
HAL Id: tel-01587718
https://theses.hal.science/tel-01587718v1

Submitted on 14 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent structures in game semantics
Simon Castellan

To cite this version:
Simon Castellan. Concurrent structures in game semantics. Logic in Computer Science [cs.LO].
Université de Lyon, 2017. English. �NNT : 2017LYSEN034�. �tel-01587718�

https://theses.hal.science/tel-01587718v1
https://hal.archives-ouvertes.fr


Numéro National de Thèse: 2017LYSENO34.

THÈSE DE DOCTORAT DE L’UNIVERSTÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École doctorale: 512
École doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat : Informatique
Discipline : Informatique fondamentale

Soutenue publiquement le 13/07/2017, par:
Simon Castellan

Structures concurrentes en
sémantique des jeux

Devant le jury composé de:

Hyland, Martin Professor at the University of Cambridge Rapporteur
Dal Lago, Ugo Professore Associoto all’Università di Bologna Rapporteur
Alglave, Jade Senior Lecturer at University College London Examinatrice
Curien, Pierre-Louis Directeur de Rercherche à l’Université Paris VII Examinateur
Winskel, Glynn Professor at the University of Cambridge Examinateur
Yoshida, Nobuko Professor at Imperial College London Examinatrice
Laurent, Olivier Directeur de Recherche à l’ENS de Lyon Directeur de thèse
Clairambault, Pierre Chargé de Recherche à l’ENS de Lyon Co-Encadrant

1



2

Remerciements et autres acknowledgements

Mais, vous savez, moi je ne crois pas qu’il y ait de bonne ou de mauvaise
situation. Moi, si je devais résumer ma vie aujourd’hui avec vous, je di-
rais que c’est d’abord des rencontres, Des gens qui m’ont tendu la main,
peut-être à un moment où je ne pouvais pas, où j’étais seul chez moi. Et
c’est assez curieux de se dire que les hasards, les rencontres forgent une
destinée...

Otis, sur la situation de thésard (Astérix et Obélix: Mission Cléopâtre)

I am immensely grateful to people who accompanied (be it simply for a very
short while) my way for the last three years. I have been extremely lucky and
honoured to be surrounded by such awesome and bienveillants people, who helped
me grow and taught me so much on a scientific level as well as on a personal level,
while being patient with my (numerous) mistakes.

Merci infiniment à Pierre pour m’avoir encadré et guidé mes premiers pas
dans la recherche – il y a près de six ans maintenant. Merci pour tout le temps que
tu as pu me consacrer ; des tableaux à craie du Milner alcove jusqu’à la relecture
approfondie et minutieuse des premières version de ma thèse pas toujours très
matures, en passant par d’innombrables discussions et aventures sur de multiples
continents. Merci à Olivier pour les nombreuses discussions scientifiques (en par-
ticulier sur les arcanes de la logique linéaire et de la géométrie de l’interaction)
toujours enrichissantes et les conseils précieux pour la rédaction ou les candida-
tures.

Thanks to Glynn for all the wonderful times in Cambridge. You taught me a
lot, on a scientific level as well as on a personal level. I am very grateful in par-
ticular to Pierre and you for my (social) integration during my first internship in
Cambridge where I was not treated as a master student but as a (young) researcher.

Many thanks to Martin and Ugo for accepting to review my manuscript and
get into the intricate details of concurrent games. Thanks to Martin for many
enlightening scientific discussions, and for having accepted to review my man-
uscript. To the members of my Jury: Nobuko Yoshida, Pierre-Louis Curien, and
Jade Alglave who listened to me exposing my work on weak memory models and
gave me insights for interesting problems to solve.

Merci à l’équipe Plume, une équipe qu’elle est bien pour y faire sa thèse :
merci à Colin pour son support et ses conseils, à Patrick et à Russ pour leur bien-
veillance, à Denis et Damien partenaires de badminton du midi. Un grand merci
à Daniel sans qui cette aventure n’aurait jamais démarrée, tout ça à cause d’une
question sur les inductions transfinies! Merci pour ta bonne humeur constante et
contagieuse.

Aux plus jeunes de l’équipe Plume : Paul, et sa jovialité toujours renouvelée,
Fabio & Jean-Marie, les cobureaux qui ont dit non aux postdocs et oui aux postes
permanents, à Aurore pour m’avoir fait découvrir le swing, à Guilhem.

Thanks to Anupam: sharing a flat with you was no dogmatic slumber.
Au LIP : merci à Laure pour me forcer à parler à des non-sémanticiens, aux

thésards : Fabrice, Matthieu, Sébastien M. Merci à Catherine et Marie pour leur
aide indispensable pour naviguer les méandres administratifs de la soutenance de
thèse.



3

To the Cambridge crowd: thanks to Jean, Kayvan, Hugo, Justus, Ohad (for
being annoyingly awesome), Matt, Ian and Philip. Thanks to Raphaël for our
scottish adventures and much more. Many thanks to Charlotte, Constantino, and
Ed for living at de Freville avenue and sharing a wine-fueled summer.

Merci à Thomas pour Bourdieu, à Fred pour la colloc geek de Roseford road.
Merci à gasche pour m’avoir fait découvrir OCaml et tout ce qui s’en suit, il y a
longtemps, très longtemps.

Aux lyonnais d’hier : Lucca, PE, Guillaume et son
goût contagieux pour Céline, Vincent et nos déambulations à la pleine lune

dans le cinquième.
Aux lyonnais d’aujourd’hui : Pierre M., Laura-Mae, Barthélémy et nos discus-

sions « philosophie du dimanche ».
Aux amis de toujours : Jérôme, Fabien, Erwan & Antoine.
Merci à ma famille: à mes parents pour leur support pendant trois ans de péré-

grinations internationales; à Sophie, Flo et mes nièces que les dites pérégrinations
m’ont forcé à ne pas voir autant je l’aurais voulu.
᾿Επαινῶ τῷ ἀστέρι ἐμῶ ἐν τῷ ἂθέῳ αἰθέρι





Table des matières

Chapitre 1. Introduction 7

Partie 1. Concurrence 17

Chapitre 2. Jeux concurrents avec évènements essentiels 19
1. Jeux et stratégies sous forme de structures d’évènements 20
2. Interaction close de pré-stratégies 27
3. Une catégorie de stratégies couverrtes 33
4. Stratégies découvertes à bisimulation faible près 37
5. Stratégies essentielles 51
6. Preuve de la structure catégorique 55

Chapitre 3. Jeux concurrents fins 61
1. Arènes dilatées 62
2. Structures d’évènements avec symmétrie 65
3. Jeux avec symmétrie et stratégies uniformes 68
4. Composition de stratégies uniformes 73
5. Isomorphisme faible 79
6. Une catégorie compact close 87

Chapitre 4. Jeux Hyland-Ong concurrents 95
1. Stratégies non linéaires et non déterministes 96
2. Une catégorie cartésienne fermée 102
3. Interprétation adéquate de ndPCF 113

Partie 2. Innocence 121

Chapitre 5. Innocence concurrente et bon parenthésage 123
0. Stratégies négatives et filaire 124
1. Bon parenthésage 126
2. Vers une définition de l’innocence concurrente 133
3. Stratégies innocentes 138

Chapitre 6. Pleine abstraction intensionnelle pour ndPCF 149
1. Forme réduite de stratégies innocentes 150
2. Décomposition de stratégies d’ordre supérieur 158
3. Pleine abstraction intensionnelle pour ndPCF 168

Partie 3. Impureté relâchée 177

Chapitre 7. Mémoire faible dans un cadre premier ordre 181

5



6 TABLE DES MATIÈRES

1. Un langage assembleur et sa sémantique 181
2. Interpréter TSO avec des structures d’évènements 186
3. Déséquentialisation des accès mémoires 197

Chapitre 8. Mémoire faible dans un cadre d’ordre supérieur 203
1. PCFmem: une extension de PCF avec des opérations mémoires 204
2. Sémantique de threads dans un contexte d’ordre supérieur 206
3. Implémentation de la mémoire 212

Conclusion et perspectives 217
Première partie : Concurrence 217
Seconde partie : Innocence 218
Troisième partie : Impureté relâchée 218

Bibliography 221



CHAPTER 1

Introduction

Had we but world enough, and time,
This coyness, [thesis], were no crime.
We would sit down and think which way
To walk, and pass our long [writing]’s day;
My vegetable [draft] should grow
Vaster than empires, and more slow.
An hundred years should go to [the debut]
An age at least to every part,
For, [thesis], you deserve this state,
Nor would I write at lower rate.

Andrew Marvell, On writing dissertations
(To his coy mistress)

« Ça vous tente d’aller au restaurant gastronomique mercredi prochain ? » est une
invitation terrifiante à entendre un lundi. Est-ce que l’on se retrouve au restaurant
dans deux jours, ou dans neuf? Chacun a sa propre interprétation et certaines per-
sonnes sont convaincues de l’absence d’ambiguïté de cette formulation. Cocher
les deux jours sur son agenda est souvent la seule façon d’éviter le faux-pas em-
barrassant de demander des clarifications.

Ceci illustre le fossé entre ce l’on veut dire et ce que l’on dit. Afin de faciliter
la communication, les langues contiennent souvent des mécanismes d’indirections
qui rendent l’interprétation d’une phrase souvent dépendante du contexte, comme
c’est le cas pour la formule « mercredi prochain » : la date (objective) du rendez-
vous dépend de la date d’aujourd’hui. La fonction primordiale de ces indirections
est d’éviter de répéter des choses que son interlocuteur sait déjà.

Tous ces malentendus existent bien que nos langues naturelles soient déjà très
proches de notre façon de penser. Imaginez maintenant que, au lieu de commu-
niquer avec l’un de vos pairs, conscient de ces conventions social, il vous faut
communiquer, une recette par exemple, à quelqu’un qui prend le vocabulaire de
cuisine (« casserole », « poêle » par exemple) au premier degré, sans le remettre
en question. S’assurer que votre message est bien compris nécessite une attention
particulière aux détails: si vous dites « faites bouillir de l’eau dans une poêle »,
votre interlocuteur peut comprendre une poêle à frire ce qui serait problématique
(ce qu’on appelle un bogue).

C’est à cela que la programmation ressemble : transformer nos pensées ab-
straites en une série d’instructions basiques, en espérant que ces instructions au-
ront le résultat attendu. Ce saut conceptuel, entre nos pensées abstraites et le pro-
gramme concret est difficile à franchir, et n’importe quelle erreur peut mener à des
bogues sérieux.

7



8 1. INTRODUCTION

Une phrase, ou un programme, est finalement une simple séquence arbitraire
de caractère, obéissant un certain nombre de règle, appelée la syntaxe de la langue
(ou du langage de programmation). Le sens d’une telle séquence (formant une
phrase valide) est appelée sa sémantique : c’est ce que la phrase signifie (à nous),
alors que la syntaxe est la façon dont ce sens est communiqué. Extraire le sens
d’une phrase est un problème bien connu : même les humains ont parfois des
problèmes, comme illustré dans le premier paragraphe.

Cependant, à cause de leur nature formelle, il est légèrement plus simple
d’extraire le sens d’un programme, en expliquant son comportement. Certains
langages de programmation vont même jusqu’à définir précisément le sens de
tous les programmes du langage, afin de permettre au programmeur de raisonner
sur son programme, et de savoir à quoi s’attendre lorsqu’il l’exécutera.

Ceci dit, la plupart des langages de programmation n’offrent pas de tels moyens
de raisonnement sur le sens d’un programme, rendant difficile de s’assurer qu’il
est correct. Les langages de programmation traditionnels offrent une combinai-
son d’idiomes (ordre supérieur, contrôle, concurrence avec mémoire partagée) qui
rendent difficile de définir précisément la sémantique des programmes. Expliquer
comment définir cette sémantique s’est avéré être une tâche mathématiquement
difficile pour les concepteurs de langages de programmation. Ils ont du mal à
expliquer formellement comment les programmes devraient se comporter. Il est
ainsi difficile pour un programmeur de se convaincre que son programme est cor-
rect. Enfin, avoir une sémantique systématique pour tous les programmes permet
de construire des compilateurs certifiés, c’est-à-dire dont on a prouvé que le pro-
gramme de sortie et le programme d’entrée ont une sémantique équivalente.

Dans cette thèse, nous proposons de nouveaux outils mathématiques aidant à
construire la sémantique de langages de programmation complexes, d’une façon
qui est compositionnelle : le sens d’un programme ne dépend seulement que du
sens de ses sous-parties. Cette contrainte permet d’assurer des propriétés fortes,
intéressantes à la fois d’un point de vue pratique et théorique.

Dans le reste de cette introduction, nous introduisons l’outil technique utilisé
– la sémantique des jeux par ordres partiels – sur un exemple simple : l’évaluation
d’expressions arithmétiques.

Les expressions arithmétiques et la sémantique opérationnelle. Une expres-
sion arithmétique est une séquence bien parenthésée non évaluée de nombres et
d’opérateurs arithmétiques. Par exemple « 2+(1+1) » est une expression arithmé-
tique, distincte de l’expression « 4 ». Pour distinguer un nombre (4) de l’expression
arithmétique correspondante (4), nous le soulignons. Cette distinction apparaît
aussi dans les langues naturelles: « quatre » est la représentation syntaxique du
nombre 4.

Lorsque nous écrivons une expression arithmétique, le sens qu’on lui donne
est un nombre (son résultat). Je peux écrire « 365×24 » pour représenter le nombre
d’heure dans une année en laissant le calcul du résultat (8760) à mon interlocu-
teur. La sémantique d’une expression est donc son résultat : comment la définir
précisément ?

Une réponse possible pourrait être : « calculer l’opération entre deux nombres
syntaxiques la plus à gauche, et continuer jusqu’à ce que toutes les opérations aient
disparu : il ne reste plus qu’un nombre, le résultat ». Transformer cette intuition
en une définition mathématique revient à définir une sémantique opérationnelle.



1. INTRODUCTION 9

Cette sémantique opérationnelle explique comment une machine (abstraite) cal-
culerait la valeur d’une expression, étape par étape. Formellement, elle prend
la forme d’une relation → entre expressions décrivant une étape de la machine.
Par exemple 2 + 2 → 4 indique qu’en une étape 2 + 2 se réduit en 4 alors que
(1+ 2) + 1→ 3+ 1→ 4 indique que (1+ 2) + 1 se réduit en deux étapes vers 4 en
passant par l’expression intermédiaire 3 + 1. Cette explication peut être étendue
en une définition mathématique de→.

Une expression e peut toujours être réduite via→ jusqu’à ce qu’une expression
de la forme n soit atteinte (qui ne peut plus être réduite à nouveau). Dans ce cas,
le nombre n est la sémantique (ou interprétation) de e ce que l’on note JeK = n.

Variables et fonctions. Considérons à présent des expressions qui peuvent
contenir des variables : “x + 3” devient une expression e(x) valide – nous in-
diquons les variables apparaissant à l’intérieur de l’expression avec la notation
mathématique usuelle. Quel est le sens d’une telle expression ? Ici, il n’y a rien
à calculer mais pourtant ce n’est pas un nombre : on ne peut pas conclure sans
connaître la valeur de x. Cependant, si l’on connaît sa valeur, alors on peut cal-
culer le résultat. Il semble alors naturel de considérer que, lorsque l’on écrit x + 3,
nous voulons parler de la fonction qui, à n associe le nombre n + 3. Ou, dans une
notation plus mathématique, Jx + 3K est n 7→ n + 3.

Malheureusement, pour partir d’une expression arbitraire e vers une fonction,
la sémantique opérationnelle ne peut pas vraiment être étendue. Une solution
serait de dire que le sens d’une expression e(x) est n 7→ Je(n)K où n est l’expression
arithmétique réduite au nombre n.

Ce faisant, nous perdons l’aspect opérationnel : l’évaluation des variables
n’est pas visible dans la sémantique. En particulier, les expressions 2× x et x + x
représentent toutes les deux la même fonction, celle qui associe son double à un
nombre. Nous avons perdu de l’information intensionnelle sur l’expression : com-
ment la valeur est calculée. Par exemple, x + x a deux occurrences de x alors que
2× 2 n’en a qu’une seule. Cette perte d’information peut causer des problèmes
lorsque que l’on passe dans un monde plus riche, où une occurrence de x de-
vient le résultat d’un pile ou face (0 ou 1, de manière aléatoire). Dans ce cadre,
e(x) := 2 × x s’évalue toujours vers un nombre pair mais e′(x) := x + x peut
s’évalue vers 1, car x pourrait renvoyer une fois zéro, une fois un.

Dialogue programme/contexte. Pour rendre compte opérationnellement des
variables, la sémantique opérationnelle doit être modifiée. La relation→ présentée
précédemment décrit seulement des étapes de calcul internes. Pour tenir compte
des variables, il faut changer cette vision pour autoriser des communications entre
l’expression et l’environnement, chargé de donner les valeurs des variables. Une
exécution possible de l’expression x + 2 pourrait être:

x + 2
q+x−→ [] + 2 2−

−→ 2 + 2 −→ 4

Certaines étapes portent à présent une étiquette : ces étiquettes représentent les
messages envoyés ou reçus par le programme durant l’étape. La polarité (en ex-
posant) indique si le message est envoyé (+) ou reçu (−) par le programme. La
première étape, étiqueté par q+

x est une question au contexte : l’expression de-
mande la valeur de x. L’expression attend une réponse du contexte, représenté par
le marqueur []. Puis, dans une seconde étape, le programme reçoit la valeur : cette



10 1. INTRODUCTION

occurrence a pour valeur 2. Le marqueur est remplacé par une valeur. Puisque
l’expression obtenue ne contient plus de variables, elle peut être simplement éval-
uée, sans interaction avec le contexte. L’expression x + 2 a beaucoup d’exécutions
de ce type, puisque le contexte peut choisir la réponse à la question q+

x .
Cela résout le problème décrit ci-dessus : x + x a à présent cette exécution :

x + x
q+x−→ [] + x

0−
−→ 0 + x

q+x−→ 0 + []
1−
−→ 0 + 1→ 1.

Si nous oublions les programmes intermédiaires, et les étapes internes et que
nous nous intéressons simplement aux séquences de messages échangés, nous
obtenons : q+

x · 0
− · q+

x · 1
−. Pour se souvenir de la valeur finale du programme,

nous ajoutons un message à la fin où le programme signale la valeur finale au con-
texte, et aussi une question initiale de l’environnement, qui démarre le calcul. Cela
mène au dialogue suivant :

q− · q+
x · 0

− · q+
x · 1

− · 1+.

Intuitivement, un dialogue particulier capture l’interaction d’un programme
particulier contre un contexte particulier. La sémantique d’une expression devient
à présent l’ensemble des dialogues où le programme interagit contre un contexte
particulier, par exemple :

Jx + xK = {q− · q+
x · n

− · q+
x ·m

− · (n + m)+ | n, m ∈ N}

Sémantique des jeux et composition. La sémantique des jeux rend formelle
l’idée d’interpréter les programmes par de tels dialogues, et définit une interpréta-
tion en ces termes d’une large variété de langages de programmation. L’avantage
principal est d’être capable d’interpréter des programmes avec des variables in-
connues (de n’importe quel type, comme dans le programme f (3) + 4).

En sémantique des jeux, le diagramme précédent de x + x s’écrit :

(x : N) ⇒ N

q−

q+

0−

q+

1−

1+

Le temps s’écoule de haut en bas. La colonne de droite (colonne du résultat)
représente les messages concernant le résultat et celle de gauche, les messages
concernant x (colonne x).

En sémantique des jeux, les programmes sont interprétés par des ensembles
de dialogues valides. La validité des dialogues est définie par un jeu (à deux joueurs).
Les coups du jeu représentent les messages possibles que peuvent s’échanger le
programme et le contexte. Les dialogues valides sont définis comme des parties
valides du jeu. Un ensemble de dialogues valides peut alors être vu comme une



1. INTRODUCTION 11

stratégie qui explique comment Joueur (le programme) réagit aux coups du con-
texte, Opposant.

Cette représentation permet de facilement représenter la composition. Considé-
rons une expression e(x) (disons x + x) dans laquelle une autre expression e′(y)
(disons 3 × y) remplacera x. L’expression obtenue est e(e′(y)) (dans l’exemple,
3× y + 3× y). Comment dériver les dialogues de Je(e′(y))K à partir de ceux de
Je′(y)K et Je(x)K ? Tout d’abord, nous formons les dialogues d’interaction où l’on
lance e(x) de telle façon à ce que les messages de x soient envoyés à e′(y) sur sa
colonne résultat, et inversement. Un dialogue d’interaction ressemble à :

(y : N)
e′(y)
==⇒ N (x : N)

e(x)
==⇒ N

q−

q− q+

q+

1−

3+ 3−

q− q+

q+

2−

6+ 6−

9+

Remarquons que la colonne résultat de e′(y) joue contre la colonne x de e(x). Il
s’en suit que le contexte externe peut simplement communiquer sur la colonne y de
e′(y) et la colonne résultat de e(x). Si nous cachons la communication au milieu,
entre e(x) et e′(y), nous obtenons le dialogue suivant :

(y : N) ⇒ N

q−

q+

1−

q+

2−

9+

qui est un dialogue valide dans la sémantique de 3× y + 3× y = e(e′(y)), ce que
l’on voulait.

Ce glissement des modèles extensionnels (où les termes ouverts sont représentés
par des fonctions) vers des modèles interactifs (où les termes ouverts sont représen-
tés par des dialogues) prend son origine dans la tentative de caractériser concrète-
ment l’équivalence observationnelle de programmes fonctionnels purs.



12 1. INTRODUCTION

Compositionalité et équivalence observationnelle. L’interprétation précédente
en terme de dialogue est compositionnelle. Comme vu au-dessus, les dialogues peu-
vent être composés par interaction, et donc les dialogues d’une large expression
peuvent être obtenus à partir des dialogues de ses composants. Cette propriété est
intéressante d’un point de vue pratique puisqu’elle rend la sémantique d’un large
programme plus facile à calculer. Puisque ce calcul peut être fait incrémentale-
ment, si une petite partie du code change, il est facile de recalculer la sémantique
globale car la sémantique du reste ne doit pas être recalculée.

Cependant, cette propriété est aussi intéressante d’un point de vue théorique.
Si deux programmes ont le même ensembles de dialogues, alors les programmes
auront le même comportement dans n’importe quel contexte : ils sont observation-
nellement équivalents. Cela permet de substituer l’un pour l’autre dans code plus
large sans induire de bogues. La sémantique donne un outil correct pour raisonner
sur l’équivalence observationnelle.

Quand l’inverse est vrai, c’est-à-dire quand deux programmes observation-
nellement équivalents ont la même sémantique, alors la sémantique est dite pleine-
ment abstraite : la sémantique donne un outil complet pour raisonner sur l’équi-
valence observationnelle. La sémantique des jeux provient de la quête pour un
modèle pleinement abstrait de PCF, un langage fonctionnel pur, car son interpréta-
tion extensionnelle naturelle s’est avérée ne pas être pleinement abstraite [Plo77],
étant donné que les fonctions considérées pouvaient exhiber des comportements
inexprimables dans PCF.

Le premier modèle interactif fut celui des algorithmes séquentiels [BC82], qui
ne capture malgré tout qu’une extension de PCF avec un opérateur de contrôle,
catch [Cur92]. Indépendemment, deux modèles interactifs se développèrent : l’un
par Hyand-Ong [HO00] et l’autre par Abramsky-Jagadesan-Malacaria [AJM00].
Via un quotient indécidable, ces deux modèlent caractérisent l’équivalence obser-
vationnelle de PCF. Les modèles sont dits intensionnellement pleinement abstrait :
l’équivalence observationnelle de la syntaxe et de la sémantique coïncident. (Il n’y
a pas d’espoir d’arriver à mieux car, déjà pour des fragments finitaires, l’équivalence
observationnelle de PCF est indécidable [Loa01].)

Cependant, la valeur de ces modèles réside dans leur extensibilité. En partic-
ulier, ces modèles supportent des extensions avec des effets calculatoires tels que
l’état ou des opérateurs de contrôles, cas pour lesquels ces modèles sont pleine-
ment abstrait (sans quotient) : ils donnent une caractérisation concrète de l’équiva-
lence observationnelle pour ces langages enrichis. De plus ces extensions avec ef-
fets calculatoires (état, opérateur de contrôle) peuvent être reliés à des conditions
sur les stratégies (innocence, bon parenthésage) : une stratégie satisfait une condi-
tion si et seulement si son comportement vient d’un programme qui n’utilise pas
l’effet correspondant. Le chapitre 5 propose une discussion de ces extensions plus
détaillée.

Concurrence et alternation. Jusqu’à présent, le modèle opérationnel décrit
est séquentiel : les opérations sont effectuées dans un ordre linéaire, l’une après
l’autre. Que se passe-t-il si l’on désire représenter une évaluation en parallèle ?
Par exemple, x + y peut être exécuté en demandant au contexte les valeurs pour x
et y en parallèle, et en attendant les deux réponses pour conclure. Cependant, il y
a pour le moment une condition cachée sur nos dialogues : ils sont alternés. Les
joueurs (le programme et le contexte) jouent chacun leur tour. Pour représenter



1. INTRODUCTION 13

ces dialogues présentant de la concurrence, il nous faut relâcher cette contrainte
et autoriser l’envoi de plusieurs messages à la suite au contexte par exemple. Les
diagrammes suivants représentent des dialogues pour l’expression x + y avec du
parallélisme :

(x : N) × (y : N) ⇒ N (x : N) × (y : N) ⇒ N

q− q−

q+ q+

q+ q+

3− 3−

1− 1−

4+ 4+

Ici x + y interagit contre un contexte qui répond y = 3 et x = 1. Les questions
sont posées de manière non-séquentielle : les deux questions sont en fait envoyées
avant qu’une réponse ne soit reçue. Cependant les deux dialogues diffèrent par
l’ordre dans lequel les questions sont envoyées (à gauche : x puis y ; à droite : y
puis x). De tels dialogues contiennent donc de manière implicite un ordonnanceur
qui résout le parallélisme du programme, et représentent l’interaction d’un pro-
gramme particulier, contre un contexte particulier, ordonnancé d’une manière par-
ticulière.

Représentation causale de la concurrence. Cette représentation de la concur-
rence par des dialogues linéaires n’est pas très satisfaisante : les dialogues ont
besoin de contenir des informations d’ordonnancement. Cela mène à une explo-
sion combinatoire puisque la concurrence est essentiellement représentée par des
entrelacements. Le nombre de dialogues utilisé pour représenter un programme
particulier grandit de manière exponentielle avec le nombre de calcul en paral-
lèle. De plus, ce n’est pas non plus satisfaisant de manière théorique : les in-
formations d’ordonnancement masquent l’intention du programme et permettent
difficilement d’étendre le modèle, par exemple aux programmes probabilistes. Et
enfin, il rend la correspondance entre formes de dialogues et effets calculatoires
difficiles à généraliser.

Pour contourner ce problème, il est nécessaire de trouver une représentation
mathématique de la concurrence plus adéquate. En insistant pour observer l’ordre
dans lequel les opérations parallèles sont effectuées, nous insistons pour observer
aussi l’ordonnanceur. Ainsi, pour relâcher cette contrainte, il devient nécessaire
d’accepter avec l’impossibilité d’observer l’ordre dans lequel certains messages
sont envoyés. En des termes plus concrets, cela signifie passer de la chronologie à la
causalité. Les dialogues ne devraient plus être ordonnés linéairement, mais simple-
ment partiellement. Deux messages sont concurrents si ils ne sont pas comparable
dans l’ordre partiel, c’est-à-dire si l’on ne sait pas dans quel ordre ils apparais-
sent. Les deux dialogues linéaires précédents peuvent ainsi être résumés en un
seul ordre partiel :



14 1. INTRODUCTION

(x : N) × (y : N) ⇒ N

q−

q+ q+

1− 3−

4+

Ces approches sont souvent appelée vraiment concurrentes car elles représen-
tent la concurrence de manière primitive, et non pas comme un entrelacement de
traces séquentielles.

Non déterminisme. Un dernier problème auquel nous voudrions nous atta-
quer est le non déterminisme. Un programme est non déterministe lorsqu’il peut
s’évaluer vers plus d’un seul résultat. Les exemples typiques de programmes
non déterministes incluent les primitives de générations de nombres (pseudo-
)aléatoires présentes dans la plupart des langages de programmation.α Le non
déterminisme arrive naturellement en présence de concurrence à mémoire partagée
(par exemple, avec plusieurs accès concurrents à la même ressource).

Supposons à présent que dans notre langage, nous ajoutions une primitive
choice qui s’évalue vers zéro ou un. La sémantique de choice en terme de dia-
logue est simple à définir : elle contient les deux dialogues suivants.

N N

q− q−

0+ 1+

Chaque dialogue indique une valeur de retour potentielle.
Dans un cadre non déterministe, la question de la convergence devient plus

subtile. Puisqu’un programme (même un programme ne communiquant pas avec
le contexte) peut s’évaluer de différentes manières, certaines peuvent mener à un
résultat final (converger) et d’autres peuvent mener à des boucles infinies (di-
verger). Par exemple, considérons le terme if (choice = 0) then 0 else⊥ où ⊥
représente une boucle infinie. Ce programme fait un choix non déterministe, et
selon le résultat de ce choix, décide de converger ou non. Cependant, les dia-
logues de ce programme et ceux du programme simple 0 sont identiques. Tous
les deux ont le dialogue q− · 0+, mais le premier programme peut diverger alors
que le second converge assurément. En s’intéressant seulement aux communica-
tions avec le contexte, nous avons oublié des informations sur le programme qui
peuvent s’avérer crucial (par exemple, que le programme ne termine pas à chaque
fois). De tels comportements sont appelés divergences cachées.

α En pratique, ces primitives sont déterministes, mais il s’agit de non déterminisme apparent dans
le sens que le résultat souvent dépend de paramètres en dehors du contrôle du programmeur, comme
par exemple l’heure à laquelle le programme est exécuté.



1. INTRODUCTION 15

Contribution de la thèse. Cette thèse s’attaque au problème de transformer
l’intuition des dialogues par ordre partiel en un cadre solide de sémantique des
jeux pour des langages concurrents et non déterministes. La thèse repose sur
[RW11] qui introduit un cadre où les stratégies sont des structures d’évènements
(une représentation élégante d’ensembles d’ordre partiels). Cependant, notre tra-
vail résout deux problèmes de [RW11] : d’une part les divergences cachées ne sont
pas prises en compte, et d’autre part seuls les programmes affines sont analysés (où
les variables sont utilisés au plus une fois).

Plan de la thèse. Cette thèse est découpée en trois parties.
Partie 1, construction du cadre. Dans cette première partie, nous introduisons

une sémantique des jeux basés sur les structures d’évènements. La partie aboutit à
la construction une catégorie cartésienne close sur laquelle se basent les développe-
ments suivants. De plus, l’interprétation concurrente d’un langage simple est
définie et prouvée adéquate pour deux notions de convergence (may et must), afin
d’illustrer le pouvoir du modèle.

Chapitre 2: Nous introduisons le cadre de base de la sémantique des jeux
basée sur les structures d’évènements, en suivant [RW11, CCRW]. Nous
proposons ensuite une extension de ce cadre avec des évènements essen-
tiels qui permettent de se souvenir des divergences cachées, un point clé
dans l’optique de modéliser fidèlement des langages pour la convergence
must. Le chapitre aboutit à la construction d’une catégorie compacte fer-
mée CG

∼=
⊚ de jeux et de stratégies, les deux étant représentés par des struc-

tures d’évènements.
Chapitre 3: Dans CG

∼=
⊚, les stratégies ne peuvent pas jouer plusieurs fois le

même coup, rendant le modèle incapable de parler de programmes non
affines (où une variable peut apparaître plusieurs fois). Pour dépasser ce
problème, nous suivons la méthodologie AJM [AJM00] en ajoutant des
indices de copies qui permettent aux stratégies de jouer plusieurs fois le
même coup. Afin de retrouver les équations nécessaires pour avoir une
interprétation correcte du λ-calcul, il est nécessaire de ne pas s’attarder
sur le choix exact d’indices de copie d’une stratégie. Cela nous mène
à rajouter aux structures d’évènements une relation d’équivalence en-
richie, devenant des structures d’évènements avec symétrie. Le chapitre
généralise le travail du chapitre 2 à ce cadre, en construisant une caté-
gorie compacte close ∼-tCG≅

⊚ de jeux et de stratégies représentés par des
structures d’évènements avec symétrie.

Chapitre 4: Ce chapitre taille une catégorie cartésienne fermée à l’intérieur
de ∼-tCG≅

⊚, CHO. Cette catégorie est obtenue en considérant des jeux
d’une certaine forme, qui ont assez d’espace pour autoriser des stratégies
non linéaires. Dans cette catégorie, nous présentons deux interprétations
de PCF non déterministe, une concurrente et une autre séquentielle, qui
sont toutes les deux prouvées adéquates pour les convergences may et
must.

Partie 2, investigations causales des programmes purs. Dans cette seconde partie,
nous généralisons les notions de bon parenthésage et d’innocence, bien connues en
sémantique des jeux HO [HO00], pour comprendre quelles sont les propriétés des
stratégies provenant de langages concurrents sans opérateurs de contrôle (menant



16 1. INTRODUCTION

à la notion de bon parenthésage) ou état (menant à la notion d’innocence). Enfin, nous
prouvons que les interprétations de PCF non déterministe définies au chapitre 4
dans la classe des stratégies innocentes et bien parenthésées, sont intentionnelle-
ment pleinement abstraites.

Chapitre 5: Ce chapitre introduit nos conditions de bon parenthésage et
d’innocence, et prouve qu’elles sont stables par composition. Ainsi, il ex-
iste une sous-catégorie cartésienne fermée de CHO restreinte aux straté-
gies innocentes et bien parenthésées. De plus dans ce chapitre, nous mon-
trons une propriété essentielle des stratégies visible (une propriété plus
faible que l’innocence) : leur interaction se fait sans interblocage. Cela
signifie en particulier que la composition de stratégies visibles est rela-
tionnelle.

Chapitre 6: Ce chapitre prouve que les interprétations de PCF non déter-
ministe données au chapitre 4 sont intensionnellement pleinement ab-
straite (pour may). En route, des propriétés clés des stratégies innocentes
et bien parenthésées sont établies, en particulier, nous montrons que les
stratégies innocences possèdent une forme réduite généralisant les ar-
bres de P-vues des stratégies HO. Cela induit une notion de stratégie
finie. Nous montrons également que les stratégies innocences et bien
parenthésées sur un type d’ordre supérieur peuvent être décomposées
en plusieurs stratégies plus petites sur un type d’ordre supérieur, et une
stratégie sur un type de premier ordre. Cela nous permet de réduire le
problème de la définissabilité finie aux types du premier ordre.

Partie 3, spécification des modèles mémoires faibles.

Chapitre 7: Dans ce chapitre, nous donnons, à l’aide de structures d’évè-
nements un modèle d’un langage assembleur respectant la spécification
TSO. Parce que le langage est de premier ordre, le mécanisme de séman-
tique des jeux n’est pas nécessaire pour en donner un modèle interactif
et précis. Le chapitre définit plusieurs modèles essayant d’exploiter au-
tant que possible le pouvoir expressif des structures d’évènements pour
construire des modèles plus concurrents (et plus compact).

Chapitre 8: Nous refaisons les constructions utilisés sur les structures d’évè-
nements au chapitre 7 dans notre cadre de sémantique des jeux. Nous
montrons que, en utilisant les stratégies et leur composition, il est possi-
ble de reformuler le modèle du chapitre précédent pour obtenir un autre
point de vue. Cette formulation en terme de stratégies représente mieux
l’exécution de programmes sur des architectures à mémoire faible, et
permet plus facilement de modifier le modèle en changeant simplement
les stratégies qui implémentent les opérations de base. Cela permet de
passer à des architectures plus faibles (avec plus de réordonancement)
facilement.



Part 1

Concurrence



In this first part, we introduce a game semantics framework based on event
structures. The part culminates in building a cartesian-closed category on which
later developments rest. Moreover, the concurrent interpretation of a simple non-
deterministic language is defined and proved adequate for two notions of conver-
gence (may and must), to give a taste of the expressivity of the model.

Outline of the part.
Chapter 2. We introduce the basic setting of game semantics based on event

structures, following [RW11, CCRW]. We then propose an extension of this set-
ting with essential events that allow us to track hidden divergences, a key feature
in order to model faithfully nondeterministic languages for must convergence.
The chapter culminates on the construction of a compact-closed category CG

∼=
⊚

of games and strategies, both being event structures.
Chapter 3. In CG

∼=
⊚, strategies cannot play several times the same move, mak-

ing the model unable to interpret faithfully non affine programming languages
(where a variable can occur more than once). To overcome this problem, we follow
the AJM [AJM00] way by adding copy indices, allowing strategies to play several
times the same move. To recover the equations necessary to have a sound interpre-
tation of the λ-calculus, it is necessary to gloss over the exact choice of copy indices
of strategies. To this end, we adjoin to event structures a proof-relevant equivalence
relation, turning them into event structures with symmetry. The chapter general-
izes the work of Chapter 2 to this setting, by building a compact-closed category
∼-tCG≅

⊚ of games and strategies as event structures with symmetry.
Chapter 4. This chapter carves out a cartesian-closed category within∼-tCG≅

⊚,
CHO. It is obtained by consider games of a certain shape that have enough space
to accommodate nonlinearity. In this category, we present two interpretations of
nondeterministic PCF, one concurrent and one sequential, which are proved ade-
quate for may and must convergences.



CHAPTER 2

Concurrent games with essential events

What does all this mean? Why did it hap-
pen? What made those people burn houses
and slay their fellow men? What were the
causes of these events?

Leo Tolstoy, on the importance of causality
(War and peace)

In Chapter 1, we played around with the idea of interpreting concurrent pro-
grams by sets of partially-ordered dialogues, representing strategies. Partial orders
are used to capture causality rather than chronology. In this chapter, we detail how
to construct a mathematical theory of such strategies. Instead of defining strate-
gies as sets of dialogues, we use event structures [Win86], that elegantly represent
sets of partial orders in one single structure. This aspect is key to remember the
nondeterministic branching point of programs. (See Section 1.1.2).

The foundations presented here are based on the framework of [RW11], which
gives a compact-closed category of strategies up to isomorphism. Because compo-
sition is defined by hiding internal events, this model loses track of some diver-
gences occurring during the composition. In this chapter, we extend this frame-
work to remember all divergences, by altering hiding. Our approach here uses
essential events, in contrast to that of [CHLW14] based on stopping configurations.
Essential events allow us to retain all the behaviours of strategies before hiding,
up to weak bisimulation (Lemma 2.71), which is crucial to model faithfully non-
deterministic languages.

Related work. There are several approaches to concurrent game semantics,
using different ways of representing concurrent plays. The more conservative ap-
proach with respect to sequential game semantics is to remove the alternation hy-
pothesis on traditional dialogues. This approach was explored by Laird [Lai01]
and later refined by Ghica and Murawski [GM07]. Our causal models can be col-
lapsed (by taking the traces of our strategies) to theirs [CC16].

Truly concurrent approaches date back to [AM99b] (in the deterministic set-
ting) using closure operators, to model a fragment of linear logic. Melliès later con-
sidered asynchronous games which enrich traditional games with homotopy tiles
representing the independence of moves. Strategies are certain sets of alternating
paths of these asynchronous transition systems. In a series of work [Mel03, Mel06,
Mel05a] Melliès exploited this independence information in games to prove cru-
cial properties of his (sequential) strategies (eg. positionality), culminating in a
fully complete model of full Linear Logic [Mel05b]. Later, Melliès and Mimram

19



20 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

[MM07] extended this setting to allow non-alternating strategies, with further con-
ditions enforcing the existence of an implicit causal structure. Such strategies cor-
respond to the deterministic fragment of our model [RW11].

The first work on using explicit causal structure was in the context of ludics
with Faggian and Maurel’s ludics nets [FM05] whose link with game semantics
was studied by Curien and Faggian [CF05]. Later, Faggian and Piccolo arrived to
a partial-order formulation of strategies [FP09], which inspired, and is generalized
by [RW11], the starting point of this thesis.

In another direction, a more recent approach to truly concurrent game se-
mantics is developed by Hirschowitz et al. [Hir14, EHS13] where strategies be-
come hyper-graphs represented as presheaves. This approach inspired Ong and
Tsukada’s model of the nondeterministic λ-calculus [TO15].

Outline of the chapter. In Section 1, we introduce event structures, and games
and strategies based on them. Section 2 introduces interaction of strategies, which
is the key step to define composition of strategies. Section 3 introduces the com-
positional framework of [RW11] based on hiding all internal events. This gives a
compact-closed category of strategies up to isomorphism. Section 4 introduces a
new notion of composition where no events are hidden during the interaction. In
this setting, we take hidden divergences into account, but to get a compact-closed
category, we are forced to consider strategies up to weak bisimulation. To get the
best of both worlds, we investigate which events should be hidden during com-
position so that no divergences are hidden while still leading to a compact-closed
category up to isomorphism. This leads to the essential events of Section 5.

Contributions of this chapter. Sections 1, 2, 3 are based on the development
of Sylvain Rideau and Glynn Winskel [RW11] and presentation is taken from
[CCRW], joint work with Pierre Clairambault, Sylvain Rideau and Glynn Winskel.
Sections 4 5, 6 are joint (unpublished at the time of writing) work with Pierre
Clairambault, Jonathan Hayman and Glynn Winskel.

1. Games and strategies as event structures

This section introduces event structures as a model of concurrency and nonde-
terminism, and presents how to use them as a foundation for games and strategies.

1.1. Towards concurrent strategies. In chapter 1, we presented briefly partially-
ordered dialogues as a tool to represent concurrent programs. We now investigate
more formally the mathematical content of such diagrams, to finally arrive at a
notion of concurrent strategies playing on a concurrent game.

1.1.1. Causality. As a first example of concurrent strategies, consider the join

primitive that spawns two calculations in parallel and terminates when both have
terminated. Such a primitive would have the type proc → proc → proc where
proc is the type of commands, that is programs performing computational effects
but returning no value of interest. It could be described by the following dialogue:



1. GAMES AND STRATEGIES AS EVENT STRUCTURES 21

a : proc × b : proc ⇒ join a b : proc

run−

run+ run+

done− done−

done+

The previous examples of Chapter 1 played on natural numbers where the
allowed moves where q (question for the value) and n (answer to the question).
Since on proc there are no values to return, the moves are here run (beginning of
the computation) and done (end of the computation).

This diagram represents now a partial order which is generated by the transi-
tive closure of _ (immediate causal dependency). Note the inversion of polarity
between the two sides of ⇒. This inversion was already present in the previous
chapter and is due to join acting as the environment for a and b. When the context
runs join a b, a and b are run immediately, in any order as the two events run+

are incomparable. When both process terminate (issuing a done−) the program
signals that it has terminated.

In this context, a valid (partial) execution is a set of events which is such that
if an event e occurs, then any of its immediate causes e′ _ e must appear. In other
words, an execution is a downclosed subset of events.

1.1.2. Nondeterminism. Most concurrent programming features induce non-
determinism: be it shared memory concurrency (à la Concurrent Idealized Al-
gol [Bro96a]) or channels (à la CCS [Mil82]). To accommodate nondeterminism,
causal dependency is however not enough, as nondeterminism implies that two
events might be incompatible: for instance the outcomes of a nondeterministic
coin-tossing. Nondeterminism is usually modelled using sets of executions: in our
case, sets of partial-orders. This can work (and is done in [CC16]) but it makes
nondeterminism “global”. There is no notion of events of the program simply of
events of an execution. This point of view is mathematically simple but forgets inten-
sional behaviour of the program, in particular the location of the nondeterministic
branching points. This is necessary to distinguish the terms M1 = λ f . f tt + f ff
and M2 = λ f . f (tt + ff) (where + is nondeterministic choice), which are usually
identified models based on set of plays, albeit not must-equivalent.α

With sets of executions, we only see where the executions differ, but not the ex-
act point where the program actually made the choice. Moreover, having a notion
of events of the program turns out to be very handy when defining essential events.

Incompatiblity of events is represented via conflict, which has two common
formal representations in this partial order setting:

• Binary conflict: the partial order structure is enriched with a binary re-
lation representing when two events are in conflict, that is when they
cannot occur together in a valid execution.

α Consider the context C[] = [] (λx. if x (if x tt⊥) tt), C[M1] must converge (since in each execu-
tion x is true or false), but C[M2] must not.



22 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

• General conflict: the partial order structure is in this case enriched with
a set of consistent sets formalizing which sets of events can occur together:
two events can be conflicting only in a particular context (ie. x ∪ {ei} can
be consistent but x ∪ {e1, e2}might not even if {e1, e2} is consistent).

To develop our framework (this chapter and Chapter 3), we use general conflict
because the mathematical theory is simpler, even though the programming lan-
guages considered in this thesis only express binary conflict. From Chapter 4, we
will use binary conflict as it is simpler to manipulate concretely. Note that an event
structure with general conflict can be be unfolded to a (bisimilar) event structure
with binary conflict[vGP09].

DEFINITION 2.1 (Event structures (with general conflict)). An event structure
is a triple (E,≤, ConE) where (E,≤E) is a partial order of events and ConE ⊆
P f (E) is a set of finite consistent sets of E subject to the following axioms:

(1) For every e ∈ E, the set [e] = {e′ ∈ E | e′ ≤ e} is finite,
(2) For all Y ∈ ConE and X ⊆ Y then X ∈ ConE,
(3) For all e ∈ E, {e} ∈ ConE,
(4) If X is consistent, so is its downclosure

[X]E = {e′ ∈ E | e′ ≤ e for some e ∈ X}.

In particular, if X ∈ ConE and e ≤ e′ ∈ X then X ∪ {e} ∈ ConE.
Binary conflict is defined as a special case of general conflict:

DEFINITION 2.2 (Binary conflict). An event structure S has binary conflict if
there exists a (necessarily unique) symmetric binary relation ♯S ⊆ S2 such that

ConS = {X finite | X2 ∩ ♯S = ∅}.

A binary conflict s♯Ss′ is said to be minimal when the set {s0 ∈ S | s0 <
s ∨ s0 < s′} is consistent in S. In that case, we write s s′.

1.1.3. Notations on event structures. Given an event structure E, write e _E e′

for immediate causality defined as e < e′ with no events in between. If e ≤E e′, we
say that e′ causally depend on e. If e _E e′, we say that e′ immediately causally
depends on e, or that there is a causal link from e to e′. Given e ∈ E, write [e) =
[e] \ {e}. Two events e, e′ ∈ E are concurrent when they are incomparable for the
causal order and {e, e′} ∈ ConE.

Event structures induce a notion of execution through configurations:

DEFINITION 2.3 (Configuration). A configuration of an event structure E is a
subset x of E such that:

• x is downclosed (ie. e′ ≤ e and e ∈ x imply e′ ∈ x),
• all finite subsets of x are consistent.

The notion of configurations is crucial when reasoning on event structures:
most proofs will be carried out at the level of configurations. As a result, it will
be important to understand, for each construction defined at the level of event
structures, its action at the level of configurations.

The set of finite configurations of E will be written C (E). Configurations are
naturally ordered by inclusion. Moreover, any configuration inherits a partial or-

der from E. A configuration x ∈ C (E) extends by e ∈ E (written x
e
−−⊂ x ∪ {e})

when e 6∈ x and x ∪ {e} ∈ C (E). In that case, e is called an extension of x. Two



1. GAMES AND STRATEGIES AS EVENT STRUCTURES 23

extensions of e, e′ of x are compatible when x ∪ {e, e′} ∈ C (E), incompatible oth-
erwise. In that case, we say that e and e′ are a minimal conflict in the context x
(or involved in a minimal conflict). In the general case, it depends on the context
x, but when the event structure has binary conflict, it is independent from x and
coincide with the notion of minimal conflict introduced above.

A consequence of the axioms of event structures is that for every e ∈ E, the
sets [e] is a configuration representing the causal history of e. Such configura-
tions are called prime configurations, or equivalently a prime configuration is a
configuration with a top element. Remark that, consequently [e) is also always a
configuration. Given a configuration x of an event structure E, a covering chain is
a sequence ∅ = x0−⊂x1−⊂. . .−⊂xn = x of configurations leading to x.

1.1.4. Drawing event structures. Pictures will only feature event structures with
binary conflict and represent immediate causality (_) and minimal conflict ( ).

EXAMPLE 2.4. The interpretation of the nondeterministic sum of processes can
be represented by the event structure:

a : proc, b : proc ⊢ sum a b : proc

run−

run+ run+

done− done−

done+ done+

The difference with the join operator is the conflict between the two occur-
rences of run+ that ensures the presence of only one of the run+ in a single ex-
ecution. The conflict propagates upwards: the causal future of these events are
also in conflict. In this example, the names run, done come from an (implicit) la-
belling of events by moves of a game. Such labelled event structures will be used
to represent strategies on games.

1.2. Games and pre-strategies. We now define a notion of games and pre-
strategies on them to make formal the diagrams of the previous section. Through-
out this thesis, we will introduce several notions of “strategies” and “pre-strategies”.
The word “pre-strategy” is used to refer to objects supporting a notion of (associa-
tive) composition – but nothing more. “Strategies” is used to refer to the class of
pre-strategies that is invariant under composition by a particular strategy, copycat,
taken to be the identity: strategies naturally organize themselves into a category.

1.2.1. Games as event structures with polarities. In our setting, games will simply
be event structures where each event carries a polarity:

DEFINITION 2.5 (Game). A game (or event structure with total polarities) is
an event structure E along with a polarity labelling polE : E→ {+,−}.

Event structures with polarities will be drawn as event structures, where po-
larity is indicated in superscript of events. We will also make use of the notation
“let a+ ∈ A” to introduce a positive event of a game A (similarly “let a− ∈ A” to
introduce a negative event). We will often use the term play to refer to a configu-
ration of a game by analogy with the standard game-theoretic terminology.



24 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

A possible game for booleans B is as follows:

q−

tt+ ff+

The initial question denotes the call from the environment and the two posi-
tive moves denote the possible return values of the program.

Rules of a game are specified via its causal order and consistent sets:
• causal order: a move cannot be played before another is played,
• consistency: some moves cannot occur together (e.g., for booleans, the

moves corresponding to true and false cannot be played together).
1.2.2. Operation on games. To build games, we will make use of two funda-

mental operations on games: duality and parallel composition. Given a game A,
the dual game A⊥ is simply obtained by exchanging polarities, leaving the event
structure untouched. The simple parallel composition, or more briefly parallel
composition, of A and B, denoted by A ‖ B is defined as follows:

DEFINITION 2.6 (Simple parallel composition). Let A0 and A1 be event struc-
tures. The event structure A0 ‖ A1 is defined as follows:

Events: {0} × A0 ∪ {1} × A1
Causality: (i, a) ≤A0‖A1

(j, a′) iff i = j and a ≤Ai
a′

Consistency: X ∈ ConA0‖A1
iff {a | (i, a) ∈ X} ∈ ConAi

for i ∈ {0, 1}

Moreover, any choice of polarities on A0 and A1 induce a canonical choice of
polarities on A0 ‖ A1 via polA0‖A1

(i, a) = polAi
(a).

Parallel composition will be used to interpret product types. In A ‖ B, A and
B evolve concurrently with no interference (no causality or conflict). As a result,
the following monotonic map is an order-isomorphism:

· ‖ · : C (A)× C (B) → C (A ‖ B)

(x, y) 7→ x ‖ y = {0} × x ∪ {1} × y

These operations can be used to represent the game on which join and sum

play, as the game proc⊥ ‖ proc⊥ ‖ proc:

proc⊥ ‖ proc⊥ ‖ proc

run+ run+ run−

done− done− done+

1.2.3. Pre-strategies. The strategies given in Section 1.1 can be viewed as a
causal and conflict enrichment of the game. Such strategies on a game A can be
represented as event structures (S,≤S, ConS) where S ⊆ A, ≤S⊇≤A (causal en-
richment) and ConS ⊆ ConA (conflict enrichment). This captures the requirement
that strategies must respect the rules of the game A, that is:

• play a move only after all the moves it depends on in the game occurred,
• consistent sets of moves for strategies are also consistent in the game.



1. GAMES AND STRATEGIES AS EVENT STRUCTURES 25

EXAMPLE 2.7. Boolean negation can be represented as a strategy on B⊥ ‖ B.

B⊥ ‖ B

q+ q−

tt− ff− tt+ ff+

Note that the arrows between the question and the answers on B (the right compo-
nent) are induced by transitivity, and the inconsistency between the positive true
and false is also induced by the inconsistency on their negative counterpart.

However, how to define the boolean function that evaluates its argument and
then returns true in both cases? Two candidate diagrams come to mind:

B⊥ ‖ B B⊥ ‖ B

q+ q− q+ q−

tt− ff− tt+ tt− ff− tt+ tt+

The left diagram has one occurrence of tt+ that depends on the two possible
argument values; this is not valid because the two Opponent moves are in con-
flict: the downclosure of {tt+} is not consistent. The second solution describes a
valid event structure but has two tt moves: it is not a subset of the game anymore.
Note that the sum strategy given in Example 2.4 is also not a proper subset of the
game proc⊥ ‖ proc⊥ ‖ proc as done+ has two occurrences. As a result, to ac-
count for these behaviours, strategies should not be strict subsets of the game, but
embeddings. The notion of embedding is formalized via maps of event structures:

DEFINITION 2.8 (Maps of event structures). A (total) map of event structures
from E to F is a function on events f : E→ F such that:

• the direct image of a configuration of E is a configuration of F,
• f is injective on consistent sets.

Event structures and their (total) maps form a category E .

A pre-strategy on a game A will be a map of event structures σ : S → A. In
that case, we write σ : A to denote that σ is a pre-strategy on A. The first condition
makes sure that the plays of S are valid according to A whereas the second one
is a linearity condition ensuring that in a play, events of the game occur at most
once. This linearity condition will be crucial to define interaction of pre-strategies
in Section 2. If σ : S→ A is a pre-strategy, we will sometimes write C (σ) for C (S).

According to this definition, pre-strategies σ : S → A appear as certain event
structures labelled by events of the game. As a consequence, events of a pre-
strategy (events of S) naturally carry a polarity given by the labelling polA ◦ σ,
and S can be regarded as an event structure with polarities. A pre-strategy on A is
also a pre-strategy on A⊥ since the definition is independent from the polarity on
A. We now move on to a very important example of pre-strategies.



26 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

1.2.4. The copycat pre-strategy. In the game A⊥ ‖ A, each move of A appears
twice, with a different polarity. A natural strategy on this game is as follows: to
play the positive occurrence of a ∈ A, we wait for its negative counterpart on the
other side. This describes the copycat pre-strategy. It is implemented by adding a
causal link from the negative occurrence of every a ∈ A to its positive occurrence.

DEFINITION 2.9 (Copycat strategy). Let A be a game. The copycat pre-strategy
cc A on A⊥ ‖ A is defined as the identity-on-events map:

cc A : CCA → A⊥ ‖ A,

where CCA is given by:

Events: A⊥ ‖ A
Causality: Transitive closure of

≤A⊥‖A ∪{((i, a), (1− i, a)) | (i, a) negative in A⊥ ‖ A}

Consistency: X ∈ ConCCA
iff [X]CCA

∈ ConA⊥‖A.

As an example, the copycat strategy on the game B is given by:

B⊥ ‖ B

q+ q−

tt− ff− tt+ ff+

The definition of≤CCA
is convoluted, and we do not have a direct grasp on the

immediate causality of CCA, issue addressed by the following lemma:

LEMMA 2.10. For a, a′ ∈ A, there is an immediate causality (i, a) _CCA
(j, a′) if

and only if one of the following two conditions holds:

(1) i = j, a _A a′ and either (i, a) is positive or (j, a′) negative in CCA.
(2) i 6= j, a = a′, and (i, a) ∈ CCA is negative.

Case (1) describes causal links inherited from the game (never of the shape
−_ +) and (2) describes causal links between A⊥ and A (always of this shape).

PROOF. It is clear that both conditions imply (i, a) _CCA
(j, a′). Conversely,

we know ≤CCA
is generated by _A⊥‖A ∪{((i, a), (1− i, a) | (i, a)− ∈ CCA}. This

means that (i, a) _ (j, a′) implies either i 6= j, a = a′ and (i, a)− ∈ CCA (as desired)
or i = j and a _A a′. In this case, if (i, a) is negative and (j, a′) is positive, we have
(i, a) _CCA

(1− i, a) <CCA
(1− i, a′) _CCA

(i, a′) contradicting (i, a) _CCA
(j, a′).

Hence (i, a) is positive or (j, a′) is negative. �

Configurations of copycat also have a simple description that highlights a very
important structure of the domain of configurations of a game.

LEMMA 2.11. A configuration x ‖ y ∈ C (A⊥ ‖ A) is a configuration of CCA if and
only if x ⊇+ x ∩ y ⊆− y where x ∩ y ⊆+ x means x ∩ y ⊆ x and all events of x \ x ∩ y
are positive and similarly for x ∩ y ⊆− y.

The induced relation on configurations of A: x ⊑A y if and only if x ⊇−

x ∩ y ⊆+ y is a partial order called the Scott order. This partial order plays a
crucial role in the proof of Theorem 2.38 presented in [CCRW].



2. CLOSED INTERACTION OF PRE-STRATEGIES 27

1.2.5. Properties of maps. We end this section by a little discussion on maps of
event structures and their properties, that will be useful later. First, even though
maps do not preserve causality, they always reflect it in a certain sense:

LEMMA 2.12. Let f : A → B be a map of event structures and a, b ∈ A such that
{a, b} is consistent. If f (a) ≤ f (b) then a ≤ b.

PROOF. Since f is a map of event structures, f [b] is downclosed as a configu-
ration of F. Since f (a) ≤ f (b) ∈ f [b] by hypothesis, it follows that f (a) ∈ f [b] and
thus f (a) = f (c) for some c ≤ b. Since {a, b} is consistent so is {a, b, c} ⊆ [{a, b}]
and local injectivity implies a = c ≤ b as desired. �

Moreover, any map of event structures f : A → B induces a monotonic map
f : C (A) → C (B). This map completely characterizes the behaviour of f on
events, which allows to prove equality of maps at the level of configurations:

LEMMA 2.13. Let f , g : A → B be maps of event structures such that for all config-
uration x ∈ C (A) we have f x = gx. Then f = g.

PROOF. Let a ∈ A. Remember that [a) = [a] \ {a} is a configuration of A. By
hypothesis we have f [a] = g[a] and f [a) = g[a) as sets, thus { f (a)} = f [a] \ f [a) =
g[a] \ g[a) = {g(a)} and hence f (a) = g(a). �

Simple parallel compositions extends to maps by letting f0 ‖ f0 : A0 ‖ A1 →
B0 ‖ B1 to be ( f0 ‖ f0)(i, a) = (i, fi(a)) for maps fi : Ai → Bi. As usual we will
often write f ‖ C : A ‖ C → B ‖ C for the map f ‖ idC.

2. Closed interaction of pre-strategies

A natural operation on a concept of “strategy” is that of interaction. In our
setting, this prompts the question: given a pre-strategy σ on A, and a pre-strategy
τ on A⊥, what is their interaction? It can be seen as running σ against τ. Since both
σ and τ are concurrent and nondeterministic, this process will be nondeterministic
and concurrent. It should exhibit the common behaviour of σ and τ: only moves that
σ and τ are ready to play should appear, when they are both ready to play. The
result is an event structure (with no clear polarities) describing this process.

In this section, we omit proofs and refer the reader to [CCRW] for details.

2.1. Examples of interaction. In this subsection, we illustrate what interac-
tions of particular strategies should be, by picking examples outside the realm of
programming languages. In these examples, there will be a strategy σ : A inter-
acting against τ : A⊥. The game A will represent a user interface (from the point
of view of the user), σ the user interacting with the interface and τ implementing
the interface. For the purpose of interaction, the actual structure of the game (con-
sistency and causality) does not matter: games in the examples will be reduced to
a set of moves, without causality or non-consistency.

EXAMPLE 2.14 (Causality and interaction). Imagine the interface for an ex-
tremely simple text editor where the protocol between the user and the program
is modeled by the game A = Ctrl+ S+ Alt+ S+ O+Open−Save− describing some
actions available in a text editor. The user can press some keys, and the program
can open or save a file. The program opens the file as soon as Alt and O are
pressed, and saves it when Ctrl and S are pressed.

Such a behaviour can be described as the following pre-strategy on A⊥:



28 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

Ctrl− S− Alt− O−

Save+ Open+

In the meantime, imagine that the user wants to open a file and save it. Know-
ing the magic shortcuts, they press Alt+O, wait for the file to be opened, press
Ctrl+S and contemplate their file being saved.

Alt+ O+ Open− Save−

Ctrl+ S+

Their interaction proceeds as follows: the first events which are both ready to
play are Alt and O – those are the only initial moves of both σ and τ. After those
two moves, the move Open becomes available, which in turn enables Ctrl and S
which finally enable Save. Hence the resulting interaction is:

Alt O

Open

Ctrl S

Save

τ τ

σ σ

ττ

In this diagram, the immediate causal dependencies are labelled by the pre-
strategy they come from. At the end, we get the (transitive closure of the) union of
the two partial orders.

However, this union might not always be a valid partial order:

EXAMPLE 2.15 (The boring drug deal). Let A = Drug+ Money−, and consider
the interaction of σ = Drug+ ^ Money− : A (the seller) against τ = Drug− _

Money+ : A⊥ (the buyer). Since they do not have a common minimal event, there
is a deadlock. As a result, the interaction between σ and τ is empty.

Finally, we need to illustrate one more aspect of interactions, in relation to
nondeterminism. In these examples, it appears that events of the interaction can
be seen as events of S and T. However, when nondeterminism (and especially
non-injectivity of the labelling function) comes in, it is no longer the case.

EXAMPLE 2.16 (Duplication). Consider the following game:

A = Click+ Enter+ Save− Close+,

where the user can click on a button or press enter to save a file; independently,
they can also choose to close the editor. The program τ : A⊥ is given by:

Click− Enter− Close−

Save+ Save+



2. CLOSED INTERACTION OF PRE-STRATEGIES 29

This is an instance of disjunctive causality: the file should be saved if enter was
pressed or the button clicked. This disjunctive causality forces the pre-strategy to
be non-injective as the event structures presented here cannot directly express that
one event may have several causal histories. More precisely, the labelling map σ is
not injective as Save+ has two occurrences. The user σ : A is given by:

Click+ Enter+ Save−

Close+

This user clicks and presses enter at the same time. As there are two events
for Save in τ, in the interaction there must also be two events Close because of the
causal link Save _ Close in σ. The interaction is:

Click Enter

Save Save

Close Close

τ

σ

τ

σ

On this example, we observe that events do not always correspond to pairs of
events of σ and τ, as duplication is propagated upwards. In particular, the two
Close events of the interaction correspond to the same events in both σ and τ.

It turns out that events of the interaction do not relate in a simple way to
events of the strategies. To understand the last example, it is better to look at its
configurations (Section 2.2), from which the events can be derived (Section 2.3).

2.2. Interaction states. Write p1 and p2 for the two Close events of the inter-
action in Example 2.16. As noticed above, they correspond to the same events both
in σ and τ but their causal histories differ: [p1] contains a Click move whereas [p2]
contains a Enter. From [p1] we can extract a configuration of S, written Π1[p1] and
a configuration of T, written Π2[p1]. Similarly, [p2] induces Π1[p2] ∈ C (S) and
Π2[p2] ∈ C (T). Those pairs of configurations have the same image in the game:
σ(Π1[p1]) = τ(Π2[p1]) and likewise for p2. By local injectivity, it follows that there
are bijections ϕ1 : Π1[p1] ≃ Π2[p1] and ϕ2 : Π1[p2] ≃ Π2[p2] described as follows:

Π1[p1] ≃ Π2[p1] Π1[p2] ≃ Π2[p2]

Click− Click+ Enter− Enter+

Save+ Save− Save+ Save−

Quit− Quit+ Quit− Quit+

ϕ1

ϕ1

ϕ1

ϕ2

ϕ2

ϕ2

2.2.1. Secured bijections. In both cases, the orders on both sides are causally
compatible (the union is acyclic). Such bijections are called secured bijections:

DEFINITION 2.17 (Secured bijection). Let q, q′ be partial orders and ϕ : q ≃ q′

be a bijection (non necessarily order-preserving). It is secured when one of the two
equivalent conditions are met:



30 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

• (Acyclicity) The following relation ⊳ϕ on the graph of ϕ is acyclic:

(s, ϕ(s)) ⊳ϕ (s′, ϕ(s′)) iff s _q s′ ∨ ϕ(s) _q′ ϕ(s′)

• (Inductive construction) There exists a sequence e0, . . . , en such that q =
{e0, . . . , en}, and for all i, both {e0, . . . , ei} and its image by ϕ are down-
closed in q and q′ respectively.

The partial order, induced by transitive and reflexive closure of ⊳ϕ, is written ≤ϕ.

The acyclicity condition bans causal loops. Indeed, in the drug deal example
(Example 2.15), the obvious bijection:

σ τ

Money− Money+

Drug+ Drug−

is not secured because of the cycle in the induced preorder.
2.2.2. Interaction states. Following the observation of Section 2.2, we use se-

cured bijections to describe the candidate configurations of an interaction.
Let A be a game, σ : S → A and τ : T → A⊥ be pre-strategies. If (x, y) ∈

C (S)× C (T) is such that σx = τy ∈ C (A), write ϕx,y for the bijection x ∼= σx =
τy ∼= y obtained by local injectivity of σ and τ. The pair (x, y) is an interaction
state when the corresponding bijection ϕx,y is secured. We write Sσ,τ for the set of
such interaction states, viewed as the set of candidate configurations of a certain
event structure. How to reconstruct the corresponding event structure from Sσ,τ?

2.3. Prime construction. For an event structure E, the events of E can be re-
covered from C (E) by considering those configurations of the form [e] for e ∈
E, called prime configurations. Causality and consistency can be understood
through this correspondence. However, prime configurations can be equivalently
described as configurations with a top-element, which does not refer to events.

This leads to the following definition. Note that since all our definitions re-
garding the interaction of pre-strategies make sense in a setting without polarity,
we state the definition for simple maps of event structures.

DEFINITION 2.18 (Closed interaction of pre-strategies). Let A be an event struc-
ture, and σ : S → A and τ : T → A be maps of event structures. The following
data defines an event structure S ∧ T:

Events: Those interaction states (x, y) ∈ Sσ,τ such that ϕx,y has a top ele-
ment (called prime interaction states).

Causality: Pairwise inclusion.
Consistency: A finite set of interaction state X ⊆ S ∧ T is consistent iff its

pairwise union
⋃

X is an interaction state in Sσ,τ .

This is an instance of the prime construction on rigid families (applied to the
rigid family Sσ,τ) [Hay14]. As a result, we get:

LEMMA 2.19. There is an order-isomorphism C (S ∧ T) ∼= Sσ,τ .

This is reassuring, since we started from the interaction states to derive S ∧ T.



2. CLOSED INTERACTION OF PRE-STRATEGIES 31

2.3.1. Categorical picture. This construction has an interesting algebraic char-
acterization as a pullback in the category E of event structures:

PROPOSITION 2.20. Let A be an event structure and σ : S → A and τ : T → A
be maps of event structures. There are maps of event structures Π1 : S ∧ T → S and
Π2 : S ∧ T → T such that the following diagram is a pullback in the category E :

S ∧ T
Π1

||

Π2

""
S

σ
""

T

τ
||

A

In other terms, for every maps α : X → S and β : X → T such that σ ◦ α = τ ◦ β,
there exists a unique map 〈α, β〉 : X → S∧ T with Π1 ◦ 〈α, β〉 = α and Π2 ◦ 〈α, β〉 = β.

We write σ ∧ τ : S ∧ T → A for either side of the commuting pullback square.
This universal property makes some abstract properties (eg. associativity of inter-
action) straightforward to prove, and also gives confidence in the definition. We
omit the proof (available in [CCRW]) since we prove a more general result later
on (Lemma 2.47).

2.4. Non-closed interaction and composition. To get a category of strategies
and model programming languages, we need to define a notion of pre-strategy
from a game A to a game B. Following Joyal [Joy77], a pre-strategy from A to B

will be a pre-strategy on the compound game A⊥ ‖ B. The notation σ : A to denote
a pre-strategy on a game A is generalized to σ : A + //B to denote a pre-strategy
from a game A to a game B. Copycat on A becomes a pre-strategy from A to itself
– a candidate for an identity strategy.

How to compose a pre-strategy from A to B and a pre-strategy from B to C to
get a pre-strategy from A to C? One plays on A⊥ ‖ B, the other B⊥ ‖ C, and the
desired result on A⊥ ‖ C, so it is not easily described as a closed interaction. To
have them interact on B while the parts on A and C are left untouched, we build
two pre-strategies on A ‖ B ‖ C and take their interaction.

DEFINITION 2.21 (Open interaction). Let σ : S→ A⊥ ‖ B and τ : T → B⊥ ‖ C

be pre-strategies. The maps σ ‖ C⊥ : S ‖ C⊥ → A⊥ ‖ B ‖ C⊥ and A ‖ T : A ‖

T → A ‖ B⊥ ‖ C have dual codomains. β

The open interaction of σ and τ is their interaction:

τ ⋆ σ = (σ ‖ C⊥) ∧ (A ‖ τ) : T ⋆ S→ A ‖ B ‖ C.

In general τ ⋆ σ is however not a pre-strategy on A⊥ ‖ C as one would like. To
solve this issue, three solutions are carried out in the next sections:

• Section 3 explores the possibility of hiding those events that are sent to B
(called internal events) as done originally in [RW11]. Copycat becomes

β At this point, it does not matter to find dual codomains as interaction is defined regardless.
However, we point it out explicitly as in the setting of the next chapter, interaction will not be defined
in such generality, and having dual codomains will become necessary.



32 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

idempotent up to isomorphism, and we get a (bi)category of strategies,
the pre-strategies that are invariant under composition with copycat.
• Hiding all internal events loses information up to weak bisimilarity. In

Section 4, no hiding is performed, and pre-strategies (extended with in-
ternal events) are compared up to weak bisimulation so that to make
copycat idempotent (modulo a minor restriction on games).
• To recover a category up to isomorphism, Section 5 restores some hiding:

just enough to have an idempotent copycat (up to isomorphism) without
losing any behaviour up to weak bisimilarity.

The following choices are summed up by the following example.

EXAMPLE 2.22. Consider the pre-strategy cc B : CCB → B⊥ ‖ B, (or equivalently
B + //B). We have cc B ‖ B and B ‖ cc B on B ‖ B ‖ B:

cc B ‖ B⊥ : B⊥ ‖ B ‖ B⊥

q+ q− q+

tt− ff− tt+ ff+ tt− ff−

B ‖ cc B : B ‖ B⊥ ‖ B

q− q+ q−

tt+ ff+ tt− ff− tt+ ff+

Their interaction is:

cc B ⋆ cc B : B⊥ ‖ B⋆ ‖ B

q+ q⋆ q+

tt− ff− tt⋆ ff⋆ tt− ff−

For events on the left and on the right, since we want ultimately something
that plays on B⊥ ‖ B, we know what polarities to put on them. However, events
in the middle (that do not correspond to a move in the input or output game) are
called internal events or invisible events. By convention, we say they have polarities
⋆, hence the notation B∗.

The resulting event structure is not isomorphic to the event structure for copy-
cat (there are more events). To solve this, Section 3 and 5 shrink the event structure
to remove those synchronization events, while Section 4 modify the equivalence
relation to identify it with cc B.



3. A CATEGORY OF TOTAL STRATEGIES 33

3. A category of total strategies

In this section, we omit the proofs and redirect the interested reader to [CCRW].

3.1. Composition via hiding. Hiding is performed through an operation called
the projection of events structures. It removes some events deemed internal, and
propagates causal dependencies and conflicts. The internal events are thought of
as occurring in the background, any time after their visible dependencies occur.

DEFINITION 2.23 (Projection of event structures). Let E be an event structure
and V ⊆ E a subset of events (an event in V is called visible). The projection of E
to V is the event structure E ↓ V defined as follows:

Events: V
Causality: ≤E ∩V2

Consistency: X ∈ ConE↓V if and only if X ∈ ConE (and X ⊆ V)

Configurations of the resulting event structure are easily characterized:

LEMMA 2.24. Given an event structure E and V ⊆ E, configurations of E ↓ V are
in one-to-one correspondence with configurations of E whose maximal events are in V.

PROOF. The isomorphism maps a configuration x ∈ C (E) to x ∩ V ∈ E ↓ V
and a configuration y ∈ C (E ↓ V) to [y]E, the downclosure of y inside E. �

From this definition, composition of pre-strategies follows:

DEFINITION 2.25. Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C. Remember that
their interaction is given by τ ⋆ σ : T ⋆ S→ A ‖ B ‖ C. An event e ∈ τ ⋆ σ is visible
when (τ ⋆ σ)(e) 6∈ B (which means that (τ ⋆ σ)(e) is not in the B component of the
disjoint union A ‖ B ‖ C). Writing V for the set of visible events, T ⊙ S is defined
as (T ⋆ S) ↓ V and τ ⊙ σ : T ⊙ S→ A⊥ ‖ C as the restriction of τ ⋆ σ.

EXAMPLE 2.26 (Negation and nondeterministic choice). Remember the nega-
tion strategy neg : B + //B and the nondeterministic boolean choice:

neg : B⊥ ‖ B choice : B

q+ q− q−

tt− ff− tt+ ff+ tt+ ff+

Their interaction gives (with A = ∅ – the empty game, B = B and C = B):

neg ⋆ choice : B⋆ ‖ B

q⋆ q−

tt⋆ ff⋆ tt+ ff+



34 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

After hiding, we get back the nondeterministic boolean as expected:

neg⊙ choice : B

q−

tt+ ff+

In what sense neg⊙ choice and choice are the same pre-strategy? They do
not have exactly the same events (as events of neg ⊙ choice are certain secured
bijections), but their underlying event structures are isomorphic.

3.2. Isomorphism of strategies. The set S of events of a pre-strategy can be
seen as names, which σ labels with moves from the game. The exact identity of
those names does not matter, and composition heavily modifies these names. In
particular cc A ⊙ σ is never equal to σ because the names do not match.

As a result, the natural equality of pre-strategies is isomorphism:

DEFINITION 2.27 (Isomorphism of pre-strategies). Let σ : S→ A and τ : T →
A be pre-strategies. An isomorphism between σ and τ is an isomorphism of event
structures ϕ : S ∼= T (that is, an invertible map in E ) commuting with the action
on the game given by σ and τ:

S

σ ��

ϕ
++ T

τ��
A

If two pre-strategies σ and τ are isomorphic, we write σ ∼= τ.

Composition is well-defined up to isomorphism:

LEMMA 2.28 (Isomorphism is a congruence). For σ, σ′ : A + //B and τ, τ′ :
B + //C such that σ ∼= σ′ and τ ∼= τ′, then τ′ ⊙ σ′ ∼= τ ⊙ σ.

Furthermore, composition is associative up to isomorphism:

LEMMA 2.29. Composition of pre-strategies is associative up to isomorphism.

3.3. A category of strategies. The natural candidate for an identity, copycat,
is not an identity for many pre-strategies, as evidenced by the following examples:

EXAMPLE 2.30 (Failure of courtesy). Consider the game A = ⊕1 ⊕2 of two
positive concurrent events, and the pre-strategy σ on A given by ⊕1 _ ⊕2.

The interaction cc A ⋆ σ is:

A⋆ ‖ A

⋆1 ⊕1

⋆2 ⊕2

cc A

cc A
σ



3. A CATEGORY OF TOTAL STRATEGIES 35

On this diagram, the causal links are annotated by the pre-strategy they come
from. Since there is no path in the transitive closure between ⊕1 and ⊕2, the
composition obtained by hiding A∗ is reduced to the following:

A

⊕1

⊕2

which is not isomorphic to σ because of the missing causal link ⊕1 _ ⊕2.

Formally, this issue is due to the extra causal link between positive events that
is absent from the game. It is however, not the only type of causal links that com-
position with copycat removes. Intuitively post-composition with copycat loses
these causal links because of the asynchronous nature of our copycat which is un-
able to preserve most causal dependence. See Example 2.34 for more details.

Still, copycat is idempotent:

LEMMA 2.31. For a game A, cc A : A + //A is idempotent, that is cc A ⊙ cc A
∼= cc A.

Using this fact, we can consider pre-strategies that are invariant under com-
position with copycat. A strategy on A is a pre-strategy σ on A such that there
exists an isomorphism cc A ⊙ σ ∼= σ : A. There are two ways to lift this notion to
pre-strategies from A to B. The following lemma show that they coincide:

LEMMA 2.32. Let σ : A + //B be a pre-strategy. The following are equivalent:

(1) σ is a strategy on A⊥ ‖ B (ie. cc A⊥‖B ⊙ σ ∼= σ),

(2) σ satisfies cc B ⊙ σ⊙ cc A
∼= σ.

PROOF. Consequence of Lemma 2.68 and Lemma 2.53, both to come. �

In that case, σ is called a strategy from A to B. Note that copycat in particular
is a strategy since it satisfies (2) by idempotence. Assembling the pieces of the
puzzle together, [RW11] finally deduces the following:

PROPOSITION 2.33. The following data forms a category CG
∼=
⊙:

Objects: games,
Morphisms from A to B: strategies from A to B up to isomorphism,
Composition: composition of strategies,
Identity on A: copycat strategy on A.

The structure before quotient forms a bicategory, where 2-cells between σ : S→
A and τ : T → A are maps f : S → T making the obvious triangle commute. De-
tails can be found in [CCRW], along with a proof that CG

∼=
⊙ is compact-closed with

‖ as tensor and ·⊥ as dual. (See Section 6 for details on compact-closed categories).
In this chapter, and the next one, we introduce a few categories of strategies

that are variations on the composition and the notion of equality of strategies. To
make this aspect clearer for the reader, their names are annotated: in superscript
the equality between strategies, and in subscript the composition operation.



36 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

3.4. Concrete characterization of strategies. Our definition of strategy is very
abstract; in particular among our examples which ones were strategies? Checking
that a pre-strategy is a strategy involves studying its composition with copycat
which can be quite tedious. The original article on concurrent games [RW11] pro-
vides a concrete and local characterization of strategies in terms of two conditions,
courtesy (called innocence in [RW11]) and receptivity. Before introducing those con-
ditions, we review the need for them in the following examples.

EXAMPLE 2.34 (The need for courtesy). As in Example 2.30, consider games
of the form A = e1 e2 with two concurrent moves e1 and e2. Depending on their
polarities, there are four possible A. On this A, consider the strategy σ = e1 _ e2
(where σ is the identity on events). The four choices for A gives four choices of σ.
Example 2.30 already studied the case of both e1 and e2 being positive.

We study the three remaining cases and depict cc A ⋆ σ for each:

A = ⊖1 ⊕2 A = ⊖1 ⊖2 A = ⊕1 ⊖2

A⊥ ‖ A A⊥ ‖ A A⊥ ‖ A

⋆1 ⊖1 ⋆1 ⊖1 ⋆1 ⊕1

⋆2 ⊕2 ⋆2 ⊖2 ⋆2 ⊖2

cc A

cc A

cc A

cc A

cc A

cc A
σ σ σ

After hiding, we observe that the only composition that is isomorphic to σ is the
first one, when the extra causal link added by σ to the game is ⊖_ ⊕.

This prompts the following definition:

DEFINITION 2.35 (Courtesy). A pre-strategy σ : S→ A is courteous whenever,
if s _S s′ and, s is positive or s′ is negative, then σs _ σs′.

Intuitively, copycat acts as an asynchronous forwarder. The only causal links
that are stable under composition by this forwarder are the ones from negatives to
positives, which corresponds to Player waiting for an Opponent move before play-
ing. The causal links ⊕ _ ⊖ correspond to forcing Opponent to wait for a Player
move. The other two ⊖_ ⊖ and ⊕ _ ⊕ represent controlling the order in which
messages are exchanged in the network. Since our forwarder is asynchronous it
cannot maintain this order – hence it disappears after composition.

Courtesy is however not enough to ensure that a pre-strategy is a strategy.

EXAMPLE 2.36 (Receptivity). Consider the game A = ⊖ and the two strategies
σ1 = ∅ (σ1 never plays) and σ2 = ⊖ ⊖ (σ2 acknowledges the Opponent move
in two nondeterministic ways.)

Their interaction with copycat gives:

cc A ⋆ σ1 : A⋆ ‖ A cc A ⋆ σ2 : A⋆ ‖ A

⊖ ⋆ ⊖

⋆

which, after hiding, yield the pre-strategy ⊖ on A in both cases.



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 37

The problem here is either denying an Opponent move or performing a non-
deterministic choice upon reception of an Opponent move. A strategy should treat
reachable negative moves linearly: it cannot ignore them or duplicate them:

DEFINITION 2.37 (Receptivity). A pre-strategy σ : S → A is receptive when
for all configuration x ∈ C (S) such that σx extends by a negative event a− ∈ A,
then there exists a unique extension s ∈ S of x such that σs = a.

Courtesy and receptivity exactly capture strategies:

THEOREM 2.38. Strategies coincide with courteous and receptive pre-strategies.

4. Uncovered strategies up to weak bisimulation

In this section, we investigate another way of obtaining a category of strategies
where no hiding is performed. Indeed, we can finally make formal the intuitions
given in Chapter 1, that traditional hiding is too optimistic

EXAMPLE 2.39. Remember the strategy sum playing on (proc ‖ proc)⊥ ‖ proc
from Example 2.4. It can be seen as playing on proc⊥ ‖ (proc⊥ ‖ proc). Com-
puting the interaction sum ⋆ ⊥ : proc⊥ ‖ proc where ⊥ = run− is the minimal
strategy on proc (representing divergence), yields:

proc⋆ ‖ (proc⊥ ‖ proc)

run−

run⋆ run+

done−

done+

Since ⊥ never plays done, the left branch of sum disappears during the interac-
tion. After hiding, it becomes apparent that sum ⊙ ⊥ ∼= cc proc. However, they
do not have the same operational behaviour. Copycat on proc always runs its ar-
gument where sum⊙ ⊥ might decide not to and interrogate ⊥ instead, blocking
the whole process. This is a phenomenon of hidden divergence. Because of that,
the interpretation of nondeterministic languages in CG

∼=
⊙ will only be adequate for

may-equivalence. (Cf Chapter 4, Section 3 for a more detailed discussion)

To repair that, strategies should be allowed to have internal events that do not
correspond to events of the game: the labelling function σ becomes partial.

DEFINITION 2.40 (Uncovered pre-strategies). An uncovered pre-strategy on
a game A is a partial map of event structures σ : S ⇀ A, ie. a partial function
S ⇀ A satisfying the following familiar properties:

(1) σx ∈ C (A) for x ∈ C (A),
(2) σ restricted to a consistent set is injective (local injectivity).

An uncovered pre-strategy from A to B is an uncovered pre-strategy on A⊥ ‖ B.



38 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

We reuse the notation σ : A and σ : A + //B from the previous section to
introduce uncovered pre-strategies on a game. The (pre-)strategies of the previous
section will be referred to as covered (pre-)strategies in the rest of the thesis.

Terminology on polarity. An event of an uncovered pre-strategy σ is external
(or visible) if it is in the domain of σ, internal or invisible otherwise. The labelling
σ does not equip S with a polarity function S→ {−,+} since invisible events have
no assigned polarities this way. In this case, σ equips S with a partial polarity
function S → {−,+, ⋆} (where events undefined for σ have polarity ⋆), turning
S into an event structure with partial polarities. Given such an event structure
E, we define E↓ to be its projection to external events. Similarly given x ∈ C (E)
we write x↓ for x ∩ E↓ (it is a configuration of E↓) and x⋆ for the subset of internal
events of x so that x = x↓ ⊎ x⋆.

An event is nonnegative when it is positive or internal: such events corre-
spond to Player actions. The notations ⊆+ and ⊆− are extended to ⊆⋆: x ⊆⋆ y
when y is an extension of x by only invisible events. Given an uncovered pre-
strategy σ : S ⇀ A we write σ↓ : S↓ → A for the corresponding covered strategy.

Note that Lemma 2.41 generalizes easily to partial maps:

LEMMA 2.41. Let f , g : A ⇀ B be partial maps of event structures such that for all
configuration x ∈ C (A) we have f x = gx. Then f = g.

PROOF. Similar proof as in the total case, but here f [a] \ f [a) is either empty
or a singleton depending on whether f is defined at a ∈ A. �

Isomorphism naturally generalizes to uncovered pre-strategies:

DEFINITION 2.42. Let σ : S ⇀ A and τ : T ⇀ A be two uncovered pre-
strategies. An isomorphism between σ and τ is an isomorphism ϕ : S ∼= T such
that the following triangle commutes (as partial maps):

S

σ �

ϕ
++ T

τ�
A

4.1. Interaction of uncovered strategies. In this setting, composition simply
becomes interaction since we do not want to hide anything. Since pre-strategies
are now partial maps, the definition of the interaction needs to be updated.

4.1.1. Closed interaction. First, we define the closed interaction of uncovered
pre-strategies. As before, polarities do not matter and we consider simply partial
maps of event structures. Let σ : S ⇀ A and τ : T ⇀ A be partial maps of event
structures. To define the new interaction states, we need to slightly change the
definition of Section 2.3.

A pair (x, y) ∈ C (S)× C (T), such that σ↓x = τ↓y ∈ C (A), induces a bijection
ϕx,y : x ‖ y⋆ ≃ x⋆ ‖ y defined by local injectivity of σ and τ:

ϕx,y(0, s) = (0, s) (s ∈ x⋆)

ϕx,y(0, s) = (1, τ−1(σs)) (s ∈ x↓)

ϕx,y(1, t) = (1, t)



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 39

Viewing y⋆ and x⋆ as discrete orders (the ordering relation is the equality),
ϕx,y is a bijection between partial orders. An interaction state of σ and τ is a pair
(x, y) ∈ C (S)× C (T) with σ↓x = τ↓y such that the bijection ϕx,y is secured. As a
result ϕx,y is naturally partial ordered.

As for covered strategies, write Sσ,τ for the set of interaction states of σ and
τ. This terminology is justified as in the case of covered strategies, both notions of
interaction states coincide. We can now apply the same trick of Definition 2.18:

DEFINITION 2.43 (Closed interaction of uncovered pre-strategies). Let A be an
event structure, and σ : S ⇀ A and τ : T ⇀ A be partial maps of event structures.
The following data defines an event structure S ∧ T:

• (Events) Those interaction states (x, y) such that ϕx,y has a top element.
• (Causality) Inclusion of graphs.
• (Consistency) A finite set of interaction state X ⊆ S ∧ T is consistent iff its

pairwise union
⋃

X is an interaction state in Sσ,τ .

Projections become partial maps Π1 : S ∧ T ⇀ S and Π2 : S ∧ T ⇀ T defined
as follows. For (x, y) ∈ Sσ,τ Π1(x, y) is defined to s ∈ S whenever the top-element
of ϕx,y is ((1, s), w2) for some w2 ∈ x⋆ ‖ y. The map Π2 is defined similarly.

We write σ ∧ τ for σ ◦Π1 = τ ◦Π2 : S ∧ T ⇀ A. As a result, Π1 is undefined
only on events of S ∧ T corresponding to internal events of T and similarly Π2 is
undefined on events corresponding to neutral events of S.

4.1.2. Properties of closed interaction. When proving properties about the inter-
action of pre-strategies, a concrete understanding of the interaction will be handy.
Let σ : S ⇀ A and τ : T ⇀ A be partial maps.

As desired, configurations of S ∧ T indeed correspond to interaction states:

LEMMA 2.44. The map z 7→ (Π1z, Π2z) : C (S∧T)→ Sσ,τ is an order-isomorphism.
Moreover, given z ∈ C (S ∧ T), there is an order-isomorphism topz : z ∼= ϕΠ1z,Π2z.

PROOF. The proof follows from general considerations on rigid families [Hay14].
For the sake of completeness, we provide an elementary proof.

Write Ψ : C (S ∧ T) → Sσ,τ defined by Ψ(z) = (Π1z, Π2z). It is well-defined
because the graph of ϕΠ1z,Π2z is exactly

⋃

(x,y)∈z

ϕx,y.

(Remember that, formally, z is a set of interaction states.)
Define Ψ−1 : Sσ,τ → C (S ∧ T) as follows:

Ψ
−1(x, y) = {(x′, y′) ∈ S ∧ T | x′ ⊆ x & y′ ⊆ y}.

The equations Ψ ◦Ψ−1 = idSσ,τ and Ψ−1 ◦Ψ = idC (S∧T) are simple calculations.
Finally, consider z ∈ C (S ∧ T). Elements z0 of z are prime interaction states,

as such have a top element topz(z0) in ϕΠ1z,Π2z. This defines a monotonic map
z0 7→ topz(z0) : z → ϕΠ1z,Π2z. Conversely, given p ∈ ϕΠ1z,Π2z, the set {p′ ∈
ϕΠ1z,Π2z | p′ ≤ p} is the graph of a secured bijection ϕx,y. The mapping p 7→ (x, y)
defines the inverse ϕΠ1z,Π2z → z. �

LEMMA 2.45. We have the following properties:

(1) If e _ e′ in S ∧ T, then Π1e _S Π1e′ (with both defined) or Π2e _T Π2e′

(with both defined).



40 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

(2) Assume we have x ∈ C (S∧ T) with two incompatible extensions e and e′. Then
Π1e and Π1e′ are defined and are incompatible extensions of Π1x, or Π2e are
defined and Π2e′ are incompatible extensions of Π2x.

PROOF. The proof exploits the definition of events of S ∧ T as prime interac-
tion states. Remember that an event e ∈ S ∧ T is an interaction state inducing a
secured bijection ϕΠ1[e],Π2[e]

: Π1[e] ‖ (Π2[e])⋆ ≃ (Π1[e])⋆ ‖ Π2[e].
Write Nσ and Nτ for the set of internal events of σ and τ respectively, viewed

as event structures where causality is equality and all finite sets are consistent. The
partial projections can be turned into total maps:

Π1 : S ∧ T → S ‖ Nτ Π2 : S ∧ T → Nσ ‖ T.

For any e0 < e, then (Π1e0, Π2e0) ∈ ϕΠ1[e],Π2[e]
.

(1) From e _ e′, we deduce that (Π1e, Π2e) _ϕ
Π1e′ ,Π2e′

(Π1e′, Π2e′). By defini-

tion of the induced order on an interaction state, this implies that either Π1e _S‖Nτ

Π1e′ or Π2e _Nσ‖T Π2e′. Since Nσ and Nτ are discrete partial order, this is equiv-
alent to Π1e _S Π1e′ or Π2e _T Π2e′, as desired.

(2). Write X = x ∪ {e, e′}, and ϕ for the secured bijection ϕΠ1x,Π2x (well-
defined by Lemma 2.44. Assume both Π1X and Π2X are configurations of S and
T respectively. Since the projections of e and e′ are concurrent both in S and T, the
bijection ϕ ∪ {(Π1e, Π2e), (Π1e′, Π2e′)} is secured, therefore X′ is a configuration
of S ∧ T by Lemma 2.44, which is absurd. �

4.1.3. Universal property of the interaction. Previously, we have seen that syn-
chronization σ ∧ τ of total maps of event structures is actually a pullback; and as
a result enjoys a universal property. This universal property is neat as it allows
abstract reasoning on interactions and provides a justification for the definition.
However, even though the category of event structures and partial maps does have
pullbacks, σ ∧ τ is not a pullback of the partial maps σ and τ.

EXAMPLE 2.46. Let A be the empty game and σ and τ be the empty partial
map S = T = {⋆}⇀ A. A calculation gives that S ∧ T contains two events ⋆σ and
⋆τ such that Π1(⋆σ) is defined but not Π2(⋆σ) and vice-versa for ⋆τ .

However, the pullback of σ and τ inside the category of partial maps has a
third event ⋆σ,τ on which both Π1 and Π2 are defined.

This is due to pullbacks of partial maps synchronizing on the internal events.
In our construction, this does not happen: neutral events of σ and τ live in differ-
ent worlds. This intuition is formally expressed as the following property on our
projections Π1 and Π2: if Π1 p and Π2 p are both defined, for an event p ∈ S ∧ T,
then p is visible, ie. σ(Π1 p) = τ(Π2 p) is defined. We can prove that our triple
(S ∧ T, Π1, Π2) is universal among triples having this property:

LEMMA 2.47. Let σ : S ⇀ A and τ : T ⇀ A be partial maps of event structures.
Let (X, f : X ⇀ S, g : X ⇀ T) be a triple such that the following outer square commutes:



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 41

X

S S ∧ T T

A

〈 f ,g〉
f g

σ

Π2Π1

σ∧τ
τ

Assume that for all p ∈ X with f p and g p defined, σ( f p) = τ(g p) is defined. Then,
there exists a unique map 〈 f , g〉 : X → S ∧ T making the two upper triangles commute.

The action of 〈 f , g〉 is more easily described on configurations than on events.
Fortunately, it is possible recover the action on events, modulo some assumptions:

LEMMA 2.48 (Mapification). Let A, B be event structures. Let p : C (A) → C (B)
be a monotonic map between the configuration domains. If p satisfies both:

(0) p ∅ = ∅,
(1) for x, y ∈ C (A) such that x ∪ y ∈ C (A), then

p(x ∪ y) \ px = (py \ p(x ∩ y)),

(2) p is non-inflating: if x−⊂y then |py| ≤ |px|+ 1
(| · | denoting cardinality).

then, there exists a (necessarily unique) partial map of event structures f : A ⇀ B with
f x = px for all x ∈ C (A). Moreover, f is total if and only if (2) is always an equality.

PROOF. Remark that, by (2), p[a] \ p[a) is either empty or a singleton. Define
the partial function f : A ⇀ B as follows: it is defined on a ∈ A to b ∈ B if and
only p[a] \ p[a) = {b}.

First, by induction on x ∈ C (A) we show that f x = px. For x = ∅, it is given
by assumption (0). Assume that x ∈ C (A) such that f x = px extends by a ∈ A to
x′. We have (taking x = x and y = [a] in (2)):

p(x′) = p(x ∪ [a]) = p(x) ∪ (p([a] \ p[a)).

If f is defined at a, then p[a] \ p[a) = { f a}, if f is undefined at a, then p[a] \ p[a) =
∅. In both cases, we have f x′ = px′.

We now check f is a map of event structures. If x ∈ C (A), then f x = px ∈
C (B). For local injectivity, assume distinct a, a′ ∈ x ∈ C (A) such that f a and f a′

are defined and equal to b. Assume that, (a, a′) is a minimal pair satisfying this
property, so that b 6∈ f [a] ∩ f [a′]. By (2), it follows that:

f ([a] ∪ [a′]) \ f [a] = f [a′] \ ( f [a] ∩ f [a′]).

However, b belongs to the right-hand term, but not to the left-hand term: absurd.

Finally, f is total if and only if x
a
−−⊂ y, p(y) = {b} ∪ p(x) for some b ∈ B. �

Using this construction, we can now prove the universal property:

PROOF. (Of Lemma 2.47)
Uniqueness. Assume we have ι1, ι2 : X → S ∧ T making the two diagrams

commute. For a configuration x ∈ C (X), a calculation yields:

(Π1(ι1x), Π2(ι1x)) = ( f x, gx) = (Π1(ι2x), Π2(ι2x))



42 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

which implies ι1 = ι2 by Lemmata 2.44 and Lemma 2.41.
Existence. Write Ψ : Sσ,τ ∼= C (S ∧ T) for the isomorphism given by Lemma

2.44. We use mapification (Lemma 2.48) to build 〈 f , g〉.
If x ∈ C (X) then ( f x, gx) ∈ Sσ,τ : by Lemma 2.12, any cycle in the secured

bijection ( f x) ‖ (gx)⋆ ≃ ( f x)⋆ ‖ gx can be traced back by to a cycle in x which is
absurd. Hence, the mapping x ∈ C (X) 7→ Ψ( f x, gx) ∈ C (S ∧ T) is a well-defined
monotonic map 〈 f , g〉, and, at the level of configurations, these hold:

Π1 ◦ 〈 f , g〉 = f and Π2 ◦ 〈 f , g〉 = g.

We now check the mapification conditions holds for 〈 f , g〉. First, since Ψ is
an order-isomorphism, (1) is a simple calculation. For (2), any x ∈ C (X) can be
decomposed in visible events, neutral events of f , neutral events for g as follows:

xv = x ∩ dom(σ ◦ f ) x f = (x ∩ dom f ) \ xv xg = (x ∩ dom g) \ xv.

Because f and g do not synchronize on neutral events, these three sets are dis-
joint. However they do not form a partition, as there could be event in x on which
neither f nor g are defined. In any case, we have the desired inequality:

|〈 f , g〉x| = |ϕ f x,gx| ≤ | f x|+ |(gx)⋆| = (|xv|+ |x f |) + |xg| ≤ |x|

as the union is disjoint. As a result, by mapification 〈 f , g〉 induces a map, that we
also write 〈 f , g〉 : X ⇀ S ∧ T, satisfying the desired equations by Lemma 2.41. �

One consequence of this universal property is an easy proof of associativity:

LEMMA 2.49. For σ : S ⇀ A, τ : T ⇀ A, υ : U → A, (σ ∧ τ) ∧ υ ∼= σ ∧ (τ ∧ υ).

PROOF. The maps Π2 ◦ Π1 : (S ∧ T) ∧ U ⇀ T and Π2 : (S ∧ T) ∧ U ⇀ U
do not synchronize on neutral events, as a result, there exists a map ϕ1 = 〈Π2 ◦
Π1, Π2〉 : (S ∧ T) ∧U ⇀ (T ∧U). Since ϕ1 and Π1 ◦Π1 : (S ∧ T) ∧U ⇀ S do
not synchronize on neutral events either, then ϕ2 = 〈Π1 ◦Π1, ϕ1〉 : (S ∧ T) ∧U ⇀
S ∧ (T ∧U) is well-defined. Similarly, we can build a map in the other direction,
which is an inverse to ϕ2 by Lemma 2.41. �

We note in passing that mapification has an interesting consequence: its as-
sumptions are satisfied when p is an order-isomorphism:

LEMMA 2.50. Let A and B be event structures and let ϕ : C (A) ∼= C (B) be an
order-isomorphism. There is a (necessarily unique by Lemma 2.41) isomorphism of event
structures ϕ̂ : A ∼= B such that for all x ∈ C (A), ϕ̂x = ϕx.

PROOF. Direct consequence of Lemma 2.48. �

This result along with Lemma 2.41 allows us to prove isomorphisms of strate-
gies by reasoning only at the level of configurations.

4.1.4. Open interaction. To deduce the open interaction, we simply proceed as
in previous section. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C. As before, we

consider (σ ‖ C) ∧ (A ‖ τ) : T ⋆ S ⇀ A ‖ B ‖ C. Write h
A‖B‖C
B for the partial

map A ‖ B ‖ C ⇀ A ‖ C. To get the interaction, τ ⋆ σ we simply post-compose

(σ ‖ C) ∧ (A ‖ σ) by h
A‖B‖C
B , marking the events sent to B as internal:

τ⊛ σ = h
A‖B‖C
B ◦ ((σ ‖ C) ∧ (A ‖ σ)) : T ⋆ S ⇀ A⊥ ‖ C



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 43

We use a different notation (⊛ instead of ⋆) to emphasize the fact that we have
changed the codomain. However, the underlying event structure is the same, and
we write sometimes T⊛ S = T ⋆ S for uniformity purposes. To prove associativity
of interaction, we need laws governing the distributivity between this operation
and parallel composition and ∧:

LEMMA 2.51. For pre-strategies σ : S ⇀ A ‖ B ‖ C and τ : T ⇀ C:

h
A‖B‖C
B ◦ (σ ∧ (A ‖ B ‖ τ)) ∼= (h

A‖B‖C
B ◦ σ) ∧ (A ‖ τ)

PROOF. Write U1 for the event structure corresponding to the left-hand term
and U2 for that of the right-hand term. Both satisfy the universal property of
Lemma 2.47. In particular we have projections:

Π
U1
1 : U1 ⇀ S Π

U1
2 : U1 ⇀ A ‖ B ‖ T

Π
U2
1 : U2 ⇀ S Π

U2
2 : U2 ⇀ A ‖ T

As a result, by the universal property we have a map U1 ⇀ U2 induced by
Π

U1
1 : U1 ⇀ S and hB ◦Π

U1
2 : U2 ⇀ A ‖ B ‖ T ⇀ A ‖ T. The other way around is

slightly more subtle. In U2, σ and B ‖ τ do not synchronize on B but in U1 they do.
However, since B ‖ τ plays as the identity on B, this synchronization on B does
not constrain σ. Formally, there exists a map:

ψ : U2 → A ‖ B ‖ T

such that Π
U2
1 together with ψ induce the desired inverse U2 → U1.

The map ψ is defined as follows:

ψ(p) ∈ A ‖ B ‖ T =

®
σ(Π1(p)) if σ(Π1(p)) is defined and in A ‖ B

Π2 p otherwise – equivalently, Π2 p ∈ T

This workaround is necessary to ensure that the image in B coincides with σ. �

From this lemma and associativity of ∧, we can deduce associativity of ⊛:

LEMMA 2.52. For σ, τ, υ composable uncovered pre-strategies, we have:

σ⊛ (τ⊛ υ) ∼= (σ⊛ τ)⊛ υ.

PROOF. Let σ : S ⇀ A⊥ ‖ B, τ : T ⇀ B⊥ ‖ C and υ : U ⇀ C⊥ ‖ D be
uncovered pre-strategies. Using Lemma 2.49, we have:

(σ⊛ τ)⊛ υ ∼= h
A‖C‖D
C ◦ (((h

A‖B‖C
B ◦ ((σ ‖ C) ∧ (A ‖ τ))) ‖ D) ∧ (A ‖ υ))

{
(h

A‖B‖C
B ◦ σ) ‖ D ∼= h

A‖B‖C‖D
B ◦ (σ ‖ D)

}

∼= h
A‖C‖D
C ◦ ((h

A‖B‖C‖D
B ◦ ((σ ‖ C ‖ D) ∧ (A ‖ τ ‖ D))) ∧ (A ‖ υ))

{ Lemma 2.51 }

∼= h
A‖C‖D
C ◦ h

A‖B‖C‖D
B ((σ ‖ C ‖ D) ∧ (A ‖ τ ‖ D) ∧ (A ‖ B ‖ υ))

{ A ‖ (σ ∧ τ) ∼= (A ‖ σ) ∧ (A ‖ τ) }

∼= h
A‖C‖D
C ◦ h

A‖B‖C‖D
B ((σ ‖ C ‖ D) ∧ (A ‖ ((τ ‖ D) ∧ (B ‖ υ)))

∼= h
A‖B‖D
B ◦ h

A‖B‖C‖D
C ((σ ‖ C ‖ D) ∧ (A ‖ ((τ ‖ D) ∧ (B ‖ υ)))

∼= σ⊛ (τ⊛ υ). �



44 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

Finally, composition of uncovered pre-strategies commutes with hiding:

LEMMA 2.53. For σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C uncovered pre-strategies,

(τ⊛ σ)↓ ∼= τ↓ ⊙ σ↓

PROOF. The proof is delayed until Section 6. �

4.2. Weak bisimulation. As discussed in Example 2.22, composition with copy-
cat adds extra synchronization events. To identify uncovered pre-strategies up to
those synchronization events, we use the standard notion of weak bisimulation on
the labeled transition system generated by the corresponding event structures:

DEFINITION 2.54 (Weak bisimulation). Let σ : S ⇀ A and τ : T ⇀ A be two
uncovered pre-strategies. A weak bisimulation between σ and τ is a setR of pairs
of the form (x, y), where x ∈ C (S), y ∈ C (T) satisfying the following axioms:

(1) (∅, ∅) ∈ R

(2) If (x, y) ∈ R with x
s
−−⊂ and s is visible, then there exists y ⊆⋆ y′ such

that y′
t
−−⊂ and (x ∪ {s}, y′ ∪ {t}}) ∈ R.

(And the symmetric condition for a visible extension of y)

(3) If (x, y) ∈ R with x
s
−−⊂ and s invisible then there exists y ⊆⋆ y′ and

(x ∪ {s}, y′) ∈ R.
(And the symmetric condition for a invisible extension of y)

Two uncovered pre-strategies are weakly bisimilar when there exists a weak
bisimulationR between them. We write σ ≈ τ.

EXAMPLE 2.55. Our example 2.39 can be used to illustrate weak bisimulation
by showing that sum ⊛ ⊥ and cc proc are not weakly bisimilar. Indeed, we must
have ({run−}, {run−}) in any bisimulation between them. From there sum⊛⊥
can do an internal transition, performing the left (internal) run∗ whereas cc proc has
no choice but to stand still. From then on, sum⊛⊥ is stuck whereas cc proc can still
perform visible transitions.

LEMMA 2.56. Weak bisimulation is a congruence (for ⊛).

PROOF. Let σ : S ⇀ A⊥ ‖ B, σ′ : S′ ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C, τ′ : T′ ⇀

B⊥ ‖ C. Assume R is a bisimulation between σ and σ′, and R′ between τ and τ′.
DefineR ‖ C as the relation:

{(x ‖ y, x′ ‖ y) | xRx′, y ∈ C (C)}

and similarly A ‖ R′. They are bisimulations σ ‖ C ≈ σ′ ‖ C and A ‖ τ ≈ A ‖ τ′

respectively. DefineR′ ⊛R as follows:

x(R′ ⊛R)y iff Π2x(A ‖ R′)Π2y and Π1x(R ‖ C)Π1y.

Checking this is a bisimulation is routine. �

To continue, we need to study which uncovered pre-strategies are invariant
under copycat. However, unlike in Section 3, copycat is not always idempotent:

EXAMPLE 2.57. Let A = ⊖1 ⊖2 ⊕3⊕4 with trivial causality and consistency:

X ∈ ConA iff |X| ≥ 3⇒ (⊖2 6∈ X ∨⊕3 6∈ X).



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 45

In a context where two events already occurred, ⊖2 and ⊕3 become mutually
exclusive. In particular {⊖2,⊕3} is a maximal configuration of A. The interaction
of copycat with itself gives the following uncovered pre-strategy:

A⊥ ‖ A⋆ ‖ A

⊕1 ⋆1 ⊖1

⊕2 ⋆2 ⊖2

⊖3 ⋆3 ⊕3

⊖4 ⋆4 ⊕4

The conflict, as it is not binary, is not represented on the above picture. Any
bisimulation between cc A ⊛ cc A and cc A must relate the minimal configurations of
cc A ⊛ cc A and cc A, one of which is {⊖1,⊖2,⊖3,⊖4} ∈ C (A⊥ ‖ A). From there, cc A ⊛

cc A can do a silent transition to {⊖1,⊖2,⊖3,⊖4, ⋆2, ⋆3} (and cc A does nothing since
there are no internal events in cc A). But this configuration of cc A ⊛ cc A is maximal
(in particular because the configuration in the middle in maximal is A) whereas
the corresponding configuration of cc A is not: hence they cannot be bisimilar.

To avoid this problem, from now on, we only consider race-free games, ie.
games that do not exhibit mutual exclusion between positive and negative events:

DEFINITION 2.58 (Race-freeness). An event structure with polarities A is race-
free when for all incompatible extensions a1 and a2 of a configuration of A, then
a1 and a2 must have the same polarity.

The key consequence of race-freeness is as follows:

LEMMA 2.59. Let A be a race-free event structure with polarities. For all configura-
tion x ‖ y ∈ C (CCA), then x ∪ y ∈ C (A).

PROOF. By Lemma 2.11, y ⊇− x ∩ y ⊆+ x. If x ∪ y 6∈ C (CCA), this means that
there exists x ∩ y ⊆ z ⊆ x ∪ y with two incompatible extensions a1 ∈ x and a2 ∈ y.
Since, a1 is positive and a2 negative which contradicts race-freeness. �

Race-freeness is preserved by all our constructions and all the games we con-
sider in this thesis are race-free, so for our purposes, this is not a very restrictive
constraint. That copycat on race free games is idempotent is a consequence of our
Proposition 2.67 to come.

It is to be noted though, that race-freeness is not necessary to guarantee idem-
potence of copycat, and a notion of transitive game should be sufficient: those
where the relation “x ⊳ y iff x ‖ y is a +-maximal configuration of CCA” is a transi-
tive relation between configurations of A (see [CHLW14] for more details).

4.3. A compact-closed category. Restricting to race-free games, we now in-
vestigate conditions on pre-strategies for them to be invariant under copycat. We
first remark that generalizing courtesy and receptivity is not enough. Indeed, new
behaviours of uncovered pre-strategies are not invariant under copycat.

EXAMPLE 2.60. Consider the game A = tt+ ff+ and σ = tt+ ff+. Its
composition, as an uncovered pre-strategy, with copycat is:



46 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

A⋆ ‖ A

⋆tt tt+

⋆ff ff+

It is not weakly bisimilar to σ as cc A ⊛ σ can do an internal transition to choose
the result of the computation, and disable the other one, while σ has to stand still
(there is no internal event) and can still play both moves afterward.

This motivates the definition of uncovered strategy:

DEFINITION 2.61 (Uncovered strategy). A uncovered strategy is an uncovered
pre-strategy σ : S ⇀ A satisfying furthermore the following conditions:

Courtesy: For s _S s′ and pol(s) = + or pol(s′) = − then σs _ σs′,
Receptivity: For x ∈ C (S) such that σx extends by a negative event a then

there exists a unique extension s− ∈ S of x with σs = a.
Secrecy: For x ∈ C (S) with two incompatible extensions by s1 and by s2,

then s1 and s2 are either both internal events or both negative events.

Secrecy forces nondeterministic actions of a strategy to be internal. The first
two axioms are straightforward generalizations of courtesy and receptivity. As a
result, the hiding of an uncovered strategy is a covered strategy:

LEMMA 2.62. For σ : S ⇀ A an uncovered strategy, σ↓ is a covered strategy.

PROOF. Courtesy. Assume we have s _S↓ s′ and s is positive or s′ negative.
We know that s ≤S s′ hence there is a sequence s _ s1 _ . . . _ sn _ s′ where all
the si are internal in S. Assume for instance s is positive (the other case is similar).
By courtesy of σ, we must have n = 0 and σs _ σs′.

Receptivity. Let x ∈ C (S↓) such that σ↓ x extends by a negative a. Since
σ([x]S) = σ(x), by receptivity of σ, there exists an extension s ∈ S of [x]S (hence
s is an extension of x) such that σs = a. Assume there is another extension of x,
s′ ∈ S↓ with σs = a. As s′ is also an extension of [x]S, s = s′ by receptivity of σ. �

EXAMPLE 2.63. Covered strategies featuring conflict are not instances of un-
covered strategies as their conflict occurs between visible events (contradicting the
secrecy condition). Such visible events need to be prefixed by a neutral event that
will be the source of the conflict. For instance, the strategy sum of Example 2.4 is
represented by the following uncovered strategy:

a : proc, b : proc ⊢ sum a b : proc

run−

⋆1 ⋆2

run+ run+

done− done−

done+ done+



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 47

Neutral events of sum are drawn on a particular component even though math-
ematically, they do not belong to any.

Uncovered strategies are stable under composition:

LEMMA 2.64. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be uncovered strategies.
Then τ⊛ σ is an uncovered strategy.

PROOF. Courtesy. Assume p _T⊛S p′ and for instance that p is positive (the
case p′ negative is similar). By Lemma 2.45, we have that either Π1 p _S‖C Π1 p′

or Π2 p _A‖T Π2 p′. If (τ⊛ σ)p _A‖C (τ⊛ σ)p′ (with both defined) does not hold,
then Π1 p _S Π1 p′ or Π2 p _T Π2 p′. Both contradict the courtesy of σ and τ.

Receptivity. Let w ∈ C (T⊛S) such that (τ⊛σ)w can be extended by a negative
c, with c ∈ C for instance. Write Π2z = xA ‖ xT with xA ∈ C (A), and xT ∈ C (T).
The hypothesis implies that τxT can also extend by c, and by receptivity there
exists a unique extension t ∈ T of xT with τt = c. The configuration w correspond
to the interaction state (Π1w, Π2w). Since (Π1w ∪ {(2, τt)}, Π2w ∪ {(2, t)}) is a
valid interaction state, by Lemma 2.44 there exists an extension p of z with (τ ⊛
σ)(p) = c. Uniqueness follows directly from those of σ and τ.

Secrecy. Assume we have z ∈ C (T ⊛ S) with incompatible extensions p1 and
p2. By Lemma 2.10, this amounts to an incompatible extension either in S or in T:
and then we can conclude by secrecy of σ and τ. �

4.3.1. Interaction of uncovered strategies. To conclude the section, we provide
some terminology and results to work on the interaction of uncovered strategies.
Courtesy and receptivity impose some structure on this operation which is oth-
erwise very loose. Those results will be key when reasoning on interaction of
strategies. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be uncovered strategies. First,
events of τ⊛ σ split in three disjoint categories:

• external-Opponent moves: those moves s ∈ τ ⊛ σ that are mapped to a
negative move of A⊥ ‖ C,
• σ-action: those moves s ∈ τ ⊛ σ such that Π1s is defined and a nonnega-

tive element of S,
• τ-action: those moves t ∈ τ ⊛ σ such that Π2t is defined and a nonnega-

tive element of T.
A σ-move is a move of T ⊛ S on which Π1 is defined, and similarly a τ-move

is a move of T⊛ S on which Π2 is defined. Using courtesy and receptivity, we can
strengthen properties on the interaction.

LEMMA 2.65 (Interaction toolbox). Let σ : S ⇀ A and τ : T ⇀ A⊥ be courteous
and receptive maps of event structures.

(1) For p ∈ S ∧ T, either Π1 p or Π2 p is nonnegative (but not both).
(2) For p _ p′ ∈ S ∧ T such that Π1 p′ is nonnegative, then Π1 p _ Π1 p′

(3) For p, p′ incompatible extensions of x ∈ C (S ∧ T) then either Π1 p and Π1 p′

are nonnegative and incompatible extensions of Π1x or Π2 p and Π2 p′ are non-
negative and incompatible extensions.

Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be courteous and receptive maps of event
structures. Their interaction τ⊛ σ satisfies the following properties:

(4) For p ∈ T ⊛ S, at least Π1 p ∈ S or Π2 p ∈ T. If both are satisfied, then p is a
synchronized event on B.



48 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

(5) If p _ p′ and p′ is a σ-action, then Π1 p _S Π1 p′

(6) If x ∈ C (T ⊛ S) extends incompatibly by p1 and p2, then either Π1x ∩ Sγ

extends incompatibly in S by Π1 p1 and Π2 p2, or Π2x∩ T extends incompatibly
in T by Π2 p1 and Π2 p2.

This lemma states that immediate causalities and conflict can always be traced
back to S or T.

PROOF. (1) Clear: both projections cannot be negative.
(2) By Lemma 2.45, we have either Π1 p _ Π1 p′ or Π2 p _ Π2 p′. If the latter

case is true, then given that Π2 p′ will be negative in T, by courtesy it follows that
τ(Π2 p) _ τ(Π2 p′). This implies that Π1 p ≤ Π1 p′ since σ is a map of event
structures and thus reflects the causal order. If there was Π1 p < s < Π1 p′, this
would contradict p _ p′ since Π1 is also a map of event structures.

(3) Reasoning similar to (2). A minimal conflict originates in either S or T by
Lemma 2.45. If it originates in T, then by receptivity, it must be originally present
in the game, and hence S must have it as well.

(4-7) Those points are direct consequence of the previous points. �

4.3.2. Invariance under copycat. We now move on to show that cc A⊛σ is weakly
bisimilar to σ. To show that, we need a good grasp on cc A ⊛ σ. In particular, it is
deadlock-free, meaning that all bijections are secured:

LEMMA 2.66. Let τ : T ⇀ A⊥ ‖ B be an uncovered pre-strategy satisfying: if t ≤ t′

and both t and t′ are sent by τ to A⊥, then τt ≤ τt′.

Write τA : T ⇀ A⊥ and τB : T ⇀ B for the induced partial maps. For any uncovered
pre-strategy σ : S ⇀ A, and configurations x of S and y of T with σx = τAy, the induced
bijection x ‖ y⋆ ‖ τBy ≃ x⋆ ‖ y is secured.

As a consequence, we have an order isomorphism:

C (T⊛ S) ∼= {(x, y) ∈ C (S)× C (T) | σx = τAy}

PROOF. Assume that the bijection is not secured. Without loss of generality,
there is a causal loop of the form (v1, t1) ⊳ . . . ⊳ (v2n, t2n) such that t2i < t2i+1 and
v2i+1 < v2i+2 and t2n < t1. Since t2i < t2i+1, both (v2i, t2i) and (v2i+1, t2i+1) do
not project to neutral elements of S ‖ C. Similarly, they do not project to neutral
elements of T: they must be visible. In particular vi ∈ S ‖ B.

Assume that v2i+1 ∈ B. Then v2i+2 ∈ B and we have that τ(t2i+1) = v2i+1 ≤
v2i+2 = τ(t2i+2). By Lemma 2.12, it follows that t2i+1 ≤ t2i+2. If the only two
steps of the causal loop were (v2i+1, t2i+1) and (v2i, t2i), we have a loop in T and
a contradiction. Otherwise, we can remove the steps 2i + 1 and 2i + 2 and keep
a causal loop. Removing them, if there is a loop of length one remaining, then
we have a direct contradiction (i.e. t1 < t1). Otherwise without loss of generality
we can assume vi ∈ S for every i. In this case, by hypothesis on τ we have that
t2i < t2i+1 implies that σv2i = τt2i < τt2i+1 = σv2i+1. By Lemma 2.12 again, it
follows that v1 < . . . < v1 – a contradiction.

This establishes that the bijection induced by any pair of synchronized config-
urations (w, y) is secured and thus is a configuration of the interaction. �

γ That is, the subset of Π1x containing only events in the S component of S ‖ C



4. UNCOVERED STRATEGIES UP TO WEAK BISIMULATION 49

Since copycat satisfies the axioms for τ of Lemma 2.66, we have the following
isomorphism for any uncovered σ : S ⇀ A, after simplification:

C (CCA ⊛ S) ∼= {(x, y) ∈ C (S)× C (A) | σx ‖ y ∈ C (CCA)}

Given such a pair (x, y) we write 〈x, y〉 for the corresponding configuration
of CCA ⊛ S. Remember that from Lemma 2.44, its events correspond to elements
of the graph of corresponding secured bijection. Those events are of two kinds:
internal events of the shape (s,−) with s ∈ x and external events of the shape
(−, a) with a ∈ y. This coercion will be kept implicit to ease the proofs. We can
now prove the main result.

PROPOSITION 2.67. For an uncovered strategy σ : S ⇀ A, cc A ⊛ σ ≈ σ.

PROOF. We define a bisimulation between σ and cc A ⊛ σ as follows:

R = {(x, 〈x′, σx〉) ∈ C (S)× C (CCA ⊛ S) | x′ ⊑S x}.

Remember the Scott order ⊑S from Section 1.2.4. Notice that if (x, 〈x′, σx〉) ∈
R, then x ∪ x′ ∈ C (S), as otherwise there would be a minimal conflict with a
positive event, which is not possible for an uncovered strategy.

We now proveR is a weak bisimulation: assume (x, 〈x′, σx〉) ∈ R.

Assume x
s
−−⊂ . There are three cases:

• s is negative: then 〈x′, σx〉
(−,σs)
−−⊂ 〈x′, σx ∪ {σs}〉 and

(x ∪ {s}, (x′, σx ∪ {σs})}) ∈ R

• s is positive: then x′ ∪ [s] ∈ C (S). Otherwise, s (or one of its predeces-
sors) would be conflicting with a positive event in x′ (since x ∩ x′ ⊆+ x′)
contradicting the fact that σ is an uncovered strategy. Hence:

〈x′, σx〉 ⊆⋆ 〈x′ ∪ [s], σx〉
(−,σs)
−−⊂ (x′ ∪ [s], σx ∪ {σs}),

which implies (x ∪ {s}, 〈x′ ∪ [s], σx ∪ {σs}〉) ∈ R.
• s is neutral: by a similar argument x ∪ x′ ∪ [s] ∈ C (A) (otherwise neutral

s would conflict with an event in x \ x′ which are all visible). It follows
that (x′, y) ⊆⋆ 〈x′ ∪ [s], σx〉 and

(x ∪ {s}, 〈x′ ∪ [s], σx〉) ∈ R

Assume now that 〈x′, σx〉
p
−−⊂ . We proceed by case distinction on p:

• (−, a−): since σx
a
−−⊂ , by receptivity there exists s ∈ S with x

s
−−⊂ and

σs = a. We have (x ∪ {s}, 〈x′, y ∪ {a}〉) ∈ R.

• (−, a+): Since σ(x′↓) ‖ σx ∈ CCA and σx
a
−−⊂ , a ∈ σ(x′↓) and there exists

s ∈ x′ with σs = a. Since x ∪ x′ ∈ C (A), it follows that x ∪ [s] ∈ C (S).
Moreover x∪ [s] = x∪{s}, because by courtesy immediate dependencies
of s are negative or neutral (or in the game) so must be in x. Finally

(x ∪ [s], 〈x′, σx ∪ {a}〉) ∈ R.

• (s,−): as above, we have that x ∪ [s] ∈ C (S) and moreover by courtesy
x ⊆⋆ x ∪ [s]. Hence:

(x ∪ [s], 〈x′ ∪ {s}, σx〉 ∈ R) �



50 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

To conclude, we need a well-behaved notion of uncovered strategies from A
to B, generalizing Lemma 2.32:

LEMMA 2.68. Let σ : A + //B be an uncovered pre-strategy. There is an isomorphism

cc B ⊛ σ⊛ cc A
∼= cc A⊥‖B ⊛ σ.

As a result, the following are equivalent:

(1) σ is an uncovered strategy on A⊥ ‖ B (ie. cc A⊥‖B ⊙ σ ≈ σ),

(2) σ satisfies cc B ⊛ σ⊛ cc A ≈ σ.

PROOF. We prove this by building an isomorphism: cc B⊛ σ⊛ cc A
∼= cc A⊥‖B⊛ σ.

First, remember that we have

cc B ⋆ σ ⋆ cc A
∼= ( cc A ‖ B ‖ B) ∧ (A ∧ σ ∧ B) ∧ (A ‖ A ‖ cc B)

cc A⊥‖B
∼= CCA⊥‖B ⋆ (σ ‖ A ‖ B)

By proving that CCA ‖ CCB satisfies the corresponding universal property, it is
direct to show that

CCA ‖ CCB
∼= (CCA ‖ B ‖ B) ∧ (A ‖ A ‖ CCB)

As a result, we have

cc B ⋆ σ ⋆ cc A
∼= (CCB ‖ CCA) ∧ (σ ‖ A ‖ B).

Moreover, we have the following isomorphism:

σ ‖ A ‖ B ∼= A ‖ σ ‖ B

Ai ‖ Bi ‖ Ae ‖ Be
∼= Ae ‖ Ai ‖ Bi ‖ Be

The subscript at the bottom (i for internal and e for external) are just here to spell
out the isomorphism. Similarly, for copycat:

CCA⊥‖B
∼= CCA⊥ ‖ CCB

∼= CCA ‖ CCB

Ai ‖ Bi ‖ Ae ‖ Be
∼= Ai ‖ Ae ‖ Bi ‖ Be

∼= Ae ‖ Ai ‖ Bi ‖ Be

Notice that moving from CCA⊥ to CCA consists in permuting its codomain.
By combining the two previous diagram, we get the following diagram:

CCA⊥‖B ⋆ σ ∼= (CCA ‖ CCB) ⋆ σ

Ai ‖ Bi ‖ Ae ‖ Be
∼= Ae ‖ Ai ‖ Bi ‖ Be

Ae ‖ Be

cc
A⊥‖B

⊛σ

cc
A⊥‖B

⋆σ cc B⋆σ⋆ cc A

cc B⊛σ⊛ cc A

from which the conclusion follows. �



5. ESSENTIAL STRATEGIES 51

At last, we have everything needed to build a category:

PROPOSITION 2.69. The following is a category CG≈⊛:

Objects: Race-free games,
Morphisms from A to B: uncovered strategies A + //B up to ≈,
Composition: composition of uncovered strategies,
Copycat: the usual copycat.

This category is also compact-closed, but we omit the proofs: this category is
built as an intermediary step on the way to essential strategies but will not be used
in the rest of the development.

5. Essential strategies

The category built in the previous section can be used to give interpretations
of concurrent and nondeterministic languages, sound for must-equivalence and
other testing equivalences. However no hiding is performed so the interpretation
of terms grows rapidly with the size of the term, even for closed terms of base
types. Moreover, weak bisimulation is hard to decide in practice. In this section,
we propose a setting that has the best of both worlds:

• we do not hide divergences during the composition to remain sound with
respect to must-equivalence,
• we hide “synchronization events” that occur during the composition with

copycat to get a category up to isomorphism.

5.1. Essential events. To do that, we need to tell apart harmless synchroniza-
tion events from divergences. This is done through the notion of essential events:

DEFINITION 2.70 (Essential events). Let σ : S ⇀ A be an uncovered pre-
strategy. An internal event s ∈ S is essential when it is involved in a minimal
conflict, that is there exists x ∈ C (S) that can extend by s and another event s′ ∈ S
such that x ∪ {s, s′} 6∈ C (S).

Write ES for the set of all visible or essential events of an event structure with
partial polarity S, and E (S) for S ↓ ES for the essential part of S. Finally, if σ :
S ⇀ A is a pre-strategy, write E (σ) : E (S) ⇀ A for its essential part. Hiding
non-essential events does not change the behaviour up to weak bisimulation:

LEMMA 2.71. For σ : S ⇀ A an uncovered strategy, we have σ ≈ E (σ).

PROOF. DefineR = {(x, x ∩ ES) | x ∈ C (S)}. We prove it is a bisimulation.
Let (x, x ∩ ES) ∈ R.

Extensions of x. Assume x can extend by an event s. Either s ∈ ES and then
x ∩ ES also extends by s in S ↓ ES and (x ∪ {s}, x ∩ ES ∪ {s}) ∈ R as desired, or
s 6∈ ES (then s is internal) and (x ∪ {s}, x ∩ ES) ∈ R.

Extensions of x ∩ ES Assume x ∩ ES can be extended by an event s ∈ ES, and
x ∪ [s] 6∈ C (S). Since it is downclosed, it must be that x ∪ [s] 6∈ ConS. Since x and
[s] are consistent, there must exist x′ ⊆ x ∪ [s] with two incompatible extensions
s0 ∈ x and s1 ∈ [s]. By definition, s0 and s1 are essential. This is absurd because
this would mean that (x′ ∩ ES) ∪ {s0, s} ⊆ x ∩ ES ∪ {s} ∈ C (S ↓ ES) but this set
is not consistent in S (hence not consistent in S ↓ ES). Having just proved that
x ∪ [s] ∈ C (S), the conclusion follows as (x ∪ [s], {s} ∪ (x ∩ ES)) ∈ R. �



52 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

The operation E (·) preserves uncovered strategies:

LEMMA 2.72. For σ : S ⇀ A an uncovered strategy, E (σ) is an uncovered strategy.

PROOF. Straightforward. �

5.1.1. Another composition of uncovered strategies. Given uncovered pre-strategies
σ : A + //B and τ : B + //C, define a new composition that hides inessential events:

τ⊚ σ = E (τ⊛ σ).

EXAMPLE 2.73. In Example 2.55, we showed that sum ⊙ ⊥ is isomorphic to
copycat, as the divergence is hidden. In this setting, the interaction sum⊛⊥ be-
comes (the uncovered strategy for sum is given in Example 2.63):

proc⋆ ‖ (proc⊥ ‖ proc)

run−

⋆1 ⋆2

run⋆ run+

done−

done+

The only minimal conflict is between ⋆1 and ⋆2, hence sum⊚⊥ is:

(proc⊥ ‖ proc)

run−

⋆1 ⋆2

run+

done−

done+

where the only inessential event run⋆ was hidden.

Isomorphism and this new composition ⊚ interact well together:

LEMMA 2.74. Isomorphism is a congruence for ⊚ and ⊚ is associative up to ∼=.

PROOF. Let σ : S ⇀ A⊥ ‖ B, σ′ : S′ ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C,
τ′ : T′ ⇀ B⊥ ‖ C such that there exists ϕ : σ ∼= σ′ and ψ : τ ∼= τ′. Using the
universal property of the interaction we build an isomorphism:

〈(ϕ ‖ C) ◦Π1, (A ‖ ψ) ◦Π2〉 : (S ‖ C) ∧ (A ‖ T) ∼= (S′ ‖ C) ∧ (A ‖ T′)

This isomorphism preserves essential events hence restricts to an isomorphism

τ⊚ σ ∼= τ′ ⊚ σ′.

For associativity, the proof is delayed to Section 6. �



5. ESSENTIAL STRATEGIES 53

To get a category up to isomorphism, as before, we need to study the compo-
sition of uncovered strategies with copycat.

5.2. Composition with copycat. In this section, we fix an uncovered strategy
σ : S ⇀ A and study the composition cc A ⊚ σ. Remember that through Lemma
2.66, configurations of the interaction cc A ⊛ σ have a simple description:

C (CCA ⊛ S) ∼= {(x, y) ∈ C (S)× C (A) | σx ‖ y ∈ C (CCA)}.

As before, we write 〈x, y〉 ∈ C (CCA ⊛ S) for suitable x ∈ C (S) and y ∈
C (CCA). By Lemma 2.24, configurations of CCA⊚ S correspond to those of CCA⊛ S
whose maximal events are visible or essential: this correspondence is left implicit.

Our result relies on an understanding of essential events of CCA ⊚ S. First, the
following lemma clarifies minimal conflict in CCA⊚ S as originating from essential
events in S or already present in the game:

LEMMA 2.75. Let z ∈ C (CCA ⊛ S) with two incompatible extensions p, p′. At least
one of the following two conditions are true:

(1) Π1 p, Π1 p′ ∈ S are both essential in S,

(2) Π1 p, Π1 p′ ∈ A are both negative with ( cc A ⊛ σ)(z ∪ {p, p′}) 6∈ C (A⊥ ‖ A).

PROOF. We apply Lemma 2.45: at least one of Π1(z ∪ {p, p′}) and Π2(z ∪
{p, p′}) is not consistent. Since the second case is equivalent to ( cc A ⊛ σ)(z ∪
{p, p′}) 6∈ C (A⊥ ‖ A), we have the following two cases:

• ( cc A ⊛ σ)(z ∪ {p, p′}) ∈ C (A⊥ ‖ A): it follows that Π1(z ∪ {p, p′}) 6∈
C (S) hence Π1 p, Π1 p′ ∈ S. Since the projection on the game is consistent,
Π1 p and Π1 p′ must be neutral and hence essential: we proved (1).

• If cc A ⊛ σ(z ∪ {p, p′}) is not consistent in A⊥ ‖ A. Hence Π2z has two
incompatible extensions Π2 p, Π2 p′ in CCA and Π2 p and Π2 p are negative
in A⊥ ‖ A. This means that Π1x has two incompatible positive extensions
Π1 p and Π1 p′. Since σ is an uncovered strategy, Π1 p and Π1 p′ cannot
live in S: they have to live in A: we proved (2). �

From that follows the key lemma:

LEMMA 2.76. For an essential s ∈ S, 〈[s], σ[s]〉 is a prime configuration [ps] of
CCA ⊚ S. The mapping s ∈ S 7→ ps is a one-to-one correspondence between essential
events of S and those of CCA ⊚ S.

PROOF. 〈[s], σ[s]〉 is prime. Let s ∈ S be an essential event. Remember that
events of the configuration 〈[s], σ[s]〉 correspond to pairs of the form (s0,−) or
(−, σs0). Assume (−, σs0) is maximal in 〈[s], σ[s]〉. If s0 is negative, then we would
have (−, σs0) < (s0, σs0) (causal link induced by copycat). If s0 is positive, then
there exists s0 _ s1 ≤ s. By courtesy, s1 is visible, and we have (s0, σs0) < (s1, σs1)
(induced again by copycat). As a result maximal events of 〈[s], σ[s]〉 are of the form
(s0,−) with s0 ≤ s. It is easy to see that for s0 ≤ s, we have (s0,−) ≤ (s,−). This
implies that (s,−) must be the top element of 〈[s], σ[s]〉. This means that 〈[s], σ[s]〉
is indeed a prime configuration [ps].

ps is essential. Let s ∈ S be an essential event, and let x ∈ C (S) and s′ ∈ S
such that s and s′ are incompatible extensions of x. By definition of CCA ⊚ S, it
is enough to show that ps is essential in CCA ⊛ S. The configuration 〈x, σx〉 ∈
C (CCA ⊛ S) extends by both ps and ps′. If these extensions were compatible,



54 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

Π1(〈x, σx〉 ∪ {ps, ps′}) = x ∪ {s, s′}would be a configuration of S: absurd. Hence,
ps must be essential. As a consequence, the mapping s 7→ ps is indeed well-
defined. Its injectivity is straightforward.

Surjectivity of s 7→ ps. Let p be an essential event of CCA ⊚ S. Since p is also
essential in CCA ⊛ S, there exist w ∈ C (CCA ⊛ S) and p′ ∈ CCA ⊛ S such that p and
p′ are incompatible extensions of w. First, notice that Π1 is actually total since CCA

does not contain any internal events: hence Π1w extends incompatibly by Π1 p
and Π1 p′. This means that Π1 p is essential, and p = p(Π1 p). �

From this result, we fully characterize cc A ⊚ σ:

LEMMA 2.77. Let σ : S ⇀ A be an uncovered strategy. Then cc A ⊚ σ ∼= E (σ)

PROOF. Since σ is an uncovered strategy, σ↓ is a covered strategy and there
exists ϕ : S↓ ∼= CCA ⊙ S↓ by Theorem 2.38. We now show how to extend this to

ϕ̄ : S ↓ ES
∼= CCA ⊚ S.

By Lemma 2.76, for essential s ∈ S, we define ϕ̄(s) = ps ∈ CCA ⊚ S. The same
lemma implies that ϕ̄ is a bijection, indeed CCA ⊚ S contains only visible events (in
the range of ϕ) and essential events (of the form 〈[s], σ[s]〉 with essential s ∈ S).
Both ϕ̄ and its inverse are easily shown to be maps of event structures. �

This lemma calls for a natural definition of essential strategy:

DEFINITION 2.78 (Essential strategy). An essential strategy σ is an uncovered
strategy where all internal events are essential (equivalently, such that E (σ) ∼= σ).

Lemma 2.77 can be turned into an equivalence, generalizing the result of [RW11].

THEOREM 2.79. Let σ : S ⇀ A be an uncovered pre-strategy. It is an essential
strategy if and only if cc A ⊚ σ ∼= σ.

PROOF. By Lemma 2.77, the direct implication is clear. Assume there exists
ϕ : S ∼= CCA ⊚ S. Since E (·) is idempotent, E (σ) ∼= σ. By Lemma 2.72, it is enough
to show that CCA ⊛ σ is an uncovered strategy.

Courtesy: Assume p+ _ p′ in the interaction CCA ⊛ S. By Lemma 2.45, and
since p is positive, we have Π2 p _CCA

Π2 p′ and we conclude by courtesy of cc A.
A similar reasoning applies for immediate causal links p _ p′− in CCA ⊛ S.

Receptivity: Assume a configuration (x, y) in CCA ⊚ S such that y extends by a
negative a ∈ A. Then clearly (x, y ∪ {a}) ∈ CCA ⊚ S. Uniqueness is easy to check.

Secrecy: Assume 〈x, y〉 ∈ C (CCA⊛ S) with two incompatible extensions p1 and
p2. By Lemma 2.65, either x extends incompatibly in S by Π1 p1 and Π2 p2 or σx ‖ y
extends incompatibly in CCA by Π2 p1 and Π2 p2. In the first, case, this conflict is a
conflict between internal events, and in the second case a conflict between negative
events (by secrecy of copycat). �

Since isomorphisms preserve essential events, we deduce from Lemma 2.68
that cc B ⊚ σ ∼= σ ⊚ cc A for an essential strategy σ : S ⇀ A⊥ ‖ B. Putting it
altogether, we get a category of essential strategies:

PROPOSITION 2.80. There is a compact-closed category CG
∼=
⊚ of:

Objects: race-free games,
Strategies from A to B: Essential strategies A + //B up to isomorphism,
Composition: the composition operator ⊚,



6. PROOF OF CATEGORICAL STRUCTURE 55

Identity: copycat.

PROOF. See Section 6. �

Hiding defines a functor ↓ : CG
∼=
⊚ → CG

∼=
⊙, however the natural converse

operation mapping a covered strategy σ to the essential strategy cc A ⊚ σ does not
define a functor from CG

∼=
⊙ to CG

∼=
⊚ but simply a lax-functor. (As the image of

sum⊙⊥ is only included in (sum⊚ cc )⊚ (⊥⊚ cc )).
This functor is not faithful in general (since it hides essential events), but on

deterministic strategies, it is:

DEFINITION 2.81. An uncovered strategy σ : S ⇀ A is deterministic when all
incompatible extensions s1, s2 of a configuration x ∈ C (S) are negative.

LEMMA 2.82. An essential strategy σ : S ⇀ A is deterministic if and only if ↓ σ ∼=
σ. As a result, ↓: CG

∼=
⊚ → CG

∼=
⊙ is faithful on deterministic strategies.

PROOF. Straightforward. �

Since our games are race-free, cc A is deterministic [Win12].
In the next chapter, we build on CG

∼=
⊚ a new compact-closed category,∼-tCG≅

⊚

which allows for non-linearity through symmetry. We end this chapter on the
proof of the categorical structure. (Proposition 2.69, Proposition 2.80)

6. Proof of categorical structure

In this section, we provide proofs of the following:
(1) that ⊚ is an associative operation (⊛ was already proven associative),
(2) that ‖ extends to a symmetric monoidal product ⊗ on uncovered and

essential strategies,
(3) that the resulting monoidal structure is compact-closed with the duality

operation on games A 7→ A⊥.

We recall that point (3) amounts to giving essential strategies ηA : 1 + //A⊥ ⊗
A and ǫA : A⊥ ⊗ A + //1, that is essential strategies on A⊥ ‖ A, satisfying the
following equations:

A A

ηA⊥ ǫA

= = A A

ǫA⊥ ηA

A A

Picking copycat for both ηA and ǫA,we are left to prove a diagram between
deterministic essential strategies which can be deduced from the compact-closure
of CG

∼=
⊙ via faithfulness of ↓ (See [CCRW] for detailed the proof for CG

∼=
⊙). In this

section, we only focus on the first two points.

6.1. Associativity of ⊚. We follow the same approach as in [CCRW]. The
study of the ternary composition relies on partial maps. For an event structure E
and V ⊆ E there is a canonical partial map h : E → E ↓ V defined as the (partial)
identity on V. In fact, any partial map can be factored through such a map:



56 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

LEMMA 2.83. Let f : E ⇀ F be a partial map, and V be the subset of events of E on
which f is defined. Then, f factors as ( f ↾ V) ◦ h (where f ↾ V : E ↓ V → F is total).
Moreover, for any other factorization f = g2 ◦ g1 with g1 : E ⇀ X and g2 : X → F, there
is a unique total h : E ↓ V → X such that h ◦ h = g1 and g2 ◦ h = f ↾ V, as pictured in
the diagram below:

E

h

�

g1

"
f

 

E ↓ V

f↾V

��

h // X

g2
||

F

We say that h : E ⇀ E ↓ V has the partial-total universal property.

In [CCRW], hiding maps are introduced as special case of partial maps:

DEFINITION 2.84 (Hiding maps). A partial map f : E ⇀ F is a hiding map
when it satisfies one of the three equivalent conditions:

(1) Writing V for the domain of f , there is an isomorphism ϕ : E ↓ V ∼= F
with ϕ ◦ h = f ,

(2) The partial map f has the partial-total universal property,
(3) There exists a hiding witness for f that is a map wit f : C (F) → C (E)

with f ◦wit f (x) = x for x ∈ C (F) and wit f ◦ f (x) ⊆ x for x ∈ C (E).

This notion is very useful to establish that compositions of strategies are iso-
morphic as it reduces the problem to finding a hiding map between the interac-
tions. Hiding maps are stable under composition, and well-behaved with respect
to interaction:

LEMMA 2.85 (Zipping lemma). Let σ : S ⇀ A⊥ ‖ B, σ′ : S′ ⇀ A⊥ ‖ B and

τ : T ⇀ B⊥ ‖ C be uncovered pre-strategies. If h : S ⇀ S′ is such that τ ◦ h = σ, there
exists a hiding map T⊛ h : T⊛ S ⇀ T⊛ S′ making the analogous triangle commute.

PROOF. Closed interaction. Assume that σ : S ⇀ A, σ′ : S′ ⇀ A, τ : T ⇀ A be
uncovered pre-strategies and h : S ⇀ S′ a hiding map with σ = σ′ ◦ h. Define

h∧ T = 〈h ◦Π1, Π2〉 : S ∧ T ⇀ S′ ∧ T

via Lemma 2.47. From the witness function of h, it is straightforward to build a
witness function for h∧ T.

Open interaction. To prove the statement of the lemma, define T⊛ h to be (A ‖
T) ∧ (h ‖ C): this is the desired hiding map. �

We can conclude:

LEMMA 2.86. Composition ⊚ of uncovered pre-strategies is associative.

PROOF. Let σ : S ⇀ A⊥ ‖ B, τ : T ⇀ B⊥ ‖ C and ρ : U → C⊥ ‖ D
be uncovered pre-strategies. We already know that the interaction is associative
(Lemma 2.52), there is an isomorphism:

aσ,τ,ρ : U ⊛ (T⊛ S) ∼= (U ⊛ T)⊛ S.



6. PROOF OF CATEGORICAL STRUCTURE 57

Applying Lemma 2.85 to the hiding maps hσ,τ : T ⊛ S ⇀ T ⊚ S and hτ,υ :
U ⊛ T ⇀ U ⊚ T gives the following hiding maps:

hσ,(τ,ρ) = (U ⊛ T)⊛ S
hτ,ρ⊛S

/ (U ⊚ T)⊛ S
hσ,ρ⊚τ / (U ⊚ T)⊚ S

h(σ,τ),ρ = U ⊛ (T⊛ S)
U⊛hσ,τ / U ⊛ (T⊚ S)

hτ⊚σ,ρ / U ⊚ (T⊚ S)

Associativity amounts to the commutation of the outer pentagon of this diagram:

U ⊛ (T⊛ S)
aσ,τ,ρ //

hσ,(τ,ρ) �

(U ⊛ T)⊛ S
h(σ,τ),ρ�

U ⊚ (T⊚ S)
ασ,τ,ρ //

ρ⊚(τ⊚σ) '

(U ⊚ T)⊚ S

(ρ⊚τ)⊚σw
A ‖ D

The only thing to show is that the two maps have the same domain which
follows from the fact that as aσ,τ,ρ is an isomorphism, it preserves essential events
(and visible events). By the partial-total factorization (Lemma 2.83), this diagram
induces an isomorphism ασ,τ,ρ : (U ⊚ T)⊚ S→ U ⊚ (T⊚ S) as desired. �

This technology makes proving Lemma 2.53 elementary:

LEMMA 2.53. For σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C uncovered pre-strategies,

(τ⊛ σ)↓ ∼= τ↓ ⊙ σ↓

PROOF. We want to establish an isomorphism:

((S ‖ C) ∧ (A ‖ T)) ↓ VT⊛S
∼=

(
(S↓ ‖ C) ∧ (A ‖ T↓)

)
↓ VT↓⊙S↓

By Lemma 2.83, this amounts to finding a hiding map with domain VT⊛S

(S ‖ C) ∧ (A ‖ T) ⇀ (S↓ ‖ C) ∧ (A ‖ T↓) ↓ VT↓⊙S↓

We construct such a hiding map using Lemma 2.85 by composition:

T⊛ S T↓ ⊛ S T↓ ⊛ S↓ T↓ ⊙ S↓
hT⊛S T↓⊛hS

hT↓⊛S↓

�

6.2. A symmetric monoidal product. To show that CG
∼=
⊚ is symmetric monoidal,

we extend ‖ from games to strategies as follows. Let σ : S ⇀ A⊥ ‖ B and
τ : T ⇀ C⊥ ‖ D be uncovered pre-strategies. Define σ⊗ τ as

S ‖ T
σ‖τ
−−→ (A⊥ ‖ B) ‖ (C⊥ ‖ D) ∼= (A ‖ C)⊥ ‖ (B ‖ D)

We use the notation σ⊗ τ to denote tensor product of strategies to distinguish
it from σ ‖ τ which is just parallel composition at the level of maps: σ ⊗ τ also
involves reordering on games. It is easy to see that if σ and τ are essential strategies
then so is σ⊗ τ. This tensor operation also preserves determinism.

LEMMA 2.87. The operation ⊗ is a functor CG
∼=
⊚ → CG

∼=
⊚.



58 2. CONCURRENT GAMES WITH ESSENTIAL EVENTS

PROOF. Preservation of copycat follows from the same result holding in CG
∼=
⊙

(see [CCRW]) and ↓ being faithful on deterministic strategies. Functoriality is
proved in a similar way as associativity: prove the interactions are isomorphic and
then use hiding maps to deduce the result on the level of composition. The key ar-
gument here once again is that essential events are stable under isomorphism. �

The unit for this operation will be the empty game denoted 1. To prove that
this functor (along with its unit) is actually a symmetric monoidal operation, we
need to define the corresponding structural morphisms. Such structural mor-
phisms will be lifted from the category of event structure as ‖ is already a sym-
metric monoidal operation there. Presentation is also taken from [CCRW].

DEFINITION 2.88. Let A, B be games and let f : A → B a receptive, courteous
map of event structures preserving polarities. Then, the map:

f : CCA → A⊥ ‖ B

a 7→ (A⊥ ‖ f ) ◦ cc A(a)

is a strategy called the lifting of f . Likewise, if f : B⊥ → A⊥ is receptive and
courteous, we define its co-lifting:

f
⊥

: CCB → A⊥ ‖ B
c 7→ ( f ‖ B) ◦ cc B(c)

Both liftings and co-liftings are deterministic uncovered strategies. The fol-
lowing key lemmas relate composition of strategies to lifted maps and composi-
tion of the corresponding maps in E .

LEMMA 2.89. Let f : B → C be a receptive courteous map of esps, and σ : S ⇀

A⊥ ‖ B be an essential strategy. Then, there is an isomorphism of strategies

f ⊚ σ ∼= (A⊥ ‖ f ) ◦ σ

Likewise, for f : B⊥ → A⊥ receptive courteous and σ : S → B⊥ ‖ C an essential
strategy, there is an isomorphism of strategies:

σ⊚ f ∼= ( f ‖ C) ◦ σ

PROOF. We prove only the first case (the second one being similar). We see
through Lemma 2.66 that cc B ⊛ σ and f ⊛ σ have isomorphic interactions, that we
write CCB ⊛ S. Its configurations can be described as

{(x, y) ∈ C (S)× C (B) | σ2x ‖ y ∈ C (CCB)}

where σ2 : S ⇀ B is the obvious partial map, and the following diagram com-
mutes:

CCB ⊛ S

cc B⊛σ

xx

f⊛σ

&&
A ‖ B ‖ B

A‖B‖ f // A ‖ B ‖ C

as both arrows map 〈x, y〉 to σx ‖ f y. Since essential and visible events are pre-
served, we get the following diagram:



6. PROOF OF CATEGORICAL STRUCTURE 59

S

σ

��

∼= // CCB ⊚ S

cc B⊚σzz

f⊚σ

$$
A ‖ B

A‖ f
// A ‖ C

using the fact that σ is an essential strategy, hence σ ∼= cc B ⊚ σ. We conclude by
noticing the composite isomorphism (A ‖ f ) ◦ σ ∼= f ⊚ σ. �

From this lemma, we deduce the compact-closure:

THEOREM 2.90. CG
∼=
⊚ is compact-closed.

PROOF. We know composition is associative, and that ⊗ is a bifunctor. The
symmetric monoidal structure is lifted from E : diagrams and naturality all follow
from the corresponding diagrams and naturality in E and Lemma 2.89.

The dual of a game A is simply defined as A⊥. We have two strategies:

ηA : CCA → 1⊥ ‖ (A⊥ ‖ A)
ǫA : CCA → (A ‖ A⊥)⊥ ‖ 1

defined in the obvious way and satisfy the laws of a compact-closed category (as
proved in [CCRW]). �

To prove that CG≈⊛ is also compact-closed, one can slightly change the state-
ment of Lemma 2.89 and conclude similarly – however we will not be needing this
in the next chapters.





CHAPTER 3

Thin concurrent games

From the age of uniformity, [...], greetings!

George Orwell, on uniform strategies
(1984)

In the previous chapter, we introduced a compositional framework to describe
strategies as event structures allowing for nondeterministic and concurrent be-
haviours. However, one major limitation of this framework is the linearity condi-
tion imposed on strategies (technically arising as the local injectivity condition on
maps of event structures). Strategies can play moves at most once in an execu-
tion. Since function calls are represented by moves, in CG

∼=
⊚ only affine languages

(languages where variables are used at most once) can be modelled.
This local injectivity condition is key to define the pullback in the category of

event structures and composition of strategies. Without this condition, it is un-
known how to define the pullback of maps, at the heart of the interaction of strate-
gies. To circumvent this problem, we follow in this chapter another approach in-
spired from linear logic: a non-linear strategy on a game A will be seen as a linear
strategy on a derived game !A where moves of A have been duplicated: a single
move from A yields infinitely many copies of it, explicitly labelled by a natural
number, their copy index.

This duplication raises two difficult problems well-known in game semantics:
Equivalence relation. To recover a well-behaved structure (a cartesian-closed

category), a coarser equivalence relation is necessary to satisfy the usual categori-
cal laws of products and arrows. Indeed, composition by some copycat-like strate-
gies might tamper with copy indices and result in a similar strategy, which only
differs by the choice of copy indices.

Uniformity. If Player is allowed to play many times the same move, so must
be Opponent. Strategies should be receptive to these copies but should not act
differently depending on the index chosen by Opponent. Strategies should behave
uniformly with respect to negative copy indices.

This chapter introduces a compositional framework to solve those problems
by adjoining to event structures a notion of symmetry which can express that two
events are essentially the same (ie. correspond to same move). This symmetry is
represented as a proof-relevant equivalence relation permitting to mark the differ-
ent copies as “symmetric”.

Related work. The idea of adjoining copy indices to moves in order to repre-
sent nonlinear behaviours was first carried out in [AJM00]. The necessity in our
framework to equip games with two symmetries, one positive and one negative,

61



62 3. THIN CONCURRENT GAMES

is reminiscent of Melliès’ definition of uniformity in asynchronous games by bi-
invariance under the action of two groups, one for Player reindexings, and one for
Player reindexings [Mel03].

Outline of the chapter. Section 1 introduces the expansion process turning a
game A, with a specific shape (called an arena) to a game !A where moves are
duplicated. We provide a few examples of non-linear programs and their repre-
sentation in this setting and show that strategies on these expanded games support
a coarser equivalence relation allowing for a richer equational theory.

Section 2 introduces a generalization of event structures to support this richer
equivalence relation, called event structures with symmetry [Win07].

Section 3 exploits this new metalanguage and generalizes games and pre-
strategies to ∼-games and pre-∼-strategies satisfying uniformity, in a setting en-
riched with symmetry.

Section 4 explores how to compose these uniform pre-strategies and builds a
category of ∼-strategies up to a generalization of isomorphism.

Section 5 defines a new equivalence relation on pre-∼-strategies that allows
us to identify strategies up the symmetry given by the ∼-games. For this relation
to be congruence, ∼-games need to be strengthened to thin concurrent games.

Finally Section 6 proves that the resulting compositional structure forms a
compact-closed category when restricting pre-∼-strategies to ∼-strategies.

Contribution of the chapter. The construction of the compact-closed category
in the setting without essential events is joint work with Pierre Clairambault and
Glynn Winskel [CCW15, CCW14]. This chapter presents a generalization of this
construction to the framework using essential events, introduced in Chapter 2.

1. Expanded arenas

In usual game semantics, the base category (of simple games) is also linear, i.e.
naturally equipped with a symmetric monoidal closed structure, yielding a model
of the linear λ-calculus. Two main solutions to overcome linearity arose. In the
HO approach, types are represented as arenas and strategies as sets of non-linear
plays (ie. plays where the same move from the arena can occur several times). In
the AJM approach, a ⋆-autonomous category of simple games and linear strategies
equipped with an equivalence relation is first constructed. This category supports
an exponential comonad whose Kleisli category is cartesian-closed.

Our approach shares similarities with both methods. We first build a compact-
closed category ∼-tCG≅

⊚ whose equational theory is rich enough to support an
exponential comonad and recover cartesian-closed categories. However, we will
show (in the next chapter), how to isolate a cartesian-closed category inside∼-tCG≅

⊚

that is closer in spirit to HO games: nonlinear plays on an arena A will be repre-
sented by linear plays on a derived game !A.

In this thesis, types will always be interpreted by certain games, arenas:

DEFINITION 3.1. An arena is a countable game satisfying
• Conflict-free. All finite sets are consistent.
• Forest. If a1, a2 ≤ a ∈ A, then either a1 ≤ a2 or a2 ≤ a1.
• Alternation. If a1 _ a2, then pol(a1) 6= pol(a2).

For instance, the arena B for booleans is as follows:



1. EXPANDED ARENAS 63

q−

tt+ ff+

Unlike in Chapter 2, there is no conflict between the two positive moves. This
implies that a strategy on this game can answer both true and false. The meaning
of such strategies will become clearer in Chapter 5, Section 1.1.3.

Nonlinear plays. As mentioned earlier, we can represent a nonlinear strategy
on an arena A as a strategy (as introduced in Chapter 2) on a derived arena !A.
However !(·) will not be treated as an exponential modality (as in AJM games for
instance). In !A, moves are duplicated deeply in the arena tree, to permit playing
a certain move several times deep in the tree without having to play the events
below it several times as well. This deep duplication is represented using index
functions. An index function in an arena A is a pair (a ∈ A, α : [a] → N). The
function α gives copy indices for every move in the causal history of a (including
a itself). Index functions naturally form an arena:

DEFINITION 3.2. Let A be an arena. Define the arena !A as follows:
• Events: index functions (a, α) on A
• Causality: (a, α) ≤!A (a′, α′) whenever a ≤A a′ and α′ ↾[a]= α.
• Polarities: pol!A(a, α) = polA(a).

The arena !B is (with N = {0, 1} for the picture):

(q−, [q0])

(tt+, [q0, tt0]) (tt+, [q0, tt1]) (ff+, [q0, ff0]) (ff+, [q0, ff1])

(q−, [q1])

(tt+, [q1, tt0]) (tt+, [q1, tt1]) (ff+, [q1, ff0]) (ff+, [q1, ff1])

The index functions are written as lists [aα(a), bα(b), . . . ]. This representation is cum-
bersome but also redundant. Indeed, if (q−, [q0]) _ (tt+, α), we know automati-
cally that α(q) = 0 by definition of the causality in !B. More generally, if we know
the causal history of a (a, α) ∈ A, the only extra information we need about α is
α(a) as the rest of α can be looked up in the causal history. Since our diagrams al-
ways make causal histories of events explicit, we only need to represent the copy
index of the top element of an index function. Hence this is how we draw !B:

q−,0 q−,1

tt+,0 tt+,1 ff+,0 ff+,1 tt+,0 tt+,1 ff+,0 ff+,1

This is justified by the fact that an event (a, α) ∈ !A is uniquely determined by
(a, α(a), just(a, α)) where a is called the label of (a, α) (written lbl(a, α)), α(a) the
index of (a, α) (written ind(a, α)) and just(a, α) the justifier of (a, α) defined as the
predecessor of (a, α) inside !A if (a, α) is non-minimal (just(·) is a partial function).
Note that the predecessor must be unique because A (and !A) is a forest.



64 3. THIN CONCURRENT GAMES

Representing a strategy requires to be more careful. Every (non-minimal) vis-
ible move s of a strategy σ : S ⇀ !A has a justifier just(s) which is defined as the
unique move in [s] whose image is just(σs). Because strategies are not forests, the
justifier might not be apparent from the causal history in the strategy. Consider
the following two strategies on !(⊖_ ⊕) with explicit index functions:

!proc !proc

(⊖, [⊖0]) (⊖, [⊖1]) (⊖, [⊖0]) (⊖, [⊖1])

(⊕, [⊖0,⊕0]) (⊕, [⊖0,⊕1]) (⊕, [⊖0,⊕0]) (⊕, [⊖1,⊕1])

If we want to use the implicit representation of the move labels in !A, we end
up with the same event structure:

!proc

⊖0 ⊖1

⊕0 ⊕1

The ambiguity here is on the projection on the game: is it the left or the right
configuration of !proc?

!proc !proc

⊖0 ⊖1 ⊖0 ⊖1

⊕0 ⊕1 ⊕0 ⊕1

To lift the ambiguity, we need to add more information about the implicit di-
agram to make it non-ambiguous, by indicating the causal history in the game by
pointer links from a just(s) to s. This gives the following implicit representations:

!proc !proc

⊖0 ⊖1 ⊖0 ⊖1

⊕0 ⊕1 ⊕0 ⊕1

Those pointer links have the same purpose as in HO game semantics: disam-
biguate which move justifies another move. The ambiguity caused in this example
by concurrency also occurs in a (sequential) higher-order setting. In our setting, by
courtesy, the justifier of a negative move is uniquely determined as its predecessor
(for the causal order of the strategy). As a result, in the HO terminology, config-
urations of a strategy are analogous to P-views since Opponent always points to
the preceding Player move.



2. EVENT STRUCTURES WITH SYMMETRY 65

Symmetries on !A. It is tempting to relax isomorphism of strategies to recover
a richer equational theory. In our previous examples, we had complete freedom
over the choice of copy indices for positive moves. It is crucial that this choice does
not matter to recover a cartesian category (see Example 4.4).

Say an order-isomorphism θ : x ∼= y between configurations of !A is a reindex-
ing iso when it preserves the label (lbl ◦ θ = lbl). It is positive when it preserves
the copy index of negative moves (for all γ− ∈ x, ind ◦ θ(γ) = ind γ) and negative
when it preserves the copy index of positive moves.

Those reindexing isos induce a weaker equivalence relation on strategies. Two
strategies σ, τ : !A are said to be weakly isomorphic when there exists an isomor-
phism ϕ : S ∼= T such that for all configuration x ∈ C (S), the bijection σx ≃ τ(ϕx)
(induced by local injectivity) is a positive reindexing iso. This equivalence allows
us to capture strategies exactly up to the choice of copy index of positive events.

Firstly, we need to prove that weak isomorphism is a congruence. This re-
quires understanding the abstract structure of !A, as a thin concurrent game and
understand what expressive power can be granted to strategies while still pre-
serving the fact that weak isomorphism is a congruence. Those investigations will
come down to the construction of another compact-closed category ∼-tCG≅

⊚.
In the next section, we first introduce the new metalanguage on which∼-tCG≅

⊚

is based: event structures are replaced by event structures with symmetry that ax-
iomatize the structure of reindexing isos of !A.

2. Event structures with symmetry

2.1. Isomorphism families. We have seen that the game !A is naturally equipped
with families of bijections expressing the fact that some configurations are sym-
metric. These families can be abstracted as isomorphism families:

DEFINITION 3.3 (Isomorphism family). Let A be an event structure and Ã be
a set of bijections between configurations of A. The family Ã is an isomorphism
family on A if it satisfies the following properties:

• (Groupoid) The set Ã contains all identity bijections, and is stable under
composition and inverse.
• (Restriction) For every bijection θ : x ≃ y ∈ Ã and x′ ∈ C (A) such

that x′ ⊆ x, then the restriction θ ↾ x′ of θ to x′ is in Ã. In particular,
θ x′ ∈ C (A).

• (Extension) For every bijection θ : x ≃ y ∈ Ã and every extension x ⊆
x′ ∈ C (A), there exists a (non-necessarily unique) y ⊆ y′ ∈ C (A) and an
extension θ ⊆ θ′ such that θ′ : x′ ≃ y′ ∈ Ã.

In this case the pair A = (A, Ã) is called an event structure with symmetry
(ess). We will use S , T ,A,B, . . . to range over event structures with symmetry.

An isomorphism family on an event structure with partial (resp. total) polari-
ties A is an isomorphism family Ã on the underlying event structure such that all
bijections in Ã preserve polarities. In that case the pair (A, Ã) is called an event
structure with symmetry and partial (resp. total) polarities, abbreviated as sim-
ply as essp for the partial polarities case. The notation⊆+ and⊆− are generalized
to symmetries of an essp, regarded as their graphs, in a direct way: θ ⊆+ θ′ when
θ ⊆ θ′ and θ′ \ θ only contains pairs of positive moves (and similarly for ⊆−).
Essps will be key when defining strategies in this setting enriched with symmetry.



66 3. THIN CONCURRENT GAMES

Event structures with symmetry were first introduced by Winskel [Win07] in
a more abstract presentation based on spans of open maps. This abstract pre-
sentation will be used to lift the compact-closed structure of CG⊚ to ∼-tCG≅

⊚ (see
Section 6), but we chose the present concrete presentation in terms of isomorphism
families as it is more elementary.

The definition above does not explicitly mention that the bijections need to be
order-isomorphisms. It is actually a consequence of the (Restriction) axiom:

LEMMA 3.4. Let A be an ess and θ : x ≃ y ∈ Ã. Then, θ is an order-isomorphism.

PROOF. Let s ≤ s′ ∈ x. Applying the restriction axiom to θ−1 and the con-
figuration [θs′] ⊆ y entails that θ−1[θs′] is a configuration so it is in particular
down-closed. As s′ ∈ θ−1[θs′], it follows that s ∈ θ−1[θs′]. This directly implies
θs ≤ θs′ as θs ∈ [θs′]. �

Since θ : x ≃ y ∈ Ã is an order-isomorphism, we will denote it via θ : x ∼= y
to indicate that it preserves and reflects the (implicit, inherited from ≤A) ordering
on x and y. Instead of θ : x ∼= y ∈ Ã, we will also often use the more compact
notation θ : x ∼=Ã y; and we will refer to θ as a symmetry between x and y.

Given a bijection θ, write dom θ and codom θ for its domain and codomain
respectively. The existence of a symmetry θ between two configurations x and y
of A ensures that x and y have isomorphic pasts and bisimilar futures.

The axiom (Extension) is equivalent to its one-step counterpart:

LEMMA 3.5 (One-step extension). Let A be an event structure and Ã be a family of
bijections. It satisfies the (Extension) axiom if and only if for all θ : x ∼=Ã y and extension

a ∈ A of x, there exists a′ ∈ A such that θ ∪ {(a, a′)} ∈ Ã (in particular a′ extends y).

PROOF. Straightforward by induction. �

The game !A along with its reindexing isos defined in the previous section
give rise to examples of event structures with symmetry.

PROPOSITION 3.6. For an arena A, the sets !̃A of reindexing isos, !̃A− of negative
reindexing isos, and !̃A+ of positive reindexing isos, are isomorphism families on !A.

PROOF. The (Groupoid) axiom is easy to check for these three families. The
(Restriction) axiom follows from all the θ being order-isomorphisms.

We check the (Extension) axiom for the first family using Lemma 3.5. Let θ :
x ∼=‹!A y and (a, α : [a]→ N) be an extension of x. Recall from the discussion below
Definition 3.2 that events in !A are entirely determined by their label, their justifier
(immediate causal dependency), and copy index. Define ζ = just (a, α). We set the
extension of θ to be (α, β), where β is set to be the unique event of !A with justifier
θ(ζ) (or ⋆ if (a, α) was minimal), label a and copy index some fresh k not reached
in y yet. This yields θ ∪ {(α, β)} an order-isomorphism between configurations of
!A, preserving labels.

If θ : x ∼=‹!A+
y and (a, α : [a] → N) is a positive extension of x, the same

reasoning applies. If it is a negative extension, then the unique possible extension
of θ is (α, β) where β has justifier θ(just (a, α)) (again with the convention that
θ(⋆) = ⋆) and copy index ind α. Such β cannot be in y already: indeed, its pre-
image through θ would be an event with label a, justifier just α and copy index
ind α – so would be α, absurd since α 6∈ x. The reasoning for !̃A− is dual. �



2. EVENT STRUCTURES WITH SYMMETRY 67

Basic operations on event structures extend to isomorphism families:

DEFINITION 3.7. Let A and B be ess. We build their simple parallel com-
position as (A ‖ B, Ã ‖ B̃) where Ã ‖ B̃ is the set of bijections of the form
θ1 ‖ θ2 : x ‖ y ≃ x′ ‖ y′ where x, x′ ∈ C (A), y, y′ ∈ C (B), θ1 ∈ Ã, θ2 ∈ B̃
and θ1 ‖ θ2 is defined as (i, a) 7→ (i, θi(a)).

If A is an essp, its dual A⊥ is the same event structure with symmetry with
reversed polarity.

Projection is not always defined: the set of visible events needs to be closed
under symmetry to ensure the symmetry can be lifted to the projection:

LEMMA 3.8. Let E be an ess and V ⊆ E closed under symmetry, in the sense that
for all θ : x ∼=Ẽ y, for all e ∈ V ∩ x, we have θ e ∈ V as well. Then, defining

Ẽ ↓ V = {θ : x ≃ y | x, y ∈ C (E ↓ V), ∃θ ⊆ θ′ ∈ Ẽ, θ′ : [x]E ∼=Ẽ [y]E}

we have that Ẽ ↓ V is an isomorphism family, making E ↓ V = (E ↓ V, Ẽ ↓ V) into an
event structure with symmetry.

PROOF. As usual the axiom (Groupoid) is clear. In this proof we abbreviate
[x]E to [x] for x ∈ C (E ↓ V) for clarity.

(Restriction) Let θ : x ≃ y ∈ Ẽ ↓ V, and x0 ∈ C (E ↓ V) such that x0 ⊆ x.
By definition, θ extends to θ′ : [x] ∼=Ẽ [y]. We have [x0] ⊆ [x]. Therefore, by
(Restriction) on Ẽ we have θ′0 ⊆ θ′ with θ′0 : [x0]∼=Ẽy′0. Since V is closed under
symmetry, θ′0 ∩V2 : x0 ≃ y′0 ∩V is still a bijection, which by definition is in Ẽ ↓ V.
It is clear by construction that θ′0 ∩V2 ⊆ θ.

(Extension) Let θ : x ≃ y ∈ Ẽ ↓ V, and x ⊆ x0 ∈ C (E ↓ V). By definition there
is θ ⊆ θ′ : [x] ∼=Ẽ [y]. We have [x] ⊆ [x0], therefore by (Extension) for Ẽ there is
θ′0 : [x0] ∼=Ẽ y′0. Again since V is closed under symmetry, θ′0 ∩ V2 : x0 ≃ y′0 ∩ V is
still a bijection. By definition it is in Ẽ ↓ V, and contains θ. �

2.2. Maps of event structures with symmetry. In the setting without sym-
metry, partial maps of event structures played a central role, providing an adequate
notion of labeling functions for strategies σ : S ⇀ A. In our new setting with
symmetry, we will also need to consider a corresponding notion of partial map.

DEFINITION 3.9. Let A,B be event structures with symmetry. A partial map
of event structures f : A ⇀ B preserves symmetry iff for all θ : x ∼=Ã y,

(1) f is defined on s ∈ x if and only if f is defined on θs,
(2) f θ = {( f a, f a′) | (a, a′) ∈ θ & f a defined} is in B̃.

In that case, f is a partial map of event structures with symmetry , written
f : A ⇀ B. If A and B are essps, then f is a map of event structures with
symmetry and partial polarities when it also preserves polarities.

Write E∼ for the category of ess and total maps and E∼⊥ for the category of
ess and partial maps. In E∼ and E∼⊥ , morphisms can be compared up to symmetry,
abstracting away from the comparison of morphisms up to the choice of copy indices
of the previous section.

DEFINITION 3.10. Let B be an event structure with symmetry and let f , g :
A ⇀ B be maps of underlying event structures. They are symmetric (written
f ∼B̃ g) when their domain coincide and for all x ∈ C (A), the bijection {( f s, gs) |
s ∈ x & f s defined} is in B̃.



68 3. THIN CONCURRENT GAMES

For this definition to make sense, A does not need to be equipped with an
isomorphism family nor f , g need preserve it. This generality is useful to rephrase
the definition of weak isomorphism given in Section 1. Two strategies σ, τ are weakly
isomorphic iff there exists ϕ : S ∼= T such that τ ◦ ϕ ∼›!A+

σ. This is however, not

the end of the story: this equivalence is not a congruence.

EXAMPLE 3.11 (Uniformity problem). Let σ1 and σ2 be two strategies on !proc:

σ1 : !proc σ2 : !proc

run−,i run−,i

done+,i done+,i+1

Because there is an obvious isomorphism sending run−,i to run−,i and done+,i to
done+,i+1, σ1 and σ2 are weakly isomorphic.

Consider now the strategy τ playing on (!proc)⊥ ‖ !proc:

(!proc)⊥ ‖ !proc

run−,i

run+,i

done−,0 done−,i+1 . . .

done+,0

The strategy τ evaluates its argument and returns to toplevel only if its argument
returned with a copy index of zero (it diverges otherwise). As a result τ ⊚ σ1 con-
tains a positive move whereas τ⊚ σ2 does not: they cannot be weakly isomorphic.

To solve this problem, we need only to consider those strategies that are blind
to Opponent’s choice of indices. This restriction is introduced in the next section.

3. Games with symmetry and uniform strategies

In this section, we show how to define a notion of uniform strategies. Forc-
ing strategies to be uniform amounts to forcing negative events that only differ by
their copy indices to have bisimilar futures. Symmetry is the right tool to ensure
this property: we should force those negative events to be symmetric in the strat-
egy. This means endowing strategies with a symmetry. Naturally, from partial
maps of event structures S ⇀ A strategies should become partial maps of event
structures with symmetry S ⇀ A.

First, we define the generalized notion of games in a setting with symmetry:

DEFINITION 3.12. A ∼-game is an essp A such that for any θ : x ∼=Ã y, and
for any extensions θ ⊆+ θ1 : x1

∼=Ã y1 and θ ⊆− θ2 : x2
∼=Ã y2, then θ1 and θ2 are

compatible: θ1 ∪ θ2 ∈ Ã.



3. GAMES WITH SYMMETRY AND UNIFORM STRATEGIES 69

This extra condition is a generalization of race-freeness to isomorphism fam-
ilies. In particular, if A is a ∼-game, then A is a race-free game by letting θ, θ1
and θ2 be identities. This generalization is necessary to ensure that copycat fits in
this new framework – see Section 3.2. These ∼-games naturally supports parallel
composition and the dual operation.

In the case of !A, it is not clear which isomorphism family (among !̃A, !̃A+,
!̃A−) to use as the codomain. Since we want S to contain all the negative symme-
tries (to ensure that negative symmetric moves have similar futures). It is natural
to ask that strategies should be certain maps of event structures with symmetry
σ : S → (!A,fi!A−). It is however not expressive enough:

EXAMPLE 3.13. Consider the following strategy on !proc:

run−,0 run−,1 · · ·

done+,0 done+,1 · · ·

Writing S for this event structure, there is no isomorphism family S̃ containing
a symmetry {run0} ∼=S̃ {run1} such that the obvious labelling defines a map of

event structures with symmetry σ : (S, S̃) → A where A = (!proc,·�(!proc)−).
Indeed, by the extension axiom we would need to have θ : {run0, done0} ∼=S̃

{run1, done1}. Note that σθ 6∈·�(!proc)− since σθ does not preserve the copy index

of the positive move done0. However σθ ∈fl!proc.

3.1. Uniform pre-strategies. We now move on to defining (uncovered) strate-
gies in this new setting as certain maps of event structures with symmetry. As in
Chapter 2, we first investigate what minimal structure is necessary for compo-
sition, leading to a notion of pre-∼-strategies. Then, ∼-strategies arise as those
pre-∼-strategies that are invariant under composition with copycat. Remember
that a map of event structures with symmetry σ : S ⇀ A to a ∼-game A induces
a choice of partial polarity that makes S an event structure with symmetry and
partial polarities. Remember also that, in this case, an event s ∈ S is nonnegative
when it is positive (ie. σs is defined and positive) or neutral (ie. σs undefined).

3.1.1. ∼-receptivity. First, as long as strategies are mere maps of event struc-
tures with symmetry, nothing prevents the isomorphism family from being re-
duced to identities. To force the symmetry on a strategy to be non-trivial, we
introduce the condition of ∼-receptivity:

DEFINITION 3.14. If A is a ∼-game, a partial map of event structures with
symmetry σ : S ⇀ A is ∼-receptive iff for all θ : x1

∼=S̃ x2, for all negative
extensions s1 of x1, and a2 of σx2 such that σ θ ∪ {(σ s1, a2)} ∈ Ã, there is a unique
s2 such that σ s2 = a2, and θ ∪ {(s1, s2)} ∈ S̃.

In the previous example, this condition forces {run0} ∼=S̃ {run1}. It is also
important for the pullback of pre-∼-strategies to exist (See Section 4.1). Remark
that ∼-receptivity does not imply receptivity.

This condition indeed rules out non-uniform behaviours:

EXAMPLE 3.15. Remember the strategy σ : !proc + // !proc of Example 3.11:



70 3. THIN CONCURRENT GAMES

(!proc)⊥ ‖ !proc

run−,i

run+,i

done−,0 done−,i+1 . . .

done+,0

There is no symmetry S̃ on S that makes σ into a ∼-receptive map of event
structures with symmetry (S, S̃) → !proc⊥ ‖ !proc. Applied to the identity bijec-
tion on {(0, run−,i), (1, run+,i)}, ∼-receptivity would entail that

θ : {(0, run−,i), (1, run+,i), (1, done−,0)} ∼=S̃ {(0, run−,i), (1, run+,i), (1, done−,1)}.

By the extension property, there would be an event s of S such that θ extends to:

{(0, run−,i), (1, run+,i), (1, done−,0), (0, done+,0)}

∼=S̃ {(0, run−,i), (1, run+,i), (1, done−,1), s}.

In particular (1, done−,1) _ s, which is absurd as there is no such event in S.

Before we go on, let us mention in passing the following lemma: to check
∼-receptivity for a map, it is enough to look at extensions of identity symmetries.

LEMMA 3.16. Let A be a tcg and σ : S ⇀ A be a map of ess. Then, σ is ∼-receptive
iff for all x ∈ C (S) and s1 a negative extension of x, for all idσ x ∪{(σ s1, a2)} ∈ Ã, there
exists a unique s2 such that σ s2 = a2, and we have idx ∪{(s1, s2)} ∈ S̃.

PROOF. only if. Particular case of the definition of ∼-receptivity.
if. Assume θ : x1

∼=S̃ x2, with x1 extended by a negative s1, and σ x2 ex-
tended by a negative a2, such that σ θ ∪ {(σ s1, a2)} ∈ Ã. By (Extension), there
is an extension of the form (s1, s′1) of θ (with s′1 ∈ S). Since σ is a map of ess,
we must have σ θ ∪ {(σ s1, σ s′1)} ∈ Ã as well. By (Groupoid), it follows that
idσx2 ∪{(σ s′1, a2)} ∈ Ã. By hypothesis, we get a unique s2 such that σ s2 = a2,
satisfying idx2 ∪{(s

′
1, s2)} ∈ S̃. Finally, by (Groupoid) again, θ ∪ {(s1, s2)} ∈ S̃. �

3.1.2. Thin. To make sure that essential events are closed under symmetry (for
the hiding to be well-defined) we ask that symmetries of strategies should be well-
behaved: nonnegative extensions should be unique.α

DEFINITION 3.17 (Thin symmetry). If A is a ∼-game, for σ : S ⇀ A a partial
map, then the following conditions are equivalent:

(i) For all θ : x ∼=S̃ y such that x
s
−−⊂ x′ for a nonnegative s ∈ S, there is a

unique s′ ∈ S such that θ ∪ {(s, s′)} ∈ S̃.
(ii) Let x be a configuration of S that can be extended by a nonnegative s ∈ S.

Then, for all θ ∈ S̃ whose domain is x ∪ {s} and which contains idx, we
have that θ = idx∪{s}.

α In [CCW14], the problem with essential events does not occur, as there are only covered strategies,
and the thin condition is only required later to ensure that weak isomorphism is a congruence.



3. GAMES WITH SYMMETRY AND UNIFORM STRATEGIES 71

Then we say S (and σ) is thin .

PROOF. The condition (ii) is just a special case of (i). We prove (i) assuming
(ii). Let θ : x ∼=S̃ y and a positive extension s to x. Assume there are two extensions
of θ to x′ = x ∪ {s}: θ1 : x′ ∼=S̃ y′1 and θ2 : x′ ∼=S̃ y′2. Since both contain θ, θ2 ◦ θ−1

1
extends idy by a positive (θ1(s), θ2(s)). By (ii) we have θ1(s) = θ2(s), hence θ1 = θ2
follows as desired. �

Towards composition, we check that the set of essential events of a pre-∼-
strategy is indeed closed under symmetry (∼-receptivity is not necessary for this
result to hold):

LEMMA 3.18. Let A be a ∼-game, and σ : S ⇀ A a map of event structures with
symmetry such that S is thin. The set of essential events of S is closed under symmetry.

PROOF. Let s1 ∈ S be an essential event and x ∈ C (S) with incompatible
extensions s1 and s2. Consider θ ∈ S̃ defined at s1. Write θx for the restriction
of θ to x. Since x extends by s2, then there exists s′2 ∈ S, extension of θx and
θx ∪ {(s2, s′2)} ∈ S̃. If θx ∪ {θs1, s′2} is not a configuration of S, then this proves
that θs1 is indeed an essential event.

Otherwise, (θx ∪ {s2, s′2})
−1 can extend via (θs, s′1) for some s′1 and:

x ∪ {s′1}
∼= θx ∪ {θs1} ∼= x ∪ {s1}

This particular isomorphism is the extension of the identity on x by the non-
negative pair (s′1, s1) hence by thin s1 = s′1. But this means that x∪ {s1, s2} ∈ C (S)
which is absurd. �

3.1.3. Pre-∼-strategies. We can now generalize uncovered pre-strategies:

DEFINITION 3.19 (Pre-∼-strategy). A pre-∼-strategy on a ∼-game A is a ∼-
receptive partial map of event structures with symmetry σ : S ⇀ A such that S is
thin. Similarly a pre-∼-strategy from tcg A to tcg B is a ∼-receptive map of event
structures with symmetry S ⇀ A⊥ ‖ B such that S is thin.

Note that we dropped the uncovered attribute: strategies will be uncovered
by default. Any pre-∼-strategy S ⇀ A induces a (uncovered) pre-strategy S ⇀
A by simply forgetting the symmetry. Note that ∼-receptivity only implies the
uniqueness part of receptivity, not the existence. If σ is both receptive and ∼-
receptive, we say it is strongly receptive.

As a result, any pre-∼-strategy σ : S ⇀ A induces a visible part σ↓ : S ↓ V →
A where V is the set of events sent to A, via Lemma 3.8.

3.2. Copycat. As a key example, we show how the copycat strategy can be
equipped with a symmetry, and made into a pre-∼-strategy. Recall that the copy-
cat strategy on game A:

cc A : CCA → A⊥ ‖ A

where CCA has the same events as A⊥ ‖ A, but additional immediate causal links
from negative events on one side to their positive counterpart on the other. Con-
sequently, configurations x ∈ C (CCA) decompose as x = x1 ‖ x2 ∈ C (A⊥ ‖ A).

The following definition is forced by the requirement that the map cc A should
be a map of ess, and that each symmetry should be an order-iso.



72 3. THIN CONCURRENT GAMES

DEFINITION 3.20. Let A be a tcg. Given x = x1 ‖ x2 ∈ C (CCA), y = y1 ‖
y2 ∈ C (CCA), the set of symmetries between x and y (written CCÃ) comprises any
bijection θ = θ1 ‖ θ2 such that θ1, θ2 ∈ Ã, and which is an order-iso (for the order
on x, y induced by ≤CCA

).

This intuitive definition makes sense. However in order to reason on such
symmetries, it will be convenient to rely on a more high-level characterization that
does not explicitly require an order-isomorphism. To introduce it, recall first from
Chapter 2 that configurations x ∈ C (CCA) are exactly those x1 ‖ x2 ∈ C (A ‖ A)
such that (with polarity in A):

x2 ⊇
− x1 ∩ x2 ⊆

+ x1

Furthermore, this relation between x2 and x1 is a partial order called the “Scott
order”, written x2 ⊑A x1. If A is a tcg, we now observe the following.

PROPOSITION 3.21. The set CCÃ is equivalently defined as comprising the bijections

θ1 ‖ θ2 : x1 ‖ x2 ≃Ã⊥‖Ã y1 ‖ y2

satisfying the further condition that for all a ∈ x1 ∩ x2, we have θ1(a) = θ2(a).
In other words, CCÃ comprises the bijections θ1 ‖ θ2 ∈ Ã⊥ ‖ Ã such that θ2 ⊇

−

θ1 ∩ θ2 ⊆
+ θ1, i.e.

θ2 ⊑Ã θ1

This justifies the notation CCÃ, as this agrees with the description of configurations of
copycat via the Scott order.

PROOF. Take θ = θ1 ‖ θ2 : x1 ‖ x2
∼= y1 ‖ y2.

If θ is an order-isomorphism, then take a ∈ x1 ∩ x2. Assume without loss of
generality that polA(a) = +, so that we have (0, a) _ (1, a) in CCA. But then since
θ is an order-iso, it preserves immediate causal dependency, therefore (0, θ1 a) _

(1, θ2 a). But since these two events are in different components of A⊥ ‖ A, this
necessarily means that θ1 a = θ2 a as required (using Lemma 2.10).

Conversely, assume that for all a ∈ x1 ∩ x2, θ1 a = θ2 a. Using again Lemma
2.10, it is immediate that θ preserves immediate causal links. The same reasoning
applies to θ−1 (it is easy to show that the hypothesis is stable under inverse), so it
reflects immediate causal links as well; and is an order-iso. �

We now check the axioms for isomorphism families.

LEMMA 3.22. The family CCÃ satisfies the axioms (Groupoid) and (Restriction) of
isomorphism families.

PROOF. Immediate from Definition 3.20. �

We prove the extension axiom separately: it relies on the extra axiom of ∼-
games (see [CCW14] for a counterexample without this condition):

PROPOSITION 3.23. Let A be a tcg. Then, writing CCA = (CCA, CCÃ), the map

cc A : CCA → A
⊥ ‖ A

is a pre-∼-strategy.



4. COMPOSITION OF UNIFORM STRATEGIES 73

PROOF. CCÃ is an isomorphism family. By Lemma 3.22 we already know that
CCÃ satisfies all axioms for an isomorphism family except for (Extension), which
we establish now.

Let θ1 ‖ θ2 : x ‖ y ∼=CCÃ
x′ ‖ y′. Assume e.g. x ‖ y

(2,a)
−−⊂ . There are two cases:

• If polA(a) = −, then by (Extension) for Ã⊥ ‖ Ã we have θ1 ‖ θ2 ⊆ θ1 ‖

θ′2 ∈ Ã⊥ ‖ Ã whose domain is x ‖ y ∪ {a}. Its codomain is x′ ‖ y′ ∪ {a′}.
Since polA(a) = −, we cannot have a′ ∈ x′ – indeed x′ ⊇+ x′ ∩ y′ ⊆− y′,
so we would have a′ ∈ y′ as well, absurd. So we have x′ ∩ (y′ ∪ {a′}) =
x′ ∩ y′ ⊆+ x′, and x′ ∩ (y′ ∪ {a′}) = x′ ∩ y′ ⊆− y′ ⊆− y′ ∪ {a′}, which
establishes that x′ ‖ (y′ ∪ {a′}) ∈ C (CCA).

Likewise we have θ1 ∩ θ′2 = θ1 ∩ θ2, hence we still have θ1 ∩ θ′2 ⊆
+ θ1

but also θ1 ∩ θ′2 ⊆
− θ2 ⊆

− θ′2, therefore θ1 ‖ θ′2 ∈ CCÃ.
• If polA(a) = + is positive then a ∈ x as well. Thus, [a) ⊆ x∩ y. Therefore,

we have (x ∩ y) ∪ {a} ∈ C (A), and (x ∩ y) ∪ {a} ⊆ x. Define θ′1 = θ1 ↾

(x ∩ y) ∪ {a}. We have:

θ′1 ⊇
+ θ1 ∩ θ2 ⊆

− θ2

By construction, the domains of θ′1 (which is (x ∩ y) ∪ {a}) and the do-
main of θ2 (which is y) are compatible, so by definition of ∼-games,
θ′2 = θ′1 ∪ θ2 ∈ Ã, and by construction its domain is y ∪ {a}. To sum
up, we have:

θ1 ⊇
+ θ1 ∩ θ′2 ⊆

− θ′2
Hence θ1 ‖ θ′2 ∈ CCÃ provides the required extension.

cc A is a pre-∼-strategy. It is obvious that cc A : CCA → A⊥ ‖ A preserves
symmetry. It remains finally to show that it is ∼-receptive, for which we apply
Lemma 3.16.
∼-receptivity: Assume x ‖ y ∈ C (CCA) can be extended for instance by (2, a−)

in CCA and by (2, b−) in A⊥ ‖ A, such that:

idx ‖ (idy ∪{(a, b)}) ∈ Ã⊥ ‖ Ã

We need to check that this is a valid extension in CCÃ as well. By the charac-
terization of Proposition 3.21, we only have to check that idx c = (idy ∪{(a, b)}) c
for each c ∈ x ∩ (y ∪ {a}), but in fact we must have c ∈ x ∩ y. Indeed, we cannot
have a ∈ x, as by x ⊇+ x ∩ y ⊆− y and polA(a) = − that would imply a ∈ y as
well, absurd. So the verification is obvious.

Thin. Assume we have idx‖y that can be extended by a positive (e, e′) to θ in
CCÃ. For instance e = (1, a) and e′ = (1, a′) (right component). By construction of
copycat, since (0, a) _ (1, a) we must have θ(0, a) _ θ(1, a). Since θ(0, a) = (0, a)
and θ(0, a′) = (1, a′) it follows that (0, a) _ (1, a′) hence a = a′ as desired. �

Having defined games and pre-strategies in this new metalanguage of event
structures with symmetry, we now look at how composition should be updated.

4. Composition of uniform strategies

In this section, we investigate how to generalize the definition of composition
from Chapter 2 to uniform strategies. The difficulty is to build an isomorphism
family on top of T⊚ S, which amounts to show that uniform strategies compose.



74 3. THIN CONCURRENT GAMES

4.1. Interaction of pre-∼-strategies. Remember that, in the covered case, in-
teraction is given by pullback. However, the category E∼ of ess and total maps
does not have pullbacks in general:

EXAMPLE 3.24. Consider A the following event structure:

·a

❃yy� � ��%

·b

❃yy� � ��%
·1 ·2 ·3 ·4

Write A for A equipped with the maximal isomorphism family: all order-
isomorphisms are in the family. WriteA1 for the sub-event structure with symme-
try where ·1 can only be sent to itself and to ·3; and ·2 can only be sent to itself and
to ·4. Similarly, write A2 for that where ·1 can only be sent to ·4 and ·2 to ·3.

We have the following diagram:

A1

id   

A2

id~~
A

where id is the identity on events but not the identity map in E∼, since the isomor-
phism families are distinct.

Assume this diagram has a pullback (A3, Π1, Π2). Since the projection func-
tor (A, Ã) 7→ A : E∼ → E has a left adjoint (the functor taking A to (A, {idx |
x ∈ C (A)})), it preserves pullbacks up to isomorphism. So the underlying event
structure of A3 is A and the projection maps are both identities on events. The
isomorphism {(·a, ·b)} : {·a} ∼=Ã3

{·b} must be in Ã3 as it is in both Ã1 and Ã2.
However, its left-hand side {·a} can be extended with ·1, so by the extension prop-
erty we have:

{(·a, ·b), (·1, ·i)} : {·a, ·1} ∼=Ã3
{·b, ·i}

with i ∈ {3, 4}. But by construction such an isomorphism cannot be in both Ã1
and Ã2, absurd.

The problem is that the two isomorphism families do not agree on the exten-
sion. This will not happen if the maps are ∼-receptive and have dual codomains:
any extension will be negative for one of the two strategies involved. This pre-∼-
strategy will be receptive to any extension the other one chooses, by∼-receptivity.

Consider two pre-∼-strategies σ : S ⇀ A and τ : T ⇀ A⊥ on dual games. If
θ : w ≃ z with w, z ∈ C (S ∧ T) is such that

(∗) Π1 p is defined iff Π1(θp) is defined for p ∈ w (and similarly for Π2)

then θS := Π1θ : Π1w ≃ Π1z and θT := Π2θ : Π2w ≃ Π2z are well-defined
bijections. This remark allows us to define the symmetry on the interaction S ∧ T.
On top of S ∧ T, consider the family S̃ ∧ T̃ containing those bijections θ : w ∼= z
satisfying (*) such that θS : Π1w ≃ Π1z ∈ S̃ and θT : Π2w ≃ Π2z ∈ T̃. Bearing in
mind the correspondence between configurations w of S∧T and secured bijections
of the shape

Π1w ‖ (Π2w)∗ ≃ (Π1w)⋆ ‖ Π2w.



4. COMPOSITION OF UNIFORM STRATEGIES 75

In the following, such bijection will be abbreviated as

Π1w
σ / (σ ∧ τ)w Π2w

τo .

There is an order-isomorphism between those bijections θ ∈ S̃ ∧ T̃ and commuta-
tive squares between the corresponding secured bijections (ordered by component-
wise union):

Π1w

θS ∼ =S̃

σ/ (σ ∧ τ)w) Π2w
τo

θT ∼ =T̃
Π1z

σ/ (σ ∧ τ)w) Π2z
τo

This construction satisfies a straightforward generalization of the universal
property of Lemma 2.47. Remember that if we have two maps σ : S ⇀ A and
τ : T ⇀ B, a cone is a tuple (X , f : X ⇀ S , g : X ⇀ T ) such that the square
commutes. A cone (X , f , g) does not synchronize on neutral events when for
s ∈ X such that f s and g s are defined, then so is σ( f s).

LEMMA 3.25. Let A be an event structure with symmetry and total polarities (all

events are either positive or negative). Let σ : S → A and τ : T → A⊥ be ∼-receptive
maps of ess. We have:

(1) S ∧ T = (S ∧ T, S̃ ∧ T̃) is an event structure with symmetry,
(2) the maps Π1 : S ∧ T ⇀ S and Π2 : S ∧ T ⇀ T preserve symmetry,
(3) the cone (S ∧ T , Π1, Π2) is universal among cones (X , f , g) such that f and g

do not synchronize on neutral events.

The proof of this lemma crucially relies on σ and τ playing on dual games.

PROOF. (1) The (Groupoid) and (Restriction) axioms are direct consequences
of the corresponding conditions for S̃ and T̃. We check extension.

Let θ : w ∼=S̃∧T̃ z. Assume w can be extended by an event p ∈ S ∧ T to w′.
Extension by a neutral event. Assume (σ ∧ τ)p is not defined. As a result, either

Π1 p is defined or Π2 p is. Assume Π1 p is. Then θS : Π1w ∼=S̃ Π1z can extend
by (Π1 p, s′) by extension of S̃. Since s′ is a neutral event for S, there exists an
extension p′ ∈ S∧ T of z and Π1 p′ = s′. As a result θ extends by (p, p′) as desired.

Extension by a visible event. Assume (σ ∧ τ)p is defined. Since σ and τ have
dual codomains, w.l.o.g, we can assume that s := Π1 p is positive and t := Π2 p is
negative. We have the following picture:

Π1 w′
σ / (σ ∧ τ)w′ Π2 w′

τo

Π1 w
s

R2

θS ∼ =S̃

σ / (σ ∧ τ)w Π2 w
τo

θT ∼ =T̃

t
, �

Π1 z
σ / (σ ∧ τ) z Π2 z

τo

We first use the extension property on θS as Π1w
s
−−⊂ : θS extends by (s, s′). Since

σθS = τθT , this means that τθT extends by (σs, σs′) which is negative in A⊥. By
∼-receptivity of τ, it follows that θT extends by (t, t′) with τt = σs and τt′ = σs′.



76 3. THIN CONCURRENT GAMES

The picture is now:

Π1 w′
σ /

∼ =S̃

(σ ∧ τ)w′ Π2 w′

∼ =T̃

τo

Π1 w
σ /

s

R2

θS ∼ =S̃

(σ ∧ τ)w Π2 w

θT ∼ =T̃

t
, �

τo

Π1 z
σ /

s′

lL

(σ ∧ τ) z Π2 w′

t′

� r

τo

z1
σ / σz1 = τz2 z2

τo

The obtained bijection ϕ : z1 ≃ z2 is secured. As a result, w′ extends by some
p′ ∈ S ∧ T with Π1 p′ = s′ and Π2 p′ = t′, and θ extends by (p, p′).

(2) Consequence of the definition of S̃ ∧ T̃.
(3) Assume we have two morphisms of ess ϕ : X ⇀ S and ψ : X ⇀ T not

synchronizing on neutral events, such that the square commutes:

X

ϕ

		

ψ

��

S ∧ T

{{ ##
S̃

σ

##

T
τ

{{
A

Applying the universal property at the level of event structures (Lemma 2.47),
there is a map of event structures 〈ϕ, ψ〉 : X → S ∧ T making the two triangles
commute, which is unique in E . This uniqueness lifts to E∼⊥ as the forgetful func-
tor E∼⊥ → E⊥ is faithful. To conclude we need only to prove that 〈ϕ, ψ〉 preserves
symmetry and is thus a morphism in E∼⊥ . An isomorphism θ : x ∼=X̃ y is trans-
ported to a bijection 〈ϕ, ψ〉 θ : 〈ϕ, ψ〉 x ≃ 〈ϕ, ψ〉 y such that (〈ϕ, ψ〉 θ)S = ϕ θ and
(〈ϕ, ψ〉 θ)T = ψ θ, thus 〈ϕ, ψ〉 θ ∈ S̃ ∧ T̃ by definition. �

We note in passing, that when both symmetries are thin, the resulting sym-
metry is trivial: none of the strategies can start to introduce non-trivial symmetry.
Call a map of event structure σ : S → A !-receptive when for all x ∈ C (S) with
two negative extensions s1, s2, if σs1 = σs2, then s1 = s2. This condition corre-
sponds to the uniqueness part of receptivity, and is exactly what we need for the
following. Note that, in general pullbacks of non ∼-receptive maps do not exist,
but in this case (because of thin and !-receptivity), they do:

LEMMA 3.26. Let σ : S ⇀ A and τ : T ⇀ A⊥ be thin and !-receptive maps of
event structures with symmetry. The family S̃ ∧ T̃ is trivial (reduced to identities), and as
a result, an isomorphism, and the pullback of σ and τ.

PROOF. We prove by induction that all bijections in S̃ ∧ T̃ are identities. Let
z ∈ C (S ∧ T) and assume idz extends by (p, p′) to θ ∈ S̃ ∧ T̃. Assume for instance
Π2 e is nonnegative in T (the other case is similar). By construction idΠ2 z extends
to θT = Π2 θ ∈ T̃ by positive events (Π2 p, Π2 p′), hence Π2 p = Π2 p′ and θT is
the identity because T̃ is thin. By local injectivity of Π2 it follows that p and p′



4. COMPOSITION OF UNIFORM STRATEGIES 77

must be equal, or incompatible extensions of z. But if they are incompatible, by
properties of the interaction (Lemma 2.45) it means that Π1 p and Π1 p′ are incom-
patible extensions of Π1 z mapping to the same event in the game, contradicting
!-receptivity of σ. Hence p = p′ and θ is the identity. �

As we will see later, even though there are non-trivial symmetries in the in-
teraction of thin pre-∼-strategies because the symmetries on A and C are not thin,
whenever the interaction stays within B the phenomenon above applies, and the
symmetry is trivial. In particular, a bijection in the symmetry of the interaction is
fully determined by its restriction to visible events (cf. Lemma 3.28).

4.2. Composition of pre-∼-strategies. We have seen how to adapt the inter-
action of pre-strategies in the presence of symmetry. We now move on to defining
composition of pre-∼-strategies. In this section we consider σ : S ⇀ A⊥ ‖ B and
τ : T ⇀ B⊥ ‖ C two pre-∼-strategies.

4.2.1. Interaction. We apply Lemma 3.25 to the following pre-∼-strategies:

σ ‖ C⊥ : S ‖ C⊥ ⇀ A⊥ ‖ B ‖ C⊥ A ‖ τ : A ‖ T ⇀ A ‖ B⊥ ‖ C,

resulting in the map

τ⊛ σ = (σ ‖ C⊥) ∧ (A ‖ τ) : (S ‖ C) ∧ (A ‖ T ) ⇀ A ‖ B ‖ C ⇀ A ‖ C.

The resulting isomorphism family on T⊛ S is thin:

LEMMA 3.27. The isomorphism family on T⊛ S is thin.

PROOF. Let z ∈ C (T ⊛ S) and θ : z ∪ {p} ∼=
T̃⊛S

z ∪ {p′} a nonnegative ex-
tension of idz. At least one of Π1 p or Π2 p is nonnegative in S or T respectively.
Assume for instance the former: Π1 p and Π1 p′ correspond to events s ∈ S and
s′ ∈ S respectively. By definition of the symmetry on the pullback, θ induces
θ1 : Π1(z ∪ {p}) ∼=S̃‖C̃ Π1(z ∪ {p′}) which by projection on the S component
yields an isomorphism zS ∪ {s} ∼=S̃ zS ∪ {s

′} for some zS ∈ C (S). Since S̃ is thin,
s = s′ and Π1 p = Π1 p′.

If p and p′ are compatible extensions of z, then by local injectivity of Π1, p = p′

as desired. Otherwise it means that Π2 p and Π2 p′ are incompatible extensions of
Π1z. Since Π1(z ∪ {p, p′}) is consistent, this could only occur if Π2 p and Π2 p′

lived in T (and were incompatible there). In that case, since Π1 p is nonnegative,
it must be that it is actually positive and Π2 p negative in T. By ∼-receptivity of τ
it must be that Π2 p = Π2 p′ as it should be unique extension of Π2z by the event
(τ⊛ σ)p of the game. �

4.2.2. Hiding. To deduce that essential events of τ ⊛ σ are closed under sym-
metry, Via Lemma 3.18 the set V = {p ∈ T ⊛ S | p is essential or visible} is closed
under symmetry (as the union of two closed sets) so we can define T ⊚ S =
T ⊛ S ↓ V and the obvious mapping τ⊚ σ : T ⊚ S → A⊥ ‖ C.

It is however thin, as a consequence of the unique witness property: a sym-
metry between configurations of the composition induces a unique symmetry on
their downclosure in the interaction:

LEMMA 3.28 (Unique witness). Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be
pre-∼-strategies, and V the set of external events of T⊛ S (ie. those sent to A or C).

Let θ : x ∼=T̃⊛S̃ y and θ′ : x ∼=T̃⊛S̃ y′ such that θ ∩V2 = θ′ ∩V2. Then θ = θ′.



78 3. THIN CONCURRENT GAMES

PROOF. By hypothesis, we have that y ∩V = y′ ∩V. Note that θ ◦ θ′−1 : y′ ∼=
y ∈ (S̃ ‖ C̃) ∧ (Ã ‖ T̃) and contains idy∩V . As a result, θ ◦ θ′−1 actually belongs to
(S̃ ‖ C=) ∧ (A= ‖ T̃) where C= and A= denote respectively the C and A adjoined
with the trivial symmetry reduced to the identities bijections.

This is a pullback of thin !-receptive maps, so θ ◦ θ′−1 is an identity bijection
(Lemma 3.26) which implies θ = θ′. �

We can now deduce that τ⊚ σ is indeed a pre-∼-strategy.

LEMMA 3.29. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be pre-∼-strategies.
Then, τ⊚ σ is a pre-∼-strategy.

PROOF. Throughout the proof, we use [·] to abbreviate [·]T⊛S.
Thin. Let z ∈ C (T⊚S) such that idz extends by (e, e′) to θ : x ∼= y ∈ T̃⊚ S̃ with

witness [θ] : [x] ∼=T⊛S [y]. Write θ0 for [θ] \ {(e, e′)} : x0
∼= y0. By hypothesis, θ0

behaves like the identity on the visible part of x0. Hence, by Lemma 3.28, θ0 is the
identity on x0. Since idx0 = θ0 can be extended to θ̄ by (e, e′) which is nonnegative
in T⊛ S, we can conclude by Lemma 3.27.
∼-receptivity. Let θ : z ∼= w in T̃ ⊚ S̃ with a negative extension p of z in

T⊚ S. Assume moreover (τ⊚ σ)θ extends by ((τ⊚ σ)p, c) for c ∈ A⊥ ‖ C that we
consider in C without loss of generality.

Existence. In T⊛ S, we have the following extensions:

[z] ⊆ z′
p
−−⊂

where the first extension is only by inessential neutral events. Using extension of
T̃⊛ S̃, [θ] extends to θ′ : z′ ∼=T̃⊛S̃ w′ for some w′ ∈ C (T⊛ S).

We now project on A ‖ τ: (A ‖ τ)(Π2θ′) extends by (Π2 p, c) which by ∼-
receptivity of A ‖ τ, means that Π2w′ extends by t′ ∈ A ‖ T (actually it is in
T) and Π2θ ∪ {(Π2 p, t′)} is a valid extension of Π2θ. It is easy to see that Π1w′

extends by (2, c) ∈ S ‖ C as well. As a result, w′ extends by an event p′ ∈ T ⊛ S
projecting to c in the game, and θ′ ∪ {(p, p′)} is a valid symmetry of T̃ ⊛ S̃. As a
result θ ∪ {(p, p′)} is a valid extension of θ in T̃⊚ S̃.

Uniqueness. Consider two such extensions of z, p1 and p2, and two extensions
of θ, θ1 and θ2. The extensions [z] ⊆ [z] ∪ [p1) and [z] ⊆ [z] ∪ [p2) only contain
inessential events, so they are compatible, and z′ = [z] ∪ [p1) ∪ [p2) ∈ C (T⊛ S).

By the extension property, [θ] extends (only by inessential pairs) to θ′ : w′ ∼= z′

for some extension w′ of [w]. Projecting to A ‖ τ, we get Π2θ′ : Π2w′ ∼= Π2z′.
Since w′ can still extend by p′, Π2w′ can extend by Π2 p′. Likewise, τ(Π2z′) can
be extended by c. However, z′ can be extended in two ways: either by Π2 p1 or by
Π2 p2, both of which give an extension of Π2θ defined on p. By ∼-receptivity of
A ‖ τ, Π2 p1 = Π1 p2. Since Π1 p1 = Π1 p2 = c as well, p1 = p2 as desired. �

Note that uniqueness for∼-receptivity relies on essential events; indeed in the
covered setting∼-receptivity is not stable under composition on its own [CCW14].

4.3. The category ∼-CG
∼=
⊚. From there, we can construct a category, general-

izing the constructions of the previous chapter. First, we define ∼-strategies as in
Chapter 2:

DEFINITION 3.30. A ∼-strategy on a ∼-gameA is a pre-∼-strategy σ : S → A
on A such that σ : S→ A is an essential strategy.



5. WEAK ISOMORPHISM 79

To get a category, we still need to quotient by an equivalence relation. Isomor-
phism is generalized in a straightforward way:

DEFINITION 3.31 (Strong isomorphism). Let σ : S ⇀ A and σ′ : S ′ ⇀ A be
pre-∼-strategies. They are strongly isomorphic when there exists an isomorphism
ϕ : S ∼= S ′ of event structures with symmetry making the usual triangle commute.
In this case, we write σ ∼= σ′.

This definition allows us to construct a category of uniform strategies, up to
strong isomorphism:

PROPOSITION 3.32. The following is a compact-closed category ∼ −CG
∼=
⊚:

• Objects: ∼-games,

• Morphisms form A to B: ∼-strategies on A⊥ ‖ B up to strong isomorphism,
• Composition: ⊚,
• Copycat: the copycat enhanced with symmetry.

PROOF. We omit the proof as this result is not needed in the rest of the docu-
ment. However, Section 6 provides most of the arguments for the proof. �

5. Weak isomorphism

We have seen how to build a category of uniform strategies. However, strate-
gies are still compared using strong isomorphism – in particular, the symmetry
on the game plays no role in the equivalence relation on strategies. It is possible
to change that by using the equivalence relation ∼ on maps of event structures
with symmetry by asking that τ ◦ ϕ ∼A σ instead of requiring an equality. How-
ever, proving that such an equality is a congruence is not easy. We cannot rely on
the universal property of the interaction since our morphisms do not commute on
the nose anymore. We need to generalize the universal property to account for
symmetry.

Establishing the generalization proved very hard, and requires splittingA into
a negative sub-isomorphism family A− and a positive one A+, abstracting the set-
ting for !̃A that can be split into a negative and a positive part. This is reminiscent
of Melliès’ notion of uniformity [Mel03] in terms of bi-invariance under group
actions, the two groups being Opponent reindexings and Player reindexings. Ax-
iomatizing this decomposition leads to the notion of thin concurrent game:

DEFINITION 3.33. A thin concurrent game (tcg) is an essp A with two addi-
tional isomorphism families Ã− and Ã+ on A such that:

(a) The families Ã+ and Ã− are subsets of Ã,
(b) If θ ∈ Ã+ ∩ Ã− then θ is an identity bijection,
(c) If θ ∈ Ã− and θ ⊆− θ′ ∈ Ã then θ′ ∈ Ã−,
(d) If θ ∈ Ã+ and θ ⊆+ θ′ ∈ Ã then θ′ ∈ Ã+.

where θ ⊆− θ′ (resp. θ ⊆+ θ′) means that θ ⊆ θ′ such that θ′ \ θ only contains
events of negative (resp. positive) polarity. The triple (A, Ã−, Ã+) will be often
written simply A to ease notation.

In general, from a ∼-game, one cannot extract such a decomposition because
of pathological cases. However, if one restricts to local isomorphism families –



80 3. THIN CONCURRENT GAMES

those generated by an equivalence relation on events – one can recover the decom-
position. Remark that this definition does not ask that tcgs be ∼-games: indeed, it
follows from the axioms (Lemma 3.37).

Given a tcgA, we will writeA− for the event structure with symmetry (A, Ã−)
andA+ for (A, Ã+). Thin concurrent games support the usual operation on games:

DEFINITION 3.34. Given a tcg (A, Ã−, Ã+), its dual is

(A, Ã−, Ã+)
⊥ = (A⊥, Ã+, Ã−)

Note that the two additional isomorphism families are swapped.
Likewise, the simple parallel composition of (A, Ã−, Ã+) and (B, B̃−, B̃+) is

performed component-wise:

(A, Ã−, Ã+) ‖ (B, B̃−, B̃+) = (A ‖ B, Ã− ‖ B̃−, Ã+ ‖ Ã+)

where parallel composition of sets of bijections is defined as in Definition 3.7.

5.1. The decomposition lemma. We first make formal the intuition of decom-
position by showing that symmetries in A uniquely decompose into a part in A−
and a part in A+.

LEMMA 3.35. Let A be a tcg and x ∈ C (A).

• If idx ⊆+ θ ∈ Ã− then θ = idy for some x ⊆ y ∈ C (A).

• If idx ⊆− θ ∈ Ã+ then θ = idy for some x ⊆ y ∈ C (A).

PROOF. The two items are dual; we only detail the first. Since idx ∈ Ã+, (d)
entails that θ ∈ Ã+, so θ ∈ Ã+ ∩ Ã−, hence the conclusion follows by (b). �

PROPOSITION 3.36 (Decomposition lemma). Let A be a tcg. The following func-
tion is an order-isomorphism:

Ã− ×A Ã+ −→ Ã

(θ−, θ+) 7→ θ− ◦ θ+

where Ã− ×A Ã+ = {(θ−, θ+) ∈ Ã− × Ã+ | codom θ+ = dom θ−} is ordered by
pairwise inclusion and Ã is ordered by inclusion.

PROOF. The map is well defined because Ã− and Ã+ are included in Ã.
Injectivity. Assume we have θ = θ−1 ◦ θ+1 = θ−2 ◦ θ+2 : x ∼=Ã y. In other words

we have the following commutative square:

z1 θ −
1∼=

Ã
−

x
θ +
2∼=

Ã
+

θ
+

1

∼= Ã+

y

z2

θ
−

2

∼= Ã−

By using groupoid laws we get that θ+1 ◦ (θ
+
2 )−1 = (θ−1 )−1 ◦ θ−2 : z1

∼= z2 ∈

Ã− ∩ Ã+ hence it is equal to the identity: z1 = z2, θ+1 = θ+2 and θ−1 = θ−2 .

Surjectivity. By induction on θ ∈ Ã we build a pre-image. If θ is empty then
(∅, ∅) is suitable.



5. WEAK ISOMORPHISM 81

Assume we have the decomposition of θ : x ∼=Ã y into x
θ+
∼=Ã+

z
θ−
∼=Ã−

y and θ

extends to θ′ : x′ ∼= y′ by a pair of fixed polarity, say positive. We use the extension
axiom on θ− to get θ− ⊆ θ′− : z′ ∼=Ã−

y′. It follows that θ+ ⊆ (θ′−)−1 ◦ θ′ : x′ ∼=Ã z′

is a positive extension of θ+ so it must belong to Ã+ by the properties of tcgs.
Hence θ′ = θ′− ◦

(
(θ′−)−1 ◦ θ′

)
provides the required decomposition.

Monotonicity and monotonicity of the inverse. Clearly, the function is monotonic.
We prove that so is its inverse. Assume θ− ◦ θ+ ⊆ θ′− ◦ θ′+. We write θ− ◦ θ+ :
x ∼=Ã y and θ′− ◦ θ′+ : x′ ∼=Ã y′; in particular we have x ⊆ x′ and y ⊆ y′. But then
restricting θ′+ to x yields θ′′+ : x ∼=Ã+

z, and restricting θ′− to z yields θ′′− : z ∼=Ã−
y,

where θ′′− ◦ θ′′+ is the restriction of θ′− ◦ θ′+ to x, i.e. θ− ◦ θ+. By injectivity (proved
above), θ− = θ′′− and θ+ = θ′′+. Thus, θ− ⊆ θ′− and θ+ ⊆ θ′+. �

As a consequence of this lemma, the following commutative diagram:

(A, {idx | x ∈ C (A)})

vv ((
(A, Ã+)

((

(A, Ã−)

vv
A

is a both a pullback and a push-out in E∼. In particular, this means that Ã is
uniquely determined from Ã− and Ã+.

This decomposition is particularly useful to establish that thin concurrent games
are special cases of ∼-games:

LEMMA 3.37. Let A be a tcg. Then A is a ∼-game.

PROOF. We first prove that Ã+ and Ã− are ∼-games. Let θ : x ∼=Ã+
y with a

positive extension θ1 : x1
∼=Ã+

y1 and a negative extension θ2 : x2
∼=Ã+

y2. Lemma
2.59 implies x1 ∪ x2 ∈ C (A).

Using (Extension) of Ã+ twice to θ1 and θ2, we get to the following picture:

θ′1 : x1 ∪ x2
∼=Ã+

y′1 θ′2 : x1 ∪ x2
∼=Ã+

y′2

θ1 : x1
∼=Ã+

y1

⊆
−

θ2 : x2
∼=Ã+

y2

⊆
+

θ : x ∼=Ã+
y

⊆+
⊆
−

By the (Groupoid) axiom on Ã+, we have idy ⊆ θ′1 ◦ θ′2
−1 : y′2

∼=Ã+
y′1. By

(Restriction), we build ϕ = θ′1 ◦ θ′2
−1
↾ y2. By construction, we have idy ⊆− ϕ ∈

Ã+, so ϕ = idy2 by Lemma 3.35. It follows that θ2 ⊆ θ′1, hence θ′1 = θ1 ∪ θ2 as
required. A dual reasoning shows that Ã− is race-preserving as well.

Now, we deduce the result for Ã, using the decomposition of Lemma 3.36.
Assume θ = θ− ◦ θ+ has extensions θ ⊆+ θ1 and θ ⊆− θ2, with decompositions
θ−1 ◦ θ+1 and θ−2 ◦ θ+2 . By monotonicity of the decomposition, we have θ+ ⊆+ θ+1 ,



82 3. THIN CONCURRENT GAMES

θ+ ⊆− θ+2 , θ− ⊆+ θ−1 and θ− ⊆− θ−2 . By race-freeness of Ã+ it follows first that
θ+1 ∪ θ+2 ∈ Ã+, and then by race-freeness of Ã− it follows that θ−1 ∪ θ−2 ∈ Ã−. Thus

(θ−1 ∪ θ−2 ) ◦ (θ+1 ∪ θ+2 ) = (θ−1 ◦ θ+1 ) ∪ (θ−2 ◦ θ−1 ) = θ1 ∪ θ2 ∈ Ã. �

5.2. Weak isomorphism and the bipullback property. A (pre-)∼-strategy on
a tcg A is a (pre-)∼-strategy on the underlying ∼-game A. We keep the notation
σ : A, σ : S ⇀ A when A is a tcg to introduce (pre-)∼-strategies.

We can now define a coarser equivalence relation, weak isomorphism, that
compares strategies up to symmetry induced by the game.

DEFINITION 3.38 (Weak isomorphism). Two pre-∼-strategies σ : S ⇀ A and
τ : T ⇀ A are weakly isomorphic (written σ ≅ τ) when there exists an isomor-
phism of event structure with symmetry ϕ : S ∼= T such that τ ◦ ϕ ∼A+ σ.

Remark that the definition uses the positive symmetry – A+ – instead of the
full symmetry. Both definitions are equivalent when instantiated to !A, but this
definition turns out to have fruitful consequences (eg. Lemma 3.40).

The corresponding triangle is said to commute up to symmetry. We use the
abbreviation ∼+ for ∼A+ when the corresponding A is clear from context.

To prove that ≅ is a congruence, we need to show that T ⊛ S satisfies a uni-
versal property up to symmetry, which we call the bipullback property – as in the
covered case this universal property coincides with that of a bipullback.

PROPOSITION 3.39 (Bipullback property). Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀

B⊥ ‖ C be pre-∼-strategies. The ess T ⊛ S enjoys the following universal property: for
all f : X ⇀ S ‖ C and g : X ⇀ A ‖ T not synchronizing on neutral events, such
that τ ◦ g ∼Ã‖B̃‖C̃ σ ◦ f , there exists 〈 f , g〉 : X ⇀ T ⊛ S , unique up to symmetry, with

Π1 ◦ 〈 f , g〉 ∼S̃‖C̃+
f and Π2 ◦ 〈 f , g〉 ∼Ã−‖T̃

g.

This is summed up by the following diagram (where all squares and triangle commutes
up to ∼ in the category of event structures with symmetry):

X

〈 f ,g〉
��

f

��

g



∼ T ⊛ S

Π1{{ Π2 ##

∼

S ‖ C

σ
##

∼ A ‖ T

τ
{{

A ‖ B ‖ C

The proof of this result is delayed until the next subsection. We finish this
subsection by showing how this result implies that weak isomorphism is a con-
gruence. To do that, we notice that to build a weak isomorphism, it is enough to
build a weak equivalence, that is a pair of maps that are inverse of each other only
up to symmetry:



5. WEAK ISOMORPHISM 83

LEMMA 3.40 (Weak equivalence lemma). Let σ : S ⇀ A and σ′ : S ′ ⇀ A be
pre-∼-strategies. Assume there exists f : S → T and g : T → S with σ′ ◦ f ∼A+ σ
and g ◦ f ∼S idS as well as f ◦ g ∼T idT . Then f ◦ g = idT and g ◦ f = idS and as a
consequence ( f , g) is a weak isomorphism between σ and σ′.

This lemma is necessary because the bipullback property (via its uniqueness
up to symmetry) naturally permits constructing weak equivalences rather than
weak isomorphisms. The proof of this lemma relies heavily on the thin hypothesis.

PROOF. By hypothesis, for all x ∈ C (S), the canonical bijection θx : x ∼= g ( f x)
is in S̃. We show by induction on x it is always the identity hence g ◦ f = idS .

The base case is trivial. Assume the result for x ∈ C (S) and suppose x extends
by s ∈ S to x′. If s is nonnegative, then θx = idx extends by (s, θx′ s) which is also
nonnegative, so since S̃ is thin we have s = θx′ s as desired.

If s is negative, we know that τ ◦ f ∼+ σ and as a result τ ∼+ σ ◦ g. Hence
σ ∼+ σ ◦ g ◦ f . As a result, the obvious ϕx′ : σ↓ x′ ∼= σ↓ (g ( f x′)) is in Ã+. By
induction hypothesis, we know it is an extension of the identity on σ↓x. Hence
idσ↓ x extends in Ã+ with (σ s, σ (g ( f s))) with s negative, so σs = σ (g ( f s)) by
Lemma 3.35. By ∼-receptivity of σ it follows that s = g ( f s) = θx′ s. �

This lemma is crucial to deduce that maps obtained from the universal prop-
erty of Proposition 3.39 preserves essential events:

LEMMA 3.41. For f : A → B and g : B → A maps of thin essps, such that

g ◦ f ∼A idA and f ◦ g ∼B idB ,

then f and g preserve nonnegative incompatible extensions.

PROOF. Let x ∈ C (A) and a1, a2 be two nonnegative incompatible extensions
of x. Assume that f a1 and f a2 are compatible extensions of f x. Then since g f (x ∪
{a1}) can extend by g f a2 and x ∪ {a1} ∼= g f (x ∪ {a1}) given by g ◦ f ∼A idA,
x ∪ {a1} extends by some a′2. This implies that idx ∈ Ã extends by (a2, a′2) (by
composition of restrictions of the previous isomorphisms). Since a2 and a′2 are
nonnegative, it follows that a2 = a′2 by thin. This contradicts the fact that x ∪
{a1, a2} is not consistent. �

All the ingredients are there to prove that weak isomorphism is a congruence:

PROPOSITION 3.42. Weak isomorphism is a congruence.

PROOF. Let σ, σ : S ⇀ A⊥ ‖ B be pre-∼-strategies and ϕ : σ ≅ σ′. Let
τ : T ⇀ B⊥ ‖ C and τ′ : T ′ ⇀ B⊥ ‖ C be other pre-∼-strategies and ψ : τ ≅ τ′.

We first build a map µ : T ⊛ S → T ′ ⊛ S ′ as:

T ⊛ S
〈(A‖ψ)◦Π2,(ϕ‖C)◦Π1〉
−−−−−−−−−−−−−→ T ′ ⊛ S ′

(well-defined by Proposition 3.39). Conversely there is a map ν : T′ ⊛ S′ → T ⊛
S. By the uniqueness up to symmetry, we get that µ ◦ ν ∼T ′⊛S ′ idT′⊛S′ and ν ◦
ϕ ∼T ⊛S idT ⊛S . By Lemma 3.41, it follows that µ and ν preserve essential events.
They induce maps µ̄ : T ⊚ S → T ⊚ S′ and ν̄ : T ⊚ S′ → T ⊚ S that are still inverse
of each other up to symmetry and commute on the game up to symmetry. Thus
they meet the conditions of Lemma 3.40 and actually form a weak isomorphism
τ⊚ σ ≅ τ⊚ σ′. �



84 3. THIN CONCURRENT GAMES

5.3. Proof of the bipullback property. We end this section by a detailed proof
of Proposition 3.39. The proof relies on the observation of Lemma 3.26: interac-
tions of dual pre-∼-strategies have trivial symmetries. The difficulty lies in the
existence part of the universal property, as the following example demonstrates:

EXAMPLE 3.43. Consider the two following strategies on !proc:

σ1 : !proc σ2 : !proc

run−,i

❴���

run−,i

❴���
done+,0 done+,1

that only differ by the choice of copy index for done. For each of them, there is a
unique symmetry that make them strong-receptive.

There is a weak isomorphism ϕ : σ1 ≅ σ2. Consider the following strategy τ:

!proc →| !proc

run−,i

✪oou
run+,〈i,0〉

❴���
done−,j

❴���
run+,〈i,j+1〉

❴���
done−,k

✙ ))/done+,〈j,k〉

which represents x : proc ⊢ x; x : proc. The 〈·〉 symbol stands for any injec-
tion N∗ → N needed to avoid index collision and thus guarantee local injectivity
(more on that in the next chapter, see Example 4.4).

In order to build a weak isomorphism between the resulting compositions
τ ⊚ σ1 and τ ⊚ σ2, a reasonable first step is to build a weak isomorphism between
the interactions τ ⊛ σ1 and τ ⊛ σ2. In particular, given a configuration of T ⊛ S1,
we should be able to build a canonical configuration of T ⊛ S2. Consider e.g. the
following configuration of T⊛ S1.

!proc →| !proc

done−,i

✫oovrun〈i,0〉
❴���

done0
❴���

run〈i,1〉
❴���

done0

✘ ((/
done+,〈0,0〉



5. WEAK ISOMORPHISM 85

where events on the left hand side are drawn without polarity, as they are synchro-
nized between σ1 and τ. It is easy to extract from this representation configurations
x ∈ C (S1 ‖ !proc) and y ∈ C (T) such that

(σ1 ‖ !proc) x = τ y

and such that the induced bijection is secured.
In order to construct a configuration in T ⊛ S2, it is natural to try and replace

x with ϕ(x) – and that would work out if ϕ was a strong isomorphism. But as it is
only a weak isomorphism, we do not have (σ2 ‖ !proc) (ϕ x) = τ y, only

(σ2 ‖ !proc) (ϕ x) ∼=‚�!proc‖!proc
τ y

However, we can indeed extract from ϕ x and y a valid configuration of T⊛S2.
For our example, the only possibility is:

!proc →| !proc

run−,i

✫oovrun〈i,0〉
❴���

done1
❴���

run〈i,2〉
❴���

done1

✘ ((/
done+,〈1,1〉

It appears that both ϕ x and y had to change, in order to find an agreement as
to the choice of copy indices. Firstly, by ∼-receptivity, T̃ comprises a bijection:

!proc →| !proc

run−,i

✫oov
run+,〈i,0〉

❴���
done−,0

∼=T̃

!proc →| !proc

run−,i

✫oov
run+,〈i,0〉

❴���
done−,1

By (Extension) in T̃, we know that this bijection can be extended to some:

!proc →| !proc

run−,i

✫oov
run+,〈i,0〉

❴���
done−,0

❴���
run+,〈i,1〉

∼=T̃

!proc →| !proc

run−,i

✫oov
run+,〈i,0〉

❴���
done−,1

❴���
run+,〈i,2〉

Likewise, by ∼-receptivity of σ2 ‖ !proc this extension is lifted to S̃2 ‖fl!proc,
and we then apply (Extension) on S̃2. And the process goes on, interactively be-
tween σ2 and τ, until we get x′ ∼=

S̃‖fi!proc
ϕ x and y′ ∼=T̃ y such that (σ2 ‖ !proc) x′ =

τ y′ (which in our example, is the configuration of the interaction above).



86 3. THIN CONCURRENT GAMES

Formalizing this process of using ∼-receptivity on one strategy and extension
on the other yields the following lemma:

LEMMA 3.44 (Weak bipullback property). Let σ : S ⇀ A and τ : T ⇀ A⊥ be
∼-receptive partial maps of event structures with symmetry. Let x ∈ C (S) and y ∈ C (T)
and θ : σx ∼=Ã τy, such that the composite bijection

x ‖ y⋆ ≃ σ x ‖ x⋆ ‖ y⋆
θ
∼= x⋆ ‖ τ y ‖ y⋆ ≃ x⋆ ‖ y

is secured. Then, there exists z ∈ C (S ∧ T) along with θS : x ∼=S̃ Π1z and θT : Π2z ∼=T̃
y, such that τθT ◦ σθS = θ. Moreover, z is unique up to symmetry.

PROOF. Uniqueness. Assume we have such (z, θS, θT) and (z′, θ′S, θ′T). Then it
is easy to see that θ′S ◦ θ−1

S : Π1z ∼=S̃ Π1z′ and similarly θ′T ◦ θ−1
T : Π2z ∼=T̃ Π2z′.

Those match on the game A, so they induce a z ∼= z′ in S̃ ∧ T̃ as desired.
Existence. We proceed by induction on θ; the base case is trivial. Assume θ

extends by (σs, τt) to θ′ : σx′ ∼= τy′. For instance, s is positive. By induction, we
have θS : x ∼= Π1z, and x can be extended to x′ := x ∪ [s], so by the extension
property of the symmetry θS extends to θ′S : x′ ∼= z′S. This means that τ θT can be
extended by symmetric negative (for T) events so by ∼-receptivity, θT can extend
to θ′T : z′T

∼=T̃ y′, with σz′S = τz′T by construction. Since the bijection z′S
∼= z′T is

obviously secured, we get z′ ∈ C (S ∧ T) that satisfies our property. �

To build a map, uniqueness up to symmetry is not enough, however since
our symmetries on pre-∼-strategies are thin, uniqueness on the nose follows from
Lemma 3.26. Mapification (Lemma 3.44) gives us a way to define a map on con-
figurations instead of directly on the events. We can now assemble the pieces
together and prove the bipullback property:

PROOF. (Of Proposition 3.39).
Uniqueness. Assume there are two such maps ω, ω′ : X → T ⊛ S . Let x ∈

C (X). The induced bijection Π1 (ω x) ∼= Π1 (ω
′ x) is in S̃ ‖ C̃ as the composition

Π1 (ω x) ∼=S̃‖C̃ f x ∼=S̃‖C̃ Π1 (ω
′ x)

Similarly Π2 (ω x) ∼= Π2 (ω
′ x) ∈ Ã ‖ T̃ and those two bijections match on the

game, hence ω x ∼= ω′ x ∈ T̃⊛ S̃ which means ω ∼T̃⊛S̃ ω′.
Existence. Consider the following pre-∼-strategies:

(σ ‖ C+) : S ‖ C+ → A⊥ ‖ B ‖ C⊥ (A− ‖ τ) : A− ‖ T → A ‖ B⊥ ‖ C

Those are ∼-strategies hence their pullback has a trivial symmetry by Lemma
3.26. This pullback has the same events as T̃⊛ S̃, only fewer symmetries.

Let x ∈ C (X). By the above remark and Lemma 3.44 applied to f x ∈ C (S ‖
C) and g x ∈ C (A ‖ T) we get a unique z ∈ C (T ⊛ S) with Π1 z ∼=S̃‖C̃+

f x and
Π2 z ∼=Ã−‖T̃

g x. This construction induces a map ψ : C (X) → C (T ⊛ S) such that
Π1 (ψ x) ∼= f x and Π2 (ψ x) ∼= g x.

To conclude we prove that ψ satisfies the conditions from Lemma 2.48, which
follows from ψ being monotonic and preserving cardinality. Hence, we define
〈 f , g〉 to the map of event structures induced by ψ. It preserves symmetry and
satisfies the desired equivalence by construction. �



6. A COMPACT-CLOSED CATEGORY 87

6. A compact-closed category

Since weak isomorphism is a congruence, we can build a category of∼-strategies
up to weak isomorphism: This definition leads to a

THEOREM 3.45. The following data forms a compact-closed category ∼-tCG≅

⊚:

• Objects: thin concurrent games,
• Morphisms from A to B: ∼-strategies from A to B up to weak isomorphism,
• Composition: The composition operator ⊚ on pre-∼-strategies,
• Copycat: The copycat pre-∼-strategy cc A.

To prove this result, we need to establish the categorical laws (identity and
associativity) as well as the compact-closed structure. However, structurally, this
category is very close to CG⊚. Indeed, there is a way to regard an isomorphism
family Ã on A as an event structure ÙA along with maps lA, rA : ÙA → A satisfying
various properties. Such structures will be called spans. It turns out that the struc-
ture of games and strategies neatly decompose at those two levels (A and ÙA) and
allows us to import the results from Chapter 2.

In this section, we follow the proofs of [CCW14].

6.1. From event structures with symmetry to spans of event structures. Event
structures with symmetry were first introduced as spans of event structures

ÛE
lE

��

rE

��
E E

satisfying some further properties: lE, rE are jointly monic, they are open maps
[Win07], and they satisfy the diagrams of (categorical) equivalence relations. The
detail of these conditions will not be useful here; however we will use that event
structures with symmetry can be represented as spans of event structures:

DEFINITION 3.46 (Span of event structures). A span of event structures is a
tuple A = (ÙA, A, lA : ÙA→ A, rA : ÙA→ A).

We also write spans as: A = A ÙAlAoo rA // A .
We review how to go from an isomorphism family to a span. Let E = (E, Ẽ) be

an event structure with symmetry. To turn Ẽ into an event structure we perform a
construction similar to the prime construction used to turn the space of interaction
states into an event structure. Define the event structure Pr(Ẽ) as follows:

• Events: those bijections in Ẽ between prime configurations θ : [e] ∼= [e′]
(called prime symmetries),
• Causality: inclusion of bijections,
• Consistency: a finite set of prime symmetries Θ is consistent when there

exists θ′ ∈ Ẽ such that for all θ ∈ Θ, θ ⊆ θ′.
This event structure comes with two maps lE, rE : Pr(Ẽ) → E mapping θ :

[e] ∼= [e′] to e and e′ respectively. The axioms of event structures are direct to
check, along with the fact that lE, rE are maps of event structures. Note also that
this definition extends in the presence of polarities in a straightforward way.



88 3. THIN CONCURRENT GAMES

Just like for interactions (Lemma 2.44, configurations of Pr(Ẽ) are in corre-
spondence with symmetries via a canonical isomorphism C (Pr(Ẽ)) ∼= Ẽ.

A partial map of spans f : A ⇀ B is a pair ( f : A ⇀ B, Ûf : ÙA ⇀ ÛB) such that

A

f

�

ÙAlAoo rA //

Ûf
�

A

f

�
B ÛB

lB

oo
rB

// B

6.2. Spanning games and strategies. By moving from event structures to spans
of event structures, we can reproduce the construction of Chapter 2. A span of
event structures with partial (resp. total) polarities is a span (A, ÙA, lA, rA) where
A and ÙA carry partial (resp. total) polarities that are preserved by lA and rA.

A span-game is a span A = A ÙAlAoo rA // A with total polarities such
that A and ÙA are race-free. The constructions of dual and parallel composition
naturally component-wise extend to span-games.

Call a span with partial polarities thin when the projection maps preserve
nonnegative incompatible extensions. A span-strategy on a span-game A is sim-
ply a partial map S ⇀ A where S is a thin span of event structures (polarities
are induced by the mapping). The thin condition plays a similar role as for ∼-
strategies, to ensure in particular that essential events are closed under symmetry
in the interaction.

Likewise, a span-strategy from a span-game A to a span-game B is simply a
partial map (σ,Ûσ) : S ⇀ A⊥ ‖ B such that both σ : S ⇀ A⊥ ‖ B and Ûσ : ÛS ⇀ ÙA⊥ ‖
ÛB are essential strategies and S is thin.

6.2.1. Copycat. The copycat construction A 7→ CCA extends to a functor E →
E , mapping f : A → B to CC f : CCA → CCB, acting as f ‖ f on events. With this
remark, the following span can be checked to be a span-strategy:

CCA

cc A

��

CCÛA
cc ÛA

��

CClAoo
CCrA // CCA

cc A

��
A⊥ ‖ A ÙA⊥ ‖ ÙAl⊥

A
‖lAoo

r⊥
A
‖rA // A⊥ ‖ A

6.2.2. Composition of span-strategies. The following lemma permits lifting com-
position of essential strategies to composition of span-strategies:

LEMMA 3.47. Consider two commuting diagrams between maps:

S1
f //

σ1
�

S2

σ2
�

A⊥1 ‖ B1
h⊥1 ‖h2 // A⊥2 ‖ B2

T1
g //

τ1
�

T2

τ2
�

B⊥1 ‖ C1
h⊥2 ‖h3 // B⊥2 ‖ C2

where f and g are assumed to preserve incompatible extensions. Then, there is a map
g⊚ f : T1 ⊚ S1 → T2 ⊚ S2 such that the following diagram commutes:



6. A COMPACT-CLOSED CATEGORY 89

T1 ⊚ S1
g⊚ f //

τ1⊚σ1
�

T2 ⊚ S2

τ2⊚σ2
�

A⊥1 ‖ C1
h⊥1 ‖h3 // A⊥2 ‖ C2

and g⊚ f preserves incompatible extensions.

Note that horizontal maps are total as they correspond to relabelling, while
vertical maps are pre-strategies and hence partial.

PROOF. Define g⊛ f : T1 ⊛ S1 ⇀ T2 ⊛ S2 by the universal property (Lemma
2.47) as 〈( f ‖ h3) ◦Π1, (h1 ‖ g) ◦Π2〉 so that the following diagram commutes:

T1 ⊛ S1
g⊛ f //

τ1⊛σ1
�

T2 ⊛ S2

τ2⊛σ2
�

A⊥1 ‖ C1
h⊥1 ‖h3 // A⊥2 ‖ C2

To conclude we need to show that g⊛ f indeed restricts to a map T1 ⊚ S1 →
T2 ⊚ S2. It is clear that g⊛ f preserves visible events (by the previous diagram).
We show that g⊛ f preserves incompatible extensions, which in turn implies that
it preserves essential events.

Let x ∈ C (T1 ⊛ S1) with p and p′ two incompatible extensions. By Lemma
2.45 and the fact that σ1 and τ1 are essential strategies that either Π1 p and Π1 p′ are
both in S or Π2 p and Π2 p′ are in T. Assume the former case for instance.

By using the fact that f preserves incompatible extensions we know that f (Π1 p)
and f (Π1 p′) are incompatible extensions of f (Π1x). From there, it follows Π1((g⊛
f )p) and Π1((g⊛ f )p′) are incompatible extensions of Π1((g⊛ f )x) which in turn,
implies that (g⊛ f )p and (g⊛ f )p′ are incompatible extensions of (g⊛ f )x.

Since g⊛ f preserves essential events, it restricts to g⊚ f : T1 ⊚ S1 → T2 ⊚ S2
that still preserves incompatible extensions between nonnegative events. �

Thus, from two span-strategies

S

σ
�

ÛS
Ûσ
�

lSoo rS // S

σ
�

A⊥ ‖ B ÙA⊥ ‖ ÛBlA‖lBoo rA‖rB // A⊥ ‖ B

T

τ
�

ÛT
Ûτ
�

lToo rT // T

τ
�

B⊥ ‖ C ÛB⊥ ‖ ÛCl⊥B ‖lCoo
r⊥B ‖rC // B⊥ ‖ C



90 3. THIN CONCURRENT GAMES

we obtain component-wise a new span-strategy:

T⊚ S

τ⊚σ

��

ÛT⊚ ÛS
Ûτ⊚Ûσ
�

lT⊚lSoo rT⊚rS // T⊚ S

τ⊚σ

�
A⊥ ‖ C ÙA⊥ ‖ ÛCl⊥

A
‖lCoo

r⊥
A
‖rC // A⊥ ‖ C

Together, we expect composition of span-strategies and the copycat span-strategy
to form a category. As for CG, it can be shown to be a bicategory (see [CCW14]
for more details). Isomorphisms of span-strategies are defined in the obvious way:
(σ,Ûσ) ∼= (τ, Ûτ) when there exist isomorphisms ϕ : S ∼= T and Ûϕ : ÛS ∼= ÛT commuting
with the projections ϕ ◦ lS = lT ◦ Ûϕ and similarly for the right projection.

By lifting the structure from CG, we get the following proposition:

PROPOSITION 3.48. The following data forms a category SpanCG:

• Objects: span-games
• Morphisms from A to B span-strategies from A to B up to isomorphism
• Copycat and composition: as described above.

6.2.3. Compact-closure of SpanCG. Compact-closure of SpanCG is established
as for CG, by lifting structural morphisms from the category of span of event struc-
tures to that of span-games and strategies.

A map of spans ( f , Ûf ) : A → B such that both components are receptive and

courteous, as in Chapter 2, can be lifted to a strategy ( f , Ûf ) obtained by composi-
tion in Span(E):

CCA

cc A

��

CCÛA
cc ÛA

��

cc lAoo
cc rA // CCA

cc A

��
A⊥ ‖ A

A⊥‖ f
��

ÙA⊥ ‖ ÙAl⊥
A
‖lAoo

ÛA⊥‖Ûf
��

r⊥
A
‖rA // A⊥ ‖ A

A⊥‖ f
��

A⊥ ‖ B ÙA⊥ ‖ ÛBl⊥
A
‖lBoo

r⊥
A
‖rB // A⊥ ‖ B

In other words, it is defined as the span morphism with components f and Ûf ,
where − denotes the lifting operation of [CCRW].

By the same argument as in Chapter 2, structural morphisms for the symmet-
ric monoidal structure of Span(E) can be lifted to SpanCG. The equations for a
compact-closed category can be easily deduced from CG (the fact that projections
are preserved is a routine check.)

6.3. Embedding of ∼-tCG≅

⊚. Our original goal was to show that ∼-tCG≅

⊚ is a
compact-closed category. To do so, we will embed it into Span(CG) and deduce
the equations from the embedding.

LEMMA 3.49. We have the following:

(1) Let A be a tcg. The tuple (A, Pr(Ã), lA, rA) is a span-game.



6. A COMPACT-CLOSED CATEGORY 91

(2) Let A,B be tcgs and σ : S ⇀ A⊥ ‖ B a ∼-strategy. Then the preservation

of symmetry of σ induces a map Ûσ : Pr(S) → Pr(A)⊥ ‖ Pr(B) which makes
(σ,Ûσ) a span-strategy from (A, Pr(A), lA, rA) to (B, Pr(B), lB, rB).

PROOF. (1). The first item is routine: in particular, the race-freeness of Pr(Ã)
is an immediate consequence of Lemma 3.37.

(2). The action of Ûσ on a prime θ : [s] ∼= [s′] is given by the restriction of
σθ : σ[s] ∼= σ[s′] (which exists because σ preserves symmetry) to [σs]. The only
claim left to prove is that (S, Pr(S̃), lS, rS) is thin. Assume incompatible extensions
in Pr(S̃): let z ∈ C (Pr(S̃)) that can be extended incompatibly by two nonnegative
θ1 : [s1] ∼= [s′1], θ2 : [s2] ∼= [s′2] ∈ Pr(S̃). By the isomorphism C (Pr(Ẽ)) ∼= Ẽ, z
corresponds to a bijection θ : x ∼= y. We prove that x ∪ {s1, s2} = lS(z∪ {θ1, θ2}) 6∈
C (S) thus establishing that lS preserves nonnegative incompatible extensions.

Assume that x ∪ {s1, s2} is a configuration. Then θ ∪ θ1 must extend by a
pair (s2, s′′2 ) to θ′1. Hence θ′1 ↾[s2]

◦θ−1
2 : [s′2]

∼= [s′′2 ] is a valid bijection of S̃ that
extends the identity on [s2) ⊆ x by nonnegative (s′2, s′′2 ). Since S̃ is thin, s′2 = s′′2 .
This implies that θ ∪ θ1 ∪ {(s1, s2)} = θ ∪ θ1 ∪ θ2 is a valid bijection in S̃, directly
contradicting the fact that θ1 and θ2 are incompatible extensions of z. �

Having a way to send tcgs and ∼-strategies to their span counterparts, we
now prove that this map is functorial. For copycat it follows from this lemma
proved in [CCW14]:

LEMMA 3.50. Let A be a tcg. Write ÙA = Pr(Ã). Then, there is an iso making the
following diagram commute

CCA

Pr(CCÃ)
oo
∼= //

lCCA <<

rCCA
""

CCÛA
CClA

]]

CCrA
��

CCA

and which also preserves the projections to the span-game

A⊥ ‖ A ÙA⊥ ‖ ÙAlAoo rA // A⊥ ‖ A

In particular, this yields an isomorphism of span-strategies.

To relate both compositions, a bit more work is needed:

LEMMA 3.51. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be ∼-strategies. Write ÛS
for Pr(S̃) and ÛT for Pr(T̃). There is an isomorphism such that the following commutes:

T⊚ S

Pr(T̃⊚ S̃)

lT⊚S
;;

rT⊚S ##

oo
∼= // ÛT⊚ ÛS

lT⊚lS
^^

rT⊚rT��
T⊚ S

and which also preserves the projections to the underlying span-game. In particular, this
yields an isomorphism of span-strategies.



92 3. THIN CONCURRENT GAMES

PROOF. Interaction. We first establish the commutation of the corresponding
diagram for the interaction:

T⊛ S

Pr(T̃⊛ S̃)

lT⊚S
;;

rT⊚S ##

oo
∼= // ÛT⊛ ÛS

lT⊚lS
^^

rT⊚rT��
T⊛ S

As above, configurations of Pr(T̃⊛ S̃) correspond canonically to symmetries in
T̃⊛ S̃. By definition (above Lemma 3.25), those correspond to commuting squares
between composite secured bijections x ≃ y and x′ ≃ y′

x

θA ∼ =S̃

≃
σ

σx = τy ≃
τ

y

θT ∼ =T̃

x′ ≃
σ

σx′ = τy′ ≃
τ

y′

In particular, this gives a bijection between pairs (s, s′) ∈ θS and (t, t′) ∈ θT .
This bijection is secured, since the upper and lower sides of the diagram are se-
cured by hypothesis and θS and θT are order-isos. The bijections θS and θT canoni-
cally represent configurations zS ∈ C (ÛS) and zT ∈ C (ÛT) – so overall, diagrams as
above canonically correspond to secured composite bijections between zS and zT ,
as required.

Hiding. An event e ∈ Pr(T̃ ⊚ S̃) represents a bijection θ : [p1] ∼= [p2] in the
isomorphism family T̃ ⊚ S̃. By Lemma 3.28, we know it induces a unique witness
θ′ : [p1]T⊛S

∼= [p2]T⊛S. By the previous point this witness corresponds to an event
e′ ∈ T̃ ⊛ S̃. If e is visible, since this isomorphism preserves the projection on the
game, so is e′. Moreover, if e is essential, so is e′ because of the following triangle:

T⊛ S

Pr(T̃⊛ S̃)

lT⊚S
==

∼= ÛT⊛ ÛS
lT⊚lS

[[

and the projections preserve (and reflect as maps of event structures) incompatible
extensions. So the isomorphism on the interaction restricts to the hiding. �

From this result and Proposition 3.48 it follows that ∼-tCG≅

⊚ is indeed a cate-
gory up to isomorphism – hence a category up to weak isomorphism. Moreover,
there is a functor ∼-tCG≅

⊚ → SpanCG which is faithful (up to isomorphism).
Finally to deduce the compact-closure of ∼-tCG≅

⊚ we use the same technique
as in Chapter 2 to lift the structural morphisms of the symmetric monoidal cate-
gory E to ∼-tCG≅

⊚:

DEFINITION 3.52. Let f : A → B be a strong-receptive, courteous map of
essps. Then its lifting is the ∼-strategy

f = (A⊥ ‖ f ) ◦ σ : CCA → A
⊥ ‖ B



6. A COMPACT-CLOSED CATEGORY 93

which is a morphism from A to B in ∼-tCG≅

⊚ (in particular, it is thin). Likewise, if
f : B⊥ → A⊥ is receptive and courteous, we define its co-lifting:

f
⊥

: CCB → A⊥ ‖ B
c 7→ ( f ‖ B) ◦ cc B(c)

This lifting enjoys the usual property: composition with a lifted map amounts
to relabelling:

LEMMA 3.53. Let f : B → C be a receptive courteous map of event structures with

symmetry and polarities, and σ : S ⇀ A⊥ ‖ B be a ∼-strategy. Then, there is an
isomorphism of strategies

f ⊚ σ ∼= (A⊥ ‖ f ) ◦ σ

Likewise, for f : B⊥ → A⊥ receptive courteous and σ : S ⇀ B⊥ ‖ C an essential
strategy, there is an isomorphism of strategies:

σ⊚ f ∼= ( f ‖ C) ◦ σ

PROOF. Using the embedding as span-strategies, we can apply Lemma 2.89
on both components. �

Since this lifting is compatible with that of SpanCG, we can use this lifting to
import the structural morphisms from E∼ and deduce the equational laws from
SpanCG, yielding:

PROPOSITION 3.54. ∼-tCG≅

⊚ is compact-closed.

PROOF. The proof structure is the same as for CG
∼=
⊚: associativity follows from

embedding in SpanCG. The symmetric monoidal structure is obtained by lifting
that of E∼. Finally, the compact-closed structure is the natural extension of that of
CG
∼=
⊚: the dual of a tcgA isA⊥ and the strategies ǫA and ηA extend to∼-strategies:

ηA : CCA → 1⊥ ‖ (A⊥ ‖ A)
ǫA : CCA → (A ‖ A⊥)⊥ ‖ 1 �

In the next chapter, we will see how to carve a cartesian-closed category within
∼-tCG≅

⊚ by using duplicated arenas.





CHAPTER 4

Concurrent Hyland-Ong games

Vous pouvez répéter la question ?

Véronique, on nonlinearity in game semantics
(Télémagouilles)

In this chapter, we build a cartesian-closed category CHO arising as a subcat-
egory of ∼-tCG≅

⊚. As such, it supports an interpretation of nonlinear higher-order
computation that will be central to the next chapters. Nonlinearity will be accom-
modated by the ! construction presented in Section 1 of Chapter 3.

As a first example of the expressivity of this model, we show it supports a con-
current interpretation of the nondeterministic λ-calculus that is adequate for must-
equivalence, result that relies on essential events to track hidden divergences.

Related work. The first work exploring nondeterministic games models ade-
quate for must convergence was [HM99], representing the hidden divergences as
stopping traces. Such an approach was replicated in our setting via stopping con-
figurations [CHLW14]. Both suffer the same drawback: even though they capture
more behaviours, these models are tailored for must convergence. For instance,
Harmer’s model is not sound for fair convergence. Our method, using essential
events, allows to prove a very strong link between the operational semantics and
the denotational semantics (Theorem 4.29) from which adequacy for a variety of
notions of convergences can be derived.

Another line of work with similar goals is that of Hirschowitz et al. [Hir13,
EHS15] that provides models capturing fair testing. Their model has similarities
with ours, in particular it also records all internal events. However, they do not
investigate hiding or composition in their models.

Outline of the chapter. In Section 1, we recall the exponential-like operation
introduced in Section 1 (Chapter 3) and demonstrate informally how to interpret
nondeterministic λ-terms in this setting. In section 2, we present the cartesian-
closed category CHO. In Section 3, we properly define the interpretation of non-
deterministic λ-terms inside CHO and show that it is adequate for may and must
convergences, for nondeterministic PCF.

Contributions of this chapter. The construction of the cartesian-closed cate-
gory in the setting without essential events is joint work with Pierre Clairambault.
This chapter presents a generalization of the construction of CHO to the frame-
work using essential events, introduced in Chapter 2.

95



96 4. CONCURRENT HYLAND-ONG GAMES

Γ, x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx. M : A⇒ B
Γ ⊢ M : A⇒ B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ Y : (A⇒ A)⇒ A Γ ⊢ tt : B Γ ⊢ ff : B Γ ⊢ choice : B Γ ⊢ n : N

Γ ⊢ M : N

Γ ⊢ succ M : N

Γ ⊢ M : N

Γ ⊢ pred M : N

Γ ⊢ M : N

Γ ⊢ null M : B

Γ ⊢ M : B Γ ⊢ Ni : X

Γ ⊢ if M N1 N2 : X

FIGURE 1. Typing rules of ndPCF

1. Nonlinear nondeterministic strategies

Given an arena A (ie. an alternating forest – see Definition 3.1), we have seen
how to expand A into a new arena !A such that strategies on !A can be seen as
nonlinear strategies on A. In this section, we illustrate how this can be used to
interpret terms from nondeterministic PCF, by providing examples of terms and
their desired interpretation.

1.1. Syntax and operational semantics of ndPCF.
1.1.1. Nondeterministic PCF. In this chapter and the following ones, we con-

sider a variant of PCF enhanced with a nondeterministic boolean choice. The
resulting language, ndPCF, contains the simply-typed λ-calculus, a fixpoint com-
binator Y and primitives to manipulate base types (booleans or integers):

(Types) A, B ::= B | N | A⇒ B
(Terms) M, N ::= x | λx. M | M N | Y

| tt | ff | choice | if M N1 N2
| n | succ M | pred M | null M

A type is ground when it is B or N. We will use X, Y, . . . to range over ground
types. Typing rules are standard (with the exception that conditional branches are
restricted to be of ground type) and given in Figure 1. Conditionals at higher-order
type can be expanded to fit this presentation (eg. if b f g would be syntactic sugar
for the term λx. if b ( f x) (g x)).

As usual we write ⊥ for the diverging term Y (λx. x). We also write M; N as a
short-hand for if M N N: evaluate M, discard its result and then continue to N.

1.1.2. Operational semantics. Figure 2 defines the small-step operational seman-
tics for weak head reduction of ndPCF terms. Write→∗ for the transitive and re-
flexive closure of→. A value is a term of the form tt, ff or n. Values are the only
terms of ground type that cannot be reduced any further (such terms are called
normal form):

LEMMA 4.1 (Progress). Any closed normal form of ground type is a value.

PROOF. By induction on a closed normal form M of ground type. �

1.1.3. Notions of convergences. Since ndPCF is non-deterministic, there is no
canonical notion of convergence on which a testing equivalence can be based. In
this thesis, we consider two of the most common notions:

• M ⇓may: M may converge whenever M→∗ v for some v ∈ {tt, ff, 0, 1, . . . }.
• M ⇓must: M must converge whenever M has no infinite reductions.



1. NONLINEAR NONDETERMINISTIC STRATEGIES 97

choice→ tt Choice-true
choice→ ff

Choice-false

M→ M′

if M N1 N2 → if M′ N1 N2
Cong-if

if tt N1 N2 → N1
If-true

if ff N1 N2 → N2
If-false

succ n→ n + 1 Succ-n

pred 0→ 0
Pred-zero

pred n + 1→ n
Pred-succ

null 0→ tt
Null-zero

null n + 1→ ff
Null-succ

M→ M′

succ M→ succ M′
Cong-succ

M→ M′

null M→ null M′
Cong-null

Y M→ M (YM)
Fixpoint

(λx. M)N → M[N/x]
Beta

M→ M′

M N → M′ N
Cong-app

FIGURE 2. Weak head reduction for ndPCF

Must-convergence implies may-convergence. The converse does not hold, as
witnessed by M = if choice tt⊥ that may converge to tt but must not converge
because of the infinite reduction sequence M→∗ ⊥ → . . . .

Both notions of convergence induce an observational equivalence, obtained as
a closure under context. A context for type Γ ⊢ A is a closed and normal term C[]
with a hole such that for all term Γ ⊢ M : A, ⊢ C[M] : B. Two terms Γ ⊢ M, N : A
are may-equivalent (written M ≃may N) if for all context C[] for type Γ ⊢ A,
C[M] ⇓may if and only if C[N] ⇓may. Two terms Γ ⊢ M, N : A are must-equivalent
if for all context C for type Γ ⊢ A, C[M] ⇓must if and only if C[N] ⇓must.

Even though may convergence is weaker than must convergence, the induced
equivalence relations are incomparable. Indeed, consider M = λb. if choice b⊥
and N = λb.⊥. By induction on contexts, it easy to see that M and N are must-
equivalent. However C[] = [] tt is enough to distinguish M and N up to may
equivalence. As a result, instead of must equivalence, we will be more interested
in models well-behaved for may and must equivalence (M ≃m&m N whenever M
and N are may and must equivalent).

1.2. Informal interpretation into CHO⊚. In the rest of the section, we inves-
tigate informally what an interpretation of this language could look like using
∼-tCG⊚ as the framework, and using the expansion operation ! defined in the
previous chapter. The idea is to interpret types as arenas and terms as strategies
playing on the corresponding expanded arenas.

1.2.1. Negativity and call-by-name. To be a model of the call-by-name λ-calculus,
our model needs to satisfy the law:

J(λx.M)NK = JMK (x does not appear free in M)

This amounts to having a certain strategy eA ∈ ∼-tCG⊚(A, 1) which is natural
in the sense that for all σ ∈ ∼-tCG⊚(A, B), eB ⊚ σ = eA ∈ ∼-tCG(A, 1). The



98 4. CONCURRENT HYLAND-ONG GAMES

natural candidate for this strategy is the minimal strategy on A⊥ ‖ 1 that only
plays the minimal negative moves of A⊥ (to be receptive). However, if games are
allowed to have minimal events of different polarities (ie. they are non-polarized),
then this equation cannot be satisfied, already in the setting without symmetry:
consider A = ⊖ ⊕ and σ playing on A⊥ ‖ 1:

σ : A⊥ ‖ 1

⊖ ⊕

Since σ is a strategy, we have cc 1⊚σ ∼= σ. However, in this case cc 1 = e1 hence e1⊚σ
is distinct from eA. This forces us to restrict ourselves to polarized arenas. Moreover,
as we want to model call-by-name computation, we need negative arenas: arenas
whose initial events are all negative. This issue is not specific to our approach: it
is already present in classic games models for the call-by-name λ-calculus [HO00,
AJM00]. Dually, positive arenas can be used to model the call-by-value λ-calculus
[HY97]. Polarization does not help to ensure that eA is natural if strategies are
unconstrained though: later we will also require strategies to be negative.

1.2.2. Interpretation of types as negative arenas. We now briefly sketch how types
are interpreted as arenas in our setting. The interpretations JBK and JNK are simply
given by the arena with a single negative move (the question) which is initial, and
as many positive moves depending on it as there are values (answers):

JBK JNK

q− q−

tt+ ff+ 0+ 1+ · · ·

These arenas are indeed negative. Negative arenas are stable under parallel
composition (which will be the categorical product of our CCC). However, nega-
tivity is not preserved by the operation ·⊥ ‖ ·: for instance, B⊥ ‖ B has a minimal
positive event. Hence, for the arrow type, we cannot simply let JA⇒ BK = JAK⊥ ‖
JBK (as the compact-closed structure of ∼-tCG≅

⊚ suggests). To solve this problem,
we follow the standard approach in HO game semantics which is to use a specific
construction on arenas that preserves negativity:

DEFINITION 4.2 (Arrow construction on arenas). Let A, B be two arenas. Their
arrow is A⇒ B, with the following components.

• Events, and polarity. Those of:

(‖b∈min(B) A⊥) ‖ B

• Causality. Given by:

≤(‖b∈min(B)A⊥)‖B ⊎{((2, b), (1, (b, a))) | b ∈ min(B) & a ∈ A}

where min(B) denotes the set of minimal events in B.

EXAMPLE 4.3. The arena (B ⇒ B)⇒ B is:



1. NONLINEAR NONDETERMINISTIC STRATEGIES 99

q−

q+ tt+ ff+

q− tt− ff−

tt+ ff+

1.2.3. Interpretation of terms as strategies. Having defined the interpretation of
types, we can look at the terms. First, if Γ = x1 : A1, . . . , xn : An is a simply-typed
context, then its interpretation is the arena JΓK = JA1K ‖ . . . ‖ JAnK. Open terms
Γ ⊢ t : A will be interpreted as certain strategies on the game !JΓK⊥ ‖ !JAK. In
particular, this is not a Kleisli construction. Even though it is possible to perform
a Kleisli construction on an exponential comonad inside ∼-tCG≅

⊚, we follow this
alternative choice here for historical reasons.

The exact interpretation will follow from the cartesian-closed structure of a
category built out of ∼-tCG≅

⊚ in Section 2. In the rest of this section, we present
some examples of strategies arising from the interpretation. These examples are
used to illustrate the phenomena at play and problems that we will encounter.

EXAMPLE 4.4 (Duplication and the need for symmetry). To illustrate the need
for symmetry on expanded games, we look at the duplication δ from an arena A
to A ‖ A, crucial to model non-linearity. This duplication should be a strategy on
!A⊥ ‖ !(A ‖ A) depicted for a type A interpreted by the singleton arena q−:

δ : !A⊥ ‖ !(A ‖ A)

q−,i q−,j

q+,2i q+,2j+1

To satisfy local injectivity, we have to pick different copy indices for the two pos-
itive moves using the fact that !A ∼= !A ‖ !A (isomorphism of event structures).
Projections (terms: x1 : A, x2 : A ⊢ xi : A for i ∈ {1, 2}) are represented by:

π1 : !(A ‖ A)⊥ ‖ !A π2 : !(A ‖ A)⊥ ‖ !A

q−,i q−,i

q+,i q+,i

Naturally, when we pre-compose the two projections with δ we obtain the
following two strategies:



100 4. CONCURRENT HYLAND-ONG GAMES

π1 ⊚ δ : !A⊥ ‖ !A π2 ⊚ δ : !A⊥ ‖ !A

q−,i q−,i

q+,2i q+,2i+1

They are not isomorphic in the sense of Chapter 2: when Opponent plays q−,0,
then π1 ⊚ δ answers with copy index zero while π2 ⊚ δ answers with copy index
one. They are however weakly isomorphic (in the sense of Chapter 3). Symmetry
is here crucial to ensure (in particular) that the equation π1 ⊚ δ ≅ π2 ⊚ δ holds,
necessary to model the call-by-name λ-calculus.

Note that the phenomenon described here will resurface in the interpretation
of the simply-typed λ-calculus to show for instance that the β-equivalent terms
z : A ⊢ (λxy.x)zz : A and z : A ⊢ (λxy.y)zz are mapped to weakly isomorphic
strategies (but not isomorphic strategies).

Next, we describe how our model represents higher-order computation:

EXAMPLE 4.5 (The Church integer 2). Consider the term f : A ⇒ A, x : A ⊢
f ( f x) : A. Figure 3 depicts the interpretation of f where A is interpreted by the
arena proc = run− _ done+.

The reader familiar with HO game semantics will notice that prime configu-
rations (those with a top element) exactly correspond to P-views of the HO inter-
pretation of the term: our semantics computes an expansion of the P-view tree in
that example. (See Section 1 in Chapter 6 for more details)

Each run+ move corresponds to a variable call (leftmost f first, then rightmost
f , then x in the causal order). Pointers of a done+ indicate the corresponding run−

it answers to. Copy indices are arbitrary and just here to ensure that the strategy
is locally injective: for that purpose an injection 〈·〉 : N∗ → N is used to encode
indices of the negative moves appearing after the justifier of a positive move. We
will see in Chapter 6 a way, for well-behaved (innocent) strategies, to reconstruct
automatically this information.

EXAMPLE 4.6 (choice and branching point). In our model, choice can simply
be interpreted by the following strategy:

!B

q−,i

⋆ ⋆

tt+,1 ff+,1

Remember that strategies are not allowed to feature conflict between positive
moves, hence the need for essential events.

Using this operator we can represent more complex nondeterministic compu-
tations, for instance: x : B ⊢ if choice (if x⊥⊥) x : B. This flips a coin: if it
returns false, then it evaluates its argument x and returns the result, otherwise it



1. NONLINEAR NONDETERMINISTIC STRATEGIES 101

!(P ‖ (P ⇒ P))⊥ ‖ !P

run−,i

run+,2i

run−,k done−,j

run+,2〈k,i〉+1 done+,j

run−,l done−,m

run+,〈l,k,i〉 done+,m

done−,n

done+,n

FIGURE 3. Interpretation of the church integer 2

!B⊥ ‖ !B

q−,i

⋆ ⋆

q+,i q+,i

tt−,j ff−,k tt−,j ff−,k

tt+,j ff+,k

FIGURE 4. Retaining nondeterministic branching point

evaluates x and then diverges. The corresponding strategy, depicted in Figure 4
differs from the interpretation of x : B ⊢ x.

That is due to our semantics remembering the nondeterministic branching
point (before the evaluation of x – when the coin is tossed). In this case, less in-
tensional semantics (eg. traces) do not remember the nondeterminism at all since
one behaviour is included in the other.

The interpretation of this term also differs from that of the term

x : B ⊢ if x (if choice tt⊥) (if choice ff⊥)

where nondeterministic choice is delayed after the evaluation of x.



102 4. CONCURRENT HYLAND-ONG GAMES

2. A cartesian-closed category

In this section, we prove that there is a certain subcategory of ∼-tCG⊚ which
is cartesian-closed. Its objects will be negative arenas A and, its maps from A to
B certain ∼-strategies on the game !A⊥ ‖ !B. To get a CCC, we need to impose
further restrictions on ∼-strategies.

Note that in this section, a∼-strategy on an arena A means a∼-strategy on !A,
and similarly a ∼-strategy from an arena A to B means a ∼-strategy on !A⊥ ‖ !B.

Binary conflict. The first restriction we impose, even though not technically
necessary, is binary conflict (Definition 2.2), to get a more concrete grasp on strate-
gies. The languages of interest here can all be interpreted with binary conflict.

Since our arenas and their expanded games are all conflict-free, copycat is al-
ways conflict-free and consequently has binary conflict. This condition is trivially
preserved by parallel composition, and composition of strategies:

LEMMA 4.7. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be pre-strategies with
binary conflict. Then T⊛ S, and T⊚ S all have binary conflict.

PROOF. We first show that the interaction T ⊛ S has binary conflict. Define
p♯T⊛S p′ when Π1 p♯S‖CΠ1 p′ or Π2 p♯A‖TΠ2 p′. That ♯T⊛S indeed spans ConT⊛S is
a consequence of Lemma 2.45.

Now to conclude, we simply remark that if S has binary conflict, then so does
S ↓ V for any V ⊆ S via ♯S↓V = ♯S ∩V2. �

Since binary conflict is preserved by all our constructions, from now on we
only consider event structures with binary conflict. Similarly, for an event struc-
ture with symmetry A we always assume that A has binary conflict. Note that
in general the event structure representing the symmetry, ÙA (as built in Section 6,
Chapter 3), will not have binary conflict.

2.1. The cartesian structure. We start off by investigating which restrictions
on strategies are necessary in order to get a cartesian category. The empty arena 1
is the candidate terminal object and parallel composition is the candidate product.

2.1.1. Terminal object. To make sure 1 is indeed terminal, we need to go further
than in Section 1.2.1 and to cut down the space of strategies. Even though there is a
unique ∼-strategy on the game !1 (the empty strategy), it is not the case in general
that there is a unique ∼-strategy on !A⊥ ‖ !1 for a negative arena A. Since A is
negative, A⊥ does not have any negative minimal event, hence the empty strategy
eA : ∅ → A⊥ ‖ 1 is always a ∼-strategy. However, it might not be the only one.
Indeed for A = ⊖, there is another strategy on !A⊥ ‖ 1 which simply plays the
positive initial move of A⊥ with an arbitrarily chosen copy index. To forbid this
behaviour, we introduce negativity on the level of strategies as well: a ∼-strategy
is negative when all its minimal events are negative.

LEMMA 4.8. Let A be a negative arena. There is a unique negative∼-strategy on the

game !A⊥ ‖ 1.

PROOF. The existence of such a strategy has already been established. As-
sume a negative ∼-strategy σ : S → A⊥ ‖ 1. If S is not empty, it has a minimal
event s ∈ S which is mapped to an event σs necessarily in !A⊥, and necessarily
minimal. By assumption s is negative but σs positive, absurd. �



2. A CARTESIAN-CLOSED CATEGORY 103

From this result, we deduce that 1 is a terminal object in the category of neg-
ative arenas and negative strategies up to weak isomorphism – given that such a
category is well-defined:

LEMMA 4.9. We have the following:

• For any game A, CCA is negative,
• For any games A, B, C, if σ : A + //B and τ : B + //C are composable negative

strategies, then τ⊚ σ is negative.

As a result the category of negative arenas and negative ∼-strategies (up to isomor-
phism) exists and has a terminal object.

PROOF. The minimal events of CCA are always negative, regardless of the
game A, since every positive move depends on its corresponding negative move
in the dual component, and as a result cannot be minimal.

Consider negative ∼-strategies σ : S ⇀ !A⊥ ‖ !B and τ : T ⇀ !B⊥ ‖ !C. Let
p be a minimal event of the composition T ⊚ S, and p′ a minimal event of [p]T⊛S.
As Π1 and Π2 are map of event structures, they preserve minimality. Moreover,
either Π1 p′ belongs to S or Π2 p′ belongs to T. If Π1 p′ belongs to S, it is minimal
there hence negative and sent to C. In other terms, p′ is visible and p = p′ which
proves that p is negative as desired.

Otherwise, with the same reasoning Π2 p′ belongs to T and is minimal there:
it is a negative move sent to B. This implies that Π1 p′ is also in S, but positive and
also minimal, which is absurd. �

Remark that, in particular without restricting to negative arenas, there is a
subcategory of negative strategies in CG. However, it is not cartesian as illustrated
above.

2.1.2. Projections. To show that ‖ actually defines a categorical product, the
first thing to do is to define projections from A ‖ B to A and B. Those strategies
are obtained by co-lifting (Definition 3.52). Recall that if f : A → B is a courteous
and receptive map of event structures with symmetry between games, it induces
a strategy f̄ from B⊥ to A⊥. To define the projections, it is thus enough to provide
such maps iA : !A→ !(A ‖ B) and iB : !B→ !(A ‖ B).

We only detail the case for the left projection. The map iA is defined as follows:

!A→ !(A ‖ B)

(a, α) 7→

Ç
(0, a),

[(0, a)]→ N

(0, a′) 7→ α(a′)

å

Checking that this is a map of essps which is courteous and receptive is rou-
tine. Since expansion and parallel composition commute with duality, we can
define the projection as follows:

π1 = iA⊥
⊥
∈ ∼-tCG⊚(!(A ‖ B), !A)

π2 = iB⊥
⊥
∈ ∼-tCG⊚(!(A ‖ B), !B)

2.1.3. Pairing. Given strategies σ from A to B and τ from A to C, we now form
their pairing 〈σ, τ〉 from A to B ‖ C. First, we remark that if σ and τ have disjoint
image in the game !A, then the pairing is easy to define.



104 4. CONCURRENT HYLAND-ONG GAMES

LEMMA 4.10. Let σ : S ⇀ !A⊥ ‖ !B and τ : T ⇀ !A⊥ ‖ !C be negative ∼-
strategies such that no event of !A is played by both σ and τ.

Then the following map defines a negative ∼-strategy 〈〈σ, τ〉〉 from A to B ‖ C:

〈〈σ, τ〉〉 = [(!A⊥ ‖ iB) ◦ σ, (!A⊥ ‖ iC) ◦ τ]

: S ‖ T ⇀ !A⊥ ‖ !(B ‖ C)

where [ f , g] denotes the set-theoretic co-pairing (remember that the set of events of S ‖ T
is the set-theoretic coproduct of the set of events of S and T).

PROOF. First, the assumption on σ and τ being disjoint on !A implies directly
that 〈〈σ, τ〉〉 is locally injective. It is routine to check that it is actually a map of
event structures with symmetry which is courteous.

Strong-receptivity requires more care and relies on the fact that arenas are

forests. Assume θ : xS ‖ xT
∼= yS ‖ yT ∈

flS ‖ T such that 〈〈σ, τ〉〉 can be ex-
tended by negative (d1, d2) ∈ !A⊥ ‖ !(B ‖ C). The problem is to know whether to
apply strong-receptivity of σ or τ. If d1 and d2 are minimal, then they live either in
!B or in !C and we can apply the corresponding strong-receptivity of σ or τ.

Otherwise, because the game is a forest, there exist unique c1 _ d1 and c2 _
d2 with (c1, c2) ∈ (〈〈σ, τ〉〉)θ. The pair (c1, c2) originates either in σ or in τ and we
can apply strong-receptivity of the corresponding strategy to conclude. �

Note that this pairing operation obviously commutes with forgetting essential
events: 〈〈σ, τ〉〉↓ ∼= 〈〈σ↓, τ↓〉〉 (both having S↓ ‖ T↓ as underlying event structure
with symmetry). This pairing behaves well with respect to projections:

LEMMA 4.11. Let σ : S ⇀ !A⊥ ‖ !B and τ : T ⇀ !A⊥ ‖ !C be negative ∼-
strategies as in Lemma 4.10. Then we have the following weak isomorphisms:

π1 ⊚ 〈〈σ, τ〉〉 ≅ σ π2 ⊚ 〈〈σ, τ〉〉 ≅ τ

PROOF. We only detail the projection on A. We prove that the interaction
π1 ⊛ 〈〈σ, τ〉〉 is isomorphic to cc !B ⊛ σ, and that the obvious restriction to the visible
parts π1⊚ 〈〈σ↓, τ↓〉〉 and cc !B⊚ σ↓ commute with the projection on the game !A ‖ !C.
We deduce the final isomorphism by composing with cc B ⊚ σ ∼= σ which comes
from σ being a ∼-strategy.

By Lemma 2.50, it is enough to build an order-isomorphism between C (π1 ⊛

〈〈σ, τ〉〉) and C ( cc !B ⊛ σ). We recall that configurations of the later are isomorphic
to pairs (x, y) ∈ C (S)× C (CC!B) with y ⊑!B σ↓x.

Configurations of π1 ⊛ 〈〈σ, τ〉〉 correspond to secured bijections

(xS ‖ xT) ‖ xB ≃ yA ‖ (xS ‖ xT)⋆ ‖ (y
1
B ‖ y2

B)

where xS ∈ C (S), xT ∈ C (T), 〈〈σ, τ〉〉 (xS ‖ xT) = yA ‖ (iB y1
B), and y1

B ‖ y2
B ∈

C (CC!B), and where the bijection is the unique such that the image of events through
the labelings 〈〈σ, τ〉〉 ‖ !B and !A ‖ π1 match. As a result, 〈〈σ, τ〉〉 (xS ‖ xT) does not
reach !C. But any minimal events of xT are negative by negativity of τ, and hence
must be in !C (since A is negative). Therefore, xT is empty. Hence mapping the
secured bijection to (xS, y2

B) which corresponds to a configuration of cc !B ⊛ σ ex-
tends to a bijection between domains of configurations, that preserves symmetry,
yielding the desired isomorphism. �



2. A CARTESIAN-CLOSED CATEGORY 105

So, we know how to construct a pairing behaving well with projections, when
the paired strategies happen to have a disjoint image on !A. However, for arbitrary
σ : S ⇀ !A⊥ ‖ !B and τ : T ⇀ !A⊥ ‖ !C, there might in general be collisions:
events s ∈ S and t ∈ T such that σ s = τ t. In such a case, the co-pairing as above
fails local injectivity, and therefore does not correspond to a strategy. Fortunately,
we can relabel moves of S and T , not changing their weak isomorphism class, to
ensure that there are no such collisions. For that, we note that there are maps of
event structures with symmetry

ιe : !A⊥ → !A⊥ ιo : !A⊥ → !A⊥

such that ιe ∼‹!A+
ιo ∼‹!A+

id!A⊥ , but such that ιe and ιo have disjoint codomain.

For definiteness, say that ιe sends (necessarily positive) minimal events with copy
index i to the same events with copy index 2i, and preserves the copy index of
other events. Likewise, ιo could follow the injection i 7→ 2i + 1. These maps
preserve the index of negative events, so that ιe ∼‹!A+

ιo ∼‹!A+
id!A⊥ .

Given arbitrary σ : S ⇀ !A⊥ ‖ !B and τ : T ⇀ !A⊥ ‖ !C, define:

σe = (ιe ‖ !B) ◦ σ τo = (ιo ‖ !C) ◦ τ

From ιe ∼‹!A+
ιo ∼‹!A+

id!A⊥ it is obvious that σ ≅ σe and τ ≅ τo, but σe and τo

now have disjoint codomains: σe (resp. τo) only reaches indexing functions in !A
whose index for minimal events is even (resp. odd). Therefore, using Lemma 4.10,
we define the pairing of σ and τ:

〈σ, τ〉 = 〈〈σe, τo〉〉

We have, as required, π1 ⊚ 〈σ, τ〉 = π1 ⊚ 〈〈σe, τo〉〉 ≅ σe ≅ σ, and for the same
reason π2 ⊚ 〈σ, τ〉 ≅ τ. It is an immediate verification that 〈−,−〉 preserves weak
isomorphism, so it will still make sense as an operation on the quotient category.

2.1.4. Surjective pairing. The last property we need in order to build a cartesian
category is surjective pairing: for all negative ∼-strategies σ from A to B ‖ C,

σ ≅ 〈π1 ⊚ σ, π2 ⊚ σ〉.

Unfortunately, this property does not hold for negative strategies in general.
Indeed, in 〈π1 ⊚ σ, π2 ⊚ σ〉, there cannot be any causal links (or conflicts) between
what is played on B and on C: the two components are independent. Such a
requirement is not imposed on σ that is free to have events depending on moves
both from B and C, as in the following examples:



106 4. CONCURRENT HYLAND-ONG GAMES

σ1 : !(proc ‖ proc) 〈π1 ⊚ σ1, π2 ⊚ σ1〉 : !(proc ‖ proc)

run−,i run−,j run−,i run−,j

done+, j

σ2 : !(proc ‖ proc) 〈π1 ⊚ σ2, π2 ⊚ σ2〉 : !(proc ‖ proc)

run−,i run−,j run−,i run−,j

done+0 done+,0 done+,0 done+,0

This operation σ 7→ 〈π1 ⊚ σ, π2 ⊚ σ〉 removes interferences (causal depen-
dence or conflicts) across components. To hope for surjective pairing, we need to
forbid such behaviours, through the notion of single-threaded strategies:

DEFINITION 4.12. Let σ : S ⇀ A be a pre-strategy. We say that σ is single-
threaded if it satisfies the following two conditions.

(1) For any s ∈ S, [s] has exactly one minimal event written min(s).
(2) Whenever s1 ♯ s2 in S, min(s1) = min(s2).

This condition indeed ensures surjective pairing:

PROPOSITION 4.13. Let σ : S ⇀ !A⊥ ‖ !(B ‖ C) be a negative single-threaded
∼-strategy. Then, we have:

σ ≅ 〈π1 ⊚ σ, π2 ⊚ σ〉

PROOF. First of all, we define two subsets of S as follows:

SB = {s ∈ S | σ (min(s)) ∈ B}
SC = {s ∈ S | σ (min(s)) ∈ C}

(we abuse notations slightly with ∈ B,∈ C).
By single-threadedness, SB and SC are disjoint and down-closed, with no im-

mediate conflict spanning both components. Via projection, SB and SC can be seen
as event structures and we have thus that S ∼= SB ‖ SC. Moreover, it is direct to
check that the restrictions of σ (along with a simple relabeling to !B/!C)

σB : SB ⇀ !A⊥ ‖ !B σC : SC ⇀ !A⊥ ‖ !C

are receptive and courteous, i.e. are strategies.
This decomposition also works at the level of symmetries. Any θ ∈ S̃ pre-

serves SB and SC. Indeed if (sB, sC) ∈ θ, then (min(sB), min(sC)) ∈ θ as well:
absurd, since one maps to !B and the other to !C. It follows that θ = θB ‖ θC where
θB and θC are bijections between configurations of SB and SC respectively. The set
of restrictions to SB (resp. SC) of symmetries in S̃ yields a set of bijections between
configurations of SB (resp. SC), which is easily checked to satisfy the conditions for
an isomorphism family S̃B (resp. S̃C). The labeling functions σB and σC preserve
symmetry. Strong-receptivity and thinness follow directly from those for σ, so σB

and σC are (negative) ∼-strategies.



2. A CARTESIAN-CLOSED CATEGORY 107

By construction, σB and σC have disjoint codomain; so we can form their pair-
ing 〈〈σB, σC〉〉 without relabeling. Then, the aforementioned bijection S = SB ‖ SC

extends to a strong isomorphism of ∼-strategies:

σ ∼= 〈〈σB, σC〉〉

By Lemma 4.11, we have π1 ⊚ σ ≅ σB and π2 ⊚ σ ∼= σC. But 〈〈σB, σC〉〉 ≅ 〈σB, σC〉,
and 〈−,−〉 preserves weak isomorphism, so we have surjective pairing for σ. �

This prompts us to look at the category of single-threaded, and negative ∼-
strategies. For such an object to exist, we need first to check that single-threadedness
is stable under composition. Since this property is independent from symmetry,
we state the problem in the setting before symmetry:

PROPOSITION 4.14. Let A, B, C be negative arenas, σ : S ⇀ A⊥ ‖ B and τ : T ⇀

B⊥ ‖ C be negative single-threaded pre-strategies. Then, τ⊚ σ is single-threaded.

PROOF. We first prove by induction on ϕ that for any secured bijection ϕ :
xS ‖ (yT)⋆ ‖ xC ≃ yA ‖ (xS)⋆ ‖ yT representing a configuration of T ⊛ S, ϕ can
partitioned into a finite union of disjoint ϕi (for 1 ≤ i ≤ n) where each ϕi has one
minimal event. Indeed, assume ϕ extends to ϕ′ via (c, d) and ϕ′ fails this condition.
Necessarily, either c represents a nonnegative event s in S or d a nonnegative event
in T. Assume the former. Then, the immediate visible predecessors of (c, d) in
≤ϕ′ must be (c1, d1), . . . , (cn, dp) (using Lemma 2.45) where all the ci are negative
events si of S and si _ s.

By hypothesis, there are 1 ≤ i, j ≤ p and distinct 1 ≤ k 6= l ≤ n such that
(ci, di) ∈ ϕk and (cj, dj) ∈ ϕl . But ϕk (resp. ϕl) must contain an event synchronized
with min(si) (resp. min(sj)). Since σ is single-threaded and si, sj ∈ [s] we have
min(si) = min(sj), which contradicts ϕl ∩ ϕk = ∅.

Now, we go on to prove single-threadedness.
(1) Prime secured bijections have no non-trivial decomposition as above, there-

fore they have a unique minimal event. This is true in particular for the visible
prime secured bijections. Condition (1) of single-threadedness follows from T⊚ S
being negative: its minimal event are always negative.

(2) Finally, assume there is a minimal conflict ϕ ψ in T ⊚ S between visible
prime secured bijections. This means that there are prime secured bijections ϕ′ ⊆
[ϕ]T⊛S, ψ′ ⊆ [ψ]T⊛S, such that ϕ′ ψ′ in T ⊛ S. Writing ϕ′′ (resp. ψ′′) for ϕ′

(resp. ψ′) without its top event, minimality of ϕ′ ψ′ means that ϕ′′ ∪ ψ′′ is a
valid secured bijection. Therefore, it decomposes:

ϕ′′ ∪ ψ′′ =
⊎

1≤i≤n

̟i

With each ̟i a secured bijection having exactly one minimal event. If n = 1,
we are done since as remarked the unique minimal event is necessarily visible.
Otherwise, there are at least two ̟i, ̟j with distinct minimal events.

Then, using Lemma 2.45, ϕ′ ψ′ implies that their top elements are in min-
imal conflict in S or in T. Assume the former: the top element of ϕ corresponds
to sϕ ∈ S and that of ψ to sψ ∈ S with sϕ S sψ. By receptivity and courtesy of
σ, we have pol(sϕ′) = pol(sψ′) = ⋆. Since n ≥ 2 and σ is single-threaded, cour-
teous and receptive, there is a visible predecessor s−1 ∈ S of sϕ in ϕ and s−2 ∈ S
of sψ ∈ ϕ belonging to distinct ̟i and ̟j. Since s1 ≤ sϕ and s2 ≤ sψ, we must



108 4. CONCURRENT HYLAND-ONG GAMES

have min(s1) = min(s2) by single-threadedness of σ. There must be an event in ϕ
corresponding to this minimal event, but such an event would be in both ̟i and
̟j that were assumed disjoint. �

At this point we have everything to build a cartesian category. A CHO-strategy
on an arena A is a negative, single-threaded, ∼-strategy on A.

PROPOSITION 4.15. The following subcategory CHO≅

⊚ of ∼-tCG⊚ is cartesian:

• Objects: negative arenas,

• Morphisms from A to B: CHO-strategies on !A⊥ ‖ !B. (up to weak isomor-
phism)

This category will be written simply CHO in the rest since no variations are
considered. If σ is a CHO-strategy (ie. a particular representative up to weak

isomorphism) from A to B, we will write σ : A
CHO
+ // B. All operations on CHO

(related to the cartesian structure) are actually defined on the representatives and
then lifted to the isomorphism classes.

As in any cartesian category, given σ1 : A
CHO
+ // B and σ2 : C

CHO
+ // D, we write

σ1 × σ2 = 〈σ1 ⊚ π1, σ2 ⊚ π2〉 : A ‖ C
CHO
+ // B ‖ D. This is not to be confused

with the functorial action of ‖ in ∼-tCG⊚: σ1 × σ2 plays on !(A ‖ C)⊥ ‖ !(B ‖ D)
whereas σ1 ‖ σ2 plays on (!A ‖ !C)⊥ ‖ (!B ‖ !D). However, there is a canonical
isomorphism of event structures with symmetry mA,B : !(A ‖ B) ∼= !A ‖ !B. This
isomorphism can be used to relate the two actions:

LEMMA 4.16. Let σ1 : A
CHO
+ // C and σ2 : B

CHO
+ // D. We have a weak isomorphism:

σ1 × σ2 ≅ m−1
C,D ⊚ (σ1 ‖ σ2)⊚mA,C

PROOF. Direct consequence of Lemma 3.53, since all mentioned compositions
involve a lifted map. �

2.2. Cartesian-closure. We now move on to proving the category is cartesian-
closed. The arrow of negative arenas A and B will be given by the arrow construc-
tion A ⇒ B (as A⊥ ‖ B need not be negative). To prove that this is actually the
closure for ‖, we use the fact that in our restricted space of strategies the game
!(A⇒ B) and !A⊥ ‖ !B support the same strategies and hence we can take advan-
tage of the closure of ∼-tCG≅

⊚.
First, !A⊥ ‖ !B is less causally constrained than !(A ⇒ B), so we can build a

map of event structure from the latter to the former:

LEMMA 4.17. There is a strong-receptive, courteous map of essps:

χA,B : !(A⇒ B)→ !A⊥ ‖ !B

which, additionally, preserves the copy index of negative events.

PROOF. For events b ∈ B we use ♯b for the natural number associated to b by
the countability of B. As in Section 1, we use 〈−〉 : N∗ → N for any injective func-
tion; the collision with the pairing operation should not generate any confusion.

We set:



2. A CARTESIAN-CLOSED CATEGORY 109

χA,B : !(A⇒ B) → !A⊥ ‖ !B
(α : [(0, (b, a))]→ N) 7→ (0, α′)
(β : [(1, b)]→ N) 7→ (1, β′)

where:

α′ : [a] → N

a′ 7→ 〈♯b, α((1, b)), α((0, (b, a′)))〉 (if a′ ∈ min(A))
a′ 7→ α((0, (b, a′))) (otherwise)

and:
β′ : [b] → N

b′ 7→ β(1, b′)

With this definition χA,B preserves symmetry, is strong-receptive (it does not
change the copy indices of negative events, since minimal events of A⊥ are posi-
tive) and courteous (it only breaks immediate causal links from minimal events of
B to minimal events of A⊥, so from negative to positive). �

This allows us, from σ : S ⇀ !C⊥ ‖ !(A⇒ B), to define its relabeling:

Φ(σ) : S ⇀ !C⊥ ‖ (!A⊥ ‖ !B)
= (!C⊥ ‖ χA,B) ◦ σ

Before going on to the other direction, we note a further property of this relabeling.

LEMMA 4.18. Let σ : S ⇀ !C⊥ ‖ !(A ⇒ B) be a CHO-strategy. Take s1, s2 ∈ S
such that σ s1 has the form (1, β) (in the A ⇒ B component) with lbl β = (1, b) (b ∈
min(B)), and σ s2 = (1, α) with lbl α = (0, (b′, a)). Then, b = b′ iff s1 = min(s2).

PROOF. Straightforward consequence of single-threadedness. �

LEMMA 4.19. Let σ1, σ2 : S ⇀ !C⊥ ‖ !(A ⇒ B) be two CHO-strategies sharing
the same internal ess. Then, σ1 ∼

+ σ2 iff Φ(σ1) ∼
+ Φ(σ2).

PROOF. if. Assume Φ(σ1) ∼
+ Φ(σ2). Take x ∈ C (S), and form θ = {(σ1 s, σ2 s) |

s ∈ x↓}. We wish to prove that θ is a valid symmetry on !C⊥ ‖ !(A ⇒ B). Firstly,
we remark that the following diagram of bijections commutes.

x↓
σ1

{{

σ2

##
σ1 x

!C⊥‖χA,B
��

θ // σ2 x

!C⊥‖χA,B
��

Φ(σ1) x
θ′

!C⊥
‖(θ′

!A⊥
‖θ′!B) // Φ(σ2) x

where θ′ is the bijection obtained from Φ(σ1) ∼
+ Φ(σ2).

It follows that θ decomposes as θ!C⊥ ‖ θ!(A⇒B) with θ!C⊥ ∈ !̃C⊥, and we are

left to prove that θ!(A⇒B) ∈
„�!(A⇒ B). By construction it is a bijection, so we

need to prove that it preserves and reflects causality, that it preserves labels, and
that it preserves indices of negative events – which is clear, as they are preserved
throughout this diagram.



110 4. CONCURRENT HYLAND-ONG GAMES

We prove that it preserves immediate causality. The only nontrivial case con-
cerns immediate causal links not preserved by χA,B, i.e. those of the form:

σ1 s1 = (2, {(2, b) 7→ n}) _ (2, {(2, b) 7→ n, (1, (b, a)) 7→ p}) = σ1 s2

But then, by Lemma 4.18, we have s1 = min(s2). Since labels are preserved by
θ′!A⊥ and θ′!B, and using Lemma 4.18 again, we still have θ (σ2 s1) _ θ (σ2 s2). The
argument also applies to the θ−1, which therefore is an order-isomorphism.

Preservation of labels also follows from Lemma 4.18. Finally, θ is a positive
symmetry as all bijections involved preserve copy index of negative events.

only if. By preservation of symmetry for χA,B, and the fact that it preserves the
copy index of negative events. �

Relabeling from !C⊥ ‖ (!A⊥ ‖ !B) to !C⊥ ‖ !(A ⇒ B) is slightly more subtle:
indeed, we go from a game having one copy of A to one having as many as there
are minimal moves in B. Thus, choosing the label for events formerly mapping to
A requires us to choose a copy of A corresponding to some minimal event in B.
Here condition (1) of single-threadedness is crucial: each move s mapped to A has
a unique minimal dependency min(s), which must be mapped to a minimal event
of B, and hence specifies the copy of A that s should be sent to. More formally, we
prove the following.

LEMMA 4.20. For any CHO-strategy σ : S ⇀ !C ‖ (!A⊥ ‖ !B), there is σ′ : S ⇀
!C ‖ !(A⇒ B), unique up to positive symmetry, such that

σ ∼+ (!C ‖ χA,B) ◦ σ′

PROOF. We define σ′ : S ⇀ !C ‖ !(A ⇒ B). The domain of σ′ is that of σ. For
s ∈ S↓, then if σ(s) = (0, γ) we set σ′(s) = (0, γ).

If σ(s) = (1, (1, β)) with β : [b]→ N, then we set σ′(s) = (2, β′) with

β′ : [(1, b)] → N

(1, b′) 7→ β(b′)

If σ(s) = (1, (0, α)) with α : [a]→ N, then by condition (1) of single-threadedness
it has a unique minimal dependency min(s) ≤ s. By hypothesis, σ (min(s)) has
the form (1, (1, β)) with β = {b 7→ n}. Therefore we set:

α′ : [(0, (b, a))] → N

(0, (b, a′)) 7→ α(a′)
(1, b) 7→ n

and we define σ′(s) = (2, α′).
It is routine to check that this map is strong-receptive and courteous, and that

its composition with !C ‖ χA,B is positively symmetric to σ. It follows from Lemma
4.19 that it preserves symmetry, and that it is unique up to positive symmetry. �

From that, we deduce the following.

PROPOSITION 4.21. There is a bijection Φ up to weak isomorphism, preserving and
reflecting weak isomorphism, between:

• Negative, single-threaded ∼-strategies σ : S ⇀ !C⊥ ‖ !(A⇒ B),
• Negative, single-threaded ∼-strategies σ′ : S ⇀ !C⊥ ‖ (!A⊥ ‖ !B).



2. A CARTESIAN-CLOSED CATEGORY 111

Moreover this bijection is compatible with pre-composition: for all τ : T ⇀ !D⊥ ‖ !C:

Φ(σ)⊚ τ ≅ Φ(σ⊚ τ)

PROOF. On the one hand Φ(σ) is obtained as (!C⊥ ‖ χA,B) ◦ σ, while Φ−1(σ′)
is obtained by the unique factorization of Lemma 4.20. The bijection up to weak
isomorphism follows from Lemma 4.20 as well.

We now prove stability under composition. By definition, we have Φ(σ) =
(!C⊥ ‖ χA,B) ◦ σ. But by Lemma 3.53 this is the same (up to isomorphism) as
χA,B ⊚ σ, so the action of Φ can be obtained by post-composition via a lifted map.
Stability under composition follows by associativity of composition. �

And finally, we deduce:

THEOREM 4.22. The category CHO is cartesian closed.

PROOF. We already know that it is cartesian. Throughout this proof, in the
construction of the components of the cartesian closed structure, we ignore the as-
sociativity and unity isomorphisms from the compact closed structure of ∼-tCG≅

⊚

– those can be easily and uniquely recovered from the context.
For any two arenas A, B, we first define the evaluation∼-strategy (composition

is in ∼-tCG≅

⊚):

evA,B : A ‖ (A⇒ B)
CHO
+ // B

= (ǫ!A ‖ !B)⊚ (!A ‖ Φ( cc !(A⇒B)))⊚mA,A⇒B

where ǫ!A ∈ ∼-tCG≅

⊚((!A ‖ !A⊥)⊥, 1) comes from ∼-tCG≅

⊚ being compact-closed.

Likewise, for any σ : A ‖ C
CHO
+ // B, we define its curryfication as:

Λ(σ) : C
CHO
+ // (A⇒ B)

= Φ−1(!A⊥ ‖ (σ⊚mA,C
−1)⊚ (η!A ‖ !C))

where η!A ∈ ∼-tCG≅

⊚(1, (!A ‖ !A⊥)) comes from ∼-tCG⊚ being compact-closed.
It is then a straightforward equational reasoning to prove the two equations

[LS88], for σ : A× C
CHO
+ // B,

(β) evA,B ⊚ (A×Λ(σ)) ≅ σ
(η) Λ(evA,B ⊚ (A× σ)) ≅ σ

using mainly Proposition 4.21 and the laws of the compact closed structure of
∼-tCG, in combination with Lemma 4.16 to relate the cartesian structure of CHO⊚

and the monoidal structure of ∼-tCG – all the structural isomorphisms involved
in the definition cancel each other. �

2.3. Recursion. To conclude the section, we prove that CHO supports the in-
terpretation of a fixpoint combinator.

Usually in game semantics, the interpretation of the fixpoint combinator Y is
obtained by showing that the category of games and strategies is enriched over a
category of sufficiently complete partial orders. Here however it will not be the
case: indeed, just as in AJM games [AJM00], our cartesian-closed category is a
quotient (its morphisms being weak isomorphism classes). It is not clear how to
build a complete ordering on weak isomorphism classes. However, this is not a big



112 4. CONCURRENT HYLAND-ONG GAMES

issue: although weak isomorphism classes of ∼-strategies might not form a com-
plete partial order, concrete ∼-strategies do. Therefore, when solving recursive
strategy equations, we will make sure to work with concrete ∼-strategies rather
than weak isomorphism classes.

Our first step will be to order concrete ∼-strategies.

DEFINITION 4.23. Let σ : S ⇀ A, τ : T ⇀ A be two ∼-strategies on a tcg A.
We write σ E τ iff S ⊆ T, the inclusion map S →֒ T is a map of essps, with all
data in S coinciding with the restriction of that in T , and such that for all s ∈ S,
σ s = τ s (and both are equi-defined).

The ∼-strategies on A ordered by E form a directed complete partial order
(dcpo). It is not pointed though – it does not have a least element. Indeed, a E-
minimal ∼-strategy must still satisfy receptivity, and hence comprise events for
minimal negative events of A. However, the name in S given to those is arbitrary,
so there is one E-minimal ∼-strategy on A for each renaming of the minimal neg-
ative events of A. For each A we distinguish one E-minimal ∼-strategy

⊥A : min−(A)→ A

that has as events the negative minimal events of A with induced symmetry, and
as labeling function the identity. Not every ∼-strategy is above ⊥A. However,
for every ∼-strategy σ, we pick one σ ∼= σ† such that ⊥A E σ† obtained by re-
naming the minimal negative events of σ. We write DA for the pointed dcpo of
∼-strategies above ⊥A.

LEMMA 4.24. For any tcg A, DA is a pointed dcpo with ⊥A as minimal element.

PROOF. If Γ = {γ : Sγ → A} ⊆ DA is a directed subset of DA, we form

∨Γ = ∪γ :
⋃

γ∈Γ

Sγ → A

with all components defined as component-wise union.
This defines a ∼-strategy, which is the least upper bound of Γ. �

Additionally, we note that if all ∼-strategies in a directed set Γ are negative
or single-threaded, so is ∨Γ. We now note that all the operations we defined on
∼-strategies in this section are continuous for E.

LEMMA 4.25. Composition, tensor, pairing, curryfication and the (−)† operation
defined above are continuous for E.

PROOF. Straightforward. �

From the above, we deduce the following.

COROLLARY 4.26. For any arena A there is a fixpoint combinator YA : (A ⇒

A)
CHO
+ // A, i.e. a single-threaded ∼-strategy such that:

YA
∼= evA,A ⊚ 〈YA, cc !(A⇒A)〉

PROOF. First, using the CCC structure of CHO, we define the sequence:

σ0 = ⊥ σn+1 ≅ ev⊚ 〈σn, cc A⇒A〉
†.



3. ADEQUATE INTERPRETATIONS OF ndPCF 113

Note that σn is (weakly isomorphic to) the interpretation of λ f . f ( . . . ( f ⊥))
given by the CCC structure of CHO. By induction, using Lemma 4.25 and ⊥ =
σ0 E σ1, it follows that σi E σi+1. As a result, we let

Y =
⋃

n∈N

σn,

which satisfies the desired equation by standard reasoning. �

3. Adequate interpretations of ndPCF

In this section, we prove that CHO supports two interpretations of ndPCF.
One interpretation is sequential and the other one is parallel: they only differ by the
interpretation of the if construct. Both interpretations are shown to be adequate
for both may and must convergences.

3.1. Semantics of terms and observational equivalence. We have seen in Sec-
tion 1 the interpretation of types of our language. To complete this, we need to
give the interpretation of terms. A term Γ ⊢ t : A will be interpreted as a CHO-
strategy JtK on !JΓK⊥ ‖ !JAK. It is crucial that the interpretation of a term is an
actual strategy, and not an equivalence class, for the developments to come. We
build two such interpretations JtKpar and JtKseq that only differ by their interpre-
tation of conditionals.

3.1.1. The two interpretations of ndPCF. The interpretation functions are built
by induction on the syntax as usual:

(λ-calculus) Since CHO is a cartesian-closed category, we get automatically an
interpretation of the simply-typed λ-calculus. For completeness, we recall here a
sketch of the interpretation, see [LS88] for the full details:

JΓ, x : A ⊢ x : AK = π2 : (JΓK ‖ JAK)
CHO
+ // JAK

(well-defined since JΓ, x : AK = JΓK ‖ JAK)

JΓ ⊢ λx. t : A⇒ BK = Λ(Jx : A, Γ ⊢ t : BK) : JΓK
CHO
+ // JA⇒ BK

JΓ ⊢ t u : BK = ev⊚ 〈JΓ ⊢ t : A⇒ BK, JΓ ⊢ u : AK〉 : JΓK→ JBK

(Fixpoints) The fixpoint operator is simply interpreted by that of CHO:

JΓ ⊢ Y : (A⇒ A)⇒ AK = Λ(YA)⊚ eJΓK

(Ground types) The interpretation of values are as follows:

JttK : !B JffK : !B JnK : !N

q−,i q−,i q−,i

tt+,0 ff+,0 n+,0

The symmetry is inherited from that on !B and !N. The strategy for choice has
been given at Example 4.6. The integer operators succ and null are defined as
follows (pred is defined similarly):



114 4. CONCURRENT HYLAND-ONG GAMES

JsuccK : N ⇒ N JnullK : N ⇒ B

q−,i q−,i

q+,0 q+,0

n−,j 0−,j0 1−,j1 · · ·

n + 1+,j tt+,j0 ff+,j1 · · ·

From those, we derive:

JΓ ⊢ succ M : NK = succ⊚ JΓ ⊢ M : NK

JΓ ⊢ pred M : NK = pred⊚ JΓ ⊢ M : NK

JΓ ⊢ null M : BK = null⊚ JΓ ⊢ M : NK.

Finally, conditionals are interpreted using two different strategies depicted in
Figure 5, ifpar, ifseq : !B⊥ ‖ !B⊥ ‖ !B⊥ ‖ B:

Jif M N1 N2Kpar = ifpar ⊚ 〈JMK, JN1K, JN2K〉

Jif M N1 N2Kseq = ifseq ⊚ 〈JMK, JN1K, JN2K〉.

The strategy ifpar is not sequential: the three arguments are evaluated in par-
allel; and when the boolean evaluates to true and the first branch evaluates to
a boolean, then if returns that boolean at top-level (and similarly for the other
branch). However, the two implementations cannot be told apart by contexts aris-
ing from nondeterministic PCF (as a consequence of the adequacy results proved
later in this section). In the rest of the section, we use the notation J·K to mean any
of the two interpretations: a statement holds for both interpretations.

3.1.2. Testing equivalences. We now define semantic counterparts to may and
must convergences, and deduce the corresponding testing equivalences. A strat-
egy σ ∈ CHO(X) may converge when it contains a positive move. Two strate-
gies σ, τ ∈ CHO(A) are may-equivalent (σ ≃may τ) when for all strategies α ∈
CHO(A, B), α⊚ σ may converge if and only if α⊚ τ may converge.

For must convergence, it is less clear how to generalize the syntactic notion.
Consider the term Ω′ = Y(λx. ifchoice x x) that diverges while performing infin-
itely many nondeterministic choices. In particular both JΩ′Kpar and JΩ′Kseq must
not converge. However if tt tt Ω′ must converge, but its parallel interpretation
is infinite since it runs Ω′ (but does not wait on it): it even has an infinite con-
figuration. To define must equivalence, we look at maximal configurations: they
correspond to maximal reductions. Such maximal configurations must contain a
positive move – otherwise, a maximal configuration without positive event is a
witness of a reduction that cannot lead to a value.

Write C ∞(E) for the set of finite or infinite configurations of an event structure
E. A σ ∈ CHO(B) must converge if all its (possibly infinite) maximal configura-
tions contain a positive move. Two strategies σ, τ ∈ CHO(A) are must-equivalent
when for all strategies α ∈ CHO(A, B), α⊚ σ must converge if and only if α⊚ τ



3. ADEQUATE INTERPRETATIONS OF ndPCF 115

ifpar : !B⊥ ‖ !B⊥ ‖ !B⊥ ‖ !B

q−,i

q+,i q+,i q+,i

tt−,j ff−,k b−,l b′
−,l′

b+,〈1,j,l〉 b′
+,〈2,k,l′〉

ifseq : !B⊥ ‖ !B⊥ ‖ !B⊥ ‖ !B

q−,i

q+,i

tt−,j ff−,k

q+,〈i,j〉 q+,〈i,k〉

b−,l b′
−,l′

b+,〈1,j,l〉 b′
+,〈2,k,l′〉

FIGURE 5. Two interpretations of if

must converge. Similarly, we write σ ≃m&m τ when σ and τ are both may and
must equivalent.

It is key to look at infinite configurations: for instance the term

℧ = Y(λn. if choice 0 (succ n))

which returns a nondeterministic integer must not converge but all finite configu-
rations of J℧Kseq can be extended with a positive move.

Remark that any syntactic context yields a semantic test: any C[] for type Γ ⊢
A gives a strategy JCK = Jλh. C[h x1 . . . xn]K ∈ CHO⊚(JΓK ⇒ JAK, JBK) where
Γ = x1 : A1, . . . , xn : An.

3.2. Relation between the operational and denotational semantics.
3.2.1. The reduced part. As an anticipation of Chapter 6, we take advantage of

uniformity to cut down part of strategies that are redundant. Given a ground type
X, write X+ for the corresponding arena without the initial question. Any CHO-
strategy σ : S ⇀ !X on X induces a ∼-strategy: r(σ) : r(S) ⇀ !X+ where r(S) is



116 4. CONCURRENT HYLAND-ONG GAMES

defined as (q0 ∈ S is the initial question with copy index zero):

S ↓ {s ∈ S | s > q0},

where r(σ) is obtained by restriction. Symmetry on r(S) is reduced to identities.
Axioms of ∼-strategies are easily checked. The ∼-strategy r(σ) is called the re-
duced part of σ. It characterizes σ:

LEMMA 4.27. For a CHO-strategy σ : S ⇀ !X, σ ≅ σ′ if and only r(σ) ≅ r(σ′).

PROOF. Consequence of uniformity. �

3.2.2. The reduction tree. From now on, unless mention of the contrary, we only
consider closed terms of a ground type X. The operational semantics on those
terms also induces a ∼-pre-strategy on !X+ as follows.

A (non-necessarily finite) sequence M0 → M1 → . . . → Mn is called a re-

duction path. We write M0
π

Mn to introduce a finite reduction path π from

M0 to Mn, and M
π

. . . for an infinite reduction path starting at M. Reduction
paths are naturally ordered by prefix ordering. As a result, finite reduction paths
sharing the same starting point naturally organize themselves into a tree, regarded
as an event structure t(M) defined as follows:

• Events: non-empty finite reduction paths of the form η(M)
π

M′.
• Causality: prefix ordering of paths,
• Conflict: two paths are in conflict if they are not comparable.

where η(M) = M[if choice tt ff/choice]. The labelling function t(M) ⇀ !X+ is
only defined on finite paths π that end on a value v. In that case, the corresponding
move of the game is v with copy index ♯(π) where ♯(·) is a hashing function,
from reduction paths to natural numbers. The resulting labelling function gives a
pre-∼-strategy t(M) on !X+ (secrecy holds because of the η-expansion of choice
performed above).

3.2.3. Finite approximations. To handle terms with fixpoints, the notion of finite
approximation comes in handy. Given a term M, we write Mn for M where occur-
rences of Y were substituted by Yn (interpreted in the model as Jλ f . f n⊥K), along
with the reduction rules:

Yn+1 M→ M (Yn M) and Y0 M→ ⊥.

Because composition is continuous and we have that JYnKseq ≅ σn (defined in
2.3), we have that JMKseq ≅

⋃
n∈NJMnK†

seq (likewise JMKseq ≅
⋃

n∈NJMnK†
seq).

This makes sense since JMnKseq is a particular representative and not an equiv-
alence class. As a result, we have:

rJMKseq =
⋃

n∈N

rJMnKseq.

Finally, any path Mn
π

N for N 6= ⊥ yields a path Mn+1
π′

N′ by
rewriting the subterms of the shape Yk into Yk+1. As a result t(Mn) can embed
as a down-closed subtree of t(Mn+1). In the following, this embedding will be
silent and we will assume that t(Mn) is a subtree of t(Mn+1). As a result:

t(M) ≅
⋃

n∈N

t(Mn)



3. ADEQUATE INTERPRETATIONS OF ndPCF 117

3.2.4. Must convergence and the reduction tree. By looking at the reduction tree,
we can prove that must convergence is finitary in the following sense:

LEMMA 4.28. For a term ⊢ M : B, the following are equivalent:

(1) M must converge,
(2) t(M) is finite,
(3) t(M) is finite and all leaves are positive event labelled by values,
(4) there exists Mn such that Mn must converge.

PROOF. (1) ⇒ (2) Since M must converge and t(M) is v finitely-branching,
t(M) is finite by König’s lemma.

(3)⇒ (1) Obvious by the definition of reduction trees.
(2)⇒ (3) Corollary of Lemma 4.1.
(3)⇒ (4) Since t(M) ≅

⋃
n∈N t(Mn), and t(M) is finite, this union is reached in

finite time. Hence there exists Mn such that t(Mn) ∼= t(M), and Mn must converge.
(4) ⇒ (2) If Mn must converge, then its reduction tree must be finite and all

leaves must be positive events. As a result t(Mn) ∼= t(M). �

3.3. Adequacy. We now prove a strong link between the operational seman-
tics and the denotational semantics: for the sequential interpretation, they com-
pute essentially the same tree (Theorem 4.29). Such strong results tying the deno-
tational semantics and the operational semantics are, to our knowledge, new and
rely heavily on the essential events. This link allows us to deduce adequacy for
may and must for both interpretations as a corollary.

3.3.1. Sequential interpretation. To prove adequacy of the sequential interpre-
tation, we relate t(M) to rJMKseq. In general t(M) has more events than rJMKseq
which only retains the events where a nondeterministic choice was made. Gener-
alizing the notation of Chapter 2 to ∼-strategies, we write E (t(M)) for

t(M) ↓ {s | s is involved in a minimal conflict or is visible}.

It is another ∼-strategy on !X+. The interesting property of our model is that
this strategy, obtained from the operational semantics, exactly coincide the one
obtained denotationally:

THEOREM 4.29. For any term ⊢ M : X, there exists a weak isomorphism

ϕ : rJMKseq ≅ E (t(M))

Theorem 4.29 is proved using realizability. Say that a term M realizes a ground
type X if it satisfies the condition of the theorem, and M realizes A⇒ B if for any
realizer N of A, M N realizes B.

This definition satisfies the usual β-expansion lemma:

LEMMA 4.30 (β-expansion). Let x : A ⊢ M : B be a term. If M[N/x] realizes B
for some realizer N of A, then (λx. M) N realizes B.

PROOF. By induction on B. The only interesting case is the base case. In that
case, we have

rJ(λx. M′) NKseq ≅ rJM′[N/x]Kseq ≅ E (r(M′[N/x])) ≅ E (t((λx. M) N)),

where the second isomorphism is the induction hypothesis, and the third comes
from (λx. M′) N only reducing to M′[N/x]. �



118 4. CONCURRENT HYLAND-ONG GAMES

LEMMA 4.31. For every (open) term x1 : A1, . . . , xn : An ⊢ M : B without
fixpoint, and terms ⊢ Ni : Ai such that Ni realizes Ai, then M[Ni/xi] realizes B.

PROOF. We proceed by induction on M.
Constants: straightforward, both event structures are reduced to a single event,

labelled with the corresponding value.
Choice: We have that η(M) → if tt tt ff → tt and η(M) →2 ff which means

that E (t(M)) and rJMKseq are isomorphic.
Application and variable: straightforward.
λ-abstraction: Consequence of Lemma 4.30.
Ground type operators: For instance assume M = succ M0. Write M′ for M[Ni/xi]

and M′0 for M0[Ni/xi]. It is a direct calculation to see that rJM′Kseq is isomorphic
to rJM′0Kseq as an event structure, with the labelling function to !X+, as follows:
lbl(rJM′Kseq) = succ ◦ lbl(rJM′0Kseq) where we wrote lbl(·) to denote explicitly the
labelling function of the corresponding strategies.

Similarly, t(M′) is similar to t(M) but each leaf labelled by n is replaced by a
tree of the shape ⋆ _ 1+ n since it requires one more step to compute. This disap-
pears when applying E (·) hence tJM′Kseq ∼= E (t(M′)) by induction hypothesis.

Conditionals: the conditional is implemented by a sequential strategy so the
same reasoning as in the previous case applies. �

We can now complete the proof of Theorem 4.29, using finite approximations:

PROOF. (Of theorem 4.29) Let ⊢ M : X be a closed term of ground type. By
Lemma 4.31, Mn realizes X, and there is a family of isomorphisms

ϕn : rJMnKseq ∼= t(E (Mn)).

Unfortunately, the ϕn might not agree with each other. For instance, both
event structures corresponding to if choice tt tt have non-trivial isomorphisms.

First, since the t(E (Mn)) are all trees, it follows that the rJMnKseq are also trees,
and so is rJMKseq. Moreover, they are finitely branching (since we can only make
a binary choice at a time), this means that for any e ∈ rJMKseq, there are only a
finite number of elements that it can be mapped to by the ϕn.

Now, we build ϕ : rJMKseq ∼= E (t(M)) by induction on rJMKseq by main-
taining the invariant that for each e, there exists infinitely many n ∈ N such that
∀e′ ≤ e, ϕe′ = ϕne′. Assume we have built the image of the predecessors of e.
Consider the set {ϕn(e) | n ∈ N, ∀e′ ≤ e, ϕn(e′) = ϕ(e′)}. It is non-empty by
induction and finite by the remark above, so there must be an element of the set
that corresponds to infinitely many n. Choose ϕ(e) to be such an element – by
construction it satisfies the invariant. �

The result of Theorem 4.29 implies adequacy of the sequential interpretation.

THEOREM 4.32. Let M be a closed term of ground type X. We have the following:

• M may converge if and only if JMKseq may converge
• M must converge if and only if JMKseq must converge.

PROOF. May convergence. Assume that M →∗ v with v being a value. By
construction, t(M) has a move labelled with v which means by Theorem 4.29 that
JMKseq contains a positive move. Conversely, if JMKseq has a positive move, then
so does rJMKseq and t(M) which means that there exists v such that M→∗ v.



3. ADEQUATE INTERPRETATIONS OF ndPCF 119

Must convergence. If M must converge, then by Lemma 4.28 its reduction tree
is finite with positive leaves. As a result, by Theorem 4.29, rJMKseq has the same
shape and JMKseq must converge.

Conversely, by Theorem 4.29, rJMKseq is a tree, with positive leaves. Any
infinite reduction path π of M would yield a configuration x of rJMKseq that can be
extended to x′ containing a positive move s. Since π is infinite, x cannot contain a

positive move, and s 6∈ x. Consider a path M
π′

v with ϕ(s) = π′. Write π0 for
the longest common prefix to π and π′. By construction π0 can extend by a prefix
π1 of π and a prefix π′1 of π′. That π1 π′1 in t(M) and {ϕ−1(π1), ϕ−1(π′1)} ⊆ x′,
are contradictory with ϕ being an isomorphism. �

3.3.2. Concurrent interpretation. We deduce adequacy of the concurrent inter-
pretation from the sequential one by means of a logical relation. Define a relation
σ ∼A σ′ where σ, σ′ ∈ CHO(A) by induction on types as follows:

σ ∼X σ′ iff (σ ⇓must⇔ σ′ ⇓must) ∧ σ ≃may σ′

σ ∼A⇒B σ′ iff ∀τ ∼A τ′, σ⊚ τ ∼B σ′ ⊚ τ′

Then, the fundamental lemma for this logical relation implies adequacy:

LEMMA 4.33. Let x1 : A1, . . . , xn : An ⊢ M : A be a term of ndPCF and σi ∼Ai
σ′i

be related strategies. Then

JMKpar ⊚ 〈σ1, . . . , σn〉 ∼A JMKseq ⊚ 〈σ
′
1, . . . , σ′n〉

As a result, for a closed term ⊢ M : X, if JMKpar must converge (resp. may converge),
then M must converge (resp. may converge) by adequacy of the sequential interpretation.

PROOF. Most cases are dealt with in standard way. The only interesting case is
if: assume that M = if N N1 N2, and without loss of generality that M is closed.

By inspection of the sequential and concurrent interpretations of if, we have:

Jif N N1 N2Kseq ⇓must iff JNKseq ⇓must ∧ (tt ∈ JNKseq ⇒ JN1Kseq ⇓must)

∧ (ff ∈ JNKseq ⇒ JN2Kseq ⇓must)

Jif N N1 N2Kpar ⇓must iff JNKpar ⇓must ∧ (tt ∈ JNKpar ⇒ JN1Kpar ⇓must)

∧ (ff ∈ JNKpar ⇒ JN2Kpar ⇓must)

from which the result follows by induction hypothesis. �

From these adequacy results, we deduce that observational equivalence in the
semantics entails observational equivalence in the model.

COROLLARY 4.34. The interpretations J·Kseq and J·Kpar are both sound for may,
must, and may&must equivalence.

Formally, for Γ ⊢ M, M′ : A two terms of ndPCF such that JMKseq and JMK′seq
are may-equivalent (resp. must-equivalent, may&must-equivalent), then M and M′ are
may-equivalent (resp. must-equivalent, may&must-equivalent), and similarly for J·Kpar.

PROOF. The proofs for the three equivalences follow the same pattern. As-
sume for instance JMKseq and JMK′seq are may-equivalent. Let C[] be a context for
type Γ ⊢ A such that C[M] may converge. Then JC[]Kseq ⊚ JMKseq may converge
which implies that JC[]Kseq ⊚ JM′Kseq may also converge. If follows, by adequacy,
that C[M′] may also converge. �



120 4. CONCURRENT HYLAND-ONG GAMES

Because of the expressive power of strategies, the converse is not true: two
terms could be indistinguishable by ndPCF but their interpretation could be dis-
tinguished by some strategy. The next part is concerned with cutting down the
space of strategies to ensure this does not happen, and isolate a sub-model of
CHO⊚ which is intensionally fully-abstract, ie. where the converse holds. This
is done by generalizing the traditional notion of innocence and well-bracketing of
play-based game semantics to our partial-order based setting.



Part 2

Innocence



In this second part, we generalize the notions of well-bracketing and inno-
cence traditional in HO game semantics [HO00], in order to understand what
properties strategies coming from a language without control operators (leading
to the notion of well-bracketing) or state (leading to innocence) satisfy. We finally
prove that the interpretations defined in Chapter 4 of ndPCF inside the class of
well-bracketed and innocent strategies are intensionally fully abstract.

Plan of the part.
Chapter 5. This chapter introduces our conditions of well-bracketing and in-

nocence, and proves that they are stable under composition so that we get sub-
cartesian closed categories of CHO consisting in the innocent, and well-bracketed
strategies. Moreover, in this chapter we show a very important property of visible
strategies (a property weaker than innocence): their interaction is deadlock-free.
This means that composition of visible strategies is relational.

Chapter 6. This chapter proves that our interpretations of ndPCF given in
Chapter 4 are intensionally fully abstract (for may testing). In the process, key
properties of innocent and well-bracketed properties are investigated. In partic-
ular, we show that innocent strategies support a reduced form which generalizes
the P-view tree of strategies in HO games. This induces a notion of finite strategy.
We also show that innocent and well-bracketed strategies on a higher-order type
can be decomposed into smaller strategies of higher-order type and a strategy of
first-order type. This allows us to reduce finite definability to finite definability at
first-order types.



CHAPTER 5

Concurrent innocence and well-bracketing

C’est l’innocence qui est sommée de fournir ses justifications.

Albert Camus, On innocence in HO game semantics.
(L’homme révolté)

In this chapter, we introduce conditions on strategies of CHO to restrict their
discriminating power to that of the interpretation of ndPCF. Instead of defining
one condition that will exactly capture the expressive power of ndPCF, we decom-
pose it into several orthogonal conditions that capture bigger languages. In the se-
quential world, such a decomposition allows to understand orthogonality of com-
putational effects. In particular, the condition of well-bracketing corresponds to
the absence of control operators [Lai99, Lai97], visibility to the absence of higher-
order state [AHM98] and innocence to the absence of ground state [AM99a]. Con-
sequently, the expressive power of PCF is captured by the innocent, deterministic
well-bracketed strategies.

Related work. The problem of concurrent well-bracketing was first addressed
and solved by Ghica and Murawski in [GM07], where they obtain a full abstrac-
tion result for a concurrent language with shared memory, but without control
operators. Our notion is simply a reunderstanding of theirs to our causal setting.

To our knowledge, there are no prior solutions to the problem of innocence in
a nondeterministic and concurrent world. At the time this work was conducted,
even the problem of nondeterministic sequential innocence was still an open prob-
lem, closed independently by [TO15] since then.

The first to extend innocence outside a sequential world are Melliès and Mim-
ram [MM07] in the setting of concurrent and deterministic (non-alternating) strate-
gies on asynchronous games. This innocence is expressed via switching conditions
given by the structure of the type (in their case, a formula of linear logic). On the
contrary, our notion of innocence is intrinsic in the spirit of traditional HO games.
We would like to point out that the true concurrent setting of asynchronous games
allows Melliès and Mimram to design a notion of innocence ensuring that compo-
sition of innocent strategies is deadlock-free. This is similar to what happens here,
where visibility ensures deadlock-free interactions (Theorem 5.35).

The work of Hirschowitz et al. [Hir14, EHS15] also features a notion of inno-
cence defined as a sheaf condition (since their strategies are defined as presheaves).
This idea was recast in the λ-calculus by Ong and Tsukada giving the notion of in-
nocence mentioned above. We believe that our notion of innocence can be formu-
lated this way (since it is possible to regard our strategies as presheaves), although
technical details have not been carried out.

123



124 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

Outline of the chapter. Our conditions do not make use of symmetry, so we
define them in the setting without symmetry. They do make use of negativity, and
single-threadedness, so we first start in Section 0 by introducing the subcategory
of negative and single-threaded strategies of CG

∼=
⊚. Then, Section 1 generalizes the

well-bracketing condition of [GM07] to our partial-order setting.
Section 2 introduces the problem of concurrent innocence and of its formula-

tion in a partial-order setting. It also introduces visibility which is key for innocence
to be stable under composition and locality restricting the shape of conflict.

Section 3 proves innocence and locality to be stable under composition and
builds a category of innocent strategies, CHOinn.

Contributions of this chapter. The results presented in this chapter are joint
work with Pierre Clairambault. The conditions for the deterministic case are pub-
lished in [CCW15] where they are proved to correspond to PCF. This chapter in-
troduces the new extension of visibility, locality that generalizes visibility to non-
determinism, as well as a new definition of well-bracketing that is independent
from visibility. These conditions of innocence and locality can be understood as
the restriction between which parts of the program can communicate, whereas
well-bracketing restricts which moves can be played (answering several times the
same question, etc.)

0. Negative and single-threaded strategies

We now introduce the formal setting where the development of this chapter
takes place. Because symmetry is not of concern when defining innocence and
well-bracketing, we only consider for games negative arenas, and negative, single-
threaded, essential strategies on them. They organize themselves naturally in a
subcategory of CG

∼=
⊚:

PROPOSITION 5.1. The following defines a subcategory nCG
∼=
⊚ of CG

∼=
⊚

Objects: negative arenas,

Morphisms: negative, single-threaded essential strategies on A⊥ ‖ B.

Concrete CHO-strategies σ : S ⇀ !A⊥ ‖ !B are erased to concrete strategies
σ : S → !A⊥ ‖ !B in nCG

∼=
⊚(!A, !B) in a composition-preserving way. This allows

us to lift any condition stable under composition in nCG
∼=
⊚ to CHO.

Justifiers. A key notion throughout this chapter will be that of justifiers. Men-
tioned in passing in Chapters 3 and 4, they will be useful to formulate notions of
innocence and well-bracketing suited to our setting. Indeed, justifiers are key to
HO-based game semantics.

However, in the formulation of the previous chapters there is a slight hiccup.
Justifiers are defined on strategies (as a partial map from S to the game), but de-
pend on the target game. For instance, consider on the left cc proc : !proc⊥ ‖ !proc,
and its curryfication playing on !(proc⇒ proc):



0. NEGATIVE AND SINGLE-THREADED STRATEGIES 125

cc !proc : !proc⊥ ‖ !proc Λ( cc !proc) : !(proc ⇒ proc)

run−,i run−,i

run+,i run+,i

done−,j done−,j

done+,j done+,j

We see here that, on the diagram on the left run+,j has no justifier (since its
image in the game is minimal), but on the right it has a justifier. Intuitively, if σ ∈
CHO(A), only minimal events do not have a justifier, but if σ ∈ CHO(A, B) this is
not the case anymore. This is problematic when defining conditions on strategies
that depend on the justifier structure. To solve this problem, we introduce an
extended notion of justifiers, taking advantage of single-threadedness to define a
justifier for those positive moves that are minimal in the game:

DEFINITION 5.2 (Extended justifier). Let σ : S ⇀ A be a partial map of event
structures to an arena such that S is negative and single-threaded. For s ∈ S↓
non-minimal, we define its extended justifier juste(s) as follows:

• If σs is not minimal, then juste(s) is defined as the unique event s′ < s
with σs′ _ σs, exactly as before: just(s) = juste(s

′),
• If σs is minimal: juste(s) is the unique minimal move of [s] (well-defined

by single-threadedness).

In the following, we will say that s is justified by s′ when juste(s) = s′. Note
that, juste(e) < e for non-minimal e, and if σ is courteous, the extended justifier of
a negative move is always its predecessor in S (if it exists).

LEMMA 5.3. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ A⊥ ‖ B be courteous partial maps
of event structures such that S and T are negative and single-threaded. Let f : S → T be
a map of event structures such that {(τ( f s), σs) | s ∈ x} defines an order-isomorphism
τ( f x) ∼= σx for every x ∈ C (S). Then, for all non-minimal s ∈ S

f (juste(s)) = juste( f (s))

The general statement of the lemma allows for f to be part of a weak isomor-
phism when put in the context of CHO.

PROOF. Let s ∈ S↓ non-minimal. First, notice that σs is non-minimal if and
only if τ( f s) is.

If σs is non-minimal, then σ(juste(s)) is the predecessor of σs in [σs]. As a re-
sult, since τ( f (juste(s)) is the predecessor of τ( f s) in τ( f [s]) ∼= σ[s], f (juste(s)) =
juste( f s)) by definition of the justifier.

Otherwise, if σs is minimal, then so is τ( f s). Let t0 be the minimal event of
[ f s], and s0 its unique pre-image in [s] (that exists [ f s] ⊆ f [s] as f is a map of event
structures). Since σ is a courteous, and σs0 is negative and minimal, so must be s0.
Therefore s0 = juste(s), and f (juste(s)) = t0 = juste( f s). �



126 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

Note that if σ, τ are strategies in nCG
∼=
⊚, the interaction τ⊛ σ is courteous neg-

ative and single-threaded, so extended justifiers apply to τ ⊛ σ. In particular, the
projections preserve (extended) justifiers, by the previous lemma.

Grounded causal chains. Another technical tool that is crucial to define the
conditions is that of grounded causal chain:

DEFINITION 5.4. A grounded causal chain (gcc) of an event structure S is a
non-empty finite set ̺ = {̺0, . . . , ̺n} with ̺0 ∈ min(S) and ̺i _S ̺i+1 for i < n.

Gccs represent sequential sub-part of the strategy, or threads. The set of gccs of
an event structure S is written gcc(S). Gccs can be viewed as sets (as the definition)
or as sequences since ≤S restricts to a linear ordering on them. Note that gccs of
strategies in nCG

∼=
⊚ are always alternating by courtesy and alternation of arenas.

The length of a gcc ̺ will be denoted by |̺|, its last element by ̺ω and segments
by ̺i≤_≤k, ̺≤i or ̺≥i.

We now move on to the definition of conditions.

1. Well-bracketing

In this section, we introduce well-bracketing, a condition restricting the call/re-
turn disciplines of strategies to match that of a programming language without
control operators. Note that our definition differs from [CCW15], which is spe-
cialized to a deterministic and innocent setting. We show in the next chapter, that
up to observational equivalence, we can recover the conditions of [CCW15] in the
presence of innocence (Proposition 6.15).

Questions and answers. The usual device in game semantics to formulate well-
bracketing is that of questions and answers. Questions correspond to function or
variable calls (Opponent or Player) and answers to function returns or variable
values (again Opponent or Player). Each move of the arena is either a question or
an answer, which is formalized as a labelling on arenas.

DEFINITION 5.5. An arena with questions and answers (or, in the following,
Q/A-arena) is an arena A along with labelling map A→ {Q, A } such that:

(1) initial moves are questions,
(2) answers are maximal.

In the rest of the thesis, we only consider Q/A arenas that we simply call
arenas – replacing the previous notion. Constructions on arenas (arrow, product,
expansion) trivially extend to Q/A-arenas. If σ : S ⇀ A ∈ nCG

∼=
⊚ is a strategy on

a Q/A-arena, the action of σ naturally induces a Q/A-labelling on S↓.
Terminology on questions/answer. If S↓ has a Q/A-labelling, we say that an an-

swer a ∈ S answers a question q ∈ S when σq _ σa (or, equivalently just(a) = q).
A consistent set X is complete if every question in X has at least one answer in
X, and affine if every question in X has at most one answer in X. Its pending
question (if it exists) is the greatest unanswered question in X. To introduce new
events that have a specific labelling we will use the notation “let qQ” or “let aA ".

1.1. Intuitions from Idealized Parallel Algol (IPA). In [GM07], a notion of
well-bracketing is introduced that captures exactly the expressive power of Ide-
alized Parallel Algol, a concurrent language with ground state. Our goal in this



1. WELL-BRACKETING 127

section is to illustrate and to justify by examples the challenges of concurrent well-
bracketing that are solved in [GM07] and to deduce a definition of well-bracketing
adapted to our setting.

1.1.1. Syntax of IPA. IPA can be defined as the following extension of ndPCF:

A, B ::= · · · |proc | N | N ref

M, N ::= · · · | new r in M (Reference declaration)

| !M | M := N | incr M (Reference manipulation)

|M; N | skip (Sequential composition and skip)

|M ‖ N (Parallel composition)

The extension adds references on natural numbers and parallel composition.
We use wait (b) as a shorthand for Y(λx. if b skip x) for the thread actively wait-
ing for b to become true. IPA naturally has a type proc of commands interpreted
inside CHO by the arena run− _ done+ (run being a question, and done an an-
swer). CHO supports an interpretation of Idealized Algol [CCW14], although we
only use it for illustrative purposes, to show that the patterns considered in this
chapter can happen in real programming languages and are not simply quirks of
the model.

1.1.2. Well-bracketing in a sequential context. In sequential HO game semantics,
well-bracketing states that when a strategy plays an answer, its justifier must be
the latest unanswered question. This typically rules out control operators, for in-
stance, the following strategy for call/cc:

call/cc : !(((proc ⇒ proc) ⇒ proc) ⇒ proc)

run−,i

run+,0

run−,j done−,k

run+,0 done+,〈0,k〉

done−,m

done+,〈1,j,m〉

On this diagram, we see the last done+ being played despite run−j not being
answered. This strategy can be used to discriminate terms of PCF by exploring
branches of computation that might not terminate. For instance the terms λx.x;⊥
and λx.⊥ are distinguished by the context call/cc (λk. [] (k skip)). However,
those terms are indistinguishable by contexts of IPA.

This can be expressed in our setting by asking that the gccs of a strategy should
be well-bracketed: an answer in the gcc should point to the latest unanswered
question of the gcc. This condition is part of well-bracketing in [CCW15]. How-
ever, this condition is not well-behaved in general – an event can be present in a
gcc but its justifier might not –, and not stable under composition without further



128 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

((proc ⇒ proc) ⇒ proc) ⇒ proc

run−,0

run+,0

run−,0 run−,1

run+,0 run+,0

done−,0 done−,1

done+,〈0,0〉 done+,〈0,1〉

FIGURE 1. A configuration of call/cc

conditions, eg. innocence. However, this is satisfied by terms of PCF as we will see
later (Lemma 6.14). It is, however, not enough to cut down the expressive power
to that of terms of IPA.

1.1.3. Forking strategies. Since there are no conflicts in the arena B, the follow-
ing diagram defines a valid strategy on !B:

fork : !B

q−,i

tt+,0 ff+,0

The gccs of this strategy are well-bracketed, but it answers twice concurrently
to the toplevel. The consequence is that it will duplicate its execution context: one
copy will see tt and the other ff. This strategy is a a concurrent control operator, as it
is possible to define call/cc in an extension of IPA with fork. As a consequence,
it can be used to distinguish observational equivalent terms of IPA.

Note that, receptivity implies that Opponent is allowed to answer multiple
times. Say that a strategy σ is fork-free when for all configuration x of σ, if every
positive question of x has at most one answer in x, then x is affine. This condition
was also part of the well-bracketing condition of [CCW15].

Note that in IPA, fork is also definable from call/cc by simply letting: fork =
call/cc (λk. k tt ‖ k ff). This code makes two concurrent calls to its evaluation
context (via call/cc), one call is given tt and the other ff. As a result, it must be
that the strategy for call/cc must not be fork-free as well, even though it seems
that call/cc never answers several times at toplevel! In fact, it does, but hidden
behind our compact representation of strategies.

Figure 1 depicts a configuration of the strategy for call/cc, where Opponent
never answered twice, but the initial question is answered twice by Player. In this
configuration, Opponent called twice its continuation, resulting in two answers
at toplevel. As a result, call/cc is not fork-free. Actually, this intuition will be
key to show that innocent and well-bracketed strategies (to be defined later) have
well-bracketed gccs (Lemma 6.14).



1. WELL-BRACKETING 129

1.1.4. Well-answered questions. Answering twice the same question is not the
only way to wrongly answer a question. For instance, the strategy ill

ill : !(B ⇒ B)

q−,i

q+,0 tt+,0

b−,j

has a behaviour which is not IPA-definable. It answers the initial question, and in
parallel interrogates its argument. As a result, the I(P)A-term:

M = λ f proc⇒proc. new r := 0 in

if ( f (r := 1;⊥))

(!r = 1)

⊥

that never converges on any IPA-definable function proc⇒ proc, converges when
fed an argument behaving as the strategy ill. The problem here is that the ini-
tial question can be answered before the questions it justifies are answered. Such
behaviours are forbidden by [GM07], and deemed not well-answered:

DEFINITION 5.6. Let σ : S ⇀ A be a map of event structures to an arena
where S is negative and well-threaded. A question q ∈ S is well-answered in a
configuration x ∈ C (S) when for all answer a ∈ x to q and distinct m ∈ x justified
by q (ie. juste(m) = q), then m is a question answered in x.

As a result, a well-answered question in x is always answered at most once.
We can now define well-bracketing in our setting. As before, we cannot force

Opponent to answer well all Player questions, so we should only force Player to
answer well when Opponent does:

DEFINITION 5.7. A strategy σ : S ⇀ A ∈ nCG
∼=
⊚ is well-bracketed when for

all x ∈ C (S) such that all Player questions of x are well-answered in x, then all
Opponent questions are well-answered in x.

Unlike the notion of well-bracketing introduced in [CCW15], this condition is
stable under composition with no further assumptions on strategies, as we will
see. It is clearly stable under parallel composition, and contains all the strategies
σ : A→ A ∈ nCG

∼=
⊚(A) where σ acts the identity on events (necessary to build the

open interaction).
1.1.5. Well-bracketing and causalities. Well-bracketing puts some restrictions on

the causal structure of S, as witnessed by the following lemma:

LEMMA 5.8. Let σ ∈ nCG
∼=
⊚(A, B) be a well-bracketed strategy. If x ∈ C (σ) is a

complete and affine configuration, there are no negative answers that are maximal in x.

PROOF. Assume there exists a complete and affine configuration x of S that
contains a maximal negative answer s. It answers a question q+

1 , justified by a
question q−0 . Moreover, this question has an answer a+ in x.



130 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

In y := x \ {s} ∈ C (S), q0 is not well-answered since it is answered but q1 is
not (x is affine). However, all positive questions are well-answered since we only
removed an answer to a positive question. This contradicts well-bracketing. �

In particular, this means that a well-bracketed strategy is not allowed to run a
computation and discard the result concurrently to answering the initial question,
ruling out the example presented above.

1.2. The category of well-bracketed strategies. In this section, we show that
well-bracketed strategies form a subcategory of nCG

∼=
⊚. We first check copycat.

LEMMA 5.9. The copycat strategy cc A is well-bracketed for any arena A. As a conse-
quence lifted strategies are well-bracketed.

PROOF. For (i, a) ∈ CCA let us write (i, a) = (1− i, a) for the corresponding
event on the other component.

Let x ‖ y ∈ C (CCA) such that every positive question is well-answered and
let q be a negative question in y (for instance) with an answer a ∈ y to q and
a move m ∈ y justified by q. We know that q _ q _ m _ m and similarly
q _ q _ a _ a. In particular, q is positive and thus well-answered: m is a
question which is answered by a0 < a. It follows that m is a question, answered
by a0 as desired. �

1.2.1. Composition of well-bracketed strategies. We now look at composition of
well-bracketed strategies. Consider σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C, well-
bracketed strategies of nCG

∼=
⊚. We first prove their interaction is well-behaved:

LEMMA 5.10. Let z be a configuration of T ⊛ S such that questions mapped to a

positive event of A⊥ ‖ C are well-answered in z. Then any question is well-answered in z.

PROOF. By induction on z, we show that for all pairs m, aA in z, sharing the
same justifier qQ , that m is an answered question in z. If a and m are negative in
A⊥ ‖ C, since q is positive, it must be well-answered by hypothesis.

Otherwise, since a and m share the same justifier, they must be either both σ-
actions or τ-actions. Assume w.l.o.g that they are σ-actions (ie. project to positive
moves in S ‖ C⊥).

In Π1z, Π1a and Π1m share the same justifier. Assume that Π1m is not an-
swered in Π1z (which is equivalent to m not being answered in z). By well-
bracketing of σ ‖ C applied to the configuration

x0 = [{Π1m, Π1a}] ⊆ Π1[{m, a}],

there exists a positive question Π1q′ < Π1q along with (Π1a′A , Π1m′) in x0 such
that a′ answers q′ and m′, justified by q′, is an answer or an unanswered question
in x0. Because they have different polarities, we have a 6= a′ and m 6= m′, hence
the pair (a′, m′) lives in a configuration strictly smaller than z, and by induction
hypothesis m′ must be answered in Π1x: a contradiction. �

LEMMA 5.11. The strategy τ⊚ σ is well-bracketed.

PROOF. Take z ∈ C (T ⊚ S) such that all positive questions of z are well-
answered. As a result, the witness [z] ∈ C (T ⊚ S) satisfies the conditions of
Lemma 5.10. All questions in [z] are thus all well-answered, as desired. �



1. WELL-BRACKETING 131

1.2.2. The category CHOwb. From the previous section, there is a subcategory
of well-bracketed strategies that is monoidally-closed. But we are more interested
in subcategories of CHO. Given a strategy σ ∈ CHO(A, B), we say it is well-
bracketed when its erasure σ ∈ nCG

∼=
⊚(!A, !B) is.

PROPOSITION 5.12. Negative Q/A arenas and well-bracketed strategies form a
cartesian closed subcategory CHOwb of CHO.

PROOF. As seen above, copycat and all lifted maps are well-bracketed. Com-
position of well-bracketed strategies is well-bracketed by Lemma 5.11. By defini-
tion of extended justifiers, well-bracketing is invariant under currying. �

1.3. Observational equivalence in CHOwb. It will be crucial in the next chap-
ter to understand which parts of a well-bracketed strategy are observable by well-
bracketed contexts (See Proposition 6.15). To do so, we now show that, up to (may
and must) observational equivalence in CHOwb, we can cut down parts of well-
bracketed strategies that cannot be explored by such contexts.

1.3.1. Complete part of a strategy. Let us fix σ : S ⇀ !A⊥ ‖ !B ∈ CHOwb(A, B).
Call a positive event s ∈ S observable when it belongs to a complete and affine
configuration. A negative event is observable when its justifier is observable or
it is minimal. Observable visible events are enough to capture the behaviour up
to may equivalence of σ. However, to capture the behaviour up to must, we also
need to retain some essential events. An essential event s ∈ S is observable when
its (negative or essential) predecessors are observable.

LEMMA 5.13. Observable events are closed under symmetry.

PROOF. Follows from symmetries preserving causality and justification. �

Write Scmpl for the set of observable events of S. By the previous lemma, we
can consider Scmpl = S ↓ Scmpl and we get a map σcmpl : Scmpl ⇀ !A⊥ ‖ !B.

By definition of observable events, Scmpl is downward closed in S. In par-
ticular, we have that C (Scmpl) ⊆ C (S) and all complete configurations of S are
configurations of Scmpl. As a result, we do get a well-bracketed strategy:

LEMMA 5.14. The map σcmpl is a well-bracketed strategy.

PROOF. Routine check. �

1.3.2. Relation between σ and σcmpl. We now show that σ and σcmpl are obser-
vationally equivalent in CHOwb.

LEMMA 5.15. Let σ ∈ CHOwb(A, B) and τ ∈ CHOwb(B, C) be well-bracketed
strategies. For x ∈ C (T⊚ S) a complete and affine configuration, [x] is also complete and
affine, and consequently, the configurations Π1[x] and Π2[x] are also complete and affine.

PROOF. First, since x is complete and affine, then all questions of x are well-
answered. By Lemma 5.10, so are all questions in [x], hence [x] is affine. To con-
clude, we show that any q ∈ [x] invisible question is answered in [x]. We proceed
by induction on [(τ⊛ σ)q] ∈ !B.

If (τ ⊛ σ)q is not minimal in !B, then by induction hypothesis, its justifier is
answered in !B. Otherwise, its justifier is an initial (visible) question which is an-
swered since x in complete. In both cases, its justifier is well-answered (by the
remark above) and answered in x, so q must be answered in x. �



132 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

THEOREM 5.16. For σ ∈ CHOwb(A, B), the strategies σ and σcmpl are both may
and must observationally equivalent for well-bracketed contexts, or more precisely for all
well-bracketed α ∈ CHO(A⇒ B, B):

(1) α⊚ σ may converge iff α⊚ σcmpl may,
(2) α⊚ σ must converge iff α⊚ σcmpl must.

PROOF. (1) Since σcmpl is obtained by removing events from σ, it easy to see
that if α⊚ σcmpl may converge then so may α⊚ σ.

Conversely, assume there exists a prime configuration [p+] ∈ C (α⊚ σ) with a
top positive move. Since α⊚σ plays on B, it is easy to see that [p+] is complete and
affine. Hence by Lemma 5.15, closing down yields a complete and affine witness
x ∈ C (α⊛ σ) whose first projection Π1x ∈ C (S) is also complete and affine. Since
Π1 p ∈ Π1x, p is observable and p ∈ α⊚ Scmpl and α⊚ Scmpl may converge.

(2) Now assume that α⊚ σ must converge. Let x ∈ C ∞(α⊚ σcmpl) be a max-
imal (possibly infinite) configuration. Since C ∞(Scmpl) ⊆ C ∞(S), we have that
x ∈ C ∞(α⊚ σ) hence x extends in C ∞(α⊚ σ) to a maximal x′ where all questions
are answered. This means that x′ is complete (and must be affine because α⊚ σ is
well-bracketed), so that s is observable. Hence, since x ∪ [s] ∈ C ∞(α⊚ σcmpl) and
x is maximal in C ∞(α⊚ σcmpl), it must be that s ∈ x as desired.

Finally, assume that α⊚ σcmpl must converge, and let x be a maximal (possibly
infinite) configuration of α⊚ σ. Write x′ = {p ∈ x | Π1[p] ⊆ Scmpl} ∈ C ∞(α⊚

σcmpl). By assumption, x′ can extend to x′′ ∈ C ∞(α⊚ σcmpl) with a positive s.
A minimal event in x′′ \ x must be positive by definition of observable events.

From there, by secrecy it follows that x ∪ x′′ is a valid (possibly infinite) configu-
ration of α⊚ σ and by maximality, x′′ ⊆ x which implies that s ∈ x as desired. �

So σ and σcmpl are observationally equivalent for the induced may and must
observational equivalence in CHOwb. However, this does not remove all the be-
haviours unreachable by well-bracketed contexts. For instance, consider the fol-
lowing well-bracketed strategy:

!((proc ⇒ proc) ⇒ B ⇒ proc)

run−i

run+
0 q+

0

run−j done−k tt−m ff−m′

done+m done+〈m,k,0〉 done+〈m′ ,k,1〉

If Opponent is well-bracketed and answers ff, then we know that run−j will
never be answered in a configuration where positive questions are well-answered.
As a result, the configuration shown above cannot be reached in an interaction
with a well-bracketed context, and removing it (for instance by adding a conflict
between done+〈m′ ,k,1〉 and done+m) results in an observationally equivalent strategy.



2. TOWARDS A DEFINITION OF CONCURRENT INNOCENCE 133

Such examples show it is hard to exactly capture the set of complete configu-
rations as an event structure built from S. However, although not precise enough,
this construction will be useful in Chapter 6 to deduce interesting consequences of
innocence and well-bracketing up to observational equivalence.

2. Towards a definition of concurrent innocence

In this section, we now investigate potential definitions of innocence in this
concurrent and nondeterministic setting. We introduce our innocence condition
in nCG

∼=
⊚ and show its lifting to CHO gives a sub-CCC of innocent strategies

CHOinn. In the previous section, we had a language to illustrate well-bracketed
behaviours: IPA. However, to our knowledge, there is no concurrent and nonde-
terministic language to which innocent strategies should naturally correspond to
(by means of a full-abstraction result). In particular, ndPCF is not suitable as it is
also well-bracketed. However, we will use IPA to explain informally some of our
counterexamples coming up in the rest of the section, and show that the causal
patterns considered do appear already in IPA. The causal and conflict patterns can
be encoded using references. For instance, for causal links it suffices to write on
one end, and to wait for the writing to be performed on the other end. Hence, most
causal patterns in CHOwb can be implemented this way. We would like to stress
that the strategies depicted are not the interpretation of the terms provided, but
simply that the term exhibits a causal pattern that is related to that of the strategy,
that both the strategies and the terms should be considered informal evidence.

The purpose of innocence is to restrict that causal structure to match that of
functional programs (without state). Note that, in comparison, well-bracketing
was about restricting which moves can be played (eg. Player cannot play two
answers to the same question, or answer a question before another).

In general we use the term interference (between moves, branches, etc.) to
mean “causality or conflict” at an informal level. In the following, we try to look
two kinds of interferences:

• interferences between syntactic branches (conditionals, arguments to the
same calls) leading to our notion of preinnocence,
• interferences between concurrent subcomputations, leading to the notion

of locality.

Each of these conditions is further broken down in a condition about causality
(_), and one about conflict (♯). The following diagram sums up our breakdown
of innocence in a concurrent and non-deterministic setting:



134 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

_-locality
(aka visibility)

//

wwxx

��

♯-locality

��

_-preinnocence

))

♯-preinnocence

��
preinnocence

))

locality

ww
innocence

An arrow C 99K C′ means that C′ is only stable under composition assuming
C. When applicable, a condition is the conjunction of its predecessors for→.

2.1. Interferences between external branches.
2.1.1. Non-innocent behaviours. Using state, one can create interferences be-

tween two Opponent branches: for instance two branches of the same conditional
or two arguments of the same function call, or even two Opponent calls to the
same variable. Such interferences can be used for instance to observe the number
of times a function uses its argument. Figure 2 depicts two strategies exhibiting
this kind of interference, one using causality, the other conflict. Intuitively, similar
behaviours are exhibited by the following IPA terms:

M_ = λ f proc⇒proc. new r in

f (incr r; wait (r ≥ 2))

M♯ = λ f proc⇒proc. new r in

f (incr r; wait (r = 1))

In M_, f is called with an argument that can only converge when f calls it
at least twice concurrently. As a result, M_ diverges on λx. x and λx. x; x but
converges on λx.x ‖ x. Similarly in M♯, only one call to the argument of f will
converge. Note that λx. x ‖ x and λx. x cannot be distinguished by pure terms of
IPA (for either may or must), but are distinguished by M_ for may-equivalence
and by M♯ for must-equivalence.

It is to be noted that the descriptions of Figure 2 are ambiguous: there might
be several strategies in which our diagrams can embed. Since our discussion is at
an informal level, we do not dwell on this issue, but we will show that for innocent
strategies this representation is non-ambiguous (Section 1 of Chapter 6).

2.1.2. Tracking forks via gccs. To formulate our innocence condition, we need a
bit of terminology about gccs. Let σ : S ⇀ A ∈ nCG

∼=
⊚. Two gccs ̺, ̺′ ∈ gcc(S)

are consistent when ̺ ∪ ̺′ ∈ ConS. Two consistent gccs are forking if there exists
n ∈ N such that ̺i = ̺′i for i < n, and ̺≥n ∩ ̺′≥n = ∅. Intuitively, they coincide
until a certain point (n) from which they are disjoint. In particular (n = 0), disjoint
gccs are forking. If defined, ̺n is the forking point. They are O-forking if n = 0
or ̺n−1 = ̺′n−1 is positive, and P-forking otherwise. Two forking gccs ̺, ̺′ are



2. TOWARDS A DEFINITION OF CONCURRENT INNOCENCE 135

!(( proc ⇒ proc) ⇒ proc)

run−,i

run+,0

run−,j run−,j′ done−,k

done+,j′ done+,j done+,k

!(( proc ⇒ proc) ⇒ proc)

run−,i

run+,0

run−, j run−, j′ done−,k

⋆ ⋆ done+,k

done+,0 done+,0

FIGURE 2. Interferences between independent branches

joined by s if ̺ω _ s and ̺′ω _ s, and are racing at s1, s2 if ̺ω _ s1 and ̺ω _ s2
with s1 s2. In picture, joined gccs (left) and racing gccs (right):

̺i+1 . . . ̺ω ̺i+1 . . . ̺ω s1

̺1 . . . ̺i s ̺1 . . . ̺i

̺′i+1 . . . ̺′ω ̺′i+1 . . . ̺′ω s2

We say that two forking gccs are interfering if they are joined or racing.
2.1.3. Preinnocence. Using this terminology, we can define preinnocence. A

strategy in nCG
∼=
⊚ is preinnocent if its O-forking gccs are never interfering. For con-

venience, this condition will be split into two parts: a strategy is _-preinnocent
when two O-forking gccs are never joined and ♯-preinnocent when two O-forking
gccs are never racing. Unfortunately preinnocence is not stable under composi-
tion. Consider the preinnocent strategy bad of Figure 3. Precomposing it by cc !B
adds the causal dependence tt+,m1 _ tt−,j1 , resulting in the following strategy:



136 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

(B ⇒ B) ⇒ B ⇒ proc

run−,i

q+,0 q+,0

q−,k tt−,j1 ff−,j2 tt−,m1 ff−,m2

tt+,m1 done+,〈j1,m2〉

FIGURE 3. The strategy bad

bad⊚ cc B : B ⇒ B

q−,i

q+,0

tt−,j ff−,k

tt+,〈j,k〉

which is not _-innocent since O-forking gccs are joined at tt+,〈j,k〉 (a similar counter-
example can be produced for ♯-innocence).

A possible syntactic reading of this is as follows. Preinnocence can be approx-
imated syntactically by restricting to terms of IPA that do not contain a read and
a write instruction on the same reference in “two Opponent branches”, which can
be branches of the same conditionals or arguments of the same function call. The
behaviour of the strategy bad can be defined in IPA by:

λ f b. new r, s in

(if ( f (wait (r = 1))) (s := 1;⊥)⊥)

|| (if b (r := 1;⊥) (wait (s = 1)))

If we put f = λx. x tt we get a term equivalent to:

λb. new r, s in

(wait (r = 1); s := 1;⊥)

|| (if b (r := 1;⊥) (wait (s = 1)))

which can be shown equivalent to:

λb. new r, s in

(if b (r := 1;⊥) (wait (r = 1)))

in which there are operations of reading and writing on the same reference in
branches of the same conditional. The analysis here is that the two parallel branches



2. TOWARDS A DEFINITION OF CONCURRENT INNOCENCE 137

of bad (via the references r and s) interfere in a complex way. It is not possible to
police the interferences between conditionals branches without also policing the
interferences between different threads, leading to locality.

2.2. Locality. To solve this issue, we need also to rule out the strategy bad.
For that, one can notice that there are causal links between two concurrent com-
putations (two different threads).

This behaviour can be ruled out by the condition of visibility introduced in
[CCW15]. It amounts to asking that each thread (seen as a sequential substrategy)
be a valid strategy, in particular that its image in the game be downclosed:

DEFINITION 5.17. If A is an arena, a partial map of event structures σ : S ⇀ A
is visible when for every gcc ̺ ∈ gcc(S), the set σ̺ = {σ̺0, . . . , σ̺ω} is a configu-
ration of A.

As noticed in [CCW15], visibility is stable under composition. Moreover,
in the presence of visibility, _-preinnocence is stable under composition. We
prove both results in the next section, along with stability under composition of
♯-preinnocence in the presence of visibility.

Visibility has an important characterisation in terms of justifiers:

LEMMA 5.18. Let A an arena, and σ : S ⇀ A a partial map of event structures. It
is visible if and only if for all non-minimal s ∈ S↓, and a gcc ̺ ending at s, ̺ contains the
justifier of s.

Note that this is the justifier as defined in Chapter 3 – not the extended justifier
defined in Section 0, as σ is not assumed to be single-threaded.

PROOF. only if. If σ is visible, then σ̺ is a configuration of A hence it is down-
closed in A. As a result ̺ must contain the justifier of s.

if. Let ̺ be a gcc and s ∈ ̺ with a _ σs. By assumption the justifier s′ of s is in
̺ hence a = σs′ ∈ σ↓̺. �

This characterisation in terms of gccs sheds light on an interpretation of visi-
bility as independence of concurrent computations. As a result, a player starting
two concurrent threads is not allowed to add causal links between them without
respecting the structure of types (the arenas), leading to another characterization:

LEMMA 5.19. Let σ : S ⇀ A be a map of event structures to an arena. It is visible if
and only if, for all comparable s, s′ ∈ S, s and just(s′) are comparable (whenever defined).

PROOF. Assume σ is visible and let s, s′ ∈ S be comparable. If s′ ≤ s then
the conclusion follows from just(s′) ≤ s′. If s ≤ s′, assume that just(s′) and s
are concurrent. This means that we can find two gccs of s′, one going through s
and the other one through just(s). Hence the first one does not go through just(s′)
contradicting visibility of σ.

Conversely, assume σ satisfies the condition of the lemma and let ̺ be a gcc of
S ending at s. All events of ̺ are comparable to s so they must be comparable to
just(s). By transitivity, we must have two consecutive events ̺i and ̺i+1 such that
̺i ≤ just(s) and just(s) ≤ ̺i+1 (since ̺0 ≤ just(s) and just(s) ≤ ̺ω = s). Since
̺i _ ̺i+1, it follows that just(s) ∈ ̺ as desired. �

Through this characterisation of visibility, one can understand visibility as
a constraint on causality with respect to justifiers (ie. with respect to the type).



138 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

Following this intuition, we will also refer to visibility as _-locality. Replacing
causality by conflict in this characterization leads to ♯-visibility:

DEFINITION 5.20. A partial map of event structure σ : S ⇀ A to an arena A is
♯-local when for all s♯s′ in S then, if defined, s and just(s′) are not concurrent, that
is comparable or in conflict.

Say that an uncovered strategy is local when it is both _-local and ♯-local.
Canonical non-local patterns are depicted in Figure 4. Note that ♯-locality is a
new condition not appearing in earlier publications. This condition is actually
used once in the technical development of this thesis, to prove that, despite our
weaker definition of well-bracketing, we recover all the conditions from [CCW15]
when restricting to innocent and well-bracketed strategies, up to observational
equivalence. Those conditions are key for finite definability. (See Proposition 6.15).

Locality can be restated in a compact way:

LEMMA 5.21. A partial map of event structures σ : S ⇀ A to an arena A is local
if and only if for s, s′ ∈ S, if s is concurrent with just(s′) then it is concurrent with s′,
whenever just(s′) is defined.

PROOF. A simple consequence of the definitions, since _-locality is equiva-
lent to: if s and s′ are comparable, then s and just(s′) are not concurrent (since they
cannot be in conflict) and ♯-locality to: if s and s′ are in conflict then s and just(s′)
are not concurrent. �

For σ single-threaded and negative, the result works for extended justifiers:

LEMMA 5.22. For an arena A and σ : S ⇀ A with S is negative and single-threaded,

(1) σ is visible if and only if s′ ≤ s implies that juste(s) and s′ are comparable
(2) σ is ♯-local if and only if s♯s′ implies that juste(s) and s′ are not concurrent.
(3) σ is local if and only if, whenever juste(s) and s′ are concurrent, so are s and s′.

In these conditions, the quantification is over non-minimal s so that juste(s) is defined.

PROOF. (3) follows directly from (2) and (1) by a similar reasoning as in Lemma
5.21. Conditions (1) and (2) follow from single-threadedness, we detail only (1).

Assume that s ≤ s′. If just(s′) is defined, the result follows from Lemma 5.19.
If not, but juste(s

′) is defined, this means that σs′ is minimal and juste(s
′) is the

unique minimal event min(s′) in [s′]. Since s ∈ [s′], this implies min(s′) ≤ s. �

In the rest of the document, we use visibility to refer to _-locality as it has a
central role (that ♯-locality does not have) to show stability under composition of
various conditions. The next section studies innocent strategies and proves that
there is a CCC of innocent strategies.

3. Innocent strategies

The main technical challenge of this section is to establish that visibility, local-
ity and innocence are stable under composition.

3.1. Interaction of visible strategies. The main steps towards this goal is to
understand the interaction of visible strategies. Visibility seems to be quite a sim-
ple condition but it has strong repercussions on the concurrency patterns allowed
as evidenced by Lemma 5.29 to come. Throughout this section, we mainly con-
sider two visible and courteous partial maps of event structures σ : S ⇀ A and



3. INNOCENT STRATEGIES 139

sync : (proc ⇒ proc) ⇒ (proc ⇒ proc) ⇒ proc

run−,i

done+,0 done+,0

run−,j done−,j′ run−,k done−,k′

done+,k done+,j done+,〈j′ ,k′〉

race : (proc ⇒ proc) ⇒ (proc ⇒ proc) ⇒ proc

run−,i

done+,0 done+,0

run−,j done−,j′ run−,k done−,k′

done+0 done+,0 done+〈 j
′ ,k′〉

FIGURE 4. Interferences between concurrent subcomputations

τ : T ⇀ A⊥ where A is an arena, and their interaction σ ∧ τ : S ∧ T ⇀ A. We
make no further assumption than courtesy at the moment, as it is already enough
to unravel interesting structure.

3.1.1. Views in the interaction. As a first step to show that visible strategies are
stable under composition, we would like to show that σ ∧ τ, as a partial map, is
visible. However, given a gcc ̺ of S ∧ T, Π1̺ and Π2̺ have no reason to be gccs
in general, making it hard to leverage our assumption on σ and τ.

EXAMPLE 5.23. Consider Figure 5 depicting the interaction of σ = Jλ f . f 3 +
f 3K against τ = Jλx. x + xK with a concurrent semantics for +. Moves of the
interaction are not annotated with the usual polarities +,− but with the classifi-
cation of moves in an interaction: σ-actions, τ-actions, and external Opponent (-).
We have also drawn the extended justifier, well-defined as τ ⊛ σ is negative and
single-threaded. Consider the “leftmost” gcc of the interaction:

̺ = q−,i _ qσ,0 _ qτ,0 _ 3σ,0 _ 6τ,_ _ 12σ,_.

Because immediate causal links are inherited alternatively from σ and from τ,
̺ does not project to a gcc in S or T ‖ !N. However, if we look at the events that
are smaller than 12σ,_ in S, we get the following sub-sequence of ̺:

q−,i · qσ,0 · 6τ,_ · 12σ,_,

which is a not a gcc of the interaction, but once projected to σ becomes a gcc.

Formalizing this idea leads to the notion of views:



140 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

(N ⇒ N)⊥ ‖ N

q−,i

qσ,0 qσ,1

qτ,0 qτ,1 qτ,0 qτ,1

3σ,0 3σ,0 3σ,0 3σ,0

6τ,〈0,1〉 6τ,〈0,1〉

12σ,〈〈0,1〉,〈0,1〉〉

FIGURE 5. Interaction of σ = Jλ f . f 3 + f 3K against τ = Jλx. x + xK

DEFINITION 5.24 (Views). If ̺ ∈ gcc(S ∧ T) such that Π1̺ω is defined (resp.
Π2̺ω is defined), its σ-view (resp. τ-view) is the sub-sequence ⌈̺⌉σ (resp. ⌈̺⌉τ)
containing the ̺k such that Π1̺k ≤ Π1̺ω (resp. Π2̺k ≤ Π2̺ω).

We can show that the views actually do project to gccs:

LEMMA 5.25. Let ̺ ∈ gcc(S ∧ T) such that Π1̺ω and Π2̺ω are both defined. If
Π1̺ω (resp. Π2̺ω) is defined, then Π1⌈̺⌉

σ (resp. Π2⌈̺⌉
τ) is a gcc of S (resp. of T)

PROOF. We prove the result for both projections, by induction on ̺. If ̺ is a
singleton, then this is trivial. Assume ̺ = ̺′ · e. There are several cases:

(1) Π1e is nonnegative: write e′ := ̺′ω. By assumption we have e′ _ e.
By courtesy – since Π2e is either undefined or negative, Π1e′ _ Π1e (in
particular Π1e′ is defined). This, with ̺ being a linear order, induces the
following equivalence for all ̺i ∈ ̺

Π1̺i ≤ Π1e iff Π1̺i = e ∨Π1̺i ≤ e′.

This gives ⌈̺⌉σ = ⌈̺′⌉σ · e, and we conclude by induction on ̺′.
(2) Π2e is nonnegative: similar reasoning as for (1)
(3) Π1e is negative: then Π2e is positive and by (2), Π2⌈̺⌉

τ is a gcc. By
visibility of τ, juste(Π2e) ∈ Π2⌈̺⌉

τ . Since Π2 preserves justifiers, we
have Π2 juste(e) = juste(Π2e) ∈ Π1⌈̺⌉

σ. As a result, juste(e) ∈ ⌈̺⌉
σ by

local injectivity and juste(e) ∈ ̺. Since Π1(juste e) = juste(Π1e) ≤ Π1e, it
follows that juste e ∈ Π1⌈̺⌉

σ. We have again for ̺i ∈ ̺:

Π1̺i ≤ Π1e iff Π1̺i = e ∨Π1̺i ≤ e′,

since Π1(juste e) _ Π1e (Π1e being negative). This shows that ⌈̺⌉σ =
⌈̺≤k⌉

σ · e where k is the index of juste(e) in ̺, which implies it is a gcc. �

The proof have made use of the following equations:

⌈̺ · e⌉σ = ⌈̺⌉σ · e (Π1e nonnegative)

⌈̺ · just(e) · . . . · e⌉σ = ⌈̺ · just(e)⌉σ · e (Π1e negative, non-minimal)



3. INNOCENT STRATEGIES 141

The reader familiar with HO game semantics may recognize the definition of
views in traditional HO game semantics. Indeed if σ and τ are deterministic and
sequential, this coincides with the standard definition.

The previous lemma implies that:

LEMMA 5.26. Let ̺ ∈ gcc(T ⊛ S) with at least two moves, such that Π1̺ω is
defined. Write ̺r for the predecessor of ̺ω in ⌈̺⌉σ. Then:

• If Π1̺ω is nonnegative, then ̺r is the predecessor of ̺ω in ̺ (ie. ̺r _ ̺ω)
• If Π1̺ω is negative, then ̺r is the extended justifier of ̺ω.

PROOF. Straightforward by visibility and Lemma 5.25. �

From this construction we deduce that visibility is stable under composition.

LEMMA 5.27. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be linear visible strategies.
Then τ⊚ σ is a visible strategy.

PROOF. We use the characterisation of visibility in terms of justifiers (Lemma
5.18). Let ̺ ∈ gcc(T ⊚ S) ending in visible e such that (τ ⊚ σ)e is not minimal.
By filling in the gaps, this gcc induces (non-uniquely) a gcc ̺′ ∈ gcc(T ⊛ S) that
contains ̺, ending at e. Since e is visible, just(Π1e) ∈ Π1⌈̺

′⌉σ‖C. This means that
just(e) ∈ ̺′ and since just(e) is visible, just(e) ∈ ̺. �

3.1.2. Forking lemma. Innocence and locality can be seen as a way to control
interferences between forking gccs. To show that they are stable under composi-
tion, we must, from a fork of an interaction of innocent strategies go back to a fork
of one of the strategies. Views allow us to extract gccs of the strategies from gccs of
their interaction. In this section, we show that this process preserves enough good
properties about the forking structure of the strategies. Throughout this section,
we consider σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C visible strategies of nCG

∼=
⊚. Write

σ′ := σ ‖ C (with S′ := S ‖ C), and τ′ := A ‖ τ (with T′ := A ‖ T).
First, the operation ̺ 7→ Π1⌈̺⌉

σ is not monotonic with respect to the prefix
ordering on gccs. However if χ is a prefix of ̺ but Π1⌈χ⌉

σ is not a prefix of Π1⌈̺⌉
σ,

then they are O-forking. Indeed, if you consider the gcc ̺ of Example 5.23, it is
obvious to see that the view (for σ) of the prefix

χ = q−,0 · qσ,0 · qτ,0 · 3σ,0

is itself. However, in this case, their forking point is qσ,0 which is positive for σ.
This is always the case:

LEMMA 5.28. Let ̺, χ be gccs of T⊛S with visible maximal events and χ ⊆ ̺. If

χω 6∈ ⌈̺⌉σ
′

then Π1⌈χ⌉
σ′ and Π1⌈̺⌉

σ′ are O-forking gccs.

Note in passing that χω ∈ ⌈̺⌉σ
′

if and only if ⌈χ⌉σ
′
⊆ ⌈̺⌉σ

′
.

PROOF. We proceed by induction on the sum of sizes of ⌈̺⌉σ
′

and ⌈χ⌉σ
′
. If

⌈̺⌉σ
′

is a singleton, then ⌈̺⌉σ
′

and ⌈χ⌉σ
′

must be disjoint by assumption on χω

and O-forking (disjoint gccs are O-forking by definition). Moreover, if ̺ = χ then,
the result is obvious as well so we assume χω < ̺ω.

Consider the predecessor ̺r of ̺ω in ⌈̺⌉σ
′
. If ̺r ≥ χω, then χ ⊆ ̺≥r and we

can apply the induction hypothesis.
The most interesting case is ̺r < χω (which is only possible if ⌈χ⌉σ

′
is not a

subset of ⌈̺⌉σ
′
). We have the following situation:



142 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

̺0 . . . ̺r . . . χω . . . ̺ω

Since ̺r 6_ ̺ω, but ̺r is the predecessor of ̺ω in ⌈̺⌉σ
′
, it must be that Π1̺ω is

negative and Π1̺r positive (by Lemma 5.26). In this case, if ̺r ∈ ⌈χ⌉σ
′
, then ̺ and

χ are forking, and the forking point is ̺r which is positive as desired. �

LEMMA 5.29 (Forking Lemma). Assume we have two gccs ̺, ̺′ of T⊛S forking at
e. If Π1⌈̺⌉

σ and Π1⌈̺
′⌉σ are not forking at Π1e, then they are O-forking.

PROOF. We proceed by induction on the length of ̺. Let ̺r be the predecessor
of ̺ω in ⌈̺⌉σ

′
We write χ for ̺≤r. If ̺r > e, then χ and ̺ are forking at Π1e as well,

and we can conclude by induction hypothesis since

⌈̺⌉σ
′
= ⌈χ⌉σ

′
∪ {̺ω}.

The hard case is when ̺r ≤ e, and we have χ ⊆ ̺′. There are two sub-cases:

• If ̺ω is nonnegative so that ̺r _ ̺ω. In that case, ̺r = e, and we have:

̺ω

̺0 . . . ̺r . . . ̺r

̺′k . . . ̺′ω

In this case, by Lemma 5.28, either Π1⌈χ⌉
σ′ ⊆ Π1⌈̺

′⌉σ
′
, or Π1⌈χ⌉

σ′ and
Π1⌈̺

′⌉σ
′

are O-forking. The first condition implies that Π1⌈̺⌉
σ′ and

Π1⌈̺
′⌉σ
′

are forking at Π1̺r = Π1e, and the second one that they are
O-forking.
• If ̺ω is negative, then we have the following picture:

̺k . . . ̺ω

̺0 . . . ̺r . . . e

̺′k . . . ̺′ω

Similarly, since χ ⊆ ̺′, either ⌈χ⌉σ
′
⊆ ⌈̺⌉σ

′
or Π1⌈̺⌉

σ′ and Π1⌈̺
′⌉σ
′

are O-forking (by Lemma 5.28). Both conditions imply that Π1⌈̺⌉
σ′ and

Π1⌈̺
′⌉σ
′

are O-forking, as desired. �

As a consequence, if the gccs in the interaction are O-forking (from a point of
view of σ′ or τ′), the corresponding gccs in σ′ or τ′ will also be O-forking. This
argument is key to prove stability under composition of innocence.

3.1.3. Stability under composition of locality. We now move on to stability under
composition of locality. To prove this, we hit a similar problem as for visibility:
a conflict in the interaction might not project to a conflict in the strategies. For
instance, consider the interaction of σ = Jλ f . f choiceK against τ = cc B:



3. INNOCENT STRATEGIES 143

!(( B1 ⇒ B2 ) ⇒ B3)

q−,i
3

qσ,0
2

qτ,0
1

⋆σ ⋆σ
1

ttσ,0
1 ffσ,0

1

ttτ,0
2 ffτ,0

2

ttσ,0
3 ffσ,0

3

The events tt3 and ff3 are in conflict in the interaction (inherited from tt1 and
ff1), even though in copycat those moves are concurrent. We remark that in the
views (both for σ and τ) of tt3, tt1 is absent: the conflict is invisible, hence there
is no way of appealing to locality of σ or τ here. However, we still have that the
justifier of tt3 (the initial question) is smaller than ff3 so that locality is not violated.

This intuition is captured by the following lemma:

LEMMA 5.30. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be local strategies of

nCG
∼=
⊚. Consider the following situation in T⊛ S:

̺0 · · · ̺k e1 · · · e

e2

If e1 6∈ ⌈̺⌉
σ′ (resp. e1 6∈ ⌈̺⌉

τ′ ) then no moves in ⌈̺⌉σ
′

(resp. ⌈̺⌉τ
′
) are concurrent to e2.

PROOF. We prove the result for both strategies by mutual induction on such
gccs. Write ̺ = ̺′ · e and write e′ for ̺′ω. In particular, we have e > e1. In the proof
we write ⌈d⌉σ

′
when d ∈ ̺ for ⌈̺⌉σ

′
∩ [d], and similarly for ⌈d⌉τ

′
.

If Π1e is nonnegative: in this case, ⌈e⌉σ
′
= ⌈e′⌉σ

′
· e and we can conclude by

induction since e is not concurrent to e2 and e′ ≥ e1.
If Π2e is nonnegative: same reasoning.
If Π1e is negative: If just(e) ≥ e1, we can conclude by induction since

⌈e⌉σ
′
= ⌈just(e)⌉σ

′
· e.

Otherwise, we cannot simply use the induction hypothesis. We show that just(e)
is not concurrent to e2, which implies just(e) ≤ e2 by minimality of the conflict
e1 e2. This in turn implies that ⌈just(e)⌉σ

′
⊆ [e2] and implies the result.

If e1 6∈ ⌈e⌉
τ′ , then since just(e) ∈ ⌈e⌉τ

′
, it is not concurrent to e2 by the previous

point. If e1 ∈ ⌈e⌉
τ′ , then we apply locality of τ′ as in this case Π2e ≥ Π2e1 is conflict

with Π2e2, which directly gives that just(Π2e) is not concurrent to Π2e2.



144 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

If Π2e is negative: same reasoning. �

LEMMA 5.31. Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be local strategies of

nCG
∼=
⊚. Then τ⊚ σ is local.

PROOF. By Lemma 5.27, τ⊚ σ is visible. We establish ♯-locality.
Let e and e′ be conflicting event of T ⊚ S. By definition of the hiding and

minimal conflict, we can find e1, e2 ∈ T ⊛ S with e1 ≤ e, e2 ≤ e′ and e1 e2.
Consider a gcc of e going through e1.

If its σ′-view contains e1, then by locality of σ, just(e) is not concurrent to e2 as
desired. Otherwise, by Lemma 5.30, ⌈̺⌉σ

′
does not contain any move concurrent

to e2, so in particular just(e) is not concurrent to e2. �

3.1.4. Deadlock-free lemma. A crucial property about the interaction of visible
strategies is that all visible strategies have deadlock-free interactions.

We first prove the lemma for dual visible uncovered strategies, on a game A
with only negative minimal events. So consider visible σ : S ⇀ A (necessarily
negative), and τ : T ⇀ A⊥ (non-negative). We assume moreover that events in S
(resp. T) that map to minimal events of A are minimal.

In such a situation, we have:

LEMMA 5.32. In a situation as above, for any x ∈ C (S), y ∈ C (T) such that
σ x = τ y, the bijection

ϕ : x ‖ y⋆ ≃ x⋆ ‖ σx ‖ y⋆ = x⋆ ‖ τy ‖ y⋆ ≃ x⋆ ‖ y,

induced by local injectivity, is secured.

PROOF. Observe first that because σs = τ(ϕ(s)), it follows that ϕ preserves
justifiers: ϕ(just(s)) = just(ϕs). We recall that ϕ is secured when the relation
(s, t) ⊳ϕ (s′, t′) defined on the graph of ϕ as s <S s′ or t <T t′ is acyclic. Suppose it
is not, and consider a cycle ((s1, t1), . . . , (sn, tn)) with

(s1, t1) ⊳ϕ (s2, t2) ⊳ϕ . . . ⊳ϕ (sn, tn) ⊳ϕ (s1, t1)

Let us first give a measure on such cycles. The length of a cycle as above is n.
For a ∈ A, the depth, depth(a), of a is the length of the path to a minimal event
of the arena – so the depth of a minimal event is 0. Then, the depth of the cycle
above is the sum:

d =
∑

1≤i≤n

depth(σ si)

Cycles are well-ordered by the lexicographic ordering on (n, d); let us now
consider a cycle which is minimal for this well-order. Note: in this proof, all arith-
metic computations on indices are done modulo n (the length of the cycle).

Since ≤S and ≤T are transitive we can assume that s2k ≤ s2k+1 and t2k+1 ≤
t2k+2 for all k. This shows that all involved events must be visible. It follows by
minimality that polS(s2k) = − and polS(s2k+1) = + so that the cycle is alternating.
Indeed, assume

(s2k+1, t2k+1) ⊳ϕ (s+2k+2, t−2k+2) ⊳ϕ (s2k+3, t2k+3)

with t2k+1 ≤T t2k+2 and s2k+2 ≤S s2k+3. The causal dependency t2k+1 ≤T t−2k+2
decomposes into t2k+1 ≤T t _T t−2k+2, with by courtesy τ t _A τ t2k+2. Note that



3. INNOCENT STRATEGIES 145

as A is alternating, this entails that polT(t) = +. There must be some (s, t) ∈ ϕ,
with polS(s) = −. But since σ s ≤A σ s2k+2, we must have s ≤S s2k+2 as well,
therefore we can replace the cycle fragment above with

(s2k+1, t2k+1) ⊳ϕ (s−, t+) ⊳ϕ (s2k+3, t2k+3)

which has the same length but smaller depth, absurd. By the dual reasoning,
events with odd index must have polarity as in (s+2k+1, t−2k+1) as well.

Now, we remark that the cycle cannot contain events that are minimal in the
game. Indeed, by hypothesis a synchronized event (s, t) such that σ s = τ t ∈ A is
minimal in A is such that s ∈ S and t ∈ T are minimal as well, so (s, t) is a root for
⊳ϕ and cannot be in a cycle. Therefore, all events in the cycle have a predecessor
in the game, i.e. a justifier.

Since s2k <S s2k+1, by Lemma 5.19, just(s2k+1) is comparable with s2k in S.
They have to be distinct, as otherwise we would have σs2k _A σs2k+1 which in
turn implies t2k <T t2k+1. This gives t2k−1 <T t2k+2 hence (sk, tk) and (sk+1, tk+1)
can be removed without breaking the cycle, contradicting its minimality. By a
similar reasoning, just(t2k+2) is comparable and distinct from t2k+1.

Assume that we have s2k < just(s2k+1) for some k. Since just(s2k+1) < s2k+1
and just(t2k+1) < t2k+1 < t2k+2. Therefore, we can replace the cycle fragment

(s2k, t2k) ⊳ϕ (s2k+1, t2k+1) ⊳ϕ (s2k+2, t2k+2)

with the cycle fragment

(s2k, t2k) ⊳ϕ (just(s2k+1), just(t2k+1)) ⊳ϕ (s2k+2, t2k+2)

which has the same length but smaller depth, absurd. So we must have just(s2k+1) <
s2k. Similarly, we must have just(t2k+2) < t2k+1 for all k.

So we have that for all k, just(s2k+1) < s2k with polS(s2k) = −. By courtesy
and the fact that A is alternating, this has to factor as

just(s2k+1) <S just(s2k)
+ _S s−2k

By the dual reasoning, we have that just(t2k+2) <T just(t2k+1), as

just(s2k+1) 6= just(s2k) and just(t2k+1) 6= just(t2k+2)

since they have different polarities.
So we have proved that we always have just(s2k+1) <S just(s2k) and just(t2k+2) <t

just(t2k+1). That means that we can replace the full cycle

(s1, t1) ⊳ϕ (s2, t2) ⊳ϕ . . . ⊳ϕ (sn, tn) ⊳ϕ (s1, t1)

with the cycle

(just(s1), just(t1)) ⊳ϕ (just(sn), just(tn))⊳ϕ

(just(sn−1), just(tn−1)) ⊳ϕ · · · ⊳ϕ (just(s1), just(t1))

which has the same length but smaller depth, absurd. �

The lemma above is the core of the proof. However, some more bureaucratic
reasoning is necessary to reduce an open interaction to this setting.

Consider σ : S→ A⊥ ‖ B and τ : T → B⊥ ‖ C which are both visible strategies
of nCG

∼=
⊚, and write σA : S ⇀ A⊥, σB : S ⇀ B, τB : T ⇀ B and τC : T ⇀ C for the

component-wise maps. We cannot use transparently the lemma above, because



146 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

the interaction of σ and τ involves the closed interaction of σ ‖ C⊥ and A ‖ τ on
the arena A ‖ B⊥ ‖ C, which is not negative.

However, we prove that any x ∈ C (S) and y ∈ C (T), synchronized in the
sense that σBx = τBy admit refinement x′ and y′ playing on ((A⇒ B)⇒ C)⊥ and
(A⇒ B)⇒ C respectively.

First, similarly as in CHO, we can turn any strategy of nCG
∼=
⊚ on A⊥ ‖ B into

a strategy on A⇒ B using single-threadedness.

LEMMA 5.33. Let σ : S ⇀ A⊥ ‖ B. The following function Λ(σ) : S ⇀ (A ⇒ B)
defines a visible strategy in nCG

∼=
⊚:

s ∈ x 7→





(1, σs) (σs ∈ B)

(0, (σ(min(s)), σs)) (σs ∈ A)

undefined (otherwise, that is σs undefined)

PROOF. Straightforward verification. �

LEMMA 5.34. Let x ∈ C (S) and y ∈ C (T) such that σBx = τBy. There exist
partial orders x and y such that

(1) the support of x is x ‖ τBy and the identity function defines a map of event
structures x → x ‖ τBy

(2) there is a map of event structure σx : x ⇀ ((A ⇒ B) ⇒ C)⊥ which is a
uncovered strategy,

(3) the support of y is σBx ‖ y and the identity function defines a map of event
structures y→ σBx ‖ y

(4) There is a partial map of event structure τy : y ⇀ ((A⇒ B)⇒ C) that turn y
into a negative, and visible uncovered strategy

PROOF. We remark that by single-threadedness of τ, to each s ∈ x corre-
sponds a minimal minT(s) ∈ x. Indeed, σBs ∈ σBx = τBy hence there exists
t ∈ y with τBt = σBs. Then we set minT(s) := min(t).

Define x̄ as the partial order (x ‖ τBy,≤x′) where

≤x̄=≤x‖τBy ∪{((1, τ(min T(s)), (0, s)) | s ∈ x}.

This definition satisfies condition (1). For condition (2) define a map x̄ →
((A⇒ B)⇒ C)⊥ as follows:

(0, s) 7→ (0, (τ(min T(s)), Λ(σ)(s)))

(1, c) 7→ (1, c)

It is easily checked to satisfy the required properties.
Definition for ȳ is similar. �

We can now conclude:

THEOREM 5.35 (Deadlock free lemma). Let σ : S ⇀ A⊥ ‖ B ∈ nCG
∼=
⊚(A, B) and

τ : T ⇀ B⊥ ‖ C ∈ nCG
∼=
⊚(B, C) be visible strategies. Let x ∈ C (S) and y ∈ C (T) such

that σBx = τBy. Then there exists a (necessarily unique) configuration z ∈ C (T ⊛ S)
such that Π1z = x ‖ τCy and Π2z = σAx ‖ y.

PROOF. Consider such x and y. From Lemma 5.34, build σx : x ⇀ ((A ⇒
B)⇒ C)⊥ and σy : y ⇀ ((A⇒ B)⇒ C). Note that σxx = τyy, as a result there is a



3. INNOCENT STRATEGIES 147

bijection x̄ ≃ ȳ. Since those extended strategies satisfy conditions of Lemma 5.32,
this bijection is secured. Since causal dependence is more constrained in x̄ and ȳ
than in x ‖ y⋆ ‖ τCy and σAx ‖ x⋆ ‖ y respectively, the deduced bijection

x ‖ y⋆ ‖ τCy ≃ σAx ‖ x⋆ ‖ y

is secured. As a result, it induces the desired configuration z ∈ C (T⊛ S). �

3.2. Innocent strategies. To define innocence, we follow the intuitions given
in Section 2.1:

DEFINITION 5.36 (Innocence). Let σ : S ⇀ A be an uncovered local strategy. It
is innocent when it satisfies the following two conditions:

• (_-preinnocence) Two O-forking gccs are never joined.
• (♯-preinnocence) Two O-forking gccs are never racing

3.2.1. Innocence and the interaction. Let σ : S ⇀ A⊥ and τ : T ⇀ A be inno-
cent uncovered strategies. Since σ and τ are visible, the forking lemma induces
properties that will be key to prove that innocence is stable under composition:

LEMMA 5.37. Let ̺, ̺′ be forking gccs of T⊛S joined by p such that Π1 p is nonneg-
ative in S. Then Π1 p joins the gccs Π1⌈̺⌉

σ and Π1⌈̺
′⌉σ (which are forking by Lemma

5.29), and similarly if Π2 p is nonnegative in T instead.

PROOF. Since Π1e is positive, we know that by Lemma 2.65 that ̺ω _ e im-
plies Π1̺ω _ Π1e by courtesy, hence Π1⌈̺⌉

σ and Π1⌈̺
′⌉σ are joined by Π1e. �

LEMMA 5.38. Let ̺, ̺′ be forking gccs of T⊛S racing at e and e′. In particular, Π1e
and Π1e′ are internal for σ or for τ. Assume they are internal for σ, then Π1⌈̺⌉

σ and
Π1⌈̺

′⌉σ are racing at Π1e and Π1e′ (well defined once again by Lemma 5.29)

PROOF. We have ̺ω_Π1 p and ̺′ω_Π1 p′ because Π1 p and Π1 p′ are internal
moves of S. By Lemma 2.65, they must be in conflict and this conflict must be
minimal because Π1 reflects conflict. �

3.2.2. The category CHOinn. The two previous lemmata allow us to conclude
that innocence is stable under composition.

LEMMA 5.39. Innocent strategies of nCG
∼=
⊚ are stable under composition.

PROOF. Let σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖ C be innocent linear strategies.
We already know that τ⊚ σ is local.

• (_-innocence) Consider two O-forking gccs ̺, ̺′ of T ⊚ S that are joined
at e. We can complete them into gccs ¯̺ and ¯̺ of the interaction T ⊛ S.
By courtesy, they are still O-forking and joined by an event ē ≤ e. We
can apply Lemma 5.37 and conclude that either (Π1⌈ ¯̺⌉σ, Π1⌈ ¯̺′⌉σ) or
(Π2⌈ ¯̺⌉τ , Π2⌈ ¯̺⌉τ) are O-forking gccs that are joined (by either Π1 ē or
Π2 ē).

• (♯-innocence) Similar reasoning using Lemma 5.38. �

Define a CHO-strategy σ : S ⇀ !A to be innocent when its erasure to nCG
∼=
⊚

σ : S ⇀ !A is innocent. Since innocence is stable under weak isomorphism, the
previous result induces:

THEOREM 5.40. Innocent strategies (up to weak isomorphism) form a cartesian closed
subcategory CHOinn of CHO.



148 5. CONCURRENT INNOCENCE AND WELL-BRACKETING

PROOF. Parallel composition preserves innocence, and all the structural mor-
phisms are based on copycat which is innocent (as it is a forest). Other construc-
tions (eg. curryfication) do not affect the underlying event structure. Finally, inno-
cence is trivially preserved by weak-isomorphism. �

We now have a notion of innocence and well-bracketing suited to our setting.
In the next chapter, we will see prove that the conjunction of these conditions ac-
tually characterizes purely functional nondeterministic concurrent computations.



CHAPTER 6

Intensional full abstraction for ndPCF

Let us go, through certain half-deserted streets,
Streets that follow like a tedious argument
Of insidious intent
To lead you to an overwhelming question ...
Oh, do not ask, “What is it?”
Let us go and make our visit.

T.S. Eliot, On proofs of full abstraction in game semantics
(The Love Song of J. Alfred Prufrock)

In chapter 4, we have seen that our interpretations of ndPCF into CHO are
adequate. In particular this means that if two terms have observationally equiv-
alent denotations, they are observationally equivalent. This relies on the fact that
all contexts can be interpreted inside CHO. The converse, however, is not true
since not all semantic tests can be defined as ndPCF contexts. In Chapter 5, we
introduced conditions to cut down on the behaviours definable in CHO. The goal
of this chapter is to show that, up to may testing, those conditions are enough
to prove intensional full abstraction: that interpretation preserves observational
equivalence in CHOinn,wb, the subcategory of CHO consisting in innocent and
well-bracketed strategies. This is achieved by leveraging fruitful consequences of
innocence and well-bracketing, to describe and decompose strategies. However,
we do not prove full abstraction for must equivalence as several arguments do not
scale to must equivalence: in particular that finite tests are enough (Section 3.1). It
is not clear to us at this point how to fix these problems.

Note that throughout this chapter, we will informally refer to “intensional full
abstraction” as simply full abstraction.

Outline of the chapter. In Section 1, we construct reduced forms of innocent
strategies, that induce a notion of finite strategies. This is crucial in order to state a
theorem of finite definability: every finite strategy can be defined in the syntax (up
to may testing). In Section 2, we provide an inductive decomposition of strate-
gies at higher-order type, showing that innocence and well-bracketing ensure that
higher-order behaviours are those of the λ-calculus (Theorem 6.23): this is the
main result of the chapter. This allows us to reduce finite definability at every
type, to finite definability at first-order types. In Section 3, we finally prove inten-
sional full-abstraction of both interpretations for may-testing.

Contributions of the chapter. The full abstraction result in a deterministic
setting (for PCF), via reduced forms and decomposition is joint work with Pierre
Clairambault. This chapter extends this result to ndPCF with may equivalence.

149



150 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

1. Reduced form of innocent strategies

This first section extracts reduced forms from innocent strategies of CHO. These
reduced forms contain no redundant information (and in particular no nontrivial
symmetry) and generalize P-view trees of HO game semantics. In particular, one
can see these reduced forms as some sort of “P-view dags” (at least in the deter-
ministic case). As a result, innocent strategies have two representations in our
setting: the usual one, as a strategy in CHO (the expanded form) or their reduced
form. On the one hand, reduced forms are more compact and can be finite, but
cannot be easily composed. On the other hand, expanded forms are always infi-
nite but can be easily composed. This dichotomy is reminiscent of the situation in
HO game semantics: innocent strategies as sets of plays or P-view trees.

1.1. Reduced form of an innocent strategy. One important consequence of
innocence is that, given two negative events sharing the same justifier and with
the same label, their future do not interfere with each other, and are isomorphic
due to symmetry. This means that Opponent cannot gain more knowledge about
the strategy by playing twice the same move, differing only by their copy index.
As a result, the behaviour of the strategy is completely captured by the fragment
where Opponent always plays with copy index zero.

We fix an innocent σ : S ⇀ !A ∈ CHO(A) for the rest of the section.

DEFINITION 6.1. The reduced form of S is Srf, the projection of S to events
s ∈ S such that all negative events below σs in !A have copy index zero.

Note that Srf is down-closed in S, meaning that C (Srf) ⊆ C (S). What is the
exact status of the reduced form of σ? Even though it can be mapped to !A it is
not a strategy as it fails receptivity by construction. However, we can regard it as
a strategy on a subarena of !A. Define !+A, the subarena of !A comprising those
index functions α : [a] → N that are zero on negative events of [a]. As a result σ
restricts to a map of event structures σrf : Srf ⇀ !+A.

LEMMA 6.2. The map σrf defines an innocent strategy in nCG
∼=
⊚(!

+A).

PROOF. Straightforward. �

What about symmetry? The arena !+A inherits an isomorphism family from
!A. The reduced form Srf also inherits a symmetry from S, but it is trivial:

LEMMA 6.3. If θ : x ∼= y ∈ S̃ is a symmetry between x, y ∈ C (Srf) then θ = idx.

PROOF. By induction on x. Assume that idx : x ∼= x can be extended to θ by
(s, s′) ∈ Srf

2. If the pair is nonnegative, then by thin s = s′. Otherwise, we remark
that σs = σs′ as they have same label, justifier and copy index (zero). Receptivity
of σ implies s = s′. �

Hence, we can also regard σrf as a thin strategy on the tcg !+A. The construc-
tion σ 7→ σrf clearly preserves weak isomorphism. Define a reduced form on an
arena A as an innocent strategy of nCG

∼=
⊚(!

+A).

EXAMPLE 6.4. As an example of a reduced form, consider the strategy ifpar
(or, rather its curryfication, playing on !(B ⇒ B ⇒ B ⇒ B)) interpreting the if
construct concurrently (Figure 5 of Chapter 4). Its reduced form is given in Figure
1. Even though the diagrams have the same shape, there are minor differences:



1. REDUCED FORM OF INNOCENT STRATEGIES 151

Λ(ifpar)rf : !+(B ⇒ B ⇒ B ⇒ B)

q−

q+,0 q+,0 q+,0

tt− ff− b− b′
−

b+,0 b′
+,1

FIGURE 1. Reduced form for a parallel if

• Opponent indices can be omitted since they are always zero,
• Player indices do not need to encode earlier negative indices.

Our reduced forms are simpler (no Opponent indices, no complicated Player in-
dices) and at the same time formal because they describe exactly the event struc-
ture – no implicit unfolding of copy indices is swept under the carpet. In this case,
it is even finite as B is a finite datatype.

The main use of reduced forms is to give a notion of a finite strategies. A
reduced form is finite when it contains a finite number of positive moves, and an
innocent strategy of CHO is finite when its reduced form is. This is useful to prove
finite definability (in particular of tests), by induction on the reduced form. Notice
that not all finite reduced forms (in this sense) have a finite event structure: for
instance, non constant reduced forms on N ⇒ N are infinite by receptivity.

We now show how to go the other way: from a reduced form to a strategy.
This expansion procedure has to automatically reconstruct the right copy indices
of positive moves, depending on the indices of earlier negative moves.

1.2. Expansion of reduced forms. To define the expansion of a reduced form,
we apply a construction similar to the expansion of arenas. Let σ : S ⇀ !+A be
a reduced form. We make the assumption that S is countable. We construct the
event structure !−S as follows:

• Events: index functions α : [s] → N where s ∈ S and α(s0) = 0 for any
nonnegative s0 ≤ s. The event s is the label of α (written lbl(α)).
• Causality: inclusion of index functions
• Conflict: α : [s] → N and α′ : [s′] → N when s is in conflict with s′ in S

and for all s0 ∈ [s] ∩ [s′], α(s0) = α′(s0).

The convoluted definition of conflict means that two events are in conflict in the
expansion if they are in conflict in the reduced form and do not come from different
opponent branches.

EXAMPLE 6.5 (Conflict in the expansion). Consider the reduced form for choice
on the left, and its expansion on the right:



152 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

!+B !B

q− q−,0 q−,1 . . .

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

tt+,0 ff+,0 tt+,0 ff+,0 tt+,0 ff+,0

The occurrence of tt+,0 above q−,0 and of ff+,0 above q−,0 project to conflicting
events of the reduced form, yet they are not (and should not) be in conflict in the
reduced form since their index for q− differs.

As !A, !−S has a canonical isomorphism family, given by: θ : x ∼= y ∈ !̃−S if
and only if θ is an label-preserving order-isomorphism.

LEMMA 6.6. (!−S, !̃−S) is an event structure with symmetry.

PROOF. Similar as proving that !̃A is an isomorphism family. �

To get a strategy, we need to explain how to map events from !−S to !A. This is
not completely straightforward since we need to make sure that the resulting map
is locally injective. As seen in Example 6.4, we only have constant copy indices in
S, although we saw that in a typical strategy, the positive copy indices will depend
on the copy indices of negative moves below it. To recover this dependency, we
simply hash the negative history of the positive move along with its copy index:

!−σ : !−S ⇀ !A

(α : [s0]→ N) 7→

Ö
[σs]→ N

σs− 7→ α(s)

σs+ 7→ ι(α|[s])

è

where, as before if σs = (a, α) then ind(σs) = α(a) and ι :
⋃

X∈P f (S)
NX → N is an

injective function from index functions to natural numbers (which exists since S is
assumed countable). This copy index assignment is brutal and can be be optimized
(for instance, copy indices below the justifier are not necessary).

LEMMA 6.7. The map !−σ : !−S ⇀ !A defines an innocent CHO-strategy.

PROOF. Clearly the symmetry on !−S is thin, and !−σ preserves symmetry.

Local injectivity. We proceed by induction on the product order S2. Consider
two consistent α : [s] → N, α′ : [s′] → N such that !−σ(α) = !−σ(α′). If s and s′

are minimal, then they are negative and α : {s} → N is uniquely characterized by
(s, α(s)). Hence, (σs, α(s)) = (σs′, α(s′)) implies by receptivity s = s′ and α = α′.

If s and s′ are negative non-minimal, then we know that by induction just(α) :
[just(s)] → N and just(α) : [just(s)] → N are equal. Since s and s′ are negative,
we have [s] = [just(s)] ∪ {s}, we just need to prove that α(s) = α′(s):

α(s) = !−σ(α)(s) = !−σ(α′)(s) = α′(s)

If s and s′ are nonnegative, !−σ(α) = !−σ(α′) implies ♯(α) = ♯(α′) and α = α′.

Courtesy. Inherited from σ.



1. REDUCED FORM OF INNOCENT STRATEGIES 153

Strong receptivity. Assume θ : x ∼= y ∈ !̃−S such that !−σθ extends by a negative
pair (a1, a2). The justifiers of a1 and a2 belong to !−σx and !−σy respectively, let α1
and α2 be their pre-image in x and y. By receptivity of σ, there exist moves s1 and
s2 in S whose justifiers are respectively lbl(α1) and lbl(α2) and labels in A those
of a1 and a2. Define α′1 as the extension of α1 with α′1(s1) = ind a1 and α′2 as the
extension of α2 with α′2(s2) = ind a2. We have that α′1, α′2 ∈ !−S and

θ ∪ {(α′1, α′2)} ∈ !̃−S.

Innocence. If α _ α′ in !−S, then we have lbl(α) _ lbl(α′) in S. Hence _-
innocence of !−S results from that of S. Consider two O-forking gccs ̺, ̺′ of !−S,
forking at ̺i and racing at α1 and α2. We have two gccs lbl(̺1) and lbl(̺2). Since
lbl(α1) lbl(α2), they are also racing. Moreover by definition of the conflict in
!−S, they must also be O-forking at lbl(̺i). Indeed since ̺i+1 and ̺′i+1 are negative
and distinct, with the same justifier and also the same copy index since α1♯α2, we
have that lbl(̺i+1) 6= lbl(̺′i+1). As a result, lbl(̺) and lbl(̺′) are indeed racing at
lbl(α1) and lbl(α2), contradicting the innocence of σ. �

Reducing the expansion of a reduced form leaves it invariant:

LEMMA 6.8. For a reduced form σ : S ⇀ !+A, there is a weak isomorphism

σ ≅ (!−σ)rf.

PROOF. Straightforward. �

Moreover, the expansion preserves weak isomorphism.

1.3. Equivalence between the two representations. We now prove that ex-
pansion and reduction are inverse of each other up to weak isomorphism. To
prove this result, we need to study the normal configurations: those where Oppo-
nent uses a given Player move as a justifier at most once.

1.3.1. Normal configurations. Let us fix an innocent and countable strategy σ :
S ⇀ !A. A configuration x ∈ C (S) is normal when there are no two negative
events of x sharing the same justifier (where “sharing the same justifier” means
that either they both do not have a justifier or both have the same justifier). Equiv-
alently, x does not contain two O-forking gccs. Normal configurations cover what
configurations are represented by the reduced form:

LEMMA 6.9. For all normal configuration x ∈ C (S), there exists a unique normal
configuration y ∈ C (Srf) and a unique ψx : x ∼= y in S̃.

PROOF. Replace the negative events with non-zero copy index by the ones
that have copy index zero, inductively, using receptivity of σ. Uniqueness follows
from Lemma 6.3. �

As a special case of this construction, since prime configurations are normal
by _-innocence, we can map events of S to Srf. This map is well-behaved:

LEMMA 6.10. There exists a function nf(·) : S→ Srf such that

(1) it preserves and reflects causal order,
(2) if s ∈ Srf, nf(s) = s,
(3) for all normal configuration x ∈ C (S) then x ∼= nf(x) in S̃,



154 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

(4) for a subset x ⊂ S such that nf(·) is injective on x and nf(x) is a normal config-
uration then x is a normal configuration,

(5) two events s, s′ ∈ S are in conflict if and only if nf(s) and nf(s′) are in conflict,
and [s) ∪ [s′) is a normal configuration of S.

Note that this function is not a map of event structures (in particular it is not
locally injective since all initial moves are collapsed). Condition (4) is reminiscent
of the definition of the conflict in the expansion.

PROOF. For s ∈ S, by innocence, [s] is normal hence there exists a unique (by
Lemma 6.3) configuration y ∈ C (Srf) with [s] ∼= y (Lemma 6.9). As a result, write
nf(s) for the top-element of y, so that y = [nf(s)]. Properties (2) and (3) follow by
construction of nf(·). (1) follows from [s] ∼= [nf(s)].

(4) Because nf(·) preserves and reflects causality, x is down-closed and has
no distinct negative moves sharing the same justifier. We simply need to check
that x is consistent. Assume there is a minimal conflict s1 s2 in x. Write y =
[s1] ∪ [s2) ⊆ x: it is a normal configuration of S by ♯-innocence. The symmetry
y ∼= nf(y) extends by (s′2, nf(s2)) for some s′2 ∈ S. By thin, we must have that
s′2 = s2, hence s1 and s2 are compatible: this contradicts the assumption.

(5) If s and s′ are in conflict, then there is a minimal conflict s1 s′1 with
s′1 ≤ s and s′1 ≤ s′. By ♯-innocence, [s1) ∪ [s2) is a normal configuration hence
mapped injectively by nf(·). Hence so is the set [s1] ∪ [s2] which proves by (4) that
its image in Srf cannot be a configuration, ie. nf(s) and nf(s′) cannot be compatible.
Moreover, by ♯-innocence, there cannot be any O-forking gcc in [s] ∪ [s′].

Conversely, assume the right-hand side of the equivalence. If s and s′ were
compatible, then by assumption [s] ∪ [s′] would be a normal configuration, and so
would be nf([s] ∪ [s′]) implying that nf(s) and nf(s′) are compatible. �

1.3.2. Equivalence theorem. The desired theorem follows from Lemma 6.10.

THEOREM 6.11. For countable σ ∈ CHOinn(A), there is a weak isomorphism

σ ≅ !−(σrf).

PROOF. We define the isomorphism ϕ by (s ∈ S) 7→ (α : [nf(s)]− → N)
where α(s−0 ) = ind(σs0).

By Lemma 6.10.(5), ϕ preserves and reflects conflict: indeed conflict in S and
!−S are similarly related to conflict in the reduced form. By property (1) of Lemma
6.10 it is a rigid map of event structures. An easy induction shows that if θ : x ∼=

y ∈ S̃ then ϕθ : ϕx ∼= ϕy ∈ !̃−S. Moreover, the converse is also true: if θ is a
bijection x ≃ y whose image by ϕ is in !̃−S then it belongs to S̃.

Injectivity. Assume that ϕx = ϕy for x, y ∈ C (S). The natural bijection θx : x ≃
ϕx = ϕy ≃ y is in S̃ as ϕ reflects symmetry. We show then by induction over x that
this natural bijection is actually the identity, hence x = y as desired. The base case
is straightforward. Assume that x′ ⊆ x satisfies the inductive hypothesis θx′ = idx′

and can extend by s ∈ x. If s is nonnegative, we can conclude by thin. Otherwise,
θx(s) is a negative event with the same justifier and label as s. Moreover, since
ϕs = ϕs′ by definition of θx, they also have the same copy index, hence s = s′.



1. REDUCED FORM OF INNOCENT STRATEGIES 155

Surjectivity. By induction on α : [s0] → N ∈ !−Srf we build a s ∈ S such that
ϕs = α. If s0 is negative and minimal, then this is a consequence of receptivity: S
has a unique minimal negative event s such that nf(s) = s0 and ind(σs) = α(s0).

If s0 is negative and not minimal, by induction there exists s ∈ S such that
ϕs = just(α). By strong-receptivity, there exists an event s′ ∈ S whose justifier is s,
and label and copy index is given by α(s0). By construction ϕs′ = α.

If s0 is nonnegative, then applying the inductive hypothesis to all elements of
[α) we get a set x ⊆ S with ϕx = [α). Since ϕ is rigid and reflects conflict, x is a
configuration. Moreover, we have x ∼= [s0) by construction. Since the right-hand
side extends by s0, the left-hand side must extend by a unique s ∈ S. The negative
moves in [s) have index given by α, hence by definition of ϕ, ϕs = α. �

The following theorem has a very important consequence: to compare inno-
cent strategies, there is no need to build an isomorphism at the level of event
structures with symmetry, but simply at the level of event structures. As a result,
the isomorphism family of an innocent strategy (up to weak isomorphism) can
regarded as a simple property (“there exists an isomorphism family”) since two
choices of isomorphism families will result in weakly isomorphic CHO-strategies.

COROLLARY 6.12. Let σ : S ⇀ !A and τ : T ⇀ !A be countable strategies in
CHOinn(A). The following statements are equivalent:

(1) σ and τ are weakly isomorphic
(2) There exists an isomorphism of event structures ϕ : S ∼= T with τ ◦ ϕ ∼+ σ
(3) The reduced form σrf and τrf are weakly isomorphic.

PROOF. It is clear that (1)⇒ (2)⇒ (3). We show that (3)⇒ (1).
By Theorem 6.11, it is enough to show that !−(σrf) ∼= !−(τrf). Since σrf

∼= τrf by
assumption, and expansion preserves weak isomorphism, we can conclude. �

As a result, the maps σ 7→ σrf and σ 7→ !−σ are well-defined on the equivalent
classes up to weak isomorphism and inverse of each other.

1.4. Reduced form of non-innocent strategies. Before moving on to the rest
of the argument of full abstraction, we would like to informally digress about the
extension of reduced form outside the innocent case. In the innocent case, the
previous section justifies the diagrams that we have been drawing with symbolic
Opponent indices for innocent strategies. What our expansion does, is explaining
how from the finite diagram of the strategy, the infinite mathematical object is
generated. In particular, in the innocent case, our diagrams were non-ambiguous
because of the equivalence between the representations: any other strategy that
has this reduced form must be isomorphic to its expansion.

In this section, we present informally the problems that naturally arise when
trying to generalize this picture to the non-innocent setting.

1.4.1. Ambiguous expansion. Remember the non-innocent strategy bad presented
in the previous chapter (presented again in this chapter in Figure 2).

This strategy calls a function f with a special argument that returns as soon
as f calls it twice. However, what is the expected behaviour when f calls its argu-
ment thrice? The question is legitimate, since in our world we can return several
times. Hence, this diagram does not denote non-ambiguously a strategy. Indeed,
to extend it to a strategy, we need at least to specify these missing causal links.
Two possible ways are:



156 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

(proc ⇒ proc) ⇒ proc

run−,i

run+,0

run−,j run−,j′ done−,k

done+,j′ done+,j done+,k

FIGURE 2. An ambiguous diagram for a non-innocent strategy

• When f evaluates its argument, it returns once for each previous invoca-
tion of itself, and returns every time for any further invocation.
• When f evaluates its argument, if f already invoked it before, it returns

immediately, once. Otherwise it waits for another invocation and returns
as soon as one occurs.

Note that the second option makes the strategy nondeterministic (there is a
race). Also, those two choices give non-observational equivalent strategies (since
f will be able to observe whether its argument might return twice).

As an example, we detail the interaction of the first choice against the term
λx.(x1 ‖ (x2; x3)) (occurrences of x have been annotated to refer to them). How
many answers at toplevel shall it yield? First, it depends on the implementa-
tion of ‖ and ;. Assume that “‖” returns whenever its two arguments return –
in other words, for every pair of answers from its arguments, it returns – whereas
“;” spawns its second argument for each answer of its first, and returns all possible
answers of all invocations of its second argument.

Operationally, this is what should happen during the interaction:

(1) First x1 and x2 are spawned in parallel so they both return.
(2) x3 is then run which makes x1 and x2 return once more.
(3) the return of x2 triggers a new invocation of x3, and we go back to (2)

So x1 is just enough to start a feedback loop between x2 and x3, hence we get
infinitely many answers at toplevel. We spelled out this little example to demon-
strate the complexity hidden behind the apparent simplicity (and finiteness) of the
diagrams we have been drawing. Being able to avoid redundancy while still hav-
ing a non-ambiguous representation of non-innocent strategies is a real challenge.

1.4.2. Non-canonical symmetries. A subtle consequence of Theorem 6.11 is that,
even though once S is fixed, it could support several isomorphism families. How-
ever, they would all yield weakly isomorphic strategies (indeed any isomorphism
on the event structures can be lifted to an isomorphism of event structures with
symmetry by Theorem 6.11). Outside the non-innocent case, this is not the case
anymore. Consider the following strategy description of Figure 3

Intuitively, given a function f , this strategy calls it and returns twice as soon
as f called its argument twice. Note that this is not well-bracketed. Consider the
symmetry θ : [s1, s2] ∼= [s1, s2] permuting simply s1 and s2, where s1, and s2 are the
two negative questions in the leftmost proc. The following diagram depicts θ:



1. REDUCED FORM OF INNOCENT STRATEGIES 157

(proc ⇒ proc) ⇒ proc

run−,i

run+,0

s1 : run−,j s2 : run−,j′ done−,k

done+,〈0,j,j′〉 done+,〈1,j,j′〉

FIGURE 3. A strategy supporting several non-weakly isomorphic symmetries

(proc ⇒ proc) ⇒ proc

run−,i

run+,0

run−,j run−,j′

θ

θ

Since [s1, s2] can be extended by s = done+〈0,j,j′〉, θ can be extended by (s, s′)

for some s′. However, in this case, there are two particular resolutions leading to
two strategies: either s′ = s or s′ = done+〈1,j,j′〉. The two resulting strategies are not
weakly isomorphic because of the symmetry, but are observationally equivalent.
As a result, without innocence, symmetry is indeed a structure, and not a property
of strategies.

1.4.3. A syntax for non-innocent behaviours. In the previous chapter, we have
used IPA as a means to describe syntactically non-innocent strategies. However,
IPA is not a good language for that purpose. First, it is well-bracketed so that we
cannot express some important behaviours (such that returning multiple times).
Moreover, references are a inadequate way of communication between different
branches of the program, as they correlate causality and non-determinism (be-
cause of races). However, in our setting the two aspects are cleanly decomposed.

To end this prospective section, we would like to investigate some informal
syntax to crudely account for the phenomena presented above.

Causality via signals. We should have a way to create causal links between
parts of the program that are purely deterministic. To do so, we propose the usage
of signal-like primitives that allows a signal to be fired in a certain part of the
program and waited on in another. For instance, the syntax could be:

M ::= . . . | newsignal s in M | wait ([s1, . . . , sn]) | fire ([s1, . . . , sn])

Both waiting and firing are parametrized over a list of signals and produce a
term of type proc. The idea is that wait ([s]) returns every time the signal s is fired.
Hence M = (fire ([s]) ‖ fire ([s]) ‖ wait ([s])) would return twice to the top-level.
The interest in firing and waiting on a list of signals is to be able to express subtle
synchronization patterns. To illustrate informally the need for lists, consider the



158 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

following two terms describing the two possible resolutions described previously.

M1 = λ f . newsignal s, t in f (fire ([s, t])) ‖ (wait ([s, t]); skip)

M2 = λ f . newsignal s, t in f (fire ([s, t])) ‖ wait ([s, s]); (skip ‖ skip)

Both terms call f in such a way that every time f evaluates its argument both
signal are fired. Operationally, a list of signal occurrences is kept (a signal occur-
rence is a signal along with a natural number). When firing [s, t], for instance, we
add the signal occurrences (s, n) and (t, n) (where n is a fresh occurrence number)
to the list. Waiting on [s, t] returns whenever we can find in the list an occurrence
(s, k1) and (t, k2) with k1 6= k2. Moreover if s = t, the order does not matter (so if
the list contains (s, 1) and (s, 2), we only match once).

So, when f calls its argument twice we end up with the fired signals

[(s, 1), (t, 1), (s, 2), (t, 2)].

Then there is only one match for [s, s] – namely {(s, 1), (s, 2)} whereas there
are two matches for [s, t]: {(s, 1), (t, 2)} and {(s, 2), (t, 1)}.

In M1, we still get two toplevel answers when f calls its argument twice, be-
cause there are two matches. Since the two events come from the same occurrences
of fire (·), they will be symmetric in the strategy (corresponds to the s 6= s′ choice
above). On the other hand, in M2 there are two syntactically different occurrences
of skip that are not symmetric (corresponds to the s = s′ choice above).

Nondeterminism via explicit races. Signals are purely deterministic. To add non-
determinism to this language, we use a construct to induce races between arbitrary
parts of the program:

M := . . . | race(x, y). M

where in M, x and y are bound variables of type proc. The idea is to interpret race
by a strategy similar to that depicted in Figure 2 (Chapter 5). When M evaluates
x and y there is a race, only one of x and y will return (and allow the program to
continue) but not both.

An implementation of parallel-or. As an example of expressivity, an implementa-
tion of parallel or in this setting would be:

por = λb.λb′. newsignal s in race(x, y).

(if b (x; tt) (wait ([s]); ff))

‖ (if b′ (y; tt) (fire ([s]);⊥))

Signals are used to make sure that we only return ff when both evaluations
have returned false, whereas races are used to prevent two answers at toplevel.

Having recovered a notion of finite strategies, we now explain how to decom-
pose strategies at higher-order type inductively.

2. Higher-order decomposition of strategies

We now move to the main argument underlying the full-abstraction result:
any finite innocent and well-bracketed strategy with a higher-order type can be
defined by a λ-term that has access to all first-order strategies (Theorem 6.23). One
can think of CHOinn,wb as the free dcpo-enriched CCC over its full subcategory of
first-order types, though we will not aim at formalizing this intuition.



2. HIGHER-ORDER DECOMPOSITION OF STRATEGIES 159

2.1. Properties of innocent and well-bracketed strategies. To build the de-
composition, we need a few more properties about strategies of CHOinn,wb.

LEMMA 6.13. Let σ : S ⇀ A⊥ ‖ B be an innocent and well-bracketed strategy in

nCG
∼=
⊚. For a question q+ ∈ S, and a+ an answer to juste(q), q is answered in [a].

Note that since q is positive, it is not minimal, and juste(q) is well-defined.

PROOF. Let a be an answer to juste(q). By innocence of σ, the positive ques-
tions in [a] must be well-answered, hence by well-bracketing, all questions of
[a] are well-answered. Since juste(q) is answered in [a], for juste(q) to be well-
answered in [a], q must be answered there. �

2.1.1. Well-bracketed gccs. First, as hinted at in Section 1.1.3 (Chapter 5), in the
presence of innocence and well-bracketing, threads are well-bracketed. We now
make this claim formal. For a gcc ̺ ∈ gcc(S), the pending question at ̺i is the
latest unanswered question in ̺0≤_≤i. Call a gcc ̺ ∈ gcc(S) of a visible strategy
σ : S ⇀ !A well-bracketed when for every answer ̺i ∈ ̺, the pending question
in ̺≤i is just(̺i).

LEMMA 6.14. All gccs of a strategy in CHOinn,wb are well-bracketed.

PROOF. Let σ : S ⇀ !A ∈ CHOinn,wb(A), and consider ̺ a gcc of S which is
not well-bracketed: there exists an answer a ∈ ̺ that answers a question q0 ∈ ̺ but
the pending question q1 ∈ ̺ at a is strictly after q0. Hence we must have a positive
(as Opponent always answers the previous question) and q0 and q1 negative, as
well as the situation q0 < q1 < a. Write q′1 for a negative question which has the
same justifier and label as q1 but with an index that does not occur in [a].

Consider the configuration y = {s ∈ [a] | s 6≥ q1} ∈ C (S). The identity on y

extends to θ by (q1, q′1) in S̃ by ∼-receptivity. Since y ∪ {q1} extends to [a], there
exists a′ ∈ S and a further extension θ ⊆ θ′ such that θ′ : [a] ∼= [a′], as follows:

q−1 · · · a+

q−0 . . . ·

q′−1 · · · a′+

The convoluted construction of θ′ guarantees the following key property:

θ′s 6= s ⇔ s 6∈ y ⇔ s ≥ q1

By innocence of σ, [a, a′] must be a configuration, in which q0 is not well-
answered because it has two answers: a and a′. By well-bracketing of σ, this im-
plies that there exists a positive question q+

2 in [a, a′] that is not well-answered.
This means that there exist negative a2, m2 ∈ [a, a′] where a2 is an answer to q2
and m2 is justified by q2 but not an answered question.

By innocence, we cannot have a2 and m2 both below a or both below a′. As-
sume for instance a2 ≤ a and m2 ≤ a′. First, since m2 is negative, its only prede-
cessor in S is q2, its justifier. This means that q1 ≤ q2 if and only if q1 ≤ m2.



160 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

If both hold, then q1 ≤ m2 ≤ a′ and q′1 ≤ a′ contradicting innocence. If both
do not hold, then θ′q2 = q2 and θ′a2 = a2. Applying θ′ to a2 ≤ a yields a2 ≤ a′,
hence both m2 and a2 are below a′ – a contradiction. �

2.1.2. Complete threads. We now prove that, up to observational equivalence,
innocence and well-bracketing ensures that before a join (or a race), the two threads
must be complete. In other words, it is not possible to merge two threads with
unanswered questions.α A prototypical example of such behaviours is the follow-
ing strategy:

!+(proc ⇒ (proc ⇒ proc) ⇒ proc)

run−

run+,1 run+,0

run− run−

run+,2

done−

At the merge (run+,2), two negative run− are unanswered. This strategy lives
in CHOinn,wb but is not definable (up to weak isomorphism in ndPCF). How-
ever, there is no way to extend this strategy to contain an answer at toplevel: this
would break well-bracketing. This strategy, even though not definable itself, is
may equivalent to ⊥, hence it is not a problem for intensional full abstraction.
This intuition is captured by the following proposition:

PROPOSITION 6.15. Let σ ∈ CHOinn,wb(A, B) be an innocent and well-bracketed
strategy. The strategy σcmpl satisfies the following properties:

(1) For every forking gccs ̺, ̺′ ∈ gcc(Scmpl) whose divergence is ̺i = ̺′i joined by

a visible-bounded event, then the segments ̺>i and ̺′>i are complete.

(2) For every forking gccs ̺, ̺′ ∈ gcc(Scmpl) whose divergence is ̺i = ̺′i that are

racing at visible-bounded events, the segments ̺>i and ̺′>i are complete.

An event s is visible-bounded when there exists s0 ∈ S↓ with s ≤ s0.

PROOF. (1) Consider a visible event s ≥ ̺ω and s ≥ ̺′ω which is visible. With-
out loss of generality, by courtesy, it can be chosen positive. Fix a completion x
of [s] (since s ∈ Scmpl). Assume that ̺i = ̺′i is the divergence point of ̺ and ̺′.
Assume the segment ̺>i is not complete for instance and let ̺j be a non-answered
question in ̺ with j > i. Write q := juste(s). By visibility, q must be before the
fork ̺i. If s is an answer, this means that extensions of ̺ to s are not well-bracketed
since their pending question is at least after ̺j. So s must be a (positive) question.
Since x is complete, q must be answered by an event a ∈ x, and by Lemma 6.13,

α The reader familiar with [CCW15] may have recognized the conditions of well-bracketing used
there. This notion – unlike the one presented here – was not stable under composition. We show
here that, up to observational equivalence, we can recover those conditions that are key for finite
definability.



2. HIGHER-ORDER DECOMPOSITION OF STRATEGIES 161

s ≤ a. Since q ≤ ̺i ≤ ̺j ≤ s ≤ a, there exist extensions of ̺ and ̺′ to ¯̺ and ¯̺′ such
that a ∈ ¯̺ ∩ ¯̺′. Since ¯̺ is well-bracketed and q ≤ ̺j, it follows that ̺j is answered
by some aj ≥ s in ¯̺. This violates visibility, as ̺j = juste(aj) 6∈ ¯̺′ but aj ∈ ¯̺′.

The proof is summed by the following picture (where s s′ means s ≤ s′):

̺i+1 ̺j ̺ω

q− ̺i s aj a

̺′i+1 ̺′ω

(2) Assume ̺ and ̺′, positive s ≥ ̺ω and s′ ≥ ̺′ω with s♯s′, and an unanswered
question ̺j in the segment ̺>i. We follow a similar reasoning as for (1): because
gccs are well-bracketed (Lemma 6.14), the event s must be a question. In a com-
pletion of [s], q := juste(s) has an answer a. By Lemma 6.13, s ≤ a, and because
gccs of σcmpl must be well-bracketed, there exists an answer aj to ̺j between s and
a, depicted as follows:

̺i+1 ̺j ̺ω s aj a

q− ̺i

̺′i+1 ̺′ω s′

This time, ♯-locality is violated: aj is conflict with s′2 but its justifier, ̺j, is con-
current to s′2. �

We cannot apply directly this proposition to strategies of CHOinn,wb. Hence,
in the decomposition procedure described in the next section, we consider strate-
gies σ of CHOinn,wb satisfying the further assumptions (a) σ equal to its comple-
tion (ie. σcmpl = σ) and (b) that all essential events are visible-bounded. Condition
(b) erases behaviours up to must equivalence, but it does not matter here as we are
only interested in full abstraction up to may testing. It is however not a fundamen-
tal problem: if one wanted a decomposition result robust for must equivalence,
one can consider strategies satisfying conditions (1) and (2) of Proposition 6.15, as
those conditions can be proven stable under composition.

In this chapter, we choose to instead show that every strategy of CHOinn,wb is
may equivalent to a strategy satisfying (a) and (b):

LEMMA 6.16. Let σ : S ⇀ !A be a well-bracketed CHO-strategy. There exists a
strategy σ′ such that σ′cmpl = σ′ and essential events of σ′ are visible-bounded, which is

may-equivalent to σ in CHOwb.

PROOF. Consider S ′, S projected to events s ∈ S such that



162 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

!+(( B ⇒ proc) ⇒ (proc ⇒ proc) ⇒ proc)

run−

run+,0 run+,1 run+,0

q− q− done− done− run− done−

tt+,0 ff+,0

run+,2 done+,0

q− done−

tt+,1 done+,0

FIGURE 4. Reduced form of JMK = Jλ f g. f1 tt ‖ f2 ff ‖ g ( f tt)K

(1) s is observable (cf. Section 1.3 in Chapter 5),
(2) s lies below a visible event,
(3) if s is neutral, s is in minimal conflict with an observable and visible-

bounded event.
The restriction of σ yields a CHO-strategy σ′ : S ′ ⇀ A (point (3) makes sure it is
an essential strategy). We show that σ′ is may-equivalent to σcmpl, which in turn is
may-equivalent to σ by Theorem 5.16.

Consider a well-bracketed test α ∈ CHO(A, proc). Clearly, if α⊚ σ′ may con-
verge, so may α⊚ σcmpl. Assume now that α⊚ σcmpl may converge and consider
a positive answer a ∈ α⊚ σcmpl. To show that the interaction [a]α⊛σcmpl can be re-
played in α⊛ σ′, it is enough to show that Π1[a]α⊛σcmpl ∈ C (S ‖ !proc) contains
only visible bounded events. Assume it is not the case, and let s ∈ Π1[a]α⊛σcmpl be
a maximal neutral event. Then, the corresponding p ∈ [a]α⊛σcmpl such that Π1 p = s

is maximal in α⊛ σcmpl as α cannot put causal links from neutral events of S. This
is absurd since it implies p = a. As a result a ∈ α⊚σ′ and α⊚σ′ may converge. �

2.2. Definition of the decomposition. Consider a higher-order PCF type A =
A1 ⇒ . . . ⇒ An ⇒ X (where X is a ground type). Each Ai can be written Ai,1 ⇒
. . . ⇒ Ai,ni

⇒ Xi. The integer (possibly zero) ni is called the arity of Ai. Write
Γ = A1 ‖ . . . ‖ An so that A ∼= Γ⇒ X (arena isomorphism).

Fix σ : S ⇀ !A in CHOinn,wb(A). We decompose it in two parts:
• a first-order strategy σflow called the flow,
• a number of higher-order strategies σq called the argument strategies.

This decomposition can be illustrated at the syntax level. Consider the term

M = λ f g. f1 tt ‖ f2 ff ‖ g ( f tt)

with f : B ⇒ proc and g : proc⇒ proc. Occurrences of f have been explicitly
annotated. First, we look at the structure of toplevel function calls (called primary



2. HIGHER-ORDER DECOMPOSITION OF STRATEGIES 163

questions later), that forms the flow of M:

Mflow = λ f1 f2g. f1 ‖ f2 ‖ g

We split f into two arguments (one per occurrence) and we removed the ar-
guments to the calls of f and g. The flow of M expects one argument for every
toplevel call of M, representing their result. As a result Mflow has type proc ⇒
proc⇒ proc⇒ proc – a first-order type.

Now, the calls needs arguments (one argument for each call in this example).
The arguments are extracted from the term as follows:

M f1
= λ f g. tt

M f2
= λ f g. ff

Mg = λ f g. f tt

Those will be called the argument subterms. Notice that they take the same argu-
ments as M – arguments can have access to any variables M has access to. Finally,
M can be recovered from its flow and its argument subterms as follows:

M =βη λ f λg. Mflow (M f1
f g) (M f2

f g) (Mg f g).

In this section, we perform a similar decomposition at the level of strategies.
The steps of this construction will be illustrated on JMK depicted in Figure 4.

2.2.1. The flow substrategy. The flow substrategy captures the toplevel func-
tion calls made by σ. It is not concerned with what arguments are fed to these
function calls. Define Sflow as the projection of S to those events s ∈ S such that
σ↓[s] ⊆ !(X1 ⇒ . . . Xn ⇒ X) seen as a subarena of !A. Since Sflow is closed under
symmetry, we get an event structure with symmetry Sflow.

A primary question is a positive question q+ ∈ Sflow. Such questions are
mapped to one of the Xi for some i ∈ N called its index. If q is a primary question
of index i, we write Xq for Xi, Aq for Ai, Aq,j for Ai,j and Γq for Aq,1 × . . . × Aq,ni

,
so that, in particular: Aq ∼= Γq ⇒ Xq (as arenas).

Write Q for the set of primary questions of σ and Qi for those of index i ∈ N.
In our syntactic example we had Q f = { f1, f2} and Qg = {g}. To construct
the flow substrategy, one needs to slightly modify the restriction of σ as the flow
strategy takes one argument per primary question, to have a map:

σflow : Sflow ⇀ !((
∏

q∈Qi

X
⊥
q ‖ !X).

Its domain is Sflow↓. For a visible event s ∈ Sflow, define its image σflows ∈

!((
∏

q∈Qi
X⊥q ‖ !X) as follows, by induction on s ∈ Sflow:

• If σs is mapped to !X, then σflow(s) = σs.
• If σs is a primary question q, then σflowq is mapped to the initial question

of the component of
∏

q∈Q Xq corresponding to q, and copy index given
by ind(σs).
• If σs is a (negative) answer to a primary question q, then σflows is the

unique event in !((
∏

q∈Q X⊥q ‖ !X) whose justifier is σflowq, copy index
and label that of σs.

LEMMA 6.17. The map σflow defines an innocent and well-bracketed strategy.

PROOF. Routine check. �



164 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

A remark that will be crucial later on is that σflow is linear in all its arguments:
σflowq is the only positive move of σflow(Sflow) ∩ (!Xq)⊥.

Computing the flow for JMK gives a strategy whose reduced form is:

JMKflow : !+( proc ⇒ proc ⇒ proc ⇒ proc)

run−

run+,0 run+,1 run+,0

done− done− done−

done+,0

2.2.2. Argument strategies. We now move on to defining the argument strate-
gies. Remember that a primary question q ∈ Qi, corresponds to a call to the ith
argument. As a result, σ is forced to provide ni arguments to this call. The tuple
formed by these arguments corresponds to a substrategy σq playing on !(Γ⇒ Γq)
whose underlying event structure Sq is:

Sq = S ↓ {s ∈ S | ∃s′Q ∈ [s], juste(s
′) = q},

which contains the events of S lying above a question justified by q. Note that Sq
does not contain any answer to q by courtesy.

On the example M, the argument strategy corresponding to the call of g gives
a strategy whose reduced form is:

!+(( B ⇒ proc) ⇒ (proc ⇒ proc) ⇒ proc)

run−

run+,0

q− done−

tt+,0 done+,0

A key argument in the proof of the correctness of the decomposition is that it
forms a partition of S:

LEMMA 6.18. Assume that σ = σcmpl and that all events of S are visible-bounded.
We have (as sets)

S = Sflow ∪
⋃

q

Sq

and moreover, this union is disjoint, and no conflict of S is spanning over two components
of this union.

PROOF. It is easy to see that an event not in the flow must be greater than a
question justified by a primary question, hence the equality of sets.

Disjoint decomposition. If s ∈ Sflow ∩ Sq for some q, then there is a contradiction
between σ[s] living in !(X1 ⇒ . . . ⇒ X) and being above a question justified by q.



2. HIGHER-ORDER DECOMPOSITION OF STRATEGIES 165

If s ∈ Sq ∩ Sq′ for q 6= q′, then either q < q′, and there must be a (negative)
answer to q in between, forcing [s] to contain an answer and a question justified
by q, contradicting _-innocence. Or, q and q′ are concurrent, and s being visible-
bounded, contradicts property (1) of Proposition 6.15.

No conflict. Consider a minimal conflict between s1 ∈ Sflow and s2 ∈ Sq for
some q ∈ Q. If s1 < q then s1 < s2, absurd. If q < s1, then s1 depends on a
negative answer to q, and the conflict s1 s2 violates ♯-innocence. Finally, if q
and s1 are concurrent, s1 s2 contradicts property (2) of Proposition 6.15. �

As the set Sq is closed under symmetry, Sq = S ↓ Sq is an event structure with
symmetry that can be mapped to the game !Γ⊥ ‖ !Γq. Remember that σ can be
uncurried to Λ−1(σ) : S ⇀ !Γ⊥ ‖ !X. We define σq on (Sq)↓:

• Every event s that is hereditarily justified by q (meaning σs > σq – hence
in particular is projected to Aq,j for some j) gets redirected to the return
type occurrence of Aq,j (this is compatible with polarities – since the oc-
currence of Ai,j in A is twice to the left of an implication.)
• Otherwise, we remark that σs 6∈ !X. Indeed, in this case, it would be a

(positive) answer, and gccs of s would not be well-bracketed since they
would contain an answer to the initial question before q were answered,
contradicting Lemma 6.14. This means that Λ−1(σ)(s) lives in !Γ and we
let: σqs = Λ−1(σ)(s).

LEMMA 6.19. The map σq is an innocent and well-bracketed strategy from Γ to Γq.

PROOF. Routine check. �

2.3. The decomposition theorem. We now prove that from the strategy σflow
and the family (σq)q, we can recover σ up to weak isomorphism. First, let us
introduce some notations. Define

ǫq = Γ
〈σq,πi〉
−−−−→ Γq × (Γq ⇒ Xq)

ev
−→ Xq (composition in CHOinn,wb).

This strategy is called the evaluator for q.
We can then state our decomposition result:

THEOREM 6.20. Assume σ = σcmpl and all events of S are visible-bounded. There is
a weak isomorphism

σ ≅ σflow ⊚ 〈ǫq | q ∈ Q〉

The proof of this theorem is detailed in the rest of the section.
2.3.1. Characterisation of the evaluators. To establish our result, we first give a

simpler characterisation of the evaluators ǫq ∈ CHOinn,wb(Γ, Xq). By Lemma 6.12,
to compare innocent strategies, symmetries can be ignored, and by Lemma 2.50 it
is equivalent to compare their configuration domains. Finally, since our strategies
are visible, interaction is deadlock-free so securedness is always verified.

As a result, configurations of the interaction T ⊛ S corresponds to pairs that
we will write y ⊛ x of a configuration x ∈ C (S) and y ∈ C (T) such that they
synchronize in the middle. This condition restricts the shape of x and y and will
be called the synchronization condition. Moreover, a configuration y ⊛ x of T ⊛ S
is a configuration T ⊚ S when its maximal elements are visible or essential. This
further restricts the shape of x and y and the corresponding condition will be called
the hiding condition.



166 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

Finally, given a configuration x on the expansion of a composite arena (eg. x ∈
C (!((A ‖ B)⇒ C))) we will write xA ∈ C (!A⊥) its projection to the A component.
In particular, any configuration x ∈ C (!(A ‖ B)) decomposes faithfully in xA ∈
C (!A) and xB ∈ C (!B) via the isomorphism mA,B : !(A ‖ B) ∼= !A ‖ !B. However,
the decomposition of x ∈ C (!(A⇒ B) into xA ∈ C (!A⊥) and xB ∈ C (!B) obtained
via χA,B : !(A⇒ B)→ !A⊥ ‖ !B is not injective: the causal links from xB to xA are
lost, and more precisely, for an event in xA, the minimal event in xB it depends on.
However, it is when x has a unique minimal event, as then there is no ambiguity.

First, we characterize the post-composition by the evaluation:

LEMMA 6.21. Let Γ = C ‖ (A ⇒ X) be a context and let σ : S ⇀ !Γ⊥ ‖ !A be in
CHOinn,wb(Γ, A). Consider:

ǫ = Γ
〈σ,π2〉
−−−→ A ‖ (A⇒ X)

ev
−→ Xq.

Configurations of ǫ with a unique minimal event are order-isomorphic to

{(x ∈ C (S), z1 ‖ z2 ∈ C (CC!X)) | x 6= ∅⇒ z1 6= ∅}

We only characterize the configurations of ǫ that have a unique minimal event
as it makes the characterization simpler. We will be only using this lemma on
configurations of ǫq that come from the interaction with σflow, which is linear, so
those configurations will indeed have a unique minimal event.

PROOF. Remember that the evaluation strategy is obtained from copycat: a
configuration of ev is a configuration of z1 ‖ z2 ∈ CC!(A⇒X). It is mapped to

zA
1 ‖ z2 ‖ zX

1 ∈ C (!A⊥ ‖ !(A⇒ X)⊥ ‖ !X).

Similarly, configurations of π2 are also given by configuration w1 ‖ w2 ∈
CC!(A⇒X) (mapped to itself since !(A⇒ X) is a sub-game of !Γ). Overall, a config-
uration of ǫ is a tuple

(z1 ‖ z2)︸ ︷︷ ︸
∈C (CC!(A⇒X))

⊛ (xS︸︷︷︸
x∈C (S)

‖ (w1 ‖ w2))︸ ︷︷ ︸
∈C (CC!(A⇒X))

.

The synchronization conditions give:

• for σ and ev on !A: σAx = zA
1

• for π2 and ev on !(A⇒ X): w2 = z2.

The hiding conditions are given by the following diagram summing up the
interaction between the different copycats involved:

ev : zA
1 zA

2 zX
2 zX

1

C ‖ (A ⇒ X) A ‖ (A ⇒ X) X

π2 : wA
1 wX

1 wA
2 wX

2

〈σ, π2〉

ev

⊆−

⊇+

=

⊇−



2. HIGHER-ORDER DECOMPOSITION OF STRATEGIES 167

An arc connects two dual occurrences of a game connected by copycat. It
flows from the negative one (ie. those where the minimal moves are negative)
occurrence to the positive one. The symbol on the arrow sums up the relations be-
tween the two configurations, in a configuration of the interaction whose maximal
events are visible or essential. As a result, we get the following hiding conditions:

• zA
1 = zA

2 = wA
2 .

• zX

1 ⊇
− zX

2 = wX
2 ⊆

+ wX

1 , hence zX

1 ⊑ wX

1 , in particular wX
2 = wX

1 ∩ zX

1 .
• wA

1 ⊇
− wA

2 .
At this point, we are tempted to define the desired isomorphism as:

(x, w1 ‖ w2, z1 ‖ z2) 7→ (x, wX

1 ‖ zX

1 )

as it is well-defined. Moreover, from (x, wX

1 , zX

1 ), we can recover zA
1 = zA

2 via
σAx. As a result, since z2 has a unique minimal element (and so does z1), both
z1 and z2 are determined by their projections on !A and !X. Similarly, wX

2 and
wA

2 are determined, so w2 is also determined. The missing determination is wA
1 ,

as we only know that σAx ⊆− wA
1 . However, by receptivity, x extends uniquely

to ext(x, wA
1 ) so that σA(ext(x, w1 A) = y, hence the following map is the desired

order-isomorphism:

(x, w1 ‖ w2, z1 ‖ z2) 7→ (ext(x, wA
1 ), wX

1 ‖ zX

1 )

Injectivity comes from the synchronization and hiding conditions, surjectivity and
order preservation and reflection is routine. �

2.3.2. Putting it together. We can now prove Theorem 6.20:

THEOREM 6.20. Assume σ = σcmpl and all events of S are visible-bounded. There is
a weak isomorphism

σ ≅ σflow ⊚ 〈ǫq | q ∈ Q〉

PROOF. Write τ for the right-hand-side. A configuration of τ corresponds to
a pair [(xq)q∈Q , x f ] with xq ∈ C (ǫq) and x f ∈ C (Sflow). By Lemma 6.21, since
x f contains one minimal question of each Xq at most, each xq further decomposes
in (yq, wq ‖ zq) ∈ Sq × C (CC!Xq) with yq 6= ∅ ⇒ wq 6= ∅. The synchronization

conditions gives us that σflow(x f )
Xq = wq, which shows that wq is redundant

(determined by x f ). Moreover, the hiding condition give us wq = zq.
Define x = x f ∪

⋃
q yq ∈ C (S), consistent by Lemma 6.18, and down-closed

because if yq 6= ∅, q ∈ x f . By the previous remarks, the mapping [(x f , (xq))] 7→ x
is injective since other components are determined from only x.

Conversely, by Lemma 6.18, we can write x ∈ C (S) uniquely in the form

x = x f ∪
⋃

q∈Q

xq

Because the flow is linear, we know that each xq has a unique minimal event.

Hence (xq, σ
Xq
flowx f ‖ σ

Xq
flowx f ) corresponds to a configuration eq of ǫq by Lemma

6.21. Then the configuration [x f , (eq)q] is a configuration of τ as desired. �

If we have a finite reduced form, we can keep applying this decomposition
to argument substrategies of σ. For instance in M, the argument strategy for the
call of g (which corresponds to λ f g. f tt) can still be further decomposed in a flow



168 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

(λ f . f ) with one primary question, and a single argument substrategy λ f g. tt. The
decomposition stops there since λ f g. tt does not contain any primary questions.
What we are left with is a λ-term M that depends on finitely many first order
strategies representing flows of substrategies. This intuition gives the following
lemma:

THEOREM 6.23 (Higher-order definability). Let σ ∈ CHOinn,wb(A) be a finite
strategy. There exists a PCF term x1 : B1, . . . , xn : Bn ⊢ M : A where the Bi are first-order
types, and strategies τi ∈ CHOinn,wb(Bi) such that

σ ≃may JMK⊚ 〈τ1, . . . , τn〉

Remark that M can be assumed without fixpoint: it is in fact a pure λ-term.

PROOF. First, if σ does not satisfy the conditions of Theorem 6.20, we replace
it by the strategy obtained from Lemma 6.16 which is may equivalent to σ.

This is a corollary of Theorem 6.20: the only difficulty is to show that the
decomposition does not actually need product types (unavailable in PCF), as all
considered strategies can be curried. We proceed by induction on the number of
positive moves in the reduced form of σ. If there are none, then M = ⊥ (with
n = 0) satisfies the required condition. Otherwise, we know that

σ ≅ σflow ⊚ 〈ǫq | q ∈ Q〉.

Remember that

ǫq = Γ
〈σq,πi〉
−−−−→ Γq × (Γq ⇒ Xq)

ev
−→ Xq.

Define σq,j = πj ⊚ σq,j : Γ ⇒ Aj for 1 ≤ j ≤ ni. Its currying Λ(σq,j) is a
strategy on A1 ⇒ . . . ⇒ Ap ⇒ Xj. Since its reduced form is strictly smaller
than that of σ (it is a subset of that of σq), it contains less positive moves, and by
induction corresponds to a term Mq,j(~xq,j) and first-order strategies ~τq,j such that
JMq,jK⊚ 〈~τq,j〉. We assume that ~xq,j are disjoint for different j or different q. Then,

Eq := λa1. . . ap. ai (Mq,1 a1 . . . ap) . . . (Mq,ni
a1 . . . ap)

is such that ǫq ≅ JEqK⊚ 〈~xq,j〉j. Finally, we recover, for Q = {q1, . . . , qn}:

σ ≅ Jy Eq1
. . . Eqn

K⊚ 〈σflow, ( ~τq,j)q,j〉

where y is a free variable chosen outside the (~xq,j)q,j (put first in the context). �

3. Intensional full-abstraction for ndPCF

In this section, we compare the observational equivalences on the semantic
side to those on the syntactic side. More precisely, we show that two terms are may
equivalent if and only if any of their interpretations (the parallel or the sequential
one) are may equivalent.

To do so, we leverage the results obtained in the previous sections. The notion
of reduced form allows us to define a notion of finite strategies. Moreover, we have
shown how to use this reduced form to neatly decompose a strategy into a first-
order strategy and “smaller” higher-order strategy. This shows that with innocent
and well-bracketed strategies, there are no higher-order patterns that are not de-
finable in λ-calculus, all the expressive power resides in the first-order strategies.

The outline of this section is as follows:



3. INTENSIONAL FULL-ABSTRACTION FOR ndPCF 169

(1) In Section 3.1, we prove that finite tests have enough discriminating power
to characterise may equivalence.

(2) In Section 3.2, we show how to represent the may equivalence behaviour
of strategies on ground and first-order types, by relations.

(3) In Section 3.3, we show how to define first-order finite strategies in ndPCF.
(4) In Section 3.4, we finally prove full abstraction by assembling the pieces

of the puzzle.

Note that, the hard part about extending the full abstraction result to must
equivalence is point (1).

3.0.1. Observational equivalence. In the category CHOinn,wb, we have a coarser
observational notion of equivalence since there are fewer tests, less behaviours can
be explored:

DEFINITION 6.24. Two strategies in CHOinn,wb(A) are may-equivalent if they
may pass the same tests in CHOinn,wb(A, proc).

A test α ∈ CHOinn,wb(A, proc) is finite when α as a strategy is finite (its re-
duced form contains a finite number of positive move). Naturally, observational
equivalence is a congruence:

LEMMA 6.25. Let σ, σ′ ∈ CHOinn,wb(A, B) such that Λ(σ) ≃ Λ(σ′) and τ, τ′ ∈
CHOinn,wb(B, C) such that Λ(τ) ≃ Λ(τ′). Then Λ(τ ⊚ σ) and Λ(τ′ ⊚ σ′) are obser-
vationally equivalent.

PROOF. Consequence of the CCC structure of CHO. �

3.1. Finite tests. We now proceed to show that finite tests are enough to dis-
tinguish strategies up to may equivalence.

Let σ : S ⇀ !A ∈ CHOinn,wb(A). Write σrf : Srf ⇀ !+A and nfσ : S → Srf.
Given a subset X ⊆ Srf which is maximal for ⊆−, define SX = S ↓ nf−1

σ (X)

(well-defined because nf−1
σ (X) is closed under symmetry).

LEMMA 6.26. The restriction of σ to SX defines a strategy σX ∈ CHOinn,wb(A).

PROOF. Straightforward. (Receptivity comes from X being⊆−-maximal.) �

A strategy of the form σX is called an approximation of σ. If X has a finite
number of positive moves, σX is a a finite approximation of σ.

LEMMA 6.27. Let α ∈ CHOinn,wb(A, B) and σ ∈ CHOinn,wb(A). We have:

• If X ⊆ Y are subsets of the reduced form of α, then C (αX ⊚ σ) ⊆ C (αY ⊚ σ).
• If X is a set of subsets of the reduced form of α then,

C (α⋃X ⊚ σ) =
⋃

X∈X

C (αX ⊚ σ).

PROOF. Straightforward. �

LEMMA 6.28. Let σ, τ ∈ CHOinn,wb(A) such that there exists a α ∈ CHOinn,wb(A, B)
such that α⊚ σ may converge but not α⊚ τ. Then, there exists a finite such α.

PROOF. From Lemma 6.27, it is easy to see that σ may pass α if and only if σ
may pass a finite approximation of α, which entails the result. �



170 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

3.2. First-order extensional behaviour. In this section, we characterize the
may-equivalence behaviour at first-order types, as the equality of some induced
functions. This proves that, up to observational equivalence, our terms have a
functional behaviour. (Or rather, since we are in a nondeterministic world, a rela-
tional behaviour).

3.2.1. Ground types. We start with ground types. For a ground type X, we
write X for the set of values of that type (eg. B = {tt, ff}) and ↓ X for P(X ). We
first show that ↓ X captures the quotient of CHOinn,wb(X) up to may-equivalence:

LEMMA 6.29. There exist a bijection ↓: CHOinn,wb(X)/ ≃may
∼= ↓ X.

PROOF. Given σ ∈ CHOinn,wb(X), define ↓ σ as the set of v ∈ X such that
there is a move labelled v in σ. First, we show it is well-defined. Assume that
σ ≃may τ. If ↓ σ = ∅, then ¬(σ ⇓may). As a result ¬(τ ⇓may) and ↓ τ = ∅.
Otherwise, assume for instance X = B. If tt ∈↓ σ, then σ may pass the test
Jλb. if b tt⊥K. Hence τ may pass this test and tt ∈↓ σ. Similarly for ff hence
↓ σ =↓ τ.

The map ↓ is easily checked to be surjective, so we tackle injectivity now. Let
σ, τ ∈ CHOinn,wb(X) such that ↓ σ =↓ τ and α ∈ CHOinn,wb(X, B). Assume
that α⊚ σ may converge: there is a configuration x of α⊚ σ that contains a positive
move. If Π2[x] ∈ C (α) does not have any positive questions, then α is constant and
α⊚ τ may converge as well. Otherwise, there might be several positive questions,
each of them having an answer (played by σ), yielding finally an answer. Since
↓ σ =↓ τ, both σ and τ can play the same answers and it is easy to extract from
x a configuration y of α⊚ τ which has a positive event, hence proving that τ may
pass α as well, hence ↓ is indeed a bijection. �

3.2.2. First-order strategies as functions. Given σ ∈ CHOinn,wb(X1 × . . . Xn, Y)
we define

↓ σ : P f (X1)× . . . ×P f (Xn)→ P(Y)

(V1, . . . , Vn) 7→ ↓ (σ⊚ 〈↑ V1, . . . , ↑ Vn〉)

where ↑ is the inverse of ↓ on ground types. We need to remember the action
on finite sets of values (representing nondeterministic values), and not a single
value. For instance λx.⊥ and λx. if x (if x⊥ tt)⊥ have the same behaviour on
deterministic inputs, but the latter may converge on x = choice.

In this section, we show the following theorem:

THEOREM 6.30. Two strategies σ, τ ∈ CHOinn,wb(X1 × . . . × Xn, Y) are may-
equivalent if and only if ↓ σ =↓ τ.

The rest of the section is dedicated to the proof. We provide the proof in a
simplified case, where n = 1 as to convey the ideas of the proof clearly.

3.2.3. Question outcome. To prove this result, we look at the reduced form of
tests. By Lemma 6.28, we know we can only consider finite tests α. Consider
a finite α ∈ CHO(X ⇒ Y, B). We write T for the event structure underlying
α, and Trf for the reduced form of T. If q is a question answered by a, we write
[q, a] := {s | q ≤ s ≤ a} for the segment. At order below two, because of innocence
and well-bracketing, this only be contains questions and their answers.

The main difficulty is to show that if σ and τ have the same extensional be-
haviour (↓ σ =↓ τ), then the initial questions of α ⊛ σ and α ⊛ τ have the same



3. INTENSIONAL FULL-ABSTRACTION FOR ndPCF 171

answers. For that, we define a notion of “correct answer” with respect to a func-
tion P f (X ) → P(Y) in Trf, which are the answers due to occur in a pullback
against any σ verifying ↓ σ = f .

Consider a function f : P f (X ) → P(Y). The reverse order >Trf is well-
founded since Trf contains finitely many positive moves, and causal chains s0 _
s1 _ . . . are alternating. By induction on >Trf , we define for each question q ∈ Trf,
a set O f (q) of potential answers as follows:

• If q is positive, then q is the initial question of Y, and by receptivity there
exists a (unique) negative question q1 which is a successor of q. We let

O f (q) = {a | just(a) = q & ∃A1 ⊆ O f (q1), lbl a ∈ f (lbl(A1))}

This is well-defined because O f (q1) is finite as q1 is negative.
• If q is negative, we let

O f (q) = {a ∈ T | just(a) = q

& for q < a′ < a, a′ ∈ O f (just(a′))}.

This is well defined: if a′ < a, well-bracketing entails (via Lemma 6.14)
that just(a′) > q. Note that this set is always finite because Trf has finitely
many positive moves.

This function O(·) assigns to each question of Trf its outcome in any interaction
against a strategy σ implementing f . An answer a of T is correct for f when a ∈
O f (just(a)). Positive question (asked to Opponent) should be answered according
to f (first case), where as negative questions (asked by Opponent) should only be
answered by answers depending previous correct answers.

To prove that this intention is actually met, we define the actual outcome of
a question in the interaction as follows. Given σ ∈ CHO(X, Y) and a question
q ∈ α⊛ σ we define Oσ(q) = {lbl(a) | just(a) = q} which is the set of answers to
q̄. We write p = nf ◦Π2 : α⊛ σ → αrf to project an event of the interaction onto
the reduced form of α. Throughout the proof, we denote events of a pullback with
a bar: q̄, ā, . . . , while their projections by p is simply written q, a, . . .

LEMMA 6.31. For σ ∈ CHO(X, Y) and all q ∈ α⊛ σ, we have

p(Oσ(q)) = O↓σ(pq).

This lemma states that for any question of an interaction with σ, its answer
within this interaction coincide with the answers within Trf correct with respect to
↓ σ.

We proceed to prove Lemma 6.31 by induction on >T .
3.2.4. Lemma 6.31 – Negative case. Let q− be a negative question of α⊛ σ and

q := pq its projection.
Let ā ∈ Oσ(q), and write a := pā. Consider an answer a′ to q′ in [q, a], and

ā′ and q̄′ their corresponding events in [a]. By definition ā′ ∈ Oσ(q̄′) hence by
induction a′ ∈ O↓σ(q′). This proves that a = pā ∈ O↓σ(q).

Conversely, let a ∈ O↓σ(q). If q _ a in Trf, then it is easy to build a corre-
sponding ā ∈ α⊛ σ such that

a = pā ∈ Oσ(q̄)



172 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

Otherwise, [q, a] contains only positive questions and their negative answers
(apart from q and a). By induction each question can be played by τ, and each
answer τ expects will be played by σ, since by induction those answers are correct.
This means all the answers a depends on will be played, and finally τ is able to
play a resulting in the desired event ā ∈ α⊛ σ with pā = a. Hence, a ∈ p(Oσ(q̄)).

3.2.5. Lemma 6.31 – Positive case. Let q ∈ α⊛ σ be a question such that q := pq
is positive. We write q1 for the unique question justified by q in Trf.

Let ā ∈ Oσ(q). To show that a := pā ∈ O↓σ(q), we need to show that a is
a correct answer. Write q1 be the unique question justified by q in Trf. In σ, the
segment Π1[q, a] looks like:

Π1q− _ Π1q0
1 _ a−1 _ . . . _ Π1qn

1 _ Π1a−k _ a.

This very rigid structure is forced by well-bracketing and innocence. Write A1 =
{a′ ∈ [a] | p just(a′) = q1} (which is {a1, . . . , ak} in the example) for the set of
answers provided to σ by α. By definition of ↓ σ we must have lbl(a) ∈ f (lbl(A1)),
as desired.

Conversely, let a ∈ O↓σ(q). We know that there exists A1 ⊆ O↓σ(q1) such that
lbl(a) ∈↓ σ(lbl(A1)). By induction, we know that for each ai ∈ Ai, there exists
āi ∈ α⊛ σ with pāi = ai. They must all be consistent, since they are justified by
different copies of q1. The configuration x = [ā1, . . . , ān] must extend by ā ∈ α⊛ σ
such that ā = a since lbl(a) ∈↓ σ(lbl(A1)). Hence, a ∈ p(Oσ(q)).

3.2.6. Wrapping up. We can now prove Theorem 6.30:

PROOF. (Of Theorem 6.30) If σ ≃may τ, since observational equivalence is a
congruence (Lemma 6.25), we have: ↓ σ =↓ τ.

Conversely, assume that ↓ σ =↓ τ and assume there exists a test α ∈ CHO(X ⇒
Y, B) such that α⊚ σ may converge but not α⊚ τ. By Lemma 6.28, we can assume
that α is finite. Assume qσ and qτ are initial questions of α⊛ σ and α⊛ τ respec-
tively, both projecting to the same initial question q of Trf via p. By Lemma 6.31:

p(Oσ(qσ)) = O↓σ(q) = O↓τ(q) = p(Oτ(qτ)).

However, the left-hand side must be non-empty since α⊚ σ may converge and
the right-hand side must be empty because α⊚ σ is not may-convergent. �

3.3. First-order finite definability. To conclude full abstraction, we need to
prove finite definability. The only ingredient missing is definability on first-order
types. In this section, we consider A = X1 ⇒ . . . Xn ⇒ X a first-order type.

3.3.1. Image of a strategy. We will not prove finite definability up to may equiv-
alence (which is all we need for full-abstraction) but up to a stronger equivalence.
Given a σ : S ⇀ !A ∈ CHOinn,wb(A), its image is the set

i(σ) := {σ[a] | a+ ∈ Srf} ⊆ C (!A)

Unsurprisingly, having the same image is stronger than may equivalence:

LEMMA 6.32. Let σ, τ ∈ CHOinn,wb(A). If i(σ) = i(τ) then σ ≃may τ.

PROOF. Assume i(σ) = i(τ). To show σ ≃may τ, it is enough to show ↓ σ =↓ τ
by Theorem 6.30. By symmetry, we only show ↓ σ ⊆↓ τ (point-wise inclusion).

Let (V1, . . . , Vn) ∈P f (X1)× . . . ×P f (Xn), and y ∈ ↓ σ(V1, . . . , Vn). By defini-
tion this means that there exists a positive answer a with label y in σ⊚ 〈↑ V1, . . . , ↑



3. INTENSIONAL FULL-ABSTRACTION FOR ndPCF 173

Vn〉. As a result, [a] corresponds to a pair of a configuration [aS] ∈ C (σ) and
w ∈ C (〈↑ V1, . . . , ↑ Vn〉) matching on X1 × . . . ×Xn.

Since σ is innocent, [aS] is normal, and by Lemma 6.9, we can assume that
aS is an element of the reduced form. As a result σ[aS] ∈ i(σ) = i(τ), and there
exists aT ∈ Trf such that σ[aT ] = τ[aT ]. As a result, [aT ] and w are matching on
X1 × . . . ×Xn. By the deadlock-free lemma (Theorem 5.35), they correspond to a
configuration [a′] ∈ τ⊚ 〈↑ V1, . . . , ↑ Vn〉 witnessing that y ∈ ↓ τ(x1, . . . , xn). �

3.3.2. Deterministic case. We first prove that finite deterministic strategies are
defined with a method along the lines of [CCW15]. First, we introduce a bit of
vocabulary. Given a deterministic reduced form σ : S→ !+A where A is the arena
of a first-order type, a minimal action is a successor of the unique initial move
of S. Minimal actions are always positive (there are no essential events since σ is
deterministic). If s ∈ S is a minimal action which is an answer, then Srf has only
two elements.

If s is a question, then it is slightly more complicated. Pick s′ a negative move
justified by s. Because A is first-order, s′ is an answer. In that case, we define

S/(s, s′) = S ↓ {s′′ ∈ S | s′′ 6∈ [s′] ∧ ¬(s′′ ♯ s′) ∧ (s′′ > s⇒ s′′ > s′)}.

The third condition ensures that if s′′ causally depends on the question s, then it is
in the branch of s′. Indeed, in S/(s, s′) we only want to keep those events that are
either in a call concurrent to s or in the branch given by the answer s′. Again, we
get a reduced form σ/(s, s′) whose expansion is in CHOinn,wb if that of σ is.

LEMMA 6.33. Let σ ∈ CHOinn,wb(X1 × . . . Xn, X) be a deterministic finite first-
order strategy. There exists a term M of ndPCF such that i(JMK) = i(σ).

PROOF. Write S for the event structure of the reduced form of σ. We proceed
by induction over S. If S has no minimal actions, then σ ∼= J⊥K. Otherwise, pick a
minimal action s ∈ S. There are three cases:

• It is a positive answer with label v ∈ X. As discussed before, Srf
∼= q _ v

in that case, hence: σ ≅ Jλx1. . . xn. vK.
• It is a positive question. Write s1, . . . , sn for the set of negative answers to

s (that exist by receptivity) such that a positive answer lies above them.
Since S is finite, we know that there must be a finite number of such si,
even if the datatype is infinite. Then we get terms M1, . . . , Mn by induc-
tion on σ/(s, s1), . . . , σ/(s, sn). Then it is easy to define a case construct
in ndPCF that will test for the value of the corresponding argument and
plug the corresponding term. Since we have a finite number of cases, we
get a finite term M which satisfies the required condition. �

3.3.3. First-order finite definability – general case. For a nondeterministic strat-
egy, the situation is a bit more complicated. Because we have few axioms structur-
ing conflicts in first-order strategies, an inductive construction as in the determin-
istic case is harder to define. However, we know that the observational behaviour
of such strategies are very simple: they are simply relations.

LEMMA 6.34. Let σ : S ⇀ A ∈ CHOinn,wb(A), and x ∈ i(σ). There exists a
deterministic strategy σx ∈ CHOinn,wb(A) such that i(σx) = {x}.

PROOF. Let σ[a] ∈ i(σ) where a is a positive answer of the reduced form.
Consider the restriction σ : [a] ⇀ !+A. It is almost a valid reduced form: it fails



174 6. INTENSIONAL FULL ABSTRACTION FOR ndPCF

receptivity. Write y for the maximal negative extension of [a] (well-defined as there
are no minimal conflicts involving negative events). It is routine to check that
σ : y ⇀ !+A is an innocent and well-bracketed strategy of nCG

∼=
⊚. Its expansion is

the desired strategy. �

Write sum = Jλxλy. if choice x yK ∈ CHOinn,wb(X × X, X) for any ground
type X, and write σ + τ = sum⊚ 〈σ, τ〉.

LEMMA 6.35. Let σ, τ ∈ CHOinn,wb(A). We have:

i(σ + τ) = i(σ) ∪ i(τ)

PROOF. This is an easy calculation, since configurations of the reduced form
of σ + τ containing at least a positive move are in one-to-one correspondence with
those of the disjoint union of those of σ and τ. �

THEOREM 6.36. Let σ ∈ CHOinn,wb(A) be a finite strategy. There exists a term
⊢ M : A such that JMK ≃may σ.

PROOF. Since σ is finite, i(σ) is also a finite set. By Lemmata 6.33 and 6.34, for
each x ∈ i(σ), there exists ⊢ Mx : A with i(JMxK) ≃may i(σx) = {x}. Then writing

M = if choice Mx1 . . . (if choice Mxn−1 Mxn)

we have
i(M) = i(σx1) ∪ . . . ∪ i(σxn) = i(σ),

by Lemma 6.35. �

3.4. Wrapping up. We can now conclude finite definability:

LEMMA 6.37. Let σ ∈ CHOinn,wb(A) be a finite strategy. Then there exists a term
M such that JMK is observationally equivalent to σ.

PROOF. First, using Theorem 6.23, we know that:

σ ≃may JMK⊚ 〈τ1, . . . , τn〉

where x1 : B1, . . . , xn : Bn ⊢ M : A and τi ∈ CHOinn,wb(Bi) are strategies on a
first-order type. By Theorem 6.36, there exist terms ⊢ Ni : Bi with JNiK ≃may τi.
Then it is easy to see that

σ ≃may JM[Ni/xi]K. �

And, finally, we conclude intensional full abstraction as well:

THEOREM 6.38 (Intensional full abstraction). Both interpretations of ndPCF in-
side CHOinn,wb are intensionally fully abstract.

PROOF. Let M, N be closed terms of type A.
Assume JMK and JNK are observationally equivalent, and let a context C[] dis-

tinguishing them. Since JC[M]K ∼= JC[]K⊚ JMK and JC[N]K ∼= JC[]K⊚ JNK, it follows
that JC[]K distinguishes JMK and JNK by adequacy.

Assume M and N are observationally equivalent. Assume that there exists
a test α ∈ CHOinn,wb(A, proc) that distinguishes them. By Lemma 6.28, we can
choose α so that its reduced form is finite. By applying Lemma 6.37, there exists
a term T such that JTK is observationally equivalent to α. Because observational
equivalence is a congruence, α⊚ JMK ≃may JT MK and α⊚ JNK ≃may JT NK. Then,
applying adequacy, we deduce that T distinguishes M and N which is absurd. �



3. INTENSIONAL FULL-ABSTRACTION FOR ndPCF 175

Extending this result to must equivalence is non-trivial because (a) it is not
clear that finite tests suffice and (b) we need somehow to ensure that everyone is
equivalent to a strategy verifying properties (1) and (2) of Proposition 6.15.

This full abstraction result tells us that that our notions of innocence and well-
bracketing are restricted enough. However we believe that the main argument
in favour of these conditions is Theorem 6.20, and its corollary Theorem 6.23 that
with innocence and well-bracketing, higher-order behaviours are not exotic.





Part 3

Impureté relâchée



In this part, we are interested in modelling programming languages exhibiting
shared memory concurrency. In such languages, there is a way to start several
computations in parallel, and these parallel computations can communicate by
means of a shared memory. Typically, there is a set of “global variables” that each
computation can read and modify. Most semantics for these languages are based
on traces. Using the framework of Part 1, we propose to explore the space of partial
order models of these behaviours. We believe that such partial-orders models have
something to contribute to the semantics of shared-memory concurrency, yet this
is space that is barely explored in the literature.

Related work. Shared-memory concurrency has an interesting history from
the point of view of semantics. One of the first advocates for a formal account of
shared-memory programs was Lamport [Lam79] who defined the first mathemat-
ical model of execution for such programs, called sequential consistency (SC). In this
model, the memory is represented as a server that communicates with the threads.
Threads submit requests to write and read on global variables, and the role of the
memory is to sequentialize these concurrent accesses in a consistent way. Most
of the semantic work (denotational in particular) focused on providing models for
this paradigm: eg. Brookes [Bro96b] proves full-abstraction of a trace-based model
for Parallel Algol, a prototypical language featuring shared-memory concurrency.

Most reasoning techniques (program logics) and models have assumed this
model (and still do, for the most part), even though Lamport already remarks
at the time that this model, albeit rather simple to understand and reason with,
would an induce important performance penalty on any implementations willing
to abide by this specification. As a result, hardware implementing SC is rather
a curiosity nowadays and mainstream technology (phones, laptops, . . . ) features
processors breaking away from this model to achieve adequate performance.

This went a long time underspecified, and recently the semantics community
has started showing interest in providing models for those architectures that break
SC [NSS+]. This led to a long series of work to try and understand the existing
architectures and formalize the existing specifications provided by hardware man-
ufacturers that were often ambiguous or contradicting observed behaviours.

A few families of architectures were studied: TSO (and its variant) used for
instance by Intel, and ARM/POWER, used for instance in most phones nowa-
days. Two kinds of models emerged. On the one hand, operational (eg. [OSS09,
SSA+11]) models based on the description of the architecture as an abstract ma-
chine, and execution is represented as transitions on those states. On the other
hand, axiomatic models [MMS+12, AMT14] axiomatize valid executions via rela-
tional algebra.

The two approaches have their qualities: operational semantics models tend to
be easier to understand as closer to the machine, whereas axiomatic semantics tend
to be more easily experimented with (in particular with the cat tool [AMT14]) and
better for verification purposes as it represents executions by partial-orders.

However, there is very little work on denotational semantics of such hard-
ware. To our knowledge, the only work building on tools of denotational seman-
tics is [JPR12] which presents a trace-based model for TSO. More generally, there
is very little work on compositionality for weak memory models (operational and
axiomatic models are not compositional by design).



179

In this part, we would like to provide an application to the theory we have
been developing in the earlier parts of the thesis, to design new models for these
specifications. We focus on TSO, which is a simple yet relevant weak memory
model, and offers enough interesting behaviours to start testing our framework.

In the next chapters, we will build several models, trying to exploit concur-
rency as much as possible to avoid needless sequentializations. The style of the
following chapters will be more prospective, less thorough, as it tries to under-
stand the specifications from the point of view of our models. We believe we can
already make interesting points even though this work is preliminary.

Plan of the part.
Chapter 7. In this chapter, we give a model abiding by the TSO specification,

inside event structures of a simple assembly language. Because the language is
first-order, there is no need for the game semantics machinery to give an inter-
active and accurate model of it. The chapter defines several models that try to
exploit as much as possible the expressive power of event structures to build more
concurrent (hence more compact) models.

Chapter 8. We recast the constructions used on event structures in Chapter 7
inside our game semantics framework. We show that using strategies and their
composition it is possible to recast the model construction of Chapter 7 to get an-
other point of view. This formulation in terms of strategies represents better the
execution of programs on relaxed architectures and allows for simple tuning by
simply changing the strategies implementing the base operations. This permits
scaling in a simpler way to weaker architectures allowing more reorderings.





CHAPTER 7

Relaxed memory in a first-order setting

Pourquoi nier l’évidente nécessité de la mémoire?

Marguerite Duras, on the necessity of tackling memory models
(Hiroshima mon amour)

The point of this chapter is to study models of shared memory concurrency
within the metalanguage of event structures. To do so, we pick a simple specifi-
cation of shared memory concurrency (TSO) and we explore the space for denota-
tional models in event structures. The main criterion we have in this chapter is to
prevent unneeded sequentializations of concurrent memory accesses, in order to
get representations of the possible executions as compact as possible.

Outline of the chapter. Section 1 introduces our toy assembly language and an
operational semantics respecting the TSO semantics. Section 2 gives a “naive”
interpretation in terms of event structures that is correct with respect to the op-
erational semantics (meaning that the traces of the event structure interpretation
coincide with those given by the operational semantics). Section 3 explores the
space of interpretations of the memory trying to sequentialize as little as possible
the memory accesses in order to avoid the event structure from blowing up.

Contribution of the chapter. The main ideas presented in this chapter were pub-
lished in [Cas16], although the work on the desequentialization of commits is new.

1. An assembly language and its semantics

1.1. Syntax. We first start by introducing an assembly language, whose pro-
grams are parallel composition of threads, and its operational semantics. Consider
a countable set V of global variables, that threads share, and a countable set R of
registers (or thread-local variables) denoting variables local to a thread. The lan-
guage has simple instructions to access the memory. A program is decomposed
into threads which are lists of such instructions:

181



182 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

e ::= (k ∈ N) | (r ∈ R) | . . . (arithmetic expressions)

ι ::= (instructions)

| r ← x | x:= e reads and writes

| mfence barrier

t ::= (threads)

| ǫ

| ι; t

| if (0 == e) { t } { t } conditionals

p ::= t ‖ . . . ‖ t (programs)

Our arithmetic expressions are very limited but can be extended without chang-
ing the model (as long as they are considered up to simplification).

The instruction r ← x is a read of the variable x (onto the register r) and x:= e
a write of the variable x. The mfence instruction, a barrier, is specific to relaxed
memories and controls the propagation of writes to other threads (see Example
7.2). An occurrence of a register r in a write or a conditional is free when not pre-
ceded by a read instruction to r (as a result, the expression r ← x; t can be thought
of binding r inside t). A thread is well-formed if there are no free occurrences of
any register. A program is well-formed if all its threads are well-formed.

EXAMPLE 7.1 (Store-buffering). A classic example for studying the properties
of a multiprocessor architecture is sb, store-buffering:

x:= 1 y:= 1
r ← y s← x

This notation stands for (x:= 1; r ← y; ǫ) ‖ (y:= 1; s← x; ǫ).
In SC semantics, one would expect that at the end of the execution, we have

r = 1 or s = 1. Indeed, one of the writes needs to go first, and the corresponding
read will then read 1. In non-SC semantics, it is often possible to observe r = s = 0
if threads are allowed to have write buffers (or equivalently, are allowed to reorder
independent write/read pairs).

The specification we study in this chapter, Total-Store-Ordering (TSO) exhibits
the outcome r = s = 0. This specification is in particular implemented by Intel
processors, by means of write buffers. However, the semantics of TSO can also be
understood in terms of instruction reordering [BMS10].

To allow the user to flush the buffers (or equivalently, to prevent reorderings),
the TSO specification provides a specific instruction, mfence.

EXAMPLE 7.2 (Fences). To prevent this behaviour from happening, it is nec-
essary to prevent the optimizations of the processors. This is done by means of
an instruction called mfence. It forces the processor to empty its write buffer (ie.
makes the writes available to other threads) – or equivalently, from reordering a
write before the fence with an independent read after the fence. For instance, the
following variation on the program of the previous example:

x:= 1 y:= 1
mfence mfence

r ← y s← x



1. AN ASSEMBLY LANGUAGE AND ITS SEMANTICS 183

does not exhibit the execution leading to r = s = 0 (both fences are necessary).

Fences are used to prevent the processor from performing optimizations, and
as such come with a performance penalty.

1.2. The TSO abstract machine. We describe the standard TSO operational
semantics following [OSS09], formalized as a transition system over machine states.

1.2.1. Machine states. A mental model to keep in mind when thinking about
TSO machines is the following picture:

processor 1 buffer 1

processor 2 buffer 2

processor 3 buffer 2

memory

Each processor has a (write) buffer that intercepts communication between
the processor and the memory. When modelling the system, each component (the
processors, the buffers and the memory) needs to be represented. To simplify
the modelling, it is easier to group the buffers either with the main memory or
with their corresponding processor (as hinted at in the picture). We choose the
latter here as it makes modelling easier. The state of the memory is simply an
assignment µ : V → N of global variables. The state of a processor is a pair (t : b)
of a well-formed thread t to execute and a buffer state b ∈ (V ×N)∗ representing
the list of writes waiting to be committed to the main memory.

Overall, the machine states have the following shape:

σ = 〈(t1 : b1) ‖ . . . ‖ (tn : bn) @ µ〉

where ti is a well-formed thread, bi ∈ (V ×N)∗ a buffer, and µ : V → N a memory
state. If p = t1 ‖ . . . ‖ tn is a program, let σp = 〈(t1 : []) ‖ . . . ‖ (tn : []) @ (_ 7→ 0)〉
be the initial state of the machine corresponding to p (where [] is the empty buffer),
where all variables are set to zero.

1.2.2. Transitions. We can now describe the transitions between machine states
representing the execution of programs on a TSO architecture. The transitions are
given in Figure 1. We comment some of the rules.

(STORE), (IFZ), (IFNZ): By the well-formedness hypothesis, the arithmetic
expressions appearing in the first instruction must not contain any register, hence
must evaluate to a number. Note that this invariant is preserved in (BUFFERREAD)
and (MEMORYREAD) by performing the substitution t[k/r], which goes through t
and substitutes free occurrences of r by k.

(COMMIT): This transition can be performed by any thread which has a non-
empty buffer, to commit the last entry from said buffer.

(FENCE): A fence can only be performed when the buffer is empty, forcing
beforehand the processor to empty its buffer using the (COMMIT) rule.



184 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

STORE

〈. . . ‖ (x:= k; ti : bi) ‖ . . . @ µ〉 −→ 〈. . . ‖ (ti : [(x, k)] ++bi) ‖ . . . @ µ〉

COMMIT

〈. . . ‖ (ti : bi ++[(x, k)]) ‖ . . . @ µ〉 −→ 〈. . . ‖ (ti : bi) ‖ . . . @ µ[x := k]〉

BUFFERREAD
bi = l1 ++[(x, k)] ++l2 x does not occur in l1

〈. . . ‖ (r ← x; ti : bi) ‖ . . . @ µ〉 −→ 〈. . . ‖ (ti[k/r] : bi) ‖ . . . @ µ〉

MEMORYREAD
x does not occur in bi

〈. . . ‖ (r ← x; ti : bi) ‖ . . . @ µ〉 −→ 〈. . . ‖ (ti[µ(x)/r] : bi) ‖ . . . @ µ〉

FENCE

〈. . . ‖ (mfence; ti : []) ‖ . . . @ µ〉 −→ 〈. . . ‖ (ti : []) ‖ . . . @ µ〉

IFZ
k = 0

〈. . . ‖ (if (0 == k) { t } { u } : bi) ‖ . . . @ µ〉 −→ 〈. . . ‖ (t : bi) ‖ . . . @ µ〉

IFNZ
k 6= 0

〈. . . ‖ (if (0 == k) { t } { u } : bi) ‖ . . . @ µ〉 −→ 〈. . . ‖ (u : bi) ‖ . . . @ µ〉

FIGURE 1. Operational semantics of a TSO machine

(MEMORYREAD) and (BUFFERREAD): Those rules are exclusive: when per-
forming a read, either there is an entry in the buffer about the variable we are
reading, or there is not. In the former case, the read reads from the most recent
entry in the buffer, while in the latter case, it reads from memory.

EXAMPLE 7.3 (Message-passing). Consider the following program mp:

x:= 1 r ← y
y:= 1 s← x

One thread writes x (viewed as the data) and then y (viewed as a flag). The
other threads first reads the flag, and then the data. The desired outcome is that
if the second thread sees the flag to one (ie. r = 1), then it sees the update on the
data (ie. s = 1). As a result, we do not want to observe r = 1∧ s = 0.

This property is guaranteed by TSO (without having to add barriers), because
of a subtle property. In TSO, the buffers are totally-ordered meaning that two in-
dependent writes are always committed in the syntactic order they appear in the
program. This means that x will be always committed first. If the second thread
sees the second writes, then it must also see the first one. Moving to partially-
ordered buffers where two writes on distinct variables need not be in the same



1. AN ASSEMBLY LANGUAGE AND ITS SEMANTICS 185

order as in the program yields a weaker architecture, PSO, that allows the out-
come r = 1∧ s = 0.

In general, weaker architectures (ARM/POWER) do not forbid this outcome,
as they allow more general reorderings patterns. Programs making use of this
programming idiom need to add fences to prevent reorderings.

1.2.3. Program equivalence. For µ : V → N, write σµ for the final state in mem-
ory µ: σµ = 〈ǫ : [] ‖ . . . ‖ ǫ : [] @ µ〉. Given a program p, we write final(p) for the
set of final memory states reachable from p:

final(p) = {µ | σp −→
∗ σµ}.

This set characterizes all there is to know about the execution of a closed pro-
gram. We run the program, and observe the memory in its final state. This leads to
a natural contextual equivalence, where the context is given by a program running
in parallel. Two programs p, p′ are contextually equivalent (p ≃ctx p′) when for
all programs q, final(p ‖ q) = final(p′ ‖ q).

1.3. Labelled semantics. Our previous semantics only gives us the final states
reachable by a program but offers no observation of what the program does in the
course in the execution. In particular, it cannot be used to reason about the pro-
gram equivalence defined in the previous section. For these purposes, one often
defines a labelled transition system that permits observing the actions of the pro-
gram via labels on the transitions. Executions become traces of observable events.
Since we want a model that is sound for program equivalence (two programs hav-
ing the same traces are equivalent), the traces need to record enough information
about the execution of the program, in any context. This means in particular, when
issuing a read, we nondeterministically pick a value, since we do not know what
the context could have written before.

We could observe every transition made by the machine, however this records
too much information which is not needed. Informally, processes communicate via
memory, so we only need to record those transitions interacting with the memory:
the instructions (COMMIT) and (MEMORYREAD), leading to these labels

Σ ::= cx:=k | Rx=k.

A thread state is a tuple (t : b) of a syntactic well-formed thread and a buffer

b. We define a LTS (t : b) ℓ
−→ (t′ : b′) where ℓ ∈ Σ ∪ {τ} is an action. The rules

are given in Figure 2. (The τ label on internal transitions is omitted.) For a thread
state (t : b), write tr(t : b) for the set of words ℓ1. . . ℓn ∈ Σ∗ such that

(t : b0)→
∗ (t1 : b1)

ℓ1−→→∗ . . .
ℓn−→ (tn : bn)→

∗ (ǫ : []).

Writing ⋆ for the interleaving of traces, we define the traces of a program p = t1 ‖
. . . ‖ tn to be:

tr(p) = tr(t1 : []) ⋆ . . . ⋆ tr(tn : [])

1.4. Consistent traces and outcomes. Among the traces of a program state p,
many are not reachable without the help of a context to provide the right values.
A trace t ∈ Σ∗ is closed (or consistent) when every read on x of t reads the last
value written on x before it in t, or zero if there is none. Closed traces correspond
to those traces that can occur if a program is left on its own without any context.
Write C for the set of closed traces.



186 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

STORE

(x:= k; t : b) −→ (t : [(x, k)] ++b)

COMMIT

(t : b++[(x, k)])
cx:=k−−→ (t : b)

BUFFERREAD
b = l1 ++[(x, k)] ++l2 x does not occur in l1

(r ← x; t : b) −→ (t : b)

MEMORYREAD
x does not occur in b

(r ← x; t : b)
Rx=k−−→ (t[k/r] : b)

FENCE

(mfence; t : []) −→ (t : [])

IFZ
k = 0

(if (0 == k) { t } { u } : b) −→ (t : b)

IFNZ
k 6= 0

(if (0 == k) { t } { u } : b) −→ (u : b)

FIGURE 2. Labelled transition system for thread states

The outcome µ(t) of a trace t ∈ Σ⋆ is the memory state defined as follows:

µ(t)(x) =

®
k the last commit cx:=k on x in t writes k

0 otherwise

PROPOSITION 7.4. Let p be a program. We have:

µ(tr(p) ∩ C) = final(p).

PROOF. Straightforward induction. �

From this, we deduce:

LEMMA 7.5 (Soundness). For p, p′ two programs with tr(p) = tr(p′), p ≃ctx p′.

PROOF. For any context q, we have:

final(p ‖ q) = µ(tr(p) ⋆ tr(q)) ∩ C

= µ(tr(p′) ⋆ tr(q)) ∩ C = final(p′ ‖ q). �

Note that the converse (akin to a full-abstraction result) does not hold, for
instance r ← x is equivalent to the empty program, even though they do not have
the same traces. This will be of little importance here, as we simply want to be
sure that our labels are rich enough not to lose any behaviours of programs up to
this program equivalence.

2. Modelling TSO using event structures

In this section, we investigate how to replay the previous picture in the set-
ting of event structures. What is the counterpart of the labelled semantics? Of



2. MODELLING TSO USING EVENT STRUCTURES 187

consistent traces? In this section, we replace set of traces over the alphabet Σ by
Σ-labelled event structure:

DEFINITION 7.6. A Σ-labelled event structure is an event structure E equipped
with a labelling function λ : E→ Σ.

A Σ-labelled partial order is a Σ-labelled event structure where all finite sets
are consistent. As a result, partial orders considered in this chapter satisfy the ax-
ioms of event structures; in particular there is a finite number of events below a
fixed event. Usual operations of event structures, in particular parallel composi-
tion, extend to labelled event structures.

2.1. Thread semantics. We start by defining the event structure counterpart
of the labelled semantics. The labelled semantics of Section 1.3 was defined in
terms of a LTS. Even though it is possible to give a definition of the generated
set of traces directly by induction on the syntax of threads, this is not completely
straightforward. Indeed, if we know the traces for a thread t, to deduce the set of
traces of x:= k; t is not completely direct. The write instruction should generate a
commit event, “later in the future”, but how late can it be?

This non-determinism about the actual occurrence of the commits can be el-
egantly expressed using partial-orders. For instance, in the thread x:= k; r ← y,
the commit event arising from the write can occur before or after the read. In the
labelled semantics, this is represented by having both interleavings. However, in
this setting we can represent explicitly the concurrency by declaring that the com-
mit event is concurrent to the read events arising from the read instruction.

To define this new semantics, we need a few operations on event structures.
2.1.1. Generalized prefix. To model writes, reads, or fences, given an event struc-

ture E (representing the continuation of the program) and a label ℓ ∈ Σ (represent-
ing the first instruction), we want to form the event structure ℓ · E where ℓ occurs
first, and then E. However, as we have seen, in the case of write, we do not want
the corresponding commit event to occur before all the events of E, only a subset.
We characterize this subset by their labels, hence we define an operation ℓ ·D E
where D ⊆ Σ is the set of labels of events that need to occur after ℓ.

DEFINITION 7.7. Let ℓ ∈ Σ and E be a Σ-labelled event structure. For D ⊆ Σ,
we define ℓ ·D E as follows:

Events: E ∪ {⊥} where ⊥ 6∈ E.
Causality: The transitive and reflexive closure of

≤E ∪{(⊥, e) | λE(e) ∈ D}.

Consistency: X ∈ Conℓ·DE iff X ∩ E ∈ ConE.
Labelling: λ(⊥) = ℓ and λ(e) = λE(e) otherwise.

As a special case, write ℓ · E for ℓ ·Σ E.
2.1.2. Sum of event structures. When issuing a read, we have seen that we need

to nondeterministically pick a value, as there could be a context providing this
value. This is done by the sum of event structures:

DEFINITION 7.8. For E and E′ Σ-labelled event structures, define E + E′:
Events, Causality, Labelling: That of E ‖ E′

Consistency: X ∈ ConE+E′ when either X = {0} × X0 with X0 ∈ ConE or
X = {1} × X1 with X1 ∈ ConE′



188 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

The sum of E + E′ is very similar to E ‖ E′ except that the two components
are not consistent. This operation extends to countable sums, and given (En)n∈N

a family of labelled event structures, we write
∑

n∈N

En := E0 + E1 + . . .

2.1.3. Causality of commits. Before being able to give the inductive definition
of our semantics, there is one aspect we need to understand. When calculating
the semantics of x:= k; t, which events of the semantics of t depend on the commit
event generated by the write instruction? This is not made explicit by our LTS.
However, we see that:

(1) Any event after a fence needs to occur after the commit, since the fence
forces the commit to be issued before continuing.

(2) Since the buffers are committed in order, any commit arising from a later
write needs to be performed later as well

(3) External read (ie. from the memory) on x can also occur only after the
write has been committed: as long as the write on x is in the buffer, only
internal reads can be performed on x.

Condition (2) and (3) are easily expressed as a set of labels, but condition (1) is not.
This forces us to add an event for fences, hence our labels become:

Σi = Σ | mfence

2.1.4. The inductive definition. We can now define inductively our semantics, as
a Σi-labelled event structure. Since it only deals with threads in isolation (without
any synchronization), we call it the thread semantics, written T (t). It will be
parametrized over a buffer b : V ⇀ N which is a partial map from variables to
values. We will see that we do not need to store the full list.

It is defined as follows:

Empty thread: T (ǫ) = ∅ (the empty event structure)
Fences: Fences issue a mfence event and then carry on:

T (mfence; t)(b) = mfence ·T (t)(⊥),

where ⊥ is the never defined partial function: indeed, after a fence we
know that the buffers are empty.

Reads: The semantics of reads depends on the buffer:

T (r ← x; t)(b) =





∑

n∈N

Rx=n ·T (t[n/r])(b) b undefined at x

T (t[k/r])(b) b(x) = k

+
∑

n∈N

Rx=n ·T (t[n/r])(b \ x)

As for the labelled semantics, there are two cases, whether there is an
entry in the buffer for x or not. If there is not, we have no choice but
to issue a read request to the memory. Otherwise, there are two choices:
either we perform an internal read, or, we decide to remove the entries
on x in the buffer (committing them) and issue a request.



2. MODELLING TSO USING EVENT STRUCTURES 189

Writes: Let Dx = {mfence, cy:=k, Rx=k | y ∈ V , k ∈ N}. We let:

T (x:= k; t)(b) = cx:=k ·Dx T (t)(b[x := k]).

Conditionals: We simply check the condition:

T (if (0 == k) { t } { u })(b) =

®
T (t)(b) (k = 0)

T (u)(b) (k 6= 0)

In this definition, we wrote b[x := k] for the partial function defined at x with
value k and behaving as b elsewhere; and b \ x for the partial function undefined
at x and behaving as b elsewhere. For instance, the interpretation T (sb)([]) of sb
(Example 7.1) is:

cx:=1 Ry=0 Ry=1 cy:=1 Rx=0 Rx=1

Notice that the syntactic dependences between the writes and the next read
have been broken as they are not preserved by the processors.

2.1.5. Correctness. We now show that our semantics is correct: the traces of
T (t) coincide with the traces generated by the LTS. However, T (t) includes ex-
traneous mfence events. We hide them via the projection of event structures:

T (t) = (T (t)([])) ↓ λ−1(Σ)

where [] is the partial map nowhere defined.
First, we formally define traces of an event structure.

DEFINITION 7.9 (Trace of an event structure). Let q be a Σ-labelled partial
order. A trace of q is a sequence λ(e1). . . λ(en) such that

∅
e1
−−⊂{e1}. . .

en
−−⊂{e1, . . . , en} = q

is a covering chain of q. The set of traces of q is written tr(q). We write tr(E) for⋃
x∈C (E) tr(x) for a Σ-labelled event structure E.

PROPOSITION 7.10. Let t be a well-formed thread. We have:

tr(T (t)) = tr(t : []).

PROOF. To show this statement, we need to show a more general statement.
Given a buffer state b = [(x1, k1), . . . , (xn, vn)] ∈ (V ×N)∗, we write

tb = (x1:= k1; . . . ; xn:= kn)

By induction on t, we show for every buffer state b ∈ (V ×N)∗

tr(T (tb; t)) = tr(t : b).

Conditionals: straightforward
Fences: Since fences force earlier commits to occur, we have

tr(T (tb; mfence; t)) = cx1 :=k1
· . . . · cxn :=kn

·T (t)

= tr(mfence; t : b)



190 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

Writes: We have:

tr(x:= k; t : b) = tr(t : b++[(x, k)])

= tr(T (tb++[(x,k)]; t))

= tr(T (tb; x:= k; t))

Reads: We prove this result by a sub-induction on b. If b is empty, the result
is trivial. Otherwise, write b = b′ ++[(y, k)].

If x does not occur in b, we have:

tr(r ← x; t : b)

= cy:=k · tr(r ← x; t : b′) ∪
⋃

n∈N

Rx=n · tr(t[n/r] : b)

{ Induction on b and t respectively }

= cy:=k · tr(T (tb′ ; r ← x; t)) ∪
⋃

n∈N

Rx=n · tr(T (tb; t[n/r]))

{ Simple examination }

= tr(T (tb; r ← x; t))

The last equality follows from x not occurring in b, y 6= x, and the event
cy:=k being concurrent to the read events on x.

If x occurs in b with value k, we have:

tr(r ← x; t : b) = cy:=k · tr(r ← x; t : b′) ∪ tr(t[k/r] : b)

{ Induction on b and t respectively }

= cy:=k · tr(T (tb′ ; r ← x; t)) ∪ tr(T (tb; t[k/r]))

= tr(T (tb; r ← x; t))

Once again, the last line is a careful examination of the shape of

T (tb; r ← x; t). �

2.2. Causal justification of the memory. In the world of traces, to recover the
correct executions from the labelled semantics, it is enough to consider the inter-
section of the traces from the program with a set of traces that we consider exhibit-
ing a consistent memory behaviour. In the end, we get a set of traces describing
the valid executions of a program.

In this partial-order world, we can do better and provide a causal justification
for the behaviour of the memory. For instance, in the store buffering example, we
know that Rx=1 can occur, but only after cx:=1 has occurred (since it is an external
load). More precisely, we would like to sum up the memory behaviour of a closed
program with an event structure.

In our setting, we can look at memory behaviours that do not completely se-
quentialize memory accesses. Intuitively, the purpose of the memory is to en-
sure that the threads all see a consistent sequentialization of the memory accesses.
However, as long as the memory does not get caught, ie. threads observing an
inconsistency, all accesses do not need to be actually sequentialized.



2. MODELLING TSO USING EVENT STRUCTURES 191

2.2.1. Sets of execution versus event structures. In traces, it is easy to describe
the consistent memory behaviours, leading to the notion of consistent traces. Such
a notion can be defined inductively (at each step, we allow any write, or a consistent
read, ie. a read that reads the last written value on the same variable before in the
trace) or globally (a trace is consistent when it does not contain any inconsistent
read). To get the consistent executions of a closed programs, we then intersect the
labelled semantics with consistent traces.

Event structures are easily built inductively (as for the thread semantics), how-
ever the behaviour of a concurrent memory is not easily defined by induction: it
is more easily described as a set of executions (partial orders) satisfying a global
correctness criterion. Remember that any event structure induces a set of partial
orders C (E). If a set of partial orders is closed under prefix (intuitively if correct-
ness is “local enough”) then we can go back to an event structure by means of
prime constructions (Definitions 7.16 and 7.23).

As a result, in the rest of chapters, we will formalize memories as sets of partial
orders first, and then unfold these sets to event structures. Along the way, we will
need to understand the structure of the sets of partial orders we consider, which
leads to the notion of rigid families (Definition 7.15), the key notion that makes the
development go through.

The rest of the chapter is dedicated to building more and more concurrent
memories (Definitions 7.11, 7.29 and finally 7.33) which are all equivalent (i.e.
given a program p, they all predict the same final states), but differ by the amount
of sequentializations they impose on concurrent memory accesses. In all cases, we
build first a set of partial-order, and then go back to event structures as defining
directly the event structures is a difficult task.

To illustrate this methodology of going back and forth between sets of exe-
cutions and event structures and introduce the theoretical tools needed, we start
with a simple “memory”, which is still very much sequential, before trying to see
how to improve it (Section 3).

2.2.2. Consistent partial-orders. Consistent traces generalize naturally to con-
sistent (Σ-labelled) partial-orders:

DEFINITION 7.11 (Consistent partial-order). A Σ-labelled partial order q is
consistent when it satisfies:

(1) Two events (reads or commits) on the same variable in q are comparable
for ≤q,

(2) If e ∈ q has label Rx=k, then the latest write on x below e (well-defined
because of (1)) writes k to x.

This definition is quite conservative; as it asks that the history at each variable
is linear. We will see later on that we can do better. In the meanwhile, we have:

LEMMA 7.12. Traces of a consistent Σ-labelled partial order are consistent.

PROOF. Straightforward (and corollary of Lemma 7.30 proved later). �

Write Qc for the collection of consistent partial-orders. Given a program p, to
combine T (p) with Qc, we look at causal enrichments of T (p) that are in Qc:

DEFINITION 7.13 (Causal enrichment). A Σ-labelled partial order q is a causal
enrichment of another partial order q′ (notation q E q′) when they have the same
support, and the identity map q→ q′ is a monotonic map.



192 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

We write ⊳ for the strict version of ⊳: q ⊳ q′ when q E q′ and q 6= q′.

Remark that when q E q′, we have tr(q′) ⊆ tr(q).
Given q a Σ-labelled partial order, a causal justification for q is a partial order

q′ ∈ Qc such that q E q′. It is minimally so when there exists no q ⊳ q′′ ⊳ q′ with
q′′ ∈ Q. Write j(C (E)) for the set of q ∈ Qc such that there exists x ∈ C (E) of
which q is a minimal causal justification. Note that x must be unique, since its
support is that of q.

2.2.3. Rigid families. This set of partial orders has a very specific property: it is
closed under prefix.

DEFINITION 7.14 (Prefix ordering). Let q, q′ be two Σ-labelled partial orders.
If the support of q is included in that of q′, and the identity map q → q′ pre-
serves and reflect labels and causality, then q is a prefix (or rigid embedding) of
q′ (written q →֒ q′).

Note that to give a prefix of a partial order q, it is enough (and sufficient) to
give a down-closed subset of its support.

DEFINITION 7.15 (Rigid family, [Hay14]). A rigid family is a set Q of Σ-
labelled partial orders which is downward closed for the prefix ordering (if q →֒
q′ ∈ Q, then q ∈ Q).

Any rigid family can be turned into an event structure by means of the prime
construction:

DEFINITION 7.16 (Prime construction). Let Q be a rigid family. We construct
the event structure Pr(Q) as follows:

Events: those partial orders in Q with a top element (called primes of Q),
Causality: prefix ordering,
Consistency: a finite subset X of primes of Q is consistent when there exists

q′ ∈ Q such that for all q ∈ X, q is a prefix of q′.

The fundamental property of this construction is the following:

LEMMA 7.17. For any rigid family Q, there is an order isomorphism:

C (Pr(Q)) ∼= Q,

where the right hand side is ordered by prefix.

PROOF. The isomorphism maps a q ∈ Q to the set {q′ ∈ Pr(Q) | q′ →֒ q}.
Conversely x ∈ C (Pr(Q)), there exists q′ ∈ Q such that elements of x are prefixes
of q′. Write q for the prefix of q′ defined by the subset of q′ corresponding to

⋃
x.

It is in Q because Q is a rigid family. The map x 7→ q gives the desired inverse. �

By analogy with event structures, given a collection of partial orders Q, define

tr(Q) =
⋃

q∈Q

tr(q).

2.2.4. Closed semantics of programs. We have now every needed to define the
semantics of closed programs. Given a program p, we first consider T (p) which
contains all the executions p that can occur in an open context: reads of p read
from the environment. Since we consider that p is closed, we are only interested
in the executions where the reads of p are actually justified by an early write of



2. MODELLING TSO USING EVENT STRUCTURES 193

p: this is captured by the set of executions j(T (p)). From there, we can recover
an event structure via the prime construction. Henceforth, we define the closed
semantics of p as follows:

JpK = Pr(j(T (p)))

This is correct with respect to the trace semantics:

LEMMA 7.18. For p a program, we have:

tr(p) ∩ C = tr(JpK)

PROOF. A trace of JpK is both a trace of a configuration x of T (p), and of a
consistent causal enrichment of x. By Proposition 7.10 and Lemma 7.12, it belongs
to tr(p) ∩ C, as desired.

Conversely if w ∈ tr(p) ∩ C, there exists x ∈ C (T (p)) such that w ∈ tr(x).
Moreover since w ∈ C, we can regard it as a (linearly ordered) consistent partial
order, which is a causal enrichment of x by definition. The justification x E w
might not be minimal but we can extract a minimal one x E q E w. As a result, q
corresponds to a configuration of JpK, of which w is a trace. �

EXAMPLE 7.19. Computing JsbK, the semantics of store-buffering, gives:

cx:=1 cy:=1

Ry=0 Ry=1 Rx=1 Rx=0

cy:=1 cx:=1

Rx=1 Ry=1

The memory sequentializes reads and writes on each variable.

2.3. Interaction with the memory. The operation defined in the previous sec-
tion captures the intended notion of causal justification. It is however not a very
familiar operation; in particular it does not fit very well in the semantic framework
presented so far in the thesis. Moreover, it does not quite correspond to what is
done in traces: to get the traces of p, we need to intersect the labelled semantics of
p against a set of valid traces. We would like to define JpK in a similar way, arising
as the interaction of T (p) and an event structure describing the memory.

2.3.1. Product of labelled event structures. In the first part of the thesis, we have
seen how to define the interaction of strategies by means of a pullback-like con-
struction on maps of event structures. This pullback-like construction can be seen
as a product of maps. To transfer the intuitions from the higher-order setting to this
first-order setting, we need to compute the product of labelled event structures. It
turns out that the two constructions are extremely similar.

Consider Q and Q′ two sets of Σ-labelled partial orders. An interaction state
between Q and Q′ is a secured bijection ϕ : q ≃ q′ between partial orders q ∈ Q

and q′ ∈ Q′ such that ϕ preserves labelling. Remember that in this case, ϕ inherits
a partial order defined as ≺∗ where (s, t) ≺ (s′, t′) when s < s′ or t < t′.

In the previous chapters, to define the interaction of strategies, we did not
need to carry explicitly the bijection since it was induced by local injectivity, but
here it is part of the structure. Note that, up to isomorphism, the partial order ϕ is



194 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

a causal enrichment of q and q′. Define Q ⋆ Q′ to be the set of interaction states
of Q and Q′. Since secured bijections are equipped with a partial order relation,
Q ⋆Q′ is a set of partial orders.

LEMMA 7.20. If Q and Q′ are rigid families, then Q ⋆Q′ is a rigid family.

PROOF. Let ϕ : q ≃ q′ ∈ Q ⋆ Q′. Let ψ →֒ ϕ be a prefix of ϕ. Since ϕ is
the graph of a bijection, ψ is a graph of a bijection q0 ≃ q′0. Since ψ is downward
closed in ϕ and ϕ is a causal enrichment (up to isomorphism) of q and q′, it follows
that q0 and q′0 are downclosed in q and q′ respectively. Since Q and Q′ are rigid
families, this implies that q0 ∈ Q and q′0 ∈ Q′, hence ψ ∈ Q ⋆Q′. �

Elements of Q ⋆Q′ can be seen as compatible superpositions of elements of Q

and Q′. For instance, the configuration of JsbK (Example 7.19)

cx:=1 cy:=1

Ry=1 Rx=1

can be seen as the superposition:

cx:=1 cy:=1 cx:=1 cy:=1

≃

Ry=1 Rx=1 Ry=1 Rx=1

of causal links coming from the program (left) and the memory (right).
As a result, traces of the superposition are traces of both partial orders:

LEMMA 7.21. Let Q, Q′ be collections of partial orders (not necessarily closed under
prefix). We have:

tr(Q ⋆Q
′) = tr(Q) ∩ tr(Q′)

PROOF. For ϕ : q ≃ q′ ∈ Q ⋆ Q′, we have tr(ϕ) ⊆ tr(q) ∩ tr(q′) ⊆ tr(Q) ∩
tr(Q′) as ϕ causally enriches q and q′. This proves tr(Q ⋆Q′) ⊆ tr(Q) ∩ tr(Q′).

Conversely, let t ∈ tr(q) ∩ tr(q′) with q ∈ Q and q′ ∈ Q′. Write the covering
chains of q and q′ corresponding to t:

∅
e1
−−⊂ . . .

en
−−⊂q

∅

e′1
−−⊂ . . .

e′n
−−⊂q′

By construction, the function ϕ : q → q′ mapping ei to e′i is a label-preserving
bijection. It is easy to see that ϕ is secured and that t ∈ tr(ϕ) ⊆ tr(Q ⋆Q′). �

Given an event structure E, we can always recover a rigid family by consid-
ering its domain of configurations C (E), each configuration being equipped with
the order induced by E. This prompts the following definition:

DEFINITION 7.22 (Product of event structures). For E, E′ Σ-labelled event
structures, their product is defined as:

E ⋆ E′ = Pr(C (E) ⋆ C (E′)).



2. MODELLING TSO USING EVENT STRUCTURES 195

Note in passing that this operation is the categorical product in the category
of Σ-labelled event structures and label-preserving maps.

From Lemma 7.21, we have tr(E ⋆ E′) = tr(E) ∩ tr(E′) so this operation nicely
generalizes the intersection on sets of traces.

2.3.2. Describing the memory as an event structure. To complete the picture, we
simply have to describe the memory as a single event structure that will inter-
act with T (p). First, notice that consistent partial orders are closed under prefix,
hence form a rigid family Qc. However, there is an awful lot of them since each
partial order has an infinite number of isomorphic copies. A Σ-pomset is an equiv-
alence class of Σ-labelled partial orders modulo isomorphism. The prefix order on
partial orders naturally induces a partial order on pomsets (also called prefix).
Moreover, if Q is a rigid family stable under isomorphismα , then one can see it as
a set of pomsets, and we will abuse the notation this way. Pomsets can be used to
tweak the prime construction:

DEFINITION 7.23 (Prime construction, up to iso). Let Q be a rigid family
closed under isomorphism. The event structure Pr∼=(Q) is defined as follows:

Events: those pomsets q ∈ Q that have a top element (primes of Q),
Causality: prefix ordering,
Consistency: a finite subset X of primes of Q is consistent when there exists

a pomset q′ of Q such that for all q′ ∈ X, q is a prefix of q′.

As for the usual prime construction, there is map Q → C (Pr∼=(Q)) analogous
to the one of Lemma 7.17 which is surjective, but not injective. However, two
partial orders of Q give rise to the same configuration of C (Pr∼=(Q)), if and only
if they are isomorphic. As a result, this map induces an isomorphism:

Q/∼= ∼= C (Pr∼=(Q)).

Since Qc is stable under isomorphism, it induces an event structure Pr∼=(Qc).
However, there are still too many configurations.

EXAMPLE 7.24. Consider the simple program x := 1 ‖ y := 1. Because
(cx:=1 cy:=1), cx:=1 _ cy:=1 and cy:=1 _ cx:=1 are all consistent pomsets, the
product T (p) ⋆ Pr∼=(Qc) looks like:

cx:=1 cy:=1

cy:=1 cx:=1

as the unique maximal configuration cx:=1 cy:=1 of T (p) can synchronize with
the three consistent partial orders listed above.

The presence of cx:=1 _ cy:=1 and cy:=1 _ cx:=1 in Qc is superfluous since we
know already that (cx:=1 cy:=1) ∈ Qc. We would like to only keep the elements of
Qc that have no superfluous causal links, ie. that are minimal for E.

α There is a slight issue of sizes here, since strictly speaking no rigid families can satisfy this prop-
erty and be a set. In this chapter, we voluntarily remain vague on this aspect so as to avoid technicalities.
There are two possible ways of formally handling the problem. The first one is to consider a fixed set
of names (eg. N) and ask that the support of all our partial orders should be included in this set. The
other one is to define rigid families as presheaves over the category of Σ-labelled partial orders and
rigid maps of event structures (ie. maps preserving causality).



196 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

Given a rigid family Q, we define

min(Q) = {q ∈ Q | ∀q′ ∈ Q, q′ E q⇒ q = q′},

the set of E-minimal events of Q. In general it is not a rigid family [CC16].

LEMMA 7.25. A consistent q ∈ Qc is minimal if and only if for every causal link
e _ e′ of q, e and e′ target the same variable.

PROOF. If q ∈ Q is minimal, and we have e _ e′ which do not target the
same variable, then we can remove this causal link without breaking consistency.
Conversely, if the only causal links are between events on the same variable, none
can be removed without breaking consistency. �

Hence the structure of minimal consistent partial orders is very simple: it is a
parallel composition of linear histories for different variables.

LEMMA 7.26. The set min(Qc) is a rigid family.

PROOF. Consequence of Lemma 7.25. �

Write E = Pr∼=(min(Qc)). From Lemma 7.12, it is easy to derive that tr(E ) =
C. As a result,

tr(T (p) ⋆ E ) = tr(T (p)) ∩ C

and µ(tr(T (p) ⋆ E )) = final(p). However, we can show a stronger result:

THEOREM 7.27. For any program p, there is an (label-preserving) isomorphism:

T (p) ⋆ E ∼= Pr(j(T (p))) (which is equal to JpK)

PROOF. We use Lemma 2.50 to bring the statement at the level of configura-
tions. By Lemma 7.17 applied twice, this amounts to building an iso:

C (T (p)) ⋆ C (E ) ∼= j(T (p)).
Left-to-right. An element of C (T (p)) ⋆ E corresponds to a secured bijection

ϕ : x ≃ y between x ∈ C (T (p)) and y ∈ min(Qc). Remember that ϕ is a partial-
order, and we have a bijection ϕ ≃ x. Through this bijection, ϕ induces a partial
order qx on the support of x such that qx

∼= ϕ. It is easy to see that qx is a causal
justification of x, since x E qx. The hard part is showing that qx is a minimal one.

Assume that we have x E q E qx with q consistent. Assume that there is
a causal link e _qx

e′ missing from q. Since q is consistent, this causal link is
between two events targeting different variables. It cannot come from x since x E
q, so it must come from y. This means that y has an immediate causal link between
events targeting different variables – this contradicts Lemma 7.25 as y is minimal.
This proves that qx ∈ j(T (p)).

As a result, this construction induces a monotonic map

C (T (p)) ⋆ C (E )→ j(T (p))).

Right-to-left. By Lemma 7.17, configurations of the right hand side correspond
to q ∈ Qc such that there exists a unique x ∈ C (T (p)) with q a minimal causal
justification of x. Consider y defined from q by only keeping the causal links
between events targeting the same variable. By construction, q′ ∈ Q. Moreover,
there is a bijection ϕ : x ≃ y, which is easily shown secured, such that, as partial
orders, we have the isomorphism ϕ ∼= q. Mapping q to ϕ gives the desired inverse.

�



3. DESEQUENTIALIZING MEMORY ACCESSES 197

This theorem shows that we can express this causal justification as an interac-
tion against a memory. This point of view will be very fruitful in the next chapter
where we move to the world of strategies.

3. Desequentializing memory accesses

In this section, we investigate improvements to the rigid family representing
the memory introduced in Section 2.3.2. By forcing the operations on a common
variable to be linearly ordered, it leads to a blowup of the final event structure that
is not always needed. Indeed, even though every execution will actually exhibit
a total order on writes (as guaranteed by TSO), the memory can be smarted and
does not to sequentialize all the writes.

EXAMPLE 7.28. Consider the simple program x := 1 ‖ x := 2. Its thread
semantics is simply cx:=1 cx:=2, consisting in two concurrent events. After syn-
chronization with the memory, JpK is slightly more complicated:

cx:=1 cx:=2

cx:=2 cx:=1

For this program, moving to event structures did not help, since the resulting
event structure does not exhibit any concurrency. We remark however, that this
event structure has the same traces as:

cx:=1 cx:=2

which exhibits more concurrency (and as a result is smaller).

The interesting point is that, as long as no one observes in which order the
writes have been performed, there is no need to sequentialize them. In this section,
we propose to change the notion of consistency in order to relax the assumption
that two events operating on the same variable must be comparable.

3.1. Considering only from-read and reads-from. An easy improvement on
Q is to only order writes and reads on the same variable. Since the end goal is only
to exhibit consistent traces, the order of writes does not matter, only their order
relative to the reads. This prompts us to replace the first axiom of consistency for
partial orders by a weaker version:

DEFINITION 7.29. A Σ-partial order q is pre-consistent when it satisfies:
(1) if e ∈ q has label Rx=k, then either there are no commits on x in [e] and

k = 0, or there is a top one, that writes k to x.
(2) a read on x and a write on x are comparable for ≤q

Write Q′c for the set of pre-consistent partial-orders.

This is clearly a rigid family. Moreover, it is easy to see that q ∈ Q′c is minimal
when it only contains immediate causal links between a read and a write on the
same variable. As a result, min(Q′c) is also a rigid family, and we can consider for
a program p, the event structure

T (p) ⋆ Pr∼=(min(Q′c)).

We observe that, doing so we have not lost any traces:



198 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

LEMMA 7.30. We have tr(Q′c) = C, and as a result

µ(tr(T (p) ⋆ Pr∼=(min(Q′c)))) = final(p).

PROOF. The final result comes from Lemma 7.21.
If t ∈ C, then t can be regarded as a Σ-partial order t̄. Since it is linearly

ordered, it follows that t̄ ∈ Q′c. Since t ∈ t̄, t ∈ tr(Q′c).
Conversely assume t ∈ tr(q) for q ∈ x. Assume that t is not consistent. There

are two cases.
If there exists a read on x in t not preceded by any commit on x that reads

a non-zero value, then there are no commits below this read in q contradicting
axiom (1) of pre-consistency.

Otherwise there exists a read r on x which reads k but the last commit c in t
before r writes k′. Since c appears before r in t, we cannot have r ≤q c. Moreover,
as q is pre-consistent, r and c cannot be concurrent by axiom (2), hence c ≤ r. Then
by axiom (1) of pre-consistency c is below the commit that commits the value seen
by r, yet it does not appear in t between c in r: absurd. �

As a result, even though we do not have an isomorphism:

T (p) ⋆ Pr∼=(min(Qc)) 6∼=T (p) ⋆ Pr∼=(min(Qc)),

both event structures have the same traces. At this point, if we want to keep the
constraint that we want a rigid family whose traces are consistent, there is not
much space for improvement since condition (2) is exactly what ensures the con-
sistency of traces. A little optimization could be to ask that reads and writes on the
same variable with different values be comparable. But not much else can be done.

3.2. Observing the coherence order. Consider the program p = x:= 1 ‖ x:= 2 ‖
r ← x. If we compute its semantics according to the previous section, we get:

cx:=1 cx:=2 Rx=0

Rx=1 cx:=2 Rx=2 cx:=1 cx:=1 cx:=2

cx:=2 Rx=2 cx:=1 Rx=1

which features little concurrency. Only when we read x = 0, we know that both
writes can occur after the read in any order. All these conflicts and sequentializa-
tion are necessary to ensure that the read is stuck in between the right writes so
as not to observe any inconsistent traces. However, if we are ready to relax these
assumptions, we can obtain the following event structure:

cx:=1 cx:=2

Rx=1 Rx=2 Rx=0

This event structure has non-consistent traces, for instance cx:=1 · cx:=2 · Rx=0,
but it can be reordered to Rx=0 · cx:=1 · cx:=2 which is still a trace of the same con-
figuration. As a result, the final outcomes predicted by this event structure (in the
end, either x = 1 or x = 2) agree with the predictions of the operational semantics.

This means that we allow ourselves to build a rigid family whose traces are
not all consistent. However, given a trace of a particular partial order in the family,



3. DESEQUENTIALIZING MEMORY ACCESSES 199

it must be that it can be reordered to a consistent trace without altering the order
of commits. This ensures that the final outcomes (memory state) are not affected.

What do we need to fix if we drop axiom (2) of pre-consistency? Let us exam-
ine two examples illustrating inconsistent behaviours that become allowed when
removing axiom (2).

EXAMPLE 7.31. Remember the message-passing example (Example 7.3):
x:= 1 r ← y
y:= 1 s← x

On TSO, we cannot observe s = 0∧ r = 1. The partial order ql :r

cx:=1 Ry=1

cy:=1 Rx=0

does not satisfy axiom (1) of pre-consistency. However, this argument is not enough
to ensure that the behaviour does not occur without (2). Nothing forces the intra-
thread causality to be considered when checking if a partial order is consistent. As
a result, the following is minimal satisfying condition (1) of pre-consistency:

cx:=1 Ry=1

cy:=1 Rx=0

Writing Q(1) for the rigid family of partial orders satisfying condition (1), the par-
tial order ql does arise in T (mp) ⋆ Pr∼=(min(Q(1))) as the superposition of:

cx:=1 Ry=1 cx:=1 Ry=1

cy:=1 Rx=0 cy:=1 Rx=0

The problem here is due to the memory not being forced to observe the order
in which threads send their messages. In reality, the main memory sees in which
order each thread sends its requests, so we should force partial orders to observe
these intra-thread causal links.

EXAMPLE 7.32. Consider the following program:
x:= 1 y:= 1 r ← x s← y

r′ ← y s′ ← x

Since the commits need to be performed in a fixed order, we cannot observe r =
1 ∧ r′ = 0 (meaning the commit on x was done first) and s = 1 ∧ s′ = 0 (meaning
the commit on y was done first). However, the following partial order satisfies
axiom (1) (and moreover sees the intra-thread causal links):

cx:=1 cy:=1 Rx=1 Ry=1

Ry=0 Rx=0

Because our conditions are so lax, nothing prevents the two writes from being
concurrent hence to be observed in different orders by two different threads.



200 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

3.3. A new rigid family. To work around those issues, we need to replace
condition (2) of pre-consistency by two weaker conditions. One to ensure that
consistent partial orders observe enough of the program order, and another to
make sure that there are enough causal dependence between writes to prevent
inconsistency between observations.

3.3.1. Adding thread-id information. To formulate the first condition, we need
to add thread-id information to the labels as the conditions rely on them. Given
a function f : Σ → Σ′ and a Σ-labelled event structure (E, lblE : E → Σ), we
can form a Σ′-labelled event structure (E, f ◦ lblE) that we write f̄ (E). We define
then an alternative thread semantics which annotates events with the id of the
corresponding thread:

T id(t1 ‖ . . . ‖ tn) = p1(T (t1)) ‖ . . . ‖ pn(T (tn))

where pi(ℓ) = (i, ℓ). Consequently, T id(p) is a (N× Σ)-labelled event structure.
If k ∈ N and ℓ ∈ Σ, we will write (k : ℓ) ∈ N× Σ for the corresponding label.

3.3.2. Formulating the conditions. Having the right labels, we can formulate
the conditions for weak consistency. An independent read/write pair is a pair
of events (e, e′) such that one is a read and the other a commit on different vari-
ables. Such pairs are not (immediately) ordered by the thread semantics so should
not be ordered by the storage semantics either.

DEFINITION 7.33. A (N×Σ)-labelled partial order is weakly consistent when:

(1) if e ∈ q has label Rx=k, then either there are no commits on x in [e] and
k = 0, or there is a top one, written j(e), that writes k to x,

(2) two events e, e′ ∈ q occurring on the same thread are comparable when
they are not an independent read/write pair,

(3) if r ≤q r′ with r and r′ reads on different variable, and w a commit on the
same variable as r′, then j(r) ≤ w.

Axiom (2) prevents the memory from not observing the causality intra-thread,
and (3) forces the observation made by the program to be reflected in the causal
order. This is enough to kill example 7.32 as the partial order:

(1 : cx:=1) (2 : cy:=1) (3 : Rx=1) (4 : Ry=1)

(3 : Ry=0) (4 : Rx=0)

is not valid anymore, and cannot be extended to a valid one: Rx=1 ≤ Ry=0 implies
that we must have cx:=1 ≤ cy:=1, and similarly we should have cy:=1 ≤ cx:=1. It
is straightforward to check that the collection of weakly consistent partial orders
forms a rigid family Qw.

3.3.3. Correctness. We now show correctness of these axioms. We start by es-
tablishing an important property of minimal weakly consistent partial orders:

LEMMA 7.34. Let q ∈ min(Qw). Assume e _ e′ where e′ is a read on x. Then, one
the following is true:

• e is a commit on x
• e is a read on the same thread of τ.



3. DESEQUENTIALIZING MEMORY ACCESSES 201

PROOF. Assume both propositions are false: e is either a commit on a different
variable, or a read on a different thread. Consider the partial order q′ := (q,≤q
\{(e, e′)}) E q. It is easily seen to be weakly consistent, hence a contradiction. �

LEMMA 7.35. Let q ∈ min(Qw) be a minimal weakly consistent partial order, and
t = ℓ1 · . . . ℓn a trace of q. There exists a mapping f : {1, . . . , n} → {1, . . . , n} such that

(1) ℓ f (1) · . . . · ℓ f (n) is a consistent trace of q

(2) if ℓi and ℓj are commits and i < j, then f (i) < f (j).

PROOF. Write ∅
e1
−−⊂ . . .

en
−−⊂ = q for the covering chain corresponding to t.

We prove the result by induction on the number of inconsistent reads in t (ie.
reads that do not read the last committed value according to t). If there are none, t
is consistent and f can be the identity.

Otherwise, in t there is a commit cx:=k (corresponding to ec in q) and later, a
read Rx=k′ (corresponding to er in q) with k 6= k′ with no commits on x in between.
Note that we cannot have ec ≤ er because this implies ec < j(er) but there are no
commits on x in t between ec and er.

If er is concurrent with the events ec, ec+1, . . . , er−1, we can put er before ec:

∅−⊂. . .
er
−−⊂

ec
−−⊂ . . .

er−1
−−⊂

er+1
−−⊂ . . .

This covering chain does not permute commits and has one less inconsistent read
so we can conclude.

Otherwise, we look at the elements after ec in t but below er in q. There are
two cases:

• Either all such events are reads: then all these reads read from earlier
commits than ec in t, so they all can be moved before ec so as to get a trace
of q with at least one less inconsistent read.
• Or, more interestingly we have in q, ec′ a commit on y 6= x immediately

followed by a read er′ on y, followed by er:

e
cy:=p

c′ _q e
Ry=p

r′ ≤q e
Rx=p
r

such that ec′ occurs after ec in t. Because ec 6≤ er, ec and ec′ = j(er′) are
concurrent. This violates axiom (3) of weak consistency since er′ ≤ er. �

As a result, any outcome coming from a trace of a weakly consistent partial
order can be obtained from a consistent trace from the same partial order.

3.3.4. Semantics of programs. Can we use this new collection of partial orders
to get a more concurrent semantics of our programs? It turns out that it is not so
simple. Indeed, the collection min(Qw) is not a rigid family: it is not prefix-closed.
This is not surprising because axioms (3) and (4) are not “local” in a sense: to know
when to order commits, you need to know the future: is the rest of the program
going to observe it? For instance, the partial order

(1 : cx:=1) _ (2 : cx:=2) _ (3 : Rx=2)

is in min(Qw) but its prefix (1 : cx:=1) _ (2 : cx:=2) is not minimal in Qw as
(1 : cx:=1) (2 : cx:=2) is also in Qw. Given any collection of partial orders Q, we
can turn it into a rigid family ↓ Q by downclosing it for the prefix order:

↓ Q = {q | ∃q′ ∈ Q, q →֒ q′}.



202 7. RELAXED MEMORY IN A FIRST-ORDER SETTING

However, ↓ min(Qw) is not adequate since it contains the partial order we want to
remove (eg. (1 : cx:=1) _ (2 : cx:=2) as seen above). Fortunately, given a program
p the collection of partial orders C (T id(p)) ⋆ Qw exists, even though it is not a
rigid family. Then, we can recover the desired event structure as follows:

JpK′ = Pr(↓ (C (T id(p)) ⋆Qw)).

This computes the synchronization of the maximal configurations against Qw, and
then down-closes to recover an event structure.

3.3.5. In practice. The last couple of definitions might seem a bit complicated.
However, they can be thought of (and implemented) more concretely. To compute
JpK′, it suffices to look at the maximal configuration of T id(p) and for each such
configuration, compute the possible causal enrichment that are in Qw. This is done
by picking for each read a commit it reads from, and work out the generated causal
constraints to see it this assignment is possible. A single configuration of T id(p)
may lead to several such valid assignments which are the configurations of JpK′.

In conclusion, we have seen how to use the space offered by event structures
to represent memory behaviours that do not sequentialize all accesses on one vari-
able, yet ensure that no inconsistencies are observed. This memory behaviour is
non-local, it can add causal links between events because of later information about
the program. Despite looking odd, this behaviour is actually similar to what hap-
pens in weaker memory models such as POWER/ARM where the coherence order
is built incrementally as observations are performed. Commits are ordered only
when necessary to prevent threads from observing inconsistencies. That is why
this analysis, already fruitful in the case of the TSO architecture, is relevant for
weaker architectures. However, the models built in this chapter are just examples
of the space offered by event structures: it is nowhere close the final word.

In the next chapter, we will see how to recast this in a higher-order setting, by
interpreting our language into CHO. We will discuss the advantages of replacing
the low-level constructions on event structures and rigid families used here by the
composition of strategies.



CHAPTER 8

Relaxed state in a higher-order setting

Vous racontez ce qui s’est passé, d’un coup, sans vous arrêter, et
si vous changez des trucs, je vous envoie le registre à travers la
gueule. Vu ?

Père Blaise, on weak memory models
(Kaamelott)

In this chapter, we continue inside CHO the study started in Chapter 7. More
precisely, we want to give a model of the assembly language inside CHO. Because
of the cartesian closed structure of CHO, this means that we can also interpret
a higher-order extension of this language directly, even though we do not do it
explicitly here. We believe however that this possibility is an important advantage
of our methodology since it will be crucial to model languages that both exhibit
higher order features and relaxed memory features such as Java. However, in
this chapter we argue that, even to interpret first-order languages, having a model
supporting higher-order is already useful.

The investigations of this chapter are extremely recent, and provide a way to
tie together Chapter 7 with the development. The goal of this chapter is twofold:

• recast the interpretation of Chapter 7 inside CHO, transforming the ad-
hoc operations on event structures by composition of strategies,
• a way to illustrate the expressive power of CHO by presenting some

strategies exhibiting complex concurrent behaviours.

Interestingly, the ideas presented in this chapter came first, and were later
simplified to give the framework of Chapter 7. This framework is more elementary
(as it does not mention game semantics) but we believe that it is harder to scale to
weaker architectures than what is presented here.

Finally, what this chapter presents is more future work than actual research.
But we believe that the story presented in this chapter is a nice way to round up
the thesis on a less technical and more exploratory note.

Outline of the chapter. Section 1 explains how to see terms of our assembly
language as certain terms of PCF augmented with constants to model memory op-
erations. We observe that, because of reorderings, these constants have naturally
a higher order type (order 2).

Section 2 interprets these constants inside CHO, and gives another point of
view on the interpretation presented in the previous chapter, closer to the execu-
tion of programs. The interpretation of programs is then obtained via the compo-
sition of strategies which does the heavy lifting of adding the right causal links,
according to the strategies interpreting the constants. These constants, along with

203



204 8. RELAXED STATE IN A HIGHER-ORDER SETTING

composition of strategies allow us to abstract away from the very hands on defi-
nition of the previous chapter.

Section 3 generalizes the definition of memory behaviours seen in the previous
chapter to this setting. Memory behaviours become strategies on a certain arena
mem representing the protocol between the threads and the memory.

1. PCFmem: an extension of PCF with memory operations

The goal of this section is to translate an assembly program (as defined in the
previous chapter) to a term of an extension of PCF, PCFmem.

1.1. Syntax of the extension PCFmem. In the previous chapter, we considered
programs from a simple assembly language. We explain here how to view such
programs as terms of an extension with constants and types of PCF. The resulting
extension, PCFmem is given by

A, B ::= . . . | proc | mem | memi (types)

M, N ::= . . . | getx | skip | setx | fence | hide | par (terms)

where the constants getx and setx are indexed over the set of global variables V .
The type proc represents the type of effectful computation, just like in IPA

[GM07] (introduced in Chapter 5), whereas mem and memi describe the memory
operations available to programs and threads respectively. They do not quite co-
incide since threads are allowed to issue fences, that are only visible to the thread,
and become invisible when considering programs (cf. Section 2.1.5 of Chapter 7).

Intuitively, an element mem can be seen as a family (gx, sx)x∈V where gx : N

is a natural number, that, when evaluated, performs a read on x and returns the
outcome, and sx : N ⇒ proc is a function that writes the given value in argument
to x. Similarly an element of memi can be thought of as a pair ( f , (gx, sx)x∈V )
where (gx, sx)x corresponds to an element mem and f : proc triggers a fence when
evaluated. However, these are simply intuitions (confirmed by their interpretation
of arenas given in Section 2.1), and in PCFmem, the types mem and memi remain
abstract and can only be accessed with the corresponding new constants.

The constants getx, setx and fence are used to perform operations on the
memory. The constant skip represents a closed computation of type proc that ter-
minates. The constant par is used to start parallel computation, and the constant
hide is used to convert an element of mem to an element of memi, intuitively re-
alizing the mapping (gx, sx)x∈V ∈ mem 7→ (skip, (gx, sx)x) ∈ memi. It is used to
perform the hiding of fences described in Section 2.1.5 of Chapter 7.

This extension is enough to define a translation from assembly to PCFmem. A
program p of our assembly language will be translated to a term of PCFmem m :
mem ⊢ p̄ : proc, having a free variable m, used to perform the operations on the
memory. An individual thread t will be translated to a term m : memi ⊢ t̄ : proc.

1.2. Typing the memory operations. Before defining the translation, there is
a point that we did not address. What are the types of our new constants?

There is a natural way to convert our assembly language into an extension of
PCFmem akin to a state-passing translation. The thread x:= 1; r ← x; z:= r would
for instance be translated to:

m ⊢ setx 1 m (getx m (λr. setx z r skip))



1. PCFmem: AN EXTENSION OF PCF WITH MEMORY OPERATIONS 205

naturally leading to the types

setx : N ⇒ mem⇒ proc⇒ proc getx : mem⇒ (N ⇒ proc)⇒ proc.

where the last argument represents the continuation (so as to avoid an explicit se-
quential composition). For the reader familiar with algebraic effects, these explicit
continuations are very much in the spirit of the algebraic presentation of the state
monad [PP02].

This is not completely satisfactory though. Ultimately our goal is to interpret
these constants into CHO in order to deduce an interpretation of PCFmem, and
in turn an interpretation inside of assembly code. What can a strategy on N ⇒
mem ⇒ proc ⇒ proc representing a write on x do? Well it can issue the write,
then spawn its continuation. Or spawn its continuation, then issue the write. Or
spawn its continuation and in parallel issue the write. None of the choices are
enough to implement the subtle reordering behaviours of TSO.

This is due to the type of the continuation being too strict. The only thing setx

can do about its continuation is start it, and observe when it terminates. However,
when interpreting x:= r; t in chapter 7, some operations of t should be concurrent
to the commit generated by the write instruction, and some should depend on
it. The write and t are neither sequentialized, nor parallelized, but “in between”.
To be able to represent this inspection at the level of strategies, we need to en-
rich the type of the continuation so that setx can observe the memory operations
performed by its continuation.

setx : memi ⇒ N ⇒ (memi ⇒ proc)⇒ proc

getx : memi ⇒ (memi ⇒ N ⇒ proc)⇒ proc

fence : memi ⇒ (memi ⇒ proc)⇒ proc

To interpret the other constants, there are no such subtlety at play. Their types
are consequently simpler:

par : proc⇒ proc⇒ proc hide : mem⇒ memi skip : proc

1.3. The translation from assembly to PCFmem. With these constants in hand,
we can define the translation of the assembly code to PCF by induction on the
syntax of threads and programs:

Threads: Given a thread t with free registers r1, . . . , rn we define

m : memi, r1 : N, . . . , rn : N ⊢ t̄ : proc

as follows:
ǫ = skip

if (0 == e) { t } { u } = if (null e) t u

mfence; t = fencem (λm. t)

r ← x; t = getx m (λmr. t)

x:= e; t = setx m e (λm. t)

where e is the obvious translation of arithmetic expressions using the cor-
responding variables for registers, and null : N ⇒ B is the test operator
of PCF. Interestingly, each operation captures the free variable m of its
continuation. As a result, each operation has access to the dialogue of its
continuation with the memory and can tamper with it.



206 8. RELAXED STATE IN A HIGHER-ORDER SETTING

Programs: Programs are translated using par to combine the threads, and
hide to forget about the fences, as the external memory does not need to
see them. If m : memi ⊢ M : A, write hide M as a syntactic sugar for
(λmmemi . M) (hidem). Remark that m : mem ⊢ hide M : proc.

t1 ‖ . . . ‖ tn = par (λm. hide t1) (par. . . (λm. hide tn)).

For instance, the thread t = x:= 2; r ← x; z:= r is translated as

t = setx m 2 (λm. getx m (λmr. setz r (λm. skip))).

2. Thread semantics in a higher-order context

We now recast our thread semantics inside CHO by giving an interpretation
of the constants involved in the translation defined in the previous section.

2.1. Arenas for the memory. Since we can translate our assembly code to
PCFmem, and we know how to interpret PCF inside CHO, to give a model assem-
bly programs inside CHO, we simply need to interpret the extensions. We start
with the types. The type proc is interpreted as usual by the arena run− _ done+.

In the previous chapter, we had only one event representing a program re-
quest, and its answer by the memory. In this setting, because polarity is now
explicit (in our case, Program/Memory), we have to explicitly split labels into a
program request and a memory answer, to obtain the arenas for mem and memi.

These arenas represent this protocol from the point of view of the memory.
Since the memory should be seen as a server waiting for the program requests, all
the minimal moves will be negative (program actions). They represent requests
(to write or read a variable) and enable a positive answer (from the memory):
acknowledgements in the case of writes, and values in the case of a read.

2.1.1. The arenas mem, and memi. This protocol is described by an arena memx:

C−x:=0 C−x:=1 . . . R?−x

ok+ ok+ . . . 0+ 1+ . . .

The arena for memory is obtained by putting in parallel copies for each variable:

mem =‖x∈V memx.

Finally, memi is obtained from mem by allowing the program to issue fences.
Writing F for the arena fence− _ fenced+, we define memi as F ‖ mem. Keeping
in mind that parallel composition of arenas represent a product, these definitions
coincide with the intuition given in Section 1 as memx

∼= proc ‖ N, and memi
∼=

proc ‖ mem (they only differ by the name of the events).
2.1.2. Executions of an arena and labelled partial orders. We can recover the set-

ting of partial orders by considering certain enrichments of configurations !mem⊥.
An execution on an arena A is a partial order q which is a causal enrichment of a
configuration x of A such that

(1) the identity labelling defines a receptive and courteous map of event
structures to A,

(2) it does not contain two negative moves justified by the same positive
move (the memory should answer exactly once to each request).



2. THREAD SEMANTICS IN A HIGHER-ORDER CONTEXT 207

Two executions q and q′ are isomorphic when there exists an order isomor-

phism q ∼= q′ living in ·�!mem⊥, i.e. preserving labels in mem.

LEMMA 8.1. There is a one-to-one correspondence between:

• Executions on !mem⊥ up to isomorphism,
• Σ-labelled partial orders up to isomorphism.

PROOF. We consider executions on the dual (mem⊥) because executions are
considered from the point of view of the program, describing its actions. Courtesy
then ensures that the pairs request/answers are blocks that make sense from a
causal point of view: the program can only add causal links from an answer to
a request. Receptivity ensures that all blocks are complete (ie. each request has
one answer). As a result, we can simply collapse the blocks request/answer in an
execution to get a Σ-labelled partial order. �

A similar correspondence can be made between executions on !mem⊥i and
Σi-labelled partial orders.

2.1.3. Another arena for the memory. If we wanted to model weaker architec-
tures that perform aggressive reorderings, we might like another representation
of this type. In weaker architectures, when the program issues a read request to
the main memory, the memory does not answer only with a value but also with
the identity of the write this value originates from. This is very important for the
processors to know when reordering two reads on the same variable is admissible.

In this case, we would like the answer to the read, to both depend on the read
request and the commit request:

C−x:=k R?−x

ok+ k+

but the resulting partial order would not a forest, hence not an arena, making
us step out of CHO. To extend CHO to support non-forest like games requires
some care, in particular when it comes to single-threadedness, and we leave this
extension for future work as this feature will not be needed here.

2.2. Constants for threads. We focus first on the constants used in threads
(skip, getx, setx, and fence). First, the interpretation of skip : proc is simply the
strategy (given by its reduced form) run− _ done+,0 in CHO(proc).

The reduced form of the innocent strategy for fence is given in Figure 1. In
this diagram, we only draw the pointers of positive moves not justified by the
initial move, so as to void clutter. This strategy is very simple: it first issues a
fence to the external memory (its first argument) and then runs its continuation,
forwarding whatever memory operation it does to its external memory. Up to the
isomorphism memi

∼= proc ‖ mem, this strategy is the interpretation of

λm. λk. π1 m; km

where π1 m : proc describes the action of performing a fence. The notation r stands
for an initial move of mem: since fence forwards them all to the external memory,
there is no need to distinguish them. Similarly, a stands for an answer to r which
is automatically propagated back to the continuation.



208 8. RELAXED STATE IN A HIGHER-ORDER SETTING

fence : memi ⇒ (memi ⇒ proc) ⇒ proc

run−

fence+,0

fenced−

run+,0

r− done−

r+,1 done+

a−

a+,1

FIGURE 1. A strategy for the constant fence

getx : memi ⇒ (memi ⇒ N ⇒ proc) ⇒ proc

run−

R?+,0
x

k−

run+,0

r− q− done−

r+,1 k+ done+

a−

a+,1

FIGURE 2. A strategy for the constant getx

The strategy for getx is extremely similar as well, and is depicted in Figure 2.
It first performs a read on x, and then spawns its continuation, forwarding directly
its memory to the external memory.



2. THREAD SEMANTICS IN A HIGHER-ORDER CONTEXT 209

setx : memi ⇒ N ⇒ ( memi ⇒ proc) ⇒ proc

run−

q+,0

k−

C
+,0
x:=k run+,0

ok− d− c− done−

d+,1 c+,1 done+,0

a−d a−c

a+,1
d a+,1

c

FIGURE 3. A strategy for the constant setx

As for the thread semantics of the previous chapter, things start getting inter-
esting when modelling writes. The previous strategies were sequential, because in
TSO the program order from reads and from fences is always respected. As before,
we partition the initial moves of memx into two sets:

Dx = {fence, R?x, Cy:=k | y ∈ V , k ∈ N} Cx = {R?y | y ∈ V \ {x}}

The set Dx contains the requests that should depend on a previous commit on
x whereas Cx contains the requests that should be concurrent to previous commits
on x. The resulting strategy is depicted in Figure 3.

In the diagram, c ranges over elements in Cx and d over elements in Dx. This
strategy, in parallel, asks the value of the integer to be written, and issues the
corresponding commit request to the memory. In parallel, it runs its continuation.
Synchronizations occur when its continuation tries to issue a memory operation
that should not be concurrent with the commit in x. In that case, to forward it
to the memory, we have to wait until the memory has acknowledged receiving
the commit (formalized by the causal link ok− _ d+). Having put a causal link
ok− _ run+, we would have a sequential strategy performing no reorderings.

Notice that this strategy is only preinnocent and not innocent, as it is not vis-
ible: there is a gcc of a+d that does not go through its justifier, d−. However, the
reduced form can still be expanded non-ambiguously. α

With these three strategies, we can now interpret threads in isolation. Given a
thread t we can look at Jt̄K ∈ CHO(JmemiK, JprocK). Write St for the event struc-
ture corresponding to Jt̄K. Interestingly, it is conflict-free: as a result St is a partial
order. We can recover a set of Σi-labelled partial orders from St by considering all

α As, the expansion of reduced form of Chapter 6 actually only needs pre-innocence to work



210 8. RELAXED STATE IN A HIGHER-ORDER SETTING

the executions q which is order-isomorphic through σ to a configuration of St, and
converting them to Σi partial orders.

EXAMPLE 8.2. Consider t = x:= 1; r ← x; z:= r. The thread semantics accord-
ing to the previous chapter gives the following event structure:

cx:=1

Rx=0 Rx=1 . . . cz:=1

cz:=0 cz:=1 . . .

We have a commit event on z that is not preceded by a read on x since there is
a possibility in this example that the read is satisfied from the buffer entry of the
previous write. In that case, no request is sent to the memory. Our strategy setx

differs as internal loads are not permitted. As a result, the interpretation of Jt̄K is:

memi ⊢ proc

run−

C
+,0
x:=1

ok−

R?+,0
x

0− 1− . . .

C
+,0
z:=0 C

+,0
z:=1 . . .

ok− ok− . . .

done+,0 done+,1 . . .

This mismatch is not problematic. As our strategy setx implements inde-
pendent write/read reorderings, this semantics will give the same final states as
the one of Chapter 7. The mismatch here is due to the inductive definition being
parametrized by a buffer. As a result, the model does not explain how the inter-
nal loads are represented at runtime since the buffer information “comes from the
sky” (ie. the meta-level). It is possible to represent internal loads in both semantics
directly, but the interpretation of writes becomes more complicated as they need
to capture (some) later read requests on x and answer the value just written. The
corresponding strategy becomes not ♯-innocent as there is a race occurring if the
continuation in parallel reads on x and (for instance) writes subsequently on x.
Conveniently, this does not occur in the image of our language.

2.3. Constant for programs. To complete the thread semantics, we still need
to give the interpretation of two constants: par and hide, depicted in Figure 4.



2. THREAD SEMANTICS IN A HIGHER-ORDER CONTEXT 211

proc ⇒ proc ⇒ proc

run−

run+,0 run+,0

done− done−

done+

mem ⇒ memi

r− fence−

r+,0 fenced+,0

a−

a+,0

FIGURE 4. Strategies for the constants par (left) and hide (right)

The strategy par simply spawns its two arguments in parallel and waits for
them to terminate before terminating. In the diagram for hide, r stands for any
minimal move of memi except fence. This strategy simply forwards memory op-
erations, and in case of a fence, satisfies it straight away so that the program can
continue its execution.

By combining all the strategies, we can then interpret any program p into
CHO(mem, proc). By extracting the part playing on mem, we can recover a set
of Σ-labelled partial orders. The resulting set of partial orders does not quite coin-
cide with the configurations of T (p) as hinted above, however both models can
be slightly updated to match each other, and both methodologies may be used to
represent the same models. As a result, what does the formulation in terms of
strategies bring us?

2.4. Strategies as programs. In the previous chapter, our semantics was de-
fined by doing causal surgery on the event structures (especially for interpreting
writes). In this setting, we leave the causal surgery to the composition of strategies
and focus on the intent of the model: we believe that the formulation of strategies
gives a clearer picture of what happens at runtime, than the formulation of the pre-
vious chapter. Moreover, strategies are dynamic processes that could be described
syntactically. For instance, we can write the complicated strategy for setx in the
language introduced in Section 1.4.3 of Chapter 6:

setx = λm. λk. λc. newsignal s in

(m(Cx:=k); signal [s])

‖ c (function

| (C_:=_|R?x) as r → wait [s];m r

| R?y → m r)

Here we use a slight extension with ML-like sum types to represent the re-
quests. This rephrases clearly the intent of the write construction: spawn both
the commit and the continuation in parallel. Whenever the continuation emits a
memory operation that must depend on the commit, wait for the commit before
sending the request.



212 8. RELAXED STATE IN A HIGHER-ORDER SETTING

getx : memi ⇒ ( memi ⇒ N ⇒ proc) ⇒ proc

run−,0

R?+,0
x run+

k− d− c− q− done−

d+,0 c+,0 k+,0 done+,0

a−d a−c

a+,0
d a+,0

c

FIGURE 5. An alternative interpretation of getx performing more reorderings

2.5. Towards weaker architectures. Throughout this part we focused on the
TSO architecture that features simple reordering patterns. However, when mov-
ing to weaker architectures, the setting of the previous chapter becomes slightly
harder to update [Cas16]. Computing directly the causal structure by induction
is more difficult, because of the problem of data dependency. On ARM/POWER,
any two instructions targeting distinct variables can be reordered, except if there is
a data dependency (or addr dependency in greater generality): in r ← x; y:= 1 we
can reorder, but in r ← x; y:= r we cannot, since we need to wait for the value of r
to become available. In the world of strategies, it is extremely easy to deal with this
phenomenon by changing the strategy for getx to that described in Figure 5. This
strategy looks very similar to setx. We assume that the space of memory requests
has been partitioned into a set Dx of requests that causally depends on syntacti-
cally earlier read on x, and Dx the set of operations that do not. (This depends on
the architecture considered). As before c and d range over Cx and Dx respectively.
Data dependency is handled by making the answer to q− (the continuation asking:
what is the value of r?) causally depend on the outcome of the read. This mech-
anism works well and can give an account of the reorderings present in weaker
architectures, even with address dependency (in that case, we need to change the
arena for the memory but the ideas remain the same). It remains unclear however
how to represent speculation and read restarts.

3. Implementing memory

Having seen how to represent the thread semantics inside CHO, we see how
to represent the final semantics, with the memory wired in. Since our programs
are represented by strategies in CHO(mem, proc), it seems natural to represent the
memory as a strategy m in CHO(mem). However, as we will see, the strategies for
memory are never single-threaded: they cannot live in CHO.β However, they do

β This phenomenon already occurs in the model for IPA by Ghica and Murawski [GM07].



3. IMPLEMENTING MEMORY 213

live in ∼-tCG≅

⊚, and we can consider the composition in ∼-tCG≅

⊚:

1
m
+ // !mem

Jp̄K
+ // !proc

It gives us a strategy playing on !proc, which is not very interesting. For this
reason, we consider rather the interaction Jp̄K ⋆m that keeps the internal events in
mem around. From this interaction, it is easy to extract a set of Σ-labelled partial
orders to compare with that from the previous chapter.

3.1. Synchronous memory. From Chapter 7, we have a good idea of the shape
of consistent executions. Say that an execution on mem is pre-consistent when its
collapse to a Σ-labelled partial order is pre-consistent in the sense of Chapter 7.
Define the rigid family Qm as:

Qm :=↓ {q | q is a pre-consistent execution}.

The pre-consistent executions are not closed under prefix (hence the prefix clo-
sure): in an execution, all requests must be answered, which means that eg. C+x:=1
is not a execution. The prefix closure allows us to consider “partial executions”
where not all requests have been answered yet. Write Em for Pr(Qm): it inherits a
labelling m : Em → !mem. However, it is not a strategy as it is not courteous. For
instance, it contains the following configuration:

C−x:=1 _ ok+ _ R?−x _ R?+1

which is not courteous because of the link ok+ _ R?−x is not present in mem.
As m is not a strategy, the composition Jp̄K⊚m has no reason to be a strategy

(courteous in particular). This is not a problem in this setting, as the interaction
Jp̄K ⋆m still exists, and it is unsettling. This is incompatible with interpreting lan-
guages where the memory does not come at the end, but it might be necessary
to wire in the memory before the whole program is known. An example would
be to implement a restriction operator rx : mem ⇒ mem such that rx(λm. p̄) is
a new program where all the actions of x inside p are synchronized together and
hidden from the outside world (akin to the new construct of IPA). To interpret such
a construct, we need rx to be a proper strategy, and as a result, m as well.

In this particular case, because m has an empty domain, Jp̄K⊚m is an essential
strategy in the sense of Chapter 2.

LEMMA 8.3. Let σ : S ⇀ A be a pre-strategy in the sense of Chapter 2 (ie. a partial

map of event structure) and τ : T ⇀ A⊥ ‖ B an essential strategy of CG
∼=
⊚(A, B). Then

the composition τ⊚ σ is in CG
∼=
⊚(B).

PROOF. The proof relies on the characterization of strategies as composing
well with copycat (Theorem 2.79). The composition τ ⊚ σ is an essential strategy
if and only if cc B ⊚ (τ⊚ σ) is isomorphic to τ⊚ σ. By associativity, we have:

cc B ⊚ (τ⊚ σ) ∼= ( cc B ⊚ τ)⊚ σ ∼= τ⊚ σ

since τ is an essential strategy. �

Our characterisation of essential strategies allows us here to derive that, at
least at the level of event structures, it does not matter that m is not quite a strategy.



214 8. RELAXED STATE IN A HIGHER-ORDER SETTING

3.2. Asynchronous memory. This does not allow us to build a strategy in
∼-tCG≅⊚ since there is no similar characterization at the level of symmetries.

The problem is that m is synchronous, enforcing its own order on the event, re-
gardless of what the program does. Consider the following excerpt of the (infinite)
event structure Em:

C−x:=1 R?−x

ok+ 0+

R?−x C−x:=1

1+ ok+

The minimal conflict at the beginning means that, in a way, this pre-strategy non-
deterministically decides what is going to happen.

To recover an essential strategy out of this, we can use again the characteri-
sation of essential strategies, and the fact that copycat is idempotent. As a result,
m̄ := cc !mem⊚m is an essential strategy, which represents the asynchronous version
of m. For instance, the previous excerpt of m becomes in m̄:

C−x:=1 R?−x

⋆1 ⋆2

ok+ R?+1 ok+ 0+

The two neutral events symbolize the races between the two causal histories:
if ⋆1 is played, then the left causal history is chosen, where the commit goes first,
and if ⋆2 is played, the right one is chosen, where the read goes first.

To turn m̄ into a strategy of∼-tCG
∼=
⊚, we need to build an isomorphism family.

DEFINITION 8.4. A symmetry between two configurations of Em is an order-
isomorphism preserving labels in !mem. Write›Em for the set of such symmetries.

LEMMA 8.5. The pair (Em,›Em) is a thin event structure with symmetry that extends
m into a ∼-receptive map of event structure with symmetry, ie. a pre-∼-strategy.

PROOF. Straightforward verification. �

Since pre-∼-strategies compose, we know that m̄ = cc !mem ⊚ m is a pre-∼-
strategy, which is also an essential strategy. So, by definition is ∼-strategy, hence
m̄ ∈ ∼-tCG≅

⊚(1, mem) as desired.
However, as seen in the previous diagram, m and m̄ are not single-threaded.

However, a single-threaded strategy can be recovered if we are ready to change
slightly the type of memories.

LEMMA 8.6. Consider A, B negative arenas. Write

d = Jλx. (λ f . f x)K ∈ CHO(A, (A⇒ B)⇒ B).



3. IMPLEMENTING MEMORY 215

For any strategy negative σ ∈ ∼-tCG≅

⊚(!A), the composition (in ∼-tCG≅

⊚) d ⊚ σ is
single-threaded.

As a result, d⊚ m̄ is a strategy of CHO(mem ⇒ proc, proc), that can be used
to interpret a IPA-like construct:

Γ,m : mem ⊢ M : proc
Γ ⊢ newmemory m in M : proc

that could be used to restrict the access to a memory inside a sub-term.

3.3. Towards more concurrent memories. In the last chapter, we have seen
that the resulting strategy m is still more sequential than needed as it sequential-
izes more that can be needed. It is possible to do better, by trying to only se-
quentialize writes when the program later actually observe the writes. But this
quantification over a possible future makes it impossible to create a rigid family
(or in this setting a strategy), since when given two writes, we need to decide now
whether to order them or not.

A possible way to solve this problem is not to force the strategy implementing
the memory to actually put any causal link to order writes, but simply to let them
be concurrent. However, the memory keeps as an internal state the partial order
justifying that the current execution is correct. Because the partial order does not
represent the causality of the execution, but simply a justification for the current
execution, it is possible to add causal links in the past.

For instance, assume that the current execution is:

C−y:=1 C−x:=1 R?−x

ok+ ok+ 1+

R?−y

This is already valid: there is no need to add causal links for this execution to be
weakly consistent. At this point, the memory is allowed to satisfy the read on y in
two different ways. It can answer y = 1 and make this answer depend on C−y:=1.
It can also answer y = 0, but in this case, the execution is not weakly consistent
anymore since the two commits are not ordered. Since both commits have already
occurred, the memory cell cannot go back in the past and enforce, actually the
commit on y depended on the commit on x. So the only thing it can do is to add
this causal link in its internal state:

C−y:=1 C−x:=1 R?−x C−y:=1 C−x:=1 R?−x

ok+ ok+ 1+ ok+ ok+ 1+

R?−y R?−y

0+ 0+



216 8. RELAXED STATE IN A HIGHER-ORDER SETTING

On the left is depicted the actual execution, on the right the internal state of the
memory justifying that the execution is correct. The internal state is used by the
memory to avoid answering in an inconsistent way. Imagine that, later in the
execution, another thread comes along and reads on y and then on x so that the
execution is now:

C−y:=1 C−x:=1 R?−x R?−y

ok+ ok+ 1+ 1+

R?−y R?−x

0+

In this case, the memory could be tempted to answer x = 0 if its internal state
did not remind it that there is a causality from the commit on x to that on y, and
reading x = 0 would force it to put a causal link in the other direction, resulting in
a cycle. So the memory knows that it can only answer x = 1 in this context.

It is possible to turn this intuition into an event structure whose events should
be pairs of an event of a very relaxed notion of execution (with only intra-thread
causal links and links from a commit to the reads loading its value), along with a
causal justification that this execution is actually weakly consistent. However the
correctness of such a strategy is not completely straightforward to establish.

To give an example of what it can achieve, write m′ for this loosely-defined
strategy, and p the following program:

x:= 1 r1 ← x s1 ← y y:= 1
r2 ← y s2 ← x

Then, then the part of JpK ⋆m′ on mem⊥ is:

Cx:=1 R?x R?y Cy:=1

ok 0 1 0 1 ok

R?y R?y R?x R?x

0 1 0 1 1 0 1 0

In this diagram, we have represented differently causal links and conflicts
coming from JpK (solid) and those coming from m′ (dashed). The interesting thing
to remark on this diagram is the dashed conflict between “reading 1 and then 0”
on one thread, and same outcome on the other thread. Both events cannot be con-
current, since there is no justification for the configuration of T (p) which contains
them both, or equivalently, their internal state are incompatible since they disagree
on the order between the two commits. This configuration would correspond to
inconsistent observations by the threads.



Conclusion et perspectives

So pleased with ourselves
For using so many verbs and nouns.

Modest mouse, on writing mathematical texts
(Black cadillacs)

Pour conclure cette thèse, nous proposons quelques perspectives et pistes lais-
sées ouvertes, concernant les développements présentés ici.

Première partie : Concurrence

∼-tCG à bisimulation faible près. Au chapitre 2, nous avons construit deux
catégories similaires, une à bisimulation faible près (sans dissimulation) et l’autre à
isomorphisme près avec dissimulation partielle. Dans le cadre avec symétrie, nous
avons seulement construit la seconde. Nous pensons qu’avoir les deux catégories
est en fait un avantage lorsque l’on modélise un langage de programmation. Un
langage peut être interprété dans la catégorie à bisimulation faible près (où il y a
plus d’espace) et nous pouvons en déduire une interprétation plus compacte dans
la catégorie à isomorphisme près. Avoir les deux interprétations peut être utile en
fonction des besoins. Par exemple, le lien fort entre la sémantique opérationnelle
et la sémantique dénotationnelle prouvé au chapitre 4 (théorème 4.29) pourrait
être même renforcé dans le cadre avec bisimulation faible.

Étudier un sous-ensemble des jeux concurrents fins. Notre notion de jeux
concurrents fins est très générale. Dans la plupart des applications qui nous in-
téressent, la symétrie dans les jeux est toujours locale, c’est-à-dire générée par une
relation d’équivalence. Remarquez que la symétrie sur les stratégies est en général
non locale comme illustrée à la section 1.4.2 du chapitre 6. Nous pensons que ce
cas particulier simplifierait le cadre en rendant les deux sous-symétries A− et A+

dérivable à partir deA qui n’auraient alors plus besoin de faire partie de la défini-
tion d’un jeu concurrent fin.

Généraliser CHO aux arènes qui ne sont pas des forêts. Dans le chapitre 8,
nous avons mentionné le fait que les objets de CHO doivent être des jeux en forme
de forêts peut être problématique lorsque l’on essaye de donner des interpréta-
tions sophistiquées du type mem (pour autoriser la réponse d’une lecture à être
justifiée par la requête d’une écriture). Nous pensons que la construction de CHO
devrait se généraliser à ce cadre, simplement à condition de se restreindre aux jeux
qui sont filaires. Dans ce nouveau cadre, mem ne serait pas un objet valide, mais
(mem ⇒ proc) ⇒ proc le serait, ce qui serait suffisant pour la construction du
modèle.

217



218 CONCLUSION ET PERSPECTIVES

Formes réduites et métalangage pour les stratégies non-innocentes. Une des
pistes les plus intéressantes est d’essayer de comprendre la structure des straté-
gies non-innocentes. Dans le cadre innocent, nous savons déjà ce que sont les
stratégies finies : celles dont la forme réduite contient seulement un nombre fini
d’évènements positifs. La situation pour les stratégies non-innocentes est bien
moins claire car leur structure est bien plus alambiquée. Ce critère de finitude
nous permettrait de montrer des résultats de définissabilité dans un cadre non-
innocent, par induction, ce qui n’est pas possible à présent.

Un problème relié est de trouver un langage correspondant aux stratégies qui
supporte un résultat de définissabilité à isomorphisme près (celui présenté au
chapitre 6 est seulement à équivalence may près). Un candidat préliminaire est
mentionné en section 1.4.3 du chapitre 6. Comme remarqué au chapitre 8, cela
nous permettrait de facilement implémenter des modèles de langage de program-
mation, en implémentant simplement les constructions de base du langage.

Seconde partie : Innocence

Un langage pour l’innocence concurrente. De manière reliée au problème
ci-dessus, il serait intéressant d’avoir un langage correspondant à l’innocence con-
currente. Il devrait contenir des opérateurs de contrôle. Est-ce que call/cc suffit,
ou est-ce qu’il y a de nouveau comportements non bien parenthésés qui apparais-
sent dans un monde concurrent qui ne sont pas définissable à partir de call/cc.

Lien de notre notion d’innocence avec celle basée sur des faisceaux. Dans
leur ligne de travail, Hirschowitz et. al.[Hir13] ont introduit l’idée de définir
l’innocence comme une condition de faisceau sur des stratégies représentée comme
des pré-faisceaux. Cette notion a été ensuite traduite dans le λ-calcul par Tsukada
et Ong [TO15]. Nous pensons qu’il y a une connexion forte entre la pré-innocence
(c’est-à-dire l’innocence sans localité) et cette condition de faisceau, car nos straté-
gies peuvent être vues comme des pré-faisceaux particuliers sur les augmentations
causales d’un jeu. La position de la localité dans cette présentation n’est pas claire
et de nombreux détails techniques restent à être écrits.

Généraliser le résultat de pleine abstraction à l’équivalence must. Au chapi-
tre 6, nous avons montré la pleine abstraction intensionnelle pour l’équivalence
may. Nous pensons que le modèle est aussi intensionnellement pleinement abstrait
pour must, mais plusieurs obstacles sont sur la route. Le plus important est que
les tests finis devraient avoir le même pouvoir discriminant que tous les tests.
Pour l’équivalence may, ce résultat est facile à montrer, mais pour l’équivalence
must c’est beaucoup plus difficile. Il n’est pas clair comment étant donné un test
séparant deux stratégies pour must, comment en extraire une partie finie qui est
encore séparante.

Troisième partie : Impureté relâchée

Investiguer des architectures plus faibles. Nous pensons que notre mod-
èle passe à l’échelle à des architectures plus faibles car les idées présentées aux
chapitres 7 et 8 explique comment représenter des cellules mémoires complexes
et des réordonancemments sophistiqués. Cependant le travail reste à faire. Nous
avons commencé à investiguer une sémantique thread pour l’architecture POWER.



TROISIÈME PARTIE : IMPURETÉ RELÂCHÉE 219

Spécifications de langages. Nous n’avons pas mentionné les spécifications de
langages dans cette partie (C11, Java par exemple). Elles offrent de nouvelles diffi-
cultés qui ne peuvent pas être attaquées avec les outils présentés ici, par exemple
la clôture par optimisations. Dans les modèles opérationnels, cela s’est aussi avéré
être une difficulté majeure [KHL+17] à représenter, et nous aimerions comprendre
comment adapter ces techniques à notre cadre.

Synchronisations partielles. Dans le modèle présenté en partie 3, toutes les
synchronisations ont lieu à la fin, lorsque le programme entier est connu. Nous
pensons qu’il est possible de calculer ces synchronisations incrémentalement (de
manière similaire au modèle de CCS dans les structures d’évènements [Win82])
afin d’effectuer cette étape de manière compositionnelle.





Bibliography

[AHM98] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics
for general references. In Thirteenth Annual IEEE Symposium on Logic in Computer Science,
Indianapolis, Indiana, USA, June 21-24, 1998, pages 334–344. IEEE Computer Society, 1998.

[AJM00] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information and
Computation, 163(2):409–470, 2000.

[AM99a] Samson Abramsky and Guy McCusker. Full abstraction for Idealized Algol with passive
expressions. volume 227, pages 3–42. 1999.

[AM99b] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In
14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages
431–442, 1999.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
2014.

[BC82] G. Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures. Theor.
Comput. Sci., 20:265–321, 1982.

[BMS10] Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. Verifying local transforma-
tions on relaxed memory models. In Rajiv Gupta, editor, Compiler Construction, 19th In-
ternational Conference, CC 2010, volume 6011 of Lecture Notes in Computer Science, pages
104–123. Springer, 2010.

[Bro96a] Stephen D. Brookes. The essence of parallel algol. In Proceedings, 11th Annual IEEE Sympo-
sium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages
164–173. IEEE Computer Society, 1996.

[Bro96b] Stephen D. Brookes. Full abstraction for a shared-variable parallel language. Inf. Comput.,
127(2):145–163, 1996.

[Cas16] Simon Castellan. Weak memory models using event structures. In David Baelde and Jade
Alglave, editors, Vingt-septième Journées Francophones des Langages Applicatifs (JFLA 2016),
2016.

[CC16] Simon Castellan and Pierre Clairambault. Causality vs interleaving in game semantics. In
CONCUR 2016 - Concurrency Theory, 2016.

[CCRW] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. Games and
strategies as event structures. Logical Methods in Computer Science. Accepted with minor
revisions for publication.

[CCW14] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Concurrent Hyland-Ong games.
CoRR, abs/1409.7542, 2014.

[CCW15] Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel intensionally fully
abstract games model of PCF. In LICS 2015. IEEE Computer Society, 2015.

[CF05] Pierre-Louis Curien and Claudia Faggian. L-nets, strategies and proof-nets. In C.-H. Luke
Ong, editor, Computer Science Logic, 19th International Workshop, CSL 2005, 14th Annual Con-
ference of the EACSL, Oxford, UK, August 22-25, 2005, Proceedings, volume 3634 of Lecture
Notes in Computer Science, pages 167–183. Springer, 2005.

[CHLW14] Simon Castellan, Jonathan Hayman, Marc Lasson, and Glynn Winskel. Strategies as con-
current processes. Electr. Notes Theor. Comput. Sci., 308:87–107, 2014.

[Cur92] Pierre-Louis Curien. Observable algorithms on concrete data structures. In Proceedings of
the Seventh Annual Symposium on Logic in Computer Science (LICS ’92), Santa Cruz, California,
USA, June 22-25, 1992, pages 432–443. IEEE Computer Society, 1992.

[DBL05] 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL,
USA, Proceedings. IEEE Computer Society, 2005.

221



222 BIBLIOGRAPHY

[EHS13] Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. Fully-abstract concurrent games
for pi. CoRR, abs/1310.4306, 2013.

[EHS15] Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. An intensionally fully-abstract
sheaf model for pi. In Lawrence S. Moss and Pawel Sobocinski, editors, 6th Conference on
Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The
Netherlands, volume 35 of LIPIcs, pages 86–100. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[FM05] Claudia Faggian and François Maurel. Ludics nets, a game model of concurrent interaction.
In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago,
IL, USA, Proceedings [DBL05], pages 376–385.

[FP09] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear strategies.
In TLCA ’09, volume 5608 of LNCS. Springer, 2009.

[GM07] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency,
2007.

[Hay14] Jonathan Hayman. Interaction and causality in digital signature exchange protocols. In
Matteo Maffei and Emilio Tuosto, editors, Trustworthy Global Computing - 9th International
Symposium, TGC 2014, Rome, Italy, September 5-6, 2014. Revised Selected Papers, volume 8902
of Lecture Notes in Computer Science, pages 128–143. Springer, 2014.

[Hir13] Tom Hirschowitz. Full abstraction for fair testing in CCS. In Reiko Heckel and Stefan Mil-
ius, editors, Algebra and Coalgebra in Computer Science - 5th International Conference, CALCO
2013, Warsaw, Poland, September 3-6, 2013. Proceedings, volume 8089 of Lecture Notes in Com-
puter Science, pages 175–190. Springer, 2013.

[Hir14] Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded version). Logical Meth-
ods in Computer Science, 10(4), 2014.

[HM99] Russell Harmer and Guy McCusker. A fully abstract game semantics for finite nondeter-
minism. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5,
1999, pages 422–430. IEEE Computer Society, 1999.

[HO00] J. M. E. Hyland and C.-H. Ong. On full abstraction for PCF. Information and Computation,
163:285–408, 2000.

[HY97] Kohei Honda and Nobuko Yoshida. Game theoretic analysis of call-by-value computation.
In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors, Au-
tomata, Languages and Programming, 24th International Colloquium, ICALP’97, Bologna, Italy,
7-11 July 1997, Proceedings, volume 1256 of Lecture Notes in Computer Science, pages 225–236.
Springer, 1997.

[Joy77] André Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des Sciences Math-
ematiques du Québec 1(4), pages 46 – 52, 1977.

[JPR12] Radha Jagadeesan, Gustavo Petri, and James Riely. Brookes is relaxed, almost! In Foun-
dations of Software Science and Computational Structures - 15th International Conference, FOS-
SACS 2012, pages 180–194, 2012.

[KHL+17] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In Giuseppe Castagna and Andrew D. Gor-
don, editors, POPL 2017, pages 175–189. ACM, 2017.

[Lai97] James Laird. Full abstraction for functional languages with control. In Proceedings, 12th
Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997,
pages 58–67. IEEE Computer Society, 1997.

[Lai99] James David Laird. A semantic analysis of control. PhD thesis, University of Edinburgh, UK,
1999.

[Lai01] James Laird. A game semantics of idealized CSP. Electr. Notes Theor. Comput. Sci., 45:232–
257, 2001.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans. Computers, 28(9):690–691, 1979.

[Loa01] Ralph Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-2):341–364, 2001.
[LS88] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical logic, volume 7.

Cambridge University Press, 1988.
[Mel03] Paul-André Melliès. Asynchronous games 1: A group-theoretic formulation of uniformity.

Manuscript, Available online, 2003.
[Mel05a] P.A. Melliès. Asynchronous games 3 an innocent model of linear logic. Electronic Notes in

Theoretical Computer Science, 122:171–192, 2005.



BIBLIOGRAPHY 223

[Mel05b] Paul-André Melliès. Asynchronous games 4: A fully complete model of propositional lin-
ear logic. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005,
Chicago, IL, USA, Proceedings [DBL05], pages 386–395.

[Mel06] Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence. Theor.
Comput. Sci., 358(2-3):200–228, 2006.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1982.

[MM07] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without alter-
nation. In CONCUR 2007 - Concurrency Theory, 18th International Conference, pages 395–411,
2007.

[MMS+12] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott
Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams. An axiomatic
memory model for POWER multiprocessors. In Computer Aided Verification - 24th Interna-
tional Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, pages 495–512,
2012.

[NSS+] Francesco Zappa Nardelli, Peter Sewell, Susmit Sarkar, Scott Owens, Luc Maranget, Mark
Batty, and Jade Alglave. Relaxed memory models must be rigorous.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-tso. In
Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages 391–407, 2009.

[Plo77] Gordon D. Plotkin. Lcf considered as a programming language. Theor. Comput. Sci.,
5(3):225–255, 1977.

[PP02] Gordon D. Plotkin and John Power. Notions of computation determine monads. In Mo-
gens Nielsen and Uffe Engberg, editors, Foundations of Software Science and Computation
Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Pro-
ceedings, volume 2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[RW11] Silvain Rideau and Glynn Winskel. Concurrent strategies. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada, pages 409–418, 2011.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understand-
ing POWER multiprocessors. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011,
pages 175–186, 2011.

[TO15] Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics via sheaves.
In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 220–231. IEEE Computer Society, 2015.

[vGP09] Rob J. van Glabbeek and Gordon D. Plotkin. Configuration structures, event structures and
petri nets. CoRR, abs/0912.4023, 2009.

[Win82] Glynn Winskel. Event structure semantics for CCS and related languages. In Mogens
Nielsen and Erik Meineche Schmidt, editors, Automata, Languages and Programming, 9th
Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings, volume 140 of Lecture Notes in
Computer Science, pages 561–576. Springer, 1982.

[Win86] Glynn Winskel. Event structures. In Petri Nets: Central Models and Their Properties, Advances
in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, 8.-19. September
1986, pages 325–392, 1986.

[Win07] G. Winskel. Event structures with symmetry. Electronic Notes in Theoretical Computer Science,
172:611–652, 2007.

[Win12] Glynn Winskel. Deterministic concurrent strategies. Formal Asp. Comput., 24(4-6):647–660,
2012.



224 BIBLIOGRAPHY

Résumé en français

La sémantique des jeux permet l’étude et la modélisation abstraite des lan-
gages de programmation d’un point de vue mathématique, en gardant assez d’in-
formations concrètes sur la structure des programmes, mais en laissant de côté les
détails superflus.

Durant mon doctorat, j’ai travaillé sur l’association de la sémantique des jeux
avec les structures d’événements pour proposer des modèles dénotationnels vrai-
ment concurrents de langages concurrents d’ordre supérieur.

Dans un premier temps, je construis un modèle réalisant cette association,
qui retient suffisamment d’informations sur le comportement des programmes
pour interpréter adéquatement une grande variété de langages concurrents et non
déterministes pour des notions fines de convergences. La construction de ce mod-
èle se base sur l’introduction de symétrie afin d’établir que le modèle forme une
catégorie cartésienne fermée.

Dans un second temps, je propose une généralisation dans ce cadre des no-
tions d’innocence et de bon parenthésage, essentielles en sémantique des jeux pour
comprendre les effets calculatoires, et résolvant ainsi des problèmes ouverts de la
sémantique des jeux concernant l’innocence concurrente et non-déterministe.

Dans un dernier temps je propose une interprétation dans ce modèle, de lan-
gages concurrents avec mémoire faible, un des premiers travaux de sémantique
dénotationnelle pour ce type de langages. Bien que théoriques, ces modèles sont
compositionnels et basés sur des ordres partiels, et donc pourraient permettre de
faire passer la vérification de programmes concurrents à l’échelle (une probléma-
tique importante du domaine).

Summary in english

Game semantics is an effective tool to study and model abstractly program-
ming languages from a mathematical point of view, by keeping enough concrete
information on the structure of programs but yet leaving aside superfluous de-
tails. During my PhD thesis, I worked on merging game semantics with event
structures to propose truly concurrent denotational models of higher-order con-
current languages.

In the first part, I build a model based on this merge, retaining enough infor-
mation about the behaviour of programs to interpret adequately a large variety
of concurrent programming languages for various notions of convergences. The
construction of this models is based on the introduction of symmetry to prove that
the model is indeed in a cartesial-closed category.

In the second part, I propose a generalization, in this setting, of innocence and
well-bracketing, key notions in game semantics to understand the computational
effects, and thusly cloosing open problems of game semantics about concurrent
and nondeterministic innocence.

In the last part, I propose an interpretation in this model of concurrent lan-
guages with weak shared memory, one of the first works of denotational seman-
tics for these kinds of languages. Although theoretical, these models are composi-
tionnals and based on partial order, and thus could permit scaling verification of
concurrent programs (an important problem of the domain).


	Chapter 1. Introduction
	Part 1.  Concurrence
	Chapter 2. Concurrent games with essential events
	1. Games and strategies as event structures
	2. Closed interaction of pre-strategies
	3. A category of total strategies
	4. Uncovered strategies up to weak bisimulation
	5. Essential strategies
	6. Proof of categorical structure

	Chapter 3. Thin concurrent games
	1. Expanded arenas
	2. Event structures with symmetry
	3. Games with symmetry and uniform strategies
	4. Composition of uniform strategies
	5. Weak isomorphism
	6. A compact-closed category

	Chapter 4. Concurrent Hyland-Ong games
	1. Nonlinear nondeterministic strategies
	2. A cartesian-closed category
	3. Adequate interpretations of ndPCF


	Part 2.  Innocence
	Chapter 5. Concurrent innocence and well-bracketing
	0. Negative and single-threaded strategies
	1. Well-bracketing
	2. Towards a definition of concurrent innocence
	3. Innocent strategies

	Chapter 6. Intensional full abstraction for ndPCF
	1. Reduced form of innocent strategies
	2. Higher-order decomposition of strategies
	3. Intensional full-abstraction for ndPCF


	Part 3.  Impureté relâchée
	Chapter 7. Relaxed memory in a first-order setting
	1. An assembly language and its semantics
	2. Modelling TSO using event structures
	3. Desequentializing memory accesses

	Chapter 8. Relaxed state in a higher-order setting
	1. PCFmem: an extension of PCF with memory operations
	2. Thread semantics in a higher-order context
	3. Implementing memory

	Conclusion et perspectives
	Première partie : Concurrence
	Seconde partie : Innocence
	Troisième partie : Impureté relâchée

	Bibliography


