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Abstract

The field of analytic combinatorics, which studies the asymptotic behaviour of sequences
through analytic properties of their generating functions, has led to the development of deep
and powerful tools with applications across mathematics and the natural sciences. In addition to
the now classical univariate theory, recent work in the study of analytic combinatorics in several
variables (ACSV) has shown how to derive asymptotics for the coefficients of certain D-finite
functions represented by diagonals of multivariate rational functions. This thesis examines the
methods of ACSV from a computer algebra viewpoint, developing rigorous algorithms and giving
the first complexity results in this area under conditions which are broadly satisfied. Furthermore,
this thesis gives several new applications of ACSV to the enumeration of lattice walks restricted
to certain regions. In addition to proving several open conjectures on the asymptotics of such
walks, a detailed study of lattice walk models with weighted steps is undertaken.

La combinatoire analytique étudie le comportement asymptotique des suites à travers les
propriétés analytiques de leurs fonctions génératrices. Ce domaine a conduit au développement
d’outils profonds et puissants avec de nombreuses applications. Au-delà de la théorie univariée
désormais classique, des travaux récents en combinatoire analytique en plusieurs variables (ACSV)
ont montré comment calculer le comportement asymptotique d’une grande classe de fonctions
différentiellement finies: les diagonales de fractions rationnelles. Cette thèse examine les méthodes
de l’ACSV du point de vue du calcul formel, développe des algorithmes rigoureux et donne les
premiers résultats de complexité dans ce domaine sous des hypothèses très faibles. En outre,
cette thèse donne plusieurs nouvelles applications de l’ACSV à l’énumération des marches sur des
réseaux restreintes à certaines régions : elle apporte la preuve de plusieurs conjectures ouvertes sur
les comportements asymptotiques de telles marches, et une étude détaillée de modèles de marche
sur des réseaux avec des étapes pondérées.
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The question you raise “how can such a formulation lead to

computations” doesn’t bother me in the least! Throughout my

whole life as a mathematician, the possibility of making ex-

plicit, elegant computations has always come out by itself, as

a byproduct of a thorough conceptual understanding of what

was going on. Thus I never bothered about whether what

would come out would be suitable for this or that, but just

tried to understand – and it always turned out that under-

standing was all that mattered.

Alexander Grothendieck, letter to Ronnie Brown dated

12.04.1983

...in an ideal world, people would learn this material over many

years, after having background courses in commutative alge-

bra, algebraic topology, differential geometry, complex anal-

ysis, homological algebra, number theory, and French litera-

ture. We do not live in an ideal world.

Ravi Vakil, The Rising Sea: Foundations of Algebraic
Geometry
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Chapter 1

Introduction

Often I have considered the fact that most of the difficulties which
block the progress of students trying to learn analysis stem from
this: that although they understand little of ordinary algebra,
still they attempt this more subtle art.1

Leonhard Euler, Introductio in analysin infinitorum

For it is unworthy of excellent men to lose hours like slaves in
the labor of calculation which could safely be relegated to anyone
else if the machine were used.2

Gottfried Wilhelm Leibniz, Machina arithmetica in qua non
additio tantum et subtractio sed et multiplicatio . . .

A fundamental problem in mathematics is how to efficiently encode mathematical objects
and, from such encodings, determine their underlying properties. Dating back at least to the
seventeenth century work of Leibniz3, many mathematicians and scholars have been enthralled
by the possibility of mechanizing the rules of logical reasoning and systematizing mathematical
discovery. In the twentieth century, leaps in the study of formal logic, the rise of computer science,
and the formalization of computability and complexity theory helped to illustrate the power of
such thinking. Unfortunately, these developments also led to the discovery of undecidability results
at the heart of computational mathematics, such as the following example.

1Translated from the Latin by John D. Blanton.
2Translated from the Latin by Mark Kormes.
3On February 1, 1673 Leibniz (originally inspired by the sight of a pedometer in Paris) presented to the Royal

Society of London a machine which could add, subtract, multiply, and divide numbers. In 1674 Leibniz outlined
a machine capable of solving certain algebraic equations, and later went on to write about topics such as the
mechanization of logical reason and rules of deduction, properties of binary arithmetic, and the encoding of all
human knowledge in symbolic form. See Davis [84, Chapter 1] for more information.
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Theorem (Matiyasevich [178, Section 9.2]). Let F denote the class of all functions of one variable
x that can be constructed using composition from x, the constant 1, addition, subtraction, multi-
plication, and the functions sine and absolute value. Then there is no method for determining for
an arbitrary given function f in the class F whether f(x) is identically zero.4

This poses a challenge for the modern study of computer algebra, where mathematical theory
and computational tools are brought together to design and analyze mathematical algorithms. In
particular, due to undecidability results, there are simply stated problems which cannot be solved
computationally. An algebraic structure A (such as a ring, field, vector space, etc.) is called
effective if each element can be represented by some finite data structure and there are algorithms
to carry out the operations of A and to test predicates such as equalities5. Easy examples include
the ring of integers modulo a fixed positive integer B (which contains only a finite number of
elements), the ring of integers (whose elements can be encoded by their base B representations
for some fixed positive integer B), the field of rational numbers (whose elements can be encoded
by pairs of integers), and the ring of polynomials with rational coefficients (whose elements can
be encoded by arrays of rational numbers). A less obvious, but still classical, example of an
effective field is the field of algebraic numbers, whose elements are represented by their minimal
polynomials and isolating disks.

Given an effective ring A, any matrix ring with entries in A is effective, as is the ring of
polynomials with coefficients in A; when A is an integral domain its field of fractions is effective,
and when A is a field its algebraic closure is effective. Once a structure is known to be effective,
which is in essence a decidability result, it is natural to wonder about the complexity of performing
operations with elements of the structure. These computability and complexity problems lie at
the heart of computer algebra.

Generating Functions and Effective Enumeration

In this thesis we study problems arising in enumerative combinatorics from a computer algebra
perspective. Given a sequence (fn)n>0, our aim is to determine either: a simple closed form
expression for the element fn as a function of n, or a simple representation of the asymptotic
behaviour of fn as n approaches infinity6. We focus mainly on problems where exact enumeration
is difficult and asymptotics are desired; our main tool will be the use of generating functions.

4See also the notes to Chapter 1 of Bostan et al. [36] for historical remarks on this result.
5See Chapter 1 of Bostan et al. [36] for more information about effective objects in computer algebra. All of

the results on effectiveness listed here can be found in that source.
6Of course, the notion of a “simple” closed form expression is subjective, and thus open to interpretation. We

do not touch on this topic here, but refer the interested reader to the discussion in Section 1.1 of Stanley [232].
The sequences we encounter in this thesis will have their dominant asymptotics specified by a finite collection of
algebraic numbers and rational evaluations of the gamma function Γ(s). By a representation of asymptotics we
thus mean a determination of this finite set of information; see Chapter 3 for more information.

3



Given a sequence (fn)n>0 of elements in a ring A, the generating function of (fn) is the formal
power series

F (z) =
X

n>0

fnz
n 2 A[[z]]. (1.1)

Effectiveness of the ring A does not imply effectiveness of the ring A[[z]], as to be effective the
power series under consideration must be encoded by a finite amount of information. When
A is effective the ring of formal power series which satisfy algebraic equations, and the ring of
formal power series which satisfy linear differential equations7 with polynomial coefficients, are
effective. Given a formal power series, specified by equations over some effective ring, our goal is to
determine asymptotics of its coefficient sequence (or determine when such a task is undecidable).

Suppose now that A ⇢ C and there exists a constant K > 0 such that |fn| 6 Kn for all n 2 N.
Then the power series in Equation (1.1) defines an analytic function when z is restricted to a
neighbourhood of the origin, and the powerful tools of complex analysis can be applied to F (z).
In particular, Cauchy’s residue theorem implies

fn =

Z

C

F (z)

zn+1
dz,

where C is a counter-clockwise circle in the complex plane sufficiently close to the origin. This
equality relates the coefficients of F to an analytic object, and allows one to determine asymptotics
of fn by determining asymptotics of a parametrized integral in the complex plane. The systematic
use of analytic techniques to study the asymptotic behaviour of sequences is known as the study of
analytic combinatorics [106], and the main results of analytic combinatorics illustrate strong links
between the singularities of an analytic generating function and asymptotics of its coefficients.

When the power series coefficients of F (z) do not decay super-exponentially, F admits at
least one singularity in the complex plane; the singularities of F with minimum modulus are
known as dominant singularities. If the dominant singularities of F have modulus r > 0 then the
exponential growth ⇢ = lim supn!1 |fn|1/n of the coefficients fn, which is the coarsest measure
of their asymptotics, satisfies ⇢ = 1/r. To completely determine the dominant asymptotics of fn
one usually finds the dominant singularities of F , giving the exponential growth of fn, and then
performs a local analysis at each of these singularities (when they are finite in number). For most
examples encountered in applications, it is sufficient to determine the type8 of each dominant
singularity together with small amount of additional information (such as the residue at a pole)
which can then be substituted into known formulas.

7The (formal) derivative of a formal power series
P

n>0 fnz
n is defined as the formal power series

P

n>1 nz
n−1.

When a formal power series defines an analytic function at the origin, this definition matches with the usual analytic
derivative.

8For example, is each dominant singularity a simple pole, higher order pole, an algebraic branch cut, a logarith-
mic branch cut, etc.

4



Generating Function Classes The universality of many properties of analytic functions often
allows for an automated asymptotic analysis for generating functions fitting into certain classes.
As a first example, the generating function F (z) of any sequence satisfying a linear recurrence
relation with integer coefficients is rational9, and using a partial fraction decomposition one can
automatically determine asymptotics of such a sequence (fn) from any linear recurrence relation
satisfied by fn together with a finite number of initial terms (see Section 3.2 below). In a similar
manner, an algebraic power series F (z) over the rational numbers which is analytic at the origin
can be encoded by its minimal polynomial and a finite number of initial coefficients, and from
such an encoding it is possible to automatically determine asymptotics of its coefficient sequence
(see Section 3.3 below). These two classes of functions contain the generating functions of many
sequences arising in applications. For example, the sequence counting the number of words in a ra-
tional language by length is always rational, and sequences enumerating unambiguous context-free
languages, many types of trees, pattern-avoiding permutations, certain planar maps, and triangu-
lations have algebraic generating functions (in addition to many other examples, see Stanley [231,
Chapter 6]).

The rings of rational and algebraic generating functions mirror the rings of rational and al-
gebraic numbers, and this is reflected in the way these objects can be encoded. Under our
assumptions a generating function defines an analytic function at the origin, and one can addi-
tionally consider acting on these functions with operations from calculus. In particular, the ring
of analytic D-finite functions (which contains the ring of algebraic power series which are analytic
at the origin) consists of all analytic power series which satisfy linear differential equations with
polynomial coefficients. A D-finite function can be encoded by an annihilating linear differential
equation together with initial conditions, and the ring of analytic D-finite functions with rational
coefficients is effective. An analytic function is D-finite if and only if its coefficient sequence satis-
fies a linear recurrence relation with polynomial coefficients, and D-finite functions occur in many
applications10. Although this is an effective class of generating functions, it is currently unknown
whether or not it is decidable to determine coefficient asymptotics of an arbitrary D-finite function
(see Section 3.4 below).

In this thesis we focus on coefficient asymptotics for a sub-class of D-finite functions called
multivariate rational diagonals. Given an n-variate rational function F (z) with power series

9The use of generating functions as formal series whose coefficients encode sequences of interest dates back to
the eighteenth century work of de Moivre, who showed [192, Theorem V] that the generating function of any linear
recurrence relation with polynomial coefficients is rational. Although hinted at in the work of de Moivre, Euler [98,
page 201] was among the first to explicitly consider such formal series as functions which could be evaluated using
these representations as rational functions.

10Examples of D-finite functions include generalized hypergeometric functions (with fixed parameters), Bessel
functions and many other special functions, and all examples of rational diagonal functions given later in this thesis;
the class of D-finite functions is also closed under several natural operations. Additional information is given in
Section 3.4.
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expansion
F (z) =

X

i2Nn

fiz
i =

X

i1,...,in2N
fi1,...,inz

i1
1 · · · zinn

at the origin, the diagonal of F (z) is the univariate function obtained by taking the coefficients
where all variable exponents are equal:

(∆F )(z) :=
X

k>0

fk,k,...,kz
k.

The diagonal of any rational function is D-finite, and every algebraic function can be realized as the
diagonal of a bivariate rational function (see Section 3.5 below). Because the ring of multivariate
rational diagonals lies between the class of algebraic functions, where coefficient asymptotics can
be determined automatically, and the ring of D-finite functions, where this problem is still open,
they make a prime subject on which to study effective coefficient asymptotics. Many problems in
combinatorics (lattice path enumeration, statistics on trees, irrational tilings of rectangles), prob-
ability theory (random walk models), number theory (binomial sums such as Apéry’s sequence,
used in his proof of the irrationality of ⇣(3)) and physics (the Ising model) appear naturally as
questions about rational diagonals. In order to study the asymptotics of rational diagonal coef-
ficient sequences we use results from the new field of analytic combinatorics in several variables
(which we often abbreviate as ACSV).

Effective Enumerative Results This thesis gives the first fully rigorous algorithms and com-
plexity results for determining the asymptotics of non-algebraic rational diagonal coefficient se-
quences under conditions which are broadly satisfied. In addition, we take a look at several
applications of ACSV to problems arising in lattice path enumeration. One motivation for this
study was a set of conjectured asymptotics by Bostan and Kauers [40], who found annihilating
linear differential equations for the generating functions of certain lattice path sequences but were
unable to prove asymptotics for the sequences. Using the results of ACSV we are able to prove
asymptotics of these sequences for the first time, explain observed asymptotic behaviour analyt-
ically, and study much more general classes of lattice path problems. Lattice path enumeration
also provides a rich family of problems to help illustrate the theory of ACSV, providing a wealth of
concrete examples for those wanting to learn its methods and possibly hinting at future directions
for research11.

11It is interesting to note that the development of complex analysis was greatly inspired by the study of elliptic
functions, while the theory of complex analysis in several variables suffered due to lack of concrete problems.
To quote work of Blumenthal [28] from 1903, “If up till now the theory of functions of several variables has
lagged behind the widely extended and highly developed theory of functions of a single complex variable, this can
essentially be attributed to the lack of interesting and appropriate examples with which a general theory could
connect.” (translated from the German by Bottazzini and Gray [46, page 679]).
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There are several (potentially overlapping) audiences for this thesis: mathematicians interested
in the behaviour of functions satisfying certain algebraic, differential, or functional equations; com-
binatorialists interested in learning the new theory of analytic combinatorics in several variables;
computer scientists interested in new applications of computer algebra and real algebraic geome-
try; and researchers from a variety of domains with an interest in lattice path enumeration.

We first give a broad overview and history of the theory of analytic combinatorics in several
variables and the study of lattice path enumeration, before highlighting our original research
contributions and going into specifics on the content in each chapter. In this thesis we deal
mainly with (rational, algebraic, and D-finite) generating functions directly and, outside of lattice
path enumeration, do not say much about how one goes from a combinatorial specification of a
problem to a description of its generating function. There are several large theories built around
this topic including the ‘Symbolic Method’ described in Flajolet and Sedgewick [106], Joyal’s
Theory of Species [147, 23], and the Delest-Viennot-Schützenberger methodology [86] for context-
free languages.

1.1 Analytic Combinatorics in Several Variables

We now describe the theory of analytic combinatorics in several variables, as it has been developed
by Pemantle and Wilson [204], and their collaborators. Suppose F (z) = G(z)/H(z), where
G,H 2 Z[z1, . . . , zn] are co-prime polynomials. When H(0) is non-zero, F is analytic at the
origin and thus admits a power series expansion

F (z) =
X

i2Nn

fiz
i,

valid in some open domain of convergence D. As in the univariate case, there is a strong link
between the singularities of F (z), which are the elements of the singular variety V = {z : H(z) =
0}, and asymptotics of the diagonal sequence fk,...,k as k !1. Singularities w 2 V which are on
the boundary of the domain of convergence w 2 V \ @D are known as minimal points, and are a
generalization of dominant singularities in the univariate case.

The study of analytic combinatorics becomes much more difficult in several variables12. Al-

12There was not even a clear definition of an analytic function in several variables for half a century. Undertaking
some preliminary studies on multivariate complex functions (including generalizations of the Cauchy integral for-
mula) in the 1830s, Cauchy considered a multivariate function to be analytic over a domain D if it was analytic as a
univariate function of each variable at every point in D, and this definition was also used by Jordan. Weierstrass, on
the other hand, called a multivariate function analytic in a domain D if it had a power series representation in the
neighbourhood of any point in the domain (Poincaré also used this definition in this doctoral thesis in 1879). These
two definitions were not shown to be equivalent until work of Hartogs [136] in 1906. See Bottazzini and Gray [46,
Chapter 9] for additional historical information on the development of complex analysis in several variables.
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though many13 univariate functions which are analytic at the origin admit a finite number of
dominant singularities, in the multivariate case (when n > 2) there will always be an infinite
number of minimal points unless F (z) is a polynomial. The ultimate goal, following the univari-
ate case, is to determine a finite number of minimal points where a local singularity analysis of
F (z) allows one to determine asymptotics of the diagonal sequence. The fact that this is not
always possible is a reflection of the pathologies which can arise dealing with the singularities of
multivariate functions.

Critical Points Similar to the univariate case, in order to determine asymptotics of the diagonal
sequence of F (z) one begins with the multivariate Cauchy integral formula

fk,k,...,k =
1

(2⇡i)n

Z

C
F (z)

dz1 · · · dzn
zk+1
1 · · · zk+1

n

, (1.2)

where C is a product of circles sufficiently close to the origin. Using standard integral bounds
it can (and, in Chapter 6, will) be shown that every minimal point w 2 V \ @D gives an upper
bound

⇢ 6 |w1 · · ·wn|−1

on the exponential growth ⇢ := lim supk!1 |fk,...,k|1/k of the diagonal sequence. To find a set of
minimal points where a local singularity analysis of F (z) determines asymptotics, it makes sense
to look for the minimal points minimizing this upper bound as these are the only ones where the
integrand of Equation (1.2) could have the same exponential growth as the diagonal sequence.

Suppose first that H is square-free and V is a complex manifold (i.e., that H and its partial
derivatives do not simultaneously vanish). To minimize the upper bound on exponential growth,
it is sufficient to consider points with non-zero coordinates. The map h(z) = − log |z1 · · · zn| from
the points in V with non-zero coordinates to the real numbers is a smooth map of manifolds,
and basic results in differential geometry imply that any local extremum of this map be a critical
point (that is, a point where the differential of φ is zero). In Chapter 6 we show that such points
correspond to the solutions of the algebraic system of smooth critical point equations

H(z) = 0, z1(@H/@z1)(z) = · · · = zn(@H/@zn)(z),

and when V is a manifold such points are called critical points of F (z).

When V is not a manifold one must partition V into a collection of manifolds called strata
and examine critical points of the map z 7! − log |z1 · · · zn| when restricted to each stratum. In
Chapter 9 we discuss how the critical points on any stratum can always be defined by an algebraic
system of equations. The equations defining critical points depend on the local geometry of V ,

13For instance, any meromorphic function has a finite number of dominant singularities, and any rational,
algebraic, or D-finite function has a finite number of singularities in the complex plane.
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and when V is a manifold in a neighbourhood of a point w then w is critical if and only if it
satisfies the smooth critical point equations. In practice, it is usually easy to characterize the
critical points of F (z), but much more difficult to decide which (if any) are minimal.

When there are minimal critical points where the singular variety is locally a manifold such
points must minimize the upper bound |z1 · · · zn|−1 on ⇢, however this is not true for non-smooth
minimal critical points. Even when V is a manifold and |z1 · · · zn|−1 achieves its minimum over
the set of minimal points it is not necessary to have minimal critical points (see Example 64).

Determining Asymptotics Analogously to the univariate case, to determine asymptotics one
tries to deform the contour of integration C in the multivariate Cauchy residue integral (1.2) until
it reaches the singularities of F (z), and then attempts to perform a local singularity analysis.
Intuitively, minimal points are those to which the contour C can be easily deformed, as they
are on the boundary of the domain of convergence, while critical points are those where such a
singularity analysis can be performed to determine asymptotics. As in the univariate case, the
nature of the singular variety at minimal critical points is important to the determination of
asymptotics. When dealing with multivariate rational functions only polar singularities arise, but
a multivariate rational function can exhibit a wide range of singular behaviour depending on the
geometry of V .

The easiest case is when V admits a single minimal critical point w, around which V is locally
a complex manifold. Assuming an extra condition on the local geometry of V at w, which is
typically satisfied in applications, one can determine asymptotics of the diagonal sequence by
computing a univariate residue integral followed by an n − 1 dimensional saddle-point integral
whose domain of integration can be made arbitrarily close to w. When V has a finite number of
such minimal critical points, one can determine diagonal asymptotics by computing saddle-point
integrals around each of these points. Theorem 54 and Corollary 55 in Chapter 6 give explicit
formulas for diagonal asymptotics in such a situation, which depend only on the minimal critical
points and evaluations of the partial derivatives of G(z) and H(z).

A transverse multiple point of V is a point where V locally is the intersection of manifolds
whose tangent planes are linearly independent. In Chapter 9 we consider dominant asymptotics
when V admits minimal critical points which are also transverse multiple points. Under certain
conditions which often hold, and which are sufficient for the purposes of this thesis, diagonal
asymptotics can again be computed through explicit formulas. The main asymptotic results of
this chapter are Theorems 117, 118, and 120.

History of Analytic Combinatorics in Several Variables Early examples of multivariate
generating function analyses include work by Bender, Richmond, Gao, and collaborators [20,
22, 111, 21] dating back to the 1980s14. More recently, the work of Pemantle and Wilson, and

14See Section 1.2 of Pemantle and Wilson [204] for additional information on these early works.
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collaborators, highlighted above, has brought together results from several different mathematical
disciplines in such a way as to develop a large-scale systematic theory of multivariate asymptotics
for combinatorial purposes. The first work of Pemantle and Wilson [206] on this subject described
a method for determining asymptotics of F (z) when V is a complex manifold, and stated “an
ultimate goal. . . is to systematize the extraction of multivariate asymptotics sufficiently that it
may be automated, say in Maple”15. This thesis contains the first algorithms and complexity
results working towards that goal.

Two years after their first paper, Pemantle and Wilson [207] extended their results to cover
certain minimal critical points which are also transverse multiple points. These early results
developing the theory of ACSV used explicit deformations of the multivariate Cauchy residue in-
tegral which allowed Pemantle and Wilson to calculate a univariate residue integral followed by a
multivariate saddle-point integral. More recently, Baryshnikov and Pemantle [15] used more com-
plicated deformations of the domain of integration in the multivariate Cauchy integral to extend
these results. This work shows how the methods of ACSV fit into the very general framework of
stratified Morse theory, and Pemantle and Wilson [204] later incorporated additional homological
tools, such as multivariate complex residues16.

The work of Baryshnikov and Pemantle shows that although minimal points are the more
natural generalization of dominant singularities from the univariate case, critical points are the
ones which determine diagonal asymptotics (when they exist). In theory, these results allow
one to determine diagonal asymptotics in some cases when no critical points are minimal, but
the results are less explicit. The Morse theoretic approach to ACSV also shows that diagonal
asymptotics can be determined in several situations when there are an infinite number of minimal
points minimizing |z1 · · · zn|−1 but only a finite number of them are critical. A recent textbook
by Pemantle and Wilson [204] collects these results, but its focus on the homological viewpoint
makes it difficult to follow for first time readers. This thesis aims to give a general presentation
of the results of ACSV which focuses more on explicit calculations (although we will still make
use of some of the more advanced results).

1.2 Lattice Path Models

Roughly speaking, a lattice path model is a combinatorial class which encodes the number of ways
to “move” on a lattice subject to certain constraints. More precisely, given a dimension n 2 N,
a finite set of allowable steps S ✓ Zn, and a restricting region R ✓ Zn, the integer lattice path
model taking steps in S and restricted to R is the combinatorial class consisting of sequences of
the form (s1, . . . , sk), where sj 2 S for 1 6 j 6 k and every partial sum s1 + · · · + sr 2 R for

15Quotation from page 131 of Pemantle and Wilson [206].
16Multivariate complex residues were previously applied to determine coefficient asymptotics when the denomi-

nator of F (z) is a product of linear factors [171, 27] and when F is bivariate [172].
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Figure 1.1: A lattice walk of length 50 on the steps S = {(−1,−1), (−1, 1), (1,−1), (1, 1)} re-
stricted to a half-space and ending on the x-axis.

1 6 r 6 k (addition is performed component-wise in Zn). The size of an element in this class is
the length of the sequence (the number of steps it contains), and by convention we add a single
sequence of length zero representing an empty walk. We view such a sequence as a path or walk
starting at the origin in Zn which successively takes steps from S and always stays in the region
R by drawing line segments between the endpoints of the partial sums of the sequence. We may
also restrict the class further by adding other constraints, for instance only admitting sequences
which end in some terminal set T ✓ Zn (the element sum of each sequence in the class lies in T ).

As laid out in the historical survey of Humphreys [143], the earliest accounts of what are now
considered lattice path problems arose in probabilistic contexts as far back as the seventeenth
century studies of Pascal and Fermat, including examples analogous to the ballot problem in the
work of de Moivre [191] in 1711. An 1878 work of Whitworth [242] uses explicit lattice path
terminology (for instance “paces” from an origin) to consider “Arrangements of m things of one
sort and n things of another sort under certain conditions of priority”, and answered questions
posed by the Educational Times in 1878 including the probability of drinking k glasses of wine
and k glasses of water in a random order while never drinking more wine than water.

Lattice walks in the early twentieth century were considered by many to be a recreational topic,
as exemplified by an article of Grossman [133] entitled “Fun with lattice points” and published in
the journal Scripta Mathematica aimed at the layperson. The mid twentieth century saw strong
interest in lattice walks and the related topic of random walks from the field of physics [190].
Lattice path models are able to model physical phenomena through their application to statis-
tical mechanics, for instance in the study of polymers in a solution [219]. Modern applications
include results in statistical mechanics, probability theory, formal language theory [49], queuing
theory [29], the analysis of data structures [61], mathematical art [144], and the study of other
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combinatorial structures such as plane partitions [3] or sequences of Young tableaux [63].

The Kernel Method and Walks in a Quadrant A now classic technique in the study of
n-dimensional lattice walks restricted to a region is to introduce an (n + 1)-variate generating
function Q(z, t) whose t variable tracks the length of a walk and whose first n variables track the
endpoint of a walk. The recursive nature of a walk of length k as a walk of length k − 1 followed
by a single step results in a functional equation satisfied by the generating function. A procedure
known as the kernel method often allows one to obtain an expression for the generating function
for the total number of walks in a model of a given length—or those ending in certain sets—as
an explicit diagonal. Although similar techniques appeared early in the study of random walks
and statistical physics, the origin of the kernel method is often attributed to the 1968 textbook
of Knuth [154]. Well-known examples of the kernel method which helped to modernize and
develop it as a distinct strategy of proof include Bousquet-Mélou and Petkovšek [55], Banderier et
al. [12], Bousquet-Mélou [52], and van Rensburg et al. [220]; see also Prodinger [213] for additional
examples.

Knuth’s early use of what would become the kernel method was applied to the ballot problem,
which can be posed as the enumeration of one-dimensional lattice paths in the half-space N ⇢ Z

beginning and ending at the origin and taking the steps S = {−1, 1}. Knuth’s approach was
greatly generalized by Banderier and Flajolet [13], who proved that the generating function for
any lattice path model restricted to a half-space is algebraic, gave explicit representations of these
generating functions, and determined asymptotics for such models. Asymptotics for the number
of excursions, which are the number of walks beginning and ending at the origin, and walks with
weighted steps, were also derived.

A natural next step is the study of two-dimensional lattice path models in a quadrant (or, in
higher dimensions, lattice path models in an orthant). Although the generating functions of models
restricted to a half-space are always algebraic, the generating functions of models in a quadrant
can exhibit a wide variety of behaviour and have thus become an object of great study. Much
of this work has focused on models with short step sets S, which are those where S ⇢ {±1, 0}2.
The class of models restricted to the quarter plane with short step sets already admit generating
functions which can be rational, algebraic [119], (transcendental and) D-finite [51], (non-D-finite
but) differentially algebraic17 [25], and hypertranscendental [93].

The systematic enumeration of such models was begun by Bousquet-Mélou [51], following
probabilistic results of Fayolle and Iasnogorodski [99] and Fayolle et al. [100], and greatly developed
in work of Bousquet-Mélou and Mishna [54]. The work of Bousquet-Mélou and Mishna showed

17A power series F (z) is differentially algebraic if there exists a multivariate polynomial P such that F and some
finite set of its derivatives F 0, . . . , F (k) satisfy P (z, F 0, . . . , F (k)) = 0; a power series which is not differentially
algebraic is called hypertranscendental. The first result exhibiting a lattice path model in a quadrant with non-D-
finite generating function was given by Bousquet-Mélou and Petkovšek [56], although the model they considered
starts at the point (1, 1) and has non-short step set S = {(−2, 1), (1,−2)}.
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that there are 79 non-isomorphic quarter plane models with short steps which are not equivalent
to models restricted to a half-space. The last several decades have seen progress made on the study
of these models using tools from the theory of algebraic curves, formal power series approaches
to discrete differential equations, probability theory, computer algebra, boundary value problems,
potential theory, differential Galois theory, the study of hypergeometric functions, and several
branches of complex analysis (further details on these approaches are given in Chapter 4).

The enumeration of lattice path models in a quadrant thus lies at the boundary of what is
currently solvable and what is still open. Around the same time as the work of Bousquet-Mélou
and Mishna, Bostan and Kauers used computer algebra techniques to guess linear differential
equations for these 79 models, finding likely differential equations for 23 of the models18 and
guessing asymptotics which are displayed in Table 4.1 of Chapter 4. These guessed differential
equations have now been proven, but problems related to the effectiveness of D-finite coefficient
asymptotics have led to difficulties proving the guessed asymptotics. For example, the dominant
asymptotics of such walks are given by a finite sum of terms of the form an = Cn↵⇢n for algebraic
constants C,↵, and ⇢. To determine each leading constant C, Bostan and Kauers determined the
possible values of ↵ and ⇢ from a guessed differential equation, computationally generated the
number of walks up to length ten thousand, and used numerical approximations of C obtained
from this data to guess its minimal polynomial. We use the methods of ACSV to prove asymptotics
of these models in Chapter 10.

1.3 Original Contributions

1.3.1 Effective Asymptotics

Chapter 8 contains the first rigorous effective algorithms and complexity results for rational diag-
onal asymptotics in any dimension, under assumptions which are often satisfied in applications.
This chapter develops a collection of symbolic-numeric results from polynomial system solving
and related areas which are then combined with results from the theory of ACSV. A multivariate
rational function F (z) is called combinatorial if all coefficients in its power series expansion are
non-negative, and a property of rational functions is said to hold generically if it holds for all
rational functions except those whose coefficients satisfy a polynomial relation depending only on
the degrees of the numerator and denominator of the rational function. The main result of this
chapter, stated exactly in Theorem 86, is the following.

Theorem. Let F (z) 2 Z(z1, . . . , zn) be a rational function with numerator and denominator of
degrees at most d and coefficients of absolute value at most 2h. Assume that F is combinatorial,

18It is conjectured, although still not fully proven, that the remaining 56 models have non-D-finite (univariate)
generating functions; the generating functions for the number of walks returning to the origin are non-D-finite, for
instance. See Chapter 4 for more details.
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has a minimal critical point, and satisfies additional restrictions19 which hold generically. Then
there exists a probabilistic algorithm computing dominant asymptotics of the diagonal sequence
in Õ(hd4n+5) bit operations20. The algorithm returns three rational functions A,B,C 2 Z(u), a
square-free polynomial P 2 Z[u] and a list U of roots of P (u) (specified by isolating regions) such
that

fk,...,k = (2⇡)(1−n)/2

 
X

u2U
A(u)

p

B(u) · C(u)k

!

k(1−n)/2

✓

1 +O

✓
1

k

◆◆

.

The values of A(u), B(u), and C(u) can be determined to precision 2− at all elements of U in
Õ(dn+1+ hd3n+3) bit operations.

A high-level description of this algorithm is given in Algorithm 1, which originally appeared
in an article of Melczer and Salvy [183]. A preliminary implementation of this work21 has been
developed which can rigorously prove asymptotic results contained in recent publications, and has
already been used by other researchers [202].

The strongest assumption we require is that F (z) is combinatorial, which greatly helps to
determine when critical points are minimal. Theorem 91 describes how to determine minimal
critical points without this assumption, and appears for the first time in this work. In order
to prove minimality in the non-combinatorial case we use a critical point method inspired by
techniques from real algebraic geometry.

1.3.2 Lattice Path Asymptotics

This thesis contains several new applications of the theory of ACSV to the study of lattice path
enumeration.

Highly Symmetric Models Chapter 7, which is based on an article of Melczer and Mishna [181],
describes how to enumerate lattice path models restricted to an orthant in any dimension whose
step sets are symmetric over every axis. Our work establishes strong asymptotic results and pro-
vides an extended application illustrating the methods of ACSV in the smooth case. Theorem 68
gives an explicit formula for dominant asymptotics of the number of walks from quantities which
can be immediately read off of a model’s step set. Theorem 71 gives an asymptotic bound on
the number of walks returning to the origin, and the number of walks returning to any fixed
set of boundary hyperplanes. Some of this work was originally contained in the Masters the-
sis of the author [180], but Theorem 71, extensions to models with symmetrically weighted step

19See Section 8.1.4 of Chapter 8.
20We write f = Õ(g) when f = O(g logk g) for some k ≥ 0; see Section 8.1.1 of Chapter 8 for more information

on our complexity model and notation.
21Available at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
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sets, and applications to the connection problem for D-finite functions were completed after that
publication.

Lattice Walks in a Quadrant In Chapter 10, which is based on an article of Melczer and Wil-
son [184], we give the first full proof of the conjectures of Bostan and Kauers [40] for asymptotics
of lattice path models restricted to a quadrant. Our approach shows the link between combina-
torial properties of a lattice path model, such as symmetries in its set of steps, and features of its
asymptotics. In addition, some asymptotics for the number of walks which begin at the origin and
return to the origin, the x-axis, or the y-axis are derived, and previously observed links between
these quantities are explained analytically through a multivariate singularity analysis. The results
of this chapter require the use of ACSV when there are minimal critical points where the singular
variety V is not locally a manifold.

Centrally Weighted Models Chapter 11, which is based on an article of Courtiel, Melczer,
Mishna, and Raschel [78], considers aspects of weighted walks restricted to orthants. The first
half of the chapter explores asymptotics of a particular model, known as the Gouyou-Beauchamps
model, under weightings of its step set which allow for a parametrized rational diagonal expression.
When the weights satisfy certain algebraic equations the geometry of the singular set changes,
resulting in sharp phase transitions in asymptotics as the weights vary continuously. Theorem 124
determines the asymptotics for the number of weighted walks in a model as a function of the
weights.

In order to determine such a parametrized diagonal expression, the step set under consideration
must be weighted so that the weight of any path between two fixed points depends only on its
length. We call such a weighting central, and the second part of this chapter characterizes the
central weightings of any n-dimensional model restricted to the orthant Nn ⇢ Zn. Among other
results, this allows one to generate weighted lattice path models with D-finite generating functions
from a single unweighted model with a D-finite generating function. Kauers and Yatchak [149]
computationally investigated weighted lattice path models with short steps in the quarter plane,
and found what they conjectured to be a finite list of families containing all models with (weighted)
D-finite generating functions. All but one of these families can be characterized using our work.

Finally, a connection between these parametrized asymptotics and recent conjectures of Garbit,
Mustapha, and Raschel [112] on the exit times of random walks in cones is discussed. These
conjectures, which are very general and apply to lattice path models with non-D-finite step sets,
hint at future possibilities for lattice path enumeration using multivariate singularity analyses.
We prove these conjectures (except for one sub-case) for all centrally weighted two-dimensional
models whose underlying set of steps is symmetric over both axes, a result presented here for the
first time.

15



1.3.3 Thesis Publications

The original research presented in this thesis is contained in the following publications.

(i) Asymptotic lattice path enumeration using diagonals.

S. Melczer and M. Mishna. Algorithmica, Volume 75(4), 782-811, 2016.
http://dx.doi.org/10.1007/s00453-015-0063-1

http://arxiv.org/abs/1402.1230

(ii) Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables.

S. Melczer and B. Salvy. Proceedings of the ACM on ISSAC 2016, 333-340, 2016.
http://dx.doi.org/10.1145/2930889.2930913

http://arxiv.org/abs/1605.00402

(iii) Asymptotics of lattice walks via analytic combinatorics in several variables.

S. Melczer and M. C. Wilson. Proceedings of FPSAC 2016, DMTCS proc. 863-874, 2016.
http://fpsac2016.sciencesconf.org/114341

http://arxiv.org/abs/1511.02527

(iv) Weighted Lattice Walks and Universality Classes.

J. Courtiel, S. Melczer, M. Mishna, and K. Raschel. Accepted to JCTA April 2017.
http://arxiv.org/abs/1609.05839

1.3.4 Additional Publications During this Thesis

In addition to the above works, two other papers of the author were published during this doctoral
program. The research contained in these works was completed after the author’s Masters thesis
but before the start of this doctoral program, and because these papers focus on exact enumeration
instead of asymptotics we simply summarize them here.

(i) On 3-dimensional lattice walks confined to the positive octant. A. Bostan, M. Bousquet-
Mélou, M. Kauers, and S. Melczer. Annals of Combinatorics, Volume 20(4), 661–704, 2016.
http://dx.doi.org/10.1007/s00026-016-0328-7

http://arxiv.org/abs/1409.3669

(ii) Tableau sequences, open diagrams, and Baxter families. S. Burrill, J. Courtiel, E. Fusy, S.
Melczer, M. Mishna. European Journal of Combinatorics, Volume 58, 144-165, 2016.
http://dx.doi.org/10.1016/j.ejc.2016.05.011

http://arxiv.org/abs/1506.03544

The first paper, Bostan et al. [33], began the systematic study of three-dimensional lattice
path models with short step sets S ⇢ {±1, 0}3 which are restricted to an octant, with a focus on
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determining which models have D-finite generating functions. Although there are only 79 non-
isomorphic models with short steps in two dimensions, in three dimensions there are 11, 074, 225
step sets of interest. This work studied the 35, 548 models with at most 6 steps, experimentally
trying to determine which admitted D-finite generating functions and then verifying those guesses
rigorously. In addition to applications of the kernel method, to prove D-finiteness or algebraicity
of the generating functions which arise we identified models admitting a special Hadamard decom-
position, which can be reduced to lattice path models in lower dimensions. Rigorous computer
algebraic proofs of algebraicity and transcendental D-finiteness of several generating functions
were also given.

The kernel method in the quadrant and octant usually works by associating to each lattice path
model a finite group of transformations. In the two-dimensional case, this group is finite whenever
the generating function of a model is D-finite, and when the group is infinite the associated
generating function appears to be non-D-finite. Our work in three dimensions, however, found
19 models with finite groups whose generating functions appear to be non-D-finite. The nature
of these generating functions is still unknown, despite interest from researchers after these results
were announced. Bacher et al. [11] later performed additional computations to experimentally
determine octant models with larger than 6 steps admitting D-finite generating functions, and
Berthomieu and Faugère [26] applied fast Gröbner basis techniques to generate relations satisfied
by the multivariate sequences tracking length and endpoint for some models contained in our
work.

The second paper, Burrill et al. [63], studied connections between walks on Young’s lattice
of integer partitions, certain sequences of Young tableaux, and combinatorial objects known as
arc diagrams. The main result of that work gives a bijection between standard Young tableaux
of bounded height and walks on Young’s lattice starting at the empty partition, ending in a row
shape, and visiting only partitions of bounded height. As a corollary, the generating function for
the number of Young tableaux of bounded height is given as an explicit rational diagonal. A new
combinatorial family enumerated by the Baxter numbers is also described. The interested reader
is referred to that work for more information.

1.4 Thesis Organization

This thesis is divided into four parts, with Part I covering additional background and motivation
for our work on rational diagonal asymptotics, Part II covering the theory and applications of
ACSV in the smooth case, Part III discussing the theory and applications of ACSV for some non-
smooth cases, and Part IV concluding and summarizing the thesis. A detailed chapter breakdown,
not including this introduction, is as follows:

Chapter 2 contains a French summary of the results contained in this thesis.
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Chapter 3 contains a detailed background on generating functions and coefficient asymp-
totics. After describing the basic principles of analytic combinatorics, the classes of rational,
algebraic, and D-finite power series are detailed, including results on coefficient asymptotics
and the complexity of determining coefficients exactly. This is followed by the introduction
of multivariate rational diagonals, as well as results on formal and convergent Laurent series
expansions, amoebas of Laurent polynomials, and multivariate series sub-extractions which
will be useful in later chapters.

Chapter 4 contains a presentation of the kernel method for lattice path enumeration. Be-
ginning with the easy case of unrestricted lattice path models, the mechanics of the kernel
method are built up for one-dimensional walks restricted to a half-space and two-dimensional
walks restricted to a quadrant. After describing this incredibly effective machinery, the cur-
rent state of results enumerating lattice paths in a quadrant are discussed and the asymptotic
conjectures of Bostan and Kauers [40] are introduced.

Chapter 5 describes several domains of mathematics and the sciences where rational di-
agonals arise. In addition to showing the importance of rational diagonals, the examples
discussed in this chapter are used to illustrate the methods of ACSV in later chapters.

Chapter 6 describes the basics of analytic combinatorics in several variables, and shows how
to derive asymptotics for many rational functions which admit singular varieties that are
complex manifolds. After an extended example which concretely illustrates the methods
of ACSV in the smooth case from start to finish, the general theory is developed. Many
examples are given and general strategies for applying the tools of analytic combinatorics
are demonstrated.

Chapter 7 contains our results on lattice path models with symmetric step sets.

Chapter 8 contains our results on effective methods for analytic combinatorics in several
variables.

Chapter 9 describes the theory of analytic combinatorics in several variables when the sin-
gular variety is no longer a manifold. After an extended example illustrating how the theory
can be applied to transverse multiple points, the background necessary to use the methods
of ACSV in this more complicated case is described and asymptotic results are given.

Chapter 10 proves the conjectured asymptotics of Bostan and Kauers [40] for D-finite lattice
path problems in a quadrant.

Chapter 11 contains our results on families of weighted lattice path models.

Chapter 12 concludes the thesis.

Some of the background material in Part I was adapted from the author’s Masters thesis [180].
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Chapter 2

Résumé en Français

Le génie n’est que l’enfance retrouvée à volonté, l’enfance
douée maintenant, pour s’exprimer, d’organes virils et de l’es-
prit analytique qui lui permet d’ordonner la somme de matéri-
aux involontairement amassée.

Charles Baudelaire, Le Peintre de la vie moderne

Géomètre de premier rang, Laplace ne tarda pas à se mon-
trer administrateur plus que médiocre; dès son premier tra-
vail nous reconnûmes que nous nous étions trompé. Laplace
ne saisissait aucune question sous son véritable point de vue:
il cherchait des subtilités partout, n’avait que des idées problé-
matiques, et portait enfin l’esprit des ‘infiniment petits’ jusque
dans l’administration.

Napoléon Bonaparte, Mémoires de Napoléon Bonaparte

Une méthodologie extrêmement utile dans plusieurs domaines de la combinatoire a été l’adop-
tion de techniques analytiques dans l’étude de l’asymptotique en combinatoire énumérative et en
probabilités. Étant donnée une suite (fn)n>0, la fonction génératrice associée à la suite est la série
formelle

F (z) =
X

n>0

fnz
n = f0 + f1z + f2z

2 + · · · .

Bien que la fonction génératrice soit a priori un objet formel, dans de nombreuses applications (par
exemple, quand fn est n’importe quelle suite qui croît au maximum exponentiellement) la série
F (z) définit une fonction analytique dans un voisinage de l’origine. Il existe une large gamme
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de résultats, remontant aux XVIIIe et XIXe siècles, reliant le comportement analytique d’une
fonction proche de ses singularités et l’asymptotique des coefficients de sa série de Taylor.

Les résultats dans ce domaine, appelés théorèmes de transfert, sont puissants et largement
applicables, l’universalité de nombreuses propriétés des fonctions analytiques permettant souvent
l’automatisation des analyses asymptotiques. Par exemple, la détermination asymptotique des
coefficients des fonctions algébriques est effective, en ce sens qu’il existe un algorithme qui prend
un nombre fini de termes initiaux d’une suite combinatoire (fn) ayant une fonction génératrice
algébrique F (z), avec le polynôme minimal de F (z), et renvoie le comportement asymptotique
dominant de fn.

Une autre propriété qui se présente souvent dans les applications combinatoires est celle de la
D-finitude. Une fonction analytique F (z) est D-finie lorsqu’elle satisfait une équation différentielle
linéaire avec des coefficients polynomiaux. Contrairement au cas des fonctions algébriques, dans
lesquelles le coefficient asymptotique est totalement effectif, on ne sait pas encore comment dériver
des asymptotiques de coefficients pour une fonction D-finie à partir d’une liste de coefficients
initiaux et d’une équation différentielle annulat la fonction génératrice.

Une grande partie de ce projet de thèse aborde le problème de la détermination des coeffi-
cients asymptotiques pour une sous-classe de fonctions D-finies appelées diagonales rationnelles
multivariées. Soit la fonction de n variables F (z) avec un développement à l’origine en série

F (z) =
X

i2Nn

ciz
i =

X

i1,...,in2N
ci1,...,inz

i1
1 · · · zinn ,

alors la diagonale de F ( bz) est la fonction univariée obtenue en prenant les coefficients où tous
les exposants sont égaux,

(∆F )(z) :=
X

k>0

ck,k,...,kz
k.

La diagonale de toute fonction rationnelle est D-finie [69, 173], et toute fonction algébrique est
la diagonale d’une fonction rationnelle bivariée [88]. Au cours de la dernière décennie, une série de
résultats de Pemantle, Wilson et de ses collaborateurs, recueillis dans leur récent ouvrage [204], a
utilisé des résultats de l’analyse complexe en plusieurs variables pour établir les bases des méthodes
d’asymptotique pour les diagonales de fractions rationnelles multivariées. C’est ce que l’on appelle
l’étude de la combinatoire analytique en plusieurs variables, que nous abrégeons souvent sous le
nom «ACSV».

Cette thèse donne les premiers algorithmes et résultats de complexité entièrement rigoureux
pour déterminer les asymptotiques des suites de coefficients de diagonales non algébriques de
fractions rationnelles dans des conditions qui sont largement satisfaites. De plus, nous examinons
plusieurs applications de l’ACSV aux problèmes qui se posent dans l’énumération des marches
dans des réseaux. Une des motivations de cette étude était un ensemble de conjectures de Bostan
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et Kauers [40], qui ont trouvé des équations différentielles linéaires annulant les fonctions génératri-
ces de certaines suites d’énumération de marches sur des réseaux, mais n’ont pas été en mesure de
prouver les comportements asymptotiques. En utilisant les résultats de l’ACSV, nous pouvons dé-
montrer ces asymptotiques pour la première fois, expliquer le comportement asymptotique observé
de manière analytique et étudier des classes beaucoup plus générales de problèmes de marches sur
des réseaux. L’énumération des marches sur des réseaux fournit également une famille riche de
problèmes permettant d’illustrer la théorie de l’ACSV, fournissant une variété d’exemples concrets
pour ceux qui veulent apprendre ses méthodes. Cette thèse d’adresse à plusieurs publics (avec po-
tentiellement des intersections): les mathématiciens intéressés par le comportement de fonctions
satisfaisant certaines équations algébriques, différentielles ou fonctionnelles; les combinatoriciens
intéressés à apprendre la nouvelle théorie de la combinatoire analytique en plusieurs variables;
les informaticiens intéressés par de nouvelles applications du calcul formel et de la géométrie al-
gébrique réelle; et des chercheurs d’une variété de domaines avec un intérêt pour l’énumération
de marches sur des réseaux.

Contributions originales

Asymptotique effective

Le chapitre 8 contient les premiers algorithmes efficaces rigoureux et les résultats de complexité cor-
respondants pour le calcul du comportement asymptotique des diagonales de fractions rationnelles
en dimension arbitraire, sous des hypothèses qui sont souvent satisfaites dans les applications. Ce
chapitre développe une collection de résultats symboliques-numériques issus de la résolution de
systèmes polynomiaux et des domaines connexes qui sont ensuite combinés avec les résultats de
la théorie de l’ACSV. Nos principaux résultats sur l’asymptotique effective et sa complexité sont
donnés dans les théorèmes 86 et 91, ainsi que l’algorithme 1. Ce travail a d’abord paru dans un
article de Melczer et Salvy [183].

Une mise en uvre préliminaire de ce travail1 a été implantée et peut être utilisée pour démontrer
rigoureusement les résultats asymptotiques contenus dans des publications récentes, et a déjà été
utilisée par d’autres chercheurs [202].

Asymptotique des marches

Informellement, un modèle de marche sur un réseau est une classe combinatoire qui encode le
nombre de manières de ńse déplacerż sur un réseau sous certaines contraintes. Ici, nous nous
concentrons sur les modèles de marche sur un réseau qui commencent à l’origine, restent dans
Nn ⇢ Zn et prennent des étapes dans un ensemble fini S ⇢ {±1, 0}n, pour un certain entier

1Disponible à http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
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naturel fixe n. Une technique appelée «méthode du noyau» permet de déterminer des expressions
en diagonales de fractions rationnelles pour les fonctions génératrices de beaucoup de tels modèles,
qui sont ensuite analysées pour déterminer les asymptotiques.

Modèles hautement symétriques Le chapitre 7, qui est basé sur un article de Melczer et
Mishna [181], décrit comment énumérer les modèles de marches sur un réseau, restreintes à un
orthant, en dimension arbitraire, et dont les jeux de pas sont symétriques sur chaque axe. Notre
travail établit l’asymptotique et fournit une application illustrant les méthodes de l’ACSV de
manière étendue. Le théorème 68 donne une formule explicite pour l’asymptotique dominante
d’un modèle à partir de quantités qui peuvent être immédiatement lues sur l’ensemble de pas du
modèle. Le théorème 71 donne une borne asymptotique sur le nombre de marches revenant à
l’origine et le nombre de marches revenant à n’importe quel hyperplan frontière.

Lattice Walks dans un quadrant Dans le chapitre 10, qui est fondé sur un article de Melczer
et Wilson, nous donnons la première preuve complète des conjectures de Bostan et Kauers [40]
pour les asymptotiques de modèles de marches sur un réseau restreintes à un quadrant. Notre
approche montre le lien entre les propriétés combinatoires d’un modèle de marches sur un réseau,
telles que les symétries de son ensemble de pas, et les caractéristiques de ses asymptotiques. De
plus, les asymptotiques pour le nombre de marches qui commencent à l’origine et retournent
à l’origine, sur l’axe des x ou des y sont déduits, et les liens précédemment observés entre ces
quantités sont expliqués analytiquement à travers une analyse analyse de singularité multivariée.

Modèles à pondération centrale Le chapitre 11, qui est basé sur un article de Courtiel,
Melczer, Mishna et Raschel [78], considère des marches pondérées restreintes aux orthants. La
première moitié du chapitre explore l’asymptotique d’un modèle particulier, connu sous le nom
de modèle Gouyou-Beauchamps, sous les pondérations de son ensemble de pas qui permettent
une expression comme diagonale rationnelle paramétrée. Lorsque les poids satisfont certaines
équations algébriques, la géométrie de l’ensemble singulier change, ce qui entraîne des transitions
de phase nettes en asymptotiques, car les poids varient en continu. Le théorème 124 détermine
les asymptotiques pour le nombre de marches pondérées dans un modèle en fonction des poids.
Pour déterminer une telle expression diagonale paramétrée, l’étape considérée doit être pondérée
de sorte que le poids de n’importe quel trajet entre deux points fixes dépend uniquement de
sa longueur. Nous appelons une telle pondération centrale et la deuxième partie de ce chapitre
caractérise les pondérations centrales de tout modèle n-dimensionnel restreint à l’orthant Nn ⇢ Zn.
Enfin, un lien entre ces asymptotiques paramétrées et les conjectures récentes de Garbit, Mustapha
et Raschel [112] sur les temps de sortie de randonnées aléatoires en cônes est discuté.
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Organisation de la thèse

Cette thèse est divisée en quatre parties, avec la Partie I couvrant les définitions et propriétés de
base, et la motivation de notre travail sur l’asymptotique des diagonales rationnelles, la Partie II
couvrant la théorie et les applications de l’ACSV lorsque l’ensemble des singularités de la fonction
rationnelle F (z) forme une variété lisse, la Partie III discutant la théorie et les applications de
l’ACSV dans des cas plus généraux, et la Partie IV concluant et résumant la thèse. Une ventilation
détaillée des chapitres est la suivante:

Le chapitre 3 contient un historique détaillé sur les fonctions génératrices et les asymp-
totiques de leurs coefficients. Après avoir décrit les principes de base de la combinatoire
analytique, on décrit les classes des séries rationnelles, algébriques et D-finies, y compris
les résultats sur l’asymptotique des coefficients et la difficulté de la détermination exacte
des coefficients de ces asymptotiques. Ensuite, on introduit les diagonales rationnelles mul-
tivariées, ainsi que des résultats sur les développements formels et convergents en série de
Laurent, sur les amibes de polynômes de Laurent et les extractions de séries multivariées
qui seront utiles dans les chapitres suivants.

Le chapitre 4 contient une présentation de la méthode du noyau pour l’énumération des
marches sur des réseaux. En commençant par le cas facile des modèles de marches dans
des réseaus sans restriction, la mécanique de la méthode du noyau est construite pour
des marches unidimensionnelles limitées à un demi-espace et des marches bidimensionnelles
restreintes à un quadrant. Après avoir décrit ce mécanisme incroyablement efficace, l’état
actuel des résultats énumérant les marches dans des réseaux dans un quadrant est discuté
et les conjectures asymptotiques de Bostan et Kauers [40] sont introduites.

Le chapitre 5 décrit plusieurs domaines des mathématiques et des sciences où apparaissent
des diagonales rationnelles. En plus de montrer l’importance des diagonales rationnelles,
les exemples présentés dans ce chapitre sont utilisés pour illustrer les méthodes de l’ACSV
dans les chapitres suivants.

Le chapitre 6 décrit les bases de la combinatoire analytique en plusieurs variables et montre
comment dériver l’asymptotique pour de nombreuses fonctions rationnelles dont les ensem-
bles singuliers forment des variétés lisses. Après un exemple étendu qui illustre concrètement
les méthodes d’ACSV dans ce cas du début à la fin, la théorie générale est développée. De
nombreux exemples sont donnés et des stratégies générales d’application des outils de la
combinatoire analytique sont présentées.

Le chapitre 7 contient nos résultats sur des modèles de marches sur des réseaux avec des
jeux de pas symétriques.
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Le chapitre 8 contient nos résultats sur les méthodes effectives de combinatoire analytique
en plusieurs variables.

Le chapitre 9 décrit la théorie de la combinatoire analytique en plusieurs variables lorsque
la variété singulière n’est plus lisse. Après un exemple étendu, le contexte nécessaire pour
utiliser les méthodes de l’ACSV dans ce cas plus compliqué est décrit et des résultats asymp-
totiques sont donnés.

Le chapitre 10 prouve les asymptotiques conjecturées de Bostan et Kauers pour les problèmes
de marches dans des réseaux D-fini dans un quadrant.

Le chapitre 11 contient nos résultats sur les familles de modèles pondérés de marches sur
des réseaux.

Le chapitre 12 conclut la thèse.
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Chapter 3

Background on Generating Functions

and Asymptotics

Since there is a great conformity between the Operations in
Species, and the same Operations in common Numbers . . . I
cannot but wonder that no body has thought of accommodat-
ing the lately discover’d Doctrine of Decimal Fractions in like
manner to Species . . . especially since it might have open’d a
way to more abstruse Discoveries.

Sir Issac Newton, The Method of Fluxions and Infinite Series

The problem about finding the middle coefficient in a very
large power of the binomial had been solved by De Moivre
some years before I considered it: And it is probable that to
this very day I would not have thought about it, unless that
most esteemed man, Mr Alex. Cuming, had not stated that
he very much doubted that it could be solved by Newton’s
Method of Differences.1

James Stirling, Methodus Differentialis

Given a ring R we let R[[z]] denote the usual ring of formal power series with coefficients
in R, and R[[z1, . . . , zn]] denote the ring of multivariate power series in the variables z1, . . . , zn
(see Stanley [232] or Lang [164, Section IV.9] for background on formal power series and their
properties). Throughout this document we use multi-index notation, with bold letters denoting
multivariate quantities, so that for z = (z1, . . . , zn) 2 Cn we define

zi := zi11 · · · zinn 2 C and zk̂ = (z1, . . . , zk−1, zk+1, . . . , zn) 2 Cn−1.

1Translated from the Latin by Ian Tweddle [238].
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For a power series F (z) =
P

i2Nn fiz
i, we use [zi]F (z) to denote the coefficient fi.

A combinatorial class is a countable set of objects C, together with a size-function | · | : C ! N

such that there are a finite number of objects of any given size (the inverse image of any natural
number under | · | is finite). The counting sequence associated to C is the sequence (cn)n>0 whose
nth term is the number of objects in C of size n, cn = #{x 2 C : |x| = n}, and the generating
function of C is the formal series

C(z) =
X

n>0

cnz
n. (3.1)

We begin with a description of the univariate study of analytic combinatorics, a beautiful
theory that will serve as a guide to the more complicated multivariate version. The now standard
reference for this material is the compendium work of Flajolet and Sedgewick [106], in which most
of the following results can be found in more detail. When referring to a power series as analytic,
we assume the ring R from which it takes its coefficients is a subring of the complex numbers.

3.1 The Basics of Analytic Combinatorics

Dating back to their origins in the early eighteenth century work of de Moivre, generating functions
have provided an invaluable formal framework for the manipulation of counting sequences. In 1730,
the year that de Moivre’s first work [192] devoted to generating functions was printed, Stirling [233]
published his own work combining various aspects of de Moivre’s theory of series coefficients,
Newton’s ‘Method of Differences’ [195], and Taylor’s work on series approximations [235]. Thus,
for three centuries there has been work studying the link between generating functions and calculus
on power series2. For a detailed historical background on this early work see the introduction to
Tweddle’s recent translation [233] of Stirling’s Methodus Differentialis.

The most basic link between the analytic behaviour of a function and asymptotic behaviour
of its coefficients is found in the following theorem.

Proposition 1 (Cauchy’s Root Test [65, Theorem 1, Ch. VI.2]). Suppose that F (z) =
P

n>0 fnz
n

is a power series with non-zero finite radius of convergence ⇢. Then

lim sup
n!1

|fn|1/n = ⇢−1.

2Although there was less of a distinction between convergent and formal series at this time, according to
the introduction of Hardy [135] “ . . . all the greatest mathematicians of the seventeenth and eighteenth centuries,
however recklessly they may seem to have manipulated series, knew well enough whether the series which they used
were convergent.” Many of the modern notions of analyticity and convergence that are now standard come from
Cauchy’s work in the early nineteenth century (around this time Cauchy also developed the ‘method of majorants’
for detecting situations where formal series solutions obtained from Newton’s method of indeterminate coefficients
represent analytic functions). Chapter 3 of Bottazzini [45] contains a deep account of the development of rigour in
analysis during the time of Cauchy.
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In combinatorial contexts the reason that the limsup is not a limit typically comes from
periodicity restraints in the underlying enumeration problem. Note that an analytic function
defined by F (z) in a neighbourhood of the origin necessarily has a singularity3 on the circle |z| = ⇢.
In this way, we meet Flajolet and Sedgewick’s [106] first principle of coefficient asymptotics.

(First Principle of Coefficient Asymptotics) The location of a function’s singu-
larities dictates the exponential growth of its coefficients.

From now on we abuse notation slightly and write F (z) to mean both an analytic function at
the origin and the power series expansion of that function at the origin. When given a function
F (z) which is analytic at the origin, we sometimes refer to the coefficients of the power series
expansion of F (z) at 0 as the coefficients of F (z). The singularities of F (z) with minimum
modulus are called its dominant singularities, and are the only ones which determine asymptotics
up to dominant exponential growth.

From Proposition 1, we see that if F (z) has radius of convergence ⇢ then fn has an asymptotic
expansion

fn = ⇢−n · ✓(n) +O(↵n),

where 0 6 ↵ < ⇢−1 and ✓(n) grows sub-exponentially. In order to determine information about
✓(n) a closer analysis is required. The starting point is Cauchy’s Integral Formula, which implies

fn =
1

2⇡i

Z

C

F (z)

zn+1
dz, (3.2)

where C is any positively oriented circle around the origin of radius less than the radius of
convergence ⇢. When F (z) admits a finite number of singularities, all of which are poles, then
one can immediately characterize the sub-exponential factor ✓(n) using complex analysis.

Theorem 2 (Flajolet and Sedgewick [106, Theorem IV.10]). Suppose that F (z) is analytic on the
circle |z| = R and has a finite number of polar singularities σ1, . . . , σm in the disk |z| < R. Then
there exist polynomials P1(n), . . . , Pm(n) such that

fn =

mX

j=1

Pj(n)σ
−n
j +O(R−n).

The degree of Pj is one less than the order of the pole of F (z) at z = σj.

Hence, for meromorphic functions, the order of the poles comprising the dominant singularities
of F (z) describe the sub-exponential growth ✓(n). This kind of result can be greatly generalized.

3If f(z) is an analytic function in the disk |z| 6 R + ✏ for some R, ✏ > 0 with power series coefficients (fn) at
the origin, then bounds following from the Cauchy Integral Formula yield |fn| = O

(

(R+ ✏)−n
)

and the ratio test
then implies that the series

P

n>0 fnz
n converges in the disk |z| 6 R. Thus, f(z) must admit a singularity whose

modulus equals the radius of convergence of
P

n>0 fnz
n.
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Flajolet and Odlyzko [105] coined the term singularity analysis for the process of analyzing the
local singular behaviour of a function at its (dominant) singularities and translating the result
into asymptotic results on coefficients through the use of transfer theorems. These results include
many cases with algebraic and logarithmic singularities, and typically require analyticity in delta
domains of the form ∆⇣ = {|z| < R : R > |⇣|, | arg(z − ⇣)| > φ, z 6= ⇣} for some φ 2 (0, ⇡/2),
which look like a circle with a wedge removed (to account for branch cuts). The strong connection
between singular structure and full asymptotic behaviour motivates Flajolet and Sedgewick’s
second principle of coefficient asymptotics.

(Second Principle of Coefficient Asymptotics) The nature of a function’s singu-
larities determines the associated sub-exponential growth ✓(n).

In later chapters we deal mainly with multivariate rational functions, meaning that algebraic
and logarithmic singularities will not arise. However, in contrast to a univariate rational function
in which the ‘nature’ of its singularities is completely described by the orders of its isolated poles,
a multivariate rational function can exhibit a large range of singular structure depending on the
geometry of its (algebraic) set of singularities.

When the power series coefficients of F (z) are all non-negative, as is the case for generat-
ing functions of counting sequences, finding dominant singularities is simplified by the following
result4.

Proposition 3 (Pringsheim’s Theorem; Flajolet and Sedgewick [106, Theorem IV.6]). If F (z) is
represented at the origin by a series expansion that has non-negative coefficients and finite radius
of convergence ⇢ > 0, then z = ⇢ is a singularity of F (z).

In particular, F (z) has a dominant singularity which is real and positive (there may be other
dominant singularities of the same modulus).

Before describing the multivariate case we look in detail at determining asymptotics for several
classes of generating functions.

3.2 Rational Power Series

We begin with a study of univariate rational functions and their coefficients.

Coefficient Properties

The types of sequences which arise as coefficient sequences of rational functions have a nice
characterization. Given a natural number r 2 N, we say that a sequence (fn)n>0 of elements in a

4Although commonly referred to as Pringsheim’s Theorem, Hadamard [134] credits this result to Émile Borel.
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field K is a linear recurrence of order r with constant coefficients over K if there exist constants
a0, . . . , ar−1 2 K with a0 6= 0 such that for all n > 0,

fn+r = ar−1fn−r−1 + ar−2fn−r−2 + · · ·+ a0fn; (3.3)

such a sequence is clearly determined by its first r− 1 terms f0, . . . , fr−1. In fact, de Moivre used
generating functions in his seminal work [192] to solve linear recurrence relations with constant
coefficients. The following result follows from basic generating function manipulations.

Theorem 4. Suppose that (fn)n>0 is a linear recurrence relation with constant coefficients satis-
fying Equation (3.3) above. Then the generating function F (z) =

P

n>0 fnz
n is a rational function

of the form

F (z) =
A(z)

1− (ar−1z + ar−2z2 + · · ·+ a0zr)
, (3.4)

where the degree of A(z) is at most r.

Asymptotics

When considering a sequence over the complex numbers, F (z) is an analytic function with a finite
number of polar singularities given by the roots of its denominator H(z). One can then recover
Theorem 2 by computing a partial fraction decomposition of F (z) over the complex numbers.
Furthermore, the partial fraction decomposition makes finding the polynomials Pj(n) effective in
the following sense.

Theorem 5 (Gourdon and Salvy [125, Algorithm 1]). Suppose that F (z) = G(z)/H(z) 2 Q(z)
is a rational function with H(0) 6= 0. Let d denote the degree of H(z) and ↵1, . . . , ↵m be the
distinct roots of H(z) in the complex plane. Then there exist polynomials P1(n,x), . . . , Pm(n,x)
in Q[n, x1, . . . , xm] whose degrees in the xi coordinates are at most d, such that for all n larger
than some fixed natural number the Taylor coefficients of F (z) satisfy

fn =
mX

j=1

Pj(n,α)↵−n
j .

The polynomials P1, . . . , Pm can be determined explicitly in polynomial time (with respect to d),
and the degree of Pj(n,x) in n is one less than the order of the pole of F (z) at z = ↵j.

As described in the computational work of Bronstein and Salvy [59], the numerators appearing
in the partial fraction decomposition of F (z) can be computed symbolically, after which Newton’s
generalized binomial theorem can be applied to obtain asymptotic results on coefficients. Al-
though this is an explicit asymptotic result, there are several subtleties present. To determine
dominant asymptotics, one must determine the roots of H(z) with smallest modulus and isolate
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their contribution to the asymptotics; this can be done using algorithms related to real root iso-
lation which will also be utilized in the multivariate situation (see Gourdon and Salvy [125] for
details). The issue is that there can be cancellation in the sub-exponential asymptotic behaviour:
in fact, when there is more than one dominant singularity there are still several simple properties
of rational coefficient sequences, such as determining whether a sequence has an infinite number
of zeroes, which are not known to be decidable5.

Luckily, precise results can often be obtained in combinatorial contexts. Proposition IV.3 of
Flajolet and Sedgewick [106] shows that any generating function of a combinatorial class obtained
from a wide variety of recursive ‘constructions’ must have an explicit periodic behaviour; i.e.,
there exists a natural number r such that for each k = 0, . . . , r − 1 the coefficient sub-sequence
(frn+k)n>0 has dominant asymptotics of the form Ck · n↵k · ⇢nk for ↵k an explicit natural number
and algebraic constants Ck and ⇢k whose minimal polynomials can be determined as in Theorem 5.

Generation of Terms

We end this section by noting that it is extremely efficient to calculate coefficients of rational
functions (and thus terms of sequences satisfying linear recurrences with constant coefficients).

Proposition 6. Suppose that F (z) = G(z)/H(z) =
P

n>0 fnz
n is a rational function over the

field K, such that the degrees of G and H are bounded by d and H(0) 6= 0. Then

a) The N th term fN can be calculated in O(logN · d log d log log d) operations in K;

b) The first N terms f0, . . . , fN can be calculated in O(N · log d log log d) operations in K, using
no divisions.

Part (a) comes from Fiduccia [103] while (b) follows from results in Shoup [227]; see also
Bostan et al. [36, Corollaries 4.8 and 4.11].

3.3 Algebraic Power Series

Let K be a field. A formal power series F (z) 2 K[[z]] is called algebraic if there exist polynomials
p0(z), . . . , pd(z), not all zero, such that

pd(z)F (z)d + pd−1(z)F (z)d−1 + · · ·+ p0(z) = 0.

Given algebraic F (z), the minimal polynomial of F is the unique6 polynomial P (z, y) 2 K[z][y]
of minimal degree in y with co-prime coefficients (over K[z]) such that P (z, F (z)) = 0.

5Ouaknine and Worrell [200, 201] survey some of the related decision problems.
6The minimal polynomial, as defined here, is unique up to a non-zero multiple of K.
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Asymptotics

Suppose that the function F (z) is analytic at the origin and is a root of the polynomial

P (z, y) = pd(z)y
d + pd−1(z)y

d−1 + · · ·+ p0(z) 2 Q[z][y].

Following the principles of singularity analysis, in order to determine asymptotics for the coefficient
sequence of F (z) we must determine the location and nature of its singularities. The implicit
function theorem implies that any singularity z = ⇣ of F (z) lies in the set

Ξ := {⇣ : pd(⇣) = 0 or discy(P )(⇣) = 0} ,

where discy(P ) is the discriminant of P (z, y) with respect to y (the resultant of P and @P/@y, up
to a constant). The points where pd(⇣) = 0 correspond to points where branches7 of the equation
P (z, y) = 0 approach infinity, while the discriminant vanishing characterizes points where two
branches of P (z, y) = 0 collide.

To determine asymptotics of the power series coefficients of F (z) at the origin, one must
determine which points in the finite algebraic set Ξ are actually singularities of F , and find
the corresponding local singular behaviour. This can be resolved computationally, leading to an
algorithm for determining the asymptotics of algebraic function coefficients. The key to identifying
which points in Ξ are singularities of F (z) is that for any non-singular point ⌘ it is possible to
calculate a bound separating distinct solutions of P (⌘, y) = 0.

The algorithm roughly proceeds as follows. First, list the elements of Ξ in terms of increasing
modulus. Next, iterate through Ξ and for each element ⇣:

1) let y1(z), . . . , yr(z) be the branches of P (z, y) = 0 defined and analytic in a punctured disk
0 < |z − ⇣| < ✏ minus a ray from ⇣ to infinity avoiding the origin (to account for branch
cuts);

2) determine numerical approximations to y1(z), . . . , yr(z) at ⌘ = (1− ✏
2|⇣|)⇣, where each branch

is analytic;

3) determine a numerical approximation to F (⌘);

4) if F (z) is sufficiently close to one of the branches which are singular at ⌘, return ⇣ as a
dominant singularity of F (z) and repeat steps (1) – (3) on the remaining elements of Ξ with
the same modulus as ⇣.

7At any point zc 2 C \ Ξ the equation P (zc, y) = 0 has d solutions y1, . . . , yd in y, and the implicit function
theorem implies that each point (zc, yj) lies on the graph (z, yj(z)) of an analytic function yj(z) defined in a
neighbourhood of zc. Each yj(z) defines a branch of P (z, y) = 0 in the largest simply connected region of C

containing zc where it is analytic.
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Since we deal only with rational functions in the multivariate case we do not go into more
details on this algorithm, which can be found in Section VII.36 of Flajolet and Sedgewick [106],
but do note that finding the numerical approximations to the required accuracy can be done
rigorously [67, Chapter VI]. Singular behaviour is determined through the theory of Newton-
Puiseux expansions and the method of undetermined coefficients, which goes back to Newton [196]
and was later studied by Cramer [81] and, of course, Puiseux [214]. This theory characterizes
the singular behaviour which can occur for algebraic functions, thus determining the types of
asymptotic growth their coefficients can admit. The following result was originally investigated
in the 19th century by Darboux [82].

Theorem 7 (Darboux’s Method [138, Theorem 11.10b]). Let F (z) =
P

n>0 fnz
n be an algebraic

function over Q which is analytic at the origin, and let !0β, . . . ,!m−1β be the singularities of
F (z) on its circle of convergence (so |!j | = 1 for each j) where β > 0. Then

fn =
βnns

Γ(s+ 1)
·
m−1X

j=0

Cj!
n
j +O(βnnt),

where s 2 Q \ {−1,−2, . . . }, t < s, and β, the !j, and the Cj are algebraic.

Generation of Terms

Fast calculation of algebraic function coefficients is slightly more awkward than for rational or D-
finite functions (discussed below) as the condition of being algebraic does not directly correspond
to a linear constraint on coefficients. The idea behind fast algebraic coefficient generation is thus
to use the fact that any algebraic series is D-finite8, and to use efficient algorithms for generating
terms from an annihilating differential equation (see Proposition 13 below for further details).

Proposition 8. Suppose that F (z) =
P

n>0 fnz
n is algebraic with minimal polynomial P (z, y) in

Q[z, y] of degree dz in z and degree dy in y. Then

a) The coefficient fN can be calculated in O(
p
N) rational operations;

b) The coefficients f0, . . . , fN can be calculated in O (Ndz(dy + dz log dz log log dz)) rational
operations.

Statement (a) comes from Chudnovsky and Chudnovsky [74], and (b) from Bostan et al. [38].
The key result of Bostan et al. is to derive explicit—and experimentally close to optimal—bounds
on the degree and order of an annihilating differential equation from the degrees of the minimal
polynomial.

8This result has been rediscovered several times going back to the 19th century, including works by Abel,
Tannery, Cockle, Harley, and Comtet. Chudnovsky and Chudnovsky [73] and Bostan et al. [38] studied this result
from a complexity viewpoint; see the introduction to Bostan et al. for more historical remarks.
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3.4 D-Finite Power Series

Let K be a field. A power series F (z) 2 K[[z]] is said to be differentially finite (D-finite) of order
r and degree d if there exist polynomials a0(z), . . . , ar(z), one of which has degree d and all of
which have degree at most d, such that

a0(z)
dr

dzr
F (z) + a1(z)

dr−1

dzr−1
F (z) + · · ·+ ar−1(z)

d

dz
F (z) + ar(z)F (z) = 0, (3.5)

and a0(z) is not 0. Note that when the power series F (z) =
P

n>0 fnz
n does not represent an

analytic function at the origin, or when K is not a sub-field of the complex numbers, the (formal)
derivative is defined as d

dzF (z) :=
P

n>1(nfn)z
n−1. When F (z) does represent an analytic function

at the origin then this formal derivative agrees with the usual analytic derivative inside the domain
of convergence of the power series at the origin. We call an analytic function D-finite if it satisfies
a linear differential equation with polynomial coefficients.

Coefficient Properties

Just like rational functions, D-finite functions are important to the study of linear recurrences. A
sequence (fn)n>0 satisfies a linear recurrence relation with polynomial coefficients (of order r and
degree d) if there exist polynomials c0(n), . . . , cr(n), one of which has degree d and all of which
have degree at most d, such that for all n > 0,

c0(n)fn+r + c1(n)fn−r−1 + · · ·+ cr(n)fn = 0, (3.6)

and c0(n) and cr(n) are not identically 0. We call a sequence satisfying some linear recurrence
relation with polynomial coefficients P-recursive.

Proposition 9. Let F (z) =
P

n>0 fnz
n. Then

(i) If F (z) is D-finite of order r and degree d then (fn)n>0 is P-recursive of order at most r+ d
and degree at most r.

(ii) If (fn)n>0 is P-recursive of order r and degree d then F (z) is D-finite of order at most d
and degree at most r + d.

See Theorem 14.1 of Bostan et al. [36] for a short proof of this result.

The study of D-finite functions in combinatorial contexts was popularized by Stanley [230],
who surveyed many examples and closure properties (see also Stanley [231]). Later work of
Zeilberger [245] continued this interest by describing automatic means of proving identities of
D-finite sequences; this area of research is still extremely active9.

9For example, see Chyzak and Salvy [77], Chyzak [75], Chen et al. [68], Bostan et al. [35], Bostan et al. [42],
and the references therein.
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Asymptotics

Ideally, one would like to have a method for calculating asymptotics of the coefficients of D-finite
functions which is similar to the one for coefficients of algebraic functions. That is, one could
hope for an algorithm which takes as input an annihilating differential equation of a D-finite
function F (z) and initial conditions which distinguish it as a solution of the differential equation,
and return asymptotics. The first part of the theory is similar: given that F (z) satisfies a linear
differential equation

a0(z)
dr

dzr
y(z) + a1(z)

dr−1

dzr−1
y(z) + · · ·+ ar−1(z)

d

dz
y(z) + ar(z)y(z) = 0,

the singularities of F (z) must lie in the finite algebraic set

Ξ := {⇣ : a0(⇣) = 0}.
The difficulty is in trying to determine which elements of Ξ are actually singularities of F . Unlike
the algebraic case, where there are a finite number of branches determined by one minimal poly-
nomial, a linear differential equation with polynomial coefficients of order r determines an infinite
r-dimensional vector space, complicating matters. Sometimes the nature of a problem can help
determine which elements of Ξ correspond to singularities of F (z), for instance if combinatorial
arguments can establish the exponential growth of the coefficient sequence and there is only one
element of Ξ with the correct modulus to give that growth.

The next step is to perform a local analysis at the singularities10. To begin, we re-write the
above differential equation in the form

dr

dzr
y(z) + b1(z)

dr−1

dzr−1
y(z) + · · ·+ br−1(z)

d

dz
y(z) + br(z)y(z) = 0, (3.7)

where bj(z) is the rational function aj(z)/a0(z). Pick ⇣ 2 Ξ and for any rational function R(z) let
!⇣(R) denote the order of the pole of R at z = ⇣ (which is 0 if R is analytic at ⇣). The singularity
⇣ is called regular if

!⇣(b1) 6 1, !⇣(b2) 6 2, . . . ,!⇣(br) 6 r,

and a linear differential equation with polynomial coefficients admitting only regular singularities
is called Fuchsian11. The indicial polynomial12 of the differential equation (3.7) at the point z = ⇣

10Determining asymptotics of local solutions to differential equations is a classical topic in several areas of pure
and applied mathematics. Standard references include Wasow [240], Hille [139], and Olver [198].

11In 1866 Lazarus Fuchs [109] published a study of singularities of solutions to linear differential equations, ex-
amining which differential equations do not admit solutions with essential singularities. Soon after, Frobenius [108]
worked on finding the general forms of solutions to such differential equations. In fact, much of the theory seems
to be contained in an unpublished manuscript of Riemann from February 20, 1857, which is now available as paper
XXI in his collected works [221]. More historical details of the development of singular solutions to differential
equations, with a focus on Fuchs, are given by Gray [128].

12Although Fuchs used indicial polynomials in his work, the name was coined by Cayley; see Cayley [66, Section
9], for instance.
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is the polynomial
I(✓) = (✓)(r) + δ1(✓)(r−1) + · · ·+ δr,

where (✓)(j) = ✓(✓ − 1) · · · (✓ − j + 1) and δj = limz!⇣(z − ⇣)jdj(z).
The roots of the indicial polynomial help determine the form of a local basis of solutions for

the differential equation. In the case of a unique dominant singularity which is regular, this can
be transfered directly into coefficient asymptotics.

Theorem 10 (Flajolet and Sedgewick [106, Theorem VII.10]). Assume that the coefficients bj(z)
of the differential equation (3.7) are analytic in a disk |z| < ⇢, except at a unique pole ⇣ with
0 < |⇣| < ⇢. Suppose also that ⇣ is a regular singular point of the differential equation (3.7), and
that F (z) is a solution which is analytic at the origin. If none of the solutions ✓1, . . . , ✓r to the
indicial equation I(✓) = 0 at ⇣ differ by an integer then there exist constants λ1, . . . ,λr 2 C such
that for any ⇢0 with |⇣| < ⇢0 < ⇢

[zn]F (z) =

rX

j=1

λj∆j(n) +O(⇢−n
0 ),

where

∆j(n) =
n−✓j−1

Γ(−✓j)
⇣−n

✓

1 +O

✓
1

n

◆◆

if ✓j /2 N and ∆j(n) = 0 if ✓j 2 N. When the roots of the indicial polynomial differ by an integer
(including the case of multiple roots) then the dominant asymptotics of [zn]F (z) can be expressed
as a C−linear combination of terms of the form ⇣−nn−1−✓j (log n)l, where l is a non-negative
integer.

When there are several dominant singularities, all of which satisfy the conditions of Theo-
rem 10, then one can compute the contribution of each using the theorem and sum the results to
determine dominant asymptotics. Note that the possible form of the asymptotic growth is less
restricted than in the algebraic case: here the polynomial factors n−✓j−1 can have negative integer
exponents, and there can be logarithmic terms present. Determining the constants λj is necessary
for finding dominant asymptotics—in particular, one needs to determine when the constants are
non-zero to even determine exponential growth—but it is currently unknown how to rigorously
accomplish this in general13. This is referred to as the connection problem, and the λj are called
connection coefficients.

13Given a differential equation with only regular single points, numerical approximations of the connection
coefficients with rigorous error bounds can be effectively computed, but it is unknown how to determine the
coefficients exactly. For instance, if the constant corresponding to the dominant asymptotic term is 0 this cannot
be proven (without access to a bound on the tolerance needed to decide equality to zero). The complete algorithm
required to compute such approximations was given by van der Hoeven [141], based on work of Chudnovsky and
Chudnovsky [73, 74]. More results on this topic can be found in the PhD thesis of Mezzarobba [185], who has
created a Sage package which can (among other tasks) compute numerical connection coefficients with rigorous
error bounds [186].
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The relatively nice asymptotic growth given in Theorem 10 comes from the fact that any
solution to a linear differential equation at a regular singular point can have only a finite pole,
branch cut, or logarithmic singularity (or be analytic) at that point — no solution has an essential
singularity at a regular singular point. This is not the case with irregular singularities, and
complicates the analysis.

We do not examine irregular singular points further for a simple reason: they cannot arise
when dealing with analytic power series with integer coefficients! An analytic power series F (z)
with rational coefficients is called a G-function14 if F (z) is D-finite and there exists a constant
C > 0 such that for all n both |an| and the least common denominator of a0, . . . , an are bounded
by Cn.

Proposition 11 (Chudnovsky and Chudnovsky [72]). If F (z) is a G-function then the indicial
equation I(✓) = 0 of the minimal order differential equation annihilating F (z) has only rational
solutions.

Proposition 11, which follows from a result often referred to as the André-Chudnovsky-Katz
Theorem15, gives properties of a differential equation from properties of a single solution, which
is very strong.

Corollary 12. Suppose that F (z) is a D-finite function with integer coefficients which is analytic
at the origin. Then dominant asymptotics of the coefficient sequence [zn]F (z) is given by a finite
sum of terms of the form Cn↵(log n)l⇣n, where C is a constant, ↵ is a rational number, l is a
non-negative integer, and ⇣ is algebraic.

Fischler and Rivoal [104, Theorems 1 and 2] show that any leading constant appearing in
such an asymptotic expansion is the evaluation f(1) of a G-function f 2 Q(i)[[z]] whose radius of
convergence can be made arbitrarily large.

More details can be found in work of André [4, 5], and some combinatorial applications to the
asymptotics of D-finite function coefficients were discussed by Garoufalidis [114]. Corollary 12 was
recently used by Bostan et al. [44] to show the non-D-finiteness of a class of generating functions
arising in the study of lattice walks restricted to the first quadrant.

Generation of Terms

Suppose F (z) is a D-finite function with rational coefficients whose P-recursive coefficients satisfy
a linear recurrence relation of the form given in Equation (3.6). The set of sequences solving this

14G-functions were introduced by Siegel [228] in his studies on number theory and elliptic integrals.
15Chudnovsky and Chudnovsky [72, Theorem III] showed that if F (z) is a G-function then its minimal order

annihilating differential equation is globally nilpotent, meaning that the pth iterate of a linear operator related to
the annihilating differential equation is nilpotent mod p for all but a finite number of primes p. A previous result of
Katz [148] then restricts the singular behaviour of any solution to the differential equation, yielding Proposition 11.
The original proof of this result in Chudnovsky and Chudnovsky [72] contained a small flaw which was corrected
by André [4, Section VI].
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recurrence form a vector space over the rational numbers. Unfortunately, because the leading
polynomial coefficient c0(n) of the recurrence may vanish at positive integers, the dimension of
this vector space may be larger than the order r of the recurrence.

Let H be the set of positive integer solutions to c0(n) = 0 and

J = {0, . . . , r − 1} [ {h+ r : h 2 H}.

Specifying the values fj for j 2 J of a solution (fn) to Equation (3.6) uniquely determines the
sequence (fn) (see Bostan et. al [36, Proposition 15.5] for details). The values of the fj for j 2 J
are known as generalized initial conditions of the recurrence in Equation (3.6). Note that all
elements of H are bounded by the maximum absolute value of the coefficients of c0(n) plus one
(see Lemma 94 below).

Proposition 13 (Bostan et al. [36, Propositions 15.6 and 15.7]). Suppose that the polynomials
in Equation (3.6) have degree at most d and integer coefficients of bit-size at most l. If a solution
(fn) of this recurrence relation is specified by generalized initial conditions consisting of integers
of bit-size16 Õ(dN + lN +N log r),

i) the terms f0, . . . , fN can be calculated in Õ
(
rN2(d+ l)

)
binary operations;

ii) the term fN can be calculated in Õ
(
N(d+ l)(r✓ + dr)

)
binary operations,

where ✓ is any positive number such that matrix multiplication of two ⇢⇥ ⇢ integer matrices can
be computed in O(⇢✓) integer operations17.

3.5 Multivariate Rational Diagonals

Let R be a ring. Given a power series

F (z) =
X

i2Nd

fiz
i

in R[[z]], the (complete) diagonal of F (z) is the power series (∆F )(z) 2 R[[z]] defined by

(∆F )(z) :=
X

k>0

fk,k,...,kz
k;

that is, the diagonal is the formal power series defined by the terms of F (z) where all variables have
the same exponent. In this thesis we will focus on diagonals of multivariate rational functions.

16We write a = Õ(b) when a = O(b logk b) for some k ≥ 0; see Section 8.1.1 of Chapter 8 for more information.
17The currently optimal result on matrix multiplication by Le Gall [166] implies that one can take ✓ < 2.3728639.
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Example 14. The binomial theorem shows that in a neighbourhood of the origin the rational
function F (x, y) = 1

1−x−y has the power series expansion

F (x, y) =
X

i,j>0

✓
i+ j

i

◆

xiyj ,

so that the diagonal (∆F )(z) =
P

n>0

(
2n
n

)
zn is the generating function of the central binomial

coefficients. /

Example 15. Although the coefficients of a multivariate rational function must satisfy a (multi-
variate) linear recurrence relation with constant coefficients, the converse is decidedly false. For
example, consider the bivariate sequence (am,n) defined by the linear recurrence relation

am,n = am+1,n−2 + am−2,n+1 − am−1,n−1, n,m > 2,

a1,1 = −1, and am,n = 0 in all other cases. Bousquet-Mélou and Petkovšek [55, Example
6] show that the section G(x) =

P

m>2 am,2x
m+1 is hypertranscendental, meaning it does not

satisfy any algebraic differential equation P (x,G(x), G0(x), . . . , G(k)(x)) = 0 with P polyno-
mial. Furthermore, the bivariate generating function F (x, y) =

P

m,n>2 am,nx
m−2ym−2 satisfies

F (x, y) = xy−G(x)−G(y)
(x−y2)(y−x2)

. The sequence (am,n) only takes on the values −1, 0, and 1. /

One of the key properties of the diagonal operator is how it affects the various classes of
generating functions discussed earlier in this chapter.

Theorem 16 (Hautus-Klarner [137], Furstenberg [110], Polya [211]). Let the rational function
F (x, y) = P (x, y)/Q(x, y) 2 Q(z) define a power series at the origin. Then ∆F is algebraic.

Proof Sketch. As F (x, y) is rational it represents the Taylor series of an analytic function in some
neighbourhood of the origin, thus for |y| sufficiently small the complex valued function F (x, y/x)
in the variable x converges uniformly in an annulus A|y| := {|y|/2 < x < |y|} around the origin.
Let C|y| be a positively oriented circle around the origin staying in A|y|. Then the Cauchy Residue
Theorem implies

(∆F )(y) =
1

2⇡i

Z

C|y|

P (x, y/x)

xQ(x, y/x)
dx =

nX

i=1

Res

✓
P (x, y/x)

xQ(x, y/x)
;x = ⇢i

◆

,

where ⇢1(y), . . . , ⇢n(y) are the roots of Q(x, y/x) inside C|y|. For |y| sufficiently close to 0 the
collection of roots of Q(x, y/x) interior to the curve C|y| stabilizes to include only those which
approach 0 as y ! 0, giving the diagonal as a finite sum of algebraic residues near the origin.

An effective algorithm for computing the minimal polynomial of a bivariate rational diagonal,
and a bound on its degree, is given by Bostan et al. [39] (see also the Introduction of that paper
for some historical remarks on Theorem 16).
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Example 17. Consider the rational function

F (x, y) :=
1

(1− 9xy)(1− x− y)
,

with 1
xF (x, y/x) = 1

(9y−1)(x2−x+y)
. The equation (9y − 1)(x2 − x+ y) = 0 has the two roots

r1(y) =
1−p1− 4y

2
r2(y) =

1 +
p
1− 4y

2

in x, of which only r1(y) ! 0 as y ! 0. Thus, the residue computation detailed in the proof of
Theorem 16 implies

(∆F )(y) = Res

✓
1

(9y − 1)(x2 − x+ y)
;x = r1

◆

=
1

(9y − 1)(r2 − r1)
=

1

(1− 9y)
p
1− 4y

,

for y in a neighbourhood of the origin.
/

Over a field of characteristic zero, the diagonal of a rational function in more than two variables
may not be algebraic. Over a field of positive characteristic, however, the diagonal of an algebraic
function in any number of variables must be algebraic, a result shown for rational power series
by Furstenberg [110] and algebraic power series by Deligne [87]. Adamczewski and Bell [1] give
an effective version of the result by explicitly bounding the degree and height of the minimal
polynomial for the diagonal (∆F mod p) in terms of the prime p, the degree and height of the
minimal polynomial of F (z), and the number of variables.

A power series F (z) 2 Q[[z]] or analytic function F (z) is called D-finite if the Q(z)−vector
space generated by F and its partial derivatives is finite dimensional. Although the class of rational
(or even algebraic) functions is not generally closed under taking diagonals, a result of Lipshitz
shows that the class of D-finite functions is closed under this operation. In a sense, this makes
D-finite functions the closure of rational functions under the diagonal operation (Christol [69, 70]
was the first to show that the diagonal of a rational function is always D-finite).

Theorem 18 (Lipshitz [174]). If F (z) is D-finite, then the diagonal (∆F )(z) is D-finite.

Every rational diagonal is a G-function, so combining Theorem 18 with Theorem 10 and
Proposition 11 gives a characterization of diagonal coefficient sequence asymptotics.

Corollary 19. Suppose F (z) 2 Q(z) is analytic at the origin. Then the dominant asymptotics of
its diagonal coefficient sequence [zk1 · · · zkn]F (z) is a finite sum of terms of the form Ck↵(log k)l⇣k,
where C is a constant, ↵ is a rational number, l is a non-negative integer, and ⇣ is algebraic.
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Example 20. Let

F (z1, z2, z3, z4) =
1

1− z1 − z2
· 1

1− z3 − z4
=

X

i2N4

✓
i1 + i2

i1

◆✓
i3 + i4

i3

◆

zi.

Then

(∆F )(z) =
X

n>0

✓
2n

n

◆2

zn

is not algebraic as Stirling’s approximation implies that its coefficients grow asymptotically as
16n/(⇡n), violating the constraints of Theorem 7. Binomial identities imply that the coefficients
of the diagonal satisfy the recurrence

(n+ 1)2fn+1 − 4(2n+ 1)2fn = 0

so, using a constructive proof [36, Theorem 14.1] of Proposition 9, (∆F )(z) satisfies the differential
equation

(z − 16z2)
d2

dz2
y(z) + (1− 32z)

d

dz
y(z)− 4y(z) = 0.

/

The process of going from a rational function to an annihilating differential equation of the
diagonal forms part of the theory of Creative Telescoping. The fastest known algorithm for deter-
mining such a differential equation is given by Lairez [162], following work of Bostan et al. [42], and
an extensive history of Creative Telescoping can be found in the Habilitation thesis of Chyzak [76].
In terms of computing asymptotics, going through an annihilating differential equation can run
into the connection problem for D-finite functions discussed above.

It is also interesting to know when a function belonging to one of the above classes can be
written as the diagonal of a rational function. A first result in this area is the following.

Theorem 21 (Furstenberg [110], Denef and Lipshitz [88]). Let A be an integral domain and
P (z, y) 2 A[z, y] with (@P/@y)(0, 0) a unit in A. If F (z) 2 A[[z]] has no constant term and
P (z, F (z)) = 0 then

F (z) = ∆

✓
y2(@P/@y)(zy, y)

P (zy, y)

◆

;

i.e., F is the diagonal of a bivariate rational function.

Proof. Writing P (z, y) = (y − F (z))g(z, y) for g 2 A[[z]][y], we have

(@P/@y)(z, y) = g(z, y) + (y − F (z))(@g/@y)(z, y),
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so that
y2(@P/@y)(zy, y)

P (zy, y)
=

y2

y − F (zy)
+

y2(@g/@y)(zy, y)

g(zy, y)
. (3.8)

As F (z) has no constant term,

y2

y − F (zy)
=

y

1− F (zy)/y

is a power series whose diagonal is F (z). Furthermore, the second summand in Equation (3.8) is
a power series by the assumption on (@P/@y)(0, 0), and has a diagonal of zero. The result follows
from the distributivity of the diagonal operator over addition.

Example 22. The function

g(z) =
1

(1− 9z)
p
1− 4z

was obtained in Example 17 as the diagonal of a rational function. Note that g(z) satisfies the
algebraic equation

(1− 9z)2(1− 4z)g(z)2 − 1 = 0,

however g(z) has a non-zero constant term. Subtracting off the constant term one obtains
P (z, g(z)− 1) = 0, where

P (z, y) = y2(9z − 1)2(1− 4z)− 2(9z − 1)2(1− 4z)y + (9z − 1)2(1− 4z)− 1.

Theorem 21 applies, and adding the constant term back to g(z) yields

g(z) = ∆

✓−z(y − 1)(2y2 − y + 1)(324y2z2 − 153yz + 22) + 2y2 − 3y + 2

324y2(y − 1)2z3 − 153y(y − 1)2z2 + 22(y − 1)2z − y + 2

◆

(3.9)

where the numerator and denominator inside the diagonal are co-prime. Note that this expression
is very different from the original bivariate rational function in Example 17. /

The property of being a rational function diagonal continues to hold when the minimal poly-
nomial of F (z) has a vanishing partial derivative at the origin, but the result is no longer as simple
(there are also generalizations to algebraic functions in more variables).

Theorem 23 (Denef and Lipshitz [88, Theorem 6.2]). Let F (z) be an algebraic power series over
a field K. Then there exists a bivariate rational power series R(z1, z2) such that F (z) = (∆R)(z).

A nice discussion of this result can be found in Section 3 of Adamczewski and Bell [1].

It is natural to wonder whether a similar result holds for more general families of D-finite
functions; indeed, such a characterization was conjectured by Christol in 1990 and remains open.
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A power series F (z) in Q[[z]] is called globally bounded if F (z) represents the Taylor series of an
analytic function in a neighbourhood of the origin and there exist non-zero a, b 2 Q such that
aF (bz) has integer coefficients. It is an easy exercise to show that every rational diagonal which
is analytic at the origin is globally bounded.

Conjecture 24 (Christol [69, Conjecture 4]). Every globally bounded D-finite function is the
diagonal of a rational function.

Christol [71] provides a recent survey of approaches to the conjecture, and its connection to related
results.

3.6 Laurent Expansions and Sub-Series Extractions

In later chapters of this thesis it will be necessary to consider expansions (and diagonals) of
functions which cannot be represented by power series at the origin. Recall that over a ring R
the ring of formal Laurent series in the variable z is the set

R((z)) =

8

<

:

X

i>q

aiz
i : q 2 Z, ai 2 R

9

=

;
,

equipped with the usual Cauchy product18 and term-wise sum for infinite series. When R is a
field then R((z)) is a field (in fact, it is the field of fractions of the ring of formal power series
over R). For more than one variable, the ring of formal iterated Laurent series in the variables
z1, . . . , zn is defined inductively by R((z1, . . . , zn)) := R((z1, . . . , zn−1))((zn)). Note that the order
of the variables used in the definition of the ring of iterated Laurent series is important.

Example 25. Consider the rational function 1
1−x−y which has power series expansion

1

1− x− y
=

X

i,j>0

✓
i+ j

i

◆

xiyj

at the origin. In the ring Q((x, y)) = Q((x))((y)) one can compute the expansion

1

1− x− y
=

−1/x
1− (1− y)/x

=
X

i,j>0

✓
i

j

◆

(−1)j+1yjx−i−1,

where the binomial coefficient is 0 if j > i, while in the ring Q((y, x)) = Q((y))((x)) one obtains

1

1− x− y
=

−1/y
1− (1− x)/y

=
X

i,j>0

✓
i

j

◆

(−1)j+1xjy−i−1.

/
18The Cauchy product of two formal Laurent series F (z) =

P

j fjz
j and G(z) =

P

j gjz
j is the formal Laurent

series F (z) ·G(z) =
P

j hjz
j where hj =

P

m+n=j fmgn.
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For a variable z, let z = 1/z. The ring of Laurent polynomials in the variables z1, . . . , zn over
the field R, denoted R[z, z], is the subset of R((z1, . . . , zn)) consisting of elements with a finite
number of non-zero coefficients. Note that the ring of Laurent polynomials does not depend on the
order of the variables used to define it (up to isomorphism). Iterated Laurent series are studied
in great detail from a formal point of view by Xin [244], while Aparicio-Monforte and Kauers [6]
discuss constructions of other rings of formal series expansions.

We now turn to the study of convergent Laurent series rings over the complex numbers. Given
an open and simply connected subset D ⇢ Cn, the set CD{z} of convergent Laurent series on D
consists of series

P

i2Zn aiz
i with ai 2 C which are absolutely convergent at each point of D and

uniformly convergent on compact subset of D. Given a point z 2 C define

Relog(z) := (log |z1|, . . . , log |zn|) .

The following classic result, which characterizes domains of convergence for multivariate Laurent
series, is proven in Pemantle and Wilson [204].

Proposition 26 (Pemantle and Wilson [204, Theorem 7.2.2]). If F (z) is defined by the sum
P

i2Zn fiz
i then the open domain of convergence of F has the form D = Relog−1(B) for some

open convex subset B ⇢ Rn, and F defines an analytic function on D. Conversely, if f(z) is an
analytic function on D = Relog−1(B) with B ⇢ Rn open and convex then there exists a unique
element F 2 CD{z} converging to f , whose coefficients are given by

[zi]F =
1

(2⇡i)n

Z

Relog−1(x)

f(z)

zi11 · · · zinn
· dz1 · · · dzn

z1 · · · zn
,

for any x 2 B.

The set of formal expressions
P

i2Zn aiz
i does not have a natural ring structure as, for instance,

the Cauchy product of two series can be undefined19. The set CD{z} is, however, a ring when
addition is defined term-wise and the multiplication of elements F,G 2 CD{z} defining analytic
functions f(z) and g(z) on D is defined as the unique element of CD{z} converging to f(z)g(z)
(whose coefficients can be determined using Proposition 26). Similarly, given any two convergent
Laurent series F 2 CD1{z} and G 2 CD2{z} whose domains D1 and D2 have non-empty intersec-
tion, there is a unique Laurent series in CD1\D2{z} corresponding to the product of the analytic
functions G and H, both of which are defined in D1 \ D2.

Given a function f(z) we define

amoeba(f) := {Relog(z) : z 2 (C⇤)n , f(z) = 0} ⇢ Rn.

19Term-wise addition is well defined for the set of formal expressions
P

i2Zn aiz
i, however, and this set can be

made into a module over the ring of Laurent polynomials.
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This set was introduced to the study of algebraic varieties by Bergman [24], and the name amoeba
was coined by Gelfand, Kapranov, and Zelevinsky [117] as two dimensional amoebas in the plane
resemble cellular amoebas with tentacles going off to infinity. The next result follows from Propo-
sition 26 and helps characterize the Laurent expansions of a fixed ratio of Laurent polynomials.

Proposition 27 (Gelfand, Kapranov, and Zelevinsky [117, Corollary 1.6]). If f(z) is a Laurent
polynomial then all connected components of the set Rn \ amoeba(f) are convex subsets of Rn.
These real convex sets are in bijection with the Laurent series expansions of the rational function
1/f(z). When 1/f has a power series expansion, then it corresponds to the component of Rn \
amoeba(f) containing all points (−N, . . . ,−N) for N sufficiently large.

Further results on convergent Laurent expansions of 1/f , including their strong connection to
properties of the Newton polygon N (f) of f , can be found in Chapter 6 of Gelfand, Kapranov,
and Zelevinsky [117] or Chapter 7 of Pemantle and Wilson [204]. In particular, we mention that
each connected component of Rn \ amoeba(f) corresponds to an integer point in N (f), so that
the number of integer points in N (f) gives an upper bound on the number of convergent Laurent
expansions of 1/f . There always exist connected components corresponding to vertices (extreme
points) of the Newton polytope, but whether or not there are any components corresponding to
the other integer points of the polytope depends on the coefficients of f .

Example 28. In Example 25 we saw three formal Laurent expansions for the rational function
F (x, y) = 1/(1−x−y). In fact, each of these formal expansions are convergent Laurent expansions
and, as the Newton polytope N (1− x− y) consists of the three integer points (0, 0), (0, 1), (1, 0)
(which are vertices), they make up all convergent Laurent expansions of F . To determine the
associated domains of absolute convergence we note that by the binomial theorem

X

i,j>0

✓
i+ j

i

◆

|x|i|y|j = 1

1− |x| − |y|
X

i,j>0

✓
i

j

◆

|y|j |x|−i−1 =
−1/|x|

1− (1 + |y|)/|x|
X

i,j>0

✓
i

j

◆

|x|j |y|−i−1 =
−1/|y|

1− (1 + |x|)/|y|

so that the domains of absolute convergence are

D1 = {(x, y) : |x|+ |y| < 1}, D2 = {(x, y) : 1 + |y| < |x|}, D3 = {(x, y) : 1 + |x| < |y|}.
The amoeba of 1− x− y is shown20 in Figure 3.1, along with its Newton polygon. /

20To determine the amoeba of 1−x−y, note that its points can be described by (log |x|, log |1− x|) for x 2 C. The
boundary points in the first and fourth quadrant of Figure 3.1 below the line y = x are given by (log x, log(x− 1))
for x 2 (1,1), and the boundary points in the third quadrant are given by (log x, log(1− x)) for x 2 (0, 1). Finally,
the boundary points in the first and second quadrant above the line y = x are determined by (log x, log(1 + x)) for
x 2 (0,1).
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(0, 0) (1, 0)

(0, 1)

•

•

•

Figure 3.1: The amoeba (left) and Newton polygon (right) of 1− x− y.

Some computational questions related to amoebas, including drawing them in two dimensions
and determining their boundary, are addressed by Theobald [236] and de Wolff [243].

Diagonals of Laurent Expansions

Given a formal Laurent series
F (z) =

X

fiz
i 2 R((z))

or convergent Laurent series
F (z) =

X

fiz
i 2 CD{z}

in some domain D, the diagonal of F is simply the univariate series

(∆F )(z) =
X

k>0

fk,...,kz
k.

Given a function f(z) over the complex numbers one can compute the diagonal of f for any of
its convergent Laurent series. Thus, one must specify a domain of convergence in order to define
the diagonal ∆f , which by Proposition 26 can be done by specifying any point in the domain.
Unless explicitly noted, when given a function which is analytic at the origin we always consider
the diagonal of the power series expansion of the function.

Most of the results discussed above for diagonals of rational functions with power series ex-
pansions hold for all convergent Laurent series expansions of rational functions. In particular, the
diagonal of a convergent Laurent expansion is still D-finite. In fact, there is a differential operator
which annihilates all convergent Laurent expansions of a rational function, and this operator can
be found using the creative telescoping algorithm of Lairez [162]. Thus, the diagonal of any con-
vergent Laurent expansion of a rational function is still a G-function and we obtain the following
analogue of Corollary 19.
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Corollary 29. Let F (z) 2 Q(z) be a rational function. Then dominant asymptotics of the di-
agonal coefficient sequence of any convergent Laurent series expansion of F (z) is a finite sum of
terms of the form Ck↵(log k)l⇣k, where C is a constant, ↵ is a rational number, l is a non-negative
integer, and ⇣ is algebraic.

Non-Negative Series Extractions

Over any ringR the non-negative series extraction operator with respect to the variables z1, . . . , zn, t
is the operator [z>0

1 · · · z>0
n ] : R((z))[[t]]! R[[z, t]] which takes an element

F (z, t) =
X

k>0

 
X

i2Zn

fi,kz
i

!

tk

of R((z))[[t]] and returns

[z>0
1 · · · z>0

n ]F (z, t) =
X

k>0

 
X

i2Nn

fi,kz
i

!

tk.

Note that R((z)) implicitly comes with an ordering of the variables z1, . . . , zn, and even though
the image of F under [z>0

1 · · · z>0
n ] is a power series it will depend on this underlying ordering.

When F (z, t) 2 R[z, z][[t]], the image of F under [z>0
1 · · · z>0

n ] is independent of how the variables
are ordered.

Certain variants of the kernel method (to be described in Chapter 4) rely heavily on generating
function representations using non-negative series extractions of rational functions. The following
result gives a relationship between a multivariate function encoded as the non-negative series
extraction of a Laurent series and a diagonal representation of evaluations of that function.

Proposition 30. Let F (z, t) 2 R[z, z][[t]]. Then for a 2 {0, 1}n,

[z>1 ] · · · [z>n ]F (z, t)

∣
∣
∣
∣
z1=a1,...,zn=an

= ∆

✓
F (z1, . . . , zn, z1 · · · zn · t)
(1− z1)a1 · · · (1− zn)an

◆

. (3.10)

Note that the specialization of variables on the left-hand side of Equation (3.10), and the
substitution on its right-hand side, are well defined as each coefficient of F (z, t) with respect to t
is a Laurent polynomial.
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Proof. The right-hand side of Equation (3.10) is given by

∆

2

4

0

@
X

k>0

zk1

1

A

a1

· · ·

0

@
X

k>0

zkn

1

A

ad
0

@
X

k>0

 
X

i2Zn

fi,kz
k−i1
1 · · · zk−in

n

!

tk

1

A

3

5

= ∆

2

4
X

k>0

0

@
X

j2Nn

X

i2Zn

fi,kz
a1j1−i1
1 · · · zanj1−in

n

1

A (z1 · · · znt)k
3

5 .

Thus, if aj = 0 for 1 6 j 6 n then ij = 0 in the inner sum for any term on the diagonal.
If, however, aj = 1 then any terms with ij non-negative in the inner sum lie on the diagonal.
Evaluating the non-negative series extraction at zj = 0 removes all terms with positive powers of
zj , while evaluating at zj = 1 sums all coefficients with non-negative powers of zj , and the result
follows.

Proposition 30 will be the key result which allows us to obtain asymptotics by combining the
kernel method and analytic combinatorics in several variables.
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Chapter 4

Lattice Path Enumeration and The

Kernel Method

We present here a new method for
solving the ballot problem with the use
of double generating functions, since
this method lends itself to the solution
of more difficult problems. . .

Don Knuth, The art of computer
programming. Vol 1.

But I love your feet
only because they walked
upon the earth and upon
the wind and upon the waters,
until they found me.1

Pablo Neruda, Los versos del Capitán

As described in the introduction to this thesis, given a dimension n 2 N, a finite step set
S ⇢ Zn, and a restricting region R ⇢ Zn the integer lattice path model taking steps in S restricted
to R is the combinatorial class consisting of sequences of the form (s1, . . . , sk), where sj 2 S
for 1 6 j 6 k and every partial sum s1 + · · · + sr 2 R for 1 6 r 6 k (addition is performed
component-wise). We enumerate the objects in this class by the number of steps they contain,
and add a single sequence of length zero representing an empty walk.

We begin this chapter by discussing models whose walks are unrestricted, which always have
rational generating functions, followed by models whose walks are restricted to a half-space, which

1Translated from the Spanish by Donald D. Walsh.
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always have algebraic generating functions. Finally, we consider models whose walks are restricted
to an orthant, which can admit generating functions with a wide variety of behaviour.

4.1 Unrestricted Lattice Walks

Consider first a lattice path model with step set S ⇢ Zn andR = Zn, so that there is no restriction
on where the walks in the model can move. As a walk of length k can have any of the |S| steps
in each of its k coordinates, we have the generating function identity

C(t) =
X

k>0

|S|ktk =
1

1− |S|t .

Although unrestricted models are simple to enumerate, we use them as an opportunity to
set up the basics of the kernel method. Instead of looking at the univariate generating function
enumerating the total number of walks in the model, the key of the method is to use a multivariate
generating function to additionally keep track of each walk’s endpoint. With this in mind, we
define the formal series

C(z, t) :=
X

k>0

 
X

i2Zn

ci,kz
i

!

tk,

where ci,k denotes the number of walks of length k which end at the point i 2 Zn. As there are a
finite number of walks of any fixed length, this formal series is well defined as an element of the
ring Q[z, z][[t]]. Let

S(z) :=
X

i2S
zi,

which is called the characteristic polynomial of the model, and define

Ck(z) := [tk]C(z, t) =
X

i2Zn

ci,kz
i,

for each k > 0. Combinatorially, a walk of length k+1 is a walk of length k followed by a step in
S. Updating the endpoint of a walk appropriately, we get the recurrence

C0(z) = 1, Ck+1(z) = S(z)Ck(z) for k > 1, (4.1)

which, upon multiplying by tk+1 and summing, yields the expression

(1− tS(z))C(z, t) = 1. (4.2)

Equation (4.2) is called the kernel equation, with the Laurent polynomial K(z, t) = 1 − tS(z)
known as the kernel. In the following sections we show that similar equations can be set up for
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lattice paths restricted to other regions, however the right hand side of the resulting equations will
rely on evaluations and coefficient extractions of (a priori unknown in explicit form) multivariate
generating functions. In this easy case we can simply solve the kernel equation to obtain

C(z, t) =
X

k>0

Ck(z)t
k =

X

k>0

S(z)ktk =
1

1− tS(z)
.

Note that C(1, t) = C(t), the univariate generating function counting the total number of walks.

An additional benefit of the kernel method is that it often yields generating function ex-
pressions for walks returning to the origin, or those ending on certain axes. For example, the
generating function for the number of walks returning to the origin can be expressed as

B(t) = [z01 · · · z0n]C(z, t) = [z01 · · · z0n]
1

1− tS(z)
= ∆

✓
1

1− t(z1 · · · zn)S(z)

◆

.

In the one dimensional case this generating function, as the diagonal of a bivariate rational func-
tion, is algebraic2. Banderier and Flajolet [13, Theorem 1] give the explicit representation

B(t) = t

p
X

j=1

z0j(t)

zj(t)
,

where z1(t), . . . , zp(t) are the algebraic roots of 1 − tP (z) = 0 in z which approach zero as t
approaches zero.

4.2 Lattice Walks in a Half-space

Given a fixed multiset S ✓ Z (possibly with repeated elements), we now consider the lattice path
model taking steps in S whose walks are restricted to R = N. More generally, one can consider
walks in (n + 1) dimensions restricted to the half-space Zn ⇥ N, but every higher dimensional
model has the same counting sequence as the one dimensional model obtained by projecting each
step onto its (n+ 1)st coordinate. Let

H(z, t) :=
X

k>0

 
X

i2Z
hi,kz

i

!

tk,

where hi,k denotes the number of walks of length k which end at the point i 2 Z, and let −a and
b denote the minimum and maximum of the elements of S. If a 6 0 we are in the unrestricted

2Although Theorem 16 is stated only for diagonals of bivariate power series, an analogous result holds for
diagonals of bivariate Laurent expansions (see, for instance, Pochekutov [209, Theorem 1]).
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case of the previous section, and if b 6 0 then there are no valid walks of non-zero length. Thus,
we assume a, b > 0.

Defining Hk(z) := [tk]H(z, t), our goal is to obtain a recurrence for Hk. The recurrence will
not be the same as the one for Ck in the unrestricted case as we must take into account the
restriction to a half-space, but taking this into consideration is easy as we track the endpoint of
a walk. If

S(z) =
X

i2S
zi = s−az

−a + · · ·+ sbz
b

with each sj 2 N, then defining

[z<−j ]S(z) := s−az
−a + · · ·+ s−j−1z

−j−1

one obtains the recurrence

Hk+1(z) = S(z)Hk(z)−
a−1X

j=0

[z<−j ]S(z) · [zj ]Hk(z)

for k > 1, since the subtracted terms enforce the restriction to a half-space. Multiplying by tk+1

and summing over k gives, after some rearrangement,

(1− tS(z))H(z, t) = 1− t
a−1X

j=0

[z<−j ]S(z) · [zj ]H(z, t). (4.3)

This functional equation is more difficult to deal with than the unrestricted kernel equa-
tion (4.2) because there are a sub-series extractions of the unknown function H(z, t) on the
right hand side. A detailed analysis of the kernel 1 − tP (z) = 0, carried out by Banderier and
Flajolet [13], shows that there are precisely a roots z1(t), . . . , za(t) in z which are analytic in a slit-
neighbourhood3 of the origin and have a constant term of zero in their Puiseux series expansions
(there are an additional b branches which approach infinity as t approaches zero). Substituting
each of these into Equation (4.3) gives a system of a equations with a unknown terms [zj ]H(z, t).
The form of the system shows that it can always be solved for the [zj ]H(z, t), giving an explicit
expression for the generating function.

Theorem 31 (Banderier and Flajolet [13, Theorem 2]). The bivariate generating function H(z, t)
is algebraic, and has the representation

H(z, t) =

Qa
j=1(z − zj(t))

za(1− tS(z))
.

3A slit-neighbourhood of the origin is a neighbourhood of the origin with a line segment from the origin to
infinity removed (to allow for branch cuts).
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In particular, the generating function for the total number of walks of length k is the algebraic
function

H(1, t) =
1

1− t|S|
aY

j=1

(1− zj(t)),

and the generating function for the number of walks of length k which end at z = 0 is the algebraic
function

H(0, t) =
(−1)a−1

s−at

aY

j=1

zj(t).

Note that the generating functions H(1, t) and H(0, t) are analytic at the origin as the zj(t)
are algebraic conjugates.

Example 32 (Dyck Paths). Let S = {−1, 1} and consider walks which stay in the half-space
R = N. Here we have S(x) = x−1 + x, and the kernel equation (4.3) becomes

(1− t(x+ x))H(x, t) = 1− txH(0, t)

or, equivalently,
(x− t(1 + x2))H(x, t) = x− tH(0, t). (4.4)

Solving x− t(1 + x2) = 0 for x using the quadratic formula gives two solutions

x1(t) =
1−
p
1− 4t2

2t
x2(t) =

1 +
p
1− 4t2

2t
,

of which x1(t) is a power series in t with a constant term of zero. Thus, one can substitute
x = x1(t) into Equation (4.4) to obtain

H(0, t) =
1−
p
1− 4t2

2t2
,

so

H(x, t) =
x− 1−

p
1−4t2

2t

x− t(1 + x2)
=

1− 2xt−
p
1− 4t2

2t(t+ tx2 − x)
.

Since

H(t) := H(1, t) =
1

2t

 p
1− 4t2

1− 2t
− 1

!

has the local expansion
p
2(1−2t)−1/2+O(1−2t) at its dominant singularity t = 1/2, the methods

of analytic combinatorics imply that the sequence counting the number of walks in this model
ending anywhere has the asymptotic expansion

[tk]H(t) = 2k · k−1/2

 p
2p
⇡
+O(k−1/2)

!

.

/
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Figure 4.1: A lattice walk of length 20 using the steps {(1,−1), (1, 1), (−1, 1)}, restricted to the
quarter plane.

Theorem 31 gives an explicit representation of the generating functions for the total number
of walks (and walks returning to the boundary of R) for half-plane models, and allows one to
determine asymptotics of the associated counting sequences. In this sense, the study of lattice
path models in a half-space is essentially solved. The next natural generalization is to consider
walks in a quarter plane, and as mentioned in the introduction of this thesis such models have a
wide array of applications.

4.3 Lattice Walks in the Quarter Plane

Consider now a model defined by step set S ⇢ Z2 restricted to the quarter plane R = N2.
Although lattice walks in a half-space always have algebraic generating functions, it was shown
by Bousquet-Mélou and Petkovšek [56] that there are models staying in the quarter plane whose
generating functions are non-D-finite. Much work in this area has focused on walks which take
unit or short steps; that is, models with step sets S ✓ {±1, 0}2. The restriction to short steps
bounds the degree of the kernel to be at most two, allowing its roots to be determined explicitly
and causing the kernel equation to have a relatively simple form. These models were originally
studied via kernel method techniques in a probabilistic context by Fayolle and Iasnogorodski [99]
and Fayolle et al. [100], and the treatment below begins by following a now standard method of
argument popularized for quarter plane walks by the combinatorial work of Bousquet-Mélou and
Mishna [54]. We deal exclusively with short step models in this chapter.

Many step sets S ⇢ {±1, 0}2 lead to models which contain no non-empty walks, or models
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which are combinatorially isomorphic to models restricted only to a half-space4. Thus, in the
following we assume that any set of steps S contains some steps with ±1 in their first coordinates
and some steps (possibly the same) with ±1 in their second coordinates.

4.3.1 The Kernel Equation and Group of a Walk

Analogously to the unrestricted and half-space cases, given a step set S ✓ {±1, 0}2 we use the
multivariate generating function

Q(x, y, t) :=
X

i,j,k>0

qi,j,kx
iyjtk,

where qi,j,k counts the number of walks of length k taking steps from S which stay in the non-
negative quadrant and end at the point (i, j), along with the characteristic polynomial

S(x, y) :=
X

(i,j)2S
xiyj 2 Q [x, x, y, y] .

Again the recursive structure of a walk of length k gives a kernel equation satisfied by Q(x, y, t).
As Q(0, y, t) (respectively Q(x, 0, t)) gives the generating function of walks ending on the y-axis
(respectively x-axis), and S is restricted to contain only unit steps, the kernel equation in the
quarter plane becomes

xy(1− tS(x, y))Q(x, y, t) = xy − tI(y)− tJ(x) + ✏tQ(0, 0, t), (4.5)

where
I(y) = y

(
[x−1]S(x, y)

)
Q(0, y, t), J(x) = x

(
[y−1]S(x, y)

)
Q(x, 0, t),

and

✏ =

(

1 if (−1,−1) 2 S
0 otherwise

(✏ compensates for subtracting off walks ending at the origin twice in other terms). The additional
variable present in the kernel K(x, y, t) = 1− tS(x, y) complicates the analysis by forcing one to
consider algebraic surfaces solving K(x, y, t) instead of algebraic curves (as in the half-space case).

This complication led Bousquet-Mélou [53], followed by Bousquet-Mélou and Mishna [54], to
borrow the notion of the group of a model from the probabilistic studies of Fayolle et al. [100]. If
we define the Laurent polynomials Aj(y) and Bj(x) for j 2 {−1, 0, 1} by

S(x, y) = xA1(y) +A0(y) + xA−1(y) = yB1(x) +B0(x) + yB−1(x),

4For instance, the model defined by S = {(−1, 0), (0, 1), (0,−1)} can never take its first step and is thus
isomorphic to the model solved in Example 32.
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Figure 4.2: The 23 short step sets defining non-isomorphic quarter plane models with finite group
G. Each half-arrow represents an element of the set {±1, 0}2, and each collection of half-arrows
with common base point defines a step set.

then the bi-rational transformations Ψ and Φ of the plane defined by

Ψ : (x, y) 7!
✓

x
A−1(y)

A1(y)
, y

◆

Φ : (x, y) 7!
✓

x, y
B−1(x)

B1(x)

◆

,

fix S(x, y) and thus K(x, y, t). The group G of a model is defined to be the group of bi-rational
transformations of the (x, y)−plane generated by the involutions Ψ and Φ. Bousquet-Mélou and
Mishna showed that, up to isomorphism, there are only 79 distinct models with unit steps: 23
whose corresponding group is finite and 56 whose corresponding group is infinite (see Figures 4.2
and 4.3).

As both Ψ and Φ are involutions, to prove that G is finite it is sufficient to find a natural
number n such that composing the group element Ψ ◦ Φ with itself n times yields the identity, a
feat easily accomplished in a computer algebra system (assuming such n exists and is of reasonable
size). To prove that a group is of infinite order one can find an explicit point (x0, y0) in the plane
whose image under G has infinite size, or show that the mapping Ψ ◦ Φ never composes to the
identity by analyzing its Jacobian at fixed points (Bousquet-Mélou and Mishna do both for the
various cases in Figure 4.3).

4.3.2 Generating Function Representations

For notational convenience, given g 2 G and a Laurent polynomial A(x, y) we define g(A(x, y)) :=
A(g(x, y)). If G has size 2k then any element g 2 G can be written uniquely as either

g = Ψ ◦ Φ ◦ · · · ◦Ψ ◦ Φ or g = Ψ ◦ Φ ◦ · · · ◦Ψ ◦ Φ ◦Ψ,

where there are r < 2k terms in the composition, and we define sgn(g) := (−1)r. In addition to
determining whether the group of each model is finite, Bousquet-Mélou and Mishna also proved
that 22 of the 23 models with finite group admit D-finite generating functions. Central to their
argument is the following result.
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Figure 4.3: The 56 short step sets defining non-isomorphic quarter plane models with infinite
group G.

Proposition 33 (Bousquet-Mélou and Mishna [54, Proposition 5]). Assume that the group G is
finite. Then

X

g2G
sgn(g)g(xyQ(x, y, t)) =

1

K(x, y, t)

X

g2G
sgn(g)g(xy). (4.6)

Proof. Define x0 and y0 by (x0, y) = Ψ(x, y) and (x, y0) = Φ(x, y). Applying the maps Ψ and Φ
successively to the kernel equation gives

(id) xyK(x, y)Q(x, y, t) = xy − tI(y)− tJ(x) + ✏ · tQ(0, 0, t)

(Ψ) x0yK(x, y)Q(x0, y, t) = x0y − tI(y)− tJ(x0) + ✏ · tQ(0, 0, t)

(ΦΨ) x0y0K(x, y)Q(x0, y0, t) = x0y0 − ty0I(y0)− tJ(x0) + ✏ · tQ(0, 0, t),

as both Ψ and Φ fix K(x, y). Note that −tI(y) and −tJ(x0) both appear on the right hand sides
of successive equations, so taking an alternating sum of these three equations cancels those terms.
In fact, since Ψ and Φ each fix one variable, continuing to compose the group generators in this
manner and taking an alternating sum of the resulting equations cancels each unknown function of
the form I(Y ) or J(X) arising on the right hand side. This follows from the finiteness of the group,
as the compositions of group elements eventually return to the identity. The ✏tQ(0, 0, t) term is
also canceled as the group has even order, and the resulting equation gives the theorem.
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Figure 4.4: The four walks to which Theorem 34 does not apply

The procedure described in the proof of Theorem 33 is known in the literature as the orbit
sum method, as one sums the kernel equation over orbits of the group generators. Examining
Equation (4.6) for 19 of the 23 cases with finite group shows that the only term on the left
hand side with non-negative powers of x and y is xyQ(x, y, t). A short argument then shows the
following.

Theorem 34 (Bousquet-Mélou and Mishna [54, Proposition 8]). Let S be one of the 19 step sets
with finite group which is not listed in Figure 4.4. Then Q(x, y, t) = [x>0][y>0]R(x, y, t), where
R(x, y, t) is the rational function

R(x, y, t) =
1

K(x, y, t)

X

g2G
sgn(g)g(xy),

and is thus D-finite.

The four walks in Figure (4.4) have both sides of their associated orbit sum equation (4.6)
identically zero due to an element of the group fixing the product xy while having negative sign.
Bousquet-Mélou and Mishna proved that the first three walks in Figure 4.4 are algebraic (and
thus can be written as diagonals of rational functions) by taking a modified ‘half-orbit sum’ and
performing a detailed analysis, but the final model—known as Gessel’s model—was classified by
a computational approach outlined below. Bousquet-Mélou and Mishna conjectured5 that all 56
walks with an infinite group had non-D-finite univariate generating functions, but did not prove
this for any model.

Combining Theorem 34 with Proposition 30 gives diagonal representations for the generating
functions of the number of walks ending anywhere in the quarter plane, returning to the origin,
or ending on either boundary axis.

Theorem 35. Let S be one of the 19 step sets with finite group which is not listed in Figure 4.4.
Then for a, b 2 {0, 1},

Q(a, b, t) = ∆

✓
O(x, y)

(1− x)a(1− y)b(1− txyS(x, y))

◆

,

where O is the orbit sum
O(x, y) =

X

g2G
sgn(g)g(xy).

5Previous work of Mishna [188] also made this conjecture.
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Thus, we have represented the generating functions of these lattice path models by explicit
rational diagonals. From this expression an annihilating linear differential equation of each gen-
erating function can be computed using creative telescoping.

Example 36 (Simple Walks in the Quarter Plane). Consider the quarter plane model defined by
the steps S = {(±1, 0), (0,±1)}. Here the kernel equation is

K(x, y, t)xyQ(x, y, t) = xy − txQ(x, 0, t)− tyQ(0, y, t)

and the group G is the dihedral group of order 4 generated by the involutions

Φ : (x, y) 7! (x, y) Ψ : (x, y) 7! (x, y).

Taking an orbit sum of the kernel equation gives

xyQ(x, y, t)− (xy)Q(x, y, t) + (xy)Q(x, y, t)− (xy)Q(x, y, t) =
xy − xy + xy − xy

1− t(x+ y + x+ y)
.

Since the only term on the left hand side of this equation with non-negative powers of x and y is
xyQ(x, y, t), it follows that

Q(x, y, t) = [x>0y>0]
xy + xy + xy + xy

xy(1− t(x+ y + x+ y))
= [x>0y>0]

(x− x)(y − y)

xy(1− t(x+ y + x+ y))

and we obtain

Q(1, 1, t) = ∆

✓
(x− x)(y − y)

(1− x)(1− y)x y(1− txy(x+ y + x+ y))

◆

= ∆

✓
(1 + x)(1 + y)

1− txy(x+ y + x+ y)

◆

.

Using the Mathematica package of Koutschan [158], which implements creative telescoping algo-
rithms, we can use this diagonal expression to compute a differential operator

L := t2(4t− 1)(4t+ 1)@3t + 2t(4t+ 1)(16t− 3)@2t + (224t2 + 28t− 6)@t + (12 + 64t)

which annihilates Q(1, 1, t). We will show that the number of lattice walks in the class has
asymptotics of the form 4

⇡ · 4
k

k , meaning Q(1, 1, t) is transcendental. /

4.3.3 A Computer Algebra Approach

We now describe a computational approach to asymptotics and the classification of generating
functions, which has been applied to several problems in lattice path combinatorics [153, 152, 151,
41] and was used by Bostan and Kauers [40] to conjecture asymptotics for the 23 quarter plane
lattice path models in Figure 4.2. The basic idea is to use the recurrence relation

qi,j,k =
X

(a,b)2S
✏i−a,j−bqi−a,j−b,k−1, ✏i−a,j−b =

⇢
0 : i− a < 0 or j − b < 0
1 : otherwise

(4.7)
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to generate a truncation of the generating function Q(x, y, t) and use this truncation to guess an
algebraic or differential equation which the full generating function will satisfy. Such guessing can
be done efficiently through fast algorithms for Padé-Hermite Approximants.

Padé-Hermite Approximants

Let K be a field. Given a vector of formal power series

F = (F1, . . . , Fr) 2 K[[t]]r

and a vector of natural numbers
d = (d1, . . . , dr) 2 Nr,

a vector P = (P1, . . . , Pr) 6= 0 of polynomials in K[t] is called a Padé-Hermite approximant of
type d for F if

(i) P ·F = O(tσ) where σ =
Pr

i=0(di+1)− 1 (i.e., the lowest non-zero term in the dot product
has exponent at least σ);

(ii) the degree of Pi is at most di for all 1 6 i 6 n.

Example 37. Given a power series F (t) 2 Q[[t]] and d 2 N, if one takes Fk = F (t)k−1 and
d = (d, . . . , d) in the above definition then P is a Padé-Hermite approximant of type d if and
only if F (t) satisfies an algebraic equation of degree r with coefficients of degree at most d, up to
order trd+r−1:

Pr(t)F (t)r−1 + · · ·+ P2(t)F (t) + P1(t) = 0 mod trd+r−1.

/

Example 38. Given a power series F (t) 2 Q[[t]] and d 2 N, if one takes Fk = dk

dtk
F (t) and

d = (d, . . . , d) in the above definition then P is a Padé-Hermite approximant of type d if and only
if F (t) satisfies an linear differential equation of order r with coefficients of degree at most d, up
to order trd+r−1:

Pr(t)
dr

dtr
F (t) + · · ·+ P2(t)

d2

dt2
F (t) + P1(t)

d

dt
C(t) = 0 mod trd+r−1.

/

Padé-Hermite approximants always exist, and can be computed efficiently.

Theorem 39 (Beckermann and Labahn [19]). Given the vector F it is possible to calculate a Padé-
Hermite approximant of type d in O(MM(r,σ) log σ) operations in the field K, where MM(r,σ)
is the number of operations required to multiply two r ⇥ r matrices whose entries are polynomials
of degree at most σ modulo tσ+1.
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4
⇡ · 4

k

k

p
5

3
p
2⇡
· 5kp

k
2
⇡ · 4

k

k
p
7

3
p
3⇡
· 7kp

k

p
6

⇡ · 6
k

k
3
p
3·Bk
⇡ · (2

p
3)k

k2

8
3⇡ · 8

k

k

p
3(1+

p
3)7/2

2⇡ · (2+2
p
3)k

k2

p
3

2
p
⇡
· 3kp

k

12
p
30

⇡ · (2
p
6)k

k2

p
5

2
p
2⇡
· 5kp

k

q

6(379+156
p

6)(1+
p
6)7

5
p

95π
· (2+2

p
6)k

k2

4
3
p
⇡
· 4kp

k

4·Ak
⇡ · (2

p
2)k

k2
2
p
3

3
p
⇡
· 6kp

k
p
8(1+

p
2)7/2

⇡ · (2+2
p
2)k

k2
3
p
3

2
p
⇡
· 3k

k3/2
3
p
3p

2Γ(1/4)
· 3k

k3/4

3
p
3

2
p
⇡
· 6k

k3/2

p

6
p
3

Γ(1/4) · 6k

k3/4
2
p
2

Γ(1/4) · 3k

k3/4

8
⇡ · 4

k

k2
4
p
3

3Γ(1/3) · 4k

k2/3

Ak=4(1−(−1)k)+3
p
2(1+(−1)k), Bk=

p
3(1−(−1)k)+2(1+(−1)k), Ck=12/

p
5(1−(−1)k)+

p
30(1+(−1)k)

Table 4.1: Asymptotics for the 23 D-finite models; these are proven in Chapter 10.

After determining an algebraic or differential equation for a truncated series, several tech-
niques can be used to give confidence that the generating function under consideration satisfies
this equation. In addition to simply computing additional terms of the generating function and
verifying that the additional terms also satisfy the equation, Section 2.4 of Bostan and Kauers [40]
gives several algebraic and analytic heuristics. Guessing algebraic or differential equations from
a list of initial coefficients has been implemented in the Maple package GFUN [225], and the
interested reader can refer to Chapter 7 of Bostan et al. [36] for additional details on algorithms
for Padé-Hermite approximations.

4.3.4 Asymptotics of D-Finite Quarter Plane Models

Bostan and Kauers [40, Table 1] were able to guess algebraic and/or differential equations for
each of the 23 models with finite group in Figure 4.2 (and could not find such equations for the
56 models with infinite group in Figure 4.3). From this they conjectured asymptotics of the form
qk ⇠ C ·k↵·⇢k for the total number of walks in each class, getting around the connection problem by
using numerical approximations to guess the constant C. Their results6 are presented in Table 4.1.
Bostan and Kauers [41] also used computer-algebraic tools to prove that the right-most model

6Three of the models involve periodic terms Ak, Bk, and Ck, and the guesses of Bostan and Kauers only included
the value of these constants when k is even.
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of Figure 4.4 (Gessel’s model, the only model with finite group whose generating function was
not proven to be D-finite by Bousquet-Mélou and Mishna) has an algebraic generating function,
which they determined explicitly. The generating function of Gessel’s model was later proven to
be algebraic by several other arguments [32, 50, 25].

Rigorous Results on Asymptotics

Bousquet-Mélou and Mishna [54] determined explicit expressions for the number of walks in the
models7

and asymptotics of Gessel’s model follows from the work of Bostan and Kauers [41]. Fayolle and
Raschel [101] outline a method which in principle allows one to determine the exponential growth
rate ⇢ of the 23 D-finite models (and many of the 56 models with infinite group), and found ⇢ in
several examples. The models

which admit non-D-finite generating functions Q(1, 1, t) are known as singular models, and asymp-
totics of their counting sequences were worked out by Mishna and Rechnitzer [189] and Melczer
and Mishna [182]. Exponential growth of the 74 non-singular models with short steps can be de-
termined from the work of Garbit and Raschel [113], which applies in much more general contexts.

The probabilistic work of Denisov and Wachtel [89] gives rise to a method which can be used to
compute the exponential growth constant ⇢ and growth exponent ↵ for the number of walks which
return to the origin, for the 74 non-singular models. An algorithm for determining these constants
was given by Bostan et al. [44], who showed that the generating function for the number of walks
returning to the origin is non-D-finite for the 51 non-singular models with infinite group. Given
a step set S whose vector sum contains two negative coordinates8, work of Duraj [94, Example 7]
implies that the constants ⇢ and ↵ are the same when enumerating walks returning to the origin
and the total number of walks defined by the model.

7The first three models here have algebraic generating functions, while the next two have transcendental trivari-
ate generating functions Q(x, y, t), with algebraic specializations Q(1, 1, t). The final model does not have an
algebraic specialization, but the coefficients qi,j,k are Gosper summable (see Bousquet-Mélou and Mishna [54,
Proposition 11] for details).

8This does not occur for any of the D-finite models.
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Asymptotics via Analytic Combinatorics in Several Variables

Aside from the 7 D-finite models discussed in the last section, the conjectures of Bostan and
Kauers were open for several years9. Melczer and Mishna [181] determined asymptotics using
ACSV for models (in any dimension) restricted to an orthant whose step sets are symmetric over
every axis. This result applies to the models

in the quarter plane and is described in Chapter 7. More recently, Melczer and Wilson [184]
generalized these results to determine asymptotics for all remaining D-finite models with short
steps in the quarter plane. This work is discussed in Chapter 10, and also gives some asymptotic
results for walks returning to either axis or the origin.

9Around the same time as the ACSV approach to lattice path asymptotics was being developed, Bostan et al. [37]
proved the guessed annihilating differential equations of Bostan and Kauers [40] and used this to represent the
generating functions of walks restricted to the quarter plane in terms of integrals of algebraic and 2F1 hypergeometric
functions. These representations allow the asymptotics of some, but not all, of the short step quarter plane models
to be determined; see Section 4.3 of Bostan et al. [37] for details.
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Chapter 5

Other Sources of Rational Diagonals

The interplay between generality and individuality, deduction and
construction, logic and imagination – this is the profound essence
of live mathematics. . . In brief, the flight into abstract generality
must start from and return again to the concrete and specific.

Richard Courant, Mathematics in the Modern World

To many, mathematics is a collection of theorems. For me, mathe-
matics is a collection of examples; a theorem is a statement about
a collection of examples and the purpose of proving theorems is to
classify and explain the examples. . .

John B. Conway, Subnormal Operators

In order to further motivate the theory of analytic combinatorics in several variables, and
provide examples beyond lattice path enumeration for further chapters, we now describe several
domains of mathematics where rational diagonals appear.

5.1 Binomial Sums

One of the simplest examples of a rational diagonal is the bivariate function

F (x, y) =
1

1− x− y
=

X

(i,j)2N2

✓
i+ j

i

◆

xiyj
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seen in Chapter 3. The diagonal sequence of F , composed of the central binomial coefficients, is
an elementary example of a binomial sum. Informally, the class of binomial sums over a field K

is the smallest K-algebra of (possibly multivariate) sequences which:

• contains the geometric and binomial coefficient sequences;

• contains the Kronecker delta sequence (1, 0, 0, 0, . . . );

• is closed under indefinite summation;

• is closed under affine maps on the sequence indices.

For a formal construction, see Definition 1.1 of Bostan et al. [43]. One main result of that
paper is the following.

Theorem (Bostan et al. [43, Theorem 3.5]). A univariate sequence (uk) is a binomial sum if and
only if the generating function U(z) =

P

k>0 ukz
k is the diagonal of a rational power series.

The results of Bostan et al. give an algorithm1 which takes a univariate binomial sum (uk)
and returns a rational function F (z) 2 Z(z) such that the generating function of (uk) is (∆F )(z),
and a Maple package implementing these results was developed by Lairez2.

Example 40 (Apéry Numbers). Apéry’s celebrated proof [7] of the irrationality of ⇣(3) relies
on constructing two sequences of rational numbers whose ratios converge to ⇣(3) at a rate which
implies that ⇣(3) is irrational. Alfred van der Poorten’s canonical report [212] on the proof gives
the following exercise: “Be the first in your block to prove by a 2-line argument that ⇣(3) is
irrational” by determining an algebraic relationship between the two sequences and determining
the exponential growth of the sequence (bn) defined by

bn :=
nX

k=0

✓
n

k

◆2✓n+ k

k

◆2

.

The integers bn are often referred to as the Apéry numbers (OEIS entry A005259) and the Maple
package of Lairez shows that their generating function satisfies

B(z) = ∆

✓
1

1− t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)

◆

.

1Algorithm 1 of Bostan et al. [43] gives a rational function R(y1, . . . , yn, z) 2 Q(y, z) such that the generating
function of (uk) is the constant term extraction U(z) = [y0

1 · · · y0
n]R(y, z). A simple argument then shows that U(z)

is the diagonal ∆R(y, y1y2 · · · yn · z). The Maple package of Lairez contains the command sumtores which returns
a rational function R(y, z) 2 Q(y, z) such that U(z) = [y−1

1 · · · y−1
n ]R(y, z) = ∆ (y1 · · · ynR(y, y1y2 · · · yn · z)).

2This Maple package is available from https://github.com/lairez/binomsums.
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Bostan et al. [30, Appendix B] list four different rational diagonal expressions for the generating
function of bn (two containing 5 variables, one containing 6 variables, and one containing 8 vari-
ables, none of which is the representation given here). Apéry also presented a new elementary
proof of the irrationality of ⇣(2) which relies on asymptotics of the sequence (cn) defined by

cn :=
nX

k=0

✓
n

k

◆2✓
n+ k

k

◆

.

The cn are also referred to as Apéry numbers (OEIS entry A005258). Apéry himself [8] noted
that the generating function C(z) of (cn) is the diagonal of two trivariate rational functions

C(z) = ∆

✓
1

1− (1 + z)(x+ y + xy)

◆

= ∆

✓
1

1− x− y − z(1− x)(1− y)

◆

,

and the Maple package of Lairez shows

C(z) = ∆

✓
1

1− z(1 + x)(1 + y)(xy + y + 1)

◆

.

A recent paper of Hirschhorn [140] finds “an expression for ⇡ as a limit involving the golden ratio
φ” by finding the dominant asymptotics of the Apéry numbers cn. We use the tools of analytic
combinatorics in several variables to determine asymptotics of these sequences in Example 65.
Furthermore, the results of Chapter 8 will be able to rigorously and automatically determine
asymptotics for (bn) and (cn), which will be done in Examples 87 and 108. /

5.2 Irrational Tilings

We will see in Part II that the techniques of ACSV are (theoretically and computationally) simpler
for multivariate rational functions whose power series expansions have all but a finite number of
non-negative coefficients. Unfortunately it is still unknown, even in the univariate case, how to
decide this ultimate positivity problem3. We now discuss an important class of rational functions
with non-negative coefficients.

Definition 41. The set of n-variate N-rational functions is the smallest set of rational functions
containing 0, z1, . . . , zn which is closed under addition, multiplication, and pseudo-inverse (the
operation G 7! 1/(1−G) for G with a constant term of 0).

The set of univariate N-rational functions consists of the generating functions of rational lan-
guages over finite alphabets, and given F 2 N(z) it is effective [229, 159] to determine whether or

3Ouaknine and Worrell [201] have shown the decidability of the ultimate positivity problem for univariate
rational functions with square-free denominators, but the general univariate case is still open.
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Figure 5.1: A set of tiles from Garrabrant and Pak [115, Figure 4]: the green square has length 1
and the yellow and pink polygons are such that setting them beside each other gives a square of
length 1. The number of tilings of a 1⇥ n rectangle is 2n.

not it is N-rational (and to decompose it in terms of additions, multiplications, and pseudo-inverses
when it is). An influential principle, sometimes referred to as the Schützenberger methodology4,
states that “every” rational generating function of a naturally occurring combinatorial class is
N-rational, and enumerative properties of such classes can be determined through bijections to
suitable regular languages (see Bousquet-Mélou [52, Section 2.4.] and Gessel [118]).

Garrabrant and Pak [115] give a combinatorial characterization of the rational diagonal se-
quences which are diagonals of N-rational functions. A tile is an axis-parallel simply connected
closed polygon in the plane of height 1, and a tiling of a rectangle R of height 1 with the set
of tiles T is a sequence of tiles in T , overlapping only on their boundaries, which cover R (see
Figure 5.1). For a set of tiles T and fixed ✏ > 0 define fT,✏(n) to be the number of tilings of a
1⇥(n+✏) rectangle using the elements of T for all n 2 N. Let F be the set of all such tile-counting
functions fT,✏ : N! N as T and ✏ vary.

Proposition 42 (Garrabrant and Pak [115, Main Theorem 1.2]). The function f(n) 2 F if and
only if the generating function

P

n>0 f(n)z
n is the diagonal of an N-rational function.

Note that the theorem does not show how many variables the N-rational function whose
diagonal sequence is f(n) will contain, and given f(n) 2 F it is not currently known how to
determine the smallest number of variables needed to express f(n) as the diagonal of an N-
rational function. Garrabrant and Pak establish this result through a connection to a sub-family
of binomial sums. We say that a restricted binomial multisum is the family of functions

f(n) =
X

v2Zd

 
rY

i=1

✓
a(i) · v + a0in+ a00i
b(i) · v + b0in+ b00i

◆!

where r, d 2 N, a(i),b(i) 2 Zd, and a0i, b
0
i, a

00
i , b

00
i 2 Z for all 1 6 i 6 r.

Proposition 43 (Garrabrant and Pak [115, Main Theorem 1.3]). The set of restricted binomial
multisums is equal to F (and thus the set of diagonals of N-rational functions).

4Although this term, and the related expression “Delest-Schützenberger-Viennot methodology”, is usually used
to describe the more general philosophy that algebraic generating functions be studied through bijections to context-
free languages [86].

66



Although it is decidable to determine when a univariate function is N-rational it is currently
unknown how to characterize N-rationality in higher dimensions. For example, Garrabrant and
Pak conjecture that the generating function for the Catalan numbers Cn = 1

n+1

(
2n
n

)
is not the

diagonal of an N-rational function (in any number of variables) while it is the diagonal of a
bivariate rational function as it is algebraic5. The univariate characterization of N-rationality
relies heavily on a singularity analysis which does not easily translate into the multivariate case.
The field of analytic combinatorics in several variables provides a potential source of tools to
examine this problem, although significant progress on this deep question will be challenging.

5.3 Period Integrals

A period number, in the sense of Kontsevich and Zagier [157], is any complex number whose real
and imaginary parts can be expressed as absolutely convergent integrals of the form

Z

Γ
F (z)dz,

where F (z) 2 Q(z) and Γ ⇢ Rn is defined by polynomial inequalities with rational coefficients.
The collection of period numbers includes all algebraic numbers, logarithms of algebraic numbers,
⇡, and all multiple zeta values, however Kontsevich and Zagier conjecture that e, Euler’s constant
γ, and 1/⇡ are not period numbers. It seems to be difficult to find an explicit example of a number
which is not a period, although the set of period numbers is countable.

Closely related to period numbers are period integrals of rational functions depending on a
parameter; that is, integrals of the form

Z

Γ
F (z, t)dz,

where F (z, t) is a rational function with parameter t and Γ is an appropriate domain of integration
(so that, for example, the integral is absolutely convergent for all values of t in some open subset
of the complex plane).

If F (z) =
P

fiz
i is a rational function which is analytic at the origin, then the multivariate

5In fact, they show [115, Proposition 4.7] that for any ✏ > 0 there exists a constant A 2 (1−✏, 1+✏) and sequence
fn which is the diagonal of an N-rational function such that fn ⇠ A · Cn, so this conjecture cannot be resolved by
asymptotic means. They also show [115, Propositions 4.8 and 4.9] that it cannot be resolved by arithmetic means
(for instance, for any m 2 N there is an N-rational function whose diagonal sequence is the same as the Catalan
numbers modulo m).
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Cauchy Integral Formula (described in Theorem 48 below) implies

(∆F )(t) =
X

k>0

fk,...,kt
k =

1

(2⇡i)n

X

k>0

Z

Γ

F (z)

(z1 · · · znt)k
dz1 · · · dzn
z1 · · · zn

=
1

(2⇡i)n

Z

Γ

0

@
X

k>0

F (z)

(z1 · · · znt)k

1

A
dz1 · · · dzn
z1 · · · zn

=
1

(2⇡i)n

Z

Γ

F (z)

1− t(z1 · · · zn)
dz1 · · · dzn
z1 · · · zn

,

where Γ is a product of circles in the complex plane sufficiently close to the origin (the summation
and integration can be exchanged as a power series converges absolutely and uniformly on the
interior of its domain of convergence). This shows that rational diagonals are examples of period
integrals6, up to powers of (the conjecturally not a period number) 1/⇡.

The functions defined by period integrals with parameters satisfy a family of differential equa-
tions known as Picard-Fuchs differential equations [157, Chapter 2]; period numbers then arise
as evaluations of solutions of Picard-Fuchs differential equations at algebraic arguments. For ex-
ample, following the conjectures of Kontsevich and Zagier on period numbers it is tempting to
conjecture that Euler’s constant γ cannot arise as the evaluation of a rational diagonal at an
algebraic argument.

Example 44 (Periods on Calabi-Yau 3-Folds). Period integrals with parameters defined over
cycles on certain algebraic varieties are known to encode important information about the algebraic
varieties. For instance, such period integrals can be used to count the number of rational curves
of fixed degree on quintic 3-folds (hypersurfaces with degree 5 and dimension 3) [193]. Much of
this theory has been developed for Calabi-Yau 3-folds through the use of “mirror symmetry” (see
Cox and Katz [79] for details and definitions).

In a recent paper, Batyrev and Kreuzer [17] determined a family of Calabi-Yau threefolds,
identified by polytopes Pj ⇢ Z4, and studied their principal periods

!0(t) =

Z

C

1

1− t
P

v2Pj
zv

dz1dz2dz3dz4
z1z2z3z4

where C is a product of circles in the complex plane sufficiently close to the origin. Batyrev and
Kreuzer were interested in properties of the Picard-Fuchs differential equations annihilating these
integrals: the models break down into 68 classes, of which they were able to guess such equations
for the models in 28 classes. Lairez [162] used a fast creative telescoping algorithm to rigorously

6Although the integral representation given here is taken over the complex plane, one can make the substitution
zj = xj + iyj and use the fact that the circle |zj | = ✏ is parametrized by x2

j + y2
j = ✏ when xj and yj are real.
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compute annihilating differential operators for all models7. For each polytope Pj , the principal
period can be expressed as the diagonal

!0(t) = ∆

 

1

1− t(z1z2z3z4)
P

v2Pj
zv

!

,

where the rational function is expanded in the ring Q[z, z][[t]]. Asymptotics for one of these
diagonals is computed in Example 67. /

5.4 Further Examples

5.4.1 n-fold Ising Integrals

The Ising model is an important model in statistical physics, introduced by Lenz [169] and studied
in the one dimensional case by his PhD student Ising [145]. Roughly speaking, the model considers
the spins of particles arranged on a lattice with respect to an external magnetic field. Such
spins can take the values ±1 and, possibly in the presence of interactions between the particles
or outside forces, one wants to determine information for different configurations of spins after
certain parameters are fixed. Many of the desired properties can be expressed as sums of n-fold
integrals, and Bostan et al. [30, Section 3] show that the integrals which arise can be written
as diagonals of explicit n-variate algebraic functions (meaning they are diagonals of 2n-variate
rational functions).

Example 45 (Bostan et al. [31, Appendix C]). Bostan et al. consider a family of integrals Φ(n)
D (w)

related to the “n-particle contribution to the diagonal magnetic susceptibility of the Ising model”
and give the explicit example

Φ
(3)
D (w) = ∆

 

1− 2w +
p

(1− 2w)2 − 4w2t2

2
p
1− t2

p

(1− 2w)2 − 4w2t2
− 1

2

!

.

Using the methods presented in Lemma 6.3 and the proof of Theorem 6.2(ii) of Denef and Lip-
shitz [88], one can construct8 a 4-variate rational function F (t, w, u, v) whose diagonal gives

Φ
(3)
D (w). The rational function has a numerator of (total) degree 55 in its variables, and a de-

nominator of degree 54. An explicit expression for Φ
(n)
D (w) in terms of 4F3 hypergeometric series

is given in Section 4 of Boukraa et al. [48]. /

7Lairez’s complete list of Laurent polynomials
P

v2Pj
z
v and their annihilating differential operators can be

found at http://pierre.lairez.fr/supp/periods/.
8The rational function is available on http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
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Many of the objects appearing in the Ising model are similar to those appearing in lattice path
enumeration, although such objects often naturally arise as diagonals of multivariate algebraic
functions. This makes them a good potential source of study for new work looking to apply the
methods of analytic combinatorics in several variables.

5.4.2 Enumerating Simple Singular Vector Tuples of Generic Tensors

In a study of rank-1 approximations of tensors, Friedland and Ottaviani proved the following
result9.

Proposition 46 (Friedland and Ottaviani [107, Theorem 1]). Let c(i1, . . . , in) denote the number
of simple singular vector tuples of a generic complex m1 ⇥ · · · ⇥mn tensor. Then

c(i1, . . . , in) = [ti11 · · · tinn ]

dY

i=1

⌧mi
i − tmi

i

⌧i − ti
, for ⌧i =

X

16j 6=i6n

tj .

Based on this result, Ekhad and Zeilberger [97, Proposition 1] observed that the multivariate
generating function F (z) for c(i1, . . . , in) can be written

F (z) =
X

i2Nn

c(i)zi =
z1 · · · zn

(1− z1) · · · (1− zn) (1−
Pn

i=2(i− 1)ei(z))
,

where ei(z) is the ith elementary symmetric function

ei(z) =
X

16j1<···<ji6n

zj1 · · · zji .

For all natural numbers n define
Cn(k) = c(k, k, . . . , k).

Ekhad and Zeilberger used creative telescoping methods to determine a linear recurrence relation
with polynomial coefficients for C3(k) and used that to deduce asymptotics. Of particular interest
is the fact that there are solutions of the linear recurrence with larger exponential growth than
C3(k) (so that some of the connection coefficients of the associated generating function vanish).
Ekhad and Zeilberger could not determine a recurrence for C4(k), but conjectured asymptotics
from a large number of available terms. Using the methods of analytic combinatorics in several
variables, Pantone [202] recently gave asymptotics of Cn(k) for all n > 3.

Proposition 47 (Pantone [202, Theorem 1.3]). For n > 3,

Cn(k) =
(n− 1)n−1

(2⇡)(n−1)/2n(n−2)/2(n− 2)(3n−1)/2
· ((n− 1)n)k · k(1−n)/2

✓

1 +O

✓
1

n

◆◆

,

as k !1.
9See Friedland and Ottaviani [107] for all relevant definitions.
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This result is re-derived in Example 5.4.2 below.

5.4.3 Examples from Pemantle and Wilson

A survey paper by Pemantle and Wilson [208], together with their textbook [204], highlights a
large range of multivariate generating functions whose asymptotics can be calculated through the
theory of ACSV. These include examples from the study of trees and graphs, quantum random
walks, Chebyshev polynomial coefficients, Gaussian weak and central limit laws, queuing theory10,
integer solutions to linear equations, tilings of the Aztec Diamond, sequences defined by Riordan
arrays, convex polyominoes, symmetric Eulerian numbers, and strings with forbidden patterns.

We try as much as possible to give new examples in this thesis, so that those wanting to learn
the theory have a wider selection of samples to help guide their understanding. The reader looking
for more information on these examples can consult the work of Pemantle and Wilson.

10One of the pioneering applications of complex analysis in several variables to compute asymptotics was the
work of Bertozzi and McKenna [27] on queuing theory problems.
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Part II

Smooth Analytic Combinatorics in

Several Variables and Applications to

Lattice Paths
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Chapter 6

The Theory of Analytic Combinatorics

in Several Variables for Smooth Points

One might be tempted to think of the analysis of sev-
eral complex variables . . . as being essentially one variable
theory with the additional complication of multi-indices.
This perception turns out to be incorrect. Deep new phe-
nomena and profound (as yet unsolved) problems present
themselves in the theory of several variables.

Steven G. Krantz, Function Theory of Several Complex
Variables

Tomas did not realize at the time that metaphors are
dangerous. Metaphors are not to be trifled with. A single
metaphor can give birth to love.1

Milan Kundera, The Unbearable Lightness of Being

In this chapter we describe the theory of analytic combinatorics in several variables under a
set of assumptions which simplify the analysis. We take an example based approach, interspersing
specific cases with general theory. For the simplest examples one encounters, the analysis requires
little background beyond basic complex analysis and a knowledge of the saddle-point method,
both of which are crucial to univariate analytic combinatorics. Dealing with more complicated
examples, however, will require advanced results from algebraic and differential geometry, topol-
ogy, and analysis. In any case, one should always keep the univariate approach in mind: examine

1Translated from the Czech by Michael Henry Heim.
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the singularities of the function under consideration, determine a finite set of those singularities
which dictate exponential growth, then perform a local analysis of the function at those points
to determine dominant asymptotics. As our goal is to be pedagogical, instead of rigorously ex-
haustive, we give rigorous derivations of asymptotics for our examples and refer to the work of
Pemantle and Wilson for full proofs of the general statements.

Setup

Given w 2 Cn, we let D(w) denote the closed polydisk

D(w) := {z : |zj | 6 |wj |, j = 1, . . . , n},

and T (w) denote the polytorus

T (w) := {z : |zj | = |wj |, j = 1, . . . , n}.

Similar to many results in univariate analytic combinatorics, our analysis will rest on an integral
representation for power series coefficients coming from a multivariate generalization of Cauchy’s
integral formula.

Theorem 48 (Multivariate Cauchy Integral Formula). Let C be a torus around the origin such
that the complex-valued function F (z) is analytic inside and on C, and let F (z) =

P

i2Nn fiz
i be

its power series expansion at the origin. Then for every natural number k,

fk,k,...,k =
1

(2⇡i)n

Z

C
F (z)

dz1 · · · dzn
zk+1
1 · · · zk+1

n

. (6.1)

This standard result follows from the univariate Cauchy integral formula by induction, and
can be found as Proposition 7.2.6 in Pemantle and Wilson [204]. This is a particular instance of
Proposition 26 in Chapter 3, on convergent Laurent expansions of multivariate functions.

6.1 Central Binomial Coefficient Asymptotics

We begin with the simple rational function

F (x, y) =
1

1− x− y
=

X

(i,j)2N2

✓
i+ j

i

◆

xiyj ,

and let D denote the open domain of convergence of this power series at the origin. As shown in
Example 28 of Chapter 3,

D = {(x, y) 2 C : |x|+ |y| < 1}.
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The Cauchy integral formula then implies
✓
2k

k

◆

=
1

(2⇡i)2

Z

T (a,b)

1

1− x− y ·
dxdy

xk+1yk+1
, (6.2)

for any (a, b) 2 D.

Step 1: Bound Exponential Growth

By Corollary 19, the ‘coarsest’ measure of asymptotics for a rational diagonal coefficient sequence
fk,...,k is its exponential growth

⇢ := lim sup
k!1

|fk,...,k|1/k.

We thus begin by seeing how much information can be obtained about ⇢ from the analytic prop-
erties of the rational function F (x, y). Recall that in the univariate case, the exponential growth
of a sequence is obtained by finding the minimal modulus of its generating function’s singularities
and taking the reciprocal.

In our example, |a|+ |b| < 1 whenever (a, b) 2 D so that
∣
∣
∣
∣

1

1− x− y

∣
∣
∣
∣
6

1

1− |a| − |b| for all (x, y) 2 T (a, b).

A standard result in complex analysis states that an upper bound on the modulus of an integral
is obtained by multiplying an upper bound for the modulus of the integrand by the area of the
domain of integration. Applied here, this bound gives

✓
2k

k

◆

=

∣
∣
∣
∣
∣

1

(2⇡i)2

Z

T (a,b)

1

1− x− y
· dxdy

xk+1yk+1

∣
∣
∣
∣
∣
6

|ab|−k

1− |a| − |b| (6.3)

for all (a, b) 2 D.

Equation (6.3) gives a family of bounds

lim sup
k!1

✓
2k

k

◆1/k

6 |ab|−1

on the exponential growth of the central binomial coefficients, one for each pair of points (a, b) 2 D.
In fact, allowing (a, b) to approach the boundary @D shows that the exponential growth is bounded
above by |ab|−1 for all points (a, b) in the closure D. It is natural to wonder which points give the
best upper bound, and whether that bound is tight (indeed, answering these two questions turns
out to be the hardest step of most multivariate singularity analyses).
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Since
D = {(a, b) 2 C2 : |a|+ |b| 6 1},

the minimum2 of |ab|−1 on D is 4, achieved exactly when |a| = |b| = 1/2. Going back to our
bound in Equation (6.3), we have shown that for every ✏ > 0 there exists a constant C✏ such that

✓
2k

k

◆

6 C✏ · (4 + ✏)k

for all natural numbers k. Stirling’s formula implies

✓
2k

k

◆

=
4kp
⇡k

✓

1 +O

✓
1

k

◆◆

as k ! 1, so our upper bound of 4 on the exponential growth of the central binomial sequence
is in fact tight.

Step 2: Determine Contributing Singularities

Of course, we want to completely determine dominant asymptotics not just bound exponential
growth. Analogously to the univariate case, this will involve a local analysis of F (x, y) near some
of its singularities. But which ones should we study? The minimum on D of the quantity |ab|−1

bounding exponential growth occurred on the boundary @D, and the point (x, y) = (1/2, 1/2) is
the unique singularity of F (x, y) whose coordinates’ moduli give this minimum.

As the integrand of the Cauchy integral grows like 4k when (x, y) is in a neighbourhood of
(1/2, 1/2), and nowhere else on D, one would expect that local behaviour of the integrand near
(1/2, 1/2) is important to the asymptotics of the binomial coefficients. Furthermore, the domain of
integration in the Cauchy integral formula can be deformed arbitrarily close to (1/2, 1/2) as it lies
on the boundary @D. Thus, we will attempt to determine dominant asymptotics by manipulating
the Cauchy integral in Equation (6.2) into an integral whose domain stays near this singularity.

Step 3: Localize the Cauchy Integral and Compute a Residue

By the Cauchy integral formula, and the fact that (1/2, 1/2) is on the boundary of the domain of
convergence @D, we see

(
2k
k

)
= I, where

I :=
1

(2⇡i)2

Z

|x|=1/2

 
Z

|y|=1/4

1

1− x− y
· dy

yk+1

!

dx

xk+1
.

2The minimum of |ab|−1 on D is equal to the maximum of |ab|, and will occur on the boundary |a| + |b| = 1.
Thus, one seeks to maximize the function a(1− a) over the domain a 2 (0, 1).
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Figure 6.1: The sets N and N 0, to be used as domains of integration. Note that |1 − x| < ⇢ for
x 2 N and |1− x| > ⇢ > 1/4 for x 2 N 0.

Let
N := {|x| = 1/2 : arg(x) 2 (−⇡/4,⇡/4)} and N 0 := {|x| = 1/2} \ N .

Basic arguments show that

|1− x| <
∣
∣
∣
∣
∣
1− ei⇡/4

2

∣
∣
∣
∣
∣

| {z }

⇢

⇡ 0.7368 . . .

for x 2 N and |1− x| > ⇢ for x 2 N 0 (see Figure 6.1).

We now compare the integral I to the “localized” integral

Iloc :=
1

(2⇡i)2

Z

N

 
Z

|y|=1/4

1

1− x− y
· dy

yk+1

!

dx

xk+1

whose domain of integration is restricted to an x-neighbourhood of 1/2 (replacing N by its in-
tersection with an arbitrarily small neighbourhood of 1/2 would not change any of the following
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arguments). For fixed x 2 N 0, one has
∣
∣
∣
∣
∣

Z

|y|=1/4

1

1− x− y ·
dy

yk+1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Z

|y|=1/4

1/(1− x)

1− y
1−x

· dy

yk+1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

[yk]
X

j>0

(1− x)−(j+1)yj

∣
∣
∣
∣
∣
∣

(as |y| = 1/4 < |1− x| when x 2 N 0)

= |1− x|−(k+1)

6 ⇢−(k+1)

so that

|I − Iloc| =
1

(2⇡)2

∣
∣
∣
∣
∣

Z

N 0

 
Z

|y|=1/4

1

1− x− y
· dy

yk+1

!

dx

xk+1

∣
∣
∣
∣
∣
6

2⇡/2

(2⇡)2
· ⇢−(k+1) · 2k+1 =

1

2⇢⇡

✓
2

⇢

◆k

,

where 2/⇢ 6 2.72. In particular, one can replace the integral I with Iloc and introduce an error
which grows at an exponentially smaller rate than the central binomial coefficients. The next step
is to consider the integral

Iout :=
1

(2⇡i)2

Z

N

 
Z

|y|=3/4

1

1− x− y
· dy

yk+1

!

dx

xk+1

whose domain of integration is outside the domain of convergence D. For x 2 N , the quantity

|1 − x| is bounded away from 3/4 so that
∣
∣
∣

1
1−x−y

∣
∣
∣ is bounded3 when |y| = 3/4. The integral

bounds discussed above then imply

|Iout| = O

 ✓
8

3

◆k
!

.

Define

χ := Iloc − Iout =
−1
2⇡i

Z

N

1

2⇡i

 
Z

|y|=3/4

1

1− x− y
· dy

yk+1
−
Z

|y|=1/4

1

1− x− y
· dy

yk+1

!

dx

xk+1
.

For each x 2 N , the function F (x, y) = (1 − x − y)−1 has a unique pole between the curves
{|y| = 1/4} and {|y| = 3/4}, at y = 1− x. Thus, the Cauchy residue theorem implies that

1

2⇡i

 
Z

|y|=3/4

1

1− x− y
· dy

yk+1
−
Z

|y|=1/4

1

1− x− y
· dy

yk+1

!

= −(1− x)−(k+1),

3It is not true that
∣

∣

∣

1
1−x−y

∣

∣

∣
is bounded for all |x| = 1/2 and |y| = 3/4 (see Figure 6.1), which is why we must

first localize I to the x-neighbourhood N of 1/2.
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and

χ =
1

2⇡i

Z

N

dx

(1− x)k+1xk+1
. (6.4)

From our above reasoning, we know

∣
∣
∣
∣

✓
2k

k

◆

− χ
∣
∣
∣
∣
= |I − (Iloc − Iout)| 6 |I − Iloc|+ |Iout| = O

 ✓
2

⇢

◆k
!

.

Parameterizing the domain of integration N in Equation (6.4) as {ei✓/2 : ✓ 2 (−⇡/4,⇡/4)} one
obtains, after some simplification,

χ =
4k

2⇡

Z ⇡/4

−⇡/4
A(✓)e−kφ(✓)d✓, (6.5)

where

A(✓) =
1

1− ei✓/2
and φ(✓) = log(2− ei✓) + i✓.

Step 4: Find Asymptotics using Laplace’s Method

Asymptotics of the integral appearing in Equation (6.5) can be determined by a method of
Laplace [165] which dates back to 1774 and is named in his honour (see Section 4.4 of de Bruijn [60]
for details). This type of integral is known as a Fourier-Laplace integral, and we give a result
for determining asymptotics of multivariate Fourier-Laplace integrals in Proposition 53 below. In
this case, we obtain

✓
2k

k

◆

= χ+O

 ✓
2

⇢

◆k
!

=
4kp
⇡k

✓

1 +O

✓
1

k

◆◆

as k !1. The key properties of the integral in Equation (6.5) which allow for such an analysis
are that A and φ are analytic at the origin and:

• φ(0) = φ0(0) = 0;

• φ0(✓) 6= 0 on (−⇡/4,⇡/4) unless ✓ = 0;

• φ00(0) 6= 0;

• the real part of φ is non-negative on the domain of integration.
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The idea is that under these hypotheses one can asymptotically approximate
Z ⇡/4

−⇡/4
A(✓)e−kφ(✓)d✓ ⇡ A(0)

Z 1

−1
e−k

φ00(0)
2

✓2d✓,

and the Gaussian integral which arises can be calculated explicitly. The miracle which underlies
analytic combinatorics in several variables is the fact that, by making a natural choice of singu-
larities to study (those giving the best bound on exponential growth), one typically ends up with
Fourier-Laplace integrals satisfying these (or analogous) restrictions. Note that when dealing with
rational functions of n variables the Fourier-Laplace integral expressions that will be obtained are
n − 1 dimensional. They have no analogue in the meromorphic univariate case, where one is
finished after computing the residue in Step 3.

6.2 The Smooth Case

In this section we will see that the approach taken for the central binomial coefficients generalizes
to an amazing degree. Suppose that we have some fixed rational function

F (z) =
G(z)

H(z)

which is analytic at the origin, and let D denote the domain of convergence of its power series
expansion

F (z) =
X

i2Nn

fiz
i

at the origin. We may assume that the denominator H is dependent on each variable z1, . . . , zn, as
otherwise the diagonal sequence will eventually become the zero sequence. The set of singularities
of F (z) is known as its singular variety, and denoted V . The singular variety of any rational
function is an algebraic set.

Lemma 49. Suppose F (z) = G(z)
H(z) for co-prime polynomials G,H 2 Q[z] with H not identically

zero. Then the singular variety of F (z) is the algebraic set V(H) := {z : H(z) = 0}.

We will show that local containment of an irreducible algebraic variety in an algebraic set
implies containment on all of Cn. Our proof uses properties of the dimension of an algebraic set,
which can be found in Chapter 1A of Mumford [194].

Proof. First, we note that any singularity of F (z) must be a zero of H(z). Suppose now that w

is a zero of H(z) and not a singularity of F (z). Then the modulus of F (z) must be bounded in
an open ball O ⇢ Cn centered at w, meaning

? 6= V(H) \ O ⇢ V(G) \ O.
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We may assume that H is irreducible, as otherwise it can be replaced by one of its irreducible
factors.

LetW = V(H)\V(G). The dimension of an (irreducible) algebraic variety is the dimension of
its tangent space at any smooth point, and the dimension of any algebraic set is the maximum of
the dimensions of its tangent spaces at its smooth points. Furthermore, the set of singular points
of an algebraic set forms a closed algebraic subset, so there exists a smooth point of W and V(H)
in O.

Since W\O = V(H)\O and tangent spaces are defined locally, this implies the dimension of
W is at least the dimension of V(H), which is n− 1 as V(H) is a proper algebraic variety. Thus,
W 6= Cn has dimension n − 1. The only algebraic varieties of dimension n − 1 are those of the
form V(P ) where P is an irreducible polynomial, so H must be an irreducible factor of G.

When writing F (z) = G(z)/H(z) we always assume that G and H are co-prime polynomials.
We begin this chapter by assuming that the singular variety V is a complex (analytic) manifold
and that H(z) is square-free, which is equivalent to the fact that H(z) and its partial derivatives
do not simultaneously vanish at any point.

Any m-dimensional complex manifold has an underlying 2m-dimensional real smooth manifold
structure, which is determined by setting zj = xj + iyj for real variables xj and yj . Pemantle and
Wilson refer to the analysis when V is a complex manifold as the smooth case, and a point w 2 V
is called locally smooth if some open neighbourhood of w in V is a complex manifold. The requisite
background for the differential geometry discussed here can be found in Chapter 0 of Griffiths and
Harris [131] (or, with a more introductory presentation, in Chapter 3 of Ebeling [95]).

Step 1: Bound Exponential Growth

Just as in the example of the central binomial coefficients, the Cauchy integral formula implies
that for every point w 2 D

|fk,...,k| =
∣
∣
∣
∣
∣

1

(2⇡i)n

Z

T (w)
F (z) · dz

zk+1
1 · · · zk+1

n

∣
∣
∣
∣
∣
6 Cw · |w1 · · ·wn|−k,

where Cw = maxz2T (w) |F (z)| is finite. Thus, there is an exponential growth bound

lim sup
k!1

|fk,...,k|1/k 6 |w1 · · ·wn|−1

for every w 2 D. It will always be the case that the minimum of |w1 · · ·wn|−1 on D occurs at
the boundary @D when it is achieved4. Furthermore, it can be shown from the Cauchy integral

4This holds since |w1 . . . wn|−1 decreases as the point w moves away from the origin.
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formula that w 2 @D if and only if the intersection T (w) \ V is non-empty. Singularities on the
boundary @D \V are called minimal points, and being the singularities of F (z) which are closest
to the origin they are the most natural generalization of dominant singularities in the univariate
case.

Step 2: Determine Critical Points

The above argument shows that to minimize |w1 · · ·wn|−1 on D it is sufficient to consider only
the set of minimal points V \ @D. In fact, as our objective function becomes arbitrarily large
as any coordinate approaches 0 (and the others are fixed) we can replace V with its subset
V⇤ = V \ {z : z1 · · · zn = 0} of points whose coordinates are non-zero. Since V⇤ is an open subset
of V , it is also a complex manifold.

Define the polynomial map φ(z) := z1 · · · zn from V⇤ to C. If we consider φ to be an analytic
mapping from the complex manifold V⇤ to the complex manifold C, then the critical points of
φ (i.e., the points where the differential of φ is 0) help to characterize minimizers of our upper
bound on exponential growth.

Lemma 50. When V is a complex manifold then any local extremum of |z1 · · · zn|−1 on V⇤ is a
critical point of the map φ(z) = z1 · · · zn from V⇤ to C.

Lemma 50 follows from Section 8.3 of Pemantle and Wilson [204], but we sketch its proof here.

Proof Sketch. Let h(z) = log |z1 · · · zn|, so that any local extremum of |z1 · · · zn|−1 on V⇤ is a
local extremum of h(z). The complex manifold V⇤ ⇢ Cn gives rise to an underlying real smooth
manifold W⇤ ⇢ R2n, obtained by setting zj = xj + iyj for real variables xj and yj . If h is
considered as a smooth mapping from W⇤ to R, then any local extremum of h must occur5 at one
of its critical points.

As φ does not vanish on V⇤, one can define a branch of the logarithm log(φ) = log(z1 · · · zn)
on V⇤. Considering φ and log(φ) to be analytic maps between complex manifolds, the chain rule
implies that the set of critical points of φ equals the set of critical points of log(φ). Furthermore,
the map log(φ) can be considered as a smooth map from W⇤ to R2 (decomposing log(φ) into its
real and imaginary components), and the relationship between V⇤ and W⇤ implies that the set
of critical points of log(φ) is the same when considering it as a smooth or analytic mapping6.
Since h(z) is the real part of the map log(φ), the Cauchy-Riemann equations then imply that any
critical point of log(φ) must be a critical point of h(z).

5Let M be a real manifold and suppose the smooth map f : M ! R has an extremum at w. Then any curve
γ : (−✏, ✏) ! M through w satisfies d

dt
f(γ(t))

∣

∣

t=0
= 0 and the differential of f at w has, in any set of coordinates,

a basis whose coefficients are given by such derivatives [237, Proposition 8.18].
6In particular, the rank of the differential of log(φ) as a smooth map of real manifolds is twice the rank of the

differential of log(φ) as an analytic map of complex manifolds, and a critical point is a point where the rank of the
differential is zero. See Griffiths and Harris [131, Page 18] for details.
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Putting everything together, the set of critical points of φ(z) equals the set of critical points
of h(z), which contains all local extrema of |z1 · · · zn|−1 on V⇤.

The critical points of φ are called the critical points of F (z). The critical points of F form an
algebraic set which is easily characterized.

Proposition 51 (Pemantle and Wilson [204, Section 8.3]). When V is a complex manifold and
H is square-free then w 2 V⇤ is a critical point if and only if

H(w) = 0, w1

✓
@H

@z1

◆

(w) = · · · = wn

✓
@H

@zn

◆

(w). (6.6)

Proof. Let H = H1 · · ·Hr be a factorization of H into distinct irreducible polynomials. As V is
a manifold, given w 2 V there is a unique index 1 6 j 6 r such that Hj(w) = 0. Furthermore,
(rH)(w) is a non-zero scalar multiple of (rHj)(w) so the tangent space of V at w is the hyper-
plane with normal (rH)(w). A critical point of the map φ : V⇤ ! C is one where the projection
of rφ to the tangent space of V⇤ is zero, meaning the critical points of φ are those where the
modified Jacobian matrix

✓
rH
rφ

◆

=

✓
@H/@z1 @H/@z2 · · · @H/@zd
z2 · · · zn z1z3 · · · zn · · · z1 · · · zn−1

◆

is rank deficient. The set of equations generated by the vanishing of the 2 ⇥ 2 minors of this
matrix result in Equations (6.6), since z1 · · · zn 6= 0.

Equations (6.6) are known as the smooth critical point equations, and when V is a complex
manifold they can be taken to define critical points. When V is a manifold but H is not square-
free, the critical points of F (z) can be found by replacing H with the product of its distinct
irreducible factors in Equations (6.6).

In the case of the central binomial coefficients, the point (1/2, 1/2) was both critical and
minimal which allowed us to perform our analysis. Likewise, the existence of a finite number
of minimal critical points in the general case usually (although not always) means that they are
the ones where local behaviour determines dominant asymptotics. This is made more precise in
Theorem 52 below.

Step 3: Localize the Cauchy Integral and Compute a Residue

A point z 2 V is minimal if and only if D(z) \ V ⇢ @D(z), where D(z) is the polydisk defined
by z. When D(z) \ V is a finite subset of @D(z) we call z a finitely minimal point, and when
D(z) \ V = {z} we call z a strictly minimal point.

Suppose now that F (z) admits a strictly minimal critical point w. As V is a complex manifold
and H is square-free, there exists an index j such that (@H/@zj)(w) 6= 0 and without loss of
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generality we assume this holds for j = n. Let ⇢ = |wn| and T = T (wn̂), where we recall the
notation wn̂ = (w1, . . . , wn−1).

Pemantle and Wilson [204, Section 9.2] use the implicit function theorem to show the existence
of δ 2 (0, ⇢), a neighbourhood N of wn̂ in T , and an analytic function g : N ! C parameterizing
wn on V , such that for zn̂ 2 N

(i) H(zn̂, g(zn̂)) = 0

(ii) ⇢ 6 |g(zn̂)| < ⇢+ δ

(iii) ⇢ = |g(zn̂)| if and only if zn̂ = wn̂

(iv) H(zn̂, w) 6= 0 whenever w 6= g(zn̂) and |w| < ⇢+ δ.

Define the integrals

I :=
1

(2⇡i)n

Z

T

 
Z

|zn|=⇢−δ
F (z) · dzn

zk+1
n

!

dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1

Iloc :=
1

(2⇡i)n

Z

N

 
Z

|zn|=⇢−δ
F (z) · dzn

zk+1
n

!

dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1

Iout :=
1

(2⇡i)n

Z

N

 
Z

|zn|=⇢+δ
F (z) · dzn

zk+1
n

!

dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1

χ := Iloc − Iout =
−1

(2⇡i)n

Z

N

 
Z

|zn|=⇢+δ
F (z) · dzn

zk+1
n

−
Z

|zn|=⇢−δ
F (z) · dzn

zk+1
n

!

dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1

.

By minimality of w, the Cauchy integral formula implies fk,...,k = I. Following arguments similar
to the ones for the central binomial coefficients, it can be shown that |I − Iloc| and |Iout| grow
exponentially slower than the diagonal sequence, so that

fk,...,k = χ+O
⇣

(|w1 · · ·wn|+ ✏)−k
⌘

for some ✏ > 0. For each zn̂ 2 N the function F (zn̂, w) has a unique singularity between the
curves |w| = ⇢ − δ and |w| = ⇢ + δ, which is a simple pole at the point w = g(zn̂). The Cauchy
residue theorem then implies

χ =
1

(2⇡i)n−1

Z

N

−G(zn̂, g(zn̂))

(@H/@zn)(zn̂, g(zn̂))
· dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1 · g(zn̂)k+1
, (6.7)

as G(zn̂,g(zn̂))
(@H/@zn)(zn̂,g(zn̂))

is the residue of F (zn̂, w) at w = g(zn̂).
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To convert the expression in Equation (6.7) into a Fourier-Laplace integral we make the change
of coordinates zj = wje

i✓j for j = 1, . . . , n − 1. Let N 0 ⇢ Rn−1 be the image of N under this
change of variables, which will be a neighbourhood of the origin. To lighten notation we define
θ = (✓1, . . . , ✓n−1) and write wn̂e

iθ :=
(
w1e

i✓1 , . . . , wn−1e
i✓n−1

)
. After some simplification we

obtain the following result.

Theorem 52 (Theorem 9.2.1 and Proposition 9.2.5 of Pemantle and Wilson [204]). Suppose that
V is smooth and w is a strictly minimal critical point of F (z). Then there exists ✏ > 0 such that

fk,...,k = χ+O
⇣

(|w1 · · ·wn|+ ✏)−k
⌘

,

where

χ = (w1 · · ·wn)
−k · 1

(2⇡)n−1

Z

N 0
A(θ) e−kφ(θ)dθ (6.8)

for

A(θ) =
−G

(
wn̂e

iθ, g
(
wn̂e

iθ
))

g (wn̂eiθ) · (@H/@zn) (wn̂eiθ, g (wn̂eiθ))

φ(θ) = log

 

g
(
wn̂e

iθ
)

g(wn̂)

!

+ i(✓1 + · · ·+ ✓n−1).

(6.9)

The function φ(θ) vanishes to order at least 2 at the origin.

When w is a finitely minimal point, then one can perform the above analysis at each minimal
critical point and obtain an asymptotic expression for the diagonal coefficient sequence as a finite
sum of integrals having the form of Equation (6.8), up to an exponentially small error term as
above.

Step 4: Find Asymptotics using the Saddle-Point Method

To determine asymptotics of the Fourier-Laplace integral in Equation (6.8) we will use a result
of Hörmander7 [142, Theorem 7.7.5] from his asymptotic study of linear PDE solutions (using
Laplace, Fourier, and Mellin transforms to solve differential equations often results in Fourier-
Laplace integrals).

7 The history of determining asymptotics of Fourier-Laplace integrals begins with the previously mentioned
18th century work of Laplace, who computed asymptotics for integrals of the form

R b

a
A(x)e−kφ(x) where A and φ

are sufficiently smooth real valued functions. The saddle-point method determines asymptotics of integrals having
the form

R

γ
A(z)e−kφ(z), with γ a contour in the complex plane and A and φ analytic functions. It essentially

works by deforming the domain of integration γ into another contour γ0 where the real part of φ(z) is minimized
at critical points of φ or end points of γ0, and was first published by Deybe [85] in 1909 who cited unpublished
work of Riemann from 1863 (now paper XXIII in his collected works [221]). The related method of stationary

phase dates back to Stokes and Kelvin and computes asymptotics for integrals of the form
R b

a
A(x)eikφ(x)dx where
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Proposition 53 (Asymptotics of Nondegenerate Multivariate Fourier-Laplace Integrals). Suppose
that the functions A(θ) and φ(θ) from Rd to C are smooth in a neighbourhood N of the origin
and let H be the Hessian of φ evaluated at the point θ = 0. If

• φ(0) = 0 and (rφ)(0) = 0

• the origin is the only point of N where rφ is 0

• H is non-singular

• the real part of φ(θ) is non-negative on N ,

then for any nonnegative integer M there exist effective constants C0, . . . , CM such that

Z

N
A(θ) e−kφ(θ)dθ =

✓
2⇡

k

◆d/2

det(H)−1/2 ·
MX

j=0

Cjk
−j +O

(
k−M−1

)
. (6.10)

The constant C0 is equal to A(0) and if A(θ) vanishes to order L > 1 at the origin then (at least)
the constants C0, . . . , CbL

2
c are all zero. More precisely, define the differential operator

E := −
X

16i,j6d

(
H−1

)

ij
@i@j

where @j denotes differentiation with respect to the variable ✓j and H−1 is the inverse of H. Let

φ̃(θ) := φ(θ)− (1/2)θ · H · θT ,

which is a scalar function vanishing to order 3 at the origin. Then

Cj = (−1)j
X

06l62j

E l+j
⇣

A(θ)φ̃(θ)l
⌘∣
∣
∣
θ=0

2l+jl!(l + j)!
. (6.11)

Due to the order of vanishing of φ̃, to determine Cj one only needs to calculate evaluations at 0
of the derivatives of A of order at most 2j and the derivatives of φ of order at most 2j + 2.

A and φ are sufficiently smooth real valued functions (when A and φ are analytic then the method of stationary
phase is essentially an example of the saddle-point method). Fedoryuk [102, Theorem 2.3] gave the result in
Proposition 53 for multivariate real smooth functions using a generalization of the method of stationary phase,
before Hörmander [142, Theorem 7.7.5] gave the more general result where φ maps into the complex numbers.
See Section 7 of Pemantle and Wilson [205] for a review of more recent literature on the subject and further
generalizations.
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In order to apply Proposition 53 to the integral representation for the diagonal coefficients
given in Theorem 52 we require that the Hessian H of φ at the origin is nonsingular, and that the
real part of φ is non-negative on N 0.

Given critical point ζ, define λ to be the common value of ⇣k(@H/@i)(ζ) for 1 6 i 6 n, and
for 1 6 i, j 6 n define

Ui,j := ⇣i⇣j
@2H

@zi@zj
(ζ).

Basic multivariate calculus shows that the (n−1)⇥(n−1) Hessian matrix H of φ in Equation (6.9)
at the origin has (i, j)th entry

Hi,j =

8

<

:

1 + 1
λ
(Ui,j − Ui,n − Uj,n + Un,n) : i 6= j

2 + 1
λ
(Ui,i − 2Ui,n + Un,n) : i = j

(6.12)

We say that the critical point ζ is nondegenerate if this matrix is nonsingular; we will require that
all minimal critical points are nondegenerate. Furthermore, we note that the real part of φ can
be expressed as

<(φ) = < log

 

g
(
wn̂e

iθ
)

g(wn̂)

!

= log
∣
∣
∣g
⇣

wn̂e
iθ
⌘∣
∣
∣− log |g(wn̂)|,

so that it is non-negative if and only if |g(wn̂)| 6
∣
∣g
(
wn̂e

iθ
)∣
∣ for θ in the neighbourhood N 0

of the origin. But when w is strictly or finitely minimal this will hold for any sufficiently small
neighbourhood N 0, since g

(
wn̂e

iθ
)

gives the zn value of a point on V whose first n−1 coordinates
have the same coordinate-wise modulus as wn̂. Thus, we obtain the following theorem, which is
the main result of ACSV when V is smooth.

Theorem 54 (Pemantle and Wilson [204, Theorem 9.2.7]). Let F (z) be a rational function with
square-free denominator which is analytic at the origin and has a smooth singular variety V.
Assume that F admits a nondegenerate strictly minimal critical point w and that (@H/@zn)(w) 6=
0. Then for any nonnegative integer M ,

fk,...,k = (w1 · · ·wn)
−k · k(1−n)/2 · (2⇡)(1−n)/2 det(H)−1/2

0

@

MX

j=0

Cjk
−j +O

(
k−M−1

)

1

A , (6.13)

where H is the matrix defined by Equation (6.12) and C0, . . . , CM are determined by Equa-
tions (6.9) and (6.11). The leading constant C0 in this series has the value

C0 =
−G(w)

wn(@H/@zn)(w)
,

which is nonzero whenever G(w) 6= 0.

87



Although the constants appearing in Equation (6.13) are defined in terms of partial derivatives
of the parametrization g(zn̂) for zn on V , implicitly differentiating the equation H(zn̂, g(zn̂)) = 0
allows one to determine the partial derivatives of g at wn̂ from the partial derivatives of H at w.
Thus, the only pieces of information needed to determine the constants C0, . . . , CM appearing in
Theorem 54 are the evaluations at z = w of the partial derivatives of G(z) up to order 2M and
the partial derivatives of H(z) up to order 2M + 2.

The argument above can be easily adapted to a finitely minimal critical point w, when each
minimal critical point with the same coordinate-wise modulus as ρ satisfies the conditions of
Theorem 6.13. In that case one can simply compute the asymptotic contribution of each minimal
critical point and add them up to determine dominant asymptotics.

Corollary 55 (Pemantle and Wilson [204, Corollary 9.2.3]). Let F (z) be a rational function
with square-free denominator which is analytic at the origin and has a smooth singular variety
V. Suppose x is a finitely minimal critical point, let E be the set of critical points in T (x), and
suppose all elements of E are nondegenerate. For some nonnegative integer M , let Φw denote the
right-hand side of Equation (6.13) calculated at w 2 E. Then the equation

fk,...,k =
X

w2E
Φw

gives an asymptotic expansion of fk,...,k as k !1.

A Multivariate Residue Approach

The presentation above, which uses the Cauchy residue theorem to construct an explicit sum of
Fourier-Laplace integrals, originates in the work of Pemantle and Wilson [206]. A more recent
approach, first discussed by Baryshnikov and Pemantle [15], uses deep homological and coho-
mological tools to give methods dealing with certain situations where F (z) has minimal critical
points which are not finitely minimal. We will require these results, which make use of the theory
of multivariate complex residues8, for our work on lattice path asymptotics. Pemantle and Wil-
son call the use of univariate residues the surgery approach to analytic combinatorics in several
variables, and the use of multivariate residues the residue approach.

Let F (z) be a rational function with square-free denominator. Suppose that x 2 @D minimizes
|z1 · · · zn|−1 on D, and that all minimizers of |z1 · · · zn|−1 on D lie in T (x) (i.e., have the same
coordinate-wise modulus as x). If c is the minimum of |z1 · · · zn|−1 on D, achieved at x, we assume

8The theory of multivariate complex residues has its origins in work of Poincaré [210] on integrals of bivari-
ate functions and was investigated by Kodaira, Schwartz, and Dolbeault before a framework was fully developed
by Leray [170] and Norguet [197]. Details on the history of multivariate complex residues can be found in Dol-
beault [239, Article V], and a detailed treatment of multivariate residues is given in Chapter III of Aı̆zenberg and
Yuzhakov [2].
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that the set
Vc−✏ := {z 2 V : |z1 · · · zn|−1

> c− ✏}
contains only smooth points for some ✏ > 0. Finally, we let E denote the set of critical points in
V \ T (x), which we further assume is non-empty, finite, and contains only smooth nondegenerate
critical points. The main result of the residue approach is the following.

Proposition 56 (Pemantle and Wilson [204, Theorems 9.3.7 and 9.4.2]). Suppose that x 2 @D
minimizes |z1 · · · zn|−1 on D, all minimizers of |z1 · · · zn|−1 on D lie in T (x), the set Vc−✏ contains
only smooth points for some ✏ > 0, and that E contains a single nondegenerate smooth critical
point. Then for any nonnegative integer M there exist constants C0, . . . , CM such that

fk,...,k = (w1 · · ·wn)
−k · k(1−n)/2 · (2⇡)(1−n)/2 det(H)−1/2

0

@

MX

j=0

Cjk
−j +O

(
k−M−1

)

1

A , (6.14)

where

C0 =
−G(w)

wn(@H/@zn)(w)
.

When E contains a finite number of nondegenerate smooth critical points, one obtains an asymp-
totic expansion for fk,...,k by summing the right-hand side of Equation (6.14) at each w 2 E.

The residue approach relies on determining a homological object called the intersection class
related to V and the minimal critical points, which is well understood in the smooth case. In
particular, Section 9.3 of Pemantle and Wilson [204] shows that one obtains an expression for
diagonal coefficient asymptotics in terms of Fourier-Laplace integrals over chains of integration
C(w) sufficiently close to each w 2 V . Theorem 9.4.2 of that text, together with the results of
its Appendix B, show that one can take any submanifolds C(w) ⇢ V which are diffeomorphic to
open disks of real dimension n− 1 such that |z1 · · · zn|−1 is strictly maximized on C(w) at z = w.
This allows one to obtain the higher order constants9 Cj in Proposition 56.

Suppose there exists an open V-neighbourhood Nw of each w 2 E such that Nw \ T (x) =
{w}. When (@H/@zn)(w) 6= 0, then there exists an analytic parametrization zn = g(zn̂) in a
neighbourhood of w in V and one can take10

C(w) =
n⇣

wn̂e
iθ, g(wn̂e

iθ)
⌘

: θ 2 (−✏, ✏)n−1
o

9In the non-smooth case, as we will see in Chapter 9, less is known about the intersection class and explicit
formulas for the higher order constants are harder to derive for non-finitely minimal critical points.

10On C(w), one has |z1 · · · zn|−1 = |w1 · · ·wn−1|−1 · |g(wn̂e
iθ)|−1 and every point of Nw whose first n − 1

coordinates have the same coordinate-wise modulus as wn̂ have final coordinate with modulus larger than wn. In
addition, Pemantle and Wilson show that one can always take C(w) to be the downwards subspace of V at w with
respect to h(z), obtained by writing zj = xj+ iyj for real variables xj and yj and examining the Hessian of the map
(x2

1 + y2
1)

−1 · · · (x2
n + y2

n)
−1 restricted to the underlying real smooth manifold of V (see Pemantle and Wilson [204,

Section 8.5] for details).
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for sufficiently small ✏ > 0. In this situation, one ultimately derives the same Fourier-Laplace
integrals which are used to determine asymptotics in the finitely minimal case. Thus, we obtain
the following result.

Corollary 57 (Pemantle and Wilson [204, Theorems 9.3.2 and 9.4.2]). Suppose the assumptions
of Proposition 56 hold, and that the points of E are isolated points of V \T (x). For every positive
integer M > 0, an asymptotic expansion of fk,...,k is obtained by summing the right-hand side of
Equation (6.13) in Theorem 54 at each w 2 E.

Finally, we note that one does not need to prove that a smooth minimal critical point minimizes
|z1 · · · zn|−1 on D (only that there are no other minimizers with different coordinate-wise moduli)
in light of the following result.

Proposition 58. If w 2 V \ @D is a smooth minimal critical point then w is a minimizer of
|z1 · · · zn|−1 on D.

Proof. Any minimizer of the map |z1 · · · zn|−1 on D\ (C⇤)n is a maximizer of log |z1 · · · zn| on the
same domain. As described in Proposition 26 above, the image of D under the Relog map is a
convex set B ⇢ Rn, and under the change of coordinates x = Relog(z) the function log |z1 · · · zn|
becomes the linear function 1 · x. It can be shown (see, for example, Pemantle and Wilson [208,
Proposition 3.12]) that w 2 V\@D is a smooth minimal critical point if and only if the hyperplane
with normal 1 containing the point Relog(w) is an outwardly oriented support hyperplane to
the convex set B. By definition, this means that 1 · x 6 1 · Relog(w) for all x 2 B so that
|z1 · · · zn| 6 |w1 · · ·wn| for all z 2 D.

6.3 Applying the Theory in the Smooth Case

Given a rational function F (z), it is easy to check if the singular variety V is everywhere smooth
by computing a Gröbner Basis of the system of equations H, z1(@H/@z1), . . . , zn(@H/@zn) (or
by using the multivariate resultant, which will be discussed in Chapter 8). In fact, ‘almost all’
rational functions admit smooth singular varieties and have a finite set of critical points11. Thus,
the most difficult step in trying to apply the above results is often determining which of a finite
set of critical points is minimal. When H(z) is simple enough, direct arguments can be used.

Example 59 (Central Binomial Coefficients Revisited). Consider again the bivariate rational
function

F (x, y) =
1

1− x− y

11This is made precise in Chapter 8.
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whose diagonal encodes the central binomial coefficients. Here the critical point equations become

1− x− y = 0, −x = −y,

so that there is a single critical point (1/2, 1/2). In fact, (1/2, 1/2) is a strictly minimal critical
point as |x + y| = 1 on V and it is the only point on V with coordinates of modulus 1/2. Thus,
Theorem 54 applies and we can determine an asymptotic expansion

✓
2k

k

◆

=
4kp
⇡k

✓

1− 1

8k
+

1

128k2
+

5

1024k3
− 21

32768k4
+O

✓
1

k5

◆◆

.

/

Example 60 (Perturbed Central Binomial Coefficients). Consider now the bivariate rational
function

F (x, y) =
1

(1 + 2x)(1− x− y)
.

The singular variety of F has a single non-smooth point (x, y) = (−1/2, 3/2), which is not minimal
as it has strictly greater coordinate-wise modulus than ρ = (1/2, 1/2). The point ρ is still a
minimal critical point, however it is no longer finitely minimal and

V \ T (ρ) = {(1/2, 1/2)} [ {(−1/2, ei✓/2) : ✓ 2 (−⇡,⇡)}.

Because the singular variety is smooth for all points with |xy|−1 > |(−1/2)(3/2)|−1 = 4/3, the
conditions of Corollary 57 are met and we obtain the asymptotic expansion

fk,k =
4kp
⇡k

✓
1

2
− 1

8k
+

1

256k2
+

5

256k3
− 819

65536k4
+O

✓
1

k5

◆◆

.

The idea behind Corollary 57 in this example is that the domain of integration in the Cauchy
integral formula can be deformed around any singularities which are bounded away from critical
points without affecting dominant asymptotics (up to an exponentially small error), and near the
minimal critical point (1/2, 1/2) the singular variety V((1+2x)(1−x−y)) looks like V(1−x−y). /

In the multivariate setting there is an analogue of Pringsheim’s Theorem which can greatly help
with arguments to determine minimality. We call the rational function F (z) = G(z)

H(z) combinatorial
if G and H are co-prime, H(0) 6= 0, and the power series expansion of 1/H(z) at the origin has
only a finite number of negative coefficients.

Lemma 61. Suppose that F (z) is combinatorial. Then z 2 V is a minimal point of F (z) if and
only if the point (|z1|, . . . , |zd|) with non-negative coordinates is a minimal point (i.e., is in V).
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This is essentially Theorem 3.16 of Pemantle and Wilson [208], although our definition of
combinatorality is slightly weaker (in that paper they require F (z) to have all non-negative coeffi-
cients). It is sufficient to examine the coefficients of 1/H(z) as their arguments use only properties
of the singular set V(H). Furthermore, we can allow a finite number of negative coefficients since
one can always add a polynomial to 1/H(z) and obtain a rational function with non-negative
coefficients, the same set of singularities, and all but a finite number of the same coefficients.
Lemma 61 implies that it is easier to prove a point is minimal when F (z) is combinatorial.

Proposition 62. A point w 2 V is minimal if and only if there does not exist z 2 V with
(|w1|, . . . , |wn|) = (t|z1|, . . . , t|zn|) and t 2 (0, 1). If F (z) is combinatorial then w 2 V is a
minimal point if and only if (|w1|, . . . , |wn|) 2 V and the line segment

{(t|w1|, . . . , t|wn|) : 0 < t < 1}

from the origin to (|w1|, . . . , |wn|) in Rn does not contain an element of V.

Proof. If w is minimal then there cannot exist t 2 (0, 1) such that (|w1|, . . . , |wn|) = (t|z1|, . . . , t|zn|).
If w is not minimal, then (|w1|, . . . , |wn|) lies outside of the closed convex set Relog(D) ⇢ Rn,
so any path in Rn from (|w1|, . . . , |wn|) to the open set Relog(D) must pass through @Relog(D).
Thus, when w is not minimal there exists some z 2 V and t 2 (0, 1) such that

(log |z1|, . . . , log |zn|) = (log |w1|+ log t, . . . , log |wn|+ log t),

since Relog(D) contains all points with negative coordinates of sufficiently large modulus whose
ratio approaches 1. Taking the exponential of this equation implies

(|w1|, . . . , |wn|) = (t|z1|, . . . , t|zn|).

When F (z) is combinatorial, Lemma 61 implies that it is sufficient to consider only the points in
V \ (R>0)

n to determine the minimality of w.

Although Lemma 61 can be seen as a multivariate generalization of Pringsheim’s Theorem one
must note that it is restrictive as it requires all coefficients of the power series expansion to be
non-negative, not just those on the diagonal which are of (combinatorial) interest. As mentioned
in Chapter 5, it is still unknown even in the univariate case how to decide when a rational function
is combinatorial. In practice, then, one usually applies these results when F (z) is the multivariate
generating function of a combinatorial class with parameters, or when the form of F (z) makes
combinatorality easy to prove (for instance, when F (z) = G(z)

1−J(z) with J(z) a polynomial having
non-negative coefficients).
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Example 63 (Asymptotics of Simple Walks in a Quarter Plane). From the results of Chapter 4
we know that the diagonal of the rational function

F (x, y, t) =
(1 + x)(1 + y)

1− t(x2y + xy2 + y + x)

is the generating function for the number of lattice path walks starting at the origin, taking the
steps (±1, 0), (0,±1), and staying in the first quadrant. The critical point equations imply that
there are two critical points,

ρ = (1, 1, 1/4) and σ = (−1,−1,−1/4),

and F (x, y, t) is clearly combinatorial by the Binomial Theorem. Proposition 62 then implies ρ

and σ are minimal critical points, as if (x, y, t) 2 V has positive coordinates and x 6 1, y 6 1
with one of the inequalities being strict, then

|t| =
∣
∣
∣
∣

1

x2y + xy2 + y + x

∣
∣
∣
∣
> 1/4.

Furthermore, if |x| = 1 and |y| = 1 for x, y 2 C then

|x2y + xy2 + x+ y| = 4

only if x2 and y2 are real12 and have modulus 1. It can then be checked that the only other point
of V with the same coordinate-wise modulus as ρ is σ, so these points are finitely minimal.

Corollary 55 implies that only ρ contributes to the dominant asymptotics of the diagonal
sequence, as the numerator G(x, y) = (1+x)(1+ y) vanishes (to order 2) when (x, y, t) = σ. The
contributions from each minimal critical point, to order 4, are

Φρ = 4k
✓

4

⇡k
− 6

⇡k2
+

19

2⇡k3
− 121

12⇡k4
+O

✓
1

k5

◆◆

Φσ = (−4)k
✓

1

⇡k3
− 9

2⇡k4
+O

✓
1

k5

◆◆

.

Note that the presence of two minimal critical points leads to periodicity in the higher order
asymptotic terms:

fk,k,k = 4k
✓

4

⇡k
− 6

⇡k2
+

19 + 2(−1)k
2⇡k3

− 121 + 54(−1)k
12⇡k4

+O

✓
1

k5

◆◆

.

/
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(0, 0) (1, 0)

(1, 2)

(0, 1)

•

•

•

•

•

Figure 6.2: The amoeba (left) and Newton polygon (right) of 2 + y − x(1 + y)2. Note the
correspondence between the limit directions of the amoeba and the outward normals to the edges
of the Newton polygon.

Unfortunately, the minimizer of the upper bound |z1 · · · zn|−1 on @D does not need to be a
critical point. In fact, when F (z) is not combinatorial it is possible to have no critical points,
even if the minimum of |z1 · · · zn|−1 on D is achieved and the singular variety V is smooth.

Example 64. Consider the bivariate function

F (x, y) =
G(x, y)

H(x, y)
=

1

2 + y − x(1 + y)2
.

Computing resultants, or using Gröbner Bases, it is easy to show that both systems of polynomials

H = @H/@x = @H/@y = 0 and H = x(@H/@x)− y(@H/@y) = 0

have no solutions, so the singular variety V is smooth and there are no critical points. The limit
directions of amoeba(H) – that is, the set of vectors v 2 R2 such that x + rv 2 amoeba(H) for
some x 2 R2 and all r > 0 – are given by the outward normal directions to the Newton polytope
of H on each of its edges [234, Theorem 9.6], which is illustrated in Figure 6.2. Since the Newton
polygon of H has edges with outward normals (−1, 0) and (0,−1), the set B = Relog(D) ⇢ R2 is
a closed convex set contained in some translation of the third quadrant of the plane. This implies
the linear function −1 ·x achieves its minimum on B, so |z1 · · · zn|−1 achieves its minimum on D.

The minimizers of |z1 · · · zn|−1 on D are not local minimizers of |z1 · · · zn|−1 on V , they only
become minimizers when V is mapped into R2 via the Relog map. One can imagine V wrapping
over itself in complex space, so that V is smooth but the boundary of amoeba(H) is not. /

12If |x2y+ xy2 + x+ y| = 4 and |x|, |y| 6 1 then |x| = |y| = 1 and xy2 and x have the same argument (as do x2y
and y).
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In Chapter 8 we will see that F (z) being combinatorial makes a large difference to the com-
plexity of determining dominant asymptotics with the algorithms discussed in this thesis.

6.4 Further Examples

We now return to several of the examples from Chapter 5. In addition, a detailed treatment of a
class of lattice path models will be given in Chapter 7.

Example 65 (The Apéry Numbers). In Example 40 we saw the sequence (bk) of Apéry numbers,
whose generating function could be written as the rational diagonal

∆F (x, y, z, t) = ∆

✓
1

1− t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)

◆

.

This rational function is clearly combinatorial, and solving the critical point equations gives two
smooth critical points, of which one has positive coordinates:

ρ =

 

1 +
p
2,

p
2

2
,

p
2

2
,−82 + 58

p
2

!

.

Proposition 62 implies that ρ is a minimal critical point, since

t =
1

(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)

at any singular point, and when x, y, and z are positive and real then decreasing any of their values
causes this expression to increase in value. Using an argument similar to the one in Example 63,
it can be shown that ρ is finitely minimal. Alternatively, as F is combinatorial, smooth, and
admits a finite number of critical points, Lemma 107 in Chapter 8 will imply that all minimizers
of F on D have the same coordinate-wise modulus as ρ.

In any case, we obtain dominant asymptotics:

bk =
(17 + 12

p
2)k

k3/2
·
p

34 + 24
p
2

8⇡3/2

✓

1 +O

✓
1

k

◆◆

.

The generating function of the second sequence of Apéry numbers (cn) can be written as the
diagonal

∆F (x, y, z) = ∆

✓
1

1− z(1 + x)(1 + y)(1 + y + xy)

◆

.
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Again F is combinatorial, and an analogous argument shows

ck =

⇣
11
2 + 5

p
5

2

⌘k

k
·
p

250 + 110
p
5

20⇡

✓

1 +O

✓
1

k

◆◆

.

We treat these examples algorithmically in Examples 87 and 108 of Chapter 8. /

Example 66 (Singular Vector Tuples of Generic Tensors). In Section 5.4.2 we encountered the
rational function

F (z) =
z1 · · · zn

(1− z1) · · · (1− zn) (1−
Pn

i=2(i− 1)ei(z))
,

where ei(z) is the ith elementary symmetric function

ei(z) =
X

16j1<···<ji6n

zj1 · · · zji .

This rational function is combinatorial (indeed, it is the multivariate generating function of a
combinatorial class with parameters). Furthermore, it can easily be verified that

ρ =

✓
1

n− 1
, . . . ,

1

n− 1

◆

is a smooth point (the partial derivatives of the denominator do not simultaneously vanish at
this point) and it satisfies the smooth critical point equations13. Any minimal point either has a
coordinate equal to 1, which does not contradict the minimality of ρ, or satisfies 1 −Pn

i=2(i −
1)ei(z) = 0. As F is combinatorial, Proposition 62 implies that ρ is minimal as long as

1−
nX

i=2

(i− 1)ei(r, . . . , r) = (r + 1)n−1(r(1− n) + 1) 6= 0

for r 2 (0, 1/(n − 1)), which is true. A few simple computations (contained in Pantone [202])
give the unknown quantities in Theorem 54 and verify that this strictly minimal critical point is
nondegenerate, yielding the asymptotic expansion

Cn(k) =
(n− 1)n−1

(2⇡)(n−1)/2n(n−2)/2(n− 2)(3n−1)/2
· ((n− 1)n)k · k(1−n)/2

✓

1 +O

✓
1

n

◆◆

for the diagonal sequence. /

13One can derive ρ by solving the critical point equations, or by using the symmetry of F (z) and the structure of
the monomials appearing in its denominator to argue that any smooth critical point must have equal coordinates;
see Pantone [202] for details.
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Example 67 (Mirror Families of Calabi-Yau Varieties). Recall the discussion in Example 44 of
Chapter 5. The database of Lairez [163] gives annihilating differential equations for the families
of Batyrev and Kreuzer [17]. The first entry, “polytope v6.1” has a principal period given by the
diagonal of the rational function

F (w, x, y, z, t) =
1

1− twxyz
⇣

1
wxz + y + x+ w + z + 1

wxy

⌘

and is annihilated by the differential operator

L = t3(32t2 − 1)(32t2 + 1)@4t + 2t2(7168t4 − 3)@3t + t(55296t4 − 7)@2t + (61440t4 − 1)@t + 12288t3.

The differential equation L · f = 0 has a basis of 4 solutions, f±1, f±i, with f! admitting a
singularity at !4

p
2 (these singularities are the roots of the leading polynomial factor (32t2 −

1)(32t2 + 1) of L). The power series coefficients of f! have dominant asymptotics14

(!4
p
2)k

k2

✓

1− 7

4k
+O

✓
1

k3

◆◆

.

Here the critical point equations have 4 solutions, all with the same coordinate-wise modulus, and
a short argument (analogous to the one presented in Example 63) shows that they are finitely
minimal. Applying Corollary 55 to these minimal critical points, which are nondegenerate, gives

fk,...,k =
X

!2{±1,±i}

(!4
p
2)k

k2

 

2
p
2

⇡2
− 7
p
2

2k⇡2
+O

✓
1

k3

◆!

.

This implies that the connection constants for the generating function (∆F )(t) are equal to 2
p
2/⇡2

for each f±1, f±i. /

In Example 67 one could determine the connection coefficients for the diagonal directly from
the dominant (first order) asymptotics of its coefficients, but it can happen that higher order
asymptotics are needed. Examining exactly when and how the connection problem can be solved
for rational diagonals using this approach is ongoing work.

6.5 Generalizations

In Chapter 9 we will discuss the theory of ACSV when V does not define a smooth manifold, but
before moving on we illustrate a few generalizations of the theory in the smooth case.

14This basis of solutions is determined up to a constant scaling which is fixed by these asymptotic expansions.
The basis and their coefficient asymptotics were calculated with the ore_algebra package of Sage [150]. As of
February 1, 2017 the version of ore_algebra bundled with Sage does not run, but an extension developed by Marc
Mezzarobba works and is available at http://marc.mezzarobba.net/code/ore_algebra-analytic/.
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Expansions in other Directions

Given the multivariate rational function F (z), we constructed a sequence by studying the diagonal
coefficients [zk1 · · · zkn]F (z) as k ! 1. This diagonal construction is very useful, as it can encode
a wide variety of sequences, but it is only one of many possible coefficient subsequences of F (z).
For instance, given r1, . . . , rn 2 Q>0 one can assume, after a possible scaling of the variables of
F (z), that the rj are positive integers and determine asymptotics of the sequence

[zr1·k1 · · · zrn·kn ]F (z) =
1

(2⇡i)n

Z
F (z)

(zr11 · · · zrnn )k
dz1 · · · dzn
z1 · · · zn

following the analytic framework presented above. Not only can the above results be re-derived in
this context, but the methods of Pemantle and Wilson show how, in the presence of nondegenerate
minimal critical points, uniform asymptotic estimates can often be obtained as k ! 1 and r =
(r1, . . . , rn) varies smoothly around some fixed direction15. This can lead to powerful statements
when F (z) is a multivariate generating function, and applications to computing distributions of
parameters of combinatorial classes are given in Section 9.6 of Pemantle and Wilson [204].

Expansions in Other Domains

Throughout this chapter we assumed that F (z) = G(z)/H(z) was analytic at the origin, and
determined coefficient asymptotics from its power series expansion. As seen in Section 3.6, how-
ever, F (z) will have several well-defined convergent Laurent expansions, each corresponding to
a connected component of Rn \ amoeba(H). Given such a component B ⇢ Rn, Proposition 26
generalizes the Cauchy integral formula to give an analytic expression for the coefficients of the
corresponding Laurent series. If one defines a minimal point for this Laurent expansion to be a
point w 2 V(H) such that Relog(w) 2 @B then the results derived above continue to hold16.

Diagonals of Multivariate Algebraic Functions

Recent work of Greenwood [130, 129] has shown how to determine diagonal asymptotics of bivari-
ate functions of the form F (x, y) = G(x,y)

H(x,y)β
, where G and H are analytic functions, β 2 R \ Z60,

and the zero set of H is a smooth manifold. In particular, one can determine asymptotics in the

15More generally, given any n-tuple of increasing functions r1(k), . . . , rn(k) one can ask about asymptotics
of the sequence [z

r1(k)
1 · · · zrn(k)

n ]F (z). When any of the rj are super-linear then the coefficient sequence
[z

r1(k)
1 · · · zrn(k)

n ]F (z) will typically grow or decay super-exponentially, and the methods of this chapter do not
apply.

16Our definition of critical points depends only on the singular variety V and not on the domain of convergence
under consideration. In fact, one potential source of non-minimal critical points for diagonal coefficients of power
series expansions are critical points which determine diagonal asymptotics when F (z) is expanded into a Laurent
series over another domain.
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presence of algebraic singularities. Although the diagonal of a bivariate algebraic function can
be expressed as the diagonal of a four variable rational function, nice bivariate expressions which
arise in applications can become very involved17, making it harder (or impossible with the cur-
rently developed theory) to find the singularities contributing to dominant asymptotics. In order
to work with algebraic singularities Greenwood constructs explicit contours, which look similar
to Hankel contours, to avoid branch cuts instead of using products of circles as done above in the
smooth case. Forthcoming work of Greenwood18 extends this result from the bivariate case to
any number of variables.

17Recall Example 45, for example.
18Personal communication from Torin Greenwood.
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Chapter 7

Orthant Walks with Highly Symmetric

Step Sets

This chapter is based on an article of Melczer and Mishna [181].

This symmetrical composition. . . may seem quite
“novelistic” to you, and I am willing to agree, but
only on condition that you refrain from reading such
notions as “fictive,” “fabricated,” and “untrue to life”
into the word “novelistic.” Because human lives are
composed in precisely such a fashion.1

Milan Kundera, The Unbearable Lightness of Being

In this chapter we give an in-depth treatment of a problem from lattice path enumeration,
using the techniques of ACSV in the smooth case. Recall that in Chapter 4 we saw how the kernel
method can be used to represent generating functions of two dimensional walks restricted to a
quadrant as diagonals of rational functions. When the group of transformations G is finite, and
the orbit sum

P

σ2G sgn(σ)σ(xy) is non-zero, Theorem 35 gives a representation for the generating
function of the number of walks of length k as the diagonal of an explicit rational function.

Of the 19 models to which Theorem 35 applies, only2 the following 4 have a representation of
the form ∆(G(x, y, t)/H(x, y, t)) where V(H) is globally smooth and H(0, 0, 0) 6= 0

1Translated from the Czech by Michael Henry Heim.
2Additionally, the diagonal expression arising from the model taking steps {(−1, 1), (1,−1), (±1, 0)}, known as

Gouyou-Beauchamps’ model, can be converted into a representation of this form. Its asymptotics are discussed in
Chapter 10 and weighted generalizations of the model are discussed in Chapter 11.
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Note that these models are precisely the ones which are symmetric over both the x and y-axes.
Because of these symmetries, the group G, and thus the orbit sum, does not depend on the
underlying step set. For any of these 4 models, Theorem 35 implies that the generating function
counting the total number of walks of a fixed length has the representation

Q(1, 1, t) = ∆

✓
(1 + x)(1 + y)

1− txyS(x, y)

◆

,

where we recall that for the model defined by the step set S one has S(x, y) =
P

(i,j)2S xiyj .
In this chapter we show that a similar representation exists for higher dimensional models with
symmetric step sets restricted to an orthant, and derive asymptotics for the number of walks in
such models.

The link between symmetry in a model’s step set and a rational diagonal representation which
has a smooth singular variety is the first hint of a principle we will see several times in this
thesis: combinatorial models which have “nice” properties (like underlying symmetry) often admit
rational diagonal representations with “nice” properties (like smooth minimal critical points). In
addition to dealing with models in arbitrary dimension, we also allow each step set to have positive
real weights.

Setup and Statement of Results

Fix a dimension n > 1 and let S ⇢ {±1, 0}n \ {0}. The characteristic polynomial of S is the
Laurent polynomial

S(z) :=
X

i2S
zi.

We say that S is non-trivial if for each coordinate there are steps with −1 and 1 in that coordinate,
and call S highly symmetric if

S(z1, . . . , zj−1, zj , zj+1, . . . , zn) = S(z)

for each j = 1, . . . , n (equivalently, negating the jth coordinate of all steps in S fixes S for each
j). In order to allow for weights, we assign to each s 2 S a positive real number as > 0 and define

Sa(z) :=
X

s2S
asz

s.

An unweighted model can be realized as a weighted one where each weight as equals 1. A weighted
model is called highly symmetric if

Sa(z1, . . . , zj−1, zj , zj+1, . . . , zn) = Sa(z)
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S Asymptotics S Asymptotics

4

⇡
p
1 · 1

· k−1 · 4k =
4

⇡
· 4

k

k

4

⇡
p
2 · 2

· k−1 · 4k =
2

⇡
· 4

k

k

6

⇡
p
3 · 2

· k−1 · 6k =

p
6

⇡
· 6

k

k

8

⇡
p
3 · 3

· k−1 · 8k =
8

3⇡
· 8

k

k

Table 7.1: The four highly symmetric models with unit steps in the quarter plane.

for each j = 1, . . . , n. Given step set S and weights a we form the multivariate generating function

Qa(z, t) =
X

w walk in Nn starting at 0
ending at i
of length k

Y

s step in w
(with multiplicity)

as zitk

in R[z][[t]], and note that Qa(1, t), and Qa(0, t), are the univariate generating functions counting
weighted walks of length k ending anywhere, and ending at the origin, respectively. The main
theorem of this chapter is the following.

Theorem 68 (Melczer and Mishna [181, Theorem 3.4]). Let S ⇢ {±1, 0}n \ {0} be a non-trivial
highly symmetric step set with positive weights a. Then the number of weighted walks of length k
beginning at the origin, staying in the non-negative orthant Nn, and ending anywhere has dominant
asymptotics

[tk]Qa(1, t) = S(1)k · kn/2 · S(1)n/2⇡−n/2
⇣

s(1) · · · s(n)
⌘−1/2

✓

1 +O

✓
1

k

◆◆

,

where s(j) =
⇣

[zj ]S(z)
⌘∣
∣
∣
z=1

is the weight of steps which move forward in the jth coordinate.

Example 69. When n = 2 there are four non-isomorphic unweighted highly symmetric models in
the quarter plane, whose asymptotics are listed in Table 7.1. This proves the guessed asymptotics
of Bostan and Kauers [40] for these models. /

Example 70. Let S = {±1, 0}n \ {0}, which is highly symmetric when unweighted. Then
S(1) = |S| = 3n − 1, and s(j) = 3n−1 for all j, so the total number of walks satisfies

[tk]Qa(1, t) =

 

(3n − 1)k · k−n/2 · (3n − 1)n/2

3n(n−1)/2 · ⇡n/2

!✓

1 +O

✓
1

k

◆◆

.

/
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Our arguments allow us to determine higher order terms in the expansion, however such terms
will typically have periodic behaviour and are not as simple to state. We also derive the following
result on walks returning to boundary regions of the non-negative orthant.

Theorem 71. Let S ⇢ {±1, 0}n \ {0} be a non-trivial highly symmetric step set with positive
weights a. Then the number of weighted walks of length k beginning at the origin, staying in the
non-negative orthant, and ending on the intersection of r of the boundary hyperplanes {zj = 0}
has asymptotic growth of order O

(
S(1)kk−n/2−r

)
. In particular, the number of such walks ending

at the origin satisfies

[tk]Qa(0, t) = O

✓
S(1)k

k3n/2

◆

.

The statement for walks returning to the origin in Theorem 71 first appeared in the work
of Melczer and Mishna [181], and was later re-derived by D’Arco et al. [83] using results from
potential theory.

7.1 The Kernel Method in Higher Dimensions

In order to prove Theorem 68 we generalize the kernel method described in Chapter 4 to models
in higher dimensions with highly symmetric step sets. As for all previously examined cases, the
recursive decomposition of a walk of length k + 1 as a walk of length k plus a valid step gives
a functional equation satisfied by the generating function Qa(z, t). To ensure that walks remain
in the non-negative orthant, we must not count walks which add a step with a negative jth
component to a walk ending on the hyperplane zj = 0. To account for this, it is sufficient to
subtract the term tzjQa(z1, ..., zj−1, 0, zj+1, ..., zn, t) from the functional equation for unrestricted
walks. However, if a given step has several negative components we must use the principle of
inclusion and exclusion to prevent over compensation. These considerations lead to the functional
equation

(z1 · · · zn)Qa(z, t) = (z1 · · · zn) + t(z1 · · · zn)Sa(z)Qa(z, t)

− t
X

V⇢{1,...,n}
(−1)|V |

⇣

(z1 · · · zn)Sa(z, t)Qa(z, t)
⌘∣
∣
∣
{zj=0:j2V }

(7.1)

as the term
⇣

(z1 · · · zn)Sa(z, t)
⌘∣
∣
∣
{zj=0:j2V }

is the result of extracting the coefficient of
Q

j2V z−1
j in Sa(z). Rearranging this expression gives

the following result.
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Lemma 72 (Melczer and Mishna [181, Lemma 2.1]). Let Qa(z, t) be the multivariate generating
function described above. Then there exist A1, . . . , An with Ar 2 R[zr̂][[t]] for r = 1, . . . , n such
that

(z1 · · · zn)(1− tSa(z))Qa(z, t) = (z1 · · · zn) +
nX

r=1

Ar(zr̂, t). (7.2)

A Diagonal Representation

Following the kernel method for walks in the quarter plane, we look for rational transformations
of Rn which fix Sa(z). Because our model is highly symmetric we can replace any of our variables
by their reciprocals and preserve Sa(z). Thus, we define the (abelian) group G of 2n rational maps
by

G =
n

(z1, . . . , zn) 7! (zi11 , . . . , zinn ) : i 2 {±1}n
o

.

Given σ 2 G we consider σ as map on R[z, z][[t]] through the group action σ(A(z, t)) := A(σ(z), t).
Furthermore, we define the sign of σ 2 G by

sgn(σ) = (−1)#{j:σ(zj)=zj},

and for j = 1, . . . , n we let σj be the map which sends zj to zj and fixes all other variables. These
are direct generalizations of the kernel method for walks in the quarter plane, simplified due to
the fact that the models we consider are highly symmetric.

Lemma 73 (Melczer and Mishna [181, Lemma 2.3]). Let Qa(z, t) be the multivariate generating
function described above. Then

X

σ2G
sgn(σ)σ(z1 · · · zn)Qa(σ(z), t) =

P

σ2G sgn(σ)σ(z1 · · · zn)
1− tS(z)

(7.3)

as elements of R[z, z][[t]].

Proof. As S(z) is fixed by the elements of G, to prove Equation (7.3) from Equation (7.2) it is
sufficient to show that for each r = 1, . . . , n,

X

σ2G
sgn(σ)σ(Ar(zr̂, t)) = 0.

Fix r and write G as the disjoint union G = G0 [ G1, where

G0 =
n

σ
j1
1 · · ·σ

jn−1

n−1 σ
jn
n : j1, . . . , jn 2 {0, 1}, jr = 0

o

G1 =
n

σ
j1
1 · · ·σ

jn−1

n−1 σ
jn
n : j1, . . . , jn 2 {0, 1}, jr = 1

o

.
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For all σ 2 G1, (σrσ)(Ar(zr̂, t)) = σ(Ar(zr̂), t)) while sgn(σrσ) = − sgn(σ), so
X

σ2G
sgn(σ)σ(Ar(zr̂, t)) =

X

σ2G0

sgn(σ)σ(Ar(zr̂, t)) +
X

σ2G1

sgn(σ)σ(Ar(zr̂, t))

=
X

σ2G0

sgn(σ)σ(Ar(zr̂, t)) +
X

σ2G0

sgn(σrσ) · (σrσ)(Ar(zr̂, t))

=
X

σ2G0

(sgn(σ)− sgn(σ))σ(Ar(zr̂, t))

= 0.

Applying each σ 2 G to Equation (7.2) and summing the results weighted by sgn(σ) then cancels
each of the terms Ar on the right-hand side, and Equation (7.3) follows.

Since sgn(σ) is the number of variables which σ sends to their reciprocals, the orbit sum
simplifies to

X

σ2G
sgn(σ)σ(z1 · · · zn) = (z1 − z1) · · · (zn − zn).

Furthermore, unless σ 2 G is the identity there exists an index j such that σ(zj) = zj , meaning
σ(z1 · · · zn)Qa(σ(z), t) contains only strictly negative powers of zj . Combining these two observa-
tions implies

Qa(z, t) = [z>1 ] · · · [z>n ]
✓
(z1 − z1) · · · (zn − zn)

(z1 · · · zn)(1− tSa(z))

◆

, (7.4)

and an application of Proposition 30 yields the following.

Proposition 74. Let S be a non-trivial highly symmetric step set under the positive weighting a.
Then the generating function for the number of weighted walks beginning at the origin, using the
steps S and staying in the non-negative orthant is given by

Qa(1, t) = ∆

✓
(1 + z1) · · · (1 + zn)

1− t(z1 · · · zn)Sa(z)

◆

.

Furthermore, for any V ⇢ {1, . . . , n} the generating function for the number of such walks which
end on the hyperplane intersection {zj = 0 : j 2 V } is given by

∆

0

@
Y

j2V
(1− zj) ·

(1 + z1) · · · (1 + zn)

1− t(z1 · · · zn)Sa(z)

1

A .

The second statement follows from the fact that the generating function for the number of
walks ending on the hyperplane intersection {zj = 0 : j 2 V } is given by Q(w, t) where wj = 0
for j 2 V and wj = 1 otherwise.
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The calculation which derives Proposition 74 from Equation (7.4) hints at why the highly
symmetric models are those for which the kernel method gives rational diagonal expressions with
smooth singular varieties. In order to move from a non-negative series extraction of a multivariate
generating function to a diagonal representation of a univariate generating function, Proposition 30
introduces the factors (1 − z1) · · · (1 − zn) into the denominator of the rational function under
consideration. One can generalize the group of a walk from the quadrant case to short step models
in arbitrary dimensions which are not necessarily highly symmetric. When Sa(z) is invariant under
the transformation zj 7! zj then the map σj will be one of the generators of the group G, and the
orbit sum O(z) =

P

σ2G sgn(σ)σ(z1 · · · zn) contains a factor3 of 1 − zj . Although the orbit sum
can be divisible by (1− z1) · · · (1− zn) without S being highly symmetric, this occurs rarely (for
instance, in two dimensions it only holds for 1 of the 15 non-highly symmetric models with finite
group and non-zero orbit sum).

7.2 An Application of ACSV in the Smooth Case

The next step is to apply the results of ACSV to the rational diagonals given in Proposition 74.
To begin, let

G(z, t) = (1 + z1) · · · (1 + zn)

H(z, t) = 1− t(z1 · · · zn)Sa(z)

so that the generating function Qa(1, t) equals ∆(G/H). The singular variety V = V(H) is a
complex manifold as H and (@H/@t) cannot simultaneously vanish.

Determining Minimal Critical Points

Since we only consider highly symmetric models, for each r = 1, . . . , n there exist unique Laurent
polynomials Ur(zr̂) and Vr(zr̂) such that

S(z) = (zr + zr)Ur(zr̂) + Vr(zr̂).

The equation t(@H/@t) = zr(@H/@zr) states

t(z1 · · · zn)Sa(z) = t(z1 · · · zn)Sa(z) + tzr(z1 · · · zn)(@Sa/@zr)

which implies

0 = tzr(z1 · · · zn)(@Sa/@zr) = t(z2r − 1)(z1 · · · zr−1zr+1 · · · zn)Ur(zr̂).

This gives the following characterization of critical points.

3If σj 2 G then O(z)|zj=1 =
P

σ2G sgn(σjσ)(σjσ)(z1 · · · zn)
∣

∣

∣

zj=1
=

P

σ2G sgn(σjσ)σ(z1 · · · zn)
∣

∣

∣

zj=1
=

−O(z)|zj=1.
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Lemma 75 (Melczer and Mishna [181, Proposition 3.1]). The point (z, t) 2 V is a critical point
if and only if for each 1 6 r 6 n either:

• zr = ±1 or,

• the polynomial (y1 · · · yr−1yr+1 · · · yn)Ur(yr̂) has a root at zr̂.

Note that it is possible to have an infinite set of critical points due to the second condition
(this cannot happen in two dimensions but does occur when n > 3).

Example 76. Consider the unweighted highly symmetric model in three dimensions restricted
to the non-negative octant taking the twelve steps

S = {(−1, 0,±1), (1, 0,±1), (0, 1,±1), (0,−1,±1), (±1, 1, 0), (±1,−1, 0)}.

Then

H(x, y, z, t) = 1− t(xyz)
X

s2S
xs1ys2zs3

= 1− t(z2 + 1)(x+ y)(xy + 1)− tz(y2 + 1)(x2 + 1)

and solving the system of smooth critical point equations via a Gröbner basis computation gives
the two isolated critical points

✓

1, 1, 1,
1

12

◆

and

✓

−1,−1,−1, −1
12

◆

together with a collection of non-isolated critical points
✓

x, 1,−1, 1

4x

◆

,

✓

x,−1, 1, 1

4x

◆

,

✓

1, y,−1, 1

4y

◆

,

✓

−1, y, 1, 1

4y

◆

,

✓

1,−1, z, 1

4z

◆

,

✓

−1, 1, z, 1

4z

◆

for x, y, z 2 C. /

Proposition 77. The point

ρ =

✓

1, . . . , 1,
1

Sa(1)

◆

is a smooth finitely minimal critical point and there are at most 2n critical points in T (ρ) \ V.
Any critical point (z, t) 2 T (ρ) \ V satisfies zj 2 {±1} for j = 1, . . . , n.

Proof. The point ρ is critical by Lemma 75. Suppose (w, tw) lies in D(ρ)\V , where we note that
any choice of w uniquely determines tw on V . Then

∣
∣
∣
∣
∣

X

i2S
aiw

i+1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
(w1 · · ·wn)

X

i2S
aiw

i

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1

tw

∣
∣
∣
∣
> Sa(1) =

X

i2S
ai.
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Since (w, tw) 2 D(ρ) implies |wj | 6 1 for each 1 6 j 6 n, and each weight ai is positive4, the only
way this can hold is if |wj | = 1 for each j = 1, . . . , n, and wi+1 has the same complex argument
for all i 2 S.

By symmetry, and the assumption that we take a positive step in each direction, the set
{wi+1 : i 2 S} contains two elements of the form

wi2+1
2 · · ·win+1

n and w2
1w

i2+1
2 · · ·win+1

n ,

so w2
1 must be real in order for them to have the same argument. Thus, w1 = ±1 and applying

the same argument to each coordinate gives the stated result.

Calculating Asymptotics

We have determined that the collection of minimal critical points for G(z, t)/H(z, t) form the
finite set

E =

⇢✓

w,
1

Sa(w)

◆

: w 2 {±1}n, |Sa(w)| = Sa(1)

}

.

In order to find asymptotics using Corollary 55 it remains only to determine the matrix H whose
entries are given in Equation (6.12). A direct calculation shows that

wiwj(@
2H/@zi@zj)(w) =

(

0 : i 6= j

2
Uj(w)
Sa(w) : i = j

so that H is the diagonal matrix

H =
2

Sa(w)

0

B
B
B
B
@

U1(w) 0 · · · 0

0 U2(w)
. . .

...
...

. . . . . .
...

0 · · · 0 Un(w)

1

C
C
C
C
A

.

Since G(z) = (1+ z1) · · · (1+ zn) does not vanish at ρ, but vanishes at any other minimal critical
point, Corollary 55 implies that it is the only point whose asymptotic contribution affects the
dominant asymptotics of the diagonal. Using the quantities computed above with Corollary 55
gives the asymptotics listed in Theorem 68:

[tk]Qa(1, t) = S(1)k · kn/2 · S(1)n/2⇡−n/2
⇣

s(1) · · · s(n)
⌘−1/2

✓

1 +O

✓
1

k

◆◆

,

where s(j) = Uj(1). In order to determine higher order terms in this asymptotic expansion,
the contributions from other minimal critical points must also be calculated. This can be done
automatically for any explicit step set.

4This is why we restrict ourselves to positive weights.
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Walks Returning to the Boundary

Proposition 74 gives a rational diagonal representation for walks ending in the set {zj = 0 : j 2 V }
for any subset V ⇢ {1, . . . , n}. By possibly reordering coordinates, if V contains r elements we
may assume that V = {1, . . . , r}, obtaining the rational diagonal expression

∆

✓
G(z)

H(z, t)

◆

= ∆

✓
(1− z21) · · · (1− z2r )(1 + zr+1) · · · (1 + zn)

1− t(z1 · · · zn)Sa(z)

◆

.

The denominator H(z, t) is the same as in our analysis above, meaning the set of minimal critical
points is unchanged. Now, however, the numerator G(z) vanishes at all minimal critical points.
Corollary 55 and Proposition 53 shows that high-order asymptotic terms are obtained by applying
powers of the differential operator

E = −Sa(w)

2

nX

i=0

@2✓i

to an analytic function containing

A(θ) =
⇣

1− e2i✓1
⌘

· · ·
⇣

1− e2i✓r
⌘⇣

1 + ei✓r+1

⌘

· · ·
⇣

1 + ei✓n
⌘

as a factor, and setting θ = 0. The power series expansion of A(θ) at the origin has lowest order
term 2nin−r✓1 · · · ✓r, meaning the lowest power of E that can be applied to A(θ) in order to give a
non-zero value when evaluated at the origin is Er. Corollary 55 then gives the order bounds listed
in Theorem 71, and dominant asymptotics can be calculated automatically and explicitly for any
given step set.

Example 78. Consider the unweighted two dimensional model with step set

whose generating function (counting walks ending anywhere in the quarter plane) is given by

Q(1, 1, t) = ∆

✓
(1 + x)(1 + y)

1− t(x2y2 + y2 + x2 + xy2 + x+ 1)

◆

.

To determine the set of minimal critical points we substitute all values of (x, y) 2 {±1}2 into

H(x, y, t) = 1− t(1 + y2 + x+ xy2 + x2 + x2y2) = 0,

solve the resulting expression for t, and check whether the corresponding solution tx,y satisfies
|tx,y| = 1/|S(1)| = 1/6. Of the four possible points, we get only two minimal critical points: the
expected point ρ = (1, 1, 1/6) along with the point σ = (1,−1, 1/6).
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Corollary 55 implies that these two points give the asymptotic contributions

Φρ = 6k

 p
6

⇡k
− 17

p
6

16⇡k2
+

605
p
6

512⇡k3
+O

✓
1

k4

◆!

Φσ = (−6)k
 p

6

4⇡k2
− 33

p
6

64⇡k3
+O

✓
1

k4

◆!

,

so that the number of walks of length k admits the asymptotic expansion

[tk]Q(1, 1, t) = 6k

 p
6

⇡k
−
p
6(17− 4(−1)k)

16⇡k2
+

p
6(38720− 16896(−1)k)

32768⇡k3
+O

✓
1

k4

◆!

.

The generating function for the number of walks returning to the origin is given by the rational
diagonal

Q(0, 0, t) = ∆

✓
(1− x2)(1− y2)

1− t(x2y2 + y2 + x2 + xy2 + x+ 1)

◆

,

and the finitely minimal critical points ρ and σ now have asymptotic contributions

Φ0
ρ = 6k

 

3
p
6

2⇡k3
+O

✓
1

k4

◆!

Φ0
σ = (−6)k

 

3
p
6

2⇡k3
+O

✓
1

k4

◆!

.

Thus, the number of walks ending at the origin admits the asymptotic expansion

[tk]Q(0, 0, t) = 6k

 

3
p
6

2⇡k3
(1 + (−1)k) +O

✓
1

k4

◆!

,

where we note that there are no excursions of odd length. /
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Chapter 8

Effective Analytic Combinatorics in

Several Variables

This chapter is based on an article of Melczer and Salvy [183], and a forthcoming extension.

In a static universe you cannot imagine algebra, but geometry is essen-
tially static. I can just sit here and see, and nothing may change, but I
can still see. Algebra, however, is concerned with time. . .

Michael Atiyah, Mathematics in the 20th Century

It seems to us obvious. . . to bring out a double set of results, viz.1st, the
numerical magnitudes which are the results of operations performed on
numerical data. . . 2ndly, the symbolical results to be attached to those
numerical results, which symbolical results are not less the necessary and
logical consequences of operations performed upon symbolical data, than
are numerical results when the data are numerical.

Ada Augusta, Countess of Lovelace, Sketch of the Analytical Engine
Invented by Charles Babbage (Notes by the Translator)

We now turn to the problem of automatically determining diagonal asymptotics for a rational
function F (z) which is analytic at the origin. As the theory of such asymptotics has not been
worked out in general, we must place some restrictions on the rational functions we consider. To
begin we will assume that F (z) is combinatorial and admits a minimal critical point, together
with assumptions, including that the singular variety is everywhere smooth, which hold generically
(that is, for all rational functions with fixed numerator and denominator degree, except for those
whose coefficients satisfy certain fixed algebraic relations).

Informally, the main result of this chapter is the following theorem, which is stated precisely
as Theorem 86 below.
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Theorem. Let F (z) 2 Z(z1, . . . , zn) be a rational function with numerator and denominator of
degrees at most d and coefficients of absolute value at most 2h. Assume that F is combinatorial,
has a minimal critical point, and satisfies additional restrictions1 which hold generically. Then
there exists a probabilistic algorithm computing dominant asymptotics of the diagonal sequence
in Õ(hd4n+5) bit operations2. The algorithm returns three rational functions A,B,C 2 Z(u), a
square-free polynomial P 2 Z[u] and a list U of roots of P (u) (specified by isolating regions) such
that

fk,...,k = (2⇡)(1−n)/2

 
X

u2U
A(u)

p

B(u) · C(u)k

!

k(1−n)/2

✓

1 +O

✓
1

k

◆◆

.

The values of A(u), B(u), and C(u) can be determined to precision 2− at all elements of U in
Õ(dn+1+ hd3n+3) bit operations.

Being combinatorial is not a generic property of rational functions and, unlike the other
assumptions on F which we require, it is unknown how to decide whether a given rational function
is combinatorial. Verifying minimality of a finite set of critical points is the most expensive
operation we must perform, and Proposition 62 shows this is easier in the combinatorial case.
The following result is stated rigorously in Theorem 91, and discusses the complexity of finding
minimal critical points.

Theorem. Let F (z) 2 Z(z1, . . . , zn) be a rational function with numerator and denominator
of degrees at most d and coefficients of absolute value at most 2h. Assuming that F satisfies
certain verifiable assumptions3, F admits a finite number of minimal critical points which can be
determined in Õ

(
hd9n+423n

)
bit operations.

Aside from admitting minimal critical points, we conjecture that the assumptions on F re-
quired to apply Theorem 91 hold generically. When F (z) admits a minimal critical point w which
is known to be finitely minimal, or if it is known that all minimizers of |z1 · · · zn|−1 on D lie in
T (w), then one can additionally obtain diagonal coefficient asymptotics in the same complexity.

In order to find minimal critical points, we work from the algebraic system defined by the
smooth critical point equations which, under generic conditions, is zero-dimensional (i.e., has a
finite number of solutions). The probabilistic nature of our results come from algorithms deter-
mining a representation of critical points which will allow us to determine minimality. We use a
parametrization of the critical points known as a Kronecker representation, which is closely related
to the notion of a rational univariate representation (RUR) found in the literature on polynomial
system solving. One can compute a Kronecker representation deterministically using a Gröbner
Basis calculation, but the complexity of this step may be larger than what is discussed here.

1See Section 8.1.4.
2We write f = Õ(g) when f = O(g logk g) for some k ≥ 0; see Section 8.1.1 for more information on our

complexity model and notation.
3See Section 8.1.6.
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The Kronecker Representation

The Kronecker representation of a zero-dimensional system dates back to work of Kronecker [161]
and Macaulay [177] on polynomial system solving4. The representation uses an integer linear form

u = λ1z1 + · · ·+ λnzn 2 Z[z]

which takes distinct values at the solutions of the zero-dimensional system and encodes these
solutions in a new system of equations

P (u) = 0,

8

><

>:

P 0(u)z1 −Q1(u) = 0,
...

P 0(u)zn −Qn(u) = 0,

with P 2 Z[u] square-free and Q1, . . . , Qn 2 Z[u] of degrees smaller than the degree of P . For our
purposes we consider the representation to be computed by a probabilistic algorithm of Safey El
Din and Schost [223] with bounded error probability.

In order to test minimality we must be able to isolate and argue about individual elements of
this finite algebraic set. A collection of mostly classical bounds associated to univariate polynomi-
als are exhibited below, allowing one to determine a precision such that questions about elements
of the algebraic set can be answered exactly by determining the zeroes of P (u) numerically to such
precision. Combined with bounds of Safey El Din and Schost [223] (following Schost [226]) on the
coefficient sizes of the polynomials P and the Qj appearing in the Kronecker representation, this
allows us to determine the complexity of rigorously deciding several properties of the solutions
to the original polynomial system, such as which have coordinates that are exactly equal to each
other or zero, or deciding which solutions have real coordinates in defined ranges. We show below
how these tests are sufficient to determine diagonal asymptotics under genericity assumptions.

Previous work

Not much previous work has been completed on automating the theory of analytic combinatorics
in several variables. De Vries et al. [92] give an algorithm which takes a bivariate rational function
F (x, y) with smooth singular variety admitting a (non-zero) finite number of isolated critical points
and returns dominant asymptotics of the diagonal sequence. This algorithm does not require the
critical points to be minimal, which is very powerful, however the techniques rely strongly on
being in the bivariate case. A Sage package of Raichev [215] determines asymptotic contributions
of nondegenerate minimal critical points which are smooth (or convenient points, to be described
in Chapter 9), however the package cannot determine minimality of these points and thus cannot
rigorously determine asymptotics. Neither of these works has a complexity analysis.

4See Castro et al. [64] for a detailed history and account of this approach to solving polynomial systems.
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Another approach to diagonal asymptotics is to use the theory of creative telescoping to
compute an annihilating differential equation of the (univariate) diagonal generating function.
The work of Bostan et al. [42] and Lairez [163] shows that the creative telescoping procedure
has a complexity which is essentially polynomial in dn, where d is a bound on the degrees of the
numerator and denominator of the rational function under consideration, which is comparable to
the complexity of our results. Note that asymptotics often cannot be rigorously computed through
this method due to the connection problem, which was described in Section 3.4.

Our work on the Kronecker representation follows several articles [121, 123, 226, 160] on the
use of the Kronecker representation in complex or real geometry, which go far beyond the sim-
ple systems we consider here. There has also been work on solving polynomial systems using
the Kronecker representation under the name rational univariate representation [222, 16]. The
idea of using a Kronecker representation to reduce numerical computations with elements of zero-
dimensional algebraic sets to the manipulation of univariate polynomials is not new. However,
to the best of our knowledge, the connection between good properties of the Kronecker represen-
tation in terms of bit size of its output and fast and precise algorithms operating on univariate
polynomials had not been explored before the proceedings article this chapter is based on, except
in the case of bivariate systems [58, 156].

8.1 Main Algorithms and Results

This section describes our main algorithmic tools and the assumptions we require. Correctness of
the algorithms, and proofs of their complexity, are described in Section 8.2.

8.1.1 Complexity Measurements

The bit complexity of an algorithm whose input can be encoded by integers (for instance, a
multivariate polynomial over the integers) is obtained by considering the base B representations
of these integers for some fixed B (usually a power of 2) and counting the number of additions,
subtractions, and multiplications modulo B performed by the algorithm. Our algorithms typically
take as input polynomials in Z[z1, . . . , zn], and the algorithms’ bit complexity will depend on the
number of variables n, along with the degrees and heights of these polynomials. The height h(P )
of a polynomial P 2 Z[z] is the maximum of 0 and the base 2 logarithms of the absolute values of
the coefficients of P (some works define the height in terms of the maximum of the coefficients’
moduli instead of their logarithms). As h(P ) gives a bound on the bit size of the coefficients of P ,
it helps give separation bounds on the roots of P . Unless otherwise specified we assume d denotes
a quantity of value at least 2 (typically corresponding to polynomial degree) and define D := dn.

For two functions f and g defined and positive over (N⇤)m, the notation f(a1, . . . , am) =
O(g(a1, . . . , am)) states the existence of a constant K such that f(a1, . . . , am)  Kg(a1, . . . , am)
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over (N⇤)m. Furthermore, we write f = Õ(g) when f = O(g logk g) for some k ≥ 0; for instance,
O(nD) = Õ(D) since we assume d > 2. The dominant factor in the complexity of most operations
we consider grows like Õ(Dc) for some constant c, and our goal is typically to bound the exponent
c as tightly as possible.

It is often convenient to consider a system of polynomials f = (f1, . . . , fn) of degree at most
d as given by a straight-line program (a program using only assignments, constants, +,−, and
⇥) which evaluates the elements of f simultaneously at any point z using at most L arithmetic
operations (see Section 4.1 of Burgisser et al. [62] for additional details on this complexity model).
For instance, this can allow one to take advantage of sparsity in the polynomial system. An upper
bound on L is obtained by considering n dense polynomials in n variables, leading to L = Õ(D).

Given a zero-dimensional polynomial system f , we will use the results of Safey El Din and
Schost [223] to compute a Kronecker representation, and these results can take into account some
underlying structure present in f . More precisely, Safey El Din and Schost derive upper bounds
on the degrees and heights of the polynomials appearing in a Kronecker representation which will
help us take into account the fact that different blocks of variables occur in disjoint elements of
the systems we consider, except for polynomials of degree 3. We present the complexity results
and output bounds of Safey El Din and Schost in the next section, after defining some related
quantities, and apply these results in the context of ACSV in Sections 8.1.5 and 8.1.6.

Quantities for Degree and Height Bounds

Fix a positive integer m and vector n 2 Nm. Given any vector v = (v1, . . . , vm) 2 Nm and
variables ✓1, . . . , ✓m, we define

{v} := v1✓1 + · · ·+ vm✓m,

and given a sequence of vectors d1, . . . ,dr 2 Nm we let Cn(d) be the sum of the non-zero coeffi-
cients of ✓1, . . . , ✓m in the expression

{d1} · · · {dr} mod
⇣

✓n1+1
1 , . . . , ✓nm+1

m

⌘

.

Furthermore, if ⌘ is a real number and ⇣ a variable, we let

{⌘,v} := ⌘⇣ + v1✓1 + · · ·+ vm✓m,

and for η 2 Rr we let Hn(η,d) be the sum of the non-zero coefficients of ⇣, ✓1, . . . , ✓m in the
expression

{⌘1,d1} · · · {⌘r,dr} mod
⇣

⇣2, ✓n1+1
1 , . . . , ✓nm+1

m

⌘

.

Consider a polynomial f(z) 2 Z[z] and let Z1, . . . ,Zm be a partition of the variables z. We
say that f has multi-degree at most (v1, . . . , vm) if the total degree degZj

(f) of f considered as
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a polynomial only in the variables of Zj is at most vj , for each j = 1, . . . ,m. If f = (f1, . . . , fr)
is a polynomial system where fj has multi-degree at most dj 2 Nm, and the block of variables
Zj contains nj elements, Safey El Din and Schost [223] prove that the quantity Cn(d) will be
an upper bound on the degrees of the polynomials appearing in a Kronecker representation of f ,
where d = (d1, . . . ,dm) is a vector of vectors.

If h(f) denotes the height of a polynomial f(z) 2 Z[z], we define

⌘(f) := h(f) +
mX

j=1

log(1 + nj) degZj
(f). (8.1)

Given η 2 Rm such that ⌘(fj) 6 ⌘j for each j = 1, . . . , r, Safey El Din and Schost [223] prove
that a combination of the quantities Cn(d) and Hn(η,d) yields an upper bound on the heights
of the polynomials appearing in a Kronecker representation of f .

Example 79. If d = (d, . . . , d), then Cn(d) = dn = D as it is the sum of the coefficients in

(d✓1)
n mod

(
✓n+1
1

)
.

Furthermore, if ⌘j := h + d log(1 + n) then Hn(η,d) = Õ(hdn−1 + D) as it is the sum of the
coefficients in

(⌘⇣ + d✓1)
n mod

(
⇣2, ✓n+1

1

)
.

If f is a zero-dimensional polynomial system consisting of polynomials of degrees at most d and
heights at most h, this calculation will imply that the polynomials appearing in any Kronecker
representation of f have heights Õ

(
hdn−1 +D

)
2 Õ(hD). /

8.1.2 Kronecker Representation

A Kronecker representation [P (u),Q] of a zero-dimensional algebraic set

V(f) = {z : f1(z) = · · · = fn(z) = 0}

defined by the polynomial system f = (f1, . . . , fn) ⇢ Z[z]n consists of an integer linear form

u = λ1z1 + · · ·+ λrzn 2 Z[z]

which takes distinct values at elements of V , a square-free polynomial P 2 Z[u], and Q1, . . . , Qn 2
Z[u] of degrees smaller than the degree of P such that the elements of V(f) are given by projecting
the solutions of the system

P (u) = 0,

8

><

>:

P 0(u)z1 −Q1(u) = 0,
...

P 0(u)zn −Qn(u) = 0,

(8.2)
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onto the coordinates z1, . . . , zn. The degree of a Kronecker representation is the degree of P , and
the height of a Kronecker representation is the maximum height of its polynomials P,Q1, . . . , Qn.
The following probabilistic result allows one to calculate a Kronecker representation for a zero-
dimensional polynomial system, assuming that the Jacobian of the system is invertible at the
elements of V(f).

Proposition 80 (Safey El Din and Schost [223, Proposition 18]). Let f 2 Z[z]n be a zero-
dimensional polynomial system given by a straight-line program Γ of size L that uses integer
constants of height at most b, and let Z(f) be the solutions of f where the Jacobian matrix of f is
invertible. Then, fixing a partition Z of the variables such that fj has multi-degree at most dj and
⌘(fj) 6 ⌘j, there exists an algorithm KroneckerRep that takes Γ and produces one of the following
outputs:

• a Kronecker representation of Z(f),

• a Kronecker representation of degree less than that of Z(f),

• fail.

The first outcome occurs with probability at least 21/32. In any case, the algorithm has bit com-
plexity

Õ
(
Lb+ Cn(d)Hn(η,d)

(
L+ nδ + n2

)
n (n+ log h)

)
,

where
δ = max

16j6n

⇥
degZ1

(fj) + · · ·+ degZr
(fj)

⇤
.

The polynomials in the output have degree at most Cn(d) and height Õ (Hn(η,d) + nCn(d)).
When f consists of polynomials of degrees at most d and heights at most h one can put all variables
in a single block to obtain an algorithm with bit complexity Õ(D3 + hD2dn−1) 2 Õ(hD3), whose
output consists of polynomials of degrees at most D and heights in Õ(D + hdn−1) 2 Õ(hD).

Repeating the algorithm k times, and taking the output with highest degree, allows one to
obtain a Kronecker representation of Z(f) with probability 1 −

(
11
32

)k
. When the Jacobian of f

is invertible at each of its solutions then Proposition 80 gives a Kronecker representation of all
solutions of f .

Suppose f is a zero-dimensional polynomial system with polynomials of degree at most d and
heights at most h. Determining the inverse of P 0(u) modulo the polynomial P (u) allows one to
calculate a polynomial

Aj(u) := Qj(u) · P 0(u)−1 mod P (u)

of degree at most D such that zj = Aj(u) at the solutions of f encoded by P (u) = 0. Effective
versions of the arithmetic Nullstellensätze [160, Theorem 1] imply that the maximum height of
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the numerators and denominators of the (lowest terms) rational coefficients in P 0(u)−1, and thus
Aj(u), is bounded by Õ(hD2). This upper bound on heights is often observed in practice, making
computations with the polynomials Qj of height Õ(hD) appearing in the Kronecker representation
much more efficient than those with the polynomials Aj . This is one reason why the Kronecker
representation has become a widely used tool in computer algebra.

Another probabilistic algorithm which computes a Kronecker representation of the solutions
of f under similar assumptions, and with a similar complexity to Proposition 80 when all variables
are put into the same block, was given by Giusti et al. [123]. The algorithm of Giusti et al. was
used in the article [183] on which this chapter is based.

8.1.3 Numerical Kronecker Representation

A numerical Kronecker representation [P (u),Q,U] of a zero-dimensional polynomial system is a
Kronecker representation [P (u),Q] of the system together with a sequence U of isolating intervals
for the real roots of the polynomial P and isolating disks for the non-real roots of P . We say that
the size of an interval is its length, while the size of a disk is its radius. In practice, the elements of
U are stored as floating point approximations whose accuracy is certified to a specified precision.
We use standard results on univariate polynomial root solving and root bounds, described in
Sections 8.2.1 and 8.2.2, to obtain the following result.

Proposition 81. Suppose the zero-dimensional system f = (f1, . . . , fr) ⇢ Z[z1, . . . , zr] is given
by a Kronecker representation [P (u),Q] of degree d and height h. Then there exists an algorithm
NumericalKroneckerRep which takes [P (u),Q] and  > 0 and returns a numerical Kronecker rep-
resentation [P (u),Q,U], with isolating regions in U of size at most 2−, in Õ(d3 + d2h+ d) bit
operations.

Once a Kronecker representation is known, several important properties of the underlying
zero-dimensional algebraic set can be detected.

Proposition 82. Suppose the zero-dimensional polynomial system f is given by a known numerical
Kronecker representation [P (u),Q,U] of degree δ and height ⌘.

(i) Given a natural number , one can determine approximations to the elements of V(f) whose
coordinates are at most 2− from their true values in Õ(n(δ3 + δ2⌘ + δ)) bit operations.

(ii) The positivity, negativity and equality to 0 of all real coordinates of all elements of V(f) can
be determined in Õ(n(δ3 + δ2⌘)) bit operations.

Furthermore, if f contains n polynomials of degrees at most d and heights at most h,

(iii) All coordinates of elements of V(f) which are equal to each other can be detected in Õ(hD3)
bit operations.
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(iv) Given an element of V(f) with non-negative coordinates, one can determine all elements of
V(f) with the same coordinate-wise moduli in Õ(hD4) bit operations.

The following result discusses incorporating new polynomials into a numerical Kronecker rep-
resentation.

Proposition 83. Let f be a zero-dimensional polynomial system and [P (u),Q] be a Kronecker
representation of f calculated using Proposition 80 with respect to a partition Z = (Z1, . . . ,Zm)
of the variables z1, . . . , zn. If Cn(d) and Hn(η,d) are the quantities appearing in Proposition 80,
and q 2 Z[z] has height ⌘ and degree δi in the block of variables Zi for each i 2 {1, . . . , n}, then

(i) there exists a parameterization P 0(u)− TQq(u) of the values taken by q on V(f) with Qq 2
Z[u] a polynomial of degree at most Cn(d) and height Õ

(
Cn(d) + nHn(η,d)

)
, where

Cn(d) := (n+ 1)Cn(d), Hn(η,d) := Hn(η,d) + Cn(d)

 

⌘ + 1 +

mX

i=1

log(1 + |Zi|)δi
!

;

(ii) there exists a polynomial Φq 2 Z[T ] which vanishes on the values of q at the elements of
V(f), of degree at most Cn(d) and height

Õ
⇣

(Hn(η,d) + nCn(d))Cn(d) +
(
Hn(η,d) + nCn(d)

)
Cn(d) + log2

⇥(
Cn(d) + Cn(d)

)
!
⇤ ⌘

.

The polynomial Qq can be determined in Õ
(
DCn(d)Hn(η,n)

)
bit operations.

If Z is composed of a single block of variables, and q and the elements of f have degrees at
most d and heights at most h, then Qq has degree at most D and height Õ(hD), and can be
computed in Õ(hD3) bit operations. We will not need to compute Φq for our applications, except
in the special case when q is one of the variables zj , which is discussed in Lemma 102. In general,
assuming one computes a Kronecker representation using a single block of variables and q has
degree at most d and height at most h, Φq can be determined in Õ(hD4) bit operations using fast
resultant calculations [57, Lemma 3].

Proofs of these results are given in Section 8.2.3.

8.1.4 Assumptions for Asymptotics

Our algorithms for asymptotics require the following assumptions:

(A0) F (z) = G(z)/H(z) admits a minimal critical point;

(A1) H and its partial derivatives do not have a common solution in Cn;
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(A2) G(z) is non-zero at at least one minimal critical point;

(A3) all minimal critical points of F (z) are nondegenerate;

(J1) the Jacobian matrix of the system

f = (H, z1(@H/@z1)− λ, . . . , zn(@H/@zn)− λ, H(tz1, . . . , tzn))

with respect to the variables z,λ, and t, is non-singular at its solutions.

Note that assumption (A1) implies the singular variety V(H) is everywhere smooth. Fur-
thermore, the Jacobian criterion [96, Theorem 16.19] implies that the polynomial system f is
zero-dimensional whenever the square Jacobian matrix of f has full rank (i.e., is non-singular) at
all of its solutions, so that (J1) is stronger than requiring that F (z) admits a finite number of
critical points. We only require assumption (J1) to compute a Kronecker representation of f using
Proposition 80. Another sufficient condition for F to admit a finite number of critical points is
that all critical points are nondegenerate, as any nondegenerate critical point is isolated5.

Pemantle and Wilson [204] always assume the existence of at least one critical point, and
although they have some results when there are no minimal critical points they do not have
explicit asymptotic formulas for such cases. Their results require isolated critical points, and all
asymptotic results in dimension n > 2 need nondegenerate critical points. Chapters 10 and 11 of
their text, to be discussed in Chapter 9 of this thesis, generalize the theory of ACSV to several
cases when V(H) is not smooth. Automating these extensions is a direction for future work.

Our assumptions often hold in practice because they are satisfied generically6. Recall that
there are md :=

(
d+n
n

)
monomials in C[z] of (total) degree at most d.

Definition 84. A property P of polynomials in C[z] is said to hold generically if for every positive
integer d there exists a proper algebraic subset Cd ( Cmd such that any polynomial of degree d
satisfies P unless its coefficients lie in Cd.

A property of rational functions holds generically if for every pair of positive integers (d1, d2)
there exists a proper algebraic subset Cd1,d2 ( Cmd1

+md2 such that any rational function of numer-
ator and denominator degrees d1 and d2 satisfies P unless the coefficients of its numerator and
denominator lie in Cd1,d2 .

This definition implies that the conjunction of finitely many generic properties is generic. In
Section 8.4 we prove the following result.

5A smooth critical point is a critical point of the analytic map φ : V ! C defined by φ(z) = z1 · · · zn. The fact
that a nondegenerate critical point of an analytic map from a smooth manifold to the complex numbers is isolated
follows from a result known as the Complex Morse Lemma [95, Proposition 3.15 and Corollary 3.3]. The number
of isolated solutions of a system of n degree d polynomials in n variables is at most dn by Bézout’s inequality.

6Although many examples that come from combinatorial problems have non-generic behaviour, as we will see
in Part III of this thesis.
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Proposition 85. The assumptions (A1)–(A3) and (J1) hold generically.

Any point where H and its partial derivatives simultaneously vanish will satisfy the smooth
critical points equations. Thus, when Z(f) = V(f), there are at most a finite number of such points
and assumption (A1) can be verified from a Kronecker representation of f . The main purpose
of our algorithms will be to prove the existence of minimal critical points, verifying assumption
(A0), and to verify assumption (A2) one can use Proposition 83 to determine the values of G at
specific critical points. To verify (A3) we take the matrix H defined by Equation (6.12) where
each ⇣j is taken to be the variable zj and λ = z1(@H/@z1), and multiply each entry by λ to obtain
a polynomial matrix H̃. The determinant of H̃ is a polynomial, and Proposition 83 can be used to
check whether or not it vanishes at any minimal critical point. Unfortunately, the best complexity
of which we are aware for verifying that the Jacobian of a system f of n degree d polynomials in
n variables is non-singular at its solutions is dÕ(n), given by Giusti et al. [122].

8.1.5 Asymptotics in the Combinatorial Case

We can now rigorously state our main result on asymptotics when F (z) is combinatorial.

Theorem 86. Assume (A0)—(A3), (J1), and that F (z) is combinatorial. Then there exists a
probabilistic algorithm computing dominant asymptotics of the diagonal sequence in Õ(hd5D4) bit
operations. The algorithm returns three rational functions A,B,C 2 Z(u), a square-free polyno-
mial P 2 Z[u] and a list U of roots of P (u) (specified by isolating region) such that

fk,...,k = (2⇡)(1−n)/2

 
X

u2U
A(u)

p

B(u) · C(u)k

!

k(1−n)/2

✓

1 +O

✓
1

k

◆◆

. (8.3)

The values of A(u), B(u) and C(u) can be refined to precision 2− at all elements of U in Õ(dD+
hd3D3) bit operations.

Theorem 86 follows directly from the smooth point asymptotics given in Proposition 56, to-
gether with Proposition 62, once the algorithms for the numerical Kronecker representation stated
in Propositions 82 and 83 are established in Section 8.2. A high level description of the algorithm
is given in Algorithm 1.

Example 87. Consider Apéry’s sequence (bk) from Example 40, whose generating function was
given by a rational diagonal of the form F (w, x, y, z) = 1/H(w, x, y, z). The polynomial

H(w, x, y, z) = 1− w(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)

of degree 7 defines a smooth algebraic set V(H), and F = 1/H is combinatorial. Taking the
system

H(w, x, y, z), w(@H/@w)− λ, . . . , z(@H/@z)− λ, H(tw, tx, ty, tz),
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Algorithm 1: CombinatorialAsymptotics

Input: Rational function F (z) = G(z)/H(z) which satisfies the hypotheses of Theorem 86
Output: A,B,C 2 Z(u), P 2 Z[u] and finite list U such that Equation (8.3) is satisfied

f  [H, z1(@H/@z1)− λ, . . . , zn(@H/@zn)− λ, H(tz1, . . . , tzn)]
[P,Q] KroneckerRep(f)
[P,Q,V] NumericalKroneckerRep(P,Q)
Group elements of V(f) with the same z1, . . . , zn coordinates
if λ = 0 and z1, . . . , zn 6= 0 at any solution then

return fail, “V is non-smooth”
end
Remove points where λ = 0
for each element of V(f) with positive real values of z1, . . . , zn do

Check whether there is a corresponding element of V(f) with 0 < t < 1
If not, then ρ = (z1, . . . , zn) is a minimal critical point

end
if No such element ρ then

return fail, “no minimal-critical points”
end

z(1), . . . , z(k)  elements of V(f) with same coordinate-wise modulus as ρ

U elements of V corresponding to z(1), . . . , z(k)

H̃  determinant of the matrix defined by Equation (6.12) after each entry multiplied by λ
QH̃(u) polynomial from Prop. 83 parameterizing H̃ on V(f) using [P,Q]
QT (u) polynomial from Prop. 83 parameterizing T = z1 · · · zn on V(f) using [P,Q]
Q−G(u) polynomial from Prop. 83 parameterizing −G(z) on V(f) using [P,Q]
if QT (u) = 0 at any element of U then

return fail, “degenerate minimal-critical point”
end
Return Q−G/Qλ, Qλ/QH̃ · (P 0)2−n, P 0/QT , P, U
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we try the linear form u = w+x+y+z+t and (using a Gröbner basis calculation, not the algorithm
of Safey El Din and Schost [223]) we find that it is separating and a Kronecker representation is
given by

• a polynomial P (u) of degree 14 and coefficients of absolute value less than 265;

• polynomials Qw, Qx, Qy, Qz, Qλ, Qt of degrees at most 13 and coefficients of absolute value
less than 268.

Note that the elements of a reduced Gröbner Basis of this system have coefficients of absolute
value up to 2344, which illustrates the benefit of a Kronecker representation (and hints at why a
specialized algorithm should be used instead of a Gröbner basis calculation).

The critical points of F are determined by the roots of

P̃ (u) = gcd(P, P 0 −Qt) = u2 + 160u− 800,

as these are the solutions of the polynomial system where t = 1. Substituting the roots

u1 = −80 + 60
p
2, u2 = −80− 60

p
2

of P̃ (which can be solved exactly since P̃ is quadratic) into the Kronecker representation deter-
mines the two critical points

ρ =

✓
Qw(u1)

P 0(u1)
,
Qx(u1)

P 0(u1)
,
Qy(u1)

P 0(u1)
,
Qz(u1)

P 0(u1)

◆

=

 

−82 + 58
p
2, 1 +

p
2,

p
2

2
,

p
2

2

!

σ =

✓
Qw(u2)

P 0(u2)
,
Qx(u2)

P 0(u2)
,
Qy(u2)

P 0(u2)
,
Qz(u2)

P 0(u2)

◆

=

 

−82− 58
p
2, 1−

p
2,
−
p
2

2
,
−
p
2

2

!

of which only ρ has non-negative coordinates and thus could be minimal. Determining the roots
of P (u) = 0 to sufficient precision shows that there are 6 real values of t, and none lie in (0, 1).
Thus, ρ is a smooth minimal critical point, and there are no other critical points with the same
coordinate-wise modulus.

Once minimality has been determined, the Kronecker representation of this system can be
reduced to a Kronecker representation which encodes only critical points. This is done using P̃
by determining the inverse P 0(u)−1 of P 0 modulo P̃ (which exists as P̃ is a factor of P , and P
and P 0 are co-prime) and setting

Q̃v(u) := Qv(u)P̃
0(u)P 0(u)(u)−1 mod P̃ (u)

for each variable v 2 {w, x, y, z,λ}. In this case we obtain a Kronecker representation of the
critical point equations given by

P̃ (u) = u2 + 160u− 800 = 0
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and

w =
−164u+ 800

2u+ 160
, x =

2u+ 400

2u+ 160
, y = z =

120

2u+ 160
, λ =

−2u− 160

2u+ 160
.

Computing the determinant of the polynomial matrix H̃ obtained from multiplying each row of
the matrix in Equation (6.12) by λ shows that the values of this determinant, together with the
polynomial T = wxyz, can be represented at solutions of the Kronecker representation by

QH̃
P̃ 0 =

96u− 480

2u+ 160
,

QT

P̃ 0 =
34u− 160

2u+ 160
.

Ultimately, noting that −G = −1 for this example, we obtain diagonal asymptotics

fk,k,k,k =

✓
u+ 80

17u− 80

◆k

· k−3/2 ·
p
6u+ 480

48⇡3/2
p
5− u

✓

1 +O

✓
1

k

◆◆

, u 2 U

where U = {u1} = {−80 + 60
p
2}. In general, when P̃ is not quadratic, U contains isolating

intervals of roots of P̃ . Since we have u exactly here we can determine the leading asymptotic
term exactly,

(17 + 12
p
2)k

k3/2
·
p

34 + 24
p
2

8⇡3/2

✓

1 +O

✓
1

k

◆◆

=
(33.97056 . . .)k

k3/2

✓

.22004 . . .+O

✓
1

k

◆◆

.

/

The calculations for this example can be found in an accompanying Maple worksheet7, and
additional examples are given in Section 8.3 below.

8.1.6 Asymptotics in the General Case

The general case is trickier as there may no longer be minimal critical points with non-negative
coordinates, and we can no longer simply test the line segment between the origin and a finite set
of points to determine minimality. Although we could naively use algorithms on the emptiness
of semi-algebraic sets from real algebraic geometry to test whether each critical point is minimal,
these algorithms are singly-exponential in the degree of the polynomials encoding critical point
coordinates, which are themselves singly exponential. Instead we adapt similar techniques for
our purposes. Our results fall into a category of algorithms known as critical point methods, an
influential approach to polynomial system solving popularized by Grigor’ev and Vorobjov [132]
and Renegar [218] as the first technique to give a singly-exponential time algorithm sampling a
point in each connected component of a real algebraic set.

7Available at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html, together with a preliminary package im-
plementing our algorithm in the combinatorial case.
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Given a polynomial f(z) 2 C[z] we define f(x+ iy) := f(x1+ iy1, . . . , xn+ iyn), and note the
unique decomposition

f(x+ iy) = f (R)(x,y) + if (I)(x,y),

for polynomials f (R)(x,y), f (I)(x,y) in R[x,y]. The Cauchy-Riemann equations imply

@f

@zj
(x+ iy) =

1

2
· @

@xj

⇣

f (R)(x,y) + if (I)(x,y)
⌘

− i

2
· @
@yj

⇣

f (R)(x,y) + if (I)(x,y)
⌘

,

and it follows that the set of real solutions of the system

H(R)(a,b) = H(I)(a,b) = 0 (8.4)

aj

⇣

@H(R)/@xj

⌘

(a,b) + bj

⇣

@H(R)/@yj

⌘

(a,b)− λR = 0, j = 1, . . . , n (8.5)

aj

⇣

@H(I)/@xj

⌘

(a,b) + bj

⇣

@H(I)/@yj

⌘

(a,b)− λI = 0, j = 1, . . . , n (8.6)

in the variables a,b,λR,λI correspond exactly to all complex solutions of the critical point equa-
tions

H(z) = 0, λ = z1(@H/@z1) = · · · = zn(@H/@zn)

with z = a+ ib and λ = λR + iλI . Furthermore, if we consider the equations

H(R)(x,y) = H(I)(x,y) = 0 (8.7)

x2j + y2j − t(a2j + b2j ) = 0, j = 1, . . . , n (8.8)

then, by Proposition 62, any z = a + ib 2 V is minimal if and only if there is no solution to
Equations (8.7)–(8.8) with x,y, t real and 0 6 t < 1.

Let

• W denote all complex solutions of the system of equations (8.4)–(8.8)

• WR :=W \ R4n+3 be the real part of W

• WR⇤ :=W \ (R⇤)4n+3 be the points in WR with non-zero coordinates

• ⇡t :WR ! C be the projection map ⇡t(a,b,x,y,λR,λI , t) = t.

Then we have the following result.

Proposition 88. Let H 2 Q[z] be a polynomial which does not vanish at the origin. Suppose that
the Jacobian matrix of the polynomials in (8.4)–(8.8) has full rank at any point in W (so W is a
manifold) and that Equations (8.4)–(8.6) admit a finite number of complex solutions. Then:
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(i) The point (a,b,x,y,λR,λI , t) 2 WR⇤ is a critical point (in the differential geometry sense)
of ⇡t if and only if there exists ⌫ 2 R such that

(yj − ⌫xj)
⇣

@H(R)/@xj

⌘

(x,y)− (xj + ⌫yj)
⇣

@H(R)/@yj

⌘

(x,y) = 0, j = 1, . . . , n (8.9)

(ii) The point z = a + ib 2 (C⇤)n with a,b 2 Rn is a minimal critical point of V(H) if and
only if (a,b) satisfies Equations (8.4)–(8.6) and there does not exist (x,y, ⌫, t) 2 R2n+2 with
0 < t < 1 satisfying Equations (8.7)–(8.9).

Proof. (i) First, we note that WR⇤ is a real smooth manifold whenever W is a complex analytic
manifold. Furthermore, as Equations (8.4)–(8.6) admit a finite number of solutions, each con-
nected component of WR⇤ (and W) corresponds to one of the values of (a,b) satisfying these
equations. A point (a,b,x,y,λR,λI , t) in the connected component of WR⇤ defined by (a,b) is
then a critical point of ⇡t if and only if the matrix

J =

0

B
B
B
B
B
B
B
@

rH(R)(x,y)

rH(I)(x,y)
r(x21 + y21 − t(a21 + b21))

...
r(x2n + y21 − t(a2n + b2n))

r(t)

1

C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
@

(@H(R)/@x1) · · · (@H(R)/@xn) (@H(R)/@y1) · · · (@H(R)/@yn) 0

(@H(I)/@x1) · · · (@H(I)/@xn) (@H(I)/@y1) · · · (@H(I)/@yn) 0
2x1 0 0 2y1 0 0 −(a21 + b21)

0
. . . 0 0

. . . 0
...

0 0 2xn 0 0 2yn −(a2n + b2n)
0 · · · 0 0 · · · 0 1

1

C
C
C
C
C
C
C
A

is rank deficient, since a critical point of ⇡t is precisely one where the gradient of t is perpendicular
to the tangent plane of WR.

Using the Cauchy-Riemann equations to write

(@H(I)/@xj) = −(@H(R)/@yj) and (@H(I)/@yj) = (@H(R)/@xj)

implies that (a,b,x,y,λR,λI , t) 2 WR⇤ is a critical point if and only if there exists ⌫,λ1, . . . ,λn
such that

(@H(R)/@xj)− ⌫(@H(R)/@yj) + λjxj = 0

(@H(R)/@yj) + ⌫(@H(R)/@xj) + λjyj = 0
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for each j = 1, . . . , n. This system of equations simplifies to Equations (8.9).

(ii) WhenWR⇤ is a smooth manifold, any local minimum of the function ⇡t must occur at a critical
point of the function. For each of the finite real values of (a,b) satisfying Equations (8.4)–(8.6),
the set

S =
{
(x,y, t) 2 R2n+1 : t 2 [0, 1], (a,b,x,y, t) satisfy Equations (8.7) and (8.8)

 

is compact, as t 2 [0, 1] implies x2j + y2j 6 a2j + b2j for each j = 1, . . . , n. Furthermore, S is non-
empty because it contains (a,b,a,b, 1). Thus, the continuous function ⇡t achieves its minimum
on the compact set S, and such a minimizer must be a critical point of ⇡t or have t = 1. Any
solution (x,y, t) 2 S with t < 1 gives a point x + iy that has smaller coordinate-wise modulus
than a + ib, meaning z is not minimal. Likewise, if ⇡t has no critical points with t < 1 then
Equations (8.7) and (8.8) have no solution with t < 1, meaning z is minimal.

Finally, if z = a+ib is a minimal critical point of V(H) then (a,b) satisfies Equations (8.4)–(8.6)
and there are no solutions of Equations (8.7) and (8.8) with t < 1.

Our strategy will be to use Proposition 88 to prove minimality in the non-combinatorial case,
and we define the following assumptions:

(A4) the system of equations (8.4)–(8.6) has a finite number of complex solutions;

(A5) the Jacobian matrix of the system of equations (8.4)–(8.8) has full rank at its solutions;

(J2) the Jacobian matrix of the system of equations (8.4)–(8.9) is non-singular at its solutions.

Note that assumption (A5) implies that W is a manifold, and that (J2) implies the system of
equations (8.4)–(8.9) has a finite number of complex solutions. The following result is proven in
Section 8.4.

Proposition 89. Assumption (A4) holds generically.

The structure of the polynomials appearing in the system of equations (8.4)–(8.9) makes it
more difficult to prove assumptions (A5) and (J2) hold generically, and we state the following
conjecture.

Conjecture 90. Assumptions (A5) and (J2) hold generically.

Work in progress on proving Conjecture 90 is discussed at the end of Section 8.4. We also
note that assumptions (A4), (A5), and (J2) can be rigorously verified.

127



Algorithm 2: MinimalCritical

Input: Rational function F (z) = G(z)/H(z) which satisfies the hypotheses of Theorem 91
Output: Numerical Kronecker representation [P,Q,U] for the minimal critical points of F

f 0  Polynomials in Equations (8.4) – (8.9)
[P 0,Q0] KroneckerRep(f 0)
[P 0,Q0,V0] NumericalKroneckerRep(P,Q)
Group elements of V(f 0) with the same value of z := a+ ib
for each z with non-zero coordinates do

Check whether there is a corresponding element of V(f 0) with 0 < t < 1
If not, then z is a minimal critical point

end
f  [H, z1(@H/@z1)− λ, . . . , zn(@H/@zn)− λ]
[P,Q] KroneckerRep(f)
[P,Q,V] NumericalKroneckerRep(P,Q)
U solutions of P corresponding to minimal critical points
Return [P,Q,U]

Since equations (8.4)–(8.9) have a multi-homogeneous structure (the a,b variables and the
x,y variables do not appear with high degree in the same equation), we will apply the results of
Safey El Din and Schost [223] with the variables partitioned into the blocks

[Z1, . . . ,Z6] = [(a,b), (x,y), (λR), (λI), (t), (⌫)] .

This will ultimately lead to the following result.

Theorem 91. Assume (A0)—(A5), (J1), and (J2). Then there exists a probabilistic algorithm
which determines the minimal critical points of F (z) in Õ

(
hd423nD9

)
bit operations. The algo-

rithm returns polynomials Q1(u), . . . , Qn(u), P (u) 2 Z[u], with P (u) square-free, and a set U of
isolating intervals of roots of P such that the set of minimal critical points of F is

E :=

⇢✓
Q1(u)

P 0(u)
, . . . ,

Qn(u)

P 0(u)

◆

: u 2 U

}

.

The coordinates of all minimal critical points of F (z) can be determined to precision 2− in
Õ(dD+ hd3D3) bit operations.

Algorithm 2 gives a high level implementation of Theorem 91. If the minimal critical points of
F (z) are finitely minimal, Corollary 55 implies that diagonal asymptotics can be determined from
the numerical Kronecker representation [P,Q,U] returned by Algorithm 2. This is achieved by
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following the steps of Algorithm 1 after it has determined the minimal critical points z(1), . . . , z(k).
Similarly, if all minimizers of |z1 · · · zn|−1 on the boundary of the boundary of convergence of F (z)
have the same coordinate-wise modulus and contain the critical points in E, then Proposition 56
implies that diagonal asymptotics can be determined from the output of Algorithm 2. Under
our assumptions, to show that all minimizers of |z1 · · · zn|−1 on the boundary of the domain of
convergence of F (z) have the same coordinate-wise modulus it is sufficient to prove that

Relog(D) \ amoeba(H) ⇢ @amoeba(H) ⇢ Rn

contains no line segment lying in a hyperplane normal to 1.

Furthermore, assuming that the boundary of amoeba(H) contains no such line segment (which
is a standing assumption of Pemantle and Wilson [204]), one can detect when minimal critical
points are finitely minimal. Bannwarth and Safey El Din [14] describe a probabilistic algorithm
which can determine when the real solution set of a polynomial A(z) of degree δ is finite in
Õ(n8δ3n−1) arithmetic operations over the rational numbers8. To verify that every critical point
of F (z) is finitely minimal it is sufficient9 to take A to be the sum of squares of the polynomials
appearing in Equations (8.4)–(8.8) after setting t = 1 and eliminating the variables λr and λI ,
giving a polynomial A of degree 2d in 4n variables. Thus, when every critical point of F (z) is
finitely minimal, this can be verified in Õ((2d)16n) arithmetic operations.

Without using Proposition 80 to take advantage of the homogeneous structure of the system
of equations (8.4) – (8.9), the bit complexity of Theorem 91 would contain a factor of D12 instead
of 23nD9.

Example 92. Section 3.1 of Adamczewski and Bell [1] shows that the algebraic function

A(z) = z
p
1− z = z − z2

2
− z3

8
− z4

16
− · · ·

is the diagonal of the rational function

F (w, z) =
G(w, z)

H(w, z)
=

wz(16w2z4 − 12w2z3 + 4w2z2 − w2z + 24wz2 − 16wz + 2w + 16)

8 + w(2z − 1)2
,

8This is achieved by running the algorithm HasEmptyInterior(A, i) of Bannwarth and Safey El Din [14] with
i = 1 to check if the projection of the real solution set of A to a generic one dimensional space has empty interior.
This generic projection is achieved by making a random invertible linear change of variables, which is where the
probabilistic nature of the result arises. Because we only care about determining when the set of real solutions is
zero dimensional, not what its dimension is, we can improve on the complexity stated in that article for the general
case. In particular, the proof of Theorem 7 in that paper gives the complexity of HasEmptyInterior for any input
i 2 {1, . . . , n}. When i = 1, the set of points L determined in Step 2 of their analysis can be taken to be any δn

points between each of the solutions of the univariate polynomial g = g1 which they construct in Step 1. Using
this improvement in the rest of their complexity analysis gives the complexity listed here.

9When V is smooth and amoeba(H) does not contain such a line segment on its boundary then D(z) \ V ⇢
T (z) \ V by the convexity of Relog(D).
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which is not combinatorial. It can be checked that V(H) is smooth, and that there is a single
critical point ρ = (−1/2,−2). In order to prove that ρ is minimal, we substitute (w, z) =
(x1 + iy1, x2 + iy2) and form the system

H(R)(x1, x2, y1, y2) = 4x1x
2
2 − 4x1y

2
2 − 8x2y1y2 − 4x1x2 + 4y1y2 + x1 + 8 = 0 (8.10)

H(I)(x1, x2, y1, y2) = 8x1x2y2 + 4x22y1 − 4y1y
2
2 − 4x1y2 − 4x2y1 + y1 = 0 (8.11)

x21 + y21 − 4t = 0 (8.12)

x22 + y22 − t/4 = 0, (8.13)

where we use the moduli of the coordinates of ρ directly, instead of encoding them with the
critical point equations, since they are rational (the system of equations (8.4) – (8.6) has only
one complex solution, corresponding to ρ). Our goal is to determine whether there exists a real
solution of these equations with t 2 (0, 1), but the fact that the system (with 4 equations in 5
variables) has an infinite number of complex solutions makes this difficult. By examining the
maximal minors of the Jacobian of this system at its solutions we can verify that the algebraic
set formed by these equations satisfies our required assumptions, so to determine minimality we
can add Equations (8.9), which in this example are

(−⌫x1 + y1)(4x
2
2 − 4y22 − 4x2 + 1)− (⌫y1 + x1)(−8x2y2 + 4y2) = 0 (8.14)

(−⌫x2 + y2)(8x1x2 − 8y1y2 − 4x1)− (⌫y2 + x2)(−8x1y2 − 8x2y1 + 4y1) = 0, (8.15)

and use Proposition 88. Computing a Gröbner Basis of the polynomials in Equations (8.10)–(8.15)
shows that this system has a finite number of complex solutions, and that at any solution

(t− 1)(t2 − t+ 16)(t3 − 2t2 − 15t− 16) = 0.

The solution t = 1 corresponds to ρ, and the only other real solution is an algebraic number of
degree 3, which is approximately 5.35. Thus, ρ is minimal.

There are several ways to show that the boundary of amoeba(H) doesn’t contain a line seg-
ment, and we exhibit a method which can be used on other bivariate systems (generalizations
also exist for higher dimensional cases). As discussed in Theobald [236, Theorem 5.1], every point
(w, z) 2 V which maps to the boundary of amoeba(H) satisfies

H(w, z) = 0, w(@H/@w)− λz(@H/@z) = 0

for some real λ. Solving this system for w and z in terms of λ gives a real parametrization of a set
containing the boundary of the amoeba. In this example, we have that any point in the amoeba
boundary lies in the set

n⇣

log 2 + 2 log |2λ− 1| − 2 log |λ|, − log 2− log |2λ− 1|
⌘

: λ 2 R
o

,
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which does not contain a line segment. Setting t = 1 in Equations (8.10)–(8.13), a Gröbner Basis
computation shows that this system has a finite number of complex solutions10, so ρ is finitely
minimal. Theorem 54 then implies

fk,k = − 1

2
p
⇡
k−3/2 − 15

16
p
⇡
k−5/2 +O

✓
1

k7/2

◆

,

which matches what one obtains from analyzing the univariate generating function A(z) =
z
p
1− z. The calculations for this example can be found in an accompanying Maple work-

sheet11. /

8.2 Algorithm Correctness and Complexity

We now prove the results of the previous section by building up a symbolic-numeric toolkit de-
scribing the algorithms we will require.

8.2.1 Univariate Polynomial Bounds

Lemma 93. For univariate polynomials P1, . . . , Pk, P,Q 2 Z[z],

h(P1 + · · ·+ Pk) 6 max
i

h(Pi) + log2 k,

h(P1 · · ·Pk) 6
kX

i=1

h(Pi) +
k−1X

i=1

log2(degPi + 1),

h(P ) 6 degP + h(PQ) + log2
p

deg(PQ) + 1.

The first two results follow directly from the definition of polynomial height, and the final
one—sometimes referred to as ‘Mignotte’s bound on factors’—follows from Theorem 4 in Chapter
4.4 of Mignotte [187].

Lemma 94 (Mignotte [187]). Let A 2 Z[z] be a polynomial of degree d > 2 and height h. If
A(↵) = 0 then

(i) if ↵ 6= 0, then 1/(2h + 1)  |↵|  2h + 1;

(ii) if A(β) = 0 and ↵ 6= β, then |↵− β| ≥ d−(d+2)/2kAk1−d
2 ;

(iii) if Q(↵) 6= 0 for Q 2 Z[T ], then |Q(↵)| ≥ ((degQ+ 1)2h(Q))−d+12−h degQ;

10Note that this argument can only work for bivariate systems, as in general one obtains 2n+2 equations in n+2
variables and must use the techniques from real algebraic geometry discussed above to prove finite minimality.

11Available at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
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(iv) if A is square-free then |A0(↵)| > d−2d+22−2dh+2h,

where kAk2 is the 2-norm of the vector of coefficients, bounded by 2h
p
d+ 1.

These results are found in Chapter 4 of Mignotte [187]. The upper bound of statement (i)
comes from Theorem 4.2(ii) of Chapter 4 (note that Theorem numbers reset between chapters),
and the lower bound is a consequence of applying the upper bound to the reciprocal polynomial
zdA(1/z). Statement (ii) comes from Theorem 4.6 of Chapter 4, while (iii) is given as Exercise
10 of Chapter 4 and (iv) is a special case of (iii).

A height bound on the greatest common divisor of two univariate polynomials is given by
Lemma 93, and the complexity of computing gcds is well known [116, Corollary 11.17].

Lemma 95. For P and Q in Z[U ] of height at most h and degree at most d, gcd(P,Q) has height
Õ(d+ h) and can be computed in Õ(d2 + hd) bit operations.

Similarly, a degree bound for the resultant of two polynomials follows from a direct expansion
of the determinant of the Sylvester matrix, and Lemma 93 combined with this expansion gives a
bound on the resultant height.

Lemma 96. For P and Q in Z[T,U ] let R = ResT (P,Q) and

δ := degT P degU Q+ degT Q degU P

⌘ := h(P ) degT Q+ h(Q) degT P + log2((degT P + degT Q)!) + log2(degU P + 1) degT Q

+ log2(degU Q+ 1) degT P.

Then degR 6 δ and h(R) 6 ⌘. Furthermore, if all coefficients of P and Q as polynomials in T
are monomials in U then h(R) 6 h(P ) degT Q+ h(Q) degT P + log2((degT P + degT Q)!).

8.2.2 Univariate Polynomial Algorithms

Our algorithms for computing a numerical Kronecker representation rely on the following results
for numerically evaluating and finding the roots of polynomials.

Lemma 97 (Sagraloff and Mehlhorn [224], Mehlhorn et al. [179]). Let A 2 Z[T ] be a square-free
polynomial of degree d and height h. Then for any positive integer 

• isolating disks of radius less than 2− can be computed for all roots of A(T ) in Õ(d3+d2h+d)
bit operations;

• isolating intervals of length less than 2− can be computed for all real roots of A(T ) in
Õ(d3 + d2h+ d) bit operations.
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The statement for real roots is Theorem 3 of Sagraloff and Mehlhorn [224], and an implemen-
tation is discussed in Kobel, Rouillier, and Sagraloff [155]. The second statement follows from
Theorem 5 of Mehlhorn, Sagraloff, and Wang [179].

Lemma 98 (Kobel and Sagraloff [156]). Let A 2 Z[T ] be a square-free polynomial of degree d and
height h, and t1, . . . , tm 2 C be a sequence of length m = O(d). Then for any positive integer ,
approximations a1, . . . , am 2 C such that |A(tj)− aj | < 2− for all 1 6 j 6 m can be computed in
Õ(d(h +  + d logmaxj |tj |)) bit operations, given Õ(h +  + d logmaxj |tj |) bits of t1, . . . , tm. If
all tj are real, the approximations aj are also real.

Lemma 98 follows from Theorem 10 of Kobel and Sagraloff [156] (the statement about real
roots follows from the proof given in Appendix B of that paper). These results immediately imply
the following.

Corollary 99. Given a square-free polynomial A 2 Z[T ] of degree d and height h, isolating regions
of the roots of A and a factor P 2 Z[T ] of A, selecting which roots of A are roots of P can be
achieved in Õ(d3 + d2h) bit operations.

Proof. Lemma 94 shows that regions of size 2−Õ(hd) are sufficient to separate the roots of A. By
Lemma 93, the height of P is at most degP + h+ log2

p
d+ 1 = Õ(d+ h), so Lemma 97 implies

that isolating regions for the roots of P of sufficient size can be computed in Õ(d3 + d2h) bit
operations.

8.2.3 Basic Algorithms for the Numerical Kronecker Representation

In this section and Section 8.2.4 we prove the existence of the algorithms detailed in Proposition 82.
To that end, let [P (u),Q] be a Kronecker representation in dimension n, of degree d and height
h.

Lemma 100. There exists an algorithm, EvaluateCoordinates, which takes [P (u),Q] and a nat-
ural number  and returns approximations to the solutions of the Kronecker representation with
isolating regions for each coordinate of size 2− in Õ(n(d3 + d2hn+ d)) bit operations.

Proof. Fix a coordinate zj and root v 2 C of P (u) = 0. Our aim is to evaluate zj = Qj(v)/P
0(v)

to an accuracy of 2−. Assume that we have approximations q and p to Qj(v) and P 0(v) such
that |Qj(v)− q| and |P 0(v)− p| are both less than 2−a for some natural number a. It follows that

∣
∣
∣
∣

Qj(v)

P 0(v)
− q

p

∣
∣
∣
∣
=

∣
∣
∣
∣

Qj(v)p− qp+ qp− qP 0(v)
P 0(v)p

∣
∣
∣
∣
6 2−a

✓
1

|P 0(v)| +
∣
∣
∣
∣

q

P 0(v)p

∣
∣
∣
∣

◆

.
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When a > (2d− 2) log2 d+ 2dhn− 2hn+ 1 = Õ(hdn) then the triangle inequality implies

|p| > |P 0(v)| − 2−a
> d−2d+22−2dhn+2hn−1 = 2−Õ(hdn)

|q| 6 |Qj(v)|+ 2−a
6 2h(1 + |v|+ · · ·+ |v|d) + 2−a

6 2h(d+ 1)(2h + 1)d + 2−a = 2Õ(hd),

where Lemma 94 gives a lower bound on |P 0(v)| and an upper bound on |v|. Thus,
∣
∣
∣
∣

Qj(v)

P 0(v)
− q

p

∣
∣
∣
∣
= 2−a+Õ(hdn).

To determine zj to precision  it is therefore sufficient to determine Qj(v) and P 0(v) to +Õ(hdn).
Lemmas 97 and 98 imply that this can be done at all roots of P in Õ(d3+d2hn+d) bit operations,
and doing this for each coordinate zj gives the stated complexity.

As u is a linear form with integer coefficients in the coordinates zj , and the polynomials in
the Kronecker representation have integer coefficients, a root of P (u) is real if and only if every
coordinate zj in the corresponding solution is real. This allows us to prove the following result.

Lemma 101. Let [P (u),Q,U] be a numerical Kronecker representation of degree d and height
h. There exists an algorithm, DetermineSign, which takes [P (u),Q,U] and determines for each
real solution to the underlying system whether each coordinate is positive, negative or exactly 0,
in Õ(n(d3 + d2h)) bit operations.

Proof. Fix a coordinate zj . The roots of P (u) that correspond to solutions with zj = 0 are exactly
those canceling the polynomial Gj(u) := gcd(P,Qj). By Lemma 95, Gj has height Õ(d+ h) and
can be computed in Õ(d2 + hd) bit operations. Corollary 99 then shows that the roots of P (u)
which also cancel Gj(u) can be determined in Õ(d3 + d2h) bit operations by computing isolating

regions of the roots of size 2−Õ(d2+hd). Lemma 94 shows that knowing approximations of Qj(u)

and P 0(u) within 2−Õ(h) allows one to determine their signs when they are real, and Lemma 98
shows that such approximations can be determined in Õ(hd2) bit operations knowing only Õ(hd)
bits of the solutions to P (u) = 0.

In order to detect when the coordinates of two solutions are exactly equal we must first
determine separation bounds on the coordinates. Thus, we give a result bounding the minimal
polynomials of the variables z1, . . . , zn at points specified by a Kronecker representation.

Lemma 102. Let f be a zero-dimensional polynomial system containing n polynomials of degree
at most d and heights at most h. For each coordinate zj there exists a polynomial Φj 2 Z[T ] of
degree at most D and height less than

(2 + nh+ (2n+ 3) log(n+ 1))D
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that vanishes exactly at the values taken by zj on the solutions of the system. Given a Kronecker
representation [P,Q] of the solutions of f , the polynomial Φj can be determined in Õ(hD3) bit
operations.

Proof. The bound on the height of Φj follows from arithmetic arguments concerned with affine
heights of algebraic sets; we do not define such concepts here, but refer the reader to Krick et
al [160] or Schost [226]. The polynomial system f defines an algebraic set V (f) of (algebraic set)
height12

h(V (f)) 6 (nh+ 2n log(n+ 1))D.

Lemma 2.6 of Krick et al. [160] then implies that the algebraic set obtained by projecting V (f)
onto the coordinate zj has height at most

h(V (f)) + 3 log(n+ 1)D 6 (nh+ (2n+ 3) log(n+ 1))D,

and any algebraic set of that height can be defined [226, Proposition 13] as the zero set of an
irreducible polynomial of height at most

(2 + nh+ (2n+ 3) log(n+ 1))D = Õ(hD).

The degree bound on Φj comes from the fact that it divides the resultant of the polynomials
P (u) and P 0(u)T − Qj(u) in the Kronecker representation, which is a polynomial of degree at
most D by Lemma 96. Finally, the arithmetic complexity [116, Corollary 11.21] of this bivariate
resultant is Õ(D2) and, as the resultant has coefficients of height Õ(hD), one can use modular
techniques13 to obtain a bit complexity of Õ(hD3).

The root separation bound in Lemma 94 then implies that to separate the coordinates of V (f)

it is sufficient to know each coordinate of each solution to precision 2−Õ(hD2), and Lemma 100
shows that all coordinates can be determined to this precision in Õ(hD3) bit operations.

Corollary 103. Given a numerical Kronecker representation [P (u),Q,U] corresponding to a
zero-dimensional system of n polynomials of degrees at most d and heights at most h, there exists
an algorithm, EqualCoordinates, which takes [P (u),Q,U] and determines which coordinates of its
solutions are equal in Õ(hD3) bit operations.

We now prove Proposition 83, which describes how to parametrize the values of a new poly-
nomial in terms of an existing Kronecker representation.

12See Krick et al. [160, Corollary 2.10] or Schost [226, Proposition 14].
13See the proof of Lemma 6 in Kobel and Sagraloff [156] for details on the modular algorithm (our complexity

is lower than the result stated there because our polynomials are linear with respect to T , and we have the bound
Õ(hD) on the height of our resultant, but the same proof holds).
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Proof of Proposition 83. (i) Adding the polynomial T −q to a polynomial system f gives a new
polynomial system f 0 with the same number of solutions as f , and any separating linear
form u for the solutions of f is a separating linear form for the solutions of f 0. Thus, the
degree of a Kronecker representation of f 0 is at most the degree of a Kronecker represen-
tation of f , which is bounded by Cn(d). Furthermore, one can construct a partition of
the variables z1, . . . , zn, T by partitioning z1, . . . , zn according to Z and taking T by itself.
Working through the bounds of Safey El Din and Schost [223, Proposition 12] using this
new partition of variables shows that the polynomials in any Kronecker representation of f 0

using the separating linear form u contains polynomials with the stated height bound, and
Proposition 80 shows that Qq can be determined in the stated complexity.

(ii) The minimal polynomial Φq divides the resultant of the polynomials P 0(u)−TQq and P (u),
so the stated height and degree bounds on Φq follow from Lemma 96.

8.2.4 Grouping Roots by Modulus

The most costly operation we will make use of is grouping roots with the same modulus. Unlike the
separation bound given in Lemma 94 between distinct complex roots of a polynomial, which has
order 2−Õ(hd), the best separation bound for the moduli of roots that we know of [125, Theorem 1]
has order 2−Õ(hd3), and computing the coordinates of a Kronecker representation to this accuracy
would be costly. Luckily, for the cases in which we need to group roots of a polynomial by modulus
it will always be the case that the modulus itself is a root of P . In this situation, we have a better
bound.

Lemma 104. For square-free A 2 Z[T ] of degree d ≥ 2 and height h let G(T ) be the Graeffe

polynomial G(T ) := A
⇣p

T
⌘

A
⇣

−
p
T
⌘

. If A(↵) = 0 and A(±|↵|) 6= 0, then

∣
∣G

(
|↵|2

)∣
∣ ≥ ((d2 + 1)22h)−d2+12−2d2(h+log2 d).

Proof. By Lemma 96, the resultant R(u) = ResT (A(T ), T dA(u/T )) has degree at most d2 and
height at most 2hd + log((2d)!) 6 2hd + 2d log d. This resultant vanishes at the products ↵β of
roots of A, and in particular at the square |↵|2 = ↵↵. The Graeffe polynomial has degree d and
height at most 2h+ log(d+ 1), so the conclusion follows directly from Lemma 94(iii).

Corollary 105. With the same notation as Lemma 104, given A(T ), the real positive roots 0 <
r1  · · ·  rk of A(T ) and all roots of modulus exactly r1, . . . , rk can be computed, with isolating
regions of size 2−Õ(hd2), in Õ(hd3) bit operations.
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Proof. Let b := (d2 − 1) log2(d
2 + 1) + 2h(d2 − 1) + 2d2(h+ log2 d) = Õ(hd2) and ↵ be a root of

A, so that Lemma 104 implies at least one of ±|↵| is a root of A if and only if
∣
∣G

(
|↵|2

)∣
∣ 6 2−b.

If we know an approximation a to ↵ such that |↵− a| < 2−(b+h+2), then |↵− a| < 2−(b+h+2) and

∣
∣|↵|2 − aa

∣
∣ = |↵↵− ↵a+ ↵a− aa| 6 |↵|2−b−h−2 + |↵|2−b−h−2 + 2−2b−2h−4

6 2−b,

as |↵| 6 2h +1 by Lemma 94. Lemma 98 implies that knowing |↵|2 to Õ(hd2) bits is sufficient to
compute G

(
|↵|2

)
to accuracy 2−b. Thus, knowing an approximation to ↵ of accuracy 2−Õ(hd2) is

sufficient to decide whether or not at least one of ±|↵| is a root of A, and to decide which real ↵
are positive. Furthermore, knowing |↵| and −|↵| to a precision higher than the root separation
bound of Lemma 94 allows one to decide when |↵| is a root of A. It is therefore sufficient to
compute the roots of A(T ) to precision 2−(b+h+2) in Õ(hd3) bit operations using Lemma 97, and
evaluate G(T ) at the squares of the moduli of the roots in Õ(hd3) bit operations.

In practice, one would first compute roots only at precision Õ(hd), in Õ(hd2) bit operations,
and then check whether any of the non-real roots has a modulus that could equal one of the
real positive roots in view of its isolating interval. Only those roots need to be refined to higher
precision before invoking Lemma 104.

Corollary 106. Given a numerical Kronecker representation [P (u),Q,U] corresponding to a
zero-dimensional system of n polynomials of degrees at most d and heights at most h, there exists
an algorithm, EqualModuli, which takes [P (u),Q,U] and determines the real solutions r1, . . . , rk
of the system and a list of the solutions with the same coordinate-wise moduli in the variables
z1, . . . , zn in Õ(hD4) bit operations.

Proof. By Lemma 102 the minimal polynomials Φ1, . . . ,Φn of the zj coordinates have degree at
most d, height Õ(hD), and can all be computed in Õ(hD3) bit operations. The result then follows
from Corollary 105.

8.2.5 Correctness and Complexity of the Main Algorithms

With the algorithms developed above, we are almost ready to prove Theorems 86 and 91. Before
justifying our algorithm in the combinatorial case, we need one final result.

Lemma 107. If F (z) is combinatorial, has a smooth singular variety, and admits a minimal point
w with non-negative coordinates which minimizes |z1 · · · zn|−1 on D then w is a critical point. If
F (z) is combinatorial, has a smooth singular variety, and admits two distinct minimal critical
points a and b with non-negative coordinates then F (z) admits an infinite number of minimal
critical points.
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Proof. Suppose w is a minimal point with non-negative coordinates which minimizes |z1 · · · zn|−1

on D. By Lemma 61, when F (z) is combinatorial w is a local extremum of the smooth map
h(z) = − log(z1 · · · zn) from the manifold V \ (R>0)

n ⇢ Rn to R, meaning w satisfies the smooth
critical point equations. Furthermore, as w is a smooth minimal critical point the hyperplane
with normal 1 containing the point Relog(w) is a support hyperplane [208, Proposition 3.12] to
the convex set Relog(D).

Thus, if a and b are two distinct minimal critical points with non-negative coordinates every
point on the line segment {rRelog(a)+(1−r)Relog(b) : r 2 [0, 1]} between Relog(a) and Relog(b)
is on @Relog(D) and is a minimum of the function x 7! −1 · x on Relog(D). This implies every
point w =

(
ar1b

1−r
1 , . . . , arnb

1−r
n

)
with r 2 [0, 1] is a minimizer of |z1 · · · zn|−1 on D, and thus a

minimal critical point of F (z).

Proof of Theorem 86. Under our assumptions, Proposition 58, Proposition 62, and Lemma 107
imply that the hypotheses of Proposition 56 are satisfied, meaning that Algorithm 1 correctly
outputs rational functions A(u), B(u), C(u) such that Equation (8.3) is satisfied. Note that the
matrix H̃ is obtained from the matrix H in Equation (6.12) by multiplying every element of H by
λ (to obtain a polynomial matrix), so the determinant of H is the determinant of H̃ divided by
λn−1.

Given polynomials H and G of degrees at most d and heights at most h, the Kronecker
representation [P,Q] in Algorithm 1 computed by partitioning the variables as Z = [(z), (t), (λ)]
contains polynomials of degrees in Õ(dD) and heights in Õ(hdD), and can be calculated in
Õ(hd3D3) bit operations using Proposition 80. Propositions 81 and 82, using the algorithms of
Section 8.2.3, show how to compute a numerical Kronecker representation [P,Q,V] of [P,Q],
determine the elements of this representation with the same values of the variables z1, . . . , zn, and
decide which have real and positive coordinates in Õ(hd3D3) bit operations.

For each solution of the numerical Kronecker representation, the root separation bounds in
Lemma 94 show that it is sufficient to know its value of t to precision 2−Õ(hd2D2) to determine
when it is strictly between 0 and 1, and this can be accomplished for every solution in Õ(hd3D3)
bit operations using Lemma 100. Once a minimal critical point is identified, all other points with
the same modulus can be identified in Õ(hd5D4) bit operations using14 Corollary 105. This is the
most computationally expensive step we perform.

The entries of the matrix H̃ are polynomials of degree at most d and heights at most h +
log2(d

2− d)+ 2, so a cofactor expansion shows that the entries of its determinant have degrees at
most nd and heights in Õ(d2hn). Proposition 83 then implies that the polynomial QH̃ has degree
in Õ(dD), height in Õ(hd3D), and can be determined in Õ(hd4D3) bit operations. By assumption
the polynomial G(z) has degree at most d and height at most h, and the polynomial T = z1 · · · zn

14The minimal polynomials Φj will have degrees in Õ(dD) and Lemma 102 implies that they will have heights
in Õ(hd2D).
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Equation Multi-degree ⌘

(8.4) (d, 0, 0, 0, 0, 0) h+ d log(2n+ 1)
(8.5) (d, 0, 1, 0, 0, 0) h log d+ d log(2n+ 1) + log 2
(8.6) (d, 0, 0, 1, 0, 0) h log d+ d log(2n+ 1) + log 2
(8.7) (0, d, 0, 0, 0, 0) h+ d log(2n+ 1)
(8.8) (2, 2, 0, 0, 1, 0) 4 log(2n+ 1) + log 2
(8.9) (0, d, 0, 0, 0, 1) h log d+ d log(2n+ 1) + log 2

Table 8.1: The multi-degrees and values of ⌘(fj) for Equations (8.4) – (8.9), under the partition
of variables Z.

has degree n and height 1. Thus, Proposition 83 also implies that the polynomials QT and Q−G

have degrees in Õ(dD), heights in Õ(hdD), and can be determined in Õ(hd2D3) bit operations.

With these degree and height bounds on the polynomials P (u), P 0(u), QH̃(u), QT (u), Qλ(u)
and Q−G(u), and the knowledge that QH̃, QT (u), and Qλ(u) are non-zero at the roots of P (u),
an argument analogous to the one presented in the proof of Lemma 100 shows that to determine

A(u) =
Q−G(u)

Qλ(u)n−1
, B(u) =

Qλ(u)

QH̃(u)
· P 0(u)2−n, C(u) =

P 0(u)
QT (u)

at all roots of P (u) = 0 to  bits of precision requires Õ(dD + hd3D3) bit operations (at least
 = Õ(hd2D2) bit of precision are needed to isolate the values of these polynomials).

The analysis for the general case is similar, except that the algebraic system under consid-
eration is more complicated due to the replacement of the smooth critical point equations with
Equations (8.4) – (8.9). As stated above, we partition the variables appearing in these equations
as

Z = [Z1, . . . ,Z6] = [(a,b), (x,y), (λR), (λI), (t), (⌫)] .

Bounds on the multi-degree of each polynomial in this system, together with the quantities ⌘(fj)
appearing in Equation (8.1), are given in Table 8.1. A tedious calculation15 shows that with the
degrees and values of ⌘(fj) given there one has

Cn(d) = 2n−1D3dn4, Hn(η,d) = Õ
(
2nD3d(h+ d)

)
2 Õ

(
hd22nD3

)
.

Proof of Theorem 91. Proposition 88 implies that Algorithm 2 correctly identifies all minimal
critical points. Furthermore, Proposition 80 implies that a Kronecker representation of Equa-
tions (8.4) – (8.9) can be determined in Õ

(
d322nD7

)
bit operations, and contains polynomials of

degrees at most 2n−1D3dn4 and heights in Õ
(
hd22nD3

)
.

15See the corresponding Maple worksheet on http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.

139

http://cs.uwaterloo.ca/~smelczer/ThesisCode.html


For each solution of the numerical Kronecker representation, the root separation bounds in
Lemma 94 show that it is sufficient to know its value of t to precision Õ

(
hd322nD6

)
bits to

determine when it is strictly between 0 and 1, and this can be accomplished for every solution in
Õ
(
hd423nD9

)
bit operations using Lemma 100. As the coordinates (a,b,λR,λI) satisfy the zero-

dimensional polynomial system defined by Equations (8.4) – (8.6), Lemma 102 implies that the
elements of the numerical Kronecker representation which define equal critical points z = a+ib can
be determined by finding the values of these coordinates at all solutions to precision 2−Õ(hD4).

8.3 Additional Examples

We now discuss a few additional examples highlighting the above techniques. The calculations
for these examples, together with a preliminary Maple implementation of our algorithms for
the combinatorial case and automated examples using that implementation, can be found in
accompanying Maple worksheets16. This preliminary implementation computes the Kronecker
representation through Gröbner bases computations, meaning it does not run in the complexity
stated above, and does not use certified numerical computations.

Example 108. Consider the second Apéry sequence (ck) from Example 40, using (for varieties
sake) the representation for the generating function C(z) as the diagonal of the combinatorial
rational function

1

1− x− y − z(1− x)(1− y)
=

1

1− x− y
· 1

1− z
· 1

1− xyz
(1−x−y)(1−z)

.

An argument analogous to the one in Example 87, detailed in the accompanying Maple worksheet,
shows that there are two critical points

ρ =

 

3−
p
5

2
,
3−
p
5

2
,
−1 +

p
5

2

!

and σ =

 

3 +
p
5

2
,
3 +
p
5

2
,
−1−

p
5

2

!

,

of which ρ is minimal. Ultimately, one obtains

ck =

✓
2(5− u)

11u− 30

◆k

· k−1 · (10− 2u)(2u− 5)

⇡(4u− 10)
p

10(5u− 14)(u− 5)

✓

1 +O

✓
1

k

◆◆

,

where u = 5 −
p
5 is a root of the polynomial P (u) = u2 − 7u + 12 which can be determined

explicitly as P is a quadratic, so

ck =

⇣
11
2 + 5

p
5

2

⌘k

k
·
p

250 + 110
p
5

20⇡

✓

1 +O

✓
1

k

◆◆

.

When combined with the BinomSums Maple package of Lairez17, our preliminary implementation
16The code for these examples is available at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
17Available at https://github.com/lairez/binomsums.
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of the results in this chapter allows one to automatically go from the specification

ck :=

kX

j=0

✓
k

j

◆2✓
k + j

j

◆

to asymptotics of ck, proving the main result of Hirschhorn [140].

By Proposition 62 there exists a singularity w 2 V and t 2 (0, 1) such that the modulus of
a coordinate of w is t times the modulus of the corresponding coordinate in σ. To determine
such a point, or to prove minimality of ρ when it is not known a priori that the rational function
under consideration is combinatorial, one can compute a Kronecker representation of the system
of equations (8.4)–(8.9). In this case we can find several points w, including one with algebraic
coordinates of degree 4 which is approximately (x, y, z) ⇡ (.535, .535,−0.331), when t ⇡ 0.194. /

Example 109. The rational function

F (x, y) =
1

(1− x− y)(20− x− 40y)− 1
,

has a smooth denominator and is combinatorial as it can be written

F (x, y) =
1

1− x− y
· 1

20− x− 4y − 1
1−x−y

.

A Kronecker representation of the system

H(x, y), x(@H/@x)− λ, y(@H/@y)− λ, H(tx, ty),

using the linear form u = x+y (which a Gröbner basis computation verifies separates the solutions
of the system) shows that the system has 8 solutions, of which 4 have t = 1 and correspond to
critical points. There are two critical points with positive coordinates:

(x1, y1) ⇡ (0.548, 0.309) and (x2, y2) ⇡ (9.997, 0.252).

Since x1 < x2 and y1 > y2, it is not immediately clear which (if any) should be a minimal critical
point. However, examining the full set of solutions, not just those where t = 1, shows there is
a point with approximate coordinates (0.092x2, 0.092y2) in V , so that x1 is the minimal critical
point. To three decimal places the diagonal asymptotics have the form

fk,k = (5.884 . . .)kk−1/2

✓

0.054 . . .+O

✓
1

k

◆◆

.

/
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8.4 Genericity Results

In this section we show that the assumptions required for the algorithms in Section 8.1 hold
generically. Given a collection of polynomials f1(z), . . . , fr(z) of degrees d1, . . . , dr, respectively,
we can write

fj(z) =
X

|i|6dj

cj,iz
i

for all j = 1, . . . , r, where |i| = i1 + · · · + in for indices i 2 Nn. Given a polynomial P in the set
of variables {uj,i : |i| 6 d, 1 6 j 6 r} we let P (f1, . . . , fr) denote the evaluation of P obtained by
setting the variable uj,i equal to the coefficient cj,i.

Our results on genericity will make use of multivariate resultants and discriminants, for which
we refer to Cox, Little, and O’Shea [80] and Jouanolou [146]. For all positive integers d0, . . . , dn the
resultant defines an explicit polynomial Res = Resd0,...,dn 2 Z[uj,i] such that n + 1 homogeneous
polynomials f0, . . . , fn 2 C[z0, . . . , zn] of degrees d0, . . . , dn share a non-zero solution in Cn if and
only if Res(f0, . . . , fn) = 0.

In order to prove that there are generically a finite number of critical points, we will make use
of the following result.

Lemma 110. Given polynomials f1, . . . , fn 2 C[z] of degrees d1, . . . , dn, let f1, . . . , fn be their
homogeneous parts of degrees d1, . . . , dn. Then Res(f1, . . . , fn) 6= 0 if and only if the only common
root of f1, . . . , fn is zero, and when these conditions hold the set of common roots of f1, . . . , fn is
finite.

The idea behind this lemma is that homogenizing the system of equations f1 = · · · = fn
yields a projective variety, and the condition Res(f1, . . . , fn) 6= 0 implies that this system has no
solutions “at infinity”. But then this projective variety is isomorphic to the affine variety defined
by f1 = · · · = fn, and the only way for this to occur is for the variety to be a finite set of points.
See Theorem 3.4 of Cox, Little, and O’Shea [80, Chapter 3] and the following discussion for more
information.

We now prove Propositions 85 and 89 on the genericity of our assumptions, and discuss
Conjecture 90

Assumptions in the Combinatorial Case

(A1) H and its partial derivatives do not simultaneously vanish Suppose H has degree
d and let

E(z0, z1, . . . , zn) = zd0H(z1/z0, . . . , zn/z0)

be the homogenization of H. As

@E/@zj = zd−1
0 (@H/@zj)(z1/z0, . . . , zn/z0)
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for j = 1, . . . , n, and Euler’s relationship for homogeneous polynomials states

d · E(z0, . . . , zn) =

nX

j=0

(@E/@zj)(z0, . . . , zn),

H and its partial derivatives vanish at some point (p1, . . . , pn) only if the system

@E/@z0 = · · · = @E/@zn = 0 (8.16)

admits the non-zero solution (1, p1, . . . , pn). Thus, assumption (A1) holds unless the multivariate
resultant Pd of the polynomials in Equation (8.16), which depends only on the degree d, is zero
when evaluated at the coefficients of H.

It remains to show that Pd is not identically zero for any d. If Hd(z) = 1− zd1 − · · · − zdn then
Equation (8.16) becomes

zd−1
0 = −zd−1

1 = · · · = −zd−1
n = 0,

which has only the zero solution. This implies the multivariate resultant Pd is non-zero when
evaluated at the coefficients of Hd, so it is a non-zero polynomial.

(A2) G(z) is generically non-zero at any minimal critical point We prove the stronger
statement that G(z) is generically non-zero at any critical point. Homogenizing the polynomials

H(z), G(z), z1(@H/@z1)− z2(@H/@z2), . . . , z1(@H/@z1)− zn(@H/@zn)

gives a system of n+ 1 homogeneous polynomials in n+ 1 variables18. Applying the multivariate
resultant to this system gives a polynomial Pd1,d2(G,H) in the coefficients of H and G, depending
only on the degrees d1 and d2 of G and H, which must be zero whenever G(z) vanishes at a
critical point.

It remains to show that Pd1,d2 is non-zero for all d1, d2 2 N⇤, which we do by showing it is
non-zero for an explicit family of polynomials of all degrees. If

G(z) = zd11 and H(z) = 1− zd21 − · · · − zd2n

then the system of homogeneous polynomial equations

ud2H
⇣

z1/u
d2 , . . . , zn/u

d2
⌘

= ud2 − zd21 − · · · − zd2n = 0

G = zd11 = 0

−d2zd21 − d2z
d2
j = 0, j = 2, . . . , n

has only the trivial solution (u, z1, . . . , zn) = 0. This implies the multivariate resultant Pd1,d2 is
non-zero when evaluated on the coefficients of the polynomials G and H given here, so P is a
non-zero polynomial.

18If G and H are already homogeneous this will result in a system of n+1 homogeneous polynomials containing
only n variables, but this does not happen generically (if it does one can simply take the system of critical point
equations without G and apply the multivariate resultant).
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(A3) Generically, all minimal critical points are nondegenerate We prove the stronger
statement that the matrix H in Equation (6.12) is generically non-singular at every critical point
(here we let ⇣j in Equation (6.12) be the variable zj , which will be eliminated from the critical
point equations). After multiplying every entry of H by λ = z1(@H/@z1), which is non-zero at any
minimal critical point, we obtain a polynomial matrix H̃ whose determinant vanishes if and only if
an explicit polynomial D in the variables z and the coefficients of H vanishes. After homogenizing
the system of n + 1 equations consisting of D = 0 and the critical point equations (6.6) we can
apply the multivariate resultant to determine an integer polynomial Pd in the coefficients of H,
depending only on the degree d of H, which must be zero at any degenerate critical point.

It remains to show that the polynomial Pd is non-zero for all d 2 N⇤. Fix a non-negative
integer d and consider the polynomial H(z) = 1 − zd1 − · · · − zdn. Calculating the quantities in
Equation (6.12), and substituting zdj = zd1 for each j = 2, . . . , n, shows that H̃ is the polynomial
matrix with entries of value a := −d2zd1 on its main diagonal and entries of value b := −2d2zd1 off
the main diagonal. Such a matrix has determinant

D = an−1(a+ (n− 1)b) = (−zd1d2)n(1− 2n)

so the only solution to the homogenized smooth critical point equations and D is the trivial zero
solution. This implies that the polynomial Pd is non-zero when given H, and thus it is a non-zero
polynomial.

(J1) The Jacobian of the smooth critical point equations is generically non-singular
at the critical points The Jacobian of the system

f := (H, z1(@H/@z1)− λ, . . . , zn(@H/@zn)− λ, H(tz1, . . . , tzn))

with respect to the variables z,λ, and t is a square matrix which is non-singular at its solutions
if and only if its determinant D(z, t) (which is independent of λ) is non-zero at its solutions.
Any solution of f has t 6= 0, so the existence of a solution to f = D = 0 gives the existence of
a non-zero solution to the system obtained by homogenizing the polynomials H, z1(@H/@z1) −
zj(@H/@zj), t

dH(z/t), and td−1D(z, 1/t), where d is the degree of H (note D has degree d− 1 in
t). The multivariate resultant of this system is an integer polynomial Pd, depending only on the
degree d of H, which must vanish if the Jacobian is singular at at least one of its solutions.

It remains to show that the polynomial Pd is non-zero for all d 2 N⇤. Fix a non-negative
integer d and consider the polynomial H(z) = 1− zd1 − · · · − zdn. The Jacobian of f is the matrix

J :=

0

B
B
B
B
B
@

−dzd−1
1 · · · −dzd−1

n 0 0

−d2zd−1
1 0 0 1 0

0
. . . 0

...
...

0 0 −d2zd−1
n 1 0

−dtdzd−1
1 · · · −dtdzd−1

n 0 −dtd−1(zd1 + · · ·+ zdn)

1

C
C
C
C
C
A

,
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and a short calculation shows D = det J = (z1 · · · znt)d−1(zd1 + · · ·+ zdn)(−d)n+1 ·detM, where M
is the (n+ 1)⇥ (n+ 1) matrix

M :=

0

B
B
B
@

1 · · · 1 0
d 0 0 1

0
. . . 0

...
0 · · · d 1

1

C
C
C
A

.

The matrix M is invertible, so detM is a non-zero constant. The system of homogeneous equations
under consideration thus simplifies to

ud − zd1 − · · · − zdn = −(zd1 − zdj ) = td − zd1 − · · · − zdn = (z1 · · · zn)d−1(zd1 + · · ·+ zdn) = 0,

which has only the trivial zero solution. This implies that the polynomial Pd is non-zero when
given H, and is thus a non-zero polynomial.

Assumptions in the General Case

The arguments in the general case are similar, except the systems are more unwieldy.

(A4) The system of equations (8.4)–(8.6) generically has a finite number of complex
solutions By Lemma 110, Equations (8.4)–(8.6) have a finite number of solutions unless the
multivariate resultant of the leading homogeneous terms of the polynomials in this system is zero.
This multivariate resultant Pd is an integer polynomial in the coefficients of H depending only on
the degree d of H.

It remains to show that Pd is a non-zero polynomial for all d 2 N⇤. Fix a non-negative integer
d and consider the polynomial H(z) = 1− zd1 − · · · − zdn. Then

H(R)(a,b) = 1−
X

l>0

✓
d

2l

◆

(−1)l
h

ad−2l
1 b2l1 + · · ·+ ad−2l

n b2ln

i

(8.17)

H(I)(a,b) = −
X

l>0

✓
d

2l + 1

◆

(−1)l
h

ad−2l−1
1 b2l+1

1 + · · ·+ ad−2l−1
n b2l+1

n

i

(8.18)

and

aj

⇣

@H(R)/@xj

⌘

(a,b) + bj

⇣

@H(R)/@yj

⌘

(a,b)− λR = −d
X

l>0

✓
d

2l

◆

(−1)lad−2l
j b2lj − λR (8.19)

aj

⇣

@H(I)/@xj

⌘

(a,b) + bj

⇣

@H(I)/@yj

⌘

(a,b)− λI = −d
X

l>0

✓
d

2l + 1

◆

(−1)lad−2l−1
j b2l+1

j − λI ,

(8.20)
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where the binomial coefficient
(
p
q

)
is zero when q > p. As

0

@
X

l>0

✓
d

2l

◆

(−1)lad−2l
j b2lj

1

A+ i

0

@
X

l>0

✓
d

2l + 1

◆

(−1)lad−2l−1
j b2l+1

j

1

A = (aj + ibj)
d

for all aj , bj 2 C, when the leading homogeneous terms of the polynomials in Equations (8.19)
and (8.20) are zero for all j = 1, . . . , n then

(a1 + ib1)
d = · · · = (an + ibn)

d = 0,

so that aj+ibj = 0. When the leading homogeneous terms of the right-hand side of Equation (8.19)
vanishes, substituting bj = iaj gives

0 = −d
X

l>0

✓
d

2l

◆

adj = −d2d−1adj .

Thus, the only solution of the leading homogeneous terms of the polynomials in Equations (8.4)–(8.6)
is the trivial zero solution. This implies that the polynomial Pd is non-zero when evaluated at the
coefficients of H, so it is a non-zero polynomial.

Assumptions (A5) and (J2) We now discuss work in progress on proving Conjecture 90. The
difficulty, compared to our other assumptions, is that Equation (8.8) reads

x2j + y2j − t(a2j + b2j ) = 0

for all j = 1, . . . , n, which is not “generic enough” for the multivariate resultant used above. In
particular, homogenizing these equations gives equations of the form

u(x2j + y2j )− t(a2j + b2j ) = 0

which have non-zero solutions (u, xj , yj , aj , bj , t) = (0, 0, 0, 0, 0, t) with t free.

Suppose we want to prove that assumption (J2) holds generically. Fix a dimension d and
let H(z) be a dense degree d polynomial whose coefficients are parametrized by the variables ci.
We can consider the polynomials in Equations (8.4)–(8.9), together with the determinant of the
Jacobian matrix of this system, as polynomials in both the ci and a,b,x,y,λR,λI , t, ⌫. Let Z
be the projection of the algebraic set defined by these equations onto the coefficient variables ci.
To prove that (J2) holds generically, we want to show that the Zariski closure Z of Z is a proper
subset of Cmd , where md is the number of monomials in C[z] of degree at most d.

Consider again the polynomial H(z) = 1− zd1 − · · · − zdn. Let R(p, q) and I(p, q) to be the real
and imaginary parts of the expression (p+ iq)d−1 when p and q are treated as real variables. For
j = 1, . . . , n we define

Rj := R(aj , bj), Ij := I(aj , bj), R0
j := R(xj , yj), I 0j := I(xj , yj).
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For this choice of H, basic computations show that equations (8.4)–(8.9) become

1−
nX

j=1

(ajRj − bjIj) = −
nX

j=1

(ajIj + bjRj) = 0 (8.21)

−d(ajRj − bjIj)− λR = −d(ajIj + bjRj)− λI = 0 (8.22)

1−
nX

j=1

(
xjR

0
j − yjI 0j

)
= −

nX

j=1

(
xjI

0
j + yjR

0
j

)
= 0 (8.23)

x2j + y2j − t(a2j + b2j ) = 0 (8.24)

⌫
(
xjR

0
j − yjI 0j

)
−
(
yjR

0
j + xjI

0
j

)
= 0, (8.25)

and straightforward algebraic manipulations show that the Jacobian matrix of Equations (8.21)–(8.25)
has non-zero determinant at all solutions of the system.

Thus, for every natural number d the point in Cmd corresponding to the coefficients of our
choice of H does not lie in the projection Z. Unfortunately, it is not clear whether or not it lies in
the Zariski closure Z. For previous assumptions, to prove that Z was proper it was sufficient to
exhibit for each degree a polynomial such that the systems under consideration had no solutions
in projective space after they were homogenized. Although justified above by the multivariate
resultant, this is related to the fact that a projective variety is a proper variety (so the image
of a projection onto the coordinate variables, after homogenizing and considering solutions in
projective space, is an algebraic variety).

For the polynomial systems we now consider, this is not possible, so we must search for different
ways of “homogenizing” Equations (8.21)–(8.25) and look for solutions over products of projective
varieties. This is ongoing work. Computationally, this is related to a more nuanced version of the
multivariate resultant known as the mixed sparse resultant, which is also discussed in Cox, Little,
and O’Shea [80, Chapter 6].
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Part III

Non-Smooth Analytic Combinatorics in

Several Variables and Applications to

Lattice Paths
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Chapter 9

The Theory of Analytic Combinatorics

in Several Variables for Multiple Points

But whatever happens to you, you have to keep a
slightly comic attitude. In the final analysis, you have
got not to forget to laugh.

Katharine Hepburn

We now return to the theory of analytic combinatorics in several variables, detailing a larger
class of functions for which diagonal asymptotics can be determined. In particular, we relax
our previous assumption that the singular variety V of the rational function F (z) = G(z)/H(z)
is a manifold (near its minimal critical points). For any collection of complex valued functions
P1(z), . . . , Pr(z), let V(P1, . . . , Pr) ⇢ Cn denote their common set of complex solutions.

We begin, as in Chapter 6, with an extended example which will illustrate how the general
theory proceeds.

9.1 A Non-Smooth Rational Diagonal

Consider the rational function

F (x, y, z) =
1

(1− 3x− y − z)(1− x− 3y − z)
.

If we define

H1(x, y, z) = 1− 3x− y − z and H2(x, y, z) = 1− x− 3y − z
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then the singular variety V = V(H) is the union V = V(H1) [ V(H2). The points in the con-
structible1 sets

V1 := V(H1) \ V(H2) and V2 := V(H2) \ V(H1)

are those where the singular variety is smooth2, while the points in the algebraic set

V1,2 = V(H1, H2)

are the singular points of V . Since the Jacobian matrix
✓
rH1

rH2

◆

=

✓
−3 −1 −1
−1 −3 −1

◆

is not rank deficient at any point in V1,2, the set V1,2 forms a complex manifold and we have
partitioned V = V1 [ V2 [ V1,2 into a disjoint union of (constructible) complex manifolds.

Step 1: Determine Minimal Critical Points

Regardless of the geometry of V , the Cauchy integral representation

fk,k,k =
1

(2⇡i)3

Z

T (p,q,r)
F (x, y, z)

dx dy dz

xk+1yk+1zk+1

for (p, q, r) in the domain of convergence D implies that any minimal point (a, b, c) 2 V \@D gives
an upper bound ⇢ 6 |abc|−1 on the exponential growth ⇢ of the diagonal sequence. Thus, as in the
smooth case, we search for local extrema of the function g(x, y, z) = |xyz|−1 on V⇤ = V \ (C⇤)n,
after which we will determine whether any are minimal points. If (a, b, c) 2 V1 is a local minimizer
of g, then it must satisfy the smooth critical point equations

H1(a, b, c) = 0, x(@H1/@x) = y(@H1/@y) = z(@H1/@z),

since it would be a critical point of the restricted map φ|V1 : V1 ! C, where we recall that
φ(x, y, z) = xyz. Here we obtain one solution, σ1 = (1/9, 1/3, 1/3), but it is not minimal as each
coordinate of ✓

1

13
,
3

13
,
3

13

◆

2 V2 ⇢ V

1A constructible set is one of the form [m
i=1(Wi \ Zi), where each Wi and Zi are algebraic varieties and m is a

natural number.
2The singular variety V is locally smooth at points of V1 and V2 as these sets are planes with a line removed.

Smoothness of the points is also verified by the fact that H1 and its partial derivatives don’t simultaneously vanish,
and the same holds for H2 and its partial derivatives.
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has smaller modulus than the corresponding coordinate of σ1. Similarly, V2 contains a single
smooth critical point σ2 = (1/3, 1/9, 1/3) but it is not minimal as

✓
3

13
,
1

13
,
3

13

◆

2 V1 ⇢ V .

Thus, any local minimizer of |xyz|−1 on V⇤ \D must be an element of V1,2. Since V1,2 can be
parametrized as

V1,2 =
⇢✓

1− z

4
,
1− z

4
, z

◆

: z 2 C

}

,

one can examine the function |xyz|−1 = |z(1 − z)2/16|−1 and directly determine that the only
local minimizer occurs at the point

w =

✓
1

6
,
1

6
,
1

3

◆

,

when z = 1/3. Since V1,2 is the intersection of the two hyperplanes V(H1) and V(H2), every point
of V1,2 is minimal.

Alternatively, since V1,2 is itself a complex manifold we can examine the critical points of the
restricted map φ|V1,2 : V1,2 ! C. Analogously to the smooth case, this set of points contains all
local extrema of |xyz|−1 on V1,2. As V1,2 is defined by the vanishing of the irreducible polynomials
H1 and H2, the critical points of φ are precisely the points of V1,2 where the matrix

M =

0

@

rH1

rH2

rφ

1

A =

0

@

−3 −1 −1
−1 −3 −1
yz xz yz

1

A

is rank deficient3. This occurs when det(M) = 8xy − 2xz − 2yz vanishes, and solving the system
H1 = H2 = det(M) = 0 gives the point w.

Not only is w minimal, it is strictly minimal. If H1(x, y, z) = 0 and (x, y, z) 2 D(w), then

1/3 > |z| = |1− 3x− y| > 1− |3x+ y|,

while |x|, |y| 6 1/6. Since |3x + y| > 2/3, the complex triangle inequality implies that x and y
have the same argument, and the condition 1/3 > |1− 3x− y| forces (x, y) = (1/6, 1/6). Solving
H1(1/6, 1/6, z) = 0 then gives (x, y, z) = ρ. A similar argument applies to points satisfying
H1(x, y, z) = 0 and (x, y, z) 2 D(w), proving strict minimality. As already seen in the smooth
case, the triangle inequality is a useful tool for minimality arguments.

3A critical point of φ|V1,2 is a point where its differential is zero. As V1,2 is defined by H1 = H2 = 0, this is
equivalent to the gradient rφ being in the span of the gradients rH1 and rH2. Since rH1 and rH2 are linearly
independent, this occurs if and only if M is rank deficient.
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Step 2: Compute a Residue

We have found the strictly minimal point w giving an upper bound of 62 · 3 = 108 on the
exponential growth. Next we attempt to asymptotically approximate the sequence (fk,k,k)k>0

by an integral whose domain lies near w. For a sufficiently small neighbourhood N ⇢ {|x| =
1/6, |y| = 1/6} of (1/6, 1/6) and sufficiently small ✏ > 0, the integral

χ :=
−1

(2⇡i)3

Z

N

 
Z

|z|=1/3+✏
F (z) · dz

zk+1
−
Z

|z|=1/3−✏
F (z) · dz

zk+1

!

dx dy

xk+1yk+1
(9.1)

exists as its integrand is bounded and analytic. Arguing analogously to the smooth case presented
in Chapter 6, it can be shown that for N and ✏ small enough

|fk,k,k − χ| = O
⇣

δk
⌘

, (9.2)

for some δ 2 [0, 108). Furthermore, if N is sufficiently small then for each (x, y) 2 N there exist
two poles of F (x, y, z), when z = 1− 3x− y and when z = 1− x− 3y. If x 6= y, one can compute
the residues

Res

 

z−(k+1)

(1− 3x− y − z)(1− x− 3y − z)
; z = 1− 3x− y

!

=
−(1− 3x− y)−(k+1)

2(x− y)

Res

 

z−(k+1)

(1− 3x− y − z)(1− x− 3y − z)
; z = 1− x− 3y

!

=
(1− x− 3y)−(k+1)

2(x− y)
,

so that Cauchy’s residue theorem applied to the inner difference of integrals in Equation (9.1)
gives

χ =
1

(2⇡i)2

Z

N

 

(1− 3x− y)−(k+1)

2(x− y)
− (1− x− 3y)−(k+1)

2(x− y)

!

dx dy

xk+1yk+1
. (9.3)

Although the integrand of this expression appears to be undefined when x = y, which occurs for
points in any neighbourhood of (1/6, 1/6), the integral is well defined as

(1− 3x− y)−(k+1)

2(x− y)
− (1− x− 3y)−(k+1)

2(x− y)
=

kX

j=0

(1− x− 3y)−j−1(1− 3x− y)j−k−1.

Even if one could not compute such a representation of the integrand, the integral in Equation (9.3)
must be bounded for all k because of the relationship in Equation (9.2).

Our aim is to convert the expression in Equation (9.3) into a finite sum of Fourier-Laplace
integrals which can be asymptotically approximated as k ! 1. Note that we cannot simply
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distribute the integral expression in Equation (9.3) over the two summands of the integrand, as
the integrals

Z

N

(1− x− 3y)−(k+1)

x− y
dx dy

xk+1yk+1
and

Z

N

(1− 3x− y)−(k+1)

x− y
dx dy

xk+1yk+1

are not well defined for any neighbourhood N of (1/6, 1/6). Thus, following the work of Pemantle
and Wilson [207], we take a less direct approach.

Step 3: Introduce a New Variable and Obtain a Fourier-Laplace Integral

Suppose x and y are fixed such that x 6= y and (1−x−3y)(1−3x−y) 6= 0. A direct computation
verifies4 that

(1− x− 3y)−(k+1)

2(x− y)
− (1− 3x− y)−(k+1)

2(x− y)
=

k + 1

(1− x− 3y)(1− 3x− y)

Z 1

0

✓
t

1− 3x− y
+

1− t

1− x− 3y

◆k

dt,

for all natural numbers k, and substitution into Equation (9.3) yields

χ =
k + 1

(2⇡i)2

Z

N⇥[0,1]

1

(1− 3x− y)(1− x− 3y)

✓
t

1− 3x− y
+

1− t

1− x− 3y

◆k dx dy dt

xk+1yk+1
.

Making the substitutions x = (1/6)ei✓1 , y = (1/6)ei✓2 , and ⌧ = t− 1/2 then gives

χ = 108k · k + 1

(2⇡)2

Z

N 0⇥[−1/2,1/2]
A(✓1, ✓2)e

−kφ(✓1,✓2,τ)d✓1 d✓2 d⌧, (9.4)

where

φ(✓1, ✓2, ⌧) = i(✓1 + ✓2)− log


1

3

✓
1/2 + ⌧

1− eiθ1/2− eiθ2/6
+

1/2− ⌧
1− eiθ1/6− eiθ2/2

◆]

A(✓1, ✓2) =
1

(1− eiθ1/2− eiθ2/6) (1− eiθ1/6− eiθ2/2)
.

The domain of integration N 0 can be taken to be any sufficiently small neighbourhood of the
origin without affecting the asymptotic statement in Equation (9.2).

Step 4: Determine Asymptotics

The final step is to use the Fourier-Laplace expression in Equation (9.4) to determine asymptotics
of the diagonal sequence. Note that for N 0 sufficiently small

4This integral representation is a special case of DeVore and Lorentz [91, Equation 7.12].
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• φ(0, 0, 0) = 0 and (rφ)(0, 0, 0) = (0, 0, 0);

• the origin is the only point of N 0 ⇥ [−1/2, 1/2] where rφ is 0;

• the Hessian matrix

H =

0

@

5/2 1/2 −i
1/2 5/2 i
−i i 0

1

A

of φ at the origin is non-singular (it has determinant 6);

• the real part of φ(θ) is non-negative on N 0 ⇥ [−1/2, 1/2].

These conditions imply that Proposition 53 can be used to determine asymptotics of χ from
Equation (9.4). Computing second order asymptotics in such a manner, combined with the
relationship between the diagonal and χ in Equation (9.2), gives

fk,k,k = 108k · k−1/2 ·
 

3
p
3

2
p
⇡
− 19

p
3

48
p
⇡k

+O

✓
1

k2

◆!

.

We now show that much of this analysis can be applied to a large class of rational functions,
generalizing the results in Chapter 6 on rational functions with smooth minimal critical points.

9.2 The Transverse Multiple Point Case

Let F (z) = G(z)/H(z) be any rational function which is analytic at the origin, and V be its
singular variety. Given a point w 2 V , we say that w is a multiple point of V if any sufficiently
small neighbourhood of w in V can be written as the union of a finite collection of manifolds
V1, . . . ,Vr, each containing w. We call w 2 V a transverse multiple point if it is a multiple point
and the tangent planes of V1, . . . ,Vr at w are linearly independent (equivalently, the normals to
these tangent planes are linearly independent). A collection of manifolds V1, . . . ,Vr is said to
intersect transversely at a point w 2 V1 \ · · · \Vr if the tangent planes of the Vj at w are linearly
independent.

When w is a transverse multiple point and each Vi is a hypersurface, the intersection V1\· · ·\Vr
defines a manifold of complex dimension n− r in a neighbourhood of w, as in the above example.
Any point where V is locally smooth is, by definition, a transverse multiple point.

Multiple points often arise when the denominator H(z) factors in C[z], but also appear when
H(z) factors locally at points of the singular variety. The next result follows from the Weierstrass
preparation theorem5.

5A clear presentation of the results on complex analytic geometry which we use can be found in Chapter 2 of
Ebeling [95].
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Proposition 111 (Pemantle and Wilson [204, Proposition 10.1.9]). Suppose w 2 V and let Ow

denote the ring of germs of analytic functions at w (which is isomorphic to the ring of convergent
power series centered at w). Then w is a multiple point if and only if H factors in Ow as

H = U ·Hm1
1 · · ·Hmr

r , U,Hj 2 Ow, Hj(w) = 0, U(w) 6= 0, (9.5)

where each mj is a positive integer, the Hj are distinct, and the gradients of the Hj are non-zero
at z = w. Furthermore, w is a transverse multiple point whenever the gradients of the Hj are
linearly independent at z = w.

The zero sets V(H1), . . . ,V(Hr) restricted to sufficiently small neighbourhoods of w give the
manifolds V1, . . . ,Vr in the definition of a multiple point. We call the factorization in Equa-
tion (9.5) a square-free factorization of H in Ow and when m1 = · · · = mr = 1 we say that H is
square-free at w.

Example 112. Suppose H(z) has the square-free factorization H(z) = H1(z)
m1 · · ·Hr(z)

mr over
C[z] (so that the Hj are distinct and square-free polynomials and the mj are positive integers).
Further assume that

(i) for each j = 1, . . . , r, the polynomial Hj and its partial derivatives do not simultaneously
vanish (i.e., V(Hj) is a manifold),

(ii) if w 2 V(Hi1 , . . . , Hip) then the vectors (rHi1)(w), . . . , (rHip)(w) are linearly independent.

Then every point in the singular variety is a transverse multiple point. If only condition (i)
holds then every point in the singular variety is a multiple point, but some are not transverse
multiple points. If Hi1 , . . . , Hiq are the irreducible factors of H which vanish at w 2 V then the
factorization

H =

0

@
Y

j /2{i1,...,iq}
Hj(z)

mj

1

A

| {z }

U

H
mi1
i1
· · ·Hmiq

iq

gives a square-free factorization of H in Ow. /

Example 113 (Lemniscate of Bernoulli). The real solutions of the bivariate polynomial

H(x, y) = (x2 + y2)2 − (x2 − y2)

define the lemniscate of Bernoulli6, pictured in Figure 9.1. Solving the system of equations

H = (@H/@x) = (@H/@y) = 0

6An article published by Jacob Bernoulli in 1694 studied a family of curves which includes this lemniscate.
Bernoulli’s interest was in using the arc length of such curves to compute certain integrals [199, Section 7.5].

155



Figure 9.1: The curve defined by the real solutions of (x2 + y2)2 − (x2 − y2) = 0.

shows that the origin is a singularity of V = V(H), and that it is the only singularity. Solving
H(x, y) = 0 for y while x is in a neighbourhood of the origin gives four solutions y1(x), . . . , y4(x)
with power series expansions

y1(x) = x− 2x3 + 6x5 +O(x6) y2(x) = −x+ 2x3 − 6x5 +O(x6)

y3(x) = i+ (3i/2)x2 − (25i/8)x4 +O(x6) y4(x) = −i− (3i/2)x2 + (25i/8)x4 +O(x6).

Since only two of these solutions have y in a neighbourhood of the origin when x is in a neigh-
bourhood of the origin, there exists an open ball O ⇢ C2 around the origin and ✏ > 0 such
that

V \O = {(x, y1(x)) : |x| 6 ✏}
| {z }

V1

[ {(x, y2(x)) : |x| 6 ✏}
| {z }

V2

.

Thus, the origin is a multiple point and, as y01(0) = 1 while y02(0) = −1, it is a transverse multiple
point7. Asymptotics for a curve whose real zeroes form a similar “figure eight” shape are derived
in Example 10.3.9 of Pemantle and Wilson [204]. /

Example 114 (NE, NW, S Lattice Paths in a Quadrant). Consider the two dimensional lattice
path model in the quarter plane defined by the step set S = {(−1, 1), (1, 1), (0,−1)}. Theorem 35
implies that the generating function for the number of walks beginning at the origin and ending
anywhere is the diagonal of the rational function

F (x, y, t) :=
(1 + x)(1− xy2 + x2)

(1 + x2)(1− y)(1− t(1 + x2 + xy2))
.

The denominator H(x, y, t) of F (x, y, t) can be factored as H = H1 ·H2 ·H3, with

H1 = 1− t(1 + x2 + xy2), H2 = 1− y, H3 = 1 + x2.

7The tangent planes to V1 and V2 have normals (1, 1) and (1,−1), which are linear independent.
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The singular variety V is the union of the varieties V(H1), V(H2), and V(H3) which intersect
transversely since the gradients rH1,rH2, and rH3 are all linearly independent (note @H1/@t =
1 + x2 + xy2 6= 0 when H1 = 0). /

This lattice path model will serve as a running example in this section. We now show how
to determine (in many cases) diagonal asymptotics when V admits minimal critical points which
are transverse multiple points. Much of the analysis in the early steps applies to any singular
variety, not just those with multiple point singularities, so we do not make any assumptions on
the geometry of V unless explicitly stated.

Step 1: Stratify the Singular Variety

As always, the Cauchy integral formula implies that every minimal point w 2 V \ @D gives an
upper bound of |w1 · · ·wn|−1 on the exponential growth of the diagonal coefficient sequence of
F (z). In order to determine which minimal points could give a tight upper bound on exponential
growth, we will relax our definition of critical points. The overall strategy will be to decompose
the singular variety into a collection of manifolds and then compute critical points for the map
φ(z) = z1 · · · zn restricted to each of the manifolds.

First, we note that it is effective to partition a given algebraic variety V(H1, . . . , Hr) into
complex manifolds which are constructible sets. By the Jacobian Criterion [96, Corollary 16.20]
for algebraic varieties, given a prime ideal P = (f1, . . . , fs) of dimension n−c its set of singularities
is an algebraic set defined by the vanishing of all c⇥c minors of the Jacobian matrix Jac(f1, . . . , fs).
The set of singularities of any ideal can then be determined by

(i) computing a prime decomposition of the ideal,

(ii) computing the singularities of each prime appearing in the decomposition,

(iii) determining the points where the prime components intersect.

To partition the variety V(H1, . . . , Hr) into complex manifolds one determines the ideal J cor-
responding to its singular points, takes V(H1, . . . , Hr) \ J to be one element in the partition,
and then repeats this process with J . Algorithms PRIMDEC and DIMENSION of Becker and
Weispfenning [18, pages 396 and 449] describe how to compute prime decompositions and di-
mensions of ideals, and an implementation of these algorithms is given in the PolynomialIdeals
package of Maple.

When dealing with singular varieties having transverse multiple points this decomposition
often allows for an asymptotic analysis (in a manner made precise below). In general, however, the
results of Pemantle and Wilson require the singular variety to be partitioned into smooth manifolds
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which define a Whitney stratification8. Such a stratification imposes additional restrictions on
how the tangent planes of each smooth manifold ‘fit together’, in order to allow for necessary
integral computations to be performed (see Appendix C of Pemantle and Wilson [204] for a full
definition and discussion). It was shown by Whitney [241, Theorem 18.11] that every (real or
complex) algebraic variety admits a Whitney stratification. Rannou [217, Theorem 12] sketched
an algorithm for computing Whitney stratifications of (real or complex) algebraic varieties using
quantifier elimination algorithms, but to the best of our knowledge no such algorithm has been
implemented.

Example 114 (Continued from page 156). For indices i1, . . . , ip let

Vi1,...,ip := V(Hi1 , . . . , Hip) \
[

j /2{i1,...,ip}
V(Hj).

Then for this lattice path example, the decomposition of V into the sets V1,V2,V3,V1,2,V1,3,V2,3,
and V1,2,3 is a partition of V into complex manifolds (which is also a Whitney stratification). /

Step 2: Determine Minimal Critical Points

Pemantle and Wilson [204, Section 8.3] show that any singular variety V admits a Whitney
stratification whose elements, called strata, are algebraic sets (possibly) minus an algebraic set of
lower dimension. Furthermore, they show that if S is a stratum of dimension n − r then there
exist irreducible polynomials f1, . . . , fr such that S equals V(f1, . . . , fr) minus an algebraic set of
lower dimension and the sets V(f1), . . . ,V(fr) intersect transversely.

For a complex differentiable function f(z), define the logarithmic gradient to be

rlogf := (z1(@f/@z1), . . . , zn(@f/@zn)) .

Since we search for minimizers of |z1 · · · zn|−1, it is sufficient to consider the subset S⇤ of S
consisting of points with non-zero coordinates. The argument which gave Lemma 50 in the smooth
case shows that any local minimizer of |z1 · · · zn|−1 on S⇤ is a critical point of the restricted function
φ|S⇤ : S⇤ ! C, where φ(z) = z1 · · · zn. The following proposition characterizes the critical points
of φ|S⇤ .

Proposition 115 (Pemantle and Wilson [204, Section 8.3]). Given S and f1, . . . , fr as above,
define the (r + 1)⇥ n matrix

M :=

0

B
B
B
@

rlogf1
...

rlogfr
1

1

C
C
C
A

.

8Pemantle and Wilson make use of techniques similar to those from the study of stratified Morse theory, which
require Whitney stratifications (see Goresky and MacPherson [124]).
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When r < n then w 2 S⇤ is a critical point of φ|S⇤ if and only if it satisfies

fj(w) = 0, j = 1, . . . , r

det(N)(w) = 0, N is a maximal minor of M.
(9.6)

When r = n then S⇤ contains a finite set of points, all of which are critical points.

Proof. The critical points of the polynomial map φ are those where the differential of φ|S⇤ is zero.
Since S is defined by the points where f1 = · · · = fr = 0, and the gradients rfj are linearly
independent, the differential of φ|S⇤ is zero if and only if the matrix

0

B
B
B
@

rf1
...
rfr

r(z1 · · · zn)

1

C
C
C
A

has rank r. This implies any point in S⇤ is a critical point when r = n.

Multiplying the jth column of this matrix by zj and dividing the final row by z1 · · · zn gives
the matrix M and does not change its rank as each variable is non-zero on S⇤. When r < n then
M has rank r if and only if all (r + 1)⇥ (r + 1) minors simultaneously vanish.

Thus, each stratum S defines a system of critical point equations (9.6). Any point w 2 V⇤
lies in some stratum S, and we call w a critical point if it satisfies the critical point equations
corresponding to S (or, equivalently, if it lies in S and is a critical point of φ|S⇤). The smooth points
of V lie in a stratum defined by the vanishing of the denominator H(z), where the equations (9.6)
become the smooth critical points equations (6.6).

Example 114 (Continued from page 158). The polynomials H2 = 1 − y and H3 = 1 + x2 are
independent of the variable t, meaning the strata V2,V3, and V2,3 cannot contain any critical
points (this can be verified by constructing the matrix M in Proposition 115). To determine
critical points:

• on the stratum V1 we solve the smooth critical point equations

H1 = 0, x(@H1/@x) = y(@H1/@y) = t(@H1/@t)

subject to the condition (1 + x2)(1 − y) 6= 0, giving 4 smooth critical points
(
!2,!

p
2, 14

)

where ! 2 {±1,±i}. None of these critical points are minimal, as they have y-coordinate
of modulus

p
2 and the denominator of F (x, y, t) contains H2 = 1− y as a factor.
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• on the stratum V1,3 we compute the matrix

M =

0

@

−tx(y2 + 2x) −2txy2 −t(1 + x2 + xy2)
2x 0 0
1 1 1

1

A

from Proposition 115 and solve H1 = H3 = detM = 0. This system of polynomial equations
has no solutions, so V1,3 contains no critical points.

• on the stratum V1,2 we compute the matrix

M =

0

@

−tx(y2 + 2x) −2txy2 −t(1 + x2 + xy2)
0 −y 0
1 1 1

1

A

from Proposition 115 and solve H1 = H2 = detM = 0. This gives two critical points
ρ = (1, 1, 1/3) and (−1, 1, 1), of which the second is not minimal (since its final coordinate
has larger modulus than the final coordinate of ρ).

• on V1,2,3 we note that the two points (i, i,−i) and (−i,−i, i) on this stratum are critical
points, but they are not minimal.

As H2 and H3 contain only points where |x| = 1 or |y| = 1, any point (x, y, t) 2 V with |x| < 1
or |y| < 1 must lie in V(H1). But at any point on V1, t = 1

1+x2+xy2
, and if |x|, |y| 6 1 and one of

the inequalities is strict then |t| > 1/3. Thus, ρ is a minimal point.

Note that ρ is not finitely minimal, as all points
(
ei✓1 , 1, ei✓2/3

)
for ✓1, ✓2 2 (−⇡,⇡) lie in

T (ρ) \ V . However, ρ is the only critical point in T (ρ) and we will see that this is sufficient to
determine asymptotics. /

We are now able to characterize minimal critical points for any rational function F (z), but in
order to calculate asymptotics we will further restrict the types of singularities we consider. A
minimal point w 2 V is convenient if

• w is a transverse multiple point, so that H(z) has a square-free factorization

H = U ·Hm1
1 · · ·Hmr

r

in Ow;

• there exists an index i such that (@Hj/@zi)(w) 6= 0 for all j = 1, . . . , r (note that i is
independent of j);
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• there exist positive constants s1, . . . , sr such that

1 = s1γ1 + · · ·+ srγr,

where γj is the vector

γj =
(rlogHj)(w)

wi(@Hj/@zi)(w)
.

The final condition implies that any convenient point is a critical point, as 1 lies in the span
of the logarithmic gradients rlogHj , and any smooth minimal critical point is convenient. As
the jth coordinate of each γj is 1, it follows that s1 + · · · + sr = 1. Furthermore, linear
independence of the vectors rH1(w), . . . ,rHr(w) implies9 linear independence of the vectors
(rlogH1)(w), . . . , (rlogHr)(w), so the coefficients s1, . . . , sr are unique.

Step 3: Compute a Residue

Suppose that w 2 V is a strictly minimal convenient point and H(z) has the square-free factoriza-
tion H = U ·H1 · · ·Hr in Ow (in particular, H is square-free in Ow). Without loss of generality,
we may assume that (@H/@zn)(w) 6= 0 for all j = 1, . . . , r. The Weierstrass preparation theorem
then implies that, possibly by modifying the factor U in the square-free factorization of H, we
may assume

Hj = zn −
1

⌫j(zn̂)
for j = 1, . . . , r,

where the ⌫j are analytic functions defined in a neighbourhood of wn̂. Note that

F (z) =
G(z)

U(z) (zn − ⌫1(zn̂)−1) · · · (zn − ⌫r(zn̂)−1)
(9.7)

for z in a neighbourhood of w. Let ⇢ = |wn| and T = T (wn̂). Following the same arguments as
in the smooth case, it can be shown that for any sufficiently small neighbourhood N of wn̂ in T
and sufficiently small ✏ > 0, the integral

χ =
−1

(2⇡i)n

Z

N

 
Z

|zn|=⇢+✏
F (z) · dzn

zk+1
n

−
Z

|zn|=⇢−✏
F (z) · dzn

zk+1
n

!

dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1

satisfies
|fk,...,k − χ| = O

⇣

(|w1 · · ·wn|+ δ)−k
⌘

(9.8)

9The vector (rlogHj)(w) is obtained from rHj(w) by multiplying its entries by the components of w 2 (C⇤)n,
so linear independence of the (rlogHj)(w) follows from linear independence of the rHj(w).
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for some δ > 0. The inner difference of integrals can be computed using Cauchy’s residue theorem,
where the appropriate poles can be determined using Equation (9.7). Ultimately, one obtains

χ =
1

(2⇡i)n−1

Z

N

0

@

rX

j=1

−⌫j(zn̂)k−1 · Ǧ
(
zn̂, ⌫j(zn̂)

−1
)

Q

i 6=j (⌫j(zn̂)− ⌫i(zn̂))

1

A
dz1 · · · dzn−1

zk+1
1 · · · zk+1

n−1

, (9.9)

where

Ǧ(zn̂, y) :=
G (zn̂, y) ·

Qr
i=1(−⌫i(zn̂))

yr · U (zn̂, y)
=

F (zn̂, y)(1− y⌫1(zn̂)) · · · (1− y⌫r(zn̂))

yr
. (9.10)

Step 4: Introduce New Variables and Obtain a Sum of Fourier-Laplace Integrals

Using a result of DeVore and Lorentz [91, Equation 7.12], Pemantle and Wilson converted the
integral expression in Equation (9.9) to a sum of Fourier-Laplace integrals. Given a natural
number r let

∆r−1 :=
n

x 2 (R>0)
r−1 : x1 + · · ·+ xr−1 6 1

o

.

Theorem 116 (Pemantle and Wilson [204, Theorem 10.4.5]). Suppose w is a strictly minimal
convenient point, with Ǧ, ⌫1, . . . , ⌫r defined as above. For fixed θ 2 Rn−1 and t 2 Rr−1 define

◆(θ, t) := t1⌫1

⇣

wn̂e
iθ
⌘

+ · · ·+ tr−1⌫r−1

⇣

wn̂e
iθ
⌘

+ (1− t1 − · · · − tr−1)⌫r

⇣

wn̂e
iθ
⌘

,

where
⌫j

⇣

wn̂e
iθ
⌘

= ⌫j

⇣

w1e
i✓1 , . . . , wn−1e

i✓n−1

⌘

.

Then for any sufficiently small neighbourhood N 0 ⇢ Rn−1 of the origin there exists an ✏ > 0 such
that

|fk,...,k − χ| = O
⇣

(|w1 · · ·wn|+ ✏)−k
⌘

,

where

χ :=
(w1 · · ·wn)

−k

(2⇡)n−1
·
r−1X

j=0

✓
r − 1

j

◆
(k − 1)!

(k + j − r)!

Z

N 0⇥∆r−1

Aj(θ, t)e
−kφ(θ,t)dθ dt (9.11)

and

φ(θ, t) = i(✓1 + · · ·+ ✓n−1)− log

✓
◆(θ, t)

◆(0, t)

◆

Aj(θ, t) = (−1)r−1yj−r

✓
d

dy

◆j

Ǧ
⇣

wn̂e
iθ, y−1

⌘
∣
∣
∣
∣
∣
y=ι(θ,t)

(9.12)

In general, it may not be possible to explicitly determine φ and the Aj , however asymptotics
of the diagonal sequence depends only on the evaluations of their partial derivatives at the origin,
which can be determined implicitly.
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Step 5: Determine Asymptotics

Theorem 116 gives an expression for χ in terms of a finite sum of Fourier-Laplace integrals. If
w 2 V is a minimal convenient point then there exists a unique vector (s1, . . . , sr) with positive
entries summing to 1 such that

1 = s1γ1 + · · · srγr,

and we let s := (s1, . . . , sr−1), which lies in the interior of ∆r−1. We call a minimal convenient
point w nondegenerate if the Hessian matrix H of φ(θ, t) at (0, s) is nonsingular.

A set of routine calculations, performed by Raichev and Wilson [216], shows that the conditions
of Proposition 53 are satisfied by the Fourier-Laplace integrals in Theorem 116 when w is a finitely
minimal nondegenerate convenient point.

As any smooth point is a convenient point, the following result is a generalization of Theo-
rem 54.

Theorem 117 (Raichev and Wilson [216, Theorem 3.4]). Let F (z) = G(z)/H(z) be a rational
function with a nondegenerate strictly minimal convenient point w such that H(z) has a square-
free factorization H = U · H1 · · ·Hr in Ow. Then for any nonnegative integer M there exist
effective constants C0, . . . , CM such that

fk,...,k =
(w1 · · ·wn)

−k

k(n−r)/2
· (2⇡)(r−n)/2(det(H))−1/2

0

@

MX

q=0

Cqk
−j +O

(
k−M−1

)

1

A (9.13)

as k ! 1, where H is the Hessian matrix of φ(θ, t) in Equation (9.12) at (0, s) and the square
root of the determinant is the product of the principal square roots of the eigenvalues of H. The
leading constant C0 in this series has the value

C0 =
−G(w)

U(w)
Qr

j=1 (wn(@Hj/@zn)(w))
.

Explicit formulas for the higher order constants Cj are also given by Raichev and Wilson, along
with a procedure for determining asymptotics in some cases when H(z) is not square-free at w.
When F (z) has a finitely minimal point ρ such that all points in T (ρ) \ V are convenient points
satisfying the conditions of Theorem 117, then one can sum the right hand side of Equation (9.13)
determined by each element of T (ρ) \ V to determine dominant asymptotics. A Sage package of
Raichev [215] calculates the asymptotic contributions of nondegenerate convenient points when it
is independently known that the points are finitely minimal.

9.3 A Multivariate Residue Approach

All of the lattice path asymptotics we calculate in the next chapters will be determined by minimal
convenient points, however (as already seen in Example 114), there will be cases where these
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points are not finitely minimal. This can be worked around using more complicated deformations
of the domain of integration in the Cauchy residue integral representation of diagonal coefficients.
Such deformations were first used in the context of ACSV by Baryshnikov and Pemantle [15].
Furthermore, when combined with the theory of multivariate complex residues, which was briefly
discussed in Chapter 6, this approach will allow us to relax some of our assumptions on convenient
points. We will obtain asymptotic expansions of a similar form to Equation (9.13) for the diagonal
coefficient sequence, however only the leading asymptotic term C0 will be explicitly determined
in general.

As in the smooth case, we simply give an overview of the results we need and refer the reader
to Pemantle and Wilson [204] for details.

Asymptotic Results

Suppose that we have a minimal critical point w which is a transverse multiple point on a stratum
S of dimension r, where H has a square-free factorization

H = U ·H1 · · ·Hr

in Ow (in particular, H is square-free at w). For j = 1, . . . , r, Proposition 11.1.14 of Pemantle
and Wilson [204] shows10 that the vector (rlogHj)(w) is a complex multiple of a real vector vj ,
and we pick vj so that it has non-negative dot product with the all-ones vector 1. Let N(w)
denote the intersection of the half-spaces defined by the vj :

N(w) = {z : z · vj > 0 for each j = 1, . . . , r} .

Sections 8.5 and 10.2.1 of Pemantle and Wilson [204] show that the domain of integration in the
Cauchy residue integral can be deformed, under certain restrictions, to a domain of integration
obtained from an (n − r)-dimensional chain σ lying in the stratum S and staying sufficiently
close to w and an r-dimensional chain T lying outside of the singular variety which can be made
arbitrarily close to w except at points which do not affect dominant asymptotics; such domains of
integration are called quasi-local cycles. To state these definitions rigorously requires the language
of relative homology, and we refer the reader to Appendix C of Pemantle and Wilson [204].

As w lies on a stratum S of dimension r, there exist n−r distinct coordinates z⇡(1), . . . , z⇡(n−r)

which analytically parametrize the remaining r coordinates in a neighbourhood of w in S. Define

10Proposition 11.1.14 of Pemantle and Wilson [204] shows that the leading homogeneous part H of H(ez1 , . . . , ezn)
is a complex scalar multiple of a real polynomial, and when w is a transverse multiple point then H is a product
of linear polynomials whose coefficients are the elements of the vectors (rlogHj)(w). See Examples 11.1.11 and
11.1.16 of that text for details about the cone N(w) at multiple points.
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the matrix

ΓΨ :=

0

B
B
B
B
B
B
B
B
@

rlogH1
...

rlogHr

z⇡(1)e⇡(1)
...

z⇡(n−r)e⇡(n−r)

1

C
C
C
C
C
C
C
C
A

,

where ej is the jth elementary basis vector, with a 1 in its jth position and 0 in its other positions.
When w lies on a stratum S of dimension r = n then S consists of a finite number of points,
and we may take S to be the set containing the single point w. In this case we say that V has a
complete intersection at w, and ΓΨ equals the matrix formed by the logarithmic gradients rlogHj .

After reducing the domain of integration in the Cauchy residue to a quasi-local cycle (when
possible), asymptotics are derived by computing a multidimensional residue over the r-chain T
followed by a saddle-point integral over the (n − r)-chain σ. The easiest case is when V has a
complete intersection at w: here there is no inner integral over the chain σ and, when G(w) 6= 0,
asymptotics are determined up to an exponentially small error by computing a multidimensional
residue.

Theorem 118 (Pemantle and Wilson [204, Theorem 10.3.3 and Proposition 10.3.6]). Let F (z) be
a rational function with square-free denominator which is analytic at the origin. Suppose x 2 @D
minimizes |z1 · · · zn|−1 on D, and all minimizers of |z1 · · · zn|−1 on D lie in T (x). Assume that
each critical point z of F in T (x) is a transverse multiple point such that 1 /2 @N(z). If the set

E := {z 2 T (x) : z is a critical point and 1 2 N(z)}

contains a single point w where V forms a complete intersection, and G(z) 6= 0, then

fk,...,k = (w1 · · ·wn)
−k · G(w)

detΓΨ(w)
+O

⇣

(|w1 · · ·wn|+ ✏)−k
⌘

(9.14)

as k !1, for some ✏ > 0.

Example 119. Consider the rational function

F (x, y) =
1

(1− x− 2y)(1− 2x− y)
.

Here F admits two smooth critical points (x, y) = (2/3, 1/3) and (1/3, 2/3) on the zero sets
V(1 − x − 2y) and V(1 − 2x − y), and one transverse multiple point (x, y) = (1/3, 1/3) on
V(1− x− 2y, 1− 2x− y). Because F (x, y) is combinatorial, and a product of linear factors, it is
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not difficult to show that (1/3, 1/3) is a strictly minimal critical point which minimizes |xy|−1 on
D. Since

ΓΨ(1/3, 1/3) =

✓
−1/3 −2/3
−2/3 −1/3

◆

,

Theorem 118 implies

fk,k = 3 · 9k +O
⇣

δk
⌘

for some δ 2 (0, 9). /

In the case when r < n, a saddle-point integral over the chain σ must be dealt with after the
residue calculation. Let P be the set of variables which locally parametrize S,

P = {⇡(1), . . . ,⇡(n− r)}.

For j /2 P there exists an analytic function ⇣j(z⇡(1), . . . , z⇡(n−r)) parameterizing zj on a neigh-
bourhood of w in S, and we define

g(✓1, . . . , ✓n−r) :=
X

j /2P
log

h

⇣j

⇣

w⇡(1)e
i✓1 , . . . , w⇡(n−r)e

i✓n−r

⌘i

.

Let Q be the (n−r)⇥(n−r) matrix whose (i, j)th entry is @2g
@✓i@✓j

(0); we say that w is nondegenerate
if the determinant of Q is non-zero. In this case, asymptotics are determined by the following
result.

Theorem 120 (Pemantle and Wilson [204, Theorem 10.3.4 and Proposition 10.3.6]). Let F (z) be
a rational function with square-free denominator which is analytic at the origin. Suppose x 2 @D
minimizes |z1 · · · zn|−1 on D, and all minimizers of |z1 · · · zn|−1 on D lie in T (x). Assume that
each critical point z of F in T (x) is a nondegenerate transverse multiple point such that 1 /2 @N(z).
If the set

E := {z 2 T (x) : z is a critical point and 1 2 N(z)},
contains a single point w and H has the square-free factorization H = H1 · · ·Hr in Ow then

fk,...,k = (w1 · · ·wn)
−k · k(r−n)/2 · (−1)

n−r(2⇡)(r−n)/2

p
detQ · detΓΨ(w)

✓

G(w) +O

✓
1

k

◆◆

(9.15)

as k !1.

If the set E described in these results contains a finite set of points, one can simply sum the
contributions of each given by Theorems 118 and 120, when they apply. Pemantle and Wilson [204]
also give formulae for higher order poles (i.e., cases when H is not square-free at w).
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Example 114 (Continued from page 159). We have the rational function

F (x, y, t) :=
(1 + x)(1− xy2 + x2)

(1 + x2)(1− y)(1− t(1 + x2 + xy2))

and minimal critical point ρ = (1, 1, 1/3). We claim that ρ minimizes |xyt|−1 on D. If (x, y, t)
and (a, b, c) are positive real solutions to H1 and a > x, b > y then

c =
1

1 + a2 + ab2
6

1

1 + x2 + xy2
= t.

Thus, any solution to H1(x, y, t) with positive coordinates lies on the boundary of the domain
of convergence of 1/H1. Let D1,2 be the domain of convergence of 1/(H1H2). Since 1/(H1H2)
is combinatorial, Lemma 61 implies that the every point in @D1,2 has the same coordinate-wise
modulus as a point in V \ @D1,2 with non-negative coordinates. Furthermore, any minimizer of
|xyt|−1 on V \ @D1,2 must satisfy H1(x, y, t) = 0 as H2 is independent of x and t. Thus, to
minimize |xyt|−1 on D1,2 it is sufficient to minimize the function

 (x, y) = (xyt)−1
∣
∣
t=1/(1+x2+xy2)

= x y + xy + y

on the domain (x, y) 2 (0,1) ⇥ (0, 1] (or determine that such a minimum does not exist). The
function  approaches infinity as x approaches 0 or infinity, or as y approaches 0, so the minimum
occurs either at a critical point of  , where

(@ /@x)(x, y) = (@ /@x)(x, y) = 0,

or when y = 1 and (@ /@x)(x, 1) = 0. In fact, solving these equations gives the (x, y)−coordinates
of the critical points of F (z) on the strata V1 and V1,2 (which is not surprising, because the
critical points of F give the local minimizers of |xyt|−1). The only solution of these equations
with (x, y) 2 (0,1) ⇥ (0, 1] is (x, y) = (1, 1), which corresponds to ρ. Thus, ρ is the unique
minimizer of |xyt|−1 on D1,2 with positive coordinates, and every minimizer on D1,2 has the same
coordinate-wise modulus as ρ. Since ρ has an x-coordinate of modulus 1, it lies in D and every
minimizer of |xyt|−1 on D lies in T (ρ).

Here we have the logarithmic gradients

(rH1)(ρ) = (0,−1, 0) (rH2)(ρ) = (−1,−2/3,−1)

so that
N(ρ) = {(p, q, r) 2 R3 : q > 0 and p+ (2/3)q + r > 0},

and the vector 1 thus lies in the interior of N(ρ).
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On the stratum V1,2 = V(1− y, 1− t(1 + x2 + xy2)) containing ρ we can parametrize y and t
by their x-coordinates:

y = 1, t =
1

1 + x+ x2
,

giving

g(✓) = log

✓
1

1 + ei✓ + e2i✓

◆

and Q = g00(0) = 2/3. Furthermore,

ΓΨ(ρ) =

0

@

(rlogH1)(ρ)
(rlogH2)(ρ)

1 0 0

1

A =

0

@

−1 −2/3 −1
0 −1 0
1 0 0

1

A .

Putting everything together, Theorem 120 implies

fk,k,k = 3k · k−1/2 ·
p
3

2
p
⇡

✓

1 +O

✓
1

k

◆◆

.

This proves one of the conjectures of Bostan and Kauers in Table 4.1. /

Theorem 120 is derived by writing the diagonal coefficient sequence as a sum of Fourier-Laplace
integrals of the form

1

(2⇡i)n−r

Z

σ(w)
R
(
z⇡(1), . . . , z⇡(n−r)

)
dz⇡(1) ^ · · · ^ z⇡(n−r),

where

R
(
z⇡(1), . . . , z⇡(n−r)

)
=

G(z)

(z1 · · · zn)k · detΓΨ

∣
∣
∣
∣
zj=⇣j , j /2P

and σ(w) ⇢ S is a chain of integration arbitrarily close to each w 2 E. Existence of quasi-local
cycles containing the σ(w) is shown in Proposition 10.3.6 of Pemantle and Wilson [204], and when
explicit representations of the σ(w) are known higher order asymptotic terms of fk,...,k can often
be derived.

9.4 Further Generalizations

We end by briefly describing some further generalizations of the theory of ACSV.
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More Complicated Singular Structure

The methods determining diagonal asymptotics presented here fall into two parts: first deter-
mine a finite set of singularities contributing to dominant asymptotics, and then determine the
asymptotic contribution of each. In addition to dealing with transverse multiple points, Chap-
ter 10 of Pemantle and Wilson [204] shows how to determine when (not necessarily transverse)
multiple points yield dominant asymptotics11. Furthermore, they show how to determine asymp-
totic contributions of singularities belonging to a super-class of transverse multiple points called
arrangement points. Chapter 11 of that text, describing material from Baryshnikov and Peman-
tle [15], shows how to determine the contributions of cone point singularities, where the singular
variety is defined by the vanishing of an analytic function whose lowest order non-zero Taylor
coefficients have degree two and satisfy certain conditions (for instance, V(xy + xz + yz) has a
cone point at the origin, where the real part of the singular variety looks like two cones meeting
at their tips).

Diagonals of Meromorphic Functions

Although the results of this chapter and Chapter 6 were stated for diagonals of rational functions,
they hold more generally for diagonals of meromorphic functions. In particular, although it may
not be possible to write a meromorphic function F (z) as the ratio of analytic functions G(z)/H(z)
over its domain of definition Ω, at each point w 2 Ω there exists a neighbourhood U of w in Ω
and analytic functions Gw, Hw : U ! C such that F (z) = Gw(z)/Hw(z) on U . Łojasiewicz [175]
was the first to show that semianalytic sets (including the singular sets of meromorphic functions)
admit Whitney stratifications, and the characterization of critical points given in Proposition 115
is a local characterization, meaning one can determine when the point w 2 Cn is a critical point
by replacing G and H in the statement of the proposition by Gw and Hw. Note, however, that
while there are effective elimination tools such as resultants and Gröbner Bases for polynomial
systems it is much harder to work with systems of equations involving general analytic functions.

11This is achieved by a result similar to Theorems 118 and 120, after the cone N(w), described here for transverse
multiple points, is generalized.
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Chapter 10

Lattice Walks in A Quadrant

This chapter is based on an article of Melczer and Wilson [184].

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, Little Gidding

Combining the ACSV results of Chapter 9 with the rational function expressions for lattice
path generating functions given in Chapter 4, we will prove the conjectured asymptotics of Bostan
and Kauers on lattice paths with short steps in a quadrant (shown in Table 4.1 of Chapter 4).
Furthermore, we are able to determine asymptotics for excursions (walks ending at the origin),
and derive some results for asymptotics of walks returning to their boundary axes.

The analysis splits into several cases. First, we recall that the trivariate generating functions
Q(x, y, t) marking endpoint and length for the models

are algebraic, and their minimal polynomials were given by Bousquet-Mélou and Mishna [54] and
Bostan and Kauers [41]. This means any desired asymptotic information about these models can
be rigorously determined through a univariate analysis, and we do not consider them for the rest
of this chapter1.

1As algebraic functions, the univariate generating functions of these models can be represented as diagonals of
bivariate rational functions, but the expressions obtained through this connection are usually large and hard to
deal with using the theory of ACSV. Thus, we focus on the remaining 19 models where the orbit sum method gives
a “nice” diagonal representation coming from a combinatorial argument.
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The models

are symmetric over every axis, have smooth singular varieties, and were analyzed in Chapter 7.
Note that although Theorem 71 gives a bound on the number of walks returning to the origin and
each axis, it is automatic to determine the actual asymptotics for each of these four models using
Corollary 55.

The main part of this chapter examines models which are symmetric over one axis. The
generating functions of such models have a uniform expression as rational diagonals, however the
location of minimal critical points will depend on the model. The models defined by the step sets

containing more steps with positive y-coordinate than negative y-coordinate have a rational di-
agonal representation with minimal critical points where the singular variety is non-smooth. The
model defined by the step set S admits (1, 1, 1/|S|) as a minimal critical point, which will imply
that the exponential growth of its counting sequence is the same as the exponential growth of the
number of walks using the steps in S with no restriction on where they can go. These models are
said to have positive drift.

In contrast, the models defined by the step sets

containing more steps with negative y-coordinate than positive y-coordinate, have rational diago-
nal representations with minimal critical points where the singular variety is smooth. In this case,
the exponential growth of the number of walks in the quadrant is smaller than the exponential
growth of the number of unrestricted walks using the same steps. These models are said to have
negative drift.

Finally, the three models

do not fit into the above families. Asymptotics for these models were given by Bousquet-Mélou
and Mishna [54], and we refer to that source for asymptotics on the first two of these models. The
final model, with 4 steps, is known as the Gouyou-Beauchamps model and is studied in detail in
Chapter 11.
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10.1 Models with One Symmetry

Suppose that S ⇢ {±1, 0}2 is symmetric over one axis. If S 0 is the step set obtained by rotating
S over the line y = x, the lattice path model in the quarter plane defined by S 0 is isomorphic to
the one defined by S, so we are free to assume that S is symmetric over the y-axis. This implies
the existence of Laurent polynomials A±1(x), A0(x), B1(y), B0(y) such that

S(x, y) =
X

(i,j)2S
xiyj = A−1(x)y +A0(x) +A1(x)y = B0(y) +B1(y)(x+ x), (10.1)

as the models have short steps. The group of transformations G corresponding to one of these mod-
els is the group of order 4 generated by the maps (x, y) 7! (x, y) and (x, y) 7! (x, yA−1(x)/A1(x)),
and one can calculate the orbit sum

X

σ2G
sgn(σ)σ(xy) = (x− x)

✓

y − y
A−1(x)

A1(x)

◆

.

Theorem 35 then gives the generating function counting the number of walks using the steps in
S which stay in the quarter plane and end anywhere as the diagonal

Q(1, 1, t) = ∆F (x, y, t) = ∆

 

(1 + x)
(
A1(x)− y2A−1(x)

)

A1(x)(1− y)(1− txyS(x, y))

!

. (10.2)

Note that this rational function may be singular at the origin (if A−1 = x + x and A1 = 1,
for instance) but if it is not analytic it is of the form R(x, y, t)/x where R is analytic at the
origin. Thus, one can use the identity [tn]∆(R/x) = [tn+1]∆(ytR) to determine the asymptotics
of the diagonal sequence by analyzing the function ytR(x, y, t) which is analytic at the origin.
Alternatively, one can consider the expansion of F in the ring Q[x, x][[y, t]] and use the theory of
ACSV for convergent Laurent expansions.

To perform the analysis, we define

H1(x, y, t) = 1− txyS(x, y), H2(x, y, t) = 1− y, H3(x, y, t) = A1(x).

The arguments for this family of models are often analogous to the specific model (from the
family) studied in the running Example 114 of Chapter 9.

Determining Minimal Points

As the denominator of F (x, y, t) takes a simple form, it is easy to determine its set of minimal
points. Note that for the models we consider here the Laurent polynomial A1(x) is 1, x + x, or
x+ 1 + x.
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Proposition 121. If S is a model such that A1(x) = 1 then (x, y, t) 2 V is minimal if and only
if

|y| 6 1, |t| 6 1

|xy|S(|x|, |y|)
and both inequalities do not hold strictly. Furthermore, if S is a model such that A1(x) = x + x
or A1(x) = x+ 1 + x then (x, y, t) 2 V is minimal if and only if

|x| 6 1, |y| 6 1, |t| 6 1

|xy|S(|x|, |y|)

and all three inequalities do not hold strictly.

Proof. Let D1 denote the domain of convergence of 1/H1. As S(x, y) has non-negative co-
efficients, all coefficients in the power series expansion of 1/H1(x, y, t) are non-negative and
Lemma 61 implies that (x, y, t) 2 @D1 if and only if (|x|, |y|, |t|) 2 @D1. Furthermore, if
(|a|, |b|, |c|), (|x|, |y|, |t|) 2 V(H1), and |a| 6 |x| and |b| 6 |y|, then

|t| = 1

|xy|S(|x|, |y|) 6
1

|ab|S(|a|, |b|)
= |c|

as xyS(x, y) is a polynomial in x and y with non-negative coefficients. Thus, every solution of
H1(x, y, t) = 0 with non-negative coefficients is minimal. In other words, (x, y, t) 2 @D1 if and
only if H1(|x|, |y|, |t|) = 0. The domains of convergence D2 and D3 of 1/(1− y) and 1/A1(x) are
easy to determine, and the domain of convergence of F (x, y, t) is the intersection D1 \ D2 \ D3.
Note that the solutions of x+ 1 + x = 0 and x+ x = 0 are roots of unity.

Determining Critical Points

If A1(x) is not the constant polynomial 1, the algebraic varieties V(H1), V(H2), and V(H3) are
smooth manifolds which intersect transversely, and V can be partitioned into the disjoint collection
of manifolds V1,V2,V3,V1,2,V1,3,V2,3, and V1,2,3, where

Vi1,...,ip := V(Hi1 , . . . , Hip) \
[

j /2{i1,...,ip}
V(Hj).

If A1(x) = 1 then we can partition V into the disjoint manifolds V1,V2,V1,2.
In either case, as H2 and H3 are independent of the variable t the only strata which can contain

critical points are V1,V1,2,V1,3, and V1,2,3. We now examine each of these strata separately, and
focus on critical points with non-zero coordinates due to Proposition 121:
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(i) Critical points on V1 are characterized by the system of smooth critical point equations

H1 = 0, (@H1/@x) = (@H1/@y) = (@H1/@t),

which simplifies to

(@S/@x)(x, y) = (@S/@y)(x, y) = 0, t =
xy

S(x, y)
,

together with the condition that A1(x)(1 − y) 6= 0. Substituting the expressions in Equa-
tion (10.1) then implies

B1(y)(1− x2) = A1(x)−A−1(x)y
2 = 0 (10.3)

whenever (x, y, t) 2 V1 is a critical point. Using Proposition 121, to search for minimal
critical points we examine non-negative solutions of these equations, of which there is one

ρ =

 

1,
p

A1(1)/A−1(1),

p

A−1(1)/A1(1)

S(1,
p

A−1(1)/A1(1))

!

.

Furthermore, there are at most four critical points in V1 with the same coordinate-wise
modulus as ρ, those in the set

E =
n

(x, y, x yS(x, y)) : x = ±1, y = ±
p

A1(x)/A−1(x), |S(x, y)| = S(|x|, |y|)
o

.

Note that these points are not minimal when A1(1) > A−1(1).

(ii) Proposition 115 implies that the critical points on the stratum V1,2 satisfy H1 = H2 =
det(M) = 0, where M is the matrix
0

@

rlogH1

rlogH2

1

1

A =

0

@

−txyS(x, y) + tx2y(@S/@x)(x, y) −txyS(x, y)− tx2(@S/@y)(x, y) −txyS(x, y)
0 −y 0
1 1 1

1

A .

This system of equations simplifies to

(@S/@x)(x, 1) = 0, y = 1, t =
1

xyS(x, y)
.

The point
σ = (1, 1, 1/S(1, 1))

is the only solution to these equations with non-negative coordinates. The point (−1, 1,−1/S(−1, 1))
is also a critical point, but

1

S(−1, 1) =
1

B0(1)
>

1

B0(1) + 2B1(1)
=

1

S(1, 1)
,

so (−1, 1,−1/S(−1, 1)) is not minimal.
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(iii) If A1(x) = x + x or A1(x) = x + 1 + x, Proposition 115 implies that the critical points on
the stratum V1,3 satisfy H1 = H3 = det(M) = 0, where M is the matrix
0

@

rlogH1

rlogH3

1

1

A =

0

@

−txyS(x, y) + tx2y(@S/@x)(x, y) −txyS(x, y)− tx2(@S/@y)(x, y) −txyS(x, y)
x− x 0 0
1 1 1

1

A .

This system of equations implies A1(x) = A−1(x) = 0, which has no solution for the models
we consider here as A1(x) 6= A−1(x). Thus, there are no critical points on the stratum V1,3.

(iv) If A1(x) = x+ x or A1(x) = x+ 1 + x then any point on V1,2,3 is critical, but it can easily
be checked that neither of the two resulting points are minimal.

Thus, we have determined the minimal point σ where the singular variety is locally the union
of the smooth manifolds V(H1) and V(H2), together with a finite set of critical points E where
the singular variety is smooth and which may be minimal. The analysis now splits into two cases.

Positive Drift Models

When S is symmetric over the y-axis, and has more steps with positive y-coordinate than negative
y-coordinate, then A−1(1) < A1(1) and the only minimal critical point of the singular variety is
the point

σ =

✓

1, 1,
1

S(1, 1)

◆

=

✓

1, 1,
1

|S|

◆

.

Note that σ is not finitely minimal, but it is the only critical point in V \ T (σ).

Proposition 121 shows that any minimal point minimizing |xyt|−1 satisfies

|xyt|−1 = S(|x|, |y|).

For each of the 6 models in this class, it can be directly verified that S(a, b) approaches infinity
when a and b are positive real numbers and a or b approaches 0 or infinity. Thus, the minimum
of S(a, b) is attained for (a, b) 2 (0,1) ⇥ (0, 1] and (as in Example 114 of Chapter 9) by taking
derivatives of S(a, b) it can be shown that this minimum occurs uniquely2 when x = y = 1. This
implies the minimum of |xyt|−1 occurs at (x, y, t) = σ. Furthermore, our argument shows that
any point in V1,2 achieving this minimum must lie in T (σ). Since σ 2 D, this implies σ minimizes
|xyt|−1 on D and every such minimizer lies in T (σ).

2It is well known that when S is any lattice path model whose steps are not contained in a half-plane then
(@S/@x)(x, y) = (@S/@y)(x, y) = 0 has a unique solution (x, y) 2 (R>0)

2 (see, for instance, Bostan et al. [44,
Theorem 4] or Denisov and Wachtel [89, Section 1.5]). For all of the short step models we consider in this thesis,
(@S/@x)(x, 1) = C −D/x2 for positive constants C and D, meaning (@S/@x)(x, 1) = 0 also has a unique positive
real solution.
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A square-free factorization of the denominator of this rational function in Oσ is given by

H = U ·H1 ·H2,

where U = H3 = A1(x), and

(rlog)(H1)(σ) =

✓

−1,−1 + a1 − a−1

|S| ,−1
◆

(rlog)(H2)(σ) = (0,−1, 0)

with aj = Aj(1). This implies, using the notation of Section 9.3, that 1 2 N(σ) and 1 /2 @N(σ)
(in fact, σ is a minimal convenient point).

Since the numerator of the rational function under consideration does not vanish at σ, Theo-
rem 120 allows us to determine dominant asymptotics of the diagonal sequence. On the stratum
V1,2 containing σ we can parametrize y and t by their x-coordinate:

y = 1, t =
1

xS(x, 1)
,

giving

g(✓) = log(1) + log

✓
1

ei✓S(ei✓, 1)

◆

and Q = g00(0) = 2B1(1)
|S| . Since

ΓΨ(σ) =

0

@

−1 −1 + a1−a−1

|S| −1
0 −1 0
1 0 0

1

A ,

we have detΓΨ = −1, and Theorem 120 implies the number of walks of length k ending anywhere
has the asymptotic expansion

[tk]Q(1, 1, t) =
|S|kp
k

 

A1(1)−A−1(1)

A1(1)
·
s

|S|
⇡B1(1)

+O

✓
1

k

◆!

as k !1.

Remark 122. Recent work of Bostan et al. [37] proves the guessed differential equations of Bostan
and Kauers, and expresses the generating functions of these lattice path models in terms of explicit
hypergeometric functions, however even with these representations they are not able to prove all
conjectured asymptotics. For instance, the authors of that paper show [37, Conjecture 2] that
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the positive drift model S = {(0,−1), (−1, 1), (1, 1)} has dominant asymptotic term
p
3

2
p
⇡
3kk−1/2

if and only if the integral

I =

Z 1/3

0

(

(1− 3v)1/2

v3(1 + v2)1/2



1 + (1− 10v3) · 2F1

✓
3/4, 5/4

1

∣
∣
∣
∣
64v4

◆

+6v3(3− 8v + 14v2) · 2F1

✓
5/4, 7/4

2

∣
∣
∣
∣
64v4

◆]

− 2

v3
+

4

v2

}

dv

has the value I = 1 (see that paper for definitions of the notation used). As an indirect corollary
of our asymptotic results, we thus determine the values of certain complicated integral expressions
involving hypergeometric functions.

For the model defined by S = {(0,−1), (−1, 1), (1, 1)}, Bostan et al. use the value of I only

to determine the value of the leading constant
p
3

2
p
⇡
, so bounding I away from 0 determines

asymptotics up to a constant factor. The situation is worse for some negative drift models, such
as the one with step set −S = {(0, 1), (1,−1), (−1,−1)}, where the values of similar integrals are
needed exactly to show cancellation in apparently dominant asymptotic terms and find correct
exponential growth.

Negative Drift Models

Now let S be a step set which is symmetric over the y-axis and has more steps with negative
y-coordinate than positive y-coordinate. Then A−1(1) > A1(1) and the point

ρ =

 

1,
p

A1(1)/A−1(1),

p

A−1(1)/A1(1)

S(1,
p

A−1(1)/A1(1))

!

is minimal by Proposition 121. As shown earlier in Proposition 58, any minimal critical smooth
point determines the minimum of |xyt|−1 on the closure of the domain of convergence of F (x, y, t).
Furthermore, as 1/H1 is combinatorial all minimizers of |xyt|−1 on the closure of the domain
of convergence of 1/H1 (and thus also on D) have the same coordinate-wise modulus as ρ by
Lemma 107. Note that for these models, A1(x) = 1 or A1(x) = x+ x.

Suppose first that A1(x) = 1. Then any point (a, b, c) 2 V \ D(ρ) must satisfy |a| = 1,
|b| = ρy, and

|abS(a, b)| = |ρyS(1, 1/ρy)|,
where ρy is the second coordinate of ρ. Since xyS(x, y) is a polynomial with positive real co-
efficients, and ρy is positive and real, it must be the case that every term in xyS(x, y) (when
expanded as a polynomial) has the same complex argument when the substitution x = a and
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y = b is made (this follows from the complex triangle inequality, as in the proof of Proposition 77
in Chapter 7). Since S is symmetric over the x-axis, xyS(x, y) contains a term of the form yj and
x2yj for some integer j, meaning that a 2 {±1}. Once it is known that a is real, this argument
shows that at least one of b or b2 must be real. In any case, since the modulus of b is fixed, ρ is
finitely minimal.

Corollary 55 then implies that dominant asymptotics of the number of walks in our model end-
ing anywhere is given by computing the smooth point asymptotic contributions (written explicitly
in Equation (6.13)) of ρ and any other minimal critical points in the set

E =
n(

x, y, x yS(x, y)−1
)
: x = ±1, y = ±

p

A1(x)/A−1(x), |S(x, y)| = S(|x|, |y|)
o

.

Note that the numerator of F (x, y, t) vanishes at each of these points, so one must compute the
higher order terms described in Equation (6.13). Computing these asymptotic expansions proves
the asymptotics conjectured by Bostan and Kauers.

Example 123. Consider the model defined by step set S = {(0, 1), (−1,−1), (1,−1)}. Here we
have

[tk]Q(1, 1, t) = [tk]∆

 

(1 + x)
(
1− y2(x+ x)

)

(1− y)(1− t(x+ y2 + x2y2))

!

= [tk+1]∆

 

yt(1 + x)
(
x− y2(x2 + 1)

)

(1− y)(1− t(x+ y2 + x2y2))

!

,

and the set E contains four minimal critical points:

ρ1 =

✓

1,
1p
2
,
1

2

◆

, ρ2 =

✓

1,
−1p
2
,
1

2

◆

, ρ3 =

✓

−1, ip
2
,
−1
2

◆

, ρ4 =

✓

−1, −ip
2
,
−1
2

◆

.

Using Maple3 to determine the terms in Equation (6.13), one can calculate the asymptotic con-
tributions

Φρ1
=

4(3
p
2 + 4)

⇡
· (2
p
2)k

k2

✓

1 +O

✓
1

k

◆◆

Φρ2
=

4(3
p
2− 4)

⇡
· (−2

p
2)k

k2

✓

1 +O

✓
1

k

◆◆

Φρ3
,Φρ4

= O

 

(2
p
2)k

k3

!

after shifting the index k, so that the number of walks of length k has asymptotics

(2
p
2)k

k2
· 4
⇡

✓

4(1− (−1)k) + 3
p
2(1 + (−1)k) +O

✓
1

k

◆◆

=

8

<

:

(2
p
2)k

k2
·
⇣
24

p
2

⇡ +O
(
1
k

)⌘

: k even
(2
p
2)k

k2
·
(
32
⇡ +O

(
1
k

))
: k odd

Note that the original table of Bostan and Kauers [40] only had the value of the leading term
when k was even. /

3Worksheet available at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
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Now suppose that A1(x) = x+ x, so that S is one of the models

When (a, b, c) 2 V and b = 1 or A1(a) = 0 then |abc|−1 = |S(a, b)| is larger the value of |xyt|−1

at ρ. Furthermore, although ρ is no longer finitely minimal, if (x, y, t) 2 T (ρ) and (x, y, t) is not
in the finite set of minimal critical points E then A1(x) = 0 so x is bounded away from 1. Thus,
each smooth minimal critical point is isolated in T (ρ) \ V , and Corollary 57 implies asymptotics
can still be determined using Equation (6.13).

Sporadic Examples

Models S = {(0, 1), (−1, 0), (1,−1)}
and S = {(−1, 1), (1,−1), (0, 1), (0,−1), (1, 0), (−1, 0)}

The kernel method gives the generating functions of these models as diagonals of the rational
functions

F1(x, y, t) =
(x2 − y)(x− y2)(1− x y)

(1− x)(1− y)(1− txy(y + yx+ x))

and

F2(x, y, t) =
(x2 − y)(x− y2)(1− x y)

(1− x)(1− y)(1− txy(x+ y + xy + yx+ x+ y))
,

respectively. These rational functions admit ρ = (1, 1, 1/3) and σ = (1, 1, 1/6) as minimal critical
points where the singular variety forms a complete intersection, however the numerators of F1

and F2 vanish at these points so Theorem 118 cannot be applied.

Writing
x2 − y = (x− 1)(x+ 1)− (y − 1),

the diagonals ∆F1 and ∆F2 can each be turned into a sum of two rational diagonals with simpler
singular varieties. Dominant asymptotics should still be determined by the critical points ρ and
σ, however these points are not finitely minimal, the numerators of these rational functions vanish
at the points, and the vector 1 lies on the boundary @N(z). Thus, Theorem 120 does not apply,
and a more detailed analysis is needed to determine asymptotics using the methods of ACSV.
Since asymptotics of these models were given by Bousquet-Mélou and Mishna [54], we do not
pursue this here.
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S Q(0, 1, t) Q(1, 0, t) Q(0, 0, t) S Q(0, 1, t) Q(1, 0, t) Q(0, 0, t)

8
π · 4

k

k2

8
π · 4

k

k2 δk
32
π · 4

k

k3 δk
4
π · 4

k

k2 δk
4
π · 4

k

k2 δk
8
π · 4

k

k3

3
√
6

2π · 6
k

k2 δk
2
√
6

π · 6
k

k2 δk
3
√
6

π · 6
k

k3

32
9π · 8

k

k2

32
9π · 8

k

k2

128
27π · 8

k

k3

3
√
3

4
√
π

3k

k3/2 δk
4
√
2

π
(2

√
2)k

k2 ✏k
16

√
2

π
(2

√
2)k

k3

8
3
√
π

4k

k3/2 δk
4
√
3

π
(2

√
3)k

k2 δk
12

√
3

π
(2

√
3)k

k3

5
√
10

16
√
π

5k

k3/2

√
2A3/2

π
(2A)k

k2

2A3/2

π
(2A)k

k3

5
√
10

24
√
π

5k

k3/2 δk
4
√
30

5π
(2

√
6)k

k2 δk
24

√
30

25π
(2

√
6)k

k3

√
3√
π

6k

k3/2
2
√
3B3/2

3π
(2B)k

k2

2B3/2

π
(2B)k

k3

7
√
21

54
√
π

7k

k3/2
D

285π
(2K)k

k2

2E
1805π

(2K)k

k3

A = 1+
p
2, B = 1+

p
3, K = 1+

p
6, D = (156+41

p
6)

q

23− 3
p
6, E = (583+138

p
6)

q

23− 3
p
6

δk =

(

1 : k ⌘ 0 mod 2

0 : otherwise
✏k =

(

1 : k ⌘ 0 mod 4

0 : otherwise

Table 10.1: Asymptotics of boundary returns for the highly symmetric and positive drift cases.
Results in blue are conjectural.

Model S = {(1, 0), (1,−1), (−1, 0), (−1, 1)}
For this model we obtain the diagonal expression

Q(1, 1, t) = ∆

✓
(x+ 1)(x2 − y)(x− y)(x+ y)

1− xyt(x+ xy + yx+ x)

◆

which is easy to analyze, since the denominator is smooth. There are two points which satisfy the
smooth critical point equations, ρ1 = (1, 1, 1/4) and ρ2 = (−1, 1, 1/4), both of which are finitely
minimal (using the same argument as for negative drift models). In fact, only ρ1 determines the
dominant asymptotic term, which can be anticipated by noting that the numerator vanishes to
order 2 at ρ1 but order 3 at ρ2. Ultimately, we obtain dominant asymptotics

[tk]Q(1, 1, t) =
4k

k2
· 8
⇡

✓

1 +O

✓
1

k

◆◆

.

Weighted versions of this model are studied in detail in Chapter 11. As mentioned previously, for
this model Bousquet-Mélou and Mishna [54, Proposition 11] gave asymptotics for the number of
walks ending anywhere, those ending on each boundary axis, and those ending at the origin.

10.2 Boundary Returns and Excursions

In addition to giving diagonal expressions for the number of walks of a fixed length, Theorem 35
gives diagonal expressions for the number of walks in a model ending on the x-axis (with generating
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S Q(0, 1, t) S Q(0, 1, t)

⇣

✏k
448

√
2

9π + ✏k−1
640
9π + ✏k−2

416
√
2

9π + ✏k−3
512
9π

⌘

· (2
√
2)k

k3

⇣

δk
36

√
3

π + δk−1
54
π

⌘

· (2
√
3)k

k3

4A7/2

π · (2A)k

k3

⇣

δk
72

√
30

5π + δk−1
864

√
5

25π

⌘

· (2
√
6)k

k3

3B7/2

2π · (2B)k

k3

6(4571+1856
√
6)

p

23−3
√
6

1805π · (2K)k

k3

Table 10.2: Asymptotics of Q(0, 1, t) for the negative drift cases. The asymptotics of Q(1, 0, t)
and Q(0, 0, t) for each model S are the same as the corresponding asymptotics for −S listed in
Table 10.1. Definitions of the constants given here are listed underneath Table 10.1.

function Q(0, 1, t)), on the y-axis (with generating function Q(1, 0, t)), and at the origin (with
generating function Q(0, 0, t)). Not only does this allow one to determine the asymptotics of such
sequences, given in Table 10.1 and Table 10.2, but the close connection between the diagonal
expressions for Q(1, 1, t), Q(1, 0, t), Q(0, 1, t), and Q(0, 0, t) helps analytically explain some of the
observed connections in the asymptotics.

For example, if S is a highly symmetric model then there are rational diagonal representations

Q(1, 1, t) = ∆

✓
(1 + x)(1 + y)

1− txyS(x, y)

◆

Q(0, 0, t) = ∆

✓
(1− x2)(1− y2)

1− txyS(x, y)

◆

.

Both of the rational functions listed here admit the same finitely minimal smooth critical point
(1, 1, 1/|S|), meaning asymptotics of their diagonal sequences will have the same exponential
growth, but the numerator in the expression for Q(0, 0, t) vanishes to second order at this point
while the numerator in the expression for Q(1, 1, t) does not. This matches the observation that
the sub-exponential growth for the number of walks returning to the origin has the form Ck−3

(up to possible periodicity) while for the number of walks ending anywhere the sub-exponential
growth has the form C 0k−1, for constants C,C 0 > 0.

Similarly, if S is symmetric over one axis then

Q(1, 1, t) = ∆

 

(1 + x)
(
A1(x)− y2A−1(x)

)

A1(x)(1− y)(1− txyS(x, y))

!

| {z }

F (x,y,t)

.

When S is a negative drift model, asymptotics of this diagonal sequence are determined by a
smooth minimal critical point ρS whose y-coordinate is smaller than 1. The rational functions
(1−x)F (x, y, t), (1− y)F (x, y, t), and (1−x)(1− y)F (x, y, t) all admit the same smooth minimal
critical point, meaning the number of walks returning to either axis or the origin will have the
same exponential growth and asymptotics are given by the same argument as above.

181



In contrast, when S is a positive drift model ρS is not minimal since this point has y-coordinate
larger than 1 and the denominator of F contains 1 − y as a factor. As we saw, asymptotics are
thus determined by minimal critical multiple points of the singular variety. The rational functions
(1−y)F (x, y, t) and (1−x)(1−y)F (x, y, t), however, admit ρS as a smooth minimal critical point
since the factor of 1− y in the denominator is canceled, meaning the exponential growth for the
number of walks which end at the origin or on the y-axis is smaller than the exponential growth
for those ending anywhere. Asymptotics for these cases are proven using an argument analogous
to that of the negative drift models above.

The analysis for the number of walks returning to the x-axis for the positive drift models
is more difficult. For each of these models, the generating function counting walks returning to
the x-axis is the diagonal of (1 − x)F (x, y, t). The numerator of this rational function vanishes
at the minimal critical point σ, where x = 1, so Theorem 120 gives only an upper bound on
the asymptotic growth of the diagonal sequence. These minimal critical points are convenient,
and it is tempting to assume that one can simply ignore the non-critical points in T (σ) and
compute asymptotics using Theorem 117. This yields the conjectured asymptotics shown in
Table 10.1 (which are also conjectured by Bostan et al. [37]). Similarly, if one assumes a natural
form of the quasi-local cycles appearing in the residue approach the same asymptotics can be
derived. Unfortunately, a better understanding of the quasi-local cycles which can be used in
these computations is necessary before the calculations can be rigorously justified, and this is
ongoing work.

182



Chapter 11

Centrally Weighted Lattice Path Models

This chapter is based on an article of Courtiel, Melczer, Mishna, and Raschel [78].

She had not known the weight until she felt the freedom.

Nathaniel Hawthorne, The Scarlet Letter

In Chapters 7 and 10 we saw how combinatorial properties of a lattice path model, such as
symmetries of its step set and the number of steps moving towards or away from the boundary
of its restricting region, affect asymptotics of its counting sequence. These results were obtained
by deriving uniform diagonal expressions which hold for models with certain properties, and
then using tools from analytic combinatorics in several variables. Furthermore, this approach
allowed us to analytically understand certain observed behaviour in the asymptotics of lattice
path models, such as why walks returning to the origin or boundary regions have the same or
different exponential growth as walks ending anywhere.

In this chapter we study a natural generalization of the lattice path models previously consid-
ered: a variety of models with weighted step sets. Given a finite step set S ⇢ Zn we can associate
a positive real weight as to each step s 2 S and consider the weighted multivariate generating
function

Qa(z, t) =
X

w walk in Nn starting at 0
ending at (i,j), of length k

Y

s step in w
(with multiplicity)

as zitk.

We will also be interested in the weighted generating function encoding walks beginning at a fixed
point j 2 Nn other than the origin:

Qj
a(z, t) =

X

w walk in Nn starting at j
ending at i, of length k

Y

s step in w
(with multiplicity)

as zitk.
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a

1/a

b/a

a/b

Figure 11.1: A parametrized central weighting of the Gouyou-Beauchamps step set.

Studying weighted step sets allows for a deep understanding of model behaviour, for example
illustrating sharp transitions (or phase changes) in asymptotic behaviour as the weights are varied
continuously. Weighted models also capture probabilistic results when the weights are interpreted
as transition probabilities related to each step. One interesting feature of a model which captures
a large amount of information is the weighted vector sum of its steps

dS =
X

s2S
ass,

known as the drift of the model.

In order to obtain uniform diagonal expressions for weighted families of lattice path models,
it is necessary to place restrictions on the types of weightings which are allowed. The focus of
this chapter is on central weightings, which are weightings of a step set such that the weight of a
path on those steps depends only on its length, start, and end points1. We will describe several
nice properties of these weightings, including the ability to express the generating function of a
parametrized weighted model in terms of the generating function of the underlying unweighted
model with weighted variables2. Kauers and Yatchak [149] computationally investigated weighted
lattice path models with short steps in the quarter plane, and found what they conjectured to be
a finite list of families containing all models with (weighted) D-finite generating functions. All but
one of these families correspond to equivalence classes of short step models in the quarter plane
under central weightings, which will be discussed in more detail below.

The first two sections of this chapter focus on the Gouyou-Beauchamps step set

S = {(−1, 0), (1, 0), (−1, 1), (1,−1)}

when its steps are given weights 1/a, a, b/a, a/b, as illustrated in Figure 11.1. For any a, b > 0,
this defines a central weighting of S and, in Section 11.3, we show that every central weighting on
this set of steps has this form up to a uniform scaling of weights. Asymptotics of the unweighted
model, corresponding to a = b = 1, were given at the end of Section 10.1 in Chapter 10. We
describe our main asymptotic result on the Gouyou-Beauchamps model, together with several

1A trivial example of a central weighting is one in which every step is given the same weight. We will see several
more interesting examples in this chapter.

2Central weightings are also related to the probabilistic notion of a Cramér transform.
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applications, in Section 11.1. These results are obtained by deriving a diagonal expression for the
generating function Qi,j

a (1, 1, t) enumerating the number of walks in a model and using the theory
of ACSV; the analysis is detailed in Section 11.2.

Section 11.3 contains our results on general central weightings. For any fixed step set S we
characterize the weightings of S which are central, and show that the number of parameters
defining a central weighting is always equal to the dimension plus one3. After characterizing the
centrally weighted models corresponding to a fixed unweighted model, we show how to partition
this collection of models into universality classes based on a model’s sub-exponential growth.
Studying these universality classes illustrates a connection between the ACSV enumerative ap-
proach and related probabilistic approaches. Furthermore, we show how to express (exactly and
asymptotically) the numbers of centrally weighted walks returning to the origin in terms of the
number of unweighted ones. These relations have strong consequences at the generating function
level, and connect the (relatively unstudied) weighted and (well studied) unweighted generating
functions.

11.1 Results on Centrally Weighted Gouyou-Beauchamps Models

The main result we derive on the asymptotics of centrally weighted Gouyou-Beauchamps walks
is the following.

Theorem 124. Fix constants a, b > 0 and consider the Gouyou-Beauchamps model with weights
defined by Figure 11.1. As k !1 the number of weighted walks in this model of length k, starting
from (i, j) and ending anywhere while staying in the non-negative quadrant, satisfies

[tk]Qi,j
a,b(1, 1; t) = V [k](i, j) · ⇢k · k−↵ ·

✓

1 +O

✓
1

k

◆◆

, (11.1)

where the exponential growth ⇢ and the critical exponent ↵ are given in Table 11.1. The function
V [k](i, j) is given in Appendix A, and depends on k only through its parity [k] (if at all).

Although the exponential growth ⇢ varies continuously with the weights a and b, the critical
exponent ↵ only takes 6 values, and thus undergoes sharp transitions as a and b vary. We name
the six regions in which ↵ is constant, inducing six different universality classes for centrally
weighted Gouyou-Beauchamps walks:

• the free class corresponds to walks where the drift is in the interior of the first quadrant,
with the name reflecting the fact that the models behave similar to models unrestricted to
the first quadrant;

3Note that one of these parameters will correspond to a uniform scaling of the weights, so we can specialize this
parameter to one and be able to later recover asymptotics of the general case (see below).
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Class Condition ⇢ ↵

Balanced a = b = 1 4 2

Free
p
b < a < b

(1+b)(a2+b)
ab 0

Reluctant a < 1 and b < 1 4 5

Axial b = a2 > 1 2(b+1)p
b

1/2

a = b > 1 (1+a)2

a 1/2

Transitional a = 1, b < 1 or b = 1, a < 1 4 3

Directed b > 1 and
p
b > a 2(b+1)p

b
3/2

a > 1 and a > b (1+a)2

a 3/2

Table 11.1: The six different universality classes for weighted Gouyou-Beauchamps walks, under
the weighting in Figure 11.1, together with asymptotic information from Theorem 124. The value
of ↵ for the Directed models (in blue) is conjectural.

1

b

10 a

k
−5

Reluctant

Balanced

k
−2

Transitional

k
−3

Transitional

k
−3

Axial

k
−

1

2

Axial

k
−

1

2

k
−

3

2

Directed

k
−

3

2

Directed

k
0

Free

Figure 11.2: The polynomial growth (k↵ in Theorem 124) for the weighted Gouyou-Beauchamps
model given as a function of the weight parameters a and b. Each region corresponds to a
universality class. The result for the Directed class is conjectural.
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• the reluctant class is defined by a < 1 and b < 1, and corresponds to walks which will have
the smallest exponential growth;

• the transitional class is the boundary of the reluctant region;

• the axial class is the boundary of the free region;

• the balanced class is defined by the drift being (0, 0);

• all other models belong to the directed class. Our approach shows that the asymptotic growth
for the number of walks in any directed model has the form V [k](i, j)⇢kk−3/2

(
1 +O

(
1
k

))
.

We conjecture a (non-zero) value of V [k](i, j) which is listed in Appendix A, but are currently
unable to prove this value is correct.

The weights a and b belonging to each class are shown in Figure 11.2, and these classes are defined
more generally for other models in Section 11.3. Note that the drift for a centrally weighted
Gouyou-Beauchamps model under our parametrization is

d = (dx, dy) =

✓
(1 + b)(a2 − b)

ab
,
(a+ b)(b− a)

ab

◆

. (11.2)

A general central weighting of the Gouyou-Beauchamps model is given by uniformly scaling the
weight assigned to each step by a positive constant β > 0. Asymptotics of the central weighting
corresponding to the scaling β is then obtained by multiplying the right-hand side of Equa-
tion (11.1) by βk.

11.1.1 Applications of Theorem 124

Theorem 124 is a combinatorial result giving asymptotics of the total number of walks confined
to the quarter plane for centrally weighted Gouyou-Beauchamps models. These models are so-
named because Gouyou-Beauchamps [126] discovered a simple hypergeometric formula for the
(unweighted) walks that return to an axis. As shown by Gouyou-Beauchamps [127], they encode
several combinatorial classes: the set of walks ending anywhere are in bijection with pairs of
non-intersecting prefixes of Dyck paths, and the walks ending on the axis are in bijection with
Young tableaux of height at most 4. This quarter plane lattice path model is also in bijection
with the lattice path model having step set S = {(±1, 0), (0,±1)} which is restricted to the region
{(x, y) : 0 6 x 6 y}. Thus, the Gouyou-Beauchamps model can be considered as a walk in a Weyl
chamber (see Gessel and Zeilberger [120] for information on Weyl chamber walks).

We now illustrate several applications of this result.
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Sk := X1 +X2 + · · ·+Xk. For any i, j, p, q, k 2 N, let

e(i,j)!(p,q)(k) := number of weighted walks on S of length k from (i, j) to (p, q).

An asymptotic result on the number of walks beginning and ending at two fixed points can be
turned into a local limit theorem by the formula

P[(i, j) + Sk = (p, q), ⌧ > k] =
e(i,j)!(p,q)(k)

|S|k , (11.3)

where ⌧ denotes the first exit time of the random walk (Sk) from the quadrant:

⌧ = inf{k > 0 : Sk /2 N2}. (11.4)

In the same way, results on walks with prescribed length but no fixed endpoint can be written as

P(i,j)[⌧ > k] =
e(i,j)!N2(k)

|S|k =

P

(p,q)2N2 e(i,j)!(p,q)(k)

|S|k . (11.5)

In a very influential result, Denisov and Wachtel [89] proved a local limit theorem for random
walks in cones5, characterizing asymptotics of the quantities in Equation (11.3) and, for models
with zero drift, obtaining a precise estimate of the non-exit probability (11.5). Duraj [94] estab-
lished an asymptotic estimate of the non-exit probability for the walks in the reluctant universality
class (roughly speaking for the general case, the ones with negative drift). The exponential growth
⇢ in Equation (11.1) is computed by Garbit and Raschel [113]: for a large class of cones and di-
mensions it is equal to the minimum of the Laplace transform of the increments of the random
walk on the dual cone (see the end of this Chapter for details). Theorem 124 allows us to deter-
mine full dominant asymptotics for a continuous family of process with a large variety of drift6

(see Figure 11.4).

Construction of Discrete Harmonic Functions

The quantity V [k](i, j) in Equation (11.1) satisfies

⇢ · V [k+1](i, j) = (1/a)V [k](i− 1, j) + (b/a)V [k](i− 1, j + 1)

+ aV [k](i+ 1, j) + (a/b)V [k](i+ 1, j − 1),
(11.6)

5The work of Denisov and Wachtel applies very generally; in the case of a general cone (not necessarily the
two-dimensional quadrant) the exit time ⌧ becomes the smallest value of k such that a random walk Sk leaves the
cone under consideration.

6For any fixed drift, it is easy to find a set of weights realizing the drift by solving Equation (11.2) for positive
solutions a and b (possibly after scaling the drift by a positive constant, as we can uniformly scale the weights of our
walks). It is a little difficult to see that there will always be positive solutions for a and b solving Equation (11.2)
for all values of the drift, but this follows from Proposition 6.3 of Lecouvey and Tarrago [168] since walks on the
Gouyou-Beauchamps step set in the quarter plane are isomorphic to walks in the Weyl chamber {0 6 x 6 y} ⇢ R2.
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Figure 11.4: The universality classes as a function of drift for the centrally weighted Gouyou-
Beauchamps model prescribed by the weights in Figure 11.1. Because the regions are cones the
diagram does not change when each weight is multiplied by a constant, meaning this diagram
holds for every central weighting of the Gouyou-Beauchamps model.

which follows from the recurrence relations satisfied by the numbers of walks beginning at the
point (i, j) and ending anywhere. When V [k] does not depend on k, which happens in most of our
cases, then V = V [k] is called a discrete ⇢-harmonic function. Such discrete harmonic functions
are of great interest to probability theorists. Via a procedure known as a Doob transform, they
are used to construct processes conditioned never to leave cones [89, 90, 94, 167], which appear
in several areas of probability including the study of non-colliding processes and the study of
eigenvalues of certain random matrices. When V [k] depends on k, it is instead called a ⇢-caloric
function [47].

Theorem 124 gives an explicit family of simply expressed discrete harmonic and caloric func-
tions, listed in Appendix A. For example, in the zero drift case a = b = 1 we obtain (up to a
constant scaling)

V (i, j) = (i+ 1)(j + 1)(i+ j + 2)(i+ 2j + 3). (11.7)

Discrete harmonic functions also seem promising for the random generation of random walks
confined to cones7.

7Private communication from Eric Fusy.
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11.2 Determination of Gouyou-Beauchamps Asymptotics

We begin, as always, by using the kernel method to express the generating function Qa(1, 1, t) as
the diagonal of an explicit rational function. As we add only positive weights to the steps and do
not change the underlying step set, the kernel equation (4.5) for unweighted Gouyou-Beauchamps
walks continues to hold when its multivariate generating function Q(x, y, t) is replaced by the
weighted generating function Qa,b(x, y, t) and the characteristic polynomial S(x, y) is replaced by
its weighted version. This gives the functional equation

xy(1− tSa,b(x, y))Qa,b(x, y, t) = xy − tIa,b(y)− tJa,b(x), (11.8)

where

Ia,b(y) = y
(
[x−1]Sa,b(x, y)

)
Qa,b(0, y, t), Ja,b(x) = x

(
[y−1]Sa,b(x, y)

)
Qa,b(x, 0, t),

and

Sa,b(x, y) =
1

ax
+ ax+

ax

by
+

by

ax
.

Furthermore, to count walks beginning at the point (i, j) 2 N2 instead of the origin it is sufficient
to replace the term xy on the right-hand side of Equation (11.8) with xi+1yj+1 to obtain an
equation of the form

xy(1− tSa,b(x, y))Q
i,j
a,b(x, y, t) = xi+1yj+1 − tIi,ja,b(y)− tJ i,j

a,b(x). (11.9)

This follows from the same argument given in Chapter 4 to derive the usual kernel equation, when
the condition [t0]Q(x, y, t) = 1 denoting an empty walk beginning at the origin is replaced by the
condition [t0]Q(x, y, t) = xiyj denoting an empty walk beginning at (i, j).

11.2.1 A Uniform Diagonal Expression

Our analysis for the unweighted Gouyou-Beauchamps model used the group of bi-rational trans-
formations of the plane generated by the involutions

Ψ : (x, y) 7!
⇣y

x
, y
⌘

, Φ : (x, y) 7!
✓

x,
x2

y

◆

,

which fix the unweighted characteristic polynomial S(x, y). In the weighted case we consider the
group Ga,b of transformations generated by the involutions

Ψa,b : (x, y) 7!
✓
[x−1]Sa,b(x, y)

x[x1]Sa,b(x, y)
, y

◆

=

✓
by

a2x
, y

◆

, Φa,b : (x, y) 7!
✓

x,
[y−1]Sa,b(x, y)

y[y1]Sa,b(x, y)

◆

=

✓

x,
a2x2

yb2

◆

,
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which fix the weighted characteristic polynomial Sa,b(x, y). Just as in the unweighted case, we can
apply the eight elements of Ga,b to the weighted kernel equation (11.9), take an alternating sum
to cancel all unknown functions on the right-hand side, and take a non-negative series extraction
to obtain

Qi,j
a,b(x, y, t) = [x>y>]

Oi,j
a,b(x, y)

1− tSa,b(x, y)
,

where Oi,j
a,b(x, y) is the weighted orbit sum

Oi,j
a,b(x, y) =

X

σ2Ga,b

σ(xi+1yj+1)

which can be determined explicitly after a messy calculation. This can be translated into an
explicit diagonal expression for Qi,j

a,b(1, 1, t) using Proposition 30, however the resulting rational
function is quite large so we focus here on the case i = j = 0 and refer the reader to an accompa-
nying Maple worksheet8 for the expressions with general i and j. In particular, the parameters i
and j do not appear in the denominator of the rational function we obtain, meaning they do not
affect the singular variety under consideration or the minimal critical points where asymptotic
contributions are calculated.

In fact, the parameters i and j do not even affect the order of vanishing of the numerator,
which is why they appear only in the constant V [k](i, j) of the dominant asymptotic term. Short
proofs that the V [k](i, j) do not vanish for any choice of i, j, a, and b in each universality class are
given in the accompanying Maple worksheet. These proofs typically follow from an application of
Descartes’ rule of signs to give an upper bound N on the number of zeros V (i, j) can have in a
when b, i, and j are fixed, followed by an explicit determination of N positive zeroes in a which
lie outside the weight restrictions given for each class.

For the case i = j = 0 we obtain the diagonal expression

Qa,b(1, 1; t) = ∆

✓
(y − b)(a− x)(a+ x)(a2y − bx2)(ay − bx)(ay + bx)

a4b3x2y(1− txySa,b(x, y))(1− x)(1− y)

◆

,

which, as the monomial x2y appears in the denominator, we re-write as

Qa,b(1, 1; t) =
1

a4b3t2
∆

✓
yt2(y − b)(a− x)(a+ x)(a2y − bx2)(ay − bx)(ay + bx)

(1− x)(1− y)(1− txyS(x, y))

◆

| {z }

F (x,y,t)

(11.10)

so that F (x, y, t) is analytic at the origin9.

8Available for download at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
9As mentioned previously, this translation to the diagonal of an analytic function can be avoided by using the

theory of diagonals of convergent Laurent expansions. Ultimately, one may work with the original expression as if
it were analytic at the origin and derive the same asymptotic results.

192

http://cs.uwaterloo.ca/~smelczer/ThesisCode.html


Stratum Critical Points Exponential Growth

V1 c±1 = (±a, b) e1 = 4

V12 c12 =
(
1, b

a

)
e12 =

(a+1)2

a

V13 c±13 =
⇣

± ap
b
, 1
⌘

e13 =
2(b+1)p

b

V123 c123 = (1, 1) e123 =
(b+1)(a2+b)

ab

Table 11.2: The (x, y)-coordinates of the critical points; for each, t = xyS(x, y)−1.

11.2.2 Minimal Critical Points

As in previous cases, we let G(x, y) and H(x, y, t) be the numerator and denominator of F (x, y, t),
and define the polynomials

H1(x, y, t) = 1− txySa,b(x, y), H2(x, y, t) = 1− x, H3(x, y, t) = 1− y.

The singular variety can be stratified into the sets V1,V2,V3,V1,2,V1,3,V2,3, and V1,2,3, where
Vi1,...,ir is defined by the vanishing of Hi1 , . . . , Hir and the non-vanishing of the other factors of
H. Since H2 and H3 are independent of the t variable, only the strata V1,V1,2,V1,3, and V1,2,3 can
contain critical points. Solving the critical point equations (9.6) on each stratum give the critical
points described in Table 11.2.

As we once again deal with a simple denominator, which is combinatorial, it is easy to char-
acterize minimal points. Note that for some values of the parameters a and b the numerator of
F (x, y, t) may contain a factor of 1− x or 1− y, so G and H may not be co-prime.

Lemma 125. When G(x, y) and H(x, y, t) are co-prime, the point (x, y, t) 2 V is minimal if and
only if

|x| 6 1, |y| 6 1, |t| 6 1

|xy|S(|x|, |y|) ,

where the three inequalities are not simultaneously strict inequalities.

Proof. When the polynomials G and H are co-prime the set of minimal points coincides with the
minimal points of the rational function 1/H(x, y, t), which is the product of three geometric series.
The domain of convergence D is then obtained by intersecting the domains of convergence of the
rational functions 1/(1− x), 1/(1− y), and 1/(1− txyS(x, y)). Following the same argument as
the proof of Proposition 121 in Chapter 10, it can be shown that the domain of convergence of
1/(1− txyS(x, y)) is

{(x, y, t) : |t| < |xy|−1 S(|x|, |y|)−1}
since the polynomial xyS(x, y) has non-negative coefficients.

193



Similar arguments show that when the weights a and b are such that G(x, y) contains a 1− x
as a factor, but not 1− y, then (x, y, t) 2 V is minimal if and only if

|y| 6 1 and |t| 6 1

|xy|S(|x|, |y|) ,

and both inequalities are not strict. The cases when G(x, y) contains only 1 − y as a factor, or
both 1− x and 1− y, are analogous.

Using arguments familiar from previous chapters, it is also easy to show that the minimum
of the bound |xyt|−1 on the exponential growth of the diagonal sequence is achieved in D at a
minimal critical point.

Lemma 126. Every minimizer of |xyt|−1 in D has the same coordinate-wise modulus as a minimal
critical point.

Proof. Assume first that the weights a and b are such that the factors 1−x and 1−y of H(x, y, t)
are not factors of G(x, y).

Since F (x, y, t) is combinatorial, (x, y, t) 2 @D if and only if (|x|, |y|, |t|) 2 @D. Furthermore,
|xyt|−1 decreases as |t| grows, hence by Lemma 125 |xyt|−1 is minimized on D \ R3

+ at points of
the form (x, y, xyS(x, y)−1) with 0 < x, y 6 1. Thus, it is sufficient to show that the minimizer of

S(x, y) =
a

x
+

ay

bx
+

bx

ay
+

x

a

for (x, y) 2 (0, 1]2 occurs at the (x, y)-coordinates of a minimal critical point. The minimum is
achieved because S(x, y) tends to infinity as either x or y (or both) stay positive and tend to 0:
the form of S(x, y) implies this holds as x! 0 but then it also holds as y ! 0 because x bounded
away from 0 implies x/y !1. Thus, the minimum either occurs in the interior, when

(@S/@x)(x, y) = (@S/@y)(x, y) = 0,

or when x = 1 and (@S/@y)(x, 1) = 0, or when y = 1 and (@S/@y)(x, y) = 0, or when x = y = 1.
These sets of equations are exactly equal to the critical point equations on the different strata
V1,V1,2,V1,3, and V1,2,3.

Similar arguments show that when one or both of the factors 1−x and 1−y in the denominator
are canceled then the result holds as long as the minimum of S(x, y) is achieved on (0, 1]⇥ (0,1),
(0,1) ⇥ (0, 1] or (0,1)2, depending on which factors have canceled. Again the minimum is
achieved, as S(x, y) approaches infinity when either x or y (or both) approach infinity, and the
rest of the argument is analogous.

It is now possible to characterize the minimal critical points which will determine diagonal
asymptotics using our explicit characterization of minimal points in Lemma 125. Recall the critical
points described in Table 11.2.
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Proposition 127. For fixed weights a, b > 0, the set of minimal critical points which minimize
|xyt|−1 on D consists of the unique points (x, y, t) 2 V whose (x, y)-coordinates are

• c±1 when a 6 1 and b 6 1;

• c12 when a > 1 and a > b;

• c±13 when b > 1 and b > a2;

• c123 when b > a >
p
b > 1.

In the first case the singular variety admits smooth minimal critical points, while in the second
and third the points are minimal convenient points. The final case corresponds to a transverse
multiple point where the singular variety forms a complete intersection.

Note that on the boundaries of these case distinctions the points with positive coordinates
coincide, which is why the exponential growth ⇢ varies smoothly with a and b.

Proof. The values of the exponential growth |xyt|−1 for each set of critical points are listed in the
final column of Table 11.2. The AM-GM inequality implies that e1 6 e12, e13 6 e123, so that the
set of minimal critical multiple points minimizing |xyt|−1 consists of those defined by (x, y) = c±1
as long as these points are minimal. Similarly, the points defined by (x, y) = c12 or (x, y) = c±13
minimize |xyt|−1 as long as they are minimal and those with (x, y) = c±1 are not10. Finally, the
conditions listed above come from the characterization of minimal points in Lemma 125.

The factors 1− x and 1− y in the denominator cancel only when a = 1 or b = 1, respectively.
Such models are either Transitional or Directed, and the conclusion can be verified separately for
each case.

Again following arguments similar to those in previous chapters, it is easy to show the following
result (which implies that all smooth minimal critical points in Proposition 127 will be finitely
minimal).

Lemma 128. Suppose (x, y, t) 2 V(H1) has positive real coordinates, and (p, q, r) 2 T (x, y, t)
with H1(p, q, r) = 0. Then (p, q, r) = (x, y, t) or (−x, y, t).

Proof. Under these conditions
∣
∣(1/a)p2q + aq + (b/a)p2 + (a/b)q2

∣
∣ = (1/a)x2y + ay + (b/a)x2 + (a/b)y2.

Since a, b, x, y > 0, and |p| = x while |q| = y, the complex triangle inequality implies that q and
q2 have the same complex argument, meaning q is real and positive, and thus equal to y. This, in

10Note that if the point with (x, y) = c±1 is not minimal then it can’t happen that both those with (x, y) = c12
and (x, y) = c±13 are minimal.
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turn, implies that p2 is real and positive, so p equals x or −x. Finally, r is determined by solving
H1(p, q, r) = 0.

The minimal critical points in different strata correspond to different exponential growths of the
diagonal sequence, but do not completely determine universality classes: the critical exponents
depend on several factors, including the degree of vanishing of the numerator of F (x, y, t) at
its minimal critical points. We now complete the proof of Theorem 124 by showing how to
compute the asymptotic contributions of the critical points. The formulas derived here have been
heuristically checked by numerically computing asymptotics for examples in each universality
class.

11.2.3 Determining Asymptotic Contributions

The Balanced Case (a = b = 1)

This is the unweighted Gouyou-Beauchamps model, enumerated in Chapter 10 using the smooth
point asymptotic result in Corollary 55:

[tk]Q1,1(1, 1, t) =
8

⇡
· 4

k

k2

✓

1 +O

✓
1

k

◆◆

.

When dealing with walks beginning from the start point (i, j) one obtains a Fourier-Laplace
integral expression of the form

R
Ai,j(θ)e

−kφ(θ)dθ where φ(θ) is independent of i and j, and the
order of vanishing of Ai,j(θ) at the origin is independent of i and j. As Corollary 55 requires only
evaluations of derivatives to determine asymptotics corresponding to a smooth minimal critical
point, the result can easily be calculated when i and j are indeterminate parameters.

The Reluctant Case (a < 1, b < 1)

The analysis here is the same as in the balanced case, except that now the factors 1−x and 1−y,
which canceled with factors in the numerator when a = b = 1, appear in the denominator of
F (x, y, t). In particular, the smooth critical points defined by (x, y) = c±1 are still finitely minimal
by Lemma 128 and thus determine asymptotics.

The Transitional Cases (a = 1, b < 1) and (b = 1, a < 1)

The transitional cases are on the boundary between being reluctant and directed. When a = 1
and b < 1, the critical points with (x, y) = c±1 have an x-coordinate of modulus 1, however the
factor of 1 − x in the denominator cancels with a factor of 1 − x which becomes present in the
numerator when specializing a to 1 (meaning the critical points with (x, y) = c±1 are still finitely
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minimal smooth points). When b = 1 and a < 1, the factor of 1 − y in the denominator cancels
with a factor of 1 − y which becomes present in the numerator when specializing b to 1. After
this simplification, the same argument as in the balanced and reluctant cases applies.

Note also that this cancellation hints as to why the balanced, transitional and reluctant cases
have the same exponential growth but different critical exponents ↵. The smooth minimal critical
points are the same for each, but the order of vanishing of the numerator at the critical points is
2, 3 and 4 for balanced, transitional and reluctant models, respectively. Theorem 54 shows that
when the order of vanishing of the numerators increases one expects11 the critical exponent ↵ to
increase.

The Free Case
⇣p

b < a < b
⌘

In the free case there is exactly one minimal critical point, ρ = (1, 1, 1/Sa,b(1, 1)). This point
lies on the stratum V1,2,3 determined by the intersection of the three varieties V1,V2,V3. Because
of the restrictions on the weights, the numerator G does not vanish here and since ρ lies on a
complete intersection we can directly apply Theorem 118 from Chapter 9 to obtain

[tk]Q1,1(1, 1, t) =
(b− 1)(a2 − 1)(b− a2)(a2 − b2)

a4b3

✓
(b+ 1)(a2 + b)

ab

◆k

+O
⇣

⌧k
⌘

,

with ⌧ 2
⇣

0, (b+1)(a2+b)
ab

⌘

. Note that we determine dominant asymptotics up to an exponentially

smaller error term, instead of the typical case of a polynomially smaller error term.

The Axial Cases (a = b > 1) and
(
b = a2 > 1

)

The axial cases are on the boundary of the directed cases and the free case. Unfortunately, we
cannot use Theorem 118 on asymptotics in the case of a complete intersection as the numerator
of F vanishes at the minimal critical points under consideration. Luckily, we can decompose the
rational function under consideration into two simpler rational functions and analyze them.

When a = b > 1,

F (x, y, t) =
yt2(y − a)(a− x)(a+ x)(ay − x2)(y − x)(y + x)

(1− txyS(x, y))(1− x)(1− y)

11As seen in previous examples, the order of vanishing of the numerator gives a bound on, but does not completely
determine, the critical exponent. For instance, when the numerator of F (x, y, t) vanishes to order 4 at a minimal
critical smooth point the critical exponent could be as low as ↵ = 3, but in the case of balanced walks it is ↵ = 5,
which does not have an immediate explanation.
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and F admits the minimal critical point (1, 1, 1/S(1, 1)). Because we cannot analyze this directly
we write y − x = (1− x)− (1− y) and see that

F (x, y, t) =
yt2(y − a)(a− x)(a+ x)(ay − x2)(y + x)

(1− txyS(x, y))(1− y)
| {z }

F1(x,y,t)

− yt2(y − a)(a− x)(a+ x)(ay − x2)(y + x)

(1− txyS(x, y))(1− x)
| {z }

F2(x,y,t)

.

As the diagonal operator is linear, we can obtain the desired asymptotics by studying ∆F1 and
∆F2. Following the same argument as above, and using the critical point equations, shows that
F1 admits the minimal critical points with (x, y)-coordinates c±13 = (±pa, 1) while F2 admits the
minimal critical point ρ = (1, 1, a/(1+a)2) with (x, y)-coordinates c12 = c123. Thus, the diagonal
of F2 will have larger exponential growth than the diagonal of F1, so the diagonal of F2 determines
dominant asymptotics of the original diagonal sequence. At the minimal critical point ρ,

rlog(H1)(ρ) =

✓

− 2

1 + b
,−1,−1

◆

rlog(H2)(ρ) = (−1, 0, 0),

so that 1 2 N(ρ) and asymptotics can be determined using Theorem 120 as the numerator of F2

does not vanish at ρ under these weight restrictions.

When b = a2 the argument is analogous except that the numerator contains y − x2 = (1 −
x)(1 + x) − (1 − y) as a factor, and this is used to decompose the diagonal into a sum of two
simpler diagonals which are then analyzed.

When the numerator is parametrized by i and j, it is still true that there exist polynomials
Gi,j

1 (x, y) and Gi,j
2 (x, y) such that the numerator Gi,j(x, y) of the rational function whose diagonal

encodes Qi,j
a,b(x, y) can be written

Gi,j(x, y) = (1− x)Gi,j
1 (x, y) + (1− y)Gi,j

2 (x, y).

It is hard to determine these polynomials explicitly, but dominant asymptotics of the diagonal
sequence depends only on their evaluations at x = y = 1. By L’Hôpital’s rule, these evaluations
are given by

Gi,j
1 (1, 1) = lim

x!1

Gi,j(x, 1)

1− x
= −(@Gi,j/@x)(1, 1) Gi,j

2 (1, 1) = lim
y!1

Gi,j(1, y)

1− y
= −(@Gi,j/@y)(1, 1).

The Directed Cases (a > 1, a > b) and
⇣

b > 1,
p
b > a

⌘

In the directed cases, the minimal critical points lie on strata defined by the intersection of two
smooth varieties. These points are not finitely minimal, and the numerator of F (x, y, t) vanishes,
meaning Theorem 120 only allows for a bound on dominant asymptotics. Assuming the form of
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the quasi-local cycles around each of the minimal critical points which arise from the multivariate
residue theory allows us to conjecture dominant asymptotics. These conjectured asymptotics
match numerical calculations.

For example, when a > 1 and a > b there is a strictly minimal critical point

ρ =

✓

1,
b

a
,

a2

b(a+ 1)2

◆

,

which is a transverse multiple point lying in the stratum V12. The multivariate residue theory
used by Pemantle and Wilson, summarized at the end of Chapter 9, shows the existence of a
one-dimensional chain of integration σ ⇢ V(H1, H2) containing the point ρ such that

[tk]Qa(1, 1, t) =
1

2⇡i

Z

σ

G(1, y)S(1, y)k

1− y

dy

y
.

Assuming we can take

σ =
n

(b/a)ei✓, ✓ 2 (−✏, ✏)
o

for ✏ sufficiently small, we obtain

[tk]Qa(1, 1, t) =
S(1, a/b)k

2⇡

Z

(−✏,✏)

G
(
1, (b/a)ei✓

)

1− (b/a)ei✓
e−nφ(✓)d✓,

with
φ(✓) = − logS

⇣

1, (a/b)e−i✓
⌘

+ logS (1, a/b) .

An application of Proposition 53 then yields the conjectural asymptotics of Table 11.1. Further-
more, the integral expression appearing here is very similar to the expressions obtained for the
(reluctant, transitional, and balanced) cases with smooth minimal critical points, raising the hope
for a more uniform understanding of the transitions in asymptotics between universality classes.

This gives hope that, once the quasi-local chains of integration which arise are better under-
stood, these conjectured asymptotics can be proven and a more uniform treatment of all the cases
presented here could be possible.

The exponential growth of these models can be obtained rigorously using Theorem 1 of Garbit
and Raschel [113]. We study connections between the probabilistic approach of that paper and
our ACSV approach at the end of this chapter.

Excursion Asymptotics

As usual, we also obtain a rational diagonal expression for the generating function Qi,j
a,b(0, 0; t)

counting walks beginning and ending at the origin, which has the smooth singular variety V(H1).
There are always two minimal critical points, characterized by (x, y) = c±1 = (±a, b), which are
finitely minimal by Lemma 128. Thus, Corollary 55 gives the following result.
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Theorem 129. For any non-negative weights a, b > 0, the number of excursions of length k has
dominant asymptotics

e(i,j)!(0,0)(k) =

(
4k

k5

⇣
128(j+1)(1+i)(3+i+2j)(2+i+j)

aibj⇡
+O

(
1
k

)⌘

if k + i ⌘ 0 (mod 2),

0 if k + i ⌘ 1 (mod 2).

11.3 General Central Weightings

We now turn our considerations to general centrally weighted models. Let S ⇢ Zn be a finite step
set and for s 2 S let ⇡j(s) = sj be its jth coordinate. Given an assignment of positive weights
a = (as)s2S to each step in S we define the following.

Definition 130. The weighting a is central for the non-negative orthant Nn if the weight of any
(weighted) path in Nn using the steps in S depends only on the length, start and end points of the
path.

A step set S ⇢ Zn is called singular12 if its steps lie in a half-space of Zn. We will prove
several equivalent characterizations of central weightings on non-singular step sets.

Theorem 131. Let S ⇢ Zn be a finite non-singular step set. A weighting a of S is central if and
only if either of the following equivalent statements holds:

(i) For every point i 2 Nn and k 2 N, each walk of length k in Nn starting at the origin and
ending at i has the same weight;

(ii) There exist constants ↵1, . . . ,↵n and β such that the weight assigned to any step s 2 S has

the form as = β
Qn

j=1 ↵
⇡j(s)
j .

The hardest implication to prove in Theorem 131 is (i) ) (ii). This will require introducing
another condition which takes some setup to state (see Proposition 136) so the proof will be given
in Section 11.3.2. In probability theory, the weights as given in (ii) constitute an exponential
change (sometimes called a Cramér transform) of the uniform weights on S.

Example 132. The weight assignment given in Figure 11.1 for the Gouyou-Beauchamps model
defines a central weighting, which corresponds to setting ↵1 = a, ↵2 = b and β = 1 in Theorem 131.
We have lost a degree of freedom by setting β = 1 but, as previously mentioned, to determine
asymptotics with arbitrary β using Theorem 124 it is sufficient to multiply the right-hand side of
Equation (11.1) by βk. /

12For example, the two-dimensional step sets

are singular.
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Note that Condition (ii) can also be expressed in a matrix form. Let S = {s1, . . . , sm} and
define the matrix

MS :=

0

B
B
B
@

⇡1(s1) ⇡2(s1) · · · ⇡n(s1) 1
⇡1(s2) ⇡2(s2) · · · ⇡n(s2) 1

...
...

. . .
...

...
⇡1(sm) ⇡2(sm) · · · ⇡n(sm) 1

1

C
C
C
A

. (11.11)

Then the weighting a satisfies Condition (ii) in Theorem 131 if and only if there exist constants
↵1, . . . ,↵n and β such that

0

B
B
B
@

log(as1)
log(as2)

...
log(asm)

1

C
C
C
A

= MS

0

B
B
B
@

log(↵1)
...

log(↵n)
log(β)

1

C
C
C
A

.

Lemma 133. If S ⇢ Zn is a finite non-singular step set, then the rank of the matrix MS defined
by Equation (11.11) is n+ 1.

Proof. As MS has n + 1 columns, its rank is at most n + 1. Suppose that the rank of MS is at
most n, and let l be the minimum of the rank of MS and m = |S|.

Then l 6 n and there exist l steps t1, . . . , tl such that the span of the vectors

(tj , 1) = (⇡1(tj), . . . ,⇡n(tj), 1), j = 1, . . . , l,

contains (s, 1) for all s 2 S. In other words, every step s 2 S belongs to the set

A =

8

<

:

lX

j=1

qjtj

∣
∣
∣
∣
∣
∣

(q1, . . . , ql) 2 Rl with
nX

j=1

ql = 1

9

=

;
.

The set A is an affine hyperplane contained in the linear span of {tj}j2{1,...,l}, so it is an affine
subspace of Rn of dimension at most n− 1. Therefore A ⇢ Rn, and thus also S, is contained in a
half-space, contradicting the fact that S is non-singular.

Note, in particular, that any non-singular step set contains at least n+ 1 steps.

11.3.1 Another Definition of Central Weightings

Lemma 133 has a direct combinatorial interpretation in terms of lattice paths.

Proposition 134. Given a non-singular step set S ⇢ Zn, there exists a set T ⇢ S of n+1 steps
such that for every s 2 S \ T there exist two paths ps and p0s in Zn (not necessarily Nn) where:
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• ps and p0s begin at the origin, and have the same length and endpoint;

• ps contains s as a step, with all its other steps belonging to T ;

• p0s uses only steps in T .

See Figure 11.5 below for a pictorial example.

Example 135. Consider the Gouyou-Beauchamps model with the set T = {(1, 0), (−1, 0), (1,−1)}.
For s = (−1, 1) we can choose ps to be the concatenation of (−1, 1) and (1,−1), and p0s to be the
concatenation of (1, 0) and (−1, 0). /

Proof. By Lemma 133, the rank of MS is n+1, hence we can find a set of steps T = {t1, . . . , tn+1}
such that the span of the vectors (tj , 1) contains (s, 1) for every s 2 S. Furthermore, as each vector
(s, 1) has integer coefficients it can be written as a linear combination of the (t, 1) vectors with
rational coefficients. Clearing denominators and reorganizing terms according to their signs gives
an equation of the form

rs · (s, 1) +
n+1X

j=1

rs,tj · (tj , 1) =
n+1X

j=1

r0s,tj · (tj , 1), (11.12)

where rs and the rs,tj , r
0
s,tj

are non-negative integers and rs > 0. We can take ps to be any path
formed by rs copies of the step s and rs,tj copies of each step tj , and p0s to be any path formed
by r0s,tj copies of each step t0j . Examining the last coordinate of Equation (11.12) shows that

rs + rs,t1 + · · · rs,tn+1 = r0s,t1 + · · ·+ r0s,tn+1
,

meaning these paths have the same length.

We can finally give our last characterization of a central weighting.

Proposition 136. Consider a finite non-singular step set S ⇢ Zn, along with a set T and
|S| − |T | = |S| − n− 1 corresponding pairs of paths (ps, p

0
s)s2S\T described by Proposition 134.

A weighting a = (ar)r2S is central if and only if

(iii) for every s 2 S \ T , the weights satisfy
Y

r2ps
ar =

Y

r02p0s
ar0 , (11.13)

where the steps are considered with multiplicity inside each product.

Example 137. Taking the set T , step s, and paths ps, p
0
s given in Example 135 for the Gouyou-

Beauchamps model, Proposition 136 gives

a−1,1 ⇥ a1,−1 = a1,0 ⇥ a−1,0.
/
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11.3.2 Proof of Theorem 131 and Proposition 136

Proof. Definition 130 ⇒ (i). This implication is trivial as Condition (i) is a restriction of
Definition 130 to the case where walks begin at the origin.

(i) ⇒ (iii). Since S is non-singular, we can find a path starting at the origin and ending at a point
arbitrarily far from both the x- and y-axes. Thus, we can pick some path p using the steps
in S such that for every s 2 S \ T the concatenation of p and ps and the concatenation of p
and p0s stay in Nn. Condition (i) implies that the weights of these two walks are equal, which
implies that the products of the weights in ps and p0s are equal, giving Equation (11.13).

(iii) ⇒ (ii). Assume that Equation (11.13) holds. We will prove that the image of the matrix
MS defined by Equation (11.11) is equal to the set

E =

8

<

:
(ys)s2S

∣
∣
∣
∣
∣
∣

8s 2 S \ T ,
X

r2ps
yr =

X

r02p0s
yr0 (sums considered with multiplicity)

9

=

;
.

A vector (ys)s2S in Im(MS) can be parametrized as

ys = xn+1 +

nX

i=1

⇡i(s)xi

for s 2 S and indeterminates xi. For any path q on the steps in S, the coefficient of xn+1

in the sum
P

r2q yr is the length of q, while the coefficient of xk for 1 6 k 6 n is the kth
coordinate of the endpoint of q. As the paths ps and p0s coincide at their endpoints and
have the same length for every s 2 S \ T , we see that (ys) belongs to E. In other words,
Im (MS) ✓ E.

The equality Im (MS) = E follows from considering the dimensions of these linear spaces.
On one hand, the dimension of Im (MS) is n + 1 by Lemma 133. On the other hand, the
dimension of E is also n+ 1 since it is the intersection of the |S| − n− 1 hyperplanes

X

r2ps
yr −

X

r02p0s
yr0 = 0, s 2 S \ T

where the hyperplane defined by ps is the only one containing the coordinate ys (by the con-
ditions listed in Proposition 134). Therefore, Im (MS) = E. Applying logarithms to (11.13)
shows that (log(as))s2S belongs to E, and thus to Im (MS), so that there exist constants
↵1, . . . ,↵d and β satisfying Condition (ii) of Theorem 131.

(ii) ⇒ Definition 130. Let w be a walk of length k in Nn beginning at the point i and ending
at the point j, and for each step s 2 S let rs(w) denote the number of copies of s in w.
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Figure 11.5: Given the step set S = {(2, 2), (1, 1), (−1, 0), (0, 1)}, the black and white paths
satisfy the conditions of Proposition 134. Note that they encode the left- and right-hand sides of
Equation (11.14), respectively.

Assuming Condition (ii) of Theorem 131, the weight of w is

Y

s2S
a
rs(w)
s = β

P

s2S rs(w)
nY

l=1

↵

P

s2S ⇡l(s) rs(w)

l = βk
nY

l=1

↵
jl−il
l

which depends only on i, j, and k, therefore the weighting a is central.

11.3.3 An Example and Generalization

We illustrate how these results allow one to efficiently characterize central weightings of a step set
by way of an example.

Example 138. Consider the (non-small) step set S = {(2, 2), (1, 1), (−1, 0), (0, 1)}. Taking the
set T = {(1, 1), (−1, 0), (0, 1)} and s = (2, 2), we define the path ps to be the sequence of steps
(−1, 0), (2, 2), (2, 2), (2, 2), (0,−1) and p0s to be five copies of the step (1, 1). This pair of paths
satisfies the hypotheses of Proposition 134, so Proposition 136 implies all central weightings on
these steps satisfy

a−1,0a
3
2,2a0,−1 = a51,1. (11.14)

Figure 11.5 shows the paths ps and p0s. We can compute ↵1,↵2, and β in terms of a2,2, a0,−1, and
a1,1 by solving the system

0

B
B
@

2 2 1
1 1 1
−1 0 1
0 −1 1

1

C
C
A

0

@

log(↵1)
log(↵2)
log(β)

1

A =

0

B
B
@

log(a2,2)
log(a1,1)
log(a−1,0)
log(a0,−1)

1

C
C
A
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to find
↵1 = a22,2 a0,−1/a

3
1,1, ↵2 = a21,1/a2,2 a0,−1, β = a21,1/a2,2.

/

For a fixed step set S, i, j 2 Nn, and k 2 N we let Wi!j(k) denote the set of walks on the
steps in S from i to j. If a is a positive weighting of the steps in S then the weighted probability
of w 2 Wi!j(k) under a is

Pra(w) =

Q

s2w as
P

w02Wi!j(k)

Q

s02w0 as0
.

Theorem 131 can be generalized, enabling us to define equivalence classes among weighted models
of walks.

Theorem 139. Let S ⇢ Zn be a finite non-singular step set and consider two positive weightings
(as)s2S and (a0s)s2S of S. Then the following statements are equivalent:

(i) The weighted probability of any path in Nn starting at the origin is the same under (as) and
(a0s);

(ii) There exist constants ↵1, . . . ,↵n and β such that the weight assigned to each step s 2 S has

the form as = a0s β
Qn

j=1 ↵
⇡j(s)
j ;

(iii) If (ps, p0s)s2S\T denote pairs of paths satisfying Proposition 134, then for every s 2 S \ T ,

Y

r2ps

ar
a0r

=
Y

r02p0s

ar0

a0
r0
, (11.15)

where the steps are considered with multiplicity.

Two weightings of S are said to be equivalent if they satisfy one of the above statements.

Every walk of length k between any two fixed points has the same weight (and thus prob-
ability) when all weights are 1, so a central weighting is a weighting that is equivalent to the
unweighted model (1)s2S . The proof of Theorem 139 is very similar to the proof of Theorem 131
and Proposition 136, but we sketch it here.

Proof. (i) ⇒ (iii). Again, since S is non-singular we can find a path starting at the origin and
ending at a point arbitrarily far from both the x- and y-axes to which we can append both
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ps and p0s and stay in Nn, which implies
Q

r2ps ar
P

w02Wi!j(k)

Q

s02w0 as0
=

Q

r2ps a
0
r

P

w02Wi!j(k)

Q

s02w0 a0s0
Q

r02p0s ar0P

w02Wi!j(k)

Q

s02w0 as0
=

Q

r02p0s a
0
r0

P

w02Wi!j(k)

Q

s02w0 a0s0

so that Y

r2ps

ar

a0r
=

Y

r02p0s

ar0

a0
r0
.

(iii) ⇒ (ii). Condition (ii) of Theorem 139 holds if and only if there exist ↵1, . . . ,↵n,β such that
0

B
B
B
@

log(as1/a
0
s1
)

log(as2/a
0
s2
)

...
log(asm/a

0
sm

)

1

C
C
C
A

= MS

0

B
B
B
@

log(↵1)
...

log(↵n)
log(β)

1

C
C
C
A

,

where S = {s1, . . . , sm} and MS is the matrix defined by Equation (11.11). As MS does not
depend on any weights, it is still true that its image is the set

E =

8

<

:
(ys)s2S

∣
∣
∣
∣
∣
∣

8s 2 S \ T ,
X

r2ps
yr =

X

r02p0s
yr0 (sums considered with multiplicity)

9

=

;
.

Applying logarithms to (11.15) shows that (log(asj/a
0
sj
))j=1,...,m belongs to E, and thus to

Im (MS).

(ii) ⇒ (i). For any w 2 Wi!j(k) recall that rs(w) denotes the number of times the step s occurs
in w, and note that

Y

s2w

0

@β

nY

j=1

↵
⇡j(s)
j

1

A = βk
nY

l=1

↵

P

s2S ⇡l(s) rs(w)

l = βk
nY

l=1

↵
jl−il
j

does not depend on w. Thus, assuming Condition (ii), the probability of w under the
weighting a satisfies

Q

s2w as
P

w02Wi!j(k)

Q

s02w0 as0
=

Q

s2w a0s
⇣

β
Qn

j=1 ↵
⇡j(s)
j

⌘

P

w02Wi!j(k)

Q

s02w0 a0s0
⇣

β
Qn

j=1 ↵
⇡j(s0)
j

⌘

=

Q

s2w a0s
P

w02Wi!j(k)

Q

s02w0 a0s0
,
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which is the probability of w under the weighting a0.

11.3.4 Generating Function Relations

One of the motivations for introducing central weightings is that they induce very simple relations
between the generating functions of a centrally weighted model and an unweighted model (or, more
generally, between equivalent weightings of a step set). Recall the weighted generating function
Qa(z, t) counting walks beginning at the origin and staying in Nn.

Proposition 140. Let a and a0 be equivalent weightings on a finite non-singular step set S. Then
there exist constants ↵1, . . . ,↵n,β > 0 such that

Qa(z, t) = Qa0(↵1z1, . . . ,↵nzn,βt). (11.16)

Proof. Theorem 139 implies the existence of constants ↵1, . . . ,↵n,β such that as = a0sβ
Qn

j=1 ↵
⇡j(s)
j

for all s 2 S. Then for (i, k) 2 Nn+1,

[zitk]Qa(z, t) =
X

w walk ending
at i of length k

 
Y

s2S
a
rs(w)
s

!

=
X

w walk ending
at i of length k

Y

s2S

2

4a0sβ
nY

j=1

↵
⇡j(s)
j

3

5

rs(w)

=
X

w walk ending
at i of length k

"
Y

s2S

(
a0s
)rs(w)

#

βk
nY

j=1

↵

P

s2S rs(w)⇡j(s)

j

=
X

w walk ending
at i of length k

"
Y

s2S

(
a0s
)rs(w)

#

βk
nY

j=1

↵
ij
j

= [zitk]Qa0(↵1z1, . . . ,↵nzn,βt).

From this quick observation, we obtain the following result.

Corollary 141. The multivariate generating functions for any equivalent weightings with rational
weights are either both D-finite or both non-D-finite.

The generating function for weighted excursions under a weighting a is given by Qa(0, t).
Proposition 140 and Theorem 139 then imply the following.

207



Family 1a Family 1b Family 2a Family 2b

Family 3a Family 3b Family 4a Family 4b

2

2

2

2

Figure 11.6: Equivalence class representatives corresponding to the families of walks with D-finite
generating functions given by Kauers and Yatchak [149]; unlabeled steps have weight 1. Steps in
red denote one choice of the set T ⇢ S in Theorem 139.

Corollary 142. Given two equivalent weightings a and a0 on a finite non-singular step set S there
exists β > 0 such that the number of weighted excursions ea(k) and ea0(k) of length k under each
weighting satisfy

ea(k) = βk ea0(k).

The fact that the asymptotics of centrally weighted Gouyou-Beauchamps excursions given in
Theorem 129 do not depend on a and b (once i and j are specialized to 0) was derived by an
ACSV analysis, but also follows from this result.

11.3.5 Finding Families of D-Finite Models

Corollary 141 illustrates how to derive a family of models with D-finite generating functions
from one non-singular model with D-finite generating function. In a recent paper, Kauers and
Yatchak [149] use Gröbner Basis techniques to calculate all two-dimensional quarter plane models
with short steps having a finite group of order at most 8 (note that the group of a model must
have even order).

These models, which Kauers and Yatchak show to have D-finite generating functions, fall
into a finite number of families which are described by relations of the form appearing in Equa-
tion (11.15). In fact, with the exception of the models which have a group of order 4 (the smallest
order possible) the families of walks described in their paper correspond to equivalence classes
associated to fixed models (the family of models having order 4 fall into an infinite number of
equivalence classes). Representatives for the families of models with groups of orders 6 and 8 are
shown in Figure 11.6.

In addition to determining the models with groups of size at most 8, Kauers and Yatchak
performed a computational search for models with larger groups among those having steps with
weights 1, 2, and 3. This search found only 3 models, all of which admit groups of order 10.
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Using Theorem 139 we are thus able to determine three families of weighted models with D-finite
generating functions corresponding to the equivalence classes of weightings generated by these 3
models. For example, one of these models is the weighted step set

2

2

where the unlabeled (skinny) steps have weight 1. Taking the set T in Theorem 139 to be the
steps coloured red, we can calculate that the equivalence class corresponding to this step set is
defined by

a0,−1 =
a0,1a

2
−1,0

2a2−1,1

, a1,−1 =
a2−1,0a

2
0,1

4a3−1,1

, a1,0 =
a−1,0a

2
0,1

2a2−1,1

, a1,1 =
a20,1

4a−1,1
,

where a0,1, a−1,0, and a−1,1 are free parameters. Although not included in their paper, Kauers
and Yatchak are able to computationally derive the expressions for the weights defining these
equivalence classes13.

11.3.6 A Conjecture About the Converse

A natural question is whether the converse of Proposition 140 also holds; that is, if Equa-
tion (11.16) is satisfied by two positive weightings, must they be equivalent. This is not clear, and
we formulate the following conjecture.

Conjecture 143. Let S ⇢ Zn be a finite non-singular step set and a and a0 be two positive
weightings of the steps of S. If there exist constants ↵1, . . . ,↵n and β such that

Qa(z, t) = Qa0(↵1z1, . . . ,↵nzn,βt),

then a and a0 are equivalent, and as = a0sβ
Qn

j=1 ↵
⇡j(s)
j for all s 2 S. In particular, if Qa(z, t) =

Q(↵1z1, . . . ,↵nzn,βt) then the weighting a is central.

The statement on central weightings in Conjecture 143 was proven for certain types of random
walks in root systems of Lie algebras by Lecouvey and Tarrago [168]. Further discussion about
this conjecture can be found in the article [78] on which this Chapter is based, but is not our
focus here.

13Personal communication from Manuel Kauers.
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11.3.7 General Universality Classes

We now discuss how to generalize the universality classes discussed above for centrally weighted
Gouyou-Beauchamps models. As there are models with non-D-finite generating functions, one
cannot use rational diagonal asymptotics in the general case. Our discussion relies on a conjecture
of Garbit, Mustapha, and Raschel [112] for critical exponents of weighted non-singular models in
cones, following work of Garbit and Raschel [113] which proved formulas for the exponential
growth of general non-singular models in cones. The results of Section 11.1 prove this conjecture
for centrally weighted Gouyou-Beauchamps models (except for the Directed case), providing strong
evidence for its truth and illustrating possible connections between the very general probabilistic
approach and the more fine-tuned ACSV approach (which usually allows for stronger results, like
leading asymptotic constants, in the cases where it applies).

The conjecture of Garbit, Mustapha and Raschel

Let S ⇢ Z2 be a non-singular finite step set and let (ai,j)(i,j)2S be a non-negative weighting with
weighted characteristic polynomial Sa(x, y).

Remark 144. The conjecture of Garbit, Mustapha and Raschel is formulated in terms of the
Laplace transform La(x, y) =

P

(i,j)2S ai,je
ix+jy, but in order to be consistent with our previous

notation we state it in terms of Sa(x, y). Observe that these functions are linked by the relation
Sa(x, y) = La(ln(x), ln(y)), so the translation is straightforward.

As S is non-singular, Sa(x, y) has a unique positive critical point14 (xc, yc) that satisfies

(@Sa/@x)(xc, yc) = (@Sa/@y)(xc, yc) = 0;

note that the critical point is a function of the weights. For the Gouyou-Beauchamps model with
weights given by Figure 11.1, we have (xc, yc) =

(
a−1, b−1

)
. We define the covariance factor

c =
(@2Sa/@x@y)(xc, yc)

p

(@2Sa/@x@x)(xc, yc) · (@2Sa/@y@y)(xc, yc)
. (11.17)

The value of c is used to determine the exponential growth, and also appears in the conjectured
formula for the critical exponent. When we consider only central weightings, the value of c in
Equation (11.17) does not depend on the weights ai,j . For example, every centrally weighted

Gouyou-Beauchamps model has c = −
p
2
2 .

14This is well known in the unweighted case: see, for instance, Bostan et al. [44, Theorem 4] or Denisov and
Wachtel [89, Section 1.5]. The case of a centrally weighted model follows from the fact that Sa(x, y) = βS(ax, by)
for positive constants β, a, b.
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Lemma 145. For any non-singular centrally weighted model, the covariance factor c in (11.17)
does not depend on the weights.

Proof. Let S be a non-singular centrally weighted model. By Theorem 131, the weight assigned
to each step (i, j) 2 S has the form ai,j = βaibj and we may assume a, b,β > 0 as ai,j > 0 (if
they are not positive, replace a, b, and β with their absolute values). If (xc, yc) is the critical
point of S(x, y) =

P

(i,j)2S xiyj and (x0c, y
0
c) is the critical point of Sa(x, y) = βS(ax, by), then

(x0c, y
0
c) =

(
xc
a ,

yc
b

)
. Thus,

(@2Sa/@x@y)(x
0
c, y

0
c) = abβ(@2S/@x@y)(xc, yc), (@2Sa/@x@x)(x

0
c, y

0
c) = a2(@2S/@x@x)(xc, yc),

(@2Sa/@y@y)(x
0
c, y

0
c) = b2(@2S/@y@y)(xc, yc),

and the result follows immediately upon substituting this into the formula (11.17) for c.

Let Q be the set15

Q =
{
(x, y) 2 R2

∣
∣ x > 1 and y > 1

 
.

Garbit and Raschel [113] show that the exponential growth of a model’s asymptotics is determined
by (x⇤, y⇤), the minimum of the characteristic polynomial Sa on Q:

Sa(x
⇤, y⇤) = min

(x,y)2Q
Sa(x, y).

The minimizing point is seen to be unique by strict convexity [113, Section 2.3] of the Laplace
transform La(x, y). The minimum is achieved at the critical point (xc, yc) when this point is in
Q, otherwise it is achieved on the boundary of Q. The conjecture of Garbit, Mustapha, and
Raschel [112] states that the critical exponent of a model can also be determined from the point
(x⇤, y⇤).

Conjecture 146 (Garbit et al. [112]). Suppose that S ⇢ Z2 is a non-singular step set. Then
[tk]Q(1, 1; t) has exponential growth and critical exponent defined by Table 11.3.

Table 11.3 allows us to define universality classes for general centrally weighted models (on
non-singular step sets) using the unique minimizer of Sa(x, y) on Q. For the centrally weighted
Gouyou-Beauchamps models, p1 = ⇡/ arccos(

p
2/2) = 4 and the different regions of universality

classes denoted here match our alternative definition in Section 11.1.

Duraj [94] has proven the asymptotics listed in Table 11.3 when the point (x⇤, y⇤) lies in the
interior of Q, which corresponds to a reluctant universality class.

15The set Q is the image of the quarter plane (R>0)
2 under the transformation (x, y) 7! (ex, ey), coming from

the fact that the results of Garbit and Raschel [113] and Garbit et al. [112] minimize the Laplace transform La

instead of the characteristic polynomial Sa. For a walk confined to a more general cone K, one must compute the
minimum of the characteristic polynomial on the image of the dual cone K⇤ under the map (x, y) 7! (ex, ey). Note
that the quarter plane is self-dual.
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rS(x∗, y∗) = 0
(i.e., (x∗, y∗) = (xc, yc))

(@S/@x)(x∗, y∗) = 0 or
(@S/@y)(x∗, y∗) = 0

(@S/@x)(x∗, y∗) > 0
and

(@S/@y)(x∗, y∗) > 0

(x∗, y∗) = (1, 1) S(1, 1)k k−p1/2

balanced
S(1, 1)k k−1/2

axial
S(1, 1)kk0

free

x∗ = 1 or y∗ = 1 S(xc, yc)
k k−p1/2−1

transitional

min{S(x1, 1), S(1, y1)}k k−3/2

directed
(not possible)

x∗ > 1 and y∗ > 1 S(xc, yc)
kk−p1−1

reluctant
(not possible) (not possible)

Table 11.3: Values of the exponential growth and conjectured values of the critical exponent for
two-dimensional models in N2. Here (xc, yc) is the unique positive critical point of the char-
acteristic polynomial Sa(x, y), Sa(x, 1) is minimized at x1, Sa(1, y) is minimized at y1, and
p1 = ⇡/ arccos(−c) where c is the covariance factor. By ‘or’ we mean one condition or the
other, but not both.

11.3.8 Connecting Back to ACSV

In Section 11.2 we saw that the generating function of the Gouyou-Beauchamps model has a
strong structure coming from its representation as a rational diagonal, which allowed us to deter-
mine asymptotics. Since we have rational diagonal expressions for all transcendentally D-finite
two-dimensional models with short steps in the quarter plane, it should be possible to verify
Conjecture 146 using the techniques of analytic combinatorics in several variables.

In fact, when we can write the weighted generating function Qa,b(1, 1, t) as the diagonal of
a rational function Fa,b(x, y, t), there is often a direct translation from the conditions listed in
Table 11.3 to properties of the singular variety of Fa,b.

Universality Classes of Highly Symmetric Models

Let S be one of the 4 highly symmetric two-dimensional models with short steps studied in
Chapter 7. Applying the kernel method shows that the generating function Qa,b(1, 1, t) of a
central weighting16 defined by ai,j = aibj for (i, j) 2 S can be expressed as

Qa,b(1, 1, t) = ∆

✓
(x2 − a2)(y2 − b2)

a2b2(1− txySa,b(x, y))(1− x)(1− y)

◆

,

where Sa,b is the weighted characteristic polynomial of the model. Defining

H1 = 1− txySa,b(x, y), H2 = 1− x, H3 = 1− y,

16Note that the weightings allowed in Chapter 7, which assign weights in a manner which is symmetric over every
axis, are not in general central weightings (and central weightings do not typically have this symmetry property).
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we take our usual stratification of the singular variety and note that the only critical points
occur on the strata V1,V12,V13,V123 (as long as the corresponding factors in the denominator do
not cancel for specific choices of the weights a and b). The characterization of minimal points
given in Lemma 125 for weighted Gouyou-Beauchamps models still holds when the characteristic
polynomial Sa,b is changed to match the model under consideration. Thus, to find the minimal
point(s) giving the best upper bound |xyt|−1 on the exponential growth of the diagonal sequence,
it is sufficient to minimize

|xyt|−1 = Sa,b(x, y)

subject to the constraints 0 < x 6 1 and 0 < y 6 1 (except for special cases of the weights
where the factors H2 and H3 in the denominator may cancel). This is, of course, analogous to the
process of finding a minimizer of Sa,b(x, y) over the set Q = {x > 1, y > 1} in the probabilistic
approach.

Since H1 = 1− txySa,b(x, y), the condition

x(@H1/@x) = t(@H1/@t)

is equivalent to (@Sa,b/@x)(x, y) = 0 for non-zero x and y, and

y(@H1/@y) = t(@H1/@t)

can be expressed as (@Sa,b/@y)(x, y) = 0. If (xc, yc) is the unique critical point (in the calculus
sense) of Sa,b(x, y), then this shows the unique critical point of Fa,b (in the ACSV sense) on V1
with positive coordinates satisfies x = 1/xc and y = 1/yc, and this point is minimal when xc > 1
and yc > 1. Similarly, the unique critical point of Fa,b (in the ACSV sense) on V12 with positive
coordinates satisfies x = 1 and (@Sa,b/@y)(1, y) = 0. Analogous results hold for the critical points
on V13 and V123.

These arguments show that, for these models, the conditions defining the columns of Table 11.3
determine which strata contain minimal critical points minimizing |xyt|−1 on D (and should thus
determine diagonal coefficient asymptotics of Fa,b). The rows of that table then correspond to
special conditions on the weights a and b which cause the factors of H2 = 1− x and H3 = 1− y
to cancel with factors in the numerator, changing the critical exponent of asymptotics. Because
of their symmetries, each of the 4 highly symmetric models admit the unique critical points with
positive coordinates

c1 =

✓

a, b,
1

abSa,b(a, b)

◆

, c12 =

✓

1, b,
1

bSa,b(1, b)

◆

,

c13 =

✓

a, 1,
1

aSa,b(a, 1)

◆

, c123 =

✓

1, 1,
1

Sa,b(1, 1)

◆

,

on the strata V1,V12,V13,V123, respectively. The conditions defining universality classes determine
when these points are minimal, together with the order of vanishing of the numerator of Fa,b at
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these points. Furthermore, arguments mirroring those for the Gouyou-Beauchamps model above
show that c1 is a finitely minimal point. Thus, asymptotics can then be calculated using the
methods of Chapters 6 and 9, proving the conjecture of Garbit et al. for these models except
for the directed case where there are non-smooth non-finitely minimal critical points and the
numerator of Fa,b vanishes at these points.

In particular, the balanced (a < 1, b < 1), transitional (a = 1, b < 1 or a < 1, b = 1), and
reluctant (a < 1, b < 1) models admit smooth finitely minimal critical points, while the axial
(a = 1, b > 1 or a > 1, b = 1) and directed (a > 1, b < 1 or a < 1, b > 1) cases admit convenient
minimal points. Finally, the free case (a > 1, b > 1) corresponds to a minimal critical multiple
point where V forms a complete intersection.

Note that there may be other critical points with the same coordinate-wise moduli as the points
c1, c12, c13, c123, which must be accounted for in the standard way (by summing the contributions of
such points). These additional singularities do not figure into the probabilistic framework, which is
reflected in the fact that the probabilistic approach does not say anything about leading asymptotic
constants (or possible periodic behaviour of such terms). Explicit formulas for asymptotics can
be found in an accompanying Maple worksheet17.

Difficulties for the Remaining Models

Unfortunately, the analysis outlined above does not immediately generalize to all non-highly sym-
metric models with short steps in the quarter plane. For all positive drift, and some negative drift,
step sets which are symmetric over one axis, the generating function Qa,b(1, 1, t) for a centrally
weighted model can be represented as the diagonal of a rational function whose denominator has
the factors H1, H2, and H3 above, together with another factor equal to x2 + a2 or a2 + ax+ x2.
This complicates the analysis, and leads to the possibility that non-minimal critical points could
determine dominant asymptotics (although it may be possible to work around on a case-by-case
basis).

Rather then go through long and technical arguments for each of the remaining cases, current
work in progress is aimed at better understanding the quasi-local cycles which appear in the
multivariate residue approach to analytic combinatorics in several variables. Such an approach
should allow for a simpler and more uniform approach to lattice path asymptotics, as alluded to
at the end of Section 11.2. It is promising to see connections between probabilistic results which
hold very generally (even for models with non-D-finite generating functions) and the methods of
ACSV, which have the potential to give stronger conclusions when they apply. This link deserves
further study.

17Available at http://cs.uwaterloo.ca/~smelczer/ThesisCode.html.
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Chapter 12

Conclusion

I too have wholeheartedly pursued science passionately,
as one would a beloved woman. I was a slave, and sought
no other sun in my life. Day and night I crammed myself,
bending my back, ruining myself over my books; I wept
when I beheld others exploiting science for personal gain.
But I was not long enthralled. The truth is every science
has a beginning, but never an end – they go on for ever
like periodic fractions.1

Anton Chekhov, On the Road

We end by giving some perspectives on the above work, together with directions for future
research.

12.1 Effective Asymptotics

This thesis examines effective techniques in enumeration from the perspective of computer al-
gebra, giving the first complete algorithms and complexity results for the methods of analytic
combinatorics in several variables which work in any number of dimensions. Although most of
our assumptions on the rational functions which can be analyzed by these algorithms hold generi-
cally, there are still limitations to the asymptotics they can capture. In particular, our algorithms
can only represent asymptotic behaviour which is a finite sum of terms of the form C · (⇡k)↵ · ⇢k,
where C is an algebraic number, ↵ 2 Z/2, and ⇢ is algebraic.

As shown in Corollary 19, rational diagonal sequences can admit a much larger range of
asymptotic behaviour, and it is natural to wonder if it is decidable to determine asymptotics of

1Translation from the Russian by Ian Porteous in the Forward of Arnold et al. [9]

216



an arbitrary rational diagonal. From an algorithmic perspective, a natural next step is a general-
ization of the results in Chapter 8 to the non-smooth cases presented in Chapter 9. In addition
to dealing with stratifications of non-smooth varieties to determine critical points, efficient algo-
rithms which determine minimizers of |z1 · · · zn|−1 among minimal points of the singular variety
will be needed.

From a theoretical point of view, there are several ways the theory of ACSV can be en-
riched. Pemantle [203, Conjecture 2.11] makes a conjecture related to the properness2 of the
map h(z) = |z1 · · · zn|−1 on the singular variety of a rational function which, if true, would allow
the techniques of stratified Morse theory to be rigorously applied to the problem of determining
diagonal asymptotics. For example, this would give explicit representations of the quasi-local
cycles which can be taken for transverse multiple points in the residue approach to ACSV. Other
ways forward include examining rational diagonals which admit degenerate critical points, and
extending the types of singular behaviour at critical points which can be handled to determine
asymptotics.

Ultimately, one would also like to connect this study back to the more general problem of D-
finite coefficient asymptotics, perhaps through Christol’s conjecture that every globally bounded
D-finite function is a rational diagonal.

12.2 Lattice Path Enumeration

After an intense period of study, the problem of enumerating lattice walks in the quadrant admit-
ting short steps has more or less been solved for models with D-finite generating functions. Here
we have studied several generalizations of this topic, including variants of weighted walks and
walks in higher dimension. Although we were able to derive many asymptotic results, including
the first proof of the asymptotic conjectures of Bostan and Kauers, a better understanding of
the residue approach to ACSV should help give a simpler and more uniform approach to lattice
path asymptotics through rational diagonals (including proofs of the conjectured asymptotics for
boundary returns of positive drift models in Chapters 10 and the Directed models in Chapter 11).
Furthermore, the connection between probabilistic studies of walks in cones and lattice path enu-
meration discussed at the end of Chapter 11 could hint at a deeper connection between ACSV
and lattice path problems3.

Aside from their many applications, lattice path models are useful for studying the theory of
ACSV as they give a large family of concrete examples with a wide variety of behaviour. It is

2The methods of stratified Morse theory typically require the function h to be proper, meaning the inverse image
of any compact set is compact. This usually does not hold in the ACSV setting, but Pemantle [203, Conjecture
2.11] conjectured a weaker condition which would be sufficient for the purposes of ACSV.

3For instance, perhaps a generalization of the kernel method allows one to represent the generating functions of
some (conjecturally) non-D-finite lattice path models in the quarter plane as diagonals of (non-D-finite) meromor-
phic functions, to which the methods of ACSV could be applied.
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our hope that new applications will help guide the theory, and make it more accessible to a larger
audience. We conclude by discussing work currently in progress on this topic.

Almost Highly Symmetric Models

In Chapter 10 we gave a uniform diagonal expression for lattice path models which are symmetric
over one axis. In fact, much of this approach can be generalized to higher dimensional walks in
orthants which are symmetric over all but one axis. A step set S =⇢ {±1, 0}n \ {0} is called
almost highly symmetric if the characteristic polynomial

S(z) :=
X

i2S
zi

is invariant under the substitutions zr 7! zr for r = 1, . . . , n − 1. The group of transformations
which arises in the kernel method can be determined explicitly for these models, leading to a
uniform diagonal expression depending only on S(z). As in the two dimensional case, the analysis
of minimal critical points breaks down into two cases depending on whether more steps in S point
towards or away from the positive orthant. Unfortunately (as seen in the two dimensional case)
the zeroes of the Laurent polynomial [zn]S(z) give points in the singular variety, and this becomes
harder to deal with in higher dimensions. Again, a detailed study using the multivariate residue
approach to analytic combinatorics in several variables is needed, which is currently ongoing.

We also note that such a uniform study cannot be undertaken for models defined by step sets
which are symmetric over all but two axes.

Proposition 147. For every dimension n > 2 there exists a step set Sn ⇢ {±1, 0}n, which is
symmetric over all but two axes, such that the generating function of the lattice path model in the
non-negative orthant defined by S is non-D-finite (and therefore not a rational diagonal).

To prove Proposition 147, one can take the step set

S2 := {(−1,−1), (0,−1), (0, 1), (1, 0), (−1, 0)}
and define

Sn := S2 ⇥ {±1}n−2

for n > 3. Results of Bostan, Raschel, and Salvy [44] and Duraj [94] imply that the sequence
counting walks in the first quadrant using steps in S2 which begin at the origin and end anywhere
satisfies ak ⇠ Ck↵⇢k, where ↵ is irrational. If dk denotes the number of unrestricted Dyck paths
of length k, Example 32 shows that dk ⇠ (2/⇡)1/2k−1/22k, and a simple combinatorial argument
implies that the number of walks on the steps in Sn staying in the non-negative orthant is

ak · dn−2
k ⇠ C(2/⇡)n/2 · k↵−n/2−1 · (2n⇢)k.

As ↵−n/2− 1 is irrational, Theorem 10 shows that the coefficient sequence of a D-finite function
cannot have this asymptotic growth.
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Walks with Longer Steps

The kernel method for walks restricted to a quadrant, as presented in Chapter 4, requires models
with short steps in order to define the group G of birational transformations which fix the char-
acteristic polynomial S(x, y). Work of Bostan, Bousquet-Mélou, and Melczer [34], currently in
preparation, attempts to provide a framework for studying models with larger steps. We end with
an example from that work, which illustrates how rational diagonal expressions arise in a similar
manner to the short step case.

Example 148 (Bostan, Bousquet-Mélou, and Melczer [34]). Consider the quarter plane model
defined by the step set

S = {(1, 0), (−1, 0), (−2, 1), (0,−1)}.
Similar to the short step case, a recursive decomposition of a walk of length k into a walk of
length k−1 plus a single step implies that the multivariate generating function Q(x, y, t) marking
endpoint and length satisfies

K(x, y, t)Q(x, y, t) = 1− tx(1 + xy)Q(0, y, t)− txyQ1(y, t)− tyQ(x, 0, t), (12.1)

where Q1(y, t) = [x1]Q(x, y, t) and

K(x, y, t) = 1− t
X

(i,j)2S
xiyj = 1− t(x+ x+ x2y + y).

Because S contains steps with coordinates of modulus larger than 1, the construction of the group
G used in the short step case will not work here. Nonetheless, to solve this equation for Q(x, y, t)
we search for substitutions of the variables x and y which fix the kernel K(x, y, t) and change only
one unknown term on the right hand side of Equation (12.1).

The equation K(X, y, t) = K(x, y, t) admits three solutions X = x, x1, and x2, where

x1,2 =
x+ y ±

p

(x+ y)2 + 4x3y

2x2
.

Similarly, the equation K(x, Y, t) = K(x, y, t) admits the two solutions Y = y and x2y. Thus, we
have a collection

G = {(x, y), (x1, y), (x2, y), (x, x2y)}
of pairs of elements in the algebraic closure Q(x, y) such that K(x0, y0) = K(x, y) for all (x0, y0) 2 G.
Furthermore, for each (x0, y0) 2 G we can solve the equations

K(X, y0) = K(x0, y0, t) K(x0, Y ) = K(x0, y0, t)
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Figure 12.1: Visualization of the set G, where each vertex is an element (a, b) 2 G and another
vertex representing (c, d) 2 G is connected by a blue edge if a = c and a red edge if b = d.

to determine additional elements of Q(x, y)
2

fixing K(x, y, t) which differ from other members of
G in one coordinate only. This is done implicitly, using resultants, and repeated until the set G
stabilizes (if it does). For this example, G stabilizes in the set

G = {(x, y), (x1, y), (x2, y), (x, x2y), (−x̄1, x2y), (−x̄2, x2y),
(x1, x

2
1y), (−x, x21y), (−x̄2, x21y), (x2, x22y), (−x, x22y), (−x̄1, x22y)},

where xi = 1/xi.

Substituting these pairs into the kernel equation gives 12 equations with 14 unknown evalu-
ations of the unknown functions on the right hand side of Equation (12.1) (6 specializations of
Q(x, 0, t) and 4 specializations each of Q1(y, t) and Q(0, y, t)). Fortunately, there is still a linear
combination of these equations which kills all unknown functions on the right hand side. A (some-
what tedious) generating function argument then shows that the generating Q(x, y, t) is given by
the positive series extraction

Q(x, y, t) = [x>0][y>0]

(
x2 + 1

)
(x+ y) (y − x)

(
x2y − 2x− y

) (
x3 − x− 2 y

)

x7y3
(
1− t(x+ x+ x2y + y)

) ,

and Proposition 30 implies

Q(1, 1; t) = ∆

✓
(x2 + 1)(x2 + 2xy − 1)(2x3 + x2y − y)(y2 − x2)

x2y(1− x)(1− y)(1− t(x3 + x2y + xy2 + y))

◆

.
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This rational function admits the finitely minimal smooth critical points c1 =
(
3−1/2, 3−1/2, 3−1/2/2

)

and c2 =
(
−3−1/2,−3−1/2,−3−1/2/2

)
, and Corollary 55 allows one to calculate the dominant

asymptotic expansion

[tk]Q(1, 1, t) =
(2
p
3)k

k4

✓

Ck +O

✓
1

k

◆◆

,

where

Ck =

(
5616

p
3

⇡ : k even
9720
⇡ : k odd

.

/

The article of Bostan, Bousquet-Mélou, and Melczer [34] generalizes this argument and con-
ducts a systematic study of models in the quarter plane containing steps in {−2,±1, 0}2.
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Appendix A

Values of the Periodic Constant for

Gouyou-Beauchamps Walks

Here we list the function V [k](i, j) appearing in Theorem 124 for the different universality classes.

Balanced (a = b = 1)

V [k](i, j) =
8

⇡
· (i+ 1)(j + 1)(i+ j + 2)(i+ 2j + 3)

6
.

Free
⇣p

b < a < b
⌘

V [k](i, j) = a−(4+2i+2j)b−(2+2j)
((
a1+j − 1

) (
a1+j + 1

) (
a2+i+j − b2+i+j

) (
a2+i+j + b2+i+j

)
b−i−1

−
(
a2+i+j − 1

) (
a2+i+j + 1

) (
a1+j − b1+j

) (
a1+j + b1+j

))
.

Reluctant (a < 1, b < 1)

V [k](i, j) =
64

⇡(b− 1)4
· (1 + j)(1 + i)(3 + i+ 2j)(2 + i+ j)

aibj

✓
a2b2 + a2b− 4ab+ b+ 1

(a− 1)4

+(−1)k+i a
2b2 + a2b+ 4ab+ b+ 1

(a+ 1)4

◆

.

Axial 1 (a = b > 1)

V [k](i, j) =
b+ 1p
b⇡
·
⇣

(j + 1)
⇣

1− b−2(2+i+j)
⌘

+ b−i−1(i+ 2 + j)
⇣

b−2(1+j) − 1
⌘⌘

.

243



Axial 2
(
b = a2 > 1

)

V [k](i, j) =

p
2

a6
p
⇡
·
(
a6 − a−2i−4j

)
(1 + i) +

(
a2−2i−2j − a4−2j

)
(3 + i+ 2j).

Transitional 1 (a = 1, b < 1)

V [k](i, j) =
16

3⇡(1− b)2
· (j + 1)(i+ 1)(i+ 3 + 2j)(i+ 2 + j)b−j .

Transitional 2 (b = 1, a < 1)

V [k](i, j) =
8

3⇡
· a−i(j + 1)(i+ 1)(i+ 3 + 2j)(i+ 2 + j)

✓
1

(1− a)2
+

(−1)k+i

(1 + a)2

◆

Directed 1
⇣

b > 1,
p
b > a

⌘

(Conjectured)

V [k](i, j) =

p
2p
⇡b2
·
 

b3+i+2j(1 + i) +
(
b1+j − b2+i+j

)
(3 + i+ 2j)− i− 1

aibi/2+2j

!✓
1

(
p
b− a)2

+ (−1)i+k 1

(
p
b+ a)2

◆

.

Directed 2 (a > 1, a > b) (Conjectured)

V [k](i, j) =
(a+ 1)3

p
a

2
p
⇡(a− b)2

· (2 + i+ j)
(
a−2−j − aj

)
b−ja−1−i + (1 + j)

(
1− a−4−2i−2j

)
b−jaj .
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