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Abstract

“It is not knowledge, but the act of learning,
not possession but the act of getting there,

which grants the greatest enjoyment”

Carl Friedrich Gauss

The voice is the most crucial tool allowing communication between human
beings, therefore a healthy voice is important to people’s daily life, especially for
the professional voice users. It is imperative to find techniques to provide compre-
hensive information about the voice production mechanism and, more specifically,
to examine the vocal folds vibratory behavior by Laryngeal High-Speed Videoen-
doscopy (LHSV). Thus, the present work aims to contribute to the analysis of the
vocal folds vibratory function by proposing new and more robust tools based on
image processing techniques.

Due to the vast amount of data that has to be evaluated both quantitatively and
qualitatively, a dimensionality reduction of the spatial-temporal data is necessary
by condensing the information into a few static representations that synthesize the
vocal folds motion. Most of the milestones achieved until now are thanks to the
segmentation and tracking of the glottal gap which is not a trivial task due to fac-
tors as noise in the image, variability in illumination, variability of the gray levels
presented in the glottal gap, fuzziness, blurring edges, movements of the camera
and/or patient.

In that respect, two algorithms to tackle the problem of the glottal gap segmen-
tation are proposed. The first one, named Glottal Segmentation Based on Water-
shed Transform and Active Contours (SnW), identifies a Region of Interest (ROI)
that is automatically updated, and combines Deformable Models and Watershed
Transform for the final delineation of the glottal gap. Thanks to the ROI implemen-
tation, the proposal resists to the camera shiftings. The second one, called Glottal
Segmentation Based on Background Subtraction and Inpainting (InP), presents a
quasi-automatic framework to segment accurately the glottal gap introducing sev-
eral techniques not explored before in the state of the art. The method takes advan-
tage of the possibility of a minimal user intervention in cases where the automatic
computation fails. In addition, a set of guidelines to measure the accuracy and effi-
ciency of the segmentation algorithms are proposed. These guidelines are divided
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ABSTRACT

into three groups according to their nature: analytical, subjective, and objective.
The results obtained suggest that a more reliable delimitation of the glottal gap
is obtained with InP, achieving an average improvement of 13% with respect to
others techniques in the state of the art, and 18% with respect to SnW. Addition-
ally, the results show that the set of validation guidelines proposed can be used to
standardize the criteria of accuracy and efficiency of the segmentation algorithms.

Lastly, the application of Optical Flow (OF) is investigated in order to solve
the problems related to segmentation. Three new playbacks are proposed to under-
stand the dynamical information of the vocal folds. Two of them, called Optical
Flow Glottovibrogram (OFGVG) and Glottal Optical Flow Waveform (GOFW),
analyze the global dynamics; and the remaining one, called Optical Flow Kymo-
gram (OFKG), analyzes the local dynamics. The advantages, drawbacks and the
complementarity to existing methods are discussed. The new playbacks are tested
on a database of 60 LHSV sequences which covers different voice qualities for
spoken and sung vowels. The new data representations have been compared with
commonly used facilitative playbacks. Results show that they provide additional
information on the temporal dynamics of glottal vibratory movements during glot-
tal closing and opening phases.
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Resumen

“No es el conocimiento, sino el acto de
aprendizaje, y no la posesión, sino el acto de
llegar allí, lo que concede el mayor disfrute”

Carl Friedrich Gauss

La voz es una herramienta esencial en la que se fundamenta la comunicación
de los seres humanos por este motivo tener una voz saludable es importante para
el diario vivir de las personas, y más aún si esta es utilizada como una herramienta
profesional de trabajo. Por tal motivo, es imperioso encontrar nuevas y mejores
técnicas para comprender los mecanismos usados para la producción de la voz
y sobretodo para entender el comportamiento vibratorio de los pliegues vocales
utilizando Videos Laríngeos de Alta Velocidad (Laryngeal High-Speed Videoen-
doscopy (LHSV)). A partir de los antecedentes anteriormente mencionados, el
presente trabajo tiene como objetivo contribuir al análisis de la función vibrato-
ria de los pliegues vocales mediante la implementación de nuevas y más robustas
herramientas basadas en el uso de técnicas de procesado de imágenes.

Debido a la gran cantidad de información que debe ser evaluada tanto cual-
itativa como cuantitativamente es necesario sintetizar esta información espacio-
temporal en pocas representaciones estáticas que reflejen inequívocamente el mo-
vimiento de los pliegues vocales. Hasta el momento la mayoría de los hitos han
sido alcanzados gracias al uso de la segmentación y del seguimiento de la aber-
tura glotal. Dichas tareas no son fáciles debido a factores como ruido en las imá-
genes, variación en la iluminación, diferentes niveles de grises presentes en la aber-
tura glotal, borrosidad de las imágenes, borrosidad de los contornos de la abertura
glotal, movimiento de la cámara y/o de los pacientes.

Con la finalidad de solucionar los problemas citados anteriormente se presen-
tan dos algoritmos para segmentar la abertura glotal. El primero, recibe el nom-
bre de Segmentación Glotal Basada en Transformación Divisoria y Contornos Ac-
tivos (Glottal Segmentation Based on Watershed Transform and Active Contours
(SnW)), la cual identifica una Región de Interés (Region of Interest (ROI)) que se
actualiza automáticamente. Este método combina el uso de Modelos Deformables
(Deformable Models) y la Transformación Divisoria (Watershed Transform) para
realizar la delimitación final de la abertura glotal. Gracias a la implementación del
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RESUMEN

ROI, SnW es robusto a los movimientos de la cámara. El segundo método recibe
el nombre de Segmentación Glotal Basada en Sustracción de Fondo e Restauración
de Imagen (Glottal Segmentation Based on Background Subtraction and Inpaint-
ing (InP)), en el que se presenta un algoritmo cuasi-automático para segmentar
con precisión la abertura glotal mediante la introducción de técnicas que no habían
sido exploradas antes en la literatura. La metodología propuesta en InP permite
que el usuario realice una intervención mínima en los casos donde la segmentación
automática falla. Adicionalmente se propone el uso de un conjunto de directrices
para poder evaluar la precisión y eficiencia de las segmentaciones glotales. Estas
directrices se dividen en tres grupos: analíticas, subjetivas y objetivas. Los resul-
tados obtenidos a partir de estas directrices sugieren que el método más confiable
para la segmentación de la abertura glotal es InP, logrando una mejora de un 13%
con respecto a otras técnicas en la cuestión del arte y 18% con respecto a SnW.
También quedo demostrado que el conjunto de directrices pueden ser usadas para
estandarizar los criterios de precisión y eficiencia en la evaluación de los algorit-
mos de segmentación glotal.

Por último, se investigó el uso del Flujo Óptico (Optical Flow (OF)) para re-
solver los problemas relacionados con la segmentación glotal. A partir del OF
tres nuevas representaciones son presentadas para comprender la dinámica de los
pliegues vocales. Dos de ellas analizan la dinámica global, Flujo Óptico del Glo-
tovibrograma (Optical Flow Glottovibrogram (OFGVG)) y el Flujo Óptico de la
Forma de Onda Glotal (Glottal Optical Flow Waveform (GOFW)); el restante
recibe el nombre de Flujo Óptico del Quimograma (Optical Flow Kymogram (OFKG))
y analiza las dinámicas locales de los pliegues vocales. Las ventajas, inconve-
nientes y como complementan a los métodos ya existentes son discutidos. Las
nuevas representaciones fueron evaluadas utilizando una base de datos compuesta
por 60 LHSV, la misma que incluye diferentes calidades de voz tanto en voz
hablada como en voz cantada. La nuevas representaciones basadas en OF fueron
comparadas con las obtenidas mediante segmentación, mostrando que proporcio-
nan información adicional sobre la dinámica temporal de los movimientos vibrato-
rios glotales durante las fases de cierre y apertura glotal.
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Résumé

“Il n’est pas la connaissance, mais l’acte
d’apprendre, pas la possession, mais l’acte

d’y acceder, qui délivrent le plus grand
plaisir”

Carl Friedrich Gauss

La voix est l’outil essentiel de la communication entre les êtres humains. C’est
ainsi qu’avoir une voix en bonne santé est important dans la vie de tous les jours et
plus encore si on l’utilise comme outil de travail. Par conséquent, il est impératif
de trouver de nouvelles techniques plus performantes pour comprendre les mécan-
ismes impliqués dans la production de la voix et surtout pour saisir le comporte-
ment vibratoire des plis vocaux grâce aux Vidéos Haute Vitesse du Larynx (Laryn-
geal High-Speed Videoendoscopy (LHSV)). Les études décrites ci-après ont pour
objectif de contribuer à l’analyse de la fonction vibratoire des plis vocaux grâce
à l’implémentation d’outils plus fiables utilisant des techniques de traitement des
images.

La masse des informations à traiter tant sur le plan qualitatif que quantitatif
est telle qu’il est nécessaire de synthétiser ces informations spatio-temporelles en
quelques représentations statiques reflétant avec précision le mouvement des plis
vocaux. Jusqu’à présent, la majorité des avancées dans ce domaine ont été réalisées
grâce à la segmentation et au suivi de l’ouverture glottale. Ce type de travail n’est
pas aisé notamment à cause de facteurs tels que le bruit sur les images, la variation
lumineuse, les différents niveaux de gris représentant l’ouverture glottale, le flou
des images, le flou des contours de l’ouverture glottale, le mouvement de la caméra
vidéo et/ou des patients.

Afin de résoudre les problèmes précédemment cités, on a utilisé deux algo-
rithmes pour segmenter l’ouverture glottale. Le premier algorithme, appelé seg-
mentation glottale basée sur la technique de ligne de partage des eaux et contours
actifs (Glottal Segmentation Based on Watershed Transform and Active Contours
(SnW)) identifie une région d’intérêt (Region of Interest (ROI)) qui s’actualise
automatiquement. Cette méthode combine l’utilisation de modèles déformables
(Deformable Models) et de segmentation par ligne de partage des eaux (Water-
shed Transform) pour délimiter l’ouverture glottale. Grâce à l’implémentation
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RESUME

d’une ROI, cette méthode n’est pas sensibles aux mouvements de la caméra vidéo.
Le deuxième algorithme, appelé segmentation glottale basée sur la soustraction
des bruits et la reconstruction d’images (Glottal Segmentation Based on Back-
ground Subtraction and Inpainting (InP)), s’effectue semi-automatiquement pour
segmenter avec précision l’ouverture glottale en utilisant différentes techniques en-
core jamais utilisées. La méthodologie proposée avec l’InP permet à l’utilisateur
de réaliser des interventions minimes dans les cas où la segmentation automatique
aurait échoué.

De plus, il sera exposé un ensemble de directives pour mesurer la précision
et l’efficacité des algorithmes. Ces directives se divisent en trois groupes : ana-
lytiques, subjectives et objectives. Les résultats obtenus à partir de ces directives
suggèrent que l’algorithme le plus fiable pour la segmentation de l’ouverture glot-
tale est l’InP étant plus précis de 13% par rapport à autres et de 18% par rapport à
SnW. Il est également démontré que ces directives peuvent être utilisées pour stan-
dardiser les critères de précision et d’efficacité pour l’évaluation des algorithmes
de segmentation glottale.

Enfin, dans cette étude, sont présentées les recherches concernant l’usage du
flux optique (Optical Flow (OF)) pour résoudre les questions liées à la segmen-
tation glottale. L’OF permet trois nouvelles représentations pour comprendre la
dynamique des plis vocaux. Deux d’entre elles analysent la dynamique glottale:
le flux optique vibrogramme (Optical Flow Glottovibrogram (OFGVG)) et le flux
optique en onde (Glottal Optical Flow Waveform (GOFW)). Le troisième, appelé
flux optique Quimogramme (Optical Flow Kymogram (OFKG)) analyse les dy-
namiques locales des plis vocaux. On présentera les avantages et inconvénients
ainsi que la contribution de ces représentations aux méthodes existantes. Ces nou-
velles représentations ont été évaluées à l’aide d’une base de données de 60 LHSV
qui inclue différentes qualités de voix parlées et chantées. Les représentations
basées sur l’OF ont été comparées avec les représentations obtenues grâce aux
méthodes de segmentation, démontrant qu’elles apportent des informations sup-
plémentaires sur la dynamique temporelle des mouvements vibratoires de la glotte
pendant les phases de fermeture ou d’ouverture glottales.
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Introduction

“I never did anything worth doing by
accident, nor did any of my inventions come

by accident; they came by work”

Thomas A. Edison

The voice is the most basic tool that supports the usual method of communi-
cation of the human being, with which the culture is transmitted and feelings and
emotions are expressed. Therefore, a healthy voice is very important to people’s
daily life, especially for the professional voice users. However, due to the misuse
and overuse of the voice, changes in the laryngeal structures and vocal folds may
lead to voice disorders. The consequences of such disorders have a different impact
depending on the population affected. For instance, an auto mechanic who loses
one or two notes at the top of his range is likely to have his personal and profes-
sional life unaffected. On the other hand, a singer with the same symptoms may be
totally disabled. This negative impact will affect its ability to work, on their overall
sense of well-being, and sometimes on their very sense of self.

For this reason, a clinical voice assessment is an important component to the
diagnosis of voice disorders, and for planning the appropriate treatment strategies.
According to the American Academy of Otolaryngology-Head and Neck-Surgery,
the basic protocol to evaluate a patient with a voice disorder has to include a rigor-
ous clinical history, physical examination, and visualization of the larynx via laryn-
goscopy. However, compared with physical examination, only the laryngoscopy al-
lows the etiology determination of a voice disorder. Hence, the examination of the
vibratory characteristics of the vocal folds function has taken a great importance.

For clinicians, an essential part of a thorough examination is the use of La-
ryngeal Videostroboscopy (LVS). It has been used to examine subtle abnormalities
along the vibratory margin of the vocal folds such as small cysts, scars from previ-
ous injury, and to detect subtle problems such as mild inflammation, subtle swelling
of the vocal folds, white patches, or excessive mucus. However, significant vibra-
tion details might be overlooked while using the LVS due to its low recording frame
rate (e.g., around 30 Frames per Second (fps)) in the presence of voice disorders
that results in irregular vocal folds vibration or short phonation duration. In this
situation, Laryngeal High-Speed Videoendoscopy (LHSV), with its significantly
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higher capturing frame rate addresses the limitations of LVS, making it helpful to
investigate the vocal folds vibratory features.

Nowadays, due to the fast-growth of imaging technology, it is possible to find
high-speed cameras with frame rates up to 10000 fps, so LHSV is currently re-
garded as a superior method to LVS for the assessment of vocal folds vibration.
First, LHSV is applicable to the assessment of unstable phonations such as tran-
sient, subharmonic, or aperiodic phonations, and thus is more useful for investi-
gating vocal pathology. Second, LHSV allows the vocal assessment of male and
female phonation in most of the clinical scenarios, such as phonation at normal
pitch and loudness, onset and offset, high and low pitch in modal register, breathy
and pressed phonation which provides greater validity for assessment of intracycle
and intercycle vibratory characteristics compared with LVS. Third, LHSV data can
be analyzed by a wider variety of methods than LVS data, enabling more inter-
pretable and extensive evaluation on both a qualitative and quantitative basis.

The use of LHSV in combination with image-processing techniques is the most
promising approach to investigate vocal-folds vibration and laryngeal dynamics in
speech and singing. The current challenge is to provide objective information of
the time-varying data so the clinician or the researcher can follow the dynamics of
anatomical features of interest in a more intuitive way, revealing contents which
are often hidden to human eyes. For this reason, the literature reports different
representations, usually called facilitative playbacks extracted from LHSV, able
to identify objectively the presence of organic voice disorders, classify functional
voice disorders, categorize vibratory patterns, and to discriminate early stages of
malignant and precancerous vocal folds lesions, among others. Most of these mile-
stones have been achieved thanks to the segmentation and tracking of the glottal
gap which is not a trivial task due to noise in the image, variability in illumination,
variability of the gray levels presented in the glottal gap, fuzziness, blurring edges,
movements of the camera and/or patient.

Despite the great progress obtained up to date, the total adoption of the LHSV
into routine clinical practice requires additional development. Therefore, the re-
searchers need new methods for data visualization to overcome the drawbacks of
existing ones, providing simultaneously features that would integrate the time dy-
namics, such as: velocity, acceleration, instants of maximum and minimum veloc-
ity, vocal folds displacements during phonation and motion analysis. In this way,
the LHSV can prove that it is capable of determining the nature and extent of voice
disorders.
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Contribution

The present work aims to contribute to the analysis of the vocal folds function by
proposing the following objectives:

1. Presenting a detailed description of the concepts and definitions associated
with the voice production as well as the laryngeal vibratory mechanisms
used to define the different configurations of the glottal vibrator that allow
the production of the entire frequency range of the human voice.

2. Presenting a detailed description of the laryngeal imaging techniques, point-
ing out to their concepts, notation, advantages, limitations, and the impor-
tance for clinical applications.

3. Presenting a detailed review of the concepts and definitions associated with
the main techniques of image segmentation.

4. Presenting a detailed review of the literature devoted to solving the prob-
lem of the glottal gap segmentation by mentioning the different algorithms
proposed until now.

5. Implementation of a complete framework to segment and track the glottal
gap accurately. The algorithm has to consider a minor user intervention in
cases when the segmentation is not as expected.

6. Proposing a set of guidelines to measure the accuracy and efficiency of the
glottal gap segmentation algorithms. The guidelines have to include an an-
alytical, subjective, and objective assessment to provide robust criteria to
decide which is the most appropriate method to delineate the glottal gap.

7. Presenting a detailed review of the concepts and definitions associated with
the main techniques of image segmentation and motion estimation. Within
this objective, a special attention is given to the Optical Flow computation
since it allows the possibility to track unidentified objects solely based on its
motion.

8. Finding out new methods to synthesize the vibratory pattern of the vocal
folds to overcome the drawbacks of existing ones, providing information not
only for those points belonging to the glottal edges but also those regions
that originated such movements.
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Thesis Structure

This thesis report is structured in eight chapters and two appendices. This section
provides a global view of the document organization to make easy its reading and
understanding. A summary of the contents of the eight chapters of this thesis is
detailed as follows:

Chapter 1: Principles of Voice Production
This chapter presents a brief review of the concepts and definitions related to the
voice production. Additionally, a description of the anatomy and physiology of
the larynx is presented. Lastly, the concept of vocal register, laryngeal vibratory
mechanisms and some particular phonatory situations are introduced.

Chapter 2: Laryngeal Imaging
This chapter addresses the most important aspects of the vibratory behavior of the
vocal folds from an image-based point of view. First, a detailed description of the
laryngeal imaging techniques is presented. Later on, the vibratory behaviour of the
vocal folds is studied. Lastly, a review of the clinical applications of the laryngeal
imaging until now is presented.

Chapter 3: Facilitative Playback Techniques
This chapter introduces the concept of facilitative playbacks to better visualize the
features of the vocal folds dynamic and highlights the importance of synthetizing
the LHSV information. Later on, the most widespread playbacks are presented and
divided into two groups based on how the vocal folds motion is assessed.

Chapter 4: Image and Video Processing Techniques
This chapter presents a brief review of the basic concepts and definitions related to
the most relevant techniques for image and video processing. The examples of the
different segmentation and motion estimation algorithms are focused on solving
the problem of the glottal gap delimitation.

Chapter 5: Glottal Segmentation Techniques
This chapter reviews the literature devoted to solve the problem of the glottal gap
segmentation dividing the different approaches into three main stages: Image En-
hancement, identification of the Region of Interest (ROI), and Glottal Gap Delimi-
tation.

Chapter 6: Contribution to the Glottal Gap Segmentation
This chapter proposes two algorithms to tackle the problem of the glottal gap
segmentation. The first one, named as Glottal Segmentation Based on Water-
shed Transform and Active Contours (SnW), uses traditional image segmenta-
tion methods but adding the temporal information of the videos. The second
one, named Glottal Segmentation Based on Background Subtraction and Inpaint-
ing (InP), presents a quasi-automatic framework and introduces several techniques
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never explored previously in the state of the art. Lastly, a set of validation guide-
lines are proposed in order to standardize the criteria of accuracy and efficiency of
the segmentation algorithms.

Chapter 7: Synthetizing the Vocal Folds Motion by Optical Flow
This chapter introduces three new playbacks to synthesize the dynamical informa-
tion of the vocal folds based on Optical Flow (OF) computation. Two of them,
called Optical Flow Glottovibrogram (OFGVG) and Glottal Optical Flow Wave-
form (GOFW), analyze the global dynamics; and the remaining one, called Optical
Flow Kymogram (OFKG), analyzes the local dynamics.

Chapter 8: Conclusions and Future Works
Finally, this chapter presents the conclusions and futures works.
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Part I

State-of-Art in Voice Production
and Laryngeal Imaging





Chapter 1

Principles of Voice Production

“The human voice is the first and most
natural musical instrument, also the most

emotional”

Klaus Schulze

SUMMARY: This chapter presents a brief review of the concepts and defi-
nitions relating to the voice production. The different organs with their spe-
cific roles in voice production are described. Additionally, a description of
the anatomy and physiology of the larynx is presented. This description is
very important for the interpretation of laryngeal imaging in the evaluation
of patients with voice disorders. Lastly, the concept of vocal register, la-
ryngeal vibratory mechanisms and some particular phonatory situations are
introduced.

1.1 Voice Production

The voice production is a complex process that includes several structural and func-
tional components. The voice mechanism is composed of three systems where each
of them uses different organs and has specific roles in the voice production (Howard
and Murphy, 2008). The first is the source of air which is the power supply for the
voice (air pressure system). This interaction between air and structures makes that
a set of components start to vibrate (phonatory system), producing acoustic waves.
These waves propagate and are radiated towards the external medium (articulatory
system). Figure 1.1 depicts a general scheme of the voice production apparatus,
including the location of each system.

3



CHAPTER 1. Principles of Voice Production
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Oral	cavity	

Pharynx	
Larynx	

Lungs	

Diaphragm	
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Phonatory	System	

Ar;culatory	System	

Figure 1.1: General scheme of the voice production apparatus. Adapted from
(Freepik, 2016).

1.1.1 Air Pressure System

The air pressure system provides and regulates the airflow and it is composed by
the diaphragm, trachea, chest muscles, ribs, abdominal muscles and the lungs. The
voice production begins with the inspiration (inhalation), then the air goes through
the mouth and nose, passes down the trachea, and is inhaled into the lungs. For
air to be inhaled into the lungs, the ribcage needs to expand and the dome-like
diaphragm which forms the base of the chest needs to flatten downwards. Once
the air has been inhaled into the lungs and they reach capacity, the elastic tissue of
the lung recoils and the air is exhaled or breathed out. The exhaled air then returns
up through the trachea and then through the larynx where it encounters the closing
Vocal Folds (VF) (Godino-Llorente, 2002).

1.1.2 Phonatory System

In the phonatory system, the aerodynamic and mechanical energy coming from the
air pressure system is converted to acoustic energy by the fluid-structure interaction
between the air and the movable walls of the larynx (vocal folds, vestibular folds
or false folds) (Henrich, 2015).

1.1.2.1 Anatomy of the Laryngeal Apparatus

The larynx is a structure supported by a cartilage framework and is located in the
anterior portion of the neck, just below to the hyoid bone and above the trachea (see
Figure 1.1). It is composed of three large, unpaired cartilages (thyroid, epiglottis,
cricoid); three pairs of smaller cartilages (arytenoids, corniculate, cuneiform); two
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pairs of laryngeal joints that articulate the cartilages (cricothyroid, cricoarytenoid);
two nerves (recurrent laryngeal nerve, superior laryngeal nerve); and two groups of
muscles (intrinsic muscles, extrinsic muscles) (Kendall and Leonard, 2010; Hixon
et al., 2008; Simpson and Rosen, 2008). Figure 1.2 shows the anterolateral view of
the laryngeal apparatus with its respective anatomical structures.

Figure 1.2: Anterolateral, front, rear, side and top view of the laryngeal apparatus
with its respective anatomical structures. Adapted from (Laver, 2009).

The thyroid cartilage is the largest of the laryngeal cartilages. It is shaped like
a shield with a right and left lamina fusing in the midline, forming the prominence
known as Adam’s apple. The back edges of the thyroid lamina extend upward into
two long horns (superior horn) and downward into two short (inferior horn). The
upper ones are coupled to the hyoid bone meanwhile, the lower horns have areas
where other structures join. The epiglottis is a leaf-shaped cartilage that is posi-
tioned behind the hyoid bone and root of the tongue. This cartilage moves down to
form a lid over the glottis and protects the larynx from aspiration of foods or liquids
being swallowed. The cricoid cartilage has a ring-shaped structure located above
the trachea and sits inside the posterior aspect of the thyroid cartilage. It is the
only complete ring of cartilage around the trachea. Sitting on the superior surface
of the posterior cricoid lamina are the paired arytenoid cartilages. The arytenoid
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cartilages are pyramidal and articulate with the cricoid cartilage through a joint that
allows the arytenoids to both swivel and slide relative to the cricoid cartilage. The
arytenoid cartilages form the part of the larynx to which the vocal ligaments and
vocal folds are attached. Over the top of each arytenoid exists a small cone-shaped
cartilage called corniculate cartilage which serves to prolong the arytenoids poste-
riorly and medially. Lastly, the cuneiform cartilages have a club-shaped that lies
anterior to the corniculate cartilages in the aryepiglottic folds.

The laryngeal joints allow the interconnection between the cricoid and thyroid
cartilages (cricothyroid joints), and the interconnection between the cricoid and
arytenoid cartilages (cricoarytenoid joints). The cricothyroid joints allow the an-
teroposterior sliding and rotation of the inferior cornu upon the cricoid cartilage,
meanwhile the cricoarytenoid joints permit motion in a sliding, rocking, and twist-
ing fashion of the arytenoid cartilages.

Regarding nervation, there are two nerves coming from the brain to the lar-
ynx which control the movement of the larynx: the recurrent laryngeal nerve is
responsible for the opening of the vocal folds (as in breathing and coughing), and
the closing of them during voice use and swallowing; and the superior laryngeal
nerve is in charge of adjusting the tension of the vocal folds for high notes during
singing.

The extrinsic muscles provide laryngeal stabilization, vertical mobility, and in-
directly may affect vocal folds position. On the other hand, the intrinsic muscles
act directly on the vocal folds by controlling the adduction1 and abduction2 length,
tension, shape, position and vibratory motion. They can be subdivided into three
major vocal fold adductors (thyroarytenoid, lateral cricoarytenoid, interarytenoid),
one abductor (posterior cricoarytenoid), and one tensor muscle (cricothyroid). Fig-
ure 1.3 depicts the intrinsic muscles of larynx from the top, rear and side view.

1.1.2.2 Anatomy of the Vocal Folds

The VF are composed of twin infoldings of mucous membrane attached between
the midline of the thyroid cartilage and the anterior aspect of the arytenoid carti-
lages. On the one hand, the contraction of the posterior cricoarytenoid muscles is
the origin of the abduction of the vocal folds. The gap created by the vocal folds
is referred to as glottis or glottal opening. On the other hand, when the arytenoids
are closed by the lateral cricoarytenoid and interarytenoid muscles contraction, the
vocal folds are brought to the midline resulting in glottal closure. Figure 1.4 de-
picts a schematic representation of the abduction and adduction of the vocal folds
due to the action of the intrinsic muscles.

The vocal folds consist of three layers that work together to permit the vocal
folds vibration (Simpson and Rosen, 2008). The first and second layer are called
cover. The vibration of this layer results in glottal opening and closing, creating

1Adduction is the action to close the vocal folds.
2Abduction is the action to open the vocal folds.
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Figure 1.3: Intrinsic muscles of the larynx. Adapted from (Hixon et al., 2008).

Figure 1.4: Schematic representation of the abduction and adduction of the vocal
folds. Adapted from (Henrich, 2001).
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a series of intermittent pulses, the sounds source. The first layer is composed of
the epithelium and superficial lamina propia. The second layer is the vocal liga-
ment and is composed of the intermediate lamina propia and deep lamina propia.
Lastly, in the most inner part, the “body” of the vocal folds is found. The body
is composed of thyroarytenoid muscle. At the same time, the thyroarytenoid con-
sists of two distinct parts (Hixon et al., 2008), called the external thyroarytenoid
or thyromuscularis and the internal thyroarytenoid or vocalis. The body regulates
the resistance to the airflow which affects the vocal folds tension (Kendall and
Leonard, 2010). Figure 1.5 depicts a coronal section of the vocal folds histol-
ogy, demonstrating their structural layers and the subdivision of the thyroarytenoid
muscles.

The vocal folds have a length around 13-17 mm for women and 17-24 mm for
men and they can elongate 3-4 mm approximately (Titze, 1993). The human vocal
folds open and close repeatedly in ranges between a few Hz and hundred times per
second in the spoken voice and between mi1 (∼80 Hz) and mi5 (∼1320 Hz) in the
singing voice (Sundberg, 1996).

In summary, the cartilages support and house the vocal folds; the contraction of
the intrinsic laryngeal muscles moves the cartilages relative to one another in order
to open and close the glottis; this movement modifies the length and mechanical
properties of the vocal folds tissue; and the vibration of the vocal folds hundreds
of time per second produces a sound source3.

1.1.2.3 Physiology of the Laryngeal Apparatus During Phonation

As it was mentioned previously, the intrinsic laryngeal muscles rule the abduction
and adduction instants but also determines the length, mass, stiffness, and tension
of the vocal folds. These biomechanical parameters have a close relation with the
vibratory characteristics of the vocal folds, and thus with the nature of the sounds
produced.

Currently, the most accepted theory of the laryngeal vibration is the Myoelastic-
Aerodynamic theory proposed by Van den Berg (1958). This theory maintains
that vocal folds oscillation is determined by an interaction between aerodynamic
stresses applied to the free surfaces of the vocal folds and myoelastic restoring
forces generated within the tissues. This biomechanical system is self-oscillating.
In other words, the frequency of the mechanical vibration is not determined by pe-
riodic neural impulses or any other periodic input imposed mechanically or aerody-
namically upon the system (Titze, 1980). Despite that the Myoelastic-Aerodynamic
theory is a closer representation of the motion of the vocal folds, some refine-
ments are proposed constantly in order to make the model capture the complexity
of human phonation (Titze, 1993). In the following, a brief description of the
Myoelastic-Aerodynamic theory is presented.

3It is worth to mention that this sound source is considered as “voiced” in speech. Meanwhile,
“unvoiced sounds” are produced with abducted vocal folds (Sundberg, 1996).
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Figure 1.5: Coronal section through the free edge of the vocal folds and thyroary-
tenoid muscles.

The process begins with inhalation and subsequent glottal closure (Figure 1.6
(1)), then the glottal closure creates a resistance to the pass of air that comes from
the lungs. Eventually, this pressure (subglottic pressure) overcomes the closing
forces that maintain together the vocal folds and gradually produces the separation
of the folds. The lower (or inferior) margins of the folds open first (Figure 1.6 (2))
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until reaching the upper (or superior margins) surface of the folds (Figure 1.6 (3)).
Once the vocal folds are completely open (Figure 1.6 (4)), the subglottic pressure
begins to decrease and the inferior margin of the folds becomes re-approximated
due both to their elastic properties, and to an aerodynamic sucking Bernoulli effect
(Van den Berg et al., 1957) (Figure 1.6 (5), (6), (7), (8)). The aforementioned
process is known as “vibratory cycle” and is repeated hundreds of times per second
(for instance, the motion of 400 times per second of the vocal folds will produce a
sound of fundamental frequency fo = 400 Hz). The generated acoustic waves are
propagated to the articulatory system.

Figure 1.6: Schematic representation of the Myoelastic-Aerodynamic theory, with
a coronal and superior visualization of the vocal folds.
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1.1.3 Articulatory System

The sound waves produced by the phonatory system travel up through the vocal
tract where the cavities filter the acoustic signal until it emerges from the lips and/or
nostrils and radiates to the external medium (Howard and Murphy, 2008).

The vocal tract is composed of two spaces; the buccal and the nasal cavity.
The buccal cavity includes the space between the glottis and the lips, and it can be
altered by the motion of the tongue, jaw and lips also known as speech articulators.
These articulators alter the speech by varying the height of the jaw, the position of
the lips and by changing the shape of the tongue increasing the constriction with
the hard palate. Contrariwise, the nasal cavity does not change its shape, so it is
only the soft palate which controls the pass or not of sounds through the nose.
Figure 1.7 shows the vocal tract with its respective parts.

Figure 1.7: Schematic representation of the vocal tract with its differents parts.
Adapted from (Gilles, 2010).

1.2 Vocal Registers: Definition and Historical Facts

The term “vocal registers” in human phonation arises from the need to explain
the discontinuities or transition phenomena which occur voluntarily or involun-
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tarily during the production of voiced sounds. However, this term has been used
ambiguously creating confusion to the readers. For instance, some authors define
the vocal registers related to the way the laryngeal source works (physiological),
whereas others relate it to the timbre qualities of the sound produced (acoustic)
(Henrich, 2006).

The first notion about registers came from the singer perspective and it was
based principally on the auditory perception and proprioceptive sensations. With
Manual García, a voice teacher interested in the vocal physiology mechanism,
the term register took a meaning on the basis of a mechanical principle. García
claims that the human voice is composed of three registers: chest, falsetto-head,
and counter-bass, and he defined the term register as follows:

“By the word register, we mean a series of consecutive and homogeneous tones
going from low to high, produced by the same mechanical principle, and whose
nature differs essentially from another series of tones equally consecutive and ho-
mogeneous produced by another mechanical principle. All the tones belonging to
the same register are consequently of the same nature, whatever may be the modi-
fications of timbre or of force to which one subjects them” (García, 1847)4.

Despite the definition of García highlights interesting facts, it has some short-
comings that are related to the lack of details about the mechanical principles.

Nowadays, the terms used to list the different registers are basted in the litera-
ture. Some of them are fry, strohbass, and pulse which are related to the perception
of very low frequency. The terms heavy, thick thin and light referred to the aspect
of the vocal folds; the terms normal and modal includes the range of fundamental
frequencies used in speaking and singing; the term chest and head refer to the vi-
bratory sensation at the level of the chest or head; the terms flageolet, flute, whistle
and siffet refer to a high pitch of frequencies produced.

1.3 Laryngeal Vibratory Mechanisms

This work will follow the same definitions as the ones presented by (Roubeau,
1993; Henrich, 2001; Henrich et al., 2003; Henrich, 2006; Roubeau et al., 2009) in
their seminars works. They characterize the different registers based on an acoustic
and physiological point of view. They use the concept of laryngeal vibratory mech-
anisms to define the different configurations of the glottal vibrator that allow the
production of the entire frequency range of the human voice. These mechanisms
are classified based on the vibration or not of the vocalis muscle. They go from low
to high and numbered from zero to three (M0, M1, M2, M3). The frequency ranges
produced by two neighboring mechanisms can partially overlap each other, and the
sounds produced by one and the same mechanism can present great variations in
timbre and intensity (Roubeau et al., 2009). The modification of timbre and the
proprioceptive sensations with which they are associated contribute to the deter-

4Translation of the García original paper extrated from (Henrich, 2006).
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mination of the registers. Table 1.1 summarizes the classification of the different
registers based on the laryngeal mechanism involved and Figure 1.8 illustrates the
spectral analysis of an ascending glissando5.

Mechanism
M0

Mechanism
M1

Mechanism
M2

Mechanism
M3

Fry Modal Falsetto Whistle
Pulse Normal Head (W) Flageolet

Strohbass Chest Loft Flute
Voix de

contrebasse
Heavy Light Sifflet

Thick Thin
Voix mixte (M) Voix mixte (W)

Mixed (M) Mixed (W)
Voce finta (M)

Head operatic (M)
Abbreviations: M, men; W, women

Table 1.1: Classification of registers depending on the laryngeal mechanisms in-
volved (table extracted and modified from (Roubeau et al., 2009)).

M0	 M1	 M2	 M3	

Time	(seg)	
0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
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)	

1	

2	

3	

Figure 1.8: Illustration of the time frequency analysis of the four laryngeal vi-
bratory mechanisms during the production of an ascending glissando sung by a
soprano. Adapted from (Henrich, 2006).

5An ascending glissando is a vocal production during which the frequency progressively goes
from the lowest pitch (sometimes around 20 Hz) to the highest (in some cases up to 1000, even 1500
Hz) in the vocal range (Roubeau et al., 2009).
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1.3.1 Mechanism M0

In the Mechanism M0, the vocal folds are very short, thick and lax. Laryngeal
Mechanism M0 is characterized by a long closed phase and a very short open phase
(Roubeau et al., 2009). It is commonly observed in spoken voice and relatively
little in singing (occidental lyric singing) at low frequency. It is worth to mention
that there is no overlapping between mechanism M0 and M1, except in rare cases
of male voices, and it can be found in men and women and in singers and non-
singers.

1.3.2 Mechanism M1

In the Mechanism M1, the vocal folds are thick and they vibrate over their whole
length with a vertical phase difference. Vocalis muscle participates in the vocal-
folds motion and the vocal-folds microstructures are coupled with it. The vocalis
muscle activity is dominant over cricothyroid and both activities increase with the
pitch (Henrich, 2006). Closed-state is often longer than open-state, and this laryn-
geal mechanism is used by both males and females in the low to mid part of their
frequency range. Figure 1.9 depicts the glottal configuration associated with the
mechanism M1.

Figure 1.9: Illustration of the superior and coronal glottal configuration associated
with the mechanism M1. Adapted from (Henrich, 2001).

1.3.3 Mechanism M2

In the Mechanism M2, all the vocal folds layers are stretched and the vocalis mus-
cle does not participate any longer in the vocal-folds motion. The vocal-folds mi-
crostructures are decoupled. The open state is always longer than the closed state,
lasting at least 50% of the fundamental period. There is not vertical phase differ-
ence in the glottal vibratory movement and this laryngeal mechanism is used by
both males and females in the mid to high part of their frequency ranges (Roubeau

14



1.4. Discussion

et al., 2009). Figure 1.10 depicts the glottal configuration associated with the mech-
anism M2.

Figure 1.10: Illustration of the superior and coronal glottal configuration associated
with the mechanism M2. Adapted from (Henrich, 2001).

1.3.4 Mechanism M3

In the Mechanism M3, the vocal folds are thin and very tensed (Roubeau et al.,
2009). The vibratory amplitude is much reduced in comparison with mechanism
M2. The highest frequencies and registers as whistle, flute or flagelot, are found in
this mechanism.

1.4 Discussion

The anatomical and physiological characteristics of the phonatory system have
been reviewed. The combined interaction between the air pressure system and
the phonatory system is the starting point in the voice production. This interac-
tion originates the acoustic waves that will posteriorly propagate to the articulatory
system producing the voice sounds.

In the literature, different configurations of the glottal vibrator have been de-
fined. However, each of them uses different terminology and different approaches
creating a great confusion to the readers. In order to avoid this problem, the ter-
minology presented in the seminal works (Roubeau, 1993; Henrich, 2001; Henrich
et al., 2003; Roubeau et al., 2009) is followed. Its choice is not arbitrary. Con-
trariwise, it has been chosen because up to now is the one that better explains the
laryngeal vibratory pattern based on acoustic and physiologic points of view.
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Nowadays, the Myoelastic-aerodynamic theory proposed by Van den Berg (1958)
presents the best explanation of the origin of the acoustic waves at the larynx level.
Therefore, special attention has paid to develop different laryngeal imaging tech-
niques to study and visualize the vocal folds dynamics during voice production.
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Chapter 2

Laryngeal Imaging

“An image... is a message without code”

Anonym

SUMMARY: This chapter addresses the most important aspects of the vibra-
tory behavior of the vocal folds from an image-based point of view. First, a
detailed description of the laryngeal imaging techniques is presented, point-
ing out their respective advantages and limitations. Later on, the fascinating
vibratory behaviour of the vocal folds which has been a subject of great inter-
est along the years is studied. The understanding of this behavior is the basis
to distinguish between healthy and pathological vibratory patterns. Lastly,
a review of the clinical applications of the laryngeal imaging until now is
presented.

2.1 Laryngeal Imaging Notation and Terminology

Before starting with the description of the laryngeal imaging techniques, some
concepts and notations are reviewed. A special emphasis is made on the imaging
notation since this will be the basis for future formulation along the work.

2.1.1 Imaging Notation

Let us denote a video sequence as I(x, t), where x = (x,y) ∈ R2 represents the
position of the pixels and t represents the time instants of the sequence. Hence,
a single frame at instant tk, k = {1,2, ...,N}, is denoted as I(x, tk). Therefore, the
intensity of a given pixel xi j = (xi,y j), i = {1,2, ...,n} and j = {1,2, ...,m}, at time
tk can be defined as I(xi j, tk) ∈ R, which represents a pixel in gray-scale.
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For the case of a color image sequence, the components of the color space1 are
represented by superscripts. For instance, in the RGB space, the image sequence
is denoted as IR,G,B(x, t), where R, G, and B are the 3 components of the space.
Following the same criterion, a frame in time tk is denoted as IR,G,B(x, tk) and a
given pixel is denoted as IR,G,B(xi j, tk) ∈ R3.

For single images that do not belong to an image sequence, the notation is
simplified to I(x) or I(x,y) for gray-scale images and IR,G,B(x) or IR,G,B(x,y) for
images in the RGB space. Additionally, it is worth mentioning that the notation of
an image is not restricted to use I, but also there will be cases where other symbols
are introduced to denote an image. Figure 2.1 summarizes graphically the notation
for a gray-scale image sequence.

k	

N	

I(x, t)

I(x, t1)

I(x, t2)

I(x, t3)

I(x, tk)

I(x, tN )

I(xij , t1)

n	

m	1	
I(x, y)

j	

i	

I(x, y) : R2 �! R

Figure 2.1: Laryngeal image sequence with its respective notation. Left side: la-
ryngeal image sequence I(x, t); right side: single image I(x,y).

2.1.2 Basic Terms and Concepts

In the following, some terms are introduced with their respective graphical inter-
pretation depicted in Figure 2.2:

Glottis, glottal gap or glottal opening: space between the vocal folds during the
abduction. Its area at time tk is denoted as Ao(tk) ∈ R+.

Posterior or dorsal commissure: membranous portion of the vocal folds that is

1Color space is a mathematical model which simply describes the range of colors as tuples of
numbers, typically as 3 or 4 values (e.g. RGB).
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inserted into the vocal process of the arytenoid cartilage which is denoted as p(tk)
at time tk.

Anterior or ventral commissure: membranous portion of the vocal folds that is
inserted in the midline of the thryroid cartilage which is denoted as a(tk) at time tk.

False, ventricular or vestibular vocal folds: two laryngeal structures located
above and in the vicinity of the vocal folds. These folds have a less differenti-
ated layered structure than the vocal folds. They are composed of a membrane,
abundant adipose tissues, and seromucous glands (Bailly et al., 2014).

Glottal main axis or posterior-anterior axis: connection line between p(tk) and
a(tk) at time tk that divides in two the vocal folds: left and right fold. The glottal
main axis G(tk) is defined within the image plane I(x, tk) by eq 2.1 as

G(tk) = [p(tk) g1(tk) g2(tk) · · · gpc(tk) · · · a(tk)]T ⊂ I(x, tk) (2.1)

it is worth mentioning that the total number of points in G(tk) is variable and de-
pends on the position, orientation and size of the glottis which significantly dif-
fer between frames of the same image sequence. For that reason, G(tk) is often
equidistantly sampled, so each point gpc(tk) corresponds to a percentage of the
total length of G(tk) where the subscript pc ∈ [0,M] indicates the percentage.

Open-state: instant of time where the vocal folds reach the maximum aperture
during one glottal cycle.

Closed-state: instant of time where the vocal folds reach the minimum aperture
during one glottal cycle.

Glottal cycle or vibratory cycle: subsequence of I(x, t) denoted as GCo(x, t). The
glottal cycle has NCo frames where NCo ≤ N. Figure 2.2 illustrates one glottal cycle
with its respective phases.

Opening phase: percentage of time when the vocal folds go from the closed-state
to the open-state.

Closing phase: percentage of time when the vocal folds go from the open-state to
the closed-state.

Symmetry of vibration: movement of the right and left vocal folds relative to
each other. “Normally” both folds vibrate as mirror images of one another which
means that they start to open and close at the same time.

Amplitude of vibration: amount of the lateral movement of the vocal folds during
vibration.

Periodicity of vibration: relative length of the glottal cycle. This should be stable
from cycle to cycle.
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Glottal configuration: shape or contour of the glottal opening. Other terms for
this feature are: vocal folds contours, glottal contours, glottal edges and vocal
folds edges. The vocal folds contours are defined within the image plane I(x, tk) as
Cl,r(s, tk) := Cl,r(x(s),y(s), tk) at time tk, where s ∈ [0,1] is the parametric domain,
l is the left fold and r is the right fold. Both vocal folds edges (l and r) start from
Cl,r(s = 0, tk) = p(tk) and end at Cl,r(s = 1, tk) = a(tk). They also can be expressed
by vector notation as:

Cl(tk) = [p(tk) cl
2(tk) cl

3(tk) · · · a(tk)]T ⊂ I(x, tk) (2.2)

Cr(tk) = [p(tk) cr
2(tk) cr

3(tk) · · · a(tk)]T ⊂ I(x, tk) (2.3)

where eq. 2.2 and eq. 2.3 are the left and right folds respectively. Then, the set
of the N vocal folds edges extracted from the image sequence I(x, t), {Cl,r(tk) ∈
RM, k = 1, · · · ,N}, is denoted as Cl,r(t) (see eq. 2.4).

Cl,r(t) =




pl,r(t1)
cl,r

2 (t1)
cl,r

3 (t1)
...

al,r(t1)

 ,


pl,r(t2)
cl,r

2 (t2)
cl,r

3 (t2)
...

al,r(t2)

 ,

· · ·
· · ·
...
· · ·

,


pl,r(tN)
cl,r

2 (tN)
cl,r

3 (tN)
...

al,r(tN)




(2.4)

Mucosal Wave (MW): propagation of the epithelium and superficial layer of lam-
ina propia from the inferior to the superior surface of the vocal folds during phona-
tion. The magnitude and symmetry of the mucosal wave are indicators of tension
and pliability of the underlying vocal fold tissue and are essential to the production
of good voice quality (Shaw and Deliyski, 2008; Voigt et al., 2010b; Krausert et al.,
2011). On the upper surface of the vocal folds, the propagation of the mucosal wave
is observed as highlighted reflection changes caused by mucosa upheaval moving
laterally across the vocal folds surface during phonation (Voigt et al., 2010b). Ad-
ditionally, the visualization of the MW is sensitive to the frame rate, therefore for
achieving full viewing of the mucosal wave features, the frame rate has to be at
least 16 times higher than the frequency of vibration (Shaw and Deliyski, 2008).

Voice onset: beginning of the phonation process when the vocal folds start to os-
cillate.

Voice offset: ending of the phonation process when the vocal folds cease to oscil-
late.

Open Quotient (OQ): duration of the opening phase divided by the duration of
the glottal cycle.
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Closed Quotient (CQ): duration of the closing phase divided by the duration of
the glottal cycle.

Speed Quotient (SQ): duration of the opening phase divided by the duration of
the closing phase.

Opening	phase		Closing	phase	

Open-state		

Glo1al	axis		

Closed-state		

Posterior	–	Dorsal		

Anterior	–	Ventral	

False	vocal	folds		

Right	
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Le@	
fold		
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Highlight		
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I(x, tk)

a(tk)

p(tk)

G(tk)

Cr(s, tk) Cl(s, tk)

GC
o

= (x, t)

Figure 2.2: Representation of one glottal cycle GCo(x, t) with its respective phases:
closed-state; opening phase; open-state; closing phase.

2.2 Methods for Direct Observation of Vocal Folds

The need to understand the normal or abnormal anatomy of the laryngeal function,
which is the basis of designing treatment strategies, has driven the development of
endoscopic laryngeal imaging techniques (Deliyski et al., 2008). Above all, there
has been a fascination to understand the vibratory behavior of the vocal folds which
has been a subject of great interest in the past. This interest continues today (Woo,
2014). The study of the vibratory behavior of the vocal folds reveals patholog-
ical2 evidences and explains abnormal acoustic manifestations (Yan et al., 2007;
Yumoto, 2004). At the same time, it offers to the clinicians one of the best ways to
explore the laryngeal functions.

2The words pathologic and disorder are used indistinctly around this work to mention all of the
behaviors that are not considered as “normal”.
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The origin of the laryngeal exploration dates back to 1807 when Philipp Bozzini
described the first instrument to observe into accessible orifices. This instrument
was named Lichtleiter, and it enables the visualization of the lower pharynx and
larynx by using artificial light and various mirrors and specula. The Lichtleiter can
be considered as the first device to realize an indirect laryngoscopy procedure3.
Despite the fact that it was not recognized at that time by the scientific community.

It was not until the seminal work of García (García, 1847) during which the
use of the indirect laryngoscopy was widespread adopted. Further advances in the
clinical use of indirect laryngoscopy came about after the development of instru-
ments and methods for performing transoral laryngeal and airway surgical proce-
dures on awaked patients. Nowadays, the use of indirect laryngoscopy has been
almost completely replaced by two techniques that allow to observe and document
the complex vibration of the vocal folds with high-resolution and great precision.
These two techniques are Laryngeal Videostroboscopy (LVS) and Laryngeal High-
Speed Videoendoscopy (LHSV)4.

2.2.1 Laryngeal Videostroboscopy

During phonation, the vocal folds vibrate at a rate faster than can be perceived
by the human eye. Therefore, the use of techniques to create an apparent slow-
motion view of the periodic vibratory cycles has been necessary. The process to
record an LVS involves the use of a video camera attached to a rigid (transoral) or
flexible (transnasal) endoscope where the illumination is provided by a strobe light
that flashes at a rate that is synchronized with the patient’s fundamental frequency
during sustained vowel production. Therefore, the LVS is nothing more than an
estimated version of the vibration of the vocal folds that is acquired by sampling
its motion.

Figure 2.3 illustrates the complete procedure to record an LVS. (1) and (3)
represent the endoscope used to capture the vocal folds motion: rigid (90◦) and
flexible, respectively; (2) represents the vocal folds; (4) is the real vibratory pattern
of the vocal folds; (5) is the stroboscopic light; and (6) is the estimated slow motion
version of the vocal folds vibration. Some of the advantages and limitations of
Laryngeal Videostroboscopy are mentioned (Mehta and Hillman, 2012a) below:

Advantages

• It can be used with flexible nasofibroscope, providing very good images in
color during articulated speech and singing.

3Indirect laryngoscopy refers generically to the use of reflected light and images to observe the
larynx; this is in contrast with direct laryngoscopy, which is performed under general anesthesia in
the operating room (Mehta and Hillman, 2012b).

4The terminology used in this work follows the recommendation proposed in (Deliyski et al.,
2015a).
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Figure 2.3: Illustration of the stroboscopic sampling. Adapted from (Kendall and
Leonard, 2010). (1) and (3) are the rigid and flexible endoscope, respectively; (2)
are the vocal folds; (4) represents the real vibratory pattern; (5) illustrates the strobe
light; (6) is the estimated version of the vibratory pattern.

• It is possible coupling it with high-definition cameras which provide a higher
spatial resolution of vocal folds vibration.

Limitations

• It does not provide a real view of the vocal folds vibratory pattern, so it is
restricted to stable and periodic vocal folds vibrations.

• It limits scientific and diagnostic knowledge of the vocal function during
voice onset and voice offset.

• It is more sensible to camera rotation, side movement of the laryngoscope
and patient movements which produce the delocation of the vocal folds.

• No major technical advancements have been made in recent years regarding
LVS.
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2.2.2 Laryngeal High-Speed Videoendoscopy

LHSV has revolutionized laryngeal imaging, increasing the understanding of glot-
tal dynamics during the phonation process (Mehta and Hillman, 2012b). LHSV is
the only technique capable of acquiring the true intra-cycle vibratory behavior, al-
lowing the study of cycle-to-cycle glottal variations. In LHSV, images are sampled
constantly due to the use of a continuous light source (no information loss between
frames). Lastly, the image sequence obtained is slowed down to frame rates that
can be perceived by human eye.

Nowadays, due to the fast-growth of high-speed technology, it is possible to
find cameras that can reach frame rates over “twenty thousand” Frames per Second
(fps), recording in color with high spatial resolution and excellent image quality for
long durations. With respect to the minimum frame rate requirements of the LHSV
for clinical voice assessment, frame rates of 8000 Frames per Second (fps) are
recommended with a minimum requirement of 4000 fps (Deliyski et al., 2015b).
For LHSV recordings at rates below 4000 fps for women and 3200 fps for men,
the videos have to be interpreted with caution.

Figure 2.4 illustrates the principle of sampling in LHSV for two different frame
rates. It can be observed that every single cycle is sampled, in contrast to LVS
where the samples are taken from different cycles (see Figure 2.3). Some of the
advantages and limitations of LHSV are detailed below (Hertegȧrd, 2005; Kendall
and Leonard, 2010; Deliyski et al., 2008):

Time	

Time	

Con)nuous	light	

Con)nuous	light	

Figure 2.4: Illustrations of the LHSV sampling effect for two different frame rates.
Adapted from (Kendall and Leonard, 2010).
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Advantages

• It captures the true intra-cycle vibratory behavior of the vocal folds, so ape-
riodic movements can be visualized.

• It provides a more reliable and accurate objective quantification of the vocal
folds vibrations.

• It permits recording and efficiently visualizing transient phonatory events.
For instance: phonatory breaks5, laryngeal spams6, onset and offset of phona-
tion.

• The combination of LHSV with acoustics and other voice signals may pro-
vide complementary, high-precision measures that can improve the clinical
practice.

• It is used to examine the basic physiology of different singing styles (Hertegȧrd,
2005).

• It is useful to get insights into tissue vibratory characteristics, the influence
of aerodynamical forces and muscular tension, vocal length and evaluation
of normal laryngeal functioning in situation of rapid pitch change such as
onset and offset of voicing or glides.

Limitations

• It is a high-cost technology which limits its practicality as a clinical tool.

• Due to the huge amount of data acquired, storing and visualization are great
problems. For instance, 10 seconds recording data at speed of 10000 fps
would require 2 hours and 46 minutes to view the whole recording at a speed
of 10 fps.

• It is not possible to provide real-time audiovisual feedback.

2.3 Voice Disorders

A voice disorder occurs when voice quality, pitch, or loudness differ or are inappro-
priate for an individual’s age, gender, cultural background, or geographic location
(Titze, 1993; Aronson and Bless, 2009). These disorders can be associated with
a deficit in any of the three voice production systems; they can be found at the
level of the air pressure system, which is the power source of the phonation, or

5Phonatory breaks are short interruptions of the phonatory process.
6Laryngeal spams are an uncontrolled/involuntary muscular contraction of the vocal folds which

are associated with several voice disorders.
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at the phonatory system, which is where the voice is produced, or at the articula-
tory level, where the vocal projection occurs. This study focusses on the vibration
system, specifically at the vocal-folds level.

An abnormal phonation at the vocal folds level is observed as a disruption of
one or more of the following vibratory features: periodicity of vibration, vocal
folds symmetry, glottal configuration, and mucosal wave (Dejonckere et al., 2001;
Kendall and Leonard, 2010). Therefore, it is necessary to establish the criterion of
“normality”, and categorize as vocal folds disorders all the deviations from those
criteria.

2.3.1 Normal Behavior of the Vocal Folds

The theoretical idea of a “normal behavior” of the vocal folds can neither be de-
scribed with a single condition nor with a set of fixed boundaries. Therefore, the
following criteria of normality have to be taken carefully, having in mind that some
deviations from this “normal behavior” are feasible. It is worth mentioning that
the set of criteria have been extracted from different proposals found in the lit-
erature along years of research (Kendall and Leonard, 2010; Ahmad et al., 2012;
Lohscheller et al., 2013; Manfredi et al., 2006).

A normal periodicity of the vocal folds vibration can be defined as the exact
repetition of a spatial-temporal pattern. Thus, irregularity and aperiodicity refer
to any changes in this pattern along time. Although irregularity is a feature of
many voice disorders, there are minor irregularities in normal voice production
that contribute to the human natural sound of voice (Bonilha and Deliyski, 2008).
The irregularity of vocal folds vibration is typically the result of an imbalance of
the mass or tension between the right and left vocal folds.

A normal symmetry of vibration of the vocal folds can be defined as the peri-
odic vibration of left and right vocal folds that mirror each other as they oscillate
(Mehta et al., 2013). Similarly, significant deviations from such mirrored behavior
have been associated with abnormal vibration. The asymmetric movements of the
vocal folds imply a lack of equivalent shape, mass, elasticity, and/or viscoelastic
properties of the vocal folds. However, there are some minor asymmetric vibra-
tions that are considered as normal voices (Döllinger et al., 2009).

A normal glottal configuration is marked by a complete closure of the vocal
folds in the closed-state. Thus, a posterior glottal chink, spindle shape, hourglass
configuration, irregular closure, incomplete closure and anterior glottal chink (see
Figure 2.5) are considered as abnormal. Glottal configuration is the feature with
more variability and is affected by demographic factors as gender and age (Gelfer
and Bultemeyer, 1990; Ahmad et al., 2012).

A typical mucosal wave should travel one-half of the width of the superior
surface of the vocal folds during normal phonation. A reduced mucosal wave dur-
ing normal phonation means stiffness. Conversely, a larger than normal mucosal
wave signifies flaccidity (Shaw and Deliyski, 2008). The mucosal wave requires
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(a) Complete closure (b) Posterior chink (c) Anterior chink

(d) Spindle (e) Irregular closure (f) Incomplete closure

(g) Hourglass closure

Figure 2.5: Common glottal configuration: (a) complete closure; (b) posterior
chink; (c) anterior chink; (d) spindle closure; (e) irregular closure; (f) incomplete
closure; (g) hourglass.

the relationship of the vocal folds histologic layers to be in balance, hence pro-
viding information regarding the underlying layers of the lamina propia and the
thyroarytenoid muscle.

Since there is not a general agreement in the classification of the vocal folds
disorders, they have been classified indistinctly depending on the author. Never-
theless, when a voice disorder occurs there are two criteria that are commonly used
to know the cause of the problem: the disorder has an organic or functional origin.
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For that reason, this work will follow such criteria to classify the voice disorders
into organic and functional disorders (Godino-Llorente, 2002; Jackson-Menaldi,
2002).

2.3.2 Organic Disorders

Organic disorders are caused by some lesions (physical abnormality), often involv-
ing tissues or fluids on the vocal folds. The most common organic disorders with
their respective description and illustration (see Figure 2.6) are detailed below:

Nodules (a): vocal folds nodules are symmetric small lesions of the mucosal thick-
ening located halfway between anterior and posterior commissure. The nodules
affect the contact of the vocal folds producing an hourglass closure configuration.
Additionally, if the nodules are not symmetric, there will be an asymmetric vibra-
tion of the vocal folds.

Polyps and cysts (b): vocal folds polyps and cysts are typically single-sided con-
ditions and are mostly located in the anterior part of the vocal folds. From a clin-
ical perspective, polyps and cysts are sometimes very similar: the main difference
is that polyps are solid, whereas cysts are fluid-filled structures (Bohr et al., 2014).
Concerning the impact on the oscillation, they are an additional mass on the vocal
fold. Therefore, they cause changes in the left-right spatial and temporal dynamic
symmetries. In addition, cysts and polyps are expected to influence the periodicity
of the vibrations and therefore the temporal parameters.

Reinke’s edema (c): the Reinke’s edema is characterized by the accumulation
of fluids directly under the vocal folds epithelium. Concerning the impact on the
oscillation, the shape of the glottal configuration during the closed-state is irregular
due to the not uniform shape of the folds and the closing state is longer to the
opening state affecting the normal vibration of the vocal folds.

Laryngitis (d): the laryngitis is the inflammation of the larynx and is one of the
most common conditions. It affects the normal elasticity, viscosity, volume, and
tension of the vocal folds. Therefore, it causes irregular and/or reduced vibration
decreases the mucosal wave propagation and produces an irregular glottal config-
uration.

Leukoplakia and erythroplakia (e): they are chronic irritations of the vocal folds
observed as a white (leukoplakia) and red (erythroplakia) plaques on the epithe-
lium. The leukoplakia and erythroplakia reduce the mobility of the vocal folds
edges, affecting its ability to vibrate.

Carcinoma or laryngeal cancer (f): the carcinoma is produced by the emergence
of malignant cells in the tissues of the larynx, originating in most of the cases in
the vocal folds (Schultz, 2011). The carcinoma can be observed as a white or red
plaques, hence their distinction from premalignant lesions is challenging. Both
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have the same aspect, showing irregular or thickened mucosa due to structural
changes, affecting the normal vibratory behavior of the vocal folds.

(a) Nodules (b) Polyps (c) Reinke’s edema

(d) Laryngitis (e) Leukoplakia (f) Carcinoma

Figure 2.6: Illustration of the Organic disorders. Adapted from (BTP, 2014).

2.3.3 Functionals Disorders

Functional disorders are caused by poor muscle functioning of the vocal folds, re-
sulting in an improper or inefficient use of the vocal mechanism. The functional
disorders are characterized by the absence of physical structure lesions and their
origin can be either bacterial or by some problem in the nervous system that inter-
acts with the larynx (Cobeta et al., 2013). The most common functional disorders
with their respective description are detailed below:

Paralysis and paresis: vocal folds paresis and paralysis result from abnormal
nerve input to the laryngeal muscles. Paralysis is the total interruption of nerve
impulse, resulting in no movement meanwhile paresis is the partial interruption of
nerve impulse, resulting in weak or abnormal motion of laryngeal muscles. Pare-
sis/paralysis are observed as an irregularity on the amplitude of vibration of the
vocal folds affecting the symmetry between the left and right folds motion.

Spasmodic dysphonia: in spasmodic dysphonia, the muscles inside the vocal
folds experience sudden involuntary movements, known also as spasms, which
interfere with the ability of the folds to vibrate and produce voice. The spasmodic
dysphonia causes voice breaks and can give the voice a tight, strained quality.
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Paradoxical vocal folds movement: the vocal folds behave in a normal fashion
almost all of the time but, when an episode occurs, the vocal folds close when they
should open, affecting the periodicity of the vocal folds vibration.

Tremors: they are rhythmic, involuntary oscillating movements of the muscles
of phonation. It has disabling effect because of fluctuations in the amplitude and
fundamental frequency of the voice. Vocal tremor involves not only tremor of
the intrinsic muscles of the larynx but also, on occasions, the extrinsic laryngeal,
pharyngeal, and palatal muscles, as well as the muscles of the diaphragm, chest
wall, and abdomen.

Parkinson disease: it is a neurological disease associated with degenerative le-
sions of the basal ganglia. The Parkinson disease is observed at the vocal folds
level by the reduction of the amplitude of vibration, incomplete vocal closure, vo-
cal tremor, and voice irregularity.

Unlike organic disorders where an appropriate diagnosis can be made based al-
most solely on a single image of a patient’s vocal folds, in the case of functional
voice disorders, the diagnostic process is much more complex. This is because
the corresponding vocal folds movement can only be diagnosed in the context of
overall vibratory behavior, which, to date, is only captured in an adequate manner
by LHSV examination. Accordingly, there is significant demand for an objective
method to differentiate between functional voice disorders and healthy movement
patterns.

2.4 Clinical Applications of the LHSV

The combined use of image-based analysis with acoustic analysis has been studied
in the last few years to investigate the correlation between the vocal folds vibra-
tory pattern and the voice quality of the speaker (Yan et al., 2007; Ahmad et al.,
2012). In this context, the laryngeal analysis by examination of the physiological
vibrational patterns of the vocal folds is an essential approach to understanding the
mechanisms of phonation and diagnose voice disorders.

The pioneering works using LHSV date back to 1958 from the seminal works
of Timcke, Lenden and Moore (Moore and Von Leden, 1958; Timcke et al., 1958,
1959; Von Leden et al., 1960). They measured the amplitude of vibration of each
vocal fold separately and the results were plotted as the variations of the amplitude
with respect to time. They used the OQ and SQ parameters to explore the details
of laryngeal vibrations during the opening and closing phases. They reported ob-
servations of the normal and abnormal vocal folds vibrations during phonation:
they found that the changes in air pressure exert a considerable influence on the
individual components of the vibratory cycle; they also found that the anatomical
configuration of the vocal folds plays a significant role in the production of the
vibratory pattern; and they highlighted the importance of the descriptive terms to
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measure objectively the vocal folds vibration pattern. It is worth mentioning that
the complete procedure was made manually for each frame of the glottal cycle,
hence the labor was intensive and is relevant today.

After these seminal works, LHSV has not been mentioned for a long time. It
happened again in (Childers et al., 1976), where the development of procedures
to extract the glottal waveform and other glottal measurements was reported. The
glottal waveform represents the variation of the glottal area along time. This infor-
mation was used to explicate the exact nature of the vibrational patterns produced
by the normal and pathological larynx.

In (Švec and Schutte, 1996) was proposed the use of a high-speed line scan-
ning camera to allow clinicians to observe the vocal folds vibration at a single
line, which provided an in-depth and real-time understanding of the vocal folds
vibratory function. Subsequent works (Wurzbacher et al., 2006; Lohscheller and
Eysholdt, 2008a; Mehta et al., 2013; Lohscheller et al., 2013; Herbst et al., 2014)
pointed out the advantages of the high-speed motion of the vocal folds vibration
in detecting asymmetries, transients, breaks, opening phase events, closing phase
events and irregularities.

Posterior works combine the use of LHSV with biomechanical models to quan-
tify the spatio-temporal vibrations of the vocal folds. In (Döllinger et al., 2002),
the two mass model proposed in (Ishizaka and Flanagan, 1972) was used with the
LHSV to allow the determination of physiological parameters such as vocal folds
tensions and vocal folds masses. The authors in (Tao et al., 2007) use a genetic
algorithm to optimize the parameters of the two mass model until the model and
the realistic vocal folds had similar dynamic behavior. Then, they extract different
parameters including masses, spring constants, and damper constants. In (Schwarz
et al., 2008), an automatic optimization procedure was developed for fitting the
multi-mass model (Wong et al., 1991) to the observed VF oscillations, with the
aim of inferring an approximation of the stiffness and mass distribution along the
entire vocal folds. One of the latest works (Pinheiro et al., 2012) uses an opti-
mization method which combines genetic algorithms and a quasi-Newton method
to extract some physiological parameters of vocal folds and reproduces some com-
plex behaviors as the ones that occur in different types of pathologies.

The LHSV also have been used to highlight the importance of visualizing the
mucosal wave propagation for an accurate diagnosis and optimal treatment of voice
disorders. In (Shaw and Deliyski, 2008) was showed the presence of atypical mag-
nitude and symmetry of the mucosal waves in the vocal folds vibration of normal
speakers. In (Voigt et al., 2010b) the propagation of the mucosal wave was de-
tected and quantified by combining image processing techniques with physiolog-
ical knowledge of its lateral movements. The aim of the authors was to replace
the subjective assessment of the MW in the clinical environment. The authors in
(Krausert et al., 2011) discussed the benefits, the disadvantages, and the clinical
applicability of the different mucosal wave measurement techniques. They found
the necessity of additional research to broaden the use of the LHSV for an accurate
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and objective diagnostic of voice disorders.
Different singing styles have been analyzed with LHSV. For instance: in (Lin-

destad et al., 2001) the authors studied the mechanism of the bass type of Mon-
golian throat singing (called Kargyraa). They found that both true vocal folds and
false vocal folds vibrate during singing; they also observed that the vibration of the
false folds adds subharmonics7 to the acoustic content. In (Borch et al., 2004) the
characteristics of rock singing, also known as distorted singing, were investigated.
The authors found some modulations of the vocal folds vibrations by means of pe-
riodic or aperiodic motion in the supraglottic mucosa8 which presumably adds the
special expressivity to loud and high tones in rock singing.

The LHSV have been used for clinical voice research purposes. For instance,
the applicability of LHSV to diagnose functional voice disorders was demonstrated
in (Braunschweig et al., 2008) where the non-stationary activities of the vocal folds
during onset were investigated and described by two variables. The first one de-
scribes the growth of the vocal folds amplitude during the phonation onset process
and the second draws conclusions on voice efficiency with respect to the necessary
subglottal pressure and the myoelastic forces. Due to the significant differences in
those parameters belonging to the pathological and normal voices, they concluded
that it is an objective and stable tool for medical diagnosis. Voigt et al. presented
a computer-aided method for automatically and objectively classifying individu-
als with normal and abnormal vocal folds vibration patterns. First, a set of image
processing techniques were employed to visualize the vocal folds dynamics. Later,
numerical features were derived, capturing the dynamic behavior and the symmetry
of the oscillation of the vocal folds. Lastly, a support vector machine was applied
to classify between normal and pathological vibrations. The results indicate that an
objective analysis of abnormal vocal folds vibration can be achieved with consid-
erably high accuracy. In (Bohr et al., 2014) a set of parameters were proposed to
differentiate between healthy and organic voice disorders in males. The parameters
were chosen based on spatio-temporal information of the vocal folds vibration pat-
terns. The spatial parameters provide facts about the opening and closing phase.
Meanwhile, the temporal parameters reflect the influence of organic pathologies
on the periodicity of vocal folds vibrations. The results obtained suggest that for
males, the differences between healthy voices and organic voice disorders may be
more pronounced within temporal characteristics that can not be visually detected
without LHSV. The authors in (Unger et al., 2015) report a procedure to discrimi-
nate between malignant and precancerous lesions by measuring the characteristics
of the vocal fold dynamics by means of a computerized analysis of laryngeal high-
speed videos. They found that the vocal folds dynamics are significantly affected
by the presence of precancerous lesions.

7Subharmonics are components of a periodic wave having a frequency that is a submultiple of
the fundamental frequency.

8Supraglottic mucosa extends along the free edge of the epiglottis and aryepiglottic folds down
to the arytenoid cartilages.
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2.5. Discussion

LHSV is an active research field with many works published every year. This
technique has provided valuable insight into the mechanisms of phonation both in
normal and in voice disorders. Additionally, it has proved to be useful in quantify-
ing normal and abnormal glottal vibration patterns.

2.5 Discussion

The laryngeal imaging literature has been reviewed making a special emphasis on
the standardization of the concepts and terminology. They have been proved to
be useful to understand the mechanism of phonation and to differentiate between
healthy and pathological vibratory patterns. The most prominent and accurate tech-
nique is the LHSV since it is the sole capable of capturing the true vibratory cycle
of the vocal folds motion. For this reason, many innovative works using LHSV
have been proposed to understand the fascinating behavior of the vocal folds dur-
ing phonation and onset. Most of them make use of image processing procedures
to compute objective parameters or/and spatial-temporal representations (facilita-
tive playbacks) of the vocal folds vibration. The facilitative playbacks allow the
clinicians and the researchers follow the vocal folds dynamics in a more intuitive
way by condensing the time-varying information of the LHSV into a few static
images, or in an unidimensional temporal sequence.

Despite the progress achieved to describe the vocal folds dynamics using LHSV,
it uses in the clinical routine owing to several restrictive factors: LHSV is rather
expensive; there are no official guidelines for LHSV footage analysis; the litera-
ture is limited by the relatively low or nonexistent correlations among measures of
irregularity in vocal folds vibration and acoustic parameters; and the lack of nor-
mative parameter values and intervals, which are needed to determine the severity
of pathological voice production.
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Chapter 3

Facilitative Playback Techniques

“The soul never thinks without a picture”

Aristotle

SUMMARY: Since the pattern of the vocal folds vibration is difficult to eval-
uate by simply observing the successive frames of video recording, the re-
searchers have introduced the concept of facilitative playbacks to better visu-
alize the features of the vocal folds dynamics. In this chapter, the importance
of synthesizing the LHSV information is highlighted. Later on, the most
widespread playbacks are presented and divided into two groups based on
how the vocal folds motion is assessed.

3.1 Importance of Synthesizing LHSV Information

Using LHSV makes possible to visualize male and female phonation characteris-
tics in most of the clinical scenarios. LHSV characterizes laryngeal tissue dynam-
ics and vocal-folds vibratory features, which are not possible to assess (visualize)
using common videoendoscopic and LVS techniques.

LHSV records the motion of the vocal folds at thousands of fps, so their dynam-
ics are difficult to evaluate by simply observing the successive frames recorded.
However, with the appropriate image processing techniques, the time-varying data
can be synthesized in a few static images, or in an unidimensional temporal se-
quence. In this way, clinicians or researchers can follow the dynamics of the
anatomical features of interest without substituting the rich visual content with
scalar numbers. The literature reports some proposals to represent the LHSV in-
formation in a more simple way. They are able to objectively identify the presence
of organic voice disorders (Bohr et al., 2014), classify functional voice disorders
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(Voigt et al., 2010a), vibratory patterns (Lohscheller and Eysholdt, 2008a), dis-
criminate early stage of malignant and precancerous vocal folds lesions (Unger et
al., 2015), among others (Lohscheller et al., 2013; Herbst et al., 2014).

These representations improve the quantification accuracy, facilitate the vi-
sual perception, and increase the reliability of visual rating while preserving the
most relevant characteristics of glottal vibratory patterns. Such representations are
named as facilitative playbacks (Deliyski et al., 2008) and, depending on the way
they assess the glottal dynamics they can be grouped in local- or global-dynamics
playbacks. Table 3.1 presents the main studies carried out to synthesize the vocal
folds vibratory patterns.

Author Year Playback Dynamics
Timcke et al. 1958 Glottal Area Waveform (GAW) Global

Westphal and Childers 1983 Discrete Fourier Transform
Analysis (DFTA)

Global

Švec and Schutte 1996 Videokymography (VKG) Local
Palm et al. 2001 Vibration Profiles (VP) Global

Neubauer et al. 2001 Empirical Orthogonal Eigen-
functions Analysis (EOF)

Global

Li et al. 2002 Eigenfolds Analysis (EFA) Global
Zhang et al. 2007 Nonlinear Dynamic Analysis

(NDA)
Global

Lohscheller et al. 2007 Vocal Folds Trajectories (VFT) Local
Yan et al. 2007 Hilbert Transform Analysis

(HTA)
Global

Deliyski et al. 2008 Mucosal Wave Kymography
(MKG)

Local

Lohscheller and Eysholdt 2008b Phonovibrogram (PVG) Global
Sakakibara et al. 2010 Laryngotopography (LGT) Global

Karakozoglou et al. 2012 Glottovibrogram (GVG) Global
Unger et al. 2013 Phonovibrographic Wavegram

(PVG-wavegram)
Global

Ikuma et al. 2013 Waveform Decomposition
Analysis (WDA)

Global

Rahman et al. 2014 Dynamic Time Warping Ana-
lysis (DTW)

Global

Chen et al. 2014 Glottaltopogram (GTG) Global
Herbst et al. 2016 Phasegram Analysis (PGAW) Global

Table 3.1: Summary of the main studies carried out to synthesize the vocal folds
vibratory pattern.
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3.2. Local-Dynamics Playbacks

3.2 Local-Dynamics Playbacks

Local-dynamics playbacks analyze the vocal folds behavior along one single line
that is computed on a line perpendicular to the main glottal axis. In this category,
the most extended playbacks are: Videokymography (VKG), High-Speed Digital
Kymograghy (DKG), Vocal Folds Trajectories (VFT), and Mucosal Wave Kymog-
raphy (MKG). They have been successfully applied to demonstrate the change of
glottal dynamics in case of damaged tissues, such as lesions, scars, discoloration of
the vocal folds and voice disorders (Deliyski et al., 2008; Švec and Schutte, 2012).

3.2.1 VKG and DKG Playbacks

VKG and DKG synthesize the LHSV in a single image using the same principle,
but they differ in how the system delivers the results. Whereas the VKG system
delivers the kymographic images directly in real time on a video screen, the DKG
exploits software to construct kymographic images from digital high-speed record-
ings. The VKG and DKG provide a clear visualization of the glottal cycle opening
and closing phases, of the mucosal wave traveling across the vocal folds upper sur-
face, and of the displacement of the upper and lower margins of the vocal folds
(Švec and Schutte, 1996; Schutte et al., 1998; Švec et al., 2007).

Given a video sequence I(x, t), let us denote a horizontal line at time tk and po-
sition y j as KG(tk), where KG(tk) is the row vector [I(xn j, tk) I(xn−1 j, tk) I(xn−2 j, tk)
· · · I(x1 j, tk)]. Then, the kymographic matrix IDKG(x,y) (or IR,G,B

DKG (x,y) for color)
is constructed with a set of N vectors {KG(tk) ∈ Rn, k = 1, · · · ,N}, where each
KG(tk) is a column vector of IDKG(x,y) (see eq 3.1).

IDKG(x,y) =

KG(t1) KG(t2) KG(tN)


︷ ︸︸ ︷
I(xn j, t1)

︷ ︸︸ ︷
I(xn j, t2) · · ·

︷ ︸︸ ︷
I(xn j, tN)

I(xn−1 j, t1) I(xn−1 j, t2) · · · I(xn−1 j, tN)
...

...
. . .

...
I(x1 j, t1) I(x1 j, t2) · · · I(x1 j, tN)

(3.1)

In order to interpret the kymographic vibratory pattern, Figure 3.1 depicts the
schematic view of DKG compared with the traditional displays of the vocal folds
oscillations. The first row shows eight phases of a glottal cycle in the frontal sec-
tion, starting with vocal folds opening and ending with a complete vocal folds
closure. The second row presents the same eight phases as viewed from above
of the vocal folds using LHSV. The third shows the DKG playback at a position
y j. The kymographic image depicts two cycles of the vocal folds oscillation. The
important features observed from the eight phases are: (1) lower margin of the VF
starts to open; (2) upper margin of the VF starts to open; (3) lower and upper mar-
gins of the VF open; (4) lower margin of VF is maximally open, upper margin of
the VF still opens; (5) lower margin of the VF closes and is visible; upper margin
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of glottis is maximally open; (6) lower and upper margins of the VF close, mucosal
wave propagates on the surface; (7) lower margin of the VF is closed; and (8) upper
margin of the VF is closed. Besides the VF, it is possible to observe the motion or
none of the ventricular folds (Švec and Šram, 2002).

Figure 3.1: Schematical drawing of the successive phases of a glottal cycle in three
views. First row: Frontal section of the vocal folds. Second row: Laryngoscopy
(superior view of the vocal folds). Third row: High-Speed Digital Kymograghy at
the line y j. Adapted from (Švec and Šram, 2002).

3.2.2 VFT Playback

The VFT δ
l,r
seg(pc, t) synthesizes the LHSV in a single image that describes the de-

flections of the vocal folds edges perpendicular to the glottal main axis (Lohscheller
et al., 2007). Hence, the vocal folds edges Cl,r(t) have to be computed on advance.
Later on, a trajectory line L(tk) at time tk that intersects perpendicularly with G(tk)
in a predefined point gpc(tk) is defined. The current position of gpc(tk) is updated
every frame to compensate the relative movement of the endoscope, of the larynx,

38



3.2. Local-Dynamics Playbacks

or of the vocal folds length changes via eq 3.2.

gpc(tk) = p(tk)+(p(tk)−a(tk))
(

pc(%)

100%

)
∈ G(tk) (3.2)

Later, the intersection between the vocal folds edges Cl,r(tk) and the trajectory
line L(tk) is computed by eq 3.3:

cl,r
pc(tk) : cl,r

pc(tk) ∈ L(tk) ∧ cl,r
pc(tk) ∈ Cl,r(tk) (3.3)

The vocal folds trajectory is obtained by eq 3.4 as:

δ
l,r
seg(pc, tk) = ‖gpc(tk)− cl,r

pc(tk)‖2 ; k = {1,2, . . . ,N} (3.4)

where δ
l,r
seg(pc, tk) are the deflections of the vocal folds edges at the point cl,r

pc(tk)
and pc indicates the position of gpc(tk) in the glottal main axis. The VFT playback
is illustrated in Figure 3.2 and expressed in vector notation at eq 3.5.
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Figure 3.2: Illustration of the VFT playback. First row: the image sequence of one
glottal cycle GCo(x, t). Second row: vocal folds trajectories δ

l,r
seg(pc, t), DKG and

DKG+VFT playbacks of five glottal cycles.

δ
l,r
seg(pc, t) = [δ l,r

seg(pc, t1) δ
l,r
seg(pc, t2) · · · δ

l,r
seg(pc, tk) · · · δ

l,r
seg(pc, tN)] (3.5)

The first row in Figure 3.2 represents a particular glottal cycle GCo(x, t), where
L(tk) intersects G(tk) and Cl,r(tk) in the points g50%(tk) and cl,r

pc(tk), respectively.
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The vocal folds trajectories describe unambiguously the oscillation pattern of vocal
folds vibrations at a specific line, in this example a line located at 50% of the total
length of the glottal main axis (pc=50%). It is worth to mention that in those cases
where the vocal folds contours cross the glottal main axis, which occurs frequently
in asymmetric vocal fold vibrations, the trajectories δ

l,r
seg(pc, t) are defined to be

negative.

3.2.3 MKG Playback

The MKG is a kymographic image of the mucosal wave along the posterior-anterior
axis. The MKG allows a temporal representation of the propagation of the mucosal
edges in consecutive glottal cycles during a sustained phonation. The MKG bright-
ness relates to the speed of motion of the mucosal edges, and the color shows the
phase of motion (i.e. opening is green and closing is red) (Deliyski et al., 2008;
Kendall and Leonard, 2010; Shaw and Deliyski, 2008). Figure 3.3 depicts the
MKG playback for an image sequence of four glottal cycles..

Figure 3.3: Illustration of the MKG playback. First row: six images of a particular
glottal cycle GCo . KG(tk) is a horizontal line at time tk and position y j. Second
row: MKG playback, the green tonalities represent the opening phase and the red
tonalities represents the closing phase. Adapted from (Deliyski et al., 2008).

The opening phase is represented with green tonalities and the closing phase
with red tonalities. Additionally, the MKG visualizes the upper margin of the vocal
folds which appears as a double-edged or thicker curve during the closing phase.
The MKG has the potential to assess fine details of the mucosal wave, including
the propagation of the mucosal edges during opening and closing phases. However,
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there is not detailed explanation in the literature about the techniques used for its
implementation.

3.3 Global-Dynamics Playbacks

The global-dynamics playbacks analyse the vocal folds behaviour along the whole
glottal length. Most of them are focused on vocal folds edge motion by means
of glottal segmentation algorithms. The most widespread and successful play-
backs used either by clinicians or researchers are: Glottal Area Waveform (GAW),
Phonovibrogram (PVG) and Glottovibrogram (GVG).

For instance, GAW uses the glottal segmentation to compute a glottal gap area
function along time from which several parameters can be estimated (Herbst et al.,
2014). Contrariwise PVG and GVG playbacks are 2-D representations of vocal
folds vibratory pattern as a function of time, for which the movements of the vocal
folds edges along the anterior-posterior axis are summarized into a time-varying
image line. In comparison to GVG, PVG allows to distinguish left- and right-
fold movements, and is thus more sensitive to the accuracy of glottal main-axis
(Karakozoglou et al., 2012).

3.3.1 GAW Playback

The GAW was first introduced in a series of articles (Timcke et al., 1958, 1959;
Von Leden et al., 1960) where the variation of the glottal gap area at a function of
time was explored to understand the normal and pathologic vibratory behaviour of
the vocal folds. Let us consider Iseg(x, t) as a segmented LHSV, having the same
size of the original video I(x, t). The segmented LHSV is a set of binary images,
where 1 is assigned to pixels belonging to the glottal gap area (foreground) and 0 is
assigned to pixels belonging to the other laryngeal structures (background). Eq 3.6
computes I(x, tk) in time tk.

Iseg(x, tk) =

{
1 pixels ∈ glottal gap
0 background

(3.6)

Therefore, the glottal gap area at tk is computed via eq 3.7 as follows:

Ao(tk) =
n

∑
i=1

m

∑
j=1

Iseg(xi j, tk) ; k = {1,2, · · · ,N} (3.7)

then GAW can be expressed in vector notation by eq 3.8, where each of its
elements represents the area of the glottal gap in a particular instant of time.

GAW(t) = [Ao(t1) Ao(t2) · · · Ao(tk) · · · Ao(tN)] (3.8)

the GAW playback measures the glottal area function throughout the glottal
cycle, being possible to compute some features as: opening and closing phase of
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the vocal folds oscillations, maximum and minimum glottal areas, open quotient,
closed quotient and speed quotient, among others. Figure 3.4 illustrates a GAW
normalized within the interval [0,1]. The peaks represent the open-states of the
vibratory cycles meanwhile the valleys represent the closed-states of the vibratory
cycles. The maximum and minimum amplitudes of the whole vibratory cycles can
be computed by finding the maximum and minimum glottal area respectively. The
period of the GAW playback is equivalent to the duration of the glottal cycles, and
also to the sum of the opening and closing phase duration.

Figure 3.4: Illustration of the GAW playback. First row: six images of a particular
glottal cycle GCo . Second row: GAW playback normalised within the interval [0,1]
where 0 represents the minimum area and 1 the maximum area.

3.3.2 PVG Playbacks

The PVG Ipvg(x,y) is a further development of spatiotemporal plots of vocal folds
vibrations presented in (Neubauer et al., 2001) and of the glottal shape representa-
tion proposed by (Westphal and Childers, 1983). PVG is a 2-D diagram introduced
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in (Lohscheller and Eysholdt, 2008b) where a set of segmented contours of the
moving vocal folds are unambiguously transformed into a set of geometric objects
that represents the entire LHSV sequence.

Let us consider that the video sequence Iseg(x, t) was computed on advance by
any segmentation algorithm. Then, the set of frames with the maximal glottal gap
area are identified and named as keyframes Ikey(x, t) (eq 3.9).

Ikey(x, t) = argmax
k=1...N

I(x, tk) (3.9)

For each keyframe, Ikey(x, t), a linear regression line is computed to identify the
main orientation of the glottal gap area. The regression line intersects with Cl,r(tk)
at the points p(tk) and a(tk). Such points are used to split the vocal folds edges into
the left Cl(tk) and right folds Cr(tk).

Since the vocal folds contours were computed independently, it is necessary to
derive a continuous representation of the vocal folds vibrations that links the poste-
rior and anterior point of all images within the LHSV sequence. For doing this, it is
assumed that in a single oscillation cycle the positions of the posterior and anterior
points for all the intermediate images between the occurrences of two consecu-
tive keyframes do not change dramatically. Therefore, such points are computed
approximately by linear interpolation via eq 3.10 where tO and tO+1 indicate two
consecutive open-states.

p(tk) = p(tO)+ p(tO+1)−p(tO)
tO+1−tO

· (tk− tO) ; tO < tk < tO+1

a(tk) = a(tO)+ a(tO+1)−a(tO)
tO+1−tO

· (tk− tO) ; tO < tk < tO+1

(3.10)

By connecting the vocal folds edges Cl,r(tk) to the approximated position of
p(tk) and a(tk), a continuous representation of the vocal folds edges is obtained
also in the parts that are undetected from the segmentation methods (Figure 3.5).

Later, the glottal main axis G(tk) and the vocal folds edges Cl,r(tk) are equidis-
tantly sampled with pc ∈ [0,M] (Figure 3.6(2)). Then for each image the deflec-
tions of the vocal folds edges δ

l,r
seg(pc, tk) are obtained via eq 3.2, ∀pc ∈ [0,M] and

∀t ∈ [1,N]. δ
l,r
seg(pc, tk) is positive, if the left/right fold contour is correctly located

on the ipsilateral side of the glottal main axis. Contrariwise, if the vocal fold edges
cross laterally the glottal main axis, δ

l,r
seg(pc, tk) becomes negative. Furthermore,

the vocal folds are splitted longitudinally (Figure 3.6(4)) and the left vocal fold is
turned 180◦ around the posterior commissure p(tk) (Figure 3.6(5)). Lastly, all the
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Figure 3.5: Interpolation procedures of the intermediate images within the interval
[tO, tO+1]. First row: six images of a particular glottal cycle GCo explaining the in-
terpolation procedure. Second row: GAW playback normalised within the interval
[0,1].

computed δ
l,r
seg(pc, tk) are stored in a matrix IPV G(x,y) ∈ R(2M+1)×N (eq 3.11).

IPV G(x,y) =



δ l
seg(M, t1) δ l

seg(M, t2) · · · δ l
seg(M, tN)

δ l
seg(M−1, t1) δ l

seg(M−1, t2) · · · δ l
seg(M−1, tN)

...
...

. . .
...

δ l
seg(1, t1) δ l

seg(1, t2) · · · δ l
seg(1, tN)

δ
l,r
seg(0, t1) δ

l,r
seg(0, t2) · · · δ

l,r
seg(0, tN)

δ r
seg(1, t1) δ r

seg(1, t2) · · · δ r
seg(1, tN)

...
...

. . .
...

δ r
seg(M, t1) δ r

seg(M, t2) · · · δ r
seg(M, tN)


(3.11)

In order to visualize IPV G(x,y), each element is represented by color tonalities
as shown in Figure 3.6(6) (red represents positive deflections and blue represents
negative deflections). The complete procedure to compute PVG is illustrated in
Figure 3.6 where 5 glottal cycles are depicted.
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Figure 3.6: Schematic representation of the PVG playback. (1) Segmentation; (2)
Resampling of the extracted vocal folds edges; (3) Computation of vocal folds
deflections δ

l,r
seg(pc, tk); (4) Splitting of the glottal axis; (5) Virtual turning of the

left fold; (6) Color coding of the vocal fold deflections; (7) IPV G(x,y) representing
a LHSV with five glottal cycles. Adapted from (Lohscheller and Eysholdt, 2008b).

3.3.3 GVG Playbacks

The GVG playback was proposed in order to solve the difficulties to interpret the
PVG and its strongly dependence on the detection of the glottal main axis (Karako-
zoglou et al., 2012; Döllinger et al., 2011).

The GVG synthesize the LHSV in one single image and its computation uses
a similar approach than the PVG formulation. But unlike it, GVG computes the
distance between the vocal folds edges themselves. Firstly, the vocal folds edges
Cl,r(t) are equidistantly sampled with pc ∈ [0,M]. Then, the deflections among
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the vocal folds edges are computed by eq 3.12, where δGV G(pc, tk) represents the
distance between the left cl

pc(tk) and right cr
pc(tk) fold at position pc and time tk.

δGV G(pc, tk) = ‖cl
pc(tk)− cr

pc(tk)‖2 ; ∀k and ∀pc (3.12)

Lastly, all the distances are stored in a matrix IGV G (eq 3.13) and normalized
within the interval [0,1], with 0 corresponding to zero distance and 1 correspond-
ing to maximal distance. For visualization purposes the matrix is coded with a
grayscale map (see Figure 3.7(4)).

Figure 3.7: Schematic representation of the GVG playback. (1) Segmentation; (2)
Resampling of the extracted vocal folds edges; (3) Computation of vocal fold de-
flections δGV G(pc, tk); (4) IGV G(x,y) representing a LHSV with five glottal cycles.

IGV G(x,y) =


δGV G(0, t1) δGV G(0, t2) · · · δGV G(0, tN)
δGV G(1, t1) δGV G(1, t2) · · · δGV G(1, tN)

...
...

. . .
...

δGV G(M, t1) δGV G(M, t2) · · · δGV G(M, tN)

 (3.13)

The GVG depicts a well-shaped form of the vocal folds vibration even when
detection errors occur during the segmentation or glottal main axis detection, pro-
viding a more intuitive representation of vocal folds dynamics.
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3.4 Discussion

The use of Laryngeal High-Speed Videoendoscopy (LHSV) in combination with
image processing techniques is the most promising approach to investigate vocal
folds vibration and laryngeal dynamics in speech and singing. The playbacks syn-
thesize the time-varying data which permits to visualize hidden features that are
not easily observed from the LHSV.

Despite the great advances that have been reached condensing the data com-
ing from LHSV, many of the aforementioned playbacks present some drawbacks
that restrict their applicability since they rely on glottal-area segmentation (GAW,
GVG, PVG, PVG-wavegram, VFT, VP, EFA and HTA) which is not a trivial task.
The motion analysis is focused only on those points belonging to the glottal con-
tours. Additionally, some of them (GVG, PVG, PVG-wavegram, VFT and VP)
rely on the computation of the glottal main axis, which strongly depends on the
geometry of the detected glottal area and can be difficult to identify accurately in
the presence of a posterior glottal chink. Other Playbacks as: GAW, HTA, NDA
and PGAW are based on glottal area waveform computation, so they do not pre-
serve spatial information about vocal folds vibration, limiting their applicability
for interpreting spatial vibratory features such as asymmetry. On the other hand
playbacks as: VKG, DKG and MKG restrict the information about the dynamics
of the vocal folds along one single line. Lastly, GTG and LGT representations are
less intuitive to interpret and have not been widely used.

The current challenge is to provide new methods for data visualization to over-
come the drawbacks of existing ones, providing simultaneously features that would
integrate the time dynamics, such as: velocity, acceleration, instants of maximum
and minimum velocity, vocal folds displacements during phonation and motion
analysis. These methods should include not only those points belonging to the
glottal edges but also those regions that originated such movements. Therefore, a
global motion technique capable to synthesize the different patterns that are rele-
vant during the voice production would be desirable.
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Part II

State-of-Art in Image Processing
and Glottal Segmentation





Chapter 4

Image and Video Processing
Techniques

“A picture is worth a thousand words”

Chinese proverb

SUMMARY: In this chapter, a brief review of the basic concepts and defini-
tions related to the most relevant techniques for image and video processing
are presented. The examples of the different segmentation and motion es-
timation algorithms are focused on solving the problem of the glottal gap
delimitation, being applied directly to the images in its most basic formula-
tion.

4.1 Review of General Image Segmentation Methods

Image segmentation subdivides an image into its constituent regions or objects
and the level of detail of each subdivision depends on the problem being solved
(Gonzalez and Woods, 2006).

The image segmentation methods can be classified, roughly speaking, into the
following categories: Thresholding, Edge-Based, Region-Based, Classification-
Based, Graph-Based and Deformable Models.

4.1.1 Thresholding

Thresholding is one of the most basic segmentation techniques (Sezgin and Sankur,
2004). The task is to classify the pixels into groups by using a threshold. The
pixels with intensity values greater than or equal to the threshold are classified
into the first group and the rest of pixels into the second group. The output of
the thresholding operation is normally a binary image in which one of the groups
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indicates the foreground objects (objects of interest) and the other one corresponds
to the background (rest of the image).

The major problem with thresholding is that it considers only the intensity.
There is not any relationship between the pixels and there is no guarantee that the
pixels identified are contiguous. In addition, it requires the intensity of the image
to have a bimodal distribution, which is not common in most images, especially
in medical ones. For instance, Figure 4.1 shows two different images with their
respective segmentation and intensity distribution. In Figure 4.1a, the intensity has
a bimodal distribution. Therefore, the foreground and background can be separated
automatically by the Otsu’s method (Otsu, 1979). On the other hand, when the
intensity distribution is not bimodal, satisfactory segmentations are not possible to
obtain (Figure 4.1d).

(a) Original image (b) Segmented Image
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(d) Original image (e) Segmented image
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(f) Histogram

Figure 4.1: Illustration of the Otsu’s thresholding method. First row: coin im-
age thresholded automatically with a value of 126. Second row: laryngeal image
thresholded automatically with a value of 163.

4.1.2 Edge-Based

Edges are a set of connected pixels in which there are abrupt changes of intensity.
In order to obtain such edges, there are local image processing methods known
as edge detectors. In general, edge detectors may be grouped into two categories,
gradient and Laplacian (Gonzalez and Woods, 2006).

The gradient is computed by a digital approximation of the derivatives over a
neighborhood of a point. There are different discrete differentiation operators pro-
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posed to compute such as approximation but the widespread operators in the litera-
ture are Roberts, Prewitt, and Sobel. The operators use a pair of 3-by-3 convolution
kernels to compute the gradients along the x- and y-directions of the image.

On the other hand, the Laplacian methods search for zero-crossings in the sec-
ond derivative of the image to find edges. The Laplacian operator is not applied
directly to the image since it is sensitive to noise. It is often combined with a Gaus-
sian smoothing kernel, so it is referred to as the Laplacian of a Gaussian (LoG).
Then, the edges are obtained by convolving the LoG with the input image.

There are also more advanced techniques proposed in the literature such as
Canny (Canny, 1986) and Hough transform (Ballard, 1981). Canny applies a
double-thresholding technique to detect strong and weak edges. By using two
thresholds, the Canny method performs better in noisy images, and detecting true
weak edges is more likely. Meanwhile, Hough transform is a technique which is
used to isolate features of a particular shape within an image. It requires the desired
features to be specified in some parametric form. However, it is mostly used for
the detection of regular curves such as lines, circles, and ellipses.

Figure 4.2b, 4.2c, 4.2d, 4.2e, and 4.2f show the results obtained when different
edge-based techniques are used to segment a laryngeal image. Meanwhile, Fig-
ure 4.2g, 4.2h, 4.2i use edge detector and Hough transform to detect the ellipses
with a vertical orientation and major axes between 60 and 90 pixels (Xie and Ji,
2002).

4.1.3 Region-Based

Typically, the Region-Based segmentation algorithm can be divided into two broad
categories; Region Growing and Watershed.

• Region Growing: The region growing method starts by selecting a set of
seed pixels. The selection of the seed pixels can be either manually or au-
tomatically and will depend on the nature of the problem. Later, each seed
pixel checks its neighbor pixels and adds to its region the neighboring pixels
that are satisfying a certain homogeneity criteria, thereby growing the re-
gions (Adams and Bischof, 1994). There are different homogeneity criteria
used such as: the difference between the pixel intensity and the mean of the
regions (Adams and Bischof, 1994); weighted sum of gradient information
and the contrast between the region and the pixel (Xiaohan et al., 1992); and
adaptive region growing algorithm that incorporates a homogeneity learning
process (Pohle and Toennies, 2001). The region growth should stop when no
more pixels satisfy the criterion for inclusion in that region, and the number
of regions must be at most the same as the number of seeds planted.

The issues with this method is that it requires a solid criterion and edges
relatively well delimited in order to converge to the region of interest. Fur-
thermore, the algorithm segments objects with inhomogeneous regions into
multiple sub-regions, resulting in over-segmentation. Another problem is the
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(a) Original (b) Roberts detector (c) Prewitt detector

(d) Sobel detector (e) LoG detector (f) Canny detector

(g) Hough-Sobel (h) Hough-LoG (i) Hough-Canny

Figure 4.2: A laryngeal image segmented by different edge-based techniques. (a)
Original image; (b) Roberts detector; (c) Prewitt detector; (d) Sobel detector; (e)
LoG detector; (f) Canny detector; (g) Hough Transform with Sobel detector; (h)
Hough Transform with LoG detector; (i) Hough Transform with Canny detector.

critical dependency of the initialization, which in many cases makes difficult
a complete automatic procedure. Figure 4.3a and 4.3c show the same laryn-
geal image, but with a small difference in the initialization of the seed pixels
which produces a large difference between the segmentation results.

• Watershed: The concept of watersheds comes from the field of topography,
referring to the division of a landscape in several basins or water catchment
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(a) Original (b) Region Growing

(c) Original (d) Region Growing

Figure 4.3: Laryngeal image segmented by region growing: (a) and (c) are the
same image but with a different seed pixel (circles in blue); (b) and (d) are the
respectively region growing segmented images (white regions).

areas. From this point of view, we can consider the image as a topographic
surface and the watershed simulates a rain over the image where each pixel
represents an altitude as a function of its grey level. The drops that fall over
a point flow along the path of steepest descent until reaching a minimum.
Such a point is labeled as belonging to the reception basin associated with
this minimum. This process is repeated for all the points on the surface, so as
a result, the landscape is partitioned into regions or basins separated by dams,
called watershed lines or simply watersheds (Roerdink and Meijster, 2000).
Gray-scale images can directly be used as the watershed’s transformation
input, but this usually is not the case because in most cases high values do
not indicate edges.

The main advantages of the watershed relies on the fact that the result is a
set of well delimited areas, so if we consider that these areas represent the
searched objects, we will obtain an accurate edge detection defined by a set
of connected pixels. Nevertheless, the watershed transform is usually disap-
pointing, due to the fact that thousands of catchment basins arise where only
a few were expected due mainly to noise in the image (Day-Fann and Ming-
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Tsong, 2003). A good solution to solve such a problem is to pre-process the
initial image to reduce the noise. A widespread technique consists in com-
puting the watershed transform over a thresholding of the gradient image. As
a result, the gradient image has its maximum just over the edges of the ob-
jects present in the image, so the insignificant edges that appear due to noise
are removed. However, this pre-processing does not solve completely the
problem, so a post-processing would be required to reach a better solution.

Figure 4.4 shows the results obtained when watersheds are applied to the
glottal segmentation problem, 4.4b and 4.4e depict the results after applying
the watershed transform to the gray and color image gradient, respectively.
Lastly, 4.4c and 4.4f correspond to the post-processing step using (Meyer
and Beucher, 1990) and (Osma-Ruiz et al., 2008), respectively.

(a) Original (b) Gray Gradient (c) Marked watershed

(d) Original (e) Color Gradient (f) JND watershed

Figure 4.4: Watershed transformation applied to laryngeal images: (a) and (d)
original frames; (b) and (e) watershed transform computed on the gradient of the
images; (c) and (f) post-processing step using morphological controlled marked
and Just Noticeable Difference (JND), respectively.

4.1.4 Classification-Based

The classification-based techniques segment each of the objects that compose the
image based on a set of features that better describe each of them. Some of the
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common features used are: texture, shape, brightness, contour energy, curvilinear
continuity, among others. The classification-based techniques are typically divided
into two broad categories, depending on the nature of the learning: supervised and
unsupervised (Duda et al., 2000).

• Supervised: The supervised methods use a collection of training examples
where each training example is formed by a feature vector and its respective
label or also called output. Then the goal is to learn a rule that maps the
feature vectors to the labels. Supervised algorithms include linear regression,
logistic regression, decision trees, super vector machines, neural networks
(Skourikhine et al., 2000), among others.

• Unsupervised: The unsupervised methods, in contrast to supervised methods,
do not need to train data to segment an image. The objects are segmented
based on natural groupings of pixel features (e.g. color, texture, spatial, etc)
or possibly even some automatic learn sense. Common unsupervised algo-
rithms include K-means Clustering, Fuzzy C-means Clustering (Macqueen,
1967), Principal Component Analysis (PCA) (Cootes et al., 1995), Mean
Shift (Comaniciu and Meer, 2002), among others.

Figure 4.5 shows the results obtained after K-means Clustering in a laryngeal
image. Figure 4.5b and Figure 4.5c use only color features with two and ten classes
respectively. Meanwhile, Figure 4.5d depicts the result obtained when spatial and
color features are combined.

4.1.5 Graph-Based

The graph-based techniques borrow tools from graph theory to separate foreground
and background. Graph-based methods represent the images as a graph where
each node corresponds to an image pixel or region and their edges connections are
weighted with respect to a similarity criterion between the pixels or regions.

The basic principle of most of the graph based segmentation methods is to find
a set of disjoint sub-graphs that share a common feature. The graph partition is
commonly formulated as an energy1 minimization problem and can be solved via
graph matching, random walker, min-cut/max-flow algorithm, Dijkstra’s algorithm
and Kruskal’s or Prim’s algorithm, among others (Boykov et al., 2001; Boykov and
Kolmogorov, 2004).

Figure 4.6 depicts examples of interactive graph-cut segmentation applied to a
laryngeal image. Figure 4.6b and Figure 4.6e shows the user-drawn markers where
red represents the background (laryngeal structures) and blue represents the fore-
ground (glottal gap). The final delimitations obtained are deployed in Figure 4.6c
and Figure 4.6f.

1Energy is a relative term in image processing. The aim behind using the term ‘Energy’ is a
minimization problem or maximization one.

57



CHAPTER 4. Image and Video Processing Techniques

(a) Original (b) K-means, 2-classes

(c) K-means, 10-classes (d) K-means, 5-classes

Figure 4.5: Classification-based segmentation applied to laryngeal images: (a)
original frame; (b) K-means with two classes and color features; (c) K-means with
ten classes and color features; (d) K-means with five classes and color-spatial fea-
tures.

4.1.6 Deformable Models

Deformable models are curves or surfaces defined within an image domain that
can move under the influence of internal energies (or regularization term), which
are defined within the curve or surface itself, and external energies (or data term),
which are computed from the image data. The internal energies are designed to
keep the model smooth during deformation. Meanwhile, the external energies are
defined to move the model towards a desired features within an image. Various
names, such as snakes, active contours or surfaces, balloons, and deformable con-
tours or surfaces, have been used to refer to the deformable models (Xu et al.,
2000).

The deformable models can be classified into two approaches, the parametric
and the geometric models, depending on how the model is defined in the shape do-
main. Additionally, there are deformable models that incorporate previous knowl-
edge of the object features by using deformable shape templates.

• Parametric Models: also known as active contours, are curves whose defor-
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(a) Original (b) User-drawn markers (c) Graph-cut

(d) Original (e) User-drawn markers (f) Graph-cut

Figure 4.6: Interactive Graph-based segmentation applied to laryngeal images: (a)
and (d) original image; (b) and (e) interactive user-drawn markers; red background
and blue foreground; (c) and (f) final segmentation using graph-cut method.

mations are determined by the displacement of a discrete number of control
points along the curve. The main advantage of parametric models is that they
are usually very fast in their convergence, depending on the predetermined
number of control points. However, they are topology dependent, which
avoid them to split or merge during deformation

In this group the one that has attracted more attention to date is the proposed
in (Kass et al., 1988), also known as snake. The snake model is controlled
by an external energy to drive the snake towards the pixel with high gradi-
ent, which means the edges of the object of interest. In the other hand, the
internal energy serves to impose a piecewise smoothness constraint, making
the snake contract like an elastic band by introducing tension, and rigidity to
keep the snakes points (snaxels) together avoiding a break down.

• Geometric Models: also known as implicit models, use the theory of curve
evolution and the level set method (Tsai and Osher, 2003) to transform
the curves into higher dimensional scalar functions which permits handling
topological changes naturally (splitting and merging). Geometric deformable
models, proposed originally in (Mumford and Shah, 1989), provide an ele-
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gant solution to address the primary limitations of parametric deformable
models.

Different types of data terms are used in the geometric models. They can
be based on edges (Caselles et al., 1997), region (Chan and Vese, 2001) or
both combined (Mumford and Shah, 1989; Paragios and Deriche, 2002). The
edges-based uses image gradients to identify object boundaries meanwhile
the region-based tries to model the foreground and background regions sta-
tistically and find an energy optimum where the model best fits the image.

• Deformable Shape Models: use global shape parameters to embody a priori
knowledge of expected shape and shape variation of the structures. The
deformable shape models are widely used when a set of training samples
are available.

Most of the deformable shape models learn global modes of variation using
PCA. There are others that use pairwise geometric relations between land-
marks, or representing shapes as configurations of independently deforming
triangles (Felzenszwalb, 2005). The shape in most of the cases is learned by
manual extraction of the shape points and only few methods automatically
extract the necessary landmark points and their correspondences from the
training shapes.

Figure 4.7a depicts a laryngeal image that has been segmented using different
deformable models. Figure 4.7c and 4.7d use geometric models based on the for-
mulation proposed in (Xu and Prince, 1998) and (Lankton and Tannenbaum, 2008),
respectively. Meanwhile, Figure 4.7e and 4.7f use deformable parametric model.
Figure 4.7f is based on (Andrade-Miranda et al., 2013) which has been conceived
for the particular problem of glottal segmentation and does not need initialization.

4.2 Review of Motion Estimation Techniques

The motion estimation techniques are the core of numerous applications in com-
puter vision, video processing, robotics and animation. For instance, it is used
for object tracking (Yilmaz et al., 2006), human computer interaction (Martínez et
al., 2012), temporal interpolation (Lim et al., 2005), spatio-temporal filtering and
image compression (Ji et al., 2010).

The main objective of motion estimation algorithms is to precisely and faith-
fully model the motion in the scene which is typically represented using motion
vectors, also known as vector displacements. The motion estimation techniques
can be grouped into pixel based methods (direct) and feature based methods (indi-
rect). The direct methods derive motion vectors for each pixel in the scene and can
be categorized in Phase Correlation, Block Matching, Pel-Recursive, and Optical
Flow (OF). On the other hand, the indirect methods use features matching between
frames to compute the motion vectors.
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(a) Original (b) Snake initialization

300 Iterations

(c) Chan and Vese
300 Iterations

(d) Lankton and Tannenbaum (e) Xu and Prince (f) Andrade-Miranda et al.

Figure 4.7: Active contours applied to laryngeal images: (a) original image; (b)
snake initialization; (c) deformable model based on Chan and Vese (2001) with
300 iterations; (d) deformable model based on Lankton and Tannenbaum (2008)
with 300 iterations; (e) Gradient vector flow method proposed by Xu and Prince
(1998); (f) active contours based on Andrade-Miranda et al. (2013) with automatic
initialization.

4.2.1 Phase Correlation

The Phase correlation exploits the property that translation in the spatial domain
has its counterpart in a transform domain, using for instance: the Fourier transform,
the Discrete Cosine Transform (DCT) or a Discrete Wavelet Transform (DWT).
The result of the phase correlation between two images is a new image which
has peak intensities at locations where the two images match the best (Reddy and
Chatterji, 1996; Zitová and Flusser, 2003). Since the Phase Correlation uses only
phase information, it is relatively insensitive to illumination changes and it achieves
excellent robustness against correlated and frequency-dependent noise. However,
complex motions are difficult to characterize in the transformed domain.
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4.2.2 Block Matching

Block matching divides a frame at time tk (current frame) into blocks and com-
pares each of the blocks with a corresponding block and its adjacent neighbors
in a nearby frame (usually the next frame, tk+1) (Zhu et al., 2002; Changsoo and
Hyung-Min, 2013). The similarity between the blocks from the current and next
frame are commonly computed via Sum of Square Error (SSE) or Sum of Absolute
Difference (SAD). SSE provides a more accurate block matching, but it requires
more computation. Meanwhile, SAD provides a fairly good match with a lower
computational requirement.

The matching between blocks is computed only inside a region known as the
search area. The search area defines the boundary for the motion vectors and limits
the number of blocks to evaluate. There are different search strategies, being the
most used: full search block matching, three-step search, 2D logarithmic search,
one at time search algorithm, sub-pixel motion estimation and hierarchical block
matching. The motion vectors are obtained by computing the displacement of the
blocks of the current frame with respect to the next frame and all pixels belonging
to the same block share the same motion vector. Figure 4.8 depicts graphically the
procedure followed to compute the block matching algorithm.

Current	Frame	 Next	Frame	tk tk+1

Search	area	 Mo2on	vector	

Block	tk Block	tk+1

Figure 4.8: Illustration of the block matching algorithm.

4.2.3 Pel-Recursive

The Pel-recursive technique estimates the displacement vectors by recursively min-
imizing a nonlinear function of the dissimilarity (or also called the displaced frame
difference function DFD) between two certain regions located in two consecutive
frames where the regions can be a group of pixels or a single pixel. Then, the
estimated displacement vector of a pixel is used as an initial estimate for the next
pixels and so on. This recursion can be carried out horizontally, vertically, or tem-
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porally which means that the estimated displacement vector can be passed to the
pixel of the same spatial position within image planes in a temporary neighboring
frame (Biemond et al., 1987; Efstratiadis and Katsaggelos, 1990). With respect to
the optimization procedure followed to minimize the displaced frame difference
function, most of the works are based on traditional approaches as the steepest
descent method, and the Newton-Raphson method.

4.2.4 Optical Flow

OF estimation has been used for the last 35 years since the seminal works of Horn-
Schunck and Lucas-Kanade (Horn and Schunck, 1981; Lucas and Kanade, 1981),
and many innovative methods have been proposed to solve its computation (Beau-
chemin and Barron, 1995). However, to date, there is no unique method to char-
acterize at minimal computational cost all the possible motion scenarios, including
those with disturbing phenomena such as lighting changes, reflection effects, mod-
ifications of objects properties, motion discontinuities, or large displacements.

The definition of the OF is originated from a physiological description of the
images formed on the retina, which determine that the image is formed due to the
change of structured light caused by a relative motion between the eyeball and the
scene. In the field of computer vision, Horn-Schunck defined OF in (Horn and
Schunck, 1981) as “the apparent motion of brightness patterns observed when a
camera is moving relative to the objects being imaged”.

Given an image sequence I(x, t), the basic OF assumption is that at any pixel
xi j, at time tk, the intensity I(xi j, tk) would remain constant during a short interval
of time ∆tk, the so-called Brightness Constancy Constraint (BBC) or data term (see
eq 4.1).

I(xi j, tk) = I(xi j +~w(xi j, tk), tk +∆tk) ∀ xi, j (4.1)

where ~w(xi j, tk) = (u(xi j, tk),v(xi j, tk)) is the vector displacement of xi j in a time
∆tk. The vector displacement ~w(xi j, tk) has two components: one in the x-axis
direction (u(xi j, tk)) and other in the y-axis direction (v(xi j, tk)). Therefore, the
total motion field at time tk is defined as (eq 4.2)

W(x, tk) =


~w(x11, tk) ~w(x12, tk) · · · ~w(x1n, tk)
~w(x21, tk) ~w(x22, tk) · · · ~w(x2n, tk)

...
...

. . .
...

~w(xm1, tk) ~w(xm2, tk) · · · ~w(xmn, tk)

 (4.2)

and its components can be defined at the same way respectively by eq 4.3 and
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eq 4.4

U(x, tk) =


u(x11, tk) u(x12, tk) · · · u(x1n, tk)
u(x21, tk) u(x22, tk) · · · u(x2n, tk)

...
...

. . .
...

u(xm1, tk) u(xm2, tk) · · · u(xmn, tk)

 (4.3)

V (x, tk) =


v(x11, tk) v(x12, tk) · · · v(x1n, tk)
v(x21, tk) v(x22, tk) · · · v(x2n, tk)

...
...

. . .
...

v(xm1, tk) v(xm2, tk) · · · v(xmn, tk)

 (4.4)

The BCC provides only one equation to recover the two unknown components
of W(x, tk). Therefore, it is necessary to introduce an additional constraint en-
coding a priori information of W(x, tk). Such information comes from the spatial
coherency imposed by either local or global constraints (regularization term (For-
tun et al., 2015)).

In practice, the BBC assumption is an imperfect photometric expression of
the real physical motion in the scene that can not be applied in case of changes
in the illumination sources of the scene, shadows, noise in the acquisition process,
specular reflections or large and complex deformation. Therefore, several matching
costs (also called penalty functions) have been explored to overcome the drawback
of the BBC, in particular its sensitivity to noise and illumination changes.

Over the last years, the number of optical flow algorithms with increasingly
good performance has grown dramatically and it becomes difficult to summa-
rize all contributions and categorizes. For instance, studies back to the nineties
(Beauchemin and Barron, 1995; Barron et al., 1994) classify the OF in six groups:
intensity-based differential methods, frequency methods, correlation-based method,
multiple motion methods and temporal refinement methods. On the other hand,
some of the last studies focus their attention on variational approaches (Mitiche and
Aggarwal, 2014; Weickert et al., 2006; Werlberger et al., 2010) since they are ver-
satile, allowing one to model different forms of flow fields by combining different
data and regularization terms. But more important, they have shown the most accu-
rate results to the OF problem in the literature (Wedel and Cremers, 2011). Other
OF algorithms with outstanding performance are based on discrete optimization
(Menze et al., 2015), the main advantage over the continuous approaches is that it
does not require differentiation of the energy and can thus handle a wider variety
of data and regularization terms. On the counterpart, a trade-off has to be found
between the accuracy of the motion labeling and the size of the search space.

4.2.4.1 Evaluation of the Optical Flow Methods

As in computer vision domain, much attention has been paid to the design of appro-
priate evaluation procedures for OF. The visualization of motion fields provides a
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qualitative insight to the accuracy of the estimation. There are two main visualiza-
tion techniques to assess the OF: via arrow visualization or via color code. The first
one represents the motion vector and offers a good intuitive perception of physical
motion. On the counterpart, a clean display requires to under-sample the motion
field to prevent overlapping of arrows. Meanwhile, the color code visualization as-
sociates a color hue to a direction and a saturation to the magnitude of the vector. It
allows a dense visualization of the flow field and a better visual perception of subtle
differences between neighbor motion vectors. Figure 4.9 shows the visualization
of flow fields, following the proposal in (Baker et al., 2011b).

0º	

90º	

180º	

270º	

Figure 4.9: The visualization of flow fields. Left side: color code visualization,
and right side: arrow visualization. Adapted from (Liu et al., 2011).

Additionally, there are two objective quantitative evaluation methods based on
error metrics that are used to compare the performance of the OF methods when a
ground truth is available, namely the Angular Error (AE) and the Endpoint Error
(EPE) (Baker et al., 2011b). Figure 4.10 depicts the arrow and color code visualiza-
tion using three different OF formulations: Horn and Schunck (1981), traditional
framework; Bruhn et al. (2006), improved version of Horn and Schunck (1981)
based on bidirectional multigrid methods; and Drulea and Nedevschi (2013) which
is based on correlation transform.

In the next sections, three OF algorithms are presented: Lukas Kanade Optical-
Flow (LK-OF) which is a classical framework, Motion Tensor Optical-Flow (MT-
OF) that is based on tensor motion and the last one refers to the class of Total
Variation L1 methods (TVL1-OF).

4.2.4.2 Lucas Kanade Optical Flow

LK-OF models the OF locally assuming that each pixel in a local neighborhood
Ω has the same motion pattern. To solve the OF at xi j, a weighted least squares
method is implemented and the energy functional ELK is minimized (Lucas and
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(a) Laryngeal images at time tk and tk+3 (b) Arrow and color code visualization based on
(Horn and Schunck, 1981) OF

(c) Arrow and color code visualization based on
(Bruhn et al., 2006) OF

(d) Arrow and color code visualization based on
(Drulea and Nedevschi, 2013) OF

Figure 4.10: Arrows and color code visualization. (a) Two laryngeal images taken
during the opening phase of the vocal folds at time tk and tk+3; (b) OF based on
Horn and Schunck (1981); (c) improved mathematical formulation of Horn and
Schunck (1981) using (Bruhn et al., 2006); (d) OF based on Drulea and Nedevschi
(2013).

Kanade, 1981).

ELK = ∑
xi j∈Ω

W 2(xi j)

(
∇I(xi j, tk) ·~w(xi j, tk)+

∂ I(xi j, tk)
∂ t

)2

(4.5)

where W 2(xi j) is the weight function associated with each neighboring pixel that
diminishes the importance of distant neighbors. The eq 4.5 simply sums the error
of applying the flow vector to the spatial and temporal gradients of all surround-
ing neighbors. The more inconsistent with spatial and temporal gradients of some
neighbors, the higher the error. LK-OF has sub-pixel accuracy and also low com-
putational cost. However, the neighborhood size should be carefully decided to
avoid a blurred motion field. Figure 4.13 shows the arrow and color code visual-
ization using the traditional LK-OF and its improved version based on (Bruhn et
al., 2006).

4.2.4.3 Motion Tensors

The underlying idea of this technique is to estimate the motion field by combining
the 3D Orientation Tensors computed from the image sequence under the con-
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(a) Laryngeal images at time tk and tk+3

(b) Arrow and color visualization based on (Lucas and Kanade,
1981)

(c) Arrow and color visualization based on (Lucas and Kanade,
1981) with improved mathematical framework (Bruhn et al., 2006)

Figure 4.11: Arrows and color code visualization using LK-OF computation

straints of a parametric motion model (Farneback, 2000). The 3D Orientation Ten-
sors are a powerful representation of the local orientations and one way to construct
them is by stacking the frames of an image sequence onto each other to obtain a
spatiotemporal image volume with two spatial dimensions and a third temporal
dimension. From here, it is easy to see that a movement in the image sequence in-
duces structures with certain orientations in the volume. For instance, a translating
point is transformed into a line whose direction in the space directly corresponds
to its velocity. Normally to avoid the effects of noise and inaccuracies in the ten-
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sor estimation and also to solve the aperture problem in some pixels, the use of a
motion model to parameterize the coherency motion in small regions is a common
approach. However, the disadvantage of such approach is the assumption that the
true velocity is at least reasonably consistent with the chosen motion model.

(a) Frame #19 and Frame #22 from LHSV

(b) Arrow and color visualization of the MT-OF

Figure 4.12: Arrows and color code visualization using MT-OF computation

4.2.4.4 TV-L1 Optical Flow

This method minimizes an energy functional, ETV L1, which contains two terms.
The first is an image similarity score L1

2 based on the brightness constancy con-
straint. The second is a regularization term that adds a smoothness condition by
forcing the motion field to be regular using the total variation. The TVL1-OF for-
mulation is expressed by eq 4.6 as:

ETV L1 =
∫

λ
∣∣I(xi j +~w(xi j, tk), tk +∆tk)− I(xi j, tk)

∣∣+ ∣∣∇~w(xi j, tk)
∣∣ (4.6)

where λ is a free parameter used to balance both terms. The displacement vector
~w is the minimizer and the strategy followed to solve the energy minimization

2L1 is a metric in which the distance between two points is the sum of the absolute differences of
their Cartesian coordinates.
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problem is a convex relaxation approach (Zach et al., 2007; Javier et al., 2013).
TVL1-OF formulation provides three main features. First, it allows discontinuities
in the flow field, which is desirable when a complex motion is modeled. Secondly,
it is sub-pixel accurate. Finally, it is robust to noise thanks to the denoising feature
included in the convex relaxation formulation. However, it is more sensitive to
large displacements, making necessary the use of multiscale approaches (Javier et
al., 2013). The main undesirable effect produced by a multiscale approach is the
loss of small and rapidly moving objects in the final estimation of the flow field
(Fortun et al., 2015). Figure 4.13 shows the arrow and color code visualization of
the TVL1-OF applied to laryngeal images.

(a) Laryngeal images at time tk and tk+3

(b) Arrow and color visualization based on TVL1-OF

Figure 4.13: Arrows and color code visualization using TVL1-OF computation

4.2.5 Feature-Based Methods

The feature-based methods compute a sparse motion field which means that only
some pixels from the whole image have a displacement vector. The pixels used to
compute the sparse motion field are salient and distinctive features. In the litera-
ture, a large variety of feature extraction methods have been proposed to compute
reliable descriptors. Among these descriptors, the scale invariant feature transform
(SIFT) descriptor (Lowe, 2004) utilizing local extrema in a series of differences of
Gaussian (DoG) functions for extracting robust features, and the speeded-up robust
features (SURF) descriptor (Bay et al., 2008) partly inspired by the SIFT descriptor
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for a fast computing of distinctive invariant local features, are the most popular and
widely used in several applications.

After the feature extraction step, the correspondence between the features in
the current image (tk+1) and those detected in the reference image (tk) are match-
ing. There are different strategies to match the features, for instance: Brute-Force
matcher which takes the feature in the reference image and is matched with all
other features in the current image using some distance calculation, and the clos-
est one is returned as a good matching. One more efficient method is FLANN
which stands for Fast Library for Approximate Nearest Neighbors. FLANN con-
tains a collection of algorithms optimized for fast nearest neighbor search in large
datasets and for high dimensional features.

4.3 Review of Inpainting Techniques

Inpainting is the process of restoring missing or damaged areas in an image by as-
suming that pixels in the known and unknown parts of the image share the same sta-
tistical properties or geometrical structures. The inpainting techniques have been
used for restoration of photographs, films and paintings, to remove occlusions, such
as text, subtitles, stamps and publicity from images. In addition, inpainting can also
be used to produce special effects (Guillemot and Meur, 2014). There are 4 cate-
gories of inpainting techniques known as diffusion-based methods, examplar-based
methods, sparse-based methods and hybrid-based methods.

The diffusion-based methods use parametric models or partial differential equa-
tion (PDEs) to smoothly propagate local structures from the exterior to the interior
of the damaged region, imitating the gesture of profesional painting restaroators.
These methods are well suited for completing straight lines, curves and for inpaint-
ing small regions but fail to recover the texture of large areas since they tend to blur
the regions.

The examplar-based methods use image statistics and self similarity priors.
The statistics of image textures are assumed to be stationary or homogeneus. The
texture to be synthesized is learned from similar regions in a texture sample by
sampling and copying or stitching together patches taken from known parts of the
images. These methods have been inspired by local region growing methods and
rely on Markov Random Fields modeling of textures.

The sparse-based methods assume that the image or patches are sparsed in a
given basis. The basis can be formed by predefined elementary waveforms which
are stored in an dictionary matrix. The known and unknown part of the image are
assumed to share the same sparse representation.

Lastly, the hybrid methods combine the structural diffusion propagation with
textural components, having as a result more robust algorithms.

Figure 4.14 depicts two examples of image inpainting using the diffusion-based
approach. The original images are showed in Figure 4.14a and 4.14c. The blue
rectangles represent the region to be restored. In these particular examples the
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glottal gap is replaced by the information that surrounds it (laryngeal structures) in
order to simulate a vocal folds in close-state.

(a) Original (b) Diffused inpainting

(c) Original (d) Diffused inpainting

Figure 4.14: Diffusion-based inpainting applied to laryngeal images: (a) and (c)
are the same image but with a different region to be inpainted (rectangles in blue);
(b) and (d) are the results of appling a Diffusion-based inpainting technique.

4.4 Discussion

The literature intended to solve the segmentation and motion estimation problem is
vast, so this chapter only claim to introduce a general classification, emphasizing
their use in laryngeal images.

Algorithms such as thresholding ones use the information based on a single
pixel and do not take spatial information into account. Additionally, they highly
depend on the intensity distribution of the images, which mean that heterogenous
objects can not be segmented correctly.

Edge-Based algorithms tend to produce disjoint edges, they are sensitive to
noise and have over-segmentation tendency. They alone are not able to solve a
complex task such as the glottal segmentation, so the use of additional techniques
is necessary (Aghlmandi and Faez, 2012).

Region-Based algorithms require that the target objects to segment have homo-
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geneous features. In some cases, an user interaction is needed (region growing).
Furthermore, they have problems of over-segmentation (watershed), so it is neces-
sary the use of post-processing steps.

In Classification-Based algorithms, the supervised methods depend on training
parameters which are usually setting in a trial-and-error manner. The accuracy of
this algorithm largely depends on the selected training samples. Also, they are
more tedious to use. On the other hand, the unsupervised methods often produce
many objects, particularly for heterogeneous images. The number of objects to be
segmented, or also known as classes, is an important parameter that affects their
accuracy.

Graph-Based algorithms are computationally expensive and the criterion for a
good partition is a challenging task that presents problems of over-segmentation
since it uses low-level features such as intensity and edges, which are often cor-
rupted by noise.

The Deformable Models include constraints that make them less sensitive to
noise. However, they are sensitive to the initialization, hence a wrong initiliza-
tion make them converge to a erroneous object. Deformable Shape Models require
training samples which make them difficult to implement when different deforma-
tions have to be modelled, which is the case of laryngeal images.

In general, thresholding, Region/Edge-Based, graph-based and classification-
based algorithms can solve simple medical image segmentation problems where
the images are noise free, high contrasted, and have quite homogeneous regions.
For complex medical image segmentation problems, deformable models have more
potential but they rely on the initialization. The main advantage of threshold-
ing, region-based and edge-based algorithms with respect to classification-based,
graph-based and deformable models is that the computational complexities are
roughly linear.

On the other hand, the motion estimation techniques have the goal to compute
a motion field in which the motion is represented by vector displacements. In
Optical Flow, Phase Correlation, Block Matching and Pel-Recursive methods a
vector motion is computed for each pixel, which is interesting for motion analysis
applications. Contrariwise, the indirect methods use feature descriptors to compute
the motion vectors only in pixels with salient features, which make them more
accurate in cases of large displacements.
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Chapter 5

Glottal Segmentation Techniques

“Truth is ever to be found in the simplicity,
and not in the multiplicity and confusion of

things”.

Sir Isaac Newton

SUMMARY: The glottal gap segmentation is the most extended method to
synthesize the dynamic behaviour of the vocal folds. However, it is a chal-
lenging task, and a number of methods have been proposed. This chapter
reviews the literature devoted to solve the problem of the glottal gap seg-
mentation dividing the different approaches into three main stages: Image
Enhancement, identification of the Region of Interest (ROI), and Glottal Gap
Delimitation.

5.1 Overview

The glottal segmentation is an essential operation for the correct characterization
of vocal-folds vibrations which let identify in an objective way different phonation
features, i.e. the periodicity and amplitude of vocal folds vibration, mucosal wave,
glottal closure, closed-state, symmetry of vibration, presence of non-vibrating por-
tions of the vocal folds (Tao et al., 2007; Lohscheller et al., 2013), etc.

From a pure image processing perspective, the task of tracking the edges of the
vocal folds during an entire video sequence appears to be a standard tracking task.
Thus, naively, it may seem that once the glottal area in some frame is delineated,
it can easily be identified in successive frames, or that by subtracting successive
frames the glottal gap will be obtained intuitively. However, there are many reasons
why glottal segmentation is not a trivial task, some of them are listed below and
depicted in Figure 5.1:
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(a) Artifacts (b) Orientation (c) Overexposure

(d) Vocal hemorrhage (e) Aryepiglottic Oclussion (f) Nodule

Figure 5.1: Different laryngeal images during phonation showing different illumi-
nation conditions, orientation, depth, occlusion, among others features are showed.

• Inter-video variabilities such as position, orientation, different illumination
levels, and depth differences between videos (see Figure 5.1).

• The difficulties presented by the camera rotation during recording, side move-
ment of the laryngoscope, and movements of the patient, which produce the
delocation of the vocal folds (Figure 5.1b, 5.1e, 5.1f).

• Reliability against external artifacts introduced due to recording problems.
For instance, black elongated artifacts which appear on both the corners and
borders of the frames (Figure 5.1a, 5.1c, 5.1e).

• The presence of occlusion effects, meaning that part of the vibrating glottis
is hidden under the aryepiglottic fold or by other laryngeal structures (Figure
5.1d, 5.1e, 5.1f).

• Demanding cases as hourglass closure, irregular closure, presences of nod-
ules, polyps and cysts, lesions, scars, presence of mucus, specular reflection,
discoloration of the vocal folds, among others (Figure 5.1c, 5.1d, 5.1f)

The literature reports different techniques for the glottis segmentation task.
Roughly speaking, they can be grouped depending on the user intervention in semi-
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automatic and automatic methods. The semi-automatic techniques let the user in-
teract as many times as needed in order to solve any inconvenience that might
appear during the segmentation process. Contrariwise, the automatic techniques
process all the data without any previous setting or any user intervention. From a
clinical point of view, both methods present advantages and disadvantages but it is
worth mentioning that semi-automatic methods are more time consuming for the
clinicians, although their accuracy is expected to be better.

With respect to the semi-automatic segmentation, the literature reports different
techniques and approaches. For instance, in (Lohscheller et al., 2007; Pinheiro et
al., 2014) the user selects an arbitrary set of images within the video sequence and
defines one or multiple seed-points belonging to the glottal area; in (Chen et al.,
2013; Booth and Childers, 1979) the posterior and anterior commissures are given
by the user; in (Mehta et al., 2013) the user defines the glottal midline by indicating
the anterior and posterior commissure in the frame with the maximal opening and
the user also defines a threshold based on a reference image; in (Blanco et al., 2013)
the user searches around the video sequence for the frame with the minimal glottal
opening; among others (Larsson et al., 2000; Marendic et al., 2001; Moukalled et
al., 2009).

On the other hand, only a few of the existing approaches (Demeyer et al., 2009;
Osma-Ruiz et al., 2008; Cerrolaza et al., 2011; Karakozoglou et al., 2012) are de-
signed to be fully automatic. However, in the last few years, the fully automatic
glottal segmentation algorithms have become an active research field with growing
interest (Ko and Ciloglu, 2014; Schenk et al., 2014, 2015; Andrade-Miranda et al.,
2015b; Gloger et al., 2015). Up to now, there is no standardized procedure to au-
tomatically segment glottal gap from endoscopic high-speed sequences, in spite of
the extensive literature devoted to solve such as problem. The common approach
to solve the glottal segmentation, roughly speaking, divides the problem into three
main stages: image enhancement, identification of the Region of Interest (ROI),
and glottal gap delimitation (see Figure 5.2).

5.2 Image Enhancement

Image enhancement refers to the manipulation or transformation of an image, with
the aim of increasing its usefulness or visual appearance. For instance, the modifi-
cation of intensity values, so as to increase contrast. There are not general criteria
behind the enhancement, and often the techniques used for enhancement depend
on the application (Gonzalez and Woods, 2006). The most common methods to
objectively evaluate the image enhancement are Mean Square Error (MSE) and
Peak-Signal-to-Noise-Ratio (PSNR) (Lehmann and Casella, 1998). However, they
are not suitable for many applications and they fail to accurately reflect the sub-
tleties of human perception (Wang and Bovik, 2009).

In laryngeal images, the glottis has darker intensity levels than its surrounding
tissues. However, they often have low contrast and heterogeneous profiles due to
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Figure 5.2: Graphic Representation of the three common steps followed to segment
the glottal gap.

the illumination conditions. Modeling the histogram of the LHSV with a statistic
distribution, such as Rayleigh as in (Yan et al., 2006), or finding the darkest region,
produces errors due to the non-uniform contrast of the image, lighting conditions
and artifacts due to the recording equipment. For this reason, it is required to
simultaneously reduce the effect of the low contrast and to highlight the object of
interest (i.e. the glottis). Thus, the use of image enhancing techniques is expected
to improve the characteristics of the image for a further processing.

The literature reports the use of different enhancing techniques as a previous
step to the glottis segmentation. In (Mendez et al., 2009) the authors combine
an anisotropic diffusion with an FFT-based band pass filter in order to obtain a
smoother image without losing edge information (second row of Figure 5.3). In
(Zhang et al., 2010) a Lagrange interpolation is combined with a Gaussian filter
in order to smooth the images, reduce noise and eliminate unwanted details. In
(Yan et al., 2012), the authors use a global thresholding to obtain a binary image to
eliminate the worthless information. However, this strategy can not be generalized
for noisy and poor quality LHSV recordings.

Another alternative is to manipulate the histogram of the image. The most com-
mon histogram based processing techniques are the Histogram Equalization (HE),
Adaptive Histogram Equalization (AHE), Contrast Limited Histogram Equaliza-
tion (CLHE), and the Contrast Limited Adaptive Histogram Equalization (CLAHE).
CLAHE is used in (Karakozoglou et al., 2012) providing more details in the glot-
tal area while avoiding significant noise introduction (third row of Figure 5.3).
CLAHE highlights the details over a small neighborhood preventing the over am-
plification of noise that can arise from adaptive histogram equalization AHE.
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One of the most widespread methods is based on point-wise intensity transfor-
mations. The point-wise transformation operates directly over the intensity values
of an image, processing each pixel separately and independently. This transfor-
mation can be linear, piecewise linear, or nonlinear. Aghlmandi and Faez (2012)
establish a methodology for pre-processing LVS as a previous step for edge detec-
tion. The authors mention the drawbacks that exist in the acquisition due to the
flashing effect at the recording instants, reducing the accuracy of the segmenta-
tion algorithm. The same procedure is used in (Skalski et al., 2008) to highlight
the glottal area and to reduce the influence of the flashes in LHSV. Figure 5.3 de-
picts some of the enhancement methods used in the state of art for the glottal gap
segmentation.

5.3 Region of Interest

A Region of Interest (ROI) is a part of the image that encapsulates important
features that can be used for further analysis. ROI detection has been studied
for many years. Most algorithms use either Feature-Based or Object-Based ap-
proaches. Feature-Based methods find pixels that share similar features to form
the ROI. Meanwhile, object-based methods detect the ROI at a higher level than
the pixel-by-pixel approach of Feature-Based systems using information such as
target shape or structure. Figure 5.4 depicts some examples of ROI detection in six
different LHSV sequences using the algorithm presented originally in (Andrade-
Miranda and Godino-Llorente, 2014) and extended in (Andrade-Miranda et al.,
2015b).

In laryngeal images, the vocal folds, and so the ROI, usually covers less than
25% of the entire image size. Therefore, the ROI detection permits to eliminate
the non-relevant information and reduces the number of false detections, so it is an
important step to be considered prior to the segmentation process. The literature
reports some attempts to detect a ROI. However, most of these studies require user
intervention (Palm et al., 2001; Marendic et al., 2001; Yan et al., 2006; Moukalled
et al., 2009; Zhang et al., 2010; Yan et al., 2012; Chen et al., 2013) and, even more
important, they do not consider the temporal information of the sequence.

In (Skalski et al., 2008), the authors assume that the segmentation of the glottal
area from previous frames is available. Then, the values of the pixels where the
difference between the current frame and the previous is larger than 20% of the
maximum value of the image are set to 1. The authors in (Blanco et al., 2013) also
propose an algorithm based on differences between consecutive frames. Other
authors as (Larsson et al., 2000; Mendez et al., 2009; Alaoui et al., 2009) use
motion estimation techniques to compute the ROI based on the fact that the region
with the most salient motion features is the vocal folds.

In (Lohscheller et al., 2007; Pinheiro et al., 2014), the user chooses a set of ini-
tial seed points in a frame with the vocal folds open. This can be understood as a
ROI, since the Region Growing starts its journey from such a manual initialization.
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(a) Original

(b) Anisotropic and FFT-filter

(c) CLAHE

(d) Nonlinear Transformation

Figure 5.3: Visual representation of the different enhancement methods for three
different LHSV. First row: original image; second row: anisotropic with FFT-filter
(Mendez et al., 2009); third row: CLAHE (Karakozoglou et al., 2012); fourth row:
nonlinear transformation with β = 200 (Skalski et al., 2008).
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Automatic ROI detection of six different LHSV computed based on
(Andrade-Miranda and Godino-Llorente, 2014; Andrade-Miranda et al., 2015b).
The image in (f) illustrates a minor problem in the detection of the ROI in the
posterior commissure.

The method reported in (Karakozoglou et al., 2012) is an Edge-Based morpholog-
ical processing of some frames extracted from the LHSV, called keyframes. The
idea of the morphological operator is to find a large, nearly vertically oriented area
and to apply a Sobel filter to detect the strong edges in the vertical direction. Then,
a morphological closing operation is carried out over the gradient map to connect
small related regions. The regions to be connected are identified by means of con-
nected component analysis. Lastly, the object with the largest area and vertical
orientation is chosen. Around the selected area, a rectangle is delineated, repre-
senting the ROI.

5.4 Glottal Gap delimitation

The most common techniques reported in the literature are based on Thresholding,
Region Growing, Watershed and Deformable models (Parametric and Geometric).
However, there are other approaches that include Deformable Shape Model (Cer-
rolaza et al., 2011), combination of different techniques (Andrade-Miranda et al.,
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2015b), feature extraction and training (Gloger et al., 2015), among others (Mendez
et al., 2009; Chen et al., 2013; Ko and Ciloglu, 2014).

Some of the main contributions with respect to glottal segmentation are de-
picted in Table 5.1 and briefly described below:

Author User Enhancement ROI Glottal Gap
Delimitation Video

Booth and Childers (1979) X —– —–
Subtraction and
adaptive window

LHSV

Wittenberg et al. (1995) X —– —– Region Growing LHSV

Larsson et al. (2000) X
Contrast

enhancement
Motion Estimation
and manual ROI

Edge-Based LHSV

Palm et al. (2001) X —– Manual ROI
Parametric and

Deformable Shape
LSV

Marendic et al. (2001) X —– Manual ROI Parametric Models LHSV

Yan et al. (2006) X —– Manual ROI
Thresholding

Region Growing
LHSV

Lohscheller et al. (2007) X —– Seed points Region Growing LHSV
Osma-Ruiz et al. (2008) X —– —– Watershed LSV

Skalski et al. (2008) X
Nonlinear

transformation
Subtraction Geometric Models LHSV

Mendez et al. (2009) X
Anisotropic
FFT-filter

Motion Estimation Motion Estimation LSV

Alaoui et al. (2009) X —– Motion Estimation Motion Estimation LSV

Moukalled et al. (2009) X
Histogram

Thresholding
Manual p(t), a(t)

commissure
Parametric Models LHSV

Zhang et al. (2010) X
Lagrange

interpolation
Manual ROI

Differentiation
Edge-Based

LHSV

Cerrolaza et al. (2011) X —– —–
Deformable

Shape Models
LSV

Aghlmandi and Faez (2012) X
Nonlinear

transformation
—–

Morphological
Operators

LHSV

Elidan and Elidan (2012) X —– —– Parametric Models LSV
Yan et al. (2012) X —– Manual ROI Parametric Models LHSV

Karakozoglou et al. (2012) X CLAHE
Morphological

ROI
Geometric Models LHSV

Mehta et al. (2013) X —–
Manual p(t), a(t)

commissure
Thresholding LHSV

Blanco et al. (2013) X —– Subtraction Thresholding LHSV

Chen et al. (2013) X
Reflection
removal

Manual p(t), a(t)
commissure

Simplified Dynamic
Programming

LHSV

Andrade-Miranda et al. (2013) X
Anisotropic

Thresholding
—– Parametric Models LSV

Pinheiro et al. (2014) X —– Seed points Region Growing LHSV

Ko and Ciloglu (2014) X
Reflectance
modeling

Intensity
variation

Gaussin
Mixture Models

LHSV

Gloger et al. (2015) X —– —–
Training

clasification
LSV

LHSV

Schenk et al. (2015) X
Color contrast

stretching
Salient region Geometric Models LHSV

Table 5.1: Summary of the main studies carried out from glottal segmentation
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• The authors in (Booth and Childers, 1979) use a model image that is sub-
tracted from each frame of the video sequence. The objective is to remove
as much artifact, or background as possible. They found that the best initial
model corresponds to a frame with the glottis completely closed. After that,
the posterior and anterior commissures are defined manually and two adap-
tive windows are used to trace the left and right folds boundaries separately.

• Wittenberg et al. (1995) use the dark pixels of the image as seed points for a
Region Growing algorithm. However, this criterion is not appropriate when
the images have shades and low contrast.

• In (Larsson et al., 2000), the motion of the mucosa wave is used to compute
the ROI. Later, the gray scale levels of the image are adjusted manually and
the vocal folds edges are tracked using the maximal derivative of the image.

• In (Palm et al., 2001), a variation of the snakes based method called balloon
model is used to improve the behaviour against noise, as well as to obtain
some degree of independence with the initialization procedure. The bal-
loon model is defined by vertices and edges. Curve evolution is steered by
shrinking and expanding forces, smoothing forces and external forces result-
ing from image edges. Deformable Shape Models are interconnected with
the balloon model to integrate shape constraints for the vocal folds in the pro-
cess of curve evolution. The main drawback is that all of their parameters
have to be tuned carefully to achieve good results.

• The authors in (Marendic et al., 2001) extend the traditional active contour
model to solve the glottis segmentation problem using two internal stretch-
ing forces to guide the active contour into narrowing posterior and anterior
glottal commissures. They adapt a linear filter to a Canny edge detector to re-
duce the noise and to compute the external energy. They initialize the snake
in the current frame using the results from the previous one. The parameters
of the internal and external energies are selected empirically.

• In (Yan et al., 2006), the authors combine the use of Thresholding with Re-
gion Growing. First, a group of seed points are automatically computed by
assuming that the frames follow a Raleigh distribution for both glottis and
background regions. Then, the seed points are used for the Region Grow-
ing algorithm. This approach segments the glottal regions assuming that the
glottal regions are significantly darker than the background tissue.

• In the semi-automatic method (Lohscheller et al., 2007), the user selects
within the image sequence an arbitrary number of frames where one or mul-
tiple seed points can be placed inside the glottis. Then, a homogeneity crite-
rion is defined using thresholding. The user checks the results and adapts the
thresholds until a satisfactory segmentation is obtained. If the results are not
according to the expectations, the whole procedure must be repeated again.
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• The authors in (Osma-Ruiz et al., 2008) use the Watershed transform fol-
lowed by a JND based region merging and a linear discriminant analysis
which is based on seven binary invariant moments. However, the authors
need to use several values in their approach to adapt the parameters and
threshold values (i.e. visibility thresholds) either for the region merging as
binary invariant moments.

• In (Skalski et al., 2008), the glottis is segmented using active contours and
level set methods. The level set method is appropriate for modeling chang-
ing topologies since merging and breaking are made automatically, which is
observed often in laryngeal images.

• In (Demeyer et al., 2009), the authors propose a framewise glottis segmen-
tation strategy using Region Growing. They find the frames with the most
opened glottal gap (keyframes) to start the segmentation. Then, the seed
points are determined using the maximal response of a Laplacian of Gaus-
sian filter and the threshold is computed iteratively based on the mean value
of the glottis. However, the presence of the artifacts with very low gray val-
ues (i.e. outer image regions near the image border areas) can mislead the
proposed method and produce inappropriate starting frames.

• The authors in (Mendez et al., 2009) estimate the motion of the vocal folds
using the Wiener estimator. The Wiener estimator produces a smooth vec-
tor field which is used as a reference for a neighborhood algorithm which
eliminates the pixels with less motion. Lastly, a threshold segmentation al-
gorithm is applied to segment the glottal gap. This algorithm has problems
to segment the glottis when the vocal folds are closed, and when there is not
enough motion between consecutive frames.

• The authors in (Moukalled et al., 2009) use a pair of open curves to segment
the glottis, one for the left and the other for the right fold. The inconvenience
with this procedure is that it requires adjusting some parameters twice per
video. The first one is used to initiate the snake and the second one to verify
the segmentation before propagating to the remaining stages.

• In (Zhang et al., 2010) the authors integrate the features of the Lagrange in-
terpolation, differentiation, and Canny detector to segment the glottal gap.
First, the frames are smoothed using a Lagrange interpolation. Then, a dif-
ferentiation is computed along the frames’ rows to determine the extreme
values of the image intensity as well as the vocal folds edges (the left fold
corresponds to a minimal and the right fold a maximal). Lastly, the Canny
detector is used to compute a continuous representation of the vocal folds
edges.

• In (Cerrolaza et al., 2011), the authors present an automatic glottis segmenta-
tion approach using Deformable Shape Models. The approach starts with an
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5.4. Glottal Gap delimitation

initial coarse segmentation by means of the Region Growing technique. The
seed points are determined based on a simple linear relationship between the
average gray level of the image and the optimal seed points obtained from
the training examples. Lastly, the non-glottal regions are eliminated using
the reliability score factor from the trained shape models.

• The authors in (Aghlmandi and Faez, 2012) propose an Edge-Based method
which combines morphological operations and Hough transform. The Hough
transform connects the lines that are not detected correctly by the morpho-
logical operations. Lastly, all the edges that do not belong to the glottis are
not included in the final segmentation.

• The authors of (Elidan and Elidan, 2012) present a method that uses a global
energy which allows to jointly consider the individual contour evolution in
each frame. The global energy promotes the temporal consistency between
the segmentations in each frame.

• In (Yan et al., 2012) the authors perform three steps to segment the glottal
gap. First, a rough segmentation is performed by global thresholding and
followed by the detection of an ellipse-shaped region that approximates the
glottal geometry. Secondly, the parameters of the ellipse are estimated using
PCA. Lastly, the snake method is applied using the estimated ellipse as an
initial contour.

• In (Karakozoglou et al., 2012) a local region-based framework is used to
guide an active contour algorithm. The foreground and background are mod-
eled in terms of small regions with constant intensities that depend on their
means. The active contour model uses a level set based procedure which
allows to split and merge the vocal folds edges.

• In (Blanco et al., 2013), the frame with the minimal glottal opening (refer-
ence frame) is chosen manually as a starting point. Then, a binary differ-
ence is computed between the reference frame and each frame of the video
sequence where the pixels with values greater than a threshold obtained em-
pirically are defined as ROI. Lastly, the minimum gray value within the ROI
is used to segment the glottal gap.

• In (Chen et al., 2013), the vocal folds edges are segmented separately by
following the paths with the largest absolute gradient along the posterior-
anterior commissures. The cost function used is based on the mean and
standard deviation of the gray level, and in the gradient distribution of the
images.

• The authors in (Andrade-Miranda et al., 2013) propose a fully automatic
procedure to segment the glottal gap based on a gradient vector flow. The
gradient vector flow creates a vector field over the image which is used for
the initialization process and evolution of an active contour algorithm.
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• In (Pinheiro et al., 2014), the user selects an arbitrary number of points
inside the glottal gap to estimate its mean color intensity. Then, the glot-
tis is separated from the remaining regions using an adaptive thresholding
method, which is based on the statistical relationship between each pixel
and its neighbords.

• The authors in (Ko and Ciloglu, 2014) present a novel illumination model
based on the mean intensity distribution along the longitudinal cross section
of the center of the glottis. Then, the new histogram distribution is modeled
by a Gaussian Mixture Model (GMM) and the estimated GMM is used to
isolate the glottis from the background. However, this method neglects the
global drift and therefore does not provide any type of motion compensation.

• The authors in (Gloger et al., 2015) propose a fully automatic method to
segment the glottis using local color and shape information. They divide
the approach in three modules: training, recognition and segmentation. In
the training, 60 different glottis shapes are manually segmented, and a set of
descriptors are computed. The recognition module is designed to recognize,
delineate and determine the optimal starting glottis regions. The last mod-
ule segments the glottis based on properties of the previous frame. Hence,
the glottis is continuously tracked within vibration cycles of the video by a
frame-by-frame-wise segmentation technique.

• The authors in (Schenk et al., 2014) propose a framework that consists of
three steps: pre-processing, ROI and seed region detection, and glottis seg-
mentation. The preprocessing deals with problems like non-homogeneous
background, illumination artifacts and global drift are dealt with. Then, a
ROI and seed regions are automatically computed. Lastly, the generated
seed regions are used as initialization for a 3D Geodesic active contour seg-
mentation.

5.5 Discussion

Currently, the task of identifying the glottal gap is carried out by semi-automatic
methods. In this context, and with the exponential growth of computer power
and the constant improvement of the algorithms used for image processing, the
hard task of automatically segmenting the glottal gap has achieved a dramatic ad-
vancement. However, many of the techniques found in the literature still have
weaknesses that make them impractical in a clinical environment, in which the
automatization and reliability are fundamental.

The most common techniques reported in the literature to segment the glottal
gap are based on Thresholding, Region Growing and Deformable Models methods.
The studies based on Thresholding assume that the glottis has darker intensity lev-
els than the vocal fold tissues (Yan et al., 2006; Mehta et al., 2013). However,
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the laryngeal images often have low contrast and heterogeneous profiles. Hence,
selecting a global threshold results in an erroneous delimitation of the glottal gap,
since the intensity distribution is not bimodal. On the other hand, the studies based
on Region Growing requires a solid criterion for the seed selection and relatively
well-delimited edges in order to converge towards the glottal gap. Furthermore,
the algorithms segment objects with inhomogeneous regions into multiple sub-
regions, resulting in over-segmentation (Lohscheller et al., 2007; Pinheiro et al.,
2014). With respect to the Deformable Models, they have the advantage to couple
appropriately to non-rigid and amorphous contours by an iterative minimization of
an energy function. However, the initialization process is not a trivial task. There-
fore, many authors use manual procedures to initialize the active contours (Palm
et al., 2001; Marendic et al., 2001; Moukalled et al., 2009). Lastly, most of the
studies do not take into account the temporal dimension of the problem and they
do not consider that the glottis corresponds to less than 25% of the total image, so
each frame is treated individually leaving aside the information obtained from the
previous frames.

An accurate detection of the glottal gap along time is a very important task to
objectively characterize the vibratory patterns of the VF. This is usually carried
out synthesizing different representations such as Vibration Profiles (VP), Glottal
Area Waveform (GAW), Glottovibrogram (GVG), Phonovibrogram (PVG), among
others, and extracting some important measurements as: the symmetry of vibration,
the amplitude of vibration, mucosal wave, periodicity, etc. It is known that these
parameters are correlated with voice quality and health condition, and help the
specialist to evaluate the phonation in an objective way.
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Chapter 6

Contribution to the Glottal Gap
Segmentation

“Imagination is more important than
knowledge”

Albert Einstein

SUMMARY: In this chapter two algorithms are proposed to tackle the prob-
lem of the glottal gap segmentation. The first one, named as Glottal Segmen-
tation Based on Watershed Transform and Active Contours (SnW), uses tra-
ditional image segmentation methods such as Region-Based and Deformable
Models but adding the temporal information of the videos. The second one,
receive the name of Glottal Segmentation Based on Background Subtrac-
tion and Inpainting (InP), and presents a quasi-automatic framework to accu-
rately segment the glottal area, introducing several techniques never explored
before in the state of the art. The method takes advantage of the possibility of
a minimal user intervention for those cases where the automatic computation
fails. Lastly, a set of validation guidelines are proposed in order to standard-
ize the criteria of accuracy and efficiency of the segmentation algorithms.

6.1 Database Description

In order to demonstrate the strengths and limitations of the proposed methods, sev-
eral experiments were carried out using two databases which are described below:

Database1 (DB1): This database was provided by Dr. Erkki Bianco and Gilles
Degottex (Gilles, 2010) and consists of 22 videos. The LHSV system used to
record the videos is a Richard Wolf-ENDOCAM 5562. The vocal folds were
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CHAPTER 6. Contribution to the Glottal Gap Segmentation

filmed through a rigid endoscope which passes through the mouth, connected to
a high-speed camera providing 4000 colored fps with a resolution of 256× 256
pixels. The distances between the camera’s head in the oropharynx and the vo-
cal folds were variable. The database includes usual phonatory mechanisms such
as M1 (the main mechanism used in speech), M2 (a laryngeal mechanism which
can be found for high-pitched voice) and particular phonatory situations such as:
breathy voice, tense voice, pressed voice, exhaled and inhaled fry. The database
comprises only non-pathological phonation. The videos present different illumina-
tion levels, contrast, presence of nodules, partial occlusion of the glottis and lateral
displacements of the camera.

Database2 (DB2): The database consists of 54 high-speed sequences: 36 females
(67%) and 18 males (33%). Each sequence has 400 frames, thus the number of
images analyzed is 21600. The recording took place at the ENT service of the Gre-
gorio Marañon Hospital in Madrid. The videos were recorded during a sustained
vowel phonation, including in some cases the vocal onset. The high-speed se-
quences were acquired using the camera system WOLF HRES ENDOCAM 5562
and a rigid endoscope with angle of view of 70◦. The light source was the AUTO
LP 5132 and all the videos were recorded in color. The sampling rate was 4000 fps
and the spatial resolution of 256×256 pixels. The distances between the camera’s
head in the oropharynx and the vocal folds were variable. The database includes
voiced sounds in laryngeal mechanism M1, lesions in the vocal folds (polyps and
nodules), paralysis, paresis, postoperative papillary thyroid cancer, patients with
multinodular goiter and postoperative diplophonia. The recordings present differ-
ent illumination levels, contrast, partial occlusion of the glottis and lateral displace-
ments of the camera.

6.2 Glottal Segmentation Based on Watershed and Active
Contours

SnW method performs an automatic segmentation of the glottis. The algorithm
identifies the ROI which is iteratively updated to be tolerant for camera displace-
ments. In this way, a robust initialization for each frame is obtained. Finally, a
procedure that combines watershed and active contours is used to delineated the
glottal gap.

SnW method is divided into five main modules: 1) image enhancement, INLT (x, t);
2) ROI detection; 3) first region merging, IJND(x, t); 4) correlation regions merg-
ing, Icor(x, t); and, 5) post-processing, SnW (x, t). Each of these modules generates
an intermediate result that is used for the subsequent step. Figure 6.1 summarizes
graphically the different steps of the process, and the following subsections detail
the procedures followed.
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Figure 6.1: Graphic Representation of the different steps followed to segment the
glottal gap: image enhancement, ROI detection, first region merging, correlation
merging and post-processing. In this case, to differentiate from an arbitrary seg-
mentation Iseg(x, t), the final glottal delineation is denoted as SnW (x, t).

6.2.1 Image Enhancement

Firstly, it is necessary to convert the original RGB sequence IR,B,G(x, t) to a grey
scale through a transformation according to the model YIQ (Russ, 2002). After
such conversion, the luminance Y, is used to generate the new video sequence in
the grey scale I(x, t). Then, a similar procedure as the one proposed in (Aghlmandi
and Faez, 2012; Skalski et al., 2008) based on non linear transformation is followed
(eq 6.1).

INLT (x, tk) =


255 ∀xi,y j | I(xi,y j, tk)> L j

255×
(

I(xi,y j, tk)
L j

)ζ

∀xi,y j | I(xi,y j, tk)≤ L j

L j =
1

mβ

m

∑
i=1

I(xi,y j, tk)

(6.1)

where I(xi,y j, tk) denotes the gray intensity in the pixel xi j; L j is the mean of
lighting levels in row j of the image; m is the number of columns in the image; β

is an adjustable factor for increasing or reducing the contrast; and ζ is a coefficient
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that is commonly set to 1.8. The β parameter is crucial to improve the contrast
since wrong values produce results in which it is hard to distinguish between the
glottis and the surrounding tissues or in other cases loss of glottis information. The
decision of which β is the best option to enhance laryngeal images depends on a
trade-off between contrast and information loss.

In order to validate the reliability of the non-linear transformation, several pa-
rameters have to be adjusted and some justifications need to be done. Firstly, it is
necessary to justify the selection of the enhancement method considering subjec-
tive and objective criteria. The quality of the image enhancement techniques is dif-
ficult to assess since evaluating enhancement techniques is still an open problem. In
(Tian and Kamata, 2008) an interesting framework was proposed combining three
measures: Peak-Signal-to-Noise-Ratio (PSNR), Edge Overlapping Ratio (EOR)
and Mean Segment Overlapping Ratio (MSOR), corresponding to three image fea-
tures including intensity, edge, and segment. The PSNR is used to describe the
intensity changes before and after enhancement and can be computed as (eq 6.2):

PSNR = 10log10

(
2552

MSE

)
(6.2)

where MSE is the mean square error between the intensity of the original image
I(xi,y j) and the intensity of the enhanced image INLT (xi,y j) (eq 6.3).

MSE =
1

mn

n

∑
i=1

m

∑
j=1
‖I(xi,y j)− INLT (xi,y j)‖2 (6.3)

EOR measures how close are the edges maps of I(xi,y j) and INLT (xi,y j). The
edges maps are computed using any of the edge detectors found in the literature
with the same setting in both images. The EOR is computed by the following
equation (eq 6.4):

EOR =
|ENLT (x,y)∩E(x,y)|

|E(x,y)|+(|ENLT (x,y)|− |ENLT (x,y)∩E(x,y)|)
(6.4)

where E(x,y) and ENLT (x,y) are the edges maps for the original and enhanced
image, respectively, and | . | denotes in this case the cardinality, in other words, the
number of edge pixels. Lastly, MSOR describes how similar are the segmentation
of I(x, tk) and INLT (x, tk) by comparing the overlapping of the different segments
found. Suppose that after segmenting I(x, tk), by using any segmentation algo-
rithm, it has ma segments A = {a1,a2, · · · ,ama} and INLT (x, tk) has nb segments
B = {b1,b2, . . . ,bnb}. Then, MSOR is computed by equation eq 6.5 as:

MSOR(A,B) =
1
nb

∑
a∈A

max
b∈B

(
|(b∩a)|

|a|+(|b|− |(b∩a)|)

)
(6.5)

The objective measure proposed in (Tian and Kamata, 2008) is applied to 110
images, extracted from the 22 videos (DB1). Then, considering the literature, three
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enhancement methods are compared: anisotropic with FFT (Mendez et al., 2009),
CLAHE (Karakozoglou et al., 2012) and non-linear transformation (Aghlmandi
and Faez, 2012; Skalski et al., 2008). The non-linear transformation is tested with
different values of β with an incremental step of 30 from 100 up to 300. The results
obtained are presented in Figure 6.2 and summarized in Table 6.1. The first graphic
describes the intensity changes before and after enhancement (PSNR); the second
describes the similarity between edges (EOR); and, lastly, MSOR describes the
similarity between regions. For LHSV, well defined edges and well delimited re-
gions (EOR, MSOR) should be prioritized to facilitate the latter segmentation step.
After analyzing the objective results and considering also a subjective evaluation
based on visual inspection of the contrast over 110 images (see some examples in
Figures 5.3 and Figure 6.3), the non-linear transformation with parameter β = 200
is chosen because it keeps a good balance between objective and subjective visual
inspection.

FFT CLAHE β = 140 β = 170 β = 200 β = 230 β = 260

PSNR 15,80 20,57 30.06 24,55 19,66 18,69 18,52

EOR 0,11 0,34 0,59 0,51 0,46 0,32 0,20

MSOR 0,18 0,11 0,11 0,13 0,17 0,14 0,12

Table 6.1: Summary of the results reported in Figure. 6.2 for the different image
enhancement techniques used.

6.2.2 ROI Localization

Since the displacements of the glottis are small between consecutive frames, im-
ages taken at consecutive time instants are strongly correlated among them. Thus
translation movements in a short period of time are almost null. However, due
to the involuntary movements of the camera or the patient, the recordings present
small displacements of the focus that are more significant as the number of eval-
uated frames increases. Considering the aforementioned, establishing a criterion
based on the change of the spatial intensity profile to detect the ROI each NROI

frames is a good choice. The squared area to be tracked is selected adaptively
based on the variations of the image intensity and the inter-frame disparity for an
appropriated set of frames, reducing the effect of the transversal shifts. By taking
advantage of the continuous light source used to record the LHSV, the area with
the largest variability within the image can be identified. This is done by analyzing
the cumulative intensity variation of each frame in the x and y coordinates and, at
the end, the area with the highest variability in time is identified as the glottis.

When delineating the ROI, it is also important to consider the periodic reflec-
tions (highlights) that could appear in the image and that would increase the size
of the ROI. However, the non-linear transformation done in the image enhance-
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Figure 6.2: Comparison of the pre-processing algorithms. The objective evalua-
tions applied to 110 HSDI images extracted from the 22 videos (DB1): (a) PSNR
graph; (b) EOR graph; (c) MSOR graph.

94



6.2. Glottal Segmentation Based on Watershed and Active Contours

(a) β = 140

(b) β = 170

(c) β = 200

(d) β = 230

Figure 6.3: Visual representation of the non linear transformation using different
values of β .
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ment step mitigates the influence of flashes as it has already been demonstrated
in previous studies (Aghlmandi and Faez, 2012; Skalski et al., 2008). Figure 6.4
summarizes the complete procedure followed to obtain the ROI and the concepts
of total intensity variation in columns (TIVc), and the total intensity variation in
rows (TIVr) are introduced bellow.

NROI

ROI
NROI

xcl

xcr

ycu

ycd

ROI	Detec)on	

TIVc

TIVr

Figure 6.4: ROI localization. Upper panel: procedure to obtain TIVc; bottom
panel: procedure to compute TIVr and the final ROI.

Total Intensity Variation in Columns (TIVc)

The first intensity variations to be analyzed are those related to the columns of the
laryngeal images. The reason to start the analysis in the columns stands on the fact
that the main axis of the glottal gap is usually located in a quasi-vertical position
(with a slope of more than 30 degrees with respect to the horizontal axis). Hence,
the information arising from the cumulative intensity variation in the horizontal
axis is more significant than in the vertical one. In order to obtain the Total Inten-
sity Variation in Columns (TIVc), it is necessary to define two additional terms:
the intensity variation matrix Sc(x, t) and the average intensity variation vector
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(AIVc). In Sc(x, t), each row represents the intensity variation of the columns for
each frame. The eq 6.6 describes the mathematical procedure to compute Sc(x, t).

Sc(x, t) =

n
∑
j=1

I(xi,y j, tk)

n
∀xi,1≤ xi ≤ m;
∀tk,1≤ tk ≤ NROI;

(6.6)

where I(x,y, t) is the LHSV sequence with its respective x, y and t coordinates,
n and m are the number of rows and columns of each frame respectively. Lastly,
NROI is the number of frames that are used to find the ROI, this value is adjustable
with a value not exceeding the maximum number of frames in the video N.

The average intensity variation AIVc(x) (eq 6.7) is a vector in which each of its
elements represents the horizontal intensity variation for the NROI frames evaluated.
Finally, the total intensity variation in columns TIVc (eq 6.8) is computed through
analysis of the intensity variation of each frame with respect to the average intensity
variation of the NROI frames by means of the Mean Absolute Error (MAE). For the
ROI problem the most interesting points are those reporting the highest error.

AIVc(x) =

NROI

∑
k=1

Sc(xi, tk)

NROI
∀xi,1≤ xi ≤ m; (6.7)

TIVc(x) =

NROI

∑
k=1
|Sc(xi, tk)−AIVc(xi)|

NROI
∀xi,1≤ xi ≤ m; (6.8)

The eq 6.8 represents the region with the largest variability in the NROI frames
under consideration, and its behavior resembles to a Gaussian-like function whose
center coincides with the main axis of the glottal gap (see Figure 6.4). In order
to obtain the cut-off points on the x-axis, TIVc is fitted to a Gaussian distribution
N (µ,σ2) using the Non-linear Least Squares method (Björck, 1996). The mean
of the gaussian will be the column with the largest intensity change and the standard
deviation will determine the size of the ROI. The cut-off points in the x-axis are
obtained using eq 6.9.

xcl = µx−κxσx; xcr = µx +κxσx; T Ix = [xcl,xcr] (6.9)

where xcl and xcr are the left and right cut-off borders respectively, κxσx is the
standard deviation and T Ix is the tolerance interval that indicates the width of the
ROI in the x-axis.

Total Intensity Variation in Rows (TIVr)

The Total Intensity Variation in Rows (TIVr) is computed following the same cri-
teria used previously for TIVc but with slight differences, since TIVr uses the
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reduced area obtained in the previous step as a starting point, and further evalu-
ates the variation in rows. The method used to find out the up and down cut-off
points, ycu and ycd in the y-axis is analogue to its counterpart in the x-axis (eq 6.10).
Then, the ROI is defined as the region enclosed by the pairwise points: (xcl,ycu)
and (xcr,ycd).

ycu = µy−κyσy; ycd = µy +κyσy; T Iy = [ycu,ycd ] (6.10)

The TIVr computation deals with two complex scenarios; the first is when
the glottis is divided in two or more regions. This problem does not affect the
normal performance of the ROI detection despite of the presence of extra valleys
in the TIVr since an average movement is computed for NROI frames reducing the
effect of the valleys. The second scenario is even more demanding and corresponds
to the presence of a glottal chink. Here, depending on the top and down cut-off
points in the y axis (ycu and ycd) , some information in the posterior part could
be lost. Nonetheless, this scenario does not commit the general performance of
the algorithm since there is an optimal range for no loss of information, as will be
shown in the next subsection. Figure 6.5 shows a LHSV in which both scenarios
are presented.

TI
V r

	

Rows	

TIVr	Fi)ed	
TIVr		no	Fi)ed	

Figure 6.5: TIVr for NROI=100 frames. The LHSV sequence has a glottal chink
and the glottis is splitted in two parts, illustrating one of the most demanding cases.
The frame is rotated in horizontal position for a better visualization.

Adaptive ROI for Motion Compensation

The displacements of the endoscope affect the alignment of the HSDI image pixels
along time, leading to difficulties to track the dynamic characteristics of the la-
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ryngeal structures. Thus, methods to compensate these displacements are needed.
Deliyski (2005) argues about the importance of a procedure to compensate the
distortion originated by the endoscope displacements in the synthesis of a VKG.
Since it causes intermittent changes of the voicing pattern, it makes difficult the in-
terpretation of the results. The movement of the vocal folds (70 - 400 Hz) is much
faster than the one originated by the endoscope (∼15 Hz), so the motion caused
by the endoscope is indistinguishable in one glottal cycle. In order to clarify this,
let us consider the case of the vocal folds vibrating with a fundamental frequency
fo = 100 Hz (period To, equal to 10 ms) and an endoscope displacement with a fre-
quency of fe = 15 Hz (period Te, equal to 66.67 ms). In this scenario the movement
of the endoscope would be noticeable after at least 6 glottal cycles. With this in
mind, the ROI have to be recomputed every NROI frames to compensate the camera
motion and to reduce the false detections.

The value of NROI is undoubtedly one of the most important parameters of the
proposed methodology to accurately detect the ROI and for the motion compensa-
tion. This parameter could take any value between 1 and the total number of frames
N. However a value close to 1 limits the possibility to characterize the motion that
is present. Contrariwise, if the value of N is close to the total number of frames,
non valuable information is added to the ROI increasing the false detections. Addi-
tionally, NROI provides reliability against the camera and/or patient displacement.
With a small value of NROI the algorithm becomes more robust against movements,
avoiding the effects of those displacements that are related to the endoscope.

In order to demonstrate this fact, Figure 6.6 shows 4 frames in different instants
of the LHSV with their corresponding TIVc plots. The TIVc was computed from
I(x, t) and without using the gaussian fitting in order to emphasize the effect of
the displacements. The instants of time under consideration are: t = 30, 1000,
2000, 2975. It is possible to check by simple inspection, that increasing NROI

deviates TIVc from the gaussian pattern. The explanation to this phenomenon
is related with the horizontal motion of the camera during the recording. This
causes additional peaks that do not belong to the ones produced by the vocal folds
motion, so an erroneous gaussian fitting and wrong cut-off points are generated.
An important conclusion obtained from these examples is referred to the average
position of the glottis: the lobe with the maximum peak in TIVc will be the average
position of the glottal gap.

Through experimentation, it is observed that the minimum NROI to achieve a
robust ROI is that containing at least one complete glottal cycle. For instance,
with a high-speed data rate (LHSVrate) of 6665 frames per second (0.15 ms per
frame), and a fundamental frequency of phonation of ∼236 Hz (period equal to
4.23 ms) the minimum value of NROI to be chosen is approximately 28. Figure 6.7
shows three different images belonging to three different LHSV recordings, each
of them with their respective TIVc plots. The plots present a high complexity due
to the presence of occlusions caused by the laryngeal structures. However, this
fact does not affect the proposed procedure since it analyses the average intensity
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Figure 6.6: Effect of the transversal motion in TIVc. The importance of recom-
puting the ROI is illustrated plotting different TIVc without gaussian fitting for
different values of NROI: NROI=30, NROI=1000, NROI=2000, and NROI=2975.
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Figure 6.7: Evaluation of the effect of different NROI settings. Graphical represen-
tation of the varaition of NROI for three different LHSV sequences TIVc for NROI =
30(blue line), NROI = 100(red line), NROI = 300(green line), NROI = 600(black
line).
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position of the glottal gap for a set of NROI consecutive frames. In the first row of
Figure 6.7, with N = 30, there are two peaks that represent the two vocal folds, and
the valley in the middle is the glottal space during the opening phase of the glottal
cycle, meaning that a complete cycle has not been reached (∼41 frames per cycle).
Meanwhile, with NROI = 100 (red plot) a complete glottal cycle is included, and the
width of the Gaussian completely covers the glottis. Increasing NROI leads to many
fluctuations close to the maximum peak. The second example in Figure 6.7 (∼38
frames per cycle) is even more demanding because there is a significant occlusion
and the glottal gap is not clearly visible. Nonetheless, due the minimal presence
of lateral movements, the maximum peak is conserved for all the different values
of NROI , but in concordance with the increase of the number of frames, TIVc starts
losing its Gaussian-like shape. The third row in Figure 6.7 (∼17 frames per cycle)
shows an ideal case without camera movements, in which the performance of the
algorithm is not affected by the choice of NROI . The optimal NROI is in the range
between one glottal cycle (GCo eq 6.11) and one motion cycle of the endoscope
(MCe eq 6.12).

GCo = To/LHSVrate (6.11)

MCe = Te/LHSVrate (6.12)

NROI ∈ [GCo ,MCe] (6.13)

Lastly, it is necessary to determine the cut-off points, analyzing the overlapping
between TIVc and TIVr curves from the LHSV sequence. The coefficients that
regulate the cut-off points are κx and κy. Both coefficients can be set indifferently,
depending on whether the ROI is to be more bounded in the x or y axis. For
instance, a T Ix of 99.7% (µx±3σx) would include non-relevant information to the
ROI. Conversely, if T Ix is set to 68% (µx±σx) the ROI would over-adjust to the
glottis area, causing loss of information. Based on the experimentation around the
22 LHSV sequences and considering no loss of information, a good tradeoff to fix
κx and κy is in the range [2,3]. In this work both coefficients were fixed with a
value of 2.5.

6.2.3 First Region Merging

After reducing the size of the area to be analyzed, the next step is the identification
of the glottis boundaries. The algorithm used for this purpose is the one described
in (Osma-Ruiz et al., 2008), which is based on a watershed transform computed
over the gradient of the images combined with a Just Noticeable Difference (JND)
based region merging. The watershed transform creates a set of well delimited
objects, opening the possibility to identify their individual features and statistics to
find out those that belong to the glottis. Nevertheless, the results of the watershed
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transform is disappointing, due to the fact that thousands of objects arise when
only the glottis is expected. This problem is solved by pre-processing the gradient
image with a thresholding, and by merging objects with one or more features in
common (Bleau and Leon, 2000; Hernandez et al., 2005). A thresholding with a
value of 10 is applied to the magnitude of the image gradient and those pixels with
a value below 10 are assigned to 0, so they are converted into minima that can
only belong to the internal part of any region. This simple thresholding removes
most of the regions that appear due to the intrinsic noise originated by the LHSV
acquisition and the ones produced for the tissues texture. The threshold applied
to the gradient image has been chosen to avoid removing significant edges of the
image. The watershed transform Iwat(x, tk) is computed by eq 6.14, where Twat

represents the watershed operator and ‖∇INLT (x, tk)‖ the magnitude of the gradient
of the image enhanced.

Iwat(x, tk) =

{
Twat [‖∇INLT (x, tk)‖] if ‖∇INLT (x, tk)‖> 10
0 otherwise

(6.14)

On the other hand, the merging criterion is based on a fixed threshold over a
cost function that decides if two regions have to be merged or not. The chosen
cost function is calculated using the JND of different gray levels of the image and
has been theoretically defined in (Day-Fann and Ming-Tsong, 2003). The JND
represents the sensibility of the human visual system to perceive the changes of
luminance. The human visual system is not able to differentiate certain changes in
luminance. For instance, assuming that the luminance is expressed in tonalities of
gray, the visual system can not distinguish between a gray level of 80 and a gray
level of 85. Additionally, this insensibility do not follow a linear behaviour, being
the eye less sensitive to the change of luminance in the dark levels than in the bright
ones. The function for evaluating the visibility threshold of the JND is described
by eq 6.15 and graphically established in Figure 6.8.

JND(I(xi j)) =

D0 ·

(
1−
√

I(xi j)

127

)
+3 if I(xi j)≤ 127

γ · (I(xi j)−127)+3 otherwise

(6.15)

I(xi j) ∈ [0,255] is the intensity value of a given pixel xi j, and the parameters
D0 and γ depend on the viewing distance between a tester and the monitor. D0
denotes the visibility threshold when the background is 0 and γ denotes the slope
of the line that models the JND visibility threshold function at higher background
luminance. The values of D0 and γ are set to 17 and 3/128, based on the subjective
experiments done in (Chou and Li, 1995). The merging cost function used to fuse
the region is computed by eq 6.16:

Fc = [|mR1−mR2|−min(JND(mR1),JND(mR2))+255] (6.16)
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Figure 6.8: Visibility threshold of the human visual system as a function of the
grey level in the image.

where mR1 and mR2 are the average values of the gray level of two neighbour
regions, and min is the minimum JND between the average of both regions. The
goal of the merging cost function is to combine all the regions in which Fc is below
a specific threshold. This is because, under this merging threshold, the human
vision system considers that the average grey level of the basins is the same, so
it is not able to discriminate between them. Based on the experimentation and
considering the thresholding used in (Osma-Ruiz et al., 2008) for LVS videos, the
threshold value is set to 265 for all the LHSV.

Lastly, the JND function is slightly modified in order to reduce the brighter re-
gions. Firstly, the N/NROI frames with the maximal glottal opening (also known as
keyframes, Ikey(x, t)) are computed based on eq 3.9. Since, the intensity distribu-
tion of the glottis and background in the Ikey(x, t) has a cuasi-bimodal behavior, it
is feasible to reduce part of the meaningless information by Otsu’s method (Otsu,
1979). This algorithm performs automatically a clustering-image thresholding as-
suming that the image contains two classes of pixels (glottis and background). For
all the values over the Otsu’s threshold, a Fc of 265 has been assigned so the bright
regions of the image (background) belong to an unique region and the amount of in-
formation is drastically reduced. However, there is still over-segmentation caused
by the intensity disparity inside the glottis and also by the presence of regions that
despite not being part of the glottis, they have some of their intensity features.
Figure 6.9 shows some examples of each of the step followed in the first region
merging procedure, including its final result IJND(x, tk).
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a) Images Enhanced INLT (x,y)

b) Watershed Transform Iwat(x,y)

c) JND Region Merging IJND(x,y)

Figure 6.9: Illustration of the first region merging. First row: image enhanced;
second row: watershed transform after thresholding the magnitude of the gradient;
third row: the watershed transform after the JND cost fucntion.
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6.2.4 Correlation Regions Merging

The next step consists of another merging process. The goal now is to join all the
regions that correlate with a standard template obtained from the database.

The standard template T (x) was obtained empirically based on manual seg-
mentations carried out by one expert in all the frames of the database with the
maximal glottal opening. The potential templates are built with white background
and a black foreground. The white background acts like an edge enhancer to high-
light the glottis contours. The test involves the use of different glottis shapes, re-
sizing, warping and small rotations. After an intensively evaluation of all of these
features, a standard template that better correlates with the available data in DB1 is
obtained. The standard template resizes automatically depending of the ROI size,
ensuring that is not affected by a different zoom of the glottis. The standard tem-
plate obtained for a ROI of 40x148 has a size of 12x42 (see Figure 6.10a). This
template is used as a baseline for the correlation merging.

The standard template is correlated with each frame using the Normalize Corre-
lation Coefficient (CC) (Edwards, 1976), providing values within the range [−1,1].
If both images are absolutely identical the value is 1; if they are completely uncor-
related, 0; and if they are completely anti-correlated, -1 (for example if one image
is the negative of the other). The CC has been selected due to its invariance with
respect to the intensity and because its similitude matrix provides valuable informa-
tion about the glottis and vocal folds position. The threshold for a good matching is
established in 0.45 in the similitude matrix. Below this value the glottis is consid-
ered fully closed. The regions obtained by the cross-correlation are intersected with
the results of the first merging process, and the overlapped objects are merged. The
second region merging, Icor(x, tk), is computed by eq 6.17 where CC( . ) represents
the correlation coefficient operation and T (x) is the standard template.

Icor(x, tk) =

{
1 if CC(IJND(x, tk),T (x))> 0.45
0 otherwise

(6.17)

Figure 6.10b and Figure 6.10c show the complete correlation and merging pro-
cedure carried out to detect the glottis. The first image represents the similitude
matrix; the second represents the first region merging; the third one the overlap-
ping between the cross-correlation and the first region merging; and, finally, the
fourth represents the results of the second merging process. However, due to the
inter-video variability the merging process could not be enough to obtain a reliable
glottis segmentation. In order to clarify this idea, the last image in Figure 6.10b
represents an example in which the glottis presents an irregular shape and it is not
well delimited in the anterior part. This phenomenon appears due to the difficulties
of establishing an unique criterion for the region merging (threshold of the cost
function) even when there exists large inter video changes in the illumination con-
ditions. For that reason, a post-processing stage is required to refine and smooth
the segmentation obtained from the second merging region.
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(a)

(b)

(c)

Figure 6.10: Merging steps. (a) Standard template found empirically based on ma-
nual segmentation, T (x); (b) and (c) show from left to right: two different frames of
two different sequences, similitude matrix, first region merging, cross-correlation
overlapping and correlation region merging.

6.2.5 Post-Processing: Localizing Region-Based Active Contours

The experimentation carried out has shown that the anterior and posterior part of
the glottis are not always accurately segmented during the correlation merging step,
producing in some cases a wrong delineation of those regions (see Figure 6.10c).
Therefore, a post-processing step that uses the result of the correlation regions
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merging Icor(x, tk) as initialization for an active contours algorithm is proposed.
The active contour method proposed in (Lankton and Tannenbaum, 2008) mod-

els the foreground and background in terms of smaller local regions. This frame-
work allows a correct conversion in cases of inhomogeneity, common in laryngeal
images. The analysis of local regions leads to the construction of a family of local
energies at each point along the initial curve. In order to optimize the local ener-
gies, each point of the curve is considered separately and moves to minimize the
energy computed in its own local region.

The energies can be modeled in three different ways: the uniform modeling
energy, the means separation energy and the histogram separation energy. We
choose the Chan Vesel-model (Chan and Vese, 2001), which models the interior
and exterior of a region as constant intensities represented by their means. Since
the post-processing step is only a refined version of the previous steps, the number
of iterations of the active contour and the radius of the local regions can be fixed
without an extensive analysis of the database. A radius of 5 pixels is enough for
a refined procedure. Meanwhile, 100 interactions ensure full convergence to the
glottis. Figure 6.11 depicts 12 examples of segmented frames (SnW (x, t)) with
their respective intermediate results.

6.2.6 Evaluation of the ROI Performance

It is hard to decide which method is the best for detecting the ROI and even harder
to compare the performance between them since all have been evaluated with dif-
ferent databases and some of them are based on manual initialization (Palm et al.,
2001; Marendic et al., 2001; Yan et al., 2006; Lohscheller et al., 2007; Zhang et al.,
2010; Mehta et al., 2013; Pinheiro et al., 2014). However, in order to provide some
subjective notions of the the results obtained, the algorithm described in (Karako-
zoglou et al., 2012) is implemented and compared with the proposal. The main
reason for choosing (Karakozoglou et al., 2012) for comparison is based on the
fact that it is also fully automatic, the final segmentation has great accuracy, and
the framework followed to solve the segmentation presents some similarities with
the SnW method.

After an in-depth analysis of the algorithm proposed in (Karakozoglou et al.,
2012), two aspects need to be considered to improve its results. The first one is
related to the choice of the area in the landmarks, since in pathological cases the
glottis might be divided in two parts, and the algorithm might identify only one
of them. This is depicted in the first and second row of Figure 6.12a. In both
landmarks the glottis is splitted into two parts, which means that one of the regions
will be discarded leading to an incomplete segmentation. The second drawback
occurs when there are large artifacts with vertical orientation, like those depicted in
the third row of Figure 6.12a. These artifacts are common due to reflections of the
light inside the tube of the endoscope. Contrariwise, the methodology proposed for
ROI detection solves the first problem computing the maximal intensity variation
of a region, which means that it is not affected by glottis splitting. Regarding the
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INLT (x, tk) IJND(x, tk) Icor(x, tk) SnW (x, tk) INLT (x, tk) IJND(x, tk) Icor(x, tk) SnW (x, tk)

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

Figure 6.11: Complete methodology representation. From left to right: enhanced
image INLT (x, tk); segmentation obtained after watershed and first region merging
IJND(x, tk); second region merging Icor(x, tk); final delimitation of the glottis after
100 iterations SnW (x, tk).

second drawback: no false detections are produced since there are no changes in
the intensity along time in such regions.

However, the approach based on intensity variation is not suitable to analyse all
different kinds of phonatory conditions. For example, as the approach analyses the

109



CHAPTER 6. Contribution to the Glottal Gap Segmentation

variance of pixel intensities to identify the ROI it is not suitable to identify the glot-
tis correctly during the voice onset interval, and in cases of vocal folds paralysis
and paresis. In those cases the proposal of Karakozoglou et al. has a better perfor-
mance. One way to tackle the problem of the voice onset is by back-propagating the
information obtained during the steady phonation to the onset interval. As a matter
of comparison with respect to the approach found in (Karakozoglou et al., 2012),
the ROI detection obtained using intensity variation is depicted in Figure 6.12b.
Additionally, some results of the ROI based on intensity variation are depicted in
Figure 6.13 with its respective TIVc and TIVr plots.

LHSV Sobel Filter Morph Operator ROI

a) Karakozoglou et al. (2012) b)

Figure 6.12: ROI detection using two approaches. a) ROI detection according to
(Karakozoglou et al., 2012); b) final ROI obtained using the approach based on
intensity variation.

6.2.7 Drawbacks of SnW Technique

A complete framework is proposed to automatically segment and track the glottal
area from laryngeal high-speed video recordings over time. Initially the position
of the glottis is identified using a variance criterion regarding the pixel intensity.
From this information a region of interest (ROI) is obtained. Within this ROI, the
glottis is segmented using a watershed approach. This intermediate segmentation
result is subsequently corrected using a glottis template. The final result is obtained
using region based active contours.

Despite the good performance of SnW, some of the parameters used were
obtained empirically (Standard Template selection, Watershed Merging criteria,
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Figure 6.13: Examples of the results obtained using a ROI based on intensity vari-
ation with their respective TIVc and TIVr plots.

Correlation Thresholding) or involving a degree of compromise with the objective
measures (wnhancement parameter β ). The standard template fails when the glot-
tal opening increases its size abruptly since the correlation among the template and
the previous merging step produces an initialization smaller than the one expected.
The solution to this problem could stand on increasing the number of iterations in
the post-processing step.

Another problem is related to the enhancement method since it is difficult to
generalise a value of β when different illumination level and contrast are present
on the LHSVs. As a matter of fact, Figure 6.11f depicts a frame in which the
flashes have not been completely eliminated after the enhancement step. There-
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fore, an erroneous delineation of the vocal folds edges is produced in the posterior
commissure of the glottis.

Additionally, other parameters such as the ones used for the watershed merging
criteria were set subjectively. Therefore, more evaluation of the presented frame-
work and also some degree of user intervention is needed to guarantee its applica-
bility in a clinical environment.

6.3 Glottal Segmentation by Background Modeling and
Inpainting

In view of the problems mentioned in section 6.2.7, a quasi-automatic method
to accurately segment the glottal area is presented which introduces several tech-
niques not explored before in the state of the art.

InP proposes a novel approach that smooths the textures of the background
(laryngeal structures) and foreground (glottal gap), detects the ROI using the tem-
poral intensity information, and segments the glottis by creating an adaptive back-
ground model. Furthermore to the automatic segmentation, the method provides
the chance of a minimal user interaction to improve the results in those cases in
which the results are not those desired.

InP method is divided into three main modules: 1) image enhancement; 2)
ROI detection; and, 3) glottal gap delimitation. Each of these modules generates
an intermediate result that is used for the subsequent step. Figure 6.14 summarizes
graphically the different steps of the process, and the following subsections detail
the procedures followed.

6.3.1 Image Enhancement

The method followed performs a color equalization for each instant tk, followed by
a procedure that isolates the specular reflections and a bilateral filtering. The three
sub-steps are showed graphically in Figure 6.15 and described below.

6.3.1.1 Color Equalization

During the recording of a laryngeal video sequence, complex reflectance phenom-
ena appears due to intrinsic surface properties. These reflectances appear because
light source and viewing direction are almost identical. Thereby, wet mucosa sur-
faces perpendicular to the viewing direction are showed as white flashing spots
(JungHwan et al., 2007). Therefore, the white flashing spots have to be highlighted
via color equalization as a prior step to mitigate them.

Since histogram equalization is a non-linear process, each color channel (IR(x, tk),
IG(x, tk) and IB(x, tk)) can not be equalized independently. Therefore, the equal-
ization has to be applied in such a way that the intensity values are equalized
without disturbing the color balance of the image. Thus, it is necessary to con-
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Figure 6.14: Graphic representation of the steps followed to segment the glottal
gap.

vert IR,G,B(x, tk) into another color space that separates intensity values from color
components. For our purpose, the color space YCbCr was selected since it is de-
fined by a transformation from an associated RGB color space that separates the
luminance information, Y , from the chrominance Cb and Cr (see eq 6.18).

IY,Cb,Cr(x, tk) = TYCbCr[IR,G,B(x, tk)] (6.18)

where IY,Cb,Cr(x, tk) is the transformed YCbCr image, and TYCbCr is the oper-
ator that maps the color spaces. Then, a transformation THEq is performed on the
intensity plane Y , producing a new image with a flat histogram. Such transforma-
tion is a histogram equalization and is defined by eq 6.19.

IY ′(x, ti) = THEq[IY (x, tk)] = (L−1)
∫ lv

0
Plv(z)dz (6.19)

where IY ′(x, tk) represents the equalized image, IY (x, tk) is the original intensity
image, lv represents the different gray levels, lv ∈ [0,L], L being the total number
of gray levels in IY (x, tk), and Plv the probability of an occurrence of a pixel at
level lv. Lastly, the image in Y ′CbCr space is taken back to the RGB color space
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using a transformation TRGB (eq. 6.20).

IR′,G′,B′(x, tk) = TRGB[IY ′,Cb,Cr(x, tk)] (6.20)

the image IR′,G′,B′(x, tk) is the color equalized image in the RGB space, and
IY ′,Cb,Cr(x, tk) is the color image equalized only on the intensity plane Y .

6.3.1.2 Specularity Removal

When the illuminant color is known and the reflectance of the surface can be repre-
sented with a dichromatic model, one simple way to isolate the specular reflection
effects is by linearly transforming the RGB color space rotating its coordinate axes.
This rotation is such that one of the axes becomes aligned with the direction of the
effective source color s ∈ Z+3. This transformation defines a new color space,
which is referred as the SUV color space (Mallick et al., 2006). The SUV trans-
formation is defined by eq 6.21 using a rotation matrix R ∈ SO(3)1. The rotation
matrix satisfies the condition that [R]s = [1,0,0]T .

IS,U,V (x, tk) = R[IR′,G′,B′(x, tk)] (6.21)

where IS,U,V (x, tk) is the transformed image in the SUV color space. SUV is a
source-dependent color space, since it depends on the effective source color vector
of the image. It has two important properties: first, it separates the diffuse and
specular reflection effects; second, the S channel encodes the entire specular com-
ponent and an unknown fraction of the diffuse component, while the remaining
two channels (U and V ) are independent of specular invariants.

The aforementioned procedure was followed to eliminate the specularity. The
source vector s was set up to [255,255,255] that corresponds to white light in the
RGB color space and the rotation matrix R was computed by aligning the R-axis
with the source light s. The R matrix is obtained by eq 6.22, where (θs,φs) are
the elevation and azimuthal angles of the source vector s in the RGB coordinate
system. RG(θs) and RB(φs) are a clockwise rotation about the G-axis and B-axis
by an angle θs and φs, respectively.

R = [RG(−θs)][RB(φs)] (6.22)

Lastly, a monochromatic free specularity image, IJ(x, tk), is computed accord-
ing to eq 6.23, combining the two pure diffuse channels IU(x, tk) and IV (x, tk).

IJ(x, tk) =
√

IU(x, tk)2 + IV (x, tk)2 (6.23)

1SO(3) is the set of all orthogonal matrices of size 3 with determinant +1.
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6.3.1.3 Bilateral Filtering

The monochromatic image IJ(x, tk) contains discontinuities in the surface across
the diffuse information that has not been accurately propagated. To solve such
problem, a post-processing step based on a bilateral filter (Paris et al., 2009) is
performed.

The bilateral filter is defined by eq 6.24, where IBL(x, tk) stands to the filtered
image, IJ(x, tk) is the image to be filtered, Ω is a window centered in x, x′ represents
a pixel in the Ω window, Wx is a normalization term, Gσr is a Gaussian function
for smoothing the differences in intensities, and Gσs is a Gaussian function for
smoothing the differences in coordinates.

IBL(x, tk) =
1

Wx
∑

x′∈Ω

IJ(x′, tk)Gσr(‖IJ(x′, tk)− IJ(x, tk)‖)Gσs(‖x′−x‖) (6.24)

eq 6.24 has the advantages of a simple formulation (each pixel is replaced by
an average of its neighbors), it depends only on two parameters (σs and σr) and it
can be used in a non-iterative manner which makes the parameters easy to set since
their effect is not cumulative over several iterations.

Since the bilateral filter was included only to smooth small features, the value
of σs was set to a constant value of 8 and σr to a constant value of 15. Both
values performed consistently well for all our experiments, thus their setting do
not require manual intervention.

The result of the contrast enhancement step is a gray scale image, IBL(x, tk),
free of specularity and with a marked difference in the contrast of the laryngeal
structures and the glottis.

Video	

Video	

Specularity	Equaliza3on	 Filtering	

Specularity	Equaliza3on	 Filtering	

Figure 6.15: Contrast enhancement procedure for two different LHSV. From left
to right: original LHSV; color equalization; image free of specularity; and image
after bilateral filtering
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6.3.2 ROI Localization

The procedure used for the ROI detection is the same as the one described in sec-
tion 6.2.2 with the difference that it is applied to the IBL(x, tk) image. The ROI is
defined as the region enclosed by the pairwise points: (xcl,ycu) and (xcr,ycd) and
is also used to generate a binary mask MK(x, tk) (eq 6.25) which will be employed
for the glottal gap delimitation step.

MK(x, tk) =

{
1 if x ∈ [xcl,xcr] and y ∈ [ycu,ycd ]

0 contrariwise
(6.25)

6.3.3 Glottal Gap Delimitation

This module is based on an inpainting algorithm which is used to create a back-
ground model. The background model is extracted with the glottis occluded to
later perform a subtraction for each incoming frame. In order to exemplify the pro-
cedure, the results of the steps followed to obtain the final segmentation are shown
in Figure 6.16.

ROI	Detec)on		Image	Enhancement	

Background	Modeling	 Background	Subtrac3on	
Glo3al	Gap	Delimita)on	

IBL(x, tk) MK(x, tk)

BM(x, tk) InP (x, tk)

Figure 6.16: Complete framework of the glottal gap delimitation.
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6.3.3.1 Background Modeling Using Inpainting

In this method, the object detection is achieved by making a representation of the
scene called background model, and then finding deviations from it for each in-
coming frame. Any significant change in the image region from the background
model is supposed to represent a moving object (Yilmaz et al., 2006).

Let us define the background model as a flat image, BM(x, tk), composed
only by the information of the tissues that surrounds the glottal gap. BM(x, tk)
is computed for each tk using an inpainting procedure that combines a binary mask
MK(x, tk) and the enhanced image IBL(x, tk).

The inpainting technique is guided by the assumption that pixels in the known
and unknown parts of the image share the same statistical properties or geometrical
structures. The method used is based on (Telea, 2004), which has the immediate ad-
vantage of well-developed theoretical and numerical results. This technique prop-
agates the local image structures of IBL(x, tk) from the external part to the interior
of the mask MK(x, tk), “imitating" the gesture of a professional painting restorer.
MK(x, tk) is updated every NROI frames to compensate the drift of the camera.

6.3.3.2 Background Subtraction

A subtraction operation is computed between the enhanced image, IBL(x, tk) and
the background model, BM(x, tk) (eq 6.26) which is carried out only inside the
ROI.

BS(x, tk) = IBL(x, tk)−BM(x, tk) (6.26)

Since BM(x, tk) has higher intensities than IBL(x, tk), the negative values ob-
tained from the subtraction will correspond to the glottal gap. Therefore, an initial
threshold, T hINC, is introduced to identify the noticeable motion produced by the
vocal folds movement. If BS(x, tk) is lower than T hINC, the motion of the pixel x
is considered significant. In our case, a value of −8 performed consistently well
for all the experiments. However, T hINC is not enough to segment accurately the
glottal gap so another thresholding procedure is used. This second threshold is de-
noted as T hADJ and is obtained by an iterative procedure described in (Ridler and
Calvard, 1978).

Lastly, in order to smooth and eliminate spurious information in the glottal
gap segmentation, it was necessary to perform basic morphological operations to
remove isolated pixels and fill holes. Algorithm 1 explains in detail the procedure
followed to compute the background model and the background subtraction, and
Figure 6.17 shows some results of the glottal gap segmentation.

6.3.4 User Intervention: Including a Manual ROI

There are two scenarios in which the automatic segmentation fails to correctly de-
limitate the vocal folds edges. The first occurs when there are partial or no motion
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Figure 6.17: Glottal gap segmentation of 9 LHSVs in the instants of time tk= 1, 3,
5, 7, 9, 11, 13, 15 using InP method.
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Algorithm 1: Pseudocode for background modeling and subtraction
input : ROI, IBL(x, tk), T hINC

output: Foreground (InP(x, tk))
MK(x, tk) = createMasK(ROI);
BM(x, tk) = inpainting(IBL(x, tk),MK(x, tk),method : Telea);
foreach x in the ROI do

BS(x, tk) = IBL(x, tk)−BM(x, tk);
if BS(x, tk)< T hINC then

InP(x, tk) = IBL(x, tk);
else

InP(x, tk) = 255;
end

end
T hADJ = AdaptiveT hreshold(InP(x, tk));
foreach x in the ROI do

if InP(x, tk)< T hADJ then
InP(x, tk) = 1;

else
InP(x, tk) = 0;

end
end
InP(x, tk) = MorphologicOperation(InP(x, tk));

in the vocal folds. This can be commonly seen during the phonation onset and in
presence of total or partial paralysis of the vocal folds. In both cases the ROI de-
tection fails to correctly identify the glottal area, producing false detections or an
incomplete segmentation. The second scenario is related to glottal gap orientation.
Despite the automatic method to compute the ROI is tolerant to the glottal orien-
tation, its accuracy decreases as the angle formed by the glottal main axis and the
principal vertical axis increases, producing an erroneous delineation in the anterior
part of the vocal folds.

The manual procedure begins by finding the frame with the maximum aperture
of the glottis. Later on, such frame is presented to the user and the ROI is man-
ually selected. This ROI can change its size as many times as necessary or in a
time frame considered by the user. Additionally, a slide bar is added to let the user
modify the threshold (T hUSR) of the subtraction operation. The final segmenta-
tion is displayed during the whole procedure, refreshing the results when the ROI
or T hUSR parameters are being adjusted. Since the vocal folds vibration occurs
within the range from posterior to anterior commissures along the vertical direc-
tion, a recommended practice is to consider these commissures as reference points
to define the ROI. On the other hand, the width of the ROI has to be limited inside
the region covered by the vocal folds.

119



CHAPTER 6. Contribution to the Glottal Gap Segmentation

As happened with the automatic ROI detection procedure, the manually chosen
ROI has to be able to dynamically compensate the glottal drift. For this reason, a
block matching algorithm is applied to each corner of the manual ROI, allowing
the ROI to increase or decrease its area automatically according to the glottal gap
changes. In order to reduce the computational burden, the block matching algo-
rithm is computed only every NUSR frames where NUSR is set up by the user. The
graphical representation of this procedure is shown in Figure 6.18.

Manual	ROI	Maximal	Opening	 Segmenta2on	

Block	Matching	

+	

Frame	#60	Frame	#31	

Right	
fold	

LeC	
fold	

GloEal	
axis	

ver2cal	
axis	

Posterior	

Anterior	

Medial	
axis	

ThUSR

Figure 6.18: Graphical representation of the manual intervention process. Top left
panel: frame with the maximal opening; bottom left panel: representation of the
vocal folds reflections; medium panel: user interaction and manual ROI; top right
panel: segmentation results; bottom right panel: detail of the slide bar to manually
modify the threshold.

In 16 out of 54 LHSV (30% of DB2), user interaction was needed for a correct
segmentation. Table 6.2 provides a summary of the findings of these 16 LHSV.
The manual intervention was required in cases of paralysis, vocal folds occlusions,
paresis, or wrong camera orientation.

Figure 6.19 shows four typical erroneous ROI detections with their respective
GVG, PVG, VKG and GAW playbacks. In Figure 6.19a the problem is originated
by the orientation of the vocal folds, causing an incomplete glottal gap detection.
Figure 6.19b shows a paralysis of both vocal folds. In this case, the ROI is not
able to capture the motion, selecting a region with a bigger area and causing over-
segmentation. Figure 6.19c represents a unilateral paralysis of the left fold. And
Figure 6.19d shows a partial paralysis of the right fold. Both effects can only be
observed in the PVG and VKG. In this example the automatic segmentation fails
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Female – 2 2 – – 2 6
Male 2 1 1 2 1 3 10

Table 6.2: Overview of the findings in the 16 LHSV that required manual interven-
tion.

Manual	

Automa+c	

(a)

Automa'c	

Manual	

(b)

Manual	

Automa+c	

(c)

Manual	

Automa+c	

(d)

Figure 6.19: Four HSVs with their respective GVG, PVG, VKG and GAW play-
backs. Automatic and manual ROIs are represented by a green rectangle. a) Error
due to the glottal gap orientation; b) paralysis of both vocal folds; c) unilateral
paralysis of the left fold; d) partial paralysis of the right fold.

since the ROI partially captures the region in motion of the vocal folds, producing
under-segmentation.

6.4 Accuracy Assessment of the Vocal Folds Segmentation

Assessing the glottal segmentation is not trivial due to the huge amount of frames
to evaluate and the need to take into account the spatial-temporal information of
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the video sequences. The evaluation is even more complicated having in mind
that there are neither standard metrics to evaluate the distinct algorithms nor pub-
lic databases that could be used for benchmark and comparison purposes. In view
of these limitations, a set of guidelines to measure the accuracy and efficiency of
the segmentation algorithms are presented. These guidelines are divided in three
groups according to their nature: analytical, subjective, and objective. The com-
bined analysis of these guidelines provides more robust criteria to decide which is
the most appropriate method to delineate the glottal gap.

The proposed guidelines are used to compare three glottal gap segmentation
algorithms: two automatic, and one semiautomatic. The semiautomatic one is
the open software presented in (Birkholz, 2016) that implements the algorithm
proposed in (Lohscheller et al., 2007). For simplicity, this method is denoted as
Seed Region Growing (SrG). Meanwhile, the two automatic methods are the ones
described in section 6.2 (SnW) and section 6.3 (InP).

6.4.1 Analytical Methods: Assessing the Efficiency of the Vocal Folds
Segmentations

The analytical methods assess the segmentation independently of the final results.
In other words, they are only applicable to evaluate the general performance of the
algorithms. Some of the properties of the segmentation algorithms are: process-
ing strategy, processing complexity, resource efficiency, segmentation time, and
segmentation resolution (Zhang et al., 1996). These properties are generally inde-
pendent of the segmentation accuracy. For this reason, they should be investigated
together with the subjective and objective measures. Since the segmentation time
is a critical aspect to translate the results to the clinical setting, it will be used as a
reference to compare the efficiency of the glottal segmentation algorithms.

6.4.2 Subjective Evaluation: Accuracy of the Vocal folds Detection by
Playbacks Analysis

A simple subjective way to evaluate the glottal segmentation is by visual inspec-
tion. However, it requires a frame by frame intensive evaluation over a large set of
images and with the contribution of several experts to minimize the inter evaluation
bias. The subjective approach used in the literature grade the segmentation and the
video quality on a 0-5 point ordinal scale (Lohscheller et al., 2007; Karakozoglou
et al., 2012). The main drawback of this approach is that this evaluation does not
consider the inherent spatio-temporal information, but only the spatial.

A more complete way to subjectively analyze the vocal folds segmentation
requires evaluating the information provided by the playbacks. Thus, three subjec-
tive trials to assess the accuracy of the glottal segmentation are used: segmentation
quality, readability of the playbacks (GVG, PVG, GAW), and shape similarity be-
tweenVFT and VKG. All the trials are ranked in a 0-5 point ordinal scale where 0
is very bad and 5 is very good.
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Regarding the segmentation quality trial, a video sequence that has already
been segmented (first row of Figure 6.20) is shown to the expert. Then, he ranks
an average quality of the whole sequence observed.
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Segmented	with	InP	
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Figure 6.20: LHSV of a patient after a carcinoma surgery with its respective play-
backs: GVG, PVG, VKG, GAW and VFT. a) Segmented with InP; b) segmented
with SrG. (1) Vibratory pattern; (2) errors in the anterior or posterior part of the
glottis; (3) playbacks discontinuities; (4) main glottal axis crossing; (5) glottal area
waveform; (6) opening state length.

The readability assessment trial has the goal to detect errors in the segmenta-
tion using the information provided by the GVG, PVG and GAW playbacks. In
addition to the aforementioned playbacks, VKG is included since it helps to verify
if the cycle lengths of the playbacks are correct. The readability of the playbacks
is ranked based on six criteria, which are detailed next:

• Vibratory pattern (1): the shape of the vibratory pattern must keep a quasi-
similar behavior along the LHSV for a normal phonation. This characteristic
is observed in GVG and PVG.

• Errors in the anterior or posterior part of the glottis (2): most of the seg-
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mentation algorithms fail to segment correctly the anterior and posterior part
of the glottal gap. These problems are easily detected in GVG and PVG,
showing discontinuities in the anterior or posterior part of the playbacks.

• Playbacks discontinuities (3): discontinuities in the playbacks are due to seg-
mentation errors, and are observed as holes in the inner part of the vibratory
pattern. These errors are visible either with GVG or PVG.

• Main glottal axis crossing (4): since PVGs compute the motion of the vocal
folds with respect to the glottal main axis (red for positive, and blue for neg-
ative displacements), they provide clues about unusual vibratory behaviors.

• Glottal area waveform (5): the shape of the GAW during the different glottal
cycles has to be uniform along time for normal phonation. Deviations of this
uniformity are usually clear examples of over or under-segmentation. GAW
in Figure 6.20b shows the effect of the number of pixels detected belonging
to the glottis for each glottal cycle on the shape of the GAW.

• Opening state length (6): considering that VKG playback facilitates the vi-
sual assessment of the length of the glottal cycle in one line, it is possible
to get a general idea of how well the instants of total closing were detected.
Hence, the width of the opening-state in GVG has to be comparable in size
with the VKG width in the same position pc.

The third trial is called shape similarity and takes advantage of the information
of the VKGs. Here, the shape of VKG and VFT are compared in the same position
pc. The similarity between both shapes will determine the accuracy of the segmen-
tation. In order to assist the expert with the visual assessment, both playbacks are
overlapped as shown in Figure 6.21. The dashed lines in the middle and bottom
panel with white color are an approximation of the expected VKG shape. These
lines are displayed to provide an idea of the shape differences between VKG and
VFT for this particular example.

6.4.3 Objective Supervised Evaluation: Accuracy of the Vocal Folds
Detection via Ground-Truth Comparison

The objective supervised evaluation compares the segmented image against a ref-
erence manually identified that will be considered as a ground-truth (Manual Seg-
mentation (MaN)). The degree of similarity between the human and machine gen-
erated images determines the quality of the segmentation. The objective super-
vised methods provide a finer evaluation of the segmentation accuracy. Contrari-
wise, manually generating a reference image is a difficult, subjective, and time-
consuming task.

The literature refers different kinds of objective metrics that have been used
before to assess the glottal segmentation: DICE and an area error (Gloger et al.,

124



6.4. Accuracy Assessment of the Vocal Folds Segmentation

0 180
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tVKG	

VKG	+	VFT		

VFT	

Figure 6.21: VKG and VKT playbacks of a patient after a carcinoma surgery. First
row: vocal folds displacement trajectories; second row: videokymogram; third
row: VKG and VKT overlapping. The dashed lines in white show the correct
delimitation of the VKG.

2015); a multipoint scale comparison (Karakozoglou et al., 2012); mean square er-
ror (Ko and Ciloglu, 2014); and tracking and comparison of some points of interest
(Lohscheller et al., 2007). However, it is certainly unreasonable to expect all the
metrics be valid for the glottal segmentation problem, since each metric have sen-
sitivities to different properties of the segmentation and thus can discover different
types of error (Taha and Hanbury, 2015b).

Therefore, there is a need to standardize the procedure to objectively assess
the accuracy of glottal gap segmentation by finding the most suitable metrics for
such task. These metrics receive the name of good metrics and have to fulfill the
following properties:

• Contour accuracy: the segmentations have to provide boundary delimitations
as exact as possible. The metrics that are more sensitive to point positions,
as distance based metrics, are more suitable to evaluate the segmentation.

• Degree of overlapping: the segmentations have to provide a correct location
of the segmented object (alignment between segmentation and ground-truth).
This aspect is important to rank correctly the instants of total closure. The
suitable metrics for this property are the overlap based.

• Complex Boundary: the segmentations lead with non-regular shapes, thus
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the metrics that are sensitive to pixels positions are more suitable to evaluate
the final results. The most suitable metrics are the distance based ones.

• Background dominates: all the metrics based on a true negative factor (pix-
els correctly detected as background) have to be avoided. Such metrics are
biased with respect to the ratio between the number of foreground pixels
(glottis) and the number of background pixels (glottal structures), producing
a class imbalance when the background represents the largest part, as occurs
in the glottal segmentation.

• Over and under-segmentation penalization: the metrics have to penalize
equally the over and under-segmentation.

• High class imbalance: when the segmentation process produces small re-
gions, metrics with chance adjustment are recomended

• Outlier sensitivity: sometimes automatic segmentations have outliers in form
of a small set of pixels outside of the right target area. The Outlier sensitivity
describes metrics that penalize such outliers.

In order to find out the good metrics, an initial set of 18 metrics that have been
used previously in the literature to evaluate different segmentation problems are
computed and evaluated pairwise: InP vs. MaN, SrG vs. MaN, and SnW vs. MaN,
for 760 images. The 18 initial metrics computed can be categorized depending on
their nature and their definition as: overlap based, pair-counting based, information
theory based, probabilistic based, and spatial distance based.

The first group computes the degree of overlap between two segmentations.
To this group belongs: DICE or overlap index, Jaccard (JAC), true positive rate
(TPR) or sensitivity, true negative rate (TNR) or specificity, F1-Score (FMS), false
positive rate (FPR), false negative rate (FNR), positive predictive value or precision
(PPV), global constancy error (GCE), and object-level consistency error (OCE)
(Dice, 1945; Polak et al., 2009).

The second group measures the similarity between clusterings. One of its im-
portant properties is that is not based on labels, and thus can be used to evaluate
clusterings as well as classifications. The metrics implemented in this work were
Rand Index (RI) and Adjusted Rand Index (ARI) (Rand, 1971; Hubert and Arabie,
1985).

The third group computes a measure of information content for each segmen-
tation. The variation of information (VI) figure of merit belongs to this group. It
measures the amount of information that one segmentation shares with the other
(Meilǎ, 2003).

The fourth group describes metrics defined as functions of statistics calculated
from the pixels in the overlapped regions of the segmentations. The metrics in-
cluded are: Cohen Kappa coefficient (KAP) and the area under the ROC curve
(AUC) (Cohen, 1960).
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Lastly, the metrics based on spatial distance are defined as functions of the eu-
clidean distances between the pixels that belong to the ground-truth and the pixels
of the automatic segmentation. The metrics used in this category are: Hausdorff
distance (HD), average Hausdorff distance (AHD) and Pratt Index (Abdou and
Pratt, 1979; Taha and Hanbury, 2015a).

In those cases with no unique metric fulfilling all the properties at the same
time, a combination of more than one metric will be necessary. Also, a good prac-
tice is to reject metrics that have similar definitions to avoid redundant information.
Table 6.3 shows in rows the metrics, and in columns the guidelines that have to be
followed. The three last columns summarize the results of the three trials, µ rep-
resents the average accuracy of 760 images analyzed, and εclose rates how many
times an image was ranked with 0. A zero εclose can be understood as not over-
lapping or no segmented images, which is related with the error introduced at the
closed instants.

Additionally, Table 6.3 shows a check (X) to denote a metric that is recom-
mended for the corresponding property; a cross (X) denotes that the metric is not
recommended; and empty cells denote neutrality. The good metrics are the ones
that have at least one check without crosses. The metrics that satisfy this statement
are highlighted in yellow: DICE, JAC, FMS, ARI, KAP, AHD and Pratt. In order
to avoid redundancy, JAC and FMS were excluded because they provide a similar
ranking than DICE coefficient (JAC and FMS are derived from the DICE equation).
Following the same criteria, AHD and Pratt are metrics based on distance errors,
so one of them may be excluded. Since AHD does not rank the similarity between
segmentations in a range scale (as Pratt does, between 0 and 1), we consider that
is less intuitive, and it has also been excluded. Thus, the metrics that best suit
the guidelines are: one based on overlapping (DICE), one based on pair-counting
(ARI), one based on probabilistic means (KAP), and one based on distance (Pratt).

Lastly, in order to verify the concordance between the metrics, pairwise Pear-
son’s correlation coefficients were calculated. The 760 ranks obtained for each
metric are correlated between them and deployed on Table. 6.4. The results show
a great correlation between the four metrics which mean that any of them can be
chosen as a good metrics. For the purpose of objectively evaluate the accuracy of
the glottal gap segmentation only DICE and Pratt are used.

6.5 Results

The subjective evaluation was carried out for the whole database DB2 by an expert
used to deal with laryngeal images. Meanwhile, the objective supervised evaluation
was carried out on 38 different high-speed recordings from DB2. From each movie
a sequence of 20 frames was manually segmented MaN, leading to a total of 760
images analyzed. It is worth mentioning that all experiments were executed on a
MacBook Pro with a 2.4 GHz Intel core i5 processor and 8 GB of RAM memory.
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µ εclose µ εclose µ εclose

DICE X X 0.70 0.07 0.57 0.23 0.52 0.32
JAC X X 0.60 0.07 0.48 0.23 0.45 0.32
TPR X X 0.75 0.07 0.57 0.23 0.60 0.32
TNR X X 0.92 0.07 0.76 0.23 0.71 0.28
FMS X X 0.71 0.07 0.57 0.23 0.54 0.29
FPR X X 0.07 0.17 0.23 0.25 0.28 0.10
FNR X X 0.24 0.17 0.42 0.13 0.39 0.20
PPV X X 0.73 0.07 0.61 0.23 0.48 0.32
GCE X X 0.07 0.10 0.23 0.13 0.28 0.10
OCE X X 0.64 0.07 0.54 0.23 0.48 0.29

RI X 0.91 0.07 0.76 0.23 0.71 0.28
ARI X 0.70 0.07 0.57 0.23 0.52 0.28
VI X X 0.09 0.10 0.25 0.13 0.30 0.10

KAP X X 0.70 0.07 0.57 0.23 0.52 0.28
AUC X X 0.84 0.07 0.67 0.23 0.65 0.28
HD X X X 6.69 0.11 6.05 0.17 8.71 0.14

AHD X X X 0.71 0.11 0.59 0.17 1.32 0.14
Pratt X X X 0.72 0.07 0.60 0.23 0.54 0.28

Table 6.3: Summary of the 18 metrics with the selection guidelines. Each row
corresponds to one of the metrics. The first seven columns correspond to the prop-
erties evaluated to be part of the good metrics set. A check (X) denotes that the
metric is recommended for the corresponding property; a cross (X) denotes that
the metric is not recommended; and empty cells denote neutrality. The last three
columns are the average values of each metric for the three assessments.

ARI DICE KAP Pratt
ARI 1 1 1 0.95

DICE 1 1 1 0.95
KAP 1 1 1 0.95

MaN
vs

InP
Pratt 0.95 0.95 0.95 1
ARI 1 1 1 0.97

DICE 1 1 1 0.97
KAP 1 1 1 0.97

MaN
vs

SrG
Pratt 0.97 0.97 0.97 1
ARI 1 0.99 1 0.97

DICE 0.99 1 0.99 0.97
KAP 1 0.99 1 0.97

MaN
vs

SnW
Pratt 0.97 0.97 0.97 1

Table 6.4: Pearson’s Correlation coefficients among the good metrics. Correlations
correspond to MaN vs. InP, MaN vs. SrG and MaN vs. SnW trials.
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6.5.1 Analytical Assessment

The SnW algorithm was completely implemented in Matlab R© with a computation
cost of 0.58 fps. SrG was written in C++ using the cross-platform GUI library
wxWidgets 2.8.12. Since SrG is only available for the Windows R© platform, it was
necessary to run the software in a virtual machine with Windows 7. The segmenta-
tion time of 400 high-speed images took approximately 3.1 s without considering
the previous user interaction. The user adjusted values of the thresholds were in
average 53.4±16.9 s. Lastly, the InP was implemented in C++ using the OpenCV
library, and the segmentation results were exported and plotted in Matlab for a
better visualization of the results. The segmentation time for the fully automatic
procedure of 400 high-speed images took approximately 23 s. while the user in-
tervention took less than 25.4±12.7 s for each high-speed sequence. Table 6.5
summarizes the segmentation times of the three algorithms.

s/image InP SrG SnW
Automatic 0.057±0.01 0.007±0.0018 0.58±0.09

User interaction 25.4±12.7 53.4±16.9 —

Table 6.5: Segmentation times of the three algorithms (in fps) of 400 high-speed
images.

6.5.2 Subjective Assessment

Five playbacks were synthesized to analyze the accuracy of the vocal folds deflec-
tions for the 38 LHSV: GVG, PVG, GAW, VFT and VKG. They were rated in a
0-5 point scale.

Concerning to the segmentation quality trial, InP was rated 4.1±0.6 (mean
value±std deviation), SrG with 3.8±0.8 and SnW with 2.2±0.4. However, the
experiments reported values up to 4.7 (mean) using SrG complemented with a
strong user intervention.

Regarding to the readability of the playbacks, InP and SrG have again a similar
performance, ranking 3.4±0.5 and 3.3±0.6 respectively. Contrariwise, SnW only
reached values of 2.7±0.3, making difficult the interpretation of the GVG and PVG
playbacks.

Lastly, the shape similarity between VKG and VFT was 3.8±0.7, 3.7±0.8 and
3.5±0.4 for InP, SrG and SnW respectively. The subjective findings for the whole
database are summarized in Table. 6.6 for the three segmentation techniques. The
results suggest that the best segmentation accuracy is obtained with InP followed
closely by the SrG method.

In order to better illustrate the results of the subjective evaluation, a subset of
10 LHSVs is assessed and their medical findings summarized in Table 6.7. (P0)
shows a no symmetric pattern between the left and right vocal folds, (P1) has a
bocio multinodular in the right vocal fold, (P2) and (P7) represents a normal voice
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Quality Readability Shape
InP 4.1±0.6 3.4±0.5 3.8±0.7
SrG 3.8±0.8 3.3±0.6 3.7±0.8

SnW 2.2±0.4 2.7±0.3 3.5±0.4

Table 6.6: Subjective assessments used to evaluate the segmentation performance
(in a 0-5 point scale).

production with a glottal chink, (P3) represents a normal phonation with a complete
posterior closure, the presence of polyps and nodules can be clearly identified in
(P4) and (P8) respectively, (P5) depicts a closure defect in the anterior part of the
vocal folds and (P6) displays the vibratory pattern of a patient with vagal paragan-
glioma.

sex age medical finding
(P0) female 58 no symmetric
(P1) female 41 bocio multimodular
(P2) female 28 normal, glottal chink
(P3) female 59 normal
(P4) female 29 polyp
(P5) female 84 no anterior close
(P6) male 82 vagal paraganglioma
(P7) female 54 normal, glottal chink
(P8) female 45 nodule
(P9) male 105 normal

Table 6.7: Summary of the clinical information for a subset of 10 HSV taken from
the database DB2.

The glottal segmentation of four frames corresponding to the video sequences
(P5) and (P7) are depicted in Figure 6.22. MaN is used as a baseline and is pre-
sented in the first row for comparison purposes. The glottal contours are shown
in blue and red for the right and left vocal folds respectively. For these particu-
lar examples, InP and SrG present almost the same segmentation results and both
of them are highly correlated with the one obtained in MaN. Contrariwise, SnW
presents problems of over-segmentation and also can not segment correctly the
glottal gap in presence of a glottal chink.

With respect to the use of the playbacks, the GVGs and PVGs for InP, SrG
and SnW are depicted in Figure 6.23, respectively. Meanwhile, the overlapping
between VKG and the trajectories of the vocal folds for 4 oscillation cycles in the
medial axis are showed in Figure 6.24. As it can be observed, the playbacks ob-
tained using InP and SrG have well defined vibratory patterns that can be easily
readable for all the subset videos. However, they have slight differences in the du-
ration of the glottal cycles, in the presence or not of a glottal chink and in the main
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(P5) (P7)

MaN

InP

SrG

SnW

Figure 6.22: Segmented frames corresponding to a dysphonic voice (P5) and to
a normal voice production (P7). First row: manual segmentation (MaN); second
row: segmentation based on inpainting (InP); third row: segmentation based on
region growing (SrG); fourth row: segmentation based on snakes and watershed
(SnW).

glottal axis crossing. For instance, the patient (P2) presents a glottal chink that is
observed either with InP or SrG but its size changes depending on the method used
for the segmentation. Additionally, extra artefacts in blue can be observed in the
SrG PVG which mean crossing of the main glottal axis. For this particular patient
the correct segmentation is the one obtained using InP since there are no crossing
and the size of the glottal chink is correct. Contrariwise, (P4) shows an example in
which the segmentation based on SrG performs better that the one obtained with
InP since the correct vibratory pattern is one without glottal chink.

On the other hand, the playbacks obtained with SnW are not legible for all
the videos ((P2), (P4), (P6), (P8) and (P9)) and also present unexpected vibratory
patterns with respect to their medical finding ((P0) and (P7)). Therefore, the seg-
mentation obtained via SnW is less accurate in comparison with InP and SrG when
the GVG and PVG are assessed.

The results of the subjective rating of the 10 LHSVs are summarized in Fig-
ure 6.25 on a 5-point ordinal-scale. The three segmentation algorithms are de-
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(P0) (P1) (P2) (P3) (P4)

InP

SrG

SnW

(P5) (P6) (P7) (P8) (P9)

InP

SrG

SnW

Figure 6.23: GVG and PVG playbacks corresponding to the 10 HSVs presented in
Table 6.7.

ployed in the graphic, InP with blue, SrG with red and SnW with black. The
points represent the mean value of the three subjective tasks (quality, readability
and shape), while the vertical bars indicate the standard deviation. InP provides
the highest rank in 7 out of 10 patients. Meanwhile, the remaining three patients
have been ranked best with SrG. Table A.1 in appendix A depicts the playbacks of
the entire DB2 using InP.
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InP SrG

(P0)

(P1)

(P6)

(P9)

Figure 6.24: Overlapping between vocal fold trajectories and VKG in the medial
axis using InP and SrG. Four glottal cycles are shown for each video sequence.
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Figure 6.25: Segmentation subjective assessment of 10 patients on a 5-point scale.

6.5.3 Objective Supervised Assessment

The percentage accuracy improvements with respect to InP are summarized in Ta-
ble 6.8 and are calculated from the first and last row of Table 6.3. The symbol
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µ represents the average accuracy obtained from 760 images analyzed, and εclose
rates how many times an image is ranked with 0. The accuracy improvement with
respect to µ is computed as the percentage difference between InP and SrG, and
SnW respectively. Meanwhile, The accuracy improvement with respect to εclose
is computed as the percentage difference between InP and SrG, and SnW respec-
tively. From Table 6.8 is observed that InP outperforms SrG and SnW, obtaining
accuracy improvements up to 18% in µ and 25% in εclose.

Accuracy Improvement (%)
InP DICE

µ

Pratt
µ

DICE
εclose

Pratt
εclose

SrG 13 12 16 16
SnW 18 18 21 25

Table 6.8: Comparison of the accuracy improvements of InP with respect to SrG
and SnW.

By way of illustration, Figure 6.26 depicts 6 frames belonging to different
LHSV with their respective good metrics pairwise trials: InP vs. MaN, SrG vs.
MaN, and SnW vs. MaN. For a better visualization of the results, the MaN seg-
mentation is showed in red; the segmentation obtained with InP, SrG and SnW
are colored with green; and the intersection between manual (MaN) and automatic
segmentation (InP, SrG and SnW) are depicted in yellow.

In Figure 6.26a the best result is obtained with InP, DICE ranks 0.49 mean-
while Pratt ranks 0.52. For the second frame (Figure 6.26b), the best performance
is obtained again with InP (DICE=0.60 and Pratt=0.73) and the worst with SnW.

In Figure 6.26c, SnW and InP have similar results with values over 0.9, demon-
strating an accurate segmentation. In the fourth frame, SnW is the only method
able to segment correctly the anterior part of the glottis having rankings of 0.84
and 0.89 for DICE and Pratt, respectively.

In Figure 6.26e SrG and SnW the glottis is considered as closed, therefore the
good metrics are ranked with zero. Contrariwise, InP presents a high accuracy
to segment the glottal gap obtaining metrics of 0.79 and 0.93 for DICE and Pratt,
respectevely.

In Figure 6.26f, SrG presents over-segmentation since the effect of the glottal
splitting is replaced by one unique gap. InP detects correctly the glottal split-
ting, however exists some pixels in the posterior part that are segmented wrongly
(over-segmentation). On the other hand, SnW has the closest aproximation to the
segmentation expected (MaN).

6.6 Discussion

The lack of reliable glottal segmentation algorithms with minimal user interaction
and of standard criteria to assess them limit the clinical acceptance of high-speed
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Frame MaN vs SnW MaN vs InP MaN vs SrG Metrics
DICE	 Pra)	

MaN	vs	Snw	 0	 0	

MaN	vs	InP	 0.49	 0.52	

MaN	vs	SrG	 0.40	 0.33	

a)

Artifact 
DICE	 Pra)	

MaN	vs	Snw	 0	 0.11	

MaN	vs	InP	 0.60	 0.73	

MaN	vs	SrG	 0.47	 0.32	

b)
DICE	 Pra)	

MaN	vs	Snw	 0.92	 0.91	

MaN	vs	InP	 0.91	 0.91	

MaN	vs	SrG	 0.71	 0.71	

c)
DICE	 Pra)	

MaN	vs	Snw	 0.84	 0.89	

MaN	vs	InP	 0	 0	

MaN	vs	SrG	 0	 0	

d)
DICE	 Pra)	

MaN	vs	Snw	 0	 0	

MaN	vs	InP	 0.79	 0.93	

MaN	vs	SrG	 0	 0	

e)
DICE	 Pra)	

MaN	vs	Snw	 0.86	 0.90	

MaN	vs	InP	 0.82	 0.86	

MaN	vs	SrG	 0.66	 0.68	

f)

Figure 6.26: Objective comparison between MaN and InP, SrG and SnW using
the good metrics. First column: frames to be evaluated; second column: visual
overlapping between MAN and SnW method; third column: visual overlapping
between MaN and InP method; fourth column: visual overlapping between MaN
and SrG methods; fifth column: summary of the good metrics results.

techniques. For that reason, an attempt has been made to provide novel frame-
works to automatically-or with minimal interaction-segment the glottal gap. The
accuracy and efficiency of the glottal segmentations algorithm InP and SnW are
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compared against the SrG segmentation using an exhaustive analysis: one analyti-
cal assessment, three subjective tasks, and 18 objective metrics.

In the analytical assessment a direct comparison among the algorithms is not
feasible, since they are implemented in different programming languages. How-
ever, based on the computation times obtained, a straight deduction is that the three
algorithms analyzed are suitable to be used in a clinical environment.

On the other hand, the subjective assessments reveal that InP outperforms the
other segmentation algorithms. Figure 6.22 illustrates the glottal segmentation of
(P5) and (P7). For these particular cases, SrG and InP segmentations are slightly
different. For instance, InP and SrG differ in the number of pixels assigned as
glottis in the first and third frame of (P5). Contrariwise, SnW has the worst per-
formance, showing over-segmentation in some frames (second frame (P5)), and
wrongly detecting the instants of total closure (first and third frame of (P7)). The
PVG and GVG playbacks of Figure 6.23 provide a good reference of the whole
recording without the need of a frame by frame visual inspection, and let us in-
fer that SnW was the most affected by the under and over-segmentation, either in
the anterior or the posterior part of the glottis. Contrariwise, SrG and InP deal
better with these issues but there are some cases when both algorithms disagree.
For instance, in (P4) and (P8), SrG playbacks show a completely closed behavior,
whereas InP playbacks deployed a common pattern related with the presence of a
glottal chink. Another important aspect in the subjective assessment is concerned
with the shape of the vocal folds trajectories. Figure 6.24 depicts the overlapping
between VKG and VFT. The shapes obtained either with InP or SrG differ es-
pecially during the closing and opening phases which can be observed clearly in
(P9).

Lastly, the results of the objective assessment are illustrated in Figure 6.26 for
six different frames. In Figure 6.26a the glottis is divided in two parts. SnW
method assumes a complete closure of the glottal gap, ranking all the metrics with
0. Meanwhile, InP detects almost correctly the upper part of the glottis, but fails to
detect completely the inferior part. SrG has a similar performance than InP but is
not able to segment the bottom part. The metrics for both segmentations show this
slight difference. Figure 6.26b also splits the glottis. In this case SnW fails again
to detect the glottal gap introducing an erroneous object. InP ranks well but there
is a small artifact incorrectly segmented that is penalized with DICE but not using
Pratt. Meanwhile, SrG has the same problem than in Figure 6.26a: only one region
is segmented. In Figure 6.26f, good rankings were obtained using SnW and InP
for the two metrics. Contrariwise, SrG presents problems of over-segmentation.

Based on the subjective and objective assessments, the comparative study con-
cludes that the best results in average are obtained using InP, achieving an average
accuracy improvement in the segmentation up to 13% with respect to the SrG and
18% with respect to SnW.
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Chapter 7

Synthesizing the Vocal Folds
Motion by Optical Flow

“Logic will get you from A to B. Imagination
will take you everywhere”

Albert Einstein

SUMMARY: In this chapter three new playbacks are proposed to synthesize
the dynamical information of the vocal folds based on Optical Flow (OF)
computation. Two of them, called Optical Flow Glottovibrogram (OFGVG)
and Glottal Optical Flow Waveform (GOFW), analyze the global dynamics;
and the remaining one, called Optical Flow Kymogram (OFKG), analyzes
the local dynamics. The reliability of the proposed playbacks is evaluated by
comparison with traditional representations such as DKG, GAW, and GVG.
Results show a great correlation in the shape of the vibratory pattern, al-
lowing also the identification of the most important instants of time, such
as closed-state and maximal opening. In addition, the playbacks based on
OF computation provide complementary information to the common spatio-
temporal representations.

7.1 Optical Flow in LHSV

The purpose of LHSV analysis is to characterize the motion of the vocal folds by
identifying their movements from one frame to the followings. However, this task
requires to isolate the glottis and track it along time. Advantageously, Optical Flow
(OF) computation allows the possibility to track unidentified objects solely based
on its motion, with no need of additional segmentation techniques.
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The LHSV sequences present challenging scenarios such as complex reflectance
phenomena that appears due to intrinsic mucosal surface properties, motion dis-
continuities due to the mucosal wave dynamics and occlusion in the glottal-area
region. On the other hand, the OF accuracy is improved by the high frame rate of
LHSV; it reduces the temporal aliasing not only for areas with large displacements
but also for areas with small displacements and high spatial frequencies. Addition-
ally, the BBC assumption becomes even more valid with high frame rates (Lim et
al., 2005). In two consecutive frames the OF should describe precisely the vocal-
folds motion pattern. The direction of the motion field is expected to be inwards
during the closing phase and outwards during glottal opening. In order to illustrate
this idea, Figure 7.1 presents a synthetic representation of the vocal folds motion
among the posterior p(t) and anterior a(t) part of the glottal main axis for two
consecutive frames during the opening phase.

o	 x	

y	

right	
fold	

le,		
fold	

Posterior	

Anterior	

a(t) a(t+ 1)

p(t+ 1)p(t)

Glo2al	
main	axis	

W(x, t)

I(x, tk) I(x, tk+1)

Figure 7.1: Illustration of a synthetic motion field W(x, t) located among the pos-
terior (p(t +1)) and anterior (a(t +1)) part of the vocal folds during two consecu-
tive instants of time, tk and tk+1.

Additionally, the fluctuations over time of the motion field W(x, t) have to re-
flect the glottal dynamics solely. In order to prove this fact, the magnitude changes
of U(x, t) are analyzed for one line pc = 50% in a complete glottal cycle (see Fig-
ure 7.2). As expected, the flow is concentrated in the glottal region since it is the
region with strongest movements. Another remarkable feature is the valley formed
between two peaks. The valley can be understood as the region inside the glottis,
in which motion field is zero. The two peaks can be interpreted as the pixels along
the selected line with maximal positive and negative displacements.
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Figure 7.2: Fluctuation of u along one line for a complete glottal cycle

Despite its suitability to the problem under study, the use of OF for assessing
the vocal folds dynamics has been recently introduced in (Andrade-Miranda et al.,
2015c,a). Nevertheless, the authors in (Saadah et al., 1996) had used motion esti-
mation techniques to describe the vocal folds deformation but only around glottal
edges.

Currently, the field of OF computation is making steady progress evidenced
by the increasing accuracy of current methods on the Middlebury OF benchmark
(Baker et al., 2011a). The OF can be used in a variety of situations, including time-
to-collision calculations, segmentation, structure of objects, movement parameters,
among many others.

7.2 Database Description

The Database3 (DB3) was acquired by means of a Wolf high-speed cinemato-
graphic system and it is composed for 60 high-speed sequences. The laryngeal
HSVs were sampled at either 2000 or 4000 fps with a spatial resolution of 256×
256 pixels. The recording took place at the University Medical Center Hamburg-
Eppendorf (UKE) in Germany (Karakozoglou et al., 2012) and two male subjects
(one speaker, one singer) participated in the experiment. The sequences include
different phonatory tasks: sustained sounds with specific voice qualities (creaky,
normal, breathy, pressed), pitch glides, sung vowels at different pitches and loud-
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ness. Additionally, they cover a huge variety of vocal folds vibratory movements,
including symmetrical and asymmetrical left-right movements, transients, aperiod-
icities, and antero-posterior modes of vibration1.

To ensure the processing of sustained phonation only, the processed sequences
were chosen approximately at the middle of phonation. They all comprise of 501
frames, which correspond to roughly 125 msec of sustained phonation.

7.3 Image Processing Implementation

In order to obtain a more accurate information, reduce computational burden and
mitigate the effect produced by noisy regions, the OF has been computed only in-
side a ROI. Such region is detected automatically based on the procedure presented
in section 6.2.2.

The OF techniques used for the implementation of the new playbacks are Total
Variation L1 Optical-Flow (TVL1-OF), Motion Tensor Optical-Flow (MT-OF) and
Lukas Kanade Optical-Flow (LK-OF). The principal reason for this selection is
to explore the performance of different kinds of OF implementations since these
methods use different strategies to deal with the complex reflectance phenomena
and motion discontinuities. Other algorithms were also explored in this work (Brox
et al., 2004; Drulea and Nedevschi, 2013; Horn and Schunck, 1981; Bruhn et al.,
2006) but due to the computational burden needed to process a whole video and
the similarities in the computation of the flow field with the aforementioned, they
were not included in the OF-based playback evaluation.

Although TVL1-OF and LK-OF are based on the BBC assumption, they differ
in the approach followed to compute OF, being TVL1-OF global and LK-OF local.
Meanwhile, MT-OF does not have a direct connection with the BBC since the
flow field is computed by orientation tensors. The implementation provided in the
C++ OpenCV library was adopted for TVL1-OF and MT-OF flow computation.
Since LK-OF is one of the fastest algorithms to compute OF, it was programmed
in Matlab.

The implementation procedure is shown graphically on Figure 7.3 and the com-
putation of each playback is explained below.

7.4 New Playbacks for Visualizing Glottal Dynamics

Three facilitative playbacks are proposed: Optical Flow Kymogram (OFKG) which
depicts local dynamics along one line, Optical Flow Glottovibrogram (OFGVG)
that represents global dynamics along the whole vocal folds length, and Glottal
Optical Flow Waveform (GOFW) which plots the glottal velocity. They are de-
scribed next:

1A detail study of the database can be found in (Henrich, 2006; Roubeau et al., 2009).
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HSV OF-based Approach 
Optical-Flow 

OFGVG GOFW OFKG 
OF-based Playbacks 

Figure 7.3: Graphical representation of the procedure followed to compute the new
playbacks.

7.4.1 Local Dynamics Along One Line: Optical Flow Kymogram

The OFKG playback shows the direction and magnitude of the vocal folds motion
in a single line. It follows the same idea as DKG to compact the LHSV infor-
mation. However, the information used to synthesize the data comes from the
displacements produced in the x-axis at each time tk (U(x, tk)). For rightwise dis-
placements, the direction angle ranges from [−π/2,π/2] and is coded with red in-
tensities. Conversely, the angle for leftwise displacements ranges from [π/2,3π/2]
and is coded with blue tonalities. The OFKG playback is depicted in Figure 7.4
for a sequence of six glottal cycles. Algorithm 2 explains in detail the procedure
followed to obtain the OFKG playback.

7.4.2 Global Dynamics Along the Whole Vocal Folds Length: Optical
Flow Glottovibrogram

The OFGVG playback represents the global dynamics of the vocal folds by plot-
ting the glottal velocity movement per cycle. The OFGVG playback has the goal
to complement the spatiotemporal information provided by common techniques
(GVG, PVG), adding velocity information of the vocal folds cycles. It is obtained
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U(x, tk)
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U(x, tN )

tNtkt15

Figure 7.4: Schematic view of OFKG playback for the line represented in yellow,
which is located in the median part of the vocal folds; The new local playback
distinguishes the direction of motion (rightwise: red; leftwise: blue).

Algorithm 2: Pseudocode for OFKG playback
input : ROI, I(x, t), Line
output: OFKG
foreach k in I(x, tk) do

I(x, tk)← ROI(I(x, tk))
I(x, tk+1)← ROI(I(x, tk+1))
[U(x, tk),V (x, tk)]← computeOpticalFlow(I(x, tk), I(x, tk+1))
foreach u(xi,Line, tk) in U(x, tk) do

if θ(u(xi,Line, tk),v(xi,Line, tk)) ∈ [−π/2,π/2] then
OFKG(tk,xi)← colorCode(|u(xi,Line, tk)| ,blue)

else
OFKG(tk,xi)← colorCode(|u(xi,Line, tk)| ,red)

end
end

end

by averaging each row of U(x, tk) and representing it as a column vector. This pro-
cedure is repeated along time for each new frame. Algorithm 3 presents the pseu-
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docode for computing OFGVG and the third row of Figure 7.5 shows its graphic
representation.

Algorithm 3: Pseudocode for OFGVG playback
input : ROI, I(x, t)
output: OFGVG
foreach k in I(x, tk) do

I(x, tk)← ROI(I(x, tk))
I(x, tk+1)← ROI(I(x, tk+1))
[U(x, tk),V (x, tk)]← computeOpticalFlow(I(x, tk), I(x, tk+1))
foreach Row in U(x, tk) do

OFGV G(tk,y j)←

n

∑
i=1

∣∣U(xi,y j, tk)
∣∣

n ∀ j ∈ m
end

end
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Figure 7.5: First row: frames representation of one glottal cycle. Second row:
schematic view of GOFW. Each point in the playback (dark circles) is obtained by
averaging the absolute magnitude of U(x, tk). Third row: schematic view of one
OFGVG cycle. Dark regions indicate no velocity (u(xi j, tk) = 0).
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7.4.3 Global Velocity: Glottal Optical Flow Waveform

The GOFW playback is a 1D representation of the glottal velocity. It is com-
puted following the same criteria of GAW but averaging the absolute magnitude of
U(x, tk). Additionally, overlapping this information with GAW highlights the ve-
locity variation in each instant of the glottal cycles. The second row of Figure 7.5
explains schematically how the GOFW is computed, showing the different veloc-
ity instants (black circles). Algorithm 4 summarizes the procedure to obtain the
GOFW playback.

Algorithm 4: Pseudocode for GOFW playback
input : ROI, I(x, t)
output: GOFW
foreach k in I(x, tk) do

I(x, tk)← ROI(I(x, tk))
I(x, tk+1)← ROI(I(x, tk+1))
[U(x, tk),V (x, tk)]← computeOpticalFlow(I(x, tk), I(x, tk+1))

GOFW (tk)←

n

∑
i=1

m

∑
j=1

∣∣U(xi,y j, tk)
∣∣

n×m
end

7.4.4 Definition of the Vocal Folds Displacements Trajectories

The Vocal Folds Displacement Trajectories (VFDT) follow the same framework
introduced in VFT (section 3.2.2) with the difference that the accuracy of the dis-
placement is measured rather than the distance between vocal-folds edges and glot-
tal axis.

Firstly, a trajectory line L(tk) at time tk, which intersects perpendicularly with
glottal main axis G(tk) in a predefined point gpc(tk) is defined and updated every
image using eq 3.2. Following, the intersection between the vocal folds edges
Cl,r(tk) and trajectory line L(tk) is computed, {cl,r

pc(tk) : cl,r
pc(tk) ∈ L(tk) ∧ cl,r

pc(tk) ∈
Cl,r(tk)}. Then, the displacement trajectories δ̂

l,r
OFW

(pc, tk) at tk and position pc is
defined by eq 7.1 as:

δ̂
l,r
OFW

(pc, tk) =W(cl,r
pc(tk)) (7.1)

In view of the aforementioned, two additional trajectories can be derived from
eq 7.1: δ̂

l,r
OFu

(pc, tk) = U(cl,r
pc(tk)) and δ̂

l,r
OFv

(pc, tk) = V (cl,r
pc(tk)). However, as the

glottal edges have a motion pattern mainly perpendicular to the glottal axis, δ̂
l,r
OFv

(pc, tk)

is negligible. Hence δ̂
l,r
OFW

(pc, tk) reflects primarily the fluctuations along tk pro-

duced by δ̂
l,r
OFu

(pc, tk). From now, both terms are used indistinctly and denoted for
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simplicity as δ̂
l,r
OF(pc, tk). The graphical procedure followed to plot δ̂

l,r
OF(pc, t) is

described in Figure 7.6 and expressed in vector notation in eq 7.2.

δ̂
l,r
OF(pc, t) = [δ̂ l,r

OF(pc, t1) δ̂
l,r
OF(pc, t2) · · · δ̂

l,r
OF(pc, tk) · · · δ̂

l,r
OF(pc, tN)] (7.2)

where δ̂
l,r
OF(pc, tk) is positive when the glottal edges are moving from right to

left, and contrariwise, negative when the edges are moving from left to right.
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Figure 7.6: Schematic procedure to compute δ̂
l,r
OF(pc, tk) during the opening phase.

7.5 Reliability Assessment of Optical Flow Playbacks

Due to the high amount of data in LHSV and the complexity of the vocal folds mo-
tion, it is difficult to create a ground-truth to evaluate the OF performance (Baker
et al., 2011b). Therefore, it is necessary to find alternative options to assess the
reliability of the new playbacks. An intuitive way to evaluate the accuracy of the
OF playbacks is to compare against those obtained using glottal segmentation al-
gorithms, since both results should be related. This premise comes from the fact
that these two techniques represent the motion originated in the vocal folds, with
the difference that in glottal segmentation the motion is reflected only on the glottal
edges, while in the OF procedures the entire vocal folds region is analyzed.
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Therefore, DB3 was segmented automatically, having as a results: well-segmented
videos and videos with minor errors in the segmentation. In this way, the benefits
of the OF playbacks are explored when the segmentation is not 100% reliable.

Three assessments are carried out. Firstly, the VFDT obtained by OF are cor-
related with the one obtained via segmentation, which are defined in eq 7.3 for a
particular time tk.

δ̂
l,r
seg(pc, tk) = cl,r

pc(tk+1)− cl,r
pc(tk) (7.3)

Since we are using three different OF methods, δ̂
l,r
seg(pc, t) is compared with

each of them. The OF displacement trajectories are renamed as: δ̂
l,r
TV L1(pc, t),

δ̂
l,r
MT (pc, t) and δ̂

l,r
LK(pc, t) for TVL1-OF, MT-OF and LK-OF respectively. All the

displacement trajectories are computed in the medial glottal axis position pc =
50%.

The second assessment tries to find out the similarities of traditional playbacks
with OF playbacks by visually analyzing their common features and quantifying
their resemblance through two metrics: Structural Similarity Index (SSIM) (Wang
et al., 2004) and Normalize Correlation Coefficient (CC).

The last assessment explains the contributions of the glottal contour and the
contribution of the mucosal wave in the OFGVG playback. First, the motion
field generated only by the points belonging to Cl,r(t) is computed. Following,
the OFGVG of such points is subtracted to the OFGVG obtained from the whole
image. Lastly, the contribution to the OFGVG playback of each of them is ex-
plained.

7.6 Results

7.6.1 Comparison Among Segmentation and OF Displacement Tra-
jectories

The correlation between the segmentation trajectory and OF-based trajectories is
depicted in Figure 7.7a (CC(δ̂ l,r

seg, δ̂
l,r
TV L1), CC(δ̂ l,r

seg,δ
l,r
LK) and CC(δ̂ l,r

seg, δ̂
l,r
MT )). Each

point of the graphic corresponds to the correlation of one LHSV sequence. Best
correlations are obtained when δ̂

l,r
TV L1 is compared with δ̂

l,r
seg. The average correla-

tion, CC(δ̂ l,r
seg, δ̂

l,r
TV L1), achieved for that case is 0.74 while the average correlations

CC(δ̂ l,r
seg, δ̂

l,r
LK) and CC(δ̂ l,r

seg, δ̂
l,r
MT ) only reached values of 0.51 and 0.63, respec-

tively. The greatest correlation is 0.98 which belongs to CC(δ̂ l,r
seg, δ̂

l,r
TV L1). Mean-

while, CC(δ̂ l,r
seg, δ̂

l,r
LK) and CC(δ̂ l,r

seg, δ̂
l,r
MT ) do not exceed the value of 0.93. Addition-

ally, 62% of the trajectories computed via TVL1-OF presented a correlation greater
or equal than 0.8 while only 23% and 8% of the trajectories reached this value us-
ing LK-OF and MT-OF respectively. On the other hand, there are 8 CC(δ̂ l,r

seg, δ̂
l,r
TV L1)

with values below to 0.5, representing 13% of the videos in the database.
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Figure 7.7: First row: correlation between OF trajectories and segmentation tra-
jectory for each sequence. Second and third row: δ̂

l,r
seg and δ̂

l,r
TV L1 are compared for

two phonatory tasks: breathy and creaky (sequences selected on first panel). The
left panel shows four frames of each LHSV with their respective segmentation and
trajectories. The right panel shows the close up of two frames with segmentation
errors corresponding to the interval in dashed lines.

In order to understand the differences between δ̂
l,r
TV L1 and δ̂

l,r
seg, a breathy and

creaky phonation are analyzed visually (see Figure 7.7b, 7.7c). The trajectories
computed via TVL1-OF are smoother than the ones obtained via segmentation but
the shape and the amplitude of both are comparable. Additionally, during a short
period of time (regions enclosed by dashed lines in black at see Figure 7.7b) δ̂

l,r
TV L1

presents some fluctuations originated from a vibration of the vocal folds, while δ̂
l,r
seg

does not show any motion. The close up of one frame belonging to these regions
is shown on the right hand side of the displacement trajectories. From them, it is
observed that the segmentation does not delineate correctly the glottal area causing
an erroneous estimation of the trajectory displacements for δ̂

l,r
seg(pc, t).
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7.6.2 Comparison of OF Playbacks with Traditional Ones

Global Dynamics Along the Whole Vocal Folds Length: Derivative of Glot-
tovibrogram and Optical Flow Glottovibrogram

Five playbacks are depicted in Figure 7.8 for three phonation cases: GVG and
its derivative |dxGVG| and three OFGVG. Similarities between |dxGVG| and the
OFGVG playbacks can be noticed, especially in shape appearance. In pressed
phonation there is a long closed-state that can be observed along the five playbacks,
taking place at the same time for all of them. Glide up phonation has a posterior
glottal chink that produces a constant tonality of gray at the top part of the GVG
plot. In contrast, this is perceived as a no-motion region in the |dxGVG| and in
the OFGVGs, so it is depicted in black for those playbacks. In the glide down
sequence the vocal folds open as two separate regions until it gets fused in a short
period of time. This effect can be observed easily in the GVG (dashed circle in red)
and in its derivative. However, due to the blurring effect induced by the presence
of mucus, it is not obviously readable in the OFGVG.

Additionally, two peculiarities are observed in the OFGVGs representation of
Figure 7.8. Firstly, the playbacks do not show gray tonalities in the middle part of
the glottal cycle (open-state), which means no motion of the vocal folds (velocity
close to 0). Secondly, the presence of mucus is depicted as gray regions that pro-
duce a blurring effect (bottom panels in Figure 7.8). Lastly, for all the phonatory
tasks a certain degree of noise is found when the OF is computed via LK-OF and
MT-OF. Contrariwise, OFGVG based on TVL1-OF is more readable and its shape
pattern resembles are closer to |dxGVG|.

Glottal Velocity: Derivative of the Glottal Area Waveform and Glottal Optical
Flow Waveform

Since GOFW computes an absolute velocity, it is possible to obtain a similar rep-
resentation by differentiating GAW and computing its absolute value (|dGAW|).
The GOFW provides valuable information about the total velocity of the vocal
folds motion for each instant of time. Additionally, if |dGAW| is overlapped with
the GAW (as shown in Figure 7.9), it is feasible to analyze the velocity variation
with respect to the glottal cycles.

Figure 7.9 shows that in the open-state the velocity decreases, creating a valley
in the |dGAW| and in the GOFW playbacks. Additionally, it shows that the maxi-
mum velocities take place in the same instants of time but with different amplitude
values depending on the OF techniques. A velocity variation can be seen in all
|dGAW| playbacks since in some glottal cycles the maximum occurs during the
opening, in others during the closing phase, and sometimes both amplitudes are si-
milar. This fact can be clearly observed in Figure 7.9 for the pressed voice quality
where the amplitude of the peaks oscillates around different values. Contrariwise,
GOFW always has its maximum velocity during the opening phase, but the ampli-
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Figure 7.8: Illustration of GVG, |dxGVG|, OFGVG-LK, OFGVG-MT and
OFGVG-TVL1 playbacks for three different phonatory tasks (pressed, glide up
and glide down).

tude values are different depending on the OF used. In the glissando task, |dGAW|
and GOFW have a discrepancy with respect to maximal velocity occurrence. In
|dGAW|, it occurs during the closing-state, while in GOFW, during the opening.
Among GOFW playbacks, the main dissimilarity relies on the peak amplitude. For
instance, in the glissando phonation, GOFW-LK and GOFW-MT maximum fluc-
tuates between opening and closing states. In contrast, GOFW-TVL1 always has
maximum velocity during the opening phase.

7.6.3 Global Dynamics Evaluation for the Whole Database

The GVG playback is a compact way to assess the entire vocal folds dynamics.
Therefore, it is important to compare objectively its resemblance with the OFGVG
playbacks. To accomplish this task, correlation and SSIM are used to measure
the similitude between |dxGVG| and OFGVGs. The correlation between |dxGVG|
and OFGVGs is depicted in the first row of Figure 7.10. Each point corresponds
to the correlation of one HSV sequence. The best correlations are obtained using
OFGVG-TVL1. The average correlation achieved in this case is 0.47. Meanwhile,
OFGVG-LK and OFGVG-MT correlate in 0.38 and 0.37 respectively. The max-
imum correlation for OFGVG-TVL1 is 0.76 in the LHSV #7. Contrariwise, the
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Figure 7.9: GAW vs GOFW representation for a pressed and glissando task. First
row: GAW and |dGAW|; second row: GAW and GOFW-LK; third row: GAW and
GOFW-MT; fourth row: GAW and GOFW-TVL1.

lowest value occurs for LHSV #54 with a metric of 0.02. Only 45% of the videos
have a correlation greater than 0.5. Using SSIM, the metrics obtained are 0.22,
0.16 and 0.18 for TVL1-OF, LK-OF and MT-OF respectively.

Figure 7.11 and Figure 7.12 show two examples where the vibratory patterns
are more distinctly represented in the OFGVG-TVL1 than in the GVG. Figure 7.11
presents an example with a glottal chink in the posterior part, so the motion only
appears at the anterior part of the vocal folds. Nevertheless, |dxGVG| indicates a
vibratory pattern in the posterior part of the vocal folds edges due to an imprecise
contour detection. Contrariwise, OFGVG synthesizes the motion of the anterior
part and includes the vibration of the mucosal wave as blurring gray tonalities dur-
ing the closed-phase. Figure 7.12 shows an LHSV sequence also with a glottal
chink in the posterior part. Here the length of the glottal edges detected by seg-
mentation does not completely reach the anterior part of the vocal folds, affecting
the legibility of the GVG. For instance, a close look to the frame t13 and t32 shows
that there is no left glottal edge defined for the anterior part (red edge). So the dis-
tance between the glottal edges is different to zero in spite of the glottis is closed,
producing vertical gray lines in the |dxGVG| playback. In contrast, the vibratory
pattern of OFGVG is more readable and remains similar for all the glottal cycles.
Lastly, its tolerance to highly asymmetrical vocal folds vibration is illustrated in
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Figure 7.13 during a glissando with a transition between two laryngeal mecha-
nisms. Here, OFGVG and |dxGVG| playbacks have features in common such as
cycle shape and time of occurrence of mechanism transition. Table B.1 in Ap-
pendix B depicts the GVG, |dxGVG| and OFGVG playbacks using TVL1-OF of
the entire DB3.
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Figure 7.10: Correlation and SSIM obtained by comparing |dxGVG| with each
OFGVG. The horizontal axis represents the video sequence in the DB3 database,
and the vertical axis the value of the metrics.

Comparison Between LK, MT and TVL1 Optical Flow Using Local
Dynamics Along One Line: Digital Kymogram and Optical Flow Ky-
mogram

OFKG is computed using TVL1-OF, LK-OF and MT-OF for three different glottal
locations, each of them corresponding to a percentage of the glottal axis (pc1=10%,
pc2=50% and pc3=90%) as shown in Figure 7.14.

The results show that OFKG has a shape similar to DKG but blurred over the
vocal folds. Such blurring effect is caused by the mucosal wave propagation. One
outstanding characteristic appears during the change between opening and closing
phases due to the presence of a discontinuity in the OFKG. This can be understood
as an instant of time in which the velocity decreases considerably. In pc1, there is a
quasi-static behavior of the vocal folds due to a glottal chink. The DKG represents
the absence of motion when the shape of the glottal gap (dark region) does not
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t1 t5 t6 t7 t19 t21 t23 t27 t30

Figure 7.11: Upper panel: nine segmented frames, the rectangle dotted with red
correspond to the space between the margin of the ROI and to the area with a glottal
chink; middle panel: |dxGVG| playback; lower panel: OFGVG with a vertical
length that depends on the ROI size. The effect caused by the mucosal wave motion
and the vibratory shape pattern for three consecutive cycles are marked with dotted
and continuous red lines respectively.

change over time. Meanwhile, OFKG is displayed with low intensity tonalities
(u(pc1, t)≈ 0). The lines located at pc2 and pc3 present a visible triangular pattern
in OFKG which is a characteristic of DKG for a normal voice production. LK-
OF and MT-OF computation produce, roughly speaking, the shape expected for
OFKG. Yet the images are blurred, this effect is propagated to the close-state and
to the inner part of the glottis. Contrariwise, OFKG-TVL1 motion pattern is more
readable and distinguishable.

Contribution of the Mucosal Wave on OFGVG Playback

The OF playbacks encode the average velocity along the vocal folds and perpen-
dicular to the glottal axis which means that the entire mucosal wave activity is
included. Contrariwise, the segmentation based techniques reveal solely the be-
havior of the vocal folds since only the motion of the glottal contours is computed.

In order to investigate the mucosal wave contribution on OFGVG playback,
two versions of OFGVG are depicted in Figure 7.15. The first, named OFGVGOF ,
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Figure 7.12: Upper panel: nine segmented frames, the areas dotted with red cor-
respond to the posterior glottal chink; middle panel: |dxGVG| playback; lower
panel: OFGVG with a vertical length that depends on the ROI size. The mislead-
ing calculation of the distance between edges is observed as gray vertical lines in
|dxGVG|. The vibratory shape pattern for three consecutive cycles is marked with
a continuous red line.

is computed using the whole motion field U(x, t) inside a ROI. Meanwhile, the
second, named OFGVGseg, uses only the displacement vectors U(Cl,r(t)) origi-
nated by the motion of the glottal contours. Lastly, the subtraction among both
playbacks is carried out, having as a result a new playback. The new playback
reveals a hidden feature associated with the wave-like movement of the superficial
tissues covering the musculus vocalis. This movement is referred to as residual and
suggests that the MW is also identified by the OF methods.

Some remarks can be distinguished from the three playbacks. Firstly, OFGVGOF

and OFGVGseg differ in the length of each glottal cycle. For instance, the glottal cy-
cles in OFGVGseg are smaller than OFGVGOF since they do not include the motion
originated by the mucosal wave propagation. Secondly, Figure 7.15 (OFGVGOF )
shows that the mucosal wave motion appears after a closed-state and before the
open-state of the vocal folds (MW is depicted on blue tonalities). The mucosal
wave propagation is perceived as a flashing bright highlight along the vocal fold
edges due to the variation of the mucosa surface. Lastly, it is corroborated that the
algorithms based on segmentation are not able to detect the mucosal wave propa-
gation as it is observed via OFGVGseg playback.
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Figure 7.13: |dxGVG| and OFGVG visualization of peculiar vocal-folds vibratory
movements during glissando with a laryngeal-mechanism transition. Upper panel:
24 glottal cycles. Lower panel: 23 glottal cycles. The laryngeal mechanism tran-
sition is pointed out with red arrows and the dashed lines in red indicate different
glottal cycles.
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Figure 7.14: Illustration of DKG and OFKG at three different positions of the
LHSV sequence. First row: VKG playback; second row: OFKG using LK-OF;
third row: OFKG using MT-OF; fourth row: OFKG using TVL1-OF.
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OFGVGseg	OFGVGOF	

MW	

OFGVGseg	

			

MW	

OFGVGseg	 MW	

OFGVGOF	

Figure 7.15: Illustration of the mucosal wave contribution in an OFGVG playback.
First row: OFGVG of the whole vocal folds surface motion (OFGVGOF ), OFGVG
of the vocal folds edges (OFGVGseg) and mucosal wave propagation (MW). Sec-
ond row: overlapping of both contributions (in red, the edges motion, and in blue,
mucosal wave surface motion)

7.7 Discussion

This chapter addresses the use of OF techniques to embody the time-varying vo-
cal folds vibratory pattern into efficient and easy to read playbacks. The aim is to
find an alternative to current facilitative playbacks which requires glottis segmen-
tation. Therefore, three new facilitative playbacks are proposed named as OFGVG,
GOFW, and OFKG.

The reliability of the OF-based playbacks was assessed by comparison with
the segmentation-based playbacks. The degree of similarity between the playbacks
was measured objectively by computing the correlation displacements trajectories:
and image resemblance (CC and SSIM). In both cases, the greatest similitude was
obtained with TVL1-OF. The TVL1-OF trajectories depict a smoother behavior
that is originated by the denoising feature embedded in its computation. TVL1-
OF is presumably the best option to compute the OF playbacks for its ability of
preserve discontinuities in the flow field and its robustness against illumination
changes, occlusions, and noise.

With respect to the playbacks, OFGVG provides information about the velocity
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of the vocal-folds surface motion in an ROI. It allows to visualize glottal dynam-
ics of an entire LHSV sequence in a single image, and put emphasis on moments
of maximal and minimal velocities. The OFGVG playback shares similar charac-
teristics in shape with their segmentation-based counterparts (GVG) with regards
to glottal dynamics. But OFGVG is more robust to peculiar types of vibrations
(Figure 7.13) when a highly asymmetrical vocal-folds vibration during a glissando
with transitions is analyzed.

On the other hand, GOFW reveals as a valuable tool to study the total velocity
of the vocal folds. It can advantageously be combined with GAW to comprehend
the relationship between glottal opening and velocity. GOFW can be used along
each glottal cycle to identify the instants of maximum and minimum velocity.

Lastly, OFKG represents the vocal-folds velocity motion of one line, being a
complement to DKG for a better understanding of local dynamics. OFKG rep-
resents valuable information about vocal folds displacements direction, providing
also a clear and comparable representation of the vocal-folds vibration, similar to
the differentiated GVG while reducing errors due to glottal delineation.

The OF-based playbacks have demonstrated a great correlation in shape with
the traditional playbacks, allowing the identification of the most important instants
of time, such as closed-states and maximal opening, and providing complementary
information to the common spatio-temporal representation. In addition, they are
a good alternative when segmentation is not available, or when it is not reliable
enough due to failures in the glottal-edges detection. Furthermore, the contribu-
tions of both glottal contour and vocal folds mucosal wave can be addressed. Since
OF playbacks provide information about the whole vocal fold dynamics, and thus
include the horizontal mucosal wave contribution of the vocal folds movement.
Such information about vocal folds tissues dynamics can not be reflected using
segmentation-based playbacks.
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Chapter 8

Conclusions and Future Works

“The human voice is the most perfect
instrument of all”

Arvo Part

SUMMARY: This chapter provides conclusions and future lines of research
that are particularly relevant to the continuity and transferral of the results.
The methodology, results, and conclusions described in this thesis, as well
as the publications derived from it, have attempted to contribute to the state
of the art in the understanding of the vocal folds dynamics and to help in the
automatic detection of clinical disorders based on the analysis of laryngeal
imaging.

8.1 Conclusions

The vibration of the vocal folds is one of the most important processes during the
voice production. Therefore, the investigation and the examination of the vocal
folds dynamics and mucosal wave vibration have been a subject of great inter-
est in the past, and this interest continues today. The most extended methods to
capture the vibratory movement of the vocal folds are LVS and LHSV. LHSV
systems record images of the larynx at a typical rate of 4000 fps, while the rate
obtained with LVS is only around 30 fps. LHSV illuminates using a continuous
light whereas LVS uses a stroboscopic lamp to show the movement of the vocal
folds taking advantage of the stroboscopic phenomenon. In the case of LVS, they
present an important intra-video variation and do not provide a real view of the
vocal folds vibratory pattern, so its use is restricted to stable and periodic vocal
fold vibrations. In contrast, LHSV systems record every glottal cycle without tem-
poral perturbation, being the only technique capable to register the true intra-cycle
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vibratory behavior of the vocal folds oscillations. Despite the obvious advantages
of LHSV, it has not been widely adopted in the clinic yet because of the lack of
information regarding its validity and clinical relevance. Therefore, the aims of the
present work, as well as the publications derived from it (see appendix C), have
attempted to contribute to the state of the art in the understanding of the vocal folds
dynamics and to help in the automatic detection of clinical disorders based on the
analysis of laryngeal imaging.

Firstly, the problem of the glottal gap segmentation has been addressed since it
is an essential operation for the correct characterization of vocal-folds vibrations.
Commonly, the glottal segmentation is used as a prior step to identify different
phonation features in an objective way, i.e. the periodicity and amplitude of vocal
folds vibration, mucosal wave, glottal closure, closed-state, symmetry of vibration,
presence of non-vibrating portions of the vocal folds (Tao et al., 2007; Lohscheller
et al., 2013), etc. However, in spite of the extensive literature devoted to solving
the glottal segmentation, they have some shortcomings in terms of accuracy and
intervention. The lack of more accurate algorithms with minimal user supervision
has limited the clinical acceptance of high-speed techniques. For this reason, two
algorithms have been proposed in this thesis to tackle the problem of the glottal gap
segmentation: Glottal Segmentation Based on Watershed Transform and Active
Contours (SnW) and Glottal Segmentation Based on Background Subtraction and
Inpainting (InP).

The SnW consists of a set of modules to pre-process, detect ROI, delineate the
contours, and refine the glottis shape. In the first module, the point-wise nonlinear
transformation algorithm is chosen since it presents the better trade-off between ob-
jective and subjective evaluation and also mitigates the influence of flashes which
affects the performance of the ROI detection. On the other hand, the ROI detection
takes advantage of the temporal intensity information of the LHSV and is adap-
tively updated every NROI frames according to an extensive evaluation. Thanks to
its adaptability, the ROI provides reliability against the camera and/or patient dis-
placement, reduces the influence of false detections, it is robust when the glottis is
divided into two or more regions and is able to manage the presence of a glottal
chink when the cut-off points are chosen appropriately. The segmentation mod-
ule uses the well-known Watershed Transform with two merging steps based on
JND and a template correlation. The first merging step fuses regions based on the
sensibility of the human visual system to the changes of luminance. The correla-
tion merging step gives additional information about the position and shape of the
glottis which lets differentiate between glottal and non-glottal regions. Finally, to
refine the segmentation and solve any problem with the previous steps, a Region-
Based Active Contours modeling is performed. The main novelty of SnW relies on
the methods used to identify the ROI, as well as the combination of the watershed
transform with a standard template for the merging process. In spite of the good
performance of SnW, it has some shortcomings with respect to the empirical way
in which some parameters were set up. For instance: the contrast factor β in the
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enhancement was determined to find the best trade-off between contrast and in-
formation loss; the standard template was determined from manual segmentations
of the glottal gap by finding the one that best correlates with the videos on the
database; and the Watershed Merging Threshold, Correlation Threshold and the
cut-off points were selected based on experimentation around the database. Thus,
the accuracy of SnW will highly depend on how these six parameters (two for
the ROI) behave to the different illumination level and contrast presented on the
LHSVs. Despite SnW was conceived to be fully automatic it is possible to let
the user interact with these six degrees of freedom to solve any inconvenience that
might appear during the segmentation process. However, the task of tuning six
variables is time consuming and not the most appropriated for a clinical applica-
tion.

At this point is important to mention the benefits of using semi-automatic or
automatic methods to segment the glottal gap. The semi-automatic techniques let
the user interact as many times as needed in order to solve any inconvenience that
might appear during the segmentation process. Contrariwise, the automatic tech-
niques process all the data without any previous setting or any user intervention.
From a clinical point of view, both methods present advantages and disadvantages
but it is worth mentioning that semi-automatic methods are more time consuming
for the clinicians, although their accuracy is expected to be better. Therefore, it is
necessary to provide novel frameworks making a trade-off between automatic and
semi-automatic with minimal interaction to segment the glottal gap.

In this sense, InP proposes an approach that smooths the textures of the back-
ground (laryngeal structures) and foreground (glottal gap), detects the ROI using
the temporal intensity information, and segments the glottis by creating an adaptive
background model. Furthermore to the automatic segmentation, the method pro-
vides the chance of a minimal user interaction to improve the results in those cases
in which they are not those desired. The smoothing process also called contrast
enhancement, has the goal to eliminate the specularity effect that appears due to
intrinsic surface properties by combining techniques as Color Equalization, Spec-
ularity Removal, and Bilateral Filtering. The final result is a grayscale image, free
of specularity and with a marked difference in the contrast of the laryngeal struc-
tures and the glottis. The ROI detection is the same used in SnW but over the
images obtained after the smoothing process. The final glottal gap delimitation is
achieved by making a representation of the scene called background model. The
background model represents an image in which the glottis has been completely
occluded by means of an inpainting algorithm. Then, a background subtraction
is performed between the background model and each incoming frame. Any sig-
nificant change in the image region from the background model is supposed to
represent a moving object in our case the glottal gap. There are some particular
cases in which a correct automatic segmentation can not be achieved, being neces-
sary an user intervention. The manual procedure begins finding the frame with the
maximum aperture of the glottis. Later on, such frame is presented to the user and
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the ROI is manually selected. This ROI can change its size as many times as neces-
sary or in a time frame considered by the user. Additionally, a slide bar is added to
let the user modify the threshold of the subtraction operation. Therefore, InP has
only one degree of freedom which makes it more suitable for clinical applications.
Although specularity removal, background subtraction, and inpainting techniques
are common in the image processing field, to the best of our knowledge, this is the
first time that they have been used for the segmentation of the vocal folds.

Secondly, the problem of evaluating the glottal gap segmentation has been ad-
dressed. Assessing the glottal segmentation is not trivial due to the huge amount
of frames to evaluate, and the need to take into account the spatial-temporal infor-
mation of the video sequences. The evaluation is even more complicated having in
mind that there are neither standard metrics to evaluate the distinct algorithms nor
public databases that could be used for benchmark and comparison purposes. In
view of these limitations, we propose a set of guidelines to evaluate the vocal folds
segmentation accuracy based on a subjective and objective analysis. These guide-
lines are divided into three groups according to their nature: analytical, subjective,
and objective. The analytical assesses the segmentation independently of the final
results. In other words, are only applicable to evaluate the general performance
of the algorithms. The subjective analyzes the information provided from the fa-
cilitative playbacks by proposing three subjective trials to assess the accuracy of
the glottal segmentation: segmentation quality, readability of the playbacks (GVG,
PVG, GAW), and shape similarity between VFT and VKG. Lastly, the objective
evaluation compares the segmented image against a reference manually identified,
also known as ground-truth. The degree of similarity between the human and ma-
chine generated images determines the quality of the segmentation. Using the set
of new guidelines, the accuracy and efficiency of InP and SnW are compared
against Seed Region Growing (SrG) segmentation. Based on the results, it can be
concluded that the best results in the subjective and objective evaluation are ob-
tained using InP, achieving an average accuracy improvement in the segmentation
up to 13% with respect to the SrG and 18% with respect to SnW. Additionally, InP
does not require an intensive user interaction, which suggests its appropriateness
be transferred to the clinical environment.

Lastly, a new method to synthesize the dynamical information of the vocal folds
based on Optical Flow computation is proposed. The main reason to use OF tech-
niques is that they allow the possibility to track unidentified objects solely based
on its motion, with no need of additional segmentation techniques. Therefore, not
only the points belonging to the glottal edges are included but also those regions
that originated such movements. Three new playbacks are proposed: two of them,
called Optical Flow Glottovibrogram (OFGVG) and Glottal Optical Flow Wave-
form (GOFW), analyze the global dynamics; and the remaining one, called Optical
Flow Kymogram (OFKG), analyzes the local dynamics. These new ways for data
visualization have the goal to overcome the drawbacks of existing playbacks, pro-
viding simultaneously features that integrate the time dynamics, such as velocity,
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acceleration, instants of maximum and minimum velocity, vocal folds displace-
ments during phonation and motion analysis. The proposed OF-based playbacks
have demonstrated a great correlation in shape with the traditional playbacks such
as DKG, GAW, and GVG, allowing also the identification of the most important
instants of time, such as closed-state and maximal opening. In addition, the play-
backs based on OF computation provide complementary information to the com-
mon spatiotemporal representations when segmentation is not available, or when
it is not reliable enough due to failures in the glottal-edges detection. The only
drawback identified is that, compared to the traditional playbacks, those based on
OF are slightly blurred due to the effect introduced by the mucosal wave.

8.2 Future Works

In this work, a new way of analyzing laryngeal images based on OF has been
explored but there are still many different tests and experiments that need to be
addressed in future works:

• In contrast to glottal area segmentation, the movement of the vocal folds can
also be traced in the anterior-posterior direction using OF. Therefore, it is
necessary to find out alternative ways to synthesize the information extracted
from the OF. For instance, one alternative will be the use of PCA to reduce
the dimensionality of the vector motion field similarly as proposal in (Chen et
al., 2014) with uses the intensity of LHSV. Furthermore, it will be interesting
to include the information of the y-axis and also to consider the deflections
of the left and right folds separately.

• Another line of work is related to the classification of functional voice dis-
orders using the OF playbacks. For instance, a set of numerical features, as
the ones presented in (Voigt et al., 2010a; Unger et al., 2015; Döllinger et al.,
2011) for traditional playbacks, can be derived from the OF playbacks which
would capture the dynamic behavior and the symmetry of oscillating vocal
folds. Some of the features could be the cycle duration, OFGVG contour,
inter-cycle and intra-cycle symmetry. Additionally, the OF techniques can
be combined with the ones based on glottal gap segmentation.

• From our experience, we know that is difficult to validate the motion field
obtained via OF due to the lack of ground-truth in vivo data. But, we also
know that is desirable to have an idea about the accuracy of the OF algorithm
compared to reality and not only by comparison with the conventional seg-
mentation techniques. Therefore, we want to explore the use of some kind
of mechanical phantom to generate a reproducible motion, for example with
moistened silicon vocal folds and recreate the laryngeal conditions (lighting,
reflections). Firstly, record the motion of a smooth surface (comparable to in
vivo vocal folds) and later apply a prominent pattern to the surface (reliable
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to track by OF techniques). It would be very interesting to learn how these
two measurements compare.

• When building the OFGVG and OFKG , the average velocity along the vo-
cal folds and perpendicular to the glottal axis is taken. This also includes
the mucosal wave activity that cannot be separated from the real motion of
vocal fold edges directly. For that reason in section 7.6.3, the individual con-
tribution of the mucosal wave was studied. However, the objective detection
and quantification of mucosal wave propagation have to be studied in more
detail since its existence and magnitude provides valuable information about
the coupling between the mucosa and the subjacent vocal folds muscle. Ad-
ditionally, it is widely held that mucosal wave activity is a useful indicator of
the quality of voice production and the presence of voice disorders (Krausert
et al., 2011; Shaw and Deliyski, 2008; Voigt et al., 2010b)

• Currently, we are presenting three different visualizations which are eval-
uated separately. It might be helpful to show how these methods provide
complementary information and combining them put additional information
to the context. In addition, it will be very interesting to make a systematic
comparison with other glottal-activity signals such as Electroglottography
(EGG) in order to provide a more complete assessment of vocal folds vibra-
tion.

• We are also interested in investigating the influence of the ventricular folds
in some particular phonation, as the one in the bass type of Mongolian throat
singing, using OF techniques to understand how much the presence of ven-
tricular fold vibration contributes to a change in voice quality.

• In this work, we only use the segmentation and OF approaches to estimate
the motion of the vocal folds. However, we are interested in exploring other
techniques as registration to characterize the kinematics of the vocal folds.
The image registration is one of the fundamental tasks within image pro-
cessing which let to find an optimal geometric transformation between two
corresponding image. Therefore, we want to explore if it is possible to model
the deformation of the vocal folds for each particular laryngeal mechanism
using geometric transformations.
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Playbacks Computed Using InP

Index Frames Playbacks

1

2

3

4

5

6
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Index Frames Playbacks

7

8

9

10

11

12

13

14

15
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Index Frames Playbacks

16

17

18

19

20

21

22

23

24
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Index Frames Playbacks

25

26

27

28

29

30

31

32

33
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Index Frames Playbacks

34

35

36

37

38

39

40

41

42
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Index Frames Playbacks

43

44

45

46

47

48

49

50

51
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Index Frames Playbacks

52

53

54

Table A.1: Used recordings from the database DB2. The LHSV sequences indices
are shown, as well as the glottal segmentation at time tk=1, 5, 10, 15, 20. The last
column from top to down presents the corresponding GVG, PVG, DKG and GAW
playbacks.
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OFGVG Playback Thumbnails

Index Description Glottal Movement Thumbnail

1 normal anterior-to-posterior

2 normal anterior-to-posterior

3 normal anterior-to-posterior

4 normal anterior-to-posterior

5 normal middle-to-edges

6 normal middle-to-edges

7 breathy middle-to-edges
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Index Description Glottal Movement Thumbnail

8 breathy anterior-to-posterior

9 creaky anterior-to-posterior

10 pressed complex vibration

11 pressed complex vibration

12 breathy middle-to-edges

13 breathy middle-to-edges

14 breathy anterior-to-posterior

15 breathy anterior-to-posterior

16 creaky anterior-to-posterior

17 creaky anterior-to-posterior

18 pressed anterior-to-posterior
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Index Description Glottal Movement Thumbnail

19 pressed anterior-to-posterior

20 pitch D3 in M1 middle-to-edges

21 pitch D3 in M1 middle-to-edges

22 pitch D3 in M1 anterior-to-posterior

23 pitch D3 in M1 anterior-to-posterior

24 pitch A3 in M1 anterior-to-posterior

25 pitch A3 in M1 anterior-to-posterior

26 pitch D4 in M1 anterior-to-posterior

27 pitch D4 in M1 anterior-to-posterior

28 glissando anterior-to-posterior

29 glissando anterior-to-posterior
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Index Description Glottal Movement Thumbnail

30 glissando anterior-to-posterior

31 pitch A3 in M2 anterior-to-posterior

32 pitch D4 in M2 anterior-to-posterior

33 pitch D4 in M1 anterior-to-posterior

34 pitch A4 in M2 anterior-to-posterior

35 pitch A4 in M2 anterior-to-posterior

36 breathy anterior-to-posterior

37 breathy anterior-to-posterior

38 normal anterior-to-posterior

39 normal posterior-to-anterior

40 breathy anterior-to-posterior
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Index Description Glottal Movement Thumbnail

41 breathy anterior-to-posterior

42 creaky medial-to-edges

43 creaky medial-to-edges

44 glide down posterior-to-anterior

45 glide down posterior-to-anterior

46 breathy posterior-to-anterior

47 breathy posterior-to-anterior

48 glide up posterior-to-anterior

49 glide up posterior-to-anterior

50 pressed anterior-to-posterior

51 pressed anterior-to-posterior
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Index Description Glottal Movement Thumbnail

52 pressed posterior-to-anterior

53
pitch F4# in M2

soft vibrato
posterior-to-anterior

54
pitch F4# in M2

soft vibrato
posterior-to-anterior

55
pitch F4# in M2

soft vibrato
posterior-to-anterior

56
pitch F4# in M2

soft vibrato
posterior-to-anterior

57 breathy glide down posterior-to-anterior

58 breathy glide down posterior-to-anterior

59 breathy glide down posterior-to-anterior

60 breathy glide up posterior-to-anterior

Table B.1: Used recordings from the database DB3. The LHSV sequences indices
are shown, as well as the used laryngeal mechanisms and the glottal vibration pat-
tern. The last column from top to down presents a small portion of the correspond-
ing GVG, |dxGVG| and OFGVG-TVL1 thumbnail.
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Scientific Production

Journal Articles

[J1] Andrade-Miranda Gustavo and Juan I. Godino-Llorente, Glottal Gap track-
ing by a continuous background modeling using inpainting, Medical & Bio-
logical Engineering & Computing. In Press. (JCR, IF=1.79).

[J2] Andrade-Miranda Gustavo, Henrich Bernardoni Nathalie, and Juan I. Godino-
Llorente, Synthesizing the motion of the vocal folds using optical flow based
techniques, Biomedical Signal Processing and Control, Vol 34, April 2017,
Pages 25-35. (JCR, IF=1.52).

[J3] Laureano Moro-Velázquez, Jorge Andrés Gómez-García, Juan Ignacio Godino-
Llorente, and Andrade-Miranda Gustavo, Modulation Spectra Morpho-
logical Parameters: A New Method to Assess Voice Pathologies according
to the GRBAS Scale, BioMed Research International, vol. 2015, Article ID
259239, 13 pages. (JCR, IF=2.17)

[J4] Andrade-Miranda Gustavo , Juan I Godino-Llorente, Laureano Moro-Velázquez
and Jorge Andrés Gómez-García, An AutomaticMethod to Detect and Track
the Glottal Gap from High Speed Videoendoscopic Images, BioMedical En-
gineering OnLine, vol 14, June 2015, 26 pages. (JCR, IF=1.38)

Peer-Reviewed Conference Articles

[C1] Andrade-Miranda, Gustavo, Bernardoni, Nathalie Henrich and Godino-
Llorente, Juan Ignacio. A new method to present high-speed data for laryn-
geal assessment based on Optical Flow computation, ICVPB - 10th Inter-
national Conference on Voice Physiology and Biomechanics, Viña del Mar,
Chile, March 14 - 17, 2016.
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[C2] Andrade-Miranda, Gustavo, Bernardoni, Nathalie Henrich and Godino-
Llorente, Juan Ignacio. A New Technique for Assessing Glottal Dynamics
in Speech and Singing by Means of Optical-Flow Computation, INTER-
SPEECH 2015, 16th Annual Conference of the International Speech Com-
munication Association, Dresdren, Germany.

[C3] Andrade-Miranda, Gustavo, Bernardoni, Nathalie Henrich and Godino-
Llorente, Juan Ignacio. Optical-Flow Kymograms and Glottovibrograms:
A new way to present high-speed data for laryngeal assessment, MAVEBA
2013 - 9th International workshop, Models and analysis of vocal emissions
for biomedical applications, Firenze, Italy, September 2-4, 2015.

[C4] Andrade-Miranda, Gustavo, Juan Ignacio Godino-Llorente. ROI detection
in high speed laryngeal images, Biomedical Imaging (ISBI), 2014 IEEE 11th
International Symposium, pages 477-480, Beijing, China, April 29- May 2,
2014.

[C5] Andrade-Miranda, Gustavo and Juan Ignacio Godino-Llorente. Glottal
gap tracking using temporal intensity variation and active contours, MAVEBA
2013 - 8th International workshop, Models and analysis of vocal emissions
for biomedical applications, pages 77-80, Firenze, Italy, December 16-18,
2013.

[C6] Andrade-Miranda Gustavo and Juan Ignacio Godino-Llorente. Automatic
glottal tracking from high-speed digital images using a continuous normal-
ized cross correlation, INTERSPEECH 2013, 14th Annual Conference of
the International Speech Communication Association, pages 1144-1148, Lyon,
France, August 25-29, 2013.

[C7] Andrade-Miranda Gustavo, N. Saenz, V. Osma and J. Godino, A new ap-
proach for the glottis segmentation using snakes, BIOSTEC, 6th Interna-
tional Joint Conference on Biomedical Engineering Systems and Technolo-
gies. pages 318-322, Barcelona, Spain, February 11-14, 2013.

Workshops, Symposia, and Seminars

[S1] Andrade-Miranda Gustavo, Juan Ignacio Godino-Llorente and Bernardoni,
Nathalie Henrich. Optical Flow Glottovibrogram: Synthesizing the Vocal
Fold Vibrations for Visualization and Analyzing the Laryngeal Dynamics,
URSI, XXXI Symposium Nacional de la Unión Científica Internacional de
Radio. pág 99, Madrid, España, Septiembre 5-7, 2016.

[S2] Andrade-Miranda Gustavo, Juan Ignacio Godino-Llorente. Detección de
la región de interés en imágenes laríngeas de alta velocidad, JRBP 2013

182



SCIENTIFIC PRODUCTION

- VII Jornadas de Reconocimiento Biométrico de Personas, pág. 145-151,
Escuela Politécnica Superior de Zamora, España, Septiembre 12-13, 2013.

[S3] Andrade-Miranda Gustavo , Juan Ignacio Godino-Llorente, Seguimiento
automático de la apertura glottal a partir de imágenes digitales de alta
velocidad usando correlación cruzada adaptiva, JVHC 2013 - I jornadas
multidisciplinarias de usuarios de la voz, el habla y el canto, pág 143-151,
Palmas de Gran Canaria, España, Junio 27-28, 2013.

[S4] Andrade-Miranda Gustavo, N. Saenz, V. Osma and J. Godino, Glottis seg-
mentation from laryngeal images using snakes, in 2nd Workshop de Tec-
nologías Multibiométricas para la identificación de personas.
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–Qu’est-ce que signifie “apprivoiser”? – dit le Petit Prince–
–C’est une chose trop oubliée – dit le Renard–,

ça signifie “créer des liens...”
Tu n’es encore pour moi, qu’un petit garçon tout semblable à cent mille petits garçons.

Et je n’ai pas besoin de toi. Et tu n’as pas besoin de moi non plus. Je ne suis pour toi qu’un
renard semblable à cent mille renards. Mais, si tu m’apprivoises, nous aurons besoin l’un
de l’autre. Tu seras pour moi unique au monde. Je serai pour toi unique au monde.....

Le Petit Prince... Antoine de Saint Exupéry
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