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Résume

Cette these porte sur la théorie du pluripotentiel et des problémes d’équidistribution. Elle
consiste en 4 chapitres.

Le premier chapitre se consarce a I'’étude de la régularité de la solution de I’équation de
Monge-Ampeére complexe sur une variété kahlérienne compacte X. Plus précisement, a 'aide
des outils de la géométrie Cauchy-Riemann, on montre que la derniére équation posséde une
(unique) solution holdérienne pour une large classe géométrique de mesures de probabilités
supportées par des sous-variétés réelles de X. Dans le chapitre 2, on étudie I'intersection des
courants positifs fermés de grand bidegré. On y prouve que le produit extérieur de deux
courants positifs fermés dont I'un possede un superpotentiel continu est positif fermé. Ceci
généralise un résultat classique pour les courants de bidegré (1,1).

Les deux chapitres suivants sont des applications de la théorie du pluripotentiel a des
probléemes d’équidistribution. Dans le chapitre 3, on donne une vitesse explicite de conver-
gence pour I'équidistribution des points de Fekete dans un compact K de R™ (ou de la sphéere
S™) a bord lisse par morceaux vers la mesure d’équilibre de K. Ici, les points de Fekete
sont des bons points dans le probleme d’interpolation d’une fonction continue sur K par des
polynémes. Un tel contréle de vitesse est crucial en pratique qu’on utilise les points de Fekete.
La thése se termine par le chapitre 4 ol on prouve un analogue de la loi de Weyl pour les ré-
sonances d’un opérateur de Schrodinger générique sur R™ avec n impair. Les résonances sont
des objets centraux dans I’étude des opérateurs de Schrodinger. Elles jouent un role similaire
a celui des valeurs propres dans le cadre compact.
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Introduction

Ma thése porte sur la théorie du pluripotentiel et des problémes d’équidistribution. Etant
fondé par Lelong et Oka dans des années 1940, voir, e.g., [49], la théorie du pluripoten-
tiel est devenue une branche trés active de Mathématiques ayant des influences importantes
dans d’autres domaines comme Géométrie Complexe et Dynamique Complexe. Les objets
centraux de la théorie sont les fonctions plurisousharmoniques et les courants positifs fer-
més. Rappelons qu'une fonction plurisousharmonique (psh) dans un ouvert de C" est une
fonction fortement semi-continue supérieurement f telle que f est locallement intégrable et
dd°f = %85 f > 0 au sens des courants.

Cette these se compose de 4 chapitres qui correspondent a mes 4 articles dans l'ordre
[84, 83, 82, 35]. Dans ce qui suit, j'y présenterai les résultats principaux et expliquerai leurs
motivations.

Le premier probleme auquel nous nous intéressons concerne l'intersection des courants
positifs fermés. Soit X une variété compacte complexe de dimension n et 77, T; deux courants
positifs fermés sur X. Contrairement au cas des formes différentielles, en général I'intersection
(le produit extérieur) 77 A Ty n’est pas toujours bien définie. Une question centrale dans la
théorie du pluripotentiel est de déterminer, dans quelle circonstance, one peut étendre le
dernier produit a des courants. On remarque que si 77, T, sont respectivement les courants
d’intégration des sous-variétés complexes compactes Vi, Vs de X, alors 71 A T (au cas ou
on peut le définir) devrait étre un candidat naturel pour le courant défini par I'intersection
VinWs.

Dans le cas de bidegré (1,1), le probléeme est bien compris. Supposons que 7} soit un
courant de bidegré (1, 1) dont les potentiels locaux sont bornés. Autrement dit, 77 = dd“u+1,
ol 7 est une forme différentielle fermée lisse sur X et u est une fonction quasi-psh bornée sur
X (une fonction est dite quasi-psh si elle est localement la somme d’une fonction psh et une
fonction lisse). Alors, d’aprées [2, 10], on définit

ddu NTy = ddc(uTz), Ty ATy :=dd°u ATy + nATs. (0.0.1)

Nous renvoyons a [17, 37] pour un traitement détaillé. Grace a (0.0.1), on peut définir I'auto-
intersection 77" := Ty A- - - AT} (n termes) qui est un courant positif fermé de bidegré maximal
sur X. Il en résulte que 7" est une mesure positive dont la masse égale [, n™ pour une
raison cohomologique. Maitenant supposons que X admette une forme de Kéhler w qui est
normalisée telle que [, w" = 1. Comme ci-dessus, pour une fonction quasi-psh u bornée avec
ddu+w > 0, I'intersection (ddu + w)™ est une mesure de probabilité bien définie et applelée
celle de Monge-Ampére.
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Soit P(X) l'espace des mesures de probabilité de X. On veut comprendre la classe M
suivante de mesures de Monge-Ampére :

M :={peP(X): = (dd°u+ w)" pour u quasi-psh holdérienne et ddu > —w}.

Dans la théorie du pluripotentiel et ses applications, les fonctions (et plus généralement les
courants) ont souvent une faible régularité, e.g., elles sont holdériennes. C’est la raison pour
laquelle la derniére classe de mesures est tres utile. Déterminer si une mesure appartient a
M est 1ié a la résolution de l’équation de Monge-Ampére

(dd°u 4+ w)"™ = p. (0.0.2)

La derniere équation joue un réle crucial dans la géométrie complexe et la théorie du plu-
ripotentiel. Yau [85] a prouvé que si p est une forme volume lisse de X, (0.0.2) admet
une solution lisse, donc une telle i est un élément de M. Kotodziej [46, 45] a introduit
des outils de la théorie du pluripotentiel pour étudier (0.0.2). Depuis, de nombreux auteurs
[47, 20, 22, 63, 24] contributent a la compréhension de la classe M. Une conséquence du
résultat principal du chapitre 1 est le théoreme suivant.

Théoréme A. Soit K une sous-variété C* réelle immergée générique de X. Toutes les mesures de
probabilité a support compact dans K avec densités LP pour un certain p > 1 appartiennent a M.

Ici, une sous-variété réelle K de X est dite (Cauchy-Riemann) générique si I’espace tangent
d’un point arbitraire de K n’est pas inclus dans un hyperplan complexe de I'espace tangent
de X en ce point.

L’intersection 71 A T est moins bien comprise lorsque les bidegrés de 77,75 sont supé-
rieurs a (1,1). Un analogue de (0.0.1) est la théorie des super-potentiels due a Dinh et Sibony
[30, 32], voir aussi [34] pour un autre avancement. Ils ont introduit la notion de super-
potentiel d'un courant positif fermé généralisant le potentiel dans le cas de bidegré (1,1).
Lorsque 7} possede un super-potentiel continu, alors ils ont défini 77 A T5 qui est un courant
fermé. Cependant, il n’est pas clair de leur définition que I'intersection T} A T3 soit encore po-
sitif. En établissant une autre définition équivalente, dans le chapitre 2, on prouve le résultat
suivant.

Théoreme B. Supposons que T, posséde un super-potentiel continu. Alors, T1 A T au sens de
Dinh-Sibony est un courant positif fermé.

On s’intéresse maitenant a des problemes d’équidistribution qui seront étudiés a I'aide de
la théorie du pluripotentiel. En général, une propriété d’équidistribution pour une famille de
certains objets dépendant d’un parameétre réel signifie que la famille est assymptotiquement
équidistribuée quand le parametre tend vers I'infini. Dans le chapitre 3, on considére la dis-
tribution des points de Fekete. Soit K un sous-ensemble de la sphére S” de R"*!. Les points
de Fekete sont des bons choix pour le probleme d’interpolation des fonctions continues sur K
par des polynémes a (n + 1) variables, voir [52]. Précisément, on les définit comme suit.

Pour m € N, soit P,,, 'espace vectoriel des restrictions des polynémes de (n + 1) variables
de degré au plus m a K. Désignons par N,,, la dimension de P,,. Fixons une base {p;}1<j<n,,
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de P,,. Soit (z;)1<j<n,, C K avec det[p;(x;)]i<ji<n,, # 0. Alors, pour une fonction continue
quelconque f définie sur K, il existe un unique polynéme p; € P, tel que ps(x;) = f(x;)
pour 1 < j < Ny,. Il est prouvé que si {z;} maximise la valeur absolue de det[p;(z;)] sur
KNm  alors py est bien proche de f dans le sens que

—fll < (1+ Ny inf |lp— fl,
lps = fIl < (1+ )pg;)me £ll

ot ||-|| est la norme sup sur K, voir [8]. Une famille {x; }1<;<n,, vérifiant la derniere condition
est appelée un point de Fekete d’ordre m. Comme il est impossible de calculer explicitement
les points de Fekete pour n > 1 ou m > 1, on essaie de comprendre leur comportement
asymptotique lorsque leur ordre tend vers I'infini. Posons

Nm

1
HUm = Nim Zlfsxp
j:

ou ¢, est la masse de Dirac en x. Une conséquence directe d’'un résultat de Berman, Boucksom
and Witt Nystrém dans [4, 23] dit que u,, converge faiblement vers la mesure d’équilibre de
K. De facon géométrique, on dit que les points de Fekete sont asymptotiquement équidistri-
bués par rapport a la mesure d’équilibre. Un taux explicite de la convergence a été obtenu par
Dinh, Nguyén et Ma dans [23] sous des hypotheses abstraites sur le compact K et son poid,
voir [51] pour un autre résultat. Dans le chapitre 3, on montre le résultat suivant.

Théoreme C. Soit K ladhérence d'un ouvert de S™ dont le bord est lisse non-dégénéré par
morceaux. Pour tout € € (0, 1), il existe une constante c. indépendent de k € N telle que

disty (pg, fleq) < cck /T2, (0.0.3)

ou dist; est une distance équivalente a celle de Kantorovich-Wasserstein entre les mesures posi-
tives sur X, voir Section 3.1 pour la définition de dist;.

Ce dernier théoreme est en fait un cas spécial d’un résultat plus général dans le contexte d’'une
variété complexe X munie d’'un fibré en droite positif. De facon similaire, on peut définir les
points de Fekete pour un sous-ensemble de R" et obtenir un analogue du (0.0.3) dans ce cas.

Dans le chapitre 4, on considére un autre probleme d’équidistribution. Soit (M, g) une va-
riété compacte (réelle) de dimension n. Soit V une fonction lisse et A 'opérateur de Laplace-
Beltrami sur M. L’opérateur P := —A + V agissant sur C?>(M) est appelé un opérateur de
Schrédinger. On peut considérer P en tant qu’un auto-opérateur non-borné de L?(M), ot le
dernier espace est celui de fonctions de carré intégrable sur M. C’est un fait fondamental que
P est diagonalisable, c’est-a-dire il existe une base orthogonale {¢;};en de L*(M) telle que
pout tout j € N, ¢; est lisse et

Poj = Ajpj,

pour certains nombres réels \; tels que \; — 400 quand j — oc. Etant donné un réel r,
on note par Ny (r) le nombre de valeurs propres \; avec |A;| < r2. La loi de Weyl classique

nous dit que Ny (r) = cyr™ + o(r™) lorsque r — oo, ol ¢y est une constante indépendente
de r, voir [91]. En comparant a des estimés du type (0.0.3), la derniére égalité donne moins
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information mais elle nous fournit une perspective importante sur la distribution des valeurs
propres dans R.

Dans le cadre non-compact, P n’est plus diagonalisable, ici le potentiel V' est une fonction
bornée réelle ou complexe a support compact. On se restreint au cas ou M est Uespace eucli-
dien de dimension impaire n (le cas de dimension paire est de caractere différent). Alors P a
au plus un nombre fini de valeurs propres. Par conséquent, ces valeurs propres ne sont pas
suffisantes pour décrire P. Dans ce cas, les résonances, qui sont les pbles d’'une fonction mé-
romorphe sur C a valeurs dans un espace d’opérateurs bornés agissant sur un certain espace
de fonctions sur M, peuvent étre vues comme des remplacants des valeurs propres, voir [92].
Soulignons ici que pour une variété compacte, les résonances sont exactement les valeurs
propres. Comme dans le cadre compact, on s’'intéresse a la distribution des résonances dans
C. Une conséquence du résultat principal du chapitre 4 est la loi de Weyl suivante pour des
résonances.

Théoreme D. Suposons que V' soit a support compact dans la boule de rayon a > 0 de R" et
générique dans un sens de la théorie du pluripotentiel sur cette boule. Alors, le nombre ny (r) de
résonances de —A + V de module < r vérifie

_3
ny (r) = cqa®r? + O(ré=167€)  lorsque r — oo
pour toute constante € > 0, ot cq est une constante dimensionnelle.

Nous allons donner dans les chapitres suivants les détails sur les résultats décrits ci-dessus.
Le lecteur trouvera une breve description des preuves dans l'introduction de chaque chapitre.



Chapter 1

Equation de Monge-Ampere avec
solutions holdériennes

Let (X,w) be a compact n-dimensional Kdhler manifold on which the integral of w™ is 1. Let
K be an immersed real C3 submanifold of X such that the tangent space at any point of K is
not contained in any complex hyperplane of the (real) tangent space at that point of X. Let
u be a probability measure compactly supported on K with LP density for some p > 1. We
prove that the complex Monge-Ampere equation (dd“¢ + w)™ = p has a Holder continuous
solution. This chapter is based on the article [84].

1.1 Introduction

Let X be a compact Kidhler manifold of dimension n and let w be a fixed Kahler form on X so
normalized that [, w” = 1. The aim of this paper is to give a useful explicit class of measures
for which the complex Monge-Ampere equation has a Holder continuous solution. Recall that
a real C! manifold K is said to be immersed in X if there is an injective C! immersion from
K to X. In this case we say that K is an immersed C! submanifold of X. An immersed real
C! submanifold K of X is said to be generic CR (or generic for simplicity) in the sense of
the Cauchy-Riemann geometry if the tangent space at any point of K is not contained in a
complex hyperplane of the tangent space at that point of X. Such a submanifold has the real
dimension at least n. A function ¢ : X — [—00,00) is quasi-p.s.h. if it is locally the sum of
a p.s.h. function and a smooth one. A quasi-p.s.h. function is said to be w-p.s.h. if we have
dd®p + w > 0 in the sense of currents. The following is our main result.

Theorem 1.1.1. Let K be a generic immersed C* submanifold of X of real codimension d > 0.
Let p be a probability measure compactly supported on K with LP density for some p > 1.
Then the Monge-Ampére equation (dd‘p + w)™ = p has an w-p.s.h. solution ¢ which is Hélder

. . N iy 2(p—1)
continuous with Holder exponent «, for any positive number . < S

Note that our proof still holds if K is C%# for some 3 € (0, 1). In this case one just needs to
replace the C>1/2 regularity in Section 1.3 by C>#" one for 8’ € (0, 3). For simplicity, we only
consider the C? regularity as in Theorem 1.1.1. Secondly, if the Monge-Ampére equation has

13
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a Holder continuous solution, then that solution is unique up to an additive constant. This is
a direct consequence of results in [45, 21].
For a probability measure p on X, the associated complex Monge-Ampeére equation

(ddp +w)" = p (1.1.1)

has been extensively studied since the fundamental paper [85] of Yau in which he proved
that (1.1.1) has a unique smooth solution if x is a (smooth) Riemannian volume form vol x
of X. Later Kolodziej showed that the Monge-Ampere equation admits a unique continuous
solution for a larger class of measures p which contains 1 = fvolx with f € LP(X) forp > 1,
see [46, 45]. For the last measures, he also obtained Hoélder regularity of the solution in
[47]. The Holder exponent of that solution is then made precise by Demailly, Dinew, Guedj,
Hiep, Kolodziej and Zeriahi in [20] using the regularization method in [19] and the stability
theorem in [22]. Moreover, in [63] Hiep obtains the Holder regularity for u = fvoly, where
voly is the volume form of a compact real hypersurface Y of X and f € LP(Y') for p > 1.

Recently, Dinh and Nguyén in [24] show that the class of probability measures u, for
which (1.1.1) admits a Hoélder continuous solution, is exactly the class of probability measures
whose super-potentials are Holder continuous, see Definition 1.1.3 below. They then recover
the aforementioned results in [47, 63, 20]. By [24], we know that if a probability measure
having a Holder continuous super-potential of order 5 € (0, 1], then the solution of (1.1.1)
is Holder continuous of order 4’ for any 0 < ' < 23/(n + 1). For more information on the
complex Monge-Ampere equation, the readers may consult the survey [64].

Theorem 1.1.1 above combined with [24, Pro. 4.4] yields the following nice exponential
estimate, see also [74, 26, 43].

Corollary 1.1.2. Let K be a generic immersed C> submanifold of X. Let K be a compact subset
of K. Then the restriction of the Lebesgue measure on K to K is moderate, that is, there exist
two positive constants « and c such that for any w-p.s.h. function ¢ on X with supy ¢ = 0 we
have

/ e “dvolg < c.
K

Before presenting the idea of the proof of Theorem 1.1.1, we need to recall some defini-
tions. Let i be a probability measure on X. Let ¢ be the set of w-p.s.h. functions ¢ on X such
that [, pw" = 0. We define the distance dist;: on ¢ by putting

dist 1 (1, p2) := / |1 — 2| W",
X

for every o1, 2 € €.

Definition 1.1.3. The super-potential of y (of mean 0) is the function % : ¢ — R given by
U () := [y dp. We say that % is Holder continuous with Holder exponent « € (0, 1] if it is so
with respect to the distance disty .

By [24, The. 1.3, Cor. 4.5], Theorem 1.1.1 is a direct consequence of the following result.

Theorem 1.1.4. Let K be a generic immersed C* submanifold of X of real codimension d > 0.
Let K be a compact subset of K and 1 7 the characteristic function of K. Let volk be an arbitrary
C? Riemannian volume form of K. Then the super-potential of 1 Vol is Holder continuous with
Holder exponent « for any positive number o < 1/(3d).
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Let D be the unit disc in C and let oD be the boundary of D. A C! analytic disc in X is
a C! map from D to X which is holomorphic on D. For a nonempty arc I C 9D, an analytic
disc f is said to be I-attached to a subset K of X if f(I) belongs to K. When we do not want
to mention 7, we simply say an analytic disc partly attached to K. Throughout this paper, for
every parameter 7, we will systematically use the notation <, or < which means < up to a
constant depending only on (7, X, K,w) or on (X, K,w) respectively. A similar convention is
applied to 2, and 2> .

The idea of the proof of Theorem 1.1.4 is as follows. Observe that the codimension d of
K is at most equal to n. We consider below the case where d = n. The other cases can be
deduced from it. Let 1,09 € ¥ and ¢ := ¢1 — 9. To show the Holder regularity of the
super-potential of vol, by definition we need to bound the L'-norm of ¢ with respect to
volx by a power of the L'-norm of p on X. Since one can approximate any w-p.s.h. function
on X by a decreasing smooth ones (see [7]), it is enough to prove the desired property for
smooth (1, w9 with 1 > 9, see Proposition 1.5.1 and Lemma 1.5.2. In this case, ¢ is smooth
and nonnegative. This reduction is crucial in our proof. Observe that by compactness of K it

suffices to estimate
/ pdvolg,
!

for small open subsets K’ of K. For each point a € K, we will construct a C>!/2-differentiable
family F{TE z) of analytic discs partly attached to K parameterized by T in a compact manifold
Z of real dimension (2n — 2) which roughly satisfies the following two properties:

(i) the restriction of F' to I x Z is a submersion onto an open neighborhood K’ of a in
K, where we consider F as a map from D x Z to X.

(i) the restriction of F' to D x Z is a diffeomorphism onto an open subset of X.
Put K’ :== K N K’ for a € K. These K’ covers K. By the change of variables theorem and
Property (i), we have

/~<pdvolK§/ godvolKS/ @oF. (1.1.2)
! ! obxZ

Since F is holomorphic on D and C2 on D, observe that ¢ o F is the difference of two C2
subharmonic functions on D.

Our second step is to bound [, ,¢ o F by a quantity involving [y, ¢ o F. For this
purpose, we will establish a crucial inequality in dimension one which shows that L'-norm
on 0D of a nonnegative C? function on D is bounded by a function of its L'-norm on D and
some Holder norm of its Laplacian on . The ingredients for the proof of the last inequal-
ity are Riesz’s representation formula and a general interpolation inequality for currents on
manifolds with boundary. Note that a version of that interpolation inequality for manifolds
without boundary was firstly used by Dinh and Sibony in [30].

The problem will be solved if one is able to bound [, @oF by a constant times ||¢]| 1 (X)-
Taking into account Property (i), one is tempted to use the change of variables by F. How-
ever, the Jacobian of F is small near the boundary 9D x Z. This is due to a general fact that
any family of analytic discs satisfying Property (i) should degenerate at 0D because of its
attachment to K. So we need a precise control of the Jacobian of F' from below and prove
some estimates on the integrals of p.s.h. functions and their dd® on a tubular neighborhood
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of K. These estimates are of independent interest. Consequently, we will get

~ a2
/ poF <q, (/ sodvolx> ) (1.1.3)
Dx Z X

for any ay € (0,1/n). Combining these above inequalities gives the Holder regularity of the
super-potential of voly.

The paper is organized as follows. Section 1.2 is devoted to proving the above mentioned
interpolation inequality for currents. In Section 1.3, we construct the desired family of ana-
lytic discs F. In Section 1.4, we present (1.1.2) and (1.1.3). Finally, we prove Theorem 1.1.4
in Section 1.5. At the beginning of Section 1.3, we will fix some notations which will be used
for the rest of the paper.

1.2 Interpolation theory

Let M be a compact smooth manifold of dimension m. Fix a partition of unity subordinated
to a finite covering of local charts of M. For k € N and a € (0, 1], let C¥*(M) be the space
of C* functions on M whose partial derivatives of order k are Holder continuous of order
«. We endow the last space with the usual norm. For ¢ € [0, 00), denote by C!(M) the space
Clt=l (M) where [t] is the integer part of t. Let A'T*M be the I*-exterior power of the cotan-
gent vector bundle T*M for 1 < I < m. Let C*(M, A'T*M) be the set of [-differential forms
with C! coefficients. Using the above fixed partition of unity, we can equip C!(M, A!'T* M) with
the norm || - ||¢: which is the maximum of the C* norms of its coefficients.

Let T be an [-current of order 0, i.e., there is a constant C such that |(T, ®)| < C||®||c0 for
every smooth (m — [)-form ®. For ¢ € [0, ), define

1Tl = sup (T, @)|. (1.2.1)
® smooth ,|| || t=1

We will write ||T'|| instead of ||T'||c-o which is the usual mass norm of 7". Dinh and Sibony in
[30] proved that for any ¢1,t2 € (0,00) with ¢; < t5, we have

ITlle-e2 < I Tll-n < el TN/ T3, (1.2.2)
for some constant ¢ independent of T'. This inequality is very useful when dealing with con-
tinuous functionals on differential forms because one can reduce the problem to the smooth
case. In this section, we will establish a generalization of (1.2.2) for compact smooth mani-
folds with boundary.

Let M be a compact smooth manifold of dimension m with boundary. Cover M by a finite
number of local charts U;. Take a partition of unity ¢; subordinated to this covering. By the
aid of these ¢;, as above we can define the Banach spaces C*(M) with the usual norms for
t € [0,00). Denote by IntM the interior of M. Let C!(IntM) be the subspace of C!(M) of
f € C'(M) with compact support in IntM. Let C*(M) be the subspace of C*(M) consisting of
f with f|on = 0. We can also define Ct(M, A'T*M) and C!(M, A'T*M) in the same way as
above.
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Let T be an [-current of order 0 on IntM. Assume that its mass is finite, that is,

T := sup (T, ®)| < 0. (1.2.3)

® smooth ’Hq)HCQ(Int]W)Zl

In our application, M will be D and T will be the restriction of a continuous form on C to
D. By Riesz’s representation theorem, 7' is a differential form whose coefficients are Radon
measures on M with finite total variations. Hence, for any continuous differential form @
on IntM with [|®||c0 < oo, the value of T" at ® is well-defined. Then the current 7' can be
extended to be a continuous linear functional on C*(M, A'T*M). Let ||T| (M) be the norm

of T as a continuous linear functional on C*(M, A'T*M). As mentioned at the beginning of
the section, we will prove the following analogue of (1.2.2).

Proposition 1.2.1. Let T be a [-current of order 0 on IntM. Assume that T has finite mass.
Let to,t1,ta € [0,00) with tg < t; < tg. Let t, be the unique real number for which t; =
t«to + (1 — ts)t2. Then we have

7Lt (1.2.4)

HT||542(M) < ||THc~ft1(M) <7 Ct2(M)’

tj ‘
Gt (M)
for some constant C' independent of T.

The remaining part of this section is devoted to prove the last proposition. Using a par-
tition of unity as above, that proposition is a direct consequence of Corollary 1.2.9 at the
end of this section. We first recall some notations and results from the interpolation theory of
Banach spaces and refer to [53, 78] for a general treatment of the theory. Then we compute
some interpolation spaces of Ct(M), see Corollary 1.2.8 below.

Let Ay and A; be two Banach spaces which are continuously embedded to a Hausdorff
topological vector space A. Let By and B; be two Banach spaces which are continuously
embedded to a Hausdorff topological vector space B. Let T" be a linear operator from A
to B. Assume that T'|4;, : A; — Bj; are bounded for j = 0, 1. The interpolation theory of
Banach spaces is to search for Banach subspaces A C A and B C B such that the restriction
T|4 : A — B is a bounded linear operator. The spaces A and B are called interpolation
spaces. We will recall below a classical construction of such spaces.

For0 <t < ooand a € Ag + Aq, define

K (t,a; Ao, A1) == _inf (lao|lay + tlaa]La,), (1.2.5)

otai

where ay € Ap,a; € A;. Let a be a constant in (0, 1). The following class of Banach spaces is
of great importance in the interpolation theory.

Definition 1.2.2. Let (Ao, A1)a,00 be the subspace of Ay + Ay consisting of a € Ay + A; for
which the following quantity

lall (a0, 41)a, 00 = SUPET K (E, 05 Ao, Ar) (1.2.6)
>

is finite. The last formula defines a norm on (Ay, A1)a,co Wwhich make it to be a Banach space.

The following fundamental theorem explains the role of the space (Ao, A1)q,00-
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Theorem 1.2.3. [53, Th. 1.1.6] Let Ay, A1, By, B and T be as above. Let o € (0,1). Then
the restriction Tiay a,), ., of T to (Ao, A1)a,c0 is a bounded linear operator from (Ao, A1)a 0o tO
(B(), Bl)a,oo and

1T ] (0,41 )00 Il < T o 1T Lo [

where || - || is the norm of bounded linear operators.

Letm € N*and k € Nand a € (0,1). Let C*(R™) (respectively C¥*(R™)) be the set of C*
functions (respectively C*®) on R™. For t € R*, define C*(R™) := C=I(R™). Let C}(R™)
be the subset of C!(R™) consisting of elements whose C! norms are bounded.

Let €2 be a bounded open subset of R” with smooth boundary. Let 02 be its boundary.
Then ) is a smooth compact manifold with boundary which is itself a global chart. We have
the Banach spaces C*(€2) and C*(Q) as above. In what follows, we will give a description of
the interpolation space

(C*(©),C*(9)),, (1.2.7)
for 0 <ty <ty < co. The corresponding interpolation spaces for C*(Q2) and C}(R™) are already
known, see Theorems 2.7.2 and 4.5.2 in [78].

It should be noted that the spaces (C*(Q),C"2 (ﬁ))am are easily determined by using the

result mentioned above for C/(R™) and the fact that the restriction from C}(R™) to C*(Q) is a
retraction, see [78, Th. 4.5.1]. Nevertheless, this property is no longer true if we replace C*(2)
by C!(2) because even the restriction map from C}(R™) to C!(Q) is not well-defined. In order
to compute (1.2.7), we will follow the original strategy for Ci(]R{m) in [78], see also [53].
Although, in essence, our below results can be implicitly deduced from [78], we will present
them in a simplified and detailed way which is therefore accessible for a wider audience.

The following lemma is well-known but for the reader’s convenience, a complete proof
will be given.

Lemma 1.2.4. For every t € [0,00), every f € C!(Q) can be extended to be a function Ef €
C*(R™) such that ||E f||ctmm) < Cll fllgt > where C'is a constant independent of f.

Proof. We will use a reflexion argument. By using a partition of unity subordinated to a
suitable finite covering of ), we can suppose that = R™~ ! x R*. Let f € C{(R™ ! x RY).
Let [t] be the integer part of t. Let a1, - - - , aj4, be real numbers which are chosen later. Define
Ef:=fonR™ ! x Rt and

[t]+1

Ef(zy, - xn) =Y apf(w1, - n-1,—kzy)

k=1
otherwise. It is easy to see that Ef is continuous on R™. Now we will choose a; such that
Ef e Cl. If we can do so, we also get Ef € C! because DUEf is 1 on R™~! x RT,
hence, on the whole R™ by its defining formula. One only needs to be concerned with the
xp-direction. Direct computations show that

[t]+1

8lanf($1, S, Tpo1,0) = < Z (—k)lak>8inf(x1’ ce Xp-1,0),

k=1
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. .. . . . t]+1
for 0 <[ < [t]. The regularity condition on E f is equivalent to the linear system ZEC]:l (—k)lay =
1 for 0 < [ < [t]. Its determinant is a Vandermonde one. Hence the system has a unique
solution (ay,- -+ ,ap41). When flag = 0, it is clear from the defining formula of E'f that
E f|sq = 0. The proof is finished. O

Proposition 1.2.5. For every a € (0, 1) and every k € N*, we have

(C(Q),C* ), . > C*Q), (1.2.8)

)

where the last inclusion means a continuous inclusion between Banach spaces.

Proof. Let f € C**(Q). Put t := ak. We write below < to indicate < up to a constant indepen-
dent of (f,¢). By Lemma 1.2.4, we can extend f to be a function F in C!(R™) with

HFHCt(Rm) < CHf”C't(ﬁ),

for some constant C' independent of f and F|spn = 0. Let B, denotes the ball of radius r > 0
centered at 0 in R™ and B, denotes the subset of B, consisting of x = (z1,--- ,x,) with
r, > 0. Since Q is compact, we can cover 02 by a finite number of small open subsets
{U;}1<j<n of R™ such that in each Uj, by a suitable change of coordinates ¥, we have

W, [@N0;) = B

and W, (092 N U;) = BS N {z, > 0}. Without loss of generality, we can suppose that ¥ (B")
also covers 0f2. Put
Up := Q\ Ui<j<n \Ifj_l(ﬁi‘_)

The family {U;}o<j<n covers Q. Let {x;}o<j<n be smooth functions of R™ such that 0 <
x; < 1for0 < j < N, and suppy; € l’;l(B5/4) for 1 < j < N and suppyo € Uy, and
ZogjgN x; = 1lon.

Define F}; := (x; F)o\I/Jﬂ. By the properties of (¥';, ') mentioned above, we have Fj|,,—o =
0. Let x be a nonnegative smooth function on R which is compactly supported on B; such
that [, xdx = 1. Taylor’s expansion for F; gives

1
Fi(x) =Fj(x—y) + DFj(x —y)y + -+ WDMFJ(X —yy+ Rixyytl, .29

where R;(x,y) is, for x fixed, a C*~l linear functional on (R™)! and we have
R;j(x,0) =0, [IRjllce-t S [|Ejller < Cllflce-
Hence, one gets
R (.9 < Iyl £ ller- (1.2.10)

Put
€0 := min{1/4, dist(Up, 092) }.
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Lete € (0,¢p). For 0 < j < N, we define

Fje(x) = /m [Fj(x — ey) + DFj(x — ey)(ey) + -+ + [;]!D[t]Fj(X —ey)(ey)"]x(y)dy.
(1.2.11)

Observe that Fy is a smooth function in C*°(Q) by the choice of ¢ and F}. is smooth on R™
and compactly supported on B3/, for 1 < j < N. A property of the convolution implies that
Fj . converges to F; in C°-topology. Precisely, using (1.2.9), (1.2.11) and (1.2.10) yields that

B0~ Gl < [ Ry ey)l(w)dy < Ol fler (1212

for every x. Let T be a smooth function on R compactly supported on [—2, 2] such that 7 = 1
on [—3/2,3/2]. Define

F;76($15 e 7-7371,) = Fj,6($17 e 73371—1’:1:71) - T(xn)Fj,E(xla e )xn—170)7

for 1 < 7 < N and we put F(’)’E := Fy, for consistence. We immediately see that ij’6 =0on
{zn = 0} and suppF . C B». As a consequence, I} o ¥; is smooth on R™ and vanishes on
0f2. We deduce from (1.2.12) and the fact that F}|(,,—o; = 0 that

|[Fj e(x) — Fj(x)| < [Fje(x) — Fj(x)]+
|Fje(z1,  2p-1,0) — Fj(21,++ ,2n-1,0)| < 2C€||fllcs. (1.2.13)

Define
gre= Y. Fl oWjgel>Q)
0<j<N
and goc := f — g1, € éo(ﬁ). We have f = g + g1,.. In view of (1.2.6), we have to estimate
ll90.ell o) and [[g1.ellgr ) Since f =3 o< ;<n Fj o ¥, we have

goe= Y, (Fjo¥;—Fj ol;)
0<j<N

Taking into account (1.2.13), one gets
lgo.cllco@ < €llfle ) (1.2.14)

For 0 <[ < [t], we define

1 ’ N
WDHFJ(Y)(X _y)l-

which is the Taylor expansion up to the ([t] — [) order of D'F;(x) at y. Thus arguing as in
(1.2.10), we get

Gju(x,y) == D'Fj(y) + D" Fi(y)(x —y) + - +

Gji(x,y) = D'Fj(x)| S || fllee|x — v (1.2.15)
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The equality (1.2.11) can be rewritten as

Fie(x)=¢™ / [Fi(y") + DF;(y")(x —y') + -+ [;]!D[t]Fj(Y’)(X - Y’)[t]}x(x_eyl)dy/-

Differentiating the last equality in x for &’ times gives

’ / ’ X —
DEFj(x)=em ¥ 3" / Gji1(x,y) @ DF 7 (m——- y )dy' (1.2.16)
0<I<min{k’,[t]} "

= / Gj(x,x — ey) @ D" “x(y)dy
0<l<m1n{k’ [t}

by a suitable change of coordinates. Since [, Dl x(y)dy = 0 for any [ > 1, we obtain

Gji(x,x — ey) @ DY “Ix(y)dy = / (Gju(x,x — ey) — D'Fj(x)) ® D¥ ~'x(y)dy
(1.2.17)

R"’L

which is of absolute value < ¢~ f|lc: by using (1.2.15) and the fact that suppxy C B.
Combining (1.2.16) with (1.2.17) gives

DX Fe(0)] S e ¥ fllee
which implies that
lgreller S €N fller (1.2.18)
by choosing k' = k. Taking into account (1.2.14), (1.2.18) and (1.2.5), one deduces that
K (", 1:C°(),MQ)) < e (llgoellco + e llgrelle) S I llee
for every e € (0, ¢). When € > ¢, since
f=F+0ec®@+C'(Q),
we have
kI (4, 1000, CHD) < & F Il < €0 I sy
Hence, f € (C°(€),C*(9)),, _. The proof is finished. O
For every h € R™ and every a function g on R™, define the operator
Apg(x) := g(x +h) —g(z)
for every = € R™. The following property is crucial for the next proposition.

Lemma 1.2.6. Let o € (0,1) and [ be an integer > 1. For g € Ci*(R™), we put

loloss = llgleo +  sup 1209,
o o heRm h£0 |P|*

Then the last formula defines a norm on Ci*(R™) which is equivalent to its usual C* norm. More
precisely, there exists a positive constant C; ., depending only on (I, «) such that for every g, we
have

Crallglles < llgllaat < Crallglee
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Proof. This is a simplification of Lemma 1.13.4 in [78]. When [ = 1, the two norms are
identical. Consider | > 2. Observe that it is enough to prove the desired result for | = 2
because the general case can easily follow by induction. It is clear that ||g||a,a2 < 2||g|lce. We
now prove the converse inequality. The key argument is the following formula:

gz +2h) —2g(x + h) + g(z)

ol 4+ 1) — glw) = 3 (gl + 20) — g(x) ; .

Dividing the last equality by |h|* gives

lg(z + 1) = g(@)| _ garlgl@+2h) —g(@)| | lg(x+2h) = 29(x + h) + g(z)|
| A - |2h[* 2|hle '

By taking the supremum over {(z,h) € R*™ h # 0} in the last inequality, we deduce that

lgllcs <227 glles + llgllaa.2-
Since 2%~ < 1 we get the desired conclusion. The proof is finished. O

Proposition 1.2.7. Let k be a positive integer and let « be a real number in (0,1). Assume that
ak € (0,1). Then we have

(C(Q),C*Q),  cC™@). (1.2.19)

)

Proof. Let take an element f € (C°(Q),C*(Q2))  _ . Suppose that f = go + g1 with go € C°(Q)

and g; € C*(Q). We have AFf = Akgy + Akgy. By using Taylor’s expansion of g, observe
that |A¥gi| < C|h|*|g1]lcx for some constant C independent of (g;, k). On the other hand,
|AFgo| < 2!\ gol|co. Combining these inequalities gives

k I k k
|ARSI < 2lgllco + ClRI"lgrller < llgllco + [RI"llgllex,

for every (go, g1) with f = go + ¢1. Taking the infimum in the last inequality in (go, g1), we
obtain
k k r.5000) Ao ak
|Ahf‘ S K(h ,f,C (Q)7C (Q)) < ’h’ Hf”(éo(ﬁ)’ék(ﬁ))a,oo
As a consequence, one gets
HfHak,A,k 5 ”f”(c”()(ﬁ)ﬁk(ﬁ))

a,00

By Lemma 1.2.6 and the hypothesis that ak < 1, we obtain the desired result. The proof is
finished. O

Corollary 1.2.8. For every o € (0, 1), every real nonnegative numbers t; and to, we have
(C"(Q),C (@), > Cztlzi Q). (1.2.20)

Proof. For simplicity, we give a proof for t2 = k € N* and ¢t; = 8 € [0,1). The general case
can be deduced by using similar arguments. By a consequence of the reiteration theorem (see
[53, Re. 1.3.7]), we have the following general formula:

((Ao, A1)g,00, A1) 4 oo = (Ao, A1) (1-0)0+a,00-
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Applying the last equality to
Ag=C(Q), A, =CK(Q) and 6=p/k

and using the fact that (Ag, A1)g,c0 = ch (92) (by Proposition 1.2.7 and 1.2.5), we obtain the
desired inclusion. The proof is finished. O

Since (R,R)q,00 = R for any a € (0, 1), applying Theorem 1.2.3 to
Ay =Cl(Q), A, =C2(Q), By=B; =R,
and then using Corollary 1.2.8, we obtain the following result.

Corollary 1.2.9. Let ) be a bounded open subset of R™ with smooth boundary. Let to, 1, and t;
be three real numbers such that 0 < tq < t; < t5. Let S be a bounded linear map from C (Q2) to
R. Then the restriction S| s, @ of S to C%(Q) for j = 1 or 2 is also a bounded linear map from
C'(Q) to R and

H5|c~t1(ﬁ)|| = CHS’éto(ﬁ)Ht*||S|ét2(§)H1_t*»
where c is a constant independent of S and t, is the unique real number for which t; = t.to +
(1 — ty)ta.

1.3 Analytic discs partly attached to a generic submanifold

Firstly we fix some notations which will be valid throughout the rest of paper. For every
Riemannian smooth manifold Y, any ¢ € Y and r € R", we denote by By (a,r) the ball of
radius r centered at a of Y and by voly the Riemannian volume form of Y. When Y = R™
for some m € N with the Euclidean metric, we write B,,(a,r) instead of By (a,r) and B,,
instead of B,,(0, 1). In particular, when Y = C ~ R? and a = 0, we put D, := B,(0,r) and
D := By(0, 1). For every m € N*, we identify C™ with R?™ via the formula C™ = R™ + iR™.

Let OD be the boundary of D and 07D := {£ € D : Re& > 0}. We sometimes identify £ € D
with 6 € (—n, 7] by letting ¢ = ¢%°. An analytic disc f in X is a holomorphic mapping from I
to X which is continuous up to the boundary 0D of D. For an interval I C 0D, f is said to be
I-attached to a subset E C X if f(I) C E. When I = 9%, an analytic disc I-attached to F is
said to be half-attached to E.

Let K be a generic immersed C? submanifold of X. Observe that the dimension of K is at
least n. Throughout the paper, we only consider the case where dim K = n, hence its codimension
d equals n. This is in fact the most interesting case and the general case will be easily deduced
from it. In Section 1.5, we will explain the necessary modifications to get Theorem 1.1.4 when
dim K > n.

Our goal is to for each a € K construct a C>!/2-differentiable family of analytic discs
partly attached to K which covers an open neighborhood of ¢ in X. It should be noted that
any family of discs partly attached to K degenerates near K due to its attachment to K. Con-
trolling such behaviour around K is actually the key point in this section. We also need that
the part of this family lying in K must cover an open neighborhood of 0 in K. Constructing
analytic discs is an important tool in Cauchy-Riemann geometry. Generally, one uses a suit-
able Bishop-type equation together with a choice of initial data depending on situations to
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obtain the desired result. The reader may also consult [1, 58, 59] and references therein for
more information. In what follows, we will apply the same strategy combining with the ideas
from [82].

The following local coordinates are frequently used in the Cauchy-Riemann geometry.

Lemma 1.3.1. Through every point a of K, there exist local holomorphic coordinates (W, z) of
X around a such that in that local coordinates, the point a is the origin and K N'W is the graph
over B, of a C3 map h from B,, to R™ which satisfies D?h(0) = 0 with j = 0, 1,2, where Dh
denotes the differential of h. Moreover; ||h||¢s is bounded uniformly in a € K.

Proof. The existence of such h with h(0) = Dh(0) = 0 is well-known, see [1] for example.
In order to obtain the additional property D?h(0) = 0, one will need to perform a change of
coordinates, we refer to [58, Sec. 6.10] for details. The proof is finished. O

From now on, fix an arbitrary point « € K and we confine ourselves to the local chart
described in Lemma 1.3.1. In other words, we will work on C" and

K :={z=x+ih(x) eC":x€B,},

where we have h(0) = Dh(0) = 0. For most of the time, the last condition is enough for our
purposes, we will only need D?h(0) = 0 in the proof of Proposition 1.4.5. The property of h
yields that there is a constant ¢, for which

|h(x)| < colx|*,  |Dh(x)| < colx], (1.3.1)

for every x € B,,.

In this paragraph, we prepare some useful facts about harmonic functions on the unit disc
which will be indispensable for studying Bishop-type equations later. Denote by z = = + iy the
complex variable on C and by ¢ = ¢% the variable on 9. Let u (&) be an arbitrary continuous
function on 9D. Recall that u( can be extended uniquely to be a harmonic function on D which
is continuous on D. Since this correspondence is bijective, without stating explicitly, we will
freely identify wy with its harmonic extension on D. We will write uy(z) = ug(z + iy) to
indicate the harmonic extension of ug(e”). It is well-known that the Cauchy transform of o,

given by
1 (" g €0+ 2
C : 0y ——~~dp
uo(s) i= 5= [ e g

:% .

is a holomorphic function on D whose real part is ug. Let 7ug be the imaginary part of Cuy.
Decomposing the last formula into the real and imaginary parts, we obtain

uo(z) ! /7r muo(ew}dﬂ. (1.3.2)

~or _Je? — 22

and

s —i0 __ 5,10 )
Tuo(s) = - / e = 2. o(e®)do.

T o ile?? — 2|2

The function 7T ug is harmonic on D but is not always continuous up to the boundary of .
Let k be an arbitrary natural number and let 5 be an arbitrary number in (0,1). A result of
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Privalov (see [58, Th. 4.12]) implies that if uy belongs to Ck”B(GID), then 7T ug is continuous
up to dD and | Tuo||cr.6(opy is bounded by [[uo||ck.s(sm) times a constant independent of ug.
Hence, the linear self-operator of C*#(0D) defined by sending w to the restriction of T
onto 0D is bounded and called the Hilbert transform. For simplicity, we also denote it by 7.
For our later purposes, it is convenient to use a modified version 7; of 7 defined by

'Tlu() = TU(] - TUO(I).
Hence we always have Tjug(1) = 0 and
OgTiug = 09Tug = T Oguy, (1.3.3)

provided that uy € C'#(0D) with 8 € (0, 1), see [58, p.121] for a proof. The boundedness of
7 on CkP(OD) implies that there is a constant Cy 3 > 1 such that for any v € C*#(9D) we
have

| T1vllersapy < Ck,gllvller.s om)- (1.3.4)

Extending uy, 71 uo harmonically to D. By construction, the function f(z) := —Tiuo(z) +iug(z)
is holomorphic on D and continuous on D provided that w is in C?(9D) with 0 < 3 < 1. By
[59, Th. 4.2], || fllck.s(p) is bounded by || f{|c.2(ap) times a constant depending only on (k, 5).
Since [luoller.sm) < 1S ller.sm) and || fllcr.somy < (1 + Ck,p)lluollcr.s o) by (1.3.4), we have

[uollers @) < Crslluollersomys (1.3.5)

for some constant C}, ; depending only on (k, 3). A direct consequence of the above inequal-
ities is that when wg is smooth on 0D, the associated holomorphic function f is also smooth
on D.

Lemma 1.3.2. There exist a function up € C*°(0D) and two positive constants (8, cu,) such

that ug(e?) = 0 for 6 € [0y, 0u,] C [-7/2,7/2] and dyup(1) = —1 and ug(2) > cyy(1 — |2|)
for every z € D.

Proof. Let u be a smooth function on 9D vanishing on +D. By Poisson’s formula, we have

u(z) = 1 /7r mu(em)dﬁ. (1.3.6)

T o e — 22

Differentiating (1.3.6) gives
T 10
Dou(1) 1/ ) g

T o rcosf—1

Note that the last integral is well-defined because u vanishes on 1 D. It is easy to choose a
smooth u so that the above integral is equal to —1 and « = 0 on %D and u(e®’) > 0 for
|0] > 3w /2. The last property and (1.3.6) show that u(z) > 0 for every z € D.

We have chosen « with the property that d,u(1) = —1 and u(z) > 0 for z € . This implies
that d,u(e?) < —1/2 for every 6 € [0y, 6p] C (—7/2,7/2) for 6, close enough to 1. Since u
vanishes on 9tID, we have

0 = dpu(e) = —du(e) sin @ + dyu(e®) cos
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which yields
dyu(e”) = dpu(e?) tan g (1.3.7)
for 0 € [—09,0). Let z = |z|e?? € D such that 6 € [0y, f]. Taylor’s expansion for u at ? gives

u(|z]e) = u(e®) 4 (|2| cos @ — cos 0)Apu(e”) + (|z] sin 6 — sin 0)dyu(e”) + O((1—12))%)

(1.3.8)
_ (2l = 1)8zu(e”) L2
= p—" +0((1—|z))%) (by (1.3.7)).
By our choice of 6y, the last equality gives
u(lzle®) 2 (1= |20)/2 = [[ullc2y (1 = [2)* = (1 = |21) /4, (1.3.9)

for |z] > 1 — 1/4\|u||g21(D). When |z| <1 — 1/4Hu||521(D), we have u(z) > ¢ for some constant ¢
independent of z. This combined with the fact that (1 —|z|) < 1 implies that there is a positive
constant ¢ for which u(z) > ¢/(1 — |z]) for |2] < 1 — 1/4||u||521(D). In summary, we can find a
positive constant ¢’ for which
u(z) = (1= 12]),

for z = |z]e® € D with 6 € [0y, 6]

Now let 2 be a simply connected subdomain of D with smooth boundary such that 2
is strictly convex and Q N D = [e~"0/2 ¢i%/2] By Painvelé’s theorem (see, for example, [3,
Th. 3.1] or [48, Th. 5.3.8]), there is a smooth diffeomorphism ® from D to 2 which is a
biholomorphism from D to 2 and ®(1) = 1. Define u(, := u o ® which is a smooth function on
D and harmonic on . We immediately have u{(z) > 0 on D.

Since ®(1) = 1 and ® sends 9D to 012, there is a small positive constant ¢’ such that
®([e~, ¢*%0]) is contained in [e~*%0/2, ¢?%/2]. This yields uj(¢?) = 0 for || < 0, and Re? ®(e?)+
Im? ®(e'?) = 1 on [e~%, ¢'%]. Differentiating the last inequality at §' = 0 gives

Re ®(1)9, Re ®(1) + Im ®(1)9, Im (1) = 0

which combined with ®(1) = 1 implies that 9, Re ®(1) = 0. The last equality coupled with
the fact that ® is holomorphic implies

det D,y ®(1) = (8: Re®(1))” + (9, Re ®(1))” = (9, Re ®(1))”.
As a result, we have 9, Re ®(1) # 0. On the other hand, since

(P2 =1= &(x)[?
|@(1)] Jél[%ﬁ}‘ (z)]%,

we have
0 < 02|®(2)|*|s=1 = Re ®(1)0; Re ®(1) + Im &(1)9, Im ®(1) = 9, Re ®(1).
Hence, one gets 0, ®(1) > 0. Direct computations gives

Bptif(1) = Byu(1)0y Re ®(1) + 9yu(1)dp Im (1) = —8, Re B(1) < 0.
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Define ug := u}/0, Re ®(1). We obtain d,un(1) = —1 and ug(e?) = 0 for || < . It remains
to check that

up(z) > (1 —|z|), (1.3.10)

for some constant ¢’ > 0. Since ug(z) > 0 and u(z) > 0 on D and QN D = [e~%/2 ¢?0/2] it
is enough to check (1.3.10) for z so that w = ®(z) is close to [e~%0/2 ¢0/2] Let w = ®(2) €
close to [e—%%/2 ¢%/2] By our choice of , the axe Ow is transverse to € at a unique point
w' = ®(2') for 2’ € OD. The C!- boundedness of ®~! imply that |w — w’| > ¢1|z — 2’| for some
constant ¢; independent of (z, z’). On the other hand, since Q C D, we have |w—w'| <1—|w|.
Hence,

L—fw] = erlz = 2 2 ea(1 = [2]),

because 2/ € D). Write w = |w|e?». Note that 8, € (6o, 6p) if w is close enough to [e~0/2  ¢i0/2],
We deduce that

up(2) = w(P(2)) = w(w) > (1 —|w|) > e (1 — |z).
Hence, one gets (1.3.10). The proof is finished. O

We are now ready to introduce the Bishop equation which allows us to construct the
promised family of analytic discs. Let u( be a function described in Lemma 1.3.2 and 6,,, be the
constant there. Let 71,72 € B,,_; C R*"L. Define 7% := (1,71) € R* and 75 := (0,71) € R
and 7 := (71, T2). Let t be a positive number in (0, 1) which plays a role as a scaling parameter
in the equation (1.3.11) below.

In order to construct an analytic disc partly attached to K, it suffices to find a map

U:0D— B, CR",
which is Holder continuous, satisfying the following Bishop-type equation
Ur (&) = t15 — Ti(h(Ur ) (&) — tTiuo(§) 77, (1.3.11)

Indeed, suppose that (1.3.11) has a solution. For simplicity, we use the same notation U ;(2)
to denote the harmonic extension of U, ;(§) to D. Let Pr;(z) be the harmonic extension of
h(Urz(€)) to D. Define

F(z,7,t) = Ur(2) + iPry(2) + it uo(2) 7

which is a family of analytic discs parametrized by (7,t). For any ¢ € [e~%uw0, ¢?u0], the
defining formula of I’ and the fact that ug = 0 on [e~*u0, ¢?«0] imply that

F(f,T,t) = U‘r,t(g) + iP‘r,t(g) = UT,t(g) + Zh(U‘r,t(g)) € K.

In other words, F' is [e~%u0, ¢?u0]-attached to K. In what follows, it is convenient to regard
Ur(z) as a function of the variable (z, 7).
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Proposition 1.3.3. There are a positive number t; € (0,1) and a real number ¢; > 0 satisfying
the following property. For any t € (0,t1] and any T € @i_l, the equation (1.3.11) has a unique
solution U, ; which is C%3 in (&, T) and such that

<t (1.3.12)

J
HD(&T)U”| C2(8D) —

forany T € @i_l and j = 0,1 or 2, where D¢ ) is the differential with respect to both (&, T)
and D(Qgﬂ_) = D();—“,-r) o D(gﬂ.).

Proof. This is a direct consequence of a general result due to Tumanov, see [59, Th. 4.19] or
see [82, Pro. 4.2] for a more simple proof adapted to our present situation. O

Let U,; be the unique solution of (1.3.11). As above we also use U, :(z) to denote its
harmonic extension to D. Let F(z,7,t) and Pr; be as above. Our goal is to study the be-
haviour of the image of the family F(-,,t) near K, or in other words when z is close to
[e=u0 | ePuo] C OD.

2
n—1

Lemma 1.3.4. There exists a constant cs so that for every t € (0,t1] and every (z,7) € DxB
we have

1D}

(z7)

Uri(2)| <ot and ||D],  Pr(2)|| < eat?, (1.3.13)
forj=0,1,2.

Proof. In view of (1.3.5) and (1.3.12), the first inequality of (1.3.13) is obvious and for the
second one, it is enough to estimate the C'/2(0D)-norms of D7, _ P, ;(€) for j = 0,1, 2. Since

(&)
Pr (&) = h(Ur4(€)) on 9D, we have

aﬁpT,t(g) = Dh(UT,t(g))agUT,t(g)
This combined with (1.3.1) and (1.3.12) yields that

19 Py 7 llcrr2(om) < collUn illcrrzamy 106U ller/zomy < cocrt®.

By similar arguments, we also have yagp,(g )| < 2 with j = 0, 2. To deal with the other partial
derivatives, observe that for 0 < j < 2, DiPT,t is the harmonic extension of Dz.h(U.,.’t(-)) to

D. Hence, in order to estimate D’;DZ;P.,.,t for 0 < k,j < 2, we can apply the same reasoning
as above. Thus the proof is finished. O

Proposition 1.3.5. There are three constants ty € (0,t1], 6y € (0,6,,) and ey > 0 such that for
any 71 € B, 1 and t € (0,t] the map F(-,71,t) : [e7%, ¢%] x B,,_; — K is a diffeomorphism
onto its image which contains the graph of h over B,,(0, teg).

Proof. By Cauchy-Riemann equations, we have
OyUr 1 (1) = —t0pup(1)T] — 0 Pr (1) = t7] — 0, Pr 4(1).

The last term is O(¢?) by Lemma 1.3.4. Thus the first component of 9, U ;(1) is greater than
t/2 provided that ¢ < ¢, small enough. A direct computation gives 9,Ur (1) = Uy +(1).
Consequently, the first component of JyU, (1) is greater than t/2 for ¢ < ¢,.
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On the other hand, by (1.3.11), we have U, (1) = tr5 which implies 0,,U, (1) is a
(n,n—1) matrix whose the fist row is 0 and the other rows form the identity matrix. Combining
with the above argument shows that D, yU; (1) is a nondegenerate matrix. This coupled
with the fact that F(e?,71,t) = Uy 4(e?) for 6 € [0, 0] implies the desired result. The
existence of ¢ is obvious. The proof is finished. O

Fora € C" and A C C", dist(a, A) denotes the distance from a to A.

Proposition 1.3.6. There are two constants t3 € (0,t2], 7o > 0 such that for every t € (0,t3),
the restriction Fy of F to (Ba(1,r9) ND) x Ei,l is a diffeomorphism onto its image and for any
(z,7), we have

| det DFy (2, 7,8)| 2 271 — |2|]" (1.3.14)
and
t(1 = |z]) S dist (Fi(z,7,0), K') S t(1 - |2]). (1.3.15)

Proof. Let rg,t3 be two positive small constants to be chosen later. For the moment, we take
7o to be small enough so that if z = |z|e?? € By(1,r9) N D, then 6 € (6, 6), thus we have
ug(e®) = 0. Fix a constant ¢ € (0, ¢3]. Provided that ¢3 and rq are small enough we will prove
in the order (1.3.15), (1.3.14) and finally that F} is a diffeomorphism. Extend h to be a C3
function on R”. Let ¥ : C" — C" defined by

U(x +iy) := x + iy — ih(x).
One can see without difficulty that ¥ is a diffeomorphism sending K’ to B,,, where we embed
R™ — R" 4+ R" = C".
Let F| := W o F}. We have

Im Fy(z,7,t) = Pry(z) — h(U-nt(Z)) +tug(z)T] and ReFi(z,7,t)(z) = Ur(2).
(1.3.16)

By the above property of ¥, it suffices to prove the required property for (F],B,) in place
of (Fi, K'). Note that Py 4(z) and h(Ur4(z)) are identical on OD. This together with (1.3.13)
yields

Pry(2) = h(Ur(2)) = (1 — |2|)Ro(2, T, 1), (1.3.17)

where Ry(z,7,t) is C! in (z,7) so that ||[Ry(-,t)||c2 < 1. Remember that ¢ is fixed, so we do
not consider it as a variable when taking the C' norm. On the other hand, by our choice of ug
and Lemma 1.3.2, one has ug(z) 2 (1 — |z|). By this and (1.3.17) and (1.3.16), we obtain

dist (Fl(z, T, 1), K') = dist (F{(z, T,L‘),R”)
= [Im F{(z,7,1)| Z t(1 = |z])|7]| = £2(1 = |2]).

Thus if ¢ is sufficiently small, the first inequality of (1.3.15) follows.
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For t3 small enough, U, ;(z) € B,,. Hence, we get
dist (Fy(z,7,t), K') S dist (F{(z,7,t),B,) S [Im Fi (2, 7, 1)|.

Write z = |z|e? € By(1,79) ND. Hence 6 € [—2rg, 2r¢] C (6o, 6p) if 7o is small enough. Since
ug(e®) = 0, we deduce from (1.3.8) that

uo(2) = (1 — |2) + (1 — |2)Ri(2) + (1 — |2])2Ra(2), (1.3.18)

where R; is smooth function with ||R;||cx S 1 for j = 1,2. Put € := max{2r, t}. We choose
(t,r9) to be so small that e < 1/2. Put

To(z,7,t) := tRo(2,7,t) + (0R1(2) + (1 — |2|)Ra(2)) T} (1.3.19)
which satisfies
[Tollco S € [[DrTollco S € (1.3.20)
because 0| < 2rg and 1 — |z| < ry. Combining (1.3.18), (1.3.17) and (1.3.16) gives
Im F{(z,7,t) = t(1 — |2]) [7] + To(z, T, 1)]. (1.3.21)
Consequently, using (1.3.20) we obtain
[ Im F (2, 7,4)] < t(1—|2])

which proves the second inequality of (1.3.15).
By (1.3.11) and the Cauchy-Riemann equations, we have U, ;(1) = ¢T3 and

OyUr 1(2) = =0, Pr4(2) — tOpuo(2)T]

and
0.Ur 1(2) = Oy Pr4(2) + tOyuo(2)T7.

Observe that
OpUxr4(e%) = —0,Ur 4(e) sin 6§ + C'?yU.,-,t(eze) cosf.

These above equalities combined with (1.3.13) and Taylor’s expansion to Uy ;(e?) at § = 0
gives

Uri(€?) =t + t2R3(0, 7, 1) + tOT} + t0> Ry ()77, (1.3.22)
where p

R3(0,1,t) == / [OyPT,t(eiS) cos s — Oy Py (") sin s|ds
0

which is of C! norm < 1, and R4(f) is a C! function satisfying || R4c1 < 1. Remark that in
(1.3.22), we used the C? differentiability of ug and R, comes from the remainder of the Taylor

expansion of ug at 1 up to the order 2.
Using (1.3.22), Taylor’s expansion for Re FJ(z, T,t) at Z = ¢ implies

Re F(z,7,t) = tTh + t07} + t°R3(0, 7,t) + t0>Ry(0) 7} + t(1 — |2|)Rs(2, 7,1),  (1.3.23)



1.3. ANALYTIC DISCS PARTLY ATTACHED TO A GENERIC SUBMANIFOLD 31

for some C! function R5(z, T,t) with ||R;(-,t)||¢c1 < 1. Define
Ti(z,7,t) == tR3(0,T,t) + 0*Ry(0)T} + (1 — |2|)R5(2, T, 1), (1.3.24)
which satisfies
| DroThllco S e, (1.3.25)

where we use the polar coordinate (|z|,§) for z. Combining (1.3.23), (1.3.25), (1.3.21) and
(1.3.20) gives (1.3.14).
Let p = tp, + i tp, be an arbitrary point in the image of F”. This means that

p=F:°7°1), (1.3.26)

for some (20, 79). Let #° € (—m/2,7/2) be the argument of 2. Then 20 = |20]¢?". We will
prove that the equation

Fl(z,7,t)=p (1.3.27)

has a unique solution, i.e Fj is injective. The equation (1.3.27) is equivalent to the system of
the two following equations

Re F{(z,T,t) = tpy (1.3.28)
and
Im F{(z,7,t) = tp,. (1.3.29)

Write T; = (Tj1,- -+ ,Tjn) for j = 0 or 1 and p; = (pj1,- - , pjn) for j = 1,2. Define

p = pl .
P 1]
We also write p; = (p11, -, p1n). Recall that 77 = (1,7;) for j = 1 or 2 and 7; =
(le, s 7Tj(n—1))~ We have
~ ~ Pk
Pk — p11 — =0, (1.3.30)
P11

for 2 < k < n. The variable (511, 6) will be used as a substitute for z. If (z,7,t) is a solution
of (1.3.27), identifying the first component of (1.3.21) and (1.3.29) imply

1+ To1(z,7,t) = pu1

which in turn yields |p11 — 1| < e by (1.3.20). Hence if (2, 7,t) is a solution of (1.3.27), we
get

1/2 < p11 < 3/2. (1.3.31)
By (1.3.29) again and the fact that 7y € B,,_1, one also gets

PIE |~ )| < 3/2, (1.3.32)
P11
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for 2 < k < n. Since z = |z|e?, we have

P11y 40
= (1 - E)eit,
2= 511)6

From now on, we will consider 7y, 77 as functions of (p;1, 6, 7). Define
2 13 n—1 n n n—1
G: (G]_,GQ,G?,) :]BTL—I X [5,5] XR X [_2T0,2T0] —>R XR XR
by putting
Gl(Ta blv 9) = TT + TO(97 /5117 T, t) - p17 GZ(Ta Z)lv 0) = T; + GTT + Tl(ev ﬁlla T, t) — P2

and
- ~ ~ k ~ ~ Plk
Gs(T,py,0) :== (,012 — P11 &, T Pln T P L)
P11 P11

By (1.3.30), (1.3.23) and (1.3.21), resolving the system (1.3.28)-(1.3.29) is equivalent to
finding (7, p,,0) for which

G(r,py,0) = 0. (1.3.33)

By (1.3.26), we know that a° := (70, ¥, %) is a solution of (1.3.33), where

~0._ _P1
PET T

Suppose that there is an another solution a = (7, p;, #) of (1.3.33). By a direct computation,
one gets
- (1 — __Pu_ 4 51— O(1 — <
(1= 2]) = = (1 =|z])pry =0 = |z]) S e

P
by (1.3.31). This coupled with (1.3.19) and (1.3.24) yields
To(a,t) — To(a®,t)| < ela—a|+ 16 — ¢']. (1.3.34)
and
Ty (a,t) — T1(a°%t)| < ela—a°|. (1.3.35)
Using (1.3.35) and identifying the first component of the equation Ga(7, p;,6) = 0 imply
10— 6% < |Ti(a,t) — T1(a° )] < ela—a°|. (1.3.36)
By doing the same thing for G (7, p;,6) = 0 and using (1.3.36), we also obtain
11 = Al < [To(a, t) — To(a”, t)] S ela—a”|.

Using the last inequality, the equality G3(7, p;,0) = 0 and (1.3.32), one infers

o1 — BY| S | — | S ela—a”l. (1.3.37)
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Similarly, using G (7, p;,6) = 0 gives
71— 78] < [To(a,t) — To(@", 1) +1py — pi| S ela—a”l. (1.3.38)
Finally, using Ga(7, p;,0) = 0 gives
|72 = 75| S ela—a°). (1.3.39)
Summing the inequalities from (1.3.36) to (1.3.39) and taking into account that
la—a’| < |my = 73|+ 71— 74| + By — pi] + 10— )

show that a = a". This means that (1.3.33) has a unique solution, or equivalently, so does
(1.3.27) if rg and ¢ are small enough. The proof is finished. O

Let 2 be a simply connected subdomain of D with smooth boundary such that {2 is strictly
convex and QND = [~ ¢¥1] for some 6 € (0,6p) and Q C Ba(1, 7). By Painvelé’s theorem
as in the proof of Lemma 1.3.2, there is a smooth diffeomorphism ® from D to Q which is a
biholomorphism from D to 2 and ®(1) = 1.

Define F(z,7,t) := F(®(z),T,t) which is again a C>!/2 family of analytic discs partly
attached to K.

Proposition 1.3.7. (i) There are positive constants 0o and &, so that for every 71 € B,,_1 and
t € (0,ts], the restriction map F( T1,t): [e —iflo 6190] x B,,_1 — K’ is a diffeomorphism onto its
image which contains the graph of h over B,,(0, téy).

(1) Let t3 be the constant in Proposition 1.3.6. Then for any t € (0,t3], the map F(-,t) is a

diffeomorphism from D x Ei_l onto its image in D™ C C", and for any (z, T) we have
|det DF (2, 7,t)| 2 t" " dist" ! (F(z,T,t), K) (1.3.40)
and
t(1 — |2|) < dist (F(z,7,t), K'). (1.3.41)

Proof. Property (i) is a direct consequence of Propositions 1.3.5. By the differentiability of
&1 on O, we have (1—|®(2)|) = 1—|z| for every z € D. Hence, by (1.3.15), we get (1.3.41).
The inequality (1.3.40) follows immediately from the fact that

‘ det DFy(z, T, t)‘ > ¢t gigtn 1 (Fl(z, T,t), K')
which is in turn implied by (1.3.15) and (1.3.14). The proof is finished. O

Using the local coordinates of K at the beginning of this section and choosing ¢ = ¢3, the
last proposition can be rephrased as follows.

Proposition 1.3.8. Let a be an arbitrary point of K. Then there exist positive constants é,, 0,
and a C>'/? diffeomorphism F, : D x IB%Z 1 — X onto its image such that the two following
properties hold: o

(i) for every 71 € B,_1, the restriction map F,(-,71) : [e %, e x B, ; — K isa
diffeomorphism onto its image which contains the graph of h over Bx (a, €,).
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(i%) there is an open relatively compact neighborhood K/, of a in K such that for any (z,T),
we have

|det DE, (2, 7)| 2 dist™™! (Fyu(z,7), K. (1.3.42)
and

(1— |2]) < dist (Fu(z,7), KL). (1.3.43)

1.4 Some estimates for p.s.h. functions

In this section, we will prove some key estimates for p.s.h functions and their dd® on C".
For a Borel subset A of R™ with m € N, denote by |A| the volume of A with respect to the
canonical volume form volg~. In what follows, for simplicity, we will write [, f instead of
J 4 fdvolgm for every Borel set A C R™ and every integrable function f on A. In particular,
this convention is applied to C" = R?",

Lemma 1.4.1. Let V be an open subset of C™ and let V1 be a compact subset of V. Let ¢ be a
p.s.h. function on V. Then there exists a constant c independent of ¢ such that for any Borel set
V5 C Vi, we have

/ || ScIVzlmaX{L—logVa\}/ || (1.4.1)
Vo 1%

Proof. If ¢ = 0 or [, |¢| = oo, then there is nothing to prove. Now suppose ¢ # 0 and
Ji el < oc. Let o1 = ¢/ [, || We have [, |¢1] = 1. As a result, there exist two positive
constants (c1, o) independent of ¢; for which

/ ecrlerl < ¢ (1.4.2)
Vi

Let 1y, be the characteristic function of V. Let p := |Va|"'1y,v0lce which is a probability
measure supported in V5. We have

o1l = 041_1/ log 71! = ay!|Va| | loge™ 1l dp.
Va Va Va
This together with the concavity of the log function implies

1| < 041_1|V2’10g/ ectlerl dy

VQ V2

which, by (1.4.2), is less than or equal to
ay HVa|(loger — log |VA)).
Hence (1.4.1) follows. The proof is finished. O

Now let h, K’ be as in Section 1.3. Let € be a real positive number and K/ the compact
subset of C" consisting of points of distance < e to K’. Obviously, the volume of K/ is < €.
Using Lemma 1.4.1 for V, = K/, we get the following.
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Corollary 1.4.2. Let V be an open subset of C" containing H;. Let ¢ be a p.s.h. function on V.
Then there is a constant c independent of ¢ for which

[ 1ol < eetogel [ 14l (143)
K! 1%

for every e < 1/2.

Now we will give a similar estimate for the mass of dd“p on K. We begin with a general
result.

Lemma 1.4.3. Let V, V7,V be open subsets of C™ such that V, € Vi € V. Let T be a closed
positive current of bidimension (p, p) on V and A a real number > 1. Let ¢ and p be two bounded
p.s.h. functions on V. Let A be a subset of V and a. , be an upper bound for |¢| on Vi N {p < €}
for € > 0. Assume that p is bounded by 1 on V. Then there is a constant c independent of T, A, p,
such that

/ T A (dd°p) < cle are P | T (1.4.4)
An{p<e}

for every e € (0,1).

Proof. We prove (1.4.4) by induction on p. When p = 0, the conclusion is obvious. Suppose
(1.4.4) holds for p—1. We need to prove its validity for p. Let y be a smooth function compactly
supported in some V/ € Vj such that 0 < y < 1 and y = 1 on V5. Let € be a positive constant.
Choose a constant \' € (1, \). Define

pe := max{p, N'e} —max{p, e}

which is the difference of two bounded p.s.h. functions on V. Clearly, we have 0 < p, <
(M —=1)eand pe = (N —1)eon {p < €} and p. = 0 on {p > Ne}. This yields

-1

/ T A (ddp)? < )\/ef ] / xXpel A (ddp)?P S 61/ Xpel A (dd°p)P (1.4.5)
An{p<e} % \%

which is, by integration by parts, equal to
et / pepdd®x AT A (dd@)P~t + e / ©xdd®pe AT A (dd°p)P~t + R, (1.4.6)
v 1%

where
R=2" / wdx A d°pe NT A (ddo)P~L.
1%
Denote by R; and R, respectively the first and second terms in (1.4.6). We are now going to

estimate R;, R and finally R,. Let w be the canonical Kéhler form on C”. Since dd“y < w and
|| < ase, On sUpppe, We get

Ry < e_la)\/mp/ wAT A (ddp)P~L.
Vin{p<Ne}
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Applying the induction hypothesis to w A T, N'e in place of T, € implies
R < ela/\/e#,/ wAT A (dd0)P 1 < [e tane P (1.4.7)
Vin{p<Ne}
As to R, the Cauchy-Schwarz inequality applied to a suitable scalar product gives

R < e /v elLgpenedx A d*x AT A (ddp)"™! /V [#ldpe N dope AT A (ddeip)P ™
1 1
(1.4.8)

Sl ane [ dpendip nT A (o

1

by induction hypothesis and the fact that dp. A d°p, is positive and supported on {p < Ne}.
Denote by R’ the last integral. Since p. is the difference of two bounded p.s.h. functions on V,
so is p?. More precisely, since |p| < 1 on V we can find four p.s.h function v; with 1 < j < 4
so that they are bounded independent of ¢ and

p2 =11 —1y and p. =3 — Py (1.4.9)

We also have
dd°p? = 2dpe N d°pe + 2peddCpe.

Note that each side of the last equality is well-defined. Substituting this to the defining for-
mula of R/, then using (1.4.9), one gets

4
R<> / ddp; AT A (dd°p)P~1
which, by induction hypothesis, is <
4
[ are P Y (ldd s ATy,

J=1

where V/” be a relatively compact subset of V; which is open and contains V’l. By the Chern-
Levine-Nirenberg inequality, the last sum is < ||7'||y,. Combining with (1.4.8), we obtain

R < e tar P |IT |- (1.4.10)
Bounding R is done similarly. The proof is finished. O

Lemma 1.4.4. Let f be a real C? function on an open set V.C C". Let g(t) := |t|log(|t| + 2) for
t € R. Let w be the canonical Kdhler form on C™. Then we have

12dd(g o f) > df A d°f — 20 D fl (v @

as currents on V.
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Proof. By direct computations, one obtains for ¢ > 0,

2 2 1
"t)y=1— —— +log(2 +t "(t) =
and for ¢ < 0,
2 2 1
") =—-14—"— —log(2—t "(t) = .

For k > 3, we are going to construct a sequence of C? convex function g;, of uniformly bounded
L*° norm converging pointwise to g. To this end, we define

2 . 1
2+ 10t)2 2+t

qr(t) == ( fort > 1/k

and on [-1/k,1/k], let qx(t) be the piece-wise affine function satisfying the two following
properties:

(i) qi is affine on [—1/k,0] and on [0, 1/k|, ¢x(0) = 2kg¢'(1/k) — qr(1/k) > 1,

(1) gy is continuous on R.
The value of ¢(0) is in fact chosen such that

1/k
/ g (t)dt = g (1/k) — g'(—1/k).

“1/k

This property ensures the existence of a unique C? convex function gi(¢) on R satisfying
gr(t) = g(t) for |t| > 1/k and g}/(t) = qx(t). One can check that g is uniformly bounded
and g converges to g. Hence gx(f) converges weakly to g(f) as currents. On the other hand,
direct computations give

gr(f) = min{1/3,2klog2 — 1} = 1/3, |gi(t)] <log3+2<4
for [t| <1 and
dd°gr(f) = gi())df Nd°f + gi(f)dd°f > 127 (df Ad°f — 2] D*f[ 1 w).
The proof is finished. O

Proposition 1.4.5. Let ¢ be a p.s.h. function on an open set V. C C". Let A be a generic C?
submanifold of dimension n of V. Let Ay be a compact subset of A and for e > 0, let A;  be the
set of points in C" of distance < e to A;. Then there is a constant c¢ independent of ¢, € for which
we have

/ ddp N Wl < ce”_l/ lol, (1.4.11)
Aj. 1%

where w is the canonical Kdhler form of C™.
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Proof. Let ¢ be a small positive number which will be chosen later. Observe that the question
is local. By using a partition of unity and Lemma 1.3.1, it is enough to prove the desired
result for the case where A is the graph of a C3 map h over B,,(0,36) such h(0) = Dh(0) =
D?h(0) = 0 and ||h|¢s is bounded independently of chosen local charts (hence, in particular,
independent of §); and A; is the part of the graph over B, (0, §). We can assume that

Al,E = {X+Zy X € Eﬂ(oué)v ‘y - h(X)| < 6}

and V = B,(0, 39) + iB,.
Let g be the function defined in Lemma 1.4.4. We write z = (21, ,2n), Y = (Y1, ,Yn)
and h = (hy,--- , hy). Since |[D?h| < § on B, (0, 35), one has

1D*(y; — hi(x)) || S 6

for 1 < j < n. Using this and Lemma 1.4.4, we see that the function

n

p(z) = g(y; — hy(x))

Jj=1

satisfies

. LN _ _
dd°p > ; (4707 A dz; — 6Mdz; A dz;),

for some constant M independent of §. Thus if § is small enough independently of ¢, the
function p is p.s.h. on V. It is clear that Ay C A; N {p < 2ne}. Let ¢1(z) := |y — h(x)[%. A
direct computation shows that ¢ is also p.s.h. on V. Note that |¢1| < €2 on {p < 2¢.} Now
applying Lemma 1.4.3 to (p, ¢1) and to T' := dd°p, we obtain

/A ddo A (dd°o1)" < | ddoplls, (0250113, 01/2) S € /V o,
1,e

The last inequality together with the fact that dd“p; 2 w gives the desired result. The proof

~

is finished. O

Note that a similar technique was used by Sibony in [69] when dealing with the extension
of positive closed currents (or more generally pluripositive currents) through a CR submani-
fold. For € € (0, 1], let K be as above. The following is just a direct consequence of Proposition
1.4.5.

Corollary 1.4.6. Let V be an open subset of C" containing K. Let ¢ be a p.s.h. function on V.
Then there is a constant c independent of ¢, € for which we have

J,

where w is the canonical Kdhler form of C™.

dd°o AWt < ce”l/ ], (1.4.12)
v

!
€

Now we are going to give some applications of these above estimates to our present prob-
lem. Firstly, we prove some auxiliary lemmas. Let ¢35, &) and f, be the constants in Proposition
1.3.7. Let F be the family of analytic discs defined there. For simplicity, from now on, we
denote F(z,T,t3) by F(z, 7). Recall that the image of F is contained in D". Put &, := t3¢&.
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Lemma 1.4.7. There exists a positive constant cy such that for any Borel function g on D", we
have

/B( Ig(x,h(X))lém/ lgo F(e”,7)|. (1.4.13)
(0,

[e_iéo 76160] XB%71

Proof. This is a direct consequence of Property (i) of Proposition 1.3.7 and the change of
variables theorem. The proof is finished. O

Lemma 1.4.8. Let g be a Borel function on D".
(1) If n = 1, then

/ lgo Flz,m) < 1 / 19(2)],
DXBH,1(0,1)2 mn

for some constant ¢, independent of g.
(71) Assume n > 1. Let tg and &y be two positive real numbers such that to+ 69 > n—1 > do.
Let

M,:= sup ¢ / 9(2)
€€(0,1) K

and Ao := to + dg — n + 1. Assume M, < oco. Then we have

20

~ 2t0¢q M, o
[, a=phlge fem < 25 [ g
X — n

1

or some constant c; independent of g, tg, 0g.
D 9,

Proof. When n = 1, the desired inequality is a direct application of the change of variables
theorem and (1.3.40). Consider now n > 1. Put Y = D x IB%%_I. Let ¢ be a small positive
number which will be chosen later. Set

Yeo:={(z,7) € Y : dist (F(Z,T),K’) > €}

and
Yer ={(z,7) €Y : 2 ke < dist (F(Z,T),K’) < 2—k+1€}’

for k € N. It is clear that Y = U° | Y ;. By definition of K, we have
F(Yer) C Kb g, (1.4.14)

Denote by voly the canonical volume form on Y. Write

/(1 12[)%|g o F| dvoly :Z/ (1—|z))%|g o F|dvoly (1.4.15)
Y k=0"Yek

= . det DF
SO [ - Elge P I,
0/ Yek dist (F(z,T),K’)

(by (1.3.40))

o

< (2 eyl / g o F|| det DE]| dvoly,
k=0 Yer
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by definition of Y, ;, (1.3.41) and the fact that —n + 1 4 J9 < 0. By change of variables, the
last integral equals
[l
F(Ye k)

/ gl < (2 oM,
Hg—k:+1€

which is, for k£ > 1, less than or equal to

by definition of M, and (1.4.14). This coupled with (1.4.15) yields that

oo
[a=lehlgo Bl g erisn [ gl paueng, Y e 46
Y b k=1
A
<€—n+1+60/ 9| 2e OMg‘
1/t0

Choose ¢ = HgHLl(Dn). Using (1.4.16) and the fact that 2% > 1 + )\g, we get the desired
inequality. The proof is finished. O

The following will be crucial for our later purpose.

Corollary 1.4.9. Let V be an open subset of C" containing K| U D". Let ¢ be a p.s.h. function
onV.Leté € (0,1). Define v :=d6/(n—1) if n > 1 and v = 1 otherwise. Then we have

/D (= lel)da( o F)(zm) S5 vy (1.4.17)
X

n—1

Furthermore, we have

~ _d(n=1)
(1~ [eDdd*(p 0 F)(z,7) s 31 max{llell]a . lellzi}. (1418)

/{12€<Z|<1}><B%,—1
for every e € (0,1).

Proof. Firstly we prove (1.4.17). The case where n = 1 is clear. Consider n > 1. Let V; € V
be an open subset of V. Fix a decreasing sequence of smooth p.s.h. functions ¢; converging
pointwise to  on V1 and ||| 1 (v;) < 2]l £1(vy- Let 6 € (0,1). Since

using Corollary 1.4.6, there is a positive constant ¢ independent of ¢ such that for every j, k,
we have

0%y —1 -1
< ce" < ce" 1.4.1
[ gl e [ el S e el (1419

which infers that the constant M, defined in Lemma 1.4.8 for
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is finite. Hence applying that lemma to the above mentioned (g, to, o) gives

[ a-ldtee e S el (1.4.20)
X

n—1

On the other hand, since dd¢y; o F' converges weakly to ddp; o F' on D, we have
lim inf (dd® (¢ o F(,1)), f) = (dd*(po F (-, 7)), f), (1.4.21)
—00

for every positive continuous function f on . Letting I — oo in (1.4.20) and then using
(1.4.21) and Fatou’s lemma, we get the desired result.
Now we prove (1.4.18). As above, it is enough to prove it for ¢ smooth. Set W := {1—2¢ <
|z| <1} x IB%2 _;- Let r be a positive constant. Denote by W; the subset of W containing (z, 7)
w1th dist (F (2, 1), K’ ) > r and by W, the complement of I, in W. Let ¢ be a positive constant
in (0,1). Using (1.3.40) and the change of variables by I on W gives

[ a-iharee)se [ o) sat [ st S e e,
W1 Wi F(Wl)
By the proof of Lemma 1.4.8 applied to g = %, to =n —1and dp = 6, we have

| a-ihdaooFy<ds [ - palfaioo F)
W2 W2
)
55 616[[ ddc(p/\wnfl]m < 6176745”@”21 .
F(W2)

by (1.4.12) and the fact that F'(W>) is contained in K’ x B2_,. Choose r := €T Taking
the sume of the last two inequalities gives (1.4.18). The proof is finished. O]

1.5 Holder continuity for super-potentials

Recall that ¥ defined at Introduction is a compact subset of the set of w-p.s.h. functions on X
with respect to L!-topology. Hence there is a positive number 7 such that

leollLixy <ro and  |[max{p1, w2}l (x) < 10,

for every o, 1,2 € €. Let ¢ be the set of w-p.s.h. functions ¢ on X such that |||/ 11 (x) <
2rg. In this section, we will finish the proof of Theorem 1.1.4. In order to do so, we will
prove the following which is actually equivalent to Theorem 1.1.4 by Lemma 1.5.2 below.
Remember that we are still assuming that dim K = n. Let K be the compact subset of K as
in Theorem 1.1.4.

Proposition 1.5.1. Let « be a positive number strictly less than 1/(3n). Then for any ¢1, p2 € €”
such that ¢ > @9, we have

/(gpl — @a)dvolg < c/ (p1 — @2)dvolx + c(/ (p1 — cpg)dvolx> , (1.5.1)
K X X

where c is a constant independent of ¢1, @o.
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Lemma 1.5.2. Proposition 1.5.1 implies Theorem 1.1.4.

Proof. Take o1, € €. Observe that max{¢1,p2},¢1,p2 € ¢’ and max{p1,p2} > ¢; for
Jj = 1,2. Hence, we can apply (1.5.1) to max{¢1, @2}, ¢; with j = 1,2. Using these two
inequalities and the fact that

1 — 2| = 2max{p1, 2} — ©1 — P2

gives
le1 — 2l L1 (1 pvotre) S max{[lor — 2l L1(x), le1 — w2l 71}

which means that 1 ;volx has Holder continuous super-potential with Hélder exponent .
The proof is finished. O

The remaining of this section is devoted to prove Proposition 1.5.1. By [7], it is enough
to prove (1.5.1) for ¢y, o smooth. We will firstly show that for any nonnegative C? function
v on D, the integral of v over D can be bounded by a quantity of the L'-norm of v over D
and some Holder norm of its Laplacian. This together with the exponent estimates in the last
section are the key ingredients in the proof of Proposition 1.5.1. We will reuse the notations
from Section 2 for M = D.

Lemma 1.5.3. Let v be a nonnegative C? functions on D. Let 3 € (1,2). Then we have

/ vd€ $p ||ddcv||é,5®) +/U~ (1.5.2)
oD D

Proof. By Riesz’s representation formula, we have

v(z) = P 2)v(e)db +/ log |2 = 77_| dd‘v, (1.5.3)
{mi<ty L= 2]

—T

for z € D, where P(¢, z) is the Poisson kernel given by
P(€,2) = (2m) (| — [2*)I€ — 2|2

This implies that

/ v(z) = /ﬂ v(ew)dG/ P(e 2)+ (1.5.4)
D1/2 -7 ZED1/2

-l—/ddcv(n)/ log |z—177].
D ZE]D)l/Q ’1 - ZT]|

L
e R e e o AR L
Qel<ty2y =20 Jqz<1/2) {z]<1/2}

Observe that f(e?) = 0 because

Set

]z—ew]

log -2 — 1 _
©8 11— ze=]
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for any z € D. This means that f|sp = 0. We claim that f is indeed in C?(D) for every
B € (1,2). Since z € Dy 5 and n € D, the function

/ log |1 — zn|dzdy
Dy /o

is smooth in 77 € D. Hence, we only need to take care of [, €Dy, , log |z — n|. It is clear that

1 Z—7 1 1
0 log|z —n| = / = / . (1.5.5)
! z€Dy /5 2 z€Dy /o |z —n? 2 z€Dy ) # 7

Let g be the right-hand side of the last equation. We will show that g € C*(D) for every a €
(0,1). If we can do so, then 9, f € C*(D), using similar argument we also gets 9;f € C*(D),
hence f € C#(D) for 3 € (1,2). Let a € (0,1). For (n,7/) € D?, consider the difference

1 1 11—«

z—1n zZ-0
]

It is not difficult to see that the integration of the right-hand side of (1.5.6) over z € Iy /2
is bounded by | — 7/|* times a constant depending only on a. Thus one gets g € C*(D). As
explained above, this yields f € C?(DD). The last property combined with (1.5.4) gives

’/ U(ew)dﬂ/ P, 2)
-7 ZGDI/Q

By our hypothesis that v > 0 and the fact that P(e?,2) > 1 for z € Dy /2, using (1.5.7), one
obtains that

= 1Ly n=n < [ —n'|"

Pl Rl e | K P Py 1
1

+
lz=nllz —n)* |z —=n)|¥z—n|

(1.5.6)

/

<|n—n'1%]

< vllr, ) + 1ddvlle-s @)1 flles ) (1.5.7)

|t 5 ollioy  + I vle-oy (15.8)

The proof is finished. O

Proposition 1.5.4. Let v be a nonnegative C? function on D. Let €, 3y € (0,1) and 3 € (1,2).
Let y be the unique real number for which 8 = ~vfy + (1 — 7)2. Then we have

|t St Molley + €20 a0l ol +

C C 1-
gl [ = Dl 59)
1-2e<|2|<1

Proof. Firstly we will estimate [|dd“v||s—2 - Let x € C*(R) such that 0 < x <1, x = 0 on

[—1,1] and x = 1 outside [-2,2]. For € € (0,1), put x(z) := (=2 |Z‘) for z € D. We have
suppxe C {2 : |2 <1 — €} and x.(z) = 1 for 2 with |z| < 1 — 2¢. Let ® be a function in C*(D)
with [|®||c2 < 1. Since ® = 0 on JD we have |®(z)| < 1 — |z|. Decompose

(ddv, ®) = (ddv, xP) + (ddv, (1 — x¢)P).



44 CHAPTER 1. EQUATION DE MONGE-AMPERE AVEC SOLUTIONS HOLDERIENNES

Denote by I, Iy respectively the first and second terms in the right-hand side of the last
equality. By properties of ® and y., one gets

| < 2/ (1 = |2])|dd°].
1-2e<|z|<1

On the other hand, performing an integration by parts gives

uns/WwquMSeQ/ww
D D

Hence, we obtain

||ddcv||c~_2®) = sup ‘(ddcv <I> / v -l—/ (1 —|z])|ddv|.
{@€C2(D):|| @] ,2 <1} 1—-2e<|z |<1

(1.5.10)
Now applying Proposition 1.2.1 to dd°v and M = D, one gets

ldd“vllg—s ) < ddv]F ldd ol

¢—Po (D) C2(ID))

The last inequality combined with (1.5.2) and (1.5.10) gives (1.5.9). The proof is finished.
OJ

We are now about to prove the local version of Proposition 1.5.1. Given a point a € K, a
small open neighborhood K’ of ¢ in K can be described as in Section 1.3. Namely, there are
a C3 map h from B,, to R” with h(0) = Dh(0) = 0 and local holomorphic coordinates in X
such that

K':={x+ih(x):x € B,} C D}.

Let F(z,T), t3,é and 6 be as in Section 1.4. The couple (K’, DY) is considered as the local
counterpart of (K, X). One can replace D} by any polydisks D} with » > 1 without making
any differences in what follows.

Let 5y € (0,1). For every positive continuous (1, 1)-current 7" on an open neighborhood of
D, we have

Hmﬁmmgéa—pww. (15.11)

Let ¢1 and ¢, be two C? p.s.h. functions on D% such that ¢; > ¢ and il gy < 1 for
j =1,2. Put ¢ := @1 — o which is C? and nonnegative. Define

91(7) = Hddc(ﬁp °© F('ﬂ')) ”é—ﬁo(ﬁ)
which is less than or equal to

1dd® (@1 0 F(-, 7)) [l g=p0 3y + 1dd° (02 © E(, 7))l 6-50 3 (1.5.12)
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Since F'is C?, so is p; o F for j = 1,2. Using (1.5.11) for T = dd®(epj o F(., 7)) and (1.4.17),
we deduce that the integral of the sum (1.5.12) with respect to 7 € B2_,; is <g, 1. This
implies

n—1

/ gi(T)dT Spg, 1. (1.5.13)
B2

n—1

Put
92(1) = [l o F (-, 7)[| 1y

By Corollary 1.4.2, the function ¢ satisfy the hypothesis of Lemma 1.4.8 for §o = 0 and
to =n —1+ewith e € (0,1). As a result, we get

/ gal(r)dr <, [ / so|]"‘”7 (15.14)
B2 n

n—1

For ¢ € (0,1), we define

93(T, €) ;:/ (1= [2])dd® (1 0 F(-, 7)) +/ (1 — [2])dd®(p2 0 F(-,T)).
1-2¢/'<[2|<1 1-2¢'<|z|<1
By (1.4.18), we have
/ n1- 3=l
/ g3(T,€)dr Ss () n1H9, (1.5.15)
BQ

for any 6 € (0,1).

Proposition 1.5.5. Let o1 and ¢, be two C? p.s.h. functions on D% such that ¢1 > o and
@il gy < 1forj =1,2. Let ¢ := 1 — 2. Then we have

-4
/ ( )(,O(X,h(X))dX <5 ||SOHL1(Dn)7 (1516)
n 066*

forany 6 € (0, 5-).

Proof. Lete, €, 5y € (0,1) and 8 € (1,2). Let g1, g2, g3 be as above. Applying Lemma 1.4.7 to

g = p gives
/ lo(x, h(x) \dx</ dT/ | o F(-,T)|dE.
Bn(O,eo B2

n—1

Put v : ,6’ Applying Proposition 1.5.4 to v = ¢ o (-, 7) € C2 shows that the right-hand
side of th last inequality is

S(60.8) / gadr + () 7207 / glgy dT + / glgs (. €)dr.
B2 B? BQ

n—1 n—1 n—1

The first term of the last sum is

< Nl
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by (1.5.14). On the other hand, by the Holder inequality, the second one is <

—_ — 1—
()2 gl g2l i

and the third one is <
lgill}llgs (- el

where the L!-norm is taken over Biq- Taking into account (1.5.13) and (1.5.14), one obtains

e(l1—y)
— — 1 n €
()2 g7 allgall Y S (€72l 03)"

By (1.5.13) and (1.5.15), we have

_ 1_6(n—1) 1—
g7 llgs (o Nh Sgos () nmmea) 077,

for every ¢ € (0,1). Put

‘ (1 - ED (1 —)
ar = sn1)y 2= S(n—1)~
(n=1+¢€)(3~ 7555) (n=1+¢€)(3 - 7555)
Choose € := ||¢||7} 11(Dy) . Combining all these above inequalities, we get

/ o, b))l (s 018 -
B (0,€5°) 2

Observe that as — 5- ase — 1, 3 — 2, o — 0, § — 0. Thus, the proof is finished. O

End of the proof of Proposition 1.5.1 in the case where dim K = n. Given any a € K, let F,
and ¢, be as in Proposition 1.3.8. Since K is compact, we can cover it by a finite number
of ball Bk (a,é¢,). Hence, in order to prove (1.5.1), it is enough to restrict ourselves to local
charts. In other words, we are now being in the situation with the model (K’, D%) described
above. Moreover, by subtracting a suitable common smooth function, we can assume that
©1, @9 in (1.5.1) are C? p.s.h. functions on D%. Hence, the desired result follows directly from
Proposition 1.5.5. The proof is finished. O

We now deal with the case where the dimension of K is greater than n. Let nx := dim K >
n. Since K is generic, we have T, K + JT,K = T,X, where a € K and J is the complex
structure of X. We then deduce that T, KN JT, K is of even dimension which equals 2n ; —2n.
The codimension d of K equals 2n — ng.

Proposition 1.5.6. Let a be a point in K. There exist local C? coordinates (W, ¥) of X around
a such that the following properties hold:
(1) O : W — C? x C"<~" is a C? diffeomorphism onto its image which equals

(Bg + iBq(0,2)) x D&

and ¥(p) = 0 and ¥~1(z1,z2) is holomorphic in z; for every fixed zo € D"x ",
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(i1) there is a C*> map h(Re z1, z2) from By x D5~ to R so that for every z fixed, h(-,z2) €
C3 and
DI

Rez

h(0,z9) = 0
for j =0o0r1and
U(KNW) = {(z1,22) € (Byg —I—Z']Rd) x D"5 7" : Imz; = h(Rez1,22)}.
Proof. It is well-known that in suitable holomorphic local coordinates, K is given by
K= {(Zl,ZQ) € (IB%d —I—iRd) x D"ET"  Imzy = fL(Rezl,ReZQ,ImZQ)}

where £ is a C*> map of uniformly bounded C? norm in p and h(0) = Dh(0) = 0, see [1].
For z, fixed, we choose the tangent space of the graph of &(-,z;) at 0 and its orthogonal
subspace as new holomorphic coordinates of C?. These new coordinates depend C? on (but
in general not holomorphically) on the parameter z,. In these new coordinates, one easily see
that K is given by the formula given in the asssertion (ii) for some C> map h with the desired
properties. The proof is finished. O

Remark 1.5.7. As in Lemma 1.3.1 we can obtain furthermore that D%{ez1h(0,z2) = 0 and
|A(-,22)]|cs is bounded uniformly in a = (z1,23) € K but in this case we will lose a unit for the
regularity in z», i.e U and h are only C! in zs.

Thanks to Proposition 1.5.6, we can consider K locally as a family of generic submanifolds
of C¢ of dimension d parameterized by z, € D"™<~". This allows us to reduce the question to
the previous case where we already dealt with generic submanifolds of minimal dimension.
By compactness of K, we can cover it by local charts W as in Proposition 1.5.6. From now on,
we work exclusively on a such local chart. Hence, we can identify K with ¥ (K NW). Let h and
¥ be as in that proposition. The map h will be seen as a family of maps of z; parameterized
by z,. For zo € D"5~" define

K;Q ={z; € (IB%d + iRd) :Imz; = h(R,eZ1,Z2)}

which is identified with K, x {z2} C C". Then K is foliated by K, .

We are now going to construct a family of analytic discs partly attached to K. The strategy
will be almost identical with what we did. Let ug be a function described in Lemma 1.3.2
and 6, be the constant there. Let 71,79 € By_; C R?L. Define 7% := (1,71) € R? and
75 := (0,71) € RY and 7 := (71, 72). Let t be a positive number in (0, 1). Consider the
following modified version of the equation 1.3.11:

Ur.2,4(§) = t75 = T (M(Ur 5.5 22) ) (§) — tTiuo(§) 71, (1.5.17)

where U : 9D — B, is Hoélder continuous.

Since h(0,22) = DRrez 7(0,22) = 0 for every zy, we can use the same reason mentioned
in the proof of Proposition 1.3.3 to show that if ¢ is small enough, the equation (1.5.17) has
a unique solution Uy ,, ; in C>/2(9D x B2_) for z, fixed so that Uy ,, ; € C' as a function of
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(z,T,22). We use the same notation U 5, ; to denote the harmonic extension of U 5, ; to D.
Let Py, +(z) be the harmonic extension of h(Usr 4, +(£),2z2) to D. Define

F(z,71,22,t) = Ur 2,4(2) + i Pr 4, 4(2) + it up(z) 71

which is a family of analytic discs to C? parametrized by (7, zo,t). By our choice of ug, we
have F(¢,T,29,t) € Ky, for £ € [e7%0, ¢%0]. Now define

Fl(z,7,22,t) := (FT’Z%t(Z),ZQ) eCn”

which is a family of analytic discs to X partly attached to K. Here we used an essential fact
that the C? coordinates (z1, z2) are holomorphic in z;. Proposition 1.3.6 with n replaced by d
implies that for two positive constants (¢, ) small enough, F’ is a diffeomorphism on

(Ba(1,70) ND) x By_, x D67
and its differential satisfies
|det DF'(z,7,22,t)| 2 3+ dist?? (F'(z,7,22,t), K,,) 2 241 — |z])4L. (1.5.18)
Now applying the same arguments right before Proposition 1.3.7, one gets the following.

Proposition 1.5.8. There exists a map F : D x B2 | x DK~ — X which is a diffeomorphism
onto its image such that the following three properties hold:

(i) there are positive constants 0y and &, so that for every 1 € B4_; the restriction map
F(,11) : [e70, %] x By_; x D"~ — K is a diffeomorphism onto its image which contains
the graph of h over B,(0, éy) x D™x—",

(i3) F(-,T,22) is an analytic disc to X and

| det DF(Z,T,ZQ)‘ > dist™ ! (F(2,7,20,t), K)) 2 (1 — [2)* (1.5.19)

~

Proposition 1.5.8 and Remark 1.5.7 allow us to repeat all of arguments in the proof of
Theorem 1.1.4 in the case where nx = n for our present situation. Hence, this finishes the
proof of Theorem 1.1.4.



Chapter 2

Intersection de courants de grand
bidegré

Let X be a compact Kidhler manifold of dimension n. Let 7' and S be two positive closed
currents on X of bidegree (p,p) and (g, q) respectively with p + ¢ < n. Assume that 7" has
a continuous super-potential. We prove that the wedge product 7' A S, defined by Dinh and
Sibony;, is a positive closed current. This chapter is based on the article [83].

2.1 Introduction

Let X be a compact Kidhler manifold of dimension n. Let 7" and S be two positive closed
currents on X of bidegree (p,p) and (q,q) respectively with p + ¢ < n. In [18], Demailly
asked the question to define the intersection 7" A S. The theory of intersections of currents
of bidegree (1,1) is well developed, see, e.g., [2, 10, 17, 38]. So the question of Demailly
concerns currents of higher degree.

The problem was recently solved by Dinh and Sibony in [33] using their theory of super-
potentials (see also [28]). Assume that 7" has continuous super-potentials (see [33] or Section
2.2 for the terminology). Then the wedge product 7' A S is well-defined. It is known that
this product is the difference of two positive closed currents. The operator satisfies basic
properties like the commutativity and the associativity when intersect several currents. The
Hodge cohomology class of T' A S is the cup product of the ones of T" and S. Moreover,
T A S depends continuously on S. Therefore, it is positive when S can be approximated by
smooth positive closed forms. The last property of approximation is satisfied when X is a
homogeneous manifold and also in the case of some dynamical Green currents. The purpose
of this work is to prove the positivity of T' A S in the general setting. We have the following
theorem.

Theorem 2.1.1. Let X be a compact Kdhler manifold of dimension n. Let T and S be two
positive closed currents on X of bidegree (p,p) and (q, q) respectively with p + q¢ < n. Assume
that T has a continuous super-potential. Then the intersection current T' A S is a positive closed
current of bidegree (p + q,p + q).

In Section 2.2, we will recall some basic properties of positive closed currents and their

49
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super-potentials. In Section 2.3, we will introduce an alternative definition of 7' A S which is
a positive closed current. We then show that this definition is equivalent to the one by Dinh
and Sibony. The above result will follow immediately. We will present now the main idea.

Suppose first that 7' and S are positive closed smooth forms of X. Let 7; (j = 1,2)
be the projections from X x X to the first and second components respectively. We have
T®S = n7(T) A m3(S). This is a positive closed smooth form on X x X. Then one can
compute 7' A S via the formula

TAS = (m))(T®S A[A]) for j=1,2, (2.1.1)

where [A] is the current of integration on the diagonal A of X x X.

Observe that because of [A], the formula (2.1.1) can not be extended to general singular
currents 7" and S. We can however use the theory of intersection with (1, 1)-currents if in the
place of A we have a hypersurface. This is the reason why we consider the blow-up Xx X
of X x X along A. Let IT be the natural projection from XxXtoX x X and A = I-1(A)
be the exceptional hypersurface. Recall from [6, 81] that the blow-up of a compact Kéhler
manifold along a submanifold is also Kéhler. Let & be a Kahler form of X x X. Observe that
IT,(&" ! A [A]) is a non-zero positive closed current of X x X supported on A and has the
same dimension as A. Therefore, it equals a constant times [A], see, e.g., [17]. By normalizing
@, we can suppose that

~

IL@" ' A[A]) = [A] (2.1.2)

Put @ =II"(T'® S) and II; = 7j o II (j = 1,2). Then (2.1.1) can be rewritten as

—

TAS=(L).(ToSAG" " AA]). (2.1.3)

In general, when 7" and S are only positive closed currents, one still can define T®S
as a positive closed current outside A and extend it by 0 through A. We can show that
ToSAGLA [A} is well-defined provided that 7" has a continuous super-potential. In this
case, we can use (2.1.3) as an alternative definition of T' A S which gives a positive closed
current, see Corollary 2.3.5. Proposition 2.3.7 below shows that this definition is equivalent
to the one of Dinh and Sibony:.

2.2 Super-potential of positive closed currents

We will recall now some basic facts and refer to [33] for details. Let X be a compact Kéhler
manifold of dimension n and w be a Kahler form on X. It is well-known that the de Rham
cohomology of currents and smooth forms are canonically equal (see [41, Chap. 3]). Denote
them by H" (X, C) with 0 < r < n. For any closed current T of degree r, denoted by {T'} its
cohomology class in H"(X, C). Let HP?(X,R) be the vector subspace of HP?(X,C) spanned
by the classes of closed real 2p-forms. Since a closed positive (p, p)-current is real, its class
belongs to HP?(X,R). If V is an analytic subset of X of dimension n — p, it defines a positive
closed current [V'] of bidegree (p, p) by integration over V. Its class will be denoted by {V'} for
simplicity.
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Let C, be the convex cone of positive closed (p, p)-currents on X and D,, be the real vector
space generated by C,. Since the Kihler form w is strictly positive, the set D, contains all real
closed smooth (p, p)-forms. Let Dg be the subspace of D), of currents belonging to the class 0
in HPP(X,R). We recall the notion of *-norm on D,. Consider first a positive closed current
S in D,. Define its x-norm by

1Sl = [(S,w" )]

which is equal to the mass of S. In general, since any S € D, can be written as the difference
of two positive closed currents, define

18]l = inf (1Sl + 1S [1s),

where the infimum is taken over all S, S~ € C, such that S = ST — S~. By compactness
property of positive closed currents, the above infimum is attained for some S and S—. We
say that S, converges to S in D, for the x-topology if S, converges to S weakly as currents
and ||Sk||« is bounded independently of k. The following result is due to Dinh and Sibony, see
[33, Th. 2.4.4] and also [27, Th. 1.1].

Proposition 2.2.1. There is a positive constant c such that for all S € D,, there exist smooth
forms Sy, € Dy, with k € N such that S,, converges weakly to S and ||Si||« < ¢||S||« for all k.

Let T be in D, and R be in Dg. By dd¢-lemma for currents (see [40, Th. 1.2.1]), there is a
real (¢ — 1,q — 1)-current Up such that dd°Ur = R. We call Ug, a potential of R. Consider the
following important example of R. Let V' be a hypersurface of X and S, be a smooth form
of the same cohomology class with [V]. Then R = [V] — jy is in DY. One can construct an
explicit potential Up as follows. Consider the holomorphic line bundle of X associated with
V and o a holomorphic section whose divisor is V. Take a smooth Hermitian metric on this
line bundle and denote by | - | the norm induced by this metric. By Poincaré-Lelong formula,
there is a smooth form 3, such that

dd° log |o| = [V] - 6.

Since {fp} = {V'} = {1}, there is a smooth function f on X such that dd°f = By — /51. The
function Ug := log |o| — f is a potential of R. Note that Ug is smooth outside V' and if ¢’ is
a holomorphic function on an open neighborhood W of a point of V' such that its divisor is
V N W, then

Ug(z) — log|o’| is smooth on W. (2.2.1)

Consider now a current R € Dg_p 41 and an (n — p,n — p)-current Ur which is a potential
of R. Let @ = (o, -+ ,ap) with h = dim HPP(X,R) be a fixed family of real smooth closed
(p, p)-forms such that the family of classes {a} = ({a1},---,{an}) is a basis of HPP(X,R). By
adding to U, a suitable closed smooth form, we can assume that (Ur, ;) = 0fori =1,---  h.
We say that Uy, is a-normalized.

Definition 2.2.2. ([33, Def. 3.2.2]) Let T be a current in D, as above. The a-normalized super-
potential Ur of T is the function defined on smooth forms R € D?L_p 41 and given by

uT(R) = <T’ UR>a
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where Up is an a-normalized smooth potential of R. We say that T has a continuous super-
potential if U can be extended to a function on Dg_p 1 which is continuous with respect to the
x-topology. In this case, the extension is also denoted by Ur.

By [33, Lem. 3.2.1], Ur(R) does not depend on the choice of an a-normalized Ur. And
the continuity of Uy does not depend on «. Observe that when {7} = 0, the a-normalized
super-potential of 7" does not depend on «. Indeed, in this case, it is the restriction of any
potential Uz of T' to the set of smooth forms in DY) .. Assume that T" has a continuous
super-potential. Take any current S € D,. Let (ai,--- ,ap) be the coefficients of {T'} in the
basis {«}. Define T' A S to be the real (p + ¢, p + ¢)-current satisfying

(TAS,®) :=Up(dd°®AS)+ Y ajo;,®AS), (2.2.2)
1<j<h

for any real smooth (n — p — ¢,n — p — q)-form ®.

2.3 Alternative definition for the intersection of currents

Let X, X x X yw, @, IL I, 75, A, A be as in the previous sections. Consider two currents 7' €
D, and S € D, as above with p + ¢ < n. Let h,a; and o; with 1 < j < h be as in the
last section. From now on, assume that T is positive and has a continuous super-potential.
Note that II; = = o II are submersions, for a proof see [33] or the proof of Lemma 2.3.2
below. Define T' = ITI5(T) and S = II5(.S). They are positive closed currents on X x X. Put
&j = HT(OZJ) for 1 < j < h.

Lemma 2.3.1. The current T has a continuous super-potential.

Proof. Suppose that the classes {&;} are linearly dependent. Then there exist real numbers
b; with 1 < j < h which are not simultaneously equal to zero and a smooth form 7 such that
Z?Zl bja; = d(7). Taking the wedge product with &" in the last equality and then using the
push-forward by (I1; ). give

h
> bjoy A (). (@) = d((I).(F AG™)). (2.3.1)
j=1

Note that (II;).&™ is actually a nonzero constant since &" is closed and positive. We de-
duce that the left-hand side of (2.3.1) is a non-trivial linear combination of o, 1 < j < h.
However this contradicts the fact that {c;} are linearly independent. Hence, the classes {a;}
are linearly independent. Complete them to be basis @’ of HW(X/%\X ,R). Let Uz be the
a’-normalized super-potential of T.

Put ar = Z;’L:I ajo; and ap = IIjar. Remark that o and ar are in the same cohomology

classes with 7' and T respectively. Let Ur_o, be a potential of 7" — ay. Then Ur g, =

II;Ur—_q, is a potential of T — @r. By definition, for any smooth form R € Dgn_p +1(m ),
we have

Us(R) = (T, Up) = (T —ar,Up) = (Uz_._,R)

—ar
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By our choice of potentials, the last quantity equals

(Ur-ag, (1) R) = Ur((T1) R).

The continuity of U7 now implies immediately the same property for 5. The proof is finished.
O

Thanks to Lemma 2.3.1, one can define TAS asin (2.2.2). Recall that T'® S is a positive
closed (p+gq, p+q)-current on X x X depending continuously on 7" and S. Its action on smooth
forms can be described as follows. Let = be local coordinates of X. They induce naturally local
coordinates (z,y) on X x X. For a smooth form ®(z,y) of X x X, we have

(T®S,®) =(T,5(®(x,-)) =(S,T(2(,y))). (2.3.2)
Let IT' be the restriction of IT to X x X \A. The current
Tols=1"T®&S)

is well-defined and positive closed on X x X \ﬁ because IT’ is biholomorphic. By Proposition
5.1 of [29], the mass of @ is bounded. Hence, it can be extended by zero to be a positive
closed current of X ® X through 3, see [17, 70, 75]. We still denote by T @ S the extended
current. Take a smooth closed (1,1)-form 3 with {3} = {A}. Since A is a hypersurface,
choose a potential

i="Usx

A5 (2.3.3)

of [ﬁ] — j as in Section 2.2. It is smooth outside A and its behaviour near A is described by
(2.2.1). By adding a constant to # if necessary, we can assume that 4 < —1.

Lemma 2.3.2. The current .5 is well- defined. Moreover, if smooth forms S, € D, converge to S
in the *-topology, then 4.5, converge weakly to a.5.

Proof. We prove the first assertion. For any smooth (2n — ¢, 2n — ¢)-form 7 on X x X , we will
show that (Ily). (@) is a smooth form on X. This allows us to define

~

(@S, 1) = (S, (H2)«(an)). (2.3.4)

To see that (IIy).(an) is smooth, we just need to work locally. Consider local coordinates
(W,z = (z1,--- ,x,)) on a chart W of X. Without loss of generality, we can suppose W is
diffeomorphic to the unit ball B, in C". Consider induced local coordinates (z,y) on W x W.
We have AN (W x W) = {z = y}. Define new local coordinates (2’,y) on W x W by putting
2’ := x — y. Hence A is given by the equation z’ = 0. The set II"!(W x W) is biholomorphic
to the manifold M in C" x C" x P*~! defined by

M ={(,y,[v]):y € By, 2’ +y €By, [v] € P ' and 2’ € [v]},

where [v] = [v; : vy : -+ : v,] denotes the homogeneous coordinates of P"~!. Let M; (1<
J < n) be the open subset of M containing all points (z’, y, [v]) € M with v; # 0. They form
an open covering of M. For (z/,y, [v]) € M, we have zjv; = z/v;. Choose v; = 1, then
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z’; = rjv;. We deduce that (2}, v2,- -+ ,vn,y) are coordinates on M; and ANM; = {z} = 0}.

Since Iy(2),va, -+, vn,y) = y, We see that

(L), () = / U v2s s vmy )T 02, 0n, )
T1,v2 n

__L/: log [21]A(21, va, -+ vn, y)
z1,v2,

©yUn

+ / IAL/(LU/I,’UQ,’ te ,Un,y)ﬁ(.l?/l,’UQ, e avnvy)v
T7,02," " ,Un

where @' (2], v2, -+ , vy, y) is a smooth function, see (2.2.1). This implies that the last integral
defines a smooth form in y. It is also clear that the integral involving log |2} | depends smoothly
in y. The proof of the first assertion is finished. The second assertion is a direct consequence
of the identity (2.3.4). The proof is finished. O

Proposition 2.3.3. We have T A S = T®3.

Proof. Consider first the case where S is smooth. So T A S is the usual wedge product of a
current with a smooth form. We then see that TA S = "(T'®S) = 1@ outside A. Observe
that the ﬁbers of the submersion II; are transverse to A. Therefore T has no mass on A. A.
Hence, T A S has no mass on A. We deduce that TA S = T ® T ® S in this case because T ® T®S
has no mass on A by definition.

In general, by Proposition 2.2.1, there is a sequence of smooth forms Sj € D, converging
to S in the x-topology. The first case and the continuity on S imply that T'A S = T ® S outside
A. It remains to show that the restriction 1 B(f A S) of T A S vanishes. This is equivalent to
say that
/fA§A<T>:0, (2.3.5)

A

for any smooth form d of bidegree 2n —p — q. By Proposition 2.2.1, we can write S = ST -5~
where S+ and S~ are approximable by smooth positive closed forms. Since T'A S = TASH—
T A S, we only need to verify that 1 A(f A §i) = 0. Therefore, without loss of generality,
assume that 7 A S is positive. Consequently, it suffices to prove (2.3.5) for & = &2 P~4.

Let x be a convex increasing smooth function on R such that x(¢) = 0ift < —1/4, x(t) =
fort > 1/4 and 0 < x’ < 1. For each positive integer k, put

u = x(u+k) — k.

This is a smooth negative quasi-p.s.h. function since u < —1. The functions ; decrease to
4 and —uy,/k decrease to the characteristic function 15 of A as k — oc. The first property
implies that S A dd°ay, converges weakly to S A dd“i, see Lemma 2.3.2. We also have

dd“ty = [X" (0 + k)]da A d°G + X' (6 + k)dd“a > X' (4 + k)dd°t > —cw,
for some positive constant c. This yields that dddy, = (dd®uy, + cw) — cio which is the difference

of two positive closed currents in the same cohomology class c¢{&}. We deduce that dd“dy, is
x-bounded uniformly in k and then so is S A dd°@y, A 2" ~P~4 because we have

IS A ddig, N>, < el S||ulldd g, (2.3.6)
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for a positive constant ¢ depending only on (X, w). It follows that
S A ddiy NB*TPTE = S A ddea AGPTP

in the *-topology. The equality (2.3.5) with P = H2rdis equivalent to
(TAS, —? @MY 5 0 as k — oo. (2.3.7)
Applying the formula (2.2.2) to TAS gives
T A Q ’&‘k ~2n—p— 1 C ~2n— L. 5 ~2n—p—
<T/\S,—?-w pq>:—EU (S/\dduk/\ pq)—%<ozT,ukS/\w pq>,

where ap = Z?:l a;a;. The last quantity converges to 0 as £ — oo for the mass norm of S
is bounded independently of £ by Lemma 2.3.2. On the other hand, the continuity of Uz gives

Uz (S A ddety, AG*P7Y) — Uz (S A dda A &P P1)
which is finite, as k — oo. Hence we get (2.3.7). The proof is finished. O

Lemma 2.3.4. The current ﬂ(f A §) is well-defined. Denote it by T A S for simplicity. For any
closed real smooth form ® of X x X of the right bidegree, we have

h
(@T NS, ®) = Uz (dd*(aS A ®)) + ) a;(S, ad; A D). (2.3.8)
j=1

In particular, (4T A S, ®) depends continuously on S.

Proof. Using the computation in the proof of Proposition 2.3.3, we have
g p P P
(T A8, a0 70) = lm Up(S Add°iy NG*P77) + (ar, @S A D™ P71,
—00

where 4y is defined as in Proposition 2.3.3. The same arguments at the end of the above
proposition show that the last limit is finite. The first assertion follows. Note that each smooth
closed form ® can be written as the difference of two positive closed forms. Hence it is enough
to prove (2.3.8) for positive closed forms ®. The computations in Proposition 2.3.3 still hold
for ® in place of %" ~P~49. Hence (2.3.8) follows.

In order to prove the last assertion, it is enough to prove it for positive closed forms ® by
the same reason as above. Let {S;};cy be a sequence of currents in D, which converges to S
in the *-topology. Put Sl H*(Sl) It is clear that 3, converges to S in the *-topology. Lemma
2.3.2 implies that ddc(uSl A (I)) converges weakly to ddc(uS A (I)) and

klirgo ddc(ukSl A <I>) = ddc(uSl A CD) (2.3.9)
for any [ € N. Applying (2.3.6) to S in place of S, we see that the mass of ddC(akE A cT))
is bounded independently of k£ and [. This combined with (2.3.9) yields that the x-norm
of dd°(aS; A ®) is bounded independently of I. We deduces that dd°(@S; A ®) converges to
ddc(ﬁ§ A ®) in the x-topology. The continuity of Uz now implies that the right-hand side of
(2.3.8) depends continuously on S. The proof is finished.

0
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Corollary 2.3.5. Define the intersection T®S A [ﬁ] by putting
T@SA[Al=dd(aT®8) +T @S A B, (2.3.10)

see (2.3.3) for the definition of 3 Then T @ S A [ﬁ] is positive when S is positive.

Proof. We only need to prove the positivity. This property is classical since the current [ﬁ] i

of bidegree (1,1). We give here a proof for the sake of the reader. Fix a small open subset W
of X x X b1holomorph1c to a ball. We can find a smooth function % on W such that dd“0 = 3.

Hence the function @/ = @ + ¢ satisfies dd°a’ = [A] > 0. So @' is p.s.h. on W. We then
have T @ S A [A] = dde (@' @) on W. If ), is a sequence of smooth p.s.h. functions on w
decreasing to @', then the last current is the limit of dd° (%TTQTS”) which is clearly positive
since it equals dd“i;, A T® S. The proof is finished. O

Lemma 2.3.6. Let Y be a closed subset of X. Let R be a positive (p, p)-current of X and let Ry,
be a sequence of positive (p, p)-currents of X converging weakly to R as currents in X \Y. Assume
that R has no mass on Y and the masses of Ry, converge to the one of R. Then Ry converges
weakly to R in X.

Proof. For each € > 0, let Y, be the set of points in X of distance less than ¢ to Y. Let x. be a
continuous function on X such that 0 < x. < 1 and x. = 1 on X\Y5 and y. = 0 on Y. Take
any continuous real form ® on X of bidegree n — p. We need to prove that

Ri(®) = R(®) as k — oc. (2.3.11)

Since a continuous form can be written as the difference of two continuous positive forms,
we can assume that ® is positive. The hypothesis on Rj implies that Ry (x.®) converges to
R(x.®). Hence in order to prove (2.3.11), it is sufficient to show that

lim 6. = 0, (2.3.12)

e—0

where
0 = limsup/ Ry(D).
?26

k—o0

Let up = Ry Aw™ P and p = RAw™ P be the trace measures of R;, and R respectively. Observe
that 4. is less than a constant times

lim sup g (Yae) = || R|| — hmlnfuk(X\Yge)

k—o0

Since the set X'\Y s is an open subset of XY the last limit is greater than ;(X\Y5.). Hence
we get

limsup | Ri(®) S [ R - p(X\Va0) = (V).

k—o0 Y25

The last quantity converges to zero as ¢ — 0 because p has no mass on Y. The proof is
finished. O
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Proposition 2.3.7. For j = 1 or 2, we have
TAS= (). (ToS AR AG™ Y, (2.3.13)
where T N\ S is defined as in (2.2.2).

Proof. As explained in Introduction, the formula (2.3.13) holds for smooth forms 7" and S.
We consider now the general case. We already know that 7" A S depends continuously on S
for the x-topology. Let {Sk}keN be a sequence of smooth forms in D, which converges to S
in the *-topology. Put S = IT5(Sk) and Ry, = aT A Sk It follows from Lemma 2.3.4 that
the masses of Rj converge to the mass of R = aT A S. Moreover, Ry, converges to R in
X x X \& Applying Lemma 2.3.6 to X x X in the place of X, R, and R, we see that the
right-hand sides of (2.3.13), which is defined in Corollary 2.3.5, also depends continuously
on S for the *-topology. Hence approximating S by smooth forms allows us to assume that S
is smooth. Now Lemma 2.3.2 applied to T in place of S implies that the right-hand side of
(2.3.13) is continuous in 7. When S is smooth, it is clear that 7' A S depends continuously on
T. Therefore, (2.3.13) holds since we can approximate 7" by closed smooth forms. The proof
is finished. O






Chapter 3

Distribution des points de Fekete

Let L be a positive line bundle over a compact complex projective manifold X and K C X
be a compact set which is regular in a sense of pluripotential theory. A Fekete configuration
of order k is a finite subset of K maximizing a Vandermonde type determinant associated
with the power L* of L. Berman, Boucksom and Witt Nystrém proved that the empirical
measure associated with a Fekete configuration converges to the equilibrium measure of K
as k — oo. Dinh, Ma and Nguyen obtained an estimate for the rate of convergence. Using
techniques from Cauchy-Riemann geometry, we show that the last result holds when K is a
real nondegenerate C°-piecewise submanifold of X such that its tangent space at any regular
point is not contained in a complex hyperplane of the tangent space of X at that point. In
particular, the estimate holds for Fekete points on some compact sets in R” or the unit sphere
in R**!. This chapter is based on the article [82].

3.1 Introduction

The aim of this paper is to obtain an estimate on the rate of convergence of Fekete points on
some compact sets toward the equilibrium state. In the view of possible applications, the class
of compact sets that we consider is large enough and the required conditions for our compact
sets are simple to check. Before introducing the general complex setting, let us discuss a
simple but already important case of Fekete points for a compact K of the unit sphere S™ of
R

For each k£ € N, let P,(K) be the real vector space of all real polynomials of degree at
most k in (n + 1) variables restricted to K. Let Nj be the dimension of Py (K). Given a basis
S = {s1,---,sn,} of Py(K), consider the Vandermonde determinant det .S of S defined by
assigning each point x = (z1,--- ,zn,) € (S")V to

det S(x) == det[s;(z1)]1<ji<n; -

A Fekete point of order k for K is a point 2 € K¢ maximizing the absolute function |det S|
on Kk, It is easy to see that this definition does not depend on the choice of the basis S. The
study of Fekete points is motivated by the fact that they are good choices of points for the
interpolation problem of functions by polynomials, see, e.g., [8, 76] and references therein for
more information. For any Fekete point = (x1,--- ,zy, ) of order k, the probability measure

59
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0, on K, defined by
S, 1= i % )
x - Nk j:1 Tjo

is called the Fekete measure of order k associated with 2. We are interested in the distribution
of Fekete points of order k as k — oo. A natural way to formulate this question is to study the
limit points of Fekete measures in the space of probability measures on K.

Let .4 be the equilibrium measure of (K, 0) which is defined in Section 3.2. When K =
S"™, the measure ., is simply the normalized volume form on S" induced by the Euclidean
metric on R"!. In this case, J. Marzo and J. Ortega-Cerda in [54] prove that Fekete measures
of order k converge weakly to p., as kK — oo. In general, a recent result of R. Berman,
S. Boucksom and D. Witt Nystrom in [4] shows that the weak convergence also holds for
any compact K of S" which is non-pluripolar in the natural complexification S¢ of S". In
fact, this result holds in a general setting of Fekete points associated with a big line bundle
over a compact complex manifold. Also in this general setting, Dinh, Ma and Nguyen [23]
introduced a notion of (CQ,CO‘/)-regularity and obtained a precise estimate on the speed of
convergence of Fekete points when the compact K satisfies this property. We will show that
such a property holds for the closures K of open subsets of S™ with nondegenerate piecewise
smooth boundary (see Definition 3.1.3). As a consequence, we will have the following.

Theorem 3.1.1. Let K be the closure of an open subset of S™ with nondegenerate piecewise
smooth boundary. For every e € (0, 1), there is a positive constant c. independent of k € N such
that for any Fekete measure i of order k of K, we have

disty (pg, fleq) < cck™1/THe. (3.1.1)

Recall that for any two probability measures , i’ on a compact differentiable manifold X
and a real number ~ > 0, define

disty (p, 1) :== sup  |[{u— /', 0)|,
loller <1

where v is a smooth real-valued function. This distance induces the weak topology on the
space of probability measures on X. For two positive numbers -, v’ with v < +/, the distances
dist, and dist., are related by the inequalities

dist, < dist, < cdist]/”,

for some positive constant ¢, see [30, 78]. Note that dist; (u, ¢’) is equivalent to the Kantorovich-
Wasserstein distance. We have a better estimate when K = S™.

Theorem 3.1.2. For every € € (0, 1), there is a positive constant c. depending only on (n, €) such
that for any Fekete measure iy, of order k of S™, we have

dist (i, fleq) < cck™ /357, (3.1.2)

It is worth mentioning also that when K is the closure of an open subset of R" with
nondegenerate piecewise smooth boundary, one can define the Fekete points in K and Fekete
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measures in the same way as above. The analogue of the inequality (3.1.1) also holds for this
case. This could be deduced from our general result by using the compact complexification
P" of R™, where P"* is the complex projective space of dimension n.

In order to prove Theorem 3.1.1, we will work in the following context of complex geom-
etry. Let X be a compact n-dimensional complex projective manifold admitting an ample line
bundle L. Fix a smooth Hermitian metric hy on L with positive curvature. Let wy be the first
Chern form of (L, hy) which is a Kihler form on X. For k € N, let H%(X, L¥) be the complex
vector space of global holomorphic sections of L. We also use N}, to denote the dimension of
HO(X, L*). This will cause no ambiguity because we discuss essentially the general case from
now on. Consider a basis

S = (51,82, ,5N,)

of H°(X, L*) which can be seen to be a section of the vector bundle L* x --- x L* of rank N},
over X ¢, The determinant

det S(p) := det[si(p;)]1<i,j<n,

with p = (p1,--- ,pn,) € XV defines a section of the determinant line bundle L¥N* of the
last bundle. The metric h( induces naturally a metric on L*¥V* . Denote by | det S| the norm
of det S measured by this natural metric on L*Vx,

Let K be a compact subset of X. Let ¢ be a continuous function on K. The weighted
Vandermonde determinant | det S|4 at a point p = (p1,- -+, pn,) € Kk, by definition, is

| det S|¢(p) = | det S(p)|67k¢(p1)7"'*k¢(ka).

A Fekete configuration of order k associated with (K, ¢) and (L, hg) is a point in KV* max-
imizing the above weighted Vandermonde determinant on KV, The associated probability

measure
N,
: Zk:é
k j=1

on K is called a Fekete measure of order k.

Recall that a convex polyhedron K” in RM with M € N* is the intersection of a finite
number of closed half-spaces in R . Its dimension is defined to be the one of the smallest
vector subspace of RM containing it. Such subspace is said to support K. We define the com-
plementary polyhedron of K to be the complement of K” in the vector subspace supporting
it. That complementary polyhedron is clearly a finite union of convex ones.

Definition 3.1.3. A subset K of a real M-dimensional smooth manifold Y is called a nondegen-
erate C°-piecewise submanifold of dimension m if for every point p € K, there exists a local chart
(W, ) of Y such that ¥ is a C5-diffeomorphism from W), to the unit ball of R™ and ¥ (K NW,)
is the intersection with the unit ball of a finite union of convex polyhedra of the same dimension
m. In particular, when W(K NW),) is the intersection with the unit ball of a convex polyhedron of
dimension m or of the complementary polyhedron of a convex one of dimension m, we say that
K is a C° submanifold of dimension m with nondegenerate piecewise boundary.

Let K be a nondegenerate C°-piecewise submanifold of dimension m of some smooth
manifold Y. A regular point of K is a point of K such that there exists an open neighborhood
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of it diffeomorphic to an open subset of R™. The regular part of K is the set of regular points
of K. The singularity of K is the complement of the regular part of K in K.

Now let K be a nondegenerate C°-piecewise submanifold of X. Since X is a complex
manifold, its real tangent spaces have a natural complex structure. We say that K is generic in
the sense of Cauchy-Riemann geometry if the tangent space at any regular point p of K is not
contained in a complex hyperplane of the (real) tangent space at p of X. One can see without
difficulty that the dimension of a generic K is at least n. Here is our second main result.

Theorem 3.1.4. Let « be a real number in (0,1). Let K be a compact generic nondegenerate
CP-piecewise submanifold of X. Let ¢ be a function of Holder class C* on K. Then for every
0 < v < 2, there is a constant ¢ > 0 such that for every integer k > 1 and for every Fekete
measure yy, of order k associated with (K, ¢), we have

distyy (pk, freq(K, ¢)) < ek (log k)37, (3.1.3)

where picq(K, ¢) is the equilibrium measure of (K, ¢) (see Definition 3.2.1) and f = a/(48 +
24«v). When K has no singularity, the constant 3 can be chosen to be /(24 + 12av).

In general, when K is an arbitrary non-pluripolar compact subset of X and ¢ € C°(K),
Boucksom, Berman and Witt Nystrom in [4] proved that p, converges weakly to p.,. Using
a different technique, Lev and Ortega-Cerda in [51] obtained an optimal speed for the dist;
provided that K = X and ¢ is smooth wy-strictly p.s.h. and the metric e=2?hy is strictly posi-
tive. Very recently, Dinh, Ma and Nguyen in [23] introduced the notion of (C%,C®)-regularity
and proved an estimate for the rate of convergence for every compact K satisfying this prop-
erty, see Theorem 3.2.2. In particular, they showed that the closure of an open subset of X
with smooth boundary enjoys such regularity. Finally, we would like to remark that the case
of Fekete’s points can be regarded as the extreme case of some random point processes called
B-ensembles as 5 — oo. Similar equidistribution results are also obtained for the latter. We re-
fer to [5, 25, 9] and references therein for physical interpretations of -ensembles and recent
results on them.

In this work, we will prove that the compact K in Theorem 3.1.4 satisfies the regularity
mentioned above. Hence Theorem 3.1.4 will follow immediately. For the proof, we develop
ideas from [23, Th. 2.7]. The key point is to construct families of analytic discs partly attached
to K in X with useful properties. These families will allow us to reduce the question to the
case of dimension one. The reader may consult [58, 59, 60] for applications of analytics
discs. Although there are plenty of works concerning families of analytics discs, it seems that
there is no result which can be used directly for our problem. We will establish a Bishop-type
equation and prove that it has a (unique) solution which suits our purposes. For the reader’s
convenience, a self-contained proof will be given. The construction is inspired by the work
of Merker and Porten in [58, 59]. We also underline that the case where the singularity of
K is nonempty requires much more sophisticated technical arguments than the case without
singularity although the ideas used in the both situations are similar.

In Section 3.2, we prove the aforementioned regularity property of K by admitting the
existence of special families of analytic discs whose proof is postponed until Section 3.3 and
3.4. In Section 3.3, we prove the existence of the above families of analytic discs in the
simplest case by constructing special analytic discs partly attached to R” or (R*)™ in C". In
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Section 3.4, we show that the required families can be obtained as small deformations of the
previous ones constructed in Section 3.3.

3.2 (C* C%)-regularity of generic submanifolds

We first recall some definitions. Let d := ;- (0 — ), hence dd® = £99. A function ¢ : X —
R U {—o0} is called quasi-plurisubharmonic (quasi-p.s.h. for short) if it is locally the sum of
a plurisubharmonic function and a smooth one. A quasi-p.s.h. function is called wy-p.s.h. if
dd) + wg > 0. Let K be a compact subset of X and ¢ be a real-valued continuous function
on K. The pair (K, ¢) is called a weighted compact subset of X and ¢ is called a weight on K.
The equilibrium weight associated with (K, ¢) is the upper semi-continuous regularization ¢,
of the function

oK = sup{¥(z) : Y wp-p.s.h., » < pon K}.

Since the constant function — maxy |¢| is a wo-p.s.h. and bounded above by ¢ on K, we have
¢ > —maxg |¢|. It follows that ¢ is bounded from below. Recall that K is said to be
pluripolar if it is locally contained in {¢) = —oc} for some (local) p.s.h. function 1, otherwise
we say that K is non-pluripolar. It is well-known that ¢x is bounded from above if and only
if K is non-pluripolar. In this case, ¢}, is a bounded wy-p.s.h. function. The Monge-Ampere
measure (wo+ dd°¢},)" is hence well-defined. Its mass on X equals [ w{ by Stokes’ theorem.
The equilibrium measure of (K, ¢) is the normalized Monge-Ampére measure defined by

(dd(¢%) +wo)"
Jx b

Recall that p.,(K, ¢) is a probability measure supported on K. It is a direct consequence of
Theorem 3.2.3 below that any compact generic nondegenerate C°-piecewise submanifold of
X is non-pluripolar.

Fix a Riemannian metric on X. For p € X and r > 0, let Bx(p, r) be the ball centered at p
of radius r of X. Put B (p,r) := Bx(p,r)\{p}. Recall that for 0 < o < 1, C*(X) is the space
of real functions of Holder class C* on X with the norm defined by

fieg (K, ¢) 1= (3.2.1)

I+ sup lp(p) — o)

[@llce(x) = sup [¢(p) . ,
0 peX p#p’ ,p,p'€X dlSt(p,p/)o‘

where dist denotes the distance on X. The space C*(K) is defined similarly.

Definition 3.2.1. For « € (0,1) and o' € (0,1), a non-pluripolar compact K is said to be
(C*,C*)-regular if for any positive constant C, the set {¢x : ¢ € C*(K) and [9llca(ry < C}is
a bounded subset of C*' (X).

By definition, if K is (C*,C®)-regular, for any Holder continuous function ¢ of order
a > 0 on K, we have ¢}, = ¢x because the latter is also Holder continuous. The notion of
(C*,C*")-regularity is essential in our work. The reason is the following result.
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Theorem 3.2.2. ([23, Th. 1.5]) Let K be a non-pluripolar compact subset of X. Let o € (0,1),
o € (0,1) and v € (0,2]. Assume that K is (C*,C)-regular. Let ¢ be a C* real-valued function
on K. Then, there is ¢ > 0 such that for every k > 1, we have

disty, (11x, eq (K, ) < ck™% (log k)*™,
with = o/ /(24 + 12¢/).
Theorem 3.1.4 is a direct consequence of Theorem 3.2.2 and Theorem 3.2.3 below.

Theorem 3.2.3. Let « be an arbitrary number in (0,1). Then any compact generic nonde-
generate C°-piecewise submanifold K of X is (C®,C®/?)-regular. Particularly, when K has no
singularity, K is (C*,C%)-regular.

When K is of maximal real dimension, the regularity of K can be improved, see Remark
3.2.7 for more details.

Remark 3.2.4. Consider the case where dimg K = n. This is the case of our great interest. Then,
the regularity of K obtained in Theorem 3.2.3 is optimal. For simplicity, let take n = 1 and
X =P = {[20 : 1] : (20,21) € C*\{0}}. Let wy be the Fubini-Study form on P'. Using the
local coordinates [z : 1], P! can be seen as the compactification of C with a point at infinity. An
wo-p.s.h. functions is equal to ¢(z) — L log(1 + |2|?) on C, where v is a subharmonic function on
C, such that the last difference is bounded above.

Let K = [—1,1]. Choose ¢ = 0 on K. Using [44, Cor. 5.4.5], we get ¢ (z) = log|z++v2% — 1|
on C, where the square root is chosen such that

lz+ V22 -1 > 1.

Comparing ¢ (z) with 0 when z is close to 1, one sees that ¢y € CY/%(X)\C'/?*¢(X) for any
e > 0. In higher dimension, the same arguments also work for X = P", K = [—1,1]" C C" and

¢ =0.

Before giving the proof of Theorem 3.2.3, we need to recall the definition of analytic discs
partly attached to a subset of X. Throughout the paper, let D be the open unit disc in C. An
analytic disc f in X is a holomorphic mapping from D to X which is continuous up to the
boundary 0D of D. For an interval I C 9D, f is said to be I-attached to a subset E C X if
f(I) C E. In particular, we say that f is half-attached to E if f(0TD) C E, where 07D =
{£ € 9D : Re& > 0}. The crucial ingredient in the proof of Theorem 3.2.3 is Proposition 3.2.5
below which shows the existence of special families of analytic discs partly attached to K in
X. Its proof will be given in Section 3.4.

Proposition 3.2.5. There are positive constants cy, ro and 6y € (0, 7/2) such that for any py € K
and any p € B (po,ro), there exist an open neighborhood W), of py in X independent of p
which is biholomorphic to the unit ball of C* and a C! analytic disc f : D — W, such that f
is [e~%% ¢%]-attached to K, dist(f(1),po) < cod with § = dist(p,po), || fllcr < co and there is
z* € D so that |1 — z*| < v/cpd and f(z*) = p. When K has no singularity, z* can be chosen so
that |1 — z*| < ¢of.

We will also need the following lemma in complex dimension one.
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Lemma 3.2.6. Let 6y € (0,7/2),3 € (0,1) and let ¢ > 0. Let 1) be a subharmonic function on D
and continuous on D. Assume that

¥(e?) < cl6)® for 6€(~00,00) and  sup p(e) <c. (3.2.2)
oe[—m,m]

Then, there exists a constant C' depending only on (6o, 3, ¢) so that for any z € D, we have
W(z) < Ol — 2.

Proof. Observe that the function |9|? is Holder continuous of order /3 in . By using this fact
and suitable cut-off functions in C*°(9D), we see that there exists a function 11 in C?(9D) so
that

Y1(e”) = 0| for 6 e (—60/2,60/2)

and
Y1(e?) > ¢ for 6 e [—m, —3600/4] U[300/4, 7).

By (3.2.2), we have 9(e?) < (") on 9D. Extend +; harmonically to ID. Denote also by
11 its harmonic extension. It is classical that 1»; € C%(D), see (3.3.4) for details. Since ¢ is
subharmonic on D and 4 < v; on 9D, we have ¥ < ); on D. As a result,

¥(2) < P1(2) < i(1) + [ flesll - 217,
for any z € D. The desired inequality follows because )1 (1) = 0. The proof is finished. O

Proof of Theorem 3.2.3. By [23, Th. 2.7], the compact set X is itself (C?,C”)-regular for any
B € (0,1). Let ¢ be the function on X defined by

$(p) := min[p(p') + Adist(p, p')*/?]
peEK

for p € X and A > ||¢||c is a fixed big constant. It is not difficult to see that ¢ is C*/? and
¢ = ¢ on K. Namely, we have

6(p) — d(p')| < Adist(p, p)*/?

for all p,p’ € X. By (C*/?,C/?)-regularity of X, we have ¢x = ¢% which is wo-p.s.h. and of
Holder class C%/2. Hence, the proof of Theorem 3.2.3 is finished if we can show that

P = dx. (3.2.3)

Clearly, by definition of ¢}, and qg x, we have ¢7, > & x . Thus, to prove (3.2.3), it is enough to
prove that
o < ¢

on X because this implies ¢} < ¢ thanks to the continuity of the last function. Since A is big
enough and ¢ is bounded on X, we only need to check that

oK (p) < é(p), (3.2.4)

for p close to K. This inequality is clear for p € K.
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Fix a p ¢ K close to K. Let py be a point in K such that
dist(p, po) = min dist(p, ).
peEK

Put § = dist(p, po). It is shown in the proof of [23, Th. 2.7] that ¢(p) > ¢(po) + A'6%/2 for
some big constant A’ independent of p (A’ — oo if A — o). Hence, in order to prove (3.2.4),
it suffices to prove that

drc(p) < d(po) + A'6% = p(po) + A'5%/2. (3.2.5)

As already said above, we only need to consider § small. Precisely, we will suppose that
0 < rp, where 7 is the constant in Proposition 3.2.5. Let f, W), ,co, 6y be the analytic disc
corresponding to (py, p), the open neighborhood of py and the constants respectively in that
proposition. There is z* € D with |1 — 2*| < /¢y so that f(z*) = p.

Let ¢ be an wy-p.s.h. function on X so that ¢ < ¢ on K. Since W), is biholomorphic to
the unit ball of C", there exists a smooth potential v, of wg on W), i.e, we have

dd“Yy, =wo on  Wy.

Hence, 1)y := ¢ + 1, is a p.s.h. function on W), and ¢y < ¢¢ := ¢ + 1, on Wy, N K. By
the smoothness of v, the function ¢, is also Holder continuous of order « on any compact
subset of W, hence on f(D). Define )1 := ¢po f, and ¢; := ¢go f. Observe that ¢; is a p.s.h.
function on D and continuous on D. We also have

P1(2") = vo(p) and  ¢1(1) = ¢o(f(1)). (3.2.6)

Since || f||c1 < co, the function ¢; is Holder continuous of order o with a Holder constant
independent of p,py and f. On the other hand, since the disc f is [e%%, ¢%]-attached to K,
we have v (e??) < ¢1(e?) for 6 € [0y, 0]. This together with the Holder continuity of ¢;
yield that

P1(e?) < ¢1(1) + 0],

for 6 € [—6), 6p] and for some positive constant c. Applying Lemma 3.2.6 to the subharmonic
function (¢; — ¢1(1)) gives

P1(2*) < é1(1) + C|1 — z*|*  for some positive constant C. (3.2.7)
Combining (3.2.6), (3.2.7) and the definitions of 1y, ¢¢, one obtains
P(p) < do(f(1)) +C1 — 2%,

for every wo-p.s.h. v on X with ¢ < ¢ on K. Taking the supremum over all such ' in the last
inequality and using the definition of ¢ give

r(p) < do(f(1)) + C|1 = 2" < d(po) + l|Bllea |l = 2*|* + C|1 = 2*|* < b(po) + A6/

because ¢ € C* and |1 — z*| < /cpd. Now consider the case where K has no singularity.
Define

¢'(p) := min[e(p') + Adist(p, p')?]
peEK
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for p € X and some fixed big constant A >> ||¢||ce. By using the same argument as above
with ¢’ in place of ¢ and the fact that |1 — z*| < ¢yd, we get the desired conclusion. The proof
is finished. O

Proof of Theorems 3.1.1 and 3.1.2. We first prove Theorem 3.1.1. Recall that we have canon-
ical inclusions: R"*! ¢ C"™! c P*L. Let ST be the complexification of S™ in P"*! defined by
the equation
2 2 _ 2
20 T2 = 2

where [z : - - - : z,41] are the homogeneous coordinates on P"*1. We see that S" is a compact
generic submanifold of S{t. Choose X =S¢, K =S", ¢ = 0 and L = O(1)|x is the restriction
of the hyperplane line bundle of P"*! to X. Observe that the restriction H°(X, L*)|sn of
HO(X,L*) to S" is a complex vector space of (complex) dimension dimg P.(S"). As K is
non-pluripolar in Sg, any nonzero holomorphic function on an open subset of S{ can not
annihilate on the whole K. As a result, we have dimg Py (S"™) = dimg Py (K). This allows one
to choose a common basis for the two vector spaces H%(X, L*)|s» and P (K) when defining
Fekete points. Therefore, Fekete points in the complex case are those defined on K as in
Introduction. Theorem 3.1.1 is now a direct corollary of Theorem 3.1.4 with the choice of
(X,L,K,¢)as above, vy =1and a = 1 — ¢, for € > 0.

Consider the case where K = S”, the equilibrium measure p.,(K,0) coincides with the
normalized volume form on S™ induced by the Euclidean metric on R"*! because j.q(K, ¢)
is preserved by the actions of the orthogonal matrix group on S™. Theorem 3.1.2 is hence
obtained in a similar way by using the fact that S™ has no boundary. The proof is finished. [

Remark 3.2.7. We discuss here very briefly the case where dimg K = 2n in which the regularity
of K can be improved. For simplicity, we consider the following simple model in the complex
dimension 1. Let X = P! = C U {oo} as in Remark 3.2.4. Let K be the compact convex polygon
in C. Denote by Sy, S2,--- , S, the consecutive vertices of K. Let m < y; < 2 be the exterior
angle at S; of K, for 1 < j < m. Put y = maxi<j<,, ;. Then, K is (C*,C®™/7)-regular. When
v; = = for all j, we re-obtain [23, Th. 2.7]. The idea for the proof is as follows. Let ¢ € C*(K).
In order to get the above regularity of K, it is enough to show that given any p.s.h. function 1)
on C so that ¢ < ¢ on K, then for every j, we have ¢ (z) < ¢(S;) + Alz — S;|*™/7 for every
z close to S; and for some fixed big constant A. Let L; be the open domain of C limited by the
two rays S1.S,, and S1.S2 which does not contain K. Using an affine change of coordinates, we
can suppose that S; = 0, the ray S152 is {z = (2,0) : x > 0} and L; D H := {Im=z > 0}.
Using the map (z — i)/(z + i) sending H biholomorphically to D, one easily sees that the map
W(z) := (2™/7 —i)(2™/" + i) is a biholomorphism from L; to . Clearly, ¥ is Holder continuous
of order 7/~ on an open neighborhood of S in L. An application of Lemma 3.2.6 to 1 o &1
gives the desired result.

3.3 Two special families of analytic discs

3.3.1 Hilbert transform

Denote by z = x + iy the complex variable on C and by ¢ = €% the variable on 9D. For any
m € N and r > 0, let B,,,(0,r) be the Euclidean ball centered at 0 of radius r of R™ and
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let B},(0,7) = Bp,(0,7)\{0}. Denote by | - | the Euclidean norm on R™. The same notations
will be used for C" that we sometimes identify with R?". Let Z be a submanifold of R™. The
Euclidean metric on R™ induces a metric on Z. For 3 € (0,1) and k € N, let C*?(Z) be the
space of real-valued functions on Z which are differentiable up to the order k& and whose k"
derivatives are Holder continuous of order /3. This is a Banach space with the C*#-norm given
by k k
_ | Dko(g) — Do(e)]
[0llk,8.2 := llvllr,z + e, € ¢]f )

where || - ||,z := || - [|cr(z) and D¥v denotes the k*"-differential of v. In the proof, we will only
use this norm for Z = D or OD. When Z is clear from the context, we will remove the subscript
Z from the above notation of norm. For any tuple v = (v, - - - , v,,) consisting of functions in
C*B(Z), we define its C*#-norm to be the maximum of the ones of its components.

Recall that an arbitrary continuous function u(£) on 0D can be extended uniquely to be
a harmonic function on D which is continuous on D. Since this correspondence is bijective,
without stating explicitly, we will freely identify uo with its harmonic extension on D). We will
write ug(z) = up(x + iy) to indicate the harmonic extension of ug(e?). It is well-known that
the Cauchy transform of ug, given by

T ) 0
Cug(2) 1= — / wo(@® S T2

2 J_, eif

is a holomorphic function on D whose real part is ug. Decomposing the last formula into the
real and imaginary parts, we obtain that

up(2) ! /7r muo(ew)dﬁ. (3.3.1)

“or L le? — 22

and

T —i6 5 10
Tuo(z) = % / Wuo(ew)d&
The function 7w is harmonic on D but is not always continuous up to the boundary of D.
Let k£ be an arbitrary natural number and let 5 be an arbitrary number in (0, 1). A result of
Privalov (see [58, Th. 4.12] or [1, Sec. 6.1]) implies that if uo belongs to C*#(9D), then Tug is
continuous up to 0D and || 7 uo||x,g,6p is bounded by ||ug||x gop times a constant independent
of ug. Hence, the linear self-operator of C¥#(9D) defined by sending w to the restriction of
Tug onto 0D is bounded and called the Hilbert transform. For simplicity, we also denote it by
T. In the method of analytic discs, it is convenient to use a modified version 7; of 7 defined
by

Tiug == Tug — Tup(l).
Hence we always have T;ug(1) = 0 and
697-1710 = 89TUO = TaguO, (3.3.2)

see [58, p.121] for a proof. The boundedness of 7 on C*#(9D) implies that there is a constant
Cy.p > 1 such that for any v € C*#(0D) we have

710

|k,8,00 < Crgllv]|k,s,0p- (3.3.3)
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Extending ug, 71uo harmonically to D. By construction, the function f(z) := —Tjug(2) +iup(2)
is holomorphic on D and continuous on D provided that wg is in C#(9D) with 0 < 3 < 1. By
[59, Th. 4.2], ||f|l;. 55 is bounded by || f||xs.0p times a constant depending only on (k, ).
Since HUOHkﬁ,ﬁ < Hf”k:,ﬁ,ﬁ and HfHk,ﬂ,aD < (1 + Ck,,B)HUOHk,B,BD by (3.3.3), we have

luolly 55 < Ch,slluollk,.0m, (3.3.4)

for some constant C}, ; depending only on (k, 3). A direct consequence of the above inequal-
ities is that when wg is smooth on 0D, the associated holomorphic function f is also smooth
on D.

3.3.2 Analytic discs half-attached to R™ in C"

The goal of this subsection is to construct a special family of analytic discs half-attached to R™
in C". The main result is Proposition 3.3.4 presented at the end of the subsection. The reader
should keep in mind that the idea that we use below will be constantly applied later.

In what follows, we identify C" with R" 4+ iR". Let z € B3 (0,1). Let u = (u1,--- ,up)
be a vector with components u; € ckB (0D) for 1 < j < n such that v = 0 on 9TD. Then,
Tiu = (Trui, -+ , Tiuy,) is a vector in (C’“W@D))n. As above, extend v and 7;u harmonically
to . By the last subsection, u and 7iu belong to (C*(D))". It follows that the map

f=-Tu+iu

is a C*# mapping from D to C™ which is holomorphic on D and f|+p, C R™. In other words,
f is a C*# analytic disc half-attached to R™ in C" with f(1) = 0. We are going to choose u
depending on the parameter z such that there exist z* € D (depending on z) and a constant
¢o independent of z for which

1flls5 < <o, (3.3.5)

and
f(z)=2z and |1 —2z*|<clz| (3.3.6)

Recall that we will systematically identify continuous functions on 0D with their harmonic
extension to ID. Hence, for any continuous function « on JD, we can speak of its derivatives
in (z,y) as the ones of its harmonic extension, where z = = + iy € D.

Lemma 3.3.1. There exists a function u € C*°(9D) vanishing on "D so that d,u(1) = —1.

Proof. Differentiating (3.3.1) gives

Bpu(1) 1/7r ule?)

T o rcosf—1 "

Note that the last integral is well-defined because u vanishes on *D. It is easy to choose a
smooth u so that the above integral is equal to —1 and u = 0 on 7. The proof is finished. [
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Lemma 3.3.2. Let u be a functions as in Lemma 3.3.1. Then there exist two smooth functions
g1, g2 defined on [0, 1] so that u(1 — s +is) = s + s2g1(s) and —Tiu(1 — s +is) = s + s2ga(s),
for every s € [0, 1].

Proof. By hypothesis, we have d,u(1) = —1 and d,u(l) = 0 because u vanishes on 9 D.
On the other hand, the Cauchy-Riemann equations imply —0,7iu(1) = Jdyu(l) = 0 and
—0yThiu(l) = —0,u(l) = 1. Now using Taylor’s expansions with integral remainders to
u(l—s+is) and —Tiu(l —s+1is) at s = 0, there exist two functions g;(s) and g2 (s) satisfying
the desired property. The proof is finished. O

We denote by | - |;,, the usual norm of linear endomorphisms of R™ for m € N. Since any
real matrix of order m can be canonically associated with a such linear endomorphism, one
can use the norm | - |, for the real matrices. We will repeatedly use the following known
version of the inverse function theorem.

Lemma 3.3.3. Let m € N*. Let ®( be a function from B,,(0,1) to R™. Assume that there are a
nondegenerate square matrix A of order m and a M-Lipschitz function g on B,,(0, 1) for some
constant M > 0 such that

Dy(z) = Az + g(2),

for every z € B,,(0,1) and g(0) = 0, |A™'|,M < 1. Then, for every 0 < r < 1 and every

A1 . : . -
z € By, (0, WT), there exists a unique point z* € By, (0,r) such that ®(z*) = z.

Proof. Since g is M-Lipschitz on B,,(0, 1), we have
l9(z) — ()] < M|z — 2|,

for all z,z’ € B,,(0,1). In particular, we have |g(z)| < M]|z| because g(0) = 0. Let z be a
Z is

1-|A" M equivalent toz = A~ (z — g(z)). Let

point in B, (0, T

r € (0,1). Define

r). The equation ®¢(z) = z

R(z) := At (i — g(z)),

for z € B,,(0,r). Then R is a self-map of B,,(0,r). Indeed, we have

1— A M

|R(2)| < |A™ |z — g(2)] < A7 (|2] + Mlz]) < [A7 i ( AT,

7“+M7'):7°,

for any z € B,,(0,r). Additionally, similar estimates also gives
R(z) ~ R(Z)| < |A~ |\ M]z — 7.

Since |A~'|},M < 1, R is a contraction of B,,(0,r). Since the last metric space is compact,
the fixed point theorem applied to R implies that R has a unique fixed point z* € B,,(0,).
Equivalently, there is a unique point z* € B,, (0, r) for which ®((z*) = z. O

For any two vectors v/ = (v],---  v}) € R” with j = 1 or 2, we denote by v! - v2 the
vector in R" whose [*" component is v}v? for 1 < I < n. Let u be a function as in Lemma



3.3. TWO SPECIAL FAMILIES OF ANALYTIC DISCS 71

3.3.1. By abuse of notation, denote also by u the vector of C*°(9D)" whose components are
all equal to u. We define

, |
g1 (€)= tu(e) - Tn‘z’ (3.3.7)
VA
for any z € B3, (0,1) and ¢ € (0, 1]. Extend u,; harmonically to D. Define
F(z,2,t) := t(Rez — Imz) — Ti (ug)(2) + iz (e?), (3.3.8)

forany z € D, z € B3, (0,1) and ¢ € (0, 1]. We have following properties of F.

Proposition 3.3.4. The map F : D x B3, (0,1) x (0,1] — C™ is smooth and the three following
properties hold:
(i) for any z € B3, (0,1) and t € (0,1], the mapping F(-,z,t) is a smooth analytic disc
half-attached to R™ in C", and F'(1,z,t) = t(Rez —Imz) € B,(0,2t) C R",
(i) there exists a constant o > 0 so that for any z € B3, (0,7r9) and t € (0,1], there exists
z* € B3, (0,1) for which
F(1—|z"| +i|z"|,z",t) = t=

and |z*| < 2|z,
(i4i) there exists a constant ¢y > 1 so that for any z € B;,(0,1) and t € (0, 1], we have
|F(- 2z, t)||3 < teg and || D,F(-,2,t)||2 < teolz| ™, (3.3.9)
where D, is the differential with respect to z.

Proof. The properties (i) and (ii7) automatically hold by our construction. It remains to prove
(7). Fix t € (0,1]. For every z € B; (0, 1), define ®(z) := F(1 — |z| + i|z|,z,t) and ®(0) := 0.
Applying Lemma 3.3.2 to each component of u,; and s = |z|, using (3.3.7) and (3.3.8), there
exists a smooth map go : [0,1] — R" such that

ImT(z)
2|

®(z) = t(Rez — Imz) + tIm z + t|z|*go(|2|)

=tz + t|z|go(|z|) - Im T'(z).

Put
9(z) := t|z|go(|z]) - Im T'(z).
Let 7o < 1/16min{||go||; ", 1}. Observe that g(0) = 0 and
lgll1,Bs, (0,2r0) < /4 <1/2

Thus, g is t/2-Lipschitz on By, (0, 2r). Applying Lemma 3.3.3 to ® in place of &y, A = tId
and g as above shows that for any z € Bj,(0,79), there exists z* € B3, (0,2rg) for which
®(z*) = tz. Moreover, the last equation implies that

tlz| > tlz*| —[g(2")| > t|z*| — t/2[2"].
Hence, |z*| < 2|z|. The proof is finished. O

For each z € B}, (0,7¢), define f(z) := F(z,z*,1) and z* := 1 — |z*| 4 ¢|z*|. It is clear that
f and z* satisfy the two conditions (3.3.5) and (3.3.6).
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3.3.3 Analytic discs partly attached to (R™)" in C”"

The goal of this subsection is to construct a family F’ of analytic discs which somewhat
resembles the one in Proposition 3.3.4 and partly attached to (R*)” in C", where R™ is the
set of nonnegative real numbers. The arguments used in the last subsection do not permit us
to control the position of the part of the boundary of the disc in R™. The idea is to construct
discs which look like the image of F under the map (z1,- - , z,) — (2%,---, 22), this image
is half-attached to (R1)", where F is the family in the last subsection.

At the end of this subsection, we also introduce an another family F? of discs half-attached
to R" parametrized by = € B,,(0,2) which contains F” as a subfamily. Let us explain why we
need such F.. In the general case considered in Section 3.4, the required analytic discs in
Proposition 3.2.5 can be obtained as a small perturbation of F’. Due to the nonsmoothness of
(R™)™ (or due to the singularity of K in the general case), any family of discs partly attached
to (RT)" is generally no longer so when being perturbed. Hence, in order to control the
perturbed family, one should embed F” in the bigger family F. which is more stable under
perturbation.

Define

1 sin #

mfeosf—1) 0 p0) = oy (3.3.10)

p1(0) :=

for § € [—m, 7).
Lemma 3.3.5. Let u be harmonic function on D and smooth on D. Assume that u vanishes on
9*D. Then, we have dyu(1) = 0, &3u(1) = du(1), Bu(l) = —d,u(1) and

(1) = / W(e®)p1(6)d6 and  Byd,u(1) / () ps (6)d6.
Proof. Firstly, observe that for an arbitrary C? function u(z + iy) on D, we have

Apu(e®)|g—o = Oyu(1) and OFu(e™)|o—o = Oju(1) — Dpu(1). (3.3.11)
Now let u be the function in the statement. The last two equalities combined with the fact
that u|g+p = 0 imply that

Oyu(l) =0, Opu(l) = dgu(l) + dpu(l) = dyu(1). (3.3.12)

Since Au(z) = 0, we get d7u(1) = —92u(1) = —8,u(1). On the other hand, it is computed in
the proof of Lemma 3.3.1 that d,u(1) = [*_u(e')p;1(6)dd. Differentiating the Poisson kernel
at (1,0) gives

1| —yle” — 2> + (1 —2® — y*)sinf — y(1 — |z)

0110 |yg— T =99 | _ ;
|2=10y ly=0 27lei? — 2|2 ela=1 2rle? — (x4 iy)|* y=0
1— 22
= 28in6 0y |—
$in 6 Or|o=1 27 (22 — 2z cosf + 1)?
_ in 6
=4sin6 : :_L:pg(e)’

2m(x? — 2z cosf+1)2| _, 27 (cos O — 1)2

Combining this with (3.3.1) shows that 8,0,u(1) = [”_u(e®)p2(0)d6. The proof is finished.
U
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Corollary 3.3.6. Let u be a function as in Lemma 3.3.5. There are smooth functions g1, go
defined on [0, 1] and g3 defined on [—m /2,7 /2] so that for any s € [0, 1], we have
_ 20su(l) FeOyu(l) | 3

u(l —s) = —s0,u(l) — s 5 +53g1(s) and —Tiu(l—s)= S2T + 5°ga(s),

and
0 0z 0yu(l)

2
for any 6 € [—n/2,7/2]. Moreover, there is a constant c independent of u for which |g;llo <
cl|ullaop for j =1,2,3.

—Tiu(e?) = —d,u(1) 0% + 63g3(0),

Proof. This is an analogue of Lemma 3.3.2. Recall that we have
-0, Tiu(l) =0yu(l) =0 and — 0,Tiu(z) = Oyu(z).

Thus, —02T1u(z) = 9,0,u(z). Letting z = 1 in the last equality gives —92Tiu(1) = 9,0,u(1).
Using the last equalities and (3.3.12) and Taylor’s expansions at s = 0 for u(1 — s) and for
—Tiu(l — s), we get g1, g2 and the first two equalities. By (3.3.11), we have

—dpTiu(e?) = =9, Tiu(1) = —d,u(1)

and
—03 Tiu(e”) = —02Tiu(1) — 0, Tiu(1) = —9; Tiu(1) = —9,9yu(1).

This combined with Taylor’s expansion at § = 0 of —7;u(e?’) gives g3 and the third equality.
Since g; are the remainders in Taylor’s expansions up to the order 2, we also see that there is
a constant ¢ independent of u so that for 1 < j < 3,

lg5llo < max{[[ull; 5, [Tiull; 5} < cllulla,om,
by (3.3.4) and (3.3.3). The proof is finished. O

Let Z € D, § € (0,1] and v € (0,1]. We want to construct a function « on 0D which is
differentiable enough such that 9,u(1) and 9,0,u(1) equal to prescribed values. Note that we
always identify u with its harmonic extension on . Precisely, we want to choose « so that

1 e 1 -
—5d,u(1) — 528“;() —Tm? and 5286@12“() —Re? — . (3.3.13)
The last system is equivalent to
2Im z 2(y —Rez)
(1) = ——— 2 L 0u(l) = — =122 3.1
Ozu(l) 52+ 0) and 0,0,u(l) 5 (3.3.14)

In order to construct a such u satisfying the last property, we will need the following lemma.

Lemma 3.3.7. Let m be a positive integer. Let {a;}1<;<m be real smooth functions on 0D such
that they are linearly independent in C*°(0D). Then there exist b; € C>°(0D) with 1 < j < m so
that -

—Tr

forall 1 < j,5" < m, where 55/ is the Kronecker delta.
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Proof. Let L; : C*°(0D) — R be the linear functional defined by
Lj(v) = / a;(e)v(e?)ds,
for v € C>*(0D) and 1 < j < m. The linear independence of a; and the density of smooth

functions in L?(0D) imply that {L;}1<;<, are linearly independent. A basic result of linear
algebra says that for any 1 < j < m,

( ﬂ Ker Ljy)\Ker L; # @.
J'#3
In the other words, there is b; € C>°(9D) satisfying L/ (b;) = 6?,. The proof is finished. O

Lemma 3.3.8. There exist two functions u(e), us(e?) € C>°(D) vanishing on 0D such that
633U1(1) = amay’u,g(l) =1 and 8zUQ(1) = 8$8yu1(1) =0. (3.3.15)

Proof. By Lemma 3.3.5, the condition (3.3.15) is equivalent to

/ U1p1d9 = / ’U,szde =1 and U1p2d9 = / u2p1d9 =0.

—T —Tr —Tr —Tr

Put 0~ = OD\O'D. Let x € C*°(dD) with suppy C 9D and x # 0. Let a1 = xp1(0), as =
xp2(6). Observe that these functions are linearly independent in C*°(0D). This allows us to
apply Lemma 3.3.7 to a1, az. Hence, we obtain by, b € C*°(9D) with

bjajdf = 5l,.

Let u; := xb; and us := xbs. One easily checks that u; and us satisfies the desired property.
The proof is finished. O

Define
; o 2ImZ 0 2(y—Rez

We deduce from Lemma 3.3.8 and (3.3.14) that u; 5, enjoys the property (3.3.13). The fol-
lowing explains our choice of uz s .

Lemma 3.3.9. Let (Z,6,v) € D x (0,1]2 so that

. (3.3.16)

v>2Z and 27 >6> g (3.3.17)

Then, there are a positive constant 6y independent of (2,0,v) and a smooth function gz s (s)
defined on [0, 1] depending smoothly on the parameter (Z,6,) such that ||gzs~||1 is bounded
independently of (Z,0,~) and the analytic disc

fi,é,q/ == 71“2,6@ + iu%,&v
is [e%0, e'%]-attached to RT in C and f; 5. (1 — &) = Z + 629z 5., (5). Moreover, the quantities
d[1Ds gs(-)llo and [ D(z4)9z,6+()llo

are bounded independently of (Z,9,~), where g is considered as a function of (s, Zz,d,v) and
D; ;5. is the differential with respect to (Z,0,7).
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Proof. Corollary (3.3.6), (3.3.16) and (3.3.13) show that there exist smooth functions g1, g»
defined on [0, 1] depending smoothly on (Z, §,y) for which

f1=8)=y+Rez—7+3%g1(6) +i(ImZ + §°g2(6)) = 2 + 6% (g1 () + ig2(9)).
Hence, it is immediate to see that the function

9z,6(0) 1= g1(0) +ig2(9)
satisfies f(1 — &) = Z + 6%g(9). By the hypothesis on (2, §,v), we have

2Imz

, )
— < — < 12. ..
sare! <2 1 <12 (3.3.18)

This yields that ||g1||; and ||g2||1 are bounded independently of (Z,d,~), hence, so is ||g||;.
Estimating 6||Ds gz.5,(-)llo and || Dz 1)9z,5+(-) [0 is done similarly.

Now we prove that f; 5, is partly attached to R™. To this end, it suffices to check the sign
of the real part of f; 5. Using again Corollary (3.3.6), (3.3.16) and (3.3.13) implies that for
0 € [-m/2,7/2], we have

2Im 2 2(y —Re2)

Re fmﬂ(eie) =~+ 0 +

2 3
52+ 0) 5z 0 +0s),

where g¢3(0) is a smooth function on [—7/2, /2] whose supnorm is bounded independently
of (%,4,v). Let ¢ be a such upper bound of ||g3]|o. Put

~ 2Im 2z v—Rez

hO) =1+ 5550+ %

92

and Re:
~ — nez
Fal0) =g

We have Re fz 5., () = f1(68) + f2(6). By the second inequality of (3.3.18), one sees that

02 + 63g3(0).

F2(8) > 6 /8 + 6°g5(0) > 6% (1/8 0]l gsl0) > 0

provided that |§| < min{r/2,1/(8¢)}. Observe that fi(f) is a quadratic polynomial in 6. Its
discriminant equals to

1[ Im?2z2 1

because 6 > 0 and « > 2|Z|. This means that fl(e) > 0 for all . Hence, Re fg757’y(€i9) > 0 for
0] < 6p := min{r/2,1/(8¢c)}. The proof is finished. O
Now letz = (21, , 2,) € B3, (0, 5) and let ¢ € (0,1]. In the formula (3.3.16), let

v=2|z|, d=+/|z] and Z =z,

where z; is the j'* component of z, denote by u,,; the function u; 5, with the above choice
of (%,6,7).
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Define uy, , to be the vector of C>*(ID)" whose j*h component is equal tuy;, for 1 < j <n.
Extend u,, ; harmonically to D. Define

F'(z,2,1) = 2(J2), - ,|2l) — Ti(ul)(2) + i, (3:3.19)
for = € D, where (|z|,--- , |z|) € R™. Then, F" is a family of analytic discs half-attached to R"
and F'(1,z,t) = t(|z|,-- -, |z|) € (RT)™. By (3.3.14), we have
2t1 2t(2|z| — R
Opttl (1) = — mz and 0,0, ,(1) = _2t(2z| — Rez) (3.3.20)
’ V2|2 + /lz]) ’ 2|
where, for simplicity, we wrote |z| for (|z|,- - - ,|z|) in the last equality.

Proposition 3.3.10. The map F' : D x B3, (0, 5) x (0,1] — C™ is smooth and there exists two
constants r, € (0,1/4) and ¢y > 1 such that the three following conditions hold:
(i) for any z € Bj3,(0,5-) and t € (0,1], the mapping F'(-,z,t) is a smooth analytic disc

[, ei% |-attached to (R*)" in C", and
F'(1,2,t) = 2t(|z|,- - , |z]) € B,(0,1) N (RT)™,
(it) for any z € B3, (0, () and t € (0,1], there exists an z* € B3, (0,2r() for which

F'(1 —\/|z*|,z",t) = tz

and |z*| < 2|z|,
(iii) for any z € B3, (0, 5-) and t € (0,1], we have

|F'(-,2,t)||5s < tco and || D F'(-,2,t)|4 < tcolz|™?, (3.3.21)
where D, is the differential with respect to z.

Proof. Since F'(z,z,t) = tF'(z,z,1), it is enough to verify the three above conditions for
t = 1. It is clear that (v,d, 2) = (2|z|, /||, z;) satisfies the condition (3.3.17) for 1 < j < n.
Hence, direct consequences of Lemma 3.3.9 and (3.3.19) show that there exists a constant
cp > 1 for which the property (i) and (zi¢) hold. It remains to verify (7). We will use the same
idea as in the proof of Proposition 3.3.4.

Fixt € (0,1]. Let ®'(z) := F'(1—+/|z|, z,t) for z € B}, (0, 5&~) and ®’(0) := 0. By the above
reason and Lemma 3.3.9, there exists a smooth map g,(s) : [0,1] — R™ depending smoothly
onz € B}, (0, 5) such that

'(2) = tz + t]2]* 2 go(/]2).

Note that the homogeneity of F” in ¢ implies that g, is independent of ¢. Put
q'(2) = t|z[*g,(/]2])-
Observe that ¢’(0) = 0 and

B 3t|z|'/?
2

D,d (z)

92(1V/12) + t]2[*”*{ Daga(V/|2]) + Dsga(/12]) Do/ I2]}.
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Lemma 3.3.9 for (7,0, %) = (2|z|, \/|z|, 2;) implies that \/|z|D,g,(\/|z|) and D,g,(\/|z|) are
bounded independently of z. As a consequence, we have

D,g/(2)] < claf"?t,
for some constant ¢ independent of (z,t). Let 7)) := (2c¢)~2/3. The last inequality yields that
|D.g'(z)| < t/2 for z € B3, (0,3r(). Thus, ¢ is t/2-Lipschitz on Ba, (0, 2r(). Applying Lemma
3.3.3 to @’ in place of @), A = tId and ¢’ as above shows that for any z € B;, (0, (), there
exists z* € B;,(0,2r() for which ®'(z*) = tz. Moreover, the last equation implies that
tz| > t[z"] = |g(2")| = t|z*| — t/2|z"].

Hence, |z*| < 2|z|. The proof is finished. O

As explained at the beginning, let us now introduce a new parameter 7 € B,(0,2) and a
family F of analytic discs half-attached to R™ contains F" as a subfamily.

Lemma 3.3.11. Let uy be the function in Lemma 3.3.8. Then, the function @ := 10u; is smooth
on 9D and vanishes on 07D and

8,(1) = 10, 8,9,a(1) = 0. (3.3.22)

Proof. This is obvious by the properties of u;. The proof is finished. O
Let z and ¢ be as above. We define

Uy g (2) = Uy (2) + 17 - U(2), (3.3.23)

where 7 € B, (0,2), see the paragraph right after Lemma 3.3.3 for the notation. The param-
eter 7 will play a role as a control parameter. Define

Fl(z,2,t) :=2t(|z|,-- - , |2]) — Tiug ;- (2) + iy, - (2), (3.3.24)

for z € B3,(0,5),t € (0,1] and T € B,(0,2). By construction, F_ is a family of discs half-

s On />
attached to R™ and when 7 = 0 we have F| = F” which is the family constructed earlier.
By choosing the constant ¢ in Proposition 3.3.10 big enough, for any z € B3, (0, .1.),t €

(0,1] and T € B,(0,2), we have o
|DLF.(-,2,t)||s < tcg and ||DLD,FL(-,2,t)||3 < teolz| !, (3.3.25)
for j = 0,1 and
D2F.(1,2,t) =0, Druy, (1) =10t (3.3.26)

where the right-hand side of the last equality denotes the diagonal matrix of order n whose
coefficients on the diagonal are all equal to 10t.
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3.4 Analytic discs partly attached to K

Fix a smooth Riemannian metric on X. Let py be an arbitrary point of K. Our goal is to
construct special families of analytic discs partly attached to K in a small neighborhood of
po in X. Since K is a generic submanifold, its dimension is at least n. We first study the case
where dimg K = n. Then we deduce the case of higher dimension by considering (local)
generic submanifolds of K. In what follows, the notations = and < respectively mean > and
< up to a positive constant depending only on the geometry of (K, X).

3.4.1 The case where K has no singularity

In this subsection, we consider the case where K has no singularity and dimg K = n. The
C3-differentiability of K is enough for our proof. The local coordinates described in Lemma
3.4.1 below are used widely in the Cauchy-Riemann geometry. Since we need to use concrete
estimates uniform in pg, a complete proof will be presented. We refer to the beginning of
Subsection 3.3.1 for the notation of the norms of maps below.

Lemma 3.4.1. There exist constants c¢1,7x > 1 depending only on (K, X) and a local chart
(W, W) around po, where W : W, — Bay(0,7x) is biholomorphic with ¥(py) = 0 such that
the two following conditions hold:

(1) we have

1wl <er, 1871 < e,

(i1) there is a C? map h from B, (0,1) to R" so that h(0) = Dh(0) = 0, where Dh denotes
the differential of h, and

V(K NWp,) D {(x,h(x)): x € B,(0,1)},
where the canonical coordinates on C" = R™ + iR"™ are denoted by z = x + iy, and
[h][3 < e1. (3.4.1)

Proof. We cover X by a finite family of charts (W;, ¥;), where W; is an open subset of X
and V; is a biholomorphic map from W; to the ball By, (0,2). We choose these charts so that
\I/j_l(BQn(O, 1)) also cover X. This choice is independent of po. Consider a chart (W}, ¥;,)
such that py belongs to W, '(By,(0,1)). Define W, := W, and ¥ := W, — W (po). Let
z = (21, -+, 2p) be the coordinates on C". Identify K NW,,, with ¥(K NWV,,) for convenience.
By the hypothesis on K, we have

TEK +iTEK = C™.

This implies that there are a positive constant ¢; independent of py and a linear change of
coordinates U’ = (W), .-, ¥ ) of C" such that

W) <er, W7 <a (3.4.2)

and
V(pp) =0 and ¥(THK)={Im¥} =0,1<k<n}
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where TFK is considered naturally as an affine subspace of C". Replacing ¥ by ¥ o ¥, we
can suppose that ¥(py) = 0 and

\I'*(TZI)R;K) ={Imz;, =0,1<k<n}={z=x+1i0} =R".
By rescaling ¥ (by a constant independently of pg) if necessary, the submanifold
KNWy, N{z e C":Rez € B,(0,1)}

is the graph of a C> map h = (hy,--- ,hy,) over B,(0,1) of R". By construction, we have
h(0) = Dh(0) = 0. The compactness of K and (3.4.2) insure that there is a positive constant
c¢1 independent of py such that ||k||3 < ¢;. The proof is finished. O

From now on, we only use the local coordinates introduced in Lemma 3.4.1 and identify
points in W), with those in By, (0,rx) via V. Property (i) of Lemma 3.4.1 implies that the
distance on X is uniformly comparable with the Euclidean distance measured by the local
coordinates given in Lemma 3.4.1. Hence, in what follows, we make no distinction between
these two distances. The estimate (3.4.1) implies that

|h(x)| < e1]x|?,  |Dh(x)| < c1|x| for |x| < 1. (3.4.3)

For each z € B;,(0,1) and ¢ € (0, 1], let u,; be the map defined in (3.3.7). Let F' and ¢y
be the family of analytic discs and the constant respectively in Proposition 3.3.4. In order to
construct an analytic disc half-attached to K, it suffices to find a map

U:0D— B,(0,1) C R",
which is Holder continuous, satisfying the following Bishop-type equation
Unt(€) = t(Rez — Imz) — T1 (h(Unt)) (€) — Tiugs (), (3.4.4)

where z and ¢ are parameters in B; (0, 1) and (0, 1) respectively. Indeed, suppose that (1.3.11)
has a solution. For simplicity, we use the same notation U, (z) to denote the harmonic exten-
sion of Uy () to D. Let P, ;(z) be the harmonic extension of 1 (Uy.(£)) to D. Define

FM(z,2,t) = Upy(2) + iPyy(2) + itz (2)

which is a family of analytic discs parametrized by (z,t). For any ¢ € 91D, the defining
formula of F" and the fact that u,; = 0 on 9D imply that

FM(&,2,1) = Uga(€) +iPps(€) = Unt(€) + ih(Uzs(§)) € K
by Property (ii) of Lemma 3.4.1. In other words, F'" is half-attached to K. Moreover we have
F"(1,2,t) = t(Rez — Imz) + ih(t Rez — t Im z).

In what follows, it is convenient to regard U, (z) as a function of three variables (z, z, ).
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Proposition 3.4.2. There is a small positive number t; € (0,1) independent of (z,po) so that
forany t € (0,t1] and any z € B; (0, 1), the equation (1.3.11) has a unique solution U, ; such
that U, () is C%3 in ¢, the partial derivative D,U,, exists and is C L3 in ¢ € 9D. Moreover, the
two following estimates hold:

1Unt()lla3 < dcot,  1DaUne()y 1 < Acotla] . (3.4.5)

Proposition 3.4.2 except (3.4.5) is a direct corollary of a more general result due to Tu-
manov, see [59, Th. 4.19]. Since we do not need the optimal regularity for U, ; (whereas it is
the case for Tumanov’s result), the proof is simpler. We will follow the presentation in [59].
Firstly, we need the following preparatory lemma on the norms of the Holder spaces.

Lemma 3.4.3. Let g1 and go be functions defined on 0D with suitable differentiability. Then we
have

||9192H% < ||91||%||92H% (3.4.6)

and

lorg2lly 3 < dllgaly 1 llgelly s (3.4.7)

Moreover; there exists a positive constant c(n) such that for any maps ¢, g2 from 9D to By, (0, 1)
and any function f on B,(0,1), we have

If oo~ Fogellys < cm){l+llgall s I Fll2llar — g2l 5 (3.4.8)
and
7o gl s < cm{IDf o gillolarll s + 1 flallorl, - (3.4.9)
and
1f ol s < e+ gl sl llnly 3 (3.4.10)

Proof. Write
91(€)92(€) — 91(£)g2(&") = 91(€) (92(&) — 92(€")) + (91(&) — 92(£")) g2(&)),

for any ¢, ¢’ € 9D. Using the last equality and the definition of the C%, one easily gets (3.4.6).
1
Since D(g1g2) = (Dg1)g2 + g1Dgs, using (3.4.6) and the definition of C!'2 gives

91921111 < llgrgzlly + 1D (g192) 11

< llgrllsllgalls + 1Dgrll g2l + llgnllil[Pg2lls < 4llgully 1llg2lly, 1 -

Hence, (3.4.7) follows.
Now we prove (3.4.8). Let g1, g2, f be as in the hypothesis of (3.4.8). We have

D(f(g1)— f(g2)) = Df(91)Dg1 —Df(g2)Dg> = Df(g1)(Dg1 — Dg2)+ (D f(g1) — D f(g2)) Dygs.
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Applying (3.4.6) to the last sum shows that there exists a positive constant ¢/(n) depending
only on n so that

1£(g1) = Flg2)ll1 2 < 1 (91) = Flg2)ll + 1D (f(g1) = f(92)) 12
< c’(n){Hlellm — goll1 + I fll2llgr — g2llollg2l1+

+1DF(a)ll3 1Dgr — Dgally + 1 fll2llon — gz||;||gaul,;}

< {1 +3llg2lly 1} ll2llgr — g2lly

1.

Hence, (3.4.8) follows by choosing ¢(n) = 3¢/(n). The inequality (3.4.9) is deduced by using
the same method and (3.4.10) is a direct consequence of (3.4.9). The proof is finished. O

Proof of Proposition 3.4.2. Let (1, and Cy /5 be the constants Cy s appearing in (3.3.3)
with £ = 1,2 and 8 = 1/2. Let ¢(n) be the constant in Lemma 3.4.3. Define

t1 := (40cocie(n) max{C1 1/2,Co1/2} + 4co) 2,
Fixt € (0,t1) and z € B;,(0,1). Let A be the set of L2 maps
U : 0D — B,(0,4cot)

such that ||U||; 1 < 4cot. Endow A with the C L3-norm making it become a closed subset of a
)2
suitable Banach space. Define

G(U) :=t(Rez —Imz) — T (h(U)) — Tiuz,. (3.4.11)

We will show that G is a well-defined self-map of A and is a contraction.
Let U € A. Note that since z € Bj, (0,1), we have |Rez — Imz| < 2. By (3.3.3) and
Proposition 3.3.4, we get

IGW)I3 <2t + 1T

B s + PGzl < B 1 + et (3.4.12)

because we chose ¢y > 1. The inequality (3.4.9) for f = h and g; = U combined with (3.4.3)
yields that

IRl 1 < 2e(m)er|[U] ;- (3.4.13)

1
2

We deduce from (3.4.13) and (3.4.12) that

||G(U)”1,% < 2clc(n)C'1,1/2||UHi% + 3ept < 4ept (3.4.14)

and similarly using (3.4.11) gives
IGWU) = Gy 1 < 2e16(n)CrapllU ~ U’Hi% (3.4.15)
< 16¢ocie(n)Ch 1 pot|U — U’HL% <t2|U - Ul”l,%»
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for any U, U’ € A. The inequality (3.4.14) shows that G is well-defined. And the contractivity
of G follows from (3.4.15). By the fixed point theorem, G has a unique fixed point U, ; € A. In
other words, the equation (1.3.11) has a unique solution U, ; € Cl’%(D) and ||Uz,t|!1,% < dcpt.

Now we explain why U, ; € C23 (OD). Define A’ to be the subset of A consisting of U with
|Ully 1 < 4eot. Since A’ is a closed subset with respect to the C23-norm in a suitable Banach
’2

space and h, F' € C3, similar arguments as above applied to the C%32-norm show that for ¢
small enough, precisely ¢ € (0,¢;), G is a self-contraction of A" and U,; is the unique fixed
point of G. Note that in this argument, we need to use the constant Cs ; /, which explains its

presence in the definition of ¢;. Therefore, U, ; € C%3 and it satisfies
[Uztllg,2 < 4cot.
2

Now we investigate the dependence of U,; on the parameter z. Observe that if U, is
differentiable in z and D,U,, is at least C? in ¢ for some B € (0,1), then by (1.3.11) and
CP-boundedness of 7; we must have

D,Upy = —=Ti (Dh(Uzt)DyUzy) — Ty Dytig s (3.4.16)
This leads us to study the equation
V =-Ti(H V)= TiDyug, (3.4.17)

where H (&) = Dh(Ug+(€)) is a C? matrix function in ¢ € dD. This equation is of the same
type as (1.3.11). Since

| Daugs(-)|l2 < teolz|™"  (see (3.3.9)), (3.4.18)

and H € C?, the same arguments as above show that the equation (3.4.17) has a unique
1
solution V,; in C*2 (9D) with

IVaillys < deolz ™'t (3.4.19)
Furthermore, if we define VZ’% = D,u,; and
VAT = —Ti(H - V%) — TiDgug
for k € N*, then
1V = Vaelly 1 < 6472127 (3.4.20)

thanks to the t!/?-contractivity of the self-map defining the recurrence relation of V.
We now relate V,; to U, ;. Note that by (3.3.9), u,; € Afort € (0,t;). Let {Uf,t}keN be
the sequence in A defined by

Ug,t = Uy, Uf’t = G(Ui{l) for k>1.

Since uy ¢ is C*in (z,2z) and h € C? and T is a linear C%3-bounded operator, the functions
Uk, are €22 in (z,2) for all k > 0. Define

I
Vzlft = DZUZk’t €Ch2 in (z,2),



3.4. ANALYTIC DISCS PARTLY ATTACHED TO K 83

for k € N. By definition of Uit, the sequence Vz’ft is defined by the induction relation
‘/ZIT:_I = _7-1 (Dh(Uf,tﬂ/z]Tt) - 7-1Dzuz,t7

for k > 0. Using (3.4.18), the induction on k and the above technique in the proof of (3.4.19),
we obtain that

IVEll 2 < 4eotla| " (3.4.21)
Since G is t!/2-contraction, we have

Uz = Usall s < t*/2. (3.4.22)
We now compare VZ”§ and VZ’ft. Their difference is

Vit = VT = =T [(DAU},) — DMUa)) V] = T [Dh(Ua) (Vi = V)] (3.4.23)

Applying (3.4.7) and (3.3.3) to each term in the right-hand side of (3.4.23) gives
IVt = Vel s < 4C1 2 DR(Ug,) — Dh(Ua) [y 11Vl 1+ (3.4.24)
+ 401,1/2\|Dh(Uz,t)||1,% ”Vzkt - Vz”f:”l%
The second term of the right-hand side of (3.4.24) is less than or equal to
8c1c(n)Cra ol Untlly 1 IV, — Véﬁ?”l,%

thanks to (3.4.10) and (3.4.1). By the first inequality of (3.4.5) and (3.4.21), the last quantity
is less than or equal to
3260610(n)C1,1/2t|Z|_1HVz]ft - Vz,§||1,%'

In a similar way, the first term of the right-hand side of (3.4.24) is less than or equal to

8c1C11/2|Ugy — Uny

VI

1
1,5

thanks to (3.4.8) and (3.4.1). By (3.4.21) and (3.4.22), the last quantity is also less than or
equal to
3200010(12)0171/2t(k+2)/2|z|_1.

Hence, we just proved that
IVt = Vel Hls < 32e0e1e(n)Co o [t 1270+t VI = VI 1 |
By induction on & and the last inequality, one easily deduces that
IVt = Vet < %202
’ ) k)

for all k € N. Combining with the fact that V% — V;;, we get V¥, — V, ;. Integrating the last
limit with respect to z, one sees that U, ; is differentiable on z and D,U,; = V; . In particular,

D,U, belongs to cls (0OD). The proof is finished. O
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Let ¢ be a real number in (0, ¢;) as in Proposition 3.4.2. Define the map
" : By, (0,1) — C"

by putting ®"(0) = 0 and ®"(z) = F"(1 — |z| + i|z|,2,t) for z # 0. Let ® and ¢ be the
maps defined in the proof of Proposition 3.3.4. Recall that ®(z) = F(1 — |z| + i|z|, z,t) and
®(z) =tz + g(z) and

1,By,(0.2r0) = t/4,  g(0) =0.

We want to prove that ®" (B2n(0,1)) contains an open neighborhood of 0 just as what we did
for ®. To this end, we compare below these two maps and their derivatives.

g

Lemma 3.4.4. There is a positive constant co independent of z,pg and of t such that for all
z € B;,(0,1), we have

’@h(z) — ®(2)| < cot?|2, (3.4.25)
and
|D,@"(z) — D,®(z)| < cat?. (3.4.26)

Proof. Letz € B;,(0,1). Let z* := 1 — |z| + ¢|z|. We deduce from (3.4.4) and the definition of
F" that
E(z,2,t) := F"(2,2,t) — F(2,2,t) = —T1(Pyy)(2) + iPy4(2)

is a holomorphic map in z. Substituting z by z* in the last equality gives
d"(z) — ®(z) = E(2*, 2, 1). (3.4.27)
Recall that P, (&) = h(Uy(€)), for £ € D. By (3.4.13), (3.4.5) and (3.3.4), we have
1Pet )1 5 S I1Pae (Ol 1 o S £
This yields that

1EC 2. 0)ll1 5 S 1T (Pea)llyy 5+ 1Pailly 1 5 S 1 Pl 1 5 S £ (3.4.28)

1
IRl
We have

E(1,2z,t) = ih(Uzt(1)) = ih(t Rez — tImz)

which is of modulus less than or equal to t?| Rez — Im z|? < 2t2|z|? by (3.4.3). Using the last
inequality and (3.4.28), one has

’E(Z*,Z,t)’ < |E(Z*’Z7t) - E(17Z7t)| + ‘E(1’Z7t)| < |’E('az7t)H1E‘1 - Z*‘ + Qtz‘z‘Q S/ t2‘2|'

Using this and (3.4.27), one gets (3.4.25).
Differentiating (3.4.27) gives

(3.4.29)

qu)h(z) — D,®(z) = D, E(z*,z,t) + D,E(z",2,t) [_Dz|z’] .

Dy|z|
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By (3.4.28), we have
|D.E(z*,2,t)Dylz|| < t2|Dz|z|‘ < 2

Hence it remains to estimate the first term in the right-hand side of (3.4.29). Observe that
D,E(2,2,t) = =Ti(DyPyyt)(2) + D, Py y(2),

for all z € D. Let H(§) = Dh(U,.(€)) the function defined in the proof of Proposition 3.4.2.
By definition of P, ;, we have

DZPZ,t(g) = H(E)DZUZ,t(@'
Using (3.4.7) together with (3.4.5) gives

”Dsz,tHl,%,ﬁ < ||Dsz7tH1,%,a]D> < 4HH”1,%,QDHDZUZ,t”L%,QD < t2]z\_1.

We have D, E(1,z,t) = iD,h(t Rez—t Im z) which is clearly of absolute value < ¢2 by (3.4.3).
Combining this with (3.3.3) yields that

\D,E(z*,2,t)| = |DyE(2*,2,t) — D,E(1,2,t)| + | D,E(1,2,t)|
<1 =2IDE( 2, 8) |y 5+ 82 S |1 = 2| DaPally 5 + £° S 12

The proof is finished. O

Lemma 3.4.5. Let ry be the constant in Proposition 3.3.4. There is a positive number ty < t;
independent of py and of z such that for any t € (0,t5], the set ®"(Ba,(0,7¢)) contains the ball
Bon(0,70t/2).

Proof. Define ¢"(z) := ®"(z) — tz. We have ¢" = ®" — ® + g. By Lemma 3.4.4, ®" — ® is
t/4-Lipschitz for ¢ < t5 := min{ty, (4co)~'}. Combining with the fact that g is ¢/4-Lipschitz on
Bo,(0,2rg) implies that ¢” is ¢/2-Lipschitz on Ba, (0, 2r) for t € (0,t;). Now, an application
of Lemma 3.3.3 to ®" = tId + ¢" gives the desired result. The proof is finished. O

Proof of Proposition 3.2.5 for the case without singularity. In our chosen local coordinates
around pp, we have pg = 0 and p = z. Let t € (0,t2) be as in Lemma 3.4.5. For any z €
B3, (0,70t/2), there is z* € Ba,(0,70) for which ®"(z*) = z. We deduce from (3.4.25) that

t *
2 0z < ext?le’] < 1.

At the end of the proof of Proposition 3.3.4, we proved that |®(z*)| > ¢|z*|/2. This implies
that |z*| < 4|z|/t. Let f(z) := F"(z,2*,t5) and z* = 1 — |z| + i|z|. The last inequality implies
that

|1 —2*| < 2|z*| < 8|z|/t.

The analytic disc f clearly satisfies all requirements in Proposition 3.2.5.

Now, we explain how to obtain the desired analytic discs when dimg K > n. Since we
only consider small discs near K, it is enough to work in a small chart and identify K with
a submanifold of B»,(0,1) with 0 € K. Choose a real linear space A through 0 such that A
intersects K N Ba,(0,2r) transversally at a generic manifold of dimension n, where » > 0
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is a positive number. We can choose r small enough such that this property also holds for
any linear subspace A’ parallel to A which intersects K N Ba,(0,2r). Let pg € K N B, (0,7)
and p € By,(0,1) close to py. Let K’ be the intersection of K N Ba,(0,2r) with the linear
space A’ through pg and parallel to A. The construction in the last subsections can be applied
to (K’', X, po, p) without changes. We obtain analytic discs half-attached to K’, hence half-
attached to K, with the properties described in Proposition 3.2.5. The proof is finished. [

3.4.2 The case where K has singularity

We treat the case where K is a compact generic nondegenerate C°-piecewise submanifold of
X. Actually, C*-differentiability is enough for our proof but in order to avoid some involvedly
technical points, we will use C°-differentiability.

The case of higher dimension will be treated at the end of this subsection also by consid-
ering generic submanifolds of K. The following is an analogue of Lemma 3.4.1.

Lemma 3.4.6. There exist constants c¢1,7x > 1 depending only on (K, X) and a local chart
(Wpy, V) around py, where U : W, — Ba,(0,rg) is biholomorphic with ¥(py) = 0 such that
the two following conditions hold:

(1) we have

1) < ety 971 < e,
(i1) there is a C® map h defined on B,,(0,1) with h(0) = Dh(0) = 0, so that
W(K 0 Wyy) S {(h(x)  x € (R 1B, (0,1)}
and
12]ls < c1. (3.4.30)

Proof. Firstly, observe that by definition of K, through every point p on the singularity of K,
there exist a local chart W of p in X so that K "W is the intersection of W with a finite union
of convex polyhedra of dimension n in R?". Here we identified W and KNW with their images
in R?". Let K" be one of these convex polyhedra containing p. Let K’ be the intersection of
W with the linear subspace of R?" supporting K”. Since K" N W is a generic submanifold of
W (because K N W is so), K’ is a generic smooth submanifold without boundary of W by
shrinking W if necessary. Note that p € K ¢ KNW N K’ and dim K" = dim K’ = n.

The above observation shows that we can cover K by a finite number of holomorphic
charts (W;,¥;) of X such that there are generic n-dimensional submanifolds K’ without
boundary of W; and subsets K of K} N K N W; diffeomorphic to the intersection of W;
with a convex polyheron of dimension n via suitable local charts of X. Without loss of gen-
erality, we can suppose that ¥; are biholomorphisms from W; to B, (0, 2) and the open sets
U (B2 (0,1)) also cover K.

Consider a chart (Wj,, ¥;,) such that py € \I/j_ol (B2,(0,1)). As above, we can suppose
that pg € K7 . Put Wy, := Wj,. Using the fact that K is a generic n-dimensional smooth
submanifold of W;, and arguing as in Lemma 3.4.1, we see that by replacing ¥, by the
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composition of ¥, with a suitable affine linear map of C", one obtain ¥;,(po) = 0 and K,
contains the graph of a C> map h(x) over B,,(0,1) and h(0) = Dh(0) = 0.

By the choice of K and rescaling ¥}, if necessary, there exist C’ functions 7;(x) defined
on an open neighborhood of B,,(0,1) with 1 < j < n such that

KN Wy, D Kj D {(x,h(x)) : 7j(x) >0 forall 1 < j <n}

and the Jacobian D(ry,---,7,)/Dx is of maximal rank in B, (0,1). Write x = (z1,--- ,zp).
Since every linear change of coordinates in R” can be extended naturally to be a complex
linear change of C™, using a suitable complex linear change of coordinates in C" allows one to
assume that tangent space of {7; = 0} at 0 is {z; = 0} for 1 < j < n. Notice that the distortion
caused by the change of coordinates is bounded independently of py. For x € B,,(0, 1), write

75(x) = 75(0) + Y Oy (0)a + O(x*) = 25 — [Imsll2 >l (3.4.3D)
=1 =1
Put C = sup; <<, ||7j||2. Define
1 n
— no. .. — ; +\n
Qn—{xeR cxj > ?m;:cl v1§]§n}c(R )"
For x € @, with |x| < ﬁ, the inequality (3.4.31) yields that

1 — 1 —
Ti(x) >z — C’% 12_1 x> xj— 3 12_1 x; > 0,
for all 1 < j < n. We deduce that

— 1

KNW, D {(x, h(x)) : x € Qn, N By(0, %)}

The composition of a suitable linear change of coordinates in R™ with a dilation in R™ will
map @,, onto (R™)" and map B, (0, 52) onto a neighborhood of B,,(0,1). This map can be
extended to be a holomorphic change of coordinates ¥’ in C". Composing V¥, with ¥/, we
get the desired change of coordinates and the property (ii). The proof is finished. O

Let K, := {(x,h(x)) : x € B,(0,1)} which is a C*> submanifold of By, (0,1). Property (i)
of Lemma 3.4.6 implies that

|h(x)| < eix?,  |Dh(x)| < elx|, for x| < 1. (3.4.32)

To establish the desired family of analytic discs in this context, we follow the same strategy
as in the previous case. Let F,u,, ., co be the maps and the constant defined in (3.3.24),

(3.3.23) and (3.3.25) respectively. As in the last subsection, consider the following Bishop-
type equation

Uptr(&) =2t(lzl, -, |2]) = Ti (h(Uy,1. 7)) (€) = Tarig 1.+ (8), (3.4.33)
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forz € B} (0,5),t € (0,1 and 7 € B,(0,2). For simplicity, we use the same notation

) 2n
U, +-(2) to denote the harmonic extension of Uy, .(¢) to D. Let P, . (z) be the harmonic
is a solution of (3.4.33) which is at least Holder

z,t,T
extension of h(U}, . (£)) to D. If U},

z,t,T
continuous, then

7t77-

F(z2,2,t) = Upy 1 (2) + Py 1 (2) + ity (2)

is clearly a family of analytic discs half-attached to K}, and
F7/'h(17 Z7t) = 2t(‘Z‘, T ’ZD + Zh(2t|Z’, e 72t‘z|) € (R+)n'

Our goal is to obtain a stronger property that /" is I-attached to K C K, for some interval
I C 0D containing 1. In view of (ii) of Lemma 3.4.6, it suffices to prove that

Ubir(€)>0 foréel.

z,t,T

Here for any » € R and v € R", we write v > r to indicate that each component of v is
greater than or equal to r. A similar convention is applied to v < r.

Proposition 3.4.7. There is a positive number t; € (0,1) independent of (pg,z,T) so that for
any t € (0,t1) and any z € B}, (0, 5-), the equation (3.4.33) has a unique solution Ug.t.+ Such

that U, ,(§) is c2 in &, for 1 < j < 4 the differential Dgz ) 2.t exists and is C493 in
¢ € 0D. Moreover; the following estimates hold:

1 < deolz| M,

||U;,t,~r(')H4,% < 4cot, ||D?r U;,t,r(')H4—j,l < deot, HDz-DzU;,t,r(')H:«z*j,i
(3.4.34)

2

forj=0,1,2,3and j' = 1,2,3,4.

Proof. By (3.3.23)-(3.3.26), we see that the arguments in the proof of Proposition 3.4.2 still
work for this case. Hence, the proof is finished. O

From now on, let ¢; be the constant in Proposition 3.4.7 and let ¢ € (0,¢1). Let U, , - be the

solution of (3.4.33) described in Proposition 3.4.7. For ¢ € 9D, write ¢ = ¢ with § € [—n, 7).

Lemma 3.4.8. There exists a constant c, independent of (py, z,t, T) so that for any (z,t,T), we
have

1Pyt r(lanp < e2t®s IIDLP, - (Mlyji5 < cat?, (3.4.35)
for 7 =1,2,3,4 and
1D7 Doyt (s 1 5 < otz (3.4.36)
forj =0,1,2,3.
Proof. In view of (3.3.4), it is enough to estimate the norms of P, , . and Dgz,-r)Pz/,t,T on JD,

for j = 1,2. Since P,

z,t,T

(&) = h(U},+(£)) on 9D, we have

z,t,T

85Pz,,t,‘r(f) = Dh( ;,t,r(f))an;,t,r(f)'
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This combined with (3.4.32) and (3.4.34) yields that
0P ()] < e1]U1.r (O] 06U £ ()] < deoert®

(¢)| < t? with j = 1,2. Hence, we obtain the first

inequality in (3.4.35). For the proofs of the remaining inequalities, observe that D{Z 7_)Pz’,“

is the harmonic extension of D{Z,T)h( »++(-)) to D. Hence, analogous reasoning gives the

desired result. The proof is finished. O

By similar arguments, we also have |6§Pz/7t7_,_

Lemma 3.4.9. We always have

0:Ups - (V| S l2l,  |D70:Uy, (D] S t°l2] and  [Dp0,Uy, (1) S 2.

~

Proof. By (3.3.11), one has
asz/,t,T(l) = aeh(Ué,t,T(ew)) |9:0 = Dh(U;7t,T(]‘))80U;,t,T(1)'
Since Uy ,(1) = 2t(|z|,- - - ,|z|), using (3.4.32) and (3.4.34), we get

10y F,

z,t,T

(D] < 2.
The Cauchy-Riemann equations for F/* give
0aUyg 1.+ (2) = Oy Pyt 7 (2) + Oyt 1 7 (2),
for all z € D. Substituting z by 1 in the last equation, we obtain
0uUpy +(1) = 0y Py (1) + Oyt - (1) = 0y Py, (1) = O(|2]),

because uj,, . vanishes on 9*ID. Hence, the first desired inequality follows. As to the second
one, by differentiating the last inequality with respect to 7, we get
D-0,U,

z,t,T

(1) = D-0,P,, (1) (3.4.37)

z

= DI(U 1,7 (1)) Dr0pUl 7 (1) + D*(U 1 (D) { D203 1.7 (1), 06U (1)}
On the other hand, differentiating (3.4.33) with respect to T gives
DTU;,t,-r(f) = _ﬂ(DTh(U;,t,-r))(f) - TIDTU/z,t,T(f)-
In particular, this implies that
DU, (1) =0. (3.4.38)

Now using the same reason as above, (3.4.37) and (3.4.38) implies the second desired in-
equality. The third one is proved in the same way with the remark that in this case, (3.4.38)
is replaced by the equation D,U, , (1) = O(t). The proof is finished. O
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Lemma 3.4.10. There exist a positive constant ty < ti independent of (pg,z,T,t) and a C!
function

1
T(z,t) : B3,(0, %) x (0,t2) = By (0,1)

so that for any (z,t) € B3, (0, 5) x (0,t2), we have

, 2tIm z
UL 4 iz (€)oo = (3.4.39)
et VIzl(2+ /T2])
and
, 2t(2|z| — Re
0 Up it ray (€ “o=o — (|Z||Z|Z) < oo, (3.4.40)
Proof. The Cauchy-Riemann equations for F" give
aZ/Uv;,t,‘r(z) = _aOCPz,,t, ( ) 0 Uztr( ) (3441)
Combining this with (3.3.11) gives
o)) th-( )= ayU;,t( )= -0 Pz/tr( )—0 Uztr( )- (3.4.42)
Fix z and t. Define ®(7) := 9pU,; ,(1). By definition of u,,, . (1) and (3.3.20), we have
2tIm z
Bo(0) = —0, P, (1) + : (3.4.43)
V122 + /|z])
The first inequality of (3.4.35) implies that
2tImz
@ (0) — | < eot? <1372, (3.4.44)
V122 + V/lz])
for ¢t small enough. Differentiating (3.4.42) with respect to T gives
Di@o( )__Djapz,t‘r() Djauth()
for j = 1 or 2. By (3.3.26) and (3.4.35), we see that
| D2®||o < eat? < t3/2, (3.4.45)
and
L Do), = 10t + ent? ! > (3.4.46)
ct = ‘ In 2= o

for t small enough and some constant ¢ > 0 independent of (z, ¢, ), where we recall that the
norm | - |;,, of a square matrix is the one of its associated linear map. Taylor’s expansion for &
at T = 0 gives

Qo(7) = Po(0) + D+ Po(0)T + go(T), (3.4.47)
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where go(7) is t3/2-Lipschitz by (3.4.45) and go(0) = 0. A direct application of Lemma 3.3.3
to & with A = D, ®(0) and M = ¢3/2 implies that for ¢ small enough, ®; is an injection on
B,(0,1) and

®(By(0,1)) D By (Po(0), ct)

Note that when ¢ is small, we see that
2tIm z

By,
VIzl@+ e

thanks to (3.4.44). This yields that there exists a unique 7(z,t) € B, (0, 1) such that

(P0(0), ct)

2tImz ‘
VIzl(2 + \/]z])

The differentiability of 7(z, t) is implied directly from the implicit function theorem for &y (7, z, t),
where we recovered the variable (z, t) to indicate the dependence of &, on them. By definition

of @, (3.4.39) follows.

Recall that uy, , . = u,, ,+t7-% and 9,0,7(1) = 0. Now differentiating (3.4.41) with respect

to y and using (3.3.11) and Lemma 3.4.9 yield

P, (T(z, t)) = —

03Us17(1) = 055 1 (1) + O(t?) = =8,0: P, , (1) — 0,0y, (1) + O(t)

2t(2|z| — Rez)

+ - @ 7
2|

= —0,0,P,, (1) +O(t*) (by (3.3.20)).

This combined with (3.4.35) implies (3.4.40). The proof is finished. O

Corollary 3.4.11. There exists a positive constant t3 < ty so that for any t € (0,t3) we can
find a positive number 0, € (0,/2) such that such that for any z € B3, (0, 5-) the analytic disc
Flt, o 2,t) is 7, ¢ -attached to K.

(ez‘e) >0

Proof. Write U, = (U U ). We only need to prove that U;LT(ZJ); y >

z,t,T z,t,7T;1) y Yzt Tin

for || small enough and 1 < j < n.Fix1 < j < n.Put

(27 9, 7) = (zj7 \/mv 2‘Z‘)

which satisfies the condition (3.3.17). We will mimic the proof of Lemma 3.3.9. By Lemma
3.4.10 and Taylor’s expansion of U;7t7T;j(ei‘9) at § = 0, we have

2Im 2z 2(y —Re2)

—1yy 2 2, 3.1
t Uz,t,T(z,t);j >+ 6(2 T 5)9 + 52 0° — ot~ + 0 gz(G),
where g/,() is a function on [—7/2, /2] whose supnorm is bounded by ¢~!||U! , r(z,t) |3 < 4eo

by (3.4.34). Put

~ 2Im z v—Rez

f1(0) =~ + 5(2+6)0+ 5

02

and Re
fo0) = =207 — catt? + 6%,,6).
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We have

t_lU;,t,T(z,t);j = (0) + fQ(e)

1
Arguing as in Lemma 3.3.9 shows that fi(6) > 0 for all § € [—n/2,7/2] and f2(f) > 0
provided that ¢ is small enough and || < 6, for some 6, > 0 independent of z. Hence,
U; b (a t)'j(ew) > (0foralll < j < nandtsmall enough and |0| < ;. The proof is finished. [J
We will need the following estimates on the function 7(z, t).

Lemma 3.4.12. Let ¢,z and T(z,t) be as in Lemma 3.4.10. Then, there exist positive constants
c3 and t4 < t3 which are both independent of (po, z, t) so that for any (z,t) € B3, (0, 5-) x (0, t4),
we have

IT(2z,t)| < cst and |D,7(z,t)| < cst|z| L. (3.4.48)

Proof. We reuse the notation in the proof of in Lemma 3.4.10. Recall that ®¢(7,z,t) =
0pUy; (1). Thus, (3.4.34) implies that

|D,D+®o(T,2,t)| < 4cot|z| . (3.4.49)
Since
2tImz
®O(T(Z7t)>zvt) = ’
V122 + V/z])
using (3.4.47) and (3.4.43), we have
—0u P, o(1) = D7 ®0(0,2,t)7(2,t) + go(7(2,1)). (3.4.50)

Since g is cot?-Lipschitz (see (3.4.45)) and go(0) = 0, we deduce from (3.4.46) that
0.2, 1 0(1)] 2 ctir(z, )] — cat|7(2,8)] > (2, D)|(c — eat).
This combined with (3.4.35) implies that

7(z,1)] <

(3.4.51)

~ )

c— cot

for ¢ small enough. Hence, the first inequality of (3.4.48) follows.
We now prove the second one. Differentiating the equality (3.4.50) with respect to z and
using (3.4.36) give

[Dr®0(0,2,t) + Drgo(7(2,t)) | Dot (2, t) + DyDr®o(7(2, 1), 2, ) 7(2, t) = O(t*|2| ).
This together with (3.4.51) and (3.4.49) yields that
[D®0(0,2,t) + Drgo(7(2,t))]| Da7(2,t) = O(t*|2] ).
Multiplying the two sides of the last equality by D ®(0, z, t) ~! and using (3.4.46) and
|Drgo(7(2,1)) 1 = O(t?)  (by (3.4.45)),

we get
| Dy |in < t*1t2\z\*1 < t|z|*1.

The proof is finished. O
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Let ¢t € (0,t4). Define the map

1

il cn

Qn) -

by putting ®*(0) = 0 and ®"(z) = F”E y(#",2,t) for z # 0, where 2* := 1 — \/[z]. Our
goal is to obtain similar estimates for " as in Lemma 3.4.4. However, due to the presence
of T, direct comparisons between ®”* and ® do not work efficiently as in the case without
singularity. In order to get the expected results, we will use the technique in Corollary 3.3.6.

" : By, (0,

Lemma 3.4.13. There is a positive constant c4 independent of z,py and t such that for all
z € B}, (0, 5-), we have

|®"(z) — tz| < calz|(t* + t/|2]), (3.4.52)
and
|D,@"(z) — t1d| < es( +t/]2)). (3.4.53)

Proof. We want to study the behavior of F (2 t)(z) near z = 1. By using Taylor’s expansions,
it is sufficient to estimate its partial derivatives at 1. Put

F'(z,2,t) == F-/r(z,t) (z,2,t).

Differentiating the last equality and using the second inequality of (3.4.48) and (3.4.34), one
has

ID2F' (2, t)ls S | DaFo (o2, 0)lls + | D Fy ) (222, 8) 3 | Dar ()] < ] ™. (3.4.54)

Lemma 3.4.10 implies that

_ 2t 1
0, Im F'(1,2,t) = —8,U. e

1) =— .
th(zt)() \/E(Q“F\/H)

On the other hand, we have

Im F/(Zv z, t) Pz/,t,‘r(z t) (Z> + u,z,t,‘r(z,t) (z)

Hence,
O2Im F'(1,2,t) = 92P, tr(an (1) + 0> uth(z p(1)
- 82 z,t,7(2, t)(l) + 8:r ( ) + tT(th) ’ 8§ﬂ(1)
2tImz
= 03P,y a1 + z,t) - 97a(1),

Vil +izl)

by (3.3.20). By Taylor’s expansion for Im F'(-,z,t) at z = 1 up to the order 3 and using
(3.4.35) and the first inequality of (3.4.48), there is a function gy, , defined on [0, 1] so that

Gy 1.1(8) is clz in (s,z) and for any s € [0, 1], we have

- 2tImz 2tImz

I F =) = o VD T 2Vl + Ve

+t5°7 (2, 1) - 07a(1) + 595 1 (5),

(3.4.55)
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and
I9z,e1llt S IFrp (2 t)lla St
Additionally, (3.4.54) also imply that
IDagzsillo S IDoF" (2,13 S tlz]

Define
i1 (8) = 171595 11(s) + 7 (2, 1) - BFa(1).
Thus,
9ol S5+t [ Dagyallo S tlal ™t + slz[ .

Letting s = +/|z| in (3.4.55) and using (3.3.13), (3.3.14), we obtain
Im F'(1 — /|z|, 2, 1) = tImz + t;,(2), (3.4.56)

where g;.,(z) := |z|g; ;.1 (1/|2]). Direct computations give

1911(2)| S (t+/|zl)|z| and || Dzgisllo St + V/lzl. (3.4.57)
Analogous arguments and Lemma 3.4.9 also show that

s Re F'(1,2,1) = 0,U} , 1 (5 (1) = O(t[2]),

Dy0y Re F'(1,2,1) = DydyUyy -1y (1) + Dr0nUy 1y (1) Dy7(2,1) = O(2%),
and

2t(2|z] — Rez)
2|

0;Re F'(1,2,t) = =0, Re F'(1,2,1) = =05U, , -1, 1y(1) + O(?) = — +O0(t?)

by (3.4.40). Hence, as above there exists a C' function g;.,(z) on B3, (0, +) such that
Re F'(1 - +/|z|,2,t) = t Rez + t§;,(2) (3.4.58)
and
52(2)] S (¢ +V]zl)lz| and  ||Dzgisll0 St + Vel. (3.4.59)
By (3.4.56) and (3.4.58), we get
" (z) = F'(1 = V/]al, 2,1) = tz + t(g}2 + if71).
Using (3.4.59) and (3.4.57), we get the desired results. The proof is finished. O

The proof for the following lemma is similar to Lemma 3.4.5.

Lemma 3.4.14. There are positive constant t5 < t4 and r{, < 1/(2n) independent of (po,z)
such that for any t € (0,ts] and any z € B3, (0,r(), the set ®"(By,(0,r})) contains the ball
Boy, (0,7(t/2).
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Proof of Proposition 3.2.5 for the case with singularity. In our chosen local coordinates around
po, we have py = 0 and p = z. Let t € (0,¢5] and z € B3, (0,7() as in Lemma 3.4.14. Without
loss of generality, we can suppose that

1+ /rh < 1/(2c).

For any z € B3, (0,r)t/2), there exists z* € Ba,(0,r() for which ®"(z*) = z. We deduce from

(3.4.52) that
|tz"|

|z — 2| < calz| (87 + t/]2]7) < =5
Let f(z) := F""(z,z*,t5) and z* := 1 — \/|z*|. The last inequality implies that
11— 2% < 2|z|/t.

As in the case without singularity, the analytic disc f satisfies all properties in Proposition
3.2.5.

Now, we explain how to obtain the desired analytic discs when dimg K > n. In the last
subsection, we sliced K by generic n-dimensional submanifolds K’ in a uniform way. Then,
one just applied the previous result for K’ to get discs partly attached to K. In our present
case, such slicing does not always work due to the fact that a hypersurface passing an edge of
K may only intersect K at that point. Hence, we do not get a such a family K’ as above. We
will use the same idea with some additional caution. As just mentioned, we only need to take
care of the edges of K. Let p. be an edge of K. By definition of K, there exists a local chart
(Wp., ¥) of p. in X such that V¥ is a diffeomorphism from W, to Bs,(0,2) and ¥(K N W,,)
is the intersection of a finite union of convex polyhedra with By, (0,2). For simplicity, we
identify K with ¥(K) and suppose that K is just a convex polyhedron. Hence, it is easy to
choose a (3n—dim K )-dimensional subspace H,, of R?" such that the affine subspace p. + H,,
intersects K at a n-dimensional convex polyhedron K, which is generic at p. in the sense of
the Cauchy-Riemann geometry: K, +JK, = R2" where J is the complex structure of X, we
identified 7, X with R>". Since p, is an edge, the last property implies that the same thing
also holds for any py € R?" close enough to pe,i.e, (po + Hp,) N K = K, and K,,, generic at
po- To summarize, we just get a family of generic n-dimensional local submanifolds K, of K
uniformly in py. Now apply the above result for each K, we get the desired conclusion. The
proof is finished. O






Chapter 4

Loi de Weyl pour les résonances d’un
opérateur de Schrodinger générique

Let —A + V be the Schrédinger operator acting on L?(R%, C) with d > 3 odd. Here V is a
bounded real or complex function vanishing outside the closed ball of center 0 and of radius
a. Let ny () denote the number of resonances of —A + V' with modulus < r. We show that if
the potential V' is generic in a sense of pluripotential theory then

ny (1) = cqar?® + O(Tdi%ﬁ) asr — oo

for any € > 0, where ¢, is a dimensional constant. This chapter is based on the article [35].

4.1 Introduction

Let A denote the Laplacian on R¢ with d odd. Let V be a bounded complex-valued function
with support in the closed ball B, of center 0 and of radius a in R?. The purpose of this work is
to study the asymptotic number of resonances associated to the Schrodinger operator —A+V
acting on L?(R¢, C). The problem has a long history and was intensively investigated during
the last three decades. We refer to [12, 14, 72, 77, 80, 89, 90, 91] and to the references
therein for an introduction to the subject.

Recall that for A € C large enough with Im(\) > 0, the operator Ry (\) := (—A+V —)\2)~!
on L%(R?, C) is well-defined and is bounded. It depends holomorphically on the parameter \.
If x is a smooth function with compact support such that yV = V, one can extend y Ry (\)x
to a family of operators which depends meromorphically on A € C. The poles of this family,
which are called the resonances of the operator —A+V, and their multiplicities do not depend
on the choice of x. Denote by ny () the number of resonances of modulus < r counted with
multiplicity.

In dimension d = 1, Zworski obtained in [86] that

4
ny(r) = —ar +o(r) as r— oo, 4.1.1)

where 2a is the diameter of the support of V, see also [39, 66, 71, 90]. From now on, we
assume that d > 3.

97
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The upper bound for the number of resonances is now well-understood. Define

Ny (r) == /0 Wdt.

Generalizing some results by Melrose [55, 56, 57], Zworski obtained in [87] the following
estimate

ANy (r) < cga®r +o(rd) as r— oo,

where the sharp constant c¢; was identified by Stefanov in [77], see Section 4.2 for the defini-
tion of ¢4 and [73, 79] for more general results. Lower bound for the number of resonances
is only known in special cases that we will discuss below.

For 0 < 6 < 1, define

Mo .= {V € L®(B,,C) : ny(r) — cqar® = O(r¢=2%¢) as r — oo for every e > 0}.
This is a subset of the following family introduced by Christiansen in [15]
M, = {V € L%®(B,,C) : ny(r) — cqa®r? = o(r?) as r — oo}.
Our first main result is the following theorem.

Theorem 4.1.1. Let V be a radial real-valued function of class € on B,. Write V (z) = V(||z))
3/4

and assume that V' (a) # 0. Then V belongs to 9, ".

This result generalizes a theorem of Zworski in [88] which says that V' belongs to 9t,, see
also Stefanov [77, Th.3]. The proof will be given in Section 4.4. It follows Zworski’s approach
and is based on some refinements of his arguments.

Consider now a connected open set 2 in C? and a uniformly bounded family Vj of po-
tentials in L>°(B,, C) depending holomorphically on the parameter ¥ € 2. Our second main
result is the following theorem.

Theorem 4.1.2. Let Vy be a holomorphic family of potentials as above. Suppose there are ¥y € §2
and 0 < § < 1 such that Vy, belongs to 9M°. Then there is a pluripolar set E C  such that
Vo € mg/4foralll9 €O\ E.

Note that pluripolar sets in 2 are of Hausdorff dimension at most equal to 2p — 2 and
their intersections with R? have zero p-dimensional volume, see e.g. [26, 50, 65] and also
Section 4.5 for the definition. Therefore, in the last theorem, most of potentials V3 belong to
M/ fVisa potential as in Theorem 4.1.1 and if V” is an arbitrary potential in L*>°(B,, C),
then for almost every ¢ € C and almost every ¢ € R the potential 9V + (1 — )V’ belongs to
M3/ For such a potential, the number of resonances is asymptotically cga?r?. Therefore, this
property holds for "most of the" potentials in L>°(B,, C) or in L*°(B,, R) if we only consider
real potentials. The notion of pluripolar sets can be extended to L°°(B,, C) and the property
holds for V out of such a set. We don’t know if 2>/ contains a dense Gy set in L>® (Bg, C).
This question was communicated to us by Peter D. Hislop, see [16] for a partial answer.
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A version of Theorem 4.1.2 has been obtained by Christiansen in [15], where assuming
Vo, € My, she proved that the counting function Ny, (r) satisfies

dNvy,(r)

d
= cqa
7nd

lim sup
r—00
for ¢ outside a pluripolar set, see also [12, 16]. In particular, this property holds for generic
potentials V in L>°(B,, C) or in L>*(B,, R).

The proof of Theorem 4.1.2 will be given in Section 4.5. It partially follows Christiansen’s
approach. We also prove and use there some property of plurisubharmonic functions (see
Lemma 4.5.2 below) and an upper bound for Ny (r) which generalizes the above estimate
(4.1.1) by Zworski and Stefanov, see Theorem 4.3.1 in Section 4.3 below.

Note that Christiansen constructed in [13] examples of complex Schrodinger operators
without resonances. This shows that the exceptional set £ in Theorem 4.1.2 is not always
empty. In comparison with similar results from complex dynamics, it is reasonable to believe
that F is always a finite or countable union of analytic subsets of (2, see e.g. [31].

S4 Barreto and Zworski showed in [68] that any Schrodinger operator with compactly
supported real potential admits an infinite number of resonances, see also [11, 67]. The
sharp asymptotic behavior for the number of resonances in this case is still unknown.

Notation and convention. Denote by B, the open ball of center 0 and of radius a in R?
and D(z,r) the disc of center z and of radius r in C. Let S*! denote the unit sphere in R
Define B := By, D(r) := D(0,7), D := D(1), N* := N\ {0}, Ry := {t € R: +t > 0} and
Cy :={z€C: £Imz > 0}. The functions p, ¢, Ai, J,, the constant c,, the sets Q, K and

the space H; are introduced in Section 4.2; the sets QY, Q% (k),J¥ in Section 4.4. Define
arg z := 0 and log z := logr + if for z = re’® with r > 0 and § € (—=,7]. All the constants
we will use depend only on «,d, ||V ||~ and can be changed from line to line. The notation <
and > means inequalities up to a multiplicative constant. An expression likes f(z) ~ g(z) as
z — oo means f(z)/g(z) — 1 when |z| — oo. An expression likes

o0

fE) ~g(2) Y
n=0
means
f(z)—Ni“u()(z—N) as |2 = oo
g(z) =

for each N > 0, see [62, p.16].

4.2 Some properties of Bessel functions

In this section, we give some properties of Bessel functions and of other auxiliary functions
that will be used later in the proofs of the main theorems. We refer to Olver [61, 62] for
details.

Let p be the continuous function on C; \ {0} defined by

p(2) :=log 1+21—272 — V122 (4.2.1)
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which extends the real-valued function in z € (0, 1) given by the same formula. Let €2 be the
following union of a half-plane and a half-strip

Q::{zE(C: Rez<0}U{z€(C: —7r<Imz<0,Rez20}.

Then, the function p defines a bijection between C \ {0} and €. Moreover, it is holomorphic
on C, and sends the intervals

[1,00),(0,1],[-1,0), (—o0, —1]
respectively and bijectively to
iRy, Ry, {z€C: Imz=-m,Rez>0} and i(—o0,—7].
A direct computation gives

@_ V1—22
z

0z

and |p| ~ const |1 —z*? as z—1. (4.2.2)

As in [61, 62], one can find an injective continuous function ¢ : C; \ {0} — C_ which
sends bijectively (0, 1] to R and satisfies

243/2(2) = p(2). (4.2.3)

The function ¢ is holomorphic on C.
Consider the convex domain

K, :={z€C;: Rep(z) > 0}.

Its boundary is the union of the interval [-1, 1] and the curve p~!([—im,0]) joining the two
points —1 and 1. This is the upper half of the domain K considered in [61, 62], [77, p.126]
and [88, p.377]. Note that K contains the half-disc ﬁ(%) NCy.

Recall that the dimensional constant c; used in Introduction was defined in [77, 88, 87].
It is equal to

9 _
0 = d ' / max ( Rdcir,;)(z),O) drdy
W(d - 2)' z=x+iycCy |Z|
_ 2d _Rep(z) dudy

W(d - 2)' z=x+iyeCL\K ¢ ‘Z|d+2

2vol(BB)? 2 11— 22|12
_ dz. 2.
(27)1 +7rd(d2)!/aK+ P (4.2.4)

We will need some basic properties of the Airy function Ai(-), of its derivative Ai’(-) and
of the Bessel function J, (-) with a large positive parameter v. The functions Ai(-) and Ai’(-)
are entire. The function J,(-) is holomorphic on C \ R_. For w € C\ R_, define ¢ := 2w?/2,
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3/2

where we use the principal branch for the function w +— w”/<. There are real numbers u, and

vg such that

Ai 3 d AY wte 8 SN g
i(w) ~ 27r1/2w1/42 g an i'(w) ~ 51/ ZO(—@S (4.2.5)

as |w| — oo in |argw| < m — ¢ for every fixed constant § > 0.
For the values of Ai(-) and Ai'(-) on C \ Ry, we need other formulas. With the above
notation, there are real numbers ag, by, a’,, b, such that

. 1 T i Qs . - bs
Ai(—w) ~ 2l [cos(g - Z)(l + Sz:; g) + sin(€ — Z) Sz:;) {stﬂ] (4.2.6)
Ai'(—w) ~ iz [sm(f - Z)(l + ; 5@) + cos(§ — Z> ;} 5284_1} (4.2.7)
as |w| — oo with |argw| < 2& — § for every fixed constant § > 0.

For the Bessel function J (1), when v — oo, the following relation holds uniformly in
0 < argz < m — ¢ with any fixed constant § > 0

4¢ Ai( 2/34 A (1%3¢) = Bs(€)
JV(VZ)N(1—Z2)1/4{ e +z; VQS 53 z_;) 25 ] (4.2.8)

where A, and B, are holomorphic functions in ¢, see Olver [61, (4.24)]. Note that a similar
property holds for z € C\ (—o0,1] and 0 < |arg z| < m — § by Schwarz reflection principle.

We will need the following estimates.

Lemma 4.2.1. Let M > 0 be a fixed constant large enough. Then, there is a constant A > 0
such that for v large enough and for z # 0 with Re(z) > 0, Im(z) > 0 we have

|J,(v2)| < Amax(1, —log|z))e " R? when 3|1 -z >M

and
|J,(vz)| < A when 1/2/3\1—z\§M.

Proof. Assume that 1*/3|1 — 2| < M. Then z is close to 1. We deduce from (4.2.2) and (4.2.3)
that |¢| ~ const |1 — z|. So |¢|, |[#*/3¢| and the first factor in the right-hand side of (4.2.8) are
bounded. Therefore, we deduce from (4.2.8) that |.J, (vz)| is bounded.

Assume now that v2/3|1—z| > M. Then |#?/3¢| and |vp| are bounded below by a large pos-
itive constant. This allows us to use the identities (4.2.5), (4.2.6) and (4.2.7). We distinguish
two cases. Consider first the case where —m < arg(¢) < —7. In this case, we have Rep < 0.
Then, we can apply the relations (4.2.8), (4.2.6) and (4.2.7) to w := —v?/3¢ and ¢ := —ivp.
We have

w414 - -
W(}sin(—ivp— Z)‘ +‘COS(—’L'l/p— Z)D

¢
S -

| Ju(v2)|

N

e—uRep'



102 CHAPTER 4. LOI DE WEYL POUR LES RESONANCES

We obtain the result using that |¢| < —log|z|as z — 0, |¢| < |1 — 2| as z — 1 and [¢| < |2[*/?
as z — oo.

It remains to treat the case where —7 < arg(¢) < 0. In this case, we do not need to know
the sign of Re p. We can apply the relations (4.2.8) and (4.2.5) to w := v?/3¢ and ¢ := vp.
Similar estimates as above give the result. O

Recall that the zeros of the function J,(vz), except 0, are real, simple and larger than 1,
see [61, (7.4)] and [62, p.246]. So the corresponding values of p belong to iR, . Fix an integer
ko large enough. We say that a solution of J, (rz) = 0 is of first type if the corresponding value
of p satisfies |vp| < kom and of second type otherwise. Let Z, j,, Z, ko +1, - - - be the solutions
of second type of J, (vz) = 0 written in increasing order. Define p,,  := p(Z,, ). We will need
later the following lemma.

Lemma 4.2.2. For v large enough the number of solutions of first type of J,,(vz) = 0 is bounded
by a constant independent of v. Moreover; there is a constant ¢y > 0 such that for v large enough
and for ko < k < v, we have

~ 3mi kmi 1
o= (G + 5| <5

Proof. Assume that v is large enough. Consider the solutions z of first type. As above, we can
apply (4.2.8) and (4.2.6), (4.2.7) to w := —v%/3¢ and ¢ := —ivp. We can see using Rouché
theorem that w is almost equal to a solution of Ai(—w) = 0 in a bounded interval. So the
number of solutions of first type is bounded.

We prove now the second assertion in the lemma. Recall that the function p sends bijec-
tively [1, 00) to i{R. So the p, ;, are in iR, and the sequence |p,, ;| is increasing. We will only
consider the zeros of J,(vz) such that kgrv~! < |p| < e for some fixed small constant e > 0.
For such a zero, we have |v?/3¢| < 2e1%/3.

We apply again (4.2.8) and (4.2.6), (4.2.7) to w := —v*/3¢ and ¢ := —ivp. Using that
lw!/4| <« 1v2/3, we see that ¢ is a positive number large enough (because k is a large constant)
satisfying an equation of the form

cos (§ = 5) = (9),

where , (£) is a holomorphic function on the domain
{€eC: (ko—Dm < [¢] <ev*,Re& >0,[Im¢| < 1}

such that |, | is bounded by a very small constant independent of ». We use here the property
that cos(§ — %) and sin(§ — %) are bounded on the considered domain.

Choose a constant ¢y < €. We can now apply Rouché’s theorem and deduce that the first
eov* — ko + 1 zeros of second type of J, (vz) satisfy the lemma. O

Let H; denote the vector space of harmonic homogeneous polynomials of degree [ on R%.
These polynomials are used to describe the eigenfunctions of the Dirichlet Laplacian on the
unit ball B of R%. We recall some basic properties that will be used later. For the following
result, see Corollary 2.53 in [36].
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Lemma 4.2.3. We have

_ _ (I+d—3) 2192 43
dimH; = (2l +d —2) =2 _(d—2)!+0(l ) as 1 — oo.

Define v := [ + % — 1. Let m;" (r) denote the number of positive zeros of J,(-) which are
smaller or equal to r. It is almost equal to the maximal integer k such that z,; < 7. The
following result is a consequence of the classical Weyl law.

Proposition 4.2.4. Assume that r is large enough. Then
(@ m; (r) =0whenl>r;

) Zp €D()ifk > %cr for some fixed constant ¢ > 0 large enough; in particular, we have
m(r) < er;

(c) We have

1(B)?
me(r) dim H; = V?Q;)z P+ 0@ as r— .

1>0

Proof. (a) If | > r then v > r. In this case, if z > 0 is a solution of J,(rz) = 0, by classical
properties of Bessel functions, we have 2 > 1. Therefore, vz > r and hence, m;" (r) = 0.

(b) Assume that ! < r and k£ > %cr for ¢ > 0 large enough. Then, by Lemma 4.2.2, p, ;, is
large and therefore z, , is larger than 2. For z in [2, c0), we have

1
p= (\/ 22 — 1 + arccos ;)z
We deduce that vz, ;. 2 v|p, x| 2 k and hence z,, > .

(c) Recall that the eigenvalues of the Dirichlet Laplacian on B are precisely (vz,)? with
multiplicity dim H;, see Theorem 2.66 in [36] for details. So the infinite sum in the proposition
is the number of eigenvalues < r? of the Dirichlet Laplacian on B counted with multiplicities.
By Weyl law [42, Th. 29.3.3], this number is equal to

vol(B)?
2n)?

This completes the proof of the proposition. O

r?+ O as r— 0.

4.3 Upper bound for the number of resonances

In this section, we obtain an upper bound for the number of resonances which improves a
result due to Zworski-Stefanov [77, 86]. Consider a general Schrodinger operator —A + V
with a bounded complex potential V' vanishing outside the ball B,. Here is the main result in
this section which is a consequence of Proposition 4.3.2 and Theorem 4.3.3 below.

Theorem 4.3.1. With the notation as in Introduction, there is a constant A > 0 depending only
on d,a and ||V ||« such that

CdCLde

Ny (r) < + Ar¢llogr asr — occ.
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We first recall some basic notions and results, see [77, 86] for details. Let R, Ry, R3 be
real numbers such that ¢ < R; < Ry < R3. Choose also a smooth cut-off function y; (resp.
X2) vanishing outside B, (resp. Br,) and equal to 1 on Bg, (resp. Bg,). These numbers and
functions will be specified later.

Define two families of operators €4 () : L2, (R%) — L2(S~!) with A € C by

comp

comp

E- () (w) = / FNT f (N dy for f e I2. (RY) and w € ST

Denote by £ (\) the transpose operator of £, (\) with the same Schwartz kernel. The scatter-
ing matrix associated to —A + V is the operator Sy ()\) : L?(S%"1) — L?(S?!) given by

Sy(A) =T —i(2m) =922 A2E (V)[A, Xl Ry (V[A, xa]EL(N),

where I denotes the identity operator, see [77, p.120].
The scattering determinant is defined by

Sv()\) = det S\/()\)

It satisfies sy (A)sy(—\) = 1. The poles of sy are called the scattering poles. They are, with a
finite number of exceptions, the resonances of —A + V with the same multiplicities. In what
follows, we will tend to abuse notation and identify ny (r), Ny (r) with the similar counting
functions for the zeros of sy (\) on C.. This does not affect our estimates.

The following result was obtained by Christiansen in [15, (3.2)], see also Stefanov [77,
Prop. 2].

Proposition 4.3.2. We have for r large enough
1 2 )
Ny (r) — / log | sy (re?)|df| < Ard—1,
2 0

where A > 0 is a constant depending only on d,a and || V|| -

We have the following refinement of [77, Th. 5] where the function h, is defined by

* max(— Re p(te®
ha(6) = (de)!/o max(=Rep(te).0) 1y for g e [0, 7.

$d+1
This function is continuous, positive and satisfies h4(0) = hq(7) = 0.

Theorem 4.3.3. With the above notation, there is a constant A > 0 depending only on d, a and
IV ||oo such that
log |sy (re)| < hg(0)a%r? + Ar?=tlogr

for all r large enough and 0 € [0, «].

In the rest of the section, we give the proof of Theorem 4.3.3. Observe that we can suppose
¢ < /2 since otherwise we can reduce the problem to the first case by replacing V' with 1%
and )\ with — ). By rescaling, we can also assume that « = 1. Choose Rj:=1+Zforj=1,2,3.
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Choose x1, x2 as above such that ||x;|¢2 < cr? for some constant ¢ > 0 independent of r.
Define for{ > 1, A € Cwith ReA > 0,ImA > 0and 0 < s < &

/

B, = [N g2 (0 Prde
and
(N := (2m)2 (N, Ry, Ro)Y2I;(\, Ro, R3)/? for X eCy.
The following lemma refines an estimate obtained by Stefanov.

Lemma 4.3.4. There is a constant A > 0 such that

log | sy (re'?)| < Z(dim H))log (1+ Ard+4/ﬁ(rei9)) (4.3.1)
=1

for r large enough and 0 < 0 < -
Proof. If Q : H — H is a bounded linear operator on a Hilbert space such that the spectrum of
(Q*Q)'/? is discrete, denote by 111(Q), 112(Q), . . . the singular values of Q, i.e. the eigenvalues
of (Q*Q)/?, written in decreasing order and repeated according to their multiplicities. Define
1—d
H(X) = —i(2m) 272 AT ?[A, xo] Rv (A)[A, x1]

and

F(A) == 1g, <)z <R €L (AN)E-(A) 1R, <|jaf|<Rs-
In the proof of Theorem 5 in [77, p.128], Stefanov obtained that

log sy (re?)| < Z log (1 + m(H(reie)F(rew)))
1=1

oo
< Y log (1+ [H(re®) | 2y p2pu(F(re™))).
=1
The last inequality is a consequence of the general inequality p;(AB) < || A||w(B).

Stefanov also proved that, up to a permutation of elements, the sequence y;(F(re®?)) is
constituted by the i} (re?)’s where each number i (re') is repeated (dim H;) times. Since we
only consider sums of positive numbers, this permutation does not affect our computation.
So we only have to check that

IEL(re) || 2o 2 < ArTH

for r large enough and for a large fixed constant A > 0.

Choose a smooth function p < 1 with compact support which is equal to 1 on Bg, and
with bounded %!-norm. Since the operators [A, ;] are of order 1, using the above estimates
on x;, we only need to check that

IRy (re)pl| g1 1 = O(2).

But, this estimate is a consequence of the classical theory of elliptic operators, see Zworski
[91] for details. The lemma follows. O
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Proof of Theorem 4.3.3. Recall that we only have to consider the case where 0 < 6 < 7 and
we have to bound the right-hand side in (4.3.1). Observe that log uif (re?) < r, see [62, p.59].
Therefore, we only have to consider [/ larger than any fixed constant.

Let M be the constant in Lemma 4.2.1. Define for v := [ + % -1

:{ZGN*' V231 — \<M for some tE(Rl,Rg)} N :=N'\N
and
I ._ / @ ’._ / @ 1 / / /
Nl._{leN §ZK+} N2._{ZGN : _100} N} := N\ (N! U N}).

Denote by X,Y’, ¥/ the sums as in the right-hand side of (4.3.1) but only with / running
in N, N’ or N/ respectively. We will bound these sums separately. The theorem is a direct
consequence of the estimates given in the 4 cases below.

Case 1. Assume that [ € N. Since Ry, Ry, R3 are close enough to each other and v is large,
we have 1 5 < < 2forallt € (R, R3). In particular, we have v < 2rR3 < 4r. Moreover, for
allt,t' e € (Ry, R3)

0 /. 16 _
,,2/3‘1 B m‘ B V2/3‘1 B tL‘ <2l = B
14 14

v

It follows that

tre
2/3‘]‘ (Rla R3)

Applying the second assertion of Lemma 4.2.1 to ¢~ ° and to M + 1 instead of z and M yields

< Z (dim H;) logr < Z 192 logr < réllogr.
v<dr I<4r

Case 2. Assume now that [ € N’ = N{ U N} U N},. Observe that the function ¢ — — Re p(tret)
is increasing since we have by (4.2.2)

10

1— 2
_ORep(tz) _ Re (t2) > 0 for z = re".

o t

Therefore, by the first assertion in Lemma 4.2.1, we have for some constant A > 0

7?9
5 < 3 (dim Hy) log (1 + A(log )?r®+! ¢~ Ren( R3)). (4.3.2)
lEN]

Case 2a. Assume that [ € Nj. We have v < r and — Rep(@) > 0. Hence, by (4.3.2)

<Y (dimH, [1 A 2pd+4y _ re’’ Ry
1 < 1) og( (logv)“r ) 2yRep( )}
leNy
41 O(v42) re' Ry _
< Z— (d—2) Re p( ” ) +O(r*tlogr).

leNy
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Since the function ¢ — — Re p(te?) is increasing, we deduce from the last estimates that

41 4 O(ud*2) ret? Ry
Z/ < _ d—1 1
1< /rei9R3€K+ d—2) Rep( > )du—I—O(r ogr)
JEy g Y -
< — " T dt+ 0 1
= (d—=2)! Sk, td+1 +00r og)

4rd — Rep(te'?) d1
< r —5)1 /teiGQK_._ T dt + O(r* “logr).

Case 2b. Assume that [ € NJ. Since r is large, we have | > 90r. Observe that Re p(z) >
—log |z| — 2 when |z| < ;35. Hence, using that log(1+t) < ¢ for t > 0, we obtain from (4.3.2)
that
/25 Z ld72(10gl)2rd+4672l(10gl710g7'73) S Z 12d+367l'
1>90r 1>90r

It follows that X/, is bounded above.

Case 2c. Assume that | € Nj. We have [ < v < 100rR3 < 200r. Since Re p(@) is positive,
we obtain from (4.3.2) that

5 < Z 192 logr = O(r* logr).
1<200r

This completes the proof of the theorem. O

4.4 Schrodinger operators with radial potentials

In this section, we give the proof of Theorem 4.1.1. We assume that the potential V' = V'(||z||)
satisfies the hypotheses of this theorem. By rescaling, we reduce the problem to the case
a = 1. Define for ¢ > 0

QZZZ{pEC: Rep<_10g2(yCV)}

and

_ log(cv)
V. 1 vy __ . _
JVi=p (QC)—{ZEC+. Rep(z) < 55 }

Following Zworski [88, p.400], the scattering poles are related to the zeros in J” of a
family of holomorphic functions of the form (our notation is slightly different from Zworski’s

one) —20p(2) /
gu(2) = m(l +e(2) —o(l+e€,(2)), 4.4.1)

where o is some complex number with |o| bounded below and above by positive constants
and €,(z), €,(z) are continuous functions on J. which converge uniformly to 0 when v — oc.
In comparison with Zworski’s notation, for our convenience, we work with variable 2z in C
instead of C_.

We need to compare g, with an auxiliary function h, defined by

672Vp(z)

hy(z) := m

— 0. (4.4.2)
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In what follows, we often consider g, and A, as functions on variable p = p(z).
Let f be the bi-holomorphic map from € = p(C,) to C\ (—o0, 1] defined by

Flp(z)) = 1= 22

We can extend it to a continuous map f : & — C\ {1} which is no more bijective. A direct
computations using (4.2.2) gives

of 222 dlog f 222

SCASE d SR — 4.4.3
Op N an p (1 — 22)3/2 ( )
We deduce for z € C; \ {0} outside a neighbourhood of —1 (in particular, for Im p > —%T”)

that o1 .
‘ 08 f ’ <1+~ when Rep<0. (4.4.4)

dp ||

Define for k € Z
(k) = x _(_Meg  hT Ty T
Qc(k)._{peﬂc. [tmp— (= 22+ = +4y)}<2y}.

These half-strips are disjoint and the union of their closures is equal to (...

Lemma 4.4.1. Assume that v is large enough and k > —4 — 2. Then, there is a constant A > 0
independent of v and k such that |h,(z)| > A for p in the boundary of Q% (k) and also for p large
enough in this domain.

Proof. For p large enough in Q%(k), — Rep is a large positive number and |z| ~ —Rep. So
|hy(z)] is a big number. Consider now the case where p belongs to the boundary of QY (k). For
k > —% — 2 and for v large enough, Im p is almost larger than —7 and hence Re z is almost
positive. Therefore, arg f(p) belongs to the interval (—m, §) for some small positive constant &
independent of v, k.

Assume first that p belongs to the horizontal part of Q% (k) which is the union of two
half-lines given by

argo km 7 T

2v v v 2w

Rep <

and Imp=—

_ log(ev)
2v

The above discussion on arg f(p) implies that | arg(c~'h,(z) + 1) is bounded below by Z — 4.
It follows that |h,(z)| is bounded below by a positive constant.
It remains to consider the case where p belongs to the vertical part of b4 (k). We have

Rep = _log(cv)
2v
Therefore, .
|hy(2) + o] = V-2

It is enough to check that the last quantity is small. Since v is large, this is clear when z is
outside a fixed neighbourhood of 1. Otherwise, we deduce from (4.2.2) that

11— 2% 2 |p|*3 = |Rep|?/3 2 v %3,

The result follows. O
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Lemma 4.4.2. Assume that v is large enough and k > —4 — 2. Then g, and h,, as functions on
p, have the same number of zeros in Q% (k) counted with multiplicity.

Proof. We have for p as in Lemma 4.4.1
190(2) =y (2)| < 2max ([e,(2)], €, (2)]) max (|o], |7 (2) + o).

Lemma 4.4.1 implies that the last factor is bounded by a constant times |k, (z)|. Since ¢, and
e, are small, it is enough to apply Rouché’s theorem in order to obtain the result. O

Lemma 4.4.3. Assume that v is large enough. Then, for every k € Z with k > —% — 2, the
function g, admits a unique zero in ﬁZ(/@) that we denote by p,, .. Moreover, this zero is simple
and belongs to Q¥ (k).

Proof. First, we deduce from Lemma 4.4.1 that h, and g, have no zero on the boundary of
Q¥ (k). By Lemma 4.4.2, we only have to show that /, admits a unique zero in Q¥ (k) and this
zero is simple.

The zeros of h, are exactly the solutions of the following family of equations

F,r(p) =0 with ke€Z, (4.4.5)

where

logo logv log f(p ki
Fy’k(p)::p_(_ w v 21/()+1/)'
Therefore, we only have to prove that (4.4.5) admits a unique solution in 2% which is simple
and belongs to QY (k).
Consider a solution p € QY of (4.4.5). By considering the equation Im F), ;(p) = 0, we
see that Im p > @ So for k > —% — 2 and for v large enough, Im p is almost larger than
—7%. Therefore, arg f(p) belongs to the interval (-, d) for some small positive constant ¢. We

deduce that

+Iy)‘§)_afgf<ﬂ> L

argo  km K
2u 4y 2u

2v v
It follows that p belongs to Q% (k).
We now use the classical argument principle in order to count the number of zeros of F, j,
in Q¥(k). Observe that Im F,, ;,(p) is bounded on Q. (k) and Re F}, 1,(p) — —oo when |p| — oo
and p € Q, (k). We will show in particular that Re F,, ;(p) changes sign twice on b2 (k).
Consider first the horizontal part of Q% (k) which is the union of two half-lines given by

‘Imp—(—

argo km 7 us

Rep < — o
°r= 2v v v 2u

and Imp=

log(cv)
2v

As above, we obtain that arg f(p) belongs to (—, §). We then deduce that Im F,, ;.(p) is strictly
positive on the upper half-line and strictly negative on the lower one.

Since |Re p| > %, the relation (4.4.4) implies that Re p — Re F), ;(p) defines an increasing
function on each of the above half-lines. Therefore, in order to obtain the lemma, it suffices
to check that Re F,, ;(p) > 0 on the vertical part of b2 (k) which is contained in the line

log(cv)

Rep = .
°p 2v
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Assume that p satisfies the last identity. When |p| > 1, |1 — z| is bounded below by a pos-
itive constant. Therefore, log | f(p)| is bounded below and Re F, 1(p) > 0 for v large enough.
Otherwise, we deduce from (4.2.2) that | f(p)| > |p|?/®. Therefore, since | Re p| > 1, we have

2
log|f(p)| > log \P|2/3 + const > —3 log v + const .

It follows that Re F), ;,(p) is strictly positive when v is large enough. This completes the proof
of the lemma. O

Denote by z, , the complex number in C such that p(z, ) = p, x. We have the following
lemma.

Lemma 4.4.4. Assume that v is large enough. Then, for every k > —% + 2, we have Re z,;, > 0
and |z,| > 5. Moreover, if p = p(z) in QY is a zero of g,(z) with Rez > 0and Imz > 0, then
z =z, and p = p,, for some k > —5 — 2.

Proof. When k > —% 42, since p,, ;. belongs to QY (k), we have Imp,, > —%. Hence, Rez, 1, >
0. Since Re pyk < O we have 2, ¢ K and hence, |z, | > .If pand z are as in the lemma,
then Im p > —Z. Such a point p should be in €2, (k) for some k > —% —2. Lemma 4.4.3 implies
the result. O

For! € Ndefine v :=1[+ % — 1 (we use here the notation of Stefanov [77] which is slightly
different from the one by Zworski [88, (25)]). For r > 0, denote by nl+( ) (resp. n; (1))
the number of points z, j, in ﬁ(g) with £ > 0 (resp. —5 +2 < k < 0). Theorem 4.1.1 is a
consequence of the following two propositions whose proofs will be given at the end of the
section.

Proposition 4.4.5. Assume that v and r are large enough. Then,

(a) nl() 0 forl > 2r;
b)) 2k & ﬁ(%) if k > cr for a fixed constant ¢ > 0 large enough; in particular, we have
n/(r) <er
(c) We have for every constant ¢ > 0
1(B)? .
Z n;“(r)(dimHl) = V(Oggr)c)l rd 4 O(rd_3/4+5) as r— oo.

0<I<2r

Proposition 4.4.6. Assume that v and r are large enough. Then, n; (r) = 0 for | > 2r. Moreover,
we have for every constant € > 0

S () (dim Hy) = — / L 0314 as 1
n T 11m 1) — ———— _— YA T T 0.
0S50 ¢ md(d —2)! Jox, |z|dt1

End of the proof of Theorem 4.1.1. Using the decomposition of functions into spherical
harmonics, Zworski relates scattering poles of —A 4 V' to the zeros of a sequence of functions
of the form (4.4.1) with [ € N. More precisely, if p = p(z) is a zero of ¢, (z) with z € J¥, then
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—vz is