
HAL Id: tel-01585541
https://theses.hal.science/tel-01585541v1

Submitted on 11 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of the composition models of field functions in
computer graphics

Florian Canezin

To cite this version:
Florian Canezin. Study of the composition models of field functions in computer graphics. Modeling
and Simulation. Université Paul Sabatier - Toulouse III, 2016. English. �NNT : 2016TOU30175�.
�tel-01585541�

https://theses.hal.science/tel-01585541v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 08/09/2016 par :

Florian CANEZIN

Study of the Composition Models of Field Functions in
Computer Graphics

JURY

Löıc BARTHE Professeur de l’Université Toulouse 3 Paul Sabatier Directeur de thèse

Gaël GUENNEBAUD Chargé de Recherche à INRIA Bordeaux–Sud-Ouest Co-encadrant

Jean-Michel DISCHLER Professeur de l’Université de Strasbourg Examinateur

Mathias PAULIN Professeur de l’Université Toulouse 3 Paul Sabatier Examinateur

Stefanie HAHMANN Professeur de l’Université Grenoble INP Rapporteur

Éric GALIN Professeur de l’Université Lumière Lyon 2 Rapporteur

École doctorale et spécialité :

MITT

Unité de Recherche :

Intitut de Recherche en Informatique de Toulouse

Directeurs de Thèse :

Löıc BARTHE et Gaël GUENNEBAUD

Rapporteurs :

Éric GALIN et Stefanie HAHMANN

Remerciements

Je remercie en premier lieu mon directeur de thèse Löıc Barthe pour sa confiance pour mener
ce projet, de m’avoir encadré durant ces 3 ans et demi et pour son soutien durant les quelques
coups de mou que j’ai pu avoir durant ma thèse. Je remercie également Gaël Guennebaud
pour sa participation dans mon encadrement, notamment pour mon séjour sur Bordeaux
qui fut des plus plaisant (autant professionellement que personnellement). J’en profite aussi
pour les remercier, conjointement à mes rapporteurs Stefanie Hahmann et Éric Galin ainsi
que mes examinateurs Jean-Michel Dischler et Mathias Paulin, pour le temps passé sur la
(re)lecture de mon manuscrit.

Un grand merci bien sûr aux autres membres des équipes VORTEX de Toulouse et
MANAO de Bordeaux avec qui j’ai pu passer d’agréables moments entre discussions sérieuses
sur nos projets, séminaires d’équipes et autres divagations : Mathias, David, Xavier, Pierre,
Pascal, Romain, Patrick. Merci aux enseignants de l’UPS, Löıc, Mathias, David, Véronique
et Christine, et de l’IOGS, Xavier et Ivo, pour m’avoir donné la chance d’enseigner dans
différentes matières et aux étudiants pour leur patience durant ces heures de TP. Merci à An-
thony, Dorian, Andra et Rodolphe, anciens doctorants VORTEX pour m’avoir chaleureuse-
ment accueilli durant mon stage de Master et m’avoir aidé à me mettre dans le bain de la
thèse. Merci aussi à Thomas, Charly, Even, Valentin, Anahid, Céline, Maurizio et Baptiste
pour la bonne ambiance dans la salle Voxar de l’IRIT. Je n’oublie pas non plus de remercier
les doctorants de MANAO : Boris, Brett, Carlos, John, Lois et Thibaud, pour leur accueil et
les moments d’évasion au babyfoot ou derrière un verre avec d’autres doctorants de l’INRIA.
J’en profite encore pour tous les remercier d’avoir supporté mes coups de colère, contre l’ordi
mais surtout contre moi-même, lorsque tout ne se passait pas comme prévu.

Enfin, merci à ma famille et à mes amis pour leur soutien et leurs encouragements. Un
merci tout spécial à Florine Dubreuil, ma compagne depuis 2 ans et demi et grâce à qui j’ai
pu me détendre et me relaxer en dehors du labo, et à qui je dédie ce manuscrit.

Contents

Introduction 7

1 Background on Implicit Surfaces 13

1.1 Definitions . 13
1.2 Algebraic Surfaces . 16
1.3 Skeleton-based Implicit Surfaces . 16
1.4 Convolution-based Implicit Surfaces . 18
1.5 Point Set Implicit Surfaces . 20

2 Composition Models 23

2.1 Definitions . 23
2.1.1 Operator Representation . 25
2.1.2 Composition Trees . 27

2.2 Composition Operators: A State of the Art 28
2.2.1 Blending . 28
2.2.2 Blending Issues . 28
2.2.3 Anisotropic Blending . 30
2.2.4 Graph-based Blending . 32
2.2.5 Localized Blending . 34

2.3 Free-Form Composition . 38
2.4 Contact . 40
2.5 Conclusion . 41

3 Geometric Modelling using Field Functions 43

3.1 Field Function Representation . 45
3.2 Composition Operators . 46
3.3 Operators for Details . 54
3.4 Results . 57
3.5 Conclusion . 60

6 Contents

4 Handling topology issues in particle-based Fluid Simulation 61

4.1 Fluid Simulations . 61
4.1.1 Fluid Surface Reconstruction . 62
4.1.2 Fluid Topology . 65

4.2 Contribution And Overview . 67
4.3 Topology-Aware Surface Reconstruction 68

4.3.1 Local Reconstruction . 68
4.3.2 First Attempts For Combining Local Fluid Components 71
4.3.3 Our Composition Model For Combining Local Fluid Components . . 73

4.4 Topological Neighborhoods . 74
4.4.1 Component Fusion . 75
4.4.2 Component Splitting . 77
4.4.3 Transitive-Closure . 78
4.4.4 Temporal Coherence . 79

4.5 Practical Implementation . 80
4.5.1 Integration in a Particle-Based Simulation 80
4.5.2 Topological Neighborhood Implementation 80
4.5.3 Efficient Surface Evaluation . 80

4.6 Results and Limitations . 82
4.6.1 Quality . 83
4.6.2 Performance . 83
4.6.3 Limitations . 86

4.7 Conclusion . 86

5 Conclusion 89

Bibliography 92

Introduction

Figure 1: L’informatique graphique permet la création et l’animation de mondes virtuels pour
des applications variées dans l’industrie, les effets spéciaux, l’édition d’images et le divertissement.
Images issues de [GGP+15,BMO+14,PHK11,BHK14].

L’informatique graphique est devenue ces dernières années un domaine très populaire et
actif, utilisé aussi bien par des professionnels que par le grand public. Pour les ingénieurs
travaillant dans l’industrie, par exemple pour des constructeurs de voitures ou d’avions,
l’informatique graphique permet de concevoir des pièces mécaniques et de simuler leur fonc-
tionnement. Aussi, les infographistes utilisent l’informatique graphique pour créer toutes
sortes d’objets 3D, allant de la carrosserie d’une voiture à des meubles, d’un environnement
virtuel à des êtres qui le peuplent. L’informatique graphique est aussi très utilisée pour la
communication et le divertissement, où des personnages et objets peuplent un monde virtuel
dans le but de transmettre un message pour une publicité, ou encore une atmosphère parti-
culière pour un film ou un jeu vidéo. Dans cette dernière application, les artistes ont besoin
d’un contrôle intuitif des outils qu’ils manipulent pour avoir une liberté d’expression la plus
grande possible dans le résultat visuel. Pour cela, l’informatique graphique propose une
grande variété d’outils, incluant la modélisation géométrique, l’animation, le rendu réaliste
ou non, la simulation physique, la manipulation d’images, etc. (voir Figure 1). Même si ces
outils peuvent être basés sur des notions théoriques avancées provenant principalement des
mathématiques et de la physique (géométrie, algèbre, statistiques, optique, mécanique ...),
ces aspects sont généralement manipulés au travers d’un jeu de paramètres intuitifs et d’une
interface dédiée, afin que les utilisateurs, professionnels ou non, n’aient pas à s’en soucier.
En raison du besoin croissant de contrôle et de précision, mais aussi de facilité d’utilisation
et de rapidité, l’informatique graphique est un vaste domaine de recherche en effervescence
depuis plusieurs années.

8 Introduction

Les objets virtuels sont la plupart du temps représentés par leur surface, dont la forme
générale peut être fixe comme pour un personnage, ou dynamique comme pour un fluide.
Différentes représentations pour les objets sont disponibles et certaines sont illustrées en
Figure 2. Lorsque l’on souhaite représenter des objets 3D dans un environnement virtuel,
les maillages sont sûrement la représentation la plus utilisée. Un maillage consiste en un
ensemble de faces 2D, connectées entre elles par leurs arêtes et leurs sommets, qui approche
la surface de l’objet par morceaux. Les maillages ont l’avantage d’être simples à exprimer et
rapides à visualiser, par lancer de rayon ou rastérization. Ils restent cependant une approx-
imation de la surface et sont donc limités par la résolution à laquelle ils l’échantillonnent.
De ce fait, les maillages ne peuvent représenter une surface présentant des détails de haute
fréquence ou une surface lisse qu’avec une résolution très fine. Cela empêche l’apparition
d’artéfacts lors de la visualisation comme des contours plats ou des détails dégradés mais
produit des maillages très coûteux en mémoire et bien plus lents à visualiser. De plus, ma-
nipuler directement un maillage pour obtenir la forme désirée pour l’objet est très fastidieux
et de nombreux algorithmes ont du être conçus pour en faciliter la manipulation. Enfin, les
maillages sont une représentation surfacique d’un objet, et à ce titre ne donnent aucune in-
formation explicite sur le volume de l’objet, rendant l’assemblage par opérations booléennes
d’union, d’intersection et de différence extrêmement difficile et coûteux.

Un maillage peut aussi servir de base pour définir un niveau de détail de la surface d’un
objet. Ce niveau de détail peut être raffiné itérativement avec un schéma de subdivision
pour obtenir la résolution désirée. Ce type de représentation, appelée surface de subdivision

est très intéressant pour la modélisation géométrique multirésolution ou dès lors que l’on
souhaite garantir certaines propriétés de la surface limite comme la continuité ou la local-
isation. Étant donné que les surfaces de subdivision résultent en un maillage pour chaque
niveau de détail, elles permettent un contrôle intuitif des détails à chaque résolution. Ceci fait
d’elles une représentation très intéressante pour la visualisation d’un objet et la modélisation
géométrique, où un contrôle fin de la surface d’un objet est nécessaire. Cependant, même
si elles permettent de mieux approcher la surface d’un objet, les surfaces de subdivision en
restent une approximation et ne proposent pas d’information volumique.

Figure 2: Différentes représentations d’objets en informatique graphique. De gauche à droite :
maillage, surface de subdivision, surface paramétrique et surface implicite. Images issues de
[DKT98,YHB05,MGV11].

9

Une autre représentation explicite de la surface d’un objet consiste à assembler des par-
ties de surface définies à partir de points de contrôle et d’une équation d’en général deux
paramètres. Ce sont les surfaces paramétriques. Elles sont surtout utilisées par les profes-
sionnels de l’industrie car elles permettent de définir de fortes contraintes sur les surfaces
et offrent un contrôle fin et précis de la surface et de ses propriétés. De la même façon que
pour les maillages et les surfaces de subdivision, les surfaces paramétriques n’offrent pas
d’information explicite sur le volume de l’objet qu’elles représentent.

En marge des représentations pûrement surfaciques, on trouve les représentations volu-
miques, dont les surfaces implicites. Les surfaces implicites ont cet avantage d’offrir une
représentation continue de la surface et des informations volumiques explicites en même
temps. Une surface implicite est définie par une fonction scalaire sur les coordonnées de
l’espace ambiant euclidien dans lequel est défini l’objet. Lorsque la surface de l’objet est
fermée, une surface implicite la décrit comme l’interface entre son intérieur et son extérieur.
Les surfaces implicites sont surtout utilisées pour la reconstruction de surface à partir de nu-
ages de points issus de scanners, la représentation d’objets hautement dynamiques tels que les
fluides, ou encore la modélisation géométrique par aggrégation de matière. En effet, elles sont
par nature idéales pour des opérations booléennes d’union, d’intersection et de différence,
surtout lorsque une transition dite “douce” par ajout de matière est désirée, comme pour
un assemblage organique. Les surfaces implicites restent cependant une représentation peu
utilisée pour la modélisation géométrique en raison de la difficulté pour les visualiser effi-
cacement et présicément, et du manque de paramétrization 2D de la surface qui permettrait
notamment de la texturer. Les surfaces implicites n’en restent pas moins une représentation
puissante offrant un processus de modélisation intuitif et efficace par la combinaison des
informations volumiques : des parties d’objets définies par l’utilisateur sont assemblées au-
tomatiquement afin de créer la surface de l’objet désiré, avec des arêtes franches pour les
pièces mécaniques ou des jonctions douces pour des parties organiques. Bien que des travaux
récents améliorent le contrôle utilisateur et offrent de meilleures propriétés de surface pour
des systèmes de modélisation par assemblage, les surfaces implicites présentent encore des
problèmes de stabilité devant être résolus avant de pouvoir être considérées comme une
représentation pertinente d’objets en informatique graphique.

CONTEXTE DE L’ÉTUDE

Le but de cette thèse est de résoudre certaines limitations encore présentes des surfaces
implicites afin de déterminer si, avec le modèle de composition avantageux qui les accompa-
gne, leur potentiel peut être totalement exploité en informatique graphique. Pour cela, nous
expérimentons leur mise en application dans le cadre de la modélisation géométrique et de
la simulation de fluides par particules, notamment la reconstruction de la surface du fluide.

Dans un processus de modélisation géométrique par surfaces implicites, celles-ci représent-
ent des composants d’assemblage correspondant à des parties de l’objet final. Ces composants
sont assemblés les uns avec les autres au travers d’opérations booléennes exprimées par des

10 Introduction

opérateurs de composition. Un contrôle de plus en plus fin de la forme de l’objet final est
donné à l’utilisateur à travers un certain nombre de paramètres. En général, le processus
de modélisation est incrémental, assemblant les composants par paire et utilisant donc des
opérateurs binaires. Cependant, il arrive que plusieurs composants doivent être assemblés
en un même endroit. Dans ce cas, des opérateurs n-aires doivent être utilisés et garder un
contrôle fin du résultat de l’assemblage devient très ardu lorsque le nombre de composants
augmente. Aujourd’hui la définition des surfaces implicites et des modèles de composition
n’est pas totalement unifiée : aucune garantie n’est donnée sur la conservation des pro-
priétés des surfaces des composants, surtout lorsque des intersections et des différences sont
appliquées. Cela rend l’ensemble du processus d’assemblage inconsistant et peut entrâıner
l’apparition imprévisible d’artéfacts indésirables sur la surface, tels que des trous ou des
discontinuités.

En simulation de fluides par particules, ces dernières échantillonnent le volume du fluide
et se déplacent selon les équations de physique qui traduisent le mouvement du fluide. Ici,
les surfaces implicites représentent la contribution des particules au volume du fluide, c’est-
à-dire les portions de fluide induites par les particules. Ces contributions sont en premier
lieu utilisées pour calculer les interactions des particules au sein du fluide pendant la sim-
ulation, puis pour reconstruire la surface du fluide afin de la visualiser. Alors que de plus
en plus de réalisme est attendu de la simulation (viscosité, tension de surface) et de la re-
construction (fine pellicule de fluide, surface lisse), ces deux étapes sont en général réalisées
indépendemment à chaque pas de simulation. De ce fait des incohérences temporelles et
topologiques peuvent survenir dans le comportement de la surface du fluide, comme des
attractions et mélanges de composants de fluides distincts et une gestion non naturelle des
fusions et séparations.

CONTRIBUTIONS

La première contribution de cette thèse concerne le problème de consistance entre les sur-
faces implicites et les modèles de composition tels qu’utilisés en modélisation géométrique.
Nous proposons tout d’abord la prise en compte de propriétés supplémentaires par les
modèles de surfaces implicites afin que celles-ci puissent supporter toutes les opérations
booléennes. Ensuite, nous définissons de nouvelles contraintes pour les opérateurs de com-
position afin qu’ils adhèrent à ces propriétés et que les relations entre opérations booléennes
puissent être retranscrites sur les opérateurs de composition. Enfin, nous introduisons un
nouvel opérateur conçu spécifiquement pour la gestion de l’ajout de petits détails à un objet.

La seconde contribution concerne la gestion temporelle et topologique rencontrée dans
les simulations de fluides par particules et la reconstruction de la surface des fluides. Nous
commençons par introduire un nouvel opérateur de composition n-aire pour la reconstruction
de la surface du fluide. Cet opérateur se base sur une structure en graphe représentant
les voisinages topologiques locaux des particules, qui correspondent aux composantes du
fluide restreintes à l’échelle des particules. Par l’utilisation de ce graphe et son suivi au

11

cours de la simulation, la reconstruction permet une cohérence temporelle et topologique du
comportement de la surface du fluide. Nous expliquons ensuite comment ce graphe est mis à
jour puis nous proposons de l’utiliser pour coupler la simulation avec la reconstruction afin
d’éviter un comportement du fluide non naturel.

STRUCTURE DU DOCUMENT

Dans le Chapitre 1 nous commençons par donner les notions mathématiques nécessaires à
la compréhension du fonctionnement des surfaces implicites et présentons quelques familles
usuelles en informatique graphique. Nous présentons ensuite le modèle général de compo-
sition qui les accompagne avant de donner un état de l’art sur les opérateurs de compo-
sition dans le Chapitre 2. Nous explorons ensuite l’utilisation des surfaces implicites en
modélisation géométrique dans le Chapitre 3 et en simulation de fluides par particules dans
le Chapitre 4. Enfin, le Chapitre 5 fait la synthèse des contributions de cette thèse et donne
diverses directions de recherche pour des travaux futurs.

Chapter 1

Background on Implicit Surfaces

Implicit surfaces are a powerful 3D object representation for computer graphics, providing
both a continuous surface definition as well as volume information. In this chapter, we
present the mathematical background on implicit surfaces and the main families used in
computer graphics to represent objects.

1.1 Definitions

An implicit surface SC is defined as the isosurface, corresponding to the isovalue C, of the
scalar field generated by a field function f . Traditionally, the field function f is a scalar-
valued function of the 3D Euclidean space coordinates:

f : R
3 → R

p = (x, y, z)t 7→ f(p)

An implicit surface SC then corresponds to the set of points in the 3D Euclidean space to
which the field function f associates the same isovalue C:

SC = {p ∈ R
3 | f(p) = C}

As an example, let us consider the following field function: f(p) = ‖p−c‖2, illustrated in
Figure 1.1. This field function generates a spherical distance field around the point c whose
isosurfaces SC correspond to different spheres of center c and radius

√
C. For example, the

implicit surface S1 is a sphere of center c and radius 1, while S4 has a radius of 2 and S9
a radius of 3, as can be seen on the planar section passing through the center c exposed in
Figure 1.1(b). Here the black circles represent some of the generated implicit surfaces while

..
.

..
.

c

(a) (b)

Figure 1.1: Implicit surfaces generated by (a) the field function f(p) = ‖p−c‖2 and (b) a planar
section passing through c illustrating their location around it.

14 1 – Background on Implicit Surfaces

the red colored region corresponds to the interior of the sphere described by S4 and the blue
region to its exterior.

Implicit surfaces provide volume information about the object they represent, given that
this volume V exists. This volume can be defined as VC = {p ∈ R

3 | f(p) < C} as for our
previous example. Note that this definition depends on the convention for the field function
and the opposite definition VC = {p ∈ R

3 | f(p) > C} can also be used. The implicit
surface SC then splits the Euclidean space into two regions: the volume VC, e.g. the interior
of the object, which is enclosed in SC, and the exterior of the object. This is illustrated in
Figure 1.1(b) where the interior region corresponding to V4 is colored in red and the exterior
region in blue. SC is called “implicit” because the points on the surface are not explicitly
defined by a closed-form formula. All we can do is, from a given point, question the field
function to know where that point lies, say if it is on the surface or, if not, on which side of
it.

An interesting property of implicit surfaces is that they provide direct computation for the
normal vector to an isosurface, which is used for example for lighting the object during the
visualisation. The unit normal N to the implicit surface SCp given at a point p is computed
as the normalized gradient of the field function at that point:

∇f(p) =
[

∂f

∂x

∂f

∂y

∂f

∂z

]t

Its direction might need to be inverted to accommodate for the inside/outside convention
since the gradient points in the direction of growing values. Thus, for our previous example
where VC = {p ∈ R

3 | f(p) < C}, we have:

N(p) =
∇f(p)
‖∇f(p)‖

Once the object is designed, it must be placed into the virtual world. We thus need a
way to move and orientate it. Directly modifying the equation of the field function f1 into
f2 so that the object ends at the expected location can be rather cumbersome. Instead, we
use a transformation matrix T encoding affine transformations such as translation, rotation
and scaling. What is expected is that each point p of the object, either inside, outside or
on the surface, is moved to the transformed point p′ = Tp. This means that the scalar
value of f2 at p′ must be the same as the value of f1 at p. To find the value f2(p

′), we
start from point p′ and apply the inverse transform T−1 to it and thus retrieve the point
p. We then evaluate the field function f1 at p and set the result as the field value for f2 at
p′ as illustrated in Figure 1.2(a). This is expressed in the following formula, along with the
gradient computation, and can be seen as a change of the reference system:

f2(p
′) = f1(p) = f1(T

−1p′) ∇f2(p′) = T−t∇f1(T−1p′)

1.1 – Definitions 15

T

T
-1f

1 f
2

p
p'

(a) (b) (c)

Figure 1.2: Illustration of the transformation process for implicit surfaces. (a) The new field value
after transformation for point p′ is computed from point p = T−1 ∗ p′. Using this transformation
process, objects can be put and oriented in the virtual world (a) and can also be deformed using
space warping transformations (b-c) [WGG99,dGWvdW09].

Note that the normal is transformed by the inverse transpose matrix T−t to conserve surface
orthogonality in the case of non-uniform scaling. Any invertible transformation matrix T
can be used this way, not only for affine transformations but also for more complex ones,
thus leading to the deformation of the object using space warping transformations such as
bend, taper and twist as shown in Figure 1.2(b).

Implicit surfaces can be classified into two main categories depending on the support of the
field function they rely on: globally supported field functions or compactly supported field
functions. The field generated by a globally supported field function f g varies all over the
Euclidean space, as for the previous distance example. On the other hand, the field generated
by a compactly supported field function f c only varies in a delimited region and is constant
everywhere else. Conventions for each category are the following. For globally supported
field functions the implicit surface is defined for C = 0 and both volume formulations can
be found depending on the model. The convention for compactly supported field functions
is generally to consider C = 0.5 with VC = {p ∈ R

3 | f(p) > C}. An additional setting for
compactly supported field functions is that beyond a certain distance to the surface in the
“outside” region, the field function vanishes and uniformly equals 0.

The two categories are illustrated in Figure 1.3 where they define the same surface. In
order to better understand the relationship between the field function f and the implicit
surface SC, let us explain the field visualisation of Figure 1.3. Consider a planar section of
the object defined by SC. The intersections of the cutting plane and the different isosurfaces
of the field generated by f is a set of 2D curves in this plane. In particular, one of these
curves is the one generated by the implicit surface SC, which is colored in magenta, while
others may lie inside the object, in red, or outside it, in blue. Also, the boundary of the field
variation of compactly supported field functions is drawn in black.

In the remainder of this chapter, we present the main families of implicit surfaces that are
used in computer graphics.

16 1 – Background on Implicit Surfaces

f g < 0

f g > 0
f g = 0

f c = 0

f c < 0.5

f c > 0.5

f c
= 0.5

(a) (b) (c)

Figure 1.3: Planar sections of an implicit surface representing a bunny (a). Blue curves are
outside the bunny, red curves are inside it and the magenta curve is the section of the implicit
surface. For globally supported field functions (b) the field varies in the whole space while for
compactly supported field functions (c) its variation is limited into a region around the surface.
Conventions for both globally and compactly supported field functions are also given.

1.2 Algebraic Surfaces

Algebraic surfaces are the most basic implicit surfaces in terms of formulation. They rely on
an equation of the Euclidean coordinates that generally produces a globally supported field
function. A simple example has already been given with the distance function and some
more algebraic surfaces are shown in Figure 1.4 with their respective equation. Though
they are capable of representing all kinds of surfaces, these formulations are not practical for
the design of 3D objects which require intuitive surface control. Indeed, finding the exact
equation of the desired object surface and modifying it to add details is very cumbersome.
They are still useful when defining simple primitives to be assembled.

x4 − 5x2 + y4 − 5y2 + z4 − 5z2 + 3 x3 + y3 + z3 + kxyz x3y + y3z + z3x− a+ 0.5

Figure 1.4: Implicit surfaces generated by algebraic functions of the Cartesian coordinates x, y
and z. Figures from [RS08,HL08,Kra].

1.3 Skeleton-based Implicit Surfaces

Considering how difficult it is to tune the equation of an algebraic surface to get the expected
result, modelling a complex object this way is inefficient. Instead, field functions based on
the distance to a skeleton give more control to the user through the modification of the
skeleton, which is a meaningful abstraction of the overall shape of the object. Skeleton
based field functions can be defined from different skeletons such as a simple point (as in

1.3 – Skeleton-based Implicit Surfaces 17

(a) (b)

Figure 1.5: (a) Directly using the distance to a skeleton generates globally supported field func-
tions. (b) Composing a Gaussian kernel to the distance to display molecules [Bli82].

the spherical distance field example), poly-lines, curves, polygons or even polyhedrons, as
soon as the distance to the skeleton can be computed. Directly using a distance dist to a
skeleton S to build the skeleton based field function f can lead to the following formula:
f(p) = d0 − dist(p, S), where d0 is the distance from the skeleton to the desired surface.
This definition, illustrated in Figure 1.5(a), generates a globally supported field function.

In order to bring compact support and then local restriction properties into the field gen-
erated by the implicit surface and control them when using complex skeletons, the distance-
based field functions are extended by composing a kernel function K to the distance:

f(p) = K(dist(p, S)) (1.1)

The first kernel-based definition of an implicit surface was introduced by Blinn [Bli82] for
the visualisation of “blobby” molecules (Figure 1.5(b)), through a Gaussian kernel inspired
by the electromagnetic properties of atoms:

K(d) = exp

(

−
(

d

σ

)2
)

(1.2)

where σ controls the slope of the Gaussian, and then the size of the atom inside the molecule.
The resulting field function f is another kind of globally supported field function: it varies all
over the space but is positive and C 6= 0. Several other kernels have been designed through
piecewisely defined polynomial functions, which are faster to evaluate, in order to define
compactly supported field functions (see Figure 1.6), whose variation support is controlled
by the parameter σ:

❼ Metaballs [NHK+85]: K(d) =

1− 3
(

d
σ

)2
if 0 ≤ d ≤ σ

3
3
2

(

1− d
σ

)2
if σ

3
≤ d < σ

0 otherwise

❼ Soft Objects [WMW86]: K(d) =

{

1− 4
9

(

d
σ

)6
+ 17

9

(

d
σ

)4 − 22
9

3
2

(

1− d
σ

)2
if d < σ

0 otherwise

18 1 – Background on Implicit Surfaces

0.5

2R

1

0

dist

R

K

(a) (b)

Figure 1.6: Composing a fall-off kernel K (a) with the distance allows to define compactly
supported field functions (b).

❼ Blobs [Blo97]: K(d) =

(

1−
(

d
σ

)2
)3

if d < σ

0 otherwise

The main drawback of kernel-based distance field functions is their low degree of conti-
nuity for other skeletons than points. Indeed, for a point skeleton the field function is C∞

continuous everywhere inside its support except at the point. In the contrary, for more
complex skeletons this is not the case anymore: the field is spherical at points proximity,
cylindrical at segments proximity and planar at faces proximity. Hence, the gradient of the
field is continuous but not differentiable, and then the surface is only C1 continuous.

1.4 Convolution-based Implicit Surfaces

An extension of the kernel-based distance field functions aims at increasing the field con-
tinuity and fairness regardless of the skeleton type through convolution. Here, instead of
composing the kernel K with the distance, it is convolved on the skeleton, thus defining the
field function as the integral of the contributions of all the points belonging to the skeleton:

f(p) =

∫

s∈Ω

K(‖p− Γ(s)‖)ds (1.3)

where Ω is the skeleton parametrisation and Γ(s) is the skeleton point corresponding to
parameter s. Thanks to the additive property of integration, convolution-based implicit sur-
faces are independent of the skeleton subdivision as illustrated in Figure 1.7. This property
allows the design of arbitrarily complex skeletons defined from a set of primitive elements
such as points, segments and triangles.

While the first convolution surfaces used Gaussian kernels [Blo97], subsequent works pro-
vided kernels with closed-form expressions [MS98, She99] for both convolution along line
segment and triangle skeletons. Kernels can then be organized into three families [HC12]:

❼ Inverse of order i: K(d) = 1

(d
σ)

i

1.4 – Convolution-based Implicit Surfaces 19

Figure 1.7: Convolution surfaces are skeleton subdivision independent: summing contributions
from skeleton parts is the same as the contribution of the skeleton as a whole. Figures from [Zan13].

❼ Cauchy of order i: K(d) = 1

(1+(d
σ))

i
2

❼ Compact polynomial of order i: K(d) =

(

1−
(

d
σ

)2
)

i
2

if d < σ

0 otherwise

the two first ones generating C∞ continuous globally supported field functions, and the latter
generalizing the Blobs kernel to any order i.

Convolution surfaces have also been extended to handle non-constant radius along the
skeleton [JT02,HAC03,ZBQC13] using a weighting function τ :

❼ to scale K: f(p) =
∫

s∈Ω
τ(s)K(‖p− Γ(s)‖)ds

❼ to scale d: f(p) =
∫

s∈Ω
K
(

‖p−Γ(s)‖
τ(s)

)

ds

❼ to scale both: f(p) =
∫

s∈Ω
1

τ(s)
K
(

‖p−Γ(s)‖
τ(s)

)

ds

Using radius variation allows the design of various shapes from the same skeleton, and in
particular sharp tips as illustrated in Figure 1.8. The main advantage of convolution surfaces
is the organic shape of the surface obtained thanks to the natural blending of skeleton-defined
parts. However, they cannot represent sharp features other than tips, and then are not suited
for the design of non-organic shapes.

Figure 1.8: Organic shapes modelled using radius varying convolution surfaces. Figures
from [JT02,ZBQC13].

20 1 – Background on Implicit Surfaces

1.5 Point Set Implicit Surfaces

While implicit surfaces traditionally represent parts of the object’s volume that are com-
bined, the surface can also be defined from points on it. Point set implicit surfaces model
complex free-form objects by fitting a field function from constrained surface points coming
from 3D scanners or meshes with structural problems such as holes or self-intersections.
Such representations are very popular for the digitisation of architectural heritage as well
as augmented and virtual reality purposes. Here, the final field function f : R3 → R for
the object is expected to be such that f(pi) = C for all input surface points pi, with the
additional constraint that f must be analogous to a distance field function.

Radial Basis Functions: A first approach, called Radial Basis Functions (RBF), is to
discretize the field function f as a linear combination of basis functions φ centered at the
input surface points [CBC+01]:

f(p) =
N
∑

i

αiφ(‖p− pi‖)

The unknown scalar coefficients αi are then found by solving the system of equations given
by the constraints f(pi) = 0. However, the trivial solution αi = 0 leads to the zero constant
function f = 0, thus unable to represent the object surface. In order to avoid this short-
coming, more constraints have to be set on “off-surface” points lying outside the surface as
illustrated in Figure 1.9(a), and for which another field value Ci is expected: f(pi+εni) = Ci,
where ni is the surface normal at pi. A more robust and elegant solution called Hermite
RBF [Wen04,MGV11] consists in setting constraints on the gradient of the generated field so
that it matches the surface normal at points pi (see Figure 1.9(b)), leading to the following
problem reformulation:

f(p) =
N
∑

i

αiφ(‖p− pi‖) + βi
t∇φi(‖p− pi‖)

with additional constraints ∇f(pi) = ni.

(a) (b)

Figure 1.9: Radial Basis Functions solve constraints defined on a set of surface points and either
off-surface points (a) or their surface normal (b). Using different functions φ leads to different
interpolation results (b). Figures from [CBC+01,MGV11].

1.5 – Point Set Implicit Surfaces 21

Several choices can be made for the basis function φ depending on the desired interpolation
properties and the dimension of the ambient space:

❼ Thin plates (only in 2D): φ(d) = d2ln(d)

❼ Polyharmonic splines: φ(d) = dk , k = 1, 3, 5... or φ(d) = dkln(d) , k = 2, 4, 6...

❼ Gaussian: φ(d) = e−cd2

❼ Multiquadric and inverse quadric: φ(d) =
√

1 + (cd)2 and φ(d) = 1
1+(cd)2

which are globally supported basis functions. The RBF formulation leads to the resolution
of a huge linear system with a complexity in O(N3). A set of compactly supported basis
functions have been introduced [Wen95,Wu95,Buh01] in order to make the system sparse,
then faster to solve, and also reduce the number of input surface points needed for evaluation.

Moving Least Squares: A second approach called Moving Least Squares rather fits a
non-null algebraic primitive ap:

f(p) = ap(p)

approximating the local neighborhood of the evaluation point p in a weighted least squares
way:

ap = argmina

N
∑

i

w(‖p− pi‖)‖a(pi)‖2 (1.4)

where w is a compactly supported weighting function whose support radius determines the
degree of approximation. The larger the radius, the smoother the details and noise. Moving
Least Squares methods have been applied to some algebraic primitives (see Figure 1.10),
leading to the following field function expressions:

(a) (b) (c)

Figure 1.10: Moving Least Squares methods can fit primitives such as planes (a) and spheres
(b) from the local neighborhood of the evaluation point. Different interpolation results can be seen
in (c) where the blue, red and purple curves fit planes while the green curve fits spheres. Figures
from [SOS04,GG07].

22 1 – Background on Implicit Surfaces

❼ plane [AA04]:

f(p) =

∑N

i wini

‖∑N

i wini‖

t

(p−
∑N

i wipi
∑N

i wi

) = n(p)t(p− a(p))

where a(p) and n(p) define the fitted plane by averaging neighbor positions and nor-
mals.

❼ plane [SOS04]:

f(p) =

∑N

i win
t
i(p− pi)

∑N

i wi

Here the function f is rather defined by averaging the planar fields defined by the
neighbors and their normal.

❼ sphere [GG07,GGG08]:
a(p) = [1 pt ptp] u(p)

where u(p) is the vector of the five parameters for the algebraic sphere, which are com-
puted as follows. u1, u2, u3 and u4 are given by minimizing the following gradient con-
straint: u(p) = argminu

∑N

i wi||∇a(pi)−ni||2. u0, which does not appear in the gra-
dient formulation, is then retrieved by solving equation 1.4. In the case of non-oriented
surface normals at input points [CGBG13], the constraint on the gradient can be re-
placed with a generalized eigenvalue problem: u(p) = argmaxu

∑N

i wi‖∇a(pi)
tni‖2

subject to
∑N

i wi‖∇a(pi)‖2 = 1.

Chapter 2

Composition Models

In the previous chapter we have seen how to represent objects with implicit surfaces. While
giving the user some control over the creation of simple objects, these models are difficult
to manipulate when designing a complex object made of several parts like living beings or
mechanical stuff. Fortunately implicit surfaces are a volumetric representation, which makes
them perfectly suited for volumetric operations. A modelling system using such operations
can then be built through a composition process combining together parts of the final object.
In this chapter, we present a background on this composition process followed by a state
of the art on the composition models developed in computer graphics. We also list some
remaining limitations to be addressed in order to fully take advantage of the power of implicit
surfaces and composition models.

2.1 Definitions

The major issue with implicit surfaces is the difficulty to precisely control how the different
parts of the final object behave all together. Here, implicit surfaces represent primitive com-
ponents which are combined to build the final object. The composition process is formalized
by a composition operator g over n primitives:

g : R
n → R

X = (x1, ..., xn) 7→ g(X)

Composition operators must be specifically defined for each implicit surface convention.
When composed with a set of field functions {f1,...,fn} , the operator g yields a new field
function F :

F : R
3 → R

p = (x, y, z)t 7→ F (p) = g(f1(p), ..., fn(p))

with the same convention, thus making the composition process a unified representation.

Basic and easy to understand composition operations are Boolean operations: union, inter-
section and difference that are volumetric operations that produce sharp features between the
input surfaces as illustrated in Figure 2.1-top row. Such operators were first introduced by
Ricci [Ric73] to build a Boolean composition model where “maxi fi” and “mini fi” implement
union and intersection operators according to the interior/exterior convention. The difference
operation between two primitives is then defined using Boolean identities as the intersection
of the first primitive with the complement of the second, i.e. g\(f1, f2) = g∩(f1,¬f2). The
complement operation has the effect of inverting interior and exterior parts for an object

24 2 – Composition Models

g∪ g∩ g\

Figure 2.1: Application of the Boolean operations (top row) of union, intersection and difference
on a cube and a sphere, producing a sharp transition between the input surfaces. Blending operations
(bottom row) allow for smooth transition shape for both union, intersection and difference.

without modifying its surface nor the field properties inside these regions except the gradient
direction which is also inverted. For the general case, the complement operation is just a
symmetry expressed as ¬f = 2C − f in order to keep the same isovalue for the surface. In
the case of globally supported field functions f g, where the surface is defined for C = 0, the
complement is as simple as ¬f g = −f g. On the other hand, for compactly supported field
functions f c, for which C = 0.5, the complement operation boils down to ¬f c = 1− f c.

While intuitive and efficient, these operators can only produce sharp features in the vicinity
of the surfaces intersection. Such sharp transitions are well desired for some mechanical parts
and rigid objects (Figure 2.2(a)), but not when modelling soft objects, welding effects or
attaching members of living beings together (Figure 2.2(b)). Hence, Boolean-like operators
must be extended to produce a blend between the surface, e.g. a smooth transition from
one to the other, as shown in Figure 2.1-bottom row. Several composition models have been
designed for producing various effects and are presented in Section 2.2.

(a) (b)

Figure 2.2: Sharp transitions are well suited for the design of mechanical objects (a) while
blending is preferred for modelling organic shapes (b). Figures from [GBC+13,BBCW10].

2.1 – Definitions 25

2.1.1 Operator Representation

While the general composition model defines n-ary operators capable of combining several
object parts, say n of them, together in one operation, such operators are rather complex to
study and manipulate. Of course, the Boolean operators we presented above are simple n-ary
operators that can be used easily. However, they do not provide any control on the transition
shape between the combined object parts. When modelling complex objects, user control
must be offered in an intuitive way, which is particularly difficult for n-ary operators. Since
n-ary operators are traditionally based on the use of a graph between the input primitives,
representing them intuitively and efficiently is far from straightforward.

A simpler and more intuitive manner to combine object parts together is to do so pair-
wisely, then adding parts to the object one after another in an incremental process. This can
be done using binary operators, which only combine two object parts and are then simpler
to study and design through a dedicated representation: the operator space. The operator
space for binary operators is a 2D space formed by the two input field functions, say f1 for
the X-axis and f2 for the Y-axis, as illustrated in Figure 2.3. Since an operator has to be
designed for either globally or compactly supported field functions, the properties of the op-
erator space vary depending on the convention. In both cases, there exists a direct relation
between the operator space and the object space through f1 and f2. Each implicit surface
S1
C generated by f1 corresponds to the vertical line x = C in the operator space. Likewise,

each implicit surface S2
C generated by f2 corresponds to the horizontal line y = C. When the

binary operator is to be used with globally supported field functions, the operator space is
generally the space [−∞,+∞]2 and the lines x = 0 and y = 0 correspond to the surfaces
of f1 and f2 respectively. On the other hand, for compactly supported field functions, the
operator space is the space [0,+∞]2 and the lines x = 0.5 and y = 0.5 correspond to the
surfaces of f1 and f2.

X = f
1

Y = f
2

f
1

f
2

X = f
1

Y = f
2

(a) (b) (c)

Figure 2.3: Operator spaces for globally (a) or compactly (c) supported field functions. An
example of two red and blue objects (b) is given for the relation between operator spaces and the
object space. Surface lines are drawn thicker.

26 2 – Composition Models

Now we have this correspondence between the operator space and the object space, how
to represent a binary operator in the operator space? and how does this translate into the
composition of object parts? The former is done by drawing isocurves of the operator in
the operator space, corresponding to the set of points in the operator space for which the
operator returns the same values. The latter is done by following the transition made by
the operator between the input surfaces. As an example, operators g∪, g∩ and a blending
operator for both globally and compactly supported field functions are drawn in figure 2.4
with their application on two cylinders. To ease the understanding of the relation between
the operator and the resulting field function, from now on we use the same color convention
for both: the surface is drawn in magenta, the inside field in red and the outside field in
blue.

X = f
1

Y = f
2

X = f
1

Y = f
2

X = f
1

Y = f
2

X = f
1

Y = f
2

X = f
1

Y = f
2

X = f
1

Y = f
2

union intersection blending

Figure 2.4: Representation of union, intersection and blending operators in the operator space
along with their application on two cylinders (middle row). Top row: operators for globally supported
field functions. Bottom row: operators for compactly supported field functions.

2.1 – Definitions 27

This useful representation intuitively translates the effect of a given binary operator and
provides an immediate tool to design and control the behavior of any composition operator.
What remains to be done is to find an appropriate formula for the operator, which is,
however, not straightforward for complex transition shapes.

2.1.2 Composition Trees

Designing objects by parts and then assembling these parts together can be achieved be-
cause the composition model is unified: since the result of the composition of field functions
by a composition operator is another field function, this one can then be used as an input
for another composition. This process allows iterative and intuitive combinations of sim-
ple primitives together through simple operations for the design of complex objects. This
modelling process is called Constructive Solid Geometry (CSG) and is usually implemented
using a dynamic tree structure [WGG99, dGWvdW09, GDW+16], whose inner nodes are
composition operators and leaves are simple primitive objects, as illustrated in Figure 2.5.

Trying to build such a complex structure from scratch to design a complex object can be
rather cumbersome. The user would need to think about which operator to use first and how
to balance the tree so that evaluation is faster. Instead, defining small parts of the object
from simple primitives and then assembling these sub-trees together is a much more efficient
way, even if it still requires some assembly plan.

Figure 2.5: Examples of composition trees. Leaf nodes are field functions representing basic
primitives that are then combined in the inner nodes by composition operators, each leading to a
new field function. Figures from [Wik,dGWvdW09].

28 2 – Composition Models

2.2 Composition Operators: A State of the Art

The control of the smooth transition produced by a blending operator is of great interest
to provide better control of the primitives junction. In order to enhance this control and
bring more diversity in the shape of the transition between the composed primitives, a large
variety of composition operators have been developed, trying to address the limitations of
the composition model.

2.2.1 Blending

Ricci [Ric73] was one of the first to propose a composition operator for compactly supported
field functions producing a smooth transition between the input primitives, called a blending
operator:

gR = (
n
∑

i

f s
i)

1

s (2.1)

where the parameter s controls the amount of blend during the composition, i.e. the amount
of matter added or removed. When s = 1 we have gR =

∑n

i fi, then giving a maximal blend-
ing corresponding to the popular sum operator used by Blinn [Bli82] to display molecules.
When s increases we obtain a decreasing blending effect, as illustrated in Figure 2.6, down
to a sharp union when s→∞ in which case gR ≡ g∪.

Figure 2.6: Four applications of the operator gR on two spheres with, from left to right, s = 1,
s = 3, s = 10 and s→∞.

2.2.2 Blending Issues

Blending implicit surfaces is a very useful operation when designing organic and deformable
objects. However, when it comes to control the blending transition, four major issues,
illustrated in Figure 2.7, arise:

2.2 – Composition Operators: A State of the Art 29

Figure 2.7: Top row: the main issues of implicit blending: (a) bulging, (b) absorption of details,
(c) blending at a distance and (d) change of topology. Bottom row: the expected surfaces. Figures
from [GBC+13].

❼ Bulging: Implicit surfaces are not independent to subdivision. Hence, the surface
resulting from a blend will present a bulge in the vicinity of the input surfaces as
illustrated on a T-junction in Figure 2.7(a). This can be particularly annoying where
only a small blend is expected as when attaching members to the body.

❼ Blurring of Details: The amount of blending between implicit surfaces depends on
their blending range. Typically, this range is coherent with the size of the object thus
making small detail primitives to be highly deformed, even absorbed, by larger ones
due to the difference in field metrics, as shown in Figure 2.7(b). This can be highly
problematic when adding small details to enhance the final shape of an object.

❼ Blending at a Distance: Due to the influence of the external field, distinct parts
of an object can be blended together if they come too close to one another as in
Figure 2.7(c). This is particularly annoying when modelling living beings where union
cannot be applied because it would introduce sharp features with blended parts.

❼ Change of Topology: Implicit surface composition provides an easy way to gener-
ate objects with arbitrary topology. Blending may however cause unpredictable and
uncontrollable filling of holes, as illustrated on two tori in Figure 2.7(d). This loss of
topology control is not welcome since parts topology defined by the user may only be
changed as a result of the assembly, not of the blend.

These four blending issues are the reason why implicit surfaces have been put aside for
years. In the following of this Section, we see how composition models evolved to address
these limitations by defining control over the transition shape between the input field func-
tions.

30 2 – Composition Models

2.2.3 Anisotropic Blending

In Ricci’s operator (Equation 2.1), the blend is controlled by a unique parameter that pro-
vides control on the transition shape of the blending of input primitives but without taking
into account the size of the primitives nor allowing different shape transitions between some
primitives in one composition. In order to improve shape control and produce anisotropic
transitions between combined primitives, anisotropic blending operators have been devel-
oped.

Figure 2.8: Using outer iso-
values to create blend. Figures
from [HH85].

In order to better understand blending operators and
build simpler tools to control them, the work by Hoffman
and Hopcroft [HH85] focuses on binary operators and leads
to the useful representation for binary operators in a 2D
space we presented in Section 2.1.1. For this purpose, other
isovalues than C are considered so that the blend between
the two input field functions can be expressed with respect
to isosurfaces around SC as in Figure 2.8. Two cylinders
are blended as a combination of the dotted outer surfaces
(left): these surfaces are intersected in order to create the
curves around the vertical cylinder. The new blue surface
(right) is obtained by continuously creating these curves for all of the outer surfaces from
the horizontal cylinder to the vertical one. The control of the way the outer surfaces are
intersected, and thus the shape of the transition, is achieved by defining a “profile” curve,
here corresponding to the dotted circle (left) tangential to both cylinders. While originally
designed for the composition of algebraic implicit surfaces, this isovalue manipulation is ac-
tually practical for the composition of all implicit surfaces, whether globally or compactly
supported, and leads to the operator space representation presented in Section 2.1.1.

Taking advantage of the operator representation given by the operator space, Rockwood
and Owen [RO85] design a new blending operator for algebraic surfaces called superelliptic
blend (which can be extended to an n-ary operator):

gSE(f1, f2) = 1−
[

1− f1
r1

]s

+

−
[

1− f2
r2

]s

+

(2.2)

where [x]+ = max(0, x) is used to prevent issues when ri → 0 in which case union is applied,
r1 and r2 delimit the blending zone (asymmetric blending can then be applied) and s controls
the amount of blending, i.e. the shape of the C-isocurve of gSE, as illustrated in Figure 2.9.

To prevent the bulging problem, this operator is enhanced [Roc89] by taking into account
the angle θ between the gradients of the input fields as a parameter for the blending zone. To
this end, ri is replaced with Ri(θ) = ri(1− cos θ). This manipulation thus enables different
amounts of blending to be used in one application of the operator according to the angle θ as
illustrated in Figure 2.10. When θ = 0 the field gradients are collinear, meaning the surfaces

2.2 – Composition Operators: A State of the Art 31

f
1

f
2

r
2

r
1

s

f
1

f
2

r
1

r
2

f
1

f
2

r
2

r
1

(a) (b) (c)

Figure 2.9: Superelliptic blend with its control parameters (a): s for the amount of global blending
(b) and r1 and r2 for anisotropic blending (c).

are tangential, leading to Ri = 0 and then union is applied. On the contrary, when θ = π/2
the gradients are orthogonal, meaning the surfaces are so, and a maximal blend is applied.
In between, values of θ allow smooth interpolation from union to blend, thus resulting
in different applications for different evaluation points, in the contrary of parameter s for
Ricci’s operator (Equation 2.1). This composition operator however increases the blending
at a distance problem since when object parts come close to one another, θ = π thus resulting
in an increased blending effect.

θ

θθ

θ

(a) (b) (c)

Figure 2.10: Using a function of the angle θ between the field gradients (a) allows a different
blending behavior at different positions in space. Bulge (b) can thus be avoided (c) where the surfaces
are tangential.

A similar operator to gSE has been developed by Pasko [PASS95] for globally supported
field functions in general:

gP (f1, f2) = f1 + f2 −
√

f 2
1 + f 2

2 +
a0

1 +
(

f1
a1

)2

+
(

f2
a2

)2 (2.3)

32 2 – Composition Models

f1 + f2 −
√

f 2
1 + f 2

2

Figure 2.11: Clean union for
globally supported field functions.

where a0 controls the amount of global blending between f1
and f2, and a1 and a2 control the asymmetry in the blend.
Here, the two left members refer to a specific kind of oper-
ator called “clean union”, illustrated in Figure 2.11 and the
fractional part corresponds to the amount of matter added
to produce the blend. The clean union operator produces
the union of the input surfaces while blending the fields else-
where. It enables smooth field variations around the surface,
thus making the field behave more like a distance field. It
also prevents gradient discontinuities in the generated field
which may cause discontinuities in the visualization of re-
flections on the surface or surface discontinuities after further blending compositions.

2.2.4 Graph-based Blending

Figure 2.12: Modelling a hand using
graph-based blending of primitives to prevent
fingers to blend. Figures from [OM93].

Rather than using a global parameter to con-
trol the amount of blending, graph-based n-ary
operators [OM93,GW95] were introduced in or-
der to control where the blend may occur or not
(see Figure 2.12). Implicit primitives connected
through the graph will blend together forming
their own components while unconnected primi-
tives will not, thus resulting in the primitives to
deform when colliding thanks to the introduction
of a contracting function: ct(f) = min(C − f, 0).
The contracting function ct deforms the field of
the input primitive f so that, when summed with other primitives, a contact surface is cre-
ated at the intersection of the surfaces. The object components are then combined using
the union operator to avoid blending between separate parts. This is done even though the
primitives are linked in the graph, which unfortunately composes these primitives with sharp
transitions, while a blend might be expected as for the hand of Figure 2.12.

The graph-based approach has been adapted to convolution surfaces [BS91] by Ange-
lidis and Cani [AC02]. Unwanted blending between skeleton elements is prevented (see
Figure 2.13) by using only the most influencing one and its direct neighbors in the graph.
However, this composition method breaks the subdivision independence of convolution sur-
faces and can introduce creases as well as sharp features.

In order to preserve C1 continuity, Hornus et al. [HAC03] propose to keep adding skeleton
elements until their contributions becomes negligible. While preventing unwanted bulge of
looping skeletons, this method cannot handle highly folding skeletons as shown in Figure 2.14.

2.2 – Composition Operators: A State of the Art 33

(a) (b)

Figure 2.13: Adapting graph-based method to convolution surfaces (a) prevents unwanted blending
between skeleton parts but (b) breaks the independence to skeleton subdivision. Figures from [AC02].

(a) (b)

Figure 2.14: Another graph-based composition for convolution surfaces (a) preventing unwanted
blending for loop skeletons, but (b) restricted to low skeleton folding over. Figures from [HAC03].

Figure 2.15: Projecting the field
value and gradient norm in Ai

against the curve G for a reference
case.

A warping-based model for scale independent convo-
lution surfaces (SCALIS) is later developed by Zanni et
al. [ZBQC13] enhancing the use of varying surface radius.
In order to avoid the blending problems, and inspired by
the use of the gradient, a new kind of specific warping is
applied on top of the SCALIS model in [ZCG14]. Here,
the field resulting from the summed skeleton is remapped
so that its gradient norm meets the one of a reference case
(corresponding to the infinite version of the correspond-
ing dimension skeleton). The mapping is done by using a
specific 2D space taking as X-axis the field value and as
Y -axis the norm of the gradient. In this space, the field
and gradient norm of an evaluation point are remapped
on the curve of the reference case according to a fixed an-
gular parameter α (see Figure 2.15). This warping-based
operator provides a good trade-off between union and blending, also preventing blend at a
distance and preserving the skeleton topology as illustrated in Figure 2.16.

34 2 – Composition Models

Figure 2.16: Gradient-based warping for SCALIS prevents blend at a distance and topology
modification. Figures from [ZCG14].

2.2.5 Localized Blending

Anisotropic blending can be extended to produce a controlled restricted blend. Indeed,
anisotropy parameters can be seen as blend delimiters.

Bounding curves: Hence, a new operator design method is introduced by Barthe et
al. [BWdG04] for the composition of compactly supported field functions by combining the
representation for binary operators with the use of some angles as parameters. Starting from
the representation for binary operators, the operator space is divided in three main areas:
one area under the line with angle θ1 with the X-axis, one area above the line with angle
θ2 and the third area between the two (see green lines in Figure 2.17(a)). In the two first
areas, the union operator g∪ is used to keep the input fields unchanged. The parameters
θ1 and θ2 thus allow anisotropic blending defined in the metric of the input field functions
by delimiting their blending range. In the third area, isocurves of operator G linking the
same isovalues of f1 and f2 are created as follows. For each isovalue C, the points P1 and
P2 are found. These points correspond to the intersections between the lines f1 = C for
P1 and f2 = C for P2 with the lines with angle θ1 and θ2 respectively. Finally, the desired
blending shape is created using a “profile” curve linking corresponding isocurves of the two
input field functions, as illustrated in red in Figure 2.17. The desired blending shape is
created using a profile function ρ = m(θ) that is finally put in place between points P1

and P2 using polar coordinates. This process is then applied to all isocurves of the input
primitives to draw the operator. Following this construction method, a clean union operator
for compactly supported field functions is also created using specific partitioning curves
meeting at P = (C, C) to divide the 2D space, as illustrated in Figure 2.17(b).

In the work by Hsu and Lee [HL03b], a more detailed analysis of the profile curves is given
along some theorems, properties, such as differentiability, and applications of this new kind
of operators, also considering subtraction operations.

2.2 – Composition Operators: A State of the Art 35

(a) (b)

Figure 2.17: Designing a new binary operator G using a 2D space division by angles θ1 and
θ2 (a). A new clean union operator for compactly supported field functions is also designed (b).
Figures from [BWdG04].

Figure 2.18: Blending of
two tori bounded by six dis-
connected components. Fig-
ure from [PPK05].

Bounding primitives: The idea of bounding the appli-
cation zone of blending has also been extended by Pasko et
al. [PPIK02, PPK05] in order to restrict the blend for glob-
ally supported field functions by bounding the area in which
the blend is applied (see Figure 2.18). Here a compactly sup-
ported implicit surface is used to bound this area: its value
controls the parameter a0 of operator gP (Equation 2.3). At
the boundary of its support a0 = 0, thus producing a clean
union, while its maximal inner value leads to a maximal blend.
A large variety of blending behaviors is then possible depend-
ing on the bounding primitive used. Even though this method provides high user control, it
requires a lot of user input in order to obtain a fair surface shape.

Local Compression: As we have seen, unwanted blending is one of the most focused
issue of implicit surfaces composition, also linked to the blending at a distance problem caus-
ing non-colliding primitives to blend. Another one that is highly problematic when modelling
3D objects is the absorption issue as illustrated in Figure 2.7(b), arising when primitives of
different scales are blended as described by Wyvill and Wyvill [WW00]. This issue is then
addressed in a more effective way by de Groot et al. [dGWvdW09]. The initial primitive
field metrics are locally compressed around the C-surface in order to control the amount of
blending through their blending range (see Figure 2.19). This is achieved according to a set
of parameters: one for isotropic compression of the primitive fields for the general blending
behavior with other primitives, illustrated in Figure 2.19(a) and one for local restriction of
the blend with particular primitives, as depicted in Figure 2.19(b). This operator can also be
seen as a graph-based operator where each node contains a primitive and its global compres-
sion parameter, and each edge contains the local compression parameter to be applied for
both end nodes. While giving advanced control on the blending of primitives and allowing
anisotropic blend, see Figure 2.19(c), this operator really needs a lot of parameters to be set

36 2 – Composition Models

(a) (b) (c) (d)

Figure 2.19: Local restriction of blending by (a) global compression of the base field and (b) pair-
wise local control of blended primitives, (c) leads to better blend control and avoids bulge artefacts.
Note that (d) asymmetric blend can be achieved. Figures from [dGWvdW09].

(i.e. the square of the number of primitives). Moreover, setting the parameters may become
difficult or even impossible when multiple primitives require different blending effects in the
same area because the field metrics cannot be compressed and relaxed at the same time.

Hybrid bounding: Then, in order to avoid the blending at distance and the blurring
of details problems, Bernhardt et al. [BBCW10] automatically define bounding primitives
around the primitives intersection curves. First, intersection curves between the surfaces are
found by locally meshing the surfaces and intersecting the resulting polygons as depicted in
Figure 2.20(a). These curves are then used as the skeleton of the field function defining the
bounding volume with parametrizable support size. The blending range is finally adapted to
the size of the primitives, i.e. a large blend on the large primitive and a small blend on the
small one (see Figure 2.20(c)). This blending range is computed with respect to the local
curvature of the primitives used here as a descriptor of the size of the smallest local feature.
Even though this method is automatic and very effective, it can be quite slow when multiple
intersections occur due to the need for intersection curves computation.

Gradient-based Composition: In order to overcome all of the blending issues shown
in Figure 2.7, a new class of quasi-C∞ continuous gradient-based binary operators are intro-
duced by Gourmel et al. [GBC+13]. Their method takes advantage of the operator design
method of Barthe et al. [BWdG04], i.e. using curves to define the blending region in which
a pattern describing the shape of the composition is reproduced. Inspired by the work of
Rockwood [Roc89], these curves, in yellow in Figure 2.21, are parametrized by a unique
angle α. This angle is set as a function of the angle θ between the gradients of the input
primitives. The function α(θ) is called a controller and allows various composition behaviors
depending on θ, illustrated in Figure 2.22. For instance, the main controller presented in
Figure 2.22(a) produces a maximal blend when the gradients are orthogonal, a clean union
when they are collinear and intermediate blend in between. This “camel” controller prevents
the blending issues as shown in Figure 2.7. Gourmel et al. also proposed an “organic” con-
troller (Figure 2.22(b)) specifically designed for assembling organic shapes, such as the legs
and tail of the camel in Figure 2.22(c). Here, only a little amount of blend is required when

2.2 – Composition Operators: A State of the Art 37

(a) (b)

(c) (d)

Figure 2.20: Bounding the blend around (a) intersection curves avoids blending at a distance
(b). Adapting the blending range according to the size of the primitives (c) avoids absorption when
modelling details (d). Figures from [BBCW10].

gradients are aligned. The amount of blend rises as the gradients diverge up to some angle
where maximal blend is achieved to smoothly assemble parts of the organic object. Blend
then decreases down to a clean union before gradients are opposite in order to design folding
effects.

Whereas the controller should be adjusted with respect to the field variation of the input
primitives, the common use of only one kernel for all primitives limits the required work.
While similar to Rockwood’s gradient based operator, this one enhances user control through
the controller and prevents extra blend when the gradients are opposite. Anisotropic blend-
ing can still be achieved by using different angles for each delimiting curve as in Barthe’s

α

α

α

α

α

(a) (b) (c)

Figure 2.21: Delimiting curves in yellow are defined according to an angle parameter α. New
operators can produce a maximal blend (a), a clean union (c) or an intermediate blend (b).

38 2 – Composition Models

Union

Blend

α

θ

(a) (b) (c)

Figure 2.22: The “Camel” controller (a) prevents the blending issues of Figure 2.7. The “organic”
controller (b) is specifically designed for the blending of organic shapes. Figures from [GBC+13].

operators with one controller for each. In addition, the new set of operators can be used to
define the blending behavior of primitives along an animation by modifying the controller
over time.

These operators are the most advanced operators up to now and prevent the four major
issues of blending to arise, as illustrated in Figure 2.7. They are however rather costly to
evaluate directly since they do not admit a simple closed-form formula. Fortunately, since
the design of such an operator only relies on the design of the profile and the controller,
these operators can be baked into a 3D texture parametrized by the two input field function
values and the gradient angle θ. The final composition field value and gradient are then
retrieved by trilinear interpolation of the neighboring texture elements.

2.3 Free-Form Composition

Blending is not the only interesting effect when objects have to be combined. Actually, the
desired transition shape between the input primitives may be arbitrarily complex, leading
to the development of free-form composition operators.

Taking advantage of the relation between the operator space of Section 2.1 for binary
operators and the object space where the two input field functions are defined, Barthe
et al. [BGC01] introduce the notion of implicit extrusion fields (Figure 2.23). Here, the
composition operator G is represented in operator space for binary operators as a 2D field
function around a 2D profile curve representing the desired shape transition between the
input surfaces (Figure 2.23(b)). We have already seen the correspondence between vertical
and horizontal lines in the operator space and input isosurfaces in object space, but this
is not the only one. In operator space, each point P (X, Y), in red in Figure 2.23(a)-top,
corresponds to the intersection curve in object space between the surfaces defined by f1 = X
and f2 = Y , in red in Figure 2.23(a)-bottom. By extension, a curve in operator space, i.e. a
continuous set of points, in yellow in Figure 2.23(a)-top, represents a surface in object space,
i.e. a continuous set of curves, in yellow in Figure 2.23(a)-bottom. Using this relationship
between these two spaces, the authors provide the user with direct control on the resulting
shape from 2D curves defining the expected transition behavior, thus providing an interesting
sculpting system illustrated in Figure 2.23(c-d).

2.3 – Free-Form Composition 39

(a) (b) (c)

Figure 2.23: The sculpting system for implicit surfaces introduced by Barthe et al. [BGC01,
BDS+03]. Profile curves describing the transition behavior are defined by the user in either the
2D space for binary operator representation (a-top) or the 3D space where the implicit surfaces lie
(a-bottom). Different curve designs are given as examples and used on a plane and a cylinder (b),
and on two cylinders (c).

This idea is then improved [BDS+03] to provide a better framework and give better prop-
erties to the resulting field and surface. It is then extended for compactly supported field
functions [HL03b, BWdG04] as illustrated in Figure 2.24. Here, a free-form profile curve
m(θp), defined in local polar coordinates, is used to deform the blending curve between the
delimiting points P1 and P2.

(a) (b) (c)

Figure 2.24: Designing free-form operators using profile curves (a) describing the desired tran-
sition to link isocurves from the input field functions (b) and its application on two spherical field
functions (c). Figures from [BWdG04].

40 2 – Composition Models

2.4 Contact

A good example of free-form composition is the bulge in contact operator. When soft ob-
jects come in contact during an animation, they are expected to deform against each other
due to the impact force, then creating a bulge around the contact region. Opalach and
Maddock [OM93], followed by Guy and Wyvill [GW95], used a contracting function ct in
their graph-based blending operator to prevent blending between primitives not connected
within the graph by creating a contact surface between them. This contact operation is then
extended to build bulge in contact operators [Gas93,CGD97,OC97] that create bulge when
soft objects are smashed against one another. On top of creating the contact surface in the
interpenetration zone, an additional deformation function is applied in a so-called “propa-
gation area” around the contact surface to create a bulge effect around the interpenetration
zone (see Figure 2.25).

(a) (b)

Figure 2.25: Bulge in contact operators. (a) A contact is created in the interpenetration zone
while bulge is introduced in the propagation area. (b) Resulting shapes for three soft objects deform-
ing from the thin surface to the thick one. Figures from [Gas93].

Further improvements of the contact operators are made by taking into account objects
velocity [OC97], to adapt it to convolution surfaces [AJC02] or to model ripples as illustrated
in Figure 2.26.

(a) (b)

Figure 2.26: Taking into account objects velocity (a) to provide anisotropic bulge in contact for
convolution surfaces. (b) Modelling ripples. Figures from [OC97,AJC02].

2.5 – Conclusion 41

(a) (b)

Figure 2.27: Gradient-based contact operator for bulge at contact (a) and its application on two
colliding cylinders (b). Figures from [GBC+13].

Also, Gourmel et al. [GBC+13] proposed a gradient-based version of the bulge in contact
operator using a particular profile curve, as shown in Figure 2.27. While providing a bulge
in contact effect, this operator does not model the contact surface due to its construction
process.

2.5 Conclusion

A wide range of composition operators have been developed in order to improve user control
on shape modelling and to diversify the composition behaviors of implicit surfaces. Though
the main issues concerning blending composition have been solved for the case of compactly
supported field functions, whether in binary or n-ary compositions, some shortcomings are
still present:

❼ For a modelling process, both union, intersection and difference like operations are
required, but only the union has been studied due to the correspondence between the
Boolean identities. Indeed, since intersection and difference can be expressed using the
union and the complement operations, improving the control, intuitiveness and effi-
ciency of the union operation has been considered enough. However, when applied on
compactly supported field functions, such combination of union and complement oper-
ations can lead to composition artefacts such as creases and distorted fields if no care is
taken. We address this issue in Chapter 3 by introducing new properties for compactly
supported field functions and additional constraints on composition operators.

❼ When composing a very large number of intersecting primitives with different compo-
sition behaviors at the same time, such as in fluid simulations, using binary operators
is not sustainable. However, the use of existing n-ary operators results in surfaces
with sharp features or would require too much parameter tuning to get the desired
composition behavior. In Chapter 4, we focus on particle-based fluid simulations and
introduce a new n-ary operator based on the computation of specific particle neigh-
borhoods tracking the fluid topology.

Chapter 3

Geometric Modelling using Field

Functions

Publication: Adequate Inner Bound For Geometric Modeling with Compact Field Functions,
F. Canezin, G. Guennebaud, L. Barthe. Computers & Graphics, Shape Modeling Interna-
tional (SMI) 2013 conference.

Compactly supported field functions are commonly used as primitives of modelling systems
due to their localisation of the field variation, allowing better composition control and faster
visualisation than globally supported field functions. Another important part of a modelling
system based on field functions is the set of operators used to combine the primitives. As
usual user-interfaces induce an incremental modelling process, binary operators are well
suited to such modelling systems; moreover as the user gives directives to add or suppress
parts of the designed object, the operators are commonly used in a Boolean context, thus
performing unions, intersections and differences of parts, with an extension to deformation
operations.

We thus here focus on binary operators g composing compactly supported field functions
f1 and f2 to result in a new compactly supported field function F :

g : R
2 → R

(X, Y) 7→ g(X, Y) ∈ R

F : R
3 → R

p = (x, y, z)t 7→ F (p) = g(f1(p), f2(p))

Recently developed set of operators are intuitive and effective, and they only focus on the
behavior of the union since intersection and difference operators can be derived from union
or blend operators through the following Boolean rules:

g∩(f1, f2) = 1− g∪(1− f1, 1− f2) (3.1)

g\(f1, f2) = g∩(f1, 1− f2) = 1− g∪(1− f1, f2) , (3.2)

where (1−fi) is the complement of fi with respect to the compactly supported field functions
convention, as introduced in Chapter 1. The surface stays the same while the inside and the
outside are inverted, keeping the same field variation. Thus, as illustrated in Figure 3.1(a),
fundamental constraints considered for the design of composition operators for compactly
supported field functions have been [BWdG04]:

44 3 – Geometric Modelling using Field Functions

sharp

smooth

Figure 3.1: Example of the
desired field behavior after com-
position.

❼ to produce the desired transition for the 0.5-isosurface,
either sharp or smooth, as depicted in Figure 3.1 in the
upper left and bottom right respectively;

❼ to preserve the boundaries of the composed field func-
tions supports, i.e. produce the union of the external
boundaries with 0 field value, as illustrated by the black
curves;

❼ to maintain a smooth field everywhere else, either inside
(red curves under the surface) or outside (blue curves),
to preserve gradient continuity and avoid further com-
position artefacts as in Figure 3.2(a).

The cases of equations 3.1 and 3.2 can lead to inconsistencies because intersection and
difference operators are built on the union of the complements of the input field functions.
Indeed, since the inner values of the field functions are not bound, they can exceed the
value 1 and the complement operation will produce negative field values (as 1− f < 0 when
f > 1), which breaks the convention for compactly supported field functions. Thus, applying
compact-specific operators to the complement is not consistent nor safe and can introduce
several artefacts when further compositions are applied in these unbounded regions. For
example, negative values can arise in the field, as shown in yellow Figure 3.2(b)-left, thus
potentially making it unsuitable for blending operations. For instance, applying further
composition operations in these areas can lead to a surface with undesired cavities as pointed
by the red arrows in Figure 3.2(b)-right.

To solve this problem, we first introduce in Section 3.1 an inner bound as a supplemental
property for the field functions used in geometric modelling, so that the complement oper-
ation can be safely applied, i.e. guaranteeing the same properties for the result as for the
input. As for the support boundary, the inner bound will delimit the region of field variation

(a) (b)

Figure 3.2: Examples of artefacts that can be introduced when the resulting field function presents
gradient discontinuities (a) or negative values (b).

3.1 – Field Function Representation 45

inside the object, then defining with the first one the volume around the surface where the
composition operators can deform it. Secondly, we introduce in Section 3.2 new additional
constraints that the operators must fulfil in order to produce field functions presenting all
the same properties as the input ones. To this end, we show how to adapt recent operators
to achieve conforming intersection and difference operators when derived through Equations
3.1 and 3.2.

Figure 3.3: Depression artefacts
due to the addition of small details.

Finally, we also propose in Section 3.3 a novel set of
asymmetric operators tailored for the representation of
small details on the surface. These new operators bet-
ter preserve the global shape of the outside field: the field
modifications introduced by the details vanish as the dis-
tance to the surface increases, thus removing depression
artefacts produced by previous operators as shown in the
side Figure.

3.1 Field Function Representation

In order to stabilise the stack of composition during the modelling process and to make
the composition model uniform, we first present our consistent representation of compactly
supported field functions and its properties. Our goal is to make the field function f and its
complement (1 − f) satisfy the same properties on which the definition of the composition
operators rely. They must be positive, greater than the isovalue 0.5 inside the volume
delimited by the surface, and lower outside with decreasing values when getting further from
the surface up to a bound, outside of which they must uniformly equal zero. Generally, while
these properties are true for the input field function f , these properties do not hold for its
complement. However they are automatically satisfied as soon as we set an inner bound to 1
in the field of f , as illustrated in Figure 3.4. This simple manipulation can be implemented
for the different families of field functions used in geometric modelling as shown below.

However, as well as the outer bound defining the region around the object where union-like
operators can modify its surface, the inner bound defines the region where the difference-like
operators can produce new shapes. Special care has thus to be taken on the size of the
volume surrounding the surface delimited by these two regions: it has to be large enough to
allow the generation of additional shape on both sides. In general, composition behaviors in
both inner and outer parts are expected to be symmetric and a default solution is thus to
generate symmetric field functions. If required, the size of the inner and outer bands can be
set independently to accommodate for any specific requirement.

Any field function can be adapted to undertake our supplemental constraints. For a
non-consistent compactly supported field function f c, which might come from a skeleton-
based, convolution or non conforming composition object, we propose the following transfer
function:

tc(x) = ϕ

(C − x

r

)

, (3.3)

46 3 – Geometric Modelling using Field Functions

f

0.5

Bound

v

0

d

R

outsideinside

0.5

Bound

1-v

0

d

R

f1-

1
outside inside

(a)
f

0.5

R-r R+r

1

0

d

R

outsideinside f

0.5

R-r R+r

1

0

d

R

1- outside inside

(b)

Figure 3.4: Our consistent representation allows for safe complement operation. Without the
inner bound, it can lead to negative values (a) while the inner bound solves this issue (b).

where C is the isovalue of f c, r ∈ [0, C] is the width of the symmetric band defined around the
surface with respect to the input field metric and ϕ is a smooth-step function. For the choice
of ϕ, any smooth-step function, such as those proposed by Li et al. [LP04] and Li [Li07],
can be employed as soon as ϕ(0) = 0.5. In this work we use the following C2 continuous
polynomial function:

ϕ(x) =

1 if x ≤ -1

0 if x ≥ 1

- 3
16
x5 + 5

8
x3 − 15

16
x+ 1

2
otherwise.

(3.4)

This mapping is symmetric but if required, individual control on the inner and outer
widths can be achieved using for instance the step function of Hsu et al. [HL03a]. For a
globally supported field function f g, which can come from object reconstruction, we use the
transfer function tg = ϕ(x/r). The transfer functions tc and tg and the resulting shape of
the field function f = tc(f c) for two different band widths are shown in Figure 3.5.

3.2 Composition Operators

Now that we have proposed our representation for conformal field functions with respect
to the complement operation (1 − f has the same properties as f), we can focus on the
composition operators. As already stated, intersection and difference operators are derived
from union operators and the complement operation. As for the complement operation,

3.2 – Composition Operators 47

0

1

0.5

C-r

t
c

C

C+r

2C
f

c

f

0.5

2R

1

0

d

R

(a) (b) (c)
t

g

0.5

-r r

1

0
f

g

f

0.5

R-r R+r

1

0

d

R

(d) (e) (f)

Figure 3.5: Transfer functions for making compactly (a) and globally (d) supported field functions
consistent. Varying the width of the variation band around the surface for r = 0 (b) to 0 < r < R
(e) with the corresponding field for a segment-skeleton primitive (c,f).

union operators must then be designed taking this construction into account, and so they
must produce consistent field functions as output. As stated in Chapter 2, binary operators
are of great interest for a constructive modelling process since they enable an advanced design
of complex composition effects. Hence, we focus on binary operators, and more precisely on
gradient-based operators [GBC+13] since they avoid several limitations of implicit modelling
and provide a useful set of parameters.

X = f
1

Y = f
2

Figure 3.6: The operator
space for compactly supported
field functions.

In order to produce field functions respecting the newly de-
fined property, i.e. field functionsbounded to 1, a new adequate
operator g must satisfy several constraints. First, as stated by
Barthe et al. [BWdG04], g must guarantee the continuity of the
result field function F = g(f1, f2) at the support boundaries of
f1 and f2. Indeed, when the composition is applied, the op-
erator must exactly reproduce f1 outside the zone of influence
and at the boundary of f2 (i.e. where f2 = 0), and respec-
tively the other way around (where f1 = 0). An observation
in the operator space for compactly supported field functions
as shown in the side Figure, is that f1 = 0 corresponds to the
Y-axis and f2 = 0 to the X-axis of the operator space. Then
the continuity of the operator at the support boundary is im-
mediately obtained by imposing g(f1, 0) = f1 (along the abscissa axis) and g(0, f2) = f2
(along the ordinate axis). In previous works, g was only constrained to be positive on the
R

+×R
+ domain. However, in order to keep the resulting field f consistent during the mod-

48 3 – Geometric Modelling using Field Functions

elling process, another similar constraint has to be added along the inner boundary of the
input fields (where fi = 0). An analogous observation as for the support boundary can be
made about the inner boundary. Indeed, f1 = 1 corresponds to the vertical line x = 1 and
f2 = 1 to the horizontal line y = 1. The additional constraint can thus be set by imposing
g(f1, 1) = g(1, f2) = 1, then making the new operator g a function g : [0, 1]2 → [0, 1].

Figure 3.7: Clamping the op-
erators into [0, 1] removes higher
than 1 values (from green to
black).

A naive way to enforce such a constraint on the inner
bound is to clamp the resulting field function to the range
[0, 1]. This solution, illustrated in Figure 3.7, is simple but
brings two major artefacts into the resulting field. First,
the clamping introduces a gradient discontinuity along the
inner boundary regardless of the continuity of the input
fields. Thus, composition operators with low degree of
continuity cannot be used on the resulting field function.
For instance, the popular sum operator from Blinn [Bli82]
would be prohibited since it would lack gradient continu-
ity.

Second, clamping the resulting field function will arbitrarily modify the width of the
inner band of field variation around the surface. While implying a lower control over the
composition during the modelling process, this undesired behavior increases with the number
of overlapping compositions as shown in Figure 3.8.

We thus present a new set of binary composition operators avoiding the aforementioned
problems and offering a conform composition model. These operators are adapted from the
state of the art operators of Gourmel et al. [GBC+13] which are the most general and the
most challenging to handle. A similar procedure can be applied to other families of binary
operators such as those of Barthe et al. [BWdG04] and Bernhardt et al. [dGWvdW09].

As already mentioned in Chapter 2, the operators of Gourmel et al. are quasi-C∞ operators
interpolating between a clean-union and a smooth blend. These operators are built using
the operator space for binary operators we also presented in Chapter 2. The operator space

(a) (b) (c) (d)

Figure 3.8: Intersecting 2 planes (a-b) and composing 4 cylinders to build a star (c-d) using a
clamped version of the clean union operator (a,c) leads to uncontrollable bound cutting, while with
our operators (b,d) the bounds of the planes and cylinders are preserved.

3.2 – Composition Operators 49

is split in two regions according to delimiting curves kbase
α as shown in Figure 3.9 in yellow.

These curves are controlled by an angle α and are expressed as follows:

kbase
α (f) =

tan(α)

2

(

4

1 + tan(α)
λα(f)

)2

(3.5)

where the function λα is a C∞ function that clamps the delimiting curve kα when f >
tan(α)/2. The use of trigonometric functions allows piecewise quasi-C∞ continuity between
the composition regions with one parameter only. Polynomials could also be used to provide
high enough continuity but would require much more computations to fix the polynomial
coefficients. Also to be noted, trigonometric functions allow a smooth and continuous inter-
polation between full composition and clean union, leading to midway operators respecting
the same continuity property, which direct interpolation between operators does not provide.

In the first region between the axis and the curves kbase
α , a union is applied in order to

keep the input field functions unmodified (see Figure 3.10(d) - black lines). The second
region between the delimiting curves (see Figure 3.10(a,c,d) - gray) is where the composition
is applied through a profile s̄ describing the desired shape transition between the input
primitives. This profile s̄ is formulated in polar coordinates as ρ = s̄(ϕ) as illustrated in red
in Figure 3.10(b). For the profile to connect the same isovalues of the input field functions,
it is scaled to match the local frame corresponding to the intersection points between the
delimiting curves kbase

α and the isoline of the input field functions (Figure 3.10(c)). The
final operator is then built by reproducing the profile for each isovalue, as illustrated in
Figure 3.10(d) - red curves. The only remaining parameters needed to design a new operator
are the angle α and the composition profile s̄ from which the operator is automatically built.

Setting α as a fixed parameter results in one possible operator for a given profile s̄, meaning
the exact same composition behavior is applied for every point lying in the zone of influence
of both f1 and f2. In order to enhance user control and freedom, α can continuously vary

α

α

α

α

α

(a) (b) (c)

Figure 3.9: Delimiting curves in yellow are defined according to an angle parameter α. New
operators can produce maximal blend when α = 0 (a), clean union when α = π/4 (c) or intermediate
blend (b).

50 3 – Geometric Modelling using Field Functions

kα

f
1

f
2

α

0.5

0.5

φ

s(φ)

1

1

kα

f1

f2

φ

C

kαC() C

kαC()
C - kαC()

C - k
αC())

(

s(
)φ-

O

(f
1
,f

2
)

kα

f
1

2
f

(a) (b) (c) (d)

Figure 3.10: Building composition operators by dividing the operator space (a). A profile de-
scribing the transition shape (b) connects same isovalues of the input field functions (c) in the
delimited region, while a union is applied outside it. The final operator is then automatically built
by connecting all the isovalues (d).

from one evaluation point to another in order to perform different composition behaviors, in
the same application, depending on some criteria. Gourmel et al. propose to make α vary
according to the angle θ between the gradients of the input field functions, as presented in
Figure 3.11(b). The function α(θ) (for example in Figure 3.11(a)) is called a controller and
provides the user with additional control over the behaviors of the operator according to the
angle θ. Hence, by the mean of the controller, the operator can automatically interpolate
between full blending when α(θ) = 0 and clean union when α(θ) = π/4 at different evaluation
points. This results in different composition behaviors applied in one operation as illustrated
in Figure 3.11(c), then solving all the blending issues presented in Chapter 2.

However, these operators introduce values greater than 1 in the resulting field function
(in green in Figure 3.7-left), which are not consistent with our field representation and the
use of the complement operation. Then, to make these operators conformal with our new
representation, we need to ensure that g respects the inner bound of the input field functions,
i.e. g(f1, 1) = g(1, f2) = 1. This is automatically achieved by designing the delimiting curves
kbase
α such that they meet at f1 = f2 = 1, thus “closing” the blending region of the operator

as depicted in Figure 3.12.

Union

Blend

α

θ

θ

θθ

θ

(a) (b) (c)

Figure 3.11: Applying Gourmel operators on two cylinders prevents all blending issues. The pre-
sented controller function (a) maps the angle θ between the input gradients (b) to the parameter α in
order to produce a nice blending only when the surfaces are not tangential. Figures from [GBC+13].

3.2 – Composition Operators 51

P
1

P
2

T
21

T
11

T
22

T
12

P
0

Figure 3.13: Closing the
composition region using Her-
mite curves.

Our first attempt to close the curves kbase
α was to use Her-

mite curves, defined in operator space as illustrated in the side
Figure. These curves go from the points P1 = (0.5, kbase

α (0.5))t

and P2 = (kbase
α (0.5), 0.5)t to the point P0 = (1, 1)t with tan-

gent vectors T11, T12 (in red) and T21, T22 (in green) respec-
tively. While closing the blending region of the operator as
illustrated in Figure 3.12-top row, this formulation presents
some drawbacks. First, the C∞ continuity of the delimitation
curves is lost at points P1and P2 which stand on the surface,
then loosening the surface continuity. Second, tweaking the
tangent vectors T11 and T21 at points P1 and P2, and T12 and
T22 at point P0 to produce smooth transitions between succes-
sive values of α is a bit cumbersome and may produce precision
issues in the computation of the operator’s field in the vicinity
of point P0.

(a) (b) (c)

Figure 3.12: Top row: closing Gourmel et al. operators using Hermite curves provides the
expected composition behavior, but may introduce precision issues in the vicinity of the corner
point. Bottom row: our closed version using trigonometric curves provides higher continuity and
better precision. Three different values of θ are shown, producing (a) full blending, (b) intermediate
blending, and (c) clean-union.

52 3 – Geometric Modelling using Field Functions

We thus decided to use trigonometric and hyperbolic functions for their natural C∞ con-
tinuity and to compose them for controlling the slope of their shape. The new design of the
delimiting curves kα is the following:

kα(f) =

{

kbase
α if f ≤ 0.5

1
2

(

(τ(f)
tanh(1)

+ 1) (2− tan(α)) + tan(α)
)

otherwise

where τ(f) = (tanh ◦ tanh ◦ tan) (π(f − 1)), f ∈ [0, 1].

As for the operators by [GBC+13], this construction does not present a simple closed-form
formulation and we precompute our operators into 3D textures to be fetched for the evalua-
tion. Hence, the supplemental cost due to the use of trigonometric and hyperbolic functions
does not matter when field evaluations are performed for rendering the designed object.
Although texture fetch implies a trilinear interpolation which breaks the C∞ continuity of
the operators, using a high enough texture resolution prevents visual artefacts, even after
several compositions, as shown in Figure 3.14.

Figure 3.14: Using a high enough texture resolution prevents visual artefacts as shown by the
zoom-ins for different resolutions. Figure from [GBC+13].

We now have all the ingredients to build artefact-free intersection and difference operators
by combining our modified union and blending operators following Equations 3.1 and 3.2.
The benefits of our approach are depicted in Figure 3.15 for the cases of a clean union,
a blend and a gradient-based blend. Closing the operators avoids the appearance of the
depression in the inner part (green isocurves). While not really problematic for the union
and blending compositions, this depression becomes really disturbed when a gradient-based
blending is applied. Thus, by removing these depressions and distortions, our operators can
better handle subsequent gradient-based compositions. Figure 3.16 also demonstrates the
effects of our modifications for the cases of intersections and differences. As we can see, the
negative values (shown in yellow) produced by state of the art operators when building the
cylinder are avoided by our operators. This prevents the cuboid from being unexpectedly
deformed by the presence of negative values when it is blended with the cylinder and to
obtain the expected result.

3.2 – Composition Operators 53

(a) (b) (c)

Figure 3.15: Closing the boundary functions of a gradient-based blending operator leads to better
shaped resulting scalar fields. Applications of previous operators (top row) and our operators (bottom
row) using (a) union, (b) clean union and (c) “camel” blending.

(a) (b)

(c) (d)

Figure 3.16: Top row: a hollow cylinder is built by removing a cylinder from a larger one and
then intersecting with 2 planes. The use of Gourmel’s operators [GBC+13] on the left produces
negative field values (a) that lead to an inadequate deformation of the blended cuboid on its side,
where pointed in (c) by the red arrows. This unexpected behavior is naturally avoided by the use of
our operators as shown on the right (b-d).

54 3 – Geometric Modelling using Field Functions

3.3 Operators for Details

Another aspect of constructive modelling is the addition of details to the object. In this
case, the global shape of the surface remains the same while only specific, local portions of it
are modified. Hence, since the field around the surface generally represents a distance field,
its shape is expected to globally resemble the object surface and to be modified only locally
around the details.

This is not the case with state of the art operators, including the ones we introduced
in the previous section, which leave depressions in the field where detail material is added
or subtracted, as shown in Figure 3.17(b). These depressions are undesired from both a
theoretical point of view since they disturb the metric of the input fields, and from the
practical point of view as they introduce unpredictable shape deformations when crossed by
a blend (see Figure 3.20-left).

(a) implicit surface (c) our with s = 1 (d) our with s = 2

(b) state of the art (e) our with s = 4 (f) our with s = 6

Figure 3.17: A cuboid (a) on which two spheres have been added (using a blend) and removed
(using a difference with smooth transition). While this surface is the same for all operators, the
resulting field has different local variations where the spheres are combined. This is illustrated in
the planar section of the resulting field function passing by the centers of the added and removed
spheres. State of the art operators (b) create field depressions. Our new detail operator (c-f) absorbs
the blended/subtracted field functions. The absorption is modulated by the parameter s.

In order to handle the addition of details during the modelling process, we designed a new
set of specific operators g̃θ according to the following reasoning. Where a detail is added to a
surface, the resulting field is expected to progressively vary from the one of the detail to the
field of the main object when moving away from the surface (as shown in Figure 3.17(c-f)).
Assuming f1 to be the main object and f2 the detail to be added or removed, the operator g̃θ

3.3 – Operators for Details 55

must preserve the properties of f1 while continuously vanishing f2 so that its field is smoothly
absorbed. This means that in the specific case of details, the constraints g̃θ(f1, 0) = f1 and
g̃θ(1, f2) = 1 must still hold, but the constraints g̃θ(0, f2) = f2 and g̃θ(f1, 1) = 1 may not be
respected for f2 > 0.5.

Then, in order to keep high control on the way the details are added, our new dedi-
cated operators are gradient-based. They reproduce the behavior of our previously defined
gradient-based operators gθ in the outer part of both input field functions f1 and f2 but
progressively reproduce f1 when moving away from the 0.5 isovalue. This behavior of such
an operator g̃θ is depicted in Figure 3.18, where its isolines are the ones of a standard
gradient-based operator gθ where g̃θ(f1, f2) ≤ 0.5, but progressively “interpolates” between
the 0.5-isoline to the straight vertical line at f1 = 1.

In order to obtain this type of behavior, we first tried to define an interpolation parameter
λ(f1, f2) allowing the interpolation between the fields of g̃θ and f1. However, designing λ to
obtain the desired operator and controlling it appeared to be too complicated and we rather
decided to take advantage of the 2D representation for binary operators. We propose the
following procedure to design the operator g̃θ directly in the 2D space (see Figure 3.19) by
precisely defining the shape of each individual isocurve. Here again, we do not provide a
simple closed-form formulation and the operators are baked into 3D textures.

Given a point x = (f1, f2)
t, c = g̃θ(x) is the value we want to compute. If x is in the

outer part of the field, i.e. gθ(x) ≤ 0.5 (under the magenta curve in Figures 3.18 and 3.19),
then we want the initial operator, i.e. c = gθ(x). Likewise, if x is outside the blending

x1

x2

x1

x2

x1

x2

x1

x2

Figure 3.18: Desired behavior for a detail-specific operator. Far left: current behavior and desired
behavior of the resulting field. Top-row: decomposition of the desired behaviour. We want the same
surface, with the same exterior field, the reproduction of the global object in the most inner part and
interpolation between the first and the latter. Bottom-row: translation of the desired field behavior
in the operator space.

56 3 – Geometric Modelling using Field Functions

0

0

1

1
1

2

f
2

f
1

c
d

o
c
d

T
c

d

kθ

x

ϕ (c
d
)

ϕ
x

1

2

(a) (b)

Figure 3.19: (a) Illustration of our asymmetric operator for details g̃θ with θ = 0 and s = 1.
(b) Illustration of the construction of this operator. The cd-isocurve shown in red is obtained by
cutting the original isocurve of gθ at a polar angle φ(cd) and prolonging it by a straight line Tcd.
The evaluation of g̃θ at an arbitrary position x is performed by iteratively determining whether x

is above or below the isocurve of the current guess cd. The profile curve kθ is shown in yellow, and
the 0.5-isocurve in magenta.

region, i.e. under the curve kθ shown in yellow, then by construction we want c = f1 to
maintain continuity. Otherwise, c is numerically evaluated with a dichotomic search in the
range [0.5, 1], starting with cd = 0.75 as the initial guess. If x is below the cd-isocurve shown
in red in Figure 3.19-right, we continue the search within the range [0.5, cd]. In the opposite
case, we continue the search within the range [cd, 1].

To determine the position of x with respect to the cd-isocurve, we express its position in
polar coordinates (φx, ρx) in the local frame centered at ocd = (kθ(cd), kθ(cd))

t. Then three
cases occur:

❼ If φx ≤ 0, then x is below the cd-isocurve.

❼ If φx ≤ φ(cd), then x is below the cd-isocurve if ρ(φx) < ρx, where ρ(φ) is the profile
curve used to define the blending operator gθ, and above otherwise.

❼ Otherwise we directly check whether x is above or below the tangential half-line Tcd .

This procedure makes the cd-isocurves of gθ straight as soon as they reach the angle φ(cd).
This angle φ is designed to smoothly vary between π/2 and 0: when φ = π/2 we reproduce
gθ while f1 is reproduced when φ = 0. We thus take the following formulation for φ:

φ(t) =
π

2
(2− 2t)s, (3.6)

where the exponent s adjusts the interpolation speed between the 0.5-isovalue of gθ and the
field of f1. Applications of this operator are shown in Figure 3.17 for different values of the
parameter s which modulates the absorption of the blended/subtracted field. In practice,
we suggest s = 4 which has been used for all our experiments and our results figures.

3.4 – Results 57

3.4 Results

Using both our compact support field representation and our new operators, we can now
design complex objects with adequate field variations and metrics in their inside part. These
objects can be drilled with a guaranty that the resulting object is well shaped. Figure 3.20
illustrates a complex object built with several differences and blends. As we can see on
the left of Figure 3.20, despite all their nice properties, Gourmel et al. operators fail in
preserving field variations and metrics when several difference operations at a different scale
are applied. The field of the large drilled spheres has been altered and a consequence is the
asymmetry in the blend between the large spheres and the pedestal. As shown in the right
of Figure 3.20, using of our operators prevents these alterations of the field and the blend is
symmetric.

When applying a difference operation, a very interesting observation is that the inner field
of the subtracted primitive defines a part of the outer field of the result. Another important
observation is that after a composition, we expect the resulting field to follow the shape of
the resulting surface as if approximating the variations of a distance field. Without inner
field control, this is not the case in the inner field part when clean union and blending are
used as illustrated in Figure 3.15 where unexpected field depressions arise. This is also
usually not the case for the difference. The use of an inner bound together with the adapted
operators avoids this problem. Reducing the inner radius of the combined objects enables
the generation of a band around the implicit surface, as for the tubes in Figure 3.21 (a-b). In
this band, the field smoothly approximates a distance field with the metric of the composed
field functions. Figure 3.21 (c-d) shows a similar control on a capsule subtracted from a
sphere.

state of the art operators our operators

Figure 3.20: A complex model built (left) with Gourmel et al. gradient-based operators and
(right) with our novel operators. As we can see in the zoom in the middle-top, details on the spheres
consequently deform the blend between the spheres and the pedestal while in the middle-bottom our
new operators preserve the blending shape. In addition, in the middle-top the same blending shape
is smooth on the pedestal and unexpectedly sharp on the sphere, while in the middle-bottom it is
nicely smooth on both objects with our operators.

58 3 – Geometric Modelling using Field Functions

(a) (b) (c) (d)

Figure 3.21: Adjusting the external boundary using the inner bound and subtracting field func-
tions. A cylinder is properly removed from a slightly larger one (a) and intersection with planes
are used to get the final result (b). (c-d) A capsule is removed from a sphere. Observe in (b) and
(d) how the field approximates a smooth distance field around the implicit surface.

(a) state of the art (b) ours

Figure 3.22: Illustration of our new operator for details. (a) The details are created using
our difference operator and (b) using our new detail-specific difference operator. Note the field
depressions introduced (a)-bottom and the resulting blend deformation between the ball and the
pedestal (a)-top that are avoided (b) with our detail-specific operator.

3.4 – Results 59

While symmetric operators are well suited for large-scale compositions (Section 3.2), when
modelling small features, our detail-aware operator becomes preferable (Section 3.3). This
is demonstrated in Figure 3.22 where a golf-ball like shape is obtained by removing small
spheres from a large one, and then blending the result with a pedestal.

Using symmetric difference operators, the depressions introduced in the field when remov-
ing the small spheres distort the blend between the ball and the pedestal (Figure 3.22 (a)).
This behavior is undesired and unexpected as these small spheres just represent a detail and
the blend should mostly be as the one linking the ball and the pedestal. Figure 3.22 (b)
illustrates the improvement obtained by our new detail specific operator. These behaviors
are also illustrated in Figure 3.20 and 3.23. Figure 3.23 also illustrates the field variations
generated when objects are built using our compactly supported field representation together
with our composition operators.

Figure 3.23: A flute model built using our compactly supported field functions and our adapted
composition operators including detail-specific operators. The quality of the field variations is illus-
trated on a vertical section of the left side of the field function. Note that unexpected depressions
are avoided and the field approximates a distance field in bands located on each side of the implicit
surface.

60 3 – Geometric Modelling using Field Functions

3.5 Conclusion

In this chapter, we have introduced new constraints on field functions so that intersection and
difference composition operators are applied in a consistent manner, avoiding field distortions
and discontinuities. We also provide a method to build composition operators satisfying those
constraints when intersection and difference operators are derived from union or blending.
This method takes advantage of the 2D representation for binary operators which allows a
better understanding of what would happen when an operator is applied and facilitates the
design of new operators. Combining these contributions allows, when applying difference
operators, to dig the outer bound of the resulting field function so that its shape follows the
shape of the surface.

Finally, we have introduced a new specific composition operator for the modelling of thin
details on a surface. This operator smoothly absorbs the removed field, thus avoiding the
introduction of undesired depressions in the resulting field function that would degrade the
shape of subsequent smooth transitions. These advanced operators do not yield analytic
formulas and have to be precomputed into tables to enable fast evaluations.

As future work, it might be interesting to derive analytic formulas reproducing our opera-
tors, even if that means losing C∞ continuity. The study of the transcription of the desired
operator shape in the 2D space into an effective operator could also be of great interest.
For example, defining some constraints as in [BGC01,BDS+03] and diffusing them in a grid
sampling the 2D space is an interesting alternative to look at. The study of interactive
visualizations, especially for the creation of small details and field function based micro ge-
ometries would also be of interest. Finally, the way the details could be positioned and
repeated on the surface is another direction to investigate.

Chapter 4

Handling topology issues in

particle-based Fluid Simulation

Accepted Submission: Topology-Aware Neighborhoods for Point-Based Simulation and Re-

construction, F. Canezin, G. Guennebaud, L. Barthe. ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (SCA) 2016.

4.1 Fluid Simulations

Fluid simulations are an important component of computer graphics, used in real-time ap-
plications such as video games and offline applications such as visual effects in movies and
simulations. Going from liquids to foam or gases (Figure 4.1(a-b)), fluid simulation is a very
active research area for which more and more realistic solutions are expected. Fluid simula-
tions are based on the Navier-Stokes equations describing incompressible fluid dynamics:

ρ

(

∂v

∂t
+ v.∇v

)

= −∇p+ ρg + µ∇2v (4.1)

where v is the fluid’s velocity field, ρ its density, µ its viscosity, p the pressure and g an
external force field (usually the gravity). The additional continuity equation is needed to
ensure mass conservation:

∂ρ

∂t
+∇(ρv) = 0 (4.2)

as well as a state equation for energy conservation, for which numerous formulations have
been developed according to the properties of the simulated fluid (compressible or not, gas,
liquid, etc.).

The different methods for modelling and simulating fluids can be classified in three cat-
egories: Eulerian methods, Lagrangian methods and hybrid methods. Eulerian methods
are based on a regular discretization of the simulation domain tracking the fluid proper-
ties, such as density and velocity, in the vicinity of the discretization points. The surface
of the fluid, e.g. the interface between its volume and the environment, is then retrieved
using Level Set Methods [OF06], Volume of Fluid Methods [PAB+97] or Density-based Ap-
proaches [MMTD07]. All these surface reconstruction methods build an implicit surface
from the fluid properties at the discretization points.

62 4 – Handling topology issues in particle-based Fluid Simulation

(a) (b) (c)

Figure 4.1: Fluid simulations can be used for modelling both gases (a) or liquids (b) dynam-
ics. In particle-based fluid simulations, the particles sample the volume of the fluid (c). Figures
from [WYY13,MM13].

On the other hand, Lagrangian methods rely on a set of particles sampling the volume
of the simulated fluid and carrying its properties (mass, velocity, density) when advected
through the physics equations, as illustrated in Figure 4.1(c). These properties then evolve
during the simulation according to the influence of the local environment (collision with
obstacles, external forces, etc.) and the particle interactions within the fluid. Among the
different methods, the popular Smoothed Particle Hydrodynamics (SPH) method was first
introduced for astronomical simulations [Luc77,GM77]. They became very popular in com-
puter graphics for their efficiency when they are applied to fluid simulations [MP89,MCG03,
MSKG05,BTT09] and are now widely used by the animation industry. In order to extract
the surface of the fluid, particles contributions to the volume of the fluid are combined, thus
generating the final implicit surface for the whole fluid. In the work presented here we tackle
problems in surface reconstruction and focus on particle-based fluid simulations [IOS+14].

4.1.1 Fluid Surface Reconstruction

In particle-based simulations, the fluid surface is defined as an isosurface in a 3D scalar field
computed from the particles properties. A first method to build such a scalar field, originated
from the SPH formulation, is to sum density field functions attached to the particles and
representing their contribution to the volume of the simulated fluid:

φ(x) =
∑

i

fi(x) =
∑

i

mi

ρi
W (x− pi), (4.3)

where pi is the particle position, mi its mass, ρi its density and W is a compactly supported
kernel of radius twice the average particle distance h [Mon92]:

W (r) =
σ

hd
P

(‖r‖
h

)

=
σ

hd

1− 3
2
v2 + 3

4
v3 if 0 ≤ v ≤ 1

1
4
(2− v)3 if 1 ≤ v ≤ 2

0 otherwise

(4.4)

4.1 – Fluid Simulations 63

(a) (b) (c)

Figure 4.2: Using isotropic spheres (a) lead to a “blobby” surface while anisotropic ellipsoids
(b-c) produce a smooth surface. Figures from [YT10,Mül11].

where d is the dimension of the ambient space, σ is a normalizing factor and v = ‖r‖/h. The
main limitation of this method is that the sum generates an oscillating surface exhibiting
bumps around the particles (see Figure 4.2(a)). These oscillations are due to the spherical
shape of the density functions attached to the particles. Addressing these oscillations is
one of the main concern of recent fluid surface reconstruction methods we present in the
following. In addition, as explained in Section 2.2.2, the sum suffers from the blending at a
distance effect which is unnatural for a fluid surface and results in a reconstructed surface
with an incorrect topology.

As a way to address this limitation, Yu and Turk [YT10] propose to use anisotropic density
functions based on the neighborhood particles distribution around their barycenter:

W (r, A) = σdet(A)P (‖Ar‖) (4.5)

where A is a d× d matrix encoding the anisotropy coming from the neighbors distribution.
Hence, particles contributions are transformed from spheres to ellipsoids stretched in the
surface direction and elongated in the tangential directions, as shown in Figure 4.2(b). When
summed, these anisotropic density functions result in a fluid surface that still oscillates but
at an indistinguishable level, as presented in Figure 4.2(c).

A second family of approaches tries to build a scalar field as smooth as possible through
distance field functions. Zhu and Bridson [ZB05] define a distance field function from a
weighted average of both the neighboring particles positions x̄ and their radius r̄:

φ(x) = ‖x− x̄‖ − r̄ (4.6)

x̄ =
∑

i

wixi (4.7)

r̄ =
∑

i

wiri (4.8)

wi =
K(‖x− xi‖/2h)

∑

j K(‖x− xj‖/2h)
(4.9)

64 4 – Handling topology issues in particle-based Fluid Simulation

(a) (b)

Figure 4.3: Averaging neighboring particles positions and radii [ZB05] creates a smooth distance
field (a) that is enhanced by using their derivatives to avoid separation artefacts (b). Figures
from [YT10,SSP07].

where K is a smooth-step function. While smoothing the surface, this method produces
artefacts in the reconstruction occurring when fluid components split, as illustrated in Fig-
ure 4.3. Solenthaler et al. [SSP07] then improve this method and remove these artefacts
using the derivatives of x̄ to smooth its variation for small x variations. Extending this
approach, Adams et al. [APKG07] propose to use particle-to-surface distances di, which are
computed at surface particles and propagated into the fluid, instead of particles radii, as
illustrated in Figure 4.4. Moreover, these distances are recomputed after each simulation
step by projecting particles near the surface onto it and propagating the new distance into
the fluid. This brings temporal coherence into the reconstructed surface by avoiding sudden
unnaturally large modifications.

(a) (b)

Figure 4.4: Defining the surface as a distance field generated by tracking the particle-to-surface
distance [APKG07] (b) also smooths the resulting fluid surface (a). Figures from [YT10,APKG07].

A last family of surface reconstruction approaches applies a post-treatment to smooth
the resulting surface. Once the mesh surface is extracted by means of Marching Cubes
[WMW86, LC87], it can be smoothed via multiple iterations of Laplacian and Bilapacian
mesh smoothing methods as proposed by Williams [Wil08]. The other way to perform this
post-treatment is to directly smooth the scalar field before extraction by minimisation of the
biharmonic energy as proposed by Bhatacharya et al. [BGB11, BGB15]. Both approaches
aim at smoothing the surface with the constraint that it should remain between two unions
of spheres of different radii centered at the particles positions, as illustrated in Figure 4.5.

4.1 – Fluid Simulations 65

(a) (b)

Figure 4.5: Smoothing the result surface as a post treatment (a) with the constraint (b) it (red
curve) should stay between two unions of spheres (blue and green). Figures from [Wil08,BGB11].

4.1.2 Fluid Topology

In all these methods the reconstruction is performed independently at each frame, and
thus does not bring temporal coherence in the surface topology (except for Adams et
al. [APKG07]) nor consistency between the simulated fluid and the reconstructed surface.
Currently, no blending operator nor reconstruction method is able to reconstruct a smooth
fluid surface respecting the fluid topology and the asymmetry of the fusion/separation effects
in a particle-based simulation. Indeed, when fluid components come close to one another,
they do not attract nor blend with each other until contact is made, in which case they im-
mediately merge as illustrated in Figure 4.6(a-b). On the opposite, when fluid components
are going to split, they still blend together until the very moment of the separation, then
leading to a thin trickle connecting them as in Figure 4.6(c-d). When separation is complete
the trickle is split and each component brings back its part of it. Hence, a different blending
behavior is expected between fluid components according to the involved topological events.
Our solution to the surface reconstruction topological issue solves both problems and in ad-
dition, it can be used to enhance the simulation realism and maintain a consistent behavior
between the fluid simulation and the surface reconstruction.

When computing the internal interactions within the fluid, a common and critical step
is the computation of the neighborhood of a particle that defines which particles influence

(a) (b) (c) (d)

Figure 4.6: Illustration of the blending asymmetry of merge (a-b) and split events (c-d) with two
particles.

66 4 – Handling topology issues in particle-based Fluid Simulation

(a) (b)

Figure 4.7: Euclidean neighborhoods do not handle the fluid topology, thus introducing incorrect
particles behavior. When disconnected components, in blue and red, come close by (a), the Euclidean
neighborhood of the green particle includes red particles. Even when a thin wall must separate the
fluid (b)-in blue, the components still interact through it.

the evolution of the fluid’s physical properties it carries. Although only the particles within
a locally common fluid component physically interact, current neighborhood computations
do not consider the fluid topology and they simply return the set of particles located at a
distance lower than a certain threshold. In general, the computation of fluid interactions
requires this distance to include at least three rings of neighbors around a particle. On the
one hand, this Euclidean neighborhood is computationally very efficient and representative
for the fluid inner parts. On the other hand, in the vicinity of the fluid boundaries, particles
belonging to disconnected fluid components can be neighbors and for all of them, the physics
is solved as if they are all within the same contiguous part of the fluid.

This approximation introduces inaccuracies in the simulation. For example, when two
crossing disjoint fluid parts moving in opposite directions influence each other because they
are close enough at a particular time step to be considered in the same neighborhood as
illustrated in Figure 4.7(a). This introduces rotations on the fluid simulation and possibly
attraction and fusions between the components while they should just cross without any
interaction. The situation is the same when a thin wall is meant to separate the fluid into
two distinct components: Euclidean neighborhoods make the components interact through
the wall (see Figure 4.7(b)). When such inaccurate behaviors happen at different locations,
repetitively over time during a simulation, their impact on the result becomes more and
more prominent.

At each time step, once the simulation is computed, the fluid surface has to be recon-
structed in order to be visualized. In this reconstruction, a neighborhood computation is
also required to blend the contributions of the nearby particles, and thus produce a smooth
reconstruction. When using Euclidean neighborhoods, all particles are automatically blended
together to form the reconstructed surface. This produces an inaccurate final surface, which
is not exactly representative of the simulated fluid.

To our knowledge, the only work tackling the topology issue proposes to group the particles
globally by connected components and to blend only the particles within the same component
for rendering [YT13]. In this method, particles are considered in the same component if
they are close enough. Even though it provides a partial solution for improving the fluid

4.2 – Contribution And Overview 67

rendering, this global approach does not allow the detection of disjoint, but close parts of
the same component. Neither is the method able to detect the local fusion and separation
of particles in an accurate fashion nor produce the asymmetric behavior of fluid fusion and
separation. Indeed, two fluid components are to be fused only when they collide, while
surface tension forces maintain two fluid components connected during separation up to a
split when the fluid junction becomes too thin.

4.2 Contribution And Overview

In our work, inspired by the blending graphs introduced to control the compositions in soft
object modelling [OM93,DG95], we propose to manage the fluid topology using a graph. The
fluid topology is represented at the level of each particle by its list of neighbors within its lo-
cal fluid component. The main contributions are then the temporally coherent neighborhood
updates during the simulation with a detection and treatment of the particles fusion and
separation together with a dedicated surface reconstruction. We take into account the asym-
metric behavior of particles fusion and separation, while maintaining the coherence between
the physical simulation and the reconstructed surface. Thereby, we avoid the introduction
of the inconsistent particle behaviors caused by the use of Euclidean neighborhoods, and
we bring a solution to an extremely complex problem in the context of particle-based fluid
simulation.

h

2h

h

2

Our neighborhood computation can be used in most particle-
based fluid simulation and without loss of generality, it is ex-
posed and illustrated in an SPH simulation. Each particle of
index i is associated with a position pi, a density ρi varying
over time, and a constant mass mi. For simplifying the ex-
position, we assume that all particles have the same radius of
influence 2h and their radius is h/2 as illustrated in the side
Figure. At each time step, the density and position of each
particle i are updated from the set Ni of particles j within a
given distance 2h from i, that is Ni = {j | ‖pj − pi‖ < 2h}.
As motivated above, this set of Euclidean neighboring particles might improperly include

particles belonging to a different component of the simulated fluid, which is problematic
for both the simulation and the surface reconstruction. Our main objective in this work is
therefore to filter these neighborhoods such that only the particles that are locally part of the
same fluid component interact. As illustrated in Figure 4.8, we intuitively define this notion
of local components by considering the pairs of particles that are directly connected by a
“piece” of fluid. These so-called topological neighborhoods Gi ⊆ Ni are computed and stored
for each particle i and maintained throughout the simulation such that both the simulation
and the reconstruction remain consistent.

The two main steps of our algorithm are depicted in Figure 4.8. The left figures illustrate
the surface reconstruction with blending at a distance obtained in the case of a standard

68 4 – Handling topology issues in particle-based Fluid Simulation

Euclidean Topological

t t+ 1 t t+ 1

Figure 4.8: Overview of our approach at two successive time steps. Particles are shown in black,
and the reconstructed fluid surface is in blue. Left: standard Euclidean neighborhoods and recon-
struction by the sum lead to unwanted blend at a distance. Right: simulation and reconstruction
using our topological neighborhoods (in red) produce a surface with a more consistent topology.

simulation, and the right figures show both the surface and the graph with topology control
produced with our approach. Given the set of n particles indexed by i ∈ [1, n] (black
dots) and the set {Gi} of their topological neighborhoods at time t (red lines in Figure 4.8
right), we start by reconstructing a fluid surface presenting an adequate topology (in blue
in Figure 4.8 middle right and Section 4.1.1).

Then, the particles at the next time step t + 1 are updated by restricting the simulation
interactions in the fluid to the current topological neighborhoods {Gi}. This integration of
our neighborhoods in the underlying SPH simulation is discussed in Section 4.5.1. From these
new positions (Figure 4.8 far right), the neighborhoods (red lines) are updated by detecting
merges and splits according to the surface reconstruction as detailed in Section 4.4. This
provides the particles with their new topological neighborhoods that are used for the next
surface reconstruction at time t + 1 (in blue in Figure 4.8 far right). The neighborhood
management is however computationally expensive and we show how computations can be
efficiently accelerated and reduced in Section 4.5.

4.3 Topology-Aware Surface Reconstruction

Our reconstruction method is based on two steps. We first compute local reconstructions
from the topological neighborhoods of particles, thus corresponding to the local fluid compo-
nents particles lie in. We then assemble these local reconstructions together through a global
composition keeping connected components together and preventing blending at a distance
to maintain topology consistency.

4.3.1 Local Reconstruction

We now propose a surface reconstruction respecting these topological neighborhoods. For
the following we assume that each particle i knows its topological neighborhood Gi.

4.3 – Topology-Aware Surface Reconstruction 69

W(d)

0 2h

Our proposition is based on the summation of field functions fi
associated with each particle i, for which we chose the following
polynomial P :

P (d) = max
(

0,
(

1− (d
2h
)2
)5
)

(4.10)

which is a very close approximation (in blue in the side Figure)
of the standard SPH kernel of Equation 4.4(in red), having the
advantage of being faster to evaluate.

The particle density ρi is computed in a standard way in SPH by integrating the mass mi

over the topological neighborhood Gi:

ρi = mi +
∑

j∈Gi

mj W (pi − pj) (4.11)

Whereas the masses, the kernel and its radius match the physical simulation, we emphasize
that these densities are computed for reconstruction purpose only. They usually do not
coincide with the densities computed in the physical simulation, as discussed in Section 4.5.1.

At this stage, our goal is to avoid the reconstruction artefacts produced by the sum of all
fi, i.e. the blending at a distance that generates surface attraction and unwanted connections
as illustrated in Figure 4.9. We thus want a field function φ : R3 7→ R reproducing in each
point x ∈ R

3 the sum of the functions fi of the particles that are in the same local fluid
component only, while not blending those in disconnected components.

The blend between particles is generated by the summation of their respective field con-
tributions. Thus, the blending size is controlled by the radial slope and radius of the field
functions defining the particle contributions to the fluid volume. For instance, the higher
the field values and the larger the radius, the larger the blending size. Some approaches
try to adapt these slope and influence by particle [BS95,BGC98,WW00,HL03a] so that the
blending size between a particle and its neighborhood can be locally adjusted. However,
this prevents particles to blend differently with their neighbors according to their local fluid
component and represent to much parameter tuning, say one per particle.

sum of particles contributions expected result

Figure 4.9: Blending the particles with a sum leads to either unwanted blending at a distance
(left red arrow) or bulge (right red arrow) when fluid components should not interact.

70 4 – Handling topology issues in particle-based Fluid Simulation

In order to overcome these limitations, blending graphs can be used [OM93,GW95]. In
these structures particles are sorted by component such that all particles within the same
component blend together while those in different components collide and generate a contact
surface. In these graphs, components can be connected by duplicating, in each component,
the particles by which they are linked.

This is the direction we are following. For each particle i we first define the field function
gi used to reconstruct its local component as follows:

gi(x) = fi(x) +
∑

j∈Gi

fj(x) (4.12)

Figure 4.10(a) illustrates the set of such blended particles from the ones depicted in Fig-
ure 4.9. Particles i are in red and the neighbor particles in Gi are linked with a red edge.
By construction, each field function gi respects the neighborhood Gi and taking the union
of these functions, for instance using maxi gi [Sab68, Ric73], yields a reconstruction with
an adequate topology as shown in Figure 4.10(b). Note that some particles remain outside
the reconstructed surface due to the multiplication by the ratio between the particle mass
and density in Equation 4.3 or to graph update heuristics used in Section 4.4. This Figure
also illustrates that this topologically coherent reconstruction only produces C0 continuous
surfaces. This is due to the union of the functions gi that generates sharp edges where they
intersect, which is undesired for the reconstruction of a fluid surface.

From there, we need to find a way to automatically combine the local topological re-
constructions gi so that the resulting surface presents an adequate topology and does not
exhibit sharp features, i.e. is continuous enough, nor bulge where the local reconstructions
intersect. However, using the initial graph blending [GW95] between the gi will boil down to
a simple union. In the following Section we present approaches we tried by adapting state
of the art operators. Our final topology-aware surface reconstruction solution is presented
in Section 4.3.3.

(a) (b)

Figure 4.10: Illustration of our topological neighborhoods in 2D with union composition. Particles
are shown with black dots, and the reconstructed surface is in blue. In our approach each particle
stores its list of topological neighbors (a - red connections) from which local reconstructions are
defined (a - blue surfaces), one per particle. Taking their union (b) yields the expected topology, but
the surface is only C0 thus exhibiting sharp edges (close-up).

4.3 – Topology-Aware Surface Reconstruction 71

4.3.2 First Attempts For Combining Local Fluid Components

Our first attempt was to take advantage of the work by de Groot et al. [dGWvdW09] (see
Chapter 2), that extends the idea of blending range manipulation in order to allow the same
particle to blend differently with different particles around it via anisotropic field contraction.
This approach is effective in the case of a low number of neighbors, when the local field
deformation only influences the desired particles and is then not practical for particle-based
simulations where a single particle has often a very large number of neighbors. The idea
of this first attempt was to apply this blending range manipulation on the gi instead of
the particles, then reducing the perturbations it introduces within the global reconstruction.
However, the local field modifications do not only affect the desired neighbors but also a set
of nearby particles for which a different blending behavior is expected, making this approach
ineffective. Indeed, since particles contribute not only to their own local reconstruction but
also to their neighbors’, then the local reconstructions largely overlap, thus introducing a
large bulging effect, unless the blending range is totally contracted around the surface, then
once again leading to the union of the gi.

The second attempt we made was to use the recent gradient-based operators [GBC+13]
to benefit from the automatic blend control. Here again, instead of composing particles we
compose their local reconstructions gi in two steps. First, when the gi share particles we
want a slight blend near their intersection, i.e. where the angle between their gradients is
large enough, and a union elsewhere, then producing an expected result close to the one of
the “camel” controller of Section 2.2.5. We hence build global components by iteratively
blending such gi. Second, these global components are combined using a union to keep the
global topology. This approach is however ineffective since such global components do not
handle self-proximity, as the breaking wave of Figure 4.8, and then still present blending at
a distance. Also, the use of binary operators makes the reconstruction unstable since the
resulting surface depends on pairwise compositions and is not suitable for the composition
of the largely overlapping local reconstructions gi (≈ 100 contributing neighbors).

Our last unsuccessful attempt was inspired by the Moving Least Squares method [SOS04]
and the use of gradient based composition to control the amount of blending between the
local reconstructions gi. We start by projecting the evaluation point p onto the surface
of the local reconstruction gi to get the projected point p̃i. This allows to build a nearly
Euclidean distance field ‖p − p̃i‖ between p and gi. The projected point p̃i is iteratively
computed by semi-orthogonal gradient projection following ∇gi, as detailed in Algorithm 1
and illustrated in Figure 4.11. The gradient descent is controlled by the surface isovalue
C, the value of the local reconstruction gi and the norm of is gradient ∇gi at the current
position x. We ensure convergence by setting a maximal step of half the gradient norm. We
thus get the intermediary point x′. In order to have an as orthogonal as possible projection,
we then project the evaluation point p on the plane defined by the intermediary point x′

and the gradient ∇gi(x′). We thus get a second intermediary point x′′. Finally, the new
iteration point is given as the barycenter of x and x′′ to avoid divergence in convex zones.

72 4 – Handling topology issues in particle-based Fluid Simulation

Algorithm 1 Computation of p̃i = projection of p on gi
1: x← p

2: while ‖∇gi(x)‖ > ǫ and |gi(x)− C| > ǫ do
3: // Gradient descent

4: x′ ← x− ∇gi(x)
‖∇gi(x)‖

.(gi(x)− C).min(gi(x)
‖∇gi(x)‖

, 1
2
)

5: // Semi-orthogonal projection

6: x′′ ← p+ [(x′ − p)T ∇gi(x
′)

‖∇gi(x′)‖
]. ∇gi(x

′)
‖∇gi(x′)‖

7: x← x′+x′′

2

8: end while

9: p̃i ← x

From there, the final surface is defined as an isosurface of the following distance field:

φ(p) =

∑N

i=0 ‖p− p̃i‖ ωi(p) θi(p)
∑N

i=0 ωi(p) θi(p)
(4.13)

where ωi is a distance based weighting function:

ωi(p) = 2a3 − 3a2 + 1, a =
p− p̃i

hi

(4.14)

and θi is a gradient based weighting function:

θi(p) = 2b3 − 3b2 + 1, b = 1− ∇gi(p̃i)

‖∇gi(p̃i)‖
T

.
∇gk(p̃k)

‖∇gi(p̃k)‖
(4.15)

where k = argminj‖p − p̃j‖, allowing for control of the blending based on the gradient of
the sharp union. Desired shapes for functions ωi and θi are also illustrated in Figure 4.11.

x
n

x
n
' x

n
''

x
n+1

g
i
(x

n
')

p

Δ

g
i
(x

n
)

Δ

(a) (b) (c) (d)

Figure 4.11: Projection of the evaluation point p on a local reconstruction surface. Particles
and the projected point are drawn in black, intermediary points are in red, and the final projected
point in green. (a) One iteration process, (b) full iteration process. (c) and (d): general behavior
of weighting functions ωi, for distance weight, and θi, for gradient weight, used to control the final
surface reconstruction.

4.3 – Topology-Aware Surface Reconstruction 73

This representation of the fluid surface is however quite complex, very slow to compute
due to the multiple projections, ≈ 500s for 20K particles and a 2003 evaluation grid, and
does not provide a smooth enough surface.

4.3.3 Our Composition Model For Combining Local Fluid Components

We thus came back to traditional n-ary operators for implicit surfaces and take advantage
of the following observation. By construction of our neighborhoods (see Section 4.4), when a
particle j is in Gi then i is in Gj, meaning that the volumes described by the functions gi and
gj largely overlap each other (≈ 100 neighbors). We thus need to slightly blend the functions
gi (Figure 4.10), just enough to avoid sharp edges but without generating bulge nor blending
at a distance (Figure 4.9). This is done by weighting Ricci’s blending operator [Ric73] to
define a new graph-based composition operator as follows:

φ(x) =

(

∑

i

gi(x)
s

|Gi|+ 1

)
1

s

, (4.16)

where s is the parameter for controlling the amount of blending as explained in Section 2.2.1.
The normalization factor |Gi|+1 compensates the multiple occurrences of the same particle
field function, say fi, in the different gj, thus avoiding the introduction of bulges. The multi-
ple occurrences of field functions fi come from the overlapping of the different neighborhoods
Gj (Figure 4.10). We found that taking s = 20 provides a good tradeoff for maintaining the
expected topology while smoothing the edges as illustrated in Figure 4.12(b). The final fluid
surface is then reconstructed as an isosurface defined as the set {x ∈ R

3 | φ(x) = C}, where
C is taken such that the radius of an isolated particle is h/2, i.e. C = W (h/2). This formu-
lation is much simpler than the previous attempts and the final surface (Figure 4.12(b)) is
close to the result of the union (Figure 4.12(a)), but with higher continuity.

(a) (b)

Figure 4.12: Comparison of surface reconstructions in 2D using a union composition (a) and
our new operator (b). Our new operator allows small enough blending between local reconstructions
to smooth out sharp features produced by the union while preventing bulge and blend at a distance.

74 4 – Handling topology issues in particle-based Fluid Simulation

4.4 Topological Neighborhoods

Given the surface reconstruction described in the previous section, we explain how the set
of topological neighborhoods {Gt

i} at a time step t is updated from the previous simulation
step t − 1. This mainly consists in detecting fusion and separation in the fluid surface in
order to maintain an adequate topology. Note that our topological neighborhoods can be
paired with any other reconstruction method that handles the topology issues mentioned
at the beginning of Section 4.1.1. Throughout these updates, we require that the neighbor
relation is symmetric: j ∈ Gi ⇔ i ∈ Gj. We also assume that the topological neighborhoods
are consistent with respect to the fluid components. This means that particles within the
kernel support of each other and that are parts of the same local fluid component must
remain topological neighbors even though a non-merge or split event has been detected (see
Sections 4.4.1 and 4.4.2). This property boils down to the following local transitive-closure
of the neighbor relation:

∀i, j s.t. i 6= j and ‖pi − pj‖ < 2h,
if ∃k ∈ Gt

i ∩Gt
j s.t. max(‖pi − pk‖, ‖pj − pk‖) ≤ αh

then i ∈ Gt
j and j ∈ Gt

i .
(4.17)

In contrast to classical transitive-closure, our local variant restricts the transitivity condi-
tion in two ways. Firstly, it applies only to the pairs of particles that are less than 2h apart
(first line in Equation 4.17). Secondly, it can be inferred only from existing pairs of particles
that are close enough to each other. This proximity is controlled by the parameter α in the
second line of Equation 4.17. We control this proximity because in SPH simulation and re-
construction, the kernel support of the field functions is usually very large, it approximately
matches a three-ring neighborhood. Without this restriction, a transitive-closure would con-
nect distant particles that would not be connected by the surface reconstruction, which is
inconsistent. A typical example is the one presented in Figure 4.8 for which connections
would be created across the fluid handle. Our experiments showed that taking α = 5/4 is
an effective choice.

Since any neighborhood change modifies the reconstructed surface, satisfying all the afore-
mentioned constraints might lead to a chicken-egg problem. Our solution to avoid this
involves the following three steps which are summarized in algorithm 2.

Firstly: the particle positions are updated through the SPH simulation routine using the
neighborhoods {Gt−1

i } (Algorithm 2 line 1), where only topological neighbors interact. For
the initial time step, these neighborhoods are initialized with all particles within the radius
of influence 2h (i.e. G0

i = N0
i). As the particles have moved, their surface reconstruction

densities have to be updated using Equation 4.11 (Algorithm 2 line 2).

Secondly: particle fusions are detected among the pairs of particles whose supports in-
tersect and which are not already neighbors in {Gt−1

i } (Algorithm 2 line 3). As detailed in
Section 4.4.1, this step yields intermediate neighborhoods {G′

i}. Before going any further,

4.4 – Topological Neighborhoods 75

Algorithm 2 Simulation step

1: {pt
i} ← sph update({pt−1

i }, {ρt−1
i }, {Gt−1

i })
2: {ρti} ← reconstruction density update({pt

i}, {Gt−1
i })

Merging stage:

3: {G′
i} ← merge update({pt

i}, {ρti}, {Gt−1
i })

4: local transitive closure({G′
i})

5: {ρti} ← reconstruction density update({pt
i}, {G′

i})
Splitting stage:

6: {Gt
i} ← split update({pt

i}, {ρti}, {G′
i})

7: local transitive closure({Gt
i})

8: {ρti} ← reconstruction density update({pt
i}, {Gt

i})
9: surface reconstruction({pt

i}, {ρti},{Gt
i})

these neighborhoods have to be completed to satisfy the local transitive-closure property
(Algorithm 2 line 4). Also, surface reconstruction densities have to be recomputed to take
into account the novel connections (Algorithm 2 line 5).

Thirdly: pairs of particles which are connected in {G′
i} but that appear to be locally

disconnected with respect to the fluid surface are removed (Algorithm 2 line 6) as detailed
in Section 4.4.2. Again, the local transitive-closure property has to be ensured (Algorithm 2
line 7) to obtain the final updated neighborhoods {Gt

i}. Those are used to update the
densities one more time (Algorithm 2 line 8) before performing the surface reconstruction
(Algorithm 2 line 9).

4.4.1 Component Fusion

For each particle i, we compute an intermediate neighborhood G′
i as the union of the topo-

logical neighborhood Gt
i and the set of particles j within its kernel support for which their

respective local fluid components collide or interpenetrate the one of i. We thus consider
each pair of particles i-j such that j /∈ Gt−1

i , i /∈ Gt−1
j and ‖pi − pj‖ ≤ 2h. Since our recon-

structed surface is very close to the union of the blended neighborhoods (i.e. φ ≈ maxi gi),
we can assume that each of the two blended neighborhoods gi and gj well represent the local
fluid components around the particles i and j respectively. Our problem is then to detect
whether these two pieces of fluid intersect.

We detect the fusion by searching along a 1D parametric line connecting the two particles.
Let rij be the signed distance between pi and the fluid surface defined by gi in the direction

of pj, that is, rij is the largest real value such that gi

(

pi + rij
(pj−pi)

‖(pj−pi)‖

)

= C. By defining

rji analogously, our fusion condition becomes:

‖pi − pj‖ < β(rij + rji) ,

76 4 – Handling topology issues in particle-based Fluid Simulation

i j

0 h

F
ie

ld
 g

i

distance

C
i j

i

j

0-h

F
ie

ld
 g

i

distance

C
i j

(a) (b) (c)

Figure 4.13: Illustration of the merge detection mechanism between two primitives i and j formed
by the red and green particles respectively. Two cases are depicted here for the approximation of
rij. Top row: the position of the isosurface is found using the first tested range. Bottom row:
for an uneven sampling, a second range around the particle i has to be tested. (a) The current
particles and reconstruction. (b) The plot of the field function gi (red curve) of particle i, and its
local approximation by a cubic polynomial (blue curve) passing through the four sampled positions
(black dots). (c) Novel connections and reconstruction after merging.

where β is a small tolerance factor compensating for the small blending produced by Equa-
tion 4.16 and favoring early over late fusions. We always use β = 1.01.

Since each field function evaluation has a computational cost, we estimate the values rij
with cubic polynomial approximations. As depicted in Figure 4.13 top row, we first consider
the interval [h/4, 3h/4] along the given parametric line, and construct the cubic polynomial
that interpolates four sample values of gi uniformly taken within this range. In most cases,
this strategy succeeds in providing the expected result. In some rare cases, as in Figure 4.13
bottom row, an uneven particle sampling might significantly shrink the surface. The current
particle might even lie outside its own local fluid component. In this case, the first sampled
value is below the isovalue (i.e. gi(h/4) < C), and the search interval is shifted to [−h/4, h/4].
The same fitting procedure is then applied. Finally, if the last sampled value is within the
fluid component (i.e. gi(3h/4) > C) then the particle cannot be at the boundary of its
component, and no merge is explicitly detected for this pair. A connection might eventually
be established later through transitive-closure as explained in Section 4.4.3.

We emphasize that this detection of fusion does not depend on the look-up order of the
particles as all primitive evaluations are carried out according to the fixed neighborhoods
{Gt−1

i }, whereas newly detected neighbors produce {G′
i}. Implementation-wise, the use of

four sample values to fit the cubic polynomials enables to fully exploit the SIMD vector
instruction sets of current CPUs: these four evaluations are carried out at the cost of a
single evaluation.

4.4 – Topological Neighborhoods 77

4.4.2 Component Splitting

Component separation or split occurs when particles of the same fluid component move apart
from each other. Each pair i-j of neighbor particles (i.e. j ∈ G′

i and i ∈ G′
j) is checked in

case splitting is required once all fusions have been performed. Two neighbor particles i and
j are split only if the segment [pi,pj] joining them has a part lying outside the local fluid
component defined by the union of their respective blended neighborhoods gi and gj (see
Figure 4.14).

More formally, let ḡij be the minimum of max(gi, gj) along the segment [pi,pj]. If ḡij < C,
then the pair i-j is split. Otherwise, the particle i (resp. j) is inserted into Gt

j (resp.
Gt

i). In practice, we quickly estimate ḡ by fitting a univariate quadratic polynomial to a
given number of sampled values of max(gi, gj) uniformly taken on the segment [pi,pj], as
illustrated in Figure 4.14. As for detecting fusions, we found that taking four samples is
accurate enough in practice while enabling fast SIMD evaluations.

This procedure requires every pair of connected particles to be tested, which is very
expensive as the number of such pairs is two orders of magnitude larger than the number
of particles. The number of splitting tests can be drastically reduced by observing that if
two connected particles are close enough to each other, then a separation is very unlikely to
occur. Each connected pair i-j such that ‖pi − pj‖ < αh are thus preserved and ignored by
the splitting test, where α = 5/4 as for the local transitive-closure in Equation 4.17 since it
plays the same role.

We can now take advantage of our local transitive-closure property to further reduce the
number of splitting tests. Indeed, given a connected pair of particles i-j that can be poten-
tially split, if there exists a third particle k satisfying the local transitive-closure property of
Equation 4.17, then we know that the pairs i-k, and j-k will not be split, and thus the pair
i-j will be set back by the transitive-closure property. The pair i-j has then to be preserved
bypassing the splitting test.

F
ie

ld
 Ф

i j

C

(a) (b) (c)

Figure 4.14: Illustration of the split detection mechanism between two connected particles i and j.
(a) Current configuration and reconstruction. (b) The plot of the union of the two field functions
gi, gj (red curve) along the segment i-j, and its approximation by a quadratic polynomial (blue
curve) fitted on four sample points (black dots). (c) Since the minimum is below C, the pair is split,
resulting in disconnected particles.

78 4 – Handling topology issues in particle-based Fluid Simulation

Finally, the condition for a pair i-j, i ∈ G′
j and j ∈ G′

i, to be inserted into Gt
i and Gt

j can
be summarized as follows:

‖pi − pj‖ < αh
or ∃k ∈ G′

i ∩G′
j s.t. max(‖pi − pk‖, ‖pj − pk‖) ≤ αh

or ḡij ≥ C

4.4.3 Transitive-Closure

As explained earlier, the local transitive-closure property (Eq. 4.17) of our topological neigh-
borhoods has to be satisfied before their use for density estimation or local surface recon-
struction. This explains why passes of transitive-closure update have to be performed both
after detecting merge and split events (lines 4 and 7 of Algorithm 2). Transitive-closure is
usually computed through repeated depth-first or breath-first traversals. However, in our
context the number of pairs that can be added through local transitive-closure is consid-
erably smaller than the number of existing pairs. Therefore, we found that a much faster
strategy consists of looping over each pair of potentially miss-connected particles, i.e. each
pair i-j such that j /∈ Gt−1

i while ‖pi−pj‖ ≤ 2h, and search for a common and close enough
neighbor particle. This step has to be repeated until convergence is achieved, that is until
no novel connection is established. This procedure is illustrated in Figure 4.15. Notice that
thanks to our double locality restriction, the cavity is well preserved.

During the merging stage we loop over the set of potentially missing pairs using the
following method. Each pair for which no merge has been detected is appended to a list.
Then, during transitive-closure updates, it is enough to loop over this list from which a pair

(a) (b) (c)

Figure 4.15: Local transitive-closure. (a) A given particle in red with its current neighbors in
green, its kernel support (large circle), and the set of particles that can be potentially connected to
it in blue. (b) The first sweep of transitive-closure update for this given particle yields the addition
of the five connections in red. The dashed blue line indicates a potential connection that has not
been already established because their respective shared particle was too far away from them. This
one will be established during the next sweep. (c) Resulting connections after applying this step to
all particles repeatedly until convergence is achieved. Again, the dashed blue lines indicate a few
connections that are not introduced (on purpose), because the edges that could infer them are above
our threshold length αh.

4.4 – Topological Neighborhoods 79

is removed if and only if it is added to the set of neighborhoods. For the second pass of
transitive-closure (after the splitting step), it is enough to consider only the list of pairs that
have been split.

4.4.4 Temporal Coherence

During a fusion near a particle i, new particles are inserted into its topological neighborhood.
These new particles are usually close to i meaning that they immediately exhibit a significant
contribution to both the density ρi and the blended neighborhood gi of the given particle
i. As a result, popping might occur in the reconstructed surface, as show in Figures 4.13
and 4.16. In the second Figure, a falling droplet gets immediately absorbed when contact is
detected. We address this issue by tracking the “age” aij of each neighbor relation. For each
newly connected particle i-j, aij is initialized to zero and updated at each frame as follows:

atij = min
(

1, at−1
ij +∆t/γ

)

(4.18)

where ∆t is the time in seconds between two frames, and γ is the duration in which the
age of a relation saturates to 1. For the first frame, the age is initialized to one for all pairs
(i.e. a0ij = 1). This age is then used in the computation of both densities and primitives as
follows:

ρi = mi +
∑

j∈Gi

aijmjW (pi − pj) (4.19)

and

gi(x) = fi(x) +
∑

j∈Gi

(

1-(1-aij)
3
)

fj(x) (4.20)

The difference in weighting enables a better balance between the temporal variations of the
density versus blending. The behavior produced by such a temporal weighting scheme is
depicted in Figure 4.16.

(a) (c) (d) (e)

(b) (h) (g) (f)

Figure 4.16: Illustration of our temporal coherence mechanism on a falling particle (in red)
coming into contact with another fluid component (a). (b) The newly established connections lead
to a quick change in the reconstructed isosurface. The sequence (c) to (h) shows the progressive
absorption produced by our temporal weighting.

80 4 – Handling topology issues in particle-based Fluid Simulation

4.5 Practical Implementation

4.5.1 Integration in a Particle-Based Simulation

Integrating our approach within an existing simulation code only requires to replace loops
over Euclidean neighbors by loops over our topological ones. We implemented our prototype
using DualSPHysics [CDR+15] for the particle simulation, for which we enabled the Shepard
density filter for adjusting densities in the vicinity of the fluid surface. From the physical
aspect, some precautions must be taken however.

The standard SPH integration kernel assumes that the ambient space is full of parti-
cles whereas in general only fluid particles are simulated, resulting in a bias in the density
estimation at the proximity of the fluid surface. On the other hand, removing particles
from a Euclidean neighborhood in these areas, even though they belong to a separate fluid
component, also leads to physically incorrect density computations. This situation changes
as soon as such under-sampled particle neighborhoods are numerically compensated, using
for instance adjusted integration kernels [BK02]. In that case, the use of our topological
neighborhood allows to compute densities and forces consistently and independently of the
presence of a nearby disconnected fluid component. Thus, inadequate fluid interferences
coming from disconnected components are avoided. We also point out that the use of our
topological neighborhood would naturally handle very thin walls between parts of a fluid
since particles in each side would belong to their own topological fluid component. This
avoids particles interactions through the wall and only particle-to-wall interactions remain
to be simulated. We do not show such an example case because the DualSPHysics fluid
simulation enforces the use of large enough walls to avoid the unexpected fluids interactions,
thus preventing particles on one side of the wall to come close enough to penetrate the
influence radius of particles on the other side.

4.5.2 Topological Neighborhood Implementation

Neighborhood updates (steps 2 to 8 of algorithm 2) are implemented on the CPU. All these
steps but the transitive-closure passes are accelerated taking advantage of multi-threading
with OpenMP. In order to avoid memory reallocation during neighborhood updates, each
particle stores the list of all neighbors within the range 2h, say N t. These lists are updated
once per frame using a 3D grid after the particle positions have been updated. Each list is
kept sorted with respect to indices and such that topological neighbors appear first. Flags
are used to distinguish between the different stages of the update (i.e. Gt−1, G′ or Gt).
Sorted lists enable fast searches and set intersections during transitive closure updates.

4.5.3 Efficient Surface Evaluation

Our reconstructed isosurface is extracted as a mesh from a uniform grid which is filled by
evaluating φ through a CUDA implementation. Each evaluation of φ(x) (Eq. 4.16) involves
a pair of nested loops on each nearest primitive and each particle of the current primitive.

4.5 – Practical Implementation 81

These loops are required to find all particles i such that gi(x) is non null, i.e. we have to
find all particles within a sphere centered at x and of radius 4h.

In practice, these search and evaluation can be greatly accelerated by reducing this radius.
Indeed, due to the use of exponentiation with a large number, that is g20i in Equation 4.16,
the contribution of a given field function gi quickly becomes negligible when moving away,
and only the nearest ones have a real impact on the result. Therefore, thanks to the very
large overlap between the field functions gi, we found that it is always sufficient to consider
only the particles within a radius of 3.25h for a gain of about ×1.5. Since the isosurface is
expected to stand at a distance h/2 of the particles, this is a rather conservative choice, and
the search radius can be aggressively shrunk without impacting the reconstruction.

A second optimization consists in stopping the sum over the primitives as soon as it
exceeds Cs, meaning that the evaluation point x is within the fluid. As shown in Table 4.1,
this early stop optimization significantly reduces the grid filling cost, especially where the
fluid covers a large volume.

In addition, our computation of the global field φ is only required in the vicinity of adjusted
neighborhoods. Everywhere else, where {Gi} = {Ni}, it is enough to apply the standard
reconstruction, i.e. summing the fields fi of the Euclidean neighbors of x. Finally, the
number of overall evaluations can be greatly reduced by evaluating the field function at the
proximity of surface particles, as explained by Akinci et al. [AIAT12].

When implementing the grid filling on a GPU, additional care must be taken to maximize
parallelism among the threads of the same warp, i.e. among the packet of typically 32 threads

Scene Table Splash

#particles 3.8k 22.8k 56k

SPH simulation 0.11 1.47 0.3

{Gi} update 0.02 0.17 0.49

G
P
U

E
v
a
l

Grid resolution 462×264×216 2162×334
no optimization 0.68 0.83 66.33

+ early stop 0.68 0.84 14.09

+locality of adjusted neighborhoods 0.40 0.70 1.29

Final eval time (+CUDA warps) 0.33 0.54 0.99
Standard sum of the fi 0.15 0.23 0.28

Table 4.1: Average timings in seconds for the update of one frame for the two scenes shown
in Figure 4.17. Reported timings include the SPH simulation using the DualSPHysics library, the
update of our topological neighborhoods {Gi}, both on the CPU, and the filling of the full marching
cube grid on the GPU using either our reconstruction method or a standard sum of the fi. The
timings for our reconstruction method are reported with different level of optimization, starting from
the naive version evaluating the full field function φ everywhere, then successively adding early-stop,
the restriction to area containing adjusted neighborhoods, and finally the CUDA warp coherence.

82 4 – Handling topology issues in particle-based Fluid Simulation

that follow the same execution flow. Indeed, because of the nested loops, threads attached
to nearby grid points can quickly diverge. We enforce a coherent evaluation by attaching
blocks of 4×4×2 grid points to the same warp that performs a common traversal of the grid
to query the primitives within the union of individual queries. However, branch divergence
still exists because some primitives which have to be processed by at least one thread might
have to be skipped for the others. Further acceleration is thus obtained by skipping the
farthest primitives in a coherent manner using the following pseudo-code algorithm where
{i1, . . . , im} denotes the set of primitive indices processed by the current warp:

k = 1
while k ≤ m do

while k ≤ m and ‖x− pik‖ > 3.25h do k = k + 1 ;

if k ≤ m then accumulate the contribution of gik ;

k = k + 1

This algorithm has the effect of re-synchronizing the threads by making them wait until all
threads have a primitive to work on. This yields an additional ×1.3 speed-up factor for large
grid resolution.

Thus, thanks to our various optimization mechanisms, the overhead induced by the re-
construction of the fluid surface with our approach compared to a standard sum over the
Euclidean neighbors ranges from a factor ×2 to ×3.

4.6 Results and Limitations

We have evaluated our approach on two test scenes (see Figure 4.17) by comparing our
results with those obtained by using Euclidean neighborhoods for the SPH simulation, and
the sum of the field functions fi for the surface reconstruction (denoted as standard).

(a1) (a2)

(b1) (b2)

(c) (d)

Figure 4.17: Two SPH fluid simulations using a standard Euclidean particle neighborhood (a,c),
and our new topological neighborhood (b,d). On the left, two fluid components are crossing while
moving in opposite directions. Our topological neighborhoods perform accurate merge detection and
avoid both unwanted fusions in the reconstruction and incorrect fluid interactions in the simulation.
On the right, our topologically accurate neighborhoods lead to different shape of the splash, and
enable the reconstruction of the fluid with an adequate topology while avoiding bulging at a distance.

4.6 – Results and Limitations 83

4.6.1 Quality

The first scene, called “Table” (Figure 4.17-left), consists of two pieces of water labelled
A and B, moving in opposite directions along a flat table, and passing nearby each other.
The particles of each component have been initialized such that the two respective fluids do
not intersect if simulating them separately. For evaluation purpose, we added an isolated
copy of the second component labelled C, which is initialized with the exact same condi-
tions. Figure 4.18 shows short sequences for two different simulation resolutions. When
using 1260 particles per component, Euclidean neighborhoods quickly merge the two nearby
components in both the simulation and reconstruction, creating small splashes. As a result,
the components become significantly distorted. On the contrary, our topological neighbor-
hoods properly solve the reconstruction ambiguity and thus prevent the interactions between
the two disconnected components within the simulation. As a result, the component B re-
mains identical to its isolated duplicate C. The effect of distant interactions of Euclidean
neighborhoods can be diminished by increasing the number of particles sampling the fluid.
Nonetheless, as shown in Figure 4.18-right, even after increasing the number of particles by
a factor 6, some unwanted fusions and distortions are still present.

In the second test scene (Figure 4.17-right), a droplet composed of about 180 particles hits
a box of still water producing a splash. As can be seen in Figure 4.19, the two simulations
exhibit differences. Figure 4.21 shows the effect of our temporal merging mechanism: as
expected, it can be seen that the falling droplet gets smoothly absorbed by the larger fluid
component. In order to ease the evaluation of our reconstruction method in Figure 4.20, we
thus compare it to reconstruction results obtained using a standard sum of the fi over the
Euclidean neighbors, but using the same particle simulation as in our method. Unwanted
bulging and merging at a distance can be observed throughout the sequence produced by the
Euclidean neighborhoods, whereas our approach successfully tracks the expected topology
of the fluid until components get very close to each other.

4.6.2 Performance

We have measured the performance of our prototype implementation on a computer equipped
with a 3.4GHz Intel Core-i7 processor and an NVIDIA Geforce GTX 580 GPU. Table 4.1
reports average costs of the different steps of our algorithms for three different simulations.
This table also details the impact of the aforementioned optimizations when filling a grid on
the GPU for our simulations. It can be seen that the relative overhead to update our topo-
logical neighborhood highly depends on the simulation. Indeed, for the “Table” scene, the
overhead of our approach is marginal because this scene requires several intermediate simu-
lation steps to avoid numerical instabilities, as automatically determined by DualSPHysics.
On the other hand, DualSPHysics can simulate the “Splash” scene at a much higher rate,
even though it contains more particles. For this scene, the running time of our neighborhood
update is of the same order as the SPH simulation itself.

84 4 – Handling topology issues in particle-based Fluid Simulation

3.8k particles 22.8k particles
#20

#21

#28

#35

#42

#50

B

A

C

#30

#31

#35

#40

#45

#50

A

B

C

Euclidean Topological Euclidean Topological

Figure 4.18: Short sequences of the “Table” simulations using either Euclidean or our topological
neighborhoods. The white labels indicate the respective frame number. The two fluid components
A and B incorrectly interact and merge when using Euclidean neighborhoods, while they naturally
cross without interacting when using our approach (component B remains identical to its isolated
copy C).

Figure 4.19: Illustration of the diverging behavior between a standard simulation (left), and our
approach (right). To highlight the simulation differences, both simulations have been reconstructed
using Euclidean neighborhoods and the silhouette of the right image is reported to the left one.

4.6 – Results and Limitations 85

Figure 4.20: Five consecutive frames of the “Splash” simulation using our neighborhoods. This
figure compares the reconstruction with a standard Euclidean sum of the field functions fi (left), to
our reconstruction method (right). Notice how the water surface is deformed and merged prior to
the actual contact event when using Euclidean neighborhoods.

86 4 – Handling topology issues in particle-based Fluid Simulation

Figure 4.21: Comparison of the standard approach (top row), with our approach (bottom row)
on the “Splash” simulation. Notice how our approach successfully solves the contact event while
enabling a smooth transition through temporal weights. The falling droplet is composed of about 180
particles.

4.6.3 Limitations

The detection of fusion and separation relies on some heuristics, meaning that they can be
detected slightly too early or too late. Nonetheless, the effects of these approximations are
seldom perceptible and they are considerably less prominent than in standard approaches.

In this work we focused on the preservation of the fluid topology, although we have ne-
glected the fairness of the final fluid surface. Although mesh based smoothing techniques can
be used, it would be interesting to investigate the extension of our method to take advantage
of recent advances in the reconstruction of a fluid surface with better tension properties from
SPH simulations.

For instance, incorporating anisotropic primitives [YT10] within our method is straight-
forward. Another approach would be to define the individual clusters gi using any implicit
reconstruction method, for instance Solenthaler et al.’s smooth distance field [SSP07], con-
vert it to a compactly supported field function (see Section 3.1), and combine them using
the original Ricci’s blending operator [Ric73].

4.7 Conclusion

In this chapter, we presented a new n-ary composition operator, capable of representing
asymmetric blending between primitives and supporting a large number of them. This new

4.7 – Conclusion 87

n-ary operator relies on a composition graph to cluster the primitives by local contribution
components that can largely overlap or may not be blend.

For the case of particle-based fluid simulation, our new operator is able to represent
the fluid surface with adequate control of both blend at a distance and surface topology.
Here, our graph-based neighborhoods track the surface topology events such as merges and
splits so that our composition operator produces a final surface with the adequate topology,
thus preventing incorrect bulges and blends. Also, our new neighborhood computation can
benefit to the fluid simulation by preventing incorrect particles behavior when disconnected
components come close one to another but do not intersect. Our results show that our
neighborhoods solve some incorrect behaviors in the simulation and can lead to significantly
different particles motion. Finally, our neighborhoods can be trivially integrated into an
existing particle-based fluid simulation system as it simply replaces the classical Euclidean
neighborhoods.

As future works, we would like to continue to diminish the computational overhead brought
by the computation of our neighborhoods, for instance by exploring a GPU implementation
of their update, and alternative reconstruction strategies exhibiting a lower algorithmic com-
plexity. We would also like to investigate how to integrate fluid properties such as viscosity
and surface tension efficiently into our method and enhance the coupling between topological
neighborhoods, simulation and reconstruction.

Chapter 5

Conclusion

Durant cette thèse, nous nous sommes intéressés à une représentation d’objets 3D particulière
pour l’informatique graphique : les surfaces implicites. Cette représentation volumique est
basée sur deux concepts mathématiques que sont les fonctions de champ scalaire et les
opérateurs de composition. Afin d’expérimenter et valider nos travaux de recherche sur
le contrôle de la forme de la surface résultant d’une opération de composition, nous nous
sommes penchés sur l’utilisation des surfaces implicites dans deux domaines d’application :
la modélisation géométrique et la simulation de fluides par particules.

Pour ce qui est de la modélisation géométrique par surfaces implicites, nous avons étudié
un modèle de surface implicite et son couplage avec des opérateurs de composition binaires.
Ces opérateurs sont utilisés dans un système de modélisation incrémental dans lequel des
éléments de matière sont assemblés, au travers d’opérations de type booléennes, afin de créer
un objet complexe par ajout ou suppression de matière. Ainsi, nous présentons dans nos
travaux de nouvelles contraintes que les fonctions de champ scalaire et les opérateurs de com-
position doivent respecter afin de rendre le modèle de composition unifié et consistant. Leur
mise en œuvre s’est traduite en un nouveau modèle de fonctions de champ scalaire conjoin-
tement à un nouvel ensemble d’opérateurs de composition associés et basés sur la littérature
afin d’offrir un contrôle fin du comportement de la composition. De plus, l’utilisation de ces
deux contributions permet de restreindre la zone de variation du champ scalaire généré par
la surface implicite résultante, notamment pour venir en creuser la délimitation lors d’une
opération de différence afin que celle-ci ressemble plus à la surface. Nous avons conçu nos
nouveaux opérateurs en utilisant la représentation 2D utilisée pour les opérateurs binaire.
Cette représentation établit un parallèle visuel direct entre l’opérateur et son application.
Elle permet une meilleure compréhension de ce qu’il se passe et est très utile pour la con-
ception des opérateurs. Nous en avons d’ailleurs profité pour concevoir un nouvel opérateur
spécifiquement adapté à la modélisation des détails fins sur la surface. Cet opérateur per-
met l’absorption progressive du champ scalaire généré par les détails, supprimant ainsi les
dépressions indésirables dans le champ scalaire de l’objet final afin que celui-ci ressemble
plus à un champ de distance à la surface.

En simulation de fluides par particules, nous avons plutôt investigué les opérateurs n-
aires pour leur capacité à combiner un grand nombre de particules. Nous nous sommes ici
surtout concentrés sur la cohérence temporelle de la topologie de la surface du fluide qui
est reconstruite. Nous avons mis au point un nouvel opérateur n-aire basé sur un graphe
de composition et permettant de réaliser un mélange asymétrique des particules au regard
des fusions et séparations de parties de fluide. Ainsi, les artefacts de gonflements et de
mélange à distance lorsque des parties de fluide passent à proximité les unes des autres
sont évités et la surface reconstruite respecte la topologie du fluide simulé. La cohérence

90 5 – Conclusion

temporelle est obtenue par l’utilisation de voisinages topologiques pour les particules à la
fois dans la reconstruction de la surface pour éviter l’apparition de mélanges indésirables, et
dans la simulation pour le calcul des interactions entre particules pour éviter notamment les
interférences entre parties de fluide disjointes. Nous montrons aussi comment les voisinages
topologiques, que nous utilisons comme graphe de composition, sont mis à jour au cours de
la simulation pour prendre en compte les nombreuses fusions et séparations afin de gérer le
comportement asymétrique du fluide. Enfin, pour garantir un temps de calcul raisonnable
nous proposons plusieurs optimisations pour la reconstruction de la surface du fluide nous
permettant de n’être que trois fois plus lents que la reconstruction standard par simple
somme des contributions des particules.

Nous pensons que les travaux présentés dans cette thèse sont importants et offrent des
contributions pertinentes quant à l’utilisation des surfaces implicites et leurs modèles de com-
position en informatique graphique. Tout d’abord, nous devons reconnâıtre qu’aujourd’hui
les surfaces implicites ne constituent pas une représentation pratique pour concevoir des ob-
jets 3D, comparées aux surfaces de subdivision et surfaces paramétriques qui offrent des outils
plus intuitifs pour la génération et surtout l’édition de la surface. Cependant, l’utilisation
d’un système de modélisation par surfaces implicites en tant qu’application expérimentale
nous a permis de valider à la fois nos modèles de fonctions de champ scalaire et d’opérateurs
de composition et de rendre le processus de composition unifié et consistant.

Ensuite, nos travaux démontrent l’importance de la qualité et des propriétés du champ
scalaire aussi bien à l’extérieur qu’à l’intérieur de l’objet, qui sont indispensables pour beau-
coup d’applications des surfaces implicites comme le contrôle de forme. Un très bon ex-
emple est le couplage des surfaces implicites et des maillages pour l’animation de person-
nages [VBG+13,VGB+14], où les surfaces implicites décrivent le volume de parties du per-
sonnage représenté par un maillage. Durant la mise en mouvement, les sommets du maillage
suivent la surface implicite à laquelle ils sont rattachés en utilisant le gradient du champ
scalaire généré. Ainsi, notre représentation consistante permet d’améliorer ce suivi par la
production d’un champ scalaire sans dépression et avec un gradient plus lisse, comme illustré
en Figure 5.1.

(a) (b) (c)

Figure 5.1: L’Implicit Skinning [VBG+13] utilise le gradient du champ scalaire pour projeter
les sommets du maillage sur la surface (a). Nos opérateurs (c) suppriment les dépressions et
discontinuités de gradient générées par la composition (b), rendant la projection plus stable.

91

De plus, le modèle de composition pour le gonflement au contact utilisé ici peut être
étendu à la modélisation des muscles grâce à notre opérateur d’absorption des détails. Les
surfaces implicites peuvent aussi être utilisées pour représenter des chevelures [ZCG14] ou
des surfaces de forme libre comme les plis pour l’animation de personnages ou la simulation
de vêtements [TFR15,RPC+10] comme illustré Figure 5.2.

(a) (b)

Figure 5.2: Les surfaces implicites peuvent être utilisées pour modéliser des chevelures de type
manga (a) ou des plis sur la peau de personnages animés (b). Images issues de [ZCG14,TFR15].

Enfin, en étendant l’utilisation d’un graphe de composition, nous avons conçu un nouvel
opérateur n-aire capable de passer à l’échelle et permettant un contrôle de la topologie par le
biais d’un mélange asymétrique, ce qui faisait défaut aux opérateurs de la littérature. Nous
sommes persuadés que notre utilisation de voisinages topologiques est un pas important pour
aller plus loin dans la simulation de fluides par particules. Par exemple, le couplage entre nos
voisinages topologiques et la simulation peut amener à un meilleur contrôle des conditions
aux bords, que ce soit pour la frontière du fluide ou la gestion de murs fins, mais aussi à
un mouvement du fluide plus naturel concernant les croisements, fusions et séparations ou
encore à une meilleure gestion des propriétés du fluide comme la vélocité, la viscosité ou la
tension de surface.

Bibliography

[AA04] Marc Alexa and Anders Adamson. On normals and projection operators
for surfaces defined by point sets. In Symposium on Point Based Graphics,
Zurich, Switzerland, June 2-4, 2004. Proceedings, pages 149–155, 2004.

[AC02] Alexis Angelidis and Marie-Paule Cani. Adaptive implicit modeling using
subdivision curves and surfaces as skeletons. In Proceedings of the Seventh
ACM Symposium on Solid Modeling and Applications, SMA ’02, pages 45–52,
New York, NY, USA, June 2002. ACM.

[AIAT12] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner. Parallel surface recon-
struction for particle-based fluids. Computer Graphics Forum, 2012.

[AJC02] Alexis Angelidis, Pauline Jepp, and Marie-Paule Cani. Implicit modeling with
skeleton curves: Controlled blending in contact situations. In International
Conference on Shape Modeling and Applications (SMI’02), pages 137–144.
IEEE Computer Society Press, May 2002.

[APKG07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. Adap-
tively sampled particle fluids. ACM Transactions on Graphics, 26(3), July
2007.

[BBCW10] Adrien Bernhardt, Löıc Barthe, Marie-Paule Cani, and Brian Wyvill. Implicit
blending revisited. Proceedings of Eurographics, Computer Graphics Forum,
29(2):367–376, 2010.

[BDS+03] Löıc Barthe, N. A Dodgson, M. A Sabin, B. Wyvill, and V. Gaildrat.
Two-dimensional potential fields for advanced implicit modeling operators.
Computer Graphics Forum, 22(1):23–33, 2003.

[BGB11] Haimasree Bhatacharya, Yue Gao, and Adam Bargteil. A level-set method
for skinning animated particle data. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’11,
pages 17–24, New York, NY, USA, 2011. ACM.

[BGB15] Haimasree Bhattacharya, Yue Gao, and Adam W. Bargteil. A level-
set method for skinning animated particle data. IEEE Transactions on
Visualization and Computer Graphics, 21(3):315–327, March 2015.

[BGC98] Löıc Barthe, Véronique Gaildrat, and R. Caubet. Combining implicit surfaces
with soft blending in a CSG tree. In Proceedings of CSG Conference Series,
pages 17–31, 1998.

94 Bibliography

[BGC01] Löıc Barthe, V. Gaildrat, and R. Caubet. Extrusion of 1D implicit profiles:
Theory and first application. International Journal of Shape Modeling, 7:179–
199, 2001.

[BHK14] Pierre Bénard, Aaron Hertzmann, and Michael Kass. Computing smooth
surface contours with accurate topology. ACM Transactions on Graphics,
33(2), 2014.

[BK02] J. Bonet and S. Kulasegaram. A simplified approach to enhance the per-
formance of smooth particle hydrodynamics methods. Applied Mathematics
and Computation, 126(2-3):133–155, March 2002.

[Bli82] James F. Blinn. A generalization of algebraic surface drawing. ACM
Transactions on Graphics, 1(3):235–256, July 1982.

[Blo97] J. Bloomenthal. Bulge elimination in convolution surfaces. 16(1):31–41, 1997.

[BMO+14] Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and
Miles Macklin. A survey on position-based simulation methods in computer
graphics. Computer Graphics Forum, 33(6):228–251, 2014.

[BS91] Jules Bloomenthal and Ken Shoemake. Convolution surfaces. In SIGGRAPH
Comput. Graph., volume 25, pages 251–256. ACM, July 1991.

[BS95] Carole Blanc and Christophe Schlick. Extended field functions for soft objects.
In Proceedings of Implicit Surfaces 1995, pages 21–32, 1995.

[BTT09] Markus Becker, Hendrik Tessendorf, and Matthias Teschner. Direct forcing
for lagrangian rigid-fluid coupling. IEEE Transactions on Visualization an
Computer Graphics, 15(3):493–503, 2009.

[Buh01] Martin Buhmann. A new class of radial basis functions with compact support.
Mathematics of Computation, 70(233):307–318, 2001.

[BWdG04] Löıc Barthe, Bryan Wyvill, and Erwin de Groot. Controllable binary CSG
operators for “soft objects”. International Journal of Shape Modeling,
10(2):135–154, 2004.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans. Reconstruction and representation of 3D objects
with radial basis functions. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’01, pages 67–76.
ACM, 2001.

Bibliography 95

[CDR+15] A.J.C. Crespo, J.M. Domı́nguez, B.D. Rogers, M. Gómez-Gesteira, S. Long-
shaw, R. Canelas, R. Vacondio, A. Barreiro, and O. Garćıa-Feal. Dual-
sphysics: Open-source parallel CFD solver based on smoothed particle hy-
drodynamics (SPH). Computer Physics Communications, 187(0):204–216,
2015.

[CGBG13] Jiazhou Chen, Gael Guennebaud, Pascal Barla, and Xavier Granier. Non-
oriented mls gradient fields. In Computer Graphics Forum, volume 32, pages
98–109. Wiley Online Library, 2013.

[CGD97] Marie-Paule Cani-Gascuel and Mathieu Desbrun. Animation of deformable
models using implicit surfaces. Visualization and Computer Graphics, IEEE
Transactions on, 3(1):39–50, 1997.

[DG95] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft substances with
implicit surfaces. In Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’95, pages 287–290, New
York, NY, USA, 1995. ACM.

[dGWvdW09] Erwin de Groot, Brian Wyvill, and Huub van de Wetering. Locally restricted
blending of blobtrees. Computers & Graphics, 33(6):690–697, 2009.

[DKT98] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in char-
acter animation. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 85–94, 1998.

[Gas93] Marie-Paule Gascuel. An implicit formulation for precise contact modeling
between flexible solids. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’93, pages 313–
320, New York, NY, USA, 1993. ACM.

[GBC+13] Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bern-
hardt, Mathias Paulin, and Herbert Grasberger. A gradient-based implicit
blend. ACM Transactions on Graphics, 32(2):1–12, April 2013.

[GDW+16] Herbert Grasberger, Jean-Luc Duprat, Brian Wyvill, Paul Lalonde, and Jarek
Rossignac. Efficient data-parallel tree-traversal for blobtrees. Comput. Aided
Des., 70(C):171–181, January 2016.

[GG07] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. In ACM
SIGGRAPH 2007 papers, SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[GGG08] Gaël Guennebaud, Marcel Germann, and Markus Gross. Dynamic sampling
and rendering of algebraic point set surfaces. In Computer Graphics Forum,
volume 27, pages 653–662. Wiley Online Library, 2008.

96 Bibliography

[GGP+15] Jean-David Génevaux, Eric Galin, Adrien Peytavie, Eric Guérin, Cyril Bri-
quet, François Grosbellet, and Bedrich Benes. Terrain modelling from feature
primitives. In Computer Graphics Forum, volume 34, pages 198–210. Wiley
Online Library, 2015.

[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: the-
ory and application to non-spherical stars. Monthly Notices of the Royal
Astronomical Society, 181(3):375–389, 1977.

[GW95] Andrew Guy and Brian Wyvill. Controlled blending for implicit surfaces
using a graph. In Proceedings of Implicit Surfaces 1995, pages 107–112, 1995.

[HAC03] Samuel Hornus, Alexis Angelidis, and Marie-Paule Cani. Implicit modelling
using subdivision-curves. Visual Computer, 19(2-3):94–104, May 2003.

[HC12] Evelyne Hubert and Marie-Paule Cani. Convolution surfaces based on polyg-
onal curve skeletons. Journal of Symbolic Computation, 47(6):680–699, 2012.
Advances in Mathematics MechanizationMathematics Mechanization.

[HH85] Christoph M. Hoffmann and John E. Hopcroft. Automatic surface generation
in computer aided design. Technical report, Ithaca, NY, USA, 1985.

[HL03a] P. C. Hsu and C. Lee. Field functions for blending range controls on soft
objects. Proceedings of Eurographics, Computer Graphics Forum, 22(3):233–
242, 2003.

[HL03b] P-C Hsu and C Lee. The scale method for blending operations in functionally-
based constructive geometry. In Computer Graphics Forum, volume 22, pages
143–158, 2003.

[HL08] S. Holzer and O. Labs. surfex 0.90. Technical report, University of Mainz,
University of Saarbrücken, 2008. www.surfex.AlgebraicSurface.net.

[IOS+14] Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and
Matthias Teschner. Sph fluids in computer graphics. In Sylvain Lefebvre and
Michela Spagnuolo, editors, Eurographics 2014 - State of the Art Reports.
The Eurographics Association, 2014.

[JT02] Xiaogang Jin and Chiew-Lan Tai. Analytical methods for polynomial
weighted convolution surfaces with various kernels. Computers & Graphics,
26(3):437–447, 2002.

[Kra] Matjuška Teja Krašek. Submission to the SURFER competition 2015 in
Ljubljana of the Imaginary Project.

Bibliography 97

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–
169, August 1987.

[Li07] Q. Li. Smooth piecewise polynomial blending operations for implicit shapes.
Computer Graphics Forum, 26(2):157–171, 2007.

[LP04] Qingde Li and Roger Phillips. Implicit curve and surface design using smooth
unit step functions. In Proceedings of the ACM symposium on Solid modeling
and applications, SM ’04, pages 237–242. Eurographics Association, 2004.

[Luc77] L.B. Lucy. A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, 82:1013–1024, December 1977.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid
simulation for interactive applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03,
pages 154–159, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[MGV11] I. Macêdo, J. P. Gois, and L. Velho. Hermite radial basis functions implicits.
Computer Graphics Forum, 30(1):27–42, 2011.

[MM13] Miles Macklin and Matthias Müller. Position based fluids. ACM Transactions
on Graphics (TOG), 32(4):104, 2013.

[MMTD07] Patrick Mullen, Alexander McKenzie, Yiying Tong, and Mathieu Desbrun. A
variational approach to eulerian geometry processing. ACM Transactions on
Graphics (TOG), 26(3):66, 2007.

[Mon92] J. J. Monaghan. Smoothed particles hydrodynamics. Annual review of
astronomy and astrophysics, 30:543–574, 1992.

[MP89] Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle
system for animating viscous fluids. Computers & Graphics, 13(3):305–309,
1989.

[MS98] Jon McCormack and Andrei Sherstyuk. Creating and rendering convolution
surfaces. In Computer Graphics Forum, volume 17, pages 113–120. Wiley
Online Library, 1998.

[MSKG05] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross.
Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05,
pages 237–244, New York, NY, USA, 2005. ACM.

98 Bibliography

[Mül11] Matthias Müller. Overview of traditional surface tracking methods. ACM
Siggraph 2011 courses, 2011.

[NHK+85] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and K. Omura.
Object modeling by distribution function and a method of image generation.
1985.

[OC97] Agata Opalach and Marie-Paule Cani. Local deformation for animation of im-
plicit surfaces. In Wolfgang Straßer, editor, Spring Conference on Computer
Graphics (SCCG), Bratislava, Slovakia, June 1997.

[OF06] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit
surfaces, volume 153. Springer Science & Business Media, 2006.

[OM93] Agata Opalach and Steve Maddock. Implicit surfaces: Appearance, blending
and consistency. In In Fourth Eurographics Workshop on Animation and
Simulation, pages 233–245, 1993.

[PAB+97] Elbridge Gerry Puckett, Ann S Almgren, John B Bell, Daniel L Marcus, and
William J Rider. A high-order projection method for tracking fluid interfaces
in variable density incompressible flows. Journal of Computational Physics,
130(2):269–282, 1997.

[PASS95] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function representa-
tion in geometric modeling: concepts, implementation and applications. The
Visual Computer, 11(8):429–446, 1995.

[PHK11] Sylvain Paris, Samuel W Hasinoff, and Jan Kautz. Local laplacian filters:
edge-aware image processing with a laplacian pyramid. ACM Trans. Graph.,
30(4):68, 2011.

[PPIK02] Galina Pasko, A Pasko, M Ikeda, and T Kunii. Bounded blending operations.
In Proceedings of Shape Modeling International, 2002, pages 95–103, 2002.

[PPK05] Galina I. Pasko, Alexander A. Pasko, and Tosiyasu L. Kunii. Bounded
blending for Function-Based shape modeling. IEEE Computer Graphics and
Applications, 25(2):36–45, 2005.

[Ric73] A. Ricci. A constructive geometry for computer graphics. Computer Journal,
16(2):157–160, May 1973.

[RO85] Alyn Rockwood and J. C. Owen. Blending surfaces in solid modeling. In
Proceedings of SIAM Conference on Geometric Modelling and Robotics, 1985.

[Roc89] A. P. Rockwood. The displacement method for implicit blending surfaces in
solid models. ACM Transactions on Graphics, 8(4):279–297, October 1989.

Bibliography 99

[RPC+10] Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and
Sheffer Alla. Animation wrinkling: Augmenting coarse cloth simulations with
realistic-looking wrinkles. ACM Transactions on Graphics, 29(5):157, Decem-
ber 2010.

[RS08] Martin Reimers and Johan Seland. Ray casting algebraic surfaces using the
frustum form. In Computer Graphics Forum, volume 27, pages 361–370.
Wiley Online Library, 2008.

[Sab68] M-A Sabin. The use of potential surfaces for numerical geometry. In Technical
Report VTO/MS/153, British Aerospace Corp., Weybridge, U.K., 1968.

[She99] Andrei Sherstyuk. Kernel functions in convolution surfaces: a comparative
analysis. The Visual Computer, 15(4):171–182, 1999.

[SOS04] Chen Shen, James F. O’Brien, and Jonathan Richard Shewchuk. Inter-
polating and approximating implicit surfaces from polygon soup. ACM
Transactions on Graphics, 23(3):896–904, 2004.

[SSP07] Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. A unified particle
model for fluid–solid interactions. Computer Animation and Virtual Worlds,
18(1):69–82, 2007.

[TFR15] Fabio Turchet, Oleg Fryazinov, and Marco Romeo. Extending implicit skin-
ning with wrinkles. In Proceedings of the 12th European Conference on Visual
Media Production, CVMP ’15, pages 11:1–11:6, New York, NY, USA, 2015.
ACM.

[VBG+13] Rodolphe Vaillant, Löıc Barthe, Gaël Guennebaud, Marie-Paule Cani,
Damien Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. Im-
plicit skinning: Real-time skin deformation with contact modeling. ACM
Trans. Graph., 32(4), July 2013.

[VGB+14] Rodolphe Vaillant, Gäel Guennebaud, Löıc Barthe, Brian Wyvill, and Marie-
Paule Cani. Robust isosurface tracking for interactive character skinning.
ACM Trans. Graph., 33(6), November 2014.

[Wen95] Holger Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Advances in computational
Mathematics, 4(1):389–396, 1995.

[Wen04] Holger Wendland. Scattered data approximation, volume 17. Cambridge
university press, 2004.

100 Bibliography

[WGG99] Brian Wyvill, Andrew Guy, and Eric Galin. Extending the CSG tree - warp-
ing, blending and boolean operations in an implicit surface modeling system.
Computer Graphics Forum, 18(2):149–158, June 1999.

[Wik] Wikipedia. Constructive solid geometry.

[Wil08] Brent Warren Williams. Fluid surface reconstruction from particles. Master’s
thesis, The University of British columbia, Canada, 2008.

[WMW86] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft
objects. The Visual Computer, 2(4):227–234, February 1986.

[Wu95] Zongmin Wu. Compactly supported positive definite radial functions.
Advances in Computational Mathematics, 4(1):283–292, 1995.

[WW00] Brian Wyvill and Geoff Wyvill. Better blending of implicit objects at different
scales. ACM Siggraph 2000 presentation, 2000.

[WYY13] Xiaoyue Wu, Xubo Yang, and Yang Yang. A novel projection technique with
detail capture and shape correction for smoke simulation. Computer Graphics
Forum, 32(2pt4):389–397, 2013.

[YHB05] Alex Yvart, Stefanie Hahmann, and Georges-Pierre Bonneau. Hierarchical
triangular splines. ACM Trans. Graph., 24(4):1374–1391, October 2005.

[YT10] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based fluids
using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH
/Eurographics Symposium on Computer Animation, SCA ’10, pages 217–
225, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

[YT13] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based fluids us-
ing anisotropic kernels. ACM Transactions on Graphics, 32(1):1–12, February
2013.

[Zan13] Cédric Zanni. Skeleton-based implicit modeling and applications. Thesis,
Université de Grenoble, December 2013.

[ZB05] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM
Transactions on Graphics, 24(3):965–972, July 2005.

[ZBQC13] Cédric Zanni, Adrien Bernhardt, Maxime Quiblier, and Marie-Paule Cani.
Scale-invariant integral surfaces. Computer Graphics Forum, 32(8):219–232,
December 2013.

[ZCG14] Cédric Zanni, Marie-Paule Cani, and Michael Gleicher. N-ary implicit blends
with topology control. Computers & Graphics, October 2014.

Study of the Composition Models of Field Functions in
Computer Graphics

Abstract:

Field functions are a powerful mathematical tool for surface representation in computer
graphics. Despite the volume information they provide, combined with the composition
models accompanying them, field functions are still used in only a few number of applications
due to their limitations such as slow user interactions and a difficult shape control.

In this thesis we study these composition models in order to develop and improve them and
make them efficient and relevant for computer graphics. We do so through two applications.

The first one is geometric modelling, where field functions represent object compounds
that are combined pairwisely in an iterative creation process to design complex objects.
We propose to unify and make consistent both the field function representation and the
composition model to provide a more stable and artefact-free modelling process.

The second one is fluid simulation and reconstruction based on particles. Here, field func-
tions represent contributions of the particles sampling the fluid volume. These contributions
are then combined in a row to build the fluid surface. In this application, we propose to take
the topology of the reconstructed surface into account when running the fluid simulation,
thus avoiding an inappropriate behavior of the particles, and then of the simulated fluid.

Keywords:

Computer Graphics, Implicit Surfaces, Composition Operators, Modelling, Fluid
Simulation

Florian Canezin

Study of the Composition Models of Field Functions in
Computer Graphics

Thèse de doctorat soutenue le 08 Septembre 2016 à l’Université Toulouse 3 Paul Sabatier

Directeurs de Thèse: Löıc Barthe et Gaël Guennebaud

Résumé

Les fonctions de champ scalaire sont un outil mathématique puissant pour la représentation

de surfaces en informatique graphique. Malgré l’information de volume qu’elles offrent, com-

biné aux modèles de composition qui les accompagnent, les fonctions de champ scalaire ne

sont encore utilisées que dans très peu d’applications en raison de leurs limitations, telles

qu’une interaction utilisateur lente et un contrôle de la forme de la surface difficile.

Dans cette thèse, nous étudions ces modèles de composition dans le but de les développer,

de les améliorer et de faire en sorte qu’ils soient efficaces et pertinents pour l’informatique

graphique. Pour cela, nous nous intéressons à deux applications.

La première est la modélisation géométrique, où les fonctions de champ scalaire représent-

ent des composants d’objets qui sont assemblés par paires dans un processus de création

incrémental pour construire des objets complexes. Nous proposons une représentation unifiée

des fonctions de champ scalaire et du modèle de composition afin d’obtenir un processus de

modélisation plus stable et sans artefacts.

La deuxième application à laquelle nous nous intéressons est la simulation et la recon-

struction de fluides basées particules. Ici, les fonctions de champ scalaire représentent les

contributions des particules qui échantillonnent le volume du fluide. Ces contributions sont

alors combinées d’un coup pour reconstruire la surface du fluide. Nous proposons dans ce

cadre de prendre en compte la topologie de la surface reconstruite dans la simulation, évitant

ainsi un comportement inapproprié des particules, et donc du fluide ainsi simulé.

Mots clés

Informatique graphique, Surfaces implicites, Opérateurs de composition, Modélisation,

Simulation de fluides

Thèse en informatique réalisée à l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier),
au sain de l’Institut de Recherche en Informatique de Toulouse (IRIT),

118 route de Narbonne 31062 TOULOUSE CEDEX 9

