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Résumé

La modélisation probabiliste des événements climatiques et environnementaux doit
prendre en compte leur nature spatiale. Cette thèse porte sur l’étude de mesures
de risque pour des processus spatiaux. Dans une première partie, nous introduisons
des mesures de risque à même de prendre en compte la structure de dépendance
des processus spatiaux sous-jacents pour traiter de données environnementales. Une
deuxième partie est consacrée à l’estimation des paramètres de processus de type
max-mélange.

La première partie de la thèse est dédiée aux mesures de risque. Nous étendons
les travaux réalisés dans [44] d’une part à des processus gaussiens, d’autre part à
d’autres processus max-stables et à des processus max-mélange, d’autres structures
de dépendance sont ainsi considérées. Les mesures de risque considérées sont basées
sur la moyenne L(A,D) de pertes ou de dommages D sur une région d’intérêt A.
Nous considérons alors l’espérance et la variance de ces dommages normalisés. Dans
un premier temps, nous nous intéressons aux propriétés axiomatiques des mesures
de risque, à leur calcul et à leur comportement asymptotique (lorsque la taille de la
région A tend vers l’infini). Nous calculons les mesures de risque dans différents cas.
Pour un processus gaussien, X, on considère la fonction d’excès : D+

X,u = (X−u)+ où
u est un seuil fixé. Pour des processus max-stables et max-mélange X, on considère
la fonction puissance : Dν

X = Xν . Dans certains cas, des formules semi-explicites
pour les mesures de risque correspondantes sont données. Une étude sur simulations
permet de tester le comportement des mesures de risque par rapport aux nombreux
paramètres en jeu et aux différentes formes de noyau de corrélation. Nous évaluons
aussi la performance calculatoire des différentes méthodes proposées. Celle-ci est
satisfaisante. Enfin, nous avons utilisé une étude précédente sur des données de pol-
lution dans le Piémont italien, celle-ci peuvent être considérées comme gaussiennes.
Nous étudions la mesure de risque associée au seuil légal de pollution donnée par la
directive européenne 2008/50/EC.

Dans une deuxième partie, nous proposons une procédure d’estimation des paramètres
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d’un processus max-mélange, alternative à la méthode d’estimation par maximum de
vraisemblance composite. Cette méthode plus classique d’estimation par maximum
de vraisemblance composite est surtout performante pour estimer les paramètres de
la partie max-stable du mélange (et moins performante pour estimer les paramètres
de la partie asymptotiquement indépendante). Nous proposons une méthode de
moindres carrés basée sur le F-madogramme : minimisation de l’écart quadratique
entre le F-madogramme théorique et le F-madogramme empirique. Cette méthode
est évaluée par simulation et comparée à la méthode par maximum de vraisem-
blance composite. Les simulations indiquent que la méthode par moindres carrés
du F-madogramme est plus performante pour estimer les paramètres de la partie
asymptotiquement indépendante.

Mots clé : mesures de risque ; mesures de dépendance spatiale ; processus gaussiens ;
processus max-stables ; processus max-mélange ; dépendance asymptotique ; in-
dépendance asymptotique.



Abstract

When dealing with environmental or climatic changes, a natural spatial dependence
aspect appears. This thesis is dedicated to the study of risk measures in this spa-
tial context. In the first part (Chapters 3 and 4), we study risk measures, which
include the natural spatial dependence structure in order to assess the risks due to
extreme environmental events and in the last part (Chapter 5), we propose estimation
procedures for underlying processes, such as isotropic and stationary max-mixture
processes.

In the first part dedicated to risk measures, we extended the work in [44] in order to
obtain spatial risk measures for various spatial processes and different dependence
structures. We based these risk measures on the mean losses over a region A of
interest. Risk measures are then defined as the expectation E[L(A,D)] and variance
Var(L(A,D)) of the normalized loss. In the study of these measures, we focused on
the axiomatic properties of asymptotic behavior (as the size of the region interest
goes to infinity) and on computational aspects. We calculated two risk measures:
risk measure for the gaussian process based on the damage function called access
damage D+

X,u and risk measure for extreme processes based on the power damage
function Dν

X . In simulation study and for each risk measure provided, we empha-
sized the theoretical results of asymptotic behavior by various parameters of a model
and different Kernels for the correlation function. We also evaluated the performance
of these risk measures. The results were encouraging. Finally, we implemented the
risk measure corresponding to gaussian on the real data of pollution in Piemonte,
Italy. We assessed the risks associated with this pollution when an excess of it was
over the legal level determined by the European directive 2008/50/EC.

With respect to estimation, we proposed a semi-parametric estimation procedure in
order to estimate the parameters of a max-mixture model and also of a max-stable
model ( inverse max-stable model) as an alternative to composite likelihood. A good
estimation by the proposed estimator required the dependence measure to detect all
dependence structures in the model, especially when dealing with the max-mixture
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model. We overcame this challenge by using the F-madogram. The semi-parametric
estimation was then based on a quasi least square method, by minimizing the square
difference between the theoretical F-madogram and an empirical one. We evaluated
the performance of this estimator through a simulation study. It was shown that
on a mean, the estimation is performed well, although in some cases, it encountered
some difficulties.

Keywords: Risk measures, spatial dependence measures, gaussian process, asymp-
totic dependence/independence, max-stable process, max-mixture process.
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Chapter 1

Introduction

This thesis is devoted to the definition and study of risk measures in a spatial con-
text. We will focus on the axiomatic properties, the asymptotic behavior (as the size
of the area of interest goes to infinity), and on the computation aspects of these risk
measures. Our contribution follows and further develops the work by Erwan Koch
[44]. We provide certain guidelines to compute the risk measures when the model
is well specified for Gaussian processes, max-stable processes, and max-mixture pro-
cesses. The last chapter is devoted to the parameter estimation for max-mixture
processes.

This introductory chapter begins with some general statements on spatial model-
ing in environmental contexts. This is one of our motivations. Then, we recall some
definitions and tools that will be useful and we present the main goals and realizations
of the thesis.

1.1 General introduction and motivation
A heat wave is a prolonged period where maxima temperatures are unusually high
with respect to the usual ones. Most of the times, these heat waves have a huge spatial
component. For example, in 1936, an extremely severe heat wave hit North America.
Many states recorded high temperatures during this canicule, and this stood until
the canicule of 2012. In 2003, a major heat wave hit Europe (cf [20], [38]), specially
France, resulting in over 70,000 deaths (around 15,000 only in France). In France,
this climatic event was exceptional due to its intensity, since some cities registered
eight consecutive days with temperatures greater than 40◦, but it was also excep-
tional due to its spatial extent, covering almost all of the country. In probability,
this means that the underlyingspatial process has a strong spatial dependence, even
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Chapter 1. Introduction 2

at a long distance.

On the other hand, a "classical” storm type in the south of France is a cevenol
event. These storms are a particular kind of rainfall, usually hitting the Cevennes
in France. They are characterized by extremely heavy and localized rainfalls that
lead to severe floods. For example, in September 2002, the Gard department was hit
by an exceptional storm. Some locations received more than 700 mm of rain in 24
hours. This event caused the death of 23 persons. Another example is that of the
Draguignan sevely flooding on June 15th, 2010 (cf [56], [51]), leaving 27 dead and
one billion euros worth of damages. Also, during December 1999, three storms hit
Europe, causing insured losses above 10 billion Euros (see [69, 57, 30]). The storms
may also have a huge spatial component; in other words, the underlying spatial pro-
cess may have a strong spatial dependence even at a long distance.

In Norway, on January 1, 1992, a hurricane (high wind velocities) hit the west-
ern coast of Norway and cost around 20 million euros. More than 29,000 buildings
were damaged; in some municipalities, 33% of the building stock was damaged.

In all these situations, one of the main characteristic of the event is its spatial depen-
dence. The dependencies may be strong even for large distances as the heat waves
or they may be strong at short distances and weak at larger distances, as the cevenol
events. When trying to detect the dangerousness of a region using risk measures, the
notion of spatial dependence must be taken into account. Many dependence struc-
tures may arise, for example, asymptotic dependence, asymptotic independence, or
both [73].

The high economic impact of these environmental/climatic events motivated us to
develop the theory of spatial risk measures [44]. The impact of the dependence
structure will be one of our main concerns.

1.2 Main definitions and tools used in this thesis
We provide a general setting to define spatial risk measures. It should be applicable
and relevant for various spatial processes and different dependence structures. It will
also depend on damage functions over a region.

First, we quickly present the spatial processes considered in this work, as well as
tools used to identify the spatial dependence structures. Then, we shall provide def-
initions of risk measures and present natural axioms about them. For completeness,
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we recall the classical axioms for univariate risk measures.

1.2.1 Spatial processes

Throughout this thesis, the spatial process X := {X(s), s ∈ S}, S ∈ R
d is assumed to

be strongly stationary and isotropic. This means that for any k ∈ N, (s1, . . . , sk) ∈ S
k

and h with (s1 + h, . . . , sk + h) ∈ S
k, the random vector (Xs1 , . . . , Xsk) has the

same distribution as (Xs1+h, . . . , Xsk+h) (stationarity) and this common distribution
depends only on ‖h‖ (isotropy), where ‖ · ‖ denotes the euclidean norm in R

d. For
any set A ⊂ B(Rd), the volume of A is denoted by |A|, that is |A| = λ(A) with λ
being the Lebesgue measure on R

d.

Gaussian processes

The process (X(s))s∈S is a Gaussian process if and only if, for any d ∈ N, (s1, . . . , sd) ∈
S
d, the random vector (X(s1), . . . , X(sd)) is a Gaussian vector. Of course, an

isotropic stationary Gaussian process is determined by:

• μ = E(X(s)), σ2 = Var(X(s)),

• the covariance structure: γ(h) = Cov(X(s), X(s + h)) or equivalently, the
correlation function ρ(h) = Corr(X(s), X(s+ h)).

ϕ denotes the density of a standard normal law, Φ its distribution function, and
Φ = 1− Φ its survival distribution function.

Max-stable processes

Gaussian processes are not well suited for many applications, e.g. rainfall and wind
in some regions. Hence, we shall consider max-stable processes. Related definitions
and a literature review are detailed in Chapter 2. If X is a simple max-stable process,
it has unit Fréchet margins and its bivariate dependence structure is given by:

P(X(s) ≤ x) = e−
1
x , P

(
X(s) ≤ x1, X(t) ≤ x2

)
= exp(−Vs,t(x1, x2)), x > 0.

Vs,t is called the exponent measure function. If the process is isotropic then Vs,t(x1, x2)
depends only on h = ‖t− s‖ and is written as Vh.

Max-stable processes are asymptotically dependent in the sense that either X(s) and
X(s+ h) are independent or we have

χ(h, u) = 2− logP
(
F (X(s)) < u, F (X(t)) < u

)
logP

(
F (X(s)) < u

) > 0 ∀h ∈ S, u ∈ [0, 1[,
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such that, χ(h) = limu→−1 χ(h, u). χ is seen as a measure of asymptotic dependence
of the process.
For completeness, let us mention two examples of max-stable processes.

Smith Model (Gaussian extreme value model)

Vh(x1, x2) =
1

x1

Φ

(
τ(h)

2
+

1

τ(h)
log

x2

x1

)
+

1

x2

Φ

(
τ(h)

2
+

1

τ(h)
log

x1

x2

)
;

with τ(h) =
√
hTΣ−1h.

Schlather Models (Extremal Gaussian Model)

Vh(x1, x2) =
1

2

(
1

x1

+
1

x2

)[
1 +

√
1− 2(ρ(h) + 1)

x1x2

(x1 + x2)2

]
.

Inverse max-stable processes

Let X ′ be a simple max-stable process as stated above, with exponent measure
function Vh, consider

X(s) = g(X ′(s)) = − 1

log{1− e−1/X′(s)} s ∈ S.

Then, X has unit Fréchet margin and bivariate survivor function

P
(
X(s1) > x1, X(s+ h) > x2

)
= exp

(
− Vh

(
g(x1), g(x2)

))
.

Inverse max-stable processes have been defined in [47]. More details are given in
Chapter 2.
Inverse max-stable processes are asymptotically independent in the sense that χ(h) =
0 for any h. In order to measure the strength of asymptotic independence, the χ
measure is introduced.

χ(h, u) =
2 logP

(
F (X(s)) > u

)
logP

(
F (X(s)) > u, F (Y (s+ h)) > u

) − 1, 0 ≤ u ≤ 1.

Such that, χ(h) = limu→1 χ(h, u). We have −1 ≤ χ(h) ≤ 1 and the spatial process is
asymptotically dependent if χ(h) = 1. Otherwise, it is asymptotically independent.
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Max-mixture processes

Wadsworth and Tawn [73] proposed to mix max-stable and inverse max-stable pro-
cesses. Let X be a simple max-stable process, with exponent measure function V X

h .
Let Y be an inverse max-stable process with and exponent measure function V Y

h .
Let a ∈ [0, 1] and define

Z(s) = max{aX(s), (1− a)Y (s)}, s ∈ S.

Z has unit Fréchet marginals. Its bivariate distribution function is given by

P
(
Z(s) ≤ z1, Z(s+ h) ≤ z2

)
=

e−aV X
h (z1,z2)

[
e

−(1−a)
z1 + e

−(1−a)
z2 − 1 + e−V Y

h (ga(z1),ga(z2))

]
,

where ga(z) = g( z
1−a

).
For nontrivial max-mixture, i.e. a ∈]0, 1[, we have χ(h) �= 0 and χ(h) �= 1 for some
values of h, which means that these processes are neither asymptotically dependent
nor asymptotically independent (see Chapter 2 for the calculation of χ and χ for
max-mixture processes).

Throughout the thesis, max-stable and max-mixture processes will be referred to
as extreme processes.

The F -madogram

We terminate this subsection on spatial processes with the definition of the F -
madogram, which can be seen as another measure of dependence. We shall use
it for the estimation of parameters of max-mixture processes. It has been introduced
in [24] for processes for which the variogram is not defined (typically processes with
Fréchet margin do not have an order 2 moment).

Definition 1.1. Let X be a spatial process on S with univariate margin F . The
F -madogram of the process X is for all (s, t) ∈ S

2

νF (s− t) =
1

2
E|F (X(s))− F (X(t))|.

If the process is asymptotically independent, then νF (h) = 1
6
.

1.2.2 Axioms for univariate risk measures

Before introducing spatial risk measures, it seems useful to recall the widely used
concepts on univariate risk measures.



Chapter 1. Introduction 6

Univariate risk measures

Consider a random variable X on Ω (it may be the wind speed, the temperature, a
claim amount...). FX is its distribution function.
A risk measure is a function of X, valued in R, often denoted as ρ.
The choice of a risk measure depends on the purpose, it could be for examples:

• the expected value: E(X) which provides information of the mean behavior.

• the variance: Var = E((X −E(X))2) which measures the average deviation of
X with respect to its mean.

• Quantiles: let α ∈]0, 1[, the α-quantile is qα = inf{t, FX(t) ≥ α}, this is the
value that X should not exceed with probability α.

Axioms for univariate risk measures

A risk measure ρ is:

• invariant by translation if for any a ∈ R, ρ(X + a) = ρ(X) + a. It means that
adding a constant risk increases the risk with that constant amount.

• positive homogeneous if for any a > 0, ρ(aX) = aρ(X). The measure is not
affected by a change of unity.

• sub-additive, if for any random variables X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
It consists of a diversification effect.

• a.s. monotone, if X ≤ Y a.s., then ρ(X) ≤ ρ(Y ).

Following [6] a risk measure is coherent if it satisfies the four axioms stated above.

Remark 1. • X � E(X) and X �
√

Var(X) are coherent.

• X � qα(X) is not coherent (it is not sub-additive). Nevertheless, the quantile
function is extensivly used because it is imposed by regulatory rules in finance
/ insurance; also, it is related to the notion of return time in environment.

• α� qα(X) is increasing.
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1.2.3 Spatial risk measures

Previous works ([42] or [44]) proposed to evaluate spatial risk through the expectation
of an integrated loss function.
Consider a spatial process X and let DX be a positive function of X called a damage
function, e.g., DX,u = (X − u)+ or Dν

X = Xν .

Definition 1.2 (Normalized loss function). Let A ⊂ S,

L(A,DX) =
1

|A|

∫
A
DX(s) ds.

We propose considering spatial risk measures composed of two components: the
expectation and the variance of the normalized loss,

R(A,DX) = {E[L(A,DX)],Var
(
L(A,DX)

)
},

=: {R0(A,DX),R1(A,DX)}

For stationary processes, E[L(A,DX)] provides information on the severity of the
phenomenon.

E[L(A,DX)] =
1

|A|

∫
A
E(DX(s))ds = E(DX(s)) does not depend on A.

When Var
(
L(A,DX)

)
is impacted by the dependence structure, we have

Var
(
L(A,DX)

)
=

1

|A|2
∫
A×A

Cov
(
DX(s),DX(t)

)
dsdt.

Natural axioms for spatial risk measures are adaptations to the spatial context of
coherence axioms by [6]. In this study, we have followed [44].
Consider A, A1, A2 as subsets of S. Consider R both as a function of A and of a
damage function D. We have considered the following axioms on R.

1. Invariance by translation. For any v ∈ S, R(A+ v,D) = R(A,D).

2. Anti-monotonicity If |A1| ≤ |A2|, then R(A2,D) ≤ R(A1,D).

3. Sub-additivity If A1 ∩ A2 = ∅, then R(A1 ∪ A2,D) ≤ R(A1,D) +R(A2,D).

4. Super sub-additivity If A1∩A2 = ∅, then R(A1∪A2,D) ≤ mini=1,2 [R(Ai,D)].

1.3 Main realizations of the thesis
We are now in a position to state our main results.
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1.3.1 General properties of R1(A,D)

Let X be an isotropic spatial process. The risk measure R1(A,D) is invariant by
translation and is sub-additive. The other axiomatic properties are more difficult to
get. We first provide some general forms for R1(A,D) which will be useful to get
axiomatic and asymptotic properties.
Let A be either a disk or a square; R1(A,DX) may be rewritten (we proceed as in
[44]).
When A is a disk of radius R,

R1(A,DX) =

∫ 2R

h=0

fdisk(h,R)Cov
(
DX(s),DX(s+ h)

)
dh.

Where fdisk(h,R) is the density of distance between two points uniformly drawn on
a disk ([52]), that is

fdisk(h,R) =
2h

R2

(
2

π
acos(

h

2R
)− h

πR

√
1− h2

4R2

)
.

When A is a square with side R

R1(A,DX) =

∫ √
2R

h=0

fsquare(h,R)Cov
(
DX(s),DX(s+ h)

)
dh.

Where fsquare(h,R) is given by: for h ∈ [0, R],

fsquare(h,R) = 2πh
R2 − 8h2

R3 + 2h3

R4 , and for h ∈ [R,
√
2R], let b = h2

R2

fsquare(h,R) =
2h

R2

{
−2− b+ 3

√
b− 1 +

b+ 1√
b− 1

+ 2arcsin(
2− b

b
)− 4

b
√
1− (2−b)2

b2

⎫⎬⎭ ,

These two formulas show that if you can compute Cov
(
DX(s),DX(s+ h)

)
, then the

risk measure reduces to a one-dimensional integration.

1.3.2 Risk measures for Gaussian processes

In the case of Gaussian processes, explicit formulas for R1(A,D) may be obtained.
Consider a fixed threshold u, DX,u = (X − u)+. The choice of u will be according to
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the purpose; it may, for example, be a regulatory threshold.
This means that R1(A,D+

X,u) is the variance of the mean of X over the threshold u
on the area A.
If we consider a standard Gaussian process (i.e. μ = 0 and σ = 1) with a positive
auto-correlation function ρ, a simple calculation provides the following result:

R0(A,D+
X,u) = E(L(A,D+

X,u)) = ϕ(u)− uΦ(u).

The variance of L(A,D+
X,u) may be obtained by using the results [60] on moments of

truncated bivariate normal distributions. If A is a square,

R1(A,D+
X,u) = Var(L(A,D+

X,u)) =

∫ √
2R

h=0

fsquare(h,R)G(h, u)dh.,

with

G(h, u) =
(
u, u, ρ(h)

)(
ρ(h) + u2

)
− 2uϕ(u)Φ

(
u(1− ρ(h))

(1− ρ2(h))1/2

)
+
(
1− ρ2(h)

)1/2
ϕ

(
u

(1 + ρ(h))1/2

)2

−
(
ϕ(u)− uΦ(u)

)2
;

and 
(
u, v, ρ(h)

)
is the total probability of a truncated bivariate standard normal

distribution with correlation function ρ.


(
u, v, ρ(h)

)
=

1

2π(1− ρ2(h))1/2

∫ ∞

u

∫ ∞

v

e

{
−1

2(1−ρ(h))2
[x2−2ρ(h)xy+y2]

}
dxdy.

As a corollary, we may express the risk measure for any Gaussian process. Let Y be
an isotropic Gaussian process with mean μ and variance σ2. Let X = Y−μ

σ
; of course,

X is a standard Gaussian process.

Corollary 1.1. The spatial risk measure R(A,D+
Y,u) satisfies the following

R(A,D+
Y,u) =

{
σE[L(A,D+

X,u0
)], σ2Var

(
L(A,D+

X,u0
)
)}

,

with u0 = (u− μ)/σ.

Moreover, the previous formula provides the behavior of λ � R1(λA,D+
X,u) and it

implies anti-monotonicity for disk or square.

Corollary 1.2. Let X be an isotropic Gaussian process with auto-correlation func-
tion ρ. Let A ⊂ S be either a disk or a square.
The mapping λ → R1(λA,D+

X,u) is non-increasing if and only if h → ρ(h), h > 0 is
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non-increasing and non-negative.
If h → ρ(h) decreases to 0 as h goes to infinity,

lim
λ→∞

R1(λA,D+
X,u) = 0.

Let A1 and A2 be either squares or disks with |A1| ≤ |A2|; then,

R1(A2,D+
X,u) ≤ R1(A1,D+

X,u).

The decreasing behaviors of R1(λA,D+
X,u) means that there is a diversification effect

as the size of the considered area increases. Moreover, if the process is independent at
a large scale (h → ∞) the risk measure goes to 0 as the size of the area goes to infinity.

Finally, a simulation study shows the different behaviors of R1(λA,D+
X,u) with re-

spect to the various parameters of the model and different Kernels for the correlation
function. Also, we provide an application on real data that has been previously stud-
ied in [11]. It concerns data on pollution in Piemonte, measured by the concentration
in PM10. The observed values of PM10 are frequently larger than the legal level fixed
by the European directive 2008/50/EC. It has been shown in [11] that the log of
PM10 can been fitted on an isotropic Gaussian process and that our formulas apply.

1.3.3 Spatial risk measure for extreme processes

In the cases of extreme spatial processes (i.e. max-stable or max-mixture processes),
the excess damage function considered before cannot be used; due to Fréchet margins,
it has no moment of order 1. We shall consider the damage function

Dν
X(s) = |X(s)|ν ,

for 0 < ν < 1
2

(so that the order two moment exists).
These kind of damage functions are used, for e.g., in analyzing the negative effects
due to the wind speed (see [58] for more details). In [44], the risk measure associated
to Dν

X is calculated for Smith processes. We propose a calculation for TEG max-
stable processes as well as some computational tools for max-mixture processes.
The properties of moments of Fréchet distributions give that if X as a unit Fréchet
marginal distributions,

E(L(A,Dν
X)) = Γ(1− ν).

The variance is more difficult to compute in general. Nevertheless, if A is a square
of side R, we have:

R1(A,Dν
X) =

∫ √
2R

h=0

Q(h, ν)fsquare(h,R)dh,
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with
Q(h, ν) = ν2

∫ ∞

0

∫ ∞

0

xν−1
1 xν−1

2

[
GX

h (x1, x2)− F (x1)F (x2)
]
dx1dx2

and GX
h = P(X(s) ≤ x1, X(s + h) ≤ x2). We have a similar result for disks. These

formulas are useful to get the behavior of R1(A,Dν
X).

Proposition 1.3. Let Z be an isotropic and stationary max-mixture spatial process.
Assume that the mappings h → V X

h (x1, x2) and V Y
h (x1, x2) are non-decreasing for

any (x1, x2) ∈ R
2
+. Moreover, we assume that

V X
h (x1; x2) −→

1

x1

+
1

x2

and V Y
h (x1, x2) −→

1

x1

+
1

x2

as h → ∞

∀x1, x2 ∈ R+. Let A ⊂ S be either a disk or a square,

lim
λ→∞

R1(λA,Dν
Z) = 0.

If there exists V0 (resp. V1), an exponent measure function of a non-independent
max-stable (resp. inverse max-stable) bivariate random vector, such that V X

h −→ V0

(resp. V Y
h −→ V1 as h → ∞), then

lim
λ→∞

R1(λA,Dν
Z) > 0.

This proposition shows that the risk measure contains some information on the de-
pendence structure of the underlying process.
Finally, a simulation study shows the behavior of R1(A,Dν

X) with respect to the
various parameters of the model.

1.3.4 Estimation of the parameters of max-mixture processes.

We have provided some tools to compute the risk measure R1(A,Dν
X) for max-

mixture processes. The estimation of the parameters of these processes remains a
difficulty. The usual way to estimate parameters in spatial contexts is to maximize
the composite likelihood.
For example, in [55], [26] and many others, the composite likelihood maximization
is used to estimate the parameters of max-stable processes. In [9] and [73], it is used
to estimate the parameters of max-mixture processes. Nevertheless, the estimation
does not perform well in some cases; moreover, it seems to have difficulties estimating
the inverted max-stable part.
In section 5.2.2, we propose a semi-parametric estimation procedure as an alternative
to composite likelihood maximization for max-mixture and also for max-stable (resp.
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inverse max-stable) processes. Our procedure is a least square method on the F -
madogram; that is, we minimize the difference between the theoretical F -madogram
and the empirical one. Some of literature deals with semi-parametric estimation in
modeling spatial extremes. For example, [54] and [2] provided semi-parametric esti-
mators of extremal indexes. In [16], another semi-parametric procedure to estimate
model parameters is introduced. It is based on fitting the theoretical extremogram
with the empirical one by non-linear least square for the isotropic space-time Browen-
Resnick max-stable process. The semi-parametric procedure proposed in this thesis
is based on this article.
The performance of this estimator is evaluated by a simulation study in Section 5.3.2.
It shows, in general, that the estimation performs well, although it encounters some
difficulties, which are discussed. Let us mention that we have also tried to estimate
the parameters by using least squares on empirical tail dependence measures χ(h, u)
and χ(h, u). This procedure shows similar performance (it can be seen in Appendix
B).

1.4 Outline of the thesis
Chapter 2 is devoted to spatial risk measures. It is divided as follows. Section 2.2 is
dedicated to the general framework; it contains definitions, notations, examples and
properties of the mathematical objects that we have used throughout this thesis. In
Section 2.3, we present three different extreme spatial processes with different de-
pendence structures (asymptotic dependence/independence and a mixture of them).
Definition of spatial risk measures and the axiomatic properties are introduced in
Section 2.4. The expressions and theoretical behaviors of the spatial risk measures
for each spatial process considered in this thesis is provided in Chapter 3. The com-
putational aspects related to risk measures will be presented in Chapter 4. In this
chapter, the behavior of these risk measures is numerically analyzed by a simula-
tion study. In this simulation study, for each risk measure contains two parts. The
first one concerns the behavior of the covariance damage functions and variance of
normalized losses. In the second part, numerical computations of the risk measures
are presented. The estimation procedure is introduced in Chapter 5. In Section 5.1,
we calculate an expression for the F -madogram of max-mixture models. Section 5.2
is devoted to the least square F -madogram estimation of the parameters of max-
mixture processes. A simulation study is conducted, which allows us to evaluate the
performance of the estimation procedure (Section 5.3). Finally, concluding remarks
are discussed in Chapter 6 and some auxiliary results and simulations are provided
in the Appendix.
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The results of Chapters 2, 3 and 4 are contained in two different submitted arti-
cles:
M. Ahmed, V. Maume-Deschamps, P. Ribereau, C. Vial, Spatial risk measures for
Gaussian processes, [3].
M. Ahmed, V. Maume-Deschamps, P. Ribereau, C. Vial, Risk measures for max-
stable and max-mixture spatial processes, [4].
The results of Chapter 5 will be presented in a submitted article within few months.





Chapter 2

Spatial Risk measure

2.1 Introduction
In this chapter, we state our general framework: we recall definitions on gaussian
processes, max-stable processes, inverse max-stable processes and max-mixtures. We
also present the notions of asymptotic dependence and asymptotic independence.
Finally, we consider quite general spatial risk measures and develop the axiomatic
setting of [43].

2.2 General framework
In this section we provide the fundamental definitions, notations, examples and prop-
erties of mathematical objects that we are using throughout this thesis.

2.2.1 Stochastic processes

Definition 2.1. (Stochastic process) Let us consider a probability space (Ω,F ,P)
and a set S ⊂ R

d. A stochastic process X is a collection (X(s), s ∈ S), such that
∀s ∈ S; X(s) is a random variable.

In particular, we will speak in spatial processes when S ∈ R
2. Typically, observations

of precipitations at certain station may be considered as realizations of a spatial
process.

15
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Definition 2.2. (Second-order processes) The process X on S is second order,
if for any s ∈ S, E[X(s)2] < ∞. In this case, the covariance function exists and is a
positive semi-definite function, say c : S× S → R, such that for each (s, t) ∈ S

2

c(s, t) = E[X(s)X(t)]− E[X(s)]E[X(t)].

Under the second-order assumption, the variance function of the process X exists
and is denoted by

σ2(s) = c(s, s), for any s ∈ S.

We may also define the auto-correlation function, denoted by

ρ(s, t) =
c(s, t)

σ(s)σ(t)
, for any (s, t) ∈ S

2.

In the spatial context, the auto-correlation function is usually assumed to be non-
negative, that is, for all (s, t) ∈ S

2, ρ(s, t) ≥ 0. Nevertheless, negative dependency
rarely occurs in practice; see [35] for more discussion on this topic.
In what follows, we shall consider non-negative correlation functions. The most
classical isotropic auto-correlation functions are the following (see [1]), for all τ > 0

1. Spherical auto-correlation function:

ρsphθ (τ) =

[
1− 1.5

(τ
θ

)
+ 0.5

(τ
θ

)3]
1{τ<θ};

2. Cubic auto-correlation function:

ρcubθ (τ) =

[
1− 7

(τ
θ

)
+

35

2

(τ
θ

)2 − 7

2

(τ
θ

)5
+

3

5

(τ
θ

)7]
1{τ<θ};

3. Exponential auto-correlation function:

ρexpθ (τ) = exp
[
− τ

θ

]
;

4. Gaussian auto-correlation function:

ρgauθ (τ) = exp
[
−
(τ
θ

)2]
;

5. Matèrn auto-correlation function:

ρmat(τ) =
1

Γ(℘)2℘−1
(θτ)℘K℘(θτ);
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where θ ∈ R is a truncation parameter, Γ(·) is the gamma function, K℘(·) is the
modified Bessel function of second kind, and ℘ is a non-negative parameter. The
parameter θ is a scaling parameter, also called the correlation length or the range
parameter.
We represent below several graphs of the correlation functions for the different models
and for various parameters.

Figure 2.1: Dependence structure for different isotropic and non-negative spatial
correlation functions, respectively spherical, cubic, exponential, gaussian, and matern
with different scaling parameter θ := {0.05, 0.1, 0.15, 0.20, 0.25, 0.5} and distance
τ ∈ [0, 1].

Definition 2.3. (Weakly stationary process) A second-order process X is weakly
stationary if ∀s ∈ S, m(s) := E[X(s)] = m and c(s, t) = c(s + v, t + v) ∀s, t ∈ S,
with s+ v, t+ v ∈ S.

Definition 2.4. (Strongly stationary processes) A process X on S is strongly
stationary if ∀k ∈ N

+, ∀(s1, ..., sk) ∈ S
k, ∀v ∈ S, such that (s1 + v, ..., sk + v) ∈ S

k

(
X(s1), ..., X(sk)

) L
=
(
X(s1 + v), ..., X(sk + v)

)
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An immediate consequence is that a second-order process which is strongly stationary
is also weakly stationary but not vice versa. This property is much more restrictive
than the weakly stationarity. For simplicity, in what follows, we shall say stationary
for strongly stationary. Weakly stationary or second-order stationary will be used
indifferently.

Definition 2.5. (Isotropic process) A weakly stationary process X on S is isotropic,
if for each (s, t) ∈ S

2, the covariance value c(s, t) depends only on the distance ‖s−t‖;
that is, for each (s, t) ∈ S

2

c(s, t) = c0(‖s− t‖)

An important class of processes is the one of Gaussian processes defined as follows.

Definition 2.6. (Gaussian process) X is a Gaussian process if for any k ∈ N
+

and any (s1, ..., sk) ∈ S
k, (Xs1 , ..., Xsk) is a k-dimensional Gaussian vector.

Let us notice that a second-order stationary Gaussian process is stationary. Further-
more, if X is an isotropic standard Gaussian process, then we can get an explicit
form for the bivariate cumulative distribution function between X(s) and X(t), for
all (s, t) ∈ S

2, that is, for all (u, v) ∈ R
2

Fs,t(u, v) :=P
(
X(s) ≤ u,X(t) ≤ v

)
,

=

∫ u

−∞

∫ v

−∞

(
(2π)

√
1− ρ2(τs,t)

)−1

exp

{
−x2 − 2ρ(τs,t)xy + y2

2(1− ρ(τs,t))2

}
dxdy,

(2.2.1)

where τs,t = ‖s− t‖.

2.2.2 Dependence measures

Important properties of a process are described by its dependence structure and lots
of measures are defined in the literature to better understand the dependence in real
spatial data. In what follows, we will introduce some of them in the context of a
spatial process.
First of all, let us introduce the notion of negative or positive association of two
locations of a process when dealing with their extremal behaviour. The following
definition extend the notion of Positive Quadrant Dependence introduced by [48]
for a pair of random variables. This concept explains how the two variables behave
together when they are simultaneously small (or large).
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Definition 2.7. (Positive Quadrant Dependence) The process X on S is posi-
tively quadrant-dependent (or positively associated) if the following inequality is ful-
filled for all (s, t) ∈ S

2 and (u, v) ∈ R
2

P
(
X(s) ≤ u,X(t) ≤ v

)
≥ P
(
X(s) ≤ u

)
P
(
X(t) ≤ v

)
(2.2.2)

or equivalently

P
(
X(s) > u,X(t) > v

)
> P
(
X(s) > u

)
P
(
X(t) > v

)
(2.2.3)

For example, a Gaussian process X is positively-quadrant dependent if 0 ≤ ρ(s, t) < 1
for all (s, t) ∈ S

2 and negatively-quadrant dependent if −1 < ρ(s, t) ≤ 0 for all
(s, t) ∈ S

2; see the details in Example 9 of [46] and other examples therein.
Now, we will focus on different quantitative measures introduced in the literature to
better understand the strength of dependence in the extremes. At first, we consider
the upper tail dependence coefficient introduced by [65]. Dealing with a pair of
variables, this coefficient allows to distinguish between two different forms of extremal
dependance: asymptotic dependence and independence. In a spatial context, this
tool measures the association degree between the processes at two locations and
becomes a function depending on the distance between the two sites; see[10]

Definition 2.8. Let X be a stationary spatial process on S with univariate margin
cumulative distribution function F . The upper tail dependence function χ is
defined for all s ∈ S and h ∈ S such that s+ h ∈ S,

χ(h) = lim
u→1−

P
(
F (X(s+ h)) > u|F (X(s)) > u

)
. (2.2.4)

If χ(h) = 0, the pair (X(s+ h), X(s)) is said to be asymptotically independent (AI).
If χ(h) �= 0, the pair (X(s+ h), X(s)) is said to be asymptotically dependent (AD).
The process is said AI (resp. AD) if for all h ∈ S χ(h) = 0 (resp. χ(h) �= 0).

Under the assumptions of the theorem 2.1 below, for any h the coefficient χ(h) can
alternatively be expressed; see [22], as the limit when u → 1− of the function defined
on S× [0, 1] into [0, 1], by

χ(h, u) = 2− logP
(
F (X(s)) < u, F (X(t)) < u

)
logP

(
F (X(s)) < u

) , for h ∈ S, u ∈ [0, 1[. (2.2.5)

Such that, χ(h) = limu→−1 χ(h, u). More details and comments on the coefficient χ
can be found in [10].
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These notions are spatial versions of the dependence measures usually defined in
multivariate contexts; see [23]. It is well known that a Gaussian pair with correla-
tion ρ ∈ (0, 1) is asymptotically independent. But the behaviour of the conditional
probability with respect to u suggests that the asymptotic independence could not
be detected as it appears for u very near to 1. Thus, it suggests that the function χ
is more useful to study asymptotic dependence than asymptotic independence. This
is why, in [22], the authors introduced an alternative dependance coefficient called
lower tail dependence coefficient χ. This quantity measures the strength of
asymptotic independence of a process.

Definition 2.9. For a stationary spatial process X on S ⊂ R
2 with margin F , the

function χ defined from S into ]− 1, 1[ and for any (s, s+ h) ∈ S
2

χ(h, u) =
2 logP

(
F (X(s)) > u

)
logP

(
F (X(s)) > u, F (X(s+ h)) > u

) − 1, 0 ≤ u ≤ 1 (2.2.6)

is the lower tail dependence coefficient, such that, χ(h) = limu→1 χ(h, u).

If χ(h) = 1 for all h, the spatial process is asymptotically dependent. Otherwise,
the process is said to be asymptotically independent. Furthermore, if χ ∈]0, 1[ (
resp. ]− 1, 0[) the two locations s and s+h (for any s) are asymptotically positively
associated (resp. asymptotically negatively associated).
Coming back to the Gaussian example, for a Gaussian process, the function χ equals
the correlation function ρ; then, it gives a quantitative measure of the strength of
dependence even in the asymptotically independent case.
Another important measure of dependence was introduced by [18] in the case of
bivariate random variable and extended by [63] to the spatial case in the following
way.

Definition 2.10. Let X be a stationary spatial process on S ∈ R
2 with marginal

distribution function F . We define the extremal coefficient between two locations s
and s+ h for any s ∈ S and s+ h ∈ S, and for any x ∈ R by

θF (h, x) =
log(P (X(s) < x,X(s+ h) < x))

log(P (X(s) < x))
.

This parameter is related to the upper tail dependence parameter; indeed if
limx→xF

θF (h, x) = θF (h) exists, we have the following relation [10].

χ(h) = 2− θF (h),

where xF = sup{x|F (x) < 1}. Then, P (X(s) < x,X(s + h) < x)) may be approxi-
mated by F (x)θF (h) for x large.
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This coefficient is of particular interest in the context of extremal distribution and
spatial processes as we will see in the following section. It is also particularly useful
when dealing with asymptotic dependence, but useless in case of asymptotic inde-
pendence.
To overcome this problem, [47] proposed a model allowing to gather all the differ-
ent cases of dependence depending on the value of a parameter in another words,
smoothly linking asymptotic dependence and independence.
Let X be a stationary process with unit Fréchet margin; then, for all (s, s+ h) ∈ S

2

P
(
X(s) > x,X(s+ h) > x

)
= Lh(x)x

−1/η(h), as x → ∞ (2.2.7)

and
P
(
X(s) > x|X(s+ h) > x

)
= Lh(x)x

1−1/η(h), as x → ∞ (2.2.8)

where Lh is a slowly varying function and η(h) ∈ (0, 1] is the tail dependence coef-
ficient. This coefficient determines the decay rate of the bivariate tail probability for
large x. The interest of this simple modelisation, which appears to be quite general,
is that the coefficient η(h) provides a measure of the extremal dependence of X(s)
and X(x+ h). In fact, we can describe four dependence classes for X, satisfying the
model above; see [10, 47] for more details:

• η(h) = 1 and L(x) �→ 0, corresponds to asymptotic dependence;

• 0 < η(h) < 1/2 and L(x) �→ 0, corresponds to asymptotic negative association;

• 1/2 < η(h) < 1 and L(x) �→ 0, corresponds to asymptotic positive association;

• η(h) = 1/2 and L(x) ≥ 1 (resp. L(x) ≡ 1), corresponds to near independence
case (resp. exact independence).

It is also important to notice that the last three cases correspond to asymptotic
independence and the coefficient η(h) measures the dependence in the asymptotic
independence case.
Finally, it is important to see the relations between η and χ. If equation (2.2.7) is
satisfied, then χ(h) → 2η(h)− 1, (see proof of proposition 2.3 and [22]).

2.3 Extreme spatial processes
In this section, we present three different extreme spatial processes with different
dependence structures. The first one (max-stable process) is either asymptotically
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dependent or independent. The second one (inverse max-stable process) is asymp-
totically independent. The third one is a max-mixture process between the two
above.

2.3.1 Max-stable model

First definitions

Max-stable processes are the extension of the multivariate extreme value theory to
the infinite dimensional setting [16].

Definition 2.11. (max-stable process) A process X is max-stable if for all n ∈ N

and X1, . . . Xn i.i.d. copies of X, there exist two continuous functions (an(·) > 0, n ∈
N) and (bn(·) ∈ R, n ∈ N) such that

max
i=1,...,n

Xi − bn
an

=d X.

When for all n ∈ N, an = 1 and bn = 0, the margin distribution of the process X is
unit Fréchet, that is for any s ∈ S and x > 0,

F (x) := P (X(s) ≤ x) = exp[−1/x].

In that case, the process is called a simple max-stable process.
The following result explains the importance of max-stable processes in the spatial
extreme domain.

Theorem 2.1 ([29]). (max-stable process) Let T := (T (s), s ∈ S) be a stochastic
process. If there exist two sequences of continuous functions (an(·) > 0, n ∈ N) and
(bn(·) ∈ R, n ∈ N) such that for all n ∈ N and n i.i.d. X1, . . . , Xn and X a process,
such that

max
i=1,...,n

Xi − bn
an

d→ X, n → ∞, (2.3.1)

then X := {X(s), s ∈ S} is a max-stable process.

[28] proved that a max-stable process X can be constructed by using a random
process and a Poisson process. This representation is named the spectral repre-
sentation. More precisely we have the following results

Theorem 2.2 ([28]). spectral representation Let X be a max-stable process on
S. Then there exists {ξi, i ≥ 1} i.i.d Poisson point process on (0,∞), with intensity
dξ/ξ2 and a sequence {Wi, i ≥ 1} of i.i.d. copies of a positive process W = (W (s), s ∈
S), such that E[W (s)] = 1 for all s ∈ S such that

X =d max
i≥1

ξiWi. (2.3.2)
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This representation is in particular useful for the simulation of a max-stable process
and provides examples of such processes by choosing special sequences {ξi, i ≥ 1} and
{Wi, i ≥ 1}. We may also deduce from its proof an explicit form for the k-dimensional
multivariate distribution, which is

P
(
X(s1) ≤ x1, ..., X(sk) ≤ xk

)
= exp

{
−E

[
max

�=1,...,k

(
W (s�)

x�

)]}
. (2.3.3)

Furthermore, using the result (2.3.1) and the multivariate extreme value theory, we
already know that for all k ∈ N and (x1, .., xk) ∈ R

k

P
(
X(s1) ≤ x1, ..., X(sk) ≤ xk

)
= exp{−V (x1, ..., xk)}, (2.3.4)

where the function V is homogenous of order −1 and is named the exponent measure.
Then, in the case of max-stable processes from (2.3.3) and (2.3.4), we have

V (x1, ..., xk) = E

[
max

�=1,...,k

(
W (s�)

x�

)]
. (2.3.5)

One of the interests of the exponent measure is its interpretation in terms of depen-
dence. In fact, the homogeneity of the exponent measure V implies

max{1/x1, ..., 1/xk} ≤ V (x1, ..., xk) ≤ {1/x1 + ...+ 1/xk}. (2.3.6)

See [12], section 8.2.2. In the inequalities (2.3.6), the lower (resp. upper) bound
corresponds to complete dependence (resp. independence). The relation (2.3.6) may
also be used to obtain inequalities for the cumulative distribution function of the
k-dimensional random vector (X(s1), ..., X(sk)), say Gd(x1, .., xd), that is

F (x1)...F (xk) ≤ Gk(x1, .., xk) ≤ min{F (x1), ..., F (xk)}, ∀(x1, ...xk) ∈ R
k, (2.3.7)

where F is the unit Fréchet margin distribution function. Consequently, X satisfies
the positively quadrant dependence (PQD); see [48].

Dependence structure

In this subsection, we present various relationships between the different dependence
coefficients introduced above and max-stable processes. A convenient measure of
dependence for max-stable processes is the d-dimensional extremal coefficient
function Θd, [22, 63] which is completely characterized through the exponent mea-
sure V .
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Definition 2.12. Let X be a simple max-stable process on S. The d-dimensional
extremal coefficient function is defined for all (s1, ..., sd) ∈ S

d, by

Θd(s1, ..., sd) = −x log
(
P(X(s1) ≤ x, ..., X(sd) ≤ x)

)
, x ∈ R

+. (2.3.8)

Rk. For simple max stable processes, the coefficients Θ and θF coincide.
Equation (2.3.5) implies that Θd is well defined and does not depend on x:

Θd(s1, ..., sd) = E
[
max{W (s1), ...,W (sd)}

]
= V (11, ..., 1d) ∈ [1, d]. (2.3.9)

If Θd(s1, ..., sd) = 1, for any (s1, ..., sd) ∈ S
d, the process is completely dependent

(its marginals are comonotonic). If Θd(s1, ..., sd) = d, for any (s1, ..., sd) ∈ S
d, the

process is independent.

We are particularly interested in the spatial case, i.e. d = 2, the extremal coefficient
function defined and studied in [62, 63].

Definition 2.13. Let X be a simple max-stable process on S. The extremal coefficient
function for any pairs of sites (s, s + h) ∈ S

2 is the function Θ defined on S (or in
R

+ in isotropic case) with values in [1, 2] by

P
(
X(s) ≤ x,X(s+ h) ≤ x

)
= exp{−Θ(h)/x}, x > 0 (2.3.10)

where,
Θ(h) = E

[
max{W (s),W (s+ h)}

]
= V (1, 1) ∈ [1, 2]. (2.3.11)

If for any h ∈ S, Θ(h) = 1 (resp. Θ(h) = 2), then we have complete dependence
(resp. complete independence). The case 1 < Θ(h) < 2, for all h ∈ S corresponds to
asymptotic dependence.

Furthermore, it is easy to see the relationship between Θ and χ; see [73] for any
h ∈ S

Θ(h) = 2− χ(h). (2.3.12)

Another classical tool often used in geostatistics is the variogram. But for max-stable
processes, the quantity of dependence strength will not exist in variogram, because
the marginal laws are Fréchet, and thus, have no order 2 moments. We shall use the
F -madogram introduced in [24].

Definition 2.14. Let X be a spatial process on S with univariate margin F . The
F -madogram of the process X is for all (s, t) ∈ S

2

νF (s− t) =
1

2
E|F (X(s))− F (X(t))|. (2.3.13)
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In the max-stable case, [24] gives the relation for all h ∈ S,

Θ(h) =
1 + 2νF (h)

1− 2νF (h)
, (2.3.14)

which appears to be helpful to estimate the extremal coefficient Θ.

Examples of some max-stable models

In this section, we provide some examples of well-known max-stable models. We will
use the spectral representation (see Theorem 2.2) with different sequences (ξi) and
(Wi).

1. Smith Model (Gaussian extreme value model)

[66] introduced the so-called Gaussian extreme value model. It is defined in
S = R

d. Its dependence structure is contained in a covariance matrix Σ. Let
{(ξi, si)} be a Poisson point process on (0,∞)×R

d with intensity ξ−2dξds and
consider the d-dimensional Gaussian probability density function ϕd(.; Σ) with
mean 0 and covariance matrix Σ. For all s ∈ R

d, define Wi(s) = ϕd(s− si; Σ)
and

X(s) = max
i≥1

{ξiϕd(s− si; Σ)}. (2.3.15)

Then, X is a max-stable process on S = R
d with unit Fréchet margin. The

pairwise distribution function is given by the following equation, for all (s, s+
h) ∈ S

2,

P
(
X(s) ≤ x1, X(s+ h) ≤ x2

)
= exp{−Vh(x1, x2)}, (2.3.16)

where

Vh(x1, x2) =
1

x1

Φ

(
τ(h)

2
+

1

τ(h)
log

x2

x1

)
+

1

x2

Φ

(
τ(h)

2
+

1

τ(h)
log

x1

x2

)
; (2.3.17)

τ(h) =
√
hTΣ−1h and Φ(·) the standard normal cumulative distribution func-

tion.

The pairwise extremal coefficient equals

Θ(h) = 2Φ

(
τ(h)

2

)
. (2.3.18)

Equation (2.3.12) gives
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• for h = 0, we have χ(0) = 1, which corresponds to complete dependence;

• for h > 0, χ(h) ∈ (0, 1), which corresponds to asymptotic dependence.

• limh→∞ χ(h) = 0, which means that the asymptotic dependence vanishes
at infinite distances.

Note that if the covariance matrix is diagonal Σ = σId, the process X is
isotropic, as its bivariate distribution depends only on h through the function
τ(h) =

√
1
σ
‖h‖2.

2. Schlather Models (Extremal Gaussian Model)

This model introduced by [61] provides a class based on stationary random field
with finite expectation. Let W := {W (s), s ∈ S} be a stationary random field,
with E

[
W+(s)

]
= μ ∈ (0,∞), where W+(s) = max{0,W (s)}. Let {ξi, i ≥ 1}

be a Poisson point process on (0,∞), with intensity dξ/ξ2 and {Wi, i ≥ 1} as
iid copies of W (s). Consider

X(s) = μ−1 max
i≥1

ξiW
+
i (s), s ∈ S; (2.3.19)

it defines a stationary max-stable process. Schlather proposed such a model
with a stationary Gaussian process W (s) with correlation function ρ(·) and
μ−1 =

√
2π. In this case, the resulting max-stable process X is called Extremal

Gaussian process (EG). The pairwise distribution function is

P
(
X(s) ≤ x1, X(t) ≤ x2

)
= exp{−Vh(x1, x2)} (2.3.20)

where

Vh(x1, x2) =
1

2

(
1

x1

+
1

x2

)[
1 +

√
1− 2(ρ(h) + 1)

x1x2

(x1 + x2)2

]
. (2.3.21)

The extremal coefficient is given by

Θ(h) = 1 +

(
1− ρ(h)

2

)1/2

. (2.3.22)

We have Θ(h) is in the interval [1, 1.838] with boundary values corresponding
to ρ(h) = 1 and ρ(h) = 0 receptively. Thus, limh→∞ χ(h) �= 0. In other words,
the asymptotic dependence persists even at infinite distances. This might be
unrealistic in applications. To overcome this problem a truncated version of
W (s) can be used. Let {ri} be a homogenous Poisson point process of unit
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rate on S and μ−1 =
√
2π(E[|B|])−1. Then, for a stationary Gaussian process

Wi(s), define
X(s) = max

i≥1
ξiWi(s)1Bi

(s− ri), s ∈ S (2.3.23)

with B ⊂ S a compact random set and Bi i.i.d. copies of B. The process
X is a truncated extremal Gaussian process (TEG). The pairwise distribution
functions are given by

P
(
X(s) ≤ x1, X(t) ≤ x2

)
= exp{−Vh(x1, x2)} (2.3.24)

where

Vh(x1, x2) =

(
1

x1

+
1

x2

)[
1− α(h)

2

(
1−
√

1− 2(ρ(h) + 1)
x1x2

(x1 + x2)2

)]
.

(2.3.25)
The extremal coefficient is given by

Θ(h) = 2− α(h)

{
1−
(
1− ρ(h)

2

)1/2
}

(2.3.26)

where α(h) = E{|B ∩ (h+ B)|}/E[|B|],

where B is a random set. When modeling a spatial phenomena, the choice
of the set B is to be delicate. For the sake of simplicity, we may consider B as
a simple form, for example, a disk with fixed radius r. Such that, the area of
the intersection of B and h+ B is

|B ∪ (h+ B)| =
[
2r2
(
cos−1(||h||/2r)− (||h||/2r)

√
1− ||h||2/2r2

]
1[0,2r](||h||)

(2.3.27)
and we can approximate it by πr2[1 − ||h||/2r]+. This choice leads to α(h) =
{1− h/2r}+. In such a case, χ(h) = 0, ∀h ≥ 2r. In other words, the process X
is independent for all h ≥ 2r. For more details, see section 2(e) in [26].

3. Brown-Resnik Model

[41] introduced a generalization of the Brown-Rensik model, which was pro-
posed by [15]. Let Wi(s) = exp{ei(s) − γ(s)}, where ei(s) is a stationary
Gaussian process, with mean zero and variogram γ(s), and let {ξi, i ≥ 1} be a
Poisson point process on (0,∞); then,

X(s) = max
i≥1

ξi(ei(s)− γ(s)), s ∈ S (2.3.28)
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is a max-stable process called Brown-Rensik model, which is sometimes called
the Geometric Gaussian model. The pairwise distribution function is then

P
(
X(s) ≤ x1, X(t) ≤ x2

)
= exp{−V (x1, x2;h)}, (2.3.29)

where

V (x1, x2;h) =
1

x1

Φ

(√
2γ(h)

2
+

1√
2γ(h)

log
x2

x1

)
+

1

x2

Φ

(√
2γ(h)

2
+

1√
2γ(h)

log
x1

x2

)
.

(2.3.30)
The pairwise extremal coefficient given by

Θ(h) = 2Φ

(√
2γ(h)

2

)
. (2.3.31)

2.3.2 Inverse Max-stable processes

If we choose a threshold too low, we may miss the dependence structure. In other
words, in theoretical study, the limiting distribution of extremes tends to be indepen-
dent but in practice, this limit could never be achieved (see [27, 67]). [73] proposed a
class of asymptotically independent processes obtained by inverting max-stable pro-
cesses. These processes are called inverse max-stable processes; they satisfy the
survivor function (2.2.7).

Definition 2.15. Let X ′ := {X ′(s), s ∈ S} be a max-stable process with unit Fréchet
margin, such that for all s ∈ S ⊂ R

2

X ′(s) = μ−1 max
i≥1

W+
i (s)/ξi, s ∈ S (2.3.32)

where ξi is a Poisson point process on (0,∞) with intensity dξ and Wi(s) are i.i.d.
copies of a continuous process W independent of {ξi}. Let g : (0,∞) → (0,∞) be
defined by g(x) = −1/ log{1− e−1/x}. Set X(s) = g(X ′(s)),

Then, X := {X(s), s ∈ S} is an asymptotic independent spatial process with unit
Fréchet margin. The d-dimensional joint survivor function is

P
(
X(s1) > x1, ..., X(sd) > xd

)
=exp

{
−V
(
g(x1), ..., g(xd)

)}
(2.3.33)

where V is the exponent measure of the process X ′ defined in equation (2.3.5).
Moreover, X satisfies the positive quadrant dependence property. The tail depen-
dent coefficient is given by η(h) = 1/Θ(h), where Θ(h) is the extremal coefficient of
the max-stable process X ′. Moreover, we have χ̃(h) = 2/Θ(h)− 1.
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Another class of asymptotically independent processes may be constructed from a
Gaussian process (see [47]). Let X ′ := {X ′(s), s ∈ S} be a stationary and standard
Gaussian process with correlation function ρ. Let X = −1/ log(Φ(X ′)); it defines
an asymptotically independent spatial process with unit Fréchet margin and satisfies
the equation (2.2.7). Its survivor function satisfies

P
(
Y (s1) > z, Y (s2) > z

)
∼ Chz−2/(1+ρ(h))(log z)−ρ(h)/(1+ρ(h)) (2.3.34)

with
Ch = (1 + ρ(h))3/2(1− ρ(h))−1/2(4π)−ρ(h)/(1+ρ(h)) (2.3.35)

The tail dependence coefficient is given by η(h) = (1 + ρ(h))/2. Moreover, we have
χ̃(h) = ρ(h).

2.3.3 Max-mixture model

In spatial contexts, specifically in an environmental domain, many scenarios of de-
pendence could arise and AD and AI might cohabite. The work by [73] provides a
flexible model called max-mixture.

Definition 2.16. (Max-Mixture model) Let X := {X(s), s ∈ S} be a max-stable
process with extremal coefficient Θ(h) and bivariate distribution function FX , and let
Y := {Y (s), s ∈ S} be an asymptotically independent spatial process whose coefficient
tail dependence η(h) is well defined, has the bivariate distribution function FY and
satisfies the asymptotic relation (2.2.7). Assume that X and Y are independent, and
that each of them has Fréchet margin. Let a ∈ [0, 1] and

Z(s) = max{aX(s), (1− a)Y (s)}, s ∈ S, (2.3.36)

then Z is a max-mixture process has unit Fréchet marginals and bivariate distribution
function

FZ

(
z1, z2

)
= e−aVX(z1,z2)FY

(
z1

1− a
,

z2
1− a

)
. (2.3.37)

Proposition 2.3 ([9, 73]). Let Z be a max-mixture process. Through the defini-
tion 2.16, the pairwise survivor function of Z satisfies

P
(
Z(s) > z, Z(t) > z

)
∼ a{2−Θ(h)}

z
+

(1− a)1/η(h)

z1/η(h)
+O(z−2), z → ∞. (2.3.38)

Assume there exists finite h∗ = inf{h : Θ(h) �= 0}; then,

χ(h) = a(2−Θ(h)) (2.3.39)

and
χ(h) = 1[h∗<h](h) + (2η(h)− 1)1[h∗≥h). (2.3.40)
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Rk. If there exists finite h∗ = inf{h : Θ(h) �= 0}, then Z is asymptotically depen-
dent up to distance h∗ and asymptotically independent for larger distances. Only
asymptotic dependence or asymptotical independence in Z is achieved by the bounds
a = 0 and a = 1, respectively.

Proof. From definition 2.16, we have

P
(
Z(s) > z, Z(t) > z

)
=

1− 2e
−1
z + e

−aΘ(h)
z

[
2e

−(1−a)
z − 1 + Lh

(
z

1− a

)(
z

1− a

)−1/η(h)]
.

By the Taylor series and limiting behavior

P
(
Z(s) > z,Z(t) > z

)
∼

a{2−Θ(h)}
z

+O(z−2) +

(
1− aΘ(h)

z
+O(z−2)

)
Lh

(
z

1− a

)(
z

1− a

)−1/η(h)

, as z → ∞

∼ a{2−Θ(h)}
z

+O(z−2) + Lh

(
z

1− a

)(
z

1− a

)−1/η(h)

− aΘ(h)

z
Lh

(
z

1− a

)(
z

1− a

)−1/η(h)

+Lh

(
z

1− a

)
O(z−2− 1

η(h) ).

In PQD property, we have 1/2 ≤ η ≤ 1, then O(z−2) > O(z−2− 1
η(h) ), and therefore

P
(
Z(s) > z, Z(t) > z

)
∼ a{2−Θ(h)}

z
+Lh

(
z

1− a

)
(1− a)1/η(h)

z1/η(h)
+O(z−2) as z → ∞.

From assuming the asymptotically independence of z, we have Lh

(
z

1−a

)
→ 1 as

z → ∞. Then, 2.3.38 is satisfied.
From the definition of upper tail dependence coefficient in 2.2.5, we have

χ(h, z) =2− aΘ(h) + z log

[
2e

−(1−a)
z − 1 + Lh

(
z

1− a

)(
z

1− a

)−1/η(h)]
∼2− aΘ(h) + z log

[
1− 2(1− a)

z
+ Lh

(
z

1− a

)(
z

1− a

)−1/η(h)

+O(z−2)

]
Let V = 2(1−a)

z
− Lh

(
z

1−a

)(
z

1−a

)−1/η(h) −O(z−2). Then,

χ(h, z) ∼2− aΘ(h) + z log
(
1− V

)
∼a{2−Θ(h)}+ Lh

( z

1− a

)
(1− a)−1/η(h)z1−1/η(h) +O(z−1) + zO(V 2).
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We have O(z−1) = O(V 2) forming the limits of η. Then,

χ(h) = lim
z→∞

χ(h, z) = a(2− θ(h)), ∀h �= 0

which satisfies 2.3.12 for asymptotic dependence case (a = 1).
From the defintion 2.9 of the lower tail dependence coefficient, we have

χ(h, z) =
2 logP

(
Z(s) > z

)
logP

(
X(s) > z

a
, X(t) > z

a

)
+ logP

(
Y (s) > z

1−a
, Y (t) > z

1−a

) − 1

=
2 log

(
1− exp(−1

z
)
)

log
(
1− 2 exp(−a

z
) + exp(−aΘ(h)

z
)
)
+ log

(
Lh(

z
1−a

)( z
1−a

)−1/η(h)
) − 1

∼ 2 log
(
1
z
+O(z−2)

)
log
(
a(2−Θ(h))

z
+O(z−2)

)
+ log

(
Lh(

z
1−a

)( z
1−a

)−1/η(h)
) − 1.

If (2−Θ(h)) �= 0, then

χ(h, z) ∼ −2 log(z) +O(log(z))

log(a(2−Θ(h)))− log(z) + log
(
Lh(

z
1−a)

)
− 1

η(h)

(
log(z)− log(1− a)

)
+O(log(z))

− 1

∼ −2 + o(1)

log(a(2−Θ(h)))
log(z) +

log
(
Lh(

z
1−a

)
)

log(z) − 1
η(h)

(
1− log(1−a)

log(z)

)
− 1 + o(1)

− 1.

Therefore,

χ(h) = lim
z→∞

χ(h, z) =
−2

− 1
η(h)

− 1
− 1 = 1. (2.3.41)

If (2−Θ(h)) = 0, then

χ(h, z) ∼ −2 log(z) +O(log(z))

log
(
Lh(

z
1−a

)
)
− 1

η(h)

(
log(z)− log(1− a)

)
+O(log(z))

− 1

∼ −2 + o(1)

log
(
Lh(

z
1−a

)
)

log(z)
− 1

η(h)

(
1− log(1−a)

log(z)

)
+ o(1)

− 1.

Therefore,

χ(h) = lim
z→∞

χ(h, z) =
−2

− 1
η(h)

− 1 = 2η(h)− 1. (2.3.42)

leads to satisfy the lower tail coefficient in 2.3.40 and satisfies 2.3.42 when a = 0.
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[9] used this kind of models to allow asymptotical dependence and independence to
be present at a short and intermediate distance respectively; furthermore, the process
is independent at a long distance. This structure has been made by combining the
truncated Gaussian extremal max-stable process with an asymptotically independent
process. The estimation of the model parameters has been done by using maximum
composite likelihood and using CLIC (composite likelihood information criterion) to
select the model.

2.4 Spatial risk measure
Considering a process X, we will define a risk measure associated to X on a region
A ⊂ R

2 of the space. It will be a non-negative quantity, which represents an average
damage or cost due to X on A. We follow the ideas developed in [44] or [43].

2.4.1 Normalized loss function

A damage function D represents the relationship between the aggregate losses (e.g
economic, health) and the environmental (climate) indicator (e.g air pollution, tem-
perature levels), some economic interpretations may be found in [14].

Definition 2.17. (Normalized loss function) Consider a damage function D :
R

d → R
+. For any set A ∈ B(Rd), the normalized aggregate loss function on A is

L(A,D) =
1

|A|

∫
A
D(s) ds, (2.4.1)

where |A| stands for the volume (or the Lebesgue measure) of A.

The quantity
∫
A
D(s)ds represents the aggregated loss over the region A. Therefore,

the function L(A,D) is the proportion of loss on A. In our context, D will be a
function of the process X, denoted DX .

We will focus on two damage functions. The first one is the excess damage function:
let u > 0 be the fixed threshold for s ∈ S,

D+
X,u(s) = (X(s)− u)+. (2.4.2)

For example, when considering air pollutants (like in [11]), u is a regulatory level
which is determined by experts. This damage function will be used on Gaussian
processes.
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The second damage function corresponds to a power of the spatial process X. For a
fixed power coefficient 0 < ν < 1/2 and for any s ∈ S, we define a damage function

Dν
X(s) = |X(s)|ν . (2.4.3)

This damage function will be used on processes with Fréchet marginals; this is why
we have to take 0 < ν < 1/2 which guarantes that L(A,Dν

X) has an order 2 moment.
It has an economic interpretation when X is the wind speed: damages due to the
wind are generally proportional to some power of the wind speed (see [58]).

2.4.2 Spatial risk measure definition

As already mentioned, in spatial contexts, spatial dependency is an important char-
acteristic. Considering the risk measure as the expectation of a normalized loss will
not take into account the spatial dependency; however, it is useful to quantify the
magnitude of risk. We shall consider the spatial risk measure composed from two
components: expectation and variance of the normalized loss,

R(A,DX) = {E[L(A,DX)],Var
(
L(A,DX)

)
}, (2.4.4)

=: {R0(A,DX),R1(A,DX)}

For stationary processes, the expectation component provide information on the
severity of the phenomenon, while the variance component is impacted by the de-
pendence structure.
Let us remark that

R1(A,DX) =
1

|A|2
∫
A×A

Cov
(
DX(s),DX(t)

)
dsdt. (2.4.5)

We shall focus on the properties of R1(A,DX).

2.5 Axiomatic properties of spatial risk measures
In [6],[45],[68] and others, axioms and the behavior of univariate risk measures are
presented, while [44] provides an axiomatic setting of risk measures in a spatial
context.
In this section, we will present a set of spatial axiomatic properties describing the
behavior of a real valued spatial risk measure R∗(A,D). Axioms 1 and 4 below have
been introduced in [44] and studied for some max-stable processes.

Definition 2.18. Let A ⊂ R
2 be a region of the space.
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1. Spatial invariance under translation
Let A+v ⊂ R

2 be the region A translated by a vector v ∈ R
2. Then for v ∈ R

2,
R∗(A+ v,D) = R∗(A,D).

2. Spatial anti-monotonicity
Let A1 and A2 ⊂ R

2 be two regions such that |A1| ≤ |A2|; then R∗(A2,D) ≤
R∗(A1,D).

3. Spatial sub-additivity
Let A1 and A2 ⊂ R

2 be two disjointed regions, then R∗(A1∪A2,D) ≤ R∗(A1,D)+
R∗(A2,D).

4. Spatial super sub-additivity
Let A1 and A2 ⊂ R

2 be two disjointed regions, then R∗(A1∪A2,D) ≤ mini=1,2 [R∗(Ai,D)].

5. Spatial homogeneity
Let λ > 0 and A ⊂ R2 then, R∗(λA,D) = λkR∗(A,D), that is R∗ is homoge-
nous of order k, where λA is the set {λx, x ∈ A}.

In [44], the following damage functions are considered for some max-stable processes:
DX(s) = 1{X(s)>u}, DX(s) = X(s)β. The author proves the invariance by translation;
in this context, he also proves the monotonicity and super sub-additivity in the case
where A1,A2 are either disks or squares.

Theorem 2.4. Let X be a stationary process and DX be a positive damage function
of X. The risk measure R1(·,DX) is invariant by translation and sub-additive.

Proof. The invariance by translation follows directly from the stationarity. On one
other hand, consider A1 and A2 ⊂ R

2 as two disjointed regions.

R1(A1 ∪ A2,DX) = Var
(
L(A1 ∪ A2,DX)

)
=

1

(|A1|+ |A2|)2
[
|A1|2R1(A1,DX) + |A2|2R1(A2,DX)

+ 2Cov

⎛⎝∫
A1

DX(s)ds,

∫
A2

DX(s)ds

⎞⎠⎤⎦ .
≤ 1

(|A1|+ |A2|)2
[
|A1|2R1(A1,DX) + |A2|2R1(A2,DX)

+ 2|A1||A2|
√

R1(A1,DX)
√
R1(A2,DX)

]
by using the Cauchy-Schwarz inequality,

≤ R1(A1,DX) +R1(A2,DX).
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Thus, we have proved sub-additivity.

The calculations of the next chapter will lead to prove the anti-monotonicity for
squares or disks of R1(A,D+

X,u) for isotropic Gaussian processes. The same result
will be given for R1(A,Dν

X) with X as a max-stable or a max-mixture process, which
develops the results in [44].





Chapter 3

Calculating R(A,D) on some spatial
processes

In this chapter, we aim at providing simple expressions for R(A,D+
X,u), where X is

a Gaussian process and R(A,Dν
X), for some max-stable or max-mixture processes

X. We consider a max-stable case that has not been treated in [44]. We shall
see that R1(A,D+

X,u) and R1(A,Dν
X) may reduce to a one-dimensional integration

and can thus be efficientely computed. We shall also study anti-monotonicity and
(asymptotic) homogeneity properties.

3.1 Risk measure for spatial Gaussian process
In this section, we consider X := {X(s), s ∈ S} as a stationary Gaussian process
with auto-correlation function ρ and for a fixed threshold u > 0, the risk measure
R(A,D+

X,u) associated to the damage function D+
X,u = (X − u)+.

In what follows, ϕ is the density of the univariate standard Gaussian distribution,
Φ is the survival function of the standard Gaussian distribution, and 

(
u, v, w

)
is

the total probability of a truncated bivariate standard Gaussian distribution with
correlation w, that is


(
u, v, w

)
=

1

2π(1− w2)1/2

∫ ∞

u

∫ ∞

v

e

{
−1

2(1−w2)
[x2−2wxy+y2]

}
dxdy. (3.1.1)

In this section, we first provide explicit forms for the risk measure; following this, we
will study the behavior of R1(λA,D+

X,u) with respect to λ.

37
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3.1.1 Explicit forms of R(A,D+
X,u)

We are interested in the explicit calculation of the expectation and variance of
L(A,D+

X,u) with

L(A,D+
X,u) =

1

|A|

∫
A
(X(s)− u)+ds.

Proposition 3.1. Consider X := {X(s), s ∈ S} as an isotropic standard Gaussian
process with auto-correlation function ρ. Let u ∈ R+ be a fixed threshold. We will
then have the following:

R0(A,D+
X,u) = ϕ(u)− uΦ(u), (3.1.2)

and
R1(A,D+

X,u) =
1

|A|2
∫
A×A

G(τs,t, u) dsdt, (3.1.3)

with τs,t = ‖s− t‖ and for any h, s ∈ S

G(h, u) :=Cov
(
D+

X,u(s),D+
X,u(s+ h)

)
;

G(h, u) =
(
ρ(h) + u2

)

(
u, u, ρ(h)

)
− 2uϕ(u)Φ

(
u(1− ρ(h))

(1− ρ2(h))1/2

)
+
(
1− ρ2(h)

)1/2
ϕ

(
u

(1 + ρ(h))1/2

)2

−
(
ϕ(u)− uΦ(u)

)2
.

(3.1.4)

Proof. Let X be an isotropic standard Gaussian process and u ∈ R+,

E
[
L(A,D+

X,u)
]
=

1

|A|

∫
A
E
[
(X(s)− u

)+]
ds

=
1

|A|

∫
A

[ ∫ ∞

u

xϕ(x)dx− u

∫ ∞

u

ϕ(x)dx

]
ds

=
1

|A|

∫
A
(ϕ(u)− uΦ(u))ds

=ϕ(u)− uΦ(u).

(3.1.5)

On the other hand,

Var
(
L(A,D+

X,u)
)
=

1

|A|2
∫
A×A

Cov
(
D+

X,u(s),D+
X,u(t)

)
dsdt.

We calculate Cov
(
D+

X,u(s),D+
X,u(t)

)
by using the results from [60] on moments m10,m11

of truncated bivariate Gaussian distributions. See Appendix A.1. Let fX1,X2 be the
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density function of the random vector (X1, X2).

E
[
D+

X,u(s)D+
X,u(t)

]
=

∫ ∞

u

∫ ∞

u

(
xy − 2ux+ u2

)
fX(s),X(t)

(
x, y
)
dxdy

=
(
u, u, ρ(τs,t)

)
m11 − 2u

(
u, u, ρ(τs,t)

)
m10 + u2

(
u, u, ρ(τs,t)

)
,

(3.1.6)

with


(
u, v, ρ

)
m10 =

1

2π(1− ρ2)1/2

∫ ∞

u

∫ ∞

v

x exp

{
− 1

2(1− ρ2)

[
x2 + 2ρxy + y2

]}
dxdy,

= ϕ(u)Φ

(
v − ρu

(1− ρ2)1/2

)
+ ρϕ(v)Φ

(
u− ρv

(1− ρ2)1/2

)
;

and


(
u, v, ρ

)
m11 =

1

2π(1− ρ2)1/2

∫ ∞

u

∫ ∞

v

xy exp

{
− 1

2(1− ρ2)

[
x2 + 2ρxy + y2

]}
dxdy,

= ρ
(
u, v, ρ

)
+ ρuϕ(u)Φ

(
v − ρu

(1− ρ2)1/2

)
+ ρvϕ(v)Φ

(
u− ρv

(1− ρ2)1/2

)
+
(1− ρ2)1/2√

2π
ϕ

(
(u2 − 2ρuv + v2)1/2

(1− ρ2)1/2

)
.

For v = u, we have,


(
u, u, ρ

)
m10 = (1 + ρ)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
and


(
u, u, ρ

)
m11 = ρ

(
u, u, ρ

)
+2ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
+
(1− ρ2)1/2√

2π
ϕ

(
(2u2(1− ρ))1/2

(1− ρ2)1/2

)
.
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Finally, we get

E
[
D+

X,u(s)D+
X,u(t)

]
=
(1− ρ2(τs,t))

1/2

√
2π

ϕ

(
(2u2(1− ρ(τs,t)))

1/2

(1− ρ2(τs,t))1/2

)
+2uρ(τs,t)ϕ(u)Φ

(
u(1− ρ(τs,t))

(1− ρ2(τs,t))1/2

)
+ρ(τs,t)

(
u, u, ρ(τs,t)

)
− 2u(1 + ρ(τs,t))ϕ(u)Φ

(
u(1− ρ(τs,t))

(1− ρ2(τs,t))1/2

)
+u2

(
u, u, ρ(τs,t)

)
=
(
u, u, ρ(τs,t)

)(
ρ(τs,t) + u2

)
− 2uϕ(u)Φ

(
u(1− ρ(τs,t))

(1− ρ2(τs,t))1/2

)
+
(
1− ρ2(τs,t)

)1/2
ϕ

(
u

(1 + ρ(τs,t))1/2

)2

.

The result follows.

Corollary 3.2. Let Y := {Y (s), s ∈ S} be an isotropic Gaussian process with mean
μ and variance σ2. Let X = Y−μ

σ
be an isotropic and standard Gaussian process.

The spatial risk measure R(A,D+
Y,u) statisfies

R(A,D+
Y,u) =

{
σE[L(A,D+

X,u0
)], σ2Var

(
L(A,D+

X,u0
)
)}

, (3.1.7)

with u0 = (u− μ)/σ.

Proof. From the definition of D+
Y,u, we have:

E[L(A,D+
Y,u)] =

1

|A|

∫
A
E(Y (s)− u)+ds

=
1

|A|

∫
A
E(μ+ σX(s)− u)+ds

=
σ

|A|

∫
A
E
(
X(s)− (

u− μ

σ
)
)+

ds

=σE[L(A,D+
X,u0

)].

(3.1.8)
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On the other hand,

Var
(
L(A,D+

Y,u)
)
=

1

|A|2
∫
A×A

E
[
D+

Y,u(s)D+
Y,u(t)

]
− E
[
D+

Y,u(s)
]
E
[
D+

Y,u(t)
]
dsdt

=
1

|A|2
∫
A×A

E
[
(Y (s)− u)+(Y (t)− u)+

]
− E
[
(Y (s)− u)+

]
E
[
(Y (t)− u)+

]
dsdt

=
1

|A|2
∫
A×A

σ2
E
[
(X(s)− u0)

+(X(t)− u0)
+
]
− σ2

E
[
(X(s)− u0)

+
]
E
[
(X(t)− u0)

+
]
dsdt

=
σ2

|A|2
∫
A×A

E
[
D+

Xs,u0
(s)D+

Xt,u0
(s)
]
− E
[
D+

Xs,u0
(s)
]
E
[
D+

Xt,u0
(s)
]
ds.dt

Therefore,
Var
(
L(A,D+

Y,u)
)
= σ2Var

(
L(A,D+

X,u0
)
)
. (3.1.9)

Corollary 3.2 implies that without loss generality, we may calculate the risk mea-
sure for an isotropic standard Gaussian process; expressions for an isotropic non-
standard Gaussian process will follow. Furthermore, from these results, we can see
that R0(A,D+

Y,u) does not depend on the region A but only on the characteristics of
the underlying Gaussian process. Then, in the following study of the risk measure,
we will focus on the component R1(A,D+

Y,u).

The following theorem is useful to compute the risk measure because it reduces
to a one-dimension integration.

Theorem 3.3. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian process.
If the region A is either a disk or a square, the expression Var

(
L(A,D+

X,u)
)

reduces
to a one dimensional integration.
When A is a disk of radius R,

Var
(
L(A,D+

X,u)
)
=

∫ 2R

h=0

G(h, u)fdisk(h,R)dh, (3.1.10)

where

fdisk(h,R) =
2h

R2

(
2

π
arccos

( h

2R

)
− h

πR

√
1− h2

4R2

)
, (3.1.11)

and G is defined in equation (3.1.4).
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When A is a square of side R

Var
(
L(A,D+

X,u)
)
=

∫ √
2R

h=0

G(h, u)fsquare(h,R)dh, (3.1.12)

where, for h ∈ [0, R]

fsquare(h,R) =
2πh

R2
− 8h2

R3
+

2h3

R4

and for h ∈ [R,
√
2R],

fsquare(h,R) =
2h

R2

[
− 2− b+ 3

√
b− 1 +

b+ 1√
b− 1

+ 2arcsin(
2− b

b
)− 4

b
√

1− (2−b)2

b2

]
,

(3.1.13)
where b = h2

R2 .

Proof. The strategy of proof is the one adopted in [44] for some max-stable processes.
Let S and T be two independent random variables uniformly distributed on A. For
any function γ defined on R

+, we have

E
[
γ(||S − T ||)

]
=

1

|A|2
∫
A×A

γ(||s− t||)dsdt.

Using [52], if A is a square of side R,

E
[
γ(||S − T ||)

]
=

∫ √
2R

h=0

γ(h)fsquare(h,R)dh, (3.1.14)

with fsquare given by equation (3.1.13). If A is a disk of radius R then,

E
[
γ(||S − T ||)

]
=

∫ 2R

h=0

γ(h)fdisk(h,R)dh. (3.1.15)

Moreover, by (3.1.3)

Var
(
L(A,D+

X,u)
)
= E
[
G(||S − T ||, u)

]
.

Using (3.1.14) and (3.1.15) with the function γ(h) = G(h, u); we obtain the expres-
sions (3.2.1) and (3.2.2).

In what follows, we write our results for square regions A, but the results hold for
disks as well.
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3.1.2 Behaviour of R1(λA,D+
X,u) with respect to λ

The following expression of R1(λA,D+
X,u) is a keystone to understand its behavior.

Lemma 3.4. Let λ ≥ 0 and A be a square of side R; then,

R1(λA,D+
X,u) =

∫ √
2R

h=0

fsquare(h,R)G(λh, u)dh. (3.1.16)

Proof. Theorem 3.3 gives:

R1(λA,D+
X,u) = Var

(
L(λA,D+

X,u)
)

=

∫ √
2λR

h=0

fsquare(h, λR)G(h, u)dh.

=

∫ √
2R

h=0

fsquare(λh, λR)G(λh, u)λdh.

Remark that fsquare(λh, λR) = λ−1fsquare(h,R). Thus,

R1(λA,D+
X,u) =

∫ √
2R

h=0

fsquare(h,R)G(λh, u)dh.

The same calculations would give the same result if A is a disk of radius R (by
replacing fsquare by fdisk).

Lemma 3.4 provides the following two results on the behavior of the mapping λ →
R1(λA,D+

X,u).

Corollary 3.5. Let X be an isotropic standard Gaussian process on S ⊂ R
2 with the

auto-correlation function ρ. Let A ⊂ S be either a disk or a square. The mapping
λ → R1(λA,D+

X,u) is non-increasing if and only if h → ρ(h), h > 0 is non-increasing
and non-negative .

Proof. It suffices to remark that by its definition, for any h > 0, the function λ →
G(λh, u) is non-increasing, provided the auto-correlation function is non-negative and
non-increasing. For compactness, see Appendix A.2.

Corollary 3.6. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian process
with auto-correlation function satisfying the following criterion: decreases to 0 as h
goes to infinity. Then, for A, either a disk or a square, we have

lim
λ→∞

R1(λA,D+
X,u) = 0. (3.1.17)
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Proof. Let A be a square of side R,

R1(λA,D+
X,u) =

∫ √
2R

h=0

fsquare(h,R)G(λh, u)dh, (3.1.18)

Then, the monotonic convergence theorem gives:

lim
λ→∞

R1(λA,D+
X,u) =

∫ √
2R

h=0

fsquare(h,R) lim
λ→∞

G(λh, u)dh. (3.1.19)

Since ρ(h) goes to 0 as h goes to infinity,

lim
λ→∞

G(λh, u) = u2
(
u, u, 0

)
− u2Φ

2
(u).

The result follows.

Thus, Lemma 3.4 proves the anti-monotonicity for regions A1, A2 which are either
disks or squares.

Property 3.7. Let X := {X(s), s ∈ S} be an isotropic standard Gaussian process
with non-negative and non-increasing auto-correlation function; let A1, A2 be either
squares or disks, such that |A1| ≤ |A2|, then

R1(λA2,D+
X,u) ≤ R1(λA1,D+

X,u).

Proof. Let us do the proof in the square case. By invariance by translation, we may
assume A1 = λA2 for some λ ≤ 1. Equation (3.1.16) gives the result.

A simulation study and a real data case will be provided in Chapter 4 for R(λA2,D+
X,u).

3.2 Risk measures for max-mixture processes
Let X be an isotropic and stationary process, with unit Fréchet margin and let the
power coefficient 0 < ν < 1/2 be a fixed. For a given damage function Dν

X , the
interest risk measure in this section is R(A, ,Dν

X)

3.2.1 General forms for R1(A,Dν
X)

By theorem 3.3,we may reduce R1(A,Dν
X) to smaller dimension integral.
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Lemma 3.8. Let X := {X(s), s ∈ S} be an isotropic and stationary spatial process.
Let Q(h) = Cov

(
Dν

X(s),Dν
X(s+ h)

)
.

Consider A ⊂ R
2 to be a disk of radius R, for a fixed 0 < ν < 1/2, we have:

R1(A,Dν
X) = Var

(
L(A,Dν

X)
)
=

∫ 2R

h=0

Q(h)fdisk(h,R)dh, (3.2.1)

Consider A ⊂ R
2 to be a square of side R, we have:

R1(A,Dν
X) = Var

(
L(A,Dν

X)
)
=

∫ √
2R

h=0

Q(h)fsquare(h,R)dh, (3.2.2)

In what follows, results are written for square regions A, but the results hold for
disks as well.

Remark 2. Properties of moments of Fréchet distributions give that if X as unit
Fréchet marginal distributions,

E(L(A,Dν
X) = Γ(1− ν).

Proposition 3.9. Consider X := {X(s), s ∈ S} as an isotropic and stationary
spatial process with unit Fréchet margin F and pairwise distribution function GX

h =
P(X(s) ≤ x1, X(s+ h) ≤ x2). Let A be a square of side R. We have

R1(A,Dν
X) =

∫ √
2R

h=0

Q(h, ν)fsquare(h,R)dh, (3.2.3)

with
Q(h, ν) = Cov

(
Dν

X(s),Dν
X(s+ h)

)
;

Q(h, ν) =

∫ ∞

0

∫ ∞

0

[
GX

h (x
1/ν
1 , x

1/ν
2 )− F (x

1/ν
1 )F (x

1/ν
2 )
]
dx1dx2 (3.2.4)

or equivalently

Q(h, ν) = ν2

∫ ∞

0

∫ ∞

0

xν−1
1 xν−1

2

[
GX

h (x1, x2)− F (x1)F (x2)
]
dx1dx2. (3.2.5)
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Proof. Since X is a non-negative process, Hoeffding’s identity ([39] and [64]) gives:

Cov
(
Dν

X(s),Dν
X(s+ h)

)
=

∫∫
R2
+

[
P
(
X(s)ν ≤ x1, X(s+ h)ν ≤ x2

)
−P
(
X(s)ν ≤ x1

)
P
(
X(s+ h)ν ≤ x2

)]
dx1dx2

= ν2

∫∫
R+

xν−1
1 xν−1

2

[
P
(
X(s) ≤ x1, X(s+ h) ≤ x2

)
−P
(
X(s) ≤ x1

)
P
(
X(s+ h) ≤ x2

)]
dx1dx2. (3.2.6)

3.2.2 Explicit form of R1(A,Dν
X) for TEG max-stable process

Equation (3.2.3) shows that the computation of R1(A,Dν
X) reduces to the integration

of Q(h, ν)fsquare (resp. Q(h, ν)fdisk). In [43], the computation of Q(h, ν)fsquare for
the Smith model has been done. In that case, the computation of R1(A,Dν

X) is thus
reduced to a one-dimensional integration. In this section, we do the computation for
a TEG model.

Corollary 3.10. Let X := {X(s), s ∈ S} be a truncated extremal Gaussian TEG
max-stable process with unit Fréchet margin, correlation function ρ and truncated
parameter r. For 0 < ν < 1/2, we have

Q(h, ν) =∫ +∞

0

wν

[
Γ(2(1− ν))T2(w, h)T1(w, h)

2(ν−1) + Γ(1− 2ν)T3(w, h)T1(w, h)
2ν−1

]
dw

−
[
Γ(1− ν)

]2
(3.2.7)

where,

T1(w, h) =
w + 1

w

[
1− α(h)

2

(
1−K(w, h)

)]
; (3.2.8)

T2(w, h) =

[
1− α(h)

2

(
1−K(w, h)

)
− α(h)(ρ(h) + 1)(1− w)

2K(w, h)(w + 1)2

]

×
[
1

w2
− α(h)

2w2

(
1−K(w, h)

)
− α(h)(ρ(h) + 1)(w − 1)

2wK(w, h)(w + 1)2

]
;

(3.2.9)
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T3(w, h) = α(h)

[
(ρ(h) + 1)

K(w, h)(w + 1)3
− (ρ(h) + 1)2(w − 1)2

2K(w, h)3(w + 1)5

]
; (3.2.10)

K(w, h) =

[
1− 2w(ρ(h) + 1)

(w + 1)2

]1/2
(3.2.11)

and α(h) defined in (2.3.27).

Proof. We have,

Cov
(
Dν

X(s),Dν
X(s+ h)

)
= E
[
Dν

X(s)Dν
X(s+ h)

]
−
[
E[Dν

X(s)]
]2
.

From remark 2. we have E[Dν
X(s)] = Γ(1− ν), and we also have

E
[
Dν

X(s)Dν
X(s+ h)

]
=

∫ ∞

0

∫ ∞

0

xν
1x

ν
2f(X(s),X(s+h))(x1, x2)dx1dx2,

where f(X(s),X(s+h))(x1, x2) is the bivariate density function of the TEG model.
It rewrites:

E[Dν(s)Dν(s+ h)] =

∫ +∞

0

∫ +∞

0

u2ν+1wνf(u, uw)dudw.

The bivariate density function of a TEG model satisfies

f(X(s),X(s+h))(u, uw) =
[ 1
u4

T2(w, h) +
1

u3
T3(w, h)

]
e

−1
u

T1(w,h)

where T1(w, h), T2(w, h) and T3(w, h) are introduced in (3.2.8), (3.2.9), and (3.2.10).
Therefore,

E[Dν(s)Dν(s+ h)] =∫ +∞

0

wν

[
T2(w, h)

∫ +∞

0

u2ν−3e
−1
u

T1(w,h)du+ T3(w, h)

∫ +∞

0

u2ν−2e
−1
u

T1(w,h)du

]
dw.

Moment Properties of Fréchet distributions give∫ +∞

0

u2ν−3e
−1
u

T1(w,h)du =
1

T1(w, h)
.μ(2ν−1),

with μ(2ν−1), the moment of order k = (2ν − 1). That is,

μ(2ν−1) = T1(w, h)
(2ν−1)Γ[2(ν − 1)].
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In the same way, we get∫ +∞

0

u2ν−2e
−1
u

T1(w,h)du = T1(w, h)
(2ν−1)Γ(1− 2ν).

Then,

E
[
Dν

X(s)Dν
X(s+ h)

]
=∫ +∞

0

wν

[
T2(w, h)T1(w, h)

2(ν−1)Γ2(ν − 1) + T3(w, h)T1(w, h)
(2ν−1)Γ(1− 2ν)

]
dw,

and the result follows.

3.2.3 Behavior of R1(λA,Dν
X) with respect to λ for max-mixture

processes.

In what follows, we consider an isotropic and stationary max-mixture spatial process
with unit Fréchet margin F . We denote X and V X

h the process and the exponent
measure function corresponding to the max-stable part and Y and V Y

h the process and
the exponent measure function corresponding to the inverse max-stable process Y .
Let a ∈ [0, 1], Z = max(aX, (1− a)Y ). We shall study the behavior of R1

(
λA,Dν

Z

)
with respect to λ. Of course, the case a = 1 gives results for max-stable processes
and a = 0 gives results for inverse max-stable processes. Recall that the bivariate
distribution function is given by

GZ
h (x1, x2) = e−aV X

h (x1,x2)

[
e

−(1−a)
x1 + e

−(1−a)
x2 − 1 + e−V Y

h (ga(x1),ga(x2))

]
,

where g(z) = − 1

log(1−e−
1
z )

and ga(z) = g( z
1−a

).

Lemma 3.8 and Proposition 3.9 are a keystone to describe the behaviour of R1

(
λA,Dν

Z

)
.

As in Lemma 3.4, we get for any λ > 0:

R1(λA,Dν
Z) =

∫ √
2R

h=0

fsquare(h,R)Q(λh, ν) dh. (3.2.12)

Corollary 3.11. Let Z be an isotropic and stationary max-mixture spatial process as
above. Assume that the mappings h → V X

h (x1, x2) and V Y
h (x1, x2) are non-decreasing

for any (x1, x2) ∈ R
2
+. Let A ⊂ S be either a disk or a square; then, the mapping

λ → R1(λA,Dν
Z) is non-increasing.



Chapter 3. Calculating R(A,D) on some spatial processes 49

Proof. We use (3.2.12) and from Proposition 3.9,

Q(λh, ν) = ν2

∫ ∞

0

∫ ∞

0

xν−1
1 xν−1

2

[
GZ

h (x1, x2)− F (x1)F (x2)
]
dx1dx2.

Since h → V X
h (x1, x2) and V Y

h (x1, x2) are non-decreasing, h → GZ
h (x1, x2) is non

increasing and the result follows.

Remark 3. For a spatial max-stable or inverse max-stable process X, the fact that
h → V X

h (x1, x2) is non-decreasing implies that the dependence between X(t) and
X(t + h) decreases as h increases, which seems reasonable in applications. On the
other hand, if, V X

h (x1, x2) goes to 1
x1

+ 1
x2

as h goes to infinity, X(t), X(t+ h) tend
to behave independently as h goes to infinity.

Corollary 3.12. Let Z be an isotropic and stationary max-mixture spatial process as
above. Assume that the mappings h → V X

h (x1, x2) and V Y
h (x1, x2) are non-decreasing

for any (x1, x2) ∈ R
2
+. Moreover, we assume that

V X
h (x1; x2) −→

1

x1

+
1

x2

as h → ∞

and
V Y
hh(x1, x2) −→

1

x1

+
1

x2

as h → ∞

∀x1, x2 ∈ R+. Let A ⊂ S be either a disk or a square ,

lim
λ→∞

R1(λA,Dν
Z) = 0.

If there exists V0 (resp. V1), an exponent measure function of a non independent
max-stable (resp. inverse max-stable) bivariate random vector, such that V X

h −→ V0

and V Y
h −→ V1 as h → ∞, then

lim
λ→∞

R1(λA,Dν
Z) > 0.

Proof. In the case of A a square of side R, we use

Q(λh, ν) = ν2

∫ ∞

0

∫ ∞

0

xν−1
1 xν−1

2

[
GZ

h (x1, x2)− F (x1)F (x2)
]
dx1dx2.

If V W
h (x1; x2) is non-decreasing to 1

x1
+ 1

x2
as h → ∞ for W = X and W = Y , then

GZ
h (x1, x2) is non-increasing to F (x1)F (x2) and we derive a conclusion by using the

monotone convergence theorem.
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Corollary 3.13. Let Z be isotropic and stationary max-mixture as above. Assume
that h → V W

h (x1, x2) is non-increasing, with W = X and W = Y . Let A1 and A2

be either disks or squares, such that |A1| ≤ |A2|; then,

R1(λA2,Dν
Z) ≤ R1(λA1,Dν

Z).

Proof. Since the risk measure R1(A,Dν
Z) is invariant by translation, we may assume

that A1 = λA2 for some λ ≥ 1. Then, equation (3.2.12) gives the result.



Chapter 4

Computational aspects of the risk
measures

In this Chapter, we study the behavior of the proposed spatial risk measures R(A,DX),
through some simulations.

4.1 Computational aspects for Gaussian risk mea-
sure

4.1.1 Analysis of G(h, u) and R1(λA,D+
X,u)

We begin this simulation section with the study of the covariance damage function G
which plays a central role in the behavior of R(A,D+

X,u). We consider five Gaussian
models depending on the choice of the correlation structure introduced in Section
2.2.1.
In order to emphasize the dependence of the damage covariance function G to the
correlation parameter, we will denote it by Gθ(h, u) for any triplet (h, u, θ).
Figure 4.1.(a) shows the behavior of the spatial covariance between two damage
functions D+

X,u(·) and D+
X,u(·+h) with respect to the distance h, when the correlation

range is set to θ = 0.50 and the threshold to u = Φ−1(0.75), where Φ−1 is the
quantile function of the standard normal distribution. It shows that Gθ(h, u) tends
to 0 as h tends to infinity with different decreasing speed. This is obviously the
expected behavior, because the process (D+

X,u(s), s ∈ S) is (spatially) asymptotically
independent. Whereas, for spherical and cubic correlation functions, Gθ(h, u) = 0
as soon as h > θ, which means that the process (D+

X,u(s), s ∈ S) is θ-independent
(independent at a distance larger than θ).

51
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Figure 4.1: Behavior of Gθ(h, u) with respect to the threshold u, the correlation
length θ and the distance h. Five non-negative correlation functions (exponential,
Gaussian, spherical, cubic and Matérn with κ = 1) have been examined. The graphs
(a), (b) and (c) show the behavior of G·(·, ·) with respect to the following: (a) the
distance h, when u = Φ−1(0.75) and θ = 0.50; (b) the correlation length θ, when
u = Φ−1(0.75) and h = 0.30; (c) the threshold u = Φ−1(p), p ∈ [0, 1], when θ = 0.50
and h = 0.30.

In order to study the behavior of the damage covariance function with respect to θ,
we set the threshold u = Φ−1(0.75) and the distance h = 0.30. In Figure 4.1.(b) we
remark that Gθ(h, u) is increasing with θ.
Finally, we study the behavior of the damage covariance function with respect to
the threshold u = Φ−1(p), p ∈ [0, 1]. We set θ = 0.50 and h = 0.30. Remark (see
Figure 4.1.(c)) that even if h is small, Gθ(h,Φ

−1(p)) goes to zero as p goes to 1,
so that it will be difficult to approximate correctly the covariance damage function
when u is large.
Figure 4.2. focusses on the behavior of R1(λA,D+

X,u) with respect to (λ, u, θ), when
A is a square of side R = 1. In order to see the influence of the homothety rate λ,
we set u = Φ−1(0.75) and θ = 0.50.
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Figure 4.2: The behavior of R1(λA,D+
X,u) for A = [0, 1]2 -exponential, Gaussian,

spherical, cubic and Matérn with κ = 1 non-negative correlation functions. The
graphs (a), (b) and (c) show the behavior of R1(λA,D+

X,u) for a fixed h = 0.30 with
respect to the following: (a) λ, when u = Φ−1(0.75) and θ = 0.50; (b) θ, when
u = Φ−1(0.75) and λ = 1; (c) u = Φ−1(p), p ∈ [0, 1], when λ = 1 and θ = 0.50.

To tackle the behavior with respect to θ we choose λ = 1 and u = Φ−1(0.75).
To study the behavior of the variance with respect to the threshold u = Φ−1(p), p ∈
[0, 1], we set λ = 1 and θ = 0.50. The behavior of R1(A,D+

X,u) only depends on
Gθ(h, u)

4.1.2 Numerical computation

We generated isotropic standard spatial Gaussian processes X on S = R
2 with differ-

ent non-negative correlation functions (exponential, Gaussian, spherical, cubic and
Matérn with κ = 1) for θ = 0.5. The process X is simulated on a (15 × 15) grid
with n = 125 locations, uniformly distributed in the square A = [0, 1]2. Most of
the time, the threshold u is chosen by the practitioner and its value depends on the
considered phenomena. For example, in daily rainfall simulation study, the threshold
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was chosen equal to 0.5mm [74], while [40] considered the value of the threshold as its
median or quantile when evaluating the performance of the exceedance probability
estimator. In this study, we set the threshold u = Φ−1(p) for p := {0.75, 0.85, 0.95}.

This section is devoted to a numerical study of the computation of R1(A,D+
X,u),

where A = [0, 1]2. We compare the computation of R1(A,D+
X,u) by the one-dimensional

integration using (3.1.3) with the intuitive Monte-Carlo computation (M1). The (M1)
computation is obtained by generating a m = 1000 sample of X on the grid; that is,

Lj(A,D+
X,u) =

1

|A|

[
1

n− 1

]2 n−1∑
i=1

(X(sij)− u)+ j = 1, ...,m. (4.1.1)

RM1
0 (A,D+

X,u) =
1

m

m∑
j=1

Lj(A,D+
X,u) (4.1.2)

and

VarM1(L(A,D+
X,u)) =

1

m− 1

m∑
j=1

(Lj(A,D+
X,u)− E

M1[L(A,D+
X,u)])

2 (4.1.3)

where E
M1 represents the expectation calculated using Monte-Carlo computation.

Boxplots in Figure 4.3 represent the relative errors over 100 (M1) computations
with respect to the one-dimensional integration. Because exponential, Gaussian and
Matérn correlation models have relatively simple forms, the relative errors are ex-
pected to be smaller compared to the spherical and cubic ones. For cubic and spher-
ical models, the discontinuity at h = θ induces more instability in the simulations.

4.1.3 Piemonte case study

We terminate this section with the computation of the risk measure R1(
cA,D+

X,u) on pollution in the Piemonte data. The air pollution is measured by the
concentration in PM10, the particulate matter with an aerodynamic diameter less
than 10μm. The observed values of PM10 are frequently larger than the legal level
fixed by the European directive 2008/50/EC (see [19] for details).
The data has been fitted and analyzed in [11]. The data contains the daily concen-
tration of PM10 during the winter season 2005 March 2006. The authors considered
24 monitoring stations for estimating the parameters of this model and 10 stations
for validation.

The log of PM10 has been fitted on an isotropic Gaussian process with Matérn
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Figure 4.3: The boxplots represent the relative errors of R1(A,D+
X,u) between the

one-dimensional integration computation and the M1 method for different thresh-
olds u = Φ−1(p), p := {0.75, 0.85, 0.95} and five correlation functions (exponential,
Gaussian, spherical, cubic and Matérn with κ = 1) for correlation length θ = 0.5
over A = [0, 1]2.

auto-correlation function. In what follows, Y = logPM10. Following the parameter
estimation (see [11]), we will use κ = 1 and θ = 100. The estimation of the marginal
parameters leads us to use μ = 3.69 and σ2 = 1.2762.
We use the above parameters to compute the risk measure(

R0(λA,D+
Y,log u),R1(λA,D+

Y ,log u)
)
,

with A a square of side 10km and u the legal level, i.e. u = 50. We use Corollary
3.2; let Y0 =

Y−μ
σ

and u0 = (log(50)− 3.96)/
√
1.2762 = 0.1965, we have

R0(λA,D+
Y,log u) =

√
1.2762

(
ϕ(0.1965)− 0.1965Φ(0.1965)

)
=0.3483621
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Figure 4.4: [11]. Locations of the 24 PM10 monitoring sites (red dots) and 10
validation stations (blue squares) in northern Italy between Alps and Appenises
(Piemonte region).

and

R1(λA,D+
Y,log u) =1.2762

∫ 14.15

h=0

fs(h, 1)G(h, 0.1956)dh.

=0.4119461.

The random variable L(A,D+
Y,log u) is the average over the square A of the values

of Y that exceed the legal threshold log u. This is a quantity of interest for health
public policies. Our study shows that the standard deviation of L(A,D+

Y,log u) is large
with respect to its expectations. This means that the dependence structure of the
underlying process highly impacts the random variable L(A,D+

Y,log u).
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4.2 Computational aspects for extreme processes risk
measure

In this section, we will study the behavior of the spatial covariance damage function
and its spatial risk measure corresponding to a stationary and isotropic max-stable,
inverse max-stable, and max-mixture processes. We shall use the correlation func-
tions introduced in Section 2.2.1.

4.2.1 Analysis of the covariance damage function Q(h, ν)

As usual, we begin with covariance damage function in the study of the risk measure
R1(A,Dν

X).

Analysis of Q(h, ν) of max-stable process

We study the behavior of Q(h, ν) and R1(λA,Dν
X) for X, a TEG spatial max-stable

process, with trunacted parameter r, non-negative correlation function ρ and corre-
lation length θ. We shall denote by Qθ,r(h, ν) the covariance damage function. Five
different models with different correlation functions (exponential, Gaussian, spheri-
cal, cubic and Matérn ) are considered.

The behavior of Qθ,r(h, ν) with respect to distance h is shown in Figure 4.5.(a).
We set the power coefficient ν = 0.20, r = 0.25 and θ = 0.20. We have that,
Qθ,r(h, ν) = 0 for any h ≥ 2r; the decreasing speed changes according to the dif-
ferent dependence structures. It means the damage functions Dν

X(·) and Dν
X(· + h)

belong to two domain (regions) dependence and two domain independence up to dis-
tance h ≥ 2r. In other words, there is no compactness between Dν

X(·) and Dν
X(·+h)

for all h ≥ 2r.

The behavior of Qθ,r(h, ν) with respect to θ is shown in Figure 4.5(b). Figure 4.5(c)
shows the behavior of Qθ,r(h, ν) with respect to the truncated parameter r. We set
ν = 0.20, h = 0.25 and θ = 0.20.
Finally, we study the behavior of the spatial damage covariance function with respect
to power coefficient ν. We set h = 0.25, θ = 0.20 and r = 0.25. Figure4.5.(d) shows
that the covariance between the damage functions Dν

Y (·) and Dν
Y (·+h) increase with

ν. This behavior seems natural in climatic phenomenon. For example, when the
wind speed increases, the area impacted by the wind will increase.

Remark 4. The global behavior of Qθ,r(h, ν) for an inverse TEG is the same as for
the TEG with the same parameters.
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Figure 4.5: shows the behavior of Qθ,r(h, ν) with respect to the power coefficient
ν, the correlation length θ, the distance h and the truncated parameter r. Plain
lines correspond to TEG and dashed lines correspond to inverse TEG. Five non-
negative correlation functions (exponential, Gaussian, spherical, cubic and Matérn
with κ = 1) have been examined. The graphs (a), (b) ,(c) and (d) show the behavior
of Q·,·(·, ·) with respect to the following: (a) the distance h, when ν = 0.2 ,θ = 0.2
and r = 0.25; (b) the correlation length θ, when ν = 0.2, r = 0.25 and h = 0.25;
(c) the truncated parameter r, when ν = 0.2, θ = 0.20 and h = 0.25; (c) the power
coefficient ν, when θ = 0.20, r = 0.25 and h = 0.25.

Analysis of Q(h, ν) of max-mixture process

Max-mixture models with expression Z := max{aX, (1−a)Y } with TEG max-stable
part denoted X and inverse TEG for the inverse max-stable part - denoted Y cover
all possible dependence structures in one model (asymptotic dependence in a short
distance, asymptotic independence in intermediate distances and independence in
long distances). We have simulated five max-mixture models according to the corre-
lation functions; X and Y have models with the same correlation functions but with
different correlation lengths . rX and rY denote the respective truncation parameter
of X and Y ; ρX and ρY denote the respective correlation functions of X and Y ,
and θX and θY denote the respective correlation length. The mixing parameter is
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denoted by a.

We set mixing parameter a = 0.5, rX = 0.15, θX = 0.10, rY = 0.35, θY = 0.3
and finally ν = 0.2. In this model, the damage functions Dν

Z(·) and Dν
Z(· + h) are

asymptotically dependent up to distance h < 2rX , asymptotically independent when
2rY > h ≥ 2rX and independent for all h ≥ 2rY . The decreasing speed depends on
the correlation function, as shown in Figure 4.6.

Figure 4.7 shows the behavior of Q(h, ν) with respect to each parameter. When

Figure 4.6: shows the behavior of Q(h, ν) with respect to distance h. Five non-
negative correlation functions (exponential, Gaussian, spherical, cubic and Matérn
with κ = 1) have been examined when a = 0.5, ν = 0.2 and X is TEG max-stable
with θX = 0.15 and rX = 0.10; Y is an invariant TEG max-stable with θY = 0.35
and ry = 0.30.

it does not vary, each parameter is fixed to a = 0.5, h = 0.25, ν = 0.2, θX = 0.1,
θY = 0.3, rX = 0.15 and rY = 0.35. Graph (a) shows the behavior of Q with respect
to the mixing parameter a. The graphs from (b) to (f) shows the behavior of Q with
respect to the other parameters. The behavoir is the same for max-stable processes.



Chapter 4. Computational aspects of the risk measures 60

Figure 4.7: (a) shows the behavior of Q(h, ν) with respect to mixing parameter a, the
power coefficient ν, the correlation lengths θX , θY , and truncated parameters rX ,rY .
Five non-negative correlation functions (exponential, Gaussian, spherical, cubic and
Matérn with κ = 1) have been examined. For a = 0.5, h = 0.25, ν = 0.2, θX = 0.1,
θY = 0.3, rX = 0.15 and rY = 0.35, the graphs (a),(b),(c),(d),(e) and (f) show the
behavior of Q(·, ·) with respect to the following: (a) the mixing parameter a; (b) the
power coefficient ν; (c) the truncated parameter rX ; (d) the truncated parameter rY ;
(f) the correlation length θX ; (e) the correlation length θY .

4.2.2 Numerical computation of R1(A,Dν)

In this study, we have computed R1(A,Dν) for different max-stable processes X,
inverse max-stable processes Y and max-mixture processes Z. We considered X
a TEG with parameters rX and θX , Y a Smith process with σ2

Y . The process Z
is max-mixture between X and Y . Max-stable and inverse max-stable models are
achieved for a = 1 and a = 0, respectively. We compute R1(A,Dν) using (3.2.3)
and (3.2.5), i.e. a three-dimensional integration. For these models, the reduction to
a one-dimensional integration does not seem possible. We shall compare this com-
puted value with the Monte Carlo estimation obtained by simulating the process
Z. In this simulation study, the TEG has the following parameters: rX = 0.25,
non-negative exponential correlation function with θX = 0.20. The inverse max-
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stable Y is given by a Smith max-stable process Y ′ with σ2
Y ′ = 1. The process Z

is simulated with n = 50 locations, uniformly distributed in the square A = [0, 1]2.
We set the power coefficient ν := {0.05, 0.15, 0.25, 0.35, 0.40} and mixing parameter
a := {0, 0.25, 0.5, 0.75, 1}.

The intuitive Monte-Carlo computation (M1) is obtained by the same manner in
risk measure for the Gaussian. Boxplots in Figure 4.8. represent the relative er-
rors over 100 (M1) simulations with respect to the three-dimensional integration.
It shows that risk measure is hardly estimated by Monte Carlo for ν greater than
0.30. Recall that in the three-dimensional integration, we used (3.2.5). Using (3.2.4)
creates numerical issues when ν approaches 0.4.

Figure 4.8: The boxplots represent the relative errors of the Monte Carlo estima-
tion of Var(L(A,Dν

Z)) with respect to the three-dimensional integration for a dif-
ferent power coefficient ν := {0.05, 0.15, 0.25, 0.35, 0.40} and a mixing parameter
a := {0, 0.25, 0.5, 0.75, 1} with parameters rX = 0.25 and θX = 0.20 corresponding
to max-stable X and with σ2 = 1 corresponding to Y over a square A = [0, 1]2.
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4.2.3 Behavior of R1(λA,Dν)

We are going to study the behavior of R1(λA,Dν) with respect to λ for A = [0, 1]2,
a square and several extreme models with fixed h = 0.3 and ν = 0.20. Concerning
the max-stable X, we considered two models: the first one is TEG with r = 0.25
and non-negative exponential correlation function with correlation length θ = 0.20.
The second one is Smith with σ2 = 0.6. The same models with the same parameters
are studied for inverse max-stable processes. Figure 4.9 shows that R1(λA,Dν

W ), for

Figure 4.9: The graphs represent the behavior of R1(λA,Dν
X) with respect to λ for

ν = 0.20, a square A = [0, 1]2 and the corresponding relation to tail and lower tail
dependence coefficients. Four models are considered: (a) TEG model with truncated
parameter rX = 0.25 and exponential correlation function with correlation length
θX = 0.20; (b) inverse TEG max-stable with the same parameters as in (a); (c)
Smith max-stable process with σ2 = 0.6; (d) inverse Smith max-stable process with
the same parameters as in (c). Finally, the graphs (1), (2), (3) and (4) represent the
tail and lower tail dependence coefficients corresponding to each model receptively;
h = 0.3.

each same max-stable models X and inverse max-stable Y the behaviors are very
similar; the difference resides in the fact that X is riskier than Y . Their behavior also
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mimics the one of χ(h) in the max-stable case, or χ(h) in the inverse max-stable case.

For max-mixture models, we evaluated R1(λA,Dν
Z) with respect to λ and mixing

parameter a. We considered two models:

• MM1: X is TEG with the same setting in TEG max-stable above and Y is
inverse Smith with σ2

Y = 0.8.

• MM2: X is TEG max-stable with the same in MM1 and Y is inverse TEG with
rY = 0.45 and non-negative exponential correlation function with correlation
length θ = 0.40.

Figure 4.10.(a) shows the behavior of R1(λA,Dν
Z) for the max-mixture model MM1.

It shows the relative height value for R1(λA,Dν
Z) up to 0.3λ < 2rX and the amount

of the risk converge to zero for all 0.3λ ≥ 2rX with speed decreasing dependence on
the parameter of Smith model σ2

Y with dependence structure and asymptotic depen-
dence when 0.3λ < 2rX and asymptotic independence for all 0.3λ ≥ 2rX . Figure
4.10.(b) shows the behavior of R1(λA,Dν

Z) with respect to the max-mixture model
MM2. We can see the same behavior of asymptotic dependence part in MM1 when
0.3λ < 2rX , asymptotic independence when 2rX ≤ 0.3λ < 2rY and independence for
all 0.3λ ≥ 2rY .
The fact that the rupture at 2rY is low implies that this parameter would certainly
be difficult to estimate on data. Combining the graphs (1) and (2) with (I) and (II)
respectively results in the same behavior of the risk measure in graphs (a) and (b).
This is why we propose dependence measures in the next chapter, they combine these
dependence structures. Figures 4.11.(a) and (b) shows the behavior of R1(λA,Dν

Z)
with respect to a.



Chapter 4. Computational aspects of the risk measures 64

Figure 4.10: shows the behavior of R1(λA,Dν
Z), χ(h) and χ(h) for two max-mixture

models.

Figure 4.11: shows the behavior of R1(λA,Dν
Z) with respect to mixing parameter a

for two max-mixture models : (a) MM1 model; (b) MM2 model.



Chapter 5

Estimation parameters of spatial
max-mixture model

In this chapter, we propose to estimate the parameters of max-mixture processes by
minimization of the least squares F -madogram error (LS-madogram). We begin by
recalling the definition of the F -madogram and calculate it for max-mixture spatial
processes. Then, we prove that LS-madogram leads to consistent estimation of the
parameters, provided that they are identified by the F -madogram. A simulation
study is conducted in order to study the estimation performance and to compare
LS-madogram estimation with the maximization of the composite likelihood. This
is an alternative approach based on least squares for χ(h, u) and χ(h, u); the results
were convincing (see the Appendix B).

5.1 F -madogram for max-mixture spatial process
In extreme value theory and therefore for spatial extremes, one of the main concerns
is to find a dependence measure that can quantify the dependences between loca-
tions. Many authors have proposed several such measures, especially for max-stable
processes (recall Section 2.3 where we discussed deeply on these tools).
The χ and χ dependence measures are designed to quantify asymptotic dependence
and asymptotic independence respectively. Max-mixture processes have been intro-
duced in order to provide both behaviors. We are then faced with the question of
finding an adapted tool which would give information on more than one dependence
structure. Recall ([9] and Proposition 2.3) that we have for a max-mixture process:

χ(h) = a(2−Θ(h))

and
χ̄(h) = 1[h∗<h](h) + (2η(h)− 1)1[h∗≥h),

65



Chapter 5. Estimation parameters of spatial max-mixture model 66

where h∗ = inf{h,Θ(h) �= 0}, Θ is the extremal coefficient of the max-stable part
and η is the tail dependence coefficient of the asymptotic independence part.
In [24], the F -madogram has been introduced for max-stable processes. There exists
several definitions of madograms. For example, in [53], the λ-madogram is considered
in order to take into account the dependence information from the exponent mea-
sure Vh(u, v) when u �= v. This λ-madogram has been extended in [33] to evaluate
the dependence between two observations located in two disjoint regions in R

2. [36]
adopted an F -madogram suitable for asymptotic independence instead of asymptotic
dependence only. Finally, [7] used F-madogram as a test statistic for asymptotic in-
dependence bivariate maxima.

The F -madogram is defined in Definition 2.14. Below, we calculate νF (h) for a
max-mixture process. It appears that contrary to χ and χ, it combines the parame-
ters coming from the AD and the AI parts.

Recall that for a stationary process Z with distribution function F , the F -madogram
is defined as

νF (h) =
1

2
E|F (Z(s))− F (Z(s+ h))|.

We have νF (h) ∈ [0, 1
6
] and νF (h) = 0 if Z(s) and Z(s + h) are co-monotonic.

νF (h) = 1
6

if Z(s) and Z(s + h) are independent (this result may be found in [24]
and we give the proof below - Lemma 5.2 - for completeness).

Proposition 5.1. Let Z be a max-mixture process, with mixing coefficient a ∈ [0, 1].
Let X be its max-stable part with extremal coefficient Θ(h). Let Y be its inverse
max-stable part with tail dependence coefficient η(h). Then, the F -madogram of Z is

νF (h) =

a(Θ(h)− 1)

a(Θ(h)− 1) + 2
− aΘ(h)− 1

2aΘ(h) + 2
− 1/η(h)

aΘ(h) + (1− a)/η(h) + 1
β

(
aΘ(h) + 1

(1− a)
, 1/η(h)

)
,

(5.1.1)

where β is beta function.

Proof. We have

νF (h) =
1

2
E|F (Z(s))− F (Z(s+ h))|. (5.1.2)

The equality |a− b|/2 = max(a, b)− (a+ b)/2 leads to

νF (h) = E
[
max

(
F (Z(s)), F (Z(s+ h))

)]
− E
[
F (Z(s))

]
. (5.1.3)
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Let M(h) = max
(
F (Z(s)), F (Z(s+ h))

)
, we have:

P
(
M(h) ≤ u

)
=P
(
max

(
F (Z(s)), F (Z(s+ h))

)
≤ u
)

=P
(
F (Z(s)) ≤ u, F (Z(s+ h)) ≤ u

)
=P
(
Z(s) ≤ F−1(u), Z(s+ h) ≤ F−1(u)

)
.

(5.1.4)

The probability distribution function of the max-mixture spatial process Z is given
in Equation (2.3.37) and leads to

P
(
M(h) ≤ u

)
=e

− aΘ(h)

F−1(u)

[
2e

− (1−a)

F−1(u) − 1 + e
− 1

η(h)g(F−1(h),a)

]
=uaΘ(h)

[
2u(1−a) − 1 +

(
1− u(1−a)

)1/η(h)]
, u ∈ [0, 1].

We deduce that the density of M(h) satisfies the following:

fM(h)(u) = (2a(Θ(h)−1)+2)ua(Θ(h)−1)−aΘ(h)uaΘ(h)−1+aΘ(h)uaΘ(h)−1
(
1−u(1−a)

)1/η(h)
− (1− a)

η(h)
ua(Θ(h)−1)

(
1− u(1−a))

) 1
η(h)

−1
. (5.1.5)

Therefore,

E[M(h)] =

∫ 1

0

ufM(h)(u)du =
2a(Θ(h)− 1) + 2

a(Θ(h)− 1) + 2
− aΘ(h)

aΘ(h) + 1
+ A1 − A2

where,

A1 := aΘ(h)

∫ 1

0

uaΘ(h)
(
1− u(1−a)

)1/η(h)
du

and

A2 :=
1

η(h)
β

(
aΘ(h) + 1

(1− a)
+ 1, 1/η(h)

)
=
γΓ(α + 1)Γ(γ)

Γ(α + γ + 1)
.

Let t = u(1−a), this leads to

A1 :=
aΘ(h)

(1− a)

∫ 1

0

ta(Θ(h)+1)/(1−a)(1− t)1/η(h)dt.

Using the beta function β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, we get

A1 :=
aΘ(h)

(1− a)
β

(
aΘ(h) + 1

(1− a)
,

1

η(h)
+ 1

)
.



Chapter 5. Estimation parameters of spatial max-mixture model 68

It is well-known that β(x, y) = Γ(x)Γ(y)
Γ(x+y)

and Γ(x + 1) = xΓ(x). Let us denote α =
aΘ(h)+1
(1−a)

and γ = 1
η(h)

, we have

A1 =

[
α− 1

(1− a)

]
Γ(α)Γ(γ + 1)

Γ(α + γ + 1)

=
γΓ(α + 1)Γ(γ)

Γ(α + γ + 1)
− γ

(1− a)(α + γ)

Γ(α)Γ(γ)

Γ(α + γ)

=
γΓ(α + 1)Γ(γ)

Γ(α + γ + 1)
− γ

(1− a)(α + γ)
β
(
α, γ
)

In the same way, we can get A2:

A2 =
1

η(h)
β

(
aΘ(h) + 1

(1− a)
+ 1, 1/η(h)

)
=
γΓ(α + 1)Γ(γ)

Γ(α + γ + 1)

=
αγ

α + γ
β(α, γ).

Finally, we get:

E[M(h)] =
2a(Θ(h)− 1) + 2

a(Θ(h)− 1) + 2
− aΘ(h)

aΘ(h) + 1
−

β

(
aΘ(h)+1
(1−a)

, 1/η(h)

)
η(h)(1− a)

[
aΘ(h)+1
(1−a)

+ (1/η(h))

] .
Recall that E(F (Z(s))) = 1

2
because F (Z(s)) ∼ U([0, 1]) and return to equation

(5.1.3) to get equation (5.1.1).

Lemma 5.2. Let Z be a stationary PQD (positive quadrant dependence) process. If
Z(s) and Z(s + h) are perfectly dependent (or co-monotonic), then νF (h) = 0. If
Z(s) and Z(s+ h) are independent, then νF (h) = 1

6
.

Proof. We have for any PQD random variables X and Y with respective margins F
and G and joint distribution function H the following inequality.

F (x)G(y) ≤ H(x, y) ≤ min{F (x), G(y)} (5.1.6)

where the lower and upper bounds are reached respectively for complete indepen-
dence and complete dependence (see [59]).
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For any non-negative random variable X, we have E[X] =

∫
R+

[1 − F (x)]dx. Then,

in the independence case:

P
(
M(h) ≤ u

)
=P
(
X(s) ≤ F−1(u), X(s+ h) ≤ F−1(u)

)
=P
(
X(s) ≤ F−1(u)

)
P
(
X(s+ h) ≤ F−1(u)

)
=u2.

(5.1.7)

Therefore,

νF
U (h) =E

[
M(h)

]
− E
[
F (X(s))

]
=

∫ 1

0

[1− u2]du− 1

2
= 1/6

(5.1.8)

In the complete dependence case, we have

P
(
M(h) ≤ u

)
=P
(
X(s) ≤ F−1(u), X(s+ h) ≤ F−1(u)

)
=min

[
P
(
X(s) ≤ F−1(u)

)
,P
(
X(s+ h) ≤ F−1(u)

)]
=P
(
X(s) ≤ F−1(u)

)
= u.

(5.1.9)

Therefore,

νF (h) =E
[
M(h)

]
− E
[
F (X(s))

]
=

∫ 1

0

[1− u]du− 1

2
= 0.

(5.1.10)

The bounds of νF (h) follow:
0 ≤ νF (h) ≤ 1/6 (5.1.11)

with bounds reached for complete dependence and independence, respectively.

In the particular cases where a = 1 or a = 0, Proposition 5.1 reduces to known results
for max-stable processes (see [24]) and inverse max-stable processes (see [36]).

Corollary 5.3. The F -madogram for a max-stable spatial process is given by

2νF (h) =
Θ(h)− 1

Θ(h) + 1
. (5.1.12)

The F -madogram of an asymptotically independent spatial process is given by

2νF (h) =
1− η(h)

1 + η(h)
(5.1.13)
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Proof. The F -madogram νF (h) for a max-stable process is easily obtained by letting
a go to 1 in Equation (5.1.1):

νF (h) =
Θ(h)− 1

2(Θ(h) + 1)
− 1/η(h)

Θ(h) + 1
lim
a→1

β

(
aΘ(h) + 1

(1− a)
, 1/η(h)

)
.

We have, as x goes to infinity and for fixed y, β(x, y) ∼ Γ(y)x−y. Therefore, we
obtain equation (5.1.12).
The F -madogram for asymptotically independent processes is obtained by letting a
go to 0 in equation (5.1.1):

νF (h) =
1

2
− 1

η(h) + 1
β

(
1, 1/η(h)

)
=
1

2
− 1

(η(h) + 1)

Γ(1/η(h))

Γ( 1
η(h)

+ 1)

=
1

2
− η(h)

η(h) + 1
.

(5.1.14)

Hence, the result.

5.2 Model inference
This section is devoted to the parametric inference for max-mixture processes. We
begin with the presentation of the maximum composite likelihood estimation, then
we present the least squares madogram. Finally, we shall compare these two methods.

5.2.1 Parametric Estimation using Composite Likelihood

Consider (Zk(s1), . . . , Z
k(sD)), k = 1, . . . , N , be N independent copies of a spatial

process (Z(s))s∈S, observed at D locations s1, . . . , sD. A standard way to perform
parameter estimation is by maximization of the likelihood. This method requires
the computation of the likelihood of (Z(s1), . . . , Z(sD)). Even if it is theoretically
available, it is not computationally tractable for D greater than 2 or 3 (see [27, 67]).
Indeed, the distribution function is given by (2.3.4) and the density function would
be obtained by the chain rule derivation which leads to a huge amount of terms.

Therefore, the composite likelihood inference will be a more appropriate approach
for the estimation [49, 70]. Asymptotic properties of this estimator has been proved
in [25]. This approach has been applied successfully to spatial max-stable processes
by [26] and [55] and is also used to identify the parameters of data exceedances over
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a large threshold, for example, [8] and [67].

Our interest in this study lies in max-mixture models; two studies [9] and [73] high-
light on these models; therefore, we will take the composite likelihood proposed by
[9] as the control for evaluating the performance of the proposed non-linear least
square estimator, which will be introduced in the next section.

If the pairwise density of Z can be computed and its parameter ψ is identifiable,
then it is possible to estimate ψ by maximizing the pairwise weighted log likelihood.
For simplicity, we denote Zk

i for Zk(si). Let

ψ̂L = max
ψ

P(ψ),

where

P(ψ) =
N∑
k=1

D−1∑
i=1

D∑
j>i

wij logL (Zk
i , Z

k
j ;ψ) =:

N∑
k=1

Pk(ψ). (5.2.1)

where L is the likelihood of the pair (Zk
i , Z

k
j ) and wi,j ≥ 0 is the weight that specifies

the contribution for each pair. In [8], it is suggested to take wi,j = 0 for any pair
separated by distance over a specific value δ and wi,j = 1 otherwise.

In [21], it is suggested to consider a censor approach of the likelihood, taking into
account a threshold. Let G(·, ·) be a pairwise distribution function and consider the
thresholds u1 and u2; the likelihood contribution is

L (z1, z2;ψ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
12G(z1, z2;ψ) if z1 > u1, z2 > u2,

∂1G(z1, z2;ψ) if z1 > u1, z2 ≤ u2,

∂2G(z1, z2;ψ) if z1 ≤ u1, z2 > u2,

G(z1, z2;ψ) if z1 ≤ u1, z2 ≤ u2,

where ∂i is the differentiation with respect to the variable zi. In [73], the censored
likelihood is used in order to improve the estimation of the parameters related to
asymptotic independence. This censored approach was also applied by [9] for the
estimation of parameters of max-mixture processes. In this paper, the replications
Z1, . . . , ZN of Z are assumed to be α-mixing rather than independent. We denote
generically by ψ the parameters of the model. In [9], it is proved, under some
smoothness assumptions on the composite likelihood, that the composite maximum
likelihood estimator ψ̂L for max-mixture processes is asymptotically normal as N
goes to infinity with asymptotic variance

G (ψ) = J (ψ)[K(ψ)]−1J (ψ),
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where J (ψ) = E[−∇2P(ψ)], K(ψ) = var(∇P(ψ)). The matrix G (ψ) is called the
Godambe information matrix (see [9] and theorem 3.4.7 in [37]).
An estimator Ĵ of J (ψ) is obtained from the Hessian matrix computed in the opti-
mization algorithm. The variability matrix K(ψ)
has to be estimated too. In our context, we have independent replications of Z and
N is large compared with respect to the dimension of ψ. Then, we can use the outer
product of the estimation of ψ̂. Let

K̂(ψ) = N−1

N∑
k=1

∇Pk(ψ̂)∇Pk(ψ̂)
′

or by Monte Carlo simulation with explicit formula of Pk(ψ) (see section 5. in [70]).
In the case of samples of Z satisfying the α-mixing property, the estimation of K(ψ)
can be done using a subsampling technique introduced by [32]; this was used in [9].

Finally, model selection can be done by using the composite likelihood information
criterion [71]:

CLIC = −2

[
P(ψ̂)− tr(Ĵ −1K̂)

]
.

Considering several max-stable models, the one that has the smallest CLIC will be
chosen. In [67], the criterion CLIC∗ = (D − 1)−1CLIC is proposed. It is close to
Akaike information criterion (AIC).

5.2.2 Semi-parametric estimation using NLS of F-madogram

In this section, we shall define the non-linear least square estimation procedure of the
parameters set ψ corresponding to the max-mixture model Z using the F -madogram.
This procedure can be considered as an alternative method to the composite likeli-
hood method.
Consider Zt, t = 1, . . . , T as copies of an isotropic max-mixture process Z with unit
Fréchet marginal laws (F denotes the distribution function of a unit Fréchet law). It
may be independent copies for example, if the data is recorded yearly (see [53]) or we
shall consider that (Zt)t=1,... satisfies an α-mixing property ([9]). Let H be a finite
subset of S, J(x, y) = 1

2
|x− y| and Yh,t = J

(
F (Zt(s)), F (Zt(s+ h))

)
, t = 1, .., T and

h ∈ H. Therefore, for t = 1, . . . , T , the vectors (Yh,t)h∈H have the same law and are
considered either independent or α-mixing (in t). The main motivation for using the
F-madogram in estimation is that it contains the dependence structure information
for a fixed h of Yh,t (see section 3.2 in [7]).
In what follows, we make the assumption that the vectors (Yh,t)h∈H are i.i.d. Note
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that from the definition of the F -madogram, we have E[Yt,h] = νF (h, ψ) where
νF (h, ψ) is the F -madogram of Z with parameters ψ defined in (2.14). If Z has
an unknown true parameter ψ0 on a compact set Ψ ⊂ R

d, we rewrite

Yh,t = νF (h, ψ0) + εh,t. (5.2.2)

The vectors (εh,t)h∈H are i.i.d errors with E[εh,t] = 0 and Var(εh,t) = σ2
h > 0 is finite

and unknown.
Let

L(ψ) =
∑
h∈H

1

T

∑
t=1,...,T

(
Yt,h − νF (h, ψ)

)2 (5.2.3)

Any vector ψ̂T in Ψ which minimizes L(ψ) will be called a least square estimate of
ψ0.

ψ̂T ∈ argmin
ψ∈Ψ

L(ψ). (5.2.4)

Theorem 5.4. Assume that Ψ ⊂ R
d is compact and that ψ → νF (h, ψ) is continuous

for all h ∈ H. We assume that the vectors (Yh,t)h∈H are i.i.d. Let (ψ̂T )T∈N be least
square estimators of ψ0; then, any limit point (as T goes to infinity) ψ of (ψ̂T )T∈N
satisfies ν(h, ψ) = ν(h, ψ0) for all h ∈ H.

Remark 5. Of course, if ψ � (ν(h, ψ))h∈H is injective, then theorem 5.4 implies
that the least square estimation is consistent, i.e. ψT → ψ0 a.s. as T goes to infinity.
In the examples considered below, it seems that the injectivity is satisfied provided
|H| ≥ d, but we were unable to prove it.

Proof. We follow the proof of Theorem II.5.1 in [5]. From (5.2.2), we have, for all
ψ ∈ Ψ

L(ψ) =
∑
h∈H

1

T

∑
t=1,...,T

(
νF (h, ψ0) + εh,t − νF (h, ψ)

)2
=
∑
h∈H

(
νF (h, ψ0)− νF (h, ψ)

)2
+
2

T

∑
h∈H

(
νF (h, ψ0)− νF (h, ψ)

)( ∑
t=1,...,T

εh,t

)
+
∑
h∈H

1

T

∑
t=1,...,T

ε2h,t.

From the law of large numbers, we have

1

T

∑
h∈H

∑
t=1,...,T

ε2h,t →
∑
h∈H

σ2
h a.s. as T → ∞
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and for any h ∈ H,
1

T

∑
t=1,...,T

εh,t → 0 a.s.

Therefore,

L(ψ) →
∑
h∈H

σ2
h +
∑
h∈H

(
νF (h, ψ0)− νF (h, ψ)

)2
a.s. as T → ∞.

Take a sequence (ψ̂T )T∈N of least square estimators, taking if necessary a subsequence,
we may assume that it converges to some ψ∗ ∈ Ψ. Using the continuity of ψ �
νF (h, ψ), we have

L(ψ̂T ) →
∑
h∈H

σ2
h +
∑
h∈H

(
νF (h, ψ0)− νF (h, ψ∗)

)2
a.s. as T → ∞.

Since ψ̂T is a least square estimator, L(ψ̂T ) ≤ L(ψ0) →
∑
h∈H

σ2
h. It follows that

∑
h∈H

(
νF (h, ψ0)− νF (h, ψ∗)

)2
= 0

and thus ν(h, ψ∗) = ν(h, ψ0) for all h ∈ H.

The asymptotic normality of the least square estimators should also be obtained by
following, e.g., [16] and using the asymptotic normality of the F -madogram obtained
in [24]. Nevertheless, the calculation of the asymptotic variance will require to calcu-
late the covariances between νF (h1, ψ) and νF (h2, ψ), which is not straightforward.

5.3 Simulation study
This section is devoted to some simulations in order to evaluate the performance of
the least square estimator and to compare it with the maximum composite likelihood
estimator.

5.3.1 Analysis the behavior of νF (h)

In order to have a comprehensive view of the behavior of νF (h), we have plotted in
Figure 5.1. below h � νF (h). We have considered two max-mixture models MM1
and MM2 described below.
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MM1 is a max-mixture between a TEG max-stable process X with exponential
correlation function ρ(h), correlation lengths θX and B is chosen as a disk with
fixed radius rX ; and an inverse Smith max-stable process Y with covariance
matrix Σ = σY Id. The model parameters are given by the parameter vector
ψ = (a, rX , θX , σY )

T ∈ [0, 1] × [0,∞) × [0,∞) × [0,∞). In this model, the
pairwise max-mixture processes (Z(s), Z(s+h)) are asymptotically dependent
at distance h up to 2rX and asymptotically independent for all h ≥ 2rX ;

MM2 is a max-mixture between a TEG max-stable process X and an inverse TEG
max-stable process Y . Each of these two processes has exponential correlation
function with different correlation lengths θX and θY and different fixed radius
rX and rY , respectively. The parameter vector is ψ = (a, rX , θX , rY , θY )

T ∈
[0, 1] × [0,∞) × [0,∞) × [0,∞) × [0,∞). In this model, the pairwise max-
mixture processes (Z(s), Z(s+ h)) are asymptotically dependent at distance h
up to 2rX , asymptotically independent for 2rX ≥ h < 2rY and independent for
all h ≥ 2rY .

Figure 5.1. shows the behavior of the F -madogram for the models MM1 and MM2.
For MM1, we have chosen a = 0.5, rX = 0.25 , θX = 0.2 and σY = 0.6. For MM2, we
have chosen the same parameters as in MM1 for a and X and we have set rY = 1.35
and θY = 0.8. In this Figure, νF (h) has two sill one corresponding to X and the
second corresponding to Y . This is completely in accordance with the nested var-
iogram concept as presented in [72]. In data analysis, these two levels of the sill
gives the researcher a hint about whether there is more than one spatial dependence
structure in the data. Therefore, before the estimation procedure, it is appropriate
to investigate if there are more than one dependence structures.
Figure 5.1. also shows that the behavior of νF (h) is the same as the risk measure
R1(A,Dν

Z) in Figure(4.2.3)(a) and (b) corresponding to MM2 and MM1, respectively.
Therefore, it is the same behavior for the covariance function Q(h, ν) corresponding
to the same models.

Finally, we shall see that the fact that the F -madogram expresses with all the model
parameters is useful for the parameter estimation. On the contrary, when one con-
siders the tail dependence function χ(h), it only envolves the parameters from the
max-stable part. The lower tail dependence function χ(h) only envolves the param-
eters from the inverse max-stable part.

5.3.2 Comparison of the estimation performance of ψ̂T and ψ̂L

Recall that ψ̂T denotes the least square estimator of the parameter vector ψ and ψ̂L

denotes the composite likelihood estimator.
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Figure 5.1: h� νF (h) for the max-mixture processes models MM1 and MM2. The
model MM1 has correlation function ρ(h) = exp(−h/θX), rX = 0.25, θX = 0.2 and
σY = 0.6. The model MM2 has correlation function ρX(h) = exp(−h/θX) for X and
ρY (h) = exp(−h/θY ) for Y with different correlation lengths θX and θY . The fixed
radiuses rX and rY are plotted in the figure. For the two models, we set a = 0.5.

Outline the estimation experiment

In order to evaluate the performance of the non-linear least square estimator ψ̂T as
defined in (5.1.1), we have generated data from the two models, MM1 and MM2
above. The estimator ψ̂T has been compared with true one ψ0 and also with param-
eters estimated by composite likelihood estimator ψ̂L proposed in [9] for the same
data. For MM1, we considered 50 sites randomly and uniformly distributed in the
square A = [0, 1]2. Since the dependence structure of MM2 is more complex, we have
considered 150 sites randomly and uniformly distributed in the square A = [0, 3]2.
For both models, the TEG X has parameters rX = 0.25, θX = 0.20. For inverse
TEG Y , we set rY = 1.3, θY = 0.9.
For the two models MM1 and MM2, we have generated T = 1000 i.i.d observations
for each site. These experiments replicated J = 100 time. We have considered
several mixing parameters: a := {0, 0.25, 0.5, 0.75, 1}. For the composite likelihood
estimator ψ̂L, we used the censored procedure with the threshold u = 0.9 of empirical
quantile of data. The fitting of ψ̂L was done using the code which was used in [9]
with some modifications, since the MM2 model was not implemented.
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Results on the parameters estimate

The following boxplots represent the error of estimated parameters, that is (ψ̂T −ψ0)
and (ψ̂L−ψ0). Figures 5.2 and 5.3. display the performance of estimators for models
MM1 and MM2, respectively. Generally, the estimators above worked well, although
the variability in some estimates were relatively large, especially for the asymptotic
independence parameters. It also shows some bias in the estimation of asymptotic
independence model parameters.

It is well known that asymptotic independence is difficult to estimate, because the
dependence between the process locations may decay very slowly when the distance
increases (see [27]). Therefore, the estimation accuracy of the parameters is very
sensitive, especially when dealing with more than one dependence structures. On
one other hand, the fitting of α(h) which appears in TEG models in (2.3.25), is deli-
cate and might quite get different estimates efficiency results with different data [26].
Furthermore, the dependence measures does not have all dependence information
[24].

To compare the estimation efficiency between the estimators ψ̂T and ψ̂L, the root
mean square error (RMSE) was calculated for each estimated parameter based on
the J = 100 experiments [75, 76]: ψ̂j denotes the estimation (either least square or
composite likelihood estimation) on the jth experiment.

RMSE =

[
J−1

J∑
j=1

(ψ̂j − ψ)2
]1/2

, (5.3.1)

The barplots in Figures 5.4 and 5.5 display the RMSE for each parameter of MM1
and MM2 models. We see on these barplots that when a is close to 0 (a = 0; 0.25),
the estimator ψ̂T over-performs the estimator ψ̂L and vice versa when a ∈ {0.75, 1}.
For a = 0.5 the performance of the two estimators seems relatively equivalent.
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Figure 5.2: Boxplots display (ψ̂ − ψ) of estimated parameters vector ψ̂ =
(â, r̂X , θ̂X , σ̂Y )

T for the MM1 model by the two estimators ψ̂T and ψ̂L. The figures in
the first row and from left to right concern the estimator ψ̂T for a ∈ {0, 0.2, 0.75, 1},
the second row concerns ψ̂L. We have set, rX = 0.25, θX = 0.20 and σY = 0.6 over
a square A = [0, 1]2.

Figure 5.3: Boxplots display (ψ̂ − ψ) of estimated parameters vector ψ̂ =
(â, r̂X , θ̂X , r̂Y , θ̂Y )

T for MM2 model by the two estimators ψ̂T and ψ̂L. The figures in
the first row and from left to right concern the estimator ψ̂T for a ∈ {0, 0.2, 0.75, 1},
the second row concerns ψ̂L. We have set, rX = 0.25, θX = 0.20, rY = 1.3 and
θY = 0.9 over a square A = [0, 3]2.
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Figure 5.4: Barplots display the RMSE of ψ̂ for each estimated parameters ψ̂ =
(â, r̂X , θ̂X , σ̂Y )

T for MM1 and the corresponding two estimators ψ̂T and ψ̂L. The
bars in the first row and from left to right represent the RMSE of the estimator ψ̂T

when a := {0, 0.2, 0.75, 1}, respectively and the same for the second row for ψ̂L. We
set rX = 0.25, θX = 0.20 and σY = 0.6 over a square A = [0, 1]2.

Figure 5.5: Barplots display the RMSE of ψ̂ for each estimated parameters ψ̂ =
(â, r̂X , θ̂X , r̂Y , θ̂Y )

T for MM2 and the corresponding two estimators ψ̂T and ψ̂L. The
bars in the first row and from left to right represent the RMSE of the estimator ψ̂T

when a := {0, 0.2, 0.75, 1}, respectively and the same for the second row for ψ̂L. We
set rX = 0.25, θX = 0.20, rY = 1.3 and θY = 0.9 over a square A = [0, 3]2.





Chapter 6

Conclusions

6.1 Conclusion Remarks
We have proposed a spatial risk measure R(A,D+

X,u) for Gaussian spatial process
and developed the study of the risk measure R(A,Dν

X) for extreme spatial processes
allowing asymptotic dependence and asymptotic independence. In addition, explicit
formula of R(A,Dν

X) for TEG max-stable process has been provided. All these
risk measures are sensitive with spatial dependence structure over a region. Such
risk measures could calculate any bounded region but we took the benefit from the
isotropic property of the processes to reduce the dimensional integration for some
specific bounded region shapes, such as disk and square.
For asymptotic/ complete independence spatial processes, we showed by Corollaries
3.6 and 3.12 that we have only the loss magnitude R0(A,DX) to assess the risks, when
the regions under study is big enough to make R1(A,DX) tends or equal to 0. In such
a case, we can conclude that the corresponding damage functions (DX(·),D(· + h))
belong to a not compact region with spatial independence.
We showed that some axioms are valid for any stationary processes. Properties such
as anti-monotonicity is verified for isotropic Gaussian processes and isotropic sta-
tionary max-mixture processes (the same result holds for some max-stable processes,
see [44]).
We emphasized the behavior of these risk measures with respect to the various pa-
rameters by a simulation study. It shows that the risk measures R(A,D+

X,u) and
R(A,Dν

X) are usually good tools in order to assess the risks, comparing to the intu-
itive Monte-Carlo computation.
With respect to the covariance damage function G(h, u) for Gaussian process, there
are some difficulties in approximating the covariance of damage functions (D+

X,u(·),
D+

X,u(·+h)), when the corresponding threshold u is high, even when a strong depen-
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dence exists. The justification of this difficulty is that there is not enough data over u
in order to approximate G. We implemented R(A,D+

Y,log u) on the air pollution case
study, and this example showed the interest of using the variance of L(A,D+

Y,log u)
as a spatial risk measure in concrete cases. With respect to R1(λA,Dν

X) for max-
stable or inverse max-stable processes, we showed that their behavior also mimics
the one of χ(h) in the max-stable case, or χ(h) in the inverse max-stable case. For
max-mixture, the behavior of R1(λA,Dν

X) mimics the proposed F-madogram νF (h).

We have also provided F-madogram νF (h) for the max-mixture process that can
detect more than one dependence structure in a model (i.e. asymptotic dependence
and asymptotic independence). The F-madogram presents the advantage of having
both extremal coefficient Θ(h) of the max-stable process and η(h) of the inverse
max-stable in its expression. When a = 1, νF (h) is the F-madogram corresponding
to a max-stable process introduced by [24] and so switches to Θ(h); when a = 0,
νF (h) represents the F-madogram of an inverse max-stable and switches to η(h). We
defined a semi-parametric estimation procedure using F-madogram νF (h) as an al-
ternative to composite likelihood. The simulation study showed that the estimation
procedure based on νF (h) performs better than the composite likelihood procedure
when the model is near to asymptotic independence.

6.2 Future work
Anisotropy is often observed in environmental phenomenon, especially when the re-
gions are very large; but while isotropic models have been widely studied, only few
studies have been treated as anisotropic case. For example, anisotropic variogram
has been proposed. This variogram is based on coordinate transformation accord-
ing to the type of anisotropy (geometric or zonal) (see [50] and [31]). In a case
study in Middle Europan westerly winds data, the semivariogram was defined as a
dependence structure of max-stable process in order to summarize the dependence
parameters ([17]). While [13] inserted the geometric or zonal anisotropy into a spa-
tial isotropic models, this procedure was adopted by [17] to propose an anisotropic
Brown-Resnick max-stable model. Based on [50], our suggestion is to include the
concept of anisotropy, such as the coordinate transformation of the risk measures
and also in F-madogram so to be suitable for semi-parametric estimation proce-
dure for anisotropic spatial processes. Finally, we could develop the risk measures
in order to take into account the time dependence (spatio-temporal risk measures)
and also to adapt the F-madogram in a spatio-temporal case and then develop the
semi-parametric estimation procedure.
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A.1 Moments of truncated bivariate Gaussian dis-
tribution

We shall present the results giving the moments of a truncated stantard bivariate
Gaussian random variable proved by [60]. Let 

(
u, v, w

)
be total probability of the

truncated bivariate standard Gaussian distribution with correlation function w, such
that


(
u, v, w

)
=

1

2π(1− w2)1/2

∫ ∞

u

∫ ∞

v

e

{
−1

2(1−w2)
[x2−2wxy+y2]

}
dxdy, (A.1.1)

where u and v are the truncated points corresponding to x and y respectively. Let
u = v, then the first moment m10 and the product moment m11 respectively are

m10 =
(1 + ρ)ϕ(u)


(
u, u, ρ

) Φ

(
u(1− ρ)

(1− ρ2)1/2

)
(A.1.2)

and

m11 = ρ+
2ρuϕ(u)


(
u, u, ρ

)Φ( u(1− ρ)

(1− ρ2)1/2

)
+

(1− ρ2)1/2√
2π
(
u, u, ρ

)ϕ((2u2(1− ρ))1/2

(1− ρ2)1/2

)
. (A.1.3)

Proof. For sake of simplicity, we will only consider the case u = v. Recalling that

m10 =
1

2π(1− ρ2)1/2
(
u, u, w

) ∫ ∞

u

e
−1

2(1−ρ2)
y2
∫ ∞

u

xe
−1

2(1−ρ2)
(x2−2ρxy)

dxdy.

By adding and subtracting ρ2y2 in the expression (x2 − 2ρxy), we get

=
1

2π(1− ρ2)1/2
(
u, u, w

) ∫ ∞

u

e
−1
2
y2
∫ ∞

u

xe
−1

2(1−ρ2)
(x−ρy)2

dxdy.
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Let, z1 = x− ρy/(1− ρ2)1/2. We set x = z1(1−ρ2)1/2+ρy and v1 = u− ρy/(1− ρ2)1/2,
such that:


(
u, u, w

)
m10 =

1

2π(1− ρ2)1/2

∫ ∞

u

e
−1
2
y2
∫ ∞

v1

(z1(1− ρ2)1/2 + ρy)e
−1
2
z21(1− ρ2)1/2dz1dy

=
1

2π

∫ ∞

u

e
−1
2
y2
[
(1− ρ2)1/2

∫ ∞

v1

z1e
−1
2
z21dz1 + ρy

∫ ∞

v1

e
−1
2
z21dz1

]
dy

=
(1− ρ2)1/2

2π

∫ ∞

u

e
−1
2
(y2+v12)dy +

ρ

2π

∫ ∞

u

ye
−1
2
y2Q(v1)dy := A1 + A2,

(A.1.4)

where Q(t) =
∫∞
t

e−
1
2
x2
dx.

For the first term A1 in the equation (A.1.4) and by adding and subtracting ρ2u2 in
the the quantity (y2 + v21), we get

A1 =
(1− ρ2)

2π
e

−1
2
u2

Q

(
u(1− ρ)

(1− ρ2)1/2

)
= (1− ρ2)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
. (A.1.5)

By integrating by parts the second term A2, we get

A2 = ρ(1 + ρ)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
. (A.1.6)

Substituting the equations (A.1.5) and (A.1.6) in (A.1.4) we obtain:


(
u, u, w

)
m10 =(1− ρ2)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
+ ρ(1 + ρ)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
=(1 + ρ)ϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
and therefore the equation (A.1.2) satisfied.

Concerning the product moment m11, recall that

m11 =
1

2π(1− ρ2)1/2
(
u, u, w

) ∫ ∞

u

ye
−1

2(1−ρ2)
y2
∫ ∞

u

xe
−1

2(1−ρ2)
(x2−2ρxy)

dxdy.

In the same way as for m10, we get


(
u, u, w

)
m11 =

(1− ρ2)1/2

2π

∫ ∞

u

ye
−1
2
(y2+v12)dy +

ρ

2π

∫ ∞

u

y2e
−1
2
y2Q(v1)dy := A3 + A4.

(A.1.7)
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By adding and subtracting ±ρ2u2 in the quantity (y2 + v1
2) in the first term A3

and letting z2 = (y − ρu)/(1 − ρ2)1/2 then by variable change, we get for v2 =
(u(1− ρ))/(1− ρ2)1/2

A3 =
(1− ρ2)1/2

2π
e

−1
2
u2

∫ ∞

v2

(z2(1− ρ2)1/2 + ρu)e
−1
2
z22(1− ρ2)1/2dz2

=
(1− ρ2)

2π
e

−1
2
u2

[
(1− ρ2)1/2e

−1
2
v22 + ρuQ(v2)

]
=
(1− ρ2)

2π

[
(1− ρ2)1/2e

−1

2(1−ρ2)
2u2(1−ρ)

+ ρue
−1
2
u2

Q(v2)

]
.

=(1− ρ2)

[
(1− ρ2)1/2√

2π
ϕ

(
(2u2(1− ρ))1/2

(1− ρ2)1/2

)
+ ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)]
(A.1.8)

By integration by parts the second term A4 we get

A4 =ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)
+ ρ2

[
(1− ρ2)1/2√

2π
ϕ

(
(2u2(1− ρ))1/2√

1− ρ2

)
+ ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)]
+ ρ

(
u, v, ρ

)
.

(A.1.9)

Substituting equations (A.1.8) and (A.1.9) in (A.1.7), we obtain


(
u, u, w

)
m11 =(1− ρ2)

[
(1− ρ2)1/2√

2π
ϕ

(
(2u2(1− ρ))1/2

(1− ρ2)1/2
)

]
+ ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)

+ρ2
[
(1− ρ2)1/2√

2π
ϕ

(
(2u2(1− ρ))1/2

(1− ρ2)1/2

)
+ ρuϕ(u)Φ

(
u(1− ρ)

(1− ρ2)1/2

)]
+ρ
(
u, u, ρ

)
and therefore the equation (A.1.3) satisfied.

A.2 Proof Corollary 3.5
Let X be an isotropic standard Gaussian process on S ⊂ R

2 with auto-correlation
function ρ. Let A ⊂ S be either a disk or a square. The mapping λ → R1(λA,D+

X,u)
is non-increasing if and only if h → ρ(h), h > 0 is non-increasing and non-negative .
Case where A is a square.
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Proof. Recalling that

R1(λA,D+
X,u) =

∫ √
2R

h=0

fdisk(h,R)G(λh, u)dh, (A.2.1)

if the partial derivative ∂
∂λ
G(λh, u) exists and is continuous then

∂

∂λ
R1(λA,D+

X,u) =

∫ √
2R

h=0

fdisk(h,R)
∂

∂λ
G(λh, u)dh. (A.2.2)

As fsquare is a positive function of the variables of R1(λA,D+
X,u) and also of the

variables of G(λh, u). Let then study the partial derivative of G with respect to λ.

∂

∂λ
G(λh, u) = ∂

∂λ

[

(
u, u, ρ(λh)

)(
ρ(λh) + u2

)]
− ∂

∂λ

[
2uϕ(u)Φ

(
u(1− ρ(λh))

(1− ρ2(λh))1/2

)]

+
∂

∂λ

[(
1− ρ2(λh)

)1/2
ϕ2

(
u

(1 + ρ(λh))1/2

)]
:= A31 + A32 + A33

(A.2.3)

The first term in Equation (A.2.3)
In the article [34], the authors proved that the derivative of 

(
u, u, w)

)
with respect

to w is ϕ
(
u, u, w

)
and then we have

A31 =
∂

∂λ

[

(
u, u, ρ(λh)

)(
ρ(λh) + u2

)]
=hρ′(λh)ϕ(u, u, ρ(λh))(u2 + hρ(λh)) + ρ′(λh)(u, u, ρ(λh))

=hρ′(λh)
[
ϕ
(
u, u, ρ(λh)

)(
u2 + ρ(λh)

)
+ 
(
u, u, ρ(λh)

)]
.

(A.2.4)

Note that

φ
(
u, u, w

)
=

1

2π
√
1− w2

exp

{ −1

2(1− w2)

(
u2 + u2 − 2u2w

)}
=

1

2π
√
1− w2

exp

{−2u2(1− w)

2(1− w2)

}
=

1

2π
√
1− w2

exp

{ −u2

(1 + w)

}
=

1(
1− w2

)1/2φ2

(
u(

1 + w
)1/2).
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Therefore

A31 =hρ′(λh)

[
(u2 + ρ(λh))(
1− ρ2(λh)

)1/2ϕ2

(
u(

1 + ρ2(λh)
)1/2)+ 

(
u, u, ρ(λh)

)]
. (A.2.5)

The second term in Equation (A.2.3)

A32 =2uϕ(u)ϕ

(
u(1− ρ(λh))

(1− ρ2(λh))1/2

)
∂

∂λh

(
u(1− ρ(λh))

(1− ρ2(λ))1/2

)

=hρ′(λh)ϕ(u)ϕ

(
u(1− ρ(λh))

(1− ρ2(λh))1/2

)( −2u2ρ(λh)

(1 + ρ(λh))(1− ρ2(λh))1/2

)
.

(A.2.6)

Note that

φ(u)φ

(
u(1− w)

(1− w2)1/2

)
=

1√
2π

exp

{−u2

2

}
1√
2π

exp
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(1− w2)

}
=

1

2π
exp

{−u2

2

[
1 +

(1− w)

(1 + w)

]}
=

1

2π
exp

{ −u2

(1 + w)

}
=φ2

(
u(

1 + w
)1/2).

(A.2.7)

Therefore

A32 = hρ′(λh)ϕ2

(
u(

1 + ρ(λh)
)1/2)( −2u2ρ(λh)

(1 + ρ(λh))(1− ρ2(λh))1/2

)
. (A.2.8)

The third term in Equation (A.2.3)

A33 = hρ′(λh)ϕ2

(
u(

1 + ρ(λh)
)1/2)[u(1− ρ2(λh))1/2

(1 + ρ(λh))3/2
− ρ(λh)

(1− ρ2(λh))1/2

]
. (A.2.9)

Substituting equations (A.2.5),(A.2.8) and (A.2.9) in (A.2.3) gives

∂

∂λ
G(λh, u) = hρ

′
(λh)ϕ2

(
u

(1 + ρ(λ))1/2

)[
(u2 + ρ(λh))(
1− ρ2(λh)

)1/2+ −2u2ρ(λh)

(1 + ρ(λh))(1− ρ2(λh))1/2

+
u
(
1− ρ2(λh)

)1/2(
1 + ρ(λh)

)3/2 +
−ρ(λh)(

1− ρ2(λh)
)1/2]+ hρ

′
(λh)

(
u, u, ρ(λh)

)
(A.2.10)
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= hρ′(λh)ϕ2

(
u

(1 + ρ(λ))1/2

)[
u2(1 + ρ(λh)− 2ρ(λh)) + u(1− ρ(λh))1/2(1− ρ2(λh))1/2)

(1 + ρ(λh))(1− ρ2(λh))1/2

]
+hρ

′
(λh)(u, u, ρ(λh))

= hρ′(λh)ϕ2

(
u

(1 + ρ(λ))1/2

)[
u2(1− ρ(λh)) + u(1− ρ(λh))(1 + ρ(λh))1/2

(1 + ρ(λh))(1− ρ2(λh))1/2

]
+hρ

′
(λh)(u, u, ρ(λh))

= ρ′(λh)

{
hϕ2

(
u

(1 + ρ(λ))1/2

)[
u2(1− ρ(λh)) + u(1− ρ(λh))(1 + ρ(λh))1/2

(1 + ρ(λh))(1− ρ2(λh))1/2

]
+h(u, u, ρ(λh))

}
.

(A.2.11)

The positive term in the big arcs in Equation (A.2.11) gives that the spatial covari-
ance function G(λh, u) is non-increasing if and only if ρ(λh) is non-increasing as λ.
Then,

R1(λA,D+
X,u) ↘ iff

∂

∂λ
ρ(λh) ≤ 0
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Semi-Parametric estimation using
dependence measures

B.1 Estimation procedure
The semi-parametric estimation procedure introduced in this section is based on the
minimization of the square difference between the empirical dependence measure and
the theoretical one. The dependence measures we adopted in this procedure are up-
per/ lower tail dependence measures χ(h, u) and χ(h, u) receptively, in addition to
the F-madogram νF (h). We shall evaluate the performance of this procedure accord-
ing to max-mixture model Z defined in 2.16.

Consider Zt, t = 1, .., T , T copies of an isotropic max-mixture process Z with unit
Frechet margin F . Then (Zt)t=1,..,T are i.i.d observations and satisfy α-mixing prop-
erty. Let H be a finite subset of S and ψ ∈ Ψ, Ψ ⊂ R

d is compact and ψ → νF (h, ψ)
is continuous for all h ∈ H. The estimation procedure is obtained as following:

First step, we need to calculate the empirical χ̂(h, u) and χ̂(h, u). It is easy to
write the empirical versions from the empirical distributions. We get,

χ̂(h, u) = 2− log
(
T−1

∑T
t=1 1{Ut(s)<u,Ut(s+h)<u}

)
log
(
T−1

∑T
t=1 1Ut(s)<u

)
and

χ̂(h, u) =
2 log

(
T−1

∑T
t=1 1{Ut(s)>u}

)
log
(
T−1

∑T
t=1 1{Ut(s)>u,Ut(s+h)>u}

) − 1.

89



Appendix B. Semi-Parametric estimation using dependence measures 90

From the empirical F-madogram introduced in [24], we have

ν̂F (h) = T−1

T∑
t=1

0.5|Ut(s)− Ut(s+ h)|,

where Ut = F (Zt) and F has Frechet margin.

Second step: we solve one of the following optimization problems

ψ̂χ = argmin
ψ

∑
h∈H

(
χ̂(h, u)− χψ(h, u)

)2
or

ψ̂χ = argmin
ψ

∑
h∈H

(
χ̂(h, u)− χψ(h, u)

)2
or

ψ̂ν = argmin
ψ

∑
h∈H

(
ν̂F (h)− νF (h, ψ)

)2
.

From the definition of max-mixture model, it easy to deduce the corresponding upper
/lower tail dependence measures

χψ(h, u) =2− logP(F (Z(s)) < u, F (Z(s+ h)) < u)

logP(F (Z(s)) < u)

=2− logP(Z(s) < F−1(u), Z(s+ h) < F−1(u))

logP(Z(s) < F−1(u))

From the definition of max-mixture, we have

=2− log
(
uaΘX(h;ψX)

[
2u(1−a) − 1 + (1− u(1−a))ΘY (h;ψY )

])
log(u)

=2− aΘX(h;ψX)−
log
(
2u(1−a) − 1 + (1− u(1−a))ΘY (h;ψY )

)
log(u)

.

(B.1.1)

In the same way, we have also

χψ(h, u) =
2 log(1− u)

log

(
1− 2u+ uaΘX(h;ψX)

[
2u(1−a) − 1 + (1− u(1−a))ΘY (h;ψY )

]) − 1.

(B.1.2)
When ψ := {a, ψX , ψY }.
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B.2 Evaluating the performance of the estimators

In order to evaluate the performance of the estimators ψ̂ corresponding to the dif-
ferent dependence measures χ(h, u), χ(h, u) and νF (h), we adopted the model MM1
in section 5.3.1 with the same setting used in evaluation. We change the number of
sites N to 50 (instead of 100 in section5.3.1 and the threshold is fixed to u = 0.9. The
following boxplots and barplots represent the performance of the proposed estimators
for the three dependence measures mentioned previously or a := {0, 0.25.075, 1}. For
a = 0.5, we have approximately the same result as in the case a = 0.25.

Figure B.1: Boxplots display (ψ̂ − ψ) of estimated parameters vector ψ̂ =
(â, r̂X , θ̂X , σ̂Y )

T for MM1 model using the three different estimators ψ̂χ, ψ̂χ and ψν .
The first row corresponds to the estimator ψ̂χ, the second row concerns ψ̂χ and the
third ψν . From left to right, we fixed a := {0, 0.2, 0.75, 1}. We have set rX = 0.25,
θX = 0.20 and σY = 0.6 over a square A = [0, 1]2.
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Figure B.2: Barplots represent the root mean square error RMSE of estimated pa-
rameters vector ψ̂ = (â, r̂X , θ̂X , σ̂Y )

T for MM1 model corresponding to the three
estimators ψ̂χ, ψ̂χ and ψν . The first line corresponds to the results obtained for ψ̂χ,
second to the results for ψ̂χ and third to ψν . From left to right, we represent the
results for a := {0, 0.2, 0.75, 1}. We have set rX = 0.25, θX = 0.20 and σY = 0.6 over
a square A = [0, 1]2.



Bibliography

[1] P. Abrahamsen. A review of Gaussian random fields and correlation functions.
Norsk Regnesentral/Norwegian Computing Center, 1997.

[2] A. AghaKouchak and N. Nasrollahi. Semi-parametric and parametric infer-
ence of extreme value models for rainfall data. Water resources management,
24(6):1229–1249, 2010.

[3] M. Ahmed, V. Maume-Deschamps, P. Ribereau, and C. Vial. Spatial risk mea-
sure for gaussian processes. arXiv preprint arXiv:1612.08280, 2016.

[4] M. Ahmed, V. Maume-Deschamps, P. Ribereau, and C. Vial. Risk measures for
max-stable and max-mixture spatial processes. Submitted, 2017.

[5] A. Antoniadis, J. Berruyer, and C. René. Régression non linéaire et applications.
Economica, 1992.

[6] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

[7] J-N. Bacro, L. Bel, and C. Lantuéjoul. Testing the independence of maxima:
from bivariate vectors to spatial extreme fields. Extremes, 13(2):155–175, 2010.

[8] J-N. Bacro and C. Gaetan. Estimation of spatial max-stable models using
threshold exceedances. Statistics and Computing, 24(4):651–662, 2014.

[9] J-N. Bacro, C. Gaetan, and G. Toulemonde. A flexible dependence model for
spatial extremes. Journal of Statistical Planning and Inference, 172:36–52, 2016.

[10] J-N. Bacro and G. Toulemonde. Measuring and modelling multivariate and
spatial dependence of extremes. Journal de la Société Française de Statistique,
154(2):139–155, 2013.

[11] S. Bande, R.a Ignaccolo, and O. Nicolis. Spatio-temporal modelling for pm10
in piemonte. Atti della XLIII Riunione Scientifica della SIS, pages 87–90, 2006.

93



Bibliography 94

[12] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of extremes:
theory and applications. John Wiley & Sons, 2006.

[13] J. Blanchet and A.C. Davison. Spatial modeling of extreme snow depth. The
Annals of Applied Statistics, pages 1699–1725, 2011.

[14] F. Bosello and R. Roson. Estimating a climate change damage function through
general equilibrium modeling. ISSN 1827-3580, 2007.

[15] B. M. Brown and S. I. Resnick. Extreme values of independent stochastic pro-
cesses. Journal of Applied Probability, pages 732–739, 1977.

[16] S. Buhl, R. A. Davis, C. Klüppelberg, and C. Steinkohl. Semiparametric esti-
mation for isotropic max-stable space-time processes. submitted, 2016.

[17] S. Buhl and C. Klüppelberg. Anisotropic brown-resnick space-time processes:
estimation and model assessment. Extremes, 19(4):627–660, 2016.

[18] T.A. Buishand. Bivariate extreme-value data and the station-year method. Jour-
nal of Hydrology, 69(1):77–95, 1984.

[19] M. Cameletti, F. Lindgren, D. Simpson, and H. Rue. Spatio-temporal modeling
of particulate matter concentration through the spde approach. AStA Advances
in Statistical Analysis, 97(2):109–131, 2013.

[20] T. N. Chase, K. Wolter, R. A. Pielke Sr, and I. Rasool. Was the 2003 european
summer heat wave unusual in a global context? Geophysical Research Letters,
33, 2006.

[21] S. Coles, J. Bawa, L. Trenner, and P. Dorazio. An introduction to statistical
modeling of extreme values, volume 208. Springer, 2001.

[22] S. Coles, J. Heffernan, and J.A. Tawn. Dependence measures for extreme value
analyses. Extremes, 2(4):339–365, 1999.

[23] S. Coles and F. Pauli. Models and inference for uncertainty in extremal depen-
dence. Biometrika, 89(1):183–196, 2002.

[24] D. Cooley, P. Naveau, and P. Poncet. Variograms for spatial max-stable random
fields. In Dependence in probability and statistics, pages 373–390. Springer, 2006.

[25] R. A. Davis and C. Y. Yau. Comments on pairwise likelihood in time series
models. Statistica Sinica, pages 255–277, 2011.



Bibliography 95

[26] A. C. Davison and M. Gholamrezaee. Geostatistics of extremes. In Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 468, pages 581–608. The Royal Society, 2012.

[27] A.C. Davison, R. Huser, and E. Thibaud. Geostatistics of dependent and asymp-
totically independent extremes. Mathematical Geosciences, 45(5):511–529, 2013.

[28] L. De Haan. A spectral representation for max-stable processes. The annals of
probability, pages 1194–1204, 1984.

[29] L. De Haan and T. T. Pereira. Spatial extremes: Models for the stationary case.
The annals of statistics, pages 146–168, 2006.

[30] M.G. Donat, T. Pardowitz, G.C. Leckebusch, U. Ulbrich, and O. Burghoff. High-
resolution refinement of a storm loss model and estimation of return periods of
loss-intensive storms over germany. Natural Hazards and Earth System Sciences,
11(10):2821–2833, 2011.

[31] M.D. Ecker and A. E. Gelfand. Spatial modeling and prediction under station-
ary non-geometric range anisotropy. Environmental and Ecological Statistics,
10(2):165–178, 2003.

[32] C. Edward. The use of subseries values for estimating the variance of a general
statistic from a stationary sequence. The Annals of Statistics, pages 1171–1179,
1986.

[33] C. Fonseca, L. Pereira, H. Ferreira, and A.P. Martins. Generalized madogram
and pairwise dependence of maxima over two regions of a random field. KY-
BERNETIKE, 51(2):193–211, 2015.

[34] A. Genz. Numerical computation of rectangular bivariate and trivariate normal
and t probabilities. Statistics and Computing, 14(3):251–260, 2004.

[35] D. A. Griffith. Spatial autocorrelation. In International Encyclopedia of Human
Geography, pages 308 – 316. Elsevier, Oxford, 2009.

[36] A. Guillou, P. Naveau, and A. Schorgen. Madogram and asymptotic indepen-
dence among maxima. REVSTAT–Statistical Journal, 12(2):119–134, 2014.

[37] X. Guyon. Random fields on a network: modeling, statistics, and applications.
Springer Science & Business Media, 1995.



Bibliography 96

[38] J. Herrera, R. G.and Diaz, J. M. Trigo, J. Luterbacher, and E. M. Fisher. A
review of the european summer heat wave of 2003. Critical Reviews in Environ-
mental Science and Technology, 40:267–306, 2010.

[39] P. Hougaard. Analysis of multivariate survival data. Springer Science & Business
Media, 2012.

[40] R. Ignaccolo, D. Sylvan, and M. Cameletti. Modeling pollutant threshold ex-
ceedance probabilities in the presence of exogenous variables. In Spatial2 Confer-
ence: Spatial Data Methods for Environmental and Ecological Processes, Foggia
(IT), 1-2 September 2011. IT, 2011.

[41] Z. Kabluchko, M. Schlather, and L. De Haan. Stationary max-stable fields
associated to negative definite functions. The Annals of Probability, pages 2042–
2065, 2009.

[42] C. Keef, J.A. Tawn, and C. Svensson. Spatial risk assessment for extreme river
flows. Journal of the Royal Statistical Society: Series C (Applied Statistics),
58(5):601–618, 2009.

[43] E. Koch. Tools and models for the study of some spatial and network
risks:Application to climate extremes and contagion in France. PhD thesis, ISFA,
university of Claude Bernard Lyon1, ISFA, University of Claude Bernard Lyon1,
7 2014.

[44] E. Koch. Spatial risk measures and applications to max-stable processes. To
appear in Extremes, 2015.

[45] P. A. Krokhmal. Higher moment coherent risk measures. Quantitative Finance,
7(4):373–387, 2007.

[46] C.D. Lai and M. Xie. Concepts of stochastic dependence in reliability analysis.
In Handbook of Reliability Engineering, pages 141–156. Springer, 2003.

[47] A.W. Ledford and J.A. Tawn. Statistics for near independence in multivariate
extreme values. Biometrika, 83(1):169–187, 1996.

[48] E. L. Lehmann. Some concepts of dependence. The Annals of Mathematical
Statistics, pages 1137–1153, 1966.

[49] B.G. Lindsay. Composite likelihood methods. Contemporary Math., pages 221–
239, 1988.



Bibliography 97

[50] H. Manto. Modelling of geometric anisotropic spatial variation. Mathematical
Modelling and Analysis, pages 361–366, 2005.

[51] C. Martin. Les inondations du 15 juin 2010 dans le centre var : réflexion sur un
épisode exceptionnel. Etudes de Géographie Physique, XXXVII:41–76, 2010.

[52] D. Moltchanov. Distance distributions in random networks. Ad Hoc Networks,
10(6):1146–1166, 2012.

[53] P. Naveau, A. Guillou, D. Cooley, and J. Diebolt. Modelling pairwise dependence
of maxima in space. Biometrika, 96(1):1–17, 2009.

[54] P. J. Northrop. An efficient semiparametric maxima estimator of the extremal
index. Extremes, 18(4):585–603, 2015.

[55] S. A. Padoan, M. Ribatet, and S. A. Sisson. Likelihood-based inference for max-
stable processes. Journal of the American Statistical Association, 105(489):263–
277, 2010.

[56] O. Payrastre, E. Gaume, P. Javelle, B. Janet, P. Fourmigué, P. Lefort, A. Martin,
B. Boudevillain, P. Brunet, G. Delrieu, L. Marchi, Y. Aubert, E. Dautrey, L. Du-
rand, Lang. J., L. Boissier, J. Douvinet, C. Martin, I. Ruin, and TTO2D Team
of HYMEX. Analyse hydrologique de la catastrophe du 15 juin 2010 dans la
région de draguignan (var, france). In Congrés SHF : Evénements extrêmes
fluviaux et maritimes, Paris, 2012.

[57] M. Re. Winterstorms in europe ii–analysis of 1999 losses and loss potentials.
Publication of Munich Re, 2001.

[58] M. Re. Natural catastrophes 2012 analyses, assessments, positions 2013 issue.
Topics Geo, pages 1–66, 2013.

[59] J. Reimann. Positively quadrant dependent bivariate distributions with given
marginals. Periodica Polytechnica Civil Engineering, 32(1-2):3–21, 1988.

[60] S. Rosenbaum. Moments of a truncated bivariate normal distribution. Journal
of the Royal Statistical Society. Series B (Methodological), pages 405–408, 1961.

[61] M. Schlather. Models for stationary max-stable random fields. Extremes,
5(1):33–44, 2002.

[62] M. Schlather and J.A. Tawn. Inequalities for the extremal coefficients of multi-
variate extreme value distributions. Extremes, 5(1):87–102, 2002.



Bibliography 98

[63] M. Schlather and J.A. Tawn. A dependence measure for multivariate and spatial
extreme values: Properties and inference. Biometrika, 90(1):139–156, 2003.

[64] P. K. Sen. The impact of wassily hoeffding?s research on nonparametrics. In
The Collected Works of Wassily Hoeffding, pages 29–55. Springer, 1994.

[65] M. Sibuya. Bivariate extreme statistics, i. Annals of the Institute of Statistical
Mathematics, 11(2):195–210, 1959.

[66] R. L. Smith. Max-stable processes and spatial extremes. Unpublished
manuscript, Univer, 1990.

[67] E. Thibaud, R. Mutzner, and A.C. Davison. Threshold modeling of extreme
spatial rainfall. Water resources research, 49(8):4633–4644, 2013.

[68] A. Tsanakas and E. Desli. Risk measures and theories of choice. British Actuarial
Journal, 9(04):959–991, 2003.

[69] U. Ulbrich, A.H. Fink, M. Klawa, and J.G. Pinto. Three extreme storms over
europe in december 1999. Weather, 56(3):70–80, 2001.

[70] C. Varin, N. Reid, and D. Firth. An overview of composite likelihood methods.
Statistica Sinica, pages 5–42, 2011.

[71] C. Varin and P. Vidoni. A note on composite likelihood inference and model
selection. Biometrika, pages 519–528, 2005.

[72] H. Wackernagel. Multivariate nested variogram. In Multivariate Geostatistics,
pages 172–180. Springer, 1998.

[73] J.L. Wadsworth and J.A. Tawn. Dependence modelling for spatial extremes.
Biometrika, 99(2):253–272, 2012.

[74] C. Yang, R.E. Chandler, V.S. Isham, and H.S. Wheater. Spatial-temporal
rainfall simulation using generalized linear models. Water Resources Research,
41(11), 2005.

[75] F. Zheng, E. Thibaud, M. Leonard, and S. Westra. Assessing the performance of
the independence method in modeling spatial extreme rainfall. Water Resources
Research, 51(9):7744–7758, 2015.

[76] F. Zheng, S. Westra, M. Leonard, and S. A. Sisson. Modeling dependence
between extreme rainfall and storm surge to estimate coastal flooding risk. Water
Resources Research, 50(3):2050–2071, 2014.


