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Abstract

Mobile mapping is the process of collecting geospatial data with a moving vehicle. These
vehicles are often equipped with two types of sensors: remote sensing (cameras, lidar, radar)
and geo-localization (GNSS, IMU, odometer). Precise and robust georeferencing has been a
major challenge for the implementation of mobile mapping systems. Indeed, in dense urban
environments, the masks of signals and multipath errors corrupt the measurements and lead to
big positioning errors. High precision IMUs enable to bridge the gaps of positioning and ensure
a drift low enough to fulfil the requirements of mapping in terms of accuracy. Nowadays, the
hybrid positioning systems (GNSS / IMU / Odometer) are mature enough to provide reliable
industrial solutions for the collection of geo-referenced data. National and private mapping
agencies have started to collect the required row data for building geospatial repositories at very
large scales. However, the very high cost of positioning systems incorporating high precisions
IMUs restricts their use to the establishment of geospatial reference data and more affordable
positioning solutions are needed for map updating purpose.

The objective of this thesis is to provide a low cost positioning solution that can be used on a
large number of map updating vehicles.

We propose to use one or more cameras on a vehicle as a georeferencing system. Indeed, the
vehicle’s trajectory can be estimated using visual odometry techniques. To limit the drift of the
trajectory due to the accumulation of errors, we propose a registration on a set of visual land-
marks that are precisely georeferenced. These landmarks are reconstructed using the reference
data generated by precise and expensive mapping systems. Natural road features such as road
markings and traffic signs were chosen as visual landmarks.

A local bundle adjustment algorithm has been adapted to estimate the pose of the vehicle using a
sequence of images acquired by one or more embedded cameras. A rigorous approach that takes
into account the uncertainties enables to tune automatically the weights of every constraint in
the equation system of the adjustment and to estimate the uncertainties of the parameters. They
are used in a propagation based matching algorithm that accelerates the process of tracking the
interest points between the images and eliminate many false matches. This significantly reduces
the drift of the visual odometry by reducing the sources of errors. The remaining part of the
drift is removed using georeferenced visual landmarks. The process of matching the image
sequence with the landmarks is guided by the uncertainty of the poses. It adds a set of absolute
constraints in the equation system of bundle adjustment. The drift is drastically reduced. Each
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step of the algorithm is evaluated on real image sequences with ground truths.

Keywords : Localization, Landmark, Local Bundle Adjustment, Uncertainty analysis, Ground
Control Points, Error propagation, Traffic signs, Road markings, Pose estimation.
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Résumé

En utilisant des amers visuels géoréférencés. Le processus d’appariement de flux d’images avec
ces amers est guidé par les incertitudes des poses. On ajoute des contraintes absolues dans le
système d’équations de l’ajustement de faisceaux. La dérive de la trajectoire du véhicule de
cartographie est très fortement réduite. Chaque étape de l’algorithme est évaluée sur des sé-
quences d’images réelles avec une vérité terrain. Le véhicule de cartographie est le processus
de collecte des données géo-spatiales. Ces véhicules sont souvent équipés de deux types de
capteurs : télédétection (caméras, Lidar, Radar) et géolocalisation (GNSS, IMU, Odomètre). Le
géoréférencement des données précis et robuste constitue un enjeu majeur pour la mise en œuvre
des systèmes de cartographie mobile. En effet, en milieux urbains denses, les phénomènes de
masquages GNSS et de trajets multiples pertubent les mesures de GNSS et conduisent à des
erreurs de localisations importantes. Les centrales inertielles de grandes précisions permettent
de combler les manques de localisation GNSS. Elles garantissent une dérive de position suf-
fisamment faible pour obtenir la qualité de géoréférencement nécessaire pour la numérisation
à des fins cartographiques. Aujourd’hui, la maturité des systèmes de géolocalisation hybride
(GNSS/IMU/Odomètre) offre des solutions industrielles fiables pour la collecte de données
géoréférencées. Les agences de cartographie nationales et privées ont commencées à faire des
acquisitions de données nécessaires à la constitution de données géo-spatiales à très grande
échelle. Cependant, le coût très onéreux des systèmes de géolocalisation intégrant des centrales
inertielles de grandes précisions restreint leur utilisation à la constitution de données géoréfe-
rencées. Une solution plus abordable est nécessaire pour équiper les véhicules employés pour
les mises à jour régulières de ces données.

L’objectif de cette thèse est de proposer une solution abordable de géolocalisation utilisable sur
un grand nombre de véhicules pouvant être mobilisés pour la mise à jour de données géoréfe-
rencées.

Nous proposons d’utiliser une ou plusieurs caméras sur un véhicule comme un système de
géoréférencement. En effet la trajectoire du véhicule peut être estimée par une technique d’odo-
métrie visuelle. Pour limiter la dérive de la trajectoire due à l’accumulation des erreurs, nous
proposons de le recaler sur un ensemble d’amers visuels précisément géoréférencés. Ces amers
sont reconstruits en utilisant les données géoréferencées générées par des systèmes de cartogra-
phies précis et onéreux. Les caractéristiques de route telles que les signalisations horizontales
et verticales ont été choisi en tant que amers visuels.
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Un algorithme d’ajustement de faisceaux local a été adapté pour estimer la pose des caméras
en utilisant un flux d’images acquis par un ou plusieurs caméras embarquées sur celui-ci. Une
méthode rigoureuse de prise en compte des incertitudes permet de pondérer de manière automa-
tique les différents types de contraintes dans le système d’équations de l’ajustement et d’estimer
les incertitudes des paramètres. Ces dernières sont utilisées dans une approche appelée apparie-
ment par propagation qui permet d’accélérer le processus de suivi des points d’intérêt entre les
images et d’éliminer un grand nombre de faux appariements. Cela réduit très fortement la dérive
du véhicule en diminuant les sources des erreurs. Chaque étape de l’algorithme est évaluée sur
des séquences d’images réelles avec des vérités terrains.

Mots Clés : localisation, amers visuels, ajustement de faisceaux local, analyse des l’incertitudes,
les points de contrôle au sol, propagation d’erreur, panneaux de signalisation, marquages rou-
tiers, estimation de pose
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1. Introduction

Chapter 1

Introduction

1.1 Context

The up-to-date information about civil infrastructure is demanded for various applications such
as city planning [Yeh, 1999], pavement management [Miraliakbari et al., 2014], self-driving
[Guizzo, 2011] and virtual city [Dodge et al., 1998]. This therefore motivates the establishment
of Geographic Information Systems (GIS) database for urban environment. To produce the data,
the conventional methods are based on satellite remote sensing or aerial photogrammetry. They
extract the features like road network [Ruskoné, 1996] or reconstruct the 3D buildings [Flamanc
et al., 2003] from aerial or satellite images. These methods can produce large scale GIS data
and update the database in high rate with reasonable cost, but the accuracy and the level of
details are not sufficient for many applications (only with centimetric to decimetric resolution
for aerial images and much lower resolution for satellite images). Besides, the vertical view
images provide only a part of required information. Some features such as the build facades are
missing or observed under very restricted angle. Recently, oblique aerial photography is used to
reconstruct all sides of buildings [Karbo and Schroth, 2009] which is a great complementary for
traditional photogrammtetry. Nevertheless, some important ground level targets such as traffic
signs and sometimes road markings can not be captured completely because of view occlusion.

Figure 1.1 shows aerial and street-view images for the same road. The road markings can be
partly observed in figure 1.1(a), but some road markings are sheltered by the trees. In addition,
the traffic signs (vertical objects) in street are too difficult to be observed by the aerial images
because of the vertical view, small size and occlusion. However, mapping these features is
mandatory for many applications such as traffic simulation [Wilkie et al., 2012]. The street level
imagery (optical and laser) can provide raw data for mapping these objects (cf. Fig. 1.1(b)).

Mobile Mapping Systems (MMSs) simplify the acquisition of street level data [El-Sheimy,
1996]. The camera or Light Detection And Ranging (LiDAR) are usually mounted on a vehicle.
A set of features can be extracted from the captured images and reconstructed with photogram-
metry or computer vision methods. The LiDAR scans the environment and generates dense
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(a) Aerial photo (b) Street view

Figure 1.1: Same area observed by aerial image and street view image captured by mobile mapping
system.

point clouds directly. Direct geo-referencing devices (GNSS/INS/odometer) are also integrated
on MMS. The Global Navigation Satellite System (GNSS) is used for global positioning and
the Inertial Navigation System (INS) can provide instant translation and orientation of vehicle.
Together with the distance measured by odometer, the localization is achieved by fusing all the
data. In order to capture detailed spatial data of street infrastructure (e.g. building facades,
pavements, traffic signs, road markings, street furniture, etc.), the research about street-based
mobile mapping has been conducted many years in MATIS research group of IGN 1.

1.2 STEREOPOLIS mobile mapping system

The first generation of MMS (STEREOPOLIS) in MATIS, was developed based on stereo vision
system (cf. Fig 1.2(a)). The STEREOPOLIS consisted of two stereo rigs (4 cameras). One
back-looking stereo rig (horizontal baseline) allows acquiring images of street feature and one
side-Looking stereo rigs (vertical baselines) capture the images of building facades on both
sides of the street. Only GPS is used for geo-referencing in STEREOPOLIS. Whereas the quality
of localization may be altered in urban area due to GPS masks and multi-paths. The images
were used to assist the localization of STEREOPOLIS. Bentrah et al. [2004] estimated the pose
by registering the dense 3D point sets generated by vertical stereo matching, considering the
constraints of finding the vertical and horizontal vanishing points of stereo images. Further-
more, the road markings which are detected and reconstructed from areal images, are taken
into account as Ground Control Objects (GCOs) for sub-decimeter geo-referencing of MMS in
urban areas [Tournaire et al., 2006b].

Then, a more advanced MMS STEREOPOLIS II was developed for high precision 3D city map-
ping [Paparoditis et al., 2012] (cf. Fig 1.2(b)). Compared with the first generation STERE-
OPOLIS, more types of street data can be acquired by STEREOPOLIS II. First, a precise di-

1Institut national de l’information géographique et forestière
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1.2. STEREOPOLIS mobile mapping system

(a) STEREOPOLIS (b) STEREOPOLIS II

Figure 1.2: The mobile mapping system in MATIS.

rect geo-referencing system (GNSS/INS/odometer) is used instead of using only GPS. Second,
more high resolution cameras are mounted to capture the images of street at different directions.
Third, high quality LiDAR is applied to scan the street and generate dense point clouds. The
following sections will introduce the main instruments on STEREOPOLIS II.

1.2.1 Localization system

An applanix POS-LV220 georeferencing system combining GNSS, an inertial unit and an
odometer, is composed for absolute localization of STEREOPOLIS II. Reliable position and
orientation are provided directly, even despite GNSS signals being blocked or effected (multi-
path) in urban canyons. However, the GNSS masks induce the drifts that can reach one meter
for a 2 minutes mask. Continuous high rate (up to 200 Hz) localization can be provided by POS
LV system, which is important for accurate geo-referencing of high rate data perception such as
point clouds.

1.2.2 Cameras

Multiple high resolution cameras (14 cameras) are mounted on STEREOPOLIS II. Four of those
cameras constitute one forward looking stereo rig and one backward looking stereo rig. Ten
cameras are mounted at the middle and used to generate panorama images (cf. Fig 1.3(a)).

All the cameras are well synchronized and all of them are perspective cameras. The focal
length of every camera is 10 mm, and the image size is 1920 × 1024 pixels. The Field Of
View (FOV) of the each camera is 70° in horizontal and 42° in vertical. STEREOPOLIS II

captures images every 3 or 4 meters to limit the volume of data. Two strategies: off-line and
on-line, were developed to calibrate the rigid parameters to system and intrinsic parameters of
each camera [Cannelle et al., 2012]. The first strategy is based on targets network which is built
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(a) (b)

Figure 1.3: Camera positions and images on STEREOPOLIS. (a) Positions of the 14 camera on STERE-
OPOLIS. (b) A set of images captured by cameras on STEREOPOLIS. Images in the middle compose the
panorama view and two stereo rigs are mounted for forward and backward looking.

and measured preferably in outdoor environment. The second one is a self-calibration approach
which is suitable for images captured in urban environment.

1.2.3 LiDAR

At first stage of STEREOPOLIS II, two Riegl scanners were placed at left and right sides of
vehicle to scan the building facades and a Velodyne ((cf. Fig 1.4(c))) is integrated to acquire
the point clouds of bottom side such as the road surface. In the latest version of STEREOPOLIS

II a high-performance Riegl was mounted at the rear of vehicle to scan both road surface and
building facades (cf. Fig 1.4(a)).

(a) (b) (c) (d)

Figure 1.4: LiDAR sensors and point clouds. (a) RIEGL VQ-250. (b) Point clouds acquired by RIEGL
VQ-250 on STEREOPOLIS II. (c) VELODYNE HDL-64E. (d) Point clouds of one scan obtained by
Velodyne HDL-64E.
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High-performance RIEGL A Riegl VQ-250 is placed transversally in order to scan a plane
orthogonal to the trajectory. RIEGL VQ-250 works with single laser firing through a rotating
mirror. The scanning rate of the laser scanner is up to 100 scans per second. It scans the objects
from 1.5m to 500m with angular resolution up to 0.001° in 360° FOV. High-accuracy ranging
is achieved which is better than 10mm. For every measurement, not only the range and scan
angle which are used to compute (x y z) coordinates in sensor space, are captured, but also
extra informations for each pulse (e.g. time of emission, echo amplitude) are recorded. The
amplitude is dependent on the range and it is corrected into a relative reflectance. In visual
representation, the reflectance allows for assigning a brightness for each point with respect to
the target reflectivity. The scans are very anisotropic. The scanned points are very dense along
scan-lines (a few mm on the road below the sensor), but the density of points along the trajectory
depends on the vehicle speed (5cm at a typical acquisition speed of 5m/s = 18km/h).

Velodyne A Velodyne (HDL-64E) was mounted at the top of vehicle to scan dense point
clouds of street. Instead of a single laser firing through a rotating mirror, HDL-64E contains
64 lasers which are mounted on upper and lower blocks and the entire unit spins. This design
allows for 64 separate lasers to scan thousands of times per second, shown in figure 1.4(d) (the
scan of each laser is marked with different color 2). The unit scans a 360 ° horizontal FOV
and a 26.8° vertical FOV. The measuring distance is up to 120m and 1.3 million points can be
acquired per second.

1.3 Examples of applications

With geo-referenced imagery and dense point clouds, different street features have been ex-
tracted and reconstructed in MATIS.

1.3.1 Detection and reconstruction of road feature

Both ground based images and point clouds acquired by STEREOPOLIS are used for road mod-
eling. Soheilian et al. [2010] extracted and reconstructed the road markings (zebra crossings
and dashed lines) using stereo images. The method for traffic sign detection and reconstruction
from geo-referenced images was thereafter proposed [Soheilian et al., 2013a]. The traffic signs
are detected in individual images over sequences, and then they are matched to generate 3D
traffic signs (cf. Fig 1.5(a)).

The LiDAR mounted on STEREOPOLIS II can provide dense point clouds as well as their re-
flectance information of urban street. Taking benefit from both dense 3D points and their re-
flectance, the grayscale road orthophoto and road Digital Terrain Models (DTM) can be gener-

2http://velodynelidar.com/hdl-64e.html
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(a) (b) (c)

Figure 1.5: (a) Detecting traffic signs from geo-referenced images [Soheilian et al., 2013a]. (b) Extract-
ing road markings from point clouds [Hervieu et al., 2015]. (c) Road side detection based on point clouds
[Hervieu and Soheilian, 2013].

ated from Mobile Laser Scanning (MLS), which can produce higher accuracy and density than
aerial products [Vallet and Papelard, 2015]. Based on the high quality grayscale orthophoto,
road markings can be extracted from the road orthophoto (cf. Fig 1.5(b)). The road mark-
ings are searched by minimizing an energy function solving with RJMCMC (Reversible-Jump
Markov Chain Monte Carlo) [Hervieu et al., 2015]. Besides, a semi-automatic approach was
proposed for curbs and curb ramps recognition and reconstruction using the 3D point clouds
and users only need to click some control points (cf. Fig 1.5(c)) [Hervieu and Soheilian, 2013].

1.3.2 Reconstruction of building

With the street level images captured by STEREOPOLIS, the building facades are described
from a single calibrated street image based on an unsupervised segmentation method (cf. Fig
1.6(a)) [Burochin et al., 2009]. In fact, more research about facade reconstruction have been

(a) (b) (c)

Figure 1.6: Some examples about build facades. (a) Facade segmentation from single image [Burochin
et al., 2009]. (b) Build facade reconstruction based on stereo images [Pénard et al., 2005]. (c) Mesh
generation using point clouds [Demantké et al., 2013].

conducted since the first generation of STEREOPOLIS. Using the images captured by a vertical
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stereo rig, textured meshes of building facades are generated based on the 3D point clouds
reconstructed by dense matching (cf. Fig 1.6(b)) [Pénard et al., 2005]. In STEREOPOLIS II,
the point clouds of building facades are scanned by LiDAR. Hence, Demantké et al. [2013]
proposed a framework to estimate the facade surface with a deformable 2.5d grid in a sensor-
oriented coordinate system (cf. Fig 1.6(c)) while Caraffa et al. [2015] created watertight mesh
using point clouds and textured the mesh according to regularized reflectance for each point.

1.3.3 Detection of individual object

Based on dense point clouds, various individual objects are detected in street. Monnier et al.
[2012] detected trees from point clouds based on local geometric descriptors for the shape
of objects (cf. figure 1.7(a)) while Weinmann et al. [2016] proposed a method for individual
tree segmentation and localization of individual based on point-wise classification. Xiao et al.
[2016] detected street side vehicles and fit them with vehicle model, then the type of the vehicle
is recognized for each detected object (cf. figure 1.7(b)). Apart from this, moving objects

(a) (b) (c)

Figure 1.7: Individual objects detection based on the point clouds acquired by STEREOPOLIS. (a) Tree
detection [Monnier et al., 2012]. (b) Vehicle detection [Xiao et al., 2016]. (c) Moving object detection
[Vallet et al., 2015]

of simultaneous laser acquisition with Velodyne are detected [Vallet et al., 2015] (cf. figure
1.7(c)). Meanwhile, Xiao et al. [2015] studied the change detection of point clouds for the
revisited areas. Thus, the static point clouds can be distinguished.

1.3.4 Integrated 3D city model

Combing data from aerial images and ground based MMS, an integrated 3D city model can be
generated [Soheilian et al., 2013b]. The 3D surface of roads and buildings are reconstructed
using aerial images while high resolution street-view images are used to enhance the texture of
3D build model. Semantic features of street environment (road markings and traffic signs) are
generated by means of data acquired by STEREOPOLIS. Moreover, the free space and obstacle
areas can be established (cf. figure 1.8(a)). These kinds of informations are very important
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(a) (b)

Figure 1.8: Integrated 3D model [Soheilian et al., 2013b]. (a) 3D city model contains high resolution
textured buildings, road markings, traffic signs and a subset of geo-referenced high resolution images.
The free space on road is drawn in green and obstacles are in red. (b) Top: image captured by image.
Down: virtual image generated from integrated 3D city model.

for autonomous navigation, which needs to distinguish the permanent obstacles and free space.
Meanwhile, the integrated 3D city model with visual landmarks can provide the reference for
localization and navigation missions in dense urban areas [Soheilian et al., 2013b].

1.4 The motivation of our research

Precise street based map is desired for many applications. Indeed, the precise MMS like STERE-
OPOLIS can be used to produce precise map. However, street infrastructure would change regu-
larly due to the factors such as maintenance, reconstruction or city planning. In order to achieve
up-to-date maps, large number of MMSs should be equipped for mapping and update. However,
it is too expensive to afford many precise MMSs like STEREOPOLIS for one city in practice. A
possible solution is to develop low cost but precise MMSs for map updating and change detec-
tion. The idea is that each city is mapped with a high cost MMSs like STEREOPOLIS to generate
detailed 3D maps at first. Then, low cost MMSs are used to update the maps considering the
constraints from the old maps.

The accuracy of maps is highly related to the precision of localization, but the most used com-
bining navigation system is usually very expensive for high precision. Thus, the basic problem
for low cost MMS is to develop a cheap but precise localization system. This is the goal of our
research. The precise semantic landmarks generated by STEREOPOLIS give us good reference
data that can be used to enhance the localization. The uncertainties of the landmarks are taken
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into account when we integrate them into the localization process. We provide the six DoF
(degree of freedom) poses as well as their uncertainties at the same time. Apart from this, it is
well known that GNSS suffers from mask or multi-path problem in urban canyons. This can
lead to low accuracy and even outage of the localization. An important purpose of this thesis is
to provide a robust solution for the localization in GNSS denied areas.

Our research also provide an alternative solution for localization in applications such as Ad-
vanced Driver Assistance Systems (ADAS), self-driving car and Augmented Reality (AR). For
those location based applications, the performance is related to the accuracy of localization. In
order to achieve higher accuracy, data from multiple sensors are often fused for localization,
this would make the system be high cost, heavy and complex. Our method which is proposed
based on vision system would be a cost-effective solution. Only low-cost sensors are needed
and the system is portable. In particular, the proposed localization system can work robustly in
both indoor and outdoor environment that can be used for different scenarios.

1.5 Thesis outline

This thesis is formed with six chapters.

We introduce the state-of-the-art of localization methods in chapter 2. The proposed localization
methods are summarized from different phases and then we explore the most relevant research
to our research. At last, a pipeline of our localization method is presented.

According to the workflow presented in chapter 2, we introduce vision based localization in
chapter 3 which includes the methods about feature extraction, matching, pose estimation and
refinement. The detailed equation system is derived for pose estimation and optimization with
Local Bundle Adjustment (LBA). The uncertainty propagation of poses are considered over
the sequence. We introduce the localization method using monocular and multi-camera system
separately. The experiments are presented after the introduction of theory for each case. For
multi-camera case, the constraints between the rigid cameras are taken into account.

In order to improve the performance of matching and tracking used in chapter 3, a new approach
which is propagation based matching and tracking method, is proposed in chapter 4. A motion
model learned over frames, is used to predict the pose of new frame and the uncertainty propa-
gation is considered to guide the tracking of feature over sequence. A comparing experiment is
conducted to show the improvement of new matching and tracking method.

Although robust matching and tracking is obtained, the drift of localization is still accumulated
over time unless some external data is integrated into the process. To approach this, chapter 5
presents a scheme for landmark integration. It explains how to query geo-referenced landmarks
from database and introduces the methods to search the corresponding landmarks in images. At
last, a set of constraints are generated for LBA. In this chapter, two types of landmark: traffic
sign and road markings are used for experiments and two different strategies for landmark
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detection in image are introduced. Our methods are validated using the datasets acquired by
STEREOPOLIS II and the results are presented in the experiment section in this chapter. Chapter
6 is a summary of this thesis.
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2. Related work

Chapter 2

Related work

Localization of mobile robot has been widely investigated and we summarize the proposed
localization methods as shown in figure 2.1.

Figure 2.1: Overview of localization.

According to the type of knowledge which is known initially, the localization can be character-
ized as global localization and position tracking [Thrun et al., 2005]. For global localization,
the robot does not have any knowledge about where it is in the environment. The related re-
search about global localization will be introduced in section 2.1. The most popular global
localization is GNSS. Recently, some alternative solutions for GNSS based localization such as
wireless network, are also proposed for the localization in GNSS-denied environment. We call
them as beacon based localization in this thesis. Meanwhile, some image based methods are
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also proposed for localization, that apply the image indexing technique to recognize the image
in an absolute visual database.

In the cases of knowing initial pose of a robot in advance, the localization becomes tracking
the pose of the robot relative to the initial pose. This kind of methods are position tracking
[Thrun et al., 2005]. Two types of methods are subsumed for position tracking which are dead-
reckoning and simultaneous localization and mapping (SLAM) The relevant content will be
presented in section 2.2.

In order to enhance localization performance, the global localization and position tracking
methods are often integrated together, such as the GNSS/INS navigation system. These kinds of
methods are introduced in section 2.3 in this thesis (combining system). The red dashed arrows
in diagram 2.1 stand for the connections between different phases. The cooperative localization
refers to a robot shares its own positioning information with other robots, thus more measure-
ments are obtained and a set of constraints can be generated for localization. Quite often, the
map is also integrated for localization. Different with place recognition which only depends on
the maps, the maps here are used to generate some constraints for global localization or position
tracking.

For most localization methods, the core of the solutions are probabilistic filter or bundle ad-
justment. These two techniques are explained in section 2.4, and several popular methods are
presented (e.g. Extended Kalman Filter, particle filter and local bundle adjustment). These
methods are usually applied in position tracking and combining system to improve the accuracy
and robustness of localization. Although many sensors (e.g. IMU, laser scanner, camera etc.)
can be used for position tracking, the vision system may be the most cheap and easy to afford.
Section 2.5 analyzes the performance of different camera configuration for localization, which
provide a reference for the setup of cameras in our research. The goal of our research is to in-
tegrate the geo-referenced landmarks for precise localization, the details of the related research
about the integration of external data are presented in section 2.6. As last, some conclusions are
made according to the previous comparison and analysis of the state-or-the-art methods. Then,
a brief introduction of our strategy for localization is presented.

2.1 Global localization

The problem of global localization refers to answering a question "where am I". To estimate the
absolute positions, some knowledges should be known in advance, which can be prior positions
of the beacons, satellite orbital parameters and maps. The localization operation is established
by measuring the relative relations between the entity and the reference points through trans-
mitting signal or visual features.
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2.1.1 Global Navigation Satellite System

The most popular way for global localization in outdoor environment is the Global Navigation
Satellite System (GNSS). It allows an electronic receiver to determine its location via pars-
ing signals received from satellites. At present, only Global Positioning System (GPS) and
GLONASS, can provide operational service. Meanwhile, the Galileo from Europe and BeiDou
satellite navigation system from China will be fully operational in coming years.

For GNSS based localization, the position of a receiver lies in a sphere surface whose center
is the satellite location and radius is the distance from satellite to GNSS receiver. So if the
distances can be measured from three or more satellites, the receiver location can be intersected
uniquely [Hofmann-Wellenhof et al., 1992]. The orbit data (position) of each satellites are
known and can be embedded into the transmitted signals. Thus, the issue is to measure the
distance precisely from satellite to receiver. This can be solved through measuring the time-
of-flight. The precise time when the signal broadcasts, is recorded by the atomic clock in
satellite, while the receiving time of this signal is timed by the clock in receiver, thus the signal
transmitting time can be calculated. However, the low cost clock in receiver can not be as
precise as the satellite clock. So the measurement of time-of-flight is not precise enough. This
can cause inaccurate distance measurement. In order to overcome this problem, a practical
solution is to add a correction for each measuring time. In this case, there are four unknowns
(three for position and one for time correction). This is the reason why at least four satellites
must be observed [Hofmann-Wellenhof et al., 1992] using GPS for positioning. For civilian
application, the accuracy of GPS point positioning is in tens meters that can only be used in low
accuracy localization [Shaw et al., 2000]. In vehicle navigation, more accurate methods such
as RTK (Real Time Kinematic) and DGPS (differential GPS) are used. They correct the mobile
GPS units using the information broadcast from a base station or a network of fixed reference
stations. These methods provide from centimeter to meter positioning accuracy. However, they
increase the cost of localization system.

The GNSS requires the signals being received from at least four satellites directly, but it is dif-
ficult in some scenarios. For instance, the GNSS usually suffers from signal obstruction and
multi-path because of the street canyon and high trees in dense urban areas [Beck, 1986]. In
these situations, the localization cannot be reliable and they even cause the outage of localiza-
tion.

2.1.2 Localization based on beacons

To localize the entities such as vehicle, robot, smart phone in street canyons or indoor environ-
ment, some methods are developed using the signals from wireless local area network (WLAN),
Radio Frequency(RF) and bluetooth. For these methods, the absolute positions of beacons are
measured beforehand, then the position of the entity can be estimated based on these fixed
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beacons. Figure 2.2 illustrates the two different ways for localization based on fixed beacons.

(a) (b)

Figure 2.2: (a) Computing the position of X by measuring distances from X to at least three beacons,
(b) Localization based on the measurement of angles and distance [Hightower and Borriello, 2001]; the
distance between two stations is known, the angles can be obtained by measuring the phase shift of
signal.

In figure 2.2(a), the position of X is computed by measuring the distance from three non-
collinear beacons toX , which is the intersection of the three circles. For the 3D position ofX ,
it becomes the intersection of spheres. In general, it needs at least four spheres to determine
an unique 3D position. However, if all the beacons are above X or below X , the 3D position
can be solved by three spheres [Hightower and Borriello, 2001]. That is why the absolute
3D position on earth can be measured using three satellites if the distance can be measured
precisely.

To determine the position of X , the key technique is to measure the distance from beacons to
entity precisely. The radio based solution is often used based on time-of-flight of the radio. A
typical application is the GNSS as we presented in previous section. In indoor environment,
each beacon can generate messages with single identifier and then the location of entity can be
estimated by collecting messages from more than three beacons [Priyantha et al., 2000; Harter
et al., 2002; Bahl and Padmanabhan, 2000].

Figure 2.2(b) shows another way to position entity by measuring two angles and one distance
between two beacons in 2D. In 3D space, the azimuth should be defined firstly, then the 3D
position can be computed using the two angle measurements and one distance measurement
[Hightower and Borriello, 2001]. One classical application is the Very High Frequency(VHF)
Omni-directional Ranging (VOR) aircraft navigation system [Kayton and Fried, 1997]. A VOR
ground station sends out a master signal including station’s identity, and a highly directional
signal which rotates clockwise in space with a time stamp. The angle from station to aircraft
can be computed by measuring the phase shift. If another signal is received, then the position
of aircraft can be computed.

According to the type of signal, the beacon based localization can be summarized as infrared
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positioning system, ultrasonic positioning system and Radio-Frequency (RF) based system
[Koyuncu and Yang, 2010]. Different types of signal are used to generate the unique code iden-
tifier transmitting from the beacons to receivers. The absolute position of entity is still computed
with the triangulation principles introduced in previous paragraph. Koyuncu and Yang [2010]
and Bessho et al. [2009] evaluated the performance of beacon based indoor localization meth-
ods and the accuracy of those methods vary from centimeters to meters for different system.
The downsides are the short measuring range and signal blockage or obstruction. In additional,
it would be expensive to build up the beacon network in a large and complex environment.

2.1.3 Place registration

We can also answer the question "where am I ?" by means of maps. The pose can be estimated
relative to a pre-built map. We call it as place registration. In fact, the GNSS and beacon based
localization can be regarded as place registration as well. The orbit parameters and the beacon
networks are special maps.

In order to estimate the instant poses, the robot needs to collect the information from a mobile
platform and then registers with the map. In robotic and computer vision, camera is quite often
used due to the rich visual features in images. The localization of robot relaid on the recognizing
results in the map produced beforehand. There are two types of maps: metric and topological.
Metric maps maintain accurate information about environment details (e.g. distances, measures
or sizes), which are usually referenced in a global coordinate system [Garcia-Fidalgo and Ortiz,
2015]. However, topological maps represent the environment by means of a graph, where nodes
represent distinctive places and arcs model the relations. In this case, the maps are simple and
compact. Many papers have proposed the localization based on topological map, but only rough
position of the images can be determined using the topological maps [Ulrich and Nourbakhsh,
2000; Wu et al., 2009]. Our goal is to estimate the precise positions, thus metric maps should
be used for place recognition.

The key technique for place registration is to retrieve the images in maps (topological or met-
ric). According to the describing method for environment, the methods can be classified as:
global descriptors based method (e.g. histograms, line segments, frequency analysis, etc.), lo-
cal features based method (e.g. SIFT, SURF, etc.) and Bag-Of-Words (BoW) based method
[Garcia-Fidalgo and Ortiz, 2015]. To achieve the absolute localization, the images captured
by on-board cameras are matched with geo-referenced data. Lindsten et al. [2010] proposed a
vision based localization system for UAV, making use of environmental classification and rota-
tion invariant template registration. Furthermore, Wan et al. [2016] proposed a more robust and
efficient way that uses phase correlation for image localization. These methods can determine
positions of images based on metric map with global features. Wong et al. [2014] estimated the
pose by registering an image with the geo-referenced image sets using some local features such
as SURF descriptor (cf. Fig 2.3(a)). Moreover, combining the local image features, the visual

15



Chapter 2. Related work

(a) (b)

Figure 2.3: (a) Localization based on visual street map [Wong et al., 2014]. (b) Localization based on
vocabulary tree using 3D data reconstructed with SFM [Irschara et al., 2009]

words are applied to recognize the location of an image from a visual point clouds database
generated by Structure from Motion(SFM) (cf. Fig 2.3(b)) [Irschara et al., 2009; Sattler et al.,
2011]. Recently, Kendall et al. [2015] applied deep learning to estimate the most approximate
image pose from database reconstructed using SFM.

2.2 Position tracking

If the initial pose of robot is known, the localization can be achieved by tracking the robot
relative to the initial pose. This is a problem of position tracking [Thrun et al., 2005]. In contrast
to global localization, position tracking is a localization in local space. Two most popular
relative localization solutions are Dead-reckoning and SLAM. The dead-reckoning estimate the
pose with aid of measured values such as velocity, acceleration and speed, while the SLAM
trends to localize the robot and build the map of environment at the same time. The SLAM
provides the poses relative to map.

2.2.1 Dead reckoning

Assuming a vehicle moves straight, the position of the vehicle relative to the start point can be
calculated with a wheel encoder which counts the rotary number of the wheel. A more precise
way is to measure the speed with the speedometer or acceleration with accelerometer over
time. Then the displacement can be calculated. However, this is the ideal situation, the moving
direction would change from time to time. In practice, the angular velocities are measured with
the units like gyroscopes and compass. Together with the information such as location, speed
and acceleration, the current localization can be estimated using kinematics equations.

One compact dead reckoning solution is inertial navigation system (INS) that integrate com-
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puter, motion and rotation sensors together. The key component in INS is the inertial mea-
surement unit (IMU) that contains linear accelerometers and gyroscopes to measure the moving
accelerations and angular accelerations [Eshbach et al., 1990]. To calculate the position and
orientation in 3D space, an IMU needs at least three accelerometers for motion (X, Y, Z) and
three gyroscopes for rotation (pitch, yaw and roll) measurements. The computer is employed
to resolve the 6 DoF motion combining measurements from accelerometers and gyroscopes.
There are two main steps. First, it computes the current velocity using the acceleration values
over time. Then, the current position and orientation are estimated using kinematics equations
considering the velocity and time interval.

Unfortunately, the dead reckoning is prone to error cumulation over time which is caused by the
errors of the measurements of displacement and rotation. The first kind of errors affect the ac-
curacy of position directly while the second produces the errors of orientation immediately and
influences the precision of position indirectly. Because the estimates of position are conducted
by the rotation, thereby the errors of rotation are propagated to the position. Moreover, current
position estimated using dead-reckoning is always related to the previous one. Thus, the errors
are accumulated and the drift of localization grows over time.

2.2.2 SLAM

SLAM aims at generating the map of environment and simultaneously localizing the robot
relative to the map. Different sensors are usually used for SLAM such as cameras and LiDAR.
Depending on the types of data perception, SLAM can be specified vision based SLAM, ranging
system based SLAM, RGB-D based SLAM and hybrid system based SLAM. Table 2.1 shows
some sensors that are often used for SLAM. According to the way for data perception, the
sensors can be categorized as active and passive.

Table 2.1: Different types of ranging and optical sensors.

active passive

LiDAR RGB-D Radar Camera Stereo Omnidirectional

2.2.2.1 Vision based SLAM

The vision based SLAM refers to SLAM associated by vision system. The general SLAM
computes joint posteriors over the path with full covariance [Davison, 2003], so the computation
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increase quickly with the growing of images. An alternative solution which is called visual
odometry (VO) [Nister et al., 2004], aims at estimating the egomotion of an agent (e.g. vehicle,
robot, human). The VO recovers the path of agent incrementally and optimizes only last N
frames in local [Scaramuzza and Fraundorfer, 2011]. The VO is often used for large scale
localization.

For most of the existing vision based SLAM approaches, the procedures can be summarized as
four steps: (1) Image acquisition. Various camera configurations are used such as monocu-
lar [Nister et al., 2004; Davison, 2003; Mouragnon et al., 2006], stereo [Se et al., 2002; Olson
et al., 2000] and multi-camera rigs[Kneip et al., 2013]. (2) Feature extraction. Most of the
SLAM methods detect the salient points (interest points) and track them through sequential
images for pose estimation. To detect interest points, the detectors such as Harris[Harris and
Stephens, 1988], Shi and Tomasi detector[Shi and Tomasi, 1994], scale-invariant feature trans-
form (SIFT)[Lowe, 2004], Speeded up robust features (SURF) [Bay et al., 2006], Features from
Accelerated Segment Test (FAST) [Rosten and Drummond, 2006], are usually applied. Further-
more, some methods searching the corresponding points according to the feature descriptors, the
methods like SIFT, SURF, Binary Robust Independent Elementary Features(BRIEF)[Calonder
et al., 2010], etc are often used for feature description. (3) Matching and tracking. The cor-
respondences between images can be established via feature based matching (e.g. SIFT, SURF,
etc.) or area based matching such as normalized cross correlation(NCC) [Nister et al., 2004]
and phase correlation [Barnada et al., 2015]. Then the tracks over sequential images can be fund
in these pair-wise matches. (4) Pose estimation and optimization. There are two main reso-
lutions for this step, the filter based methods(e.g. Extend Kalman filter (EKF) [Davison, 2003;
Durrant-Whyte and Bailey, 2006], particle filter [Montemerlo et al., 2002; Sim et al., 2005]),
and the solutions inspired by structure from motion [Nister et al., 2004; Mouragnon et al., 2006;
Eudes et al., 2010].

Apart from this, some special vision systems such as infrared camera [Wang and Chen, 2010]
and multispectral system [Mouats et al., 2015] are used which can overcome the difficulties for
general cameras in poor lighting conditions like the night-time localization.

The cameras used for visual odometry are often calibrated beforehand to acquire the intrinsic
parameters of the cameras. Nevertheless, the visual odometry has the similar problem with
dead-reckoning, that is the drift growing over time because of the errors of the interest points
localization, matching and the camera calibration. All these errors are accumulated unless some
drift-free constraints are taken into account.

2.2.2.2 Ranging system based SLAM

The ranging sensors can measure the real distance to objects which is widely used in obstacles
detection and avoidance. With the reducing of price, size and weight, they are becoming pop-
ular for the autonomous navigation [Zhang and Singh, 2014]. One popular sensor is LiDAR
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which can be categorized as 2D LiDAR and 3D LiDAR. The 2D LiDAR contains only one scan
plane while the 3D LiDAR usually contains multiple layers and allow continuous scanning of
environment.

Lu and Milios [1997b] proposed pose estimation with single 2D laser scanner by aligning the
scans over time. To improve the accuracy, several 2D laser scanners are combined for localiza-
tion [Zhang and Singh, 2014; Vosselman, 2014]. Meanwhile, most LiDAR based applications
are usually using 3D laser scanner [Nüchter et al., 2007; Moosmann and Fraichard, 2010; Moos-
mann and Stiller, 2011]. To estimate the pose, the Iterative Closest Points(ICP) algorithm [Lu
and Milios, 1997a] is employed to register scans and estimate the motion for 2D or 3D LiDAR.
More precise SLAM can be conducted using pyramid grid-map which does not need to establish
correspondence between feature and landmark [Xie et al., 2010]. The measurements acquired
by LiDAR can be very precise, but the points on moving objects can influence the accuracy of
pose estimation. We always want to register the static points. To overcome this problem, the
moving object detection methods were proposed to select the static scene for motion estimation
[Miyasaka et al., 2009; Schlichting and Brenner, 2016].

The sonar that measures the range via ultrasonic wave, is also used for localization [Tardós
et al., 2002; Ribas et al., 2008]. The principle about localization using this kind of sensor is
similar with LiDAR, but they can be used in some special environment such as underwater.
Radar is another popular ranging sensor which is usually used for collision avoidance, target
detection in ADAS. It is rarely used for localization because of the noisy points compared with
LiDAR. Recently the radar based localization was developed according to signal clustering and
particle filter [Schuster et al., 2016].

Compared with vision systems, ranging sensors are active. They can measure the 3D geometric
information directly and rarely influenced by some factors such as whether and illumination
change. However, the ranging signal may be disturbed by environmental noise and the ranging
sensors like LiDAR are usually expensive.

2.2.2.3 RGB-D based SLAM

In recent years, a new type sensor that is RGB-D camera is more and more popular for SLAM
or visual odometry. It refers to a camera that can capture 2D color image and record the depth
information relative to camera like Microsoft Kinect. Here, "RGB" refers to normal color image
and "D" means the depth information for every pixel in image. Thus, RGB-D sensors can get
benefit from both vision and ranging sensors.

The advantage of RGB-D based localization is that the motion of moving agent can be estimated
by registering the dense depth structure using ICP algorithms mentioned in previous section,
then the estimated motion is refined by minimizing the back-projection error in image space
[Steinbrücker et al., 2011; Endres et al., 2012]. It is able to work in the cases where very few
feature points are detected in image space. The images and depth information can enhance the
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localization. For instance, an initial pose can be estimated using visual pose estimation to guide
3D depth structure registration if rich features are detected. This can improve both robustness
and efficiency [Heredia et al., 2015]. The RGB-D camera typically generate voluminous data.
Biswas and Veloso [2012] addressed this challenge task by sampling the depth map to planes.
Thus, the depth structure can be expressed with several plane parameters, so the volume of
depth data was reduced significantly.

The RGB-D camera can also be used for dense reconstruction of indoor or outdoor scene [Henry
et al., 2012; Steinbrucker et al., 2013]. Taking benefiting from both texture and depth informa-
tion, the scene segmentation [Holz et al., 2011] and obstacle detection [Santos et al., 2015] can
be accomplished at the same time.

2.2.2.4 Hybrid system based SLAM

To achieve robust and continuous pose computation, the data from two or more aforementioned
sensors are usually fused for localization. In this thesis, we summarize the proposed methods
as following categories.

Vision system + IMU The challenges of visual odometry are the drift due to error propaga-
tion and ill-conditioned pose estimation which is caused by insufficient correspondences or bad
distribution of the correspondences. As we introduced in section 2.2.1, the relative poses can
be obtained using IMU. Although we can’t remove the drift, the growing rate of drift can be
reduced promisingly with the consideration of IMU data. The IMU data is usually integrated
into pose estimation scheme by means of Kalman filter [Armesto et al., 2007], the least squares
[Lategahn et al., 2013] or RANSAC [Kneip et al., 2011a]. Moreover, the matching and track-
ing can be guided using the relative poses from IMU [Roumeliotis et al., 2002], which could
improve the matching precision and efficiency.

LiDAR + IMU To assist the motion estimation using IMU, the lines are detected from the point
clouds acquired by LiDAR to make constraints by aligning the line segments [Zhao and Farrell,
2013]. A more tightly solution was to integrate the two different types of data considering their
uncertainties [Hesch et al., 2010; Li et al., 2014].

Vision system + LiDAR Combing vision system with LiDAR which is called visual-LiDAR
[Zhang and Singh, 2015], has the similar feature with RGB-D camera, but the 3D points are
not as voluminous as depth map. However, these points are more precise. A general solution
for this case is to estimate the frame to frame pose using images and to determine the scale of
translation and refine the pose by registering the scans acquired by LiDAR [Zhang and Singh,
2015; Balazadegan Sarvrood et al., 2016]. A more precise solution is to fuse the image and Li-
DAR data using integrated bundle adjustment to obtain optimal trajectory for moving platform
[Liebold and Maas, 2014].

However, the hybrid systems are costly, heavy and consume more electrical energy. With the
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joining of new sensors, the expense, weight and power is definitely increased. In practice, a
trade-off between cost and accuracy should be found.

2.3 Combing system

In order to improve the performance of localization, some methods are proposed to combine
the data from different sources for localization.

2.3.1 GNSS/IMU system

GNSS can provide absolute positions, but 6 DoF poses (position and orientation) are needed for
navigation in most of the applications. In practice, IMU is often used to measure the orientation
and it is often combined with GNSS tightly to provide absolute pose directly.

In general, the GNSS can provide drift-free positioning results with 1 HZ sampling rate [Farrell,
2008] while IMU has higher rate (200-1000 Hz) [Mostafa and Hutton, 2001]. Therefore, it is
natural to combine them together to provide smoother poses. On the one hand, the IMU can
fill in the gaps between two GNSS sampling points to provide higher rate localization, on the
other hand, the drift caused by IMU error accumulation can be compensated with the absolute
measurements from GNSS positioning [Abuhadrous et al., 2003]. The data from GNSS and
IMU fusion is a nonlinear filtering problem, which is commonly solved using the Kalman filter
(KF) [Wong et al., 1988]. Recently, both GPS and GLONASS are integrated with IMU to
reduce the effect of multi-path problem [Angrisano, 2010].

The accuracy of localization is related to the precision of GNSS measurements and the quality
of IMU. It can achieve the horizontal and vertical accuracy of positioning in meters for current
state of the art commercial products (POS-LV 1, SPAN2) without post-processing. The position-
ing accuracy can reach few centimeters after post processing using the data from ground-based
reference stations. The combined GNSS/IMU system can overcome the multi-path or mask in
a short time (< 60s), that the locations can be measured depending on IMU dead reckoning.
But the system would be outage for long period multi-path or signal blockage of GNSS. Fur-
thermore, the accuracy of localization is affected by the quality of IMU, but a precise IMU is
too expensive to be widely afforded .

2.3.2 Cooperative Localization

In cooperative localization, a group of entities (robots or vehicles) are viewed as a system for
localization. The entities can communicate with each other. The task of cooperative localization

1http://www.applanix.com/products/poslv.htm
2http://www.novatel.com/products/span-gnss-inertial-systems/
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is to incorporate relative sensor measurements into a Kalman filter framework to estimate the
poses [Roumeliotis and Bekey, 2000]. It has been investigated a lot in robotic applications
that require robots work in collaboration to perform a certain task. Lots of solutions have been
proposed [Wang et al., 2008; Tully et al., 2010; Kia et al., 2015], EKF or particle filter is often
used to cope with the relative measurements. The covariance intersection filter which yields
consistent estimates for fusing both sensor data of the ego-vehicle and the estimates sent from
other vehicles [Li and Nashashibi, 2013].

The large scale applications often desire absolute positions. GNSS based methods are used
usually, but they may suffer multi-path or signal-denied problems in urban canyon. The coop-
erative localization provides a solution to obtain precise positions. Each entity can measure its
individual positions and share them with others [Karam et al., 2006], then the measurements
from all the entities are integrated together considering their uncertainty for localization. The
sub-meter localization can be achieved in comparison to meters or more using only one GNSS
receiver [Ekambaram and Ramchandran, 2010; Goodliss et al., 2011]. In particular, this strategy
can reduce the impact of multi-path benefiting from the increasing of redundancy for localiza-
tion. Meanwhile, the relative measurements captured by in-vehicle sensors such as radar can
also be shared with nearby vehicles, as well as the absolute positions obtained by GPS [Fu-
jii et al., 2011]. To enhance the localization accuracy, a more tightly cooperative localization
that shares GNSS pseudo-range corrections in vehicles to reduce the biases of pseudo-ranges
measurements from satellites [Lassoued et al., 2016]. Besides, the road maps can also be used,
together with the knowledge about the position of surrounding vehicles, to infer where is the
ego vehicle [Svensson and Sörstedt, 2016].

2.3.3 Maps constrained localization

The place registration only relies on the map, but the maps constrained localization means that
the data from maps are integrated with other sensors to enhance the localization. GNSS based
methods are the basic solution for localization, but the accuracy of localization is related to
the status of satellite signals. Inadequate accuracy results would be provided in dense urban
areas due to frequent masks and multi-path. In order to enhance the localization, the map
(external data) is usually integrated. An important technique which is map matching, deals
with the GNSS based localization errors using the reference of spatial road network [Quddus
et al., 2007; Brakatsoulas et al., 2005]. The general purpose of a map matching algorithm is to
identify the correct road segment on which the vehicle is moving and to determine the position
on the segment [Greenfeld, 2002; Li et al., 2010], thus, both physical location of the vehicle and
accuracy of position coordinates can be improved if the spatial map has high precision. In the
other words, the improvement in term of accuracy is limited by the quality and Level of Detail
(LoD) of the maps [Grush, 2008]. More detailed maps such as the 3D urban models, are used
for localization to overcome the problem in urban area [Drevelle and Bonnifait, 2011; Betaille
et al., 2012]. Getting benefits from precise 3D maps, few centimeters accuracy can be obtained
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reliably with GPS/IMU systems for localization, specifically in urban [Levinson et al., 2007].
More details about map based localization will be presented in section 2.6.

2.4 Methodologies for localization

For global localization, the GNSS and beacon based methods use triangulation to estimate the
position while the core of place registration is image indexing. In this section, we focus on
the key solutions of position tracking. Depending on whether the feature correspondences are
specified in 2D or 3D, the pose estimation schemes can be classified into three different types
[Scaramuzza and Fraundorfer, 2011]:

• 2D-2D This kind of methods are often used for vision based localization. They estimate
the relative pose between two views using a set of corresponding image point obtained
by image matching. For calibrated images, the pose can be decomposed from essential
matrix, noted as E, and E = [t]×R [Hartley and Zisserman, 2003]. But the scale of
translation [t]× is unknown, which need to be estimated independently.

• 3D-3D For stereo vision based approach [Milella and Siegwart, 2006] or LiDAR based
localization [Nüchter et al., 2007]. The pose from frame to frame can be expressed by
rigid transformation which can be estimated by registering the point clouds generated at
current time with the point clouds generated before. The Iterative Closest Points(ICP)
algorithm [Besl and McKay, 1992] is usually used to solve the rigid parameters.

• 3D-2D The projection from world (3D) to image (2D) can be expressed using a matrix
P3×4 which is a 3 × 4 homogeneous matrix [Hartley and Zisserman, 2003]. It contains
both intrinsic and extrinsic parameters of the camera. If three or more 3D-2D correspon-
dences are obtained, the P3×4 can be resolved. For calibrated camera, the pose estimation
is a problem called Perspective-n-Point (PnP) for perspective camera [Horaud et al., 1989;
Quan and Lan, 1999].

In a more general manner, the methodologies of localization are divided into three groups: (1)
based on probabilistic filters (e.g. EKF, particle, etc.), which are classical solutions and the sys-
tem maintains a probabilistic representation of both the pose of the robot and the landmarks in
the environment, (2) based on incremental Structure From Motion (SFM), and (3) the methods
inspired by biology [Fuentes-Pacheco et al., 2015]. In this thesis, we focus on the methods
based on probabilistic filters and SFM. In particular, we investigate the methods according to
the core of each solution, which are probabilistic filters and Bundle Adjustment (BA).

We note P as pose, X as landmark and m as measurement. The problem of SLAM can be
modeled as Bayesian network graph (cf. Fig 2.4(a)). The landmarks (map) and poses are linked
by the measurements. Representing the Bayesian network in a Markov Random Field (MRF)
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without showing the measurements explicitly, the SLAM problem involves finding the maxi-
mum likelihood solution of graph in figure 2.4(b) [Strasdat et al., 2010a]. The graph represents
a full SLAM problem [Thrun et al., 2005]. Each edge stated in figure 2.4(b) is a constraint. Op-
timizing all the constraints in graph yields the optimal solution for both poses and landmarks.
This usually forms a nonlinear least squares problem and the method is called GraphSLAM.
However, it is clear that the graph for full SLAM grows at every time step, so that the computa-
tional cost increases quickly and is out of hand for large scale workspace. In order to improve
the efficiency, one strategy only involves the estimation of momentary pose along with map,
called Online SLAM [Thrun et al., 2005]. It marginalizes all the historic poses and retains all
the landmarks (cf. Fig 2.4(c)). New links between landmarks are built with the elimination of
poses, but this makes the graph become fully inter-connected. Another solution is key frame
bundle adjustment (BA). In this case, a subset of poses (keyframes) are selected for SLAM (cf.
Fig 2.4(d)).

(a) (b)

(c) (d)

Figure 2.4: (a) SLAM problem depicted as Bayesian network graph. (b) The graph for full
SLAMproblem. SLAM as Markov Random Field without representing the measurements explicitly. (c)
Online SLAM. (d) Key-frame based BA [Strasdat et al., 2010a]

According to the core of the solution for SLAM, the proposed methods can be divided into
probabilistic filter based approaches and BA based approaches.

2.4.1 Probabilistic filter

The filtering problem consists of estimating the state of a dynamical system from partial and
noisy observations with respect to conditional probability [Jazwinski, 1970]. In localization
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process, the filter based algorithms often have two main steps: predicting and updating [Thrun
et al., 2005]. For prediction stage, the pose of current time step is predicted with the condition
of previous state and the control data reflected the changes of state. In updating procedure, the
predicted state is corrected with association of the measurements acquired by the sensors. The
knowledge of the state is represented through conditional probability distribution and the most
generic algorithm to calculate is to use Bayes filter [Thrun et al., 2005]. The Bayes filter is
principal algorithm which is recursive and difficult to implement in particle. Therefore, many
approximated algorithms are derived from Bayes filter.

2.4.1.1 Kalman Filter

One most studied implementation of Bayes filter is Kalman Filter, invented at 1950s for linear
problem. However, the model of SLAM is nonlinear. For instance, the constraint between pose
and landmarks (edges between P and X in figure 2.4(b)) for vision based SLAM is usually
modeled by perspective projection which is a nonlinear constraint. To resolve this problem, Ex-
tended Kalman Filter (EKF) was proposed for nonlinear model. SLAM with EKF is a standard
way for Online SLAM [Thrun et al., 2005]. EKF is an approximate solution where the nonlinear
model is linearized via first order Taylor expansion. The EKF assumes that the noises underlie
a Gaussian distribution. It can estimate optimal mean and covariance. EKF is the most widely
used method, but a more robust and more accurate method is Unscented Kalman filter (UKF),
which applies unscented transform for liberalization [Julier and Uhlmann, 2004]. As stated in
figure 2.4(c), the graph is quickly full inter-connected with growing of images. After some time,
the covariance matrix becomes fully correlated. Regarding the quadratic update time of EKF, it
is difficult for large amounts of landmarks.

2.4.1.2 Particle Filter

It is well known that KF can only deal with Gaussian model, but this is not always the case
for the noise distribution in practice. In order to cope with the arbitrary distribution model,
a Monte Carlo based technique is used to approximate the target distribution using multiple
samples (particles) [Dellaert et al., 1999]. This family of methods are called particle filter
[Gordon et al., 1993; Doucet and Johansen, 2009]. With the increasing of particles number
toward infinity, the sampling converges to the actual situation. The estimates are computed in
each particle individually using a proposal distribution in contrast to EKF which uses a single
Gaussian for pose and landmarks. The SLAM with particle filter is FastSLAM, which computes
the pose and related landmarks in a separate particle and maintains the full path posteriors
[Montemerlo et al., 2002; Thrun et al., 2005]. In fact, FastSLAM is the algorithm that fit both
Online SLAM and full SLAM. Because it computes one pose every time so it is Online SLAM,
but it calculates the full path posteriors, thus it is full SLAM at the same time. The particle filter
has been used in many applications [Montemerlo et al., 2002; Törnqvist et al., 2009; Ji et al.,
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2015].

Compared with EKF, particle filter performs better in large number of gross errors cases [Ji and
Yuan, 2016]. It means that particle filter is more robust than EKF. The precision of SLAM with
particle filter is related to the number of particles. The more particles are sampled, the higher
precision can be obtained, but the computational cost is increased with the growing of particles.
One advantage of EKF is that it can achieve higher accuracy than particle filter according to the
comparing experiments in the literatures [Ben-Afia et al., 2014; Ji and Yuan, 2016].

2.4.2 Bundle adjustment

As we introduced in previous section, the conventional solution for full SLAM problem is
GraphSLAM which is based on nonlinear least squares. Let’s observe graph of full SLAM
problem in figure 2.4(b). Actually, the full SLAM problem can be solved by bundle adjustment,
considering the constraints between successive poses. If there are no constraints, the SLAM
problem becomes classic bundle adjustment similar as the techniques in key-frame BA (cf. Fig
2.4(d)). Compared with Online SLAM, BA based approach contains more elements in the graph
since it retains the historic poses.

Bundle adjustment is a technique that aims to optimize the parameters from both structure
and motion of images [Triggs et al., 2000]. It has been widely investigated in the field of
photogrammetry [McGlone et al., 2004; Triggs et al., 2000]. For vision based SLAM, the
unknowns are the images poses and the 3D objects points, the measurements are the interest
points corresponding to the 3D object points. One way for BA is to accumulate the information
into the graph and resolve the poses and landmarks of full path finally. This is the classic bundle
adjustment which is off-line processing. We call it global bundle adjustment in this thesis. In
some applications, the BA is conducted in a sliding window of most recent poses and related
landmarks, which optimize the poses and local maps immediately. We call this type of BA as
Local Bundle Adjustment (LBA).

2.4.2.1 Global bundle adjustment

The Global Bundle Adjustment (GBA) refers to optimize all the parameters in graph associated
with all the measurements by minimizing the squared sum of residuals. This style of bundle
adjustment are often used for off-line SFM with large number of unordered images [Snavely
et al., 2006; Moulon et al., 2012; Wu, 2013]. Thousands of images can be processed at the
same time, but it is not the case for real-time localization because of the high computing cost.
The complexity of computation for GBA is O(n3) with respect to the number of parameters,
growing with the number of images [Triggs et al., 2000; Engels et al., 2006]. For SFM using
successive images, only key-frames [Thormählen et al., 2004; Klein and Murray, 2007] are
selected from sequential images. This can reduce the number of images involved in GBA, but
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the number of parameters is still increased over time.

2.4.2.2 Local bundle adjustment

The Local Bundle Adjustment (LBA) is a strategy to improve the efficiency of bundle adjust-
ment by limiting the number of images involved in bundle adjustment each time step. The
idea is that only limited number of images is considered each time. In hierarchical SFM, the
whole image set is divided into several hierarchies, bundle adjustment is performed in each hi-
erarchy to generate some local maps, then the local maps are merged to produce a global map
[Zhang and Shan, 2001; Farenzena et al., 2009]. More research about LBA is about real-time
localization or reconstruction. Each processing step, only fixed number of the latest images are
optimized with bundle adjustment, as well as the related 3D points. Then move the processing
window over sequence [Mouragnon et al., 2006; Eudes et al., 2010; Persson et al., 2015].

Compared with SLAM with EKF or particle filter, BA based approaches can achieve better ac-
curacy for localization [Strasdat et al., 2010a]. To improve the efficiency of BA for localization,
the LBA was proposed, Whereafter, Eudes and Lhuillier [2009] studied the error propagation
of poses from step to step and estimated the uncertainty for every frame. The experiments
indicated that uncertainty of image poses increase over time.

2.5 Camera configuration for localization

Our research aims at developing a low-cost localization system. Many sensors can be used, but
some of them have limitations (e.g. GNSS, beacon based) and some of them are too expensive
(LiDAR, IMU). Thus, it is sensible to investigate the vision systems, which have been widely
used for localization. In the last decades, various camera configurations were proposed for
localization in robotic and computer vision. We summarize them as monocular camera, stereo
rig and omnidirectional camera and multi-camera system.

2.5.1 Monocular camera

Davison [2003] was the first to develop a capable Extended Kalman Filter (EKF) based SLAM
using a monocular camera. Sparse interest points are detected and tracked along the sequen-
tial images to reconstruct the 3D landmark map and estimate the pose of the moving camera.
But Davison’s methods can only work in a small environment due to the quickly increasing
of computational complexity with the growing number of landmarks [Fuentes-Pacheco et al.,
2015]. In the next stage, more efficient solutions for monocular camera based localization were
proposed. Klein and Murray [2007] processed the tracking and mapping procedures into two
parallel threads separately for SLAM . Meanwhile, lots of methods improved the efficiency only
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considering the key frames in sequence [Mouragnon et al., 2006; Strasdat et al., 2010b; Engel
et al., 2014], thus, the number of images are reduced significantly

The advantage of monocular camera based solutions is that they are low-cost. But one common
problem for monocular visual odometry or SLAM is the scale. It is hard to get the metric
results, unless some prior knowledge about the scale factor is set or other sensors such as GPS,
odometors, are integrated.

2.5.2 Stereo cameras

The stereo cameras might be the most used for vision based localization. The intrinsic param-
eters and extrinsic parameters of the two cameras are often calibrated beforehand, so that the
metric scale can be determined according to baseline between two cameras in stereo rig.

The first stereo based localization was proposed by Olson et al. [2000] for the navigation of
robot in long distance. A more accurate solution is proposed by Nister et al. [2004]. The
interest points based stereo matching is applied to find some corresponding image points at
the beginning. Then some 3D landmarks are reconstructed with triangulation, the poses of the
new coming image pairs are estimated with the association of landmarks tracked in the new
images. The stereo vision system was also widely used for the localization for autonomous
navigation [Milella and Siegwart, 2006; Geiger et al., 2011; Engel et al., 2015]. Compared
with monocular camera, there are two advantages for stereo. First, the stereo rig can provide
the metric scale directly. Second, the stereo vision system can work more robust and precise.
Because more tracks can be searched along sequences and the fixed extrinsic parameters of
stereo rig provide inner constraints to maintain accuracy. However, the stereo cameras on the
other hand increase the cost on both price and computation. In addition, it also increases the
complexity of calibration which might need larger field and more control points to resolve both
intrinsic and extrinsic parameters precisely.

2.5.3 Omnidirectional camera

Large Field of View(FOV) is always desirable for vision based localization, because it can
provide observations in a larger scene. Thus, the image points can be tracked in longer period
which is better for pose estimation. Besides, larger FOV makes it easier to observe informative
scenes in some particular cases such as untextured road, wall areas, moving objects, which
are challenging for localization. Therefore, some researcher use omnidirectional camera for
localization.

An omnidirectional camera refers a camera with 360°FOV in horizontal plane, or with a visual
field that covers a hemisphere or entire sphere [Scaramuzza, 2014]. Figure 2.5 shows some
solutions for omnidirectional camera. Figure 2.5(a) demonstrates a dioptric lens. With this kind
of lens (fish-eye), the image FOV can reach up to 180°. Some researchers often use fisheye or
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wide angle for localization [Hansen et al., 2009; Caruso et al., 2015]. Another special lens is
a shaped mirror ( e.g. parabolic, hyperbolic, elliptical mirror) which can provide larger FOV
images (cf. Fig 2.5(b)). Some examples of localization using catadioptric lens were also pro-
posed [Lhuillier, 2005; Scaramuzza et al., 2006; Lhuillier, 2008]. However, the images obtained
by there two lenses are not real omnidirectional images. Nowadays, the only real omnidirec-
tional camera is composed by integrating multiple cameras together to obtain 360°image (cf.
Fig 2.5(c)). Therefore, some articles reported the localization using panoramic images [Silpa-
Anan et al., 2005; Scaramuzza and Siegwart, 2008; Litvinov et al., 2013]. For omnidirectional
camera, we usually do not known about the physical imaging process, thus, a Generic Camera
Model (GCM) was developed to represent the projection from object to image [Luhmann et al.,
2016].

(a) Dioptric (fisheye) (b) Catadioptric (c) Panoramic

Figure 2.5: Some examples of omnidirectional cameras [Scaramuzza, 2014].

Indeed, the images captured using dioptric or catadioptric lens have large FOV, but the angular
resolution of the images is lower. For large scale localization, high angular resolution is desired
[Zhang et al., 2016]. The panoramic images can have high resolution, but the projection model
from world to image is not rigorous. Because the panoramic images are generated by stitching
images captured by different cameras together.

2.5.4 Multi-camera system

In order to obtain images with large FOV, high angular resolution and rigorous sensor model.
The multi-camera rig system is introduced. In fact, the multi-camera system is a combination
of multiple cameras. The cameras in system are mounted rigidly. The rigid parameters are
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calibrated beforehand, which are known in the operation of localization. The multi-camera rig
has been used in many applications [Carrera et al., 2011; Shi et al., 2012; Kneip et al., 2013].
Each camera in multi-camera rig can be placed at different directions, thus, large FOV can be
obtained. Perspective cameras are often used in multi-camera system and the image captured by
each camera is used directly and gives contribution for localization. Thus, the angular resolution
is high and the rigorous projection model can be used for each image in localization. The only
problem would be the growing of computation due to the increasing images.

Although different camera configurations can be used and we optimize the poses with bundle
adjustment for localization, the drift is still accumulated over time. This could lead to poor pose
estimation for long term localization. Although the loop closure technique is usually employed
to reduce the drift in SLAM, it is time consuming for large environment, on the other hand
there is no loop in many situations for the localization of intelligent vehicle [Fuentes-Pacheco
et al., 2015]. In order to reduce the drift accumulation for vision based localization, the external
data (maps) need to be integrated. The external data is drift-free and contains the absolute
information. The types of external data and the methods about integration with vision based
localization will be introduced in following section.

2.6 Integration of external data

We have mentioned the maps constrained localization in section 2.3.3, but more details about
integrating maps with localization are introduced in this section. Different with the methods
proposed for place registration which estimate the pose depending on the maps, the integration
based methods mean that the external data from maps are associated with other sensors to
enhance localization. In this thesis, the external data refers to the absolute position measured by
GNSS or the pre-built database such as the maps, 3D landmarks and geo-referenced semantic
features, as shown in flowing figures.

(a) (b) (c) (d)

Figure 2.6: Examples of different external resources. (a) GPS receiver[Lhuillier, 2011]. (b) Digital map
from OpenStreetMap [Floros et al., 2013]. (c) Textured 3D city model[Caron et al., 2014]. (d) Road
extracted from 3D point clouds[Levinson et al., 2007].

With these external data, the localization can be regarded to perform in a well or partly known
environment, thus the strategy of the integration top-down processing [Aynaud et al., 2014]. We
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categories the methods according to the types of data.

2.6.1 GNSS data

As we introduced at the beginning of this chapter, GNSS can provide the drift-free position in
global. Thus, it is of a solution that combines vision based localization with positions measured
by GNSS. As the GNSS can provide position directly, one simple way just needs to estimate
orientations with known position [Carceroni et al., 2006]. However, the GNSS measurements
may jump from time to time. So a better solution is to fuse the positions obtained by GNSS
with vision based localization considering their accuracy [Kume et al., 2010; Shi et al., 2012].

Loosely coupled Agrawal and Konolige [2006] maintained global consistency using an inex-
pensive GPS in a Kalman filter while a solution to fuse a GNSS localization with an Evidential
SLAM using a particle filter [Trehard et al., 2015]. The drift was corrected with the north and
east positions from GPS since the height measurements are unreliable. A similar approach was
studied [Wei et al., 2011; Geng et al., 2015], but both planimetric and height measurements were
considered with their uncertainty. A more complex strategy was proposed by Schleicher et al.
[2009] that separated the integration of GPS with SLAM as low level and high level steps. The
absolute positions were used in EKF to compensate drift for simultaneous localization in a low
level while the high level integration considered the topological constraints of the trajectories
in a map to improve the global accuracy. Besides, the GNSS measurements are also combined
with LBA [Michot et al., 2010; Lhuillier, 2011]. The fusing methods proposed in [Michot et al.,
2010; Kume et al., 2010] need to be given proper weights for GNSS measurements. However,
this is difficult in practice. An alternative solution was proposed in Lhuillier [2011, 2012],
which enforced an upper bound for the back projection error and constrained LBA is used for
integration.

Tightly coupled All above-mentioned methods use the positions from GNSS. A tighter so-
lution is to incorporate pseudo-range measurements from GNSS directly. This has been inves-
tigated in photogrammetry that integrated raw GPS data with block bundle adjustment [Ellum,
2006]. Recently, some methods were proposed to integrate the pseudo-range measurements di-
rectly with vision based localization in EKF [Aumayer et al., 2014] or particle filter [Schreiber
et al., 2016]. The tightly coupled manner enables to reject the single satellite’s measurement
which has large errors, so it achieves higher precision than loosely manner [Aumayer et al.,
2014].

The GNSS data is easy to be integrated and the drift can be compensated, but the issue is that
the accuracy is high related to the quality of GNSS measurements. Even though the uncertainty
of those measurements are considered for most of the proposed integrating method, it is still a
problem in GNSS denied environment or multi-path situations. Therefore, some external data
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from maps are integrated within localization.

2.6.2 Low level maps

Different types of map are generated, we introduce them according to the features of the maps.
In this thesis, the maps contain visual features or point clouds are called as low level maps .

2.6.2.1 Visual features

The visual feature based maps are usually generated by means of vision based system. For dense
visual feature database, a popular application is teach and repeat [Furgale and Barfoot, 2010].
In teaching step, a map of the environment is built by a mobile mapping system [Konolige
and Bowman, 2009] or SFM [Royer et al., 2007; Charmette et al., 2010]. In repeating step,
the robot tries to follow the same route by registering the image with the visual features in
database simultaneously [Konolige and Bowman, 2009; Royer et al., 2007; Charmette et al.,
2010]. Although the images are usually captured successively, but the poses are estimated
individually for each frame. Usually, some prior knowledge should be known in advance. For
instance, the start point of the path is given to reduce the searching scope in database [Royer
et al., 2007].

Besides, the geo-referenced images (e.g. satellite images, aerial images) were also applied to
provide absolute constraints for vision based localization. The rich texture information of these
data make it possible to register the features from images with these referenced image. Leung
et al. [2008] presented a monocular vision based localization using the aerial ortho-imagery as
the reference map in particle filter. To match the images in street view with the aerial orthoim-
agery, the building boundaries were extracted from reference images and the edges detected
from locating images are analyzed with vanishing theory. Ji et al. [2015] introduced a method
to generate Ground Control Points(GCPs) from orthoimagery for vision based localization us-
ing panoramic images. The GCPs are generated by matching the ortho-rectified panoramic
image patches with reference images. A similar strategy was proposed by Kume et al. [2015]
who aims to process perspective images based localization. The bundle adjustment was applied
to refine the parameters.

2.6.2.2 Point clouds

A high-resolution environment maps can be generated using LiDAR data acquired by a mobile
mapping system . A reliable localization with accuracy in the 10 cm was achieved with the help
of these high-resolution maps [Levinson et al., 2007]. But a GPS/INS navigation system and a
LiDAR was mounted in the vehicle. Bodensteiner et al. [2011] proposed to use geo-referenced
LiDAR data to optimize the trajectories estimated by monocular camera. An intensity based
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map was generated using the LiDAR point clouds. The image poses were corrected by matching
the captured images with the intensity map using MI. In localization, we want to use the static
information such as road topology, building shape, white line, curb, traffic light etc. A method
to realize these features for localization was proposed in [Yoneda et al., 2014] while Schlichting
and Brenner [2016] kept the static scene by removing the moving objects according to the results
of change detection. Maddern et al. [2014] made use of a so-called illumination invariant color
space to minimize the variations caused by viewpoint and illumination conditions and estimated
the image poses by matching with the point clouds acquired by mobile mapping system.

The precision of level maps could be high, but there are some drawbacks for them. First, high
storage volume is required in the embedded system due to the large number of features. Second,
they suffer from ambiguity problems for matching which are caused by the repeatable or low
informative features.

2.6.3 GIS data

In fact, more research about external data integration usually high level maps such as urban road
network, OpenStreetMap3(OSM) and 3D city model.

2.6.3.1 2D maps

The 2D maps contain rich spatial information including road segments, building boundary, loca-
tions and attributes of objects etc. As vehicle moving on road, so the relative relations between
vehicle and road segments can be regarded as constraints. The issue is to know the correspon-
dences between vehicle and road segments. To do this, a cheap GPS was applied to provide the
initial position of visual odometry [Alonso et al., 2012; Brubaker et al., 2013], then curve-to-
curve map-matching was performed to correct the drift. Nedevschi et al. [2013] aligned the lane
markings extracted from images captured by an on-board camera, with digital maps to estimate
position of vehicle simultaneously. All these three methods need GPS to provide initial position
for map-matching. Recently, a graph matching based method was proposed to align the tra-
jectory estimated by visual odometry with GIS databases like OpenStreetMap4(OSM) [Gupta
et al., 2016] directly. Meanwhile, some high level maps are also integrated to obtain precise
localization for autonomous driving. For instance, the lane markings recognized from images
are used to correct bias of GPS by aligning them with road maps Jo et al. [2013]. The lane
marking maps are also used to correct the errors of GPS/IMU by shape registration [Cui et al.,
2016].

3http://wiki.openstreetmap.org/wiki
4http://wiki.openstreetmap.org/wiki
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2.6.3.2 High dimensional maps

The GIS data often contains multiple layers and the 2D maps is only one of the layers. Some
higher dimension data such as Digital Elevation Model(DEM), 3D city model, point clouds, are
often included. The DEM is a kind of 2.5D data, the city model and point clouds are in 3D.
These kinds of data are massively produced and easy to be afforded nowadays, so many articles
presented the methods to integrate these data with vision based localization.

Arth et al. [2015a] proposed the pose estimation of individual image using 2D untextured city
model (OSM with building height) based on semantic image segmentation, this kind of methods
can be used for the initialization of SLAM. For localization of moving vehicle, the relative
height from camera to road can be assumed to be fixed. If we know the elevation of road at each
time step, the altitude of camera can be calculated easily by adding a fixed value to the road
altitude so that the six DoF pose can be reduced to five DoF. This altitude constraints can provide
new parameterization of pose model in bundle adjustment [Larnaout et al., 2012]. An improved
strategy was proposed that combined constraints from GPS and DEM using constrained bundle
adjustment [Larnaout et al., 2013]. The problem of DEM is the accuracy that is in meters
for elevation. The 3D city model is also used that registers the coarse structure generated by
vision based localization with 3D model using ICP algorithm, then correct the drift in bundle
adjustment associated by the 3D points [Lothe et al., 2009].

The GIS data is easy to store and manage so that it can be used on-line and saved in a local
computer. However, the absolute precision of the GIS data such as 3D city model, DEM and
2D maps is still in meters nowadays.

2.6.4 Semantic features

In urban area, there are rich features like road markings, traffic signs, buildings and other man-
made landmarks which are static, low ambiguity and easy to be detected. In this thesis, these
high level features are called semantic landmarks. If the geo-referenced semantic landmark
database is built beforehand, the constraints can be generated for vision based localization.

In autonomous driving, one important information for vehicle is to know the relations relative
to road markings. This information is important to identify vehicle state and desirable for safety
driving system [Pilutti and Ulsoy, 1999]. One relevant application is the lane keeping, which
estimates position of vehicle relative to road markings [Sivaraman and Trivedi, 2013; Suhr and
Jung, 2015]. The lane keeping applications pay more attention on the topological relations
of vehicle to road markings. Lauffenburger et al. [2008] recognized traffic signs to enhance
vehicle localization based on map matching. In this thesis, we aim to integrate the landmarks
with vision based localization.

The road markings were extracted in ground based imagery and matched with geo-referenced
aerial images. Then these features can be used for Ground Control Objects (GCOs) [Tournaire
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et al., 2006a]. The road features can also be extracted from point clouds acquired by a mobile
mapping system. Brenner [2010] generated poles such as traffic signs, traffic lights, and trees
from the point clouds as geo-referenced landmarks. In localization steps, the constraints were
generated by matching the poles features. Then the constraints were used to reduce the drift
of dead-reckoning in the least squares. With the same goal, Schlichting and Brenner [2014]
trended to use pole-like and build facades extracted from point clouds while a high level road
structural feature composed by a set of line segments on lane markings, curbs, poles, build-
ing edges, etc, is used by Yu et al. [2014b]. A more affordable solution is to combine the
vision based localization with the semantic landmarks database (e.g. lane [Pink, 2008], road
markings [Schreiber et al., 2013; Wu and Ranganathan, 2013], traffic signs [Wei et al., 2014]).
Recently, the semantic landmarks are also integrated with LBA, where the heterogeneous fea-
tures including points, lines, planes, vanishing points and their inner geometric constraints are
jointly considered [Lu et al., 2014]. A multilayer feature graph is defined to manage the various
elements in the landmark database.

Comparing with general geo-referenced data, the semantic landmarks have higher precision,
lighter storage volume and lower ambiguity. In addition, they are easier to be detected and
managed. To integrate this kind of landmarks with vision based localization, the main problem
is able to detect and reconstruct them precisely and efficiently. Recent years, many methods
have been proposed (e.g. traffic signs [Soheilian et al., 2013a], road markings [Soheilian et al.,
2010; Hervieu et al., 2015]) for detection and reconstruction, that motivates us to integrate the
semantic features with vision based localization.

Table 2.6.4 is a summary of recent research on vision based localization using successive im-
ages. Different camera configurations (monocular, stereo, omnidirectional and multi-camera
rig) are investigated. Large FOV configuration can obtain more robust pose estimation because
the visual landmarks could be tracked in longer period. Hoverer, increasing FoV with fixed
resolution (fisheye, catadioptric lens) reduces the angular resolution of the image, that decrease
the precision of visual points location. In general, the cameras with larger FOV perform better
in indoor environments(confined environment), while smaller FoV cameras are preferable in ur-
ban canyon scenarios with the benefit of higher angular resolution [Zhang et al., 2016]. Besides,
the filter based solution (EKF, particle filter) and bundle adjustment are the most popular solu-
tions for localization. More methods about integrating GNSS data with visual odometry have
been proposed for the integration of geo-referenced data, especially semantic landmarks. In
this thesis, we aim to integrate geo-referenced semantic features with vision based localization
adapting to different camera configurations.
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2.7 Our strategy

The goal of our research is to develop a low-cost but precise localization system. As we dis-
cussed in section 2.1, the beacon based approaches are difficult for large scale localization while
the accuracy of place resignation depends on the quality of maps and the results of place recog-
nition which is far from being precise. The GNSS are the most popular method for global
localization, but it suffers from mask and multi-path in urban canyons. Compared with global
localization, the approaches of position tracking can overcome parts of problems in global lo-
calization such as multi-path and mask, but the estimated poses are relative (cf. section 2.2).
Therefore, the combining solutions are usually taken to enhance the localization. However,
the combination of multiple sensors makes the system be costly, heavy and more energy con-
sumption (cf. section 2.3). In this case, we trend to the integration of maps with vision based
localization. The maps are produced off-line and the vision system is low cost, portable and
low power consumption. The characteristic of different camera configurations are analyzed in
section 2.5. For vision based localization in large scale, high angular resolution is desired, so
we use perspective camera. To enlarge the FOV, multiple cameras can be combined together
for localization. Different techniques have been proposed for localization, we divide them into

Figure 2.7: The most related research about localization with our method.

probabilistic filter based methods and bundle adjustment based methods according to the core
of the solutions (cf. section 2.4). It is well known that bundle adjustment can achieve more pre-
cise results than probabilistic filter [Klein and Murray, 2007; Strasdat et al., 2010a]. Therefore,
we integrate the maps into localization via bundle adjustment. In particular, the uncertainties
are considered over the integration to reduce the impact of inaccurate data in maps. By com-
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paring different types of map, the geo-referenced semantic features are most suitable for the
localization in dense urban environment (cf. section 2.6).

The most relevant research about localization has been marked, as shown inside the blue box
in figure 2.7. We intend to integrate the vision based localization with geo-referenced semantic
objects to provide precise localization in urban environment. The semantic objects are taken into
account as landmarks and they are integrated into LBA considering the uncertainty propagation.
In our research, we aim at developing the localization method which can be easily adopted for
different camera configurations, composed by perspective cameras.

Figure 2.8: The proposed flowchart of our localization approach.

In order to provide global localization approach, we need to know at least a start point for vision
based localization at beginning. In practice, the initialization of localization can be solved by
fusing the data from GNSS, beacon based global localization or place registration. In this thesis,
we suppose that we start from a known point. Then, the successive poses are tracked relative to
the start point and optimized by integrating the geo-referenced landmarks.

The proposed flowchart is demonstrated in diagram 2.8. For each frame, we detect the interest

39



Chapter 2. Related work

points in image, match and track the image points over sequences. The pose is estimated for
every frame instantly, but only keyframes are selected and involved into LBA considering the
constraints from landmarks integration. If key frame is identified, the semantic landmarks are
detected and matched with the patterns in database to obtain a set of geo-referenced constraints
(cf. Fig 2.8). If the constraints are generated successfully, constrained LBA is performed con-
sidering the uncertainty propagation of both image poses and geo-referenced landmarks. Oth-
erwise, the parameters are estimated with general LBA with uncertainty propagation. In our
research, we intend to model the absolute constraints via Ground Control Points (GCPs)
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3. Localization using vision based system

Chapter 3

Localization using vision based system

This chapter introduces our vision based localization using single or multi-camera system. Fig-
ure 3.1 (highlight steps) shows the pipeline of vision based localization. As we discuss in

Figure 3.1: Pipeline of vision based localization.

chapter 2, the image sequences are captured by perspective camera in street. At the beginning
of this chapter, we introduce the projection model from object to image for perspective camera.
A tie point structure is defined in this thesis to express the object point and its links in image.
The camera model and tie point will be introduced in 3.1. In order to estimate pose of every
frame, a set of correspondences of interest points over images need to be fund, this process is
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conducted by matching and tracking in section 3.2. Then we estimate the initial pose using
matching and tracking results for every frame and select key frame as input for LBA (see initial
pose estimation and key frame in figure 3.1). The keyframe poses and tie points are optimized
via LBA. The work-flow is same, but different camera configurations are developed for local-
ization in our research. Section 3.3 introduces initial pose estimation, key frame selection and
LBA using monocular camera. A generic model for multi-camera system is presented in section
3.4.

3.1 Camera model and tie point

3.1.1 Camera projection model

Although both perspective and omnidirectional cameras can be used for localization, we focus
on perspective cameras which are cheap. The perspective camera model assumes a pinhole
projection from world to image, as shown in figure 3.2. Let X = [X, Y, Z]T be a 3D object
point in camera reference frame. The image point x = [u, v]T , which is the projection of X in
image plane, is located at the intersection of the line X to camera center and the image plane.
Point p is called principal point, that is the projection of the camera center on the image plane
[Hartley and Zisserman, 2003].

Figure 3.2: Pinhole projection from 3D to 2D [Hartley and Zisserman, 2003].

As shown in the right figure 3.2, the coordinate of 2D point x in Y axis in camera reference
frame can be computed by similar triangles, that is fY/Z, where f is the focal length. Similarly,
we can compute the value of x in x axis. Thus, we can easily map object pointX = [X, Y, Z]T

to [fX/Z, fY/Z, f ]T in image plane. If we ignore the third coordinate in [fX/Z, fY/Z, f ]T

and denote [u, v]T as the coordinates of image point, we see

[X, Y, Z]T 7−→ [u, v]T = [fX/Z, fY/Z]T ,

that describes the central projection from a point in Euclidean 3-space to an image point in
Euclidean 2-space [Hartley and Zisserman, 2003].

This is an ideal situation that principal point p is located at the center of image. In practice, it
might have offsets to image center, noted as [u0, v0]

T . So a general expression of the mapping
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from 3D to 2D is:
[X, Y, Z]T 7−→ [u+ u0, v + v0]

T .

Express the coordinates in homogeneous coordinates as:

λ

uv
1

 =

f 0 u0 0

0 f v0 0

0 0 1 0



X

Y

Z

1

 . (1)

where, λ = Z, which is Z coordinate of object point.

Writing intrinsic matrix of camera as:

K =

f 0 u0

0 f v0

0 0 1

 , (2)

A simple form of equation 1 is:
x = K[I|0]X (3)

The object point and image point in equation 3 are expressed in a same coordinate system.
However, they are often measured in different euclidean coordinate systems in practice. For
instance, the object points are often defined in an absolute system, while the image points are in
a local image space. In this case, a transformation between the two coordinate systems should
be considered, when we project an object point into image plane using equation 3.

LetR as rotation matrix for orientation andC as position of image in world coordinate system.
Thus, the same object point in camera system, noted asXcam, can be estimated via:

Xcam = R(X −C).

. Considering the transformation into equation 1, the general form of central projection is:

x = KR[I| −C]X (4)

A more compact form is:
x = P3×4X, (5)

where, P3×4 is called camera projection matrix, which contains both intrinsic and extrinsic pa-
rameters of camera. Our localization is based on calibrated camera, so the distortion of interest
points are rectified with pre-calibrated distortion model. The intrinsic parameters for each cam-
era are known as well. With known intrinsic parameters, we define the pinhole projection as
function F (P ,X) that projects 3D pointsX into image with known transformation and orien-
tation. In this case, the equation 4 can be written as:

x = F (P ,X) = KR[I| −C]X. (6)
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where, P and X represent unknown parameters in back-projection function. P is image pose,
composed by translation and rotation measurements, seeing equation below:

P = [X, Y, Z, ψ, θ, φ]T .

The position X, Y, Z is determined by the position of camera center C. The three angles are
decomposed from rotation matrix R which is composed with three sub-rotation in xyz axes
[Slabaugh, 1999] :

R =

cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0

0 0 1


 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)


1 0 0

0 cos(ψ) −sin(ψ)

0 sin(ψ) cos(ψ)

 .

3.1.2 Tie point structure

In this thesis, we call a 3D object point that can be visually observed in overlap areas be-
tween two or more images as tie point (cf. Fig 3.3). X is tie point in 3D space, the projec-
tions of tie point in multiple images are referred to 2D measurements of tie point in image, as
(xj,xl,xn,xk) points (cf. Fig 3.3).

Figure 3.3: An example of tie point structure. X is the tie point, Ii−3, Ii−2, Ii−1, Ii are four consecutive
images. The correspondences(mj ,ml,mn,mk) are the observations of X in images.

According to the description of tie point, the data structure of one tie point can be defined using
a table like:

TiePoint

{
Int ID; unique ID
Point3D X coordinates
Vector xs image points:〈Ii,mk〉; 〈Ii−1,mn〉; 〈Ii−2,ml〉; ...

}
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We allocate a unique ID for each tie point. The data structure includes the coordinates of tie
point and its measurements in images. In the vector of image points, each image point cell
includes the image ID and coordinates. It represents the location of tie point in the specified
image.

The aim of matching and tracking is to build the links between images point and tie points as
shown in figure 3.3. This is one of the basic technique for pose estimation, because we need
3D-2D correspondences to solve the pose of current frame. Meanwhile, some new tie points
should be reconstructed for pose estimation of coming images over time.

3.2 Feature extraction, matching and tracking

3.2.1 Feature extraction

Many methods for interest points detection and feature description have been proposed in last
decades. In this thesis, we choose SIFT and SURF as candidate methods for feature extraction
due to their outstanding performance. Both of SIFT and SURF are invariant to scale change,
rotation and illumination [Lowe, 2004; Bay et al., 2006].

SIFT creates a scale space for image using DoG (Difference of Gaussian) and potential key-
points are detected in scale space. Then the low contrast points and poorly localized points are
eliminated when calculated Laplacian values are smaller than the given threshold. The precise
location of each key points is interpolated based on quadratic Taylor expansion of the difference-
of-Gaussian scale-space function and the descriptor is formed using a gradient histogram in a
region around the point with 128 bins weighted by a Gaussian function. SIFT has been applied
in vision based localization [Se et al., 2001; Yang et al., 2009]. However, the computation
of SIFT feature extraction is time consuming. A more efficient method called SURF (Scale
Invariant Feature Transform), was proposed by Bay et al. [2006], which built the scale space
using integral images and described the feature based on Haar wavelet using a 64 dimensions
descriptor. It is also widely used in vision based localization methods for feature detection
[Murillo et al., 2007; Eudes and Lhuillier, 2009].

Recently, some new computing techniques such as GPU (graphics processing unit) [Wu, 2007;
Terriberry et al., 2008], application-specific integrated circuits (ASIC) or field-programmable
gate arrays (FPGA) [Yao et al., 2009; Lee et al., 2014], have been used for implementation
of SIFT or SURF, which can speed up the feature extraction. With these advanced computing
techniques, both SIFT and SURF are able to be applied in real time application. In this case, the
problem is to know which one is better for our application between SIFT and SURF. Although
many articles have already investigated the performance of SIFT and SURF for visual odometry
and feature tracking [Ballesta et al., 2007; Valgren and Lilienthal, 2007; Gauglitz et al., 2011],
SIFT and SURF perform differently for every case. Therefore, we carefully design several
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experiments using the sequences captured by our mobile mapping system to evaluate SIFT and
SURF. Besides, the impact of interest point distribution was also studied. We evaluated the
performances from four aspects: repeatability, precision, accuracy and runtime. According to
the results of our experiments, SIFT was more reliable and precise for localization than SURF.
So, SIFT is our choice for feature extraction. The detailed information about the experiment
setup was introduced in Qu et al. [2016].

3.2.2 Matching between images

The issue at this stage is to find the correspondences of interest points (keypoints) over sequence.
As the rate of video or images are often very high, so we only keep key frames, retrieved from
original image sequences to maintain the trajectory. The method for key frame selection will be
presented in section 3.3.3. For every current frame, we match it with a fixed number of previous
keyframes.

Regarding a camera moving straightly, it is easier to match the current frame with the latest key
frame than the key frames before. However, larger time interval means longer baseline between
current frame and key frame, which can provide well-conditioned matches for pose estimation
and point triangulation. Now, we should determine how many key frames should be matched
with the current frame. We suppose sampling distance between two successive images is larger
than 1m and the intersection angle, which is the angle between two rays jointing a tie point and
its image points, should be above 3°at a depth of 50m. Then the length of the baseline is 3m

approximately. It is well known that the intersection angle is related to the locations of image
points. This assumption here only give us an idea about the relationship between baseline length
and tie point depth relative to camera.

With this hypothesis, we match the current frame with three latest key frames. We denote It as
current frame, the matching for image It is to search the correspondences in the subsequence
(It−1, It−2, It−3). This procedure can be divided into three steps which corresponds to three
pair-wise matching: It ⇔ It−1, It ⇔ It−2, It ⇔ It−3 (cf. Fig 3.4(a)). We call It as reference
image and images It−1, It−2, It−3 as target images.

The matching process for binocular images is similar as monocular sequence. The current pair
is matched with three latest pairs (see figure 3.4(b)), but there are more pair-wise matching units
compared with monocular case. For multi-camera system, the matching can be still divided into
several pair-wise matching units.

To search correspondence for each key point in reference image It into target image , we com-
pare the similarity between SIFT descriptors. The matches are found by searching its nearest
neighbor which is defined as the minimum Euclidean distance between two SIFT descriptors.
In our research, FLANN (Fast Library for Approximate Nearest Neighbors) [Muja and Lowe,
2009] is employed for the nearest neighbor searching and two best matches are kept as can-
didates for each key point. To filter the false matches, two principles are taken into account.
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(a) Matching for monocular images. (b) Matching graph for stereo pairs.

Figure 3.4: Matching graphs for monocular and binocular image sequences between current frame (pair)
and latest three key frames (pairs) .

First, if the distance ratio between first minimum distance and the second minimum distance is
less than 0.8, we accept the matches. This measure filters most of the false matches. The dis-
tance calculated for correct matches should be significantly smaller than the incorrect matches
[Lowe, 2004]. Second, the rest outliers of matches are rejected according to epipolar constraint.
An AC-RANSAC (A Contrario RANSAC) [Moulon et al., 2012] based algorithm is applied to
estimate fundamental matrix. Reject the matches whose distances from image points to their
corresponding epipolar lines are larger than 2.0 pixels.

In practice, relative pose between two images can be estimated with a set of 2D correspondences
[Nistér, 2004], but metric translation is unknown. In vision based localization using successive
images, we desire consistent absolute scale over time. It is well known that the absolute pose can
be estimated using 3D-2D correspondences [Ganapathy, 1984], that are the correspondences
between tie points and image points in thesis. Hence, the issue is to track the tie points over
sequence for pose estimation.

3.2.3 Tracking tie points

3.2.3.1 Tracking from pair-wise matches

Matching image Ii with previous three key frames Ii−3, Ii−2, Ii−1 in figure 3.3, we can obtain
three pair-wise matches: xk ⇔ xl, xk ⇔ xn, xk ⇔ xj . Yet obtaining those pair-wise matches
is not our purpose, we need image points chain xk ⇔ xl ⇔ xn ⇔ xj , which links a tie point
with its images points. This is a problem of how to merge two-view matches into a consistent
image points chain. The solution is so called tracking and the aim is illustrated in figure 3.5.
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Figure 3.5: Tracking across pair-wise matches.

The inputs of tracking are the pairwise matches between images, the outputs are the correspon-
dences through images, shown as the image points chain in figure 3.5. We set a unique ID
for each image point. The pair-wise matches can be represented by their corresponding im-
age points ID. Hence, if two pair-wise matches contain a same image point (same image point
ID), these two matches can be merged. Then, compare other pair-wise matches with the same
method until all the pairwise matches are searched in the graph. The techniques to solve this
problem are usually used in structure from motion [Snavely et al., 2006; Irschara et al., 2009].
In this thesis, a tracking method proposed by Moulon and Monasse [2012] is applied. This
tracking method is based on Union-Find algorithm [Galler and Fisher, 1964]. The Union refers
to pairwise connection and the Find aims to search the connections over all the pairwise con-
nections. The key is to build the join function for Union-Find algorithm, which merges the
correspondence subsets. The outputs are a vector of image points ID lists. Each list contains all
image point IDs for one tie point.

For multi-camera cases, this tracking method can still be used to merge the pair-wise matches.
The inputs of the tracking method is only pairwise matches represented by image point IDs,
which is not affected by camera configuration.

3.2.3.2 Tie points merging

After tracking, the data structure for each tie point, presented in section 3.1.2, can be built.
However, the issue is that some of these points may have been reconstructed in previous steps
through image It−1, It−2, It−3. Thus, the newly tracked tie points can be divided into two cate-
gories: existing tie points and new tie points. Figure 3.6 illustrates the difference between new
tie point (green point X2) and existing tie point (red point X1). The X1 is an existing tie point
which has been estimated using previous images, and X2 is a new tie point. In this case, the
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Figure 3.6: X1 represents the existing tie point and X2 is the new tie point generated from image Ii and
Ii−1.

3D coordinates of X1 is known while X2 is an unknown. To find the existing tie points, we
compare the image point IDs between newly tracked tie points and inherited tie points from
previous steps. If one or more same image points are fund, the newly tracked tie point belongs
to existing tie points.

3.3 Single camera based approach

As shown in figure 3.1 at the beginning of this chapter, the initial pose is estimated using the
results of matching and tracking. Then identify the current frame whether it is key frame. If
current frame is key frame, it is inputted into LBA buffer to optimize the pose and tie points.
In order to obtain poses in absolute system, at least the start point and absolute scale should be
known for monocular localization. In this section, we start with the initialization of localization
which introduces how to select start point and set absolute scale for localization (see section
3.3.1). Then, our localization is relative to the start point. Section 3.3.2 presents the methods
for initial pose and tie points estimation. We estimate pose for every frame, but only keyframes
are selected for LBA. The strategy for key frame selection is proposed in section 3.3.3. With
the initial values, the keyframe poses and tie points are optimized with LBA (see section 3.3.4).
At last, we evaluate the proposed approach using real datasets (section 3.3.5).

3.3.1 Initialization

To obtain metric localization in the geo-referenced system, a reference point need to be given in
an absolute system for mono based localization. In practice, geo-referenced map [Gupta et al.,
2016] can be used to provide initial information. Absolute scale can also be provided using
a wheel encoder or the height of camera relative to ground [Zhou et al., 2016]. The absolute
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orientation at start point can be measured by compass or low-cost IMU. A more relevant ap-
proach for initialization is place registration introduced in chapter 2. Both absolute positions
and orientations can be determined by indexing several images into geo-referenced database.
In our current implementation, the absolute position is provided by GPS, the distance is also
calculated from two GPS points. The initial orientation is measured using IMU.

We assume that the pose of first frame is P 0 which is known with uncertainty. The position
and orientation of first frame are noted as C0 and R0. R0 is rotation matrix. The absolute
scale is determined by giving the distance D from first to second key frame. At this stage, the
pose of second key frame is still not known. To obtain it, we first estimate the relative pose of
second frame (R,ν), relative to first frame. The Nister’s 5-point algorithm [Nistér, 2004] with
RANSAC scheme is applied for relative pose estimation, using the correspondences between
first two images. The absolute pose of second frame is defined as P 1. We note camera position
as C1 and rotation matrix as R1 for second frame. The absolute pose of second frame can be
obtained using the equations below: {

R1 = RR0

C1 = −D ·R1ν
(7)

With matches and poses of first and second images, the initial tie points can be reconstructed
by triangulation. From third frame, the pose is estimated using 3D-2D correspondences derived
from matching and tracking between the current frame and previous key frames. With the
newly estimated image pose, more 3D points can be reconstructed. The same procedure will be
repeated for all the coming new frames. The initial pose estimation and tie point reconstruction
from third image is introduced in following section.

3.3.2 Initial estimation of poses and tie points

The methods for the estimation of pose and tie points are applied for images started from third
image.

3.3.2.1 Pose estimation

The matching and tracking of current frame is done with the strategies proposed in section
3.2. Tracking existing tie points in current image, a set of 3D-to-2D correspondences can be
obtained to estimate the pose of current frame. For perspective camera, the pose estimation
using 3D-to-2D correspondences, is PnP problem. The common solution for this problem
is Direct Linear Transformation (DLT) [Sutherland, 1974; Ganapathy, 1984; McGlone et al.,
2004], that solved the projection matrix P3×4 using at least six 3D-2D correspondences. The
DLT is usually used for camera calibration, because both intrinsic and extrinsic parameters of
camera can be decomposed from the projection matrix P3×4 at the same time. However, our
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localization method is based on calibrated camera, hence only the poses of the moving camera
[R,C] need to be estimated.

In order to solve the six independent parameters of image pose, the minimal number of 3D-
to-2D correspondences is three. This particular case is named P3P [Yuan, 1989; Wolfe et al.,
1991; Yang, 1998; Gao et al., 2003] which is the minimal solution for PnP problem. The
P3P algorithm can obtain up to four solutions, so we need a fourth object point to remove the
ambiguity [Quan and Lan, 1999; Kneip et al., 2011b]. The correct solution of four solutions
is the one in which makes the back projection of the fourth object point lie into image plane.
Although other methods to solve the PnP problem have been presented by [Quan and Lan,
1999], P3P is the most efficient one. Recently, a more efficient solution of P3P was proposed
by Kneip et al. [2011b], that reduced some intermediate derivation and leaded to a comparable
accuracy at a lower computing cost in comparison to the classical methods such as the method
proposed by Gao et al. [2003]. This method can estimate the absolute transformation in a
single step, while most of existing solutions attempt to transform the 3D point into camera
reference frame at first, then compute the position and orientation of the camera in world frame
by aligning the two point sets. In this thesis, we use Kenip’s implementation of P3P for pose
estimation and a robust estimation is obtained by RANSAC scheme.

3.3.2.2 Triangulation

The triangulation refers to reconstruction of an tie point in 3D space, given its projections
across two, or more images [Hartley and Zisserman, 2003]. In triangulation, we suppose that
the projection matrix P3×4 for every image has been estimated and the corresponding image
points as shown in figure 3.5 have been obtained by matching and tracking, the problem is to
compute the coordinates of tie pointX in figure 3.3.

Each image point and camera center conduct a line through the object point in 3D space (cf.
Fig 3.2), the equation can be written as shown in equation 5. If a set of corresponding image
points in two, or more images can be found, they should intersect at a 3D point X . Then we
can obtain a list of linear equations as xj = P jX . The X is resolved with the solution known
as linear least squares [Hartley and Zisserman, 2003].

3.3.3 Key frames selection

In order to improve efficiency and accuracy of LBA, we select key frames over sequence. If
current frame is not keyframe, the procedure will output the pose estimated using P3P and skip
to the process of new coming frame. This kind of strategy, on the one hand, we can reduce
the number of images which are needed to be optimized with LBA. On the other hand, larger
baseline between neighbor images are kept which can obtain better results for triangulation of
tie points. Many papers about key frame selection have been proposed for SFM or SLAM.
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One popular method is Geometric Robust Information Criterion (GRIC) [Torr et al., 1999],
which is often used for key frames selection in video based SFM [Pollefeys et al., 2002; Ahmed
et al., 2010]. A score which is related to the goodness of fitting and the parsimony of the model
between current image and latest key frame. The epipolar geometry (F-matrix) and homography
(H-matrix) are usually used. If the score of F-GRIC is smaller than H-GRIC, it is a key frame
[Pollefeys et al., 2002; Gibson et al., 2002; Thormählen et al., 2004]. However, theses kind of
methods need to compute the H-matrix and F-matrix for every frame.

Mouragnon et al. [2006] proposed a simple way to choose the key frames, which is based on the
number of matches between current frame and the first (M ) and second (M ′) latest key frame.
If M and M ′ are less than the given thresholds, a keyframe is added (ThM = 400, ThM ′ =

300). However, the threshold would change dynamically for different experiments. Seo et al.
[2008] proposed the correspondence ratio between the number of frame-to-frame matches and
the number of feature points. The ratio decreases with the moving of camera [Ahmed et al.,
2010].

In this thesis, a new ratio τ , representing the percentage of existing tie points (Φ0) in the tie
points set (Φ) contained by current image :

τ =
Φ0

Φ
.

Where, 0 ≤ τ ≤ 1. With the moving of camera, τ becomes smaller and smaller. We set the
threshold for the ratio as 0.3 in our experiments. Apart from this, two additional criterions are
considered as well: the moving distance and the rotating angle relative to the latest key frame.
We set the minimal distance between two keyframes as 1.5m and the minimal rotating angle as
10◦. If current frame meets one of the conditions, the frame is added as key frame.

3.3.4 Refinement with LBA

Many methods have been proposed such as EKF, Particle Filter, bundle adjustment etc, but bun-
dle adjustment can obtain the most accurate results [Strasdat et al., 2010a; Ji and Yuan, 2016].
However, the classical bundle adjustment has high computing complexity, increasing quickly
with the growing of images. In order to overcome this problem, Local Bundle Adjustment
(LBA) was proposed [Zhang and Shan, 2001; Mouragnon et al., 2006; Eudes and Lhuillier,
2009].

In general, LBA process a sliding window of N frames in which the latest n frames (n < N )
are newly estimated and the other N − n frames are inherited from previous steps. Figure 3.7
depicts the procedure of the incremental approach in LBA, where N = 5, n = 2. In current
step, there are N − n frames that have prior knowledges of their poses and covariance matrix
since they have been resolved by LBA in the previous steps. For instance, the poses of frames
2, 3, 4 in figure 3.7 have been estimated at first step. When they are used in second step, they
are regarded as parameters with prior knowledges, which will provide constrained equations in
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cost function. Whereas the poses of frames 5 and 6 are unknowns without any constraints.

Figure 3.7: Schematic of the LBA processing procedure. The zoom-up digram at left-bottom presents
the different parameters in second step, marked with green dotted rectangle.

3.3.4.1 Notations and definition

For better presentation, we define some basic notations.

Basic notations As we denoted before, t is time and the index of frame. P is pose of frame.
X is 3D tie point. Some basic arguments for LBA are defined as:

• P n is the vector of new image poses in current step.

• P p consists of the poses inherited from previous steps.

• X t is the vector of 3D tie points.

• vt is the vector of back projection error.

• Σt is covariance matrix of the measurements of image points.

• vp is the vector of residuals for the poses with respect to P p.

• P 0
p consists of the prior estimates of P p.
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• Σp is the covariance matrix of P 0
p.

Notations of parameters In LBA, P p,P n,X t are parameters and they can be presented as
expression 8, where N is the size of sliding window and n is the number of new frames, the
elements in each parameter vector are like:

P p = [P t−N−1 ... P t−n]T

P n = [P t−n+1 ... P t]
T

X t = [... X i ...]T
(8)

In this thesis, β is defined as the symbol of parameters in LBA, which is a combination of
P p,P n,X t, that is:

β = [P p,P n,X t]
T

3.3.4.2 Mathematics of LBA

Special LBA at first step The special case in LBA is the first step (cf. step 1 in Fig 3.7).
All images in processing window are optimized with LBA first time, so there are no extra
constraints. The back projection errors are computed by:

vt = F (P ,X t)− xt,

in terms of equation 6, where xt is the vector of measurements corresponding to image position
of points Xi. Our aim in this case is to minimize the weighted sum of squared back projections,
thus the cost function becomes:

f(β) =
1

2
vTt Σ−1t vt,

where,
Σt = σ2

t I

and
σt : standard deviation of 2D interest point detection

This is conventional bundle adjustment and nonlinear least square is employed to solve the
solution [Triggs et al., 2000].

To deal with the outliers in bundle adjustment, a loss function is usually applied to reduce the
influence. In this case, the cost function is :

f(β) =
1

2
ϕtv

T
t Σ−1t vt

ϕt is a loss function which is a scalar function used to reduce the influence of outliers on the
solution of nonlinear least square problems. The cost for large residuals therefore is reduced
using a loss function. This leads to outlier terms getting down-weighted so they do not overly
affect the final solution [Agarwal et al.].
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3.3. Single camera based approach

General LBA In order to separate the new poses and inherited poses in LBA, we rewrite
F (P ,X) as F (P p,P n,X), so the back projection errors for all the tie points vt is noted as:

vt = F (P p,P n,X t)− xt (9)

In particular, we consider the constraints for P p, which are generated depending on their uncer-
tainty estimated in previous steps. To integrate the constraints, a set of linear error equations are
defined for cost function together with the back projection errors, weighted according to their
covariance matrix Σp. The error equation array is:

vp = P p − P 0
p, (10)

where, P 0
p is the estimated poses from previous steps.

Supposing that there is no covariance between image residuals and the previously estimated
poses, the parameters are resolved by minimize the following cost function:

f(β) =
1

2
(vTt Σ−1t vt + vTp Σ−1p vp) (11)

There is no closed-form solution to a non-linear least squares problem. Instead, numerical
algorithms are used to find the value of the parameters that minimize the cost function. Most
algorithms need initial values for the parameters. Then, the parameters are refined iteratively.
In the most used algorithms, the model is linearized by approximation to a first-order Taylor
series expansion at each iteration. The Taylor expansion is employed at point [P p,P n,X t].
Thus, the linear equations of 9 and 10 can be obtained:[

vp

vt

]
=

[
P p − P 0

p

F (P p,P n,X t)− xt

]
︸ ︷︷ ︸

y

+

[
I 0 0
∂F
∂Pp

∂F
∂Pn

∂F
∂Xt

]
︸ ︷︷ ︸

J

δP pδPn
δXt


︸ ︷︷ ︸
δβ

(12)

Where:

P p,P n,X t: approximate estimation of the parameters

δP p , δPn , δXt: corrections to current values of parameters.

y: differences between observations and the predicts estimated using initial parameters

J : Jacobian matrix

δβ: corrections of the parameters

(13)

In each iterative step, the estimates of the parameter corrections, noted as δ̂β , are resolved from
normal equation below:

(JTWJ)︸ ︷︷ ︸
H

δ̂β = −JTWy (14)

with:

W = diag(Σ−1p ,Σ−1t ) (15)
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where,H is normal matrix. If we denote the corrections at current step k as δ̂
k

β , the parameters
are updated for next step as:

βk+1 = βk + δ̂
k

β.

The iteration is performed until the thresholds are reached.

To explore the features of LBA, a LBA graph about the images and tie points are simulated in
figure 3.8. There are five images with ten tie points in this network graph. The poses of three
images are estimated beforehand with their uncertainty (marked with blue squares) and two new
images (marked with gray squares) in this step. The graph in figure 3.8 illustrates the relations
between the tie points and images. Figure 3.9 shows the structure of Jacobian and normal
matrix for the LBA graph in figure 3.8. Each block of rows in the Jacobian matrix contains
the contributions of each observation for relevant parameter blocks[Triggs et al., 2000]. For
conventional bundle adjustment, each row in Jacobian is related to one pose and one tie point.
However, some blocks in Jacobian matrix are only linked to poses in the case of LBA, seeing
the top-left block in figure 3.9(a). This is caused by the additional error equations about P p.
In Jacobian matrix, each sub-matrix in top-left block is a 6× 6 identity matrix. The interesting
thing is that, the additional equations don’t change the structure of normal matrix (Hessian
matrix), as shown in figure 3.9(b). However, the uncertainties of P p have been integrated into
the corresponding parameter blocks about P p via the weight matrixW .

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

1
3

2 4
5

6

7

8
9

10

Inherited pose New pose Tie point

Figure 3.8: LBA graph.

We attempt to update uncertainty of P p and estimate the uncertainty of new poses P n after
LBA. It is known that the covariance matrix of the parameters can be obtained from normal ma-
trix H , which is H−1. In bundle adjustment, the dimension of the normal matrix is dominated
by the number of tie points. As shown in figure 3.9(b), the dimension of normal matrix can be
calculated by 6 × N + 3 ×M , where N is the number of images and M is the number of tie
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Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 1 2 3 4 5 6 7 8 9 10

(a) Jacobian matrix in LBA.
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(b) Normal matrix in LBA.

Figure 3.9: The structure of Jacobian and normal matrix in LBA as shown in figure 3.8. The dark boxes
represent the non-zero blocks in matrix.

points. In LBA, N is fixed, thus, the computation of covariance matrix is dominated by M and
M � N in practice. According to the fact that the covariance matrix of image poses is the
top-left block ofH−1, it is natural to calculate the top-left part ofH−1. The Schur complement
is used to estimate the pose covariance matrix [Triggs et al., 2000].

3.3.4.3 Variance Component Estimation (VCE)

We assume that all feature points have same precision. The standard deviation of measurements
is σt. Thus, the covariance matrix for all interest points used in LBA, is Σt = σ2

t I . The
existing LBA methods regard σt as one pixel Eudes and Lhuillier [2009]. However, the precision
of SIFT detector might be better than one pixel [Lowe, 2004]. Although the variation of σt
does not influence the estimated values of parameters, it affects the scale of error ellipsoids
estimated for poses. The incorrectly scaled uncertainties would generate inaccurate searching
areas for matching, tracking and landmark matching which will be introduced in chapter 4 &
5. In general, it is difficult to obtain value of σt in advance. With the approach proposed by
Luxen [2003], we estimate the variance scale using posterior variance component estimation.
As we discussed at the beginning of this section, the first step of LBA is conventional bundle
adjustment. We set Σt as identity matrix at first. After bundle adjustment at first processing
window, the variance of interest points can computed by following equation :
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Chapter 3. Localization using vision based system

σ̂t
2 =

v̂t
T v̂t
r

(16)

v̂t : residual vector after adjustment

r : the number of redundant observations.

Then we use the estimate of σt for other LBA steps.

3.3.5 Experiments using monocular images

To test the proposed localization method with single camera, the data acquired by STEREOPOLIS

[Paparoditis et al., 2012] are used for experiment. The ground truth is measured by a precise
navigation system, whose accuracy is up to centimeters. Images are captured by a calibrated
front looking camera. The focal length of the camera is 10 mm, the image size is 1920× 1024

pixels. The FOV of the camera is 70° in horizontal and 42° in vertical.

(a) (b) (c)

Figure 3.10: Example of feature extraction and matching. (a) Image acquired by STEREOPOLIS. (b)SIFT
feature points. (c) Pair-wise matches with previous frame.

The feature extraction, matching and tracking for monocular sequence is done with the methods
presented in section 3.2. Figure 3.10(b) shows the interest point detected by SIFT and figure
3.10(c) depicts the pairwise matches between the current image with the latest key frame.

There are 270 key frames in a trajectory of 750m. Figure 3.11 demonstrates the vertical view of
the trajectory recovered using the proposed method and the ground truth acquired by combining
navigation system. We start the operation from the left-top in the path marked with black box in
figure 3.11. The localization is very accurate at beginning and the drift is pretty small. However,
it is growing over time.

In order to analyze the change of drift over time, we divide the drift into errors at depth direction
and lateral errors. The lateral error is defined in a plane that is orthogonal to depth direction
and parallel with image plane. To compute depth error and lateral error, we transform image
position from world coordinate system to camera space:

νt = −RtCt, (17)
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Figure 3.11: Trajectory estimated by vision based localization and the ground truth.

where, Rt are rotation matrix from world to camera space and Ct is the position of camera
center in world. Then we define lateral error and depth error:

• Lateral error. error in xy plane in camera space.

• Depth error. error at z axis in camera space.

In general, when the moving direction of vehicle is consistent with the depth direction of cam-
era, the errors along depth direction dominate the drift because of the depth uncertainty. The
errors are shown in diagram 3.12, where the red line represents the lateral errors and the blue
line presents the errors in depth. Both of them are very small at the beginning and grow over
time, but errors in depth grow faster than the lateral errors. However, this is not always the case,
the errors in depth reduces quickly around image 130 and then increase after image 170, while
the change of errors in image plane is inverse, (cf. Fig 3.12). By combining the results shown
in figure 3.11 and 3.12, we find the image 130 and 170 are around the second and third turnings
from start point and the change of camera direction between key frames are heavy. In this case,
the difference between depth direction and moving direction is large and they are not consistent
any more, so the drift at depth direction is transited to lateral direction. The similar situation
occurs at the first turning, but the change of depth errors is not as big as the second turning due
to the flat turning.

We estimate the uncertainties for the estimated poses of image and also consider the uncertainty
propagation over sequence in LBA. The error ellipsoids are estimated to present the uncer-
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Figure 3.12: The lateral and depth errors of localization.

Figure 3.13: Uncertainty propagation. Each error ellipsoid is exaggerated three times.
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3.4. Multi-camera based localization

tainties of locations, which are computed from the covariance matrix of image pose. In this
experiment, the confident level of error ellipsoid is set as 99 %. The direction of the major axis
of error ellipsoid represents the major uncertainty. As shown in figure 3.13, the major axis of
error ellipsoid points at the depth direction except for the images between the second turning
and third turning, where the major axis directions are consistent with the lateral direction. This
trend corresponds the diagram presented in figure 3.12.

3.4 Multi-camera based localization

Many papers study the SLAM or visual odometry based on stereo cameras [Olson et al., 2001;
Nister et al., 2004; Milella and Siegwart, 2006; Geiger et al., 2011; Engel et al., 2015]. In stereo
case, the absolute scale can be given by known length of the baseline. The scale doesn’t need to
be determined externally in comparison to monocular scheme. Additionally, more observations
can be obtained for the tie points that can improve accuracy of the triangulation, then enhance
the quality of pose estimation. As we introduced in chapter 2, vision based localization can
get benefits from the large Field of View (FOV) which can provide longer tracks and more
informative observations of environment to improve the robustness and accuracy of pose esti-
mation. This is the motivation of using omnidirectional cameras for localization [Scaramuzza
and Siegwart, 2008; Silpa-Anan et al., 2005].

The problem of omni-directional camera is the low angular resolution which is not preferable
for large scale visual odometry [Zhang et al., 2016]. In this thesis, we use multi-camera system
which is combined by several perspective cameras at different directions. It can acquire images
with larger FOV and have high angular resolution at the same time. The stereo rig is categorized
as multi-camera rig as well. In this section, we propose our localization method using multi-
camera system. First of all, the rigorous projection model of multi-camera is studied. Then we
present how to estimate the initial values of image poses and tie points. At last, the LBA is
extended to adapt the multi-camera cases.

3.4.1 Rigorous projection model

In the case of multi-camera based localization, the key is still to estimate the pose of the moving
entity (e.g. robot, vehicle ) in real time. In monocular case, if we estimate the pose of every
frame, the pose of the entity can be computed by transforming the pose of image frame to the
entity body rigidly. The offset and orientation of the camera to entity body coordinate system
can be measured beforehand and they are fixed during localization. For multi-camera configu-
rations, each camera has different pose at a time step, but the relative relations between these
poses are fixed. Our aim is to obtain the pose of entity directly. To achieve this, we define a local
coordinate system on entity body. The rotation and translation of this local system represent the
pose of entity in world. Every camera can be presented in this local system relatively.
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3.4.1.1 viewpoint

In this thesis, the local system is called viewpoint, and the position and orientation of every
camera can be transformed from pose of viewpoint. Figure 3.14 shows the relationship between
viewpoint and cameras. The view point can be put at anywhere in entity body. Denote Γ as the
rigid transformation vector from view point to camera center. Γi expresses the transformation
from viewpoint to camera i. Each Γ contains six parameters. The first three for translation and
the rest are the rotation angles. Thus, the offset vector T i and the rotation matrixRi for camera
i can be generated from Γ i.

Figure 3.14: General concept of viewpoint. The blue coordinate system expresses local system of
viewpoint in world. The red arrows present the offsets and rotation from every camera to the coordinate
system of viewpoint.

3.4.1.2 Pose of camera

To estimate the pose of view point P t, the data perceived by cameras at time t should be
associated. We note the orientation and position of viewpoint at time step t as (Rt,Ct) (cf. Fig
3.15). The relations from view point to camera i is Γ i which is a rigid transformation. The
rotation matrix and translation of camera i areRi,T i.

Since we know the transformation from camera to view points, the position and orientation of
camera in world can be computed by the formula below:

Ri
t = RiRt

Ci
t = RT

t T i +Ct

(18)

where, Ri
t is the rotation matrix for camera i at time t and Ci

t is the position of camera center
relative to absolute system . The vector of pose of camera i, denoted as P i

t, is composed from
Ri
t and Ci

t.

3.4.1.3 Projection model

In our research, we focus on the perspective cameras. The camera model for each camera has
been proposed in equation 4. If we know P i

t, which is the pose of camera i at time t, then
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3.4. Multi-camera based localization

Figure 3.15: Estimation of camera pose. The blue XY Z frame is the world coordinate system, Ct

presents the position and Rt is the orientation of viewpoint at time t. The pose of camera i can be
computed by rigid transformation from view point.

the orientation and position of the camera, noted as Ri
t and Ci

t, can be obtained. With one 3D
world pointX , its projection in image can be calculated by :

xit = KiR
i
t[I| −Ci

t]X,

where xit is the coordinates in pixels into image and Ki is the calibration matrix of camera i.
Combining equation 18, projecting the world point X into image captured by camera i at time
t is obtained by:

xit = KiRiRt[I| − (RT
t T i +Ct)]X, (19)

where,Rt,Ct are the rotation matrix and position of viewpoint at time t, which can be consid-
ered as the real time pose of vehicle or robot.

As the parameters for rigid transformation of camera i is Γ i, referencing equation 6, a simplified
projection model for multi-camera model is:

xit = KiRiRt[I| − (RT
t T i +Ct)]X = F (P t,Γ i,X). (20)

The equation 20 doesn’t represent the pinhole projection any more. It integrates the rigid trans-
formation with the perspective projection.

3.4.2 Parameters initialization

In equation 20, xit is an image point, Γ i is measured in system calibration before localization.
The unknowns are viewpoint pose P t and tie pointX .
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3.4.2.1 Pose estimation for viewpoint

As we presented in section 3.3.2, solving the pose using a set of 2D-3D correspondences for
perspective image is a PnP problem. The transformation from camera to view point is fixed and
the parameters are calibrated beforehand. A solution for initial pose estimation of viewpoint
is to estimate the initial pose of image using PnP algorithms. However, there are too few 2D-
3D correspondences in some cases using image points of single camera due to restriction of
FOV. To improve the robustness of pose estimation, we desire to use 2D-3D correspondences
in a larger field which means the image points might locate in different images captured by
different camera at one time step. In this case, the projection model for multi-camera system is
not perspective.

To estimate the pose, a Generalized Camera Model (GCM) has been investigated by Grossberg
and Nayar [2001]. The solution for pose estimation using GCM is a Non-Perspective n Points
(NPnP) problem [Chen and Chang, 2004]. The minimal solution for PnP is a P3P problem
using three 3D-2D correspondences. Similarly, the minimal solution for NPnP problem is also
resolved with three 3D-2D correspondences, that is NP3P Chen and Chang [2004]; Nistér and
Stewénius [2007]. Figure 3.16 illustrates the difference between the classical P3P and NP3P
for generalized problem.

Figure 3.16: Left: the P3P problem for perspective projection. Right: NP3P problem, solving the pose
of three arbitrary rays emanating from a generalized camera geometry and meeting three world points.
The camera model can be any arbitrary projection [Nistér and Stewénius, 2007].

In practice, it is difficult to solve the problem of NP3P in algebra which can generate up to 8
possible solutions from a numerical 8-th order polynomial [Chen and Chang, 2004; Nistér and
Stewénius, 2007; Kneip et al., 2013]. In this case, a number of methods were proposed to solve
the NPnP problem using iterative solutions lied on global optimization [Chen and Chang, 2004;
Tariq and Dellaert, 2004; Schweighofer and Pinz, 2008]. These methods need initial values
for the pose, but it is usually difficult to obtain accurate initialization easily. In addition, these
kinds of methods are computationally expensive due to the iteration. Ess et al. [2007] achieved
a non-iterative linear method to solve NPnP problem, but the complexity of the algorithm is
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quadratic in the number of the correspondences. Toward this direction, a more efficient solution
was proposed by Kneip et al. [2013], that solve the NPnP problem with non-iterative solution
with linear computing complexity.

In this thesis, we apply the Kneip’s solution in a RANSAC scheme to achieve the pose of
each viewpoint [Kneip et al., 2013]. The first step is still to find the existing tie points in current
viewpoint using the strategy proposed in section 3.2. Then the projections of these 3D tie points
in images are obtained using the matching and tracking. At last, the pose of the viewpoint is
resolved with a set of 3D world points and their measurements in images.

Compared with PnP based pose estimation, the NPnP method can get benefits from larger FOV.
On one hand, more informative points can be observed in a larger view. On the other hand, the
tracking of tie points can be obtained in a longer period. These advantages can make the pose
estimation more robust and accurate, especially in some challenging situations.

3.4.2.2 Tie points reconstruction

Some new tie points should be exploited. With the matching and tracking for multi-camera
cases were proposed in section 3.2, the image points for new tie points can be obtained. In
order to reconstruct the position of the tie point in world, we need to know the pose for each
image. As the pose of viewpointP t is estimated with the method introduced in previous section,
the pose of every camera can be estimated using equation 18. In this case, the new tie points
can be reconstructed with triangulation proposed in section 3.3.2.2.

3.4.3 LBA for multi-cameras based localization

3.4.3.1 Back projection error

For single camera with perspective projection model the back projection error is calculated
by vt = F (P t,X t) − xt, regarding the notation of pinhole projection model in equation 6.
Considering the definition of projection model of multi-camera system in section 3.4.1.3, the
back projection error in camera i can be formulated by :

vit = F (P t,Γ i,X)− xit, (21)

where vit is the residual vector of tie point X at time t in camera i and xit is the image point in
image forX . F (P t,Γ i,X) is the projection model from 3D to images of every camera.

We extend the original LBA proposed by Mouragnon et al. [2006]; Eudes and Lhuillier [2009] to
adopt multi-camera model. The procedure of LBA approach is similar with monocular case, but
the minimal processing unit is viewpoint. Only the images in latestN viewpoints are considered
for bundle adjustment and there are n new viewpoints out of N in each step. In each viewpoint,
the unknowns are P t andX . The parameters of rigid transformation for cameras, noted as Γ 0,
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are calibrated beforehand. In our approach, we consider the uncertainties of Γ 0 and N − n

poses estimated in previous steps.

In LBA process, we divide the poses of viewpoint into two categories: the new poses and
inherited poses. As the above-mentioned notation, there are n new viewpoints and N − n

inherited poses in one processing window. Because the uncertainty of pose is estimated after
LBA, we can know the uncertainty of the N − n inherited poses. Although the inherited poses
are also the parameters in LBA, they can be optimized inside their uncertainty areas. For better
expression, P p is noted as the inherited poses and P n is the new poses, thus the error equation
of back projection error can be written as:

vit = F (P p,P n,Γ i,X)− xit (22)

where:

vit : back projection error of X in camea i

P p : inherited poses of viewpoints in window

P n : new poses of the viewpoints

Γ i : rigid transformation parameters for camera i

X : 3D tie points in world

xit : measurements of tie point in camera i

3.4.3.2 Modeling the constraints

Equation 22 models the back projection errors for each camera in multi-camera system. Now the
issue is how to consider the error propagation of P p and Γ in LBA approach. The constraints
for inherited poses are same with monocular case. The covariance matrix of P p is noted as Σp.
A linear error equation is defined (see equation 10). A similar method is employed to generate
the error equations for rigid transformation. The covariance matrix for Γ is denoted as ΣΓ and
the pre-measured values of Γ is noted as Γ 0, a linear error equation is defined as following:

vΓ = Γ − Γ 0 (23)

3.4.3.3 Cost function

Combining the error equations 10, 23 and 22, the equation arrays are :
vp = P p − P 0

p

vΓ = Γ − Γ 0

vit = F (P p,P p,Γ i,X)− xit

(24)

The aim is to obtain optimal solution for the parameters that makes the errors computed by
equation 24 be minimal. We minimize the weighted sum of squared residuals which is written
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as:

[P̂ p, P̂ n, Γ̂ i, X̂] = argmin{1

2
(vt

TΣ−1t vt + vTp Σ−1p vp + vTΓΣ−1Γ vΓ )} (25)

where:

[P̂ p, P̂ n, Γ̂ i, X̂] : optimal solutions of parameters.

vt : residuals of back projection errors for all tie points.

vp : residuals of all inherited poses.

vΓ : residuals rigid transformation for all cameras

Σt : covariance matrix for all images points

Σp : covariance matrix for inherited poses

ΣΓ : covariance matrix for all the measured rigid transformation parameters

Equation 25 is called the cost function. The optimal results of the parameters are obtained when
the cost function meets the minimal value.

3.4.3.4 Solution and error propagation

As proposed in section 3.3.4, nonlinear least squares approaches the optimal position for every
parameters iteratively, starting from an initial position. In 24, the third equation is nonlinear
in term of the projection from multi-camera system. In bundle adjustment, equation 24 is lin-
earized with a first-order Taylor expansion, that is:

vpvΓ
vt

 =

 P p − P 0
p

Γ − Γ 0

F (P p,P n,X t)− xt


︸ ︷︷ ︸

y

+

 I 0 0 0

0 0 I 0
∂F
∂Pp

∂F
∂Pn

∂F
∂Γ

∂F
∂Xt


︸ ︷︷ ︸

J


δP p
δPn
δΓ

δXt


︸ ︷︷ ︸
δβ

(26)

where, y is the vector of differences between predicts and observations, J is Jacobian matrix
and δ̂β is the vector of corrections of the parameters. We note β as the vector of unknowns in
multi-camera based localization, including the pose of viewpoints P t, 3D tie pointsX t and the
rigid transformation parameters Γ . We also define βk as the estimates of the parameters in step
k. Then the parameters will be updated by: βk+1 = βk + δ̂β in next step. The corrections are
obtained by solving the normal equation:

JTWJδ̂β = JTWy, (27)

where,W is the weight matrix:

W = diag(Σp,ΣΓ ,Σt)
−1.
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. The dimension of the normal matrix is 6 × N + 3 ×M + 6 × L. Here, N is the number of
viewpoints in LBA window, M is still the number of tie points and L is the number of cameras
in the multi-camera system. N depends on the size of LBA window which is usually small
and L is fixed. Thus, the computation when we solve the normal equation is determined by M .
Although we add error equations about Γ , the structure of normal equation is not changed. The
left-top is a block diagonal matrix and each block is 6× 6, the right-bottom is also 3× 3 block
diagonal matrix about tie points. However, the size of left-top sub-matrix in normal matrix
is 6 × (N + L) instead of 6 × N in single camera case, introducing in section 3.3.4.2. The
same method (cf. section 3.3.4.2) is used to estimate the covariance matrix of the poses from
[JTWJ ]−1.

3.4.4 Experiment for different camera configurations

The data for experiment was acquired by STEREOPOLIS which is mounted with multiple cam-
eras. In this experiment, four cameras which are two front looking and two backward looking,
are selected. These four cameras are marked as camera 11, camera 12, camera 51 and camera
52 in STEREOPOLIS. Figure 3.17 shows the position of each camera in the mobile mapping sys-
tem. The cameras are calibrated beforehand and all the relative rigid transformation between
cameras have been measured during system calibration.

Figure 3.17: The positions of the four cameras in STEREOPOLIS and the camera coordinate systems.

3.4.4.1 Camera configuration

In this experiment, we design four different camera configurations to evaluate their perfor-
mance, as shown in figure 3.18.

The four camera configurations are noted as: Mono, F_F, F_B and F_F_B_B:

68



3.4. Multi-camera based localization

(a) Mono (b) F_F (c) F_B (d) F_F_B_B

Figure 3.18: Design of camera configuration. F: Forward looking. B: Backward looking. (a) Mono:
monocular camera. (b)F_F: two front cameras. (c) F_B: one front and one back camera. (d) F_F_B_B:
using four cameras.

• Mono: One forward looking camera (camera 11) is used in this case, which has been
used in the experiment in 3.3.5.

• F_F: Two forward looking cameras are used to compose a conventional stereo vision.
They are camera 11 and camera 12 in STEREOPOLIS.

• F_B: One front looking camera and one backward looking camera are applied for this
non-overlap stereo.

• F_F_B_B: All the four cameras are used to generate a camera cluster.

The mono and F_F are the most popular camera configurations used in visual odometry and
SLAM. In the case of F_B, it can enlarge global FOV. Although there is no overlap between two
cameras, each camera can make contributions for the pose estimation at different directions. We
generate the F_B using camera 11 and 51 in experiment. It can also be composed using camera
12 and 52. For the configuration of F_F_B_B, it should be more robust than other three ones,
which have larger FOV and more observations. But the expense is increased from the point
view of computation.

3.4.4.2 The results of localization

The length of trajectory is 750 m which is the same area which was tested in the experiment of
monocular case, it contains 270 viewpoints. For all the cases, we assume that our localization
approach starts from a known point. In mono case, we set the distance from first image to second

69



Chapter 3. Localization using vision based system

key frame manually to determine the absolute scale. The same method is used for F_B case.
Although we know the metric relations between the two cameras, there is no overlap between
two cameras. Thus, it is impossible to set the absolute scale using the known transformation
between two cameras. For F_F and camera cluster F_F_B_B, the absolute scale comes from
the length of the baseline in stereo rig.
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Figure 3.19: Comparing the estimated paths with ground truth in map. GT: Ground Truth

We compare the trajectories estimated using each configuration with the Ground Truth (GT)
obtained by GNSS/INS/odometer system. The results are presented in figure 3.19. The mono
case is the worst one while the results for other three cases are very close. F_F_B_B is slightly
better than F_B and F_F.

A similar strategy that has been used for analyzing the results in experiment 3.3.5, is applied in
order to analyze the accuracy of localization at depth and lateral direction separately. The errors
are shown in figure 3.20. First, we analyze the errors along image plane in figure 3.20(a). One
common conclusion we can learn from this diagram is that, the F_B and F_F_B_B perform bet-
ter than mono and F_F. The reason might be that the configurations of F_B and F_F_B_B have
larger FOV than Mono and F_F. Then, we analyze the errors at depth direction in figure 3.20(b),
the F_F and F_F_B_B indicate their robustness to keep the accuracy in depth. Meanwhile, F_B
also performs very well for many images, but it is not as stable as F_F and F_F_B_B in some
situations such as turning where the moving direction changes quickly.
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(a) lateral errors. (b) Depth errors

Figure 3.20: Accuracy of viewpoint position.

We also estimate the uncertainties of viewpoint poses that consider the error propagation of
inherited poses and rigid transformation of each camera. The diagrams in figure 3.21 shows the
absolute error position and the length of major axis of error ellipsoids.

The absolute errors in figure 3.21(a) is to calculate euclidean distance from estimation position
to ground truth in 3D, calculated by

abs_error =
√

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2,

where, (X, Y, Z) is the estimated position and (X0, Y0, Z0) is ground truth. The error ellipsoid
of location is computed from its covariance matrix, the size of ellipsoid represents the uncer-
tainty of estimated pose. The statistics are drawn in figure 3.21, where figure 3.21(a) shows the
absolute errors of localization compared with ground truth and figure 3.21(b) demonstrates the
volumes of error ellipsoid. The increasing values from starting image in figure 3.21(b) repre-
sents the growing of uncertainty over time. Both the errors and uncertainties are reduced when
we increase the number of cameras. In the cases of F_B and F_F, F_B can obtain more precise
position than F_F(cf. Fig 3.21(a)), but the uncertainties of F_F are smaller, seen from figure
3.21(b). The accurate localization of F_B takes benefit from its larger FOV. For the smaller
uncertainties obtained by F_F, this is caused by the increasing number of observations for each
tie points.

Figure 3.22 compares error ellipsoids between Mono and F_F_B_B and the error ellipsoids
are exaggerated three times bigger . Only one error ellipsoid is drawn in successive five key
frames for better visualization. We can observe that the error ellipsoids of F_F_B_B are always
smaller than those of Mono. This illustrates that the uncertainty is reduced by using multi-
camera system.
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(a) Absolute errors (b) Error ellipsoid size

Figure 3.21: Absolute errors and volumes of error ellipsoid of viewpoint positions. (a) Absolute errors
of locations. (b) Volume of error ellipsoid of viewpoint position.

Figure 3.22: Uncertainties of position for Mono (light ellipsoids) and F_F_B_B (dark ellipsoids ). Blue:
trajectory of Mono. Red: trajectory of F_F_B_B. Green: ground truth.

3.4.4.3 Efficiency analysis

Accurate localization is always desired, but the efficiency is also an important issue that we
need to consider. The previous experiments indicate the great advantage of F_F_B_B, but it is
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obvious that the cost of computation increases with the growing number of cameras. We count
the processing time spent on feature extraction, matching, tracking and parameters initialization
and refinement with LBA. In the experiments, the size of LBA is ten and the only one new pose
in each LBA window. It means N = 10, n = 1. There are 270 images for each camera. In this
case, the total computing time is shown in table 3.1.

Table 3.1: Total time spent in each part of localization.

Mono F_F F_B F_F_B_B
Feature extraction (s) 232.05 453.60 460.71 913.92

Matching&tracking (s) 156.76 668.13 291.39 1203.35
LBA (s) 95.42 293.20 358.76 506.91

Time on feature extraction The computation SIFT feature extraction only depends on the
number of images. This means that when we add one more camera, the time spent for feature
extraction will increase one time. The time statistic in table 3.1 for feature extraction have
illustrated this, where the time for two-camera cases (F_F and F_B) is similar, which is two
times more than mono. Meanwhile, the four camera cluster spends almost four times more
processing time than mono on feature extraction. The average number of feature points detected
for each image is about 2780.

Time on matching and tracking As we introduced in section 3.2, the matching and tracking
for stereo is more complicate than mono, which is four times more due to the cross matches. The
time in the table from experiments trends to prove this where the time for F_F is 668.13s which
is almost four times bigger than the matching and tracking time for mono 156.76s. For the cases
of F_B and F_F_B_B, their matching methods are a combination of the matching method for
mono and stereo. In the case of F_B, the matching can be divided into two matching units for
mono. The matching in F_F_B_B is composed by the matching of two stereo independently. In
this case, the time spent on F_B should be two times more than mono. Meanwhile, F_F_B_B
is two times more than F_F and eight times bigger than mono, observing data in second row in
table 3.1. In global, the order of time complexity for all the camera configuration is

time(Mono) < time(F_B) < time(F_F ) < time(F_F_B_B).

Time on LBA The time spent on LBA relays on the number of parameters and the number of
iterative steps to approach optimal estimates of parameters. The former one is influenced by the
number of images, the number of tie points, while the second factor depends on the quality of
initial values of the parameters and the distribution of observations. So there are many factors
that affect the processing time, that makes it difficult to analyze the relations of the processing
time between different camera configurations in table 3.1. However, one common conclusion
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is that, the processing time increases with the growing of camera numbers. Because more new
tie points are generated and more observations for tie points are measured with the growing of
images.

The above experiments are performed on a Linux PC (Intel i5 CPU at 3.30GHz, 4 cores, 7.8
GB of RAM memory and 64 bit OS). The SIFT algorithm implemented in Vlfeat is applied
to extract the features [Vedaldi and Fulkerson, 2008]. Our LBA algorithm is developed based
on Ceres-Solver which is an open source C++ library for modeling and solving optimization
problems [Agarwal et al.].

3.5 Conclusion of vision based localization

The localization methods introduced in this chapter only use cameras. A LBA based approach
for localization using monocular camera is introduced at first. Then we extend the method
adapting to multi-camera system, considering uncertainty propagation.

Accuracy of localization The proposed methods for localization are evaluated using real im-
age sequences captured with precise MMS. We compare our localization results with ground
truth which is acquired by a high precision GNSS/IMU/Odometer system. From our experi-
ments, the accuracy of localization is improved from mono to multi-camera system. The max-
imum error is over 6m using monocular system while it is reduced to less than 1.5m by using
multi-camera rig.

Uncertainty propagation of localization For localization using monocular camera, we prop-
agate the uncertainties of image poses over sequence. For multi-camera rig based localization,
we consider uncertainty propagation for both poses and relative transformation from cameras to
view points. Our experiments in section 3.3 and section 3.4 indicate that uncertainties of poses
are growing over time, but the increasing speed is decreased when we extend monocular camera
based localization to multi-camera system based approach.

Efficiency of vision based localization In summary, it is a trade-off between accuracy and
efficiency for vision based localization. But one interesting point is that F_B could be a good
solution which improve the localization accuracy significantly in comparison to Mono case,
while the processing time doesn’t grow as much as F_F or the multi-camera system. From table
3.1, we would say that it is not a real-time localization approach for current implementation.

The proposed methods was tested on other datasets, but it suffers from insufficient matches
using current matching and tracking strategy. Moreover, most of processing time is spent on
feature extraction, matching and tracking (cf. Tab 3.1). Thus, the performance of matching and
tracking need to be promoted . The relevant research will be presented in next chapter.
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Chapter 4

Propagation based matching and tracking

This chapter presents a new method for detection, matching and tracking of interest points to
improve the performance of localization. The related phases in the entire pipeline of localization
are shown as following figure: In this chapter, section 4.1 is an overview that places the problem

Figure 4.1: Matching and tracking for localization.

of original matching and tracking methods and presents the flowchart of new method. Section
4.2 explains pose prediction and uncertainty propagation. The guided matching is introduced in
section 4.3 and section 4.4 presents the strategy to explore new tie points. As last, we test the
new matching and tracking methods using real image sequences.
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4.1 Overview

4.1.1 Problem statement

In chapter 3, we have introduced the methods for feature extraction, matching and tracking.
We used SIFT for feature extraction and FLANN based pair-wise matching was applied. The
tie points were tracked over the pairwise matches. This kind of methods are usually used in
structure from motion [Pollefeys et al., 2004; Snavely et al., 2006; Moulon and Monasse, 2012],
but the computation is too high for visual odometry. As we discussed in section 3.4.4.3, feature
extraction and matching spend most of processing time. Thus, we need an efficient way to
establish the links of tie points for localization.

Another reason that motives us to explore a new matching and tracking method is the robustness.
We test our localization method proposed in chapter3 on KITTI visual odometry benchmarks
[Geiger et al., 2012] and we find that the current feature tracking, matching method is difficult
to be used in some scenarios. Figure 4.2 shows feature extraction and matching for one adjoint
image pair on high speed road using the methods proposed in section 3.2 (cf. chapter 3).

(a)

(b) (c)

Figure 4.2: Problem of pairwise matching for image on high-speed road. (a) 413 SIFT feature points.
(b) 364 SIFT feature points. (c) pairwise matches between the points in (a) and (b).

The matches in figure 4.2(c) have been refined by rejecting the outliers using epipolar con-
straints, but there are still many false matches due to the ambiguity of relations between epipo-
lar lines and false matching points. As shown in figure 4.3, the directions of pixel-flow and
epipolar lines are almost parallel. In this case, when the false matches are laid on or very close
to epipolar lines, we can not reject them according to the distance to epipolar. The images
demonstrated in previous figures were captured on high speed road where the texture in image
is poor. The false matches are caused by repeatable texture over sequences and they can’t be
rejected according to epipolar lines. In urban area, texture information would be richer, but it is
also difficult to filter the false matches on building facades in image according to epipolar lines.
In this case, a robust approach for matching and tracking is desired.
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(a) (b)

Figure 4.3: (a) epipolar lines between images 4.2(a) and 4.2(b). (b) pixel flow between corresponding
points

.

4.1.2 Our solution

In practice, the motion of vehicle is restricted because of inertial moment for both translation
and rotation. As shown in figure 4.4, these motions change smoothly over time. Thus, the
overall motions can be expressed in terms of a dynamic model [Bradler et al., 2015]. It is known
that the distribution of the corresponding points between two images are related to the motion.
If the initial motion for the new frame can be predicted, the exploring of correspondences can
be limited into small regions instead of searching in entire image.

X
Y

Z

Figure 4.4: The location and orientation of frames.

In this thesis, we intend to develop a propagation based matching and tracking method for tie
points exploration to improve both efficiency and robustness. The propagation based tracking is
recently proposed by Nolang Fanani and Mester [2016]. In this approach, the relative rotation is
estimated independently from translation using enhanced phase correlation proposed in Barnada
et al. [2015], then the translation of every new frame is predicted according to the previously
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estimated transformations [Bradler et al., 2015]. With the predicted pose, all the tie points from
previous frames can be propagated into current frame. Knowing the epipolar geometry between
two frames, the precise location of every propagated point is searched along epipolar line. We
have the same goal, but a more regular dynamic model is proposed to predict the pose. Our
model is obtained by learning from previous poses and predict both rotation and translation
at the same time. Moreover, we consider uncertainty of prediction when the tie points are
propagated into images.

Figure 4.5: Flowchart of propagation based matching and tracking.

The workflow of our strategy is presented in figure 4.5. First, the pose of each new frame
is predicted with a predefined motion model when we know the time interval δt. Then, an
approximate area for every existing tie points can be generated considering the uncertainty
propagation in the new image. In this case, we only search the precise locations of tie points
inside the approximate areas in image. Hence, a set of 3D-2D point-to-point correspondences
are obtained so that the precise image pose of image at current time step can be estimated. Then
we have two pipelines (cf. Fig 4.5), which are update and enriching. The motion model should
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be updated timely with the new pose to maintain the state over time. Another pipeline is to find
new tie points and triangulate their 3D coordinates.

4.2 Predict and update

The motion prediction is well studied in kinematics associated with a variety of quantities like
displacement, velocity, acceleration, and time. The knowledge of each quantity provides de-
scriptive information about the motion of an object [Forshaw and Smith, 2014]. Wei et al.
[2014] applied a constant acceleration model to present the motion of vehicle to predict the ve-
hicle translation over time. It assumes that the acceleration of moving vehicle is constant from
time step t−1 to t. Meanwhile, a constant velocity model was also proposed to predict the trans-
lation of vehicle [Bradler et al., 2015], which is linear and much simpler than acceleration based
motion model. The velocity from time step t − 1 to t is considered to be constant. However,
these two papers only use the motion model to predict the translation. The orientations are mea-
sured by IMU [Wei et al., 2014], or estimated using phase correlation [Barnada et al., 2015]. In
fact, the same strategies can also be used for rotation prediction, Persson et al. [2015] predicted
the poses using a constant acceleration and constant angular acceleration model jointly in visual
odometry when the pose estimation is in ill-conditions (very few tie points are tracked for new
images). More related applications can be found in SLAM. For instance, Davison [2003] pre-
dicted the motion in time step using constant velocity model for both translation and rotation. It
does not mean that the vehicle moves with constant speed all the time, but that the motion in a
time step is on average and the undetermined accelerations is expected to occur with a Gaussian
profile [Davison, 2003].

In our case, we intend to apply constant velocity motion model for prediction. As we can
estimate the uncertainty for every pose from LBA, the uncertainty of the predicted pose can be
obtained via motion model (cf. Fig 4.6).

Figure 4.6: Prediction and uncertainty propagation for new frame. A motion model is built using priorly
estimated poses to predict the pose of new frame It. The uncertainty of the prediction is propagated from
previous poses via motion model.
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4.2.1 Motion model

In 1-D kinematic, if we know the position at time step t−1 (Pt−1), the velocity from t−1 to t is
Vt and the time interval is ∆t. The position at time step t can be obtained: Pt = Pt−1 + Vt ·∆t.
The principle can be derived from multi-dimensional kinematic. In this thesis, P is defined as
the vector of image pose which contains 6 parameters. The first three stands for position of
perspective center and the last three values represent orientation of the image. V is noted as the
vector of velocity for translation and rotation.{

P = [X, Y, Z, α, β, γ]T

V = [VX , VY , VZ , Vα, Vβ, Vγ]
T

(1)

where, VX , VY , VZ are the speed on each axis and Vα, Vβ, Vγ are the angular velocities on every
axis. The strict angular velocity should be expressed with quaternion, which is linear in a four-
dimension. This model has been introduced in Davison’s work [Davison, 2003]. However, the
vehicle moves fast and the angular velocities are very small most of time. So it is possible to
use the velocities in 3D Cartesian space to approximate the angular velocities. One advantage
of using the approximate angular velocity model is to simplify the motion model that makes it
more efficient to obtain the uncertainty of prediction.

We note P t as the pose and V t as the velocity vector at time step t. The time interval is ∆t

from t− 1 to t. The pose at time t can be computed using a linear equation:

P t = P t−1 + V t ·∆t (2)

Thus, the pose P t relies on the reference pose P t−1 and the velocity V t.

4.2.2 Motion prediction

We assume that the vehicle moves smoothly on the road. The translation velocity and angular
velocity keep constant in one time step. According to the constant velocity model presented in
equation 2, three quantities: P t−1, V t and ∆t should be known for new pose prediction. In
practice, ∆t can be easily obtained using a timer coupled with camera. The pose at previous
time step can also be estimated precisely with methods proposed in chapter 3. Thus, the key for
motion prediction is to determine the velocity vector. With the assumption of constant velocity,
the velocity at time step t can be expressed using the velocity at time step t− 1, that is:

V ∗t = V t−1, (3)

where, V ∗t is the approximate velocity at time step t. Therefore, the approximate pose at time
step t, noted asP ∗t , can be predicted using equation 2, associated with the approximate velocity,
as shown in equation below:

P ∗t = P t−1 + V ∗t ·∆t (4)
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4.2.3 Motion model update

As we discussed at the beginning of this section, the constant velocity model doesn’t mean that
the moving speed and angular velocity of vehicle is always constant. Actually, we only assume
that the velocity is constant from previous time step to current time step, as shown in equation
3. Therefore, in order to get accurate prediction, V t−1 should be computed dynamically that
makes it close to the real velocity at time step t. The aim of model update is to estimate the
accurate velocity V t when we have estimated the accurate pose P t using the matching and
tracking results at current time. Then, V t will be used for prediction of a new time step t+ 1.

Regarding the terms in equation 2, the only unknown term is V t. It can be easily computed
using equation below:

V t =
P t − P t−1

∆t
(5)

where:

• P t: accurate pose at current time.

• P t−1: accurate pose at previous time step.

• ∆t: time interval from step t− 1 to t.

In order to improve the robustness of prediction and reduce the impact of erroneous pose estima-
tion, we compute the velocity for time step t using the latest three poses that are Pt, Pt−1, Pt−2.
The time intervals are noted as ∆t,∆t1. The ∆t1 is the time interval from t to t − 2. In this
case, the velocity vector is computed by:

V t =
(P t − P t−1) + (P t − P t−2)

∆t+ ∆t1
(6)

To obtain a simplified expression, we define:

∆T = ∆t+ ∆t1,

thus the equation 6 can be written as:

V t =
2P t − P t−1 − P t−2

∆T
(7)

The special case is the beginning of localization. We start from a known point, there is no way
to compute velocity vector in advance. So we suppose that the velocity vector is zero, thus the
poses of second frame is

P ∗1 = P 0

according to equation 4. Then, we use equation 5 to compute the initial velocity for the predic-
tion of third frame.
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4.2.4 Uncertainty propagation

The estimation of uncertainty for every key frame in LBA enables us to estimate the uncertainty
of the predicted pose. We write equation 7 as matrix style:

V t =

[
2

∆T
I6×6 −

1

∆T
I6×6 −

1

∆T
I6×6

]
︸ ︷︷ ︸

A

 P t

P t−1

P t−2

 , (8)

where, I6×6 is a 6 × 6 identity matrix and A is a 6 × 18 matrix in terms of time interval. It
is obvious that equation 8 is linear. Considering the principles of covariance propagation, the
covariance matrix of V t is:

ΣVt = AΣPA
T (9)

where, ΣVt is the covariance matrix of V t , ΣP is the covariance matrix of P t,P t−1 and P t−2.
In the prediction of next frame t+ 1, we suppose:

V ∗t+1 = V t

, hence the covariance of the velocity:

Σ∗Vt+1
= ΣVt

. The pose at time t + 1 can be obtained by equation 4. The covariance of the predicted pose
P ∗t+1, noted as Σ∗Pt+1

, can be estimated by considering the uncertainty propagation from P t and
V ∗t+1. We define the time interval from t to t + 1 as ∆t + 1 and assume that Pt is independent
to V ∗t+1. The covariance of P ∗t+1 can be obtained by below equation:

Σ∗Pt+1
=
[
I6×6 ∆t+1I6×6

] [ΣPt 0

0 ΣVt

][
I6×6

∆t+1I6×6

]
= ΣPt + ∆2

t+1ΣVt

(10)

where, Σ∗Pt+1
is the covariance matrix of our prediction for the pose of new frame and ΣVt is

covariance matrix of velocity.

4.3 Guided matching

The section 4.2 introduces how to predict motion and propagate the uncertainty for new frame.
In this section, we will introduce how to use those predictions for guided matching. A searching
area for every tie point will be generated using the predicted pose and its uncertainty, instead
of searching every existing tie point in entire image. Our aim is to decrease false matches and
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speed up the matching processing. There are two major issues for guided matching: 1) how to
generate the searching area for each 3D tie point in image and 2) which algorithm should be
employed to measure the similarity for matching in the searching area.

4.3.1 Generation of searching window

With the predicted pose of current frame, every existing tie point can be projected into current
image plane using the projection equation (cf. equation 6 in section 3.1) proposed in chapter
3. In order to find precise locations, we need to search into a surrounded area around the
approximate back-projection. The issue is how to determine searching scope. The simplest way
is to set a fixed size for all the points, but it has two restrictions in our applications. First, the
error propagation will influence the precision of prediction for new pose over time. Second, the
precision for back projections of a tie point depends on its depth, where smaller depth means
larger back-projection errors though the tie points have same precision. In this case, small
searching areas for far tie points and large areas for close tie points should be set. Therefore,
we desire a solution that can determine the size of searching area dynamically considering the
precision of prediction and depth uncertainty.

Figure 4.7: Generation of searching area for every tie point in new frame. The blue circles
(X1, ...Xj , ...Xn) are tie points in world coordinate system. The dotted ellipse in It is the error el-
lipse of the projection of Xj . The red rectangle is the bounding box of error ellipse which is also the
searching area used for matching with image point in It−1.

Ochoa and Belongie [2006] proposed a solution to generate the searching boundary for every
reference feature point according to uncertainty propagation, the transformation between two
images is modeled by homography and the matching is guided by the uncertain region of every
mapped image points in target image. Our solution for this problem is also derived from uncer-
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tainty for guided matching, but the boundary of searching area is determined by the uncertainty
propagated from the predicted pose and tie points. Figure 4.7 shows our proposed method. The
uncertainty of image pose is estimated using the method proposed in section 4.2.4. The exist-
ing tie points were computed by previous steps which are considered having same precision at
this stage. We propagate the uncertainty and estimate the error ellipse for each back-projected
location in image (cf. Fig 4.7). The searching area is determined by the bounding box of error
ellipse, shown with red rectangle in figure 4.7. To search the precise image point location for
each existing tie point, we match the reference image point for each tie point into the searching
area. The reference image point is chosen the nearest image point in the observation chain of
tie point over image sequence (cf. red cross in image It−1 in Fig 4.7).

4.3.1.1 Covariance of predicted locations

Considering equation 6 (cf. chapter 3), the back-projection of each existing tie point can be
computed via:

x∗i = F (P ∗t ,X i), (11)

where, P ∗t is predicted pose, X i is one of existing tie points and x∗i is the predicted location of
tie point in image.

F is a nonlinear function. To obtain the covariance of x∗i , we propagate the covariance from
predicted pose and tie points to image plane using first order approximation of the F through
Taylor expansion. We denote the covariance matrix for existing tie points as ΣX . At time t,
the covariance of predicted pose P ∗t is written as Σ∗Pt , estimated by equation 10 in this chapter.
In this thesis, we suppose that P ∗t and X are independent. According to the principle of error
propagation, the covariances of predicted points in image can be computed by:

Σxi =
[
∂F
∂P∗t

∂F
∂Xi

] [ΣP ∗t
0

0 ΣXi

] ∂F
∂P∗t
∂F
∂Xi

 (12)

where, Σxt is the covariance matrix of predicted point.

4.3.1.2 Error ellipse

The error ellipse of the projected point in image can be calculated from its covariance matrix
[Draper and Smith, 1981; Fan, 1997]. The lengths of error ellipse axes are determined by the
eigenvalues, the eigenvectors represent the direction of the two major axis of error ellipse. We
note the eigenvalues as λ1 and λ2, the eigenvectors as v1, v2. The direction of major axis is the
direction in which the errors increase the most.

The summed squared Gaussian data is underlying chi-square distribution in terms of DoF. Thus,
the scale of error ellipse s can be determined by giving a confidence level. For instance, 99%

84



4.3. Guided matching

confidence level corresponds to s = 9.210. We define a as semi major axis and b as semi minor
axis of error ellipse, then {

a =
√
λ1 · s

b =
√
λ2 · s

As v1 represents the direction of major axis, the orientation of error ellipse can be calculated
via:

α = atan(
v1(1)

v1(0)
)

where, α is the angle relative to x axis for major axis of error ellipse.

4.3.2 Similarity measurement

In our approach, we measure the similarity by comparing two image patches. Then we move the
reference image patch over the searching area to find the most similar location. This becomes
the problem of template matching. Many methods have been proposed for template matching
technique such as Sum of Absolute Difference (SAD), the Sum of Squared Differences (SSD),
Normalized Cross Correlation (NCC) [Gonzalez and Woods, 1992; Li et al., 1994; Lewis, 1995;
Alsaade, 2012] . The NCC is proved to be the most robust one in the three proposed methods
[Zitova and Flusser, 2003].

NCC measures the similarity of two patches by computing discrete 2D correlation. We denote
ρ as the correlation coefficient. Given two image patches, the normalized correlation coefficient
is computed by below equation:

ρ =

∑
x,y[I(x, y)− I][T (x, y)− T ]√∑

x,y[I(x, y)− I]2
∑

x,y[T (x, y)− T ]2
(13)

where, I and T refer to the mean intensity value of patches in current and reference image. Then
we slide the patch T to compute the correlation coefficient for every pixel until the entire area
is covered. Thus, a correlation coefficient map can be generated. The value of ρ varies between
−1.0 and 1.0. The value of ρ is −1.0 when the texture of two patches inverses of each other
and ρ = 1.0 means the two patches are exactly same. To guarantee the matching quality, we set
a threshold for ρ, the matching result is accepted only if the maximum correlation coefficient is
bigger than the given threshold.

NCC is invariant to affine change in image radiometry [Liu and Moore, 1990; Faugeras et al.,
1993], whereas it is not invariant to image deformation. In our case, the images are acquired
with high sampling rate, so the deformation between adjacent image would not be heavy. So
the NCC can still be used for measurement.
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4.3.3 Sub-pixel matching

The location of maximum NCC value corresponds to an integer pixel coordinates. Figure 4.8
shows the real correlation coefficient values around the peak, the locations achieved by previous
template matching method would locate in one of the pixel near the real peak. To reach the real
peak with sub-pixel accuracy of surface conducted by NCC values, either interpolation or fitting
can be conducted. As shown in figure 4.8, the NCC values around the peak can be regarded
as lying on a smooth surface. Hence, an analytical function would be defined to represent the
surface and then the location of peak could be estimated from the function.

Figure 4.8: The NCC values in a 10 × 10 neighborhood window around the location of maximum
coefficient value.

For continuous version, the surface of correlation coefficient around the peak often forms a bell
shape (cf. figure 4.8). Thus, two orthogonal parabolic curves can be used to fit the shape in
x and y axes profiles. Then the peak is computed independently by fitting one dimensional
quadratic function [Naidu and Fisher, 1991; Debella-Gilo and Kääb, 2011]. Let’s note location
of the peak as (x0 + δx, y0 + δy), where (x0, y0) is integer position which has the maximum
correlation coefficient and (δx, δy) stands for the offsets from integer position (x0, y0) to the
peak.

We define a parabolic curve that connects the adjacent three points at each axis and estimate the
position where the curve reach its maximum. It means that three points (x0−1, y0), (x0, y0), (x0+

1, y0) are used to fit the parabolic curve at x axis direction and (x0, y0− 1), (x0, y0), (x0, y0 + 1)

are used to fit the curve at y axis. The offsets at x axis and y axis can be estimated using
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following equation [Naidu and Fisher, 1991; Debella-Gilo and Kääb, 2011]:
δx =

ρ(x0 − 1, y0)− ρ(x0 + 1, y0)

2ρ(x0 − 1, y0)− 4ρ(x0, y0) + 2ρ(x0 + 1, y0)

δy =
ρ(x0, y0 − 1)− ρ(x0, y0 + 1)

2ρ(x0, y0 − 1)− ρ(x0, y0) + 2ρ(x0, y0 + 1)

(14)

4.4 Generation of new tie points

In order to find new tie points, the first step is to detect the new image points which are different
with existing image points obtained by guided matching. In this thesis, we call them as new
interest points. Then we generate new tie points from new interest points by matching.

4.4.1 Interest points detection

To determine the interest points in image, many detectors can be applied. The algorithms such
as SIFT [Lowe, 2004] and SURF [Bay et al., 2006] yield good feature points that are invariant
to the change of scale and rotation. However, they are too intensive for real-time application
because of the generation of scale space. So the efficient algorithms such as Harris[Harris and
Stephens, 1988], Shi and Tomasi detector(good feature for tracking detector)[Shi and Tomasi,
1994], are often chosen for the interest points detector in visual odometry and SLAM [Davison,
2003; Nister et al., 2004; Mouragnon et al., 2006]. But their efficiency is still not high enough
in some high rate operation[Rosten et al., 2010], because they need to estimate the eigenval-
ues and eigenvectors from the matrix computed from image derivatives. In our research, we
choose an efficient algorithm that is Features from Accelerated Segment Test (FAST) [Rosten
and Drummond, 2006; Rosten et al., 2010] to detect the interest points for the entire image and
then select the suitable interest points according to the distance to existing points in image.

4.4.1.1 Selection of new interest points

The FAST detector extracts lots of interest points for the new frame. However, some interest
points have already existed in current frame obtained by guided matching. We define two
principles for the new interest points. 1) The new interest points should keep away from the
existing points. We set the minimal distance to its nearest existing image point as 20 pixels.
If the minimal distance to an existing point is smaller than 20 pixels, it will not be selected as
new interest point. 2) The distribution of the interest points should be as uniform as possible
over image. A similar strategy as non-maximal suppression in FAST detector is taken to filter
interest points, but we apply a larger mask which is a 20×20 window over the image. Only one
key point is kept in one window which has the largest response.
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4.4.1.2 Precise localization for the interest points

The position of p in figure 4.9(b) is the precise corner where we aim to approach, but the image
point extracted via FAST detector might locate at an arbitrary pixel around p.

(a) Ideal corner (b) Real corner

Figure 4.9: Corner with sub-pixel accuracy. p is the location of corner. The red lines are the tangent
lines of the corner in given window.

Förstner and Gülch [1987] proposed an approximate solution to compute the sub-pixel accuracy
corner. He supposed that the real corner is closest to all the tangent lines of the pixels in a
neighborhood window. The optimal location of p was solved based on least-square. As shown
in figure 4.9(b), the red lines are the tangent lines through one neighbor pixel in window. The
solution is the point of intersection of the tangent lines [Belongie, 2000].

We note qi as an arbitrary pixel location in window and 5qi
as the gradient at qi. For every

tangent line, the vector from the p to a point qi is orthogonal to the vector of image gradient at
qi. Thus, the equation of tangent line through qi can be expressed as:

Di(p) = 5qi
T · (p− qi) = 0 (15)

Every observation within the window can obtain one equation like equation 15. Our goal is
to find the optimal p̂ point which can achieve the minimum perpendicular distance to all the
tangent lines:

p̂ = argmin
p∈R2

∑
qi∈N

Di(p)2

where N represents the window of neighborhood around the corner. This formulation express
the sum of squares of all the distances from p to all lines in N .

Figure 4.10 demonstrates the results of interest points detection in each step. The points in
figure 4.10(a) are found by guided matching. Figure 4.10(b) shows the interest points detected
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(a) Existing interest point obtained by guided matching.

(b) The interest points detected with the proposed methods.

(c) New interest points used for enriching of tie points.

Figure 4.10: An example of selection of new interest points.

by FAST algorithm and filtered with a 20 × 20 pixels grid. The new interest points in figure
4.10(c) are a subset of points in figure 4.10(b), which are selected with the method proposed in
section 4.4.1.1.

With the detected interest points, the following steps are to search the correspondences for these
interest points to generate new tie points. We will discuss the matching for different cases:
monocular sequences, binocular sequences and multi-camera rigs.

4.4.2 Matching for monocular images

After guided matching for existing tie points, some correspondences between the new image and
previous images have been built. These corresponding points can be used as prior knowledge
for the matching of new interest points as shown in figure 4.10(c). We note current image as
It and match the new interest points into the nearest key frame It−1. Our aim is illustrated in
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figure 4.11.

+
Searching

Figure 4.11: Matching for monocular case. Red cross in It represents the new interest point, the yellow
rectangle is the searching area we expect to find the correspondence of the new interest point.

We have a new interest point (locating at the center of red cross) in new image It, the goal is
to search its correspondence in a limited area in image It−1 (see the yellow rectangle in figure
4.11). Our solution is to fit a mathematical model using the existing correspondences between
image It and It−1 obtained by guided matching as shown in figure 4.12.

In computer vision, the transformation between two images is usually homography. For in-
stance, we assume one image point x in It, it can be mapped into image It−1 by

x
′
= Hx

where x
′ is its correspondence in It−1 and H is a nonsingular 3 × 3 matrix [Hartley and Zis-

serman, 2003]. However, the homography transformation is true only if the all image points
are coplanar in 3D space. Unfortunately, it is not the case for images captured using a forward
looking camera in urban field, because the points on road and on the facades of buildings are
not coplanar. The homography model could be used unless the objects in images such as road,
facades, are segmented and then the homography can be used to map the image points for each
object separately. But this is not the case in this thesis. We aim to generate the searching area
using one function for all points.

Let’s define υ as pixel displacement for corresponding points from image It to It−1. We note
xi = [xi, yi]

T as an interest point in It and x
′
i = [x

′
i, y

′
i]
T as its correspondence in It−1. Then:

υi = x
′

i − xi,

which is the vector from red point to blue point as shown in figure 4.12. Consider the displace-
ments at x and y axes individually. Figure 4.13 illustrates the displacement of existing matches
in a space defined by the image plane and the displacements. Each discrete point in figure
4.13(a) is expressed using [xi, yi, υ

x
i ] while each discrete point in figure 4.13(b) is expressed

like [xi, yi, υ
y
i ]
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Figure 4.12: Existing correspond points between It and It−1. Red circle: the locations of image points
in It−1. Blue circle: Matches of achieved by guided matching in section 4.3. Green lines: displacements
of pixels.

(a) (b)

Figure 4.13: Discrete values of pixel displacement. (a) Displacement in x axis.(b) Displacement in y
axis.

The discrete points drawn in figure 4.13(a) and figure 4.13(b) can be expressed using an un-
known function Ψ(x, y) with respect to the location of x, written as:

υ = Ψ(x, y).

υ can be either the displacement in x or y directions.

For new interest points in It, the issue is that we don’t know their correspondences in image It−1.
This problem can be solved if we can estimate the displacements for the new interest points. To
approach this, we need to know the equation of Ψ(x, y). In this thesis, we suppose that the pixel
displacements from image It−1 to It varies continuously. Thus, Ψ(x, y) can be fitted using a
high-order surface equation. We use bi-cubic interpolation to predict the displacement at x and
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y directions separately: 
υx =

3∑
i=0

3∑
j=0

aijx
iyj

υy =
3∑
i=0

3∑
j=0

bijx
iyj

(16)

The coefficients aij, {i = 0, ..., 3; j = 0, ..., 3} and bij, {i = 0, ..., 3; j = 0, ..., 3} of the function
can be estimated using the existing pairwise image points and at least sixteen pairwise points
are needed.

With the bi-cubic equation, the displacements for new interest points can be predicted, then the
approximate correspondences of new interest points can be obtained. However, this is only an
approximation, we need to find the precise matches for new interest points in image It−1. To
do this, we generate a searching area around the approximate locations. In this thesis, the size
of searching area is fixed as a 30× 30 pixel window. Then the precise matches of new interest
points are searched in their corresponding searching areas.

4.4.3 Matching for stereo images

For binocular image sequences, the matching is not only between images along moving direc-
tion, but also includes the cross matching between left and right images. To find the new tie
points for stereo case, we consider a circle approach which matches between left, right and two
consecutive images [Geiger et al., 2011; Cvišić and Petrović, 2015]. The setup of the circle
matching is shown in figure 4.14 which presents the four steps to obtain the correspondences
for one new interest point in left image.

Left image Right image

Time

Step 1
Step 2

Step 3

Step 4

+

Figure 4.14: Circle matching for consecutive image pairs.

Starting from new interest points in left image (red cross), the first step is to find its correspond-
ing point in previous left image with the matching method proposed for monocular case, the
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correspondence is shown as the red square. The second step is to search the correspondence of
the new matching point in previous left image in previous right image (cf. step 2 in figure 4.14).
The third step is to match the point in previous right image with current right image with the
matching method for monocular case. Finally, we check the circle matching results by matching
the point in current right with the starting interest point in current left image. If the coefficient
calculated by NCC is larger than the given threshold, the circle matching is successful. Oth-
erwise, we remove the matches. The same steps are applied for all the new interest point in
current left image. For new interest points in current right image, the same strategy of circle
matching is employed, but the order of the steps is inverse. It starts from current right and is
matched with previous right image. Then precess the previous left image and do the matching
with current left image. The final step is to check the circle matching between current left and
right images.

In the original circle matching method proposed by Geiger et al. [2011], the centers of searching
area in matching step 1 and step 3 are determined only using the coordinates of new interest
point, that is x

′
= x. Then searching the precise matches in a fixed window. This method

is simple but it is only suitable for correspondences having small displacement. However, the
displacement is large for small depth objects. In this thesis, the centers of searching areas are
predicted using a polynomial function in matching of monocular case. So our method can have
a more precise position for matching that enables us to reduce the searching area and improve
the matching robustness. For the cross matching between left and right images as shown in
step 2 in figure 4.14, we also employ the epipolar constraints. But the difference is that we
learn the searching direction and distance based on the existing pairwise points. The following
paragraphs will introduce how to implement our new epipolar constraints.

4.4.3.1 Epipolar geometry

In stereo rig, the relative translation and rotation between left and right cameras are fixed in
the operation of localization, thus the fundamental matrix can be estimated with the first image
pair at the beginning, then it can be used for all the other image pairs. We denote Flr as the
fundamental matrix from left to right and Frl represents the matrix from right camera to left.
The Flr and Frl are 3× 3 matrix. In epipolar geometry, the corresponding homogeneous image
points xj,x

′
j in image I and I ′ hold the formula:

x
′T
j Fxj = 0 (17)

where Fxj presents the epipolar line in image I ′ , which passes through point x
′
j . Therefore,

if we know the fundamental matrix between two images, the searching of matching point can
be limited on an epipolar line. The fundamental matrix can be estimated with a set of pairwise
image points using the methods proposed in [Hartley and Zisserman, 2003; Armangué and
Salvi, 2003; Luong and Faugeras, 1996]. In our implementation, a robust scheme is applied
based on RANSAC.
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4.4.3.2 Matching with the constraints of epipolar geometry

We know that the good matches of new interest points lie on their corresponding epipolar lines
in matching image. The general solution is to search all the pixels in entire epipolar line to find
the best matches. Our idea is to find the matches in a short segment in epipolar line. To do this,
we should solve the following three issues: 1) where is the start point for searching on epipolar
line, 2) which direction should be searched along epipolar line, 3) how long should be searched.

Start point for searching Define the general equation of epipolar line in image as :

ax+ by + c = 0,

which is computed from fundamental matrix. In this thesis, we focus on horizontal stereo rig
and the images are not rectified to epipolar geometry, thus, for one new interest point xi =

[xi, yi]
T in image, the start point on epipolar line is:x

′

0 = xi

y
′

0 = −axi + c

b

(18)

This means that the location of the start point in target image is related to the position of the
candidates in reference image.

Searching direction There are only two possible directions for searching at the start point
in epipolar line. We intend to learn the direction from the guided matching according to dis-
placement vector υ. In fact, if we know the direction of υ in either x or y axis, the searching
direction can be determined. For horizontal stereo rig, the displacements in x axis are bigger
than those in y axis most of time, so we only consider the status of υx. We collect all the values
of υx from existing matches, the principle for direction learning is :

−→
D =


left

M∑
i

υxi > 0

right
M∑
i

υxi < 0

(19)

where,
−→
D represents the searching direction in epipolar line and M is the number of existing

matches. We should mention that this method is only suitable for the horizontal stereo rig. For
vertical stereo rig, we can consider the displacement in y axis.

Searching scope In our implementation, we set the searching distance as 1.5 times of maxi-
mum displacement, written as:

δd = 1.5 ·max{‖υ1‖, ‖υ2‖, ..., ‖υM‖} (20)
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where, δd is the length for searching, ‖.‖ represents the norm of displacement vector.

Figure 4.15 is an example of matching for a stereo pair. The purpose is to match the interest
points in left image with those in right image. Instead of searching whole epipolar, we only
search a small part of the epipolar line to find the best matches. The epipolar line could have
some errors, so the matches on epipolar lines would not very accurate. In order to overcome
these problems, we refine the matches by finding the locations in a small window around the
matched location in epipolar line. In our experiment, we set the size of the searching window
as 1.5 times larger than the image template for each interest point.

Figure 4.15: Matching of a stereo pair. The top image is the captured by left camera and the bottom
one is the right image. The start points and searching scope in epipolar line for the interest points in left
image are drawn with same color.

4.4.4 Matching for multi-camera images

Previous two sections introduce the matching of new interest points in monocular and binocular
cases. For the other camera configurations such as four cameras cluster (two forward looking
and two backward looking) and non-overlap stereo (one forward looking and one backward
looking), the matching for new interest points is explained in this section.

The matching for non-overlap stereo can be considered as two mono cameras separately, that is
to start the matching of forward looking camera with the strategy proposed in section 4.4.2 at
first. Then the same way can be applied for the backward looking camera.

Similarly, the four camera case can be divided into two stereo cases that are one forward looking
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and one backward looking stereo. For each stereo case, the method introduced in section 4.4.3
can be applied for matching.

For other multi-camera configurations, no matter how many cameras they have, it can be always
divided into a combination of stereo and monocular cases. Then the strategies introduced in
sections 4.4.2 and 4.4.3 are used for matching for each case.

4.5 Experiments of new tracking methods

As we presented at the beginning of this chapter, our previous matching and tracking strategy
suffers from problems when we test our localization method proposed in chapter 3 on KITTI
benchmark for the high speed road case. With the propagation based tracking and matching
method, we test our method using the same datasets again.

The images used for visual odometry are captured by a forward looking stereo rig and the
provided images are rectified with the calibration parameters. There are eleven stereo sequences
for training and accurate ground truth (<5cm) is provided by a GPS/IMU system with RTK
corrections enabled for each sequence [Geiger et al., 2012, 2013] .

4.5.1 Relative Errors

To compare the accuracy of localization for each sequence, a measure that operates the relative
geometric relations between poses along the trajectory, is used to evaluate the performance of
visual odometry. In previous chapter, we compute absolute errors of every estimated poses with
respect to the ground truth to evaluate the localization accuracy. However, this kind of meth-
ods could mislead the comparison of localization performances, because this measure strongly
depends on the point in time step where the error has been made [Geiger et al., 2012]. For in-
stance, the translation errors could increase with growing of trajectory length, or the rotational
errors earlier in the sequence lead to larger end-point errors.

Kümmerle et al. [2009] proposed a new method to evaluate the accuracy of localization which
aimed at computing a relative measure in a fixed distance over sequence. The measure mixed
the performance of rotation and translation errors together to express the performance of local-
ization. This method was extended by Geiger et al. [2012], that considered the performance of
translation and rotation separately. The measures for translation and rotation are defined as:

e(L)r =
1

|L|
∑

(i,j)⊂L

∠[(P̂j � P̂i) � (Pj � Pi)]

e(L)t =
1

|L|
∑

(i,j)⊂L

‖(P̂j � P̂i) � (Pj � Pi)‖
(21)

where, L stands for frame group and (i, j) is one image pair in the group. |L| is the trajectory
length from one frame to another in each image pair. e(L)r and e(L)t represent the relative
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errors for rotation and translation. P is a 4×4 matrix which contains the rotation and translation:

P =

[
R3×3 ν3×1

0 1

]

R3×3 is rotation matrix and ν3×1 is translation vector of camera center. � stands for the inverse
composition operator of image motion [Geiger et al., 2012].

4.5.2 Evaluation on training datasets

The relative rotation and translation errors are estimated on the images with fixed distances.
The distance list is filled with 100m, 200m, 300m, 400m, 500m, 600m, 700m and 800m. It
means that the relative errors are computed using equation 21 every 100m, 200m, 300m, 400m,
500m, 600m, 700m and 800m from the beginning of trajectory. Finally, the average values
are computed on each fixed distance value. Eleven sequences captured in different scenarios
with ground truth are used to evaluate the approach. We test vision based localization method
with matching and tracking method proposed in chapter 3 and the localization with propagation
based matching and tracking method proposed in this chapter. The average translation and
rotation errors on all the eleven sequences are computed in table 4.1. The accuracy on both
translation and rotation is improved a lot by using propagation based matching and tracking
method for localization. The translation error is reduced from 1.62% to 0.95% and the rotation
errors is reduced from 0.0045 deg/m to 0.0034 deg/m

Table 4.1: Comparison of relative errors on translation and rotation.

Translation error (%) Rotation error (deg/m)

Original 1.62 0.0045

New method 0.95 0.0034

The translation errors and rotational errors on training datasets for each sequence are shown in
figure 4.16 and figure 4.17. Horizontal axis stands for the length trajectory and vertical axis
presents the average relative errors.

Table 4.1 represents the average errors for both translation and rotation in figure 4.16 and figure
4.17. Figure 4.16(b) illustrates that all the translation errors are less than 2.0% and most of
them are less than 1.2% for propagation based matching and tracking while the translation
errors obtained by original method are larger than 1.0% for most of sequences. For sequence
01 which is the most challenging sequence in training datasets, the translation error is more
than 3.0% at the beginning and increases to almost 6.0% at the end using original method, but
the translation errors are between 1.2% and 1.8%, which has great improvement by applying
propagation based matching and tracking method. The accuracy of rotation is also improved
significantly by comparing the results in figure 4.17(a) and figure 4.17(b).
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(a) Original matching and tracking.
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(b) Propagation based matching and tracking.

Figure 4.16: Accuracy of translation for KITTI training datasets.
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(a) Original matching and tracking.
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(b) Propagation based matching and tracking.

Figure 4.17: Accuracy of rotation errors.
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4.5.3 Evaluation on test datasets

There are 22 sequences in KITTI benchmark website for odometry. The ground truth of poses
for first 11 sequences (00-10 sequences) are known for us that we used to evaluate our approach
in previous section. At the same time, we can summit the estimated poses of the rest (11-21)
sequences on KITTI site to compare the method with the state-of-the-art methods. We call
11-21 sequences as test datasets.

The average translation error for test datasets is 1.25% and the average rotation error is 0.0041
deg/m using our method, which is called SLUP on the website 1. Comparing with the average
errors for training datasets (cf. Tab 4.1), the accuracy of test datasets is not as good as training
datasets which is 0.95% for translation error and 0.0034 deg/m for rotation error. By analyzing
the sequences, we found that there are three sequences (12, 20, 21) out of test datasets captured
on highway which have poor texture. For those sequences, many points of interest would be
detected and tracked on moving vehicles on road which could lead to poor pose estimation
during localization. In fact, we improved the accuracy of localization significantly for sequence
01 in training datasets by using propagation based matching and tracking method (comparing
results in figure 4.17(a) and figure 4.17(b)). However, the translation error for sequence 01 is
still bigger than other sequences in training datasets (cf. figure 4.17(b)). This is caused by the
reason that the ratio of moving interest points among all the detected interest point for sequence
01 is higher than others sequences in training datasets. For the same situation, the accuracy of
localization using sequences 12, 20, 21 would not so good that influences the average translation
error and rotation error in test datasets.

Table 4.2 presents the performance of three state-of-the-art visual odometry methods and our
method published on KITTI benchmark suite. The best translation accuracy can approach

Table 4.2: Accuracy of state-of-the-art visual odometry methods.

Method
Translation

error
Rotation error

(deg/m)
Description

SOFT[Cvišić and Petrović,
2015]

0.88% 0.0022 Feature selection

RotRocc[Buczko and
Willert, 2016a]

0.88% 0.0025
Normalized Reprojection
Error

ROCC[Buczko and Willert,
2016b]

0.98% 0.0028 feature-adaptive scaling

SLUP 1.25 % 0.0041 our method

0.88% which is achieved by SOFT [Cvišić and Petrović, 2015] and RotRocc [Buczko and
Willert, 2016a]. The SOFT estimates the poses using selected tracks along sequences according
to the length of tracks, because the longer tracking of interest points amongst multiple frames

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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are found, the better quality is obtained for pose estimation. RotRocc can get same level of
translation accuracy (0.88%), but the rotation accuracy is slightly worse than SOFT. RotRocc
normalized the back-projection errors that removes the impact of different depth of 3D object
points for the back projections. The similar method is used in ROCC [Buczko and Willert,
2016b] that applies feature-adaptive scaling for back-projection errors to make them almost
invariance to the 3D position of each feature. It provides a good criterion to remove outliers
that can reject the inaccurate matches. Comparing our results with these methods, we should
improve our method in future work. The algorithms such as feature selection, back projection
scaling proposed by previous algorithms, give us some new ideas to improve the accuracy.

4.5.4 Absolute errors and trajectories

Previous sections presents the errors in relative. Now, let’s select some typical cases to show
the absolute errors of localization. In this thesis, we choose two cases which are the best and
the worst cases achieved by original matching and tracking method. The best accuracy is ap-
proached in sequence 00 while the most difficult case is sequence 01. We compute the absolute
errors compared with ground truth for both methods and draw the trajectories. The results are
shown in figure 4.18 and figure 4.19.

Let’s analyze the absolute errors first (cf. Fig 4.18(a)). At the beginning of trajectory, the
original matching and tracking performs better than propagation based method, then their per-
formances become similar, but the drift increases quickly after 2.5km trajectory for original
method while the increasing speed of propagation based approach is quite slow. We draw the
trajectories estimated using two different matching and tracking strategies, as shown in figure
4.18(b). We can see the drift at the end of trajectory using original method, which is larger than
the propagation based tracking and matching method.

The most challenging case for original matching and tracking method is the sequence 01 in
KITTI datasets. The original matching and tracking method suffers from the matching ambigu-
ity problem as we presented at the beginning of this chapter because of the repeatable texture
on road and roadsides. There are lots of false matches, which cause very poor pose estimation,
thus the absolute errors increase very quickly (cf. Fig 4.19(a)). Figure 4.19(b) illustrates the
trajectories. The blue trajectory shows the path estimated using original method which turns to
a wrong direction. The red line shows the results estimated using propagation based approach.
We can see the accuracy is improved a lot with the new approach.

From the results drawn in figure 4.18 and figure 4.19, we can say that the robustness of using
propagation based matching and tracking method for visual odometry is improved. In some
cases, the original matching and tracking method using SIFT feature obtains more accurate
position than the new method, this could get benefit from massive matches along sequences.
For the new matching and tracking method, the number interest points are limited, which is less
than 400 per image.
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Figure 4.18: (a) Absolute errors of positions. (b) Trajectories of ground truth, estimated using original
method and new approach for sequence 00.
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Figure 4.19: (a) Absolute errors of image positions. (b) Trajectories of ground truth, estimated using
original method and new approach for sequence 01.

103



Chapter 4. Propagation based matching and tracking

4.5.5 Efficiency analysis

From the analysis of efficiency in chapter 3, we found feature extraction, matching and tracking
are the most time-consuming parts. This is also a reason that motivates us to develop prop-
agation based matching and tracking. Table 4.3 gives us a global idea about the efficiency
improvement using the new method, which presents the average time spent on each image pair.

Table 4.3: Processing time for the original and new tracking and matching methods.

Feature extraction matching and tracking
Original 0.64s 0.4s

New 0.04s 0.17s

From the previous table, we can see that FAST detector is much faster (more than ten times)
than SIFT. It is a real-time detector. The efficiency of matching and tracking is also improved
about two times with the new approach, compared with the FLANN based matching and graph
based tracking. However, the efficiency of propagation based tracking and matching should be
improved further for real-time application. In fact, most of the time spent in this part, is caused
by the computation of NCC. In current implementation, we compute NCC between patches one
by one. This can be implemented with parallel computing techniques in the future to speed up
the process.

4.6 Conclusion

This chapter presented a propagation based matching and tracking method to improve the per-
formance of localization. The pose of new frame was predicted by a motion model and the
uncertainty was estimated for the prediction. With the prediction, the searching of existing tie
points were guided considering uncertainty propagation. We used FAST algorithm to detect
points of interest in image and a constrained matching method was proposed for matching of
new tie poitns. The proposed matching and tracking method was tested using datasets for visual
odometry in KITTI benchmark sites. From the experiments results, both accuracy and efficiency
were improved by using propagation based matching and tracking method. We also submitted
our results to the benchmark and average translation error is 1.25%. In our future work, we can
improve the localization performance by filter the interest point detected on moving objects in
images and also taken into account the advantages of the state-of-the-art methods published on
KITTI site.
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5. Geo-referenced landmarks based localization

Chapter 5

Geo-referenced landmarks based
localization

5.1 Overview

With propagation based matching and tracking (cf. chapter 4), robust correspondences can
be obtained for pose estimation. Then, poses, as well as tie points, are optimized with LBA.
However, the drift of localization is still cumulated over time, because LBA only concerns
the local accuracy of the trajectory [Scaramuzza and Fraundorfer, 2011]. To achieve accurate
localization in global, one popular solution is loop closure. It implies that the robot should
remember its visited path and keep tracks of all the previous history of images. In practice, the
loop closure is usually used in visual SLAM for small workspace, but it has difficulties in large
scale environment. On the one hand, the quickly increasing tracks in vision based localization
makes it heavy for memory and computation. On the other hand, many trajectories do not have
any loops. In this case, to reduce the drift of vision based localization, the external data such as
GNSS, maps and geo-referenced landmarks, should be taken into account.

As we discussed in chapter 2, different types of external data (e.g. GNSS [Agrawal and Kono-
lige, 2006; Lhuillier, 2012; Shi et al., 2012], maps [Alonso et al., 2012; Gupta et al., 2016], 3D
building models [Larnaout et al., 2012; Arth et al., 2015b] and ortho-photos [Jaud et al., 2013;
Ji et al., 2015]) have been integrated with vision based localization. In this thesis, we aim at
integrating geo-referenced semantic objects (e.g. traffic signs and road markings), which have
specific geometry and texture information. Those features make them being detected precisely
and matched easily. We take traffic signs and road markings as landmarks in our method. Only
keyframes are taken into account for integration. Figure 5.1 shows the pipeline of the inte-
gration (highlight forms). Our strategy is inspired by the knowledge about ground control in
photogrammetry. The Ground Control Points (GCPs) are measured in world coordinate system
and the corresponding image control points are measured in images [Malmström, 1986]. Then,
these GCPs and image control points are combined with bock bundle adjustment to improve
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Chapter 5. Geo-referenced landmarks based localization

Figure 5.1: Flowchart of integration of geo-referenced landmarks with localization.

the accuracy. In our research, we combine GCPs with LBA. The GCPs are generated from geo-
referenced landmarks. We aim to develop the methods to match and measure the image control
points automatically. Section 5.4 will introduce our equation system for GCPs integration. An
automatic strategy of image control points detection will be explained in section 5.3.

In this thesis, the GCP and image control point are noted as:

• Xg : GCP in geo-referenced frame.

• xg: image control point.

5.1.1 Compared with classical GCPs

In photogrammetry, the GCPs are usually used to establish the relations between the local coor-
dinate system and absolute coordinate system. It is modeled in a rigid transformation with seven
parameters (rotation, translation and scale) [Malmström, 1986; Schenk, 2005]. Thus, at least
three GCPs (two X, Y, Z GCPs and one vertical Z GCP) and their correspondences in local
coordinates system should be measured to resolve the transformation parameters. In practice,
more GCPs are usually used to improve the accuracy of mapping.

In our approach, the localization starts from a known point in geo-referenced system, so we do
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not need to register two different coordinate systems. Our objective is to correct the drift caused
by error accumulation over time. In this case, we can generate constraints for LBA even if only
one GCP is available.

5.1.2 GCPs and tie points

In our method, each GCP is in terms of X, Y, Z coordinates in absolute system. Each image
control point contains u, v coordinates in image plane. For any GCP X i

g, we denote its image
control point in jth image as ixjg, so the data structure about GCPs for LBA is expressed as:

data_association
{

Point3D X i
g ith 3D GCP

Mat3 ΣXi
g

covariance matrix of ith 3D GCP
Point2D ixjg image control point in jth image
Mat2 Σixjg

covariance matrix of ixjg
Point2D ixkg image control point in kth image
Mat2 Σixkg

covariance matrix of ixkg
...

}

At first glance, the above-mentioned structure is similar as that of tie point proposed in section
3.1.2. Each 3D point corresponds a set of image points. Actually, we would say that they have
the same structure, but the GCPX i

g is known while tie pointX is unknowns in LBA.

5.2 Geo-referenced landmarks

In this thesis, we regard geo-referenced traffic signs and road markings as landmarks for local-
ization. These two types landmarks are reconstructed with the data acquired by STEREOPOLIS

[Paparoditis et al., 2012]. Each landmark contains the following informations:

• Position in geo-referenced coordinate system.

• Category (e.g. prohibition, warning, obligation or road marking).

• Precision of reconstruction.

• Normal direction.
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5.2.1 Geo-referenced traffic signs

The 3D traffic signs are generated using geo-referenced color images. The pipeline is presented
in figure 5.2. There are two main techniques: extraction and reconstruction. The details of the
methods are presented by Soheilian et al. [2013a]

Figure 5.2: Reconstruction of traffic signs from geo-referenced images.

5.2.1.1 Traffic sign detection

During extraction procedure, the traffic signs are detected in every individual image. The first
step for traffic sign detection is to determine the Region of Interests (ROIs). The ROIs are gen-
erated based on color segmentation. Because most of the traffic signs are blue or red in urban
environment. Then, three simple shapes (ellipse, quadrilateral, triangle) are detected by Soheil-
ian et al. [2013a] in ROIs. Because the geometric forms of traffic signs are circular (obliga-
tion and prohibition), quadrilateral(indication) or triangular (warning) in real world. Sub-pixel
edge points are extracted for every detected signs, then the shape is estimated precisely with
RANSAC scheme.

To identity the detected candidates, every local image patch of detected sign is rectified. The
quadrilateral is rectified to rectangle with perspective transformation while ellipse and triangle
are rectified to circle and equilateral triangle using affine. Then, the Zero-mean Normalized
Cross Correlation (ZNCC) based template matching is performed to compare the rectified image
patch with reference patterns. The traffic signs are identified according to the maximum ZNCC
score. When the maximum score is larger than a given threshold, the candidate is accepted.

108



5.2. Geo-referenced landmarks

5.2.1.2 Traffic sign reconstruction

The traffic sign detection method proposed in previous section aim at detecting traffic signs
in individual images. The images used for traffic sign reconstruction are captured by mobile
mapping system, thus the geo-referenced pose for each image is known. In order to reconstruct
the traffic signs, the same signs in images observed at different locations should be clustered (cf.
the third step in Fig 5.2). To do this, a hypothesis generation and verification based approach
was proposed [Soheilian et al., 2013a]. For one same traffic sign, its observations in images
should have same identifications obtained by traffic sign detection in image. Meanwhile, the
relationships between two corresponding traffic signs in two different images can be described
by epipolar geometry which can be generated according to known poses of image poses. Using
previous two principles, the traffic signs detected in individual images can be grouped. Then,
the 2D traffic signs with known poses in same group are used to reconstruct one 3D traffic
sign using a multi-view algorithm, integrating the priori constraints about traffic sign. The
triangular and rectangular signs have been reconstructed in the work presented in [Soheilian
et al., 2013a]. Thereafter, the method for circular sign reconstruction was proposed, where the
uncertainty propagation of 2D ellipses is taken into account [Soheilian and Brédif, 2014].

5.2.2 Geo-referenced road markings

Many methods have been proposed for road marking detection and reconstruction. Some re-
search detected the road markings from high resolution aerial images [Tournaire et al., 2006c;
Kim et al., 2006]. With the development of Mobile Mapping System (MMS), more methods
are proposed based on the data acquired by MMS. The road markings can be detected and re-
constructed from stereo image [Soheilian et al., 2010] or point clouds [Yu et al., 2014a; Guan
et al., 2014]. Most of the methods use a bottom-up strategy. They start from low level feature,
then provide higher level objects with grouping algorithms. Some top-down strategies are also
applied [Tournaire and Paparoditis, 2009; Yu et al., 2014a; Hervieu et al., 2015]. In contrast
to bottom-up strategies, the top-down methods are more generic and can get benefit from the
prior knowledge about road markings, but this kind of methods are slower than bottom-up based
methods.

5.2.2.1 Intensity ortho-image

With the high rate LiDAR on STEREOPOLIS, dense point clouds on road surface can be ob-
tained. In this case, we can build the road marking database from point clouds. A top-down
approach is taken for road marking extraction from point clouds [Hervieu et al., 2015]. In this
approach, the road markings are extracted from ortho-image of road, which is generated by the
vertical projection of the points (cf. figure 5.3). The ortho-images with two channels (intensity
and height) undergo a hole-filling filter to cope with the irregular LiDAR sampling.
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(a) (b)

Figure 5.3: Generation of intensity ortho-image from point clouds. (a) Point clouds. (b) intensity ortho-
image of the points.

The road marking map is generated using an extension of the method proposed by Hervieu et al.
[2015]. We first summarize here this approach, then detail the proposed extensions, and finally
lift the 2D extractions as a 3D road marking database.

5.2.2.2 Original approach

Within the intensity ortho-image, road markings are then searched for as occurrences of a trans-
lated/rotated/scaled rectangular road marking template instanced from a library of road mark-
ings (figure 5.4). This search space is modeled as a set of road marking types and for each

Figure 5.4: Library of road marking template patterns (GSD = 2cm).

type a fixed aspect ratio, an interval of scale and a template vector pattern delineating the white
road marking area against a dark background. Thus the extraction of road markings boils down
to finding a set of road markings X = (`i, xi, yi, θi, λi) parameterized by a type `, a transla-
tion (x, y), a rotation by θ and a scaling λ (figure 5.5). The marking type defines a pattern I`
that may be rasterized into the intensity orthophoto geometry using the affine transform Tx,y,θ,λ

(denoted TXi for short).
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Hervieu et al. [2015] formulate the road marking extraction as an energy minimization problem
over the varying-dimension search space defined above, with an energy defined over a set of
road markings X = (Xi)i=1...n as :

U(X ) =
n∑
i=1

u1(Xi) +
∑
i<j

u2(Xi,Xj) (1)

u1(Xi) = f 0 −max(0, ZMNC(I`i , T
−1
Xi (I))) (2)

u2(Xi,Xj) = β
| S(Xi) ∩ S(Xj) |

min(| S(Xi) |, | S(Xj) |)
(3)

where f 0 is the cost of adding an object. A low value of f 0 (0.35 as used in Hervieu et al.
[2015]) enables the optimization to add objects with lower correlation scores at lower costs. A
high value, in contrast penalizes the objects with low correlation scores. It should provide a
trade-off between the number of over-detections and under-detections. In the present work we
chose a higher value f 0 = 0.55 in order to reduce the number of over-detections which comes at
a cost of higher number of under-detection. ZMNC(I, I ′) denotes the zero-mean normalized
correlation between images I and I ′ and S(X ) = TX (I`X ) is the resampled image of the pattern
and | · | and ∩ denote respectively the area and intersection of white pixels. The coefficient β
tunes the tradeoff between the energy terms u1 and u2 (β = 100 in Hervieu et al. [2015]).

x

y

θ

Ibike

Tx,y,θ,λ

Tx,y,θ,λ(Ibike)

Figure 5.5: The object i with parameters (`i =bike,xi, yi, θi, λi).

This energy is minimized using a Reversible-Jump Markov Chain Monte Carlo (RJMCMC)
sampler coupled with a simulated annealing, which may cope with search spaces of varying
dimensions (the number of road markings to extract itself being unknown) and arbitrary energy
functions (cf. Fig. ??). Hervieu et al. [2015] further discusses both standard and more advanced
RJMCMC kernels which may be used to bias the random sampling toward good solutions,
thereby improving the convergence rate.
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5.2.2.3 Proposed extensions

• New patterns have been introduced, leveraging the extensibility of the original paper (fig-
ure 5.4).

• The data energy term has been scaled by the road-marking perimeter in order to reduce
over-detections.

u′1(Xi) = u1(Xi) perimeter(Xi) (4)

It enables to favour larger objects that could be replaced by many smaller objects using
previous data energy.

• A new binary orientation energy u′orient has been introduced in order to penalize incom-
patible orientations of neighboring road markings. Road markings follow usually a same
direction and are nearly parallel except in the intersections where perpendicular markings
are observed. This energy term is computed for neighboring objects that are situated at a
distance lower than 5m.

• The raster-based intersection energy proved to be very time consuming as it required
the resampling of the template pattern and pixel-by-pixel raster comparisons to get the
raster area of intersection. This energy has been replaced by a simplified version u′inter,
penalizing the intersection of the road marking oriented bounding boxes (OBB) instead.
This drastically reduced computing times while the approximation is very reasonable
as road markings are very rarely sufficiently close that their oriented bounding boxes
intersect.

u′2(Xi,Xj) = u′orient(Xi,Xj) + u′inter(Xi,Xj)
u′orient(Xi,Xj) = max(0,−cos4∆θ) (5)

u′inter(Xi,Xj) = uinter(OBB(Xi),OBB(Xj))

• Road markings tend to follow a regular layout, thus we added a birth/death in a neigh-
borhood kernel which gives the sampler the opportunity to explore more efficiently the
possibility that some road marking might exist next to an already detected one. The in-
clusion of this kernel also resulted in a significant performance boost ?.

• Finally, another kernel was added to enable a uniform type switch, which proved to be
necessary in order to help the sampler find the right road marking type.

5.2.2.4 3D road marking database

Once the 2D rectangles labelled with a road marking type have been extracted, they are lifted in
3D using the digital terrain model (DTM) encoded in the height channel of the Lidar orthophoto.
A simple height lookup enables the lifting of these 2D rectangles as a 4-sided 3D polygon.
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Dictated by the targeted application, and due to the abundance of road markings in street view
images, the detection tradeoff has been tuned to minimize false detections at the cost of under-
detecting some road markings. This results in an extraction with some under-detection but
very limited over-detection. In order to ensure the accuracy of this database the extracted road
markings may be validated interactively in order to remove the remaining few false positives.
Note that this manual intervention is optional and very limited as the extracted road markings
may be sorted using their data attachment term u′1 such that the operator only has to review the
few extracted road markings that have the worst data evidence.

(a) (b) (c)

Figure 5.6: Simulated annealing-coupled RJ-MCMC optimization[Hervieu et al., 2015]. (a) initial con-
figuration (b) RJ-MCMC optimization. (c) final results.

5.3 Generation of GCPs from geo-referenced landmarks

The challenge for the integration of geo-referenced landmarks with vision based localization is
to find the most relevant geo-referenced landmarks and detect the relevant landmarks in images.
In this section, we propose our strategy for GCPs generation and image control points detection
from key frames over sequence. The proposed method can work on both monocular or multi-
camera images.

5.3.1 Selection of geo-referenced candidates

There might be thousands of landmarks in geo-referenced database, but only few of them are
the relevant landmarks for one key frame. Thus, we need to define conditions to select the
geo-referenced landmarks which are most possible being relevant landmarks. In this thesis, we
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call them as landmark candidates. To obtain them, we assume that we know the approximate
pose for each key frame. In our method, the approximate poses are estimated using LBA based
approach in chapter 3.

Figure 5.7 illustrates our purposes for landmark candidates selection for image I t from database.
We note the approximate pose of I t as P

′

t. So C
′

t is the approximate position of image center
andR

′

t is the approximate rotation matrix.

Figure 5.7: The relations between current image and geo-referenced landmarks. Ct is the position of
image center in geo-referenced frame for image t, V t

c is the depth direction of camera and V i
X is the

normal vector of traffic sign.

To select the landmark candidates from database, we divide our strategy into three steps:

(1) Determining searching space in 3D. The distance between landmark and image can be a
relevant condition. With the approximate pose and searching distance, we can define a searching
space in 3D database. Only the landmarks whose distances to image are less than a given
threshold THs, are kept. The criterion for this step is:

‖X i
g −C

′

t‖ < THs,

whereX i
g is the position of 3D landmark center.

(2) Rejecting invisible landmarks After the first step, we keep the landmarks being inside
a sphere space determined by center C

′

t and radius length Ths. However, only the landmarks
in front of image are relevant. To judge if one landmark is in front of an image. We define the
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view direction of camera: pointing from camera center to image plane along optical axis, as:

V t
c = [R

′

t]
T

0

0

f

 , (6)

where f is focal length.

Let us define another vector which points from camera center to landmark center. Considering
the approximate position of camera center C

′

t, this vector can be expressed as:

V t
cx = X i

g −C
′

t, (7)

where V t
cx is the vector from camera center to landmark in absolute coordinate system. If the

angle between V t
cx and V t

c is smaller than 90◦, we consider that the landmark is in front of
current image. This condition can be expressed by equation below:

V t
cx • V t

c > 0 (8)

For some landmarks, even they fulfill the condition expressed by equation 8, they are not visible
for current image. As shown in figure 5.7, some landmarks are inside the image field of view
(gray traffic signs), but they are the signs for the vehicle moving at opposite direction. In this
case, we need extra conditions that considers the normal direction of landmarks. We note the
normal vector of a landmark as V i

X , thus, the intersection angle between V i
X and V t

c should be
larger than 90◦ (cf. figure 5.7). The extra condition can be expressed using dot product of two
vectors:

V t
c • V i

X < 0. (9)

(3) Relations to the image view There is a simple truth that the 3D candidates should lie
inside the field of camera view. To check the remaining landmarks after previous two steps, we
project them using equation 6 in chapter 3:

xprj = F (P
′

t,Xg) (10)

If the projection xprj is inside the image plane, the 3D landmark is a candidate.

5.3.2 Uncertainty propagation for landmark registration

The above-mentioned three steps present our principles to select landmark candidates for each
image, but we do not know their locations in image yet. With the approximate image pose, an
initial location of each landmark candidate can be predicted in image. But the quality of initial
location of 2D landmark depends on the accuracy of image pose. In this thesis, we consider
the uncertainty propagation to determine the searching region in image for every landmark
candidate.
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We estimate uncertainty of the projections of traffic signs in image propagated from poses and
the 3D road signs. For the landmarks that can be presented with polygons, we project their
vertexes into image. For some complicate case, such as circular traffic signs, we need to project
circles from 3D to 2D image plane and consider the error propagation. The solution is proposed
in [Soheilian and Brédif, 2014]. In this thesis, we focus on the polygon based landmarks such
as rectangle, square and triangle.

As defined in chapter 3, a 3D vertexXj can be projected into image plane using pinhole projec-
tion function for single camera case and non-projective projection for multi-camera system. Wo
derive the formulations of uncertainty estimation for single camera case first. For every vertex
Xj of a 3D traffic sign, its predicted coordinates in image is obtained as

xj = F (P t,Xj).

The covariance matrix of image pose ΣP t is estimated by LBA and the covariances of 3D road
signs ΣXj

are obtained during the traffic sign reconstruction. The covariance matrix of Σxj can
be estimated using error propagation principle for nonlinear equations:

Σxj =
[
∂F
∂P

∂F
∂Xj

] [ΣP t 0

0 ΣXj

][
∂F
∂P
∂F
∂Xj

]
(11)

For multi-camera case, the back projection of one vertex of geo-referenced traffic signs can be
estimated by

xij = F (P t,Γ i,Xj),

where, xij is the projection of traffic sign in camera i and Γ i is the transformation parameters
from view point to camera. To estimate the covariance matrix of xij , we consider the uncertainty
of Γ i, the equation is:

Σxij
=
[
∂F
∂P

∂F
∂Γ i

∂F
∂Xj

]ΣP t 0 0

0 ΣΓ i 0

0 0 ΣXj




∂F
∂P
∂F
∂Γ i
∂F
∂Xj

 (12)

where, ΣΓ i is the covariance of Γ i.

5.3.3 Landmarks correspondences with images

In order to generate the constraints for localization, we need to register the 3D landmarks within
image to obtain the 2D correspondences of 3D landmarks. Considering the uncertainty propa-
gation introduced in previous section, a searching space can be generated for each 3D landmark
in image. In this case, we search the 2D correspondences of landmarks inside the searching
space. Two different approaches are developed for registering the landmarks in search space in
images:
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• Registering by object detection. This approach aims at detecting and recognizing a certain
object inside the searching area in image generated 3D landmarks, because the attributes
of 3D landmarks are known for us.

• Registering by template matching. This strategy is to match the pattern of a 3D landmark
into searching area in image to find the location of 2D correspondences of the landmark.

5.3.3.1 Registering by traffic signs detection

In this thesis, this method is based on the same detector for traffic signs database reconstruction
introduced in this chapter, but the detection is conducted in searching are for each landmark.
Thus, the detector is accelerated by limiting the ROI in image. We determine the searching
region for traffic sign extraction according to approximate locations of landmarks in image and
their uncertainties. Figure 5.8 shows the procedure of searching region generation. For every
vertex of the 3D road sign, its error ellipse is computed from the covariance matrix estimated
with the method proposed in previous section. Then, the searching region for traffic sign is
determined according to the bounding box of all the error ellipses of the sign vertexes (shown
as the red rectangle) in figure.

projection 
and propagation

Error ellipse

Figure 5.8: The image pose and geo-referenced road sign are provided with their uncertainties. The
road sign can be projected into image plane and the uncertainty for every vertex of the projected shape
is estimated with error propagation. All the ellipses determine the region for detection.

The traffic signs are extracted automatically within the searching region using the method pro-
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posed by Soheilian et al. [2013a]. It recognizes both location and attribute of 2D traffic sign.
To validate the extracted results in image, we compare their attribute between extraction and
the traffic sign from database, if they have the same category, the extraction is correct. We take
the center of each 3D traffic as the GCP and the image control point are fitted from the shape
detected in image.

5.3.3.2 Registering by road marking matching

Not all the landmarks have rich strong visual and geometric properties as traffic signs. Figure
5.9 shows some road markings in images captured by an on-board camera. Most road markings
can be expressed with polygons, but there are some complex markings such as bicycle box in
figure 5.9(a), which are difficult to describe by simple geometric shapes. Another challenge
is the poor texture information, it is hard to distinguish different types of road markings by
color. For instance, the dashed lanes and the strips of zebra cross have similar pattern in color
and geometry. These problems make it difficult to extract road markings in image according

(a) (b)

Figure 5.9: An example of complex situations for road markings.

to their geometric and visual properties. This section introduces a matching based landmark
registration. We aim at matching the pattern of 3D landmark with them in image directly. We
take road markings for example in this thesis, but the proposed methods can be extended to
other landmarks such as traffic signs or build facades.

A: Searching space definition Each road marking in landmark database yields a 4-sided
polygon. We estimate the uncertainty of every projection of road marking vertex in image.
These four 2D points together with their 2D Gaussian uncertainties allow us to define a suffi-
ciently tight search space. We consider each 2D point in a search area for the refined position.
The area is generated by the 2D bounding box of the 99%-confidence region of the Gaussian
uncertainty, centered around its estimated 2D position.

Figure 5.10 presents the strategy of matching for a road marking. With the approximate im-
age pose, an initial location of the road marking in image can be predicted, shown with blue

118



5.3. Generation of GCPs from geo-referenced landmarks

Prediction &
propagation Matching 

Figure 5.10: Error propagation and searching space generation for road markings.

rectangle in close up window (cf. Fig 5.10). Considering the uncertainties of image pose and
vertexes of the 4-sided polygon, the uncertain region can be generated in image. Then, the
road marking are registered with the image. This conservative search space definition is able to
cope with small error underestimation. Starting from the initial position, we define an objective
function and then optimize this function to approach the optimal location of road marking in
image [Soheilian et al., 2016].

B: Objective function Given four image points defining the homographic projection of a road
marking template into the current view, we can assess the quality of this projection by comput-
ing the ZMNC of this homographic projection with the image content. We can then formulate
our problem as finding the four road marking corner projections within their uncertainty-based
bounding boxes such that they maximize this ZMNC score. In order to rule out degenerate set
ups, we further impose that the four points define a convex polygon.

C: MCMC Optimization During generation of road marking database, the Reversible-Jump
Markov Chain Monte Carlo (RJMCMC) is used for optimization to cope with varying dimen-
sionality problem [Hervieu et al., 2015]. However, the optimization here is defined in a fixed
dimension setup, that only has four points with eight coordinates. Given the nature of the ob-
jective function, a more specific optimizer is not trivially available, thus we propose to perform
regular Markov Chain Monte Carlo (MCMC) optimization.
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Given the strong correlation between the errors of the 4 projected points, we propose the fol-
lowing transformation kernels for the MCMC modification proposal step:

• An overall rigid translation of the 4 points

• A translation of one point leaving the three other points fixed with a lower amplitude

In order to rule out degenerate set ups, we also impose that the four points define a convex
polygon. The MCMC sampler is coupled with a simulated annealing to optimize the ZMNC
objective function, rejecting all modifications that produce a concave polygon [Soheilian et al.,
2016]. The initial position is provided by the road marking projection using the approximate
pose, the 4-sided polygon is approaching to its precise locations with the progress of itera-
tion. Figure 5.11 shows an example of the iterative steps. After 5000 iterations, the matching
of road marking is very close to its real location in image. The number of needed iterations

(a) Initial position (b) After 1000 iterations (c) After 5000 iterations

Figure 5.11: Example of MCMC optimization.

for convergence in the MCMC algorithm depends on the initial estimation and the size of the
uncertainty region. Due to some non Gaussian errors, our estimated uncertainty is sometimes
underestimated. In practice, we set a large number for iteration threshold (10000) to guarantee
the convergence.

After optimization, we can obtain the optimal parameters for homographic transformation. For
each geo-referenced road marking object, we choose its centroid as GCPX i

g, its corresponding
image point xig is determined by mapping the position ofX i

g in 3D road marking plane to image
using the optimal homography parameters.

5.4 Integration of GCPs with LBA

In this section, we derive formulations for integration of GCPs with LBA that consider the
uncertainty of GCPs. First, we propose a method that integrate GCPs for monocular case.
Then, we extend the method to multi-camera system.
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5.4.1 Formulations for monocular sequences

The geometric relations of every GCPX i
g to one image control point xjg can be expressed with

perspective projection for pinhole camera. Regarding the equation 6 proposed in chapter 3, the
formulation can be written as:

ixjg = F (P j,X
i
g), (13)

where, F is projection function and P j is the pose of image j.

The first type of error equations about GCPs is the back projections errors. In LBA, we divide
the image poses into inherited poses P p and new poses P n. To separate the error equations for
GCPs and the regular error equations presented in equation 9 in section 3.3.4.2, we define the
back projection equations for GCPs as:

ivjc = F (P p,P n,X
i
g)−i xjg, (14)

where, ivjc is the vector of back projection errors for GCPs with respect to image control point
ixjg. Although the form of equation 9 in section 3.3.4.2 and equation 14 are same, their meanings
are different. X is a set of unknowns in equation 9, Xg is known beforehand, as well as its
uncertainty. We denote X0

g as prior values of GCPs measured from geo-referenced landmarks
and the precisions of the coordinates are X0

g are σX , σY , σZ . In LBA, we regard Xg as a kind
of special parameters andX0

g is an observation ofXg. For a GCP iXg, we can obtain an extra
error equation below:

ivg =i Xg −iX0
g (15)

where, ivg is the vector of residuals of ith GCP.

Therefore, two types of error equations, expressed in equation 14 and equation 15, are combined
within LBA equation system. The weights of these error equations relay on the precision of
GCPs in 3D and image point measured in images. We define the precision of image control
point as σc in image. The value of σc is determined by landmark registration algorithms. The
covariance matrix for an image control point in image j is:

Σj
c = σ2

cI

Thus, the covariance matrix of every GCP X̄ i
g, noted as Σi

g, is:

Σi
g = diag(σ2

X , σ
2
Y , σ

2
Z)

The integration of GCPs in LBA is conducted by combining equation 14 and 15 with normal
error equations presented in section 3.3.4.2. Then a new equation array is obtained:

vp = P p − P 0
p

vt = F (P p,P n,X t)− xt

vc = F (P p,P n,Xg)− xg

vg = Xg −X0
g

(16)
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where, vc is a vector of all the back projection errors of GCPs, vg is a vector of all GCPs
residuals, Xg is a vector of all the GCPs appeared in current LBA window and xg represents
all the corresponding image control points.

The nonlinear least squares technique is employed to solve the problem and it has the same
procedure as normal LBA in section 3.3.4. We also estimate the covariance matrix for each pose
and then propagate the uncertainty over time. We assume that vp,vt,vg,vg are independent,
thus, the weight matrix for all observations is:

W = diag(Σp,Σt,Σc,Σg)
−1, (17)

where, Σc and Σg are diagonal matrices, which are conducted by a set of Σj
c and Σi

g. Then we
resolve the problem by minimizing the sum of weighted squares of equation 16:

[P̂ p, P̂ n, X̂ t, X̂g] = argmin{1

2
(vTt Σ−1t vt + vTp Σ−1p vp + vTc Σ−1c vc + vTg Σ−1g vg)}, (18)

where, P̂ p, P̂ n, X̂ t, X̂g are the optimal estimates of the parameters.

The number of GCPs and corresponding image points is very small in comparison to regular
tie points, so the extra computation is negligible. Despite the low number of equations, the
influence of GCPs is considerable due to their covariance matrix Σc and Σg.

5.4.2 Integration of GCPs for multi-camera system

In multi-camera case, the GCPs are still generated from geo-referenced landmarks, but the
image points are measured in more images, compared with the single camera case. The strategy
that integrates GCPs with LBA for multi-camera case, is similar with that used for monocular
camera. The back projection error equations are used to cope with the GCPs and images points
and the uncertainties of the GCPs are considered in LBA. The only difference is that the image
poses should be adopted from the viewpoint pose via rigid transformation. Thus, the error
equation about back projections for one GCPX i

g in jth image is given by:

jvic = F (P p,P p,Γ i,X
i
g)−j xig.

The F (P p,P p,Γ i,X
i
g) is the back projection model for multi-camera system, defined in sec-

tion 3.4.1.3(cf. chapter 3).

The error equations related to constraints for GCPs are same with equation 15 in previous
section. Combining the error equations for multi-camera based LBA, presented in section 3.4
(chapter 3), the new error equation array for LBA with GCPs for multi-camera case is:

vp = P p − P 0
p

vΓ = Γ − Γ 0

vt = F (P p,P p,Γ ,X)− xit
vc = F (P p,P p,Γ ,Xg)− xig
vg = Xg −X0

g

(19)
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where, vΓ stands for residuals of rigid transformation parameters from camera to viewpoint.
The weight matrix for the observations in equation 19 is:

W = diag(Σp,ΣΓ ,Σt,Σc,Σg)
−1, (20)

It is also a diagonal block matrix. We minimize the sum of weighted squares of the errors
presented in equation 19 to solve the problem:

[P̂ p, P̂ n, X̂ t, Γ̂ , X̂g] =

argmin{1

2
(vTp Σ−1p vp + vTΓΣ−1Γ vΓ + vTt Σ−1t vt + vTc Σ−1c vc + vTg Σ−1g vg)}

(21)

where, P̂ p, P̂ n, X̂ t, Γ̂ , X̂g are the optimal estimates of the parameters. We apply nonlinear
least squares to resolve the problem.

5.5 Experiments

The data used for experiments is acquired by STEREOPOLIS [Paparoditis et al., 2012]. Images
are captured by high resolution cameras which are calibrated beforehand. The geo-referenced
traffic signs and road markings are generated using the methods introduced in section 5.2. A
combined navigation system (GPS/INS/odometer) is mounted in STEREOPOLIS , so the ground
truth of image poses can be easily obtained.

5.5.1 Experiment of using traffic signs

In this experiment, we test images captured by both single camera and stereo rig. The exper-
imental data is shown in figure 5.12. The binocular images were taken by a forward looking
stereo rig while the monocular sequence are conducted by the images captured by the left cam-
era of the stereo rig in STEREOPOLIS. The images are shown in figure 5.12(a) and 5.12(b) which
are captured by calibrated cameras. There are 20 geo-referenced traffic signs in test area and
the trajectory length is about 1 km (cf. Fig 5.12(c)).

5.5.1.1 Integration of traffic signs for single camera based localization

We start from a known point and give the distance between first two frames to determine the
absolute scale. We test our localization method without any traffic signs integration using the
method proposed in chapter 3. Then, the same dataset is tested with the method integrated with
geo-referenced traffic signs. At last, we compare their localization results.

Figure 5.13 shows the trajectories of ground truth. The vision based localization using LBA
for poses refinement has been proposed in chapter 3. For simplified expression, we use "LBA"
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(a) Left image

(b) Right image (c) Trajectory and locations of traffic signs.

Figure 5.12: Experiment data

to stand for vision based localization and use "LBA+TS" to represent the method for localiza-
tion integrated with geo-referenced traffic signs. As demonstrated in figure 5.13, the drift of
localization is growing if no geo-referenced traffic sign is integrated (cf. blue line in Fig 5.13).
However, the drift is reduced a lot when we integrate the traffic signs into our localization
procedure (the red line is very close to the ground truth).

We also compute lateral error and depth error separately for each position, as shown in figure
5.14. The x axis is the index of image and y axis represents the absolute errors. We can see that
both lateral and depth accuracy can be reduced with the integration of traffic signs within LBA.
In particular, the depth error is more sensitive to the external constraints(cf. Fig 5.14(b)). The
errors are reduced immediately when the traffic signs are successfully detected in image and
combined into LBA, while the lateral errors are decreased slower.

From figure 5.14(a) and figure 5.14(b), we see that the lateral and depth errors are reduced, but
they are not decreased too much. To explain this, let’s review the method to compute lateral
and depth errors introduced in section 3.3.5 (cf. chapter 3), which needs to transform camera
center Ct in geo-referenced coordinate system to νt in camera coordinate system. Thus, when
we calculate lateral and depth errors, the errors of orientation will also influence the results. To
know the real accuracy of position of image center, we investigate absolute errors, comparing
the estimated position with ground truth. The diagram of absolute errors will be shown in figure
5.17. The maximum error is reduced from 4.5m to 1.5m with 18 traffic signs along the whole
trajectory.

As we discussed in chapter 3, the uncertainties of localization grow over time. One objective
of integrating external data with localization is to limit the uncertainty growing. Figure 5.15
demonstrates the uncertainties of localization with and without integration of traffic signs. The
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Figure 5.13: Trajectories of Ground Truth (GT), vision based localization (LBA) and integration of
Traffic Signs (TS) for localization (LBA+TS). Black crosses stand for the locations of traffic signs.

(a) Lateral errors. (b) Depth errors.

Figure 5.14: Blue: the errors of localization using LBA. Red: the errors for the case of traffic signs
integration. Black cross: containing GCP in the image.
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confident level is set as 99 % for error ellipsoid. The cyan error ellipsoids are results of LBA

Mono+LBA+TS

Mono+LBA 

Figure 5.15: Red: LBA+TS based localization. Blue: LBA based localization. Cyan: error ellipsoids of
LBA based localization. Grey: error ellipsoids using LBA+TS. Close-up windows: accuracy improve-
ment of tie points. All the error ellipsoids are ten times larger than their original size for visualization.

without traffic sign integration and the gray ellipsoids represent the uncertainty of localization
with the integration of traffic signs (cf. Fig 5.15). We can see that the size of error ellipsoids are
reduced with the integration of traffic signs. We also observe that the uncertainties of localiza-
tion are growing continuously over time. When the traffic signs are integrated, the uncertainties
only grow between two successive observations of traffic signs. This can avoid the error propa-
gation over sequence.

Because traffic signs are distinctive features in image, thus some tie points on traffic signs can be
reconstructed. The two sub-windows in figure 5.15 show the tie points optimized with LBA and
constrained LBA by traffic signs. Regarding the tie points on warning sign (red triangle), the
displacement between tie points and the sign are reduced with the integration of geo-referenced
traffic signs. Tie points on the traffic sign almost coincide with the road sign, seen from the
green points in figure 5.15.
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5.5.1.2 Integration of traffic signs for stereo based localization

We test the binocular image for localization in the same district. For stereo case, the absolute
scale is determined by the length of baseline of stereo rig. Figure 5.12 presents one image pair
used in this experiment. The length of baseline is 1.5m. We consider the uncertainties of stereo
rig parameters in our approach. In stereo sequences, each geo-referenced traffic sign is searched
in both left and right images with the proposed method in section 5.3.

We compare monocular and stereo based localization with and without the integration of traffic
signs, thus four experiments need to be conducted. We note:

• Mono+LBA. Pure vision based localization using monocular images.

• Mono+LBA+TS. Integrating geo-referenced traffic signs with localization using monoc-
ular images.

• Stereo+LBA. Pure vision based localization based on stereo image sequences.

• Stereo+LBA+TS. Integrating traffic signs with stereo based localization.
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Figure 5.16: Comparing estimated trajectories with ground truth.
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Figure 5.16 shows four estimated trajectories and ground truth. Compared with other three ap-
proaches, the drift of Mono+LBA is the largest. However, the trajectories obtained by monoc-
ular and stereo are very close when we integrate traffic signs (cf. cyan and red in Fig 5.16).

To know exact accuracy of the four approaches for localization, we calculate absolute errors
for the localization in 3D that is the Euclidean distance from estimates to ground truth. The
diagram of absolute errors is shown in figure 5.17. For pure vision based localization, the stereo

Figure 5.17: Absolute errors of localization.

rig can achieve better results (cf. Fig 5.17) than monocular (see blue and magenta lines in Fig.
5.17). This has been studied in chapter 3. Our aim is to analyze the performance of traffic
sign integration. The red and cyan lines represent the absolute errors for monocular and stereo
images integrated with geo-referenced traffic signs. Both of them are below the absolute error
lines of monocular and stereo based localization, which are shown with blue and magenta in
figure 5.17. The maximum localization error is reduced from 4.5m to 1.5m for monocular case
and 3.0m to 1.4m for stereo, when the traffic signs are integrated. From the diagram, we also
observe that the stereo case is slightly better than monocular case under the integration of traffic
signs.

We estimate the error ellipsoids for each key frame, as shown in figure 5.18. We can see the
improvement where the size of error ellipsoids (gray ellipsoids) are reduced in comparison to
the cyan error ellipsoids for pose estimated with pure vision based localization. The two close
windows also show some tie points. Let’s focus on the points on warning sign. We can see
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the improvement of localization accuracy using traffic signs. The tie points match the warning
traffic sign better when we use the GCPs in LBA.

Stereo+LBA

Stereo+LBA+TS

Figure 5.18: Red: estimated trajectory using stereo rig and traffic signs. Blue: estimated trajectory
using only stereo rig. Cyan: error ellipsoids of pose estimation using only stereo rig (LBA). Grey:
error ellipsoids of pose estimation using stereo rig integrated with traffic signs (LBA+RS). Close-up
windows: tie points in the selected areas. The size of all the error ellipsoids are exaggerated ten times
for visualization.

5.5.1.3 Efficiency of traffic signs detection

The most time-consuming part in GCPs generation from traffic signs is the 2D traffic sign
detection. Figure 5.19 shows two traffic signs detected in searching areas marked with yellow
rectangles, which is generated based on uncertainty propagation. The efficiency of traffic sign
detection algorithm proposed by Soheilian et al. [2013a], is related to the size of region. As
shown in figure 5.19, it needs 0.14s to detect the sign in the larger searching area while only
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0.039s is spent to detect the traffic sign in the smaller searching area. It is much more efficient
than detecting the traffic signs in entire image, which spends 1.6s with the same method, this
shows the interest of proposed method of guiding traffic signs detection.

Figure 5.19: Traffic signs detection. Yellow rectangle: searching area for each traffic sign. Green
polygon: detected traffic signs.

In previous experiments, there are 18 geo-referenced traffic signs along 1km trajectory with
330 key frames from mono and 330 image pairs for stereo. For mono case, 61 images out of
330 can observe the traffic signs. In order to give an idea about the number of tie points, GCPs
and image control points in LBA, we explore one processing window which contains the most
image control points and GCPs over entire sequence. The statistic of the number of parameters
and observations are listed in table below:

Table 5.1: Extra computation caused by GCPs.

Image GCPs
Image control

point
Tie points

2D image
points

Number 10 3 12 1068 3059

There are 3 GCPs generated from traffic signs. The size of processing window is ten (N =

10) and seven images in window can detect the 2D traffic signs. The total number of image
control points is 12, thus 24 error equations are generated for back-projection errors. Besides
9 constrained equations are obtained for the 3 GCPs. In this case, we have 33 extra error
equations. However, there are 1068 tie points and 3059 image points are extracted, that is,
6118 error equations generated for solution. So we can even ignore the additional computation
caused by the extra 33 equations in LBA. This is the case with the highest number of GCPs. It
means that most of LBA windows have less additional computation caused by GCPs.
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5.5.2 Experiment of using road markings

In order to validate the integration of geo-referenced road markings with localization. A 520m

trajectory in urban environment as shown in figure 5.20(a), is selected for experiment. We apply
monocular sequences for this experiment, which are captured by a forward looking camera
embedded on STEREOPOLIS . The geo-referenced road markings shown in figure 5.20(b) are
generated off-line with the algorithm presented in section 5.2. About 200 objects along the
trajectory were reconstructed, and 150 out of them were kept after manually editing to remove
some false objects.

(a) (b) (c)

Figure 5.20: (a) Testing area. (b) Geo-referenced road marking objects after manually editing. (c) An
example of image acquired by the monocular camera.

5.5.2.1 Interest of road marking for localization

For monocular case, we still need to initialize localization method with known absolute point
and given the absolute scale at the beginning. The first processing window for LBA run with
the conventional LBA, then we propagate the uncertainty of image poses over sequence. In this
experiment, the size of the processing window is set as seven (N = 7) and progressed with one
image (n = 1) for LBA.

The geo-referenced road markings are successfully matched from the beginning of the trajec-
tory. Thus, the GCPs and image control points are generated for LBA from first step. Figure
5.21 shows the interest of road marking at the beginning. The green line shows the ground
truth trajectory. Figure 5.21(a) shows the localization results optimized with LBA. The red
trajectory shows the estimated path. The gowning drift and the size of error ellipsoids can be
noticed for pure vision based localization. However, the results are becoming better when the
geo-referenced road markings are integrated as GCPs (cf. Fig 5.21(b)), where the blue line is
much closer to the ground truth and the size or error ellipsoids are always small as shown in the
two close-up windows in figure 5.21(b).
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(a) Without using road markings. (b) Using road markings.

Figure 5.21: The uncertainties of localization at the first 20m. The error ellipsoids are exaggerated ten
times and the ground truth trajectory is drawn in green.

5.5.2.2 Accuracy of localization integrated with road marking

The results of localization with and without integration of road marks are shown in figure 5.22.
The trajectories are shown in XY planes. If no road markings are integrated, we can see the
growing of drift and uncertainty (cf. Fig 5.22(a)). When we integrate the road markings in
localization, the estimated trajectory is very close to ground truth and the uncertainties are
limited to small level. We notice that, most of the images have very small ellipsoid except for
the images close to the end of the trajectory. The error ellipsoids are growing for those image.
Let’s observe the distribution of the geo-referenced markings in figure 5.22(b), the density of the
road markings is lower, thus less GCPs are generated at this area. That is why the uncertainties
of image poses are larger.

The localization errors are computed at depth and lateral direction. The errors are shown in
figure 5.23 which indicates that both types of errors are reduced with the integration of road
markings. Particularly, most of the depth errors are less than 0.2m. We also compare the
position with ground truth to compute absolute errors of image position (cf. Fig 5.24). The
maximum error is up to 4m, if no road marks are integrated in. However, it can be decreased
to 0.4m with the integration of road markings. Moreover, the error is around or less 0.1m for
most part of the sequence.

5.5.2.3 Efficiency of road marking based localization

101 road markings are successfully matched and generated GCPs over the sequence. Compared
with the number of tie points used in LBA, which is usually over one hundred per image, the
number of GCPs is still small. The computing cost caused by the integration of GCPs for LBA
is too small to be considered.
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(a) LBA without using road marks.

(b) LBA using road marks.

Figure 5.22: Trajectories of localization without and with road marks, compared with ground truth.
Error ellipsoids are exaggerated 10 times. Ground-truth trajectory is drawn in green.
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(a) Lateral errors. (b) Deoth errors

Figure 5.23: The lateral and depth errors of localization. The blue line presents the errors for localization
using LBA. The red line shows the errors of localization with the integration of road markings.

Figure 5.24: Absolute errors for localization without and with road marks.

In fact, most of the computation time goes into road mark matching. The number of iterations
for convergence in the MCMC algorithm depends on the initial estimation and the size of the
uncertainty region. Due to some non Gaussian errors, our estimated uncertainty is sometimes
underestimated. That is why we enlarge the search area to guarantee the convergence in prac-
tice, but it slows down the algorithm. In addition, the computation time for each iteration is
proportional to the number of the pixels in the pattern. The current algorithm takes 10−40s for
each object and the average of pixels for the matched patterns in image is about 20000 pixels.
Our current road markings based localization approach is far from being real-time application.
However, it can achieve very precise localization.
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5.6 Conclusion and perspectives

Two different landmarks (traffic sign and road marking) are tested for localization in previ-
ous experiments. A brief comparison of the performance of integrating traffic signs and road
markings, is shown in the table below:

Table 5.2: Experiments summary.

Trajectory(m) GCP number
Localization accuracy(m)

Mean Max

Traffic sign 1000 18
Mono Stereo Mono Stereo
0.69 0.70 1.5 1.4

Road mark-
ing

520 101 0.11 0.38

Although the images used for experiments were captured at different time and districts by
STEREOPOLIS, the trajectories have different length, we can still say that the localization using
road markings can achieve very precise localization; its average error of position is only 0.11m

which is smaller than the average error of image position than localization using traffic signs. It
is of that the accuracy of localization is related to the density of landmarks over sequences.

The extra computation caused by the integration of GCPs for LBA can be ignored for both
traffic sign and road marking cases. The traffic signs detection is efficient which only need
approximately 0.15s per object in our experiment. However, the road marking matching is
off-line processing at current time. It takes 10 − 40s per object, that is related to the size of
projected object in image using MCMC optimization. The high computing cost on road marking
matching is the bottleneck for real time applications. One interesting idea for accelerating
road marking matching would be to use image gradient to match the contours and/or corners
of objects instead of using all the pixels inside the road marking for costly correlation score
computation. Moreover, a smarter adaptation of MCMC parameters (number of the iterations,
starting temperature and temperature decrease rate) for each object can also help to avoid useless
iterations and save computation time. Finally, we believe that the real-time Jurie-Dhome [Jurie
and Dhome, 2002] tracker can be adapted to the problem of road mark matching.

It should obtain better localization results if we combine the traffic signs and road marking
together as external data. In this case, we need to generate the geo-referenced traffic signs and
road markings in a same testing area. This can be done in our further work. Meanwhile, a
top-down approach regarding the localization system as a whole throughout the development as
the method proposed by Aynaud et al. [2014], can be used in localization with the consideration
of uncertainty. Not only landmarks can be integrated, but also the data from different sensors
and maps with different precision, can be combined together for localization. We can select the
most relevant approach for localization according to the requirement of application.
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Chapter 6

Summary

The conventional localization solution for Mobile Mapping system (MMS) is to use GNSS, but
this kind of methods suffer from multi-path and mask problems in urban canyons which could
lead to outage or inaccurate localization. In order to obtain accurate localization, a precise IMU
is often combined with GNSS, sometimes the data from odometer is also fused, to provide ac-
curate and high rate localization for MMS. However, the combined system is too expensive for
commercial applications in large scale. Thus, a cost-effective localization solution is desired. In
order to achieve a low-cost but precise system for localization, we propose a solution that inte-
grates geo-referenced landmarks with vision based localization. The geo-referenced landmarks
are generated with a precise MMS beforehand. During the operation of localization, only one
or multiple cameras are applied in the system. A low-cost GPS is used to provide the initial
information and the drift of localization is compensated by the integration of geo-referenced
landmarks.

A full framework for localization was achieved in this thesis (cf. Fig 6.1). The input of the
system was image sequences, then the interest points were detected, matched and tracked au-
tomatically over sequence in real-time, thus the pose of every frame can be estimated instantly.
Keyframes were selected from the sequences and Local Bundle Adjustment (LBA) was applied
to optimize the poses of keyframes and propagate the uncertainties in an incremental scheme.
At the same time, the geo-referenced landmarks (traffic signs and road markings) were matched
within keyframes to generate a set of constraints for LBA considering the uncertainty propaga-
tion, to reduce drift of localization.

The incremental approach provides online localization. It means that precise poses can be es-
timated in a shortly fixed time. This enables us to geo-reference the data acquired by MMS
during the mission of mapping. In this case, we detect and edit the change of maps during
mapping. Our LBA based approach can be easily extended to global bundle adjustment (only
change the size of processing window) based approach, which produces more precise local-
ization results and can be used for offline mapping. The main contributions are introduced in
following sections.
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Figure 6.1: The framework of our localization.

6.1 Contributions

6.1.1 Multi-camera based localization

A single camera based approach was implemented considering uncertainty propagation in chap-
ter 3, then we extended the method adopting to multi-camera system. It is well known that
vision system with larger FOV enables us to observe larger informative scene and track the tie
points in a longer period. Meanwhile, high angular resolution is also desired for localization
in large scale environment which can provide more precise image measurements. It is very
difficult to obtain images with both large FOV and high angular resolution at the same time for
single camera case, but they can be approached using the multi-camera system designed in our
approach. In particular, rigorous projection model was proposed considering uncertainty into
bundle adjustment to adapt multi-camera case.

The proposed localization method can be easily adopted to different camera configurations ac-
cording to the requirement of mission without any change of mathematic model for LBA. The
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cameras were mounted rigidly on the body of vehicle, we didn’t need any special configurations
between images captured by different cameras (e.g. overlap, parallel view). In our research, the
rigid transformation from camera to the viewpoint which was defined at an arbitrary location on
vehicle body, were calibrated by offline precess before localization. In order to overcome the
impact of calibration error, we considered the uncertainties of these rigid transformation during
optimizing in LBA.

6.1.2 Integration of geo-referenced landmarks

In order to compensate error accumulation, the geo-referenced semantic landmarks were inte-
grated with the vision based localization. In this thesis, both traffic signs and road markings

Figure 6.2: Integration of landmarks with localization.

were regarded as landmarks. We aimed at generating a set of GCPs from geo-referenced land-
marks. Then, the image points linked to GCPs were measured by matching the 3D landmarks
in images. To do this, we generated a searching area for each landmark in image, considering
the uncertainty propagation from image pose obtained by LBA and geo-referenced landmarks
(cf. figure 6.2). With GCPs and their measurements in image, a group of error equations were
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generated for LBA. We also considered the uncertainties of GCPs that can reduce the impact
of GCPs errors. With constraints of GCPs, the drift was reduced, the drift accumulation only
occurred amongst the images between two successive GCPs. Moreover, few extra error equa-
tions were added in LBA equation system, thus the integration of GCPs didn’t increase the
computation time of LBA.

Two different landmark extracting methods were introduced: bottom-up and top-down strate-
gies, considering the characteristic of traffic signs and road markings in images. The bottom-up
detection method was used for traffic signs extraction that can get benefit from special color and
geometric information of the signs, while the top-down method was used for the road marking
detection which had much more complex geometry and poor color information. The top-down
approach was a more generic method that can also be used for the registration of traffic signs.

6.1.3 Propagation based matching and tracking

In our approach, tie points were tracked over image sequence to obtain a set of 3D-2D cor-
respondences for pose estimation. This process was built based on interest points matching.
Feature based matching is widely used, but lots of low quality matches are usually obtained
for poor texture areas (e.g. road surface, building facades). Considering the characteristic of
vehicle movement on road which is restricted because of inertial moment, we proposed a prop-
agation based matching and tracking method to enhance the performance of localization (cf.
figure 6.3).

Figure 6.3: Propagation based matching and tracking for tie points.
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The aim of propagation based matching and tracking was to restrict the searching of every tie
point in new frame, so that robust and accurate matches for pose estimation can be obtained.
To approach this, a motion model was defined by learning from previous poses to predict the
pose for every new frame. Meanwhile, the covariances of prediction was estimated via uncer-
tainty propagation. According to the predicted pose and its covariance, a uncertain region can
be generated for each tie point in image. Then the matching of tie point was limited within
uncertain region, in contrast to searching in entire image for the common methods. The search-
ing area was determined by the bounding box of uncertain region (red rectangle in figure 6.3).
The precise correspondences of tie points were determined using template matching in every
searching area. This method can reduce the false matches by limiting searching scope. At the
same time, the efficiency of matching was improved due to reduction of searching size. With
the robust tracks of tie points, high quality pose estimation was obtained, so that the accuracy of
localization was improved. The motion model was updated dynamically with the precise pose
and uncertainty to adapt the new frames.

6.1.4 Uncertainty analysis

The uncertainty is important to characterize the state and performance of a process, it presents
the potential errors with given confidences. In this thesis, we estimated uncertainties for poses to
quantify the performance of localization. Furthermore, the uncertainty propagation was main-
tained in our system.

Modeling constraints based on uncertainty. The observations in localization were weighted
according to their uncertainties. In our LBA equation system, there were four different kinds
of observations: image points, estimated poses, camera rigid parameters and GCPs generated
from landmarks. The weight for each observation was determined by its uncertainty. Thus,
the observations with low precision can also be integrated for localization without worrying
about the decreasing of localization accuracy. In particular, we estimated uncertainty for pose
estimation considering uncertainty propagation to evaluate the performance of localization.

Uncertainty propagation in the system. In our approach, the uncertainties was also used to
guide data association (tie point matching & GCP registration)matching and tracking. A propa-
gation based matching and tracking method was proposed(cf. chapter 4) to explore tie points in
new frame for pose estimation. We propagated the uncertainties from image poses to determine
the searching area for each tie point. Besides, the uncertainty propagation was also considered
for landmark matching. Geo-referenced landmarks usually have different precision and some
gross errors sometimes are contained in landmark database. In this thesis, we considered the
uncertainties of landmarks in matching and integration.We generated a searching area in image
for each 3D landmark considering the uncertainty propagation of image pose and landmark to
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limit the searching scope for landmark matching in image.

6.1.5 Evaluation

We tested our localization method using different datasets. In MATIS, a precise MMS (STERE-
OPOLIS) has been developed for street-level mapping. Thus, geo-referenced road markings
and traffic signs can be generated by means of imagery and dense point clouds acquired by
STEREOPOLIS. Meanwhile, the image sequences captured by on-board cameras gave us vari-
ous options for evaluation of the proposed localization method. We evaluated the methods after
introduction of theory in the three technical chapters (chapter 3, chapter 4, chapter 5).

Vision based localization Chapter 3 explained the LBA based localization using only cam-
eras. Different camera configurations were adopted and the uncertainty propagation was con-
sidered over sequence. The high resolution cameras mounted on STEREOPOLIS made it easy to
compose different types of camera configuration. We tested four camera configurations (monoc-
ular, stereo, no-overlap stereo and multi-camera) using the data collected by STEREOPOLIS. The
ground truth was acquired using a precise GNSS/INS/odometer system. From experiment re-
sults, the accuracy was improved with growing of FOV and the multi-camera rig (four cameras)
obtained the highest accuracy. We also noticed that the non-overlap stereo obtained better accu-
racy than forward-looking stereo rig most of the time, because the non-overlap stereo system has
larger FOV. However, more computation time was needed for feature detection and matching as
well as the LBA with growing of cameras in vision system.

Evaluation on KITTI benchmark We also tested our vision based localization using the
datasets for visual odometry on KITTI websites. The matching and tracking method proposed
in chapter 3 suffered from ambiguity problem in some challenging scenarios (high speed road)
for vision based approach. To improve the robustness of localization, a propagation based
matching and tracking method was proposed in chapter 4. The interest points were detected
under the condition of buckets, based on FAST detector to obtain uniform distribution of the
points. Eleven binocular sequences were used for training sequences. The accuracy of localiza-
tion was up to 0.95% for translation and 0.0033 deg/m for rotation with the new approach for
matching and tracking for training data. Then we summit our estimated poses for testing data
to KITTI benchmark. The accuracy was 1.25% for translation and 0.0041 deg/m for rotation
which was not as good as the performance of training data, because there were more sequences
captured on highway for testing datasets that contained many moving vehicles in images and
leaded to inaccurate matches for pose estimation.

Localization integrated with landmarks We presented the method for landmark integration
with LBA for localization in chapter 5. Two typical semantic features in street environment:
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traffic signs and road markings were used for experiments. The images were also captured by
STEREOPOLIS and the ground truth was acquired by GNSS/INS/Odometer system. For traffic
signs based localization, we reduced the maximum error from 4.5m to 1.5m and the mean
error was reduced from 1.9 to 0.7m only using the GCPs generated from 18 traffic signs over
a 1km path. The road markings based localization achieved more precise localization, because
over two hundred road markings were matched for GCPs over 520m path. The maximum
localization error decreased from 3.9m to 0.38m while mean absolute error of localization with
road marking was only 0.11m in comparison to 1.3m without the integration of road markings.

6.1.6 Integration of the methods in THINGS2DO

The THINGS2DO project is focused on the design & development ecosystem for FDSOI (Fully
Depleted Silicon On Insulator) technology, which is developed in the field of semiconductors.
The FDSOI has the characteristics of energy efficiency, large dynamic range, higher absolute
performance and higher radiation tolerance, which make it very useful for many applications.
The contribution of IGN is to participate in the study and implementation of a portable sys-
tem which can help pedestrian navigation in urban environment. Our vision based localization
method has been integrated into the system. Six DOF pose is provided and uncertainties for the
poses are estimated to quantify the performance of localization. The algorithms such as feature
detection, matching, landmark detection are being implemented on electrical chips to achieve
real-time localization.

6.2 Perspectives

6.2.1 Landmark based localization using top-down approach

A top-down approach regards the system as a whole throughout the development which drives
the subsystems all the way down to base elements. As the method proposed by Aynaud et al.
[2014], the top-down process can also be used in localization. A Bayesian network based
approach is developed for the integration of map with a localization system containing GNSS,
laser scanner and odometer.

In our future work, a top-down approach for localization can be developed with the considera-
tion of uncertainty. In this kind of approach, different sensors (e.g. camera, odometer, GNSS,
IMU, etc.) and different maps (e.g. OSM, DEM, 3D model, geo-referenced aerial images)
with different precision, density and ambiguity, can be combined together for localization. Ac-
cording to the requirement of different applications (e.g. accuracy, processing time, confidence
etc.), the most relevant method is determined for each one to chose which sensor we should use
for data perception, which kind of landmarks should be integrated and which algorithm should
be applied for landmark matching. By considering the uncertainty, the measurements can be
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correctly weighted throughout localization though some inaccurate observations are included.

6.2.2 Integration of low-cost sensors

6.2.2.1 Low-cost GNSS

In our localization system, we use GNSS to provide position of start point for initialization.
Therefore, it is natural that integrates the measurements from a GNSS throughout our localiza-
tion system. The GNSS measurements can be integrated which can improve the accuracy and
robustness of localization further. We tested the integration of GPS data with monocular se-
quence using simulated GPS positions which are are generated by adding Gaussian noises into
the ground truth positions (mean = 0, σ = 5m). The simulated experiment shows the potential
of the GPS integration (cf. figure 6.4). We can see the drift for LBA based localization due
to error accumulation from interest point detection and matching (blue path), but the drift can
be reduced if we integrate the noisy simulation of GPS positions (red path is closer to ground
truth most of the time). The average error for localization is reduced from 1.6m to 1.2m using
the inaccurate GPS measurements (cf. figure 6.4). In practice, the system should be able to
reject the gross errors in real GPS measurements since the noises of the real data are not always
Gaussian distribution.

The loosely coupled integration of GPS with LBA for vision based localization has been inves-
tigated by Lhuillier [2012], where a constrained LBA was developed. The outliers of GPS mea-
surements are rejected by enforcing an upper bound for the back-projection errors. Recently,
the tightly coupled integration of GPS is proposed for localization based on EKF [Aumayer
et al., 2014] or particle filter [Schreiber et al., 2016]. In these approaches, the error of every
pseudo-range measurement can be taken into account. In particular, even though measurement
from only one satellite is obtained precisely, the pseudo-range can still be used for the integra-
tion. Thus, higher localization accuracy can be reached. In our future work, tightly coupled
integration of low-cost GNSS considering the uncertainty propagation, would be an interesting
way to enhance the localization.

6.2.2.2 Low-cost IMU

Precise IMU is very expensive, but we can use low cost IMU in the localization. The IMU
can compute the relative motion by accumulating the acceleration and rotary rate. Our inter-
est is to use IMU for guided matching and relative constraining. The relevant research was
started by Roumeliotis et al. [2002] who used IMU for feature points tracking and then fused
the IMU measurements with image based pose estimation into a general Kalman filter method-
ology. Nevertheless, we can promote this method by integrating the IMU measurements in LBA
considering the uncertainty propagation.
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Figure 6.4: Integrating simulated GPS points with monocular based localization. Green: ground truth.
Blue: LBA based localization. Red: GPS data integration with LBA based localization.

Guiding the matching and tracking. For low cost IMU, the drift would accumulate very
fast over time, but the relative motion would be precise enough to predict the motion for new
images. In this case, we can use IMU to replace our current method for motion prediction in
propagation based matching tracking. Our current motion model for prediction is built based
on the assumption of smooth moving. However, this is not the case when the robot or vehicle
move slowly or turns suddenly. With the help of IMU measurement, the prediction can be more
robust, so that we can obtain more accurate matching and tracking results.

Constraints for pose estimation with uncertainty analysis The relative pose between two
successive locations can be measured by IMU, thus the LBA can be conducted under the con-
straints of these relative poses. It means every two adjacent image poses are constrained by
the relative pose from IMU. In particular, the uncertainties of the IMU measurements can be
considered into data fusion, thus, the error accumulation can be controlled despite some low
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quality measurements are included. Therefore, the robustness of localization can be increased.

6.2.3 Integrating multi-level landmarks

Matching with multi-level landmarks. Our future experiments need to integrate both traf-
fic signs and road markings as landmarks for localization at the same time. The fusion of
both landmarks should obviously provide more accurate localization. Furthermore, our current
localization system assumes that there are no false objects in the landmark map and that the
uncertainty of initial pose is sufficiently low to avoid ambiguities in landmark matching step.
To improve the robustness of landmark association, we would match all the visible landmarks
in a view at the same time instead of matching each object separately.

Integration of 3D model With aerial and street-based mapping, the integrated 3D city model
can be generated (cf. Fig 6.5(a)) [Soheilian et al., 2013b]. The building models are reconstructed
using aerial photogrammetry. The building facades are textured with the ground based images
captured by high resolution camera on MMS. In particular, some street features (road marking
and road signs) are extracted and reconstructed by means of the data acquired by MMS. In

(a) Integrated 3D city model (b) Projecting 3D model into image

Figure 6.5: Projecting the 3D model into image with the approximate image pose.

general, 3D building models are not as precise as the semantic features like traffic signs or
road markings. On the one hand, we consider uncertainty of 3D build model that can give the
correct weight for the integration. On the other hand, the 3D city model can be used to guide
the matching and segmentation of images. With approximate image poses and 3D model, we
can have knowledge that which parts would be the road and which parts would be the building
facades in images (cf. Fig 6.5). Thus, a semantic segmentation can be done for the images.
Then, these informations can help us to detect salient feature points and obtain robust matches.
In addition, based on the semantic segmentation, the perspective deformation can be rectified
for the image patches located on the road and building facade with known mounted orientation
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of on-board camera on vehicle. This can improve the accuracy of interest point matching based
on window correlation.

6.2.4 Integrating image segmentation with localization

In vision based localization, massive interest points might be detected on trees or moving ob-
jects, which can generate inaccurate matches and lead to low quality pose estimation. In order
to detect robust interest points in image, one solution would be to combine image segmentation
with feature detection.

Semantic segmentation Figure 6.6 demonstrates a semantic segmentation of image based on
deep learning. It recognizes objects and recovers the 2D outline of the object in image [Zheng

(a) Input image (b) Semantic segmentation

Figure 6.6: Semantic segmentation based on deep learning.

et al., 2015]. As shown in figure 6.6(b), the cars (gray mask) and pedestrian (pink mask) are
recognized automatically. We can therefore remove the interest points detected on these moving
objects when we use the image for localization. To do this, we need to select a huge amounts
of samples for training before segmentation.

Saliency maps Another way is to produce a visual saliency map for each image by analyzing
image content. We only use the points located in the salient parts in image. Figure 6.7 is a
saliency map. The white areas are considered as the key parts in image (building facades),
which can be used to filter the low quality interest points (e.g. interest points on trees). To
generate previous salient map, the line segments are detected over image. Then the gradient
direction for the pixels on line segments are analyzed via direction histogram in a local area.
If the area contains only one major direction (edge) or two major directions (corner), the area
is considered as salient [Guissous, 2017]. The areas such as trees or lawn which have multiple
directions, are recognized. This method do not need training and is easy to be integrated with
localization. The downside of using this kind of saliency map is that they can not identity the
points on moving object. Besides, some small objects such as road markings are ignored when
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Figure 6.7: Visual salient map (white parts).

generated the map, but the points detected on those objects are very important in poor texture
scenarios such as localization on high speed road.

6.2.5 Network design

All the above-mentioned perspectives aim at improving the performance of localization. In
IGN, there are a lot research about photogrammetry. An open-source photogrammetry software
which is MicMac, is developed for 3D reconstruction [Deseilligny and Clery, 2011]. It has
been used in various fields such as environment [Rosu et al., 2015], forestry [Lisein et al.,
2013], monitoring [Galland et al., 2016]. For future work, it could be interesting to integrate
uncertainty analysis with MicMac.

Apart from this, the network design technique can be used to generate the best configuration for
photogrammetric task. In geodesy, network design refers to establishing the best geometric con-
figuration of a new geodetic network to satisfy the given quality. There are Zero-Order Design
(ZOD): the datum problem (solution being free from impact of reference system), First-Order
Design (FOD): the configuration problem (position and observations to be made), Second-Order
Design (SOD): the weight of observations, Third-Order Design (TOD): the densification prob-
lem [Schmitt, 1982]. Our purpose is to describe where the camera should be placed in order
to satisfy the requirements of a photogrammetric task. This is a problem of FOD to obtain
optimal imaging geometry and 3D modeling. In our future work, we can develop a tool based
on network design for photogrammetric task that enables us know where to put the cameras for
image acquiring. A application of such as system is in deformation measurement of engineering
construction such as bridges and dams.

6.3 Conclusion

In this thesis, we present a low cost but precise localization system based on vision system
and geo-referenced landmarks. In order to quantify the potential errors, the uncertainties of
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landmarks and image points are taken into account for the integration and we estimate the un-
certainties for poses. Furthermore, a propagation based interest points matching and tracking
method and propagation based landmark matching strategies are proposed to improve the accu-
racy and robustness of localization. According to the experiments, the accuracy of localization
is improved greatly with the integration of traffic signs and road markings. But we also notice
that the accuracy is related to the density of landmarks along street, higher landmark density
provides more accurate localization. In our future work, multi-level geo-referenced data can
be integrated into localization (e.g. DEM, 3D model, road network, etc.). Although, the ex-
ternal data such as DEM and 3D building model are not as precise as landmarks we used in
this work, we can integrate them considering their uncertainties so that the proper weight can
be determined and integrated in LBA. In addition, our integrating methods for landmark based
localization can be easily extended for data acquired by low cost GNSS and IMU. Furthermore,
an efficient landmark matching method could be developed based on template tracking while
semantic segmentation can be applied for stable interest points detection.
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Landmark based localization: detection, matching and
update of landmark with uncertainty analysis

This thesis proposed to use one or more cameras on a vehicle as a georeferencing system. The
vehicle’s trajectory can be estimated using visual odometry techniques. To limit the drift of the
trajectory due to the accumulation of errors, we propose a registration on a set of visual land-
marks that are precisely georeferenced. These landmarks are reconstructed using the reference
data generated by precise and expensive mapping systems. Natural road features such as road
markings and traffic signs were chosen as visual landmarks.
A local bundle adjustment algorithm has been adapted to estimate the pose of the vehicle using a
sequence of images acquired by one or more embedded cameras. A rigorous approach that takes
into account the uncertainties enables to tune automatically the weights of every constraint in
the equation system of the adjustment and to estimate the uncertainties of the parameters. They
are used in a propagation based matching algorithm that accelerates the process of tracking
the interest points between the images and eliminate a large number of false matches. This
significantly reduces the drift of the visual odometry by reducing the sources of errors. The
remaining part of the drift is removed using georeferenced visual landmarks. The process of
matching the image sequence with the landmarks is guided by the uncertainty of the poses.
It adds a set of absolute constraints in the equation system of bundle adjustment. The drift
is drastically reduced. Each step of the algorithm is evaluated on real image sequences with
ground truths.

Keywords : Localization, Landmark, Local Bundle Adjustment (LBA), Uncertainty analysis,
Ground Control Points (GCPs), Error propagation, Multi-camera, Traffic signs, Road markings,
Feature extraction, Matching and tracking, Motion model, Tie points, Pose estimation.


