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Abstract
The goal of this thesis is to propose a novel video coding architecture which is inspired
by the visual system and the retina. If one sees the retina as a machine which processes
the visual stimulus, it seems an intelligent and very efficient model to mimic. There are
several reasons to claim that, first of all because it consumes low power, it also deals with
high resolution inputs and the dynamic way it transforms and encodes the visual stimulus
is beyond the current standards. We were motivated to study and release a retina-inspired
video codec. The proposed algorithm was applied to a video stream in a very simple way
according to the coding standards like MJPEG or MJPEG2000. However, this way allows
the reader to study and explore all the advantages of the retina dynamic processing way
in terms of compression and image processing. The current performance of the retina-
inspired codec is very promising according to some final results which outperform MJPEG
for bitrates lower than 100 kbps and MPEG-2 for bitrates higher than 70 kpbs. In addition,
for lower bitrates the retina-inspired codec outlines better the content of the input scene.
There are many perspectives which concern the improvement of the retina-inspired video
codec which seem to lead to a groundbreaking compression architecture. Hopefully, this
manuscript will be a useful tool for all the researchers who would like to study further than
the perceptual capability of the visual system and understand how the structure and the
functions of this efficient machine can in practice improve the coding algorithms.

Résumé
Cette thèse vise à proposer une nouvelle architecture de codage vidéo qui s’inspire du
système visuel et de la rétine. La rétine peut être considérée comme une machine intelligente
qui traite le stimulus visuel de façon très efficace. De ce fait, elle représente donc un bon
candidat pour développer de nouveaux systèmes de traitement d’image. Il y a plusieurs
raisons pour cela, tout d’abord parce qu’elle consomme peu d’énergie, elle traite également
des entrées haute résolution et sa façon de transformer et d’encoder de manière dynamique
le stimulus visuel dépasse les normes actuelles. Nous avons été motivés pour étudier et
proposer un codec vidéo inspiré de la rétine. L’algorithme proposé a été appliqué à un flux
vidéo d’une manière très simple, suivant le principe des standards de codage MJPEG ou
MJPEG2000. Cette approche permet au lecteur d’étudier et d’explorer tous les avantages
du traitement dynamique de la rétine en termes de compression et de traitement d’image.
La performance actuelle du codec que nous avons développé est très prometteuse. Les
résultats montrent des performances supérieures à MJPEG pour des débits inférieurs à
100 kbps et MPEG-2 pour des débits supérieurs à 70 kpbs. De plus, à faibles débits le
codec proposé décrit mieux le contenu de la scène d’entrée. De nombreuses perspectives
sont proposées afin d’améliorer ce codec inspiré de la rétine qui semblent conduire à un
nouveau paradigme de compression vidéo. Nous espérons que ce manuscrit sera un outil
utile pour tous les chercheurs qui voudraient, au delà de l’étude de la capacité perceptive
du système visuel et, comprendre comment la structure et les fonctions de cette machine
efficace peuvent en pratique améliorer les algorithmes de codage.
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“You, your joys and sorrows, your memories and your ambitions, your
sense of personal identity and your free will are in fact no more than
the behavior of a vast assembly of nerve cells and their associated
molecules. So all that we have here, basically, is a collection of,
interacting elements, molecules, proteins, nerve cells, synapses. All
of us, our emotions, all of us, our creativity, all of us, our sorrows,
come from the physics of the brain.”

Francis Crick, Nobel Laureate 1962, - “The father of DNA”

“Machine think? You bet! We are machines and we think, don’t we”

Claude Shannon, - “The father of information age”



Chapter 1

Introduction

1.1 General Framework

During the last years the progress of video compression algorithms has become very chal-
lenging since the improvement of the already existing standards seems to be very difficult
and time consuming. The latest standard HEVC was released in 2013, ten year later than
its precedent H.264 was standardized. HEVC outperforms its precedent in terms of bitrates
almost 50% which was an important achievement. However, this progress is supposed to be
insufficient comparing to the compression needs which were raised during the last decade.
The improvement of the technological equipment including 4K cameras, Facebook Surround
360 camera, UHDTV, smart-phones, the wide use of internet and all the social media, the
extensive role of video surveillance cameras in security systems, etc. are some of the most
important issues which require higher progress of the video compression algorithms.

There are many research teams all over around the world which aim to figure out which
are the drawbacks of HEVC in order to improve them. One of the most important cons of
HEVC is the encoding time. The encoding speed of this algorithm is much lower than the
one of H.264 due to its high complexity. This is a common phenomenon which has been
observed during the progress of the video compression algorithms. The complexity is the pa-
rameter which is usually sacrificed while one tries to achieve higher quality and/or bitrates.
Google recently released VP9 which seems to be able to tackle some speed limitations and
they recently announced the development of VP10 which is expected to reach the bitrate
performance of HEVC. However, the encoding speed is not the only drawback of HEVC.
Another important issue which rises is the power consumption of the latest compression
algorithms. The reduction of the battery life which is caused due to the encoding and
decoding of video streams is a serious problem for many devices with energy constraints,
like cellphones, tablets, laptops, nomadic cameras, etc. This power consumption is related
to the complexity of the algorithms which increases throughout the years.

Generally, the future of the compression algorithms seems to be foggy. Although nu-
merous of techniques are represented in annual meetings and conferences each one of which
seem to perform better or to be more efficient or to improve each of the quality, bitrate,
complexity, encoding or decoding time of HEVC, finally the total gain is not adequate
to replace HEVC. People think that the combination of all these new techniques could
probably result in a new standard. To our point of view, while the encoding architecture
remains the same it would be really tough to enhance the coding performance. Motion
estimation, which is the heart of all the current coding architectures, seem to be responsi-
ble not only for the high complexity but also for the sedate progress of these systems. A
video stream is considered to be as a sequence of pictures with high temporal redundancy.
Motion estimation is the way to reduce this redundancy between sequential pictures. For
higher reconstruction accuracy the motion estimation happens within small blocks of 8x8,
4x4 or even 2x2 pixels of an entire picture. However, the resolution of signals continues

9
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increasing resulting in high computational cost while motion estimation is computed. We
need to seek for groundbreaking solutions and novel architectures which may cause more
efficient results.

In this thesis, we propose a novel architecture which aims to treat a video stream in a
different way. A video is a dynamic signal which changes with respect to time. We search
for a model which allows to process a video stream in a dynamic way. In other words, we
aim to dynamically encode a video stream in order to avoid the exhaustive comparisons
within key and predicted frames as it happens in motion compensation. This novel coding
system is inspired by the visual system and the way the input visual system is encoded
and transmitted to the brain. In more details, the visual stimulus, which is a continuous
luminence of light that reaches the eyes, is captured by the innest tissue layer which is
called retina. The retina is a multilayer structure which consists of different kind of cells.
There is a high variety in the shape and the functionality of these cells. However, there
are cells which contribute to the same processing step and for that reason they have been
grouped to the same layer. There are three different processing layers: the Outer Plexiform
Layer (OPL), the Inner Plexiform Layer (IPL) and the Ganglionic Layer (GL). Each one
of the above layers is necessary in order to efficiently include all the necessary information
concerning the input signal into a code which is going to be propagated to the visual cortex
of the brain where it is analyzed.

To highlight the similarities between the retina processing and a compression algorithm
we need to detail the role of each retina layer. The cells of OPL layer are responsible
to dynamically transform the input luminence of light into current. This current under
some non-linearities and feedback mechanisms which occur in the IPL cells are propagated
to the GL. The GL is the processing layer where the current is dynamically transformed
into continuous electrical impulses which are called spikes. The code of spikes is the only
source of information which is sent to the brain through the optic nerve and the visual
pathway. The visual pathway consists of approximately more than 10 processing layers
which are able to enrich the efficiency of the information which is carried on the code of
spikes. However, the first copy of the code is released at the retina level. Summing up,
the retina first captures the visual stimulus which is dynamically transformed and encoded
into a code of spikes which, in fact, is a kind of a binary code: absence or presence of a
spike. This processing chain is very similar to the conventional coding principle which is
used in compression algorithms. The first step of this principle is the transformation of the
input signal into a more compressible domain using Discrete Wavelet Transforms (DWT),
Discrete Cosine/Sine Transforms (DCT/DST), etc. The redundancy of these transforms
is eliminated using quantization methods and then the entropy coding allows to represent
the quantized signal into binary code which is a sequence of “0” and “1”. Although these
two architectures seem to follow the same principles, they have a major difference: the
retina enables an on the fly spatiotemporal processing of the visual stimulus, while the
compression algorithms treat their inputs first in space and then in time.

In this thesis, we propose a novel “Retina-inspired Video COder/DECoder (CODEC)”.
This codec consists of two basic models which have been derived by neuromathematical
equations under given assumptions. The first model is a novel non-separable spatiotemporal
OPL retina-inspired transform and it is simply termed retina-inspired filtering. The second
model is a dynamic quantization which is based on the Leaky Integrate and Fire (LIF)
spike generator mechanism and it is called LIF Quantizer (LIFQ). Both these models have
been proposed under the strong assumption that the input signal is constant in time. This
assumption serves an important purpose which is first of all, to interpret how the retina
neurons work and why the neuromathematical models have been built in this way. Then,
we need to realize what kind of information we are able to extract from the input signal
and of course this assumption also simplifies the study of both these techniques in terms of
signal processing.
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1.2 Contributions and Outline

This manuscript is separated into four different parts. Each part has a complete and
independent content that it could be also read separately by the reader. Part I of this
thesis is a chapter dedicated to the state-of-the-art in compression. The perspective of
this chapter is to introduce the important role of compression in technology. First, there
is a description of different compression formats. Secondly, we present the basic coding
principle which has been adapted by all the standards in image and video compression
algorithms. This chapter also describes some metrics which are used in order to evaluate
and compare the performance of compression algorithms. Last but not least, we conclude
this state-of-the-art with an overview in the progress of video compression algorithms and
a short discussion about the current and future expectations of video compression systems.
Our contributions in video compression are introduced in parts II, III and IV.

1.2.1 Part II: Dynamic Filtering

This part aims to introduce the first processing step of the retina-inspired video codec
which is the retina-inspired filtering. We decided to split this part in three different parts
to be easier for the reader to understand our filter. Chapter 3 is an introduction to the
Outer Plexiform Layer (OPL) retinal transform. We provide the background concerning
the neuroscientific models which have been proposed in order to describe the way the input
light is transformed into current through the first group of the retina cells which belong to
the OPL. The behavior of these cells seems to be precisely described by a non-separable
spatiotemporal Difference of Gaussian (DoG) filter. We introduce the special characteristics
of this filter to the image processing community and we compare it to the already existed
DoG based models.

Chapter 4 derives a novel non-separable spatiotemporal OPL retina-inspired filter from
neuroscientific models under the assumption that the input signal is constant with respect
to time. This filter which is simply termed as retina-inspired filter is a family of Weighted
DoGs (WDoG). We have proven that this filter is simply a group of DoG which are weighted
by two temporal functions. These temporal functions are responsible to change the shape of
the DoG with respect to time. The impact of this temporal evolution is strong concerning
the kind of information we are able to extract from the input signal. We have proven that
this behavior is due to the bandwidth of the retina-inspired filter which also evolves in time.
We first represent some numerical results of this transform applied to 1D signal which is
straightforward. Then, we extend this approach to still-images and images retrieved from
video streams, which, in this document, are called pictures. This is the first time, according
to our knowledge, that people propose such a filter with a dynamic behavior which evolve
in time according to the OPL retina cells.

The last but not least chapter of part II, chapter 5, is the key to our great novelty. As
we discussed before, this is not only the first time a dynamic retina-inspired transform is re-
leased but we also mathematically prove that this transform is invertible which is necessary
and of a high interest for signal processing community. We used the frame theory in order
to prove that the retina-inspired decomposition is bounded. We calculated the analytic
expression of the lower and the upper bounds and we illustrate the perfect reconstruction
of an input signal when we use the full retina-inspired frame. In addition, we extended
this study for some noisy cases. We used some Additive White Gaussian Noise (AWGS) to
each decomposition layer to test the impact of the noise in terms of reconstruction. The
results showed that the redundancy of the retina-inspired decomposition is efficient enough
to guarantee high reconstruction quality even in the presence of noise. Finally, we have also
illustrated some results of progressive reconstruction. The retina-inspired filter depends on
time and we have proven that the perfect reconstruction exists when the retina-inspired
decomposition is complete, meaning that the optimal result occurs at the time just before
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the filter disappears. To our point of view, it was also interesting to show how the recon-
struction is improved while time increases until we reach the perfect reconstruction. The
results show that when the filter starts to evolve, the reconstruction is poor but it allows
to outline the objects inside the input scene. However, while time increases, more texture
information is carried on the retina-inspired decomposition which finally allows the perfect
reconstruction.

1.2.2 Part III: Dynamic Quantization

This part consists of two chapters which aim to introduce the encoding process which takes
place in the retina and the interpretation of this process in terms of quantization. The
aim of the retina coding is to transmit enough information about the input stimulus on
the retina to allow object and events to be identified. This information can be conveyed
by analog electrical mechanisms locally, but over long distances it should be encoded into
spatiotemporal spike trains which are generated by a population of neurons. Ganglion cells
are the only retinal neurons which are able to produce spikes.

In this thesis, we are interested in adopting in the conventional coding principle a model
which describes how the neurons spike. This model will reduce the spatiotemporal redun-
dancy of the retina-inspired transformed input signal generating a code of spikes. This code
will be used to reconstruct the input signal with the minimum distortion. Thus, we need
a model which allows to interpret the code of spikes by providing a link between the input
signal and the firing rate. In chapter 6, we describe that there have been proposed several
non-linear, linear, stochastic, non-stochastic, rank order or time order coding systems which
model the generation of spikes. However, it seems that one of the most efficient and easier
to be adjusted to the conventional coding principle is the Leaky Integrate and Fire (LIF)
model. The LIF model is based on the exact time each neuron emits its spike. This time
carries all the necessary information about the intensity of the input. The higher the input
intensity is, the sooner the spike will be emitted. If we assume that a neuron is inhibited
just after the release of its spike, then for a given observation window a high intensity
signal will generate large number of spikes comparing to lower intensities. The LIF model
performs very well even under some time constraints. In other words, when the observation
window is very small and some of the neurons will spike only ones, the produced code will
be still efficient to interpret and assign each spike to an input intensity due to the delay.
Last but not least, this chapter finishes with section 6.5 which is dedicated to some related
works in compression where spikes are also used.

In Chapter 7, we propose a retina-inspired quantizer being motivated by the LIF model
which is a time encoder of spikes. This model allows to map the input intensity to the spike
arrival time. Thus, the delay of each spike arrival is a clue to interpret a firing rate and
reconstruct the neural code. In this thesis, we aim to link the neuroscientific LIF model
with the conventional quantization. This connection results in the construction of a retina-
inspired quantizer, which is termed as LIF dead-zone quantizer or LIF-quantizer or LIFQ.
We also explain how the LIFQ is applied to the retina-inspired frame in order to reduce its
redundancy. Depending on the value of the quantization step, we propose three different
kind of LIFQ: the first one is called perfect-LIF dead-zone quantizer or perfect-LIFQ which
is similar to the Integrate and Fire (IF) or Threshold And Fire (TAF) model. It is called
perfect because a threshold θ is the only criterion to discard some intensities. Another,
more advanced model is the uniform-LIF dead-zone quantizer or uniform-LIFQ. In this
model, the intensities which exit the threshold θ are quantized using a given quantization
step q which is unique for all the decomposition layers. In addition, we present the adaptive-
LIF dead-zone quantizer or adaptive-LIFQ, which adapts the value of the quantization step
with respect to the energy of each decomposition layer. We first propose some experimental
evolution of the value of the quantization step for each subband. Then, we describe the
methodology which is related to the bit-allocation optimization, tuning the quantization
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step according to the energy of each subband. This is called Optimized-LIF dead-zone
quantizer or optimized-LIFQ. We also present some numerical results to defend the efficiency
of all the above LIFQ models. Last but not least, the comparison between the performance
of the the retina-inspired codec when it is applied to a still-image and JPEG or JPEG2000
shows that our model performs much better for given bitrates.

1.2.3 Part IV: Applications

Chapter 8 introduces video surveillance systems as an application of the retina-inspired
codec. We have chosen these systems due to the 4G-TECHNOLOGY, which is the in-
dustrial partner of this thesis. The beginning of this chapter is a state-of-the-art in video
surveillance systems and some recent technologies which aim to maximize the received video
quality under the resource limitations. These technologies provide power-efficiency solutions
which is the major concern of nomadic video surveillance systems. In addition, this chapter
represents EViBOX which is a system patented and provided by 4G-TECHNOLOGY. EVi-
BOX can be advanced by the the retina-inspired systems and we propose several possible
ways which concern this progress.

There are many perspectives which are important to be studied concerning the applica-
tions of the retina-inspired codec in video surveillance systems. We propose many different
ways of how these systems could be advanced. The most important contributions would
be the elimination of the static background and the enhancement of the Regions Of Inter-
ests (ROIs) due to the dynamic behavior of our codec. Last but not least, we illustrate
some comparison results concerning well-known video streams which have been coded with
MJPEG, MPEG-2 and the retina-inspired codec. Our coding system outperforms MJPEG
and it provides much better visual results than MPEG-2.
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This chapter introduces the important role of compression in technology. First, there is a
description of different compression formats. Secondly, we present the basic coding principle
which has been adapted by all the standards in image and video compression algorithms.
This chapter describes also some qualitative metrics which are used in the evaluation and
comparison of the performance of compression algorithms. Last but not least, we conclude
the state-of-the-art in video compression with an overview of video compression algorithms
and a short discussion about the future in video compression.

2.1 Why we use compression?

During the last decades, technology has been advanced making people’s life better and by
far easier than it used to be in the past. High resolution photos and videos are within the
aspects of this progress which have been adapted by most of the technological device. Some
interesting examples are the following: analog television was replaced by digital television
with a broadcasting not only through cables but also satellites and internet which offer high
variety of channels and TV programs. Video tapes which were used in order to store TV
programs or movies changed into CDs, DVDs, Blu-Ray Discs(BDs) and many alternative
ways (hard-disks, keys) to store digital videos. Cellphones are used not only for calls and
SMS but as pocket computers, cameras, web browsers, social network devices, navigation
systems, etc. According to the trends of our time, people not only like to capture big
amount of data but also to exchange them through the social media (Fig. 2.1). The home
and cellular internet access and speed is also in progress allowing a widespread use of video-
based web applications. In addition, most of the web applications, games, bank services
and social networks change dynamically. Moreover, some of them, like Skype, Viber, iChat,
Messenger, etc. allow live streaming communication. Thus, one should be able to compress
these data in very efficient formats in order to store them or transmit them over given
bandwidth channels.

Video compression or encoding is the process of reducing the amount of data required
to represent a digital video signal, prior to transmission or storage. The complementary
operation is the decoding which recovers a digital video stream from a compressed represen-
tation. An effective video coding is an essential component of all the technological devices
that make a difference between the success or the failure of a business model. In general,
compression is performed to remove the redundancy inherent in the input signal. There
exist statistical, spatial and temporal redundancy which are eliminated by two different
methods of compression: the lossless and the lossy.

2.1.1 Lossless compression

Many types of data contain statistical redundancy which can be effectively compressed using
lossless compression. The principle of the lossless compression is to minimize the number of
bits required to represent the original input signal without any loss of information. Lossless
compression is also called reversible process. However, concerning the visual or audio
human systems it is possible that a significant loss would not interfere with perception of
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Figure 2.1: This graph illustrates the increase of the amount of images which are uploaded
and shared every day through social media. Source: KPCB estimates based on publicly
disclosed company data, 2014 YTD data per latest as of 5/14.

the output signal. In addition, one should always keep in mind the fact that the real world
is converted into digital world which also results in a imperfect output signal. The lossless
compression is required in applications related to medical data transmission, in which a loss
of information may cause a wrong medical diagnosis. Lossless compression sets a trade-
off between 3 different dimensions: the coding efficiency (entropy), the coding complexity
(computational cost) and the coding delay (power consumption) (Remark: the trade-off
is used to notice the balance between two or more values/items which are inverse with
each other). The coding efficiency is measured by the entropy of the source. The entropy
defines how easy is for a source to be compressed for a given randomness. For instance,
a random noisy signal is very hard to be compressed. Sources with low entropy can be
compressed easier. The coding complexity is also referred as the computational cost and
it is related to the memory requirements or the number of arithmetic operations which are
required in order to compress the input signal. The coding complexity most of the times
increases the coding delay between the encoder and the decoder which is impractical for
the power/energy constraints. For instance, the lower the coding complexity, the less the
power consumption.

2.1.2 Lossy compression

The input signal can be represented with smaller number of bits by introducing some errors
which cause some loss of information. The primary goal of lossy compression is to minimize
the number of bits required to represent the input signal with the best possible quality. This
compression, which is also called irreversible process, reduces the spatial and temporal
redundancy of a signal. A lossy compression is used by applications or devices which do
not require perfect reconstruction of the input signal. However, lossy compression seeks
at first for subjective redundancy, selecting elements to be removed without significantly
affecting the viewer’s perception of visual quality. Lossy compression is more challenging
because it sets a trade-off between 4 different dimensions: the coding efficiency (entropy),
the coding complexity (computational cost), the coding delay (power consumption) and
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the reconstruction quality (distortion). The distortion measures the difference in quality
between the input f and the reconstructed signal f̃ . Thus, the lower the distortion, the
better the reconstruction.

Lossy compression algorithms have numerous of applications. Closed-circuit TeleVision
(CCTV) systems, also known as video surveillance systems, is one of the applications among
Hybrid Fiber Cable Networks (HFCs), Asymmetric Digital Subscriber Lines (ADSL), Digi-
tal Video/Versatile Discs (DVDs) and satellite TV, which ha been benefited by a high lossy
compression performance.

2.2 Coding Principle

The coding principle is a common architecture which has been adapted by all the lossy
compression algorithms and it describes the encoding and decoding process of an input
signal (see Figure 2.2). This input signal f could be audio, image or video which is first
transformed into a more compressible format. The Discrete Wavelet Transform (DWT),
Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and Fourier are some
of the transforms which have been used in compression algorithms. The result of this
transform is identified by a quantizer in order to decide which information is redundant
to be removed. Quantization is solely responsible to introduce distortion. As a result, in
a lossless compression there is no quantization. The Entropy coding is a lossless function
which translates the quantized intensity of the signal into codewords whose lengths vary
inversely to the frequency of occurrence. Once the input signal has been coded, it is saved
or sent through the communication channel to the receiver who needs to use this code in
order to reconstruct the input signal. This is the decoding process which consists of the
entropy decoding, the de-quantization and the inverse transform.

f

f̃

Figure 2.2: Coding Principle

As it is already mentioned, the goal of such an architecture is to find the best trade-off
between the redundant information which is going to be eliminated during the quantization
step while the reconstruction quality of the output signal f̃ needs to be as close as possible
to the one of the input signal. Most of the times, people sacrifice the computational cost or
the power consumption of the algorithm in order to achieve efficient entropy results and/or
high reconstruction quality.

2.3 Rate-Distortion Theory

As explained above, in lossless compression, when the input source consists of real numbers
it requires high number of bits (bitrate or rate) to be stored or transmitted. Generally, for



2.3. RATE-DISTORTION THEORY 21

a computer this number of bits is approximately 64 bits/sample. However, no channel or
storage unit enables an infinite rate. As a result, a finite representation of this source will
never be perfect (lossy compression). The Rate-Distortion (RD) theory comes under the
umbrella of source coding or compression and it is concerned with the task to find the best
trade-off between the quality of the reconstruction (distortion D) and the loss of information
(bitrate cost R). In other words, RD theory seeks for the fewer number of bits possible
to achieve a given reproduction quality. The question is how to define the “goodness” of
this representation? There are several metrics to measure the distortion between the input
continuous signal and its representation. The issue of what kind of qualitative metric should
be used to evaluate the quality for a source has been the objective of continuous study for
many years now.

However, before we continue introducing the qualitative and the rate metrics we need
first to define what a source is. A source could be one particular set of data (i.e. text file,
audio signal, image, video, etc.). Alternatively, one could also consider a class of sources
which are characterized by the same statistical properties. In such a case, the estimation
of parameters which minimize the number of bits which corresponds to a given quality
of reconstruction will be applied only for the class of sources of the same characteristics
(i.e. a technique which works well for an audio signal may not be applied with the same
success to video streams). On the other hand, parameters which are assigned to a class of
sources will always result in variations among inputs. Thus, techniques which allow the “
input-by-input” selection of parameters have been shown to be superior to those that work
for a class of sources.

In early state-of-the-art subband image coding frameworks which were based on i.i.d.
models for image subbands, the optimal bit allocation was necessary and very important to
ensure that the bits were optimally distributed among the subbands in proportion to their
importance. There have been proposed many models which optimize the bit allocation
and are considered to be accurate for source classes of the same statistical distributions
(i.e. Laplacian, Gaussian, Generalized Gaussians, etc.). This is going to be discussed in
details in section 2.3.3 within the aspects of the optimization of the RD curve. Nevertheless,
we need first to define some distortion and bitrate metrics. In section 2.3.1 we are going
to represent the most commonly used qualitative metrics in compression. Apparently,
the system which is going to in practice evaluate the quality of an input source is the
human audio and/or visual system. Thus, the qualitative metrics are called to measure the
audio/visual human perception. The most famous metrics among numerous of models, are
the Mean Square Error (MSE), the Peak Signal to Noise Ratio (PSNR) and the Structure
SIMilarities (SSIM). In section 2.3.2, we also describe the Shannon entropy as a necessary
tool which allows to estimate the rate for a given distortion. Huffman, Stack-Run and
Arithmetic entropy coders are also introduced in the same section as the lossless techniques
which are used in practice to represent the quantized input signal as a binary stream.

2.3.1 Qualitative Metrics

There are several quality metrics which are responsible to measure the quality of the re-
constructed signal with respect to the input one. It is desired to achieve the lower possible
distortion D while a lot of the information has been discarded. The distortion of course
should be assessed in an appropriate manner. Formally, it is defined as D(f, f̃), where f is
the input signal of the coding principle which is described in Fig. 2.2 and f̃ is the output.
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2.3.1.1 Mean Square Error (MSE)

The most commonly employed measure of distortion is MSE (Mean Squared Error), defined
by:

MSE(f, f̃) =
1

n

n∑

i=1

(fi − f̃i)2, (2.1)

where n is the size of the input signal, f = (f1, . . . , fn) and f̃ = (f̃1, . . . , f̃n). The distortion
is minimized when the MSE approaches zero. It is worth noting that while it is typical to
dismiss MSE as being poorly correlated to human perception, systems built on the above
philosophy can be optimized for MSE performance with excellent results not only in MSE
(as one would hope should be the case) but also in terms of perceptual quality.

2.3.1.2 Peak Signal to Noise Ratio (PSNR)

For image and video compression the MSE is most commonly quoted in terms of the
equivalent reciprocal measure, PSNR (Peak Signal to Noise Ratio), defined by:

PSNR(f, f̃) = 10 log10
(2b − 1)2

MSE(f, f̃)
, (2.2)

where b is the number of bpp (bits per pixel). The PSNR is expressed in dB (deci-
bels) and it is based on the absolute error between the input and the output signals
[Taubman and Marcellin, 2002]. The PSNR approaches infinity while MSE approaches
zero, which means that a high PSNR value provides the high image quality. At the other
end of the scale, a small value of the PSNR implies high numerical differences between
images.

2.3.1.3 Structure SIMilarities (SSIM)

The SSIM used for measuring the similarity between two images is defined by:

SSIM(f, f̃) = l(f, f̃)c(f, f̃)s(f, f̃), (2.3)

where

l(f, f̃) =
2µfµf̃ + c1

µ2f + µ2
f̃
+ c1

, (2.4)

c(f, f̃) =
2σfσf̃ + c2

σ2f + σ2
f̃
+ c2

, (2.5)

s(f, f̃) =
σf,f̃ + c3

σfσf̃ + c3
, (2.6)

where µf is the average of f , µf̃ the average of f̃ , σ2f is the variance of f , σ2
f̃
is the variance

of f̃ , σ2
f,f̃

the covariance of f and f̃ , c1 = k1L
2, c2 = k2L

2 and c3 = c2/2 are three positive

variables to stabilize the division with weak denominator, L the dynamic range of the
pixel-values (typically 2bits/pixel − 1) and k1 = 0.01, k2 = 0.03 by default. The range of
the SSIM output is 0 ≤ SSIM ≤ 1. This metric is a perception-based model that considers
image degradation as perceived change in structural information, while also incorporating
important perceptual phenomena, including both luminance masking and contrast masking
terms [Wang et al., 2004].
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2.3.1.4 PSNR vs SSIM

There are no precise rules of how to select a quality metric when the evaluation of an
image quality is required. The numerical values which are obtained during evaluation have
been interpreted in different ways. Some studies have shown that MSE and consequently
PSNR perform badly comparing to SSIM due to a various type of degradations which
can be assigned to the same value of MSE [Teo and Heeger, 1994, der Weken et al., 2002,
Eskicioglu and Fisher, 1995]. On the contrary, there are studies which support that MSE
and PSNR perform better in assessing the quality of noisy images. Figure 2.3 shows the
performance of PSNR and SSIM metrics when the well-known image “lena” is compressed
with JPEG standard for different bitrates. The authors in [Horé and Ziou, 2010] proposed
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Figure 2.3: The figure illustrates the PSNR and the SSIM values which correspond to
the same bitrates when lena image is compressed with JPEG standard obtaining different
bitrates.

a relation between PSNR and SSIM which is described as:

PSNR = 10 log10

[

2σf,f̃ (l(f, f̃)− SSIM)

(2b − 1)2SSIM
+

(
µf − µf̃
2n − 1

)2
]

, (2.7)

where

l(f, f̃) =
2µfµf̃ + c1

(µ2f + µ2
f̃
+ c1)

. (2.8)

This relation concludes that the values of PSNR is possible to be predicted by the value
of SSIM and vise-versa. Actually, it suggests that the values of the SSIM and those of the
PSNR are not independent (see Fig. 2.4). There is a general relation which can be used
for any kind of image degradation. In addition, if we use l(f, f̃) = 1 and µf = µf̃ , equation
(2.7) can be simplified and rewritten as:

PSNR = −
(

10 log10

[

(2b − 1)2

2σf,f̃

]

+ 10 log10

[
SSIM

1− SSIM

])

(2.9)
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However, estimating a relation between the two qualitative metrics does not indicate
which one is more accurate and efficient to better evaluate the quality of an image. An
easy way to compare the two metrics is proposed in [Horé and Ziou, 2010]. This method
uses F-scores for different degradation parameters related to the JPEG and JPEG2000
compression qualities, Gaussian blur, Additive Gaussian Noise, etc. (see Fig. 2.5). Let
suppose, we are interested in testing the quality of the JPEG compression for 4 different
parameters: 30%, 50%, 70% 90%. For each parameter, we need to test a group of images in
order to compute a group of PSNR and SSIM values (one PSNR (SSIM) value per image).
The F-score associated to the PSNR corresponds to the ratio of the variance of the mean
values which has been computed for each group of PSNR for each parameter, over the mean
value of the within-group variances. In exactly the same way are computed the F-scores
of the SSIM. The F-score varies in [0,∞[ where low values indicate that the parameters
have low impact on the values of the quality measure while high F-score values stand for
high impact. Figure 2.5 shows that the highest sensitivity for both the metrics is given for
the Additive Gaussian Noise. The PSNR performs better than SSIM in discriminating the
Gaussian blur and it is also considered to be by far the most efficient metric for Additive
Gaussian Noise. On the contrary, SSIM seems to be the more sensitive than PSNR for
JPEG and JPEG2000 compression quality.

Figure 2.4: Variation of the PSNR as function of the SSIM for different fixed values of σf,f̃
(extracted from [Horé and Ziou, 2010]).

2.3.2 Shannon Entropy

A quantity known as “entropy” is defined in terms of the statistical properties of the
information source. In other words, the entropy is a measure of randomness. The entropy
represents a lower bound on the average number of bits required to represent the source
output without loss of information. Given an input source S there are random symbols
s1, s2, . . . , sn. Each one of these symbols i has a probability to be occurred, pi. According
to Shannon, the entropy of a source S is given by :

H(S) = −
n∑

i=1

pi log2 pi. (2.10)
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Figure 2.5: Comparison of the sensitivity of the PSNR and the SSIM using the F-scores
(extracted from [Horé and Ziou, 2010]).

The Shannon entropy measures information in unit of bits/sample. If one changes the
base of the logarithm, then the unit of the entropy changes i.e. nat is for loge, where
e is the Euler’s number and hartley for log10. The Shannon entropy coding gives us
the opportunity to map each symbol si into a codeword ci. To define the length li of
this codeword there are numerous techniques like Huffman Coding [Huffman, 1952,
Bhaskaran and Konstantinides, 1997, Mishra and Singh, 2015], Arithmetic coding
[Rissanen and Langdon, 1979, Witten et al., 1987, Bhaskaran and Konstantinides, 1997,
Howard and Vitter, 1992], Stack-Run Coding [Tsai et al., 1996, Tsai, 1998], LZW coding
[Mishra and Singh, 2015], Run-length Coding [Abdelgattah and Mohiuddin, 2010], DPCM
coding [Tomar and Jain, 2016], etc. All these techniques are used to perform lossless
compression. In this document, we are going to introduce only Huffman and Arithmetic
coding because these two methods have been widely used in image and video compression
algorithms.

2.3.2.1 Huffman Coding

Huffman Coding [Huffman, 1952] was used in JPEG and H.261 while 2D and 3D Huff-
man coding were also part of MPEG and H.263. The benefit of Huffman coding is that
it takes advantage of the disparity between the frequencies. It uses less storage for the
frequently occurring characters at the expense of having to use more storage for each of the
more rare characters [Bhaskaran and Konstantinides, 1997, Mishra and Singh, 2015]. The
coding processing evolves along the following steps:

1. Order the symbols according to their probabilities. The frequency of occurrence
of each symbol must be known as a prior in order to build the Huffman code. In
practice, the frequency of occurrence can be estimated from a training set of data
that is representative of the data to be compressed in a lossless manner. For instance,
if an alphabet is composed of n distinct symbols s1, s2, . . . , sn and the probabilities
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of occurrence are p1, p2, . . . , pn, then the symbols are rearranged so that p1 > p2 >
. . . > pn.

2. Apply a contraction process to the two symbols with the smallest probabilities. Sup-
pose the two symbols are sn−1 and sn. We replace these two symbols by a hypothetical
symbol. say, Hn−1 , that has a probability of occurrence pn−1+ pn. Thus the new set
of symbols has n− 1 members: s1, s2, . . . , sn−2,Hn−1.

3. We repeat the previous step until the final set has only one member.

The second step is responsible to build a binary tree, since at each step two symbols are
merged. At the end of this process all the symbols will stand as the leaf nodes of the tree.
The codeword for each symbol si is obtained by traversing the binary tree from its root to
the leaf node corresponding to si. An interesting example of Huffman coding is given in
Fig. 2.6.

Figure 2.6: Huffman coding. This figure show the step-by-step Huffman coding approach
and the resulting coding tree for an input sequence “frladg”, given the probabilities of each
symbol. Huffman encoding requires 17bits for this sequence.

The Huffman code is perfectly decodable using a Look-Up-Table (LUT). The LUT is
constructed at the decoder from the symbol-to-codeword mapping table. So, if the longest
codeword is of a length L, there are 2L entries to the LUT. In order to decode symbol si
using only its codeword ci of a length li, we retrieve the value of the 2L−li address.

The basic drawbacks of Huffman coding are first of all, its sensitivity to changes in signal
statistics. If the probability of occurrence of the input symbols changes, one should redesign
the Huffman code from the beginning. The adaptive Huffman coding [Vitter, 1987] which
is an extension of Huffman coding deals with non-stationary signals. A second disadvantage
of Huffman coding is that it finds a codeword for each symbol. However, it has been proven
that the most efficient coding which allow high compression ratios, can be achieved if many
symbols are assigned to the same unit.

2.3.2.2 Arithmetic Coding

Arithmetic coding is an alternative to Huffman coding. It has been used both in image and
video coding standards like JBIG, JPEG, JPEG2000 and H.263, H.264/MPEG-4/AVC,
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HEVC respectively. The advantage of this method is that multiple symbols are treated
as single data unit but at the same time it retains the symbol-by-symbol coding approach
like Huffman coding [Bhaskaran and Konstantinides, 1997, Howard and Vitter, 1992]. As
a result, Arithmetic coding is adaptable to the frequency of occurrence which is unrelated
to the design of the coder. The coding process evolves along the following steps:

1. There is the current interval [Currentlow,Currenthigh) which is initialized to [0,1). The
current interval is subdivided into several half-open subintervals each one of which
corresponds to a symbol si of the input source S. Each subinterval is considered to
be a codeword ci. The upper limit of each subinterval is the cumulative probability
up to and including the corresponding symbol. The lower limit is the cumulative
probability up to but not including the symbol.

2. When the first symbols of the si appears, its correspondent subinterval is selected
to become the current interval. For instance, let [bilow, b

i
high) the correspondent

subinterval of the symbol si with lower bound bilow and upper bound bihigh. This
subinterval should replace [0,1) which is the initial current one. Let Previouslow
and Previoushigh be the lower and the upper limits of the old interval (in this
case 0 and 1 respectively) and Range = Previoushigh − Previouslow. One needs to
compute the bounds of the new current interval according to the following rules:
Currentlow = Previouslow+Range×bilow and Currenthigh = Previouslow+Range×bihigh.

3. Step 2 is repeated each time a new symbol appears. The current interval becomes
the previous one and using the rules described above we compute the current interval
with respect to the correspondent subinterval of the new symbol.

4. There is no need to transmit both the lower and the upper bound of the last new
interval. Usually, a value of a fractional number which is within the final range is an
efficient output.

Arithmetic coding yields better compression because it encodes a message as a whole
new symbol instead of as separate symbols. One, should use enough bits to distinguish the
final current interval from all the other possible final intervals. An example of arithmetic
coding is given in Fig. 2.7.

The decoding process of the Arithmetic coding is based on a unique number j and
the cumulative probabilities cumprobj which are both assigned to each symbol of the se-
quence. Starting from the output value and the initial interval [0,1), one should search for

which j the following inequality is true: cumprobj ≤
value− Previouslow

Range
< cumprobj−1.

Then, the values are updated and the decoding process continuous until all the values
will be perfectly reconstructed: Previoushigh = Previouslow + Range × cumprobj−1 and
Previouslow = Previouslow + Range× cumprobj .

2.3.2.3 Stack-Run Coding

The stack-run coder is an algorithm which is applied to a signal after it has been first
transformed and quantized to represent every meaningful coefficient which is necessary for
the reconstruction of the signal [Tsai et al., 1996]. As meaningful coefficients are considered
the non-zero positive or negative values which are called“stack” or significant coefficients,
while the zeros between them are meaningless coefficients which are called “run”. An
adaptive arithmetic coding is then used to compress the sequence in higher efficiency.

Opposed to other similar techniques which have been used in compression, like the
zerotree [Shapiro, 1993] or the run-length coder which take advantage of the relationship
within the subbands, the Stack-Run coder is applied to each subband independently. This
is one of the great advantages of the algorithms which gains in simplicity. Another benefit
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Figure 2.7: Arithmetic coding. This figure illustrates the sub-intervals and the encoding
process for the same input sequence we used in Fig. 2.6. Arithmetic coding needs 16 bits
to encode this signal which means that it is more efficient than Huffman coding (17 bits).

of this algorithm is that it uses only 4 different symbols (“+”, “-”, “0” and “1”) to represent
all the values in a subband allowing the use of the arithmetic coding . Let each significant
coefficient be represented by a binary stack starting from the Least Significant Bit (LSB) to
the Most Significant Bit (MSB). The MSB of this stack is always the sign of the coefficient
which is represented right after the binary stream with a “+” if the value is positive and “-” if
the value is negative. Another issue of the Stack-Run coder is that no binary stream encodes
the zero value, as in ASCII table. For example, the value +4 is going to be represented by
10+ instead of 00+. A complete description of a subband can be provided by a group of
pairs (a, b), where a defines the length of zero-runs before a significant coefficient value b
arrives.

Figure 2.8 shows an example of a Stack-Run coder when it is applied to a small subband
of a size 4 × 4 (in green). The values of this subband are the input of the algorithm (in
blue). The symbols which are used to represent each significant coefficient are introduced
in the red table followed by an example of how the stack of few values is formed from LSB
to MSB. The gray table stands for the symbols which are used to encode the zero-runs
followed by an example of how different lengths of zero-runs will be encoded.

An extension of the Stack-Run coder which is called Stack-Run-End coder introduces
two more symbols the “EOB” for the zero-runs which lead to the end of a subbands and
the “EOI” for the zero-runs in a sequence of subbands which lead to the end of the image
decomposition [Tsai, 1998]. We introduce also the encoded chain of the input signal (in
yellow) with both Stack-Run and Stack-Run-End coders.

2.3.3 Rate-Distortion Optimality

We are now familiar with the most famous metrics which are used to evaluate the differ-
ence between the quality of the input and the reconstructed signal, and the number of
bits which are required to store and/or transmit this quality. For a given source, if we
consider all the possible quantization choices, we are able to define a point cloud of all the
possible RD couples. The RD optimization requires to minimize the distortion D under
the constraint of R < Rmax, where Rmax is a maximum bitrate bound. The solution of the
RD optimization defines the operational rate-distortion curve (see Fig. 2.9). This curve is
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Figure 2.8: Stack-Run Coder. This figure represents output of the Stack-Run and the
Stack-Run-End coders (yellow) which are applied to an input vector (blue). There are two
dictionaries, one related to the symbols (red) and another one for the zero values (gray).

obtained by selecting the best rate-distortion pairs, within all the possible rate points and
their corresponding distortions. Each point which lies on the operational curve is achievable
depending on the system and the test data. However, for each system there should be some
bounds to distinguish the best points to those ones whose performance is considered to be
sub-optimal or unachievable.

2.3.4 Coding Unit and Complexity

The optimal trade-off between the rate and the distortion is computed for different coding
units, which could be a sample, an image block, or a full image which are encoded given
a distortion value for each different selected rate. The selection of the size of the coding
units is directly linked to the complexity of the system. Undoubtedly, if the size of the
coding unit is very small (i.e. an 8× 8 block of a picture of a high definition video stream)
and the number of operations (i.e. different quantization values) for each unit is large,
the complexity implications will be dramatic for the whole system. One should keep in
mind that the complexity also depends on the delay in computing the optimal solution.
Especially in online encoding systems this delay should be the minimum one, thus the
complexity should be also low. On the other hand, off-line encoding applications maybe
supported by more complex algorithms. In order to reduce the computational cost and
achieve the best trade-off between the rate and the distortion, instead of trying every
possible value, one may use an optimization algorithm.

2.3.5 Lagrangian Optimization

A very well known method which has been used to seek for the operational rate-distortion
curve is the Lagrangian optimization algorithm [Everett, 1963]. The optimization algorithm
of the RD curve for biorthogonal sources could be described by a cost function J depending
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R

D

Figure 2.9: Operational RD curve. The cloud of points (in blue) correspond to the some
possible quantization choices which result in a pair of a rate and distortion. Some of these
points define the convex hull of this cloud which stands for the optimal rate-distortion pairs.
The red curve shows the achievable performance of the system for a given input of known
distribution.

on the distortion D and the rate R which needs to be optimized:

Jµ = D + µR, (2.11)

where µ ∈ R+ is the Lagrange multiplier. When µ ≈ 0 there is more emphasis to the
minimization of the distortion D enabling higher bitrate. On the other hand, if µ is large
tends to minimize R and increase the quality of the reconstruction. The estimation of the
Lagrange parameter is a highly complex problem [Ortega and Ramchandran, 1998]. For-
tunately, there have been proposed empirical approximations to effectively choose µ in a
practical mode selection scenario [Tseng et al., 2006]. If the source is a set of n decomposi-
tion layers after a given transform and if each subband i is orthogonal, the global distortion
D is the sum of subband distortions Di [Gersho and Gray, 1992] which is a function of rate:

D =
n∑

i=1

Di =
n∑

i=1

Di(Ri). (2.12)

When the filter is not biorthogonal then there should also be considered suitable weights
which account for non-orthogonality (see eq. 2.13) [Usevitch, 1996]. The goal of the La-
grangian optimization algorithm is to minimize J with respect to the distortion D and the
rate R under given constraints for both of these magnitudes. Although, sometimes it is
easier to describe two magnitudes at the same time the dependency effects are often ignored
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to speed up the computation. The independent allocation strategies are introduced in the
following sections.

2.3.5.1 Rate Allocation Problem

Considering the distortion as a function of rate, the cost function J can be described as a
function of rate J(R). The constraint of such a case is imposed to the total subband bitrate
which should not be larger than a given bound Rmax:

R =

n∑

i=1

aiRi ≤ Rmax, (2.13)

where the coefficient ai depends on the size of the subbands. To integrate the cost function
we also need to define the distortion as a function of rate (see 2.12). In [Usevitch, 1996], the
authors developed an expression of distortion for different wavelet transforms, showing that
there is a weight wi linked to each subband. This approach was proposed for Daubechies
9/7 or 5/3 filters.

D(R) =

n∑

i=1

wiDi(Ri). (2.14)

Now, we have all the tools to define the cost function in terms of rate allocation:

J(R) =

n∑

i=1

wiDi(Ri)− µ
(

n∑

i=1

aiRi −Rmax

)

, with µ ≤ 0. (2.15)

The Lagrange multiplier could be seen as the slop of the RD curve which is defined
according to equation (2.20). The optimal rate allocation corresponds to the points having
the same slop on the “weighted” curve.

wi∂Di

ai∂Ri
= µ, ∀i = {1, . . . , n}. (2.16)

The solution is found by an iterative algorithm. Let ε be a suitable tolerance, and j
represent the number of attempts. It is sufficient to find the first value µj such that:

Rmax − ε ≤
∑

i=1

aiRi(µ
j) ≤ Rmax. (2.17)

2.3.5.2 Distortion Allocation Problem

The previous section introduced the minimization of the cost function with constraint
imposed on rate. However, a different problem to be solved is the minimization of the
cost function given a distortion constraint:

D(R) =

n∑

i=1

wiDi(Ri) ≤ Dmax (2.18)

The above constraint changes the Lagrangian cost function as following:

J(R) =

n∑

i=1

aiRi − µ
(

n∑

i=1

wiDiRi −Dmax

)

, with µ ≤ 0. (2.19)

The zero-gradient condition is given by:

wi∂Di

ai∂Ri
=

1

µ
, ∀i = {1, . . . , n}. (2.20)

The algorithm proposed to find the best allocation vector is then quite similar to the
previous one. Indeed, it is sufficient to change the termination condition as following:

Dmax − ε ≤
n∑

i=1

wiDiRi(µ
j) ≤ Dmax. (2.21)
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2.4 Progress in Video Compression Standards

This section aims to be the overview of video compression standards. First of all, we
define what is a video stream. Then, we discuss JPEG and JPEG2000 which are the most
effective image compression standards. These two standards became the basic inspiration
of developers who wanted to build video compression standards. Lastly, we introduce
the progress of the compression techniques as they introduced in each video compression
standard.

2.4.1 Video Stream

A natural visual scene I(X, t), where X ∈ R3 and t ∈ R+, is a 3D stimulus which is
spatially and temporally continuous. According to the law of optics, the 3D visual stimuli
I(X, t) is projected onto the retina, which is the innest tissue of the eyes, via the lens
(the optics of the eye is detailed in [Ögmen and Herzog, 2010]). Hence, the 3D luminance
I(X, t) is simplified into a 2D luminance Ĩ(x, t) where x ∈ R2 and t ∈ R+. However, even
this 2D analog signal needs to be spatially and temporally sampled in a digital format.
Digital videos are the representation of a sampled visual scene in digital form. A digital
video stream f(x, t) which has been temporally sampled, is a group of pictures which change
with respect to time as following:

f(x, t) =

N∑

i=1

fi(x)1[gi,gi+1](t), (2.22)

where x ∈ R2, t ∈ R is the observation time, fi(x) stands for the i
th picture of the video, N

is the total number of pictures which form the video stream and 1[gi,gi+1](t) is the indicator
function which is equal to 1 if gi ≤ t ≤ gi+1, and 0 otherwise. Let’s call frame period
Ti = gi+1 − gi the duration for which a given picture fi(x) of the video stream exists. For
simplicity it is assumed that Ti = T because Ti is the same for every single picture of a
video stream with a frame rate 1/T .

Let x1, . . . , xn ∈ R2 be some spatial samples of the ith picture of the video stream and
fi = (fi(x1), . . . , fi(xn)) the spatially sampled ith picture. Each spatiotemporal sample of
the video stream describes the brightness or the luminence and the color of the sample. The
number n of spatial samples influences the quality of each picture (image or frame). The
more the spatial samples, the higher the resolution of each picture. A monochrome picture
requires only one number which represents the brightness. A color RGB picture requires
three values per pixel for the Red, Green and Blue colors of light. The combination of red,
green and blue in varying proportions generates any possible color:

Yi(xk) = krRi(xk) + kgGi(xk) + kbBi(xk), (2.23)

where Yi(x, t) is the grayscale intensity of the ith spatiotemporal sample of the input visual
stimulus, Ri(xk) is the red color sample, Gi(xk) the green color samples and Bi(xk) the blue
color sample, kr,kg and kb are weighting factors which correspond to red, green and blue
colors respectively. The Yi(xk) : C

b
i (xk) : C

r
i (xk) color space is a popular way of efficiently

representing color images where Cr
i (xk) = Ri(xk) − Yi(xk), C

g
i (xk) = Gi(xk) − Yi(xk)

and Cb
i (xk) = Bi(xk) − Yi(xk) are the color differences (chrominance or chroma). Only

two of the three chrominance components need to be stored or transmitted since the third
component can always be calculated from the other two.

The number of temporal samples influences the motion. A temporal sampling is called
progressive, when the result is a series of complete frames. In case of incomplete frames
the temporal sampling is called interlaced (the format and the use of an interlaced video is
described in details in section 2.4.5.) The temporal samples correspond to the frame rate
(the number of picture per second). The higher the frame rate, the smoothier the motion.
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Format Resolution Nbr of Pixels

Standard Definition (SD) 720× 576 141720

720p High Definition (HD) 1280 × 720 921600

1080p HD 1920 × 1080 2073600

UHD TV 3840 × 2160 8294400

2160p 4K UHD 4096 × 2160 8847360

8K UHD 7680 × 4320 33177600

Table 2.1: Video formats and their resolutions.

On the other hand, that requires more samples to be stored. In general a video stream of
10-20 pps (pictures per second) is considered to be of a low frame rate, 25-30 pps is the
standard frame rate and 50-60 pps is a high frame rate video. Table 2.1 shows different
video formats and their resolutions.

2.4.2 From JPEG to HEVC

Tracking the development of video compression algorithms, one will come to the follow-
ing conclusion: all the video compression algorithms have the same origin which is the
JPEG standard [ISO/IEC 10918-1:1994, 1994, Bhaskaran and Konstantinides, 1997]. The
“JPEG” is an acronym of the Joint Photographic Expert Group which in 1986 established
a standard for the sequential progressive encoding of continuous tone grayscale and color
images. The ”Joint” stands for International Organization for Standardization (ISO) and
the International Telegraph and Telephone Consultative Committee (CCITT) which is a
permanent organ of the International Telecommunication Union (ITU), the United Na-
tions Specialized Agency in the field of telecommunications. JPEG2000 is a more recent
standard released by the Joint Photographic Expert Group and it was intended as a suc-
cessor of JPEG standard in many of its applications. However, even though JPEG2000
is more efficient with respect to compression ratio than JPEG, it was rarely preferred to
be used due to its complexity. Back in 2000, when JPEG2000 was released, its format
required a lot of memory to be process which was problematic when an average com-
puter included around 64 MB of memory. In addition, JPEG2000 was an entirely different
format based on new code, which means that the format was not backward compatible
[Christopoulos et al., 2000, Santa-Cruz et al., 2002].

In the late 1980s, the Motion Picture Experts Group (MPEG) was formed with the
purpose of deriving a standard for the coding of moving pictures and audio. It has since
produced the standards for MPEG 1, MPEG-2, and MPEG-4. At the same time, the
Video Coding Experts Group (VCEG) which is the sub group of ITU developed for ex-
ample the H.261 and H.263 recommendations for video-conferencing over telephone lines.
At the end of the 1990s, a new group was formed, the Joint Video Team (JVT), which
consisted of both VCEG and MPEG. The purpose was to define a standard for the next
generation video coding. The JVT released a series of standards like H.622/MPEG-2,
H.264/MPEG-4/AVC which is termed Advanced Video Coding (AVC) and H.265 which
is called High Efficiency Video Coding (HEVC). Figure 2.10 shows the progress in image
and video compression standards over the last decades. The designers used JPEG stan-
dard as a basis to encode and decode key-pictures of a video stream introducing at the
same time other methods to reduce temporal and spatial redundancy (i.e. inter-picture
prediction, motion estimation, macroblocks, interlaced videos, deblocking, Discrete Co-
sine Transform (DCT) [Ahmed et al., 1974, Britanak, 2001], Discrete Wavelet Transform
(DWT) [Mallat, 1999], quantization, entropy coding, etc). The second conclusion which is
naturally raised is related to the complexity of these algorithms which increased during the
years [Grois et al., 2013]. To achieve more efficient compression algorithms and improve
the bitrate of the video codecs, the designers proposed more and more complex solutions.
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Figure 2.10: Standardization History.

2.4.3 Overview of JPEG and JPEG2000

Image compression algorithms have been used in numerous of applications like internet,
digital photography, medical imaging, remote sensing, surveillance, facsimile, etc. The
general structure of an image compression standard follows the coding principle which
is illustrate in Figure 2.2. As it has been mentioned in section 2.2, there are three
major steps which in case of JPEG are the DCT transform, the quantization and the
Huffman entropy coding [Bhaskaran and Konstantinides, 1997]. The successor of JPEG,
JPEG2000, follows the same principle but it uses DWT and Arithmetic entropy coding
instead [Christopoulos et al., 2000, Santa-Cruz et al., 2002].

2.4.3.1 Discrete Cosine Transform (DCT)

The DCT is a basis in image and video compression standards. The basic computation is
the transformation of an input block of a size N ×N , where N = 64, from the spatial to
the DCT domain:

F (u, v) =
1

4
C(u)C(v)

7∑

x=0

7∑

y=0

f(x, y) cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
, (2.24)

where f(x, y) is the input image and

C(u) =







1√
2
, if u = 0

1, otherwise

and C(v) =







1√
2

if v = 0

1 otherwise.

(2.25)

The blocksize had been initially chosen to be 8 × 8 for several reasons: first of all,
from the computational point of view such a small size of block is not memory demanding.
Secondly, if one increases the size of the block the efficiency of the algorithms is almost
unchanged. Last but not least, the spatial correlation maybe eliminated in case of larger
block. The block-based DCT decomposition is illustrated in Fig. 2.11 (a). The benefit of
the DCT transform is its orthogonality, which means that it is invertible and leads to a
perfect reconstruction of the input signal (see eq. 2.26). In addition, it has been proven that
DCT decorrelates as well as Karhunen-Loève transform, sources with correlate coefficients
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[Hamidi and Pearl, 1976].

f(x, y) =
1

4

7∑

u=0

7∑

v=0

C(u)C(v) cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
. (2.26)

(a) (b)

Figure 2.11: (a). Two dimensional DCT block-based decomposition frequencies. (b) Dyadic
wavelet decomposition.

2.4.3.2 Discrete Wavelet Transform (DWT)

Among several wavelet transforms [Mallat, 1999, Fowler and Pesquet-Popescue, 2007,
Pesquet-Popescu and Pesquet, 2011] in image processing have been used some of the
most well adapted ones like Haar wavelets [Haar, 1910], 5/3 wavelets and 9/7 wavelets
[Antonini et al., 1992]. A dyadic wavelet decomposition is illustrated in Fig. 2.11 (b). In
the case of a spatial transform, long filters can be used in order to obtain a good decorrela-
tion. The great support of 9/7 wavelets (9 samples for the analysis and 7 for the synthesis)
and their bi-orthogonality, even nearly orthogonality, caused them a very efficient transform
to be used in several image coding schemes, as JPEG2000.

In general wavelets decompose an image at different scales using a pyramidal algorithm
architecture. The decomposition is along the vertical and horizontal directions and main-
tains constant the number of pixels required to describe the image. The wavelet function
is generated by dilations and translations of a function ψ which is defined as following:

ψa,b(x) = |a|−1/2ψ

(
x− b
a

)

, (2.27)

where (a, b) ∈ R and a 6= 0. High frequency wavelets correspond to a < 1 or narrow width,
while low frequency wavelets have a > 1 or wider width. For a wavelet of orthogonal bases
L2:

ψm,n(x) = 2−m/2ψ(2−mx− n), where m,n ∈ Z2 (2.28)

the wavelet coefficients are given by:

cm,n(f) = 〈f, ψm,n〉 =
∑

f(x)ψm,n(x). (2.29)

One can represent any arbitrary function f as superposition of wavelets.

f(x) = cm,n(f)ψm,n(x). (2.30)
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2.4.3.3 Quantization

Both JPEG and JPEG2000 use quantization in their lossy format. A typical quantization
function is responsible to map several inputs to a single output. This process is irreversible
and it causes a loss of information. The quantization has two basic formulations the uniform
and the non-uniform. JPEG standard uses only the first one. There are two different
uniform scalar quantizers, the midtread which has zero as one of its quantized values and
the midrise which has no zeros. Let v the input of a uniform midrise scalar quantizer and
Q∗

q(v) its quantized value which is given as following:

Q∗
q(v) = sgn(v)q

⌊ |v|
q

+ 1
⌋

, (2.31)

where q the quantization step,⌊.⌋ is the floor operator and sgn(v) stands for the sign of the
input v. Concerning the JPEG encoding process, the input of the uniform scalar quantizer
is the result of the DCT transform and its output is FQ(u, v) = Q∗

q(F (u, v)). A modified

Input v

Output Q∗
q(v)

q

q

θ

Figure 2.12: Dead-zone uniform quantizer.

version of the uniform scalar quantizer is the dead-zone quantizer. The dead-zone quantizer
depends on a threshold θ which is responsible to discard all the inputs which are lower than
θ while the rest of them are quantized with a uniform scalar quantizer:

Q∗
q(v) = sgn(v)qmax

(

0,

⌊ |v| − θ
q

+ 1

⌋)

, (2.32)

where 2θ is the size of the dead-zone, thus θ is half the dead-zone.

2.4.3.4 Entropy coding

The entropy coding has been explicitly described in section 2.3.2. Huffman and Arithmetic
entropy coding which are used by JPEG and JPEG2000 have been explicitly described in
section 2.3.2. JPEG2000 uses also the Embedded Block Coding with Optimal Truncation
(EBCOT) coding [Taubman, 2000] which is a bit-plane coder before the Arithmetic coder.

2.4.3.5 Overview MJPEG and MJPEG2000

The performance of JPEG standard motivated people to apply JPEG not only to images
but also to videos. A video stream is a group of pictures which change with respect to time
(see eq. 2.22). When JPEG was applied to each picture of a video stream it succeeded in
eliminating the spatial redundancy of the picture. In video compression terminology this
is called intraframe coding. That was the first video compression format which was called
Motion-JPEG (MJPEG). Motion-JPEG2000 (MJPEG2000) is an alternative to MJPEG
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which uses JPEG2000 instead of JPEG. MJPEG2000 is based on the same architecture as
MJPEG even though it was standardized many years later. However, both these formats
are insufficient to reduce the temporal redundancy, which is called interframe coding.

In a video stream, usually, the only difference between sequential pictures is the camera
moving or an object which is moving in the scene. As a result, it is not necessary to encode
all these similar pictures but just the difference with respect to some reference picture.
To enrich the performance of MJPEG in order to achieve better video compression, it is
necessary to seek for solutions which enable to encode only what changes into a scene
with respect to some reference picture. For that reason, there have been proposed several
techniques which are enclosed in video compression standards. We are going to discuss the
most important ones within a brief overview of the ITU/MPEG standards.

2.4.4 Overview of MPEG-1

MPEG-1 was released in 1990 introducing the most important techniques to reduce tem-
poral redundancy. The goal of this standard was to achieve a bitrate of 1.5Mbit/s for a
non-interlaced video of CIF picture format (352 × 288pixels) and 24-30pps (pictures per
second). To achieve this goal the designers introduced the notion of temporal prediction
which is also called interframe prediction or motion compensation. This prediction is used
between samples of the current picture and a previously coded picture.

Figure 2.13: This Figure shows a GoP and the intra- and inter-picture prediction.

The pictures of a video stream f(x, t) (see eq. 2.22) are separated into three different
groups: the Intra-pictures (I-pictures), which are encoded following the block diagram
of JPEG, the Prediction-pictures (P-pictures) and the Bidirectional-pictures (B-pictures)
which are predicted using interframe method. The length between two I-pictures is called
Group of Pictures (GoP). MPEG-1 usually uses 15-18 pictures. However, this length may
vary between 8 to 32 pictures for coding efficiency [Schwarz et al., 2007]. The P-pictures
and B-pictures belong to the GoP (see Fig. 2.13). One would expect that predicting the
value of each pixel in space or in time would be an efficient solution to reduce redundancy.
However, this solution would be problematic in presence of noise. As a result, people
introduced the macroblocks as a sample unit (see Fig. 2.14). Macroblocks and motion
compensation are the basic properties of all the video compression standards.
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2.4.4.1 Macroblocks

The macroblock, corresponding to a region of a picture, is the basic unit for motion com-
pensated prediction which was first introduced in MPEG-1 and then was adopted by all the
successor video compression standards (see Fig. 2.14). The dimension of each macroblock
is 16 × 16 (or 8 × 8) and was chosen in order to provide efficient temporal redundancy
under low computational requirement. As a result, each picture is partitioned in mac-
roblocks which are used to estimate motion. The macroblocks of an I-picture are called
I-macroblocks, the ones of P-picture are called P-macroblocks and lastly, B-macroblocks
correspond to B-pictures.

2.4.4.2 Motion Compensation

Between two pictures, a reference frame and a current frame, one needs to find the pre-
diction by subtracting the current picture by the reference picture. Figure 2.14 shows
two pictures, which are subdivided into macroblocks. One is interested in predicting the
macroblock of the current (blue) picture based on the macroblocks which belong to the
searching area (green) of the reference picture. The simplest prediction is to subtract the
current macroblock by the reference macroblock of the same position. However, this simple
prediction results in a residual macroblock (yellow) of a lot of energy, which means that still
there is a significant information which could be reduced. This is done by compensating
motion.

Figure 2.14: This figure shows a GoP and the intra- and inter-picture prediction.

Motion estimation determines the motion vectors which describe the transform between
two pictures [Stiller and Konrad, 1999, Konrad, 2000, Pesquet-Popescu et al., 2014]. For
each macroblock of a current picture we search in a searching area, around the same position
of the reference frame (in Fig. 2.14 is illustrated by the green cloud), for the best matching.
The best matching is related to the energy. The macroblock of the reference frame which
minimizes the energy of the residual is chosen as the best one. The macroblock with the
minimum MSE or minimum Sum of Absolute Difference (SAD) or the maximum correlation
with respect to the reference picture becomes the predictor of the current macroblock and
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it is subtracted from the current macroblock to form the residual macroblock. This process
is called motion compensation. The residual of each macroblock is coded and transmitted
to the decoder. In addition, the offset between the current macroblock and the position
of the candidate region of the reference picture is also coded. This offset is called motion
vector. A motion vector is used to recreate the predictor region in the previously coded
reference picture. Then, the residual macroblock is decoded and added to the predictor for
the reconstruction of the original macroblock.

When a picture is chosen to be the reference picture, it should be first encoded. The
reference picture could be past or future picture with respect to the location of the current
picture. If the motion estimation of the current picture does not match the reference picture,
it means that there is a strong motion or a change of the scene and it is preferred that the
current picture to be entirely encoded.

The I-pictures are encoded/decoded based on JPEG without any reference to other
picture. As a result, for each 8 × 8 block which is contained into each macroblock of the
I-pictures the encoder applies the 8 × 8 DCT transform, the scalar quantization and the
entropy coding. Then, the output of the encoder is sent to the decoder. The decoder uses
the entropy decoding, the de-quantization and the inverse DCT transform to reconstruct
the I-picture.

To encode a P-picture, the previously I- or P-picture should be stored in both encoder
and decoder. Motion estimation is performed on a macroblock basis between two current
P-picture or the previous I- or P-picture which is described by motion vectors. One motion
vector is calculated for each macroblock. The motion compensated prediction error is
calculated by subtracting each pel in a macroblock of the current P-picture with its motion
shifted counterpart in the previous I- or P-picture (pels are called the number of pixels on
a screen). The predicted error is encoded and transmitted to the decoder. The encoding
process is the same for B-pictures except they are able to do prediction not only for the
following but also the previous pictures (see Fig. 2.13). The precision of motion vectors is
1/2 or 1/4 a pixel (half pel or quarter pel). The finer the precision of motion vectors is, the
better the compression, but at the same time that would cause an increase of complexity.

The disadvantage of MPEG-1 is the generation of some block effects due to the division
of the picture into macroblocks which are easily perceived by the visual system at low
bitrates. In addition, this standard is unable to support high definition frame rate videos
or interlaced videos.

2.4.5 Overview of MPEG-2

The successor of MPEG-1 is MPEG-2 which one the one hand, has similar format but it
also has the capability to support interlaced video coding [ISO/IEC 10918-1:2000, 2000,
Sikora, 1997, Bhaskaran and Konstantinides, 1997]. Interlaced video coding is a technique
that doubles the frame rate perception of a video stream while it is displayed without
consuming any extra bandwidth. A non-interlaced video is of a normal frame rate (25-
30pps) . An interlaced video doubles the temporal resolution (50-60pps) in order to precisely
estimate motion. However, every encoded picture is the result of a fusion between two
consecutive pictures which are called fields. The first field is used to be displayed on the
odd-lines of the picture while the second one on the even lines. Fusing the two fields gives
the impression of motion. The advantage of interlaced videos is the double spatiotemporal
resolution since it is optimized for SD and HD, achieving the same bitrate as MPEG-
1. MPEG-2 is widely used for transmission of TV signal over satellite, cable, terrestrial
emission and of standard of high definition videos onto DVDs.

The disadvantage of this method is the generation of artifact, known as interlacing
effects or combing. These artifacts occur when an object moves very fast and its position
is different when the two fields are captured. To overcome this problem, there are many
simple methods like doubling the number of lines of one field and omitting the other or
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anti-aliasing the signal by removing high frequency components or in case that the motion
is along x-axis, one could shift one of the fields in order to match the new position. Last
but not least, even though MPEG-2 has the same performance as MPEG-1, it is much more
computationally demanding than MPEG-1 for compression.

2.4.6 Overview of H.264/MPEG-4/AVC

The increasing number of services and growing popularity of high definition TV were creat-
ing greater needs for higher coding efficiency than MPEG-2. In addition, other transmission
media like cable modem, xDSL or UMTS require lower data rates than broadcasting chan-
nels, and enhance the gab of coding efficiency. The H.264/MPEG-4/AVC standard was
released in 2003 and its target was to reduce half of the bitrate comparing to MPEG-2
[Pereira, 2000]. To reach this goal designers enforced the algorithm with many proper-
ties like variable block-size motion compensation, quarter-sample accurate motion com-
pensation, multiple reference picture motion compensation, flexible interlaced scan video
coding, directional spatial prediction for intraframe coding, deblocking filter, small block-
size transform, CABAC entropy coding and Scalable Video Coding (SVC). This standard
is currently used in variety of applications like Blu-ray discs, Streaming internet sources
(YouTube, Vimeo, iTunes, etc), web softwares (Adobe Flash Player, Microsoft Silverlight),
High Definition TeleVision (HDTV) broadcasting and Closed Circuit TV (CCTV) systems
[T. Wiegand and Luthra, 2003]. We are going to briefly discuss the advantage of each one
of the properties before we introduce the coding schema of H.264/MPEG-4/AVC standard
[ISO/IEC 10918-1:2004, 2004] [Pereira and Ebrahimi, 2002, Ostermann et al., 2004].

Figure 2.15: This Figure illustrates a macroblock (red block) which exist along the picture
of a video stream whilst its position changes.

• Variable block-size Motion Compensation: This standard allows higher flexi-
bility in the selection of motion compensation block-sizes which could vary between
16 × 16, 8 × 8 and 4 × 4. The smaller the size of the macroblock, the higher the
precision of the motion vectors. Thus, the energy of the residual macroblock will be
decreased more efficiently. However, reducing the size of the macroblock increases the
complexity of the algorithms since more data need to be processed.

• Quarter-sample Accurate Motion Compensation: It is already mentioned
that the precision of motion vectors was half pel in MPEG-1 and MPEG-2. In
H.264/MPEG-4/AVC standards, the designers improved this results adding quar-
ter pel for each motion vector sacrificing again the complexity of the algorithm which
was increased with this improvement.
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• Multiple Reference Picture Motion Compensation: Prediction coding of a cur-
rent P-picture in MPEG-2 and its predecessors used only one previous I- or P-picture.
The new design of H.264/MPEG-4/AVC, which was first introduced in H.263++, en-
ables the encoder to select for motion compensation purposes among a larger number
of pictures which have been decoded or stored in the decoder. Figure 2.15 (a) shows a
video stream f(x, t) (see eq. (2.22)) which consists of a group of pictures. In this ex-
ample is illustrated a GoP where I-picture are depicted in gray and P- and B-pictures
in blue. Lets suppose that the current P-picture is f2(x) and one seeks for the best
matching of the current P-macroblock. In previous standards, this P-picture would be
possible to be predicted based on previously coded I- or P-pictures. So, in this exam-
ple the reference frame would be only f1(x). However, H.264/MPEG-4/AVC allows
fr(x) to be also a possible reference picture where one seeks for the best matching
I- or P-macroblock. This extension had been applied also to B-pictures which are
capable to predict values using previous or next I- or P- pictures. This property may
allows a better matching of the macroblock but it also increases the complexity of the
algorithm.

• Directional Spatial Prediction for Intraframe Coding: As it was discussed
before, an intraframe coding was based on the coding schema of JPEG standard.
However, H.264/MPEG-4/AVC improved this intraframe coding by introducing some
intraframe predictions. This new technique is a spatial prediction which does not
depend on other pictures but the current one. As usual, the picture is subdivided into
macroblock. The first macroblock which is processed and entirely encoded following
JPEG standard is the top/left macroblock. The rest macroblocks are predicted with
respect to all the previously encoded macroblocks (positioned at left and top). Once
the prediction has been generated, it is subtracted from the current block to form
a residual in a similar way to inter prediction. The residual is transformed and
encoded, together with an indication of how the prediction was generated. Figure
2.15 (b) shows an example of an intraframe prediction where the macroblocks are
predicted in a raster-scan order.

• Deblocking Filter: Macroblocks are necessary in video coding. However, they cause
some block artifacts which are originated from prediction and residual coding of the
decoding process. A solution to this problem was given by an adaptive deblocking
filter which improved video quality [Chebbo et al., 2009]. This filter was inserted into
the motion compensation loop, so that this improvement of the quality can be used
in interframe prediction and thus the algorithm will predict more efficiently.

• Small block-size Transform: As it is described above, all the video standards are
based on DCT or DWT which is applied to 8 × 8 block. However, this block size
causes some artifacts as “blocking” effects for DCT or “ringing” effects for DWT.
H.264/MPEG-4/AVC corrects these artifacts by reducing the block size into 4× 4. A
small block size enables the encoder to be better locally adaptive to the signal, which
causes its better representation.

• Content-Adaptive Binary Arithmetic Coding (CABAC): The CABAC en-
tropy coding is based on Arithmetic Coding (see section 2.3.2.2) which was already
introduced before. The combination CABAC and Context-Adaptive Variable-Length
Coding (CAVLC) resulted in context-based adaptivity which further improved the
coding efficiency.

• Scalable Video Coding (SVC): Scalable Video Coding (SVC) is a highly attractive
solution to the problems posed by the characteristics of modern video transmission
systems [Schwarz et al., 2007]. It is an extension of H.264/MPEG-4/AVC and its
objective is to enable the encoding of a high-quality video bit stream that contains
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Figure 2.16: Basic H.264/MPEG-4/AVC encoding architecture.

one or more subset bit streams that can themselves be decoded with a complexity
and reconstruction quality similar to that achieved using the existing H.264/MPEG-
4/AVC design with the same quantity of data as in the subset bit stream. Spatial and
temporal scalability describe cases where subsets are selected from the initial video
stream with reduced size (spatial) or frame rate (temporal). The quality scalability
provides the spatiotemporal resolution of the video stream but the distortion which
is measured is of a lower PSNR value. Quality scalability is also referred as fidelity of
SNR scalability. Another option of scalability is the Regions Of Interest (ROI) of an
pictures. For some applications, like CCTV systems it is necessary to provide higher
resolution for some regions of the input scene while the rest could be displayed in
lower quality.

Figure 2.16 is the encoding architecture of the H264/MPEG-4/AVC standard. The input
picture which is subdivided into macroblocks is the input of the general coder control. In
case of the top/left macroblock of an I-picture, it is transformed, scaled, quantized and
encoded by the CABAC into a bitstream which is ready to be transmitted. For the rest
of the I-macroblocks the general coder control is linked to the motion estimation. The
intraframe prediction mode is selected which requires of previously encoded I-macroblocks
to be decoded and used in order to predict the current I-macroblock. The best matching
macroblock is subtracted by the current macroblock resulting in the residual macroblock
which is transformed, scaled, quantized and sent to the CABAC. In case of a P- or B-
macroblocks the general coder is linked to the motion estimation and motion compensation
mode. Then, the past or future reference pictures/macroblocks are decoded to find the
best matching. Once it is found within a searching area of the reference pictures it is
subtracted by the current P- or B- picture which is encoded into a bitstream. As we have
explained before, the motion vectors of each intra- or interframe prediction are also encoded
by CABAC to inform the receiver about the exact position of the reference macroblock.

2.4.7 Overview of H.265

The H.265/HEVC is the latest standard in video compression which was released in order
to provide almost 50% bitrate reduction comparing to H.264/MPEG-4/AVC and deal with
HDTV and Ultra-HDTV signal [Sullivan et al., 2012]. The HEVC consists of a variety of
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methods some of which are common with H.264/MPEG-4/AVC and prior standards, like
block based coding tools of variable block size, block based motion compensation with a
quarter-ample accuracy, spatial intraframe prediction, arithmetic coding and deblocking
filter. Apparently, there are significant changes of some methods, like macroblocks, which
on the one hand, improve the performance of the standard but on the other hand they
increase its complexity. One of these changes was with respect to the macroblocks which
were replaced by the Coding Tree Units (CTUs) known also as quadtree. Figure 2.17 shows
the coding schema of HEVC which is similar to the one of H.264/MPEG-4/AVC except
for the fact that instead of macroblocks the prediction and encoding process is applied to
CTUs.

• Coding Tree Units (CTUs) and Coding Tree Blocks (CTBs): CTUs are
larger block structures of up to 64× 64 samples and can better subdivide the picture
into variable sized structure. HEVC initially divides the picture into CTUs which can
be later subdivided into Coding Tree Blocks (CTBs) of 64 × 64, 32 × 32, or 16 × 16
with a larger pixel block size usually increasing the coding efficiency.

• Coding Units (CUs) and Coding Blocks (CBs): The quadtree syntax of the
CTU specifies the size and positions of its luma and chroma Coding Blocks (CBs).
The root of the quadtree is associated with the CTU. Hence, the size of the luma
CTB is the largest supported size for a luma CB. The splitting of a CTU into luma
and chroma CBs is signaled jointly. One luma CB and ordinarily two chroma CBs,
together with associated syntax, form a Coding Unit (CU). A CTB may contain
only one CU or may be split to form multiple CUs, and each CU has an associated
partitioning into prediction units (PUs) and a tree of transform units (TUs).

• Prediction Units (PUs) and Prediction Blocks (PBs): The decision whether
to code a picture area using interpicture or intrapicture prediction is made at the CU
level, this why the PU partitioning structure has its root at the CU level. HEVC
supports variable PB sizes from 6464 down to 44 samples.

• Transform Units (TUs )and Transform Blocks (TBs): The prediction residual
is coded using block transforms, as a result the TU tree structure has its root at
the CU level. The luma CB residual may be identical to the luma transform block
(TB) or may be further split into smaller luma TBs. The same applies to the chroma
TBs. Integer basis functions similar to those of a discrete cosine transform (DCT)
are defined for the square TB sizes 44, 88, 1616, and 3232. For the 44 transform of
luma intrapicture prediction residuals, an integer transform derived from a form of
discrete sine transform (DST) is alternatively specified.

2.5 Alternative Video Compression Algorithms

The indisputable progress of coding systems has been shown in section 2.4. The latest
video compression standard HEVC has doubled the performance of its prior AVC. However,
except for the performance, the computational cost has also been doubled, which is the main
drawback of HEVC. It is easy to notice that scientists need to pay the price of complexity
in order to achieve lower bitrates.

2.5.1 VP9

Some new attempts have been done in order to find the trade-off between the complexity and
the coding efficiency which is higher or at least equal to H.264/MPEG-4/AVC or HEVC.
The VP9 is an open source video coder proposed by Google. Its development started in
2011 and it was finally released in 2013. Its architecture is based on H.264/MPEG-4/AVC
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Figure 2.17: Basic HEVC encoding architecture.

standard as it uses block-based prediction, intraframe and interframe prediction, half pel
accuracy, transformation, entropy coding and deblocking filter. The novelty of this standard
is the superblock structure which replaces the macroblock. The idea was close to the CTU
of HEVC while the designers also noticed that a HD video may show correlation over larger
areas [Mukherjee et al., 2013]. An interesting comparison of H.264/MPEG-4/AVC, HEVC
and VP9 is given in [Grois et al., 2013], where the authors concluded that the most efficient
coding algorithm is HEVC providing 43.3% and 39/3% bitrate savings compared to VP9
and H.264/MPEG-4/AVC respectively. In addition, even if the performance of VP9 was
superior compared to H.264/MPEG-4/AVC (bitrate gain 8.4%) the computational time of
VP9 was 100times higher than H.264/MPEG-4/AVC.

2.5.2 Green Metadata Standard

Unfortunately, the above results show that it is very difficult to tackle the coding complexity
and delay of video compression algorithms. In modern electronic devices, the complexity
of the coding/decoding algorithm and the display units consume a lot of power. This
power, especially in case like mobile phones or nomadic video surveillance systems, where
the energy/battery is limited is very important. A new standard which is called “Green
Metadata Standard” concerns about the energy-efficiency of video compression algorithms
during the display, encoding and decoding process [Fernandes et al., 2015]. Green Metadata
was standardized for energy-efficient video consumption without any loss in the Quality
of Experience (QoE). Green Metadata reduces the energy consumption of H.264/MPEG-
2/AVC even when QoE is maintained but this reduction gets higher when QoE varies.

Concerning the display processing, Green Metadata is kind of a successor of the Display
Adaptation (DA) Model which is also called backlight dimming [Cheng and Pedram, 2004,
Huang et al., 2013]. The role of DA is basically to take advantage of the negligible power
consumption changes during the display, when the RGB values vary. Thus, DA was used to
reduce the power consumption without sacrificing quality just by dimming the backlight of
the Liquid Crystal Display (LCD) while at same time it adjusts the RGB values according
to the dimming level. In [Fernandes et al., 2015], the authors provide some results in which
backlight was reduced from 26-65 percent. Although, the DA technique is efficient in terms
of saving energy, it produces a lot of artifacts. Consequently, the scaling up of the RGB
values is not enough to sufficiently restore the quality. The Green Metadata standard
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solves the quality problem using some contrast enhancement within the dynamic range
that contains the majority of the RGB values. In fact, the new standards produces some
metadata which consist of signaling RGB statistics, quality-level indicators and dynamic
range bounds. The dimming of the backlight is set according to the RGB statistics. The
dynamic-range bounds are used for contrast enhancement, improving the perceived quality.
If the power reduction is small (high) then the backlight settings will be derived by RGB
statistics associated with a high (low) quality level.

The power reduction can be also achieved in the encoder generating alternate low-
quality and high-quality segments during the pre-processing of the encoding step (see Fig.
2.18). For low-quality segments, one is able to reduce the complexity because in practice
it requires fewer encoding modes, fewer reference frames, smaller search range, etc. The
Cross-Segment Decoding (XSD) is a technique which manages to enhance the decoding of
the low-quality segments utilizing information by the high-quality segments. Finally, XSD
enables higher quality of QoE reducing the average encoding complexity and therefore the
power consumption.

For decoder power reduction, the major problem arises in term of high CPU frequency
which is linked to the high power consumption. Low frequency values may cause some prob-
lems in decoding of complex pictures. Thus, metadata that indicate the picture-decoding
complexity is embedded in the bit-stream which is transmitted to the receiver. This meta-
data is used by the receiver to set the GPU frequency at the lowest possible level which
guarantees that the decoding completion will happen within the frame-rate deadlines.

Fig. 2.18 describes the functional architecture of a system which uses Green Metadata.
The metadata which are produced during the pre-processing and/or the encoding process
are forwarded to the Power Optimization Module of the receiver. The Power Optimization
Module interprets them and then applies controls to reduce the power consumption during
decoding and display of the video. This module is also responsible to send a Green feedback
to the transmitter concerning the energy of the system (i.e. remaining battery of the phone).
This feedback is used to adjust the encoding process of the transmitter. This method may
increase the complexity of the first picture of the video stream but the rest of the pictures
will be encoded, decoded and displayed in a very low complexity similar to the one of
H.264/MPEGS-4/AVC.

Figure 2.18: Functional architecture of a system that uses Green Metadata
[Fernandes et al., 2015].
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2.6 IEEE 1857 Standard

The beginning of this section explains that there are numerous of applications which are
really demanding of low power consumption and complexity coding algorithms. One of
these applications is the CCTV systems. Nowadays, CCTV cameras have been placed
almost everywhere (i.e building, public places, streets, transport means, remote areas to
protect civil areas from natural disasters, working areas, etc.). Their primary goal is to
survey an area for 24h per day for security reasons. CCTV systems may survey areas where
the infrastructure for data transmission over communication channels is poor and require
low power consumption. In such a case, the increase of the computational cost and the
power consumption of HEVC is problematic. One should also keep in mind that during the
last few years almost every CCTV which is consisted of a single camera has been enriched
by double or higher number of cameras. As a result, the amount of videos of CCTV is
huge and it is impossible to be saved without efficient compression algorithms. However,
according to Fig. 2.19, it seems that the progression rate of compression standards is too
slow comparing to the explosive growth of the amount of data which need to be stored and
transmitted.

Figure 2.19: This graph illustrates the huge gad between the progress of compression algo-
rithms and the increase of the amount of data captured for video surveillance reasons. It
is expected according to the increase of rate that this gab is going to be bigger in the near
future [Gao et al., 2013].

An interesting solution to improve the intelligence of coding for CCTV systems was
proposed in [Gao et al., 2013], where the authors introduced the IEEE 1857 Standard for
Advanced Audio and Video Coding. The general framework of this algorithm is based
on H.264/MPEG-4/AVC standard but it enables to double the surveillance video coding
efficiency saving computational time. The IEEE 1857 takes advantage of the background
and foreground data of the scene. As a result, if the input surveyed area is coded in the
beginning, the number of I-pictures which are entirely coded/decoded could be significantly
reduced since the GoP is much larger comparing to other standards. This is the basic
improvement of IEEE 1857 standard which offers 45.89% bitrate gain and 45.86% time
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gain comparing to H.264/MPEG-4/AVC.

2.7 Conclusion: What is the future of video compression?

A general true is that compression algorithms already stand close to a performance ceiling
which does not respond to the requirements of the new technological devices. To our point of
view, the basic drawback of the conventional architecture stems from the fact that videos are
dynamic signals which are processed by methods proposed for static images (DCT, DWT,
scalar quantization, etc.) whilst at the same time an increasing number of techniques
is proposed in order to reduce temporal redundancy like motion estimation. Although
people propose new techniques to further improve the trade-off between the bitrate and
the reconstruction quality, finally the gain is very small. As a result, we believe that a
video should be processed dynamically. Concerning this dynamicity, we propose that an
interesting model to mimic is the retina.

The retina is part of the visual system which belongs to the central nervous systems.
It could be considered as an efficient machine which is responsible to dynamically capture,
transform and encode the visual stimulus. Finally, the input stimulus is transmitted to
the brain in the form of spike trains. The retina is able to deal with very high resolution
signals and it requires a highly spread sources of light. In [Salamo and Jakobs, 1996] the
authors compared two different sources of light, each one of which propagated an intensity
of 0.001 Watt to the retina. The first source of light was a laser pointer which is of a
high spatial concentration, while the second one was a light bulb of 100 Watts which was
spread in space. Despite the retina received the same amount of intensity of both the above
sources, the laser pointer was able to cause permanent damage to the eye because it was
focused on a small area of the retina.

In the literature, there have been already some attempts to build dy-
namic encoding systems based on neuroscience like the ones proposed by Mas-
moudi et al [Masmoudi et al., 2012, Masmoudi et al., 2013] and Lazar et al
[Lazar and Pnevmatikakis, 2011]. The first model is a bio-inspired image codec which uses
image processing tools to approximate neuroscientific models in order to encode images.
The second one proposes a video encoding machine which is based on neuromathematical
models related to the spike generation process.

In this thesis, we propose a novel retina-inspired video codec which is applied to each
picture of a video stream like MJPEG and MJPEG2000. This codec follows the conventional
coding principle (see Fig. 2.2) but each of the conventional processes has been replaced by
dynamic models which are inspired by neuroscience. As a result, we proposed a dynamic
retina-inspired transform [Doutsi et al., 2016] and a dynamic encoding process which are
both involved to the generation of the code. This code is informative enough to reconstruct
each picture of the video stream.
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Motivation

As explained in chapter 2, the evolution of video compression algorithms shows that the
decrease of the bitrate is inversely proportional to the complexity of the algorithm. This is
due to the fact the video compression standards are based on image compression standards
using JPEG or JPEG2000 in order to encode key I-pictures within a GoP and estimation
the motion of the rest P- and B-pictures of the GoP. As a result, videos are basically
processed with static techniques proposed for still-images while at the same time multiple
other processing tools are used to decrease the bitrate and the spatiotemporal redundancy
of the video pictures (see section 2.4). Thanks to the increase of the complexity people
are forced to seek for different solutions for compression. We propose that since videos
are dynamic signals they should be dynamically processed. In this thesis we are interested
in changing the conventional coding principle ( see Fig. 2.20 (a)) being motivated by the
visual system model.

The visual system is an efficient machine which dynamically processes the input visual
stimulus. In literature, there are many neuroscientific models which try to fit neuroscientific
measurements of different organisms i.e. salamander, cat, monkeys, etc. We believe that
this dynamic models will upgrade and benefit the video compression algorithms in terms
of complexity, computational cost and power consumption.

This part is dedicated to the study and analysis of the neuromathematical mod-
els which have been proposed to describe how the retina manages to dynamically fil-
ter the visual stimuli (see Fig. 2.20 (b)). There have been proposed several mod-
els to approximate this retinal filter starting from static spatial models [Kuffler, 1952,
Marr and Hildreth, 1980, Marr, 1982] which turned through the years into dynamic mod-
els [Fleet et al., 1985, Wohrer and Kornprobst, 2009] which fit more precisely neuroscien-
tific measurements. The evolution and the characteristics of each one model is described
in chapter 3. However, the general formula of the static neuroscientific models is simi-
lar to the very well known and studied Gaussian and Laplacian pyramids which has been
widely used in signal processing for image analysis and synthesis [Burt and Adelson, 1983,
Adelson et al., 1984]. As a result, one could assume that the first static neuroscientic mod-
els have already motivated people in image and video processing comparing to the latest
dynamic ones which have not. In this thesis we are motivated to utilize the dynamic retina
filtering models in order to dynamically process videos (see Fig. 2.20 (c)). Our first con-
tribution is introduced in chapter 4 which is included in this part. This chapter represents
under which assumptions the dynamic OPL retina transform could be adopted into the con-
ventional coding principle (see Fig. 2.2). We propose and we study a non-separable OPL
retina-inspired filter which is briefly termed as retina-inspired filter. Last but not least,
we dedicate a general formula for the retina-inspired filter which is a group of Weighted
DoGs (WDoG) in order to enrich the image processing community with a novel dynamic
decomposition method.

Being interested in compression, we need to ensure that the retina-inspired decompo-
sition is invertible because we need to reconstruct the input signal (see Fig. 2.20 (c)). In
chapter 5 we prove thanks to the frame theory that the retina-inspired decomposition is
invertible. Thus, we provide results about a perfect reconstruction when the full retina-
inspired frame is used. In addition, chapter 5 also studies what is the impact of noise in
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Figure 2.20: Motivation of the dynamic non-separable OPL retina-inspired filtering. (a)
Conventional coding principle which consists of a static transform that we aim to replace
with a dynamic one. (b) Retina cells which contribute to the dynamic retina transform.
(c) Retina-inspired coding principle which consists of a retina-inspired filtering which has
been proven to be invertible.

the reconstruction results.
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3.1 Introduction

This chapter is a brief introduction to the early visual system. We focus our attention
on the retina and its Outer Plexiform Layer (OPL) which is responsible for capturing
and transforming the input visual stimuli into electrical signal (current). We provide this
assiduous study of the progress of OPL neuromathematical models because it is neces-
sary for the signal processing community to uncover where the conventional models of
image analysis/synthesis stand with respect to this progress. The OPL transform has
been reported to be dynamic [Fleet et al., 1985, Wohrer and Kornprobst, 2009]. However,
the first model was proposed by Kuffler [Kuffler, 1952] who approximated the OPL trans-
form by a spatial Difference of Gaussian (DoG) filter. This model was improved by Marr
[Marr and Hildreth, 1980, Marr, 1982] who introduced time resulting in a separable spa-
tiotemporal DoG filter. Fleet in [Fleet et al., 1985] introduced a more accurate model

53



54 CHAPTER 3. DOG FILTERS FROM NEUROSCIENCE TO IMAGE PROCESSING

where space evolves with respect to time. This was the first dynamic (non-separable spa-
tiotemporal) DoG filter which was improved by Wohrer in his work title as Virtual Retina
[Wohrer and Kornprobst, 2009].

DoG filters are very well-known for image analysis/synthesis [Burt and Adelson, 1983].
However, they are not that efficient as the latest dynamic OPL filter. We are going to
provide some retina-inspired encoding architectures which have adopted static DoG filters
or DoG pyramidal filters, according to [Kuffler, 1952] and [Marr and Hildreth, 1980] re-
spectively, like the Rank Order Coder (ROC) [Thorpe, 1990, Thorpe and Gautrais, 1998,
Rullen and Thorpe, 2001, Thorpe et al., 2001] and its extensions [Masmoudi et al., 2012,
Masmoudi et al., 2013]. However, these filter banks are very rough approximations com-
paring to the dynamic retina filtering. As a result, it would be interesting to study a
dynamic retina filter for image synthesis/analysis and adopt it into the conventional coding
principle, which is the first contribution of this thesis (see chapter 4).

3.2 Introduction to the Visual System

The visual system is part of the Central Nervous System (CNS). It consists of many different
areas which participate to the coding of a visual stimulus. The most important and better
studied areas are the retina, the optic nerve, the Lateral Geniculate Nucleus (LGN) and the
visual cortex (Fig. 3.1) [Hubel, 1963]. The retina is a layer of tissue, lining the inner surface
of the eye, which is responsible to capture, transform and encode the visual stimuli into a
sequence of electrical impulses (spike trains). This code of spikes is transmitted through
the optic nerve to the LGN cells which correlates not only spatially but also temporally the
output signal of each of the two eyes in order to achieve a 3D “representation” of object
space. The cells in visual cortex are more complex and sensitive to edge and orientation
detection, motion estimation, discrimination of the shape or the color, etc.

I(X, t)

Figure 3.1: The visual system pathway.

3.2.1 Retina

The first and most important criterion for the luminance of light I(X, t), where X ∈ R3

and t ∈ R+, which is the spatiotemporally varying visual stimulus, is to be trans-
formed in order to fit the brain. This transformation takes place inside the retina
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[Masland, 2001, Kolb, 2004, ter Haar Romeny, 2003, VanEssen et al., 2005]. The retina is
a complex structure which is responsible for the light absorption and its transformation
into electrical impulses. It consists of many different cells (Fig. 3.2) which differ with each
other not only in shape but also in the way they act [Masland, 2011]. These cells are the
photoreceptors, the horizontal cells, the bipolar cells, the amacrine cells and the ganglion
cells.

Figure 3.2: The retinal layers according to [Wohrer and Kornprobst, 2009]. This figure
shows the connectivity and hierarchical structure of the retinal cells.

These cells form 3 layers; the Outer Plexiform Layer (OPL), the Inner Plexiform Layer
(IPL) and the Ganglionic Layer (GL) each one linked to a different process necessary for the
transmission of the visual information to the visual cortex [Wohrer and Kornprobst, 2009].
The OPL consists of photoreceptors, horizontal and bipolar cells, the IPL is structured
by bipolar and amacrine cells and the GL by amacrine and ganglion cells. There is an
overlapping between these cells which is due to the feedforward and feedback messages which
are exchanged between the cells. The transformation of the visual stimuli into electrical
signal happens by photoreceptors. Then, this signal has to be refined and controlled by the
rest of the retinal cells in the OPL and IPL layers which are both filtering stages of the
electrical signal. Finally, the transformed signal is sent to the GL where it is sampled in
order to form a train of spikes (electrical impulses) [Wohrer and Kornprobst, 2009]. From
all the above cells, only the ganglion cells are able to emit electrical impulses (spikes). As
a result, the output of ganglion cells is a spiking train whereas the output of the rest ones
is a change at their membrane potential.

In the literature, there have been many models which are based on neu-
roscientific measurements, trying to mathematically describe how each one of
these layers works [Kuffler, 1952, Fleet et al., 1985, Marr and Hildreth, 1980,
Marr, 1982, Wohrer and Kornprobst, 2009, Thorpe, 1990, Thorpe and Gautrais, 1998,
Rullen and Thorpe, 2001]. In this section, we collect the most important models which
refer to the OPL layer, we introduce the idea hidden behind each one of them and we
interpret each model through the prism of information theory. However, we think, it would
be wise to first continue by providing some abstract information about the role of each
one of the retina OPL cells. The following subsections are only written for encyclopedic
knowledge and they do not contribute to the rest of the chapter or the manuscript. Thus,
a reader not interested in neuroscience could skip them.
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3.2.1.1 Photoreceptors

The photoreceptors are of two different types: rods and cones. The rods are used to detect
low levels of light whereas cones are used to detect color. In practice, there are three types
of cones, blue, green and red cones which are completely related to color and they filter the
visual stimuli under normal light conditions.

In most of the mammalian retinas, rods outnumber cones by approximately 20-folds.
As a result, rods were considered to be the basic photoreceptor type. However, more recent
studies have shown that cones are much more sensitive to light and they are excited much
earlier than rods do. For example human rods have been computed to receive only 1 photon
per 10 minutes [Masland, 2001]. In addition, even if the number of rods is higher, cones
seem to have a much more complex network of postsynaptic cells. [Baylor et al., 1974,
Baylor et al., 1979, Baylor et al., 1980]. Hence, most of the neuroscientific models refer to
cones when they mathematically model the photoreceptors.

3.2.1.2 Horizontal Cells

The horizontal cells receive the electrical signal by photoreceptors through chemical
synapses. One photoreceptor can propagate the signal to one or more horizontal cells.
In addition, each horizontal cell is strongly connected to its neighbors. In the beginning,
horizontal cells were considered to contribute to an edge enhancement by sharpening the
visual stimuli at its edges. Another more interesting interpretation of their role was that
they adjust the gain of the retina. While horizontal cells receive an excitatory signal from
photo-receptors, the feedback which is sent from horizontal cells to rods and cones in-
hibits them. This is like they subtract a proportional value in order to locally adapt light
[Masland, 2011]. The feedforward output of horizontal cells to bipolar cells is an average
signal, which is interpreted in image processing as a strong blur.

3.2.1.3 Bipolar cells

A mammalian retina contains 9-11 different kinds of cone-driven bipolar cells. Each kind
has its own number and distribution of synapses, as it is called the structure which permits a
neuron to transmit a chemical or an electrical signal to another neuron. Individual cells have
characteristic sets of neurotransmitter receptors. When the retina is stimulated by light
there is a group of bipolar cells which are hyperpolarized (OFF-cells) and another group
which is depolarized (ON-cell). The OFF and ON cells are of an equal number. Bipolar cells
are further subdivided into two channels: the transient (high-pass) and the sustained (low-
pass). Thus, there is the ON-transient, ON sustained, OFF-transient and OFF-sustained
[Masland, 2001]. Bipolar cells receive a direct signal by one or more photoreceptors and a
delayed signal from horizontal cells. In information theory, these two signals are interpreted
as two versions of the visual stimuli which are both blurred in a different way.

3.3 OPL Approximation Models

According to the law of optics, the 3D visual stimuli I(X, t) is projected onto the retina
via the lens (the optics of the eye is detailed in [Ögmen and Herzog, 2010]). Hence, the
3D luminance I(X, t) is simplified into a 2D luminance f(x, t) where x ∈ R2 which is the
input of the OPL layer. The OPL cells receive as an input the visual stimulus f(x, t) which
is spatiotemporally transformed into an electrical signal. This transformation takes place
inside the Receptive Field (RF) of each cell. Kuffler in [Kuffler, 1952] proposed to shape the
RF by two concentric nested circles or ellipses, which are termed Center-Surround (CS).
The smaller circle (or ellipse) corresponds to the center and the larger one is the surround.
Let Ωi ⊆ R2 be the RF of a bipolar cell centered in xi ∈ Ωi. Let A(xi, t) be the electrical
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signal produced by the RF Ωi when the input signal is f(x, t). Considering the bipolar cell
is a linear time- and shift-invariant system, the following linear approximation of the OPL
retinal-transform will be introduced in [Wohrer et al., 2009]:

A(xi, t) =

∫ +∞

t′=0

∫

x
′∈Ωi

K(xi − x
′, t− t′)f(x′, t′)dx′dt′ (3.1)

where K(x, t) is the spatiotemporal transform of a single bipolar cell, also known as the
Point Spread Function (PSF) at time t. The above equation indicates that the electrical
signal A(xi, t) depends linearly on the spatial neighborhood and the past values of the
input stimuli located in the RF Ωi of the single bipolar cell centered in xi. Assuming that
i) the number of cells is very large, ii) all the cells obey to the same spatiotemporal model
(spatial invariance) and iii) the temporal point spread function K(x, t) is not restricted
to the domain Ωi, the spatiotemporal transform (3.1) is approximated by spatiotemporal
convolution which has been already introduced in (3.15).

Many models of the temporal point spread function K(x, t) have been proposed. The
most important ones, which are introduced below, are the spatial DoG [Kuffler, 1952], the
separable spatiotemporal DoG [Marr and Hildreth, 1980] and the non-separable spatiotem-
poral DoG [Fleet et al., 1985].

3.3.1 Spatial DoG Filter

The first mathematical approximation of the OPL was proposed by Kuffler [Kuffler, 1952].
A bipolar cell receives its input signal directly from a group of photoreceptors and/or a group
of horizontal cells (Fig. 3.3). On the one hand, the output of two or more photoreceptors
is averaged and transmitted to the center of the RF of the bipolar cell in order to excite it.
This is approximated by a Gaussian filter GσC

(x) given by eq. (3.3). On the other hand,
the same or higher number of photoreceptors is linked to horizontal cells. A horizontal cell
is strongly connected to neighbor horizontal cells averaging twice the initial input stimulus.
The output of one or more horizontal cells is then propagated to the surround of the RF of
the bipolar cell in order to inhibit it [Hérault and Durette, 2007]. This signal is modeled by
the Gaussian filter GσS

(x) with σc < σs. As a result, the bipolar cell receives two signals
of opposite signs. Finally, the CS activity K(x, t) of the RF of a bipolar cell is modeled as
a DoG filter:

DoG(x) = GσC
(x)−GσS

(x), (3.2)

Gσ(x) =
1

2πσ2
exp

(

−‖x‖
2

2σ2

)

= G∗
σ(r), (3.3)

where x ∈ R2, r = ‖x‖ is the Euclidean norm of x and σ is the standard deviation which
tunes the spread of the Gaussian filter. Kuffler assumed that all these processes happen
instantaneously. Hence, the PSF K(x, t) is constant for all time t.

3.3.2 Separable Spatiotemporal DoG Filter

Another attempt to improve the static DoG filter was done by Marr [Marr, 1982]
[Masmoudi et al., 2013]. Marr’s theory contains an assumption of spatiotemporal sepa-
rability adapting a temporal impulse response for each one of the decomposition layers
which are formed by a static DoG:

K(x, t) = H(t)DoG(x), (3.4)

where H(t) is usually low-pass for ”sustained” units, and band-pass for ”transient” units.
The goal of Marr’s temporal function was to build a multiscale bank of DoG filters each
one of which will have a resolution defined by H(t).
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Figure 3.3: Propagation of the electrical signal to the receptive field of a bipolar cell ac-
cording to [Kuffler, 1952]. The left figure is part of the retinal structure which corresponds
to the OPL layer. The right figure is focused on a single bipolar cell and how the RF of
this cell works.

3.3.3 Non-Separable Spatiotemporal Receptive Field

The models above were not accurate with time-varying stimuli f(x, t). Hence, Fleet
[Fleet et al., 1985] proposed a non-separable spatiotemporal CS model as an extension of
the DoG. Electrophysiological studies have shown that the center and the surround have
different time courses of response. In addition, the temporal delay between the response
of the center and surround areas of the cells receptive field should also be considered.
This model was interpreted by Fleet as a precursor to the extraction of velocity specific
information [Fleet et al., 1985].

The inseparability of space and time was highlighted and confirmed while studying the
spectrum of the CS model. The dynamics of the model are due to the sensitivity changes of
the response of the cells and the different phases of the CS areas [Fleet et al., 1985]. Similar
models have been proposed in order to describe how does the receptive field of neurons
work in areas which come after the retina like the Lateral Geniculate Nucleus (LGN) or
cortical neurons [Wohrer et al., 2009, DeAngelis et al., 1993, D. Cai and Freeman, 1997].
The common point of all these models is the spatiotemporal inseparability, which confirms
its importance.

A non-separable spatiotemporal retinal filtering as part of the visual system coding
process is mathematically introduced as:

K(x, t) = C(x, t)− S(x, t), (3.5)

C(x, t) = wcGσC
(x)Hc(t), (3.6)

S(x, t) = wsGσS
(x)Hs(t), (3.7)

Hs(t) =
(

Hc
t∗EτS

)

(t) (3.8)

To explain the non-separable spatiotemporal retina-inspired filter, we need to focus again
on bipolar cells. We have already mentioned how they receive two opposite signals in their
RF. In this model the key is the hierarchy of the retinal cells and their connectivity. The
temporal behavior of the retina cells is described in Fig. 3.4. The horizontal cells are
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Figure 3.4: Propagation of the electrical signal to the receptive field of a bipolar cell ac-
cording to Fleet [Fleet et al., 1985].

the first ones which receive an average signal by a group of photoreceptors at time t1. A
smaller group of photoreceptors propagates an excitatory signal to the center of bipolar
cells C(x, t) at time t2 while horizontal cells receive this signal and they communicate and
exchange information with adjacent horizontal cells. This causes a small delay Eτs(t) until
time t3 in the propagation of the inhibitory signal S(x, t) coming from horizontal cells to
bipolar cells.

3.3.4 Non-Separable Spatiotemporal Filter

The OPL layer describes the retina filtering as a non-separable spatiotemporal transform
K(x, t):

K(x, t) = C(x, t)− S(x, t), (3.9)

C(x, t) = wcGσC
(x)W (t), (3.10)

S(x, t) = wsGσS
(x)

(

W
t∗ EτS

)

(t), (3.11)

where C(x, t) stands for the center and S(x, t) for the surround of the structure of the
RF which is totally linked to the way the photoreceptors and the horizontal retinal cells
are connected and propagate the stimuli, wc and ws are constant parameters, GσC

(x) and
GσS

(x) are spatial Gaussian filters (see eq (3.3)) standing for the center (photoreceptors)
and surround (horizontals) areas respectively, W (t) is a low-pass filter and EτS (t) is an
exponential temporal filter.

The temporal filter W (t) is given by (3.13) and describes the Difference of Exponential
(DoE) which stands for the spatial variation with respect to time. It is modeled with
temporal low-pass filters [Wohrer and Kornprobst, 2009]:

W (t) =
(

EτG,n
t∗Wc

)

(t), (3.12)

Wc(t) =







δ0 − wcEτC (t), if t ≥ 0,

0 otherwise,
(3.13)
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where the gamma temporal filter EτG,n(t) is defined by:

Eτ,n(t) =







tn exp (−t/τ)
τn+1

if t ≥ 0,

0 otherwise,

(3.14)

with n ∈ N, τ > 0, δ0(t) is the dirac function, EτC (t) is an exponential temporal filter, and
t∗ stands for the temporal convolution. The exponential temporal filter is given by (4.16)
for n = 0.

The OPL transform K(x, t) is applied to the input signal f(x, t) resulting in the ac-
tivation degree which is a continuous current IOPL(x, t) which is the output of the OPL
layer.

IOPL(x, t) =

∫

t′∈R

∫

x
′∈R2

K(x− x
′, t− t′)f(x′, t′)dx′dt′

= (K
x,t∗ f)(x, t), (3.15)

where
x,t∗ is the spatiotemporal convolution between the input signal and the OPL filter.

3.4 DoG in Image Processing

The DoG filter which is used as a spatial transform in order to approximate the CS struc-
ture of the OPL cells is very well-known also in image processing. Burt and Adelson
[Burt and Adelson, 1983] proposed the Gaussian pyramid for the analysis/synthesis of an
image. The notion of pyramids is well known in image processing community as multires-
olution techniques which produce several copies of the input signal and enable to decrease
the sample density and resolution of the input image in regular steps [Adelson et al., 1984].
The Gaussian pyramid was the first one which was proposed to support an efficient scaled
convolution and reduced the image representation. An input image f(x) which is the 1st

layer K1 of the Gaussian pyramid is filtered by a Gaussian Kernel G(x). The filtered image

K2(x) = (G
x∗ f)(x) is the 2nd layer of the Gaussian pyramid which is downsampled and fil-

tered again with the same Gaussian kernel G(x) to generate the 3rd layer, etc (see Fig. 3.5).
The Gaussian pyramid was extended into the Laplacian pyramid which is more efficient in
terms of compression [Adelson et al., 1984]. The Laplacian pyramid generates its layers by
subtracting every two layers of the Gaussian pyramid (see Fig. 3.5). The key point of the
Laplacian pyramid is that it is an invertible transform which allows to perfectly reconstruct
the input signal only by using its decomposition layers. The spatial DoG pyramid of Thorpe
is similar to a Laplacian pyramid and it was used in his ROC encoder as a filter bank which
approximates the OPL transform. However, seeking for retina-inspired transforms in order
to be used in compression, Thorpe’s filter bank has two important drawbacks: first of all,
it is a very rough approximation of the dynamic retina transform. In addition, his DoG
pyramid is not invertible which is necessary in compression.

3.4.1 Spatial DoG Pyramid

Thorpe proposed a pyramid of DoGs as an OPL approximation in order to roughly mimic
the dynamic behavior of photoreceptors and horizontal cells before they reach bipolar
cells [Thorpe, 1990]. This filter bank was proposed within the framework of the Rank
Order Coder (ROC) which is going to be detailed in chapter 6, as a multiresolution
spatial transform [Thorpe, 1990, Thorpe and Gautrais, 1998, Rullen and Thorpe, 2001,
Thorpe et al., 2001], :
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Figure 3.5: Gaussian Pyramid vs Laplacian Pyramid.

DoGk(x) = Gσk
c
(x)−Gσk

s
(x), (3.16)

where Gσk
c
(x), Gσk

s
(x) are two Gaussian filters with standard deviations σkc and σks respec-

tively such that σ1s = 3σ1c , σ
k+1
c = 0.5σkc , σ

k+1
s = 0.5σks and σKc = 0.5 pixels. Each filter

has a size of (2Mk + 1)2 with Mk = 3σkc .

3.4.2 Invertible Spatial DoG Pyramid

Masmoudi was the first one who tackled Thorpe’s problems in [Masmoudi et al., 2012].
He improved Thorpe’s filter bank by proposing a rectification function to achieve a per-
fect reconstruction. This function was nothing more than a Gaussian filter considered
as the zero layer of the transform pyramid, DoG0(x) = Gσ0

c
(x) [Masmoudi et al., 2012].

This rectification function was necessary to obtain a Laplacian-like multiscale and
invertible filter bank which leads to a perfect reconstruction [Masmoudi et al., 2012,
Kovacevic and Chebina, 2008]. Similar method was also used in [Perrinet et al., 2004] to
achieve a reconstructable version of the Thorpe’s filter. Masmoudi mathematically proved
that his rectified DoG pyramid is a frame based on frame theory (see section 5.3.1). This
property is necessary in compression algorithms.

3.4.3 Invertible Spatiotemporal DoG Pyramid

Masmoudi et al proposed another filter which was separable spatiotemporally combining
Marr’s and Thorpe’s models. In more details, they represented the spatial CS structure
using the DoG filter (3.2). In addition, they modeled the ability of retina to gradually
compress all the details with respect to time using the DoGk pyramid (see eq. 3.16)
[Thorpe, 1990]. In this way, Masmoudi ensured the dynamic behavior of his filter intro-
ducing a time-delay function Dtk . The value of tk is an increasing function of k and it
corresponds to the delay each subband DoGk appears. In [Masmoudi et al., 2012] this
function was proposed to be linearly increasing while in [Masmoudi et al., 2013] it was
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proposed to be an exponential function. The activation of each subband was denoted as:

K(x, t) = DoGk(x)1[t≥tk ](t), (3.17)

where 1(t≥tk) is the indicator function. The above equation describes that each scale k
exists only when t ≥ tk (1(t≥tk)(t) = 1), otherwise there is no information transmitted
(1(t≤tk)(t) = 0).

The pyramid of the difference of Gaussians, DoGk, is applied to an input image f(x).
This spatial convolution is the activation degree which is similar to what the filter bank of
Thorpe is his ROC model (see section 3.4.1).

Ak(x) = DoGk(x)
x∗ f(x). (3.18)

Masmoudi et al proposed that each scale k, is activated in a predefined time tk, resulting
that between two adjacent scales, k and k+1, there is a time delay tdelay = tk+1− tk. The
time dependency is an increasing exponential function which is added to the coder/decoder
by the following equation:

Ak(x, t) = Ak(x)1(t≥tk)(t), (3.19)

where 1(t≥tk) is the indicator function. The above equation describes that each scale k
exists only when t ≥ tk (1(t≥tk)(t) = 1), otherwise there is no information transmitted
(1(t≤tk)(t) = 0).

The authors reconstructed the input stimulus f̃(x) using the frame theory
[Kovacevic and Chebina, 2008]:

f̃(x) =
∑

Ãk(x, t)
x∗ D̃oGk

(x). (3.20)

where D̃oG
k
is the dual of DoGk. In more details, Masmoudi et al indicated that using

dual frames it is able to progressively reconstruct an approximation of the input image
[Masmoudi et al., 2012, Masmoudi et al., 2013]. As a result, dual frames make the model
well conditioned and invertible.

3.5 Conclusion

This chapter introduced neuroscientific models which have been proposed to approximate
the OPL retina transform. All these models are based on the DoG filter which is considered
to precisely describe the CS structure of the neural RF. Initially, these models were static
(spatial or separable spatiotemporal filters) until scientist realized that the CS structure
dynamically transforms the visual stimuli (non-separable spatiotemporal filter). Thorpe
was the first one who adopted some of the static neuroscientific models in his compression
algorithm. However, in coding schemes (see Fig. 2.20 (a)), it is necessary to be proven that
the transformation which is in use is invertible in order to ensure the reconstruction of the
input signal. Thus, Thorpe needed to give some extra efforts not only to efficiently adapt
the neuroscientific models to their systems but also to prove that they are invertible.

Thorpe’s filter was mathematically proven to be invertible by Masmoudi but Mas-
moudi’s filter was still not reliable enough. Although, Masmoudi tried to insert time into
his filter proving that this time dependency does not influence the inversion of the filter,
his filter bank still lacks of dynamicity especially comparing to models of the non-separable
spatiotemporal RF and non-separable spatiotemporal filter. This dynamic transform of a
bank of DoG filters which evolve in time is novel in signal processing community. Thus,
in chapter 4 we are going to introduce a retina-inspired filter which is based on Wohrer’s
dynamic filter and in chapter 5 we will prove that this filter is invertible.
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4.1 Introduction

In chapter 3, we had a discussion about static and dynamic neuroscientific models which
approximate the CS structure of the OPL retina layer. Being motivated by these
models or the combination of these models people proposed bio-inspired filter which
have been famous in image processing like the Gaussian pyramid, the Laplacian pyra-
mid or more recently released filters like the separable spatiotemporal DoG pyramid
proposed by Masmoudi in [Masmoudi et al., 2012]. We noticed that even though in
[Masmoudi et al., 2012] the authors tried to mimic the dynamic OPL filter as proposed
by Wohrer in [Wohrer and Kornprobst, 2009], their model was not dynamic and it could
be further improved.

In this chapter, we aim to propose another more accurate simplification of OPL retina
transform which allows us taking the advantage of its dynamicity. At the same time,
our novel non-separable spatiotemporal OPL retina-inspired filter, which is also termed as
retina-inspired filter, is easier to be analyzed and studied comparing to the original OPL
transform and it also is easier to be proven as invertible.

In more details, we show that the retina-inspired filter is interpreted as a group of time
varying Weighted Difference of Gaussians (WDoG) filters. That means that, at each time
there is a new and different spatial WDoG filter which arises. Consequently, while time
increases, the retina-inspired filter is able to extract different kinds of information from the
input signal. We study the behavior of the WDoG bank in spatial and frequential domain
and we prove that the bandwidth of this filter evolves in time which confirms the initial
interpretation. We first represent some numerical results of this transform applied to 1D
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signal which is straightforward and then we extend this to still-images and images retrieved
from video streams, which are called in this document pictures.

Of course a reasonable question one could ask himself is what is the advantage of
applying a dynamic filter to a still image. First of all, this is the first attempt to study
and adopt a retina-inspired dynamic filter in signal processing. As a result, the simpler
the input signal, the better the analysis of the impact of the filter. Secondly, the dynamic
processing of real retinas exists even for still images. If one neglects the eyes’ movements
and just considers the human visual perception in the presence of a constant view, it is true
that during the very first few milliseconds the scene seems blurry while more details enrich
the clearanceness of the scene in time.

4.2 Definition

A still image does not vary in time when it is flashed. We assume that the visual stimulus
is flashed for a given time T > 0 and it is constant during this time interval. This involves
that the 2D visual stimulus is written as f(x, t) = f(x)1[0,T ](t) where f(x) ∈ L1(R2) is a
still image and 1 is the indicator function such that 1[0,T ](t) = 1 if 0 ≤ t ≤ T , otherwise 0.
The space L1(R2) is the set of the Lebesgue integrable functions from R2 to R. This time
invariance enables us to simplify the spatiotemporal convolution (see eq. 3.15) of the OPL
transform (introduced in section 3.3.4) as established in Proposition 1.

Proposition 1. Assume f(x, t) = f(x)1[0,T ](t) for all x ∈ R2 and all t ∈ R. Then, the
spatiotemporal convolution (3.15) turns into the spatial convolution:

A(x, t) = φ(x, t)
x∗ f(x), (4.1)

where φ(x, t) is a spatiotemporal WDoG filter weighted by two temporal filters Rc(t) and
Rs(t):

φ(x, t) =

{
wcRc(t)GσC

(x)− wsRs(t)GσS
(x) if t ≥ 0,

0 otherwise,
(4.2)

Rc(t) = 1[0,+∞)(t)

∫ t

max{0,t−T}
W (u)du, (4.3)

Rs(t) = 1[0,+∞)(t)

∫ t

max{0,t−T}
(W

t∗ EτS )(u)du, (4.4)

for all x ∈ R2 and for all t ∈ R.

Proof. The proof consists in calculating the convolution:

A(x, t) = K(x, t)
x,t∗ f(x, t)

= (C(x, t)− S(x, t)) x,t∗ f(x)1[0,T ](t)

= wcGσC
(x)

x∗ f(x)
(

W
t∗ 1[0,T ](t)

)

−wsGσS
(x)

x∗ f(x)
((

W
t∗EτS

)
t∗ 1[0,T ](t)

)

.

For an integrable function U(t), a short calculation shows that

U
t∗ 1[0,T ](t) =







0, if t < 0,
∫ t

max{0,t−T}
U(u)du, otherwise.

(4.5)

Then, it is straighforward to derive (4.1) with φ(x, t) defined in (4.2).
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This proposition is fundamental because it turns the spatio-temporal filtering of the still
image f(x) with the retinal filter K(x, t) into a simpler spatial convolution with the retina-
inspired filter φ(x, t) which is a group of time-varying WDoGs. The temporal functions
Rc(t) and Rs(t) act like weights that modify the WDoG spatial spectrum with respect to
time (see Section 4.4). Finally, the retina-inspired filter is built by the difference of two
separable filters which evolve in time mimicking the non-separable behavior of the OPL
layer. A DoG filter is an isotropic function due to the property of the circular symmetry.
As a results, for a fixed time t ∈ R, the retina-inspired filter φ(x, t) is spatially isotropic.
Thus, it can be simplified by φ(r, t) where the radius r is the norm of x. Fig. 4.1 plots the
retinal filter φ(r, t) as a function of r = ‖x‖2 for two different cases related to the temporal
filters Rc(t) and Rs(t) which are studied in the following subsection. For simplicity, it is
assumed that r ∈ R and φ(r, t) is symmetric around r = 0 for all t. The parameters have
been tuned according to neuroscientific results [Masmoudi et al., 2012] which approximate
the retinal spectrum and the speed of the retinal processing. The spectrum of a DoG filter
is also a DoG. As a result, the spectrum of the retina-inspired filter is also a spatially
isotropic function. This spectrum which is denoted φ̂(ω, t), where ω is the spatial angular
frequency related to r, is shown in Fig. 4.1.

(a)

(b)

Figure 4.1: (Left to right) The retina-inspired filter φ(r, t) as a function of r ∈ R and
t ∈ R. The top view of φ(r, t). The retina-inspired filter spectrum φ̂(ω, t). The top-view of
|φ̂(ω, t)|. (a) The top line corresponds to the case T = +∞. (b) The bottom line stands
for the case T < +∞ (Parameters for (a) and (b): T = 150 ms, τC = 20 ms, τS = 4 ms,
τG = 5 ms, n = 5, wS = 1, wC = 1, σc = 0.5 and σs = 3σc).

4.3 Spatiotemporal Behavior and Convergence

We are interested in studying the two temporal filters Rc(t) and Rs(t) which are responsible
for the spatiotemporal behavior of the retina-inspired filter. First of all, we calculate their
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closed-form model in Proposition 2. This proposition is based on the following lemma.

Lemma 1. Assume t ≥ 0, then

Jc(t) =

∫ t

0
W (u)du

= Pn(t) exp

(−t
τG

)

+ αc exp

(−t
τC

)

+ γc, (4.6)

where Pn(t) is a polynomial function in t of order n and αc, γc are two reals, and

Js(t) =

∫ t

0
(W

t∗ EτS )(u)du

= Qn(t) exp

(−t
τG

)

+ αs exp

(−t
τS

)

+ βs exp

(−t
τC

)

+ γs, (4.7)

where Qn(t) is a polynomial function in t of order n and αs, βs and γs are some reals.

Proof. See the Appendix A.

Proposition 2. The temporal weights Rc(t) in (4.3) and Rs(t) in (4.4) satisfy:

Rc(t) =

{
Jc(t) if 0 ≤ t ≤ T,
Jc(t)− Jc(t− T ) if T < t,

(4.8)

Rs(t) =

{
Js(t) if 0 ≤ t ≤ T,
Js(t)− Js(t− T ) if T < t,

(4.9)

where Jc(t) is given in (4.6) and Js(t) is given in (4.7).

Proof. The proof is based on the fact that Rc(t) = Jc(t) for 0 ≤ t ≤ T and

Rc(t) =

∫ t

t−T
W (u)du =

∫ t

0
W (u)du−

∫ t−T

0
W (u)du

for t > T . Lemma 1 is used to deduce (4.8). The same equalities hold for Rs(t).

The temporal weights Rc(t) and Rs(t) are illustrated in Fig. 4.2. The parameters in (a)
and (b) have been tuned according to the parameters of Fig. 4.1 for T = +∞ and T < +∞
respectively. We should note that their shapes are very similar except that the surround
temporal filter Rs(t) appears with a small delay EτS (t) with respect to the center one.
There is a high impact of the above characteristic on the spatiotemporal evolution of the
filter. The delay EτS (t) is crucially important because for the very first few milliseconds,
while Rs(t) does not yet exist, the second term of the WDoG is zero. As a result, at the
very beginning, the retina-inspired filter is a pure Gaussian with a very low amplitude since
it is weighted by Rc(t). Finally, we can note that Rc(t) and Rs(t) converge to a constant
value. Hence, φ(x, t) also converges as t → +∞. This convergence is established in the
following proposition.

Proposition 3. The filter φ(x, t) is a continuous and infinitely differential function over
R2 × R such that φ(x, 0) = 0 for all x ∈ R2. If T = +∞, then φ(x, t) converges uniformly
toward φ(x) where φ(x) is the WDoG filter:

φ(x) = wcγcGσC
(x)− wsγsGσS

(x), (4.10)

with γc and γs defined in (4.6)-(4.7). If T < +∞, the filter vanishes uniformly as t→ +∞:

lim
t→+∞

sup
x∈R2

| φ(x, t) |= 0. (4.11)
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Figure 4.2: Temporal filters Rc(t) and Rs(t). The convergence of the filters depends on
the value of time T . Subplot (a) corresponds to the case T = +∞, while subplot (b)
corresponds to the case T < +∞ (Parameters: T = 150 ms, τC = 20 ms, τS = 4 ms,
τG = 5 ms, n = 5).

Proof. The uniform convergence (4.11) results from the definition of φ(x, t) in (4.2) since
GσC

(x) andGσS
(x) are bounded and Rc(t) andRs(t) converge to 0 according to Proposition

2 and Lemma 1. When T = +∞ and t → +∞, Rc(t) and Rs(t) converge to γc and γs
respectively. Hence, φ(x, t) converges uniformly toward φ(x).

Figure 4.1 depicts the two different cases of Proposition 3. A brief discussion about this
proposition is that, while time T increases to infinity, the retina-inspired filter turns into a
static WDoG. This is totally concurrent with the neuroscientific assumptions about the time
limits of the visual system. Neuroscientists have proposed that the objects categorization of
a single image which is propagated from the retina to the brain needs approximately 100 ms
[Liu et al., 2009] before the next image is processed. Recent studies have proven that a
simple comprehension lasts approximately 13 ms [Potter et al., 2014]. In any case, there
exists a time tc when, even if the photoreceptors will continue capturing the same signal,
all the necessary information which needs to be processed has already been transmitted to
the brain. From a theoretical point of view, the existence of tc is deduced from the uniform
convergence established in Proposition 3. A sequence of functions gn, n = 1, 2, 3, . . . is said
to be uniformly convergent to g for a set E of values of x if, for each ε > 0, an integer N
can be found such that |gn(x) − g(x)| < ε for n ≥ N and all x ∈ R. In fact, given ε > 0,
the time tc = tc(ε) can be defined when the uniform convergence is achieved up to ε. As a
result, the retina-inspired filter φ(x, t) converges to φ(x) if |φ(x, tε)− φ(x)| < ε.

4.4 Weighted DoG Analysis

This section aims to study the WDoG filter, i.e., to approximate its spatial and frequential
response. Without any loss of generality, a WDoG is defined by:

ϕ(x) = aGσa(x)− bGσb
(x) (4.12)

where a, b > 0 and σ2b > σ2a. The retina-inspired filter φ(x, t) consists of a group of WDoG
with the coefficients

a = wcRc(t) = a(t), b = wsRs(t) = b(t), (4.13)

that are time dependent, σa = σc and σb = σs. Since the WDoG is symmetric, we define
the WDoG according to the radial coordinate r = ‖x‖2:

ϕ(r) = aGσa(r)− bGσb
(r). (4.14)

Since ϕ(r) is symmetric around 0, we assume that r ∈ R (and not only to R+) to ensure
a better legibility of the results and to study more easily the spectrum of the WDoG.
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According to the couple (a, b), the WDoG has eigth shapes which are depicted in Fig. 4.3.
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Figure 4.3: Eight typical shapes of the WDoG ϕ(r) (first row) and the WDoG spectrum
modulus |ϕ̂(ω)| (second row) w.r.t. some values of the couple (a, b). The dotted line
represents the half of the maximum value of the spectrum modulus. The rectangles in
dashed line represent the approximated bandwidth of the spectrum. There are five specific
cases: 1) lowpass L1, 2) lowpass/bandpass LB, 3) bandpass BP, 4) lowpass L2 and 5)
lowpass L3.

The parameter b = 1 is fixed. According to the value of a ∈ {0.1, 0.3, 0.4, 0.7, 0.9, 1.1, 2, 4},
the WDoG is either a lowpass filter (cases L1, L2 or L3) or a bandpass filter (case BP)
or a mixed lowpass/bandpass filter (case LB). The conventional DoG filter (a = b = 1) is
a special case of BP. When a is changing, the bandwidth is also changing but the WDoG
is always constrained to one of these eight shapes, corresponding to five behaviors. This
section studies these behaviors in the space domain and in the frequency domain.

4.4.1 WDoG in Space Domain

Let us study the variations of ϕ(r). The first derivative of the WDoG, which is differentiable
for all r ∈ R, is given by

ϕ′(r) = r

(

− a

σ2a
Gσa(r) +

b

σ2b
Gσb

(r)

)

. (4.15)

Let

γ = γ(a, b) =
bσ4a
aσ4b

. (4.16)

A short analysis of the roots of ϕ′(r) shows that two cases occur: i) if γ ≥ 1, there is only
one root r = 0 , ii) if γ < 1, there are three roots r = 0, r1 > 0 and −r1 with

r1 = σaσb

√

2 ln(γ)

σ2b − σ2a
. (4.17)

As an illustration, case i) corresponds to the first left curve in Fig. 4.3 and case ii) cor-
responds to all the other curves. It is then easy to determine the positive intervals and
negative intervals of ϕ′(r) and, hence, to determine when ϕ(r) is increasing or decreasing.

Proposition 4. If γ ≥ 1, ϕ(r) is negative for all r ∈ R and its minimum is

ϕ0 = min
r∈R

ϕ(r) = ϕ(0) =
aσ2b − bσ2a
2πσ2cσ

2
s

< 0. (4.18)
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Figure 4.4: Approximate FWHM interval of a WDoG based on a triangle approximation.

Otherwise, if γ < 1, then ϕ(r) is negative and decreasing over [−∞,−r1], increasing over
[−r1, 0], decreasing over [0, r1] and finally increasing and negative over [r1,+∞]. The global
minima are −r1 and r1.

Proof. The proof is straightforward by studying the sign of ϕ′(r) over the intervals given
in the proposition.

The Full Width Half Maximum (FWHM) response of the symmetric WDoG is given by
the interval [−rC , rC ] where rC satisfies:

ϕ(rC) =
maxr∈R ϕ(r)

2
. (4.19)

The FWHM is not relevant for case L1 (see Fig. 4.3) because the shape of the WDoG
is significantly different from a peak. The FWHM is relevant for the other cases when
the peak at r = 0 is sufficiently large, i.e., when ϕ(0) > −2ϕ(r1). The exact calculation
of FWHM is difficult. Hence, we approximate rC in (4.19) using the following method
which is proposed in [Birch et al., 2010]. We first calculate the maximum response. Then,
we compute a straight line from each maximum response to the first intercept with the
r-axis (see Fig. 4.4 red solid line). We compute half of this line and we approximate its
correspondent value. The resulting FWHM is illustrated in Fig. 4.4. A straightforward
calculation shows that the first intercept of ϕ(r) with the r-axis is

r0 = σaσb

√
√
√
√
√

2 ln
(aσ2b
bσ2a

)

σ2b − σ2a
. (4.20)

where bσ2a > aσ2b since ϕ(0) > 0. It follows that rC ≈
r0
2

by using the triangle approxima-

tion.

4.4.2 WDoG in Frequency Domain

The Fourier transform of the WDoG in (4.14) is

ϕ̂(ω) = aĜσa(ω)− bĜσb
(ω) (4.21)

where

Ĝσ(ω) =
1

2π
exp

(

−ω
2σ2

2

)

, (4.22)

and ω ∈ R denotes the spatial angular frequency associated to r. The WDoG bandwidth
B = B(a, b) refers to the frequency range in which the spectrum ϕ̂(ω) is above a threshold
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value. The threshold value is defined relative to the maximum value and the points where
the spectrum is half its maximum value, i.e., we need to find all the solutions ω̄ of

ϕ̂(ω̄) =
maxω∈R ϕ̂(ω)

2
. (4.23)

For each case identified in Fig. 4.3, the derivation of a closed form expression of the
bandwidth is very tricky. Hence, we propose some simple approximations. For cases L1, LB,
BP, each part of the bandwidth is approximated by a triangle. A triangle is formed by taking
the zero position, the maximum position and double the turning point as already illustrated
in Fig. 4.4. For cases L2 and L3, a better approximation is obtained by considering that
the WDoG is almost equivalent to a Gaussian function.

Let us determine the zero position and the maximum position of the WDoG. The
solutions of ϕ̂(ω) = 0 are the two opposite roots ω0 and −ω0 with

ω0 =

√

2

σ2b − σ2a
ln

(
b

a

)

(4.24)

when b > a. Otherwise, when b ≤ a, the WDoG is always positive with the single root
ω = 0 in the special case a = b. Since the WDoG is differentiable, the extrema are the
solutions of ϕ̂′(ω) = 0 where ϕ̂′(ω) is the first derivative of ϕ̂(ω). A short calculation shows
that

ϕ̂′(ω) =
ω

2π

(

−aσ2a exp
(

−ω
2σ2a
2

)

+ bσ2b exp

(

−ω
2σ2b
2

))

.

A first extrema is ω = 0. The other extrema are the solutions of

exp

(
ω2(σ2b − σ2a)

2

)

=
bσ2b
aσ2a

= ̺(a, b). (4.25)

If ̺(a, b) ≤ 1, there is no other extrema. Otherwise, there are two opposite extrema ω1 > 0
and −ω1 where

ω1 =

√

2

σ2b − σ2a
ln(̺(a, b)). (4.26)

From (4.25), it is clear that ϕ̂′(ω) > 0 for 0 < ω < ω1 and ϕ̂′(ω) > 0 for ω1 < ω. Since
limω→±∞ ϕ̂(ω) = 0, the frequency ω1, if it exists, is a global maximum. We can also show
that −ω1 is a global maximum. We obtain the following proposition.

Proposition 5. If ̺(a, b) > 1, then the maximum is given by

max
ω∈R

ϕ̂(ω) = ϕ̂1 = ϕ̂(ω1) = ϕ̂(−ω1)

=
a(σ2b − σ2a)

2π

(
1

̺(a, b)

) σ2
a

σ2
b
−σ2

a
(4.27)

with ω1 given in (4.26). Otherwise, if ̺(a, b) ≤ 1, then

max
ω∈R

ϕ̂(ω) = ϕ̂0 = ϕ̂(0) =
a− b
2π

> 0.

Proof. If ̺(a, b) ≤ 1, there is only one extrema ω = 0. Since ϕ̂′(ω) has the sign of −ω, ϕ̂ is
increasing when ω < 0 and decreasing when ω > 0. Hence, 0 is a positive global maximum.
If ̺(a, b) > 1, it has been already shown that the maximum are located at ω1 and −ω1.

The maximum value in (4.27) is obtained by inserting ω1, given in (4.26), in (4.21).

According to the couple (a, b), the WDoG has three possible behaviors: lowpass, band-
pass or lowpass/bandpass. Hence, the total bandwidth B = B(a, b), including negative and
positive frequencies, could be given by one of the three following forms:
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• Lowpass: B = [−ωH , ωH ] with ωH > 0,

• Bandpass: B = [−ωH ,−ωL] ∪ [ωL, ωH ] with 0 < ωL < ωH ,

• Lowpass/bandpass: B = [−ωC , ωC ]∪ [−ωH ,−ωL]∪ [ωL, ωH ] with 0 < ωC < ωL < ωH .

The following proposition gives the bandwidth B(a, b) with respect to the couple (a, b).

Proposition 6. According to the value of ̺ = ̺(a, b), the WDoG ϕ̂(ω) satisfies one of the
following cases:

1. If ̺ > 1 and |ϕ̂0| ≥ ϕ̂1

(a) Case L1: if |ϕ̂0| ≥ 2ϕ̂1, then ϕ̂(ω) is lowpass with

ωH ≃
ω0

2
,

(b) Case LB: if |ϕ̂0| < 2ϕ̂1, then ϕ̂(ω) is lowpass/bandpass with

ωC ≃
ω0

2
, ωL ≃

ω0 + ω1

2
, ωH ≃

ω0 + 3ω1

2
,

2. If ̺ > 1 and |ϕ̂0| < ϕ̂1

(a) Case BP: if |ϕ̂0| ≤
ϕ̂1

2
, then ϕ̂(ω) is bandpass with

ωL ≃
ω0 + ω1

2
, ωH ≃

ω0 + 3ω1

2
,

(b) Case L2: if |ϕ̂0| >
ϕ̂1

2
, then ϕ̂(ω) is lowpass with

ωH ≃ ω1 +

√

2 ln(2)

σa
,

3. If ̺ ≤ 1, which corresponds to Case L3, then ϕ̂(ω) is lowpass with

ωH ≃
√

2 ln(2)

σa
.

Proof. The behavior of the filter depends on the maximum values ϕ̂0 or ϕ̂1, the maximum
position and the zero position. In case of L1, LB and BP, each part of the bandwidth is
approximated by a triangle. A short calculation gives the bounds of the triangle. In case of
L2, we use two Gaussians to approximate the central part of the spectrum. The bandwidth
of a Gaussian function with zero mean and standard deviation σ is given by

Bσ =
[

−σ
√

2 ln(2), σ
√

2 ln(2)
]

.

In case of L3, we use a single Gaussian approximation.

The retina-inspired filter is filtering the input image f(x) by using a WDoG varying in
time. By controling the trajectory (a(t), b(t)), this filter is able to explore the frequency
spectrum of the input image.

In Fig. 4.5 (a) we illustrate the bandwidth B = B(a, b) of the filter as a
function of time according to Proposition 6 using bio-plausible parameters given in
[Wohrer and Kornprobst, 2009] and described in Fig. 4.1. The approximation consists
of 3 different cases which appear progressively in time: for 1 ≤ t ≤ 5 ms the bandwidth is
approximated according to L3, for 5 < t ≤ 23 ms it follows L2 and finally, for t > 23 ms it
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Figure 4.5: For bio-plausible parameters described in Fig. 4.1 we compute in (a) the
approximation of the evolution of the bandwidth with respect to time which is computed
according to Proposition 6 and in (b) the exact evolution of the bandwidth with respect
to time which is numerically computed. (c). The exact solution of the bandwidth which
behaves as bandpass (τC = 40 ms, τS = 0.5 ms, τG = 9 ms). (d). The exact solution of the
bandwidth which behaves as lowpass for longer time (τC = 30 ms, τS = 20 ms, τG = 15 ms,
n = 5).

belongs to BP. The exact bandwidth is computed by solving the equation (4.23) using the
MatlabTM fsolve function and it is depicted in Fig. 4.5 (b). Concerning the exact solution
one should notice that the bandwidth evolves in time in a very similar way depicted that
the filter behaves as a lowpass for 1 ≤ t ≤ 23 ms while it becomes bandpass for t > 23 ms.
Comparing these two plots, we confirm the accuracy of Proposition 6 is not perfect because
of the triangle approximation. This approximation of the DoG filter has already been used
in previous works getting similar accuracy results [Birch et al., 2010]. It would be also im-
portant to be mentioned that the approximation is not continuous but it has been proposed
for each case separately. This is the reason why some discontinuities appear. The second
row of Fig. 4.5 reminds the reader that if one chooses different set of parameters, not only
the behavior but also the evolution of the bandwidth of the filter will change with respect
to time .

4.5 Numerical Results

This section aims to represent the retina-inspired filtering results. Concerning the two
different cases when T = +∞ and T < +∞, one could notice according to Fig. 4.2 that the
second one is separated into three regions for t ∈ [0, T ], t ∈ (T, 2T ] and t > 2T . Concerning
the first region, the retina-inspired filter would evolve exactly as in case T = +∞. The
second region is the inverse of the first group and the third region corresponds to the zero
value because of the zero convergence. According to Fig. 4.1 it is obvious that at least for
bio-plausible parameters, the two first groups have exactly the same spectrum. As a result,
we concentrate the analysis on the first group which is identical to T = +∞.

4.5.1 1D Input Signal

Due to the limit of space it is impossible to show the complete evolution of space in time
when the filter is applied to an image. For this reason we first illustrate the impact of
the retina-inspired filter to an 1D signal. This signal is a piecewise constant signal which
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remains constant with respect to time. This constant effect is completely equivalent when
we flash a still-image for a given time T . As explained above we are going to concentrate
the analysis when T = +∞ which is the time the 1D signal exists. All the mathematical
notations which are given above are consistent of this example if one assumes just that
x ∈ R instead of R2.

Figure 4.6 (a) shows the piecewise constant signal f(x, t) which exists for time T = +∞.
This signal is filtered by the retina-inspired filter φ(x, t) (see Fig. 4.6 (b)) resulting in the
activation degree A(x, t) which is illustrated in Fig. 4.6 (c). Obviously, the retina-inspired
filter has a great impact on the input signal not only in space but also in time. The filtered
1D signal appears to be smoothed with respect to space but the way it is smoothed changes
along time due to the dynamic behavior of the retina-inspired filter. In addition, the DoG
bases of each subband of the retina-inspired filter introduces some high contrast effects
every time the intensity of the input signal changes.

(a) (b) (c)

xxx
t t t

f(x, t) K(x, t) A(x, t)

Figure 4.6: This figure shows the complete impact of the retina-inspired filter when it is
applied to an 1D signal f(x, t), x, t ∈ R, which exists for a given time T = 150 ms. (a)
Piecewise 1D signal (b) 1D retina-inspired filter (c) Retina-inspired decomposition of the
1D signal.

4.5.2 Image Input Signal

In Fig. 4.7, we represent the filtering results while the retina-inspired filter is applied to
an image for bio-plausible parameters wc = ws = 1. The images of left and the middle
columns belong to the database USC-SIPI [Weber, 1977]. The image of the right column is
a picture retrieved from a video stream captured by our partner, 4G TECHNOLOGY, for
video surveillance reasons. The size of the images is n = 512× 512 pixels. We have decided
to illustrate only 5 out of 150 decomposition layers for each experiment. The evolution
of the retina-inspired filter is according to the bandwidth of Fig. 4.5 (b). In Fig. 4.8 we
tested different parameters for the constant weights wc and ws. The first column of Fig.
4.8 corresponds to the bio-plausible parameters where wc = ws = 1. The middle and the
left columns correspond to non bio-plausible parameters but very close to the ones of the
left column. It is interesting that while wc decreases there is a stronger categorization of
the L2, L3, LB and BP cases.

In all the above cases, it is easy to observe that while time increases the filtering results
change. Thus, in the beginning, the retina-inspired filter smooths the image emphasizing
to its low frequency components. However, while time increases, low and high frequency
components appear in the filtering results emphasizing the contours of the image. Another
important remark is related to the scale of the top pictures which correspond to the first
decomposition layer. Apparently, this layer seems to be identical to the original. How-
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Figure 4.7: Decomposition of different kind of images using the retina-inspired non-
separable spatiotemporal filter for a bio-plausible set of parameters wc = ws = 1. From the
top to the bottom: t1 = 1 ms, t2 = 30 ms, t3 = 60 ms, t4 = 90 ms and t5 = 120 ms.
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ever, its scale is very low (i.e. 10−12) which means that in the presence of noise or after
quantization all this information will be completely lost.

4.6 Conclusion

This chapter has introduced a non-separable spatiotemporal retina-inspired filter based
on a realistic model of the OPL. This filter is a groundbreaking analysis of neuroscience
for image processing. The retina-inspired filter keeps the dynamic behavior of the non-
separable spatiotemporal OPL neuroscientific model which was introduced by Fleet and it
was adapted in Virtual Retina. However, under the assumption that the input signal is
an image which is flashed for a given time, the retina-inspired filter turns into a group of
time-varying WDoGs. This chapter proposes a spatial and frequential analysis of a general
WDoG function. This study established that there are 5 different approximation cases
of a WDoG filter depending on the values of the weights of the two Gaussian filters: 1)
lowpass L1, 2) lowpass/bandpass LB, 3) bandpass BP, 4) lowpass L2 and 5) lowpass L3.
The retina-inspired filter consists of L3, L2 and BP which appear in this order progressively
in time. Hence, it enables the extraction of different kinds of data while time increases.
Initially, the filter is a lowpass filter generating low frequency copies of the input signal and
it turns into a bandpass filter enabling to extract high frequencies. As underlined in the
introduction, the retina-inspired filter is a great improvement of other bio-inspired filters
which are simpler and not as much accurate as the neuroscientific approximations of the
retina. Hence, this is certainly of a great interest to image processing field.

We aim to adapt the retina-inspired filter in a bio-inspired coding principle. As a
result, the following chapter proves that this transform is invertible and it allows a perfect
reconstruction of the input signal.
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5.1 Introduction

According to the retina-inspired coding principle (see Fig. 2.20) which was introduced in
chapter II we aim to encode an input image f(x, t) which is flashed for a given time T mim-
icking the way the retina encodes the visual stimulus. The output of the encoding process
is a code of spikes based on the lossy compression format. These spike trains are used to
reconstruct a version of the input signal f̃(x, t) which is visually and numerically close to
the original signal f(x, t). The retina tissue and the neuromathematical models including
Virtual Retina, which approximate its encoding processing are interesting methods to be
adapted in the encoding path. However, the visual cortex does not guarantee that the code
of spikes which includes all the information about the visual signal, enables a high recon-
struction quality. The reason is simple, the visual cortex uses the code of spikes to analyze
it and to communicate with the rest of the brain cortices instead of reconstructing the input
signal. However, in this thesis the decoding process is necessary for the reconstruction and
we need to mathematically prove that it exists.

The retina-inspired filter φ(x, t) which was introduced in chapter 4 is the first step of the
retina-inspired encoding chain (see Fig. 2.20). In this chapter, we prove that the retina-
inspired transform is invertible such that we are able to perfectly reconstruct the input
signal i.e. f̃(x, t) = f(x, t) based on the retina-inspired decomposition layers. This proof
was based on frame theory which is detailed in the section 5.3. Then, in section 5.4 the
pseudo-inverse frame is introduced in a matrix form. Due to the high computational cost of
the pseudo-inversion, we utilize in section 5.5 the conjugate gradient descend as a simpler,
faster and more efficient numerical reconstruction method. In section 5.6 we illustrate the
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reconstruction numerical results when all the coefficients of the retina-inspired frame are
used. Last but not least, we also show that the reconstruction based on the retina-inspired
decomposition performs well even in the presence of random noise. Some interesting results
concerning the quality of the reconstruction with noise are that although the distortion rate
increases when the range of noise increases, the PSNR values remain above 30 dB. This is
a typical measurement for good quality reconstruction images in compression. In addition,
the SSIM ≈ 0.9, very close to 1, which corresponds to the perfect reconstruction (see section
2.3.1.2).

5.2 Discrete Retina-inspired Filter

Let x1, . . . ,xn ∈ Rn, where xi 6= xj and t1, . . . , tm ∈ R+, where t1 < t2 < . . . < tm be some
sets of spatial and temporal sampling points. As a consequence, the continuous spatial
convolution (4.1) is approximated by the discrete convolution:

A(xk, tj) = φ(xk, tj)⊛ f(xk)

=
n∑

i=1

φ(xk − xi, tj)f(xi),∀k, j. (5.1)

Let f = (f(x1), . . . , f(xn)) = (f1, . . . , fn) be the discretized image and ‖f‖ its Euclidean
norm and let also ϕk,j be the row vector of Rn defined by

ϕk,j = [φ(xk − x1, tj), . . . , φ(xk − xn, tj)] . (5.2)

Let us denote φ̂tj (ξ) the discrete Fourier transform of the vector (φ(x1, tj), . . . , φ(xn, tj)).
The matrix form the discrete convolution is given by:





























A(x1, t1)
A(x2, t1)

...
A(xn, t1)
A(x1, t2)
A(x2, t2)

...
A(xn, t2)

...
A(x1, tm)
A(x2, tm)

...
A(xn, tm)





























︸ ︷︷ ︸

nm×1

=





























φ(x1 − x1, t1) φ(x1 − x2, t1) . . . φ(x1 − xn, t1)
φ(x2 − x1, t1) φ(x2 − x2, t1) . . . φ(xn − xn, t1)

...
...

...
...

φ(xn − xn, t1) φ(xn − x2, t1) . . . φ(xn − xn, t1)
φ(x1 − x1, t2) φ(x1 − x2, t2) . . . φ(xn − xn, t2)
φ(x2 − x2, t2) φ(x2 − x2, t2) . . . φ(xn − xn, t2)

...
...

...
...

φ(xn − xn, t2) φ(xn − x2, t2) . . . φ(xn − xn, t2)
...

...
...

...
φ(x1 − x1, tm) φ(x1 − x2, tm) . . . φ(xn − xn, tm)
φ(x2 − x2, tm) φ(x2 − x2, tm) . . . φ(xn − xn, tm)

...
...

...
...

φ(xn − xn, tm) φ(xn − x2, tm) . . . φ(xn − xn, tm)





























︸ ︷︷ ︸

nm×n








f(x1)
f(x2)

...
f(xn)







⇔
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A(x1, t1)
A(x2, t1)

...
A(xn, t1)
A(x1, t2)
A(x2, t2)

...
A(xn, t2)

...
A(x1, tm)
A(x2, tm)

...
A(xn, tm)





























︸ ︷︷ ︸

nm×1

=





























ϕ1,1

ϕ2,1
...

ϕn,1

ϕ1,2

ϕ2,2
...

ϕn,2
...

ϕ1,m

ϕ2,m
...

ϕn,m





























︸ ︷︷ ︸

nm×n








f(x1)
f(x2)

...
f(xn)








︸ ︷︷ ︸

n×1

⇔






At1
...

Atm






︸ ︷︷ ︸

nm×1

=






φ1
...
φm






︸ ︷︷ ︸

nm×n






f1
...
fn






︸ ︷︷ ︸

n×1

⇔

Anm×1 = Φnm×nfn×1,

where

Atj =






A(x1, tj)
...

A(xn, tj)




 and φj =






ϕ1,j
...

ϕn,j




 =






[φ(x1 − x1, j), . . . , φ(x1 − xn, j)]
...

[φ(xn − x1, j), . . . , φ(xn − xn, j)]




 .

(5.3)

5.3 Retina-inspired Frame

In this section, we are going to prove that the retina-inspired filter is invertible using the
frame theory. This proof is the second contribution of this thesis since it allows us to use
the retina-inspired decomposition in terms of compression.

5.3.1 Frame Theory

The frame theory was originated by Duffin and Schaeffer [Duffin and Schaeffer, 1952]. Their
motivation was to establish general conditions under which one can recover a vector f in
Hilbert space H from its inner product with a family of vectors {gn}n∈Γ. The index of Γ
maybe finite or infinite. The following frame definition gives an energy equivalent to invert
the operator U defined by:

∀n ∈ Γ, Uf [n] = 〈f, gn〉.
The definition of a frame according to the frame theory is given by:

Definition 5.3.1. A sequence {gn}n∈Γ is a frame of H if there exist two constants α > 0
and β > 0 such that for any f ∈ H

α‖f‖2 ≤
∑

n∈Γ

|〈f, gn〉|2 ≤ β‖f‖2. (5.4)

When α = β the frame is said to be tight.
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If the frame condition is satisfied then U is called frame operator. Condition (5.4) is
necessary and sufficient to guarantee that U is invertible, with a bounded inverse. Thus, a
frame defines a complete and stable representation of the signal which may also be redun-
dant. When the frame is normalized ‖gn‖ = 1, this redundancy is measured by the frame
bounds α and β. If {gn}n∈Γ are linearly independent then it is proven in [Mallat, 1999] that
α ≤ 1 ≤ β. The frame is an orthonormal bases if and only if α = β = 1. This is verified if
in (5.4) we set f = gn. If α > 1, then the frame is redundant and α can be interpreted as
a minimum redundancy factor [Mallat, 1999].

5.3.2 Frame Proof

Interestingly, one can prove that the retina-inspired family of vectors Φ ={

ϕk,j

}

1≤k≤n,1≤j≤m
, is a frame, where ϕk,j is given by eq. (5.2) based on frame theory

(see section 5.3.1). Thanks to this, we are able to reconstruct the input image by inverting
the retina-inspired filter.

Proposition 7. The family of vectors Φ is a frame, because there exist two scalars 0 <
α ≤ β <∞ such that:

α‖f‖2 ≤
m∑

j=1

n∑

k=1

|A(xk, tj)|2 ≤ β‖f‖2, (5.5)

where

α = minξk

{ 1

n

m∑

j=1

∣
∣
∣φ̂(ξk, tj)

∣
∣
∣

2}

> 0, (5.6)

β =
m∑

j=1

n∑

k=1

n∑

i=1

φ2(xk − xi, tj). (5.7)

Proof. This proof establishes that the non-separable spatiotemporal filter is a frame accord-
ing to [Kovacevic and Chebina, 2008]. First, we study the lower bound and next the upper
bound. We are going to show that the existence of the lower bound α strongly depends on
the temporal sampling rule.

• Lower Bound

First of all, we use the Parserval Theorem to transform the coefficients after the
retina-inspired filter in Fourier domain:

m∑

j=1

n∑

k=1

∣
∣
∣A(xk, tj)

∣
∣
∣

2
=

m∑

j=1

n∑

k=1

1

n

∣
∣
∣Â(ξk, tj)

∣
∣
∣

2

=
1

n

m∑

j=1

n∑

k=1

∣
∣
∣φ̂(ξk, tj)f̂(ξk)

∣
∣
∣

2

=
1

n

n∑

k=1

m∑

j=1

∣
∣
∣φ̂(ξk, tj)

∣
∣
∣

2∣∣
∣f̂(ξk)

∣
∣
∣

2
,

where ξk,∀k is the ordinary frequency which is by definition ξk = ωk/2π, where ωk is
the angular frequency. To succeed in the definition of the lower bound α we need to
prove that

m∑

j=1

∣
∣
∣φ̂(ξk, tj)

∣
∣
∣

2
6= 0,∀ξk, (5.8)
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which guarantees that the spectrum of the input signal will remain exactly the same
even after the retina-inspired transform.

Let us suppose by contradiction that there exists ξk such that

m∑

j=1

∣
∣
∣φ̂(ξk, tj)

∣
∣
∣

2
=

m∑

j=1

∣
∣
∣ϕ̂tj (ξk)

∣
∣
∣

2
= 0 ⇔

m∑

j=1

∣
∣
∣wcRc(tj)Ĝc(ξk) − wsRs(tj)Ĝs(ξk)

∣
∣
∣

2
= 0,

(5.9)

which means that
wcRc(tj)Ĝc(ξk) = wsRs(tj)Ĝs(ξk). (5.10)

Based on equation (4.8) one can show that ∀tj Rc(tj) 6= 0. In addition, the Fourier
transform of a Gaussian is again a Gaussian which means that ∀ξk, Ĝc(ξk) 6= 0 and
Ĝs(ξk) 6= 0. As a result, since wc, ws 6= 0 too, we can rewrite (5.10) as following:

Ĝc(ξk)

Ĝs(ξk)
=
wsRs(tj)

wcRc(tj)
, ∀tj. (5.11)

The left side ratio of eq. (5.11) is constant ∀j because Ĝs(ξk) and Ĝc(ξk) do not
depend on time. However, the right side of eq. (5.11) is a function of time. Thus,
the rule of the temporal sampling has an impact on the right side ratio. Depending
on the temporal sampling rule, two different cases may occur:

Case 1: Let us suppose ∃(ti, tj) where ti 6= tj , such that:

wsRs(ti)

wcRc(ti)
6= wsRs(tj)

wcRc(tj)
. (5.12)

In this case, the right side ratio of eq. (5.11) is not constant ∀j thus, eq. (5.8) is true
and we conclude that there exists the lower bound α.

Case 2: Another possible sampling scenario results in eq. (5.13) which means that
∀j the temporal samples have been selected such that the ratio is a constant c:

wsRs(tj)

wcRc(tj)
= c, ∀j. (5.13)

This is the case when ϕ̂tj (ξk) = 0,∀k. We have proven in chapter 4 (see eq. (5.14))
that ∀j when ϕ̂tj (ω) = 0, there exist two roots ω0,j and −ω0,j given by:

ω0,j =

√

2

σ2s − σ2c
ln

(
Rs(tj)

Rc(tj)

)

⇔

ω0 =

√
2

σ2s − σ2c
ln (c).

(5.14)

Case 2.1 The lower bound α exists,

– If ω0 exists and ωk 6= ω0. That means that even if there exists a root the
sampling rule has discarded this root from the set of the angular frequencies ωk.
Consequently, the spectrum of the signal will remain the same.

– If ω0 does not exist, which also means that the spectrum keeps all its frequencies.



82 CHAPTER 5. INVERSE RETINA-INSPIRED FILTERING

Case 2.2 The lower bound α does not exist if ω0 exists and ωk = ω0. In this case
the spectrum changes. Thus, Φ is impossible to be a frame.

For the cases 1 and 2.1 we have proven that eq. (5.8) is true which means that the
lower bound is given as:

α = min
ξk

{ 1

n

m∑

j=1

∣
∣
∣φ̂(ξk, tj)

∣
∣
∣

2}

> 0.

• Upper Bound

We are using the Cauchy-Schwarz inequality to calculate the upper bound of the
non-separable spatiotemporal frame:

m∑

j=1

n∑

k=1

∣
∣
∣A(xk, tj)

∣
∣
∣

2
=

m∑

j=1

n∑

k=1

∣
∣
∣φ(xk, tj)⊛ f(xk)

∣
∣
∣

2

=

m∑

j=1

n∑

k=1

∣
∣
∣

n∑

i=1

φ(xk − xi, tj)f(xi)
∣
∣
∣

2

=
m∑

j=1

n∑

k=1

∣
∣
∣

n∑

i=1

ϕk,j(xi)f(xi)
∣
∣
∣

2

≤
m∑

j=1

n∑

k=1

(∣
∣
∣

n∑

i=1

ϕ2
k,j(xi)

∣
∣
∣

∣
∣
∣

n∑

i=1

f2(xi)
∣
∣
∣

)

=
( m∑

j=1

n∑

k=1

∣
∣
∣

n∑

i=1

ϕ2
k,j(xi)

∣
∣
∣

)∣
∣
∣

n∑

i=1

f2(xi)
∣
∣
∣

=
(∣
∣
∣

m∑

j=1

n∑

k=1

n∑

i=1

φ2(xk − xi, tj)
∣
∣
∣

)∣
∣
∣

n∑

i=1

f2(xi)
∣
∣
∣

= β
∥
∥
∥f
∥
∥
∥

2
.

5.4 Pseudo-inverse Frame

In Proposition 7 it is proven that the non-separable spatiotemporal filter is a frame hence,
the filter is invertible meaning that it is possible to reconstruct the input image. The
optimal reconstruction results are given when all the coefficients A(xk, tj) are available at
the final discrete time tm.

In practice, we need to solve the linear system A = Φf and reconstruct f̃ which accord-
ing to the Proposition 7 should be f̃ = f . At time tm, the exact estimation of f is given
by f̂tm according to:

f̃tm = (Φ⊤Φ)
−1

Φ⊤A, (5.15)

where Φ−1 denotes the inverse of a matrix Φ and Φ⊤ denotes its transpose. In the previous
section, we demonstrated that the retina-inspired filter Φ is a frame. As a result, we can
define as ΦTΦ its frame operator. According to [Conway et al., 1996], the frame operator is
bounded, invertible, self-adjoined and positive. Since ΦTΦ is invertible, it exists (ΦTΦ)−1.
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This is the last step to build the canonical dual frame of a frame Φ [Masmoudi et al., 2012,
Kovačević and Vetterli, 1992, Kovacevic and Chebina, 2008], which is necessary to have a
perfect decoding at time tm, and it is defined as (Φ⊤Φ)−1Φ⊤.

However, in practice it is impossible to compute the dual frame since the size of matrix
Φ is too big and this would be time consuming and resource demanding. One way to solve
this problem is to use the conjugate gradient descent which is one of the most efficient
iterative methods.

5.5 Conjugate Gradient

The conjugate gradient method solves the same linear system Φf = A by minimizing the
quadratic function [Shewchuk, 1994]:

y(f) =
1

2
fTΦf −AT f + c. (5.16)

The gradient of a quadratic form is defined as:

▽ y(f) =



















∂

∂f1
y(f)

∂

∂f2
y(f)

...

∂

∂fn
y(f)



















. (5.17)

There are two constraints which need to be verified to use the conjugate gradient to
solve the linear system Φf = A: the matrix Φ should be symmetric and positive-definite.
If Φ is symmetric then equation 5.16 reduced to:

▽ y(f) = Φf −A. (5.18)

In our case, the retina-inspired filter Φ is symmetric but not positive-definite. In order to
overcome this difficulty we multiply with its transpose ΦT . Now, the matrix Φ = ΦTΦ is
positive-definite so we alternate equation (5.16) into the following:

y =
1

2
fTΦf −AT

f + c. (5.19)

where A = ΦTA. Finally, what we need to solve is▽y(f) = 0 which corresponds to Φf = A.
For each iteration we need to estimate the residual r = A − Φf and the direction of the
gradient p which is perpendicular to the residual. We first initialize the solution we want
to estimate f̃0 = 0, the residual of each iteration r0 = A and the direction of the gradient
p = r0.

The maximum number of iterations is related to the size of the input signal (in our
case is n) and the quality of the reconstruction, so the convergence of the algorithm to the
optimal solution is related to the condition number of Φ (see Algorithm 1). An important
remark is that the Euclidean error ǫi which is computed for each iteration of the conjugate
gradient descent is a strictly decreasing function. As a result, it holds that ǫi > ǫi+1

[Gilbert and Nocedal, 1992].
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Algorithm 1 Conjugate Gradient Descent

1: Initialize:
f̃0 = 0

r0 = A
p0 = r0

2: for i = 1:Max Nbr Iterations do

3: ai ←
rTi−1ri−1

pTi−1Φpi−1

⊲ Compute the step length

4: f̃i ← f̃i−1 + aipi−1 ⊲ Update the solution

5: bi ←
rTi ri

rTi−1ri−1
⊲ Compute the gradient correction

6: pi ← ri + bipi−1 ⊲ Update the direction

7: if ǫi = ||A - Φ⊛ f̃i|| ≤ ε then ⊲ 1st Criterion

8: break;

9: end if
10: end for
11: return f̃i ⊲ The reconstructed image is fi

5.6 Numerical Results

This section illustrates some numerical reconstruction results. We tested 100 grayscale im-
ages of size n = 512×512 taken from the database USC-SIPI [Weber, 1977]. This database
contains different kinds of images including the standard in image processing, satellite im-
ages, portraits, textures, natural scenes, etc. The results we are going to illustrate later
on cover a big variety of input scenes. The reconstruction was achieved using the conju-
gate gradient descent of maximum number of iterations Max Nbr Iterations=100000. This
number was sufficiently large for all the experiments we run and by far smaller than the
maximum number of iterations the conjugate gradient method requires to provide the opti-
mal solution, which equals the size of the matrix (in our case n). In addition, the following
two stopping criteria are tested for each iteration:

ǫi = ||A− Φ⊛ f̃i|| ≤ ε, (5.20)

where ε = 10−20. If the above criterion comes true, the conjugate gradient descend algo-
rithm stops generating the reconstructed signal. The criterion ǫ measures the error between
the original retina-inspired decomposition and the one which occurs when the reconstructed
image f̃ is used. This is a necessary criterion which is used in case there is no a priori in-
formation about the original signal.

Fig. 5.1 shows three different kinds of images (portrait, object, texture) which were
retina-inspired filtered and they were reconstructed using all the frame coefficients. It also
illustrated the conjugate function for each iteration as a strictly decreasing function. The
first column of Table 5.1 shows the perfect reconstruction results for all the 100 images we
used from USC-SIPI. We compute the mean and the variance values of ǫ, the mean value of
the number of iterations which were necessary for the reconstruction and the mean PSNR
and SSIM values (see sections 2.3.1.2 and 2.3.1.3).
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Figure 5.1: Reconstruction of different kinds of images using the complete retina-inspired
frame, which consists of 150 layers. The top line depicts the original images, the middle line
illustrates the MSE, which is measured for each iteration until one of the three stopping
criterion (eq. (5.20)) will come true. The bottom line shows the reconstructed images.

5.6.1 Progressive Reconstruction

The retina-inspired filtering is a dynamic and invertible transform which performs accord-
ing to the OPL retinal layer. We have proven that using the complete retina-inspired frame
the reconstruction is perfect. However, the dynamic nature of the retina-inspired transform
raises some questions about the qualitative progress of the reconstruction results with re-
spect to time. Figure 5.2 shows the progressive reconstruction of a still-image which has
been filtered by the retina-inspired transform, when only few of the decomposition layers
participate to its synthesis.

The results show that even a small number of decomposition layers also leads to a
perfect reconstruction. This is obvious due to the nature of the retina-inspired filter which
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consists of some decomposition layers which are lowpass filters (see section 4.3). However,
this scenario will never be used in practice not only due to the noisy inputs but also because
of the quantization which is necessary in compression.

Original Baboon
Picture

512× 512 pixels

t = 10ms
PSNR = 277.18 dB

SSIM = 1

t = 100ms
PSNR = 282.49 dB

SSIM= 1

t = 150ms
PSNR = 28.19dB

SSIM = 1

52th Foreman
Picture

512× 512 pixels

t = 10ms
PSNR = 272.29dB

SSIM = 1

t = 100ms
PSNR = 283.64dB

SSIM= 1

t = 150ms
PSNR = 282.5523dB

SSIM = 1

Figure 5.2: (a) Progressive Reconstruction of the baboon image of the size 512×512 pixels
for different time interval. (b) Progressive Reconstruction of the 52nd picture of the size
512×512 pixels of the very well-known foreman video stream for different time intervals.

5.6.2 Additive White Gaussian Noise

We have represented some numerical results about retina-inspired decomposition and re-
construction in absence of noise. However, this scenario is not at all realistic since the
visual scene is always noisy due to the eye movements. As a result, we would like to study
the impact of noise both in decomposition and reconstruction results. As we have already
noticed in chapter 4 even though the first decomposition layers include almost all the in-
formation about the input signal, their scale is too low (10−12). As a result, it is expected
that the presence of noise will influence them.

We tested the Additive White Gaussian Noise (AWGN) η(xk),∀k, which is a kind of
random additive white noise. The white noise has a constant Power Spectral Density (PSD)
which describes how the power P of the signal x is distributed over frequencies and it is
defined as the square of a signal:

P = lim
T→∞

∫ T

−T
|x(t)|2dt (5.21)

The white noise is a stationary signal which is determined by the unchanged Joint
Probability Distribution (JPD) when it is shifted in time. Consequently, the parameters
like mean µ and variance σ2η do not change in time. The AWGN is a special case of white
noise when there is a normal distribution of a zero mean. Thus, in discrete domain, the
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Figure 5.3: Reconstruction of noisy retina-inspired decomposition. The quality of each
reconstruction is measured using the PSNR metric which decreases while the range of the
noise increase.

AWGN is a discrete signal whose samples are regarded as a sequence of serially uncorrelated
random variables with zero mean (µ = 0) and finite variance σ2η.

The AWGN is applied to the retina-inspired transformed signal A(xk, tj) as following:

Aη(xk, tj) = A(xk, tj) + η(xk)

= φ(xk, tj)⊛ f(xk) + η(xk)
(5.22)

The spread of a Gaussian distribution changes with respect to its variance. In case of
the AWGN, the higher the variance, the stronger the impact of the noise to the signal.
Thus, if σ2η is too small, the impact of the noise will be imperceptible. However, in case of
a large σ2η the noise will influence almost all the spectrum of the input signal. Figures 5.5
and 5.6 illustrate 5 retina-inspired decomposition (for t1 = 1 ms, t2 = 30 ms, t3 = 60 ms,
t4 = 90 ms and t5 = 120 ms) of plane and lena images for 4 different scenarios: 1) no
noise, when variance of the AWGN equals 2) σ2η = 25, 3) σ2η = 100 and 4)σ2η = 104. The
numerical results show that the first decomposition layers are completely blurred due to the
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Figure 5.4: Reconstruction of noisy retina-inspired decomposition. The quality of each
reconstruction is measured using the PSNR metric which decreases while the range of the
noise increase.

noise for all the three different cases. This happens due to the very small range of the first
decomposition layers (≈ 10−12). Concerning the rest of the layers the impact of the noise
is related to the range of each layer. When the range of a layer is small, a strong AWGN
enables to blur the signal (see the last row of Figures 5.5 and 5.6 ). However, if the range
of the layer is high (see the second row of Figures 5.5 and 5.6) even a strong noise AWGN
(i.e. right column where σ2η = 104) would be unable to dramatically change the amplitude
of the signal.

Figure 5.3 and 5.4 show the reconstruction results based on the noisy decomposition
layers. We measured the quality of the reconstruction using the PSNR and the SSIMmetrics
(see section 2.3.1.2 and 2.3.1.3). According to the values of the two metrics, while noise
increases the quality of the reconstruction decreases. However, not only the PNSR results
but also the visual quality of the reconstructed images confess that the the redundancy of
the retina-inspired frame is efficient enough to allow low distortion. Figure 5.7 illustrates
the mean PSNR and SSIM rates versus the different noise scenarios. Table 5.1 shows
the reconstruction results of the 3 different noisy scenarios applied to the set of 100 images
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Figure 5.5: Decomposition of the plane image using the retina-inspired non-separable spa-
tiotemporal filter for a bio-plausible set of parameters wc = ws = 1. From the left to the
right: The first column corresponds to the decomposition of no noise (σ2η = 0), the next
ones include noise of the following variance σ2η = 25, σ2η = 100 and σ2η = 104. From the top
to the bottom: t1 = 1 ms, t2 = 30 ms, t3 = 60 ms, t4 = 90 ms and t5 = 120 ms.



90 CHAPTER 5. INVERSE RETINA-INSPIRED FILTERING

t1

t2

t3

t4

t5

t

2

4

6

8

10

12

14

x 10
−12

−20

−15

−10

−5

0

5

10

15

20

 

 

100 200 300 400 500

100

200

300

400

500
−40

−20

0

20

40

 

 

100 200 300 400 500

100

200

300

400

500

−400

−200

0

200

400

 

 

−2000

0

2000

4000

6000

8000

−2000

0

2000

4000

6000

8000

 

 

100 200 300 400 500

100

200

300

400

500

−2000

0

2000

4000

6000

8000

 

 

100 200 300 400 500

100

200

300

400

500

−2000

0

2000

4000

6000

8000

 

 

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

 

 

100 200 300 400 500

100

200

300

400

500 −5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

 

 

100 200 300 400 500

100

200

300

400

500 −5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

 

 

−1500

−1000

−500

0

500

−1500

−1000

−500

0

500

 

 

100 200 300 400 500

100

200

300

400

500 −1500

−1000

−500

0

500

 

 

100 200 300 400 500

100

200

300

400

500

−1000

−500

0

500

 

 

−300

−200

−100

0

100

−300

−200

−100

0

100

 

 

100 200 300 400 500

100

200

300

400

500
−300

−200

−100

0

100

 

 

100 200 300 400 500

100

200

300

400

500

−400

−200

0

200

400

Figure 5.6: Decomposition of lena images using the retina-inspired non-separable spatiotem-
poral filter for a bio-plausible set of parameters wc = ws = 1. From the left to the right:
The first column corresponds to the decomposition of no noise (σ2η = 0), the next ones
include noise of the following variance σ2η = 25, σ2η = 100 and σ2η = 104. From the top to
the bottom: t1 = 1 ms, t2 = 30 ms, t3 = 60 ms, t4 = 90 ms and t5 = 120 ms.
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taken from USC-SIPI database. As expected, while the variance of noise increases the mean
PSNR and the SSIM values decrease. On the other hand, even for a strong AWGN noise
(σ2η = 104) these values still remain sufficient high which guarantees high reconstruction
quality.

Range of Noise : No Noise σ2η = 25 σ2η = 100 σ2η = 104

Mean ǫ 1.7368 × 10−16 1.3513 × 103 7.1874 × 103 4.1677×106
Variance ǫ 3.8134 × 10−33 1.2810 × 107 3.1500 × 108 6.4219 × 1012

Mean Iterations 748 145 102 25

Mean PSNR 281.42 63.85 58.47 43.08

Mean SSIM 1 0.9067 0.9011 0.8513

Table 5.1: Reconstruction results using the inverse retina-inspired frame. The results rep-
resent 4 different scenarios of noise: 1) no noise, 2) σ2η = 15, 3) σ2η = 100 and 4) σ2η = 104.
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Figure 5.7: (a). PSNR rate vs Noise. The x-axis corresponds to the range of noise and the
y-axis is the PSNR value. (a). SSIM rate vs Noise. The x-axis corresponds to the range of
noise and the y-axis to the SSIM values. (For this experiments we test the 7 2 01.tiff and
the lena.tiff images taken from the USC-SIPI database, both of the size 512 × 512 pixels.)

5.7 Conclusion

In this chapter, we have mathematically proven that the retina-inspired filter is a frame
according to the frame theory. We show the existence of the lower and the upper bounds
of the frame and we provide their exact formulas. According to the frame theory, it means
that the retina-inspired transform is invertible. Thus, we proposed a pseudo-inverse recon-
struction model. However, due to the high computational cost of this method, in practice
we used an alternative and more efficient computationally algorithm, the conjugate gradient
for reconstruction.

We also illustrate some numerical results which guarantee that the reconstruction using
all the retina-inspired frame coefficients is perfect. Last but not least, we introduced some
AWGN to the retina-inspired decomposition in order to be more realistic and to show the
impact of noise on the reconstruction quality. Concerning the decomposition, we observed
that the very first decomposition layers which are lowpass filtered are completely blurred
due to their low intensity range. However, the reconstruction quality even in presence
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of AWGN is not dramatically decreased. This is due to the redundancy of the retina-
inspired filter. In fact, we show that the distortion rate is influenced due to the presence
of noise however, the quality metric PSNR gives promising results comparing the usual
measurements in compression (≈ 30dB).



Part III

DYNAMIC QUANTIZATION
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Motivation

In this part we aim to reduce the spatiotemporal redundancy of the retina-inspired frame
in order to efficiently compress the input signal into a binary code. This is necessary
in lossy compression as we have already introduced in chapter 2 section 2.1.2. A very
well-known model to eliminate some meaningless coefficients is the static dead-zone scalar
quantizer which was introduced in 2.4.3.3 and it is used in conventional coding principle
(see Fig. 5.8 (a)). This model performs well for static transforms. However, as we have
explicitly introduced in chapter 4 the retina-inspired transform is a dynamic filter which
should be dynamically encoded. Thus, in this chapter, we are motivated to improve the
performance of a static dead-zone scalar quantizer being inspired by the dynamic encoding
which happens inside the Ganglionic Layer (GL) of the retina by the ganglion cells (see
Fig. 5.8 (b)).

The ganglion cells progressively receive the electrical current which has been generated
into the previous retina layers (OPL and IPL). These cells are responsible to dynamically
build a code of sequence of spikes (spike trains). This code is propagated to the next layers
of the visual pathway. There have been proposed several models which approximate the
generation of this code. In chapter 6, we represent some of these models focusing on the
two most important ones, the Rank Order Coder (ROC) and the Leaky Integrate and Fire
(LIF). These two models are very different each other although, both of them share some
common assumptions for instance, about the importance of the information which is hidden
at the time the first spike of each neuron is emitted. First of all, the ROC model is a static
model, while the LIF is a dynamic one. In addition, the LIF model is mathematically better
defined comparing to ROC especially concerning the reconstruction process. As a result,
the LIF model enables a perfect reconstruction of the input signal based on its output,
which is the code of spikes, if the observation window is very large. Hence, in terms of
compression, it seems that the LIF model would be more accurate to be used.

Chapter 6 is an introduction to the most famous and widely used neuroscientific mod-
els which describe the spiking generation mechanisms of neurons. We also discuss under
which assumptions these models were built. In addition, once the neural code is built, we
present how this code is interpreted and linked to the input signal. Comparing different
interpretation ways we conclude that the model which enables the best matching of the
firing rate to the input stimulus is the LIF. In chapter 7, we release of novel dead-zone
quantizer which is based on the LIF model. Under some assumptions, we propose how to
approximate the LIF by a dead-zone scalar quantizer which enables the progressive recon-
struction of the input signal under some time limitations. The novel quantizer is called
retina-inspired quantizer or LIF dead-zone quantizer or LIF Quantizer (LIFQ). There are
four different models of the retina-inspired quantizer, the perfect-LIFQ, the uniform-LIFQ,
the adaptive LIFQ and the optimized-LIFQ depending on the step which is chosen for the
quantization of each decomposition layer. We provide results concerning the above models
of LIFQ and we prove that the optimized-LIFQ outperforms not only the other LIFQs but
also the standards JPEG and JPEG2000 for bitrates higher than 1 bpp.
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Figure 5.8: Motivation of the dynamic encoding. (a) Conventional coding principle which
consists of a static quantization. (b) Generation of spike trains according to the dynamic
generation of spikes based on the LIF model. (c) Retina-inspired coding principle based on
the LIF model.
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6.1 Introduction

This chapter is an introduction to the physical role of the ganglion cells which belong to
the GL retina layer. These cells are the only retinal neurons which are able to produce a
neural code of electrical impulses (spikes). This code is sent to the visual cortex of the brain
to be further analyzed. The aim of the retina coding is to transmit enough information
about the input stimulus on the retina to allow the identification of objects and events.
This information can be locally conveyed by analog electrical mechanisms, but over long
distances it should be encoded into spatiotemporal spike trains which are generated by
a population of neurons. This structure is more efficient not only to prevent any lose of
information but also to accelerate the speed of the transmission.

We are interested in exploiting the generation of spikes and consequently the code of
spikes. Generally, the firing rate is considered to be a stochastic process. There have been
proposed many models which approximate the statistical link between the input signal and
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the code of spikes. Some of these models consider the ganglion cells as an interconnected
network. This network produces some strong non-linearities in the way the spikes are
generated for a given input signal. These non-linearities are very important to be included
in a mathematical model which approximates the neural behavior even if their complexity
is high. However, there are also other models which assume that neurons spike individually.
On the one hand, these models are not very reliable but on the other hand, their complexity
is lower and the way they link the stimulus and the sequence of spikes is much easier to be
interpreted.

In this thesis, we are interested in adopting a model which describes how the neurons
spike in the conventional coding principle (see Fig. 5.8). This model will reduce the
spatiotemporal redundancy of the retina-inspired transformed input signal by generating
the code of spikes. This code will be used to reconstruct the input signal with the minimum
possible distortion. Thus, we need a system which allows to interpret the code of spikes by
providing a link between the input signal and the firing rate. As a result, it seems that the
second group of models where the neurons are considered to be independent (independent
spike hypothesis) is easier to be adapted in a such a codec. This is the first attempt of
image coding with neurons.

Through the prism of the independent spike hypothesis, there are several ways in which
neuroscientists modeled the generation of spikes. The firing rate can be computed based on
the Michaelis-Menten function (see section 6.3.1.1). Generally, the input signal is supposed
to be described by the “mean firing rate” of the ganglion cells. A quick glance at the
experimental literature shows that once the firing rate is generated there are different
counting methods to compute the mean firing rate. Averaging the rate over time or over
different repetitions or over a population of neurons are some possible ways to compute a
rate code. It is clear, however, that these approaches neglect almost all the information
which is possibly contained in the exact timing of the spikes. A strong argument to avoid
this kind of codes is that the brain activity is very fast. Thus, it is impossible to produce
a high number of spikes which allows the temporal averaging. In addition, the brain is
unable to encode multiple times the same event under the same circumstances in order to
average the firing rate. However, the rate codes have been widely used in literature and
they deserve a short discussion in this thesis (see sections 6.3.1).

Another coding schema is based on the exact time each neuron emits its first spike.
This time carries all the necessary information about the input such that even if the neuron
continues to spike the rest of the spikes can be neglected. This time code is more efficient
comparing to the rate codes especially if one considers the time constraint which is imposed
for the propagation of the signal from the retina to the brain. To build such a time code
we should imagine that a neuron is inhibited just after the release of its first spike. Since
a neuron spikes only once then, it is clear that all the necessary information is conveyed
by the time instead of the number of neurons (see section 6.3.2). The same assumptions
with the time code shares also the rank code while instead of the delay of the the arrival of
the first spike, the rank code computes the order the neurons spike (see section 6.3.3). In
section 6.4 we compare the performances of the rate, time and rank codes under the time
constraint in order to conclude which one interprets the spikes in the best way allowing the
most faithful reconstruction of the input stimulus. Last but not least, this chapter finishes
with section 6.5 which is dedicated to some related works in compression where spikes were
also used.

6.2 Ganglion Cells

The morphology and the functional type of ganglion cells have been established long ago.
Ganglion cells belong to the GL retina layer. They receive a signal from bipolar and
amacrine cells which are parts of the OPL and IPL retina layers respectively. The ganglion
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cells are the most distinctive retina neurons in terms of biochemical markers and their den-
drites architectures are dramatically variable from species to species - while this variation
is not seen for the cells which belong to the OPL. As a result, the taxonomy of the cells
has been very challenging [Masland, 2011].

6.2.1 Morphology

The ganglion cells have a receptive field which is organized as two concentric circles. There
are ON-center and OFF-center ganglion cells. ON-center ganglion cells are activated when
a spot of light falls into the center of their receptive fields, whereas OFF-center ganglion
cells fire in response to light falling on their fields’ periphery leaving their center dark (in
terms of simplicity, for the rest of this thesis we will only refer to the ON-center cells).
Ganglion cells have also a receptive field with a Mexican-hat shape (modeled with a DoG),
reflecting their integration of opposing information about centers and surrounds. Electrical
recordings show that several types of ganglion cells do not have concentric organization,
especially in animals whose eyes lack of fovea. This includes most non-mammalian species
and mammalian species that have retinas with visual streaks.

In mammalian species there exist very small ganglion cells which are called midget
ganglion cells, because of their tiny dendrite trees exist inside the mammalian fovea. Fovea
is a tiny dimple in the retina which consists of smaller in size but very compact number
of cones. When the light falls onto one of these cones which is connected in a one-to-one
ratio with a single midget bipolar and the last one with midget ganglion cell, it relays
point-to-point image- very sharp and brilliant copy of the input visual signal - to the brain
[Kolb, 2004].

6.2.2 Functionality

In [Adrian, 1926, Adrian, 1928], the author was the first one who saw that an individual
neuron is able to emit a spike. In addition, he specified that there is no other information
which is propagated to the brain except for the time of spikes. The input signal which
reaches a single neuron is able either to generate an action potential driving the neuron to
spike, or to keep the neuron in silence. Secondly, another important remark of Adrian was
that the intensity of the stimulus is indicated by the rate (or otherwise the frequency) of
spikes. Thus, the higher the intensity of the stimulus, the higher the firing rate. This is the
idea of rate coding (measuring the number of spikes within a fixed time window). Last but
not least, the third discovery of Adrian was that while the stimulus is constant, the spike
rate begins to decline. This is called adaptation and is an approach which is used in order
to describe the phenomenon of becoming unaware of a constant stimulus basing on the
history of the stimulation. Adrian’s experiments on neural coding consist a large fraction
about what we know about spikes which is the language of the brain [Rieke et al., 1999].

In the visual system, the rate coding is at first produced by ganglion cells in GL and it
indicates the strength of the stimuli. Ganglion cells are the only retina cells which are able
to emit spikes. However, it has been shown in [Thorpe and Imbert, 1989] that the neurons
in primate brain are able to respond selectively 100-150ms after the stimulus is offset. In
addition, 150 ms is enough to categorize a complex visual scene which was never seen before.
Given that, there are approximately 10 different processing layers in the visual pathway
between the photoreceptors and the visual cortex with an average processing time for each
layer about 10ms [Perrett et al., 1982] (see Fig. 6.1). Given that, the cortical neurons
rarely fire with a rate above 100Hz, meaning that each individual neuron fires either none
or one spike. The processing speed is a strong constraint concerning the firing rate of
neurons. Under this constraint some famous spike generation models, like the rate codes,
become probably too inefficient to account the rapid information transmission. However,
we are going to explain in the following sections that, without this constraint, these models
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Figure 6.1: Visual pathway chain. This representation aims to represent the different
processing layers into the visual pathway and it does not correspond to the real structure
of these processing steps. In addition, studying the visual pathway is out of the scope of
this thesis.

manage to eliminate noise over a large number of repetitions and produce a reliable rate
code [Heeger, 2000]. Nevertheless, as we will explain in section 6.4, since the time constraint
eliminates the reliability of the rate codes, people seek for other solutions like the time or
the rank codes which seem to encode the input stimulus more reliably.

6.3 Spike Generation Models

The retina is a multilayer structure which takes as an input the visual stimuli I(x, t) where
x ∈ R2, t ∈ R and transforms it into a group of spikes. This emission of spikes happens
inside the GL layer of the retina which consists of the ganglion cells. The emission of spikes
in ganglions and their individual physical role has been overlooked during the last decades.
In the early experiments of Adrian and Hartline, the response of a neuron was measured by
counting the number of the emitted spikes in a fixed time observation interval following the
onset of the input stimulus. In modern experiments one repeats the same stimulus many
times in order to average the spike trains. However, it has been observed that the spike
trains are not identical, which means that there is a degree of randomness in the neural
response.

Due to the high number of possible spike sequences, we should rely on some statistical
models that allow us to estimate the probability of an arbitrary spike sequence occurring,
given our knowledge of the responses actually recorded. A firing rate r(t) determines the
probability of firing a single spike in a small interval around the time t. This rate, r(t) is
not in general a sufficient information to predict the probabilities of spike sequences. In
reality, there is a statistical dependency between the spikes, since the presence of a single
spike could effect the generation of another one. This dependency is due to the connection
of the neurons which form a network that allows them to exchange information with each
other. This is why a precise neural model should not consider neurons as individual cells. In
that sense, a spike was seen as the mean to transfer faster over long distances a continuous
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graded signal coming from the prior to ganglion cells. However, in such a case the theoretical
framework to describe the generation of spikes was assigned either to complex non-linear
dynamic models (i.e the Hodgkin-Huxley, FitzHugh-Nagumo, Mainen-Sejnowski, etc) which
modeled the spikes as fast oscillations or to non-linear systems (i.e Gerstner, Izhikevich,
etc) which approximate the spikes as explosions in finite time.

6.3.1 Rate Codes

To overcome the complexity of these non-linear systems and for interpretative reasons of the
spikes, people assumed that each neuron is independent. The output of a spiking neuron is
its firing rate. However, the time each neuron produces its spike train for a given stimulus
is highly irregular. This irregularity might arise from some stochastic forces [Heeger, 2000].
In this case, the irregular interspike intervals reflect a random process and imply that
an instantaneous spike rate (mean firing rate) can be obtained either by averaging the
spikes of an individual neuron (spike count), or by averaging the firing rate over multiple
repetitions of the same experiment (spike density) or by averaging the pooled responses of
many individual neurons (population activity) [Gerstner and Kistler, 2002] (see Fig. 6.3).
One way to compute the firing rate for a given input stimulus is to use the Michaelis-Menten
function.

6.3.1.1 Michaelis-Menten Function

The Michaelis Menten function (see Fig. 6.2 A) is described as following:

r(I) =
aI

(b+ I)
, (6.1)

where r is the firing rate, I is the input contrast intensity, a is the maximum firing rate
and b the intensity for which the firing rate is a/2. Based on the above model, the mean
interspike interval or the delay, d(I), between two spikes could be computed as:

d(I) =
1

r(I)

= dref +
b

aI
,

(6.2)

where dref = 1/a is the refractory period when each neuron remains silent after the emission
of the spike i and before the emission of the spike i + 1. The best coding scheme to
transmit the mean firing rate would be by a regular spike train with intervals d(I). However,
in practice this is impossible due to the interspike irregularities. The irregularities are
considered as noise which is modeled using the Poisson process. Applying the Poisson
process on the theoretical firing rate r(I), one is able to obtain the spike train and build
a rate code based on the average number of spikes. The smaller the number of the dref ,
the higher the benefit any of the three different rate codes because the neuron will spike
its maximum rate a. Thus, the Poisson process estimates an accurate firing rate when the
number of spikes is high (see Fig. 6.2 B). If the firing rate is independent of time then, the
homogeneous Poisson process is used whilst, in different case, we use the in-homogeneous
Poisson process.

6.3.1.2 Rate as a Spike Count

The definition of the rate which computes the mean firing rate rm of a single neuron (see
Fig. 6.3 (a)), counting the number of spikes n within an observation window T is given as
following:

rm =
n

T
. (6.3)
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r

r

I

Figure 6.2: (A) Theoretical firing rate as a function of the input contrast. Michaelis-Menten
function, parameters a/b=2000, dref = 0.005. (B) Distribution of firing rates as derived
from the distribution of contrast levels, calculated over more than 3000 natural images
(extracted from [Rullen and Thorpe, 2001]).

6.3.1.3 Rate as a Spike Density

The second case of rate code is illustrated in Fig. 6.3 (b), where given an input signal the
mean firing rate is given by:

rm(t) =
1

∆t

nK(t; t+∆t)

K
, (6.4)

where K is the number of repetitions (in our example K=3), nK(t; t + ∆t) is the number
of spikes measured between time t and t+∆t. The number of spikes which are counted in
[t, t+∆t] is called spike density.

6.3.1.4 Rate as a Population Activity

The last rate code we are going to introduce is based on a population of neurons. The
number of neurons within the brain is huge. Ideally, the neurons with the same properties
should belong to the same population. Thus, the spikes of the population m should be sent
to the population n. The mean population activity if depicted in Fig. 6.3 (c) and it is given
by:

rm(t) =
1

∆t

nact(t; t+∆t)

N
, (6.5)

where N is the number of neuron in the population and nact(t; t+∆t) is the number of the
active neurons within the interval t and t+∆t. In all the above scenarios, the precise time
of an individual spike contains little information.
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Figure 6.3: Rate Codes. (a) It concerns the mean firing rate of a single neuron. (b) It
depicts the counting process of the mean firing rate over K = 3 repetitions of the same
experiment. The higher the number of repetitions, the better the approximation of the input
signal. Obviously, in this examples the estimation is poor because of the small number of
repetitions. (c) This is an example of averaging the number of spikes over a population of
N = 9 neurons for a given subinterval ∆t.

6.3.2 Time Code: Leaky Integrate and Fire (LIF)

This section describes a time coder which stands under the assumption that the infor-
mation which is hidden in each individual spike (the arrival time and/or the interspike
interval) is sufficient to describe the input stimulus. Thus, the fastest a spike arrives, the
strongest the visual stimuli. Of course, this rule has been proposed under a strong assump-
tion that the neurons have a local sensitivity. This is true also in auditory systems for
which the arrival time of a spike is used to estimate the distance of the auditory stimuli
[Poggio and Koch, 1986]. In addition, according to [Meister and Berry, 1999], the retina
is designed to eliminate redundancy. Thus, even if there is an overlap between ganglion
cells it is considered to be relatively small. In fact, the overlapping happens but it takes
place between different types of ganglion cells which means that each cell has a different
functionality.

The LIF model [Gerstner and Kistler, 2002] is a very well know model which has been
widely used in literature [Rieke et al., 1999, Wohrer et al., 2009, Masmoudi et al., 2013,
Lazar and Pnevmatikakis, 2011, Jolivet et al., 2004, Cardarilli et al., 2013]. As it is already
mentioned, the LIF model approximates the neural spiking mechanism. The basic circuit
LIF model is given by:

I(t) =
V (t)

R
+ C

dV

dt
, (6.6)

where I(t) is the input current, C the membrane capacitor of a neuron which is in parallel
with the resistor R and V (t) is the voltage across the resistor. If we multiply eq. (6.6)
by R, we introduce the time constant τm = RC of the leaky integrator. This yields the
standard form:

τm
dV

dt
= V (t) +RI(t). (6.7)

Whenever, the membrane potential of a neuron crosses a threshold θ, where θ > 0, the
neuron spikes. The moment the neuron spikes is called firing time. For a given threshold θ
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a neuron spikes according to the following law:

if V (t) ≥ θ and V (t) > 0⇒ tf = t, (6.8)

where tf is the firing time of a neuron. Immediately after the emission of a spike the
potential is reset to a value Vr < θ. Since spikes are stereotyped events, i.e. with nearly
identical shapes, they are fully characterized by their firing time.

Lets assume that LIF is applied to the input of a ganglion cell, which is constant for a
given time T :

I(t) = I01[0≤t≤T ](t), (6.9)

where 1 is the indicator function which is equal to 1 if 0 ≤ t ≤ T , and 0 otherwise. The LIF
has a double role: first of all, it sets a threshold θ which is the first criterion to decide if the
coefficient will spike or not. Hence, if the value exits the threshold, the neuron will spike
otherwise, it will remain silent. Secondly, the LIF generates the spike train which encodes
the input signal I0. This spike train requires the estimation of the delay d(I0) between
each two sequential firing times ti, ti+1. This delay is the same for each spike of the spike
train including the first one. This is obvious since after each spike a neuron is set to Vr
and the firing process is repeated. In addition, the delay strongly depends on the intensity
I0. Thus, the stronger the input signal, the faster the emission of spike of the first spike
which results in a small delay. On the contrary, a weak input signal requires large trigger
time in order to spike. Assuming that the first spike arrives at time t1, the trajectory of
the membrane potential can be found by integrating eq. (6.7) with the initial condition
V (t1) = 0 (see eq. (6.10)):

V (t) = RI0

[

1− exp(− t− t
1

τm
)

]

. (6.10)

The asymptotic value RI0 in eq. (6.10) determines the generation of the spikes: if
RI0 ≤ θ there is no spike, otherwise a spike arrives. The membrane potential reaches again
the threshold θ at time t2, which can be found from the threshold condition V (t2) = θ (see
eq. (6.11)).

θ = RI0

[

1− exp(− t
2 − t1
τm

)

]

. (6.11)

Solving eq. (6.11) with respect to the delay t2 − t1 of the second spike, we derive a general
formula for the delay given a constant input signal:

d(I0) = −τm ln

[
RI0 − θ
RI0

]

. (6.12)

The LIF is an efficient model which also enables to take into account the refractory
period of a neuron. Let suppose that a neuron spikes with a delay d(I0) for a given
constant input stimulus I0. Without any refractory period the firing rate of the neuron
is r = 1/d(I0). However, after the emission of each spike there is an interval dref during
which the neuron is unable to emit any spike. The definition of the firing rate r including
dref is given by:

r =
1

dref + d(I0)
. (6.13)

The refractory period is out of the spectrum of this research. The only reason it is
mentioned is to justify the reliability of the LIF model comparing to Poisson process which
violates this neural feature. After neglecting the refractory period and simplifying the
circuit notation, given a constant input value v for a given threshold θ, the delay d(v) is
given by:

d(v) =







+∞ if v < θ,

h(v; θ) = −τm ln

[

1− θ

v

]

if v ≥ θ. (6.14)
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v1 = RI1

v2 = RI2

v3 = RI3

where I3 > I2
d(v3) d(v2)

tobs t

θ

Figure 6.4: This figure illustrates the LIF model without any refractory period dref . For
a given observation window tobs and threshold θ, if the intensity I > θ, the neuron spikes
(i.e. I2, I3) otherwise it remains silent (i.e. I1). The higher the intensity of the input v
is (I3 > I2 which also corresponds to v3 > v2), the faster the first spike will be emitted
(d(v3) < d(v2)) and the most compact the spike train will be. For this experiment the
potential just after the emission of a spike is Vr = 0.

Figure 6.4 illustrates an examples of the LIF model for three different inputs v1(t), v2(t)
and v3(t) where |v1(t)| > |v2(t)| > |v3(t)|. For a given threshold θ, the intensities v1(t) > θ
and v2(t) > θ are able to spike, so we are able to compute the delays d(v1) and d(v1) which
correspond to the time the first spike appears. In addition, since the amplitude of v1(t) is
higher than v2(t), the delay d(v1) < d(v2). Consequently, the firing rate of v1(t) will be
more compact than the one of v2(t). In contrast to v1 and v2, the third intensity v3(t) < θ
remains silent and its spiking delay d(v3) ≈ ∞.

6.3.3 Rank Code

Another coder which shares the same assumption with the LIF is the rank coder. The
importance of the first spike plays also a key role to build this code. Once again, each
contrast intensity is associated to a specific spike train. The arrival time of the first spike
within a spike train depends on the intensity of the input stimulus I. Then, the contrast
intensity is linked to the arrival rank of the first spike: a stronger stimulus corresponds to a
fast arrival of a spike (low rank) while a weak stimulus results in a late or no response (high
rank). Let I1 and I2, where I1 < I2 two different input intensities which are the inputs of
two neurons i and j, where i 6= j respectively. Then, the rank R of neuron j will be lower
than the rank of neuron i (Ri > Rj). Each rank R is linked to a weight w(R). The stronger
the stimulus, the higher the weight (w(Ri) < w(Rj)). These weights were adjusted with a
Look-Up-Table (LUT), which allows to look-up for the most likely intensity value with a
given rank. This Look-Up-Table was experimentally defined after testing several grayscale
images [Thorpe and Gautrais, 1998, Rullen and Thorpe, 2001, Perrinet et al., 2004].
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6.4 How to interpret the spikes?

In this thesis, we are interested in building a codec which encodes and decodes an input
stimulus using (and/or interpreting) spike trains. Thus, it is important not only to be able
to produce a code of spikes but also it is necessary to use this code in order to reconstruct
the input stimulus with the minimum distortion (see chapter 2, section 2.3.1). As a result,
we need to interpret the spike trains. We have represented different coding schemes each
one of which is efficient under different circumstances and constraints. In fact, the time
constraint for a video codec is imposed due to the time T that a picture f(x) of a video
stream is flashed (the definition of a video stream f(x, t) as a sequence of N pictures f(x)
is given by eq. (2.22) in chapter 2). Hence, we need to use a coding scheme which performs
well to this constraint.

According to [Thorpe et al., 2001], the rate codes are efficient when the observation
window is sufficiently large resulting in a high number of spikes. However, under some
processing speed constraints the interpretation of the spike train could be very poor. The
reason is that for a very small observation window each neuron will be able to emit only
one or none spike. Thus, counting only one or none spike is impossible to estimate a good
firing rate. Fortunately, the rate coding is not the only coding schema. There exist the time
and the rank codes which are more adapted to the time constraints. In the next section, we
compare the rate, rank and time codes in terms of how faithfully they are able to represent
the input stimulus.

Table 6.1 shows two examples of contrast intensities which are encoded by each coder
under the time constraint. In the first example, the activation membrane threshold is
θ1 = 100 whilst in the second one it is θ2 = 9. In other words, if the intensity is higher than
the threshold the neuron will fire, otherwise it will remain silent. The reconstruction quality
using the count rate code is impossible to be high, because the range of the input signal is
roughly assigned to only two possible values. Even if one converts the counting process into
a binary code where the emission of a spike is encoded using “1” and the silence using “0”
the representation of the input stimulus would be also weak. The reason is simple, every
intensity of the input stimulus will be labeled as spiking or silent using the counting code
and “1” or “0” using the binary code (see Table 6.1). As a result, using these coders we
will not be able to distinguish and recover the different input intensities.

The code of spikes could be more informative than the ones given by count and binary
coders if one uses the rank encoder. If we focus only on the first example of Table 6.1,
the rank coder computes a unique rank for each different intensity. As explained above,
the higher the intensity the lower the rank. Consequently, one would expect that using the
LUT each rank should be mapped to the correct intensity. However, if we now compare the
rank code between the two examples it would be easy to conclude that the rank is exactly
the same for two different intensity values. Thus, the reconstruction based on a unique
LUT will be poor at least for one of the two examples. This LUT is the basic drawback of
the rank encoder. The LUT has been built using a group of images with similar statistical
properties. Hence, if these properties are different, the LUT will fail to match each rank to
the correct reconstruction intensity.

Last but not least, it seems that the most accurate model is the time coder which
encodes the delay of spike arrival. This delay is related to the intensity of the input signal.
As a result, a high intensity would lead to a short delay and vise versa. An important
remark is that the time coder requires an a priori knowledge concerning the time origin in
order to compute the delay. Comparing the two intensity examples of Table 6.1 the time
coder calculates a distinct delay value for each different intensity. Therefore, each delay will
be able to correctly reconstruct the input intensity. The above comparison concludes that
the LIF model is the most accurate encoder which allows to interpret the code of spikes
and find out the best link between the interspike arrival and the input intensity.
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Example 1 Example 2

Intensity Count Binary Rank Time

155 spike 1 3 18

202 spike 1 2 13

220 spike 1 1 11

112 spike 1 4 22

99 - 0 0 0

Intensity Count Binary Rank Time

10 spike 1 3 122

19 spike 1 2 111

20 spike 1 1 110

9 spike 1 4 129

8 - 0 0 0

Table 6.1: In this Table we present two sets of contrast intensities which are encoded by
4 different coders. The threshold for the left sequence is θ1 = 100 whilst for the right
is θ2 = 9. The count coder reports if the input intensity is equal/higher the threshold
resulting in the emission of spike or not. Similar code is generated by the binary coder with
the difference that if a neuron fires, this is coded by “1” otherwise by “0”. The rank coder
encodes in which order the intensities trigger the neurons to spike. Last but not least, the
time coder encodes the delay each intensity requires to activate a neurons. Comparing the
two examples only the time coder enables to generate a unique code for each intensity.

6.5 Spikes in coding systems

During the last years, the usage of spikes as a mean to encode an input stimulus has
gained a lot of interest. Spikes have been used in many different scientific fields like vision
sensors, brain implant, scene recognition, compression, etc. The event-based Dynamic
Vision Sensor (DVS) silicon retinas are some postprocessing devices which use asynchronous
spikes to eliminate the redundancy between the pictures of a video stream and track motion
[Lee et al., 2014]. Some recently released spine and brain implants are able to stimulate
lumbar spines and recover paralyzed monkeys enabling them walking again. In fact, these
implants record electrical signals (spikes) from the motor cortex. These signals are decoded
and translated into commands in order to be sent to other electrodes implanted in the
monkeys’ lumbar spines and stimulate again the injured spinal cord allowing the monkeys
natural movement commands to use their legs again.

In this thesis, we are interested in compression algorithms thus, we are going to provide
some more details about related coding systems which are based on spikes. Thorpe was the
first one who tried to build a codec, named as Rank Order Coder (ROC), based on spike
trains in order to prove that a very small number of spikes is enough to identify objects
and events inside a scene. Masmoudi et al noticed that Thorpe’s model was very close to
the coding principle which is used in image processing. Thus, they tried to improve any
of its limitations and enhance the mathematical background by proving that not only the
encoding but also the decoding pathway exists (see section 6.5.2). Time Encoding Machine
(TEM) is another interesting codec which uses spikes based on the LIF model in order to
faithfully reconstruct video streams (see section 6.5.3) [Lazar and Pnevmatikakis, 2011].

6.5.1 Rank Order Coder (ROC)

The ROC model was proposed by Thorpe [Thorpe, 1990] as a complete architec-
ture of coding and decoding natural images. The ROC model [Thorpe, 1990,
Thorpe and Gautrais, 1998, Rullen and Thorpe, 2001] is a bio-plausible generator and de-
coder of spikes (Fig. 6.5). The first step of the ROC model is the convolution of a still
image, f(x), with a spatial DoG pyramid given by:

Ak(x) = DoGk(x)
x∗ f(x), (6.15)

where DoGk(x) is given by eq. (3.16), x ∈ R2,
x∗ denotes the spatial con-

volution and k is the layer index. Each layer k of this pyramid approxi-



108 CHAPTER 6. GENERATION OF SPIKES

mates a scale of the Center-Surround (CS) structure of the OPL cells (photorecep-
tor, horizontal and bipolar cells) [Rullen and Thorpe, 2001, Thorpe and Gautrais, 1998,
Wohrer and Kornprobst, 2009]. Thorpe assumed that all the layers are fed simultaneously
to the neurons in order to spike.

f(x) Ak(x) = DoGk(x)
x

∗ f(x)

Figure 6.5: ROC encoding architecture: the input signal is transformed, then the firing
rate deduced from the transformed signal is used to produce random spike trains. Each
spike train is a Poisson process.

Let A(x) = (A1(x), . . . , AL(x)) be the input of the ROC model. Each contrast intensity
Ak(xi), where xi with i = 1, . . . , n is a given location, is converted into a spike train by a
specific spiking neuron. For this purpose, the firing rate r(Ak(xi)) of the spiking neuron
is given by the Michaelis-Nenten formula (see eq. (6.1)). Thorpe used a Poisson process
to produce the spike train which encodes Ak(xi). The Poisson process is a probabilistic
mechanism known to induce noise on the precise timing of the firing events. Each contrast
intensity is associated to a specific spike train. The arrival time of the first spike within a
spike train depends on the intensity of the coefficient Ak(xr) (see section 6.3.3). Thorpe
argued that only 1% of the total number of spikes is enough to identify the input scene.
Of course, the goal of the ROC was far from compression algorithms meaning that Thorpe
did not aim to use spikes in order to decode the input signal with the minimum distortion.

6.5.2 Extension of ROC

The architecture of ROC model motivated Masmoudi et al to build the first bio-inspired
coding system [Masmoudi et al., 2010]. However, they had to face ROC’s limitations and
detect possible solutions in order to first of all, improve its performance and secondly,
prove that the decoding pathway is mathematically stable. First of all, the authors in
[Masmoudi et al., 2012] proved that the spatial DoG pyramid is invertible introducing a
rectification function (see details in 3.4.2). In addition, they improved the performance of
the rank encoder proposing a different way to generate the LUT. As explained in section
6.4, the LUT of ROC was experimentally defined for a set of images of a given range. As a
results, this LUT was impossible to be used for images of different range. Masmoudi et al
proposed to create a LUT which is directly linked to the range of the input stimulus. This
LUT ensures that the reconstruction values which are assigned at each rank will be close
enough to the original input values.

6.5.3 Time Encoding Machine (TEM)

An interesting codec which is based on Integrate and Fire (IF) model was proposed by Lazar
et al in order to faithfully reconstruct an input stimuli [Lazar and Pnevmatikakis, 2011].
The IF model is similar to the LIF without the leakage term. The new codec is called
Time Encoding Machine (TEM) and it is illustrated in Figure 6.6. The TEM is applied to
video streams f(x, t) (see eq. (2.22) in chapter 2) which belong to Ξ; a set of band-limited
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functions. The video stream is first filtered by a kernel hm : R 7→ RN for all neurons
m,m = 1, 2, . . . ,M and then it is biased by a constant amount +(−)b, which guarantees
that the signal will be a positive (or negative) increasing (decreasing) function of time:

A(x, t) = [A1(t), A2(t), . . . , AM (t)]

=
[
(h1 ∗ v)(x, t) + b1, (h2 ∗ v)(x, t) + b2, . . . , (hM ∗ v)(x, t) + bM

]T

= (h ∗ v)(x, t) + b,

(6.16)

where T denotes the transpose. Each term of the transformed results is the input of the
IF model Am(t) = ImGang(t), which is also called by the authors “t-transform” and it is
responsible to estimate the relation between the input and the output tmk of the TEM
which denotes the spike train. This transform depends on a threshold θm = κmδm, where
κm is an integration constant and +(−)δm an excitation (inhibition) threshold:

∫ tm
k+1

tm
k

ImGang(u)du = qmk = θm − bm(tmk+1 − tmk ), (6.17)

for all k ∈ Z and all m,m = 1, . . . ,M . The authors showed that the “t-transform” can be
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Figure 6.6: Time Encoding Machine [Lazar and Pnevmatikakis, 2011].

written as an inner product:

〈v, φmk 〉 = qmk , (6.18)

where φmk = h̃
m∗g∗1[tm

k
,tm
k+1

], where h̃
m is the involution of hm and g(t) = sin(Ωt)/πt is the

impulse response of a lowpass filter with a cut-off frequency Ω. They also proved that the
new function φmk is invertible based on frame theory [Kovačević and Vetterli, 1992] which
means that a faithful reconstruction can be achieved.

6.5.4 A/D Bio-inspired Converter

The authors in [Masmoudi et al., 2013] proposed a novel Analog to Digital (A/D) converter
which consists of more reliable models concerning the neuroscientific background (i.e. the
A/D converter used LIF instead of IF or ROC) and produces synchronous spikes instead of
asynchronous which were used in TEM. The primary goal of the A/D converter is to reduce
the bitrate encoding a scalar value which corresponds to the interval each spike arises. This
is more efficient than encoding the exact spike arrival time which is a float number and
requires higher number of bits to be encoded.

Generally the A/D converter uses the LIF model to generate the spike trains and the
rate coding to encode the spike trains. For a given observation window [0, tobs], where
0 ≤ tobs ≤ T , the authors generated the spike train of each neuron and then, they counted



110 CHAPTER 6. GENERATION OF SPIKES

Coder Decoder

A1

A2

AK

Ã1
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Figure 6.7: A/D converter using spikes.

the number of spikesNs. This number increased while the observation window tobs increases.
The intensity of the input was strictly related to the number of spikes due to the LIF model.
Thus, the higher the intensity, the higher the density of the firing rate. In this case, even for
a small observation window tobs the number of spikes will be higher for the more informative
inputs. The A/D converter was the first complete encoding/decoding bio-inspired system.

Figure 6.7 shows how the A/D converter is applied to the input signal. The input
image f(x) is decomposed into several subbands Ak with 1 ≤ k ≤ K due to the Invertible
Spatiotemporal DoG Pyramid which was introduced in section 3.4.3 (see eq. (3.19)). The
authors applied the LIF model to each subband for a given observation window tobs and
they counted the number of spikes Ns each one of the intensities produced. Since, several
different intensities may emit the same number of spikes, they assigned this number of
spikes to the full range of these intensities. Moreover, each number of spikes is linked to a
unique reconstruction value which was used in order to reconstruct all the input intensities
which emitted this number of spikes. The number of spikes and its reconstruction value
are saved to a LUT which is used in the decoding pathway.

6.6 Conclusion

This chapter was an introduction to the Ganglionic Layer (GL) of the retina tissue where the
ganglion cells generate the retinal code. We presented different coding schemes to interpret
the code of spikes like the rate, rank and time coders. Under the limitations of time the
comparison of all these models showed that the time coder performs better in terms of how
faithful the representation of the input signal is. A very well known neuromathematical
model for time coding is the LIF which assumes that the time of the first spike arrival is
the necessary information which enables to interpret the code of spikes and reconstruct a
faithful representation of the input signal. According to the last section of this chapter,
the LIF model is a good candidate which has been already used in compression schemes in
order to encode in a bio-plausible way the input stimulus.

The above study was necessary for the next chapter of this thesis which is related to
the retina-inspired quantization model. We aim to use the LIF model in order to build a
dynamic quantizer inspired by the spiking mechanism of neurons. Generally, as we have
already discussed the goal of this thesis is to build a retina-inspired video codec which
adopts neuromathematical models proposed in order to explain how the retina transforms
and encodes the visual stimulus. In chapter 4, we introduced the retina-inspired filtering



6.6. CONCLUSION 111

which approximates the OPL retina transformation. We have also proven in chapter 5 that
this filter is invertible thus, it is suitable to be used in the coding principle (see Fig. 5.8). To
integrate the retina-inspired codec we seek for neuromathematical encoding models which
allow to reconstruct an accurate copy of the input signal interpreting spikes. To our point of
view, the LIF model seems to be an efficient candidate to be adopted in the retina-inspired
codec.
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LIF Quantizer

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 LIF Quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Decoding spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.2 Dead-zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.4 Perfect-LIF dead-zone Quantizer . . . . . . . . . . . . . . . . . . . 120

7.2.5 Uniform-LIF dead-zone Quantizer . . . . . . . . . . . . . . . . . . 121

7.2.6 Adaptive-LIF dead-zone Quantizer . . . . . . . . . . . . . . . . . . 127

7.2.7 Optimized-LIF dead-zone Quantizer . . . . . . . . . . . . . . . . . 131

7.3 Progressive Reconstruction . . . . . . . . . . . . . . . . . . . . . 135

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Introduction

According to the conventional coding principle (see section 2.2, Fig. 2.2), the necessary
steps in compression are the transformation, quantization and entropy coding. In this
thesis, we aim to build a retina-inspired coding principle (see Fig. 2.20). The retina-
inspired transformation has been already presented in the chapter 4. It has been also
proven in chapter 5 that this transform is a frame according to the frame theory hence, it
enables a perfect reconstruction of the input signal. However, the retina-inspired frame is
very redundant both in space and time. In conventional coding principle the redundancy is
reduced using quantization (see section 2.4.3.3). The already existing quantizers are static,
meaning that they should be applied to the full retina-inspired frame. In that sense, the
dynamic properties of the retina-inspired filtering are eliminated.

In this chapter, we propose a retina-inspired quantizer being motivated by models which
approximate the generation of the neural code, which is a code of spikes. These models
are supposed to dynamically encode their input signal. In chapter 6, we have described
several models which approximate this neural coding, the most efficient and accurate of
which is the LIF (see section 6.3.2). Here, we aim to link the neuroscientific LIF model
with the conventional quantization. This connection results in the construction of a retina-
inspired quantizer, which is termed as LIF dead-zone quantizer or LIF-quantizer or LIFQ.
We also explain how the LIFQ is applied to the retina-inspired frame in order to reduce its
redundancy.

Depending on the value of the quantization step, we propose three different kinds of
LIFQ: the first one is called perfect-LIF dead-zone quantizer or perfect-LIFQ which is

113
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similar to the Integrate and Fire (IF) or Threshold And Fire (TAF) model. It is called
perfect because a threshold θ is the only criterion to discard some intensities; coefficients
above the threshold remain the same. Another more advanced model is the uniform-
LIF dead-zone quantizer or uniform-LIFQ. In this model, the intensities which exit the
threshold θ are quantized using a given quantization step q which is unique for all the
decomposition layers. In addition, we present the adaptive-LIF dead-zone quantizer or
adaptive-LIFQ, which adapts the value of the quantization step with respect to the energy
of each decomposition layer. We first propose some experimental evolution of the value
of the quantization step for each subbands, before we introduce the optimization of the
bit-allocation method which tunes the quantization step according to the energy of each
subband (see details in section 2.3). This is called optimized-LIF dead-zone quantizer or
optimized-LIFQ. We present some numerical results to defend the efficiency of all the LIFQ
models and we compare the performance of the retina-inspired codec, when it is applied to
a still-image, to JPEG and JPEG2000 standards. Last but not least, we introduce some
progressive reconstruction results where there is a progressive increase of the number of the
retina-inspired decomposition layers which appear and are involved in the reconstruction.
These results are important to show the improvement of the reconstruction quality with
respect to time.

7.2 LIF Quantizer

In this section, we approximate the LIF using the dead-zone scalar quantizer
which is a very well-known model in compression domain (see section 2.4.3.3)
[Bhaskaran and Konstantinides, 1997, Taubman and Marcellin, 2002, Richardson, 2011].
Our motivation is to find out a way to assign spikes into intensity. We recall the def-
inition of the LIF (see eq. (6.14)), without any refractory period dref , which has been
introduced in details in section 6.3.2:

d(v) =







+∞ if v < θ,

h(v; θ) = −τm ln

[

1− θ

v

]

if v ≥ θ. (7.1)

In the LIF model, each spike is described by its arrival delay d(v). In addition, this
delay is strongly related to the intensity v of the input. The arrival of the first spike for
each input intensity corresponds to its magnitude. For instance, a high intensity will spike
sooner than a lower intensity. As explain in chapter 6, the LIF is a temporal coder thus,
it is based on the assumption of the importance of the first spike. However, let us suppose
that the decoder “receives” the output of the LIF after an infinite observation window tobs.
As a result, each intensity will produce a spike train of a high density. This density is
related to the delay of the first spike (see Fig. 6.4 in section 6). The density is described
by the number of spikes Ns which is given by:

Ns =
⌊ tobs
d(v)

⌋

, (7.2)

The number of spikes depends on three parameters: the intensity of the input signal
v, the value of threshold θ and the observation time tobs. For given θ and tobs the higher
the intensity v, the smaller the delay d(v). Moreover, the higher the value of θ, the less
the number of the ganglion cells which are going to spike. Last but not least, the longer
the observation time tobs is, the more the spikes each ganglion cell is going to emit. In this
thesis, we are interested in coding and decoding a video stream. As a result, the code of
spikes should enable the reconstruction of the input intensity.
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7.2.1 Decoding spikes

For the ideal scenario that the observation window is very large, the number of spikes Ns

which is emitted for each different input intensity v will be efficient to precisely approximate
the delay d̃(v) according to the following formula:

d̃(v) =
tobs
Ns

. (7.3)

Based on the general formula of the LIF model which is recalled in the beginning of this
section, if one knows the delay d(v) is able to recover the input intensity v. Consequently,
if we know the approximation of the delay d̃(v), we will manage to reconstruct an approx-
imation of the input intensity using the function h−1(·; θ) which is the inverse function of
h(v; θ):

ṽ = h−1(d̃(v), θ). (7.4)

Figure 7.1 shows the reconstruction results based on the number of spikes which have
been produced according to the LIF model for different values of threshold θ. In our
experiments we have tuned the parameters such that the observation window that each
subband is encoded will be tobs ∈ {0.3, 1, 10} ms. We observe that for very high values of
θ only few of the ganglion cells are supposed to emit a spike, while at the same time the
number of spikes of the higher intensity inputs is low. In such a case, the reconstruction
encloses the contours of the scene which is enriched with some texture when the value of θ
decreases. In fact, the value of θ is inversely related to the percentage of the total number
of coefficients p which are activated. The lower the threshold, the higher the number
(percentage %) of neurons which spike.

As explained in chapter 6, there have been already some attempts to use spikes in image
and video compression algorithms. The LIF model was used as a spike generation mech-
anism which converts the input signal into spikes. Thus, each input intensity corresponds
to a spike train. Counting the number of spikes, the authors in [Masmoudi et al., 2013]
managed to reconstruct the input intensity. In fact, the authors managed to assign the
number of spikes into intensity values using LUT. The accuracy of this reconstruction was
related to the observation window tobs. If we assume that an input intensity should be
encoded and decoded within tobs, the larger the observation window, the higher the num-
ber of spikes which allows a better estimation of the input intensity value. Masmoudi et
al in [Masmoudi et al., 2013] proposed that the LIF model and the counting process could
be approximated by the A/D converter (see section 6.5.4). This converter is a quantizer
which evolves in time from a uniform to a non-uniform mode. In other words, a given input
intensity enables the dynamic generation of spikes during an observation window tobs. High
intensity values correspond to high density spike trains which means high number of spikes.
On the other hand, low values correspond to sparse codes of small number of spikes. The
higher the number of spikes is, the better the approximation of the input signal.

According to the above analysis, it is easier to understand why the authors in
[Masmoudi et al., 2013] approximated the LIF model by an A/D converter. This encoding
process of counting the number of spikes is equivalent to a quantizer with a non-uniform
quantization step (see Fig. 7.2). For a given observation window tobs, the different input
intensities are going to be quantized by the number of spikes. The higher the intensity, the
more accurate the quantization.

We are also interested in approximating the LIF model by a dead-zone scalar quantizer
Q∗

q in order to be well adapted to the compression systems. We recall the formula of the
uniform dead-zone quantizer which was introduced in section 2.4.3.3 (see eq. (2.32)):

Q∗
q(v) = sgn(v)qmax

(

0,

⌊ |v| − θ
q

+ 1

⌋)

,
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PSNR = 12.8632 dB
SSIM = 0.2016
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SSIM = 0.5436

PSNR = 15.8593 dB
SSIM = 0.4123

PSNR = 12.8208 dB
SSIM = 0.1956

PSNR = 19.0364 dB
SSIM = 0.6833

Figure 7.1: Decoding spikes based on equations (7.3) and (7.4). The figure illustrates
reconstruction results for different values of p and tobs.

where v is the input signal, sgn(v) is the sign of the input value, θ is half the dead-zone
and q the quantization step. The following section introduces an important contribution
with respect to the dead-zone of the quantizer. We show that the dead-zone is related to
the time constraint which is imposed by the input signal.
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Input v

Output ṽ

q

q1

q2

θ

Figure 7.2: A/D converter as a non-uniform quantizer. For a given observation window
tobs, high intensities will be encoded better than the lower intensities using the LIF model.

7.2.2 Dead-zone

As explained before, for every coefficient v < θ the emission of spike is forbidden. Thus,
this group of coefficients remains silent. As a result, a dead-zone is necessary to set to
zero all the coefficients which are kept in silence due to the threshold θ. In addition, the
dead-zone should also takes under consideration that the image is flashed for a given time
T (see Proposition 1 in chapter 4). Thus, we assume that there is a maximum delay dmax

during which the image should be reconstructed and we have chosen this delay to be related
to the time the image is flashed, i.e. dmax = T . In addition, since each image is decomposed
into n subbands, there is a delay dobs during which each subband should be encoded. This
delay equals the observation window dobs = tobs of each layer and it could be also given by:

dobs =
dmax

n
(7.5)

For a given intensity v of a subband, according to the properties of h(v; θ), satisfying
the observation delay dobs is equivalent to encode only the values v whose intensity is larger
than λ = h−1(dobs; θ) where h

−1(·; θ) is the inverse function of h(v; θ). A short calculation
shows that:

λ = λ(dobs) =
θ

1− exp

(

−dobs
τm

) , (7.6)

which involves that λ > θ. For a given dobs and since τm is a constant, λ depends on θ (see
Fig. 7.3). As a result, the LIFQ is now given by:

Qq(v) = sgn(v)qmax

(

0,

⌊ |v| − λ
q

+ 1

⌋)

, (7.7)

where λ is half the dead-zone.
Figure 7.4 represents how the LIF dead-zone quantizer (LIFQ) is applied to the retina-

inspired frame. It describes that each decomposition layer Atj is the input of the LIFQ,
Qqj , with quantization step qj. For each input retina-inspired frame coefficient A(xk, tj),
the output is the quantized value Aq(xk, tj) = Qq(A(xk, tj)). There are several possible
architectures to be studied but we have decided to apply the Qq to each retina-inspired
decomposition layer.

7.2.3 Quantization

In this section, we explain why the quantization is necessary to approximate the LIF model.
The LIF model assigns an input intensity v to a unique time delay d(v) and/or number of
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Figure 7.3: Delay d(v) as a function of v: the quantization dead-zone [0, 2λ] is imposed by
dobs for different λ ∈ {λ1, λ2, λ3} and θ1 < θ2 < θ3. Thus, for a given intensity v none of
the neurons will be able to spike if d(v) ≥ dobs. For a given value of θ, while dobs increases,
λ turns to θ.
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Figure 7.4: Retina-inspired quantizer LIFQ applied to the retina-inspired frame.

spikes Ns (see eq. (7.1) and (7.2) respectively). If one knows the delay d(v) of the first
spike and/or the number of spikes Ns, using the h−1(d; θ) function, he can approximate the
input intensity ṽ. Lets now have a closer look at the estimation of the delay d̃(v). For a
fixed observation window tobs the delay is given by:

d̃(v) =







∞, if Ns = 0 and v < θ

tobs
Ns

if Ns > 0 and v ≥ θ.
(7.8)
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As a result d̃(v) ∈
{

∞, tobs
1
,
tobs
2
, . . . ,

tobs
k
. . .

}

. Consequently, due to eq. (7.4) the recon-

structed value ṽ is going to be given by:

ṽ =







0, if d̃(v) =∞

h−1(d̃(v), θ) if d̃(v) <∞.
(7.9)

Thus, ṽ ∈
{

0, h−1

(
tobs
1
, θ

)

, h−1

(
tobs
2
, θ

)

, . . . , h−1

(
tobs
k
, θ

)

, . . .

}

. Figure 7.5 explains

how the LIF model can be approximated by a quantizer. For a given input value which is
below the threshold v ≤ θ, there will be no spike emitted Ns = 0, which means that the
delay d̃(v) → ∞. In such a case, all the values which belong to c0 = {v | tobs < d(v)} will
be encoded by the value ṽ0 = 0. Let us now suppose that only one spike arrives for the
input signal, Ns = 1. Based on eq. (7.3) it means that d̃(v) = tobs. All the input values

which belong to the interval between tobs and
tobs
2

will be decoded by the the value ṽ1. All

the input values which belong to the interval between
tobs
3

and
tobs
2

will be decoded by the

the value ṽ2, etc. Finally, one could define the cluster or in other words the quantization
intervals as following:

c0 = {v | d(v) > tobs}

ck =

{

v | tobs
k + 1

< d(v) ≤ tobs
k

}

, ∀k ∈ N+.
(7.10)

An interesting remark related to the observation window tobs is that the higher the value
of tobs, the smaller the size of the clusters, which leads to a higher precision in terms of
reconstruction. Equivalently, for a given tobs the higher v, the higher the precision of the
reconstruction.

0

v

d(v)

tobs

tobs
2
tobs
3

v = θ

ṽ0 ṽ1 ṽ2 ṽ3

c0 c1 c2

Figure 7.5: This figure introduces the notion of quantization in the LIF mode. Concerning
the number of spikes Ns, the model provides different clusters/quantization interval which
encode a group of input coefficients.

For a very large observation window tobs, the number of spikes Ns is large enough such
that it allows to perfectly reconstruct the delay d̃(v) ≈ d(v) and the input intensity ṽ ≈ v
according to Fig. 7.6 (a). This figure shows that half the dead-zone λ (see eq. (7.6))
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is the only criterion to discard some intensities. Intensities which are higher than λ will
remain the same. Concerning the LIFQ, the same behavior occurs when q ≈ ε, with ε very
small. Such a quantization step is interpreted by the number of spikes Ns1 which allows to
reconstruct ṽ1 close to the asymptote v = θ in Fig. 7.5. This quantizer is called perfect-
LIFQ and it eliminates some coefficients only with respect to λ. Now, if we reduce the
observation window, we introduce some quantization to the LIF model which is depicted in
Fig. 7.6 (b). Comparing this quantizer with the one of Masmoudi (see Fig. 7.2) the only
difference is with respect to the bounded dead-zone 2λ. Let us suppose that for a given
observation window tobs, one should encode the input intensities. High intensities should
be encoded better than the lower ones because ideally they would emit more spikes within
the observation window tobs. As a result, the quantization step should be adapted to the
intensity value. In literature, there is the Lloyd quantizer where its quantization levels are at
the center of mass of inputs probability density function between the corresponding decision
levels, while decision levels are averages of neighboring quantization levels.[Lloyd, 1982].

Input v

Output Qq(v)

λ

(a)

Input v

Output Qq(v)

q

q1

q2

λ

(b)

Input v

Output Qq(v)

q

q

λ

(c)

Figure 7.6: LIF dead-zone quantizer. (a) Perfect-LIF dead-zone quantizer, which discards
values below a threshold λ while the rest are perfectly encoded. (b) Ideal LIF dead-
zone quantizer where the quantization step varies according to the intensity of the input.
(c) Uniform-LIF dead-zone quantizer, where the quantization step is unique for a retina-
inspired decomposition layer.

In this thesis, in terms of simplicity, we first assume that all the coefficients of the retina-
inspired frame are quantized in the same way. Hence, we define a uniform quantization step
q (see Fig. 7.6 (c)). This model is called uniform-LIFQ because it uses a global quantization
step q for each layer (i.e. in Fig. 7.4 q1 = q2 = q3 = q4 = q5). Then, we extend the uniform-
LIFQ into the adaptive-LIFQ. The adaptive-LIFQ uses different quantization steps (i.e. in
Fig 7.4 q1 6= q2 6= q3 6= q4 6= q5) for each retina-inspired layer. This quantization step is
defined with respect to the evolution of energy and the bandwidth of each subband (see
section 4.4). We implement and compare the perfect-LIFQ, the uniform-LIFQ and the
adaptive-LIFQ to the LIF model. In addition, we propose the optimized-LIFQ where the
quantization step has been optimized with respect to the rate-distortion theory (see section
2.3).

7.2.4 Perfect-LIF dead-zone Quantizer

This section studies the performance of the LIF dead-zone quantizer when the quantization
step q → 0. The goal is to discover the impact of the dead-zone 2λ on the quality of
the reconstruction. We call this model perfect-LIF dead-zone quantizer because there is
no quantization (see Fig. 7.6 (a)). The perfect-LIFQ is similar to the well-known model
Threshold And Integrate (TAF). The TAF model takes as an input a sequence of coefficients
v and using a threshold θ if v ≥ θ it emits a spike otherwise (v < θ) it remains silent. The
intensities which are above the threshold are perfectly encoded. If we assume that the
dead-zone 2λ = 0 then, all the retina-inspired intensities will be able to spike. Moreover,
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under no quantization and having proven that the retina-inspired filter is a frame, such a
scenario would lead to the perfect reconstruction f(x) = f̃(x) which has been introduced
in Chapter 5. However, while the dead-zone 2λ increases, there will be less and less activate
coefficients thus, the reconstruction quality will be reduced.

The perfect-LIF quantizer model is a rough way to reduce the spatiotempo-
ral redundancy of the retina-inspired frame. Similar approaches were introduced in
[Thorpe et al., 2001, Masmoudi et al., 2012]. The authors proposed to eliminate some co-
efficients of their frames, keeping only the most informative ones, in order to study how
the quality of the reconstruction is influenced and what is the amount of the active co-
efficients one needs to identify the object in the input scene. The method proposed in
[Thorpe et al., 2001, Masmoudi et al., 2012] is completely equivalent to the Perfect-LIFQ
if one considers that the value of λ is also inversely related to the percentage of coefficients
p. Figure 7.7 shows some reconstruction results of perfect-LIFQ for different values of the
threshold λ. The smaller the λ, the higher the percentage of the active coefficients. From
the top to the bottom, Figure 7.7 illustrates the reconstruction results of cameraman image
when p corresponds to 0.5%, 1%, 5%, 10% and 100% of excitatory coefficients. We compare
the performance of the perfect-LIFQ when it is applied to the retina-inspired frame and
other decomposition schema. The left column of Fig. 7.7 shows results of the perfect-LIFQ
when it is applied to Thorpe’s spatial DoG Pyramid (see section 3.4.1), the middle column
corresponds to Masmoudi’s spatiotemporal DoG pyramid (see section 3.4.2) and the right
column illustrated the reconstruction results when the perfect-LIF quantizer is applied to
the retina-inspired frame.

To evaluate the quality of the reconstruction we measure the PSNR value in dB (see
section 2.3.1.2). Although, the PSNR results are lower in our case compared to the values of
Thorpe’s andMasmoudi’s, one is easy to observe that the visual quality of the reconstruction
in our case is higher. Starting from low to high p values (very small to large half the dead-
zone λ) the first two approaches result in very blurred versions of the original signal which
are enriched in details. However, the retina-inspired way performs differently: the basic
contours of the objects of the scene are detailed even for small p values. In addition,
when p increases there is a gain in the texture of the scene until we reach the perfect
result. These results where obvious, since the higher intensities belong to the retina-inspired
decomposition layers which are more assigned to the higher frequencies instead of lower
frequencies. However, the low frequency copies of the signal belong to the very first retina-
inspired decomposition layers which are of small intensities.

We have tested the perfect quantizer to 100 grayscale images of a size n = 512 ×
512 pixels, taken from the USC-SIPI database [Weber, 1977]. For a single image, the
amount of time the algorithm needs in order to filter, quantize and reconstruct the input
image is ≈ 20 sec using MATLAB running on a laptop with a 2.6 GHz Intel Core i7
processor, 8 GB 1600 MHz DDR3 memory and NVIDIA GeForce GT 650M 1024 MB
graphics card. Table 7.1 shows some interesting results about the MSE which decreases
while the amount p of the coefficients which are used for the reconstruction increases. This
behavior leads the PSNR value to an exponential increasing rate (see Fig. 7.8 (a)). Except
for the PSNR we confirm the efficiency of the combination of the retina-inspired filter and
the perfect-LIF quantizer computing the SSIM which also increases while p decreases (see
Fig. 7.8 (b)).

7.2.5 Uniform-LIF dead-zone Quantizer

In this section, we study the uniform-LIF dead-zone quantizer which performs according to
Figure 7.6 (c) based on a uniform quantization step q. The smaller the quantization step
is, the better the approximation of the intensity of the signal. One way to interpret the
strong assumption of the uniform-LIFQ is to consider that the length of the observation
window tobs is inversely related to the intensity. The higher the intensity, the smaller the
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10%

100%

p

PSNR = 19.2 dB PSNR = 19.5 dB PSNR = 7.19 dB

PSNR = 20.4 dB PSNR = 20.8 dB PSNR = 12.94 dB

PSNR = 24.8 dB PSNR = 25 dB PSNR = 16.79 dB

PSNR = 25.8 dB PSNR = 27.5 dB PSNR = 20.8 dB

PSNR = 27.9 dB PSNR = 296 dB PSNR = 281.98 dB

Figure 7.7: Reconstruction of an image using the perfect-LIF quantizer applied to Thorpe’s
DoG pyramid filter bank (left column), Masmoudi’s spatiotemporal DoG pyramid (middle
column) and the retina-inspired frame (right column). From the top to the bottom: The
value of p increases corresponding to 0.5%, 1%, 5%, 10% and 100% of the total number of
coefficients.



7.2. LIF QUANTIZER 123

Percentage
p

0.5% 1% 5% 10% 100%

Mean
of ǫ

8.50 × 109 1.17 × 1010 1.26 × 1010 5.15 × 109 1.73× 10−16

Variance
of ǫ

6.02 × 1020 1.52 × 1021 2.09 × 1021 3.69× 1020 3.81× 10−33

Average Nbr
of Iterations

7 8 10 12 748

Average
PSNR

17.66 18.2 21.65 25.06 281.42

Average
SSIM

0.10 0.16 0.43 0.64 1

Table 7.1: This Table shows the relation between the percentage of coefficients which par-
ticipate to the reconstruction and the mean PSNR and SSIM metrics when the perfect-LIF
quantizer is used. For these experiments we used 100 grayscale images of a size 512×512 pix-
els taken from the USC-SIPI database [Weber, 1977]. The value variable ǫ represents the
Euclidean error which is measured during the conjugate gradient (see Algorithm 1) in
chapter 5.
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Figure 7.8: This figure depicts the (a) PSNR and (b) SSIM metrics which evaluate the
reconstruction results using the perfect-LIF quantizer. These are the average PSNR and
SSIM values of 100 grayscale images of 8 bpp and size 512×512 pixels taken from the USC-
SIPI database. For these experiments, we first applied to each image the retina-inspired
filtering, the perfect-LIF quantizer and the retina-inspired reconstruction.

observation window. As a result, if the quantization step is small, every intensity will be
encoded precisely. Otherwise, the estimations will be rough. We should remark that to be
able to reduce the redundancy of the retina-inspired frame, the quantization step should
be correspondent to most of the decomposition layers. Consequently, the uniform-LIFQ
will completely discard the very first retina-inspired decomposition layers which are of a
very low energy and process the rest of the layers according to their energy. This is reliable
because the first layers are not able to activate the neurons due to their low energy.

To prove the efficiency of this model we show that using the PSNR metric, the number of
bits required to reconstruct an image of quality > 30 dB is lower than 1 bpp. Consequently,
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Figure 7.9: Reconstruction results using the uniform-LIF quantizer for different quan-
tization steps q and widths of the dead-zone 2λ. From the top to the bottom, q =
{1400, 1000, 600, 200, 1} and from the left to the right, p = {100%, 70%, 40%, 10%}.
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Figure 7.10: Uniform-LIFQ tested on 100 images taken form USC-
SIPI database [Weber, 1977]. We compute the mean PSNR for dif-
ferent values of quantization step q and half the dead-zone λ (q ∈
{1400, 1200, 1000, 800, 600, 400, 200, 100, 50, 40, 30, 20, 10, 5, 4, 3, 2, 1} and λ is controlled by
the % of neurons p).
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Figure 7.11: Uniform-LIFQ tested on 100 images taken form USC-
SIPI database [Weber, 1977]. We compute the mean SSIM for dif-
ferent values of quantization step q and half the dead-zone λ (q ∈
{1400, 1200, 1000, 800, 600, 400, 200, 100, 50, 40, 30, 20, 10, 5, 4, 3, 2, 1} and λ is controlled by
the % of neurons p).

the retina-inspired quantization performs well in terms of compression. We first compute
the number of bits using the Shannon Entropy for each retina-inspired decomposition layer
which is introduced in Chapter 2 (see section 2.3.2). Then, we calculate the total entropy
Htotal which corresponds to the number of bits for the full retina-inspired frame according
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Figure 7.12: Uniform-LIFQ tested on lena image of a size 512× 512 pixels. PSNR
for different values of quantization step q and half the dead-zone λ. (q ∈
{1400, 1000, 600, 200, 100, 50, 10, 5, 1}. The value of λ is controlled by the % of neurons
p.)
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Figure 7.13: Uniform-LIFQ tested on lena image of a size 512× 512 pix-
els. SSIM for different values of quantization step q and dead-zone λ. (q ∈
{1400, 1000, 600, 300, 100, 50, 30, 10, 5, 1}. The value of λ is controlled by the % of neurons
p.)
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Htotal =
1

m

m∑

j=1

Hj, (7.11)

where Hj is the Shannon entropy given by eq. (2.10), j stands for each decomposition
layer and m is the total number of the layers. Figure 7.9 shows numerical results of the
uniform-LIF dead-zone quantizer for different values of p and q. It is easy to observe that
while the number of p increases the distortion between the original and the reconstructed
image decreases. The Shannon entropy is a nice approximation method of the bitrate but
we would like to provide some more accurate results in order to be comparable to standards.

Figures 7.10 and 7.11 show the performance of the uniform-LIFQ using the mean PSNR
and the mean SSIM values respectively, for 100 images taken from the USC-SIPI database
[Weber, 1977]. For a given dead-zone 2λ, while the quantization step decreases the mean
value of quality of the reconstruction results increases. Moreover, while the size of the
dead-zone decreases which means that the percentage p should increase, the quality also
increases.

Figure 7.12 and 7.13 illustrate the evolution of PSNR and SSIM respectively versus
Htotal in function of different quantization steps q and widths of the dead-zone 2λ. While
q decreases the quantity of the reconstruction increases, but what also gets higher is the
number of bits which are required in order to store the signal. However, interestingly, we
observe that the PSNR values are > 30dB for very low total entropy values (Htotal ≤1bits),
which means that an acceptable reconstruction quality required less than 1bit to be stored
while the original image would require 8bits to be stored. We also compare the performance
of the uniform-LIFQ with JPEG and JPEG2000 standards. To provide fair results, we
encoded raw grayscale images from USC-SIPI database using JPEG and JPEG2000. Then,
we calculated the bitrate Htotal just by dividing the total number of bits that each image
requires on the memory disk by the size of the image (n = 512 × 512 pixels).

Figures 7.14 and 7.15 compare the visual quality between the retina-inspired codec
with the uniform-LIFQ and the JPEG and JPEG2000 standards for the “low” and the
“medium” qualities. We do not provide any results concerning the “good” and “high”
qualities because our codec outperforms the standards. According to Fig. 7.14 (a) and (b),
our codec performs similarly to JPEG for very low bitrates while for higher bitrates the
quality of the reconstructed image measured by PSNR is higher with the retina-inspired
codec than JPEG (see Fig. 7.14(d) and (c)). The most interesting comparison is illustrated
in Fig. 7.15 where especially for low bitrates, one is able to extract more details concerning
the objects inside the living-room (i.e. the window and the flowers in the background, the
armchair and the furniture where the phone is placed, the contours of the room, etc.). Thus,
although our method provides lower PSNR values, the visual quality of the reconstructed
image allows to detect much more details than JPEG2000. Of course, while the bitrate
increases (see Fig. 7.15 (c) and (d)) the details also increase.

7.2.6 Adaptive-LIF dead-zone Quantizer

The strong assumption concerning the quantization step of the uniform-LIFQ drove us
to build the adaptive-LIFQ dead-zone quantizer. We propose that the quantization step
q should vary according to the energy of each retina-inspired decomposition layer. One
solution would be to encode more precisely the layers which enclose more data (i.e. the
layers which have been lowpass filtered, see chapter 4) than the layers which have been
bandpass filtered. Another solution would be to discard the lowpass decomposition layers,
because their energy is very small, and keep only the high energy layers. To develop this
method each decomposition layer j is linked to a weight wj which tunes the value of the
quantization step. We call this quantizer adaptive-LIFQ.
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(a)
JPEG

PSNR = 31.0993 dB
Htotal = 0.5798 bpp

“low” quality

(b)
Retina-inspired Codec
PSNR = 31.0257 dB
Htotal = 0.5821 bpp
p = 20% and q = 1200

(c)
JPEG

PSNR = 31.9132 dB
Htotal = 0.6713 bpp
“medium” quality

(d)
Retina-inspired Codec
PSNR = 36.0666 dB
Htotal = 0.6795 bpp
p = 20% and q = 800

Figure 7.14: Visual comparison between the retina-inspired codec with the uniform-LIF
quantizer and JPEG standard for “low” and “medium” qualities.
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(a)
JPEG2000

PSNR = 25.7915 dB
Htotal = 0.121 bpp

“low” quality

(b)
Retina-inspired Codec
PSNR = 18.8031 dB
Htotal = 0.192 bpp
p = 5% and q = 5000

(c)
JPEG2000

PSNR = 31.60 dB
Htotal = 0.3967 bpp
“medium” quality

(d)
Retina-inspired Codec
PSNR = 22.3693 dB
Htotal = 0.4462 bpp

P = 20% and q = 2500

Figure 7.15: Visual comparison between the retina-inspired codec with the uniform-LIF
quantizer and JPEG2000 standard for “low” and “medium” qualities.
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Figure 7.16: The figure shows the adaptive-LIFQ tested on lena image of a size 512×
512 pixels for the linear, exponential, logarithmic and Rc(t) weight cases. We compare
these results to four different cases of the uniform-LIF with q ∈ {5, 30, 200, 1400} and
p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}. In this experiment, each curve
which corresponds to the uniform-LIF quantizer corresponds to a given q for different p
values.

Some first results concerning the bit allocation between the retina-inspired decompo-
sition layers are shown in Figure 7.16. For these experiments we assume that for a given
decomposition layer j, the quantization step qj depends on the energy of each decomposition
layer with 4 different possible ways:

1. Linear: q(j) = j

2. Exponential: q(j) = exp(j)

3. Logarithmic: q(j) = log(j)

4. According to the temporal function Rc(t) (see eq. (4.3)): q(j) =
1

Rc(j)

Figure 7.16 shows results of PSNR vs the total Entropy, Htotal, using the adaptive-
LIFQ when q changes for each layer Atj . Concerning the width of the dead-
zone, it is tuned such that the percentage of coefficients which are active will be
p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}. According to the figure,
the optimal trade-off between the bitrate and the PSNR is given by the linear
case and the worst case is the exponential. We compare the adaptive-LIFQ with
the uniform-LIFQ of 4 different quantization steps q ∈ {5, 30, 200, 1400} and p ∈
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}. The uniform-LIFQ performs bet-
ter than the adaptive-LIFQ if one compares the PSNR values for given bitrates. This is
normal since the functions which are used in the adaptive-LIFQ are just an approximation
of the optimal solution of qj . To optimize this solution people try to find the trade-off
between the distortion and the bitrate (see chapter 2).
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7.2.7 Optimized-LIF dead-zone Quantizer

Let Dj = Dj(Rj) be the Rate-Distortion (RD) curve for a given retina-inspired decompo-
sition layer j (see details in section 2.3). We assume the MSE (see (eq. 2.1)) as the metric
of the distortion Dj between the original and the decoded subband j and the Shannon
entropy H (see eq. (2.10)) to estimate the rate Rj. We also assume that the RD curve is
convex which is a realistic assumption since when the rate Rj increases, the distortion Dj

decreases (see Fig. 2.9). In the bit allocation problem, the constraint is related to the total
bitrate, Rtotal (see eq. 7.11) which should be bounded by a maximum rate, Rmax, such
that:

Rtotal ≤ Rmax. (7.12)

In our problem, both the distortion Dj and the bitrate Rj are functions of (λ, q). As a
result, the analytic expression of the rate optimization problem could be defined as follow-
ing:

J(λ, q) = D(λ, q) + µ R(λ, q)

=
1

m

m∑

j=1

wjDj(λj , qj) + µ
1

m

m∑

j=1

aiRj(λj, qj)

=
1

m

m∑

j=1

wjMSEj(λj , qj) + µ
1

m

m∑

j=1

aiHj(λj , qj), µ ≥ 0.

(7.13)

The goal is to find for each subband j the values of qj and λj such that the function
J(λ, q) will be minimized. The above optimization problem has a solution when eq. (7.14)
comes true. Then, by varying the Lagrange operator µ, one can span the graph of Dj(Rj)
and find the optimal alignment of the RD curve for different complexities.

∂J(λ, q)

∂q
= 0⇒

wj∂Dj(λj , qj)

aj∂Rj(λj , qj)
= −µ,⇒

∂Dj(λj, qj)

∂Rj(λj , qj)
= −χjµ, ∀j = {1, . . . ,m} and µ ≥ 0.

(7.14)

where χj =
aj
wj

with wj 6= 0,∀j. We are aware of works which focus on the analysis of the

statistical distribution of the transformed signal which is highly important for optimization
[Perrinet, 2010, Perrinet, 2015]. However, this study is out of the scope of this manuscript.
In this section, we would like to confirm that the performance of the retina-inspired codec
is promising and it could be improved even if one uses a very naive optimization method.
In that sense, instead of proving what is the statistical distribution of the signal, we aim
to approximate it using already known models. Let us assume for seek of simplicity that
there is a relation between the values of the dead-zone and the quantization step. In
[Parisot, 2003] the authors prove that if the distribution of the signal which is quantized
is a Laplacian, Gaussian or Generalized Gaussian then, there is a relation between the
dead-zone 2λ and the quantization step q. Here, we assume that the distribution of the
decomposition layers can be approximated by a Laplacian or a Gaussian function such that
the relation of the dead-zone and the quantization step will be given by 2λ = 2q or 2λ = q
respectively for high bitrates. Figure 7.17 shows the distribution of some decomposition
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Figure 7.17: The retina-inspired decomposition layers which is biased to be centered at zero.
We assume that the above distributions can be roughly approximated by the Laplacian or
the Gaussian function. If one would like to find out the best model which approximates
the distribution of the decomposition layers, he should study the distribution using the
Kolmogorov-Smirnov test.

layers which could be roughly approximated by both Laplacian or Gaussian. Under this
assumption, optimizing the value of q leads also to the optimization of the value of λ.

In practice, in order to compute the optimal RD curve, we need first to build the point-
cloud of different pairs of Dj and Rj for each subband (see Fig. 2.9). Then, since the
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Figure 7.18: This figure compares the performance of the optimized-LIFQ and the uniform-
LIFQ under the same condition with respect to the relation between the dead-zone 2λ and
the quantization step q. We tested two different cases based on [Parisot, 2003]: (a) when the
distribution of the subband is a Laplacian function leading to 2λ = 2q and (b) a Gaussian
function leading to 2λ = q. The performance of the two LIFQs is almost the same. For
this experiment we used lena image of size 512 × 512 pixels at 8 bpp.
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Figure 7.19: This figure compares the performance of the optimized-LIFQ for 2λ = q
and the uniform-LIFQ when λ is tuned according to p ∈ {100%, 90%, 70%, 50%} and
q ∈ {1400, 1000, 600, 200, 100, 50, 10, 1}. The performance of the the optimized-LIFQ is
better than the uniform-LIFQ. In addition we compare the optimized-LIFQ to JPEG and
JPEG2000. Our codec outperforms both the standards for bitrates ≥ 2 bpp. In addition,
the retina-inspired codec results in higher PSNR values comparing to JPEG for bitrate
≥ 1 bpp. For this experiment we used lena image of the size 512× 512 pixels at 8 bpp.
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Algorithm 2 Find the µ of each subband

1: for j = 1:m do ⊲ m is the total number of decomposition layers
2: for q = 1:2000 do
3: q1 = q + ε ⊲ Quantization Step
4: q2 = q − ε ⊲ Quantization Step
5: λ1 = q1 ⊲ Half deadzone for Laplacian distribution
6: λ2 = q2 ⊲ Half deadzone for Laplacian distribution

7: Qλ1
q1 (v) = sgn(v)max

(

0,

⌊ |v| − λ1
q1

+ 1

⌋)

⊲ LIFQ

8: Qλ2
q2 (v) = sgn(v)max

(

0,

⌊ |v| − λ2
q2

+ 1

⌋)

⊲ LIFQ

9: Dλ1
q1 = MSE(Qλ1

q1 (v), v) ⊲ Compute the the Distortion for q1

10: Dλ2
q2 = MSE(Qλ2

q2 (v), v) ⊲ Compute the the Distortion for q2

11: Rλ2
q2 = Hq1 ⊲ Compute the Shannon Entropy for q1

12: Rλ1
q1 = Hq2 ⊲ Compute the Shannon Entropy for q2

13: µj(qj, λj) =
Dλ1

q1 −Dλ2
q2

Rλ1
q1 −Rλ2

q2

⊲ Compute the Lagrange operators µ

14: end for
15: end for

optimal Lagrange operator µ is unknown, we need to compute several values of µ. Each µ
value is assigned to a given pair of (qj, λj) for each subband j which corresponds to a point
of the RD curve. We provide a pseudo-algorithm (see Algorithm 2) which describes how
we have computed the different values of µj(qj, λj) for each retina-inspired decomposition
layer j. Finally, if we select a value of µ we are able to find the correspondent qj and λj for
each decomposition layer and then compute the Lagrange optimization criterion (see eq.
(7.13)).

Figure 7.18 illustrates the performance of the optimized-LIFQ compared to the uniform-
LIFQ for two different cases: when the deadzone 2λ = 2q which corresponds to the Lapla-
cian distribution and 2λ = q which corresponds to the Gaussian distribution [Parisot, 2003].
For this experiment we have used exactly the same conditions with respect to the relation
between the dead-zone and the quantization step for the uniform-LIFQ. According to the
results, we come to the following two conclusions: first of all, the Gaussian distribution
(2λ = q) approximates better the distribution of the retina-inspired decomposition layers.
In addition, the optimized-LIFQ performs almost the same with the uniform-LIFQ under
the same conditions. One would expect that for a given bitrate the optimized-LIFQ would
result in higher PSNR values. However, we interpret our results according to the strong
assumption we made concerning the weighted factor χj (see eq. 7.14). In our experiments
we used aj = 1,∀j due to the fact that all the retina-inspired subbands have the same size
and χj = 1 which is true only for orthogonal filters. However, the retina-inspired filter is

not orthogonal as a result χj =
1

wj
. In [Usevitch, 1996], the author provides some solu-

tions concerning the estimation of χj for biorthogonal filters which could be probably a
possible solution to lead the results into higher gain in terms of bitrate. Figure 7.19 shows
the comparison between the optimized-LIFQ and the uniform-LIFQ when the second one
is tuned without any relation between the dead-zone and the quantization step, according
to section 7.2.5. As it is expected, the optimized-LIFQ outperforms the uniform-LIFQ. In
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the same plot we also compare the optimized-LIFQ to JPEG and JPEG2000. Our codec is
more efficient than JPEG for bitrates ≥ 1 bpp and JPEG2000 for bitrates ≥ 2 bpp.

7.3 Progressive Reconstruction

As explained in chapter 4 the retina-inspired filter is a spatiotemporal transform which
results in a multilayer decomposition. Each one of these layers is a temporal sample which
arises due to the spatial transform of an input still-image (picture of a video stream) with
the corresponding retina-inspired DoG filter. We have proven in chapter 5 that the full
retina-inspired decomposition is a frame. Thus, using all the retina-inspired subbands, one
is able to perfectly reconstruct the input signal. In chapter 5 we have also introduced the
notion of progressive reconstruction when, in the absence of noise, we are able to perfectly
reconstruct the input signal keeping only few of the first decomposition layers (see Fig.
7.20).

t = 20 ms
PSNR = 16.02 dB

SSIM = 0.48
H = 0.006 bpp

t = 30 ms
PSNR = 18.34 dB

SSIM = 0.55
H = 0.077 bpp

t = 40 ms
PSNR = 21.20 dB

SSIM = 0.65
H = 0.23 bpp

t = 50 ms
PSNR = 26.30 dB

SSIM = 0.84
H = 1.39 bpp

t = 100 ms
PSNR = 296 dB

SSIM = 1
H ≈ 8 bpp

t = 20 ms
PSNR = 12.85 dB
SSIM = 0.0519
H = 0.006 bpp

t = 30 ms
PSNR = 13.42 dB
SSIM = 0.0991
H = 0.077 bpp

t = 40 ms
PSNR = 15.80 dB
SSIM = 0.1282
H = 0.23 bpp

t = 50 ms
PSNR = 33.12 dB
SSIM = 0.7688
H = 1.39 bpp

t = 100 ms
PSNR = 283 dB

SSIM = 1
H ≈ 8 bpp

Figure 7.20: Progressive Reconstruction. The top line shows results of the progressive
reconstruction using Masmoudi’s invertible spatiotemporal DoG pyramid (see section 3.4.3)
and his A/D converter. The bottom line shows the retina-inspired filtering and the uniform-
LIF dead-zone quantizer. (p = 100%).

The progressive reconstruction has an important meaning in terms of compression es-
pecially when one is interested in dynamic encoding/decoding. In that sense, this section
is oriented to show that the uniform-LIFQ performs better comparing to other bio-inspired
models like the A/D converter proposed in [Masmoudi et al., 2013]. The A/D converter
was applied to still-images which were flashed for a given time. Figure 7.20 compares
some progressive reconstruction results between the A/D model and the uniform-LIFQ.
We managed to achieve the same bitrates while the number of the decomposition layers
was increasing and we were interested in the reconstruction quality. Although the PSNR
and the SSIM values are higher in case of the A/D converter, the visual results show that
our system performs better in terms of contrast. Obviously, without any a priory knowledge
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of the input signal, the uniform-LIFQ tested for t = 20 ms is able to depict the foreground
of the scene.

7.4 Conclusion

In this chapter, we have introduced the LIF dead-zone quantizer (LIFQ) which is an ap-
proximation of the LIF neural spiking mechanism. Depending on a threshold, the LIF
model computes what is the delay each input intensity needs to emit the first spike of the
spike train. If we know the delay, we are able to reconstruct the input intensity. The LIFQ
performs in the same way using the dead-zone to decide which coefficients of the input
signal are active. The quantization however is also necessary in order to reduce the number
of bits which is required to store the real values of the time delay.

We studied different cases concerning the quantization step q. The simplest model
was the perfect-LIFQ, where the reduction of the spatiotemporal redundancy was achieved
only by the dead-zone. The uniform-LIFQ introduces a uniform quantization step for all
the retina-inspired decomposition layers and the adaptive-LIFQ in which the quantization
step changes with respect to the range of the decomposition layers. Last but not least, we
describe what is the optimization RD method one should apply to the retina-inspired frame
in order to optimize the reconstruction results.

The retina-inspired filter and the LIFQ build the retina-inspired codec. This codec has
been applied to still-images which are flashed for a given time. Comparing the reconstruc-
tion results between the retina-inspired codec and JPEG and JPEG2000 we conclude that
our coding system performs beyond the standards for bitrates higher than 1 bpp for JPEG
and 2 bpp for JPEG2000 for lena image while the visual quality of the reconstruction is
better for lower bitrates. We also compare the retina-inspired codec to other bio-inspired
coding systems concerning their dynamic behavior. The progressive reconstruction using
the retina-inspired codec enables better description of the scene even for very low bitrates.
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Application on Video Surveillance
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In this chapter, we introduce video surveillance systems as an application of the retina-
inspired codec. We have chosen these systems due to the 4G-TECHNOLOGY, which
is the industrial partner of this thesis. The 4G-TECHNOLOGY is a group of experts
who work on video surveillance systems. They have released the EViBOX which is an
efficient machine designed to provide a 24h survey of public and remote areas. To be
easier to understand the architecture of EViBOX, we need first to provide a general state-
of-the-art in video surveillance over Wireless Sensor Networks (WSN). We represent the
most common network infrastructure for video transmission over wireless channels and
technologies for video capture and compression of the ultimate goal to maximize the received
video quality under the resource limitations. These technologies provide power-efficiency
solutions which is the major concern of nomadic video surveillance systems. Moreover, this
chapter represents the architecture of EViBOX and its advantage with respect to other
systems. Last but not least, we discuss why the retina-inspired codec is beneficial with
respect to the current format of EViBOX, how it is applied to the system and which are
the benefits of adopting this novel codec in video surveillance systems.
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8.1 Video Surveillance over WSN

Video Surveillance over WSN are used in various cyber-physical systems including traffic
analysis, healthcare, public safety, wildlife tracking and environment/weather monitoring.
In current systems, each source node is usually equipped with one or more cameras, a
microprocessor, the storage unit, a transceiver, and a power supply. The basic functions
of each node consist of the capture of the video, the compression and the transmission.
However, for video surveillance systems with real-time demands the processing and the
transmission over wireless channels of large amount of data is really challenging.

In literature, there are famous video surveillance systems all over the world monitoring
different scenarios like the traffic system of Irving in Texas which is implemented by seventy
pan-tilt-zoom (PTZ) CCTV (closed-circuit television) cameras [Leader, 2004], the traffic
monitoring system at the University of Minnesota (UMN, 2005) [Hourdakis et al., 2005],
or the system of University of North Texas which was also used for traffic surveillance
[Luo, 2011]. Other systems have been used for weather monitoring like FireWxNet
[Hartung et al., 2006], the Smart Camera Network System (SCNS) which was used for
security monitoring in a railway station [Kawamura et al., 2011], for indoor surveillance
system in a multi-floor department building at the University of Massachusetts-Lowell
[N. Li and Wang, 2010] or for surveillance in a wide social area like metropolis like PRIS-
MATICA [Lo et al., 2003]. The common problem of all the above systems is the sensor
deployment and the system configuration for video communication. However, this is com-
pletely out of the scope of this research.

8.1.1 Transmission Constraints

The unwired node connection facility in WSNs comes with some typical problems for data
transmission. Among them are line-of-sight obstruction, signal attenuation and interfer-
ence, data security, and channel bandwidth or power constraint. In terms of efficient coding
and transmission of the data one should find the trade-off between the bandwidth, the power
consumption and the computational cost of the system. The large number of camera nodes
and the big amount of data are always drawbacks for video surveillance systems. Thus, opti-
mizing the configuration of the system could be itself a first solution to the power-efficiency
problem. For instance, if the area which is surveyed is a small-scale environment then, a
point-to-point communication of cameras is efficient for real-time observation. However, if
it is a large public area, it will be necessary to adopt a communication system between the
camera nodes.

8.1.2 Network Topologies

There are different topologies between the nodes (see Fig. 8.1). The star system proposed
in PRISMATICA [Lo et al., 2003] is a system where each device deals with a relatively
small area without necessarily being able to capture the global area of interest. If within
the small local area there is an abnormal detection, the periphery node signals the central
supervisor node. Another architecture which is more efficient with respect to the energy
consumption is the SensEye [Kulkarni et al., 2005]. This system has a tree structure where
the route node is the high resolution and computationally more expensive node which
receives a signal by the leaf camera nodes when it is necessary. The leaf nodes are small
low cost cameras which work for longer time comparing to the route. If the functionality and
computational capability are equally distributed among the sensor nodes, a mesh network
is more appropriate where the position of the target object is detected and the nearest
camera is selected in order to track it [Kawamura et al., 2011]. The Hybrid-resolution
smart cameras introduced in [Hengstler et al., 2006] provide some low energy cost. These
kind of hybrid-resolution systems uses two cameras of different resolutions. A low resolution
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(a) (b)

(c) (d)

Figure 8.1: Network topology. (a) Point-to-point [Hourdakis et al., 2005]. (b) Star
(PRISMATICA) [Lo et al., 2003]. (c) Tree (SensEye) [Kulkarni et al., 2005]. (d) Mesh
[Kawamura et al., 2011]. (This Figure was published in [Ye et al., 2013]).

camera estimates the target object from the image data and the high resolution camera
marks the position of the object and transmits only the video data inside the target region.
Similar multiresolution strategy was also used in [Wang et al., 2009].

8.1.3 Pre-processing solutions

Although, the topology of WSN seems to be useful to reduce the size of surveillance videos
which need to be stored and/or transmitted, there are several other much more effectual
solutions. These solutions are related to the pre-processing of surveillance videos. First of
all, we need to mention that the output of each camera node is encoded using video coding
standards including JPEG, JPEG2000, Motion JPEG, MPEG, H.26x. The compression
ratio of these standards is high but these algorithms have been built to compress videos in
general and not especially surveillance videos. Thus, once the data are captured and before
they are transmitted, one should take advantage of the special attribute of surveillance
videos. These videos are often captured by stationary cameras that always stand towards
the same scene for a long time. As a result, there is always a similar (or stationary)
background information of the scene while the foreground changes. However, people are
always interested in the foreground and moving target objects.

There is a great number of video coding and transmission techniques dedicated to the
differentiation of the foreground and background, such as the Unequal Error Protection
(UEP). The idea of UEP is to allocate more resources to the parts of the video which have
a great impact on video quality, like the Regions of Interest (ROI) instead of the rest of the
scene. Target or moving objects are able to be encoded more precisely than other less signif-
icant parts [Wang et al., 2005]. There have been proposed several background subtraction
techniques reviewed in [Piccardi, 2004, McHugh et al., 2009] like Running Gaussian Av-
erage, Temporal Median Filter, Mixture of Gaussian, Kernel Density Estimation (KDE),
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Sequential KD Approximation, Cooccurence of image variations and Eigen Background
Technique. Some other energy saving power strategies include data filtering, buffering and
adaptive message discarding [Feng et al., 2003]. Using the above techniques, it would be
probably easier to build more autonomous systems, which are able to understand the events
occurring in a scene because this is one of the biggest open issues in video surveillance sys-
tem [Regazzoni et al., 2010].

8.2 4G-TECHNOLOGY

The 4G-TECHNOLOGY was founded in 2008 in order to provide hightech solutions re-
lated to interception, communication, analysis and processing, geolocalization and video
surveillance problems. The company is active basically in France and it is manned by engi-
neers, specialized technicians and dealers. The strongest activity of the company is related
to surveillance. They have built two systems: the BSVi and the EViBOX/BVi which are
widely provided in the department of Alpes-Maritimes.

8.2.1 BSVi Architecture

BSVi is a standalone video encoder which produces ciphered local recordings of special
authorization saved on extractable disks. This special authorization offers high security
to the recordings in case of theft. Summarizing the BSVi architecture, a HD camera
records a digital video stream of 25 fps, which is encoded by H.264 standard format. The
system is self-efficient with respect to the energy since it is compatible with different power
technologies (solar power, batteries, fuel cells, etc.).

8.2.2 EViBOX/BVi Architecture

EViBOX is an Audio/Video recorder and encoder which adapts its performance according
to the current or the future needs of a client. The goal of this machine is to use the
minimum possible bandwidth for real-time broadcast over the available networks (4G, 3G,
satellite, WiFi, ADSL, etc. ). Figure 8.2 shows the complete architecture between the
transmitter camera node and the receiver/client. A controlling PTZ camera, which is a
camera that is capable of remote directional and zoom control, records the desired area
producing data of H.264 standard format. These data are transmitted through an Ethernet
channel to the EViBOX which is responsible on the one hand, to reconstruct the data using
an H.264 decoder and then transcode them. The transcoding process inside the EViBOX
uses a 4G-encoder which is similar to H.264 format but it is more efficiently tuned in order
to fit the network bandwidth. Once the surveillance video has been transcoded it is sent
through the VPN to the receiver. The receiver could reconstruct the encoded signal using
the EViPack software which is provided by the 4G-TECHNOLOGY and then display the
data on a machine (PC, laptop, tablet, smartphone, etc.). Another possible scenario is to
provide the encoded data to a Video Management Systems (VMS) in order to be displayed.
Each PTZ camera is connected to an EViPROXY device which stands as a virtual camera
to the VMS. In case of large camera networks, the VMS reduces the workload using the
EViPROXYs and retrieves only the data which are captured by the camera placed closer to
the area of interest. The EViPROXY is a 4G-decoder which reconstructs the video stream
before it is displayed.

8.2.3 Surveillance Scenarios

The benefits of the EViBOX architecture are related to the network bandwidth constraints.
The bandwidth varies depending on the location and the characteristics of the area which
is surveyed and it determines the trade-off between the allowed bitrate and the distortion.
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Figure 8.2: The architecture of the nomadic video surveillance system which uses the
EViBOX/BVi machine/software.

There are many different scenarios which could be categorized in 3 general cases each one
of which seems to demand different trade-off. We call these cases: working area, traffic and
public area.

8.2.3.1 Working Area

A video stream which belongs to this case consists of a static background which is known
to the receiver. The goal is to detect the motion of an external object/person in the
foreground. Hence, the foreground “activates” the system when it changes. When there is
no change into the scene the system is considered to be “disactivated”. We have to mention
here that there is a possibility for the background to be almost static. For instance, we
aim to record an area inside the forest. This scene would never be absolutely static since
there is always a motion of the leafs due to the wind or some weather phenomenon (rain,
snow, etc.) which activates the system. As a result, there maybe some false alarms. To
avoid these false alarms we may first of all define very well the background frame and then,
we can also analyze the kind of motion. If the motion suddenly starts to happen in the
whole frame this signal should not be recorded (i.e weather phenomena). In addition, if
the motion is around very small radius comparing to the input one then it should also be
neglected.

Given a static background we try to detect a motion of one of the included objects
within a predefined area. In this case, we should also be aware of the meaningless motion
which maybe exist according to the description of the previous case.

8.2.3.2 Traffic

Given a scene which is of a high motion (i.e. video surveillance in a highway) we aim to
transmit a very low quality of the input signal while there are no abnormalities (i.e all the
cars are moving to the same direction with a regular speed average constant). However, in
case there is an “event” we need to increase the quality adding more high frequencies and
precise in a better way the input signal. Using the term “event” we refer to:
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1. the vigorous stop of the motion (i.e car accident)

2. motion of a different direction of the predefined one (i.e a person who tries to cross
the road or a car which is moving in a opposite/not allowed direction in a high way.)

3. recognition of a prohibited size/shape of an object (i.e tracks moving in a part of the
highway where it is forbidden).

8.2.3.3 Public Area

This is the most general case where the capture signal consists of a high and random motion.
As a result, almost every frame should be encoded and transmitted to the receiver. In such
a case, it is very demanding to define an “event” because the scene could be a walking
area, the city center, etc. Some times, in these case, we combine the video with an audio
signal to be able to precise the spatial origin of the sound. Hence, a high resolution signal is
assigned to this spatial area while the resolution remains lower for the rest of the captured
scene.

8.3 Our Contributions

In section 8.2, we introduced the EViBOX and the current system which is promoted by
4G-TECHNOLOGY. This system could be sufficiently improved using the retina-inspired
codec and this section is dedicated to discuss the benefits of using our codec in a system like
EViBOX. Before we propose some important scenarios which will benefit the performance
of the EViBOX due to the retina-inspired codec, we need first to explain how this codec is
applied to a video stream.
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Figure 8.3: Video Codec Schema.

The retina-inspired codec is promoted as a video codec which is applied separately to
each picture fi of a video stream f(x, t) (Fig. 8.3). It is necessary to remind the reader
that a video f(x, t) has been described as a group of N sequential images, each one of
which appears for a given time T (see chapter 2). According to the vision of the first video
codec designers, an algorithm which efficiently encodes a still-image could be used to encode
the pictures of a video stream like in MJPEG and MJPEG2000 (see section 2.4.2). This
compression will be very rough without taking under consideration the strong similarities
between sequential pictures. Motion estimation algorithms could improve the total bitrate
but this is out of the aspects of this work. Thus, without any motion estimation, our
novel codec can not be compared to the current standards like the H.264/MPEG-4/AVC
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(a) (b)

Figure 8.4: This figure shows some Regions of Interets (ROIs) in a picture of video streams
captured from 4G-TECHNOLOGY. In picture (a) the receiver is interested in the car
number plates while in (b) to the material/equipment in a working area. The retina-
inspired codec is able to provide to the receiver some copies of these ROIs with a lower
distortion than the parts of the scene which are out of the ROIs.

or the H.265/HEVC. A fair comparison of retina-inspired codec would be with MJPEG,
MJPEG2000 and maybe also MPEG-2, since the motion estimation of this standard is very
naive.

Concerning the EViBOX, the retina-inspired codec will not replace the encoding system
of camera but the transcoding system of EViBOX (see Fig. 8.2). We represent how the
EViBOX is going to adopt our codec and how its special features and its strong dependence
on time will benefit the system. The first possible scenario is to take the advantage of the
dynamic behavior of the retina-inspired codec in a surveillance system by tuning the visual
quality of the reconstructed signal. According to the progressive reconstruction which
has been introduced in chapter 7, the quality of the reconstruction can be dramatically
improved while the number of the retina-inspired decomposition layer increases with respect
to time. Since most of the surveillance systems are linked to some detection algorithms, one
could take the advantage of these algorithms to tune the quality of the reconstructed video
stream. Consequently, if nothing interesting is detected into the scene, it is unnecessary
for the transmitter to propagate very high quality of the input signal and “wasting” energy
and bandwidth. In such a case, transmitting a low or medium reconstruction quality of
the captured signal using a few first layers of the retina-inspired frame will be enough for
the receiver. However, if an event which is detected needs to be further analyzed, the
transmitter could increase the quality of the reconstruction providing the full set of the
retina-inspired decomposition layers which are finer quantized.

Another case which is more challenging is to separate the visual scene into Regions Of
Interests (ROIs). The ROIs are a reference to some areas of the visual scene for which
the surveillance system has been placed. For instance, some interesting examples are given
in Fig. 8.4. Fig. 8.4 (b) shows a working area where the employer needs to secure the
equipment 24h/day (tracks, machines, construction materials, etc.). As a result, it would
be wise to provide higher quality signal to the areas where the ROIs are and lower quality
to the rest of the scene. In Fig. 8.4 (a) we represent another example which is related
to the road survey. In this case, a region of interest could be selected part of the input
scene which allows for example to detect the car number plates. As a result, this region is
transmitted in the sharpest possible way comparing to the rest of the visual scene. In such
a case, everything which is included into the ROIs are going to be transmitted in a sharp
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and high quality way whilst the rest of the visual scene will be propagated with a lower
quality.

The next section represents some numerical results of the retina-inspired codec applied
to some well-known video streams (i.e. foreman and bus). We aim to illustrate the visual
quality for different bitrates and distortions and compare the retina-inspired codec with the
state-of-the-art which in our case is MJPEG, MPEG-2 and MJPEG2000.

8.4 Video Numerical Results

This section is dedicated to illustrate some numerical results concerning the retina-inspired
codec when it is applied to video streams. As explained before, we have applied the coder
to each picture of the video stream separately. Our goal is to show that the retina-inspired
codec is more efficient comparing to MJPEG which is the standard that is also applied
to video streams in the same way without motion estimation. The results we obtained
were encouraging enough to continue the comparison using MPEG-2 which is the first
standard that uses a very naive motion estimation method. What we have noticed is that
although the PSNR value of MPEG-2 was higher than the retina-inspired codec for very
lower bitrates, the visual results are much better using our coding system. We are going
to provide results only related to the uniform-LIFQ since the impact of the adaptive-LIFQ
and the optimized-LIFQ has been extensively detailed in chapter 7. We have also tested
other video streams such as the bowing and the bus videos obtaining similar results. At this
point we need to highlight that the video streams f(x, t) which are used in our experimental
results have been pre-processed using the free software “Total Video Audio Converter 4”.
The software receives as an input a video streams of CIF format (resolution of each picture
352×288 pixels) of YCbCr (see section 2.4.1). The output video converts each color picture
fi(x) into a grayscale picture of the size 256 × 256 pixels. At the same time, we set the
total number of the pictures N = 100, keeping only the first 100 pictures of the original
video stream.

Figures 8.5 and 8.6 show the performance of the retina-inspired codec with a uniform-
LIFQ, when it is applied to the very well-known foreman video, using PSNR and SSIM
quality metrics respectively. Figure 8.5 shows the PSNRv value (see eq. (8.1)) vs the
entropy value Hv of the whole video stream (see eq. (8.3)) measured for the retina-inspired
codec and the MJPEG and MPEG-2 standards. Concerning the standards, we obtained
four different qualities “low”, “medium”, “good” and “high” each one of which corresponds
to a certain Hv bitrate. The retina-inspired codec performs better comparing to MJPEG
concerning the medium, good and high qualities. In addition, it is comparable to MPEG-2
concerning the high quality. Figure 8.7 compares the visual quality of the 60th picture of
the foreman video stream encoded by MJPEG and the retina-inspired codec.

Figures 8.8 and 8.9 show that the retina-inspired codec performs in the same way as
MJPEG for “medium”, “good” and “high” qualities. Figures 8.10 and 8.11 illustrate that
our codec outperforms MJPEG for “medium”, “good” and “high” qualities and it is also
better than MPEG-2 for “good” and “high” qualities. Figures 8.12, 8.13 and 8.14 approve
the above results depicting the visual quality of some extracted pictures of the above video
streams which are encoded by the retina-inspired codec and the two standards MJPEG and
MPEG-2.

PSNRv = 10 log10
(2n − 1)2

MSEtotal
, (8.1)

where

MSEtotal =
1

N

N∑

i=1

MSEi, (8.2)

where MSEi is given by eq. (2.1).
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Figure 8.5: This figure compares using PSNR metric, the performance of MJPEG
and MPEG-2 standards to the retina-inspired codec with uniform-LIFQ for foreman
video. We tested the uniform-LIFQ for different λ values tuned according to p ∈
{100%, 90%, 70%, 50%} and quantization steps q ∈ {1400, 800, 200, 50, 10, 1}. The two stan-
dards have been tested for 4 different qualities: “low”, “medium”, “good” and “high”. The
retina-inspired codec outperforms MJPEG for the “medium”, “good” and “high” qualities
while it is also comparable to MPEG-2 for its “high” quality.
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Figure 8.6: This figure compares using SSIM metric, the performance of MJPEG
and MPEG-2 standards to the retina-inspired codec with uniform-LIFQ for foreman
video. We tested the uniform-LIFQ for different λ values tuned according to p ∈
{100%, 90%, 70%, 50%} and quantization steps q ∈ {1400, 800, 200, 50, 10, 1}. The two stan-
dards have been tested for 4 different qualities: “low”, “medium”, “good” and “high”. The
retina-inspired codec outperforms MJPEG for the “medium”, “good” and “high” qualities
and MPEG-2 for its “high” quality.
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Figure 8.7: This figure compares the visual quality of the 60th picture of the foreman video
stream encoded by MJPEG (left column) and the retina-inspired codec (right column).
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Figure 8.8: This figure compares using PSNR metric, the performance of MJPEG
and MPEG-2 standards to the retina-inspired codec with uniform-LIFQ for bowing
video. We tested the uniform-LIFQ for different λ values tuned according to p ∈
{100%, 90%, 70%, 50%} and quantization steps q ∈ {1400, 800, 200, 50, 10, 1}. The two stan-
dards have been tested for 4 different qualities: “low”, “medium”, “good” and “high”. The
retina-inspired codec is very close to MJPEG for the “medium”, “good” and “high” quali-
ties.
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Figure 8.9: This figure compares using SSIM metric, the performance of MJPEG
and MPEG-2 standards to the retina-inspired codec with uniform-LIFQ for foreman
video. We tested the uniform-LIFQ for different λ values tuned according to p ∈
{100%, 90%, 70%, 50%} and quantization steps q ∈ {1400, 800, 200, 50, 10, 1}. The two stan-
dards have been tested for 4 different qualities: “low”, “medium”, “good” and “high”. The
retina-inspired codec is very close to MJPEG for the “medium”, “good” and “high” quali-
ties.
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Figure 8.10: This figure compares using PSNR metric, the performance of MJPEG and
MPEG-2 standards to the retina-inspired codec with uniform-LIFQ for bus video. We tested
the uniform-LIFQ for different λ values tuned according to p ∈ {100%, 90%, 70%, 50%} and
quantization steps q ∈ {1400, 800, 200, 50, 10, 1}. The two standards have been tested for
4 different qualities: “low”, “medium”, “good” and “high”. The retina-inspired codec
outperforms MJPEG for the “medium”, “good” and “high” qualities while it is also better
than MPEG-2 for its “good” and “high” qualities.
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Figure 8.11: This figure compares using SSIM metric, the performance of MJPEG
and MPEG-2 standards to the retina-inspired codec with uniform-LIFQ for foreman
video. We tested the uniform-LIFQ for different λ values tuned according to p ∈
{100%, 90%, 70%, 50%} and quantization steps q ∈ {1400, 800, 200, 50, 10, 1}. The two stan-
dards have been tested for 4 different qualities: “low”, “medium”, “good” and “high”. The
retina-inspired codec outperforms MJPEG for the “medium”, “good” and “high” qualities
while it is also better than MPEG-2 for its “good” and “high” qualities.
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Figure 8.12: This figure compares the visual quality of the 60th picture of the bowing video
stream encoded by MJPEG (left column)and the retina-inspired codec (right column).
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Figure 8.13: This figure compares the visual quality of the 60th picture of the bus video
stream encoded by MJPEG (left column)and the retina-inspired codec (right column).
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Figure 8.14: This figure compares the visual quality of the 60th picture of the bus video
stream encoded by MPEG-2 (left column) and the retina-inspired codec (right column).
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where H i
total is given by eq. (7.11).

SSIMv =
1

N

N∑

i=1

SSIMi, (8.4)

where SSIMi is given by eq. (2.3).

8.5 Conclusion

This chapter was a brief introduction to video surveillance systems. We presented several
different models concerning the architecture of these systems, their constraints and needs.
We also introduced our industrial partner, the 4G-TECHNOLOGY, which is a company
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that provides systems and services for surveillance. We discuss that EViBOX is the main
product of 4G-TECHNOLOGY which could be benefited by our retina-inspired video codec.
Last but not least, we provide numerical results of the retina-inspired codec applied to well-
known video streams and a video stream captured by our partner. We compare our results
to MJPEG and MPEG-2 illustrating some graphs but also some pictures in order to be
easier to compare the quality of the reconstruction. Our method outperforms MJPEG in
PSNR and SSIM for given bitrates and it seems to be promising comparing to MPEG-2
although our method does not consider yet any motion estimation.



Chapter 9

General Conclusion

This thesis has dealt with a novel video coding architecture which is inspired by the retina.
The basic characteristic of the retina is its capacity to dynamically process and encode the
visual stimulus. We prove in this thesis that by deriving models based on equations which
approximate the retina, we are able to build a novel and very efficient coding system. Here,
we proposed a coding algorithm which is called retina-inspired video codec. This codec
consists of two basic processing steps which are also the main contributions of this thesis:
the retina-inspired filtering and the LIF quantizer which is a dynamic quantizer.

9.1 Contributions

9.1.1 Retina-inspired Filtering

The retina-inspired filter is a groundbreaking analysis of neuroscience for image processing.
We propose a detailed background of neuromathematical models which are all based on
DoG functions. The properties of these functions are very well known in image processing
since they have been widely used. Under the strong assumption that the input signal is
constant in time, we propose the retina-inspired filter. This filter is a group of time-varying
WDoGs. In literature, there is no any other similar work which studies WDoG filters, so
this is an important contribution especially due to the efficiency of these filters. We propose
a spatial and frequential analysis of a general WDoG function. The retina-inspired filter
enables the extraction of different kinds of data while time increases. We have also proven
that the filter is a lowpass filter generating low frequency copies of the input signal and
it turns with time into a bandpass filter enabling to extract high frequencies. The retina-
inspired filter is a great improvement of other bio-inspired filters which are simpler and not
as accurate as neuroscientific approximations of the retina. Hence, this is certainly of a
great interest for the image processing field. We have also mathematically proven that the
retina-inspired filter is a frame according to the frame theory. That means that the retina-
inspired transform is invertible. We also illustrate some numerical results which guarantee
that the reconstruction using all the retina-inspired frame coefficients is perfect in absence
of any perturbations. Last but not least, we introduced some AWGN to the retina-inspired
decomposition in order to be more realistic and to show the impact of noise on the recon-
struction quality. One observes that the redundancy of the retina-inspired decomposition
is high enough to reduce the impact of the noise and provide high reconstruction quality
results. In fact, we show that although the presence of noise influences the quality of the
decomposition layers, the quality of the reconstructed signal, which is measured by PSNR
or SSIM, remains high.
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9.1.2 LIF Quantizer

The retina-inspired quantizer which is also termed LIF Quantizer (LIFQ) is a model moti-
vated to perform according to LIF spike generator. First of all, we provide a comparison
of neuromathematical models which approximate the generation of the neural code. Based
on this background we explain that the LIF model seems to be very efficient to describe
the emission of spikes. This decision was further enhanced under the initial assumption
that the input signal is constant in time and under some time constraints which accompany
the real-time encoding and decoding of a video stream. The LIF model assumes that the
time of the first spike arrival is the only necessary information which needs to be prop-
agated to the brain. We figured out important similarities between the behavior of the
LIF and a uniform dead-zone scalar quantizer which is a very well known and widely used
model in compression algorithms. Thus, we proposed the novel LIFQ which is close to the
conventional quantization but it enables to take under consideration the limited time we
are allowed to encode and decode the input signal according to the performance of LIF.
The LIFQ was a necessary processing step in order to reduce the number of bits which is
required to store the real values of the time delay. We studied different cases concerning
the quantization step. The simplest model was the perfect-LIFQ where the reduction of
the spatiotemporal redundancy was achieved only by the dead-zone; the values out of the
deadzone are not quantized. The uniform-LIFQ introduces a uniform quantization step
for all the retina-inspired decomposition layers. The adaptive-LIFQ in which the quanti-
zation step changes with respect to the range of the decomposition layers and the method
of the optimized-LIFQ where the quantization step is computed according to the optimiza-
tion Rate-Distortion (RD) theory. Last but not least, we show that the optimized-LIFQ
outperforms the rest LIFQ models.

9.1.3 Retina-inspired image and video codec

The retina-inspired filter and the LIFQ build the retina-inspired codec. This codec has been
applied to still-images which are flashed for a given time. Comparing the reconstruction
results of the retina-inspired codec to JPEG and JPEG2000 we conclude that our coding
system performs beyond the standard in terms of compression for bitrates higher than
1 bpp while the visual quality of the reconstruction is better for lower bitrates. We also
compare the retina-inspired codec to other bio-inspired coding systems concerning their
dynamic behavior. The progressive reconstruction using the retina-inspired codec enables
better description of the scene even for very low bitrates. Last but not least, we applied
the retina-inspired codec to each picture of a video stream. In such a way we were also
allowed to compare our results to MJPEG. Our coding system outperforms MJPEG since
we provide higher reconstruction quality evaluated by PSNR and SSIM metrics. These
results were encouraging enough to compare our model with MPEG-2 standard which
uses motion estimation and it is expected to perform much better than the retina-inspired
codec. However, our codec is comparable to MPEG-2 for high quality video streams while
for lower qualities it seems that the retina-inspired codec outlines better the content of the
input scene.

9.2 Perspectives

The retina-inspired codec is a novel and very promising coding algorithm. Of course such
a codec opens a lot of perspectives which are interested to be studied. In this section, we
introduce some extensions of the proposed models related to neuroscientific inspirations,
information technology and video surveillance applications

• Neuroscience:
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– In this thesis, we have released a novel WDoG filter which is inspired by the
behavior of the OPL retina cells. This filter was derived under the assumption
that the input signal is constant in time. However, this assumption limits the
dynamic behavior of the model. It would be very interesting to study how the
retina-inspired filter could be applied to an input signal which evolves along time.
The initial assumption we made in this thesis that the input signal is constant
with respect to time serves mainly educational reasons since it allows us to study
the behavior of the retina-inspired filter. However, the OPL retina layer processes
the visual stimulus on the fly and this is why we need to overcome the initial
assumption. Of course, we should always keep in mind that this retina-inspired
transform aims to be used for compression and we should always guarantee that
it is invertible.

– Another important issue concerning the progress of the current retina-inspired
codec is to improve the quantization process. First of all, in this thesis we ap-
proximated the LIF model with a uniform dead-zone scalar quantizer. However,
it would be also interesting to implement and study the LIF model in terms
of coding. We should also generate the code of spikes and use this code which
is more realistic in order to reconstruct. Another aspect would related to the
dynamic behavior of the LIF model. Not only the OPL transform but also the
spike generation is a dynamic process. Thus, we should also extend the LIFQ
and apply it to an input signal which evolves in time.

– The LIF model was proposed under some strong assumptions which are linked
to the connectivity between the neurons. Another interesting perspective is to
use other kind of models which concern the interconnection and the feedback
which is sent between the neurons.

• Information Theory:

– The WDoG is a novel decomposition which has been used only in our retina-
inspired coding system. It would be interesting if this filter could be adopted by
the already existing coding systems in order to be compared to the conventional
multilayer transforms like DCT or DWT.

– The WDoG filter could be also tested in different approaches like the image
analysis including edge detection, object tracking, medical image analysis or
High-Dynamic-Range Imaging (HDRI). It is expected that the dynamic behavior
of the filter and the origins of the model will perform good in terms of perception.

– In this thesis, we have proposed a LIFQ model which approximates the spike
generation neural process. It would be challenging to use this novel quantizer
into standards and replace the current and conventional quantization methods.
Then, it would be possible to conclude whether the LIFQ improves or not the
compression performance.

– The proposed codec is the first approximation of a compression system which is
based on neuromathematical models. Thus, there are several limitations which
could be improved. First of all, the way we apply the codec to a video stream
is very rough like MJPEG and MJPEG2000. According to this way, we are not
able to compute any motion estimation. It would be interesting to adopt some
motion compensation models in order to be comparable to the latest standards.

• Video Surveillance:

– The proposed codec was implemented in MATLAB for experimental simplicity.
It would be necessary to use a low-level programming language to execute this
code in a more efficient way.
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– The retina-inspired codec was proposed through the prism of video surveillance
systems. This codec could be adopted by a surveillance system in a pre- or
post-processing tool which allows adaptive visual quality with respect to some
Regions Of Interests (ROIs).

– Taking the advantage of the dynamic behavior of the retina-inspired codec in
a surveillance system, one could tune the visual quality of the reconstructed
signal. Since most of the surveillance systems are linked to some detection al-
gorithms, one could take advantage of these algorithms and tune the quality of
the reconstructed video stream.
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Appendix A

Proof of Lemma 1

This appendix proves Lemma 1. It is shown that both Jc(t) and Js(t) can be defined in
a closed form as polynomial functions which are attenuated by exponential ones. These
functions will be essential to calculate Rc(t) and Rs(t). The calculation of Jc(t) and Js(t)
are based on the following lemma whose proof is straightforward.

Lemma 2. Let ω a real value, t ≥ 0 and n a positive integer. Using an integration by
parts, we obtain the following equality:

∫ t

0
un exp (−ωu) du = Pn(t) exp (−ωt) + c,

where

Pn(t) =

n∑

k=0

− n!

(n− k)!ωk+1
tn−k

is a polynomial function in t of order n whose coefficients depend on ω and c is a constant
value.

A.1 Closed-form of Jc(t)

Assume that 0 ≤ t ≤ T . It follows that:

Jc(t) =

∫ t

u=0
W (u)du,

which yields

Jc(t) =

∫ t

u=0
EτG,n

t∗ (δ0 − wCEτC ) (u)du

=

∫ t

u=0
EτG,n(u)du − wC

∫ t

u=0
EτG,n

t∗EτC (u)du.

The definition of the gamma and exponential filters yields:

Jc(t) =
1

τn+1
G

∫ t

u=0
un exp (−au) du

− wC

τn+1
G τC

(∫ t

u=0
exp

(−u
τC

)∫ u

v=0
vn exp (−bv) dvdu

)

.
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where a =
1

τG
, b =

τC − τG
τGτC

. Using Lemma 2, we get

Jc(t) =
n∑

k=0

− (n!)

(n− k)!ak+1τn+1
G

tn−k exp (−at)

−
n∑

k=0

m∑

l=0

n!wc

(m− l)!bk+1al+1τn+1
G τC

tm−l exp (−at)

+
n!wc

bn+1τn+1
G

exp

(−t
τC

)

+

n∑

k=0

n!wc

bk+1am+1τn+1
G τC

− n!wc

bn+1τn+1
G

+ n!

where m = n− k. Finally,

Jc(t) = Pn(t) exp

(−t
τG

)

+ αc exp

(−t
τC

)

+ γc

where Pn(t) is a polynomial function in t of order n and αc and γc are two reals.

A.2 Closed-form of Js(t)

The method used to calculate Jc(t) can be applied to Js(t). This leads to:

Js(t) =

∫ t

u=0
(W

t∗EτS )(u)du

=

∫ t

u=0
EτG,n ∗ (δ0 − wCEτC ) ∗EτS (u)du

=

∫ t

u=0
EτG,n ∗EτS (u)du

−wc

∫ t

u=0
EτG,n ∗ EτC ∗ EτS (u)du.

Using Lemma 2, we get

Js(t) =
1

τn+1
G τS

(
n∑

k=0

m∑

l=0

n!tm−l exp (−at)
gk+1al+1(m− l)!

−
n∑

k=0

n!

gk+1am+1
+
n!τS
gn+1

(

1− exp

(−t
τS

)))

− wc

τn+1
G τCτS

(
n∑

k=0

m∑

l=0

p
∑

r=0

− n!tp−r exp (−at)
(p− r)!bk+1gl+1ar+1

+

n∑

k=0

m∑

l=0

n!

bk+1gl+1ap+1

−
n∑

k=0

n!τS
bk+1gm+1

(

1− exp

(−t
τS

))
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+
n!τS
bn+1φ

(

1− exp

(−t
τS

))

− n!τC
bn+1φ

(

1− exp

(−t
τC

)))

,

with the variables

g =
τS − τG
τGτS

, φ =
τS − τC
τCτS

,

p = m− l and m = n− k. It follows that:

Js(t) = Qn(t) exp

(−t
τG

)

+ αs exp

(−t
τS

)

+βs exp

(−t
τC

)

+ γs

where Qn(t) is a polynomial function in t of order n and αs, βs and γs are some reals. This
ends the proof.
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Appendix B

List of Symbols

f(x) Input image

f̃(x) Reconstructed image
V (x, t) Video stream
N Number of frames
T Time an image/picture if flashed
pi Probability of a symbol i
Hj Shannon Entropy of the j subband
Htotal Total Shannon Entropy
J Rate-Distortion cost function
D Total Distortion
R Total Rate
Rmax Maximum Rate
µ Lagrange multiplier
v The input of a quantizer
q Quantization step
sgn(v) Sign of an input v
Qq(v) Quantizer
λ Dead-zone threshold
Qλ

q (v) Dead-zone quantizer

K(x, t) Spatiotemporal kernel
A(x, t) Activation degree
Gσc Center Gaussian in space

Ĝσc Center Gaussian in frequency
Gσs Surround Gaussian in space

Ĝσs Surround Gaussian in frequency
σc Center standard deviation
σc Surround standard deviation
DoG(x) Spatial DoG
DoGk(x) Spatial DoG pyramid
DoG(x, t) Spatiotemporal Difference of Gaussian
W (t) Difference of Exponentials
Eτ,n Gamma temporal filter
φ(x, t) Retina-inspired filter in space

φ̂(x, t) Retina-inspired filter in frequency
Rc(t) Center temporal filter
Rs(t) Surround temporal filter
Pn(t) Polynomial function in t of order n
r Radial coordinate
ω Angular frequency
ξ Ordinary frequency
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α Lower bound of the frame
β Upper bound of the frame
C(x, t) Center spatiotemporal filter
S(x, t) Surround spatiotemporal filter
Φ−1 Inverse of the matrix Φ
ΦT Transpose of the matrix Φ
η(x) Additive White Gaussian Noise
r(I) Firing rate
rm Mean firing rate
dref Refractory period
C Capacitor
V (t) Voltage of the resistor
Vr Reset voltage
R Resistor
I(t) Input current
θ Threshold
tf Firing time
d(v), Delay of spike arrival for an intensity v
dmax Maximum reconstruction delay
tobs Observation window
Ns Number of spikes
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Appendix C

List of Abbreviations

A/D Analog to Digital
ADSL Asymmetric Digital Subscriber Lines
AVC Advanced Video Coding
AWGN Additive White Gaussian Noise
BP Bandpass
bpp Bits per pixel
CABAC Content-Adaptive Binary Arithmetic Coding
CB Coding Block
CCITT International Telegraph and Telephone Consultative Committee
CCTV Closed-Circuit TeleVision
CIF Common Intermediate Format
CNS Central Nervous System
CPU Central Processing Unit
CTU Coding Tree Unit
CTB Coding Tree Block
CU Coding Unit
DA Display Adaptation
DCT Discrete Cosine Transform
DST Discrete Sine Transform
DVD Digital Video/Versatile Discs
DWT Discrete Wavelet Transform
DoE Difference of Exponential
DoG Difference of Gaussian
EBCOT Embedded Block Coding with Optimal Truncation
EOB End Of suBbands
EOI End Of Image
FWHM Full Width Half Maximum
GL Ganglionic Layer
GoP Group of Pictures
HD High Definition
HDTV High Definition TeleVision
HEVC High Efficiency Video Coding
HFC Hubric Fiber Cable Network
HVS Human Visual System
IF Integrate and Fire
IPL Inner Plexiform Layer
ISO International Organization for Standardization
ITU International Telecommunication Union
JPD Joint Probability Distribution
JPEG Joint Photographic Expert Group
JVT Joint Video Team
KDE Kernel Density Estimation
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L1, L2 Lowpass
LB Lowpass/Bandpass
LCD Liquid Crystal Display
LIF Leaky Integrate and Fire
LIFQ Leaky Integrate and Fire Quantizer
LGN Lateral Geniculate Nucleus
LSB Least Significant Bit
LUT Look-Up-Table
MJPEG Motion Joint Photographic Expert Group
MPEG Motion Picture Experts Group
MSB Most Significant Bit
MSE Mean Square Error
OPL Outer Plexiform Layer
PB Prediction Block
pps pixels per second
PSF Point Spread Function
PSNR Peak Signal to Noise Ration
PTZ Pan-Tilt Zoom
PU Prediction Unit
QoE Quality of Experience
RD Rate-Distortion
RGB Red Green Blue
RF Receptive Field
ROC Rank Order Coder
ROI Region Of Interest
SCNS Smart Camera Network System
SD Standard Definition
SSIM Structure SIMilarities
SVC Scalable Video Coding
TAF Threshold And Fire
TB Transform Block
TEM Time Encoding Machine
TU Transform Unit
TV TeleVision
PSD Power Spectral Density
UEP Unequal Error Protection
USC-SIPI University of South California Signal and Image Processing Institution
VMS Video Management Systems
WDoG Weighted Difference of Gaussian
WSN Wireless Sensor Networks
XSD Cross-Segment Decoding
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au fil de l’eau pour le codage des images et des vidéos. PhD thesis, University of Nice,
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