig. . a) and third
harmonic generation (THG, Fig. . c): Two (or three) photons of a fundamental wavelength λ0
are coherently up-converted (i.e. the process happens instantaneously, there are no interme-
diate states) to a single photon with λSHG = λ0/2 (or λTHG = λ0/3). Apart from harmonics
generation, other widely exploited nonlinear phenomena are: Sum- and diference-frequency
generation (not shown), four-wave mixing (FWM, Fig. . d) used for example in optical para-
metric oscillators and ampliiers [ , ], or two photon induced photoluminescence (TPL, see
Fig. . b), which is an incoherent conversion of two incident photons to one photon of shorter
wavelength (with λ0 > λTPL > λ0/2), involving intermediate states with inite lifetimes [ ,

].
he link between nonlinear optics and nano-antennas is the need of high ield amplitudes in

the former and the possibility to strongly enhance electric ields in the later. herefore nano-
photonic structures seem ideal candidates to evoke nonlinear efects and increasing interest is



being put on nonlinear nano-optics. In this section, we give an overview on current research and
on applications of nonlinear efects in nanometric plasmonic and dielectric systems.

. . Nonlinear Plasmonics

Following the outline of the previous section, we will start with some brief examples of current
research on nonlinear efects in plasmonics.

In gold, which is a centrosymmetric crystal, second order nonlinear efects such as SHG vanish
in the dipolar approximation [ ]. Nevertheless, by breaking the symmetry at the level of the
nano-structure design, signiicant SHG can be obtained from gold plasmonic antennas [ ]. It
turned out, that SHG can even be further enhanced using multi-resonant antennas with modes at
λ0 and λ0/2 [ – ], but the eiciency of propagation of SHG to the farield remains crucially
dependent onmicroscopic symmetries [ , ]. It has been shown, that by using a control beam
at λ0/2, the directionality and scatering eiciency of SHG can be controlled [ ]. Furthermore,
size dependent polarization efects occur in SHG from nanoparticles, that arise from diferent
physical processes at the origin of the nonlinear radiation [ , ]. Equally to SHG, also THG
can be heavily enhanced in resonant plasmonic antennas [ ]. Other nonlinear efects like sum-
or diference-frequency generation and four-wave mixing can also be enhanced [ , ]. Apart
from enhancement of nonlinear processes, the incoherent character of two photon luminescence
can be used to image spatial mode distributions in larger two-dimensional plasmonic resonators
[ , , , ]. A more extensive overview on nonlinear plasmonics can be found in reviews
on this topic, e.g. by Kauranen and Zayats [ ] or by Butet et al. [ ].

Despite all recent progresses in nonlinear plasmonics it has been shown that the eiciency
of nonlinear processes in metal nano-particles is inherently limited, mainly due to dissipation
processes [ ].

. . Nonlinear Efects in Dielectric Nanostructures

Because of lower losses and other advantages like compatibility to CMOS technology (for sili-
con), high-index dielectric structures may also be promising alternatives to nonlinear plasmon-
ics. Particularly nonlinear photonics on the silicon platform are subject of current research, with
the goal of implementing all-optical signal processing in Si-based microelectronic devices [ ].
hird-order nonlinear efects are very promising in this context, because of the inherently high
χ (3) of silicon. his allows enhanced third harmonic generation with factors of up to 105 com-
pared to bulk Si using photonic crystals [ ] or dielectric nano-antennas [ – ]. Harmonic
light can be produced, intense enough to be visible with the bare human eye [ ].

. . . SHG from Non-Centrosymmetric Materials

Despite the great prospects of third order efects, they can be experimentally inconvenient be-
cause the fundamental frequency has to be chosen in the infrared in order to obtain a response in
the visible. herefore, second order efects and in particular second harmonic generation (SHG)
are subject of current research. In this context, dielectrics with a non-centrosymmetric crystal
ofer a great advantage over plasmonics, because SHG can be generated from the bulk crystal
itself.



Strong second harmonic light could be for example generated from subwavelength small Al-
GaAs cylinders and was found to be enhanced by magnetic Mie resonances [ ]. Using this
strong SHG in nonlinear farield-microscopy was used to reveal the spatial paterning of hybrid
guided- / Mie-modes (see also [ ]) in GaAs nanowires [ ]. Control on properties of nonlinear
efects has also been reported. For example the directionality of the (strongly enhanced) SHG
from ZnTe NWs [ ] or AlGaAs nanodiscs [ ] can be controlled by means of the incident
beam polarization and the particle’s aspect ratio. Also the polarization of the SH light in the
farield could be controlled by modal engineering in GaP nanopillars [ ].

. . . SHG from Centrosymmetric Materials

Elemental silicon is among the experimentally most convenient materials. Unfortunately, like all
elemental crystals with face-centered cubic (fcc) latice, bulk Si has an inversion symmetry and
therefore doesn’t support second order nonlinear efects in the dipolar approximation.

Nevertheless, second order nonlinear efects and particularly SHG is still of interest in cen-
trosymmetric nano-particles. Due to a breaking of the inversion symmetry at interfaces and with
large surface-to-volume ratios in small particles, the efective nonlinear susceptibility is actually
non-zero. Furthermore, ield-gradients can arise due to tight focusing or resonant optical modes,
that also break the symmetry locally and support a second-order nonlinear response. herefore,
a lot of theoretical work has been done for SHG from nanoparticles of centrosymmetric materi-
als [ – ]. Experimentally, enhancement of SHG has been reported for example from SiNW
arrays (> ×50 compared to bulk) [ ]. Also Si photonic crystals can enhance SHG and THG
signiicantly, even under cw excitation suiciently strong ields could be obtained to generate
measurable second harmonic light. Radiation paterns conirmed in these experiments, that THG
is indeed generated within the bulk, while SHG is a surface efect [ ]. As SHG requires a break-
ing of the symmetry at some point, strained dielectric slabs have been studied in this context as
well. And indeed, a good enhancement of SHG from strained silicon [ , ] or germanium
waveguides [ ] was found. However, it has been recently reported that the inluence of strain
on the bulk second order susceptibility of silicon had been overestimated earlier [ ].

. . Hybrid Plasmonic/Dielectric Structures

Also in nonlinear nano-optics, atempts are being made to combine advantages of plasmonics
and high-index dielectrics. A tremendous increase of THG by a factor of 106 could be achieved
by coupling indium-tin-oxide (ITO) to the enhanced nearield of a plasmonic antenna [ ]. In an
other work, the eiciency of FWM (Fig. . d) could be increased using a hybrid silicon/plasmonic
waveguide [ ].

. . Applications

Probably the best motivation for further investigations on nonlinear properties are the mani-
fold possible applications of nonlinear optical efects in nano-structures. he fact that SHG from
centrosymmetric crystals is a surface efect is widely exploited for macroscopic surface char-
acterization [ – ]. But also on a nanometer scale, characteristic surface signatures can be
obtained from SHG spectroscopy. he surface second harmonic light from gallium-nitride (GaN)
nanowires for example contains a signature of the surface orientation [ ] or aluminum grain



boundary interfaces can be analyzed by SHG microscopy [ ]. Nonlinear optical efects are
also widely used in signal processing based on silicon photonics [ ]. As an example, a passive
optical modulator was realized thanks to a strain-induced increase in nonlinearity by one order
of magnitude in silicon waveguides [ ]. Also ultrafast all-optical switching can be obtained in
silicon nano-structures, making use of a spectral shit of the magnetic dipole resonance caused
by two-photon absorption [ ]. Apart from quantum computing, where a lot of efort is put in
both linear [ – ] and nonlinear [ ] optical techniques, optical computing might also be
done in a more classical way, basing on optical switching. An optical transistor would require
some nonlinear optical phenomena in order to achieve a switching behavior. Such a device has
been proposed as early as by Jain and Prat Jr. [ ] who suggested that a refractive-index
perturbation induced by a “base” beam could be used to nonlinearly control the intensity of SHG
from the device by a variation of the phase-matching condition. In this device, the equivalent to
the collector would be the fundamental incident beam and the emited SHG would correspond
to a transistor’s emiter. More recently, a polarization controlled logical element was proposed
using TPL from plasmonic nanostructures supporting higher-order spatial modes [ ].

Equivalently to surface second harmonic generation, SHG is highly sensitive to small changes
of the nano-particle geometry, which has been proposed to be exploited for far-ield measure-
ments of few nanometer small distances using a kind of optical “nano-ruler” [ ]. Infrared-
excited SHG from dielectric GaP nanoparticles has been proposed as femtosecond nanome-
ter light source at visible frequencies for applications related to bio-imaging [ ]. In such
nano-probes, engineering of the geometry allows to shape the modes and thereby the harmonic
nearield as well as its polarization state. In the context of nano-scale localized sensing, it has
been shown that a nonlinear response can ofer about one order of magnitude higher sensitivity
to changes in the refractive index compared to linear optical refractive index sensing [ ]. An
other work-group used cadmium-sulide (CdS) NWs as nanometer scale optical correlators which
opens perspectives for on-chip ultrafast optical technologies [ ]. Finally, nonlinear efects can
be used in bio-medical applications. SiNWswere used as biomarkers and excited with an infrared
fs-laser. he detected THG provides not only the biomarkers’ positions but also information on
their orientation due to anisotropic THG as a result from the high aspect ratio of the NWs [ ].

. Scope of this Work

he focus in this work will be put on nonlinear efects in dielectric structures, in particular in
silicon nanowires. In the irst part (page and following), the fundamental electro-dynamical
theory will be introduced and an introduction to nonlinear optical efects will be given. We will
give an overview on the Green dyadic method (GDM), a technique for the numerical modeling of
the response of nano-objects to an excitation by electromagnetic ields. In this context, also for
nonlinear optical efects a numerical description will be presented and discussed (page and
following).

In the second part (page and following), a thorough study of the optical behavior of silicon
nanowires (SiNWs) in the visible spectral range will be performed. At irst, the linear optical
properties will be discussed. Subsequently the nonlinear optical response will be subject of an
experimental and theoretical analysis. Finally, second harmonic generation (SHG) will be exam-
ined in detail and we will ind, that the origin of the frequency doubling in SiNWs depends on
the polarization of the fundamental ield as well as on the size of the nanowires, which opens



interesting perspectives for further studies of surface SHG from nanowires or for applications
which require control of the harmonic emission.

In the last part (page and following), we will discuss the more technological problem of
nanostructure design. As described above, optical properties of photonic nanostructures can be
tailored to speciic needs. For this, usually some reference design is chosen by intuitive con-
siderations. By a systematic analysis of the system, the desired properties are maximized sub-
sequently. However, inding optimum geometries for a given problem is not trivial, and oten
trade-ofs have to be made. We therefore tackle the problem in an inverse way: Ater deining the
desired optical properties, a corresponding geometry is searched using evolutionary optimiza-
tion algorithms. We show, that using a thorough deinition of the problem and structure model,
this technique can be used for the optimization and automatic design of photonic nanostructures
with regards to various optical properties. To demonstrate the approach, we apply evolutionary
optimization on silicon nanostructures to obtain maximum SHG as well as on plasmonic nanoan-
tennas for directional scatering. At last, we employ an even more general multi-objective evo-
lutionary algorithm in order to simultaneously maximize scatering at two target wavelengths
in multi-resonant dielectric nano-scaterers. he optimized structures are inally fabricated by
electron-beam lithography and the predictions of the experiment are veriied experimentally.



Chapter

Modeling Optical Efects at the Nanoscale

W James Clark Maxwell worked out his groundbreaking equations in the s [ ],
he noticed that they naturally describe a fundamental property of electromagnetic
ields: he ability to propagate as waves at the speed of light – even in vacuum,

independent of any carrying medium. Electromagnetic waves in a range of wavelengths from
the ultraviolet to the far infrared (some 10 nm to several 10 μm) are usually referred to as light,
including the visible light from around 400 nm to 700 nm. he description of efects from the
interaction of light with subwavelength small particles will be the scope of this chapter.

. Definition of the Problem

Generally, the goal of nano-optical problems is to ind the electric (and / or magnetic) ields in a
particular nanostructure under external excitation, like illustrated in igure . a. he nanostruc-
ture is usually placed in a homogeneous environment and oten lies on top of a substrate. he
external excitation is usually realized by a laser beam. Other possible fundamental ields such
as electron beam excitation [ ] are outside the scope of this work but can be treated formally
equal to “classical” electromagnetic ields [ ].

he response of a nanoparticle to an illumination is obtained by resolvingMaxwell’s equations
for the given system. In the irst part of this chapter we will introduce the fundamental electro-
dynamical theory. We then present a volume integral approach for the numerical resolution of
Maxwell’s equations based on Green’s dyadic functions. In the last part we give an introduction
to nonlinear optics and present an extension of the numerical model for the description of Second
Harmonic Generation.



. Electrodynamics

. . Maxwell’s Equations

All kind of electromagnetic phenomena are entirely explained by the four Maxwell’s equations
which write (in SI units):

divD = ρ ( . a)

rotE = −∂B
∂t

( . b)

divB = 0 ( . c)

rotH = ∂D
∂t
+ j ( . d)

with the current density j, the charge density ρ, the electric ieldE and electric displacementD as
well as the magnetic ield B and the magnetizing ield H. All above ields are functions of space
(r) and time (t ). Interaction of mater with light is described by solutions for the electromagnetic
ields that fulill Maxwell’s equations for the considered system. Most commonly, the electric
displacement is related to the electric ield using the electric polarization density P

D = ϵ0E + P ( . )

and the magnetizing ield to the magnetic ield using the magnetization density M

H =
1

µ0
B −M ( . )

he response of material to ields is represented by this electric polarization and magnetization
(see igure . a). hey are deined as the electric dipole moment dp and the magnetic moment dm
per volume element dV , respectively (for details, see e.g. [ , chapter . and . ]):

P =
dp
dV = ϵ0χ E ( . a)

M =
dm
dV = χmH ( . b)

Like the ields, both the polarization and the magnetization are functions of space and time. he
right-hand side terms are irst-order Taylor expansions ofP andM as function of the electric and
magnetizing ields, respectively. hese linear approximations are valid only for linear materials.
We will see in section . , that we can describe non-linear efects by introducing higher-order
terms to the equations for the polarization and magnetization.



ϵ0, µ0

E0, B0

ϵr (ω), µr (ω)

P(r,ω), M(r,ω)

(a) Nano-Object in Vacuum

(b) Slowly Varying Field

(c) Rapidly Varying Field

Figure . : (a) shows an arbitrary object placed in vacuum made of a material characterized by ϵr and µr .
Its response to incident electromagnetic ields E0, B0 can be described by the polarization P

and the magnetization M. In (b) a nano-object which is small compared to the wavelength is
shown, whereas in (c) a particle is shown with large size compared to the wavelength.

. . Dielectric Permitivity

heabove equations together with eq. ( . ) and ( . ) yield the so called constitutive relations [ ,
chapter . ]

D = ϵ0ϵr E ( . a)
B = µ0µr H ( . b)

with χ = ϵr − 1 and χm = µr − 1. ϵr and µr are the relative dielectric permitivity and mag-
netic permeability, respectively. hey are deined as the ratios of the material’s permitivity and
permeability relative to the vacuum values ϵ0 and µ0.

For simplicity, we will consider in the following only non-magnetic media, i.e. we assume
µr = 1 and consequently M = 0.
he dielectric permitivity describes the wavelength dependent response of a material to elec-

tromagnetic ields. All interplaying physical efects are phenomenologically combined in this
material constant. he refractive index is linked to ϵr and µr by

n =
√
ϵr µr =

√
ϵr (non-magnetic media) ( . )

Note that ϵr is complex in our notation, the imaginary part is responsible for energy dissipation.
For details see for example [ , chapter . ].

In the following, we will give a brief comparison of the dielectric behavior of metals and di-
electrics.
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(a) Gold
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(b) Silicon

Figure . : Dispersion of gold (a) and silicon (b). he permitivity is drawn in red, the refractive index in
black color. he respective real parts are shown with solid, imaginary parts with dashed lines.

. . . Metals

In metals, an impinging electromagnetic wave induces collective oscillations of the conduction
electrons, so-called surface plasmon polaritons (SPP) [ ]. Because of electromagnetic screening
due to the free carriers at visible frequencies, those oscillations are bound to a small volume at
the surface of the metal, characterized by the skin-depth [ ] (see eq. ( . )). he screening efect is
described by a negative real part of the dielectric permitivity, leading to purely evanescent ields
inside metals. he collective electron oscillations can be driven to a resonance at the so-called
plasma frequency ωp.

he permitivity of gold (from [ ]) is shown as an example in Fig. . a. he non-zero Im(ϵr )

is responsible for thermal dissipation. As consequence of this, together with the negative real
part of ϵr , the imaginary part of the refractive index n is much larger than its real part. his
generally relects the fact that electromagnetic waves are strongly damped inside the metal.

he relative permitivity of metals can be roughly approximated by the Drude model [ ].
Following the notation of Johnson and Christy [ ], the permitivity can be writen using a
Lorentzian oscillator model

ϵr (ω) =
ω2
p

ω2
p − ω2 − iω/τe

( . )

with the electron relaxation time τe and the plasma frequency ωp [ , chapter ]

τe =
mσ

Nee2
, ωp =

√

Nee2

ϵ0m
( . )

where ϵ0 is the vacuum permitivity, σ the Drude conductivity, Ne the electron number density,
e the electron charge andm its efective mass. For frequencies suiciently far below the plasmon
resonance at ωp, this is a reasonable approximation.



. . . Dielectrics

In dielectrics, the absence of free charge carriers results in an entirely diferent dispersion rela-
tion. Dielectrics respond to electric ields by a local displacement of bound charges relative to
the latice atoms. No screening takes place and electromagnetic ields can propagate inside the
medium. herefore, the relative permitivity is positive in dielectrics.

In Fig. . b, the dispersion of silicon (from [ ]) is shown as an example. If the photon energy
is lower than the direct band gap (in Si at around 370 nm), the dielectric constant is mainly real
and positive valued. he refractive index is also almost purely real and very high – between 3
and 4 throughout the visible and infrared. In consequence silicon absorbs very litle compared
to metals. If the photon energy is higher than the direct bandgap, free carriers can be excited
and the dielectric permitivity is not necessarily positive anymore. his can be seen in the silicon
dispersion below λ ≈ 370 nm

Generally, the dispersion of dielectrics can also be described by an oscillator model, formally
equal to equation ( . ). For silicon, very accurate dispersion models for the visible spectral range
exist, using multiple oscillators [ , ].

. . uasistatic Approximation

Before we elaborate a way to obtain general solutions of Maxwell’s equations, let’s consider a
particular case of light-mater interaction. In structures whose dimensions are much smaller
than the wavelength, thus d ≪ λ0, efects induced by a varying ield amplitude along a structure
(so-called retardation) can usually be neglected. Such a situation is shown in igure . b. he
electric ield over the whole particle is regarded as totally in phase. his is referred to as the qua-
sistatic approximation, in which the displacement current ∂D/∂t is neglected and equation ( . d)
simpliies to

rotH ≈ j ( . )

which is known as Ampere’s law.
For metal nanoparticles, the ield decays exponentially from the surface towards the bulk core.

In this case, the quasistatic approximation requires the further condition that the size of the
nanoparticle is small compared to the skin depth [ ]

dskin =
λ0

2π

√

ϵ0 + ϵr

ϵ2
0

( . )

which is given here for a particle of permitivity ϵr placed in vacuum. For metal structures signif-
icantly smaller thandskin, the internal ield can be considered homogeneous over the nanoparticle
and proportional to the external ield.

Many theoretical models in nano-optics are based on this approximation. A prominent exam-
ple is the so called Rayleigh scatering, scatering from very small subwavelength particles in the
quasistatic limit [ ]. Rayleigh scatering is responsible for the blue color of the sky. As we
will see in more detail in section . , also second harmonic generation from dielectric nanopar-
ticles can be analytically described by making simpliications like the assumption of quasistatic
ields [ , ].
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Figure . : Sketch of a monochromatic electromagnetic wave.

. . Problems Including Retardation Efects

he quasistatic approximation can only be applied on particles whose size is signiicantly smaller
than the wavelength of the incident light. For particles large compared to the wavelength like the
one illustrated in igure . c, retardation efects occur and Maxwell’s equations must be solved
rigorously in order to describe the resulting phenomena.

. . . Time Harmonic Fields in Phasor Representation

We will see that it is of enormous practical advantage to consider monochromatic ields. his
is not such a restriction as it might occur in the irst place because the use of harmonic waves
as ansatz for the solution of Maxwell’s equations can subsequently be generalized to arbitrarily
time-dependent ields by a superposition of harmonic ields and inverse Fourier transformation.
In the following, we will therefore express all ields using complex exponentials:

E(r, t ) = Ê0 (r) e
i(−ωt+ϕ ) ( . )

with the amplitude Ê0, the wavevector k0, the angular frequency ω and a phase ϕ. As we treat
harmonic oscillations, the angular frequency is a convenient way to express the wavelength λ

and writes:
ω =

2πc

λ
= k0c ( . )

with the wavenumber k0 = |k0 | and the speed of light c

c =
1

√
ϵ0µ0

( . )

It is possible to separate the phase ϕ from the argument of the exponential in eq. ( . ) and
include it in the complex amplitude:

E(r, t ) = Ê0 (r) e
−iωt eiϕ = E0 (r) e

−iωt ( . )

he amplitude E0 (r) = Ê0 (r) e
iϕ is called a phasor or, more literally, a complex amplitude. he

imaginary part of E0 contains the total phase information which is given by the angle in the



complex plane
ϕ (r) = atan

(

Im
(

E0 (r)
)

,Re
(

E0 (r)
))

. ( . )

ϕ is also a function of space. he real part of the complex ield E(r, t ) represents the physical
amplitude of the electric ield at time t . We note that it is possible to sum, substract or diferentiate
phasors without limiting the generality.

he above expressions hold equally for the magnetic ield of electromagnetic waves.

. . . Wave Equation

he time-harmonicity of the ields can now be used to explicitly perform the diferentiation
∂/∂t in equations ( . ) which leads to the macroscopic, Fourier transformed Maxwell’s equa-
tions (compare with [ , chapter . ]):

divD(r,ω) = ρ (r,ω) ( . a)
rotE(r,ω) = iωB(r,ω) ( . b)
divB(r,ω) = 0 ( . c)
rotH(r,ω) = −iωD(r,ω) + j(r,ω) ( . d)

Maxwell’s equations represent a coupled system of linear, partial diferential equations. hey
can be decoupled by applying the vectorial curl operator (rotA = ∇ × A) on equation ( . b)
and substituting with eq. ( . d). By then making use of the relations between the electric ield
and the displacement and between magnetizing ield and magnetization (Eqs. ( . ) and ( . )), we
obtain

rot(rotE) = iω rotB
= iωµ0

(

rot(H +M)
)

= iωµ0 (−iωD + j)
= iωµ0 (−iωϵ0ϵrE + j)

= ϵr
ω2

c2
E + iωµ0j

( . )

We consider non-magnetic media and thereforeM = 0. Using the identity

∇ × (∇ ×A) = ∇(∇A) − ∆A ( . )

and
D = ϵ0E + P ⇒ divD = ϵ0divE + divP = 0 ( . )

we ind
ϵr
ω2

c2
E + ∆E =

−1
ϵ0ϵr
∇(divP) − iωµ0j. ( . )

Eq. ( . ) means that we consider only media with vanishing free charge density (ρf = 0 → ρ =

ρb ), in order to be able to make some further simpliications .

ρb is the bound charge density where by deinition holds ρb = −divP, see for example [ , chapter . . ]
he reason why the simpliication of a dielectric constant works also in the case of metals where free carriers

seem to exist is because the dielectric function is based on the macroscopic Maxwell’s equations (Eqs. ( . )). When



With the speed of light c2 = (ϵ0µ0)
−1 and the wavenumber inside the non-magnetic medium

k =
√
ϵr k0 =

√
ϵr ωc

−1 this becomes

(∆ + k2)E =
−1
ϵ0ϵr
∇∇P − iωµ0j. ( . )

In linear materials, dipolar approximations of the bound charge density ρb (r,ω) and the current
density j(r,ω) can be developed by means of the electric polarization ( . a)

ρb = −∇P ( . )

j =
∂

∂t
P = −iω P. ( . )

While the later relation is evident because we are assuming time-harmonic ields, Eq. ( . ) can
be easily derived from the deinition of the electric polarization density (see for example [ ,
chapter . . ]).
Inserting ( . ) in equation ( . ) (we included Eq. ( . ) in our derivation already using

Eq. ( . )) eventually brings us to the wave equation for the electric ield:

(∆ + k2)E = − 1

ϵ0ϵr
∇∇P + ω2µ0P ( . )

(∆ + k2)E = − 1

ϵ0ϵr

(

k2 + ∇∇
)

P. ( . )

We want to point out, that this equation is formally identical to the mechanical wave equation
describing for example an oscillating string [ , chapter . ]. In the case of the electromagnetic
wave equation, the speed of the propagation is the speed of light c which eq. ( . ) contains
implicitly through the wavenumber k . Furthermore the waveequation is found to be a more
general form of Poissons’ equation in electrostatics, which it becomes in the static case, i.e. when
k = 0 [ ].

While we will limit our considerations to non-magnetic media, we point out as a inal note
that an analogous wave equation can be found likewise for the magnetic ield (see for example
[ , chapter . ]).

. . Green’s Functions

In order to solve an inhomogeneous linear partial diferential equation like the wave equation,
the concept of Green’s functions is a versatile tool. At irst we want to illustrate the basic idea.
For this we start with a diferential equation

LA(x ) = д(x ) ( . )

integrating the macroscopic system, free charge carriers only exist if the metal is actually charged. If this is not the
case, a dielectric function can indeed be used to describe the metal’s optical properties including plasmonic efects.



where L is an arbitrary linear diferential operator and д(x ) the inhomogeneity of the diferential
equation. It would be pleasant to obtain something like an inverse of the diferential operator L
in order to write A(x ) = L−1д(x ). Unfortunately, the operator L can in general not be inverted .
he principle idea is therefore to search an operator G for which holds

LG = 1 ( . )

If it is possible to ind such an operator G, we obtain also a particular solution of eq. ( . ):

LA(x ) = (LG )д(x ) = L(Gд(x )) ⇒ A(x ) = Gд(x ) ( . )

Instead of searching an operator G for the inhomogeneity “1” as we did in eq. ( . ) for our
demonstration, it turns out to be of more general use to consider a point-source-like inhomo-
geneity deined by a Dirac delta function δ (x − x ′)

LG (x ,x ′) = δ (x − x ′) ( . )

Note that in general, the Green’s function G deined by eq. ( . ) is not only dependent on the
parameter of the diferential equation (here x ), but also on the position of the inhomogeneity x ′.
Multiplication with the original inhomogeneity and integration of eq. ( . ) leads to

∫

LG (x ,x ′)д(x )dx =

∫

δ (x − x ′)д(x )dx

= д(x )

= LA(x )

( . )

Making use of the linearity of L we inally have:

A(x ) =

∫

G (x ,x ′)д(x )dx ( . )

hus we solved the diferential equation for arbitrary inhomogeneities д(x ), provided thatG can
be found from eq. ( . ). Note that we assumed here that L can be pulled out of the integral in
eq. ( . ).

. . Green’s Function for the Electromagnetic Wave Equation

Let’s write again the wave equation for the electric ield (eq. ( . ))

(∆ + k2)E = − 1

ϵ0ϵr

(

k2 + ∇∇
)

P ( . )

By assuming time-harmonic ields, we could eliminate the time-derivatives in Maxwell’s equa-
tions which rendered eq. ( . ) to the form of a Helmholtz equation:

(∆ + k2)A(x ) = д(x ) ( . )

or the Method of Green’s functions is simply much easier to employ or yields a more general solution



As depicted in section . . , the associated Green’s functionG0 is deined by considering a Dirac
function as inhomogeneity:

(∆ + k2)G0 (x ,x
′) = δ (x − x ′). ( . )

From this deinition, G0 is found to be

G0 (r, r
′) =

1

4π
· e
± ik |r−r′ |

|r − r′ | =
e± ikR

4πR
. ( . )

In the later equation, we replaced the parameter x by the distance R = |R| = |r − r′ | between
source point r′ and observation position r. For a detailed derivation of eq. ( . ) see for example
[ , chapter . ] or [ , chapter . ].

he scalar Green’s Function for the wave equation (equation ( . )) corresponds to an incom-
ing (minus sign) or outgoing (plus sign) spherical wave. Ater equation ( . ), solutions of the
wave equation can be writen as an integral over this scalar Green’s function. his is equivalent
to a superposition of spherical waves and thus identical to the Huygens-Fresnel principle.

. . Dyadic Green’s Function

An electric dipole oscillating in X direction will in general induce an electric ield with x ,y and
z components. As a consequence, the scalar Green’s function (eq ( . )) is not fully suicient to
develop solutions of the wave equation. We therefore need to extend the scalar Green’s function
to a notation that corresponds to the vectorial character of the ields. Following [ , chapter
. ], we can deine a Green’s function for each component of the electric ield

(∆ + k2)Gx (r, r
′,ω) = nx · δ (r − r′) ( . )

where Gx is a vector composed of scalar Green’s Functions and nx is the unit vector in X direc-
tion. By doing the same for the Y and Z direction and the according components of the electric
polarization, we can write

(∆ + k2)Gdyad (r, r
′,ω) = I · δ (r − r′) ( . )

with the unit tensor I. Gdyad (in bold type) is a tensor with 3 × 3 components (because we are
dealing with three-dimensional ields) and is called a Green Dyad, Green tensor or Dyadic Green’s
function. Dyadic Green’s functions are a tight notation for N N -dimensional Green’s functions.

In the following, we will deine the Dyadic Green’s function slightly diferently. he concept
however is identical to the here presented description.

. Green Dyadic Method

Ater having presented the theoretical basis of electrodynamics and a short introduction to
Green’s formalism in the previous section, we nowwant to explicitly solve the wave equation for
an arbitrary object placed in a homogeneous environment. For simplicity, we continue consid-
ering monochromatic (i.e. time-harmonic) waves propagating in linear, isotropic, homogeneous
and non-magnetic media.



We will start with the derivation of the “Lippmann-Schwinger equation”, which deines the
self-consistent problem associated to the depicted coniguration. We will develop the explicit
form of Green’s Dyad for a homogeneous environment and will subsequently present a method
for the numerical resolution of the optical Lippmann-Schwinger equation. he generic term for
the resolution of the wave equation by means of Green Dyadic functions is, for obvious reasons,
Green Dyadic Method.

. . Lippmann-Schwinger Equation

By deining two operators (following the way of proceeding of Girard [ ])

A = ∆ + k2 B = − 1

ϵr

(

k2 + ∇∇
)

( . )

we can write the wave equation for the electric ield (eq. ( . )) in a more compact form

A E(r,ω) =
1

ϵ0
B ·P. ( . )

We now apply the concept of Green’s functions (see section . . )

AG0 (r, r
′,ω) =

1

ϵ0
B δ (r − r′). ( . )

We formally make use of the invertibility of the Laplacian [ , vol. , “elliptic operators”] and
write

G0 (r, r
′,ω) =

1

ϵ0
A−1 B δ (r − r′). ( . )

By comparing the later with the particular solution of equation ( . ), we get

Ep (r,ω) =
1

ϵ0
A−1 B ·P

=

1

ϵ0
A−1

∫

B ·P(r′,ω)δ (r − r′)dr′

=

1

ϵ0

∫

G0 (r, r
′,ω) · P(r′,ω)dr′.

( . )

For the general solution of the electric ield, we have to add the solution E0 of the homogeneous
wave equation (in absence of any polarizing material, i.e. with inite electric susceptibility).
Usually this will be the incident ield – or in other words, the exciting ield. We get

E(r,ω) = E0 (r,ω) +
1

ϵ0

∫

G0 (r, r
′,ω) · P(r′,ω)dr′. ( . )

his equation signiies a remarkable result: Provided we have an expression forG0 we now know
the emited electric ield at every position in space for arbitrary polarization densities.

If we recall the linear approximation P = ϵ0χE of the polarization as function of the electric



ield which we introduced in section . . , we can inally write for linear media

E(r,ω) = E0 (r,ω) +

∫

G0 (r, r
′,ω) · χE(r′,ω)dr′ ( . )

where the integration is performed over the “source region”, which is the volume where material
exists with an electric susceptibility other than that of vacuum, i.e. χ , 0. Equation ( . )
is the vectorial Lippmann-Schwinger equation for the electric ield – a widely used equation in
quantum mechanical scatering theory . uantum mechanics shares many formal ideas with
optics – as one example, we remind of the close relation between particle wave functions and
electromagnetic waves – so this analogy does not surprise too much.

We note that in a homogeneous and isotropic environment, the electric susceptibility of by
themselves (piecewise) isotropic and homogeneous objects placed in this environment can be
generalized very easily using their relative electric permitivities

χrel. (r,ω) =

ϵr,mat. (r,ω) − ϵr,env. (ω) for r inside the object(s)
0 for r in the environment

. . Field Susceptibility for a Homogeneous Environment

For the explicit solution of the Lippmann-Schwinger equation ( . ), we need to ind an analytical
expression for the Dyadic Green’s function

G0 (r, r
′,ω) =

1

ϵ0
A−1 B δ (r − r′). ( . )

With the scalar Green’s function G0 deined by the Helmholtz equation (see section . . )

A ·G0 (r, r
′,ω) = δ (r − r′) ( . )

we can write
G0 (r, r

′,ω) = A−1 δ (r − r′). ( . )

Multiplication with B yields

B ·G0 (r, r
′,ω) = B ·A−1 δ (r − r′)
= A−1 · B δ (r − r′)

( . )

where we used the commutability of partial diferentiation of continuous functions in the last
step [ , chapter . ].

Comparison with eq. ( . ) and using the outgoing variant of the scalar Green’s function (plus
sign in eq. ( . )) leads us to the relation between the scalar and the Dyadic Green’s function and

To be precise: uantummechanics uses it’s scalar counterpart, describing probability densities for particle positions



with that to the explicit form of the later

G0 (r, r
′,ω) =

1

ϵ0
B ·G0 (r, r

′,ω)

=

1

ϵ0
B ·e

+ikR

4πR

=

1

4πϵ0ϵr

(

− k2T1 (R) − ikT2 (R) + T3 (R)

)

eikR

( . )

where we used again the abbreviations R = r − r′ and R = |R|. In analogy to related literature
[ , , ], we introduced the three tensors

T1 (R) =
RR − IR2

R3
( . )

T2 (R) =
3RR − IR2

R4
( . )

T3 (R) =
3RR − IR2

R5
( . )

where RR is the tensor-dot-product of the two vectors. Note that T1 describes farield efects
while T2 and T3 account for the nearield with (T2) and without retardation (T3 – quasistatic
approximation, see section . . ).

he Green’s Dyad G0 is also referred to as the ield susceptibility, because it can be seen as a
generalization of the electric susceptibility. If we multiply G0 (r, r

′,ω) with a dipole p at r′ the
result is the ield at position r, emited by this dipole. his is also why G0 is furthermore called
a propagator – it mathematically propagates the electric ield of a source into free space.

. . . Objects in Multi-Layer Environments

he above derived ield susceptibility G0 describes polarizing material in a homogeneous envi-
ronment. One of the main advantages of Green’s Dyadic Method is the possibility to easily add
analytically solvable constraints to the observation system like for example a substrate (such as
illustrated in ig. . ). For doing so, we can make use of the required linearity of G0 and simply
add the Green’s Dyadic function describing the inluence of additional boundaries like a substrate

Gtot. = G0 +Gsubstrate ( . )

Such a surface Dyad can be found for instance using the method of mirror charges. For details
and descriptions of eicient computational methods, we refer to the works of Cai and Yu [ ]
or Paulus et al. [ ] where also a generalization to multi-layered systems is presented.

. . . Periodic Structures

In the same manner like multi-layered environments, periodically repeated structures can be
treated: By including a Bloch periodicity in the Ansatz for the electric ield, a Dyadic Green’s
function can be derived that correctly accounts for interference efects from a two-dimensional

in terms of Physics, the linearity of an operator describes the superposition principle



(a) Arbitrary Nanostructure (b) Cubic Volume Discretization

Figure . : (b) shows a cubic volume discretization of an arbitrary nanostructure, illustrated in (a), which
is composed of multiple elements lying on a substrate.

array made of an elementary computation cell [ – ]. he GDM is therefore also a powerful
tool in the design and simulation of metasurfaces.

. . . Two-Dimensional Problems

Using appropriate Green’s functions, also two-dimensional problems can easily be treated, i.e. in-
initely long structureswith arbitrary cross-sections [ , ]. his technique is useful as amode
solver for waveguides [ ]. Also particles with very high aspect-ratios like silicon nanowires
can be approximated using the GDM-2D technique with very rapid convergence. his will be
used later in this thesis.

. . Volume Discretization

For arbitrarily shaped objects, the integral in the Lippmann-Schwinger equation ( . ) can gen-
erally not be solved analytically. In the following we describe a numerical approach for its so-
lution which requires the transition from the integral to a sum over inite size volume elements
(see also [ ]):

E(ri ,ω) = E0 (ri ,ω) + χ (ω)

N∑

j=1

Gtot. (ri , rj ,ω) · E(rj ,ω) ·Vcell ( . )

where we discretized the nano-object using N cubic volume elements as illustrated in igure . ,
with side length d and thusVcell = d3. For reasons of clarity the dependency on the frequency ω
will be omited in the following. We can rewrite eq. ( . ) as follows

E0 (ri ) = E(ri ) − χ

N∑

j=1

Gtot. (ri , rj ) · E(rj ) ·Vcell

=

N∑

j=1

(

δi jI − χVcell ·Gtot. (ri , rj )
)

· E(rj )
( . )



where δi j is the Kronecker delta and I the Cartesian unitary tensor.
Let us now deine two 3N -dimensional vectors containing the ensemble of all electric ield

vectors in the discretized nano-object

E0,obj. =
(

E0,x (r1),E0,y (r1),E0,z (r1), E0,x (r2), . . . , . . . , E0,z (rN )
)

( . )

Eobj. =
(

Ex (r1),Ey (r1),Ez (r1), Ex (r2), . . . , . . . , Ez (rN )

)

. ( . )

Together with the 3N × 3N matrixM composed of 3 × 3 sub-matrices

Mi j = δi jI − χVcellGtot. (ri , rj ) ( . )

we obtain a coupled system of 3N linear equations

E0,obj. =M · Eobj. . ( . )

If we are able to determine the inverse of the matrix M deined by eq. ( . ), we can calculate
the ield E inside the structure for all possible incident ields E0 (at frequency ω) by means of a
simple matrix-vector multiplication:

Eobj. =M−1 · E0,obj. . ( . )

In the following, we will use the symbol K for the inverse matrix

K(ω) =M−1 (ω) ( . )

which we will call the generalized ield propagator as introduced by Martin et al. [ ].
Finally, with equation ( . ), we can use the ield susceptibility with the ield inside the particle

in order to calculate the total electric ield at any point outside the nanostructure.

. . . Renormalization of Greens Dyadic Function

When integrating the source region, we integrate scalar Green’s functions of the form of spherical
waves

f (r, r′) =
eik |r−r

′ |

|r − r′ | . ( . )

Obviously, this function diverges if r = r′, which occurs when the ield of a point dipole pδ (r−r′)
is being evaluated at the dipole’s position r′. As a consequence, in order to remove this singu-
larity we need to apply a regularization scheme when integrating the polarization distribution
in equation ( . ) over the volume of its extension [ ]. For a three dimensional cubic mesh, a
simple renormalization rule for the free-space Green’s Dyad is found [ , section . ]

Gcube
0

(ri , ri ) =
−1

3ϵr,envd3
I. ( . )
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Figure . : (a) shows the calculated scatering spectra of a silicon nanowire discretized using cubic and
hexagonal meshes. he meshes are shown in (b) and (c) perpendicular to the long axis of the
wire.

A hexagonal compact mesh in 3D can be regularized analogously using [ , section . ]

Ghex
0

(ri , ri ) =
−
√
2

3ϵr,envd3
I ( . )

with d the stepsize of the volume discretization. While a cubic cell has a volume of Vcell =
d3, in the hexagonal compact case, the volume of a cell equals Vcell = d3/

√
2 and also must be

accordingly adapted in Eq. ( . ). Because it treats the ield of a dipole at the location of the
dipole itself, the sub-matrixMii is also called “self-term”.

he choice of an appropriate mesh can be crucial for the convergence of the method. When
curved structures like wires of circular section are modeled, a hexagonal mesh should usually be
preferred. On the other hand, for structures with lat surfaces and normal angles cubic mesh-
ing yields beter results. Figure . a shows a pathological comparison of scatering spectra for a
plane-wave excited silicon nanowire of diameter D = 60 nm, discretized using cubic and hexag-
onal meshing with equal nominal stepsize (8 nm). Cross-sections of the wire structure models
are shown in igures . b and . c.

We note that a regularization method for inite tetrahedral volume elements of variable size
and shape has been proposed by Kotmann and Martin [ ].

. . . Paraxial Fields

We now have developed a mathematical scheme to solve the wave-equation for time-harmonic,
monochromatic ields. For any incident ield – which is what corresponds to the homogeneous
solution E0 (r, t ) of the wave-equation – we are able to calculate the electric ield distribution
inside an arbitrary nano-particle. In order to entirely simulate optical efects in nanoscale struc-
tures we need to describe the incident electric ield.
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Figure . : Real parts of diferent paraxial ields (ield directions indicated by small black arrows). he focal
point of (b) and (c) is in the center of the plots. X -direction is the horizontal axis along which
the light is linearly polarized. he vertical direction corresponds to the Z -axis with incidence
along −Z .

In addition to monochromaticity and time harmonicity, it is oten convenient in numerical
simulations to consider ields that propagate uniformly in one single direction only. Such ields
are called paraxial.

Plane Wave he probably most simple representative is a plane wave, i.e. a wave that has
uniform ields on all planes perpendicular to its propagation vector k0, as shown in igure . b.
Using a complex amplitude (see Eq. ( . )), it writes:

E0 (r, t ) = E0 e
i(k0r−ωt ) ( . )

Plane waves have interesting physical properties which makes them also particularly convenient
for calculations. If we insert equation ( . ) in Maxwell’s equation for the curl of the electric ield
(Eq. ( . b)) it follows that

B0 =

k0

ω

(

k0

k0
× E0

)

( . )

which means
|B0 | =

1

c
|E0 |. ( . )

Plane waves waves are obviously transverse with E ⊥ B ⊥ k0 as illustrated in igure . and a
relation between their amplitudes exists. his is a good approximation in the far-ield, at large
distances from any discontinuities (like polarizable particles) of the homogeneous environment.

Also, in many cases the assumption of plane waves for the incident light on a nano-particle is a
suiciently good approximation. Unfocused light from a source located far from the observation
position can be usually described using plane waves. his may be for example sunlight on the
surface of the earth or light focused by a microscope, where the focal spot is large compared to
the examined sample.



However, in situations where the focal spot becomes smaller than the observed area, plane-
waves are oten no longer adequate to describe the illumination. his is the case for example
when doing raster-scan experiments with a tightly focused beam on larger nanoparticles (see
section . . . ).

Focused Plane Wave A plane wave with a Gaussian intensity proile may oten be suicient
to model efects introduced by focusing optics, as illustrated in igure . b. A focused plane wave
in Z -direction (k0 ∥ ez ) has the form

E0 (r, t ) = E0 e
i(k0r−ωt ) · exp *

,
(x − x0)2 + (y − y0)2

2w2
spot

+
- ( . )

where wspot is the width of the focused beam and the focal axis is at (x0,y0). he full width at
half maximum (FWHM) can be calculated fromwspot using

wFWHM = wspot · 2
√
2 ln 2. ( . )

his is in many cases a good approximation for modeling experiments with focused beams.

Paraxial Gaussian Beam Oten, lasers are used as sources of monochromatic, coherent light
with high intensity. Light emited from a laser-cavity is however not propagating like a plane
wave, but rather as a Gaussian beam (see igure . c). As the intensity proile difers signiicantly
from the focused planewave, the use of a model for Gaussian beams may become necessary –
particularly in larger objects, where the curved intensity proile of such a beam induces important
ield gradients along the propagation direction. A popular approximation to a real Gaussian beam
is the so-called paraxial approximation, where all k-vectors are parallel to one single propagation
direction. It can be calculated using the following formula (propagation along Z -axis)

E0 (r, t ) = E0

w0

w (z)
exp

(

−r2
w (z)2

)

exp

(

−i
(

ωt + k

(

z +
r2

2R (z)

)

− ζ (z)
))

( . )

with the beam width or “waist” w0 and the squared distance to the beam axis r2 = ∆x2 + ∆y2.
∆x , ∆y are the distances to the beam axis in X and Y direction, respectively. In equation ( . )
we introduced furthermore the z-dependent beam waist

w (z) = w0

√√√
1 + *

,
zλ

πw2

0

+
-
2

( . )

the radius of curvature

R (z) = z
*.
,1 +

*
,
πw2

0

zλ
+
-
2+/

- ( . )

and the Gouy phase

ζ (z) = arctan *
,
zλ

πw2

0

+
- ( . )
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Figure . : divE corrected ield of a linear polarized tightly focused Gaussian beam. Field directions are
indicated by small black arrows. In (b) and (c) time-averaged intensities are shown to illustrate
where the value of the longitudinal ield component (i.e. along the propagation direction) is
largest. Linear scale between contour lines. Focal point in the center of the plots. X -direction
is the horizontal axis along which the light is linearly polarized. he vertical direction corre-
sponds to the Z -axis with incidence along −Z .

which is a result of the shorter path along the curvature close to the waist, compared to the path
a plane wave would travel by continuing on a straight line [ ].

Finally we note that, as the name suggests, the wavevectors of all paraxial ields are always
parallel to one speciic direction (we generally consider propagation along the Z direction). Ef-
fects that rely on the presence of k-vectors in multiple directions can therefore not be described
by a paraxial ield. Examples where this approximation may break down are coupling to guided
modes with focused ields [ ] or the rigorous description of scatering occurring in dark-ield
microscopy [ ].

. . . Tight Focus Correction of the Paraxial Gaussian

Under strong focus, i.e. with large beam curvatures 1/R (z) close to the focal point, the parax-
ial approximation of a Gaussian beam becomes inaccurate. In particular in the focal region,
Maxwell’s equation divE = 0 (assuming no free charges) is not being satisied any longer and
a correction is required. Assuming a ield propagating along the Z -direction (and therefore
E0,z = 0 in the paraxial approximation), we get by integration of eq. ( . a)

E0,z = −
∫ (

∂ E0,x

∂x
+

∂ E0,y

∂y

)

dz. ( . )

With the deinition of the paraxial Gaussian ield we ind

E0,z (x ,y, z) =
−2i

kw (z)2
·
(

∆x E0,x + ∆y E0,y
)

. ( . )



Here, ∆x and ∆y are the distances to the beam’s propagation axis in X and Y direction. his
equation can easily be adapted for arbitrary k-vectors. In igure . a-b, the real part and the total
intensity of the corrected Gaussian ield are ploted. Fig. . c shows the intensity of the correction
term, thus of the ield components along the axial k-vector. For tight focusing (NA 0.8 in the
shown example), the correction term can approach around 5 − 10% of the total ield amplitude.

For more details on the description of focused electromagnetic ields, see [ , chapter ].

. . . Raster-Scan Simulations

Once the generalized propagator K is known, we can calculate the response of the system to
arbitrary (monochromatic) exciting ields bymeans of a simplematrix-vectormultiplication. his
can be used to do raster-scan simulations at low numerical cost, by moving a focused incident
beam step-by-step over the nano-object, while calculating and eventually post-processing the
ield at each position [ ] (see also section . . . ).

. . Resolution of the Inversion Problem

We saw in the previous section that the electromagnetic response of a nano-particle of arbitrary
shape can be calculated by inversion of the matrixM, deined in Eq. ( . ). his inversion can be
performed with standard numerical methods like LU-decomposition. An extensive explanation
of LU-decomposition and details on its implementation can be found for example in [ , chapter
. ]. We use the LU-implementation in the “SuperLU” library for direct inversion of M [ ,
]. Another possibility to calculate the inverse for the particular case of the GDM is to use

a sequence of Dyson’s equations [ ]. A detailed description of the later algorithm can be
found in [ , chapter . ]. An advantage of the Dyson’s sequence is its very good parallelization
capability, superior to parallelized LU-decomposition. However, LU inversion has a beter single-
core performance (see Fig. . b).

. . . Conjugate Gradients

If we have a closer look at the matrix M, we can make an interesting observation: While M is
not exactly sparse , most of the entries have signiicantly smaller absolute values than very few
large matrix elements. In Fig. . a we show plots of the population of matrixM for some selected
nano-structures. hese population plots work as illustrated in the following examples:


1 0 0
0 1 0
0 0 1


=


2 1 0
1 2 1
0 1 2


=


1 2 3
4 5 6
7 8 9


= . ( . )

M contains also phase-information and is therefore complex, hence we use the absolute values of
the matrix elements for the population paterns. In addition, the maximum of the color-code in
Fig. . a is clipped to % of the maximum absolute value in the matrix to increase the contrast.
Clearly, the matrices contain very few entries with values of more than some % of the overall
maximum and yet > 60% of all elements are generally non-zero.

A sparse matrix consists of mostly zeros and very few non-zero entries



0
1
0
%
o
f
m
a
x
.

(a) Population Paterns ofM for Some Structures

102 103 104

number of meshpoints

100

101

102

103

104

105

si
m
u
la
ti
o
n
ti
m
e
(s
)

p = 3.0 ± 0.1
p = 3.0 ± 0.1
p = 2.0 ± 0.1

dyson sequence

LU decomposition

conjugate gradients

(b) Timing for Dyson / LU / CG

0 1000 2000 3000 4000 5000

number of meshpoints

5

10

15

20

25

sp
ee
d
u
p

co
n
ju
g
a
te

g
ra
d
ie
n
ts
vs
.
L
U

(c) Speedup CG vs. LU

Figure . : In (a), population paterns of matrices M are shown at λ = 1 μm for a selection of structures
(stepsize 10 nm, same scale for all sketches). he structures are one layer of mesh-points high,
in order to keep the number of matrix-elements low. White corresponds to an absolute value of
0, black to ≥ 10% of the matrix’s largest element. (b) shows timings of nanowire-simulations
for spectra with 30wavelengths as a function of the number of meshpoints. Dyson’s sequence,
LU-decomposition and conjugate gradients are compared and ited by a power-law (resulting
power given on the botom right). (c) shows the speedup when comparing conjugate gradients
to LU-decomposition as a function of meshpoints.

It turns out, that such matrices are good candidates for iterative solving using so-called
“Krylow-subspace methods”. he most popular algorithm of this class is the conjugate gradi-
ents (CG) method and its derivations like biconjugate gradients (for non-symmetric problems)
or complex CG [ ]. A detailed description of the method can be found in [ , chapter . ].
he main idea of these iterative methods is, that the inverse of the matrix is in many cases not
actually required. For simulations that massively make use of the generalized propagator (like
raster-scan simulations), the CG technique is therefore not the method of choice. It may be on
the other hand an advantageous approach, if we search a solution for E that satisies

M · E = E0 ( . )

for one single incident ield E0. During the CG-iterations, matrix-vector multiplications M · x
are performed following a minimization scheme in which M · x converges eventually to E0.
heoretically, for a N × N matrix CG converge to the exact solution ater N iterations and each



iteration itself has a computational cost ∝ N 2. In reality, the convergence is oten very rapid in
the beginning, and a solution with suicient precision can be obtained ater very few iterations,
yielding a total computational cost ∝ N 2 instead of a N 3 scaling for exact inversion for example
with LU-decomposition. Indeed, we ind a N 3-scaling for complete inversion by LU or Dyson’s
sequence and aN 2 dependence when using conjugate gradients (Fig. . b). Particularly for larger
numbers of meshpoints, this can result in a signiicant speedup, as shown in Fig. . c.

. . . Preconditioning

he speed of the convergence of conjugate gradients is crucially dependent on the condition of
the matrix M and generally can be massively improved by doing a preconditioning step before
starting the actual iterative scheme. Let’s assume, A of the equation system

A · x = b ( . )

would be the identity matrix I. hen CG would have converged within the irst iteration. A
possible approach for preconditioning is therefore to reshape the problem using a matrix P

A · (P · x̂) = b. ( . )

If P is a close approximation to A−1, AP will be close to the identity I and the system
would converge very quickly under conjugate gradients iterations. Eq. ( . ) is called a right-
preconditioned system. Consequently, a good preconditioner for our problem is a close approx-
imation to the inverse of M. Several algorithms exist to search pseudo-inverse matrices for
preconditioning. A very popular one is the incomplete LU-decomposition (ILU) [ ] that scales
with N 2 and which we use also in our implementation within the Green Dyadic method.

. . . Recycling of the Preconditioner

When calculating spectra using the GDM, the electric ield in a particle is calculated for a large
number of closely spaced wavelengths, at each of which the matrixM is (incompletely) inverted.
Most oten, the electric ield distribution changes only marginally for slightly diferent wave-
lengths and so does the matrix M. Unfortunately, a very similar matrix is of litle use for exact
calculations, but we have seen in the preceding section that an approximation to the exact inverse
M−1 can be a good preconditioner P for CG.

When calculating dense spectra (i.e. many points on the wavelength axis), we can use this fact
and signiicantly accelerate the calculation with conjugate gradients by recycling the precondi-
tioner matrix until a certain lower limit for the speedup factor is reached. In other words, we
will be using the same P repeatedly for several consecutive wavelengths and only if the accel-
eration is below a speed-up limit, a new preconditioner is calculated and subsequently re-used
for the following wavelengths. In Fig. . a the timing for the calculation of each wavelength is
shown for the case of recycling (blue) and re-calculation (red line) of the preconditioner matrix.
In the “recycling” case (re-calculation threshold was a minimum speedup-factor of 2), we see
that the preconditioner is only calculated a total of 6 times for a spectrum of 100 wavelengths.
Particularly at lower frequencies, the electric ield seems to change litle and the preconditioner
remains a good approximation toM−1 over a large spectral range (only one recalculation between
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Figure . : (a) shows timings per wavelength for a CG-GDM simulation of a silicon nanowire with a step-
size of 10 nm and 50 nm diameter, consisting of ≈ 2000 dipoles. he preconditioner was either
calculated for each wavelength (red) or recycled for multiple wavelengths until the resulting
speedup dropped below a factor of 2. In (b) the total speedup for the calculation of the whole
spectrum is ploted against the number of wavelengths in the spectrum.

≈ 750 nm and 1500 nm). As shown in Fig. . b, this technique can divide the total calculation
time by more then 2.

Another possible application when preconditioner recycling may be beneicial is in series of
simulations withmany very similar or slowly transformed nano-structures like antennas of grad-
ually increasing size.

. . Comparison to other Numerical Methods

Other methods than the GDM can be used for solving electrodynamical problems in nano-optics.
A widely used frequency domain solver is for example the open source sotware DDSCAT [ ],
which implements a frequency domain technique formally equal to the GDM presented above,
called the discrete dipole approximation (DDA). However, there exist two main diferences to
GDM as employed throughout this work: First, the renormalization problem is circumvented
by seting the self-terms to zero and including the corresponding contributions using a physical
polarizability for each dipole, corresponding to the mesh geometry. Second, in the DDSCAT
implementation of DDA, thematrixMDDSCAT is not stored inmemory. he resolution of Eq. ( . )
is done by conjugate gradients where the elements MDDSCAT,i j are computed in-time during the
calculation of the vector-matrix productsMDDSCAT ·x. To speed up the process, an FFT-scheme to
decrease the cost of these matrix-vector multiplications is used [ ]. A drawback is that without
storing M, eicient preconditioning is very diicult. Convergence of the DDSCAT conjugate
gradient iterative scheme is therefore relatively slow and only given for very ine discretization
meshes, further slowing down the procedure due to large sizes of the coupled dipole matrix
MDDSCAT.

Maxwell’s equations can be reformulated as a set of surface-integral equations. It is there-
fore possible to develop a similar formalism as the above explained volume integral method in
which only the surfaces of a nanostructure are discretized instead of the volume [ ]. A great



advantage of this so-called boundary element method (BEM) is the smaller amount of discretiza-
tion cells, which however is only valid if the ields inside the structure are not required. With
MNPBEM a free BEM-implementation exists, developed by Hohenester and Trügler [ ].

Another very popular technique for electrodynamical simulations is the inite-diference time-
domain (FDTD) method. As the name suggests, the calculation is performed in the time domain,
which means that Maxwell’s equations are iteratively evolved by small steps in time. An in-
coming wave travels time-step by time-step along the region of interest and when the pulse has
passed or turn-on efects fully decayed (for plane wave illumination), the actual numerical mea-
surement is performed. he obvious disadvantage is the additional dimension (time), that needs
to be discretized. In particular for 3D problems, this usually leads to far higher computational
costs compared to frequency domain simulations. A further disadvantage is that no tabulated
permitivity data can be used which makes many dispersive media like metals diicult to be
treated. he dispersion has to be taken from analytical models or the permitivity set constant.
On the other hand, using short and therefore spectrally broad pulses, a whole spectrum can be
obtained in a single simulation run. Frequency domain techniques require each wavelength to
be calculated separately. A powerful open source implementation that comes with a rich toolbox
is the sotware “MEEP” [ ]. For a general introduction on inite diferences methods, see for
example [ , chapter ]. A review on diferent numerical techniques in nanooptics, including
benchmarks, can be found in ref. [ ].

. . Post-Processing: Analysis of the GDM Results

Subsequent to the calculation of the excited ield inside the structure, this information is usually
further processed to obtain experimentally accessible physical quantities.

. . . Electric Nearfield Outside the Nanostructure

With the ield susceptibility (Eq. ( . )), the ield induced at any point routside at the exterior of
the particle can be calculated from the electric polarization inside it:

E(routside) = E0 (routside) +
1

ϵ0

Ncells∑

i

G0 (routside, ri ) · χVcellE(ri ) ( . )

where the sum is carried out over all N meshpoints at positions ri .
At the example of a silicon dimer, nearield maps 20 nm below the structure are shown for

wavelengths at and of resonance in igure . a.
Note that also scanning near-ield optical microscopy (SNOM) signals can be calculated from

GDM simulations. In this case, the presence of the scanning tip needs to be taken into account
[ , ].

. . . Magnetic Nearfield

An oscillating dipole emits a propagating electromagnetic wave with an electric and a magnetic
component. Consequently, also a magnetic nearield is induced in the vicinity of electromag-
netically excited media, even if the material is non-magnetic. Ater Faraday’s induction law
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Figure . : In (a), the considered silicon dimer structure is shown (top, XY -Plane), where the incident
polarization is indicated by a blue arrow and the scalebar is 100 nm. he center and botom
plot show nearields at λ = 600 nm and λ = 900 nm, respectively. Calculated 20 nm below
the structure. Corresponding extinction, scatering and absorption spectra are shown in (b),
calculated from the nearield (top) and by propagation to the farield of the meshpoints as
dipolar sources (botom). he later allows to distinguish directional scatering (forward (FW)
and backward (BW) scatering is shown). (c) shows radiation paterns in the XZ -Plane of the
scatering for incidence at λ = 600 nm and (red) λ = 900 nm (blue). Incident planewave from
positive Z (0◦), polarized along X .

from Maxwell’s equations, the magnetic ield can be obtained from the electric ield in the nano-
particle (Eq. ( . b)). For time-harmonic ields, we get

B(r,ω) =
∇ × E(r,ω)

iω
( . )

which can be solved numerically via inite diferentiation (see e.g. Fig. . ).
Alternatively, a propagator GHE [ ] can be used to obtain the magnetic ield outside the

source region. In this way it is possible to calculate nearield maps or ield enhancement spectra
for the magnetic ield (see for instance Fig. . ).

. . . Extinction Spectra from the Nearfield in a Nanostructure

he linear response in the farield can be characterized by the scatered and absorbed light, which
in sum is called the “extinction”. Usually these values are given as cross sections σscat.,σabs. and
σext. which have the unit of an area. he extinction and scatering cross sections can be calculated
from the nearield in the discretized structure [ ]

σext =
2πn

λ0 · |E0 |2
Ncells∑

i=1

Im
(

E∗
0,i · Pi

)

( . )



σabs =
2πn

λ0 · |E0 |2
Ncells∑

i=1

(

Im
(

Pi · E∗i
) − 2

3
k3 |Pi |2

)

. ( . )

he scatering cross section inally is the diference of extinction and absorption

σscat = σext − σabs. ( . )

Ei and Pi are the ield and electric polarization at meshpoint i , respectively, induced by an exci-
tation with a fundamental ield E0,i . Complex conjugation is indicated with a superscript aster-
isk (∗). Note that the prefactor of the above sums is k/|E0 |2 with the wavenumber in the source
region k .

he upper plot in igure . b shows spectra for a planewave excited silicon dimer calculated
from the nearield.

. . . Farfield Patern of the Scatered Light

he complex electric ield in the farield radiated from an arbitrary polarization distribution can
be calculated using a corresponding Greens DyadGf (assuming a dipolar emission from each of
the N meshpoints):

Ef (rj ) =

Ncells∑

i

Gf (ri , rj ) · P(ri ) ( . )

Using the farield term T1 (equation ( . )) we can ind the following Green’s tensor for an os-
cillating dipole in vacuum (vacuum wavenumber k0)

Gf,vac. (r, r0,ω) = k2
0

exp(ik0R)

R

· exp
(

− ik0 sin(θ )
(

cos(ϕ) · x0 + sin(ϕ) · y0
))

exp
(

− ik0 cos(θ ) · z0
)

·


1 − sin2 (θ ) cos2 (ϕ) − sin2 (θ ) cos(ϕ) sin(ϕ) − sin(θ ) cos(θ ) cos(ϕ)
− sin2 (θ ) cos(ϕ) sin(ϕ) 1 − sin2 (θ ) sin2 (ϕ) − sin(θ ) cos(θ ) sin(ϕ)
− sin(θ ) cos(θ ) cos(ϕ) − sin(θ ) cos(θ ) sin(ϕ) sin2 (θ )



( . )

where for convenience the observation point r in the farield was transformed to spherical co-
ordinates (θ ,ϕ,R) while the location of the source dipole r is deined in Cartesian coordinates
(dipole at (x0,y0, z0)). Note that the presence of the illuminated nano-structure is fully taken
into account also at the reemission, due to the self-consistent nature of the Green’s formalism.

Also a substrate can again be included by means of an according Dyadic Green’s function. An
analytic approximation for a farield-propagator to a layered system has been derived e.g. by
Novotny [ ]. Making use of the superposition principle, the radiation of single dipoles using
the propagator Eq. ( . ) can be generalized to the total farield radiation of an ensemble of N
dipole-emiters, as shown in equation ( . ).

he farield radiation patern in the (XZ )-plane is shown in igure . c for an incident
planewave on the exemplary silicon dimer along the negative Z -direction. For λ = 600 nm (red),
a strong anisotropic scatering in forward direction is observed, while of resonance (λ = 900 nm,
blue) the scatering is more or less uni-directional.
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Figure . : In (a), the oscillation of an electron around its nucleus under electromagnetic excitation is
illustrated. Sketches of SHG (b) and THG (c) are shown as examples of second and third order
nonlinear processes, respectively.

A drawback of the calculation of the spectra from the nearield-distribution as described in sec-
tion . . . becomes obvious: hese spectra do not contain any information about the directional-
ity of the scatering. Let us assume we would try to measure scatering from the example silicon
dimer in backscatering geometry. We would ind a spectrum corresponding to the red dashed
line (“BW scat.”) in the lower plot of Fig. . b, which difers signiicantly from the total scat-
tering cross section (red solid line). Fortunately, information on directionality can be accessed
using the farield-propagator and we can calculate scatering spectra by re-propagating the elec-
tric polarization of the structure to the farield at every wavelength of the spectrum. Hence, on
the cost of additional computation time, the polarization of scatered light in the farield and its
directionality can be revealed.

. Nonlinear Optics

Until now, we have dealt with linear optical phenomena, hence efects related to a response of
mater to light that can be described in the context of the linear electric polarization as introduced
in equation ( . a).

In the following we will give a short introduction to the basic concepts of nonlinear optics and
put a particular focus on Second Harmonic Generation (SHG) from surfaces. We will present a
technique to describe SHG within the framework of the Green Dyadic method, which can easily
be extended to other nonlinear processes.

For a detailed introduction to nonlinear optics, we refer for example to reference [ ].

. . Expansion of the Electric Polarization

As long as the excitation ields are weak compared to the latice potential of the media, optical
phenomena can be explained by a linear response. Wementioned in section . . , that the electric
polarization is the result of a Taylor expansion around E = 0, which is stopped ater the irst order
term in the approximation of linear media. his resulted in the equation

P (t ) ≈ ϵ0χ E (t )
[
+O (E2)

]
( . )



For simplicity, scalar values are given. he linear electric susceptibility in isotropic, homoge-
neous media is the constant factor χ = ϵr − 1. It relates the electric polarization of the medium
to the electric ield. For non-isotropic media, the susceptibility χ is a tensor of rank 2, consisting
of Fourier transforms from frequency to time-domain, if the medium is dispersive.

In the linear regime, the returning force acting on charges, oscillating around their nuclei at
the frequency of illumination ω (see Fig. . a), is a linear function of the charge displacement
relative to the nucleus and thus described by a harmonic potential, as depicted in the plots on
the let of Fig. . . he nucleus, having a large mass compared to the electrons, is considered
static. In reality, the potential is not harmonic (see examples in Fig. . center and right) and
the linear approximation fails at suiciently high photon rates. In consequence, if a medium
is excited by an oscillating ield of very high amplitude, the electron oscillations are becoming
sensitive to the nonlinearity of the latice potential and new phenomena occur. A comparison of
driven oscillations in harmonic and anharmonic potentials is shown in igure . a for diferent
driving strengths: With increasing amplitude of the excitation ield, the oscillation in an anhar-
monic potential is more and more deviating from an ideal harmonic oscillator. hese deviations
give rise to so-called nonlinear efects. hey are usually classiied according to the order of the
nonlinearity in terms of the expansion of the electric polarization:

Pi (t ) = ϵ0

∑

j

χ
(1)
i j Ej (t )

+ ϵ0

∑

j,k

χ
(2)

i jk
Ej (t )Ek (t )

+ ϵ0

∑

j,k,l

χ
(3)

i jkl
Ej (t )Ek (t )El (t )

+ . . .

( . )

which is oten writen in a compact form for the tensor products

Ptot. = ϵ0χ
(1) E

︸   ︷︷   ︸
Linear, =P(1)

+ ϵ0χ
(2) E2

︸     ︷︷     ︸
. Order, =P(2)

+ ϵ0χ
(3) E3

︸     ︷︷     ︸
. Order, =P(3)

+ . . . ( . )

he susceptibilities χ (n) are tensors of rank n + 1. For reasons of causality, in dispersive media
they involve inverse Fourier transforms from frequency to time-domain to take account of the
full electric ield evolution before the observation time t .

. . . Symmetric Potentials: Odd-Order Nonlinearities

Let us carry out some symmetry considerations at this point. he latice potential in the bulk
of a material has the same symmetry as the crystal latice. It follows conclusively that media
with an inversion-symmetric latice like elemental fcc-semiconductors (e.g. silicon) have also a
symmetric latice potential as depicted in the center column of Fig. . . For symmetry reasons,
even-order terms of the electric polarization like P(2) vanish in symmetric potentials:

−P(2)
= ϵ0χ

(2)
(

− E
)2

= ϵ0χ
(2) E2

= P(2)

⇒ χ (2) !
= 0.

( . )
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Figure . : Harmonic (let), symmetric anharmonic (center), asymmetric anharmonic (right) potentials
and corresponding restoring forces (botom row), which become nonlinear functions of the
position for anharmonic potentials. For comparison, the harmonic potential and the corre-
sponding force are ploted as dashed lines in the plots of the asymmetric potentials.

In igure . a the amplitude of an oscillation in a symmetric potential is shown as function of
time (green line). he corresponding frequency-domain spectrum obtained by Fourier transfor-
mation is given in Fig. . b. Like expected, the Fourier spectrum of an oscillation in a symmet-
ric potential contains only odd-order harmonic frequencies, like for example the third harmonic
(THG, depicted in Fig. . c).

. . . Asymmetric Potentials: Even-Order Nonlinearities

Even-order nonlinearities comprise efects explained by the terms P(2),P(4), . . . which include
second harmonic generation (SHG, see Fig. . b) or fourth harmonic generation. he constraint
to odd-order nonlinear efects in symmetric anharmonic potentials is relaxed if the potential is
not symmetric with respect to its energy-minimum (see Fig. . , right). As shown in the lower
plot of igure . b, the Fourier spectrum of a driven oscillation in an asymmetric anharmonic
potential does contain even-order harmonic frequencies. he corresponding time-domain data
is shown in red in Fig. . a. As a consequence, non-centrosymmetric crystals such as III-V
semiconductors (GaAs, GaP, InP, …) consisting of diferent atoms do support second order non-
linear efects. he nonlinear phenomena of lowest allowed order usually dominate the nonlinear
response of the medium.

. . Second Harmonic Generation

In the following we will focus on second harmonic generation (SHG). SHG is the coherent up-
conversion of two photons of a fundamental frequency ω into one photon at twice the incident
frequency ωSHG = 2ω (i.e. half wavelength λSHG = λ/2), as illustrated in igure . b. As indi-
cated in this sketch, there are no real electronic states involved, the absorption and reemission
happen instantaneously.



low amplitude

symmetric anh. asymmetric anh.

a
m
p
li
tu
d
e

high amplitude

1T0 2T0 3T0 4T0

time (multiples of harmonic period)

0

very high amplitude

(a) Amplitude vs. Time

symmetric anh.

harmonic

0 1f0 2f0 3f0 4f0

frequency (multiples of harmonic eigenfrequency)

a
m
p
li
tu
d
e

asymmetric anh.

harmonic

(b) Fourier Spectrum

Figure . : (a) shows the amplitude over time for low (top), high (center) and very high (botom) driving
amplitudes. Oscillation in a symmetric (solid green) and an asymmetric (solid red) potential
is compared to the case of a harmonic potential (dashed blue line). In (b), Fourier spectra cor-
responding to a driven oscillation in a symmetric (top) and an asymmetric (botom) potential
energy function are shown. Both are again compared to a harmonic oscillation (dashed blue
line).

. . . Phase-matching

Harmonic generation is a coherent nonlinear process which means that a ixed phase-relation
between input and output photons exist. Due to this phase relation, SHG is usually ineicient
because the phase between second harmonic light generated at diferent positions in the crystal
latice cause an overall destructive interference – the phase is determined by the fundamental
ield and therefore has a value of π at the harmonic wavelength. So-called phase-matching be-
tween the incident and the harmonic waves is required for eicient SHG from bulk crystals (see
also [ , chapter ]). Among other possible techniques, birefringence in crystals can be used to
obtain a phase-condition for constructive SHG interference: he refractive index diference for
light propagating at a certain angle with respect to the incident beam (usually along the ordi-
nary and extraordinary axes) is exploited, which was the irst successfully employed method for
phase-matching [ ].

When treating sub-wavelength small nanoparticles it is usually not necessary to consider
phase-matching, because all harmonic generation processes occur in a very limited volume such
that interference between the diferent source-positions has no great inluence on the total emis-
sion.

. . . Surface SHG

he most commonly used plasmonic particles, as well as many high refractive-index dielectric
nano-structures are made from centrosymmetric materials (typical materials are e.g. gold or
silver and silicon, respectively). We showed above that second-order efects in centrosymmetric
crystals are forbidden as a result of symmetry.



To relax this constraint, locally the latice symmetry can be broken for example by strain
applied on one crystal direction [ , ] or by strong ield gradients [ ]. Inversion symmetry
is also broken at surfaces and interfaces where even-order nonlinear efects become possible.
his surface-SHG has been irst observed by Terhune et al. [ ] very soon ater the discovery
of optical harmonic generation [ ]. Because of its local origin at surfaces and interfaces, this
form of SHG is oten used for surface characterization [ , , , , – ] and has been
subject of intense research ever since its discovery [ – ].

he second order surface susceptibility tensor has seven non-zero elements of which only three
components are independent on isotropic surfaces (C∞,ν -symmetry) [ ]:

χ
(2)
⊥⊥⊥

χ
(2)

⊥∥ ∥ ≡ χ
(2)

⊥∥1 ∥1 = χ
(2)

⊥∥2 ∥2

χ
(2)

∥ ∥⊥ ≡ χ
(2)

∥1 ∥1⊥ = χ
(2)

∥2 ∥2⊥ = χ
(2)

∥1⊥∥1 = χ
(2)

∥2⊥∥2

( . )

Subscripts ∥1 and ∥2 indicate two perpendicular directions tangential on the surface, ⊥ the di-
rection along the surface normal. he second order electric polarization of an isotropic surface
then consists of three elements

P
(2)

sf = P
(2)
⊥⊥⊥ + P

(2)

⊥∥ ∥ + P
(2)

∥ ∥⊥ ( . )

that write

P
(2)
⊥⊥⊥ = χ

(2)
⊥⊥⊥[E

2
⊥ ]̂e⊥ ( . a)

P
(2)

⊥∥ ∥ = χ
(2)

⊥∥ ∥[E
2

∥ ]̂e⊥ ( . b)

P
(2)

∥ ∥⊥ = χ
(2)

∥ ∥⊥[E ∥E⊥ ]̂e∥ . ( . c)

In the quasistatic approximation, the fundamental ield inside a nano-structure (and at the sur-
face) is considered constant and proportional to the exciting ield. For very small particles com-
pared to the incident ield’s wavelength, this approximation simpliies the problem and allows
an analytical treatment of surface SHG [ ]. Such theories have been developed for various
problems like SHG from ininitely long, thin cylindrical nanowires [ , ] or from small nano-
spheres [ , ]. In this context arrays of small nano-spheres [ ] as well as individual nano-
spheres [ ] were investigated with extensions to tightly focused excitation. Further analytical
work has been done, among others, on SHG from inite length cylindrical nanoparticles [ ],
metal tips [ ] or small nanostructures of arbitrary shape [ ].

Beyond the quasistatic approximation, extensions for the analytical Mie theory have been de-
veloped, e.g. for the case of SHG from ininitely long cylinders [ ] or frommetal spheres [ ].
In igure . , an example of second order nonlinear surface polarization is shown, calculated by
Mie theory for a silicon nanowire of 100 nm diameter. uiver-plots of the nonlinear polarization
are compared to the fundamental electric ield intensity inside the nanowire. A planewave is in-
cident at normal angle from the top, polarized perpendicularly ( . a, “TE”) and parallel ( . b,
“TM”) to the NW axis. While for TM illumination all terms except the P(2)

⊥∥ ∥ contribution vanish
due to the cylindrical geometry, in the TE case all three contributions are generally non-zero (see
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Figure . : Crosssections of the fundamental ield inside an ininitely long silicon nanowire (let color-
plots), surface SHG (let vector-ields) and SHG γ -bulk contribution (∇(E2), right colorplots)
calculated from Mie theory. Diameter D = 100 nm. Normal incidence with a polarization of
the electric ield perpendicular (a) and parallel (b) to the NW axis.

for details section . . ). For TE excitation P
(2)
⊥⊥⊥ is shown because in silicon χ

(2)
⊥⊥⊥ is supposed

to be the largest component of the second order susceptibility tensor [ ].
Likewise, χ (2)

⊥⊥⊥ is the largest component of the second order susceptibility tensor in gold and
silver [ , ], hence P

(2)
⊥⊥⊥ usually dominates the second harmonic generation process and

oten only this polarization component is taken into account [ , , ]. If P(2)
⊥⊥⊥ is weak

due to geometrical reasons, also other surface terms can contribute signiicantly to the overall
second harmonic signal and need to be considered [ ].

he above cited theoretical works treat objects of high symmetry with analytical descriptions.
he general case of surface SHG from particles of arbitrary shape is most conveniently treated
by numerical means. An approach using the GDM will be given later in this section.

. . . Bulk Contributions to Surface-SHG

Although SHG is forbidden from the bulk of inversion symmetric crystals (see section . . . ), a
second order polarization can occur fromhigher order terms like dipolarmagnetic or quadrupolar
electric components. he irst non-vanishing order of these contributions, that can be expressed
in terms of ield gradients of the fundamental ield, comprises four source terms [ , , ]:

P
(2)

sf,bulk = P
(2)
γ + P

(2)

β
+ P

(2)

δ
+ P

(2)

ζ
( . )

where

P
(2)
γ = γ ∇[E2] ( . a)

P
(2)

β
= β E[∇ · E] ( . b)

P
(2)

δ
= δ [E · ∇]E ( . c)

P
(2)

ζ ,i
= ζ Ei∇iEi . ( . d)

Here, γ , β , δ and ζ are phenomenological susceptibility components that can be expressed in
terms of χ (2) elements [ , section . ]. In many cases, these bulk contributions can be ne-
glected. For instance under planewave illumination in the quasistatic approximation, the ields



are constant and therefore P(2)

sf,bulk = 0. However, if resonant modes like LSP [ ] or leaky mode
resonances [ ] exist, or if an incident beam is tightly focused onto the sample [ ], ield gradi-
ents arise and bulk contributions may become signiicant. It has been shown, that bulk contribu-
tions in centrosymmetric media can indeed become important enough to interfere with the local
surface contributions to SHG [ , , , ]. In this context, the so-called non-separable
or surface-like γ -bulk contribution [ ] can be writen as a superposition of local surface con-
tributions. However, employing suitable geometrical conditions allows to distinguish certain
non-local bulk contributions from the local surface SHG using appropriate polarization selection
rules [ ].

. . SHG in the GDM

We will describe in the following how surface SHG from nano-particles can be calculated in the
framework of the Green Dyadic method (see Sec. . ).

. . . Second Harmonic Surface Nonlinear Polarization

he most signiicant contribution to SHG from centrosymmetric nano-structures is usually a
local nonlinear polarization of the particle’s surface (see above). In order to calculate surface
SHG, the ield inside the particle excited by the fundamental incident beam is determined in a
irst step using the GDM (explained in detail in the previous section).

Subsequently, the surface of the nano-structure has to be identiied and a geometrical basis of
one normal and two tangential unit-vectors has to be established at each point of the surface. In
order to be applicable for particles of arbitrary shape, this can be done by counting the number of
next neighbors Nnn of each meshpoint, either by a bruteforce method, or using sorting strategies
like the so-called “kd-tree” technique [ ]. he later approach can improve the eiciency par-
ticularly in large systems with many meshpoints. An element of a cubic latice is on the surface
if, within the radius of one discretization step, it has less than the maximum possible Nnn, bulk = 6
neighbors on a three dimensional grid or Nnn, bulk, 2D = 4 on a two dimensional grid.

Once the surface meshpoints have been determined, unit vectors normal on the surface can be
determined from the relative positions of the next neighbors. he unit-vectors pointing from each
neighbor towards the surface element are added and the total vector is normalized, resulting in a
perpendicular unit vector. his technique is illustrated in igure . b (blue highlighted region).
Using only the next neighbors limits the angles of surface vectors to multiples of 45 ◦, which
restricts the precision of the result particularly on curved surfaces. To improve the normal surface
vectors on curved surfaces, a larger volume (2D: area) around the surface element can be used
for the vector calculation. he green highlighted regions in igure . show an example, where
all elements in a radius of Rsf.-vec. = 3 stepsizes were taken into account. he later technique
however may be disadvantageous at sharp angles between lat surfaces, where some smoothing
of the edge will occur for large Rsf.-vec.. he choice of Rsf.-vec. should therefore be some small value
like ≈ 2 − 3 stepsizes.

For a homogeneous and isotropic surface, the second order susceptibility components are iden-
tical for all tangential directions (Eq. ( . )). he unitary tangential surface vectors can then be
deined as two arbitrary orthogonal vectors, perpendicular to the normal surface vector ê⊥.

ê⊥ ⊥ ê∥1 ⊥ ê∥2 ( . )
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Figure . : Numerical calculation of the surface-vectors and second order surface nonlinear polarization
at the example of an ininitely long half-cylinder of radius rcyl = 150 nm. 2D sections in the
XZ -plane are shown. he fundamental ield (λ = 800 nm) under excitation polarized along the
horizontal axis is shown in (a). In (b), the procedure for calculating the surface-normal unit-
vectors (black) is depicted using only next neighbors (blue circle) and using dipoles within a
radius of Rsf.-vec. = 3 discretization steps (green circle). (c) shows the normal and tangential
surface vectors obtained with Rsf.-vec. = 1 and Rsf.-vec. = 3 discretization steps (blue and green
highlighted regions) and in (d) the inal nonlinear polarization (P(2)

⊥⊥⊥) from the surface ields
is shown.



For convenience, the projection of the electric ield vector on the surface (at the considered sur-
face position) can be taken

E∥ = E −
(

E · ê⊥
)

ê⊥ ( . )

which reduces the problem to only two orthogonal vectors ê⊥ and ê∥ with

ê∥ =
E∥
|E∥ |
. ( . )

Once ê⊥ and ê∥ are known, the nonlinear polarizations can be calculated by inserting them in
equations ( . ), with

E⊥ = E · ê⊥
E ∥ = E · ê∥ .

( . )

On the example of a coarsely discretized, two dimensional (ininitely long) half-cylinder of radius
rcyl = 150 nm, parallel and perpendicular surface unit vectors are shown in Fig. . c. he fun-
damental ield in the structure for an excitation at λ = 800 nm, polarized perpendicularly to the
long axes, is shown in Fig. . a. he surface ield components as well as the nonlinear surface
polarization P

(2)
⊥⊥⊥ are shown in Fig. . d.

. . . Bulk Contributions to Surface SHG

In order to be applicable in themost general possible way, the bulk contributions to surface SHG–
which arise from ield gradients – are calculated numerically using inite diferences derivatives.
We use in particular center-diferentiation [ , chapter . ]:

∂ f (x )

∂x
= lim

ϵ→0

f (x + ϵ ) − f (x − ϵ )
2ϵ

≈ f (x + ∆x ) − f (x − ∆x )

2∆x

( . )

In the case of the GDM, ∆x will usually be equal to the stepsize used for the discretization of
the particle. Accordingly, this approximation will become worse for large discretization steps, in
addition to the loss of precision already occurring at the calculation of the fundamental ield.

As an example, intensity maps of P(2)
γ for a silicon nanowire of diameter D = 100 nm, calcu-

lated by numerical derivatives of ields from Mie theory, are shown in igure . (right plots).

. . . Self-Consistent Nonlinear Polarization

In the following, the ield due to the excitation at λ0 will be referred to as the fundamental ield,
the ield due to the second harmonic generation at λ0/2 as the harmonic ield. he nonlinear po-
larizations calculated following sections . . . and . . . take into account the optical properties
of the particle only at the fundamental wavelength. A possible resonant response of the structure
at the harmonic wavelength is not considered in the calculation, which may signiicantly boost
or – in the case of an absorption-resonance – reduce the efective nonlinear efect. he presence
of the structure should therefore be rigorously taken into account also at the harmonic ield.



Approaches based onGreen’s Dyadic functions that consider the presence of the nanostructure
at the harmonic ield have been proposed in the modeling of nearield microscopy [ – ]. We
will describe a very similar formalism, utilizing the techniques introduced in section .

So far, we calculate the fundamental ield in the structure by solving the optical Lippmann-
Schwinger equation (Eq. ( . ))

E(r,ω) = E0 (r,ω) +

∫

G0 (r, r
′,ω) · χE(r′,ω)dr′ ( . )

From this linear response we calculated the nonlinear surface polarizations of centrosymmetric
SHG. With their frequency dependencies they write

P(2)
⊥⊥⊥ (r, 2ω) = χ

(2)
⊥⊥⊥

[
E⊥ (r,ω)

2
]
ê⊥

P(2)
⊥∥ ∥ (r, 2ω) = χ

(2)

⊥∥ ∥
[
E ∥ (r,ω)

2
]
ê⊥

P(2)
∥ ∥⊥ (r, 2ω) = χ

(2)

∥ ∥⊥ [E ∥ (r,ω)E⊥ (r,ω)] ê∥

( . )

Note, that the bulk contributions to surface SHG with their expressions in Eqs. ( . ) can be
treated in the same way as the local surface components.

To rigorously take into account the inluence of the particle on the nonlinear ield, we need to
calculate the self-consistent ield induced in the particle by the nonlinear polarization. In a irst
step we consider the nonlinear polarizations P(2) (r, 2ω) as the source of an “efective incident
ield” at the harmonic frequency. We calculate the ield within the nanostructure induced by the
nonlinear polarization using the ield susceptibility at the harmonic frequency (Eq. ( . )). At
the example of the χ

(2)
⊥⊥⊥-contribution this yields

E
(2)

0,⊥⊥⊥ (r, 2ω) =
1

ϵ0

∫

V

G0 (r, r
′, 2ω)P(2)

⊥⊥⊥ (r, 2ω)dr′ ( . )

with the ield susceptibility tensor G0 at the harmonic frequency 2ω.
We assume that there is no external incident ield E0 (2ω) at the harmonic wavelength and

hence E
(2)

0,⊥⊥⊥ is the only driving ield at 2ω. In a second step, we propagate the “efective in-
cident ield” inside the particle using the generalized propagator K (Eq. ( . )) at the harmonic
frequency:

E
(2)
sc,⊥⊥⊥ (r, 2ω) =

∫

V

K(r, r′, 2ω)E(2)

0,⊥⊥⊥ (r
′, 2ω)dr′. ( . )

he subscript “sc” indicates self-consistent ields. Finally we obtain the self-consistent nonlinear
polarization by a multiplication with the linear susceptibility at the harmonic frequency

P
(2)
sc,⊥⊥⊥ (r, 2ω) = χ (2ω) · E(2)

sc,⊥⊥⊥ (r, 2ω) ( . )

We see that the generalized propagator has to be calculated at both, the fundamental and the
harmonic wavelength. As a consequence, self-consistent SHG is twice as expensive in terms of
computational cost, compared to the calculation of only the non-linear polarization. A step-by-
step illustration of SHG calculation is shown in igure . .
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Figure . : Illustration of the procedure for simulating SHG with the GDM at the example of a silicon
dimer with dimensions 2× 250×100×100 nm3 (2× L×W ×H ) separated by a gapG = 75 nm.
he investigated particle structure (a) is discretized (b) and the ield induced by an incident
beam is calculated using the GDM (c-d). From this linear response, the nonlinear surface
polarization (P(2)

⊥⊥⊥ in the shown example) is calculated by irst selecting the meshpoints at
the particle’s surface and determining the surface normal unit vectors (e). Using these, the
nonlinear polarization is calculated from the fundamental ield at the surface (f) and self-
consistently propagated using the ield susceptibility at the harmonic wavelength (g). Finally,
the self-consistent nonlinear polarization can be propagated to the farield (h) in order to
calculated for example polar plots of the SHG (i) captured by a given numerical aperture
(the green solid angle in (h) denotes NA 0.8). he inset in (i) shows a sketch of the dimer
orientation with respect to the polar plot.



his approach can be easily adapted to other nonlinear processes. A third harmonic nonlinear
polarization for example can be calculated directly from the fundamental ield if a uniform χ (3)

tensor in the bulk can be assumed. Using non-uniform χ (n) tensors would involve a slightly
more complicated, yet straight-forward individual treatment of ield-vector components. he
self-consistent propagation can be done for other nonlinear processes exactly in the same way as
shown above. he only prerequisite is that a nonlinear electric polarization can be approximated
from the fundamental ield.

As inal remark we note that the components of the nonlinear susceptibility tensor χ (2) are
oten not known and then set = 1. In this case an absolute comparison of the diferent contribu-
tions to SHG is prohibited.

. . Examples

In the last section of this chapter, we will give some examples of SHG from nanoparticles of
centrosymmetric media, calculated with the technique described above. In the following we will
refer to the “simple” nonlinear polarization if the self-consistent re-propagation of P(2) has been
omited, in contrast to the “self-consistent SHG” calculated using P

(2)
sc .

. . . Surface Vectors

In a irst example, we compare the self-consistent SHG using P(2)
sc,⊥⊥⊥ from ininitely long silicon

nanowires in vacuum of squared (Fig. . b) and circular (Fig. . a) cross sections. he diameters
of Dsqua. = 110 nm and Dcyl. = 140 nm are chosen such that under planewave excitation with
λ0 = 800 nm and linear polarization along X (⊥ to the axis, transverse electric [“TE”]), a similar
fundamental ield distribution occurs in both geometries (see red quiver plots (i) in Figs. . ).
Stepsizes were d = 6.7 nm and d = 7.5 nm for the square and cylindrical wire, respectively. We
calculated the normal surface vectors using diferent amounts of next neighbors (see Fig. . ):
First neighbors (ii, calc. like blue area in Fig. . b), irst and diagonal neighbors (iii), up to second
neighbors (iv) and meshpoints from a large area (11×11 neighbors) around the surface position.
Farield radiation paterns are shown below the nearield plots for self-consistent (solid lines)
and simple (from P

(2)
⊥⊥⊥) SHG calculation (dashed lines). he structure is placed in the origin,

illumination is incident from the top.
We can observe, that for lat surfaces (squared wire), the calculation of the surface vectors

seems satisfactory already using only the closest meshpoints, limiting the vector directions to
multiples of 45 ◦. If a large amount of neighbors is taken into account, artiicial inclination of
the vector close to the edges occurs, which impacts on the farield radiation patern. here-
fore, in the case of lat surfaces, not too large amounts of neighbors should be taken for surface
SHG calculation. On the other hand, in geometries which imply round surfaces, this conditions
seems to reverse: he irst-neighbor surface polarization is visually noncontinuous and results
in signiicant backward-SHG. In all other cases (also in the squared wire), mainly forward-SHG
is obtained, which has also been reported for plasmonic nano-particles [ ]. We conclude that
at round surfaces it is important to approximate the surface normal by a higher precision than
±22.5 ◦, which is obtained by considering only next neighbors.

the diameter Dsqua. of the squared wire corresponds to the side-length of the square
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Figure . : P(2)
sc,⊥⊥⊥ is shown for an ininitely long nanowire (radius 55 nm) of squared crosssection in

(a), and for a cylindrical wire (radius 70 nm) in (b). Incidence from the top, linearly polarized
along X (⊥ wire axis), λ0 = 800 nm. From let to right are shown the fundamental ield and
P
(2)
sc,⊥⊥⊥, calculated using 4, 8 or 12 next neighbors or all cells in an 11 × 11 square-steps

large area (“100 closest cells”). Below the vector plots, radiation paterns are given for simple
(P(2)
⊥⊥⊥, dashed) and self-consistent (solid line) SHG calculation.

Finally, we notice that in this example the self-consistent calculation is not absolutely neces-
sary. he farield radiation paterns are almost identical for the simple and the self-consistent
second harmonic calculations.

. . . Self-Consistent SHG

As shown in Fig. . it seems that in most cases the additional numerical efort of self-consistent
nonlinear ield calculation does not improve the numerical precision signiicantly.

We will therefore study self-consistent second-harmonic generation in comparison to using
the “simple” nonlinear polarization on two more examples.
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Figure . : χ (2)
⊥⊥⊥ contribution to surface second harmonic generation for a 180 × 180 × 140 nm3 silicon

nano-block. (a) shows XY -projections of the nearield in (blue arrows) and 30 nm below the
particle, X -polarized planewave incidence in −Z direction. Ploted areas are 400 × 400 nm2).
In (b) the linear scatering is compared to SHG intensity in the farield and second harmonic
forward/backward emission ratio for simple (dashed) and self-consistent SHG calculation.

Silicon Nano-Cuboid

We start with SHG from a cuboidal silicon nano-block of dimensions 180×180×140 nm3 (L×W ×
H ). In igure . a, the second order nonlinear nearield distribution is shown for a fundamental
wavelength below (λ1), on (λ2) and above (λ3) the TM01-like resonance. Fields in the structure
(blue arrows) and the ield-intensity on a plane 30 nm below the particle are ploted forP(2)

⊥⊥⊥ (top
row) and P(2)

sc.,⊥⊥⊥ (botom row). he plots showXY -projections of the 3D structure, a planewave
is incident from positiveZ -direction, polarized alongX . As before, the self-consistent calculation
difers only marginally from the nonlinear polarization calculated from the fundamental ield.

If we have a look at the farield in Fig. . b, the similarity between “simple” and self-consistent
way of SHG calculation persists (dashed vs. solid blue line). For comparison, the scatering cross
section σscat. is ploted (red line) as well as the forward-to-backward (FW/BW) SHG directional-
ity. Total SHG intensity as well as second harmonic forward scatering have a maximum at the
fundamental resonance. he second harmonic resonance has a smaller linewidth compared to
the fundamental spectrum, which is in agreement with the second order dependence on the ield
amplitude. On resonance the FW/BW ratio has a maximum value of ≈ 3while of resonance, the
directionality is more or less uniform.

Gold Nano-Rod

In a second example, we have a closer look on a plasmonic particle, namely a gold nano-rod of
180× 180× 140 nm3 (L ×W ×H ) in size. Like above, the spectral nearield and farield response
is shown in igure . .

In this particular structure, P(2)- and P
(2)
sc. -SHG (dashed and solid lines, respectively, in

Fig. . b) deviate signiicantly within a certain spectral range close to the localized surface plas-
mon resonance at λ1 ≈ 1000 nm. While the non-self-consistent SHG farield intensity follows
the linear scatering (again with a smaller linewidth), the self-consistent calculation reveals a
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Figure . : χ (2)
⊥⊥⊥ contribution to surface second harmonic generation for a 240× 50× 50 nm3 gold nano-

rod. (a) shows XY -projections of the nearield in (blue arrows) and 30 nm below the particle,
X -polarized planewave incidence in −Z direction. Ploted areas are 400 × 400 nm2). In (b)
the linear scatering is compared to SHG intensity in the farield and second harmonic for-
ward/backward emission ratio for simple (dashed) and self-consistent SHG calculation

second maximum of the second harmonic around λ2 = 1160 nm. Interestingly, this has no large
inluence on the forward-to-backward scatering ratio for SHG.

Having a look at the nearield distributions at selected wavelengths (Fig. . a), we see that
when the excitation hits the plasmon resonance,P(2) andP(2)

sc. have a very similar distribution. At
the two other considered wavelengths λ2 and λ3 however, the self-consistent calculation reveals
a signiicant linear response of the nanorod to the nonlinear polarization, which persists in the
farield and can be detected in the form of a peak of SHG intensity and directionality (for λ2
and λ3, respectively). However, the closer examination of this observation lies outside the scope
of this thesis.

. . . Conclusions

In conclusion we presented a method to calculate and analyze surface second harmonic gener-
ation from arbitrary nano-particles of centrosymmetric materials like silicon or gold using the
Green Dyadic method.

From several examples we could deduce, that the “simple” nonlinear polarization P(2) gives
usually a good approximation to SHG i.e. it is oten not necessary to take into account the pres-
ence of the structure at the harmonic frequency. As predicted by the Lorentz reciprocity theo-
rem [ , , ], the optical properties at the harmonic wavelength have a linear inluence
on the total nonlinear scatering. his “self-consistent” contribution to the second order efects
is opposed by a squared dependence on the fundamental ield [ , , ]. Hence we con-
clude that, if a resonance at the fundamental frequency exists, P(2) does not difer signiicantly
from the self-consistent ield P

(2)
sc. . he expensive self-consistent computation of the nonlinear

polarization is only necessary in particular cases with strong optical response at the harmonic

In electrodynamics, reciprocity states for example that the gain of an antenna is universally describing the capability
of reception as well as of emission



frequency. However, it is oten diicult to judge in advance whether or not the structure’s linear
response to its nonlinear polarization is important, and if the self-consistent calculation needs to
be performed.



Chapter

SHG from Individual Silicon Nanowires

S (SHG) from silicon is weak from the bulk and in the past
has therefore mainly been used for surface characterization [ – ]. More recently it
was reported that SHG can be obtained from high ield enhancement in silicon photonic

crystals [ ] or by a strain-induced breaking of the latice symmetry [ , , ]. Nanos-
tructures, having large surface to volume ratios, can furthermore exhibit resonant modes with
high ield enhancements. Hence, nanostructures seem to be promising candidates to obtain SHG
from silicon, and indeed enhanced SHG was observed on arrays of silicon nanowires (SiNWs)
[ ].

Due to silicon’s non-zero χ (3) tensor [ ], recent research on nonlinear optical efects from
silicon nanoparticles focused on third harmonic generation (THG). THG was obtained for exam-
ple from Fano resonances in metasurfaces [ ], individual nanowires [ ], nanodiscs [ ] or
nanodisc oligomers [ ].

In this section we investigate in more detail on second harmonic generation from silicon
nanowires. In the irst part, the linear optical properties will be summarized, before an experi-
mental analysis and a subsequent interpretation of the results is presented.

Copyright Statement he following chapter is based in parts on the publications [ , ].
Some passages have been quoted verbatim. hese reprints are with permission of the Amer-
ican Physical Society. Reference [ ] was co-authored by Arnaud Arbouet, Houssem Kallel,
Priyanka Periwal, hierry Baron and Vincent Paillard, copyright by the American Physical
Society. Reference [ ] was co-authored by Arnaud Arbouet, Christian Girard, hierry Baron
and Vincent Paillard, copyright by the American Physical Society.

. Linear Optical Response

Before the discussion of nonlinear optical phenomena in SiNWs, we will start with an overview
of their linear optical properties. he response of SiNWs to electromagnetic ields can be analyt-
ically treated with the “Lorenz-Mie theory” (usually simply referred to as Mie theory), originally
developed for spherical particles [ ]. Mie theory can be adapted to ininitely long, homoge-
neous cylinders using vector cylindrical harmonics for the ield expansion series (see e.g. [ ]).

. . Leaky Mode Resonances

It turns out, that optical resonances occur in small cylinders of higher refractive index than the
environment. Due to their lossy character they are called “leaky mode resonances” (LMR). In
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Figure . : GDM-calculated ield intensities for leaky mode resonances in silicon nanowires. (a): TM01

(NW of D = 45 nm), (b): TE01/TM11 (NW of D = 115 nm) and (c): TE11/TM21 (NW of D =
175 nm). Electric (let) and magnetic (right) ield intensities are shown for TE (top) and TM
(botom) polarized planewave excitation. If in-plane ield components exist, the real-part is
illustrated by small black arrows. Incident plane wave from top with λ = 600 nm.

an intuitive image, the electric ield undergoes multiple relections inside the particle and the
leaky mode resonance occurs if these relective “round-trips” constructively interfere (for an
illustrative support of this explanation, see the curled ields at the resonances shown in Fig. . ).
he spectral positions λLMR of the LMRs are therefore roughly proportional to the perimeter of
the nanowire

k · λLMR ∝ n · 2Rπ ( . )

where k is an integer number and n the refractive index of the cylinder of radius R.
In igure . the electric and magnetic ield intensity-distributions inside an ininitely long

SiNW are shown for planewave excitation at λ = 600 nm, polarized perpendicular (transversal
electric, “TE”) or parallel (transversal magnetic, “TM”) to the wire axis. Diameters are chosen
such that the wire is resonantly excited. Diameters are (a) D = 45 nm, corresponding to a TM01

resonance, (b) D = 115 nm (TE01/TM11) and (c) D = 175 nm (TE11/TM21). he real part of the
ields (if non-zero in plane of the NW section) is ploted as small black arrows. Simulations are
performed by two-dimensional GDM (see Sec. . ).

In the TM01 mode (Fig. . a), the fundamental magnetic resonance, a curled magnetic ield cor-
responding to a single oscillating electric dipole along the NW axis occurs. For TE excitation on
the other hand, the ields are uniformwithin the nanowire and can be described by the quasistatic
approximation (see section . . ). he electric counterpart is the TE01 mode (Fig. . b). hismode
is degenerate with the second order magnetic TM11 resonance. A double-curled magnetic ield
is induced in the plane of the NW section, corresponding to two electric dipoles along the wire
axis (Fig. . b, botom). Again, the electric equivalent, the TE11 mode (shown in Fig. . c), has a
very similar curled electric ield distribution and two magnetic dipoles oscillating with opposite
phase along the nanowire axis. he later mode is degenerate with the magnetic TM21 resonance,
corresponding to four electric dipoles with alternating phase. hese dipoles close to the surface
can be seen as a result of the multiple relections at the inner surface of the nanowire. Along
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(c) GDM Simulation – TE excitation
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Figure . : Comparison between Mie theory (a, b) and GDM simulations (c, d) for scatering (i) and ab-
sorption (ii) eiciencies of ininitely long silicon nanowires. Linearly polarized planewave
excitation. (a, c) TE and (b, d) TM. Local maxima of scatering (absorption) are indicated in the
plots for Qabs as purple (respectively black) doted lines.

with these azimuthal modes, higher order radial modes exist (corresponding index j in TE/TMi j ).
Electric ield distributions of some more selected modes are shown in small insets of igure . .

. . Scatering and Absorption

he LMRs in dielectric nanowires induce – as a consequence of their “leaky” character – res-
onances in the farield scatering. As a measure for the ability to scater light, the scatering
eiciency Qscat can be used, which is the ratio of the scatering cross section σscat over the geo-
metrical cross section σgeo.

Qscat =
σscat
σgeo
. ( . )

he same can be done with the absorption cross section σabs to calculate an absorption eiciency

Qabs =
σabs
σgeo
. ( . )

In the case of an ininitely long nanowire (2-dimensional problem), the nanowire diameter is
taken as reference size parameter and also σscat and σabs, calculated as described in section . . . ,
are of the dimension of a length in this case.

the geometrical cross section corresponds to the “footprint” of an object
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Figure . : Maximum nearield intensity enhancement inside silicon nanowire for planewave TE (a) and
TM (b) excitation. he maxima of the scatering eiciency spectra are indicated with light blue
lines for comparison.

Scatering and absorption eiciency spectra of ininitely long SiNWs are ploted as function of
the incident wavelength and nanowire diameter in igure . , calculated both, fromMie theory (a,
b) and using the GDM (c, d). he incident plane wave is linearly TE (a, c) or TM (b, d) polarized.
he numerical simulations are in excellent agreement with the analytical results, justifying the
use of the GDM for the description of high-index nano-particles in general. he branches, cor-
responding to the modes illustrated in igure . are indicated by labels, where the degeneration
of TM11/TE01 and TM21/TE11 becomes once more obvious, as the scatering branches are at the
same positions in the diameter/wavelength plots for the respective incident polarizations.

Finally, we note that for photon energies suiciently below the direct band-gap of silicon (λ ≈
450 nm), absorption becomes generally very weak. his renders high-index particles like SiNWs
very interesting for applications which require low losses and is one of the key diferences to
plasmonic nanostructures [ , , , ].

. . Nearfield Enhancement

At resonance the electric ield inside as well as in the vicinity of the nanowire is enhanced. In
igure . , themaximumield intensity enhancement inside a SiNW is ploted against wavelength
and diameter for TE (a) and TM (b) polarized plane wave excitation. Light blue lines indicate the
maxima of the far-ield scatering eiciency. he shit between near- and far-ield spectra can be
explained by the damping term of a driven oscillator model [ , ].

A detailed discussion of scatering and absorption as well as of the nearield enhancement in
the vicinity of SiNWs can be found for example in the PhD thesis of Kallel [ ].



. . Directional Scatering

As explained in chapter , interferences of ields occurring when simultaneously exciting electric
and magnetic resonances in dielectric particles, allow to fulill the irst Kerker condition (µr = ϵr ,
[ ]) for nonmagnetic media, leading to purely forward directional scatering [ , ].

We saw, that in larger nanowires degenerate magnetic / electric LMRs occur, leading to both,
strong electric and magnetic ield enhancement. As a consequence, anisotropic scatering ap-
pears, which turns out to be oriented mostly in the forward direction (the same accounts for
other high-index nanoparticles, see e.g. [ , ]). he ratios of forward to backward (FW/BW)
and backward to forward (BW/FW) scatering are ploted in igure . for TE (a) and TM (b)
excitation. he maxima of the total scatered intensity are indicated with red and blue lines.
In agreement with the not fulilled Kerker condition, no directionality is obtained for the non-
degenerate, purely magnetic TM01-mode.

Some scatered ields around SiNWs and corresponding far-ield radiation paterns are shown
in igure . c-f. For TE polarization, an excitation of the forward- (c) and backward-scatering (d)
branch is shown (slightly below and above the TE01-resonance in terms of NW diameter, respec-
tively). A transition of forward- to mainly backward scatering takes place. For an incident plane
wave polarized along the axis, scatering under excitation of the TM01 (e) and the TM11 (f) mode
is shown. While unidirectional scatering occurs at the fundamental magnetic mode, almost pure
forward scatering is obtained at the TM11 resonance.

. . Influence of Diferent Geometrical Cross Sections

From a numerical point of view, round surfaces such as the whole interface of a cylindrical Mie-
nanowire, are technically demanding to be treated and oten cause numerical artifacts. Under
bad conditions, this can even lead to signiicant convergence problems and distort the simulation
results (see for example Fig. . ). In a cubic discretization scheme it is therefore favorable to use
lat surfaces.

Furthermore, lithographically deined nanowires are of square or rectangular cross section
which raises the question, how the optical response changes if the cross section difers from a
circle or hexagonal shape of VLS grown nanowires (see section . . ).

In igure . , scatering from ininitely long nanowires of diferent cross sectional shape is
ploted. Circular (a,b), hexagonal (c,d), square (e,f) and triangular (g,h) sections are compared for
TE (let) and TM (right) excitation. Obviously, apart from a slight spectral shit, low order cylinder
LMRs are relatively insensitive to a change of the 2-dimensional section (see also [ ]). However,
deviations occur for higher order modes, which is obvious when square and circular wires are
compared. Scatering eiciencies from hexagonal wires seem to stay close to the behavior of their
circular counterparts for higher order modes. Also the ield distributions at the resonant modes
(see insets in Figs. . ) are in good qualitative agreement. Modes from triangular wires inally are
shited to larger diameters and longer wavelengths, which can be atributed to the lower amount
of material per size parameter. Interestingly, the degeneracy of the TM11 and the TE01 mode
seems to be relaxed in triangular wires, the TE01 mode is occurring for larger triangular sections

We note, that the second Kerker condition under which pure backward scatering occurs (when the irst order
magnetic and electric Mie coeicients are equally large and of opposite sign: a1 = −b1) requires spherical particles
[ ].
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Figure . : Ratio of forward to backward scatering (i: FW/BW, ii: BW/FW) for a silicon nanowire, illu-
minated by a TE (a) and TM (b) polarized planewave. (iii) FW (red) and BW (blue) scater-
ing spectra for a SiNW with diameter d = 100 nm, indicated by a dashed line in (i) and (ii).
Local maxima of the corresponding total scatering eiciency spectra (Fig. . ) are indicated
in the plots by doted lines. (c-f) show the absolute amplitude of the scatered electric ield
(|Re(Escat) |) in the vicinity of the nanowire for diferent modes. Scalebar corresponds to λ0.
In the insets the normalized radiation paterns for the farield (|Escat |2) are shown. Incidence
from the top, the NW axis is in the center of each plot and is pointing towards the reader.
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Figure . : Scatering eiciency of ininitely long wires with various diferent cross sections under (a,c,e,g)
TE and (b,d,f,h) TM polarized planewave illumination. Incidence from top. Nanowire cross
section geometries are (a,b) circle, (c,d) regular hexagon, (e,f) square and (g,h) regular triangle.
he ield-intensity distribution inside the wire is shown for selected modes in insets (indicated
by small crosses).
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Figure . : Inluence of a substrate on the scatering eiciency from SiNW for planewave TE (a) and TM (b)
excitation. he case of no substrate (i) is compared with substrates of refractive index n = 1.5
(ii) and n = 3.5 (iii). Im(n) = 0.

compared to the TM11 resonance. However, spatial ield distributions are very resembling for all
geometries and similar modal paterns are found in all cases.

We conclude, that a circular wire can be modeled in good approximation using a hexagonal
or square section. In the following we will use square nanowires which have proven to provide
the best numerical stability. As a inal remark we note, that VLS grown SiNWs are in fact of
hexagonal shape, so inversely we can deduce that Mie theory is a good approximation for such
nanowires but a small shit of the resonances has to be kept in mind if comparing experimental
spectra with simulations.

. . Influence of a Substrate

It is diicult to perform experiments on nanostructures in a homogeneous environment, since
nanostructures are usually lying on a substrate. he presence of a substrate should therefore be
taken into account in numerical modeling. his cannot be done in analytical Mie theory but is
easily possible within the GDM (see section . . . ). To get an idea of the impact of a substrate
on farield scatering, scatering eiciency spectra are ploted as function of the cylindrical NW
diameter in igure . for SiNWs in vacuum (i), on a n = 1.5 (ii) and on a n = 3.5 substrate. While
a substrate of low refractive index (e.g. SiO2 has n ≈ 1.45 in the visible spectral range [ ]) has
only a minor inluence on the spectral response of a silicon nanowire, a severe impact on the
optical behavior is observed when the refractive index of both the NW and the substrate are



nearly equal (such as for SiNW on Si). he damping and broadening of the resonances might be
explained by an increased “leaking” of the optical ield at the interface to the substrate due to the
refractive index matching, which consequently lowers the relectivity at the interface between
wire and environment.

We conclude that a low-index substrate will only weakly modify the analytical solution from
a homogeneous environment and interpretations of results from nanowires on glass substrates
can be done in good approximation using Mie theory.

. . Nanowires of Finite Length

In inite length cylinders the Mie resonances become hybridized with guided modes [ ]. It has
been shown, that the LMR contribution to the resonant behavior is dominant for nanowires with
large aspect ratios (aspect ratio L/D ≳ 10) [ , ].

. Sample and Experimental Setup

Ater having discussed the linear optical properties of silicon nanowires, we will investigate on
the nonlinear optical response in more detail. At irst, we briely present the samples and the
experimental setup.

. . VLS Grown Silicon Nanowires

In the following we show results obtained from vapor-liquid-solid (VLS) grown crystalline sil-
icon nanowires (growth along the [ ] direction). he nanowire growth is performed at LTM
Grenoble, in the group of Dr. hierry Baron [ ]. he VLS process is a chemical vapor phase
epitaxial technique in which nanowires are grown from a precursor gas on a substrate, mediated
by catalytic nanodroplets (usually gold). It allows for an accurate control of the diameter by
adapting the size of the gold nanoparticles used as catalyst [ ]. Ater the removal of the gold
catalyst on top of the grown wires, the NWs are dispersed in solution by leaving the as-grown
sample in an ultra-sonic bath for about 30 s. We deposited nanowires of three diferent diameters
on transparent glass substrates (refractive index n ≈ 1.5). he nanowires can then be charac-
terized using scanning electron microscopy (SEM), atomic force microscopy (AFM) or darkield
microscopy (DF) and comparison with Mie theory. Illustrative results are shown in Figs. . a,b,c.
he range of NW sizes in the three selected samples are listed in table . . Lithographic markers
on the substrates allowed subsequent measurements on the identical nanowires. Using Raman
spectroscopy we also veriied that no χ (2) components are induced by strain [ , ]. For this,

Table . : Characteristics of investigated VLS grown silicon NWs.
sample name average diameter of gold droplets measured SiNW diameters

dVLS [nm] dSiNW [nm]

NW 50 45 − 60
NW 100 95 − 120
NW 250 250 − 310
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Figure . : Characterization of the VLS grown SiNWs by SEM (a) and AFM (b) (scalebars are 200 nm and
500 nm, respectively), as well as optically using darkield scatering in comparison with Mie
theory (c) and Raman spectroscopy (d) In the later, the dashed black line indicates the silicon
Raman line at 521 cm−1 [ ].

we compared the Raman shit of a NW SiNWwith a bulk [ ]-Si substrate. Lorenzian its to
the data result in an identical Raman shit at the Si-line at 521 cm−1 [ ], as shown in Fig. . d.

Sizes are chosen such that a single resonance is present in the visible spectrum for the smallest
nanowires NW . his resonance is non-degenerate and only appears under TM excitation. Un-
der TE excitation, there is no mode in the visible spectral range. NW have the TM01 resonant
mode around 700 − 800 nm and a second degenerate mode below 500 nm occurs (TM11/TE01).
he large NW with diameters > 200 nm inally have multiple resonances. For more details
on the linear optical properties, see the previous section . .

. . Nonlinear Microscopy Setup

he nonlinear experiments were performed on a home-made nonlinear microscopy setup. he
heart of the system is a pulsed femtosecond Ti:Sapphire laser (Coherent Chameleon Ultra II),
tunable in a range from 680 nm to 1080 nm. At a repetition rate of 80MHz, the pulse length
at λ = 800 nm is τpulse ≈ 150 fs (see also appendix A. ) and the time-averaged output power is
Pavg. ≈ 4W at this wavelength. Assuming a rectangular pulse shape, this results in a peak laser

1 fs = 1 × 10−15 s
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Figure . : Sketch of the nonlinear microscopy experimental setup. A linearly polarized beam is incident
from the top (red), its polarization can be controlled via a λ/2 waveplate. It is focused on
the sample, which lies on a x/y piezo stage. he backscatered light (blue) is collected by the
focusing optics and separated from the incident beam by a dichroic mirror. hen it is iltered
and inally sent on a detector. he blue luminescent “cloud” around the SiNW is an artistic
representation of the SHG.

power of Pavg. ≈ 0.33GW. In the following we will stick to average powers as they can easily be
converted to peak powers or energy per pulse.

he linear polarization of the fs-pulsed beam can be rotated by a λ/2 waveplate and is fo-
cused on the sample using a high numerical aperture (NA) microscope objective. If not noted
otherwise, we used a ×50, NA 0.8 air objective. To beneit from a larger working distance, some
measurements have been performed using a LWD ×100, NA 0.8 air objective. Both objectives
have around 90% transmitivity at the second harmonic wavelength, slightly decreasing towards
the infrared. Lower transmitance at the fundamental frequency when using the ×100 objective
is accounted for by increasing the incident laser power accordingly.

he backscatered nonlinear emission is collected by the same microscope objective and sep-
arated from the fundamental beam by a dichroic mirror (“Semrock nm edge BrightLine”).
Residual laser light is removed using bandpass colorilters (3mm Schot BG ) before the signal
is directed onto the detection system, for which is used either a photomultiplier tube (“PMT”,
Hamatsu h ) coupled to a lock-in ampliier (laser beam mechanically chopped at 6 kHz) or a
spectrometer with a high-sensitivity CCD (Andor Shamrock + Andor iDus CCD).

he samples are lying on a x/y piezo stage with a closed-loop feedback positioning controller,
allowing for nanometer-precise displacement of the nanostructures. he sample can be moved
sotware-controlled below the focused laser beam in order to perform cartographic raster-scan
acquisitions (see also Fig. . b). In suchmap-scan experiments, the (nonlinear) signal is recorded
at each position of the x/y stage, allowing to draw a 2-dimensional intensity map of the nonlinear
signal.

Long working distance
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Figure . : (a) shows a spectral comparison of the nonlinear emission from TE/TM excited NW (top) to
a 200 nm thick Si-on-uartz ilm ([ ] surface orientation) and a bulk LiNbO3 nonlinear crys-
tal (botom). In (b), spectra for NW are shown with increasing excitation power (average
power). Power-law plots of the highlighted zones are shown in Fig. . a.

. Enhanced Nonlinear Optical Response

. . Spectrum of Nonlinear Response

In a irst step, the nonlinear signal from a crystalline silicon nanowire (NW ) was spectrally
analyzed and compared to reference samples, namely to a silicon-on-uartz (SOQ) ilm of 200 nm
thickness and a LiNbO3 single-crystal with high χ (2) for a pure second order nonlinear response
[ , ]. A BG colorilter was inserted prior the spectrometer to remove residual fundamen-
tal laser light from the detection path and avoid damage of the sensitive CCD.

Measured spectra are shown in Fig. . a for an excitation at λ0 = 840 nm. he silicon sam-
ples were excited with an average power of 3.8mW/μm2, the LiNbO3 crystal with 0.9mW/μm2.
While the LiNbO3 shows a purely second harmonic spectral response (sharp peak at λ0/2), the
silicon samples feature an additional large multi-photon photoluminescence (MPPL) band, cov-
ering the full spectral range between the SH peak and the cutof of the BG colorilter at around
600 nm. Interestingly, the MPPL band is much stronger in case of TM excitation than for a TE
polarized incident beam. We can atribute this to the stronger ield enhancement inside the NW
for the TM case (see also Fig. . ).

. . Involved Nonlinear Efects

We found that the nonlinear response of individual SiNWs consists of diferent contributions:
Second harmonic generation and a spectrally broad nonlinear luminescence, whichwe call multi-
photon photoluminescence (MPPL). In the following we will therefore study these diferent spec-
tral bands in more detail. We will ind that the observed peak at λ0/2 is very easily atributed to
SHG. he analysis of the MPPL band, however, is not as unambiguous as it is concerning SHG,
therefore we will use diferent characterization methods to corroborate our interpretation.
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(b) Elastic and Nonlinear Scan of SiNW

Figure . : (a) shows a sketch of the nonlinear response of order N (ii) to a difraction limited gaussian
proile (i). In (b) an experimental SiNW raster-scan map is shown. (i) elastic scatering and
(ii) nonlinear signal.

. . . Profile Width of Line-Scans

In order to gain a irst insight about the order of the nonlinearity responsible for the measured
signal, raster-scan measurements were performed on the NW sample. An illustration of the
raster-scan type ofmeasurements is shown in Fig. . b. From thewidths of the intensity proiles,
we draw conclusions on the order of the nonlinearity at the origin of the luminescence. To
estimate the spatial extension of a difraction limited nonlinear response of orderN to a Gaussian
proile, we compare a Gaussian and the N th power of a Gaussian

f (x ) = exp *
,
−x2

2w2

elastic

+
- ←→ f (x )N = exp *

,N
−x2

2w2

elastic

+
- ( . )

wherewelastic is the difraction limited spotsize of the focused laser beam. Comparison of the let-
and right-hand side in Eq. ( . ) yields for the width of the nonlinear Gaussian

worder N =
welastic√

N
( . )

which is illustrated in igure . a (i [red] linear, ii [blue] nonlinear response). his means for a
second and third order nonlinear response:
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√
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A nonlinear intensity map of NW is shown in Fig. . b(ii), the corresponding elastic scat-
tering is shown in (i). he former was acquired with a BG ilter, the later without BG
ilter and strongly reduced laser power. We observe that the width of the nonlinear signal is
too small to be caused by a second order nonlinear response, hence the observed nonlinear emis-
sion is not a consequence of SHG. To study this observation in more detail, we used a homemade
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(b) Scan Proiles for Several Pexc., NW

Figure . : (a) shows a the scan width of the nonlinear emission of NW as function of the detection
wavelength (like indicated by dashed lines in Figs. . ). Excitation at λ0 = 900 nm (λSHG =
λ0/2 is highlighted green). Precision of the monochromator is ±5 nm (horizontal errorbars).
In (b) proiles of the luminescence at the harmonic wavelength are shown across the NW for
increasing excitation power. A it to the data using three superposed Gaussians is shown as
well as the individual Gaussian contributions to the it. (i): lowest to (vi): highest average
incident power. TM excitation of NW .

monochromator setup, whichwe characterizedwith a calibrated white lamp and anOceanOptics
USB + spectrometer. An investigation on the smaller nanowires NW and NW yielded
good agreement with a second order nonlinear response at the SHGwavelength and a third order
nonlinear scaling for the broad MPPL. he results are summarized in table . .

he width of the nonlinear raster-scan across a SiNW (NW ) is shown as function of the
detected wavelength in Fig. . a. he spectral transmission window was ≈ 10 nm large, indi-
cated by horizontal errorbars. he vertical errorbars are standard deviations from the Gaussian
it to the linescan perpendicular to the NW axis. Interestingly, the width for detection at the
SHG wavelength is about as large as we would assume for the scatering of the fundamental
wavelength of λ0 = 900 nm. On the other hand, far from the SHG wavelength the measured
proile widths across the wire correspond to a third order nonlinear response, in agreement with
the smaller NWs.

In Fig. . b proiles across the NW from a detection at the SHG wavelength (±5 nm) are
shown for diferent excitation powers. In these plots we can observe two features with diferent

Table . : Comparison of measuredwidths (all data fromTM excitation) of several proiles to the nonlinear
signal of SiNWs, iltered at SHG or MPPL. All widths indicate the FWHM. Physical diameters
from comparison of Mie theory to linear scatering spectra.

NW Dphysical welastic wSHG wBroad welastic
wSHG

welastic
wBroad

wSHG
wBroad[nm] [nm] [nm] [nm]

NW # . . .
NW # . . .
NW # . . .
NW . . .



behaviors: On the one hand a signal from the NW borders as well as a second contribution
from the NW center on the other hand, whose intensity increases much faster as function of
the excitation power compared to the border signal. his can be explained by a strong second
order response when the laser is focused on the NW borders, superimposed with a higher order
nonlinear contribution which is strongest if the laser beam is focused on the NW center. For
lower excitation powers, the higher-order response in the center is then invisible, but it increases
more rapidly with rising incident power, such that it becomes dominant at a certain excitation
strength. A it to the linescans of Fig. . b using a superposition of three Gaussians reveals
indeed a convolution of two Gaussians of larger width at the borders and one more narrow
Gaussian placed in between. he large values for the scan-width around λ0/2 in Fig. . a are
the result of of the superposition of several nonlinear sources and can therefore not be used to
estimate the order of the nonlinear efect.

We conclude that the NW are large enough to have a nonlinear optical response with
several distinct features, resolvable by (nonlinear) optical microscopy. In consequence, Eq. ( . )
cannot be applied, because it is based on the assumption of a difraction limited signal.

. . . Power Dependence

In order to verify the inding of SHG at λ0/2 and a third order broad luminescence, we performed
a spectrally resolved series of measurements using increasing excitation powers, which is shown
in Fig. . b. he corresponding peak intensities as function of the excitation power are shown in
Fig. . a on a logarithmic scale (log-log plot). Power-law lines for N = 2 (blue) and N = 3 (red)
are ploted as guide-to-the-eye and conirm a second order for the peak at the second harmonic
wavelength as well as the hypothesis of a third order nonlinear process responsible for theMPPL.

. . . Autocorrelation Measurements

Finally we performed a third series of measurements, to conirm the orders of nonlinear pro-
cesses: We did autocorrelation measurements using two excitation beam paths with variable
time-delay, controllable via a servomotor driven delay stage. he two beams are uniied by a
beam spliter before being focused on the sample by the same microscope objective. For the its
to the autocorrelation data, a chirp-free, Fourier limited Gaussian wave packet was assumed. he
pulse-width of the laser at the fundamental wavelength τpulse was determined by a it to auto-
correlation data from a reference LiNbO3 crystal, having a pure second order response, and was
found to be τpulse ≈ 150 fs. Experiments were carried out with excitation at λ0 = 810 nm using

Table . : Results for its to autocorrelation measurements on a SiNW “NW ”, iltered using color ilters
at the SHG wavelength λSHG = 405 nm and at the large multi-photon luminescence 435 nm ≲
λMPPL ≲ 600 nm. Excitation on the NW tip at λ0 = 810 nm. Corresponding autocorrelation
plots are shown in Fig. . b.

λdet Order of Nonlinearity
(nm) TE TM

405 (SH) 1.9 ± 0.1 1.9 ± 0.1
> 435 2.6 ± 0.1 2.8 ± 0.1
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Figure . : Investigation on the order of the nonlinear processes in silicon NWs. (a) powerlaw plot of
the nonlinear signal iltered at the SHG wavelength (blue) and around the MPPL (red), as
indicated in Fig. . b. Power-law functions xN for N = 2 and N = 3 are ploted as guides to
the eye. In (b) interferometric autocorrelation measurements are shown for TE (i, iii) and TM
(ii, iv) excited NW . Colorilters for SHG (i, ii) and the spectrally broad MPPL (iii, iv) were
added prior detection. Autocorrelation its to the envelope are ploted as solid lines, results
are given in table . .

Table . : Results for its to autocorrelation measurements at several detection wavelengths using a
monochromator setup for wavelength range selection (transmiting a spectral window of
λilter ± 5 nm). Excitation at λ0 = 840 nm.

NW # NW #
λdet TE TE TM TM TE TE TM TM
(nm) Tip Center Tip Center Tip Center Tip Center

. . . . - - . -
(SH) . . . . . . . .

. - . . - - . -
- - . . - - . -
- - . . - - . .
- - . . - - . .
- - - - - - . .
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(c) Two-Pump Experiment

Figure . : (a) and (b) show schemes of a coherent and incoherent second order nonlinear process, re-
spectively. In (c) two-pump time-delay measurements are shown comparing TPL from a gold
nano-dimer and a silicon nanowire (NW ). Data is normalized to the intensity at large time-
delay. No additional color-ilter was added apart from a BG ilter for residual fundamental
light. he gold data (red) is in agreement with results published by Biagioni et al. [ ]. No
inite lifetime could be probed for SiNWs.

bandpass ilters (405 ± 5 nm for SHG and > 435 nm for MPPL), as well as using the monochro-
mator setup at an excitation wavelength of λ0 = 840 nm. he results are listed in tables .
and . , respectively, conirming the second order nonlinear scaling for SHG as well as a third
order response for the MPPL.

For a detailed description of the autocorrelation measurement technique, the theoretical mod-
elling and iting, the two-pump optical setup aswell as for results of the referencemeasurements,
see appendix A. .

. . . Coherent and Incoherent Nonlinear Processes

Finally we want to analyse if the observed MPPL in the silicon nanowires is of coherent nature.
Coherent nonlinear efects are excited instantaneously with no intermediate states involved. Of-
ten, the concept of a virtual state is used: his state (which in reality doesn’t exist8) is populated
by a irst photon and instantaneously further excited by a simultaneous second photon, as shown
in igure . a. he particularity of such a coherent nonlinear process is that – as the name sug-
gests – the phase of the incident light is conserved. An incoherent nonlinear process on the other
hand involves real intermediate states with inite lifetimes (Fig. . b). In the later case, the pro-
cess can still be observed if the incident photons have a certain time-delay in the order of the
intermediate state’s lifetime, but their phase information is lost.

Using two time-delayed incident coherent beams (usually from a beamsplited pulsed laser,
equivalent to the autocorrelation measurement setup, see appendix A. ), intermediate states can
be probed when measuring the nonlinear signal vs. time delay between the two beams. At-
tention has to be payed on the autocorrelation signal, which has to be cropped entirely. Such
measurements revealed no detectable inite lifetime for the case of SiNWs, while the lifetime of
gold nanoparticles, previously reported by Biagioni et al. [ ] to be in the order of 1 ps, could



be reproduced. We conclude that the MPPL in SiNWs is driven by a coherent excitation process,
possibly by THG in the bulk silicon.

. . . Conclusions on Involved Nonlinear Processes

In summary, we conclude that the peak at λ0/2, observed in nonlinear spectra from fs-pulse ex-
cited SiNWs, is indeed due to second harmonic generation and that the spectrally broad MPPL
is a coherently excited third-order nonlinear process, probably a three-photon-induced photolu-
minescence .

Silicon has a large bulk χ (3) , and consequently third order processes are relatively eicient
[ , , , ]. he large luminescence could be a three photon absorption induced photo-
luminescence ( PPL) from the silicon. Direct PL from silicon lies in the spectral range between
450 nm and 600 nm [ ], which corresponds to the observedwavelength range of the third order
MPPL. It has also been reported that silicon nanowires can enhance luminescence from oxygen
defects in SiO2 [ ]. Hence, the large luminescent band could be from the nanowire’s thin shell
of native silicon-oxide or from the glass substrate [ ], excited e.g. by THG from the SiNW .
Further investigations e.g. with SiNWs deposited on diferent substrates should be performed to
clarify the origin of the spectrally large luminescence.

. . Second Harmonic Generation Microscopy

We now leave aside the third order nonlinear photoluminescence and focus in the following
section on second harmonic generation from individual SiNWs as function of their size.

. . . SHG Line-Scans along SiNWs

In Fig. . a, typical raster-scan maps of a NW are shown, excited at λ0 = 810 nm and il-
tered at the second harmonic wavelength (λSHG = 405 nm). In (i) the incident polarization was
perpendicular to the NW axis (TE) and in (ii) parallel to the wire (TM). SHG intensity proiles
along the SiNW are shown for both incident polarizations in (iii). While a homogeneous second
harmonic signal is detected along the axis under TE excitation, a strong anisotropy occurs in the
TM case, where the SHG intensity has a distinct maximum at the NW tips.

his efect can be explained by simple considerations on the continuity conditions at the in-
terface of two dielectric media, which is described by the dielectric contrast i.e. by the diference
of the relative permitivity. For a dielectric medium of permitivity ϵr placed in vacuum (ϵ0), we
get [ ] (see also appendix . . )

E ∥ = E0, ∥ ( . )

E⊥ = E0,⊥
2ϵ0

ϵ0 + ϵr
( . )

Comparable to two-photon photoluminescence (TPL) in gold, which however is an incoherently excited process,
since Au lacks a bandgap and real electronic states exist
For excitation wavelengths of 800 nm ≲ λ0 ≲ 900 nm, THG lies in the UV. We cannot detect the corresponding

light directly due to the limited sensitivity of the detectors
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Figure . : Linescans along SiNW axis. (a) shows SHG-iltered 2D rasterscan of NW for TE (i) and TM
(ii) excitation. Proiles extracted along the wire axis are shown in (iii). In (b), proiles along
the NW axis are shown for diferent excitation wavelengths, iltered at λilter = 405 ±
5 nm (solid lines) and at 435 nm ≲ λilter ≲ 600 nm (dashed lines). TE (blue) and TM (green)
excitation are shown in the let and the right column, respectively.

where E ∥ and E⊥ are the tangential and normal ield components and E0 is the incident ield
amplitude. he parallel ield component is continuous over the interface, while the normal com-
ponent is scaled by the dielectric contrast. his, together with the fact that χ (2)

⊥⊥⊥ (P(2)
⊥⊥⊥ ∝ E2⊥) is

supposed to be the largest component of the second order susceptibility tensor for silicon [ ],
can explain the anisotropy of the SH intensity distribution in the TM case: he normal ield com-
ponent discontinuity occurs only at the tips, not along the NW where all ield components are
purely tangential.

Interestingly, this qualitative anisotropy appears only for SHG. When the third order MPPL
is mapped, also for TE incidence the nonlinear signal increases under excitation on the NW
tips compared to the signal intensity when focusing the laser along the NW. his is a further
indication for the predominant role of χ (2)

⊥⊥⊥ and shown in Fig. . b, where the fundamental
wavelength is varied between 780 nm ≲ λ0 ≲ 840 nm, while the detection is ixed using color-
ilters at λdet. = 405 ± 5 nm (solid lines) or λdet. ≳ 435 nm (dashed lines). Only when the second
harmonic wavelength matches the color-ilter’s transmission line at λdet. = 405 nm, the intensity
peaks at the NW edges disappear, outshined by the more intense second harmonic light.

As noted above, this behavior can be explained by the dominating χ
(2)
⊥⊥⊥ component for second

harmonic generation, boosting the signal from the perpendicular ield components along the NW
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Figure . : In (a) the TE (i) and TM (ii) SHGmapping from experiment on a NW are compared to GDM
rasterscan simulations using P(2)

⊥⊥⊥ (iii, iv) and the GDM-simulated fundamental nearield on
a plane 20 nm below the NW (v, vi). (b) shows an illustration of the rasterscans, performed in
experiment and GDM simulations (i-iv).

axis under TE illumination. For the case of the χ (3)-induced MPPL this anisotropic contribution
of certain ield components to the nonlinear emission does no longer take place and the signal
along the axis decreases strongly. he general enhancement of MPPL from the tips is a result
of the dielectric contrast and probably further enhanced by guided light coupled into the wire,
increasing the local density of photonic states (LDOS) .

his hypothesis is in agreement with the intensity evolution of the λdet. = 405 nm-iltered
TE signal in Fig. . b. Similar SHG anisotropies due to the contribution of only speciic ield
components have also been reported from NWs of other materials like ZnSe [ ] and gold [ ].

. . . Nearfield and SHG Rasterscan Simulations

To conirm that a χ
(2)
⊥⊥⊥ induced SHG in SiNWs results in the observed polarization-dependent

anisotropy of the raster-scanmaps, we performed GDM simulations of the fundamental nearield
distribution and of a farield raster-scan using only P

(2)
⊥⊥⊥. he fundamental wavelength was set

to λ0 = 810 nm, a focused planewave (see section . . . ) of difraction limited diameter ater the
Rayleigh criterion (dspot ≈ 1.22λ0/NA) is used for the raster-scan simulations, a plane wave for
the near-ield distributions which are calculated 20 nm below the NW. he structure model was
a 2 μm long silicon nanowire of rectangular section with diameter D = 100 nm. A square section
is a valid approximation to cylindrical nanowires, as we showed in section . . : At lower order
modes a rectangular wire behaves equivalently to a Mie nanowire, except for a small shit in the
spectral positions of the resonances. he results of GDM rasterscan simulations are shown in
igure . a (iii and iv for TE and TM incidence, respectively) and compared to measurements
on a similarly long nanowire NW for TE (i) and TM (ii) incident polarization. Maps of the

he contribution of guided modes in crystalline NWs is further supported by recent measurements on lithographic
wires (etched surfaces): Far less pronounced SHG and MPPL from the tips was observed in this case, which we
atribute to imperfect surfaces, hindering the eicient coupling of light in the NW.
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Figure . : Let: Polarization iltered darkield spectra of NW (a) and NW (d), measured (solid) and
calcuated by Mie theory (dashed) for TE (red) and TM (blue) excitation. SHG-iltered raster-
scan maps are shown at the right for TE (TM) excited NW (b, respectively c) and NW
(e: TE, f: TM). Scalebars correspond to 500 nm.

nearield intensity distribution are shown for the corresponding polarizations in (v) and (vi). A
sketch illustrating the principle of the raster-scans is shown in Fig. . b.

he SHG simulations using only perpendicular surface ield components reproduce with good
qualitative agreement the homogeneous SHG along the wire for TE excitation as well as the
enhanced SHG from the NW tips for TM polarized illumination. In the later case, no SHG is
generated from the wire center, because only ield components parallel to the wire surface exist.
Finally, a comparison to the nearield closely below the nanowire reveals an interesting analogy
between the farield SHG mappings and the nearield distribution: While the ield intensity is
homogeneous along the wire for TE polarized incidence, in the TM case a strong ield enhance-
ment at the NW tips occurs. his is in agreement with reported experimental characterization
of the optical nearield in the vicinity of SiNWs [ ].

. . . SHG and Resonant Modes

In the following we explore the inluence of resonant modes on the second harmonic generation.
herefore we focus on the smaller nanowires NW and NW , featuring a limited number of
resonant optical modes in the visible spectral range. NW has one, respectively no optical reso-
nance under TM and TE excitation. NW has one resonance for TE incidence and supports two
modes for TM illumination (see also Fig. . c). In igure . , typical results of NW and NW
are shown. (a) for NW and (d) for NW show polarization iltered elastic scatering spec-
tra (solid lines) compared to Mie theory (dashed lines) for TE (red) and TM (blue) polarization.
Individually normalized SHG raster-scan measurements on the exact same SiNWs are shown in
(b-c) for NW and (e-f) for NW , excited at λ0 = 810 nm with corresponding polarizations
(indicated by small arrows).
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Figure . : Scheme illustrating the renormalization of the SHG signal: Spotsize with respect to the illu-
minated NW area. Kspot = SonNW/Sspot.

While always SHG was measured if a Mie mode was close to the fundamental wavelength
(NW and TM excited NW ), no detectable second harmonic light was obtained from NW
under TE excitation. From the corresponding scatering spectrum we see that there is no inter-
action of the nanowire with the exciting ield. A comparison with Fig. . a shows furthermore
that the electric ield inside the nanowire is close to zero, which explains the lack of SHG in the
absence of a resonance. his is in agreement with nonlinear scatering theory, predicting highest
SHG for a maximum spatial overlap of resonant modes at both, fundamental (squared propor-
tionality) and harmonic wavelength (linear proportionality) [ , , ] (see also Sec. . . . ).
Hence, particularly in the absence of a resonance at the excitation wavelength, SHG is supposed
to be very weak. he results in igure . are individually normalized, corresponding absolute
values are given in table . where the results of NW and NW are furthermore compared to
values fromNW as well as to a bare glass substrate, a silicon substrate and a LiNbO3 reference
crystal (χ (2)

bulk , 0, excitation power reduced by a factor of 10).

. . . Comparison of SHG from SiNWs to bulk Materials

In the experiment the difraction limited minimal spot radius rspot ≈ 0.61λ0/NA ≈ 620 nm (for
λ0 = 810 nm) is always signiicantly larger than the radius of the SiNW. We therefore calcu-
late a scaling coeicient using the ratio between the illuminated area of the nanowire and the
(nonlinear) area of the focused laser spot

Kspot =
SonNW
Sspot, NL

( . )

with the area governed by the second order nonlinear response to the focused laser spot (taking
into account the quadratic intensity-scaling of the SH nonlinear response by the factor 1/

√
2)

Sspot, NL=π (rspot/
√
2)2 ( . )

and the intersection of spot and NW surface

SonNW=dNW ·
2rspot√

2
. ( . )

To obtain the normalized SHG yield, we divide the photocurrent by the scaling coeicient Kspot,
which then allows a comparison of the SHG signal from nanowires and bulk samples. Corre-

Assuming the Rayleigh criterion is a good approximation.



sponding values are given in the rightmost column of table . . We observe that the strongest
SHG per illuminated area is obtained from NW , being more than two orders of magnitude
stronger than SHG from a bulk silicon crystal.

. . Conclusions

In conclusion, we found that the nonlinear response of silicon nanowires in the visible spectral
range under femtosecond pulsed excitation in the near infrared consists of two main contribu-
tions: Second harmonic generation (SHG) on the one hand and a spectrally broad multi-photon
induced photoluminescence (MPPL) on the other hand. While we could conirm the peak at λ0/2
to be SHG, the later contribution was found to be the result of a third order nonlinear efect,
possibly a third harmonic induced luminescence. As for the SHG, we observed a polarization
dependent anisotropy in raster-scan mappings. For an incident light linearly polarized normal
to the wire axis, a homogeneous SHG all along the NW was observed, while for a polarization
parallel to the axis, an enhancement of the SHG on the nanowire tips occured. We could track
this behavior down to a mainly χ

(2)
⊥⊥⊥-induced surface SHG in the SiNWs which we conirmed by

numerical raster-scan simulations. Finally we observed a dependence of the SHG on the presence
of resonant modes. In the absence of any resonance at the fundamental frequency, no SHG was
observed. On the other hand, if Mie modes exist in the spectral vicinity of the fundamental wave-
length, a SHG enhancement of more than two orders of magnitude can be obtained compared to
bulk Si. In this context, further work with NWs of several diferent diameters, supporting reso-
nances at either fundamental or harmonic frequency, as well as at both frequencies, should be

Table . : Comparison of SHG signals for diferent samples and diferent experimental conditions. In the
last column, the photocurrent is normalized to the illuminated area of the sample (Kspot, see
Fig. . ). Laser power and wavelength were ixed at . mW/μm2 and nm, respectively
(except . mW/μm2 for LiNbO3). he scatering eiciencyQscat. at nm is calculated using
Mie theory.

Sample Laser Pos. Polarization Qscat. Kspot Iphoto (nA)
Iphoto
Kspot

(nA)

LiNbO3 – – –
Glass substrate – – – . .
Si bulk ( ) – – – . .

nm Si ( ) onuartz – – – . .

NW

Tip TE .
.

. .
Center . .
Tip TM . . .

Center . .

NW

Tip TE .
.

. .
Center . .
Tip TM . . .

Center . .

NW

Tip TE .
.

. .
Center . .
Tip TM . . .

Center . .



very interesting. As SHG from silicon is normally forbidden in the dipole approximation (see sec-
tion . . . ), the enhanced SHG renders SiNWs interesting for second order nonlinear photonic
applications compatible to state-of-the-art CMOS technology. Furthermore, the possibility to
tailor a polarization controlled on/of-switching behavior by the presence or absence of resonant
modes might be exploited in various ways.

. Origin of Second Harmonic Generation

As shown in section . . , SHG from centrosymmetric materials can be due to diferent processes.
In this context, the source of the largest contribution to SHG has led to controversial conclusions.
Oten, second order efects in centrosymmetric nanostructures are modeled assuming the χ

(2)
⊥⊥⊥

surface contribution from ield components normal to the surface to be most signiicant, neglect-
ing other possible sources (e.g. [ , , ]). In the previous section we found, that the χ

(2)
⊥⊥⊥

component can describe SHG also from SiNWs in a irst, qualitative approximation. Neverthe-
less, we will see in the following that several phenomena we observed cannot be explained by
χ
(2)
⊥⊥⊥-SHG and we will ind that, depending on the NW diameter and excitation conditions, con-

tributions from tangential ields at the surface as well as from strong ield gradients in the bulk
have to be considered.

. . Introduction: Contributions to Surface SHG

Studies on the magnitude of other contributions have been performed on homogeneous sur-
faces [ , ] as well as on metal nanoparticles like nanospheres [ , ]. A geometrical
study on the selection rules for local surface and non-local bulk contributions to SHG from
metal nano-tips under planewave excitation pointed out a purely surface-like SHG in collinear
measurements [ ]. Nonlocal bulk contributions to SHG (Sec. . . . ) can be induced by ield
gradients due to resonant modes or tightly focused laser beams. For instance, the consequence
of strong ield gradients from focused excitation has been theoretically described for low-index
spherical nanoparticles and a characteristic signature in the far-ield emission patern has been
predicted [ ]. A study on arrays of small Si spheres excited under tight focus found compara-
bly strong bulk and surface contributions to SHG, and a scheme using polarization analysis of the
harmonic emission was suggested to separate and identify those contributions [ ]. Motivated
by those publications, we will try in this section to understand the origin of SHG from SiNWs.

. . Experimental Results

Following the suggestion of a polarization analysis to separate SHG contributions [ ], we ilter
the linear polarization state of SHG prior detection. Apart from this, we use the same experimen-
tal setup as in the preceding section (see Sec. . . and Fig. . ). In igure . typical experimental
results for representative nanowires of (a) NW , (b) NW and (c) NW are shown. On the
let of each subplot, second harmonic raster-scan maps along the NWs are shown. On the right,
SH polar plots (farield) are shown, recorded under excitation on the nanowire centers. Polar its
to the intensity of (partially) polarized light are shown as well, using the formula for the intensity
of a superposition of two perpendicular, linearly polarized ields

I (ϕ) = A sin2 (ϕ − θ ) + B cos2 (ϕ − θ ) ( . )
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where ϕ corresponds to the angle of the polarization ilter and θ is the angle of the second har-
monic light’s linear polarization, obtained from the it.

he laser spot radius is about 620 nm at a wavelength of λ0 = 810 nm. As we already observed
in the previous section, TE excitation produces a homogeneous SHG along the NW axis and TM
excitation leads to enhanced SHG from the NW tips, however with a signiicant remaining signal
when the laser is focused on the nanowire axis.

As can be seen in the SH polarization polar plots of Fig. . , a 90◦ lip of the polarization
direction occurs in the TM coniguration. Under TE excitation on the other hand, the SH light
is always polarized perpendicularly to the nanowire axis, following the incident polarization.
his general trend of SH polarization was conirmed by investigating over 20 diferent SiNWs.
he polarization angles from its using Eq. ( . ) to the data are shown in Fig. . . Few NWs of
the NW group showed atypical polarization behavior, which was possibly caused by partial
illumination of one of the NW tips due to their relatively shorter length L ≈ 2 μm.

. . Theoretical Considerations

To interpret the experimental observation of a size-dependent lip of SHG polarization under
TM excitation, we carry out some theoretical considerations on SHG from sub-wavelength small
cylinders of centrosymmetric material.

. . . Local Surface Contributions

Second order electric polarization in centrosymmetric materials can be writen as a superposition
of surface and bulk polarizations [ ] (see also Sec. . . )

P
(2)
cs = P

(2)

sf + P
(2)

bulk ( . )

where for homogeneous and isotropic surfaces, P(2)

sf is a superposition of three independent non-
zero components:

P
(2)
⊥⊥⊥ = χ

(2)
⊥⊥⊥

[
E2⊥

]
ê⊥ ( . a)

P
(2)

⊥∥ ∥ = χ
(2)

⊥∥ ∥
[
E2∥

]
ê⊥ ( . b)

P
(2)

∥ ∥⊥ = χ
(2)

∥ ∥⊥ [E⊥E ∥] ê∥ ( . c)

where E is the ield amplitude at the fundamental frequency ω, ∥ and ⊥ denote the directions
parallel and perpendicular to the local NW surface and for simplicity we set ϵ0 = 1. Let us
consider the case of an ininite cylinder. For an incident ield normal to the cylinder axis (TE),
it turns out that the three surface terms lead to a nonlinear polarization perpendicular to the
nanowire axis. his is obvious for equations ( . a) and ( . b). In addition, as for TE polarization
ê∥ in Eq. ( . c) corresponds to êϕ in the cylindrical coordinate system of the wire, it is as well
perpendicular to the NW axis. If the incident ield is parallel to the axis (TM case), no ield
component E⊥ normal to the ininite cylinder surface exists, so that both P

(2)
⊥⊥⊥ and P

(2)

∥ ∥⊥ vanish
(see also appendix B. for a numerical conirmation). As a consequence, equation ( . b) alone
describes the surface SHG in the TM case, which is polarized along ê⊥, thus perpendicularly to
the nanowire. his leads to the insight, that under excitation far from the NW tips, surface SH



polarization under either TE or TM excitation should always be perpendicular to the NW axis –
a inding that is in contradiction with the TM polar plots shown in Fig . a-b, where both SH
and fundamental light polarizations are parallel to the NW axis (see also NW and NW in
Fig. . ).

. . . Non-Local Bulk Contributions

Let us therefore inspect the nonlinear bulk polarization, induced by ield gradients in thematerial.
Due to both, the presence of leakymode resonances and a tightly focused laser beam, we presume
that strong ield gradients may exist in the SiNWs, so that bulk efects can not be neglected from
the start. In irst non-vanishing order, the bulk polarization consists of three terms [ ]

P
(2)

bulk = γ ∇
[
E2

]
+

β E [∇ · E]+
δ [E · ∇]E

( . )

Note that we omited the ζ -term proportional to Ei∇iEi (Eq. ( . )), whose susceptibility equals
zero for homogeneous media [ ]. It has been shown that the γ -term can be included in equa-
tions ( . a) and ( . b) using efective susceptibilities [ , ]

χ
(2,ef)
⊥⊥⊥ = χ

(2)
⊥⊥⊥ −

γ

ϵr (ω) · ϵr (2ω)
( . )

and
χ
(2,ef)
⊥∥ ∥ = χ

(2)

⊥∥ ∥ −
γ

ϵr (2ω)
. ( . )

hanks to its surface-like behavior, it is oten referred to as the non-separable bulk contribution,
which becomes small for high-index semiconductors (large ϵr ) due to the electric permitivity
in the denominator of the additional terms in the χ (2,ef) . We can also neglect the β-term in
Eq. ( . ), as ∇ · E vanishes in the bulk of a homogeneous medium [ , ].

Concerning the δ -term in Eq. ( . ), we ind that under TE polarization strong ield gradients
appear only for large diameters because no ield component exists along the axis , and the in-
plane ields normal to the axis can be considered constant for diameters below the appearance
of the irst resonant mode . At λ0 = 810 nm this is valid for D ≲ 150 nm (see Fig. . ). In
consequence, the last term in Eq. ( . ) is supposed to vanish for suiciently small NWs in the
TE coniguration. Under TM illumination, ield components normal to the cylinder axis are zero
and the bulk polarization reduces to

P
(2)

bulk,TM = δ

(

Ez
∂Ez

∂z

)

êz ( . )

where z denotes the axial direction. his means that for TM incidence, the δ -bulk contribution is
the sole SH source able to generate a nonlinear polarization along the NW axis. We consequently

Note that ield gradients along the axis in the case of a TE excited incidence cancel in the scalar product (E · ∇),
because Ez = 0 (Z ∥ NW axis).
Corresponding to the quasistatic approximation for small NWs. Furthermore, the irst resonance is a non-

degenerate TM-mode, hence does not exist under TE illumination



assume that SHG under TM excitation on the center of NW and NW (igures . a, . b
and . ) can be atributed to the (E·∇)E bulk contribution. For larger NWs the surface termP

(2)

⊥∥ ∥
seems to become more signiicant, leading to the observed lip of the polarization (igures . c
and . ).

. . . Conclusions

In summary, three contributions to SHG remain under consideration to explain our experimental
results: he surface terms P(2)

⊥⊥⊥ and P
(2)

⊥∥ ∥ , resulting in a nonlinear polarization perpendicular to
the NW axis, and the (E · ∇)E bulk source (“δ”), creating a polarization along the NW axis. We
also found that for a cylindrical geometry, the later contribution only exists in the TM case.

In the case of silicon χ
(2)
⊥⊥⊥ is considered to dominate SHG (see also Sec. . ), while the weaker

surface terms (χ (2)

⊥∥ ∥ , χ
(2)

∥ ∥⊥) and the separable bulk susceptibilities are supposed to be of compa-
rable magnitude [ ]. In the following, we will therefore examine the diferent contributions
in more detail. his will be done using electro-dynamical simulations with the Green Dyadic
Method (GDM).

. . Simulations

. . . Simulation Method and Model

We model SHG using the GDM, as explained in detail in section . . he incident ield at wave-
length λ0 = 810 nm is modeled as a focused planewave with a difraction limited spot-size corre-
sponding to NA 0.8 used in the experiments (see section . . . ). he δ -bulk contribution is calcu-
lated using central diferences to approximate the gradients in Eq. ( . ). Finally, each meshpoint
is considered as an emiter at λ0/2 = 405 nm and the radiation of the ensemble to the far-ield is
calculated using a propagator taking into account the presence of the substrate (see Sec. . . . ).
he harmonic far-ield intensity is integrated over the collecting solid angle of the NA 0.8, and
optionally analyzed for its linear polarization state.

In order to simplify the numerical work and reduce numerical artifacts from round surfaces
in cubic discretization, all 3-dimensional simulations have been performed using wires of rect-
angular cross section. We have shown in section . . that for lower order modes, the diference
between cylindrical and square sections is only a spectral shit of the resonances, while the reso-
nance number and qualitative ield distribution is conserved (see also [ ]). he validity of this
assumption is veriied when comparing Mie theory for an ininite cylinder to simulated elastic
scatering spectra of our square-wire 3D-model (Fig. . a,i). Finally, we have shown in sec-
tion . . . , that the numerical SHG calculation is less error-prone using lat surfaces. To allow
comparison with Mie theory, the simulated wires were chosen to be long compared to the spot
size of the incident beam (L > 2 μm, see also section . . ).

hroughout this section we stick to the “simple” SHG description, neglecting the inluence of
the presence of the structure on the harmonic ield. A comparison of self-consistent and “simple”
SHG calculus on SiNWs can be found in appendix B. .
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Figure . : All data for an incident wavelength of λ0 = 810 nm. (b, i): Elastic scatering intensities from
Mie theory (dashed) and GDM simulations (solid) for TE (red) and TM (blue) excitation. GDM
simulated SHG far-ield intensities are ploted in (ii) for TE and (iii) for TM excitation. Surface
(pointed: ⊥⊥⊥, dashed: ⊥∥∥) and bulk SHG (δ -term, solid lines) are pairwise normalized to
their overall (TE / TM) maximum. he insets show zooms on the region of small diameters.
In (b) are shown the nonlinear polarizations P(2) (real parts, dense vector plots in blue color)
and SH far-ield polarizations (polar plots) for (i) TE excited ⊥⊥⊥, (ii) TM excited ⊥∥∥ and
(iii) TM excited bulk (δ ) for aD = 50 nm and aD = 120 nmNW (top and botom respectively).

. . . P
(2)
⊥⊥⊥ Surface contribution

In Fig. . , a SHG raster-scan 3D-simulation considering only the P(2)
⊥⊥⊥ surface term, is shown

for a NW of diameter d = 100 nm. We observed from comparison with experimental data, that
the global trend of homogeneous SHG for TE and tip-enhanced SHG for TM can be reproduced
using only the normal surface contribution. Similar results are obtained for simulations using
both, smaller and larger diameters. However, as pointed out above, two experimental phenomena
can not be explained by only Eq. ( . a): ( ) TM-excited SHG from illumination of the NW center
and ( ) SH light polarized along the NW axis.

. . . Diameter-dependence of SHG contributions

In order to verify the hypothesis of mainly P
(2)
⊥⊥⊥ generated-SH in the TE case on the one hand

and mixed ⊥∥∥-surface / δ -bulk SH for the TM case on the other hand, we carried out diameter-
dependent SHG simulations, shown in igure . . To include the bulk-contribution in our in-
vestigation, it was necessary to perform 3D GDM simulations using a focused incident beam
which induces ield gradients due to the Gaussian intensity distribution. As discussed earlier,
nanowires of square section were used for these simulations.

A focused (NA . ) incident beam at λ0 = 810 nm, either polarized TE (Fig. . a,ii) or TM
(Fig. . a,iii) was set on the center of a NWmodel, whose diameter was progressively increased.



SH intensities in the far-ield were calculated for the P(2)
⊥⊥⊥ and P

(2)

⊥∥ ∥ surface terms, as well as for
the δ -bulk contribution. Each contribution is normalized to the highest intensity value within
both incident polarizations. Note that absolute comparison of SH intensities is only possible
within simulations of each contribution, and not between separate components, because we set
the susceptibility components individually = 1.

he ⊥⊥⊥-surface contribution under TE excitation exceeds the case of TM incidence on the
entire diameter range by several orders of magnitude. As χ (2)

⊥⊥⊥ is supposed to surpass the other
second order susceptibility components (see section . , [ ]), we conclude that SHG under
TE excitation is dominated by the normal surface component, whereas under TM excitation the
⊥⊥⊥-surface contribution seems to be negligible over the whole simulated range, which is in
agreement with the theoretical prediction.

While the normal surface term vanishes for incident ields along the axis, ⊥∥∥-surface and δ -
bulk contributions are radiated more eiciently than in the TE case. We also see in Fig. . a,iii
that the surface term grows more rapidly with increasing diameters when compared relatively
to the bulk term. his supports our assumption that SHG from TM illumination on the NW
center is due to P

(2)

⊥∥ ∥ and/or δ -bulk contributions, depending on the diameter range. We show
in Fig. . b simulated P(2) near-ields (top row) and their polarization paterns ater radiation to
the far-ield (botom row) for D = 50 nm and D = 120 nm. he behavior of the SH polarization is
identical for all sizes of simulated wires. he P(2)

⊥⊥⊥ case under TE excitation shown in Fig. . b,i
is in agreement with the experimental results. P(2)

⊥∥ ∥ and the δ -bulk term under TM excitation
are shown in Fig. . b,ii and Fig. . b,iii, respectively. hese simulations show the 90 ◦ lip
of the far-ield polarization patern with respect to the NW axis. his is in agreement with the
experimental plots of Fig. . and conirms ultimately the axis-parallel polarization emited by
the δ -bulk term, which is hence the main contribution to SHG from NW .

. . . Maps of SHG Farfield Intensity Distribution

he maps shown in Fig. . are calculated from a NW with diameter d = 100 nm, but results
for diferent NW diameters are qualitatively similar. Like above, the exciting beam is tightly
focused on the NW center. he total intensity on the detector in the experiment corresponds to
the integrated intensity over the area delimited by the NA of the microscope objective (indicated
by dashed circles). As expected due to the symmetry of the system, the intensity in the center
of the maps is zero. he data is normalized to the global maximum of each contribution, which
reveals the polarization direction of the total collected harmonic emission.

While both, the TE excited P
(2)
⊥⊥⊥ contribution and the TM excited P

(2)

⊥∥ ∥ surface contribution
result in mainly “TE” polarized SHG (perpendicular to the NW axis), the TM excited P

(2)

δ -bulk
has a nonlinear emission mainly polarized along the NW axis (“TM” polarized), conirming our
earlier considerations. Furthermore, the residual TM-iltered SHG in the surface contributions
show, that the igure-of-eight paterns in the polar plots can be more or less open also for a
single contribution, as can be seen in the polar plots in Fig. . b. his can explain relatively
“open” measured polar plots, as shown for instance in Fig. . . he SH intensity distribution in
the far-ield also shows that reducing the objective NA can enhance the detection of the δ -bulk
contribution with respect to the surface components (surface SHG emits more to the “sides”).
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Figure . : GDM simulation of the angular resolved farield intensity distribution of SHG from a d =
100 nm SiNW. (a)P(2)

⊥⊥⊥-response under TE excitation, (b)P
(2)

⊥∥ ∥-response under TM excitation
and (c)P(2)

δ -bulk-response under TM excitation, for each contribution the same colorscaling was
used. In the upper plots TE-polarization (perpendicular to the NW axis) iltered SH emission
patern is shown and TM (along NW axis) iltered SH is given in the lower plots. he polar
angle corresponding to NA 0.8 is indicated by dashed circles. he orientation of the nanowire
with respect to the polar angle is indicated by a bar in the center of the polar plots. he
incident polarization and analyzed polarization direction are indicated by small sketches at
the igure borders.

. . . Eficiency of SHG Epi-Collection

It may appear rather counterintuitive that SHG in small diameter nanowires occurs due to the
δ -bulk contribution, while the surface sources increase with increasing diameter – hence for
decreasing surface over volume ratio. Resonant optical modes have an inluence on the relative
weight of the nonlinear contributions, as can be seen in igure . a, by a comparison to the linear
Mie modes. A second important factor on the eiciency of the SH radiation to the far-ield can be
microscopic symmetries of the nonlinear polarization. Actually, strong silencing of farield SHG
is expected due to the high symmetry of the nanowires [ , ]. By analyzing the nonlinear
polarization vectors (see igures . b), we indeed ind a strong microscopic cancellation for
the surface contributions while retardation among the more distant bulk polarization vectors
circumvents the cancellation of oppositely radiating dipoles to the far-ield.

To give an illustrative explanation for the observation of bulk efects dominating for small
nanowires while surface efects occur only for larger structures, we consider in a simpliied sce-
nario two oppositely oscillating “efective” dipoles for the nonlinear polarizations P(2)

⊥⊥⊥, P
(2)

⊥∥ ∥
and P

(2)

δ
. he far-ield radiation intensity through solid angles corresponding to diferent nu-

merical apertures is ploted as a function of the inter-dipole distance between “dp ” and “dp ” in
igure . b. While for small distances cancellation is almost perfect, the radiation becomes ob-
servable in the far-ield only for distances corresponding to a major fraction of the wavelength.
In contrast to the local surface nonlinear polarization, the bulk contribution is mainly induced
by the ield gradient from tight focusing. Hence the average distance of dipoles oscillating with
opposite phase will mainly be determined by the focal spot size which is of constant value.
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Figure . : (a) Sketch illustrating the data analysis. he nonlinear polarization is separated in two areas
with respect to a symmetry plane. In each area, an average dipole is calculated, neglecting
retardation efects. he detecting optics are placed in direction towards the reader. (b) Far-
ield intensity of two coherently radiating dipoles of equal amplitude and opposite phase in
normal direction to their polarization vector as function of the distance between the two
dipoles. he intensity is integrated over diferent solid angles where NA . corresponds to the
objective used in the experiments. he inset shows a sketch of the considered geometry. (c)
Distance of two “efective” dipoles for surface (blue) and bulk (green) nonlinear polarization
under TM excitation, calculated from the simulation data. he dips observed for the bulk
dipole-distance correspond to the resonance positions (see Fig. . ).

In order to verify that this assumption is valid for the cases of P(2)

⊥∥ ∥ and P
(2)

δ
in TM excited

nanowires, we reduce the nonlinear polarization to two efective dipoles, oscillating with oppo-
site phase. We deine their positions using the weighted averages

ref. =

∑

i
ri |P(2)

i |
∑

i
|P(2)

i |
( . )

of all dipolesP(2)
i at ri in two symmetric fractions of the structure as illustrated in igure . a. In

this rough approximation we neglect retardation efects in the summation by taking the modulus
of each complex polarization vector. he distance between the two efective dipoles is ploted in
igure . c as a function of the nanowire diameter.



0.1 0.3 0.5 0.7 0.9

numerical aperture (NA)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

.
ra
ti
o
b
u
lk
/s
u
rf
a
ce

(a
.u
.)

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
lized

in
ten

sity
(a
.u
.)

bulk (P
(2)
δ

)

(a) NW (D = 50 nm)

0.1 0.3 0.5 0.7 0.9

numerical aperture (NA)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

.
ra
ti
o
b
u
lk
/s
u
rf
a
ce

(a
.u
.)

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
lized

in
ten

sity
(a
.u
.)

surface (P
(2)
⊥‖‖ )

(b) NW (D = 100 nm)

0.1 0.3 0.5 0.7 0.9

numerical aperture (NA)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

.
ra
ti
o
b
u
lk
/s
u
rf
a
ce

(a
.u
.)

P
(2)

δ
/P

(2)
⊥‖‖

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
lized

in
ten

sity
(a
.u
.)

(c) NW (D = 250 nm)

Figure . : Normalized ratio of detected bulk and surface farield-SHG (red dashed line) for SiNWs of
diferent diameter as function of the collecting numerical aperture. Normalized δ -bulk and
P
(2)

⊥∥ ∥-surface contributions (blue and green lines, respectively) are ploted for comparison.
Focused TM-excitation on the NW center at λ0 = 810 nm.

We observe that the surface polarization has always an efective spacing corresponding to the
nanowire diameter. he δ -bulk nonlinear polarization on the other hand is found to be charac-
terized by two efective dipoles with a separating distance always larger than the focal spot size.
his behavior is in agreement with our initial hypothesis and can explain the observation of sur-
face efects exclusive to large NW diameters, while bulk SHG is observed for small nanowires.
We note that this efect is further reducing SHG in small NWs from P

(2)
⊥⊥⊥ under TE excitation.

Together with the lack of an optical resonance, farield SHG due to χ
(2)
⊥⊥⊥ is then entirely sup-

pressed.
In igure . we plot the (normalized) ratio of bulk vs. surface SHG (under TM excitation)

as function of the collecting numerical aperture at the example of diameters D = 50 nm (a),
D = 100 nm (b) and D = 250 nm (c). We see that generally, a higher sensitivity to the δ -bulk
contribution is obtained when the collecting solid angle is decreased. his is due to themore side-
wards radiation of surface-SHG compared to the bulk-term (see Fig. . ). On the other hand,
the total collected intensity decreases for lower NAs. In consequence for very low collection
angles, neither surface nor bulk contributions would be detected. Finally, we observe that the
surface contribution is detected more eiciently for smaller NA in the case of large nanowires
(see Fig. . c), which further supports the transition from bulk to surface second harmonic
generation for increasing NW sizes, eventually resulting in the lip of the polarization.

We note that the nonlinear polarization is calculated from an excitation with a ixed NA 0.8.
In backscatering geometry, the excitation is done with the same microscope objective as the
collection, which might have an additional impact on the ratio between bulk and surface SHG.

. . Conclusions

In conclusion, our study of SHG from individual SiNWs showed thatP(2)
⊥⊥⊥ dominates SHG for TE

polarized excitation, resulting in a SH polarization normal to the NW axis, which is in agreement
with former observations of χ (2)

⊥⊥⊥ as leading source of second-order susceptibility [ ]. For TM
excitation on the other hand, P(2)

⊥⊥⊥ vanishes as soon as the laser spot leaves the NW tips, giving
the opportunity to examine theP(2)

⊥∥ ∥ surface source and the δ -bulk contribution inmore detail. A
diameter-dependent lip of the SH polarization was observed in this case, which we studied using



numerical simulations. he later conirmed a changeover in the leading contribution from bulk
((E · ∇)E) SHG for small NWs to surface (P(2)

⊥∥ ∥) SHG for larger NWs with diameters ≳ 150 nm.
We concluded that radiation from both P

(2)

⊥∥ ∥ and P
(2)

δ
is of comparable magnitude and can be

individually addressed by simply adjusting the diameter of the nanowire, which is particularly
interesting as the δ -bulk contribution is supposed to be diicult to isolate from the other SHG
terms from planar surfaces [ , , ].

We showed that, because of their geometry and optical properties, SiNWs provide a highly
promising research platform to gain insight in the relations between surface and bulk contribu-
tions of SHG from centrosymmetric materials in general. his allow to separate diferent con-
tributing χ (2) terms also for other materials, though accurate quantiication of the χ (2) elements
is a diicult task, due to strong silencing of the nanoscopic nonlinear polarization because of the
high symmetry of the NWs and many other inluences like the collection eiciency for detection
parallel to the excitation direction.



Chapter

Design of Photonic Nanostructures by
Evolutionary Optimization

I w the focus will move towards the speciic tailoring of optical prop-
erties in photonic nanoparticles. he rational design of photonic nanostructures usually
consists in anticipating their optical response from simple models or as variations of ref-

erence systems, which are then studied systematically. his strategy, however, is oten limited
by the capabilities of the initially chosen geometry and even more demanding when diferent
objectives are simultaneously targeted. In consequence, it is diicult to ind the optimum ge-
ometry for speciic optical functionalities and usually trade-ofs between design simplicity and
performance have to be made.

. Design of Nanostructures as Optimization Problem

As it comes to applications, a more convenient approach is to deine the requested optical prop-
erties and design a nanostructure that optimally exhibits the desired features. For the later
approach, a structure model has to be developed, which, based on a certain set of parameters,
can describe in a generic way a large variety of particle geometries. However, this leads to huge
parameter spaces which usually cannot be explored systematically within reasonable time. Also
trial-and-error is normally not an eicient search strategy.

Root-inding or maximization algorithms seem promising at a irst thought, however it is dif-
icult to describe nanoparticle geometries by analytical, continuous and diferentiable models,
required e.g. by derivatives of Newton’s method. Additionally, it is likely to obtain a function-
landscape with countless local extrema (see Fig. . a-b), which further restricts the applicability
of classical optimization algorithms, since they get stuck in local extreme points and in conse-
quence fail to converge to the global optimum, as illustrated in igure . a at the example of a
one-dimensional minimization problem.

. . Evolutionary Optimization

More promising techniques are evolutionary optimization (EO) strategies which, by mimicking
natural selection, are able to ind itest parameter sets to a complex non-analytical problem [ ].

In the ield of nanophotonics, evolutionary algorithms have been applied to the maximization
of ield enhancement [ – ], scatering from plasmonic particles [ – ], or the design of
hybrid plasmonic/dielectric antennas [ ]. Such methods were also successfully used for more
technological applications like electron-beam ield emission sources [ ], waveguide couplers
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mization problem becomes drastically more complex. (c) Illustration of the iteration cycle in
evolutionary optimization algorithms.

[ ], thermophotovoltaic solar cells [ ] or core-shell nanoparticles for optically induced lo-
cal heat-treatment in medicine [ ]. EO techniques are furthermore applied in the analysis of
complex, multi-dimensional spectroscopic data from optical experiments [ ].

Figure . c gives an illustration of how evolutionary optimization mimics the process of nat-
ural selection. A population of individuals is deined (“generation n” in Fig. . c), where each
individual is in our case a set of parameters describing an antenna morphology. his popula-
tion undergoes an evaluation and selection procedure in which weak solutions are eliminated
and the itest candidates (i.e. the parameter-sets yielding the best target values) are chosen to
“mate” with each other. he target value of the optimization is also called the itness. he follow-
ing process of reproduction usually consists of a step called crossover, where the parameters are
exchanged and mixed – just like DNA in nature – and a mutation step, in which some randomly
selected parameters are multiplied by or replaced with random numbers (see igure . c, step
“reproduction”). Like this, a new population of individuals is generated, the generation “n + 1”.
his process of selection, reproduction and evaluation is repeated until some stop-criterion is
met, like a time limit, a maximum number of iterations or a maximum number of consecutive
generations without further improvement.

. Maximization of SHG from Si Nanoparticles

Since the previous part was focused on SHG from silicon nanowires, in our irst example we will
try to ind silicon nanostructures for a maximum second harmonic emission. We will verify the
outcome of the algorithm by measurements on samples, fabricated following the design of the
evolutionary optimization.
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width and maximum length (center), and maximum possible size (right). he constraints are
Lmin. =Wmin. = 60 nm and Lmax. =Wmax. = 160 nm, the height is ixed to H = 100 nm.

. . Numerical and Experimental Methods

. . . Structure Model

he “population” of particle morphologies to be considered in the computation must be diverse
enough to explore, ater several generations, a signiicant fraction of possible solutions. How-
ever, this requires a very large number of parameters, signiicantly slowing down convergence.
Furthermore, the optimized geometries must remain within the limits of fabrication capabilities
and have neither too many nor too small features. For these reasons we use a very simple model,
based on four individual silicon elements with variable dimensions and positions, placed on a
SiO2 substrate (n ≈ 1.5) within a limited area. A sketch of the model is shown in Fig. . a.

Both, the x- and y-dimension of each antenna is allowed to vary between 60 nm and 160 nm,
in steps of 20 nm, corresponding to the precision of a state-of-the-art electron-beam lithographic
system. he heightH is ixed to 100 nm, equal to the silicon overlayer thickness of our silicon-on-
insulator (SOI) substrate. he antenna is placedwithin an area of 600×600 nm2. his constrained
area limits the accessible parameter-range to reduce complexity and facilitate convergence. Fur-
thermore it ensures that the whole particle is illuminated by the incident ield.

Exemplary spectra of single silicon-cuboids with dimensions corresponding to the size-limits
used in our optimizations are shown in igure . b. For simplicity, the positions are discretized in
steps of 20 nm. In order to validate this large stepsize, we calculated spectra for the same struc-
tures using diferent discretization stepsizes, which yielded comparable results (see igure . a).
Overlapping antennas are allowed, corresponding antennas are fused together accordingly. he
number of possible parameter combinations in this model is larger than 1 × 1015. We conclude
that using the simple model described above, it is already inconceivable to use a brute-force
strategy (evaluation of all possible combinations). We will therefore employ an EO algorithm,
namely a self-adaptive variant of diferential evolution, “jDE” [ ], implemented in the parallel
EO toobox “PaGMO/PyGMO” [ ].
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Figure . : Evolutionary optimization of Si nanostructure for χ (2)
⊥⊥⊥ SHG. (a) Mask with itest structures

of consecutive iterations of the evolutionary optimization. (b) SEM images of the correspond-
ing sample fabricated on SOI. (c) SHG raster-scan measurement of the sample. Fundamental
wavelength is λ0 = 810 nm, linearly polarized along the horizontal axis (X -direction).

. . . E-Beam Lithography on SOI

Samples were fabricated in cooperation with LAAS-CNRS in Toulouse by Dr. Guilhem Larrieu
andDr. Aurélie Lecestre. In a top-down approach, Electron Beam Lithography (EBL) was coupled
with anisotropic plasma etching. his was used to patern the designed nanostructures [ , ]
on a commercial silicon-on-insulator (SOI) wafer as substrate (Si: nm, BOX: nm). he EBL
was carried out with a RAITH writer at an energy of keV on a thin ( nm) negative-
tone resist layer, namely hydrogen silsesquioxane (HSQ). Ater exposure, HSQ was developed
by immersion in 25% tetramethylammonium hydroxide (TMAH) for 1min. HSQ paterns were
subsequently transferred to the silicon top layer by reactive ion etching in a SF /C F plasma
based chemistry down to the buried oxide layer.

In the EMO runs, the minimum feature size was set to 60 nm to avoid removing small features
of the structures during lit-of. he structures were discretized and placed on a grid by steps
of 20 nm to match the precision of the EBL. SEM images and corresponding mask layouts are
shown in Fig. . a-b.

. . . SHG Modeling and Measurement

he particles are excited with a NA 0.8 air objective and SHG is detected in backscatering by the
samemicroscope objective. Amore detailed description of the setup andmeasurement procedure
can be found section . . (see also Fig. . ). he numerical modeling for SHG is the “simple”
method for SHG modeling, i.e. using P(2) without the self-consistent correction. It is described
in detail and used in the previous sections (see Sec. . ) and, by considering the NA 0.8 numerical
aperture for both excitation and collection, relects the experimental procedure.

. . Results and Discussion

SHG raster-scan measurements, like shown in igure . c, were performed on structures, cor-
responding to itest candidates from consecutive generations of the evolutionary optimization.
hree copies of identical particles were measured, with quantitatively reproducible results. he
average experimental results (blue, errorbars: standard deviation) are compared to the calculated
itness (red), which is shown in igure . . Both datasets are normalized to their maximum values.
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Figure . : Fitness vs. measured SHG intensity for consecutive generations of evolutionary optimization.
Measured intensity from three copies of identical structures on the sample, errorbars indi-
cate the standard deviation obtained from the sum of the ive highest intensity values from
raster-scan measurements on three copies of each nanoparticle (see raster-scan in Fig. . c).
Simulation and measured data from the optimized structures (red and blue, respectively) refer
to the botom x-scale. Reference measurements of SHG on rectangular silicon nanowires of
diferent widths are shown in green color (top x-scale). Heights are constant with H = 95 nm
(simulations: H = 100 nm) for all structures, corresponding to the silicon layer thickness of
the SOI substrate.

A good agreement of experiment and prediction can be observed. Furthermore a comparison to
rod-like reference structures on the same substrate of variable width and ixed length L = 2 μm),
shows an increase by a factor ≳ 2 in SHG emission. Corresponding data is shown in green in
Fig. . , scaled equally to the SHG intensity measured from the optimized particles. When the
data is normalized considering the intersection of the exciting beam and the structures’ geomet-
rical cross section, the enhancement factor compared to the best wire-structure is even as high
as ≈ 5 (for the normalization procedure, see also section . . . ).

. Optimization of Plasmonic Antennas: Directional Scatering

A great advantage of the GDM is, that it can be adapted to diferent media in a straightforward
way: It is suicient to use the corresponding dielectric function for the description of an arbitrary
material. In contrast to time-domain methods, no analytical model for the electric permitivity
is required and tabulated data can be used.

Our nano-photonic evolutionary optimization approach is based on the Green Dyadic Method
and inherits therefore all conveniences of this technique. In order to demonstrate the versatility
of this tool, we will employ EO on a model describing a plasmonic nanoantenna made from gold
– in contrast to the previously optimized silicon nanoparticle. EO has manifold potential applica-
tions, constrained only by possible limitations of the numerical method for the electrodynamical
simulations. We will therefore also target a diferent optimization objective than SHG and try to
design a nano-antenna for directional scatering in the following section.
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Figure . : (a) Structure model for EO of directional scatering from a plasmonic antenna. 40 gold-blocks
(“Bi ”), each 40 × 40 × 40 nm3 large are placed on an area of 1 × 1 μm2. (b) Sketch of the
directionality problem: Maximize the ratio of scatering through a small window (green) with
respect to the remaining solid angle (red). Target scatering direction is chosen to be in X

direction and centered at a polar angle of 45 ◦. Polar and azimuthal widths are 30 ◦ and 45 ◦,
respectively.

. . Problem and Model

. . . Model: Cubic Gold Blocks on Substrate

A scheme of the model for a plasmonic nano-antenna is shown in Fig. . a. 40 gold blocks named
Bi , each 40 × 40 × 40 nm3 in size, are placed on a substrate (n = 1.5). Each of the blocks are
modeled by 2× 2× 2 dipoles with a stepsize of d = 20 nm. he free parameters are the positions
(xi ,yi ) of the blocks, which are bound to an area of 1 × 1 μm2, in order to limit the numerical
complexity. Additionally, the positions of the blocks have to lie on a grid with steps of 40 nm in
order to avoid problems from partly overlapping bricks. Fully overlapping blocks are treated as
a single block, hence the material of the antenna is not necessarily ixed.

. . . Problem: Directional Scatering

he goal of the optimization is to ind a plasmonic antenna with strongly directional scatering
at a certain wavelength. A linearly X -polarized planewave is incident from the top and the scat-
tering from the nanostructure is calculated as described in section . . . . he radiated intensity
is separated in two parts: First the intensity Idirect, scatered through a solid angle of polar and
azimuthal dimensions ∆ϕ = 30 ◦ and ∆θ = 45 ◦, centered at ϕ = 45 ◦ in X -direction (green win-
dow in Fig. . b). And second, the intensity Irest, scatered through the rest of the semi-sphere
(indicated red in Fig. . b). he ratio of directional and scatering through the rest of the solid
angle

Rdirect =
Idirect
Irest

( . )
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Figure . : (a) Fitnesses of the individuals (blue dots) of a large population vs. generation number. Best
(green line) and population average itness (red line) are indicated as well. (b) Demonstra-
tion of reproducibility: Antenna designs and directivity ratios from 5 independent runs of the
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Figure . : Selected iterations of evolutionary optimization of directional scatering. Radiation patern in
XZ -plane is shown in the top panels by blue lines, where a green segment indicates the opti-
mization target region. Scalebar is 200 nmhe corresponding plasmonic structures, composed
of gold cubes, is shown in the botom panels (lying on a n = 1.5 substrate in the XY plane).
(a) Randomly initialized structure. (b-f) Fitest candidate of intermediate generations during
evolution. (g) Best individual in inal population.

is the target of maximization via EO. Like in the previous section, we use the self-adaptive difer-
ential evolution algorithm “jDE” for this purpose. Because we have as much as 80 free parame-
ters, a large population is necessary to assure a diverse gene pool. herefore we make use of the
so-called “generalized island model” [ ], provided by the PaGMO toolkit: Several independent
populations are in parallel evolved on diferent “islands”, to make use of the multiple CPU cores
in modern computers. Ater the reproduction of a new generation, DNA is exchanged between
the islands in order to guarantee a high diversity of the total population.

. . Results and Discussion

. . . Analysis of Evolution

he full population in our case consists of 10 × 50 individuals, distributed over 10 “islands”.
We observed that for smaller populations, the optimization does not always converge to the best
directionality ofRdirect ≈ 12. It seems, in the case of a small population the diversitymay decrease
too rapidly until it gets eventually stuck in a sub-optimal branch of the evolution (which almost
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Figure . : Analysis of itest evolutionary optimized directional antenna. (a) Sketch of the evolutionary
optimized gold antenna with highest directionality. 3D radiation patern is shown in light blue.
Planewave incidence from the top, indicated by blue arrow. λ0 = 800 nm, polarized along X

(direction of scatering). (b) he antenna can be divided into three functional constituents: A
main driving element in the center (blue) as well as a relector (green, on the let) and a director
(red, right). he centers of gravity are indicated by dashed lines of the corresponding colors
and the distance to the driving element edges are given at the top. Scalebar is 200 nm. (c)
Color-plot of the relative phase of the Ex component of the electric ield, with respect to the
driving element’s center. he horizontal direction corresponds to the X -axis. Same scaling as
(b).

happens around gen. 20 in Fig. . a). he evolution of a suiciently large population during 50
generations is shown in igure . a. he optimization was stopped ater 50 cycles. Each blue dot
corresponds to the itness of an individual, the green and red lines indicate the best and average
itness, respectively. he itest candidates from selected generations and their far-ield paterns
of scatered light are shown in Fig. . . (a-f) are individuals from the irst 20 iterations and (g)
shows the best solution, taken from the 50th generation.

To verify the reproducibility of the method, we performed the same optimization multiple
times. For suiciently large populations (≳ 10 × 40 individuals), the EO yields always similarly
high directionality ratios of Rdirect ≈ 12 and also the antenna morphologies are always similar,
as can be seen in igure . b.

. . . Analysis of Optimum Antenna

A sketch of the itest candidate from the last generation is shown in igure . a together with
a 3D representation of the radiation patern of scatered light, where the incident planewave’s
wave vector is indicated by a blue arrow. he directionality of the scatering is obvious from the
cone of radiation (see also Fig. . ). Interestingly, the result of the optimization visually resembles
much the well-known Yagi-Uda antenna design [ ], an antenna geometry which is famous for
its capability of directional emission and reception.
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Figure . : Analysis of directional antenna found by EO (see Fig. . ). (a) Scatering in backward (let
column) and forward (right column) direction. (i-ii): Scatering radiation patern, indicating
the analyzed proile-path by a dashed red line (along angles of 140◦ and 40◦, respectively).
(iii-iv): Electric ield amplitude Ex and (v-vi): Total intensity as function of distance from
the nano-antenna in backward, respectively forward direction. (b) Directionality ratio Rdirect
(i), maximum scatering angle (ii) and maximum scatered intensity (iii) as function of an x-
displacement of the antenna’s director element (red part in Fig. . b).

By a closer look on the nano-antenna, three main functional constituents can be diferentiated,
as shown in igure . b: A driving element in the center (blue), a relector on the let (green) as
well as a director element on the right end of the antenna (red). he distances of the centers of
gravity of relector ∆xrel. ≈ 0.16λ0 and director ∆xdir. ≈ 0.11λ0 to the driving dipole correspond
to typical suggestions in literature with ∆xrel. > ∆xdir.. Finally, an analysis of the phase of the
electric ield’s x-component Ex reveals a diference of π between the driving element and the
director / relector parts, as shown in Fig. . c. his phase diference persists in the propagating
ields away from the antenna, resulting in cancellation of the electric ield in backward direction
and in a constructive interference of the contributions in forward direction (see Fig. . a). his
is in agreement with the Yagi-Uda antenna design template, where interference of phase-shited
ields yields a strongly anisotropic scatering [ ].

We note in this context, that Novotny [ ] showed that it is possible to scale antennas to op-
tical frequencies by using an efective wavelength scaling, which considers the electron-plasma
occurring in small metal particles. Following this principle, nano Yagi-Uda antennas have been
fabricated and their directional emission was conirmed [ ].

Finally we analyzed the antenna performance as function of the position of the director ele-
ment (red in Fig. . b), shown in igure . b. he evolutionary algorithm could maximize indeed
the directionality ratio as far as the director position is concerned. We also ind, that dependent
on the director position, the scatering angle can be tuned by around 15◦. Finally we observe
that the scatered intensity might be enhanced by a factor of ≈ 2, simply by repositioning the
director component. he reason for this inding is, that the presented optimization targeted the



directionality ratio of forward scatering with respect to uniformly scatered light – no interest
was placed on the intensity of the scatering. In future work, the above results could be compared
with an EO of the absolute scatered intensity towards a certain solid angle.

. . Conclusions

In the design of radio frequency antennas, evolutionary optimization is actually common prac-
tice [ ], although in corresponding applications the global design of the antenna is normally
imposed. he free parameters describe then usually minor variations of a given antenna system.
In our approach on the other hand, initially the design of the structure is completely free, within
the limits of possible geometries built by 40 equal metal blocks. In conclusion, it is remarkable
that an antenna design is found – fully automatically and with very good reproducibility – which
corresponds to well known design-principles from radio-frequency antennas. We deduce, that
from the results of such optimizations, general design principles can be derived for the optimum
geometries with respect to the target properties. In our case, we could verify that common design
rules from directional radio-frequency antennas apply also in plasmonic nano-antennas at opti-
cal wavelengths. We want to note that the working principle of the EO antenna is also identical
to nano Yagi-Uda antennas discussed in a former study on directional plasmonic antennas [ ].

. Multi-Objective Optimization of High-Index Dielectric
Particles

In the last section of this chapter, we want to go even one step further. Most studies using evo-
lutionary optimization in the context of nano-optics were limited to the maximization of one
target property at a speciic wavelength and polarization. Such single-objective scenarios repre-
sent the simplest case of an optimization problem, while a structure that concurrently matches
multiple objectives will be in general more diicult to design. Evolutionary multi-objective op-
timization (EMO) strategies [ , ] are a promising approach to tackle such problems. hey
are used for example for the optimization of trajectories of space-crats in order to deliver a
maximum possible load to some location in space within reasonable traveling time [ ], for
the design of radio-frequency antennas [ ] or for the design of telescope objectives [ ]. In
a recent work, genetic multi-objective optimization was used on plasmonic waveguides. A ig-
ure of merit describing the waveguide and its robustness against geometrical variations were
maximized simultaneously [ ].

EMO could lead to considerable improvements in the design of wavelength dependent (multi-)
directional scatering, multiresonant antennas or polarization dependent tailored optical behav-
ior. Nanoantennas possessingmultiple resonances, for instance at the fundamental and harmonic
frequencies, may also be optimized by EMO to enhance nonlinear efects.

In the following, we present a combination of EMO with the Green Dyadic Method (GDM) for
self-consistent full-ield electro-dynamical simulations (see chapter ). We apply the EMO-GDM
technique to design dielectric (silicon) nanoantennas that concurrently maximize the scatering
at diferent wavelengths, dependent on the polarization of the incident light. With the computed
EMO design, Si nanostructures are then fabricated on a SOI substrate and their optical response
is measured by confocal dark-ield scatering microscopy. hese experiments show that the scat-
tering properties are in excellent agreement with the optimization predictions.
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Figure . : Illustration of evolutionary multi-objective optimization (EMO). a) Initialization step of pixel-
populations for the EMO algorithm. b) Evolution of the pixel-population (see also Fig. . c).
c) Optimum pixel-population at the end of the evolution. d) Nanofabrication and characteri-
zation of the polarization dependent color-pixels.

. . Optimization Problem and Techniques

. . . Optimizing the Scatering Eficiency from Nanostructures

We illustrate the EMO-GDM technique with the scatering eiciency Qscat as target property.
Qscat is deined as the ratio between the scatering cross-section σscat and the geometrical cross-
section σgeom (the “footprint”). Our goal is to maximize the scatering eiciency at a wavelength
λX , for an incident linear polarization along the X -axis, and simultaneously at a second wave-
length λY , for polarization along the Y -axis.

While this problem is mainly chosen for practical reasons – scatering and polarization are eas-
ily accessible values in the experiment – applications exist like holographic color-ilters [ ] or
color rendering and printing close to the difraction limit. he later has been demonstrated either
using plasmonics [ , , ] or dielectric nanostructures [ ]. Polarization dependent, dual-
color pixels have been recently reported using plasmonic nanoapertures [ ]. he advantage of
plasmonic nanoantennas is the capability to provide widely tunable single mode responses using
simple geometries (pillars in ref. [ ], bent stripes in ref. [ ], cuboids in ref. [ ] and crosses in
ref. [ ]). Dielectric nanostructures on the contrary oten support high order and degenerate



modes, occurring in a narrow spectral range. herefore an EMO scheme is of particular interest
for the design of multiresonant dielectric nanostructures.

. . . Evolutionary Multi-Objective Optimization

In an optimization with a single objective, the initial population is evolved until eventually
the parameter-set that yields the best itness is considered the optimum solution (see also sec-
tion . . and Fig. . c). In multi-objective problems however, the parameters describe not a
single objective alone, but yield several target values that are all in parallel subject of the op-
timization. In our case, the target values are the scatering eiciencies at λX and λY . During
the EMO evolution, this itness-vector is therefore stored in an archive and remembered for
comparison during the optimization. Once the evolution inished, the inal solution is not triv-
ially determined neither: A whole M-dimensional set of non-dominated solutions exists, with
M = (Nr. of objectives−1). his inal set of individuals is called the Pareto-front, which is the set
of solutions that cannot be further optimized in one of the objectives, without worsening at least
one other target value. here is no guarantee that the inal solution converged to the absolute
optimum but, due to the complexity of many problems, EMO is oten the best possible approach.
An illustration of EMO at the example of nano-scaterer optimization is shown in Figure . .

. . . EMO-GDM Interfacing

We use the python interface of the parallel evolutionary multi-objective optimization toolkit
paGMO/pyGMO [ ] and in particular its implementation of the “SMS-EMOA” algorithm [ ].
A comprehensive introduction to evolutionary multi-objective optimization can be found in ref-
erence [ ].

For the electro-dynamical simulations, we use the Green Dyadic method, a volume integral
technique in the frequency domain, described in detail in Chap. . It is implemented in fortran
to yield high computational speed. All interfacing between the EMO and the electro-dynamical
full-ield solver is implemented in python.

. . . Structure Model

Since it has proven to be compatible with electron-lithographic fabrication on SOI, wewill use the
same model as initially in this chapter for the maximization of SHG. For details, see Sec. . . . .
Fabrication of the structures is done on SOI substrates by EBL, like explained in Sec. . . . . SEM
images of individual structures are shown and are compared to the mask-layout in Figs. . b,
. a and c as well as in . b.

. . . Measurements by Confocal Dark-Field Microscopy

Confocal optical dark-ield microscopy was performed on a conventional spectrometer (Horiba
XploRA). A spectrally broad white lamp was focused on the sample by a ×50, NA 0.45 dark-ield
objective, backscatered, polarization iltered and dispersed by a 300 grooves permmgrating onto
an Andor iDus CCD. he intensity distribution of the lamp as well as the spectral response
of the optical components was accounted for by subtracting the background measured on bare
SOI and normalizing the measured spectra to a white reference sample.
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Figure . : (a) Spectra for cuboidal silicon blocks of height H = 100 nm and width / length combinations
corresponding to the minimal and maximal allowed dimensions. Simulations were performed
with diferent discretization step-sizes S = 20 nm (i-iii), S = 15 nm (iv-vi) and S = 10 nm (vii-
ix). (b) Spectra for X - (blue) and Y -polarization (red) of EMO with λX = λY = 450 nm. (c)
Spectra for X - (blue) and Y -polarization (red) of EMO with λX = 550 nm and λY = 450 nm
with more available material to the algorithm. Insets: Sketch of structure (shown areas: 600×
600 nm2 in b and 700 × 700 nm2 in c).

. . Results and Discussion

. . . Proof of Principle: λX = λY = 630nm

In a irst step, we test the EMO-GDM technique on a simple problem. A single target wavelength
λmax. = 630 nm is selected, at which σscat is maximized simultaneously for X and Y polarization.
he structures of the inal population and the corresponding Pareto-front ater an evolution over
200 generations are shown in Fig. . a and . c. In igure . a the geometries of the initial
population (top) are furthermore compared to those on the Pareto-front (botom).

he geometries found by evolutionary optimization are also transformed into a lithographic
mask, which we use to produce the silicon nanostructures on a SOI substrate (see Methods).
Fig. . b shows a comparison of the design with SEM images of the sample. Simulated
(Fig. . e-f) and experimental spectra (Fig. . g-h) are in very good agreement. he good agree-
ment is also demonstrated by a comparison of simulated (lines) andmeasured (crosses) scatering
eiciencies, shown in Fig. . d.

he outermost individuals on the Pareto-front (particles ( ) and ( )) correspond to equivalent
results of a single-objective optimization using one target wavelength and polarization. We ob-
serve in these cases, that all four sub-antennas are combined during the evolution to form a single
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Figure . : Results of EMO-GDM for identical target wavelengths λX = λY = 630 nm. (a) Structures
of the randomized initial population (top) compared to the optimized Pareto-set of solutions
(botom). (b) Structures of the Pareto-front and corresponding SEM images. Blue, green, pur-
ple and orange dots are used to highlight the positions of the sub-blocks the structures consist
of. All ields in (a) and (b) are 600 × 600 nm2 large. (c) Pareto-front (green) and randomized
initial population (red). (d) Comparison of scatering from simulation (lines) and experiment
(markers). (e-h) Scatering spectra for X (let) and Y polarization (right). Simulated and ex-
perimental spectra are shown in the top and botom rows, respectively.
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Figure . : (a) Pareto-front example of an optimization run with λX = 550 nm and λY = 450 nm. Top:
Spectra of selected antennas (indicated by numbers on Pareto front), where either a single
wavelength is optimized ( and ) or both resonance wavelengths are scatered approximately
equally ( ). X (Y ) polarized illumination is ploted with blue (red) color. he selected struc-
tures are sketched in the insets, showing areas of 600 × 600 nm2. (b) Polarization-iltered
dark-ield images of micrometer scale EMO-based pictures. Micrometer scale pictures com-
posed of 24 × 24 (arrows) and 100 × 100 (logos) EMO-GDM designed particles. A linear
polarization ilter is added before the camera, oriented along X (top, let) and along Y (top,
right). Arrow images are 15× 15 μm2, logos 60× 60 μm2 large. Botom image: Zoom into the
logo-picture. SEM image in grey (scalebar is 500 nm) and sketch of the lithographic mask in
red, highlighted by small yellow squares in the dark-ield images. he yellow arrow and blue
emission indicate the incident and scatered light, respectively.

rod-like antenna along the target polarization direction. In agreement with literature, this yields
an optimum scatering eiciency with respect to the considered polarization direction (“ ”: Y ,
“ ”: X ) – at the expense of a very low scatering for the respective perpendicular polarization
[ ]. To obtain comparably high scatering eiciencies for both polarizations (particle “ ” and
neighbors), the evolution produces cross-like antennas.

We note, that the convergence and reproducibility of the EMO of silicon nano-scaterers have
been carefully checked by repeatedly running the same optimization with diferent randomized
initial populations, which always yielded similar results (test case was λX = λY = 630 nm). By
monitoring the Pareto-front during the evolution, we found convergence usually ater less than
100 generations. In order assure convergence in all cases, the optimizations were run for as much
200 iterations.



. . . Doubly Resonant Nanostructures by EMO-GDM

In a next step we study the maximization of Qscat at two diferent wavelengths λX = 550 nm
and λY = 450 nm for mutually crossed polarizations. he randomly initialized population of 20
individuals at the beginning of the evolution (red), the Pareto-front (green) and selected struc-
ture designs as well as corresponding spectra are shown in igure . a. he individuals at the
Pareto-front borders, labeled ( ) and ( ), correspond to single-objective optimizations for λY and
λX , respectively. Inspecting the three selected structures in more detail leads to the following
observations.

Obviously twin structures like ( ) and ( ) seem to be preferred, because they result in an in-
crease of the overall scatering eiciency. Indeed, structures ( ) and ( ) both consist of two dimer
antennas that, if taken individually, have about 30%, respectively 10%, lower Qscat at the target
wavelength of λY = 450 nm compared to the twin structure. Furthermore, the peak positions in
the scatering spectra are slightly shited and match the target wavelengths only in the combined
antenna.

We point out that the rather symmetric relative positioning of the two dimers is crucial for an
optimum scatering eiciency. he coniguration found by the evolutionary optimization is very
close to the ideal positions. A marginally stronger scatering can be obtained for both structures
( ) and ( ), when the dimers are placed on the same horizontal axis but the possible gain is as low
as about 3% and 1%, respectively. Figs . a for structure ( ) and in Fig. . b for structure ( ).

At last, particle ( ) in Fig. . a consists only of a single dimer structure, which we atribute
to the constrained maximum antenna size in our model. he maximization of the scatering at
the longer target wavelength (λX = 550 nm) requires a larger amount of material compared to
shorter wavelength λY . We carried out EMO simulations allowing the algorithm to use larger
constituents and found that the scatering eiciency can be further improved and indeed is lim-
ited by the constrained amount of silicon.

. . . Polarization Encoded Micro Images

To illustrate the previous results we produced small images, only few micrometers large, com-
posed of EMO-optimized antennas. he absolute scatering cross section σscat was used as the
optimization target. An additional spacing of 250 nm is used between the individual particles,
which results in pixel sizes of 850 × 850 nm2 (≈ 30000 dpi), close to the difraction limit.

Polarization-iltered dark ield images are shown in igure . b. Depending on the orientation
of the polarization ilter (let: X , right: Y ), one single arrow is visible, pointing in the correspond-
ing direction while the second arrow vanishes in a blue background. Furthermore, the logos of
the CNRS and CEMES laboratory are nested into one image, encoded in perpendicular polariza-
tions. A scheme of the lithographic mask (red) and a SEM image (grey) of a zoom into the logos,
indicated by small yellow squares, is shown at the botom. We atribute the slightly reminiscent
signatures of the hidden motifs to intensity-variations due to the arrangement of the antennas
in grating-like D-arrays.

. . . Tuning the Resonances of Silicon Nanoantennas

For a further illustration of the EMO-GDM technique, we perform several multi-objective op-
timizations for diferent combinations of target wavelengths. he wavelength λX = 550 nm is
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Figure . : Blue highlighted parts in the structure sketches (right sides, areas are 600 × 600 nm2) are
shited in X - and Y -direction. Zero-shit coresponds to the positioning as found by EMO.
he scatering eiciency of the shited structure is shown on the right sides for the target
wavelengths. he maximum is indicated by a red cross. (a) Single objective optimization at
λY = 450 nm (“ ” in Fig. . a). (b) Optimization at λX = 550 nm and λY = 450 nm (“ ” in
Fig. . a). (c) Optimization at λX = λY = 550 nm (see Fig. . ).

ixed, while the other (λY ) is varied from 450 nm to 650 nm in steps of 10 nm. Each simulation
consists of an initial population of random individuals, which is evolved for generations.
At the end of the evolution, the structure with the most similarQscat (λX ) andQscat (λY ) is chosen
from each simulation (like structure ( ) in Fig. . a).

In Figure . , we show the resulting structures (a) and their GDM-simulated spectra for
X - and Y -polarized incidence (b). he diferent λY are indicated by a color coding from blue
(λY = 450 nm) to red (λY = 650 nm). As explained in the previous subsection, for increasing
wavelengths, the four sub-antennas tend to combine in only two structures (instead of more
constituents for the shortest wavelengths), which is due to the limited amount of allowed mate-
rial. For the same reason, at wavelengths above 600 nm all sub-antennas are even merged into
one single structure, and for the longest wavelengths the available material is not suicient to
yield a satisfactory maximization. Indeed, if more material is allowed for the algorithm to be
used, a distinct peak in the scatering spectra can be obtained also for larger wavelengths, as
shown in Fig. . c for an optimization using λX = 550 nm and λY = 550 nm.

For an experimental veriication, we fabricated Si-structures corresponding to the optimized
color-tuned nanoantennas. SEM images (Fig. . c) and polarization iltered dark-ield spectra
(Fig. . d, top: ilter along X , botom: along Y ) are shown in igure . . Polarization iltered
dark-ield images (Fig. . d and insets in Fig. . d) of color-switching pictograms, composed of
the optimized structures, demonstrate the polarization dependence of the scatered wavelengths.

By a closer look on the individual structures, we observe that the “symmetric” optimization
with λX = λY = 550 nm results in a non-symmetric particle. Wewould intuitively expect a point-
symmetric antenna (i.e. of S2 symmetry group) to be ideally suited for equally strong scatering
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Figure . : Experimental demonstration of several dual-resonant Si structures based on EMO-GDM sim-
ulations. (a) EMO design of multi-resonant dielectric particles and (b) simulated scatering
spectra for λX = 550 nm (indicated by a black dashed line) and various λY . (c) SEM images
and (d) polarization iltered scatering spectra of the corresponding nanofabricated sample.
Insets in (d) show polarization iltered dark-ield microscopy images of the full set of struc-
tures (4 × 20 μm2) Areas in (a) and (c) are 600 × 600 nm2.

under both, X - and Y -polarization. he evolutionary optimization, being a non-analytic routine,
should at least result in some “quasi”-symmetric structures, which is however not the case here.
As before, this can be explained by the inite amount of material available in our structure model.
Because the T-shaped part of the antenna already consists of three of the four sub-antennas,
the fourth sub-antenna is added as a square block of maximum allowed dimension, and it is
impossible for the algorithm to generate a symmetric structure within the given constraints.
A simulation with λX = λY = 450 nm results in quasi-symmetric structures, like intuitively
expected (see Fig. . c).

Again, for λX = λY = 550 nm, interference between both parts of the antenna results in an
optimum scatering eiciency at the target wavelength and therefore exact positioning of the
constituents is crucial: We ind from a look at the scatering eiciency as function of the X/Y -
shit of the T-shaped sub-antenna (shown in Fig. . c), that the relative positioning is indeed the
ideal solution, as a displacement in any direction results in a decrease of eitherQscat,X orQscat,Y .
A change of the spacing between the T-shaped and squared sub-structures by ∆x = 100 nm for
example, already results in a decrease of more than 5% in scatering eiciency for at least one
polarization.



. . Conclusions

In summary, we emphasize that despite the simplicity of the designs generated by the EMO,
all the parameters (sizes, positions, distances) were nearly perfectly optimized by the evolution-
ary algorithm. he EMO-GDM technique is able to ind ideal nanostructures even within narrow
constraints on parameters like the size, the available amount of material or discrete step-sizes for
compatibility with nanofabrication technology. We applied themethod on silicon nanostructures
which are are of great interest as alternatives to plasmonic particles. Due to their multi-modal
optical behavior it is oten diicult to ind appropriate geometries. For this problem, we success-
fully applied an evolutionary optimization scheme and inally veriied the results experimentally
with very good agreement to the predictions.

. Conclusions

In conclusion, evolutionary (multi-objective) optimization coupled to full-ield electro-dynamical
simulations is very promising for the automatic design of many diferent kinds of photonic
nanostructures. We successfully applied the method for the optimization of SHG from sil-
icon nanoparticles, on a plasmonic antenna for directional scatering and for the design of
polarization-dependent dual-resonant silicon nano-pixels. We demonstrated that an evolution-
ary optimization approach is able to realize complex photonic characteristics like dual-resonant
behavior even within a very simple and strongly constrained structure-model. For a maximum
compatibility with fabrication methods, technological limitations were included as boundary
conditions in themodel. Due to these technological considerations, wewere able to produce sam-
ples on SOI substrate using the outcome of the optimizations for a lithographic mask. With SHG
measurements and polarization iltered dark-ield microscopy we inally conirmed the agree-
ment between samples and simulations.

A great advantage of EO/EMO coupled to GDM is its lexibility and the ability to self-adapt
to arbitrary limitations. Additional constraints can easily be implemented because no analytical
treatment of the input model needs to be performed. Inadequate structures, inconsistent with the
constraint functions, are being discarded automatically during the evolution and only technolog-
ically convenient designs are generated. he method can also be easily extended for the rigorous
design of metasurfaces, where interference between the unit cells needs to be considered. Peri-
odic boundary conditions can be included in the GDM by means of an appropriate Green’s Dyad
(see section . . . ). In this way, the distance between substructures on the metasurface may also
be included as a free parameter in the optimization. Evolutionary (multi-objective) optimization
of photonic nanostructures has a tremendous potential for many kinds of possible applications
both, in near- and far-ield nano-optics for example in the design of multiresonant or broadband
particles for light harvesting, or of nonlinear nanostructures.





Chapter

Conclusion

P , made of noble metals, sufer from dissipative losses due to a large
imaginary part in the dielectric function. High index dielectric materials have recently
atracted atention as possible low-loss alternatives. he advantages and complemen-

tary characteristics of the two material platforms were subject of a detailed review in chapter
and motivated further investigations on silicon-based nanostructures, particularly with regard
to non-linear optical phenomena.

In chapter , a brief introduction to classical electrodynamics was given before particular focus
was set on the numerical description of light-mater interaction at a sub-wavelength scale. he
Green Dyadic Method was presented as versatile numerical framework, applicable to both, plas-
monic and high-index dielectric nanoobjects. Furthermore, ater an introduction to nonlinear
optics and in particular to surface second harmonic generation, an expansion of the GDM for the
self-consistent description of nonlinear efects was described and applied to selected examples.

In the following, the optical response of high-index dielectric nanostructures in the visible and
near-infrared spectral rangewas studied at the example of silicon nanowires in chapter . At irst,
the linear optical properties were summarized and the appearance of resonant optical modes was
explained. In this context, we compared Mie heory to GDM simulations in order to justify the
further excessive use of GDM simulations for the interpretation of the measurement results. We
studied in particular the inluence of the geometrical section of silicon nanowires on their modal
response and found that circular, hexagonal and squared cross sections provide a very similar
resonant behavior for lower-order modes (up to orders of about 3 or 4), before more severe
deviations occur at higher order resonances. Subsequently, the nonlinear optical response of
SiNWs in the spectral region of visible wavelengths was studied in great detail. We found amulti-
photon induced photoluminescence as well as second harmonic generation, which we showed
is dependent on the existence of resonant modes and can be enhanced by more than two orders
of magnitude, compared to SHG from a bulk silicon surface. In agreement with literature, we
deduced from experimental observations, that χ (2)

⊥⊥⊥ leads to the strongest contribution to SHG –
similar to other centrosymmetric materials like gold. However, dependent on the nanowire size
and the incident polarization, SHG in SiNWswas found to contain several diferent contributions
and is either due to surface SHG or as a consequence of strong ield gradients in the bulk-core
of the nanowires. In conclusion, due to their geometry nanowires ofer an interesting platform
for the distinction of diferent contributions to surface SHG. his is of particular interest since
on planar surfaces, the bulk contribution is diicult to isolate from the surface terms, which can
be achieved more easily using nanowires.

In the last chapter (Chap. ), we pursue an alternative approach for the tailoring of optical
properties in plasmonic and dielectric nanostructures. Commonly, a reference system is studied



e.g. by small variations of its design, in order to tailor the optical properties. his, however,
is an inherently limited approach since the optical properties are more or less imposed by the
initial choice of the particle geometry. In order to overcome these limitations, we employ evolu-
tionary optimization algorithms, coupled to the GDM, on a generic structure model. We showed
on diferent examples the remarkable potentials of such methods. By including technological
constraints, we inally succeeded to actually fabricate the structures, designed by evolutionary
optimization and verify the outcomes of the algorithm.

Evolutionary optimization clearly has tremendous potentials for direct applications, since any
possible kind of constraint like technological limitations can be included in optimizations of
many diferent possible problems. However, evolutionary strategies might also be exploited to
design particular platforms for more fundamental investigations. For example the maximization
of SHG originating from individual χ (2) elements might be helpful in the quantiication of the
components of nonlinear susceptibility tensors. Another possible application could be the evo-
lutionary design of eicient magnetic ield enhancement with a concurrently suppressed electric
ield amplitude in nanometer small cavities. Such system would be an interesting platform for
research on magnetic-ield driven phenomena. In conclusion, countless possible applications of
EO exist which are limited only by the capacities of the numerical method for the description of
the optimization target.



Chapter

French Summary / Résumé Français

Par la suite un résumé de la thèse sera donné, chapitre par chapitre, en langue française.

Propriétés Optiques Linéaires et Non-Linéaires de
Nanostructures Diélectriques à Haut Indice de Réfraction

. Introduction et Motivation

Seulement des éléments de la bibliographie du chapitre seront ici donnés. Pour une liste ex-
haustive des références, le lecteur est renvoyé au chapitre entier en langue anglaise.

La nano-optique est un domaine de recherche qui atire de plus en plus l’atention des
chercheurs du monde entier. En général, la nano-optique traite les efets qui se produisent à
l’interaction de la lumière avec la matière à des dimensions inférieures à la longueur d’onde.
Ainsi – pour la lumière du visible et du proche infrarouge – nous nous trouvons à l’échelle du
nanomètre. Dans ce chapitre, un aperçu des systèmes de diférents matériaux sera donné et
le progrès de la recherche actuelle sur les nano-structures photoniques et de leurs applications
sera résumé. Une comparaison entre les structures plasmoniques et celles aux diélectriques à
haut indice de réfraction motivera des investigations plus approfondies sur ce dernier système
de matériel. Enin, nous allons donner un bref aperçu des efets non-linéaires et de leurs appli-
cations dans la nano-optique.

. . Diélectriques à Haut Indice vs. Plasmonique

. . . Plasmonique

La principale force motrice en nano-optique est probablement le domaine de la “plasmonique” [ ,
]. L’interaction des ondes électromagnétiques avec des métaux peut lancer des oscillations col-
lectives des électrons libres. La constante diélectrique des métaux est négatif et par conséquence
les vecteurs d’onde à leur intérieur sont imaginaires. Les champs sont donc évanescents et con-
inés dans une petite région à la surface, ce qui s’appelle “l’efet de peau” [ ]. En conséquence, les
oscillations du collectif des électrons se propagent le long de la surface, ce qui s’appelle polariton-
plasmons de surface (Anglais: Surface plasmon polaritons, “SPP”) [ – ]. En outre, dans de pe-
tites particules de métal, la propagation des SPP est entravée à cause du coninement spatial
et des modes localisés apparaissent, nommés en Anglais “localized surface plasmon (LSP) reso-
nances”. Ces LSPs permetent de serrer la lumière en volumes de taille netement plus petite que
la longueur d’onde, et loin en dessous de la limite de difraction. En plus des fortes exaltations
du champ locale apparaissent [ ]. Dans le domaine spectral visible les tailles caractéristiques



se trouvent entre plusieurs 10 nm et quelques 100 nm. Grâce à leur forte réponse aux champs
électromagnétiques du visible, les particules plasmoniques sont souvent appelées “antennes op-
tiques” qui, par des variations de géométrie, peuvent être taillées sur mesure pour répondre aux
besoins variés (Anglais: “tailoring” of optical properties) [ – ]. Pour une introduction appro-
fondie sur la plasmonique, nous renvoyons le lecteur à la référence [ ].

. . . Nanostructures de Diélectriques à Haut Indice

Toutefois, l’atention de ce travail sera principalement ixée sur un autre type de nanostructures:
Des particules composées de diélectriques à haut indice de réfraction. En règle générale, ces
dernières comprennent des matériaux semi-conducteurs tels que le germanium ou le silicium
(indice de réfraction du Si dans le visible: n ≈ 3.5− 4). En conséquence, la diférence décisive en
comparaison avec la plasmonique est l’absence de charges libres. Il en résulte une partie réelle
de la fonction diélectrique qui – contrairement aux métaux – est positive ce qui signiie que la
lumière peut se propager eicacement à l’intérieur du matériau. Irradié par des champs élec-
tromagnétiques, le matériau est polarisé à cause d’un déplacement des électrons liés par rapport
à leurs atomes. Cete polarisation électrique est proportionnelle au contraste diélectrique avec
l’environnement (voir aussi annexe . . ).

Par ailleurs, dans des structures avec des dimensions inférieures ou comparable à la longueur
d’onde de la lumière incidente, des fortes résonances optiques apparaissent [ , ], comparable
aux résonances plasmons, décrites précédemment. Figure . a démontre une image de micro-
scopie en champ sombre des nanoils de silicium de diférente largeur. Le changement de couleur
est due aux résonances optiques qui varient spectralement en fonction de la taille du nano-objet.

. . . Comparaison des Plates-Formes

Comparons maintenant les diférences entre les nano-particules plasmoniques et diélectriques
ain d’exposer les points forts et les désavantages des deux systèmes de matériels.

Exaltation du champ électrique La spectroscopie à champ exalté est l’une des applications
principales des particules plasmoniques. Ain de stimuler les signaux faibles de quelques ou
même d’une unique molécule(s), une exaltation élevée de champ électrique est indispensable.
Pour l’essentiel, l’exaltation du champ électrique au voisinage de particules de haut indice de
réfraction est proportionnelle au contraste diélectrique entre la particule (ϵr,1) et son environ-
nement (ϵr,0). Ceci est le résultat des conditions de continuité à des interfaces diélectriques (voir
annexe A. )

E ∥,0 = E ∥,1 ϵr,0 E⊥,0 = ϵr,1 E⊥,1. ( . )

La composante normale (indice ⊥) du champ électrique à la proximité de la particule est exaltée
par le rapport des permitivités et éventuellement encore ampliiée si des modes de résonance
existent. Une exaltation de l’intensité de champ dans l’ordre de ≈ 100 est possible [ , , ].

Ceci est néanmoins netement inférieur au cas de la plasmonique, où trois ordres de grandeur
peuvent facilement être ateints pour l’exaltation des intensités de champ [ ]. En in de compte,
alors que dans la plasmonique l’exaltation des champs est généralement beaucoup plus forte, les
particules diélectriques ofrent de plus grands volumes d’extension du champ [ ]. En ce qui

la composante tangentielle (indice ∥) par contre est constante.



W=

30nm

W=

400nm
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(b) Résonances Magnétiques: Au vs. Si (c) Dissipation de Chaleur: Au vs. GaP

Figure . : (a): Image en champs sombre des nanoils de silicium d’une longueur de 5 μm, gravés dans
SOI. Les largeurs augmentent de 30 nm à gauche jusqu’à 400 nm à droite. (b) illustration de
la génération des champs magnétiques dans des anneaus brisés plasmoniques (gauche) et des
nanosphères diélectriques (droite), reproduction de Kuznetsov et al. [ ]. Copyright ( ) CC
BY. (c) comparaison de la dissipation de chaleur dans des dimères d’Or (gauche) et de phosphure
de gallium (droit). Adapté avec permission de Albella et al. [ ]. Copyright ( ) American
Chemical Society.

concerne les antennes plasmoniques, l’extension de l’exaltation du champ la plus intense est de
l’ordre de ≈ 1 nm. uant aux nano-particules diélectriques, il est possible d’ateindre ≈ 10 nm.

Exaltation du champ magnétique En outre, une diférence notable est l’occurrence des
fortes résonancesmagnétiques dans des nano-particules diélectriques, ce qui est diicile à obtenir
avec des antennes plasmoniques [ , – ]. Des résonances dipolaires magnétiques dans des
dimères diélectriques peuvent exalter l’intensité du champ magnétique dans le visible par un
facteur ≈ 100 [ ]. En résultat, l’amplitude du champ magnétique peut devenir comparable
ou même dépasser le champ électrique. Des interférences entres des résonances électriques et
magnétiques peuvent ainsi provoquer des phénomènes surprenants comme une difusion de la
lumière fortement anisotrope [ , – ].

En plasmonique, des performances comparables sont possibles uniquement avec des compo-
sitions de particules complexes et asymétriques [ ] ou alors dans l’infrarouge, en utilisant des
résonateurs de forme d’anneaux brisés [ ] (voir aussi la igure . b). Toutefois, des structures
plasmoniques soufrent généralement de fortes pertes quant à l’exaltation du champ magnétique
dans le visible [ ].

Pertes Un désavantage majeur des nano-structures plasmoniques, ce sont les pertes impor-
tantes liées à la partie réelle négative et à la partie imaginaire large de la permitivité diélectrique
des métaux. Ces pertes sont responsables de dissipation importante. Il en résulte une forte pro-
duction de chaleur qui peut être mortelle par exemple pour des biomolécules fragiles en spectro-
scopie à champ exalté. Bien que les diélectriques à haut indice donnent des exaltations de champ
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Figure . : Illustrations de (a) génération de seconde harmonique (SHG), (b) photoluminescence induit
par deux photons (TPL), (c) génération de troisième harmonique (THG) et (d) possibilité
d’interaction dans un mélange à quatre ondes (FWM).

inférieures, les pertes associées sont même de plusieurs ordres de grandeur plus faibles. Pour le
cas de structures plasmoniques et diélectriques qui possèdent d’une exaltation du champ compa-
rable, la diférence de la hausse de température entre les particules plasmoniques et diélectriques
peut ateindre plusieurs 100 ◦C [ , ] (voir la igure . c).
Les très faibles pertes sont un avantage-clé des matériaux diélectriques quant à des appli-

cations comme la spectroscopie à champ exalté. Cependant, la dissipation dans les antennes
plasmoniques peut être utilisé de manière constructive pour la production de chaleur localisée
à une échelle nanométrique [ ]. D’autre part, ce chaufage local n’est pas possible avec des
nanostructures diélectriques.

. . Efets Non-Linéaires

Toutes les propriétés et les applications des nano-particules photoniques décrites précédemment
sont basées sur une réponse optique linéaire. Par contre, si l’amplitude d’un champ électromag-
nétique excitant est assez élevée, des efets optiques non-linéaires se produisent, qui peuvent ofrir
une large gamme de fonctionnalités uniques au-delà de l’optique linéaire. L’efet optique non-
linéaire le plus populaire probablement est la génération d’harmoniques [ ]. Parmi cela, les ex-
emples les plus marquants sont la génération de seconde harmonique (Anglais: Second harmonic
generation, “SHG”, illustré sur la igure . a) et la génération de troisième harmonique (Anglais:
hird harmonic generation, “THG”, igure . c): Deux (ou trois) photons d’une longueur d’onde
fondamentale (λ0) sont convertis de manière cohérente à un seul photon avec λSHG = λ0/2 (ou
λTHG = λ0/3).

Outre la génération d’harmoniques, une multitude d’autres phénomènes non-linéaires existe,
parmi eux le mélange à quatre ondes (Anglais: Four-wavemixing, “FWM”, igure . d), utilisé par
exemple dans les oscillateurs et ampliicateurs paramétriques optiques [ , ], ou la photolu-
minescence induite par deux photons (Anglais: Two photon induced photo-luminescence, “TPL”,
voir igure . b). Ce dernier est une conversion incohérente de deux photons incidents à un pho-
ton de longueur d’onde plus courte (avec λ0 > λTPL > λ0/2), impliquant des états intermédiaires
réels avec des durées de vie limitées [ , ].

le processus se produit instantanément, il n’y a pas d’états intermédiaires



Le lien entre l’optique non-linéaire et les nano-structures est la nécessité de fortes ampli-
tudes des champs pour provoquer des efets non-linéaires et la possibilité d’exalter fortement les
champs électriques par des nano-particules photoniques. Par conséquent, les nano-structures
photoniques semblent être des candidats idéaux pour évoquer des efets non-linéaires. Ceci est
la raison pour l’intérêt croissant de la communauté nano-optique dans les efets non-linéaires à
l’échelle sub longueur d’onde.

. . . Efets Non-Linéaires dans des Nano-Structures Diélectriques

En conséquence des très faibles pertes et d’autres avantages comme la compatibilité avec CMOS
(pour le cas du silicium), des structures diélectriques à haut indice sont des alternatives promet-
teuses au structures plasmoniques (voir revue sur plasmonique non-linéaire [ ]), qui néan-
moins soufrent particulièrement par des pertes importantes aux courtes longueurs d’ondes, im-
pliquées par les efets non-linéaires [ ]. Par conséquence, depuis peu de temps des nano-
structures photoniques – et en particulier sur la plate-forme de silicium – atirent l’intérêt de la
recherche en nano-optique sur les efets non-linéaires. Un des buts est de metre en œuvre un
traitement de signaux tout-optique, compatible avec des dispositifs micro-électroniques [ ].
Des efets non-linéaires de troisième ordre sont très prometeurs dans ce contexte, comme le
silicium possède d’un χ (3) élevé. Bien que les exaltations du champ sont généralement plus
faibles par rapport à la plasmonique, le grand χ (3) et les pertes réduites permetent de renforcer
la génération de troisième harmonique dans les nano-structures de silicium. Par rapport à un
cristal massif de Si, la THG pouvait être exalté par des facteurs allant jusqu’à 105 en utilisant
des cristaux photoniques [ ] ou des nano-antennes diélectriques [ – ]. La lumière har-
monique produite, peut même être assez intense pour être visible à l’œil humain nu [ ].

En conclusion, l’étude des efets non-linéaires dans les structures diélectriques est très promet-
teuse ain de trouver des alternatives pour des antennes plasmoniques en ce qui concerne les
efets optiques non-linéaires.



. Simulations Numériques de Phénomènes Nano-Optiques

Les ondes électromagnétiques dans une gamme de longueur d’onde de l’ultraviolet à l’infrarouge
lointain (d’environ 10 nm à plusieurs 10 μm) sont généralement appelées lumière, y compris la
lumière visible d’environ 400 nm à 700 nm. Dans le chapitre , des efets ainsi que leur modélisa-
tion sont discutés qui se produisent à l’interaction de la lumière avec des particules plus petites
que la longueur d’onde.

. . Description de la Réponse Linéaire

ϵ0, µ0

E0, B0

ϵr (ω), µr (ω)

P(r,ω), M(r,ω)

(a) Objet dans le Vide (b) Discrétisation de Volume

Figure . : (a) Structure aléatoire dans le vide, caractérisée par ϵr et µr . Sa réponse à un champ élec-
tromagnétique incident E0, B0 peut être décrite par sa polarisation P et sa magnétisation M.
(b) Illustration de discrétisation du volume en maillage cubique d’une structure aléatoire.

. . . Définition du Problème

En règle générale, l’objectif en nano-optique est de trouver le champ électrique (et / ou magné-
tique) dans une nano-structure donnée sous excitation externe, comme illustré dans la igure . a.
La nano-structure est normalement placée dans un milieu homogène et se trouve souvent au-
dessus d’un substrat. La réponse d’une nanoparticule à un éclairement est obtenue en résolvant
les équations de Maxwell (voir équations ( . )) pour le système donné. Dans la première par-
tie de ce chapitre, nous présentons une approche pour la résolution numérique des équations de
Maxwell par intégrales de volume. Elle est basée sur des fonctions dyadiques de Green, pour cete
raison appelée “méthode dyadique de Green” (Anglais: Green Dyadic Method, “GDM”). Dans la
deuxième partie, nous donnerons une introduction à l’optique non-linéaire et nous présenterons
une extension dumodèle numérique pour la description de la génération de seconde harmonique.



. . . Méthode Dyadique de Green

À partir des équations de Maxwell transformées en espace Fourier

divD(r,ω) = ρ (r,ω) ( . a)
rotE(r,ω) = iωB(r,ω) ( . b)
divB(r,ω) = 0 ( . c)
rotH(r,ω) = −iωD(r,ω) + j(r,ω) ( . d)

il est possible d’en déduire une équation d’onde pour le champ électrique

(∆ + k2)E = − 1

ϵ0ϵr

(

k2 + ∇∇
)

P ( . )

qui inalement conduit à une équation “Lippmann-Schwinger” optique

E(r,ω) = E0 (r,ω) +

∫

G0 (r, r
′,ω) · χE(r′,ω)dr′. ( . )

Cela relie le champ électrique incident (E0) et la réponse de la structure (E) de manière auto-
cohérente et peut être résolue par la méthode des fonctions de Green (voir par exemple [ ,
chapitre . ]). Pour décrire des champs en espace 3D, des tenseurs de Green équivalents aux
vecteurs sont déinis, appelés fonctions dyadiques de Green (G0 dans éq. ( . )).

Pour une résolution numérique du problème, la nanoparticule cible est discrétisée sur un mail-
lage cubique en N points de volume d3. Pour chacun d’eux une réponse dipolaire est supposée.
Cete approche conduit inalement à un système de 3N équations couplées qui relie le champ
électrique incident E0 au champ dans la particule E en réponse à l’excitation:

E0 =M · E. ( . )

Le champ dans la structure peut alors être obtenu par une inversion de la matrice M qui est
composée de sous-matrices de rang 3 × 3

Mi j = δi jI − χi (ω)Vi G(ri , rj ,ω). ( . )

Ici, I est le tenseur unitaire cartésien, δi j le symbole de Kronecker et χ la susceptibilité électrique
relative à l’environnement. Vi est le volume de chaque cellule, donc dans notre cas Vi = d3.

Un grand avantage de la GDM est que la présence d’un substrat peut être prise en compte par
une fonction dyadique de Green appropriée, et donc à presque aucun coût de calcul supplémen-
taire. G0 dans l’équation ( . ) est simplement remplacé par une dyade G plus générale, qui est
composée d’un terme de vide et d’un terme de surface

G(ri , rj ,ω) = G0 (ri , rj ,ω) +Gsurf (ri , rj ,ω). ( . )

Pour une expression analytique, voir par exemple [ ]. Pour tenir compte de la divergence de
la fonction de Green à ri = rj , un système de normalisation

G0 (ri , ri ,ω) = IC (ω) ( . )



est introduit. Pour un maillage cubique cela donne

C (ω) =
−1

3ϵenv. (ω)Vi
( . )

ce qui doit être adapté en même temps que le volume de la cellule, si un maillage diférent est
utilisé, comme par exemple unmaillage hexagonal compact [ ]. Enin, l’inversion de la matrice
est fait par des techniques standards comme la décomposition LU [ , chapitre . ].

. . . Traitement des Résultats

Àpartir du champE à l’intérieur de la particule, unemultitude de valeurs physiques peut être cal-
culée. Par exemple les rendements de difusion et absorption [ ], le champ électrique (à travers
équation ( . )) ou magnétique [ ] à l’extérieur de la particule, le diagramme de rayonnement
de la difusion [ ] ou les dissipations de chaleur [ ].

. . Optique Non-Linéaire

Tant que les champs considérés sont faibles par rapport au potentiel du réseau cristallin des
médias, les phénomènes optiques peuvent être expliqués par une réponse linéaire. Dans le
régime linéaire, la force de rappel agissant sur les électrons qui oscillent autour de leurs noy-
aux (l’oscillation est à la fréquence ω d’éclairage, voir la igure . a) est une fonction linéaire
du déplacement des charges relatives à leur noyau. Le noyau, ayant une masse importante par
rapport aux électrons, est considéré statique. Cela peut être décrit par un potentiel harmonique.

Toutefois, en réalité le potentiel n’est pas harmonique et l’approximation linéaire échoue dès
que les taux de photons sont vivement élevés. Par conséquent, si un médium est excité par un
champ électromagnétique de très forte amplitude, les oscillations d’électrons deviennent sensi-
bles à la non-linéarité du potentiel et des nouveaux phénomènes se produisent. Dans le cadre
d’une approche perturbative, ce genre d’efets non-linéaires peut être décrit par une expansion
de type “Taylor” de la polarisation électrique:

Ptot. = ϵ0χ
(1) E

︸   ︷︷   ︸
Linear, =P(1)

+ ϵ0χ
(2) E2

︸     ︷︷     ︸
. Order, =P(2)

+ ϵ0χ
(3) E3

︸     ︷︷     ︸
. Order, =P(3)

+ . . . ( . )

où les susceptibilités χ (n) sont des tenseurs du rang n + 1 (n est l’ordre de la non-linéarité).

. . . Génération de Seconde Harmonique de Surface

Pour des raisons de symétrie, les termes d’ordre pair dans l’équation ( . ) disparaissent dans
des potentiels symétriques. La igure . b démontre les spectres en domaine fréquentiel d’une
oscillation dans des potentiels anharmoniques. Nous constatons que l’oscillation dans un poten-
tiel symétrique ne contient que des fréquences harmoniques d’ordre impair. En conséquence,
des efets non-linéaires d’ordre pair sont interdits dans des cristaux centrosymétriques. Seuls les
efets d’ordre impair se produisent, comme par exemple la génération de troisième harmonique
(THG, voir igure . c). Des efets non-linéaires d’ordre pair (comme la SHG, voir igure . a)
nécessitent un potentiel d’énergie asymétrique et par conséquent ne se produisent que dans des



ω

+

atom

-

(a) Polarisation Électrique

symmetric anh.

harmonic

0 1f0 2f0 3f0 4f0

frequency (multiples of harmonic eigenfrequency)

a
m
p
li
tu
d
e

asymmetric anh.

harmonic

(b) Spectre de Fourier

Figure . : (a) Schéma de l’oscillation des électrons autour de leur noyau, pilotée par un champ électro-
magnétique externe. (b) Spectre de Fourier correspondant à une oscillation piloté dans un
potentiel anharmonique symétrique (haut) et asymétrique (bas) en comparaison avec une os-
cillation dans un potentiel harmonique (ligne bleu pointillée).

réseaux cristallins non symétriques. Cela se trouve par exemple dans des semiconducteurs III-V
(GaAs, GaP, InP, …) ou dans d’autres matériaux composés, tels que LiNbO3.

Cependant, il est possible d’obtenir de la SHG depuis des cristaux centrosymétriques (comme le
silicium) à partir des ruptures locales de la symétrie du réseau. Ceci peut être réalisé par exemple
au niveau des surfaces, ou en raison de forts gradients de champ. La polarisation électrique de
deuxième ordre de surface se compose de trois éléments indépendants [ ]:

P
(2)

sf = P
(2)
⊥⊥⊥ + P

(2)

⊥∥ ∥ + P
(2)

∥ ∥⊥ ( . )

qui sont

P
(2)
⊥⊥⊥ = χ

(2)
⊥⊥⊥[E

2
⊥ ]̂e⊥ ( . a)

P
(2)

⊥∥ ∥ = χ
(2)

⊥∥ ∥[E
2

∥ ]̂e⊥ ( . b)

P
(2)

∥ ∥⊥ = χ
(2)

∥ ∥⊥[E ∥E⊥ ]̂e∥ . ( . c)

Les indices ∥ et ⊥ désignent les directions parallèles et perpendiculaires à l’élément de surface
locale avec des vecteurs unitaires ê∥ et ê⊥.

Le premier ordre non-nul des contributions par gradients de champ (appelées “contributions
du volume”), comprend quatre termes sources [ , ]:

P
(2)

sf,bulk = P
(2)
γ + P

(2)

β
+ P

(2)

δ
+ P

(2)

ζ
( . )



où

P
(2)
γ = γ ∇[E2] ( . a)

P
(2)

β
= β E[∇ · E] ( . b)

P
(2)

δ
= δ [E · ∇]E ( . c)

P
(2)

ζ ,i
= ζ Ei∇iEi . ( . d)

γ , β , δ et ζ sont des coeicients phénoménologiques qui peuvent être exprimés en termes
d’éléments de χ (2) [ , section . ].

. . . SHG avec la GDM

SHG de Surface Pour la description de la SHG de surface, dans un premier pas les vecteurs
unitaires parallèles et normaux à la surface sont calculés numériquement à chaque élément de
surface. Avec ceci, les composantes correspondantes du champ s’écrivent

E⊥ = E · ê⊥
E ∥ = E · ê∥ .

( . )

et qui, d’après équations ( . ), permetent de calculer directement la polarisation de surface de
second ordre.

Or, l’inluence de la présence de la nanoparticule à la fréquence harmonique doit être prise
en compte: Nous devons calculer le champ auto-cohérent induit dans la nanostructure par la
polarisation non-linéaire. Dans une première étape, nous considérons les polarisations non-
linéaires P(2) (r, 2ω) comme la source d’un “champ incident efectif” à la fréquence harmonique.
A l’exemple de χ

(2)
⊥⊥⊥ cela donne

E
(2)

0,⊥⊥⊥ (r, 2ω) =
1

ϵ0

∫

V

G0 (r, r
′, 2ω)P(2)

⊥⊥⊥ (r, 2ω)dr′ ( . )

avec le tenseur de Green G0 à la fréquence harmonique.
Nous supposons qu’il n’y a pas de champ incident externe E0 (2ω) à la longueur d’onde har-

monique et donc que E(2)

0,⊥⊥⊥ est le seul champ à 2ω. Dans une deuxième étape, nous propageons
le “champ incident efectif” à l’intérieur de la particule – à la fréquence harmonique – comme
décrit ci-dessus

E
(2)
sc,⊥⊥⊥ (r, 2ω) =

∫

V

M−1 (r, r′, 2ω)E(2)

0,⊥⊥⊥ (r
′, 2ω)dr′. ( . )

M−1 est l’inverse de la matrice déinie par équation ( . ). L’indice “sc” signiie qu’il s’agit du
champ auto-cohérent (Anglais: “self-consistent”). Enin, nous obtenons la polarisation non-
linéaire auto-cohérente par une multiplication avec la susceptibilité électrique linéaire, à la
fréquence harmonique

P
(2)
sc,⊥⊥⊥ (r, 2ω) = χ (2ω) · E(2)

sc,⊥⊥⊥ (r, 2ω) ( . )
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Figure . : Illustration de la procédure de simulation de SHG par GDM à l’exemple d’un dimère de silicium
de dimensions 2 × 250 × 100 × 100 nm3 (2 × L ×W × H ) séparé par un gap de G = 75 nm.
La particule (a) est discrétisée (b) et le champ induit par un faisceau incident est calculé par
GDM (c-d). Depuis cete réponse linéaire, la polarisation non-linéaire de surface (P(2)

⊥⊥⊥ dans
cet exemple) est calculée. Cela est fait par la sélection des point de maillage sur la surface dans
un premier pas et puis par la détermination des vecteurs localement normaux à la surface (e).
Avec ces vecteurs, la polarisation non-linéaire peut-être calculée depuis le champ fondamental
au même endroit pour chaque point de surface (f). Cete polarisation non-linéaire est ensuite
re-propagée de façon auto-cohérente en utilisant la susceptibilité du champ à la fréquence har-
monique (g). Enin, la polarisation non-linéaire de second ordre peut être propagée vers le
champ lointain (h) ain de calculer par exemple des plots polaires de la SHG (i) capturée par
une certaine aperture numérique (l’angle solide en vert dans (h) correspond à une NA 0.8).
L’inset dans (i) est un schéma illustrant l’orientation du dimère de silicium par rapport au plot
polaire.



Une illustration du calcul de SHG par GDM est donnée, étape par étape, dans la igure . à
l’exemple de P(2)

⊥⊥⊥.

Contributions du Volume Pour être applicable dans la manière la plus générale possible,
les contributions du volume à la SHG de surface sont calculées numériquement en utilisant des
dérivés par diférences inies. Nous utilisons notamment le diférentiel central [ , chapter . ]:

∂ f (x )

∂x
= lim

ϵ→0

f (x + ϵ ) − f (x − ϵ )
2ϵ

≈ f (x + ∆x ) − f (x − ∆x )

2∆x
( . )

Dans le cas de la GDM ∆x sera généralement égal à la taille du pas de discrétisation.



. Réponse Optique Non-Linéaire de Nanofils de Silicium

Dans le chapitre nous étudions en détail la réponse optique non-linéaire de nanoils individuels
de silicium. Particulièrement la génération de seconde harmonique est détaillée. Puisque la SHG
est interdite dans le volume du silicium, la surface est la seule source de seconde harmonique. Il
se trouve que les nanoils sont des candidats prometeurs pour renforcer cet efet, car le rapport
supericie/volume élevé ainsi que des champs fortement exaltés par des résonances optiques sont
en faveur de la SHG de surface.

. . Réponse Linéaire
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Figure . : Intensités de champ pour les premières résonances de Mie dans un nanoil de silicium (réso-
nances de mode “Leaky”), calculées par GDM: (a): TM01, (b): TE01/TM11 et (c): TE11/TM21.
Intensités de champ électrique (à gauche) et magnétique (à droite) après excitation en onde
plane, polarisée TE (en haut) et TM (en bas). Si des composantes du champ dans le plan ex-
istent, la partie réelle est indiquée par des petites lèches en couleur noire. Incidence par en
haut.

Avant d’étudier en détail les phénomènes optiques non-linéaires dans les nanoils de Si, nous
élaborons leurs propriétés linéaires. La réponse de nanoils aux champs électromagnétiques est
traité analytiquement dans le cadre de la “théorie de Lorenz-Mie” (ou simplement la théorie de
Mie) développée à l’origine pour des particules sphériques [ ]. La héorie de Mie peut être
adaptée aux cylindres (de longueur ininie) en utilisant des harmoniques cylindriques vectorielles
pour la série d’expansion du champ (voir par exemple [ ]).

Il se trouve que des résonances optiques se produisent dans de petits cylindres d’indice de
réfraction supérieur à celui de l’environnement. En Anglais ces résonances sont appelées “leaky
mode resonances” (LMR). Dans une image intuitive, le champ électrique subit des rélexions
multiples à l’intérieur de la particule et des résonances se produisent quand ces “circulations de
lumière” interfèrent de manière constructive. Pour un support illustratif de cete explication, voir
les champs bouclés dans la igure . . Par conséquent, les positions spectrales λLMR des LMRs
sont à peu près proportionnelles au périmètre du nanoil

k · λLMR ∝ n · 2Rπ ( . )



où k est un numéro entier et n l’indice de réfraction du cylindre de radius R.
Dans la igure . , les intensités des champs électriques et magnétiques à l’intérieur d’un

nanoil de longueur ininie sont présentés pour les LMRs des trois premiers ordres. L’excitation
par ondes planes à λ = 600 nm est polarisée perpendiculairement (transversal électrique, “TE”)
ou parallèlement (transversal magnétique, “TM”) à l’axe du il. On peut voir à partir des échelles
de couleurs, qu’en résonance le champ électrique à l’intérieur du nanoil est fortement exalté .

Le rapport de supericie/volume élevé, aussi que l’exaltation du champ proche, peuvent stim-
uler la réponse non-linéaire de nanoils de silicium. À cause de ces conditions favorables, nous
allons étudier de façon plus détaillée les efets non-linéaires depuis des nanoils de silicium.

. . Réponse Non-Linéaire

. . . Échantillons: Nanofils crû par VLS

500 nm

←
D
→

(a) Microscopie à Force Atomique (NW )

N
W
50

exp

Mie

sc
a
�
er
ed

in
te
n
si
ty

N
W
100

400 500 600 700 800

wavelength (nm)

N
W
200
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Figure . : Characterisation des nanoils VLS de silicium par microscopie à force atomique (a) (barre est
500 nm), et en microscopie optique champ sombre en comparaison avec la théorie de Mie (b).

Tous les résultats ont été obtenus sur des nanoils de silicium cristallin, crû par la méthode
“vapeur-liquide-solide” (VLS) (croissance selon la direction [ ]). La méthode VLS est une tech-
nique chimique de croissance en phase vapeur, dans laquelle les nanoils sont crû sur un substrat
à partir d’un gaz précurseur, médiée par les goutes catalytiques (habituellement de l’or) de taille
nanométrique [ ]. Les nanoils peuvent ensuite être caractérisées par exemple par microscopie
à force atomique (Anglais: Atomic force microscopy, “AFM”) ou par spectroscopie en champ
sombre (Anglais: Dark ield, “DF”) en comparaison avec la théorie de Mie. Voir igure . pour
des exemples.
Par la suite, trois groupes de nanoils seront étudiés. Les dimensions pour les plus petits

nanoils sont choisies telle qu’une seule résonance est présente dans le visible “NW ”. Cete
résonance est non dégénérée et apparaît seulement sous excitation “TM”, i.e. en polarisation par-
allèle à l’axe du il. En “TE” (polarisation perpendiculaire au nanoil), il n’y a aucun mode dans la
gamme spectrale du visible. Le deuxième groupe étudié, “NW ”, a une résonance TM01 autour
de 700 − 800 nm et un second mode dégénéré (TM11 / TE01) au-dessous de 500 nm. Enin, un

d’ailleurs ainsi que à leur voisinage



troisème groupe de très grands nanoils “NW ”, avec des diamètres > 200 nm, est caractérise,
qui produit plusieurs résonances à travers le visible. Des spectres typiques des nanoils étudiés
sont présentés dans la igure . b.

. . . Dispositif du Microscope Non-Linéaire

Le dispositif expérimental est composé d’un laser Ti:Sa accordable, émetant avec une largeur
d’impulsion d’environ 150 femtosecondes (fs) et un taux de répétition de 80MHz. Le faisceau
du laser est focalisé sur l’échantillon par une ouverture numérique NA 0.8 (Anglais: Numeri-
cal aperture, “NA”). Il est utilisé à des longueurs d’onde autour de λ0 = 800 nm. La puissance
moyenne à l’arrière de l’objectif est dans l’ordre de 10mW. En utilisant une lame demi-onde, la
polarisation linéaire de la lumière incidente peut être contrôlée. Étant déposé sur une table piézo,
l’échantillon est positionné avec une précision de ≈ 1 nm. L’émission non-linéaire est collecté
en rétro-difusion et inalement réléchie vers le détecteur par une lame séparatrice dichroïque.
Le détecteur est soit un photomultiplicateur connecté à un ampliicateur synchrone, ou un spec-
tromètre avec un capteur CCD de haute sensibilité. Filtres de couleur à bande étroite sont in-
troduits devant le détecteur ain de sélectionner des parties particulières d’émission non-linéaire
(par exemple la SHG).

. . . Spectres de l’Émission Non-Linéaire
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Figure . : (a) Spectres obtenus depuis NW pour diférentes puissances de l’excitation (puissance
moyenne du laser pulsé). (b) Plot double-logarithmique pour les intensités dans les zones in-
diquées par couleur bleue (SHG) et rouge (bande large). Des Lois de puissance en ordres N = 2
et N = 3 sont indiquées comme “guide pour l’œil”.

Dans une première étape, le spectre du signal non-linéaire d’un nanoil de silicium (NW )
est analysé. Sur la igure . a, des spectres expérimentaux sont tracés pour diférentes puissances
du laser. L’excitation est à λ0 = 840 nm et polarisée en TM. Les intensités correspondantes aux
zones rouge et bleu sont tracées en fonction de la puissance d’excitation dans la igure . b sur
une échelle logarithmique (échelle log-log). Des lois de puissances sont indiquées comme “guide
pour l’œil” pour N = 2 (bleu) et N = 3 (rouge). Les résultats conirment un ordre 2 pour le signal



à la longueur d’onde de la SHG (λ0/2) tout comme un processus non-linéaire du troisième ordre
responsable de la luminescence large. Par conséquent, cete dernière bande est probablement
une photoluminescence induite à trois photons, soit du silicium lui-même, soit de la coquille de
SiO2 autour du il [ – ].

. . . Dépendance de SHG sur Résonances Optiques
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Figure . : Gauche: Spectres de difusion mesurés en champs sombre et iltrés en polarisation (lignes
solides) depuis NW (a) et NW (d), comparés avec la théorie de Mie (pointillé) pour une
excitation TE (rouge) et TM (bleu). À droite, des cartes de balayage iltrées pour SHG depuis
NW (b et c) et NW (e et f). Barres correspondent à 500 nm.

Nous étudions également l’inluence des résonances optiques sur la génération de seconde
harmonique sur les petits nanoils NW et NW . Sous excitation TM, ces ils disposent d’un
et de deux modes respectivement. Pour un incidence polarisé TE, aucune, respectivement une
seule résonance de Mie se produit dans les nanoils NW et NW (voir aussi la igure . b).
Dans la igure . a et d, des spectres iltrés en polarisation sont présentés et comparés à des cartes
de balayage de SHG.

Bien que de la SHG ait été toujours mesurée si un mode de Mie existait proche de la longueur
d’onde fondamentale (NW et NW excité en TM), aucune lumière de seconde harmonique ne
pouvait être obtenue depuis NW sous excitation polarisée TE, en l’absence de toute résonance.
Des simulations GDM montrent en outre que le champ électrique à l’intérieur du nanoil est
quasiment nul dans ce dernier cas. Cela explique le manque de SHG en absence de résonances
optiques. Les résultats montrés dans la igure . sont normalisés individuellement sur les valeurs
maximales. Une comparaison des valeurs absolues a montré qu’une exaltation de la SHG par plus
que deux ordres de grandeur est obtenue par rapport à un cristal de silicium en vrac. La SHG
la plus forte est observée pour les nanoils NW , où des résonances paraissent à la longueur
d’onde fondamentale ainsi qu’à la harmonique.

Enin, on observe que la SHG est exaltée aux bouts des nanoils sous excitation “TM” alors
que, en cas de TE, l’intensité de la SHG est homogène tout le long de l’axe du il. Ce comporte-



ment peut être expliqué par le composant χ (2)
⊥⊥⊥, étant l’élément dominant dans le tenseur de la

susceptibilité non-linéaire.

. . . Origine de la SHG
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Figure . : (a) NW , (b) NW et (c) NW . Excitation TE en rouge, TM en bleu. Colonnes à gauche:
Cartes en balayage de SHG (pas de iltre de polarisation). Toutes cartes sont normalisées à
leur valeur maximale (voir proiles à travers les ils en bas). Barres sont 0.5 μm. Colonnes à
droite: Polarisation de SHG au champ lointain, après excitation au centre du nanoil. Lignes
solides sont des régressions de courbe sur les données.

Suite à la suggestion d’analyser la polarisation de SHG pour séparer les contributions à son
origine [ ], nous efectuons des mesures de génération de seconde harmonique iltrées en po-
larisation linéaire. Des résultats sont présentés dans la igure . , où nous pouvons observer que
la direction de polarisation de la SHG se retourne par ◦. Ce phénomène se produit sous excita-
tion TM en augmentant la taille du nanoil. Au cas d’excitation TE d’autre part, la lumière SHG
est toujours polarisée perpendiculairement à l’axe du nanoil, suivant la polarisation incidente.
Des considérations théoriques permetent d’expliquer ce comportement par une transition de
contribution principale à la SHG. Dans les petits nanoils, la SHG est à l’origine de la contribu-
tion δ du volume (voir éq. ( . )), induite par les gradients du champ du à la forte focalisation du
faisceau laser. En augmentant la taille, la contribution de surface P (2)

⊥∥ ∥ s’augmente et inalement
domine la SHG totale. D’autre part, sous éclairage TE, ou, si les extrémités des nanoils sont
éclairées, P(2)

⊥⊥⊥ est toujours la contribution principale à la SHG. Ce comportement est en outre
conirmé par des simulations numériques.

En résumé, la SHG dans les nanoils de petits diamètres est due à une contribution de vol-
ume, tandis que les sources de surface augmentent avec un diamètre croissant – donc pour une
diminution du rapport supericie/volume. Malgré le fait que ceci est plutôt contre-intuitif, le
phénomène peut être expliqué par une annulation microscopique de la polarisation non-linéaire,



à cause d’une phase localement opposée [ , ]. En efet, en analysant les vecteurs de la po-
larisation non-linéaire, on constate une forte annulation microscopique pour les contributions
de surface. Cete annulation s’afaiblit quand le diamètre du nanoil augmente. uant à la con-
tribution δ du volume par contre, des efets de retard contournent partiellement l’annulation du
rayonnement vers le champ lointain.



. Optimisation Évolutionniste de Nano-Structures Photoniques

Dans le chapitre nous nous éloignons des propriétés optiques fondamentales et l’accent est
mis sur la conception et l’adaptation d’atributs optiques de nanoparticules. La conception de
nanostructures photoniques consiste habituellement à anticiper leur réponse optique à partir
de modèles simples ou par des variations de systèmes de référence. Ces systèmes sont ensuite
étudiés systématiquement. Cete stratégie est limitée par les capacités de la géométrie choisie
initialement. En outre, si diférents objectifs sont simultanément ciblés, le problème devient
encore plus compliqué (voir aussi igure . c).

. . Algorithmes d’Optimisation Évolutionniste
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Figure . : Schéma du principe d’optimisation évolutionniste. (a) Dilemme des algorithmes
d’optimisation locales “classiques”: Si des points extrêmes locaux existent, la minimisation
reste coincé et ne converge pas vers le minimum global. (b) Illustration d’un problème com-
plexe en deux dimensions. (c) Illustration du cycle de reproduction parcourue par un algo-
rithme d’optimisation évolutionniste.

uant à des applications, une approche plus pratique est de d’abord déinir les propriétés op-
tiques requises et de concevoir une nanostructure qui présente les caractéristiques souhaitées
de manière optimale. Les algorithmes classiques de maximisation ou de recherche d’un zéro
d’une fonction semblent prometeurs de prime abord. Cependant, il est diicile de décrire les
géométries de nanoparticules par des fonctions analytiques, nécessaires par exemple pour des
dérivés quant à la méthode de Newton. De plus, il est fort probable que la fonction de l’objectif
possède d’innombrables points extrêmes locaux (voir la igure . a-b.). Cela limite encore plus
l’applicabilité des algorithmes d’optimisation classiques, car ils se coincent dans les points ex-
trêmes locaux. Par conséquent la solution ne convergera pas vers l’optimum global, comme
illustré dans la igure . a à l’exemple d’un problème de minimisation en une dimension.

Des techniques plus prometeuses sont des stratégies d’optimisation évolutionniste (Anglais:
Evolutionary optimization, “EO”). Ces méthodes, imitant la sélection naturelle, sont en mesure



de trouver les plus aptes ensembles de paramètres face à un problème complexe [ ] (voir la
igure . c). Dans le domaine de la nano-optique, les algorithmes évolutionnistes ont été ap-
pliqués ain de maximiser l’exaltation de champ proche [ – ] ou la difusion de lumière
depuis des particules plasmoniques [ – ], ainsi qu’à la conception d’antennes hybrides plas-
moniques/diélectriques [ ], pour citer quelques exemples.

Dans l’EO, une population d’individus est déinie (“génération n” dans la igure . c), où
chaque individu constitue un ensemble de paramètres pour la fonction de l’objectif. Dans notre
cas, les ensembles de paramètres décrivent des morphologies d’antenne nano-photonique. Cete
population subit une procédure d’évaluation et de sélection dans laquelle les solutions faibles
sont éliminées. Ensuite, les candidats les plus aptes (i.e. les ensembles de paramètres donnant les
meilleures valeurs cibles) sont choisis pour la reproduction. Ce dernier processus consiste en une
étape appelée croisement (Anglais: Crossover), où les paramètres sont échangés et mélangés , et
une étape de mutation, dans laquelle certains paramètres choisis au hasard sont remplacés par
des nombres aléatoires (voir igure . c, étape “reproduction”). De cete manière, une nouvelle
population d’individus est générée. Ce processus de sélection, de reproduction et d’évaluation
est répété jusqu’à ce qu’un critère d’arrêt soit satisfait.

. . Optimisation de Nano-Antenne Directionnelle

a) b) c) d) e) f) g)

Figure . : Itérations sélectionnées de l’évolution d’une antenne plasmonique directionnelle. Le dia-
gramme de rayonnement en planXZ est démontré en haut, où un segment vert indique l’angle
solide de l’objectif. Les structures plasmoniques correspondantes aux diagrammes de rayon-
nement sont démontrées en bas (en plan XY ). (a) Structure initiale aléatoire. (b-f) Meilleurs
candidats depuis des générations intermédiaires. (g) Meilleur candidat de la population inal.
La barre est de 200 nm.

Ain de démontrer l’optimisation évolutionniste en nano-photonique, nous employons l’EO
sur un modèle de nano-antenne plasmonique, fabriqué avec de l’or. Avec ceci, nous voulons
concevoir une nano-antenne pour la difusion directionnelle de la lumière. Les candidats les plus
aptes au cours de l’optimisation sont présentés dans la igure . ainsi que les diagrammes de
rayonnement de la difusion élastique. La lumière incidente est réalisée par une onde plane de
λ0 = 800 nm, polarisée linéairement selon la direction de difusion souhaitée. (a-f) montrent des
itérations au cours des premières 20 générations, et (g) montre la solution inale, trouvée après
50 itérations.

L’antenne inale montre une difusion fortement directionnelle et son principe de fonction-
nement est égal au fonctionnement des antennes directionnelles utilisées pour les fréquences
radio. Sachant qu’initialement la conception de la structure est complètement libre, il est re-
marquable qu’une disposition d’antenne ait été trouvée – tout à fait automatiquement et avec

comme les gènes dans la nature



une très bonne reproductibilité – qui correspond aux principes de fonctionnement bien connus
provenant d’antennes des fréquences radio.

. . Optimisation de Pixels Double-Résonants
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Figure . : Démonstration expérimentale des structures double-résonnantes, trouvées par optimisation
évolutionniste. (a) Modèle de structure EMO des particules diélectriques double-résonnantes
et (b) spectres de difusion correspondantes avec λX = 550 nm (indiqué par ligne noire pointil-
lée) et diférents λY . (c) Images SEM des structures nano-fabriquées et (d) spectres correspon-
dantes mesurées en champ sombre et iltrés en polarisation. Les insets dans (d) démontrent
des images du set des structures, obtenues par microscopie en champ sombre iltré en polari-
sation (4 × 20 μm2). Les zones dans (a) et (c) sont de 600 × 600 nm2.

Dans la dernière partie, nous voulons aller encore plus loin. La plupart des études appliquant
l’optimisation évolutionniste dans le contexte de la nano-optique ont été limitées à la maximisa-
tion d’une seule propriété cible et cela à une longueur d’onde et à polarisation bien spéciique. De
tels scénarios à objectif unique représentent le cas le plus simple d’un problème d’optimisation.
Une structure qui remplit simultanément plusieurs objectifs sera en général plus diicile à con-
cevoir. Des stratégies d’optimisation évolutionniste à objectifs multiples (Anglais: Evolutionary
multi-objective optimization, “EMO”) [ , ] sont une approche prometeuse pour contrer
ces problèmes. Dans cete partie, nous présentons une combinaison de EMO avec la GDM que
nous appliquons à la conception de structures diélectriques multi-résonantes. Notre objectif est
de maximiser l’eicacité de la difusion Qscat à une longueur d’onde λX pour une polarisation
incidente linéaire le long de la direction X , et en même temps de maximiser la difusion à une
deuxième longueur d’onde λY , polarisée en Y .



Nous efectuons plusieurs optimisations à objectifs multiples pour de diférentes combinaisons
de longueurs d’onde cibles. La longueur d’onde λX = 550 nm reste ixe, tandis que l’autre ob-
jectif (λY ) varie de 450 nm à 650 nm en incréments de 10 nm. Chaque simulation est constituée
d’une population de 20 individus, initialisée aléatoirement et subséquemment évoluée pendant
200 générations. À la in de chaque évolution, la structure avec les plus proches Qscat (λX ) et
Qscat (λY ) est choisie.

Dans la igure . , nous montrons les structures résultantes (a) et leurs spectres simulés par
GDM pour illumination polarisée le long des directions X et Y (b). Les diférents λY sont in-
diqués par un code couleur allant du bleu (λY = 450 nm) au rouge (λY = 650 nm). Pour une
vériication expérimentale, nous avons fabriqué des structures de silicium correspondantes aux
nano-antennes EMO. Des images de microscopie électronique à balayage (igure . c) et des
spectres de difusion, iltrés en polarisation (igure . d, en haut: iltré X , en bas: iltré Y ) sont
présentés à gauche de igure . . Dans les insets, des images des structures optimisées, obtenues
par microscopie optique en champ sombre, iltrée en polarisation, démontrent le changement de
couleurs en fonction de la polarisation de la lumière.

. . Conclusions

En conclusion, l’optimisation évolutionniste reliée aux simulations électro-dynamiques est très
prometeuse pour la conception automatique de divers types de nano-structures photoniques.
Nous avons démontré qu’une approche d’optimisation évolutionniste est en mesure de réaliser
des objectifs photoniques complexes comme des résonances multiples, même au sein d’un mod-
èle très simple et fortement restreint. Pour une bonne compatibilité avec des méthodes de fab-
rication, les limitations technologiques peuvent être incluses dans l’algorithme. Grâce à de tels
considérations technologiques, nous avons pu produire des échantillons sur substrat SOI en util-
isant les résultats des optimisations évolutionnistes. Avec la microscopie en champ sombre, il-
trée en polarisation, nous avons inalement pu conirmer l’accord entre les propriétés optiques
des échantillons et les simulations.

L’optimisation évolutionniste de nano-structures photoniques a un potentiel énorme pour de
nombreux types d’applications dans la nano-optique du champ proche et du champ lointain. Des
exemples imaginables se trouvent dans la conception des particules multi-résonantes ou à large
bande pour des capteurs de lumière ou quant aux nano-structures pour l’optique non-linéaire.



Appendix A

Dielectric Interfaces

A. Continuity Conditions

To calculate the continuity conditions at the interface between two dielectric materials, we start
with the Maxwell equations for homogeneous, isotropic and constant media:

divD = ρ rotE = 0 (A. )
divB = 0 rotH = j (A. )

with D = ϵ0ϵrE and B = µ0µrH.
Furthermore, we will use Gauss’ integral theorem for vector ields V

∫

∆V

dr3 · divV =
∫

S (∆V )

df · V (A. )

where S (∆V ) is the surface around the volume ∆V , as well as Stokes’ integral theorem:
∫

S

df · rotV =
∫

∂F

dr · V (A. )

with ∂F the path around the area S .
To ind the continuity conditions for the E-ield component normal to the interface, we in-

tegrate the Maxwell equation for the divergence of the electric ield over a cuboid around the
interface between two dielectric media ϵr0 and ϵr1 (see ig. A. a). With Gauss’ integral theorem
(A. ), we get

∫

V

dr3 · divD =
∫

∆F

df · D ∆x→0−−−−−→ 2∆F · n · (D1 −D0) (A. )

and ∫

V

dr3 · divD =
∫

V

dr3 · ρ = σ · 2∆F = 0 (A. )

with σ the surface charge at the interface which we assume to be zero. From eq. (A. ) and (A. )
we get:

n · (D1 −D0) = 0 (A. )

To ind the tangential component’s continuity condition, we integrate over an area around the
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Figure A. : At the interface between two dielectrics, integrating over an ininitely small cuboid leads to
the continuity condition for the E-ield normal component a, while by integrating over an
ininitely small area the tangential component’s continuity condition is found b.

interface using Stokes’ theorem (A. ):

0 =

∫

∆F

df · rotE =
∫

∂(∆F )

dr · E ∆x→0−−−−−→ ∆l · (n∆F × n) · (E1 − E0) (A. )

with ∆l1 · êl1 = −∆l0 · êl0 = ∆l · (n∆F × n) where the notation from igure A. b is used and êl i
are unitary vectors in path direction. Analogously, the Maxwell equations of the magnetic ield
(A. ) can be integrated to obtain the corresponding continuity conditions.

Finally we have four continuity conditions, for the normal ((A. ), (A. )) and parallel ((A. ),
(A. )) components of the electric and the magnetic ield respectively:

n · (D1 −D0) = 0 (A. )
n · (B1 − B0) = 0 (A. )
n × (E1 − E0) = 0 (A. )
n × (H1 −H0) = 0 (A. )

We see, that the normal component of the electric displacement ield D as well as the electric
ield E’s tangential component are continuous over the interface. Analogously, the magnetic and
the demagnetizing ields’ (B and H) normal and tangential components are conserved.

A. Reflected Field Amplitudes

From the above derived continuity conditions, the relectivity and transmitance coeicients at
the interface can be calculated. Again, we assume normal incidence (n ⊥ E ⊥ B), so equa-
tions (A. ) and (A. ) are already fulilled. Furthermore, the vector products of the ields in
equations (A. ) and (A. ) can be replaced by scalar products of the ield amplitudes. he elec-
tric ield in the material with index “0” can be writen as a superposition of a forward (E0) and a
backward (E0,r ) traveling component (see ig. A. ). With

B = µr ·H =
k

ω
× E (A. )
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Figure A. : Normal relection at an interface between two dielectric media.

equation (A. ) can be writen as

k1E1

µr1
− k0E0 + k0,rE0,r

µr0
= 0 (A. )

We know that
k =

ω

c
n =

2π

λ

√
ϵr µr (A. )

with the refractive index n = √ϵr µr . We see, that for normal incidence k0,r = −k0. By inserting
(A. ) in equation (A. ), we obtain

E1 ·
(√

ϵr1

µr1

)

= (E0 − E0,r ) ·
(√

ϵr0

µr0

)

(A. )

For non-magnetic media (µr = 1 → n =
√
ϵr ), we can now calculate the relectance and the

transmitance at the interface by taking equation (A. ) into account (E1 = E0 + E0,r ):

r0,1 =
E0,r

E0
=

n0 − n1
n0 + n1

(A. )

t0,1 =
E1

E0
=

2n0
n0 + n1

(A. )

he deduction of the relectivity for the general case of non-normal incidence is analogue to the
calculation above and can be found in literature (e.g. [ ]). Finally we note that an addition-
rule for the relectivities of several successive layers can be derived using a substitution of the
form r = tanh s [ ]. In analogy to quantum mechanics transfer-matrix methods can be used
alternatively, to obtain the relectivity of or ield amplitudes in multi-layer systems [ , ].



Appendix B

Autocorrelation Measurements

Interferometric autocorrelation (IAC) measurements can be used to obtain the order of the non-
linear response. In order to perform a it to the IACmeasurements, we need to describe the signal
mathematically.

B. Model Assuming Unchirped Gaussian Wave Packets

Remark: he pulse widths are given as the Gaussian’s width w of the pulse envelope, i.e. the
duration during which the amplitude is larger than E · 1/e , with E the maximum ield amplitude
and e Euler’s number. To obtain the width of the pulse’s intensity, the width of the electric ield
has to be divided by

√
2 (because I = E2). Finally, from the Gaussian width w , the full width at

half maximum is found by FWHM = w · 2
√
2 ln 2.

We assume a Gaussian shape for the envelope of the traveling wave packets, sent by the pulsed
laser

A(x , t ) = A0 · exp *
,−2

(x −vдt )2

(τpulse · c )2
+
- (B. )

where τpulse is the Gaussian width of the pulse in time domain and vд its group velocity. he
time and space-dependent ield amplitude of the pulse is the product of A(x , t ) with a plane
wave u (x , t )

u (x , t ) = u0 · exp (±i (kx − kct )) (B. )

(k = ω/c, ω = 2π f = 2πc/λ) and writes

E (x , t ) = E0 · u (x , t ) · A(x , t ) (B. )

as illustrated in Fig. B. a,i. For a description in time domain, the space coordinate x of the ield
can be substituted by x = t · c (for more details on wave packets, see e.g. [ , chapter . ]).

Now we assume two coherent Gaussian wave packet-like pulses (Ep and Ep ) with a time
delay δ between each other (illustrated in Fig. B. a,iii). For a given delay, the experimentally
accessible value, the intensity of the ields, is obtained by integrating both pulses over the entire
time-range

Imeas. (δ ) =

∞∫

−∞

[
Ep (t ) + Ep (t − δ )

]2
dt . (B. )

If a signal from an interaction of the two pulses with a nonlinear medium is acquired, the inte-
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Figure B. : (a) illustration of an unchirped (i) and a chirped (ii) pulse, as well as a partial temporal super-
position of two such pulses ((iii) and (iv), respectively). (b) interferometric autocorrelation of
two unchirped pulses from second (i) and third order (iii) nonlinear response, as well as a sec-
ond order chirped autocorrelation igure (ii). Red dashed lines show the (unchirped) envelope
to the IAC plots. he intensity enhancement factors between ininite and zero time-delay are
indicated at the right.

grand has to be taken to the power of N , where N is the order of the nonlinearity

Imeas., NL (δ ) =

∞∫

−∞

����
[
Ep (t ) + Ep (t − δ )

]2����
N

dt . (B. )

In experiment, the signal Imeas., NL (δ ) can be measured as a function of the time-delay δ going
from negative to positive values. Usually, a crystal with signiicant nonlinear susceptibility is
used as reference sample, hence the order N is known.

For a numerical calculation of the autocorrelation signal, we replace the integral and the dif-
ferential dt by a sum over small time-steps ∆t :

∫

f (t )dt →
∑

f (t )∆t (B. )

In order for Eq. B. to be a valid approximation, several assumptions have to be made:

. a Gaussian wave packet is a good approximation for the laser-pulse

. both beams have equal width and amplitude

. all observed light is generated due to the same physical efect ⇒ the same order of non-
linear response can be assumed for the minimum as well as the maximum occuring ield
amplitudes
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Figure B. : Experimental setup for interferometric autocorrelation measurements.

. the laser-pulse has only a negligible chirp, although it is very likely that there is some
amount of chirp (Chirped pulse, see Fig. B. a,ii. For the inluence of a chirp on the auto-
correlation signal, see below)

Assuming these conditions are met, the measured intensity can be writen as a function of the
pulse width τpulse, the pulse amplitude E0 and the order of (nonlinear) response N . For iting the
numercially obtained autocorrelation function, an additional delay-ofset ∆δ is included to take
account of the zero delay position in experiment. he function for the interferometric autocor-
relation intensity

Imeas. (δ ) = Imeas. (δ ,E0,τpulse,N ,∆δ ) (B. )

can be used to simulate the autocorrelation signal. he interferometric autocorrelation is calcu-
lated by using

E (x , t ) = E0 · u (x , t ) · A(x , t ) (B. )

as shown in Fig. B. b (solid lines), whereas the envelope to this signal is obtained using only a
Gaussian for the electric ield (red dashed lines in Fig. B. b)

E (x , t ) = E0 · A(x , t ). (B. )

he later can be obtained by so-called “intensity autocorrelation” measurements. Fur further de-
tails and a broader overview on autocorrelation measurement techniques, we refer to the tutorial
on ultrashort pulse shaping by Monmayrant et al. [ ].

B. . Influence of Chirp on Gaussian Model

A chirp means, that the wavelength changes with time during a single pulse (see illustration
of a chirped pulse in Fig. B. a,ii and scheme of two superposed identical, chirped pulses in
Fig. B. a,iv). From intensity and interferometric autocorrelation measurements, the chirp can-
not be unambiguously accessed and therefore assumptions on it have to be made. For all its in
the following, a chirp-free pulse has been assumed. he inluence of a linear chirp on the au-
tocorrelation signal via a second order nonlinearity is shown in igure B. b,ii in comparison to
the envelope of unchirped IAC (using a highly exaggerated chirp). A chirp can make the pulse
durations in IAC measurements appearing shorter than they are in reality.
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Figure B. : (a) SHG intensity as function of incident laser power and (b) interferometric autocorrelation
measurement on a LiNbO3 crystal at λ0 = 810 nm. In (a) a power-law was ited to the data,
conirming a second order nonlinear response. In (b) a it to the envelope of the autocorrela-
tion signal was performed in order to obtain the optical pulse width, ixing the order of the
nonlinearity to N = 2.

B. Power Series on LiNbO3

To verify the nonlinearity of the reference LiNbO3 crystal, a measurement of SHG as function of
the incident laser powerwas performed. he data is shown in Fig. B. a together with a power-law
it. he result of the it conirms the second-order power-dependence of a χ (2) nonlinearity.

B. Pulse Width Characterization Using LiNbO3 Reference

In order to it the envelope of the autocorrelation measurements and in this way obtain the
order of the response’s nonlinearity, we need to determine the laser-pulse width in a reference
measurement. Conirmed by the power-dependence measurement, the order of the nonlinear
response of the LiNbO3 reference sample is ixed to N = 2. Similar pulse widths aorund τpulse ≈
150 fs were obtained for the investigated wavelengths λ0 = 750 nm (Fig. B. a), λ0 = 810 nm
(Fig. B. b) and λ0 = 840 nm (Fig. B. b).

he experimental setup used for interferometric autocorrelation measurements is shown in
igure B. . he pulses emited by the fs-laser are split by a beam-spliter, travelling on two equally
long optical paths. One of those paths is equipped with a micro-motor controlled time-delay
stage, which allows to shorten or enlarge the distance traveled by the photons, thus controlling
the time delay between the two optical pulses.
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Figure B. : Interferometric autocorrelation measurements on a LiNbO3 crystal at (a) λ0 = 750 nm and (b)
λ0 = 840 nm. For the it the order of the nonlinearity was ixed to N = 2.



Appendix C

SiNW Surface SHG Polarization Dependence

We want to numerically study the polarization dependence of the diferent contributions to
surface SHG from an ininitely long, planewave illuminated cylindrical nanowire (in vacuum) in
more detail, in order to conirm our theoretical considerations from section . . . hewavelength
of the normally incident light is λ0 = 810 nm, hence λSHG = 405 nm.

In Fig. C. SHG from “simple” P(2)
⊥⊥⊥, P

(2)

⊥∥ ∥ , P
(2)

∥ ∥⊥ (top row; blue solid lines) as well as from
their self-consistent counterparts (second row; blue dashed lines) is shown as a function of the
incident polarization and the NW diameter. A logarithmic color-scale is used to increase the
visual contrast. 1D plots for a D = 100 nm and a D = 150 nm SiNW are shown in (vii-xii).

Obviously, for an incidence polarized along the wire axes (transverse magnetic, “TM”), only
P
(2)

⊥∥ ∥ is non-zero, conirming our conclusion from section . . . . For a polarization normal to the
axis (“TE”) on the other hand, this component is vanishing (at least for diameters D ≲ 230 nm),
while the other contributions are non-zero. We can observe, that P(2)

⊥⊥⊥ follows perfectly a
sin4 (ϕ), which its Malus’ law for a second order nonlinear response. Also P

(2)

⊥∥ ∥ follows Malus’
law for smaller nanowires, but at a diameterD = 150 nmirst deviations from the ploted cos4 (ϕ)-
line occur and it inally becomes non-zero for TE incidence at large diameters . P

(2)

∥ ∥⊥ inally
reaches its highest value somewhere between pure TE and pure TM incidence, for a maximum
of the product of the perpendicular and parallel ield components E ∥ · E⊥. As a consequence it
doesn’t obey Malus’ law. In the quasistatic approximation, the ield inside the particle is pro-
portional to the incident ield. For small nanowires, P(2)

∥ ∥⊥ therefore reaches its maximum at a
polarization of 45 ◦ (see D = 100 nm in Fig. C. a, ix).
Note that the “simple” as well as a self-consistent SHG calculation give similar results. How-

ever, for small nanowire diameters, signiicant diferences can be observed, which can be at-
tributed to the optical coupling of the nonlinear polarization to the modal response of the
nanowire. Away from the NW tips, P(2)

⊥⊥⊥ and P
(2)

⊥∥ ∥ result in a nonlinear polarization ⊥ to the
NW axis, which hence couple to the TE-response of the nanowire at the harmonic wavelength.
For TE however, only a weak optical response exists at the harmonic frequency for small diam-
eters D ≲ 50 nm (see Fig. . or Fig. . ). In consequence, the scatering of the harmonic to the
far-ield is suppressed for small NWs in the self-consistent calculation.

he suppression of surface-SHG also supports the observation of the bulk contribution for
SiNWs of small diameter. In contrast to the “TE-type” surface contributions, a nonlinear bulk
polarization with ield components along the wire axis can couple eiciently to the far-ield via
the TM modes at the harmonic wavelength.
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Figure C. : Polarization dependence of surface SHG from ininitely long silicon NW. (a) SHG intensity
in the farield (full solid angle) for cylindrical SiNWs. Contributions P(2)

⊥⊥⊥, P
(2)

⊥∥ ∥ and P
(2)

∥ ∥⊥
are shown in the let, center and right column, respectively. (i-iii) show results of the “simple”
SHG calculation (P(2) , solid blue lines in the 1D-plots), (iv-vi) for corresponding self-consistent
simulations (P(2)

sc , dashes blue lines in the 1D-plots). Colormaps are scaled logarithmically.
Exemplary 1D plots are shown for diameters D = 100 nm (vii-ix) and D = 150 nm (x-xii).
cos4 (ϕ) and sin4 (ϕ) are ploted for comparison in (vii, x) and (viii, xi), respectively. Polarization
directions for TM (along the wire axis, ϕ = 0,π ) and TE (normal to the wire axis, ϕ = π/2)
with respect to the NW axis are illustrated in (b) by red arrows.



Appendix D

SHG from Lithographic Silicon Wires

We present some preliminary results of SHG from lithographic silicon wires etched in SOI (for
details on the fabrication, see Sec. . . . ). he height of the SOI silicon layer is H = 95 nm, the
length of the lithographic wires is ixed to L = 3 μm and the width is varied.

I S
H
G TM excitation

W=30nm 40nm 50nm 60nm 80nm 100nm 120nm 140nm 160nm 180nm

Figure D. : SHG from TM excited lithographic SiNWs of ixed height (H = 95 nm) and variable widhtW .
Top: Intensity proiles across the NW centers. Center: SHG-iltered rasterscan maps. Botom:
SHG farield polarization from excitation at the NW center.

In igure D. , SHG results from TM-excited silicon wires are shown (details on the measure-
ment procedure can be found in Sec. . . ). Intensity-proiles across the nanowires are given
in the top, the data was acquired in a single measurement, the intensities are therefore directly
comparable and a signature of a modal response can clearly be observed. SHG rasterscan map-
pings are shown in the center, revealing an interesting behavior: For larger rectangular wires,
the SHG is strongest under excitation of the wire borders. A similar observation has been already
made for VLS grown SiNWswith large diameter (see Sec. . . ). Finally, polar plots, resolving the
far-ield polarization of the backscatered SHG are shown in the botom row, where once again
the lip in polarization is observed, from perpendicular to parallel with respect to the wire axis.
Also rectangular, non-symmetric nanowires seem therefore suitable for a distinction of bulk-
and surface contributions to SHG by means of size-variations (see Sec. . . ).

he inluence of resonant modes on SHG is demonstrated on the leters “CNRS”, composed of
diferently large SiNW, shown in Fig. D. . Wire widths are chosen such that a resonance under
TE excitation outweighs the TM response and gives rise to a strong SHG for TE excitation. he
widths areW = 60 nm (background) andW = 130 nm (CNRS leters). his makes the leters
appear bright on a dark background for TE incidence (Fig. D. , top) while under TM excitation
SHG from the background is stronger than the nonlinear signal from the leters (Fig. D. , botom).



(a) SHG Microscopy (b) SEM

Figure D. : (a) SHG from TE (top) and TM (botom) excited CNRS leters, composed of lithographic Si
nanowires. Height and length are ixed to H = 95 nm, respectively L = 1 μm. Widths are
W = 60 nm (background) andW = 130 nm (CNRS leters), scalebar is 5 μm. (b) SEM image
from the CNRS leters, where both types of wires are shown.



Appendix E

Symbols and Abbreviations

Symbols

a,A Scalars
a,A Vectors (or Tensors, by context)
i Imaginary unit

∇ Nabla operator
∆ Laplace operator
G Green’s Function
G Green’s Dyad
(hkl ) Miller indices of crystal latice
e−,h+ Electron, hole
ω Angular frequency
λ Wavelength
k Wave-vector
k Wave-number (|k|)

ϵr Dielectric permitivity
χ Electric susceptibility
χ (N ) N th order electric susceptibility
E Electric ield
D Electric displacement
ρ Charge density
j Current density
P Electric polarization
µr Magnetic permeability
χm Magnetic susceptibility
B Magnetic ield
H Magnetizing ield
M Magnetization
n Refractive index

σgeom Geometrical cross section
σext Extinction cross section
σscat Scatering cross section
σabs Absorption cross section

Qext Extinction eiciency
Qscat Scatering eiciency
Qabs Absorption eiciency
Rdirect Directionality ratio

Constants
c0 Speed of Light 2.9979 × 108m/s2
ϵ0 Vacuum Permitivity 8.8542 × 10−12 F/m
µ0 Vacuum Permeability 4π × 10−7 N/A2

m0 Electron Mass 9.1094 × 10−31 kg
e Electron Charge 1.6022 × 10−19 C
ℏ Reduced Planck-Constant (h/2π ) 1.0546 × 10−34 J s
π Pi 3.14159265



Abbreviations
AFM Atomic force microscope
BEM Boundary element method
CCD Charge coupled device
CG Conjugate gradients
CMOS Complementary metal-oxide-semiconductor technology
CPU Central processing unit (computer)
DDA Discrete dipole approximation
(L)DOS (Local) density of states
EBL Electron beam lithography
EELS Electron energy loss spectroscopy
EMO Evolutionary multiobjective optimization
EO Evolutionary optimization
FDTD Finite diference time domain
FW/BW Forward / Backward
FWHM Full-width at half-maximum
FWM Four-wave mixing
GDM Green Dyadic Method
LMR Leaky mode resonance
LSP Localized surface plasmon
(M)IR (Mid-) infrared
MPPL Multi-photon induced photoluminescence
NA Numerical aperture
PL Photoluminescence
PMT Photon multiplier tube
QW uantum well
SEF Surface enhanced luorescence spectroscopy
SEM Scanning electron microscope
SERS Surface enhanced Raman spectroscopy
SHG Second harmonic generation
(Si)NW (Silicon) Nanowire
SOI Silicon on insulator
SPP Surface plasmon-polariton
(s-)SNOM (Scatering type) scanning near-ield optical microscope
THG hird harmonic generation
TE/TM Transverse electric / magnetic
TPL Two-photon induced photoluminescence
UV Ultraviolet
VLS Vapor-liquid-solid crystal growth
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