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Titre: Simulation numérique des fissures et du comportement ductile-fragile de
I’aluminium et du fer

Résumé:

Ce manuscrit présente les résultats d’'une étude a I’échelle atomique des fissures et du
comportement mécanique résultant de cristaux métalliques sous charge. Il porte en particulier
sur les mécanismes de déformation d’un cristal parfait en présence d’une fissure unique. Les
deux métaux utilisés, pour I'aluminium (Al) et le fer (Fe), ont été choisis pour leur différence de
comportement mécanique, ductile a toute température pour le premier et fragile a basse
température (T<77K) pour le second. Dans les deux cas la cohésion a été représentée par des
potentiels phénoménologiques a n-corps, bien adaptés aux simulations numériques de systemes
de grande taille, le premier développé pour cette étude (Al) et le deuxieme (Fe) sélectionné dans

la littérature.

Les modeles géométriques ont été obtenus a partir de configurations monocristallines dont les
atomes ont été déplacés selon la prescription de la théorie élastique anisotrope pour une fissure
de mode-I (010)[001] en équilibre instable sous contrainte appliquée. Ce choix est conforme aux
observations de clivage primaire du fer et théoriquement justifié pour le clivage hypothétique de
I"'aluminium. Des conditions périodiques aux limites le long de la direction cristallographique
[001] conferent a la fissure une extension pseudo-infinie, alors que dans les deux autres
directions cubiques, les atomes proches des limites du systeme simulé sont maintenus fixes aux
positions dictées par I'élasticité. Avec ces conditions initiales, un schéma quasi dynamique de
minimisation d’énergie, a permis de générer des configurations relaxée set de vérifier la
compatibilité des déplacements atomiques entre régions statique et dynamique. Dés lors que les
dimensions linéaires des systemes étudiés sont suffisamment grandes, les déplacements
atomiques anélastiques sont contenus dans une région centrale des modeles étudiés tandis que
loin de ce noyau anélastique, les déplacements entre atomes statiques et dynamiques

deviennent compatibles.

Alors que I'équilibre mécanique des fissures dans un milieu continu est instable, une plage de
stabilité existe dans les cristaux dans un intervalle de valeurs de la contrainte appliquée, dont
I'origine est le phénomene de piégeage de la fissure par le réseau cristallin. C'est cette propriété
des milieux discrets contenant des fissures qui permet I'étude des propriétés thermodynamiques
des systemes étudiés dans ce travail. Nous avons trouvé que l'intervalle de stabilité d’une fissure

dans le fer est plus important que dans I'aluminium et que les limites de contrainte délimitant le



domaine de stabilité sont indépendantes de sa longueur, suggérant ainsi que la résistance a sa

propagation est une propriété intrinseéque. Ces limites sont reliées a la longueur de la fissure par
une relation linéaire, a = f (1/Cai2 ), (a: demi-longueur de fissure, g; : valeurs de contrainte

aux limites de piégeage inférieure/supérieure) et conduisent a une énergie efficace de surface
dans les deux métaux, y, de valeur comparable a I'énergie d’excés de la surface libre a T=0K.
Cette constatation montre que le la théorie élastique des fissures (critére de Griffith) s’applique
avec succes a I'échelle atomique, établissant ainsi que les propriétés obtenues par simulation

atomistique peuvent étre extrapolées en toute sécurité a I'’échelle macroscopique.

En comparant les valeurs calculées des limites supérieures de piégeage avec les limites
élastiques des deux métaux, nous constatons que la déformation par glissement de dislocations
est toujours favorisée dans Al qui est trouvé ductile, alors que le contraire est vrai dans le Fe qui
est donc fragile a T=0K, conformément a I'expérience. Dans Al, lorsque la contrainte appliquée
dépasse la limite de stabilité la fissure se propage par clivage (010) alors que dans le Fe des
dislocations sont émises en pointe de fissure. Dans ce dernier, des petits incréments de
contrainte provoquent le clivage alors que l'augmentation de leur amplitude conduit a la
propagation de la fissure associée simultanément a la germination aux pointes de dislocations et
de défauts d’empilement. On en conclut que dans les métaux étudiés, le caractére de la
propagation en régime dynamique des fissures, ductile ou fragile, dépend également des
conditions de charge modifiant le cas échéant la réponse intrinseque observée en régime quasi-

statique.

Enfin, quelques calculs de Dynamique Moléculaire ont montré que dans Al le domaine de
contrainte dans lequel la fissure est stable ne dépend pas de la température ce qui implique que
le modele représentant I'aluminium reproduit le comportement ductile de ce métal a toute
température en accord avec les observations. En revanche, des résultats préliminaires obtenus
dans le Fe suggerent la disparition de la zone de stabilité a température croissante. Consolider

ces résultats préliminaires est une tache a entreprendre en perspective.
Mots-clés:

Simulations atomiques, minimisation d’énergie, simulations de Dynamique Moléculaire, fissures
a I'équilibre, fer cubique centré, aluminium cubique a faces centrées, réponse ductile-fragile,

piégeage de réseau, barriére contrainte/déformation



Title: Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron

Abstract:

The present dissertation reports results of an atomic scale study of the role of sharp cracks on
the mechanical behaviour of crystals under load. The question is about the deformation
mechanisms in presence of a single crack in an otherwise perfect crystal at the mechanical
equilibrium. Two models of metallic crystals have been considered as case studies in this work,
namely aluminium (Al), ductile at any temperature, and iron (Fe), brittle at low temperatures
(T<77K). In both, cohesive forces are modelled via phenomenological n-body potentials well
adapted to large scale atomistic simulations among which the former has been developed on

purpose (Al) whereas the latter has been selected from the literature.

The geometrical models have been obtained by imposing to the atomic configurations of initially
perfect crystals the displacements obtained by the anisotropic elasticity theory for a (010)[001]
mode-| crack at unstable equilibrium in presence of applied stress, which is consistent with the
primary cleavage planes in Fe and good candidate for the crystallographic orientation of
hypothetic cleavage in Al. Periodic boundary conditions are applied along the [001] axis whereas
atoms in thin slabs at the limits of the computational box are held fixed, thus yielding an initial
configuration of a crystal containing a crack of infinite extension along the [001] axis. By using
such initial conditions and a quasi-dynamic numerical scheme, minimum energy configurations
have been obtained that allow for compatibility testing of atomic displacements between the
static and dynamic regions of the models. With linear dimensions of the studied systems chosen
such as to minimize the mismatch the anelastic atom displacements are localized within the
dynamic, central region of the models whereas far from this anelastic core, static and dynamic

atoms comply with the displacements predicted by the elastic theory.

Although, the mechanical equilibrium of elastic cracks is unstable, cracks in crystals are
submitted to the lattice trapping effect that is the barrier opposed by the lattice to the crack
propagation, so that cracked crystals can reach stable mechanical equilibrium states over a finite
range of applied stress/strain values. This is of fundamental importance for it allows the
meaningful determination of thermodynamic properties of such defective systems. The crack
stability strain range has been found significantly larger in Fe than in Al, whereas upper and
lower trapping limits resulted crack-length independent, thus suggesting resistance to cleavage

is an intrinsic property.



Testing for validity Griffith's criterion, shows that lattice trapping limits obey a linear
relationship, a =f(1/Co*i2 ), (a: crack half-length, o; : stress values at the lower/upper

trapping limits) thus leading to an effective surface energy, y, associated with the crack (010)
faces, which values reveal close to the free surface excess energy at T=0 K in both metals. This
finding shows the domain of the elastic theory of cracks extending far down the atomic scale
thus establishing that properties of cracks obtained via atomistic simulations could be safely

extrapolated at the macroscopic scale (scale coupling).

By comparing the calculated values of upper trapping limits with the elastic limits in the two
metals we modelled, we found that dislocation glide is always favoured in Al, thus deforming
ductile, whereas the opposite is true in Fe, which therefore behaves brittle at T=0K. Moreover,
increasing the external load triggers dynamic, brittle (010) cleavage in Al unlike the dynamic
response of the crack in Fe transforming from brittle to ductile. In the last, low stress increments
induce cleavage whereas larger stress increments induce propagation of the crack associated
with nucleation of dislocations and of stacking faults at the crack tips. Accordingly, the
conclusion is reached that the dynamic propagation of cracks ductile or brittle does also depend
on the loading conditions adding to the intrinsic, quasi-static mechanical response of cracks in

the studied metals.

Finally, few Molecular Dynamics calculations have shown that lattice trapping in aluminium is
almost temperature independent thus implying that the model representing aluminium behaves
ductile at any temperature as is experimentally observed. On the other hand, preliminary results
suggest the vanishing of the stability region in Fe with increasing temperature. Consolidating

these preliminary results is a task left for work in perspective.
Keywords:

Atomistic simulations, energy minimization, molecular dynamics simulations, equilibrium crack
configurations, body-centered cubic iron, face-centered cubic aluminium, ductile versus brittle

mechanical response, lattice trapping effect, lattice trapping stress-strain barrier
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CHAPTER I: Introduction

1.1. The context

It is well established experimentally that the mechanical failure mode of iron and several of
its alloys, as well as many other metallic systems with the body-centered cubic (bcc) crystal
structure, changes on decreasing the temperature from ductile to brittle [FRA2002,
ARG2001, HAH1984]. This phenomenon stems from the increase of the fracture toughness
on increasing the temperature and indicates that competing underlying mechanisms of
strain-stress accommodation exist that control the change of the mechanical response from
brittle to ductile. The crossover between plastic and brittle failure modes is commonly
referred to as the "ductile-brittle transition'" (DBT). The transition can be either
gradual  (Ge[SER1994], Mo[ROB1993, GUM1998], WI[GIA2007], y-TiAl[BOO1997],
NiAI[SER1995] and MgO[ROB1993]) or sharp (Si[JOH1975, SAM1989, GEO1979, BRE1988],
Al,03[KIM1994], Fe-3%Si[HA1994], and bcc single crystalline a-iron [TAN2008]). Despite the
fact that even single-crystals undergo DBT, the transition is not thermodynamic since the
transition temperature (DBTT) is shown to relate closely to the microstructure and the
external loading conditions. In addition, the DBTT increases under specific conditions
including, irradiation [BOU2005], deformation, long exposures to operating temperatures,

and, in some cases, with the chemical environment.

Experimental studies of material crack propagation (e.g. Charpy and Compact Tension test),
have provided insight into the mode of fracture which directly relates to the fracture
toughness of the material, i.e. its ability to resist failure in the presence of a crack. Crack
extension in ductile materials is always associated with plastic deformation not opposing the
fact that in some cases the propagation of the crack is prevented or slowed down.
Therefore, ductile fracture formation is a slow process absorbing relatively high amounts of
elastic energy. Conversely, cracks spread rapidly in a brittle material with low absorption of
energy, whereas, once initiated, these keep growing to lead to the catastrophic failure of the
material. Despite its practical importance in a number of industrial applications (Nuclear,
Chemical, Construction, etc.) the physical understanding of the DBT remains limited, thus
forcing engineers to resort to empirical approaches with poor predictive power. Since cracks

are at the origin of fracture and their propagation mode is representative of the ductile or



brittle failure, the ingredients explaining the DBT are inferred identical to those controlling
the crack propagation mechanisms. This is the exact reason that the present thesis focuses

on the cracks mechanical response.
1.2.  Fracture at atomic scale

Although material fracture is observed at the macro-scale, it is widely recognized that the
crack propagation mode is determined by the atomic structure evolution at the crack-tip
resulting from the atomic-scale mechanisms in its neighbourhood of stress-strain
accommodation [GUM1995, GUM1998, CA02006, GUO2006]. This is most clear in brittle
fracture where the propagating crack-tip remains atomically sharp in order to break atomic
bonds along a specific crystallographic plane. Alternatively, in a ductile fracture, the crack-tip
region induces plastic deformation by means of dislocation nucleation and/or motion. Since
it is essential for the interpretation of brittle versus ductile behaviour of metals, significant
attention has been devoted to the study of the crack-tip mechanical response at the atomic

level under different loading and temperature conditions.

DBT models divide principally into two categories labelled respectively as the nucleation-
controlled [KEL1967, RIC1974, RIC1992, RIC1994, KHA1994] and the mobility-controlled
models [HIR1989, HIR1996, ROB1996, HAR1997, GUM1998]. The former model accounts for
the competition between crack propagation and thermally activated generation of a single
dislocation at the crack-tip, thereby, establishing criteria of dislocation nucleation, whereas
the latter describes the thermally activated generation of a single dislocation at the crack-tip
as a dynamic mechanism controlled by the mobility of generated and/or pre-existing
dislocations in the crack-tip region. However, the experimental evidence concerning the
controlling factors on DBT is still inconclusive: On the one hand, the strong dependence of
the DBTT on the strain rate allows the empirical calculation of an activation energy
characterizing the transition, which is revealed to be equal to the activation energy for the
dislocation glide in bcc metals, a result that implies DBT is dislocation mobility-
controlled [BRE1988, HIR1989, ROB1996]. On the other hand, the fracture toughness is
greatly influenced by the size of the specimen and the availability of dislocation sources in
such a manner that the mechanical response of the material has been observed to switch

from brittle to ductile on increasing the sample's experimental dimensions [MIC1994].



Moreover, experimental observations revealed that plastic deformation occurs in
conjunction with the crack propagation [OHR1985, ZIE1992]; a result suggesting that the
bond rupture, dislocation generation and dislocation activity can be coexisting phenomena
at the crack-tip and its region. Since cracks and dislocations both accommodate stress
and/or strain preferring the easiest deformation atomic mechanism, ductile versus brittle
behaviour of metals could correspond to a combination of both nucleation-controlled and
mobility-controlled models. However, since single-crystalline systems with very low density
of dislocations [BRE1988, SAM1989, KIM1994] still exhibit sharp DBT, fundamental
understanding should be first gained from systems without microstructure, such as
dislocation free pure and perfect crystals. This is the customary path followed in most
atomistic studies and is also the choice made in the present work. Accordingly, the present
study aims at investigating atomistic cracks in the absence of any other kind of
micro-structural element at this scale with principal target the interpretation of the brittle

versus ductile mechanical behaviour.
1.3. Scope of the thesis

The majority of the studies on cracks at the atomic scale focus on the dynamic response of
the crack under different loading and temperature conditions. This procedure constitutes a
logical approach for investigating the DBT, since fracture is a dynamic phenomenon.
However, the dynamic evolution of cracks in such studies depends on the applied dynamic
loading conditions and the results are likely affected by model size limitations (Chapter Ill).
In addition, the time evolution of such systems does not correspond to thermodynamic
states, which precludes estimating the thermodynamic properties of the evolving defected
systems (Chapter lll). Therefore, it is difficult to relate the thermodynamic properties of the

system to the mechanical response of a pre-existing crack.

In the present study, a different approach is adopted as we study the properties of
guasi-static cracks, i.e. crack configurations at the mechanical equilibrium. The stability of
guasi-static cracks inside materials is governed by the criterion of Griffith [GRI1920], which is
further described in Chapter IlI, stating that a crack of a certain length is stabilized in an
unstable mechanical equilibrium condition by an external stress. In an ideal brittle material,

the Griffith's stability limit corresponds to the brittle fracture threshold. However, as



explained in Chapter I, this criterion is the condition for the crack "mechanical stabilization"
inside a material, yet it does not represent the activation stress barrier for the brittle
propagation of a pre-existing crack. This barrier is related to the discrete crystal lattice effect
on the crack mechanical response which provides an additional factor of the configuration
stabilization, the "lattice trapping effect'" [THO1971, SIN1972, SIN1975, CUR1990]. Lattice
trapping is the resistance opposed by the discrete crystal lattice to the extension of a
pre-existing crack initially in mechanical equilibrium. This barrier should be compared to the
corresponding barrier for the motion of pre-existing dislocations inside the crystal lattice, a
comparison that will determine the most favourable mechanism of stress-strain
accommodation. This is how in this work the test is made if the mechanical response of the
crystal containing a crack is brittle or ductile upon increasing the load (Chapter V). Additional
effort has been devoted to identify the mechanisms of crack propagation in the absence of
pre-existing dislocations. Finally, the effect of temperature on the barrier opposing the

propagation of quasi-static cracks has been investigated.

1.4. Approach

Two cohesion models are used in this work representing respectively aluminium, a metal
known as ductile at any temperature below melting point, and a-iron which transforms from
ductile to brittle upon decreasing the temperature below 77 Kelvin [TAM2002]. Other
differences in physical properties of these metals are the elastic anisotropy and the crystal
structure; aluminium is an almost elastically isotropic face-centered cubic (fcc) crystal
whereas iron is anisotropic with body-centered cubic (bcc) structure [HIR1982]. The first step
in studying crystalline systems at the atomic level is to model their cohesive energy through
the description of the inter-atomic interactions. As presented in Chapter lll, the atomic
interactions can be described via analytic functions or inter-atomic potentials, which can
replicate the physical properties. As part of this project, a phenomenological n-body
potential describing cohesion in fcc aluminium has been optimized [ZAC2017] to yield results
with good agreement to the experimental properties (Chapter IIl). Additionally, the
inter-atomic potential developed by V. Pontikis et al. [PON2007] is used for the study in bcc

o-iron, as it provides satisfactory results (Chapter Ill).



The second step in studying crack-containing systems at the atomic scale involves choosing a
reasonable initial crack configuration embedded in an otherwise perfect crystal lattice. To
this end, the present study follows the approach that is applied in previous atomistic studies
of cracks [DEC1983, CHE1990, MAC1998, BEL2004, CAO2006, GUO2006], i.e. the analytical
determination of the crack displacement field by using the linear continuum theory. In
particular, as presented in Chapter lll, the construction of the atomistic crack models was
achieved by utilization of the complex variable method [SIH1968]. It is worth mentioning
that the FORTRAN codes developed for this process are provided in the appendix F. The
complex variable approach offers two major advantages: (i) it accounts for the crystal elastic
anisotropy, and (ii) allows the easy implementation of the loading conditions. The
investigation is focused on the (010)[001] (crack plane/crack front) nano-crack, an
orientation that is chosen in consistency with both the primary cleavage planes in bcc iron

and the hypothetically favourable cleavage planes of fcc aluminium (Chapter IIl).

Continuum mechanics constitutes an analytic methodology capable of determining the
mechanical properties of materials, at the macro-scale. However, it is widely recognized that
the crack displacement field thereby provided is not applicable in the vicinity of the crack-tip
as the analytic solution of the stress field nearby the crack-tip singularity diverges.
Moreover, since continuum mechanics considers the materials as continuous and
homogeneous, no prediction of phenomena that relate to the discrete nature of the
crystalline lattice is possible. In short, continuum mechanics cannot adequately describe the
non-linear and discrete character of the crack-tip region at the atomic level. Nevertheless,
the far-displacement field of a crack configuration can be appropriately described by
continuum mechanics. Since the spatial range of non-linearity close to the crack-tip region is
atomistic [GUO2006], crack-tip description is ideally suited for atomistic methods (Molecular
Statics and Dynamics, Monte-Carlo). Indeed, atomistic simulation is used to compute the
individual motion of atoms (Appendix I), and hence it is appropriate to study the non-linear
properties at the crack-tip region both in equilibrium and non-equilibrium configurations. At
the same time, atomistic simulations account for the discrete nature of the crystal system
and thus are widely used to investigate the mechanical properties of crack-containing

systems at the atomic scale in complement to continuum mechanics.



Despite the significant increase in computational power during the last decades, even the
largest atomistic simulation systems that can run on modern computers are too small
compared to the laboratory scale. To circumvent this inevitable limitation, atomistic
simulation models are usually divided into two main regions: (i) the atomistic region and
(ii) the boundary conditions. The former is the region of interest at the atomic scale, while
the latter is the part of the system that surrounds the region of interest and aims to simulate
the effect of the macroscopic system on it. Within this framework, atomistic models of
cracks use as boundary conditions the elastic field of cracks described by continuum
mechanics and vice-versa. Indeed, the combined atomistic-continuum technique couples
material properties from macro-scale to the discrete atomistic scale [GUM1995, ABR1997,
RAF1998, BRO1999] and is the method that is used in the present work (Chapter Ill). As is
further explained in Chapter lll, the boundary conditions integrate the loading conditions on
the atomistic crack model. For this reason, special attention has been given to their
implementation. Atomistic studies on cracks focus in general only on the crack-tip
region [DEC1983, CHE1990, MAC1998, MAC2004, BEL2004, BEL2007]. This approach causes
the boundary conditions to generate non-physical constraints in the model, since they do
not allow the physical relaxation and/or motion of the crack surfaces; thus possibly affecting
the crack response to the external load. In this study, a different approach is followed as the
atomistic model contains the entire crack configuration (Chapter Ill). Thus, the crack faces
are able to relax and/or move physically during the simulation and to shape the crack under
different conditions of loading and temperature. Additional advantage of this choice is that it

allows investigation of the effect of the crack-size on the mechanical response.

For the first time, the present thesis highlights an important issue concerning the study of
nano-sized cracks. As described in Chapter IV, according to the criterion of
Griffith [GRI1920], the applied load stabilizing a crack configuration of atomistic length is of
order of magnitude of giga-Pascals. This load exceeds the elastic limit of both the studied
metals, causing large displacements into the system which does not comply with the usual
elastic behaviour [HIR1982]. Based on the above, the elastic properties of the
crack-containing crystal can be affected considerably; hence their evaluation is required

critically in order to appropriately interpret the mechanical response of the crystal. This



issue, which concerns all atomistic studies on nano-sized cracks, as well as the present work,

is discussed and treated in Chapter IV.

1.5. Presentation

The manuscript contains five additional chapters:

e The second chapter presents the experimental and computational results of the
brittle versus ductile behaviour of materials from the literature. Additionally, the
necessary mathematical formulation for describing a crack-containing system in

mechanical equilibrium is given in the framework of linear continuum mechanics.

e In the third chapter, the technical and computational details of the simulation
process are presented in detail together with the description of the project's

approach.

e The fourth chapter is devoted to highlight the need of evaluating the elastic
properties of systems that contain nano-sized cracks in mechanical equilibrium. This

issue is addressed within the framework of linear elasticity.

e The fifth chapter presents the atomistic simulations concerning equilibrium,
non-equilibrium and dynamic cracks in fcc aluminium and bcc iron. Simulation
findings are accompanied with the corresponding analysis, interpretation and

discussion.

e Finally, the last chapter summarizes results and conclusions of this work and draws

perspectives for future work.



CHAPTER II: Literature Review

2.1. Ductile-Brittle Transition: Experimental information

The experimental study of the ductile-to-brittle transition has been conducted within a very
large range of scales; from the macroscopic scale, an area where mechanical tests and
measurements are performed, up to the microscopic scale, an area of experimental
observations and measurements [ROS1996, REN1996, MAN1999, OBR2005, CHA2010]. At
the macroscopic scale, the ductile-brittle transition can be experimentally studied by
performing the Charpy impact test [ROS1996, TAN2005a, TAN2005b], which determines the
amount of energy absorbed by a material during fracture. From the experimental results, as
it is shown in figure 1.1, it can be observed, that at low temperatures fracturing a material
requires a low amount of energy (lower-shelf), relating to the brittle-cleavage failure mode.
On the contrary, at high temperatures, the material requires a much higher amount of
energy (upper-shelf) to fracture in a ductile-plastic manner. This experimental finding can be
interpreted in two different ways: (i) the ability of a crack to propagate may be affected by
the temperature and/or (ii) the temperature increase can possibly give rise to another
mechanism of stress-strain accommodation, which is energetically more favourable than the

brittle propagation of the crack.
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Figure 11.1: Charpy V-notch test curves of A508 steel [TAN2005a].
It is common, for practical reasons, that the engineers determine a specific temperature,

Tppr, Which describes the ductile-brittle transition of an industrial material. This Tppr is
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usually defined by the use of several empirical criteria on Charpy experimental
data [MOU2009], including the average between the lower and the upper shelf, a specific
absorbed energy etc. These criteria are not based on the physical interpretation of the
transition; hence, the Tpgr will not be employed in the current thesis. Another category of
mechanical tests that use to study the transition are the Compact Tension (CT)
tests [IWA1985, REN1996], which are extensively used in the field of fracture mechanics, in
order to establish the fracture toughness values of a material system; hence they can
provide a direct description of the DBT transition (figure 11.2).
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Figure 11.2: Fracture toughness versus temperature for the A508 steel in the transition region [IWA1985].

The transition can also be observed from the fracture surfaces [MAN1999, QIA2003,
SP12007] of mechanical tests samples. These are appearing as shiny for a complete brittle
fracture, while are dull and fibrous for a totally ductile failure. However, it is worth
mentioning that at the microscopic level the ductile features are always present on the
fracture surfaces of industrial metals. This experimental finding implies the existence of a
competition between micro-scale mechanisms of stress accommodation which are related
with structural defects. Experiments on single-crystal systems reveal the existence of two
different forms of the DBT phenomenon, the "sharp'" and the "soft" transition. The "soft"

transitions (Ge[SER1994], Mo[ROB1993, GUM1998], WI[GIA2007], y-TiAl[BOO1997],



NiAI[SER1995] and MgO[ROB1993]) are characterized by a gradual increase of the stress
intensity to fracture in relation with the temperature below the transition temperature,
Tppr- In addition, within this temperature range the activity of dislocations at the crack-tip
region increases with the temperature increase. On the other hand, ‘'sharp"
transitions (Si[JOH1975, SAM1989, GEO1979, BRE1988], Al,03[KIM1994], Fe-3%Si[HA1994],
and single crystalline a-iron [TAN2008]) are characterized by the sharp increase of the stress
intensity at the transition temperature, Tppr. In such a transition, dislocations in the vicinity
of the crack-tip become active, only, at and above Tpgr. It is also worth to mention that the
type of transition of a single-crystal system can be changed due to its pre-testing
preparation. In particular, the sharp transition in silicon can be transformed to a soft one by
the introduction of dislocations and dislocation sources before testing [WAR1989]. Such an
observation indicates the significant role of the micro-structure and the pre-existing
structural defects with this phenomenon. Another experimental result is that Tpg for both
types of transitions increases in respect with increasing the strain rate. Such a result suggests
that the Tppr is not a thermodynamic or intrinsic property of a material system since it is
affected by external conditions. Observations on microscopic scale reveal that dislocation
activity occurs during the loading of specimens, prior to system failure, if the stress level of a
material at fracture is larger than the brittle critical threshold of Griffith (§2.3) [BRE1988,
JOH1975, WAR1989]. On the contrary, dislocation activity is absent, not even for a few
degrees below Tpgr, for systems exhibiting sharp form transition [JOH1975, SAM1989]. In
addition, for single-crystalline systems that exhibit soft transitions, dislocation activity
increases with increasing the temperature [WAR1989]. Now, since every real system
contains pre-existing dislocations, the following question inevitably arises: why dislocations

remain inactive and the system prefers the brittle breakage at low temperatures?
2.2. Plastic deformation in metals

As it is known from the solid state theory [HIR1982], the plastic deformation of metals
occurs primarily via the motion of dislocations. It is widely established that dislocation
motion in crystals is mainly performed through glide on specific crystallographic planes and
along specific crystallographic directions, which compose the glide slip systems [HIR1982],
depending on the type of the crystalline lattice (Table I.1). The slip systems usually consist of

crystallographic planes of the highest planar density and the crystallographic directions of
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the highest linear density, where the energetic barrier for the dislocation to glide is
lower [HIR1982]. In fcc crystals, like aluminium, dislocation glide occurs on the close-
packed {111} planes and along the close-packed (110) directions, hence resulting in total 12
available slip systems [HIR1982]. The corresponding magnitude of the Burgers vector, i.e. the
magnitude of the lattice distortion, is equal to:

Qo

5] = 2(110) =
=5 -z

where a, is the lattice parameter of the unit cell (Appendix H). In bcc crystals, like a-iron,
dislocation glide can occur on {110}, {123} and {112} crystallographic planes and along
the (111) directions, resulting totally 48 available slip systems [HIR1982]. The norm of the

Burgers vector in this case is given by:

\/§a0
2

- _@ _
|b| = > (111) =

According to the solid state theory [HIR1982], a static dislocation existing within a crystal can
potentially glide on an available slip system, if it is subjected to a force which has a
component along the respective slip plane and slip direction. This force can be the result of
applied load on the crystal and is known as the resolved shear stress, Tzgs. In the case of

uni-axial loading, the tz¢s Of a given slip system is given by Schmid's law [HIR1982]:
Trss = 0 * COSQ *COSA =0 'm (11.1)

where g is the tensile stress, ¢ is the angle between tensile direction and slip plane normal
and A is the angle between tensile direction and slip direction (figure 11.3). The coefficient m
in equation 1.1 is called the Schmid-factor and takes the values 0 < |m| < 0.5 depending on
the relative orientation between the slip system and the tensile axis. According to the theory
of dislocations [HIR1982], dislocation glide on a specific slip system can be triggered only
under the condition where the tx55 has surpassed a stress threshold; the critical resolved
shear stress, Tcrss. FoOr a pure crystal, the t-rss expresses the intrinsic resistance of the
crystalline lattice against to the dislocation glide on a specific slip system, due to the existing
atomic potential barriers. In this case, the 7.zss depends on the crystal structure, the family
of the slip system, the type of the gliding dislocation (edge or screw [HIR1982]), the type of

the atomic bonds and the temperature.
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Table I1.1: Slip systems of the fcc and bcc crystal lattice

fcc lattice bcc lattice bcc lattice
Slip system {111}(110) Slip system {110}(111) Slip system {211}(111)
Slip Slip Slip Slip Slip Slip Slip Slip Slip
system plane direction system Plane direction system plane direction
1 (11D) [011] 1 (011) [111] 1 (211) [111]
2 (11D) [101] 2 (101) [111] 2 (12D) [111]
3 (111) [110] 3 (110) [111] 3 (112) [111]
4 (111) [011] 4 (011) [111] 4 (211) [111]
5 (111) [101] 5 (101) [111] 5 (121) [117]
6 (111) [110] 6 (110) [111] 6 (112) [117]
7 (111) [011] 7 (011) [111] 7 (211) [111]
8 (111) [101] 8 (101) [111] 8 (121) [111]
9 (111) [110] 9 (110) [111] 9 (112) [111]
10 (111) [011] 10 (011) [111] 10 (211) [111]
11 (111) [101] 11 (101) [111] 11 (121) [111]
12 (111) [1710] 12 (110) [111] 12 (112) [111]
bcc lattice
Slip system {123}(111)
Slip Slip Slip Slip Slip Slip Slip Slip Slip
system Plane direction system Plane direction system plane direction
1 (123) [111] 9 (213) [111] 17 (312) [111]
2 (123) [111] 10 (213) [111] 18 (312) [117]
3 (132) [111] 11 (231) [111] 19 (321) [111]
4 (132) [111] 12 (231) [111] 20 (321) [111]
5 (312) [111] 13 (123) [111] 21 (213) [111]
6 (312) [111] 14 (123) [111] 22 (213) [111]
7 (321) [111] 15 (132) [111] 23 (231) [111]
8 (321) [111] 16 (132) [111] 24 (231) [111]

Slip plane normal n )
Applied force F = o4

Cross-sectional area A

Slip plane
Slip direction

Tensile axis

Figure 11.3: Schmid's law: the critical resolved shear stress [INT5].
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Experimental data from mechanical tests and atomistic results from computational
simulations shown that materials, which are of the same crystalline structure family, present
similar plastic behaviour. Starting from the fcc crystals, the topss at T = 0K amounts to
values which are proportional to the 107G [HOW1961, SUZ1988, WAN1996, KOI2000,
SHI2013], where G is the shear modulus. On the other hand, the T.gss at T = 0K in bcc
crystals is significantly higher and proportional to 103G [KUR1979, WAN1996, SUZ1999].
The difference in the magnitude of T.gss at T = 0K between the two crystalline structures

can be attributed to two reasons:

(i) The first reason is that the bcc crystals do not contain closed-packed planes, while
the fcc crystals do contain [HIR1982]. As already mentioned, the higher the planar
density of the slip plane the lower the energy barriers for a dislocation to glide.

(ii) The second reason is the fact that the plastic deformation in bcc metals is controlled
by the glide of screw dislocations [HIR1982]. Atomistic calculations demonstrate that
a screw 1/2[111] dislocation can splits into three 1/6 [111] fractional dislocations
extending its core within the crystal on the {110} and {112} crystallographic
planes [SEE1976, PUL1981]. The glide of this equilibrium configuration [VIT1974,
HIR1982] upon applied loading is accompanied by the structural change of the
extended dislocation core; a mechanism that absorbs significant amount of elastic

energy.

Furthermore, experiments in bcc crystals [SUZ1999, TAM2002] show that the increase of
temperature significantly decreases the 7.gss (figure 11.4). This behaviour demonstrates that
the dislocation glide is a thermally-activated mechanism in bcc metals. Additionally, Suzuki
et al. [SUZ1999] has studied the temperature dependence of the T grss Using a scaling
relation and proved that the plastic behaviour of several bcc metals (a-Fe, Nb, Mo, Ta, K) can
be described by a "master curve". Hence, his study demonstrates the existence of a plastic
homology for the bcc metals. On the other hand, in fcc crystals, the T.rss is not affected
significantly from the temperature, suggesting that the glide of a dislocation is an athermal

process [TAM2002]. Based on the above information, it can be concluded that:

(i) atlow temperatures, the T285s > T/55¢, while

(ii) at high temperatures, the Té’ffss and the nggs are converging.
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Figure 11.4: Temperature dependence of the effective critical shear stress of bcc metals [SUZ1999].

Apart from the temperature, the T-gss can be also affected from the microstructure,
including solute atoms, precipitates, interfaces, grain boundaries and other obstacles for the
dislocation glide. If under specific conditions (e.g. temperature or microstructure) the t.zss
becomes too high, a loaded crystal can use alternative mechanisms of stress
accommodation. Such a mechanism is the cracks' propagation which results to brittle
fracture of the crystal. Jaoul [JAO1965] has stated that the mechanical response of a
material upon loading can be interpreted phenomenologically by the coexistence of these
two competing mechanisms. Hence, depending on which of the mechanisms requires the
smallest activation stress, either plastic flow (ductile response) or crack propagation (brittle
response) will take place. Jaoul's simple model can qualitative describe the temperature
effect on the ductile versus brittle behaviour in bcc metals. According to his model (figure
I1.5), the yield stress, which is the experimental quantity representing the r’g,‘;‘gs, decreases
significantly with increasing the temperature. On the other hand, the fracture stress, i.e. the
stress that causes brittle fracture on cleavage planes, remains relatively independent from
temperature due to the very small change in surface energy to temperature. Based on these
considerations, there is a possibility that for a specific temperature (Tpgr) the yield stress
and fracture stress can be equal. According to this scenario, for T < Tppr, the yield stress is
larger than the fracture stress, which means that the propagation of cracks is the preferable

mechanism of stress accommodation. On the contrary, for T > Tpgr, the yield stress is lower
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compared to the fracture stress and hence the dislocation glide is triggered easier that the
crack propagation. Thus, failure mode changes from plastic flow to brittle fracture by
decreasing temperature. Finally, in contrast to the bcc metals, a ductile-to-brittle transition
in the fcc metals such as aluminium does not exist [SMI2014]. Hence, it is apparent that
there is a relation between the type of crystalline structure and the mechanical behaviour of
materials. Based on Jaoul's phenomenological approach, this behaviour is caused due to the
very low values of nggs, which promote dislocation glide at all temperatures. Having

presented the aspects of dislocations behaviour in both crystalline structures, the attention

now should shift on cracks.
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Figure 11.5: Temperature dependence of the yield stress and fracture stress.

2.3.  Griffith's theory of cracks

The fundamental starting point for studying fracture in cracked material systems is the
Griffith's energy balance concept [GRI1920]. The idea of Griffith is based on a system
containing a crack, which mechanical response upon loading is described via a reversible
thermo-dynamical process. He considered an elastic body containing a narrow elliptical
crack, with length equal to 2a and width b — 0 (Griffith's crack). The body is subjected to a
constant uniform tensile load, as illustrated in figure 1.6, and is considered being ideally

linear elastic up to the fracture.
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Figure 11.6: Griffith's crack problem

Under this concept, Griffith studied the relation of the change of the energy of the system in
respect to the crack length. According to his analysis, the total energy for a quasi-static crack

system consists of three terms:

where U, is the elastic energy stored in elastic body in the absence of the crack due to the
constant applied load, Uy is the elastic energy released from regions of the medium close to
the crack during its formation, and Us is the excessive energy of the two newly created
surfaces enclosing the crack. Thus, the total energy of the crack configuration itself is given

by:
yereck =y — U, = —Ug + Us (11.3)
The thermodynamic equilibrium state of the crack system can be determined by:

d Ucrack

=0 1.4
P (11.4)

Griffith used the Inglis solution of the stress and strain field around a sharp crack [ING1913]
in order to calculate the strain energy release due to the crack formation. Considering the
case of an isotropic medium, the strain energy release per unit thickness of the model, over

the domain close to the formed crack, is given by:
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wa’c}
UE = E

(I1.5a)

where g, is the tensional applied stress and E is the Young's modulus. Equation Il.5a refers
to the case of a plane state of stress, which can be achieved inside a thin plate (§D.2). A
similar expression is obtained for the case of plane state of strain (§D.2), for a thick plate

system:

(1-v?) (I1.5b)

with v being the Poisson's ratio. In addition, Griffith considered that the crack faces are
approximately flat and do not interact. Under these assumptions, the surface energy of the

system per unit thickness is simply expressed by:
Us = 4ay (11.6)

where vy is the free surface energy per unit area. Thusly, the total energy of an Griffith-Inglis

crack in the case of plane state of stress becomes:

2.2
Ucrack R Uc = _na 94 4 11.7
=—Ug+tUs= + 4ay (I1.7a)
Similarly, for the case of the plane state of strain:
2,2
crack — _ — _T[a 0a 2
U Ug + Us (1—-v*) + 4day (11.7b)

By using the equilibrium condition (equation I1.4), Griffith was able to calculate the critical

stress for the onset of fracture of a crack configuration with a specific crack length, a,:

2Ey

Opc = T[_Clo (” 861)
2Ey

Opc= |——p (11.8b)

(1 —-v?)ma,
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for plane stress and plane strain conditions, respectively. At the same time, the equilibrium
condition provides the critical half-length, ., corresponding to an equilibrium crack

configuration inside a system under a specific constant applied load, g4 :

2Ey
ae=— (I11.9a)
T[UA,O
2Ey
a. = (11.9b)

(1- vz)naj’o

for plane stress and plane stress conditions, respectively. Figure II.7 illustrates the energy

release, the surface energy and the total crack energy in respect to the crack length.
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Figure 11.7: Energetics of the Griffith-Inglis crack in uniform tension and under plane stress conditions.

v

As it can be seen, a cracked system under a constant applied load reaches a maximum
energy at a., hence the quasi-static crack configuration is in an unstable equilibrium. As a
result, if the applied stress exceeds the critical level defined by equation 1.8, an initially
equilibrium crack configuration is free to propagate spontaneously without limit. On the
other hand, if the applied stress reduces below the critical level, an unstable equilibrium
crack is going to close through a reverse propagation-like process. Equations 11.8 and 1.9 are
known in literature as the criterion of Griffith [GRI1920], which is presented graphically in
figure 11.8. Griffith's criterion implies that every crack configuration, with a specific length, is

stabilized upon applying a specific load. This constitutes the foundation in dealing with the
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"mechanical stabilization" of any sized crack inside a material system. In addition, the fact
that the equilibrium condition of a crack is represented by a zero-dimensional point on the
crack's energetics diagram (figure I1.7) it proves that the Griffith's critical stress (equation
11.8) is not related to the activation stress barrier of brittle propagation for a pre-existing

equilibrium crack in the system.
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Figure 11.8: Griffith's criterion applied on fcc aluminium [ZAC2017] and bcc iron [PON2007].
More importantly, Griffith's analysis provides the mathematical framework for the
"mechanical homology" of cracks inside elastic systems. Considering the case of the plane
strain deformation mode, the total energy of the crack configuration at equilibrium is equal

to:
ycracke — Ucracklazac = 2a.y (11.10)

Expression 11.10 provides us with the possibility to express the total energy of a crack in

normalized units:

crack
Ucrack,* —

a a\?
~ [cracke =2 (a_c> - (a_c) (11.11)
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By setting a* = a/a, the normalized total energy of a Griffith-Inglis crack can be expressed

in normalized units of crack length as:
yeracks = 2% — g*? (11.12)

Equation .12 constitutes a "master curve" (figure 11.9) which describes every crack
configuration independent from its crack-length. This master curve demonstrates that inside
an ideally brittle medium, where Griffith's criterion is valid, every-sized crack configuration
presents similar mechanical response upon loading. This ""mechanical homology' of cracks
inside elastic systems offer us the basis to study nano-sized cracks at atomistic scale using

Griffith's mathematical formulation (Chapter V).

Master curve
1.5 -

0.5 -

Ucrack, *
o

-0.5 -

a*

Figure 11.9: The mechanical homology of cracks inside ideally elastic system.

2.4. Ductile-Brittle Transition: Models [ROB1996, HIR1997]
2.4.1. Nucleation-based models

Among the first efforts in understanding the ductile-brittle transition, Kelly [KEL1967,
CHE1990] proposed that a crack-containing material can be classified as intrinsically brittle

or ductile, depending on its mechanical response upon applied loading. In particular, if a
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pre-existing crack is able to propagate upon loading along a crystallographic plane via brittle
cleavage, the material is characterized as "intrinsically brittle". On the contrary, if a
pre-existing crack prefers to accommodate the applied stress field through plastic
deformation, including the formation and emission of dislocations or other shear-like
processes, the material is classified as "intrinsically ductile'. Based on this approach, Rice
and Thomson [RIC1974] attempted to distinguish the intrinsic behaviour of materials by
comparing the necessary load to propagate a crack with the load required for a dislocation
emission from the crack-tip (figure 11.10). Their idea gave rise to the construction of similar
models focusing on the conditions for dislocation nucleation at the tip of a crack. These
models are focusing on the "nucleation-based" interpretation of the ductile-brittle
transition. This type of physical modelling has been further refined over the last decades by
means of complex analytical treatments [RIC1992, SCH1996, XU1997] and atomistic
simulations [RIC1994, PAN1998].

Slip Plane .
P \L - gdeave > gdisl:

——
anmnme +
+

’

.

.

Geleave < Guist - >—

Figure 11.10: A sharp crack with intersecting slip plane (left), showing the competition between dislocation
emission (upper right) and cleavage de-cohesion (lower right). The G is the rate of decrease of the stored
elastic energy in the system, due to the respective mechanism, and is proportional to the load required for its
activation. [BEL1999].

The main limitation to achieve the complete description of the ductile-brittle transition
through the use of the nucleation-based models, relies on the fact that they focus only on
the conditions required for the emission of the first dislocation from the crack-tip. Such
models hold a common implicit hypothesis, which states that once a dislocation is formed
for the crack-tip, then, many others will nucleate. In this case, the crack will become either
blunted or shielded thus cleavage will not occur. However, experimental observations have
shown that brittle cleavage propagation of the crack can be performed in coexistence with
the activity of dislocations [OHR1985, ZIE1992]. This is particularly clear in the case of the

soft transitions, where below the Ty dislocation activity increases with the temperature.
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2.4.2. Mobility-based models [HIR1989, HIR1996, ROB1996, HAR1997, GUM1998]

Another category of models developed to reproduce the ductile-brittle transition in
materials is based on the nucleation of a dislocation at the crack-tip, as a dynamic
mechanism controlled by the mobility of pre-existing dislocations at the crack-tip region. In
general, dislocations have two different effects on the tip of a crack. The first ("blunting
effect") is the transformation of the crack-tip due to the nucleation mechanism, becoming
blunt and thus reducing the stress concentration. The second ("shielding effect") is that in
presence of dislocations in the vicinity of the crack, the state of stress at the tip is altered
thus the conditions for dislocation emission. The effective stress intensity at the crack tip is
lowered, by both effects, for dislocations emitted from near-the-crack-tip sources. This
process accelerates as the number of emitted dislocations increases due to its linear relation
with temperature. To move on to the next step for the prediction of the ductile-brittle
transition, a fracture criterion must be used, which is usually the fracture toughness

provided by Griffith, corresponding to pure cleavage.
2.5. Ductile - Brittle transition: Atomistic simulations

Despite their physical significance, the existing analytic models of continuum mechanics lack
of a convincing treatment of thermal and nonlinear stress effects in the vicinity of the crack
tip. On the other hand, such local information is not available experimentally and therefore,
the mechanical response of crack systems is difficult to be predicted. Moreover, existing
continuum models do not take into consideration the discrete nature of the crystalline
systems and hence, they are unable to reproduce experimentally observed phenomena (e.g.
anisotropic cleavage [RIE1996]). Atomistic simulations, based on molecular statics and
molecular dynamics, provide an opportunity to study the ductile-brittle behaviour of crystals
by overcoming limitations of continuum mechanics. For example, unlike continuum elastic
models, atomistic simulations avoid stress singularities that are associated with
crack-tips [WES1939, SIH1968] and dislocation cores [HIR1982], since stress and strain fields
are government by the lows of the inter-atomic interactions. Additionally, atomistic
simulations allow the monitoring of dynamic processes that taking place close to the
crack-tip and its neighbourhood. Characteristic examples are the formation of structural

defects (e.g, dislocations, twins and stacking faults) and the crack-tip structural
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evolution (e.g. blunting, atomic bonds de-cohesion) which constitute mechanisms of the
accommodation of the applied stress. Moreover, atomistic simulations enable the validation

and further development of failure criteria used in continuum models [BEL2004].

In the following paragraphs, the most salient contributions of atomistic studies on the
attempt to understand the ductile-brittle behaviour of crystals are listed. Atomistic
simulations (e.g. [KOH1991, SHA1996]) have shown that the ductile versus brittle response
of cracks in single-crystal systems depends on the relative orientation of the crack plane and
available slip systems. Specifically, for the active slip system in bcc iron (111){112}, three
different shear processes may be observed at a crack tip under plane strain
conditions [BEL2004, MAC2004]: (i) generation of extrinsic stacking faults, (ii) twinning
formation, or (iii) emission of edge dislocations. In addition, molecular dynamic simulations
in bcc iron [MAC1999] have shown that, for the crack orientation (001)[110] (crack
plane/crack front), the generation of unstable stacking faults and twinning at the crack tip
are preferred to the (111){112} slip systems, whereas, for the (110)[110] crack
orientation, emission of complete edge dislocations is observed on the same type of slip
system [LAN2002]. This is explained by the orientation of the active shear
systems (111){112} ahead of the crack-tip along the easy twinning direction for the
crack (001)[110] [MAC2004] and along the hard (or "anti-twinning'") direction for the
crack (110)[110] [BEL2004]. Atomistic results indicate that these different shear processes
have different consequences for the stability of nano-cracks in bcc iron, in possible
connection with the embrittlement of ferritic steels. For that reason, the topic has been
studied in bcc iron both via continuum [CHA2002, WEE1997] and atomistic
methods [MAC1999, LAN2002, BEL2004]. Dislocation emission on the (111){112} type slip
systems and stability of (110)[110] cracks were studied by Beltz et al. [BEL2004].
Generation of unstable stacking faults and twinning on the same type of slip system and
crystal orientation have been studied for (001)[110] cracks by Machova et al. [MAC1999].
Therefore, it has been concluded that the crystallographic orientation of the crack within the
crystal lattice is a significant parameter in understanding the brittle versus ductile behaviour

of crystals.

Another important parameter for understanding the ductile-brittle behaviour of crystals is

the crack blunting. Crack blunting influence on dislocation emission has dragged limited
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attention [WEE1997, SCH1997, GUM1995]. Weertman described a mechanism of crack
blunting by dislocation emission exhaustion [WEE1997]. Atomistic studies [SCH1997,
GUM1995] agree on one major point: the ratio of crack advance versus dislocation emission
changes as the crack tip blunts. G.E. Beltz et al. [BEL1999] showed that a crystal should not
be classified as intrinsically ductile or brittle based on the emission of the first dislocation,
but rather on the ongoing competition between crack propagation and subsequent
dislocation nucleation as the crack-tip curvature evolves toward a steady state. Therefore, it
has been concluded that the morphology of the crack-tip affects the mechanical response of

the material system.

Finally, atomistic simulations reveal the existence of effects that are related with the
discrete nature of the crystal systems at the atomic scale. The most important amongst all is
the "lattice trapping effect'" [THO1971, SIN1972, SIN1975, CUR1990]. This phenomenon
describes the resistance of the crystalline lattice against both the healing and propagation of
a pre-existing crack, which is initially in mechanical equilibrium. The lattice trapping effect
transforms the unique and unstable equilibrium state of a crack configuration (§2.3) to a
finite stability region, which is defined by the upper (crack propagation) and lower (crack
healing) trapping stress-strain limits. Therefore, the mechanical stability of a crack is
characterized by a range of stresses or strains which represents the barrier for triggering the

propagation of a pre-existing crack.
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Chapter lll: Computational Methods and Details

3.1. Atomic crack models
3.1.1. Crystallographic orientation of the crack

The first step in the study of cracks at the atomic scale is the construction of the atomic
model. Focusing on the intrinsic mechanical behaviour of pure aluminium and a-iron, we
choose to simplify the investigation by not taking into account other micro-structural
ingredients (i.e. dislocations, interfaces, grain boundaries, precipitates, etc.). This is also the
approach found in the literature, i.e. the study of the mechanical response of a crystalline
system which contains only a single crack [DEC1983, CHE1990, MAC1998, MAC2004,
BEL2004, BEL2007]. Unlike continuum approaches, at the atomic scale matter is discrete and
the arrangement of atoms in crystals is dictated by the symmetry and geometry of the
lattice (Appendix H). Crystalline materials present directional dependence for both their
structural and elastic properties, resulting to the anisotropic mechanical response under
applied load. Hence, for a single-crystal containing a crack, the crystallographic orientation
of the applied external load is decisive for its mechanical response, and the operated choice

in aluminium and a-iron should be justified.

The fundamental process in the final failure of most engineering materials is the cleavage
propagation of cracks. Hence, the resistance of the crystalline lattice to cleavage activation is
crucial for evaluating the intrinsic mechanical behaviour of a solid. It is well established that
crystals of different classes prefer to be cleaved along specific crystallographic
planes [BEA1968]; hence, in order to appropriately simulate the resistance of aluminium and
a-iron to fracture, the crack orientation of the respective atomic models should be chosen in
consistency to these metals' primary cleavage planes. Experimental data demonstrate that
the primary cleavage planes in bcc iron are of the type {100} [ALL1956, HUL1958, HUL1963].
On the other hand, it is experimentally known that the pure fcc metals, like aluminium, are
ductile systems and they do not have cleavage planes [BEA1968, MAS1980]. Hence,
experimental data can only propose the appropriate crack plane for the models of a-iron,
but not for aluminium. To select the appropriate crack plane for aluminium models we
resort to the physical description of the cleavage phenomenon. Several criteria have been

proposed in order to interpret the experimentally observed cleavage planes of crystal
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systems [HUG1923, WO0O01932, SHA1936, STE1949, GIL1959]. Among them, superior
predictability is exhibited by the criterion developed by Gilman [GIL1959], which is able to
correctly determine the primary cleavage planes in a-iron. For the case of the fcc crystals,
Gilman's criterion predicts that if the cleavage phenomenon was possible it would be
performed also along the {100} planes. Hence, resistance to crack propagation for both fcc
aluminium and bcc iron should be investigated through the construction of crack models

with the crack plane being the {100} crystallographic planes.

The "intrinsic" resistance of the crystalline lattice to the propagation of a crack is described
by a phenomenon, known as the "lattice trapping effect" [THO1971, SIN1972, SIN1975,
CUR1990]. According to this, a crack configuration can be stabilized in mechanical
equilibrium within a finite range of applied deformation or load, the lattice trapping
stress-strain barrier. In order to determine this barrier, the equilibrium crack configurations
corresponding to the lattice trapping limits should be determined. The most convenient way
to analytically describe [GRI1920] as well as to simulate an equilibrium crack inside a system
is by using mode | deformation or load. In practice, this means that a tensile stress is applied

on the system normal to the plane of the crack [WEE2008], as illustrated in figure Ill.1.

‘LI
——

v

Figure I1l.1: Model | uni-axial loading.

Hence, mode | geometry of applied loading was selected for the crack models. For the above
reasons, the present thesis focuses on the mechanical response of (010)[001] mode |

cracks (figure 111.2), in both fcc aluminium and bcc iron, where:
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(i) the crack surfaces coincide with (010) planes,
(ii) the crack front is oriented along the [001] direction, and
(iii) the potential cleavage propagation (§3.5.3) of the crack is performed along the

[100] direction.

Figure 111.2: Central Griffith's (010)[001] crack configuration under mode | uni-axial plane strain loading
condition. The Cartesian coordinate system of the system's representation coincides with the cubic
crystallographic system, i.e. x is the [100], ¥ is the [010] and z is the [001] crystallographic direction.

3.1.2. Numerical models

Having defined the crack's crystallographic orientation and the direction of applied loading
geometry, the setup of the atomic initial configuration proceeds in two steps. The first, is
defining the atomic positions in the perfect crystalline lattice (Appendix H). Perfect crystal
structures are oriented along the cubic axes (i.e. x is the [100], y is the [010] and z is the
[001] crystallographic direction) so that to comply with the crack crystallographic
orientation. The second step is introducing the crack in the crystal by appropriately
displacing atoms. The crack displacement field is determined as a function of the material's
elastic properties and the external loading conditions. The present thesis follows the
approach used in the majority of studies in the literature, which is the analytic determination
of the crack displacement field by the use of the complex variable approach (CVA). The CVA,

which is based on continuum linear elasticity (Appendix D), has two major advantages:
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(1) it accounts for the elastic anisotropy of the studied system, and

(2) it allows the control of the main parameters defining the crack displacement field,

i.e. the crack length and the applied loading conditions of the system.

The method allows for determining explicitly the crack displacement field with respect to its
crystallographic orientation. The CVA is restricted to two-dimensional anisotropic elastic
problems [SIH1968]; hence, the present thesis is focused on the (010)[001] crack
configurations under plane strain uni-axial loading conditions (figure 111.2). According to the
CVA (appendix D), the numerical solution of the crack displacement field requires calculating
first the complex parameters, of this two-dimensional mechanical problem, which depend
on both the material system and the crack orientation. To this end, the following procedure

has been applied:

(1) Calculation of the elastic constants of stiffness, €y, C;, and Cy, referring to the cubic

axes orientation and using the inter-atomic potentials (appendix B),

(2) Calculation of the elastic compliances, S;1, S12 and Sy, of the same crystallographic
orientation. These material parameters are determined by the following relations

derived from anisotropic elasticity [KIT2004]:

Cll + ClZ
= TGy, - 202 (1)
11 11%~12 12
_612
Siz = 1.2
= G Gl - 205 -
1
544 == C_ (111. 3)
44

(3) Calculation of the compliance coefficients, a;;, corresponding to the applied

deformation mode, according to the equations D.28.

(4) Solution of the governing differential equation (D.39) of the plane crack problem to

determine the corresponding complex roots, y;.

The different quantities of this mathematical procedure are summarized in Table Ill.1.
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Table I1l.1: Complex variable approach parameters for the (010)[001] crack configuration under

mode | plane-strain conditions in fcc aluminium and bcc iron.

Properties Aluminium Iron
C11[GPa] 116.63 243.1
C1,[GPa] 61.028 137.5
C44[GPa] 29.618 121.8

S11[GPa™1] 1.33895 x 1072 6.9565 x 1073

S1,[GPa™1] —4,59845 x 1073 —2.5132x 1073

Si4[GPa™1] 3.376325 x 1072 8.2102 x 1073

a;,[GPa™1] 1.181 x 102 6.04856 x 1073

a,,[GPa™1] —6.178 x 1073 —3.42113 x 1073

a,6[GPa™1] 0 0

a,,[GPa™"] 1.181 x 102 6.04856 x 1073

a,¢[GPa™ 1] 0 0

age[GPa™1] 3.376325 x 1072 8.2102 x 1073

Complex roots U, = 0.216 +i0.976 Uy = 0.666 + i0.746
U, = —0.216 + i0.976 U, = —0.666 + i0.746

The analysis reveals that the (010)[001] crack geometry leads to complex parameters that
belong to the case Ill orthotropic solution (Table D.1) for both material systems. As a result,
the crack displacement field is given by the expressions D.53, where u, and v, are the
displacements components along the x = [100] and y = [010] crystallographic direction,
respectively. However, as presented in Appendix D, the displacement field (u, and v,))
provided by the CVA contain rigid body terms that should be eliminated in order to obtain
the correct form of the crack. The rigid body terms can be determined by the general
expressions of displacements provided by Savin [SAV1961]. According to his analysis the

rigid body terms of u, and v, components are equal to:

ulBT = qq —y,y (I11.4a)
BT = By + yox (I11.4b)

where a, By, Yo are arbitrary real constants and x, y are the atomic position coordinates of
the perfect system. In particular, the constants a, and [, correspond to rigid body
translation terms and can be calculated through the translation of the system's mass center,
when the displacement field formulas (Eqgs. D.53) are applied on the perfect crystal system.

Hence,
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a0=ﬁ(2xi—2xi>=ﬁ<Z(xl-+uxi)—;xi)=N2uxl- (111.5a)

i=1 i=1 i= =1
N N N N N
1 , 1 1
ho=%y Zyi _Zyi =N Z(J’i + vyi) —Zyi =5 Zvyl- (I11.5b)
i=1 i=1 i=1 i=1 i=1

where x;, y; and xlf, yl-' are the atomic position coordinates before and after applying the
displacement components u,; and v,; into the perfect N-atom crystalline systems. In
addition, the constant y, corresponds to a rigid body rotation around the z-axis (i.e. the
[001] crystallographic direction), and can be determined by the equation:

1/0u OJv
Yo=wz=§<$—a> (111.6)

The partial derivatives of the displacement components can be calculated from the x;, y;
and xlf, yl-' atomic coordinates of representative positions in the system (i = P, R1 and R2),

which are based on the schematic representation of figure 111.3, through the following set of

equations,

Ax = |xp — Xgq| (I11.7a)
Ay = |xp — Xg2| (111.7b)
U=Xp — Xp (111.7¢)
V=Y, —Yp (111.74d)

ou
u+an = Xpy — Xp1 (I11.7e)

du
u+@Ay=xR2r—xR2 (I1.7f)

Jov
v+an = Yr1 — Yr1 (111.7g)

v
v+@Ay = Yry — VR2 (111.7h)
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Figure I1I1.3: Rigid body rotation calculation of an initially perfect system (blue rectangular) after its
homogeneous deformation (red parallelogram).

The mathematical points P, R1 and R2, being under study, were chosen to be located far
from the centre of the crack (Appendix F). The stress functions (Eqs. D.73) used for
determining the crack displacement field can describe the entire contour of the crack
configuration, an approach known as the 'central crack" or "entire crack" field. This
approach is different compared to the "crack-tip field' followed in the majority of atomistic
studies [DEC1983, CHE1990, MAC1998, MAC2004, BEL2004, BEL2007], which can provide
only a part of the contour of the crack. The reason for this decision is explained in the §3.3.2.
Moreover, the stress functions (Egs. D.73) allow the determination of the crack
displacement field by controlling the crack length magnitude, a, along the [100] direction as
well as the applied mode | tension, g4, along the [010] direction. Part of this work focused
on the development of the appropriate codes, capable of creating the numerical models
of (010)[001] crack configurations under mode | plane strain conditions, in both fcc

aluminum and bcc iron. These programs, are given in Appendix F, and allow setting the a
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and the o4 for obtaining the atomic model of the crack as output. Examples of such atomic

models for the two material systems are illustrated in figures I11.4.

Face-centered cubic Aluminum

[100] crystallographic direction
| 1 | 1 1 | 1 | 1
Figure Ill.4a: Model of a (010)[001] central crack under mode | loading conditions in fcc lattice of aluminum.
The system is subjected to a 3GPa tension along the [010] direction and the crack length is equal to 60 lattice
parameters.
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This expression is based on the Born-Oppenheimer approximation [BOR1927], which states
that the motion of atomic nuclei and electrons in an atom can be separated and allows the
incorporation of all electronic effects in U. Based on equation IIl.8, the atomic system is

conservative [YOU1999], thus the force acting on each atom is given by the relation:
Fi(#y, o, y) = VUG, o 7y), (=1, ..., N) (111.9)

where V; is the derivative operation for each atom i:

v,

aiﬁza_xil-l_a_yij-l__-k (111.10)
The potential model expresses the different types of interactions between atoms in the
system which are mainly based on the number of participant atoms in each type of
interaction. As a result, the total potential energy is determined by a linear superposition of
terms that depend on individual atoms, two atoms, three atoms or more atoms. To obtain
the inter-atomic potential of a particular material atomic system, several mathematical
functions and/or functionals can be developed using phenomenological approaches. The
unknown parameters of these functionals are fit to various fundamental state properties,
experimentally determined and/or calculated from first-principle methods. This constitutes a
developing process aiming the construction of analytic schemes that are capable to model
the energetics, static states and dynamic properties of the system of interest. In general, the

effectiveness of an inter-atomic potential is indicated by the following properties [BRE2000]:

(a) Flexibility: The potential function should be flexible in terms of accommodating a
wide range of fitting database in order to incorporate as many physical properties

and characteristics of the system as possible.

(b) Accuracy: The potential function must be able to calculate an appropriate set of
fitting data with sufficient accuracy in order to correctly reproduce the corresponding

properties of the system of interest.

(c) Transferability: It is also crucial for the potential model to reproduce properties of
the system that are not included in its fitting set of data. The reproduction of such
properties should be at least qualitative, if not with quantitative accuracy, leading to

a more comprehensive description of the system.
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(d) Computational efficiency: Computational cost is another important factor for the
efficiency of the potential models. The analytic functions should be developed in such
a way that optimize the simulation time in respect to the system sizes, the time scale

of interest and the available computing resources.

In the following paragraphs, the atomic interaction models for the pure single-crystalline fcc
aluminium [ZAC2017] and the bcc alpha iron [PON2007] used in our work are presented in

detail.
3.2.1. Face-centered cubic aluminium

An analytic N-body inter-atomic potential for face-centered cubic (fcc) aluminium, which
was phenomenologically developed on earlier studies [ASL1998a, ASL1998b, ASL2000], has
been recently optimized [ZAC2017]. The potential energy of this semi-empirical model is

made of three contributions:
(i) a repulsive Born-Mayer pair-wise functional (U"),

(ii) an attractive N-body cohesive functional, like those derived from within the
second-moment approximation in tight-binding theory for transition

metals, (U%), and,

(iii) a long-ranged oscillatory pair-wise functional accounting for the screened ion-ion

Friedel interactions in simple metals (U°?).

More specifically, the total energy of a solid crystalline aluminium system of N interacting

atoms can be obtained by summing all the atomic contributions:

N
yotal — Z U, (1. 11)
i=1

where, U;, the potential energy of an atom i is given by the expression:
U, =U] +U}+U; (I11.12a)

or
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(I11.12b)

N i (Clcos(ZkFrij) N Slsin(ZkFri]-) N Czcos(ZkFrl-j)>
(rij/r0)3 (rij/r0)4 (7”1';'/7”0)5

Jj#i
This scheme is central since the potential energy depends solely on the Euclidean
distance 1;; = |7i - 77;| between the atom i and each j-neighbouring atom. Moreover, inside
the equation 111.12, the 1, = a,/+/2 is the first-neighbour distance, with a, the lattice

parameter of the Bravais fcc aluminium lattice, and ky is the modulus of the Fermi

wave-vector of aluminium at T = 0K,

1
3m2N\3 1
kp = % = (3n®n,)3 =~ 1.127[2n/a,] (I111.13)

where n, = 12/a3, is the number of free electrons per unit cell volume. The N-body
character of the potential can be revealed through the resulting analytic expression of the
force (Appendix G). The adjustable parameters of the model 4,p, ¢, q,C;,S; and C, have
been determined by a least-squares fit to experimental properties extrapolated at T = 0K
using MERLIN [EVA1987], a multi-dimensional minimization package. The restricted set of

these bulk quantities includes:
e the lattice parameter a, [SIM1971],
e the shear elastic constants C' = (Cy; — C;2)/2 and Cyy [SIM1971],
e the bulk modulus B [SIM1971],

e the cohesive energy E. [KIT1976],

e the vacancy formation energy E,f [POP1974, GIL1989, SIM1960, TRI1975, FLU1978],

and
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e the intrinsic stacking-fault energy y; [HAM1992, SMA1970, MUR1975, PES1979,
MIL1989].

Table Ill.2 presents the optimal values of the potential's adjustable parameters resulting
from the fitting procedure. The experimental physical properties used to fit the potential's
analytic function along with their calculated values are listed in Table IIl.3. Table Ill.3 also
presents additional experimental and calculated fundamental state properties in order to
evaluate the transferability of the atomic model. The potential predicts satisfactory
structural, energetic and defect properties of the solid crystal fcc aluminium. Concerning the
crack problem, since the elastic constants are adjusted to the experimental
values (calculations in appendices B and C), the model is capable to correctly evaluate the
elastic energy of the strain crack field. Moreover, the surface excess energies, ¥ k), derived
by the atomic model, are in agreement with the experimental data; hence, the effects of the
crack surface energy can be reliably simulated in both static and dynamic conditions.
Therefore, the present inter-atomic potential is reasonably well adapted to study the
mechanical response of nano-sized crack configurations in single-crystalline fcc aluminium at
the atomic scale.

Table IIl.2: Parameters of the inter-atomic potential of fcc aluminium. The cut-off radius of

inter-atomic interactions, 7, is expressed in units of the equilibrium lattice constants used in the
fitting procedure, a, = 4.02A.

Adjustable parameters (units) Values
A (eV -atom™1) 0.178
& (eV-atom™) 1.3831
C, (eV - atom™1) 9.473 x 1073
S, (eV -atom™1) 5.149 x 1073
C, (eV -atom™1) 1.664 x 1072
p (—) 6.50
q (=) 2.07
1./a, (=) (10™-neighbour distance) 2.291
m (u) 26.982
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Table 111.3: Comparison between the potential calculations and experimental fcc aluminium
properties at T = 0K. Shaded part of the table summarizes the data entered in the fitting procedure.

Values between parentheses are results of previous calculations found in the literature.

Quantity (units)

Potential Calculations

Experimental Data

a, (A) 4.02 4.03[SIM1971]
C' (10%GPa) 0.278 0.23-0.26 [SIM1971]
Cys (10°GPa) 0.296 0.28-0.32 [SIM1971]
B (10%GPa) 0.796 0.79-0.82 [SIM1971]

E. (eV) 3.336 3.339 [KIT1976]

El (eV at em™)

0.73 (unrelaxed)
0.69 (relaxed)
(0.6-0.86 [POP1974]/
0.56 [GIL1989])

0.76 [SIM1960]/
0.66+0.01[TRI1975, FLU1978]

135-166
Y1 136(156[HAM1992]) [SMA1970, MUR1975, PES1979,
MIL1989]
Ebcc — Efcc (eV) -0.112 -
Enep — Epec(eV) 0.0034(0.037[HAM1992]) -
¥(r00) (MJ /mM?) 790(1081[BOH1988])

1169[WAW1975] — 1180

857(913[NEE1987],1090[HO1985])
766(704[NEE1987],939[SCH1995])

Y@10) (mJ/m?)
Ya11) (mJ /m?)

[TYS1977a]

3.2.2. Body-centered cubic iron

An analytic N-body phenomenological potential developed by V. Pontikis [PON2007] is used
to describe the inter-atomic interactions in body-centered cubic (bcc) iron. In this model, the
description of the repulsive and attractive contribution to energy is made of by two
electron-density functionals. In particular, the repulsive part (U") is represented by a
Thomas-Fermi free-electron gas functional of the electronic density of 4s valence electrons.
In addition, the attractive part (U?) is described by a square root functional, similar to the
second-moment approximation of the tight-binding scheme, applying to the electronic
density of 3d valence electrons in iron. The total energy of a N-atom crystalline system is

derived by summing the atomic energy contributions:

N
yletal = Z U; (111.14)
i
where the potential energy of each atom i, U;, is expressed as:
U; = U] + U (111.15a)

or

38



2

N 5/3 N 1/
Ui=4 szls(rij) - Z p3a(1i)) (111.15b)

J#i Jj#i

Alike the potential for aluminium [ZAC2017], this potential is also central. The electronic-

densities corresponding to the 4s and 3d valance electrons are given by:
2
pas(1ij) = [Was(rij)] (111.16a)

2
pa(rij) = [Paa(rij)] (I11.16b)
where W (r) are hydrogen-like radial wave functions expressed by:

*

1 ZysT 3 ZysT
Y,o(r) = —|24 —18Z;;r + 3(Z;,1)* — ( ) exp <— 2 ) (I111.17a)

*

96 2

W, (r) ! (zzgdr>2 ( ngr) (I111.17b)
Tr)=—— ex — .
3d 9v30\ 3 p 3

with 7 the inter-atomic distances expressed in atomic parameters and A, £ and the effective
charges Z;; and Z3, being adjustable parameters of the model. Moreover, in order for the
model to appropriately describe the short-range interactions exhibiting in transition metals,
the range of the electronic densities, pss and ps4, is modified by the use of a Fermi-Dirac

step function:
1
1+exp [s (rlc - 1)]

acting as a multiplicative factor. Consequently, the analytic model has totally six adjustable

fQrr,e) =

(111.18)

parameters, which are fitted to a selected set of experimental properties extrapolated

at T = 0K, such as:
e the lattice constant a, [SIM1971, BAS1955],
e the shear elastic constants C' = (C;; — C13)/2 and C4, [SIM1971],
e the bulk modulus B [SIM1971],
e the cohesive energy E,. [KIT1976], and
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e the vacancy formation energy E,f [SCH1983]

Table 111.4 lists the optimal numerical values of the potential parameters resulting from the
adjustment made by the use of MERLIN minimization code [EVA1987]. Additionally, the
Table 11I.5 presents the calculated properties in comparison with their experimental
counterparts, which are used to the fitting procedure, along with Ab-Initio data from the
literature. Despite the restricted set of the model's adjustable parameters, the Table III.5
validates a remarkable good agreement between calculated and experimental values for all
ground state properties at T = 0K. According to V. Pontikis [PON2007], the model has been
additionally tested by computing the temperature dependence of both the lattice
constant (figure 111.5) and the mean square displacements (figure I1.6). The results indicate
that the potential is capable to describe the temperature effects on the crystal structure;
hence, the model is well adapted to study the mechanical response of cracks under different
temperature conditions. Moreover, the correct prediction of both elastic constants and
surface excess energies provide the necessary factors to appropriately simulate the crack
configuration energetics and mechanical state.

Table 11l.4: Parameters of the inter-atomic potential of bcc iron. The cut-off radius of inter-atomic

interactions, 1., is expressed in units of the equilibrium lattice constant at T = 0K, a, = 2.86‘2\,
whereas the effective charges, Z; and Z3; are in elementary charge units.

Adjustable parameters (units) Values
A(eV - atom™) 1011
& (eV-atom™1) 147.9
Zjs 3.15
Z3q 0.507
€ 15.4712
r./ay (=) 1.0351
m (u) 55.847

40



Table IIl.5: Ground state properties of the bcc iron at T = 0K, calculated by the inter-atomic
potential function. The comparison is made with experimental values extrapolated at T = 0K and
data of Ab-Initio calculations found in the literature. The shaded part of the table summarizes data
enter in the fitting procedure.

Quantity Potential Experimental Ab-Initio
(units) Calculations Data Calculations
ay(nm) 0.286 0.286[SIM1971, BAS1955] 0.283[WAL2005]
B(GPa) 172.7 173.1[SIM1971] =
C'(GPa) 52.8 52.5[SIM1971] =
C44(GPa) 121.8 121.8[5IM1971] =
Eqon(eV) 4.289 4.28[KIT1976] -
Ef(eV) 1.78 (relaxed value) 2+0.2[SCH1983] 2.12 [WAL2005]
Efcc — Epec(eV) 0.03 0.05[BEN1982] 0.09 [WAL2005]
¥ 3.0-12.0[M051966, 3.4 —4.0 [WAL2005,
E(110) 583 (relaxed value) BIL1968] FU2004, DOM2001]
Fo o ] ] -0.7,-0.67 [WAL2005,
Etao) = By 0.11 FU2004, DOM2001]
Y100y (mJ/m?) 1868 2410[TYS$1977a] -
2.91
&
L]
2.9
s’
4 /ﬁ_
~ ° e
< 289 —
= N
2 6.
o 288 e
3 s
= e
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Figure III.5: Equilibrium lattice parameter in respect to the temperature. Experimental data are denoted with
full blue circles and red triangles [SIM1971,BAS1955] whereas atomistic results presented with full green
diamonds (from [PON2007]).
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Figure IIl.6: Atomic mean square displacements as a function of temperature. Experimental data are denoted
with open blue squares and red triangles whereas atomistic results correspond to the full green
circles (from [PON2007]).

3.3. Boundary conditions

Most atomistic studies [DEC1983, CHE1990, MAC1998, MAC2004, BEL2004, BEL2007] are
applied to systems with several thousand up to few hundred thousand of atoms (our models
N = 384000 atoms, Appendix H). These numbers of atoms are not large enough to form
bulk systems (N~1023 atoms) but only atomic clusters. The atomic systems are enclosed in a
simulation box of which the form and shape are strongly related to their characteristics (e.g.
crystallography, geometry, etc). The most common form of the simulation box is the
rectangular parallelepiped with sides lengths of Ly, L,, and L, along the three perpendicular
directions and a total volume equal to V = LyL,L,. In such small-sized systems, a
non-negligible number of atoms is located at or near the surfaces of the atomic model or the
simulation box [HAI1997, RAP2004]. Such atoms are subjected to force fields different from
those of atoms in the bulk state, a fact that affects significantly the properties of the atomic
model. In order to simulate an atomic model as a part of a bulk system, appropriate
boundary conditions are implemented on its edges or at the limits of the simulation box,
aiming at eliminating surface effects. At the same time, the boundary conditions are set such

that it mimic the way the surrounding bulk system affects the atomic model, including the
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application of mechanical loading, pressure, etc. This is of great importance for investigating
the mechanical response of cracks, since both their stabilization and propagation requires
the implementation of external applied stress-strain fields (Appendix D). For these reasons,
the proper selection of the boundary conditions of the atomic crack models is the third basic

technical step of the present study.
3.3.1. Loading approach

In order to select the appropriate set of boundary conditions, it is first necessary to
determine the type of the desired loading conditions to be applied on the atomic crack
configurations. It is experimentally known that the fracture of real materials is a dynamic
phenomenon tightly associated with the propagation of cracks. For this reason, the vast
majority of atomistic studies on crack-containing systems focuses on the dynamic
propagation of the crack configurations under applied loading [DEC1983, CHE1990,
MAC1998, MAC2004, BEL2004, CA02006, BEL2007]. According to this approach, the
mechanical behaviour of the systems at the atomic scale can be determined through the
evaluation of the mechanisms of dynamic structural evolution of the crack-tip. Despite its
popularity, this ""dynamic propagation approach" (DPA) is characterized by the following

fundamental weaknesses:

(1) The dynamic response of a crack configuration in these studies is investigated
through the implementation of dynamic or quasi-static loading conditions and aims
to model the experimental mechanical conditions [GUO2003, NIS2004]. However,
the dynamic structural evolution of the crack-tip during simulation significantly
affects the stress field within the atomic model. Hence, the crack configuration
inevitably experiences dynamic loading, which cannot be realistic due to time and

space scale limitations.

(2) Since dynamic cracks push the system outside the thermodynamic regime they do
not allow the calculation of thermodynamic properties. This inability prevents to
quantitatively study the phenomenon of crack propagation, thus limiting it only to a

gualitative description.
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The aim of the present thesis is to calculate, quantitatively, the stress-strain barrier required
to trigger the propagation of a pre-existing equilibrium crack. Based on the aforementioned,
the DPA is undoubtedly incapable to provide this result. To achieve this objective, we
propose a novel method in studying the mechanical response of cracks, called the
"quasi-static propagation approach" (QPA). According to the QPA, the triggering process for
the propagation of a crack inside a crystal is described as a series of successive states of all
the possible equilibrium configurations of the crack under static load, which corresponds to
a gradual increase of the applied load. This sequence of equilibrium states approximates the
loading process of the crack-containing system until the mechanic instability
limit (propagation or healing). Hence, the equilibrium configurations corresponding to the
lowest and highest static loading conditions define the limits of the stability region of the
crack under increasing load, that is the stress-strain barrier below/above which the dynamic
response occurs. The QPA allows the quantitative determination of the stress-strain limits of
this barrier, since the corresponding equilibrium crack configurations belong to a
constrained thermodynamic regime. In conclusion, by following QPA in the present thesis,

the application of constant-static loading conditions on the atomic crack models is required.
3.3.2. Modelling approach

Having decided the loading approach to be followed, the next step is to achieve its
technical-wise implementation. As demonstrated in Appendix D, the analytic solution of the
crack displacement field, provided by CVA, corresponds to the application of static mode |
loading conditions on the system. Hence, the atomic model incorporates a priori the effect
of a specific macroscopically applied stress field on the nano-sized crack configuration. Based
on this, the technical implementation of a constant-static load on the atomic configuration

of the crack can be achieved by the use of a mixed type of boundary conditions (MTBC):

(1) Here we set the atomic positions fixed at the x = [100], ¥ = [100], y = [010]
and ¥ = [010] limits of the atomic model, according to the analytic solution of the
crack displacement field [SAV1961, LIM2001].

(2) In addition, its two-dimensional form allows the implementation of periodic

boundary conditions [ALL1987] along the direction of the plane-strain
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mode (&,, = &, = &, = 0). As a result, the crack model is of pseudo-infinite length

along the direction of the crack front, i.e. the z = [001] crystallographic direction.

This approach of boundaries is commonly used [GU0O2006, GUO2007a, GUO2007b] because
it is capable of reproducing the 2D heterogeneous stress fields characterizing structural
defects at the atomic scale. Projecting the atomic system along the xy = (001)
crystallographic plane (figure 1I.7), it can be observed that the model is divided into two
regions: the "inner atomic region" of interest and its ""outer-shell fixed atomic region" with

rectangular-like form.

y = [010]
y = [010]

p x = [100] x = [100]

z= [0.01]

Figure 11.7: Mixed type of boundary conditions of the atomic crack model. The fixed-displacement region is
presented with yellow while the free region with pink color. In addition, the periodic boundary conditions are
applied along the z = [001] crystallographic direction.

Now, according to the CVA, the crack displacement field is additionally depended on the
crack length size, a. Hence, MTBC approach is valid only for equilibrium cracks (a=constant),
given that any change of a requires the change of the elastic field at the boundary conditions
of the model in order to maintain a constant applied load on the system. This proves the
need for employing a simulation technique capable to examine if the atomic models
constructed with the CVA are mechanically stable. Such investigation can be achieved via
structural relaxation of the atomic model according to both the MTBC effect and the laws

govern the inter-atomic interactions. In this process, a crucial parameter is the position of
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the 'fixed atomic region" in respect to the crack configuration. It is well
established [GUO2006] that the crack displacement field, determined by the CVA, cannot
appropriately describe the crack-tip region since the associated analytic solution of the
stress field at the crack-tip singularity diverges [SIH1968]. In addition, the derived
displacement field is based on the continuum description of the system and hence it is
lacking to integrate the effect of the discrete nature of the crystalline lattice. Thus, in order
to obtain the correct atomic configuration of the crack-tip region and close to the crack
faces (i.e. the near-crack displacement field), structural relaxation of the crystal model is,
again, required. Nonetheless, it has been proven that the range of atomic relaxations from
the crack-tip position for equilibrium configurations is atomistic [GUO2006], hence the
far-crack displacement field can be appropriately described by the CVA. Therefore, in order
to achieve a reliable structural relaxation of the crack atomic configuration, the "fixed
atomic region" should be located at a sufficient distance from the crack-tips and the crack
faces. A significant difference of the present work, compared to most studies in
literature [DEC1983, CHE1990, MAC1998, MAC2004, BEL2004, CAO2006, BEL2007], is the
fact that the atomic model contains the entire contour of the crack and not only a part of
it (e.g. the half crack configuration or the crack-tip region). With this "central crack"
approach, the "fixed atomic region'" does not intersect with the crack faces and hence
allowing them to move and evolve during structural relaxation process (figure 111.8a). On the
contrary, in the "crack-tip field" models, the "fixed atomic region" keeps a part of crack
faces fixed and thus are causing un-physical constrains on the near crack strain-stress fields
during structural relaxation (figure 111.8b). Hence, this simple modification in crack modelling
improves the reliability of results regarding the mechanical stability of cracks under load.
However, throughout the entire bibliography examined in this thesis, no study was found
that follows the '"central crack" approach. In practice, the "central crack"” model has
anisotropic shape along the crack plane and thus it cannot be adjusted perfectly into the
rectangular parallelepiped simulation box. As a result, the simulation box is chosen to be
larger than the atomic model along the x = [100] and y = [010] directions leading to the
formation of free surfaces. In order to isolate the "inner atomic region" from the surface
effects, the thickness of the "fixed atomic region" has to be larger compared to the range of

the forces calculation (Appendix G). Hence, the outer-shell of fixed boundary conditions

46



must have a thickness larger than double the cut-off distance of the inter-atomic

interactions, R > 2r, (figure 111.9).

e —————

- —— e

(a) (b)

Figure 111.8: (a) Central crack and (b) crack-tip field models. The pink outer-shell of both models denotes the
fixed atomic region while the blue represents the inner atomic region of interest where the simulation is
performed.

Figure 111.9: The thickness of the outer-shelf of fixed boundary conditions (pink) is larger compared to the range
of the forces calculation (R > 2r). In this way, the inner atomic region of interest (blue) is isolated from
surface effects.

3.4. Simulation Techniques
3.4.1. Energy Minimization

The fourth step in our atomistic study is the selection of an appropriate simulation technique
capable to examine the mechanical stability of nano-sized cracks under loading at the atomic
scale. According to the §3.3, the crack models constructed using continuum

mechanics (§3.1) contain atoms that are placed in energetically unfavourable positions.
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Hence, in order to evaluate the crack model's mechanical response under specific load, their
atomic conformations should be optimized according to the laws governing the inter-atomic
interactions (§3.2). The energy minimization (EM) is the simulation technique for
computationally finding the optimal atomic placements of an atomic conformation. The
optimum configuration is obtained through an iterative relaxation process which
progressively subtracts energy out of the system until it reaches at the closest local (or
global) minimum of energy. This is due to the fact that the atoms are approaching
step-by-step their energetically favourable positions. The resulting atomic conformation
corresponds to a static equilibrium state of the system, which is uniquely defined by the
total potential energy, U. Based on this, the mechanical stability of a crack model can be
determined by comparing its initial and relaxed atomistic configuration (§3.5.1). The EM
technique can be achieved by the use of several algorithms. In the present study,
the "localized damping" (LD) method [BEE1972, GEH1972, EVA1974, BEN1975, BEE1983] has
been used, which is presented in Appendix I. Its simple algorithm allows a fast relaxation
process. Hence, it can be applied to the study of large atomic systems (~10° atoms) through
the use of reasonable computer resources. It is important, however, to emphasize that the
EM technique is limited due to the lack of taking into account the temperature effect.
Particularly, the static relaxation neglects the atomic vibrations induced by the thermal
activation, and therefore the optimum configuration obtained characterize the system at
zero Kelvin, only. Therefore, in order to examine the mechanical stability of nano-sized
cracks at finite temperature, a different simulation technique is required. A technique that is

capable to take into account temperature effects is the Molecular Dynamics.
3.4.2. Molecular Dynamics

Molecular dynamics (MD) is a computational technique capable of simulating the atomic
motion in many-body systems, based on the principles of Classical Mechanics [ALL1987]. The
physical movement of the atoms is determined by solving the Newton's equations of motion
via numerical integration. The integration procedure relies on the force fields between the
atoms of the system, derived by the inter-atomic potential function (§3.2). In the MD case,
the aim is not to reduce energy (like the EM), but to conserve energy while allowing the
atoms to move due to their thermal oscillations. In this way, the MD technique follows the

time evolution of the system and generates information regarding atomic positions,
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velocities and forces necessary to quantify the equilibrium and transport properties of the
system of interest according to the prescriptions of Statistical Mechanics [GUN1990,
WIL1997]. Particularly, the MD simulations enable the calculation of the time-average of a
property when the system reaches a thermodynamic equilibrium state. However, a
thermodynamic property of the system is defined as the average of the property over all the
possible equilibrium microscopic states, also called the ensemble-average. Based on the
ergodic hypothesis [BON2007], Statistical Mechanics establishes equality between the
time-average and ensemble-average quantities of a property, enabling the MD method to
guantify macroscopic properties of the system under study. Such properties include the
temperature of the system as well as the applied stress state. The molecular dynamics

technique is described further in Appendix I.
3.5. Simulation procedure
3.5.1. Cracks stabilization under load at T = 0K

The first part of the thesis focuses on the study of (010)[001] cracks at T = 0K, aiming at
determining equilibrium configurations under quasi-static mode | load. This investigation has
been performed by examining the mechanical response of cracks with specific length, a,
under different applied stress-strain conditions (&; or oj;, with i = x,y,z). The crack
containing models of fcc aluminium and bcc iron were constructed according to §3.1.2. The
mechanical response of the cracks under load has been determined though structural
relaxation by using the localized damping method (Appendix 1.4) with the mixed set of
boundary conditions described in §3.3.2. Initial atomic configurations have been relaxed for
more than 10° simulation time steps, with 6t = 10~1* seconds. The relaxation process is
considered completed when the two ‘'relaxation" criteria, which are presented in
Appendix 1.4, are satisfied. The mechanical stability of each strained system has been

examined, upon relaxation, by using two different "stabilization" criteria:

(1) First criterion, is the change in the number of atoms at the internal surface area of
the crack, AN, obtained by comparison of N between the initial and relaxed
configuration. An atom i is considered belonging to the crack faces if its potential
energy, U;, is larger than the potential energy of the second surface layer of the crack

surfaces. Whenever N remains constant (or AN = 0) during the relaxation process
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then the crack is in mechanical equilibrium. If N is decreasing (AN < 0) or
increasing (AN > 0), the crack is closing or opening, respectively.

(2) Second criterion, is the change of the crack half-length, Aa, determined by

comparison of a between the initial and relaxed conformation. The value of a is
simply determined from the coordinates of surface atoms in the [100] and [100]
directions. It happens that the crack length determinations via atomistic model or
continuum mechanics solution (Appendix D) are slightly different for the initial
configurations due to the discreteness of the former. A crack is considered to be in
mechanical equilibrium if [Aa| < d;¢9, Where d;¢, is the distance between the {100}
planes. On the other hand, if Aa < —d g9 or Aa > +dygy the crack is healing or

propagating, respectively.

Additionally, the mechanical response of the crack has been monitored by examining the
potential energy at the near crack region, U,,., i.e. close to the crack-tip and the crack faces.
This quantity is capable to capture the structural evolution of the crack-tip during relaxation
process. For example, in the case of crack propagation, the increase of the area of the crack
surfaces leads to an increase of the U,,.. On the contrary, in the case of crack healing, the
reborn of new bonds causes reduction of the U,,.. Finally, every mechanism of plasticity at
the crack-tip and/or its region (e.g. dislocation emission) causes release of the system's
stored elastic energy and hence can also be detected through the associated reduction

of U,..
3.5.2. Cracks stabilization under load at T + 0K

The second part of the thesis focuses on the determination of (010)[001] cracks in
mechanical equilibrium under quasi-static mode | load, at finite temperature conditions,
T # 0K. The investigation of the cracks' mechanical response has been performed by
employing the molecular dynamics technique (Appendix I) in the following three-step

simulation process:

e Step 1: The perfect crystalline models of the two metals (Appendix H) have undergo
NVT molecular dynamics simulation in order to reach a thermodynamic equilibrium
state at a specific temperature, (T)yy7. The lattice parameters of the models (as..—

and apcc—pe) are defined a priori from the a = f(T) relations (figures 111.10),
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resulting from the corresponding inter-atomic potentials [ZAC2017, PON2007]. The
implementation of temperature into the system is performed by the initiation of the
atomic velocities (1;(0)), with values chosen randomly from a Maxwell-Boltzmann
distribution corresponding to the desirable value of (T)yyr. Periodic boundary
conditions were considered along the three orthogonal directions of the perfect
crystalline model (i.e. the cubic crystallographic axes), and every atom in the system
is free to move without constraints. Different perfect samples were equilibrated at
different values of (T)yyr for 2 X 10° simulation time steps, with &t = 107>
seconds. The simulation process has been monitored by recording the instantaneous
and the average values of the systems' temperature in respect to the simulation
time-steps (figures I11.11). Eventually, when each system reaches the thermodynamic
equilibrium, the simulation is stopped and the atomic coordinates of positions and
velocities are stored.

Step 2: Having the atomic coordinates of a snapshot of the perfect systems, which
corresponds to a specific (T)yyr, the displacement field of the central (010)[001]
mode | crack is introduced by the use of the complex variable approach (§3.1.2). It is
important to mention that the displacement field calculation is made under the
approximation that the elastic constants are not affected from the temperature,
i.e. Cij(T > 0K) = C;;(T = 0K).

Step 3: The models constructed in step 2 constitute the initial configurations for the
simulation of crack-containing crystals at finite temperature. The mechanical
response of these models was investigated by the use of NVT molecular dynamics
simulation which was performed at the same (T)yy7 as in step 1. However, this time,
the initial velocities of the atoms, U;(0), are not determined by a Maxwell-Boltzmann
distribution. Instead, the 7;(0) values of the MD models were determined from the
velocity values that were saved in the step 1. In this way, the crystalline models do
not experience "thermal shock" due to the initialization of atomic velocities (figures
[1.11), like in step 1, which can affect the mechanical stability of the crack.
Simulations were performed with the mixed set of boundary conditions described
in §3.3.2 and with time step equal to 6t = 10~1° seconds. In order to determine the
equilibrium configurations at each (T)yyr, the mechanical response of several

models corresponding to different values of static applied strain mode | conditions

51



were examined for a specific crack-length (22a,; for aluminium and 40ag, for iron).

Finally, the mechanical stability of the cracks was determined by the use of the two

criteria defined in §3.5.1.
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Figures 111.10: The change of the lattice parameter in relation to the temperature, calculated for (a) aluminium

and (b) iron from the respective inter-atomic potentials [ZAC2017, PON2007].

52



Instantaneous

200 Average -

180

160

140

120

Temperature (°K)

100

80

60 1 1 |
0 50000 100000 150000 200000

Simulation time steps

Figures 111.11: The evolution of the instantaneous and the average temperature of a defect-free aluminium
system during a NVT molecular dynamic simulation at Ty, = 125K. The initialization of the atomic velocities,
using a Maxwell-Boltzmann distribution, causes a temporary thermal shock into the system.

3.5.3. Ductile and Brittle propagation of a crack at the atomic scale

The final part of the thesis focuses on the investigation of the dynamic response of cracks,
aiming at identifying the type of mechanical behaviour the system follows upon loading, in
the absence of pre-existing dislocations. To this end, it is first necessary to consolidate the

characteristics of both the ductile and brittle crack propagations at the atomic scale.

It is established that the "inherently" brittle propagation of a crack is performed by the
cleavage mechanism [GRI1920, TYS1973, TYS1977b, DEC1983, CHE1990, FIS2001, GUO2006].
According to this mechanism, an atomically sharp crack propagates through atomic bonds
rupture at the crack-tip, along a specific crystallographic plane and a specific crystallographic
direction, where for the mode | geometry they coincide to the crack plane and the crack-tip
direction, respectively. According to Griffith [GRI1920, TYS1973, DEC1983], the '"perfect"
brittle cleavage is characterized by the absence of plastic deformation, hence no nucleation
and/or motion of dislocations in the crack tip region occurs during the crack propagation.
Since cleavage cracks can propagate without absorbing plastic energy, the brittle fracture is

generally characterized by low absorption of elastic energy; a behaviour which can be
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experimentally observed from Charpy diagrams [TAN2005a, TAN2005b]. One of the
fundamental features of the cleavage mechanism at the atomic scale is the fact that the
crack maintains the initial, atomically sharp, shape of its tip during the crack
extension [BEL1999]. This behaviour ensures that the applied stress will be continuously
concentrated sufficiently at the crack-tip in order to break the inter-atomic bonds and

hence, the cleavage mechanism will be persistent.

On the other hand, according to the two predominantly DBT models, the nucleation-
controlled [KEL1967, RIC1974, RIC1992, RIC1994, KHA1994] and the mobility-controlled
models [HIR1989, HIR1996, ROB1996, HAR1997, GUM1998], the "inherently" ductile
propagation of a crack corresponds to the onset of dislocation nucleation and/or emission at
the crack-tip. This mechanism increases the dislocation density of the crystal; hence it is
accompanied by high absorption of elastic energy, as it can be experimentally observed from
Charpy diagrams [TAN2005a, TAN2005b]. Dislocation nucleation and/or emission
mechanisms cause the crack-tip to become blunt and hence to lose its initial atomically
sharp shape [TYS1977b, DEC1983]. This process can 'shield" the stress singularity at the
crack tip and hence prevent the possibility for cleavage propagation [DEC1983, FIS2001]. In
addition, the plastic atomic mechanisms at the vicinity of the crack-tip can alter the crack

propagation's direction.

Based on the aforementioned, the dynamic response of a crack under load is classified to the

following categories, for the purpose of the present thesis:
(1) "brittle", in the case which the crack propagates via perfect cleavage,

(2) "ductile", in the case which the crack accommodates the applied stress via plastic
deformation by means of dislocation nucleation and/or emission at the crack-tip

and/or its vicinity, and

(3) "mixed", for every other atomistic mechanism of stress accommodation, which has

characteristics form both the first two categories.

Based on the above, the first criterion to distinguish the type of dynamic response of our
initially dislocation-free crack models upon load is by investigating the existence of

generated dislocations. Particularly, the existence or absence of dislocations within the
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dynamic crack models suggests their potentially "ductile" or "brittle" character respectively.
The detection, as well as the characterization, of dislocations inside the atomic models, has
been performed with the use of the Dislocation Extraction Algorithm (DXA) [STU2010,
STU2012], which is provided by the OVITO2.6.1 visualization tool. The second criterion to
distinguish the type of the dynamic response of our, initial, atomically sharp cracks is by
studying the structural evolution of the shape of their crack-tips. As already presented, an
atomically sharp shape of the crack-tip suggests the potential "brittle" character of a
propagating crack, while a blunted crack-tip shape implies its potential "ductile" character.
The topological analysis of the models of dynamic cracks in order to determine the
morphology of their crack-tips and crack faces has been performed by the use of
visualization tools (OVITO2.6.1, VMD, GNUPLOT). Finally, the structural evolution of the
shape of the crack configurations has been monitored by a simple scheme. This scheme
describes the change of the crack length, compared to the initial state, in respect to the

corresponding change of the number of the crack surface atoms, i.e.:
Aa = f(AN) = (a' — a®) = f(N' = NO) (111.19)

where i denotes the simulation time steps and 0 denotes to the initial configuration.

55



Chapter IV: Validity of linear elasticity at large strains

4.1. Nano-sized equilibrium cracks: the effect of the loading conditions

According to the Griffith's energy balance criterion, a crack with a given half-length, a, can
be stabilized by an applied uni-axial mode | load in an unstable equilibrium
configuration [GRI1920]. For an ideally brittle material, this mechanical state also
corresponds to the threshold for crack propagation. Most atomic crack models in the
literature [DEC1983, CHE1990, MAC1998, BEL2004, CAO2006, BEL2007] do not exceed about
250 A (where 1A = 1071% m) in a. Within this length range, the Griffith's criterion [GRI1920,
TAD2000] with physical properties of aluminium and a-iron (Table IV.1) predicts the stress
and strain magnitudes required for stabilizing a central (010)[001] mode | crack.
Figure IV.1a shows that the critical stress (Griffith's stress), determined analytically with the
elastic constants of the perfect single crystals and the free surface energy of the {100}
planes, is higher for a-iron compared to aluminium; +145.8% for the plane strain and
+138.4% for the plane stress deformation mode. More importantly, the configurations of
the equilibrium nano-sized cracks amount very large applied strains (figure [V.1b,
gyy > 1.5%) which can potentially affect the elastic properties of the strained crystalline
systems (Appendix A). Another reason that can cause the chance of the elastic properties is
the fact that the uni-axial mode | applied deformation gives rise to hydrostatic pressure,
p # 0 (Appendix A) [BAR1965, WAL1967, CAG1988]. Based on these considerations, the
present work raises for the first time the need for evaluating the elastic properties of
crystalline systems containing equilibrium nano-sized cracks and aims to examine the validity
of the fundamental law of the linear elasticity (Appendix D). This is crucial for allowing the
use of continuum mechanics formulation [GRI1920, HIR1982, LIM2001, KIT2004], which
derives from the linear approximation, in order to study the mechanical state and properties

of equilibrium cracks at the atomic scale and under these applied strain conditions.
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Figure IV.1: Griffith's criterion in terms of (a) stress and (b) strain in aluminium and iron under mode | loading.
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Table IV.1: Properties of the perfect single crystalline fcc aluminium and bcc iron

Properties aluminium[ZAC2017] a-iron[PON2007]
Lattice Face-centered cubic Body-centered cubic
a(h) 4.02 2.86
C11(GPa) 116.63 243.1
C1,(GPa) 61.028 137.5
C44(GPa) 29.618 121.8
S1;(GPa™h) 1.3387x10 6.9565x107
S1,(GPa™h) -4.5985x107 -2.5132x10°
S.4(GPa™) 3.3763x10° 8.2102x10
Y(100y(MJ /m?) 789.77 1867.79

4.2. The elastic constants under large strains

As presented in Appendix D, the linear elasticity is a mathematical theory capable to
describe the deformation and the internal stress state of a solid elastic body under
prescribed loading conditions. Linear elasticity relies on the Hooke's law, linearly relating
strain to the applied stress, which is an operational approximation at the limit of small

stresses, strains and displacements [HIR1982, KIT2004]:

01 C1y Ciz Ci3 Cip Cis Cigpér
[Uz] Cr1 Cpy (i3 Cyy Cis Gyl &2
03 | C31 Cy3 C33 C34 C35 Cse] €3

= V.1
| Ty Cy1 Cia C3y Cuy Cus Cye 2, ( )
lU5J Cs1 Cys C35 Csq Css Csel|26s
6 1Ce1 Cp6 C36 Ces Cgs  Ceell2eel

The correlation coefficients between the stress (g;) and strain (g;) components are the
elastic constants (C;;); hence, their determination is required for examining the validity of
the stress-strain linear approximation demonstrated in equation IV.1. In equation IV.1 the
two indexed elements of both the stress and strain tensors (o;; and g;;, with i, j = 1,2,3) are
converted to single indexed elements (g; and ¢;, with i = 1,...,6) by means of the Voigt
notation (Appendix D). Elastic constants can be determined by the use of the energy
approach [HIR1982, STA1996, JAM2014]. The potential energy of a solid elastic body in its
unstrained or perfect state, U,, can be increased via the application of distortional (change
in shape but not in volume) and/or dilatation (change in volume but not in shape) strain.
Within the regime of Hooke's law, i.e. for small strains (g; < 1), the potential energy of a

strained elastic body can be expanded in a Taylor series about its unstrained state:
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In this expression, the {&;} denotes the different strain components (i.e. the &, &,,..., &) and
Vo(V) is the volume of the unstrained (strained) elastic body in question. Based on
equation V.2, the elastic constants are approximately determined by the second-order
