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Titre : APPROCHES PROBABILISTES ET BAYESIENNES NON PARAMETRIQUES POUR LES SYSTEMES
DE RECOMMANDATION ET LES RESEAUX

Résumé : Nous proposons deux nouvelles approches pour les systémes de recommandation et
les réseaux. Dans la premieére partie, nous donnons d’abord un apercu sur les systémes de re-
commandation avant de nous concentrer sur les approches de rang faible pour la complétion
de matrice. En nous appuyant sur une approche probabiliste, nous proposons de nouvelles
fonctions de pénalité sur les valeurs singuliéres de la matrice de rang faible. En exploitant
une représentation de modele de mélange de cette pénalité, nous montrons qu'un ensemble
de variables latentes convenablement choisi permet de développer un algorithme espérance-
maximisation afin d’obtenir un maximum a posteriori de la matrice de rang faible complétée.
L’algorithme résultant est un algorithme a seuillage doux itératif qui adapte de maniere ité-
rative les coefficients de réduction associés aux valeurs singuliéres. L’algorithme est simple a
mettre en ceuvre et peut s’adapter a de grandes matrices. Nous fournissons des comparaisons
numériques entre notre approche et de récentes alternatives montrant I'intérét de ’approche
proposée pour la complétion de matrice a rang faible. Dans la deuxiéme partie, nous présen-
tons d’abord quelques prérequis sur I’approche bayésienne non paramétrique et en particulier
sur les mesures complétement aléatoires et leur extension multivariée, les mesures compléte-
ment aléatoires composées. Nous proposons ensuite un nouveau modele statistique pour les
réseaux parcimonieux qui se structurent en communautés avec chevauchement. Le modéle est
basé sur la représentation du graphe comme un processus ponctuel échangeable, et généralise
naturellement des modéles probabilistes existants a structure en blocs avec chevauchement au
régime parcimonieux. Notre construction s’appuie sur des vecteurs de mesures completement
aléatoires, et possede des parameétres interprétables, chaque noeud étant associé un vecteur re-
présentant son niveau d’affiliation a certaines communautés latentes. Nous développons des
méthodes pour simuler cette classe de graphes aléatoires, ainsi que pour effectuer I'inférence a
posteriori. Nous montrons que ’approche proposée peut récupérer une structure interprétable
a partir de deux réseaux du monde réel et peut gérer des graphes avec des milliers de nceuds
et des dizaines de milliers de connections.

Mots-clés : systémes de recommandation, filtrage collaboratif, complétion de matrice de rang
faible, modéles probabilistes, espérance-maximisation, réseaux, graphes, parcimonie, comporte-
ment en loi de puissance, structure en communautés, méthodes bayésiennes non paramétriques,
mesures complétement aléatoires, Monte Carlo par chaine de Markov.

Title: PROBABILISTIC AND BAYESIAN NONPARAMETRIC APPROACHES FOR RECOMMENDER SYS-
TEMS AND NETWORKS

Abstract: We propose two novel approaches for recommender systems and networks. In the
first part, we first give an overview of recommender systems and concentrate on the low-rank
approaches for matrix completion. Building on a probabilistic approach, we propose novel pe-
nalty functions on the singular values of the low-rank matrix. By exploiting a mixture model
representation of this penalty, we show that a suitably chosen set of latent variables enables
to derive an expectation-maximization algorithm to obtain a maximum a posteriori estimate
of the completed low-rank matrix. The resulting algorithm is an iterative soft-thresholded al-
gorithm which iteratively adapts the shrinkage coefficients associated to the singular values.
The algorithm is simple to implement and can scale to large matrices. We provide numerical
comparisons between our approach and recent alternatives showing the interest of the pro-
posed approach for low-rank matrix completion. In the second part, we first introduce some
background on Bayesian nonparametrics and in particular on completely random measures
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(CRMs) and their multivariate extension, the compound CRMs. We then propose a novel sta-
tistical model for sparse networks with overlapping community structure. The model is based
on representing the graph as an exchangeable point process, and naturally generalizes existing
probabilistic models with overlapping block-structure to the sparse regime. Our construction
builds on vectors of CRMs, and has interpretable parameters, each node being assigned a vec-
tor representing its level of affiliation to some latent communities. We develop methods for
simulating this class of random graphs, as well as to perform posterior inference. We show
that the proposed approach can recover interpretable structure from two real-world networks
and can handle graphs with thousands of nodes and tens of thousands of edges.

Keywords: recommender systems, collaborative filtering, low-rank matrix completion, proba-
bilistic models, expectation maximization, networks, graphs, sparsity, power-law behavior, com-

munity structure, Bayesian nonparametrics, completely random measures, Markov chain Monte
Carlo.
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Résumeé substantiel

Introduction

Systemes de recommandation

Au cours des 20 derniéres années, les systémes de recommandation ont suscité un intérét crois-
sant. Ils sont complémentaires des moteurs de recherche traditionnels pour nous aider a gérer
la surcharge d’information a laquelle nous sommes confrontés depuis I’avénement de 1’ére nu-
mérique. Quel livre lire ? Quel film regarder ? Quel produit acheter ? Prendre de telles décisions
est de moins en moins facile pour un simple étre humain, car le nombre d’articles (items) dispo-
nibles est en constante augmentation et devient difficile a manipuler. Nous avons tous besoin
d’une sorte de filtrage de 'information pour distinguer les articles pertinents des non parti-
nents. Alors que les moteurs de recherche visent a répondre a des requétes spécifiques posées
par un utilisateur (user) qui sait a peu pres ce qu’il cherche, les systémes de recommandation
adoptent une approche différente. Ils tentent d’automatiser 'expérience de la découverte en
nous fournissant ce que nous voulons avant que nous le sachions. Un aspect fondamental est
que ces recommandations doivent étre personnalisées et traduire ainsi une bonne compréhen-
sion des préférences de 'utilisateur.

Il n’est pas étonnant que les systemes de recommandation aient attiré beaucoup d’atten-
tion dans les applications commerciales. Il est bien connu que la personnalisation améliore la
satisfaction du client et qu’elle est donc un levier pour augmenter les taux de conversion. Les
plateformes de commerce électronique comme Amazon.com fournissent une grande diversité
de recommandations en ligne telles que « les clients qui ont acheté ce produit ont également
acheté » ou des recommandations de co-achat personnalisées basées sur le contenu de votre
panier, mais aussi des listes de recommandations envoyées par courriel (Linden et al., 2003).
On peut prédendre qu'une grande part de leur succes est liée a la facon dont les recomman-
dations sont intégrées dans presque chaque partie du processus d’achat. Au-dela de la vente
de produits, les systémes de recommandation s’appliquent a un large éventail de domaines, en
particulier a tous les types de contenus multimédia : articles de blog/actualité/recherche, fa-
voris, livres, films, émissions de télévision, musique, etc. ou applications mobiles, entre autres.

En particulier, la recommandation de films a été popularisée par le prix Netflix (Bennett
and Lanning, 2007), un concours organisé par Netflix, une multinationale américaine spécia-
lisée dans la vidéo a la demande. L’objectif était de prédire les notes attribuées aux films par
les utilisateurs, en se basant uniquement sur un ensemble de notes passées, sans aucune autre
information sur les utilisateurs ou les films. En 2009, le grand prix de 1 000 000 $ a été remporté
par I’équipe BellKor’s Pragmatic Chaos, qui a amélioré de plus de 10 % les performances pré-
dictives de I'algorithme de Netflix (Koren, 2009; Piotte and Chabbert, 2009). Le développement
des systémes de recommandation, leur évaluation et leur application a divers problémes du
monde réel est un domaine de recherche tres actif. Tout d’abord développés dans le domaine
de la recherche d’information, ils sont maintenant a I'intersection de nombreux domaines de
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recherche, dont I'informatique, ’apprentissage automatique (machine learning) et les statis-
tiques.

Les systéemes de recommandation prédisent les préférences des utilisateurs a partir des
« données massives » (big data) recueillies sur potentiellement plusieurs millions d’utilisateurs
et d’articles. Le « contenu » (au sens large : catégorie, description, etc.) de I'article ainsi que
les données démographiques des utilisateurs sont des informations importantes, mais les don-
nées les plus précieuses sont le feedback des utilisateurs sur les articles. Ce dernier peut étre
explicite ou implicite. Le feedback explicite est donné par les utilisateurs sous forme de note ou
d’étiquette (tag) qui expriment de maniere explicite I'intérét positif ou négatif de I'utilisateur
pour cet article. Les données de ce type sont généralement incompletes. L’ensemble de toutes
les paires utilisateur-article étiquetées sont considérées comme données observées alors que
tout le reste est manquant. En revanche, le feedback implicite est recueilli a partir du compor-
tement des utilisateurs tel que leurs clics, pages vues ou les événements d’achat. Ce type de
feedback est moins informatif que des notes explicites mais est implicitement lié aux préfé-
rences sous-jacentes de I'utilisateur. Un utilisateur est plus susceptible de cliquer ou acheter
les articles qu’il aime ; en revanche une absence d’événement est une information plus faible
puisque I'utilisateur pourrait simplement ne pas connaitre I'existence de I'article. Les données
de type implicite sont complétement observées.

Réseaux

L’analyse, la compréhension et la modélisation de réseaux complexes sont étroitement liées
au domaine des systémes de recommandation (Newman, 2003a, 2009). Les données de réseau
apparaissent dans un large éventail de domaines tels que les réseaux sociaux, les réseaux de
collaboration, les réseaux de télécommunication, les réseaux biologiques, les réseaux alimen-
taires, et sont un moyen utile de représenter les interactions entre des ensembles d’objets. Un
réseau peut étre représenté par un graphe composé d'un ensemble de nceuds, ou de sommets,
avec des connexions, appelées arétes ou liens, entre eux.

Le plus souvent et a moins d’indication contraire, graphe signifie « graphe simple non
orienté ». Un graphe non orienté est un graphe dans lequel les arétes n’ont pas d’orientation,
ce qui signifie que I'aréte {i, j} reliant le nceud i au noeud j est identique a I'aréte {j, i} et est
représentée par une paire non ordonnée. En revanche, les arétes d’'un graphe orienté ont une
orientation, c’est-a-dire que les arétes (i, j) et (j, i) sont distinctes et sont représentées par une
paire ordonnée. Dans un multigraphe, par opposition a un graphe simple, on autorise plusieurs
arétes a relier la méme paire de noeuds et qu'un nceud soit connecté a lui-méme par une boucle.

Un graphe peut étre tracé sur le plan en utilisant par exemple des cercles pour les noeuds
et des lignes (fléchées pour les graphes orientés) entre eux pour les arétes. Il peut également
étre représenté par sa matrice d’adjacence ; voir la Figure 1 pour une illustration. La matrice
d’adjacence d’'un graphe est une matrice carrée (z;;) ou les lignes et les colonnes représentent
le méme ensemble de nceuds et chaque entrée z;; représente la connexion entre le nceud i et
le nceud j. L’entrée z;; est égale a un si i est connecté a j et zéro sinon et la diagonale contient
d’éventuelles boucles. La matrice d’adjacence est symétrique si le graphe est non orienté et
non symétrique s’il est orienté.

La densité du graphe est la proportion de uns dans la matrice d’adjacence, ou le nombre
d’arétes divisé par le nombre total d’arétes potentielles. Il s’agit d'une approximation de la
probabilité de connexion de deux nceuds aléatoires. La distinction entre les graphes denses et
creux n’est pas claire, mais elle peut étre définie en observant la croissance du nombre d’arétes
par rapport au nombre de nceuds. Nous utiliserons la qualification de graphe dense lorsque
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le nombre d’arétes croit quadratiquement avec le nombre de nceuds, et creux s’il croit sous-
quadratiquement. De nombreux réseaux du monde réel sont considérés comme creux, c’est
par conséquent un aspect important a capturer dans les modeles de réseau.

Pour les graphes simples, le degré d'un nceud est le nombre d’arétes qui lui sont connectées
et par extension le nombre de noeuds qui lui sont adjacents. Une caractéristique importante
d’un graphe qui est étroitement liée a la densité est sa distribution des degrés, c’est-a-dire la
loi de probabilité du degré d’'un nceud aléatoire du graphe Pr(d = k) pour k € N. 1l a été
observé que de nombreux réseaux réels présentent une distribution des degrés empirique a
queue lourde, c’est-a-dire qu’'une grande majorité de nceuds ont un tres faible degré, tandis
qu’un petit nombre de noeuds, appelés « hubs », ont un degré élevé. Il est intéressant de noter
que certains réseaux réels, tels que le World Wide Web, ont une distribution des degrés qui suit
approximativement une loi de puissance (Newman, 2005; Clauset et al., 2009)

Pr(d = k) o« k™7

ou y > 0 est une constante. Ces réseaux sont qualifiés de réseaux sans échelle et leur analyse
et leur modélisation sont le sujet d'une attention particuliere.

Au-dela des propriétés précédentes sur 1’échelle globale des réseaux, une autre caracté-
ristique commune des réseaux complexes est la structure communautaire, c’est-a-dire que les
neceuds du réseau peuvent étre regroupés en ensembles de noeuds (se chevauchant potentielle-
ment) de telle sorte que chaque ensemble de nceuds soit plus densément intra-connecté. Cette
propriété est basée sur le principe de I’assortativité, c’est-a-dire que des paires de nceuds sont
plus susceptibles d’étre connectées si les deux nceuds sont membres des mémes communau-
tés et moins susceptibles d’étre connectées s’ils ne partagent pas les mémes communautés. La
détection des communautés est essentielle pour acquérir une connaissance de la topologie du
réseau ainsi que pour la prédiction des liens.

Jusqu’a présent, nous avons considéré des graphes unipartis ou des connexions peuvent
exister entre tous les noeuds d’un seul et méme type. En revanche, un graphe biparti est un
graphe dans lequel les nceuds peuvent étre divisés en deux ensembles, A et B, de sorte que
seules les connexions entre deux nceuds d’ensembles différents sont autorisées. Les données
des systémes de recommandation peuvent étre considérées comme une sorte de réseau biparti
non orienté entre deux types de nceuds : les utilisateurs et les articles. Les données de feedback
explicite sont considérées comme des pondérations ou des étiquettes sur les arétes; voir la
Figure 2 pour une illustration. Faire des recommandations correspond alors a prédire des liens
dans le réseau biparti.

Comme dans les réseaux simples, les comportements de parcimonie (réseaux creux) et en
loi de puissance sont également présents dans les systemes de recommandation. La plupart des
vues, clics ou achats se concentrent généralement sur quelques articles « blockbusters » alors
que la grande majorité des articles restants, appartenant a la « longue traine », ont une tres
faible popularité. La modélisation de ces comportements est cruciale puisque les systémes de
recommandation sont généralement concus pour aider a influencer les ventes sur ces articles
issus de la longue traine et pour proposer a leurs utilisateurs une découverte plus fortuite de
nouveaux articles.

Modélisation probabiliste et inférence bayésienne

Bien que diverses approches puissent étre envisagées pour les systemes de recommandation
et les réseaux, les contributions de cette thése s’appuieront sur des modeéles probabilistes. Com-
parativement aux approches plus prototypes, 'avantage des approches fondées sur les mo-
deles est qu’elles sont interprétables et flexibles. L’apprentissage d’un tel modele apporte une
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connaissance sur la maniere dont les données sont générées, sur leur structure, et permet la
prédiction d’observations futures. Les approches probabilistes considerent que les données D
proviennent d’une loi de probabilité appelée vraisemblance

p(Dl9)

conditionnée a un ensemble de parametres ¢ € P, qui peut représenter e.g. les parametres
d’intérét de chaque utilisateur pour des facteurs latents comme I’action, la comédie, la science-
fiction, etc. pour les films. Cette distribution caractérise tout phénomene aléatoire intrinseque
ou de bruit potentiel en jeu dans la génération et la mesure des données. Nous allons en outre
adopter un cadre bayésien (Gelman et al., 2014) en supposant que le parameétre lui-méme est
une variable aléatoire avec une distribution a priori

p(9)

qui caractérise la croyance ou 'incertitude a priori sur ce parameétre. Dans ce contexte, toute
I'information disponible sur le parametre inconnu ¢ est capturée par la distribution a posteriori
qui est donnée par la régle de Bayes

_ p(DI)p(4)
P($1D) = D)

o p(Dlg)p($)

ou la vraisemblance marginale p(D) est une constante qui ne dépend que des données.

Nous nous intéressons a une telle inférence sur le parametre inconnu ¢ basée sur la distri-
bution a posteriori, mais nous allons encore distinguer deux types d’objectifs. Si nous voulons
obtenir une estimation ponctuelle, nous pouvons maximiser la distribution a posteriori et ob-
tenir une estimation du maximum a posteriori (MAP)

—

¢ = argmax p(Dl¢)p(¢).

ped

Pour résoudre ce probléme, nous avons généralement recours a des procédures d’optimisation
itératives qui partent d’une approximation initiale et augmentent la fonction objectif jusqu’a
convergence. Dans cette thése, nous allons dériver un tel algorithme itératif en exploitant
des variables latentes du modéle convenablement choisies. Ces méthodes de maximisation a
posteriori sont appelées « probabilistes » dans la littérature.

En revanche, les méthodes « bayésiennes complétes » visent a approcher toute la distribu-
tion a posteriori, qui peut étre trés complexe, multimodale par exemple. Parmi d’autres tech-
niques, nous pouvons recourir a la simulation Monte-Carlo. En particulier, nous nous inté-
ressons aux algorithmes de Monte-Carlo par chaine de Markov (MCMC), dont 'objectif est de
générer des échantillons (gbgt:)l’zw) a partir d’'une chaine de Markov qui admet la distribution
cible, ici p(¢|D), comme distribution d’équilibre.

Dans les modéles bayésiens non paramétriques (Hjort et al., 2010), le parameétre d’intérét
est de dimension infinie et est traité comme un processus stochastique plutét que comme un
vecteur aléatoire. Ce cadre est particulierement intéressant pour plusieurs raisons. Le nombre
d’objets considérés peut étre tres grand et en constante augmentation, il est donc logique de
considérer le cas limite ou il tend vers I'infini. Un tel cadre s’est également avéré étre élégant
et utile pour capturer le comportement en loi de puissance des phénomenes aléatoires.

En outre, nous serons attentifs a la flexibilité de nos modeles. Nous proposons des formu-
lations générales qui incluent divers cas particuliers, y compris des contributions de recherche



antérieures. Dans un souci de simplicité, nous allons aussi dériver des cas particuliers dans
cette these, mais le lecteur doit garder a 'esprit que le cadre proposé est assez général.

Enfin, la complexité et le passage a I’échelle (scalability) de nos algorithmes sont une préoc-
cupation particuliére. Bien que nos expériences se limitent a des ensembles de données d’une
échelle raisonnable, nous gardons a 'esprit que dans le contexte de « données massives »,
la complexité de nos algorithmes doit croitre linéairement avec le nombre d’objets (utilisa-
teurs/articles pour les systéemes de recommandations ou nceuds pour les graphes) et le nombre
d’évenements observés (notes, étiquettes ou connexions).

La suite de la these est divisée en deux parties qui peuvent étre lues indépendamment.
Chaque partie est composée de deux chapitres ou le premier chapitre introduit les prérequis
nécessaires ou les travaux préexistant tandis que le deuxiéme chapitre développe une contri-
bution originale.

I Modeles probabilistes a rang faible pour les systemes de
recommandation

Dans la premieére partie, nous nous concentrons sur les systemes de recommandation avec feed-
back explicite et nous développons une approche probabiliste de factorisation de rang faible.

Le Chapitre 1 introduit le probleme de la complétion de matrice pour les systemes de re-
commandation. Nous commencons par un apercu des différentes approches pour la construc-
tion des systémes de recommandation : le filtrage basé sur le contenu, le filtrage démogra-
phique, le filtrage collaboratif et le filtrage hybride. Nous nous concentrons sur I'approche de
filtrage collaboratif qui exploite uniquement la matrice incompléte des notations des utilisa-
teurs. Nous fournissons ensuite quelques prérequis sur les méthodes existantes de rang faible
pour la complétion de matrice qui supposent essentiellement que la matrice de notes incom-
pléete a une structure de rang faible. L’hypothese de rang faible a une interprétation simple :
chaque utilisateur et article peut étre décrit par un petit nombre de caractéristiques latentes
et la note de 'utilisateur i pour I’élément j peut étre expliquée par la correspondance entre
leurs caractéristiques respectives. En particulier nous décrivons I’algorithme Soft-Impute de
Mazumder et al. (2010) qui résout un probléme convexe régularisé par la norme nucléaire.

Le Chapitre 2 propose une nouvelle classe d’algorithmes de régularisation spectrale adap-
tative pour la complétion de matrice de rang faible. Il s’agit d’'une version étendue de notre
publication lors de la conférence NIPS 2013 (Todeschini et al., 2013). Notre approche s’appuie
sur de nouvelles fonctions de pénalité sur les valeurs singulieres de la matrice de rang faible.
L’origine de notre travail consiste a donner une interprétation probabiliste au probléme de
régularisation par la norme nucléaire ou la distribution a priori sur 'ensemble des valeurs
singulieres peut alors étre remplacée par des choix plus flexibles. En particulier, un a priori
hiérarchique est tres utile pour plusieurs raisons. Chaque valeur singuliere peut étre gouver-
née par son propre parametre de régularisation ce qui est facile a interpréter. Les parameétres
sont considérés comme des variables latentes et sont automatiquement adaptés grace a une
distribution a priori au niveau supérieur (hyperprior). Notre construction permet de faire le
pont entre la pénalité convexe de la norme nucléaire et la pénalité de rang.

En exploitant une représentation basée sur un modéle de mélange de cette pénalité, nous
montrons que le probleme résultant peut étre facilement décomposé en deux étapes itératives
sous la forme d’un algorithme espérance-maximisation (EM) pour obtenir une estimation du
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maximum a posteriori (MAP) de la matrice de rang faible complétée. L’étape E peut étre obtenue
analytiquement pour une famille de distributions convenablement choisies. L’étape M consiste
en une décomposition en valeur singuliere a seuillage doux pondéré qui pénalise moins forte-
ment les valeurs singuliéres supérieures, réduisant ainsi le biais de la régle de seuillage doux
uniforme utilisée dans I’algorithme Soft-Impute. Notre algorithme adapte de maniere itérative
les coefficients de réduction associés aux valeurs singulieres. Il est simple a mettre en ceuvre et
peut étre adapté aux grandes matrices. L’extension aux matrices binaires est également décrite.

Nous fournissons des comparaisons numériques entre notre approche et les alternatives
récentes montrant I'intérét de 'approche proposée pour la complétion de matrice de rang
faible. La classe de méthodes proposée fournit de bons résultats par rapport a plusieurs com-
pétiteurs. Bien que le probleme d’optimisation associé ne soit pas convexe, nos expériences
montrent qu’une initialisation avec 'algorithme Soft-Impute de Mazumder et al. (2010) donne
des résultats tres satisfaisants. Nous montrons également que les prédictions sont améliorées
dans des applications du monde réel. Cependant, dans cette premiére partie, nous ignorons
totalement le feedback implicite donné par la distribution des entrées dans la matrice incom-
plete.

I Modeles bayésiens non paramétriques pour les réseaux

Dans la deuxiéme partie, nous nous concentrons sur les réseaux et nous développons une
approche bayésienne non paramétrique.

Le Chapitre 3 introduit le contexte nécessaire sur les méthodes bayésiennes non paramé-
triques (BNP) dans lesquelles le paramétre d’intérét est de dimension infinie. Ce cadre permet
a la complexité du modeéle de s’adapter au nombre croissant de données, et de pouvoir dé-
couvrir plus de structure ou de motifs lorsque nous observons davantage de données. Il four-
nit donc un cadre a la fois adaptatif et robuste (Miiller and Quintana, 2004; Orbanz and Teh,
2011). Une autre caractéristique attrayante des modeles BNP est qu’ils permettent de capturer
le comportement en loi de puissance dans les données. D’un point de vue mathématique, les
méthodes BNP nécessitent 1’élaboration d’une loi a priori sur un espace de dimension infinie,
et nous travaillons en général avec des processus stochastiques plutot que des vecteurs aléa-
toires. Plus précisément, les outils que nous utiliserons ici sont des mesures complétement aléa-
toires (CRM) et leurs homologues multivariés, les CRM composées (compound CRMs). Avant
d’étudier ces objets plus en détail, nous présentons une bréve analyse des processus de Poisson,
a partir desquels ils peuvent étre construits.

Le Chapitre 4 propose un nouveau modele statistique pour les réseaux creux en structure
communautaire avec chevauchement (sparse networks with overlapping community structure).
Ce travail est sur le point d’étre soumis a une revue statistique (Todeschini and Caron, 2016).
Le modele est basé sur la représentation du graphe par un processus ponctuel échangeable,
et généralise naturellement des modeles probabilistes existants a structure en blocs avec che-
vauchement au régime creux.

Nous considérons que chaque noeud i est affecté d’'un ensemble de parameétres latents non-
négatifs wir, k = 1,...,p, et que la probabilité que deux nceuds i # j se connectent est donnée
par

_oyP W
Pr(zij = 1{(we1, .. -, Wep)e=12,...) = 1—e 2 Loy Wik Wik (1)

Ces poids non négatifs peuvent étre interprétés comme mesurant le niveau d’affiliation du
neeud i aux communautés latentes k = 1,...,p. Par exemple, dans un réseau d’amitié, ces
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communautés peuvent correspondre a des collegues, a la famille ou a des partenaires spor-
tifs et les poids mesurent le niveau d’affiliation d’un individu a chaque communauté. Notez
que, puisque les individus peuvent avoir des poids élevés dans différentes communautés, le
modele peut capturer des communautés qui se chevauchent. La principale contribution de ce
chapitre est d’utiliser la probabilité de connexion (1) dans le cadre de processus ponctuels de
Caron and Fox (2014). Pour ce faire, nous considérons que les positions et les poids des nceuds
(Wit, . . ., Wip, 0;)i=1,2,... sont tirés d'un processus ponctuel de Poisson dans [R{T1 avec une me-
sure moyenne v donnée. La construction d’un tel processus ponctuel multivarié repose sur
des vecteurs de CRMs. En particulier, nous nous appuyons sur les CRM composées (compound
CRMs) a la fois souples et analytiquement manipulables récemment introduites par Griffin and
Leisen (2016).

Le modele proposé généralise celui de Caron and Fox (2014) en permettant au modele de
capturer plus de structure dans le réseau, tout en conservant ses principales caractéristiques,
et révele avoir les propriétés suivantes :

« Interprétabilité : chaque noeud recoit un ensemble de paramétres positifs qui peuvent
étre interprétés comme mesurant les niveaux d’affiliation d'un nceud a des communautés
latentes ; une fois que ces parameétres sont appris, ils peuvent étre utilisés pour devoiler
la structure latente du réseau.

 Parcimonie : nous pouvons générer des graphes creux, dont le nombre d’arétes croit
sous-quadratiquement avec le nombre de neceuds.

 Echangeabilité : au sens de Kallenberg (1990).

De plus, nous développons des méthodes pour simuler cette classe de graphes aléatoires, ainsi
qu’un algorithme MCMC passant a I’échelle pour 'inférence a posteriori des parametres latents
de communauté et hyperparameétres de ce modéle. Nous fournissons des illustrations de la
méthode proposée sur données simulées et sur deux réseaux réels avec un millier de nceuds et
des dizaines de milliers d’arétes : un réseau de citations entre des blogs politiques et un réseau
de connexions entre les aéroports américains. Nous montrons que ’approche est capable a la
fois de découvrir une structure interprétable dans les données et de capturer les distributions
des degrés en loi de puissance. Notre développement se concentre sur des réseaux simples, mais
il peut également étre appliqué a un graphe biparti qui peut représenter le feedback implicite
d’un systéme de recommandation.
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Introduction

We introduce all the subjects covered in this thesis while emphasizing the connections between
them. Rather than providing a general bibliographic study, our objective is to motivate our work
for a general audience and answer the questions: Why are these topics interesting? What spe-
cific choices have been adopted? All reference to existing research work will be introduced in the
subsequent chapters.

Recommender systems

The past 20 years have seen a growing interest for recommender systems. They complement
traditional search engines to help us handle the information overload faced since the advent
of the digital age. Which book should I read? Which movie should I watch? Which prod-
uct should I buy? Making such decisions is less and less feasible for a simple human being
as the number of available items is constantly growing and becomes unmanageable. We all
need some sort of information filtering to discriminate the relevant from the irrelevant. While
search engines aim at answering specific queries asked by the user which roughly knows what
she is looking for, recommender systems take on a different approach. They try to automate
the experience of discovery by providing us what we want before we know it. One funda-
mental aspect is that those recommendations have to be personalized and thus reflect a good
understanding of the user’s preferences.

It is not surprising that recommender systems have attracted a lot of attention in commer-
cial applications. It is well known that personalization improves customer satisfaction and is
therefore a key to increase conversion rates. E-commerce platforms like Amazon.com provide
a variety of on-site recommendations like “customers who bought this item also bought” or
personalized co-purchase recommendations based on the content of your cart but also lists
of recommendations sent via email (Linden et al., 2003). Arguably a lot of their success has
to do with the way recommendations are integrated into nearly every part of the purchasing
process. Besides products, recommender systems apply to a wide range of domains, in par-
ticular to all types of media content: news/blog/research articles, bookmarks, books, movies,
TV shows, music etc. but also locations: restaurants, hotels, etc. or mobile applications among
others.

In particular, movies recommendation has been popularized by the Netflix prize (Bennett
and Lanning, 2007), a competition held by Netflix, an American multinational company spe-
cialized in video on demand. The goal was to predict user ratings for films, based on previous
ratings, without any other information about the users or films. In 2009, the grand prize of
$1, 000,000 was given to the BellKor’s Pragmatic Chaos team which outperformed Netflix’s
own ratings prediction algorithm by over 10% (Koren, 2009; Piotte and Chabbert, 2009). The
development of recommender systems, their evaluation and application to diverse real-world
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Figure 1: Network: example of connections between objects represented (a) as an undirected
simple graph and (b) as a symmetric adjacency matrix.

problems is a very active research field. First developed in the field of information retrieval,
they are now at the intersection of a lot of research domains including computer science, ma-
chine learning and statistics.

Recommender systems predict user preferences from the “big data” collected over up to
several millions of users and items. Item content as well as user demographic data are impor-
tant but the most valuable data is the feedback from users to items. Users feedback can either
be explicit or implicit. Explicit feedback is given by the users in form of rating or label which
express positive or negative interest explicitly. This kind of data is generally incomplete. The
set of all labeled user-item pairs are considered as observed data and all the rest is missing. In
contrast, implicit feedback is collected from the users behavior like clicks, views or purchase
events. This kind of feedback is weaker than the explicit ratings but is implicitly related to
the underlying preferences of the user. A user is more likely to click or purchase items she
likes, however an absence of event is a weaker information as the user might just not know
the existence of the item. This kind of implicit data is completely observed.

Networks

Closely related to the field of recommender systems is the analysis, understanding and mod-
eling of complex network data (Newman, 2003a, 2009). Network data arise in a wide range
of fields and include social networks, collaboration networks, telecommunication networks,
biological networks, food webs and are a useful way of representing interactions between sets
of objects. A network can be represented by a graph which is composed of a set of nodes, or
vertices, with connections, called edges or links, between them.

Most commonly and unless stated otherwise, graph means “undirected simple graph”. An
undirected graph is a graph in which edges have no orientation which means that the edge {i, j}
connecting node i to node j is identical to the edge {j, i}, and is represented by an unordered
pair or set. By contrast, edges of a directed graph have an orientation, i.e. edges (i, j) and (j, i)
are distinct and are represented by an ordered pair. A multigraph, as opposed to a simple graph,
allows multiple edges between the same pair of nodes and self-loops, i.e. a node connected to
itself.
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A graph can be drawn on the plane using e.g. circles for nodes and lines (arrows for directed
graphs) between them for edges. It can also be represented by its adjacency matrix; see Figure 1
for an illustration. The adjacency matrix of a graph is a squared matrix (z;;) where rows and
columns represent the same set of nodes and each entry z;; represents the connection between
node i and node j. The entry z;; is one if i is connected to j and zero otherwise and the diagonal
contains eventual self-loops. The adjacency matrix is symmetric if the graph is undirected, and
not symmetric if it is directed.

The density of the graph is the ratio of ones in the adjacency matrix, or the number of
edges divided by the total number of potential edges. It is an approximation of the probability
of connection of two random nodes. The distinction between dense and sparse graphs is not
clear-cut but it can be defined by observing the growth of the number of edges compared to
the number of nodes. We refer to graphs whose number of edges scales quadratically with the
number of nodes as dense, and sparse if it scales sub-quadratically. Many real world networks
are considered sparse and this is an important aspect to capture in network models.

For simple graphs, the degree of a node is the number of edges connected to it and by
extent the number of nodes adjacent to it. An important characteristic of a graphs which is
closely related to the density is its degree distribution, i.e. the probability distribution of the
degree d of a random node of the graph Pr(d = k) for k € N. It has been observed that
many real networks exhibit a heavy-tailed empirical degree distribution, i.e. a large majority
of nodes have a very low degree but a small number, known as “hubs”, have high degree.
Notably, some real networks, like e.g. the World Wide Web, have degree distributions that
approximately follow a power-law (Newman, 2005; Clauset et al., 2009)

Pr(d = k) « k™

where y > 0 is a constant. Such networks are called scale-free networks and have attracted
particular attention to their analysis and modeling.

Beyond the previous global scale properties of networks, another common characteristic
of complex networks is community structure, i.e. nodes of the network can be grouped into
(potentially overlapping) sets of nodes such that each set of nodes is more densely connected
internally. It is based on the principle of assortativity, saying that pairs of nodes are more
likely to be connected if they are both members of the same communities, and less likely to be
connected if they do not share communities. Identifying communities is essential in providing
insight on the topology of the network as well as performing link prediction.

So far we have considered unipartite graphs where connections can exist between all nodes
of a single type. A bipartite graph is a graph in which the set of nodes can be partitioned
into two sets, A and B, so that only connections between nodes of different sets are allowed.
Recommender systems data may be viewed as a particular kind of undirected bipartite network
between two types of nodes: users and items. The explicit feedback data is considered as
weights or labels of the edges; see Figure 2 for an illustration. Making recommendations
corresponds to predicting links in the bipartite network.

As in simple networks, sparsity and power-law behaviors are also present in recommender
systems. Most of the views or purchase generally concentrate on a few “blockbuster” items
while the large majority of the remaining items, a.k.a. the “long tail”, have very low popularity.
Capturing these behaviors is crucial since recommender systems are generally designed to help
leveraging the sales on these long tail items and to propose their users a more serendipitous
discovery of new items.
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Figure 2: Recommender system: example of ratings given by users to items represented (a) as
a labeled bipartite graph and (b) as a matrix. Like/dislikes are represented as (a) blue/red solid
lines and (b) blue/red thumbs up/down. Missing data are represented by (a) dotted lines and
(b) exclamation marks.

Probabilistic modeling and Bayesian inference

While a variety of approaches can be considered for recommender systems and networks, the
contributions of this thesis will build on probabilistic models. Compared to more prototype
approaches, the advantage of model-based approaches is their interpretability and flexibility.
Learning such a model provides insights on how the data is generated, how it is structured
and allows to predict future observations. Probabilistic approaches consider that the data D
arise from some probability distribution called the likelihood

p(Dlg)

conditioned on a set of parameters ¢ € ®, which can represent e.g. the parameters of interest
of each user to some latent factors like action, comedy, science fiction, etc. for movies. This
distribution characterizes any intrinsic random phenomena or potential noise at stake in the
generation and measurement of the data. We will further adopt a Bayesian framework (Gel-
man et al., 2014) by assuming that the parameter itself is a random variable with some prior
distribution

p(9)

which characterizes the prior belief or uncertainty on this parameter. In this context, all the
information available on the unknown parameter ¢ is captured by the posterior distribution
which is given by the Bayes rule

_ p(DI$)p(9)
p@1D) = =1

o< p(DIP)p(¢)

where the so-called marginal likelihood p(D) is a constant which only depends on the data.
We are interested in such inference on the unknown parameter ¢ based on a posterior

distribution but we will further distinguish two kinds of objectives. If we are interested in
obtaining a single point estimate, we can maximize the posterior distribution and obtain a

4



Introduction

maximum a posteriori (MAP) estimate

—

¢ = argmax p(Dl¢)p(¢).
ped

To solve this problem we generally resort to iterative optimization procedures which start from
an initial guess and increase the objective function until convergence. In this thesis, we will
derive such an iterative algorithm by exploiting suitably chosen latent variables of the model.
Such posterior maximization methods are referred to as “probabilistic” in the literature.

By contrast, “full Bayesian” methods aim at approximating the whole posterior distribution
which might be very complex, such as being multimodal. Among other techniques, we can
resort to Monte-Carlo simulation. In particular, we are interested in Markov chain Monte Carlo
(MCMC) algorithms, whose objective is to generate samples (gb(t))t:l,z,m from a Markov chain
which admits the target distribution, here p(¢|D), as equilibrium distribution.

In Bayesian nonparametrics (Hjort et al., 2010), the parameter of interest is infinite-dimensional
and is treated as a stochastic process rather than a random vector. This framework is particu-
larly interesting for several reasons. The number of objects considered might be very large and
constantly growing, therefore it makes sense to consider the limiting case where it tends to
infinity. Such a framework has also proved to be elegant and useful to capture the power-law
behavior of random phenomena.

In addition, we will be concerned by the flexibility of our models. We propose somehow
general formulations that encompass various special cases, including previous research con-
tributions. For the sake of simplicity, we will also derive such special cases in this thesis but
the reader should keep in mind that the proposed framework is quite general.

Finally, the complexity and scalability of our algorithms is of particular concern. While our
experiments restrict to datasets of rather reasonable scale, we keep in mind that in the context
of “big data”, our algorithms should scale linearly with the number of objects (users, items
for recommender systems or nodes for graphs) and the number of observed events (ratings or
connections).

Outline of the thesis

The rest of the thesis is divided into two parts that can be read independently. Each part is
made of two chapters where the first chapter introduces the necessary background or pre-
existing work while the second chapter develops an original contribution.

In the first part, we concentrate on recommender systems with explicit feedback and we
develop a probabilistic low-rank factorization approach.

Chapter 1 introduces the matrix completion problem for recommender systems. We start
with an overview of the different approaches for building recommender systems with empha-
sis on the popular collaborative filtering techniques. Then, we provide some background on
existing low-rank methods for matrix completion which basically assume that the incomplete
ratings matrix has a low-rank structure.

Chapter 2 proposes a novel class of algorithms for low-rank matrix completion that builds
on a probabilistic interpretation of the nuclear norm regularization problem. We show in
our experiments that our algorithm can outperform existing approaches. This work has been



published in the proceedings of the NIPS 2013 international conference (Todeschini et al.,
2013).

In the second part, we concentrate on networks and develop a Bayesian nonparametric
approach.

Chapter 3 introduces the necessary background on Bayesian nonparametrics. After a
general review of the Poisson process, we focus on completely random measures (CRMs) and
one of their multivariate counterpart, the compound CRMs.

Chapter 4 proposes a novel statistical model for sparse networks with overlapping com-
munity structure. It builds on the previously introduced compound CRMs and the posterior
inference uses MCMC algorithms. We show in our experiments that our model can capture
power-law properties of real-world graphs and that the inferred communities are meaningful.
This work is about to be submitted to a statistical journal (Todeschini and Caron, 2016).

We finally conclude this thesis by giving a summary of our results and opening up some
perspectives.
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Chapter 1

Matrix completion for recommender
systems

Matrix completion consists in filling an incomplete matrix from a subset of its entries. In Sec-
tion 1.1 we motivate this problem through the popular application of recommender systems. Sec-
tion 1.2 gives an overview of the more specific collaborative filtering approach. Finally Section 1.3
presents the matrix completion problem in rather general terms and reviews the literature on
low-rank techniques for solving it.

1.1 Recommender systems

Several surveys have already been published on recommender systems (Adomavicius and Tuzhilin,
2005; Melville and Sindhwani, 2011; Ricci et al., 2011; Konstan and Riedl, 2012; Li et al., 2012;
Park et al., 2012; Bobadilla et al., 2013; Shi et al., 2014). The objective of the latter is to recom-
mend to each user the items that she might like. In this section, we give a brief overview on
the subject. After a formal definition we discuss the challenges encountered when designing
such systems and the major approaches that have been proposed in the literature. The reader
should refer to the aforementioned surveys for a more detailed overview.

1.1.1 Definition

We consider a set of users 7 = {1,...,m} and a set of items J = {1,...,n}. Though in
the simplest case, users and items are only represented by their unique identifier, they may
possess additional attributes (called side-information, features, covariates or meta-data). We
are interested in the explicit feedback context (see the Introduction chapter), where each user
provides a rating or label to a (user-specific) subset of the items. We denote x;; € X the rating
given by user i to item j, which can be on a continuous scale (X = R, X = [a,b]) or on a
discrete scale (1 to 5 stars: X = {1,...,5}, like/dislike: X = {1,-1}) and X = (x;;) the mxn
incomplete user-item ratings matrix. Let Q C 7 X J be the subset of user-item pairs for which
a rating is observed

Q = {(i, j)|x; is observed}

and Q* = (I x 9)\Q its complementary.

Rating prediction task. The rating prediction task consists in predicting ratings x;; for
unobserved user-item pairs (i, j) € Q*. A predictor is a function ¥ : 7 x J — X which
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provides an estimate
forall (i, j) € 7 xJ . Inthe presence of side-information, ¥ might also depend on the attributes

of user i and item j. The predictor ¥ is typically learned from the available data using statistical
learning methods; see Section 1.1.3.

Top-N recommendation task. A recommender system generally provides its users with
personalized lists of items of high interest. A simple strategy is to recommend to each user
the list of N most relevant items based on the predicted ratings. Yet, making top-N lists
does not necessarily require ratings or scores and it is popular to directly address the ranking
task (a.k.a. learning to rank, Burges et al., 2005; Liu, 2009; Rendle et al., 2009).

1.1.2 Challenges

Recommender systems have to face many challenges and we review the major ones in this
section.

Scalability. One of the major challenges is to develop methods that can scale up to millions
of users and items of e.g. online retailers like Amazon.com and provide real-time recommen-
dations on a fast changing system.

Sparsity. One important quantity is the density of the m X n matrix X = (x;;)

_ @l
mn

dens(X)

or equivalently its sparsity, 1 —dens(X). The more missing entries, the higher the sparsity and
the more difficult it is to learn user preferences. Users generally rate very few items, thus the
matrix X = (x;;) is generally very sparse. In such a context, it is crucial to avoid overfitting,
i.e. performing well on past training data but failing to generalize to unobserved data. Yet,
for computational complexity reasons, most prediction methods cannot handle large dense
matrices and the sparsity must be used as a computational advantage with methods that scale
with |Q| <« mn.

Cold-start. Most recommender systems have to address cold-start problems (Schein et al.,
2002), i.e. facing situations where too few data have been collected to be able to provide reli-
able predictions. Two typical cold-start problems are the new user problem and the new item
problem. How to provide recommendations to a new user who has not rated any or very few
items, corresponding to an empty row in the matrix X? Similarly how to make predictions
when a new item is added to the system and has not been rated by enough users? These prob-
lems are generally addressed by using additional attributes on either the new user or the new
item, that can relate her/it to previously rated ones (Lam et al., 2008).

Long tail. Let
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Figure 1.1: Popularity of items in decreasing order. (a) Stars of movies in the MovieLens-
1M dataset available online at http://www.grouplens.org/node/73. (b) Sales of a french
e-commerce website by category of product. On the left (blue), the popular items represent
80% of the total stars/sales. On the right (red), the long tail items represent 20% of the total
stars/sales.

be the frequency of item j in Q. This corresponds to the number of users having rated item j
or the number of entries in j-th column of matrix X. The frequency of an item is also a mea-
sure of its popularity. When ranking items by decreasing popularity, typical datasets exhibit
a long tail behavior (Brynjolfsson et al., 2006; Elberse and Oberholzer-Gee, 2006; Hitt and An-
derson, 2007), which means that few items are very popular while a majority have very few
ratings. This is related to the Pareto principle (Brynjolfsson et al., 2011) a.k.a. the 80/20 rule
of thumb in business: 20% of the most popular items represent 80% of the occurrences while
the remaining 80% least popular items represent 20% of the occurrences; see Figure 1.1. One
major challenge of recommender systems is to compensate this imbalance, i.e. to make reliable
predictions on the long tail items, so as to avoid recommending only the popular items and
increase novelty (Fleder and Hosanagar, 2009).

Evaluation. Finally, evaluating the performance of a recommender system is a complicated
task (Herlocker et al., 2004; Breese et al., 1998; Cremonesi et al., 2010; Shani and Gunawardana,
2011). Making good recommendations is not trivial and may involve considering criteria be-
yond relevance like e.g. novelty or diversity (Ziegler et al., 2005; McNee et al., 2006; Ge et al.,
2010; Zhou et al.,, 2010; Vargas and Castells, 2011).

1.1.3 Approaches

The different approaches have been classified according to the source of data they exploit in
order to make predictions (Resnick et al., 1994; Shardanand and Maes, 1995; Balabanovi¢ and
Shoham, 1997; Pazzani, 1999); see Figure 1.2. Originally, recommender systems were seen as
an information filtering task: how to filter relevant items from irrelevant ones?

Content-based filtering. Content-based filtering (Pazzani and Billsus, 2007; Lops et al.,
2011) discriminates relevant items based on their content. They recommend to each user sim-
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Figure 1.2: Recommender systems approaches with emphasis on collaborative filtering meth-

ods.

ilar items to the ones she has liked in the past. A majority of these approaches concentrate on
textual content but the content can be any set of features. New items can get recommended
based on their content even if nobody has ever rated them. However, this early filtering ap-
proach has strong limitations as it keeps the user in the “bubble”, never recommending items
too different from its historical data.

Demographic-based filtering. Demographic-based filtering (Krulwich, 1997) predicts rat-
ings of a specific user based on the ratings given by similar users based on their demographic
attributes like gender, age, occupation, etc. regardless of the content of the items. It can address
the new user problem but, like content-based filtering, it keeps the user in a socio-demographic
bubble which might not be relevant to its preferences. In the literature, this approach is often
considered as some sort of content-based filtering using content about the users.

Collaborative filtering. Collaborative filtering (CF, Goldberg et al., 1992; Herlocker et al.,
1999) is one of the most successful approaches. Rather than relying on side information, this
approach only exploits the user-item ratings matrix. The information is filtered according to
other users opinions, regardless of the content or demographic data. This approach is very
simple and general as it applies to any kind of item. Though, it generally better captures
human behavior than the previous approaches. However, CF suffers from the cold-start prob-
lems and requires users and items to have a minimum number of ratings as well as a rather
homogeneous dispersion of the entries.

12
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Hybrid filtering. Hybrid filtering approaches take the most of both previous methods by
exploiting all available data from content, demographic data and collaborative ratings (Bala-
banovi¢ and Shoham, 1997; Basu et al., 1998; Melville et al., 2002), so as to address cold-start
problems. They are very diverse, ranging from combinations of the predictions from the above
predictors (Claypool et al., 1999; Good et al.,, 1999) to single unified models (Popescul et al.,
2001). See the survey of Burke (2002) for an overview on the subject.

1.2 Collaborative filtering

In this section, we describe two general classes of CF methods (Breese et al., 1998). Memory-
based methods operate over the entire collection of observed data (or memory of the system)
to make predictions. In contrast, model-based methods use the data to fit a parameterized
model, which is then used for predictions. Beyond, hybrid methods exploiting both memory
and model-based techniques have also been proposed (Pennock et al., 2000; Sarwar et al., 2000;
Goldberg et al., 2001; Xue et al., 2005). The interested reader can refer to several surveys for
more details (Schafer et al., 2007; Su and Khoshgoftaar, 2009; Koren and Bell, 2011).

1.2.1 Memory-based methods

In memory-based methods, the predictor x;; = ¥ (i, /) is a function of the entire collection
of observed data. The most popular methods of this class are the neighborhood-based meth-
ods (Herlocker et al., 1999, 2002; Desrosiers and Karypis, 2011).

User-based similarity methods. Denote J; = {j|(i,j) € Q} C J the set of items rated by
user i, then the average observed rating of user i is

_ 1
Xi = —— xij.
| &
1

We generally assume that the predicted rating of user i for item j is a combination of the
ratings of other users. More specifically, consider the following formula using the weighted
sum of deviations from their respective mean

~ - 1 , —
xij = Xi (l, l/)l Z W(l,l )(xi’j — xi/) (11)

+
Zi’eN,— |w N

where the weights w(i, i’) somehow reflect the similarity or correlation between user i and
i’ where w is a symmetric function. N; € Z\{i} is a neighborhood set containing the k
most similar neighbors of user i w.r.t. w. Variations in the aggregation function (1.1) can
be introduced but we restrict here to the above formulation. Different choices of weighting
schemes or similarity functions lead to different algorithms.

Let Jiir = JiN Ji be the set of items that both users i and i’ have rated. Standard similarity
metrics include the Pearson’s correlation coefficient defined as

0 it Jir =0

w(i, i') = 2jeds; (xij=%i) (Xp ;=X ;1)

otherwise.
\/(Zjejii, (xij—?i)z) (Zjejii/ (xi’j—fi')z)
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and the vector cosine similarity defined (for positive ratings only) as

0 if Jr=0
w(i,i’) = 2jedy XijXit

- ; otherwise.
\/Zjejii/ xij\/ZjeJii, xi’j

The complexity of calculating similarities between all users is in O(m?). See e.g. (Breese et al.,
1998) for possible extensions of memory-based methods such as default rating, inverse user
frequency or case amplification.

Item-based similarity methods. As an alternative to user-based methods which exploit
user similarity, Sarwar et al. (2001) proposed item-based CF. It builds on the same ideas but
applied to a transposed matrix X . Instead of recommending to each user the items liked by
similar users, it recommends to each item the users who like similar items. In practice, when
the number of users is very large, item-based methods lead to faster online systems, and can
lead to improved recommendations (Linden et al., 2003; Deshpande and Karypis, 2004).

1.2.2 Model-based methods

Model-based methods assume that the predictor is based on a parameterized model F (i, j; 0)
with unknown parameter vector 6. The model must be fitted to the observed data in a learn-
ing phase before making any predictions. Typically, we want to obtain an estimator of the
parameter vector minimizing some objective function

—

0 = arg min £(0; X).
0

The objective function £ captures the fitting error on the past data X and possibly some
regularization term on 6 to penalize the complexity of the model. Regularization is a standard
approach to prevent overfitting. Overfitting generally occurs when a model is excessively
complex, such as having too many parameters relative to the number of observations. The
objective is to achieve a trade-off between fitting the data and reducing the complexity of the
solution. Given the estimated parameter vector 6, the model can be used to predict a rating
for any user-item pair (i, j) R
xij = F (i, j; 0).

Model-based methods include clustering models (Ungar and Foster, 1998; Hofmann and
Puzicha, 1999), classification models (Billsus and Pazzani, 1998), regression based models (Lemire
and Maclachlan, 2005) or restricted Boltzman machines (Salakhutdinov et al., 2007). Yet, a re-
cent class of successful model-based CF is the class of latent factor models (Hofmann, 2004).
They assume that the users and items can be embedded in some low dimensional feature space.
Letu; = (uig, .. ., uip)T € R? be the feature vector of user i and v; = (vjy, ... ., vjp)T € R? be the
feature vector of item j. For any user-item pair (i, j), the predictor is a function of the feature
vectors

7:(1',]'; 9) = F(u,-, Uj).
The model parameter is 6 = (U, V) where

oT
U= : and V =

R SEER
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denote respectively (resp.) the m X p matrix of user features and the n X p matrix of item
features. We then want to estimate

(U,V) = argmin £ (U, V;X).
u,v

Typically, the predictor takes a factorized form F(U, V) = UV?, i.e. for each user-item pair
(i, ), the rating of user i for item j is the dot product between their respective feature vectors

p
—~ _ ATA _ —~ o~
Xij = U; vj = E Uik Vjk
k=1

which measures to which extent those vectors are aligned or “match”. In the recommender
systems application, factor models have a natural interpretation as it is commonly believed
that there is only a small number of factors influencing the preferences.

A wide range of such matrix factorization models have been proposed in the literature (Ko-
ren et al., 2009). More generally, looking for an underlying low-rank representation of the
partially observed matrix X has been extensively studied as a low-rank matrix completion
task.

1.3 Low-rank matrix completion

In this section, we consider the recommendation problem as a matrix completion task and
give an overview of low-rank approaches for this task. In the recommender systems literature,
these techniques lie in the model-based approaches for collaborative filtering.

1.3.1 Matrix completion

Matrix completion has attracted a lot of attention over the past few years. The objective is
to “complete” a matrix of potentially large dimension based on a small (and potentially noisy)
subset of its entries (Srebro et al., 2005; Candes and Recht, 2009; Candés and Plan, 2010). Be-
sides recommender systems, applications include image inpainting, where missing pixels in
images need to be reconstructed (Bertalmio et al., 2000); imputation of missing data, which is
often required as a preprocess for multivariate data analysis (Troyanskaya et al., 2001; Donders
et al., 2006); etc.

Recall that X is a m X n matrix whose elements belong to space X and Q C {1,...,m} X
{1,...,n} is the subset of its revealed entries (i, j). Following Cai et al. (2010), we introduce
the mask operator Pq(X) and its complementary P (X)

Xij if (i,j) e Q

0 otherwise

0 if(i,j)eQ

x;j otherwise

Po(X) (i, )) = { and P3(X)(i,)) = {

such that Po(X) + P5(X) = X. We then aim at estimating a complete matrix Z € X™"
minimizing some loss function L over the observed entries of X

Z = argminL (Po(X), Po(2)) . (1.2)
7z

While this framework is quite general, a majority of works have concentrated on real entries
(X = R) and the common squared-error or quadratic loss due to its simplicity, convexity and
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tractability:

L(Pa(0.Pa(@) = > (w-2) = 5 1P -Pa@IE  (13)
(i.j)eQ

where || X||F = | /Zi,j xl.zj is the Frobenius norm of matrix X and ¢? > 0. Unless otherwise

stated, we are going to concentrate on this particular case as well throughout this section.
Though not useful here, we retain the term 2%2 in the loss function for later convenience.

In a typical collaborative filtering application, the problem can be phrased as learning an
unknown parameter Z € X" with very high dimensionality, based on very few observations.
Hence, (1.2) is an ill posed problem which admits infinitely many solutions if X is not finite:
any matrix such that Po(Z) = Pq(X), i.e. matching the observed entries of X is a solution. We
are however interested in solutions that generalize to unobserved entries. For such inference
to be meaningful, we assume that the parameter Z lives in a much lower dimensional manifold.
To this end, we need to introduce some constraint or prior information on Z.

1.3.2 Low-rank assumption

A simple yet powerful approach is to consider that the matrix Z has a low-rank underly-
ing structure. The rank of a matrix, denoted rank(Z), is the dimension of the vector space
generated by its columns (or rows) and is one of its most fundamental characteristics. This
assumption has proved relevant and useful in many real life applications. Projection on low
dimensional vector space is standard in exploratory analysis and dimensionality reduction.

Low-rank matrix completion can be addressed by solving the following Frobenius norm
minimization problem subject to the non-convex rank constraint

1
inimize — ||Po(X) — Po(Z)|| 14
minimize _— IPa(X) — Pa(2)|l% (1.4)

s.t. rank(Z) < p.

Singular value decomposition. When X is fully observed, problem (1.4) simplifies to

1
inimize — [|X — Z||% 1.5
minimize —— I Iz (1.5)
s.t. rank(Z) < p

for which a global solution can be obtained via the singular value decomposition (SVD).
Let X be a real mXn matrix and r = min(m, n). In its compact form, the SVD of X is defined
as
X =UDV"

where
« U and V are resp. m X r and n X r real unitary matrices whose columns are resp. left and
right singular vectors
« and D is a r X r diagonal matrix of nonnegative singular values by decreasing order
d>...2d, >0
D = diag(dy,...,d;) := ,
0 d,
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Figure 1.3: Low-rank matrix factorization.

For unique (non-degenerate) singular values, the associated left and right singular vectors are
unique up to simultaneous sign inversion.

Despite the rank constraint being non-convex, a global solution of (1.5) is given by the
truncated SVD of X, i.e. Z = T,(X) defined by:

T,(X) := U,D,V,

where D, = diag(dy,...,d,) contains the p largest singular values, U, and V), contain the
corresponding singular vectors. The rest can be discarded, yielding a rank p matrix.

Unfortunately, for general subsets Q2 where X is not fully observed, the rank-constrained
problem (1.4) is of little practical use as it remains computationally NP-hard and subject to
multiple local optima (Srebro and Jaakkola, 2003). Subsequent literature has focused on sim-
plifying it while conserving low-rank properties.

1.3.3 Matrix factorization

Low-rank matrices can be factorized as the product
z=uv"

of a tall m x p matrix U and a thin p X n matrix V! with p < min(m, n) as illustrated in
Figure 1.3. Matrices which admit such a factorization verify rank(Z) < p and rank(Z) = p
ift U and V are of full rank. Matrix factorization is a class of latent factor model where each
row of the matrix is a linear combination of p latent factors with row specific coefficients. U
is considered as the coefficient matrix whose rows represent the extent to which each factor is
used. V7 is the factor matrix whose rows are the factors.

In general, matrix factorization techniques consider the regularized problem with respect
toU and V

minimize L (Pa(X). Pa(UVT)) + pen(U, V)
where pen(U, V) is a penalty term on the complexity of the solution.

Maximum-margin matrix factorization

In particular, Srebro et al. (2005) proposed the following regularized problem
minimize —— ||PQ(X) - P(UVT)||2 A (||U||2 + ||V||2) (1.6)
Uy 202 Fo2 F F '
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where A > 0 is a positive regularization parameter that tunes the trade-oftf between the loss
and the penalty term. Instead of penalizing the rank, we seek a low-norm factorization. This
corresponds to constraining the overall importance of the factors instead of their number. In
other words, a large number of factors is allowed but only a few are allowed to be very im-
portant. Though not strictly low-rank, we expect a solution with a lot of negligible columns
of U and V. Rather than the quadratic loss, Srebro et al. (2005) and Rennie and Srebro (2005)
have focused on the hinge-loss (used in maximum-margin classifiers and support vector ma-
chines) for binary observations and its generalization for discrete ordinal ratings, hence the
name maximum-margin matrix factorization (MMMF). Though not jointly convex in U and V,
the objective function is fairly simple with easy to compute gradients. Two simple and popular
strategies can be used to optimize (1.6) and similar problems.

Stochastic gradient descent. Stochastic gradient descent (SGD) randomly iterates over the
set of observed entries x;; for (i, j) € Q and optimizes the problem with respect to u; and v;

1 2 A 2
mir:tiifzr;ize Y (x,-j - uiij) + > (Ilui||§ + ”01”2)
where ||-]|, is the £, norm. In fact, it is not necessary to minimize each intermediate problem
but simply to move u; and v; in the direction opposite to the local gradient. This strategy is
very useful when the data is very sparse or in a streaming data context where observations
arrive at random times and we want to continuously update the solution while incorporating
new data. Each step decreases the global objective function towards a local minimum. See
e.g. (Gemulla et al., 2011) for efficient implementations of SGD for matrix factorization.

Alternating least squares. Observe that when V (resp. U) is fixed, the objective function
with respect to U (resp. V) becomes quadratic so its global minimum can be readily computed.
Using a weighted version of the loss function, let consider the objective function

LOV) = —|wox -V + % (IU1% + 1v1i2)

where W = (wj;) is an m X n matrix of finite nonnegative weights and © is the element-wise
or Hadamard product. Note that problem (1.6) is a particular case taking w;; = 1if (i,j) € Q
and 0 otherwise, so that W selects the revealed entries. Canceling its partial derivative with
respect to the vector u; gives

— -1 —~
up = (VIWAV + 20%) VIWix,

where Wl = diag(wi1,...,wip) and x; = (xi1,. . ., xin)!. This is the solution to a regularized
weighted linear least squares problem

U;

argumin % HW,-(x,- - Vu)Hz + /% llull3.

The minimizer of L(U,V) for fixed V is given by U*(V) = (uj,... ,u:)T. This suggests a
block coordinate descent optimization process, where we alternate between re-computing U =
U*(V)andV = V*(U), and each step is guaranteed to lower the value of the objective function.
This strategy is known as alternating least squares (ALS). It can be efficiently parallelized as
each u; is updated independently of the other rows of U and symmetrically, each v; is updated
independently of the other rows of V (Zhou et al., 2008).
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1. Matrix completion for recommender systems

Probabilistic matrix factorization

Building on a probabilistic interpretation, Mnih and Salakhutdinov (2008) have generalized the
MMMF to more complex graphical models resulting in the probabilistic matrix factorization
(PMF) framework.

First, observe that the solution of the MMMF optimization problem (1.6) can be obtained
as the maximum a posteriori (MAP) estimate under the likelihood model

x,-jlui, Uj ~ N (uiij, 0'2)
fori=1,...,mandj = 1,...,n, where N (u, 0?) is the normal distribution of mean y and vari-

ance o2 whose probability density function (pdf) evaluated at x is N (x; 1, 0%) = T e 2 (5" ”)

and under the prior distribution
Uik A Ny (0, 0[21) and vji d Ay (0, a‘%) (1.7)
fori=1,...,m,j=1,...,nand k = 1,...,p. It is easy to check that the log—posterior is
logp (U, VIPa(X)) = C - — 1|PQ (X) - PV} - — ||U||F - ; IVIE  (1.8)

where C is a constant that does not depend on the parameters U and V.

Proof.

P (U, V|Po(X)) < p (Pa(X)IU, V) p(U)p(V)

o l_ N(xij;uiij,crz) [ﬁﬁN Uik; 0, O'U] ﬁﬁN U]k,O O'V

i=1 k=1 1 k=

—_

Maximizing the log-posterior (1.8) is equivalent to minimizing the squared-error objec-
tive function with quadratic regularization terms (1.6) where o/ = oy, = % This suggests a
more general framework allowing different models of likelihood and prior distributions. In
particular, Mnih and Salakhutdinov (2008) consider the likelihood

x,jlui, Uj ~ N (g(uiTUj)’o-z)

where g(x) = 5 +e—x is the logistic function to account for ordinal ratings scaled in the range
[0, 1]. They also consider using priors of the form

p(UlOy) p(V|8y) p(Br) p(By)

with hyperpriors on the parameters ®y and Oy as illustrated on Figure 1.4 and maximizing

the log-posterior
logp (U,V, 0y, Oy|Pa(X)) .
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1.3. Low-rank matrix completion

Figure 1.4: Graphical model of the PMF.

In the special MMMF case with spherical priors (1.7) and hyperparameters O'IZJ = 0‘2, = %, this
allows to have the regularization parameter A chosen automatically. Yet, it is possible to use
more sophisticated priors with diagonal or even full covariance matrices as well as adjustable

means for the feature vectors.

1.3.4 Nuclear norm regularization

Convexity is a desired property in optimization as it guarantees that any local minimum is
global. Convex optimization consists in minimizing a convex objective function over a convex
set. Contrary to non-convex problems, convex problems are much easier to solve and to ana-
lyze. Thus, many authors have advocated the use of a convex relaxation of the rank constraint
of problem (1.4).

When considering vectors, the ¢; norm is known to be the convex hull of the counting ¢,
“norm” and is widely used as a sparsity-promoting regularizer, e.g. for coefficients in regression
problems. Likewise for matrices, the rank of Z can be defined as the £, “norm” of the vector
of singular values d = (dy, .. .,d;)

r
rank(Z) = lldlly = ) 1,50

i=1

and the nuclear norm is defined as the sum of the singular values or £; norm of d

1ZIL, = lldll, = ) ds.
i=1

It is also called the trace norm in the literature as ||Z||, = tr(D) where Z = UDV" is the SVD
of Z. Like the ¢; norm for the £, “norm”, the nuclear norm is the tightest convex envelope
of the rank. Therefore, it has been widely adopted as a convex surrogate to the rank (Fazel,
2002; Candeés and Recht, 2009; Candeés and Plan, 2010; Mazumder et al., 2010) to turn (1.4) into
a convex minimization problem

. 1 2
mml;mze 757 IPo(X) = Po(2)|lr + AlIZ]|. . (1.9)

Note that the rank is no longer constrained but, for high A, the solution will have many singular
values exactly equal to zero, hence reducing its rank.
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1. Matrix completion for recommender systems

Finally, observe that the nuclear norm and the MMMF quadratic penalty are tightly con-
nected by the following relation (Srebro et al., 2005)

: 1 2 2
121 = min o (U1 + IVIE)

Complete case. Consider first that we observe the complete matrix X = (x;;) of size m X n.
The solution to the convex optimization problem

1
inimize — ||X — Z||% + A | Z]l, 1.10
minimize —— I Iz +AlZIl (1.10)

is given by a soft-thresholded SVD of X, i.e.
Z =8,2(X)

where S3(X) := UD;V! with D, = diag ((d; — A)s, ..., (d, — A)1), t; := max(¢,0) and X =
UDVT is the SVD of X with D = diag (dy,...,d,).

Proof. For clarity, note that problem (1.10) is equivalent to
.. 1 2 ’
mmlénlze 2 X - Zllz + A" I Z]].
with ’ = ¢21 whose solution is Z = Sy (X); see (Cai et al., 2010; Mazumder et al., 2010). O

Incomplete case. Using the previous solution for the complete case as a basic ingredient,
Mazumder et al. (2010) proposed a completion algorithm called Soft-Impute for solving the
nuclear norm regularized minimization (1.9). The algorithm relies on alternatively imputing
missing values of X and re-estimating a soft-thresholded SVD of the completed matrix. At
every iteration, Soft-Impute decreases the value of the objective function towards its minimum.
The procedure is summarized in Algorithm 1.

Algorithm 1: Soft-Impute algorithm.
Initialize Z and repeat until convergence:
« Impute missing values: X* = Po(X) + P5(Z)
« Compute Z = S,z (X*)

The computationally demanding part of Algorithm 1is S, ;2 (X*) which requires calculating
a low-rank truncated SVD. Mazumder et al. (2010) suggest several strategies to accelerate the
algorithm. For large matrices, one can resort to the PROPACK software (Larsen, 1998, 2004).
This sophisticated linear algebra algorithm can efficiently compute the truncated SVD of a
“sparse + low-rank” structured matrix thus handling large matrices. Fortunately, it is easy to
see that X™ possesses such structure

X* = Po(X) + P5(2)
=PQ(X)—PQ(Z)+ Z

sparse low-rank

In practice, at each step, we only need to compute the leading k singular values d; and associ-
ated singular vectors such that d; > Ac%. Though we do not know their number k, PROPACK
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1.3. Low-rank matrix completion

computes them sequentially and can therefore be stopped as soon as one of the singular values
falls under the threshold. As shown by Mazumder et al. (2010), every truncated SVD step of the
algorithm computes k singular vectors, with complexity of the order O ((m + n)kz) +0 (1Q]k).

Finally, Mazumder et al. (2010) propose a warm-start strategy to compute an entire regu-
larization path of solutions on a grid of decreasing values A; > Ay > ... > Ag. If successive
values are close, their solutions are likely to be close. The Soft-Impute algorithm for Ay is
initialized with the slightly higher rank solution obtained with for Ax_;, thus saving precious
computing iterations.

More generally, nuclear norm regularization is a form of spectral regularization (Abernethy
et al., 2009) which considers surrogates of the rank penalty by taking functions over the set of
singular values (a.k.a. spectrum) of matrix Z

pen(2) = ) fild:)
i=1

where fori =1,...,r, fi : R* - R* U {+o0} is a non-decreasing penalty function satisfying
£i(0) = 0. In particular, the nuclear norm is obtained by taking f;(d;) = Ad;. In Chapter 2, we
develop a generalization of the Soft-Impute algorithm to non-convex spectral penalties based
on a probabilistic interpretation of problem (1.9).
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Chapter 2

Probabilistic low-rank matrix
completion with adaptive spectral
regularization algorithms

We propose a novel class of algorithms for low-rank matrix completion. Our approach builds
on novel penalty functions on the singular values of the low-rank matrix. By exploiting a mix-
ture model representation of this penalty, we show that a suitably chosen set of latent variables
enables to derive an expectation-maximization algorithm to obtain a maximum a posteriori esti-
mate of the completed low-rank matrix. The resulting algorithm is an iterative soft-thresholded
algorithm which iteratively adapts the shrinkage coefficients associated to the singular values.
The algorithm is simple to implement and can scale to large matrices. The extension to binary
matrices is also described. We provide numerical comparisons between our approach and recent
alternatives showing the interest of the proposed approach for low-rank matrix completion. This
chapter is an extended version of our publication at NIPS 2013 conference (Todeschini et al., 2013).

2.1 Introduction

We want to recover an unknown m X n matrix Z = (z;;) and we are going to assume that Z
can be approximated by a matrix of low-rank Z ~ ABT where A and B are respectively of size
m X k and n X k, with k < min(m, n). We typically observe a noisy version x;; of some entries
(i,j) € Q where Q c {1,...,m} x{1,...,n}. For (i,j) € Q
iid.
Xij = zjj + &ij, i s N(O, 62) (2.1)
where 02 > 0. Many authors have advocated the use of a nuclear norm regularization (Fazel,

2002; Candes et al., 2008; Mazumder et al., 2010), yielding the following convex optimization
problem

o 1 2
mmlémzeﬁ Z (xij—zij) + A Z]l. (2.2)

(i.))eQ
where A > 0 and ||Z]||, is the nuclear norm of Z, or the sum of the singular values of Z.
Mazumder et al. (2010) proposed an iterative algorithm, called Soft-Impute, for solving the
nuclear norm regularized minimization (2.2); see Section 1.3.4 of Chapter 1 for further details.
In this chapter, we show that the solution to the objective function (2.2) can be interpreted
as a MAP estimate when assuming that the singular values of Z are independent and identically
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2.2. Complete matrix X

distributed (i.i.d.) from an exponential distribution with rate A. Using this Bayesian interpre-
tation, we propose alternative concave penalties to the nuclear norm, obtained by considering
that the singular values are i.i.d. from a mixture of exponential distributions. We show that
this class of penalties bridges the gap between the nuclear norm and the rank penalty, and
that a simple expectation-maximization algorithm (EM, see Appendix A.1) can be derived to
obtain MAP estimates. The resulting algorithm iteratively adapts the shrinkage coefficients
associated to the singular values. It can be seen as the equivalent for matrices of reweighted ¢;
algorithms (Candes et al., 2008) for multivariate linear regression. Interestingly, we show that
the Soft-Impute algorithm of Mazumder et al. (2010) is obtained as a particular case. We also
discuss the extension of our algorithms to binary matrices, building on the same seed of ideas,
in Section 2.4. Finally, we provide some empirical evidence of the interest of the proposed
approach on simulated and real data.

2.2 Complete matrix X

Consider first that we observe the complete matrix X = (x;;) of size m X n. The solution Z to
the optimization problem

1
inimize — ||X — Z||% + 1|1 Z], 23
minimize —— I Iz +AllZIl (2.3)

can be interpreted as the MAP estimate under the likelihood (2.1) and prior
p(Z) e« exp (=AIZ]].) - (2.4)

Assuming Z = UDVT, with D = diag(dy, ds, . . .,d,;) and r = min(m, n), this can be further
decomposed as

p(Z) = p(U)p(V)p(D)

where we assume a uniform Haar prior distribution on the unitary matrices U and V, and
exponential priors on the singular values d;, hence

p(dy,....d) = l_[EXp (di; )
i=1

where Exp (x; 1) = Aexp(—Ax) is the pdf of the exponential distribution of parameter A eval-
uated at x. We can easily check (2.4):

Proof.
p(Z) = p(U)p(V)p(D)

o< p(D) = [ [ ptd) = | [ Aexp(-2d))
i=1 i=1

o< exp(~A Y di) = exp(-AlIZIl.)
i=1
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2. Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms

A

Figure 2.1: Graphical model of the prior p(d, ..., d;) = []i_; p(di).
/ a,b \

Figure 2.2: Graphical model of the hierarchical prior p(ds, ..., d,) = [1;_; p(dily)p(y:)-

The graphical model of this prior is represented in Figure 2.1. The exponential distribution
has a mode at 0, hence favoring sparse solutions.

We propose here alternative penalty/prior distributions, that bridge the gap between the
rank and the nuclear norm penalties. Our penalties are based on hierarchical Bayes construc-
tions and the related optimization problems to obtain MAP estimates can be solved by using
an EM algorithm. The proposed models can be seen as the equivalent for matrices of the it-
eratively reweighted lasso algorithms for linear regression (Candes et al., 2008; Cevher, 2008;
Garrigues, 2009; Lee et al., 2010; Armagan et al., 2013).

2.2.1 Hierarchical adaptive spectral penalty

We consider the following hierarchical prior for the low-rank matrix Z. We still assume
that Z = UDVT, where the unitary matrices U and V are assigned uniform priors and
D = diag(dy,...,d,). We now assume that each singular value d; has its own regularization
parameter y;.

pldis. s drlyrs . y) = | | pldilys) = | | Exp(disya).
i=1 i=1

We further assume that the regularization parameters are themselves i.i.d. from a gamma dis-
tribution

p(Y1s - Yr) = l_[p Yi) nGamma(y,,a b)

where Gamma(x; a, b) is the pdf of the gamma distribution of parameters a > 0 and b > 0
evaluated at x. The graphical model of this hierarchical prior is represented in Figure 2.2.

The marginal distribution over d; is thus a continuous mixture of exponential distributions
(details in Appendix A.2)

ab?

—(di T p)at (2.5)

p(dy) = / Exp(dy: ;) Gammal(y;; a, b)dy; =
0

It is a Pareto distribution which has heavier tails than the exponential distribution. Figure 2.3
shows the marginal distribution p(d;) for a = b = . The lower S, the heavier the tails of the
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2.2. Complete matrix X

p(d;)

Figure 2.3: Marginal distribution p(d;) with a = b = p for different values of the parameter
B. The distribution becomes more concentrated around zero with heavier tails as f decreases.
The case f — oo corresponds to an exponential distribution with unit rate.

distribution. When  — oo, one recovers the exponential distribution of unit rate parameter.
Let

pen(Z) = —logp(Z) = - > logp(d;) = Ci + (a+1) ) log(b + d) (2.6)
i=1 i=1

be the penalty induced by the prior p(Z) where C; is a constant term not depending on Z.
We call the penalty (2.6) the hierarchical adaptive spectral penalty (HASP). On Figure 2.4 (top)
are represented the balls of constant penalties for a symmetric 2 X 2 matrix, for the HASP,
nuclear norm and rank penalties. When the matrix is assumed to be diagonal, one recovers
respectively the lasso, hierarchical adaptive lasso (HAL, Candes et al., 2008; Lee et al., 2010)
and ¢, penalties, as shown on Figure 2.4 (bottom).

The penalty (2.6) admits as special cases the nuclear norm penalty 1 || Z||, when a = Ab and
b — co. Another closely related penalty is the log-det heuristic (Fazel, 2002; Fazel et al., 2003)
penalty, defined for a square matrix Z by log det(Z + 6I) where ¢ is some small regularization
constant. Both penalties agree on square matrices when a = b = 0 and § = 0.

2.2.2 EM algorithm for MAP estimation

Using the exponential mixture representation (2.5), we now show how to derive an EM algo-
rithm to obtain a MAP estimate

7 = arg max [log p(X|Z) +log p(Z)]

i.e. to minimize

LE@) = 55 IX=ZIE+ @+ 1)) loglb+ ). (27)

i=1
We use the parameters y = (y1,...,},) as latent variables in the EM algorithm. The E step is
obtained by (details in Appendix A.2)
1 r
Q(Z,2%) = Elogp(X, Z,y)IZ", X] = Co - = IX = ZI} = ) Elyild]ld; ~ (2.8)
20° i=1
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2. Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms

N o N o N
yox yox yox
(a) Nuclear norm (b) HASP ( = 1) (c) HASP (5 = 0.1) (d) Rank penalty
(e) ¢; norm (f)HAL(f=1) (g) HAL (8 = 0.1) (h) fo. norm

Figure 2.4: Top: manifold of constant penalty, for a symmetric 2 X 2 matrix Z = [x,y;y, z]
for (a) the nuclear norm, (b-c) hierarchical adaptive spectral penalty witha =b = (b) f =1
and (c) f = 0.1, and (d) the rank penalty. Bottom: contour of constant penalty for a diagonal
matrix [x, 0;0, z], where one recovers the classical (e) lasso, (f-g) hierarchical lasso and (h) ¢
penalties.

where C; is a constant term not depending on Z.
Hence at each iteration of the EM algorithm, the M step consists in solving the optimization
problem

] Y
mlmémze 797 [|X — Z||12D + i; w;d; (2.9)
where (details in Appendix A.2)

. 0 ; a+1
w; = [E[}/lldz] = ad* [_logp(dl)] = b+ds’

(2.10)

Problem (2.9) is an adaptive nuclear norm regularized optimization problem, with weights
w;. Without loss of generality, assume that d; > d; > ... > d;. It implies that

0w fwy ... < w. (2.11)

The above weights will therefore penalize less heavily higher singular values, hence reducing
bias. As shown by Gaiffas and Lecué (2011) and Chen et al. (2013), a global optimal solution
to Eq. (2.9) under the order constraint (2.11) is given by a weighted soft-thresholded SVD

—~

Z = S,2,(X) (2.12)

where 8,,(X) = UD,VT with D,, = diag ((d = 1)+ ... (d, = @): ), X = UDV is the SVD
of X with D = diag(cz,...,(z) andc?l > 6,1.2 > (ir

Algorithm 2 summarizes the hierarchical adaptive soft-thresholded (HAST) procedure to
converge to a local minimum of the objective (2.7). This algorithm admits the soft-thresholded
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5 _
= Nuclear norm
4 —-HASP =2
—HASP 8 =0.1
d°
2 L
1t
Pe
/,/
0 Y ‘
0 1 2 3 4 5

Figure 2.5: Thresholding rules on the singular values d; of X for the soft thresholding rule
(A = 1), and hierarchical adaptive soft thresholding algorithm with a = b = f.

SVD operator as a special case when a = bAand b = f — oo. Figure 2.5 shows the thresholding
rule applied to the singular values of X for the HAST algorithm (a = b = f, with f = 2 and
B = 0.1) and the soft-thresholded SVD for A = 1. The bias term, which is equal to A for the

nuclear norm, goes to zero as d; goes to infinity.

Algorithm 2: Hierarchical Adaptive Soft-Thresholded (HAST) algorithm for low-rank
estimation of complete matrices.

Initialize Z®. At iteration t > 1

. : ) _ 1
« Fori=1,...,r, compute the weights v, = #EH)
. Set ZW) =S _, 1 (X)

1)y (®) =
. If% < ¢ then return Z = Z(®

Setting of the hyperparameters and initialization of the EM algorithm. In the exper-
iments, we have set b = f and a = Aff where A and f are tuning parameters that can be chosen
by cross-validation. As A is the mean value of the regularization parameter y;, we initialize the
algorithm with the soft-thresholded SVD with parameter o%A.

It is possible to estimate the hyperparameter o within the EM algorithm. If we assume that

o ~ InvGamma(ag, by)

where InvGamma(a, b) is the inverse gamma distribution with shape parameter a > 0 and
rate parameter b > 0. Then at each iteration of the algorithm we can maximize w.r.t. ¢ given
Z® in the E step to obtain

a0 +[x - 20,

2(t) —
o
by + mn

In our experiments, we have found the results not very sensitive to the setting of o, and set it
to 1.
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2. Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms

Table 2.1: Expressions of various mixing densities and associated weights. K, denotes the
modified Bessel function of the third kind.

Mixing density p(y;) Marginal density p(d;) Weights w; = E[y;|d}]
Gamma(y;; a, b) = % l_a_le_b)/i % ba:dl;‘
i . — 0 G0u, 32 =3 (8%y Py 8 LS(u—\pP+2d;) 5 1
iGauss (y;; 6, 1) ol (A Tred,. Faz (1 + 5 T%zd;‘)
Jeffreys: oc 1/y; o« 1/d; 1/d
v v v+ 1) 2 di %
GiG (y;; v, 8, 1) = gg/z” v=1,=5 (8% 412y s K 1( e ) s Kue(5\ired)

2

smVi € K, (&71) (\/M)M Vi +2d; Ky (5/u2+2d;)

2.2.3 Generalization to other mixing distributions

Although we focused on a gamma mixing distribution for its simplicity, it is possible to use
other mixing distributions p(y;), such as inverse Gaussian or improper Jeffreys distributions.
More generally, one can consider the three parameters generalized inverse Gaussian distribu-
tion (Barndorff-Nielsen and Shephard, 2001; Zhang et al., 2012; Caron and Doucet, 2008) thus
offering an additional degree of freedom. Its pdf evaluated at x > 0 is

W
~ 2K, (op)

—%(52x_1+y2x)

GiG (x; v, 8, 1) e
It includes as special cases:

« the gamma distribution: v > 0,6 = 0

« the inverse gamma distribution: v < 0,z = 0

+ the inverse Gaussian distribution: v = -3
« the Jeffreys distribution as a limiting case: v — 0,6 — 0,z — 0

and its k-th moment is given by

5K (on)
e = ke

Table 2.1 provides the marginal density p(d;) and weights w; depending on the choice of
p(y:)- Details of the general GiG case are given in Appendix A.2. Figure 2.6 shows plots of the
marginal density p(d;) for different choices of p(y;).

2.3 Matrix completion

We now show how the EM algorithm derived in the previous section can be adapted to the case
where only a subset of the entries is observed. It relies on imputing missing values, similarly
to the EM algorithm for SVD with missing data; see e.g. (Dempster et al., 1977; Srebro and
Jaakkola, 2003).

Consider that only a subset Q c {1,...,m} X {1,...,n} of the entries of the matrix X is
observed. Assuming the same prior (2.5), the MAP estimate is obtained by minimizing

L£Z) = 5 I1Pa() = Pa(D)IIE + (a+1) Y log(b + ). 213

i=1
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—Gamma [ = o0
— Gamma 3 =0.2

2
iGauss 6 = 0.8
15 iGauss 6 = 0.2
= —GiG [=1,0=25
= ] - GiGp=5,0=1
--GiG =0.01,0 =0.01
0.5

Figure 2.6: Marginal distribution p(d;) for different mixing distributions p(y;) with E [y;] = 1:

Gamma(p, ), iGauss(d, §) and GiG(v, d, f) where v is chosen so that E [y;] = %KI&%) =1;

and for different values of the parameters f and 9.

We will now derive the EM algorithm, by using latent variables y and P;(X). The E step is
given by (details in Appendix A.2)

Q(Z,77)

E [logp<PQ<X),P5<X) Zy)\z", PQ<X>]

Cy— — {“PQ(X +P5(2) - 2| } Z Ely:ld*1d, (2.14)

where Cs is a constant term not depending on Z.
Hence at each iteration of the algorithm, one needs to minimize

1, -
Pl o = 2|+ ) wid (2.15)

where w; = E[y;|d;] and X* = Po(X) + P5(Z") is the observed matrix, completed with entries
in Z*. We now have a complete matrix problem. As mentioned in the previous section, the
minimum of (2.15) is obtained with a weighted soft-thresholded SVD. Algorithm 3 provides
the resulting iterative procedure for matrix completion with the hierarchical adaptive spectral
penalty.

Algorithm 3: Hierarchical Adaptive Soft-Impute (HASI) algorithm for matrix comple-
tion.
Initialize Z(®). At iteration t > 1

« Fori=1,...,r, compute the weights a)i(t) = D ‘:(rtl_l)
+ i

» Set ZW =8 1,0 (Pa(X) + P5(27V))

If L(ZED)—£(zD)

7 =70
@20 < ¢ecthenreturn Z = 7
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2. Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms

Related algorithms. Algorithm 3 admits the Soft-Impute algorithm of Mazumder et al.
(2010) as a special case when a = Ab and b =  — oco. In this case, one obtains at each it-
eration a)l.(t) = A for all i. On the contrary, when § < oo, our algorithm adaptively updates
the weights so that to penalize less heavily higher singular values. Some authors have pro-
posed related one-step adaptive spectral penalty algorithms (Bach, 2008; Gaiffas and Lecué,
2011; Chen et al.,, 2013). However, in these procedures, the weights have to be chosen by some

procedure whereas in our case they are iteratively adapted.

Initialization. The objective function (2.13) is in general not convex and different initial-
izations may lead to different modes. As in the complete case, we suggest to set a = Ab and
b = p and to initialize the algorithm with the Soft-Impute algorithm with regularization pa-
rameter o2\,

Scaling. Similarly to the Soft-Impute algorithm, the computationally demanding part of Al-
gorithm 3is Sz, (PQ X)+P3(Z (t‘l))) which requires calculating a low-rank truncated SVD.
For large matrices, one can resort to the PROPACK algorithm (Larsen, 1998, 2004) as described
by Mazumder et al. (2010). This sophisticated linear algebra algorithm can efficiently compute
the truncated SVD of the “sparse + low-rank” matrix

Po(X) + P5(Z") = Po(X) — Po(z V) + 2071

sparse low-rank

and can thus handle large matrices.

2.4 Binary matrix completion

We have considered real valued matrices X. We now show how it is possible to apply the
same methodology to binary incomplete matrices Y with entries y;; € {-1,1}. Similarly to
Figueiredo (2003), we assume the following probit model

iilzij ~ Ber (@ (@))
YijlZij pu

where Ber(p) is the Bernoulli distribution with parameter p € [0, 1] and ®(x) = f_xoo o(u)du is
the cumulative distribution function (cdf) of the standard Gaussian distribution with ¢(u) =

u
—Le7 2. The model can be alternatively written using Gaussian latent variables x;;

2z
xijlzij ~ N (zij, 0%)
+1 ifx; >0
= {—1 otherwise.
The objective function

L(Z) = Z

(i.)eQ

+ pen(Z)

1+ yi ij 1=y ij
( y])log®(2)+( yj)log@(—ﬁ)
2 o 2 (o

can be locally minimized using an EM algorithm using the variables x;; as additional latent
variables. We have (details in Appendix A.2)

oo(X) ...
Zii + o2l if (i, ]) € Q
ElxylPa(Y), 2] = | %+ ¥ag, 2y 1(0) (216)
zjj otherwise.
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We will now derive the EM algorithm, by using latent variables y; and X. The E step is given
by (details in Appendix A.2)

Q(Z,2") = E[logp(Pa(Y), X, Z,y)IZ", Pa(Y)]

1 ., - .
= Ca= 57 IX = 2l = ) Elnild]1d, (217)

i=1

where Cy is a constant term not depending on Z and the matrix X* is defined as

z5 otherwise.

Again, the maximum of the function (2.17) is obtained analytically using a weighted soft-
thresholded SVD on the matrix X*. The HASI-bin procedure is summarized in Algorithm 4.

Algorithm 4: Hierarchical Adaptive Soft-Impute algorithm for binary matrix comple-
tion (HASI-bin).
Initialize Z(©). At iteration ¢ > 1

() _ _at1
o ped" Y
1

ap _Z,(;_l)
® _ @1, ‘
i =% tYi D

D| yij

« Fori=1,...,r, compute the weights w

« For (i,j) € Q, compute x

o

» Set ZW =50 (PQ(X(t)) + Pé(Z(t‘l)))

. If L(Z“‘”)—.C(Z(‘))

220D < e then return Z = Z®

2.5 Experiments

2.5.1 Simulated data

We first evaluate the performance of the proposed approach on simulated data. Our simulation
setting is similar to that of Mazumder et al. (2010). We generate Gaussian matrices A and B
respectively of size m X g and n X g, ¢ < r so that the matrix Z = ABT is of low rank q. A

Gaussian noise of variance o2 is then added to the entries of Z to obtain the matrix X. The
signal to noise ratio is defined as SNR = ,/%(ZZ) We set m = n = 100 and ¢ = 1. We run

all the algorithms with a precision € = 10~° and a maximum number of ty,, = 200 iterations
(initialization included for HASI). In the complete case, we compute the relative squared error
between the estimated matrix Z and the true matrix Z

2z

I1ZI17
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2. Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms

while in the incomplete case, we compute the relative squared error between the test entries
~ = 2
L L
[Pa@ - P52,
2
1
[Pa@l;

For the HASP penalty, we set a = Aff and b = . We compute the solutions over a grid of 50
values of the regularization parameter A linearly spaced from A, to 0, where Ay = ||Po(X)]l, is
the spectral norm or largest singular value of the input matrix X, padded with zeros. This is
done for three different values = 1, 10, 100. We use the same grid to obtain the regularization
path for the other algorithms.

errgL =

Complete case. We first consider that the observed matrix is complete, with SNR = 1
and ¢ = 10. The HAST algorithm 2 is compared to the soft-thresholded (ST) and hard-
thresholded (HT) SVD. Results are reported in Figure 2.7(a). The HASP penalty provides a
bridge/trade-off between the nuclear norm and the rank penalty. For example, value of f = 10
show a minimum at the true rank g = 10 as HT, but with a lower error when the rank is
overestimated.

Incomplete case. Then we consider the matrix completion problem, and remove uniformly
a given percentage of the entries in X. We compare the HASI algorithm to the Soft-Impute,
Soft-Impute+ and Hard-Impute algorithms of Mazumder et al. (2010) and to the MMMF al-
gorithm of Rennie and Srebro (2005); see Chapter 1 for further details on these algorithms.
Results, averaged over 50 random replications of the set of observed entries Q, are reported
in Figures 2.7(b-c) for a true rank g = 5, (b) 50% of missing entries and SNR = 1 and (c) 80% of
missing entries and SNR = 10. Similar behavior is observed, with the HASI algorithm attaining
a minimum at the true rank g = 5.

We then conduct the same experiments, but remove 20% of the observed entries as a valida-
tion set to estimate the regularization parameters (A, ) for HASI, and A for the other methods.
We estimate Z on the whole observed matrix, and use the unobserved entries as a test set. Re-
sults on the test error and estimated ranks over 50 replications are reported in Figure 2.8. For
50% missing entries, HASI is shown to outperform the other methods. For 80% missing entries,
HASI and Hard-Impute provide the best performances. In both cases, it is able to recover very
accurately the true rank of the matrix.

2.5.2 Collaborative filtering examples

We now compare the different methods on several benchmark datasets.

Jester datasets. We first consider the Jester datasets (Goldberg et al., 2001). The three
datasets' contain one hundred jokes, with user ratings between —10 and 10. We randomly
select two ratings per user as a test set, and two other ratings per user as a validation set to se-
lect the parameters A and f. The results are computed over four values = 1000, 100, 10, 1. We
compare the results of the different methods with the normalized mean absolute error NMAE)
which is a popular metric on these datasets

1 -
card(Qiest) Z(iaj)egtest |xl} ZUl

NMAE =
max(X) — min(X)

Jester datasets can be downloaded from the URL http://goldberg.berkeley.edu/jester-data/.
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Figure 2.7: Test error w.r.t. the rank obtained by varying the value of the regularization pa-

rameter A. Results on simulated data are given for (a) a rank 10 complete matrix with SNR=1,

(b) a rank 5 matrix with 50% missing entries and SNR=1 and (c) a rank 5 matrix with 80%
missing entries and SNR=10.
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2. Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms
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Figure 2.8: Boxplots of the test errors (left) and ranks (right) obtained over 50 replications
on simulated data with true rank g = 5 and (a) 50% missing entries with SNR=1 and (b) 80%
missing entries with SNR=10.
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2.6. Conclusion

Table 2.2: Results on the Jester datasets.

Jester 1 Jester 2 Jester 3
24983 X 100 23500 X 100 24938 X 100
27.5% miss. 27.3% miss. 75.3% miss.

Method NMAE Rank NMAE Rank NMAE Rank

MMMF 0.161 95 0.162 96 0.183 58
Soft Imp  0.161 100 0.162 100 0.184 78
Soft Imp+ 0.169 14 0.171 11 0.184 33
Hard Imp 0.158 7 0.159 6 0.181 4

HASI 0.153 100 0.153 100 0.174 30

where Q. is the test set. The mean number of iterations for Soft-Impute, Hard-Impute and
HASI (initialization included) algorithms are respectively 9, 76 and 76. Computations for the
HASI algorithm take approximately 5 hours on a standard computer®. The results, averaged
over 10 replications (with almost no variability observed), are presented in Table 2.2. The HASI
algorithm provides very good performance on the different Jester datasets, with lower NMAE
than the other methods.

Figure 2.9 shows the NMAE in function of the rank. Low values of  exhibit a bimodal
behavior with two modes at low rank and full rank. High value f = 1000 is unimodal and
outperforms Soft-Impute at any particular rank.

MovieLens datasets. Second, we conducted the same comparison on two MovieLens
datasets®, which contain ratings of movies by users. We randomly select 20% of the entries
as a test set, and the remaining entries are split between a training set (80%) and a validation
set (20%). For all the methods, we stop the regularization path as soon as the estimated rank
exceeds rmax = 100. This is a practical consideration: given that the computations for high
ranks demand more time and memory, we are interested in restricting ourselves to low-rank
solutions. Table 2.3 presents the results, averaged over 5 replications. For the MovieLens 100k
dataset, HASI provides better NMAE than the other methods with a low-rank solution. For
the larger MovieLens 1M dataset, the precision, maximum number of iterations and maximum
rank are decreased to € = 1075, tyay = 100 and rpax = 30. On this dataset, MMMF provides the
best NMAE at maximum rank. HASI provides the second best performances with a slightly
lower rank.

2.6 Conclusion

The proposed class of methods has shown to provide good results compared to several alter-
native low-rank matrix completion methods. It provides a bridge between nuclear norm and
rank regularization algorithms. Although the related optimization problem is not convex, ex-
periments show that initializing the algorithm with the Soft-Impute algorithm of Mazumder
et al. (2010) provides very satisfactory results.

While we focus on point estimation in this chapter, it would be of interest to investigate a
fully Bayesian approach and derive a Gibbs sampler or variational algorithm to approximate

2Qur Matlab implementation is available online at the URL https://github.com/adrtod/hasi.
3MovieLens datasets can be downloaded from the URL http://www.grouplens.org/node/73.
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Figure 2.9: NMAE on the test set of the (a) Jester 1, (b) Jester 2 and (c) Jester 3 datasets w.r.t. the
rank obtained by varying the value of the regularization parameter A.
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2.6. Conclusion

Table 2.3: Results on the MovieLens datasets.

MovieLens 100k MovieLens 1M

943 X 1682
93.7% miss.

Method NMAE Rank

MMMF 0.195
Soft Imp  0.197
Soft Imp+ 0.197
Hard Imp 0.190
HASI 0.187

50
156
108
7
35

6040 X 3952
95.8% miss.
NMAE Rank
0.169 30
0.176 30
0.189 30
0.175 8
0.172 27

the posterior distribution, and compare to other full Bayesian approaches to matrix comple-
tion (Seeger and Bouchard, 2012; Nakajima et al., 2013).

38



Part 11

Bayesian nonparametric models for
networks
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Chapter 3

Background on Bayesian
nonparametrics

We introduce the necessary background on Bayesian nonparametrics that will be useful in the next
chapters. Instead of giving a complete review on the subject we will focus on particular objects of
interest, namely completely random measures (CRMs) and one of their multivariate counterpart,
the compound CRMs.

3.1 Introduction

First, let emphasize that the “nonparametric” term here does not mean “no parameters” but
rather “not parametric”, i.e. that we do not assume a parametric model with a fixed finite
number of parameters. The parameter of interest in a Bayesian nonparametric (BNP) model is
infinite-dimensional. This framework allows the complexity of the model to adapt to the grow-
ing number of data, and to be able to discover more structure or patterns as we observe more
data. It thus provides a framework which is both adaptive and robust (Miiller and Quintana,
2004; Orbanz and Teh, 2011).

Another attractive feature of Bayesian nonparametric models, which will be central to
the model for graphs we develop in the next chapter, is that they allow to capture power-
law behavior in the data. They have been therefore successfully used in natural language
processing (Teh, 2006), topic models (Teh and Goriir, 2009; Sato and Nakagawa, 2010), natural
image processing (Sudderth and Jordan, 2009) or network analysis (Caron, 2012; Caron and
Fox, 2014) where those power-law patterns naturally arise.

A few books have been already published on Bayesian nonparametrics (Ghosh and Ra-
mamoorthi, 2003; Hjort et al., 2010). Popular models include the Dirichlet process and Chinese
restaurant process (Ferguson, 1973; Blackwell and MacQueen, 1973), for density estimation and
clustering, the beta process and the Indian buffet process (Hjort, 1990; Griffiths and Ghahramani,
2005; Thibaux and Jordan, 2007), for survival analysis or latent feature modeling, the Gaussian
process (O’Hagan and Kingman, 1978) for regression or classification, the Polya tree (Lavine,
1992, 1994) for density estimation.

From a mathematical perspective, BNP methods require the elaboration of prior over an
infinite-dimensional space, and we are in general working with stochastic processes instead of
random vectors. More specifically, the tools we will use here are completely random measures
and their multivariate counterparts. These objects can be constructed from Poisson processes,
for which we give a brief review in the next section.
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Figure 3.1: Examples of (a) one-dimensional and (b) two-dimensional Poisson processes.

3.2 Poisson point processes and Poisson random mea-
sures

The Poisson process is a standard tool in probability to model the positions of points randomly
distributed in space; see (Kingman, 1993; Daley and Vere-Jones, 2008a) for general reviews.
Commonly used in one dimension for representing arrival times, they generalize to higher
dimensions, see Figure 3.1 for some examples.

3.2.1 Definition

The characteristic feature of Poisson processes is a property of statistical independence. Let
A1, Ay, ... be some non overlapping subsets of the space. Denote N(A) the number of points
falling in a set A. Then the numbers N (A)) are positive integer-valued statistically independent
random variables.

More formally, let S € R¢ and v be a measure on S. A Poisson process on the measurable
space S with mean measure v' is a random countable subset IT of S such that for any disjoint
measurable subsets A, As, ..., A, of S, the random variables N(A;), N(A3),...,N(A,) are
independent (complete randomness property) and Poisson distributed (see Appendix B.1) with

N(A;) ~ Poisson (v(4;)) .
Specifically, IT = {x;};=1,. n(s) With x; € S is called Poisson point process while N is a
discrete measure, called Poisson random measure, such that

N=> 6, and N(A)= ) 5,4

where J, is the delta Dirac measure at x; see Figure 3.2 for an illustration. We will use both
representations in the rest of the thesis.

INote that we consider a generalized definition of a Poisson process, where the mean measure is allowed to
have atoms; see e.g. Daley and Vere-Jones (2008a, Section 2.4).
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3. Background on Bayesian nonparametrics

UL LT

Figure 3.2: Example of a Poisson random measure on [0, 1].

By definition of the Poisson distribution, we have
E[N(A)] = v(A).
If v(A) is finite, IT N A is with probability (w.p.) 1 a finite set, empty if v(A) = 0. If v(A) = oo,
IT N A is countably infinite w.p. 1.

In most interesting cases, the mean measure is given in terms of a rate or intensity param-
eter. This is a positive measurable function v(.) on S such that v(dx) = v(x)dx and

v(A) =/Av(x)dx.

3.2.2 Properties

Theorem 1 (Superposition). Let Ny, N, ... be a countable collection of independent Poisson
random measures on S where, for each i, N; is a Poisson random measure with mean measure v;.
Then their superposition },;>, N; is a Poisson process with mean measure ) ;- V;.

Proposition 2 (Thinning). Let II = {x;} be a Poisson process on S with mean measure v. Let
IT" be a new process formed by independently retaining each point x; w.p. p(x;) or removing it
w.p. 1 — p(x;) where p(.) is a measurable function on S with0 < p(x) < 1 forallx. ThenIl’ is a

Poisson process with mean measure p(x)v(dx).

Theorem 3 (Campbell’s Theorem). Let N = }; 6y, be a Poisson random measure on S with
mean measure v and let f : S — R be a measurable function, such that

/Smin(lf(x)l, 1) v(dx) < o0 (3.1)

then the characteristic functional is

[E [eezif(x,»)] — e—fs(l—egf(x))v(dX)

for any complex 6 for which the integral on the right converges. Moreover if (3.1) holds, the sum
i f(x:) is absolutely convergent w.p. 1 and we have

[E[Z f(xi)] = /S F(x)v(dx)

if the integral converges.
Remark 4. Condition (3.1) is equivalent to fs (1 — e"f(x)|) v(dx) < 0.
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3.2. Poisson point processes and Poisson random measures

Laplace functional. A useful characterization of point processes I = {x;} is via the Laplace
functional

Lif] =E [e—Zif(xi)]

where f is a nonnegative bounded measurable function. By Campbell’s Theorem we have
L] = ¢ (=)0

For one-dimensional processes, let f(x) = tx with t > 0 and define the so-called Laplace
exponent as

Y(t) = —log E [e7' 21

= /(1 — ™) v(dx).

S

3.2.3 Simulation

For obvious practical reasons, we will restrict ourselves to the simulation of a finite number of
points. Simulating a Poisson process on A when v(A) is finite can be done using the following
strategy:

1. Generate a Poisson number of points N(A) ~ Poisson (v(A)).

2. Fori=1,...,N(A), generate X; ~ vg(%\) independently.

Though this strategy always holds, it requires in practice to be able to sample from the prob-
VS&‘;‘) which might not be always be feasible.

ability measure

Thinning. Exploiting the thinning property (Proposition 2), we can obtain a Poisson process
with mean measure v(dx) = v(x)dx by simulating from a Poisson process whose intensity g
upper bounds the intensity of interest v

g(x) > v(ix)V¥x € A

and such that [, g(x)dx < co. The Shedler-Lewis (Lewis and Shedler, 1979) thinning strategy
is summarized in Algorithm 5. See Figure 3.3 for an illustration. The tighter the envelope
intensity g, the lesser the rejection rate.

Algorithm 5: Shedler-Lewis thinning algorithm.
Set IT = 0.

1. Simulate IT" = {y;} from a Poisson process on A with intensity g such that g(x) > v(x)
for each x € A.

2. Independently for all i, accept y; w.p. % and set IT = IT U {y;}

Output IT = {x;} as a Poisson process with intensity v.
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g(x)

v(x)

Yi

Figure 3.3: Illustration of the thinning strategy.

v(s)

Figure 3.4: Illustration of the adaptive thinning strategy.

Adaptive Thinning. A refinement of this algorithm can be used when we want to sample
points from a Poisson process on (¢, co) with intensity v(t) where v is a monotone decreasing
and bounded function such that | “v(t)dt < oo. Consider the family of adaptive bounds
gi(s) = v(s) for s > t and denote

@@=[wwmﬂ

We need g;(s) and the inverse G; ! (s) to be analytically tractable with G;(c0) < co. The adaptive
thinning sampling scheme (Ogata, 1981; Favaro and Teh, 2013) sequentially samples the points
of the Poisson process and adapts the upper bound. It is summarized in Algorithm 6 and
illustrated in Figure 3.4. The efficiency of this approach depends on the acceptance probability

v(s)/g1(s)-

3.3 Completely random measures

Completely random measures (CRMs) were introduced by (Kingman, 1967, 1993) and are now
standard tools for constructing flexible BNP models; see for example the surveys of Lijoi and
Priinster (2010) or Daley and Vere-Jones (2008b, Section 10.1). They generalize Poisson random
measures with random positive masses instead of unit masses. In this chapter, we are going
to restrict ourselves to the R, space.
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3.3. Completely random measures

Algorithm 6: Adaptive thinning algorithm.
SetII = 0, t = ¢. Iterate until termination:

1. Draw r ~ Exp(1);

2. if r > G;(c0), terminate; else set ¢’ = G;!(r);

3. with probability v(t")/g;(t’), accept sample ¢" and set IT = [T U {t'};
4. sett = t’ and continue.

Output IT = {t;} as a draw from the Poisson process with intensity v on (¢, 00).

H N l 111

Figure 3.5: Example of a CRM on [0, 1].

3.3.1 Definition

More formally, a CRM W on R, is a random measure such that, for any collection of dis-
joint measurable subsets Ay, ..., A, of Ry, W(A;),...,W(A,) are independent. A CRM can
be decomposed into a sum of three independent parts: a non-random measure, a countable
collection of atoms with random masses at fixed locations, and a countable collection of atoms
with random masses and random locations. Here, we will only consider CRMs with random
masses and random locations, which take the form

W= i w;
i=1

where the w; € R, are the masses and 6; € R are the locations; see Figure 3.5 for an example
of realization.

The law of W can actually be characterized by a Poisson point process IT = {(w;, 0;)i=1.2....}
on R? with mean measure v(dw, d9). We focus here on the case where the CRM is homoge-
neous with stationary increments. This implies that the locations 6; are independent of the
weights w; and the mean measure decomposes as v(dw,df) = p(dw)A(df) where A is the
Lebesgue measure and p is a Lévy measure on (0, +00). That is, p verifies

/000(1 —e ")p(dw) < 0. (3.2)

We will write
W ~ CRM(p, 7).

3.3.2 Properties
Let J, be the number of jumps in [0, ] we have E [J,] = fo fo (dw)A(dO) and the

Jo ~ Poisson (a /°° p(dw))
0
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3. Background on Bayesian nonparametrics

If fooo p(dw) = oo then there will be almost surely (a.s.) an infinite number of jumps in any
interval [0, «] and we refer to the CRM as infinite-activity. Otherwise, it is called finite-activity.

Condition (3.2) guarantees that the total mass W([0,a]) = Z{il w; is finite a.s. for any
a < oo. Note that W(R,) = oo as. if fooo p(dw) > 0. The Laplace functional of W([0, «]) is

E [V (0] = v )

for any t > 0 where
b0 = [ =™
0

is the Laplace exponent.
Let p be the tail Lévy intensity defined as

s = [ plaw) (33)

for x > 0. This function corresponds to the expected number of points (w;, §;) such that w; > x
and 0; € [0, 1], and its asymptotic properties play an important role in the characterization of
the graph properties. The CRM is said to be regularly varying if

5x) Y e(1/x)x°

for 0 € (0,1) where ¢ is a slowly varying function s.t. lim;_, €(at)/€(t) = 1 for any a > 0.

f@ _

The equivalence notation f(x) % g(x) is used for lim,_, el

3.3.3 Generalized gamma process

As a particular case of CRM, we will focus on the generalized gamma process (GGP, Hougaard,
1986; Brix, 1999), which has been extensively used in BNP models due to its generality, the
interpretability of its parameters and its attractive conjugacy properties (James, 2002; Lijoi
etal., 2007; Saeedi and Bouchard-Co6té, 2011; Caron, 2012; Caron et al., 2014). The Lévy measure
in this case is p(dw) = p(w)dw where

1 1

p(w) = mw_ ~7 exp(—wr) (3.4)
where the parameters (o, 7) verify
0€(0,1),7>0 or o€ (—00,0],7 > 0. (3.5)

The GGP encompasses a wide range of possibilities including finite and infinite-activity
cases.

Finite-activity case. When o < 0 we have p(w) = —% Gamma(w; —o, 7) implying

/ p(w)dw = It
0 o

We then have a finite number of jumps in [0, a] a.s.

,Z.O'
Jo ~ Poisson (—a’—) (3.6)
I
while fori =1, ..., J,, the jumps w; are Gamma (-0, 7) i.i.d.
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3.3. Completely random measures

Infinite-activity case. When (o > 0) we have fooo p(w)dw = co and special cases include:
« the gamma process: 0 =0, 7 > 0
« the stable process: o € (0,1), 7 =0
« the inverse-Gaussian process: o = %, >0
For o > 0, the tail Lévy intensity is

t9T(-0,rx)

® 1 ifr>0
p(x) = / ————w " exp(~tw)dw = g(_lr,"’) .
x F(l - O-) Ti-o)o ifr=0

where I'(a, x) is the incomplete gamma function and the CRM is regularly varying with

f(l/X) = m

3.3.4 Simulation

Using the Poisson process construction, simulating a homogeneous CRM on [0, ] where
A0, a]) < oo is straightforward:

1. Simulate the jumps (w;) from a Poisson process with mean measure A([0, a])p(dw).

2. For each i simulate the locations 6; ~ %.

Let now concentrate on the jumps simulation in the case of a tilted truncated GGP, i.e. we
want to sample points from a Poisson process with truncated mean measure

pE(dw) = h(w)w™ % ™15 dw

o €(0,1),ort > 0and o € (—1,0]. Note that this mean measure verifies fR+ pf(dw) < oo and
it includes the (non tilted) truncated GGP by taking h(w) = 1. We will resort to the adaptive
thinning strategy of Algorithm 6 with the following family of adaptive bounds for 7 > 0:

where h is a positive, decreasing and bounded function, and (r, o) verify either 7 > 0 and

gi(s) = h(t)t ™77 exp(~1s)
with g;(s) > p(s) for s > t. We have,

6i) = | (s

= @t_l_”(exp(—ﬂ‘) — exp(-rs))

and

G\(r) = —%log (exp(—rt) _ %) .

For 7 = 0, we consider bounds
gi(s) = h(t)s™'77
and we obtain

Gits) = "o )

-1 -0 ro “ie
G, (r) = [t — —] .
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The efficiency of this approach depends on the acceptance probability, which is given, for
T > 0, by
pi(s) _ h(s)s™=

a()  hor

fors > t.

3.4 Vectors of CRMs

Multivariate extensions of CRMs have been proposed recently by various authors (Epifani and
Lijoi, 2010; Leisen and Lijoi, 2011; Leisen et al., 2013; Griffin et al., 2013; Lijoi et al., 2014). These
models are closely related to Lévy copulas (Tankov, 2003; Cont and Tankov, 2003; Kallsen
and Tankov, 2006) and multivariate subordinators on cones (Barndorff-Nielsen et al., 2001;
Skorohod, 1991). We will build in particular on the class of compound completely random
measures, proposed by Griffin and Leisen (2016).

3.4.1 Definition

A vector of CRMs (Wi, ..., W,) on R, is a collection of random measures W, k = 1,...,p,
such that, for any collection of disjoint measurable subsets Aj,...,A, of R,, the vectors
(Wl(Al), cee Wp(Al)), (Wl(Az), cees V\/p(Ag)),...,(Wl(An), cee, %(A,,)) are mutually indepen-
dent. We only consider here vectors of CRMs with both random weights and locations. In this

case, the measures Wy, k = 1,...,p, are a.s. discrete and take the form
Wi = )" wid,. (3.7)
i=1

The law of the vector of CRMs can be characterized by a Poisson point process on [R}:rl
with mean measure v(dwy, . ..,dw,,df). We focus again on homogeneous vectors of CRMs
with stationary increments where the mean measure can be written as

v(dwi, ..., dwy, d0) = p(dwi, .. ., dw,)A(d6). (3.8)

where p is a measure on [Rﬁ, concentrated on Rﬁ\{O}, which satisfies

4
/Rp min(l,Zwk>p(dw1,...,dwp) < . (3.9)

k=1

We use the same notation as for (scalar) CRMs and write simply

(Wi, ..., W,) ~ CRM(p, A). (3.10)

3.4.2 Properties

A key quantity is the multivariate Laplace exponent defined by

Y(t, ..., tp) == —logk [e_ T ["Wk([o’l])]

= /RP (1 — e Zia tkwk) p(dwi, ..., dw,).
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3.4. Vectors of CRMs

Note that this quantity involves a p-dimensional integral which may not be analytically com-
putable, and may be expensive to evaluate numerically.
As for CRMs, if

/p pdwy,...,dw,) = o0
R+

then there will be an infinite number of 6; € [0, a] for which }; wix > 0 and the vector of
CRMs is called infinite-activity. Otherwise, it is called finite-activity. Note that some (but not
all) CRMs may still be marginally finite-activity.

3.4.3 Compound CRMs

The key component is the multivariate Lévy measure p in (3.10). Various approaches have been
developed for constructing multivariate Lévy measures (Tankov, 2003; Cont and Tankov, 2003;
Kallsen and Tankov, 2006; Barndorff-Nielsen et al., 2001; Skorohod, 1991), or more specifically
vectors of CRMs (Epifani and Lijoi, 2010; Leisen and Lijoi, 2011; Leisen et al., 2013; Griffin et al.,
2013; Lijoi et al., 2014). We will consider the following particular form:

© _, [(d dw
pldwy,...,dw,) = e Zieat ViV / WOPF (ﬂ, R —p) po(dwg) (3.11)

0 Wo Wo
where F(df,...dp,) is some score probability distribution on R?, with moment generating
function M(ty,...,t,) = E [eZi—l t’“ﬁk], po is a base Lévy measure on (0,0) and y, > 0 are

exponentially tilting parametersfork = 1,...,p.

The model defined by (3.8) and (3.11) is a special case of the compound completely random
measure (CCRM) model proposed by Griffin and Leisen (2016). It admits the following hier-
archical construction, which makes interpretability, characterization of the conditionals and
analysis of this class of models particularly easy. Let

Wo = > wiods, ~ CRM(By, 1) (3.12)
i=1
where p; is a measure on (0, c0) defined by po(dwo) = M(=woy1, ..., —woYp)po(dwy), and for
k=1,...,pandi=1,2,...
Wik = PikWio

where the scores fj; have the following joint distribution
ind
(Bits - - > Bip)Iwio ~ H(-|wio) (3.13)
with H is an exponentially tilted version of F:
_ P
e D WF (dpy, . dp,)
o e B (4 dF))

H(dpi, ..., dBplwo) =

Additionally, the set of points (wio, Bi1, . . ., Bip)i=1,2,... is a Poisson point process with mean
measure ,
e L WPk (dp,, ..., dBy) po(dw). (3.14)

Dependence between the different CRMs is both tuned by the shared scaling parameter
wio and potential dependency between the scores (B4, .. ., fip).
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3. Background on Bayesian nonparametrics

The Laplace exponent of (W, ..., W,) is (details in Appendix B.2)

Yt tp) = /Ow [M (=woy1p) = M (=woltsp + y1)) ] po(dwo) (3.15)

which only requires evaluating a one-dimensional integral, whatever the number p of compo-
nents. Let finally denote

Ko(n,z) = / e ™ po(dwy)
0

and

M(ml,...,mp)(tl, )

P
Er [1_[ ﬁ]’(nketkﬂkjl
k=1

IM(t1,.... 1)
ot ..ot

Specific choices for F and p,. We now give here specific choices of score distribution F
and base Lévy measure p,, which lead to scalable inference algorithms. As in (Griffin and
Leisen, 2016), we consider that F is a product of independent gamma distributions

ba"
F(dpr.....dfy) = 1_[ prte g s dp (3.16)
where ar > 0,b; > 0,k = 1,...,p, with (details in Appendix B.2)
P tk —dk
M(tq, ... = - —
(tla 5 tp) 1_[ (1 bk)
k=1
P (3
T b
MU (1 L) = n (@ + ) ; (3.17)

T(ak) (b —tg) ™™

which leads to
k k

p
H(dwy, .. .,dwy|wp) o ]—[ w
k=1

which is also a product of gamma distributions.
po is set to be the mean measure of the jump part of a GGP. Using (3.16) and (3.4), the
multivariate Lévy measure has the following analytic form

. -3
(Zi kak) K. (2 T Zk: bkwk) dwi...dw,
=1 V

where k = 0 + Zizl ar and K is the modified Bessel function of the second kind.

pldwy,...,dw,) =

Kk
I'(1-o0)

2¢” Ziﬂ vewe [P Wak_lbak
1 Tla)
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3.4. Vectors of CRMs

Regarding the Laplace exponent, we obtain

B 1 0 P Woltk P Woyk o —wyr
w(tl,...,tp)—m/o |:1—l—[(1+bk+wo}/k) }[l—[( ) ]WOI e dwy

k=1 k=1
(3.18)

which can be evaluated numerically and for o € (0, 1) we have

I'(n—o)

ko(n,z) = (z+71)" "9 T1_o)

3.4.4 Simulation

The hierarchical construction of compound CRMs suggests an algorithm to simulate a vector
of CRMS. We consider the following (truncated) mean measure

© dw
p(dwi, ..., dwy) = e Zieet VKW / wopF (@, .. p) po(dwy)
£

Wy W
with ¢ > 0. We can sample from the (truncated) CCRM as follows

1.(a) Sample (wj,6;)i=1.. .k from a Poisson point process with mean measure
Po(dwo)A(dO) 1 (1> e.0¢[0.a]} -

(b) Fori = 1,...,Kand k = 1,...,p, set wix = Biwio where (Bi1, ..., fip)lwi is drawn
from (3.13).

The truncation level ¢ is set to 0 for finite-activity CCRMs, and ¢ > 0 otherwise. How to
perform step 1.(a) in the case of a tilted GGP is explained in Section (3.3.4).
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Chapter 4

Exchangeable random measures for
sparse and modular graphs with
overlapping communities

We propose a novel statistical model for sparse networks with overlapping community structure.
The model is based on representing the graph as an exchangeable point process, and naturally gen-
eralizes existing probabilistic models with overlapping block-structure to the sparse regime. Our
construction builds on vectors of completely random measures, and has interpretable parameters,
each node being assigned a vector representing its level of affiliation to some latent communities.
We develop methods for simulating this class of random graphs, as well as to perform posterior
inference. We show that the proposed approach can recover interpretable structure from two real-
world networks and can handle graphs with thousands of nodes and tens of thousands of edges.
This work is about to be submitted to a statistical journal (Todeschini and Caron, 2016).

4.1 Introduction

There has been a growing interest in the analysis, understanding and modeling of network data
over the recent years. A network is composed of a set of nodes, or vertices, with connections
between them. Network data arise in a wide range of fields, and include social networks,
collaboration networks, communication networks, biological networks, food webs and are a
useful way of representing interactions between sets of objects. Of particular importance is the
elaboration of random graph models, which can capture the salient properties of real-world

graphs.

Following the seminal work of Erdos and Rényi (1959), various network models have been
proposed; see the overviews of Newman (2003a, 2009), Kolaczyk (2009), Bollobas (2001), Gold-
enberg et al. (2010), Fienberg (2012) or Jacobs and Clauset (2014). In particular, a large body
of the literature has concentrated on models that can capture some modular or community
structure within the network. The first statistical network model in this line of research is
the popular stochastic block-model (Holland et al., 1983; Snijders and Nowicki, 1997; Now-
icki and Snijders, 2001). The stochastic block-model assumes that each node belongs to one
of p latent communities, and the probability of connection between two nodes is given by a
p X p connectivity matrix. This model has been extended in various directions, by introducing
degree-correction parameters (Karrer and Newman, 2011), by allowing the number of commu-
nities to grow with the size of the network (Kemp et al., 2006), or by considering overlapping
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4.1. Introduction

communities (Airoldi et al., 2008; Miller et al., 2009; Latouche et al., 2011; Palla et al., 2012;
Yang and Leskovec, 2013). Stochastic block-models and their extensions have shown to offer a
very flexible modeling framework, with interpretable parameters, and have been successfully
used for the analysis of numerous real-world networks. However, as outlined by Orbanz and
Roy (2015), when one makes the usual assumption that the ordering of the nodes is irrelevant
in the definition of the statistical network model, the Bayesian probabilistic versions of those
models lead to dense networks': that means that the number of edges grows quadratically
with the number of nodes. This property is rather undesirable, as many real-world networks
are believed to be sparse.

Recently, Caron and Fox (2014) proposed an alternative framework for statistical network
modeling. The framework is based on representing the graph as an exchangeable random
measure on the plane. More precisely, the nodes are embedded at some location 6; € R and,
for simple graphs, a connection exists between two nodes i and j if there is a point at locations
(0;, 0;) and (6}, 6;). An undirected simple graph is therefore represented by a symmetric point
process Z on the plane

Z = Z Zij(S(@i,gj) (4.1)
L.j

where z;; = z;; = 11if i and j are connected, 0 otherwise; see Figure 4.1 for an illustration.
Caron and Fox (2014) noted that jointly exchangeable random measures, a notion to be de-
fined in Eq. (4.13), admit a representation theorem due to Kallenberg (1990), providing a gen-
eral construction for exchangeable random measures hence random graphs represented by
such objects. This connection is further explored by Veitch and Roy (2015) and Borgs et al.
(2016), who provide a detailed description and extensive theoretical analysis of the associated
class of random graphs, which they name Kallenberg exchangeable graphs or graphon processes.
Within this class of models, Caron and Fox (2014) consider in particular the following simple
generative model, where two nodes i # j connect with probability

Pr(zij = 1|(we)ez12.) = 1 — e 2™ (4.2)

where the (w;, 0;)i=1.2.... are the points of a Poisson point process on R%. The parameters
w; > 0 can be interpreted as sociability parameters. Depending on the properties of the mean
measure of the Poisson process, the authors show that it is possible to generate both dense
and sparse graphs, with potentially heavy-tailed degree distributions, within this framework.
The construction (4.2) is however rather limited in terms of capturing structure in the network.
Herlau et al. (2015) proposed an extension of (4.2), which can accommodate a community struc-
ture. More precisely, introducing latent community membership variables ¢; € {1,...,p}, two
nodes i # j connect with probability

—2Nc;c; WiWj
Pr(zij = 1/(we, co)e=1,2,..., (Mke)1<ke<p) = 1 — € “Teier ™ (4.3)

where the (wj,cj,6;)i=12... are the points of a (marked) Poisson point process on
Ri x {1,...,p} X Ry and ni, are positive random variables parameterizing the strength of
interaction between nodes in community k and nodes in community ¢. The model is simi-
lar in spirit to the degree-corrected stochastic block-model (Karrer and Newman, 2011), but
within the point process framework (4.1), and can thus accommodate both sparse and dense
networks with community structure. The model of Herlau et al. (2015) however shares the

'We refer to graphs whose number of edges scales quadratically with the number of nodes as dense, and
sparse if it scales sub-quadratically.

54



4. Exchangeable random measures for sparse and modular graphs with overlapping communities

limitations of the (degree-corrected) stochastic block-model, in the sense that it cannot model
overlapping community structures, each node being assigned to a single community; see La-
touche et al. (2011) and Yang and Leskovec (2013) for more discussion along these lines. Other
extensions with block structure or mixed membership block structure are also suggested by
Borgs et al. (2016).

In this chapter, we consider that each node i is assigned a set of latent non-negative pa-
rameters wi, k = 1,...,p, and that the probability that two nodes i # j connect is given

by
Pr(z:: = — 1 e 220 wikwjk
r(zij = U(wer, .o, Wep)e=1,2,..) = 1 — e “%k=1 . (4.4)

These non-negative weights can be interpreted as measuring the level of affiliation of node i to
the latent communities k = 1, ..., p. For example, in a friendship network, these communities
can correspond to colleagues, family, or sport partners, and the weights measure the level of
affiliation of an individual to each community. Note that as individuals can have high weights
in different communities, the model can capture overlapping communities. The link probabil-
ity (4.4) builds on a non-negative factorization; it has been used by other authors for network
modeling (Yang and Leskovec, 2013; Zhou, 2015) and is also closely related to the model for
multigraphs of Ball et al. (2011). The main contribution of this chapter is to use the link prob-
ability (4.4) within the point process framework of Caron and Fox (2014). To this aim, we
consider that the node locations and weights (wjy, . .., Wip, 0;)i=1,2,... are drawn from a Poisson

point process on IRITrl with a given mean measure v. The construction of such multivariate
point process relies on vectors of completely random measures (or equivalently multivariate
subordinators). In particular, we build on the flexible though tractable construction recently
introduced by Griffin and Leisen (2016).

The proposed model generalizes that of Caron and Fox (2014) by allowing the model to
capture more structure in the network, while retaining its main features, and is shown to have
the following properties:

« Interpretability: each node is assigned a set of positive parameters, which can be inter-
preted as measuring the levels of affiliation of a node to latent communities; once those
parameters are learned, they can be used to uncover the latent structure in the network.

« Sparsity: we can generate graphs whose number of edges grows sub-quadratically with
the number of nodes.

 Exchangeability: in the sense of Kallenberg (1990).

Additionally, we develop a Markov chain Monte Carlo (MCMC) algorithm for posterior in-
ference with this model, and show experiments on two real-world networks with a thousand
of nodes and tens of thousands of edges. See Appendix C.2 for some background on MCMC
algorithms.

The chapter is organized as follows. The class of random graph models is introduced in
Section 4.2. Properties of the class of graphs and simulation are described in Section 4.3. We
derive a scalable MCMC algorithm for posterior inference in Section 4.4. In Section 4.5 we
provide illustrations of the proposed method on simulated data and on two networks: a net-
work of citations between political blogs and a network of connections between US airports.
We show that the approach is able to discover interpretable structure in the data.
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Wi
le J2
WJ3
b | ' i t
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Wiz = 0;- @ “
Wwi1 - Zij
—_ * ) o

Figure 4.1: Representation of an undirected graph via a point process Z. Each node i is embed-
ded in R, at some location 0; and is associated with a set of positive attributes (w1, ..., wj).
An edge between nodes 6; and 0, is represented by a point at locations (6;, 6;) and (6;, 6;) in
R2,

4.2 Sparse graph models with overlapping communities

In this section, we present the statistical model for simple graphs. The construction builds
on vectors of completely random measures (CRM, Kingman, 1967). We only provide here
the necessary material for the definition of the network model; please refer to Section 3.3 of
Chapter 3 for additional background on vectors of CRMs. The model described in this section
can also be extended to bipartite graphs; see Appendix C.4.

4.2.1 General construction using vectors of CRMs

We consider that each node i is embedded at some location 0; € R,, and has some set of
positive weights (wi1,...,wy) € Rﬁ. The points (wj1, ..., Wi, 0;)i=1,...o can be described
using a vector of CRMs (W, ..., W,) with

Wy = Z wikdg,, fork=1,...,p (4.5)

i=1

and we assume
(Wi, .., W,) ~ CRM(p, A) (4.6)

where A is the Lebesgue measure and p is a measure on Rﬁ, concentrated on Rﬁ\{O}, which

satisfies
p
/R : min(l,Zwk> pldwi, . .., dwy) < oo (4.7)

k=1
Mimicking the hierarchical construction of Caron and Fox (2014), we introduce integer-
valued random measures Dy on Ri, k=1,...,p,

Dy = i i nijk8(0,.0;)
j=1

i=1j
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4. Exchangeable random measures for sparse and modular graphs with overlapping communities

0
4, 0,0,
(c)

Figure 4.2: An example of (a) the restriction on [0, 1]? of the two atomic measures D; and Dy,
(b) the corresponding multiview directed multigraphs (top: view 1; bottom: view 2) and (c)

corresponding undirected graph.

1,

05
\‘\\ 1

~ 05

0o 00 SN

(a) W x Wy (b) Integer point processes Dy (c) Point process Z

Figure 4.3: An example, for p = 2, of (a) the product measures Wy X W, (b) a draw of the
directed multigraph measures Dy | Wy ~ Poisson(Wj. X W) and (c) corresponding undirected

— . p
measure Z = 3,7, ]?'21 min(1, 3, _ nijk + njik)5(6,.6;)-
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4.2. Sparse graph models with overlapping communities

where the n;j; are natural integers. The vector of random measures (D, ... ,Dp) can be
interpreted as representing a multiview (a.k.a. multiplex or multi-relational) directed multi-
graph (Verbrugge, 1979; Salter-Townshend and McCormick, 2013), where n;j; represents the
number of interactions from node i to node j in the view k; see Figure 4.2 for an illustra-
tion. Conditionally on the vector of CRMs, the measures Dy are independently drawn from a
Poisson process2 with mean measure Wi X W

Di|(Wh, ..., W,) ~ Poisson (Wi x W)

that is, the n;j; are independently Poisson distributed with rate wirwi.

Finally, the point process Z representing the graph (4.1) is deterministically obtained from
(D1, ...,Dp) by setting z;; = 1 if there is at least one directed connection between i and j in
any view, and 0 otherwise, therefore z;; = min(1, Zizl nijk + njir). To sum up, the graph model
is described as follows:

Wi = 221 wikdo, (Wi, ..., W,) ~ CRM(p, 1)
Dy = 221 Z;zl nijk(S(gi,gj) Dy | Wi ~ Poisson (Wy X W) (4.8)
Z =32 Y2 min(1, X0 nijk + njik)s,4,)-

The model construction is illustrated in Figure 4.3. Integrating out the measures Di, k =

1,...,p, the construction can be expressed as, for i < j
Ber(1 — exp(-2 P WikWik)) 1 # ]
zijl (wes - .., we )5:1,2,... ~ { k=1 .. (4.9)
Y P Ber(1 — exp(— Zi:l Wizk)) i=j
and zj; = z;j; see Figure 4.1.
Graph Restrictions. Except in trivial cases, we have Wi (R;) = oo a.s. and therefore
Z (Ri) = oo a.s., so the number of points over the plane is infinite a.s. For &« > 0, we con-
sider restrictions of the measures Wy, k = 1,...,p, to the interval [0, @] and of the measures

Dy and Z to the box [0, «]?, and write respectively Wiy, Dxo and Z, these restrictions. Note that
condition (4.7) ensures that Wi, ([0, ]) < o a.s. hence Dy, ([0, ]?) < o0 and Z, ([0, «]?) < o
a.s. As a consequence, for a given a > 0, the model yields a finite number of edges a.s., even
though there may be an infinite number of points (w;, 8;) € Ry X [0, «]; see Section 4.3.

Remark 5. The model defined above can also be used for random multigraphs, where n;; =
Zi=l nijk is the number of directed interactions between i and j. Then we have

p
nijl(wet, . . ., Wep)e=12,... ~ Poisson (Z Wz’ijk>
k=1
which is a Poisson non-negative factorization (Lee, 1999; Cemgil, 2009; Psorakis et al., 2011;
Ball et al., 2011; Gopalan et al., 2015).

The model defined by Eq. (4.9) allows to model networks which exhibit assortativity (New-
man, 2003b), meaning that two nodes with similar characteristics (here similar set of weights)
are more likely to connect than nodes with dissimilar characteristics. The link function can
be generalized to (see e.g. Zhou, 2015)

p P
zij ~ Ber (1 — exp (— Z Z I]kgwiijg>)

k=1 {=1

“Note that we consider a generalized definition of a Poisson process, where the mean measure is allowed to
have atoms; see e.g. Daley and Vere-Jones (2008a, Section 2.4).

58



4. Exchangeable random measures for sparse and modular graphs with overlapping communities

Figure 4.4: Graph sampled from our particular model with three latent communities, iden-
tified by colors red, green, blue. For each node, the intensity of each color is proportional to
the value of the associated weight in that community. Pure red/green/blue color indicates the
node is only strongly affiliated to a single community. A mixture of those colors indicates bal-
anced affiliations to different communities. Graph generated with the software Gephi (Bastian
et al., 2009).

where ni¢ > 0, in order to be able to capture both assortative and dissortative mixing in the
network. In particular, setting larger values off-diagonal than on the diagonal of the matrix
(Mke)1<k,e<p allows to capture dissortative mixing. The properties and algorithms for simula-
tion and posterior inference can trivially be extended to this more general case. In order to
keep the notations as simple as possible, we focus here on the simpler link function (4.9).

4.2.2 Particular model based on compound CRMs

The key component in our statistical network model is the multivariate Lévy measure p in (4.6).
As in Section 3.4.3 of Chapter 3, we will in this chapter consider the following particular form:

dW1 de

p(dwi, ... dw,) :e—Ei—ﬂka/ WO‘PF(—,...,—)pO(dWO) (4.10)
0 Wo Wo

where F(dp,...dp,) is some score probability distribution on RY, with moment generating
function M(ty,...,t,), po is a base Lévy measure on R, and y; > 0 are exponentially tilting
parameters for k = 1,...,p. Dependence between the different CRMs is both tuned by the
shared scaling parameter w;y and potential dependency between the scores (f;1, . . ., fip). The
hierarchical construction has the following interpretation:

+ The weight wjj is an individual scaling parameter for node i whose distribution is tuned
by the base Lévy measure py. It can be considered as a degree correction, as often used
in network models (Karrer and Newman, 2011; Zhao et al., 2012; Herlau et al., 2015). As
shown in Section 4.3, py tunes the overall sparsity properties of the network.
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« The community-related scores fj; tune the level of affiliation of node i to community k;
this is controlled by both the score distribution F and the tilting coefficients y,. These
parameters tune the overlapping block-structure of the network.

An example of such a graph with three communities is displayed in Figure 4.4.

Specific choices for F and p,. Following Section 3.4.3 of Chapter 3, we will consider that
F is a product of independent gamma distributions

b*
F(dBy, ..., dppy) = ]_[ g —”kﬁk )dﬁk (4.11)
and py is set to be the mean measure of the jump part of a GGP
(w0) = =7~ exp(—wor) (4.12)
Po(Wo) = F(l _ G) w, eXp(—woT). .

This specific choice leads to scalable inference algorithms derived in Section 4.4.3.

4.3 Properties and simulation

4.3.1 Exchangeability

The point process Z defined by (4.8) is jointly exchangeable in the sense of Kallenberg (1990,
2005). For any h > 0 and any permutation 7 of N

(Z(As X A))) £ (Z(Ansy X Angy)) for (i) € N? (4.13)
where A; = [h(i — 1),hi]. This follows directly from the fact that the vector of CRMs

(W1, ..., W,) has independent and identically distributed increments, hence

(WA, ... Wo(A)) £ (Wi(Angh)s - - - » Wo(An(i)-

The model thus falls into the general representation theorem for exchangeable point pro-
cesses (Kallenberg, 1990).

4.3.2 Sparsity

In this section, following the asymptotic notations of Janson (2011), we derive the sparsity
properties of our graph model, first for the general construction of Section 4.2.1, then for the
specific construction on compound CRMs of Section 4.2.2. Similarly to the notations of Caron
and Fox (2014), let Z, be the restriction of Z to the box [0, ]%. Let (Ng)q>0 and (No(,e))azo be
counting processes respectively corresponding to the number of nodes and edges in Z,:

Ng = card({6; € [0, ]|Z({6;} x [0,a]) > 0})
N9 = Z({(x,y) e R0 < x < y < a}).

Note that in the propositions below, we discard the trivial case pr pdwi,....dw,) =0
which implies N, (0) = =N, =0as.
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4. Exchangeable random measures for sparse and modular graphs with overlapping communities

General construction. The next proposition characterizes the sparsity properties of the
random graph depending on the properties of the Lévy measure p. In particular, if

/p p(dwy,...,dw,) = oo
R+

then, for any a > 0, there is a.s. an infinite number of 6; € [0, «] for which }}; wjx > 0 and the
vector of CRMs is called infinite-activity. Otherwise, it is finite-activity.

Proposition 6. Assume that, foranyk =1,...,p,

/RP wip(dwy, ..., dwp) < o (4.14)

Then

N© = O(N2) if(W,..., W,) is finite-activity
* 71 o(N2) otherwise

a.s. as o tends to co.

The proof is given in Appendix C.1.
Construction based on CCRMs. For the CCRM Lévy measure (4.10), the sparsity prop-
erties are solely tuned by the base Lévy measure p,. Ignoring trivial degenerate cases for

the score distribution F, it is easily shown that the CCRM model defined by (4.10) is infinite-
activity iff the Lévy measure p, verifies

/0 po(dw) = oco. (4.15)

In this case all CRMs Wy, Wi, ..., W, are infinite-activity. Otherwise they are all finite-activity
and the vector of CRMs is finite-activity. In the particular case of a CCRM with independent
gamma distributed scores (4.11) and generalized gamma process base measure (4.12), the con-
dition (4.15) is satisfied whenever ¢ > 0. The next proposition characterizes the sparsity of

the network depending on the properties of the base Lévy measure p,.
Proposition 7. Assume that
/ wpo(dw) < oo (4.16)
0

and F is not degenerated at 0. Then

N© = [ OWND) if [i7 po(dw) < o0
* o(N2)  otherwise

a.s. as o tends to co. Furthermore, if the tail Lévy intensity p, defined by

Bo(x) = / poldw). (417)

is a regularly varying function, i.e.

Po(x)
x~9¢(1/x)

—>lasx—>0
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Figure 4.5: Empirical analysis of the properties of CCRM based graphs generated with pa-
rameters p = 2,7 = 1, ax = 0.2, by = Il) and averaging over various «. (a) Number of edges
versus the number of nodes and (b) degree distributions on a log-log scale for various o: one
finite-activity CCRM (o = —0.5) and three infinite-activity CCRMs (¢ = 0.2, ¢ = 0.5 and
o = 0.8). In (a) we note growth at a rate ©(N?2) for o = —0.5 and ONY%) for o € (0, 1).

for some o € (0,1) where € is a slowly varying function verifying lim,_,«, £(at)/{(t) = 1 for any
a > 0 and lim;_, £(t) > 0, then
No({e) _ O(NOZ{/(1+U))

a.s. as o tends to co. In the particular case of a CCRM with independent gamma distributed
scores (4.11) and generalized gamma process base measure (4.12), condition (4.16) is equivalent to
having T > 0. In this case, we therefore have

O(N?) ifo <0
o(N2) ifo >0
ONZ/My ifo € (0,1)

N =

a.s. as a tends to oo.

The proof is given in Appendix C.1. Figure 4.5(a) provides an empirical illustration of
Proposition 7 for a CCRM with independent gamma scores and generalized gamma based
Lévy measure. Figure 4.5(b) shows empirically that the degree distribution also exhibits a
power-law behavior when o € (0, 1).

4.3.3 Simulation

The point process Z is defined on the plane. We describe in this section how to sample realiza-
tions of restrictions Z, of Z to the box [0, ]®. The hierarchical construction given by Eq. (4.8)
suggests a direct way to sample from the model:

1. Sample from a Poisson process with mean measure

v(dwl, .

(Wit ..., Wip, 0;)i=1.2,...
. ey dWP, d@)]lge[o’a]

2. For each pair of points, sample z;; from (4.9).
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4. Exchangeable random measures for sparse and modular graphs with overlapping communities

There are two caveats to this strategy. First, for infinite-activity CRMs, the number of
points in Rﬁ X [0, a] is a.s. infinite; even for finite-activity CRMs, it may be so large that
it is not practically feasible. We need therefore to resort to an approximation, by sampling
from a Poisson process with an approximate mean measure v*(dwi, . ..,dwy,d0)1gcq) =
pi(dwi, ..., dwp)A(dO)Lgelo,o) Where

/R” pi(dwy, ..., dwy) < o0

+

with ¢ > 0 controlling the level of approximation. The approximation is specific to the choice
of the mean measure, and such an approximation for CCRMs is described in Section 3.4.4 of
Chapter 3.

The second caveat is that, for applying Eq. (4.9), we need to consider all pairs i < j, which
can be computationally problematic. We can instead, similarly to Caron and Fox (2014), use
the hierarchical Poisson construction as follows:

1. Sample (w1, ..., Wip,0i)i=12...k from a Poisson process with mean measure
vE(dwi, ..., dwp,d0)1gefoq). Let Wi, = Zlel wirdp, be the associated truncated

CRMs and Wkgfx = Zlel w;i their total masses.
2. Fork=1,...,p, sample D}:ﬂkag’z ~ Poisson((W,é’;)z).

" . ind W¢ ,
3. Fork=1,...,p, € = 1""’Dk,a’J = 1,2, sample ngjlwkfﬂ ~ ﬁ

D*
P _ k,a
4. Set Dk,a = Zle 6Uk51,k(72'

5. Obtain Z from (Dy, ..., D) as in (4.8).

4.4 Posterior inference

In this section, we describe a MCMC algorithm for posterior inference of the model parameters
and hyperparameters in the statistical network model defined in Section 4.2. We first describe
the data augmentation scheme and characterization of conditionals. We then describe the
sampler for a general Lévy measure p, and finally derive the sampler for compound CRMs.

4.4.1 Characterization of conditionals and data augmentation

Assume that we have observed a set of connections (zij)i<ij<n,, Where N, is the num-
ber of nodes with at least one connection. We aim at inferring the positive parameters
(Wit - . . Wip)i=1,....N, associated to the nodes with at least one connection. We also want to es-
timate the positive parameters associated to the other nodes with no connection. The number
of such nodes may be large, and even infinite for infinite-activity CRMs; but under our model,
these parameters are only identifiable through their sum, denoted (w1, . . ., w.,). Note that the
node locations 6; are not likelihood identifiable, and we will not try to infer them. We assume
that there is a set of unknown hyperparameters ¢ of the mean intensity p, with prior p(¢$). We
assume that the Lévy measure p is absolutely continuous with respect to the Lebesgue measure
on R% and write simply p(dw, ..., dwp; ) = p(wi, ..., wp;¢p)dw; ...dw,. The parameter
is also assumed to be unknown, with some prior « ~ Gamma(ay, b,) with a, > 0,b, > 0. We

therefore aim at approximating p ((wlk, ce s Wk Wk k=1,...p5 D5 al(zij)g,-,jsNa).
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4.4. Posterior inference

As a first step, we characterize the conditional distribution of the restricted vector of CRMs
(Wig, . .., Wpq) given the restricted measures (Dig, ..., Dpy). Proposition 8 below extends
Theorem 12 of Caron and Fox (2014) to the multivariate setting.

Proposition 8. Let (01,...,0n,), Ny > 0 be the support points of (D1g, - . ., Dpg), with
Dyq = Z nijk8(0,.6;) -
1<i,j<N,

The conditional distribution of (Wiq, . . ., Wya) given (Dig, . . ., Dpe) is equivalent to the distribu-

tion of
Ny N,
(W] + Z Wi159i9 cey M/P + Z Wip59i)

i=1 i=1
where (VT/l, e %) is a vector of discrete random measures, which depends on (D, . .., Dps)

only through the total masses w. = Wi ([0, ]).
The set of weights (Wik)i=1,.. Nyk=1,...p and (Wi )k=1,...p are dependent, with joint conditional
distribution

p ((Wlk’ s WNak’ W*k)k=1 ..... P |(nijk)lﬁi,jSNa;kzl,...,p, ¢’ a)

Ne P , N ,
oC n n W;Zik e_ Zkzl(w*k"'zi:o{ Wik)

i=1 k=1

Ne
l_[ ,D(Wila sy Wlp:¢)] aNag*O((W*la ey W*p5¢)

i=1
(4.18)

where my, = Zjli”'l nijk + Njix and Gug(Wet, ..., Wip; @) is the pdf of the random vector
(Wi([0,a]), ..., Wp([0, a])) wr.t. the reference measure A(dw.i, ..., dwsp) + o, (AW1, ..., dw.yp)
where A is the Lebesgue measure and 0, is the p-dimensional zero vector.

The proof can be straightforwardly adapted from that of Caron and Fox (2014), or from
Proposition 5.2 of James (2014) and is omitted here. It builds on other posterior character-
izations in Bayesian nonparametric models (Prinster, 2002; James, 2002, 2005; James et al.,
2009).

Data augmentation. Similarly to Caron and Fox (2014), we introduce latent count variables
ﬁijk = Njjk + Njik with

~ ~ 5.....0) ifz;; =0
(nijl,...,nijp)lw,z~ "’ . . .
tPoisson (2w wj1, ..., 2wyywj,) ifz;;=1,i # j
n;; nji
(%, ey %p) |w, z ~ tPoisson(w?, . .., wizp) ifzj=1i=j (4.19)

where tPoisson(4y, . .., 4,) is the multivariate Poisson distribution truncated at zero, whose
probability mass function (pmf) is

_ ]_[ZZ1 Poisson(xg; Ax)
= » .
1= exp(- S, xihy) (2 0]

tPoisson(xy, ... xp; A1, ..., 4p)

One can sample from this distribution by first sampling x = Z§=l Xy from a zero-truncated
Poisson distribution with rate ZZZI Ak , and then

( )N A,), x ~ Multinomial M o
X155 Xp 1w s Ap)y X ultinomial | x, Zlk"nz/‘lk .
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4. Exchangeable random measures for sparse and modular graphs with overlapping communities

4.4.2 MCMC algorithm: General construction

Using the data augmentation scheme together with the posterior characterization (4.18), we
can derive the following MCMC sampler, which uses Metropolis-Hastings (MH) and Hamilto-
nian Monte Carlo (HMC) updates within a Gibbs sampler, and iterates as described in Algo-
rithm 7. See Appendix C.2 for some background on MCMC algorithms.

Algorithm 7: MCMC sampler for posterior inference.
At each iteration,

1. Update the latent variables given the rest using (4.19).
2. Update (wjg,...,wjp), i =1,...,N, given the rest using MH or HMC.

3. Update hyperparameters (¢, @) and total masses (w.1, . .., wxy) given the rest using
MH.

In general, if the Lévy intensity p can be evaluated pointwise, one can use a MH update for
step 2, but it would scale poorly with the number of nodes. Alternatively, if the Lévy intensity
p is differentiable, one can use a HMC update (Duane et al., 1987; Neal, 2011).

The challenging part of the Algorithm 7 is Step 3. From Eq. (4.18) we have

P((Wik)k=1,...p» P> | rest)

o p(P)p(a)e” P (Wt DN wig)?

Ne
l_[ p(Wil, ceey Wip;¢)] aNag*a(W*l’ ceey W*p;gb)-

i=1

This conditional distribution is not of standard form and involves the multivariate
pdf g.q(Ws1, . .., wyp) of the random vector (W ([0, «]), . . ., W, ([0, «])) for which there is typ-
ically no analytic expression. All is available is its Laplace transform, which is given by

E [e— - tkwk<[o,a]>] = o (bt

where
Ut i) = /Rp (1 — e Sha kak) p(dwi, ... dwy: ) (4.20)

is the multivariate Laplace exponent, which involves a p-dimensional integral. We propose to
use a Metropolis-Hastings step, with proposal

q (W*lzp, 5’ | Wetp, P, a) =q (W*l;plw*lzp, a, 5) X q (g’glgb) X q <§|a, c;?, w*lzp)
where _
q (5?|0(,¢, W*l:p) = Gamma (Zf; aq + Ny, by + ¢ ()Ll, c Ay 5))
and the proposal for w., is an exponentially tilted version of g.,

_yP = ~ ~
e~ Zk=1 Akw*kg*a (wl, ce wp;gg)

{;\;* B W* Do = &) 4'21
q( 1p|Wetyp 5) =TV (Meendpi) 2
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4.4. Posterior inference

where A = wy + 2 Zf\i’”l wir and q (gzlqﬁ) can be freely specified by the user. This leads to the
following acceptance rate

ag+Ng

0 (8)q(#16) [N p (wins oo wipi 8) | [+ ¥ (Ao A5 )
2@ (919) [zt p (Witee - wipsd) | | b+ ¥ (A A 4)

Zi:l [Wfk_wzk]

where Ik = Wy +2 Zf\i“l wik. This acceptance rate involves evaluating the multivariate Laplace
exponent (4.20).

In the general case, the MCMC algorithm 7 thus requires to be able to
(a) evaluate pointwise the Lévy intensity p, and potentially differentiate it,
(b) evaluate pointwise the Laplace exponent (4.20) and
(c) sample from the exponentially tilted distribution (4.21).

Regarding point (c), the random variable with pdf (4.21) has the same distribution as the ran-
dom vector (W{([O, al), ..., wy([o, a])) where (W[, ..., W) ~ CRM(p’, 1) with p’ is an expo-
nentially tilted version of p

p(wi, ..., wp) = e~ Lk Akwkp(wl, e Wp).
By considering an approximate tilted intensity p*’(wy, .. ., w)), one can approximately sample
from (4.21) by simulating points from a Poisson process with mean measure ap®’(wy, ..., wp)

and summing them up. Note that in practice, we can only sample a finite number of points
and we might thus need further approximation; see Section (4.4.3).

4.4.3 MCMC algorithm: Construction based on CCRMs

The hierarchical construction of CCRMs enables to derive a certain number of simplifications
in the algorithm described in the previous section. Using the construction wy, = Sixw;o where
the points (wio, fi1, . - . » Bip)i=1,2,... have Lévy measure (3.14), we aim at approximating the pos-
terior

p ((Wlo, s WNL0)s (Biks - - o s BNoks Wik Jk=1,...p0 D5 05|(Zij)lsi,jsNa) : (4.22)

Conditionally on the latent count variables defined in (4.19), we have the following conditional
characterization, similar to (4.18)

P (W10 - WNL0)s (Bikes - - -+ BNk Wk Dkm,p| (i1 <1< N k=1 oipr 5 2)
a

[ ] l_[ Bt e

i=1

X [l_al f(ﬂil’ ey ﬁip§ ¢)P0(Wi0§ ¢)] aNag*a(W*l, ey W*p; ¢) (423)
i=1

Zk X (Wt D% i )2 -3 Ne WiO(Zi:l YiBik)

where m; = Zizl mi and f and pg are resp. the density of F and intensity of p, with respect
to the Lebesgue measure. If f and p, are differentiable, one can use a HMC update for Step 1
of Algorithm 7; see details in Appendix (C.3).
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4. Exchangeable random measures for sparse and modular graphs with overlapping communities

Regarding Step 2 of Algorithm 7, the Laplace exponent can be evaluated numerically us-
ing (3.18). We then need to sample total masses (wu, ..., wsp) from (4.21), and this can be
done by simulating points (wo, fi1, . . ., Bip)i=1,2,... from a Poisson process with exponentially
tilted Lévy intensity

e 2221(yk+ﬂk)ﬂkf(ﬁ1, -+ Bp) po(wo) (4.24)

and summing up the weights w., = 3};_1, . wiofik fork = 1,.. ., p. For infinite-activity CRMs,
this is not feasible, and we suggest to resort to the approximation of Cohen and Rosinski (2007).
More precisely, we write

(Wats ooy Wap) = X + X°
where the random vectors X, € [Rji and X¢ € Rﬁ are defined as X, = }3jj,,,0<e Wio(Bi1s - - - Bip)
and X® = Y jw..se Wio(Bit - - ., Bip). We can sample a realization of the random vector X*

exactly by simulating the points of a Poisson process with mean intensity

P
e Zkzl()/kﬂk)ﬁkf(ﬁl’ o ,ﬁp)Po(Wo)]le>g~

See Section 3.4.4 of Chapter 3 for details. The positive random vector X, is approximated by a
truncated Gaussian random vector with mean y, and variance %, such that

Ue = oc/ Wippe(dwi, ..., dw,)
RP

+

e = a/ wipWi,pe(dwr, . .., dwp)
R?

+

where

&
pe(dwy, ..., dwy) = e_Zzzl(Yk+Ak)Wk / w;pF
0

dw dw
(—1, e —p) po(dwo).

Wo Wo

Note that y, and X, can both be expressed as one-dimensional integrals using the gradient and
Hessian of the moment generating function M of F. Theorem 9 in Appendix C.5, which is an
adaptation of the results of Cohen and Rosinski (2007) to CCRM, gives the conditions on the
parameters of CCRM under which

_ d
V2 (Xe = pe) > N(0.,) as e > 0

and thus the approximation is asymptotically valid. The Gaussian approximation is in partic-
ular asymptotically valid for the CCRM defined by (4.11) and (4.12) when o € (0, 1), hence is
valid for all infinite-activity cases except o = 0.

Note that due to the Gaussian approximation in the proposal distribution for (w1, . .., w.),
Algorithm 7 does not actually admit the posterior distribution (4.22) as invariant distribution,
and is an approximation of an exact MCMC algorithm targeting this distribution. We observe
in the experimental section that this approximation provides very reasonable results for the
examples considered.

In Appendix (C.3), we provide more details on the MCMC algorithm when F and p, take
the form (4.11) and (4.12).

4.5 Experiments
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4.5. Experiments

4.5.1 Simulated data

We first study the convergence of the MCMC algorithm on synthetic data simulated from
the CCRM based graph model described in Section 4.2 where F and p, take the form (4.11)
and (4.12). We generate an undirected graph with p = 2 communities and parameters o = 200,
o =027=10b =b = 11), ar = a = 0.2 and yx = y = 0. The sampled graph has
1121 nodes and 6090 edges. For the inference, we consider that b and y are known and we
assume a vague prior Gamma(0.01,0.01) on the unknown parameters « and ¢ = (1 — o, 7, a).
We run 3 parallel MCMC chains with different initial values. Each chain starts with 10,000
iterations using our model with only one community where the scores f are fixed to 1, which
is equivalent to the model of Caron and Fox (2014). We then run 200,000 iterations using
our model with p communities. We use ¢ = 107> as a truncation level for simulating w.,
and L = 10 leapfrog steps for the HMC. The step sizes of both the HMC and the random
walk MH on (log(1 — 0),log 7,log a) are adapted during the first 50,000 iterations so as to
target acceptance ratios of 0.65 and 0.23 respectively. The computations take around 2h20
using Matlab on a standard desktop computer. Trace plots of the parameters log @, o, 7, a and
W, = 117 Zi:l wy and histograms based on the last 50,000 iterations are given in Figures 4.6
and 4.7. Posterior samples clearly converge around the sampled value. Choosing a threshold
value € < 1072 does not lead to any noticeable change in the MCMC histograms, suggesting
that the target distribution of our approximate MCMC is very close to the posterior distribution
of interest.

Our model is able to accurately recover the mean parameters of both low and high degree
nodes and to provide reasonable credible intervals, as shown in Figure 4.8(a-b) left. By gen-
erating 5000 graphs from the posterior predictive we assess that our model fits the empirical
power-law degree distribution of the sparse generated graph as shown in Figure 4.8(c) left.
We demonstrate the interest of our nonparametric approach by comparing these results to the
ones obtained with the parametric version of our model. To achieve this, we fix w,x = 0 and
force the model to lie in the finite-activity domain by assuming o € (—c0,0) and using the
prior distribution —o ~ Gamma(0.01, 0.01). Note that in this case, the model is equivalent to
that of Zhou (2015). As shown in Figure 4.8(a-b) right, the parametric model is able to recover
the mean parameters of nodes with high degrees, and credible intervals are similar to that ob-
tained with the full model; however, it fails to provide reasonable credible intervals for nodes
with low degree. In addition, as shown in Figure 4.8(c) right, the posterior predictive degree
distribution does not fit the data, illustrating the inability of this parametric model to capture
power-law behavior.

4.5.2 Real-world graphs

We now apply our methods to learn the latent communities of two real-world undirected sim-
ple graphs. The first network to be considered, the polblogs network (Adamic and Glance,
2005), is the network of the American political blogosphere in February 2005°. Two blogs are
considered as connected if there is at least one hyperlink from one blog to the other. Addi-
tional information on the political leaning of each blog (left/right) is also available. The second
network, named USairport, is the network of connections between US airports in 2010*.
The sizes of the different networks are given in Table 4.1. We consider y; = 0 is known
and we assume a vague prior Gamma(0.01,0.01) on the unknown parameters @, 1 — o, 7, a

3http://www.cise.ufl.edu/research/sparse/matrices/Newman/polblogs
“http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=292
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4. Exchangeable random measures for sparse and modular graphs with overlapping communities

Table 4.1: Size of the networks, number of communities and computational time.

Name Nb nodes Nb edges Nb communitiesp Time
polblogs 1224 16,715 2 30m
USairport 1574 17,215 4 2h20m

and br. We take p = 2 communities for polblogs and p = 4 communities for USairport. We
run 3 parallel MCMC chains, each with 10,000 + 200,000 iterations, using the same procedure
as used for the simulated data; see Section 4.5.1. Computation times are reported in Table 4.1.
The simulation of w.., requires more computational time when o > 0 (infinite-activity case).
This explain the larger computation times for USairport compared to polblogs.

We interpret the communities based on the minimum Bayes risk point estimate where the
cost function is a permutation-invariant absolute loss on the weights w = (wik)i=1,... N, k=1,...-
Let Sp be the set of permutations of {1,...,p} and consider the cost function

P Na P
*
C(w,w errelfsn E E |w,,, Wik|+ E War(k) — W
k=1 i=1 k=1

whose evaluation requires solving a combinatorial optimization problem in O (p3) using the
Hungarian method. We therefore want to solve

w = argmin E [C (w, w*) |Z]

w*

where E [C (w,w*) |Z] ~ £ 3N, C (w(t) w ) and (w(t))t_l \ are from the MCMC output.

For simplicity, we limit the search of w to the set of MCMC samples and finally obtain

w=  argmin
wre{wh, . wN}

_
1P
@)

Table 4.2: Nodes with highest weight in each community for the polblogs network. Blog
URLSs are followed by known political leaning: (L) for left-wing and (R) for right-wing.

Community 1: “Liberal” Community 2: “Conservative”
dailykos.com (L) instapundit.com (R)
atrios.blogspot.com (L) blogsforbush.com (R)
talkingpointsmemo.com (L) powerlineblog.com (R)
washingtonmonthly.com (L) drudgereport.com (R)
liberaloasis.com (L) littlegreenfootballs.com/weblog (R)
talkleft.com (L) michellemalkin.com (R)
digbysblog.blogspot.com (L) lashawnbarber.com (R)
newleftblogs.blogspot.com (L) wizbangblog.com (R)
politicalstrategy.org (L) hughhewitt.com (R)
juancole.com (L) truthlaidbear.com (R)
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Table 4.3: Nodes with highest weights in each community for the USairport network.

Community 1: Community 2: Community 3: Community 4:
“Hub” “East” “West” “Alaska”
New York, NY Atlanta, GA Denver, CO Anchorage, AK
Miami, FL Detroit, MI Las Vegas, NV Fairbanks, AK
Los Angeles, CA Chicago, IL Los Angeles, CA Bethel, AK
Newark, NJ Washington, DC Burbank, CA Nome, AK
Washington, DC Nashville, TN Phoenix, AZ Galena, AK
Atlanta, GA Cleveland, OH Salt Lake City, UT King Salmon, AK
Boston, MA Birmingham, AL Seattle, WA Kotzebue, AK
Fort Lauderdale, FL Philadelphia, PA San Francisco, CA St. Mary’s, AK
Chicago, IL Indianapolis, IN Dallas/Fort Worth, TX Chevak, AK
Houston, TX Charlotte, NC Ontario, CA Unalakleet, AK

Table 4.2 reports the nodes with highest weights in each community for the polblogs net-
work. Figure 4.10 also shows the weight associated to each of the two community alongside
the true left/right class for each blog. The two learned communities, which can be interpreted
as “Liberal” and “Conservative”, clearly recover the political leaning of the blogs. Figure 4.12
shows the adjacency matrices obtained by reordering the nodes by community membership,
where each node is assigned to the community whose weight is maximum, clearly showing
the block-structure of this network. The obtained clustering yields a 93.95% accuracy when
compared to the ground truth classification. Figure 4.11(a) shows the relative community pro-
portions for a subset of the blogs. dailykos.com and washingtonmonthly.com are clearly
described as liberal while blogsforbush.com, instapundit.com and drudgereport.com are
clearly conservative. Other more moderate blogs such as danieldrezner.com/blog and
andrewsullivan.com have more balanced values in both communities. Figure 4.9(a) shows
that the posterior predictive degree distribution provides a good fit to the data.

For USairport, the four learned communities can also be easily interpreted, as seen in
Table 4.3 and Figure 4.13. The first community, labeled “Hub”, represents highly connected
airports with no preferred location, while the three others, labeled “East”, “West” and “Alaska”,
are communities based on the location of the airport. In Figure 4.11(b), we can see that some
airports have a strong level of affiliation in a single community: New York and Miami for
“Hub”, Charleston/Dunbar and Knoxville for “East”, Dallas for “West” and Bethel and Anchor-
age for “Alaska”. Other airports have significant weights in different communities: Detroit and
San Francisco are hubs with strong regional connections, Nashville and Minneapolis share a
significant number of connections with both East and West of the USA. Anchorage has a sig-
nificant “Hub” weight, while most airports in Alaska are disconnected from the rest of the
world as can be seen in Figure 4.12(b). “Alaska” appears as a separate block while substantial
overlaps are observed between the “Hub”, “East” and “West” communities. Figure 4.9(b) shows
that the posterior predictive degree distribution also provides a good fit to the data.
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Figure 4.8: 95% posterior credible intervals and true values of (a) the mean parameters w; =
117 Zi:l wijk of the 50 nodes with highest degree and (b) the log mean parameters log w; of the
50 nodes with lowest degree. (c) Empirical degree distribution and 95% posterior predictive
credible interval. Results obtained for a graph generated with parameters p = 2, « = 200,
c=02,7=10b = 11—7, a = 0.2 and y = 0, by inferring (left) an infinite-activity model with
wyk = 0 and o < 1 and (right) a finite-activity model with w,x = 0 and ¢ < 0.
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according to the left-right wing ground truth. Left-wing blogs are represented in blue on the
left, right-wing blogs in red on the right.
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4.5. Experiments

Figure 4.13: Map of the USairport network. Pie charts represent the estimated feature weights
of each airport. The size of the circles scale with the degree of the node.
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Conclusion

We first take a few steps back to recap the important ideas that were developed in this thesis. Our
point is to emphasize that the proposed frameworks are simple, elegant and flexible. In the end,
we open up some perspectives.

Summary

In Part 1, we have focused on recommender systems with explicit feedback. After an overview
on the different approaches: content-based, demographic-based, collaborative and hybrid fil-
tering, we have concentrated on the collaborative filtering approach which solely exploits the
incomplete user-item ratings matrix. To solve this problem, we have proposed an adaptive
spectral regularization algorithm for low-rank matrix completion. The low-rank assumption
has a simple interpretation: each user and item can be described by a small set of latent features
and the rating of user i for item j can be explained by the matching between their associated
features. The origin of our work is to give a probabilistic interpretation to the nuclear norm
regularized problem where the prior distribution on the set of singular values can now be re-
placed by more flexible choices. In particular, a hierarchical prior is very useful for several
reasons. Each singular value can be governed by its own regularization parameter which is
easy to interpret. The parameters are considered as latent variables and are automatically
adapted thanks to a top-level prior distribution. Our construction allows to bridge the gap
between the convex nuclear norm penalty and the rank penalty. The resulting problem can be
easily decomposed into two iterative steps using an EM algorithm. The E step can be obtained
analytically for a family of suitably chosen distributions. The M step consists in a weighted
soft-thresholded singular value decomposition which penalizes less heavily the higher singu-
lar values, hence reducing the bias of the soft-thresholding rule. We have also shown evidence
that the predictions are improved in real-world applications, despite the non convexity of our
penalty. However, in this first part, we totally ignored the implicit feedback given by the
distribution of the entries in the incomplete matrix.

In Part 2, we have focused on proposing a novel class of network models. Our develop-
ment concentrates on simple networks but it can also be applied to a bipartite graph which
can represent implicit feedback of a recommender system. Our objective was to capture the
sparsity and power-law behavior as well as to obtain an interpretable structure of the net-
work. To this aim, we resort to a Bayesian nonparametric approach which is recent in the
field of network modeling. The graph is represented as an exchangeable point process and the
nodes are considered as realizations of a completely random measure. As such, the model can
encompass a sparse regime when the completely random measure is infinite-activity. We fur-
thermore allow an overlapping community structure by using a multivariate random measure.
Similarly to low-rank models for recommender systems, we suppose that each node i can be
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described by a small set of latent features which are here nonnegative parameters indicating
the degrees of affiliation of the node to the latent communities. In particular, our construc-
tion builds on compound completely random measure and we propose a suitable choice of base
measure and score distribution. This choice allows us to derive a scalable Markov chain Monte
Carlo algorithm to perform posterior inference on both the feature parameters and their hy-
perparameters. Our experiments show that the model is able to capture the power-law degree
distributions of real-world graphs as well as to discover a meaningful community structure.

Perspectives

In this thesis, we have developed methods which solely exploit explicit feedback of recom-
mender systems or the connections of networks. However, in many cases, additional informa-
tion is available and the models can be extended in several directions.

First, the objects of interest (users, items or nodes) generally come with metadata like
genre, age, location or textual content. In the recommender systems literature, several hybrid
filtering models have been proposed to exploit these attributes and circumvent the cold-start
problems. For instance, by placing priors on user and item factor matrices which depend on
corresponding side information (Agarwal and Chen, 2009; Park et al., 2013; Kim and Choi,
2014), or by treating these observed features similarly to the latent ones (Porteous et al., 2010).
Other models include the content-based Poisson factorization of Gopalan et al. (2014) which
combines a topic model with collaborative filtering in a single unified Bayesian model. Also
note the model of Menon and Elkan (2010) for dyadic data which includes networks and rec-
ommender systems and allows to incorporate side information.

Another direction of extension is to consider recommender systems and networks as dy-
namic systems where ratings and connections can change over time. Therefore, it is important
to build models which take this evolution into account; see e.g. the survey of Campos et al.
(2014) on time-aware recommender systems. Like Palla et al. (2016), we can extend our sparse
network model with overlapping communities by supposing that the latent affiliation param-
eters are governed by a time-varying vector of completely random measures.

The time-aware recommender systems can also be treated as a particular cases of context-
aware recommender systems (Adomavicius and Tuzhilin, 2011) where a given context is as-
sociated to each observed user-item pair. In this case, the data is no longer represented by
a matrix but by a 3-way tensor where the third dimension is the context. In this regard, a
lot of works now concentrate on the problem of tensor factorization (Karatzoglou et al., 2010;
Pragarauskas and Gross, 2010) and low-rank tensor completion (Gandy et al., 2011; Liu et al.,
2013) and we believe our approach could be extended in that direction.

Lastly, it would be interesting to investigate the properties of the novel class of network
models that we proposed, e.g. its clustering coeflicient among others. In addition, the number
of latent communities is here considered fixed but it should ideally be learned from the data.
This point remains to be studied more deeply.
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Appendix A

Appendices of Chapter 2

A.1 Expectation-maximization algorithm

Consider a statistical model with unknown parameter vector ¢ € ®, a set of observed variables
X € X and a set of latent (unobserved) variables Z € Z along with the complete log-likelihood
function L(¢; X, Z) = logp(X, Z|¢p). The maximum likelihood estimator (MLE) of ¢ is deter-
mined by the log-marginal likelihood of the observed data L(¢; X) = log p(X|¢$) where

p(XIg) = /Z p(X.Z|$)dZ

which might be intractable. The EM algorithm (Dempster et al., 1977; Wu, 1983) is an iterative
procedure to find a (local) maximum likelihood estimate g?; After initializing ¢, the procedure

alternates between two steps at each iteration ¢t > 0:
« Expectation (E) step: determine the expected value of the log-likelihood function
w.r.t. the conditional distribution of Z given X and the current estimate of the parameter

p®
(9, ¢") = Bz [Lgs X, 2)1X, ¢ ]

« Maximization (M) step: find the parameter that maximizes this quantity

¢V = argmax Q(¢, ")
)

The procedure can be directly applied to maximize a penalized likelihood or a posterior dis-
tribution taking L(¢;X) = logp(X|¢) + logp(¢). Like many optimization procedures, the
EM algorithm increases the value of the likelihood at each iteration and converges to a sta-
tionary point which may either be a saddle point or a local maximum. For difficult prob-
lems, the solution highly depends on initial conditions. It might be necessary to repeat the
procedure with different initializations to find a global maximum. Sometimes it may not be
feasible to perform the M-step. A generalized EM (GEM) procedure chooses ¢*) such that
QD ¢y > O(¢p®, $) without necessarily maximizing Q. EM is therefore a special case
of GEM.

To see why it works, let further define H(¢, ¢*) := Ez[logp(Z|X, ¢)|X, $*]. The EM
algorithm can be viewed as a special case of minorize-maximization strategy (MM) with
auxiliary function G(¢, ¢*) := Q(¢p,¢*) — H(¢*, ¢*) such that G(¢*,¢*) = L(¢*;X) and
G(¢, ¢*) < L(¢; X); see the proof below.
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A.1. Expectation-maximization algorithm

L<¢ X)
G(¢ ¢“

t) ¢ (t+1)

Figure A.1: M-step of the EM algorithm: maximizing the auxiliary function G(¢, ) <
L(¢; X) w.r.t. ¢ guarantees that L(¢¢*D; X) > L(¢"); X) where ¢*+V) = arg max G(¢, ¢*).
¢

Proof. First prove that Q(¢, ¢*) = L(¢; X) + H(¢, ¢*):

Q. ¢") = Ez [L($: X, 2)IX, ¢"]
= Ez [log p(X|¢) +logp(Z1X, $)|X, ¢"]
= log p(X|$) + Ez [log p(Z1X, $)I1X, ¢7]
= L(¢:X) + H($,¢")

and trivially obtain G(¢*, ¢*) = L(¢*;X). Then use Jensen’s inequality to show that G mi-
norizes L:

G(¢,¢") = L(¢: X) = Q(¢,¢") — H(¢", ¢") — L(¢; X)
= L(¢:X) + H($, ¢") — H(¢", ¢") — L(¢; X)
= H(¢,¢") - H(¢", ¢")
_ PZIX.9) o
=t [k’gp(le, 07 ]
p(Z1X, ¢) .
< loghz [p(zuc 00 ]

p(Z1X, §) .
< log /Z 2% ¢*)p(Z|X,</5 )dZ

< log /Z p(ZIX, $)dZ

<0

Maximizing the auxiliary function G w.r.t. ¢ (or equivalently maximizing Q), which is a
lower bound for L, increases the likelihood at each iteration as illustrated in Figure A.1.

98



A. Appendices of Chapter 2

A.2 Proofs

Proof of Eq. (2.5).

p(di):/ Exp(d;;y;) Gammal(y;; a, b)dy;
0
a

0 b
= i €X —id,‘—l—a_leX —b,‘di
/0 yiexp(-y, )r(a)y p(=by:)dy
b

=t | rexpt=ta+ b
b T(a+1)
"~ T'(a) (d; + b)a+!

ab*®

(d; + b)**!

Proof of Eq. (2.8).

Q(Z,Z%) = Ellogp(X, Z,y)|1Z*, X]
= E [log (p(XI2)p(Zly)p(y)) 127, X]
= Cjy +logp(X|Z) + E [log p(Zly)|Z"]

/! 1 Y *
=Gy~ 55 11X~ Z)1% + Z E [log p(dily:)ld; ]

i=1

1 ¢ .
=Cy— Py} ||X—Z||12c - Z[E lyidild; ]

i=1
1 - )
= Co— o5 IX = ZIE ~ 3 E[nild]] d

i=1

where C), C; and C, are constant terms not depending on Z.
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A.2. Proofs
Proof of Eq. (2.10).

o} = Elyild}]

= / yip(yild;)dy;

0
_ Jo vip(@ly)p(yi)dy;
p(d;)
_ Jo vviexp(=yid})p(y)dy;
p(d;)
=% [ v exp(-rd))p(rdyi]
p(d;)

[—logp(d})]

" od
9
- od;

[pen(d;)]

Proof of Eq. (2.14).
Q(Z.27) = E [log p(Pa(X), P5(X). Z.7)|Z", Pa(X)]

)
—c - %[E [P0 ) + P500) - 2|1 127, Pa0)] - ;] Elyild71d;

1

202

~ > Elyild;ld;
i=1

=Gy = — {IPa(X) = Pa@) 112 + E [[P4 00 - A 12", Pa0) |

~

= s = = {IPal) - Pa2) I + [P(27) - PE@[1} - Y Elvild1a

2
o i=1

=G o {[lPac0) + P42 - 2]} - Z‘ Elyild; 14,

where C} and C; are constant terms not depending on Z. m]

Proof of Eq. (2.16). Note that when (i, j) € Q, x;j|z;j, y;j follows a truncated normal distribution,
right-truncated at zero if y;; = —1 and left-truncated at zero if y;; = 1. We derive the case
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y;j = —1 below and the derivation for y;; = 1 is similar.

0 X7
Elxijlzij, yij = —1] = / xM

_Ey

= —lz,-j ’ (zij + ou)o (u) du
®(-2) Jow
- zij zij
1 = -
= o z,-j/ ¢ (u) du + a/ ue (u) du]
(=)L S e

zij

! — ) i + T ‘éd
= P Zij (——) o —¢€ u
) (— ]) | o —00 VZJT

o[]
= Zij + q) (_%)
_zj
o[-pw)]_3
= zjj + o (_%)
oo ()
= zjj

Proof of Eq. (2.17).

Q(Z,Z") = E[logp(Pa(Y), X, Z,y)|Z", Pa(Y)]
= E [log (p(Pa(Y), XIZ2)p(ZIy)p(y)) |Z7, Pa(Y)]

_ 1 2 * Y *
= Ci— 5 E [11X = ZI1% 12", Pa(Y)] - ;:1 Elyild;1d;
3 1 " 2 C *
= Ci= 55 [EIXIZ". Pa(¥)] - Z[; - ?:1, Elyild;1d;

1 * 2 r *
= Ca= 55 IX° =2l - ) Elyild;1d

i=1

where Cy is a constant term not depending on Z and the matrix X* is defined as

if (i,j) € Q

z5 otherwise.
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Proof of Table 2.1. The marginal distribution is given by

p(d;) =/ Exp(d;; yi) GiG(y;; v, 6, p)dy;
0

(5)

_Do‘ oo \8) 1 2'],
—/0 ¥i exp( y,dl)ZKV (Myi eXp[ 2(5 Yi +uoy)|dyi

(5)

o 1
Vexp [~ 2 (8% + (4 + 2d) i)]dl-
ZK(H)/OY p[zy p v | dy

(5)" 2Kyur (SviZ+2d;)
ZKV (5’[1) (\/M)H—l

5
oo Kom (8vi® +2d;)
_KV(5y) (M)V-H

Regarding the weights w;, observe that

vild; ~ GiG (v + 1,8, [ + de)

which can be easily checked by identification

p(yild;) o p(d; ly)p(yi)
oc Exp(d;’; yi) GiG(yi; v, 6, p)

*\ o V— 1 -
o< yi exp(-yid;)y; " exp [—5(52% L+ ﬂz)’i)]
1 - *
oc ¥y exp (_5 [52}’1' L+ (ﬂz + 2d; ) Yi])
and thus obtain the following expression

w; = E [yild]]
i+ 2d; Ko (81 + 245 )
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01

B.1 Probability distributions

Notation Parameters
Ber(p) pe(0,1]
Discrete(wy, ..., wp) wg € [0, 1] with

Multinomial (n, (wi, ...

Poisson(y)
N (u, %)

Lognormal(y, o2)
iGauss(d, y)
Exp(4)
Gammal(a, b)
GiG(v, 4, y)

Table B.1: Discrete and continuous probability distributions.

S we=1

,wp)) neN,we e [0,1]
; p —
with 3 wp =1

p € [0, 00)
peER, >0

pHeR, >0

>0,y >0
A>0
a>0,b>0

veR,5>0,
y>0

Support

x €{0,1}
x€A{l,...,p}

(x1,...,xP) € Np

x €N
xeR

x>0

x>0

x>0
x>0

x>0

Pmf or pdf

px

1-p)'=

P Ilx:k —
[Thoy W™ = Wi

1

o bRty

xoV2r

Sy _
de x
2

% e~ % (8% 1+y2x)

Ae—lx

a — [
b x4 le bx
a

(v/8)"

2K, (09

v—le—%(ézx_l+y2x)

Properties

E[X] = p, Var [X] = p
E [X] = p, Var [X] = o

log(X) ~ N (u. 0%)
E[X] =, Var(X) = 5
X ~ Gamma(1, 1)
E[X] = ¢, Var(X) = &

K, denotes the modified Bessel function of the third kind.

suoynqristp Anjiqovqodd ‘1°q



B. Appendices of Chapter 3

B.2 Proofs

Proof of (3.15).

Yt ty) = /Rp (1—e—Z’é—lkak)p(dwl,...,dwp)

I
T

Proof of (3.17).

- p B
M(ml""’mp)(tl, o tp) — l_l ﬁ]fcnketkﬁk f (ﬁl, ey ﬂp) dﬁ];p

@\
+x

l_lﬁmk ti P [l_lﬁak 1 —bkﬁk b ):l dfryp

b“k
I'(a

I
z\
+X

/ pot =kt g g,

I'(ar + my) bt
T(ak) (b — tg) %™

I AE“

=~

=1
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Appendix C

Appendices of Chapter 4

C.1 Proofs of Propositions 6 and 7
The proof follows the lines of the sparsity proof in Caron and Fox (2014), and we only provide

a sketch of it. First, as Z is a jointly exchangeable point process verifying (4.13) and under the
moment condition (4.14), it follows from the law of large numbers that

No(,e) = O(a?) as. as a — oo.

Finite-activity case. If the vector of CRMs is finite-activity, the jump locations arise from
an homogeneous Poisson process with finite rate, and N, = O(«) a.s. It follows that

Née) = O(N?) as. as & — oo.

Infinite-activity case. Consider now the infinite-activity case. Following Caron and Fox
(2014), one can lower bound the node counting process N, by a counting process N, which
is conditionally Poisson with mean measure A(S,)y/(W(S2), ..., W,(S2)) where (S}, S2) is a
partition of [0, @] such that A(S}) = A(S%) = 5. As Y (Wi(S2),. .. ,M/p(Soz{)) — o0 a.s. in the
infinite-activity case, it follows that N, = Q(«) a.s., and therefore

No(,e) = o(N?) ass. as @ — oo,

Finally, for compound CRMs with regularly varying p, with exponent o, Proposition 10 in
Appendix C.6 implies that /(W1 (S2),. .., W,(S2)) = O(a”) a.s. hence N, = w(a'*?) a.s. and

N = O(N*)) as. as @ — oo.

C.2 Background on MCMC methods

In this appendix, we introduce the basics of MCMC simulation. See the introductions of Gilks
et al. (1996) and Andrieu et al. (2003) or the book of Gilks (2005) for more details.

The Monte Carlo principle. Consider arandom variable of interest ¢ € ®. The basic idea of
Monte Carlo methods is to generate i.i.d. samples {gb(i)} i=1,...n from a target distribution 7 (¢),
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C.2. Background on MCMC methods

which is generally complex and high dimensional. The samples can be used to approximate
the target distribution and given a function h(¢), one can approximate integrals of the form

/@ h($)r($)dp = E[h($)]

by its unbiased Monte Carlo approximation

SR($7) 25 Eh@)
i=1

n—oo

The intractable high dimensional integral is therefore approximated by a simple finite sum.

MCMC algorithms. MCMC is a class of algorithms where the samples are generated from
a Markov chain

g = ¢ 5 B gt

which explores the space ® and should admit the target distribution 7(¢) as equilibrium dis-
tribution, what can be ensured by verifying the detailed balance condition.

Once equilibrium is reached, the generated samples will serve as a Monte Carlo approxi-
mation of the target. In practice, the “burn-in” samples are discarded and the chain is thinned
to mitigate autocorrelation.

Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm (MH, Metropolis
et al., 1953; Hastings, 1970) is the most popular MCMC method. At each iteration ¢, it samples
a new candidate value 5 from a proposal distribution g(:|¢*~") and accepts or reject it with
acceptance rate

(¢ V)q(¢1lg)

The procedure is summarized in Algorithm 8.

a:mm(l 7 ($)q(plpt=1) )
T

Algorithm 8: Metropolis-Hastings algorithm. U [a, b] with a € R and b € R denotes
the uniform distribution on interval [a, b].

Initialize ¢(*). Then, at iteration t = 1,2, . . .

« Sample a candidate from the proposal distribution

¢ ~ q(-lgD).

« Compute the acceptance rate

am:mm(l (@)q(¢"19) )
7 ($t=D)q(l$¢D)

. Sample u® ~ 2(0,1).

- Ifu < o, accept the candidate and set ¢() = ¢
— otherwise, reject it and set ¢(*) = $(=1),
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C. Appendices of Chapter 4

In the simplest case, the proposal is a symmetric kernel such that q(q?l ¢) = q(gbla) and the

acceptance rate simplifies to = min (1, M) We see that the algorithm always accepts

m(¢tt-D)
a candidate which increases the target, while a candidate which decreases the target is not

automatically rejected but is given a chance to be accepted which is proportional to the ratio.

The efficiency of the algorithm depends on the choice of the proposal distribution. A com-
mon practice in MH algorithms is to use random-walk proposals which blindly explore the
state-space using local moves with a certain exploration stepsize. This might result in slow
convergence and auto-correlated samples.

Gibbs sampler. Consider a d-dimensional variable ¢ = (¢1,...,¢q). The Gibbs sampler
algorithm (Geman and Geman, 1984) cycles through the d components by sampling each one
of them from their full conditional distribution

AN
[ (@)

i.e. the distribution of the k-th component of ¢ conditioning on all the remaining components
G-k = (P15 - s k=15 Pk+1> - - - » Pa). The procedure is summarized in Algorithm 9.

7 (PrlPp-k) = =1,....d

Algorithm 9: Gibbs sampling algorithm.
Initialize (;5(0). Then, at iterationt = 1,2,...,fork=1,...,d

« Sample the k-th component of ¢ from its full conditional distribution

¢~ (delg?)
®) _ (4® ) 4 (t=1) (t-1)
whereq’)_k—((ﬁ R T DR 38 )

This algorithm is particularly useful when the target distribution comes from a graphi-
cal model, which generally allows to simplify the full conditional distributions by taking into
account local dependencies. Instead of depending on all the remaining variables, each com-
ponent only depends on its children and parents in the graph. The Gibbs sampler can also be
viewed as a special case of MH algorithm with a particular choice of proposal distribution such
that the acceptance rate is 1. However note that, especially when a full conditional does not
have any closed-form expression, it is possible to use other proposal distributions and perform
a step of MH within the Gibbs sampler. Finally, when the components are highly correlated,
conditioning on all the other components might be too restrictive and the Gibbs sampling
strategy will have a very slow exploration.

Hamiltonian Monte Carlo. Hamiltonian systems are represented by a d-dimensional po-
sition vector ¢, and a d-dimensional momentum vector p (mass times velocity in physical
systems) and their evolution is governed by the Hamiltonian equations

qu_aH
dt dpy
dpk_ 0H
dt  dgy
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C.3. Details of the MCMC algorithm

for k = 1,...,d. The Hamiltonian function, H(q, p), corresponds to the total energy of the
system and is generally of the form

H(q.p) = U(q) + K(p)

where U(q) is called the potential energy and K(p) is called the kinetic energy. For instance,
Hamiltonian equations can describe the movement of a puck on a smooth hilly surface without
friction.

The idea of Hamiltonian Monte Carlo (HMC, Duane et al., 1987; Neal, 2011) is, with the
help of artificial momentum variables, to move the Markov chain according to Hamiltonian
dynamics by exploiting the shape of the target distribution. Contrary to the random-walk ap-
proach, this allows distant moves while retaining high acceptance rates for a faster exploration
of high dimensional spaces.

The position g is our variable of interest ¢ and the potential energy

U(q) = —logn(q)

is defined as the negative log-probability density of the target distribution. The momentum
variables are artificially introduced with multivariate Gaussian distribution

P~ N (04, M)

where M is a d X d symmetric positive-definite matrix (which is typically diagonal, and is often
a scalar multiple of the identity matrix). The kinetic energy

1 -
K(p) = 5p'M'p

is defined as the negative log-probability density of the Gaussian distribution (up to an additive
constant).

Each iteration of the HMC algorithm has two steps. In the first step, new values for the
momentum variables are randomly drawn from their Gaussian distribution, independently
of the current values of the position variables. In the second step, a Metropolis update is
performed, using Hamiltonian dynamics of a certain time length to propose a new state.

In practice, Hamilton’s equations are approximated by discretizing time, using some small
stepsize ¢, and the leapfrog discretization scheme is commonly used for stability reasons. This
only requires to be able to compute the gradient of the potential energy

U'(q) = ~Vqlogn(q)], -

The procedure is summarized in Algorithm 10.

C.3 Details of the MCMC algorithm

In this appendix we provide more details for the steps of Algorithm (7) in the case of CCRMs
with F and py taking the form (4.11) and (4.12).
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Algorithm 10: Hamiltonian Monte Carlo algorithm with M = I;, using L leapfrog steps
with a stepsize of e. For simplicity of exposure, we omit indices k = 1,...,d.

Initialize the state q(o). Then, at iterationt =1, 2, . ..

« Sample new momentum variables
p~N(0g, I) .

« Simulate L leapfrog steps of the discretized Hamiltonian dynamics via

PO
E
PO = p--U@G")

andfor{=1,...,L -1
GO = G 4y
ﬁ([) — ‘ﬁ(f—l) _ €U’(q(€))

and finally set

= GV 4 gt

— [1‘5@—1) - gU’(ZD] .

™R

« Compute the acceptance rate

a® = min (1, eU(q(tl))—U(c’IHK(p)—K(ﬁ)).

. Sample u® ~ 2(0,1).

- Ifu® < a®, accept the candidate and set ¢') = ¢
— otherwise, reject it and set ¢ = g{*=1),
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C.3. Details of the MCMC algorithm

Step 2: Update (wj,...,wj), i = 1,...,N, given the rest using HMC. We use a

HMC update for (Wzo, Bits -, ﬂlp) _ via an augmented system with momentum vari-

ables p = (pio,pn,...,pip)i:lmN . See (Neal, 2011) for an overview. Let L > 1 be

the number of leapfrog steps and ¢ > 0 the stepsize. For conciseness, let denote q =
(log wio, log Bi1, - . ., log ﬁip)i:l N U(q) the negative log-posterior

U(g) = —logp(qglrest)
Ny Ne P
= [Z mz -0 log Wio — TW:O] [Z Z mig + ak) log ﬂlk - bkﬁlk
i=1 k=1
P Na 2
+ Z (W*k + Z wioﬁ,-k) + terms not depending on wy or 3
k=1 i=1
and
U'(q) = ~V,logp (glrest)|
its gradient with components fori =1,..., N,
, 9U(q) 5 N
U = ————=-mi+o+wp|T+2 k| Wik + ) Wiofj
i0 (Q) d(log WiO) i i0 ; ﬁ k k J:ZI ]Oﬁ]k
N,
dU(q) -
U/ ——— = —my — ar + Bir | bk + 2wio [ Wi + > wioBic ||, k=1,...,p.
(@) (o8 ) k — ak + Bik [ k 0( k ; ]oﬁjk)] P

The algorithm proceeds by first sampling momentum variables as

p ~ N(O, INax(p+1))-

The Hamiltonian proposal is obtained by the following leapfrog algorithm (for simplicity
of exposure, we omit indicesi = 1,...,Nyand k = 1,...,p). Simulate L steps of the discretized
Hamiltonian via

7 = q
€ 4
P = p- SU(@)
andforf=1,...,L -1
GO = G 4y
ﬁ'(t’) — Z)'({’—l)_gU/(a-(t’))
and finally set
7 = G- 4ty
— _ e,
5 - -[f-tua).

Accept the proposal (g, p) with probability min(1, r) where
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P (log wy, log Elrest)
p (log wy, logﬁlrest)
Ne '\7\; mi—o No p Ek Mif+ak
ﬂ) P
1G]l )
e~ Zhet (0t SN FioBa) + 2L, (et SN wiob) =3 Th_y TN (P2

2 Z Z a(pzk_ptk)

e—T(valwno Wzo) pi bk(ZﬁD{ Eik_ﬁik)

For simple graphs (without self-loops), the gradient components are

(]l/()(q) = —mj—0+Ww|T+2 Z ﬁlk (W*k - ﬁlk + Z W]Oﬁ]k)]
j=1
Ne
U,,k(CI) = —mjx — ax + ik | bk + 2wio [ W — wio + Z Wjoﬂjk , k=1,...,p
j=1

and the acceptance rate is r X eZke1 Zit (PPl wiobi).

Step 3: Update hyperparameters (¢, @) and total masses (w1, ..., w.,) given the rest
using MH. The hyperparameter of the mean measure p is ¢ = (0, 7, a1, b1, y1,). Consider
the prior distribution

p
pla, ¢, wayp) = pla)p(o)p(r) [ﬂp(ak)p(bk)p(n)]p(w*l:pla, 9)
k=1

with
p(a) = Gamma (a; aq, by) , p(1 — 0) = Gamma (1 — o; a,, b,) , p(r) = Gamma (a,, b;)
andfork =1,...,p
p(ax) = Gamma (ax; ag, ba) , p(bx) = Gamma (by; ap, by) , p(yx) = Gamma (Yk§ ay,by) .
We use a MH step with proposal distribution

—_—~ p —_—~
q(@, , Werpla, . wirp) = q(clo)q(Tlr) l_[q(a'klak)q(bklbk)q(?kln)
k=1

X Q(&T;ﬁ: W*l:p)q(w*lzplb?, {b: W*l:p)-
where

q(clo) = Lognormal (1 —o; log(1 - o), 0'2)

)
q(t|r) = Lognormal (T, 0gT,0 )
q(axlar) = Lognormal (ak, log ay, o ) , k=1,...,p
q(bklbk) = Lognormal (bk, log by, O'b) k=1,...,p
q(Vkly) = Lognormal (Vi; logyk.07), k=1,....p
(a'|¢, w,) = Gamma (oc ag + N, by + l//¢ (/111, )
qlT $w) = g (W.:¢2)
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C.3. Details of the MCMC algorithm

where A = wyp + 2 Zfi“l wir and gzPSd;L = (0, T, a1y, Fb};,, (?111? + Al:p)); see below for more details
on the choices of proposal distributions for w, and «a.
We accept the proposal (E, o, W*l:p) with probability min (1, r) with

~ ag+Ngy
o (_b“ ¥ (Alw)) '

be + Y5 (A1)

r =
where Ak = Wy + 2 Z | wix and

- N e

x ebo(@=0)=br (F=1)~ba I} _, @c~ar)~by If_, (be=bi)~by Zf_, Fe—vi)

ity

1
« e~ (- ) [ZN% wio |- X8 _, (br=bi) [Z1% Birc] - Zk:l(wfk_wfk).

Choice of the proposal for (w.;,...,w,,). Note that in the general case, the density
P(Warpla, ) = Gea(Ws1p; @) does not admit any analytic expression. We therefore use a spe-
cific proposal based on exponential tilting of g.,(wx1,; §) that alleviates the need to evaluate
this pdf in the MH ratio.

The conditional distribution

_yP Na )2
pP(wsrpln, w,a, ) o« e S (it i i) 5 Gra(Witp; P)
_yP Na .
< e Zkzl(w*k+2j:1 ij)W*k > g*a(W*1:p§¢) (C.1)
is not tractable, i.e. we can not calculate its normalizing constant nor sample from it. As a
proposal distribution, we use an exponential tilting

— _ P ~ _
Q(W*lzpla, ¢, W*I?P) oc e Zien Akw*kg*a (W*lzp§ )

with Ax > 0, k = 1,...p, for which we can calculate the normalizing constant
/e_ Zi:l/lkw*kg*a(w*;@dw*ltp = e_a¢$(A1:P).

We finally obtain the proposal distribution

e Tl g, 43 )
oW (hp)
= gz (W a)

q (W*l:pla’ Qg’ W*lzp)

where 5,1 = (0, T, 'avlzp,gl;p,ffl;p + /11;[,). In practice, taking Ay = 2N Wi + w,i yields a fair
approximation of (C.1) as

» o= = » = =
e Lkt CNaWit W)Wk o o= X (Na Wit W)Wk (C.2)
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Choice of the proposal for . The conditional distribution

o p(a)p ((Wila e Wip)i=1,... N> Wtpl (k) 1<i j<Nysk=1,...p» % ¢)
o qlalgbat x o iy (Wt T k) X a™N X Gug (W*1:p§ ¢)

X terms not depending on a or w1,
o qlatNa=1p=batt o = Zizl(w*kﬂ Zjl\i"{ ij)W*k X Gra (W*1:p§ (/J))

X terms not depending on & or wq,

is not tractable. Now marginalizing out w.,, we have

P (Ofl(nijk)lsi,jSNa;k=l,...,p, (Wits + - s Wip)i=1,....Ny» </5)

P Na
-1_-— - 2D E wi »
o @t / ¢ Zk:l(w KT ij)W “Gra (W*lsp; ¢) dw*l:P'

We again resort to the same approximation (C.2) to obtain the proposal distribution
q(akﬁby’ W*l;p) oC (Ffaa+Na_1e_baae_a¢$(Al:p)

= Gamma (5; Ay + Ny, by + l//a (Alzp)) )
Alternatively (e.g. every two iterations) we can use a random walk proposal
g(ala) = Lognormal (5; log «, 002()

and obtain the following acceptance rate

r = rXx|-—
a

~\ Ag+Ngy _ _ —
, (a) o b (@)@ (Aap) vy (/11:1,).
Finite activity parametric model. As a special case of our model, consider a parametric
version with a finite-activity CRM (o < 0) where all the nodes are observed and have at least
one connection, implying w,x = 0 for k = 1,...,p. For simplicity, let also restrict to the case
Yk =0fork =1,...,p. From (3.6) we have

. at’
Ngyla, ¢ ~ Poisson (— )
o

and therefore

g
a|Ny, ¢ ~ Gamma (aa + Ny, by — T—)
o

since

p(@|Ng, ¢) o< p(Ngla, §)p(a)
()™ e

o aaa—le—baa

N,!

[ea
o aaa+Na—le—(ba—TT)a_
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We then use the full conditional as a proposal distribution for &
~ rad
q(@|Ngy, ¢) = Gamma (E)?; ag + Ny, by — :)
o

and the MH acceptance rate becomes

C.4 Bipartite networks

It is possible to use a construction similar to that of Section 4.2 to model bipartite graphs,
and extend the model of Caron (2012). A bipartite graph is a graph with two types of nodes,
where only connections between nodes of different types are allowed. Nodes of the first type
are embedded at locations 0; € R, and nodes of the second type at location ¢} € R,. The
bipartite graph will be represented by a (non-symmetric) point process

Z = Z Zi15(9i,9;) (C.3)
L.j
where z;; = 1 if there is an edge between node i of type 1 and node j of type 2.

Statistical Model. We consider the model
Wi, ..., W, ~ CRM(p, )
W..... W, ~ CRM(p', })
and for k = 1,...p, D¢|Wi, W/ ~ Poisson (Wk X Wk')
Dy = Z nijkd(6,.0))
Lj

and z;; = min(1, Zzzl nijk)-

Posterior inference. We derive here the inference algorithm when (Wj,...,W,) and
(W{, ..., W) are compound CRMs with F and p, taking the form (4.11) and (4.12).

Assume that we observe a set of connections z = (z;j)i=1,... N,j=1,...N7,- We introduce latent
variables njji, for 1 <i < Ny, 1 <j< N, k=1,...,p,

’ 5(0,...,0) ifZl'j =0
(nij1, - - o nijp) [ w, W',z ~ Poi , , .
t msson(wilel, e Wiijp) ifz;; = 1.
We want to approximate
p((Wlo, ... WNa0)9 (ﬁlk’ .. ,ﬂNalm W*k)k:1 ,,,,, s (Wi()’ ceey W;q[;o)» (ﬁ;ka ... 9ﬁ],\]‘;k9 W;k)kzl,...,pa ¢9 a, ¢/, allz)'

’
o

Denote m;; = ijl

nijx and m; = Zi:l mix. The MCMC algorithm iterates as follows:

1. Update (a, ¢)|rest using a Metropolis-Hastings step.
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2. Update
P Ne
wio|rest ~ Gamma|m; — o, 7 + Z Bir vk + Z W;k +w, ||
k=1 =1
3. Update

N;
Pir|rest ~ Gamma | ax + myk, bx + wio | vk + Z w]'.k +w, ||
Jj=1
4. Update (w.1, ..., Wsp)|rest.
5. Update the latent variables n;ji|rest.

6. Repeat steps 1-4 to update (&', ¢’), (wio,...,w;\%o), (ﬁik""’ﬁzl\l,;,k)k=1v-~-»f’ and

(Wips oo W)

C.5 Gaussian approximation of the sum of small jumps

Theorem 9. Consider the multivariate random variable X, € RY. with moment generating func-
tion

IE[e—tTXS] = exp |:—OC /P (1 — e_zizl tka) pg(dwla ce ,de)]
LA

where a > 0 and

S | dw
pe(dwi, ..., dwy) =e” ey VW / wOPF (ﬂ, el —p) po(dwy)
0

Wo Wo

with & > 0, po is a Lévy measure on R, and F is a probability distribution on R? with
density f verifying

/ f(zuy, ..., zu,)dz > 0 U-almost everywhere
0

/IRP “'BLPHZ fBrs-. .. Bp)dfrp <

where U is the uniform distribution on the unit sphere SP~!. Then if p, is a regularly varying
Lévy measure with exponent o € (0, 1), i.e.

/ poldwo) " X7 £(1/x)

where £ : (0,00) — (0, o) is a slowly varying function then

_ d
S (X, — ) = N(0, 1)

as ¢ — 0, where

e = a/Rp wpe(dwi, ..., dwp)

+

S = a/ wapE(dwl, oo dwy)
RP

+
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with

Ue ~ oc[E[,B]1 g e!79¢(1/e) as e — 0

e ~ aE[ﬁﬁT]Zng—Gm/e) ase— 0
-0
where f is distributed from F.

Proof. We write the model in spherical form. Let r = ,/3} w]f andu, = “£ fork=1,...,p— 1

rP~1

The determinant of the Jacobian is ﬁ and so
1= %

— Pl o £, (ru ru
pe(ryuy, ... upq) = —e F e VUK wopf — ..., — | po(dwo)drduy,_
up 0 Wo Wo

= pe(drlugp—1)U(durp-1)

-1 i opyP _
where u, = /1- Zizl uf, pe(driu) = rf~'e F 2 Vet €y P f (%,..., %) po(dwg)dr and
U(du) = tdul’p is the uniform distribution on the unit sphere 5?1,

In order to apply Theorem 2.4 of Cohen and Rosinski (2007) (see also Asmussen and
Rosinski, 2001), we need to show that there exists a function b, : (0,1] — (0, +0) such that

lir% Ugb( “) > 0, U-almost everywhere (C.4)
E— e
where
o (u) = / P pe(drlu)
0

and for every k > ¢

lim iz / ||w1:p||2 pe(dwi, . .., dw,) = 0. (C.5)

£20 b Sl | >

Assume that fooo f (zul, cee zup) dz > 0 U-almost everywhere. With the change of vari-
able z = WLO, and the dominated convergence theorem we obtain

o'gz(u) = / Zp+1f (Zul, e ,zup) [/ e FWo Shey qukwgpo(dwo)] dz
0

0

~ (/ PHf (zul,,,.,zup) dz) (/ wgpo(dwo)) ase — 0
0 0

~ /wzp“f(zul... zu)dz ?
o D) b §4 2_

Let b, = £179/2,/¢(1/¢), we have

e279¢(1/¢) as € — 0.
o

limm = /°° 2 f (Zu zZu )dz ° 0, U-almost everywhere (C.6)
e=0 b2 0 e 20 2—-0 ’ Y ' '
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C. Appendices of Chapter 4

Now consider, for any k > 0,

Ig = / HWlP“ vg(dwl, NN ,de)
w1p||>1<b
/ / . WO [Brs|” €0 Zher P £ (B, ... Bi) poldwo)dBrp.
o 1>

For wy € (0, €), we have Kw—b; = £7920(1/¢) > K2¢7%/* for ¢ small enough as t°€(t) — 0

for any 6 > 0 as t — oo. So for ¢ small enough

>

kb,
£

I >/ / ”ﬁlp” wOZkl)/kﬂkf (B, - - - Bi) po(dwo)dPrp
I Brp || > 26 o

i Mﬂ loxe-et [/o WSPO(CIWO)]'
1p||[>K2e70

As [f(f wgpo(dwo)] ~ ﬁbg when ¢ — 0, we conclude that

Buo|| £ Bre- . B dPy

Buol| £ Br.-.. By dPip = 0. )

lim I, = lim o /
e—0 e—>0 2 — || Brep || > 12614
Equations (C.6) and (C.7) with Theorem 2.4 of Cohen and Rosinski (2007) yield
-1/2 d
S (Xe = pe) = N0, Ip)

as ¢ — 0, where

Ll = a/p Wiyp Pe(dwy, ..., dwp)

+

=q /RP /o woPrp € Sher Ykﬁkpo(dwo)f(ﬂl, o Bp)dPiy

o
~ aE[f1p] N e!77¢(1/e) as e — 0
-c
and
e = a/ wipWi, pe(dw, ..., dwy)
RY
o
~ aE[frpfl ] ——*L(1]/e) as £ — 0
[Brpblyl e e(1/e)
using the dominated convergence theorem and lemmas 11 and 12. O

C.6 Technical lemmas

Proposition 10. Let v be a Lévy measure defined by Eq. (3.8) and (4.10) and { be its multivariate
Laplace exponent. Assume that p, is a regularly varying function with exponent o € (0,1):

5y ¥ x700(1/x).
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C.6. Technical lemmas

Then  is (multivariate) regularly varying (Resnick, 2013), with exponent . More precisely, for
any (xi,...xp) € (0,00)P, we have

Y(txy, ..., txp) = /P (1 — et ke kak) v(dwi, ..., dwp)
R+

p o
oo t°T(1 - o0){(t)E [(Z xkﬁk) ] .
k=1

Proof.
Y(txy, ..., tx,) = /RP (1 - e“tzizlkak) v(dwy,...,dw,)
= /RP (1 - e_tzizl kak) v(dwi, ..., dw,)

=/, F(Brs---uBp) [/ (1_e-thzizlxkﬂk)e—szizlykﬁkpo(dWO) dpr,p
L 0

which gives, using Lemmas 11, 12, and the dominated convergence theorem

oo

p o
Yltxn .. tx,) 17T (1 = 0)L(t) - (Zxkﬂk) FBs- ... Bo)dPrp.
,00)P k=1

m|

Lemma 11. If
/ p(dw) W x %€(1/x)
then -
/ e “"p(dw) o x7€(1/x)
Proof.
[ empa= [ ot~ [Ca-epam)
L0 x %€(1/x)

as fooo(l — e ")p(dw) < oo for any ¢ > 0. O

Lemma 12. (Gnedin et al., 2007; Bingham et al., 1989). Let p be a Lévy measure with regularly
varying tail Lévy intensity

/ B p(dw) ¥ x7o¢(1/x) (C.8)

where o € (0,1) and { is a slowly varying function (at infinity). Then (C.8) is equivalent to

X xlo0 O
/ whp(dw) X ——xk7¢(1/x)
0 k—o

/ T e ™) p(dw) "X T(1 - o)t L(t)
0

foranyk > 1.
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