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Introduction en Français

Cette thèse a été préparée en cotutelle entre l'Université de Lorraine et l'Université Nationale
Technique d'Ukraine `Igor Sikorsky KPI'.

1 Contexte Général

Nous vivons à l'époque de la société de l'information, la société dans laquelle la manipulation
de l'information est extrêmement importante dans toutes les sphères de la vie : la politique,
l'économique, l'éducation, la culture, etc. [Webster 2014].

Aujourd'hui des données numériques sont devenues la première source d'information et le
volume de ces données augmente rapidement. Selon l'étude de la Corporation Internationale de
Données (International Data Corporation, IDC), la quantité d'octets produits par l'humanité
double tous les 2 ans et vers 2020 elle atteindra 44 zettaoctets (44 ∗ 1021 octets) [IDC 2014]. Ces
données viennent de sources di�érentes et sont de natures variées. Nous pouvons par exemple
mentionner les données produites par di�érents capteurs en industrie, des photos/vidéos person-
nelles et commerciales, des journaux de sites web, des données collectées avec des buts di�érents
(comme des résultats de sondages ou des données de recensement), des messages textes etc. De
même, la complexité des données varie grandement. Certaines de ces sources fournissent des
données brutes sous la forme de signaux physiques (des données produites par des capteurs),
les autres sources fournissent une information codée (des résultats de sondages), d'autres encore
peuvent donner accès à des données sémantiquement riches mais di�ciles à analyser (comme des
messages texte).

Les données, le nouvel or noir...

Le volume de données ne cesse d'augmenter, de même que leur accessibilité par chercheurs
du grand public. Par exemple, les initiatives gouvernementales dites open data [Ubaldi 2013]
lancées par de nombreux pays permettent désormais à quiconque d'accéder aux bases de données
gouvernementales.

L'utilisation de données devient maintenant une condition nécessaire de compétitivité dans
le marché actuel. Beaucoup d'entreprises telles que Lufthansa [Lufthansa 2016] con�rment que
l'utilisation des données est indispensable pour leurs a�aires. Toutefois, les données peuvent
également être utiles pour des moyennes ou petites entreprises [Hazel 2015].

Toutes ces tendances et ce potentiel font que les données sont désormais vues comme le
nouvel or noir. Cependant, à la di�érence d'autres équivalents d'or noir (comme le café ou
le pétrole), les données ont la caractéristique de pouvoir être utilisées plusieurs fois et pour
résoudre des questions di�érentes. De plus, la valeur de données ne diminue pas avec le temps,

1



Introduction en Français

mais augmente avec l'apparition de nouvelles données. Mais, comme les autres équivalents d'or
noir, les données brutes ne sont pas très utiles. Ce qui est utile, c'est l'information extraite de
ces données [Singh 2013].

De données aux connaissances...

L'analyse des données est un processus de transformation des données brutes ou partiellement
traitées sous la forme d'information [Judd et al. 2011]. Non seulement les techniques d'analyse
se développent sans cesse, mais les concepts de l'analyse des données évoluent également. Par
exemple, selon Gartner [Davis and Herschel 2016], nous pouvons dé�nir 4 types d'analyse des
données : l'analyse descriptive, l'analyse diagnostique, l'analyse prédictive et l'analyse prescrip-
tive. L'analyse descriptive vise à décrire les tendances générales dans le jeu de données. L'analyse
diagnostique tente d'expliquer la nature des motifs trouvés, et l'analyse prédictive a pour but
prédire les évènements futurs. En�n, l'analyse prescriptive vise à identi�er les facteurs qui peu-
vent mener le développement d'un système dans une direction souhaitée.

Ainsi, nous pouvons remarquer la disponibilité d'outils et de données, le potentiel des données
à être une source riche d'information, et la demande de l'information par la société d'aujourd'hui.
Toutes ces tendances font de l'analyse des données un des plus importants domaines de recherche
actuels.

2 Problématiques

2.1 Problématiques Scienti�ques

Dans de nombreux domaines, les données peuvent être de grande dimension (c'est-à-dire avoir de
nombreuses caractéristiques). Certaines de ces caractéristiques peuvent être fortement corrélées
avec d'autres ou être redondantes. Etant donné que la grande dimensionnalité des données peut
restreindre la performance des méthodes de traitement des données [Bingham and Mannila 2001],
le problème de la réduction de dimension se pose naturellement.

La réduction de dimension est le processus de réduction le nombre de dimensions (caractéris-
tiques) par la sélection de caractéristiques ou la création des caractéristiques capables à présenter
les données le mieux possible [Roweis and Saul 2000]. Selon [Pudil and Novovi£ová 1998], les
techniques de réduction de dimension peuvent être classées en fonction de leur but en

• techniques pour la représentation optimale,

• techniques pour la classi�cation;

et/ou en fonction de leur stratégie en

• la sélection des caractéristiques,

• l'extraction des caractéristiques (ou la construction des caractéristiques [Guyon and Elis-
see� 2003]).

Considérons tout d'abord la stratégie de méthodes de réduction de dimension puis leur but.
Les méthodes de sélection de caractéristique identi�ent un sous-ensemble des caractéristiques
originales su�sant pour résoudre une tâche considérée [Guyon and Elissee� 2003]. Au con-
traire, les méthodes d'extraction créent un ensemble de nouvelles caractéristiques (dites latentes
[Momma and Bennett 2006]) qui ne font pas forcement partie de l'ensemble des caractéristiques
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d'origine [Liu and Motoda 1998]. Bien que l'ensemble des caractéristiques résultant des méth-
odes d'extraction a une puissance descriptive et discriminative élevée, il est généralement non
interprétable [Pudil and Novovi£ová 1998]. Cela peut être un obstacle dans les domaines où
la compréhension d'un modèle est importante. Plusieurs travaux de recherche sont consacrés
à l'interprétation des modèles avec les caractéristiques latentes [Bylesjö et al. 2008, Cruz-Roa
et al. 2012, Kvalheim and Karstang 1989]. Toutefois, les solutions proposées varient selon la
technique d'extraction des caractéristiques adoptée et selon le domaine d'application. Par con-
séquent, la première problématique scienti�que de la thèse est PS1: comment extraire des
caractéristiques latentes interprétables?

Maintenant nous poursuivons avec l'étude de techniques de réduction de dimension en fonc-
tion de leur but. Alors que la réduction de dimension pour la représentation cherche à préserver
la structure topologique des données, la réduction de dimension pour la classi�cation vise à
améliorer la puissance discriminatoire (ou la puissance de classi�cation) du sous-ensemble sélec-
tionné [Pudil and Novovi£ová 1998].

Les motifs de classi�cation, c'est-à-dire les motifs obtenus par des algorithmes de classi�ca-
tion, peuvent être directement utilisés pour e�ectuer l'analyse descriptive, diagnostique ou bien
prédictive. Cependant, suivons la tendance générale d'évolution de concepts d'analyse des don-
nées. Le quatrième type d'analyse des données est l'analyse prescriptive. Dans ce cadre, la tâche
de classi�cation peut être considérée comme la tâche d'identi�cation des facteurs déclencheurs,
c'est-à-dire des facteurs qui peuvent in�uencer le transfert d'éléments de données d'une classe
à l'autre. Dans la littérature nous pouvons trouver des tentatives d'identi�cation des facteurs
capables d'in�uencer la direction de développement d'un système [Baker et al. 2001, Choongo et
al. 2016]. Cependant, toutes ces approches sont basées sur l'analyse humaine et, à notre connais-
sance, il n'existe aucune technique d'identi�cation automatique de facteurs déclencheurs dans le
cas général. Ainsi, la deuxième problématique scienti�que de cette thèse est PS2: comment
identi�er automatiquement les facteurs déclencheurs?

2.2 Domaine d'Applications : Systèmes de Recommandations

Nous visons à résoudre les deux problématiques scienti�ques PS1 et PS2 dans le domaine
d'application des systèmes de recommandation. Notre choix est dicté par deux faits. Pre-
mièrement, les systèmes de recommandation sont extensivement utilisées dans des applications
diverses (e-commerce [Huang 2011], tourisme [Zanker et al. 2008], e-learning [Verbert et al.
2012, Kla²nja-Mili¢evi¢ et al. 2015]). Deuxièmement, le processus de construction de systèmes
de recommandation fait face aux deux problématiques scienti�ques identi�ées ci-dessus.

Les systèmes de recommandation visent à aider un utilisateur à choisir un produit qui corre-
spond à ses besoins. Le �ltrage collaboratif [Schafer et al. 2007] est une technique très connue et
extensivement utilisée. Elle s'appuie sur les préférences des utilisateurs, généralement présentées
sous la forme des notes attribuées aux produits par des utilisateurs. Deux approches principales
sont utilisées dans �ltrage collaboratif : l'approche basée sur le voisinage et l'approche basée sur
la factorisation de matrices [Koren 2008].

L'approche basée sur la factorisation de matrices a devenue récemment plus populaire que
l'approche basée sur le voisinage [Adomavicius and Tuzhilin 2005], puisqu'elle fonctionne bien
avec les données creuses et les données de grande échelle [Takacs et al. 2009]. Aussi cette
approche permet de construire des modèles qui sont à la fois �dèles et peu complexes [Koren et
al. 2009]. Cette approche est basée sur l'idée que les préférences des utilisateurs sur les produits
peuvent être expliquées par un nombre réduit de facteurs latents [Koren et al. 2009]. Compte
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tenu que l'approche basée sur la factorisation de matrices est une approche d'extraction des
caractéristiques [Guyon and Elissee� 2003], les facteurs latents du modèle sont construits dans
façon à ce qu'ils prédisent au mieux les notes connues. Par conséquent, les facteurs latents n'ont
pas de sens � physique � et l'interprétation de ces facteurs devient une tâche di�cile. Ainsi, l'un
des inconvénients de cette approche est la di�culté à expliquer les recommandations fournies
(car les éléments du modèle ne sont pas interprétables).

Ainsi, la première problématique applicative de cette thèse est PA1: proposer une in-
terprétation automatique de facteurs latents pour les systèmes de recommandation
basés sur la factorisation de matrices.

Les produits recommandés par un système de recommandation peuvent être de nature très
variée. Nous pouvons mentionner la recommandation traditionnelle de �lms [Golbeck et al.
2006], de musique [Koenigstein et al. 2011], de recettes [Berkovsky and Freyne 2010] et même la
recommandation d'activités physiques [Shibata et al. 2009]. Dans le cadre de l'analyse prescrip-
tive un système de recommandation peut être utilisé pour former des recommandations sur la
façon de stimuler le développement d'un système dans la direction souhaitée. Par exemple, au
lieu de prédire la possibilité d'un achat nous pouvons essayer d'identi�er les facteurs qui peuvent
stimuler l'achat d'un produit particulier (les facteurs qui peuvent déclencher un achat).

Comme indiqué plus haut, nous ne connaissons aucune technique conçue pour l'identi�cation
automatique des facteurs déclencheurs. Ainsi la deuxième problématique applicative de cette
thèse est PA2: proposer une technique pour l'identi�cation automatique des facteurs
déclencheurs et pour la génération des recommandations sur la façon d'atteindre les
objectifs souhaités.

3 Contributions

La première contribution de cette thèse (qui correspond à PA1 et PS1), est la proposition
d'une interprétation de facteurs latents de systèmes de recommandation basés sur la factorisation
de matrices. Nous associons les facteurs latents à des éléments réels du système : des utilisateurs
(désignés sous le terme `utilisateurs représentatifs'). Cette association complète le modèle et les
recommandations fournies avec l'interprétation. Au contraire de la plupart d'autres approches
conçues pour dériver le sens des facteurs latents dans les modèles basés sur factorisation de
matrices [Zhang et al. 2006, McAuley and Leskovec 2013], la méthode proposée ici ne demande ni
une analyse humaine ni des sources d'information externes. L'interprétation proposée donne aussi
une solution élégante de problème de démarrage à froid pour des nouveaux produits [Bobadilla
et al. 2013].

Cette contribution a pour résultats deux publications en revues (internationale et nationale)
et trois publications en conférences internationales :

• Revue internationale : `Identifying representative users in matrix factorization-based rec-
ommender systems: application to solving the content-less new item cold-start problem',
Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Chertov, In Journal of Intelli-
gent Information Systems, 2016 [Aleksandrova et al. 2016a].

• Revue nationale (Ukraine) : `Comparative analysis of neighbourhood-based approach and
matrix factorization in recommender systems', Oleg Chertov, Armelle Brun, Anne Boyer,
Marharyta Aleksandrova, In Eastern-European Journal of Enterprise Technologies, 2015
[Chertov et al. 2015].
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• Article de conférence : `Can latent features be interpreted as users in matrix factorization-
based recommender systems?', Armelle Brun, Marharyta Aleksandrova, Anne Boyer, In
2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and In-
telligent Agent Technologies (IAT), Warsaw, Poland, 2014 [Brun et al. 2014].

• Article courte d'atelier : `What about interpreting features in matrix factorization-based
recommender systems as users?', Marharyta Aleksandrova, Armelle Brun, Anne Boyer,
Oleg Chertov, In ACM Conference on Hypertext and Social Media (HT), International
Workshop on Social Personalisation (SP 2014), Santiago, Chile, 2014 [Aleksandrova et al.
2014c].

• Article de session doctorale : `Search for user-related features in matrix factorization-based
recommender systems', Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Cher-
tov, In European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML/PKDD 2014), PhD Session Proceedings, 2014 [Alek-
sandrova et al. 2014b].

La deuxième contribution de cette thèse (qui correspond à PA2 et PS2) consiste en
l'introduction d'un nouveau type de motifs désigné sous le terme `ensemble de règles de contraste'.
Ce pattern s'appuie sur des règles d'association. Le pattern proposé est conçu pour l'identi�cation
automatique de facteurs déclencheurs. A traves des expérimentations, nous montrons que le
pattern proposé peut en réalité identi�er les facteurs déclencheurs. Il peut aussi être utilisé pour
concevoir des recommandations avec pour but d'in�uencer la direction de développement d'un
système. Nous prouvons aussi que notre pattern appartient au domaine de l'induction supervisée
des règles descriptives [Petra 2009]. Il peut être ainsi considéré comme une solution pour le
problème de redondance des règles [Zaki 2000]. En plus, nous supposons que l'application du
motif proposé pour l'analyse des données démographiques permet d'identi�er les éléments de
habitus [Hillier and Rooksby 2005] et les opportunités dans la théorie de la découvertes des
opportunités [Ohsawa 2006].

Les résultats obtenus dans le cadre de cette contribution ont étés publiés en revue nationale
et publiés dans des conférences internationales et nationales :

• Revue nationale (Ukraine) : `Two-step recommendations: contrast analysis and matrix
factorization techniques', Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Cher-
tov, In Mathematical machines and systems, 2014 [Aleksandrova et al. 2014a].

• Article courte de conférence : `Sets of contrasting rules to identify trigger factors', Marharyta
Aleksandrova, Armelle Brun, Oleg Chertov, Anne Boyer, In 22nd European Conference on
Arti�cial Intelligence (ECAI-2016), short paper, 2016 [Aleksandrova et al. 2016d].

• Article courte de conférence: `Sets of contrasting rules: a supervised descriptive rule induc-
tion pattern for identi�cation of trigger factors', Marharyta Aleksandrova, Armelle Brun,
Oleg Chertov, Anne Boyer, In 28-th IEEE International Conference on Tools with Arti�cial
Intelligence (ICTAI-2016), short paper, 2016 [Aleksandrova et al. 2016c].

• Article d'telier : `Automatic identi�cation of trigger factors: a possibility for chance discov-
ery', Marharyta Aleksandrova, Armelle Brun, Oleg Chertov, Anne Boyer, In 22nd European
Conference on Arti�cial Intelligence (ECAI-2016), 2nd European Workshop on Chance
Discovery and Data Synthesis, 2016 [Aleksandrova et al. 2016b].
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• Article de conférence nationale : `Data mining for habitus elements identi�cation', Oleg
Chertov, Marharyta Aleksandrova, In International scienti�c conference `State and global
social changes: historical sociology of planning and resistance in modern era', Kyiv, Ukraine,
2015 [Chertov and Aleksandrova 2015].
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This thesis was prepared under the double-supervision program of the University of Lorraine and
the National Technical University of Ukraine `Igor Sikorsky Kyiv Polytechnic Institute'.

4 General Context

We live in the era of the information society, the society where the manipulation of information
is extremely important in all spheres of life: politics, economics, education, culture etc. [Webster
2014].

Today the digital data has become a primary source of information and its amount grows
rapidly. According to the research of the International Data Corporation (IDC), the number of
digital bytes produced by humanity doubles every 2 years and by 2020 it will reach 44 zettabytes
(44 ∗ 1021 bytes) [IDC 2014]. This data comes from various sources and is diverse in its nature.
We can mention data from di�erent sensors in industry, commercial and personal photos/videos,
site logs, specially collected data (like poll results or census data), text messages, etc. The
complexity of the data also varies signi�cantly. Some of these sources provide `raw' data in a
form of physical signals (like those coming from sensors), other sources furnish coded information
(like poll results), while yet another can provide rich in information but di�cult to automatically
analyse data with semantic meaning (like text messages).

Data new black gold...

Along with the increase in the amount of digital data, it has become more available for public
research. For example, so-called open data government initiatives [Ubaldi 2013] launched in
many countries provide access to governmental data (see for instance opendatafrance.net or
data.gov.ua which, as for September 2016, provide free access to 9,500 and 6,756 government
datasets of France and Ukraine respectively).

Exploiting data becomes a necessary condition for competitiveness in modern business. Many
huge well-known �rms and corporations such as Lufthansa [Lufthansa 2016] con�rm that the
usage of data is important for their business. However, not only big �rms but also medium
and small ones can make use of it [Hazel 2015]. Digital data also invades our everyday life.
Modern smart household appliances not only can analyse the data they collect but also exchange
it through the internet and optimise their operation. This novel phenomenon is known as the
Internet of Things (IoT) [Xia et al. 2012] or Industrial Internet [Daugherty et al. 2014].

All these tendencies make data being the new `black gold' which, contrary to other black gold
equivalents (like co�ee or petrol) can be reused multiple times and for various purposes [Singh
2013]. Moreover, the value of many datasets is not exhausted with time but only grows when
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new data is added, which makes it being comparable with such renewable resources as wind or
solar energy. The importance of data is so signi�cant, that we are starting to face a `data-driven'
economy, where `data ... is playing an increasingly pivotal role in the creation and evolution
of innovative new services' [Facebook and CtrlShift 2016]. We can conclude that digital data
creates a whole new world with corresponding interaction rules. However, like other black gold
equivalents raw data is not very useful, but what is useful is information that is extracted from
it [Singh 2013].

From data to knowledge...

Data analysis is the process of converting raw or partially processed data into useful information
[Judd et al. 2011]. This process can include many steps like cleaning, �ltering, transforming, and
modelling [Schutt and O'Neil 2013]. Even before the computers were invented, people gathered
and analysed the data. However, with modern computing machinery, qualitatively new results
can be obtained [Kelle and Bird 1995]. For example, now it is possible not only to calculate
some statistical characteristics of a dataset (like mean value), but with the help of data mining
techniques, a search for hidden patterns in the data can be done [Han et al. 2011]. Nowadays,
neural networks algorithms attempt to simulate the processes taking place in the human brain
while analysing the data [Hagan et al. 1996]. We can also note the development of techniques
specialised for the analysis of so large and complex datasets, where traditional data processing
becomes inadequate [Oracle and FSN 2012], referred to as big data techniques [Gandomi and
Haider 2015].

Not only the analysis techniques are being constantly developed, but also the concepts of
data analysis are evolving. For instance, according to Gartner [Davis and Herschel 2016], we can
de�ne 4 type in data analytics: descriptive analytics, diagnostic analytics, predictive analytics
and prescriptive analytics. The descriptive analytics aims to describe the general tendencies
in the dataset. The diagnostic analytics tries to understand the nature of the found patterns
and dependencies, and the predictive analytics aims to predict what can happen in the future.
Finally, the prescriptive analytics identi�es the factors that can actually lead the development
of the system in the desired direction.

Thereby, we can see that the availability of technical tools and that of data, as well as its
natural potential in hidden information, and the existence of the high demand for information
from the today's information society, make data analysis being one of the most important spheres
of research.

5 Problematics

5.1 Scienti�c Problematics

In many application areas, data elements can be high-dimensional. That is, they can have
a large number of characteristics or features. For example, when using the bag-of-words model
[McCallum et al. 1998, Zhang et al. 2010] for text documents analysis, the number of dimensions
is equal to the size of the dictionary [Segal and Kephart 2000], that is equal to the total possible
number of words in the language. For census [U.S.CensusBureau 2000] and DNA [Avogadri
and Valentini 2009] microarray �les the number of dimensions can be made up of hundreds
and thousands of elements respectively. Some of these features can be highly correlated with
the others or just redundant. Considering the fact that high dimensionality of a dataset can
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restrict the performance of data processing methods [Bingham and Mannila 2001], the problem
of dimensionality reduction arises.

Dimensionality reduction is the process of reducing the number of dimensions under consid-
eration by selecting or creating features that can represent the data in the best possible way
[Roweis and Saul 2000]. According to [Pudil and Novovi£ová 1998], based on their aim, the
dimensionality reduction techniques can be divided into

• dimensionality reduction for optimal data representation,

• dimensionality reduction for classi�cation;

based on the adopted strategy into

• feature selection,

• feature extraction (or feature construction [Guyon and Elissee� 2003]).

Let us follow the bottom-up analysis and move from adopted strategy of dimensionality re-
duction to its aim. Feature selection methods are those that create a subset of original features
that is su�cient to solve a given task [Guyon and Elissee� 2003]. Contrarily, the feature extrac-
tion methods create a set of new features (often referred to as latent features, see for example
[Momma and Bennett 2006]) which may not be a part of the set of original features [Liu and
Motoda 1998]. Though the set of features resulting from feature extraction methods has higher
descriptive and discriminative power, it can become uninterpretable [Pudil and Novovi£ová 1998].
This can be an obstacle in certain domains, where the understanding of a model is important. For
example, when trying to understand the cause of a certain disease (in medicine [Sundgot-Borgen
1994]) or the market behaviour (in �nance [Baker et al. 2001]). Many research works deal with
the interpretation of latent features models [Bylesjö et al. 2008, Cruz-Roa et al. 2012, Kvalheim
and Karstang 1989]. However, the proposed solutions vary based on the used feature extraction
method and the application problem. Thereby, the �rst scienti�c problematic of this thesis is
SP1: how to extract interpretable latent features?

Now we proceed to have a look at the dimensionality reduction methods from the perspec-
tive of their aim. While the dimensionality reduction for representation seeks to preserve the
topological structure of data in a lower-dimensional subspace, the dimensionality reduction for
classi�cation aims to enhance the discriminatory (or classi�cation) power of the selected subset
[Pudil and Novovi£ová 1998]. Classi�cation is used in numerous applications like optical charac-
ter recognition [Impedovo et al. 1991], natural language processing [Manning and Schütze 1999],
medical image analysis [Chen et al. 1989] and corresponds to the natural ability of a human
brain to divide objects into a set of classes and then referring to a class while interpreting a
previously unseen object. The task of the classi�cation is de�ned as a task of constructing an
algorithm capable of identifying the class of a new data element [Alpaydin 2014].

Classi�cation patterns, those resulting from classi�cation algorithms, can be naturally used
for the purposes of descriptive, diagnostic and predictive analytics (to understand the structure
of the datasets, characteristics of its elements as well as to predict the class of the elements).
There also exist a number of techniques designed for the identi�cation of such patterns. Among
them, we can mention contrast analysis that aims to discover those patterns, that can highlight
the di�erences between classes of data [Bay and Pazzani 2001]. However, let us follow the general
tendency in the evolution of data analysis concepts and move to its fourth type: prescriptive
analytics. Within the scope of prescriptive analytics, the task of classi�cation can be viewed as
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the task of forcing the transfer of elements from one class to another with the aim to stimulate
the system development direction. There are attempts in the literature to identify factors that
can a�ect the system development [Baker et al. 2001, Choongo et al. 2016] (they will be referred
to as trigger factors). However, they are based on human analysis and we are not aware of
any techniques that are designed for the identi�cation of such trigger factors. Thus, the second
scienti�c problematic of this thesis is SP2: how to identify automatically factors that can
cause the movement of elements from one class of the dataset to another (trigger
factors)?

5.2 Application Domain and Problematics: Recommender systems

We aim to investigate and solve the scienti�c questions put in the previous subsection within
the recommender systems application domain, as these systems are extensively used in diverse
applications (e-commerce [Huang 2011], tourism [Zanker et al. 2008], e-learning [Verbert et al.
2012, Kla²nja-Mili¢evi¢ et al. 2015]) and the process of their construction faces both SP1 and
SP2.

Recommender systems (RS) aim to assist users in their selection or purchase of items by
suggesting the items that �t their needs. Collaborative �ltering (CF) [Schafer et al. 2007] is
a very popular and widely used recommendation technique, which relies on users' preferences,
generally the ratings they assign to items. This information is usually presented in a form of a
rating matrix with rows and columns corresponding to users and items, and values corresponding
to actual ratings. One of the tasks of a recommender system is thus to predict the values of
unknown ratings of the previously unseen items by a user and recommend those, that have the
highest predicted ratings and, thereby, are predicted to be more interesting. There are two major
approaches in CF: neighbourhood-based (NB) and matrix factorization (MF) [Koren 2008]. The
NB approach [Desrosiers and Karypis 2011a] identi�es for each user, his/her similar-minded users
(neighbours), using the rating matrix. It estimates the missing ratings of this user by exploiting
the ratings of his/her neighbours. NB is quite popular due to its simplicity, e�ciency, accuracy
and its ability to explain the provided recommendations (through the users' neighbours) [Koren
2008]. However, NB has limitations on large and/or sparse datasets and it is time-consuming.

The MF approach [Koren et al. 2009] relies on the idea that the ratings in the rating matrix
can be explained by a small number of latent features (also referred to as factors). It factorizes
the rating matrix into two low-rank matrices, which represent the relation between the users
and items with the latent features. The MF approach has recently attracted more attention
than the traditional neighbourhood-based approach [Adomavicius and Tuzhilin 2005], as it is
adequate for large-scale and sparse datasets [Takacs et al. 2009] and it has proven to form highly
accurate models of low-complexity [Koren et al. 2009]. As MF is a feature extraction method
[Guyon and Elissee� 2003], the resulting latent features are formed in such a way, that the model
�ts the best known ratings. As a consequent, the latent features have no underlying physical
meaning and the interpretation of these features is not an easy and obvious task. Thus, one
of the main shortcomings of MF is the di�culty to explain the recommendations provided (as
elements of the model have no real interpretation). At the same time, several studies [Herlocker
et al. 2000, Sinha and Swearingen 2002, Ortega et al. 2014] show that explanations enhance
the user satisfaction and increase user trust (�delity) in the system. Users feel more comfortable
when they understand why a certain item is recommended to them. We can outline some works
dedicated to the interpretation of MF-based recommendation models, however, most of them
either propose to perform the interpretation manually [Zhang et al. 2006] or to align it with
other interpretable models [McAuley and Leskovec 2013].
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Thereby, the �rst application problematic of this thesis is AP1: propose an automatic
interpretation of latent features within the matrix factorization-based recommenda-
tion models (provide the model explanation without requiring external information)
and explore if the resulting interpretation can be used to improve the recommender
system performance.

On a more abstract level when the set of possible items to recommend is prede�ned the
task of recommendation can be viewed as multi-criteria decision making [Adomavicius et al.
2011]. The recommended items can also vary signi�cantly in their nature, starting from the
traditional recommendation of �lms [Golbeck et al. 2006], music [Koenigstein et al. 2011], recipes
[Berkovsky and Freyne 2010] to the recommendation of physical activities [Shibata et al. 2009].
Within the frame of prescriptive analytics, where the task is to understand how it is possible to
make something happen, the recommender systems can be asked to give recommendations on
how to stimulate the development of a system in the desired direction. For example, instead of
predicting the possibility of a purchase we can try to identify those factors, that can actually
stimulate the purchase of a certain item. Another example can be giving recommendations on
how to encourage students to �nish the started online course or stimulate the birth-rate increase,
that is to identify trigger factors within the current application task. In this case, there are
alternative states of the elements of the system (an item bought / not bought, a course �nished
/ not �nished, a child is born / not born) and it is required to identify factors that can cause
the elements to change their state. In our opinion, this can be done through the analysis of the
di�erences between the elements belonging to each of the alternative classes, that is, through
the concept of contrast analysis. The idea of using contrast analysis techniques in the frame
of recommender systems domain was proposed in [Duan 2014], however with the goal to �nd
di�erences between users, but not to search for trigger factors. As it was mentioned above, we
are not aware of any techniques designed for the automatic identi�cation of trigger factors, thus
the second application problematic of this thesis is AP2: propose a technique that can
automatically identify trigger factors and generate based on them recommendations
to achieve the desired objective.

6 Contributions

As a �rst contribution of this work (that corresponds to AP1 and SP1), we propose an inter-
pretation of the latent features in MF-based recommender systems. We associate latent features
with real elements of the system: with users (referred to as representative users). This associ-
ation makes the model and the provided recommendations being interpretable as the resulting
recommendations are now generated not through abstract features without physical meaning, but
through real elements of the system. Unlike most of the other approaches designed for deriving
the meaning of latent features in MF-based models [Zhang et al. 2006, McAuley and Leskovec
2013], the proposed method neither requires human analysis, nor the external sources of infor-
mation. Also, the model becomes somewhat similar to the NB models. Indeed, if the features
are associated with users, then the preferences of a user are computed through the preferences
of representative users. At the same time in the NB approach, the preferences are computed
through the neighbours.

The proposed interpretation also results in an elegant solution for the new item cold-start
problem, when a previously unseen item enters the system [Bobadilla et al. 2013]. Indeed, the
MF approach assumes that the relations between features and items can be expressed through the
set of latent features. If these features are associated with some real users of the system, then the
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relations between users and items can be expressed through a set of these representative users.
Thereby, the ratings provided by representative users on new items can be used to estimate
the preferences of other users on new items. The proposed solution for the new item cold-
start problem also does not require any content information concerning the recommended items,
contrary to many state-of-the-art approaches.

This contribution resulted in two journal publications (international and national) and three
publications presented at international conferences (regular paper, short workshop paper, and
PhD session paper):

• International journal: `Identifying representative users in matrix factorization-based rec-
ommender systems: application to solving the content-less new item cold-start problem',
Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Chertov, In Journal of Intelli-
gent Information Systems, 2016 [Aleksandrova et al. 2016a].

• National journal (Ukraine): `Comparative analysis of neighbourhood-based approach and
matrix factorization in recommender systems', Oleg Chertov, Armelle Brun, Anne Boyer,
Marharyta Aleksandrova, In Eastern-European Journal of Enterprise Technologies, 2015
[Chertov et al. 2015].

• Regular conference paper: `Can latent features be interpreted as users in matrix factorization-
based recommender systems?', Armelle Brun, Marharyta Aleksandrova, Anne Boyer, In
2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and In-
telligent Agent Technologies (IAT), Warsaw, Poland, 2014 [Brun et al. 2014].

• Short workshop conference paper: `What about interpreting features in matrix factorization-
based recommender systems as users?', Marharyta Aleksandrova, Armelle Brun, Anne
Boyer, Oleg Chertov, In ACM Conference on Hypertext and Social Media (HT), Interna-
tional Workshop on Social Personalisation (SP 2014), Santiago, Chile, 2014 [Aleksandrova
et al. 2014c].

• PhD session conference paper: `Search for user-related features in matrix factorization-
based recommender systems', Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg
Chertov, In European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD 2014), PhD Session Proceedings, 2014
[Aleksandrova et al. 2014b].

The second contribution of this thesis (that corresponds to AP2 and SP2) lies in the
introduction of a new type of pattern, referred to as `set of contrasting rules' (SCR pattern),
which is based on association rules. One of the original aspects of the SCR pattern is that it
is made up of a set of rules contrary to the state-of-the-art patterns like contrast sets [Bay and
Pazzani 1999] or emerging patterns [Dong and Li 1999] that are made up of only one element
(such as one rule). The proposed pattern is designed for the automatic identi�cation of trigger
factors (the factors that can stimulate the system state changes) through the introduction of
notions of varying and invariant attributes. To the best of our knowledge, no other techniques
in the literature allow to identify automatically such trigger factors, and the manual analysis
performed in some works, for example, [Hougaard et al. 2013], cannot be e�ciently used for
solving real-life tasks.

Through the experiments, we show that the proposed pattern can actually identify trigger
factors and can be used to form recommendations on how to a�ect the development of a system.
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6. Contributions

We also show that the SCR pattern falls within the supervised descriptive rules induction frame-
work [Petra 2009] and that it can be a solution to the problem of rules redundancy [Zaki 2000].
In addition, we assume that when the proposed pattern is used for the analysis of demographic
data it can identify the elements of habitus [Hillier and Rooksby 2005] and chances in chance
discovery theory [Ohsawa 2006].

The results obtained in the scope of this contribution were published in a national journal,
presented at international conferences (as two short papers and a workshop paper) and presented
as a thesis in a national conference:

• National journal (Ukraine): `Two-step recommendations: contrast analysis and matrix fac-
torization techniques', Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Chertov,
In Mathematical machines and systems, 2014 [Aleksandrova et al. 2014a].

• Short conference paper: `Sets of contrasting rules to identify trigger factors', Marharyta
Aleksandrova, Armelle Brun, Oleg Chertov, Anne Boyer, In 22nd European Conference on
Arti�cial Intelligence (ECAI-2016), short paper, 2016 [Aleksandrova et al. 2016d].

• Short conference paper: `Sets of contrasting rules: a supervised descriptive rule induction
pattern for identi�cation of trigger factors', Marharyta Aleksandrova, Armelle Brun, Oleg
Chertov, Anne Boyer, In 28-th IEEE International Conference on Tools with Arti�cial
Intelligence (ICTAI-2016), short paper, 2016 [Aleksandrova et al. 2016c].

• Workshop conference paper: `Automatic identi�cation of trigger factors: a possibility for
chance discovery', Marharyta Aleksandrova, Armelle Brun, Oleg Chertov, Anne Boyer, In
22nd European Conference on Arti�cial Intelligence (ECAI-2016), 2nd EuropeanWorkshop
on Chance Discovery and Data Synthesis, 2016 [Aleksandrova et al. 2016b].

• National conference paper: `Data mining for habitus elements identi�cation', Oleg Cher-
tov, Marharyta Aleksandrova, In International scienti�c conference `State and global social
changes: historical sociology of planning and resistance in modern era', Kyiv, Ukraine,
2015 [Chertov and Aleksandrova 2015].
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Overview of Recommender Systems
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As it was mentioned in the introduction, we choose recommender systems as an application
�eld for solving the scienti�c questions SP1 and SP2. This choice is based on two reasons: 1)
the �eld of recommender systems is very popular both in industry and in academia as these
systems were designed with the aim to overcome information overload, which is one of the main
problems of information society; and 2) within this �eld we can de�ne application problematics
AP1 and AP2, which correspond to SP1 and SP2.

The goal of this chapter is to provide a general overview of recommender systems as a research
�eld and to point out the positions of application problematics AP1 and AP2. The research
trends speci�c for each application problematic will be discussed in the following chapters.

1.1 Current State-of-the-Art

1.1.1 Origins of Recommender Systems

As it was discussed in the introduction, we live a society where information becomes one of
the key driving forces of its development. It was also discussed that the amount of data and
the amount of information that can be extracted from it grows extremely fast. As a result,
it becomes more and more di�cult to navigate in such a vast amount of information and to
choose something relevant or useful. Thus the problem of overcoming the information overload
has arisen, which led to the appearance of the recommender systems (RS) research area in the
mid-1990 [Park et al. 2012, Ricci et al. 2011, Adomavicius and Tuzhilin 2005].

The way we choose something in real life depends on many factors: on some prede�ned demo-
graphic behavioural patterns (for example, it is considered that women usually prefer romantic
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Chapter 1. Overview of Recommender Systems

Figure 1.1: Filtering Techniques of Recommender Systems

�lms and men tend to choose action movies [Fischo� et al. 1998]); the characteristics of an item;
the opinions of our friends, experts or other like-minded people; circumstances. All these sources
of information are now re�ected in the `numerical world' and thus �nd their application in the
recommender systems.

The process of choosing an item from the set of items can be viewed as a process of �ltering
all the items basing on some criteria. That is why very often recommendation techniques are
also referred to as �ltering techniques [Rao 2008, Bobadilla et al. 2013]. In the next subsection,
we will describe di�erent �ltering techniques based on the source of information being used.

1.1.2 Filtering Techniques

There are di�erent approaches in the literature to classify �ltering techniques of recommender
systems. We distinguish 6 of them basing on the source of information used for �ltering (see
Figure 1.1).

Content-based �ltering [Lops et al. 2011, Aggarwal 2016b] relies on the idea that users
will like items that are similar to those, that they liked in the past. Thereby, the content-based
RS propose to the user those items, that have similar characteristics to the items which were
highly appreciated by this user before. In this case, the features of the items are used to perform
the �ltering process. If the features of the items are numerically annotated, then content-based
�ltering techniques are straightforward and can easily provide recommendations for new users or
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on new items (by matching the preferences the users speci�ed in their pro�le with the features
of the items). However, many times the formed recommendations are obvious and may be not
interesting for the users [Aggarwal 2016e]. Indeed, usually users want the recommender system to
suggest something new, something that they cannot �nd on their own. However, recommending
only science �ction movies for a user who speci�ed preferences towards this genre in his pro�le
will not help him to discover cosmos documentaries, which may also interest this user. Also,
it becomes very di�cult to follow the changes in user preferences, as the recommender system
always proposes items with a set of features, that were appreciated by the user in the past.
Finally, content-based �ltering requires the features of items to be numerically encoded either by
people or through di�erent analytical algorithms. This may be either computationally expensive
or in some cases impossible (for example, when we want to recommend perfumes [Das et al.
2007] or pages in social network site [Xie et al. 2013]).

Demographic �ltering [Aggarwal 2016e, Rao 2008] techniques are based on the assump-
tion that users with the same demographic characteristics have close preferences. Demographic
�ltering is based on stereotypes and their usage for user modelling [Rich 1979, Rich 1989]. It
is considered that the demographic �ltering does not provide best results on the stand-alone
basis [Aggarwal 2016e], however, it can give good insights when no other type of information is
available.

Contrary to both mentioned above �ltering techniques, collaborative �ltering
[Breese et al. 1998] neither uses the information about items (content information), nor the
information about users (demographic information). Instead, it utilises the results of user-item
interactions, more precisely, the known preferences of the users on those items, which they al-
ready consumed. The basis of collaborative �ltering relies on the assumption that users who
had similar preferences in the past, will have similar preferences in the future. Collaborative
�ltering techniques allow following the trends and the evolution of the users preferences: if users
change their preferences concerning a certain type of items, it will be re�ected in the resulting
recommendations. However, for achieving good results the collaborative �ltering system requires
each user to provide his preferences on a su�cient number of items (each item to be evaluated
by a su�cient number of users). For example, in the benchmark MovieLens dataset1 each user
is required to provide ratings on at least 20 items before recommendations can be generated for
him.

With the appearance of social websites, recommender systems started facing new sources
of information [Aggarwal 2016e, Godoy and Corbellini 2016]: social connections, folksonomies,
review posts etc., as well as new tasks [Guy 2015]: recommendation of friends, tags, social
content etc. Despite the fact that these new types of information require specialised processing
algorithms (see, for example, [Carmagnola et al. 2009]), after processing, most of them can
be reduced to information about items, users or their interaction. That is, to those types of
information that are used in content-based, demographic or collaborative �ltering respectively.
However, social networks provide one new type of information, that is not used in �ltering
techniques mentioned above: information about social connections between people. That is why
following [Groh et al. 2012] we de�ne social �ltering as �ltering performed on the basis of
connections between people. We can formulate the basic assumption of social �ltering as follows:
users who have social connections with the active user can be used to predict his preferences.
Indeed, the network of friends or trusted people can be used to form the set of reliable users.
Afterwards, the preferences of these reliable users can be used for estimating preferences of an
active user (see, for instance, trust-based recommender systems [Aggarwal 2016i, O'Donovan and

1http://grouplens.org/datasets/movielens/
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Smyth 2005]). As it is mentioned in [Groh et al. 2012], social �ltering in this formulation can be
considered as a special case of collaborative �ltering. The main di�erence here is in the way we
choose the set of users used to predict preferences of an active user. In the case of collaborative
�ltering, it is formed of those users who have similar rating behaviour with an active user. At
the same time, in the case of social �ltering, these users are de�ned through social connections
such as friendship or the relation of trust.

In some domains, it is di�cult to gather su�cient amount of information about user prefer-
ences towards some features of the items (for content-based �ltering) or known opinions of other
users (for collaborative and social �ltering). This case may concern rarely consumed items with
a complex description like expensive luxury goods or �nancial services. In such kind of situa-
tions the knowledge of experts is used, which form the basis of the knowledge-based �ltering
techniques [Trewin 2000]. One of the key-points of knowledge-based RS is the increase of the
user control in the recommendation process [Aggarwal 2016f]. Depending on the user interaction
methodology, such RS are divided into constraint-based and case-based [Aggarwal 2016f]. In
constraint-based RS users specify the requirements in the form of the constraints on the item
features. In the case-based systems, users provide an example of the item they would prefer to
consume (a case), while the system tries to �nd the most similar ones to recommend to the user.
As the underlying model of the knowledge-based �ltering is formed basing on expert-provided
knowledge, no assumptions are used while constructing such models.

Considering the situation of a user who chooses di�erent �lms to watch depending on with
whom he will do it, we can say that very often the choice made by the user will also depend
on external circumstances. This statement forms the basic assumption of the context-based
�ltering [Aggarwal 2016c, Adomavicius and Tuzhilin 2011]. This type of �ltering takes into
account information that is external to both the user and the item, but can still a�ect the
consumption of an item. Time of recommendation and location of the user are good examples
of the contextual dimensions.

As we can see, there are multiple �ltering techniques, which are based on di�erent types of
information. Each of them has advantages and disadvantages. For example, it can be annoying
for a user to �ll in his pro�le in content-based �ltering or providing ratings on items in collabo-
rative �ltering. However, this is the price that has to be paid if only one source of information is
available for �ltering. But when it is possible to get information from multiple sources, di�erent
�ltering techniques discussed above can be successfully used simultaneously within so-called hy-
brid �ltering approaches [Burke 2002, Aggarwal 2016d]. Moreover, many research works prove
that the combination of basic �ltering techniques can help to alleviate the disadvantages of each
of them and achieve higher accuracy of recommendations [Chung et al. 2016, Panigrahi et al.
2016]. This also supports the naive reasoning that the more information is available, the better
predictions can be done.

1.1.3 Collaborative Filtering

The two �ltering techniques, namely collaborative and social �ltering, are of particular inter-
est as they allow following global changes in users preferences (the dynamics of the system)
with minimum participation of the active user. Indeed, for example, in content-based �lter-
ing the direction of recommendations can change only if the active user updates the informa-
tion about his preferences in the pro�le or starts expressing his preferences towards the items
with di�erent characteristics (without them being recommended before by a system). Con-
trarily, collaborative �ltering techniques can provide qualitatively new recommendations for an
active user basing only on the fact that other users (those having similar preferences or social
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Figure 1.2: Illustration of a Rating Matrix

connections with the active user) expressed their interest towards items with di�erent char-
acteristics. That is why these two types of techniques will always play an important role in
recommender systems, specially in the case of dynamic domains such as entertainment industry.
Within the scope of formulations we choose to follow, the social �ltering is a special case of col-
laborative �ltering where for each active user the set of other users who will be used to predict
the interests of an active user on new items is already de�ned via social connections. So further
we consider only collaborative �ltering, as a more general problem.

The only source of information for the pure collaborative �ltering methods are the preferences
of users on certain items. These preferences are traditionally referred to as ratings [Adomavicius
and Tuzhilin 2005]. According to their nature, ratings can be explicit or implicit. Explicit ratings
are speci�ed directly by users, whereas implicit ratings correspond to the automatically assigned
values basing on the user interaction with an item [Oard et al. 1998, Claypool et al. 2001]. For
example, the value of an implicit rating for a �lm can be estimated basing on the fact that the
user watched it completely or not and how many times he watched it (see [Chan 1999, Lee et al.
2008, Castagnos 2008] for more details).

The preferences of users (ratings) can be presented in a form of a rating matrix with rows
corresponding, for example, to users and columns corresponding to items (see Figure 1.2). The
value situated at the intersection of a row and a column corresponds to the value of the rating
assigned by the corresponding user to the item.

Some values of the rating matrix are unknown as the users did not consult associated items
yet. In this case, the task of collaborative �ltering can be considered as the task of �lling the
unknown values of the rating matrix also called the task of matrix completion [Claypool et al.
2001]. After completing the rating matrix, the recommendation for an active user is formed of
those items, that have the highest predicted values or ratings. In real applications, however, it
is more useful not to predict the exact values of ratings, but rather to correctly order the items
[Shani and Gunawardana 2011]. Indeed, assume we want to recommend one of the items a1 or
a2 with the corresponding rating values 5 and 2. If the recommendation model estimates the
predicted ratings as 3.5 and 3.4 respectively, we are still able to form a valuable recommendation
despite the fact that the predicted ratings are far from the values of real ratings. However, the
task of �lling a rating matrix is more general and includes the task of items ordering [Aggarwal
2016e].

In [Aggarwal 2016g] it was shown that the problem of completing the rating matrix can be
also viewed as a classi�cation problem. Indeed, the unknown rating values can be considered as
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class labels. For example, when working with binary ratings all items are divided into 2 classes:
those items that are of interest for the target user and those that are not. Thereby the task of
predicting the value of the ratings, in this case, will be the task of predicting the class label of the
corresponding items. The relation between classi�cation and recommendation problems explains
the successful implementation of the various classi�cation algorithms in recommender systems
(for example, support vector machines [Xia et al. 2006] or neural networks [Salakhutdinov et al.
2007]2).

Traditionally collaborative �ltering techniques are divided into two classes: memory-based
and model-based [Breese et al. 1998, Desrosiers and Karypis 2011b, Aggarwal 2016e]. Memory-
based techniques do not have a clear border between learning and recommendation phases. Let
us consider one of the prominent techniques, the user-based neighbourhood model [Aggarwal
2016h]. The learning phase, in this case, consists of computing the values of similarities between
users basing on the known rating values. However, we cannot say that the model is built during
the learning phase, as it is impossible to give recommendations basing only on similarities between
users. Thus, the �nal computations are performed during the recommendation phase itself. The
latter phase consists in estimating the rating values for an active user basing on the ratings of
other users and their similarities with an active user. The memory-based techniques belong to
the class of lazy-learning techniques [Aggarwal 2016h] when the system delays the generalization
of the model until a query is made [Chatterjee 2011].

In the case of model-based techniques, the phases of training and recommendation are clearly
distinguished [Aggarwal 2016g]: the model is built during the training phase. After that during
the recommendation phase the model is used to generate appropriate recommendations. As
a result, these techniques belong to the class of eager learning techniques, when the system
performs generalisation during the learning phase [Aggarwal 2016h]. Among the representatives
of the model-based techniques we can mention rule-based and Naive Bayes collaborative �ltering,
latent factor models etc. [Aggarwal 2016g].

One of the most popular model-based techniques of collaborative �ltering is matrix factoriza-
tion (MF), which is a representative of latent models [Koren et al. 2009] (as it was mentioned in
the introduction, matrix factorization is essentially a feature construction method). MF-based
models share the common problem of latent factors models (or feature construction techniques),
namely the lack of interpretability. We address this problem as a �rst application prob-
lematic of this thesis.

Cold-Start Problem in Collaborative Filtering

As collaborative �ltering (whether NB or MF) relies completely on the ratings, a problem occurs
when there are either no known ratings for a speci�c item/user, or the number of known ratings for
a speci�c item/user is very small. In this case, it is impossible to make reliable recommendations
[Bobadilla et al. 2013]. The �rst problem (absence of ratings) is known as a cold-start or out-
of-matrix prediction, while the second (very small number of known ratings) � as warm-start
(in-matrix prediction) [Agarwal and Chen 2010, Lam et al. 2008]. State of the art [Bobadilla et
al. 2013, Park and Chu 2009] distinguishes three kinds of cold-start problems: new community,
new item and new user. The new community problem refers to the start-up of a new recommender
system. New item and new user problems correspond to the cases when a new item/user enters
an already existing system.

A very popular solution to the new item cold-start problem relies on the content of the
items. The recommender either switches to a content-based techniques or mixes content with

2See Section 4.2 for a more detailed description of these techniques
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collaborative �ltering. Recommendations are provided by comparing the properties or content of
the items to the content of those items that are known to be of interest for an active user [Melville
et al. 2002, Lam et al. 2008]. The main limit of such a solution is the availability of the content,
which depends on the type of items. Indeed, in some domains, it is hard to automatically analyse
the underlying content. In addition, users' interests cannot always be characterised by content
properties contained in an item, for example when perfumes [Das et al. 2007] or Facebook pages
[Xie et al. 2013] are considered.

In the absence of content, a content-less new item cold-start problem is faced. A solution
adopted to solve the content-less new item cold-start problem is to form a set of users, who
will be asked to rate each new item in the system. The obtained ratings are used to estimate
the preferences of other users on these new items. These users should represent the interests
of the whole population as fully as possible and/or be capable of a�ecting the preferences of
others. Di�erent autors use di�erent terms to re�ere to such a set of users maynly depending
on the underlying algorithm used for their identi�cation: seed users or seeds [Liu et al. 2011],
representative users [Liu et al. 2011], in�uential users [Rashid 2007], power users [Seminario and
Wilson 2014] or leaders [Esslimani et al. 2013].

Seed users can be chosen randomly, but there is no guarantee that their ratings will represent
correctly or a�ect preferences of other users. They can also be chosen within a set of experts [Am-
atriain et al. 2009], which guarantees the quality of their ratings, but this solution is expensive
and in some cases experts may not be available. The problem of the automatic identi�cation
of seed users can be considered as a task of active learning, where the system automatically
identi�es those input elements, which will result in a better model construction [Houlsby et al.
2014]. Some approaches in this direction have been proposed. For example, in the frame of
neighbourhood-based models, [Esslimani et al. 2013] proposes to discover seed users based on
their connectivity and average similarity. [Rashid 2007] proposes to evaluate the importance of
users as the negative in�uence rendered on the quality of recommendations, when these users are
removed from the system. In [Houlsby et al. 2014] a Bayesian Active Learning approach is used.
The main idea here is to select those elements, that minimise uncertainty over the parameters
of the model.

1.2 Evolution of Recommender Systems

1.2.1 Recommender Systems and World Wide Web: Related Evolution Path

The evolution of recommender systems �ltering techniques is related to the evolution of World-
Wide-Web (WWW) and related technologies [Bobadilla et al. 2013] (see Figure 1.3), as the
latter one represents the global information digital space for navigating in which recommender
systems were developed [Deitel et al. 2002].

The �rst version of the World Wide Web Web 1.0 was suggested by Tim Berners-Lee in 1989
[Berners-Lee 1998] as a set of static information pages. It is also known as a read-only web [Patel
2013] or web of cognition [Aghaei et al. 2012] due to the very limited user interaction and the
static nature of represented information. With this stage of the evolution of WWW, we can
associate such �ltering techniques as content �ltering, demographic �ltering and collab-
orative �ltering. The information associated with each type of �ltering could be transmitted
via limited, but still available interaction tools like HTML forms.

The next generation of the WWW, Web 2.0, was de�ned in 2004 [Aghaei et al. 2012] with the
main feature that users from now are not passive viewers of content, but are active participants
in the process of the new content creation. Web 2.0, or read-write web, is also related to the
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Figure 1.3: Evolution of World Wide Web and Recommender Systems
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appearance of such services as social networks, blogs, wikis, which provide means not only to
share information but also to create networks of friends, colleagues or like-minded users. Thereby,
Web 2.0 also opened new opportunities for the recommender systems, which from now can also
perform social �ltering.

The third generation of the web, Web 3.0 was announced in 2006 [Spivack 2006] as web of
knowledge or semantic web. Its aim is to make the content being understandable for machines
(through meta-data tagging) and, as a consequent, to make the web being more intelligent.
The intelligent web can take over some decision tasks, which were previously done by humans,
that is why it is called read-write-execution web. With the third phase of web development, we
can associate the knowledge-based �ltering, as both of them are based on manipulation of
knowledge.

The new generations of the Web 4.0 and Web 5.0 were also announced. The Web 4.0 is
considered to be a symbiotic web, which through the use of arti�cial intelligence will become an
ultra-intelligent electronic agent [Algosaibi et al. 2015] capable to take important decisions in
collaboration with the user (read-write-execution-concurrence web). No new sources of informa-
tion are predicted to become available in Web 4.0, that is why we cannot foresee the appearance
of new �ltering techniques. However, we can predict the need for recommendation algorithms ca-
pable to identify trigger factors from the side of the new electronic agents, what corresponds
to the second application problematic of this thesis. For example, consider the case of
e-learning. Assume that a user does not have good results in the course he is following. In this
case, an electronic agent can take a decision that it is required to take those actions (or rather
recommend the user to take those actions), which can help him succeed in the course. That
is, the agent will require identifying the factors that can stimulate the move of the user from
the class of backward students to the class of successful students (to identify trigger factors).
Thereby, we consider that the techniques of trigger factors identi�cation will be actively used in
the frame of recommender systems associated with the fourth generation of the web.

Finally, the Web 5.0 or sensory-emotive web is predicted to be able to take into account
feelings and emotions of the user and perform data fusion (read-write-execution-concurrency-
fusion web). Thus we can suggest the appearance of emotions-based �ltering techniques,
which will generate the recommendations basing on the emotional state of a user.

Through the whole history of the web development, we can also see the context-based �l-
tering. Indeed, with the development of technologies recommender systems have access to more
and more diverse contextual information. For example, time tracking was possible even in the era
of Web 1.0 and location-aware recommendations busted with the appearance of mobile devices
capable of identifying geographical position of users. We should note that the development of
the web and �ltering techniques does not exclude previous functionalities, but only adds new
possibilities. Also, the relation between the evolution of the web and RS �ltering techniques is
not rigid. In fact, the evolution of the web represents the evolution of ideology, which is based
on the progress in the available technologies. For example, knowledge-based �ltering techniques
were used even before 2006 when Web 3.0 was announced (see, for instance, [Trewin 2000], which
was published in 2000). However, the proposed relation between the evolution of the web and
the evolution of recommender �ltering techniques in our opinion reveals the stages, on which
each �ltering technique receives a new impetus for its global usage. For example, only with the
appearance of the social networking technologies, it became possible to use the social relations
between users for the recommendation, and semantic web should make knowledge-based �ltering
being less dependent on expert knowledge, as the web is considered to become more intelligent
itself.
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1.2.2 Actual Trends and Research Directions in Recommender Systems

Although the domain of recommender systems is evolving constantly, there are many open re-
search questions. It was mentioned before that now we are having more possibilities to gather
information about user preferences in both direct and indirect ways and use it simultaneously in
di�erent applications. However, this poses a question: how can this diverse information be
e�ciently used in recommender systems? One of the proposed solutions suggests gath-
ering information about users from di�erent domains. Like, for example, the preferences of a
user on �lms can be used to estimate his preferences on music. This is the aim of cross-domain
RS [Cremonesi et al. 2011, Fernández-Tobías et al. 2012]. The technological developments also
a�ect recommender systems. For instance, now there is a requirement on recommendation
algorithms capable of operating in distributed environments (distributed RS [Ricci et
al. 2011]).

The increase of user participation also necessitates recommender systems to be stable to-
wards diverse human factors. As examples, we can give malicious usage of personal infor-
mation (privacy preserving recommender systems [Erkin et al. 2013, Zhan et al. 2010]) and
deliberate provision of incorrect information with the aim to in�uence the recommendation algo-
rithms performance (attack-resistant [Aggarwal 2016a] or robust [Burke et al. 2011] recommender
systems).

As information technologies invade more and more parts of our life, recommender systems
face more diverse tasks. For example, many items can be rated on a multidimensional scale.
Indeed, when evaluating a restaurant a user may pay attention to the quality of the food and
the serving. In this case, we have to deal with multi-criteria recommender systems [Adomavicius
et al. 2011]. Group recommender systems focus not on personal recommendations, but on
the recommendations for the groups of users [Mastho� 2011]. Finally reciprocal recommender
systems deal with the cases when an `item' can also have its preferences, like, for example, in job
recommendation (the chosen job should not only �t user preferences, but also the user should
feet job requirements) or in online dating (in this case both users and items are represented as
people who should like each other) [Pizzato et al. 2010, Li and Li 2012].

Finally, there is also a need for improving the existing solutions. For example, according
to [Tintarev and Mastho� 2011, Tintarev and Mastho� 2012] incorporating explanations into
existing recommender systems is an important task which has multiple aims: to explain the
user how the system works (transparency), to increase users' con�dence in the system (trust),
to convince users to try or buy an item (persuasiveness) etc. This highlights once again the
importance of the �rst application problematic of this thesis.

1.3 Resume

As we see, the domain of recommender systems is an active research �eld with a great variety
of research directions and open problems, on some of which we aim to work in this thesis. We
consider recommender systems being a very important and topical domain as the goal of RS
is to help people overcome information overload, the problem which is crucial in information
society, but was not `an issue of the day' before. This, together with the fact that both scienti�c
problematics posed in the introduction of this thesis are re�ected in this domain, determined our
choice of recommender systems as an application domain for our research.

The provided overview of recommender system research �eld allows us to position within this
domain the two application (and consequently two scienti�c) problematics which make the core
of current research.
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The process of recommendations generation can be viewed as �ltering of available items bas-
ing on certain criteria. There exist di�erent �ltering techniques which use di�erent sources of
information for performing the �ltering process. One of the very popular �ltering techniques is
collaborative �ltering, which is based on exploiting rating values for predicting users liking or dis-
liking of previously non-seen items. Contrarily to others, collaborative �ltering allows following
the global changes of liking patterns with minimum requirements on the active user interactions
(see Section 1.1.3). Matrix factorization, a widely used collaborative �ltering technique, gained
its popularity due to the accuracy of the provided recommendations, as well as its scalability.
Being essentially a feature extraction method, MF lacks interpretation and thereby explanation
of generated recommendations. However, as it was mentioned in Section 1.2.2 providing expla-
nations to recommender systems is an important task in recommender systems. Thereby the
�rst application problematic arises.

Aligning the evolution of recommender systems with the evolution of the world wide web
allows us to foresee the future development of recommender systems and predict new important
research questions that may arise. The next generation of the world wide web Web 4.0 is
considered to become an ultra-intelligent electronic agent capable of taking decisions in symbioses
with a human. We suggest that this type of web will require generating recommendations which
will not only help the person overcome information overload, but will also lead him to the
desired objective. In this way we foresee the requirements on the techniques for trigger factors
identi�cation, which leads to the second application problematic.

In the rest of this thesis, we concentrate on the description of the proposed solutions for AP1
(Part I) and AP2 (Part II). Next, we conclude our work in Part III and show to which extent
the proposed solutions of application problematics can be used to solve scienti�c questions SP1
and SP2 posed in this thesis.
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2.1 Matrix Factorization for Predicting Unknown Ratings

We start with the introduction of some notations. Let U be the set of users and I be the set of
items, of size N and M respectively. Let R, dim(R) = N ×M , be the rating matrix and rlj be
the rating value of user ul ∈ U , with 1 ≤ l ≤ N , on item ij ∈ I, with 1 ≤ j ≤ M . Let G be a
matrix. We denote by g(l,∗) the l

th row-vector of a matrix G and by g(∗,l) � the l
th column-vector

of G. By ~e we denote some general vector, that is not necessarily associated with a matrix.

In recommender systems, the matrix factorization approach is based on the assumption that
a small number of latent features (we denote this number by K and the set of features by F )
in�uences the ratings of users on items [Sarwar et al. 2000b, Koren et al. 2009]. Thereby, MF
aims to form two low-rank matrices W and V of dimensionality K ×N and K ×M respectively
whose product will approximate the rating matrix (see equation (2.1)).

R ≈W TV (2.1)

MatricesW and V represent the extent to which users and items are related to the latent fea-
tures. When multiplying these two matrices the complete original rating matrix is reconstructed,
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Figure 2.1: Matrices and Notations for MF

thus allowing to estimate the missing ratings. The values in the matrix V represent the relation
between the items and the latent features. The vector v(k,∗) (1 ≤ k ≤ K) is the M -dimensional
representation of feature fk and v(∗,j) (1 ≤ j ≤M) the K-dimensional representation of the item
ij . The values in W represent the relation between the users and the latent features. Similarly,
the vector w(k,∗) is the N -dimensional representation of the feature fk and the vector w(∗,l)
(1 ≤ l ≤ N) is the K-dimensional representation of user ul. Figure 2.1 shows these notations on
the corresponding matrices. To calculate the unknown rating r(l,i), equation (2.2) is used, with
vector inner product operation denoted by (∗, ∗).

rl,i = (w(∗,l),v(∗,j)) (2.2)

Equations (2.1) and (2.2) represent a basic MF model, however, in recent years, many deriva-
tive models were proposed in the frame of recommender systems. For example, the Probabilistic
Matrix Factorization (PMF) models the predictive error of traditional MF as a Gaussian distri-
bution, adding in such a way the aspect of uncertainty [Mnih and Salakhutdinov 2007, Salakhut-
dinov and Mnih 2008]. PMF was proven to be e�cient and accurate on the Net�ix dataset
[Mnih and Salakhutdinov 2007]. When the number of dimentions of the original rating matrix
is above two (for example, the third dimension may correspond to the content information),
the generalisation of matrix factorization, called Tensor Factorization, is used [Karatzoglou et
al. 2010]. In some situations, it can be useful to perform simultaneous factorization of multiple
matrices, for example for transferring knowledge from di�erent domains [Huang et al. 2012]. For
such cases Collective Matrix Factorization [Singh and Gordon 2008] was proposed. If we want
to obtain di�erent latent spaces for users and items (note that in traditional MF the same set
of features is shared by both users and items), Matrix Tri-Factorization should be used. This
model decomposes the original rating matrix on the product of three matrices [Yoo and Choi
2009]. Two of them correspond to user- and item-related features and the additional third matrix
represents the relation between these two sets of features. In this thesis we concentrate on the
basic MF model and aim to extend our results to other models in the future.
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2.2 Factorization Techniques

The task of forming factor matrices W and V is usually formulated as an optimization problem
in equation (2.3), where operation ||∗||2F denotes the Frobenius norm. In this section, we focus
on the methods that allow to calculate the entries of both W and V .

min

(
1

2

∣∣∣∣R−W TV
∣∣∣∣2
F

)
(2.3)

2.2.1 Analytical Approach (Singular Value Decomposition)

When the number of features K is known, the task of matrix factorization from equation (2.3)
comes down to the task of Low-Rank Matrix Approximation which, in the case of a full matrix,
has an analytical solution obtained via the Singular Value Decomposition Method [Simon and
Zha 2000]. For a rectangular matrix R de�ned on real numbers, there exists a factorization called
Singular Value Decomposition of the form (2.4)

R = UΣQT , (2.4)

where U and Q are orthogonal matrices of dimensionality N ×N and M ×M respectively,
and Σ is a diagonal N ×M matrix with diagonal being formed of singular values of the matrix
R that are normally listed in descending order. The columns of matrices U and Q are formed
of left and right singular vectors of R. That is matrix U is formed of singular vectors of RRT

and matrix Q is formed of singular vectors of RTR. It is know [Eckart and Young 1936] that the
best K-low-rank approximation of the matrix R can be obtained in a form (2.5)

R = UΣKQ
T , (2.5)

where matrix ΣK is matrix Σ with only K largest singular values (the others are replaced
by zeros). From the model given in equation (2.5) we can move to 2 factor models using square
roots [Sarwar et al. 2000b, Sarwar et al. 2002] (see equations (2.6) and (2.7)).

W T = U
√

ΣK (2.6)

V =
√

ΣKQ
T (2.7)

One of the major restrictions of the SVD method is the requirement of having a dense matrix.
However, this is usually not the case in the domain of recommender systems; see, for example,
popular 100K, 1M or 10M MovieLens datasets3, which have only about 6%, 4% and 1% of known
ratings respectively. The missing ratings can be �lled with some values like user- or item-mean
[Kim and Yum 2005, Sarwar et al. 2000a]. But this solution is known to distort the data [Koren
2008, Adams et al. 2002]. That is why techniques that use only known ratings were proposed
recently.

3http://grouplens.org/datasets/movielens/
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2.2.2 Numerical Methods

When not all entries of the matrix R are known, we can add a binary matrix of weights B of
size dim (B) = N ×M with the values bl,j equal to 1 if the corresponding rating is known and
0 otherwise. The new optimisation problem given in equation (2.8) uses only the known entries
of the rating matrix R for �nding optimal W and V .

min
1

2

∣∣∣∣B ⊗ (R−W TV
)∣∣∣∣2

F
, (2.8)

where operation ⊗ stands for element-wise matrix multiplication. The new optimisation
problem cannot be solved analytically, however, numerous numerical approaches can be used. In
order to avoid the problem of over-�tting [Hawkins 2004], a regularization parameter λ is usually
added [Ma et al. 2011, Zhou et al. 2008] (see equation (2.9)). As a result, the optimisation
problem in equation (2.8) transforms into the optimisation problem in equation (2.9) (or in
equation (2.10) in vector form). This parameter is used to penalise too large values in factor
matrices and helps to avoid the case when the model memorises the training data and looses its
generalisation abilities on unseen examples.

min

(
1

2

∣∣∣∣B ⊗ (R−W TV
)∣∣∣∣2

F
+
λ

2

(
||W ||2F + ||V ||2F

))
. (2.9)

min

1

2

N∑
l=1

M∑
j=1

bl,j ((w∗,l,v∗,j)− rl,j)2 +
λ

2

N∑
l=1

||w∗,l||2F +
λ

2

M∑
j=1

||v∗,j||2F

 (2.10)

Di�erent procedures can be used for solving the formulated optimization problems, among
them Stochastic Gradient Descent (SGD) [Koren et al. 2009], Alternating Least Squares (ALS)
[Zhou et al. 2008], Multiplicative Update Rules [Lee and Seung 2001].

MF via Stochastic Gradient Descent

Steepest descent method [Snyman 2005] is one of the most popular numerical optimisation tech-
niques. For a given objective function f (~x), the value of the parameter vector is updated in
the direction inverse to the direction of the gradient (the latter one shows the direction of the
steepest ascent of the function). Thereby, the update rule is given by the formula (2.11).

~xp+1 ← ~xp − γ ∂f
∂~x

(~xp) (2.11)

On each iteration, the steepest gradient descent method performs optimisation of the ob-
jective function using all the information available in the dataset. In contrast to the stochastic
gradient descent, which randomly picks one datapoint of the dataset and performs the optimi-
sation procedure for this datapoint only [Bousquet and Bottou 2008]. This allows to speed up
the process. The stochastic gradient descent method has proven to perform well for large scale
datasets while also preserving good convergence properties [Bottou 2010].

In the case of matrix factorization, the stochastic gradient descent optimisation problem (that
is optimisation problem for every known rating rl,j) is reduced to the optimisation problem given
in equation (2.12).

min
(

((w∗,l,v∗,j)− rl,j)2 + λ ||w∗,l||2F + λ ||v∗,j||2F
)

(2.12)
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The values of partial gradients of the objective function from equation (2.12) can be easily
computed. Then, using the update rule given in equation (2.11) we can formulate update rules
for the vectors of factor matrices W and V as given in equation (2.13).

w(∗,l) ← w(∗,l) − γ
[((

w(∗,l),v(∗,j)
)
− rl,j

)
v∗,j + λw(∗,l)

]
v(∗,j) ← v(∗,j) − γ

[((
w(∗,l),v(∗,j)

)
− rl,j

)
w∗,l + λv(∗,j)

] (2.13)

Note that for each given rating rl,j , not all vectors of factor matrices are updated, but only
those, that participate in the approximation of the given rating, that is vectors w(∗,l) and v(∗,j).
Thereby, one iteration of the optimisation procedure consists in optimising the vectors of factor
matrices for all known ratings in the training set.

The proposed procedure was used for the NetFlix prize challenge by Simon Funk4. Since then
some modi�cations of SGD for matrix factorization in recommender systems were proposed, in
particular, distributed SGD[Gemulla et al. 2011] and Parallel SGD [Zhuang et al. 2013].

MF via Alternating Least Squares

The objective function (2.9) can be considered as a function of 2 matrix arguments W and V ,
and this function can be optimised using the alternating least squares method [Zhou et al. 2008].
This method consists in �xing matrix V and then equating to 0 the derivative of the objective
function with respect to W . Solving the obtained equation with respect to W we obtain the
optimal value of W for the given value of V . After that, the similar procedure is performed for
updating matrix V when the matrix W is �xed. From the described above procedure we can
obtain the update rules for column vectors of both matrices (see equation (2.14)).

w(∗,l) ←
(
V B̃(l)V T − λI

)−1
V B̃(l)rT(l,∗)

v(∗,j) ←
(
WB̃(j)W T − λI

)−1
WB̃(j)r(∗,j),

(2.14)

where B̃(l) and B̃(j) are diagonal matrices such that Bl,j = B̃
(l)
j,j = B̃

(j)
l,l .

We can see that contrary to SGD, ALS performs a global optimisation (that is all known
ratings are used when updating either W or V ). Analysing performance of ALS and SGD,
authors of [Yu et al. 2014] show that ALS converges faster and is less sensitive to parameters
than SGD. However, it is also less scalable in the case of large datasets.

MF via Multiplicative Update Rules

In [Lee and Seung 2001] authors proposed and proved the convergence of multiplicative update
rules for the components of matrices W and V given in equation (2.15).

W →W ⊗ V RT

V V TW + λW

V → V ⊗ WR

WW TV + λV
,

(2.15)

4http://sifter.org/ simon/journal/20061211.html
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where operation ∗∗ stands for element-wise matrix division. Note that these update rules
require matrix R to be full. In the case of non-full matrix R the update rules are formulated as
given in the equation (2.16). These modi�ed update rules also possess a convergence property
[Mao and Saul 2004].

W →W ⊗ V (B ⊗R)T

V (B ⊗W TV )T + λW

V → V ⊗ W (BR)

W (B ⊗W TV ) + λV
,

(2.16)

The update rules from equations (2.15) and (2.16) are of particular interest as they allow to
preserve the positive sign of elements of W and V . Indeed, if all elements of matrices W , V and
R are positive, then the proposed update procedure will always result in new approximations
of factor matrices with guaranteed positive elements. In this way, the non-negative matrix
factorization (NMF) can be performed, which requires all entries of both factor matrices to be
non-negative [Devarajan 2008].

NMF was introduced as a method that allows learning parts of objects, for example dis-
covering parts of faces on an image [Lee and Seung 1999]. Later this property of NMF was
used in many domains: speech processing [Behnke 2003], text mining [Chagoyen et al. 2006],
computational biology [Devarajan 2008], etc.

2.3 Features Interpretation in Matrix Factorization-based Rec-

ommender Systems

2.3.1 General Overview

The values in both matrices W and V that result from factorization are those that optimally
describe the known ratings in the original rating matrix: they are designed to be those that
minimise the loss function in equations (2.3), (2.8) or (2.9). As a consequence, the features are not
directly interpretable. So they are generally only used to predict ratings. However, interpreting
these features could be an important added value. It could help to understand the underlying
relation between users and items and to explain the recommendations presented to users. As it
was mentioned in introduction, providing explanations in RS is important to increase the user
satisfaction and trust in the system [Herlocker et al. 2000, Sinha and Swearingen 2002, Ortega
et al. 2014].

Some authors were interested in providing interpretation for MF features. For example,
[McAuley and Leskovec 2013] proposes to align features of the matrix factorization models with
review topics learned through Latent Dirichlet Allocation (LDA), by introducing functional de-
pendence between features and topics and simultaneously learning both models. This idea was
further extended in a number of works. For example, contrary to the baseline [McAuley and
Leskovec 2013], [Rossetti 2014] merges all the reviews into a single document; [Hu et al. 2015]
and [Zhao et al. 2015] add social-based information; [Xin et al. 2015] uses heterogeneous topics
instead of homogenous. Using close ideas [Zhang et al. 2014] extracts features from the reviews
through the Phrase-level Sentiment Analysis, and then incorporates them into an MF-based
framework. Finally [Donkers et al. 2015b, Donkers et al. 2015a] incorporates into MF model
information about user-provided item tags.
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In the literature, we can also �nd an interpretation for specialised models. For example,
in [Hu et al. 2008] authors propose an MF-based model for implicit feedback datasets. This
model di�ers from the basic matrix factorization model in two aspects. First, as no explicit
ratings are provided, the elements of matrix R can take only two values 1 and 0. The value
1 shows that an item was consumed by a user and thus serves as an indicator of liking the
item. The value 0 corresponds to the case when the item was not consumed and thereby the
preferences are unknown. Second, a new weight matrix is introduced in the model which reveals
the con�dence in each particular value of the matrix R (for example, a user may buy an item as
a gift without liking it). Authors show that recommendations in such a model can be viewed as
a linear combination of past preferences of the users and features, thereby, are used to calculate
the coe�cients of this linear combination.

There is also a group of methods that try to interpret the matrix factorization model without
changing its structure and incorporating external knowledge. We consider these methods to be of
particular interest, as they correspond to the more general case, and we proceed to the discussion
of these methods in the next subsection.

2.3.2 Interpretation of Basic Matrix Factorization Model

Here we discuss 4 approaches for the interpretation of MF recommendation models: interpreta-
tion based on the de�nition of MF, interpretation via non-negative matrix factorization, associ-
ating of features with groups of users via probabilistic model, and Representative-based Matrix
Factorization.

Interpretation Based on De�nition

To this group of approaches, we attribute those that simply follow the general de�nition of an
MF model to provide its interpretation. Recall that matrix factorization is based on the assump-
tion that a small number of latent features explains the user-item interaction. Let us consider
[Koren et al. 2009], where a movie dataset is used. The authors say that features can represent
obvious dimensions such as comedy/drama, amount of action, orientation to children, less well-
de�ned dimensions such as quirkiness, or represent completely uninterpretable dimensions (what
corresponds to the basic assumption of MF models). The procedure for features interpretation
presented in this paper is reduced to plotting items in the (sub)space of latent features and
deriving the possible meaning of features from the positions of items and their characteristics.
It may be not always possible to derive the meaning of features in such a way. As a result, the
provided explanations can be incomplete.

Interpretation via Non-Negative Matrix Factorization

Recall that non-negative matrix factorization was introduced as a factorization method capable
of representing the original data as a sum of components. This property of NMF was used
in [Pessiot et al. 2006] and [Zhang et al. 2006] to interpret recommendations. [Pessiot et al.
2006] interpret features as imaginary users, who represent a certain behavioural type (they are
prototype users). [Zhang et al. 2006] interpret features as communities of users grouped basing
on similar interests. These two interpretation approaches can be considered identical. Indeed,
from the theoretical point of view, both interpretations associate features with speci�c preference
patterns, which can be visualised either as a community of users or as an imaginary user, whose
interests represent a certain community. From the experimental point of view, in both papers
the same technique was used to illustrate the links between behavioural patterns and features:
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the authors analysed the content of items having strong association with di�erent features (recall
that association of features and items is re�ected in the matrix V ) and show that these items
usually have something in common, like the production period [Pessiot et al. 2006] or an actor
[Zhang et al. 2006].

Associating Features with Groups of Users via Probabilistic Model

The model proposed in [Hernando et al. 2016] assumes that latent features should represent
di�erent groups of users and builds a probabilistic factor model with respect to this assumption.
That is the relation between features and groups of users is incorporated during the model
construction. This model depends on two additional parameters: α standing for the possibility
of obtaining the overlapping groups of users, and β standing for the amount of evidence required
for the algorithm to deduce that a group of users likes or dislikes a particular item. The matrix
W is formed in such a way, that each column-vector w(∗,l) represents the probability that the
user l belongs to each of K groups, thereby equality (2.17) holds.

K∑
k=1

wk,l = 1 (2.17)

The rows of the matrix V in their turn reveal the probability of the fact that users from each
particular group like di�erent items. That is vk,j shows the probability of users from the group
k liking the item j. Because liking of a particular item ij does not restrict liking of another item
ij′ there are no restrictions on the sum of the elements in matrix V . However, as entries of both
W and V stand for some probabilities, the factor matrices are forced to be non-negative.

Representative-based Matrix Factorization

The Representative-based Matrix Factorization (RBMF) [Liu et al. 2011] is based on the idea of
searching for a set of representative elements (either users or items), through which the general
user-item relation can be modelled, and associating these elements with latent features. Authors
propose two models depending on the nature of representative elements: user-RBMF and item-
RBMF.

User-RBMF models the rating matrix R as R ≈ XA. The matrix A is formed of ratings of
K users that were chosen as representatives. And the matrix X is formed as the solution of the
optimisation problem (2.18). We can see that the optimisation problem of user-RBMF (2.18) is
almost the same as the optimisation problem for the standard regularised MF with the di�erence
that one of the factor matrices is �xed and the entries of the other one are calculated through
an optimisation procedure. The item-RBMF model is formulated in a similar way.

min

(
1

2
||R−XA||2F +

λ

2
||X||2F

)
. (2.18)

The representative elements are found through the matrix maximum volume concept (see [Liu
et al. 2011] and [Goreinov et al. 2010]), which is used to identify those columns in the matrix
that are large in magnitude and are linearly independent. First, the rank-k SVD decomposition
of the rating matrix R for user-RBMF or of the transposed rating matrix RT for item-RBMF
is performed. After that the maxvol algorithm [Goreinov et al. 2010] is used to �nd a k × k
maximal-volume submatrix of the �rst matrix in the SVD decomposition. The users/items, that
correspond to the rows of the chosen submatrix are considered as representative elements.
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Figure 2.2: Research Directions in Interpretation of Latent Features Resulting from Matrix
Factorization

2.3.3 Discussion

Although the importance of model interpretation in recommender systems was stressed many
times (see [Herlocker et al. 2000, Sinha and Swearingen 2002, Ortega et al. 2014] and Sec-
tion 1.2.2), to the best of our knowledge, not many research works are dedicated to the interpre-
tation of MF recommendation models. However, from the works presented above, we can derive
some structure and general tendencies in this research domain. Our view of research directions
in MF interpretation is schematically presented in Figure 2.2.

On the top level, we divide all research approaches on those that do or do not incorporate
external information into MF model (as external information here we understand all informa-
tion apart of user-provided ratings). All the approaches mentioned in the second paragraph of
Section 2.3 incorporate into matrix factorization model external information: primary content
information about the items.

Further, we divide the methods that do not incorporate external information into those
providing interpretation for specialised matrix factorization models and those working over the
interpretation of the basic MF model. Among known to us approaches, we can attribute to
the �rst group only one model which was presented in the third paragraph of the Section 2.3.1.
This model was developed for implicit feedback datasets and it uses additional weight matrix to
represent the con�dence in each particular implicit rating.

The methods dedicated to the interpretation of the basic MF-model were detailed in the
previous subsection. From the description of these methods, we can see that it is possible to try
to interpret latent features as more or less obvious dimensions (comedy/drama, quirkiness, etc.),
as it is done in interpretation based on de�nition. Alternative approach consists of exploiting the
non-negative factorization model (NMF-based interpretation techniques) what allows to suggest
a priori the link between features and behavioural patterns of users. In both these approaches
(de�nition-based and NMF-based interpretation), the analysis of the content of items having
high associations with particular features is afterwards used to derive the characteristics of each
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feature. It may seem that these methods can be attributed to the group of those, which use
external information. However, we distinguish them as the methods described in this paragraph
do not incorporate external information into MF model, but rather use content to show that fea-
tures indeed can be interpreted in the way authors propose (as obvious/non-obvious dimensions
and behavioural patterns). Note, however, that the procedure of deriving the actual meaning of
features in these models is complex, as it is done manually by exploiting human knowledge.

We also mentioned two other models dedicated to the interpretation of the basic MF-model:
association of features with groups of users via probabilistic factorization and Representative-
based Matrix Factorization. The �rst approach builds factorization model in such a way, that
features are associated with groups of users. It requires additional parameters such as the
possibility of obtaining overlapping groups and amount of evidences required to deduce that
a group of users likes a certain item. However, it can be di�cult to identify the values of
these parameters as they are application-dependent. Finally, the RBMF model initialises one
of the factor matrices with ratings associated with representative elements (users or items) and
calculates the entries of the other factor matrix through an optimisation procedure. In this
way, it is ensured that features are associated with the chosen representative elements. The
identi�cation of these elements, however, requires additional computations.

As we can see the task of interpretation of latent features is not trivial. Authors either
try to incorporate in MF model external information or perform some modi�cations of the
factorization model (like RBMF or implicit association with groups of users). The approaches
that try to interpret the original model directly without modifying it (interpretation based on the
de�nition and NMF-based interpretation) do not provide an automated procedure for deriving
actual characteristics of features and require human analysis.

Inspired by de�nition- and NMF-based interpretation models we suppose that latent features
should represent some behavioural pattern. However, in order to make the optimisation proce-
dure automatic, we suggest to associate features not with imaginary users or groups of users,
but with real users of the system that can represent the corresponding pattern in the best possible
way.

Note that many techniques intended to interpret latent features rely on at least partially non-
negative models. Indeed, apart from NMF-based interpretation techniques, the model proposing
association of users groups with features is also composed of non-negative matrices, as their
elements represent probability values. Even in RBMF model, in the case of non-negative ratings,
one of the factor matrices is guaranteed to be non-negative, as it is composed of ratings of
representative elements. Thereby, we also decide to rely on non-negative matrix factorization in
our work and choose Multiplicative Update Rules as an optimisation technique.

As we do not incorporate either external information into the model nor modify it in such a
way that it becomes interpretable on its own, we have to validate the proposed interpretation.
In the literature we can see two possible validation schemes for such situations: to analyse
the information about elements associated with features (what is done in de�nition- and NMF-
based interpretation approaches) or to evaluate the ability of the chosen elements to correctly
represent user-item relation via the cold-start problem (used for validating the RBMF). In the
case of RBMF, the new item cold-start problem was used for the evaluation of chosen users and
the new user cold-start problem was used for the evaluation of chosen items. We choose the
approach based on cold-start problem, new item cold start problem in particular. This allows us
not only to be content-independent but also to validate our hypothesis of the association between
latent features and users. As it was mentioned before, if latent features correspond to real users
then, considering the fact that latent features represent the relation between all users and items,
the chosen feature-associated users should represent the basic behavioural patterns of the whole
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population of the users. Thereby, next we proceed to brief discussion of the cold-start problem
solutions in the frame of MF recommendation models.

2.4 Cold-Start Problem in Matrix Factorization

Some approaches for the cold-start problem solution have been proposed in the frame of MF.
Following the general tendency in CF (see Section 1.1.3), they can be divided into two groups:
1) those that require additional external information (like content, social structure or both), and
2) those that use seed users/items (for the content-less problem).

Among the �rst group of approaches, we can mention [Gantner et al. 2010] that proposes to
solve the new item cold-start problem by learning a mapping function between latent features
and item attributes. Given a new item and its corresponding attributes, the latent feature vector
for the new item is computed. Then the rating matrix is �lled for this new item. [Saveski 2013]
proposes a joint factorization of the rating matrix and the content matrix. [Enrich et al. 2013]
introduce the MF-based model, which provides interpretation via transfering the knowledge from
one domain to another through shared tags. In [Jamali and Ester 2011] the structure of the social
network is used as a source of additional information. The feature vector of a user in this case is
constructed as being dependent on the feature vectors of his/her neighbours. Finally, authors of
[Salakhutdinov and Mnih 2008] incorporate both social and content information into Probabilistic
Matrix Factorization model (through the parameters of the model).

Moving to the second group of approaches, [Zhou et al. 2011] and [Sun et al. 2013] propose
a solution to the new user problem (which is symmetric to the new item problem), where the
feature vectors of MF are learned through the new user answers in the initial interview process.
The seed items (those used in the interview) in this case are chosen through passing a decision
tree which being a component of the model is constructed during the learning phase. Note that
in this case, the set of seeds is not �xed and changes from user to user. In [Liu et al. 2011]
seed users/items are chosen as those who can be associated with the features through the matrix
maximal-volume concept (see the description of RBMF in the previous section). For solving the
new item cold-start problem, the matrix A (see equation (2.18)) is �lled with ratings of seed
users on new items and the missing values are predicted through the multiplication of matrices
X and A. Within RBMF it is also possible to formulate a similar solution for the new user
cold-start problem.

2.5 Resume

There is a grate variety of MF-based recommendation models, what proves the popularity of this
approach among researches. Diverse MF-based models allow to calculate predictions based on
probability inference (PMF), incorporate content information or information from other domains
(collective MF), learn di�erent sets of features for users and items (Matrix Tri-Factorization) etc.
However, despite the proved prediction e�ciency MF models possess one signi�cant drawback:
lack of interpretation.

Some approaches were proposed to overcome this problem. However, most of them either
`import' interpretation from external sources usually via aligning features with content informa-
tion, or change the structure of MF model in such a way, that it becomes interpretable. There
also exist attempts to perform the direct interpretation of latent features of the model, however,
they are based on human analysis and thereby cannot be automated.
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Basing on the idea expressed in the state-of-the-art that features represent behavioural pat-
terns, we suggest making a link between latent features and some real users from the system,
whose behaviour will approximate the corresponding patterns. We describe our proposed ap-
proach in the next chapter. Such an interpretation allows us to be independent of content
information and perform automatic interpretation. However, the proposed interpretation has to
be justi�ed. Following the state-of-the-art and our hypothesis that features can be associated
with users, we choose to validate the proposed interpretation via the new item cold-start prob-
lem. From the brief discussion of the existing new item cold-start problem solutions presented
(see Section 2.4), we de�ne two global directions. Methods belonging to the �rst direction consist
in using item-related content information. At the same time, methods belonging to the second
direction form a set of users, whose opinions on new items can be used to derive the preference
of all users on the new items (seed users). Thereby, if our proposed interpretation is correct, it
should be possible to use the feature-associated users as seed users. However, the procedure of
using ratings of feature-associated users to solve the new item cold-start problem depends on the
way the user-feature association is done. This procedure is also detailed in the next chapter.

Finally, following the majority of the works related to the interpretation of latent features
we choose to rely on non-negative matrix factorization model, which we obtain using the multi-
plicative update rules optimisation procedure.
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3.1 Preliminaries

Let us start with an example. Let L1 and L2 be two linear spaces of dimensionality respectively
6 and 3, with basic vectors in canonical form {~wn}, n ∈ 1, 6 and {~fk}, k ∈ 1, 3. Let the transfer
matrix from L1 to L2 be speci�ed by matrix P (equation (3.1)).

P =

 0 0 p13 p14 1 p16
1 0 p23 p24 0 p26
0 1 p33 p34 0 p36

 (3.1)
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We can say that ~w5, ~w1 and ~w2 are direct pre-images of ~f1, ~f2 and ~f3 respectively. Indeed,

P ~w5 = P
(

0 0 0 0 1 0
)T

=
(

1 0 0
)T

= ~f1. By analogy, P ~w1 = ~f2, P ~w2 = ~f3. At
the same time vectors ~w3, ~w4 and ~w6 will be mapped into linear combinations of basic vectors
~f1, ~f2 and ~f3. For example, P ~w3 = p13 ~f1 + p23 ~f2 + p33 ~f3 corresponds to the linear combination
for ~w3.

The matrix W , resulting from the factorization of R, can be considered as a transfer matrix
from the space of users to the space of features [Koren et al. 2009]. So, analysing the example
considered above, we can say that if matrix W has a form similar to P (in equation (3.1)), i.e.
W has exactly K unitary columns with one non-0 and equal to 1 element in di�erent positions,
then the users corresponding to these columns are direct pre-images of the K features. Following
[Guermeur et al. 2004], we say they represent the canonical coding of the features. These
feature-related users will be referred to as representative users (RUs, abbreviation RU will be
used to refer to one representative user). As a consequence, we consider that the features can
thus be directly interpreted as users (representative users). This idea is very simple and can be
related to the task of searching for the basis of the vector space in linear algebra. However, in
the case of recommender systems, one important constraint should be taken into account, that
is the sparseness of the rating matrix. Still, as we are not aiming to �nd the perfect solution but
the one that can ensure the good-enough performance quality, we �nd this idea to be promising.
Also, to the best of our knowledge, it was not exploited previously.

Obviously, in the general case, one cannot guarantee that the matrix W will be in a form
similar to matrix P . Worse, none of the column-vectors of matrix W may directly represent the
canonical form of a feature. However, we choose not to modify the values of this matrix, but
to consider as RUs those users, whose vectors in W are the closest to the required canonical
form. In this way, we can provide the interpretation of an already existing factorization model
(during the post-processing step). The procedure, which we propose for the identi�cation of
representative users is described in details in the next section.

3.2 Our Approach

3.2.1 Identi�cation of Representative Users

Here we describe the approach we propose for the identi�cation of real users, which is based
on the ideas described in the previous section. Our approach was presented at two conferences
[Aleksandrova et al. 2014c] and [Aleksandrova et al. 2014b]. It consists of 3 steps further detailed
below.

Step 1: Normalize Matrix W . Once the matrices W and V are obtained, the normal-
ization of each of the N column vectors of the matrix W is performed, that results in unitary
columns. The resulting normalized matrix will be denoted by Wnorm. The normalization is per-
formed in order to obtain the matrix W in the form closest to P . After such a transformation,
the new matrix Wnorm still represents the same relations between users and features, but with
certain scaling coe�cients. Next, the column-vectors of the Wnorm matrix are analysed with the
aim to identify the best candidates for representing latent features (those that are close to the
canonical form).

Step 2: Form Groups of Pre-image Candidates. In this step the groups of pre-image
candidates are formed.

We consider a user ul to be the best pre-image candidate for a feature fk if the vector in
matrix Wnorm that corresponds to ul (column-vector wnorm

(∗,l) ) is the closest to the corresponding
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canonical vector (a vector with the only one non-0 and equal to 1 value on the position k,
denoted by ~ck). The notion of closeness between vectors is expressed through the Euclidean
distance. That is the task of identi�cation of the representative user ul is reduced to solving the
optimization problem and his/her position (l) is de�ned by equation (3.2).

l = arg min
l′∈U

[
dist(~ck,w

norm
(∗,l′) )

]
(3.2)

Let us consider the following example. Assume that we have a vector ~α of the form(
α1 α2 . . . αK

)T
with the value of the norm equal to 1 (

√
α2
1 + α2

2 + . . .+ α2
K = 1). Then

the distance between ~α and the �rst canonical vector ~c1 =
(

1 0 . . . 0
)T

is expressed by
dist2(~c1, ~α) = (1−α1)

2 +α2
2 + . . .+α2

K . Simple mathematical transformations result in equation
(3.3).

dist2(~c1, ~α) = 2(1− α1) (3.3)

This means that the minimum of the distance is obtained under the condition α1 → max.
Taking into account this reasoning, we consider a user ul as a pre-image candidate for the feature
fk if the maximum value of the appropriate vector wnorm

(∗,l) is situated on the position k.

Therefore, all users are divided into groups of pre-image candidates according to the position
of the maximal value in the associated column vectors from the matrix Wnorm. The correspond-
ing formal procedure is presented in Algorithm 1. The algorithm has one input parameter � the
matrix Wnorm. Based on the dimensions of the input matrix Wnorm, the number of groups K
and the total number of users N is de�ned on the �rst step of the algorithm. Next, we initialise
K groups of pre-image candidates GC_1, . . . , GC_K as empty sets. Finally, making a loop
through all N users of the system a user ul is put in the group which is associated with the
position of the maximal value in the corresponding vector wnorm

(∗,l) . The position of a value e′ in

a vector ~e is calculated using the function pos (~e, e′) (see line 7 of Algorithm 1).

Algorithm 1 Form Groups Of Pre-image Candidates

1: procedure FormGroupsOfPrCand(Wnorm)
2: [K,N ] = size (Wnorm)
3: for k = 1 : K do
4: GC_k = {}
5: end for
6: for l = 1 : N do
7: k = pos(wnorm

(∗,l) ,max(wnorm
(∗,l) ))

8: GC_k = GC_k
⋃
{ul}

9: end for
10: return GC_1, . . . , GC_K
11: end procedure

Step 3: Identify RUs. Once all users are divided into subgroups of pre-image candidates
for each feature, we can identify RUs using Algorithm 2. In each group of pre-image candidates
GC_k, the representative user is de�ned as a user ul′′ whose vector w(∗,l′′) is the closest to the
canonical vector ~ck (see line 3 of the algorithm). If for some reasons the chosen representative
user cannot be used for solving the assigned task, the next best candidate within the current pre-
image candidates group can be considered as RU. Additionally, if a certain group of pre-image
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candidates, say GC_k, is empty, that is in step 2 there were no columns in the matrix Wnorm

with the maximum value being situated on the position k, the user from another group with the
smallest value of distance to the canonical vector ~ck can be chosen as RU for the feature k. In
this way, we ensure that all features will be associated with representative users.

Algorithm 2 Find RUs

1: procedure FindRUs(GC_1, . . . , GC_K)
2: for k = 1 : K do
3: l′′ = arg min

ul′∈GC_k

[
dist(~ck,w

norm
(∗,l′) )

]
4: RU_k = ul′′

5: end for
6: return RU_1, . . . , RU_K
7: end procedure

Note that the original MF model remains unchanged. The normalization of the matrix W
in our approach is performed only for the identi�cation of representative users. However, when
computing recommendations, the original W and V matrices are used.

The presented procedure of RUs Identi�cation (see Algorithm 3) results in a set of users (RUs)
that are associated by bijective mapping with the latent features of MF. As latent features are
considered to represent the relations between users and items, the obtained feature-related users
should be capable of representing the same interconnections. It means that the set of these users
should correctly re�ect the interests of the whole population of users. Therefore, representative
users can be used as a set of seed users to solve the new item cold-start problem. Indeed, asking
their opinion on new items we can infer the opinion of the entire population.

Algorithm 3 RUs Identi�cation

1: procedure RUsIdentification(W )
2: W →Wnorm

3: [GC_1, . . . , GC_K] = FormGroupsOfPrCand (Wnorm)
4: [RU_1, . . . , RU_K] = FindRUs (GC_1, . . . , GC_K)
5: return RU_1, . . . , RU_K
6: end procedure

3.2.2 Interpretation of Recommendations

Theoretical Statements

The way we propose to interpret features also has the advantage to help explaining the recom-
mendations provided by MF. Let us rewrite equation (2.2) in the form of equation (3.4).

rl,i =

k=K∑
k=1

wk,lvk,j (3.4)

As it was discussed in Section 2.1 the vector w(∗,l) is a K-dimensional representation of a
user ul (that is the representation of a user ul in the space of latent features), and the vector
v(∗,j) is a K-dimensional representation of the item ij (that is the representation of an item ij
in the same space of latent features), see Figure 2.1. Thus, if the set of features is interpreted
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as a set of representative users, then both vectors w(∗,l) and v(∗,j) represent user ul and item
ij in the space of representative users. Therefore, value vk,j may express the preferences of a
representative user k on the item j and wk,l � closeness of the user ul to the representative user
k. This makes the rating estimation process of MF being close to the one of NB. Indeed, the
rating estimation process in NB is done using equation (3.5).

r̂l,j =
k′=K′∑
k′=1

sim(ul, unk′ )rnk′ ,j , (3.5)

where K ′ � is the number of neighbours, sim(ul, unk′ ) � the similarity between an active
user ul and his/her k′-th neighbour unk′ , and rnk′ ,j � is the rating assigned by the neighbour
unk′ to the item j. The notion of similarity in NB is usually expressed through the correlation
[Desrosiers and Karypis 2011a].

Let us compare equations (3.4) and (3.5) with wk,l corresponding to sim(ul, unk′ ) (closeness
of the user ul to the k-th representative user or similarity between user ul and his neighbour
unk′ ) and vk,j corresponding to rnk′ ,j (preferences of the k-th representative user on the item j or
rating value of the neighbour unk′ on this item). Note, however, that though the relation between
latent features and representative users is bijective, it is not identical (recall from the previous
section that representative users correspond to latent features with certain scaling coe�cients).
Thus vectors vk,j and wk,l may not directly correspond to ratings and similarity values, but
re�ect these dependencies in an indirect way.

The link between MF and NB makes the basis of our publication in a national journal [Chertov
et al. 2015].

Toy Example

In order to show that values vk,j and wk,l resulting from MF can be interpreted as ratings of
representative users and as similarity values between representative users and the rest of the users
from the data set, we provide here an analysis on a small toy example. In this way, we show
how recommendations can be interpreted. Let us consider a rating matrix given in Table 3.1,
which represents the ratings of 12 users on 12 movies (items). Each movie is annotated with
genre (with possible values comedy or drama) and the release decade (with possible values 70,
80 or 90 ). Analysing the ratings provided in the table we can draw some conclusions concerning
the preferences of each user. For example, the �rst user likes comedy �lms and dislikes dramas,
the second one has inverse preferences. The �fth user prefers the �lms released in 80's regardless
of the genre and the sixth user likes comedies released in 70's, has middle preferences towards
comedies released in 80's and dislikes comedies from 90's as well as drama �lms. The short
description of the preferences for each user is provided in the last column of Table 3.1.

After performing a non-negative matrix factorization5 of the rating matrix in Table 3.1 with
number of features K = 5, we can identify representative users, following the approach presented
in Section 3.2.1. The following users were identi�ed as representative: u3, u8, u1, u7 and u9
corresponding to features f1, f2, f3, f4 and f5 respectively (see the �rst column of Table 3.1 with
RUs shadowed in grey). Using the values in the matrix W and the provided association of latent
features with the representative users, the preferences of the rest of the users can be decomposed
into the linear combination of the interests of the representative users. For example, the linear
combination for the second user is given in equation (3.6). The coe�cients in the second part

5Recall that in Section 2.3.3 following the state-of-the-art approaches, we chose to use non-negative matrix
factorization model with multiplicative update rules as an optimisation procedure.
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Table 3.1: Model Example of a Rating Matrix for Interpretation

item characteristics

descript
genre comedy comedy drama drama
year 70 80 90 70 80 90 70 80 90 70 80 90
IDs/F 1 2 3 4 5 6 7 8 9 10 11 12

1/f3 5 5 5 5 5 5 1 1 1 1 1 1 comedy

2 1 1 1 1 1 1 5 5 5 5 5 5 drama

3/f1 5 3 1 5 3 1 5 3 1 5 3 1 701 or 800.5
4 1 3 5 1 3 5 1 3 5 1 3 5 800.5 or 901
5 1 5 1 1 5 1 1 5 1 1 5 1 80

6 5 3 1 5 2 1 1 1 1 1 1 1
comedy &
(701or800.5)

7/f4 2 5 2 1 5 1 1 1 1 1 1 1 comedy&80

8/f2 1 1 1 1 1 1 1 1 5 1 1 5 drama & 90

9/f5 1 1 1 1 1 1 1 5 1 1 5 1 drama & 80

10 1 1 1 1 1 1 1 4 1 1 5 1 drama & 80

11 5 5 1 5 5 1 5 5 1 5 5 1 70 or 80

12 1 1 5 1 1 5 1 1 5 1 1 5 90

of the equation correspond to those in the matrix Wnorm, that is the second linear combination
corresponds to a vector with a unique norm.

u2 = 1.4411u3 + 1.5208u8 + 0u1 + 0.0273u7 + 1.5027u9

= 2.5785 (0.5589u3 + 0.5898u8 + 0u1 + 0.0106u7 + 0.5828u9)
(3.6)

Recall that the second user likes drama regardless of the release decade. From the equality
provided above, we can see that representative users u8, u9 and u3 have the main impact on the
preferences of the considered user u2. The user u8 likes drama �lms released in 90's, user u9 -
dramas from 80's and user u3 adds to this linear combination preferences of the �lms released in
70's, as it is his/her major interest. User u7, who likes the comedies released in 80's has a small
impact in the linear combination. At the same time, the linear combination coe�cient for the
user with opposite interests (user u1, who prefers the comedy �lms) is equal to 0.

Let us consider one more example: the linear combination for user u10, provided in equation
(3.7). The major coe�cient in the linear combination corresponds to user u9, who has exactly
the same preferences as the analysed user u10 (both of them prefer drama �lms released in 80's).
The rest of the coe�cients in the linear combination (3.7) are relatively minor.

u10 = 0u3 + 0.3594u8 + 0.0284u1 + 0.4621u7 + 1.6522u9

= 1.7530 (0u3 + 0.2050u8 + 0.0162u1 + 0.2636u7 + 0.9425u9)
(3.7)

In this way, we have shown that the values wk,l can be interpreted as similarity values between
representative users and the rest of the users from the data set. Now we proceed to show that
the values vk,j represent preferences of representative users on items.
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Table 3.2: Correlation of Rows from Matrix V with Ratings of Users

RUs u3 u8 u1 u7 u9
v(k,∗) v(1,∗) v(2,∗) v(3,∗) v(4,∗) v(5,∗)

corr
(
v(∗,k), r(∗,k)

)
0.9187 0.8620 0.9894 0.9325 0.9790

mean
1≤l≤N

(
corr

(
v(∗,k), r(∗,l)

))
-0.0521 -0.0657 -0.0023 0.1476 0.1411

mean
1≤l≤N

(
abs

(
corr

(
v(∗,k), r(∗,l)

)))
0.4192 0.5554 0.4247 0.3825 0.4526

In order to show that vectors v(k,∗), resulting from MF, can be interpreted as ratings of
the representative users, we calculated the value of the Pearson correlation between the ratings
of representative users and the lines of matrix V corresponding to the associated features (see
Table 3.2). In the provided table the �rst row lists the representative users, the second row lists
the rows of matrix V corresponding to the features associated with representative users, and the
third row provides correlation values between ratings of representative users and corresponding
rows in V . In the fourth row, the mean correlation between a certain row in the matrix V and
all 12 users is given and the last row presents the mean of the absolute correlation between a
certain row in matrix V and all 12 users.

From Table 3.2 we can see that ratings of representative users are highly correlated with
corresponding rows of the matrix V (compared with the mean correlation). This shows that the
vectors v(k,∗) can be interpreted are ratings of representative users on items. Note that this
example has shown that features of the MF approach can be associated with representative users
when multiplicative update rules are used as an optimization procedure, that is the algorithm
that results in non-negative factor matrices V and W . The validity of this statement should be
tested for other optimization procedures, like ALS or SGD.

We also would like to stress that the usage of content information in our example has only
demonstrative purposes. Indeed, we propose to interpret features as users (not to associate them
with content-related information) and use content only to show that the users from the system
can be associated with chosen representative users basing on similar or dissimilar interests.

3.2.3 Seed Users for Alleviating Cold-Start Problem in MF-Based Models

Here we present our approach for solving the cold-start problem. As it was shown in the literature
review section, the idea of asking some prede�ned users (seed users) to provide their rating on
new items and then using these ratings to solve the cold-start problem is widely exploited. We
thus propose to exploit the ratings provided by the seed users, either the set of RUs or any other
set of users suitable according to certain criteria. The novelty of our approach relies upon the
way these ratings are used in the frame of MF models and the way the seed users are chosen.
Indeed, we propose to choose as seeds those users whose corresponding vectors in the matrix W
are the closest to the canonical form. After that, the proposed solution of the cold-start problem
is based on using the ratings of the seed users and factor matrices. To the best of our knowledge,
no other approaches from the literature propose the solution of the cold-start problem for the
original factorization model, that is without imposing restrictions on the form of matrices W
and V .

Let Inew be the set of new items (those that make the cold-start situation to happen) and
S be the set of indexes of users, who are considered as seeds. The way the new item cold-start
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Figure 3.1: Solving Cold-Start Problem with Seed Users for Matrix Factorization

problem can be solved is explained below and is schematically presented in Figure 3.1. The
information in red represents additional data ratings provided by seed users and the information
in grey areas represents values computed automatically.

By asking seed users us1 , us2 , ... (sk ∈ S) to rate new items ijnew ∈ Inew, the matrix R
can be �lled with these new ratings (represented as red points in matrix R in Figure 3.1). For
simplicity sakes, seed users are presented in the upper part of the matrix R, and the new items
� in its right part. If the values in V that correspond to the new items (grey part of matrix V ,
Figure 3.1) can be automatically computed from these new ratings, then the estimated ratings
of other users (not seed users) on the new items (the grey part of the matrix R in Figure 3.1)
can also be computed by multiplying matrices W and V (arrows in the lower part of Figure 3.1).

The challenge here is thus to de�ne a way to compute the new values vkjnew in matrix V , for
each k ∈ 1..K and ijnew ∈ Inew. The matrix V can be completed by exploiting both new rating
values from matrix R and the vectors w(∗,sk) in W (see arrows on the upper part of Figure 3.1).
For each new item ijnew ∈ Inew this task simply comes down to solve a system of linear equations
(3.8). Note that, in order to obtain the unique solution of the system (3.8), the number of seed
users should be equal to the number of latent features. That is we should have exactly K seed
users.


rs1,jnew =

∑K
p=1wp,s1 · vp,jnew

...
...

rsk,jnew =
∑K

p=1wp,sk · vp,jnew
(3.8)

For solving the system of linear equations (3.8) all the seed users have to provide their ratings
on the new item jnew. However, it is not always the case in reality. Users, who have been chosen
as seeds, may not be familiar with the item that they are asked to provide the rating on, and/or
may have no desire to rate some items. In this situation, �lling procedures can be used. That
is missing ratings from seed users can be replaced by either some mean values (global mean
rating or the mean values by certain item/user) or the ratings of the other closest candidates (for
example, the next best RU candidates, see Section 3.2.1). In the latter case, not only the rating
of the next best seed user should be taken, but also vector from the matrix W , that corresponds
to this new seed user, should be used while solving the system (3.8).
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The proposed solution of the cold-start problem was presented at a conference [Brun et al.
2014] and further investigated in a journal paper [Aleksandrova et al. 2016a].

3.2.4 Resume

The two main points of our approach lie not only in the way we propose to interpret MF latent
features but also how we use the obtained set of users as seeds for solving the new item cold-
start problem. Our interpretation is based on a simple idea: �nding canonical column-vectors
(or those whose form is the closest to the canonical) in the matrix W and then associating the
users corresponding to these vectors with the features depending on the position of the maximum
values in the vectors. The proposed interpretation procedure is simple and neither requires any
human interaction (compared to the state-of-the-art approaches that associate features with
groups of interest [Zhang et al. 2006] or certain behavioural patterns [Pessiot et al. 2006]) nor
any additional content information like the review topics [McAuley and Leskovec 2013].

Among works from the state of the art, RBMF model [Liu et al. 2011] is the closest to ours
in both ways: the way features of MF are interpreted (associated with users) and the resulting
solution to the cold-start problem (the ratings on new items are predicted using the ratings of
feature-associated users on these new items). However, to start with, authors of [Liu et al. 2011]
form a rigid dependence of the features on the chosen users. This does not allow to solve the cold-
start problem when one of the chosen users does not provide his/her ratings for some reasons.
Contrarily, our approach allows using ratings of the next best candidates in this case. Second,
our method allows simultaneous identi�cation of both representative users and representative
items. In this case, the matrix V should be analysed in the same way as W was analysed for
the identi�cation of representative users. At the same time, the referred RBMF model is either
user- or item-oriented. Third, to obtain an interpretable model, authors �rst �ll one of the factor
matrices with ratings of the representative elements (users or items), then the second matrix is
formed through an optimization procedure, while our approach proposes interpretation within
the original MF model (without altering it).

3.3 Data Description and Experimental Protocol

3.3.1 Data description

To perform experimental evaluations of the proposed ideas we use 2 benchmark datasets: 100K
MovieLens6 and Jester7.

MovieLens provides 100K discrete ratings on �lms ranging from 1 to 5 for 943 users on 1682
items. 6.3% of user/item pairs have a rating value, the rest of ratings are unknown. Jester dataset
(more precisely, its �rst most dense part) has 72.5% of known ratings, that are real values ranging
from -10.00 to +10.00 and are given by 24,983 users on 100 jokes. As in our experiments non-
negative matrix factorization is used, which requires non-negativity of the input rating matrix,
the ratings of the Jester dataset were o�set by 11, thus resulting in the [+1; +21] values range.
Table 3.3 summarizes information about both datasets used with percent of available ratings in
the dataset, denoted by θ.

We choose MovieLens dataset as it is very popular among researchers (see, for example,
[Park and Tuzhilin 2008, Lam et al. 2008, Tinghuai et al. 2015, Kim and Kim 2003] and many
other papers) and is a benchmark in RS. However, as we can see, MovieLens dataset is rather

6https://movielens.org/
7http://www.ieor.berkeley.edu/ goldberg/jester-data/
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Table 3.3: Information about used Data Sets (MovieLens and Jester); θ � % of known ratings

charateristic MovieLens Jester

recommendation domain movies jokes
# users 943 24,983
# items 1,682 100

ratings characteristic dicrete real
ratings range 1 � 5 -10.00 � +10.00

ratings range after o�set 1 � 5 +1.00 � +21.00
θ,% 6.3 72.5

sparse. While simulating the procedure of asking seed users to provide their ratings on new
items (extracting appropriate ratings from the test set), usually we can get no more than 40%
of answers. Thus we are forced to use a �lling procedure (see Section 3.2.3). Using a dataset
with so small number of given ratings makes it impossible to study some aspects of the proposed
approach. Contrary to MovieLens, using Jester dataset we can obtain a considerable number of
new items, for which ratings of all seed users are known. Consequently, we can study in details
the proposed approach. Therefore, Jester dataset is used as a basic dataset in our experiments.
The MovieLens dataset is used to con�rm some results (those, which do not require the presence
of the ratings of all seed users) and to study their data-independence. It may seem that using
Jester dataset reduces our approach to the case of non-sparse rating matrices, which is not the
case in many real applications. However, we study the performance of our models depending
on the sparseness of the input rating matrix (learning set) as well. For this, some ratings are
discarded from the learning subset to obtain, for example, a learning matrix with 10% or 5% of
known ratings. At the same time, all ratings in the test set are preserved in order to provide the
high rate of answers of seed users concerning new items.

3.3.2 Alternative Methods for Seeds Identi�cation

In this subsection, we describe several strategies proposed in the literature for �nding sets of seed
users (ensembles of seed users, or seeds), which will be further used as alternatives for comparison
with representative users.

Inspired by works of [Rashid et al. 2002] and [Liu et al. 2011], we have chosen the following
strategies for seeds identi�cation:

1. Top raters (topK ) � the set of users, who provide the largest number of ratings in the
system.

2. Most diverse users (mDiv) � the set of users, who have di�erent rating behaviour; the
diversity is measured in terms of pairwise correlation, that is this set is formed of those
users, who have the lowest pairwise correlation within their set.

3. Most dispersive (mDisp) � users of this set are chosen in such a way, that every selected
user rates items di�erently; that is, he/she has dispersion in the values of provided ratings
(contrary to the case, when a user rates all items equally, for example).

4. Most neighbours (mNeigh) � the set of users, who occur in the largest number of neigh-
bourhoods in the NB approach.
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In all following experiments, the number of seed users in the set is equal to the number of
features of the MF model. The performance of the proposed model is evaluated similarly to [Liu
et al. 2011], where di�erent strategies of seed users identi�cation were compared in the frame
of the same method for the cold-start problem solution. Additionally, we compare our approach
with the baseline RBMF model presented in Section 2.3.2.

3.3.3 Experimental Protocol

Following the general tendency in the recommender systems community, in order to obtain more
reliable experimental results, a 5-fold cross validation is performed. In every case, both for cold-
start and non-cold-start evaluations, the original rating matrix is divided into test and learning
sets, containing 20% and 80% of the original information respectively. Using this proportion of
ratings in test and learning sets, 5 independent folds (pairs of test and learning sets) are formed.
After that values of required characteristics (evaluation measures) are calculated on each fold.
The �nal result is a mean value of 5 values obtained for each fold.

For the non-cold-start case, we use a classical evaluation protocol, that is 20% of randomly
chosen ratings form the test set and the rest 80% are used as a learning set for the model training.
In the case of cold-start experiments, 20% of items are randomly chosen as the new items (Inew)
with their ratings forming the test set. The ratings of the remaining 80% of items are used to
train the model. Note that in this case the learning and the test sets do not necessarily contain
exactly 80% and 20% of ratings respectively. Once the model is trained and the set of appropriate
seed users is formed, their ratings are extracted from the test set (this procedure simulates the
process of asking seed users to provide their ratings on new items). After this, the remaining
ratings in the test set are used for the model evaluation. The procedure of forming learning and
test sets for both cold-start and non-cold-start cases is schematically presented in Figure 3.2.
For the simplicity of visualization, the test ratings and test items are grouped in the right part
of the rating matrix R. In the experiments, when all seed users are required to provide a certain
percent of ratings on new items, the test set is formed in another way. Only those new items,
on which seed users of the chosen ensemble have the required percent of ratings are used. We
refer to this set of items as actual test set and schematically present it in a red bold rectangle in
the left part of Figure 3.2. In such cases, the test set contains less than 20% of items and it may
vary for di�erent ensembles of seed users.

3.3.4 Evaluation metrics

For the experimental evaluation, we use four metrics classically studied in the literature: Nor-
malized RMSE (NRMSE), Normalized Distance-based Performance Measure (NDPM), Relative
Deterioration (DET) and Test Coverage (COV). NRMSE is the normalized version of the widely
used evaluation measure RMSE (Root Mean Square Error), which is computed through the dif-
ference between real and estimated ratings [Shani and Gunawardana 2011]. NRMSE is a fraction
of the RMSE value and the di�erence between maximum (maxR) and minimum (minR) possible
rating values in the dataset (see equation (3.9)). Possessing the normalization property, NRMSE
does not depend on the ranges of ratings in the input data.

NRMSE =
RMSE

maxR−minR
=

√∑L
l=1(rl − r̂l)2/L

maxR−minR
(3.9)

where L corresponds to the number of ratings in the test set, rl represents a rating value
from the test set, r̂l � the corresponding estimated value. The NRMSE measure evaluates how
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Figure 3.2: Forming Learning and Test Sets for Non-Cold-Start and Cold-Start Experiments

close is the predicted rating to the real one.

However, in practice, it is more important to predict the order of the items corresponding to
the preferences of a certain user rather than to estimate the exact value of the rating. In reality,
the recommendation engine is usually requested to provide an ordered list of items, that the
current user will like the most. Therefore, in the current work, we will use a ranking measure as
a primary evaluation measure. Still, we present the results in terms of NRMSE as well for the
comparison purposes, as this metric is often used for RS evaluation.

Ranking-based evaluations can be done through the NDPMmeasure [Shani and Gunawardana
2011]. Assume that we have real and predicted ratings of items for a user u. De�ne Cu as the
number of pairs of items for which the real ranking asserts an ordering (i.e. not tied), that
is the number of pairs with di�erent values of the ratings. De�ne as C+ and C− the number
of pairs for which the model ranking asserts the correct order and incorrect order respectively.
Finally, denote by C0

u the number of pairs where real ranking does not tie the elements (they have
di�erent ranking positions) but the model ranking ties. Thus the following equality holds: C0

u =
Cu− (C+

u +C−u ). The NDPM is given by equation (3.10) according to [Shani and Gunawardana
2011].

NDPM =
C−u + 0.5 C0

u

Cu
(3.10)

The maximum NDPM value, namely 1, is reached when the model places all non-tied by
real ranking pairs of elements in inverse order, that is Cu = C−, C+ = 0 and C0

u = 0. Thus
NDPM = 1 is the worst obtained value. The mean value (0.5) can be obtained for the case
when the model ties all the elements, that is all the elements are predicted to have the same
value of ratings. Note, however, that other con�gurations (not only tying all elements) can also
result in NDPM = 0.5. Finally, the lowest NDPM (0) indicates that all non-tied by real ranking
pairs of elements (those, having di�erent ranking positions in reality) were correctly ordered by
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the model (the best ranking), that is Cu = C+, C− = 0 and C0
u = 0.

For comparison purposes, in some cases we will use not the exact values of the error metrics,
but the relative deterioration of the error of analysed model (AM) compared to the error of the
base model (BM) (see equation (3.11)).

DET (AM,BM) =
err (AM)− err (BM)

err (BM)
100% (3.11)

As it was mentioned in the previous section, the size of the actual test set can change in
our experiments. Thereby, in order to evaluate the number of ratings predicted by a certain
model, we use additionally Test Coverage (COV ) metric. As Test Coverage, we understand
the percentage of ratings from the test set, for which the model can estimate rating values (see
equation (3.12)).

COV =
|Tpredicted|
|T |

100%, (3.12)

where |Tpredicted| is the number of predicted ratings in the test set (the actual test set in
Figure 3.2), and |T | is total number of ratings in test set.

3.4 Experimental Results

In this section, we present the experimental evaluation of the proposed approach. First, we
focus on the identi�cation of the optimal number of features for MF. Second, we analyse the
characteristics of di�erent sets of seed users. Finally, we analyse the performance of the MF-
based solution for the new item cold-start problem.

3.4.1 Matrix Factorization: Performance Analysis

In this subsection, we search for the optimal value of the number of features K for the MF-based
models.

We conduct a series of experiments with di�erent number of features and di�erent values of
the regularization parameter λ, for both Jester and Movielens datasets. For Jester, λ changes
from 0 to 300 with an increment of 5, for Movielens � from 0 to 30 with an increment of 1.
Note that the number of features K and the value of the regularization parameter λ are not the
parameters of our model (as the proposed interpretation is made for the existing MF model),
but the parameters of MF itself.

Table 3.4 and Table 3.5 present the values of optimal con�gurations, with respect to di�erent
error measures for Jester and Movielens datasets, as well as errors (NRMSE and NDPM) for the
boundary values of λ (0 and 300/30). Minimum and maximum values of NRMSE and NDPM
through di�erent numbers of features K are presented in the tables as shadowed. The last row
of the tables contains the di�erence between these maximum and minimum error values. As it
is seen from the tables, when the optimal value of λ is used the di�erence between error values
for di�erent number of features is insigni�cant and does not exceed for NRMSE and NDPM
respectively 0.0007 and 0.0064 (for Jester), 0.0109 and 0.0135 (for MovieLens).

Analysing the values given in Table 3.4 and Table 3.5, we can note that when the number of
features K increases, the value of optimal λ also has a tendency to increase. This fact supports
the existence of the over�tting problem, that is with the growth of its size the MF-model becomes
more precise on the learning set, but less accurate on the test set. It is obvious that the quality
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Table 3.4: Jester: Optimal Parameter Values; maxDif � di�erence between maximum and mini-
mum error values (presented as shadowed) through di�erent number of features K

K con�g
value/λ

NRMSE NDPM

5
min 0.2120 / 0 0.3645 / 0
opt 0.2061 / 60 0.3533 / 55
max 0.2297 / 300 0.3837 / 300

10
min 0.2147 / 0 0.3678 / 0
opt 0.2054 / 75 0.3482 / 70
max 0.2296 / 300 0.3836 / 300

15
min 0.2190 / 0 0.3700 / 0
opt 0.2057 / 90 0.3493 / 110
max 0.2295 / 300 0.3836 / 300

20
min 0.2238 / 0 0.3721 / 0
opt 0.2056 / 90 0.3482 / 100
max 0.2296 / 300 0.3836 / 300

25
min 0.2290 / 0 0.3834 / 0
opt 0.2059 / 95 0.3492 / 100
max 0.2294 / 300 0.3835 / 300

50
min 0.2539 / 0 0.4073 / 0
opt 0.2055 / 100 0.3469 / 100
max 0.2294 / 300 0.3835 / 300

75
min 0.2675 / 0 0.4195 / 0
opt 0.2057 / 100 0.3484 / 100
max 0.2295 / 300 0.3836 / 300

maxDif 0.0007 0.0064
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Table 3.5: MovieLens: Optimal Parameter Values; maxDif � di�erence between maximum and
minimum error values (presented as shadowed) through di�erent number of features K

K con�g
value/λ

NRMSE NDPM

5
min 0.2584 / 0 0.3423 / 0
opt 0.2364 / 3 0.3050/ 4
max 0.2769 / 30 0.3237 / 30

10
min 0.2457 / 0 0.3330 / 0
opt 0.2421 / 6 0.3058 / 8
max 0.2755 / 30 0.3262 / 30

15
min 0.2711 / 0 0.3622 / 0
opt 0.2451 / 8 0.3100 / 10
max 0.2759 / 30 0.3247 / 30

20
min 0.2759 / 0 0.3734 / 0
opt 0.2452 / 9 0.3075 / 11
max 0.2763 / 30 0.3258 / 30

25
min 0.2852 / 0 0.3731 / 0
opt 0.2455 / 10 0.3051 / 12
max 0.2763 / 30 0.3261 / 30

50
min 0.2969 / 0 0.3868 / 0
opt 0.2473 / 10 0.3056 / 13
max 0.2763 / 30 0.3248 / 30

100
min 0.2979 / 0 0.3883 / 0
opt 0.2461 / 10 0.3047 / 14
max 0.2765 / 30 0.3246 / 30

500
min 0.2692 / 0 0.3586 / 0
opt 0.2435 / 8 0.2982 / 9
max 0.2754 / 30 0.3234 / 30

1000
min 0.2566 / 0 0.3374 / 0
opt 0.2424 / 7 0.2965 / 5
max 0.2751 / 30 0.3231 / 30

maxDif 0.0109 0.0135
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Table 3.6: Jester: Characteristics of seed users; χ � ratio of the mean number of ratings provided
by seeds to the mean number of ratings per user in the whole dataset

seeds χ innerC outerC outerC/innerC

RUs 0.7111 0.0107 0.0617 5.77
topK 1.1306 0.0650 0.0981 1.51
mDiv 0.8598 0.0137 0.0891 6.50
mDisp 0.9446 0.1091 0.1224 1.12
mNeigh 0.4367 0.7136 0.3290 0.46

of prediction on the learning set increases with the number of features K, thus the higher penalty
(value of the regularization parameter λ) should be used to smooth this e�ect. As we can see,
using the optimal value of the regularization parameter λ lets us obtain a precise model when
the number of features K is not very large as well. Thus, in order to have an optimal model in
terms of its size and representativeness, we used K = 10 as the number of features in all further
experiments on both datasets.

3.4.2 Analysis of Di�erent Sets of Seed Users

This subsection is dedicated to the analysis of the main characteristics of di�erent sets of seed
users. This is done in order to understand the ability of seeds to represent the interests of the
entire population of users. We suppose that seed users should not have a too small number of
ratings (otherwise, they can be unable to represent the preferences of other users on most of the
items) and they should have di�erent behavioural patterns. Thereby, we focus on the following
characteristics of the set of seed users: the mean number of ratings per seed user, the average
correlation within the set of seed users (innerC) and the average correlation of seed users with
other users (outerC), as well as the ratio of these two correlation values (outerC/innerC).

The characteristics of di�erent studied sets of seed users: representative users (RUs), top
raters (topK), most diverse users (mDiv), most dispersive users (mDisp) and most neighbours
(mNeigh), are depicted in Table 3.6 and Table 3.7 (Jester and MovieLens datasets respectively).
By χ (the �rst column of the tables) we denote the ratio of the mean number of ratings provided
by seed users to the mean number of ratings per user in the whole dataset (not seed users).
As χ is a relative characteristic, it is data-independent and lets us compare results for di�erent
datasets. We can see from the Table 3.6 and Table 3.7 that for both datasets, RUs tend to rate
less than in the other sets of seed users. However, RUs of the Jester dataset has a higher ratio
χ then in MovieLens. By de�nition, top-raters have the highest number of ratings.

Now we proceed to the analysis of the correlations. We assume that a set of users is more
suitable for representing the interests of the entire population of users if it is composed of users
with di�erent behavioural patterns. That is the users of this set should be less correlated between
them than with the users outside the set (the value of the ratio outerC/innerC should be high).

For both datasets, RUs are almost 6 times less correlated within their set than with other
users of the dataset. The set of most diverse users (mDiv) has a considerably lower inner
correlation, compared to the value of the correlation with not seed users (outerC/innerC > 1).
This is logical, as this set was formed as a set of those users, that are not correlated with each
other. But as a random factor was used when forming this set (the �rst user of the most diverse
set is chosen randomly), it can be not optimal. For example, for the Jester the value of inner
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Table 3.7: MovieLens: Characteristics of seed users; χ � ratio of the mean number of ratings
provided by seeds to the mean number of ratings per user in the whole dataset

seeds χ innerC outerC outerC/innerC

RUs 0.4838 0.0134 0.0766 5.72
topK 4.1616 0.2344 0.1840 0.79
mDiv 1.4892 0.0381 0.1143 2.70
mDisp 1.3750 0.1072 0.1520 1.42
mNeigh 1.0849 0.4468 0.2757 0.62

correlation for the RUs and mDiv sets is very close (both sets are composed of highly diverse
users), however for the MovieLens dataset we can see that the set of representative users has
lower inner correlation. It means that both sets RUs and mDiv represent di�erent behavioural
patterns, but the set of representative users is more optimal.

The ratio of outer and inner correlation (outerC/innerC) of the top raters (topK) and most
dispersive (mDisp) sets is close to 1 for both datasets. The value of the inner correlation of users
from these sets is close to the mean pairwise correlation of the users from the whole datasets.
The ensemble of most neighbours is composed of users that have higher correlation within the
set than outside it. Therefore, these three sets are less suitable for representing the interests of
the whole population of users.

Considering statements above, we can conclude that the set of representative users tend to
be composed of users with di�erent behavioral patterns (as it has the lowest inner correlation
and a high value of the ratio outerC/innerC) and thus it can be used for representing interests
of the entire population of the users.

3.4.3 Cold-start for Jester

In the following experiments, we analyse the performance of the proposed solution of the new
item cold-start problem, i.e. exploiting seed users. We start with the detailed analysis of our
approach. For this, we �rst need that all seed users provide ratings on the new items. Due to the
high sparsity of the MovieLens dataset, none of the new items in our simulation can get ratings
from all seeds, but this is not the case for the Jester dataset. Therefore, in this subsection we
focus on di�erent aspects of the cold-start problem analysis performed on the Jester dataset. We
consider the case when all seed users provide ratings and analyse di�erent �lling procedures when
not all seed users can give their opinion on a speci�c new item. Also, we compare performance
for di�erent levels of learning dataset sparseness. Some results for the MovieLens dataset are
presented in the next subsection.

Let us introduce some notations. By MF-RUs model we denote an MF-based algorithm for
solving cold-start problem (Section 3.2.3) with representative users (RUs) used as seed users.
MF-topK will correspond to the same algorithm with the set of top raters used as seed users.
Therefore, in such abbreviations the second part will correspond to the set of seed users used
(RUs, topK, mDiv, mDisp, mNeigh).
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Figure 3.3: Jester: Dependence of NRMSE on Percent of Known Ratings in the Input Rating
Matrix (θ)

Comparison of Di�erent MF-based Models and RBMF

We start with the analysis of the performance of di�erent MF-based models on Jester dataset.
In this set of experiments, seed users are required to provide all ratings on new items. Thus,
the test set is formed only of those new items, on which all seed users can give their ratings.
We also compare the performance of the proposed approach with the baseline approach from
the Section 2.3.2 (RBMF). Additionally, we study the e�ect of the sparsity of the learning set,
that is we randomly discard some portion of ratings from the learning set in order to obtain the
learning matrix with the required percentage of known ratings. At the same time, all ratings in
the test set are preserved, what ensures the presence of ratings provided by seed users on new
items.

Figures 3.3 and 3.4 present the evolution of NRMSE and NDPM respectively for di�erent
models (MF-RUs, MF-topK, MF-mDiv, MF-mDisp, MF-mNeigh and RBMF) with respect to
di�erent percents of known ratings in the learning set, denoted by θ. The �gures show that
among all MF-* models, MF-RUs performs the best regardless the value of θ. The results of the
MF-topK, MF-mDiv, MF-mDisp, MF-mNeigh models tend to be close between themselves. The
RBMF model performs better than MF-RUs in terms of RMSE, however, it provides consistently
worse results in terms of NDPM. Still, the results provided by RBMF are the closest to those
of MF-RUs model. Therefore we can conclude that the set of RUs can represent the interests
of the entire set of users better than other sets of seed users and can better predict elements
ranking than the benchmark model (RBMF). The MF-RUs model performance for small values
of θ (θ = 10% or θ = 5%) proves that the proposed method can be used for sparse datasets as
well. Now we move to the more detailed analysis of MF-RUs model.

MF-RUs: Comparison of Filling Procedures (No Coverage Growth)

Till now, we were studying the case when seed users in MF-based models provide all the ratings
on new items. However, in reality not all users from the set of seed users may be able to provide
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Figure 3.4: Jester: Dependence of NDPM on Percent of Known Ratings in the Input Rating
Matrix (θ)

ratings on new items for di�erent reasons, like the absence of knowledge about the item or simply
non-willingness to answer. As it was proposed in the Section 3.2.3, unknown ratings can be �lled
with either mean values (we will use global mean Gmean, user mean Umean and user-item mean
UImean) or ratings of other users User (in the case when RUs are chosen as seed users � the
ratings of the next closest representative user, see Section 3.2.1).

We focus on studying di�erent �lling procedures. We compute error values of MF-RUs model
depending on the percent of ratings provided by representative users for di�erent mean-�llings
and for �lling with the ratings of the next closest representative user.

In order to analyse the in�uence of the missing ratings, as in the previous experiments, we
evaluate error measures only on those new items, that have ratings from all representative users.
Thus, the coverage (COV ) on the test set does not change when the threshold of required number
of ratings from the representative users (γ) decreases. Indeed, when the threshold of required
number of ratings from representative users γ decreases, usually more new items can be used in
the actual test set (see Figure 3.2, right part). However, in this case the actual test set is �xed
and is composed of those new items, on which representative users provide 100% of ratings. The
coverage growth when γ decreases will be studied in the next series of experiments. In order to
simulate the absence of some ratings of representative users, we randomly delete the required
number of votes for each considered new item.

The resulting evolutions of NRMSE and NDPM on di�erent values of γ and for di�erent
�lling procedures are presented in Figures 3.5 and 3.6. The lowest value of NRMSE is obtained
when the Umean-�lling (�lling with the per-user mean rating) is used. Also, contrary to what is
expected, NRMSE has a tendency to decrease for Umean and UImean �lling procedures. When
Gmean-�lling is used, the value of NRMSE increases following the case for the User-�lling, but
usually stays lower than for the latter one. The decrease of the NRMSE when γ decreases
shows that the rating value of the new item can be predicted as a per-user mean rating. Indeed,
performing non-cold-start test for predicting new ratings with the per-user mean model (unknown
ratings are estimated as the mean rating of an active user) we obtain RMSE equal to 0.2283 that
is only 11% higher than RMSE of the MF model for K = 10 (0.2054, see the Table 3.4) and even
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Figure 3.5: Jester: Dependence of NRMSE on the Required Number of Ratings from RUs (γ)
for di�erent �lling procedures

less than RMSE of the NB model with 10 neighbours equal to 0.2382. However, despite the fact
that the values of the ratings can be predicted with the mean model, this model cannot estimate
the ranking of the items, as all of them are predicted to have the same rank. This shows that
the NRMSE measure has a bias when mean-�llings are used. Also, as it was discussed earlier
(see Section 3.3.4), the NDPM error measure has more practical meaning, so we consider it as
the main evaluation criteria.

Analysing the dependence of NDPM (see Figure 3.6) we can see that, as expected, the error
value grows with the decrease of γ. Also, using the ratings of real users (�lling with the ratings
of the next closest candidate, User-�lling procedure) can signi�cantly improve the performance,
especially for the case when the value of γ is small (30%�10%). It shows that the ratings of real
users have practical value and are more suitable for ranking estimation than mean-�llings.

MF-RUs: Comparison of Filling Procedures (Coverage Growth)

Finally, we now analyse the performance of the models in the case of coverage growth. In this
series of experiments, the actual test set is not �xed for di�erent values of γ. For example, if γ is
set to 40%, this means that all new items that were rated by at least 40% of the representative
users are analysed in the actual test set (in the previous case, the actual test set was composed
of only those new items that have 100% of ratings from representative users). This naturally
results in a coverage growth while γ decreases.

We compute NRMSE and NDPM, as well as the test coverage COV , for di�erent values of
γ and di�erent �lling procedures. The results are presented in Figures 3.7 and 3.8.

As in the previous case, where no coverage growth was considered, we can observe an un-
expected behaviour of NRMSE: the error tends to decrease with γ, either on a certain interval
(for Gmean, UImean and User-�lling) or for all values of γ (Umean-�lling). Also, mean-�lling
procedures result in a lower NRMSE than User-�lling (due to the bias of the NRMSE measure
discussed before). On the other hand, the analysis of the NDPM shows that the usage of ratings
of real users instead of mean-�llings results in better elements ranking.
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Figure 3.6: Jester: Dependence of NDPM on the Required Number of Ratings from RUs (γ) for
di�erent �lling procedures

Figure 3.7: Jester: Dependence of NRMSE for Di�erent Filling Procedures and Test Coverage
(COV) on the Required Number of Ratings from RUs (γ)
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Figure 3.8: Jester: Dependence of NDPM for Di�erent Filling Procedures and Test Coverage
(COV) on the Required Number of Ratings from RUs (γ)

Moreover, in the case where ratings of other RU candidates are used instead of unknown
values, we obtain noticeable improvements in terms of NDPM (compare NDPM(γ = 10%) =
0.4357 for User-�lling and NDPM(γ = 10%) = 0.4560 for Gmean-�lling) and in terms of
coverage (compare COV (γ = 100%) = 31% and COV (γ = 10%) = 98%). Thus we showed that
using ratings of representative users or other closest candidates can not only improve the quality
of the ranking, but also allows accurately predict ratings for more new items.

To conclude, we can say that our approach (MF-RUs) outperforms in terms of NDPM
alternative methods of seed users identi�cation as well as the benchmark RBMF approach. Also,
it is not computationally complex and does not require performing additional calculations, like
calculation of the correlation matrix for the identi�cation of mDiv and mDisp sets or prior SVD
decomposition, as RBMF. Additionally, when using representative users as seeds the unknown
ratings from seed users can be replaced with the ratings of other closest candidates for being
representative users (User-�lling procedure). This also allows calculating predictions for more
new items.

3.4.4 Cold-start for MovieLens dataset

In the previous subsection, we studied di�erent aspects of the proposed approach on the Jester
dataset. To con�rm some of the results, we now move to the analysis of our approach on the
MovieLens dataset. As this dataset contains only 6% of known ratings, none of the new items has
more than 40% of ratings provided by seed users (γ ≤ 40%). Note that the previous phrase does
not mean that the proposed approach cannot identify the required number of representative users,
but that due to the sparsity of the dataset there is not enough ratings in the test set provided by
RUs. In a real situation, as it was mentioned in [Liu et al. 2011], the chosen representative users
will be encouraged to provide all ratings on the new items through, for example, the proposition
of additional services from the side of RS. So, we can expect that most of their ratings will be
known.

Thereby, in every experiment we have to use one of the �lling procedures. So it is impossible

62



3.4. Experimental Results

Table 3.8: MovieLens: Relative deterioration (DET ) of NDPM in % of di�erent models compared
to MF-RUs model through di�erent values of γ (UImean-�lling is used)

γ,%
SEEDS for MF-models

RBMF
topK mDiv mDisp mNeigh

40 8.5 6.4 8.2 8.6 4.9

30 11.0 9.6 11.0 11.3 7.3

20 7.1 6.0 7.1 8.2 3.7

10 5.5 5.7 5.0 6.6 2.3

to perform the same series of experiments for MovieLens, as it was done for Jester. Therefore,
in this subsection we search an answer for only two questions: 1) does MF-RUs model remain
the best among other MF-based models as well as RBMF? and 2) which �lling procedure will
result in better performance of MF-RUs model? As both questions concern the comparison
of the models, we will use relative deterioration (DET , see equation (3.11)) as an evaluation
metric. Experiments performed on the Jester Dataset support the statement from Section 3.3.4,
that NDPM measure has more practical meaning than NRMSE. Thus in this subsection, we will
focus on the evaluation of NDPM only.

Searching for the answer to the �rst question, we calculate the relative deterioration in terms
of NDPM for di�erent models (analysed models), compared to the MF-RUs model (base model),
for di�erent values of γ. UImean-�lling procedure (�lling with the mean of the user and item
mean values) was used, as it resulted in the best NDPM values for the Jester Dataset among
other mean-�lling procedures (see Figures 3.6 and 3.8). Corresponding results are presented in
Table 3.8.

A positive value of DET means that the MF-RUs model gives better results (lower value of
NDPM). An absolute value in Table 3.8 indicates the relative deterioration in percents of the
analysed model comparing to the base one (MF-RUs). For example, the value 11.0 in the line
γ = 30% and the column mDisp shows that for the speci�ed γ MF-RUs model performs 11.0%
better than MF-mDisp (that is MF-RUs results in NDPM that is 11.0% less than NDPM for
MF-mDisp). As all the values in the Table 3.8 are positive, we can conclude that for all values
of γ the MF-RUs model results in better ranking, compared to other models. Therefore we
obtained the answer on the �rst question. Also we can see that when γ decreases from 30% to
10% the value of DET also decreases. It means that when seed users provide fewer ratings, the
di�erence between the performance of models diminishes. Indeed, for γ = 10%, 90% of ratings
are �lled with UImean values, but not with the ratings of seed users, thus the models with
di�erent ensembles of seed users become more similar. Also, supporting the same conclusion for
the Jester dataset, results of the RBMF are the closest to MF-RUs model results.

The next question that we raise is: which of four �lling procedures (Gmean, Umean, UImean,
and User) will be the best for the MF-RUs model. Similar to the previous case, we calculate the
relative deterioration DET in terms of NDPM of the analysed models (MF-RUs with the mean-
�lling procedures) compared to the base model (MF-RUs with the User-�lling). The positive
value of DET indicates that MF-RUs with User-�lling provides a lower NDPM value. Results
are presented in the Table 3.9.

From the Table 3.9 we see that using User-�lling procedure we can obtain better ranking (as
all the values in the table are positive). Also, we can see that with the decrease of γ (percentage
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Table 3.9: MovieLens, MF-RUs model: Relative deterioration of NDPM in % of mean-�lling
procedures compared to User-�lling for di�erent values of γ

γ,%
DET
�lling

Gmean Umean UImean

40 7.8 9.1 3.4
30 11.7 12.7 6.5
20 19.6 19.2 17.4
10 25.2 24.4 21.6

of known ratings provided by RUs) the gain of using User-�lling increases. Indeed, the lower
the value of γ, the more real information is obtained through the User-�lling compared to the
mean-�lling procedures. This was also the case for the Jester dataset (see Figures 3.6 and 3.8:
when γ decreases the gain of using User-�lling increases).

To conclude, we can say that the results obtained for MovieLens dataset support the con-
clusions drawn from Jester: 1) among all models, MF-RUs gives the best values of NDPM and
2) using ratings of other closest users instead of mean-�lling procedures improves the quality of
items ranking. However, due to the sparseness of the MovieLens dataset we were not able to
perform exactly the same evaluation as for the Jester dataset. In particular, we could not study
the cases when either all or the majority of seed users provide ratings on new items.

3.5 Conclusions

We presented in this chapter a new approach for interpreting features of a matrix factorization
model. As announced in Chapter 2, we associate features with real users of the system � rep-
resentative users. The proposed interpretation is done completely automatically and, contrary
to many state of the art approaches, requires neither human experience or interaction, like in
[Zhang et al. 2006, Pessiot et al. 2006], nor external sources of information, like item reviews in
[McAuley and Leskovec 2013]. Our approach works with an already existing matrix factorization
model and does not alter it for making the model being interpretable. Thereby, we do not pro-
pose a new factorization technique. The proposed interpretation allows us not only interpreting
the features but also explaining recommendations provided by MF models in a way similar to
the NB approach (see Section 3.2.2).

As latent features represent the relations between users and items, the resulting feature-
related representative users should be capable to correctly represent the interests of the whole
population of users. Thereby, following [Liu et al. 2011] we choose to use the new item cold-start
problem for the validation of the proposed interpretation. Indeed, the fact that the preferences
of representative users on new items can be used to correctly estimate the preferences of other
users on these items (or the fact that representative users can be used as seed users) is a reliable
proof of the proposed interpretation. However, this statement has to be veri�ed experimentally.

In Section 3.2.3 we formulate our solution for the new item cold-start problem in MF-models
based on the usage of ratings of seed users. This solution, contrary to many state-of-the-art
approaches, does not require content information and, thereby, is of particular interest when
such information is not available.
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Using two datasets (MovieLens and Jester), the evaluation of the proposed approach was
performed. First of all, analysing characteristics of the set of representative users, it was shown
that they tend to be composed of users with di�erent behavioural patterns and can thus be used
for representing the interests of the entire population of users.

Considering the performance on the cold-start, it was shown that using representative users
as seeds results in better ratings predictions than alternative sets of seed users (such as top
raters or the set of most diverse users) and the MF-RUs model provides better ranking than
the baseline approach (RBMF). Also, if for some reasons the chosen representative users do not
provide their ratings on new items, the next best candidates for being representative users can
be successfully used. This allows not only to increase the accuracy of prediction (compared to
the �lling unknown ratings with some mean values, like global mean rating) but also to predict
ratings for more new items. In our opinion, this ability of representative users to solve the new
item cold-start problem can be considered as a proof of the validity of the proposed interpretation.

The two used datasets represent the rating behaviour of users in two di�erent domains:
ratings on jokes for Jester and ratings on movies for MovieLens. Also, ratings are given as real
values in the �rst dataset and as discrete values in the second. Recall that neither domain-speci�c
information nor the information about the nature of the ratings was used in our approach. Also,
the results obtained for the MovieLens dataset support the corresponding results obtained for
Jester. Thereby, we can conclude that the proposed solution is domain independent and will
provide the results of the same quality when predicting ratings on items of di�erent nature.
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Identi�cation of Trigger Factors
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Chapter 4

State-of-the-Art: Theoretical

Foundations for Trigger Factors
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4.1 Identi�cation of Trigger Factors: Next Step for Classi�cation

As it was mentioned in the introduction, according to Gartner [Davis and Herschel 2016] it is
possible to de�ne 4 types of data analytics:

• descriptive analytics - describes general tendencies in the dataset (what happened? );

• diagnostic analytics - attempts to understand the nature of the found patterns and depen-
dencies (why did it happen? );

• predictive analytics - predicts the future development (what will happen? );

• prescriptive analytics - identi�es the factors that can lead the development of the system
in the desired direction (how to make it happen? ).
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All four types of data analytics are important, however, nowadays prescriptive analytics
becomes more and more popular due to the high demand from the business community [Evans
and Lindner 2012, Basu 2013]. Research in prescriptive analytics is an emerging �eld [Song et
al. 2014] and the existing papers are mostly dedicated to the development of analytical systems
that support the generation of prescriptions for di�erent case studies. As examples, we can
mention advising systems aimed to help a researcher building a successful career [Song et al.
2014, Weber et al. 2014, Lee and Cho 2015], analytical systems for manufacturing [Krumeich
et al. 2015, Gröger et al. 2014] and learning analytics systems aiming to help students and/or
teacher [Aguilar et al. 2014, Miller et al. 2015, Sharma et al. 2016].

We consider that it is possible to de�ne four phases of analytical tasks that will
correspond to four types of data analytics. For example, let us consider the task of class
analysis. In many practical cases, the analysed dataset is organised into non-intersecting classes.
We can give the following examples: men and women in demographic data, defective and faultless
articles in manufacturing data, successful and backward students in e-learning. A researcher can
be interested in understanding the characteristics of each class: what values of attributes are more
common in each of the classes; if there are similar and/or di�erent tendencies; which attributes
can be used to predict the class of a datapoint, etc. In this way, the task of class analysis arises.

Our view of the four phases of the class analysis task is presented in Figure 4.1. We consider
that on the level of descriptive analytics the task of class analysis takes form of the task of class
description. We can formulate this task as follows:

Class description: De�ne the patterns speci�c to each data class.

Essentially the task of class description is reduced to the separate analysis of di�erent classes
of the dataset. However, what is more interesting, is to compare the patterns found in each
class and to identify those, that are similar and di�erent. Thereby we come to the task of class
comparison, which corresponds to diagnostic analytics and which we formulate as follows:

Class comparison: De�ne the patterns that are similar and di�erent for di�erent classes of
the dataset.

We can note that the task of class comparison rests upon the task of class description. Indeed,
once the patterns for each class are identi�ed (class description) what is left to do is to identify
those of them, that are similar and di�erent between classes (class comparison). However, data
analysis techniques are usually sharpened to �nd interesting/non-trivial patterns [Fayyad et al.
1996]. The patterns that are non-interesting within the scope of one data class can be useful when
compared with corresponding patterns of the other class. Thereby, although class comparison
relies directly on class description, it cannot be reduced to the latter one.

The next phase of class analysis (within the scope of predictive analytics) can be viewed as
the task of class prediction:

Class prediction: De�ne the pattern for predicting the class label for a previously unseen
element.

The latter task is known in the literature as the task of classi�cation [Aggarwal 2014b, Duda
et al. 2012]. It is well-studied and due to the high number of applications has many solutions
[Duda et al. 2012, John Lu 2010], which are mainly based on the identi�cation of interconnections
between the values of the attributes of datapoints and the values of the class label. Essentially,
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Figure 4.1: Four Phases of the Class Analysis Task

the task of classi�cation can be viewed as the task of prediction in the case of discrete number
of possible future states.

As in the previous case, the solution of the class prediction or classi�cation task can be based
on the solution of the class comparison task. Indeed, selecting those patterns that are dissimilar
for di�erent data classes, we can afterwards use them to predict the class label for the new data
element. This is done basing on the fact to which of the patterns the data element corresponds.
However, the data element can correspond to multiple patterns and thus many class labels can be
predicted. Thereby within the classi�cation task not all possible patterns are used, but usually
the set of those patterns that can predict the class label with the highest accuracy.

According to the structure provided in Figure 4.1, the task of trigger factors identi�cation
can be considered as a direct descendant of the classi�cation task. However, to the best of our
knowledge, the task of class analysis in the frame of prescriptive analytics was not discussed
before in the literature. We formulate this task as follows:

Trigger factors identi�cation: De�ne the factors, that can stimulate the transition of data
elements from one class to another.

It was mentioned in the introduction section that we are not aware of any technique that
allows to identify automatically such trigger factors in the general case. However, as the task of
trigger factors identi�cation is the direct descendant of the classi�cation task, we suppose that
classi�cation techniques can be used to solve it (following the mentioned above regularity that
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the solution of one task can be based on the solution of the task standing one level before).

In real life, if we want to transfer elements from one class to another we often follow a
simple intuition: it is required forcing the data elements to correspond to the patterns that are
associated with the target class (the class to which we want to move the data elements). That
is to change the values of the attributes which determine the value of the class label from those
that are typical for non-target class (classes) to those that are typical for the target class. This
idea forms the heuristics that we use in this thesis to identify trigger factors. However, to do so
we need to �nd the patterns that reveal the dependence between the feature attributes and the
target attribute for each class. This actually can be done by classi�cation techniques.

There exists a great variety of classi�cation techniques. Some of them are known to be
interpetable, while others not [Letham et al. 2012]. However, trigger factors are de�ned as those
that can stimulate the transition of data elements from one class to another. That is they should
correspond to some real-life characteristics of the elements from the dataset. Thereby, we believe
that interpretable classi�cation techniques will suit the best our task. Hence, the next section is
dedicated to the analysis of classi�cation techniques with the aim to identify those that produce
patterns suitable for the task of trigger factors identi�cation (interpretable patterns).

4.2 Classi�cation Approaches

It is possible to de�ne two general approaches for classi�cation: eager classi�cation and instance-
based classi�cation [Aggarwal 2014b]. Eager classi�ers [Chatterjee 2011] have two clearly de�ned
phases: a learning phase and a prediction phase. On the learning phase, the available data
elements are used to build the classi�cation model, which is afterwards used to predict the class
labels for new data elements. Instance-based classi�ers [Aha et al. 1991] do not have a clearly
de�ned learning phase. In this case, the predictions are calculated for a speci�c new instance
that needs to be classi�ed [Aggarwal 2014a]. The instance-based classi�cation techniques belong
to lazy learning techniques, as opposite to eager learning classi�cation methods that try to build
a general model before the new instance will appear [Hendrickx and Van Den Bosch 2005]. When
the instance-based classi�er is used, no time is required for preprocessing (as no model is built).
At the same time, more computational time will be spent during the classi�cation phase itself,
as the calculations should be performed for every new instance. Also, because instance-based
classi�ers optimise the prediction for each instance, they can provide better results. However,
eager classi�ers are less sensitive to noisy data [Aggarwal 2014a]. Recall that our aim is to form
classi�cation patterns (that is a classi�cation model) that afterwards will be used for trigger
factors identi�cation. Thus, the instance-based classi�ers are of no interest to us. So we focus
on eager classi�ers.

Following [Aggarwal 2014b] we can outline 4 commonly used groups of eager classi�cation
techniques: probabilistic classi�cation, support-vector machines (SVM), arti�cial neural net-
works (ANN) and rule-based classi�ers. The following subsections will be dedicated to the
description of the structure of the models generated by these di�erent eager classi�cation tech-
niques. We start this description with the introduction of notations. Let D be a dataset de�ned
on a set of N attributes

{
A1, A2, . . . , AN

}
. Assume that for each attribute Aj there is a set

of possible values. We will refer to this set as the domain of the attribute Aj , denoted by
domain

(
Aj
)
. Assume that K mutually exclusive classes G1, G2, . . . , GK are de�ned on the

dataset D with D = G1 ∪G2 ∪ . . . ∪GK and Gi ∩Gj = ∅, ∀i 6= j. Let us also assume that the
class of a particular element is de�ned by the value of an attribute AG with K possible values
(domain

(
AG
)

= {G1, G2, . . . , GK}). This attribute will be referred to as the target attribute,
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contrary to other attributes referred to as feature attributes (or features). We also use the term
class label to refer to the value of AG for a certain element.

4.2.1 Probabilistic Classi�cation

The main characteristic of probabilistic classi�ers is the fact that they use statistical inference
while building the model [Deng et al. 2014]. Also, they do not predict the class label of the
new instance, but rather estimate the probability of its belonging to a certain class. Let us
consider the Naive Bayes classi�er [Murphy 2006], which is a prominent example of probabilistic
classi�cation techniques and is widely used in many applications (see, for example, [Moore and
Zuev 2005, Wang et al. 2007]).

Assume that all feature attributes are organised into a feature vector ~AF with coordinates A1
∗,

A2
∗, ..., A

N
∗ standing for the values of corresponding feature attributes in each particular case. Us-

ing the theorem of Bayes, for a given feature vector the conditional probability p
(
AG = Gk| ~AF

)
can be rewritten in the form 4.1.

p
(
AG = Gk| ~AF

)
= p

(
AG = Gk|A1

∗, A
2
∗, . . . , A

N
∗
)

=

=
p
(
AG = Gk

)
p
(
A1
∗, A

2
∗, . . . , A

N
∗ |AG = Gk

)
p (A1

∗, A
2
∗, . . . , A

N
∗ )

(4.1)

In practice one is interested only in the numerator of (4.1) as the denominator does not
depend on AG, so (4.1) can be rewritten as (4.2).

p
(
AG = Gk|A1

∗, A
2
∗, . . . , A

N
∗
)
∼ p

(
AG = Gk

)
p
(
A1
∗, A

2
∗, . . . , A

N
∗ |AG = Gk

)
(4.2)

Applying Bayes theorem sequentially, we can get relation (4.3).
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(4.3)

Now the `naive' conditional independence assumptions can be used: assume that each feature
An is conditionally independent of every other feature given the class AG = Gk. This means,
for example, that p

(
AN∗ |AG = Gk, A

1
∗, A

2
∗, . . . A

N−1
∗

)
= p

(
AN∗ |AG = Gk

)
, what leads us to the

equation (4.4).
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· · · p
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(
AG = Gk

) N∏
i=1

p
(
Ai∗|AG = Gk

) (4.4)
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As a result under the above independence assumptions, the conditional distribution over the
target attribute AG is de�ned by (4.5):

p
(
AG = Gk|A1

∗, A
2
∗, . . . , A

N
∗
)

=
1

Z (A1
∗, A

2
∗, . . . A

N
∗ )
p
(
AG = Gk

) N∏
n=1

p
(
An∗ |AG = Gk

)
, (4.5)

where Z =
(
A1
∗, A

2
∗, . . . A

N
∗
)
is a scaling factor dependent only on A1

∗, A
2
∗, . . . A

N
∗ , that is, a

constant if the values of the feature attributes are known.
Despite the fact that Naive Bayes classi�er relies on the assumption that feature attributes are

independent, what is not always true, Naive Bayes performs well in many practical applications.
This was proven both experimentally [Rish 2001] and theoretically [Zhang 2004].

As we can see, in the case of Naive Bayes classi�er the statistical inference is related to the
Bayes Theorem, which shows how to compute the conditional probability of an event dependent
on other events. Other re�ections can be used as the basis of statistical inference. For example,
the logistic regression classi�er [Dreiseitl and Ohno-Machado 2002] assumes that the probability
of belonging to the class can be modelled by a logistic function.

In general, probabilistic classi�ers model the class belonging probability as a probabilistic
function dependent on the values of feature attributes. It is possible to derive the class-speci�c
patterns which could be used for the trigger factors identi�cation. However, it requires additional
actions to be performed.

4.2.2 Arti�cial Neural Networks

The arti�cial neural networks (ANN) are inspired by biological neural networks and are consid-
ered by some authors as universal functional approximators [Hornik 1991, Cybenko 1989]. They
consist of a set of arti�cial neurons connected into a network.

The structure of an ANN is characterized by the following elements [Biem 2014]:

• Mathematical model of a neuron that describes how that neuron processes input
signals and calculates the value of an output. The model of a neuron is comprised of two
functions:

� net value function, which uses the parameters of the neuron (the values of the weights
associated with each input channel) to summarize the input data and form a net value;

� activation function that transforms the calculated net value into the output value of
the neuron.

• Structure or topology of the network, which speci�es the interconnections between neu-
rons.

• Learning algorithm that is used to update the values of the weights.

The net value and activation functions can be of di�erent types, but typically they are
represented as a weighted sum/distance/kernel and linear/step/sigmoid functions respectively
[Biem 2014]. The structure of a network represents the graph of units. Usually, the network
consists of multiple layers, among which we can de�ne an input layer responsible for bringing
information into the network, the output layer, which provides the network outputs, and hidden
layers that perform the transformation of the information (see Figure 4.2). ANN may contain
feedbacks. The training of the network consists in updating the values of the weights associated
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Figure 4.2: Example of an Arti�cial Neural Network

with each unit with the aim to minimize the classi�cation error. Di�erent classes of networks
usually provide di�erent learning schemes that are suited for their typology.

The ANN models are considered to work as black-boxes [Benítez et al. 1997], that is the
model is usually non-interpretable and is di�cult to understand. Nowadays deep neural networks
[Arisoy et al. 2012] (those having multiple intermediate levels) attract more and more attention
[Schmidhuber 2015]. However, the deeper the network is, the more di�cult it becomes to follow
the learning process and thus to understand the resulting model.

4.2.3 Support Vector Machines

The idea of support vector machines (SVM) is originally related to linear classi�ers [Wang and
Lin 2014, Shmilovici 2005], that is classi�ers de�ned as linear functions. Assume that a dataset
in the N -dimensional feature space can be separated into 2 classes by an N − 1 dimensional
hyperplane (example for N = 2 is given in Figure 4.3).

It is evident that in this case an in�nite number of hyperplanes can be used as classi�ers.
However, the most reasonable choice corresponds to that hyperplane, which has the largest
distance from the closest instances of both classes (maximum margin). In such a way the classi�er
is less prone to misclassi�cation error (see the line in red in Figure 4.3). These instances (those
data points that are the closest to the chosen hyperplane, or those, that are lying on the margin)
are called support vectors.

The canonical equation of a hyperplane can be written in the form (4.6).

θ′ ~AF + θ0 = 0 (4.6)

The coe�cients θ′ and θ0 can be rescaled in such a way that the support vectors, which are
given by their support vectors ~AF1 and ~AF0 , will satisfy equalities (4.7).

θ′ ~AF1 + θ0 = 1, forAG
(
~AF1

)
= G1

θ′ ~AF0 + θ0 = −1, forAG
(
~AF0

)
= G0

(4.7)

Then the distance between the both support vectors is expressed by the equation (4.8).
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Figure 4.3: SVM: Examples of Linear Classi�ers for 2-Dimensional Feature Space (maximum-
margin classi�er is in red)

dist
(
~AF1 − ~AF0

)
=

2

||θ′|| (4.8)

As it was mentioned, among all the hyperplanes, we want to choose the one, that has the
maximum margin, that is we want to maximise the value from the equation (4.8) or obtain
the optimal solution of the conditioned optimisation problem (4.9) (assume k = −1 for G0 and
k = 1 for G1). This optimisation problem can be solved by the method of Lagrange multipliers
[Shmilovici 2005].

min
{θ′,θ0}

||θ′||2

ki

(
θ′ ~AFi + θ0

)
≥ 1 (∀i, 1 ≤ i ≤M)

(4.9)

The SVM classi�er is then represented by a function of the constructed hyperplane (see
equation (4.6)). For each new instance that needs to be classi�ed the value of the hyperplane
function is calculated with the instance's feature vector being used as a vector of parameters.
Depending on the sign of the calculated value the instance is predicted to be on one of two
sides of a hyperplane and in this way the class label is predicted. Obviously, not all datasets
can be linearly separated. In this case, SVM method can be still used with the introduction of
soft margins or making the hyperplane �tting the feature space through using the kernel tricks
[Shmilovici 2005, Wang and Lin 2014], which map the space of feature attributes on a set of
latent features. The space of latent features may not be always interpretable.

4.2.4 Rule-based Classi�cation

Association rules learning is a popular technique in data mining [Kotsiantis and Kanellopoulos
2006]. Let an item stand for any pair {attribute, value} and an itemset stand for a set X of
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items. An association rule [Agrawal et al. 1993] is an induction rule of the form X → Y , where
X and Y are itemsets and X ∩ Y = ∅. X is the left-hand side (LHS) of the rule also called the
antecedent, and Y is its right-hand side (RHS), or consequent.

If we restrict the consequent of an association rule to be composed of only the class attribute
AG, then such types of rules are called classi�cation rules [Agrawal et al. 1994] or classi�cation
association rules [Ma 1998] (we will use the �rst term). Such types of rules can be naturally used
for classi�cation purposes.

A rule-based classi�er is de�ned as a list of ordered or non-ordered classi�cation rules [Li
and Liu 2014], which are used to identify the class label of a new element (see our example in
Figure 4.4). If an element corresponds to the pattern in the antecedent of an association rule,
then it is said that the rule is �red by this instance. In the case of an ordered list, the rules are
checked following the order in the list and the �rst �red rule identi�es the class of the analysed
instance. When using a non-ordered list of rules, in the case when multiple rules are �red by the
same data instance (with possibly di�erent predicted class labels) it is impossible to predict the
class label, as none of the rules is considered as more reliable than others. However, in this case,
the �red rules can be used to predict the class label via the process of `voting'. The list of rules
can also contain a `default rule', that assigns an instance to the default class if no other rules are
�red.

Figure 4.4: Example of a Rule-based Classi�er for the Task of Credit Eligibility Identi�cation

Following the idea formulated in [Aggarwal 2014b], we consider decision trees [Lee et al.
2014, Kohavi and Quinlan 2002] as a special case of rule-based classi�ers, despite the fact that
di�erent reasoning procedures are used to construct both models (see for example C4.5 algorithm
for decision trees construction [Quinlan 2014] and the Apriori algorithm for association rules
mining [Agrawal et al. 1994]). Indeed, let us consider an example of a decision tree classi�er
given in Figure 4.5, which is equivalent to the rule-based classi�er given in Figure 4.4. Decision
trees perform hierarchical partition of the input dataset on subsets until the majority of the
elements in the resulting subset belongs to the same class. The root of the decision tree typically
covers all the input set, the nodes of the tree correspond to the partition criteria, and its leafs
correspond to the resulting class labels. The classi�cation is performed by following from the
root of the tree to one of the leafs according to the partition criteria presented in the nodes.
Each path in the decision tree can be considered as a rule. In a more general case, rule-based
classi�ers as opposite to decision trees do not assume the presence of the hierarchical structure
in the dataset and thus the rules can overlap.
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Figure 4.5: Example of a Decision Tree Classi�er for the Task of Credit Eligibility Identi�cation

As it is seen from the examples given in Figures 4.4 and 4.5, the rule-based classi�cation
models are formed of patterns that are speci�c to each data class and are highly interpretable.
In fact, a classi�cation rule shows which values and of which attributes (or their combination)
de�ne the belonging of an instance to the corresponding class.

4.2.5 Discussion

Now we proceed to the analysis of the eager classi�cation techniques presented above, with the
aim to identify those, that can be used for the task of trigger factors identi�cation. Recall that
in Section 4.1 we suggested that the algorithms that identify interpretable patterns speci�c to
each data class will suit better.

The �rst two techniques presented in this section model either probabilistic (probabilistic
classi�ers) or non-probabilistic (ANN) functional dependencies between the values of the feature
attributes and the class label. However, none of them is interpretable in a straightforward way.
Support vector machines (SVM) in the general case can be considered as classi�ers in the space
of latent features. Indeed, when the data cannot be separated into classes with a linear function
(a property, which cannot be guaranteed), SVM maps the data on a space of latent features using
kernel tricks. The structure of the latent space usually does not correspond to the structure of
the original features space. Thus the obtained model cannot be easily interpreted either.

As opposite to the three mentioned above approaches, rule-based classi�ers essentially form
sets of patterns speci�c for each data class. These patterns show which combinations of feature
attribute values are more common in each class, and thus can be used for predicting the class
label of new data elements. Rule-based models are also intuitively understandable. Thereby, we
choose this approach as the foundation for identi�cation of trigger factors. Among the rule-based
classi�ers, we can distinguish subclass of decision trees, which assume the presence of hierarchical
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structure in the dataset. We decide not to restrict ourselves by using this subclass of rule-based
classi�ers as the presence of the hierarchical structure may not always be the case.

In general, there are two strategies in building rule-based classi�ers [Li and Liu 2014]. Within
the frame of the �rst strategy, the minimum set of classi�cation rules required to cover all
training data instances is built (rule induction). The second strategy consists of searching for
all possible classi�cation rules in the dataset and then choosing the subset of rules that will
be used for building the classi�er (classi�cation based on associations). Recall, we assume that
trigger factors can be identi�ed via the comparison of the class-speci�c patterns. However, not all
patterns describing di�erent classes can be comparable (for example, they can consist of di�erent
feature attributes). Thereby, we decide to use the more general second approach, as using it we
have more chances to �nd comparable patterns for di�erent classes. We aim to investigate the
possibility of using rule induction for trigger factors identi�cation in future.

4.3 Class-speci�c Association Patterns

This section is dedicated to the description of association patterns that are used for the identi�ca-
tion of di�erences between classes. We start with the presentation of metrics used for evaluating
the quality of association rules. After that, we discuss related techniques: contrast mining and
treatment learning. Next, we describe the rule mining algorithm which we choose to use in our
work. We �nish this section with a brief discussion of the rules redundancy problem and its
possible solutions.

4.3.1 Evaluating Quality of Rules

Association rules are usually evaluated using measures such as support and con�dence [Lenca
et al. 2008]. Let us denote by suppD (X) the support of the itemset X in the dataset D. The
support of an itemset X is calculated using the formula (4.10).

suppD (X) =
countD (X)

|D|
, (4.10)

where countD (X) is the number of elements in D containing X and |D| is the total number
of elements in D. The support of the rule X → Y in D is calculated by formula (4.11) and
its con�dence by formula (4.12). The support of the rule shows the proportion of the elements
which can be covered by the rule and its con�dence � how strong is the association between the
antecedent X and the consequent Y . The rule with support/con�dence equal or greater than
the user-speci�ed threshold minSupp/minConf value is said to be frequent/con�dent.

suppD (X → Y ) = suppD (X ∪ Y ) , (4.11)

confD (X → Y ) =
suppD (X ∪ Y )

suppD (X)
=
countD(X ∪ Y )

countD(X)
(4.12)

From the probabilistic point of view the support of an itemset (or rule) corresponds to the
probability of its appearance in the dataset, that is suppD (X) = p (X). The con�dence of the
rule X → Y is in fact the conditional probability of the appearance of Y if X appears, that is
confD (X → Y ) = p (Y |X).

Many of the existing association rules mining algorithms search for large and con�dent rules
[Lenca et al. 2008, Kotsiantis and Kanellopoulos 2006]. Indeed, non-con�dent rules have no
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practical meaning and those with the low support value can be too rare. However, the combi-
nation of these two evaluation measures is not always enough to ensure the quality of the rules
[Brin et al. 1997, Tan et al. 2004]. For example, assume that the purchase of the bread and
fruits is completely unrelated and the bread is bought in 70% of purchase transactions. As the
purchase of fruits does not depend on the purchase of bread, the bread is bought as well in 70%
of cases when the fruits are bought. Thereby, the con�dence of the rule fruits→ bread is equal
to 0.7 despite the uselessness of this rule.

Many alternative quality evaluation measures were proposed in the literature [Geng and
Hamilton 2006, Bhargava and Shukla 2016]. Nevertheless, none of them can be considered as
universal because each of the measures reveals the speci�c characteristics of the rules and can
be more or less important depending on the application domain and/or on the task being solved
[Lenca et al. 2008]. As an example, let us now have a look at two alternative evaluation measures:
lift and conviction.

The measure of lift de�ned by formula (4.13) is considered to be the measure of independence
of the antecedent and the consequent (or the measure of their random co-occurrence). Indeed, if
the appearances of X and Y are two independent events, then p (X ∪ Y ) = p (X) p (Y ) and the
value of lift is equal to 1. A value greater than 1 shows that Y appears more often under the
condition of the appearance of X, as compared to the case when X did not appear. That is the
appearance of X has the positive e�ect on the appearance of Y . Contrary, if the value of lift is
below 1, the appearance of X has a negative e�ect on the appearance of Y . Obviously, reliable
rules should have the value of lift greater than 1.

liftD(X → Y ) =
p(X ∪ Y )

p(X)p(Y )
=

suppD(X ∪ Y )

suppDXsuppDY
=
confD(X → Y )

suppD(Y )
(4.13)

Conviction is used to estimate the direction of the rule. If we assume that the presence
of X implies Y , then the presence of X should not imply the absence of Y (event not(Y )).
This reasoning is revealed in the equation (4.14), which de�nes how the value of conviction is
calculated.

convD(X → Y ) =
p(X)p(not(Y ))

p(X ∪ not(Y ))
=

p(X)(1− p(Y ))

p(X)− p(X ∪ Y )
=

=
1− p(Y )

1− p(X∪Y )
p(X)

=
1− suppD(Y )

1− confD(X → Y )

(4.14)

Using similar reasoning as for lift, we can say that if the value of conviction is equal to 1,
then events X and not(Y ) are independent. If conv(X → Y ) < 1, then the presence of X has
positive e�ect on the presence of not(Y ). Finally if conv(X → Y ) > 1 presence of X has the
negative e�ect. Thereby conviction will be in favour of the discovered rule if its value is above 1.

4.3.2 Supervised Descriptive Rule Induction

Supervised descriptive rule induction (SDRI) is the process of inducing a set of comprehensible
rules in the classi�cation rule form from class-labeled data [Novak 2009]. The paradigm of SDRI
was introduced with the aim to unify three di�erent research directions: contrast set mining,
emerging pattern mining and subgroup discovery which at that time developed independently of
one another, had di�erent learning algorithms and were used in practical applications.

Contrast set mining searches for the conjunctions of attribute-value pairs (itemsets) whose
support in D di�ers meaningfully across classes [Bay and Pazzani 1999] (see equation (4.15)).
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maxi,j
∣∣suppGi (X)− suppGj (X)

∣∣ ≥ δ, (4.15)

where X is a candidate contrast set and δ is a user-de�ned parameter. Contrast sets are
designed in a way to show the di�erences between classes of the dataset (see equation (4.15))
such as di�erences between bachelor and PhD holders or freshman students of di�erent years
[Bay and Pazzani 2001]. A specialised algorithm STUCCO [Bay and Pazzani 2001] based on
the statistical hypothesis testing was proposed for mining contrast sets. Its ability to search
for `surprising' contrast sets was tested on di�erent datasets: Mushroom dataset8, Adult Cen-
sus dataset9, Integrated public use microdata series (IPUMS)10 and Admissions Data of the
University of California, Irvine.

According to [Novak et al. 2009b], emerging patterns mining aims to discover itemsets whose
support increases signi�cantly from one class to another. The GrowthRatemeasure (see equation
(4.16)) is used to evaluate this increase. Given P (with P > 1) a growth rate threshold, if
GrowthRate(X,G1, G2) ≥ P , then the itemset X is said to be a P -emerging pattern from G2

to G1 [Dong and Li 1999].

GrowthRate(X,G1, G2) =
suppG1 (X)

suppG2 (X)
(4.16)

Emerging patterns were proposed as a tool for discovering `emerging trends or useful con-
trasts' together with a mining algorithm based on border manipulation in [Dong and Li 1999].
This type of pattern was used for building a classi�cation algorithm [Dong et al. 1999] and a
clustering quality index [Liu and Dong 2009]. Also some variations of emerging patterns can
be found in the literature: jumping emerging patters [Bailey et al. 2002] (growth rate is in�-
nite GrowthRate(X,G1, G2) =∞) and disjunctive emerging patterns [Loekito and Bailey 2006]
(allow disjunctions as well as conjunctions in the itemsets).

Finally, subgroups discovery [Wrobel 1997] searches for as large as possible subgroups that
have unusual statistical characteristics of a target attribute value distribution. Several heuristics
are used for subgroups evaluation, for example weighted relative accuracy WRAcc [Lavra£ et al.
2004, Novak et al. 2009b] (see equation (4.17)).

WRAcc =
p+ n

P +N

(
p

p+ n
− P

P +N

)
(4.17)

where p - is the true-positive rate of the classi�cation rule, n - false-positive rate, P - total
number of true positive and false negative predictions by the rule, and N - total number of false
positive and true negative predictions. Subgroup discovery found its application as a knowledge-
discovery techniques in many tasks such as heart diseases group detection [Gamberger et al.
2003], spam identi�cation [Atzmueller et al. 2009], social bookmarking [Atzmueller et al. 2011]
etc. Also several approaches were proposed for performing subgroup mining (see [Carmona et
al. 2014] and [Atzmueller 2015]).

As it was shown in [Novak et al. 2009b], these three patterns namely contrast sets, emerging
patterns and subgroups, have compatible learning goals and heuristics, and the mining algorithm
of one pattern can be used to extract another type of pattern (see for example [Novak et al.
2009a], where subgroup discovery technique was used to mine contrast sets). That is they
solve similar tasks and use similar evaluation measures. We will refer to the group of patterns

8https://archive.ics.uci.edu/ml/datasets/Mushroom
9https://archive.ics.uci.edu/ml/datasets/Adult
10https://www.ipums.org/
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mined within the supervised descriptive rule induction paradigm as contrast patterns and to
the process of constructing these patterns as contrast mining or contrast data mining following
[Ramamohanarao et al. 2005, Liu and Dong 2009] and [Dong and Bailey 2012] respectively.

Although some works suggested that contrast patterns di�er meaningfully from itemsets and
thus association rules [Ramamohanarao et al. 2005, Bay and Pazzani 1999], it was shown in
[Webb et al. 2003] that the straightforward application of an existing association rules discovery
algorithm can be successfully used to mine contrast patterns. That is, the association rules
discovery algorithm results in the same set of contrast patterns as the technique specially designed
for contrast patterns mining. Moreover, below we provide the formal proof that the two concepts:
the itemset forming the antecedent of classi�cation rule and contrast pattern, are equivalent
under certain conditions. To the best of our knowledge no analogous proofs were presented in
the literature before.

Assume that two classes G1 and G2 are de�ned on the dataset D (we will restrict ourselves
to the case of two classes as the notion of contrast is always de�ned between two parts of the
dataset). Suppose we have a classi�cation rule X → AG = G1 with conf

(
X → AG = G1

)
= α.

As there are only two classes de�ned on the dataset, the con�dence of the rule X → AG = G2
is conf

(
X → AG = G2

)
= 1 − α. Also note that the countGk(X) = countD

(
X → AG = Gk

)
.

Let us now estimate the value of the growth rate of the itemset X from the class G2 to the class
G1 (see equation (4.18)).

GrowthRate(X,G1, G2) =
suppG1 (X)

suppG2 (X)
=
countG1(X)/ |G1|
countG2(X)/ |G2|

=

=
|G2|
|G1|

countG1(X)/countD(X)

countG2(X)/countD(X)
=

[
γ ≡ |G2|

|G1|

]
=

= γ
conf

(
X → AG = G1

)
conf (X → AG = G2)

= γ
α

1− α
,

(4.18)

where γ stands for the ratio of the sizes of the two classes |G2|
|G1| .

From equation (4.18) we can get the relation between the value of the con�dence of the rule
α and the value of the growth rate ρ for every value of γ (see equation (4.19)).

ρ = γ
α

1− α (4.19)

Equation (4.19) shows that for every given value of γ we can �x the value of the rule con�dence
threshold minConf in such a way, that the antecedent of any rule will form a contrast pattern
from G2 to G1 with a desirable value of the growth rate threshold P . For example, if we want
the growth rate to be above 1, then the value of minConf should satisfy the inequality given in
the equation (4.20). Also for every value of the con�dence threshold minConf we can choose
the value of P in such a way, that every P -emerging pattern will correspond to the classi�cation
rule with the value of con�dence superior or equal to minConf .

α >
1

1 + γ
(4.20)

In general, the equation (4.19) provides a relation between contrast patterns and classi�ca-
tion rules and shows that mining one type of the pattern is equivalent to mining the other type

82



4.3. Class-speci�c Association Patterns

if the equality in equation (4.19) holds. This explains both the possibility to use classical asso-
ciation rules mining algorithms for mining contrast patterns and the successful implementation
of contrast patterns for solving the tasks of classi�cation [Dong et al. 1999, Ramamohanarao et
al. 2005].

4.3.3 Treatment Learning

Suppose that each of the K classes de�ned on the dataset D is associated with a numeric score
S (Gk), and the value of the latter one represents the degree of importance of the class within the
speci�ed application task. Assume, we want to change the per-class distribution of the elements
in the dataset D in such a way that more elements will belong to important classes (those, having
large values of the score S (Gk)), i.e. to perform `treatment' of the data elements. The authors
of [Hu 2003] propose treatment learning : an approach designed to identify factors that can `treat'
the data elements.

Formally, treatment learning is formulated as the task of the identi�cation of those itemsets,
that result in a large value of the treatment lift given in equation (4.21).

treatment_lift =
worth (DX)

worth (D)
, (4.21)

where DX stands for the projection of the dataset D on the itemset X (the subset of
all elements from D that contain X) and worth (D) =

∑K
k=1 S (Gk) p (Gk) or worth (D) =∑K

k=1 S (Gk) suppD
(
AG = Gk

)
. Analysing the formula given in equation (4.21), we can see that

the value of the treatment lift is superior to 1 if the distribution of elements among the classes
in DX is more favourable towards the classes with highest values of the score S (Gk) then the
same distribution in the original dataset D. And the more favourable the value of distribution is,
the larger is the value of the treatment lift. The corresponding itemset X is referred to as treat-
ment and the subset of elements containing this itemset DX is composed of elements belonging
primary to the desired class (classes).

The main idea of treatment learning relies on the assumption that in the dataset there is a
small number of funnel feature attributes, that is attributes which actually a�ect the per-class
distribution of the elements [Gunnalan et al. 2003, Menzies et al. 2003]. This assumption
also forms the foundation of the proposed treatment learner algorithm TAR [Hu 2003] and its
variations [Gunnalan et al. 2003, Menzies et al. 2003], which in such a way are designed to
identify treatments of a small size. Treatment learning can also be seen as a feature subset
selection method, that seeks for the minimal set of features that favour the distribution of the
data elements towards the desired classes (those classes, that have higher score values) [Gunnalan
et al. 2003]. From the data mining perspective, a treatment learner is a contrast set learner with
weighted classes [Hu 2003].

Treatments can be considered as trigger factors. Indeed, the itemsets resulting after treatment
learning show which values and of which attributes can change the per-class distribution of the
elements of the dataset, that is can potentially stimulate the transition of the elements from one
class to another. However, the basic assumption of treatment learning is that there are a small
number of funnel features, though being true in many cases [Holte 1993], cannot be guaranteed
in all application tasks. Also, we suppose that the funnel feature attributes can be di�erent
for di�erent subgroups of the dataset. This makes them di�cult to be found using treatment
learning techniques.
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4.3.4 Mining Association Rules

The problem of association rules mining was introduced by Agrawal et al. in [Agrawal et al.
1993] as the problem of mining all association rules that satisfy the user-speci�ed minimum sup-
port minSupp and minimum con�dence minConf values. This task is usually divided in 2
steps [Kotsiantis and Kanellopoulos 2006]: 1) constructing all frequent itemsets and 2) forming
con�dent rules of these itemsets.

The �rst task is essentially reduced to checking the frequency property for every possible
itemset in the dataset. However, the search space can be pruned basing on the downward-
closure property: all subsets of the frequent itemset are themselves frequent itemsets [Agrawal
et al. 1993]. It means that every non-frequent itemset cannot be a part of any larger frequent
itemset. The search strategy through the set of items can be done in depth-�rst or width-�rst
manners [Zaki et al. 1997]. The width-�rst strategy forms the basis of the Apriori algorithm
proposed by Agrawal and Srikant [Agrawal et al. 1994]. This algorithm is very popular and
proved its e�ciency in a great variety of applications [Wang et al. 2015, Guo et al. 2014].
Basing on this, we choose the Apriori algorithm for constructing the classi�cation association
patterns in our work.

Let us now have a look on the procedure of constructing frequent itemsets used in the Apriori
algorithm (see Algorithm 4). It is assumed that all items in the dataset D are sorted in the
lexicographical order with the operator '<' de�ning the order of the items. We call an itemset
containing exactly p attributes with corresponding values as a p-itemset and denote by Lp a set
of all p-itemsets. The procedure constructFrequentItemsets starts with the initialisation of L1

with the set of all possible combinations of attributes and their values (see line 2). After that,
all non-frequent itemsets are excluded from L1. Next in the cycle, for every p starting from 1
the set of all frequent (p + 1)-itemsets is constructed. This is done by generating all candidate
(p+1)-itemsets from the set Lp and then �ltering them according to the minSup threshold. This
procedure is repeated until the newly generated set is empty. The set of all frequent itemsets
of di�erent length is returned as the result of the constructFrequentItemsets procedure in the
variable AllFrequentItemsets.

Algorithm 4 Apriori algorithm: constructing frequent itemsets

1: procedure constructFrequentItemsets(D, minSup)
2: L1 = 1-itemsets
3: L1 = chooseFrequent(L1,minSup)
4: p = 1
5: AllFrequentItemsets = L1

6: while Lp 6= ∅ do
7: Lp+1 = genCandidate(Lp)
8: Lp+1 = chooseFrequent(Lp+1,minSup)
9: AllFrequentItemsets = AllFrequentItemsets ∪ Lp+1

10: p = p+ 1
11: end while
12: return AllFrequentItemsets
13: end procedure

Set Lp+1 is constructed through the self-joining of Lp according to the procedure presented
in Algorithm 5. We can see that the new (p + 1)-itemset is constructed through the union of
two p-itemsets that have the same �rst p − 1 items and di�erent items on the position p. The
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constructed (p+ 1)-itemsets are �ltered basing on the criteria of frequency of its p-itemsets (see
line 10): if any of the p-itemsets does not belong to Lp, then using the downward closure property
we can conclude that the new generated itemset cp+1 is not frequent either.

Algorithm 5 Apriori: generate candidates

1: procedure genCandidate(Lp)
2: Lp+1 = ∅
3: for i = 1 : (size(Lp)− 1) do
4: r = Lp[i]
5: for j = i+ 1 : size(Lp) do
6: q = Lp[j]
7: if r.item1 = q.item1& . . .&r.itemp−1 = q.itemp−1&r.itemp < q.itemp then
8: cp+1 = r ∪ q.itemp

9: if all p-subsets of cp+1 are in Lp then
10: Lp+1 = Lp+1 ∪ cp+1

11: end if
12: end if
13: end for
14: end for
15: return Lp+1

16: end procedure

After that, all possible con�dent association rules are constructed by exploiting the set of
generated frequent itemsets. Suppose we have a frequent itemset c and its non-empty subset β.
Then an association rule is constructed according to the equation (4.22). The con�dence of the
rule is calculated using formula (4.11).

(c− β)→ β (4.22)

The Apriori algorithm can be used for the identi�cation of classi�cation rules through post-
processing of the obtained association rules: we choose only those rules, whose consequent is
composed of only one target attribute. However, the computational costs can be reduced if
the search of classi�cation rules is incorporated into the Apriori algorithm. Such an algorithm
(CAR-Apriori) was proposed in [Ma 1998]. This algorithm is based on the introduction of a new
concept: a ruleitem11. A ruleitem is the construction of the form (4.23), containing a condset
which is essentially an itemset, and a speci�ed class label.

< condset, AG = Gk > (4.23)

The support of the ruleitem is de�ned as the ratio of the number of elements containing the
speci�ed condset and belonging to the class Gk to the number of all elements in the dataset.
Each ruleitem of the form (4.23) essentially represents a rule of the form (4.24) with the support
equal to the support of the ruleitem and the con�dence calculated as a fraction of the support
of the ruleitem to the support of the corresponding condset.

condset→ AG = Gk (4.24)

11Ruleitem is one word. This term is introduced like this in the literature.
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The procedure of mining CARs is similar to the Apriori algorithm with the di�erence that
instead of frequent itemsets frequent ruleitems are mined and the constructed rules always have
the form similar to (4.24). Also the classi�cation rules are formed directly from the ruleitems.
Both Apriori and CAR-Apriori result in the same set of classi�cation rules. However, the incor-
poration of class-information that is done in the CAR-Apriori algorithm allows to speed-up the
process.

4.3.5 Redundancy Between Association Rules: Possible Solutions

One of the major shortcomings of the various association rules mining algorithms (and of Apriori
and CAR-Apriori as well) is a large amount of produced rules, which are redundant and that have
to be, afterwards, analysed by experts to identify the interesting and non-obvious ones [Kotsiantis
and Kanellopoulos 2006]. In order to overcome this drawback, a number of approaches have been
proposed. We identify 4 research directions in this area, which are schematically presented in
Figure 4.6.

Figure 4.6: Redundancy of Association Rules: Possible Solutions

The �rst group of methods aim to help the �nal user, or the expert, to �lter the rules by
providing him with tools, for example a visualization tool [Techapichetvanich and Datta 2004].

The second group of methods limits the number of rules mined by the algorithm. This goal
is reached, for example, by cutting the set of provided rules (by presenting to the �nal user only
the top-K most interesting rules [Webb and Zhang 2005]). Di�erent rules evaluation measures,
like lift or conviction [Tew et al. 2014], can also be used as a supplement to [Ordonez et al.
2006] or as a substitute for [Brin et al. 1997] the traditional support and con�dence measures,
to choose the most interesting rules.

The methods of the third group use external information which is incorporated in the mining
process in real time. For instance, the utility-based itemset mining approach [Yao and Hamilton
2006] evaluates the itemsets (which will be further used to form rules) not only through statistical
characteristics like support but also through utility values provided by experts. For example, in
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the case of the market basket data analysis, this lets to discover not only items frequently bought
together, but also those combinations of items, which will increase the pro�t of the supermarket.
The other approach in this group exploits user-provided restrictions on the association rules.
For example, how many items are allowed to be in the consequent/antecedent of the rule, which
attributes are allowed to be in which part of the rule, etc. [Ordonez et al. 2001, Srikant et al.
1997].

Finally, in the fourth group of methods we relate methods, whose mining process has some
speci�c built-in logic, which usually re�ects the domain knowledge or the particularities of the
task being solved. In this group of approaches, we can refer to methods that pose some restrictions
on the structure of the mined patterns. As an example, we can mention supervised descriptive
rule induction techniques that aim to mine contrast patterns. Contrast patterns were initially
proposed to solve speci�c tasks (like searching for the di�erences among di�erent classes of
data or di�erent databases), not with the aim to reduce the number of produced association
rules. However, since only a subset of the produced rules corresponds to the imposed conditions,
supervised descriptive rule induction techniques actually result in a reduced number of output
association rules, those that answer a speci�c question. Thus, the resulting set of rules contains
highly useful information (within the speci�ed task).

4.4 Resume

To our point of view, the four stages of the development of data analysis namely descriptive,
diagnostic, predictive and prescriptive analytics correspond to the tasks of class description, class
comparison, classi�cation and trigger factors identi�cation, which form the four stages of class
analysis task development. These four tasks are related and usually the solution of one task is
at least partially based on the solution of the previous task. The second scienti�c problematic of
this thesis consists in the identi�cation of trigger factors, factors that can stimulate the transition
of elements between classes. We see this task as the fourth stage of the development of the class
analysis task (see Section 4.1). Thereby we consider that the solution of the task of trigger
factors identi�cation can be based on classi�cation approaches. More precisely, we assume that
the solution of this task can be based on the following heuristic:

In order to stimulate the transition of the data elements from one class to another,
we need to change the values of feature attributes from those that are typical for
non-target class (classes) to those that are typical for the target class.

To identify the feature attributes whose values should be changed and what these new val-
ues should be, we need to �nd the patterns that reveal the dependencies between the feature
attributes and the value of the target attribute. This can be done by classi�cation techniques.
Since the trigger factors that will be identi�ed from these patterns should correspond to some
real-life characteristics, we assume that interpretable classi�cation approaches will suit better.
Thereby the �rst part of this chapter is dedicated to the analysis of basic classi�cation approaches
with the aim to choose the one interpretable, which afterwards will be used for the identi�cation
of the class-speci�c patterns.

After considering such classi�cation approaches as probabilistic classi�cation, arti�cial neural
networks, support vector machines and rule-based classi�ers, we chose the latter one as it is the
most intuitively understandable. Next, we proceeded to the discussion of some topics related
to rule-based classi�cation patterns: evaluation measures, variations of the patterns (contrast
patterns and treatment learning) and the way rule-based classi�cation patterns can be mined.
We formally prove that under some conditions contrast patterns are equivalent to classi�cation
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rules (that is every contrast pattern corresponds to a classi�cation rule and vice versa).
Treatment learning, which is essentially a weighted class contrast learner, can be considered

as a method of trigger factors identi�cation. Indeed, it searches for the factors that can change
the per-class distribution of the elements of the dataset, that is those factors, that can potentially
stimulate the transition of the elements between classes. However, treatment learning assumes
that a small number of attribute features actually impacts the value of the target attribute and
searches for only small (in terms of size) treatments. But we consider that di�erent subgroups
of the dataset can have di�erent trigger factors; such trigger factors cannot be identi�ed by
treatment learning.

In the end of the second part of this chapter, we described the Apriori algorithm whose
adaptation (CAR-Apriori) we choose to use for the identi�cation of rule-based classi�cation
patterns. We also brie�y discuss the problem of rules redundancy and our view of its possible
solutions.

The next chapter of this thesis is dedicated to the description of the approach that we propose
to use for the trigger factors identi�cation. This approach is essentially based on the analysis of
the rule-based classi�cation patterns and can be considered as a contrast pattern.
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This chapter is dedicated to the description of a technique which we propose for automatic
identi�cation of trigger factors. As it was mentioned in the previous chapter, this technique is
based on the heuristics that changing the values of the feature attributes to those that are typical
for the target class can stimulate the transition of the data elements between classes.

5.1 Preliminaries

Let us consider the following example. Assume that authorities of a state want to increase the
birth rate and thus are interested in the identi�cation of those factors, that can encourage people
of the state to bear children. It is obvious that material welfare in�uences the ability to have
children. However, there are multiple axes of welfare: income level, availability of vehicles, type
of the house etc. and each of them can have di�erent signi�cance levels in di�erent subgroups
(social, cultural, ethnic etc.). Assume that after the analysis of the census dataset following
association rules were identi�ed:

1. for young families
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• own house → children;

• rented house → no children;

2. for old families

• two cars → children;

• no vehicles → no children.

Analysing these two groups of patterns we can say that for young families the presence of an
own house can trigger the childbirth. However, for old families, the presence of vehicles is more
important. Thereby presence of an own house and presence of two cars are trigger factors for
young and old families respectively.

In the following sections of this chapter, we present the new pattern `sets of contrasting rules',
which formalises the presented above reasoning and which we propose to use for the identi�cation
of trigger factors. We analyse the proposed pattern and formally prove that it de�nes a contrast
pattern. Through the experimental evaluation, we also show that the proposed pattern is actually
capable of identifying reasonable trigger factors.

Note that this chapter presents the `proof of the concept' rather than the complete scienti�c
approach. That is we aim here to show that the proposed pattern can identify meaningful factors
capable of stimulating the transition of data elements between the classes. However, we plan
to continue this work in the future, in particular, we want to work on the specialised mining
algorithm and to perform extended experimental evaluations proving in such a way not only the
concept but the robustness of our approach as well.

5.2 A New Pattern `Set of Contrasting Rules'

5.2.1 De�nitions

The de�nition of the SCR pattern relies on the introduction of two new types of attributes:
varying attributes and invariant attributes. An attribute is considered to be varying if its value
can be changed externally to the system within the speci�ed application task, and invariant oth-
erwise. For example, when analysing census data the attribute income_level can be considered
as varying if, for instance, the government can provide �nancial assistance to the citizens. At
the same time, the value of the parameter ancestry cannot be changed, that is it belongs to the
set of invariant attributes. So, we divide the set of all feature attributes (all attributes except
the target attribute AG, see Section 4.2 for corresponding notations) into two subsets: the set of
varying attributes and the set of invariant attributes.

In this work we provide the de�nitions and proofs for the case when only two classes G1 and
G2 are de�ned on the dataset. Indeed, we are interested in the identi�cation of factors that can
stimulate the transition of data elements from one class to another. It means that we can limit
ourselves to the analysis of only two classes: the class to which we want to transfer the elements
and the class from which the elements should be transferred.

De�nition 5.1. For a speci�ed parameter α (α > 0.5), a pair of rules R1 and R2 is called a
pair of α-contrasting rules if:

1. conf(R1) ≥ α & conf(R2) ≥ α;

2. both rules are classi�cation rules corresponding to di�erent classes; that is with di�erent
values of AG in the pair (in our case G1 and G2);
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Figure 5.1: Example of a Pair of Contrasting Rules

3. the antecedents of the rules are made up of the same attributes, within which there are at
least one varying and one invariant attribute;

4. the values of all invariant attributes are the same for both rules;

5. at least one varying attribute has di�erent values in the pair of rules.

In this de�nition, we call the rule R1 a contrasting pair for the rule R2 and vice versa. Let
us now consider the example of a rule pair R1 and R2, presented in Figure 5.1.

1. both rules are highly con�dent, with the minimum con�dence value minConf = 0.7 (>
0.5);

2. both rules are classi�cation rules with di�erent values of AG in the consequent;

3. the antecedents of the rules are composed of the same attributes, among which one is
invariant (Ainv,1) and three are varying (Avar,1, Avar,2 and Avar,3);

4. the values of the invariant attribute Ainv,1 are the same for both rules (Ainv,1 = ainv,11 ), as

well as the values of one of the varying attributes (Avar,1 = ainv,11 for both R1 and R2);

5. the values of the two other varying attributes are di�erent (avar,210 and avar,37 for rule R1

and avar,25 and avar,33 for rule R2);

Thereby, we can conclude that the pair of rules R1 and R2 form a pattern `pair of α-contrasting
rules' with α = 0.7.

Denote by DR1 the set of elements in D covered by the antecedent of the rule R1, then
∣∣DR1

∣∣
is the number of these elements. By analogy, the number of elements covered by the antecedent
of the rule R2 is

∣∣DR2
∣∣. By DR1,R2 we denote the set of elements of the dataset D covered by

the union of the antecedents of the two contrasting rules R1 and R2. Then equation (5.1) holds.∣∣DR1,R2
∣∣ =

∣∣DR1
∣∣+
∣∣DR2

∣∣ (5.1)

Let DR1,R2
G1

be the set of elements in DR1,R2 belonging to the class G1, and D
R1,R2
G2

- the set

of elements in DR1,R2 belonging to the class G2. Then equation 5.2 holds.∣∣DR1,R2
∣∣ =

∣∣∣DR1,R2
G1

∣∣∣+
∣∣∣DR1,R2

G2

∣∣∣ (5.2)
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5.2.2 Set of Contrasting Rules as a Contrast Pattern: a Proof

Now we aim to show that the pair of contrasting rules R1 and R2 de�nes a contrast pattern
on DR1,R2. As discussed in Section 4.3.2, the contrast patterns are de�ned as those having
a support that changes signi�cantly from one class to another. We will use the GrowthRate
(equation (4.16)) to check if the proposed pattern can be considered as a contrast pattern. We
seek to prove the following statement:

R1 has a signi�cantGrowthRate fromDR1,R2
G2

toDR1,R2
G1

andR2 has a signi�cantGrowthRate

from DR1,R2
G1

to DR1,R2
G2

.

Let us prove the statement formulated above for the rule R1 (the proof for the rule R2 can
be done in a similar way).

As the threshold of minimum con�dence for both rules is set to α and as there are only two
classes de�ned on D, the number of elements covered by the rule R1 in DR1,R2

G1
(
∣∣DR1

G1

∣∣), will
satisfy the inequality

∣∣DR1
G1

∣∣ ≥ α
∣∣DR1

∣∣, and the number of elements covered by the rule R2 in

DR1,R2
G1

will satisfy inequality
∣∣DR2

G1

∣∣ ≤ (1− α)
∣∣DR2

∣∣. The total number of elements in DR1,R2
G1

will be
∣∣∣DR1,R2

G1

∣∣∣ =
∣∣DR1

G1

∣∣+ ∣∣DR2
G1

∣∣. Then the support of the rule R1 on DR1,R2
G1

can be estimated

as shown in the equation (5.3) with γ′ standing for
|DR2|
|DR1| .

supp
DR1,R2
G1

(R1) =

∣∣DR1
G1

∣∣∣∣∣DR1
G1

∣∣∣+
∣∣∣DR2

G1

∣∣∣ =
1

1 +

∣∣∣DR2
G1

∣∣∣∣∣∣DR1
G1

∣∣∣
≥

≥ 1

1 + (1−α)
α
|DR2|
|DR1|

=

[
γ′ ≡

∣∣DR2
∣∣

|DR1|

]
=

1

1 + (1−α)
α γ′

(5.3)

In a similar way, we can estimate the support of the rule R1 on DR1,R2
G2

. Indeed, the number

of elements covered by the rule R1 in DR1,R2
G2

, that is
∣∣DR1

G2

∣∣, will satisfy the inequality
∣∣DR1

G2

∣∣ ≤
(1− α)

∣∣DR1
∣∣ and the number of elements covered by the rule R2 in DR1,R2

G2
will satisfy the

inequality
∣∣DR2

G2

∣∣ ≥ α ∣∣DR2
∣∣. The total number of elements in DR1,R2

G2
will be

∣∣∣DR1,R2
G2

∣∣∣ =
∣∣DR1

G2

∣∣+∣∣DR2
G2

∣∣. The support of the rule R1 on DR1,R2
G2

can be estimated as shown in equation (5.4).

supp
DR1,R2
G2

(R1) =

∣∣DR1
G2

∣∣∣∣∣DR1
G2

∣∣∣+
∣∣∣DR2

G2

∣∣∣ =
1

1 +

∣∣∣DR2
G2

∣∣∣∣∣∣DR1
G2

∣∣∣
≤

≤ 1

1 + α
(1−α)

|DR2|
|DR1|

=

[
γ′ ≡

∣∣DR2
∣∣

|DR1|

]
=

1

1 + α
(1−α)γ

′

(5.4)

Now using (5.3) and (5.4) we can estimate the value of the GrowthRate for the rule R1 from
DR1,R2
G2

to DR1,R2
G1

with the equation (5.5), which after some mathematical transformations can
be rewritten in the form (5.6).
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GrowthRate
(
R1, DR1,R2

G1
, DR1,R2

G2

)
=
supp

DR1,R2
G1

(R1)

supp
DR1,R2
G2

(R1)
≥

≥

[
1

1 + (1−α)
α γ′

]
/

[
1

1 + α
(1−α)γ

′

]
=

=
1 + α

(1−α)γ
′

1 + (1−α)
α γ′

(5.5)

GrowthRate
(
R1, DR1,R2

G1
, DR1,R2

G2

)
= 1 + γ′

2α− 1

1 + 1−α
α γ′

(5.6)

Let us now analyse the value of the second summand in equation (5.6). As γ′ ≥ 0 and α > 0.5,
γ′ 2α−1

1+ 1−α
α
γ′
≥ 0. The second summand is equal to zero only when γ′ = 0, that is

∣∣DR2
∣∣ = 0 or

the number of elements covered by the antecedent of the rule R2 is equal to zero. However in
this case the support of the rule is equal to 0, and thus this rule will not be mined as there are
no instances covered by the rule.

So, we have shown thatGrowthRate
(
R1, DR1,R2

G1
, DR1,R2

G2

)
is always greater than 1 if α > 0.5.

Thereby, we proved that the support of the rules forming the pair of contrasting rules changes
signi�cantly from one subset to another. Thus the proposed pattern can be considered as a
contrast pattern.

Let us consider one generalizing case. Assume that the set of contrasting rules pattern is
formed of 3 following rules:

1. R1 : 〈Ainv,1 = ainv,11 〉&〈Avar,1 = avar,12 〉 → 〈AG = G2〉,

2. R2 : 〈Ainv,1 = ainv,11 〉&〈Avar,1 = avar,13 〉 → 〈AG = G2〉,

3. R3 : 〈Ainv,1 = ainv,11 〉&〈Avar,1 = avar,11 〉 → 〈AG = G1〉.

As we can see, in this case the transition of the elements from the class G2 to the class G1

can be triggered by changing the value of the attribute Avar,1 from avar,11 to avar,12 or from avar,11

to avar,13 . These 3 rules can be rewritten in a form of 2 following disjunctive rules [Nanavati et
al. 2001], which will also form a pair of contrasting rules:

1. R2 : 〈Ainv,1 = ainv,11 〉&〈Avar,1 =
(
avar,12 OR avar,13

)
〉 → 〈AG = G2〉,

2. R1 : 〈Ainv,1 = ainv,11 〉&〈Avar,1 = avar,11 〉 → 〈AG = G1〉.

The proposed pattern and its contrast properties were presented at scienti�c conferences
[Aleksandrova et al. 2016d, Aleksandrova et al. 2016c] and as a paper in a national journal
[Aleksandrova et al. 2014a].

93



Chapter 5. Proposed Solution: A Technique for Automatic Identi�cation of Trigger Factors

5.2.3 Quality of the Pattern `Sets of Contrasting Rules'

Let us now check what will be the values of lift and conviction of the rules R1 and R2. According
to equation (4.13), the value of liftD(R1) can be estimated as given in the equation (5.7) (recall

that γ ≡ |D2|
|D1| , as de�ned in Section 4.3.2):

liftD (R1) =
confD(R1)

suppD (AG = G1)
≥ α

|G1|
|G1|+|G2|

= α (1 + γ) (5.7)

Using formula (4.14) the value of conv(R1) can be estimated by the formula (5.8).

convD (R1) =
1− suppD

(
AG = G1

)
1− confD (R1)

≥
1− |G1|

|G1|+|G2|

1− α
=

γ

1 + γ

1

1− α
(5.8)

It can be shown that for every given value of γ, lift and conviction of the rule R1 will be
superior to 1 if α > 1

(1+γ) . Note, that we obtained the same condition as the one given in

equation (4.20). That is if the antecedents of the rules from the SCR pattern de�ne contrast
patterns not only on the subset DR1,R2, but also on the whole dataset D, then the values of lift
and convictions are guaranteed to be superior to 1, what ensures high quality of the rules and
of the pattern. Moreover, for every given value of γ the minimum con�dence threshold can be
set in such a way, that the listed above characteristics will hold.

5.2.4 Algorithm for Mining Sets of Contrasting Rules

We now focus on the way the introduced contrast pattern can be mined. As it was discussed
in Section 4.3.4 we choose to rely on CAR-Apriori algorithm [Ma 1998]. CAR-Apriori results in
all possible classi�cation rules that can be extracted from the dataset D and satisfy the user-
speci�ed minimum support and minimum con�dence values (note that the value of the con�dence
threshold is chosen to satisfy the 1st condition of the De�nition 5.1).

The pattern that we propose `set of contrasting rules' is made up of classi�cation rules.
However its main particularity consists in the fact that it is made up of several rules and the
comparison of these rules is the main source of useful information in our case. Thereby the rules
resulting after CAR-Apriori should be organised into the `sets of contrasting rules' following the
De�nition 5.1. This can be done as a post-processing step via the pairwise comparison of the rules
(see Algorithm 6). In the proposed algorithm the function isPairOfContrastingRules(R1, R2)
is a boolean function, that returns true if all the conditions of De�nition 5.1 are ful�lled by the
pair R1 and R2, and false otherwise.

5.2.5 Identi�cation of Trigger Factors and Applications

We claimed that the proposed SCR pattern can be used to identify trigger factors, i.e. factors
which can stimulate the transition of elements of the dataset from one class to another. Let us
consider the pair of contrasting rules in Figure 5.1. Analysing these two rules, we can say that
if, for the elements having Ainv,1 = ainv,11 and Avar,1 = avar,11 , we force the attributes Avar,2 and

Avar,3 to change their values from avar,25 and avar,33 to avar,210 and avar,37 respectively, then with a
probability of 70%, these elements will move from the class G2 to G1. The move in the inverse
direction will occur with a probability of 85%.
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Algorithm 6 Form sets of contrasting rules

1: procedure formSetOfCR(L)
2: setOfSets = {}
3: for R ∈ L do
4: contSet = {R}
5: l = L− {R}
6: for r ∈ l do
7: if isPairOfContrastingRules(R, r) then
8: contrSet = contrSet ∪ {r}
9: end if
10: end for
11: if size (contrSet) > 1 then
12: setOfSets = setOfSets ∪ {contrSet}
13: end if
14: L = L− contrSet
15: end for
16: return setOfSets
17: end procedure

Thereby, the varying attributes with di�erent values in the pair of contrasting rules de�ne
the trigger factors: they can stimulate the move of the elements from one class to another. The
invariant attributes and those varying attributes having the same values in the pair of contrasting
rules specify the application subset that is the subset of elements, that can be a�ected by these
trigger factors. In real applications, the proposed pattern can be used to solve a wide range of
tasks depending on the underlying meaning of the attributes. For example, we can make links
between the proposed pattern and such research directions as chance discovery [Ohsawa 2006]
in business and identi�cation of elements of habitus [Bourdieu 1995] in sociology.

The �rst application task, chance discovery, aims to identify multiple scenarios which have
an intersection point and di�erent �nal states. The intersection point (which can be hidden or
unobvious) is called a chance and its utility is measured as the di�erence of the merits of �nal
states [Ohsawa 2006]. Depending on the application task we can consider attributes which de�ne
application subset as a starting point of possible scenarios with �nal states given by the target
attribute. In this case, trigger factors can be viewed as chances (see Figure 5.2).

Habitus, identi�cation of which we view as a second application task, is de�ned as `a system
of acquired dispositions serving as principles, which generate and organize the practices adapted
for achieving certain results but do not require either conscious aiming at these results or special
skills' [Bourdieu 1995]. In other words, habitus is a set of interconnected patterns essential to
a certain social group which is formed as a result of the adaptation of the group members to
the living conditions and in�uences (or de�nes) the behaviour of the group members in di�erent
situations. The proposed pattern can be used for the identi�cation of elements of habitus in the
following way: application subset de�nes a social group; trigger factors correspond to the set of
interconnected patterns that essentially de�nes habitus; �nally the values of the target attribute
corresponds to the behaviour essential for the social group (see Figure 5.2).

We presented and discussed these interconnections at the specialised scienti�c events: the
workshop on chance discovery [Aleksandrova et al. 2016b] and a sociological conference [Chertov
and Aleksandrova 2015].
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Figure 5.2: Links Between the Pattern `Set of Contrasting Rules' and the Tasks of Chance
Discovery and Identi�cation of Elements of Habitus

5.3 Experimental Evaluation

The goal of the experiments conducted here is to show to what extent `set of contrasting rules'
patterns allow to automatically discover trigger factors.

5.3.1 Problem Formulation and Data Pre-processing

To test experimentally the validity of the proposed approach for the trigger factors identi�cation
we set the following experimental task: identify demographic and socio-economic factors that can
increase the birth-rate using demographic data.

We choose to conduct our experiments on a publically available 5-percent sample of the
California census dataset for the year 200012. This dataset contains records of 610,369 fam-
ily households (we choose to ignore subfamilies, as the number of households with subfamilies
corresponds to only 3.6% of the initial sample).

Initially the census dataset contains many attributes (more than 100), most of which are
not related to the posed problem. Indeed, it is obvious that the attribute year_building_built,
that indicates the year when the building of the house was built, probably has no impact on the
families' desire to have a child. It is true that traditional association rule mining algorithms do
automatically discard statistically insigni�cant attributes. However, for the sake of simplicity we
manually �lter out the attributes.

The list of the considered attributes contains the 12 following items. Their possible values,
as well as their types, are given in the Table 5.1.

• home ownership (HouseOwn),

• type of building (HouseType),

• number of vehicles available (V ehicle),

• husband's total income in 1999 (HIncome),

• spouse age (2 attributes: HAge and WAge for husband and wife respectively),

12https://www.census.gov/prod/cen2000/doc/pums.pdf
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Table 5.1: Possible values of the attributes and their type; p =10,000$.

ATTRIBUTE TYPE DOMAIN

HouseOwn varying yes / no

HouseType varying
NoStatHome / Apart /

Att (attached house) / Det (detached house)

V ehicle varying 0 / 1 / 2 / 3 / ≥ 4

HIncome varying
]−∞, 0] / ]0, 1p] / ]1p, 2p] / ]2p, 4p] /

]4p, 6p] / ]6p, 8p] / ]8p, 10p] / ]10p, 20p] /
]20p, 30p] / ]30p, 40p] / [40p,∞[

HAge invariant
young (24-27) / middle-young (28-29) /

middle (30-31) / middle-old (32-34) / old (35-38)

WAge invariant
young (22-25) / middle-young (26-27) /

middle (28-30) / middle-old (31-32) / old (33-37)

(H/W )Edu invariant
noSchool / school / noCollege / college
associate / bachelor / master / doctor

(H/W )Anc invariant

WestEurope / EastEurope / Mexico / Latino /
CentralAmericaIslands / NorthAfricaAndSouthAsia /

otherAfrica / otherAsia / Australia / Pasi�c
Afro-American / OtherAmerica / NonDef

(H/W )WorkClass invariant NoWork / PrivWork / GovWork / SelfEmployed

Child target YES / NO

• spouse education (2 attributes: HEdu and WEdu for husband and wife respectively),

• spouse ancestry (2 attributes: HAnc and WAnc for husband and wife respectively),

• spouse class of worker (2 attributes: HWorkClass and WWorkClass for husband and
wife respectively).

In order to �nd an answer to the question that formulates our experimental goal, we form
two classes G1 and G2 from the dataset. The �rst class G1 is made up of families (elements)
with one or two children aged from 0 to 2 years. The second class G2 contains families without
any children. These restrictions on the children age are imposed in order to track the change
in family state from a childless family to a family with a small child (or children). We do not
consider families with elder children, as it is di�cult to identify which factors triggered the child
appearance some years back. Thereby, we add to the dataset the target attribute Child (AG),
indicating the presence or not of small children in the family, with domain (Child) = {Y ES,NO}
(see last line of the Table 5.1). The dataset is thus made up of 13 attributes.

To increase the reliability of the obtained results, we choose to impose some additional
restrictions:

• all the families must be complete: the presence of both spouses is mandatory;

• both husband and wife must be without disabilities;

• spouse age must be within the most favourable period for having babies.
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Table 5.2: Mining SCR pattern on di�erent sub-datasets

subD γ
G1 : minLift, G1 : minConv, minSupp # of rules

# SCR η,%
see eq. (5.7) see eq. (5.8) % tot G1,%

Dy,y 1.38 1.67 1.93 0.3 18,487 27 52 0.3
Dy,yM 1.78 1.94 2.13 0.6 10,064 12 24 0.2
DyM,yM 1.86 2.0 2.17 0.8 8,041 8 23 0.3
DyM,m 1.70 1.89 2.1 0.4 10,362 5 49 0.5
Dm,m 1.56 1.79 2.03 0.4 9,310 7 64 0.7
DoM,m 1.38 1.67 1.93 0.4 6,435 15 67 1.0
DoM,oM 1.33 1.63 1.9 0.5 5,650 17 74 1.3
DoM,o 1.22 1.56 1.83 0.4 5,863 25 88 1.5
Do,o 1.50 1.75 2.0 0.2 13,629 11 118 0.9

These conditions are quite relevant and obvious. For instance, it is clear that illness of the
potential parents a�ects signi�cantly their willingness and ability to have children. The bounds
of the most favourable age for giving birth to babies (24 to 38 for men and 22 to 37 for women)
as well as 5 age intervals for both husband and wife given in the Table 5.1 are taken from our
previous works related to this dataset [Chertov and Aleksandrova 2013]. Considering all the
imposed above restrictions, the size of the dataset is reduced. The number of elements with
Child = Y ES and Child = NO in the resulting dataset equals to 8,299 and 12,249 elements
respectively, which gives γ = |G2|

|G1| = 1.48.

If we divide the original dataset into sub-datasets according to the age of husband and wife,
we get 25 sub-datasets. For example, we form the sub-dataset Dy,m that corresponds to the
families with a young husband (�rst position in the subscript of Dy,m) and middle-aged wives
(second position in the subscript of Dy,m). In order to identify di�erent patterns speci�c to a
certain age, we conducted our analysis on these 25 sub-datasets separately. We present here
the results for 9 of them, that contain the largest number of elements, namely for the following
sub-datasets: Dy,y, Dy,My, DMy,My, DMy,m, Dm,m, DMo,m, DMo,Mo, DMo,o, Do,o.

5.3.2 Mining and Analysing Sets of Contrasting Rules

We use the CAR-Apriori algorithm [Ma 1998] to mine classi�cation rules in the sub-datasets
of D, with a minimum con�dence threshold equal to 0.7. As the sizes of these sub-datasets
are di�erent, we use di�erent values of the minimum support threshold for each sub-dataset.
Table 5.2 presents the general information about the chosen 9 sub-datasets.

The second column for each sub-dataset represents the ratio γ of the number of elements
in the second class (number of elements, for which Child = NO) to the number of elements in
the �rst class (number of elements, for which Child = Y ES). We can see that the number of
elements in the second class is at least 1.2 times larger than the number of elements in the �rst
class. However, the mean value of γ is 1.5, what support the same tendency in the whole dataset.
Given the value of γ and the minimum con�dence threshold minConf = 0.7 we can estimate
the minimum values of lift and conviction for the rules describing the class G1 using formulae
(5.7) and (5.8) (see the third and the fourth columns). Note that both lift and conviction are
always superior to 1, what proves the quality of the rules. We restrict ourselves to estimation the
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lift and conviction only for rules describing G1. Indeed, our goal is to transfer the data elements
from G2 to G1. That is we are interested in trigger factors that will be identi�ed from the rules
describing the �rst class.

The �fth column of the table indicates the minimum support value used for each sub-dataset.
We can see that the minimum support is quite low (between 0.8% and 0.2%). However, as it was
mentioned in [Dong and Li 1999], contrast patterns with a large support are usually well-known,
that is why it is interesting to search for contrast patterns with a small support (e.g. 5% or even
0.1%): the unexpected ones.

The sixth column presents the total number of classi�cation rules found using the CAR-
Apriori algorithm; the seventh column reveals the percentage of those classi�cation rules that
have the target attribute Child = Y ES in the consequent. We can see that the percentage of
such rules for the class G1 is quite small. Each rule mined by the algorithm CAR-Apriori is
considered to be a pattern. The eight column presents the number of SCR patterns found in
every sub-dataset. The last column indicates the η coe�cient, that is the ratio of the number of
sets of contrasting rules to the general number of classi�cation rules.

We can conclude that, when mining `sets of contrasting rules' patterns, the number of patterns
to analyse is dramatically reduced. For example, for the �rst sub-dataset, only 52 SCR patterns
have to be analysed, instead of 18,487 patterns (each one represented by one association rule).
Each of these 52 patterns is made up of more than 1 classi�cation rule. Every rule directly
indicates trigger factors, as well as the subgroups of elements of the dataset for which these
factors can be applied. Thus, in this sub-dataset, the number of patterns to analyse corresponds
to only 0.3% of the number of original patterns (classi�cation rules).

However, the total number of obtained SCR patterns for all sub-datasets is more than 500.
It can be still di�cult for a human to analyse all of them. Thereby, multiple ordering strategies
can be used to facilitate the analysis process, for example, analysing rules with high support
values at �rst.

Now we proceed to show what kind of information can be obtained with the help of the
proposed patterns. As an example, in Table 5.3 we present sets of contrasting rules for 5 di�erent
sub-datasets Dy,y, DyM,yM , Dm,m, DoM,oM and Do,o, that correspond to the sub-datasets where
both husband and wife belong to the same age group. The antecedents of the rules in the patterns
are represented in the second and third columns of the table. As stated in De�nition 5.1, the
antecedents of the pair of contrasting rules have a common part that speci�es the subgroup of
the elements. This common part is presented in the second column with invariant attributes
given in bold. The antecedents have another part that di�ers in the values of varying attributes
(this part represents the trigger factors). It is presented in the third column of the table. The
fourth column indicates the value of the consequent (the attribute Child) of each rule in our
patterns, and the �fth and the sixth columns reveal the con�dence and the support values of the
corresponding rules. As discussed before, the support of the rules is quite low, usually < 2%.
Thereby, following [Dong and Li 1999] we can expect that the proposed pattern reveals unforeseen
knowledge.
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5.4. Conclusion

When analysing the sets of contrasting rules given in Table 5.3, we can note that it can
correspond to very precise recommendations for speci�c subgroups of elements in the dataset.
For example, let us look at the �rst pattern obtained for the sub-dataset Dy,y. It indicates that
if we provide young families (HAge =]24, 27] and WAge =]22, 25]) in which the wife's education
level is WEdu = school and husband's income is in the range ]10000, 20000] with a vehicle, then
with a high probability (70%) they will decide to have a baby. However, in another subgroup
of the same sub-dataset, which is composed of families where the wife has started the college
but did not �nish education there (WEdu = noCollege) and that do not have their own house
(HouseOwn = no), it is not the number of vehicles that can trigger a childbirth, but rather the
combination of the type of the house (it should be changed from 'apartment' to 'detached house')
and the increase of the income level. Also, we can see that subgroups and trigger factors (or
combinations of attributes that form the trigger factors) are di�erent for di�erent sub-datasets.
This proves the ability of the proposed pattern to extract valuable knowledge from the dataset.

5.4 Conclusion

In this chapter, we introduced a new pattern `set of contrasting rules' which we propose to use
for the automatic identi�cation of trigger factors. This pattern relies on the introduction of
the notions of invariant and varying attributes. It also has the characteristic of being made
up of several rules, at the opposite of the majority state-of-the-art patterns, made up of only
one itemset, or one rule. The proposed pattern allows to automatically discover not only the
trigger factors but also application subsets of the original dataset for which these factors can be
applicable.

We showed that the SCR pattern belongs to the framework of supervised descriptive rule
induction and the antecedent of every rule of the set of contrasting rules form a contrast pattern
on a sub-dataset de�ned by the rules forming the pattern. Thereby it can be considered as
a possible solution to the problem of the rules redundancy because this pattern, as
all other patterns of the supervised descriptive rule induction framework, aims to discover only
highly informative knowledge within a speci�ed task. We also mathematically prove that if
each rule of the pattern forms a contrast pattern on the entire dataset as well, then
the values of the lift and conviction of the rules are guaranteed to be superior to 1.
This ensures high quality of the rules and reduces the in�uence of spurious associations.

We perform the construction of the pattern via the pairwise comparison of all discovered
classi�cation rules and �ltering out those, that have no contrasting pairs. It may seem that in
such a way we can loose some valuable rules. However, only one classi�cation rule does not show
which exactly feature attributes can be considered as trigger factors and to what subset of the
dataset they can be applied. Thereby, as our goal is to propose an approach for the automatic
identi�cation of trigger factors, single rules are not of interest for us and thus can be �ltered out.

Depending on the underlying meaning of the attributes, the proposed pattern can be used to
solve a wide variety of application tasks. The possibility to use SCR pattern for chance discovery
in business and identi�cation of elements of habitus in sociology was discussed on the specialised
scienti�c events [Aleksandrova et al. 2016b, Chertov and Aleksandrova 2015].

We showed on a real dataset of census data, that trigger factors can be actually identi�ed,
and that they can be easily interpreted and used to reach the desired objective. We also show
how the number of patterns to analyse is reduced when the SCR pattern is used.

As it was discussed in the Section 4.4, to the best of our knowledge treatment learning
is the only counterpart of our method that also allows to discover factors that can stimulate
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the transition of elements from one class to another (trigger factors). However, this approach
is completely based on the assumption that in the dataset there is a small number of funnel
attributes that actually a�ect the value of the target attribute. Thus, contrary to our pattern
treatment learning does not solve the posed task completely, as it is impossible to discover trigger
factors speci�c for di�erent subgroups of the dataset.
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6.1 General Motivation

One of the main features of the information society in which we live today: constantly growing
amount and dimensionality of data and the importance of information that can be extracted of
it. The high dimensionality of this data can reduce the quality of the data processing methods
performance. This fact increases the importance of dimensionality reduction techniques.

Dimensionality reduction techniques can be characterised in terms of two axes: according
to their aim as dimensionality reduction for optimal data representation and dimensionality
reduction for classi�cation, and according to the adopted strategy as feature selection and feature
extraction techniques.

Feature extraction techniques, though having usually higher descriptive and discriminative
power, have one essential drawback: the lack of interpretation of the constructed feature space.
This leads to �rst scienti�c problematic posed in this thesis:

SP1: how to extract interpretable latent features?

Dimensionality reduction for optimal data representation and dimensionality reduction for
classi�cation can be also viewed as non-supervised and supervised approaches. In the latter case
the dimensionality reduction algorithms manage external information about the class belonging

105



Chapter 6. Conclusions and perspectives

of each datapoint, which can be used to estimate the importance of each feature, as opposite to
the former case. As it was discussed in Chapter 4 we see the task of trigger factors identi�cation
as a direct descendant of the classi�cation task in terms of four stages of the class analysis task
development. As trigger factors we understand those factors that can stimulate the transition
of data elements from one class to another (see Section 4.1). To the best of our knowledge, no
approaches were proposed in the literature for automatic identi�cation of trigger factors in the
general case, thereby the second scienti�c problematic arises:

SP2: how to identify automatically factors that can cause the movement of ele-
ments from one class of the dataset to another (trigger factors)?

We choose to work on both scienti�c problematics in the scope of the recommender systems
application domain because of two reasons. First, recommender systems aim to help users to
overcome the information overload problem, which is important considering the vast amount of
information available in modern society. Second, it faces both SP1 and SP2 formulated above
(see Chapter 1). Indeed, a very popular in recommender systems matrix factorization technique
is essentially a feature extraction method, which extracts latent features without interpretation
and thus provides no means to explain the obtained recommendations. Thereby, we formulate
the �rst application problematic as follows:

AP1: propose an automatic interpretation of latent features within the matrix
factorization-based recommending models and explore if the resulting interpretation
can be used to improve the recommender system performance.

After the analysis of the evolution of recommender systems we foresee the requirement for
the trigger factors identi�cation techniques in the upcoming generations of RS. We formulate the
second application problematic as follows:

AP2: propose a technique that can automatically identify trigger factors and
generate based on them recommendations to achieve the desired objective.

This thesis aims to solve the questions formulated in scienti�c and application problematics
given above. This �nal chapter is dedicated to the analysis of the obtained results and discussion
of possible future extensions of our work.

6.2 First Application Problematic: Automatic Interpretation of

Matrix Factorization Recommendation Model

6.2.1 Summary of Obtained Results

The �rst application problematic consists in proposing an interpretation of matrix factorization-
based recommender models. The analysis of the related literature (see Section 2.3.3) showed
that the existing approaches either incorporate interpretation from other interpretable models,
or change the structure of the basic matrix factorization model, or require human analysis. We
propose to associate features of matrix factorization with real users from the system (represen-
tative users). We decide to choose those users, whose vectors in the matrix W are the closest
to the canonical form. This interpretation, contrary to the state-of-the-art approaches, has the
originality of being done completely automatically for the existing matrix factorization model
and does not require any external information.
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In order to show the validity of the proposed interpretation, we decided to test the ability of
the chosen representative users to correctly represent interests of other users via the cold-start
problem. Indeed, as features are considered to represent the relations between users and items,
that is preferences of users on items, the feature-associated users should also be able to represent
the same relation. Thereby, we proposed an approach for matrix factorization models within
which the ratings of a prede�ned set of users on new items are used to estimate the ratings of
other users on these new items.

The experimental evaluation on two real-world datasets showed that the set of chosen repre-
sentative users tend to be composed of users with di�erent behavioural patterns and their ratings
can be successfully used to solve the new item cold-start problem. These statements show the
validity of the proposed interpretation. Also, our approach outperforms in terms of ranking the
benchmark RBMF model. It is also worth to note that the proposed cold-start problem solution
does not use any content information, what makes it even more valuable in the cases when this
type of information is not available.

6.2.2 Future work

Short-Term Perspectives

Following the state-of-the-art approaches, in our work we chose to rely on non-negative factor-
ization model and use multiplicative update rules as an optimisation technique. Performing the
interpretation we do not rely, however, on the non-negativity of the factor matrices. Thereby, we
assume that the same interpretation can be made when other optimisation techniques are used,
such as alternating least squares or stochastic gradient descend. This will allow to bene�t from
the proposed interpretation and the advantages of the alternative optimisation techniques. In-
deed, ALS, for example, allows parallel implementation what makes it being more e�cient when
working with high-dimensional rating matrices. However, the validity of this interpretation, as
well as the performance for the cold-start problem, have to be evaluated experimentally.

Furthermore, we suggest that the features could be associated with items (representative
items) in the way it was done for user-based interpretation or with both items and users simul-
taneously. Although the association of features with items can be done in a straightforward way
(analysing the columns of the matrix V instead of the columns of the matrix W ), the second
proposed association is not that evident. Indeed, in the latter case the values of both factor ma-
trices are used to represent the association between features and representative elements (users
and items), however, it is not clear how these association should be re�ected. They can be
represented as more complex structures than canonical vectors. One possible solution can be
based on the usage of Matrix Tri-Factorization. This model presents the original rating matrix as
the multiplication of three matrices, which represent the relation between users and user-related
features, user-related features and item-related features, and �nally item-related features and
items. Thereby, analysing the �rst and the third matrix it is possible to de�ne representative
users and items. The second matrix, in this case, reveals the relation between these two groups
or representative elements. However, to our opinion, the underlying relation between users and
items do not depend on factorization model but are the underlying characteristic of every rating
matrix. Thereby, such an interpretation should be possible in the case of only two factor matrices
as well.
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Mid-Term Perspectives

Our approach performs an association of latent features with real users from the system for the
statical (in terms of time) case. However, the set of representative users may change over time.
Indeed, from the mathematical point of view the original rating matrix and the one with new
ratings are di�erent, thereby the set of representative users is not guaranteed to be the same.
In the future, we would like to work on the approach to identify the stable set of representative
users with the course of time. We suggest that in this case the representative users should be
chosen as those that can be associated with features in di�erent time points. It can be possible to
rely on the simultaneous factorization of rating matrices corresponding to di�erent time stamps
(as it is done in Collective Matrix Factorization). As compared to `static' representative users,
the `time-stable' representative users can be used not only to predict the ratings on new items
in short term, but also to follow the global change of interests of users in long term, or even as
those users, who can in�uence the preferences of others.

6.3 Second Application Problematic: Automatic Identi�cation of

Trigger Factors

6.3.1 Summary of Obtained Results

In the Chapter 5 we presented our approach for the automatic identi�cation of trigger factors.
The proposed solution utilises classi�cation technique, more precisely, rule-base classi�cation.

The only known to us state-of-the-art approach for the automatic identi�cation of trigger fac-
tors treatment learning is based on the assumption that a small number of attributes determines
the per-class distribution of the datapoints. However, this may not always be the case. Also, we
suppose that trigger factors can be di�erent between subsets of the original dataset. Thereby,
we proposed a new pattern `set of contrasting rules'. This pattern is based on the introduction
of notions of varying and invariant attributes which are used to identify trigger factors and
application subsets respectively. Via experiments on a real census dataset, we showed that the
identi�ed trigger factors are reasonable and have the potential to a�ect the per-class distribution
of the datapoints.

One of the originality of the proposed pattern is that contrary to state-of-the-art patterns
it consists of several classi�cation rules. It was shown that under some conditions the rules
forming the pattern are guaranteed to be of high quality, i.e. lift and conviction are guaranteed
to be superior to 1 (see Section 5.2.3). We also formally proved that the proposed pattern is
essentially a contrast pattern and belongs to supervised descriptive rules induction paradigm
(Section 5.2.2). Thereby, the SCR pattern can be considered as a partial solution to the problem
of rules redundancy, as it selects only highly informative within a certain application task rules.
This statement was also supported experimentally.

Depending on the meaning of the underlying attributes, the SCR pattern can be also used to
solve diverse application tasks, such as chance discovery or identi�cation of elements of habitus
(see Section 5.2.5). In this case, application subsets and trigger factors correspond respectively
to starting points and chances (chance discovery), and social groups and behavioural patterns
(identi�cation of elements of habitus). These interconnections of the proposed pattern with other
theories we discussed on the specialised scienti�c events.
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6.3.2 Future Work

Short-Term Perspectives

The work summarized previously is essentially a proof of concept, as we only analysed the
qualities of the proposed pattern and showed experimentally that it can be used to identify the
required trigger factors. However, the robustness of the proposed approach has to be further
investigated. We do not consider this work as �nished, thereby we aim to continue it in di�erent
directions.

In this thesis we gave the conditions under which the lift and conviction of the rules of the
proposed patterns are guaranteed to be superior to 1. However, there are other quality metrics
(for example, leverage and improvement [Geng and Hamilton 2006, Bhargava and Shukla 2016]).
Furthermore, we provided all mathematical formulations and proofs for our pattern for the case
of only two classes. Thereby, we aim to analyse mathematically the values of other evaluation
metrics and extend given proofs for the case of more than two classes. This work requires
additional theoretical investigations but the results that we aim to achieve will allow having
the theoretical justi�cation for more practical cases (for example, when more than 2 classes are
de�ned on the dataset).

Also, we would like to test if it is possible to extract meaningful trigger factors from other
datasets. For example, in the case of e-learning dataset it can be interesting to identify factors
that can help the student to �nish the started on-line course (to identify trigger factors that
can transfer a student from the class of backwards students to the class of successful students).
The nature of this dataset is di�erent from the census dataset (the case considered in this
thesis). Indeed, for solving the posed task it is useful to analyse the sequence of student activities
(sequential data). Also, contrary to the census dataset, the values of some feature attributes can
be missing due to the fact that the given student may not participate in all activities (data with
missing values). Thereby, the proposed approach should be generalised for such cases. We also
aim to design and perform additional experiments that will not only show the ability of the
proposed pattern to identify trigger factors but will also prove the robustness of the proposed
approach.

Mid-Term Perspectives

We proposed to mine the SCR pattern as a post-processing step for the CAR-Apriori algorithm.
As our pattern consists of several contrasting rules, we never know if there will be a contrasting
pair for a particular classi�cation rule. Thereby, we cannot start forming SCR patterns until
all classi�cation rules are mined. However, we suppose that using depth-�rst search strategy we
can simultaneously search for a rule and its contrasting pair. Hence, we would like to work over
the specialised mining algorithm in the mid-term. In this algorithm, we want to associate each
feature attribute with some numerical score. This score will represent the `price' of changing
the value of the attribute. This will allow to automatically process the invariant and varying
attributes in a less rigid manner. Indeed, it can be more expensive to change the values of some
varying attributes as compared to others. Hence, depending on the other feature attributes
present in the rules, these attributes should be considered as invariant or varying. We would
also like to adjust the proposed algorithm for the case when one target attribute can correspond
to multiple classes in the original dataset. This will add additional �exibility to our approach
and make it less dependent on the formalisation of the application domain. Finally, we aim to
design a specialised metric for evaluation of the quality of the proposed pattern in our algorithm.
This metric should measure the quality of each rule forming the pattern and the possibility of
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the interclass transfer of the datapoints covered by the pattern.

6.4 Possible Contributions to Scienti�c Problematics and Long-

Term Perspectives

Let us now have a look on the way the proposed solutions of the application problematics AP1
and AP2 can contribute to scienti�c problematics SP1 and SP2.

Let us start with AP1. Consider the case when the matrix to factorize represents the relation
between datapoints and features. When solving the �rst application problem formulated in AP1
we propose to associate each latent feature with one of the real features (that will be referred to as
representative feature) under the condition that the chosen representative feature approximates
in the best possible way the corresponding latent feature. Thereby, we transform in such a way a
feature extraction method into a feature selection method. We believe that such a transformation
can be useful in other domains as well (not only in recommender systems), however, we suppose
that the possibility of such an association depends on the application task. Indeed, in real life,
there is usually a limited number of behavioural patterns. That is why, in our opinion, we
succeeded to �nd a limited number of users which can be considered as representatives of the
basic behavioural patterns. The other users, afterwards, can be represented as combinations of
the basic behavioural patterns, that is as a combination of behavioural patterns of the chosen
representative users. However, such associations may not be always possible. For example, if
the matrix factorization approach is used to factorize the word-document matrix in text mining
(as it is done in [Pauca et al. 2004]) it may be impossible to �nd a subset of words that can
represent all other words.

The proposed approach for trigger factors identi�cation is, in fact, a feature selection method
as well. However, its aim is neither data representation nor classi�cation but the transferring of
the datapoints between classes. The latter task, from our point of view, is the direct descendant
of the classi�cation task from the perspective of four stages of the data analysis development.
We also suggest that this task will be topical in the nearest future. According to the formulation
of the second scienti�c problematic, we can say that the required technique for trigger factors
identi�cation was proposed, however, it can be further improved.

Nevertheless, we did not perform substantiation studies of the SP1 and SP2. Thereby, the
possible contributions announced before should be further studies on both theoretical and ex-
perimental levels, what we see as the a long-term perspective for our work.

In general, the work presented in this thesis consists in the modelling of user preferences.
More precisely, we aim to identify some basic elements of the system that are essential either for
prediction of the users' behaviour (representative elements) or for stimulation of their behaviour
development in the desired direction (trigger factors). However, the both proposed solutions use
information about many users of the system. As it was mentioned in the �rst chapter of the
thesis, the recommender systems of the next generation are considered to have the form of ultra-
intelligent personal electronic agents. These agents will be able to take decisions in collaboration
with the user and thus can accompany him for many years. Thereby, there will be a need to
identify these basic elements of the system (essential for prediction and stimulation) for the case
of only one user, that is for the case of ultra-personalised systems. We suggest that performing
the study of our contributions to scienti�c problematics can help to solve this task in the frame
of recommender systems.
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Also, the proposed solutions perform the modelling on the basis of patterns typical for the
majority of the users. Thereby, these patterns can not be used in the case of non-typical users,
those users who do not match typical patterns. However, we suppose that the proposed approach
can be used for the identi�cation of such non-typical users. Indeed, we identify not only typical
patterns but also the level of their association with users. Thereby, those users that have no
considerably strong association with any of the identi�ed typical patterns can not be described
by these patterns and are, consequently, non-typical. We suggest that non-typical users can
be modelled based on the following hypothesis: non-typical users can be described by di�erent
typical patterns on di�erent parts of the dataset, for example, for di�erent subset of items or for
di�erent time periods. This hypothesis raises new challenges: 1) how to identify the boundaries
of those parts of the dataset on which non-typical users can be modelled using typical patterns
and 2) which typical pattern or their combinations should be used on each de�ned part of
the dataset. We suggest that the proposed in the future solutions can be inspired by recent
achievements in certain scienti�c �elds. For example, techniques from functional analysis and
signal processing allow identifying the points of fundamental changes in the input information
signal, which can correspond to the boundaries of those parts of the dataset where non-typical
users can be modelled as typical. At the same time, the fuzzy logic techniques can be used to
identify and express the `partial matching' between non-typical users and typical patterns.
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Résumé

Dans de nombreux domaines, les données peuvent être de grande dimension. Ça pose le problème
de la réduction de dimension. Les techniques de réduction de dimension peuvent être classées
en fonction de leur but : techniques pour la représentation optimale et techniques pour la clas-
si�cation, ainsi qu'en fonction de leur stratégie : la sélection et l'extraction des caractéristiques.
L'ensemble des caractéristiques résultant des méthodes d'extraction est non interprétable. Ainsi,
la première problématique scienti�que de la thèse est comment extraire des caractéristiques
latentes interprétables? La réduction de dimension pour la classi�cation vise à améliorer la
puissance de classi�cation du sous-ensemble sélectionné. Nous voyons le développement de la
tâche de classi�cation comme la tâche d'identi�cation des facteurs déclencheurs, c'est-à-dire des
facteurs qui peuvent in�uencer le transfert d'éléments de données d'une classe à l'autre. La deux-
ième problématique scienti�que de cette thèse est comment identi�er automatiquement ces
facteurs déclencheurs? Nous visons à résoudre les deux problématiques scienti�ques dans le
domaine d'application des systèmes de recommandation. Nous proposons d'interpréter les carac-
téristiques latentes de systèmes de recommandation basés sur la factorisation de matrices comme
des utilisateurs réels. Nous concevons un algorithme d'identi�cation automatique des facteurs
déclencheurs basé sur les concepts d'analyse par contraste. Au travers d'expérimentations, nous
montrons que les motifs dé�nis peuvent être considérés comme des facteurs déclencheurs.

Mots-clés: fouille de données, factorisation de matrices, systeme de recommandation.

Abstract

In many application areas, data elements can be high-dimensional. This raises the problem
of dimensionality reduction. The dimensionality reduction techniques can be classi�ed based on
their aim: dimensionality reduction for optimal data representation and dimensionality reduction
for classi�cation, as well as based on the adopted strategy: feature selection and feature extrac-
tion. The set of features resulting from feature extraction methods is usually uninterpretable.
Thereby, the �rst scienti�c problematic of the thesis is how to extract interpretable latent fea-
tures? The dimensionality reduction for classi�cation aims to enhance the classi�cation power of
the selected subset of features. We see the development of the task of classi�cation as the task of
trigger factors identi�cation that is identi�cation of those factors that can in�uence the transfer
of data elements from one class to another. The second scienti�c problematic of this thesis is how
to automatically identify these trigger factors? We aim at solving both scienti�c problematics
within the recommender systems application domain. We propose to interpret latent features for
the matrix factorization-based recommender systems as real users. We design an algorithm for
automatic identi�cation of trigger factors based on the concepts of contrast analysis. Through
experimental results, we show that the de�ned patterns indeed can be considered as trigger
factors.

Keywords: data mining, matrix factorization, recommender systems.
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