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Introduction

It is one thing to compute a result quickly, but another to get a correct answer. In fact, the
reliability of a system is directly proportional to the number of its components, and designing
reliable computers is a problem that goes back to the design of Babbage’s Analytical Engine
itself in 1837 [20]. Frequent errors were common in the first computers: in 1930, the mechanics
of the Zuse computers would often get stuck or produce erroneous data [84]. Failures were
not unheard of either: in 1950, ENIAC (Electronic Numerical Integrator And Computer), an
electronic general-purpose computer, had to replace one of its 17,468 vacuum tubes every two
days on average [81]. Altogether, resilience, i.e., the capacity to recover quickly from errors or
failures, has always been a critical aspect of computer science.

Progress in manufacturing has led to both smaller and more reliable components. However,
as the number of processing units increases, the problem remains: Titan, one of the most pow-
erful supercomputers as of 2017 [92], experiences a failure almost every day on average [73].
Meanwhile, simulations can take days or weeks to complete [71], and being able to guarantee
the completion and correctness of the computations is crucial for the scientific community. Yet,
national agencies all over the world are engaged in a significant research effort to build the
first exascale computer [41, 71], a system capable of a billion billion calculations per second.
In comparison with current systems, this represents not only a massive increase in computing
power, but also in the number of processing units. As a result, the Mean Time Between Fail-
ures (MTBF) of the next generation of computers is expected to drop drastically [24, 25, 89].

In February 2014, the ASCAC (Advanced Scientific Computing Advisory Committee) Sub-
committee identified resilience as one of the top ten exascale research challenges. The prob-
lem is stated as: ensuring correct scientific computation in face of faults, reproducibility, and
algorithm verification challenges [71]. This thesis addresses several of these concerns. We first
clarify the definition of faults1, since we consider two different types of faults, fail-stop errors
and silent errors.

Fail-stop errors. This phenomenon is well understood. Even if each individual resource is
reliable, aggregating too many of them will result in frequent failures globally. For instance, if
the MTBF of each individual resource is ten years (a pretty optimistic figure for a processor),
then the MTBF of a platform comprising one million of such resources is only five minutes.
Specifically, there is a linear correlation between the MTBF of the entire system µp, the number

1In the rest of this thesis, we use the terms fault, failure and error indifferently.

vii
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of resources p and their individual MTBF µind [62, Proposition 1.2]:

µp =
µind

p
. (1)

The standard approach to cope with fail-stop errors is checkpoint, rollback and recovery [28,
46]. Put simply, it allows the application to periodically checkpoint (a.k.a save) the work on
a stable storage. Thus, in case of failure, it is possible to rollback the state of the application
to the last checkpoint, and restart the execution from there, instead of recomputing everything
from scratch. There is an obvious trade-off between the amount of time one is willing to spend
on checkpoints, and the amount of time wasted in re-executions due to errors. One striking
result is the formula derived by Young and Daly for the optimal checkpointing period [36, 97]:

W ∗ =
√
2µpC , (2)

where C is the checkpoint cost and µp is the platform MTBF. This formula is simple and
intuitive, and applies to most divisible applications. This corresponds to most iterative kernels,
or applications that can be preempted at any time during their execution. However, it does
not work for workflow applications, whose tasks are atomic and cannot always be preempted
by a checkpoint. The goal is then to find which task to checkpoint, and which task to leave
uncheckpointed. For applications that can be represented as a chain of n atomic tasks, Toueg
and Babaoglu have proposed a polynomial dynamic programming algorithm whose complexity
is O(n3) [93]. In this thesis, we will extend these results in Part I and II, respectively.

Silent errors. This phenomenon is not so well understood, but has been recently identified
as one of the major challenges for Exascale [25, 74, 76, 89, 102]. There are several causes
of silent errors (a.k. a Silent Data Corruptions or SDCs), such as cosmic radiation and pack-
aging pollution, among others. Example of such errors include faults in the Arithmetic Logic
Unit (ALU) or bit-flips in the memory. In 2010, Jaguar, which was the most powerful super-
computer at the time [92], was logging errors at a rate of 350 per minute [58]. Even though
mechanisms exist to detect such errors at the hardware level, not all errors can be detected [25,
89, 90]. In contrast to a fail-stop error whose detection is immediate, a silent error is identi-
fied only when the corrupted data leads to an unusual application behavior. Such a detection
latency raises a new challenge: if the error struck before the last checkpoint, and is detected
after that checkpoint, then the checkpoint is corrupted and cannot be used for rollback. In
order to avoid corrupted checkpoints, an effective approach consists in employing some veri-
fication mechanism, and combining it with checkpointing [13, 30, 85]. We study such detec-
tors in Chapter 1. However, while many applications admit fast and accurate detectors such as
Algorithm-Based Fault Tolerance (ABFT) [16, 63, 87], thorough and general-purpose error de-
tection can be very costly, and often involves expensive techniques, such as replication [53] or
even triplication [72], which are further investigated in Chapter 7.

The rest of the thesis is organized as follows. In Part I, we focus on divisible applications.
We start with the study of verification mechanisms in Chapter 1, then we extend Young and
Daly’s result by combining both fail-stop and silent errors into periodic patterns in Chapter 2,
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and we further extend the analysis to multi-level checkpointing with fail-stop errors only in
Chapter 3. Part II is dedicated to workflow applications, and the approach is similar to that of
Part I. In Chapter 4, we build upon Toueg and Babaoglu’s original algorithm to take both types
of faults into account. Following these results, we propose several new optimal algorithms and
heuristics to tackle the problem of energy consumption in Chapter 5. Finally, we further extend
our analysis in Part III. In Chapter 6, we derive the optimal number of processors under different
scenarios, and we show the limits of the approach. At last, we use the same approach as in
Chapter 7, where we consider replication as a verification and correction mechanism for silent
errors. The goal is to identify the optimal replication level based on the number of processors
involved. The main contributions of each chapter are summarized below.

Part I

Chapter 1: Coping with recall and precision of soft error detectors. This chapter
extends and generalizes two of our previous works [C1, C4]. The main contribution of this
work is to characterize the optimal computing pattern for an application: which detector(s) to
use, how many detectors of each type to use, together with the length of the work segment that
precedes each of them. This work focuses on silent-errors only. We first prove that detectors
with imperfect precisions offer limited usefulness. Then we focus on detectors with perfect
precision, and we conduct a comprehensive complexity analysis of this optimization problem,
showing NP-completeness and designing an FPTAS (Fully Polynomial-Time Approximation
Scheme). On the practical side, we provide a greedy algorithm, whose performance is shown
to be close to the optimal for a realistic set of evaluation scenarios. Extensive simulations
illustrate the usefulness of detectors with false negatives, which are available at a lower cost
than the guaranteed detectors. The work in this chapter has been published in the Journal of
Parallel and Distributed Computing (JPDC) [J1].

Chapter 2: Optimal resilience patterns with fail-stop and silent errors. Based on
the results obtained in Chapter 1, as well as in a preliminary analysis [W4, J3], this chap-
ter presents a unified framework and optimal algorithmic solutions addressing both fail-stop
and silent errors. Silent errors are handled via verification mechanisms (either partially or
fully accurate) and fast in-memory checkpoints. Fail-stop errors are processed via slower disk
checkpoints. All verification and checkpoint types are combined into computational patterns.
We provide a unified model, and a full characterization of the optimal pattern. Our results
nicely extend several published solutions, and demonstrate how to make use of different tech-
niques to solve the double threat of fail-stop and silent errors. Extensive simulations based on
real data confirm the accuracy of the model, and show that patterns that combine all resilience
mechanisms are required to provide acceptable overheads. The work in this chapter has been
published in the proceedings of the International Parallel & Distributed Processing Symposium
(IPDPS) [C2].

Chapter 3: Towards optimal multi-level checkpointing with fail-stop errors. As
opposed to previous chapters, this work focuses on fail-stop errors only. The problem is sim-
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ilar to that of Chatpter 2, however dealing with more than two levels of checkpoint makes the
analysis much more challenging. We provide a framework to analyze multi-level checkpoint-
ing protocols, by formally defining a k-level checkpointing pattern. We provide a first-order
approximation to the optimal checkpointing period, and show that the corresponding overhead
is in the order of

∑k
`=1

√
2λ`C`, where λ` is the error rate at level `, and C` the checkpointing

cost at level `. This nicely extends the classical Young/Daly formula on single-level checkpoint-
ing. Furthermore, we are able to fully characterize the shape of the optimal pattern (number and
positions of checkpoints), and we provide a dynamic programming algorithm to determine
the optimal subset of levels to be used. Finally, we perform simulations to check the accu-
racy of the theoretical study and to confirm the optimality of the subset of levels returned by
the dynamic programming algorithm. The results nicely corroborate the theoretical study, and
demonstrate the usefulness of multi-level checkpointing with the optimal subset of levels. The
work in this chapter has been published in Transactions on computers (TC) [J2].

Part II

Chapter 4: Multi-level checkpointing and verification for linear workflows. This
chapter focuses on High Performance Computing (HPC) workflows whose dependency graph
forms a linear chain. This work extends and generalizes a preliminary analysis [J3], as well as a
more recent work [W5]. Similarly to Chapters 2 and 3, we extend single-level checkpointing in
two important directions. Our first contribution targets silent errors, and combines in-memory
checkpoints with both partial and guaranteed verifications. Our second contribution deals with
multi-level checkpointing for fail-stop errors. We present sophisticated dynamic programming
algorithms that return the optimal solution for each problem in polynomial time. We also show
how to combine all these techniques and solve the general problem with both fail-stop and silent
errors. Simulation results demonstrate that these extensions lead to significantly improved
performance compared to the standard single-level checkpointing algorithm. The work in this
chapter has been published in Journal of computational science (JoCS) [J4].

Chapter 5: Voltage overscaling algorithms for energy-efficient workflow compu-
tations. In this chapter, we discuss several scheduling algorithms to execute tasks with volt-
age overscaling. Given a frequency to execute the tasks, operating at a voltage below threshold
leads to significant energy savings but also induces timing errors. A verification mechanism
must be enforced to detect these errors. As opposed to fail-stop or silent errors, timing errors
are deterministic (but unpredictable). For each task, the general strategy is to select a voltage
for execution, to check the result, and to select a higher voltage for re-execution if a timing er-
ror has occurred, and so on until a correct result is obtained. Switching from one voltage to
another incurs a given cost, so it might be efficient to try and execute several tasks at the cur-
rent voltage before switching to another one. In a preliminary version of this work, we have
proposed an optimal polynomial dynamic programming algorithm to solve this problem for a
linear chain of tasks [W6]. Determining the optimal solution for independent tasks turns out
to be unexpectedly difficult. However, we provide the optimal algorithm for a single task, the
optimal algorithm when there are only two voltages, and the optimal level algorithm for a set



CONTENTS xi

of independent tasks, where a level algorithm is defined as an algorithm that executes all re-
maining tasks when switching to a given voltage. Furthermore, we show that the optimal level
algorithm is in fact globally optimal (among all possible algorithms) when voltage switching
costs are linear. Finally, we report a comprehensive set of simulations to assess the potential
gain of voltage overscaling algorithms. This work has been published in the proceedings of the
Pacific Rim International Symposium on Dependable Computing (PRDC) [C5].

Part III

Chapter 6: When Amdahl meets Young/Daly. This chapter investigates the optimal
number of processors to execute a parallel job, whose speedup profile obeys Amdahl’s law,
on a large-scale platform subject to fail-stop and silent errors. Without errors, although the
speedup is bounded, there is no optimal number of processors: using extra processors will
always, even so slightly, benefit the performance. With errors however, adding of processors
has the effect of decreasing the platform MTBF (see Equation (1)). We combine the traditional
checkpointing and rollback recovery strategies with verification mechanisms to cope with both
error sources. We provide an exact formula to express the execution overhead incurred by
a periodic checkpointing pattern of length T and with P processors, and we give first-order
approximations for the optimal values T ∗ and P ∗ as a function of the individual processor
failure rate λind. A striking result is that P ∗ is of the order λ

−1/4
ind if the checkpointing cost

grows linearly with the number of processors, and of the order λ−1/3
ind if the checkpointing cost

stays bounded for any P . We conduct an extensive set of simulations to support the theoretical
study. The results confirm the accuracy of first-order approximation under a wide range of
parameter settings. This work has been published in the proceedings of Cluster [C3].

Chapter 7: Identifying the right replication level for detecting and correcting
silent errors. This chapter provides a model and an analytical study of replication as a
technique to detect and correct silent errors. Although other detection techniques exist for
HPC applications, based on algorithms (ABFT), invariant preservation or data analytics, repli-
cation remains the most transparent and least intrusive technique. We explore the right level
(duplication, triplication or more) of replication needed to efficiently detect and correct silent
errors. Replication is combined with checkpointing and comes with two flavors: process repli-
cation and group replication. Process replication applies to message-passing applications with
communicating processes. Each process is replicated, and the platform is composed of process
pairs, or triplets. Group replication applies to black-box applications, whose parallel execution
is replicated several times. The platform is partitioned into two halves (or three thirds). In both
scenarios, results are compared before each checkpoint, which is taken only when both results
(duplication) or two out of three results (triplication) coincide. If not, one or more silent errors
have been detected, and the application rolls back to the last checkpoint. We provide a detailed
analytical study of both scenarios, with formulas to decide, for each scenario, the optimal pa-
rameters as a function of the error rate, checkpoint cost, and platform size. We also report a
set of extensive simulation results that corroborates the analytical model. This work has been
accepted to the Fault Tolerance for HPC at eXtreme Scale (FTXS’2017) workshop [W1].
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During this thesis, we have addressed a few other problems, and obtained results that are
not included in this manuscript. First, this is the case of the work with A. Chien and A. Fang
(University of Chicago) on the Global View Resilience (GVR) project, for which a paper has
been recently acepted to the International Conference on Parallel Processing (ICPP). In this
work, we deal with stencil applications and analyze how to limit the scope of re-computations
in the recovery phase. We have also published a paper in the proceedings of the International
Workshop on Power-aware Algorithms, Systems, and Architectures (PASA) [W3]. In this work,
we have considered different re-execution speeds: one for the first execution, and another for
the re-execution(s) in case of error. We have shown that this approach can help decreasing
the overall energy consumption of an application. More recently, we have also derived the
optimal checkpointing period for an application replicated on two heterogeneous platforms.
This work has been accepted to the Fault Tolerance for HPC at eXtreme Scale (FTXS’2017)
workshop [W2]. Finally, part of our work on silent errors and verifications has been compiled
into a book chapter published in Emergent Computation [P1].



Introduction

C’est une chose de calculer un résultat rapidement, mais c’en est une autre d’obtenir une
réponse correcte. La fiabilité d’un système est directement proportionnelle au nombre de
ses composants, et la conception d’ordinateur fiables est un problème qui remonte à la con-
ception de la Machine Analytique de Babbage elle-même en 1837 [20]. Les erreurs fréquentes
étaient communes dans les premiers ordinateurs : en 1930, les mécaniques de l’ordinateur Zuse
restaient souvent coincées ou produisaient des résultats erronés [84]. Les pannes n’étaient pas
rares non plus : en 1950, ENIAC (Electronic Numerical Integrator And Computer), un ordina-
teur électronique à usage général, devait remplacer l’un de ses 17568 tubes cathodiques tous
les deux jours en moyenne [81]. En fait, la résilience, c’est à dire la capacité à récupérer rapi-
dement d’erreurs ou de pannes, a toujours été un aspect critique de l’informatique.

L’amélioration des techniques de fabrication a permis d’obtenir des composants à la fois
plus petits et plus fiables. Cependant, comme le nombre d’unités de calculs ne cesse d’aug-
menter, le problème persiste : Titan, l’un des super-ordinateurs les plus puissants en 2017 [92],
est victime d’une panne tous les jours en moyenne [73]. Pendant ce temps, les simulations peu-
vent mettre des jours ou des semaines avant de terminer [71], et être capable de garantir la ter-
minaison et l’exactitude des calculs est crucial pour la communauté scientifique. Pourtant, les
agences nationales tout autour du monde sont engagées dans un effort de recherche important
avec pour objectif de construire le premier ordinateur Exascale [41, 71], un système capable
d’effectuer un milliard de milliard de calculs par seconde. En comparaison avec les systèmes
actuels, cela représente non seulement une très forte augmentation en terme de puissance de cal-
cul, mais aussi en terme de nombre d’unités de calculs. Par conséquent, le temps moyen entre
deux fautes, ou Mean Time Between Failure (MTBF) devrait diminuer considérablement [24,
25, 89].

En février 2014, l’ASCAC (Advanced Scientific Computing Advisory Committee) sous-
comité a identifié la résilience comme l’un des dix défis pour la recherche Exascale. Le prob-
lème est défini comme suit : garantir l’exactitude des calculs face aux erreurs, la reproductibil-
ité, et les algorithmes de vérifications [71].

Cette thèse adresse plusieurs de ces problèmes. Nous commençons par clarifier la définition
d’erreurs2, puisque nous considérons deux types d’erreurs, les erreurs de type panne (fail-stop),
et les erreurs silencieuses (silent errors).

Pannes. Ce phénomène est bien compris. Même si chaque ressource est fiable individu-
ellement, en agréger trop conduit à des erreurs fréquentes globalement. Par exemple, si le

2Dans le reste de cette thèse, nous utilisons les termesfault, failure et error indifféremment.

xiii
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MTBF de chaque ressource est de 10 ans (un nombre optimiste pour un processeur), alors le
MTBF d’une plateforme comptant un million de cette ressource est de cinq minutes seulement.
Plus précisément, il y a une corrélation linéaire entre le MTBF du système µp, le nombre de
ressources p et leur MTBF individuel µind [62, Proposition 1.2]:

µp =
µind

p
. (1)

L’approche standard pour faire face aux pannes est l’utilisation de points de sauvegardes, aussi
appelés checkpoints, retours en arrière et récupération [28, 46]. Plus simplement, cela permet
à l’application de sauvegarder périodiquement le travail sur un support stable. Ainsi, en cas
de panne, il est possible de revenir au dernier checkpoint, et de redémarrer l’application à
partir de là, au lieu de tout recalculer depuis de le début. Il y a un compromis évident entre
le temps qu’on est prêt à passer à faire des checkpoints, et le temps perdu en ré-exécutions à
cause d’erreurs. Un résultat frappant est la formule dérivée par Young et Daly pour la période
optimale de checkpoint [36, 97] :

W ∗ =
√
2µpC , (2)

où C est le coût de la sauvegarde et µp est le MTBF de la plateforme. Cette formule est
simple et intuitive, et s’applique à la plupart des applications divisibles. Cela correspond à
la plupart des noyaux itératifs ou aux applications pouvant être préemptées par un checkpoint
pendant leur exécution. Cependant, cela ne fonctionne par pour les applications type flux de
travail, dont les tâches ne peuvent pas être préemptées. L’objectif est alors de trouver quelles
tâches sauvegarder, et quelles tâches ne pas sauvegarder. Pour les applications qui peuvent être
représentées comme une chaîne de n tâches, Toueg et Babaoglu ont proposé un algorithme à
base de programmation dynamique dont la complexité est O(n3) [93]. Dans cette thèse, nous
étendons ces résultats dans la Partie I et II, respectivement.

Erreurs silencieuses. Ce phénomène n’est pas aussi bien compris, mais a été récemment
identifié comme l’un des défis majeur pour l’Exascale [25, 74, 76, 89, 102]. Il y a plusieurs
sources d’erreurs silencieuses (ou Silent Data Corruptions ou SDCs), comme les radiations
cosmiques ou la pollution du au conditionnement, entre autres. Des exemples d’erreurs silen-
cieuses incluent les erreurs dans l’Unité Arithmétique et Logique (UAL) ou des changements
de bits dans la mémoire. En 2010, Jaguar, qui étaient l’un des plus puissant super-ordinateur
à ce moment [92], enregistrait des erreurs au rythme de 350 par minute [58]. Même si des
mécanismes existes pour détecter de telles erreurs au niveau du matériel, toutes les erreurs ne
peuvent pas être détectées [25, 89, 90]. Contrairement aux pannes, dont la détection est im-
médiate, une erreur silencieuse n’est identifiée que lorsque les données corrompues conduisent
l’application à se comporter étrangement. Une telle latence de détection soulève un nouveau
défi : si une erreur a frappée avant le dernier checkpoint, et n’est détectée qu’après, alors le
checkpoint est corrompu et ne peut plus être utilisé pour redémarrer l’application. Afin d’éviter
les checkpoints corrompus, une approche efficace consiste à utiliser des mécanismes de vérifi-
cations, et à les combiner avec les checkpoints [13, 30, 85]. Nous étudions de tels détecteurs
dans le Chapitre 1. Cependant, alors que beaucoup d’applications admettent des vérifications
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rapides et précises tel que la technique Algorithm-Based Fault Tolerance (ABFT) [16, 63, 87],
une détection exhaustive et générale implique souvent des techniques très couteuses, comme la
duplication [53], ou même la triplication [72], qui sont étudiés plus en détails dans le Chapitre 7.

Le reste de la thèse est organisé comme suit. Dans la Partie I, nous nous concentrons sur les
applications divisibles. Nous commençons avec l’étude des mécanismes de vérifications dans
le Chapitre 1, ensuite nous étendons le résultat des Young et Daly en combinant à la fois les
pannes et les erreurs silencieuses dans des schémas de résilience périodique dans le Chapitre 2,
et nous étendons cette analyse aux checkpoints multi-niveaux avec pannes seulement dans le
Chapitre 3. La Partie II est dédiée aux applications type flux de travail, et suit une approche
similaire à celle de la Partie I Dans le Chapitre 4, nous étendons l’algorithme original de Toueg
et Babaoglu, puis nous proposons plusieurs nouveaux algorithmes et heuristiques en abordant le
problème de la consommation d’énergie dans le Chapitre 5. Finalement, nous poussons un peu
plus loin notre analyse dans la Partie III. Dans le Chapitre 6, nous dérivons le nombre optimal
de processeurs pour différents scénarios, et nous montrons les limites de l’approche. Enfin,
nous utilisons la même approche dans le Chapitre 7, où nous considérons la réplication comme
un outils de vérification et de correction pour les erreurs silencieuses. L’objectif est alors de
déterminer le niveau de réplication optimal basé sur le nombre de processeurs impliqués. Les
contributions principales de chaque chapitre sont résumés ci-dessous.

Partie I

Chapitre 1 : Comment faire face au rappel et la précision des détecteurs derreurs
silencieuses. Ce chapitre étends et généralise deux de nos travaux précédents [C1, C4]. La
contribution principale de ce travail est de caractériser le schéma de calcul optimal pour une
application : combien de détecteurs de chaque type utiliser, ainsi que la longueur du segment
de travail qui les précède. Nous prouvons que les détecteurs avec une précision non parfaite sont
dune utilité limitée. Ainsi, nous nous concentrons sur des détecteurs avec une précision parfaite
et nous menons une analyse de complexité exhaustive de ce problème doptimisation, montrant
sa NP-complétude et concevant un schéma FPTAS (Fully Polynomial Time Approximation
Scheme). Sur le plan pratique, nous fournissons un algorithme glouton dont la performance est
montrée comme étant proche de loptimal pour un ensemble réaliste de scénarios dévaluation.
De nombreuses simulations démontrent lutilité de détecteurs avec des résultats faux-négatifs
(i.e., des erreurs non détectées), qui sont disponibles à un coût bien moindre que les détecteurs
parfaits. Le travail dans ce chapitre a été publié dans le Journal of Parallel and Distributed
Computing (JPDC) [J1].

Chapitre 2 : Schémas de résilience optimaux pour faire face aux pannes aux er-
reurs silencieuses. A partir des résultats obtenus dans le Chapitre 1, ainsi qu’une analyse
préliminaire [W4, J3], ce chapitre présente un cadre de travail unifié et des solutions algo-
rithmiques optimales pour les pannes et les erreurs silencieuses. Les erreurs silencieuses sont
traitées grâce à des mécanismes de vérification (partiellement ou complètement précis) et des
checkpoints en mémoire. Des checkpoints sur disques protègent des erreurs fatales. Tous les
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types de vérification et checkpoints sont combinés dans un schéma de calcul. Nous donnons
un modèle et une caractérisation complète du schéma optimal. Nos résultats étendent de nom-
breuses solutions déjà publiées, et montrent comment utiliser différentes techniques pour faire
face à la double menace des fautes fatales et silencieuses. Des simulations complètes, basées
sur des données réelles, confirment la précision du modèle, et montrent que les schémas com-
binant tous les mécanismes de résilience sont nécessaires pour obtenir des surcoûts acceptables.
Le travail dans ce chapitre a été publié dans les proceedings of the International Parallel &
Distributed Processing Symposium (IPDPS) [C2].

Chapitre 3 : Vers l’optimalité des checkpoints multi-niveaux avec pannes. Con-
trairement aux chapitres précédents, ce travail se concentre sur les erreurs de type panne (fail-
stop) seulement. Le problème est similaire à celui du Chapitre 2, cependant utiliser plusieurs
niveaux de checkpoints rend l’analyse beaucoup plus compliquée. Nous caractérisons le schéma
optimal, i.e., celui dont le surcoût par unité de calcul est minimal. On montre que ce sur-
coût minimal est de l’ordre de

∑k
`=1

√
2`C`, où ` est le taux d’erreur au niveau `, et C` le coût

du point de sauvegarde au niveau `. Cette formule étend la célèbre formule de Young et Daly
pour un seul niveau. On propose également un algorithme de programmation dynamique pour
déterminer le meilleur sous-ensemble de niveaux à utiliser pour minimiser le surcoût global.
Enfin, nous conduisons des simulations pour vérifier l’étude théorique, et confirmer l’optimal-
ité du sous-ensemble déterminé par l’algorithme de programmation dynamique. Les résultats
corroborent bien l’étude théorique, et montrent toute l’utilité d’une approche multi-niveaux
basée sur le sous-ensemble de niveaux optimal. Le travail dans ce chapitre a été publié dans
Transactions on computers (TC) [J2].

Partie II

Chapitre 4 : Checkpoint multi-niveaux et détection des erreurs silencieuses pour
des graphes de tâches linéaires. Ce chapitre se concentre sur des flux de travail, aussi
appelés workflows, dont le graphe de dépendance est une chaîne, pour le calcul haute perfor-
mance. Ce travail étend et généralise une une analyse préliminaire [J3], ainsi qu’un travail plus
récent [W5]. Comme pour les Chapitres 2 et 3,nous étendons l’analyse pour les checkpoint
à un niveau dans deux directions importantes. Notre première contribution concerne les er-
reurs silencieuses, et nous combinons les checkpoints avec à la fois des vérifications partielles
et garanties. Notre seconde contribution concerne les checkpoints multi-niveaux pour les er-
reurs de type pannes. Nous présentons un algorithme à base de programmation dynamique so-
phistiqué qui retourne la solution optimale pour chaque problème en temps polynomial. Nous
montrons comment combiner toutes ces techniques pour des applications HPC dont le graphe
de dépendances est une chaîne de tâches, et nous donnons plusieurs algorithmes de program-
mation dynamique qui renvoient la solution optimale en temps polynomial. Des simulations
démontrent que lutilisation combinée de checkpoint multi-niveaux et de vérifications améliore
la performance. Le travail ans ce chapitre a été publié dans Journal of computational science
(JoCS) [J4].



CONTENTS xvii

Chapitre 5 : Ordonnancement de tâches indépendantes avec réduction dras-
tique du voltage. Dans ce chapitre, nous présentons plusieurs algorithmes dordonnance-
ment pour exécuter des tâches indépendantes avec réduction drastique du voltage. Etant donnée
une fréquence pour exécuter les tâches, opérer à un voltage en dessous du seuil limite entraîne
des économies dénergie significatives, mais induit également des erreurs de synchronisation.
Un mécanisme de vérification doit être utilisé pour détecter ces erreurs. Contrairement aux
pannes ou aux erreurs silencieuses, les erreurs de synchronisation sont déterministes (mais im-
prévisibles). Pour chaque tâche, la stratégie générale consiste à sélectionner un voltage pour
lexécution, à vérifier le résultat, à sélectionner un voltage plus élevé pour ré-exécution si une
erreur de synchronisation a eu lieu, et ainsi de suite jusquà ce quun résultat correct soit obtenu.
Passer dun voltage à un autre a un coût donné, de sorte quil pourrait être efficace dexécuter
plusieurs tâches au voltage courant avant den changer. Déterminer la solution optimale se
révèle étonnamment difficile. Cependant, nous fournissons lalgorithme optimal pour une seule
tâche, lalgorithme optimal lorsquil ny a que deux voltages, et lalgorithme à niveaux optimal
pour plusieurs tâches, où un algorithme à niveaux est défini comme étant un algorithme qui
exécute toutes les tâches restantes lors du passage à un voltage donné. En outre, nous montrons
que lalgorithme à niveaux optimal est en fait globalement optimal (parmi tous les algorithmes
possibles) lorsque les coûts de changement de voltage sont linéaires. Enfin, nous présentons un
ensemble exhaustif de simulations afin dévaluer le gain potentiel de chacun de nos algorithmes.
Ce travail a été publié dans les proceedings of the Pacific Rim International Symposium on
Dependable Computing (PRDC) [C5].

Partie III

Chapitre 6 : Quand Amdahl rencontre Young et Daly. Ce chapitre étudie le nombre
optimal de processeurs pour exécuter un travail parallèle dont le profil d’accélération obéit
à la loi d’Amdahl, sur une plateforme à grande échelle exposée aux pannes et aux erreurs
silencieuses. Nous combinons l’approche traditionnelle de checkpointing/recovery avec des
mécanismes de vérification pour faire face aux deux types d’erreurs. Nous fournissons une
formule exacte pour mesurer le surcoût du temps d’exécution induit par un motif de checkpoint
périodique de longueur T et avec P processeurs, et nous donnons une approximation au premier
ordre des valeurs optimales de T ∗ et P ∗ en fonction du taux d’erreur individuel d’un processeur
. Un résultat frappant est que P ∗ est de l’ordre de −1/4 quand le coût de checkpoint croît
linéairement avec le nombre de processeurs, et de l’ordre de −1/3 quand le coût de checkpoint
reste borné par P . Nous menons une large campagne de simulations pour appuyer l’étude
théorique. Les résultats confirmes la précision de l’approximation au premier ordre pour une
large gamme de paramètres. Ce travail a été publié dans les proceedings of Cluster [C3].

Chapitre 7 : Quel est le bon niveau de réplication pour détecter et corriger les
erreurs silencieuses?. Ce chapitre propose un modèle et une étude analytique de la répli-
cation en tant que technique pour détecter et corriger les erreurs silencieuses. Bien que d’autres
techniques existent pour les applications HPC, basées sur des algorithmes (ABFT), préserva-
tion d’invariant, ou analyse de données, la réplication reste la technique la plus transparente
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et la moins intrusive. Nous explorons le bon niveau (duplication, triplication ou plus) de ré-
plication nécessaire pour détecter et corriger les erreurs silencieuses de manière efficace. La
réplication est combinée avec des checkpoints et se présente sous deux formes : réplication de
processus et réplication de groupes. La réplication de processus s’applique aux applications
à passage de messages avec des processus communicants. Chaque processus est répliqué, et
la plate-forme est composée de paires, ou triplets de processus. La réplication de groupe s’ap-
plique à des applications type boîte noire, dont l’exécution parallèle est répliquée plusieurs fois.
La plate-forme est alors partitionnée en deux moitiés (ou trois tiers). Dans les deux scénar-
ios, les résultats sont comparés avant chaque checkpoint, qui est effectué seulement lorsque les
deux résultats (duplication) ou deux sur trois (triplication) coïncident. Sinon, une ou plusieurs
erreurs silencieuses ont été détectées, et l’application redémarre depuis le dernier checkpoint.
Nous proposons une étude analytique détaillée des deux scénarios ainsi que les paramètres
optimaux fonction du taux d’erreur, du coût du checkpoint, et de la taille de la plate-forme.
Nous donnons également les résultats d’un ensemble de simulations qui viennent corroborer
le modèle analytique. Ce travail a été accepté au Fault Tolerance for HPC at eXtreme Scale
(FTXS’2017) workshop [W1].

Durant cette thèse, nous avons adressé également adressé d’autres problèmes qui ne sont
pas inclues dans ce manuscrit. Tout d’abord, c’est ke cas du travail réalisé avec A. Chien
et A. Fang (Université de Chicago) sur le projet Global View Resilience (GVR), pour lequel
un papier a récemment été accepté à International Conference on Parallel Processing (ICPP).
Dans ce travail, nous considérons des applications de type stencil et nous analysons comment
limiter le nombre d’opérations à recalculer en cas d’erreur durant le phase de récupération.
Nous avons également publié un papier dans les proceedings of the International Workshop
on Power-aware Algorithms, Systems, and Architectures (PASA) [W3]. Dans ce travail, nous
avons considéré différentes vitesses de ré-exécution : une pour la première exécution, et une
autre pour les ré-exécution en cas d’erreurs. Nous avons montré que cette approche aide
à réduire la consommation d’énergie globale de l’application. Plus récemment, nous avons
également dérivé la période optimale de checkpoint pour une application répliquée sur deux
machines hétérogènes. Ce travail a été accepté au Fault Tolerance for HPC at eXtreme Scale
(FTXS’2017) workshop [W2]. Enfin, une partie de notre travail sur les erreurs silencieuse et
les vérifications a été publié dans un chapitre de livre dans Emergent Computation [P1].



Part I

Resilience Patterns

1





Chapter 1

Coping with Recall and Precision of Soft
Error Detectors

This chapter extends and generalizes two of our previous works [C1, C4]. The main contri-
bution of this work is to characterize the optimal computing pattern for an application: which
detector(s) to use, how many detectors of each type to use, together with the length of the work
segment that precedes each of them. This work focuses on silent-errors only. We first prove
that detectors with imperfect precisions offer limited usefulness. Then we focus on detectors
with perfect precision, and we conduct a comprehensive complexity analysis of this optimiza-
tion problem, showing NP-completeness and designing an FPTAS (Fully Polynomial-Time
Approximation Scheme). On the practical side, we provide a greedy algorithm, whose perfor-
mance is shown to be close to the optimal for a realistic set of evaluation scenarios. Extensive
simulations illustrate the usefulness of detectors with false negatives, which are available at a
lower cost than the guaranteed detectors. The work in this chapter has been published in the
Journal of Parallel and Distributed Computing (JPDC) [J1].

1.1 Introduction

In order to avoid corrupted checkpoints, an effective approach consists in employing some
verification mechanism and combining it with checkpointing [3, 13, 30, 85]. This verification
mechanism can be general-purpose (e.g., based on replication [53] or even triplication [72])
or application-specific (e.g., based on Algorithm-based fault tolerance (ABFT) [16, 63, 87],
on approximate re-execution for ODE and PDE solvers [14], or on orthogonality checks for
Krylov-based sparse solvers [30, 85]).

The simplest protocol with this approach would be to execute a verification procedure be-
fore taking each checkpoint. If the verification succeeds, then one can safely store the check-
point. Otherwise, it means that an error has struck since the last checkpoint, which was duly
verified, and one can safely recover from that checkpoint to resume the execution of the appli-
cation. Of course, more sophisticated protocols can be designed, by coupling multiple verifica-
tions with one checkpoint, or interleaving multiple checkpoints and verifications [3, 13]. The
optimal parameter (e.g., number of verifications per checkpoint) in these protocols would be

3
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V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Timew1 w2 w3 w1 w2 w3

Figure 1.1: A periodic pattern (highlighted in red) with three segments, two partial verifications
and a verified checkpoint.

determined by the relative cost of executing a verification.
In practice, not all verification mechanisms are 100% accurate and at the same time admit

fast implementations. In fact, guaranteeing accurate and efficient detection of silent errors for
scientific applications is one of the hardest challenges towards extreme-scale computing [24,
25]. Indeed, thorough and general-purpose error detection is usually very costly, and often in-
volves expensive techniques, such as replication [53] or even triplication [72], which are further
investigated in Chapter 7. Many applications have developed specific verification mechanisms
that leverage detailed knowledge of the physics behind the simulation to determine whether
the output of a simulation is corruption-free or not. While such application-specific mecha-
nisms do not detect the totality of SDC affecting the hardware, they can guarantee to detect all
the corruptions relevant for the end user, thus they can be called arguably perfect detectors or
guaranteed verifications, at least from the user’s perspective. For many parallel applications,
alternative techniques exist that are capable of detecting silent errors but with lower accuracy.
We call these techniques partial verifications. One example is the lightweight SDC detector
based on data dynamic monitoring [9], designed to recognize anomalies in HPC datasets based
on physical laws and spatial interpolation. Similar fault filters have also been designed to detect
silent errors based on time series predictions [15]. Although not completely accurate, these par-
tial verification techniques nevertheless cover a substantial number of silent errors, and more
importantly, they incur very low overheads. These properties make them attractive candidates
for designing more efficient resilient protocols.

Since checkpointing is often expensive in terms of both time and space required, to avoid
saving corrupted data, we only keep verified checkpoints by placing a guaranteed verification
right before each checkpoint. Such a combination ensures that the checkpoint contains valid
data and can be safely written onto stable storage. The execution of the application is par-
titioned into periodic patterns, i.e., computational chunks that repeat over time, and that are
delimited by verified checkpoints, possibly with a sequence of partial verifications in between.
Figure 1.1 shows a periodic pattern with two partial verifications followed by a verified check-
point.

The error detection accuracy of a partial verification can be characterized by two parame-
ters: recall and precision. The recall, denoted by r, is the ratio between the number of detected
errors and the total number of errors that occurred during a computation. The precision, de-
noted by p, is the ratio between the number of true errors and the total number of errors de-
tected by the verification. For example, a basic spatial based SDC detector [9] has been shown
to have a recall value around 0.5 and a precision value very close to 1, which means that it is
capable of detecting half of the errors with almost no false alarm. A guaranteed verification
can be considered as a special type of partial verification with recall r∗ = 1 and precision
p∗ = 1. Each partial verification also has an associated cost V , which is typically much smaller
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than the cost V ∗ of a guaranteed verification. Note that precision and recall are conflicting ob-
jectives as they both are directly related to the allowed prediction error of the detector. If the
prediction error is too small, then small changes in data behavior will produce false positives.
On the other hand, if the allowed prediction error is too large, important corruption could be
absorbed in the error corrupting the execution. Thus, one usually sets a target for one of them
(e.g., precision = 0.999) and then measures the recall obtained with such a level of precision.
Therefore, although it is hard to know in advance the precision and recall of a given detector
for a particular application, it is possible to set a target for either one, and then quickly measure
the complementary parameter.

An application can use several types of detectors with different overheads and accuracies.
For instance, to detect silent errors in HPC datasets, one has the option of using either a detector
based on time series prediction [15], or a detector using spatial multivariate interpolation [9].
The first one needs more data to make a prediction, hence comes at a higher cost. However, its
accuracy is also better. In the example of Figure 1.1, the second verification may use a detector
whose cost is lower than that of the first one, i.e., V2 < V1, but is expected to have a lower
accuracy as well, i.e., r2 < r1 and/or p2 < p1. This is due to the fact that less accurate detectors
perform a much simpler approximation, leading to more prediction errors.

In this chapter, we assume that we have several detector types, whose costs and accuracies
may differ. At the end of each segment inside the pattern, any detector can be used. The only
constraint is to enforce a guaranteed verification after the last segment. Given the values of
C (cost to checkpoint) and V ∗ (cost of guaranteed verification), as well as the cost V (j), re-
call r(j) and precision p(j) of each detector type D(j), the main question is which detector(s)
to use? Note that we do not assume that all detectors perform equally on all applications, nor
that their efficiency can be easily predicted for each type of application. The only requirement
is that the accuracy and cost of those detectors can be measured in a relatively easy way. The
objective is to find the optimal pattern that minimizes the expected execution time of the ap-
plication. Intuitively, including more partial verifications in a pattern allows us to detect more
errors earlier in the execution, thereby reducing the waste due to re-execution; but that comes
at the price of additional overhead in an error-free execution, and in case of bad precision, of
unnecessary rollbacks and recoveries. Therefore, an optimal strategy must seek a good tradeoff
between error-induced waste and error-free overhead. The problem is intrinsically combina-
torial, because there are many parameters to choose: the length of the pattern, the number of
partial verifications, and the type and location of each partial verification within the pattern. Of
course, the length of an optimal pattern will also depend on the platform MTBF µ.

When there is a single segment in the pattern without intermediate verification, the only
thing to determine is the size of the segment. In the classical protocol for fail-stop errors
(where verification is not needed), the optimal checkpointing period is known to be

√
2µC

(where C is the checkpoint time), as given by Young [97] and Daly [36]. This formula provide
first-order approximation to the length of the optimal pattern in the corresponding scenario, and
is valid only if C � µ. While most applications accept several detector types, there has been
no attempt to determine which and how many of these detectors should be used. This work is
the first to investigate the use of different types of partial detectors while taking both recall and
precision into consideration.

As in those previous works, we apply first-order approximation to tackle the optimization
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problem. We first show that a partial detector with imperfect precision plays a limited role in
the optimization of a pattern. Then we focus on detectors with perfect precision but imperfect
recall, and we prove that the optimization problem is NP-complete. In this case, a detector
is most useful when it offers the highest accuracy-to-cost ratio, defined as φ(j) = a(j)

b(j)
, where

a(j) = r(j)

2−r(j)
denotes the accuracy of the detector and b(j) = V (j)

V ∗+C
the relative cost. Finally,

we propose a greedy algorithm and a fully polynomial-time approximation scheme (FPTAS)
to solve the problem. Simulation results, based on a wide range of parameters from realistic
detectors, corroborate the theoretical study by showing that the detector with the best accuracy-
to-cost ratio should be favored. In some particular cases with close accuracy-to-cost ratios, an
optimal pattern may use multiple detector types, but the greedy algorithm has been shown to
work really well in these scenarios.

The rest of this chapter is organized as follows. Section 1.2 surveys the related work. Sec-
tion 1.3 introduces the model, notations and assumptions. Section 1.4 computes the expected
execution time of a given pattern, based on which we derive some key properties of the optimal
pattern in Section 1.5. Section 1.6 provides a comprehensive complexity analysis. While the
optimization problem is shown to be NP-complete, a simple greedy algorithm is presented, and
a fully polynomial-time approximation scheme is described. Simulation results are presented
in Section 1.7. Finally, Section 1.8 provides concluding remarks.

1.2 Related work

Considerable efforts have been directed at detection techniques to reveal silent errors. Hardware
mechanisms, such as ECC memory, can detect and even correct a fraction of errors. Unfor-
tunately, future extreme scale systems are expected to observe an important increase in soft
errors, aggravated by power constraints at increased system size. Most traditional resilient
approaches maintain a single checkpoint. If the checkpoint file contains corrupted data, the
application faces an irrecoverable failure and must restart from scratch. This is because er-
ror detection latency is ignored in traditional rollback and recovery schemes, which assume
instantaneous error detection (therefore mainly targeting fail-stop errors) and are unable to ac-
commodate SDC. This section describes some related work on detecting and handling silent
errors.

1.2.1 Checkpoint versioning

One approach to dealing with silent errors is by maintaining several checkpoints in mem-
ory [70]. This multiple-checkpoint approach, however, has three major drawbacks. First, it
is very demanding in terms of stable storage: each checkpoint typically represents a copy of
a large portion of the memory footprint of the application, which may well correspond to tens
or even hundreds of terabytes. Second, the application cannot be recovered from fatal fail-
ures: suppose we keep k checkpoints in memory, and a silent error has struck before all of
them. Then, all live checkpoints are corrupted, and one would have to re-execute the entire
application from scratch. Third, even without memory constraints, we have to determine which
checkpoint is the last valid one, which is needed to safely recover the application. However,
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due to the detection latency, we do not know when the silent error has occurred, hence we can-
not identify the last valid checkpoint.

1.2.2 Process replication

There are few methods that can guarantee a perfect detection recall. Process replication is
one of them. The simplest technique is triple modular redundancy and voting [72]. Elliot et
al. [45] propose combining partial redundancy and checkpointing, and confirm the benefit of
dual and triple redundancy. Fiala et al. [53] apply process replication (each process is equipped
with a replica, and messages are quadruplicated) in the RedMPI library for high-performance
scientific applications. Ni et al. [75] use checkpointing and replication to detect and enable fast
recovery of applications from both silent errors and hard errors. Chapter 7 considers replication
as a detection and correction mechanism. However, full process replication is generally too
expensive to be used in extreme scale HPC systems and is usually avoided for this reason.

1.2.3 Application-specific techniques

Application-specific information can be very useful to enable ad-hoc solutions, which dramat-
ically decrease the cost of detection. Algorithm-based fault tolerance (ABFT) [16, 63, 87] is
a well-known technique, which uses checksums to detect up to a certain number of errors in
linear algebra kernels. Unfortunately, ABFT can only protect datasets in linear algebra ker-
nels, and it must be implemented for each different kernel, which incurs a large amount of
work for large HPC applications. Other techniques have also been advocated. Benson, Schmit
and Schreiber [14] compare the result of a higher-order scheme with that of a lower-order one
to detect errors in the numerical analysis of ODEs and PDEs. Sao and Vuduc [85] investigate
self-stabilizing corrections after error detection in the conjugate gradient method. Bridges et
al. [19] propose linear solvers to tolerant soft faults using selective reliability. Elliot et al. [44]
design a fault-tolerant GMRES capable of converging despite silent errors. Bronevetsky and de
Supinski [21] provide a comparative study of detection costs for iterative methods.

1.2.4 Analytics-based corruption detection

Recently, several SDC detectors based on data analytics have been proposed, showing promis-
ing results. These detectors use several interpolation techniques such as time series predic-
tion [15] and spatial multivariate interpolation [8, 9, 11]. Such techniques have the benefit of
offering large detection coverage for a negligible overhead. However, these detectors do not
guarantee full coverage; they can detect only a certain percentage of corruptions (i.e., partial
verification with an imperfect recall). Nonetheless, the accuracy-to-cost ratios of these detec-
tors are high, which makes them interesting alternatives at large scale. Similar detectors have
also been designed to detect SDCs in the temperature data of the Orbital Thermal Imaging
Spectrometer (OTIS) [31]. Most of the research work done in this domain focuses on how
to increase the error detection accuracy while keeping low overhead, but there has been no
theoretical attempt to find the optimal protocol the applications should use when multiple veri-
fication techniques are offered by the runtime.
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1.2.5 Optimal strategies with guaranteed verifications

Theoretically, various protocols that couple verification and checkpointing have been studied.
Aupy et al. [3] propose and analyze two simple patterns: one with k checkpoints and one
verification, and the other with k verifications and one checkpoint, which needs to maintain
only one checkpoint. Benoit et al. [13] extend the analysis of [3] by including p checkpoints
and q verifications that are interleaved to form arbitrary patterns. All of these results assume
the use of guaranteed verifications only.

The only analysis that includes partial verifications in the pattern is the preliminary versions
of this work [C1, C4]. However, [C4] restricts to a single type of partial verification, and both
[C4] and [C1] focuses on verifications with perfect precision. In this chapter, we provide the
first theoretical analysis that includes partial verifications of different types, and that considers
verifications with imperfect precision.

1.3 Model

We consider divisible-load applications, where checkpoints and verifications can be inserted
anywhere in the execution of the application. The occurrence of silent errors follows a Poisson
process with arrival rate λ = 1

µ
, where µ denotes the MTBF of the platform.

We enforce resilience through the use of a pattern that repeats periodically throughout the
execution, as discussed in Section 1.1. When an error alarm is raised inside the pattern, either
by a partial verification or by the guaranteed one, we roll back to the beginning of the pattern
and recover from the last checkpoint (taken at the end of the execution of the previous pattern,
or initial data for the first pattern). Since the last verification of the pattern is guaranteed, we
need to maintain only one checkpoint at any time, and it is always valid. The objective is to
find a pattern that minimizes the expected execution time of the application.

Let C denote the cost of checkpointing, R the cost of recovery and V ∗ the cost of guaranteed
verification. Furthermore, there are k types of detectors available, and the detector type D(j),
where 1 ≤ j ≤ k, is characterized by its cost V (j), recall r(j) and precision p(j). For notational
convenience, we also define g(j) = 1− r(j) (proportion of undetected errors) and let D∗ be the
guaranteed detector with cost V ∗, recall r∗ = 1 and precision p∗ = 1.

A pattern PATTERN(W,n,α,D) is defined by its total length W , its total number n of
segments, a vector α = [α1, α2, . . . , αn]

T containing the proportions of the segment sizes,
and a vector D = [D1, D2, . . . , Dn−1, D

∗]T containing the detectors used at the end of each
segment. We also define the vector of segment sizes w = [w1, w2, . . . , wn]

T . Formally, for
each segment i, where 1 ≤ i ≤ n, wi is the size of the segment, αi =

wi

W
is the proportion of

the segment size in the whole pattern, and Di is the detector used at the end of the segment.
We have

∑n
i=1 αi = 1, and

∑n
i=1 wi = W . If i < n, Di has cost Vi, recall ri and precision pi

(we have Di = D(j) for some type j, 1 ≤ j ≤ k), and Dn = D∗ with cost V ∗, recall r∗ = 1
and precision p∗ = 1. Note that the same detector type D(j) may well be used at the end of
several segments. Let gi = 1 − ri denote the probability that the i-th detector of the pattern
fails to detect an error (for 1 ≤ i < n), and let g[i,j[ =

∏j−1
k=i gk be the probability that the error

remains undetected by detectors Di to Dj−1 (for 1 ≤ i < j < n). Similarly, pi represents
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the probability that the i-th detector does not raise a false alarm when there is no error, and let
p[i,j[ =

∏j−1
k=i pk denote the probability that no false alarm is raised by detectors Di to Dj−1. In

the example of Figure 1.1, we have W = w1+w2+w3 and n = 3. The first partial verification
has cost V1, recall r1 and precision p1, and the second one has cost V2, recall r2 and precision
p2.

Let Wbase denote the base time of an application without any overhead due to resilience
techniques (without loss of generality, we assume unit-speed execution). Suppose the execution
is divided into periodic patterns, defined by PATTERN(W,n,α,D). Let E(W ) be the expected
execution time of the pattern. Then, the expected makespan Wfinal of the application when
taking silent errors into account can be bounded as follows:⌊

Wbase

W

⌋
× E(W ) ≤ Wfinal ≤

⌈
Wbase

W

⌉
× E(W ).

This is because the execution involves
⌊
Wbase
W

⌋
full patterns, and terminates by a (possibly)

incomplete one. For large jobs, we can approximate the execution time as

Wfinal ≈
E(W )

W
×Wbase.

Let H(W ) = E(W )
W
− 1 denote the execution overhead of the pattern. We obtain Wfinal ≈

Wbase +H(W )×Wbase. Thus, minimizing the expected makespan is equivalent to minimizing
the pattern overhead H(W ).

We assume that errors only strike the computations, while verifications and I/O transfers
(checkpointing and recovery) are protected and are thus error-free. It is shown in Chapter 2
that removing this assumption does not affect the asymptotic behavior of a pattern. We also
assume statistical independence of the detectors: if the same detector is applied twice, say
at time steps t1 and t2, then its recall and precision are the same for both instances. This is
because detectors actually detect the effect of an error on the resulting data, rather than the
error itself. When an error is missed the first time at step t1, either it dissipates and becomes
harmless, or it propagates and corrupts more data. In the latter case, running the detector again
after some iterations at step t2 will actually detect the error within the precision and recall of
the detector. Furthermore, to be on the safe side, we never use two detectors in a row. The idea
is that after a chunk of computations, output data will be considered as random input when fed
to the next detector. Understanding error propagation and correlation requires deep knowledge
of the application. In this work, we provide a general-purpose solution, hence we have to rely
on the independence hypothesis.

1.4 Expected execution time of a pattern

In this section, we compute the expected execution time of a pattern by giving a closed-form
formula that is exact up to second-order terms. This is a key result that will be used to derive
properties of the optimal pattern in the subsequent analysis.

Consider a given pattern PATTERN(W,n,α,D). The following proposition shows the ex-
pected execution time of this pattern.
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Proposition 1. The expected time to execute a pattern PATTERN(W,n,α,D) is

E(W ) =
n∑

i=1

Wαi + Vi

p[i,n[
+C+

(
1

p[1,n[
− 1

)
R+λW

(
R

p[1,n[
+WαTMα+αTMv

)
+o(λ),

(1.1)
where v is an n× 1 vector defined by v = [V1, V2, . . . , Vn]

T , and M is an n× n matrix defined
as Mij =

1
p[i,n[

for i ≤ j and Mij =
g[i,j[
p[j,n[

for i > j.

Proof. Let qi denote the probability that an error occurs in the execution of segment i. We can
express the expected execution time of the pattern recursively as follows:

E(W ) =

(
n∏

k=1

(1− qk)

)
p[1,n[C +

(
1−

(
n∏

k=1

(1− qk)

)
p[1,n[

)
(R + E(W ))

+
n∑

i=1

(
i−1∑
j=1

(
j−1∏
k=1

(1− qk)

)
p[1,j[qjg[j,i[ +

(
i−1∏
k=1

(1− qk)

)
p[1,i[

)
(wi + Vi). (1.2)

The first line shows that checkpointing will be taken only if no error has occurred in all the
segments and no intermediate detector has raised a false alarm. This happens with probability(

n∏
k=1

(1− qk)

)(
n−1∏
k=1

pk

)
=

(
n∏

k=1

(1− qk)

)
p[1,n[. (1.3)

In all the other cases, the application needs to recover from the last checkpoint and then re-
computes the entire pattern. The second line shows the expected cost involved in the execution
of each segment of the pattern and the associated verification. To better understand it, let us
consider the third segment of size w3 and the verification D3 right after it, which will be exe-
cuted only when the following events happen (with the probability of each event in brackets):

• There is a fault in the first segment (q1), which is missed by the first verification (1−r1 =
g1) and again missed by the second verification (1− r2 = g2).

• There is no fault in the first segment (1 − q1), the first verification does not raise a false
alarm (p1), and there is a fault in the second segment (q2), which is missed by the second
verification (1− r2 = g2).

• There is no fault in the first segment (1 − q1), the first verification does not raise a false
alarm (p1), there is no fault in the second segment (1 − q2), and the second verification
does not raise a false alarm (p2).

Thus, the expected cost involved in the execution of this segment is given by(
q1g1g2 + (1− q1)p1q2g2 + (1− q1)p1(1− q2)p2

)
(w3 + V3)

=
(
q1g[1,3[ + (1− q1)p[1,2[q2g[2,3[ + (1− q1)(1− q2)p[1,3[

)
(w3 + V3).
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We can generalize this reasoning to express the expected cost to execute the i-th segment of the
pattern, which leads to Equation (1.2).

Since errors arrive according to the Poisson process, by definition, we have qi = 1 −
e−λwi . Substituting it into the recursive formula and solving for E(W ), we obtain the expected
execution time as

E(W ) = C +

(
eλW

p[1,n[
− 1

)
R +

n∑
i=1

(
i−1∑
j=1

(
eλWj,n − eλWj+1,n

) g[j,i[
p[j,n[

+
eλWi,n

p[i,n[

)
(wi + Vi),

where Wi,j =
∑j

k=i wk. Approximating eλx = 1+ λx+ o(λ) up to the first-order term, we can
further simplify the expected execution time as

E(W ) = C +

(
1 + λW

p[1,n[
− 1

)
R +

n∑
i=1

(
i−1∑
j=1

λwjg[j,i[
p[j,n[

+
1 + λ

∑n
j=i wj

p[i,n[

)
(wi + Vi) + o(λ)

=
n∑

i=1

wi + Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1

)
R

+ λW
R

p[1,n[
+ λ

n∑
i=1

(
i−1∑
j=1

wjg[j,i[
p[j,n[

+
n∑

j=i

wj

p[i,n[

)
(wi + Vi) + o(λ).

Letting F =
∑n

i=1

(∑i−1
j=1

wjg[j,i[
p[j,n[

+
∑n

j=i
wj

p[i,n[

)
(wi + Vi), we can express it in the following

matrix form:
F = wTMw +wTMv,

where M is the following n× n matrix:

M =



1
p[1,n[

1
p[1,n[

1
p[1,n[

. . . 1
p[1,n[

g[1,2[
p[1,n[

1
p[2,n[

1
p[2,n[

. . . 1
p[2,n[

g[1,3[
p[1,n[

g[2,3[
p[2,n[

1
p[3,n[

. . . 1
p[3,n[

...
...

... . . . ...
g[1,n[

p[1,n[

g[2,n[

p[2,n[

g[3,n[

p[3,n[
. . . 1

p[n,n[


.

For instance, when n = 4, we have:

M =


1

p1p2p3
1

p1p2p3
1

p1p2p3
1

p1p2p3

g1
p1p2p3

1
p2p3

1
p2p3

1
p2p3

g1g2
p1p2p3

g2
p2p3

1
p3

1
p3

g1g2g3
p1p2p3

g2g3
p2p3

g3
p3

1

 .

Now, by using w = Wα, we obtain Equation (1.1), which completes the proof of the proposi-
tion.
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1.5 Properties of optimal pattern

In this section, we characterize the properties of the optimal pattern. First, we derive the optimal
length of a pattern (Section 1.5.1). Then, we show that the optimal pattern does not contain
partial detectors with imperfect precision (Section 1.5.2). By focusing on detectors with perfect
precision, we define two key parameters to characterize a pattern (Section 1.5.3). Finally, we
obtain the optimal positions for a give set of partial verifications (Section 1.5.4).

1.5.1 Optimal length of a pattern

We first compute the optimal length W of a pattern PATTERN(W,n,α,D) in order to minimize
its execution overhead H(W ).

Theorem 1. The execution overhead of a pattern PATTERN(W,n,α,D) is minimized when its
length is

W ∗ =

√√√√∑n
i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1
)
R

λαTMα
. (1.4)

In that case, the overhead is given by

H(W ∗) = 2

√√√√λαTMα

(
n∑

i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1

)
R

)

+
n∑

i=1

(
1

p[i,n[
− 1

)
αi + o(

√
λ). (1.5)

Proof. From the expected execution time of a pattern given in Equation (1.1), we can derive
the overhead as follows:

H(W ) =
E(W )

W
− 1 =

∑n
i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1
)
R

W
+ λWαTMα

+
n∑

i=1

(
1

p[i,n[
− 1

)
αi + λ

(
R

p[1,n[
+αTMv

)
+ o(λ). (1.6)

The optimal pattern length that minimizes the execution overhead can now be computed by
balancing the first two terms of the above equation, which gives rise to Equation (1.4). Now,
substituting W ∗ back into Equation (1.6), we can obtain the execution overhead shown in Equa-
tion (1.5). Note that when the platform MTBF µ = 1/λ is large in front of the resilience
parameters, the last two terms of Equation (1.6) become negligible compared to other dominat-
ing terms given in Equation (1.5), so they are absorbed into o(

√
λ).
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1.5.2 Usefulness of imprecise detectors

We now assess the usefulness of partial detectors with imperfect precision. We show that an
imprecise partial verification (i.e., with p < 1) is not used in the optimal pattern. The result
is valid when the platform MTBF µ = 1/λ is large in front of the resilience parameters, and
when the precision values are constants and independent of the error rate λ.

Theorem 2. The optimal pattern contains no detector with imprecise verification.

Proof. We show that given any pattern containing imprecise verifications, we can transform it
into one that does not use any imprecise verification and that has a better execution overhead.

Consider a given pattern PATTERN(W,n,α,D) that contains imprecise verifications. The-
orem 1 gives the optimal length of the pattern as well as the execution overhead in that case.
From Equation (1.5), we observe that the overhead is dominated by the term

∑n
i=1

(
1

p[i,n[
− 1
)
αi,

if the precisions of all detectors are constants and independent of the error rate λ. Assum-
ing that the size of each segment in the pattern is also a constant fraction of the pattern length,
we can improve the overhead by making αi approach 0 for all segment i with p[i,n[ < 1. Sup-
pose segment m is the first segment that satisfies p[m,n[ = 1. Then the execution overhead of
the pattern becomes

H = 2

√√√√λαTMα

(
n∑

i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1

)
R

)
+ o(
√
λ),

where α = [0, . . . , 0, αm, . . . , αn]
T . Now, by removing the first m− 1 detectors while keeping

the relative sizes of the remaining segments unchanged, we get a new pattern whose overhead
is

H ′ = 2

√√√√λα′TM ′α′

(
n∑

i=m

Vi + C

)
+ o(
√
λ),

where α′ = [αm, . . . , αn]
T and M ′ is the submatrix of M by removing the first m−1 rows and

columns. Clearly, we have H ′ < H since
∑n

i=m Vi+C <
∑n

i=1
Vi

p[i,n[
+C+

(
1

p[1,n[
− 1
)
R and

α′TM ′α′ = αTMα.

Theorem 2 is valid up to first-order estimations and shows that an imprecise partial verifi-
cation should not be used when the platform MTBF is large. Intuitively, this is because a low
precision induces too much re-execution overhead when the error rate is small, making the ver-
ification unworthy. Again, we point out that this result holds when the precision can be consid-
ered as a constant, which is true in practice as the accuracy of a detector is independent of the
error rate. In fact, many practical fault filters do have almost perfect precision under realistic
settings [10, 31, 32]. Still, the result is striking, because it is the opposite of what is observed
for predictors, for which recall matters more than precision [4].

In the rest of this chapter, we will focus on partial verifications with perfect precision (i.e.,
p = 1) but imperfect recall (i.e., r < 1).
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1.5.3 Two key parameters
For a pattern PATTERN(W,n,α,D) and assuming that all detectors have perfect precision, the
expected execution time of the pattern according to Proposition 1 is given by

E(W ) = W +
n∑

i=1

Vi + C + λW
(
R +WαTMα+αTMv

)
+ o(λ),

where M is an n× n matrix defined by Mij = 1 for i ≤ j and Mij = g[i,j[ for i > j.
To characterize such as pattern, we introduce two key parameters in the following.

Definition 1. The fault-free overhead off of a pattern PATTERN(W,n,α,D) is

off =
n∑

i=1

Vi + C, (1.7)

and the fraction of re-executed work in case of faults is

fre = αTMα. (1.8)

According to Theorem 1, we can get the optimal pattern length and execution overhead as

W ∗ =

√
off

λfre
,

H(W ∗) = 2
√
λofffre + o(

√
λ).

The equation above shows that when the platform MTBF µ = 1/λ is large in front of the
resilience parameters, the expected execution overhead of the optimal pattern is dominated by
2
√
λofffre. The problem is then reduced to the minimization of the product offfre. Intuitively,

this calls for a tradeoff between fault-free overhead and fault-induced re-execution, as a smaller
fault-free overhead off tends to induce a larger re-execution fraction fre, and vice versa.

1.5.4 Optimal positions of verifications
To fully characterize an optimal pattern, we have to determine its number of segments, as well
as the type and position of each partial verification. In this section, we consider a pattern whose
number of segments is given together with the types of all partial verifications, that is, the value
of off (Equation (1.7)) is given. We show how to determine the optimal length of each segment
(or equivalently, the optimal position of each verification), so as to minimize the value of fre

(Equation (1.8)). The following theorem shows the result. It is the most technically involved
contribution of this chapter.

Theorem 3. Consider a pattern PATTERN(W,n,α,D) where W , n, and D are given. The
fraction of re-executed work fre is minimized when α = α∗, where

α∗
k =

1

Un

· 1− gk−1gk
(1 + gk−1)(1 + gk)

for 1 ≤ k ≤ n, (1.9)
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with g0 = gn = 0 and

Un = 1 +
n−1∑
i=1

1− gi
1 + gi

. (1.10)

In that case, the value of fre is

f ∗
re =

1

2

(
1 +

1

Un

)
. (1.11)

The goal is to minimize fre = αTMα (Equation (1.8)) subject to the constraint
∑n

k=1 αk =
1, which we rewrite as cTα = 1 with c = [1, 1, . . . , 1]T . Hence, we have a quadratic minimiza-
tion problem under a linear constraint. For convenience, let us replace M by A = M+MT

2
, which

gives the same value for fre, and we obtain the symmetric matrix A defined as Aij =
1+g[i,j[

2
for

i ≤ j. For instance, when n = 4, we have:

A =
1

2


2 1 + g1 1 + g1g2 1 + g1g2g3

1 + g1 2 1 + g2 1 + g2g3

1 + g1g2 1 + g2 2 1 + g3

1 + g1g2g3 1 + g2g3 1 + g3 2

 .

When A is symmetric positive definite (SPD), which we will show later in the proof, there
is a unique solution

f opt
re =

1

cTA−1c
, (1.12)

obtained for

αopt =
A−1c

cTA−1c
. (1.13)

This result is shown as follows. Let a valid vector α be a vector such that cTα = 1. We have
cTαopt = f opt

re (cTA−1c) = 1, hence αopt is indeed a valid vector. Then, because A is SPD,
we have X = (α − αopt)TA(α − αopt) ≥ 0 for any valid vector α, and X = 0 if and only if
α = αopt. Developing X , we get

X = αTAα− 2αTAαopt + (αopt)TAαopt.

We have αTAαopt = f opt
re αTc = f opt

re because cTα = 1. Similarly, we get (αopt)TAαopt = f opt
re .

Hence, we derive that X = αTAα − f opt
re ≥ 0, with equality if and only if α = αopt. Hence

the optimal value of fre is achieved for αopt, and is equal to f opt
re .

In the following, we prove that A is symmetric positive definite (SPD), and that αopt = α∗

and f opt
re = f ∗

re. To avoid ambiguity, we use superscripts like A(n) whenever needed to identify
the problem size n (the number of work segments).

From the definition of matrix A, we can rewrite A(n) as:

A(n) =
1

2

(
J (n) +B(n)

)
,
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where J (n) is the n× n matrix whose entries are all 1, and B(n) is the n× n matrix defined by
B

(n)
ij = g[i,j[ for i ≤ j.

We start by proving two properties of α∗.

Lemma 1. α∗ is a valid vector, i.e.,
∑n

k=1 α
∗
k = 1.

Proof. The proof is by induction on n. First, for n = 1 we do have
∑1

k=1 α
∗(1)
k = 1. For n = 2,

we have
∑2

k=1 α
∗(2)
k = 1+g1

2

(
1

1+g1
+ 1

1+g1

)
= 1, which is also correct. Assume that this result

holds up to n− 1. We can express α∗(n) as:

α∗(n) =
Un−1

Un



α
∗(n−1)
1

α
∗(n−1)
2

...
α
∗(n−1)
n−2

α
∗(n−1)
n−1

0


+



0
0
...
0

−gn−1α
∗(n)
n

α
∗(n)
n


. (1.14)

Therefore, we have:

n∑
k=1

α
∗(n)
k =

n−2∑
k=1

α
∗(n)
k + α

∗(n)
n−1 + α∗(n)

n

=
Un−1

Un

n−2∑
k=1

α
∗(n−1)
k +

Un−1

Un

α
∗(n−1)
n−1 − gn−1α

∗(n)
n + α∗(n)

n

=
Un−1

Un

n−1∑
k=1

α
∗(n−1)
k + α∗(n)

n (1− gn−1)

=
Un−1

Un

n−1∑
k=1

α
∗(n−1)
k +

1

Un

· 1− gn−1

1 + gn−1

.

Now, using the inductive hypothesis that
∑n−1

k=1 α
∗(n−1)
k = 1, we get:

n∑
k=1

α
∗(n)
k =

1

Un

(
Un−1 +

1− gn−1

1 + gn−1

)
=

1

Un

· Un

= 1,

which concludes the proof.

Lemma 2. Aα∗ = f ∗
rec.
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Proof. We have A = 1
2
(J +B) and from Lemma 1 Jα∗ = (

∑n
k=1 α

∗
k) c = c. The result will

follow if we show

Bα∗ =
c

Un

, (1.15)

for all n ≥ 1. Equivalently, letting γ = Unα
∗, we prove by induction on n that B(n)γ(n) = c(n).

First, for n = 1 we have B(1)γ(1) = 1, and for n = 2 we get:

B(2)γ(2) =

[
1 g1
g1 1

] [ 1
1+g1
1

1+g1

]
=

[ 1
1+g1

+ g1
1+g1

g1
1+g1

+ 1
1+g1

]
= c(2).

Now, suppose the result holds up to n− 1. We can write:

B(n)γ(n) =

[
B(n−1) x(n−1)(
x(n−1)

)T
1

] [
γ̄(n−1)

γ
(n)
n

]
=

[
B(n−1)γ̄(n−1) + x(n−1)γ

(n)
n(

x(n−1)
)T

γ̄(n−1) + γ
(n)
n

]
, (1.16)

where γ̄(n−1) is the (n−1)×1 truncated vector containing the first n−1 elements of γ(n) (for a
problem of size n), and x(n−1) is an (n−1)×1 vector defined as x(n−1) =

[
g[1,n−1[ g[2,n−1[ . . . gn−1

]T .
For instance, for n = 4 we have x(3) =

[
g1g2g3 g2g3 g3

]T . Then the goal is to show
B(n−1)γ̄(n−1) + x(n−1)γ

(n)
n = c(n−1) and

(
x(n−1)

)T
γ̄(n−1) + γ

(n)
n = 1. From Equation (1.14),

we can derive:

B(n−1)γ̄(n−1)

= B(n−1)

(
γ(n−1) +

[
0(n−2)

−gn−1γ
(n)
n

])
= B(n−1)γ(n−1) +

[
B(n−2) x(n−2)(
x(n−2)

)T
1

] [
0(n−2)

−gn−1γ
(n)
n

]
= B(n−1)γ(n−1) +

[
−x(n−2)gn−1γ

(n)
n

−gn−1γ
(n)
n

]
= c(n−1) − x(n−1)γ(n)

n .

The last line applies the inductive hypothesis B(n−1)γ(n−1) = c(n−1) as well as the property

that
[
x(n−2)

1

]
gn−1 = x(n−1). Putting this result back into Equation (1.16), we derive that

B(n−1)γ̄(n−1) + x(n−1)γ(n)
n

= c(n−1) − x(n−1)γ(n)
n + x(n−1)γ(n)

n = c(n−1).
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Using the property
(
x(n−1)

)T
=
[(
x(n−2)

)T
1
]
gn−1, we can write:

(
x(n−1)

)T
γ̄(n−1) + γ(n)

n

=
[(
x(n−2)

)T
1
]
gn−1

(
γ(n−1) +

[
0(n−2)

−gn−1γ
(n)
n

])
+ γ(n)

n

=
[(
x(n−2)

)T
1
]
γ(n−1)gn−1 − g2n−1γ

(n)
n + γ(n)

n .

Notice that
[(
x(n−2)

)T
1
]
γ(n−1) is actually the last row of the product B(n−1)γ(n−1), which,

by induction, is 1. Therefore we get:(
x(n−1)

)T
γ̄(n−1) + γ(n)

n

= gn−1 + γ(n)
n (1− g2n−1)

= gn−1 +
(1 + gn−1)(1− gn−1)

1 + gn−1

= gn−1 + 1− gn−1

= 1.

This concludes the proof.

We now prove that A is SPD. This requires several intermediate steps.

Lemma 3. B is nonsingular and α∗ = 1
Un

B−1c.

Proof. To prove that B is nonsingular, we prove by induction on n that B(n)y(n) = 0(n) has
only one solution y(n) = 0(n). First, for n = 1 we have y

(1)
1 = 0, which is correct. Then, for

n = 2 we have the following equation:[
1 g1
g1 1

][
y
(2)
1

y
(2)
2

]
= 0(2),

from which we derive y
(2)
1 (1− g21) = 0 and y

(2)
2 (1− g21) = 0, hence y(2) = 0(2), which is also

correct. Now, assume that the result holds up to n− 1. We want to solve the general equation:[
B(n−1) x(n−1)(
x(n−1)

)T
1

] [
ȳ(n−1)

y
(n)
n

]
= 0(n), (1.17)

which is equivalent to: B(n−2) x(n−2) x(n−2)gn−1(
x(n−2)

)T
1 gn−1(

x(n−2)
)T

gn−1 gn−1 1


ȳ(n−2)

y
(n)
n−1

y
(n)
n

 = 0(n), (1.18)
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where ȳ(n−1) and ȳ(n−2) are the truncated vectors containing respectively the first n − 1 and
n − 2 elements of y(n) (for a problem of size n). First, let us expand Equation (1.18) and
consider only the last two equations of the system:(

x(n−2)
)T

ȳ(n−2) + y
(n)
n−1 + gn−1y

(n)
n = 0

gn−1

(
x(n−2)

)T
ȳ(n−2) + gn−1y

(n)
n−1 + y(n)n = 0.

We can derive that y(n)n (1 − g2n−1) = 0, hence y
(n)
n = 0. Then, plugging y

(n)
n = 0 back into

Equation (1.17), we derive that:

B(n−1)ȳ(n−1) = 0(n−1).

Using the induction hypothesis for B(n−1)ȳ(n−1) = 0(n−1), we have ȳ(n−1) = 0(n−1) and thus
y(n) = 0(n), which implies that B(n) is nonsingular. Hence, from Equation (1.15), we can get:

α∗ =
1

Un

B−1c,

which concludes the proof.

Lemma 4. A is nonsingular.

Proof. To prove that A is nonsingular, we solve Ay = 0 and show that y = 0. First, we can
write:

Jy +By = 0,

By = −Jy = −

(
n∑

i=1

yi

)
c.

From Lemma 3, we know that B is nonsingular and B−1c = Unα
∗. Therefore, we get:

y = −Un

(
n∑

i=1

yi

)
α∗. (1.19)

Summing the components of both sides of Equation (1.19), we obtain:(
n∑

i=1

yi

)
= −Un

(
n∑

i=1

yi

)(
n∑

i=1

α∗
i

)
.

Since
∑n

i=1 α
∗
i = 1 from Lemma 1, we have:(

n∑
i=1

yi

)
(1 + Un) = 0,

n∑
i=1

yi = 0,

which implies y = 0 from Equation (1.19), and this concludes the proof that A is nonsingular.
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Lemma 5. The last column of B−1 is given by:

z =


0
0
...

−gn−1zn
zn

 , with zn =
1

1− gn−1
2
.

Proof. Because we do not need the whole inverse of B, we solve Bz = d, where d =[
0 0 · · · 1

]T , hence z will be the last column of B−1. We can write: B(n−2) x(n−2) x(n−2)gn−1(
x(n−2)

)T
1 gn−1(

x(n−2)
)T

gn−1 gn−1 1


z̄(n−2)

z
(n)
n−1

z
(n)
n

 = d(n),

where z̄(n−2) is the truncated vector containing the first n− 2 elements of z(n). Expanding the
product, we get the following system of equations:

B(n−2)z̄(n−2) + x(n−2)z
(n)
n−1 + x(n−2)gn−1z

(n)
n = 0(n−2),(

x(n−2)
)T

z̄(n−2) + z
(n)
n−1 + gn−1z

(n)
n = 0,(

x(n−2)
)T

gn−1z̄
(n−2) + gn−1z

(n)
n−1 + z(n)n = 1.

Since B(n) is nonsingular, there is a unique solution. We can check that z̄(n−2) = 0(n−2),
z
(n)
n−1 =

−gn−1

1−gn−1
2 and z

(n)
n = 1

1−gn−1
2 is indeed a solution, which concludes the proof.

Remark. The matrix B is an extension of the famous KMS symmetric matrix K [43], where
Kij = gj−i for i ≤ j (recall that Bij = g[i,j[). The inverse of B turns out to be tridiagonal, just
as that of K, and we get:

B−1
ij =


− gj

1−g2j
if i = j + 1

− gi
1−g2i

if i = j − 1
1−g2i−1g

2
i

(1−g2i−1)(1−g2i )
if i = j

0 otherwise

.

For instance, when n = 4 we have

B−1 =


1

1−g21
− g1

1−g21
0 0

− g1
1−g21

1−g21g
2
2(

1−g21
)(
1−g22

) − g2
1−g22

0

0 − g2
1−g22

1−g22g
2
3(

1−g22
)(
1−g23

) − g3
1−g23

0 0 − g3
1−g23

1
1−g23

 .

The proof of this result is very similar to the proof of Lemma 5.
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Lemma 6. A−1
nn = 2 Un(1+gn−1)+2gn−1

(Un+1)(1−gn−1)(1+gn−1)2
.

Proof. As in the proof of Lemma 5, we compute the last column of A−1, which we call β, by
solving Aβ = d. Because we already solved Bz = d, we have:

Aβ = Bz = d,

1

2
(J +B)β = Bz,

Jβ = B(2z− β).

Remember that J is the matrix whose entries are all 1. Hence, we have Jβ = (
∑n

i=1 βi) c.
Also, from Lemma 3, we have Bα∗ = c

Un
. Therefore, we can derive:

2z− β =

(
n∑

i=1

βi

)
Unα

∗. (1.20)

Summing the components of both sides of Equation (1.20), we get 2
∑n

i=1 zi −
∑n

i=1 βi =
(
∑n

i=1 βi)Un (
∑n

i=1 α
∗
i ). Since

∑n
i=1 α

∗
i = 1 from Lemma 1, we get

n∑
i=1

βi =
2

Un + 1

n∑
i=1

zi.

From Lemma 5, we can easily compute
∑n

i=1 zi = −gn−1zn + zn = 1
1+gn−1

. Hence, we have

n∑
i=1

βi =
2

(Un + 1)(1 + gn−1)
.

Finally, from Equation (1.20), we derive that

βn = 2zn −

(
n∑

i=1

βi

)
Unα

∗
n

=
2

1− gn−1
2
− 2

(Un + 1)(1 + gn−1)2

= 2
Un(1 + gn−1) + 2gn−1

(Un + 1)(1− gn−1)(1 + gn−1)2
,

which concludes the proof.

Lemma 7. A is symmetric positive definite (SPD).

Proof. Note that by construction, A, J and B are all symmetric matrices. To show that A
is positive definite, we show that all its principal minors are strictly positive. Recall that the
principal minor of order k of A(n) is the determinant of the submatrix of size k that consists
of the first k rows and columns of A(n). But this submatrix is exactly A(k), the matrix for the
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problem of size k, so the result will follow if we show that det
(
A(n)

)
> 0 for all n ≥ 1. We

prove by induction on n that

det
(
A(n)

)
=

Un + 1

2n

n−1∏
k=1

(
1− g2k

)
> 0. (1.21)

For n = 1, Equation (1.21) gives det
(
A(1)

)
= 1, which is correct. Suppose the result holds up

to n− 1. Since A(n) is nonsingular, using the co-factor method, we get that

(
A(n)

)−1

nn
=

det
(
A(n−1)

)
det (A(n))

.

Therefore, using the definition of Un and the induction hypothesis for det
(
A(n−1)

)
, we can get:

det
(
A(n)

)
=

det
(
A(n−1)

)
(A(n))

−1
nn

=
1

(A(n))
−1
nn

· Un−1 + 1

2n−1

n−2∏
k=1

(1− g2k)

=
1

(A(n))
−1
nn

· 1

2n−1

(
Un −

1− gn−1

1 + gn−1

+ 1

) n−2∏
k=1

(1− g2k)

=
1

(A(n))
−1
nn

· 1

2n−1
· Un(1 + gn−1) + 2gn−1

1 + gn−1

n−2∏
k=1

(1− g2k). (1.22)

Now, plugging
(
A(n)

)−1

nn
from Lemma 6 into Equation (1.22), we get:

det
(
A(n)

)
=

1

2n
· (Un + 1)(1− gn−1)(1 + gn−1)

2

Un(1 + gn−1) + 2gn−1

· Un(1 + gn−1) + 2gn−1

1 + gn−1

n−2∏
k=1

(1− g2k)

=
Un + 1

2n
(1− g2n−1)

n−2∏
k=1

(1− g2k)

=
Un + 1

2n

n−1∏
k=1

(1− g2k),

which shows that Equation (1.21) holds for det
(
A(n)

)
and completes the proof that A(n) is

SPD.

We are almost done! There remains to show that αopt = α∗ and f opt
re = f ∗

re. But Lemma 2
shows that Aα∗ = f ∗

rec, hence α∗ = f ∗
reA

−1c and 1 = cTα∗ = f ∗
re(c

TA−1c), which leads to
f opt

re = f ∗
re, and finally αopt = α∗. This concludes the proof of Theorem 3.
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Note that when all the partial verifications in the pattern have the same type, i.e., gk = g for
all 1 ≤ k < n, obtain f ∗

re =
1
2

(
1 + 1+g

n(1−g)+2g

)
with

α∗
k =

{
1

n(1−g)+2g
for k = 1, n

1−g
n(1−g)+2g

for k = 2, . . . , n− 1
.

The result shows that when there is only one partial verification in the pattern, i.e., n = 2,
the two resulting segments share the same length, i.e., α1 = α2 =

1
2
. With two or more partial

verifications of the same type, the left-most and the right-most segments, each being adjacent
to a guaranteed verification, are longer than all the intermediate segments, which have the same
length.

Theorem 3 also shows that, for a given set of partial verifications in a pattern, the minimum
value of fre does not depend upon their ordering within the pattern.

Corollary 1. For a given set of partial verifications within a pattern, the minimum fraction of
re-executed work f ∗

re is independent of their ordering.

1.6 Complexity

This section builds upon the previous results to provide a comprehensive complexity analysis.
We introduce the accuracy-to-cost ratio of a detector and show that it is the key parameter to
compute the optimal rational solution (Section 1.6.1). Then we establish the NP-completeness
to determine the optimal integer solution (Section 1.6.2). On the positive side, we design a
simple greedy algorithm whose performance is guaranteed, and sketch the construction of an
FPTAS for the problem (Section 1.6.3).

1.6.1 Accuracy-to-cost ratio and rational solution
Consider a pattern PATTERN(W,n,α,D). Let mj denote the number of partial verifications
using detector type D(j) in the pattern (the number of indices i < n such that Di is of type D(j)),
and define m = [m1,m2, . . . ,mk]. Section 1.5.1 shows that minimizing the execution overhead
of the pattern is equivalent to minimizing the product offfre. From Equations (1.7) and (1.11),
we have offfre =

V ∗+C
2

f(m), where

f(m) =

(
1 +

1

1 +
∑k

j=1 mja(j)

)(
1 +

k∑
j=1

mjb
(j)

)
. (1.23)

In Equation (1.23), we define a(j) = 1−g(j)

1+g(j)
to be the accuracy of detector D(j) and define

b(j) = V (j)

V ∗+C
to be the relative cost of D(j). Furthermore, we define φ(j) = a(j)

b(j)
to be the

accuracy-to-cost ratio of D(j). We will show that this ratio plays a key role in selecting the best
detector(s).

Altogether, minimizing the pattern overhead amounts to finding the solution m = [m1,m2, . . . ,mk]
that minimizes f(m), with mj ∈ N0 for all 1 ≤ j ≤ k. Indeed, once m is given, Proposition 1
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and Theorem 3 completely characterize the optimal pattern, giving its length W , the number of
segments n =

∑k
j=1mj + 1, and the locations α of all partial detectors (whose ordering does

not matter).
We first derive the optimal solution if we relax the integer constraint on m. A rational

solution in this case is denoted by m̄ = [m̄1, m̄2, . . . , m̄k] with m̄j ≥ 0 for all 1 ≤ j ≤ k. The
optimal value of f(m̄) is a lower bound on the optimal integer solution.

Lemma 8. Suppose there are k types of detectors sorted in non-increasing order of accuracy-
to-cost ratio, i.e., φ(1) ≥ φ(2) ≥ · · · ≥ φ(k). Then,

f ∗(m̄) =


(√

1
φ(1) +

√
1− 1

φ(1)

)2
if φ(1) > 2

2 otherwise
.

Proof. First, we prove that the optimal rational solution is achieved when only the detector with
the largest accuracy-to-cost ratio φ(1) is used. Specifically, given any rational solution m̄ =
[m̄1, m̄2, . . . , m̄k], we show that there exists a solution m̄′ = [m̄′

1, 0, . . . , 0], which satisfies
f(m̄′) ≤ f(m̄). We have

f(m̄) =

(
1 +

1

1 +
∑k

j=1 m̄ja(j)

)(
1 +

k∑
j=1

m̄jb
(j)

)

=

(
1 +

1

1 + a(1)
∑k

j=1
m̄ja(j)

a(1)

)(
1 + b(1)

k∑
j=1

m̄jb
(j)

b(1)

)
. (1.24)

Let m̄′
1 =

∑k
j=1

m̄ja
(j)

a(1)
and n̄′

1 =
∑k

j=1
m̄jb

(j)

b(1)
. Since b(j)

b(1)
≥ a(j)

a(1)
for all 1 ≤ j ≤ k, we get

n̄′
1 =

∑k
j=1

m̄jb
(j)

b(1)
≥
∑k

j=1
m̄ja

(j)

a(1)
= m̄′

1. Hence, Equation (1.24) can be written as

f(m̄) =

(
1 +

1

1 + a(1)m̄′
1

)(
1 + b(1)n̄′

1

)
=

(
1 +

1

1 + a(1)m̄′
1

)(
1 +

b(1)n̄′
1

m̄′
1

· m̄′
1

)
≥
(
1 +

1

1 + a(1)m̄′
1

)(
1 + b(1)m̄′

1

)
= f(m̄′).

Now, define f(m̄) =
(
1 + 1

1+a(1)m̄

) (
1 + b(1)m̄

)
. The following derives the minimum

value of f(m̄). Differentiating f(m̄) with respect to m̄ and solving ∂f(m̄)
∂m̄

= 0, we get

m̄∗ = − 1

a(1)
+

√
1

a(1)

(
1

b(1)
− 1

a(1)

)
, (1.25)
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which is positive (hence a potential solution) if φ(1) = a(1)

b(1)
> 2. Taking the second-order

derivative of f(m̄), we get
∂2f(m̄)

∂m̄2
=

2a(1)(a(1) − b(1))

(a(1)m̄+ 1)3
,

which is positive (hence ensures that the solution is the unique minimum) for all m̄ ∈ [0,∞) if
φ(1) = a(1)

b(1)
> 1.

Thus, when φ(1) > 2, the optimal solution is obtained by substituting m̄∗ into f(m̄), and
we get

f(m̄∗) =

(
1 +

1

1 + a(1)m̄∗

)(
1 + b(1)m̄∗)

=

(
1 +

1√
φ(1) − 1

)(
1− 1

φ(1)
+

√
1

φ(1)

(
1− 1

φ(1)

))

=
φ(1) − 1

φ(1)
+ 2

√
φ(1) − 1

φ(1)
+

1

φ(1)

=

(√
1

φ(1)
+

√
1− 1

φ(1)

)2

.

When φ(1) ≤ 2, the minimum value of f(m̄) is achieved at m̄ = 0, which gives f(0) =
2.

Lemma 8 shows that the optimal rational solution is achieved with only one detector,
namely, the one with the highest accuracy-to-cost ratio. The optimal integer solution, how-
ever, may use more than one detector. The following shows that finding the optimal integer
solution is NP-complete.

1.6.2 NP-completeness
We show that finding the optimal integer solution m is NP-complete, even when all detectors
share the same accuracy-to-cost ratio. In particular, we consider the following decision prob-
lem.

Definition 2 (Multiple Partial Verifications (MPV)). Given k detectors with the same accuracy-
to-cost ratio φ, i.e., a(j)

b(j)
= φ for all 1 ≤ j ≤ k, and a bound K, is there a solution m that

satisfies (
1 +

1

1 +
∑k

j=1mja(j)

)(
1 +

k∑
j=1

mjb
(j)

)
≤ K? (1.26)

Theorem 4. The MPV problem is NP-complete.

Proof. The MPV problem is obviously in NP. We prove the completeness by a reduction from
the Unbounded Subset Sum (USS) problem, which is known to be NP-complete [56]. Given a
multiset S = {s1, s2, . . . , sk} of k positive integers and a positive integer I , the USS problem
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asks if there exists a subset S ′ ⊆ S whose sum is exactly I , i.e.,
∑k

j=1 mjsj = I , where
mj ∈ N0. We can further assume that I/sj is not an integer for 1 ≤ j ≤ k, since otherwise we
would have a trivial solution.

Given an instance of the USS problem, we construct an instance of the MPV problem with
k detectors. First, choose any φ ∈

(
2, (I/smax + 1)2 + 1

)
, where smax = maxj=1..k sj . Then,

let a
b
= φ and − 1

a
+
√

1
a

(
1
b
− 1

a

)
= I , so we can get a =

√
φ−1−1
I

and b =
√
φ−1−1
φI

. For each

1 ≤ j ≤ k, define a(j) = sja and b(j) = sjb. According to the range of φ, we have a(j) < 1 and

b(j) < 1 for all 1 ≤ j ≤ k. Finally, let K =
(√

1
φ
+
√

1− 1
φ

)2
.

If we use only one detector, say D(j), then Lemma 8 shows that Equation (1.26) is satisfied
with the following unique solution:

m∗
j = −

1

a(j)
+

√
1

a(j)

(
1

b(j)
− 1

a(j)

)

=
1

sj

(
−1

a
+

√
1

a

(
1

b
− 1

a

))
=

I

sj
,

which is not an integer by hypothesis, but achieves the lower bound
(√

1
φ
+
√
1− 1

φ

)2
= K.

Now, we show that, by using multiple detectors, an integer solution to the MPV instance exists
if and only if there is an integer solution to the USS instance.

(⇒) Suppose there is an integer solution m = [m1,m2, . . . ,mk] such that
∑k

j=1mjsj = I .
Then, by employing mj partial verifications of detector type D(j) for 1 ≤ j ≤ k, we get

(
1 +

1

1 +
∑k

j=1 mja(j)

)(
1 +

k∑
j=1

mjb
(j)

)

=

(
1 +

1

1 + a
∑k

j=1 mjsj

)(
1 + b

k∑
j=1

mjsj

)

=

(
1 +

1

1 + aI

)
(1 + bI)

=

(√
1

φ
+

√
1− 1

φ

)2

= K.

(⇐) Suppose there is an integer solution m = [m1,m2, . . . ,mk] to the MPV instance such
that (

1 +
1

1 +
∑k

j=1 mja(j)

)(
1 +

k∑
j=1

mjb
(j)

)
= K.
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This implies (
1 +

1

1 + a
∑k

j=1mjsj

)(
1 + b

k∑
j=1

mjsj

)

= 1 + 2

√
1

φ

(
1− 1

φ

)
.

Let T =
∑k

j=1 mjsj . Solving T from the equation above, we get the following unique
solution:

T = −1

a
+

√
1

a

(
1

b
− 1

a

)
= I.

This completes the proof of the theorem.

1.6.3 Greedy algorithm and FPTAS
To cope with the NP-completeness of minimizing offfre, there is a simple and intuitive greedy
algoripartials:thm: This greedy algorithm uses only the detector with the highest accuracy-
to-cost ratio φ(1). We compute the optimal rational number of partial verifications m̄∗ (from
Equation (1.25)) and then round it up if it is not an integer. In Section 1.7, we show that this
algorithm performs quite well in practice.

Interestingly, we can guarantee the performance of this simple algoripartials:thm: From
Lemma 8, we can assume φ(1) = a(1)

b(1)
> 2. Since a(1) < 1, we can get b(1) < 1/2. If

the optimal fractional solution m̄∗ given in Equation (1.25) happens to be an integer, then we
get the optimal solution. Otherwise, rounding it to dm̄∗e increases the objective function f(m)
shown in Equation (1.23) by at most a factor of δ = 1+b(1) < 3/2. According to Equation (1.5),
this gives a

√
3/2-approximation algorithm for minimizing the expected execution overhead

(and hence the makespan).
In the following, we show that it is possible to have a fully polynomial-time approximation

scheme (FPTAS), which ensures, for any ε > 0, that the solution is within 1 + ε times the
optimal, and that the running time of the algorithm is polynomial in the input size and 1/ε. To
develop the FPTAS, we perform the following transformations to the problem.

First, we convert all parameters in Equation (1.23) to integers. Since a(j) = 1−g(j)

1+g(j)
=

r(j)

2−r(j)
≤ 1 and r(j) is rational, we can write a(j) = pj

qj
, where pj and qj are positive integers with

pj ≤ qj . We assume that C, V ∗ and all the V (j)’s are also integers. Thus, minimizing f(m) is
equivalent to minimizing the following function:

F (m) =

(
1 +

L

L+
∑k

j=1 mjL(j)

)(
C + V ∗ +

k∑
j=1

mjV
(j)

)
,

where L denotes the least common multiple (LCM) of q1, q2, . . . , qk, and L(j) =
pj
qj
L ≤ L.

Clearly, L and all the L(j)’s can be represented by a polynomial function of the original input
size.
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Next, we compute an upper bound on the number of partial verifications. Observe that
F (0) = 2(C + V ∗) and F (m) ≥ C + V ∗ +

∑k
j=1mjV

(j). This implies that the optimal
solution must satisfy mj ≤ C+V ∗

V (j) for all 1 ≤ j ≤ k. Therefore, it follows that
∑k

j=1mjV
(j) ≤

k(C + V ∗). The bound on mj allows us to transform the unbounded problem to the 0-1 prob-
lem by providing blogmjc additional copies of each item type j with doubling V (j) and L(j)

values. This is a standard technique also used in transforming the bounded and unbounded
knapsack problems to the 0-1 knapsack problem [67]. The total number of items becomes
K =

∑k
j=1 (1 + blogmjc) = O(k log(C + V ∗)), which stays polynomial in the input size.

Define x = [x1, x2, . . . , xK ], and let Lj and Vj be the value and cost of item j, respectively.
We can now formulate the optimization problem as follows:

minimize F (x) =

(
1 +

L

L+
∑K

j=1 xjLj

)(
C + V ∗ +

K∑
j=1

xjVj

)

subject to
K∑
j=1

xjVj ≤ k(C + V ∗)

xj ∈ {0, 1} ∀j = 1, 2, . . . , K

and the size of all parameters is a polynomial function of the input size of the original problem.
To find an FPTAS for the problem above, we adopt the technique used in [33] for designing an
FPTAS for the Maximum Density Knapsack (MDK) problem described below.

Maximum Density Knapsack (MDK): Given a set S = {s1, s2, . . . , sK} of K items, where
each item sj ∈ S has a positive integer profit pj and a positive integer weight wj , a total capac-
ity W , and an initial weight w0, the MDK problem is formulated as:

maximize

∑K
j=1 xjpj

w0 +
∑K

j=1 xjwj

subject to
K∑
j=1

xjwj ≤ W

xj ∈ {0, 1} ∀j = 1, 2, . . . , K

Cohen and Katzir [33] give an FPTAS for the MDK problem by using the existing FPTAS
for the knapsack problem [67]. In particular, their algorithm relies on the property that, for
every profit P , a minimum weight solution x is found such that P (x) =

∑K
j=1 xjpj ≥ b P

1+ε′
c,

for any ε′ > 0. This immediately gives rise to an FPTAS for MDK.
We can apply the same technique to construct an FPTAS for minimizing F (x). Let xopt

denote the optimal solution. By considering Vj as weight and Lj as profit, we can run the
FPTAS for knapsack and return in polynomial time a solution x that satisfies P (x) ≥ bP (xopt)

1+ε′
c

and W (x) ≤ W (xopt). By setting carefully the value of ε′ as a function of ε, the solution yields
F (x) ≤ (1 + ε)F (xopt). The detail is similar to the one presented in [33] and is omitted here.
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1.7 Performance evaluation

In this section, we assess the benefits of partial detectors and evaluate the performance im-
provement they can provide. Both Maple-based evaluations using the performance model and
realistic simulations using fault-injection are conducted. We consider four scenarios. In the
first scenario, we study the optimal algorithm using only a single detector type. In the sec-
ond scenario, we study the impact of the number of partial verifications on the overhead and
the optimal pattern length. The third scenario tackles applications with various datasets that
expose a range of recall values for each detector rather than a single value. Finally, in the
fourth scenario, we focus on the greedy algorithm and compare its performance with the opti-
mal solution that uses more than one type of partial detectors. The simulator code is available
for download at http://graal.ens-lyon.fr/~yrobert/two-level.zip, so that
interested readers can experiment with it and build relevant scenarios of their choice.

1.7.1 Simulation setup

We have chosen realistic parameters that depict a typical future exascale platform. The target
platform consists of 105 nodes whose individual MTBF is 100 years, which amounts to a plat-
form MTBF of µ = 31536 seconds (i.e., about 8.7 hours). The global size of the memory for
an exascale machine is expected to be between 32 PB and 64 PB; divided by the number of
nodes (105), the memory size per node goes from 320 GB to 640 GB. Most HPC applications
try to populate 90% of the node memory but only 10%− 50% of the memory is checkpointed.
That makes the checkpoint size between 30 GB and 300 GB. At exascale, most checkpoints
will be done in local non-volatile memory (NVM), which is known to be slower than DRAM.
We assume checkpoint throughput between 0.5 GB/s and 1 GB/s. While the results presented
in this chapter are based on these given parameters, we encourage the readers to validate the
model with different architecture characteristics.

Concerning the detectors, we assume that they have an almost perfect precision, otherwise
we would not use them, as shown in Section 1.5.2. Thus, the detectors will be configured to
adapt their prediction error in order to minimize the number of false positives (i.e., maximize
precision) at the cost of some recall. Previous studies [38] have shown that such configuration
can lead to different levels of recall depending on the prediction method and the dataset be-
havior. Nevertheless, this large study with over 20 different types of simulations showed some
trends in performance and efficacy, and we base our simulation parameters in those results. The
first detector D(1) has a throughput of about 200 MB/s/process and a recall of 0.5 [9, 11]. The
second one D(2) has a throughput of about 20 MB/s/process and a recall of 0.95 [15]. If we
assume 512 processes per node at exascale, then the node throughput of the detectors becomes
100 GB/s for D(1) and 10 GB/s for D(2). Finally, we assume a third detector D(3), which is
an optimized version that combines the features of the first two detectors, achieving a recall of
0.8 and a throughput of 50 GB/s. Concerning the perfect detector D∗, we assume a throughput
of 0.5 GB/s based on the fact that application-specific detectors are usually based on physical
properties such as mass or energy conservation, which requires global communications and is
therefore more expensive than purely local checks.

The simulator generates errors following an exponential distribution of parameter λ. An

http://graal.ens-lyon.fr/~yrobert/two-level.zip
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Table I
CHARACTERISTICS OF ALL DETECTOR TYPES AND THE PERFORMANCE OF THE OPTIMAL

PATTERN USING EACH DETECTOR TYPE ALONE.

D(1) D(2) D(3) D∗

Cost V (seconds) 3 30 6 600
Recall r 0.5 0.95 0.8 1
Accuracy-to-cost ratio φ 133 36 133 2
Predicted overhead H∗ 29.872% 31.798% 29.872% 39.014%
Optimal W ∗ (hours) 2.41 2.38 2.41 1.71
Optimal m∗ 33 6 17 0
Simulated overhead 30.313% 32.537% 30.743% 40.414%
Ave. # checkpoints (per day) 7.28 7.23 7.25 9.50
Ave. # recoveries (per day) 2.26 2.25 2.33 1.94

experiment goes as follows. We feed the simulator with the description of the platform consist-
ing of the parameters described above. For each pattern, we derive the (near) optimal pattern
by computing the pattern length W ∗, and the optimal number m∗ and positions α∗ of verifica-
tions, using the formulas from our model. The total amount of work for the application is then
set to that of 1000 optimal patterns, i.e., Wbase = 1000W ∗. The simulator runs each experiment
1000 times, and the simulated overhead is obtained by averaging the results from the 1000 runs.

1.7.2 Scenario 1: Performance of different detectors

In the first scenario, we study the optimal algorithm when using a single detector type. Three
detectors D(1), D(2) and D(3) are used separately, with respective costs and recall values V (1) =
3 seconds, V (2) = 30 seconds, V (3) = 6 seconds and r(1) = 0.5, r(2) = 0.95, r(3) = 0.8. The
checkpointing cost and the perfect detector cost with recall r∗ = 1 are fixed at C = V ∗ = 600
seconds.

Table I summarizes the characteristics of all detector types including the perfect detector,
and presents the predicted performance of the optimal pattern using each detector alone. Recall
that the accuracy-to-cost ratio is defined as φ(j) = a(j)

b(j)
, where a(j) = r(j)

2−r(j)
denotes the accu-

racy of the detector and b(j) = V (j)

V ∗+C
the relative cost. Thanks to the higher accuracy-to-cost

ratios, the use of partial verifications yields much better performance compared to the baseline
algorithm that uses only guaranteed verification. In particular, D(1) and D(3), which have the
highest accuracy-to-cost ratio, offer about 10% improvement in the execution overhead. This
translates to about 1 hour of saving for every 10 hours of execution, which is significant in
terms of cost and resource usage. The optimal pattern also employs a larger number m∗ of
partial verifications, due to their lower costs, so that checkpoints can be taken less frequently
(i.e., with a larger period W ∗).

It is interesting to observe, for D(1) and D(3), that the product of cost and frequency (num-
ber of verifications to use in a pattern) is roughly equal. Indeed, for detectors with the same
accuracy-to-cost ratio φ, our analysis shows that the cost-frequency product is in fact a constant,
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(a) (b)

Figure 1.2: Expected overhead (a) and optimal length (b) of a pattern against the number of
partial verifications when a single type of detector is used for three different detectors. The
costs and recalls of the three detectors are V (1) = 3 seconds, V (2) = 30 seconds, V (3) = 6
seconds, and r(1) = 0.5, r(2) = 0.95, r(3) = 0.8. The costs of checkpointing and guaranteed
verification are C = V ∗ = 600 seconds. The platform MTBF is µ = 31536 seconds.

and it is given by V m̄∗ = V
(
− 1

a
+
√

1
a

(
1
b
− 1

a

))
= (V ∗ + C)

(
− 1

φ
+

√
1
φ

(
1− 1

φ

))
.

To validate the predicted performance, we have simulated the execution of the optimal
patterns by injecting faults with the specified error rate. The last part of Table I shows the
simulation results, obtained by averaging the values over 1000 runs for the respective patterns.
We can see that the simulated overheads are within 1% of the predicted values for all patterns,
which demonstrates the high accuracy of first-order approximation to the performance model.
The results also confirm the low checkpointing frequency and high recovery rate of computing
patterns that employ partial verifications. Intuitively, a higher recovery rate means that more
errors are detected earlier in the execution. The results nicely corroborate the theoretical anal-
ysis, and demonstrate the benefit of using low-cost partial verifications for dealing with silent
errors.

Since the results for realistic simulations with fault injections are very close to the model’s
predictions, we will focus on studying the model in the following experiments.

1.7.3 Scenario 2: Impact of number of partial verifications

In the second scenario, we study the impact of the number of partial verifications on the execu-
tion overhead and pattern length of the optimal partial verification algoripartials:thm:

Figure 1.2 plots the overhead as well as the optimal pattern length as functions of the num-
ber of partial verifications m for each detector. The plots also show the overhead (≈ 39%) and
optimal pattern length (≈ 6156 seconds) of the baseline algorithm, represented by m = 0.
We can see that the expected overhead is reduced for all three detectors by employing par-
tial verifications. For each detector, the optimal overhead is attained for a particular value of
m, corroborating the theoretical study. After this point, it starts rising again due to the fact that
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forcing too many verifications will eventually cause the error-free overhead to increase. The
improvement in overhead over the baseline algorithm is 9% for detectors D(1) and D(3) (opti-
mal overhead for both is ≈ 30%), and 7% for detector D(2) (optimal overhead is ≈ 32%).

Also, the optimal pattern length increases as more partial verifications are employed inside
the pattern. This is because the use of intermediate verifications allows silent errors to be
detected earlier in the pattern and thus delays the checkpointing process. Interestingly, the
optimal pattern lengths of all three detectors are around 8600 seconds when their respective
optimal overheads are reached. This implies that an optimal pattern using partial verifications
delays the taking of each checkpoint by ≈ 40 minutes, which corresponds to a saving of ≈ 4
checkpoints/day over the baseline algoripartials:thm: Concerning the performance of detectors,
we can see that D(1) and D(3) are slightly better than D(2), due to their higher accuracy-to-
cost ratios. However, for m ≤ 2, D(2) is better due to its higher recall, while its performance
degrades as more D(2) detectors are employed due to its high cost.

1.7.4 Scenario 3: Impact of detector recall

In the third scenario, we consider applications with various datasets that expose a change in the
detection recall. Therefore, a range of recall values is possible for each detector rather than a
single value.

According to [8, 11], the recall ranges of the three detectors are r(1) = [0.5, 0.9], r(2) =
[0.75, 0.95], and r(3) = [0.8, 0.99], respectively. Given a dataset, we obtain a value of recall
for each detector within the range. This is because different datasets might expose different
levels of entropy and therefore the detectors might expose different prediction accuracies, hence
different recalls. Note that although the recall might be different for different datasets, the work
done, hence the detection cost, is the same. We rely upon four different metrics, namely,
optimal overhead, optimal pattern length, optimal number of verifications, and accuracy-to-
cost-ratio, to assess the impact of recall r on the optimal partial verification algoripartials:thm:

Figure 1.3 compares the performance of the three detectors through the four metrics when
there is a change in the detection recall for each detector in its recall range. The plots in Fig-
ure 1.3(a) show variations in the optimal overheads with increasing recall values. As expected,
the optimal overheads are reduced for all three detectors, since a higher recall value for the
same cost (and same number) of verification reduces the fault-induced re-execution cost (fre),
while keeping the fault-free overhead (off) constant, thus minimizes the product offfre (see Sec-
tion 1.5.1). This reduction in overhead can also be explained through the plots in Figure 1.3(d),
which show an increase in the accuracy-to-cost ratio of each detector with higher recall values.
The detectors D(1) and D(3) have the highest accuracy-to-cost ratio, and when used alone in-
side the pattern, produce the lowest optimal overheads for their respective recall ranges. This
substantiates the theoretical analysis of Lemma 8 in Section 1.6.1. The detector D(2), being an
expensive verification, has a much lower ratio and thus incurs a higher optimal overhead.

Figure 1.3(b) shows oscillations in the curves representing the optimal pattern length for
varying recall values. This can be understood by observing the plot in Figure 1.3(c), where the
optimal number of partial verifications m∗ for all three detectors follows a staircase function.
For example, the optimal m∗ for detector D(1) goes from 33 to 22 as the recall value increases
in the range. This is due to the fact that verifications with higher recalls (or accuracy-to-cost ra-



1.7. PERFORMANCE EVALUATION 33

(a) (b)

(c) (d)

Figure 1.3: Optimal overhead (a), optimal pattern length (b), optimal number of partial verifi-
cations (c), and accuracy-to-cost ratio (d) for three different detectors as functions of recall in
their respective recall ranges (r(1) = [0.5, 0.9], r(2) = [0.75, 0.95] and r(3) = [0.8, 0.99]).

tios) allow us to achieve lower optimal overhead (as in Figure 1.3(a)) with fewer verifications.
This step-wise reduction in the number of verifications leads to minor oscillations in the op-
timal pattern length. In particular, it is interesting to observe that in case of detector D(2), by
fixing its recall at r(2) = 0.94 and r(2) = 0.95, the optimal overheads are 31.83% and 31.79%
respectively, and the optimal pattern lengths are 8668 and 8490 seconds respectively. Thus,
approximately 3 minutes of more execution per pattern can be done by compromising 0.04%
of overhead. The reduction in the optimal pattern length for a higher recall value is due to a
decrement in m∗. Note that both oscillations and staircase effects would disappear if m∗ was
allowed to take rational values.

1.7.5 Scenario 4: Performance of greedy algorithm

Finally, in the last scenario, we focus on the greedy algorithm presented in Section 1.6.3 and
compare its performance with the optimal solution that uses more than one type of partial
detector with different datasets, while keeping the same values for C, V ∗ and µ.
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Table II
PERFORMANCE COMPARISON OF THE GREEDY ALGORITHM AND THE OPTIMAL SOLUTION. IN

ALL SCENARIOS, C = V ∗ = 600 SECONDS, V (1) = 3 SECONDS, V (3) = 6 SECONDS.

m overhead H diff. from opt.
Scenario 1: r(1) = 0.51, r(3) = 0.82, φ(1) ≈ 137, φ(3) ≈ 139
Optimal solution (1, 15) 29.828% 0%
Greedy with D(3) (0, 16) 29.829% 0.001%
Scenario 2: r(1) = 0.58, r(3) = 0.9, φ(1) ≈ 163, φ(3) ≈ 164
Optimal solution (1, 14) 29.659% 0%
Greedy with D(3) (0, 15) 29.661% 0.002%
Scenario 3: r(1) = 0.64, r(3) = 0.97, φ(1) ≈ 188, φ(3) ≈ 188
Optimal solution (1, 13) 29.523% 0%
Greedy with D(1) (27, 0) 29.524% 0.001%
Greedy with D(3) (0, 14) 29.525% 0.002%

As in the previous experiment, the recall of each detector is given a range of possible values,
and its actual value depends on the dataset. As shown in Figure 1.3(d), even with the recall
ranges, D(2) always has a lower accuracy-to-cost ratio compared to D(1) and D(3), which share
similar ratios. Table II presents three scenarios that we have identified, where a combination
of D(1) and D(3) constitutes the optimal pattern. In all these scenarios, the greedy algorithm,
which uses only the detector with the highest accuracy-to-cost ratio, performs within 0.002%
of the optimal solution. The results show that the greedy algorithm performs extremely well
under these practical settings, even though the optimal pattern may employ both D(1) and D(3)

in the solution.

1.8 Conclusion

In this chapter, we provided a comprehensive analysis of computing patterns that employ dif-
ferent types of partial verifications for detecting silent errors in HPC applications. We demon-
strated that detectors with imperfect precision should not be used in such computing patterns.
When considering detectors with imperfect recall, we showed that the optimization problem is
NP-complete in general, and we proposed both a greedy algorithm and an FPTAS for choosing
the number of detectors to be used, as well as their types and locations in the pattern. Extensive
simulations based on realistic detector settings showed that the greedy algorithm works well in
practice, and confirmed the usefulness of partial detectors to cope with silent errors in exascale
systems.



Chapter 2

Optimal Resilience Patterns with Fail-
Stop and Silent Errors

Based on the results obtained in Chapter 1, as well as in a preliminary analysis [W4, J3], this
chapter presents a unified framework and optimal algorithmic solutions addressing both fail-
stop and silent errors. Silent errors are handled via verification mechanisms (either partially or
fully accurate) and fast in-memory checkpoints. Fail-stop errors are processed via slower disk
checkpoints. All verification and checkpoint types are combined into computational patterns.
We provide a unified model, and a full characterization of the optimal pattern. Our results nicely
extend several published solutions, and demonstrate how to make use of different techniques
to solve the double threat of fail-stop and silent errors. Extensive simulations based on real
data confirm the accuracy of the model, and show that patterns that combine all resilience
mechanisms are required to provide acceptable overheads. The work in this chapter has been
published in the proceedings of the International Parallel & Distributed Processing Symposium
(IPDPS) [C2].

2.1 Introduction

While the detection of silent errors seriously complicates the design of resilience protocols, we
have already shed some light on the use of partial verifications in Chapter 1. In particular, we
have proven that the optimal pattern does not contain any imprecise detector, and that using
only the detector with the highest accuracy-to-cost-ratio is a good approximation in practice.
However, new problems arise when we consider both fail-stop and silent errors. On the one
hand, silent errors naturally call for fast in-memory checkpointing, because a local copy of the
data can still be used after corruption has been detected. On the other hand, fail-stop errors
require to store the checkpoints on remote stable storage (disks) because the whole memory
content can be lost when such a failure strikes. Granted, multi-level checkpointing protocols
have been designed for several years, but we face two major difficulties when combining fail-
stop and silent errors.

First, and to the best of our knowledge, the interplay of verification mechanisms with two
types of checkpoints, in-memory and disk-based, has never been investigated. Second, the
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inherent detection latency of silent errors renders the problem quite different from traditional
multi-level checkpointing, where each failure, regardless of its level, is detected immediately
upon striking. In this work, after some quite technically involved derivations, we provide the
optimal solution to the problem, either with guaranteed or with partial verifications.

Our approach to solving the double problem of fail-stop and silent errors is to partition the
execution of the application into periodic patterns, i.e., computational units that repeat over
time. Each pattern ends with a guaranteed verification, an in-memory checkpoint and a disk
checkpoint, so that errors do not propagate from a given pattern to the next one. Inside each pat-
tern, there are several segments, each ending with a guaranteed verification and an in-memory
checkpoint. In turn, each segment is partitioned into work chunks (possibly of different size)
that are separated by partial verifications. See Figure 2.2 for an example with three segments
and a total of six chunks. Several parameters should be given to fully characterize a pattern,
namely the number of segments, and the number and size of each chunk inside each segment.
The shape of a pattern is quite flexible, which enables us to provide the first model including
two levels of checkpoints.

The main objective is to design an optimal pattern. Informally, consider a pattern P that in-
cludes W units of work (the cumulated size of all the chunks within the pattern). Without
loss of generality, assume unit speed computation, so that we can speak of time or work in-
terchangeably. In the presence of fail-stop or silent errors, the expected execution time of
the pattern will be E(P): we have to take expectations, as the computation time is no longer
deterministic. Note that E(P) > W for two reasons: the time spent in checkpoints and veri-
fications, even if there is no error, and the time lost due to recovery and re-execution after an
error. An optimal pattern is defined as the one minimizing the ratio E(P)

W
, or equivalently the

ratio E(P)−W
W

= E(P)
W
− 1. This latter ratio is the relative overhead paid for executing the pattern.

The smaller this overhead, the faster the progress of the execution.
The main contributions of this work are the following:

• The design of a detailed model based upon the computational patterns described above
(see Section 2.2).

• The determination of the optimal pattern, first in some particular cases (one-chunk seg-
ments, one segment with multiple chunks), and then in the general case. The compre-
hensive list of results summarized in Table I extends and unifies many results from the
literature (see the discussion in Section 2.7).

• An extensive set of simulations that use data collected on real platforms, and extrapolate
them to exascale platforms. The results confirm the accuracy of the model, as long as
the MTBF is large enough in front of the resilience parameters. They also help assess
the impact of each resilience mechanism, and show that patterns that combine all mech-
anisms (partial and guaranteed verifications and two checkpoint types) are required to
provide acceptable overheads.

The rest of the chapter is organized as follows. Section 2.2 introduces the model and nota-
tion. The following sections show how to determine the optimal pattern. We start with the sim-
plest pattern (a single one-chunk segment) in Section 2.3, extending Young and Daly’s formula
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to two error sources. We discuss patterns with multiple one-chunk segments in Section 2.4.1,
patterns with one multiple-chunk segment in Section 2.4.2, and finally the most general pattern
in Section 2.4.3. Section 2.5 deals with errors during checkpoints and recoveries. Simulation
results are presented in Section 2.6. Section 2.7 surveys related work. Finally, Section 2.8 pro-
vides concluding remarks.

2.2 Model

2.2.1 Failure model

We consider a realistic scenario in large-scale systems, where hardware faults and silent data
corruptions coexist. They are commonly referred to as fail-stop errors and silent errors in the
literature. Since these two types of errors are caused by different sources, we assume that they
are independent and that both occurrences follow a Poisson process with arrival rates λf and
λs, respectively. Hence, the probability of having at least a fail-stop error during a computation
of length w is given by pf = 1 − e−λfw and the probability of having at least a silent error
during the same computation is ps = 1− e−λsw. We also assume that both error rates are in the
same order, i.e., λf = Θ(λ), and λs = Θ(λ), where λ = λf + λs = 1/µ denotes the reciprocal
of the platform MTBF µ while accounting for both types of failures.

2.2.2 Two-level checkpointing

To deal with both fail-stop and silent errors, resilience is provided through the use of a two-
level checkpointing scheme coupled with an error detection (or verification) mechanism. The
protocol is enforced by a periodic computing pattern as discussed in Section 2.1. When a fail-
stop error strikes inside a pattern, the computation is interrupted immediately due to a hardware
fault, so all the memory content is destroyed. In this case, we roll back to the beginning of
the pattern and recover from the last disk checkpoint (taken at the end of the previous pattern,
or the initial data for the first pattern). On the contrary, when a silent error is detected inside
a pattern, either by a partial verification or by a guaranteed one, we roll back to the nearest
memory checkpoint in the pattern and recover from the memory copy there, which is much
cheaper than recovering from the last disk checkpoint.

We enforce the following two properties for a pattern:

• A memory checkpoint is always taken immediately before each disk checkpoint. Since
performing an I/O operation requires first flushing the data to a memory buffer, this
process incurs little extra overhead and hence has a natural justification. Indeed, such
a property has been enforced in some practical multi-level checkpointing systems [12].
Similarly, when we recover from a disk checkpoint, we also restore the corresponding
memory copy, which was destroyed due to the last fail-stop error.

• A guaranteed verification is always executed immediately before each memory check-
point. Since storing a checkpoint can be expensive even for the memory, this property
guarantees that all (memory and disk) checkpoints are valid, and hence avoids the need of
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maintaining multiple checkpoints, which is known to be difficult to recover from (one has
to decide which checkpoint is valid, etc.). With this property, only one memory check-
point and one disk checkpoint need to be maintained at any time during the execution of
the application.

To simplify the analysis, we assume in Sections 2.3 and 2.4 that errors only strike the
computations, while verifications, memory copies, and I/O transfers are protected from failures.
In Section 2.5, we show how this assumption can be relaxed in the analysis.

2.2.3 Notation

Let CD denote the cost of disk checkpointing, CM the cost of memory checkpointing, RD the
cost of disk recovery, and RM the cost of memory recovery. Recall that when a disk recovery
is done, we also need to restore the memory state, hence a cost RD +RM is paid.

Also, let V ∗ denote the cost of guaranteed verification and V the cost of a partial verifi-
cation. The partial verification is also characterized by its recall, which is denoted by r and
represents the proportion of detected errors over all silent errors that have occurred during the
execution. If multiple partial verifications are available, Chapter 1 suggests to use the one with
the largest accuracy-to-cost ratio, which is defined as r

2−r
/ V
V ∗+CM

. Note that the guaranteed
verification can be considered as one with recall r∗ = 1 and hence an accuracy-to-cost ratio
CM

V ∗ + 1. Since a partial verification usually incurs a much smaller cost yet has a reasonable
recall, its accuracy-to-cost ratio can be orders of magnitude (e.g., 100x) better than that of the
guaranteed verification [10, 15]. This characteristic makes partial verification a highly attrac-
tive technique for detecting silent errors. Hence, we make use of partial verifications between
memory checkpoints in the pattern.

For clarity, we refer to the computation between any two consecutive memory checkpoints
as a segment, and refer to the computation between two consecutive verifications as a chunk.
Formally, a pattern P(W,n,α,m, 〈β1, . . . ,βn〉) is defined by the following parameters:

• W : total amount of computation (or work) of the pattern.

• n: number of memory checkpoints inside the pattern (also number of computational
segments within the pattern).

• α = [α1, α2, . . . , αn]: proportion of the segment sizes, i.e., αi = wi/W , where wi

denotes the amount of work in the i-th segment of the pattern. Hence, we have
∑n

i=1 αi =
1.

• m = [m1,m2, . . . ,mn]: number of verifications inside each segment of the pattern (also
number of chunks in that segment).

• βi = [βi,1, βi,2, . . . , βi,mi
] ∀i = 1, 2, . . . , n: proportion of the chunk sizes in the seg-

ments, i.e., βi,j = wi,j/wi, where wi,j denotes the amount of work in the j-th chunk of
the i-th segment of the pattern. Hence, we have

∑mi

j=1 βi,j = 1 for all i = 1, 2, . . . , n.
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The simplest pattern is illustrated in Figure 2.1, and consists of a single segment (n =
1, W = w1) , which comprises a single chunk (m = [1]). By construction, this chunk is
followed by a guaranteed verification, followed immediately by a memory checkpoint and a
disk checkpoint. With our notations, this pattern is denoted as P(W, 1, [1], [1], 〈[1]〉), or PD

(only disk checkpoints, which are always preceded by a guaranteed verification and a memory
checkpoint).

V ∗ CM CD W V ∗ CM CD

Time

Pattern

Figure 2.1: Pattern PD = P(W, 1, [1], [1], 〈[1]〉).

Figure 2.2 shows a more complicated pattern, with three segments. The first segment has
three chunks, the second segment has one chunk, and the third segment has two chunks. There-
fore, if a silent error is detected by the guaranteed verification at the end of the second segment,
it is possible to recover from the memory checkpoint preceding it, rather than starting the whole
pattern again. Additionally, silent errors may be detected earlier in the first and third segment
thanks to the additional partial verifications.

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

Time1st segment 2nd segment 3rd segment

Figure 2.2: Pattern with three segments and six chunks.

2.2.4 Objective

The objective is to find a pattern that minimizes the expected execution time of the applica-
tion. As in Chapter 1 (Section 1.3), let Wbase denote the base execution time of an appli-
cation without any overhead due to resilience techniques (without loss of generality, we as-
sume unit-speed execution). Suppose the execution is divided into periodic patterns, defined
by P(W,n,α,m, 〈β1, . . . ,βn〉). Let E(P) be the expected execution time of the pattern. For
large jobs, the expected makespan Wfinal of the application when taking failures into account
can then be approximated by:

Wfinal ≈
E(P)
W
×Wbase.

Now, define H(P) = E(P)
W
− 1 to be the expected overhead of the pattern. We obtain Wfinal ≈

Wbase + H(P) ×Wbase. Thus, minimizing the expected makespan is equivalent to minimizing
the pattern overhead H(P). Hence, we will focus on minimizing the pattern overhead in this
chapter.
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2.3 Revisiting Young and Daly

In this section, we revisit Young [97] and Daly [36] on computing the best periodic checkpoint-
ing interval, and extend their formula to include both fail-stop and silent errors. The result on
the order of the optimal interval and the observations established in this case will pave the way
for the subsequent analysis on more advanced patterns.

2.3.1 Optimal disk checkpointing interval
The classical formula by Young and Daly gives the optimal disk checkpointing interval without
considering silent errors, thus does not include verification and memory checkpoints in the pat-
tern. To cope with both fail-stop and silent errors, we analyze the pattern PD = P(W, 1, [1], [1], 〈[1]〉),
which contains one single segment with a unique chunk followed by a guaranteed verification,
a memory checkpoint and a disk checkpoint (see Figure 2.1).

Obviously, the only parameter to determine is the work length W , which is also referred
to as the checkpointing period by Young/Daly [36, 97]. The following proposition shows the
expected execution time of a pattern with a fixed work length.

Proposition 2. The expected execution time of a given pattern P(W, 1, [1], [1], 〈[1]〉) is

E(P) = W + V ∗ + CM + CD +

(
λs +

λf

2

)
W 2

+ λsW (V ∗ +RM) + λfW (RM +RD) +O(λ2W 3) . (2.1)

Proof. Let pf = 1− e−λfW and ps = 1− e−λsW denote the probabilities of having at least one
fail-stop error and at least one silent error, respectively, in the pattern. The expected execution
time can be expressed using the following recursive formula:

E(P) = pf
(
E(T lost) +RD +RM + E(P)

)
+ (1− pf )

(
W + V ∗ + ps(RM + E(P))
+ (1− ps)(CM + CD)

)
, (2.2)

where E(T lost) denotes the expected time loss during the execution of the pattern if a fail-stop
error strikes. Equation (2.2) can be interpreted as follows: if a fail-stop error occurs, we lose
E(T lost) time, perform a recovery from both disk and memory, and then re-execute the pattern
(Line 1). If no fail-stop error strikes during the execution, we run the guaranteed verification
to detect silent errors, which if indeed occurred involves a memory recovery only followed by
a re-execution (Line 2). Otherwise, if no silent error strikes either, we can proceed with the
memory and disk checkpointing (Line 3).

To derive the expected execution time, we need to compute E(T lost), which can be expressed
as follows:

E(T lost) =

∫ ∞

0

xP(X = x|X < W )dx

=
1

P(X < W )

∫ W

0

xP(X = x)dx ,
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where P(X = x) denotes the probability that a fail-stop error strikes at time x. By definition,
we have P(X = x) = λfe

−λfx and P(X < W ) = 1− e−λfW . Integrating by parts, we get

E(T lost) =
1

λf

− W

eλfW − 1
. (2.3)

Now, substituting Equation (2.3) into Equation (2.2) and simplifying, we obtain

E(P) =
e(λf+λs)W − eλsW

λf

+ eλsW · V ∗ + CD + CM

+
(
e(λf+λs)W − eλsW

)
RD +

(
e(λf+λs)W − 1

)
RM .

By approximating eλx = 1 + λx + λ2x2

2
up to the second-order term, we can further simplify

the expected execution time, which turns out to be given by Equation (2.1).

Theorem 5. A first-order approximation to the optimal work length in pattern P(W, 1, [1], [1], 〈[1]〉)
is given by

W ∗ =

√
V ∗ + CM + CD

λs +
λf

2

. (2.4)

The optimal expected overhead is

H∗(P) = 2

√(
λs +

λf

2

)
(V ∗ + CM + CD) +O(λ) . (2.5)

Proof. From the result of Proposition 2, the expected overhead of the pattern can be computed
as

H(P) =
V ∗ + CM + CD

W
+

(
λs +

λf

2

)
W

+ λs(V
∗ +RM) + λf (RM +RD) +O(λ2W 2) . (2.6)

Assume that the platform MTBF µ = 1/λ is large in front of the resilience parameters. Then
consider the first two terms of H(P) (Line 1 of Equation (2.6)): the overhead is minimal when
the pattern has length W = Θ(λ−1/2), and in that case both terms are of order Θ(λ1/2), so that
we have

H(P) = Θ(λ1/2) +O(λ).

Indeed, the last term O(λ2W 2) becomes also negligible compared to Θ(λ1/2). Hence, the op-
timal pattern length W ∗ can be obtained by balancing the first two terms in the above expres-
sion, which gives Equation (2.4). Then, by substituting W ∗ back into H(P), we get the optimal
expected overhead as shown by Equation (2.5).

Remarks. When only fail-stop errors exist, there is no need to perform verification and
memory checkpointing: we retrieve the classical formula by Young [97] and Daly[36], which
is given by W ∗ =

√
2CD/λf . When there are only silent errors, we do not need to perform

disk checkpointing, and the optimal work length is given by W ∗ =
√
(V ∗ + CM)/λs.
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2.3.2 Observations

First, we observe from Theorem 5 that the optimal work length W ∗ of a pattern is in the order
of Θ

(
λ−1/2

)
and the optimal overhead H∗(P) is in the order of Θ(λ1/2). This allows us to

express the expected execution overhead of a pattern in the following general form:

H(P) =
oef

W
+ orwW +O(λ) , (2.7)

where oef and orw are two key parameters that characterize two different types of overheads in
the execution, and they are defined below.

Definition 3. For a given pattern, oef denotes the error-free overhead due to the resilience
operations (e.g., verification, checkpointing), and orw denotes the re-executed work overhead,
in terms of the fraction of re-executed work due to errors.

In the simple pattern P(W, 1, [1], [1], 〈[1]〉) analyzed above, these two overheads are given
by oef = V ∗ + CM + CD and orw = λs +

λf

2
, respectively.

Therefore, from Equation (2.7), the optimal pattern length and the optimal expected over-
head can be expressed as

W ∗ =

√
oef

orw
, (2.8)

H∗(P) = 2
√
oef × orw +O(λ) . (2.9)

We can see that minimizing the expected execution overhead H(P) of a pattern becomes
equivalent to minimizing the product oef × orw up to the dominating term, which is coherent
with Chapter 1 (Section 1.5.3). Intuitively, including more resilience operators reduces the re-
executed work overhead but adversely increases the error-free overhead, and vice versa. This
requires a resilience protocol that finds the optimal tradeoff between oef and orw. We will make
use of this observation in the next section to derive the optimal patterns in more complicated
protocols.

2.4 Optimal patterns

In this section, we derive the optimal pattern that involves two levels of checkpointing coupled
with verifications. We start with simpler patterns that do not contain any intermediate verifica-
tion nor memory checkpoint, and then move on to settle the complete full pattern.

2.4.1 Pattern PDM = P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉)
We first consider a pattern that contains multiple segments, but each segment has only one
chunk. In other words, the protocol performs multiple memory checkpoints between two disk
checkpoints but without any intermediate verification. Figure 2.3 depicts the pattern PDM in
this protocol.
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V ∗ CM CD w1 V ∗ CM w2 V ∗ CM V ∗ CM wn V ∗ CM CD

Time

· · ·

Figure 2.3: Pattern PDM = P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉).

The goal is to determine the pattern work length W , the number of memory checkpoints n,
and the relative lengths of the segments α inside the pattern. The following proposition shows
the expected execution time of a pattern when these parameters are fixed.

Proposition 3. The expected execution time of a given pattern P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉)
is

E(P) = W + n(V ∗ + CM) + CD

+

(
λs

n∑
i=1

α2
i +

λf

2

)
W 2 +O(

√
λ) . (2.10)

Proof. Define Ei as the expected time to execute the i-th segment of the pattern up to the
memory checkpoint at the end of the segment. We first show the following result on Ei:

Ei = wi + V ∗ + CM + λsw
2
i + λf

(
w2

i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) ,

where wi = αiW denotes the work length of the i-th segment.
We prove the above claim by induction on i. For the base case, the problem is reduced to

the simple pattern shown in Section 2.3.1, except that there is no disk checkpoint. Since we
know from Theorem 5 that the work length of a pattern is in the order of Θ

(
λ−1/2

)
, we get the

following result from Proposition 2:

E1 = w1 + V ∗ + CM + λsw
2
1 +

λf

2
w2

1 +O(
√
λ) .

Suppose the claim holds up to Ei−1. Then, Ei can be expressed recursively as follows:

Ei = pfi

(
E(T lost

i ) +RD +RM +
i−1∑
k=1

Ek + Ei

)
+ (1− pfi )

(
wi + V ∗ + psi (RM + Ei) + (1− psi )CM

)
,

where E(T lost
i ) denotes the expected time loss during the execution of segment i when a fail-

stop error strikes, which according to Equation (2.3) is given by E(T lost
i ) = 1

λf
− wi

e
λfwi−1

, and

pfi and psi denote the probabilities of having at least one fail-stop error and at least one silent
error in segment i, respectively. By following the reasoning of the proof of Proposition 2, we



44
CHAPTER 2. OPTIMAL RESILIENCE PATTERNS WITH FAIL-STOP AND SILENT

ERRORS

obtain:

Ei = wi + V ∗ + CM + λsw
2
i +

λf

2
w2

i + λfwi

i−1∑
k=1

Ek +O(
√
λ)

= wi + V ∗ + CM + λsw
2
i +

λf

2
w2

i + λfwi

i−1∑
k=1

(wk +O(1)) +O(
√
λ)

= wi + V ∗ + CM + λsw
2
i + λf

(
w2

i

2
+ (

i−1∑
k=1

wk)wi

)
+O(

√
λ) .

Now, we compute the expected execution time of the pattern by summing up all the Ei’s as
follows:

E(P) =
n∑

i=1

Ei + CD

=
n∑

i=1

wi + n(V ∗ + CM) + CD

+ λs

n∑
i=1

w2
i + λf

n∑
i=1

(
w2

i

2
+ (

i−1∑
k=1

wk)wi

)
+O(

√
λ)

= W + n(V ∗ + CM) + CD

+

(
λs

n∑
i=1

α2
i +

λf

2

)
W 2 +O(

√
λ) ,

since
∑n

i=1

(
w2

i + 2(
∑i−1

k=1wk)wi

)
= (
∑n

i=1wi)
2
= W 2.

Theorem 6. A first-order approximation to the optimal parameters in pattern
P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉) is given by

α∗
i =

1

n∗ for 1 ≤ i ≤ n∗ , (2.11)

W ∗ =

√
n∗(V ∗ + CM) + CD

λs

n∗ +
λf

2

, (2.12)

and n∗ is either max(1, bn̄∗c) or dn̄∗e, where

n̄∗ =

√
2λs

λf

· CD

V ∗ + CM

. (2.13)

The optimal expected overhead is

H∗(P) = 2
√

λs(V ∗ + CM) +
√

2λfCD +O(λ) . (2.14)
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Proof. Given the number of segments n and subject to
∑n

i=1 αi = 1, we know that
∑n

i=1 α
2
i is

minimized when αi =
1
n

for all 1 ≤ i ≤ n. Hence, we can derive the two types of overheads
from Proposition 3 as follows:

oef = n(V ∗ + CM) + CD ,

orw =
λs

n
+

λf

2
.

For a given n, the optimal work length W ∗ =
√

oef
orw

is therefore given by Equation (2.12).

Now, minimizing F (n) = oef × orw = (n(V ∗ + CM) + CD)
(

λs

n
+

λf

2

)
, we get the optimal

value of n̄∗ as shown in Equation (2.13). Since the number of segments can only be a positive
integer, and F (n) is a convex function of n, the optimal integer solution is either max(1, bn̄∗c)
or dn̄∗e, whichever one leads to a smaller value of F (n). Substituting Equation (2.13) back
into H∗(P) = 2

√
oef × orw, we obtain the optimal expected overhead as shown in Equation

(2.14).

Remarks. We can see why the analysis conducted here is different from multi-level check-
pointing with two levels of fail-stop errors. In the latter case, one has to make a case study
depending on which error type strikes first, while in our case, silent errors do not interrupt the
execution and are detected at the end of the segments.

2.4.2 Pattern PDV = P(W, 1, [1], [m], 〈β〉)
We now consider a pattern that contains only one segment, which has multiple chunks in it.
Each chunk ends with a partial verification, except the last one, which ends with a guaranteed
verification followed by a memory checkpoint and a disk checkpoint. Figure 2.4 depicts the
pattern PDV in this protocol.

For simplicity, let m (instead of m1) denote the number of chunks in the pattern, and let wj

(instead of w1,j) denote the length of the j-th chunk for 1 ≤ j ≤ m. We define βj = wj/W .
The goal is to determine the pattern work length W , the number of chunks m as well as their
relative lengths β.

V ∗ CM CD w1 V w2 V V wm V ∗ CM CD

Time

· · ·

Figure 2.4: Pattern PDV = P(W, 1, [1], [m], 〈β〉).

Proposition 4. The expected execution time of a given pattern P(W, 1, [1], [m], 〈β〉) is

E(P) = W + (m− 1)V + V ∗ + CM + CD

+

(
λsβ

TAβ +
λf

2

)
W 2 +O(

√
λ) , (2.15)
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where A is an m×m symmetric matrix defined by

Ai,j =
1

2

(
1 + (1− r)|i−j|) , (2.16)

for all 1 ≤ i, j ≤ m.

Proof. We first define some notations to be used in the proof. Let pfj = 1 − e−λfwj and
psj = 1 − e−λswj denote the probabilities of having at least one fail-stop error and at least
one silent error in chunk j, respectively. Let Vj denote the cost of the verification right after
chunk j, so we have Vj = V for 1 ≤ j ≤ m − 1 and Vm = V ∗. Finally, let E(T lost

j ) denote
the expected time loss during the execution of chunk j if a fail-stop error strikes in this chunk.
Based on Equation (2.3), we have E(T lost

j ) = 1
λf
− wj

e
λfwj−1

.
To derive the expected execution time of the pattern, we need to know the probability

that chunk j actually gets executed in the current attempt. Let qj denote this probability; we
compute it as follows. The first chunk is always executed, so we have q1 = 1. Consider the
second chunk, which is executed when there is no fail-stop error and no silent error in the first
chunk. However, for silent errors that did occur in the first chunk, the partial verification V1

may have missed them with probability 1−r. In this case, the second chunk also gets executed.
Hence, we have q2 = (1− pf1)

(
(1− ps1) + ps1(1− r)

)
. In general, the probability that the j-th

chunk gets executed can be written as:

qj =

(
j−1∏
k=1

(1− pfk)

)(
j−1∏
k=1

(1− psk) + gj

)
,

where gj denotes the probability that silent errors actually occurred before chunk j, but have
been missed by all the partial verifications up to Vj−1, thus enabling chunk j to be executed.
By enumerating all possible locations where silent errors could strike, we can express gj as:

gj =

j−1∑
`=1

(
`−1∏
k=1

(1− psk)

)
ps`(1− r)j−` .

Now, we are ready to compute the expected execution time of the pattern. The following
gives the recursive expression:

E(P) =

(
m∏
k=1

(1− pfk)(1− psk)

)
(CM + CD)

+

(
1−

m∏
k=1

(1− pfk)(1− psk)

)
(RM + E(P))

+
m∑
j=1

qj

(
pfj
(
E(T lost

j ) +RD

)
+ (1− pfj )(wj + Vj)

)
. (2.17)

Specifically, Line 1 of Equation (2.17) shows that the memory and disk checkpoints at the
end of the pattern are performed only when neither fail-stop nor silent error has occurred in
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all chunks. Under all the other cases, we need to re-execute the pattern as shown in Line 2.
Regardless of the type of error that triggered the re-execution, we always need to restore the
memory checkpoint. Finally, Line 3 shows the condition for each chunk j to be executed. The
execution of the chunk is either completed or interrupted by a fail-stop error, in which case we
lose E(T lost

j ) time and need to additionally restore the disk checkpoint.
By simplifying Equation (2.17) and approximating the expression up to the second-order

term, as in the proofs of Propositions 2 and 3, we obtain

E(P) = W + (m− 1)V + V ∗ + CM + CD

+ λsfW
2 +

λf

2
W 2 +O(

√
λ) ,

where f =
∑m

j=1 βj

(∑j−1
k=1 βk(1− r)j−k +

∑m
k=j βk

)
, and it can be concisely written as f =

βTMβ, where M is the m×m matrix given by

Mi,j =

{
1 for i ≤ j

(1− r)i−j for i > j
.

By replacing M by A = M+MT

2
, which does not affect the value of f , we obtain the symmetric

matrix A in Equation (2.16) and the expected execution time in Equation (2.15).

Theorem 7. A first-order approximation to the optimal parameters in pattern P(W, 1, [1], [m], 〈β〉)
is given by

β∗
j =

{
1

(m∗−2)r+2
for j = 1,m∗

r
(m∗−2)r+2

for 2 ≤ j ≤ m∗ − 1
, (2.18)

W ∗ =

√√√√(m∗ − 1)V + V ∗ + CM + CD

1
2

(
1 + 2−r

(m∗−2)r+2

)
λs +

λf

2

, (2.19)

and m∗ is either max(1, bm̄∗c) or dm̄∗e, where

m̄∗ = 2− 2

r
+

√
λs

λs+λf

2−r
r

(
V ∗+CM+CD

V
− 2−r

r

)
. (2.20)

The optimal expected overhead is

H∗(P) =

√
2(λs + λf )

(
V ∗ − 2−r

r
V +CM+CD

)
+

√
2λs

2− r

r
V +O(λ) . (2.21)

Proof. Given the number of chunks m and subject to
∑m

j=1 βj = 1, it has been shown in
Chapter 1 (Section 1.5.4) that function f = βTAβ is minimized when β follows Equation
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(2.18), and its minimum value is given by f ∗ = 1
2

(
1 + 2−r

(m−2)r+2

)
. From Proposition 3, we can

derive the two types of overheads as follows:

oef = (m− 1)V + V ∗ + CM + CD ,

orw =
1

2

(
1 +

2− r

(m− 2)r + 2

)
λs +

λf

2
.

The optimal work length W ∗ =
√

oef
orw

for any fixed m is thus given by Equation (2.19). The

optimal number of chunks m̄∗ shown in Equation (2.20) is obtained by minimizing F (m) =

oef × orw = 1
2

(
(m − 1)V + V ∗ + CM + CD

) ((
1 + 2−r

(m−2)r+2

)
λs + λf

)
. Again, the number

of chunks in a pattern can only be a positive integer, so m∗ is either max(1, bm̄∗c) or dm̄∗e,
since F (m) is a convex function of m. Finally, substituting Equation (2.20) back into H∗(P) =
2
√
oef × orw gives rise to the optimal expected overhead as shown in Equation (2.21).

Remarks. When only guaranteed verification is used, the optimal pattern contains equal-
length chunks. In this case, the pattern is denoted PDV ∗ , and we have:

β∗
j =

1

m∗ for 1 ≤ j ≤ m∗ ,

W ∗ =

√
m∗V ∗ + CM + CD

1
2

(
1 + 1

m∗

)
λs +

λf

2

,

m̄∗ =

√
λs

λs + λf

· CM + CD

V ∗ ,

H∗(P) =
√
2(λs + λf ) (CM + CD) +

√
2λsV +O(λ) .

2.4.3 Pattern PDMV = P(W,n,α,m, 〈β1, . . . ,βn〉)
Finally, we consider the complete pattern that contains multiple segments, each of which has
multiple chunks. This represents the general two-level checkpointing protocol with intermedi-
ate verifications for silent error detection. Figure 2.4 depicts the pattern in this protocol.

V ∗ CM CD V V V ∗ CM V ∗ CM V V V ∗ CM CD

Timew1,1 w1,m1
wn,1 wn,mn

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2.5: Pattern PDMV = P(W,n,α,m, 〈β1, . . . ,βn〉).

The goal is to determine all the parameters of the pattern. Again, we first derive the expected
execution time of a pattern when all parameters are fixed.
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Proposition 5. The expected execution time of a given pattern P(W,n,α,m, 〈β1, . . . ,βn〉) is

E(P) = W +
n∑

i=1

(mi − 1)V + n(V ∗ + CM) + CD

+

(
λs

n∑
i=1

βT
i A

(mi)βi · α2
i +

λf

2

)
W 2 +O(

√
λ) , (2.22)

where A(m) denotes an m × m symmetric matrix1 defined by A
(m)
i,j = 1

2

(
1 + (1− r)|i−j|) for

all 1 ≤ i, j ≤ m.

Proof. Define Ei to be the expected execution time of the i-th segment up to the memory
checkpoint at the end of the segment. We first show the following result:

Ei = wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)βi · w2
i

+ λf

(
w2

i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) .

The proof combines the techniques from those of Propositions 3 and 4. Specifically, as in
the proof of Proposition 3, we go by induction on i. The base case is equivalent to the pattern
P(W, 1, [1], [m], 〈β〉) analyzed in Section 2.4.2, except that there is no disk checkpoint at the
end of the segment. Hence, from Proposition 4, we get

E1 = w1 + (m1 − 1)V + V ∗ + CM

+ λsβ
T
1A

(m1)β1 · w2
1 +

λf

2
w2

1 +O(
√
λ) .

Suppose the claim holds up to Ei−1. Then, by following the proof of Proposition 4, in
particular, Equation (2.17), we can express Ei recursively as follows:

Ei =

(
mi∏
j=1

(1− pfi,j)(1− psi,j)

)
CM

+

(
1−

mi∏
j=1

(1− pfi,j)(1− psi,j)

)
(RM + Ei)

+

mi∑
j=1

qi,j

(
pfi,j

(
E(T lost

i,j )+RD+
i−1∑
k=1

Ek

)
+(1−pfi,j)(wi,j+Vi,j)

)
, (2.23)

where qi,j denotes the probability that the j-th chunk of the i-th segment gets executed, and it
is given by

qi,j =

(
j−1∏
k=1

(1− pfi,k)

)(
j−1∏
k=1

(1− psi,k) + gi,j

)
,

1Matrices A(m) only differ in their dimensions; they have the same components.
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with

gi,j =

j−1∑
`=1

(
`−1∏
k=1

(1− psi,k)

)
psi,`(1− r)j−` .

We point out two differences between Equations (2.17) and (2.23). First, we do not need to
perform a disk checkpoint when there is no error in segment i (Line 1). Second, if a fail-stop
error occurred in the j-th chunk, we need to additionally re-execute all the segments before i
(Line 3). Simplifying and approximating Equation (2.23) as in the proof of Proposition 4, we
get:

Ei = wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)βi · w2
i

+
λf

2
w2

i + λfwi

i−1∑
k=1

Ek +O(
√
λ)

= wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)βi · w2
i

+
λf

2
w2

i + λfwi

i−1∑
k=1

(wk +O(1)) +O(
√
λ)

= wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)βi · w2
i

+ λf

(
w2

i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) .

Now, we can compute the expected execution time of the pattern by summing up all the
Ei’s as follows:

E(P) =
n∑

i=1

Ei + CD

=
n∑

i=1

wi +
n∑

i=1

(mi − 1)V + n(V ∗ + CM) + CD

+ λs

n∑
i=1

βT
i A

(mi)βi · w2
i + λf

n∑
i=1

(
w2

i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ)

= W +
n∑

i=1

(mi − 1)V + n(V ∗ + CM) + CD

+

(
λs

n∑
i=1

βT
i A

(mi)βi · α2
i +

λf

2

)
W 2 +O(

√
λ) .

This completes the proof of the proposition.
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Theorem 8. A first-order approximation to the optimal parameters in pattern
P(W,n,α,m, 〈β1, . . . ,βn〉) is given by

α∗
i =

1

n∗ for i = 1 . . . n∗ , (2.24)

β∗
i,j =

{
1

(m∗
i−2)r+2

for 1 ≤ i ≤ n∗, j = 1,m∗
i

r
(m∗

i−2)r+2
for 1 ≤ i ≤ n∗, 2 ≤ j ≤ m∗

i − 1
, (2.25)

W ∗ =

√√√√n∗(m∗ − 1)V + n∗(V ∗ + CM) + CD

1
2

(
1 + 2−r

(m∗−2)r+2

)
λs

n∗ +
λf

2

, (2.26)

and n∗ is either max(1, bn̄∗c) or dn̄∗e, and m∗
i is either max(1, bm̄∗c) or dm̄∗e for all 1 ≤ i ≤

n∗, where

n̄∗ =

√
λs

λf

· CD

V ∗ − 2−r
r
V + CM

, (2.27)

m̄∗ = 2− 2

r
+

√
2− r

r

(
V ∗ + CM

V
− 2− r

r

)
. (2.28)

The optimal expected overhead is

H∗(P) =
√

2λfCD +

√
2λs

(
V ∗ − 2− r

r
V + CM

)
+

√
2λs

2− r

r
V +O(λ) . (2.29)

Proof. For any given n and m, we perform a series of optimizations on the expected execu-
tion time shown in Equation (2.22). First, minimizing function fi = βT

i A
(mi)βi subject to∑mi

j=1 βi,j = 1 (as in the proof of Theorem 7), we get f ∗
i = 1

2

(
1 + 2−r

(mi−2)r+2

)
, obtained when

β∗
i satisfies Equation (2.25). Next, minimizing h =

∑n
i=1 f

∗
i α

2
i subject to

∑n
i=1 αi = 1, we get

h∗ = 1∑n
i=1 1/f

∗
i

, which is obtained at α∗
i =

1/f∗
i∑n

k=1 1/f
∗
k

. Finally, subject to
∑n

i=1mi = nm, where
m is the average number of chunks per segment,

∑n
i=1 1/f

∗
i is maximized when mi = m for

all 1 ≤ i ≤ n. This means that α∗ satisfies Equation (2.24) and the minimum value of h∗ is
given by h∗ = 1

2n

(
1 + 2−r

(m−2)r+2

)
.

Hence, we can write the two types of overheads as follows:

oef = n(m− 1)V + n(V ∗ + CM) + CD ,

orw =
1

2

(
1 +

2− r

(m− 2)r + 2

)
λs

n
+

λf

2
.

The optimal work length W ∗ =
√

oef
orw

for any fixed n and m is thus given by Equation (2.26).
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Now, we need to find values for n and m that minimize the function F (n,m) = oef× orw =
1
2

(
n(m − 1)V + n(V ∗ + CM) + CD

) ((
1 + 2−r

(m−2)r+2

)
λs

n
+ λf

)
. For the solution (n̄∗, m̄∗)

given in Equations (2.27) and (2.28), we can verify that

∂F (n̄∗, m̄∗)

∂n
= 0 ,

∂F (n̄∗, m̄∗)

∂m
= 0 ,

and moreover

∂2F (n̄∗, m̄∗)

∂n2
> 0 ,

∂2F (n̄∗, m̄∗)

∂n2
· ∂

2F (n̄∗, m̄∗)

∂n2
−
(
∂2F (n̄∗, m̄∗)

∂n∂m

)2

> 0 ,

which shows that (n̄∗, m̄∗) is indeed a global minimum of F (n,m). Since the number of
segments and number of chunks per segment can only be positive integers, and F (n,m) is a
convex function, the optimal integer solution is one of the four integer combinations around the
optimal rational solution.

Finally, substituting Equations (2.27) and (2.28) into H∗(P) = 2
√
oef × orw and simplify-

ing, we get the optimal expected overhead as shown in Equation (2.29).

Remarks Theorem 8 shows that the optimal pattern has identical segments (same size and
identical number and sizes of chunks). However, inside each segment, chunks do not necessar-
ily have the same size. With partial verifications, the first and last chunk in each segment are
larger than the other ones.

When only guaranteed verifications are used, all chunks in a segment (and hence in the
whole pattern) have the same length. In this case, the pattern is denoted PDMV ∗ and we have:

α∗
i =

1

n∗ for 1 ≤ i ≤ n∗ ,

β∗
i,j =

1

m∗ for 1 ≤ i ≤ n∗, 1 ≤ j ≤ m∗ ,

W ∗ =

√
n∗m∗V ∗ + n∗CM + CD

1
2

(
1 + 1

m∗

)
λs

n∗ +
λf

2

,

n̄∗ =

√
λs

λf

CD

CM

,

m̄∗ =

√
CM

V ∗ ,

H∗(P) =
√

2λfCD +
√

2λsCM +
√
2λsV ∗ +O(λ) .
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2.4.4 Summary of results
Table I summarizes the results. PD, PDV ∗ and PDV are patterns with only one level of check-
pointing, i.e., we always perform the memory checkpoint just before the disk checkpoint. PDV ∗

adds extra guaranteed verifications between two disk checkpoints, while PDV adds partial veri-
fications. Similarly, PDM , PDMV ∗ and PDMV correspond to two-levels checkpointing patterns,
with extra guaranteed verifications for PDMV ∗ and partial verifications for PDMV .

We report in each case the optimal pattern length W ∗, the optimal overhead H(P), the
optimal number of memory checkpoints n∗ for the two-level checkpointing patterns, and the
optimal number of verifications m∗ within a segment when additional verifications are added.

Table I
THE SIX OPTIMAL PATTERNS. PD , PDV ∗ AND PDV HAVE ONLY ONE LEVEL OF CHECKPOINTING,

WHILE PDM , PDMV ∗ AND PDMV HAVE TWO LEVELS. THE TABLE REPORTS THE OPTIMAL

PATTERN LENGTH W ∗, THE OPTIMAL OVERHEAD H∗(P) (IGNORING LOWER-ORDER TERMS), THE

OPTIMAL NUMBER OF MEMORY CHECKPOINTS n∗ FOR THE TWO-LEVEL CHECKPOINTING

PATTERNS, AND THE OPTIMAL NUMBER OF VERIFICATIONS m∗ WITHIN A SEGMENT WHEN

ADDITIONAL VERIFICATIONS ARE ADDED.

Pattern W ∗ n∗ m∗ H∗(P)

PD

√
V ∗+CM+CD

λs+
λf
2

– – 2

√(
λs +

λf

2

)
(V ∗ + CM + CD)

PDV ∗

√
m∗V ∗+CM+CD

1
2

(
1+ 1

m∗
)
λs+

λf
2

–
√

λs

λs+λf
· CM+CD

V ∗

√
2(λs + λf )CM + CD +

√
2λsV ∗

PDV

√
(m∗−1)V+V ∗+CM+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs+

λf
2

–
2− 2

r
+
√

λs

λs+λf

√
2(λs + λf )

(
V ∗ − 2−r

r
V + CM + CD

)
×
√

2−r
r

(
V ∗+CM+CD

V
− 2−r

r

)
+
√
2λs

2−r
r
V

PDM

√
n∗(V ∗+CM )+CD

λs
n∗+

λf
2

√
2λs

λf
· CD

V ∗+CM
– 2

√
λs(V ∗ + CM) +

√
2λfCD

PDMV ∗
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n∗m∗V ∗+n∗CM+CD

1
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(
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) λs
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2.5 Errors in verifications, checkpoints and recoveries

So far, we have assumed error-free execution during verifications, checkpoints and recoveries.
In this section, we show how to handle fail-stop errors during these operations2, and that the
first-order approximations derived in the preceding section remain valid as long as the platform
MTBF µ = 1/λ is large in front of the resilience parameters.

First, we handle errors during checkpoints and recoveries. The probability of experiencing
at least one error during a (checkpoint or recovery) process of length L is given by pfL = 1 −
e−λfL and, according to Equation (2.3), the expected time loss in executing this process is given
by E(T lost

L ) = 1
λf
− L

e
λfL−1

. Let E(CD), E(CM), E(RD) and E(RM) denote the expected time

2Checkpoints and recoveries do not suffer from silent errors, since silent errors typically do not strike I/O and
protected memory space, where memory checkpoints are assumed to be stored. Verifications can be protected
from silent errors by using redundancy techniques to ensure correct results.
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to perform disk checkpointing, memory checkpointing, disk recovery and memory recovery,
respectively. Since each disk checkpoint is always preceded by a memory checkpoint, and each
disk recovery is immediately followed by a memory recovery, we can express these expected
execution times recursively as follows:

E(RD) = pfRD

(
E(T lost

RD
) + E(RD)

)
+
(
1− pfRD

)
RD , (2.30)

E(RM) = pfRM

(
E(T lost

RM
) + E(RD) + E(RM) + E(T rec)

)
+
(
1− pfRM

)
RM , (2.31)

E(CD) = pfCD

(
E(T lost

CD
) + E(RD) + E(RM) + E(T rec) + E(CM) + E(CD)

)
+
(
1− pfCD

)
CD , (2.32)

E(CM) = pfCM

(
E(T lost

CM
) + E(RD) + E(RM) + E(T rec) + E(CM)

)
+
(
1− pfCM

)
CM , (2.33)

where E(T rec) denotes the expected time to re-execute the whole pattern, or part of it, depending
on when the fault strikes. If the fault strikes during disk checkpointing (Equation (2.32)), the
entire pattern needs to be re-executed. But if the fault strikes during memory checkpointing
(Equation (2.33)), then only part of the pattern up to the given memory checkpoint needs to
be re-executed. In all cases, E(T rec) is upper bounded by the expected execution time of the
whole pattern. Recall from our previous analysis that the optimal pattern length satisfies W ∗ =
Θ
(
λ−1/2

)
and the optimal overhead satisfies H∗(P) = Θ

(
λ1/2

)
. Hence, in an optimized

pattern, we will have E(T rec) ≤ E(P) = W ∗ +H∗(P)×W ∗ = Θ
(
λ−1/2

)
. Solving Equations

(2.30) to (2.33), we can then derive the following results:

E(RD) = RD +O(λ) ,

E(RM) = RM +O(
√
λ) ,

E(CD) = CD +O(
√
λ) ,

E(CM) = CM +O(
√
λ) ,

which suggest that the expected costs to perform checkpoints and recoveries are dominated by
their original costs under the assumption of a large platform MTBF. Intuitively, this is due to
the small probability of encountering an error during these operations. Thus, in Propositions
2 to 5, replacing CD, CM , RD and RM by their expected values does not affect the expected
execution times of the patterns in the first-order approximation.

Now, we briefly discuss the impact of having errors during verifications. Basically, as
far as fail-stop errors are concerned, we can consider any (partial or guaranteed) verification
together with the work segment (or chunk) immediately preceding it. Two expressions need to
be modified in the analysis. First, the probability of experiencing at least one error during the
execution of any segment (or chunk) of length w becomes pf = 1−e−λf (w+V ), where V denotes
the cost of the verification at the end of the work length w. Second, the expected time loss
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in executing this segment (or chunk) becomes E(T lost) = 1
λf
− w+V

e
λf (w+V )−1

. It turns out that
both changes do not affect the first-order approximation, because the extra terms (involving
V ) contribute O(

√
λ) to the expected execution time of a pattern, which again is negligible

compared to the dominant terms under a large platform MTBF.

2.6 Performance evaluation

In this section, we conduct a set of simulations whose goal is twofold: (i) corroborate the
theoretical study, and (ii) assess the relative efficiency of each checkpoint and verification type
under realistic scenarios. We rely on simulations to evaluate the performance of the computing
patterns at extreme scale, and we instantiate the model with three scenarios. In the first scenario,
we evaluate the performance of each pattern using real parameters from the literature. The
second scenario is a weak scaling experiment, whose purpose is to assess the scalability of
the approach on increasingly large platforms. In the last scenario, we study the impact of
varying error rates on the overhead of the method. The simulator code is publicly available
at http://graal.ens-lyon.fr/~yrobert/two-level, so interested readers can
experiment with it and build relevant scenarios of their choice.

2.6.1 Simulation setup

We make several assumptions on the input parameters. First, we assume that the recovery cost
is equivalent to the corresponding checkpointing cost, i.e., RD = CD and RM = CM . This
is reasonable because writing a checkpoint and reading one typically takes the same amount
of time. Then, we assume that a guaranteed verification must check all the data in memory,
making its cost in the same order as that of a memory checkpoint, i.e., V ∗ = CM . Furthermore,
we assume partial verifications similar to those proposed in [8, 10, 15], with very low cost
while offering good recalls. In the following, we set V = V ∗

100
and r = 0.8. All these choices

are somewhat arbitrary and can easily be modified in the simulator; we believe they represent
reasonable values for current and next-generation HPC applications.

The simulator generates errors following an exponential distribution of parameter λf for
fail-stop errors and λs for silent errors. The simulator allows fail-stop errors to occur during
computations, verifications, checkpoints and recoveries, while silent errors are only allowed
during actual computations, which is in accordance with our model.

An experiment goes as follows. We feed the simulator with the description of the plat-
form, consisting of the parameters λf , λs, CD and CM (since the other parameters can be
deduced from the above assumptions). For each pattern, we compute the optimal length W ∗,
the optimal overhead H∗(P), as well as the optimal number of memory checkpoints n∗ and the
optimal number of verifications m∗ (when applicable), using the formulas from Table I. The
total amount of work for the application is set to that of 1000 optimal patterns, and the simula-
tor runs each experiment 1000 times. For each pattern, it outputs the simulated overhead, the
simulated number of disk checkpoints, memory checkpoints, verifications, disk recoveries and
memory recoveries by averaging the values from the 1000 runs.

http://graal.ens-lyon.fr/~yrobert/two-level
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Table II
PLATFORM PARAMETERS

platform #nodes λf λs CD CM

Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

2.6.2 Assessing resilience mechanisms on real platforms

In the first scenario, we assess the performance of the optimal patterns on four different plat-
forms with real parameter settings. We compare the results for the six optimal patterns of
Table I.

Platform settings

Table II presents the four platforms used in this experiment and their main parameters. These
platforms have been used to evaluate the Scalable Checkpoint/Restart (SCR) library by Moody
et al. [74], who provide accurate measurements for λf , λs, CD and CM using real applications.
Note that the Hera platform has the worst error rates, with a platform MTBF of 12.2 days for
fail-stop errors and 3.4 days for silent errors. In comparison, and despite its higher number of
nodes, the Coastal platform features a platform MTBF of 28.8 days for fail-stop errors and
5.8 days for silent errors. In addition, the last platform uses SSD technology for memory
checkpointing, which provides more data space, at the cost of higher checkpointing costs.

Pattern overhead

Figure 2.6a presents, for each pattern, the predicted overhead H∗(P) (in blue) versus the sim-
ulated one (in yellow) on each platform. Remember that the formula used to compute the ex-
pected overhead is the result of a first-order approximation, meaning that we are ignoring some
low-order terms in the computation. The consequence is that the predicted overhead, being a
little optimistic, is always slightly inferior compared to the simulated one. However, the dif-
ference between both overheads is very small (less than 1%), which validates the model quite
satisfactorily.

Overall, the overhead oscillates between 4% and 7% on Hera, where checkpoints are rel-
atively cheaper, to just over 15% on Coastal SSD, where checkpoints are more expensive.
Regardless of the platform, the more advanced patterns always result in smaller overheads.
In particular, we observe a significant difference between the first three patterns (PD, PDV ∗ ,
PDV ), which use single-level checkpointing, and the last three patterns (PDM , PDMV ∗ , PDMV ),
which use two-level checkpointing. The gap is more visible for Atlas (5%) and Coastal (4%),
where the difference between the costs of a disk checkpoint and a memory checkpoint is larger,
thus making memory checkpoints more valuable.
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Figure 2.6: Performance of different patterns on the four platforms. Each column represents
one platform.
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Pattern periods

Figure 2.6b shows the work lengths (periods) of the patterns on each platform. We observe that
single-level patterns are associated with shorter periods (around 3 hours on Hera and 10 hours
on Coastal), as opposed to the longer periods shown by the two-level patterns (around 8 hours
on Hera and 20 hours on Coastal). Indeed, when a fail-stop error strikes, the only choice is
to recover from the last disk checkpoint, losing all the work done so far. In that case, a short
period helps to mitigate the amount of time lost.

Nevertheless, silent errors are more prominent on these platforms and when one occurs,
two-level patterns can recover from an intermediate memory checkpoint instead. Not only
does that provide a faster recovery, but also it does not require the application to restart from
the very beginning of the pattern. As a result, disk checkpoints are only used for fail-stop
errors, and a longer period is favored in order to accommodate more but cheaper intermediate
memory checkpoints.

Pattern checkpoints

Figure 2.6c presents the average number of disk checkpoints, memory checkpoints and veri-
fications taken each day by each pattern. We take all checkpoints and verifications from the
simulations into account, including the ones performed in recoveries and re-executions. Since
a partial verification is much cheaper than a guaranteed one, the two patterns that are allowed
to use them (PDV and PDMV ) tend to take full advantage of this mechanism. On Hera, PDV

generates an average of 13 verifications per hour (including the guaranteed ones), which is
slightly more than its two-level counterpart (PDMV ), which generates 12 verifications per hour.
On Coastal, there are more than 20 verifications per hour for PDV and 19 for PDMV . Note that
the verifications before each memory checkpoint are included.

In order to have a closer look at the number of checkpoints, which is dwarfed by the number
of verifications, Figure 2.6d presents the checkpointing frequencies alone. Naturally, for the
two-level patterns, whose periods are longer, the disk checkpointing frequencies are smaller.
However, their memory checkpointing frequencies are higher, because the cheaper memory
checkpoints are favored in these two-level schemes, in order to better protect the application
from silent errors. Note that the memory checkpoints before each disk checkpoint are also taken
into account. Lastly, we observe that the Coastal SSD platform requires very few verifications
and memory checkpoints. This is because the cost of a memory checkpoint is much higher
on this platform (180s) as opposed to the costs on other platforms (15.4s on Hera and 4.5s on
Coastal).

Pattern recoveries

Finally, Figure 2.6e shows the number of recoveries per day for each pattern on each platform.
We can see that the number of disk recoveries follows closely the fail-stop error rate of a
given platform, and it is not affected by the patterns. Indeed, when a fail-stop error strikes,
a disk recovery is performed regardless of the pattern used. On Hera, we observe 0.083 disk
recovery per day on average, translating to approximately one recovery every 12 days, which
is in accordance with the platform MTBF of 12.2 days for fail-stop errors. The same applies to
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Atlas and Coastal, which show respectively 0.044 and 0.034 disk recoveries per day on average
(equivalent to a platform MTBF of 22 days for Atlas and 29 days for Coastal).

The number of memory recoveries may be influenced by several factors. This is because a
memory recovery is not performed immediately after the occurrence of a silent error. Instead,
it is performed only when an alarm is raised by a verification, or when a fail-stop error strikes.
In both cases, more than one silent error could have occurred before the memory recovery. In
the latter case, a memory recovery is triggered right after a disk recovery, possibly without
any silent error. In general, the memory recovery frequency could well depend on whether
partial verifications are used in a pattern and the length of the pattern. This also explains
the slight difference under different patterns. Nevertheless, the simulation results show that the
silent error rate is a good indicator of the memory recovery frequency. For instance, on Hera,
we observe 0.285 memory recovery per day on average, which is approximately one memory
recovery every 3.5 days. This is very close to the MTBF of 3.4 days for silent errors.

2.6.3 Weak scaling experiment

In order to assess the scalability of the model, we now present the results of a weak scaling
experiment. This experiment is based on the Hera platform, whose disk checkpoint cost is the
closest to state-of-the-art platforms (5 minutes).

Platform settings

We first calculate the MTBF of one computing node, namely 8.57 years for fail-stop errors and
2.4 years for silent errors. The platform MTBF is obtained by dividing the per-node MTBF by
the number of nodes used in the simulation. For example, when 217 nodes are used, the MTBF
decreases to about 2064s for fail-stop errors and 577s for silent errors.

Under weak scaling, the problem size grows linearly with the number of nodes, so the
time needed to perform a memory checkpoint CM remains constant. In addition, we make the
optimistic assumption that the cost of a disk checkpoint CD also remains constant by scaling
the I/O bandwidth of the file system3. We explore two scenarios. In the first scenario, we set
the cost of a disk checkpoint to be the same as on Hera, i.e., 300s. In the second scenario, we
reduce the cost of a disk checkpoint to 90s to account for improved disk technology.

Results

Figure 2.7a presents the impact of the number of nodes on the overheads for the simplest pattern
PD and the most advanced pattern PDMV . From the simulation results, we can see that the
performance remains acceptable up to 215 = 32768 nodes, with an overhead of 100% for PD

and 64% for PDMV . Beyond that number, the overhead increases drastically for both patterns,
eventually exceeding 500% for 218 = 262144 nodes. However, compared to the simple pattern
PD, the two-level pattern PDMV improves the overhead by a few percent on 256 nodes up to
over 150% on 218 nodes.

3In actual systems, the I/O bandwidth could become a bottleneck, resulting in increased disk checkpointing
cost. This would further widen the performance gap between single-level and two-level patterns.
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Figure 2.7: Weak scaling experiment on the Hera platform.

We also observe the difference between the simulated overhead and the predicted one,
which starts negligible for a small number of nodes but reaches more than a factor of three
for 218 nodes. The reason is the use of first-order approximation to compute the predicted over-
head, which is only accurate when the platform MTBF is large in front of the other parameters.
Obviously, this is no longer the case for a large number of nodes. For instance, when the num-
ber of nodes reaches 105 (almost 217 nodes), the MTBF of the whole platform reduces down
to less than 10 minutes, which is in the same order as the period of a pattern (Figure 2.7b).
At this point, the application experiences a few errors per pattern (Figure 2.7c) and nearly a
dozen errors per hour (Figure 2.7f). In order to minimize the impact of the errors, the pattern
PDMV places more than 200 verifications and more than 10 memory checkpoints per hour (Fig-
ures 2.7e and 2.7d). As a result, a lot of time is wasted on resilience operations, and the model
starts to show its limits. However, when the error rate is this high, there is not much flexibility
left in the optimization, and no pattern is able to offer satisfactory performance.

Finally, Figure 2.8 presents the results when we repeat the weak scaling experiment with
a disk checkpointing cost of 90s instead of 300s. Since writing a disk checkpoint is cheaper
now, the period is reduced and checkpointing frequency is increased. Overall, the overheads
become much better, around 200% at 218 nodes, as opposed to 500% observed in Figure 2.7a.
The behavior of other parameters is similar to the ones presented in Figure 2.7.

2.6.4 Impact of error rates

We assess the impact of the error rates on the performance of the computing patterns. Again,
we focus on the Hera platform but scale its number of nodes to 105. We vary the error rates λf

and λs with respect to their nominal values while keeping the other parameters fixed.
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Figure 2.8: Weak scaling experiment on the Hera platform with reduced disk checkpointing
cost.

Figures 2.9a and 2.9b present the impact of λf and λs on the simulated overheads of the
two patterns PD and PDMV . For the PDMV pattern, we observe that the overhead is affected
more by the fail-stop errors than by the silent errors. This is because the intermediate memory
checkpoints better protect the application from silent errors. On the other hand, the overhead
of the single-level pattern PD is affected more by the silent errors, simply because silent errors
have a much higher rate. Figure 2.9c shows the difference between the overheads of both pat-
terns. We observe a similar performance when most errors are fail-stop, due to their relatively
small rate. However, when the silent error rate increases, the two-level pattern achieves a much
better performance than the single-level pattern, by saving up to 200% on the execution over-
head.

We now study the impact of error rates on the checkpointing period and frequency. Fig-
ure 2.9d presents the impact of fail-stop errors on the period of both patterns when the silent er-
ror rate is fixed at its nominal value. We can see that the period for PD remains constant, while
the period for PDMV decreases with increased λf . This is because the high silent error rate has
already driven the PD pattern period very low (< 10 minutes), so increasing the fail-stop error
rate has a limited impact. On the other hand, the period for the PDMV pattern is primarily driven
by the fail-stop error rate, so it decreases quickly, allowing more disk checkpoints to be taken.
In addition, Figures 2.9e and 2.9f show that the number of checkpoints successfully taken in
each hour remain stable for both patterns. Since the period of PDMV decreases while the period
of PD remains constant, it implies degraded performance for the two-level pattern and stable
performance for the single-level one, corroborating the previous analysis. Figure 2.9g shows
the corresponding number of recoveries, which is again in accordance with the MTBF of the
platform. Note that the number of memory recoveries decreases slightly, as some silent errors
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Figure 2.9: Impact of error rates λf and λs on the performance on the Hera platform with 105

nodes.
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are masked by fail-stop errors.
Figure 2.9h shows the impact of silent errors on the performance of both patterns when the

fail-stop error rate is fixed at the nominal value. Now, the role is reversed. Since the PDMV

pattern is equipped with more memory checkpoints and verifications, silent errors have no
impact on the period. On the contrary, the period of the PD pattern decreases in order to
detect silent errors earlier, which is the only way to protect the application from increased
silent error rate. As shown by Figures 2.9i and 2.9j, the number of verifications and memory
checkpoints performed by PDMV increases with the silent error rate in order to compensate
for the fixed number of disk checkpoints. For the PD pattern, the checkpointing frequency
remains the same, implying degraded performance with decreased period. Finally, Figure 2.9k
shows the corresponding number of recoveries. When silent errors are more prominent, two-
level checkpointing helps to detect them before the end of the pattern, as shown by the higher
number of memory recoveries. This results in faster recoveries and overall better performance.

2.6.5 Summary

Through the simulation results of this section, we conclude that the first-order approximation
for the resilience patterns provides an accurate performance model for systems with up to tens
of thousands of nodes. Overall, the complex pattern that combines all resilience mechanisms
offers significantly better performance, improving the base pattern by up to 150% in the execu-
tion overhead. The findings are consistent on different platforms and with varying error rates.
The results nicely corroborate the analytical study, and demonstrate the benefit of using two-
level patterns for dealing with both fail-stop and silent errors.

2.7 Related work

2.7.1 Checkpointing

The most commonly deployed strategy to cope with fail-stop errors is checkpointing, in which
processes periodically save their state, so that computation can be resumed from that point when
some failure disrupts the execution. Checkpointing strategies are numerous, ranging from fully
coordinated checkpointing [28] to uncoordinated checkpoint and recovery with message log-
ging [46]. Despite a very broad applicability, all these fault-tolerance methods suffer from the
intrinsic limitation that both protection and recovery generate an I/O workload that grows with
failure probability, and becomes unsustainable at large scale [17, 52] (even when considering
optimizations such as diskless or incremental checkpointing [78]).

To reduce the checkpointing overhead, many authors have proposed multi-level checkpoint-
ing protocols, which combine global disk checkpointing with local or in-memory checkpoint-
ing (also known as diskless checkpointing). Most of these protocols handle fail-stop errors
only, and recover from different levels of checkpoints according to the severity of the failures.
Vaidya [94] proposed a two-level recovery scheme that tolerates a single node failure using
a local checkpoint stored on a parter node. If more than one failure occurs during any local
checkpointing interval, the scheme then resorts to the global checkpoint. Silva and Silva [88]
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advocated a similar scheme by using memory to store the local checkpoints, which is protected
by XOR encoding. Moody et al. [74] generalized this idea to account for an arbitrary number
of levels with increasing failure handling capability, and implemented it in a Scalable Check-
point/Restart (SCR) library. Bautista-Gomez et al. [12] also designed a multi-level checkpoint-
ing library, called Fault Tolerance Interface (FTI), but they employed a more efficient Reed-
Solomon encoding scheme to handle multiple failures without the need to access the parallel
file system.

Our work is along the same direction as multi-level checkpointing, but the two levels we
propose target different error sources, namely, fail-stop errors and silent errors. As mentioned
before, this dramatically changes the computation of the expected re-execution time, because
we do not have to distinguish which error type strikes first. Moreover, as in Young [97] and
Daly [36], we provide explicit formulas on the optimal checkpointing intervals for both levels
(up to a first-order approximation), while previous work relies on numerical methods to find
the optimal solution [37].

2.7.2 Silent error detection

Considerable efforts have been directed at verification techniques to reveal silent errors. A
guaranteed verification is often only achievable with expensive techniques, such as process
replication [53, 75] or redundancy [45, 72]. Application-specific information can be very use-
ful in decreasing the verification cost. Algorithm-based fault tolerance (ABFT) [16, 63, 87]
is a well-known technique to detect errors in linear algebra kernels using checksums. Various
techniques have been proposed in other application domains. Benson et al. [14] compared a
higher-order scheme with a lower-order one to detect errors in the numerical analysis of ODEs.
Sao and Vuduc [85] investigated self-stabilizing corrections after error detection in the conju-
gate gradient method. Heroux and Hoemmen [19] designed a fault-tolerant GMRES capable
of converging despite silent errors. Bronevetsky and de Supinski [21] provided a comparative
study of detection costs for iterative methods. Recently, detectors based on data analytics have
been proposed to serve as partial verifications [8, 10, 15]. These detectors use interpolation
techniques, such as time series prediction and spatial multivariate interpolation, on scientific
dataset to offer large error coverage for a negligible overhead. Although not perfect, their
accuracy-to-cost ratios tend to be very high, which makes them interesting alternatives at large
scale.

2.7.3 Optimization of computing patterns

Given the checkpointing cost and the platform MTBF, classical formulas due to Young [97]
and Daly [36] are well known to determine the optimal checkpointing intervals in the pres-
ence of fail-stop errors. These formulas have been extended to account for silent errors in
various ways. By coupling checkpointing with guaranteed verification, Aupy et al. [3] ana-
lyzed two simple patterns: one with k checkpoints and one verification, and the other with k
verifications and one checkpoint. In a previous work, Benoit et al. [J3] studied the latter pat-
tern and gave explicit formulas to accommodate both fail-stop and silent errors. The idea of
interleaving p checkpoints and q verifications has also been explored in [13] to achieve more
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optimized computing patterns. A first analysis of a pattern that utilizes partial verification for
silent error detection was given in Chapter 1. To the best of our knowledge, this work is the
first to investigate the combination of in-memory checkpoints, disk checkpoints, partial verifi-
cations and guaranteed verifications.

2.8 Conclusion

When computing at extreme scale, both fail-stop errors and silent errors are major threats to
executing HPC applications with acceptable overhead. While several techniques have been de-
veloped to cope with either threat, few approaches are devoted to addressing both of them si-
multaneously. Although surprising –because dealing with both error sources is unavoidable on
large-scale platforms–, this lack of solutions may be explained by the new challenges raised by
silent errors, whose detection is not immediate and requires the use of verification mechanisms,
either partial or guaranteed. Also, the interplay of two levels of checkpoints and of two types
of verifications raises difficult optimization challenges. The major contribution of this chapter
is the characterization of the optimal computational pattern. The derivation is technically in-
volved, but the results are easy to use in real-life scenarios: one has just to look at Table I and
pick the optimal pattern that fits their resilience needs.

The accuracy of our model as well as the analysis have been nicely corroborated by exten-
sive simulations. The results show acceptable difference in the predicted overhead and the
simulated one on systems with up to tens of thousands of nodes. Also, the complex pattern
that combines all resilience mechanisms provides up to 150% improvement in the execution
overhead compared to the base pattern dictated by the classical Young/Daly’s formula.
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Chapter 3

Towards Optimal Multi-Level Checkpoint-
ing with Fail-Stop Errors

As opposed to previous chapters, this work focuses on fail-stop errors only. The problem is sim-
ilar to that of Chatpter 2, however dealing with more than two levels of checkpoint makes the
analysis much more challenging. We provide a framework to analyze multi-level checkpoint-
ing protocols, by formally defining a k-level checkpointing pattern. We provide a first-order
approximation to the optimal checkpointing period, and show that the corresponding overhead
is in the order of

∑k
`=1

√
2λ`C`, where λ` is the error rate at level `, and C` the checkpointing

cost at level `. This nicely extends the classical Young/Daly formula on single-level checkpoint-
ing. Furthermore, we are able to fully characterize the shape of the optimal pattern (number and
positions of checkpoints), and we provide a dynamic programming algorithm to determine
the optimal subset of levels to be used. Finally, we perform simulations to check the accu-
racy of the theoretical study and to confirm the optimality of the subset of levels returned by
the dynamic programming algorithm. The results nicely corroborate the theoretical study, and
demonstrate the usefulness of multi-level checkpointing with the optimal subset of levels. The
work in this chapter has been published in Transactions on computers (TC) [J2].

3.1 Introduction

Checkpointing is the de-facto standard resilience method for HPC platforms at extreme-scale.
However, the traditional single-level checkpointing method suffers from significant overhead,
and multi-level checkpointing protocols now represent the state-of-the-art technique. These
protocols allow different levels of checkpoints to be set, each with a different checkpointing
overhead and recovery ability. Typically, each level corresponds to a specific fault type, and is
associated to a storage device that is resilient to that type. For instance, Chapter 2 deals with
a two-level approach: one type of checkpoint to handle transient memory errors (level 1) by
storing key data in main memory; and another to address node failures (level 2) by storing key
data in stable storage (remote redundant disks).

In this chapter, we deal with fail-stop errors only. We consider a very general scenario,
where the platform is subject to k levels of faults, numbered from 1 to k. Level ` is associated

67
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with an error rate λ`, a checkpointing cost C`, and a recovery cost R`. A fault at level ` destroys
all the checkpoints of lower levels (from 1 to ` − 1 included) and implies a roll-back to a
checkpoint of level ` or higher. Similarly, a recovery of level ` will restore data from all lower
levels. Typically, fault rates are decreasing and checkpoint/recovery costs are increasing when
we go to higher levels: λ1 ≥ λ2 ≥ · · · ≥ λk, C1 ≤ C2 ≤ · · · ≤ Ck, and R1 ≤ R2 ≤ · · · ≤ Rk.

Time

Time

Time

C3 C3

C2 C2 C2

C1 C1 C1 C1 C1 C1 C1 C1

(level 3)

(level 2)

(level 1)

Figure 3.1: Independent checkpointing periods for three levels of faults: no synchronization
between checkpoint levels.

The idea of multi-level checkpointing is that checkpoints are taken for each level of faults,
but at different periods. Intuitively, the less frequent the faults, the longer the checkpointing
period: this is because the risk of a failure striking is lower when going to higher levels; hence
the expected re-execution time is lower too; one can safely checkpoint less frequently, thereby
reducing failure-free overhead (checkpointing is useless in the absence of fault). There are
several natural approaches to implement multi-level checkpointing. The first option is to use
independent checkpointing periods for each level, as illustrated in Figure 3.1 with k = 3 levels.
This option raises several difficulties, the most prominent one being overlapping checkpoints.
Typically, we need to checkpoint different levels in sequence (e.g., writing into memory before
writing onto disk), so we would need to delay some checkpoints, which might not be possible
in some environments, and which would introduce irregular periods. The second option is to
synchronize all checkpoint levels by nesting them inside a periodic pattern that repeats over
time, as illustrated in Figure 3.2(a). In this figure, the pattern has five computational segments,
each followed by a level-1 checkpoint. A segment is a chunk of work between two checkpoints,
and a pattern consists in segments and checkpoints. The second and fifth level-1 checkpoints
are followed by a level-2 checkpoint. Finally, the pattern ends with a level-3 checkpoint. When
using patterns, a checkpoint at level ` is always preceded by checkpoints at all lower levels 1 to
` − 1, which makes good sense in practice (e.g., with two levels, main memory and disk, one
writes the data into memory before transferring it to disk).

Using periodic patterns simplifies the orchestration of checkpoints at all levels. In addition,
repeatedly applying the same pattern is optimal for on-line scheduling problems, or for jobs
running a very long (even infinite) time on the platform. Indeed, in this scenario, we seek the
best pattern, i.e., the one whose overhead is minimal. The overhead of a pattern is the price per
work unit to pay for resilience in the pattern; hence minimizing overhead is equivalent to opti-
mizing platform throughput. For a pattern P(W ) with W units of work (the cumulated length
of all its segments), the overhead H(P(W)) is defined as the ratio of the pattern’s expected ex-
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Time
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Figure 3.2: Checkpointing patterns (highlighted using red bars) with (a) k = 3, (b) k = 1, and
(c) k = 2 levels.

ecution time E(P(W)) over its total work W minus 1:

H(P(W )) =
E(P(W ))

W
− 1. (3.1)

If there were neither checkpoint nor fault, the overhead would be zero. Determining the opti-
mal pattern (with minimal overhead), and then repeatedly using it until job completion, is the
optimal approach with Exponential failure distributions and long-lasting jobs. Indeed, once a
pattern is successfully executed, the optimal strategy is to re-execute the same pattern. This is
because of the memoryless property of exponential distributions: the history of failures has no
impact on the solution, so if a pattern is optimal at some point in time, it stays optimal later
in the execution, because we have no further information about the amount of work still to be
executed.

The difficulty of characterizing the optimal pattern dramatically increases with the number
of levels. How many checkpoints of each level should be used, and at which locations inside the
pattern? What is the optimal length of each segment? With one single level (see Figure 3.2(b)),
there is a single segment of length W , and the Young/Daly formula [36, 97] gives W opt =√

2C1

λ1
. The minimal overhead is then Hopt =

√
2λ1C1 +O(λ1).

With two levels, the pattern still has a simple shape, with N segments followed by a level-1
checkpoints, and ended by a level-2 checkpoint (see Figure 3.2(c)). Recent work [39] shows
that all segments have same length in the optimal pattern, and provides mathematical equations
that can be solved numerically to compute both the optimal length W opt of the pattern and
its optimal number of segments. However, no closed-form expression is available, neither for
W opt, nor for the minimal overhead Hopt.

With three levels, no optimal solution is known. The pattern shape becomes quite com-
plicated. Coming back to Figure 3.2(a), we identify two sub-patterns ending with a level-2
checkpoint. The first sub-pattern has 2 segments while the second one has 3. The memoryless
property does not imply that all sub-patterns are identical, because the state after completing
the first sub-pattern is not the same as the initial state when beginning the execution of the pat-
tern. In the general case with k levels, the shape of the pattern will be even more complicated,
with different-shaped sub-patterns (each ended by a level k− 1 checkpoint). In turn, each sub-
pattern may have different-shaped sub-sub-patterns (each ended by a level k − 2 checkpoint),
and so on. The major contribution of this work is to provide an analytical characterization of the



70
CHAPTER 3. TOWARDS OPTIMAL MULTI-LEVEL CHECKPOINTING WITH

FAIL-STOP ERRORS

optimal pattern with an arbitrary number k of checkpointing levels, with closed-form formulas
for the pattern length W opt, the number of checkpoints at each level, and the optimal overhead
Hopt. In particular, we obtain the following beautiful result:

Hopt =
k∑

`=1

√
2λ`C` +O(Λ), (3.2)

where Λ =
∑k

`=1 λ`. However, we point out that this analytical characterization relies on a
first-order approximation, so it is valid only when resilience parameters C` and R` are small
in front of the platform Mean Time Between Failures (MTBF) µ = 1/Λ. Also, the optimal
pattern has rational number of segments, and we use rounding to derive a practical solution.
Still, Equation (3.2) provides a lower bound on the optimal overhead, and this bound is met
very closely in all our experimental scenarios.

Finally, in many practical cases, there is no obligation to use all available checkpointing
levels. For instance, with k = 3 levels, one may choose among four possibilities: level 3 only,
levels 1 and 3, levels 2 and 3, and all levels 1, 2 and 3. Of course, we still have to account for
all failure types, which translates into the following:

• level 3: use λ3 ← λ1 + λ2 + λ3;

• levels 1 and 3: use λ1 and λ3 ← λ2 + λ3;

• levels 2 and 3: use λ2 ← λ1 + λ2 and λ3;

• all levels: use λ1, λ2 and λ3.

Our analytical characterization of the optimal pattern leads to a simple dynamic programming
algorithm for selecting the optimal subset of levels.

The rest of this chapter is organized as follows. Section 3.2 surveys the related work.
Section 3.3 is the heart of the chapter and shows how to compute the optimal pattern as well
as the optimal subset of levels. Section 3.4 is devoted to simulations assessing the accuracy of
the first-order approximation. Finally, Section 3.5 provides concluding remarks and hints for
future work.

3.2 Related work

Given the checkpointing cost and platform MTBF, classical formulas due to Young [97] and
Daly [36] are well known to determine the optimal checkpointing period in the single-level
checkpointing scheme. However, this method suffers from the intrinsic limitation that the cost
of checkpointing/recovery grows with failure probability, and becomes unsustainable at large
scale [17, 52] (even with diskless or incremental checkpointing [78]).

To reduce the I/O overhead, various two-level checkpointing protocols have been studied.
Vaidya [94] proposed a two-level recovery scheme that tolerates a single node failure using
a local checkpoint stored on a parter node. If more than one failure occurs during any local
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checkpointing interval, the scheme resorts to the global checkpoint. Silva and Silva [88] ad-
vocated a similar scheme by using memory to store local checkpoints, which is protected by
XOR encoding. Di et al. [39] analyzed a two-level checkpointing pattern, and proved equal-
length segments in the optimal solution. They also provided mathematical equations that can
be solved numerically to compute the optimal pattern length and number of segments. In Chap-
ter 2, we relied on disk checkpoints to cope with fail-stop failures and memory checkpoints
coupled with error detectors to handle silent data corruptions. We have derived first-order
approximation formulas for the optimal pattern length and the number of memory checkpoints
between two disk checkpoints.

Some authors have also generalized two-level checkpointing to account for an arbitrary
number of levels. Moody et al. [74] implemented this approach in a three-level Scalable
Checkpoint/Restart (SCR) library. They relied on a rather complex Markov model to recur-
sively compute the efficiency of the scheme. Bautista-Gomez et al. [12] designed a four-level
checkpointing library, called Fault Tolerance Interface (FTI), in which partner-copy and Reed-
Solomon coding are employed as two intermediate levels between local and global disks. Based
on FTI, Di et al. [37] proposed an iterative method to compute the optimal checkpointing in-
terval for each level with prior knowledge of the application’s total execution time. Hakkarinen
and Chen [60] considered multi-level diskless checkpointing for tolerating simultaneous fail-
ures of multiple processors. Balaprakash et al. [6] studied the trade-off between performance
and energy for general multi-level checkpointing schemes.

While all of these works relied on numerical methods to compute the checkpointing inter-
vals at different levels, this work is the first to provide explicit formulas on the optimal parame-
ters in a multi-level checkpointing protocol (up to first-order approximation as in Young/Daly’s
classical result).

3.3 Computing the optimal pattern

This section computes the optimal multi-level checkpointing pattern. We first state our assump-
tions in Section 3.3.1, and then analyze the simple case with k = 2 levels in Section 3.3.2,
before proceeding to the general case in Section 3.3.3. Finally, the algorithm to compute the
optimal subset of levels is described in Section 3.3.4.

3.3.1 Assumptions

In this chapter, we assume that failures from different levels are independent1. For each level
`, the arrival of failures follows Poisson process with error rate λ`. In order to deal with the
interplay of failures from different levels, we make use of the following well-known properties
of independent Poisson processes [55, Chapter 2.3].

Property 1. During the execution of a segment with length w, let X` denote the time when the
first level-` error strikes. Thus, X` is a random variable following an Exponential distribution

1In practice, failures from different checkpointing levels can exhibit potential correlation [37, 61]. Considera-
tion of correlated failures is beyond the scope of this work.
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with parameter λ`, for all ` = 1, 2, . . . , k.

(1). Let X denote the time when the first error (of any level) strikes. We have X = min{X1, X2, . . . , Xk},
which follows an Exponential distribution with parameter Λ =

∑k
`=1 λ`. The probability

of having an error (from any level) in the segment is therefore P (X ≤ w) = 1− e−Λw.

(2). Given that an error (from any level) strikes during the execution of the segment, the
probability that the error belongs to a particular level is proportional to the error rate of
that level, i.e., P (X = X`|X ≤ w) = λ`

Λ
, for all ` = 1, 2, . . . , k.

Moreover, we assume that error rates of different levels are of the same order, i.e., λ` =
Θ(Λ) for all ` = 1, 2, . . . , k, and that errors only strike during the computations, while check-
pointing and recovery are error-free. Indeed, the durations of checkpoints and recoveries are
generally small compared to the pattern length, so the probability of a failure striking during
these operations is low. It has been shown in Chapter 2 that removing this assumption does not
impact the first-order approximation of the pattern overhead.

3.3.2 Optimal two-level pattern

We start by analyzing the two-level pattern shown in Figure 3.2(b). The goal is to determine a
first-order approximation to the optimal pattern length W , the number n of level-1 checkpoints
in the pattern, as well as the length wi = αiW of the i-th segment, for all 1 ≤ i ≤ n, where∑n

i=1 αi = 1.

With a single segment

We first consider a special case of the two-level pattern, in which only a single segment is
present, i.e., n = 1. The result establishes the order of the optimal pattern length W opt, which
will be used later for analyzing the general case. Recall that Λ = λ1+λ2 and, for convenience,
let us also define C = C1 + C2. The following proposition shows the expected time of such a
pattern with fixed length W .

Proposition 6. The expected execution time of a two-level pattern with a single segment and
fixed length W is

E = W + C +
1

2
ΛW 2 +O(max{Λ2W 3,ΛW}).

Proof. We can express the expected execution time of the pattern recursively as follows:

E = P

(
Elost(W,Λ) +

λ1

Λ
(R1 + E) +

λ2

Λ

(
R2 +R1 + E

))
+ (1− P ) (W + C) , (3.3)

where P = 1 − e−ΛW denotes the probability of having a failure (either level-1 or level-2)
during the execution of the pattern based on Property 1.1, and Elost(wi,Λ) denotes the expected
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time lost when such a failure occurs. In this case, and based on Property 1.2, if the failure
belongs to level 1, which happens with probability λ1

Λ
, we can recover from the latest level-

1 checkpoint (R1). Otherwise, the failure belongs to level 2 with probability λ2

Λ
, and we need

to first recover from the latest level-2 checkpoint (R2) before restoring the level-1 checkpoint
(R1). In both cases, the entire pattern needs to be re-executed again. Finally, if no error (of
any level) strikes, which happens with probability 1−P , the pattern is completed after W time
of execution followed by the time C to perform the two checkpoints, which are assumed to be
error-free.

From [62, Equation (1.13)], the expected time lost when executing a segment of length W
with error rate Λ is

Elost(W,Λ) =
1

Λ
− W

eΛW − 1
. (3.4)

Substituting Equation (3.4) into Equation (3.3) and solving for E, we get:

E =
(
eΛW − 1

)( 1

Λ
+R1 +

λ2

Λ
R2

)
+ C1 + C2, (3.5)

which is an exact formula on the expected execution time of the pattern. Now, using Taylor
series to expand eΛW = 1 + ΛW + Λ2W 2

2
+ O(Λ3W 3) while assuming W = Θ(Λ−x), where

0 < x < 1, we can re-write Equation (3.5) as

E = W +
1

2
ΛW 2 + C1 + C2 +O(Λ2W 3)

+

(
ΛW +

Λ2W 2

2
+O(Λ3W 3)

)(
R1 +

λ2

Λ
R2

)
.

Since recovery costs (R1, R2) are assumed to be constants, and error rates (λ1, λ2,Λ) are in the
same order, the expected execution time can be expressed as follows:

E = W + C1 + C2 +
1

2
ΛW 2 +O(Λ2W 3) +O(ΛW ),

which completes the proof of the proposition.

From Proposition 6, the expected execution overhead of the pattern can be derived as

H =
C

W
+

1

2
ΛW +O(max{Λ2W 2,Λ}).

Assume that the platform MTBF µ = 1/Λ is large in front of the resilience parameters, and
consider the first two terms of H: the overhead is minimized when the pattern has length
W = Θ(Λ−1/2), and in that case both terms are in the order of Θ(Λ1/2), so we have H =
Θ(Λ1/2) + O(Λ). Indeed, the last term O(Λ2W 2) = O(Λ) becomes negligible compared
to Θ(Λ1/2). Hence, the optimal pattern length W opt can be obtained by balancing the first two
terms in H , which gives

W opt =

√
2C

Λ
= Θ(Λ−1/2), (3.6)
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and the optimal execution overhead becomes

Hopt =
√
2ΛC +O(Λ). (3.7)

Remarks. Unlike in single-level checkpointing, the checkpoint to roll back to in a two-
level pattern depends on which type of error strikes first. Under first-order approximation
and assuming that the resilience parameters are small compared to the platform MTBF and
pattern length, the formulas shown in Equations (3.6) and (3.7) reduce exactly to Young/Daly’s
classical result by aggregating the error rates and checkpointing costs of both levels.

With multiple segments

We now consider the general two-level pattern with multiple segments, and derive the optimal
pattern parameters. As in the single-segment case, we start with a proposition showing the
expected time to execute a two-level pattern with fixed parameters.

Proposition 7. The expected execution time of a given two-level pattern is

E=W+nC1+C2 +
1

2

(
λ1

n∑
i=1

α2
i + λ2

)
W 2 +O(Λ1/2).

Proof. We first prove the following result (by induction) on the expected time Ei to execute the
i-th segment of the pattern (up to the level-1 checkpoint at the end of the segment):

Ei = wi + C1 +
λ1

2
w2

i + λ2

(
w2

i

2
+

i−1∑
j=1

wjwi

)
+O(Λ1/2). (3.8)

According to the result with a single segment, we know that the optimal pattern length and
hence the segment length are in the order of O(Λ−1/2), which implies that Ei = wi +O(1).

For the ease of analysis, we assume that there is a hypothetical segment at the beginning
of the pattern with length w0 = 0 (hence no need to checkpoint). For this segment, we have
E0 = w0 = 0, satisfying Equation (3.8). Suppose the claim holds up to Ei−1. Then, Ei can be
recursively expressed as follows:

Ei = Pi

(
Elost(wi,Λ) +

λ1

Λ
(R1 + Ei)

+
λ2

Λ

(
R2 +R1 +

i−1∑
j=1

Ej + Ei

))
+ (1− Pi)(wi + C1), (3.9)

where Pi = 1 − e−Λwi denotes the probability of having a failure (either level-1 or level-2)
during the execution of the segment, and Elost(wi,Λ) denotes the expected time lost when such
a failure occurs.
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Equation (3.9) is very similar to Equation (3.3), except when a level-2 failure occurs we
need to re-execute all the segments (up to segment i) that have been executed so far. Following
the derivation of Proposition 6 and applying Ej = wj + O(1) for j = 1, 2, . . . , i − 1, we can
derive the first-order approximation of Ei as follows:

Ei=wi+C1+
1

2

(
λ1w

2
i +λ2w

2
i +2λ2wi

i−1∑
j=1

Ej

)
+O(Λ1/2)

=wi+C1+
1

2

(
λ1w

2
i +λ2w

2
i +2λ2wi

i−1∑
j=1

(
wj+O(1)

))
+O(Λ1/2)

=wi+C1+
1

2

(
λ1w

2
i +λ2

(
w2

i +2
i−1∑
j=1

wjwi

))
+O(Λ1/2). (3.10)

Since the level-2 checkpoint at the end of the pattern is also assumed to be error-free, we
can compute the expected execution time of the pattern as

E =
n∑

i=1

Ei + C2

= W + nC1 + C2 +
1

2

(
λ1

n∑
i=1

α2
i + λ2

)
W 2 +O(Λ1/2),

since
∑n

i=1w
2
i + 2

∑n
i=1

∑i−1
j=1wjwi=(

∑n
i=1 wi)

2
=W 2.

Theorem 9. A first-order approximation to the optimal two-level pattern is characterized by

nopt =

√
λ1

λ2

· C2

C1

, (3.11)

αopt
i =

1

nopt ∀i = 1, 2, . . . , nopt, (3.12)

W opt =

√
noptC1 + C2

1
2

(
λ1

nopt + λ2

) , (3.13)

where nopt is the number of segments, αopt
i W opt is the length of the i-th segment, and W opt is the

pattern length.
The optimal pattern overhead is

Hopt =
√

2λ1C1 +
√

2λ2C2 +O(Λ). (3.14)

Proof. For a given pattern with a fixed number n of segments,
∑n

i=1 α
2
i is minimized subject to∑n

i=1 αi = 1 when αi =
1
n

for all i = 1, 2, . . . , n. Hence, we can derive the expected execution
overhead from Proposition 7 as follows:

H =
nC1 + C2

W
+

1

2

(
λ1

n
+ λ2

)
W +O(Λ). (3.15)
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For a given n, the optimal work length can then be computed from Equation (3.15), and it

is given by W opt =
√

nC1+C2
1
2

(
λ1
n
+λ2

) . In that case, the execution overhead becomes

H =

√
2

(
λ1

n
+ λ2

)
(nC1 + C2) +O(Λ), (3.16)

which is minimized as shown in Equation (3.14) when n satisfies Equation (3.11). Indeed,
2
(

λ1

nopt + λ2

)
(noptC1 + C2) = 2λ1C1 + 2λ2C2 + 4

√
λ1λ2C1C2 = (

√
2λ1C1 +

√
2λ1C1)

2. In
practice, since the number of segments can only be a positive integer, the optimal solution is
either max(1, bnoptc) or dnopte, whichever leads to a smaller value of the convex function H as
shown in Equation (3.16).

Remarks. Consider the example given in [39] with C1 = R1 = 20, C2 = R2 = 50,
λ1 = 2.78 × 10−4 and λ2 = 4.63 × 10−5. The optimal solution2 provided by [39] gives
nopt = 3.83, W opt = 1362.49 and Hopt = 0.1879, while Theorem 9 suggests nopt = 3.87,
W opt = 1378.27 and Hopt = 0.1735, which is quite close to the exact optimum. The difference
in overhead is due to the negligence of lower-order terms in the first-order approximation. We
point out that the solution provided by [39] relies on numerical methods to solve rather complex
mathematical equations, whose convergence is not always guaranteed, and it is only applicable
to two levels. Our result, on the other hand, is able to provide fast and good approximation to
the optimal solution when the error rates are sufficiently small, and it can be readily extended
to an arbitrary number of levels, as shown in the next section.

3.3.3 Optimal k-level pattern
In this section, we derive the first-order approximation to the optimal k-level pattern by deter-
mining its length W , the number N` of level-` checkpoints for all 1 ≤ ` ≤ k, as well as the
positions of all checkpoints in the pattern.

Observations

Before analyzing the optimal pattern, we make several observations. First, we can obtain the
orders of the optimal length and pattern overhead as shown below (recall that Λ =

∑k
`=1 λ`).

Observation 1. Consider the simplest k-level pattern with a single segment of length W . We
can conduct the same analysis as in Section 3.3.2 to show that the optimal pattern length
satisfies W opt = Θ(Λ−1/2), and the corresponding overhead satisfies Hopt = Θ(Λ1/2).

From the analysis of the two-level pattern, we can also observe that the overall execution
overhead of any pattern comes from two distinct sources defined below.

Observation 2. There are two types of execution overheads for a pattern:
2The original optimal solution of [39] considers faults in checkpointing but not during recoveries. We adapt its

solution to exclude faults in checkpointing so to be consistent with the model in this chapter for a fair comparison.
The results reported herein are based on this modified solution.
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(1). Error-free overhead, denoted as oef, is the total cost of all the checkpoints placed in the
pattern. For a given set of checkpoints, the error-free overhead is completely determined
regardless of their positions in the pattern.

(2). Re-executed fraction overhead, denoted as ore, is the expected fraction of work that needs
to be re-executed due to errors. The re-executed fraction overhead depends on both the
set of checkpoints and their positions.

For example, in the two-level pattern with n level-1 checkpoints and given values of αi

for all i = 1, 2, . . . , n, the two types of overheads are given by oef = nC1 + C2 and ore =
1
2
(f1
∑n

i=1 α
2
i + f2), where f` =

λ`

Λ
for ` = 1, 2. Assuming that checkpoints at all levels have

constant costs and that the error rates at all levels are in the same order, then both oef and ore

can be considered as constants, i.e., oef = O(1) and ore = O(1).
A trade-off exists between these two types of execution overheads, since placing more

checkpoints generally reduces the re-executed work fraction when an error strikes, but it can
adversely increase the overhead when the execution is error-free. Therefore, in order to achieve
the best overall overhead, a resilience algorithm must seek an optimal balance between oef and
ore.

For a given pattern with fixed overheads oef and ore, we can make the following observation
based on Propositions 6 and 7, which partially characterizes the optimal pattern.

Observation 3. For a given pattern (with fixed oef and ore), the expected execution time is given
by

E = W + oef︸ ︷︷ ︸
error-free

execution time

+ ΛW︸︷︷︸
expected
# errors

· oreW︸ ︷︷ ︸
re-executed work
in case of error

+ O(Λ1/2), (3.17)

and the optimal pattern length and the resulting expected execution overhead of the pattern are

W opt =

√
oef

Λ · ore
, (3.18)

Hopt = 2
√
Λ · oef · ore +O(Λ). (3.19)

Equation (3.19) shows that the trade-off between oef and ore is manifested as the product of
the two terms. Hence, in order to determine the optimal pattern, it suffices to find the pattern
parameters (e.g., n and αi) that minimize oef · ore.

Analysis

We now extend the analysis to derive the optimal multi-level checkpointing patterns. Generally,
for a k-level pattern, each computational segment s(`)ik−1,...,i`

can be uniquely identified by its level
` as well as its position 〈ik−1, . . . , i`〉 within the multi-level hierarchy. For instance, in a four-
level pattern, the segment s(2)1,3 denotes the third level-2 segment inside the first level-3 segment
of the pattern (see Figure 3.3). Note that a segment can contain multiple sub-segments at the
lower levels (except for bottom-level segments) and is a sub-segment of a larger segment at a
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Figure 3.3: Example of a 4-level pattern. Here, we let c` = C1|C2| · · · |C` denote the succession
of checkpoints from level 1 to level `.

higher level (except for top-level segments). The entire pattern can be denoted as s(k), which is
the only segment at level k.

For any segment s(`)ik−1,...,i`
at level `, where 1 ≤ ` ≤ k, let w(`)

ik−1,...,i`
denote its length. Hence,

we have w
(`+1)
ik−1,...,i`+1

=
∑

i`
w

(`)
ik−1,...,i`

and w(k) = W . Also, let n(`)
ik−1,...,i`

denote the number

of sub-segments contained by s
(`)
ik−1,...,i`

at the lower level ` − 1. We have n
(1)
ik−1,...,i1

= 1 for all
ik−1, . . . , i1. For convenience, we further define

α
(`)
ik−1,...,i`

=
w

(`)
ik−1,...,i`

W

as the fraction of the length of segment s(`)ik−1,...,i`
inside the pattern, and define N` to be the total

number of level-` segments in the entire pattern. Therefore, we have Nk = 1, Nk−1 = n(k), and
in general

N` =
∑

ik−1,...,i +̀1

n
( +̀1)
ik−1,...,i +̀1

.

The following proposition shows the expected time to execute a given k-level pattern.

Proposition 8. The expected execution time of a given k-level pattern is

E = W +
k−1∑
`=1

N`C` + Ck

+
W 2

2

 k∑
`=1

λ`

∑
ik−1,...,i`

(
α
(`)
ik−1,...,i`

)2+O(Λ1/2).

Proof. We show that the expected time to execute any segment s(h)ik−1,...,ih
at level h, where

1 ≤ h ≤ k, satisfies the following (without counting the time to execute all the checkpoints
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inside the segment):

E(h)
ik−1,...,ih

= w
(h)
ik−1,...,ih

+
W 2

2

 h∑
`=1

λ`

∑
ih−1,...,i`

(
α
(`)
ik−1,...,i`

)2
+ Λ[h+1,k]


(
w

(h)
ik−1,...,ih

)2
2

+ w
(h)
ik−1,...,ih

ih−1∑
jh=1

E(h)
ik−1,...,jh


+ w

(h)
ik−1,...,ih

k∑
`=h+2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ1/2), (3.20)

where Λ[x,y] =
∑y

`=x λ` and, if x > y, we define Λ[x,y] = 0. The proposition can then be proven
by setting E = E(k) +

∑k−1
`=1 N`C` + Ck, since checkpoints are assumed to be error-free.

We now prove Equation (3.20) by induction on the level h. For the base case, i.e., when
h = 1, consider a segment s(1)ik−1,...,i1

at the first level. Following the proof of Proposition 7 (in

particular, Equation (3.9)), we can express its expected execution time E(1)
ik−1,...,i1

, as

E(1)
ik−1,...,i1

=P
(1)
ik−1,...,i1

(
Elost(w(1)

ik−1,...,i1
,Λ
)

+
λ1

Λ

(
R1 + E(1)

ik−1,...,i1

)
+

λ2

Λ

( 2∑
j=1

Rj +

i1∑
j1=1

E(1)
ik−1,...,j1

)
+

λ3

Λ

( 3∑
j=1

Rj +

i2−1∑
j2=1

E(2)
ik−1,...,j2

+

i1∑
j1=1

E(1)
ik−1,...,j1

)
...

+
λk

Λ

( k∑
j=1

Rj +

ik−1−1∑
jk−1=1

E(k−1)
jk−1

+

ik−2−1∑
jk−2=1

E(k−2)
ik−1,jk−2

+ · · ·+
i1∑

j1=1

E(1)
ik−1,...,j1

))
+
(
1− P

(1)
ik−1,...,i1

)
w

(1)
ik−1,...,i1

, (3.21)

where Λ =
∑k

`=1 λ` is the total rate of all error sources, and P
(1)
ik−1,...,i1

= 1 − e
Λ·w(1)

ik−1,...,i1

denotes the probability of having an error (from any level) during the execution of the segment.
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Simplifying Equation (3.21) and solving for E(1)
ik−1,...,i1

we get:

E(1)
ik−1,...,i1

= w
(1)
ik−1,...,i1

+
W 2

2
Λ[1,k]

(
α
(1)
ik−1,...,i1

)2
+ w

(1)
ik−1,...,i1

k∑
`=2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ1/2)

= w
(1)
ik−1,...,i1

+
W 2

2
λ1

(
α
(1)
ik−1,...,i1

)2
+ Λ[2,k]


(
w

(1)
ik−1,...,i1

)2
2

+ w
(1)
ik−1,...,i1

i1−1∑
j1=1

E(1)
ik−1,...,j1


+ w

(1)
ik−1,...,i1

k∑
`=3

Λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ1/2),

which satisfies Equation (3.20).
Suppose Equation (3.20) holds up to any segment s(h)ik−1,...,ih

at level h. Following the proof
of Proposition 7 (in particular, the derivation of Equation (3.10)), we can show by induction
that E(h)

ik−1,...,ih
= w

(h)
ik−1,...,ih

+O(1). Hence, for segment s(h+1)ik−1,...,ih+1
at level h+ 1, we have:

E(h+1)
ik−1,...,ih+1

=
∑
ih

E(h)
ik−1,...,ih

=
∑
ih

w
(h)
ik−1,...,ih

+
W 2

2

(
h∑

`=1

λ`

∑
ih,...,i`

(
α
(`)
ik−1,...,i`

)2)

+ Λ[h+1,k]

∑
ih


(
w

(h)
ik−1,...,ih

)2
2

+w
(h)
ik−1,...,ih

ih−1∑
jh=1

w
(h)
ik−1,...,jh


+
∑
ih

w
(h)
ik−1,...,ih

k∑
`=h+2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ1/2)

= w
(h+1)
ik−1,...,ih+1

+
W 2

2

(
h∑

`=1

λ`

∑
ih,...,i`

(
α
(`)
ik−1,...,i`

)2)
+ Λ[h+1,k]

(
w

(h+1)
ik−1,...,ih+1

)2
2

+ w
(h+1)
ik−1,...,ih+1

k∑
`=h+2

Λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ1/2)
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= w
(h+1)
ik−1,...,ih+1

+
W 2

2

(
h+1∑
`=1

λ`

∑
ih,...,i`

(
α
(`)
ik−1,...,i`

)2)

+ Λ[h+2,k]


(
w

(h+1)
ik−1,...,ih+1

)2
2

+w
(h+1)
ik−1,...,ih+1

ih+1−1∑
jh+1=1

E(h+1)
ik−1,...,jh+1


+ w

(h+1)
ik−1,...,ih+1

k∑
`=h+3

Λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ1/2).

Hence, Equation (3.20) also holds for any segment at level h + 1. This completes the proof of
the proposition.

Proposition 8 shows that, for a given k-level checkpointing pattern, the error-free overhead
oef and the re-executed fraction overhead ore are given as follows:

oef =
k−1∑
`=1

N`C` + Ck, (3.22)

ore =
1

2

k∑
`=1

f`
∑

ik−1,...,i`

(
α
(`)
ik−1,...,i`

)2
, (3.23)

where f` =
λ`

Λ
. According to Observation 3, it remains to find parameters of the pattern such

that oef · ore is minimized.
To derive the optimal pattern, we first consider the case where oef is fixed, i.e., the set of

checkpoints is given. The following proposition shows the optimal value of ore.

Proposition 9. For a k-level checkpointing pattern, suppose the number N` of checkpoints at
each level ` is given, i.e., the error-free overhead oef is fixed (as in Equation (3.22)). Then, the
optimal value of the re-executed work overhead is given by

oopt
re =

1

2

(
k−1∑
`=1

f`
N`

+ fk

)
, (3.24)

and it is obtained when all the checkpoints of each level are equally spaced in the pattern.

Proof. According to Equation (3.23), which shows the value of ore for the entire pattern, we
can define the corresponding overhead for each level-h segment s(h)ik−1,...,ih

recursively as follows:

ore

(
s
(h)
ik−1,...,ih

)
=
fh
2
·
(
α
(h)
ik−1,...,ih

)2
+
∑
ih−1

ore

(
s
(h−1)
ik−1,...,ih−1

)
,

with ore

(
s
(0)
ik−1,...,i0

)
= 0 by definition.
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For each segment s(h)ik−1,...,ih
, we also define N`

(
s
(h)
ik−1,...,ih

)
to be the total number of level-`

segments it contains, with ` ≤ h. We will show that the optimal value oopt
re

(
s
(h)
ik−1,...,ih

)
for the

segment satisfies:

oopt
re

(
s
(h)
ik−1,...,ih

)
=
1

2

 h∑
`=1

f`

N`

(
s
(h)
ik−1,...,ih

)
(α(h)

ik−1,...,ih

)2
, (3.25)

and it is achieved when its level-` checkpoints are equally spaced, for all ` ≤ h − 1. The
proposition can then be proven by setting oopt

re = oopt
re

(
s(k)
)
, since N`

(
s(k)
)
= N`, Nk = 1, and

α(k) = 1.
Now, we prove Equation (3.25) by induction on the level h. For the base case, i.e., when

h = 1, we have ore

(
s
(1)
ik−1,...,i1

)
= f1

2
·
(
α
(1)
ik−1,...,i1

)2
by definition, and it satisfies Equation (3.25),

because N1

(
s
(1)
ik−1,...,i1

)
= 1. Suppose Equation (3.25) holds for any segment s(h)ik−1,...,ih

at level h.

Then, for segment s(h+1)ik−1,...,ih+1
at level h+ 1, we have:

ore

(
s
(h+1)
ik−1,...,ih+1

)
=
fh+1
2
·
(
α
(h+1)
ik−1,...,ih+1

)2
+
∑
ih

oopt
re

(
s
(h)
ik−1,...,ih

)
=

fh+1
2
·
(
α
(h+1)
ik−1,...,ih+1

)2
+
1

2
y, (3.26)

where y =
∑

ih
x
(h)
ik−1,...,ih

·
(
α
(h)
ik−1,...,ih

)2
, and x

(h)
ik−1,...,ih

=
∑h

`=1
f`

N
(̀
s
(h)
ik−1,...,ih

) . To minimize

ore

(
s
(h+1)
ik−1,...,ih+1

)
as shown in Equation (3.26), it suffices to solve the following minimization

problem:

minimize y =
∑
ih

x
(h)
ik−1,...,ih

·
(
α
(h)
ik−1,...,ih

)2
,

subject to
∑
ih

α
(h)
ik−1,...,ih

= α
(h+1)
ik−1,...,ih+1

.

Since y is clearly a convex function of α(h)
ik−1,...,ih

, we can readily get, using Lagrange multiplier
[18], the minimum value of y as follows:

ymin =
1∑

ih
1/x

(h)
ik−1,...,ih

·
(
α
(h+1)
ik−1,...,ih+1

)2
, (3.27)

which is obtained at

α̃
(h)
ik−1,...,ih

=
1/x

(h)
ik−1,...,ih∑

jh
1/x

(h)
ik−1,...,jh

· α(h+1)
ik−1,...,ih+1

. (3.28)
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Let us define z =
∑

ih
1/x

(h)
ik−1,...,ih

. We now need to solve the following maximization
problem:

maximize z =
∑
ih

1∑h
`=1

f`

N
(̀
s
(h)
ik−1,...,ih

) ,

subject to
∑
ih

N`

(
s
(h)
ik−1,...,ih

)
=N`

(
s
(h+1)
ik−1,...,ih+1

)
,∀` = 1, . . . , h.

Again, z is a convex function of N`

(
s
(h)
ik−1,...,ih

)
, and it can be shown to be maximized when

N`

(
s
(h)
ik−1,...,ih

)
=

N`

(
s
(h+1)
ik−1,...,ih+1

)
n
(h+1)
ik−1,...,ih+1

, ∀` = 1, . . . , h,

which gives α̃(h)
ik−1,...,ih

= 1

n
(h+1)
ik−1,...,ih+1

· α(h+1)
ik−1,...,ih+1

according to Equation (3.28). This implies that

all level-` checkpoints are also equally spaced inside segment s(h+1)ik−1,...,ih+1
, for all ` ≤ h. The

maximum value of z in this case is

zmax =
1∑h

`=1
f`

N
(̀
s
(h+1)
ik−1,...,ih+1

) ,

and the optimal value of ymin according to Equation (3.27) is then given by

yopt
min =

1

zmax

(
α
(h+1)
ik−1,...,ih+1

)2
=

 h∑
`=1

f`

N`

(
s
(h+1)
ik−1,...,ih+1

)
(α(h+1)

ik−1,...,ih+1

)2
.

Substituting yopt
min into Equation (3.26), we get the optimal value of ore

(
s
(h+1)
ik−1,...,ih+1

)
as follows:

oopt
re

(
s
(h+1)
ik−1,...,ih+1

)
=

fh+1
2
·
(
α
(h+1)
ik−1,...,ih+1

)2
+
1

2
yopt
min

=
1

2

h+1∑
`=1

f`

N`

(
s
(h+1)
ik−1,...,ih

)
(α(h+1)

ik−1,...,ih+1

)2
.

This shows that Equation (3.25) also holds for segment s(h+1)ik−1,...,ih+1
at level h + 1 and, hence,

completes the proof of the proposition.

We are now ready to characterize the optimal k-level pattern. The result is stated in the
following theorem.
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Theorem 10. A first-order approximation to the optimal k-level pattern and its overhead are
characterized by

W opt =

√√√√√2
(∑k−1

`=1 N
opt
` C` + Ck

)
∑k−1

`=1
λ`

Nopt
`

+ λk

, (3.29)

N opt
` =

√
λ`

C`

· Ck

λk

, ∀` = 1, 2, . . . , k − 1, (3.30)

Hopt =
k∑

`=1

√
2λ`C` +O(Λ). (3.31)

Proof. From Observation 3, Equation (3.22) and Proposition 9, we know that the optimal pat-
tern can be obtained by minimizing the following function:

F = oef · oopt
re =

1

2

(
k−1∑
`=1

N`C` + Ck

)(
k−1∑
`=1

f`
N`

+ fk

)
.

We first compute the optimal number of checkpoints at each level using a two-phase iterative
method. Towards this end, let us define

oef(h) =
k−1∑
`=h

N`C` + Ck,

oopt
re (h) =

1

2

(
k−1∑
`=h

f`
N`

+ fk

)
.

In the first phase, we set initially

F (1) = oef(1) · oopt
re (1).

The optimal value of N1 that minimizes F (1) can then be obtained by setting

∂F (1)

∂N1

= C1o
opt
re (1)− oef(1)

f1
2N2

1

= C1

(
f1
2N1

+ oopt
re (2)

)
− (N1C1 + oef(2))

f1
2N2

1

= C1o
opt
re (2)− oef(2)

f1
2N2

1

= 0,

which gives N opt
1 =

√
f1
C1
· oef(2)

2o
opt
re (2)

. Substituting it into F (1) and simplifying, we can get the
value of F after the first iteration as

F (2) =
1

2

(√
f1C1 +

√
oef(2) · oopt

re (2)

)2

.
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Repeating the above process, we can get the optimal value of F after k − 1 iterations as

F opt = F (k) =
1

2

(
k∑

`=1

√
f`C`

)2

, (3.32)

and the optimal value of N` as

N opt
` =

√
f`
C`

· oef(`+ 1)

2oopt
re (`+ 1)

, ∀` = 1, 2, . . . , k − 1. (3.33)

In the second phase, we first compute from Equation (3.33)

N opt
k−1 =

√
fk−1

Ck−1

· oef(k)

2oopt
re (k)

=

√
fk−1

Ck−1

· Ck

fk

=

√
λk−1

Ck−1

· Ck

λk

.

Substituting it into N opt
k−2, we obtain:

N opt
k−2 =

√
fk−2

Ck−2

· oef(k − 1)

2oopt
re (k − 1)

=

√√√√λk−2

Ck−2

·
N opt

k−1Ck−1 + Ck

λk−1

N
opt
k−1

+ λk

=

√√√√√λk−2

Ck−2

·

√
λk−1

λk
Ck−1Ck + Ck√

λk−1λk
Ck−1

Ck
+ λk

=

√√√√√√λk−2

Ck−2

·
Ck

(√
λk−1

λk
· Ck−1

Ck
+ 1
)

λk

(√
λk−1

λk
· Ck−1

Ck
+ 1
)

=

√
λk−2

Ck−2

· Ck

λk

.

Repeating the above process iteratively, we can compute the optimal values of N opt
` for ` =

k − 3, . . . , 2, 1, as given in Equation (3.30) by using values of N opt
k−1, . . . , N

opt
`+1.

The optimal pattern length, according to Equation (3.18), can be expressed as W opt =√
oef

Λ·oopt
re

, which turns out to be Equation (3.29) with the optimal values of N opt
` .
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The optimal overhead, according to Equations (3.19) and (3.32), can be expressed as Hopt =
2
√
Λ · F opt + O(Λ), which gives rise to Equation (3.31). This completes the proof of the

theorem.

Since Proposition 9 shows that all the checkpoints of each level are equally spaced in the
pattern, we can readily obtain the following corollary.

Corollary 2. In an optimal k-level pattern, the number of level-` checkpoints between any two
consecutive level-(`+ 1) checkpoints is given by

nopt
` =

N opt
`

N opt
`+1

=

√
λ`

λ`+1

· C`+1

C`

. (3.34)

for all ` = 1, . . . , k − 1.

Remarks. The optimal k-level pattern derived in this section has a rational number of
segments, while the optimal integer solution could be much harder to compute. In Section 3.4,
we use rounding to derive a practical solution. Still, Equation (3.31) provides a lower bound
on the optimal overhead, which is met very closely in all our experimental scenarios.

3.3.4 Optimal subset of levels
The preceding section characterizes the optimal pattern by using k levels of checkpoints. In
many practical cases, there is no obligation to use all available levels. This section addresses
the problem of selecting the optimal subset of levels in order to minimize the overall execution
overhead.

Checkpoint cost models

So far, we have assumed that all the checkpoint costs are fixed under a multi-level checkpointing
scheme. In practice, the checkpoint costs may vary depending upon the implementation, and
upon the subset of selected levels. In order to determine the optimal subset, we identify the
following two checkpoint cost models:

• Fixed independent costs. The checkpoint cost C` at level ` is the cost paid to save data
at level `, independently of the subset of levels used. In this model, the checkpoint costs
stay the same for all possible subsets.

• Incremental costs. The checkpointing cost C` at level ` is the additional cost paid to
save data when going from level ` − 1 to `. In this model, the checkpoint cost at a
particular level depends on the subset of levels selected.

For example, with k = 2 levels and C1 = 10, C2 = 20, two subsets are possible: {1, 2} and
{2}. In the fixed independent cost model, these costs will stay unchanged regardless of the
subset chosen. In the incremental cost model, since C2 is the additional cost paid after C1 is
done, when using subset {2}, i.e., only placing level-2 checkpoints in the pattern, we need to
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adjust its cost as C ′
2 = 10 + 20 = 30. In both cases, once the subset is decided, the checkpoint

costs at the selected levels can be computed and therefore considered as fixed constants. The
theoretical analysis presented in Section 3.3.3 can then be used to compute the optimal pattern.

But how to determine the optimal subset of levels? Consider again the example with k =
2 levels. In the incremental cost model, Equation (3.31) suggests that the optimal solution
(ignoring lower-order terms) uses both levels if and only if√

2λ1C1 +
√

2λ2C2 ≤
√

2 (λ1 + λ2) (C1 + C2)

⇔ 0 ≤
(√

λ1C2 −
√

λ2C1

)2
,

which is always true when assuming λ1 ≥ λ2 and C1 ≤ C2. We can easily apply the same argu-
ment to show that the optimal subset must contain all levels available as long as all checkpoint
costs are positive.

In the fixed independent cost model, however, it is not clear whether all available levels
should be used. Consider the same example with k = 2 levels, and define α = λ2

λ1
and β = C2

C1
.

The optimal solution uses both levels if and only if√
2λ1C1 +

√
2λ2C2 ≤

√
2 (λ1 + λ2)C2

⇔ 4αβ ≤ (β − 1)2,

which is not true when α = 0.5 and β = 2. In this case, using only level-2 checkpoints leads
to a smaller overhead.

Dynamic programming algorithm

In the fixed independent cost model, the optimal subset of levels in a general k-level pattern
could well depend on the checkpoint costs and error rates of different levels. One can enumerate
all 2k−1 possible subsets and select the one that leads to the smallest overhead. The following
theorem presents a more efficient dynamic programming algorithm when the number k of levels
is large.

Theorem 11. Suppose there are k levels of checkpoints available and their costs are fixed.
Then, the optimal subset of levels to use can be obtained by dynamic programming in O(k2)
time.

Proof. Let Sopt(h) ⊆ {0, 1, . . . , h} denote the optimal subset of levels used by a pattern that is
capable of handling errors up to level h, and let Hopt(h) denote the corresponding optimal over-
head (ignoring lower-order terms) incurred by the pattern. Define Sopt(0) = ∅ and Hopt(0) = 0.
Recall that Λ[x,y] =

∑y
`=x λ`. We can compute Hopt(h) using the following dynamic program-

ming formulation:

Hopt(h) = min
0≤`≤h−1

{
Hopt(`) +

√
2Λ[`+1,h]Ch

}
, (3.35)

and the optimal subset is Sopt(h) = Sopt(`opt)
⋃
{h}, where `opt is the value of ` that yields the

minimum Hopt(h).
The optimal subset of levels to handle all k levels of errors is then given by Sopt(k) with the

optimal overhead Hopt(k). The complexity is clearly quadratic in the total number of levels.
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3.4 Simulations

In this section, we conduct a set of simulations whose goal is threefold: (i) to verify the accu-
racy of the first-order approximation; (ii) to confirm the optimality of the subset of levels found
by the dynamic programming algorithm; and (iii) to evaluate the performance of our approach
and to compare it with other multi-level checkpointing algorithms. After introducing the sim-
ulation setup in Section 3.4.1, we proceed in two steps. First, in Section 3.4.2, we instantiate
the model with realistic parameters from the literature and run simulations for all possible sub-
sets of levels and roundings. Then, in Section 3.4.3, we instantiate the model with different
test cases from the recent work of Di et al. [37, 39] on multilevel checkpointing and com-
pare the overheads obtained with three approaches: (a) Young/Daly’s classical formula; (b) our
first-order approximation formula; and (c) Di et al.’s iterative/optimal algorithm. The simula-
tor code is publicly available at http://perso.ens-lyon.fr/aurelien.cavelan/
multilevel.zip, so that interested readers can experiment with it and instantiate the model
with parameters of their own choice.

3.4.1 Simulation setup

Checkpoint and recovery costs both depend on the volume of data to be saved, and are mostly
determined by the hardware resource used at each level. As such, we assume that recovery
cost for a given level is equivalent to the corresponding checkpointing cost, i.e., R` = C` for
1 ≤ ` ≤ k (unless specified otherwise). This a common assumption [37, 74], even though in
practice the recovery cost can be expected to be somewhat smaller than the checkpoint cost [37,
39]. All costs are fixed and independent (as discussed in Section 3.3.4).

The simulator is fed with k levels of errors and their MTBFs µ` = 1/λ`, as well as the
resilience parameters C` and R`. For each of the 2k−1 possible subsets of levels (the last level is
always included), we take the optimal pattern given in Theorem 10 and Corollary 2, and then try
all possible roundings (floor and ceiling) based on the optimal (rational) number of checkpoints
(nopt

` given in Equation (3.34)). For each rounding, we compare the following three overheads:

• Simulated overhead, obtained by running the simulation 10000 times and averaging the
results;

• Corresponding theoretical overhead, obtained from Equations (3.19), (3.22) and (3.24)
using the integer solution that corresponds to the rounding;

• Theoretical lower bound, obtained from Equation (3.31) with the optimal rational so-
lution.

In the following, we associate Young/Daly’s classical formula, defined as W opt =
√

2C
Λ

,
with the highest checkpointing level available, i.e., C = Ck. Note that in this case, Young/Daly’s
formula and Equation (3.29) can be used interchangeably, and the corresponding theoretical
overhead is obtained with Hopt =

√
2ΛC.

http://perso.ens-lyon.fr/aurelien.cavelan/multilevel.zip
http://perso.ens-lyon.fr/aurelien.cavelan/multilevel.zip
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Table I
SETS OF PARAMETERS (A) AND (B) USED AS INPUTS FOR SIMULATIONS.

Set From Level 1 2 3 4

(A)
Moody C (s) 0.5 4.5 1051 -

et al. [74] MTBF (s) 5.00e6 5.56e5 2.50e6 -

(B)
Balaprakash C (s) 10 30 50 150

et al. [6] MTBF (s) 3.60e4 7.20e4 1.44e5 7.20e5

3.4.2 Assessing accuracy of first-order approximation

In this section, we run simulations with two sets of parameters, described in Table I. For each
set of parameters, we consider all possible subsets of levels. Then, for each subset, we compute
the optimal pattern length and number of checkpoints to be used at each level. We show the
accuracy of our approach in both scenarios, and we confirm the optimality of the subset of
levels returned by the dynamic programming algorithm.

Using set of parameters (A)

The first set of parameters (shown in set (A) of Table I) corresponds to the Coastal platform,
a medium-sized HPC system of 1104 nodes at the Lawrence Livermore National Labora-
tory (LLNL). The Coastal platform has been used to evaluate the Scalable Checkpoint/Restart
(SCR) library by Moody et al. [74], who provided accurate measurements for the checkpoint
costs using real applications (given in the first row of Table I). There are k = 3 levels of
checkpoints. First-level checkpoints are written to the local RAMs of the nodes, and this is
the fastest method (0.5s). Second-level checkpoints are also written to local RAMs, but small
sets of nodes collectively compute and store parity redundancy data, which takes a little while
longer (4.5s). Lastly, Lustre is used to store third-level checkpoints onto the parallel file sys-
tem, which takes significantly longer time (1051s). Failures were analyzed in [74], and the
error rates are given in the second row of Table I. Note that the error rate at level 2 is higher
than those of levels 1 and 3.

Results: Table II and Figure 3.4 present the simulation results. Table II shows, from left to
right, the subset of levels used, the number of checkpoints computed by our first-order approx-
imation formula for each possible rounding (N1, N2, N3), the corresponding optimal pattern
length (W opt(s)), the simulated overhead (Sim. Ov.), the corresponding theoretical overhead
(Th. Ov.), the absolute and relative differences of these two overheads (Ab. Diff. = 100 ×
(Sim. Ov. - Th. Ov.), and Rel. Diff. = 100 × (Sim. Ov. - Th. Ov.)/Sim. Ov.), and finally the
theoretical lower bound for this subset (Th. L.B.).

With k = 3, there are four possible subsets of levels, and both the best simulated overhead
and the corresponding theoretical overhead are achieved for the subset {2, 3}, with N2 = 35
and N3 = 1 (highlighted in bold in the table). First, the difference between the simulated and
theoretical overheads is very small, with a difference < 0.7% in absolute values, and a relative
difference ranging from 2.9% (for subset {1, 2, 3}) to 8.14% (for subset {3}), which shows the
accuracy of the first-order approximation for this set of parameters. The simulated overhead is
always higher than the theoretical one, which is expected, because the first-order approximation
ignores some lower-order terms. Next, we observe that, for each subset, all roundings of the
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Table II
SIMULATION RESULTS USING SET OF PARAMETERS (A).

Levels N1 N2 N3 W opt (s) Sim. Ov. Th. Ov. Abs. Diff. Rel. Diff. Th. L.B.
{3} - - 1 2.96e4 7.74e-2 7.11e-2 0.63% 8.14% 7.11e-2

{1,3}
14 - 1 3.09e4 7.40e-2 6.85e-2 0.55% 7.43%

6.85e-2
13 - 1 3.09e4 7.39e-2 6.85e-2 0.54% 7.31%

{2,3}
- 35 1 7.27e4 3.44e-2 3.33e-2 0.11% 3.20% 3.33e-2
- 34 1 7.25e4 3.46e-2 3.33e-2 0.13% 3.76%

{1,2,3}
33 33 1 7.27e4 3.46e-2 3.35e-2 0.11% 3.18%

3.35e-2
32 32 1 7.24e4 3.45e-2 3.35e-2 0.10% 2.90%
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Figure 3.4: Simulated and (corresponding) theoretical overheads for all possible subsets of
levels with the best and worst roundings for each subset using set of parameters (A).

number of checkpoints yield similar overheads on this platform, and the difference between the
best and worst roundings is almost negligible.

Furthermore, using the best subset ({2, 3}) improves the overhead by over 50% compared
to using level-3 checkpoints alone (as in Young/Daly’s result). This is indeed the subset re-
turned by the dynamic programming algorithm, and the result matches closely the minimum
theoretical lower bound. Finally, comparing our result to the one obtained by the optimal two-
level algorithm by Di et al. [39] on this best subset, we see that the simulated overheads are
similar under the optimal subset, as the patterns found using both approaches share the same
number of checkpoints and the pattern lengths are also almost identical.

Using set of parameters (B)

The second set of parameters correspond to the execution of the LAMMPS application on the
large BG/Q platform Mira at the Argonne National Laboratory (ANL) [6]. The parameters are
presented in set (B) of Table I. In this setting, the Fault Tolerance Interface (FTI) [12] was used,
which has four checkpoint levels (k = 4): Local checkpoint; Local checkpoint + Partner-
copy; Local checkpoint + Reed-Solomon coding; and PFS-based checkpoint. The MTBFs
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Table III
SIMULATION RESULTS USING SET OF PARAMETERS (B).

Levels N1 N2 N3 N4 W opt (s) Sim. Ov. Th. Ov. Abs. Diff. Rel. Diff. Th. L.B.
{4} - - - 1 2.45e3 1.43e-1 1.22e-1 1.9% 13.3% 1.22e-1

{1,4}
5 - - 1 3.79e3 1.18e-1 1.05e-1 1.3% 11.0%

1.05e-1
4 - - 1 3.61e3 1.18e-1 1.05e-1 1.3% 11.0%

{2,4} - 5 - 1 6.00e3 1.11e-1 1.00e-1 1.1% 9.9% 1.00e-1

{3,4}
- - 11 1 1.55e4 9.96e-2 9.02e-2 0.94% 9.44%

9.01e-2
- - 10 1 1.44e4 9.91e-2 9.01e-2 0.90% 9.08%

{1,2,4}

9 3 - 1 6.41e3 1.11e-1 1.03e-1 0.8% 7.2%

1.02e-1
6 2 - 1 5.21e3 1.13e-1 1.04e-1 0.9% 8.0%
6 3 - 1 5.84e3 1.11e-1 1.03e-1 0.8% 7.2%
4 2 - 1 4.74e3 1.17e-1 1.05e-1 1.2% 10.3%

{1,3,4}

21 - 7 1 1.58e4 9.72e-2 8.99e-2 0.73% 7.51%

8.96e-218 - 6 1 1.40e4 9.82e-2 8.98e-2 0.84% 8.55%
14 - 7 1 1.04e4 9.68e-2 9.01e-2 0.67% 6.92%
12 - 6 1 1.26e4 9.85e-2 9.04e-2 0.81% 8.22%

{2,3,4}

- 16 4 1 1.70e4 1.07e-1 9.75e-2 0.95% 8.9%

9.68e-2
- 12 3 1 1.36e4 1.04e-1 9.73e-2 0.67% 6.4%
- 12 4 1 1.47e4 1.05e-1 9.68e-2 0.82% 7.8%
- 9 3 1 1.17e4 1.05e-1 9.75e-2 0.75% 7.1%

{1,2,3,4}

24 8 4 1 1.66e4 1.09e-1 1.00e-1 0.9% 8.2%

9.92e-2

18 6 3 1 1.32e4 1.08e-1 9.99e-2 0.81% 7.5%
12 4 4 1 1.15e4 1.11e-1 1.03e-1 0.8% 7.2%
9 3 3 1 9.17e3 1.14e-1 1.05e-1 0.9% 7.9%

16 8 4 1 1.51e4 1.08e-1 9.95e-2 0.85% 7.9%
12 6 3 1 1.20e4 1.09e-1 1.00e-1 0.9% 8.3%
8 4 4 1 1.05e4 1.16e-1 1.05e-1 1.1% 9.5%
6 3 3 1 8.33e3 1.19e-1 1.08e-1 1.1% 9.2%

correspond to the failure rates typically observed for petascale HPC applications [12, 37, 74].

Results: Table III and Figure 3.5 present the simulation results for this set of parameters.
There are 8 possible subsets of levels. As before, we observe that the theoretical overhead is
always slightly smaller than the simulated one, with an absolute difference of less than 2%,
and a relative difference between 6-14%, demonstrating the accuracy of the model. Again, the
results are very close to the theoretical lower bound. For this platform, the simulated overheads
vary from 9.68% (with optimal subset of levels {1, 3, 4} found by the dynamic programming
algorithm) to 14.3% (with level-4 checkpoints alone). For a given subset of levels, the rounding
does not play a significant role, as W opt is also adjusted accordingly (increased or decreased)
as a result of rounding. For instance, we observe that, for subset {1, 2, 3, 4}, the numbers of
checkpoints at levels 1 and 2 are halved for the third rounding compared to the first rounding
in Table III, but W opt is also reduced by 31%, so that for the same amount of work, the number
of checkpoints does not change by much. We can also see that the pattern length W opt for the
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Figure 3.5: Simulated and (corresponding) theoretical overheads for all possible subsets of
levels with the best and worst roundings for each subset using set of parameters (B).

smallest overhead is around 10400s, but only 2450s for the largest overhead. In fact, the largest
pattern lengths are obtained for the highest cumulated checkpoint cost, which turns out to be
830s for {2, 3, 4} with N2=16, N3=4, N4=1, and for {1, 2, 3, 4} with N1=24, N2=8, N3=4
and N4 = 1. This is because using more checkpoints both increases the error-free overhead
and reduces the time lost due to re-executions upon errors. As a consequence, and to mitigate
the aforementioned overhead, the length of the pattern increases (e.g., W opt = 17000s for
{2, 3, 4} and W opt = 16600s for {1, 2, 3, 4}). And the converse is also true: when using
fewer checkpoints, the error-free overhead decreases and the time lost upon errors increases.
In order to compensate, the pattern length decreases (e.g., W opt = 8330s for {1, 2, 3, 4} with
N1=6, N2=3, N3=3 and N4=1).

We note that, in this case, our first-order solution slightly outperforms the iterative method
by Di et al. [37] on multi-level checkpointing (with a simulated overhead of 9.68e-2 compared
to 9.75e-2). The reason is that their algorithm computes a solution under the independent
checkpointing model, i.e., checkpoints at different levels are taken according to different inde-
pendent periods. However, it is not clear how such a model can be implemented in practice due
to the difficulties as explained in Section 3.1 and the different options to rollback to a check-
point in case of a fault. Therefore, we transformed their result to a pattern-based solution by
rounding the different numbers of checkpoints obtained using their algorithm to create equal
number of checkpoints at level ` − 1 between two consecutive level-` checkpoints. Although
the best rounding is selected here for comparison, the result can still change drastically the
number of checkpoints computed by their initial rational solution without changing the pattern
length, thus increasing the overhead.

3.4.3 Comparing performance of different approaches

In this section, we conduct simulations using settings from Di et al.’s recent work on multi-
level checkpointing, which comprises two cases with four levels [37] and eight cases with two
levels [39], thus covering a wide range of configurations. For each case, we compare the per-
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formance of three different approaches: (a) Young/Daly’s classical formula; (b) our first-order
approximation formula; and (c) Di et al.’s iterative algorithm.

Table IV
SET OF PARAMETERS (C) USED AS INPUT FOR SIMULATIONS.

Set (C), from Di et al. [37]
Level 1 2 3 4

Case #A
C (s) 8 10 80 90
R (s) 8 10 80 90

MTBF (s) 2160 1440 8640 21600

Case #B
C (s) 1 20 60 70
R (s) 1 10 30 35

MTBF (s) 864 864 1080 1440

Using set of parameters (C)

Case #A Case #B
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Figure 3.6: Performance comparison of the three different approaches using two cases from Di
et al. [37].

We first run simulations for Cases #A and #B, whose parameters are presented in Table IV.
These parameters are based on the FTI multilevel checkpointing model and have been used by
Di et al. [37] to evaluate the performance of their approach. Note that the recovery cost is about
half that of the checkpointing cost in Case #B.

In their work, Di et al. considered independent checkpointing periods, as opposed to the
nested method based on periodic patterns (as discussed in Section 3.1). Although they provided
an optimal solution, an iterative approach was used to compute it numerically in contrast to the
simple formula we propose in this work. Recall that using independent checkpointing periods
allows checkpoints at different levels to be taken simultaneously, which can hardly be done
in practice. Adapting their solution to our model results in rational numbers of checkpoints,
and we again use rounding to resolve this issue. We find that, using the best roundings for
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both approaches, their solution turns out to be very similar to ours (with the same number of
checkpoints, and close periods with < 1% difference).

Results: Figure 3.6 presents the overheads for both cases. First, we observe that Di et al.’s
optimal iterative algorithm has almost identical performance to our solution, with a simulated
overhead around 45% for Case #A and 140% for Case #B under both approaches. However,
using Young/Daly’s formula to checkpoint only at the highest level yields significantly worse
overheads (around 90% for Case #A and 170% for Case #B). Overall, our solution is as good
as Di et al.’s optimal numerical one (but has much less complexity), and it is up to 45% better
than Young/Daly’s formula in Case #A and 30% better in Case #B.

Note that the corresponding theoretical overhead of our solution is close to the simulated
one for Case #A, but starts to diverge for Case #B. This is because first-order approximation
is only accurate when the resilience parameters and pattern length are small compared to the
MTBF, which is no longer true for Case #B. Specifically, we have:

• In Case #A, the optimal subset of levels is {2, 4}. The optimal pattern has length W opt=
1052s and consists of N2=8 level-2 checkpoints followed by N4=1 level-4 checkpoint,
meaning that we have a level-2 checkpoint every 131.5s of computation. So a level-2
checkpoint is saved every 141.5s and a level-4 checkpoint is saved every 1222s. On
the other hand, the combined MTBF for errors at levels 1 and 2 (handled by level-2
checkpoints) is 864s and the combined MTBF for errors at levels 3 and 4 (handled by
level-4 checkpoints) is 6171s. Hence, we have 141.5

864
= 0.164 and 1222

6171
= 0.198, which

are reasonably small, making our solution accurate.

• In Case #B, the optimal subset of levels is {1, 4}, and the optimal pattern has W opt=223s,
N1=5 and N4=1. Thus, we have a level-1 checkpoint every 44.6s of computation. So
a level-1 checkpoint is saved every 45.6s and a level-4 checkpoint is saved every 298s.
The MTBF for errors at level 1 is 864s and the combined MTBF for errors at levels 2,
3 and 4 (handled by level-4 checkpoints) is 360s. Thus, we have 44.6

864
= 0.052, which

is fine, but 298
360

= 0.828, which is too high and essentially makes the first-order solution
inaccurate.

Despite the difference between the theoretical and simulated overheads under Case #B, the
proximity of our solution to Di et al.’s optimal numerical solution nevertheless shows the use-
fulness of first-order approximation for determining the optimal multi-level checkpointing pat-
terns.

Using set of parameters (D)

Finally, we run simulations for eight cases, whose parameters are presented in Table V. These
parameters have been used by Di et al. [39] to evaluate their two-level checkpointing model,
and as such, each case consists of only two checkpointing levels. In their work, the authors pro-
posed an optimal solution by solving complex mathematical equations using numerical method.
Again, for each case, we compare the simulated overheads obtained with the three different
approaches.
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Table V
SET OF PARAMETERS (D) USED AS INPUT FOR SIMULATIONS.

Set (D), from Di et al. [39]
Level 1 2 Level 1 2

Case 1
C (s) 20 50

Case 5
C (s) 10 40

MTBF (s) 3600 21600 MTBF (s) 432 2160

Case 2
C (s) 20 50

Case 6
C (s) 100 20

MTBF (s) 1728 8640 MTBF (s) 432 2160

Case 3
C (s) 20 100

Case 7
C (s) 40 200

MTBF (s) 864 4320 MTBF (s) 288 1440

Case 4
C (s) 10 40

Case 8
C (s) 50 300

MTBF (s) 864 4320 MTBF (s) 216 1440

In this set of parameters, the MTBF has a large variation, ranging from more than 1 hour
(Case 1) to less than 4 minutes (Case 8). Similarly, the checkpointing costs vary from 10s
(Cases 4 and 5) to 300s (Case 8). Note that Cases 7 and 8 have both very short MTBFs and
very high checkpointing costs, resulting in a lot of errors and recoveries. In particular, the
checkpointing cost at level 2 in Case 8 (300s) is larger than the MTBF at level 1 (216s).

Results: Figure 3.7 presents the simulation results for the eight cases. First, we observe that
the optimal algorithm by Di et al. only yields a slightly better simulated overhead compared
to our simple first-order approximation solution (by less than 2% in Cases 1 to 6). However,
our solution always improves significantly over Young/Daly’s formula, from 2% (Case 1) up
to 100% (Case 6). Due to their short MTBFs, Cases 7 and 8 stand out and incur much higher
overheads compared to the first six cases (thus their results are presented in a separate plot).
Still, considering Case 8, we are able to improve over Young/Daly’s solution by as much as
2500% (in absolute value of the overhead), and we are off the optimal simulated overhead by
only 300%. In addition, Figure 3.7 shows the theoretical overheads obtained both with our for-
mula and the solution provided by Di et al. in [39]. As expected, our first-order approximation
remains accurate when the MTBF is large, as in Cases 1, 2 and 4. However, it becomes less
accurate with shorter MTBFs and higher error rates, especially in Cases 7 and 8 (which do not
represent healthy HPC platforms).

3.4.4 Summary of results

From the simulation results, we conclude that first-order approximation remains a valuable
performance model for evaluating checkpointing solutions in HPC systems (as long as the error
rates stay reasonably low). We have demonstrated, through an extensive set of simulations
with a wide range of parameters, the usefulness of multi-level checkpointing (over using only
one level of checkpoints) with significantly reduced overheads. The results also corroborate
the analytical study by showing the benefit of selecting an optimal subset of levels among all
the levels available. Overall, our approach achieves the optimal or near-optimal performance in
almost all cases, except when the MTBF is too small, in which case even the optimal solution
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yields an unacceptably high overhead (e.g., Case 8 of Table V).

3.5 Conclusion

This chapter has studied multi-level checkpointing protocols, where different levels of check-
points can be set; lower levels deal with frequent errors that can be recovered at low cost (for
instance with a memory copy), while higher levels allow us to recover from all errors, such as
node failures (for instance with a copy in stable storage). We consider a general scenario
with k levels of faults, and we provide explicit formulas to characterize the optimal check-
pointing pattern, up to first-order approximation. The overhead turns out to be of the order of∑k

`=1

√
2λ`C`, which elegantly extends Young/Daly’s classical formula.

The first-order approximation to the optimal k-level checkpointing pattern uses rational
numbers of checkpoints, and we prove that all segments should have equal lengths. We cor-
roborate the theoretical study by an extensive set of simulations, demonstrating that greedily
rounding the rational values leads to an overhead very close to the lower bound. Furthermore,
we provide a dynamic programming algorithm to determine those levels that should be selected,
and the simulations confirm the optimality of the subset of levels returned by the dynamic
programming algorithm.

The problem of finding a first-order optimal pattern with an integer number of segments to
minimize the overhead remains open. It may well be the case that such an integer pattern is not
periodic at each level and uses different-length segments. However, the good news is that the
rounding of the rational solution provided in this chapter seems quite efficient in practice.
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Figure 3.7: Performance comparison of the three different approaches using 8 cases from Di et
al. [39].
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Chapter 4

Multi-level Checkpointing and Verifica-
tion for Linear Workflows

This chapter focuses on High Performance Computing (HPC) workflows whose dependency
graph forms a linear chain. This work extends and generalizes a preliminary analysis [J3], as
well as a more recent work [W5]. Similarly to Chapters 2 and 3, we extend single-level check-
pointing in two important directions. Our first contribution targets silent errors, and combines
in-memory checkpoints with both partial and guaranteed verifications. Our second contribution
deals with multi-level checkpointing for fail-stop errors. We present sophisticated dynamic pro-
gramming algorithms that return the optimal solution for each problem in polynomial time.
We also show how to combine all these techniques and solve the general problem with both
fail-stop and silent errors. Simulation results demonstrate that these extensions lead to signif-
icantly improved performance compared to the standard single-level checkpointing algorithm.
The work in this chapter has been published in Journal of computational science (JoCS) [J4].

4.1 Introduction

Multilevel checkpointing is now the state-of-the-art technique when it comes to dealing with
fail-stop errors. In Part I, we have introduced both partial verifications, two-level checkpointing
for silent errors and fail-stop errors, and a generalization of multi-level checkpointing for fail-
stop errors only. In this chapter, we follow the same approach, and we use a similar model
as the one presented in Chapter 3, but we consider linear workflow applications rather than
divisible applications.

We first consider a very general scenario, where the platform is subject to k levels of fail-
stop errors, numbered from 1 to k. Level ` is associated with an error rate λ`, a checkpointing
cost C(`), and a recovery cost R(`). A fault at level ` destroys all the checkpoints of lower
levels (from 1 to ` − 1 included) and implies a rollback to a checkpoint of level ` or higher.
Similarly, a recovery of level ` will restore data from all lower levels. As mentioned, fault
rates are decreasing and checkpoint/recovery costs are increasing when we go to higher levels:
λ1 ≥ λ2 ≥ · · · ≥ λk, C(1) ≤ C(2) ≤ · · · ≤ C(k), and R(1) ≤ R(2) ≤ · · · ≤ R(k). The
problem is to determine the optimal locations to place checkpoints of various levels in a High-

101
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Performance Computing (HPC) application.
Regarding silent errors, a traditional checkpointing strategy can still be used, provided that

it is coupled with a verification mechanism to detect silent errors (either partial or guaranteed),
as seen Chapter 1. Furthermore, rather than checkpointing on stable storage (e.g., an external
disk), a lightweight mechanism of in-memory checkpoints can be provided to cope with silent
errors: one keeps a local copy of the data that has not been corrupted when a silent error strikes,
and it can be used to perform a recovery rapidly. However, such local copies are lost once
a fail-stop error occurs, and hence checkpoints on stable storage must also be provided when
dealing with both sources of errors.

Designing resilience algorithms by combining all of these techniques is quite challenging.
In this chapter, we deal with a simplified, yet realistic, application framework, where a set of
application workflows exchange data at the end of their execution. Such a framework can be
modeled as a task graph whose dependencies form a linear chain. This scenario corresponds to
an HPC application whose workflow is partitioned into a succession of (typically large) tightly-
coupled computational kernels, each of which is identified as a task. Hence, we consider a
linear chain of tasks T1 → T2 → · · · → Tn, where each task Ti (1 ≤ i ≤ n) has a weight wi

corresponding to its computational load. The following summarizes our approach to enforcing
resilience in this simplified application framework:

Silent errors. To cope with silent errors, we couple in-memory checkpoints with both partial
and guaranteed verifications. At the end of each task, we can perform either a partial
verification (with cost V ) or a guaranteed verification (with cost V ∗) of the task output;
or, probably less frequently, we can perform a guaranteed verification followed by a
memory checkpoint (with cost CM ). Note that we do not take the risk of storing a
corrupted checkpoint, hence the need for a guaranteed verification.

Fail-stop errors. To cope with fail-stop errors, we use general multi-level checkpointing and
schedule checkpoints of various levels at the end of carefully selected tasks. Checkpoints
of level 1 are inserted more frequently than checkpoints of level 2, which themselves are
more frequent than checkpoints of level 3, and so on. In our approach, assuming that all
checkpointing levels are used, a checkpoint at level ` is always preceded by checkpoints
at all lower levels 1 to ` − 1, which makes good sense in practice (e.g., with two levels,
say local SSD and remote disk, one writes the data onto the local SSD before transferring
it to remote the disk). In this context, the checkpointing cost C(`) at level ` is the cost
paid to save data when going from level `− 1 to level `.

Both error sources. To cope with both fail-stop and silent errors, we combine all these tech-
niques: partial and guaranteed verifications, in-memory checkpointing, and several addi-
tional levels of checkpointing.

The main contributions of this chapter are several sophisticated dynamic programming al-
gorithms that return the optimal solution for each of the three problems above, i.e., the solution
that minimizes the expected execution time of the task chain in polynomial time. To the best
of our knowledge, this is the first work that combines multi-level checkpointing with guaran-
teed and partial verifications to deal with both fail-stop and silent errors in linear workflows.



4.2. MEMORY CHECKPOINTING AND VERIFICATIONS FOR SILENT ERRORS 103

Furthermore, we present extensive simulations that demonstrate the usefulness of mixing these
techniques, and, in particular, we demonstrate the gain obtained thanks to additional verifica-
tions and multi-level checkpointing. We show that it may be beneficial to use only some of the
checkpointing levels; in this case they are renumbered from 1 to k. The best combination of
levels to use can be found by an exhaustive search, since the number of levels k is usually small
(3 or 4).

The rest of this chapter is organized as follows. We present the dynamic programming
algorithm for silent errors with memory checkpoints and verifications in Section 4.2 and that
for fail-stop errors in Section 4.3. The solution to deal with both error sources is described
in Section 4.4. Simulation results are presented in Section 4.5. We survey related work in
Section 4.6. Finally, we give concluding remarks and hints for future work in Section 4.7.

4.2 Memory checkpointing and verifications for silent
errors

In this section, we present a sophisticated dynamic programming algorithm to decide which
tasks to checkpoint and which tasks to verify. We first introduce the model in Section 4.2.1.
We describe in Section 4.2.2 a dynamic programming algorithm for the case where only veri-
fied memory checkpoints are taken (i.e., memory checkpoints preceded by a guaranteed veri-
fication). We show how to extend this algorithm to add additional guaranteed verifications be-
tween checkpoints in Section 4.2.3, and finally we deal with the more complex case of partial
verifications in Section 4.2.4.

4.2.1 Model

We consider a chain T1 → T2 → · · · → Tn of n tasks that execute on a large-scale platform
subject to silent errors. Each task Ti is associated with a computational load or weight wi,
which is assumed to be known to the algorithm. For notational convenience, we define W]i,j] =∑j

p=i+1wp to be the total weight of tasks Ti+1 to Tj for any 0 ≤ i < j ≤ n. The arrival times
of silent errors follow a Poisson process with error rate λs. Unlike fail-stop errors, silent errors
do not destroy the memory content when they strike. Hence, we can cope with silent errors
by using lightweight memory checkpoints. When a silent error is detected, either by a partial
verification or by a guaranteed one, we roll back to the nearest memory checkpoint, and recover
from the memory copy there. This is much cheaper than checkpointing on and recovering from
a disk checkpoint. We enforce that a guaranteed verification is always taken immediately before
each memory checkpoint, so that all checkpoints are valid, and hence only one checkpoint
needs to be maintained at any time during the execution of the application. Furthermore, we
assume that the costs of checkpointing, recovery and verifications are uniform across different
tasks, and that they are protected from faults (i.e., silent errors only strike the computations).

Let CM denote the cost of memory checkpointing and RM the cost of memory recovery.
Also, let V ∗ denote the cost of guaranteed verification and V the cost of a partial verification.
The accuracy of a partial verification is measured by its recall, which is denoted by r and
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T0 V ∗ CM T1
. . . Tm1 V ∗ CM Tm1+1

. . . Tm2 V ∗ CM . . .

Emem(m1) Ecomp(m1,m2)

Emem(m2)

Figure 4.1: Placing verified memory checkpoints only: m2 is fixed, and we try all possible
locations for an additional verified memory checkpoint at m1 between T0 and Tm2 . Note that
all subproblems Emem(m1), with 0 ≤ m1 < m2, have already been computed.

represents the proportion of detected errors over all silent errors that have occurred during the
execution.1 For notational convenience, we define g = 1− r to be the proportion of undetected
errors. Note that the guaranteed verification can be considered as one with recall r∗ = 1.
Since a partial verification usually incurs a much smaller cost and yet has a reasonable recall
[10, 15], it is highly attractive for detecting silent errors, and we make use of them between
guaranteed verifications. For convenience, we introduce before task T1 a virtual task T0, which
is checkpointed, and whose recovery cost is zero. This accounts for the fact that it is always
possible to restart the application from scratch (i.e., recover from T0) at no extra cost.

The SILENT problem consists in finding the optimal set of tasks to checkpoint as well as
the optimal set of tasks to verify, along with the type of verification (guaranteed or partial) that
should be applied. The objective is to minimize the total expected execution time of the task
chain.

4.2.2 With memory checkpoints only

In this section, we present a dynamic programming algorithm when using only verified memory
checkpoints (memory checkpoints preceded by a guaranteed verification). A naive brute-force
algorithm would have to try all possible solutions (i.e., deciding whether or not to add a check-
point after each task), resulting in 2n operations. However, by remarking that the problem can
be divided into independent subproblems, we can compute the optimal solution in polynomial
time:

Theorem 12. The optimal solution to the SILENT problem with only memory checkpoints can
be obtained using a dynamic programming algorithm in O(n2) time and O(n) space, where n
is the number of tasks in the chain.

The remainder of this section is devoted to proving this theorem. We first detail how the
dynamic programming algorithm places the memory checkpoints in Section 4.2.2, and then
we detail the computation of expected execution time between two memory checkpoints in
Section 4.2.2. Finally, we provide the algorithm complexity in Section 4.2.2.

1Another measure of accuracy for a partial verification is precision, which is denoted as p and represents the
proportion of true errors over all silent errors that are reported by the verification. Typically, a tradeoff exists
between the recall and precision in the design of a partial verification mechanism. In this chapter, we assume
perfect precision, i.e., p = 1, which has been shown to represent the most useful configuration for optimizing the
execution overhead in Chapter 1.
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Placing memory checkpoints

We define Emem(m2) as the optimal expected time needed to successfully execute all tasks
from T1 to Tm2 , where there is a verified memory checkpoint after task Tm2 . The goal is to
obtain:

Emem(n) ,

which is the optimal expected execution time needed to successfully execute all the tasks in the
chain. Intuitively, the idea is to compute Emem(0),Emem(1),Emem(2), . . . ,Emem(n), in this
order, so that we can compute each new value by reusing previously computed optimal results.
We use memorization: we store and reuse solutions to subproblems instead of recomputing
them. This is possible because Emem(i), for 0 ≤ i < n, does not depend on tasks Ti+1 to Tn.
In other words, Emem(i) can be used as an independent subproblem, which we compute once
and then reuse to solve all Emem(j) problems, with i < j ≤ n.

To compute the general subproblem Emem(m2), we try all possible locations for an addi-
tional intermediate verified memory checkpoint between tasks T0 and Tm2 , as illustrated in Fig-
ure 4.1. For each possible location m1, we can reuse the optimal result given by Emem(m1), and
we call Ecomp(m1,m2), the expected time needed to successfully execute tasks Tm1+1 to Tm2 ,
knowing that there is no intermediate checkpoint. Finally, we add the cost of the checkpoint CM

following Tm2 (note that we account for the cost of the verification in Ecomp(m1,m2)), and we
can write:

Emem(m2) = min
0≤m1<m2

{
Emem(m1) + Ecomp(m1,m2)

}
+ CM ,

which is initialized with:

Emem(0) = 0 .

Indeed, when m2 = 0, there is no task to execute, and no room for extra checkpoints.

Computing Ecomp(m1,m2)

Now, to compute the expected time needed to successfully execute several tasks between two
verified memory checkpoints, we need only the position of the last verified memory check-
point m1, and the position of the next verified memory checkpoint m2.

First, we pay the cost W]m1,m2] to execute all the tasks from Tm1+1 to Tm2 . Then, we pay
the cost of the guaranteed verification V ∗. There is a probability ps]m1,m2]

= 1 − e−λsW]m1,m2]

of detecting a silent error, in which case we recover from the last verified memory checkpoint
at m1, with cost RM (set to 0 if m1 = 0) and we re-execute all the tasks from there, which is
simply Ecomp(m1,m2). Therefore, we have:

Ecomp(m1,m2) = W]m1,m2] + V ∗ + ps]m1,m2]

(
RM + Ecomp(m1,m2)

)
.

Simplifying the equation above and solving for Ecomp(m1,m2), we obtain:

Ecomp(m1,m2) = eλsW]m1,m2]
(
W]m1,m2] + V ∗)+ (eλsW]m1,m2] − 1

)
RM .
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T0 V ∗ CM T1
. . . Tm1 V ∗ CM Tm1+1

. . . Tm2 V ∗ CM . . .

Emem(m1) Everif (m1,m2)

Emem(m2)

Figure 4.2: Placing memory checkpoints (with guaranteed verifications): m2 is fixed, and
we try all possible locations for m1. Note that all subproblems Emem(m1), with 0 ≤ m1 <
m2, have already been computed, while Everif (m1,m2) is computed by yet another dynamic
programming level to be described later (see Figure 4.3).

Complexity

The complexity is dominated by the computation of the table Emem(m1), which contains O(n)
entries, and each entry depends on at most n other entries that are already computed. Hence,
the overall complexity of the algorithm is O(n2) in time and O(n) in space. Note that each
entry is computed only once using memoization, a well-known technique in dynamic program-
ming [34] that leads to a recursive algorithm whose cost is the same as its iterative counterpart.

4.2.3 With memory checkpoints and guaranteed verifications
In this section, we extend the dynamic programming algorithm presented in Section 4.2.2 to al-
low for additional intermediate guaranteed verifications between two (verified) memory check-
points:

Theorem 13. The optimal solution to the SILENT problem with memory checkpoints and in-
termediate guaranteed verifications can be obtained using a dynamic programming algorithm
in O(n3) time and O(n2) space, where n is the number of tasks in the chain.

Figures 4.2 and 4.3 illustrate the idea of the algorithm, which now contains two dynamic
programming levels, responsible for placing memory checkpoints (Figure 4.2) and guaran-
teed verifications (Figure 4.3), respectively. In the first level, Ecomp(m1,m2) is replaced by
Everif (m1,m2), which accounts for additional guaranteed verifications. The remainder of this
section is devoted to proving this theorem.

Placing memory checkpoints

The first level is the same as before (see Section 4.2.2), except that instead of calling Ecomp(m1,m2)
to compute the expected execution time between two memory checkpoints, we now call Everif (m1,m2)
to try and place additional guaranteed verifications in this interval (see Figure 4.2). We can
write:

Emem(m2) = min
0≤m1<m2

{
Emem(m1) + Everif (m1,m2)

}
+ CM ,

which is initialized by:

Emem(0) = 0 .
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T0 V ∗ CM . . . Tm1 V ∗ CM Tm1+1 . . . Tv1 V ∗ Tv1+1 . . . Tv2 V ∗ . . .

Everif (m1, v1) Ecomp(m1, v1, v2)

Everif (m1, v2)

Figure 4.3: Placing guaranteed verifications: m1 and v2 are fixed, and we try all possible
locations for an additional guaranteed verification at v1 between Tm1 and Tv2 . Note that all
subproblems Everif (m1, v1), with m1 ≤ v1 < v2, have already been computed.

Placing guaranteed verifications

The second level searches where to insert additional guaranteed verifications between the last
memory checkpoint at m1 and the next guaranteed verification at v2. We define Everif (m1, v2)
as the expected execution time needed to sucessfully execute tasks from Tm1+1 to Tv2 . The
function is first called from the first level between two memory checkpoints with v2 = m2

(as Everif (m1,m2)), each of which also comes with a guaranteed verification. The approach to
solve the problem is the same as before: suppose m1 = 0, we compute all Everif (0, 1),Everif (0, 2),Everif (0, 3), . . . ,Everif (0, n),
in this order, so that we can compute each step by reusing all previously computed optimal
results as before. But because we have n possible values for m1, we effectively need to solve
this problem n times.

Again, this is possible because Everif (m1, v2), 0 ≤ m1 < v2 < n does not depend upon
tasks Tv2+1 to Tn. In other words, Everif (m1, v2) can be used as an independent subproblem,
which is computed exactly once for each (m1, v2). These values are stored in a 2D table, so
that we can reuse them to solve the larger problems as we progress from T0 to Tn.

In order to solve Everif (m1, v2), we try all possible locations for the last verification be-
tween Tm1 and Tv2 , and for each possible location v1, we can reuse the optimal result given by
Everif (m1, v1), and we need to compute the expected time needed to successfully execute the
tasks between two guaranteed verifications from Tv1+1 to Tv2 , denoted by Ecomp(m1, v1, v2).
Therefore, we express Everif (m1, v2) as follows:

Everif (m1, v2) = min
m1≤v1<v2

{
Everif (m1, v1) + Ecomp(m1, v1, v2)

}
, (4.1)

which is initialized by:

Everif (m1,m1) = 0 ,

since there is no task to execute and no room for additional guaranteed verifications. Finally,
note that we omit the cost of the guaranteed verification after Tv2 here, because it is accounted
for in the function Ecomp(m1, v1, v2).

Computing Ecomp(m1, v1, v2)

In order to compute the expected time needed to successfully execute tasks between two ver-
ifications at v1 and v2, we also need to remember the position of the last memory checkpoint
at m1.
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First, we pay W]v1,v2], which is the time needed to execute tasks from Tv1+1 to Tv2 , and we
account for the cost of the guaranteed verification V ∗. Then, there is a probability ps]v1,v2] =

1 − e−λsW]v1,v2] of detecting a silent error, in which case we recover from the last memory
checkpoint with a cost RM (set to 0 if m1 = 0) and only re-execute the tasks from there, using
the already computed Everif (m1, v1) followed by Ecomp(m1, v1, v2) as before. Therefore, we
obtain:

Ecomp(m1, v1, v2) = W]v1,v2] + V ∗ + ps]v1,v2]
(
RM + Everif (m1, v1) + Ecomp(m1, v1, v2)

)
.

Simplifying the equation above and solving for Ecomp(m1, v1, v2), we obtain:

Ecomp(m1, v1, v2) = eλsW]v1,v2]
(
W]v1,v2] + V ∗)

+
(
eλsW]v1,v2] − 1

) (
RM + Everif (m1, v1)

)
.

Complexity

The complexity is now dominated by the computation of the 2D table Everif (m1, v2), which
contains O(n2) entries, and each entry depends on at most n other entries that are already
computed. Hence, the overall complexity of the algorithm is O(n3) in time and O(n2) in space.

4.2.4 With partial verifications
It may be beneficial to further add partial verifications between two guaranteed verifications.
The intuitive idea would be to add yet another level to the dynamic programming algorithm, and
to replace Ecomp(m1, v1, v2) in Equation (4.1) by a call to a function E(intuitive)

partial (m1, v1, p2, v2),
with p2 = v2, which would compute the optimal expected time needed to execute all the tasks
from Tv1+1 to Tp2 successfully (accounting for errors and re-executions) and add further partial
verifications between v1 and p2.

However, while the dynamic programming approach was rather intuitive with guaranteed
verifications, the problem becomes much harder when partial verifications come into play. In-
deed, while computing E(intuitive)

partial (m1, v1, p2, v2), there is a probability g that an error remains
undetected after p2. When this happens, we need to account for the time lost executing the fol-
lowing tasks until the error is eventually detected by the subsequent partial verifications, or in
the worst case by the guaranteed verification at v2. This is only possible if we know the optimal
positions of the partial verifications between p2 and v2. This requires the dynamic program-
ming algorithm to first compute the values on the right of p2, hence progressing the opposite
way as what has been done so far.

In other words, instead of calling E(intuitive)
partial (m1, v1, p2, v2) (with p2 = v2) on the first call

to place additional partial verifications between v1 and p2 (on the left of p2), we now call
Epartial(m1, v1, p1, v2) (with p1 = v1 on the first call) to place additional partial verifications
between p1 and v2 (on the right of p1), as illustrated in Figure 4.4. Epartial(m1, v1, p1, v2) is
then the optimal expected time needed to execute all the tasks from Tp1+1 to Tv2 , where Tp1 is
followed by a partial verification (with the exception of the first call where p1 = v1) and Tv2

is followed by a guaranteed verification, knowing the position of the last memory checkpoint
at m1 and the position of the last guaranteed verification at v1.



4.2. MEMORY CHECKPOINTING AND VERIFICATIONS FOR SILENT ERRORS 109

However, this generates another problem: when an error occurs between p1 and v2, we
need to account for the time lost re-executing all tasks between m1 and v1 (which is already
computed in Everif (m1, v1)) and from v1 to p1, which is only possible if we know the optimal
positions of the partial verifications between v1 and p1 (on the left of p1). Since we are now
solving the sub-problems on the right of p1 first, we do not know these locations yet.

There is still hope. We make the following simple observation about the re-execution cost:
if an error occurs between p1 and v2, or occurs earlier and is not detected by p1, we will re-
execute tasks between m1 and v1, and between v1 and p1, regardless of the number and positions
of partial verifications between p1 and v2. Indeed, the error will be detected either sooner
by a partial verification, or later by the guaranteed verification after Tv2 . In other words, the
expected number of times that tasks between v1 and p1 are re-executed due to errors between
p1 and v2 does not depend on the number and positions of partial verifications between p1 and
v2: the only thing that matters is that the error will be detected eventually, and the task will be
re-executed.

This leads us to the following approach: while deciding the optimal positions of partial
verifications between p1 and v2, we can ignore the re-execution cost of tasks between v1 and
p1: these tasks will be re-executed the same number of times in expectation, regardless of the
decision we make here, and the total re-execution cost due to errors between p1 and v2 is only
affected by the positions of p1 and v2. Therefore, we account for this cost later, while deciding
the optimal position of p2 between p1 and v2, knowing how many times we will execute (and
re-execute) tasks between p1 and p2 in total (see Lemma 9 for additional details), effectively
making Epartial(m1, v1, p1, v2) an independent subproblem.

Altogether, the following theorem presents a sophisticated dynamic programming algo-
rithm when using partial verifications:

Theorem 14. The optimal solution to the SILENT problem while using partial verifications can
be obtained using a dynamic programming algorithm in O(n5) time and O(n4) space, where n
is the number of tasks in the chain.

The remainder of this section is devoted to proving this theorem. The first two levels of
this dynamic programming algorithm, i.e., placing memory checkpoints and guaranteed ver-
ifications, are exactly the same as the ones presented in Theorem 13, except that we replace
the call to Ecomp(m1, v1, v2) by a call to Epartial(m1, v1, v1, v2), as we did before with guaran-
teed verifications between memory checkpoints (see Section 4.2.3). The following describes
the additional steps required in order to place partial verifications.

Placing partial verifications

Let Epartial(m1, v1, p1, v2) denote the optimal expected time needed to execute all the tasks
from Tp1+1 to Tv2 , where Tp1 is followed by a partial verification (with the exception of the first
call where p1 = v1) and Tv2 is followed by a guaranteed verification, knowing the position of
the last memory checkpoint at m1 and the position of the last guaranteed verification at v1.

This is yet another level of dynamic programming: suppose that m1 = v1 = 0 and v2 = n,
the goal is to compute Epartial(0, 0, n, n),Epartial(0, 0, n − 1, n), . . . ,Epartial(0, 0, 0, n), in this
particular order (which is mandatory as shown below in Section 4.2.4) so that at each step, we



110
CHAPTER 4. MULTI-LEVEL CHECKPOINTING AND VERIFICATION FOR LINEAR

WORKFLOWS

T0 V ∗CM . . . Tm1 V ∗CMTm1+1
. . . Tv1 V ∗Tv1+1

. . . Tp1 VTp1+1
. . . Tp2 VTp2+1

. . . Tv2 V ∗ . . .

Eleft(v1, p1) E−
comp(m1, v1, p1, p2, v2) Eright(m1, v1, p2, v2)

Epartial(m1, v1, p1, v2)

Everif (m1, v2)

Everif (m1, v1)

Figure 4.4: Placing partial verifications: m1, v1, p1 and v2 are fixed, and we try all possible
locations for p2. Here, both Everif (m1, v1) and Eright(m1, v1, p2, v2), with v1 < p2 ≤ v2, have
already been computed, which makes it possible to compute Ecomp(m1, v1, p1, p2, v2), and then
Epartial(m1, v1, p1, v2). Note that we do not need Eleft(v1, p1) (see Section 4.2.4 and Lemma 9).

can reuse all previously computed optimal results. Clearly, we will have to solve this problem
O(n3) times, for all possible 0 ≤ m1 ≤ v1 < v2 ≤ n.

Similarly as what was done before, we compute Epartial(m1, v1, p1, v2) by deciding where
to place an additional partial verification between tasks Tp1+1 and Tv2 , and we can write:

Epartial(m1, v1, p1, v2) = min
p1<p2≤v2

{
Ecomp(m1, v1, p1, p2, v2) + Epartial(m1, v1, p2, v2)

}
,

where Ecomp(m1, v1, p1, p2, v2) denotes the expected time needed to successfully execute all the
tasks from Tp1+1 to Tp2 , and the initialization is:

Epartial(m1, v1, v2, v2) = 0 ,

because there is no task to execute and no more room for addition partial verifications.

Computing Ecomp(m1, v1, p1, p2, v2)

Recall that Ecomp(m1, v1, p1, p2, v2) denotes the expected time needed to successfully execute
all the tasks from Tp1+1 to Tp2 , accounting for the time lost due to errors and re-executions,
with no undetected silent error after Tp2 , knowing that the last memory checkpoint is after Tm1 ,
the last guaranteed verification is after Tv1 , and the next guaranteed verification is after Tv2 . In
order to compute Ecomp(m1, v1, p1, p2, v2), we need to introduce Eleft(v1, p1), the expected time
needed to successfully execute tasks Tv1+1 to Tp1 , and Eright(m1, v1, p2, v2), the expected time
lost executing the tasks following Tp2 , knowing that there is an undetected silent error. Note
that in the worst scenario, a silent error will always be detected by the guaranteed verification
after Tv2 .

Figure 4.4 shows all the tasks involved in the computation between two partial verifications
at p1 and p2. Intuitively, the execution goes as follows. First, we execute all the tasks from Tp1+1

up to the next partial verification after Tp2 , and we pay W]p1,p2]. Then, we add the cost V for the
partial verification, and there is a probability ps]p1,p2] of having a silent error. On the one hand,
there is a probability 1−g to detect the error right after the partial verification at Tp2 . In this case,
we pay a recovery cost RM from the last memory checkpoint and re-execute the tasks from there
by calling Everif (m1, v1), followed by Eleft(v1, p1) and Ecomp(m1, v1, p1, p2, v2). However, if
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the error is not detected (with probability g), we also account for the cost of re-executing tasks
from the last memory checkpoint until Tp2 , but we further use Eright(m1, v1, p2, v2) to compute
the expected time lost executing the tasks following Tp2 , knowing that there is an undetected
silent error. In this case, the recovery cost will be accounted for in Eright. Therefore, we have:

Ecomp(m1, v1, p1, p2, v2) = W]p1,p2] + V + ps]p1,p2]

(
Everif (m1, v1)

+ Eleft(v1, p1) + Ecomp(m1, v1, p1, p2, v2)

+ (1− g)RM + gEright(m1, v1, p2, v2)
)
.

Simplifying the equation above, we obtain:

Ecomp(m1, v1, p1, p2, v2) = eλsW]p1,p2]
(
W]p1,p2] + V

)
+
(
eλsW]p1,p2] − 1

) (
Everif (m1, v1) + Eleft(v1, p1)

)
+
(
eλsW]p1,p2] − 1

) (
(1− g)RM + gEright(m1, v1, p2, v2)

)
. (4.2)

Now, due to the order in which we solve the subproblems, both Everif (m1, v1) and Epartial(m1, v1, p2, v2)
have already been computed and we can get the optimal positions of partial verifications be-
tween Tp2+1 and Tv2 , which are needed to compute Eright(m1, v1, p2, v2). However, because
we solve the subproblems the opposite way as what was done so far, we do not know (yet) the
optimal positions of partial verifications between Tv1 and Tp1 , which are required to compute
Eleft(v1, p1).

Instead, we remove the term (
eλsWp1,p2 − 1

)
Eleft(v1, p1)

from Equation (4.2), and introduce the modified expression of Ecomp, denoted by E−
comp, as

follows:

E−
comp(m1, v1, p1, p2, v2) = eλsW]p1,p2]

(
W]p1,p2] + V

)
+
(
eλsW]p1,p2] − 1

)
Everif (m1, v1)

+
(
eλsW]p1,p2] − 1

) (
(1− g)RM + gEright(m1, v1, p2, v2)

)
. (4.3)

Then, to account for the missing Eleft, we make use of Lemma 9, which shows that, for any
number and position of partial verifications between Tp2+1 and Tv2 , E−

comp(m1, v1, p1, p2, v2) is
executed eλsW]p2,v2] times in expectation. As explained before, the intuition behind this result
is that the amount of time tasks Tv1 to Tp1 will be re-executed due to errors in Tp1 to Tv2 does
not depend upon the positions of intermediate partial verifications (e.g., p2). For every error
that occurs between Tp1 and Tv2 , these tasks will be re-executed regardless of the position of
p2 (or any other partial verifications between Tp1 and Tv2). Hence, instead of accounting for
the execution of Tp1 to Tp2 just once, we now account for all the times we have to execute, and
re-execute them due to errors between Tp2 and Tv2 , and we obtain:

Epartial(m1, v1, p1, v2) = min
p1<p2≤v2

{
E−

comp(m1, v1, p1, p2, v2)·eλsW]p2,v2]+Epartial(m1, v1, p2, v2)
}
,

(4.4)



112
CHAPTER 4. MULTI-LEVEL CHECKPOINTING AND VERIFICATION FOR LINEAR

WORKFLOWS

which is initialized by:

Epartial(m1, v1, v2, v2) = 0 ;

E−
comp(m1, v1, p1, v2, v2) = eλsW]p1,v2]

(
W]p1,v2] + V ∗)

+
(
eλsW]p1,v2] − 1

)
Everif (m1, v1)

+
(
eλsW]p1,v2] − 1

)
RM ,

because there is no task to execute and no more room for additional partial verifications, and be-
cause when computing E−

comp(m1, v1, p1, v2, v2) with p2 = v2, we need to account for the cost of
the guaranteed verification V ∗ instead of the partial verification. Indeed, Lemma 9 (see below)
proves that for any number of partial verifications between p2 and v2, E−

comp(m1, v1, p1, p2, v2)

is executed eλsW]p2,v2] times in expectation.

Computing Eright(m1, v1, p1, v2)

Finally, in order to get E−
comp(m1, v1, p1, v2, v2), we still need compute Eright(m1, v1, p1, v2),

the optimal expected time lost executing the tasks Tp1+1 to Tv2 , assuming that there is an unde-
tected silent error in this interval. This computation uses p2, the optimal position of the partial
verification immediately following p1, and it is computed by the dynamic programming algo-
rithm. Indeed, the partial verification after Tp2 may or may not detect the error. If the error is
detected, we lose W]p1,p2] + V + RM time, while we use Eright(m1, v1, p2, v2) if the error re-
mains undetected. Altogether, we have:

Eright(m1, v1, p1, v2) = W]p1,p2] + V + (1− g)RM + gEright(m1, v1, p2, v2) , (4.5)

where p2 is the optimal position of the next partial verification knowing that there is a partial
verification after Tp1 and is obtained by backtracking the last step as follows:

p2 = argmin
p1<p2≤v2

{
E−

comp(m1, v1, p1, p2, v2) · eλsW]p2,v2] + Epartial(m1, v1, p2, v2)
}
.

Note that both E−
comp(m1, v1, p1, p2, v2), which only requires Eright(m1, v1, p2, v2) to be known,

and Epartial(m1, v1, p2, v2) have already been computed by Epartial(m1, v1, p1, v2). In addition,
recall that the time needed to re-execute the tasks after a recovery is not included here.

The initialization is as follows:

Eright(m1, v1, v2, v2) = RM , if p1 = p2 = v2

Eright(m1, v1, p1, v2) = W]p1,p2] + V ∗ +RM , if p1 < p2 and p2 = v2

Indeed, when p2 = v2 there is no task to execute after Tp2 , and if there was a silent error, it
is immediately detected at v2 (by guaranteed verification), and we just pay RM . Then, when
p1 < p2 and p2 = v2, if an error goes undetected after p1, we will execute tasks from Tp2 to Tv2 ,
and we need to take into account the cost of the guaranteed verification V ∗ at v2. Again, the
error is detected at v2 and we pay RM .
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Complexity

Clearly, the complexity is now dominated by the computation of the table Epartial(m1, v1, p1, v2),
which contains O(n4) entries, and each entry depends on at most n other entries that are already
computed. Hence, the overall complexity of the algorithm is O(n5) in time and O(n4) in space.

Finally, the following presents the formalization and proof of Lemma 9, which has been
used in proving Theorem 14.

Lemma 9. For any number of partial verifications between p2 and v2, E−
comp(m1, v1, p1, p2, v2)

is executed eλsW]p2,v2] times in expectation.

Proof. Looking at Equation (4.3), if there is no partial verification after p2, then we must exe-
cute E−

comp(m1, v1, p1, p2, v2) at least once when progressing within the computation. Account-
ing for the term Eleft that was suppressed from the final Ecomp(m1, v1, p2, v2, v2), we must
re-execute E−

comp(m1, v1, p1, p2, v2) an additional eλsW]p2,v2] − 1 times due to errors occurring
in Ecomp(m1, v1, p2, v2, v2). Overall, the expected number of times E−

comp(m1, v1, p1, p2, v2) is
executed will be

1 + (eλsW]p2,v2] − 1) = eλsW]p2,v2] .

Now, with one intermediate partial verification p3 between p2 and v2, the same reasoning
shows that E−

comp(m1, v1, p2, p3, v2) must be executed eλsW]p3,v2] times in expectation. There-
fore, E−

comp(m1, v1, p1, p2, v2) must be executed once, coming from the initial execution, plus
an additional eλsW]p2,p3] − 1 times due to the re-executions coming from the Eleft term sup-
pressed from Ecomp(m1, v1, p2, p3, v2), which is itself executed eλsW]p3,v2] times. Finally, we
must account for the eλsW]p3,v2] − 1 times coming from the last Ecomp(m1, v1, p3, v2, v2) as well.
Overall, the expected number of times E−

comp(m1, v1, p1, p2, v2) is executed will be

1 +
(
eλsW]p2,p3] − 1

)
· eλsW]p3,v2] +

(
eλsW]p3,v2] − 1

)
= eλsW]p2,v2] .

It is straightforward to extend this argument to any number of intervals by induction, as-
suming that it is true for i intermediate partial verifications p1, . . . , pi, followed by a guaranteed
verification, and adding a partial verification pi+1 between pi and v2. The same reasoning holds,
which concludes the proof.

4.3 Multi-level checkpointing for fail-stop errors

In this section, we present a multi-level dynamic programming algorithm to decide which tasks
to checkpoint and at which levels when dealing with fail-stop errors. We first introduce the
application and checkpointing models in Section 4.3.1 before presenting the dynamic program-
ming algorithm in Section 4.3.2.

4.3.1 Model

As before, we consider a chain T1 → T2 → · · · → Tn of n tasks that execute on a large-
scale platform subject to k levels of fail-stop errors. Recall that the weight wi of task Ti is
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known to the algorithm, and W]i,j] =
∑j

p=i+1wp denotes the total weight of tasks Ti+1 to Tj for
any i < j. Errors of different levels are assumed to be independent, and their arrivals follow
Poisson process with error rate λ` for level `, where 1 ≤ ` ≤ k. There are correspondingly k
levels of checkpoints available, and each level ` is associated with a checkpointing cost C(`)

and a recovery cost R(`). Typically, error rates are decreasing and checkpoint/recovery costs
are increasing when we go to higher levels: λ1 ≥ λ2 ≥ · · · ≥ λk, C(1) ≤ C(2) ≤ · · · ≤ C(k),
and R(1) ≤ R(2) ≤ · · · ≤ R(k). A level ` error destroys all the checkpoints of lower levels
(from 1 to ` − 1) and we need to roll back to a checkpoint of level ` or higher for recovery.
Similarly, a recovery from a level ` checkpoint will restore data from all the lower levels. We
assume that the costs of checkpointing and recovery are uniform across different tasks, and that
they are protected from faults (i.e., errors only strike the computations).

For convenience, we add again before task T1 a virtual task T0, which is checkpointed at
all levels, and whose checkpointing and recovery costs are always zero. This accounts for the
fact that it is always possible to restart the application from scratch (i.e., recover from T0) with
no extra cost. Furthermore, we assume that the last task Tn is also always checkpointed at all
levels in order to save the final outcome of the computation.

The MULTILEVEL problem consists in finding the optimal set of tasks that should be check-
pointed at each level in order to minimize the total expected execution time of the task chain,
accounting for failures and re-executions.

4.3.2 Dynamic programming algorithm
The main difference between fail-stop and silent error is the detection latency: fail-stop errors
typically occur in the middle of the computation, causing the application to crash immediately
and losing some data. From the algorithmic perspective, it has two implications: (i) when an
error occurs, we only need to account for the time lost since the last available checkpoint;
and (ii) we must recover from the right checkpoint level, which depends on the type of the
error. Our approach for the MULTILEVEL problem remains similar to the algorithm presented
in Section 4.2.2 by using dynamic programming:

Theorem 15. The optimal solution to the MULTILEVEL problem can be obtained using a dy-
namic programming algorithm in O(nk+1) time and O(nk) space, where n is the number of
tasks in the chain, and k is the number of checkpointing levels available.

The dynamic programming algorithm consists of k nested levels. The remainder of this
section is devoted to proving this theorem by detailing how the k levels of checkpoints are
placed.

Placing checkpoints at level k

We start with the highest and most expensive level k. Let E(k)
rec(ck) denote the optimal expected

execution time to successfully execute all tasks from T1 to Tck (included), where ck denotes the
index of a task whose output is saved with a level-k checkpoint. Intuitively, we want to obtain:

E(k)
rec(n),
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T0 C(k) T1
. . . Ti C(k) Ti+1 . . . Tck C(k) . . .

E(k)
rec(i) E(k−1)

rec (i, ck)

E(k)
rec(ck)

Figure 4.5: Placing checkpoints at level k: ck is fixed, and we try all possible locations i for
an additional checkpoint at level k between T0 and Tck . Note that all subproblems E(k)

rec(i),
with 0 ≤ i < ck, have already been computed, while E(k−1)

rec (i, ck) is computed by yet another
dynamic programming level to be described later (see Figure 4.6).

. . . Tck C(k) Tck+1 . . . Ti C(k−1) Ti+1 . . . Tck−1 C(k−1) C(k) . . .

E(k−1)
rec (ck, i) E(k−2)

rec (ck, i, ck−1)

E(k−1)
rec (ck, ck−1)

Figure 4.6: Placing checkpoints at level k − 1: ck and ck−1 are fixed, and we try possi-
ble locations i for an additional checkpoint between Tck and Tck−1

. Again, all subproblems
E(k−1)

rec (ck, i), with ck ≤ i < ck−1, have already been computed, while E(k−2)
rec (ck, i, ck−1) is

computed by the next level of dynamic programming level.

which is the optimal expected execution time to successfully execute all the tasks in the chain.
Backtracking can then be used to get the corresponding optimal set of tasks to checkpoint.

In order to compute E(k)
rec(ck), we need to decide which tasks to checkpoint at level k be-

tween tasks T0 and Tck (remember that T0 is always checkpointed at level k). To this end, we
consider each of these tasks as a potential candidate for the last checkpoint at level k before
Tck , and return the minimum expected execution time as follows (see Figure 4.5):

E(k)
rec(ck) = min

0≤i<ck

{
E(k)

rec(i) + E(k−1)
rec (i, ck)

}
+ C(k) .

For each task Ti, we first call E(k)
rec(i) recursively to decide which additional tasks should be

checkpointed at level k, between task T1 and the newly checkpointed task Ti. Then, we com-
pute the expected execution time between tasks Ti and Tck by calling the next level function
E(k−1)

rec (i, ck) that decides which tasks to checkpoint at level k − 1, knowing that both tasks Ti

and Tck are already checkpointed at level k. Finally, we account for the level-k checkpointing
cost C(k) after task Tck .

Placing checkpoints at level k − 1.

Now, let E(k−1)
rec (ck, ck−1) denote the optimal expected execution time needed to successfully ex-

ecute all the tasks from Tck to Tck−1
(included), where ck denotes the position of the last check-

point at level k, and ck−1 denotes the position of the next level k − 1 checkpoint. Note that the
first time we call this function (while computing E(k)

rec(ck) above), ck−1 (a.k.a. ck above) actu-
ally denotes the position the next level-k checkpoint, which by construction always includes a
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level k− 1 checkpoint as well, and that is accounted for in the equation below. Similarly to the
level-k function, we try all tasks Ti between Tck and Tck−1

(included) for the last checkpoint at
level k − 1, so that we can write (see Figure 4.6):

E(k−1)
rec (ck, ck−1) = min

ck≤i<ck−1

{
E(k−1)

rec (ck, i) + E(k−2)
rec (ck, i, ck−1)

}
+ C(k−1) .

We first call E(k−1)
rec (ck, i) recursively between tasks Tck and Ti to place additional checkpoints

at level k−1, then call the function E(k−2)
rec (ck, i, ck−1) to place level k−2 checkpoints between

tasks Ti and Tck−1
, and finally account for the level k − 1 checkpointing cost C(k−1) after task

Tck−1
. Note that Tck will always be checkpointed at level k − 1, in addition of the level-k

checkpoint that was already placed before. In fact, by following this approach, we guarantee
that a high-level checkpoint always includes all the lower-level checkpoints as well.

Placing checkpoints at level `

The function for placing checkpoints at level k−2 would now contain three parameters, because
we need to remember both ck and ck−1, the positions of the last checkpoint at level k and level
k−1, respectively, as well as ck−2, the position of the next checkpoint at the current level k−2.
This is because in case an error from level k or level k − 1 strikes, we need to know which is
the nearest available checkpoint to recover from.

In general, let E(`)
rec(ck, . . . , c`+1, c`) denote the optimal expected execution time needed to

execute tasks Tc`+1+1 to Tc` (included), where c`+1 is the position of the last checkpoint at level
` + 1 and c` is the position of the next level-` checkpoint. Similarly to the functions at level
k and level k − 1, the goal of this function is to place additional level-` checkpoints between
tasks Tc`+1

and Tc` . We denote by i the position of the newly added checkpoint at current level
`, and we try all possible positions between c`+1 and c`. Hence, we derive:

E(`)
rec(ck, . . . , c`+1, c`) = min

c`+1≤i<c`

{
E(`)

rec(ck, . . . , c`+1, i) + E(`−1)
rec (ck, . . . , c`+1, i, c`)

}
+ C(`) .

(4.6)

For each candidate Ti, we first call E(`)
rec(ck, . . . , c`+1, i) to place additional level-` checkpoints

between tasks Tc`+1
and Ti. Then, we call E(`−1)

rec (ck, . . . , c`+1, i, c`) to place additional level
` − 1 checkpoints between tasks Ti and Tc` . Finally, we account for the level-` checkpointing
cost C(`) after task Tc` .

Initialization

To initialize the dynamic program at each level `, we set:

E(`)
rec(ck, . . . , c`+1, c`+1) = 0 ,

which occurs once when i = c`+1 in Equation (4.6); there is no task to execute, and the cost
of the checkpoint after Ti has been accounted for already. Then, when the last level is reached,
i.e., when ` = 1, there is no more checkpointing level to try, and we set:

E(0)
rec(ck, . . . , c2, c1, c1′) = Ecomp(ck, . . . , c2, c1, c1′) ,
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where Ecomp(ck, . . . , c2, c1, c1′) denotes the expected execution time needed to execute tasks
Tc1+1 to Tc1′

(included), with no additional intermediate checkpoints in between.

Computing Ecomp(ck, . . . , c1, c1′)

Given the positions of the checkpoints, we can now compute the actual expected execution time
needed to successfully execute the tasks between any two consecutive level-1 checkpoints.
We make use of the following well-known properties of independent Poisson processes [55,
Chapter 2.3].

Property 2. During the execution of a sequence of tasks with total work W , let X` denote the
time when the first level-` error strikes. Thus, X` is a random variable following exponential
distribution with parameter λ`, for all ` = 1, 2, . . . , k.

(1) Let X denote the time when the first error (of any level) strikes. We have X = min{X1, X2, . . . , Xk},
which follows exponential distribution with parameter Λ =

∑k
`=1 λ`. The probability

of having an error (from any level) during the execution is therefore P (X ≤ W ) =
1− e−ΛW .

(2) Given that an error (from any level) strikes during the execution of the tasks, the proba-
bility that the error belongs to a particular level is proportional to the error rate of that
level, i.e., P (X = X`|X ≤ W ) = λ`

Λ
, for all ` = 1, 2, . . . , k.

Recall that W]c1,c1′ ]
=
∑c1′

i=c1+1wi denotes the total computational load between tasks Tc1+1

and Tc1′
. Hence, with probability pf]c1,c1′ ]

= 1−e−Λ·W]c1,c1′ ] , at least one fail-stop error (from any
level) will occur during the execution of tasks Tc1+1 to Tc1′

(included). When this happens, we
first need to account for the time lost during the execution (up to the error), denoted by T lost

]c1,c1′ ]
.

Then, we need to roll back to the nearest checkpoint, depending on the level of the error. For
example, with probability λ3

Λ
, we need to recover from the last level-3 checkpoint, and we

pay R(3), the cost to recover from task Tc3 using level-3 recovery. When the recovery is done,
we need to re-execute all the tasks, first from Tc3+1 to Tc2 , then from Tc2+1 to Tc1 , and finally
from Tc1 to Tc1′

again. By construction, there is no other level-3 checkpoint between Tc3 and
Tc2 , so the expected time to re-execute all the tasks up to the next level-2 checkpoint, that is
from tasks Tc3 to Tc2 , is simply E(2)

rec(ck, . . . , c3, c2). Then, we proceed by re-executing the tasks
up to the next level-1 checkpoint, which takes E(1)

rec(ck, . . . , c2, c1) time, at which point we can
just call Ecomp(c1, . . . , c1, c1′) again, to restart this whole process until the execution of tasks
Tc1 to Tc1′

is eventually successful. When no error occurs, which happens with probability
1 − pf]c1,c1′ ]

, we just need to pay the cost of executing all the tasks without error, i.e., W]c1,c1′ ]
.

Therefore, we derive:
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Ecomp(ck, . . . , c1, c1′) =
(
1− pf]c1,c1′ ]

)
W]c1,c1′ ]

+ pf]c1,c1′ ]

(
T lost
]c1,c1′ ]

+
λ1

Λ

(
R(1) + Ecomp(ck, . . . , c1, c1′)

)
+

λ2

Λ

(
R(2) + E(1)

rec(ck, . . . , c2, c1) + Ecomp(ck, . . . , c1, c1′)
)

...

+
λk−1

Λ

(
R(k−1) +

k−1∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1) + Ecomp(ck, . . . , c1, c1′)

)
+

λk

Λ

(
R(k) +

k∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1) + Ecomp(ck, . . . , c1, c1′)

))
.

Simplifying the equation above, we can obtain:

Ecomp(ck, . . . , c1, c1′) = e
−Λ·W]c1,c1′ ]W]c1,c1′ ]

+
(
1− e

−Λ·W]c1,c1′ ]
)(

T lost
]c1,c1′ ]

+
k∑

h=1

λh

Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Ecomp(ck, . . . , c1, c1′)

)
. (4.7)

In order to compute the expected execution time, we need to compute T lost
]c1,c1′ ]

, which is the
expected time loss due to a fail-stop error occurring during the execution of tasks Tc1 to Tc1′

.
We obtain:

T lost
]c1,c1′ ]

=

∫ ∞

0

xP(X = x|X < W]c1,c1′ ]
)dx

=
1

P(X < W]c1,c1′ ]
)

∫ W]c1,c1′ ]

0

xP(X = x)dx ,

where P(X = x) denotes the probability that a fail-stop error strikes at time x. By definition,
we have P(X = x) = Λe−Λx and P(X < W]c1,c1′ ]

) = 1− e
−ΛW]c1,c1′ ] . Integrating by parts, we

have:

T lost
]c1,c1′ ]

=
1

Λ
−

W]c1,c1′ ]

e
ΛW]c1,c1′ ] − 1

. (4.8)

Now, substituting T lost
]c1,c1′ ]

above into Equation (4.7), and solving for Ecomp(ck, . . . , c1, c1′), we
obtain:

Ecomp(ck, . . . , c1, c1′) =
e
Λ·W]c1,c1′ ] − 1

Λ

(
1 +

k∑
h=1

λh

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

))
.
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Complexity

The complexity is dominated by the computation of the table E(1)
rec(ck, . . . , c2, c1), which con-

tains nk entries. In order to compute each entry, a minimum over at most n other entries (that
are already computed) is required. All tables are computed in a bottom-up fashion, from the
left to the right of the intervals. Hence, the overall complexity of the algorithm is O(nk+1).

4.4 Dealing with both fail-stop and silent errors

On real-life platforms, fail-stop errors and silent errors coexist, and thus resilience algorithms
must be able to cope with both error sources simultaneously. In this section, we describe a
multi-level dynamic programming algorithm to address this challenging problem.

The new algorithm is a combination of the dynamic programming algorithms presented in
the preceding sections. In particular, we place k levels of disk2 checkpoints to deal with differ-
ent fail-stop errors, followed by another level of memory checkpoints, and additional verifica-
tions (guaranteed or partial), to deal with silent errors. We call this problem the MULTILEVEL-
SILENT problem, and the objective is to find the optimal positions in the task chain to place
different checkpoints (disk and memory) as well as verifications (guaranteed and partial) to
minimize the expected execution time. The following theorem presents the solution to this
problem.

Theorem 16. The optimal solution to the MULTILEVEL-SILENT problem can be obtained
using a dynamic programming algorithm in O(nk+5) time and O(nk+4) space, where n is the
number of tasks in the chain and k is number of checkpointing levels to handle fail-stop errors.

Proof. The dynamic programming for fail-stop errors is exactly the same as the one shown
in Section 4.3.2, up to the call to the function E(0)

rec(ck, . . . , c2, c1, c1′), which is invoked after
placing the last level-1 checkpoints. Now, in order to handle silent errors, we set:

E(0)
rec(ck, . . . , c2, c1, c1′) = Emem(ck, . . . , c1, c1′) ,

where

Emem(ck, . . . , c1,m2) = min
c1≤m1<m2

{
Emem(ck, . . . , c1,m1) + Everif (ck, . . . , c1,m1,m2)

}
+ CM ,

with m2 = c1′ when first called from Emem(ck, . . . , c1,m2), and

Everif (ck, . . . , c1,m1, v2) = min
m1≤v1<v2

{
Everif (ck, . . . , c1,m1, v1) + Epartial(ck, . . . , c1,m1, v1, v2, v2)

}
,

with v2 = m2 when first called from Everif (ck, . . . , c1,m1, v2). Overall, Emem(ck, . . . , c1,m2)
and Everif (ck, . . . , c1,m1, v2) remain the same as in Section 4.2.4, except for the fact that
we now need to remember the position of the last checkpoint at each level, in case a fail-
stop error occurs during the execution of tasks Tv1+1 to Tv2 . As for the initialization, we set

2By disk, we mean stable storage devices or advanced checkpointing mechanisms (e.g., partner-copy [12]) that
can survive various sources of fail-stop errors, in opposition to memory, which can only survive silent errors.
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Emem(ck, . . . , c1, c1) = 0 and Everif (ck, . . . , c1,m1,m1) = 0, which occur once when m1 = c1
and v1 = m1, respectively. In both cases, there is no task to execute, and the cost of the check-
point/verification has already been accounted for.

Placing partial verifications. Similarly, the function to place additional partial verifications
becomes Epartial(ck, . . . , c1,m1, v1, p1, v2), and the expected number of times the function E−

comp(ck, . . . , c1,m1, v1, p1, p2, v2)
is executed must now account for both silent errors and fail-stop errors. Hence, we can write:

Epartial(ck, . . . , c1,m1, v1, p1, v2) = min
p1<p2≤v2

{
E−

comp(ck, . . . , c1,m1, v1, p1, p2, v2) · e(λs+Λ)W]p2,v2]

+ Epartial(ck, . . . , c1,m1, v1, p2, v2)
}
.

Computing E−
comp(ck, . . . , c1,m1, v1, p1, p2, v2). On the one hand, if a fail-stop error occurs

with probability pf]p1,p2] = 1− e−Λ·W]p1,p2] , we can apply the same method as in Section 4.3. We
recover from the nearest checkpoint depending on the error level, and we re-execute all the tasks
up to E(1)

rec(ck, . . . , c1), then we call Emem(ck, . . . , c1,m1), followed by a call to the function
Everif (ck, . . . , c1,m1, v1) to account for the time needed to re-execute the tasks between the last
memory checkpoint after Tm1 to the next guaranteed verification after Tv1 , and finally we are
left with the remaining tasks between Tv1+1 and Tp1 , and we call E−

comp(ck, . . . , c1,m1, v1, p1, p2, v2)
again. On the other hand, with probability (1−pfp1,p2), there is no fail-stop error. In that case, we
execute all the tasks from Tp1+1 to the next verification after Tp2 , as was done in Section 4.2.4.
Overall, we can write:

E−
comp(ck, . . . , c1,m1, v1, p1, p2, v2) =

pf]p1,p2]

(
T lost
]p1,p2]

+
k∑

h=1

λh

Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1) + Everif (ck, . . . , c1,m1, v1)

+ E−
comp(ck, . . . , c1,m1, v1, p1, p2, v2)

)

+
(
1− pf]p1,p2]

)(
W]p1,p2] + V + ps]p1,p2]

(
Everif (ck, . . . , c1,m1, v1)

+ E−
comp(ck, . . . , c1,m1, v1, p1, p2, v2)

+ (1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)
))

.
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Simplifying the equation above and solving for E−
comp, we obtain:

E−
comp(ck, . . . , c1,m1, v1, p1, p2, v2) =

+ eλsW]p1,p2]

(
eΛW]p1,p2] − 1

Λ
+ V

)
+ eλsW]p1,p2]

(
eΛW]p1,p2] − 1

)( k∑
h=1

λh

Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1)

)
+
(
e(λs+Λ)W]p1,p2] − 1

)
Everif (ck, . . . , c1,m1, v1)

+
(
eλsW]p1,p2] − 1

) (
(1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)

)
.

Computing Eright(ck, . . . , c1,m1, v1, p1, v2). Remember that Eright(ck, . . . , c1,m1, v1, p1, v2)
denotes the expected time lost executing the tasks Tp1+1 to Tv2 , assuming that there was a
silent error in this interval. Equation (4.5) already accounts for the time lost in that case,
but only when there is no fail-stop error. Similarly to E−

comp above, we consider fail-stop errors
between Tp1+1 and Tp2 , because fail-stop errors between Tp2+1 and Tv2 will be accounted for
in Eright(ck, . . . , c1,m1, v1, p2, v2). Note that even if we know that there is a silent error in the
interval, we may need to recover from a fail-stop error if it strikes before the silent error is
detected. Altogether, we have:

Eright(ck, . . . , c1,m1, v1, p1, v2) =

pf]p1,p2]

(
T lost
]p1,p2]

+
k∑

h=1

λh

Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1)

)
+
(
1− pf]p1,p2]

)(
W]p1,p2] + V + (1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)

)
.

Finally, simplifying the equation above, we obtain:

Eright(ck, . . . , c1,m1, v1, p1, v2) =(
1− e−ΛW]p1,p2]

)( 1

Λ
+

k∑
h=1

λh

Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1)

)
+ e−ΛW]p1,p2]

(
V + (1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)

)
.

The initialization remains Eright(ck, . . . , c1,m1, v1, v2, v2) = RM .

Complexity. The complexity is dominated by the computation of the dynamic programming ta-
ble Epartial(ck, . . . , c1,m1, v1, p1, v2), which contains O(nk+4) entries, and each entry depends
on at most n other entries that are already computed. Therefore, the complexity of the dynamic
programming algorithm to handle both fail-stop and silent errors is O(nk+5).



122
CHAPTER 4. MULTI-LEVEL CHECKPOINTING AND VERIFICATION FOR LINEAR

WORKFLOWS

We point out that, in practical systems, the number of checkpointing levels k is generally
quite small and rarely exceeds 3 or 4 [12, 74], while linear application workflows rarely exceed
a few tens of tasks. Hence, our algorithm can be efficiently applied to these practical scenarios
in reasonable time and space.

4.5 Performance evaluation

In this section, we conduct a set of simulations to assess the relative efficiency of our ap-
proach under practical scenarios. We instantiate the performance model with two different
sets of realistic parameters obtained from the literature. The simulation code is publicly avail-
able at http://graal.ens-lyon.fr/~yrobert/chainmultilevel.zip for in-
terested readers to experiment with their own parameters.

Simulation setup. We make several assumptions on the input parameters. First, the check-
point and recovery costs both depend on size of the the task output file, and the final cost is
mostly determined by the available bandwidth at each level. As such, we make the assumption
that the recovery cost for a given level is equivalent to the corresponding checkpointing cost,
i.e., R(i) = C(i) for 1 ≤ i ≤ k. This is a common assumption [37, 74, 79], even though in
practice the recovery cost can be expected to be smaller than the checkpoint cost [37, 39].

Then, we assume that, similarly, a guaranteed verification must check all the data in mem-
ory, making its cost in the same order as that of a memory checkpoint, i.e., V ∗ = CM . Further-
more, we assume partial verifications similar to those proposed in [8, 10, 15], with very low
costs while offering good recalls. In the following, we set V = V ∗/100 and r = 0.8. The total
computational weight is set to be W = 25000 seconds (or W = 3600s in some simulations),
and it is distributed among up to n = 50 tasks in three different patterns shown as follows.

(1) Uniform: all tasks share the same weight W/n, as in matrix multiplication or in some
iterative stencil kernels.

(2) Decrease: task Ti has weight α(n + 1 − i)2, where α ≈ 3W/n3; this quadratically de-
creasing function resembles some dense matrix solvers, e.g., by using LU or QR factorization.

(3) HighLow: a set of tasks with large weight is followed by a set of tasks with small weight.
In the simulations, we set 10% of the tasks to be large and let them contain 60% of the total
computational weight.

We point out that all these choices are somewhat arbitrary and can easily be modified in
the evaluations; however we believe they represent reasonable values for current and next-
generation HPC applications. We first investigate the impact of using guaranteed and partial
verifications in Section 4.5.1, by focusing on a platform with a single level of checkpoints for
fail-stop errors. Then, we study the impact of multi-level checkpointing in Section 4.5.2.

4.5.1 Results for two-level checkpointing

In this section, we perform a set of experiments based on the characteristics of four platforms
taken from the literature. We start by analyzing the combined algorithm, but in a somewhat
simplified context, with only one level of checkpoint to deal with fail-stop errors (i.e., k = 1).
We compare three algorithms: (i) a single-level algorithm ADV ∗ with only disk checkpoints to

http://graal.ens-lyon.fr/~yrobert/chainmultilevel.zip
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handle both fail-stop and silent errors (with additional guaranteed verifications); (ii) a two-
level algorithm ADMV ∗ with additional memory checkpoints for silent errors; and (iii) the
combined algorithm ADMV using additional partial verifications. The optimal positions of
verifications can be easily derived for ADV ∗ using a simplification of the proposed dynamic
programming algorithm in Section 4.4, with k = 1 level of fail-stop errors and no additional
memory checkpoints.

Platform settings. Table I presents the four platforms used in the simulations and their main
parameters. These platforms have been used to evaluate the Scalable Checkpoint/Restart (SCR)
library by Moody et al. [74], who provide accurate measurements for λf , λs, C(1) and CM

using real applications. Note that in this configuration, C(1) denotes the cost of checkpointing
to disk, and is referred to as a disk checkpoint below, as opposed to the memory checkpoint,
which is done in RAM. There is an exception with the Coastal platform, on which SSD tech-
nology is used for memory checkpointing; this provides more data space, at the cost of higher
checkpointing costs. In addition, note that the Hera platform has the worst error rates, with a
platform MTBF of 12.2 days for fail-stop errors and 3.4 days for silent errors. In comparison,
and despite its higher number of nodes, the Coastal platform features a platform MTBF of 28.8
days for fail-stop errors and 5.8 days for silent errors.

Set From Platform #Nodes λf λs C(1) CM

(A)

Hera 256 9.46e-7 3.38e-6 300s 15.4s
Moody Atlas 512 5.19e-7 7.78e-6 439s 9.1s

et al. [74] Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Table I
SET OF PARAMETERS (A) USED AS INPUT FOR SIMULATIONS.

Impact of the number of tasks. The first column of Figure 4.7 presents, for each platform,
the normalized makespan with respect to the error-free execution time for different numbers of
tasks with the Uniform pattern. Note that varying the number of tasks has an impact on both the
size of the tasks and the maximum number of checkpoints and verifications that the scheduling
algorithm can place. When the number of tasks is small (e.g., less than 5), the probability of
having an error during the execution (either a fail-stop or a silent) increases quickly (more than
10% on Hera) for a single task. As a result, the application experiences more recoveries and
re-executions with larger tasks, which increases the execution overhead. However, when the
number of tasks is large enough, the size of the tasks becomes small and the probability of
having an error during the execution of one task drops significantly, reducing the recovery and
re-execution costs at the same time.

Single-level algorithm ADV ∗ . The second column of Figure 4.7 shows the numbers of disk
checkpoints (with associated memory checkpoints) and guaranteed verifications used by the
ADV ∗ algorithm on the four platforms and for different numbers of tasks. We observe that
a large number of guaranteed verifications is placed by the algorithm while the number of
checkpoints remains relatively small (e.g., less than 5 for all the platforms). This is because
checkpoints are costly, and verifications help reduce the amount of time lost due to silent errors.
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Figure 4.7: Performance of the three algorithms on each platform with the Uniform pattern.
Each row corresponds to one platform.
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Since verifications are cheaper, the algorithm tends to place as many of them as possible, except
when their relative costs also become high (e.g., on Coastal SSD). In addition, when the number
of tasks is large enough (e.g., n > 30 on Hera), not all tasks need to be verified. Note that there
are fewer verifications for n = 40 than for n = 30, while the number of memory checkpoints
remain the same. In fact, there is a threshold (n = 38) after which one verification for one task
becomes an overkill. Instead, the algorithm places one verification every two tasks, resulting
in exactly 20 guaranteed verifications (including the ones before each memory checkpoint) at
n = 40 tasks.

Two-level algorithm ADMV ∗ . The third column of Figure 4.7 presents the numbers of disk
checkpoints, memory checkpoints and guaranteed verifications used by the ADMV ∗ algorithm
on the four platforms and for different numbers of tasks. We observe that the number of guaran-
teed verifications remains similar to that placed by the ADV ∗ algorithm. However, the two-level
algorithm uses additional memory checkpoints, which drastically reduces the amount of time
lost in re-execution when a silent error is detected. In particular, we observe that the algorithm
ADMV ∗ always leads to a better makespan compared to the single-level algorithm ADV ∗ , with
an improvement of 2% on Hera and 5% on Atlas, as shown in the first column of Figure 4.7.
This demonstrates the usefulness of the multi-level checkpointing approach.

Combined algorithm ADMV . The last column of Figure 4.7 presents the numbers of disk
checkpoints, memory checkpoints, guaranteed verifications and additional partial verifications
used by the ADMV algorithm on the four platforms and for different numbers of tasks. Although
partial verifications are always more cost-effective than guaranteed ones, due to the imperfect
recall, they are only useful if one can use a lot of them, which is only possible when the number
of tasks is large enough. Therefore, the algorithm only starts to use partial verifications when
the number of tasks is greater than 30 on Hera, 40 on Coastal and 50 on Atlas, where silent
error rate is the highest among the four platforms. In our setting, adding partial verifications
has a limited impact on the makespan, with the exception of the Coastal SSD platform, where
the cost of checkpoints and verifications are much higher than on the other platforms. Partial
verifications, being 100 times cheaper than guaranteed verifications, remain the only affordable
resilience tool on this platform. In this case, we observe an improved makespan (around 1%
with 50 tasks) compared to the ADMV ∗ algorithm, as shown in the first column of Figure 4.7.

Distribution of checkpoints and verifications. Figure 4.8 shows the positions of the disk
checkpoints, memory checkpoints, verifications and partial verifications obtained by running
the ADMV algorithm on each of the four platforms and for 50 tasks with the uniform distribu-
tion. For all platforms, the algorithm does not perform any additional disk checkpoints. These
being costly, the algorithm rather uses more memory checkpoints and verifications. On most
platforms, the optimal solution is a combination of equi-spaced memory checkpoints and guar-
anteed verifications, with additional partial verifications in-between. However, on the Coastal
SSD platform, the cost of checkpoints and verifications is substantially higher, which leads the
algorithm to choose partial verifications rather than guaranteed ones.

Decrease pattern. In the following, we focus on the platforms Hera and Coastal SSD, which
represent both extremes in terms of size (number of nodes) and hardware used for memory
checkpointing (RAM and SSD, respectively). The first column of Figure 4.9 presents the per-
formance of the three algorithms for different numbers of tasks and for the Decrease pattern.
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Figure 4.8: Distribution of disk checkpoints, memory checkpoints and verifications for the
ADMV algorithm on each platform with the Uniform pattern.
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Figure 4.9: Performance of the three algorithms, and distribution of disk checkpoints, memory
checkpoints and verifications (for the ADMV algorithm) on platforms Hera and Coastal SSD
with the Decrease pattern.

The second column shows the numbers of disk checkpoints, memory checkpoints, guaranteed
and partial verifications given by the ADMV algorithm. The third column is a visual represen-
tation of the corresponding solution obtained for 50 tasks and with the same configuration. We
observe that the makespan obtained is very similar for all three algorithms (with a slight advan-
tage for ADMV ). Since the large tasks at the beginning of the chain are more likely to fail, they
will be checkpointed more often, as opposed to the small tasks at the end, which the algorithm
does not even consider worth verifying.

HighLow pattern. Once again, we focus on platforms Hera and Coastal SSD. Similarly to
Figure 4.9, Figure 4.10 assesses the impact of the HighLow pattern on the performance of the
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Figure 4.10: Performance of the three algorithms, and distribution of disk checkpoints, memory
checkpoints and verifications (for the ADMV algorithm) on platforms Hera and Coastal SSD
with the HighLow pattern.

three algorithms as well as on the numbers and the positions of checkpoints and verifications.
Recall that we set the first 10% of the tasks to contain 60% of the total computational weight,
while the rest of the tasks contain the remaining 40%. With 50 tasks and a total computational
weight of 25000s, the first 5 tasks have a weight of 3000s each, while the remaining tasks have
a weight of around 222s each. Under this configuration, an error occurring during the execution
of a large task would cost T lost ≈ 1500s time loss on average for fail-stop errors (see Equation
(4.8)) and 3000s for silent errors, plus an additional 3000s time loss for each preceding task
that has not been checkpointed. With the MTBF on Hera, a large task will fail with probability
1.3%, as opposed to the probability of 0.096% for small tasks. As a result, the disk checkpoint,
which takes 300s, turns out to be still too expensive, but the memory checkpoint, which takes
only 15.4s on Hera, becomes mandatory: on average an error will occur way before the total
accumulated cost of our preventive memory checkpoints even adds up to the cost of one task.
On Coastal SSD, however, the memory checkpoint is still quite expensive, so that only one of
the first 5 tasks is marked for verification and memory checkpointing. On both platforms, since
the rest of the tasks are small, the solution is similar to the one we observed for the Uniform
pattern, except that memory checkpoints and verifications are less frequent.

Summary of results. Overall, we observe that the combined use of disk checkpoints and
memory checkpoints allows us to decrease the makespan, for the three task patterns and the
four platforms. The use of partial verifications further decreases the makespan, especially on
the Coastal SSD platform where the checkpointing costs are high. To give some numbers, our
approach saves 2% of execution time on Hera and 5% on Atlas. These percentages may seem
small, but they correspond to saving half an hour a day on Hera, and more than one hour a day
on Atlas, with little further overhead.
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Set From Level 3 2 1 Memory

(B)
Balaprakash C (s) 150 50 30 10

et al. [6] λ (Hz) 1.39e-6 6.94e-6 1.39e-5 2.78e-5

Table II
SET OF PARAMETERS (B) USED AS INPUT FOR SIMULATIONS.

4.5.2 Results for multi-level checkpointing

In this section, we perform additional experiments using a set of parameters that features k = 3
levels of disk checkpoints, as opposed to only one in the previous section. Therefore, we now
focus on evaluating the impact of using multiple checkpointing levels to deal with fail-stop
errors.

We compare three algorithms: (i) a multi-level algorithm AV ∗ with up to k = 3 levels of
disk checkpoints to handle both fail-stop and silent errors (with additional guaranteed verifi-
cations); and (ii) the combined algorithm AMV that also uses memory checkpoints and partial
verifications. Note that AMV is the algorithm described in Section 4.4, while AV ∗ is a simpli-
fication of this most sophisticated algorithm.

Platform settings. Table II presents the checkpointing costs and the associated error rates for
this set of parameters, which are obtained from real measurements on the BG/Q platform Mira
running LAMMPS application at ANL by Balaprakash et al. [6]. Multi-level checkpointing was
provided by the FTI library [12], which offers four checkpointing levels (three levels of disk
and one level of memory): local checkpoint (memory), local checkpoint + partner-copy (level-
1 disk), local checkpoint + Reed-Solomon coding (level-2 disk), and PFS-based checkpoint
(level-3 disk). The error rate corresponds to a default failure rate commonly used for petascale
HPC applications [12, 37, 74].

Note that, with multiple levels of disk checkpoints, there is no obligation to use all available
levels. In this particular case with k = 3 levels, one may choose among four possible subsets of
levels: {3}, {1, 3}, {2, 3}, and {1, 2, 3}. Of course, we still have to account for all error types,
which means that we need to adjust the error rates from the level selection as follows:
• {3}: use {λ3 ← λ1 + λ2 + λ3};
• {1, 3}: use {λ1} and {λ3 ← λ2 + λ3};
• {2, 3}: use {λ2 ← λ1 + λ2} and {λ3};
• {1, 2, 3}: use {λ1}, {λ2} and {λ3}.

Impact of checkpointing level selection. Figure 4.11 presents the normalized makespan with
respect to the error-free execution time obtained using the AV ∗ algorithm (a) and AMV algo-
rithm (b), with up to 20 tasks under the Uniform pattern with total work W = 3600s. First, we
observe that different level selections yield different overheads, but overall, using more levels
does not always improve performance. In particular, we can see that, for the simple algorithm
AV ∗ without additional memory checkpoints or partial verifications to deal with silent errors,
the best solution is to use the {1, 3} level selection, which achieves an overhead around 14.5%.
In comparison, using only level-3 checkpoints yields an overhead around 16.5%, while using all
levels {1, 2, 3} yields an overhead just below 16%. When allowing additional memory check-
points and partial verifications with the AMV algorithm, the {1, 3} level selection no longer
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Figure 4.11: Performance obtained by using the optimal solution to the MULTILEVEL-SILENT

problem for settings (B), using the AV ∗ algorithm (a) and the AMV algorithm (b), under the
Uniform pattern with total work W = 3600s.

achieves the best results. Instead, it appears that using only level-3 checkpoints, i.e., replac-
ing level-1 checkpoints by the cheaper memory checkpoints, yields a slightly better overhead
around 13%. Overall, AMV improves upon the AV ∗ algorithm (with only level-3 checkpoints
and guaranteed verifications) under the best level selection {1, 3} by 1.5%.

Similarly to Figure 4.11, Figure 4.12 presents the normalized makespan with respect to the
error-free execution time obtained using the AV ∗ algorithm (a) and AMV algorithm (b), with
up to 20 tasks under the Uniform pattern with total work W = 25000s. Note that tasks are now
significantly larger than before, and we observe that the level selection {2, 3} beats all the other
possible combinations by achieving an overhead of 13% with the AV ∗ algorithm (Figure 4.12a),
which is further improved by another 0.5% when using the AMV algorithm with additional
memory checkpoints for 20 tasks (Figure 4.12b). Since larger tasks require more checkpoints,
but offer limited opportunities to achieve that goal, the algorithms tend to favor additional levels
of verified checkpoints, instead of single memory checkpoints, which will be lost when a fail-
stop error strikes, or single verifications (either guaranteed or partial). This is why the AMV

algorithm becomes only slightly better with 20 tasks, and that it is not as helpful in this context.

Results for other patterns. Results for the Decrease and HighLow patterns for the combined
problem are presented in Figures 4.13 and 4.14, respectively. As in the previous cases, we suc-
ceed to improve performance by combining the use of multi-level checkpointing and memory
checkpoints (with verifications) for silent errors, especially when tasks are small (with total
work W = 3600s). Note that Figure 4.14 shows a drastic drop in overhead between 10 tasks
and 11 tasks. Indeed, with 10 or fewer tasks, the HighLow distribution consists of one big task,
which has size 2160s when W = 3600s and 15000s when W = 25000s. As a result, the prob-
ability of encountering an error (either fail-stop or silent) during the execution of the first task
reaches 0.1 when W = 3600s and 0.5 when W = 25000s, suggesting that task size plays an
important role in the overhead. In comparison, with 11 or more tasks, and according to the
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Figure 4.12: Performance obtained by using the optimal solution to the MULTILEVEL-SILENT

problem for settings (B), using the AV ∗ algorithm (a) and the AMV algorithm (b), under the
Uniform pattern with total work W = 25000s.

HighLow distribution, we now have two big tasks instead of one. Therefore, the probability
decreases to 0.05 when W = 3600s and just under 1/3 when W = 25000s.

Summary of results. Overall, the simulation results have shown that the combined approach
described in Section 4.4 to deal with both silent errors and multi-level fail-stop errors indeed
leads to improved performance. In particular, when tasks are small enough, both approaches
help equally to reduce the overhead. However, with fewer tasks and hence less freedom to
checkpoint and verify, additional checkpoint levels seem to be favored over additional memory
checkpoints or verifications. Furthermore, we have shown that the best checkpoint level selec-
tion does not always include all the levels. Finally, we remark that the implemented dynamic
programming algorithms typically execute within just a few seconds and occupy up to 15GB
of RAM for 20 tasks.

4.6 Related work

In this section, we discuss related work on fail-stop errors and silent errors, and finally outline
specific results for linear workflows.

4.6.1 Fail-stop errors

The de-facto general-purpose error recovery technique in high performance computing is check-
point and rollback recovery [28, 46]. For a divisible load application where checkpoints can be
inserted at any point in execution for a nominal cost C, there exist well-known formulas due
to Young [97] and Daly [36] to determine the optimal checkpointing period. For an applica-
tion composed of a linear chain of tasks, as in this work, the problem of finding the optimal
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Figure 4.13: Performance obtained by using the optimal solution to the MULTILEVEL-SILENT

problem for settings (B), using the AV ∗ algorithm under the Decrease pattern with total work
W = 3600s (a) and W = 25000s (b).

checkpointing strategy, i.e., of determining which tasks to checkpoint, in order to minimize the
expected execution time, has been solved by Toueg and Babaoglu [93].

However, single-level checkpointing schemes suffer from the intrinsic limitation that the
cost of checkpointing/recovery grows with failure probability, and becomes unsustainable at
large scale [17, 52] (even with diskless or incremental checkpointing [78]). To reduce the I/O
overhead, various two-level checkpointing protocols have been studied. Vaidya [94] proposed
a two-level recovery scheme that tolerates a single node failure using a local checkpoint stored
on a partner node. If more than one failure occurs during any local checkpointing interval, the
scheme resorts to the global checkpoint. Silva and Silva [88] advocated a similar scheme
by using memory to store local checkpoints, which is protected by XOR encoding. Di et
al. [39] analyzed a two-level computational pattern, and proved equal-length segments in the
optimal solution. They also provided mathematical equations that can be solved numerically to
compute the optimal pattern length and number of segments. In Chapter 2, we relied on disk
checkpoints to cope with fail-stop failures and used memory checkpoints coupled with error
detectors to handle silent data corruptions. We have derived first-order approximation formulas
for the optimal pattern length as well as the number of memory checkpoints between two disk
checkpoints.

Some authors have also generalized two-level checkpointing to account for an arbitrary
number of levels. Moody et al. [74] implemented this approach in a three-level Scalable
Checkpoint/Restart (SCR) library. They relied on a rather complex Markov model to recur-
sively compute the efficiency of the scheme. Bautista-Gomez et al. [12] designed a four-level
checkpointing library, called Fault Tolerance Interface (FTI), in which partner-copy and Reed-
Solomon encoding are employed as two intermediate levels between local and global disks.
Based on FTI, Di et al. [37] proposed an iterative method to compute the optimal checkpoint-
ing interval for each level with prior knowledge of the application’s total execution time. We
have provided a complete characterization of multi-level checkpointing pattern based on first-
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Figure 4.14: Performance obtained by using the optimal solution to the MULTILEVEL-SILENT

problem for settings (B), using the AV ∗ algorithm under the HighLow pattern with total work
W = 3600s (a) and W = 25000s (b).

order approximation, thus generalizing Young/Daly’s classical results in Chapter 3. Hakkarinen
and Chen [60] considered multi-level diskless checkpointing for tolerating simultaneous fail-
ures of multiple processors. Balaprakash et al. [6] studied the trade-off between performance
and energy for general multi-level checkpointing schemes.

4.6.2 Silent errors

Most traditional approaches maintain a single checkpoint. If the checkpoint file includes errors,
the application faces an irrecoverable failure and must restart from scratch. This is because
error detection latency is ignored in traditional rollback and recovery schemes, which assume
instantaneous error detection (therefore mainly targeting fail-stop failures) and are unable to
accommodate silent errors. We focus in this section on related work about silent errors. A
comprehensive list of techniques and references is provided by Lu, Zheng and Chien [70].

Considerable efforts have been directed at error-checking to reveal silent errors. Error de-
tection is usually very costly. Hardware mechanisms, such as ECC memory, can detect and even
correct a fraction of errors, but in practice they are complemented with software techniques.
The simplest technique is triple modular redundancy and voting [72], which induces a highly
costly verification. For high-performance scientific applications, process replication (each pro-
cess is equipped with a replica, and messages are quadruplicated) is proposed in the RedMPI
library [53]. Elliot et al. [45] combine partial redundancy and checkpointing, and confirm the
benefit of dual and triple redundancy. The drawback is that twice the number of processing re-
sources is required (for dual redundancy). An approach based on checkpointing and replication
is proposed in [75], in order to detect and enable fast recovery of applications from both silent
errors and hard errors.

Application-specific information can be very useful to enable ad-hoc solutions, which dra-
matically decrease the cost of detection. Many techniques have been advocated. They include
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memory scrubbing [64] and ABFT techniques [16, 63, 87], such as coding for the sparse-matrix
vector multiplication kernel [87], and coupling a higher-order with a lower-order scheme for
PDEs [14]. These methods can only detect an error but do not correct it. Self-stabilizing
corrections after error detection in the conjugate gradient method are investigated by Sao and
Vuduc [85]. Heroux and Hoemmen [19] design a fault-tolerant GMRES capable of converging
despite silent errors. Bronevetsky and de Supinski [21] provide a comparative study of detec-
tion costs for iterative methods.

Recently, detectors based on data analytics have been proposed to serve as partial verifica-
tions [8, 10, 15]. These detectors use interpolation techniques, such as time series prediction
and spatial multivariate interpolation, on scientific dataset to offer large error coverage for a
negligible overhead. Although not perfect, their accuracy-to-cost ratios tend to be very high,
which makes them interesting alternatives at large scale. For divisible load applications, peri-
odic patterns with partial and guaranteed verifications are studied in Chapter 2. We point out
that the approach described in this chapter is agnostic of the underlying error-detection tech-
nique and takes the cost of verification as an input parameter to the model.

4.6.3 Linear workflows

In this section, we focus on work related to linear workflows. The main difference with divisible
load applications is that one can insert resilience mechanisms only at the end of the execution
of a task. We may well have a limited number of tasks, which prevents the use of any periodic
strategy à la Young/Daly [36, 97]. Instead, the optimal solution for any linear task graph is
typically obtained with dynamic programming algorithms.

As already mentioned, Toueg and Babaoglu [93] have also dealt with single-level check-
pointing for fail-stop errors. In a previous work [J3], their work has been extended to deal
with silent errors in addition to fail-stop errors. The approach in [J3] uses only guaranteed
verifications and one-level of checkpoint. It has been further extended in [W5] (the preliminary
version of this work) to include partial verifications in addition to guaranteed verification, and
in-memory checkpointing in addition to disk checkpointing.

This work provides the last step and shows how to add multi-level disk checkpointing pro-
tocols. We now deal with k disk checkpoint levels (where k is arbitrary), one memory check-
point level, and partial and guaranteed verifications. As a result, we combine the most efficient
techniques for fail-stop and silent errors within a unified framework.

4.7 Conclusion

In this chapter, we focused on HPC applications whose dependency graph forms a linear chain,
and we proposed two important extensions to single-level checkpointing, allowing us to cope
with both multi-level fail-stop errors and silent data corruptions, on large-scale platforms. Al-
though numerous studies have dealt with either error source, few studies have dealt with both,
while it is mandatory to address both sources simultaneously at scale. We have combined the
multi-level disk checkpointing technique with in-memory checkpoints and verification mecha-
nisms (partial or guaranteed), and we have designed a sophisticated multi-level dynamic pro-
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gramming algorithm that computes the optimal solution for a linear application workflow in
polynomial time.

Simulations based on realistic parameters on several platforms show consistent results, and
confirm the benefit of the combined approach. Improvement can be seen both by using addi-
tional guaranteed and/or partial verifications for silent errors, and by selecting several levels of
checkpoints, between those offered by the platform, to handle different types of fail-stop errors.
While the most general algorithm has a high complexity of O(nk+5), where n is the number of
tasks and k is the number of checkpointing levels, it executes within a few seconds for n = 20
tasks and k = 3 levels, and therefore can be readily used for real-life linear workflows whose
sizes rarely exceed tens of tasks.



Chapter 5

Voltage Overscaling Algorithms for Energy-
Efficient Workflow Computations

In this chapter, we discuss several scheduling algorithms to execute tasks with voltage over-
scaling. Given a frequency to execute the tasks, operating at a voltage below threshold leads
to significant energy savings but also induces timing errors. A verification mechanism must be
enforced to detect these errors. As opposed to fail-stop or silent errors, timing errors are de-
terministic (but unpredictable). For each task, the general strategy is to select a voltage for
execution, to check the result, and to select a higher voltage for re-execution if a timing er-
ror has occurred, and so on until a correct result is obtained. Switching from one voltage to
another incurs a given cost, so it might be efficient to try and execute several tasks at the cur-
rent voltage before switching to another one. In a preliminary version of this work, we have
proposed an optimal polynomial dynamic programming algorithm to solve this problem for a
linear chain of tasks [W6]. Determining the optimal solution for independent tasks turns out
to be unexpectedly difficult. However, we provide the optimal algorithm for a single task, the
optimal algorithm when there are only two voltages, and the optimal level algorithm for a set
of independent tasks, where a level algorithm is defined as an algorithm that executes all re-
maining tasks when switching to a given voltage. Furthermore, we show that the optimal level
algorithm is in fact globally optimal (among all possible algorithms) when voltage switching
costs are linear. Finally, we report a comprehensive set of simulations to assess the potential
gain of voltage overscaling algorithms. This work has been published in the proceedings of the
Pacific Rim International Symposium on Dependable Computing (PRDC) [C5].

5.1 Introduction

Energy minimization has become a critical concern in High Performance Computing (HPC).
Many authors have suggested to use Dynamic Voltage and Frequency Scaling (DVFS) to reduce
the energy consumption during the execution of an application. Reducing the frequency (or
speed) at which each core is operated is the most frequently advocated approach, and great
savings have been demonstrated for a variety of scientific applications [7, 29, 57, 95]. However,
reducing the voltage for a given speed may lead to even greater savings, because the total
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consumed power is proportional to the square of the voltage. On the contrary, the dynamic
power is linearly proportional to the frequency, and the static power is independent of it.

Keeping the same frequency and reducing the voltage is a promising direction which we
explore in this chapter. There is no free lunch, though. Given a frequency, there is always a
voltage recommended by the manufacturer, below which it might be unsafe to operate the core.
This voltage always includes some environmental margin to be on the safe side. Near-threshold
computing is a technique that consists in reducing the voltage below the recommended value,
down to a threshold voltage VTH (also called nominal voltage) that is still considered safe.
Overscaling algorithms suggest to further reduce the operating voltage, at the risk of producing
timing errors. Because the voltage is set to a very low value, the results of some logic gates
could be used before their output signals reach their final values, which could possibly lead
to an incorrect result. The occurrence of a timing error depends upon many parameters: the
voltage and frequency, and the nature of the target operation: different operations within the
ALU may have different critical-path lengths. But in addition, for a given operation, different
sets of operands may lead to different critical-path lengths (to see this, take a simple addition
and think of a carry rippling to different gates depending upon the operands). Timing errors are
therefore very different from usual fail-stop failures or silent errors that are dealt with in the
literature: they are not random but, instead, they are purely deterministic. Indeed, replaying the
same operation with the same set of operand under the same conditions will lead to the same
result. Although deterministic, timing errors are unpredictable, because it is not possible to
test all possible operands for a given operation. Therefore, for a given operation1, an error
probability is associated to each voltage and represents the fraction of operands for which
incorrect results will be produced by executing that operation on these operands at that voltage.

We need to take actions to mitigate the timing errors striking when voltage is aggressively
lowered. After executing a task, we insert a verification mechanism to check the correctness
of the result. In our study, the scheduling algorithms are agnostic of the nature of this verifica-
tion mechanism, which could be anything from (costly) duplication to (cheap) checksumming
and other application-specific methods. Of course the cheaper the cost of the verification, the
smaller the overhead to total execution time.

To execute a given task, scheduling algorithms with voltage overscaling operate as follows:
they are given a (discrete) set of possible voltages to operate with, and one of them as an input
voltage. The first decision to take is whether to execute the task at that voltage or to choose
another one. In the latter case, there is a switching cost to pay to change voltage. Regardless of
the decision, the result is verified after the execution of the task. If the verification mechanism
returns that the result is correct, we are done. If not, we need to re-execute the task. Remember
that timing errors are deterministic: there is no point in re-executing the task with the same
voltage, we know that we will get the same error. We need to select a higher voltage that
will reduce the probability of failure, paying a switching cost, and re-execute the task with
this voltage. Because the voltage is higher, the error probability is reduced, and we have a
chance that the second execution is correct. The higher the second voltage, the better that
chance, but the higher the cost of the execution, so there is a trade-off to achieve. If we are
unlucky, we may have to try several higher and higher voltages, up to eventually finishing

1and a given frequency: remember that throughout the text, we assume the frequency to be given.
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by using the threshold voltage, which is 100% safe but very costly. In Section 5.4, we give the
optimal scheduling algorithm for a single task, extending our previous result [W6] to the case
where an input voltage is given to the algorithm.

The problem gets more complicated when there are many tasks to schedule. We assume
that these tasks correspond to the same operation but involve different operands (think of a
collection of matrix products or stencil updates). Given a voltage, each task has the same
probability to fail. In the absence of switching costs (an unrealistic assumption in practice),
the tasks can be dealt with independently. However, to amortize the switching cost from a
given voltage to a new one, it might be a good idea to try and execute several tasks (or even all
the remaining tasks) at a given voltage. One key contribution of this work is to analyze level
algorithms, which always execute all the remaining tasks once a voltage has been selected.
We provide a dynamic programming algorithm that computes the optimal level algorithm as a
function of the input voltage costs and error probabilities, and of the number of tasks to execute.

Level algorithms turn out to be dominant among all possible algorithms when voltage
switching costs are linear. Technically, if we have three voltages V1 < V2 < V3, linear switch-
ing costs means that s1,3 = s1,2 + s2,3, where si,j is the cost to switch from Vi to Vj (or the
other way round, from Vj to Vi). With linear switching costs, we show that the optimal level
algorithm is in fact optimal among all possible algorithms, not just linear ones.

Finally, an important contribution of the chapter is to experimentally assess the usefulness
of voltage overscaling algorithms. We first consider a case study from numerical linear alge-
bra, where tasks are matrix-products that can be verified through ABFT checksums. We then
envision different scenarios where we study the impact of each parameter (verification cost,
voltage cost and error probability, switching costs). In addition to the gain in energy con-
sumption, we also investigate the performance degradation: while we keep the same frequency
(thereby avoiding a global slowdown of the execution as is the case with DVFS), we do have
two sources of performance overhead: (i) the verification mechanism, and (ii) the time lost due
to re-execution(s) and voltage switching after timing errors.

To the best of our knowledge, this work (together with our initial workshop paper [W6]) is
the first algorithmic approach for voltage overscaling. Previous studies are hardware oriented
and require special hardware mechanisms to detect timing errors [51, 66, 68, 80]. On the
contrary, we propose scheduling algorithms that can be called by the operating system of the
platform.

The rest of this chapter is organized as follows. In Section 5.2, we introduce a formal model
for timing errors. Then in Section 5.3, we illustrate several scheduling strategies by working out
a couple of toy examples. We present the optimal algorithm for a single task in Section 5.4, and
move to scheduling several tasks in Section 5.5. We report the results of a comprehensive set
of simulations to assess the impact and benefits of the previous voltage overscaling algorithms
in Section 5.6. Finally, we provide concluding remarks in Section 5.7.

5.2 Model

We now present a formal model for timing errors. We introduce the main notations and assump-
tions, and investigate the impact of timing errors on the success and failure probabilities of
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tasks. Because timing errors are deterministic, conditional properties are completely different
from what is usually enforced for the resilience of HPC applications.

5.2.1 Timing errors

As already mentioned, we focus on a fixed frequency environment (this frequency may have
been chosen to achieve a given performance). Then timing errors depend upon the voltage
selected for execution, and we model this with the following two assumptions:

Assumption 1. Given an operation and an input I (the set of operands), there exists a threshold
voltage VTH(I): using any voltage V below the threshold (V < VTH(I)) will always lead to an
incorrect result, while using any voltage above that threshold (V ≥ VTH(I)) will always lead
to a successful execution. Note that different inputs for the same operation may have different
threshold voltages.

Assumption 2. When an operation is executed under a given voltage V , there is a probability
pV that the computation will fail, i.e., produces at least one error, on a random input. This
failure probability is computed as pV = | If (V )|/| I |, where I denotes the set of all possible
inputs and If (V ) ⊆ I denotes the set of inputs for which the operation will fail at voltage V .
Equivalently, If (V ) is the set of inputs whose threshold voltages are strictly larger than V ,
according to Assumption 1. For any two voltages V1 and V2 with V1 ≥ V2, we have If (V1) ⊆
If (V2) (Assumption 1), hence pV1 ≤ pV2 .

If a task consists of t identical operations, each executed at voltage V with error probability
pV , then the probability of successful execution of the task is (1 − pV )

t: the larger the task,
the greater the risk. Since timing errors are essentially silent errors, they do not manifest
themselves until the corrupted data has led to an unusual application behavior, which may be
detected long after the error has occurred, wasting the entire computation done so far. Hence, an
error-detection mechanism (also called verification mechanism) is necessary to ensure timely
detection of timing errors after the execution of each task. In this work, we assume that this
mechanism is given. All the algorithms presented in Sections 5.4 and 5.5 are fully general and
agnostic of the error-detection technique (checksum, error correcting code, coherence tests,
etc.).

5.2.2 Notations

We consider a set T = {T1, T2, · · · , Tn} of n tasks to be executed by the system. All tasks
share the same computational weight, including the work to verify the correctness of the result
at the end. Hence, all tasks have the same execution time and energy consumption under a
fixed voltage. We apply Dynamic Voltage OverScaling (DVOS) to tradeoff between energy
cost and failure probability. The platform can choose an operating voltage among a set V =
{V1, V2, · · · , Vk} of k discrete values, where V1 < V2 < · · · < Vk. Each voltage V` has an
energy cost per task c` that increases with the voltage, i.e., c1 < c2 < · · · < ck. Based on
Assumption 2, each voltage V` also has a failure probability p` that decreases with the voltage,
i.e., p1 > p2 > · · · > pk. We assume that the highest voltage Vk equals the nominal voltage VTH
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with failure probability pk = 0, thus guaranteeing error-free execution for all possible inputs.
For convenience, we also use a null voltage V0 with failure probability p0 = 1 and null energy
cost c0 = 0. Here is a summary of these notations:

Voltages V0 V1 V2 · · · Vk = VTH

Failure Prob. p0 = 1 p1 p2 . . . pk = 0
Energy cost c0 = 0 c1 c2 . . . ck

We further assume that DVOS is only applied to reduce energy consumption, and leaving
the system at a voltage below VTH after the execution of the task(s) is not allowed (because it
would not be safe). This is formally stated in the following assumption.

Assumption 3. The system is initially running at nominal voltage VTH and its voltage must be
reset back to VTH when all computations are done.

Switching the operating voltage also incurs an energy cost. Let s`,h denote the energy
consumed to switch the system’s operating voltage from V` to Vh. We have s`,h = 0 if ` = h
and s`,h > 0 if ` 6= h. Moreover, we make the following assumptions on the properties of the
switching costs, which are true in many systems in practice:

Assumption 4. The voltage switching costs of the system satisfy to:
• Symmetry: s`,h = sh,` for all V`, Vh ∈ V;
• Dominance: s`,h ≥ s`,p and s`,h ≥ sp,h for V` ≤ Vp ≤ Vh;
• Triangle inequality: s`,h ≤ s`,p + sp,h for V` ≤ Vp ≤ Vh.

Definition 4 (Linear switching costs). We have linear costs when the triangle inequality is
always an equality: s`,h = s`,p + sp,h for all V` ≤ Vp ≤ Vh.

The objective is to minimize the expected total energy consumption by determining the
optimal strategy to execute the set of tasks.

5.2.3 Success and failure probabilities

We now consider the implications of Assumptions 1 and 2 on the success and failure proba-
bilities of executing a task following a sequence of voltages. For the ease of writing, we as-
sume that the execution of each task has already failed under the null voltage V0 (at energy cost
c0 = 0).

Lemma 10. Consider a sequence 〈V1, V2, · · · , Vm〉 of m voltages, where V1 < V2 < · · · < Vm,
under which a given task is executed. For any voltage V`, where 1 ≤ ` ≤ m, given that the
execution of the task on a certain input has already failed under voltages V0, V1, · · · , V`−1, the
probability that the task execution will fail or succeed under voltage V` on the same input is

P(V`-fail | V0V1 · · ·V`−1-fail) =
p`
p`−1

,

P(V`-succ | V0V1 · · ·V`−1-fail) = 1− p`
p`−1

.
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Proof. We prove the probabilities using Assumptions 1 and 2. The task under study is the
execution of some computation on some input I . Since this task execution has failed under
voltages V0, V1, · · · , V`−1, we know that input I satisfies I ∈

⋂`−1
h=0 If (Vh) = If (V`−1) (If (Vh)

is the set of inputs on which the computation fails under voltage Vh). Then, the task execution
will fail again under voltage V` if the input satisfies I ∈ If (V`) ⊆ If (V`−1). Otherwise, the
task execution will succeed. Given that the input is randomly chosen (we have no a priori
knowledge on it), the failure probability is

P(V`-fail | V0V1 · · ·V`−1-fail)

=
| If (V`)|
| If (V`−1)|

=
| If (V`)|/| I |
| If (V`−1)|/| I |

=
p`
p`−1

,

and the success probability is

P(V`-succ | V0V1 · · ·V`−1-fail)

=
| If (V`−1)\ If (V`)|
| If (V`−1)|

= 1− | If (V`)|
| If (V`−1)|

= 1− p`
p`−1

.

5.3 Examples

In this section, we focus on the special case where there are only two available voltages (k = 2).
In the first study, for the sake of illustration, we assume that Assumption 3 does not hold and
that the system is originally at voltage V1. In the second study, we derive the optimal policy, for
two voltages, assuming that Assumption 3 holds (which will always be the case in the following
sections).

5.3.1 Two voltages without Assumption 3

The system is initially at voltage V1. We assume that there are only two tasks to execute. It
is twice as expensive energy-wise to execute a task at V2 than at V1 (c1 = 1 and c2 = 2), the
failure probability at V1 is 80% (p1 = 0.8), and switching voltage from V1 to V2 is as expensive
as executing 20 tasks at V1 (s1,2 = 20). If there were no switching costs (s1,2 = 0), no task
would be executed at voltage V1. Indeed, executing a task at voltage V2 costs c2 = 2, when the
expected cost of executing a task at V1 is c1 + p1 · c2 = 1 + 0.8 · 2 = 2.6. If we could switch
voltages for free, we would always switch to the nominal voltage to execute tasks. However,
the switching cost is expensive, here, and the system is initially at voltage V1. We can envision
three policies:
• Switch directly to V2 to execute both tasks. This costs: s1,2 + 2 · c2 = 24.
• Execute each task at V1. If all executions succeed (which happens with probability (1−

p1)
2), we are done. Otherwise, switch to V2 and re-execute the failed tasks. The expected

cost is 2 · c1 + (1− (1− p1)
2)s1,2 + 2 · p1 · c2 = 24.4.
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• Execute the first task at V1 and switch to V2 after its completion if and only if its execution
failed. The rationale is as follows. If the execution of the first task fails, whatever the
result of the execution of the second task we will have to switch to V2 to re-execute the
first task. Moreover, we have shown that executing a task at V2 is cheaper than trying to
execute it at V1 and then re-execute it at V2 in case of failure. Therefore, we save energy
by not attempting to execute the second task at V1. If the execution of the first task
was successful, we remain at V1 in (the unlikely) case that the execution of the second
case will also succeed and that we will never have to switch to V2 (thus saving the huge
switching cost). The expected cost of this policy is then: c1 + p1(s1,2 + 2 · c2) + (1 −
p1)(c1 + p1(s1,2 + c2)) = 23.92.

The third policy is optimal in this case. This example illustrates two important facts: (i) the
optimal policy may be dynamic, the decision at which voltage the next task should be executed
depending on the success or failure of other tasks; (ii) switching costs can have a significant
impact on the shape of the optimal solution.

5.3.2 Two voltages under Assumption 3
We now assume that we have n tasks to process, and that Assumption 3 holds (as it should).
We have two cases to consider, whether V1 is used or not.
• V1 is not used. The cost is then n · c2.
• V1 is used. Then, whatever the policy, the two switching costs s1,2 and s2,1 will be

payed. Executing a task at voltage V2 costs c2. Executing a task first at voltage V1 costs:
c1+p1 ·c2. Therefore, it may only be worth using V1 if c1+p1 ·c2 ≤ c2 ⇔ c1 ≤ (1−p1)c2.
In this case, an optimal solution is to first execute all tasks at V1, then the voltage must
be switched back to V2 and, finally, failed tasks must be re-executed. Indeed, whatever
happens, both switching costs are paid, the solution is the same as if switching costs were
zero The expected cost is then: 2s1,2 + n · c1 + n · p1 · c2. This is better than the first
policy if and only if:

n · c2 ≥ 2s1,2 + n · c1 + n · p1 · c2 ⇔ n ≥
⌈

2s1,2
c2(1− p1)− c1

⌉
The optimal strategy is thus: if c1 ≤ (1−p1)c2 and n ≥ d 2s1,2

c2(1−p1)−c1
e, then switch to V1, execute

all tasks at V1, switch to V2 and re-execute all failed tasks; otherwise, stay at V2 and execute all
tasks at that voltage. Hence, the shape of the optimal strategy depends of the number of tasks
to execute. Note that thanks to Assumption 3, the shape of the solution is simpler than in the
previous study.

5.4 Scheduling for a single task

We focus here on the special case where there is only one task to execute. We present an
optimal algorithm for this case, extending our previous result [W6] to the case where an input
voltage is given to the algorithm. We need this extension to prepare for the general case with
several tasks: indeed, consider a simple algorithm that proceeds task after task. For the first
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task, the input voltage is always VTH, according to Assumption 3. But when the execution of
the first task completes, the input voltage for the second task may well be different from VTH, if
for instance the algorithm tried, and succeeded with, a lower voltage.

We first define some notations. Let E∗
ONE(Vh, V`) denote the optimal expected energy needed

to execute the task starting from voltage Vh, given that the task has previously failed under
a sequence of lower voltages, the highest one among which is V`. Let E∗

ONE(V`) and V ∗
ONE(V`)

denote, respectively, the optimal expected energy and the optimal voltage needed to execute the
task after it has just failed under voltage V`. The following theorem shows the optimal solution:

Theorem 17. To execute a single task on a system with k voltages, the optimal expected energy
consumption as well as the optimal sequence of voltages can be obtained by dynamic program-
ming with complexity O(k2).

Proof. Suppose the task has just failed under voltage V` and it is about to be executed at a higher
voltage Vh > V`. According to Lemma 10, the probability that the tasks will fail again under
Vh is given by P(Vh-fail | V`-fail) = ph/p`. If the task is successfully completed at Vh, we can
just reset the voltage from Vh back to the nominal voltage Vk. Otherwise, we need to determine
the optimal voltage V ∗

ONE(Vh) to continue executing the task until successful completion. Thus,
for any pair (Vh, V`) of voltages with V0 ≤ V` < Vh ≤ Vk, we can compute Eone∗(Vh, V`) by
the following dynamic programming formulation:

E∗
ONE(Vh, V`) = ch +

(
1− ph

p`

)
sh,k

+
ph
p`
· min
h<p≤k

{
sh,p + E∗

ONE(Vp, Vh)
}
. (5.1)

The table is initialized with E∗
ONE(Vk, V`) = ck regardless of V`, and the entire table can be

computed in O(k2) time.
The optimal expected energy to execute the task after it has just failed under voltage V` is

therefore
E∗

ONE(V`) = min
`<h≤k

{
s`,h + E∗

ONE(Vh, V`)
}
, (5.2)

and the optimal voltage to execute the task in this case is V ∗
ONE(V`) = Vh′ , where h′ = argmin`<h≤k

{
s`,h+

E∗
ONE(Vh, V`)

}
. Again, computing E∗

ONE(V`) and V ∗
ONE(V`) for all 1 ≤ ` ≤ k takes O(k2) time.

The optimal expected energy to execute the task from the initial nominal voltage Vk is thus:

E∗
ONE = min

1≤h≤k

{
sk,h + E∗

ONE(Vh, V0)
}
,

where V0 is the null voltage with failure probability p0 = 1. The optimal starting voltage to
execute the task is V ∗

ONE = Vh′ , where h′ = argmin1≤h≤k

{
sk,h + E∗

ONE(Vh, V0)
}

. This can be
computed in O(k) time.

5.5 Scheduling for several tasks

We now consider the general case of executing a set of n independent tasks, where n ≥ 2.
All tasks correspond to the same computational operations, but may have different threshold
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voltages, because they operate on different data sets. The problem turns out to be more compli-
cated than expected. We start, in Section 5.5.1, with the introduction of two simple scheduling
strategies, task-by-task and level, before sketching the description of a general scheduling al-
gorithm. Then we show how to determine the optimal level algorithm in Section 5.5.2. Finally,
in Section 5.5.3, we prove that the optimal level algorithm is in fact globally optimal among all
possible scheduling algorithms when switching costs are linear.

5.5.1 Scheduling algorithms and strategies

We now provide an informal description of scheduling algorithms for independent tasks. There
are two simple execution strategies, which we call task-by-task and level. The task-by-task
strategy considers the tasks one after the other, waiting for the successful completion of the
current task before proceeding to the (first) execution of the next task. The task-by-task strategy
relies upon the optimal algorithm for a single task and input voltage described in Section 5.4.
After the successful execution of the current task, the platform voltage is set at some value Vh,
which we use as input voltage for applying the optimal single-task algorithm to the execution
of the next task.

While optimal for each task, this strategy may end up paying many switching costs. For
instance, if the optimal single-task algorithm always starts with some low voltage, say Vs,
regardless of the input voltage Vh, then the task-by-task strategy will have to switch back down
to Vs each time there has been a timing error in the execution of the previous task.

To minimize switching costs, when given an input voltage, another strategy is to execute all
tasks at that voltage, before switching to another voltage and execute all remaining tasks at that
other voltage, and so on. This level strategy goes voltage-by-voltage instead of task-by-task,
executing all tasks at a given voltage before switching to another one (hence its name).

While very natural, the task-by-task and level strategies are not the only possible algorithms.
In fact, a general scheduling algorithm proceeds as follows. At each step, we are given an input
voltage (that of the last execution of a task, or VTH initially) and the list of remaining tasks,
together with their history (the last voltage tried for execution of each task is recorded, with
V0 for initial condition). Then the algorithm selects one task in the list and one voltage Vnew

higher than the one recorded for this task2, and executes the task at that voltage. A switching
cost is paid if Vnew is different from the input voltage. If the execution is successful, the task is
removed from the list, and otherwise, the task stays in the list, and its history is updated with
Vnew being recorded. The algorithm then proceeds to the next step, with Vnew as input voltage.
The key decision at each step of the scheduling algorithm is the selection of the new task and
voltage pair, and this decision may well depend upon the number and history of the tasks in
the list, the input voltage, and all the problem parameters (cost and error probability of each
voltage, and switching costs). Altogether, we have a complex decision to make at each step,
and it seems very difficult to prove the optimality of a scheduling algorithm in the general case.

2There would be no point in trying the recorded voltage again, or a lower one: we know that the execution of
the task would fail again.
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5.5.2 Level algorithms

In this section, we formally define level algorithms, and we provide a dynamic programming
algorithm to compute the optimal level algorithm.

Definition 5 (Level algorithms). A level algorithm executes a set of independent tasks as fol-
lows:

1. Select the initial voltage V ;

2. Switch to voltage V and execute all remaining tasks;

3. Remove the successfully completed tasks from the set;

4. If there are still some tasks not successfully completed chose the next, higher, voltage V
to try and go to Step 2;

5. If the last voltage used is not Vk, switch to voltage Vk.

We call the sequence of voltages tried by a level algorithm the voltage sequence.

The level strategy guarantees that each voltage will be used at most once, so the voltages
will not change more than k times during the execution of the entire set. We have to determine
the optimal sequence of voltages to characterize the optimal level algorithm. Before presenting
the dynamic programming algorithm that solves this problem, we need a few notations.

Let E∗
SET(i, Vh, V`) denote the optimal expected energy needed to execute i tasks starting at

voltage Vh, provided that these tasks have just failed under a lower voltage V` < Vh. Then, the
optimal expected energy to execute i tasks that have just failed under voltage V` is given by
E∗

SET(i, V`) = min`<h≤k

{
s`,h + E∗

SET(i, Vh, V`)
}

.

Theorem 18. To execute a set of n independent tasks on a system with k voltages, the optimal
expected energy consumption as well as the next optimal voltage to execute a given number of
tasks —which failed at a lower voltage or knowing that we are at nominal voltage and before
any execution— can be obtained by dynamic programming with complexity O(n2k2).

Proof. Suppose a set of i tasks that have just failed under voltage V` and that will be executed at
a higher voltage Vh. According to Lemma 10, the probability that any of these tasks fails again
at Vh is P(Vh-fail | V`-fail) = ph/p`. Thus, the probability that j tasks will remain uncompleted
after they are all executed at voltage V` is

P(j tasks remain) =
(
i

j

)(
ph
p`

)j (
1− ph

p`

)i−j

for any 0 ≤ j ≤ i. If no task remains, e.g., j = 0, we need to reset the voltage from Vh back
to the nominal voltage Vk. Otherwise, we need to determine the optimal voltage to execute the
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remaining j tasks. Hence, the dynamic program:

E∗
SET(i, Vh, V`) = i · ch + P(no task remains) · sh,k

+
i∑

j=1

(
P(j tasks remain) min

h<p≤k
{sh,p + E∗

SET(j, Vp, Vh)}
)

= i · ch +
(
1− ph

p`

)i

sh,k

+
i∑

j=1

((
i

j

)(
ph
p`

)j(
1− ph

p`

)i−j

· min
h<p≤k

{sh,p+E∗
SET(j, Vp, Vh)}

)
for all 1 ≤ i ≤ n and all (Vh, V`) pairs with V0 ≤ V` < Vh ≤ Vk. In particular, when Vh = Vk,
we have E∗(i, Vk, V`) = i · ck for all 1 ≤ i ≤ n regardless of V`.

The optimal expected energy needed to execute i remaining tasks after they have just failed
under voltage V` is therefore

E∗
SET(i, V`) = min

`<h≤k

{
s`,h + E∗

SET(i, Vh, V`)
}
. (5.3)

The optimal voltage to execute these tasks is V ∗
SET(i, V`) = Vh′ , where h′ = argmin`<h≤k

{
s`,h+

E∗
SET(i, Vh, V`)

}
. The optimal expected energy needed to execute all n tasks, given that the

initial system voltage is the nominal voltage Vk, is

E∗
SET = min

1≤h≤k

{
sk,h + E∗

SET(n, Vh, V0)
}
,

where V0 is the null voltage with failure probability p0 = 1. The optimal starting voltage to
execute the entire set is V ∗

SET = Vh′ , where h′ = argmin1≤h≤k

{
sk,h + E∗

SET(n, Vh, V0)
}

.
The complexity is clearly dominated by the computation of E∗

SET(i, Vs, V`) for all 1 ≤ i ≤ n,
V0 ≤ V` < Vk and V` < Vs ≤ Vk, which takes O(n2k2) time.

Theorem 18 shows that the optimal voltage to select after each iteration depends on the
number of remaining tasks. To demonstrate this point, consider an example with three voltages
and 10 independent tasks. The energy costs of the voltages are c1 = 0.1, c2 = 1 and c3 = 5, and
the corresponding error probabilities are p1 = 0.8, p2 = 0.5 and p3 = 1. The voltage switching
costs are s1,2 = s2,3 = 1 and s1,3 = 1.1. According to Theorem 18, the optimal voltage to start
executing the tasks is V1. Suppose V1 has been used. We consider the following two cases.

• Case 1: There is only 1 task left. In this case, switching first to V2 and in case of failure
again to V3 incurs an expected cost of s1,2 + c2 +

p2
p1
(s2,3 + c3) +

(
1− p2

p1

)
s2,3 = 6.125.

On the other hand, switching directly to V3 incurs a total cost of s1,3 + c3 = 6.1. Hence,
the best strategy in this case is to switch directly to V3.

• Case 2: There are 9 tasks left. Then, switching first to V2 and then to V3 incurs an

expected cost of s1,2+9c2+
(
1− p2

p1

)9
s2,3+

∑9
j=1

(
9
j

) (
p2
p1

)j (
1− p2

p1

)9−j

(s2,3+j ·c3) =
39.125. On the other hand, switching directly to V3 incurs a total cost of s1,3+9c3 = 46.1.
Hence, the best strategy in this case is to try voltage V2 first and then V3.
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Intuitively, using the intermediate voltage V2 pays off only when there are many tasks left,
in which case the extra switching overhead diminishes with respect to the potential energy
gained from task execution.

5.5.3 Optimality result

In this section we prove that level algorithms are dominant when switching costs are linear.
The analysis so far has assumed that the voltage switching cost follows triangle inequality.
However, under the special case of linear costs, i.e., s`,h = s`,p + sp,h, we are able to show
that there exists an algorithm that satisfies Definition 5 and which is optimal. Furthermore,
the optimal voltage sequence has a much simpler structure, which helps reduce significantly
the complexity of the optimal algorithm.

We first prove a simple result: when switching costs are zero, the optimal algorithm for a
single task defines a level algorithm that is optimal for an arbitrary number of tasks. Intuitively,
we can transform any task-by-task algorithm into a level algorithm with the same cost, because
there is no overhead to switch voltages:

Lemma 11. On a system without voltage switching costs there exists an optimal algorithm
which is a level algorithm such that after each voltage:

• The optimal voltage to execute the remaining tasks does not depend on the number of
remaining tasks, and it is the same as the optimal voltage to execute a single task;

• The optimal expected energy consumption is proportional to the number of remaining
tasks.

Proof. Let us consider an optimal algorithm O and its execution on an instance with n tasks
denoted T1, ..., Tn. We reorder the task executions performed by O such as all executions
of T1 are done first, then all executions of T2 are performed, and so on. (Note that we have
taken an arbitrary ordering of the tasks.) The new execution order has exactly the same cost as
the previous one because switching costs are null. Also, Assumption 3 has no impact on the
solution. Therefore, the optimal sequence of voltages to try for task Ti (for any value 1 ≤ i ≤ n)
is the sequence of voltages defined in Section 5.4, so for a single task. Let Vπ(1), ..., Vπ(m) be this
sequence. Then algorithm O, being optimal, tried for each task this sequence of voltages, in
increasing voltages, until success. We finally reorder, once again at no cost, the task executions
performed by algorithm O: first all the executions at voltage Vπ(1), that is, the execution of all
tasks at Vπ(1); then all executions at voltage Vπ(2), that is, the execution of all remaining tasks
at voltage Vπ(2); and so on. We have, hence, defined a level algorithm following the voltage
sequence defined for a single task, and whose expected energy cost is the same as that of the
optimal algorithm O.

Theorem 19. With linear switching costs, level algorithms are dominant.

Proof. Let us consider any optimal algorithm O and an instance with n tasks. Let V` be the
lowest voltage used by algorithmO during the entire execution. Then, the total voltage switch-
ing cost incurred by O is SO ≥ sk,` + s`,k. (Note that we use sk,` + s`,k for clarity here, to
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emphasize that we switch down to V` and back to Vk = VTH, but remember that sk,` = s`,k by
Assumption 4.)

Let us consider any level algorithm L that starts by switching to voltage V`. Then, what-
ever the voltages it uses among the voltages V`, V`+1, ..., Vk, it incurs a total switching cost
exactly equal to S = sk,` + s`,k, because switching costs are linear. Therefore, we can assume
without loss of generality that algorithm L switches to all the voltages V`, V`+1, ..., Vk (maybe
without executing any task at some of those levels). Then, the optimization problem to solve
to determine at which next voltage should the remaining tasks be executed is exactly the same
as if there were no switching costs (there is no penalty incurred when an intermediate voltage
is used). Then, Lemma 11 tells us not only what is the optimal level algorithm in such a case
but, also, that it is optimal among all existing algorithms. Hence, the optimality of L among all
algorithms using voltages among V`, V`+1, ..., Vk. Because O is one of these algorithms and is
optimal, we can conclude.

Theorem 20. To execute a set of n independent tasks on a system with k voltages and linear
switching costs, the optimal solution can be obtained with complexity O(k2).

Proof. According to Theorem 19, we only need to focus on level algorithms to obtain the
optimal solution.

Suppose that a level algorithm starts executing the tasks at voltage Vh. Then, the total
switching cost paid by the algorithm during the entire execution is given by sk,h + sh,k, which
is fixed and does not depend on the sequence of voltages used. It remains to find the optimal
expected energy consumption to execute the tasks from Vh without considering the voltage
switching costs. When there are no voltage switching costs, let Ē∗

SET(i, Vh, V`) and ĒONE(Vh, V`)
denote, respectively, the optimal expected energy to execute i tasks and one task by starting
from voltage Vh, given that all of them have previously failed under voltage V`. We have
Ē∗

SET(n, Vh, V0) = n · Ē∗
ONE(Vh, V0). We can then try all possible starting voltages to get the

optimal expected total energy consumption as follows:

E∗
SET = min

1≤h≤k

{
sk,h + sh,k + n · Ē∗

ONE(Vh, V0)
}
,

and the optimal starting voltage is therefore Vh′ , where h′ = argmin1≤h≤k

{
sk,h + sh,k + n ·

Ē∗
ONE(Vh, V0)

}
.

Lemma 11 also shows that the optimal sequence of voltages to follow is the same as the
optimal sequence to execute one task without considering voltage switching costs. According
to Theorem 17, this can be computed by

Ē∗
ONE(V`) = min

`<h≤k
Ē∗

ONE(Vh, V`) ,

and V̄ ∗
ONE(V`) = Vh′ with h′ = argmin`<h≤k Ē

∗
ONE(Vh, V`). The complexity is determined by

the computation of Ē∗
ONE(Vh, V`) for all 0 ≤ V` < Vh ≤ Vk, which takes O(k2) time.

In the general case, we will have triangle inequality but not triangle equality. We have not
been able to design a counter-example to the optimality of level algorithms in the general case.
We therefore conjecture the dominance of level algorithms.
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5.6 Simulations

In this section, we evaluate the performance of the proposed algorithms using simulations.
We instantiate the performance model with two scenarios. The first scenario is based on the
available data about timing error probabilities on a specific hardware [51], and we consider
a set of matrix products using ABFT as the verification mechanism. In the second scenario,
we use synthetic data to assess the impact of different parameters (e.g., verification cost, error
probability, switching cost) on alternative hardware and applications.

5.6.1 Comparing algorithms

We compare our dynamic programming algorithm designed for a set of independent tasks,
which we denote by DP-indep, to the following algorithms in the evaluation.
• Baseline & Threshold: These two are static algorithms that use the environmental margin

voltage and nominal voltage, respectively, to execute the tasks. The former does not make
use of any voltage scaling technique, and the latter scales the voltage using near-threshold
computing. Both algorithms do not incur errors and hence do not require verification and
re-execution.
• DP-single: This algorithm uses the dynamic programming solution for a single task and

applies the optimal sequence of voltages to execute all tasks in the set one after another,
using the output voltage of the last task as the input voltage for the current task.

5.6.2 Matrix Multiplication on FPGA

In the first evaluation scenario, we consider a concrete application (matrix multiplication) exe-
cuted on a specific platform, where error probabilities are known from real measurements.

Platform setting

We adopt the set of voltages and error probabilities measured by Ernst et al. [51] on an FPGA
multiplier block. Figure 5.1 shows the error probability p

(1)
` of each available voltage V` when

performing a single operation with random inputs. We take the zero margin 1.54V as the
nominal voltage and consider the environmental margin 1.69V as the base operating voltage. As
in [W6], we scale the error probabilities down by a factor of 10 to account for the circuit-level
error recovery technique [51]. Since the dynamic power consumption is a quadratic function
of the operating voltage [22, 83], for a given voltage V`, the energy consumed to execute a task
(one matrix product) is modeled as c` = V 2

` w, where w denotes the total number of operations
in the task. The energy to switch the operating voltage is assumed to be linear (thus following
triangle equality), and it is modeled as s`,h = β · |V`−Vh|

Vk−V1
, where β captures the relative cost of

voltage switching in comparison to computation.



5.6. SIMULATIONS 149

Application modeling

We consider the computation of a set of matrix products of the same size, which forms a
set of independent tasks of same computation cost. Each product consist of m3 multiply-add
operations, where m denotes the size of the matrices. To detect errors we employ Algorithm-
Based Fault Tolerance (ABFT) [63], which uses checksums to detect, locate and even correct
errors in many linear algebra kernels. Specifically, by adding one (column or row) checksum
to each of the input matrices, the technique enables to detect and correct up to one error during
the computation of a matrix product with an overhead of O(m2) additional operations. This
is almost negligible compared to the O(m3) operations incurred by the raw computation for
reasonable matrix sizes. In the simulation, we fix the matrix size to be m = 64, so the ABFT
version has w = m(m+ 1)2 = 64× 652 operations, incurring an overhead of about 3%. With
the ability to correct one error, the probability of having an incorrect product using voltage V`

is thus given by p` = 1−
(
1− p

(1)
`

)w
−
(
w
1

) (
1− p

(1)
`

)w−1

p
(1)
` .

Results

Figure 5.2 presents the impact of the number of tasks n on the expected energy consumptions
when the voltage switching cost β is set to be equivalent to multiplying two matrices of size
64×64, which is almost the cost of one task. When the number of tasks is small (e.g., less than
7), the switching cost can not be amortized and the best choice is to stay at nominal voltage.
Additionally, the cost of the verification mechanism (ABFT) when m = 64 reaches 3% of the
total work and both DP-single and DP-indep remain worse than executing all tasks at nominal
voltage and without any verification mechanism. However, when the number of tasks is large
enough (e.g., more than 7), DP-indep quickly outperforms DP-single, which only focuses on
one task at a time and is thus unable to lower the voltage if it is not worth it for at least one task.
On the contrary, DP-indep is paying the switching cost only once and it is easily amortized
over the execution of the entire set of tasks.

Figure 5.3 shows the impact of the switching cost β on the expected energy consumption
of DP-single and DP-indep under different switching costs when the number of tasks is fixed
to 32. Again, we model the switching cost β to be equivalent to multiplying two matrices of
size x× x. The x axis shows the corresponding matrix size. When the switching cost is small
(e.g., x = 20), both DP-single and DP-indep yield the same expected energy consumption.
In fact, they are both able to amortize the switching cost with one task and they use the same
sequence of voltages. But as the switching cost increases, DP-single quickly shows its limits
while DP-indep manages to better amortize the overhead and remains better than Threshold
even when the switching cost is more than three times the cost of one task (x > 96). Note that
when the switching cost is high enough (e.g., x > 116), both algorithms are unable to perform
better than Threshold.

Overall, when the number of tasks is large enough, or if the switching cost is small,
DP-indep is always better and it saves up to 23% of the expected energy compared to the
baseline algorithm in this configuration.
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Figure 5.1: Error probabil-
ities of available voltages
measured on an FPGA mul-
tiplier block, for a single
operation with random in-
puts [51].
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Figure 5.2: Impact of the
switching cost β on the en-
ergy consumption of the al-
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Figure 5.3: Impact of the
number of tasks n on the en-
ergy consumption of the al-
gorithms.

5.6.3 Synthetic data

We now consider synthetic input data in order to evaluate the algorithms on different hardware
and applications. We envision platforms with normalized voltages falling in [0.5, 1], where 1
represents the nominal voltage Vk. Following the characteristics of soft errors [54], we model
the error probability of a computation of length w executed using voltage V` to be p` = 1 −
e−λ`w, where λ` = λ0e

−c(V`−Vk) − λ0 represents the error rate and c denotes the failure rate
coefficient that depends on the hardware. The model specifies the base error rate λ0, which is
usually very small. In the experiments, λ0 is fixed at 10−5s (less than one error per day). The
energy consumption to execute tasks and voltage switching costs follow the same model as in
the previous scenario.

Results

For each experiment, the total work is fixed to W = 10000 operations and the number of tasks
is fixed at n = 32, so that each task has about 10000

32
≈ 312 operations.

Figure 5.4a shows, given a voltage, the probability of failure for one task under different
failure rate factors c. This factor determines how fast the probability of failure increases when
the voltage is decreased below threshold. A small value for c shows a very optimistic configu-
ration where lowering the voltage below threshold is possible while keeping low probabilities
of failure. Such a configuration is ideal and allows us to choose amongst a wide range of volt-
ages, thus giving the opportunity to save energy. Higher values for c shows more realistic, and
also more pessimistic configurations. When c is high (e.g., 128), as soon as we lower the volt-
age, the probability of failure increases dramatically and the chances of success drop close to
zero. In that case, DP-indep has no other choice but to stay at nominal voltage.

Figure 5.4b presents the impact of the number of tasks on the normalized expected energy
consumption of DP-indep with respect to Threshold when the total work W is fixed to 10000
and for different values of c. When the number of task decreases, the size of the tasks increases
and the probability of success for one task drops considerably. As a result, we have to use
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Figure 5.4: Impact of failure rate factor c ((a) and (b)), and of the cost ratio of verification (c),
on the expected energy consumption.

higher voltages, which consumes more energy.
The value of c determines the range of voltages that can be used safely, i.e., with low

probability of failure, as shown by Figure 5.4a and it has a huge impact on the expected energy
consumption. Under a small c, the algorithm can yield important energy savings compared to
Threshold (more than 40% for 10 tasks with c = 4 under this configuration), while with a large
c (e.g., c = 128) the algorithm will not be able to do better than Threshold.

Finally, Figure 5.4c evaluates the impact of the verification cost on the expected energy
consumption of DP-indep. In this experiment, we make the verification cost vary with respect
to the cost of one task from 0% (no verification cost) to 100% (the verification cost is equivalent
to the cost of one task). When the cost of the verification increases, so does the total overhead
of the computation. Consider the case where the cost of the verification is half the cost of one
task (i.e., total work including verifications is now 1.5W ). Then, executing 256 tasks is 40%
better than Threshold, whereas under the same configuration, executing only 32 tasks for the
same amount of work is only 5% better than Threshold. Overall, we observe that the execution
of a lot of small tasks is preferred over a few big tasks.

Optimal solution with two different voltages

We now consider a set of scenarios where only two voltages are available, V1 and Vk = VTH.
As shown previously, the only decision to make is whether to switch to the lower voltage V1, in
which case a cost of 2sk,1 is incurred due to voltage switching, or to directly use the nominal
voltage Vk for executing the tasks. Figure 5.5 shows the energy savings achieved by the optimal
algorithm (DP-indep). Naturally, more energy is saved when V1 has a smaller execution cost or
a lower error probability. For any given cost and probability, the saving also increases with the
number of tasks, because the cost of voltage switching can be better amortized. For the case
with 10 tasks and sk,1 = 5c1, and when the error probability of voltage V1 is around 0.5, DP-
indep starts to save energy when the cost c1 drops below ck/3, and it is able to save at least 40%
of the energy with a cost lower than ck/10.

For the same case (10 tasks and sk,1 = 5c1), Figure 5.6 shows the performance degrada-
tion (expected execution time overhead) due to verification and re-execution. Since the results
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Figure 5.5: Impact of the switching cost and of the number of tasks on the percentage of energy
saving when only two voltages are available. Black means no saving, and yellow means 100%
of energy is saved.

are obtained for DP-indep, which targets energy minimization, they do not represent the best
performance. Indeed, the overhead is minimum (0%) when the algorithm does not switch to
V1, which means that no energy is saved at all. Once the algorithm has decided to make the
switch to save energy, the expected performance starts to degrade. For any fixed cost ratio
ck/c1, however, a lower error probability enables the algorithm to both save energy and im-
prove performance, because tasks enjoy a higher chance of success at V1. Finally, as verifica-
tion and/or voltage switching times increase, the performance degrades further. For instance,
when p1 = 0.5 and ck/c1 = 10, and when verification takes 5% of the task execution time and
voltage switching takes the same time as task execution, the algorithm achieves 40% of the en-
ergy at the expense of about 70% degradation in performance.

5.7 Conclusion

In this chapter, we have used voltage overscaling to design a purely software-based approach
for reducing the energy consumption of HPC applications. This approach aggressively lowers
the supply voltage below the nominal voltage, introducing timing errors. Based on a formal
model of timing errors, we have provided an optimal level algorithm to schedule independent
tasks, and we have proven its global optimality when switching costs are linear. The evaluation
results obtained both for matrix multiplication on FPGA and for synthetic data demonstrate that
our approach can indeed lead to significant energy savings compared to the standard algorithm
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Figure 5.6: Percentage of (expected) execution time overhead as a function of the probability
of failure and of the ratio of energy costs. Examples with 10 tasks and a switching energy cost
of 5c1. The unit used to express the verification and switching times is the execution time of a
task (at voltage Vk).
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that always operates at (or above) the nominal voltage.
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Chapter 6

When Amdahl Meets Young/Daly

This chapter investigates the optimal number of processors to execute a parallel job, whose
speedup profile obeys Amdahl’s law, on a large-scale platform subject to fail-stop and silent
errors. Without errors, although the speedup is bounded, there is no optimal number of proces-
sors: using extra processors will always, even so slightly, benefit the performance. With errors
however, adding of processors has the effect of decreasing the platform MTBF (see Equa-
tion (1)). We combine the traditional checkpointing and rollback recovery strategies with ver-
ification mechanisms to cope with both error sources. We provide an exact formula to express
the execution overhead incurred by a periodic checkpointing pattern of length T and with P
processors, and we give first-order approximations for the optimal values T ∗ and P ∗ as a func-
tion of the individual processor failure rate λind. A striking result is that P ∗ is of the order λ−1/4

ind

if the checkpointing cost grows linearly with the number of processors, and of the order λ−1/3
ind

if the checkpointing cost stays bounded for any P . We conduct an extensive set of simulations
to support the theoretical study. The results confirm the accuracy of first-order approximation
under a wide range of parameter settings. This work has been published in the proceedings of
Cluster [C3].

6.1 Introduction

Consider a typical HPC (High Performance Computing) application that will run for days or
even weeks on a parallel platform, and whose sequential time is non-negligible. What is the
optimal number of processors to execute this application so as to minimize its total execution
time? Assume that the application speedup profile obeys Amdahl’s law [1]: a fraction α of the
work is sequential, while the remaining 1 − α fraction is perfectly parallel. The speedup with
P processors is then

S(P ) =
1

α + 1−α
P

. (6.1)

While S(P ) is bounded above by 1/α, it is a strictly increasing function of P , which means
that one should enroll as many processors as possible to minimize execution time.

However, this reasoning only holds for error-free execution. With 100,000+ nodes in cur-
rent petascale platforms, and even more computing resources when entering the exascale era,
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resilience becomes a challenge [25]. Even if each node provides an individual MTBF (Mean
Time Between Failures) of, say, one century, a machine with 100,000 such nodes will encounter
a failure every 9 hours on average, which is smaller than the execution time of many HPC
applications. Furthermore, a one-century MTBF per node is an optimistic figure, given that
each node may be composed of tens or even hundreds of cores. Moreover, several types of
errors need to be considered when computing at scale. In addition to the classical fail-stop
errors (such as hardware failures), silent errors (or SDC, for Silent Data Corruptions) constitute
another threat [74, 76, 103]. This phenomenon is not so well understood, but has been recently
identified as one of the major challenges towards exascale [25].

While checkpoint/restart [28, 46, 62] is the de-facto recovery technique for dealing with
fail-stop errors, there is no widely adopted general-purpose technique to cope with silent er-
rors. In contrast to a fail-stop error whose detection is immediate, a silent error is identified
only when the corrupted data leads to an unusual application behavior. Such a detection latency
raises a new challenge: if the error struck before the last checkpoint, and is detected after that
checkpoint, then the checkpoint is corrupted and cannot be used for rollback. In order to avoid
corrupted checkpoints, an effective approach consists in employing some verification mech-
anism and combining it with checkpointing. Such a verification mechanism can be general-
purpose (e.g., based on replication [53] or even triplication [72]) or application-specific [14,
16, 30, 85].

We address both fail-stop and silent errors by using verified checkpoints, which corresponds
to performing a verification just before taking each checkpoint. Note that this approach is
agnostic of the nature of the verification mechanism. If the verification succeeds, then one
can safely store the checkpoint. Otherwise, it means that a silent error has struck since the last
checkpoint, which was duly verified, and one can safely recover from that checkpoint to resume
the execution of the application. Of course, if a fail-stop error strikes, we can also safely recover
from the last checkpoint, just as in the classical checkpoint and rollback recovery method. We
refer to this protocol as the VC protocol, and it basically amounts to replacing the cost C of a
checkpoint by the cost V +C of a verification followed by a checkpoint. However, because we
deal with two sources of errors, one detected immediately and the other only when we reach
the verification, the analysis of the optimal checkpointing strategy is more involved.

This work shows that on failure-prone platforms, it is no longer true that enrolling more
processors will always decrease the (expected) execution time of a parallel application. First,
more processors means more failures: if the failure rate of an individual processor is λind (and
its MTBF is µind = 1/λind), then the failure rate for a platform with P processors is Pλind (and
its MTBF is µind/P ) [62, Proposition 1.2]. Second, the cost of checkpointing may well increase
linearly with P [48, 101], because of the synchronization needed among the processors in order
to take a coherent snapshot of the global application state. The intuition is that at some point
adding more resources will be an overkill, for failures and resilience operations to handle them
will become too frequent for the application to make any progress.

These considerations raise the following fundamental question: What is the optimal number
of processors to execute a parallel application on a failure-prone platform? Surprisingly, this
question has never received a quantitative answer, although some experimental study has been
reported [65, 101]. The major contribution of this chapter is to answer this question by provid-
ing a detailed analysis on the performance of the VC protocol in the presence of both fail-stop
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and silent errors. In particular, we consider a periodic checkpointing pattern PATTERN(T, P ),
which consists of a work chunk of duration T and executed with P processors, followed by a
verification and then by a checkpoint (see Figure 6.1). We give first-order approximations for
the optimal values T ∗ and P ∗ as a function of the individual processor failure rate λind. A strik-
ing result is that, as long as the sequential fraction α of the application is a non-negligible
constant, P ∗ is of the order λ−1/4

ind if the checkpointing cost grows linearly with the number
of processors, and of the order λ−1/3

ind if the checkpointing cost stays bounded for any P . The
corresponding values of T ∗ in these two cases are of the orders λ−1/2

ind and λ
−1/3
ind , respectively.

The results nicely extend the well-known Young/Daly formula [36, 97] by characterizing the
optimal number of resources to enroll. These first-order bounds are well corroborated and val-
idated by our simulation study conducted using real platform parameters.

The main contributions of this chapter are the following:

• The derivation of an exact analytical formula for the expected execution time of a pattern
in the presence of both fail-stop and silent errors, where fail-stop errors can strike at any
time (while silent errors only strike during computations);

• The determination of the optimal pattern length and processor count, up to the first-
order term. Given error rates and checkpoint/verification costs, we compute both the
optimal pattern length and optimal number of processors to enroll. To the best of our
knowledge, this is the first analytical characterization of the optimal degree of parallelism
for executing a parallel application whose speedup obeys Amdahl’s law;

• An extensive set of simulations with data collected from real platforms. The results
confirm the accuracy of the performance model and validity of first-order approximation
under a wide range of parameter settings and resilience scenarios.

The rest of the chapter is organized as follows. Section 6.2 briefly discusses the related
work. Section 6.3 introduces the models and notations. Section 6.4 presents all our analytical
results, followed by the presentation of the simulation results in Section 6.5. Finally, Section 6.6
provides concluding remarks and hints for future directions.

6.2 Related work

Checkpointing. The most commonly deployed strategy to cope with fail-stop errors is check-
pointing, in which processes periodically save their states, so that computation can be resumed
from that point when some failure disrupts the execution. Checkpointing strategies are numer-
ous, ranging from fully coordinated checkpointing [28] to uncoordinated checkpointing and
recovery with message logging [46]. Despite a very broad applicability, these fault-tolerance
methods suffer from the intrinsic limitation that both protection and recovery generate an I/O
workload, which grows with failure probability and becomes unsustainable at large scale [17,
52] (even with optimizations such as diskless or incremental checkpointing [78]). To reduce
the checkpointing overhead, many authors have proposed multi-level checkpointing protocols,
which combine global disk checkpointing with local or in-memory checkpointing [12, 37, 74,
88, 94], including the work presented in Chapter 2 and 3.
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The cost of checkpointing clearly depends upon the protocol and storage type, hence we
adopt a quite general formula to account for checkpoint overhead in this work. We let CP =
a+b/P +cP to model the time to save a checkpoint on P processors. Here, a+b/P represents
the I/O overhead to write the application’s memory footprint M to the storage system. For in-
memory checkpointing [42, 99], a + b/P is a communication time with latency a and b/P =
M/(τnetP ), where τnet is the network bandwidth (each processor stores M/P data items).
For coordinated checkpointing to stable storage, there are two cases: if the storage system’s
bandwidth is the I/O bottleneck, a = β + M/τio and b = 0, where β is a start-up time and
τio is the I/O bandwidth; otherwise, if the network is the I/O bottleneck, we retrieve the same
formula as for in-memory checkpointing. Finally, cP represents the message passing overhead
that grows linearly with the number of processor, in order for all processors to reach a global
consistent state [48, 101].

Silent error detection. Considerable efforts have been directed at verification techniques to
reveal silent errors. A perfect verification is often only achievable with expensive techniques,
such as process replication [53, 75] or redundancy [45, 72]. Application-specific informa-
tion can be very useful in decreasing the verification cost. Algorithm-based fault tolerance
(ABFT) [16, 63, 87] is a well-known technique to detect errors in linear algebra kernels using
checksums. Various techniques have been proposed in other application domains. Benson et
al. [14] compared a higher-order scheme with a lower-order one to detect errors in the numer-
ical analysis of ODEs. Chen [30] uses orthogonality checks for Krylov-based sparse solvers.
Sao and Vuduc [85] investigate self-stabilizing corrections after error detection in the conju-
gate gradient method. Heroux and Hoemmen [19] design a fault-tolerant GMRES capable of
converging despite silent errors. Bronevetsky and de Supinski [21] provide a comparative study
of detection costs for iterative methods. Recently, detectors based on data analytics, using
use interpolation techniques, such as time series prediction and spatial multivariate interpo-
lation, have also been proposed as verification mechanisms [8, 10, 15]. Altogether, there is
a wide range of available detectors, and our approach is agnostic of the nature of verification
mechanism used for silent errors.

Resilience and speedup. Several authors have investigated the optimal number of processors
to enroll when running a parallel application on a failure-prone platform. Zheng et al. [101]
address this problem for fail-stop errors and provide a formula to compute the speedup of an
application obeying Amdhal’s law and running with P processors. Also for fail-stop errors,
Jin et al. [65] use an iterative relaxation procedure to compute the optimal number of resources
for a perfectly parallel job. These two important works are the most closely related to ours. In
comparison, the main differences with our work are: (i) we account for both fail-stop and silent
errors (instead of only fail-stop errors); (ii) we consider several relevant scenarios for check-
pointing costs (instead of only linearly growing costs); (iii) we analytically characterize both
the optimal number of processors and optimal checkpointing period as a function of the indi-
vidual processor failure rate, the speedup profile and the checkpoint/verification cost (instead
of using numerical procedures); and (iv) our formulas are exact up to first-order term and ac-
count for errors in checkpointing. Our first-order approximation formulas (see Theorems 22
and 23 below) are the first quantitative assessments of the best degree of parallelism that should
be deployed.
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6.3 Models and notations

This section presents the analytical models for evaluating the performance of resilience algo-
rithms. Table I summarizes the list of main notations used in the chapter.

Table I
LIST OF NOTATIONS.

Application parameters
PATTERN(T, P ) Periodic checkpointing pattern
T Length (or period) of pattern
P Number of allocated processors
S(P ) Speedup function w/o failure
H(P ) = 1/S(P ) Execution overhead w/o failure
E(PATTERN) or E(T, P ) Expected exec. time of a pattern
S(PATTERN) or S(T, P ) Expected speedup of a pattern
H(PATTERN) or H(T, P ) Expected exec. overhead of a pattern

Resilience parameters
λind = 1/µind Error rate of an individual processor
λf
P = fλindP Fail-stop error rate on P processors

λs
P = sλindP Silent error rate on P processors

CP = a+ b/P + cP Checkpointing cost on P processors
RP = a+ b/P + cP Recovery cost on P processors
VP = v + u/P Verification cost on P processors
D Downtime after a fail-stop error

Failure model. We incorporate both hardware faults and silent data corruptions, which are also
known as fail-stop errors and silent errors in the literature. Since the two types of errors are
caused by different sources on realistic systems, we assume that they are independent and that
both arrivals follow exponential distributions. Let λind = 1/µind denote the reciprocal of the
MTBF µind of each individual processor by accounting for both types of errors, and suppose
f fraction of the total number of errors are fail-stop and the remaining s = 1 − f fraction are
silent. Then, the arrival rates of fail-stop and silent errors when using P processors are given
by λf

P = fλindP and λs
P = sλindP , respectively [62]. Thus, the probability of encountering

at least one fail-stop error during a computation of time T is qfP (T ) = 1 − e−λf
PT and that of

encountering at least one silent error during the same computation is qsP (T ) = 1− e−λs
PT .

Application model. We consider HPC applications that are long-lasting even when executed
on a large number of processors. Suppose an application has a total amount of computation (or
work) Wtotal and a speedup function S(P ) when executed on P processors without consider-
ing failures. In this chapter, we consider the speedup function obeying Amdahl’s law as given
in Equation (6.1). For convenience, we define H(P ) = 1

S(P )
= α + 1−α

P
to be the execution

overhead of the application, where α denotes the fraction of the application that is inherently
sequential and cannot be parallelized. The makespan (total execution time) Wfinal of the appli-
cation in an error-free execution is therefore given by Wfinal =

Wtotal
S(P )

= H(P )Wtotal.
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Figure 6.1: Illustration of a resilience protocol using periodic checkpointing patterns (high-
lighted in red). The first figure shows the execution of a pattern without any error. The second
figure shows that the execution is stopped immediately when a fail-stop error strikes, in which
case the pattern is re-executed after a downtime and a recovery. The third figure shows that the
execution continues when a silent error strikes, till the error is detected by the verification at
the end. The pattern is then re-executed after a recovery.

Resilience model. To enforce resilience, a standard protocol is by checkpointing the status
of the application periodically, thus creating periodic checkpointing patterns as illustrated in
Figure 6.1. Following the approach of Chapter 2, an additional error detection (or verification)
mechanism is performed just before taking each checkpoint. If a fail-stop error strikes inside
a pattern, the computation is interrupted immediately, while a silent error, if strikes, is only
detected at the end of the pattern by the verification. In both cases, we roll back to the beginning
of the pattern and recover from the last checkpoint, thus avoiding restarting the application
from scratch. Note that a fail-stop error could strike after a silent error within the same pattern
but before the verification is reached. In this case, the silent error is masked by the fail-stop
error and need not be detected, since a recovery is nevertheless required.

Formally, we characterize a periodic checkpointing pattern, denoted as PATTERN(T, P ), by
the following two parameters.

• T : length (or period) of the pattern, i.e., amount of time to do useful computation before
taking each checkpoint;

• P : number of processors allocated to the application.

As discussed in Section 6.2, we let CP = a+b/P+cP denote the time to save a checkpoint
on P processors. The recovery cost is assumed to be the same as the checkpointing cost, i.e.,
RP = CP , because it involves the same I/O operations. To perform a verification, we assume
the use of application-specific error detection techniques (as detailed in Section 6.2). Since a
verification is only done in memory, its cost can be modeled as VP = v + u/P . Here, v is a
start-up overhead, and u/P is the time needed to verify the application data distributed across
P processors. Finally, a constant downtime D is required after each fail-stop error in order to
replace or repair a failed processor.

In our analysis, fail-stop errors can strike at any time during the execution of an application,
including verifications, checkpointing and recoveries. However, silent errors can only strike
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the computations, since otherwise they cannot be detected. Hence, we assume that I/O opera-
tions and verifications are protected from silent errors (e.g., by using expensive redundancy or
replication techniques). Finally, no error of any kind can strike during downtime.

Optimization objective. The objective is to minimize the expected total execution time (or
makespan) of an application. Since the application is divided into periodic checkpointing pat-
terns defined by PATTERN(T, P ), the amount of work done in a pattern is Wpattern = T ·
S(P ). For long-lasting applications, the total number of patterns in the application can be
approximated as Wtotal

Wpattern
= Wtotal

T ·S(P )
. Let E(PATTERN) denote the expected execution time of

the pattern. The expected makespan E(Wfinal) of the application is then given by E(Wfinal) ≈
E(PATTERN) Wtotal

T ·S(P )
. Now, define S(PATTERN) = T ·S(P )

E(PATTERN)
to be the expected speedup of the

pattern, and define H(PATTERN) = 1
S(PATTERN)

= E(PATTERN)
T

H(P ) to be the expected execution
overhead of the pattern. The expected makespan of the application can therefore be written as
E(Wfinal) ≈ Wtotal

S(PATTERN)
= H(PATTERN)Wtotal. We observe that the optimal expected makespan

is obtained by maximizing the expected speedup or minimizing the expected execution over-
head of a periodic checkpointing pattern. In the next section, we will focus on such a pattern
PATTERN(T, P ), and find its optimal length T and processor count P .

6.4 Optimal periodic checkpointing pattern

In this section, we analytically determine the optimal periodic checkpointing pattern using first-
order approximation, and derive explicit formulas for the checkpointing period T and processor
allocation P . We validate the first-order solution in Section 6.5 by showing its close proximity
to the optimal numerical solution.

6.4.1 Expected execution time of a pattern
We start by computing the expected execution time of a pattern when the parameters T and P
are given.

Proposition 10. The expected execution time of a given pattern PATTERN(T, P ) is

E(PATTERN) =

(
1

λf
P

+D

)(
eλ

f
PCP

(
1− eλ

s
PT
)

+ eλ
f
PRP

(
eλ

f
P (CP+T+VP )+λs

PT − 1
))

. (6.2)

Proof. To successfully execute a pattern PATTERN(T, P ), we need to complete the pattern
length T , the verification VP and the checkpoint CP . Hence, according to the linearity of
expectation, we have

E(PATTERN) = E(T + VP + CP )

= E(T + VP ) + E(CP ) , (6.3)



164 CHAPTER 6. WHEN AMDAHL MEETS YOUNG/DALY

We first compute E(CP ), the expected time to successfully store a checkpoint subject to fail-
stop errors. During checkpointing, there is a probability qfP (CP ) that a fail-stop error strikes.
If that happens, we need to perform a recovery from the last checkpoint after a downtime, and
then re-execute both T and VP before re-executing CP again. If there is no error, we just need
to pay the checkpointing cost CP . Therefore, we can express E(CP ) as

E(CP ) = qfP (CP )
(
Elost(CP ) +D + E(RP ) + E(T + VP ) + E(CP )

)
+
(
1− qfP (CP )

)
CP , (6.4)

where E(RP ) denotes the expected time to perform a recovery, and Elost(CP ) denotes the ex-
pected time lost executing CP if a fail-stop error strikes. More generally, we can define Elost(W )
to be the expected time lost for any execution of length W , and it can be computed as follows:

Elost(W ) =

∫ ∞

0

tP(X = t|X < W )dt =

∫W

0
tλf

P e
−λf

P tdt

P(X < W )
,

where P(X = t) denotes the probability that a fail-stop error strikes exactly at time t. By
definition, we have P(X < W ) = qfP (W ) = 1− e−λf

PW . Integrating by parts, we get

Elost(W ) =
1

λf
P

− W

eλ
f
PW − 1

. (6.5)

Now, substituting qfP (CP ) and Elost(CP ) into Equation (6.4), we can get

E(CP ) =
(
eλ

f
PCP − 1

)( 1

λf
P

+D + E(RP ) + E(T + VP )

)
.

Now, we compute E(RP ), the expected time to successfully perform a recovery subject
to fail-stop errors. Unlike checkpointing, a recovery is always done at the beginning of a
pattern. With probability qfP (RP ), it fails due to a fail-stop error and we have to try again after
a downtime. Otherwise, we just need to pay the recovery cost RP . Therefore, we have

E(RP ) = qfP (RP )
(
Elost (RP ) +D + E (RP )

)
+
(
1− qfP (RP )

)
RP ,

which leads to

E(RP ) =

(
1

λf
P

+D

)(
eλ

f
PRP − 1

)
.

In order to compute E(PATTERN), and according to Equation (6.3), we need to compute
E(T + VP ). Recall that fail-stop errors can strike at any time during the execution, while
silent errors only strike during computations. When a fail-stop error strikes, which happens
with probability qfP (T + VP ), we do not need to account for silent errors, since the application
is stopped immediately and we need to re-execute T +VP anyway, following a downtime and a
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recovery. Otherwise, with probability 1−qfP (T+VP ), there is no fail-stop error, and only in this
case, we check for silent errors. With probability qsP (T ), a silent error strikes (and is detected
by the verification), and we need to perform a recovery and re-execute T + VP . Otherwise, the
execution is complete. Overall, we have

E(T + VP ) = qfP (T + VP )
(
Elost(T + VP ) +D + E(RP ) + E(T + VP )

)
+
(
1− qfP (T + VP )

)(
T + VP + qsP (T )

(
E(RP ) + E(T + VP )

))
.

Plugging qfP (T +VP ), qsP (T ) and Elost(T +VP ) into the above equation, and solving for E(T +
VP ), we can get

E(T + VP ) = eλ
s
PT
(
eλ

f
P (T+VP ) − 1

)( 1

λf
P

+D

)
+ eλ

s
P (T+VP )

(
T + VP

)
+
(
eλ

f
P (T+VP )+λs

P (T ) − 1
)
E(RP ) .

Finally, plugging E(T + VP ), E(CP ) and E(RP ) back into Equation (6.3), we find that

E(PATTERN) =

(
1

λf
P

+D

)(
eλ

f
PCP+λs

PT
(
eλ

f
P (T+VP ) − 1

)
+ eλ

f
PCP − 1 +

(
eλ

f
PRP − 1

) (
eλ

f
P (T+VP+CP )+λs

P (T ) − 1
))

,

which simplifies to the expression shown in Equation (6.2).

To find the optimal pattern, one needs to search for values of T and P that minimize
the expected execution overhead H(PATTERN) of a pattern based on the expected execution
time E(PATTERN) computed above. However, due to the complex expression given by Equa-
tion (6.2), an analytical solution is difficult to find, and one has to rely on numerical methods
to approximate the optimal solution. In the following, we will use first-order approximation
to derive explicit formulas for the optimal checkpointing period and processor allocation. The
simulation results in Section 6.5 show that first-order approximation offers very close estimates
to the optimal solution.

6.4.2 Limitation of first-order approximation

Before deriving the optimal pattern parameters, we first investigate the limitation of first-order
approximation by bounding the maximum orders of T and P that can be approximated by the
approach. Suppose P and T satisfy

P = Θ(λ−x
ind ) and T = Θ(λ−y

ind ) ,
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where x, y > 0. Since λPCP = λindP (a + b/P + cP ) and λPVP = λindP (v + u/P ), let
λP (CP + VP ) = λindP (d + h/P + cP ) with d = a + v and h = b + u. Hence, we have
λP (CP + VP ) = Θ (λε

ind), where

ε =


1− 2x if c 6= 0

1− x if c = 0 and d 6= 0

1 if c = 0 and d = 0

,

and λPT = Θ(λ1−x−y
ind ). Therefore, in order to accurately estimate eλPCP , eλPVP and eλPT using

Taylor series expansion, we need ε > 0 and 1− x− y > 0, which translates to

x < δ, where δ =

{
1/2 if c 6= 0

1 if c = 0
, (6.6)

y < 1− x . (6.7)

Inequalities (6.6) and (6.7) specify, respectively, the maximum order on the number of proces-
sors and, for a fixed processor count, the maximum order on the checkpointing period. The
first-order results obtained within these bounds offer valid approximation to the optimal solu-
tion as long as the MTBF µind = 1/λind of an individual processor is sufficiently large (e.g., in
the order of years, which is true for modern processors). Beyond these bounds, unfortunately,
the first-order analysis will no longer be applicable.

6.4.3 Optimal checkpointing period for fixed processor count

In this section, we derive the optimal checkpointing period when the application is run with a
fixed number of processors. The result extends the classical formula given by Young [97] and
Daly [36] for fail-stop errors only.

Theorem 21. Given a processor allocation P = Θ(λ−x
ind ) with x < δ as shown in Inequality

(6.6), the optimal checkpointing period of a pattern is

T ∗
P =

√
VP + CP

λf
P

2
+ λs

P

. (6.8)

The expected execution overhead (ignoring lower-order terms) in this case is given by

H (T ∗
P , P ) = H(P )

1 + 2

√√√√(λf
P

2
+ λs

P

)
(VP + CP )

 . (6.9)

Proof. For a fixed P = Θ(λ−x
ind ) with x < δ, we can consider CP , RP , VP as constants, which

are smaller in magnitude compared to the platform MTBFs 1/λf
P and 1/λs

P . Applying Taylor
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series to expand ez = 1+z+ z2

2
up to the second-order term, we rewrite the expected execution

time E(PATTERN) of a pattern (Equation (6.2)) as follows (ignoring lower-order terms):

E(PATTERN) = T + VP + CP +

(
λf
P

2
+ λs

P

)
T 2

+ λf
PT (VP + CP +RP +D) + λs

PT (VP +RP )

+ λf
PCP

(
CP

2
+RP + VP +D

)
+ λf

PVP (VP +RP +D) .

The expected execution overhead of the pattern can then be computed as

H(T, P ) = H(P )

(
(VP + CP )

(
1 +O

(
λε′

ind

))
T

+

(
λf
P

2
+ λs

P

)
T + 1 +O

(
λε′

ind

))
,

where ε′ = 1 − 2x if c 6= 0 and ε′ = 1 − x otherwise. Since P = Θ(λ−x
ind ) is fixed and

x < δ, we have ε′ > 0 and hence the term O
(
λε′

ind

)
becomes negligible (in front of 1) when

λind is sufficiently small (e.g., tends to 0). Given a processor allocation P , the optimal expected
overhead is achieved by setting

∂H(T, P )

∂T
= H(P )

(
−VP + CP

T 2
+

λf
P

2
+ λs

P

)
= 0 ,

which gives rise to the optimal checkpointing period T ∗
P as shown in Equation (6.8). Now,

substituting T ∗
P back into H(T, P ), we obtain the expected execution overhead as shown in

Equation (6.9).

Theorem 21 shows that, for a given processor count P = Θ(λ−x
ind ) with x < δ as specified

by Inequality (6.6), the optimal checkpointing period satisfies T ∗
P = O(λ−y

ind ), where

y =


1/2 if c 6= 0

(1− x)/2 if c = 0 and d 6= 0

1/2− x if c = 0 and d = 0

.

In all cases, we get y < 1 − x as specified by Inequality (6.7), thus validating the accuracy of
the first-order approximation.

Note that, in the case of c = 0 and d = 0, we also need x < 1/2 in order to have y > 0.
This additional constraint on the order of P is required to derive the first-order approximation
for the optimal checkpointing period as given in Equation (6.8).

6.4.4 Optimal processor allocation and pattern parameters
We now optimize the number of allocated processors to an application. We discuss different
cases based on the characteristic of the error-free overhead H(P ), as well as on the scalability
of checkpointing and verification costs, which have the general form CP = a + b

P
+ cP and

VP = v + u
P

. In the following analysis, we assume that all the parameters a, b, c, v, u and the
sequential fraction α are constants and independent of the error rate λind.
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H(P ) = α + 1−α
P

and CP = cP + o(P ), α, c 6= 0

This case corresponds to the application having a constant sequential fraction and a checkpoint-
ing cost that grows linearly with the number of processors (the verification cost has no impact
in this scenario).

Theorem 22. Suppose the application has a constant sequential fraction α > 0, and a check-
pointing cost CP = cP + o(P ). The optimal number of processors and the corresponding
optimal checkpointing period of a pattern are

P ∗ =

(
1

c
(
f
2
+ s
)
λind

)1/4(
1− α

2α

)1/2

, (6.10)

T ∗ =

(
c(

f
2
+ s
)
λind

)1/2

. (6.11)

The expected execution overhead (ignoring lower-order terms) in this case is

H(T ∗, P ∗) = α + 2

(
4α2(1− α)2c

(
f

2
+ s

)
λind

)1/4

. (6.12)

Proof. Substituting H(P ) = α+ 1−α
P

into Equation (6.9) and applying CP +VP = cP + o(P ),
we can get the expected execution overhead as follows:

H (T ∗
P , P ) = α + 2αP

√
c

(
f

2
+ s

)
λind +

1− α

P
+ o

(
λ
1/2
ind P

)
.

The above overhead is minimized when setting

∂H (T ∗
P , P )

∂P
= 2α

√
c

(
f

2
+ s

)
λind −

1− α

P 2
+ o

(
λ
1/2
ind

)
= 0.

Keeping only the dominating term, the equation above leads to the optimal processor alloca-
tion P ∗ as shown in Equation (6.10). Now, substituting P ∗ back into T ∗

P and H (T ∗
P , P ) and

simplifying, we obtain the optimal checkpointing period T ∗ and optimal expected execution
overhead H(T ∗, P ∗) as shown in Equations (6.11) and (6.12), respectively.

H(P ) = α + 1−α
P

and CP + VP = d+ o(1), α, d 6= 0

This case corresponds to the application having a constant sequential fraction, and a constant
checkpointing (and verification) cost.

Theorem 23. Suppose the application has a constant sequential fraction α > 0, and a check-
pointing and verification cost CP + VP = d+ o(1). The optimal number of processors and the
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corresponding optimal checkpointing period of a pattern are

P ∗ =

(
1

d
(
f
2
+ s
)
λind

)1/3(
1− α

α

)2/3

, (6.13)

T ∗ =

(
d2(

f
2
+ s
)
λind

)1/3(
α

1− α

)1/3

. (6.14)

The expected execution overhead (ignoring lower-order terms) in this case is

H(T ∗, P ∗) = α + 3

(
α2(1− α)d

(
f

2
+ s

)
λind

)1/3

. (6.15)

Proof. When H(P ) = α + 1−α
P

and CP + VP = d + o(1), we can get from Equation (6.9) the
expected execution overhead as follows:

H (T ∗
P , P ) = α + 2α

√
d

(
f

2
+ s

)
λindP +

1− α

P
+ o

(
λ
1/2
ind P

1/2
)
.

Again, the overhead is minimized by setting ∂H
(
T ∗
P ,P

)
∂P

= 0, which gives

α

√
d

(
f

2
+ s

)
λind

P
− 1− α

P 2
+ o

(
λ
1/2
ind P

−1/2
)
= 0.

Solving the equation above while focusing on the dominating term gives the optimal processor
allocation P ∗ as shown in Equation (6.13). Substituting P ∗ back into T ∗

P and H (T ∗
P , P ), we

get the optimal T ∗ and H(T ∗, P ∗) as shown in Equations (6.14) and (6.15).

H(P ) = α + 1−α
P

and CP + VP = h
P

, α, h 6= 0

This case corresponds to the application having a constant sequential fraction, and a check-
pointing (and verification) cost that decreases linearly with the number of processors.

Recall in this case that the number of processors satisfies P = Θ(λ−x
ind ) with x < 1/2 for the

first-order approximation to be valid. Subject to this bound, the expected execution overhead
as shown in Equation (6.9) becomes

H(T ∗
P , P ) =

(
α +

1− α

P

)(
1 + 2

√
h

(
f

2
+ s

)
λind

)
,

which decreases monotonically as the number of allocated processors P increases up to the
order of λ−1/2

ind . Asymptotically, the overhead satisfies H(T ∗
P , P ) = α +Θ(λx

ind) for x < 1/2.
Hence, it is better to enroll as many processors as possible in this case, as long as P is

within the approximation bound of O(λ
−1/2
ind ). Intuitively, the costs of both checkpointing and

verification reduce with the processor count, which enables to place both resilience operators
more frequently with smaller checkpointing period to compensate for the increased error rate.
Numerical simulations conducted in Section 6.5 show that the optimal number of processors
P ∗ is nevertheless bounded in this case with a value beyond O(λ

−1/2
ind ).
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H(P ) = 1
P

In this case, the application has a perfectly linear speedup function. Again, the expected ex-
ecution overhead decreases monotonically with the number of allocated processors, and the
following gives the expression for H(T ∗

P , P ) under different cases (with lower-order terms ig-
nored):

H(T ∗
P , P ) =


1
P
+ 2
√

c
(
f
2
+ s
)
λind if c 6= 0

1
P
+ 2
√

d
(
f
2
+ s
)

λind
P

if c = 0, d 6= 0

1
P

(
1 + 2

√
h
(
f
2
+ s
)
λind

)
if c = 0, d = 0

.

In all the cases above, the overhead is asymptotically bounded by Θ(λx
ind) for x < 1/2,

except in the second case (i.e., c = 0, d 6= 0) where x < 1. Numerical simulations conducted
in Section 6.5 show that the optimal processor count P ∗ happens around x = 1/2 and x = 1 for
case 1 and case 2, respectively, whereas it is unbounded for the last case, due to the combination
of diminishing resilience cost and perfect application speedup.

6.4.5 Discussions

Consider a (standard) application that is not perfectly parallel (i.e., α 6= 0). Theorems 22
and 23 show the impact of the checkpointing cost on the optimal degree of parallelism. When
this cost grows linearly with P (e.g., with coordinated checkpointing on stable storage [28]),
Theorem 22 states that the optimal number of processors is P ∗ = Θ(λ

−1/4
ind ). In that case,

the optimal period has length T ∗ = Θ(λ
−1/2
ind ). But when this cost remains bounded (e.g.,

with in-memory checkpointing [99]), then Theorem 23 shows that the optimal solution has
both increased parallelism P ∗ = Θ(λ

−1/3
ind ) and smaller period T ∗ = Θ(λ

−1/3
ind ). These two

cases represent most practical checkpointing protocols implemented in today’s fault-tolerant
systems. To the best of our knowledge, the results are the first to analytically establish the
relationship between P ∗ and T ∗ as a function of the resource MTBF µind = 1/λind.

Finally, we point out that when both checkpointing and verification costs reduce with P
(which is rarely the case in practice), first-order approximation has its limitation and can no
longer be used to derive the optimal number of processors and optimal checkpointing period.
In this case, one can resort to higher-order approximations or numerical methods to compute
the optimal pattern parameters, which are still bounded due to the sequential fraction.

6.5 Experiments

In this section, we conduct simulations to support the analytical study and to demonstrate the
accuracy of first-order approximation under different parameter settings and resilience scenar-
ios. The simulation code is publicly available for download at http://perso.ens-lyon.
fr/aurelien.cavelan/simu.zip.

http://perso.ens-lyon.fr/aurelien.cavelan/simu.zip
http://perso.ens-lyon.fr/aurelien.cavelan/simu.zip
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6.5.1 Simulation settings

We consider four real platforms that were used to evaluate the Scalable Checkpoint/Restart
(SCR) library [74]. Measurements of the platform parameters are provided, including error
rates of different sources and various checkpointing costs on a specified number of processors
(where each processor has a dual quad-core chip). Following Chapter 2, the verification cost is
set to be the same as that of an in-memory checkpoint, assuming the entire memory footprint
needs to be inspected in order to accurately detect silent errors. Table II presents the main
parameters of the four platforms. The downtime is set to one hour, i.e., D = 3600s (a repair-
based restoration value, see the discussion in Section 6.5.2), and the sequential fraction of the
application is set to be α = 0.1. These values as well as the individual error rate λind will be
varied in the simulations to assess their impacts on the performance of the optimal pattern.

We envision six resilience scenarios, as shown in Table III, depending on the scalability
of the checkpointing and verification overheads discussed in Section 6.3. Altogether, these
scenarios cover a wide range of resilience protocols, represented by different checkpointing
mechanisms and error detection algorithms. For each scenario, we can compute the resilience
parameters (i.e., a, b, c, v, u) based on the values of CP and VP as well as the number of pro-
cessors given in Table II, and then project the corresponding overheads on any number of pro-
cessors. The optimal pattern under each scenario can be derived using the first-order analysis
presented in Section 6.4. Specifically, for a constant α > 0, scenarios 1 and 2 correspond to
case 1

(
CP = cP + o(P )

)
, scenarios 3, 4 and 5 correspond to case 2

(
CP + VP = d + o(1)

)
,

and scenario 6 corresponds to case 3
(
CP + VP = h/P

)
. To assess the accuracy of the first-

order approximation, we also compare the performance of the first-order solution with that of
the optimal solution obtained using numerical methods such as the one considered in [65].

Once the pattern parameters are determined, fail-stop and silent errors are injected into the
simulator as two independent Poisson processes according to the error rates shown in Table II.
The result of each experiment is obtained by averaging over 500 simulation runs, each of which
lasts at least 500 patterns. The expected execution overhead of the pattern is computed as the
average ratio of the application’s execution time with faults and its fault-free execution time.

Table II
PLATFORM PARAMETERS.

Platform Hera Atlas Coastal Coastal SSD
λind 1.69e-8 1.62e-8 2.34e-9 2.34e-9
f 0.2188 0.0625 0.1667 0.1667
s 0.7812 0.9375 0.8333 0.8333
P 512 1024 2048 2048
CP 300s 439s 1051s 2500s

VP 15.4s 9.1s 4.5s 180s
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Table III
DIFFERENT RESILIENCE SCENARIOS.

Scenario 1 2 3 4 5 6
CP , RP cP cP a a b/P b/P

VP v u/P v u/P v u/P

6.5.2 Simulation results

Performance of optimal patterns in different scenarios

Figure 6.2 shows the performance of the optimal patterns in different resilience scenarios when
the sequential fraction of the application is fixed at α = 0.1. We can see that, on all the four
platforms, the first-order solution provides a very good approximation to the optimal solution
in terms of both checkpointing period and processor allocation, under the first four scenarios
(the most realistic ones in practical systems). The execution overheads (≈ 0.11) predicted by
the first-order formulas (Theorems 22 and 23) are almost identical to the optimal overheads and
the ones obtained by simulations. The results confirm the validity of first-order approximations
in these scenarios.

In scenario 5, the resilience cost is dominated by the verification overhead, which although
is a constant has a relatively small value. This significantly increases the optimal processor
count and hence the corresponding error rates, thus compromising the accuracy of the first-
order approximation (up to 5% in execution overhead), since the lower-order terms start to be-
come non-negligible. In fact, due to the small constant overhead, scenario 5 closely resembles
scenario 6, in which case first-order analysis can no longer predict the optimal pattern param-
eters within the approximation limit (thus only the results of numerical methods are shown).
Figure 6.2 shows that the optimal pattern parameters in scenario 6 are indeed in the same or-
ders as those of scenario 5 but with higher processor counts and smaller checkpointing periods.

Impact of processor allocation

We study how the number of allocated processors impacts the optimal checkpointing period
and the resulting execution overhead under different resilience scenarios. Figure 6.3 shows
the simulation results for the Hera platform (the results are similar for the other platforms).
Since the resilience overhead is dominated by the checkpointing cost, the pattern behaviors
are mainly influenced by the form of CP , as demonstrated by the almost overlapping curves
between the scenarios that share the same CP values. In all scenarios, the checkpointing period
decreases with the number of processors (Figure 6.3(a)), which is needed to compensate for
the increased error rates. The execution overhead, on the other hand, first improves with the
number of processors due to increased parallelism and then degrades due to more errors striking
(Figure 6.3(b)). The optimal processor counts, as we have seen in Figure 6.2, tend to be higher
for scenarios in which the checkpointing cost CP does not increase (or even decreases) with
P . Figure 6.3(c) shows the difference in execution overhead between the first-order solution
and the optimal numerical solution. The difference, for the concerned range of processors, is
always within 0.2%, validating once again the accuracy of first-order approximation.
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Figure 6.2: Performance of the optimal pattern in different resilience scenarios on four plat-
forms when the sequential fraction is fixed at α = 0.1.
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Figure 6.3: Optimal checkpointing period T ∗
P (from Theorem 21) and simulated execution

overhead for different number of processors P on platform Hera.
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Figure 6.4: Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 22
and 23, and from numerical solution), as well as the simulated execution overhead under dif-
ferent sequential fraction α on platform Hera.

Impact of sequential fraction α

Figure 6.4 shows the impact of the sequential fraction α on the performance of the optimal
patterns in scenarios 1, 3 and 5 (from now on, scenarios 2, 4 and 6 are ignored because they
have similar performance as scenarios 1, 3 and 5, respectively). We can see that, as α decreases,
more processors are enrolled so that the application can benefit from Amdahl’s law to achieve
lower execution overheads (or equivalently higher speedups). The checkpointing periods, on
the other hand, decrease with α due to increased processor count, except in scenario 1 where
the optimal period barely changes with the number of processors (see Theorem 21 and Figure
6.3(a)). As more processors are used, the first-order approximation of P ∗ starts to deviate
from the optimal value, but the first-order overhead H∗, as shown in Figure 6.4(c), remains
in close proximity to the optimal overhead up to α = 0.0001. Also, compared to the other
scenarios, scenario 5 starts to show a better overhead as α becomes smaller, because of its
smaller checkpointing cost. However, even when α = 0, the optimal processor allocation is
upper bounded by 106 in all three scenarios with an overhead strictly above 10−5. This is in
clear contrast to the error-free execution, where an infinity number of processors can be used
to achieve (nearly) null overhead.
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Figure 6.5: Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 22
and 23, and from numerical solution), as well as the simulated execution overhead under dif-
ferent values of λind and when α = 0.1 on platform Hera.
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Figure 6.6: Optimal checkpointing period T ∗ and number of processors P ∗ (from numerical
solution), as well as the simulated execution overhead under different values of λind and when
α = 0 on platform Hera.

Impact of error rate λind

This experiment assesses the impact of the individual error rate λind on the performance of
the optimal pattern, in particular on the asymptotic behaviors of the processor allocations and
checkpointing periods under different scenarios. Figure 6.5 shows that, as the processors be-
come more reliable (i.e., as λind decreases), the optimal pattern is able to both accommodate
more processors and use larger checkpointing periods. The results confirm our analytical study
that P ∗ and T ∗ are in the orders of λ−1/4

ind and λ
−1/2
ind , respectively, under scenario 1, and are both

in the order of λ−1/3
ind under scenarios 3 and 5. Moreover, the first-order approximation becomes

more accurate with decreased λind, and the execution overheads tend to the theoretical lower
bound of 0.1 for all three scenarios.

Figure 6.6 further shows the behaviors of the optimal patterns when the application is per-
fectly parallel (i.e., α = 0). Recall that this case does not admit a solution under first-order ap-
proximation. Numerical analysis suggests that, under scenario 1, the optimal solution satisfies
P ∗ ≈ Θ(λ

−1/2
ind ), T ∗ ≈ Θ(λ

−1/2
ind ), and H∗ ≈ Θ(λ

1/2
ind ), and under scenarios 3 and 5, we have

P ∗ ≈ Θ(λ−1
ind), T

∗ ≈ O(1), and H∗ ≈ Θ(λind).
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Figure 6.7: Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 22
and 23, and from numerical solution), as well as the simulated execution overhead under dif-
ferent downtime D and when α = 0.1 on platform Hera.
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Figure 6.8: Optimal checkpointing period T ∗ and number of processors P ∗ (from Theorems 22
and 23, and from numerical solution), as well as the simulated execution overhead under dif-
ferent downtime D and when α = 0.0001 on platform Hera.

Impact of downtime D

Finally, we evaluate the impact of downtime D on the pattern performance. Depending on if
repair-based or replacement-based (migration to a spare processor) restoration is used, down-
time can range from a few minutes to several hours [65]. In this experiment, we vary the
downtime from 0 to 3 hours. Figures 6.7 and 6.8 show the simulation results when α = 0.1 and
α = 0.0001, respectively. Since D does not appear in the formulas of P ∗ and T ∗ (given in The-
orems 22 and 23) due to the use of first-order approximation, the optimal pattern obtained by
the first-order analysis does not vary with D, while the optimal processor count obtained by the
numerical solution decreases with increased downtime. This shows that the optimal pattern pa-
rameters are indeed influenced by the downtime. However, the simulated execution overheads
in both cases stay close for the first-order solution and the optimal solution, because even a 3-
hour downtime is nevertheless much smaller compared to the platform MTBF (in the order of
days).
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6.6 Conclusion

In this chapter, we considered the optimal processor allocation problem for executing a paral-
lel job on a large-scale platform subject to fail-stop and silent errors. We have provided the
exact expression for the expected execution time of a pattern, and closed-form first-order ap-
proximation formulas to compute the optimal checkpointing period T ∗ and optimal number of
processors P ∗. These formulas are functions of several parameters: the individual processor
failure rate λind, the sequential fraction of the application α, as well as the checkpointing and
verification costs CP and VP . For the latter costs, we have envisioned a comprehensive set of
scenarios that are representative of the most important fault-tolerant protocols. To the best of
our knowledge, these results are the first that analytically establish the relationship between P ∗

and T ∗ as a function of the resource MTBF µind = 1/λind, and they offer new insights into the
relationships of Amdhal’s law and the Young/Daly approximation formula. Also, they provide
the first (and direct) characterization of the optimal number of resources to enroll, with given
error rates, resilience costs and application speedup profile. We have conducted an extensive
set of simulations to support the theoretical study, whose outcome confirms the accuracy of
first-order approximation under a wide range of parameter settings.
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Chapter 7

Identifying the Right Replication Level
for Detecting and Correcting Silent Er-
rors

This chapter provides a model and an analytical study of replication as a technique to de-
tect and correct silent errors. Although other detection techniques exist for HPC applications,
based on algorithms (ABFT), invariant preservation or data analytics, replication remains the
most transparent and least intrusive technique. We explore the right level (duplication, triplica-
tion or more) of replication needed to efficiently detect and correct silent errors. Replication is
combined with checkpointing and comes with two flavors: process replication and group repli-
cation. Process replication applies to message-passing applications with communicating pro-
cesses. Each process is replicated, and the platform is composed of process pairs, or triplets.
Group replication applies to black-box applications, whose parallel execution is replicated sev-
eral times. The platform is partitioned into two halves (or three thirds). In both scenarios, re-
sults are compared before each checkpoint, which is taken only when both results (duplication)
or two out of three results (triplication) coincide. If not, one or more silent errors have been
detected, and the application rolls back to the last checkpoint. We provide a detailed analytical
study of both scenarios, with formulas to decide, for each scenario, the optimal parameters as a
function of the error rate, checkpoint cost, and platform size. We also report a set of extensive
simulation results that corroborates the analytical model. This work has been accepted to the
Fault Tolerance for HPC at eXtreme Scale (FTXS’2017) workshop [W1].

7.1 Introduction

Triple Modular Redundancy, or TMR [72], is the standard fault-tolerance approach for critical
systems, such as embedded or aeronautical devices [5]. With TMR, computations are executed
three times, and a majority voting is conducted to select the correct result out of the three
available ones. Indeed, if two or more results agree, they are declared correct, because the
probability of two or more errors leading to the same wrong result is assumed so low that it can
be ignored. While triplication seems very expensive in terms or resources, anybody sitting in a
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plane would heartily agree that it is worth the price.
On the contrary, duplication, let alone triplication, has a bad reputation in the High Per-

formance Computing (HPC) community. Who would be ready to waste half or two-thirds of
precious computing resources? However, despite its high cost, several authors have been advo-
cating the use of duplication in HPC in the recent years [49, 52, 86, 100]. In a nutshell, this is
because platform sizes have become so large that fail-stop errors are likely to strike at a high
rate during application execution. More precisely, the MTBF (Mean Time Between Failures)
µP of the platform decreases linearly with the number of processors P , since µP = µind

P
, where

µind is the MTBF of each individual component (see Proposition 1.2 in [62]). Take µind = 10
years as an example. If P = 105 then µP ≈ 50 minutes and if P = 106 then µP ≈ 5 minutes:
from the point of view of fault-tolerance, scale is the enemy. Given any value of µind, there
is a threshold value for the number of processors above which platform throughput will de-
crease [47, 52, 77, 86]: the platform MTBF becomes so small that the applications experience
too many failures, hence too many recoveries and re-execution delays, to progress efficiently.
All this explains why duplication has been considered for HPC applications despite its cost. The
authors in [52] propose process replication by which each process in a parallel MPI (Message
Passing Interface) application is duplicated on multiple physical processors while maintaining
synchronous execution of the replicas. This approach is effective because the MTBF of a set of
two replicas (which is the average delay for failures to strike both processors in the replica set)
is much larger than the MTBF of a single processor.

Process replication may not always be a feasible option. Process replication features must
be provided by the application. Some prototype MPI implementations [52, 53] are convinc-
ing proofs of concept and do provide such capabilities. However, many other programming
frameworks (not only MPI-like frameworks, but also concurrent objects, distributed compo-
nents, workflows, algorithmic skeletons) do not provide an equivalent to transparent process
replication for the purpose of fault-tolerance, and enhancing them with transparent replica-
tion may be non-trivial. When transparent replication is not (yet) provided by the runtime
system, one solution could be to implement it explicitly within the application, but this is a
labor-intensive process especially for legacy applications. Another approach introduced in [26]
is group replication, a technique that can be used whenever process replication is not available.
Group replication is agnostic to the parallel programming model, and thus views the applica-
tion as an unmodified black box. The only requirement is that the application be startable from
a saved checkpoint file. Group replication consists in executing multiple application instances
concurrently. For example, 2 distinct P -process application instances could be executed on a
2P -processor platform. At first glance, it may seem paradoxical that better performance can
be achieved by using group duplication. After all, in the above example, 50% of the platform
is “wasted” to perform redundant computation. The key point here is that each application in-
stance runs at a smaller scale. As a result each instance can use lower checkpointing frequency,
and can thus have better parallel efficiency in the presence of faults, when compared to a sin-
gle application instance running at full scale. In some cases, the application makespan can
then be comparable to, or even shorter than that obtained when running a single application
instance. In the end, the cost of wasting processor power for redundant computation can be
offset by the benefit of reduced checkpointing frequency. Furthermore, in group replication,
once an instance saves a checkpoint, the other instance can use this checkpoint immediately
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to “jump ahead” in its execution. Hence, group replication is more efficient than the mere
independent execution of several instances: each time one instance successfully completes a
given “chunk of work”, all the other instances immediately benefit from this success. To im-
plement group replication the runtime system needs to perform the typical operations needed
for system-assisted checkpoint/restart: determining checkpointing frequencies for each appli-
cation instance, causing checkpoints to be saved, detecting application failures, and restarting
an application instance from a saved checkpoint after a failure. The only additional feature is
that the system must be able to stop an instance and cause it to resume execution from a check-
point file produced by another instance as soon as it is produced.

Process or group replication has been mainly proposed in HPC to cope with fail-stop errors.
However, another challenge is represented by silent errors, or silent data corruption, whose
threat can no longer be ignored [74, 76, 102]. There are several causes of silent errors, such
as cosmic radiation, packaging pollution, among others. Silent errors can strike the cache and
memory (bit flips) as well as CPU operations; in the latter case they resemble floating-point
errors due to improper rounding, but have a dramatically larger impact because any bit of
the result, not only low-order mantissa bits, can be corrupted. In contrast to a fail-stop error
whose detection is immediate, a silent error is identified only when the corrupted data leads to
an unusual application behavior. Such detection latency raises a new challenge: if the error
struck before the last checkpoint, and is detected after that checkpoint, then the checkpoint
is corrupted and cannot be used for rollback. To distinguish from fail-stop failures, we use
MTBE instead of MTBF to characterize the rate of silent errors.

To address the problem of silent errors, many application-specific detectors, or verifica-
tion mechanisms, have been proposed (see Section 7.2 for a survey). It is not clear, however,
whether a special-purpose detector can be designed for each scientific application. In addition,
application-specific verification mechanisms only protect from some types of error sources, and
fail to provide accurate and efficient detection of all silent errors. In fact, providing such de-
tectors for scientific applications has been identified as one of the hardest challenges1 towards
extreme-scale computing [24, 25].

Altogether, silent errors call for revisiting replication in the framework of scientific applica-
tion executing on large-scale HPC platforms. Because replication is now applied at the process
level, scale becomes an even harder-to-fight enemy. Processor count ranges to about 105 on the
K-computer and TaihuLight systems. The number of processors could increase further to 106

(hence 106 or more processes) on Exascale systems, with billions of threads [40]. In addition,
the probability of several errors striking during an execution can get significant, depending
upon whether or not circuit manufacturers increase significantly the protection of the logic,
latch/flip-flops and static arrays in the processor. In a recent paper [89], the authors consider
that with significant more protection (more hardware, more power consumption), the FIT2 rate
for undetected errors on a processor circuit could be maintained to around 20. But without ad-
ditional protection compared to the current situation, the FIT rate for undetected errors could
be as high as 5,000 (or 1 error every 200,000 hours). Combining 10 million of devices with

1More generally, trustworthy computing, which aims at guaranteeing the correctness of the results of a long-
lasting computation on a large-scale supercomputer, has received considerable attention recently [23].

2The Failures in Time (FIT) rate of a device is the number of failures that can be expected in one billion (109)
device-hours of operation.
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this FIT rate would result in a silent error in the system every 72 seconds. This work aims at
providing a quantitative assessment of the potential of duplication and triplication to mitigate
such a threat. Specifically, the main contributions of this work are:

• an analytical model to study the performance of all replication scenarios against silent
errors, namely, duplication, triplication, or more for process and group replications;

• closed-form formulas that give the optimal checkpointing period and optimal process
number as a function of the error rate, checkpoint cost, and platform size;

• a set of simulation results that corroborate the analytical model.

The rest of the chapter is organized as follows. Section 7.2 surveys the related work. We
introduce the performance model in Section 7.3, and derive the general expected execution time
in Section 7.4. The analysis for process replication is presented in Section 7.5, followed by the
analysis for group replication in Section 7.6. Section 7.7 is devoted to the simulation results.
Finally, we provide concluding remarks and directions for future work in Section 7.8.

7.2 Related work

We survey related work in this section. We start with replication for HPC applications in
Section 7.2.1 and cover application-specific detectors in Section 7.2.2.

7.2.1 Replication for fail-stop errors

Checkpointing policies have been widely studied. We refer to [62] for a survey of various pro-
tocols and the derivation of the Young’s and Daly’s formula [36, 97] for the optimal checkpoint-
ing periods. Recent advances include multi-level approaches, or the use of SSD or NVRAM as
secondary storage [25]. Combining replication with checkpointing has been proposed in [49,
86, 100] for HPC platforms, and in [69, 96] for grid computing.

The use of redundant MPI processes is analyzed in [27, 50, 52]. In particular, the work
by Ferreira et al. [52] has studied the use of process replication for MPI applications, using
2 replicas per MPI process. They provide a theoretical analysis of parallel efficiency, an MPI
implementation that supports transparent process replication (including failure detection, con-
sistent message ordering among replicas, etc.), and a set of experimental and simulation results.
Partial redundancy is studied in [45, 91] (in combination with coordinated checkpointing) to
decrease the overhead of full replication. Adaptive redundancy is introduced in [59], where a
subset of processes is dynamically selected for replication.

Thread-level replication has been investigated in [35, 82, 98]. This work targets process-
level replication, in order to be able to detect (and correct) silent errors striking in all communication-
related operations.

Finally, Ni et al [75] introduce process duplication to cope with both fail-stop and silent
errors. Their pioneering paper contains many interesting results but differs from this work
as follows: (i) they limit themselves to perfectly parallel applications while we investigate
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speedup profiles that obey Amdahl’s law; (ii) they do not investigate triplication; and (iii) they
compute an upper bound on the optimal period and do not determine optimal processor counts.

7.2.2 Silent error detection and correction

Application-specific information enables ad-hoc solutions, which dramatically decrease the
cost of error detection. Algorithm-based fault tolerance (ABFT) [16, 63, 87] is a well-known
technique, which uses checksums to detect up to a certain number of errors in linear algebra
kernels. Unfortunately, ABFT can only protect datasets in linear algebra kernels, and it must
be implemented for each different kernel, which incurs a large amount of work for large HPC
applications. Other techniques have also been advocated. Benson, Schmit and Schreiber [14]
compare the result of a higher-order scheme with that of a lower-order one to detect errors
in the numerical analysis of ODEs and PDEs. Sao and Vuduc [85] investigate self-stabilizing
corrections after error detection in the conjugate gradient method. Bridges et al. [19] propose
linear solvers to tolerant soft faults using selective reliability. Elliot et al. [44] design a fault-
tolerant GMRES capable of converging despite silent errors. Bronevetsky and de Supinski [21]
provide a comparative study of detection costs for iterative methods.

Recently, several silent error detectors based on data analytics have been proposed, showing
promising results. These detectors use several interpolation techniques such as time series
prediction [15] and spatial multivariate interpolation [8, 9, 11]. Such techniques offer large
detection coverage for a negligible overhead. However, these detectors do not guarantee full
coverage; they can detect only a certain percentage of corruptions (i.e., partial verification with
an imperfect recall). Nonetheless, the accuracy-to-cost ratios of these detectors are high, which
makes them interesting alternatives at large scale. Similar detectors have also been designed
to detect silent errors in the temperature data of the Orbital Thermal Imaging Spectrometer
(OTIS) [31].

Again, all the papers quoted in this section provide application-specific detectors, while our
approach is agnostic of the application characteristics. The only information is whether we can
use either process replication. If not, we see the application as a black box and can use only
group replication.

7.3 Model

This section presents the analytical model for evaluating the performance of different replica-
tion scenarios. The model is classical, similar to those of the literature for replication [52],
only with a different objective (quantifying replication for silent errors). Table I summarizes
the main notations.

Recall that µind denotes the MTBE of an individual processor or process3 of the system, and
let λ = 1

µind
denote the silent error rate of the processor. The error rate for a collection of P

processors is then given by λP = 1
µP

= P
µind

= λP [62]. Assuming that the error arrivals follow

3We assume that each process is executed by a dedicated processor, hence use “processor” and “process”
interchangeably. We also use MTBE instead of MTBF to emphasize that we deal with (silent) errors, not failures.
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Table I
LIST OF NOTATIONS.

Parameters
T Length (or period) of a pattern
P Number of processes allocated to an application
n Number of (process or group) replicas
S(P ) Speedup function of an application
H(P ) = 1

S(P ) Error-free execution overhead
En(T, P ) Expected execution time of a pattern
Hn(T, P ) Expected execution overhead of a pattern
Sn(T, P ) Expected speedup function of a pattern
λ = 1

µind
Silent error rate of an individual process

Pn(T, P ) Silent error probability of a pattern
C Checkpointing cost
R Recovery cost
V Verification cost (comparison of replicas)

Exponential distribution, the probability that a computation hit by a silent error during time T
on P processes is given by P(T, P ) = 1− e−λPT .

Consider long-latsting HPC applications that execute for hours or even days on a large-scale
platform. Resilience is enforced by the combined use of replication and periodic checkpoint-
ing. Before each checkpoint, the results of different replicas are compared. Only when both
results (for duplication) or two out of three results (for triplication) coincide4, in which case a
consensus is said to be reached, the checkpoint is taken. Otherwise, silent errors are assumed
to have been detected, and they cannot be corrected through consensus. The application then
rolls back to the last checkpoint. There are two different types of replications:

• Process replication: Each process of the application is replicated, and the results of
different processes are independently compared. A rollback is needed when at least one
process has failed to reach a consensus;

• Group replication: The entire application (as a black box) is replicated, and the results of
all replicas (as a whole) are compared. A rollback is needed when these group replicas
fail to reach a consensus.

The computational chunk between two checkpoints is called a periodic pattern. For a
replication scenario with n replicas, the objective is to minimize the expected total execution
time (or makespan) of an application by finding the optimal pattern parameters:

• T : length (or period) of the pattern;

• P : number of processes allocated to the application.

4For n > 3 replicas, the results of k replicas should coincide, where 2 ≤ k < n is a design parameter set by
the system to control the level of reliability. k = bn2 c+ 1 is a widely-used choice (majority voting).
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Indeed, for long-lasting applications, it suffices to focus on just one pattern, since the pattern
repeats itself over time. To see this, let Wtotal denote the total amount of work of the application
and suppose the application has a speedup function S(P ) when executed on P processors. In
this chapter, we focus on a speedup function that obeys Amdahl’s law5:

S(P ) =
1

α + 1−α
P

, (7.1)

where α ∈ [0, 1] denotes the sequential fraction of the application that cannot be parallelized.
For convenience, we also define H(P ) = 1

S(P )
to be the execution overhead. For a pat-

tern of length T and run by P processes, the amount of work done in a pattern is therefore
Wpattern = T · S(P ), and the total number of patterns in the application can be approximated as
m = Wtotal

Wpattern
= Wtotal

T ·S(P )
= Wtotal

T
H(P ). Now, let En(T, P ) denote the expected execution time of

the pattern with n replicas in either replication scenario. Define Hn(T, P ) = En(T,P )
T

H(P ) to be
the expected execution overhead of the pattern, and Sn(T, P ) = 1

Hn(T,P )
the expected speedup.

The expected makespan of the application can then be written as Etotal ≈ En(T, P )m =
En(T, P )Wtotal

T
H(P ) = Hn(T, P ) · Wtotal = Wtotal

Sn(T,P )
. This shows that the optimal expected

makespan can be achieved by minimizing the expected execution overhead of a pattern, or
equivalently, maximizing the expected speedup.

Now, we describe a model for the costs of checkpoint, recovery and consensus verification.
First, the checkpoint cost clearly depends on the protocol and storage type. Note that only the
result of one replica needs to be checkpointed, so the cost does not increase with the number
of replicas. To save the application’s memory footprint M to the storage system using P
processes, we envision the following two scenarios:

• C = M
τio

: In this case, checkpoints are being written to the remote storage system, whose
bandwidth is the I/O bottleneck. Here, τio is the remote I/O bandwidth.

• C = M
τnetP

: This case corresponds to in-memory checkpoints, where each process stores
M
P

data locally (e.g., on SSDs). Here, τnet is the process network bandwidth.

The recovery cost is assumed to be the same as the checkpointing cost, i.e., R = C, as it in-
volves the same I/O operations. This is a common assumption [74], although practical recovery
cost can be somewhat smaller than the checkpoint cost [37]. Finally, verifying consensus is
performed by communicating and comparing M

P
data stored on each process, which can be

executed concurrently by all process pairs (or triplets). Hence, the verification cost satisfies
V = O(M

P
). Overall, we use the following general expression to account for the combined cost

of verification and checkpoint/recovery:

V + C = c+
d

P
, (7.2)

where c and d are constants that depend on the application memory footprint, checkpointing
protocol, network or I/O bandwidth, etc. Equation (7.2) is convenient in terms of analysis as
we will see in the subsequent sections. Here, c = 0 corresponds to the second checkpointing
scenario discussed above.

5The model is generally applicable to other speedup functions as well.
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7.4 Expected execution time

In this section, we compute the expected execution time of a periodic pattern, which will be
used in the next two sections to derive the optimal pattern parameters.

Theorem 24. The expected time to execute a periodic pattern of length T using P processes
and n replicas can be expressed as

En(T, P ) = T + V + C +
Pn(T, P )

1− Pn(T, P )
(T + V +R) , (7.3)

where Pn(T, P ) denotes the probability that the execution fails due to silent errors striking
during the pattern and we have to roll back to the last checkpoint.

Proof. Since replicas are synchronized, we can generally express the expected execution time
as follows:

En(T, P ) = T + V + Pn(T, P )
(
R + En(T, P )

)
+
(
1− Pn(T, P )

)
C . (7.4)

First, the pattern of length T is executed followed by the verification (through comparison
and/or voting), which incurs cost V . With probability Pn(T, P ), the pattern fails due to silent
errors. In this case, we need to re-execute the pattern after performing a recovery from the last
checkpoint with cost R. Otherwise, with probability 1− Pn(T, P ), the execution succeeds and
the checkpoint with cost C is taken at the end of the pattern. Now, solving for En(T, P ) from
Equation (7.4), we can obtain the expected execution time of the pattern as shown in Equation
(7.3).

Remarks. Theorem 24 is applicable to both process replication and group replications. The
only difference lies in the computation of failure probability Pn(T, P ), which depends not only
on the replication scenario but also on the number of replicas n.

7.5 Process replication

In this section, we consider process replication. We first derive the optimal computing pat-
terns when each process of the application is duplicated (Section 7.5.1) and triplicated (Section
7.5.2), respectively. Finally, we generalize the results to an arbitrary but constant number of
replications per process under a general process replication framework (Section 7.5.3).

7.5.1 Process duplication
We start with process duplication, that is, each process has two replicas. The following lemma
shows the failure probability of a given computing pattern in this case.

Lemma 12. Using process duplication, the failure probability of a computing pattern of length
T and with P processes is given by

Pprc
2 (T, P ) = 1− e−2λTP . (7.5)
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Proof. With duplication, errors cannot be corrected (no consensus), hence a process fails if
either one of its replicas fails or both replicas fail. In other words, there is an error if the results
of both replicas do not coincide (we neglect the quite unlikely scenario with one error in each
replica leading to the same wrong result). Let Pprc

1 (T, 1) = 1− e−λT denote the probability of a
single process failure. Therefore, we can write the failure probability of any duplicated process
as follows:

Pprc
2 (T, 1) =

(
2

1

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1) + Pprc

1 (T, 1)2

= 2e−λT
(
1− e−λT

)
+
(
1− e−λT

)2
= 1− e−2λT .

Now, because we have P independent processes, the probability that the application gets
interrupted by silent errors is the probability that at least one process fails because of silent
errors, which can be expressed as:

Pprc
2 (T, P ) = 1− P(“No process fails”)

= 1− (1− Pprc
2 (T, 1))

P

= 1− e−2λPT .

Using the failure probability in Lemma 12, we derive the optimal computing pattern for
process duplication as shown in the following theorem. Recall that the application speedup
follows Amdahl’s law as shown in Equation (7.1) and the cost of verification and checkpoint is
modeled by Equation (7.2).

Theorem 25. A first-order approximation to the optimal number of processes for an application
with 2 replicas per process is given by

Popt = min

Q

2
,

(
1

2

(
1− α

α

)2
1

cλ

) 1
3

 , (7.6)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

2λPopt

) 1
2

, (7.7)

Sprc
2 (Popt) =

S(Popt)

1 + 2
(
2λ(V + C)Popt

) 1
2

. (7.8)

Proof. First, we can derive, from Theorem 24 and Lemma 12, the expected execution time of
a pattern with length T and P duplicated processes as follows:

Eprc
2 (T, P ) = T + V + C +

(
e2λPT − 1

)
(T + V +R)

= T + V + C + 2λPT (T + V +R) + o(λPT 2) .



188
CHAPTER 7. IDENTIFYING THE RIGHT REPLICATION LEVEL FOR DETECTING

AND CORRECTING SILENT ERRORS

The second equation above is obtained by applying Taylor series to approximate ez = 1 + z +
o(z) for z < 1, while assuming λPT = Θ(λε), where ε > 0.

Now, we have a closed-form expression for Eprc
2 (T, P ). Substituting it into Hprc

2 (T, P ) =

H(P )
Eprc
2 (T,P )

T
, we can get the expected execution overhead as:

Hprc
2 (T, P ) = H(P )

(
1 +

V + C

T
+ 2λPT + o(λPT )

)
. (7.9)

The optimal overhead can then be achieved by balancing (or equating) the two terms V+C
T

and 2λPT above, which gives the following optimal checkpointing period as a function of the
process count:

Topt(P ) =

(
V + C

2λP

) 1
2

. (7.10)

Now, substituting Topt(P ) back into Equation (7.9), we get the execution overhead as a function
of the process count as follows (lower-order terms ignored):

Hprc
2 (P ) = H(P )

(
1 + 2

(
2λ(V + C)P

) 1
2

)
. (7.11)

Note that Equations (7.10) and (7.11) hold true regardless of the form of the function H(P ) or
the cost V + C. Recall that we consider Amhdal’s law H(P ) = α + 1−α

P
and a cost model

V + C = c+ d
P

. In order to derive the optimal process count, we consider two cases:
Case (1). c > 0 and α > 0 are both constants: we can expand Equation (7.11) to be

Hprc
2 (P ) = α + 2α

(
2λcP

) 1
2 +

1− α

P
+ o(λ

1
2 ) . (7.12)

The optimal overhead can then be achieved by setting

∂Hprc
2 (P )

∂P
= α

(
2λc

P

) 1
2

− 1− α

P 2
= 0 ,

which leads to P ∗ =
(

1
2

(
1−α
α

)2 1
cλ

) 1
3
. Since the total number of processes in the system is Q

and each application process is duplicated, the optimal process count is upper-bounded by Q
2

if P ∗ > Q
2

, due to the convexity of Hprc
2 (P ) as shown in Equation (7.11). Hence, the optimal

process count Popt is given by Equation (7.6).
Case (2). c = 0 or α = 0: In either case, we can see that Equation (7.11) becomes

a decreasing function of P . Therefore, the optimal strategy is to utilize all the available Q

processes, i.e., Popt =
Q
2

, which again satisfies Equation (7.6), since
(

1
2

(
1−α
α

)2 1
cλ

) 1
3
=∞.

In either case, the expected application speedup is then given by the reciprocal of the over-
head as shown in Equation (7.11) with the optimal process count Popt.
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Remarks. For fully parallelizable applications, i.e., α = 0, the optimal pattern on a Q-
process platform is characterized by

Popt =
Q

2
, Topt =


√

c
λQ

for V + C = c

1
Q

√
2d
λ

for V + C = d
P

,

Sprc
2 (Popt) =

{
Q

2(1+2
√
λcQ)

for V + C = c
Q

2(1+2
√
2λd)

for V + C = d
P

.

7.5.2 Process triplication
Now, we consider process duplication, that is, each process has three replicas. This is the
smallest number of replicas that allows an application to recover from silent errors through
majority voting instead of rolling back to the last checkpoint.

Lemma 13. Using process triplication, the failure probability of a computing pattern of length
T and with P processes is given by

Pprc
3 (T, P ) = 1−

(
3e−2λT − 2e−3λT

)P
. (7.13)

Proof. Using triplication, if only one replica fails, the silent error can be masked by the two
successful replicas. Hence, in this case, a process fails if at least two of its replicas are hit
by silent errors. Let Pprc

1 (T, 1) = 1 − e−λT denote the probability of a single process failure.
Therefore, we can write the failure probability of any triplicated process as follows:

Pprc
3 (T, 1) =

(
3

2

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1)2 + Pprc

1 (T, 1)3

= 3e−λT
(
1− e−λT

)2
+
(
1− e−λT

)3
= 1− 3e−2λT + 2e−3λT .

For P independent processes, the application fails when at least one of its processes fails.
Hence, we have:

Pprc
3 (T, P ) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T, 1))

P

= 1−
(
3e−2λT − 2e−3λT

)P
.

The following theorem derives the optimal computing pattern for process triplication.

Theorem 26. A first-order approximation to the optimal number of processes for an application
with 3 replicas per process is given by

Popt = min

Q

3
,

(
4

3

(
1− α

α

)3(
1

cλ

)2
) 1

4

 , (7.14)
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where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

6λ2Popt

) 1
3

, (7.15)

Sprc
3 (Popt) =

S(Popt)

1 + 3
(
3
4
(λ(V + C))2 Popt

) 1
3

. (7.16)

Proof. From Theorem 24 and Lemma 13, and applying Taylor series, we can derive the ex-
pected execution time of a pattern as follows:

Eprc
3 (T, P ) = T + V + C +

1−
(
3e−2λT + 2e−3λT

)P
(3e−2λT − 2e−3λT )P

(
T + V +R

)
= T + V + C +

((
e3λT

3eλT − 2

)P

− 1

)(
T + V +R

)
≈ T + V + C +

(1 + 3λT + (3λT )2

2

1 + 3λT + 3(λT )2

2

)P

− 1

 (T + V +R)

≈ T + V + C +
((

1 + 3(λT )2
)P − 1

)
(T + V +R)

= T + V + C +

(
P∑

j=0

(
P

j

)(
3(λT )2

)j − 1

)
(T + V +R)

= T + V + C + 3P (λT )2(T + V +R) + o(λ2PT 3) .

The execution overhead can then be expressed as:

Hprc
3 (T, P ) = H(P )

(
1 +

V + C

T
+ 3P (λT )2 + o(λ2PT 2)

)
. (7.17)

The optimal checkpointing period is then obtained by setting

∂Hprc
3 (T, P )

∂T
= −V + C

T 2
+ 6λ2PT = 0 ,

which gives

Topt(P ) =

(
V + C

6λ2P

) 1
3

.

Substituting Topt(P ) back into Equation (7.17), we get the following execution overhead (with
lower-order terms ignored):

Hprc
3 (P ) = H(P )

(
1 + 3

(
3

4
(λ(V + C))2 P

) 1
3

)
. (7.18)
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To derive the optimal process count, consider V + C = c and H(P ) = α+ 1−α
P

for α > 0.
Then, Equation (7.11) can be expanded as

Hprc
3 (P ) = α + 3α

(
3

4
(λc)2 P

) 1
3

+
1− α

P
+ o(λ

2
3 ) . (7.19)

The optimal overhead is achieved by setting

∂Hprc
3 (P )

∂P
= α

(
3

4
(λc)2

1

P 2

) 1
3

− 1− α

P 2
= 0 ,

which gives rise to P ∗ =
(

4
3

(
1−α
α

)3 ( 1
cλ

)2) 1
4
. Now, the optimal process count is upper-bounded

by Q
3

. Thus, Popt is given by Equation (7.14), which again holds true when c = 0 or α = 0, and
the optimal expected speedup satisfies Sprc

3 (Popt) =
1

Hprc
3 (Popt)

, as shown in Equation (7.16).

Remarks. For fully parallelizable applications, i.e., α = 0, the optimal pattern on a Q-
process platform is characterized by

Popt =
Q

3
, Topt =

 3

√
c

2λ2Q
for V + C = c

3

√
3d

2λ2Q2 for V + C = d
P

,

Sprc
2 (Popt) =


Q

3

(
1+3 3

√(
λc
2

)2
Q

) for V + C = c

Q

3

(
1+3 3

√(
3λc
2

)2
1
Q

) for V + C = d
P

.

Compared with duplication, the ability to correct errors in triplication allows checkpoints to be
taken less frequently (i.e., larger checkpointing period). In terms of the expected speedup, trip-
lication suffers from a smaller error-free speedup (Q

3
vs Q

2
) due to the use of fewer concurrent

processes to perform useful work, but also has a smaller error-induced denominator, especially
on platforms with a large number of processes Q. In Section 7.7, we will conduct simulations
to evaluate this trade-off and compare the performance of duplication and triplication.

7.5.3 General process replication

In this section, we consider a general resilience framework and derive the optimal pattern using
n replicas per process, where n is an arbitrary constant. Moreover, let k denote the number of
“good” replicas (not hit by silent errors) that is required to reach a consensus through voting.
Optimistically, assuming any two replicas that are hit by silent errors will produce different
results, we can set k = 2, i.e., at least two replicas should agree on the result to avoid a
rollback. Under a more pessimistic assumption, we will need a majority of the n replicas to
agree on the result, so in this case we need k = bn

2
c + 1. Our results are independent of the

choice of k.
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As for duplication and triplication, for a given (n, k) pair, we can compute the failure prob-
ability of a pattern with length T and P processes as follows:

Pprc
n,k(T, P ) = 1− P(“No process fails”)

= 1− (1− Pprc
n,k(T, 1))

P , (7.20)

where

Pprc
n,k(T, 1) =

k−1∑
j=0

(
n

j

)
(1− Pprc

1 (T, 1))
j Pprc

1 (T, 1)n−j

=
k−1∑
j=0

(
n

j

)
e−λjT

(
1− e−λT

)n−j
(7.21)

denotes the failure probability of a single process with n replicas due to less than k of them
surviving silent errors.

The following theorem shows the general result for (n, k)-process replication.

Theorem 27. On a system with a total number of Q available processors, a first-order approx-
imation to the optimal number of processes for an application with n replicas per process (k of
which must concur to avoid a rollback) is given by

Popt = min

Q

n
,

(
γn,k

(
1− α

α

)n−k+2(
1

cλ

)n−k+1
) 1

n−k+3

 . (7.22)

The associated optimal checkpointing period and the expected speedup function of the appli-
cation are

Topt(Popt) =

(
V + C

βn,kλn−k+1Popt

) 1
n−k+2

, (7.23)

Sprc
n,k(Popt) =

S(Popt)

1 + (n− k + 2)
(

((V+C)λ)n−k+1Popt

γn,k

) 1
n−k+2

. (7.24)

Here, βn,k =
(

n
k−1

)
(n− k + 1) and γn,k =

(n−k+1)n−k+1

( n
k−1

)
.

Proof. As in the preceding two cases, we start by approximating the error probability. First,
we can approximate the probability of single process failure as

Pprc
n,k(T, 1) =

k−1∑
j=0

(
n

j

)
(1− λT )j (λT )n−j

≈
(

n

k − 1

)
(λT )n−k+1 + o((λT )n−k+1) .
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We can now approximate

Pprc
n,k(T, P )

1− Pprc
n,k(T, P )

≈

(
1

1− Pprc
n,k(T, 1)

)P

− 1

≈
(
1 +

(
n

k − 1

)
(λT )n−k+1

)P

− 1

=
P∑

j=0

(
P

j

)((
n

k − 1

)
(λT )n−k+1

)j

− 1

=

(
n

k − 1

)
P (λT )n−k+1 + o(P (λT )n−k+1) .

Thus, the expected execution time of a pattern can be expressed as

Egrp
n (T, P )k = T + V + C +

(
n

k − 1

)
P (λT )n−k+1(T + V +R)

+ o(λn−k+1PT n−k+2) .

The derivation of the optimal pattern then follows exactly the same steps as in the proofs of
Theorems 25 and 26, and the detailed derivation steps are omitted here.

Remarks. Theorem 27 encompasses Theorem 25 and Theorem 26 as special cases. We
point out that it even holds for the case without replication, i.e., when n = k = 1. In this case,
Theorem 27 evaluates to

Topt(P ) =

√
V + C

λP
,

Sprc
1 (P ) =

S(P )

1 + 2
√
(V + C)λP

,

which is consistent with the results obtained in Chapter 4, provided that a reliable silent error
detector is available. However, as mentioned previously, such a detector is only known in some
application-specific domains. For general-purpose computations, replication appears to be the
only viable approach to detect/correct silent errors so far.

7.6 Group replication

In this section, we consider group replication. Recall that, unlike process replication where the
results of each process from different replicas are independently compared, group replication
compares the outputs of the different groups viewed as independent black-box applications.
First, we make the following technical observation, which establishes the relationship between
the two replication mechanisms from the resilience point of view.
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Observation 4. Running an application using group replication with n replicas, where each
replica has P processes and each process has error rate λ, has the same failure probability as
running it using process replication with one process, which has error rate λP and is replicated
n times.

The above observation allows us to compute the failure probability for group replication by
deriving from the corresponding formulas under process replication while setting P = 1 and
λ = λP . The rest of this section shows the results for duplication, triplication, and a general
group replication framework. Proofs are similar to those in process replication, and are hence
omitted.

7.6.1 Group duplication
By applying Observation 4 on Lemma 12, we can get the failure probability for a given pattern
under group duplication as follows.

Lemma 14. Using group duplication, the failure probability of a computing pattern of length
T and with P processes is given by

Pgrp
2 (T, P ) = 1− e−2λTP . (7.25)

This leads us to the following theorem on the optimal pattern:

Theorem 28. A first-order approximation to the optimal number of processes for an application
with 2 replica groups is given by

Popt = min

Q

2
,

(
1

2

(
1− α

α

)2
1

cλ

) 1
3

 , (7.26)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

2λPopt

) 1
2

, (7.27)

Sgrp
2 (Popt) =

S(Popt)

1 + 2
(
2λ(V + C)Popt

) 1
2

. (7.28)

Remarks. The result is identical to that of process duplication. Indeed, in both cases, a
single silent error that strikes any of the running processes will cause the whole application to
fail.

7.6.2 Group triplication
Again, applying Observation 4 on Lemma 13, we can get the failure probability for a given
pattern under group triplication.



7.6. GROUP REPLICATION 195

Lemma 15. Using group triplication, the failure probability of a computing pattern of length
T and with P processes is given by

Pgrp
3 (T, P ) = 1−

(
3e−2λTP − 2e−3λTP

)
. (7.29)

The following theorem shows the optimal pattern.

Theorem 29. A first-order approximation to the optimal number of processes for an application
with 3 replica groups is given by

Popt = min

Q

3
,

(
1

6

(
1− α

α

)3(
1

cλ

)2
) 1

5

 , (7.30)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected execution overhead are

Topt(Popt) =

(
V + C

6(λPopt)2

) 1
3

, (7.31)

Sgrp
3 (Popt) =

S(Popt)

1 + 3
(

3
4

(
λ(V + C)Popt

)2) 1
3

. (7.32)

Remarks. Compared to the result of process triplication (Theorem 26) and under the same
condition (e.g., α = 0 so both scenarios allocate the same number of Popt =

Q
3

processes to
each replica), group triplication needs to place checkpoints more frequently yet enjoys a smaller
execution speedup. This provides a theoretical explanation to the common understanding that
group replication in general cannot recover from some error combinations that its process coun-
terpart is capable of, making the latter a superior replication mechanism provided that it can be
feasibly implemented.

7.6.3 General group replication

Finally, we consider a general group replication framework and derive the optimal pattern using
a constant number of n replica groups, out of which k of them must agree to avoid a rollback.
Again, the results work for any choice of k.

Now, applying Observation 4 on Equations (7.20) and (7.21), we can compute the failure
probability of a pattern with length T and P processes under a (n, k) group replication model:

Pgrp
n,k(T, P ) =

k−1∑
j=0

(
n

j

)(
e−λPT

)j (
1− e−λPT

)n−j
. (7.33)

The following theorem shows the general result for this case.
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Theorem 30. On a system with a total number of Q available processors, a first-order approxi-
mation to the optimal number of processes for an application with n replica groups (k of which
must concur to avoid a rollback) is given by

Popt = min

Q

n
,

(
1

βn,k

(
1− α

α

)n−k+2(
1

cλ

)n−k+1
) 1

2n−2k+3

 . (7.34)

The associated optimal checkpointing period and the expected speedup function of the appli-
cation are

Topt(Popt) =

(
C + V

βn,k(λPopt)n−k+1

) 1
n−k+2

, (7.35)

Sgrp
n,k(Popt) =

S(Popt)

1 + (n− k + 2)
(

1
γn,k

(
(V + C)λPopt

)n−k+1
) 1

n−k+2

. (7.36)

Here, βn,k =
(

n
k−1

)
(n− k + 1) and γn,k =

(n−k+1)n−k+1

( n
k−1

)
.

7.7 Simulations

We conduct a set of simulations whose goal is twofold: (i) validate the accuracy of the theo-
retical study; and (ii) evaluate the efficiency of both process and group replication under dif-
ferent scenarios at extreme scale. The simulator is publicly available at http://perso.
ens-lyon.fr/aurelien.cavelan/replication.zip so that interested readers can
instantiate their preferred scenarios and repeat the same simulations for reproducibility purpose.

7.7.1 Simulation setup

The simulator has been designed to simulate each process individually, and each process has
its own error trace. A simulation works as follows: we feed the simulator with the model pa-
rameters µind, Q, C, V , R, and α, and we compute the associated optimal number of processes
Popt and the optimal checkpointing period Topt(Popt) using the corresponding model equations.
For each run, the simulator outputs the efficiency, defined as S(Popt)

Q
, as well as the average num-

ber of errors and the average number of recoveries per million CPU hours of work. Then, for
each of the following scenarios, we compare the simulated efficiency to the theoretical value,
obtained using the model equations for S(Popt). As suggested by Observation 4, process and
group replications with n = 2 lead to identical results, so we have merged them together.

In the following, we set the cost of recovery to be the same as the checkpoint cost (as
discussed in Section 7.3), and we set the cost V + C according the values of c and d as in
Equation (7.2). We consider different Mean Time Between Errors (MTBE), ranging from 106

seconds (≈ 11 days) down to 102 seconds (< 2 minutes) for Q = 106 processes, matching the
numbers in [89].

http://perso.ens-lyon.fr/aurelien.cavelan/replication.zip
http://perso.ens-lyon.fr/aurelien.cavelan/replication.zip
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7.7.2 Impacts of MTBE and checkpoint cost

Figure 7.1 presents the impact of the MTBE on the efficiency of both duplication and triplica-
tion for three different checkpoint costs, but using the same value α = 10−6 for the sequential
fraction of the application (see next section for the impact of varying α). The first row of plots
is obtained with a cost of 30 minutes (i.e. c = 1, 800, d = 0), the second row with a cost of
60 seconds (i.e. c = 60, d = 0), and the last row with c = 0, d = 107, which correspond to
a checkpoint cost of 20 seconds for duplication with Q

2
processes and 30 seconds for triplica-

tion with Q
3

processes. In addition to the efficiency, we provide the average number of errors
and recoveries per million hours of work, the optimal checkpointing period Topt(Popt) and the
optimal number of processes Popt.

Efficiency. First, we observe in the first column that the difference between the theoretical
efficiency and the simulated efficiency remains small (< 5% absolute difference), which shows
the accuracy of the first-order approximation. Then, with very few errors (MTBE = 106),
we observe that duplication is always better than triplication. This is as expected, since the
maximum efficiency for duplication is 0.5 (assuming α = 0 and no error), while the maximum
efficiency for triplication is 0.33. However, as the MTBE decreases, triplication becomes
more attractive and eventually outperforms duplication. With a checkpoint cost of 30 minutes
(first row), the MTBE required is around 28 hours for process triplication to win and 20 hours
for group triplication to win. With smaller checkpoint costs, such as 60 seconds (second row)
and 30 seconds (third row), checkpoints can be more frequent and the MTBE required for
triplication to win is pushed down to a couple of hours and a couple of minutes, respectively.

Number of errors and recoveries. The second column presents the number of errors and the
corresponding number of recoveries per million hours of work. The number of errors is always
higher than the number of recoveries, because multiple errors can occur during a period (before
the checkpoint, which is the point of detection), causing a single recovery. At MTBE = 102,
almost half of the errors that occurred with duplication were actually hidden behind another
error. Even more errors were hidden with group triplication, since one more error (in a different
replica) is required to cause a recovery. Finally, (almost) all errors were hidden with process
replication, which is able to handle many errors, as long as they strike in different processes.

Optimal checkpointing period. The third column shows the optimal length of the pattern. In
order to cope with the increasing number of errors and recoveries, the length of the optimal
period becomes smaller. Note that the length of the period for group triplication is comparable
to that for duplication, around one day when MTBE = 106 down to a couple of minutes when
MTBE = 102. However, the length of the pattern for process triplication is always higher by
several orders of magnitude, from more than 10 days when MTBE = 106 down to a couple of
hours when MTBE = 102.

Optimal number of processes. With α = 10−6, the application has ample parallelism, so the
optimal number of processes to use is always Q

2
= 5 · 105 for duplication and Q

3
≈ 3.3 · 105

for triplication, except when MTBE = 102 and c = 1, 800, where the optimal number of
processes for duplication is≈ 3 ·105 and the optimal number of processes for group triplication
is ≈ 2 · 105.
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Figure 7.1: Impact of System MTBE on the efficiency with c=1, 800, d=0 (top), c=60, d=0
(middle), c=0, d=107 (bottom) and α=10−6.

7.7.3 Impact of sequential fraction (Amdahl)

Figure 7.2 presents two additional simulation results for α = 10−7 and α = 10−5. With a small
fraction of sequential work (left plots), the efficiency is improved (≈ 85% of the maximum
efficiency for duplication and ≈ 95% for triplication at MTBE = 106), and both duplication
and triplication use all processes available. On the contrary, with a higher sequential fraction
of work (right plots), the efficiency drops (< 20% of the maximum efficiency for duplication
and < 30% for triplication at MTBE = 106), and using more processes does not improve the
efficiency and only contributes to increasing the number of errors. Therefore, these results sug-
gest that even when using replication or triplication, there comes a point where it is no longer
beneficial to use all available processes. In this example, when MTBE = 102, duplication and
group triplication would use fewer than 2 · 105 processes (one fifth of the available resources).
Process triplication, on the other hand, still utilizes all the resources and outperforms the other
two schemes in terms of the efficiency across the whole range of system MTBE.

7.7.4 Impact of number of processes

Figure 7.3 shows the impact of the number of processes on the simulated efficiency of different
replication scenarios. In addition, we also show (as big dots) the theoretical efficiency obtained
with the optimal number of processes from Theorems 25, 26 and 29. By varying the number
of processes, we find that the simulated optimum (that yields the best efficiency) matches our
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Figure 7.2: Impact of sequential fraction (in Amdahl’s Law) on efficiency and optimal number
of processes with α=10−7 (left) and α=10−5 (right).

theoretical optimal number of processes closely. We can also see that process triplication scales
very well with increasing number of processes. As opposed to group triplication, which has to
recover from a checkpoint if just two errors strike in two different replicas, process triplication
benefits from the additional process: from a resilience point of view, each process acts as a
buffer to handle one more error; in other words, the probability that two errors strike the two
replicas of the same process decreases, thereby improving the efficiency.
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Figure 7.3: Impact of the number of processes on the efficiency with MTBE = 104 (left),
MTBE = 103 (right), Q = 106, c = 1n800, d = 0, and α = 10−5.

7.7.5 Summary

Results suggest that duplication is more efficient than triplication for high MTBE (e.g. 105

seconds for C = 30 minutes). If process triplication is available, then it is always more efficient
for smaller MTBE: its efficiency remains stable despite the increasing number of failures. If
process triplication is not available, we show that group triplication is slightly more efficient
than duplication for small MTBE, but the gain is small. Furthermore, the impact of the se-
quential fraction of work α (in Amdahl’s Law) is twofold: it limits the efficiency (e.g. 15% of
the maximum with α = 10−5 for for both duplication and triplication), and it is a major factor
in limiting the optimal number of processes (e.g. one tenth of the platform with α = 10−5 and
Q = 106 at MTBE = 102).
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7.8 Conclusion

Silent-errors represent a major threat to the HPC community. In the absence of application-
specific detectors, replication is the only solution. Unfortunately, it comes with high cost: by
definition, the efficiency is upper-bounded by 0.5 for duplication, and by 0.333 for triplication.
Are these upper bounds likely to be achieved? If yes, it means that duplication should always
be preferred to triplication. If not, it means that in some scenarios, the striking of errors is so
frequent that duplication, and in particular group duplication, is not the right choice.

The major contribution of this chapter is to provide an in-depth analysis of process and
group duplication, and of process and group triplication. Given a level n of replication, and
a set of application/platform parameters (speedup profile, total number or processes, process
MTBE, checkpoint time, etc), we derive closed-form formulas for the optimal period size and
optimal resource usage, and for the overall efficiency of the approach. This allows to choose
the best value of n. A set of simulations demonstrate the accuracy of the model and analysis.
Our computer-algebra sheets and simulator code are made publicly available, so that one can
instantiate their preferred scenario. Altogether, this work has laid the foundations for a better
understanding of the impact of silent errors on HPC computing at scale.



Conclusion

In this thesis, we have addressed several critical exascale challenges related to resilience. For
divisible applications in Part I, we have modeled and analyzed the impact of verifications and
partial verifications on the performance. We have proven that the optimal pattern does not
contain any imprecise detector (i.e., any detector that generates false-positives), and that using
only the detector with the highest accuracy-to-cost-ratio is a good approximation in practice.
Following these results, we have been able to extend previous work on checkpointing, and
most notably the formula obtained by Young and Daly (see Equation (2)) by combining both
checkpointing, verification, fail-stop and silent errors into optimal resilience patterns. In addi-
tion, we have proposed a new model to derive the optimal checkpointing period for multi-level
checkpointing in the presence of fail-stop errors only.

For workflow applications in Part II, our contribution is twofold. On the one hand, we have
proposed several sophisticated multi-level dynamic programming algorithms that compute the
optimal checkpoint positions for a linear chain of tasks in polynomial time. These results nicely
extend the original algorithm proposed by Toueg and Babaoglu for fail-stop errors, as we were
able to combine both fail-stop and silent errors with multi-level checkpointing and verifica-
tions. On the other hand, we have proposed a new approach to reduce the energy consumption
of independent tasks by aggressively lowering the supply voltage below the nominal voltage,
thereby introducing timing errors. Based on a formal model of timing errors, we have provided
an optimal level algorithm to schedule independent tasks, using verifications to both detect and
correct errors, and we have proven its global optimality when voltage switching costs are linear.

Furthermore, we have extended our analysis to compute the optimal number of processors
in Part III. We have provided the exact expression for the expected execution time of a pattern,
and closed-form first-order approximation formulas to compute the optimal checkpointing pe-
riod T ∗ and optimal number of processors P ∗ when the application speedup profile obeys Am-
dahl’s law. In addition, these results are the first that analytically establish the relationship
between P ∗ and T ∗ as a function of the system MTBF, and they offer new insights into the
relationships of Amdhal’s law and the Young/Daly approximation formula. Finally, we have
studied group replication and process replication as error detection and correction mechanisms.
Applying the previous approach to derive the optimal number of processors, we were able to
derive closed-form formulas for both the optimal period size and optimal resource usage. This
allows to choose the best level of replication (duplication, triplication, or more).

Altogether, we have faced a number of difficulties. When it comes to deriving optimal
algorithms and exact formulas, we have often resorted to first or second order approximations
with respect to the error rate, which is valid as long as the other resilience parameters are large
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in front of this rate. In particular, we have been able to validate our results with an exhaustive
set of simulations, showing the accuracy of our models, and comparing our results to the state-
of-the-art when it was possible.

Perspectives and future work
In the short term, we plan to generalize the results obtained for replication to address interme-
diate replication types, such as node replication or thread replication, and by including fail-stop
errors into the picture.

Then, a possible direction is to assess the usefulness of replication when applied to applica-
tion workflows. Indeed, one can choose to replicate some tasks in order to increase the reliabil-
ity of the execution. However, replication is expensive and it may not be necessary to replicate
all the tasks. The problem is then to decide which task to replicate in order to maximize the
performance.

In the long term, an interesting future direction is to assess the usefulness of our approach
for linear chains of tasks when applied to general application workflows. The problem gets
much more challenging, even in the simplified scenario where each task requires the entire
platform to execute. In fact, in this simplified scenario, it is already NP-hard to decide which
task to checkpoint in a simple join graph (n−1 source tasks and a common sink task), with only
fail-stop errors striking (hence a single level of checkpoint and no verification at all) [2]. Still,
heuristics are urgently needed to address this problem, with several error sources and several
checkpoint and verification types, if we are to deploy general HPC workflows efficiently at
scale.



Conclusion

Dans cette thèse, nous avons adressé plusieurs aspects critiques de la recherche Exascale sur
la résilience. Pour les applications divisibles dans la Partie I, nous avons modélisé et analysé
l’impact des vérifications garanties et des vérifications partielles sur la performance. Nous
avons prouvé que le schéma de résilience optimal ne contient pas de détecteurs imprécis (c’est
à dire qui créer des faux-positifs), et que utiliser seulement le détecteur avec le plus grand
accuracy-to-cost-ratio est une bonne approximation en pratique. A partir de ces résultats, nous
avons été capable d’étendre les travaux précédents sur les checkpoints, et plus particulièrement
la formule de Young et Daly (voir l’Equation 2) en combinant checkpoints, vérifications, pannes
et erreurs silencieuses dans un même schéma de résilience. Nous avons également proposé un
nouveau modèle afin de dériver la période de optimale de checkpoint avec plusieurs niveaux en
présence de pannes seulement.

Pour les applications type workflows dans la Partie II, notre contribution est double. D’un
côté, nous avons proposé plusieurs algorithmes sophistiqués à base de programmation dy-
namique afin de calculer la position optimale des checkpoints pour une chaîne de tâche en
temps polynomial. Ces résultats étendent l’algorithme original proposé par Toueg et Babaoglu
pour les erreurs de type pannes, puisque nous avons été capable de combiner à la fois les pannes
et les erreurs silencieuses, les checkpoints et les vérifications. D’autre part, nous avons proposé
une nouvelle approche pour réduire la consommation d’énergie pour l’exécution de tâches in-
dépendantes en réduisant le voltage de manière drastique, introduisant dans le même temps des
erreurs de synchronisation. Basé sur une définition formelle des erreurs de synchronisation,
nous avons proposé un algorithme à niveaux optimal pour ordonnancer des tâches indépen-
dantes, en utilisant des vérifications pour à la fois détecter et corriger les erreurs, et nous avons
prouver son optimalité globale quand le coût de changement de voltage est linéaire.

En outre, nous avons ensuite étendu notre analyse pour calculer le nombre optimal de pro-
cesseurs dans la Partie III. Nous avons proposé une expression exacte pour calculer l’espérance
du temps d’exécution d’un schéma de résilience, ainsi que des formes closes, en utilisant une
approximation au premier ordre, pour calculer la période de checkpoint optimale T ∗ et le nom-
bre optimal de processeurs P ∗ quand le profile d’accélération de l’application obéit à la loi
d’Amdahl. Ces résultats sont les premiers à établir de manière formelle un lien entre P ∗ et
T ∗ en fonction du MTBF. Enfin, nous avons étudié la réplication de groupe et la réplication
de processus comme mécanismes de détection et de correction. En appliquant les approches
précédentes pour dériver le nombre optimal de processeurs. Nous avons été capable de dériver
des formes closes pour à la fois la taille de la période et l’utilisation des ressources. Cela nous
a permis de déterminer le meilleur niveau de réplication (duplication, triplication, ou plus).
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Finalement, nous avons fait face à un certain nombre de difficultés. Lorsque avons du
dériver des formules et les algorithmes optimaux, nous avons souvent eu recourt à une approxi-
mation au premier ou au deuxième ordre, par rapport au taux d’erreurs, ce qui est valide tant les
autres paramètres de résilience sont larges devant le taux d’erreurs. En particulier, nous avons
été capable de valider nos résultats avec un jeu de simulations exhaustif, montrant la précision
de nos modèles, et en comparant avec l’état de l’art quand cela est possible.

Perspectives et travail future
A court terme, nous prévoyons de généraliser les résultats pour la réplication afin d’adresser des
types de réplication intermédiaires, comme la réplication de nuds ou de threads, et en incluant
à la fois les pannes et les erreurs silencieuses dans l’analyse.

Ensuite, une direction possible est d’évaluer l’utilité de la réplication quand elle est ap-
pliquée à des applications type workflows. En effet, on peut choisir de répliquer quelques
tâches afin d’améliorer la fiabilité de l’exécution. Cependant, la réplication est coûteuse et il
n’est peut être pas nécessaire de répliquer toutes les tâches. Le problème est alors de décider
quelles tâches il faut répliquer pour maximiser les performances.

A long terme, une direction intéressante est l’évaluation de notre approche pour des chaînes
de tâches lorsque elle est appliquée à des graphes de tâches. Le problème devient beaucoup plus
difficile, même dans un scénario simple où chaque tâche s’exécute sur toute la plateforme. En
fait, dans ce scénario simplifié, décider quelle tâche doit être précédée d’un checkpoint dans un
simple graphe de type join (n− 1 sources et un seul puit commun) avec seulement des erreurs
de type panne (un seul type de checkpoint et pas de vérification) est déjà un problème NP-
difficile. Pourtant, des heuristiques sont nécessaires pour adresser ce problème, avec plusieurs
types d’erreurs et de vérifications, si nous voulons déployer des workflows de manière efficace
en passant à l’échelle.



Bibliography
[1] G. Amdahl. “The validity of the single processor approach to achieving large scale com-

puting capabilities.” In: AFIPS Conference Proceedings. Vol. 30. AFIPS Press, 1967,
pp. 483–485.

[2] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. “Scheduling computational workflows
on failure-prone platforms.” In: 17th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM’15). 2015.

[3] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni. “On the combina-
tion of silent error detection and checkpointing.” In: Proceedings of the 19th IEEE Pa-
cific Rim International Symposium on Dependable Computing (PRDC). 2013, pp. 11–
20.

[4] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni. “Checkpointing algorithms and fault
prediction.” In: J. Parallel and Distributed Computing 74.2 (2014), pp. 2048–2064.

[5] A. Avizienis, J. Laprie, B. Randell, and C. E. Landwehr. “Basic Concepts and Taxon-
omy of Dependable and Secure Computing.” In: IEEE Trans. Dependable Sec. Comput.
1.1 (2004), pp. 11–33.

[6] P. Balaprakash, L. A. B. Gomez, M.-S. Bouguerra, S. M. Wild, F. Cappello, and P. D.
Hovland. “Analysis of the Tradeoffs Between Energy and Run Time for Multilevel
Checkpointing.” In: Proc. PMBS’14. 2014.

[7] N. Bansal, T. Kimbrel, and K. Pruhs. “Speed Scaling to Manage Energy and Tempera-
ture.” In: Journal of the ACM 54.1 (2007), pp. 1–39.

[8] L. Bautista Gomez and F. Cappello. “Detecting and Correcting Data Corruption in
Stencil Applications through Multivariate Interpolation.” In: Proceedings of the 1st In-
ternational Workshop on Fault Tolerant Systems. FTS’15. Chicago, USA: IEEE, 2015.

[9] L. Bautista Gomez and F. Cappello. “Detecting Silent Data Corruption Through Data
Dynamic Monitoring for Scientific Applications.” In: Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP
’14. Orlando, Florida, USA: ACM, 2014, pp. 381–382.

[10] L. Bautista Gomez and F. Cappello. “Detecting Silent Data Corruption Through Data
Dynamic Monitoring for Scientific Applications.” In: SIGPLAN Notices 49.8 (2014),
pp. 381–382.

[11] L. Bautista Gomez and F. Cappello. “Exploiting Spatial Smoothness in HPC Applica-
tions to Detect Silent Data Corruption.” In: Proceedings of the 17th IEEE International
Conference on High Performance Computing and Communications. HPCC’15. New
York, USA: IEEE, 2015.

205



206 APPENDIX . BIBLIOGRAPHY

[12] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and S. Mat-
suoka. “FTI: High Performance Fault Tolerance Interface for Hybrid Systems.” In:
Proc. SC’11. 2011.

[13] A. Benoit, S. K. Raina, and Y. Robert. “Efficient checkpoint/verification patterns.” In:
The International Journal of High Performance Computing Applications (IJHPCA)
31.1 (2017), pp. 52–65.

[14] A. R. Benson, S. Schmit, and R. Schreiber. “Silent error detection in numerical time-
stepping schemes.” In: Int. J. High Performance Computing Applications DOI: 10.1177/1094342014532297
(2014).

[15] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. “Lightweight Silent
Data Corruption Detection Based on Runtime Data Analysis for HPC Applications.”
In: Proceedings of The ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC). HPDC ’15. 2015.

[16] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. “Algorithm-based fault tolerance
applied to high performance computing.” In: Journal of Parallel and Distributed Com-
puting 69.4 (2009), pp. 410–416. ISSN: 0743-7315.

[17] G. Bosilca et al. “Unified model for assessing checkpointing protocols at extreme-
scale.” In: Concurrency and Computation: Practice and Experience (2013).

[18] S. Boyd and L. Vandenberghe. Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004. ISBN: 0521833787.

[19] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. “Fault-tolerant iterative
methods via selective reliability.” In: ArXiv e-prints (2012).

[20] A. G. Bromley. “Charles Babbage’s Analytical Engine, 1838.” In: IEEE Annals of the
History of Computing 4.3 (1982), pp. 196–217.

[21] G. Bronevetsky and B. de Supinski. “Soft error vulnerability of iterative linear algebra
methods.” In: Proceedings of the International Conference on Supercomputing (ICS).
2008, pp. 155–164.

[22] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu,
J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. “Power-Aware Microarchi-
tecture: Design and Modeling Challenges for Next-Generation Microprocessors.” In:
IEEE Micro 20.6 (2000), pp. 26–44.

[23] F. Cappello, E. M. Constantinescu, P. D. Hovland, T. Peterka, C. Phillips, M. Snir, and
S. M. Wil. Improving the trust in results of numerical simulations and scientific data
analytics. White paper MCS-TM-352. ANL, 2015.

[24] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. “Toward Exascale
Resilience.” In: Int. Journal of High Performance Computing Applications 23.4 (2009),
pp. 374–388.

[25] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “Toward Exascale
Resilience: 2014 update.” In: Supercomputing frontiers and innovations 1.1 (2014).



207

[26] H. Casanova, M. Bougeret, Y. Robert, F. Vivien, and D. Zaidouni. “Using group repli-
cation for resilience on exascale systems.” In: Int. Journal of High Performance Com-
puting Applications 28.2 (2014), pp. 210–224.

[27] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. “On the impact of process replica-
tion on executions of large-scale parallel applications with coordinated checkpointing.”
In: Future Generation Comp. Syst. 51 (2015), pp. 7–19.

[28] K. M. Chandy and L. Lamport. “Distributed Snapshots: Determining Global States of
Distributed Systems.” In: ACM Transactions on Computer Systems 3.1 (1985), pp. 63–
75.

[29] J.-J. Chen and C.-F. Kuo. “Energy-Efficient Scheduling for Real-Time Systems on Dy-
namic Voltage Scaling (DVS) Platforms.” In: Proc. Int. Works. on Real-Time Comput-
ing Systems and Applications. 2007.

[30] Z. Chen. “Online-ABFT: An online algorithm based fault tolerance scheme for soft
error detection in iterative methods.” In: Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). 2013, pp. 167–176.

[31] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz. “Application-Level Fault
Tolerance in the Orbital Thermal Imaging Spectrometer.” In: Proceedings of the 10th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04).
Papeete, Tahiti, French Polynesia, 2004, pp. 43–48.

[32] E. Ciocca, I. Koren, and C. M. Krishna. “Determining acceptance tests for application-
level fault detection.” In: Proceedings of the 2nd ASPLOS EASY Workshop. 2002,
pp. 47–53.

[33] R. Cohen and L. Katzir. “The Generalized Maximum Coverage Problem.” In: Inf. Pro-
cess. Lett. 108.1 (2008), pp. 15–22.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2001.

[35] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P. Walters. “Program-
ming Models and Development Software for a Space-Based Many-Core Processor.” In:
4th Int. Conf. onon Space Mission Challenges for Information Technology. IEEE, 2011,
pp. 95–102.

[36] J. T. Daly. “A higher order estimate of the optimum checkpoint interval for restart
dumps.” In: Future Generation Comp. Syst. 22.3 (2006), pp. 303–312.

[37] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. “Optimization of multi-
level checkpoint model for large scale HPC applications.” In: Proc. IPDPS’14. 2014.

[38] S. Di and F. Cappello. “Adaptive Impact-Driven Detection of Silent Data Corruption
for HPC Applications.” In: IEEE Trans. Parallel Distributed Systems (2016).

[39] S. Di, Y. Robert, F. Vivien, and F. Cappello. “Toward an Optimal Online Checkpoint
Solution under a Two-Level HPC Checkpoint Model.” In: IEEE Trans. Parallel & Dis-
tributed Systems (2016).



208 APPENDIX . BIBLIOGRAPHY

[40] J. Dongarra and et al. “The International Exascale Software Project Roadmap.” In: Int.
J. High Perform. Comput. Appl. 25.1 (2011), pp. 3–60.

[41] J. Dongarra et al. “The International Exascale Software Project: a Call To Cooperative
Action By the Global High-Performance Community.” In: Int. J. High Performance
Computing Applications 23.4 (2009), pp. 309–322.

[42] J. Dongarra, T. Hérault, and Y. Robert. “Performance and reliability trade-offs for the
double checkpointing algorithm.” In: Int. J. of Networking and Computing 4.1 (2014),
pp. 23–41.

[43] M. Dow. “Explicit inverses of Toeplitz and associated matrices.” In: ANZIAM J. 44.E
(2003), E185–E215.

[44] J. Elliott, M. Hoemmen, and F. Mueller. “Evaluating the Impact of SDC on the GMRES
Iterative Solver.” In: Proceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. IPDPS ’14. 2014, pp. 1193–1202.

[45] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. “Combining
partial redundancy and checkpointing for HPC.” In: Proceedings of the IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS). 2012, pp. 615–626.

[46] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. “A survey of rollback-
recovery protocols in message-passing systems.” In: ACM Computing Survey 34 (3
2002), pp. 375–408.

[47] E. N. Elnozahy and J. Plank. “Checkpointing for Peta-Scale Systems: A Look into
the Future of Practical Rollback-Recovery.” In: IEEE Transactions on Dependable and
Secure Computing 1.2 (2004), pp. 97–108.

[48] E. N. Elnozahy and J. Plank. “Checkpointing for peta-scale systems: a look into the
future of practical rollback-recovery.” In: IEEE Trans. Dependable and Secure Com-
puting 1.2 (2004), pp. 97–108.

[49] C. Engelmann, H. H. Ong, and S. L. Scorr. “The case for modular redundancy in large-
scale highh performance computing systems.” In: PDCN. IASTED, 2009.

[50] C. Engelmann and B. Swen. “Redundant execution of HPC applications with MR-
MPI.” In: PDCN. IASTED, 2011.

[51] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner.
“Razor: circuit-level correction of timing errors for low-power operation.” In: IEEE
Micro 24.6 (2004), pp. 10–20.

[52] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,
P. G. Bridges, and D. Arnold. “Evaluating the Viability of Process Replication Reli-
ability for Exascale Systems.” In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. Seattle, WA, 2011,
44:1–44:12.

[53] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. “Detec-
tion and correction of silent data corruption for large-scale high-performance comput-
ing.” In: Proc. SC’12. 2012, p. 78.



209

[54] F. Firouzi, M. E. Salehi, F. Wang, and S. M. Fakhraie. “An accurate model for soft
error rate estimation considering dynamic voltage and frequency scaling effects.” In:
Microelectronics Reliability 51.2 (2011), pp. 460–467.

[55] R. G. Gallager. Stochastic Processes: Theory for Applications. New York, NY, USA:
Cambridge University Press, 2014.

[56] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[57] R. Ge, X. Feng, and K. W. Cameron. “Performance-constrained distributed DVS schedul-
ing for scientific applications on power-aware clusters.” In: Proceedings of SC’05.
2005, p. 34.

[58] A. Geist. “How to kill a supercomputer: Dirty power, cosmic rays, and bad solder.” In:
IEEE Spectrum (2016).

[59] C. George and S. S. Vadhiyar. “ADFT: An Adaptive Framework for Fault Tolerance on
Large Scale Systems using Application Malleability.” In: Procedia Computer Science
9 (2012), pp. 166–175.

[60] D. Hakkarinen and Z. Chen. “Multilevel Diskless Checkpointing.” In: IEEE Transac-
tions on Computers 62.4 (2013), pp. 772–783.

[61] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello. “Modeling
and tolerating heterogeneous failures in large parallel systems.” In: Proc. ACM/IEEE
Supercomputing’11. ACM Press, 2011.

[62] T. Hérault and Y. Robert, eds. Fault-Tolerance Techniques for High-Performance Com-
puting. Computer Communications and Networks. Springer Verlag, 2015.

[63] K.-H. Huang and J. A. Abraham. “Algorithm-Based Fault Tolerance for Matrix Opera-
tions.” In: IEEE Trans. Comput. 33.6 (1984), pp. 518–528.

[64] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system design.” In:
SIGARCH Comput. Archit. News 40.1 (2012), pp. 111–122.

[65] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun. “Optimizing HPC Fault-Tolerant Environment:
An Analytical Approach.” In: Proc. ICPP’10. 2010.

[66] G. Karakonstantis and K. Roy. “Voltage over-scaling: A cross-layer design perspective
for energy efficient systems.” In: European Conference on Circuit Theory and Design
(ECCTD). 2011, pp. 548–551.

[67] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[68] P. Krause and I. Polian. “Adaptive voltage over-scaling for resilient applications.” In:
Design, Automation Test in Europe Conference Exhibition (DATE). 2011, pp. 1–6.

[69] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok. “VolpexMPI: An MPI Library for
Execution of Parallel Applications on Volatile Nodes.” In: 16th European PVM/MPI
Users’ Group Meeting. Springer-Verlag, 2009, pp. 124–133.



210 APPENDIX . BIBLIOGRAPHY

[70] G. Lu, Z. Zheng, and A. A. Chien. “When is Multi-version Checkpointing Needed?”
In: Proc. 3rd Workshop on Fault-tolerance for HPC at extreme scale (FTXS). 2013,
pp. 49–56.

[71] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu, R. Col-
well, W. Dally, J. Dongarra, et al. “Top ten exascale research challenges.” In: DOE
ASCAC subcommittee report (2014), pp. 1–86.

[72] R. E. Lyons and W. Vanderkulk. “The use of triple-modular redundancy to improve
computer reliability.” In: IBM J. Res. Dev. 6.2 (1962), pp. 200–209.

[73] E. Meneses, X. Ni, T. Jones, and D. Maxwell. “Analyzing the Interplay of Failures and
Workload on a Leadership-Class Supercomputer.” In: computing 2.3 (2015), p. 4.

[74] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. “Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System.” In: Proc. of the ACM/IEEE
SC Conf. 2010, pp. 1–11.

[75] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. “ACR: Automatic Checkpoint/Restart for
Soft and Hard Error Protection.” In: Proc. SC’13. ACM, 2013.

[76] T. O’Gorman. “The effect of cosmic rays on the soft error rate of a DRAM at ground
level.” In: IEEE Trans. Electron Devices 41.4 (1994), pp. 553–557.

[77] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R. Varela, R. Riesen, and P. C.
Roth. “Modeling the Impact of Checkpoints on Next-Generation Systems.” In: 24th
IEEE Conf. Mass Storage Systems and Technologies. IEEE, 2007.

[78] J. Plank, K. Li, and M. Puening. “Diskless checkpointing.” In: IEEE Trans. Parallel
Dist. Systems 9.10 (1998), pp. 972–986. ISSN: 1045-9219.

[79] F. Quaglia. “A Cost Model for Selecting Checkpoint Positions in Time Warp Parallel
Simulation.” In: IEEE Trans. Parallel Dist. Syst. 12.4 (2001), pp. 346–362.

[80] S. Ramasubramanian, S. Venkataramani, A. Parandhaman, and A. Raghunathan. “Relax-
and-Retime: A methodology for energy-efficient recovery based design.” In: Design
Automation Conference (DAC). 2013, pp. 1–6.

[81] A. Randall. “The Eckert tapes: Computer pioneer says ENIAC team couldnt afford to
fail–and didnt.” In: Computerworld 40.8 (2006), p. 18.

[82] M. W. Rashid and M. C. Huang. “Supporting highly-decoupled thread-level redun-
dancy for parallel programs.” In: 14th Int. Conf. on High-Performance Computer Ar-
chitecture (HPCA). IEEE, 2008, pp. 393–404.

[83] N. B. Rizvandi, A. Y. Zomaya, Y. C. Lee, A. J. Boloori, and J. Taheri. “Multiple Fre-
quency Selection in DVFS-Enabled Processors to Minimize Energy Consumption.” In:
Energy-Efficient Distributed Computing Systems. Ed. by A. Y. Zomaya and Y. C. Lee.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.

[84] R. Rojas and U. Hashagen. The First Computers: History and Architectures. History of
computing. MIT Press, 2002. ISBN: 9780262681377.



211

[85] P. Sao and R. Vuduc. “Self-stabilizing Iterative Solvers.” In: Proceedings of the Work-
shop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA).
2013.

[86] B. Schroeder and G. A. Gibson. “Understanding Failures in Petascale Computers.” In:
Journal of Physics: Conference Series 78.1 (2007).

[87] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. “Fault Tolerant Preconditioned
Conjugate Gradient for Sparse Linear System Solution.” In: Proceedings of the ACM
International Conference on Supercomputing (ICS). 2012, pp. 69–78.

[88] L. Silva and J. Silva. “Using two-level stable storage for efficient checkpointing.” In:
IEE Proceedings - Software 145.6 (1998), pp. 198–202.

[89] M. Snir and et al. “Addressing Failures in Exascale Computing.” In: Int. J. High Per-
form. Comput. Appl. 28.2 (2014), pp. 129–173.

[90] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and
S. Gurumurthi. “Memory errors in modern systems: The good, the bad, and the ugly.”
In: ACM SIGPLAN Notices. Vol. 50. 4. ACM. 2015, pp. 297–310.

[91] J. Stearley, K. B. Ferreira, D. J. Robinson, J. Laros, K. T. Pedretti, D. Arnold, P. G.
Bridges, and R. Riesen. “Does partial replication pay off?” In: FTXS. IEEE, 2012.

[92] Top500 Supercomputer Sites. http://www.top500.org.

[93] S. Toueg and Ö. Babaolu. “On the Optimum Checkpoint Selection Problem.” In: SIAM
J. Comput. 13.3 (1984).

[94] N. H. Vaidya. “A Case for Two-level Distributed Recovery Schemes.” In: SIGMETRICS
Perform. Eval. Rev. 23.1 (1995), pp. 64–73.

[95] L. Wang, G. von Laszewski, J. Dayal, and F. Wang. “Towards Energy Aware Scheduling
for Precedence Constrained Parallel Tasks in a Cluster with DVFS.” In: Proceedings of
IEEE/ACM CCGRID. 2010.

[96] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. “Using Replication and Checkpointing
for Reliable Task Management in Computational Grids.” In: SC. ACM, 2010.

[97] J. W. Young. “A first order approximation to the optimum checkpoint interval.” In:
Comm. of the ACM 17.9 (1974), pp. 530–531.

[98] J. Yu, D. Jian, Z. Wu, and H. Liu. “Thread-level redundancy fault tolerant CMP based
on relaxed input replication.” In: ICCIT. IEEE, 2011.

[99] G. Zheng, L. Shi, and L. V. Kale. “FTC-Charm++: an in-memory checkpoint-based
fault tolerant runtime for Charm++ and MPI.” In: Cluster Computing (CLUSTER).
IEEE Computer Society, 2004, pp. 93–103.

[100] Z. Zheng and Z. Lan. “Reliability-aware scalability models for high performance com-
puting.” In: Cluster Computing. IEEE, 2009.

[101] Z. Zheng, L. Yu, and Z. Lan. “Reliability-Aware Speedup Models for Parallel Ap-
plications with Coordinated Checkpointing/Restart.” In: IEEE Trans. Computers 64.5
(2015), pp. 1402–1415.

http://www.top500.org


212 APPENDIX . BIBLIOGRAPHY

[102] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. “IBM Experi-
ments in Soft Fails in Computer Electronics.” In: IBM J. Res. Dev. 40.1 (1996), pp. 3–
18.

[103] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, and C. Mon-
trose. “Cosmic ray soft error rates of 16-Mb DRAM memory chips.” In: IEEE Journal
of Solid-State Circuits 33.2 (1998), pp. 246–252.



Publications6

Book Chapters

[P1] G. Aupy, A. Benoit, A. Cavelan, M. Fasi, Y. Robert, H. Sun, and B. Uçar. “Coping with
silent errors in HPC applications.” In: Emergent Computation. Ed. by A. Adamatzky.
Bristol, UK: Springer, 2016, pp. 269–292.

Articles in International Refereed Journals

[J1] L. Bautista-Gomez, A. Benoit, A. Cavelan, S. K. Raina, Y. Robert, and H. Sun. “Coping
with recall and precision of soft error detectors.” In: Journal of Parallel and Distributed
Computing 98 (2016), pp. 8–24.

[J2] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. “Towards Optimal Multi-
Level Checkpointing.” In: IEEE Transactions on Computers (2016).

[J3] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Assessing general-purpose algorithms
to cope with fail-stop and silent errors.” In: ACM Transactions on Parallel Computing
3.2 (2016), p. 13.

[J4] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Multi-level checkpointing and silent
error detection for linear workflows.” In: Journal of Computational Science (2017).

Articles in International Refereed Conferences

[C1] L. Bautista-Gomez, A. Benoit, A. Cavelan, S. K. Raina, Y. Robert, and H. Sun. “Which
verification for soft error detection?” In: International Conference on High Perfor-
mance Computing (HiPC). IEEE. 2015, pp. 2–11.

[C2] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Optimal resilience patterns to cope
with fail-stop and silent errors.” In: International Parallel and Distributed Processing
Symposium (IPDPS). IEEE. 2016, pp. 202–211.

[C3] A. Cavelan, J. Li, Y. Robert, and H. Sun. “When Amdahl Meets Young/Daly.” In: Clus-
ter Computing (CLUSTER). IEEE. 2016, pp. 203–212.

[C4] A. Cavelan, S. K. Raina, Y. Robert, and H. Sun. “Assessing the impact of partial veri-
fications against silent data corruptions.” In: International Conference on Parallel Pro-
cessing (ICPP). IEEE. 2015, pp. 440–449.

6Authors are listed in alphabetical order.

213



214 APPENDIX . PUBLICATIONS

[C5] A. Cavelan, Y. Robert, H. Sun, and F. Vivien. “Scheduling Independent Tasks with Volt-
age Overscaling.” In: Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE. 2015, pp. 32–41.

Articles in International Refereed Workshops

[W1] A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, and H. Sun. “Identifying
the right replication level to detect and correct silent errors at scale.” In: Proceedings of
the 7th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS). 2017.

[W2] A. Benoit, A. Cavelan, V. Le Fèvre, and Y. Robert. “Optimal checkpointing period with
replicated execution on heterogeneous platforms.” In: Proceedings of the 7th Workshop
on Fault Tolerance for HPC at eXtreme Scale (FTXS). 2017.

[W3] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. “A different re-execution
speed can help.” In: International Conference on Parallel Processing Workshops (ICPPW).
IEEE. 2016, pp. 250–257.

[W4] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Assessing General-Purpose Algorithms
to Cope with Fail-Stop and Silent Errors.” In: 7th International Workshop in Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS). 2014.

[W5] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Two-level checkpointing and verifi-
cations for linear task graphs.” In: International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE. 2016, pp. 1239–1248.

[W6] A. Cavelan, Y. Robert, H. Sun, and F. Vivien. “Voltage overscaling algorithms for
energy-efficient workflow computations with timing errors.” In: Proceedings of the 5th
Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS). ACM. 2015, pp. 27–
34.


	Introduction
	I Resilience Patterns
	Coping with Recall and Precision of Soft Error Detectors
	Introduction
	Related work
	Checkpoint versioning
	Process replication
	Application-specific techniques
	Analytics-based corruption detection
	Optimal strategies with guaranteed verifications

	Model
	Expected execution time of a pattern
	Properties of optimal pattern
	Optimal length of a pattern
	Usefulness of imprecise detectors
	Two key parameters
	Optimal positions of verifications

	Complexity
	Accuracy-to-cost ratio and rational solution
	NP-completeness
	Greedy algorithm and FPTAS

	Performance evaluation
	Simulation setup
	Scenario 1: Performance of different detectors
	Scenario 2: Impact of number of partial verifications
	Scenario 3: Impact of detector recall
	Scenario 4: Performance of greedy algorithm

	Conclusion

	Optimal Resilience Patterns with Fail-Stop and Silent Errors
	Introduction
	Model
	Failure model
	Two-level checkpointing
	Notation
	Objective

	Revisiting Young and Daly
	Optimal disk checkpointing interval
	Observations

	Optimal patterns
	Pattern PDM
	Pattern PDV
	Pattern PDMV
	Summary of results

	Errors in verifications, checkpoints and recoveries
	Performance evaluation
	Simulation setup
	Assessing resilience mechanisms on real platforms
	Weak scaling experiment
	Impact of error rates
	Summary

	Related work
	Checkpointing
	Silent error detection
	Optimization of computing patterns

	Conclusion

	Towards Optimal Multi-Level Checkpointing with Fail-Stop Errors
	Introduction
	Related work
	Computing the optimal pattern
	Assumptions
	Optimal two-level pattern
	Optimal k-level pattern
	Optimal subset of levels

	Simulations
	Simulation setup
	Assessing accuracy of first-order approximation
	Comparing performance of different approaches
	Summary of results

	Conclusion


	II Application Workflows
	Multi-level Checkpointing and Verification for Linear Workflows
	Introduction
	Memory checkpointing and verifications for silent errors
	Model
	With memory checkpoints only
	With memory checkpoints and guaranteed verifications
	With partial verifications

	Multi-level checkpointing for fail-stop errors
	Model
	Dynamic programming algorithm

	Dealing with both fail-stop and silent errors
	Performance evaluation
	Results for two-level checkpointing
	Results for multi-level checkpointing

	Related work
	Fail-stop errors
	Silent errors
	Linear workflows

	Conclusion

	Voltage Overscaling Algorithms for Energy-Efficient Workflow Computations
	Introduction
	Model
	Timing errors
	Notations
	Success and failure probabilities

	Examples
	Two voltages without Assumption 3
	Two voltages under Assumption 3

	Scheduling for a single task
	Scheduling for several tasks
	Scheduling algorithms and strategies
	Level algorithms
	Optimality result

	Simulations
	Comparing algorithms
	Matrix Multiplication on FPGA
	Synthetic data

	Conclusion


	III Resource Optimization
	When Amdahl Meets Young/Daly
	Introduction
	Related work
	Models and notations
	Optimal periodic checkpointing pattern
	Expected execution time of a pattern
	Limitation of first-order approximation
	Optimal checkpointing period for fixed processor count
	Optimal processor allocation and pattern parameters
	Discussions

	Experiments
	Simulation settings
	Simulation results

	Conclusion

	Identifying the Right Replication Level for Detecting and Correcting Silent Errors
	Introduction
	Related work
	Replication for fail-stop errors
	Silent error detection and correction

	Model
	Expected execution time
	Process replication
	Process duplication
	Process triplication
	General process replication

	Group replication
	Group duplication
	Group triplication
	General group replication

	Simulations
	Simulation setup
	Impacts of MTBE and checkpoint cost
	Impact of sequential fraction (Amdahl)
	Impact of number of processes
	Summary

	Conclusion

	Conclusion
	Bibliography
	Publications


