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Dans une deuxième partie, nous proposons une procédure d'estimation des paramètres II III d'un processus max-mélange, alternative à la méthode d'estimation par maximum de vraisemblance composite. Cette méthode plus classique d'estimation par maximum de vraisemblance composite est surtout performante pour estimer les paramètres de la partie max-stable du mélange (et moins performante pour estimer les paramètres de la partie asymptotiquement indépendante). Nous proposons une méthode de moindres carrés basée sur le F-madogramme : minimisation de l'écart quadratique entre le F-madogramme théorique et le F-madogramme empirique. Cette méthode est évaluée par simulation et comparée à la méthode par maximum de vraisemblance composite. Les simulations indiquent que la méthode par moindres carrés du F-madogramme est plus performante pour estimer les paramètres de la partie asymptotiquement indépendante.

Résumé

La modélisation probabiliste des événements climatiques et environnementaux doit prendre en compte leur nature spatiale. Cette thèse porte sur l'étude de mesures de risque pour des processus spatiaux. Dans une première partie, nous introduisons des mesures de risque à même de prendre en compte la structure de dépendance des processus spatiaux sous-jacents pour traiter de données environnementales. Une deuxième partie est consacrée à l'estimation des paramètres de processus de type max-mélange.

La première partie de la thèse est dédiée aux mesures de risque. Nous étendons les travaux réalisés dans [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF] d'une part à des processus gaussiens, d'autre part à d'autres processus max-stables et à des processus max-mélange, d'autres structures de dépendance sont ainsi considérées. Les mesures de risque considérées sont basées sur la moyenne L(A, D) de pertes ou de dommages D sur une région d'intérêt A. Nous considérons alors l'espérance et la variance de ces dommages normalisés. Dans un premier temps, nous nous intéressons aux propriétés axiomatiques des mesures de risque, à leur calcul et à leur comportement asymptotique (lorsque la taille de la région A tend vers l'infini). Nous calculons les mesures de risque dans différents cas. Pour un processus gaussien, X, on considère la fonction d'excès : D + X,u = (X -u) + où u est un seuil fixé. Pour des processus max-stables et max-mélange X, on considère la fonction puissance : D ν X = X ν . Dans certains cas, des formules semi-explicites pour les mesures de risque correspondantes sont données. Une étude sur simulations permet de tester le comportement des mesures de risque par rapport aux nombreux paramètres en jeu et aux différentes formes de noyau de corrélation. Nous évaluons aussi la performance calculatoire des différentes méthodes proposées. Celle-ci est satisfaisante. Enfin, nous avons utilisé une étude précédente sur des données de pollution dans le Piémont italien, celle-ci peuvent être considérées comme gaussiennes. Nous étudions la mesure de risque associée au seuil légal de pollution donnée par la directive européenne 2008/50/EC.

Chapter 1 Introduction

This thesis is devoted to the definition and study of risk measures in a spatial context. We will focus on the axiomatic properties, the asymptotic behavior (as the size of the area of interest goes to infinity), and on the computation aspects of these risk measures. Our contribution follows and further develops the work by Erwan Koch [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]. We provide certain guidelines to compute the risk measures when the model is well specified for Gaussian processes, max-stable processes, and max-mixture processes. The last chapter is devoted to the parameter estimation for max-mixture processes.

This introductory chapter begins with some general statements on spatial modeling in environmental contexts. This is one of our motivations. Then, we recall some definitions and tools that will be useful and we present the main goals and realizations of the thesis.

General introduction and motivation

A heat wave is a prolonged period where maxima temperatures are unusually high with respect to the usual ones. Most of the times, these heat waves have a huge spatial component. For example, in 1936, an extremely severe heat wave hit North America. Many states recorded high temperatures during this canicule, and this stood until the canicule of 2012. In 2003, a major heat wave hit Europe (cf [START_REF] Chase | Was the 2003 european summer heat wave unusual in a global context[END_REF], [START_REF] Herrera | A review of the european summer heat wave of 2003[END_REF]), specially France, resulting in over 70,000 deaths (around 15,000 only in France). In France, this climatic event was exceptional due to its intensity, since some cities registered eight consecutive days with temperatures greater than 40 • , but it was also exceptional due to its spatial extent, covering almost all of the country. In probability, this means that the underlyingspatial process has a strong spatial dependence, even at a long distance.

On the other hand, a "classical" storm type in the south of France is a cevenol event. These storms are a particular kind of rainfall, usually hitting the Cevennes in France. They are characterized by extremely heavy and localized rainfalls that lead to severe floods. For example, in September 2002, the Gard department was hit by an exceptional storm. Some locations received more than 700 mm of rain in 24 hours. This event caused the death of 23 persons. Another example is that of the Draguignan sevely flooding on June 15th, 2010 (cf [START_REF] Payrastre | TTO2D Team of HYMEX[END_REF], [START_REF] Martin | Les inondations du 15 juin 2010 dans le centre var : réflexion sur un épisode exceptionnel[END_REF]), leaving 27 dead and one billion euros worth of damages. Also, during December 1999, three storms hit Europe, causing insured losses above 10 billion Euros (see [START_REF] Ulbrich | Three extreme storms over europe in december 1999[END_REF][START_REF] Re | Winterstorms in europe ii-analysis of 1999 losses and loss potentials[END_REF][START_REF] Donat | Highresolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over germany[END_REF]). The storms may also have a huge spatial component; in other words, the underlying spatial process may have a strong spatial dependence even at a long distance.

In Norway, on January 1, 1992, a hurricane (high wind velocities) hit the western coast of Norway and cost around 20 million euros. More than 29,000 buildings were damaged; in some municipalities, 33% of the building stock was damaged.

In all these situations, one of the main characteristic of the event is its spatial dependence. The dependencies may be strong even for large distances as the heat waves or they may be strong at short distances and weak at larger distances, as the cevenol events. When trying to detect the dangerousness of a region using risk measures, the notion of spatial dependence must be taken into account. Many dependence structures may arise, for example, asymptotic dependence, asymptotic independence, or both [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF].

The high economic impact of these environmental/climatic events motivated us to develop the theory of spatial risk measures [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]. The impact of the dependence structure will be one of our main concerns.

Main definitions and tools used in this thesis

We provide a general setting to define spatial risk measures. It should be applicable and relevant for various spatial processes and different dependence structures. It will also depend on damage functions over a region. First, we quickly present the spatial processes considered in this work, as well as tools used to identify the spatial dependence structures. Then, we shall provide definitions of risk measures and present natural axioms about them. For completeness, we recall the classical axioms for univariate risk measures.

Spatial processes

Throughout this thesis, the spatial process X := {X(s), s ∈ S}, S ∈ R d is assumed to be strongly stationary and isotropic. This means that for any k ∈ N, (s 1 , . . . , s k ) ∈ S k and h with (s 1 + h, . . . , s k + h) ∈ S k , the random vector (X s 1 , . . . , X s k ) has the same distribution as (X s 1 +h , . . . , X s k +h ) (stationarity) and this common distribution depends only on h (isotropy), where • denotes the euclidean norm in R d . For any set A ⊂ B(R d ), the volume of A is denoted by |A|, that is |A| = λ(A) with λ being the Lebesgue measure on R d .

Gaussian processes

The process (X(s)) s∈S is a Gaussian process if and only if, for any d ∈ N, (s 1 , . . . , s d ) ∈ S d , the random vector (X(s 1 ), . . . , X(s d )) is a Gaussian vector. Of course, an isotropic stationary Gaussian process is determined by:

• μ = E(X(s)), σ 2 = Var(X(s)),

• the covariance structure: γ(h) = Cov(X(s), X(s + h)) or equivalently, the correlation function ρ(h) = Corr(X(s), X(s + h)).

ϕ denotes the density of a standard normal law, Φ its distribution function, and Φ = 1 -Φ its survival distribution function.

Max-stable processes

Gaussian processes are not well suited for many applications, e.g. rainfall and wind in some regions. Hence, we shall consider max-stable processes. Related definitions and a literature review are detailed in Chapter 2. If X is a simple max-stable process, it has unit Fréchet margins and its bivariate dependence structure is given by:

P(X(s) ≤ x) = e -1 x , P X(s) ≤ x 1 , X(t) ≤ x 2 = exp(-V s,t (x 1 , x 2 )), x > 0.
V s,t is called the exponent measure function. If the process is isotropic then V s,t (x 1 , x 2 ) depends only on h = ts and is written as V h .

Max-stable processes are asymptotically dependent in the sense that either X(s) and X(s + h) are independent or we have χ(h, u) = 2 -log P F (X(s)) < u, F (X(t)) < u log P F (X(s)) < u > 0 ∀h ∈ S, u ∈ [0, 1[, such that, χ(h) = lim u→ -1 χ(h, u). χ is seen as a measure of asymptotic dependence of the process. For completeness, let us mention two examples of max-stable processes.

Smith Model (Gaussian extreme value model)

V h (x 1 , x 2 ) = 1 x 1 Φ τ (h) 2 + 1 τ (h) log x 2 x 1 + 1 x 2 Φ τ (h) 2 + 1 τ (h) log x 1 x 2 ; with τ (h) = √ h T Σ -1 h.
Schlather Models (Extremal Gaussian Model)

V h (x 1 , x 2 ) = 1 2 1 x 1 + 1 x 2 1 + 1 -2(ρ(h) + 1) x 1 x 2 (x 1 + x 2 ) 2 .

Inverse max-stable processes

Let X be a simple max-stable process as stated above, with exponent measure function V h , consider

X(s) = g(X (s)) = - 1 log{1 -e -1/X (s) } s ∈ S.
Then, X has unit Fréchet margin and bivariate survivor function P X(s 1 ) > x 1 , X(s + h) > x 2 = exp -V h g(x 1 ), g(x 2 ) .

Inverse max-stable processes have been defined in [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF]. More details are given in Chapter 2. Inverse max-stable processes are asymptotically independent in the sense that χ(h) = 0 for any h. In order to measure the strength of asymptotic independence, the χ measure is introduced.

χ(h, u) = 2 log P F (X(s)) > u log P F (X(s)) > u, F (Y (s + h)) > u -1, 0 ≤ u ≤ 1.
Such that, χ(h) = lim u→1 χ(h, u). We have -1 ≤ χ(h) ≤ 1 and the spatial process is asymptotically dependent if χ(h) = 1. Otherwise, it is asymptotically independent.

Max-mixture processes

Wadsworth and Tawn [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF] proposed to mix max-stable and inverse max-stable processes. Let X be a simple max-stable process, with exponent measure function V X h . Let Y be an inverse max-stable process with and exponent measure function V Y h . Let a ∈ [0, 1] and define Z(s) = max{aX(s), (1a)Y (s)}, s ∈ S.

Z has unit Fréchet marginals. Its bivariate distribution function is given by

P Z(s) ≤ z 1 , Z(s + h) ≤ z 2 = e -aV X h (z 1 ,z 2 ) e -(1-a) z 1 + e -(1-a) z 2 -1 + e -V Y h (ga(z 1 ),ga(z 2 )) ,
where g a (z) = g( z 1-a ). For nontrivial max-mixture, i.e. a ∈]0, 1[, we have χ(h) = 0 and χ(h) = 1 for some values of h, which means that these processes are neither asymptotically dependent nor asymptotically independent (see Chapter 2 for the calculation of χ and χ for max-mixture processes).

Throughout the thesis, max-stable and max-mixture processes will be referred to as extreme processes.

The F -madogram

We terminate this subsection on spatial processes with the definition of the Fmadogram, which can be seen as another measure of dependence. We shall use it for the estimation of parameters of max-mixture processes. It has been introduced in [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] for processes for which the variogram is not defined (typically processes with Fréchet margin do not have an order 2 moment). Definition 1.1. Let X be a spatial process on S with univariate margin F . The F -madogram of the process X is for all (s, t)

∈ S 2 ν F (s -t) = 1 2 E|F (X(s)) -F (X(t))|.
If the process is asymptotically independent, then ν F (h) = 1 6 .

Axioms for univariate risk measures

Before introducing spatial risk measures, it seems useful to recall the widely used concepts on univariate risk measures.

Univariate risk measures

Consider a random variable X on Ω (it may be the wind speed, the temperature, a claim amount...). F X is its distribution function.

A risk measure is a function of X, valued in R, often denoted as ρ.

The choice of a risk measure depends on the purpose, it could be for examples:

• the expected value: E(X) which provides information of the mean behavior.

• the variance: Var = E((X -E(X)) 2 ) which measures the average deviation of X with respect to its mean.

• Quantiles: let α ∈]0, 1[, the α-quantile is q α = inf{t, F X (t) ≥ α}, this is the value that X should not exceed with probability α.

Axioms for univariate risk measures

A risk measure ρ is:

• invariant by translation if for any a ∈ R, ρ(X + a) = ρ(X) + a.
It means that adding a constant risk increases the risk with that constant amount.

• positive homogeneous if for any a > 0, ρ(aX) = aρ(X). The measure is not affected by a change of unity.

• sub-additive, if for any random variables X and

Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
It consists of a diversification effect.

• a.s. monotone, if X ≤ Y a.s., then ρ(X) ≤ ρ(Y ).

Following [START_REF] Artzner | Coherent measures of risk[END_REF] a risk measure is coherent if it satisfies the four axioms stated above.

Remark 1.

• X E(X) and X Var(X) are coherent.

• X q α (X) is not coherent (it is not sub-additive). Nevertheless, the quantile function is extensivly used because it is imposed by regulatory rules in finance / insurance; also, it is related to the notion of return time in environment.

• α q α (X) is increasing.

Spatial risk measures

Previous works ( [START_REF] Keef | Spatial risk assessment for extreme river flows[END_REF] or [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]) proposed to evaluate spatial risk through the expectation of an integrated loss function. Consider a spatial process X and let D X be a positive function of X called a damage function, e.g.,

D X,u = (X -u) + or D ν X = X ν . Definition 1.2 (Normalized loss function). Let A ⊂ S, L(A, D X ) = 1 |A| A D X (s) ds.
We propose considering spatial risk measures composed of two components: the expectation and the variance of the normalized loss,

R(A, D X ) = {E[L(A, D X )], Var L(A, D X ) }, =: {R 0 (A, D X ), R 1 (A, D X )}
For stationary processes, E[L(A, D X )] provides information on the severity of the phenomenon.

E[L(A, D X )] = 1 |A| A E(D X (s))ds = E(D X (s)) does not depend on A.
When Var L(A, D X ) is impacted by the dependence structure, we have

Var L(A, D X ) = 1 |A| 2 A×A Cov D X (s), D X (t) dsdt.
Natural axioms for spatial risk measures are adaptations to the spatial context of coherence axioms by [START_REF] Artzner | Coherent measures of risk[END_REF]. In this study, we have followed [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]. Consider A, A 1 , A 2 as subsets of S. Consider R both as a function of A and of a damage function D. We have considered the following axioms on R.

Invariance by translation. For any

v ∈ S, R(A + v, D) = R(A, D).

Anti-monotonicity

If |A 1 | ≤ |A 2 |, then R(A 2 , D) ≤ R(A 1 , D).

Sub-additivity

If A 1 ∩ A 2 = ∅, then R(A 1 ∪ A 2 , D) ≤ R(A 1 , D) + R(A 2 , D).

Super sub-additivity

If A 1 ∩ A 2 = ∅, then R(A 1 ∪ A 2 , D) ≤ min i=1,2 [R(A i , D)].

Main realizations of the thesis

We are now in a position to state our main results.

General properties of R 1 (A, D)

Let X be an isotropic spatial process. The risk measure R 1 (A, D) is invariant by translation and is sub-additive. The other axiomatic properties are more difficult to get. We first provide some general forms for R 1 (A, D) which will be useful to get axiomatic and asymptotic properties. Let A be either a disk or a square; R 1 (A, D X ) may be rewritten (we proceed as in [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]). When A is a disk of radius R,

R 1 (A, D X ) = 2R h=0 f disk (h, R)Cov D X (s), D X (s + h) dh.
Where f disk (h, R) is the density of distance between two points uniformly drawn on a disk ( [START_REF] Moltchanov | Distance distributions in random networks[END_REF]), that is

f disk (h, R) = 2h R 2 2 π acos( h 2R ) - h πR 1 - h 2 4R 2 .
When A is a square with side R

R 1 (A, D X ) = √ 2R h=0 f square (h, R)Cov D X (s), D X (s + h) dh.
Where f square (h, R) is given by: for h ∈ [0, R],

f square (h, R) = 2πh R 2 -8h 2 R 3 + 2h 3 R 4 , and for h ∈ [R, √ 2R], let b = h 2 R 2 f square (h, R) = 2h R 2 -2 -b + 3 √ b -1 + b + 1 √ b -1 + 2arcsin( 2 -b b ) - 4 b 1 -(2-b) 2 b 2 ⎫ ⎬ ⎭ ,
These two formulas show that if you can compute Cov D X (s), D X (s + h) , then the risk measure reduces to a one-dimensional integration.

Risk measures for Gaussian processes

In the case of Gaussian processes, explicit formulas for R 1 (A, D) may be obtained. Consider a fixed threshold u, D X,u = (Xu) + . The choice of u will be according to the purpose; it may, for example, be a regulatory threshold. This means that R 1 (A, D + X,u ) is the variance of the mean of X over the threshold u on the area A. If we consider a standard Gaussian process (i.e. μ = 0 and σ = 1) with a positive auto-correlation function ρ, a simple calculation provides the following result:

R 0 (A, D + X,u ) = E(L(A, D + X,u )) = ϕ(u) -uΦ(u).
The variance of L(A, D + X,u ) may be obtained by using the results [START_REF] Rosenbaum | Moments of a truncated bivariate normal distribution[END_REF] on moments of truncated bivariate normal distributions. If A is a square,

R 1 (A, D + X,u ) = Var(L(A, D + X,u )) = √ 2R h=0 f square (h, R)G(h, u)dh., with G(h, u) = u, u, ρ(h) ρ(h) + u 2 -2uϕ(u)Φ u(1 -ρ(h)) (1 -ρ 2 (h)) 1/2 + 1 -ρ 2 (h) 1/2 ϕ u (1 + ρ(h)) 1/2 2 -ϕ(u) -uΦ(u) 2 ;
and u, v, ρ(h) is the total probability of a truncated bivariate standard normal distribution with correlation function ρ.

u, v, ρ(h) = 1 2π(1 -ρ 2 (h)) 1/2 ∞ u ∞ v e -1 2(1-ρ(h)) 2 [x 2 -2ρ(h)xy+y 2 ] dxdy.
As a corollary, we may express the risk measure for any Gaussian process. Let Y be an isotropic Gaussian process with mean μ and variance σ 2 . Let X = Y -μ σ ; of course, X is a standard Gaussian process.

Corollary 1.1. The spatial risk measure R(A, D + Y,u ) satisfies the following

R(A, D + Y,u ) = σE[L(A, D + X,u 0 )], σ 2 Var L(A, D + X,u 0 ) , with u 0 = (u -μ)/σ.
Moreover, the previous formula provides the behavior of λ R 1 (λA, D + X,u ) and it implies anti-monotonicity for disk or square.

Corollary 1.2. Let X be an isotropic Gaussian process with auto-correlation function ρ. Let A ⊂ S be either a disk or a square. The mapping λ → R 1 (λA, D + X,u ) is non-increasing if and only if h → ρ(h), h > 0 is non-increasing and non-negative. If h → ρ(h) decreases to 0 as h goes to infinity,

lim λ→∞ R 1 (λA, D + X,u ) = 0.
Let A 1 and A 2 be either squares or disks with

|A 1 | ≤ |A 2 |; then, R 1 (A 2 , D + X,u ) ≤ R 1 (A 1 , D + X,u ).
The decreasing behaviors of R 1 (λA, D + X,u ) means that there is a diversification effect as the size of the considered area increases. Moreover, if the process is independent at a large scale (h → ∞) the risk measure goes to 0 as the size of the area goes to infinity.

Finally, a simulation study shows the different behaviors of R 1 (λA, D + X,u ) with respect to the various parameters of the model and different Kernels for the correlation function. Also, we provide an application on real data that has been previously studied in [START_REF] Bande | Spatio-temporal modelling for pm10 in piemonte[END_REF]. It concerns data on pollution in Piemonte, measured by the concentration in P M 10 . The observed values of P M 10 are frequently larger than the legal level fixed by the European directive 2008/50/EC. It has been shown in [START_REF] Bande | Spatio-temporal modelling for pm10 in piemonte[END_REF] that the log of P M 10 can been fitted on an isotropic Gaussian process and that our formulas apply.

Spatial risk measure for extreme processes

In the cases of extreme spatial processes (i.e. max-stable or max-mixture processes), the excess damage function considered before cannot be used; due to Fréchet margins, it has no moment of order 1. We shall consider the damage function 1 2 (so that the order two moment exists). These kind of damage functions are used, for e.g., in analyzing the negative effects due to the wind speed (see [START_REF] Re | Natural catastrophes 2012 analyses, assessments, positions 2013 issue[END_REF] for more details). In [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF], the risk measure associated to D ν X is calculated for Smith processes. We propose a calculation for TEG maxstable processes as well as some computational tools for max-mixture processes. The properties of moments of Fréchet distributions give that if X as a unit Fréchet marginal distributions,

D ν X (s) = |X(s)| ν , for 0 < ν <
E(L(A, D ν X )) = Γ(1 -ν).
The variance is more difficult to compute in general. Nevertheless, if A is a square of side R, we have:

R 1 (A, D ν X ) = √ 2R h=0 Q(h, ν)f square (h, R)dh, with Q(h, ν) = ν 2 ∞ 0 ∞ 0 x ν-1 1 x ν-1 2 G X h (x 1 , x 2 ) -F (x 1 )F (x 2 ) dx 1 dx 2 and G X h = P(X(s) ≤ x 1 , X(s + h) ≤ x 2 ).
We have a similar result for disks. These formulas are useful to get the behavior of R 1 (A, D ν X ).

Proposition 1.3. Let Z be an isotropic and stationary max-mixture spatial process. Assume that the mappings

h → V X h (x 1 , x 2 ) and V Y h (x 1 , x 2 ) are non-decreasing for any (x 1 , x 2 ) ∈ R 2
+ . Moreover, we assume that

V X h (x 1 ; x 2 ) -→ 1 x 1 + 1 x 2 and V Y h (x 1 , x 2 ) -→ 1 x 1 + 1 x 2 as h → ∞ ∀x 1 , x 2 ∈ R + . Let A ⊂ S be either a disk or a square, lim λ→∞ R 1 (λA, D ν Z ) = 0.
If there exists V 0 (resp. V 1 ), an exponent measure function of a non-independent max-stable (resp. inverse max-stable) bivariate random vector, such that

V X h -→ V 0 (resp. V Y h -→ V 1 as h → ∞), then lim λ→∞ R 1 (λA, D ν Z ) > 0.
This proposition shows that the risk measure contains some information on the dependence structure of the underlying process.

Finally, a simulation study shows the behavior of R 1 (A, D ν X ) with respect to the various parameters of the model.

Estimation of the parameters of max-mixture processes.

We have provided some tools to compute the risk measure R 1 (A, D ν X ) for maxmixture processes. The estimation of the parameters of these processes remains a difficulty. The usual way to estimate parameters in spatial contexts is to maximize the composite likelihood. For example, in [START_REF] Padoan | Likelihood-based inference for maxstable processes[END_REF], [START_REF] Davison | Geostatistics of extremes[END_REF] and many others, the composite likelihood maximization is used to estimate the parameters of max-stable processes. In [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] and [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF], it is used to estimate the parameters of max-mixture processes. Nevertheless, the estimation does not perform well in some cases; moreover, it seems to have difficulties estimating the inverted max-stable part. In section 5.2.2, we propose a semi-parametric estimation procedure as an alternative to composite likelihood maximization for max-mixture and also for max-stable (resp. inverse max-stable) processes. Our procedure is a least square method on the Fmadogram; that is, we minimize the difference between the theoretical F -madogram and the empirical one. Some of literature deals with semi-parametric estimation in modeling spatial extremes. For example, [START_REF] Northrop | An efficient semiparametric maxima estimator of the extremal index[END_REF] and [START_REF] Aghakouchak | Semi-parametric and parametric inference of extreme value models for rainfall data[END_REF] provided semi-parametric estimators of extremal indexes. In [START_REF] Buhl | Semiparametric estimation for isotropic max-stable space-time processes[END_REF], another semi-parametric procedure to estimate model parameters is introduced. It is based on fitting the theoretical extremogram with the empirical one by non-linear least square for the isotropic space-time Browen-Resnick max-stable process. The semi-parametric procedure proposed in this thesis is based on this article. The performance of this estimator is evaluated by a simulation study in Section 5.3.2. It shows, in general, that the estimation performs well, although it encounters some difficulties, which are discussed. Let us mention that we have also tried to estimate the parameters by using least squares on empirical tail dependence measures χ(h, u) and χ(h, u). This procedure shows similar performance (it can be seen in Appendix B).

Outline of the thesis

Chapter 2 is devoted to spatial risk measures. It is divided as follows. Section 2.2 is dedicated to the general framework; it contains definitions, notations, examples and properties of the mathematical objects that we have used throughout this thesis. In Section 2.3, we present three different extreme spatial processes with different dependence structures (asymptotic dependence/independence and a mixture of them). Definition of spatial risk measures and the axiomatic properties are introduced in Section 2.4. The expressions and theoretical behaviors of the spatial risk measures for each spatial process considered in this thesis is provided in Chapter 3. The computational aspects related to risk measures will be presented in Chapter 4. In this chapter, the behavior of these risk measures is numerically analyzed by a simulation study. In this simulation study, for each risk measure contains two parts. The first one concerns the behavior of the covariance damage functions and variance of normalized losses. In the second part, numerical computations of the risk measures are presented. The estimation procedure is introduced in Chapter 5. In Section 5.1, we calculate an expression for the F -madogram of max-mixture models. Section 5.2 is devoted to the least square F -madogram estimation of the parameters of maxmixture processes. A simulation study is conducted, which allows us to evaluate the performance of the estimation procedure (Section 5.3). Finally, concluding remarks are discussed in Chapter 6 and some auxiliary results and simulations are provided in the Appendix.

The results of Chapters 2, 3 and 4 are contained in two different submitted articles: M. Ahmed, V. Maume-Deschamps, P. Ribereau, C. Vial, Spatial risk measures for Gaussian processes, [START_REF] Ahmed | Spatial risk measure for gaussian processes[END_REF]. M. Ahmed, V. Maume-Deschamps, P. Ribereau, C. Vial, Risk measures for maxstable and max-mixture spatial processes, [START_REF] Ahmed | Risk measures for max-stable and max-mixture spatial processes[END_REF]. The results of Chapter 5 will be presented in a submitted article within few months.

Chapter 2

Spatial Risk measure

Introduction

In this chapter, we state our general framework: we recall definitions on gaussian processes, max-stable processes, inverse max-stable processes and max-mixtures. We also present the notions of asymptotic dependence and asymptotic independence. Finally, we consider quite general spatial risk measures and develop the axiomatic setting of [START_REF] Koch | Tools and models for the study of some spatial and network risks:Application to climate extremes and contagion in France[END_REF].

General framework

In this section we provide the fundamental definitions, notations, examples and properties of mathematical objects that we are using throughout this thesis.

Stochastic processes

Definition 2.1. (Stochastic process) Let us consider a probability space (Ω, F, P) and a set S ⊂ R d . A stochastic process X is a collection (X(s), s ∈ S), such that ∀s ∈ S; X(s) is a random variable.

In particular, we will speak in spatial processes when S ∈ R 2 . Typically, observations of precipitations at certain station may be considered as realizations of a spatial process.

Definition 2.2. (Second-order processes) The process X on S is second order, if for any s ∈ S, E[X(s) 2 ] < ∞. In this case, the covariance function exists and is a positive semi-definite function, say c : S × S → R, such that for each (s, t)

∈ S 2 c(s, t) = E[X(s)X(t)] -E[X(s)]E[X(t)].
Under the second-order assumption, the variance function of the process X exists and is denoted by σ 2 (s) = c(s, s), for any s ∈ S.

We may also define the auto-correlation function, denoted by

ρ(s, t) = c(s, t) σ(s)σ(t)
, for any (s, t) ∈ S 2 .

In the spatial context, the auto-correlation function is usually assumed to be nonnegative, that is, for all (s, t) ∈ S 2 , ρ(s, t) ≥ 0. Nevertheless, negative dependency rarely occurs in practice; see [START_REF] Griffith | Spatial autocorrelation[END_REF] for more discussion on this topic.

In what follows, we shall consider non-negative correlation functions. The most classical isotropic auto-correlation functions are the following (see [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF]), for all τ > 0 where θ ∈ R is a truncation parameter, Γ(•) is the gamma function, K ℘ (•) is the modified Bessel function of second kind, and ℘ is a non-negative parameter. The parameter θ is a scaling parameter, also called the correlation length or the range parameter.

We represent below several graphs of the correlation functions for the different models and for various parameters. Let us notice that a second-order stationary Gaussian process is stationary. Furthermore, if X is an isotropic standard Gaussian process, then we can get an explicit form for the bivariate cumulative distribution function between X(s) and X(t), for all (s, t) ∈ S 2 , that is, for all

(u, v) ∈ R 2 F s,t (u, v) :=P X(s) ≤ u, X(t) ≤ v , = u -∞ v -∞ (2π) 1 -ρ 2 (τ s,t ) -1 exp - x 2 -2ρ(τ s,t )xy + y 2 2(1 -ρ(τ s,t )) 2 dxdy, (2.2.1)
where τ s,t = st .

Dependence measures

Important properties of a process are described by its dependence structure and lots of measures are defined in the literature to better understand the dependence in real spatial data. In what follows, we will introduce some of them in the context of a spatial process. First of all, let us introduce the notion of negative or positive association of two locations of a process when dealing with their extremal behaviour. The following definition extend the notion of Positive Quadrant Dependence introduced by [START_REF] Lehmann | Some concepts of dependence[END_REF] for a pair of random variables. This concept explains how the two variables behave together when they are simultaneously small (or large).

Definition 2.7. (Positive Quadrant Dependence) The process X on S is positively quadrant-dependent (or positively associated) if the following inequality is fulfilled for all (s, t) ∈ S 2 and (u,

v) ∈ R 2 P X(s) ≤ u, X(t) ≤ v ≥ P X(s) ≤ u P X(t) ≤ v (2.2.2)
or equivalently

P X(s) > u, X(t) > v > P X(s) > u P X(t) > v (2.2.3)
For example, a Gaussian process X is positively-quadrant dependent if 0 ≤ ρ(s, t) < 1 for all (s, t) ∈ S 2 and negatively-quadrant dependent if -1 < ρ(s, t) ≤ 0 for all (s, t) ∈ S 2 ; see the details in Example 9 of [START_REF] Lai | Concepts of stochastic dependence in reliability analysis[END_REF] and other examples therein. Now, we will focus on different quantitative measures introduced in the literature to better understand the strength of dependence in the extremes. At first, we consider the upper tail dependence coefficient introduced by [START_REF] Sibuya | Bivariate extreme statistics, i[END_REF]. Dealing with a pair of variables, this coefficient allows to distinguish between two different forms of extremal dependance: asymptotic dependence and independence. In a spatial context, this tool measures the association degree between the processes at two locations and becomes a function depending on the distance between the two sites; see [START_REF] Bacro | Measuring and modelling multivariate and spatial dependence of extremes[END_REF] Definition 2.8. Let X be a stationary spatial process on S with univariate margin cumulative distribution function F . The upper tail dependence function χ is defined for all s ∈ S and h ∈ S such that s + h ∈ S,

χ(h) = lim u→1 -P F (X(s + h)) > u|F (X(s)) > u . ( 2 

.2.4)

If χ(h) = 0, the pair (X(s + h), X(s)) is said to be asymptotically independent (AI). If χ(h) = 0, the pair (X(s + h), X(s)) is said to be asymptotically dependent (AD). The process is said AI (resp. AD) if for all h ∈ S χ(h) = 0 (resp. χ(h) = 0).

Under the assumptions of the theorem 2.1 below, for any h the coefficient χ(h) can alternatively be expressed; see [START_REF] Coles | Dependence measures for extreme value analyses[END_REF], as the limit when u → 1 -of the function defined

on S × [0, 1] into [0, 1], by χ(h, u) = 2 - log P F (X(s)) < u, F (X(t)) < u log P F (X(s)) < u , for h ∈ S, u ∈ [0, 1[. (2.2.5) Such that, χ(h) = lim u→ -1 χ(h, u).
More details and comments on the coefficient χ can be found in [START_REF] Bacro | Measuring and modelling multivariate and spatial dependence of extremes[END_REF].

These notions are spatial versions of the dependence measures usually defined in multivariate contexts; see [START_REF] Coles | Models and inference for uncertainty in extremal dependence[END_REF]. It is well known that a Gaussian pair with correlation ρ ∈ (0, 1) is asymptotically independent. But the behaviour of the conditional probability with respect to u suggests that the asymptotic independence could not be detected as it appears for u very near to 1. Thus, it suggests that the function χ is more useful to study asymptotic dependence than asymptotic independence. This is why, in [START_REF] Coles | Dependence measures for extreme value analyses[END_REF], the authors introduced an alternative dependance coefficient called lower tail dependence coefficient χ. This quantity measures the strength of asymptotic independence of a process.

Definition 2.9. For a stationary spatial process X on S ⊂ R 2 with margin F , the function χ defined from S into ] -1, 1[ and for any (s,

s + h) ∈ S 2 χ(h, u) = 2 log P F (X(s)) > u log P F (X(s)) > u, F (X(s + h)) > u -1, 0 ≤ u ≤ 1 (2.2.6)
is the lower tail dependence coefficient, such that, χ(h) = lim u→1 χ(h, u).

If χ(h) = 1 for all h, the spatial process is asymptotically dependent. Otherwise, the process is said to be asymptotically independent. Furthermore, if χ ∈]0, 1[ ( resp. ] -1, 0[) the two locations s and s + h (for any s) are asymptotically positively associated (resp. asymptotically negatively associated).

Coming back to the Gaussian example, for a Gaussian process, the function χ equals the correlation function ρ; then, it gives a quantitative measure of the strength of dependence even in the asymptotically independent case. Another important measure of dependence was introduced by [START_REF] Buishand | Bivariate extreme-value data and the station-year method[END_REF] in the case of bivariate random variable and extended by [START_REF] Schlather | A dependence measure for multivariate and spatial extreme values: Properties and inference[END_REF] to the spatial case in the following way.

Definition 2.10. Let X be a stationary spatial process on S ∈ R 2 with marginal distribution function F . We define the extremal coefficient between two locations s and s + h for any s ∈ S and s + h ∈ S, and for any x ∈ R by

θ F (h, x) = log(P (X(s) < x, X(s + h) < x)) log(P (X(s) < x)) .
This parameter is related to the upper tail dependence parameter; indeed if

lim x→x F θ F (h, x) = θ F (h
) exists, we have the following relation [START_REF] Bacro | Measuring and modelling multivariate and spatial dependence of extremes[END_REF].

χ(h) = 2 -θ F (h),
where

x F = sup{x|F (x) < 1}. Then, P (X(s) < x, X(s + h) < x)) may be approxi- mated by F (x) θ F (h) for x large.
This coefficient is of particular interest in the context of extremal distribution and spatial processes as we will see in the following section. It is also particularly useful when dealing with asymptotic dependence, but useless in case of asymptotic independence.

To overcome this problem, [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF] proposed a model allowing to gather all the different cases of dependence depending on the value of a parameter in another words, smoothly linking asymptotic dependence and independence.

Let X be a stationary process with unit Fréchet margin; then, for all (s, s

+ h) ∈ S 2 P X(s) > x, X(s + h) > x = L h (x)x -1/η(h) , as x → ∞ (2.2.7) and P X(s) > x|X(s + h) > x = L h (x)x 1-1/η(h) , as x → ∞ (2.2.8)
where L h is a slowly varying function and η(h) ∈ (0, 1] is the tail dependence coefficient. This coefficient determines the decay rate of the bivariate tail probability for large x. The interest of this simple modelisation, which appears to be quite general, is that the coefficient η(h) provides a measure of the extremal dependence of X(s) and X(x + h). In fact, we can describe four dependence classes for X, satisfying the model above; see [START_REF] Bacro | Measuring and modelling multivariate and spatial dependence of extremes[END_REF][START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF] for more details:

• η(h) = 1 and L(x) → 0, corresponds to asymptotic dependence;

• 0 < η(h) < 1/2 and L(x) → 0, corresponds to asymptotic negative association;

• 1/2 < η(h) < 1 and L(x) → 0, corresponds to asymptotic positive association;

• η(h) = 1/2 and L(x) ≥ 1 (resp. L(x) ≡ 1), corresponds to near independence case (resp. exact independence).

It is also important to notice that the last three cases correspond to asymptotic independence and the coefficient η(h) measures the dependence in the asymptotic independence case. Finally, it is important to see the relations between η and χ.

If equation (2.2.7) is satisfied, then χ(h) → 2η(h) -1, (see proof of proposition 2.

and [22]

).

Extreme spatial processes

In this section, we present three different extreme spatial processes with different dependence structures. The first one (max-stable process) is either asymptotically dependent or independent. The second one (inverse max-stable process) is asymptotically independent. The third one is a max-mixture process between the two above.

Max-stable model

First definitions

Max-stable processes are the extension of the multivariate extreme value theory to the infinite dimensional setting [START_REF] Buhl | Semiparametric estimation for isotropic max-stable space-time processes[END_REF].

Definition 2.11. (max-stable process) A process X is max-stable if for all n ∈ N and X 1 , . . . X n i.i.d. copies of X, there exist two continuous functions (a n (•) > 0, n ∈ N) and (b n (•) ∈ R, n ∈ N) such that max i=1,...,n X i -b n a n = d X.
When for all n ∈ N, a n = 1 and b n = 0, the margin distribution of the process X is unit Fréchet, that is for any s ∈ S and x > 0,

F (x) := P (X(s) ≤ x) = exp[-1/x].
In that case, the process is called a simple max-stable process.

The following result explains the importance of max-stable processes in the spatial extreme domain.

Theorem 2.1 ([29]

). (max-stable process) Let T := (T (s), s ∈ S) be a stochastic process. If there exist two sequences of continuous functions (a n (•) > 0, n ∈ N) and

(b n (•) ∈ R, n ∈ N)
such that for all n ∈ N and n i.i.d. X 1 , . . . , X n and X a process, such that max i=1,...,n

X i -b n a n d → X, n → ∞, (2.3.1)
then X := {X(s), s ∈ S} is a max-stable process.

[28] proved that a max-stable process X can be constructed by using a random process and a Poisson process. This representation is named the spectral representation. More precisely we have the following results

Theorem 2.2 ([28]

). spectral representation Let X be a max-stable process on S. Then there exists {ξ i , i

≥ 1} i.i.d Poisson point process on (0, ∞), with intensity dξ/ξ 2 and a sequence {W i , i ≥ 1} of i.i.d. copies of a positive process W = (W (s), s ∈ S), such that E[W (s)] = 1 for all s ∈ S such that X = d max i≥1 ξ i W i . (2.3.2)
This representation is in particular useful for the simulation of a max-stable process and provides examples of such processes by choosing special sequences {ξ i , i ≥ 1} and {W i , i ≥ 1}. We may also deduce from its proof an explicit form for the k-dimensional multivariate distribution, which is

P X(s 1 ) ≤ x 1 , ..., X(s k ) ≤ x k = exp -E max =1,...,k W (s ) x . (2.3.3)
Furthermore, using the result (2.3.1) and the multivariate extreme value theory, we already know that for all k ∈ N and

(x 1 , .., x k ) ∈ R k P X(s 1 ) ≤ x 1 , ..., X(s k ) ≤ x k = exp{-V (x 1 , ..., x k )}, (2.3.4)
where the function V is homogenous of order -1 and is named the exponent measure.

Then, in the case of max-stable processes from (2.3.3) and (2.3.4), we have

V (x 1 , ..., x k ) = E max =1,...,k W (s ) x . (2.3.5)
One of the interests of the exponent measure is its interpretation in terms of dependence. In fact, the homogeneity of the exponent measure V implies

max{1/x 1 , ..., 1/x k } ≤ V (x 1 , ..., x k ) ≤ {1/x 1 + ... + 1/x k }. ( 2.3.6) 
See [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF], section 8.2.2. In the inequalities (2.3.6), the lower (resp. upper) bound corresponds to complete dependence (resp. independence). The relation (2.3.6) may also be used to obtain inequalities for the cumulative distribution function of the k-dimensional random vector (X(s 1 ), ..., X(s k )), say G d (x 1 , .., x d ), that is

F (x 1 )...F (x k ) ≤ G k (x 1 , .., x k ) ≤ min{F (x 1 ), ..., F (x k )}, ∀(x 1 , ...x k ) ∈ R k , (2.3.7)
where F is the unit Fréchet margin distribution function. Consequently, X satisfies the positively quadrant dependence (PQD); see [START_REF] Lehmann | Some concepts of dependence[END_REF].

Dependence structure

In this subsection, we present various relationships between the different dependence coefficients introduced above and max-stable processes. A convenient measure of dependence for max-stable processes is the d-dimensional extremal coefficient function Θ d , [START_REF] Coles | Dependence measures for extreme value analyses[END_REF][START_REF] Schlather | A dependence measure for multivariate and spatial extreme values: Properties and inference[END_REF] which is completely characterized through the exponent measure V .

Definition 2.12. Let X be a simple max-stable process on S. The d-dimensional extremal coefficient function is defined for all (s 1 , ..., s d ) ∈ S d , by

Θ d (s 1 , ..., s d ) = -x log P(X(s 1 ) ≤ x, ..., X(s d ) ≤ x) , x ∈ R + . (2.3.8)
Rk. For simple max stable processes, the coefficients Θ and θ F coincide. Equation (2.3.5) implies that Θ d is well defined and does not depend on x:

Θ d (s 1 , ..., s d ) = E max{W (s 1 ), ..., W (s d )} = V (1 1 , ..., 1 d ) ∈ [1, d].
(2.3.9)

If Θ d (s 1 , ..., s d ) = 1, for any (s 1 , ..., s d ) ∈ S d , the process is completely dependent (its marginals are comonotonic). If Θ d (s 1 , ..., s d ) = d, for any (s 1 , ..., s d ) ∈ S d , the process is independent.
We are particularly interested in the spatial case, i.e. d = 2, the extremal coefficient function defined and studied in [START_REF] Schlather | Inequalities for the extremal coefficients of multivariate extreme value distributions[END_REF][START_REF] Schlather | A dependence measure for multivariate and spatial extreme values: Properties and inference[END_REF].

Definition 2.13. Let X be a simple max-stable process on S. The extremal coefficient function for any pairs of sites (s,

s + h) ∈ S 2 is the function Θ defined on S (or in R + in isotropic case) with values in [1, 2] by P X(s) ≤ x, X(s + h) ≤ x = exp{-Θ(h)/x}, x > 0 (2.3.10)
where,

Θ(h) = E max{W (s), W (s + h)} = V (1, 1) ∈ [1, 2]. (2.3.11)
If for any h ∈ S, Θ(h) = 1 (resp. Θ(h) = 2), then we have complete dependence (resp. complete independence). The case 1 < Θ(h) < 2, for all h ∈ S corresponds to asymptotic dependence.

Furthermore, it is easy to see the relationship between Θ and χ; see [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF] for any

h ∈ S Θ(h) = 2 -χ(h). (2.3.12)
Another classical tool often used in geostatistics is the variogram. But for max-stable processes, the quantity of dependence strength will not exist in variogram, because the marginal laws are Fréchet, and thus, have no order 2 moments. We shall use the

F -madogram introduced in [24].
Definition 2.14. Let X be a spatial process on S with univariate margin F . The F -madogram of the process X is for all (s, t)

∈ S 2 ν F (s -t) = 1 2 E|F (X(s)) -F (X(t))|. (2.3.13)
In the max-stable case, [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] gives the relation for all h ∈ S,

Θ(h) = 1 + 2ν F (h) 1 -2ν F (h) , (2.3.14)
which appears to be helpful to estimate the extremal coefficient Θ.

Examples of some max-stable models

In this section, we provide some examples of well-known max-stable models. We will use the spectral representation (see Theorem 2.2) with different sequences (ξ i ) and (W i ). 

∈ R d , define W i (s) = ϕ d (s -s i ; Σ) and X(s) = max i≥1 {ξ i ϕ d (s -s i ; Σ)}. (2.3.15)
Then, X is a max-stable process on S = R d with unit Fréchet margin. The pairwise distribution function is given by the following equation, for all (s, s + h) ∈ S 2 ,

P X(s) ≤ x 1 , X(s + h) ≤ x 2 = exp{-V h (x 1 , x 2 )}, (2.3.16) 
where

V h (x 1 , x 2 ) = 1 x 1 Φ τ (h) 2 + 1 τ (h) log x 2 x 1 + 1 x 2 Φ τ (h) 2 + 1 τ (h) log x 1 x 2 ; (2.3.17) τ (h) = √ h T Σ -1 h and Φ(•) the standard normal cumulative distribution func- tion.
The pairwise extremal coefficient equals

Θ(h) = 2Φ τ (h) 2 .
(2.3.18) Equation (2.3.12) gives

• for h = 0, we have χ(0) = 1, which corresponds to complete dependence;

• for h > 0, χ(h) ∈ (0, 1), which corresponds to asymptotic dependence.

• lim h→∞ χ(h) = 0, which means that the asymptotic dependence vanishes at infinite distances.

Note that if the covariance matrix is diagonal Σ = σI d , the process X is isotropic, as its bivariate distribution depends only on h through the function

τ (h) = 1 σ h 2 .

Schlather Models (Extremal Gaussian Model)

This model introduced by [START_REF] Schlather | Models for stationary max-stable random fields[END_REF] provides a class based on stationary random field with finite expectation. Let W := {W (s), s ∈ S} be a stationary random field, with

E W + (s) = μ ∈ (0, ∞), where W + (s) = max{0, W (s)}. Let {ξ i , i ≥ 1}
be a Poisson point process on (0, ∞), with intensity dξ/ξ 2 and {W i , i ≥ 1} as iid copies of W (s). Consider

X(s) = μ -1 max i≥1 ξ i W + i (s), s ∈ S; (2.3.19) 
it defines a stationary max-stable process. Schlather proposed such a model with a stationary Gaussian process W (s) with correlation function ρ(•) and μ -1 = √ 2π. In this case, the resulting max-stable process X is called Extremal Gaussian process (EG). The pairwise distribution function is

P X(s) ≤ x 1 , X(t) ≤ x 2 = exp{-V h (x 1 , x 2 )} (2.3.20)
where

V h (x 1 , x 2 ) = 1 2 1 x 1 + 1 x 2 1 + 1 -2(ρ(h) + 1) x 1 x 2 (x 1 + x 2 ) 2 .
(2.3.21)

The extremal coefficient is given by

Θ(h) = 1 + 1 -ρ(h) 2 1/2 . (2.3.22)
We have Θ(h) is in the interval [1, 1.838] with boundary values corresponding to ρ(h) = 1 and ρ(h) = 0 receptively. Thus, lim h→∞ χ(h) = 0. In other words, the asymptotic dependence persists even at infinite distances. This might be unrealistic in applications. To overcome this problem a truncated version of W (s) can be used. Let {r i } be a homogenous Poisson point process of unit rate on S and μ

-1 = √ 2π(E[|B|]) -1 .
Then, for a stationary Gaussian process

W i (s), define X(s) = max i≥1 ξ i W i (s)1 B i (s -r i ), s ∈ S (2.3.23)
with B ⊂ S a compact random set and B i i.i.d. copies of B. The process X is a truncated extremal Gaussian process (TEG). The pairwise distribution functions are given by

P X(s) ≤ x 1 , X(t) ≤ x 2 = exp{-V h (x 1 , x 2 )} (2.3.24)
where

V h (x 1 , x 2 ) = 1 x 1 + 1 x 2 1 - α(h) 2 1 -1 -2(ρ(h) + 1) x 1 x 2 (x 1 + x 2 ) 2 .
(2.3.25) The extremal coefficient is given by

Θ(h) = 2 -α(h) 1 - 1 -ρ(h) 2 1/2 (2.3.26)
where

α(h) = E{|B ∩ (h + B)|}/E[|B|],
where B is a random set. When modeling a spatial phenomena, the choice of the set B is to be delicate. For the sake of simplicity, we may consider B as a simple form, for example, a disk with fixed radius r. Such that, the area of the intersection of B and h + B is

|B ∪ (h + B)| = 2r 2 cos -1 (||h||/2r) -(||h||/2r) 1 -||h|| 2 /2r 2 1 [0,2r] (||h||) 
(2.3.27) and we can approximate it by πr 2 [1 -||h||/2r] + . This choice leads to α(h) = {1h/2r} + . In such a case, χ(h) = 0, ∀h ≥ 2r. In other words, the process X is independent for all h ≥ 2r. For more details, see section 2(e) in [START_REF] Davison | Geostatistics of extremes[END_REF].

Brown-Resnik Model

[41] introduced a generalization of the Brown-Rensik model, which was proposed by [START_REF] Brown | Extreme values of independent stochastic processes[END_REF]. Let W i (s) = exp{e i (s)γ(s)}, where e i (s) is a stationary Gaussian process, with mean zero and variogram γ(s), and let {ξ i , i ≥ 1} be a Poisson point process on (0, ∞); then,

X(s) = max i≥1 ξ i (e i (s) -γ(s)), s ∈ S (2.3.28)
is a max-stable process called Brown-Rensik model, which is sometimes called the Geometric Gaussian model. The pairwise distribution function is then

P X(s) ≤ x 1 , X(t) ≤ x 2 = exp{-V (x 1 , x 2 ; h)}, (2.3.29)
where

V (x 1 , x 2 ; h) = 1 x 1 Φ 2γ(h) 2 + 1 2γ(h) log x 2 x 1 + 1 x 2 Φ 2γ(h) 2 + 1 2γ(h) log x 1 x 2 .
(2.3.30) The pairwise extremal coefficient given by

Θ(h) = 2Φ 2γ(h) 2 .
(2.3.31)

Inverse Max-stable processes

If we choose a threshold too low, we may miss the dependence structure. In other words, in theoretical study, the limiting distribution of extremes tends to be independent but in practice, this limit could never be achieved (see [START_REF] Davison | Geostatistics of dependent and asymptotically independent extremes[END_REF][START_REF] Thibaud | Threshold modeling of extreme spatial rainfall[END_REF]). [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF] proposed a class of asymptotically independent processes obtained by inverting max-stable processes. These processes are called inverse max-stable processes; they satisfy the survivor function (2.2.7).

Definition 2.15. Let X := {X (s), s ∈ S} be a max-stable process with unit Fréchet margin, such that for all s ∈ S ⊂ R 2

X (s) = μ -1 max i≥1 W + i (s)/ξ i , s ∈ S (2.3.32)
where ξ i is a Poisson point process on (0, ∞) with intensity dξ and W i (s) are i.i.d. copies of a continuous process W independent of

{ξ i }. Let g : (0, ∞) → (0, ∞) be defined by g(x) = -1/ log{1 -e -1/x }. Set X(s) = g(X (s)),
Then, X := {X(s), s ∈ S} is an asymptotic independent spatial process with unit Fréchet margin. The d-dimensional joint survivor function is

P X(s 1 ) > x 1 , ..., X(s d ) > x d = exp -V g(x 1 ), ..., g(x d ) (2.3.33)
where V is the exponent measure of the process X defined in equation (2.3.5). Moreover, X satisfies the positive quadrant dependence property. The tail dependent coefficient is given by η(h) = 1/Θ(h), where Θ(h) is the extremal coefficient of the max-stable process X . Moreover, we have

χ(h) = 2/Θ(h) -1.
Another class of asymptotically independent processes may be constructed from a Gaussian process (see [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF]). Let X := {X (s), s ∈ S} be a stationary and standard Gaussian process with correlation function ρ. Let X = -1/ log(Φ(X )); it defines an asymptotically independent spatial process with unit Fréchet margin and satisfies the equation (2.2.7). Its survivor function satisfies

P Y (s 1 ) > z, Y (s 2 ) > z ∼ C h z -2/(1+ρ(h)) (log z) -ρ(h)/(1+ρ(h)) (2.3.34) with C h = (1 + ρ(h)) 3/2 (1 -ρ(h)) -1/2 (4π) -ρ(h)/(1+ρ(h)) (2.3.35)
The tail dependence coefficient is given by η(h) = (1 + ρ(h))/2. Moreover, we have

χ(h) = ρ(h).

Max-mixture model

In spatial contexts, specifically in an environmental domain, many scenarios of dependence could arise and AD and AI might cohabite. The work by [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF] 

Z(s) = max{aX(s), (1 -a)Y (s)}, s ∈ S, (2.3.36)
then Z is a max-mixture process has unit Fréchet marginals and bivariate distribution function [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF][START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF]). Let Z be a max-mixture process. Through the definition 2.16, the pairwise survivor function of Z satisfies

F Z z 1 , z 2 = e -aV X (z 1 ,z 2 ) F Y z 1 1 -a , z 2 1 -a . (2.3.37) Proposition 2.3 ([
P Z(s) > z, Z(t) > z ∼ a{2 -Θ(h)} z + (1 -a) 1/η(h) z 1/η(h) + O(z -2 ), z → ∞. (2.3.38)
Assume there exists finite h * = inf {h : Θ(h) = 0}; then,

χ(h) = a(2 -Θ(h)) (2.3.39) and χ(h) = 1 [h * <h] (h) + (2η(h) -1)1 [h * ≥h) . (2.3.40)
Rk. If there exists finite h * = inf {h : Θ(h) = 0}, then Z is asymptotically dependent up to distance h * and asymptotically independent for larger distances. Only asymptotic dependence or asymptotical independence in Z is achieved by the bounds a = 0 and a = 1, respectively.

Proof. From definition 2.16, we have

P Z(s) > z, Z(t) > z = 1 -2e -1 z + e -aΘ(h) z 2e -(1-a) z -1 + L h z 1 -a z 1 -a -1/η(h)
.

By the Taylor series and limiting behavior

P Z(s) > z, Z(t) > z ∼ a{2 -Θ(h)} z + O(z -2 ) + 1 - aΘ(h) z + O(z -2 ) L h z 1 -a z 1 -a -1/η(h) , as z → ∞ ∼ a{2 -Θ(h)} z + O(z -2 ) + L h z 1 -a z 1 -a -1/η(h) - aΘ(h) z L h z 1 -a z 1 -a -1/η(h) +L h z 1 -a O(z -2-1 η(h) ).
In PQD property, we have

1/2 ≤ η ≤ 1, then O(z -2 ) > O(z -2-1 η(h)
), and therefore

P Z(s) > z, Z(t) > z ∼ a{2 -Θ(h)} z +L h z 1 -a (1 -a) 1/η(h) z 1/η(h) +O(z -2 ) as z → ∞.
From assuming the asymptotically independence of z, we have

L h z 1-a → 1 as z → ∞. Then, 2.3.38 is satisfied.
From the definition of upper tail dependence coefficient in 2.2.5, we have

χ(h, z) =2 -aΘ(h) + z log 2e -(1-a) z -1 + L h z 1 -a z 1 -a -1/η(h) ∼2 -aΘ(h) + z log 1 - 2(1 -a) z + L h z 1 -a z 1 -a -1/η(h) + O(z -2 ) Let V = 2(1-a) z -L h z 1-a z 1-a -1/η(h) -O(z -2 ). Then, χ(h, z) ∼2 -aΘ(h) + z log 1 -V ∼a{2 -Θ(h)} + L h z 1 -a (1 -a) -1/η(h) z 1-1/η(h) + O(z -1 ) + zO(V 2 ).
We have O(z -1 ) = O(V 2 ) forming the limits of η. Then,

χ(h) = lim z→∞ χ(h, z) = a(2 -θ(h)), ∀h = 0
which satisfies 2.3.12 for asymptotic dependence case (a = 1).

From the defintion 2.9 of the lower tail dependence coefficient, we have

χ(h, z) = 2 log P Z(s) > z log P X(s) > z a , X(t) > z a + log P Y (s) > z 1-a , Y (t) > z 1-a -1 = 2 log 1 -exp( -1 z ) log 1 -2 exp( -a z ) + exp( -aΘ(h) z ) + log L h ( z 1-a )( z 1-a ) -1/η(h) -1 ∼ 2 log 1 z + O(z -2 ) log a(2-Θ(h)) z + O(z -2 ) + log L h ( z 1-a )( z 1-a ) -1/η(h) -1. If (2 -Θ(h)) = 0, then χ(h, z) ∼ -2 log(z) + O(log(z)) log(a(2 -Θ(h))) -log(z) + log L h ( z 1-a ) -1 η(h) log(z) -log(1 -a) + O(log(z)) -1 ∼ -2 + o(1) log(a(2-Θ(h))) log(z) + log L h ( z 1-a ) log(z) -1 η(h) 1 -log(1-a) log(z) -1 + o(1) -1.
Therefore,

χ(h) = lim z→∞ χ(h, z) = -2 -1 η(h) -1 -1 = 1. (2.3.41) If (2 -Θ(h)) = 0, then χ(h, z) ∼ -2 log(z) + O(log(z)) log L h ( z 1-a ) -1 η(h) log(z) -log(1 -a) + O(log(z)) -1 ∼ -2 + o(1) log L h ( z 1-a ) log(z) -1 η(h) 1 -log(1-a) log(z) + o(1) -1.
Therefore,

χ(h) = lim z→∞ χ(h, z) = -2 -1 η(h) -1 = 2η(h) -1. (2.3.42)
leads to satisfy the lower tail coefficient in 2.3.40 and satisfies 2.3.42 when a = 0.

[9] used this kind of models to allow asymptotical dependence and independence to be present at a short and intermediate distance respectively; furthermore, the process is independent at a long distance. This structure has been made by combining the truncated Gaussian extremal max-stable process with an asymptotically independent process. The estimation of the model parameters has been done by using maximum composite likelihood and using CLIC (composite likelihood information criterion) to select the model.

Spatial risk measure

Considering a process X, we will define a risk measure associated to X on a region A ⊂ R 2 of the space. It will be a non-negative quantity, which represents an average damage or cost due to X on A. We follow the ideas developed in [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF] or [START_REF] Koch | Tools and models for the study of some spatial and network risks:Application to climate extremes and contagion in France[END_REF].

Normalized loss function

A damage function D represents the relationship between the aggregate losses (e.g economic, health) and the environmental (climate) indicator (e.g air pollution, temperature levels), some economic interpretations may be found in [START_REF] Bosello | Estimating a climate change damage function through general equilibrium modeling[END_REF]. where |A| stands for the volume (or the Lebesgue measure) of A.

The quantity A D(s)ds represents the aggregated loss over the region A. Therefore, the function L(A, D) is the proportion of loss on A. In our context, D will be a function of the process X, denoted D X .

We will focus on two damage functions. The first one is the excess damage function: let u > 0 be the fixed threshold for s ∈ S,

D + X,u (s) = (X(s) -u) + . (2.4.2)
For example, when considering air pollutants (like in [START_REF] Bande | Spatio-temporal modelling for pm10 in piemonte[END_REF]), u is a regulatory level which is determined by experts. This damage function will be used on Gaussian processes.

The second damage function corresponds to a power of the spatial process X. For a fixed power coefficient 0 < ν < 1/2 and for any s ∈ S, we define a damage function

D ν X (s) = |X(s)| ν . (2.4.3)
This damage function will be used on processes with Fréchet marginals; this is why we have to take 0 < ν < 1/2 which guarantes that L(A, D ν X ) has an order 2 moment. It has an economic interpretation when X is the wind speed: damages due to the wind are generally proportional to some power of the wind speed (see [START_REF] Re | Natural catastrophes 2012 analyses, assessments, positions 2013 issue[END_REF]).

Spatial risk measure definition

As already mentioned, in spatial contexts, spatial dependency is an important characteristic. Considering the risk measure as the expectation of a normalized loss will not take into account the spatial dependency; however, it is useful to quantify the magnitude of risk. We shall consider the spatial risk measure composed from two components: expectation and variance of the normalized loss,

R(A, D X ) = {E[L(A, D X )], Var L(A, D X ) }, (2.4.4) =: {R 0 (A, D X ), R 1 (A, D X )}
For stationary processes, the expectation component provide information on the severity of the phenomenon, while the variance component is impacted by the dependence structure. Let us remark that

R 1 (A, D X ) = 1 |A| 2 A×A Cov D X (s), D X (t) dsdt.
(2.4.5)

We shall focus on the properties of R 1 (A, D X ).

Axiomatic properties of spatial risk measures

In [START_REF] Artzner | Coherent measures of risk[END_REF], [START_REF]Higher moment coherent risk measures[END_REF], [START_REF] Tsanakas | Risk measures and theories of choice[END_REF] and others, axioms and the behavior of univariate risk measures are presented, while [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF] provides an axiomatic setting of risk measures in a spatial context.

In this section, we will present a set of spatial axiomatic properties describing the behavior of a real valued spatial risk measure R * (A, D). Axioms 1 and 4 below have been introduced in [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF] and studied for some max-stable processes.

Definition 2.18. Let A ⊂ R 2 be a region of the space.

Spatial invariance under translation

Let A + v ⊂ R 2 be the region A translated by a vector v ∈ R 2 . Then for v ∈ R 2 , R * (A + v, D) = R * (A, D).

Spatial anti-monotonicity

Let A 1 and A 2 ⊂ R 2 be two regions such that

|A 1 | ≤ |A 2 |; then R * (A 2 , D) ≤ R * (A 1 , D).

Spatial sub-additivity

Let A 1 and

A 2 ⊂ R 2 be two disjointed regions, then R * (A 1 ∪A 2 , D) ≤ R * (A 1 , D)+ R * (A 2 , D).

Spatial super sub-additivity

Let A 1 and

A 2 ⊂ R 2 be two disjointed regions, then R * (A 1 ∪A 2 , D) ≤ min i=1,2 [R * (A i , D)].

Spatial homogeneity

Let λ > 0 and A ⊂ R 2 then, R * (λA, D) = λ k R * (A, D), that is R * is homoge- nous of order k, where λA is the set {λx, x ∈ A}.
In [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF], the following damage functions are considered for some max-stable processes:

D X (s) = 1 {X(s)>u} , D X (s) = X(s) β .
The author proves the invariance by translation; in this context, he also proves the monotonicity and super sub-additivity in the case where A 1 , A 2 are either disks or squares.

Theorem 2.4. Let X be a stationary process and D X be a positive damage function of X. The risk measure R 1 (•, D X ) is invariant by translation and sub-additive.

Proof. The invariance by translation follows directly from the stationarity. On one other hand, consider A 1 and A 2 ⊂ R 2 as two disjointed regions.

R 1 (A 1 ∪ A 2 , D X ) = Var L(A 1 ∪ A 2 , D X ) = 1 (|A 1 | + |A 2 |) 2 |A 1 | 2 R 1 (A 1 , D X ) + |A 2 | 2 R 1 (A 2 , D X ) + 2Cov ⎛ ⎝ A 1 D X (s)ds, A 2 D X (s)ds ⎞ ⎠ ⎤ ⎦ . ≤ 1 (|A 1 | + |A 2 |) 2 |A 1 | 2 R 1 (A 1 , D X ) + |A 2 | 2 R 1 (A 2 , D X ) + 2|A 1 ||A 2 | R 1 (A 1 , D X ) R 1 (A 2 , D X ) by using the Cauchy-Schwarz inequality, ≤ R 1 (A 1 , D X ) + R 1 (A 2 , D X ).
Thus, we have proved sub-additivity.

The calculations of the next chapter will lead to prove the anti-monotonicity for squares or disks of R 1 (A, D + X,u ) for isotropic Gaussian processes. The same result will be given for R 1 (A, D ν X ) with X as a max-stable or a max-mixture process, which develops the results in [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF].

Chapter 3 Calculating R(A, D) on some spatial processes

In this chapter, we aim at providing simple expressions for R(A, D + X,u ), where X is a Gaussian process and R(A, D ν X ), for some max-stable or max-mixture processes X. We consider a max-stable case that has not been treated in [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]. We shall see that R 1 (A, D + X,u ) and R 1 (A, D ν X ) may reduce to a one-dimensional integration and can thus be efficientely computed. We shall also study anti-monotonicity and (asymptotic) homogeneity properties.

Risk measure for spatial Gaussian process

In this section, we consider X := {X(s), s ∈ S} as a stationary Gaussian process with auto-correlation function ρ and for a fixed threshold u > 0, the risk measure R(A, D + X,u ) associated to the damage function

D + X,u = (X -u) + .
In what follows, ϕ is the density of the univariate standard Gaussian distribution, Φ is the survival function of the standard Gaussian distribution, and u, v, w is the total probability of a truncated bivariate standard Gaussian distribution with correlation w, that is

u, v, w = 1 2π(1 -w 2 ) 1/2 ∞ u ∞ v e -1 2(1-w 2 ) [x 2 -2wxy+y 2 ] dxdy. (3.1.1)
In this section, we first provide explicit forms for the risk measure; following this, we will study the behavior of R 1 (λA, D + X,u ) with respect to λ.

Explicit forms of R(A, D + X,u )

We are interested in the explicit calculation of the expectation and variance of

L(A, D + X,u ) with L(A, D + X,u ) = 1 |A| A (X(s) -u) + ds.
Proposition 3.1. Consider X := {X(s), s ∈ S} as an isotropic standard Gaussian process with auto-correlation function ρ. Let u ∈ R + be a fixed threshold. We will then have the following:

R 0 (A, D + X,u ) = ϕ(u) -uΦ(u), (3.1.2) and R 1 (A, D + X,u ) = 1 |A| 2 A×A G(τ s,t , u) dsdt, (3.1.3)
with τ s,t = st and for any h, s ∈ S

G(h, u) :=Cov D + X,u (s), D + X,u (s + h) ; G(h, u) = ρ(h) + u 2 u, u, ρ(h) -2uϕ(u)Φ u(1 -ρ(h)) (1 -ρ 2 (h)) 1/2 + 1 -ρ 2 (h) 1/2 ϕ u (1 + ρ(h)) 1/2 2 -ϕ(u) -uΦ(u)
2 .

(3.1.4)

Proof. Let X be an isotropic standard Gaussian process and u ∈ R + ,

E L(A, D + X,u ) = 1 |A| A E (X(s) -u + ds = 1 |A| A ∞ u xϕ(x)dx -u ∞ u ϕ(x)dx ds = 1 |A| A (ϕ(u) -uΦ(u))ds =ϕ(u) -uΦ(u). (3.1.5)
On the other hand,

Var L(A, D + X,u ) = 1 |A| 2 A×A Cov D + X,u (s), D + X,u (t) dsdt.
We calculate Cov D + X,u (s), D + X,u (t) by using the results from [START_REF] Rosenbaum | Moments of a truncated bivariate normal distribution[END_REF] on moments m 10 , m 11 of truncated bivariate Gaussian distributions. See Appendix A.1. Let f X 1 ,X 2 be the density function of the random vector (X 1 , X 2 ).

E D + X,u (s)D + X,u (t) = ∞ u ∞ u xy -2ux + u 2 f X(s),X(t) x, y dxdy = u, u, ρ(τ s,t ) m 11 -2u u, u, ρ(τ s,t ) m 10 + u 2 u, u, ρ(τ s,t ) , (3.1.6) with u, v, ρ m 10 = 1 2π(1 -ρ 2 ) 1/2 ∞ u ∞ v x exp - 1 2(1 -ρ 2 ) x 2 + 2ρxy + y 2 dxdy, = ϕ(u)Φ v -ρu (1 -ρ 2 ) 1/2 + ρϕ(v)Φ u -ρv (1 -ρ 2 ) 1/2 ; and u, v, ρ m 11 = 1 2π(1 -ρ 2 ) 1/2 ∞ u ∞ v xy exp - 1 2(1 -ρ 2 ) x 2 + 2ρxy + y 2 dxdy, = ρ u, v, ρ + ρuϕ(u)Φ v -ρu (1 -ρ 2 ) 1/2 + ρvϕ(v)Φ u -ρv (1 -ρ 2 ) 1/2 + (1 -ρ 2 ) 1/2 √ 2π ϕ (u 2 -2ρuv + v 2 ) 1/2 (1 -ρ 2 ) 1/2 .
For v = u, we have,

u, u, ρ m 10 = (1 + ρ)ϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 and u, u, ρ m 11 = ρ u, u, ρ +2ρuϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 + (1 -ρ 2 ) 1/2 √ 2π ϕ (2u 2 (1 -ρ)) 1/2 (1 -ρ 2 ) 1/2 .
Finally, we get

E D + X,u (s)D + X,u (t) = (1 -ρ 2 (τ s,t )) 1/2 √ 2π ϕ (2u 2 (1 -ρ(τ s,t ))) 1/2 (1 -ρ 2 (τ s,t )) 1/2 +2uρ(τ s,t )ϕ(u)Φ u(1 -ρ(τ s,t )) (1 -ρ 2 (τ s,t )) 1/2 +ρ(τ s,t ) u, u, ρ(τ s,t ) -2u(1 + ρ(τ s,t ))ϕ(u)Φ u(1 -ρ(τ s,t )) (1 -ρ 2 (τ s,t )) 1/2 +u 2 u, u, ρ(τ s,t ) = u, u, ρ(τ s,t ) ρ(τ s,t ) + u 2 -2uϕ(u)Φ u(1 -ρ(τ s,t )) (1 -ρ 2 (τ s,t )) 1/2 + 1 -ρ 2 (τ s,t ) 1/2 ϕ u (1 + ρ(τ s,t )) 1/2 2 .
The result follows. Proof. From the definition of D + Y,u , we have:

E[L(A, D + Y,u )] = 1 |A| A E(Y (s) -u) + ds = 1 |A| A E(μ + σX(s) -u) + ds = σ |A| A E X(s) -( u -μ σ ) + ds =σE[L(A, D + X,u 0 )]. (3.1.8)
On the other hand,

Var L(A, D + Y,u ) = 1 |A| 2 A×A E D + Y,u (s)D + Y,u (t) -E D + Y,u (s) E D + Y,u (t) dsdt = 1 |A| 2 A×A E (Y (s) -u) + (Y (t) -u) + -E (Y (s) -u) + E (Y (t) -u) + dsdt = 1 |A| 2 A×A σ 2 E (X(s) -u 0 ) + (X(t) -u 0 ) + -σ 2 E (X(s) -u 0 ) + E (X(t) -u 0 ) + dsdt = σ 2 |A| 2 A×A E D + Xs,u 0 (s)D + Xt,u 0 (s) -E D + Xs,u 0 (s) E D + Xt,u 0 (s) ds.dt Therefore, Var L(A, D + Y,u ) = σ 2 Var L(A, D + X,u 0 ) . (3.1.9)
Corollary 3.2 implies that without loss generality, we may calculate the risk measure for an isotropic standard Gaussian process; expressions for an isotropic nonstandard Gaussian process will follow. Furthermore, from these results, we can see that R 0 (A, D + Y,u ) does not depend on the region A but only on the characteristics of the underlying Gaussian process. Then, in the following study of the risk measure, we will focus on the component R 1 (A, D + Y,u ).

The following theorem is useful to compute the risk measure because it reduces to a one-dimension integration.

Theorem 3.3. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian process. If the region A is either a disk or a square, the expression Var L(A, D + X,u ) reduces to a one dimensional integration. When A is a disk of radius R,

Var L(A, D + X,u ) = 2R h=0 G(h, u)f disk (h, R)dh, (3.1.10)
where

f disk (h, R) = 2h R 2 2 π arccos h 2R - h πR 1 - h 2 4R 2 , (3.1.11)
and G is defined in equation (3.1.4).

When A is a square of side R

Var L(A, D + X,u ) = √ 2R h=0 G(h, u)f square (h, R)dh, (3.1.12)
where, for h ∈ [0, R]

f square (h, R) = 2πh R 2 - 8h 2 R 3 + 2h 3 R 4 and for h ∈ [R, √ 2R], f square (h, R) = 2h R 2 -2 -b + 3 √ b -1 + b + 1 √ b -1 + 2arcsin( 2 -b b ) - 4 b 1 -(2-b) 2 b 2 , (3.1.13) where b = h 2 R 2 . Proof.
The strategy of proof is the one adopted in [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF] for some max-stable processes. Let S and T be two independent random variables uniformly distributed on A. For any function γ defined on R + , we have

E γ(||S -T ||) = 1 |A| 2 A×A γ(||s -t||)dsdt. Using [52], if A is a square of side R, E γ(||S -T ||) = √ 2R h=0 γ(h)f square (h, R)dh, (3.1.14)
with f square given by equation (3.1.13). If A is a disk of radius R then, In what follows, we write our results for square regions A, but the results hold for disks as well.

E γ(||S -T ||) = 2R h=0 γ(h)f disk (h, R)dh. ( 3 
3.1.2 Behaviour of R 1 (λA, D + X,u ) with respect to λ

The following expression of R 1 (λA, D + X,u ) is a keystone to understand its behavior.

Lemma 3.4. Let λ ≥ 0 and A be a square of side R; then,

R 1 (λA, D + X,u ) = √ 2R h=0 f square (h, R)G(λh, u)dh. (3.1.16)
Proof. Theorem 3.3 gives:

R 1 (λA, D + X,u ) = Var L(λA, D + X,u ) = √ 2λR h=0 f square (h, λR)G(h, u)dh. = √ 2R h=0 f square (λh, λR)G(λh, u)λdh. Remark that f square (λh, λR) = λ -1 f square (h, R). Thus, R 1 (λA, D + X,u ) = √ 2R h=0 f square (h, R)G(λh, u)dh.
The same calculations would give the same result if A is a disk of radius R (by replacing f square by f disk ).

Lemma 3.4 provides the following two results on the behavior of the mapping λ → R 1 (λA, D + X,u ).

Corollary 3.5. Let X be an isotropic standard Gaussian process on S ⊂ R 2 with the auto-correlation function ρ. Let A ⊂ S be either a disk or a square. The mapping λ → R 1 (λA, D + X,u ) is non-increasing if and only if h → ρ(h), h > 0 is non-increasing and non-negative .

Proof. It suffices to remark that by its definition, for any h > 0, the function λ → G(λh, u) is non-increasing, provided the auto-correlation function is non-negative and non-increasing. For compactness, see Appendix A.2. Corollary 3.6. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian process with auto-correlation function satisfying the following criterion: decreases to 0 as h goes to infinity. Then, for A, either a disk or a square, we have

lim λ→∞ R 1 (λA, D + X,u ) = 0. (3.1.17)
Proof. Let A be a square of side R,

R 1 (λA, D + X,u ) = √ 2R h=0 f square (h, R)G(λh, u)dh, (3.1.18)
Then, the monotonic convergence theorem gives:

lim λ→∞ R 1 (λA, D + X,u ) = √ 2R h=0 f square (h, R) lim λ→∞ G(λh, u)dh. (3.1.19)
Since ρ(h) goes to 0 as h goes to infinity,

lim λ→∞ G(λh, u) = u 2 u, u, 0 -u 2 Φ 2 (u).
The result follows.

Thus, Lemma 3.4 proves the anti-monotonicity for regions A 1 , A 2 which are either disks or squares.

Property 3.7. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian process with non-negative and non-increasing auto-correlation function; let A 1 , A 2 be either squares or disks, such that

|A 1 | ≤ |A 2 |, then R 1 (λA 2 , D + X,u ) ≤ R 1 (λA 1 , D + X,u ).
Proof. Let us do the proof in the square case. By invariance by translation, we may assume A 1 = λA 2 for some λ ≤ 1. Equation (3.1.16) gives the result.

A simulation study and a real data case will be provided in Chapter 4 for R(λA 2 , D + X,u ).

Risk measures for max-mixture processes

Let X be an isotropic and stationary process, with unit Fréchet margin and let the power coefficient 0 < ν < 1/2 be a fixed. For a given damage function D ν X , the interest risk measure in this section is R(A, , D ν X )

General forms for R

1 (A, D ν X )
By theorem 3.3,we may reduce R 1 (A, D ν X ) to smaller dimension integral.

Lemma 3.8. Let X := {X(s), s ∈ S} be an isotropic and stationary spatial process. Let Q(h) = Cov D ν X (s), D ν X (s + h) . Consider A ⊂ R 2 to be a disk of radius R, for a fixed 0 < ν < 1/2, we have:

R 1 (A, D ν X ) = Var L(A, D ν X ) = 2R h=0 Q(h)f disk (h, R)dh, ( 3 

.2.1)

Consider A ⊂ R 2 to be a square of side R, we have:

R 1 (A, D ν X ) = Var L(A, D ν X ) = √ 2R h=0 Q(h)f square (h, R)dh, (3.2.2)
In what follows, results are written for square regions A, but the results hold for disks as well.

Remark 2. Properties of moments of Fréchet distributions give that if X as unit

Fréchet marginal distributions,

E(L(A, D ν X ) = Γ(1 -ν).
Proposition 3.9. Consider X := {X(s), s ∈ S} as an isotropic and stationary spatial process with unit Fréchet margin F and pairwise distribution function G X h = P(X(s) ≤ x 1 , X(s + h) ≤ x 2 ). Let A be a square of side R. We have

R 1 (A, D ν X ) = √ 2R h=0 Q(h, ν)f square (h, R)dh, (3.2.3) with Q(h, ν) = Cov D ν X (s), D ν X (s + h) ; Q(h, ν) = ∞ 0 ∞ 0 G X h (x 1/ν 1 , x 1/ν 2 ) -F (x 1/ν 1 )F (x 1/ν 2 ) dx 1 dx 2 (3.2.4)
or equivalently

Q(h, ν) = ν 2 ∞ 0 ∞ 0 x ν-1 1 x ν-1 2 G X h (x 1 , x 2 ) -F (x 1 )F (x 2 ) dx 1 dx 2 . (3.2.5)
Proof. Since X is a non-negative process, Hoeffding's identity ( [START_REF] Hougaard | Analysis of multivariate survival data[END_REF] and [START_REF] Sen | The impact of wassily hoeffding?s research on nonparametrics[END_REF]) gives:

Cov D ν X (s), D ν X (s + h) = R 2 + P X(s) ν ≤ x 1 , X(s + h) ν ≤ x 2 -P X(s) ν ≤ x 1 P X(s + h) ν ≤ x 2 dx 1 dx 2 = ν 2 R + x ν-1 1 x ν-1 2 P X(s) ≤ x 1 , X(s + h) ≤ x 2 -P X(s) ≤ x 1 P X(s + h) ≤ x 2 dx 1 dx 2 . (3.2.6) 3.2.2 Explicit form of R 1 (A, D ν X )
for TEG max-stable process

Equation (3.2.
3) shows that the computation of R 1 (A, D ν X ) reduces to the integration of Q(h, ν)f square (resp. Q(h, ν)f disk ). In [START_REF] Koch | Tools and models for the study of some spatial and network risks:Application to climate extremes and contagion in France[END_REF], the computation of Q(h, ν)f square for the Smith model has been done. In that case, the computation of R 1 (A, D ν X ) is thus reduced to a one-dimensional integration. In this section, we do the computation for a TEG model. Corollary 3.10. Let X := {X(s), s ∈ S} be a truncated extremal Gaussian TEG max-stable process with unit Fréchet margin, correlation function ρ and truncated parameter r. For 0 < ν < 1/2, we have

Q(h, ν) = +∞ 0 w ν Γ(2(1 -ν))T 2 (w, h)T 1 (w, h) 2(ν-1) + Γ(1 -2ν)T 3 (w, h)T 1 (w, h) 2ν-1 dw -Γ(1 -ν) 2 (3.2.7)
where,

T 1 (w, h) = w + 1 w 1 - α(h) 2 1 -K(w, h) ; (3.2.8) T 2 (w, h) = 1 - α(h) 2 1 -K(w, h) - α(h)(ρ(h) + 1)(1 -w) 2K(w, h)(w + 1) 2 × 1 w 2 - α(h) 2w 2 1 -K(w, h) - α(h)(ρ(h) + 1)(w -1)
2wK(w, h)(w + 1) 2 ;

(3.2.9)

T 3 (w, h) = α(h) (ρ(h) + 1) K(w, h)(w + 1) 3 - (ρ(h) + 1) 2 (w -1) 2 2K(w, h) 3 (w + 1) 5 ;
(3.2.10)

K(w, h) = 1 - 2w(ρ(h) + 1) (w + 1) 2 1/2 (3.2.11)
and α(h) defined in (2.3.27).

Proof. We have,

Cov D ν X (s), D ν X (s + h) = E D ν X (s)D ν X (s + h) -E[D ν X (s)] 2 .
From remark 2. we have E[D ν X (s)] = Γ(1ν), and we also have

E D ν X (s)D ν X (s + h) = ∞ 0 ∞ 0 x ν 1 x ν 2 f (X(s),X(s+h)) (x 1 , x 2 )dx 1 dx 2 ,
where f (X(s),X(s+h)) (x 1 , x 2 ) is the bivariate density function of the TEG model. It rewrites:

E[D ν (s)D ν (s + h)] = +∞ 0 +∞ 0 u 2ν+1 w ν f (u, uw)dudw.
The bivariate density function of a TEG model satisfies

f (X(s),X(s+h)) (u, uw) = 1 u 4 T 2 (w, h) + 1 u 3 T 3 (w, h) e -1 u T 1 (w,h)
where T 1 (w, h), T 2 (w, h) and T 3 (w, h) are introduced in (3.2.8), (3.2.9), and (3.2.10).

Therefore,

E[D ν (s)D ν (s + h)] = +∞ 0 w ν T 2 (w, h) +∞ 0 u 2ν-3 e -1 u T 1 (w,h) du + T 3 (w, h) +∞ 0 u 2ν-2 e -1
u T 1 (w,h) du dw.

Moment Properties of Fréchet distributions give

+∞ 0 u 2ν-3 e -1 u T 1 (w,h) du = 1 T 1 (w, h) .μ (2ν-1) ,
with μ (2ν-1) , the moment of order k = (2ν -1). That is,

μ (2ν-1) = T 1 (w, h) (2ν-1) Γ[2(ν -1)].
In the same way, we get

+∞ 0 u 2ν-2 e -1 u T 1 (w,h) du = T 1 (w, h) (2ν-1) Γ(1 -2ν).
Then,

E D ν X (s)D ν X (s + h) = +∞ 0 w ν T 2 (w, h)T 1 (w, h) 2(ν-1) Γ2(ν -1) + T 3 (w, h)T 1 (w, h) (2ν-1) Γ(1 -2ν) dw,
and the result follows.

3.2.3

Behavior of R 1 (λA, D ν X ) with respect to λ for max-mixture processes.

In what follows, we consider an isotropic and stationary max-mixture spatial process with unit Fréchet margin F . We denote X and V X h the process and the exponent measure function corresponding to the max-stable part and Y and V Y h the process and the exponent measure function corresponding to the inverse max-stable process Y . Let a ∈ [0, 1], Z = max(aX, (1a)Y ). We shall study the behavior of R 1 λA, D ν Z with respect to λ. Of course, the case a = 1 gives results for max-stable processes and a = 0 gives results for inverse max-stable processes. Recall that the bivariate distribution function is given by

G Z h (x 1 , x 2 ) = e -aV X h (x 1 ,x 2 ) e -(1-a) x 1 + e -(1-a) x 2 -1 + e -V Y h (ga(x 1 ),ga(x 2 )) ,
where g(z) = -

1 log(1-e -1 z )
and g a (z) = g( z 1-a ). Lemma 3.8 and Proposition 3.9 are a keystone to describe the behaviour of R 1 λA, D ν Z . As in Lemma 3.4, we get for any λ > 0:

R 1 (λA, D ν Z ) = √ 2R h=0 f square (h, R)Q(λh, ν) dh. (3.2.12)
Corollary 3.11. Let Z be an isotropic and stationary max-mixture spatial process as above. Assume that the mappings

h → V X h (x 1 , x 2 ) and V Y h (x 1 , x 2 ) are non-decreasing for any (x 1 , x 2 ) ∈ R 2 + .
Let A ⊂ S be either a disk or a square; then, the mapping

λ → R 1 (λA, D ν Z ) is non-increasing.
Proof. We use (3.2.12) and from Proposition 3.9,

Q(λh, ν) = ν 2 ∞ 0 ∞ 0 x ν-1 1 x ν-1 2 G Z h (x 1 , x 2 ) -F (x 1 )F (x 2 ) dx 1 dx 2 . Since h → V X h (x 1 , x 2 ) and V Y h (x 1 , x 2 ) are non-decreasing, h → G Z h (x 1 , x 2
) is non increasing and the result follows.

Remark 3. For a spatial max-stable or inverse max-stable process X, the fact that h → V X h (x 1 , x 2 ) is non-decreasing implies that the dependence between X(t) and X(t + h) decreases as h increases, which seems reasonable in applications. On the other hand, if, V X h (x 1 , x 2 ) goes to 1 x 1 + 1 x 2 as h goes to infinity, X(t), X(t + h) tend to behave independently as h goes to infinity. Corollary 3.12. Let Z be an isotropic and stationary max-mixture spatial process as above. Assume that the mappings

h → V X h (x 1 , x 2 ) and V Y h (x 1 , x 2 ) are non-decreasing for any (x 1 , x 2 ) ∈ R 2
+ . Moreover, we assume that

V X h (x 1 ; x 2 ) -→ 1 x 1 + 1 x 2 as h → ∞ and V Y hh (x 1 , x 2 ) -→ 1 x 1 + 1 x 2 as h → ∞ ∀x 1 , x 2 ∈ R + .
Let A ⊂ S be either a disk or a square ,

lim λ→∞ R 1 (λA, D ν Z ) = 0.
If there exists V 0 (resp. V 1 ), an exponent measure function of a non independent max-stable (resp. inverse max-stable) bivariate random vector, such that

V X h -→ V 0 and V Y h -→ V 1 as h → ∞, then lim λ→∞ R 1 (λA, D ν Z ) > 0.
Proof. In the case of A a square of side R, we use

Q(λh, ν) = ν 2 ∞ 0 ∞ 0 x ν-1 1 x ν-1 2 G Z h (x 1 , x 2 ) -F (x 1 )F (x 2 ) dx 1 dx 2 . If V W h (x 1 ; x 2 ) is non-decreasing to 1 x 1 + 1 x 2 as h → ∞ for W = X and W = Y , then G Z h (x 1 , x 2 ) is non-increasing to F (x 1 )F (x 2 )
and we derive a conclusion by using the monotone convergence theorem. Corollary 3.13. Let Z be isotropic and stationary max-mixture as above. Assume that h → V W h (x 1 , x 2 ) is non-increasing, with W = X and W = Y . Let A 1 and A 2 be either disks or squares, such that

|A 1 | ≤ |A 2 |; then, R 1 (λA 2 , D ν Z ) ≤ R 1 (λA 1 , D ν Z ).
Proof. Since the risk measure R 1 (A, D ν Z ) is invariant by translation, we may assume that A 1 = λA 2 for some λ ≥ 1. Then, equation (3.2.12) gives the result. In order to study the behavior of the damage covariance function with respect to θ, we set the threshold u = Φ -1 (0.75) and the distance h = 0.30. In Figure 4.1.(b) we remark that G θ (h, u) is increasing with θ. Finally, we study the behavior of the damage covariance function with respect to the threshold u = Φ -1 (p), p ∈ [0, 1]. We set θ = 0.50 and h = 0.30. Remark (see Figure 4.1.(c)) that even if h is small, G θ (h, Φ -1 (p)) goes to zero as p goes to 1, so that it will be difficult to approximate correctly the covariance damage function when u is large. Figure 4.2. focusses on the behavior of R 1 (λA, D + X,u ) with respect to (λ, u, θ), when A is a square of side R = 1. In order to see the influence of the homothety rate λ, we set u = Φ -1 (0.75) and θ = 0.50. To tackle the behavior with respect to θ we choose λ = 1 and u = Φ -1 (0.75).

To study the behavior of the variance with respect to the threshold u = Φ -1 (p), p ∈ [0, 1], we set λ = 1 and θ = 0.50. The behavior of R 1 (A, D + X,u ) only depends on G θ (h, u)

Numerical computation

We generated isotropic standard spatial Gaussian processes X on S = R 2 with different non-negative correlation functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1) for θ = 0.5. The process X is simulated on a (15 × 15) grid with n = 125 locations, uniformly distributed in the square A = [0, 1] 2 . Most of the time, the threshold u is chosen by the practitioner and its value depends on the considered phenomena. For example, in daily rainfall simulation study, the threshold auto-correlation function. In what follows, Y = log P M 10 . Following the parameter estimation (see [START_REF] Bande | Spatio-temporal modelling for pm10 in piemonte[END_REF]), we will use κ = 1 and θ = 100. The estimation of the marginal parameters leads us to use μ = 3.69 and σ 2 = 1.2762. We use the above parameters to compute the risk measure The random variable L(A, D + Y,log u ) is the average over the square A of the values of Y that exceed the legal threshold log u. This is a quantity of interest for health public policies. Our study shows that the standard deviation of L(A, D + Y,log u ) is large with respect to its expectations. This means that the dependence structure of the underlying process highly impacts the random variable L(A, D + Y,log u ).

R 0 (λA, D + Y,log u ), R 1 (λA, D + Y ,log u ) ,

Computational aspects for extreme processes risk measure

In this section, we will study the behavior of the spatial covariance damage function and its spatial risk measure corresponding to a stationary and isotropic max-stable, inverse max-stable, and max-mixture processes. We shall use the correlation functions introduced in Section 2.2.1.

Analysis of the covariance damage function Q(h, ν)

As usual, we begin with covariance damage function in the study of the risk measure R 1 (A, D ν X ).

Analysis of Q(h, ν) of max-stable process

We study the behavior of Q(h, ν) and R 1 (λA, D ν X ) for X, a TEG spatial max-stable process, with trunacted parameter r, non-negative correlation function ρ and correlation length θ. We shall denote by Q θ,r (h, ν) the covariance damage function. Five different models with different correlation functions (exponential, Gaussian, spherical, cubic and Matérn ) are considered.

The behavior of Q θ,r (h, ν) with respect to distance h is shown in Figure 4.5.(a). We set the power coefficient ν = 0.20, r = 0.25 and θ = 0.20. We have that, Q θ,r (h, ν) = 0 for any h ≥ 2r; the decreasing speed changes according to the different dependence structures. It means the damage functions D ν X (•) and D ν X (• + h) belong to two domain (regions) dependence and two domain independence up to distance h ≥ 2r. In other words, there is no compactness between D ν X (•) and D ν X (• + h) for all h ≥ 2r.

The behavior of Q θ,r (h, ν) with respect to θ is shown in Figure 4.5(b). Figure 4.5(c) shows the behavior of Q θ,r (h, ν) with respect to the truncated parameter r. We set ν = 0.20, h = 0.25 and θ = 0.20. Finally, we study the behavior of the spatial damage covariance function with respect to power coefficient ν. We set h = 0.25, θ = 0.20 and r = 0.25. Figure4.5.(d) shows that the covariance between the damage functions D ν Y (•) and D ν Y (• + h) increase with ν. This behavior seems natural in climatic phenomenon. For example, when the wind speed increases, the area impacted by the wind will increase.

Remark 4. The global behavior of Q θ,r (h, ν) for an inverse TEG is the same as for the TEG with the same parameters. 

Analysis of Q(h, ν) of max-mixture process

Max-mixture models with expression Z := max{aX, (1-a)Y } with TEG max-stable part denoted X and inverse TEG for the inverse max-stable part -denoted Y cover all possible dependence structures in one model (asymptotic dependence in a short distance, asymptotic independence in intermediate distances and independence in long distances). We have simulated five max-mixture models according to the correlation functions; X and Y have models with the same correlation functions but with different correlation lengths . r X and r Y denote the respective truncation parameter of X and Y ; ρ X and ρ Y denote the respective correlation functions of X and Y , and θ X and θ Y denote the respective correlation length. The mixing parameter is denoted by a.

We set mixing parameter a = 0.5, r X = 0.15, θ X = 0.10, r Y = 0.35, θ Y = 0.3 and finally ν = 0.2. In this model, the damage functions D ν Z (•) and D ν Z (• + h) are asymptotically dependent up to distance h < 2r X , asymptotically independent when 2r Y > h ≥ 2r X and independent for all h ≥ 2r Y . The decreasing speed depends on the correlation function, as shown in it does not vary, each parameter is fixed to a = 0.5, h = 0.25, ν = 0.2, θ X = 0.1, θ Y = 0.3, r X = 0.15 and r Y = 0.35. Graph (a) shows the behavior of Q with respect to the mixing parameter a. The graphs from (b) to (f) shows the behavior of Q with respect to the other parameters. The behavoir is the same for max-stable processes. 

Numerical computation of R 1 (A, D ν )

In this study, we have computed R 1 (A, D ν ) for different max-stable processes X, inverse max-stable processes Y and max-mixture processes Z. We considered X a TEG with parameters r X and θ X , Y a Smith process with σ 2 Y . The process Z is max-mixture between X and Y . Max-stable and inverse max-stable models are achieved for a = 1 and a = 0, respectively. We compute R 1 (A, D ν ) using (3.2.3) and (3.2.5), i.e. a three-dimensional integration. For these models, the reduction to a one-dimensional integration does not seem possible. We shall compare this computed value with the Monte Carlo estimation obtained by simulating the process Z. In this simulation study, the TEG has the following parameters: r X = 0.25, non-negative exponential correlation function with θ X = 0.20. The inverse max-stable Y is given by a Smith max-stable process Y with σ 2 Y = 1. The process Z is simulated with n = 50 locations, uniformly distributed in the square A = [0, 1] 2 . We set the power coefficient ν := {0.05, 0.15, 0.25, 0.35, 0.40} and mixing parameter a := {0, 0.25, 0.5, 0.75, 1}.

The intuitive Monte-Carlo computation (M1) is obtained by the same manner in risk measure for the Gaussian. Boxplots in Figure 4.8. represent the relative errors over 100 (M1) simulations with respect to the three-dimensional integration. It shows that risk measure is hardly estimated by Monte Carlo for ν greater than 0.30. Recall that in the three-dimensional integration, we used (3.2.5). Using (3.2.4) creates numerical issues when ν approaches 0.4. 

Behavior of R 1 (λA, D ν )

We are going to study the behavior of R 1 (λA, D ν ) with respect to λ for A = [0, 1] 2 , a square and several extreme models with fixed h = 0.3 and ν = 0.20. Concerning the max-stable X, we considered two models: the first one is TEG with r = 0.25 and non-negative exponential correlation function with correlation length θ = 0.20. The second one is Smith with σ 2 = 0.6. The same models with the same parameters are studied for inverse max-stable processes. Figure 4.9 shows that R 1 (λA, D ν W ), for each same max-stable models X and inverse max-stable Y the behaviors are very similar; the difference resides in the fact that X is riskier than Y . Their behavior also mimics the one of χ(h) in the max-stable case, or χ(h) in the inverse max-stable case.

For max-mixture models, we evaluated R 1 (λA, D ν Z ) with respect to λ and mixing parameter a. We considered two models:

• MM1: X is TEG with the same setting in TEG max-stable above and Y is inverse Smith with σ 2 Y = 0.8.

• MM2: X is TEG max-stable with the same in MM1 and Y is inverse TEG with r Y = 0.45 and non-negative exponential correlation function with correlation length θ = 0.40. ) up to 0.3λ < 2r X and the amount of the risk converge to zero for all 0.3λ ≥ 2r X with speed decreasing dependence on the parameter of Smith model σ 2 Y with dependence structure and asymptotic dependence when 0.3λ < 2r X and asymptotic independence for all 0.3λ ≥ 2r X . Figure 4.10.(b) shows the behavior of R 1 (λA, D ν Z ) with respect to the max-mixture model MM2. We can see the same behavior of asymptotic dependence part in MM1 when 0.3λ < 2r X , asymptotic independence when 2r X ≤ 0.3λ < 2r Y and independence for all 0.3λ ≥ 2r Y . The fact that the rupture at 2r Y is low implies that this parameter would certainly be difficult to estimate on data. Combining the graphs (1) and ( 2) with (I) and (II) respectively results in the same behavior of the risk measure in graphs (a) and (b). This is why we propose dependence measures in the next chapter, they combine these dependence structures. 

Chapter 5 Estimation parameters of spatial max-mixture model

In this chapter, we propose to estimate the parameters of max-mixture processes by minimization of the least squares F -madogram error (LS-madogram). We begin by recalling the definition of the F -madogram and calculate it for max-mixture spatial processes. Then, we prove that LS-madogram leads to consistent estimation of the parameters, provided that they are identified by the F -madogram. A simulation study is conducted in order to study the estimation performance and to compare LS-madogram estimation with the maximization of the composite likelihood. This is an alternative approach based on least squares for χ(h, u) and χ(h, u); the results were convincing (see the Appendix B).

F -madogram for max-mixture spatial process

In extreme value theory and therefore for spatial extremes, one of the main concerns is to find a dependence measure that can quantify the dependences between locations. Many authors have proposed several such measures, especially for max-stable processes (recall Section 2.3 where we discussed deeply on these tools). The χ and χ dependence measures are designed to quantify asymptotic dependence and asymptotic independence respectively. Max-mixture processes have been introduced in order to provide both behaviors. We are then faced with the question of finding an adapted tool which would give information on more than one dependence structure. Recall ([9] and Proposition 2.3) that we have for a max-mixture process:

χ(h) = a(2 -Θ(h)) and χ(h) = 1 [h * <h] (h) + (2η(h) -1)1 [h * ≥h) ,
where h * = inf{h, Θ(h) = 0}, Θ is the extremal coefficient of the max-stable part and η is the tail dependence coefficient of the asymptotic independence part.

In [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF], the F -madogram has been introduced for max-stable processes. There exists several definitions of madograms. For example, in [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF], the λ-madogram is considered in order to take into account the dependence information from the exponent measure V h (u, v) when u = v. This λ-madogram has been extended in [START_REF] Fonseca | Generalized madogram and pairwise dependence of maxima over two regions of a random field[END_REF] to evaluate the dependence between two observations located in two disjoint regions in R 2 . [START_REF] Guillou | Madogram and asymptotic independence among maxima[END_REF] adopted an F -madogram suitable for asymptotic independence instead of asymptotic dependence only. Finally, [START_REF] Bacro | Testing the independence of maxima: from bivariate vectors to spatial extreme fields[END_REF] used F-madogram as a test statistic for asymptotic independence bivariate maxima.

The F -madogram is defined in Definition 2.14. Below, we calculate ν F (h) for a max-mixture process. It appears that contrary to χ and χ, it combines the parameters coming from the AD and the AI parts.

Recall that for a stationary process Z with distribution function F , the F -madogram is defined as

ν F (h) = 1 2 E|F (Z(s)) -F (Z(s + h))|.
We have ν F (h) ∈ [0, 1 6 ] and ν F (h) = 0 if Z(s) and Z(s + h) are co-monotonic. ν F (h) = 1 6 if Z(s) and Z(s + h) are independent (this result may be found in [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] and we give the proof below -Lemma 5.2 -for completeness).

Proposition 5.1. Let Z be a max-mixture process, with mixing coefficient a ∈ [0, 1]. Let X be its max-stable part with extremal coefficient Θ(h). Let Y be its inverse max-stable part with tail dependence coefficient η(h). Then, the F -madogram of Z is

ν F (h) = a(Θ(h) -1) a(Θ(h) -1) + 2 - aΘ(h) -1 2aΘ(h) + 2 - 1/η(h) aΘ(h) + (1 -a)/η(h) + 1 β aΘ(h) + 1 (1 -a) , 1/η(h) , (5.1.1)
where β is beta function.

Proof. We have Let M (h) = max F (Z(s)), F (Z(s + h)) , we have:

ν F (h) = 1 2 E|F (Z(s)) -F (Z(s + h))|. ( 5 
P M (h) ≤ u =P max F (Z(s)), F (Z(s + h)) ≤ u =P F (Z(s)) ≤ u, F (Z(s + h)) ≤ u =P Z(s) ≤ F -1 (u), Z(s + h) ≤ F -1 (u) .
(5.1.4)

The probability distribution function of the max-mixture spatial process Z is given in Equation (2.3.37) and leads to

P M (h) ≤ u =e - aΘ(h) F -1 (u) 2e - (1-a) F -1 (u) -1 + e - 1 η(h)g(F -1 (h),a) =u aΘ(h) 2u (1-a) -1 + 1 -u (1-a) 1/η(h) , u ∈ [0, 1].
We deduce that the density of M (h) satisfies the following:

f M (h) (u) = (2a(Θ(h)-1)+2)u a(Θ(h)-1) -aΘ(h)u aΘ(h)-1 +aΘ(h)u aΘ(h)-1 1-u (1-a) 1/η(h) - (1 -a) η(h) u a(Θ(h)-1) 1 -u (1-a) ) 1 η(h) -1 . (5.1.5)
Therefore,

E[M (h)] = 1 0 uf M (h)(u)du = 2a(Θ(h) -1) + 2 a(Θ(h) -1) + 2 - aΘ(h) aΘ(h) + 1 + A 1 -A 2
where,

A 1 := aΘ(h) 1 0 u aΘ(h) 1 -u (1-a) 1/η(h) du
and

A 2 := 1 η(h) β aΘ(h) + 1 (1 -a) + 1, 1/η(h) = γΓ(α + 1)Γ(γ) Γ(α + γ + 1
) .

Let t = u (1-a) , this leads to

A 1 := aΘ(h) (1 -a) 1 0 t a(Θ(h)+1)/(1-a) (1 -t) 1/η(h) dt.
Using the beta function β(x, y) =

1 0 t x-1 (1 -t) y-1 dt, we get A 1 := aΘ(h) (1 -a) β aΘ(h) + 1 (1 -a) , 1 η(h) + 1 .
It is well-known that β(x, y) = Γ(x)Γ(y) Γ(x+y) and Γ(x + 1) = xΓ(x). Let us denote α = aΘ(h)+1

(1-a) and γ = 1 η(h) , we have

A 1 = α - 1 (1 -a) Γ(α)Γ(γ + 1) Γ(α + γ + 1) = γΓ(α + 1)Γ(γ) Γ(α + γ + 1) - γ (1 -a)(α + γ) Γ(α)Γ(γ) Γ(α + γ) = γΓ(α + 1)Γ(γ) Γ(α + γ + 1) - γ (1 -a)(α + γ) β α, γ
In the same way, we can get A 2 :

A 2 = 1 η(h) β aΘ(h) + 1 (1 -a) + 1, 1/η(h) = γΓ(α + 1)Γ(γ) Γ(α + γ + 1) = αγ α + γ β(α, γ).
Finally, we get:

E[M (h)] = 2a(Θ(h) -1) + 2 a(Θ(h) -1) + 2 - aΘ(h) aΘ(h) + 1 - β aΘ(h)+1 (1-a) , 1/η(h) η(h)(1 -a) aΘ(h)+1 (1-a) + (1/η(h))
.

Recall that E(F (Z(s))) = 1 2 because F (Z(s)) ∼ U([0, 1]) and return to equation (5.1.3) to get equation (5.1.1). Lemma 5.2. Let Z be a stationary PQD (positive quadrant dependence) process. If Z(s) and Z(s + h) are perfectly dependent (or co-monotonic), then ν F (h) = 0. If Z(s) and Z(s + h) are independent, then ν F (h) = 1 6 . Proof. We have for any PQD random variables X and Y with respective margins F and G and joint distribution function H the following inequality.

F (x)G(y) ≤ H(x, y) ≤ min{F (x), G(y)} (5.1.6)
where the lower and upper bounds are reached respectively for complete independence and complete dependence (see [START_REF] Reimann | Positively quadrant dependent bivariate distributions with given marginals[END_REF]).

Proof. The F -madogram ν F (h) for a max-stable process is easily obtained by letting a go to 1 in Equation (5.1.1):

ν F (h) = Θ(h) -1 2(Θ(h) + 1) - 1/η(h) Θ(h) + 1 lim a→1 β aΘ(h) + 1 (1 -a) , 1/η(h) .
We have, as x goes to infinity and for fixed y, β(x, y) ∼ Γ(y)x -y . Therefore, we obtain equation (5.1.12). The F -madogram for asymptotically independent processes is obtained by letting a go to 0 in equation (5.1.1):

ν F (h) = 1 2 - 1 η(h) + 1 β 1, 1/η(h) = 1 2 - 1 (η(h) + 1) Γ(1/η(h)) Γ( 1 η(h) + 1) = 1 2 - η(h) η(h) + 1 .
(5.1.14)

Hence, the result.

Model inference

This section is devoted to the parametric inference for max-mixture processes. We begin with the presentation of the maximum composite likelihood estimation, then we present the least squares madogram. Finally, we shall compare these two methods.

Parametric Estimation using Composite Likelihood

Consider (Z k (s 1 ), . . . , Z k (s D )), k = 1, . . . , N, be N independent copies of a spatial process (Z(s)) s∈S , observed at D locations s 1 , . . . , s D . A standard way to perform parameter estimation is by maximization of the likelihood. This method requires the computation of the likelihood of (Z(s 1 ), . . . , Z(s D )). Even if it is theoretically available, it is not computationally tractable for D greater than 2 or 3 (see [START_REF] Davison | Geostatistics of dependent and asymptotically independent extremes[END_REF][START_REF] Thibaud | Threshold modeling of extreme spatial rainfall[END_REF]). Indeed, the distribution function is given by (2.3.4) and the density function would be obtained by the chain rule derivation which leads to a huge amount of terms.

Therefore, the composite likelihood inference will be a more appropriate approach for the estimation [START_REF] Lindsay | Composite likelihood methods[END_REF][START_REF] Varin | An overview of composite likelihood methods[END_REF]. Asymptotic properties of this estimator has been proved in [START_REF] Davis | Comments on pairwise likelihood in time series models[END_REF]. This approach has been applied successfully to spatial max-stable processes by [START_REF] Davison | Geostatistics of extremes[END_REF] and [START_REF] Padoan | Likelihood-based inference for maxstable processes[END_REF] and is also used to identify the parameters of data exceedances over a large threshold, for example, [START_REF] Bacro | Estimation of spatial max-stable models using threshold exceedances[END_REF] and [START_REF] Thibaud | Threshold modeling of extreme spatial rainfall[END_REF].

Our interest in this study lies in max-mixture models; two studies [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] and [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF] highlight on these models; therefore, we will take the composite likelihood proposed by [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] as the control for evaluating the performance of the proposed non-linear least square estimator, which will be introduced in the next section.

If the pairwise density of Z can be computed and its parameter ψ is identifiable, then it is possible to estimate ψ by maximizing the pairwise weighted log likelihood.

For simplicity, we denote

Z k i for Z k (s i ). Let ψL = max ψ P(ψ),
where

P(ψ) = N k=1 D-1 i=1 D j>i w ij log L (Z k i , Z k j ; ψ) =: N k=1 P k (ψ). (5.2.1)
where L is the likelihood of the pair (Z k i , Z k j ) and w i,j ≥ 0 is the weight that specifies the contribution for each pair. In [START_REF] Bacro | Estimation of spatial max-stable models using threshold exceedances[END_REF], it is suggested to take w i,j = 0 for any pair separated by distance over a specific value δ and w i,j = 1 otherwise.

In [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF], it is suggested to consider a censor approach of the likelihood, taking into account a threshold. Let G(•, •) be a pairwise distribution function and consider the thresholds u 1 and u 2 ; the likelihood contribution is

L (z 1 , z 2 ; ψ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∂ 2 12 G(z 1 , z 2 ; ψ) if z 1 > u 1 , z 2 > u 2 , ∂ 1 G(z 1 , z 2 ; ψ) if z 1 > u 1 , z 2 ≤ u 2 , ∂ 2 G(z 1 , z 2 ; ψ) if z 1 ≤ u 1 , z 2 > u 2 , G(z 1 , z 2 ; ψ) if z 1 ≤ u 1 , z 2 ≤ u 2 ,
where ∂ i is the differentiation with respect to the variable z i . In [START_REF] Wadsworth | Dependence modelling for spatial extremes[END_REF], the censored likelihood is used in order to improve the estimation of the parameters related to asymptotic independence. This censored approach was also applied by [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] for the estimation of parameters of max-mixture processes. In this paper, the replications Z 1 , . . . , Z N of Z are assumed to be α-mixing rather than independent. We denote generically by ψ the parameters of the model. In [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF], it is proved, under some smoothness assumptions on the composite likelihood, that the composite maximum likelihood estimator ψL for max-mixture processes is asymptotically normal as N goes to infinity with asymptotic variance

G (ψ) = J (ψ)[K(ψ)] -1 J (ψ),
where J (ψ) = E[-∇ 2 P(ψ)], K(ψ) = var(∇P(ψ)). The matrix G (ψ) is called the Godambe information matrix (see [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] and theorem 3.4.7 in [START_REF] Guyon | Random fields on a network: modeling, statistics, and applications[END_REF]). An estimator Ĵ of J (ψ) is obtained from the Hessian matrix computed in the optimization algorithm. The variability matrix K(ψ) has to be estimated too. In our context, we have independent replications of Z and N is large compared with respect to the dimension of ψ. Then, we can use the outer product of the estimation of ψ. Let

K(ψ) = N -1 N k=1 ∇P k ( ψ)∇P k ( ψ)
or by Monte Carlo simulation with explicit formula of P k (ψ) (see section 5. in [START_REF] Varin | An overview of composite likelihood methods[END_REF]).

In the case of samples of Z satisfying the α-mixing property, the estimation of K(ψ) can be done using a subsampling technique introduced by [START_REF] Edward | The use of subseries values for estimating the variance of a general statistic from a stationary sequence[END_REF]; this was used in [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF].

Finally, model selection can be done by using the composite likelihood information criterion [START_REF] Varin | A note on composite likelihood inference and model selection[END_REF]:

CLIC = -2 P( ψ) -tr( Ĵ -1 K) .
Considering several max-stable models, the one that has the smallest CLIC will be chosen. In [START_REF] Thibaud | Threshold modeling of extreme spatial rainfall[END_REF], the criterion CLIC * = (D -1) -1 CLIC is proposed. It is close to Akaike information criterion (AIC).

Semi-parametric estimation using NLS of F-madogram

In this section, we shall define the non-linear least square estimation procedure of the parameters set ψ corresponding to the max-mixture model Z using the F -madogram. This procedure can be considered as an alternative method to the composite likelihood method. Consider Z t , t = 1, . . . , T as copies of an isotropic max-mixture process Z with unit Fréchet marginal laws (F denotes the distribution function of a unit Fréchet law). It may be independent copies for example, if the data is recorded yearly (see [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF]) or we shall consider that (Z t ) t=1,... satisfies an α-mixing property ( [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF]). Let H be a finite subset of S, J(x, y) = 1 2 |x -y| and Y h,t = J F (Z t (s)), F (Z t (s + h)) , t = 1, .., T and h ∈ H. Therefore, for t = 1, . . . , T , the vectors (Y h,t ) h∈H have the same law and are considered either independent or α-mixing (in t). The main motivation for using the F-madogram in estimation is that it contains the dependence structure information for a fixed h of Y h,t (see section 3.2 in [START_REF] Bacro | Testing the independence of maxima: from bivariate vectors to spatial extreme fields[END_REF]). In what follows, we make the assumption that the vectors (Y h,t ) h∈H are i.i.d. Note that from the definition of the F -madogram, we have E[Y t,h ] = ν F (h, ψ) where ν F (h, ψ) is the F -madogram of Z with parameters ψ defined in (2.14). If Z has an unknown true parameter ψ 0 on a compact set Ψ ⊂ R d , we rewrite Proof. We follow the proof of Theorem II.5.1 in [START_REF] Antoniadis | Régression non linéaire et applications[END_REF]. From (5.2.2), we have, for all

Y h,t = ν F (h, ψ 0 ) + ε h,t . ( 5 
ψ ∈ Ψ L(ψ) = h∈H 1 T t=1,...,T ν F (h, ψ 0 ) + ε h,t -ν F (h, ψ) 2 = h∈H ν F (h, ψ 0 ) -ν F (h, ψ) 2 + 2 T h∈H ν F (h, ψ 0 ) -ν F (h, ψ) t=1,...,T ε h,t + h∈H 1 T t=1,...,T ε 2 h,t .
From the law of large numbers, we have 

L(ψ) → h∈H σ 2 h + h∈H ν F (h, ψ 0 ) -ν F (h, ψ) 2 a.s. as T → ∞.
Take a sequence ( ψT ) T ∈N of least square estimators, taking if necessary a subsequence, we may assume that it converges to some ψ * ∈ Ψ. Using the continuity of ψ ν F (h, ψ), we have

L( ψT ) → h∈H σ 2 h + h∈H ν F (h, ψ 0 ) -ν F (h, ψ * ) 2 a.s. as T → ∞. Since ψT is a least square estimator, L( ψT ) ≤ L(ψ 0 ) → h∈H σ 2 h . It follows that h∈H ν F (h, ψ 0 ) -ν F (h, ψ * ) 2 = 0 and thus ν(h, ψ * ) = ν(h, ψ 0 ) for all h ∈ H.
The asymptotic normality of the least square estimators should also be obtained by following, e.g., [START_REF] Buhl | Semiparametric estimation for isotropic max-stable space-time processes[END_REF] and using the asymptotic normality of the F -madogram obtained in [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF]. Nevertheless, the calculation of the asymptotic variance will require to calculate the covariances between ν F (h 1 , ψ) and ν F (h 2 , ψ), which is not straightforward.

Simulation study

This section is devoted to some simulations in order to evaluate the performance of the least square estimator and to compare it with the maximum composite likelihood estimator.

Analysis the behavior of ν F (h)

In order to have a comprehensive view of the behavior of ν F (h), we have plotted in Figure 5.1. below h ν F (h). We have considered two max-mixture models MM1 and MM2 described below.

MM1 is a max-mixture between a TEG max-stable process X with exponential correlation function ρ(h), correlation lengths θ X and B is chosen as a disk with fixed radius r X ; and an inverse Smith max-stable process Y with covariance matrix Σ = σ Y I d . The model parameters are given by the parameter vector

ψ = (a, r X , θ X , σ Y ) T ∈ [0, 1] × [0, ∞) × [0, ∞) × [0, ∞).
In this model, the pairwise max-mixture processes (Z(s), Z(s + h)) are asymptotically dependent at distance h up to 2r X and asymptotically independent for all h ≥ 2r X ;

MM2 is a max-mixture between a TEG max-stable process X and an inverse TEG max-stable process Y . Each of these two processes has exponential correlation function with different correlation lengths θ X and θ Y and different fixed radius r X and r Y , respectively. The parameter vector is ψ

= (a, r X , θ X , r Y , θ Y ) T ∈ [0, 1] × [0, ∞) × [0, ∞) × [0, ∞) × [0, ∞).
In this model, the pairwise maxmixture processes (Z(s), Z(s + h)) are asymptotically dependent at distance h up to 2r X , asymptotically independent for 2r X ≥ h < 2r Y and independent for all h ≥ 2r Y . For MM1, we have chosen a = 0.5, r X = 0.25 , θ X = 0.2 and σ Y = 0.6. For MM2, we have chosen the same parameters as in MM1 for a and X and we have set r Y = 1.35 and θ Y = 0.8. In this Figure, ν F (h) has two sill one corresponding to X and the second corresponding to Y . This is completely in accordance with the nested variogram concept as presented in [START_REF] Wackernagel | Multivariate nested variogram[END_REF]. In data analysis, these two levels of the sill gives the researcher a hint about whether there is more than one spatial dependence structure in the data. Therefore, before the estimation procedure, it is appropriate to investigate if there are more than one dependence structures. Figure 5.1. also shows that the behavior of ν F (h) is the same as the risk measure

R 1 (A, D ν Z ) in Figure(4.2.
3)(a) and (b) corresponding to MM2 and MM1, respectively. Therefore, it is the same behavior for the covariance function Q(h, ν) corresponding to the same models.

Finally, we shall see that the fact that the F -madogram expresses with all the model parameters is useful for the parameter estimation. On the contrary, when one considers the tail dependence function χ(h), it only envolves the parameters from the max-stable part. The lower tail dependence function χ(h) only envolves the parameters from the inverse max-stable part.

Comparison of the estimation performance of ψT and ψL

Recall that ψT denotes the least square estimator of the parameter vector ψ and ψL denotes the composite likelihood estimator. 

Outline the estimation experiment

In order to evaluate the performance of the non-linear least square estimator ψT as defined in (5.1.1), we have generated data from the two models, MM1 and MM2 above. The estimator ψT has been compared with true one ψ 0 and also with parameters estimated by composite likelihood estimator ψL proposed in [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] for the same data. For MM1, we considered 50 sites randomly and uniformly distributed in the square A = [0, 1] 2 . Since the dependence structure of MM2 is more complex, we have considered 150 sites randomly and uniformly distributed in the square A = [0, 3] 2 . For both models, the TEG X has parameters r X = 0.25, θ X = 0.20. For inverse TEG Y , we set r Y = 1.3, θ Y = 0.9. For the two models MM1 and MM2, we have generated T = 1000 i.i.d observations for each site. These experiments replicated J = 100 time. We have considered several mixing parameters: a := {0, 0.25, 0.5, 0.75, 1}. For the composite likelihood estimator ψL , we used the censored procedure with the threshold u = 0.9 of empirical quantile of data. The fitting of ψL was done using the code which was used in [START_REF] Bacro | A flexible dependence model for spatial extremes[END_REF] with some modifications, since the MM2 model was not implemented.

Results on the parameters estimate

The following boxplots represent the error of estimated parameters, that is ( ψTψ 0 ) and ( ψLψ 0 ). Figures 5.2 and 5.3. display the performance of estimators for models MM1 and MM2, respectively. Generally, the estimators above worked well, although the variability in some estimates were relatively large, especially for the asymptotic independence parameters. It also shows some bias in the estimation of asymptotic independence model parameters.

It is well known that asymptotic independence is difficult to estimate, because the dependence between the process locations may decay very slowly when the distance increases (see [START_REF] Davison | Geostatistics of dependent and asymptotically independent extremes[END_REF]). Therefore, the estimation accuracy of the parameters is very sensitive, especially when dealing with more than one dependence structures. On one other hand, the fitting of α(h) which appears in TEG models in (2.3.25), is delicate and might quite get different estimates efficiency results with different data [START_REF] Davison | Geostatistics of extremes[END_REF]. Furthermore, the dependence measures does not have all dependence information [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF].

To compare the estimation efficiency between the estimators ψT and ψL , the root mean square error (RMSE) was calculated for each estimated parameter based on the J = 100 experiments [START_REF] Zheng | Assessing the performance of the independence method in modeling spatial extreme rainfall[END_REF][START_REF] Zheng | Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk[END_REF]: ψj denotes the estimation (either least square or composite likelihood estimation) on the jth experiment.

RMSE = J -1 J j=1 ( ψj -ψ) 2 1/2 , ( 5.3.1) 
The barplots in Figures 5.4 and 5.5 display the RMSE for each parameter of MM1 and MM2 models. We see on these barplots that when a is close to 0 (a = 0; 0.25), the estimator ψT over-performs the estimator ψL and vice versa when a ∈ {0.75, 1}.

For a = 0.5 the performance of the two estimators seems relatively equivalent. Chapter 6 Conclusions

Conclusion Remarks

We have proposed a spatial risk measure R(A, D + X,u ) for Gaussian spatial process and developed the study of the risk measure R(A, D ν X ) for extreme spatial processes allowing asymptotic dependence and asymptotic independence. In addition, explicit formula of R(A, D ν X ) for TEG max-stable process has been provided. All these risk measures are sensitive with spatial dependence structure over a region. Such risk measures could calculate any bounded region but we took the benefit from the isotropic property of the processes to reduce the dimensional integration for some specific bounded region shapes, such as disk and square. For asymptotic/ complete independence spatial processes, we showed by Corollaries 3.6 and 3.12 that we have only the loss magnitude R 0 (A, D X ) to assess the risks, when the regions under study is big enough to make R 1 (A, D X ) tends or equal to 0. In such a case, we can conclude that the corresponding damage functions (D X (•), D(• + h)) belong to a not compact region with spatial independence. We showed that some axioms are valid for any stationary processes. Properties such as anti-monotonicity is verified for isotropic Gaussian processes and isotropic stationary max-mixture processes (the same result holds for some max-stable processes, see [START_REF] Koch | Spatial risk measures and applications to max-stable processes[END_REF]). We emphasized the behavior of these risk measures with respect to the various parameters by a simulation study. It shows that the risk measures R(A, D + X,u ) and R(A, D ν X ) are usually good tools in order to assess the risks, comparing to the intuitive Monte-Carlo computation. With respect to the covariance damage function G(h, u) for Gaussian process, there are some difficulties in approximating the covariance of damage functions (D + X,u (•), D + X,u (• + h)), when the corresponding threshold u is high, even when a strong depen-dence exists. The justification of this difficulty is that there is not enough data over u in order to approximate G. We implemented R(A, D + Y,log u ) on the air pollution case study, and this example showed the interest of using the variance of L(A, D + Y,log u ) as a spatial risk measure in concrete cases. With respect to R 1 (λA, D ν X ) for maxstable or inverse max-stable processes, we showed that their behavior also mimics the one of χ(h) in the max-stable case, or χ(h) in the inverse max-stable case. For max-mixture, the behavior of R 1 (λA, D ν X ) mimics the proposed F-madogram ν F (h).

We have also provided F-madogram ν F (h) for the max-mixture process that can detect more than one dependence structure in a model (i.e. asymptotic dependence and asymptotic independence). The F-madogram presents the advantage of having both extremal coefficient Θ(h) of the max-stable process and η(h) of the inverse max-stable in its expression. When a = 1, ν F (h) is the F-madogram corresponding to a max-stable process introduced by [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF] and so switches to Θ(h); when a = 0, ν F (h) represents the F-madogram of an inverse max-stable and switches to η(h). We defined a semi-parametric estimation procedure using F-madogram ν F (h) as an alternative to composite likelihood. The simulation study showed that the estimation procedure based on ν F (h) performs better than the composite likelihood procedure when the model is near to asymptotic independence.

Future work

Anisotropy is often observed in environmental phenomenon, especially when the regions are very large; but while isotropic models have been widely studied, only few studies have been treated as anisotropic case. For example, anisotropic variogram has been proposed. This variogram is based on coordinate transformation according to the type of anisotropy (geometric or zonal) (see [START_REF] Manto | Modelling of geometric anisotropic spatial variation[END_REF] and [START_REF] Ecker | Spatial modeling and prediction under stationary non-geometric range anisotropy[END_REF]). In a case study in Middle Europan westerly winds data, the semivariogram was defined as a dependence structure of max-stable process in order to summarize the dependence parameters ( [START_REF] Buhl | Anisotropic brown-resnick space-time processes: estimation and model assessment[END_REF]). While [START_REF] Blanchet | Spatial modeling of extreme snow depth[END_REF] inserted the geometric or zonal anisotropy into a spatial isotropic models, this procedure was adopted by [START_REF] Buhl | Anisotropic brown-resnick space-time processes: estimation and model assessment[END_REF] to propose an anisotropic Brown-Resnick max-stable model. Based on [START_REF] Manto | Modelling of geometric anisotropic spatial variation[END_REF], our suggestion is to include the concept of anisotropy, such as the coordinate transformation of the risk measures and also in F-madogram so to be suitable for semi-parametric estimation procedure for anisotropic spatial processes. Finally, we could develop the risk measures in order to take into account the time dependence (spatio-temporal risk measures) and also to adapt the F-madogram in a spatio-temporal case and then develop the semi-parametric estimation procedure.

Let, z 1 = xρy/(1ρ 2 ) 1/2 . We set x = z 1 (1-ρ 2 ) 1/2 +ρy and v 1 = uρy/(1ρ 2 ) 1/2 , such that: where

u, u, w m 10 = 1 2π(1 -ρ 2 ) 1/2 ∞ u e -1 2 y 2 ∞ v 1 (z 1 (1 -ρ 2 ) 1/2 + ρy)e
Q(t) = ∞ t e -1 2 x 2 dx.
For the first term A 1 in the equation (A.1.4) and by adding and subtracting ρ 2 u 2 in the the quantity (y 2 + v 2 1 ), we get

A 1 = (1 -ρ 2 ) 2π e -1 2 u 2 Q u(1 -ρ) (1 -ρ 2 ) 1/2 = (1 -ρ 2 )ϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 .
(A.1.5)

By integrating by parts the second term A 2 , we get By adding and subtracting ±ρ 2 u 2 in the quantity (y 2 + v 1 2 ) in the first term A 3 and letting z 2 = (yρu)/(1ρ 2 ) 1/2 then by variable change, we get for v 2 = (u(1ρ))/(1ρ 2 ) 1/2

A 2 = ρ(1 + ρ)ϕ(u)Φ u(1 -ρ) (1 -ρ 2
A 3 = (1 -ρ 2 ) 1/2 2π e -1 2 u 2 ∞ v 2 (z 2 (1 -ρ 2 ) 1/2 + ρu)e -1 2 z 2 2 (1 -ρ 2 ) 1/2 dz 2 = (1 -ρ 2 ) 2π e -1 2 u 2 (1 -ρ 2 ) 1/2 e -1 2 v 2 2 + ρuQ(v 2 ) = (1 -ρ 2 ) 2π (1 -ρ 2 ) 1/2 e -1 2(1-ρ 2 ) 2u 2 (1-ρ) + ρue -1 2 u 2 Q(v 2 ) . =(1 -ρ 2 ) (1 -ρ 2 ) 1/2 √ 2π ϕ (2u 2 (1 -ρ)) 1/2 (1 -ρ 2 ) 1/2 + ρuϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 (A.1.8)
By integration by parts the second term A 4 we get

A 4 =ρuϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 + ρ 2 (1 -ρ 2 ) 1/2 √ 2π ϕ (2u 2 (1 -ρ)) 1/2 1 -ρ 2 + ρuϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2
+ ρ u, v, ρ . 

-ρ 2 ) (1 -ρ 2 ) 1/2 √ 2π ϕ (2u 2 (1 -ρ)) 1/2 (1 -ρ 2 ) 1/2 ) + ρuϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 +ρ 2 (1 -ρ 2 ) 1/2 √ 2π ϕ (2u 2 (1 -ρ)) 1/2 (1 -ρ 2 ) 1/2 + ρuϕ(u)Φ u(1 -ρ) (1 -ρ 2 ) 1/2 +ρ u, u, ρ
and therefore the equation (A.1.3) satisfied.

A.2 Proof Corollary 3.5

Let X be an isotropic standard Gaussian process on S ⊂ R 2 with auto-correlation function ρ. Let A ⊂ S be either a disk or a square. The mapping λ → R 1 (λA, D + X,u ) is non-increasing if and only if h → ρ(h), h > 0 is non-increasing and non-negative . Case where A is a square. The first term in Equation (A.2.3) In the article [START_REF] Genz | Numerical computation of rectangular bivariate and trivariate normal and t probabilities[END_REF], the authors proved that the derivative of u, u, w) with respect to w is ϕ u, u, w and then we have (A.2.4)

Proof

Note that φ u, u, w = 1 2π √ 1 -w 2 exp -1 2(1 -w 2 ) u 2 + u 2 -2u 2 w = 1 2π √ 1 -w 2 exp -2u 2 (1 -w) 2(1 -w 2 ) = 1 2π √ 1 -w 2 exp -u 2 (1 + w) = 1 1 -w 2 1/2 φ 2 u 1 + w 1/2 .
From the empirical F-madogram introduced in [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF], we have From the definition of max-mixture model, it easy to deduce the corresponding upper /lower tail dependence measures χ ψ (h, u) =2 -log P(F (Z(s)) < u, F (Z(s + h)) < u) log P(F (Z(s)) < u)

=2 -log P(Z(s) < F -1 (u), Z(s + h) < F -1 (u)) log P(Z(s) < F -1 (u))

From the definition of max-mixture, we have =2 -log u aΘ X (h;ψ X ) 2u (1-a) -1 + (1u (1-a) ) Θ Y (h;ψ Y ) log(u) =2 -aΘ X (h; ψ X ) -log 2u (1-a) -1 + (1u (1-a) ) Θ Y (h;ψ Y ) log(u) .

(B.1.1)

In the same way, we have also 

χ ψ (h, u) = 2 log(1 -u) log 1 -2u + u aΘ X (h;ψ X ) 2u (1-a) -1 + (1 -u (1-a) ) Θ Y (h;ψ Y ) -1. 
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 21 Figure 2.1: Dependence structure for different isotropic and non-negative spatial correlation functions, respectively spherical, cubic, exponential, gaussian, and matern with different scaling parameter θ := {0.05, 0.1, 0.15, 0.20, 0.25, 0.5} and distance τ ∈ [0, 1].
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 217 (Normalized loss function) Consider a damage function D : R d → R + . For any set A ∈ B(R d ), the normalized aggregate loss function on A is L(A, D) = 1 |A| A D(s) ds, (2.4.1)
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 32 Let Y := {Y (s), s ∈ S} be an isotropic Gaussian process with mean μ and variance σ 2 . Let X = Y -μ σ be an isotropic and standard Gaussian process. The spatial risk measure R(A, D + Y,u ) statisfiesR(A, D + Y,u ) = σE[L(A, D + X,u 0 )], σ 2 Var L(A, D + X,u 0 ) , (3.1.7)with u 0 = (uμ)/σ.

3 )

 3 Var L(A, D + X,u ) = E G(||S -T ||, u) .Using (3.1.14) and (3.1.15) with the function γ(h) = G(h, u); we obtain the expressions (3.2.1) and (3.2.2).
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 41 Figure 4.1: Behavior of G θ (h, u) with respect to the threshold u, the correlation length θ and the distance h. Five non-negative correlation functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1) have been examined. The graphs (a), (b) and (c) show the behavior of G • (•, •) with respect to the following: (a) the distance h, when u = Φ -1 (0.75) and θ = 0.50; (b) the correlation length θ, when u = Φ -1 (0.75) and h = 0.30; (c) the threshold u = Φ -1 (p), p ∈ [0, 1], when θ = 0.50 and h = 0.30.
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 42 Figure 4.2: The behavior of R 1 (λA, D + X,u ) for A = [0, 1] 2 -exponential, Gaussian, spherical, cubic and Matérn with κ = 1 non-negative correlation functions. The graphs (a), (b) and (c) show the behavior of R 1 (λA, D + X,u ) for a fixed h = 0.30 with respect to the following: (a) λ, when u = Φ -1 (0.75) and θ = 0.50; (b) θ, when u = Φ -1 (0.75) and λ = 1; (c) u = Φ -1 (p), p ∈ [0, 1], when λ = 1 and θ = 0.50.
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 43 Figure 4.3: The boxplots represent the relative errors of R 1 (A, D + X,u ) between the one-dimensional integration computation and the M1 method for different thresholds u = Φ -1 (p), p := {0.75, 0.85, 0.95} and five correlation functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1) for correlation length θ = 0.5 over A = [0, 1] 2 .

with A a square

  of side 10km and u the legal level, i.e. u = 50. We use Corollary 3.2; let Y 0 = Y -μ σ and u 0 = (log(50) -3.96)/ √ 1.2762 = 0.1965, we have R 0 (λA, D + Y,log u ) = √ 1.2762 ϕ(0.1965) -0.1965Φ(0.1965) =0.3483621
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 44 Figure 4.4: [11]. Locations of the 24 P M 10 monitoring sites (red dots) and 10 validation stations (blue squares) in northern Italy between Alps and Appenises (Piemonte region).
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 45 Figure 4.5: shows the behavior of Q θ,r (h, ν) with respect to the power coefficient ν, the correlation length θ, the distance h and the truncated parameter r. Plain lines correspond to TEG and dashed lines correspond to inverse TEG. Five nonnegative correlation functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1) have been examined. The graphs (a), (b) ,(c) and (d) show the behavior of Q •,• (•, •) with respect to the following: (a) the distance h, when ν = 0.2 ,θ = 0.2 and r = 0.25; (b) the correlation length θ, when ν = 0.2, r = 0.25 and h = 0.25; (c) the truncated parameter r, when ν = 0.2, θ = 0.20 and h = 0.25; (c) the power coefficient ν, when θ = 0.20, r = 0.25 and h = 0.25.
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 4 Figure 4.7 shows the behavior of Q(h, ν) with respect to each parameter. When
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 46 Figure 4.6: shows the behavior of Q(h, ν) with respect to distance h. Five nonnegative correlation functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1) have been examined when a = 0.5, ν = 0.2 and X is TEG max-stable with θ X = 0.15 and r X = 0.10; Y is an invariant TEG max-stable with θ Y = 0.35 and r y = 0.30.
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 47 Figure 4.7: (a) shows the behavior of Q(h, ν) with respect to mixing parameter a, the power coefficient ν, the correlation lengths θ X , θ Y , and truncated parameters r X ,r Y . Five non-negative correlation functions (exponential, Gaussian, spherical, cubic and Matérn with κ = 1) have been examined. For a = 0.5, h = 0.25, ν = 0.2, θ X = 0.1, θ Y = 0.3, r X = 0.15 and r Y = 0.35, the graphs (a),(b),(c),(d),(e) and (f) show the behavior of Q(•, •) with respect to the following: (a) the mixing parameter a; (b) the power coefficient ν; (c) the truncated parameter r X ; (d) the truncated parameter r Y ; (f) the correlation length θ X ; (e) the correlation length θ Y .

Figure 4 . 8 :

 48 Figure 4.8: The boxplots represent the relative errors of the Monte Carlo estimation of Var(L(A, D ν Z )) with respect to the three-dimensional integration for a different power coefficient ν := {0.05, 0.15, 0.25, 0.35, 0.40} and a mixing parameter a := {0, 0.25, 0.5, 0.75, 1} with parameters r X = 0.25 and θ X = 0.20 corresponding to max-stable X and with σ 2 = 1 corresponding to Y over a square A = [0, 1] 2 .

Figure 4 . 9 :

 49 Figure 4.9: The graphs represent the behavior of R 1 (λA, D ν X ) with respect to λ for ν = 0.20, a square A = [0, 1] 2 and the corresponding relation to tail and lower tail dependence coefficients. Four models are considered: (a) TEG model with truncated parameter r X = 0.25 and exponential correlation function with correlation length θ X = 0.20; (b) inverse TEG max-stable with the same parameters as in (a); (c) Smith max-stable process with σ 2 = 0.6; (d) inverse Smith max-stable process with the same parameters as in (c). Finally, the graphs (1), (2), (3) and (4) represent the tail and lower tail dependence coefficients corresponding to each model receptively; h = 0.3.

Figure 4 .

 4 Figure 4.10.(a) shows the behavior of R 1 (λA, D ν Z ) for the max-mixture model MM1. It shows the relative height value for R 1 (λA, D ν Z ) up to 0.3λ < 2r X and the amount of the risk converge to zero for all 0.3λ ≥ 2r X with speed decreasing dependence on the parameter of Smith model σ 2Y with dependence structure and asymptotic dependence when 0.3λ < 2r X and asymptotic independence for all 0.3λ ≥ 2r X . Figure4.10.(b) shows the behavior of R 1 (λA, D ν Z ) with respect to the max-mixture model MM2. We can see the same behavior of asymptotic dependence part in MM1 when 0.3λ < 2r X , asymptotic independence when 2r X ≤ 0.3λ < 2r Y and independence for all 0.3λ ≥ 2r Y . The fact that the rupture at 2r Y is low implies that this parameter would certainly be difficult to estimate on data. Combining the graphs (1) and (2) with (I) and (II) respectively results in the same behavior of the risk measure in graphs (a) and (b). This is why we propose dependence measures in the next chapter, they combine these dependence structures. Figures 4.11.(a) and (b) shows the behavior of R 1 (λA, D ν Z ) with respect to a.
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Figure 4 .

 4 Figure 4.10: shows the behavior of R 1 (λA, D ν Z ), χ(h) and χ(h) for two max-mixture models.

Figure 4 .

 4 Figure 4.11: shows the behavior of R 1 (λA, D ν Z ) with respect to mixing parameter a for two max-mixture models : (a) MM1 model; (b) MM2 model.

.1. 2 )

 2 The equality |a -b|/2 = max(a, b) -(a + b)/2 leads to ν F (h) = E max F (Z(s)), F (Z(s + h)) -E F (Z(s)) .(5.1.3) 
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 51 Figure 5.1. shows the behavior of the F -madogram for the models MM1 and MM2.For MM1, we have chosen a = 0.5, r X = 0.25 , θ X = 0.2 and σ Y = 0.6. For MM2, we have chosen the same parameters as in MM1 for a and X and we have set r Y = 1.35 and θ Y = 0.8. In this Figure, ν F (h) has two sill one corresponding to X and the second corresponding to Y . This is completely in accordance with the nested variogram concept as presented in[START_REF] Wackernagel | Multivariate nested variogram[END_REF]. In data analysis, these two levels of the sill gives the researcher a hint about whether there is more than one spatial dependence structure in the data. Therefore, before the estimation procedure, it is appropriate to investigate if there are more than one dependence structures. Figure5.1. also shows that the behavior of ν F (h) is the same as the risk measureR 1 (A, D ν Z ) in Figure(4.2.3)(a) and (b) corresponding to MM2 and MM1, respectively. Therefore, it is the same behavior for the covariance function Q(h, ν) corresponding to the same models.

Figure 5 .

 5 Figure 5.1: h ν F (h) for the max-mixture processes models MM1 and MM2. The model MM1 has correlation function ρ(h) = exp(-h/θ X ), r X = 0.25, θ X = 0.2 and σ Y = 0.6. The model MM2 has correlation function ρ X (h) = exp(-h/θ X ) for X and ρ Y (h) = exp(-h/θ Y ) for Y with different correlation lengths θ X and θ Y . The fixed radiuses r X and r Y are plotted in the figure. For the two models, we set a = 0.5.

Figure 5 . 2 :

 52 Figure 5.2: Boxplots display ( ψψ) of estimated parameters vector ψ = (â, rX , θX , σY ) T for the MM1 model by the two estimators ψT and ψL . The figures in the first row and from left to right concern the estimator ψT for a ∈ {0, 0.2, 0.75, 1}, the second row concerns ψL . We have set, r X = 0.25, θ X = 0.20 and σ Y = 0.6 over a square A = [0, 1] 2 .
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 53 Figure 5.3: Boxplots display ( ψψ) of estimated parameters vector ψ = (â, rX , θX , rY , θY ) T for MM2 model by the two estimators ψT and ψL . The figures in the first row and from left to right concern the estimator ψT for a ∈ {0, 0.2, 0.75, 1}, the second row concerns ψL . We have set, r X = 0.25, θ X = 0.20, r Y = 1.3 and θ Y = 0.9 over a square A = [0, 3] 2 .
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 54 Figure 5.4: Barplots display the RMSE of ψ for each estimated parameters ψ = (â, rX , θX , σY ) T for MM1 and the corresponding two estimators ψT and ψL . The bars in the first row and from left to right represent the RMSE of the estimator ψT when a := {0, 0.2, 0.75, 1}, respectively and the same for the second row for ψL . We set r X = 0.25, θ X = 0.20 and σ Y = 0.6 over a square A = [0, 1] 2 .
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 55 Figure 5.5: Barplots display the RMSE of ψ for each estimated parameters ψ = (â, rX , θX , rY , θY ) T for MM2 and the corresponding two estimators ψT and ψL . The bars in the first row and from left to right represent the RMSE of the estimator ψT when a := {0, 0.2, 0.75, 1}, respectively and the same for the second row for ψL . We set r X = 0.25, θ X = 0.20, r Y = 1.3 and θ Y = 0.9 over a square A = [0, 3] 2 .

1 2 y 2 ( 1 -ρ 2 ) 1 2 y 2 Q

 121212 (v 1 )dy := A 1 + A 2 , (A.1.4) 

(x 2 1 -ρ 2 ) 1 2 y 2 Q

 21212 ) 1/2 . (A.1.6) Substituting the equations (A.1.5) and (A.1.6) in (A.1.4) we obtain:u, u, w m 10 =(1ρ 2 )ϕ(u)Φ u(1ρ) (1ρ 2 ) 1/2 + ρ(1 + ρ)ϕ(u)Φ u(1ρ) (1ρ 2 ) 1/2 =(1 + ρ)ϕ(u)Φ u(1ρ) (1ρ 2 ) 1/2and therefore the equation (A.1.2) satisfied.Concerning the product moment m 11 , recall thatm 11 = 1 2π(1ρ 2 ) 1/2 u, u, w -2ρxy) dxdy.In the same way as for m 10 , we get u, u, w m 11 = ((v 1 )dy := A 3 + A 4 .(A.1.7)

(A. 1 . 9 )

 19 Substituting equations (A.1.8) and (A.1.9) in (A.1.7), we obtain u, u, w m 11 =(1

  , ρ(λh) ρ(λh) + u 2 =hρ (λh)ϕ(u, u, ρ(λh))(u 2 + hρ(λh)) + ρ (λh) (u, u, ρ(λh)) =hρ (λh) ϕ u, u, ρ(λh) u 2 + ρ(λh) + u, u, ρ(λh) .

  t (s) -U t (s + h)|,where U t = F (Z t ) and F has Frechet margin.Second step: we solve one of the following optimization problems ψχ = argminψ h∈H χ(h, u)χ ψ (h, u) 2 or ψχ = argmin ψ h∈H χ(h, u)χ ψ (h, u) 2 or ψν = argmin ψ h∈H νF (h)ν F (h, ψ) 2 .

(B. 1 . 2 )

 12 When ψ := {a, ψ X , ψ Y }.

Figure B. 2 :

 2 Figure B.2: Barplots represent the root mean square error RMSE of estimated parameters vector ψ = (â, rX , θX , σY ) T for MM1 model corresponding to the three estimators ψχ , ψχ and ψ ν . The first line corresponds to the results obtained for ψχ , second to the results for ψχ and third to ψ ν . From left to right, we represent the results for a := {0, 0.2, 0.75, 1}. We have set r X = 0.25, θ X = 0.20 and σ Y = 0.6 over a square A = [0, 1] 2 .

  

  Gaussian process if for anyk ∈ N + and any (s 1 , ..., s k ) ∈ S k , (X s 1 , ..., X s k ) is a k-dimensional Gaussian vector.

	An immediate consequence is that a second-order process which is strongly stationary
	is also weakly stationary but not vice versa. This property is much more restrictive
	than the weakly stationarity. For simplicity, in what follows, we shall say stationary
	for strongly stationary. Weakly stationary or second-order stationary will be used
	indifferently.	
	Definition 2.5. (Isotropic process) A weakly stationary process X on S is isotropic,
	if for each (s, t) ∈ S 2 , the covariance value c(s, t) depends only on the distance s-t ;
	that is, for each (s, t) ∈ S 2	
	c(s, t) = c 0 ( s -t )
	An important class of processes is the one of Gaussian processes defined as follows.
	Definition 2.6. (Gaussian process) X is a
	Definition 2.4. (Strongly stationary processes) A process X on S is strongly
	stationary if ∀k ∈ N + , ∀(s 1 , ..., s k ) ∈ S k , ∀v ∈ S, such that (s 1 + v, ..., s k + v) ∈ S k
	X(s 1 ), ..., X(s k )	L = X(s 1 + v), ..., X(s k + v)

Definition 2.3. (Weakly stationary process) A second-order process X is weakly stationary if ∀s ∈ S, m(s)

:= E[X(s)] = m and c(s, t) = c(s + v, t + v) ∀s, t ∈ S, with s + v, t + v ∈ S.

  h∈H is injective, then theorem 5.4 implies that the least square estimation is consistent, i.e. ψ T → ψ 0 a.s. as T goes to infinity.In the examples considered below, it seems that the injectivity is satisfied provided |H| ≥ d, but we were unable to prove it.

									.2.2)
	The vectors (ε h,t ) h∈H are i.i.d errors with E[ε h,t ] = 0 and Var(ε h,t ) = σ 2 h > 0 is finite
	and unknown.							
	Let	L(ψ) =	h∈H	1 T	t=1,...,T	Y t,h -ν F (h, ψ)	2	(5.2.3)
	Any vector ψT in Ψ which minimizes L(ψ) will be called a least square estimate of
	ψ 0 .		ψT ∈ argmin	L(ψ).		(5.2.4)
					ψ∈Ψ			

Theorem 5.4. Assume that Ψ ⊂ R d is compact and that ψ → ν F (h, ψ) is continuous for all h ∈ H. We assume that the vectors (Y h,t ) h∈H are i.i.d. Let ( ψT ) T ∈N be least square estimators of ψ 0 ; then, any limit point (as T goes to infinity) ψ of ( ψT ) T ∈N satisfies ν(h, ψ) = ν(h, ψ 0 ) for all h ∈ H.

Remark 5. Of course, if ψ

(ν(h, ψ))

  . Recalling that R 1 (λA, D + X,u ) =As f square is a positive function of the variables of R 1 (λA, D + X,u ) and also of the variables of G(λh, u). Let then study the partial derivative of G with respect to λ.

						√	2R
								f disk (h, R)G(λh, u)dh,	(A.2.1)
						h=0
	if the partial derivative ∂ ∂λ G(λh, u) exists and is continuous then
			∂ ∂λ	R 1 (λA, D + X,u ) =	√ h=0 2R	f disk (h, R)	∂ ∂λ	G(λh, u)dh.	(A.2.2)
	∂ ∂λ	G(λh, u) =	∂ ∂λ	u, u, ρ(λh) ρ(λh) + u 2 -	∂ ∂λ	2uϕ(u)Φ	u(1 -ρ(λh)) (1 -ρ 2 (λh)) 1/2
		+	∂ ∂λ	1 -ρ 2 (λh)	1/2 ϕ 2	u (1 + ρ(λh)) 1/2	:= A31 + A32 + A33
								(A.2.3)
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Chapter 4

Computational aspects of the risk measures

In this Chapter, we study the behavior of the proposed spatial risk measures R(A, D X ), through some simulations.

4.1 Computational aspects for Gaussian risk measure 4.1.1 Analysis of G(h, u) and R 1 (λA, D + X,u )

We begin this simulation section with the study of the covariance damage function G which plays a central role in the behavior of R(A, D + X,u ). We consider five Gaussian models depending on the choice of the correlation structure introduced in Section 2.2.1. In order to emphasize the dependence of the damage covariance function G to the correlation parameter, we will denote it by G θ (h, u) for any triplet (h, u, θ). Figure 4.1.(a) shows the behavior of the spatial covariance between two damage functions D + X,u (•) and D + X,u (•+h) with respect to the distance h, when the correlation range is set to θ = 0.50 and the threshold to u = Φ -1 (0.75), where Φ -1 is the quantile function of the standard normal distribution. It shows that G θ (h, u) tends to 0 as h tends to infinity with different decreasing speed. This is obviously the expected behavior, because the process (D + X,u (s), s ∈ S) is (spatially) asymptotically independent. Whereas, for spherical and cubic correlation functions, G θ (h, u) = 0 as soon as h > θ, which means that the process (D + X,u (s), s ∈ S) is θ-independent (independent at a distance larger than θ).

was chosen equal to 0.5 mm [START_REF] Yang | Spatial-temporal rainfall simulation using generalized linear models[END_REF], while [START_REF] Ignaccolo | Modeling pollutant threshold exceedance probabilities in the presence of exogenous variables[END_REF] considered the value of the threshold as its median or quantile when evaluating the performance of the exceedance probability estimator. In this study, we set the threshold u = Φ -1 (p) for p := {0.75, 0.85, 0.95}. This section is devoted to a numerical study of the computation of R 1 (A, D + X,u ), where A = [0, 1] 2 . We compare the computation of R 1 (A, D + X,u ) by the one-dimensional integration using (3.1.3) with the intuitive Monte-Carlo computation (M1). The (M1) computation is obtained by generating a m = 1000 sample of X on the grid; that is,

and

where E M 1 represents the expectation calculated using Monte-Carlo computation. Boxplots in Figure 4.3 represent the relative errors over 100 (M1) computations with respect to the one-dimensional integration. Because exponential, Gaussian and Matérn correlation models have relatively simple forms, the relative errors are expected to be smaller compared to the spherical and cubic ones. For cubic and spherical models, the discontinuity at h = θ induces more instability in the simulations.

Piemonte case study

We terminate this section with the computation of the risk measure R 1 ( cA, D + X,u ) on pollution in the Piemonte data. The air pollution is measured by the concentration in P M 10 , the particulate matter with an aerodynamic diameter less than 10μm. The observed values of P M 10 are frequently larger than the legal level fixed by the European directive 2008/50/EC (see [START_REF] Cameletti | Spatio-temporal modeling of particulate matter concentration through the spde approach[END_REF] for details). The data has been fitted and analyzed in [START_REF] Bande | Spatio-temporal modelling for pm10 in piemonte[END_REF]. The data contains the daily concentration of P M 10 during the winter season 2005 March 2006. The authors considered 24 monitoring stations for estimating the parameters of this model and 10 stations for validation.

The log of P M 10 has been fitted on an isotropic Gaussian process with Matérn For any non-negative random variable X, we have E

Then, in the independence case:

(5.1.7) Therefore,

In the complete dependence case, we have

(5.1.9) Therefore,

The bounds of ν F (h) follow:

with bounds reached for complete dependence and independence, respectively.

In the particular cases where a = 1 or a = 0, Proposition 5.1 reduces to known results for max-stable processes (see [START_REF] Cooley | Variograms for spatial max-stable random fields[END_REF]) and inverse max-stable processes (see [START_REF] Guillou | Madogram and asymptotic independence among maxima[END_REF]).

Corollary 5.3. The F -madogram for a max-stable spatial process is given by

The F -madogram of an asymptotically independent spatial process is given by

A.1 Moments of truncated bivariate Gaussian distribution

We shall present the results giving the moments of a truncated stantard bivariate Gaussian random variable proved by [START_REF] Rosenbaum | Moments of a truncated bivariate normal distribution[END_REF]. Let u, v, w be total probability of the truncated bivariate standard Gaussian distribution with correlation function w, such that

where u and v are the truncated points corresponding to x and y respectively. Let u = v, then the first moment m 10 and the product moment m 11 respectively are

and

Proof. For sake of simplicity, we will only consider the case u = v. Recalling that

By adding and subtracting ρ 2 y 2 in the expression (x 2 -2ρxy), we get

The second term in Equation (A.2.3)

The third term in Equation (A.2.3)

Substituting equations (A.2.5),(A.2.8) and (A.2.9) in (A.2.3) gives

+h (u, u, ρ(λh)) .

(A.2.11)

The positive term in the big arcs in Equation (A. 2.11) gives that the spatial covariance function G(λh, u) is non-increasing if and only if ρ(λh) is non-increasing as λ.

Then,

Semi-Parametric estimation using dependence measures

B.1 Estimation procedure

The semi-parametric estimation procedure introduced in this section is based on the minimization of the square difference between the empirical dependence measure and the theoretical one. The dependence measures we adopted in this procedure are upper/ lower tail dependence measures χ(h, u) and χ(h, u) receptively, in addition to the F-madogram ν F (h). We shall evaluate the performance of this procedure according to max-mixture model Z defined in 2.16.

Consider Z t , t = 1, .., T , T copies of an isotropic max-mixture process Z with unit Frechet margin F . Then (Z t ) t=1,..,T are i.i.d observations and satisfy α-mixing property. Let H be a finite subset of S and ψ ∈ Ψ, Ψ ⊂ R d is compact and ψ → ν F (h, ψ) is continuous for all h ∈ H. The estimation procedure is obtained as following:

First step, we need to calculate the empirical χ(h, u) and χ(h, u). It is easy to write the empirical versions from the empirical distributions. We get,

B.2 Evaluating the performance of the estimators

In order to evaluate the performance of the estimators ψ corresponding to the different dependence measures χ(h, u), χ(h, u) and ν F (h), we adopted the model MM1 in section 5.