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Résumé

Cette thèse porte sur la théorie du pluripotentiel et des problèmes d’équidistribution. Elle
consiste en 4 chapitres.

Le premier chapitre se consarce à l’étude de la régularité de la solution de l’équation de
Monge-Ampère complexe sur une variété kählérienne compacte X. Plus précisement, à l’aide
des outils de la géométrie Cauchy-Riemann, on montre que la dernière équation possède une
(unique) solution höldérienne pour une large classe géométrique de mesures de probabilités
supportées par des sous-variétés réelles de X. Dans le chapitre 2, on étudie l’intersection des
courants positifs fermés de grand bidegré. On y prouve que le produit extérieur de deux
courants positifs fermés dont l’un possède un superpotentiel continu est positif fermé. Ceci
généralise un résultat classique pour les courants de bidegré (1, 1).

Les deux chapitres suivants sont des applications de la théorie du pluripotentiel à des
problèmes d’équidistribution. Dans le chapitre 3, on donne une vitesse explicite de conver-
gence pour l’équidistribution des points de Fekete dans un compact K de Rn (ou de la sphère
Sn) à bord lisse par morceaux vers la mesure d’équilibre de K. Ici, les points de Fekete
sont des bons points dans le problème d’interpolation d’une fonction continue sur K par des
polynômes. Un tel contrôle de vitesse est crucial en pratique qu’on utilise les points de Fekete.
La thèse se termine par le chapitre 4 où on prouve un analogue de la loi de Weyl pour les ré-
sonances d’un opérateur de Schrödinger générique sur Rn avec n impair. Les résonances sont
des objets centraux dans l’étude des opérateurs de Schrödinger. Elles jouent un rôle similaire
à celui des valeurs propres dans le cadre compact.
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Introduction

Ma thèse porte sur la théorie du pluripotentiel et des problèmes d’équidistribution. Étant
fondé par Lelong et Oka dans des années 1940, voir, e.g., [49], la théorie du pluripoten-
tiel est devenue une branche très active de Mathématiques ayant des influences importantes
dans d’autres domaines comme Géométrie Complexe et Dynamique Complexe. Les objets
centraux de la théorie sont les fonctions plurisousharmoniques et les courants positifs fer-
més. Rappelons qu’une fonction plurisousharmonique (psh) dans un ouvert de Cn est une
fonction fortement semi-continue supérieurement f telle que f est locallement intégrable et
ddcf := i

π∂∂̄f ≥ 0 au sens des courants.
Cette thèse se compose de 4 chapitres qui correspondent à mes 4 articles dans l’ordre

[84, 83, 82, 35]. Dans ce qui suit, j’y présenterai les résultats principaux et expliquerai leurs
motivations.

Le premier problème auquel nous nous intéressons concerne l’intersection des courants
positifs fermés. SoitX une variété compacte complexe de dimension n et T1, T2 deux courants
positifs fermés surX. Contrairement au cas des formes différentielles, en général l’intersection
(le produit extérieur) T1 ∧ T2 n’est pas toujours bien définie. Une question centrale dans la
théorie du pluripotentiel est de déterminer, dans quelle circonstance, one peut étendre le
dernier produit à des courants. On remarque que si T1, T2 sont respectivement les courants
d’intégration des sous-variétés complexes compactes V1, V2 de X, alors T1 ∧ T2 (au cas où
on peut le définir) devrait être un candidat naturel pour le courant défini par l’intersection
V1 ∩ V2.

Dans le cas de bidegré (1, 1), le problème est bien compris. Supposons que T1 soit un
courant de bidegré (1, 1) dont les potentiels locaux sont bornés. Autrement dit, T1 = ddcu+η,

où η est une forme différentielle fermée lisse sur X et u est une fonction quasi-psh bornée sur
X (une fonction est dite quasi-psh si elle est localement la somme d’une fonction psh et une
fonction lisse). Alors, d’après [2, 10], on définit

ddcu ∧ T2 := ddc(uT2), T1 ∧ T2 := ddcu ∧ T2 + η ∧ T2. (0.0.1)

Nous renvoyons à [17, 37] pour un traitement détaillé. Grâce à (0.0.1), on peut définir l’auto-
intersection Tn1 := T1∧· · ·∧T1 (n termes) qui est un courant positif fermé de bidegré maximal
sur X. Il en résulte que Tn1 est une mesure positive dont la masse égale

∫
X η

n pour une
raison cohomologique. Maitenant supposons que X admette une forme de Kähler ω qui est
normalisée telle que

∫
X ω

n = 1. Comme ci-dessus, pour une fonction quasi-psh u bornée avec
ddcu+ω ≥ 0, l’intersection (ddcu+ω)n est une mesure de probabilité bien définie et applelée
celle de Monge-Ampère.
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Soit P(X) l’espace des mesures de probabilité de X. On veut comprendre la classe M
suivante de mesures de Monge-Ampère :

M := {µ ∈ P(X) : µ = (ddcu+ ω)n pour u quasi-psh höldérienne et ddcu ≥ −ω}.

Dans la théorie du pluripotentiel et ses applications, les fonctions (et plus généralement les
courants) ont souvent une faible régularité, e.g., elles sont höldériennes. C’est la raison pour
laquelle la dernière classe de mesures est très utile. Déterminer si une mesure appartient à
M est lié à la résolution de l’équation de Monge-Ampère

(ddcu+ ω)n = µ. (0.0.2)

La dernière équation joue un rôle crucial dans la géométrie complexe et la théorie du plu-
ripotentiel. Yau [85] a prouvé que si µ est une forme volume lisse de X, (0.0.2) admet
une solution lisse, donc une telle µ est un élément de M. Kołodziej [46, 45] a introduit
des outils de la théorie du pluripotentiel pour étudier (0.0.2). Depuis, de nombreux auteurs
[47, 20, 22, 63, 24] contributent à la compréhension de la classe M. Une conséquence du
résultat principal du chapitre 1 est le théorème suivant.

Théorème A. Soit K une sous-variété C3 réelle immergée générique de X. Toutes les mesures de
probabilité à support compact dansK avec densités Lp pour un certain p > 1 appartiennent àM.

Ici, une sous-variété réelle K de X est dite (Cauchy-Riemann) générique si l’espace tangent
d’un point arbitraire de K n’est pas inclus dans un hyperplan complexe de l’espace tangent
de X en ce point.

L’intersection T1 ∧ T2 est moins bien comprise lorsque les bidegrés de T1, T2 sont supé-
rieurs à (1, 1). Un analogue de (0.0.1) est la théorie des super-potentiels due à Dinh et Sibony
[30, 32], voir aussi [34] pour un autre avancement. Ils ont introduit la notion de super-
potentiel d’un courant positif fermé généralisant le potentiel dans le cas de bidegré (1, 1).

Lorsque T1 possède un super-potentiel continu, alors ils ont défini T1 ∧ T2 qui est un courant
fermé. Cependant, il n’est pas clair de leur définition que l’intersection T1 ∧T2 soit encore po-
sitif. En établissant une autre définition équivalente, dans le chapitre 2, on prouve le résultat
suivant.

Théorème B. Supposons que T1 possède un super-potentiel continu. Alors, T1 ∧ T2 au sens de
Dinh-Sibony est un courant positif fermé.

On s’intéresse maitenant à des problèmes d’équidistribution qui seront étudiés à l’aide de
la théorie du pluripotentiel. En général, une propriété d’équidistribution pour une famille de
certains objets dépendant d’un paramètre réel signifie que la famille est assymptotiquement
équidistribuée quand le paramètre tend vers l’infini. Dans le chapitre 3, on considère la dis-
tribution des points de Fekete. Soit K un sous-ensemble de la sphère Sn de Rn+1. Les points
de Fekete sont des bons choix pour le problème d’interpolation des fonctions continues sur K
par des polynômes à (n+ 1) variables, voir [52]. Précisément, on les définit comme suit.

Pour m ∈ N, soit Pm l’espace vectoriel des restrictions des polynômes de (n+ 1) variables
de degré au plus m à K. Désignons par Nm la dimension de Pm. Fixons une base {pj}1≤j≤Nm



TABLE DES MATIÈRES 11

de Pm. Soit (xj)1≤j≤Nm ⊂ K avec det[pj(xl)]1≤j,l≤Nm 6= 0. Alors, pour une fonction continue
quelconque f définie sur K, il existe un unique polynôme pf ∈ Pm tel que pf (xj) = f(xj)

pour 1 ≤ j ≤ Nm. Il est prouvé que si {xj} maximise la valeur absolue de det[pj(xl)] sur
KNm , alors pf est bien proche de f dans le sens que

‖pf − f‖ ≤
(
1 +Nm

)
inf
p∈Pm

‖p− f‖,

où ‖·‖ est la norme sup surK, voir [8]. Une famille {xj}1≤j≤Nm vérifiant la dernière condition
est appelée un point de Fekete d’ordre m. Comme il est impossible de calculer explicitement
les points de Fekete pour n ≥ 1 ou m > 1, on essaie de comprendre leur comportement
asymptotique lorsque leur ordre tend vers l’infini. Posons

µm :=
1

Nm

Nm∑
j=1

δxj ,

où δx est la masse de Dirac en x. Une conséquence directe d’un résultat de Berman, Boucksom
and Witt Nyström dans [4, 23] dit que µm converge faiblement vers la mesure d’équilibre de
K. De façon géométrique, on dit que les points de Fekete sont asymptotiquement équidistri-
bués par rapport à la mesure d’équilibre. Un taux explicite de la convergence a été obtenu par
Dinh, Nguyên et Ma dans [23] sous des hypothèses abstraites sur le compact K et son poid,
voir [51] pour un autre résultat. Dans le chapitre 3, on montre le résultat suivant.

Théorème C. Soit K l’adhérence d’un ouvert de Sn dont le bord est lisse non-dégénéré par
morceaux. Pour tout ε ∈ (0, 1), il existe une constante cε indépendent de k ∈ N telle que

dist1(µk, µeq) ≤ cεk−1/72+ε, (0.0.3)

où dist1 est une distance équivalente à celle de Kantorovich-Wasserstein entre les mesures posi-
tives sur X, voir Section 3.1 pour la définition de dist1.

Ce dernier théorème est en fait un cas spécial d’un résultat plus général dans le contexte d’une
variété complexe X munie d’un fibré en droite positif. De façon similaire, on peut définir les
points de Fekete pour un sous-ensemble de Rn et obtenir un analogue du (0.0.3) dans ce cas.

Dans le chapitre 4, on considère un autre problème d’équidistribution. Soit (M, g) une va-
riété compacte (réelle) de dimension n. Soit V une fonction lisse et ∆ l’opérateur de Laplace-
Beltrami sur M . L’opérateur P := −∆ + V agissant sur C2(M) est appelé un opérateur de
Schrödinger. On peut considérer P en tant qu’un auto-opérateur non-borné de L2(M), où le
dernier espace est celui de fonctions de carré intégrable sur M. C’est un fait fondamental que
P est diagonalisable, c’est-à-dire il existe une base orthogonale {ϕj}j∈N de L2(M) telle que
pout tout j ∈ N, ϕj est lisse et

Pϕj = λjϕj ,

pour certains nombres réels λj tels que λj → +∞ quand j → ∞. Étant donné un réel r,
on note par NV (r) le nombre de valeurs propres λj avec |λj | ≤ r2. La loi de Weyl classique
nous dit que NV (r) = cV r

n + o(rn) lorsque r → ∞, où cV est une constante indépendente
de r, voir [91]. En comparant à des estimés du type (0.0.3), la dernière égalité donne moins
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information mais elle nous fournit une perspective importante sur la distribution des valeurs
propres dans R.

Dans le cadre non-compact, P n’est plus diagonalisable, ici le potentiel V est une fonction
bornée réelle ou complexe à support compact. On se restreint au cas où M est l’espace eucli-
dien de dimension impaire n (le cas de dimension paire est de caractère différent). Alors P a
au plus un nombre fini de valeurs propres. Par conséquent, ces valeurs propres ne sont pas
suffisantes pour décrire P. Dans ce cas, les résonances, qui sont les pôles d’une fonction mé-
romorphe sur C à valeurs dans un espace d’opérateurs bornés agissant sur un certain espace
de fonctions sur M, peuvent être vues comme des remplaçants des valeurs propres, voir [92].
Soulignons ici que pour une variété compacte, les résonances sont exactement les valeurs
propres. Comme dans le cadre compact, on s’intéresse à la distribution des résonances dans
C. Une conséquence du résultat principal du chapitre 4 est la loi de Weyl suivante pour des
résonances.

Théorème D. Suposons que V soit à support compact dans la boule de rayon a > 0 de Rn et
générique dans un sens de la théorie du pluripotentiel sur cette boule. Alors, le nombre nV (r) de
résonances de −∆ + V de module ≤ r vérifie

nV (r) = cda
drd +O(rd−

3
16

+ε) lorsque r →∞

pour toute constante ε > 0, où cd est une constante dimensionnelle.

Nous allons donner dans les chapitres suivants les détails sur les résultats décrits ci-dessus.
Le lecteur trouvera une brève description des preuves dans l’introduction de chaque chapitre.



Chapter 1

Équation de Monge-Ampère avec
solutions höldériennes

Let (X,ω) be a compact n-dimensional Kähler manifold on which the integral of ωn is 1. Let
K be an immersed real C3 submanifold of X such that the tangent space at any point of K is
not contained in any complex hyperplane of the (real) tangent space at that point of X. Let
µ be a probability measure compactly supported on K with Lp density for some p > 1. We
prove that the complex Monge-Ampère equation (ddcϕ + ω)n = µ has a Hölder continuous
solution. This chapter is based on the article [84].

1.1 Introduction

Let X be a compact Kähler manifold of dimension n and let ω be a fixed Kähler form on X so
normalized that

∫
X ω

n = 1. The aim of this paper is to give a useful explicit class of measures
for which the complex Monge-Ampère equation has a Hölder continuous solution. Recall that
a real C1 manifold K is said to be immersed in X if there is an injective C1 immersion from
K to X. In this case we say that K is an immersed C1 submanifold of X. An immersed real
C1 submanifold K of X is said to be generic CR (or generic for simplicity) in the sense of
the Cauchy-Riemann geometry if the tangent space at any point of K is not contained in a
complex hyperplane of the tangent space at that point of X. Such a submanifold has the real
dimension at least n. A function ϕ : X → [−∞,∞) is quasi-p.s.h. if it is locally the sum of
a p.s.h. function and a smooth one. A quasi-p.s.h. function is said to be ω-p.s.h. if we have
ddcϕ+ ω ≥ 0 in the sense of currents. The following is our main result.

Theorem 1.1.1. Let K be a generic immersed C3 submanifold of X of real codimension d > 0.

Let µ be a probability measure compactly supported on K with Lp density for some p > 1.

Then the Monge-Ampère equation (ddcϕ + ω)n = µ has an ω-p.s.h. solution ϕ which is Hölder
continuous with Hölder exponent α, for any positive number α < 2(p−1)

3d(n+1)p ·

Note that our proof still holds if K is C2,β for some β ∈ (0, 1). In this case one just needs to
replace the C2,1/2 regularity in Section 1.3 by C2,β′ one for β′ ∈ (0, β). For simplicity, we only
consider the C3 regularity as in Theorem 1.1.1. Secondly, if the Monge-Ampère equation has

13



14 CHAPTER 1. ÉQUATION DE MONGE-AMPÈRE AVEC SOLUTIONS HÖLDÉRIENNES

a Hölder continuous solution, then that solution is unique up to an additive constant. This is
a direct consequence of results in [45, 21].

For a probability measure µ on X, the associated complex Monge-Ampère equation

(ddcϕ+ ω)n = µ (1.1.1)

has been extensively studied since the fundamental paper [85] of Yau in which he proved
that (1.1.1) has a unique smooth solution if µ is a (smooth) Riemannian volume form volX
of X. Later Kołodziej showed that the Monge-Ampère equation admits a unique continuous
solution for a larger class of measures µ which contains µ = fvolX with f ∈ Lp(X) for p > 1,

see [46, 45]. For the last measures, he also obtained Hölder regularity of the solution in
[47]. The Hölder exponent of that solution is then made precise by Demailly, Dinew, Guedj,
Hiep, Kolodziej and Zeriahi in [20] using the regularization method in [19] and the stability
theorem in [22]. Moreover, in [63] Hiep obtains the Hölder regularity for µ = fvolY , where
volY is the volume form of a compact real hypersurface Y of X and f ∈ Lp(Y ) for p > 1.

Recently, Dinh and Nguyên in [24] show that the class of probability measures µ, for
which (1.1.1) admits a Hölder continuous solution, is exactly the class of probability measures
whose super-potentials are Hölder continuous, see Definition 1.1.3 below. They then recover
the aforementioned results in [47, 63, 20]. By [24], we know that if a probability measure µ
having a Hölder continuous super-potential of order β ∈ (0, 1], then the solution of (1.1.1)
is Hölder continuous of order β′ for any 0 < β′ < 2β/(n + 1). For more information on the
complex Monge-Ampère equation, the readers may consult the survey [64].

Theorem 1.1.1 above combined with [24, Pro. 4.4] yields the following nice exponential
estimate, see also [74, 26, 43].

Corollary 1.1.2. Let K be a generic immersed C3 submanifold of X. Let K̃ be a compact subset
of K. Then the restriction of the Lebesgue measure on K to K̃ is moderate, that is, there exist
two positive constants α and c such that for any ω-p.s.h. function ϕ on X with supX ϕ = 0 we
have ∫

K̃
e−αϕd volK ≤ c.

Before presenting the idea of the proof of Theorem 1.1.1, we need to recall some defini-
tions. Let µ be a probability measure on X. Let C be the set of ω-p.s.h. functions ϕ on X such
that

∫
X ϕω

n = 0. We define the distance distL1 on C by putting

distL1(ϕ1, ϕ2) :=

∫
X
|ϕ1 − ϕ2|ωn,

for every ϕ1, ϕ2 ∈ C .

Definition 1.1.3. The super-potential of µ (of mean 0) is the function U : C → R given by
U (ϕ) :=

∫
X ϕdµ. We say that U is Hölder continuous with Hölder exponent α ∈ (0, 1] if it is so

with respect to the distance distL1 .

By [24, The. 1.3, Cor. 4.5], Theorem 1.1.1 is a direct consequence of the following result.

Theorem 1.1.4. Let K be a generic immersed C3 submanifold of X of real codimension d > 0.
Let K̃ be a compact subset of K and 1K̃ the characteristic function of K̃. Let volK be an arbitrary
C3 Riemannian volume form of K. Then the super-potential of 1K̃volK is Hölder continuous with
Hölder exponent α for any positive number α < 1/(3d).
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Let D be the unit disc in C and let ∂D be the boundary of D. A C1 analytic disc in X is
a C1 map from D to X which is holomorphic on D. For a nonempty arc I ⊂ ∂D, an analytic
disc f is said to be I-attached to a subset K of X if f(I) belongs to K. When we do not want
to mention I, we simply say an analytic disc partly attached to K. Throughout this paper, for
every parameter τ, we will systematically use the notation .τ or . which means ≤ up to a
constant depending only on (τ,X,K, ω) or on (X,K,ω) respectively. A similar convention is
applied to &τ and & .

The idea of the proof of Theorem 1.1.4 is as follows. Observe that the codimension d of
K is at most equal to n. We consider below the case where d = n. The other cases can be
deduced from it. Let ϕ1, ϕ2 ∈ C and ϕ := ϕ1 − ϕ2. To show the Hölder regularity of the
super-potential of volK , by definition we need to bound the L1-norm of ϕ with respect to
volK by a power of the L1-norm of ϕ on X. Since one can approximate any ω-p.s.h. function
on X by a decreasing smooth ones (see [7]), it is enough to prove the desired property for
smooth ϕ1, ϕ2 with ϕ1 ≥ ϕ2, see Proposition 1.5.1 and Lemma 1.5.2. In this case, ϕ is smooth
and nonnegative. This reduction is crucial in our proof. Observe that by compactness of K̃, it
suffices to estimate ∫

K̃′
ϕdvolK ,

for small open subsets K̃ ′ of K̃. For each point a ∈ K, we will construct a C2,1/2-differentiable
family F̃{τ∈Z} of analytic discs partly attached toK parameterized by τ in a compact manifold
Z of real dimension (2n− 2) which roughly satisfies the following two properties:

(i) the restriction of F̃ to ∂D × Z is a submersion onto an open neighborhood K ′ of a in
K, where we consider F̃ as a map from D× Z to X.

(ii) the restriction of F̃ to D× Z is a diffeomorphism onto an open subset of X.
Put K̃ ′ := K̃ ∩ K ′ for a ∈ K̃. These K̃ ′ covers K̃. By the change of variables theorem and
Property (i), we have ∫

K̃′
ϕdvolK ≤

∫
K′
ϕdvolK .

∫
∂D×Z

ϕ ◦ F̃ . (1.1.2)

Since F̃ is holomorphic on D and C2 on D, observe that ϕ ◦ F̃ is the difference of two C2

subharmonic functions on D.
Our second step is to bound

∫
∂D×Z ϕ ◦ F̃ by a quantity involving

∫
D×Z ϕ ◦ F̃ . For this

purpose, we will establish a crucial inequality in dimension one which shows that L1-norm
on ∂D of a nonnegative C2 function on D is bounded by a function of its L1-norm on D and
some Hölder norm of its Laplacian on D. The ingredients for the proof of the last inequal-
ity are Riesz’s representation formula and a general interpolation inequality for currents on
manifolds with boundary. Note that a version of that interpolation inequality for manifolds
without boundary was firstly used by Dinh and Sibony in [30].

The problem will be solved if one is able to bound
∫
D×Z ϕ◦F̃ by a constant times ‖ϕ‖L1(X).

Taking into account Property (ii), one is tempted to use the change of variables by F̃ . How-
ever, the Jacobian of F̃ is small near the boundary ∂D × Z. This is due to a general fact that
any family of analytic discs satisfying Property (i) should degenerate at ∂D because of its
attachment to K. So we need a precise control of the Jacobian of F̃ from below and prove
some estimates on the integrals of p.s.h. functions and their ddc on a tubular neighborhood
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of K̃. These estimates are of independent interest. Consequently, we will get∫
D×Z

ϕ ◦ F̃ .α2

(∫
X
ϕdvolX

)α2

, (1.1.3)

for any α2 ∈ (0, 1/n). Combining these above inequalities gives the Hölder regularity of the
super-potential of volK .

The paper is organized as follows. Section 1.2 is devoted to proving the above mentioned
interpolation inequality for currents. In Section 1.3, we construct the desired family of ana-
lytic discs F̃ . In Section 1.4, we present (1.1.2) and (1.1.3). Finally, we prove Theorem 1.1.4
in Section 1.5. At the beginning of Section 1.3, we will fix some notations which will be used
for the rest of the paper.

1.2 Interpolation theory

Let M be a compact smooth manifold of dimension m. Fix a partition of unity subordinated
to a finite covering of local charts of M. For k ∈ N and α ∈ (0, 1], let Ck,α(M) be the space
of Ck functions on M whose partial derivatives of order k are Hölder continuous of order
α. We endow the last space with the usual norm. For t ∈ [0,∞), denote by Ct(M) the space
C[t],t−[t](M) where [t] is the integer part of t. Let ΛlT ∗M be the lth-exterior power of the cotan-
gent vector bundle T ∗M for 1 ≤ l ≤ m. Let Ct(M,ΛlT ∗M) be the set of l-differential forms
with Cl coefficients. Using the above fixed partition of unity, we can equip Ct(M,ΛlT ∗M) with
the norm ‖ · ‖Ct which is the maximum of the Ct norms of its coefficients.

Let T be an l-current of order 0, i.e., there is a constant C such that |〈T,Φ〉| ≤ C‖Φ‖C0 for
every smooth (m− l)-form Φ. For t ∈ [0,∞), define

‖T‖C−t := sup
Φ smooth ,‖Φ‖Ct=1

|〈T,Φ〉|. (1.2.1)

We will write ‖T‖ instead of ‖T‖C−0 which is the usual mass norm of T. Dinh and Sibony in
[30] proved that for any t1, t2 ∈ (0,∞) with t1 < t2, we have

‖T‖C−t2 ≤ ‖T‖C−t1 ≤ c‖T‖1−t1/t2‖T‖
t1/t2
C−t2 , (1.2.2)

for some constant c independent of T. This inequality is very useful when dealing with con-
tinuous functionals on differential forms because one can reduce the problem to the smooth
case. In this section, we will establish a generalization of (1.2.2) for compact smooth mani-
folds with boundary.

Let M be a compact smooth manifold of dimension m with boundary. Cover M by a finite
number of local charts Uj . Take a partition of unity φj subordinated to this covering. By the
aid of these φj , as above we can define the Banach spaces Ct(M) with the usual norms for
t ∈ [0,∞). Denote by IntM the interior of M. Let Ctc(IntM) be the subspace of Ct(M) of
f ∈ Ct(M) with compact support in IntM. Let C̃t(M) be the subspace of Ct(M) consisting of
f with f |∂M ≡ 0. We can also define C̃t(M,ΛlT ∗M) and Ctc(M,ΛlT ∗M) in the same way as
above.



1.2. INTERPOLATION THEORY 17

Let T be an l-current of order 0 on IntM. Assume that its mass is finite, that is,

‖T‖ := sup
Φ smooth ,‖Φ‖C0c (IntM)

=1
|〈T,Φ〉| <∞. (1.2.3)

In our application, M will be D and T will be the restriction of a continuous form on C to
D. By Riesz’s representation theorem, T is a differential form whose coefficients are Radon
measures on M with finite total variations. Hence, for any continuous differential form Φ

on IntM with ‖Φ‖C0 < ∞, the value of T at Φ is well-defined. Then the current T can be
extended to be a continuous linear functional on C̃t(M,ΛlT ∗M). Let ‖T‖C̃−t(M) be the norm

of T as a continuous linear functional on C̃t(M,ΛlT ∗M). As mentioned at the beginning of
the section, we will prove the following analogue of (1.2.2).

Proposition 1.2.1. Let T be a l-current of order 0 on IntM. Assume that T has finite mass.
Let t0, t1, t2 ∈ [0,∞) with t0 < t1 < t2. Let t∗ be the unique real number for which t1 =

t∗t0 + (1− t∗)t2. Then we have

‖T‖C̃−t2 (M) ≤ ‖T‖C̃−t1 (M) ≤ C‖T‖
t∗
C̃−t0 (M)

‖T‖1−t∗C̃−t2 (M)
, (1.2.4)

for some constant C independent of T.

The remaining part of this section is devoted to prove the last proposition. Using a par-
tition of unity as above, that proposition is a direct consequence of Corollary 1.2.9 at the
end of this section. We first recall some notations and results from the interpolation theory of
Banach spaces and refer to [53, 78] for a general treatment of the theory. Then we compute
some interpolation spaces of C̃t(M), see Corollary 1.2.8 below.

Let A0 and A1 be two Banach spaces which are continuously embedded to a Hausdorff
topological vector space A. Let B0 and B1 be two Banach spaces which are continuously
embedded to a Hausdorff topological vector space B. Let T be a linear operator from A
to B. Assume that T |Aj : Aj → Bj are bounded for j = 0, 1. The interpolation theory of
Banach spaces is to search for Banach subspaces A ⊂ A and B ⊂ B such that the restriction
T |A : A → B is a bounded linear operator. The spaces A and B are called interpolation
spaces. We will recall below a classical construction of such spaces.

For 0 < t <∞ and a ∈ A0 +A1, define

K(t, a;A0, A1) := inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1), (1.2.5)

where a0 ∈ A0, a1 ∈ A1. Let α be a constant in (0, 1). The following class of Banach spaces is
of great importance in the interpolation theory.

Definition 1.2.2. Let (A0, A1)α,∞ be the subspace of A0 + A1 consisting of a ∈ A0 + A1 for
which the following quantity

‖a‖(A0,A1)α,∞ := sup
t>0

t−αK(t, a;A0, A1) (1.2.6)

is finite. The last formula defines a norm on (A0, A1)α,∞ which make it to be a Banach space.

The following fundamental theorem explains the role of the space (A0, A1)α,∞.
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Theorem 1.2.3. [53, Th. 1.1.6] Let A0, A1, B0, B1 and T be as above. Let α ∈ (0, 1). Then
the restriction T(A0,A1)α,∞ of T to (A0, A1)α,∞ is a bounded linear operator from (A0, A1)α,∞ to
(B0, B1)α,∞ and

‖T |(A0,A1)α,∞‖ ≤ ‖T |A0‖1−α‖T |A0‖α,

where ‖ · ‖ is the norm of bounded linear operators.

Let m ∈ N∗ and k ∈ N and α ∈ (0, 1). Let Ck(Rm) (respectively Ck,α(Rm)) be the set of Ck
functions (respectively Ck,α) on Rm. For t ∈ R+, define Ct(Rm) := C[t],t−[t](Rm). Let Ctb(Rm)

be the subset of Ct(Rm) consisting of elements whose Ct norms are bounded.
Let Ω be a bounded open subset of Rm with smooth boundary. Let ∂Ω be its boundary.

Then Ω is a smooth compact manifold with boundary which is itself a global chart. We have
the Banach spaces Ct(Ω) and C̃t(Ω) as above. In what follows, we will give a description of
the interpolation space (

C̃t0(Ω), C̃t2(Ω)
)
α,∞ (1.2.7)

for 0 ≤ t0 < t2 <∞. The corresponding interpolation spaces for Ct(Ω) and Ctb(Rm) are already
known, see Theorems 2.7.2 and 4.5.2 in [78].

It should be noted that the spaces
(
Ct0(Ω), Ct2(Ω)

)
α,∞ are easily determined by using the

result mentioned above for Ctb(Rm) and the fact that the restriction from Ctb(Rm) to Ct(Ω) is a
retraction, see [78, Th. 4.5.1]. Nevertheless, this property is no longer true if we replace Ct(Ω)

by C̃t(Ω) because even the restriction map from Ctb(Rm) to C̃t(Ω) is not well-defined. In order
to compute (1.2.7), we will follow the original strategy for Ctb(Rm) in [78], see also [53].
Although, in essence, our below results can be implicitly deduced from [78], we will present
them in a simplified and detailed way which is therefore accessible for a wider audience.

The following lemma is well-known but for the reader’s convenience, a complete proof
will be given.

Lemma 1.2.4. For every t ∈ [0,∞), every f ∈ Ct(Ω) can be extended to be a function Ef ∈
Ct(Rm) such that ‖Ef‖Ct(Rm) ≤ C‖f‖Ct(Ω), where C is a constant independent of f.

Proof. We will use a reflexion argument. By using a partition of unity subordinated to a
suitable finite covering of Ω, we can suppose that Ω = Rm−1 × R+. Let f ∈ Ct(Rm−1 × R+).

Let [t] be the integer part of t. Let a1, · · · , a[t]+1 be real numbers which are chosen later. Define
Ef := f on Rm−1 × R+ and

Ef(x1, · · · , xn) :=

[t]+1∑
k=1

akf(x1, · · · , xn−1,−kxn)

otherwise. It is easy to see that Ef is continuous on Rm. Now we will choose ak such that
Ef ∈ C[t]. If we can do so, we also get Ef ∈ Ct because D[t]Ef is Ct−[t] on Rm−1 × R+,

hence, on the whole Rm by its defining formula. One only needs to be concerned with the
xn-direction. Direct computations show that

∂lxnEf(x1, · · · , xn−1, 0) =

( [t]+1∑
k=1

(−k)lak

)
∂lxnf(x1, · · · , xn−1, 0),
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for 0 ≤ l ≤ [t]. The regularity condition onEf is equivalent to the linear system
∑[t]+1

k=1 (−k)lak =

1 for 0 ≤ l ≤ [t]. Its determinant is a Vandermonde one. Hence the system has a unique
solution (a1, · · · , a[t]+1). When f |∂Ω = 0, it is clear from the defining formula of Ef that
Ef |∂Ω = 0. The proof is finished.

Proposition 1.2.5. For every α ∈ (0, 1) and every k ∈ N∗, we have(
C̃0(Ω), C̃k(Ω)

)
α,∞ ⊃ C̃

αk(Ω), (1.2.8)

where the last inclusion means a continuous inclusion between Banach spaces.

Proof. Let f ∈ C̃αk(Ω). Put t := αk. We write below . to indicate ≤ up to a constant indepen-
dent of (f, ε). By Lemma 1.2.4, we can extend f to be a function F in Ct(Rm) with

‖F‖Ct(Rm) ≤ C‖f‖C̃t(Ω),

for some constant C independent of f and F |∂Ω = 0. Let Br denotes the ball of radius r > 0

centered at 0 in Rm and B+
r denotes the subset of Br consisting of x = (x1, · · · , xn) with

xn ≥ 0. Since Ω is compact, we can cover ∂Ω by a finite number of small open subsets
{Uj}1≤j≤N of Rm such that in each Uj , by a suitable change of coordinates Ψj , we have

Ψj

(
Ω ∩ Uj

)
= B+

2

and Ψj

(
∂Ω ∩ Uj

)
= B+

2 ∩ {xn ≥ 0}. Without loss of generality, we can suppose that Ψ−1
j (B+

1 )

also covers ∂Ω. Put
U0 := Ω\ ∪1≤j≤N Ψ−1

j (B+
1 ).

The family {Uj}0≤j≤N covers Ω. Let {χj}0≤j≤N be smooth functions of Rm such that 0 ≤
χj ≤ 1 for 0 ≤ j ≤ N, and suppχj b Ψ−1

j (B5/4) for 1 ≤ j ≤ N and suppχ0 b U0, and∑
0≤j≤N χj = 1 on Ω.

Define Fj := (χjF )◦Ψ−1
j . By the properties of (Ψj , F ) mentioned above, we have Fj |xn=0 =

0. Let χ be a nonnegative smooth function on Rm which is compactly supported on B1 such
that

∫
Rm χdx = 1. Taylor’s expansion for Fj gives

Fj(x) = Fj(x− y) +DFj(x− y)y + · · ·+ 1

[t]!
D[t]Fj(x− y)y[t] +Rj(x,y)y[t], (1.2.9)

where Rj(x,y) is, for x fixed, a Ct−[t] linear functional on (Rm)[t] and we have

Rj(x, 0) = 0, ‖Rj‖Ct−[t] . ‖Fj‖Ct ≤ C‖f‖Ct .

Hence, one gets

|Rj(x,y)| . |y|t−[t]‖f‖Ct . (1.2.10)

Put
ε0 := min{1/4,dist(U0, ∂Ω)}.
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Let ε ∈ (0, ε0). For 0 ≤ j ≤ N, we define

Fj,ε(x) :=

∫
Rm

[
Fj(x− εy) +DFj(x− εy)(εy) + · · ·+ 1

[t]!
D[t]Fj(x− εy)(εy)[t]

]
χ(y)dy.

(1.2.11)

Observe that F0,ε is a smooth function in C̃∞(Ω) by the choice of ε and Fj,ε is smooth on Rm
and compactly supported on B3/2 for 1 ≤ j ≤ N. A property of the convolution implies that
Fj,ε converges to Fj in C0-topology. Precisely, using (1.2.9), (1.2.11) and (1.2.10) yields that

|Fj,ε(x)− Fj(x)| ≤ ε[t]
∫
Rm
|Rj(x, εy)|χ(y)dy ≤ Cεt‖f‖Ct , (1.2.12)

for every x. Let τ be a smooth function on R compactly supported on [−2, 2] such that τ ≡ 1

on [−3/2, 3/2]. Define

F ′j,ε(x1, · · · , xn) := Fj,ε(x1, · · · , xn−1, xn)− τ(xn)Fj,ε(x1, · · · , xn−1, 0),

for 1 ≤ j ≤ N and we put F ′0,ε := F0,ε for consistence. We immediately see that F ′j,ε = 0 on
{xn = 0} and suppF ′j,ε ⊂ B2. As a consequence, F ′j,ε ◦ Ψj is smooth on Rm and vanishes on
∂Ω. We deduce from (1.2.12) and the fact that Fj |{xn=0} ≡ 0 that

|F ′j,ε(x)− Fj(x)| ≤ |Fj,ε(x)− Fj(x)|+
|Fj,ε(x1, · · · , xn−1, 0)− Fj(x1, · · · , xn−1, 0)| ≤ 2Cεt‖f‖Ct . (1.2.13)

Define
g1,ε :=

∑
0≤j≤N

F ′j,ε ◦Ψj |Ω ∈ C̃
∞(Ω)

and g0,ε := f − g1,ε ∈ C̃0(Ω). We have f = g0,ε + g1,ε. In view of (1.2.6), we have to estimate
‖g0,ε‖C̃0(Ω) and ‖g1,ε‖C̃k(Ω). Since f =

∑
0≤j≤N Fj ◦Ψj , we have

g0,ε =
∑

0≤j≤N
(Fj ◦Ψj − F ′j,ε ◦Ψj).

Taking into account (1.2.13), one gets

‖g0,ε‖C̃0(Ω) . ε
t‖f‖C̃t(Ω). (1.2.14)

For 0 ≤ l ≤ [t], we define

Gj,l(x,y) := DlFj(y) +Dl+1Fj(y)(x− y) + · · ·+ 1

([t]− l)!
D[t]Fj(y)(x− y)[t]−l

which is the Taylor expansion up to the ([t] − l) order of DlFj(x) at y. Thus arguing as in
(1.2.10), we get

|Gj,l(x,y)−DlFj(x)| . ‖f‖Ct |x− y|t−l. (1.2.15)
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The equality (1.2.11) can be rewritten as

Fj,ε(x) = ε−m
∫
Rm

[
Fj(y

′) +DFj(y
′)(x− y′) + · · ·+ 1

[t]!
D[t]Fj(y

′)(x− y′)[t]
]
χ(

x− y′

ε
)dy′.

Differentiating the last equality in x for k′ times gives

Dk′
x Fj,ε(x) = ε−m−k

′+l
∑

0≤l≤min{k′,[t]}

∫
Rm

Gj,l(x,y
′)⊗Dk′−lχ(

x− y′

ε
)dy′ (1.2.16)

= ε−k
′+l

∑
0≤l≤min{k′,[t]}

∫
Rm

Gj,l(x,x− εy)⊗Dk′−lχ(y)dy

by a suitable change of coordinates. Since
∫
Rm D

l
xχ(y)dy = 0 for any l ≥ 1, we obtain∫

Rm
Gj,l(x,x− εy)⊗Dk′−lχ(y)dy =

∫
Rm

(
Gj,l(x,x− εy)−DlFj(x)

)
⊗Dk′−lχ(y)dy

(1.2.17)

which is of absolute value . εt−l‖f‖Ct by using (1.2.15) and the fact that suppχ ⊂ B1.

Combining (1.2.16) with (1.2.17) gives

|Dk′
x Fj,ε(x)| . ε−k′+t‖f‖Ct

which implies that

‖g1,ε‖C̃k(Ω) . ε
−k+t‖f‖Ct (1.2.18)

by choosing k′ = k. Taking into account (1.2.14), (1.2.18) and (1.2.5), one deduces that

ε−αkK
(
εk, f ; C̃0(Ω), C̃k(Ω)

)
≤ εt

(
‖g0,ε‖C̃0 + εk‖g1,ε‖C̃k

)
. ‖f‖C̃t(Ω),

for every ε ∈ (0, ε0). When ε ≥ ε0, since

f = f + 0 ∈ C̃0(Ω) + C̃1(Ω),

we have
ε−αkK

(
εk, f ; C̃0(Ω), C̃k(Ω)

)
≤ ε−αk0 ‖f‖C̃0(Ω) ≤ ε

−αk
0 ‖f‖C̃αk(Ω).

Hence, f ∈
(
C̃0(Ω), C̃k(Ω)

)
α,∞. The proof is finished.

For every h ∈ Rm and every a function g on Rm, define the operator

∆hg(x) := g(x+ h)− g(x)

for every x ∈ Rm. The following property is crucial for the next proposition.

Lemma 1.2.6. Let α ∈ (0, 1) and l be an integer ≥ 1. For g ∈ Cαb (Rm), we put

‖g‖α,∆,l := ‖g‖C0 + sup
x,h∈Rm,h6=0

|∆l
hg|
|h|α

·

Then the last formula defines a norm on Cαb (Rm) which is equivalent to its usual Cα norm. More
precisely, there exists a positive constant Cl,α depending only on (l, α) such that for every g, we
have

C−1
l,α ‖g‖Cα ≤ ‖g‖α,∆,l ≤ Cl,α‖g‖Cα .
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Proof. This is a simplification of Lemma 1.13.4 in [78]. When l = 1, the two norms are
identical. Consider l ≥ 2. Observe that it is enough to prove the desired result for l = 2

because the general case can easily follow by induction. It is clear that ‖g‖α,∆,2 ≤ 2‖g‖Cα . We
now prove the converse inequality. The key argument is the following formula:

g(x+ h)− g(x) =
1

2

(
g(x+ 2h)− g(x)

)
− g(x+ 2h)− 2g(x+ h) + g(x)

2
.

Dividing the last equality by |h|α gives

|g(x+ h)− g(x)|
|h|α

≤ 2α−1 |g(x+ 2h)− g(x)|
|2h|α

+
|g(x+ 2h)− 2g(x+ h) + g(x)|

2|h|α
.

By taking the supremum over {(x, h) ∈ R2m, h 6= 0} in the last inequality, we deduce that

‖g‖Cα ≤ 2α−1‖g‖Cα + ‖g‖α,∆,2.

Since 2α−1 < 1 we get the desired conclusion. The proof is finished.

Proposition 1.2.7. Let k be a positive integer and let α be a real number in (0, 1). Assume that
αk ∈ (0, 1). Then we have (

C̃0(Ω), C̃k(Ω)
)
α,∞ ⊂ C̃

αk(Ω). (1.2.19)

Proof. Let take an element f ∈
(
C̃0(Ω), C̃k(Ω)

)
α,∞. Suppose that f = g0 + g1 with g0 ∈ C̃0(Ω)

and g1 ∈ C̃k(Ω). We have ∆k
hf = ∆k

hg0 + ∆k
hg1. By using Taylor’s expansion of g1, observe

that |∆k
hg1| ≤ C|h|k‖g1‖Ck for some constant C independent of (g1, h). On the other hand,

|∆k
hg0| ≤ 2l‖g0‖C0 . Combining these inequalities gives

|∆k
hf | ≤ 2l‖g‖C0 + C|h|k‖g1‖Ck . ‖g‖C0 + |h|k‖g1‖Ck ,

for every (g0, g1) with f = g0 + g1. Taking the infimum in the last inequality in (g0, g1), we
obtain

|∆k
hf | . K

(
hk, f ; C̃0(Ω), C̃1(Ω)

)
≤ |h|αk‖f‖(

C̃0(Ω),C̃k(Ω)
)
α,∞

.

As a consequence, one gets

‖f‖αk,∆,k . ‖f‖(C̃0(Ω),C̃k(Ω)
)
α,∞

.

By Lemma 1.2.6 and the hypothesis that αk < 1, we obtain the desired result. The proof is
finished.

Corollary 1.2.8. For every α ∈ (0, 1), every real nonnegative numbers t1 and t2, we have(
C̃t1(Ω), C̃t2(Ω)

)
α,∞ ⊃ C̃

αt2+(1−α)t1(Ω). (1.2.20)

Proof. For simplicity, we give a proof for t2 = k ∈ N∗ and t1 = β ∈ [0, 1). The general case
can be deduced by using similar arguments. By a consequence of the reiteration theorem (see
[53, Re. 1.3.7]), we have the following general formula:(

(A0, A1)θ,∞, A1

)
α,∞ = (A0, A1)(1−α)θ+α,∞.
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Applying the last equality to

A0 = C̃0(Ω), A1 = C̃k(Ω) and θ = β/k

and using the fact that (A0, A1)θ,∞ = C̃β(Ω) (by Proposition 1.2.7 and 1.2.5), we obtain the
desired inclusion. The proof is finished.

Since (R,R)α,∞ = R for any α ∈ (0, 1), applying Theorem 1.2.3 to

A0 = C̃t0(Ω), A1 = C̃t2(Ω), B0 = B1 = R,

and then using Corollary 1.2.8, we obtain the following result.

Corollary 1.2.9. Let Ω be a bounded open subset of Rm with smooth boundary. Let t0, t1 and t2
be three real numbers such that 0 ≤ t0 < t1 < t2. Let S be a bounded linear map from C̃t0(Ω) to
R. Then the restriction S|C̃tj (Ω) of S to C̃tj (Ω) for j = 1 or 2 is also a bounded linear map from

C̃tj (Ω) to R and
‖S|C̃t1 (Ω)‖ ≤ c‖S|C̃t0 (Ω)‖

t∗‖S|C̃t2 (Ω)‖
1−t∗ ,

where c is a constant independent of S and t∗ is the unique real number for which t1 = t∗t0 +

(1− t∗)t2.

1.3 Analytic discs partly attached to a generic submanifold

Firstly we fix some notations which will be valid throughout the rest of paper. For every
Riemannian smooth manifold Y, any a ∈ Y and r ∈ R+, we denote by BY (a, r) the ball of
radius r centered at a of Y and by volY the Riemannian volume form of Y . When Y = Rm
for some m ∈ N with the Euclidean metric, we write Bm(a, r) instead of BY (a, r) and Bm
instead of Bm(0, 1). In particular, when Y = C ' R2 and a = 0, we put Dr := B2(0, r) and
D := B2(0, 1). For every m ∈ N∗, we identify Cm with R2m via the formula Cm = Rm + iRm.

Let ∂D be the boundary of D and ∂+D := {ξ ∈ D : Re ξ ≥ 0}. We sometimes identify ξ ∈ D
with θ ∈ (−π, π] by letting ξ = eiθ. An analytic disc f in X is a holomorphic mapping from D
to X which is continuous up to the boundary ∂D of D. For an interval I ⊂ ∂D, f is said to be
I-attached to a subset E ⊂ X if f(I) ⊂ E. When I = ∂+D, an analytic disc I-attached to E is
said to be half-attached to E.

Let K be a generic immersed C3 submanifold of X. Observe that the dimension of K is at
least n. Throughout the paper, we only consider the case where dimK = n, hence its codimension
d equals n. This is in fact the most interesting case and the general case will be easily deduced
from it. In Section 1.5, we will explain the necessary modifications to get Theorem 1.1.4 when
dimK > n.

Our goal is to for each a ∈ K construct a C2,1/2-differentiable family of analytic discs
partly attached to K which covers an open neighborhood of a in X. It should be noted that
any family of discs partly attached to K degenerates near K due to its attachment to K. Con-
trolling such behaviour around K is actually the key point in this section. We also need that
the part of this family lying in K must cover an open neighborhood of 0 in K. Constructing
analytic discs is an important tool in Cauchy-Riemann geometry. Generally, one uses a suit-
able Bishop-type equation together with a choice of initial data depending on situations to
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obtain the desired result. The reader may also consult [1, 58, 59] and references therein for
more information. In what follows, we will apply the same strategy combining with the ideas
from [82].

The following local coordinates are frequently used in the Cauchy-Riemann geometry.

Lemma 1.3.1. Through every point a of K, there exist local holomorphic coordinates (W, z) of
X around a such that in that local coordinates, the point a is the origin and K ∩W is the graph
over Bn of a C3 map h from Bn to Rn which satisfies Djh(0) = 0 with j = 0, 1, 2, where Dh
denotes the differential of h. Moreover, ‖h‖C3 is bounded uniformly in a ∈ K̃.

Proof. The existence of such h with h(0) = Dh(0) = 0 is well-known, see [1] for example.
In order to obtain the additional property D2h(0) = 0, one will need to perform a change of
coordinates, we refer to [58, Sec. 6.10] for details. The proof is finished.

From now on, fix an arbitrary point a ∈ K and we confine ourselves to the local chart
described in Lemma 1.3.1. In other words, we will work on Cn and

K ′ := {z = x + ih(x) ∈ Cn : x ∈ Bn},

where we have h(0) = Dh(0) = 0. For most of the time, the last condition is enough for our
purposes, we will only need D2h(0) = 0 in the proof of Proposition 1.4.5. The property of h
yields that there is a constant c0 for which

|h(x)| ≤ c0|x|2, |Dh(x)| ≤ c0|x|, (1.3.1)

for every x ∈ Bn.
In this paragraph, we prepare some useful facts about harmonic functions on the unit disc

which will be indispensable for studying Bishop-type equations later. Denote by z = x+ iy the
complex variable on C and by ξ = eiθ the variable on ∂D. Let u0(ξ) be an arbitrary continuous
function on ∂D. Recall that u0 can be extended uniquely to be a harmonic function on D which
is continuous on D. Since this correspondence is bijective, without stating explicitly, we will
freely identify u0 with its harmonic extension on D. We will write u0(z) = u0(x + iy) to
indicate the harmonic extension of u0(eiθ). It is well-known that the Cauchy transform of u0,

given by

Cu0(z) :=
1

2π

∫ π

−π
u0(eiθ)

eiθ + z

eiθ − z
dθ,

is a holomorphic function on D whose real part is u0. Let T u0 be the imaginary part of Cu0.

Decomposing the last formula into the real and imaginary parts, we obtain

u0(z) =
1

2π

∫ π

−π

(1− |z|2)

|eiθ − z|2
u0(eiθ)dθ. (1.3.2)

and

T u0(z) =
1

2π

∫ π

−π

(ze−iθ − z̄eiθ)
i|eiθ − z|2

u0(eiθ)dθ.

The function T u0 is harmonic on D but is not always continuous up to the boundary of D.
Let k be an arbitrary natural number and let β be an arbitrary number in (0, 1). A result of
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Privalov (see [58, Th. 4.12]) implies that if u0 belongs to Ck,β(∂D), then T u0 is continuous
up to ∂D and ‖T u0‖Ck,β(∂D) is bounded by ‖u0‖Ck,β(∂D) times a constant independent of u0.

Hence, the linear self-operator of Ck,β(∂D) defined by sending u0 to the restriction of T u0

onto ∂D is bounded and called the Hilbert transform. For simplicity, we also denote it by T .
For our later purposes, it is convenient to use a modified version T1 of T defined by

T1u0 := T u0 − T u0(1).

Hence we always have T1u0(1) = 0 and

∂θT1u0 = ∂θT u0 = T ∂θu0, (1.3.3)

provided that u0 ∈ C1,β(∂D) with β ∈ (0, 1), see [58, p.121] for a proof. The boundedness of
T on Ck,β(∂D) implies that there is a constant Ck,β > 1 such that for any v ∈ Ck,β(∂D) we
have

‖T1v‖Ck,β(∂D) ≤ Ck,β‖v‖Ck,β(∂D). (1.3.4)

Extending u0, T1u0 harmonically to D. By construction, the function f(z) := −T1u0(z)+iu0(z)

is holomorphic on D and continuous on D provided that u0 is in Cβ(∂D) with 0 < β < 1. By
[59, Th. 4.2], ‖f‖Ck,β(D) is bounded by ‖f‖Ck,β(∂D) times a constant depending only on (k, β).

Since ‖u0‖Ck,β(D) ≤ ‖f‖Ck,β(D) and ‖f‖Ck,β(∂D) ≤ (1 + Ck,β)‖u0‖Ck,β(∂D) by (1.3.4), we have

‖u0‖Ck,β(D) ≤ C
′
k,β‖u0‖Ck,β(∂D), (1.3.5)

for some constant C ′k,β depending only on (k, β). A direct consequence of the above inequal-
ities is that when u0 is smooth on ∂D, the associated holomorphic function f is also smooth
on D.

Lemma 1.3.2. There exist a function u0 ∈ C∞(∂D) and two positive constants (θu0 , cu0) such
that u0(eiθ) = 0 for θ ∈ [−θu0 , θu0 ] ⊂ [−π/2, π/2] and ∂xu0(1) = −1 and u0(z) > cu0(1 − |z|)
for every z ∈ D.

Proof. Let u be a smooth function on ∂D vanishing on ∂+D. By Poisson’s formula, we have

u(z) =
1

2π

∫ π

−π

(1− |z|2)

|eiθ − z|2
u(eiθ)dθ. (1.3.6)

Differentiating (1.3.6) gives

∂xu(1) =
1

2π

∫ π

−π

u(eiθ)

cos θ − 1
dθ.

Note that the last integral is well-defined because u vanishes on ∂+D. It is easy to choose a
smooth u so that the above integral is equal to −1 and u ≡ 0 on ∂+D and u(eiθ) > 0 for
|θ| ≥ 3π/2. The last property and (1.3.6) show that u(z) > 0 for every z ∈ D.

We have chosen u with the property that ∂xu(1) = −1 and u(z) > 0 for z ∈ D. This implies
that ∂xu(eiθ) ≤ −1/2 for every θ ∈ [−θ0, θ0] ⊂ (−π/2, π/2) for θ0 close enough to 1. Since u
vanishes on ∂+D, we have

0 = ∂θu(eiθ) = −∂xu(eiθ) sin θ + ∂yu(eiθ) cos θ
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which yields

∂yu(eiθ) = ∂xu(eiθ) tan θ (1.3.7)

for θ ∈ [−θ0, θ0]. Let z = |z|eiθ ∈ D such that θ ∈ [−θ0, θ0]. Taylor’s expansion for u at eiθ gives

u(|z|eiθ) = u(eiθ) + (|z| cos θ − cos θ)∂xu(eiθ) + (|z| sin θ − sin θ)∂yu(eiθ) +O
(
(1− |z|)2

)
(1.3.8)

=
(|z| − 1)∂xu(eiθ)

cos θ
+O

(
(1− |z|)2

)
(by (1.3.7)).

By our choice of θ0, the last equality gives

u(|z|eiθ) ≥ (1− |z|)/2− ‖u‖C2(D)(1− |z|)2 ≥ (1− |z|)/4, (1.3.9)

for |z| ≥ 1− 1/4‖u‖−1
C2(D)

. When |z| ≤ 1− 1/4‖u‖−1
C2(D)

, we have u(z) ≥ c for some constant c
independent of z. This combined with the fact that (1−|z|) ≤ 1 implies that there is a positive
constant c′ for which u(z) ≥ c′(1 − |z|) for |z| ≤ 1 − 1/4‖u‖−1

C2(D)
. In summary, we can find a

positive constant c′ for which
u(z) ≥ c′(1− |z|),

for z = |z|eiθ ∈ D with θ ∈ [−θ0, θ0].

Now let Ω be a simply connected subdomain of D with smooth boundary such that Ω

is strictly convex and Ω ∩ D = [e−iθ0/2, eiθ0/2]. By Painvelé’s theorem (see, for example, [3,
Th. 3.1] or [48, Th. 5.3.8]), there is a smooth diffeomorphism Φ from D to Ω which is a
biholomorphism from D to Ω and Φ(1) = 1. Define u′0 := u ◦Φ which is a smooth function on
D and harmonic on D. We immediately have u′0(z) > 0 on D.

Since Φ(1) = 1 and Φ sends ∂D to ∂Ω, there is a small positive constant θ′ such that
Φ([e−iθ

′
0 , eiθ

′
0 ]) is contained in [e−iθ0/2, eiθ0/2]. This yields u′0(eiθ) = 0 for |θ| ≤ θ′0 and Re2 Φ(eiθ)+

Im2 Φ(eiθ) = 1 on [e−iθ
′
0 , eiθ

′
0 ]. Differentiating the last inequality at θ′ = 0 gives

Re Φ(1)∂y Re Φ(1) + Im Φ(1)∂y Im Φ(1) = 0

which combined with Φ(1) = 1 implies that ∂y Re Φ(1) = 0. The last equality coupled with
the fact that Φ is holomorphic implies

detD(x,y)Φ(1) =
(
∂x Re Φ(1)

)2
+
(
∂y Re Φ(1)

)2
=
(
∂x Re Φ(1)

)2
.

As a result, we have ∂x Re Φ(1) 6= 0. On the other hand, since

|Φ(1)|2 = 1 = max
x∈[0,1]

|Φ(x)|2,

we have

0 ≤ ∂x|Φ(x)|2|x=1 = Re Φ(1)∂x Re Φ(1) + Im Φ(1)∂x Im Φ(1) = ∂x Re Φ(1).

Hence, one gets ∂xΦ(1) > 0. Direct computations gives

∂xu
′
0(1) = ∂xu(1)∂x Re Φ(1) + ∂yu(1)∂x Im Φ(1) = −∂x Re Φ(1) < 0.
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Define u0 := u′0/∂x Re Φ(1). We obtain ∂xu0(1) = −1 and u0(eiθ) = 0 for |θ| ≤ θ′0. It remains
to check that

u0(z) ≥ c′′(1− |z|), (1.3.10)

for some constant c′′ > 0. Since u0(z) > 0 and u(z) > 0 on D and ∂Ω ∩ D = [e−iθ0/2, eiθ0/2], it
is enough to check (1.3.10) for z so that w = Φ(z) is close to [e−iθ0/2, eiθ0/2]. Let w = Φ(z) ∈ Ω

close to [e−iθ0/2, eiθ0/2]. By our choice of Ω, the axe Ow is transverse to ∂Ω at a unique point
w′ = Φ(z′) for z′ ∈ ∂D. The C1- boundedness of Φ−1 imply that |w −w′| ≥ c1|z − z′| for some
constant c1 independent of (z, z′). On the other hand, since Ω ⊂ D, we have |w−w′| ≤ 1−|w|.
Hence,

1− |w| ≥ c1|z − z′| ≥ c1(1− |z|),

because z′ ∈ ∂D.Writew = |w|eiθw .Note that θw ∈ (θ0, θ0) ifw is close enough to [e−iθ0/2, eiθ0/2].

We deduce that

u′0(z) = u(Φ(z)) = u(w) ≥ c′(1− |w|) ≥ c′c1(1− |z|).

Hence, one gets (1.3.10). The proof is finished.

We are now ready to introduce the Bishop equation which allows us to construct the
promised family of analytic discs. Let u0 be a function described in Lemma 1.3.2 and θu0 be the
constant there. Let τ 1, τ 2 ∈ Bn−1 ⊂ Rn−1. Define τ ∗1 := (1, τ 1) ∈ Rn and τ ∗2 := (0, τ 1) ∈ Rn
and τ := (τ 1, τ 2). Let t be a positive number in (0, 1) which plays a role as a scaling parameter
in the equation (1.3.11) below.

In order to construct an analytic disc partly attached to K, it suffices to find a map

U : ∂D→ Bn ⊂ Rn,

which is Hölder continuous, satisfying the following Bishop-type equation

Uτ ,t(ξ) = tτ ∗2 − T1

(
h(Uτ ,t)

)
(ξ)− tT1u0(ξ) τ ∗1, (1.3.11)

Indeed, suppose that (1.3.11) has a solution. For simplicity, we use the same notation Uτ ,t(z)

to denote the harmonic extension of Uτ ,t(ξ) to D. Let Pτ ,t(z) be the harmonic extension of
h
(
Uτ ,t(ξ)

)
to D. Define

F (z, τ , t) := Uτ ,t(z) + iPτ ,t(z) + it u0(z) τ ∗1

which is a family of analytic discs parametrized by (τ , t). For any ξ ∈ [e−iθu0 , eiθu0 ], the
defining formula of F and the fact that u0 ≡ 0 on [e−iθu0 , eiθu0 ] imply that

F (ξ, τ , t) = Uτ ,t(ξ) + iPτ ,t(ξ) = Uτ ,t(ξ) + ih
(
Uτ ,t(ξ)

)
∈ K.

In other words, F is [e−iθu0 , eiθu0 ]-attached to K. In what follows, it is convenient to regard
Uτ ,t(z) as a function of the variable (z, τ ).
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Proposition 1.3.3. There are a positive number t1 ∈ (0, 1) and a real number c1 > 0 satisfying
the following property. For any t ∈ (0, t1] and any τ ∈ B2

n−1, the equation (1.3.11) has a unique
solution Uτ ,t which is C2, 1

2 in (ξ, τ ) and such that

‖Dj
(ξ,τ )Uτ ,t‖C 1

2 (∂D)
≤ c1t, (1.3.12)

for any τ ∈ B2
n−1 and j = 0, 1 or 2, where D(ξ,τ ) is the differential with respect to both (ξ, τ )

and D2
(ξ,τ ) := D(ξ,τ ) ◦D(ξ,τ ).

Proof. This is a direct consequence of a general result due to Tumanov, see [59, Th. 4.19] or
see [82, Pro. 4.2] for a more simple proof adapted to our present situation.

Let Uτ ,t be the unique solution of (1.3.11). As above we also use Uτ ,t(z) to denote its
harmonic extension to D. Let F (z, τ , t) and Pτ ,t be as above. Our goal is to study the be-
haviour of the image of the family F (·, τ , t) near K, or in other words when z is close to
[e−iθu0 , eiθu0 ] ⊂ ∂D.

Lemma 1.3.4. There exists a constant c2 so that for every t ∈ (0, t1] and every (z, τ ) ∈ D×B2
n−1,

we have

‖Dj
(z,τ )Uτ ,t(z)‖ ≤ c2t and ‖Dj

(z,τ )Pτ ,t(z)‖ ≤ c2t
2, (1.3.13)

for j = 0, 1, 2.

Proof. In view of (1.3.5) and (1.3.12), the first inequality of (1.3.13) is obvious and for the
second one, it is enough to estimate the C1/2(∂D)-norms of Dj

(ξ,τ )Pτ ,t(ξ) for j = 0, 1, 2. Since
Pτ ,t(ξ) = h

(
Uτ ,t(ξ)

)
on ∂D, we have

∂ξPτ ,t(ξ) = Dh
(
Uτ ,t(ξ)

)
∂ξUτ ,t(ξ).

This combined with (1.3.1) and (1.3.12) yields that

‖∂ξP ′z,t,τ‖C1/2(∂D) ≤ c0‖Uτ ,t‖C1/2(∂D) ‖∂ξUτ ,t‖C1/2(∂D) ≤ c0c1t
2.

By similar arguments, we also have |∂jξPτ (ξ)| . t2 with j = 0, 2. To deal with the other partial

derivatives, observe that for 0 ≤ j ≤ 2, Dj
τPτ ,t is the harmonic extension of Dj

τh
(
Uτ ,t(·)

)
to

D. Hence, in order to estimate Dk
zD

j
τPτ ,t for 0 ≤ k, j ≤ 2, we can apply the same reasoning

as above. Thus the proof is finished.

Proposition 1.3.5. There are three constants t2 ∈ (0, t1], θ0 ∈ (0, θu0) and ε0 > 0 such that for
any τ 1 ∈ Bn−1 and t ∈ (0, t2] the map F (·, τ 1, t) : [e−iθ0 , eiθ0 ]×Bn−1 → K is a diffeomorphism
onto its image which contains the graph of h over Bn(0, tε0).

Proof. By Cauchy-Riemann equations, we have

∂yUτ ,t(1) = −t∂xu0(1)τ ∗1 − ∂xPτ ,t(1) = tτ ∗1 − ∂xPτ ,t(1).

The last term is O(t2) by Lemma 1.3.4. Thus the first component of ∂yUτ ,t(1) is greater than
t/2 provided that t ≤ t2 small enough. A direct computation gives ∂yUτ ,t(1) = ∂θUτ ,t(1).

Consequently, the first component of ∂θUτ ,t(1) is greater than t/2 for t ≤ t2.
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On the other hand, by (1.3.11), we have Uτ ,t(1) = tτ ∗2 which implies ∂τ2Uτ ,t(1) is a
(n, n−1) matrix whose the fist row is 0 and the other rows form the identity matrix. Combining
with the above argument shows that Dτ2,θUτ ,t(1) is a nondegenerate matrix. This coupled
with the fact that F (eiθ, τ 1, t) = Uτ ,t(e

iθ) for θ ∈ [−θ0, θ0] implies the desired result. The
existence of ε0 is obvious. The proof is finished.

For a ∈ Cn and A ⊂ Cn, dist(a,A) denotes the distance from a to A.

Proposition 1.3.6. There are two constants t3 ∈ (0, t2], r0 > 0 such that for every t ∈ (0, t3),

the restriction F1 of F to
(
B2(1, r0)∩D

)
×B2

n−1 is a diffeomorphism onto its image and for any
(z, τ ), we have ∣∣ detDF1(z, τ , t)

∣∣ & t2n[1− |z|]n−1 (1.3.14)

and

t(1− |z|) . dist
(
F1(z, τ , t),K ′

)
. t(1− |z|). (1.3.15)

Proof. Let r0, t3 be two positive small constants to be chosen later. For the moment, we take
r0 to be small enough so that if z = |z|eiθ ∈ B2(1, r0) ∩ D, then θ ∈ (θ0, θ0), thus we have
u0(eiθ) = 0. Fix a constant t ∈ (0, t3]. Provided that t3 and r0 are small enough we will prove
in the order (1.3.15), (1.3.14) and finally that F1 is a diffeomorphism. Extend h to be a C3

function on Rn. Let Ψ : Cn → Cn defined by

Ψ(x + iy) := x + iy − ih(x).

One can see without difficulty that Ψ is a diffeomorphism sending K ′ to Bn, where we embed

Rn ↪→ Rn + iRn = Cn.

Let F ′1 := Ψ ◦ F1. We have

ImF ′1(z, τ , t) = Pτ ,t(z)− h
(
Uτ ,t(z)

)
+ tu0(z)τ ∗1 and ReF ′1(z, τ , t)(z) = Uτ ,t(z).

(1.3.16)

By the above property of Ψ, it suffices to prove the required property for (F ′1,Bn) in place
of (F1,K

′). Note that Pτ ,t(z) and h
(
Uτ ,t(z)

)
are identical on ∂D. This together with (1.3.13)

yields

Pτ ,t(z)− h
(
Uτ ,t(z)

)
= t2(1− |z|)R0(z, τ , t), (1.3.17)

where R0(z, τ , t) is C1 in (z, τ ) so that ‖R0(·, t)‖C1 . 1. Remember that t is fixed, so we do
not consider it as a variable when taking the C1 norm. On the other hand, by our choice of u0

and Lemma 1.3.2, one has u0(z) & (1− |z|). By this and (1.3.17) and (1.3.16), we obtain

dist
(
F1(z, τ , t),K ′

)
& dist

(
F ′1(z, τ , t),Rn

)
= | ImF ′1(z, τ , t)| & t(1− |z|)|τ ∗1| − t2(1− |z|).

Thus if t is sufficiently small, the first inequality of (1.3.15) follows.
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For t3 small enough, Uτ ,t(z) ∈ Bn. Hence, we get

dist
(
F1(z, τ , t),K ′

)
. dist

(
F ′1(z, τ , t),Bn

)
. | ImF ′1(z, τ , t)|.

Write z = |z|eiθ ∈ B2(1, r0) ∩ D. Hence θ ∈ [−2r0, 2r0] ⊂ (θ0, θ0) if r0 is small enough. Since
u0(eiθ) = 0, we deduce from (1.3.8) that

u0(z) = (1− |z|) + θ(1− |z|)R1(z) + (1− |z|)2R2(z), (1.3.18)

where Rj is smooth function with ‖Rj‖C1 . 1 for j = 1, 2. Put ε := max{2r0, t}. We choose
(t, r0) to be so small that ε < 1/2. Put

T0(z, τ , t) := tR0(z, τ , t) +
(
θR1(z) + (1− |z|)R2(z)

)
τ ∗1 (1.3.19)

which satisfies

‖T0‖C0 . ε, ‖DτT0‖C0 . ε (1.3.20)

because |θ| ≤ 2r0 and 1− |z| ≤ r0. Combining (1.3.18), (1.3.17) and (1.3.16) gives

ImF ′1(z, τ , t) = t(1− |z|)
[
τ ∗1 + T0(z, τ , t)

]
. (1.3.21)

Consequently, using (1.3.20) we obtain

| ImF ′1(z, τ , t)| . t(1− |z|)

which proves the second inequality of (1.3.15).
By (1.3.11) and the Cauchy-Riemann equations, we have Uτ ,t(1) = tτ ∗2 and

∂yUτ ,t(z) = −∂xPτ ,t(z)− t∂xu0(z)τ ∗1

and
∂xUτ ,t(z) = ∂yPτ ,t(z) + t∂yu0(z)τ ∗1.

Observe that
∂θUτ ,t(e

iθ) = −∂xUτ ,t(e
iθ) sin θ + ∂yUτ ,t(e

iθ) cos θ.

These above equalities combined with (1.3.13) and Taylor’s expansion to Uτ ,t(e
iθ) at θ = 0

gives

Uτ ,t(e
iθ) = tτ ∗2 + t2R3(θ, τ , t) + tθτ ∗1 + tθ2R4(θ)τ ∗1, (1.3.22)

where

R3(θ, τ , t) :=

∫ θ

0

[
∂yPτ ,t(e

is) cos s− ∂xPτ ,t(e
is) sin s

]
ds

which is of C1 norm . 1, and R4(θ) is a C1 function satisfying ‖R4‖C1 . 1. Remark that in
(1.3.22), we used the C3 differentiability of u0 and R4 comes from the remainder of the Taylor
expansion of u0 at 1 up to the order 2.

Using (1.3.22), Taylor’s expansion for ReF ′1(z, τ , t) at z̃ = eiθ implies

ReF ′1(z, τ , t) = tτ ∗2 + tθτ ∗1 + t2R3(θ, τ , t) + tθ2R4(θ)τ ∗1 + t(1− |z|)R5(z, τ , t), (1.3.23)
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for some C1 function R5(z, τ , t) with ‖Rj(·, t)‖C1 . 1. Define

T1(z, τ , t) := tR3(θ, τ , t) + θ2R4(θ)τ ∗1 + (1− |z|)R5(z, τ , t), (1.3.24)

which satisfies

‖Dτ ,θT1‖C0 . ε, (1.3.25)

where we use the polar coordinate (|z|, θ) for z. Combining (1.3.23), (1.3.25), (1.3.21) and
(1.3.20) gives (1.3.14).

Let ρ = tρ2 + i tρ1 be an arbitrary point in the image of F ′. This means that

ρ = F ′1(z0, τ 0, t), (1.3.26)

for some (z0, τ 0). Let θ0 ∈ (−π/2, π/2) be the argument of z0. Then z0 = |z0|eiθ0 . We will
prove that the equation

F ′1(z, τ , t) = ρ (1.3.27)

has a unique solution, i.e F ′1 is injective. The equation (1.3.27) is equivalent to the system of
the two following equations

ReF ′1(z, τ , t) = tρ2 (1.3.28)

and

ImF ′1(z, τ , t) = tρ1. (1.3.29)

Write Tj = (Tj1, · · · , Tjn) for j = 0 or 1 and ρj = (ρj1, · · · , ρjn) for j = 1, 2. Define

ρ̃1 :=
ρ1

1− |z|
·

We also write ρ̃1 = (ρ̃11, · · · , ρ̃1n). Recall that τ ∗j = (1, τ j) for j = 1 or 2 and τ j =

(τj1, · · · , τj(n−1)). We have

ρ̃1k − ρ̃11
ρ1k

ρ11
= 0, (1.3.30)

for 2 ≤ k ≤ n. The variable (ρ̃11, θ) will be used as a substitute for z. If (z, τ , t) is a solution
of (1.3.27), identifying the first component of (1.3.21) and (1.3.29) imply

1 + T01(z, τ , t) = ρ̃11

which in turn yields |ρ̃11 − 1| . ε by (1.3.20). Hence if (z, τ , t) is a solution of (1.3.27), we
get

1/2 ≤ ρ̃11 ≤ 3/2. (1.3.31)

By (1.3.29) again and the fact that τ 1 ∈ Bn−1, one also gets∣∣ρ1k

ρ11

∣∣ ≈ |τ1(k−1)| ≤ 3/2, (1.3.32)
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for 2 ≤ k ≤ n. Since z = |z|eiθ, we have

z =
(
1− ρ11

ρ̃11

)
eiθ.

From now on, we will consider T0, T1 as functions of (ρ̃11, θ, τ ). Define

G = (G1, G2, G3) : B2
n−1 × [

1

2
,
3

2
]× Rn−1 × [−2r0, 2r0]→ Rn × Rn × Rn−1

by putting

G1(τ , ρ̃1, θ) := τ ∗1 + T0(θ, ρ̃11, τ , t)− ρ̃1, G2(τ , ρ̃1, θ) := τ ∗2 + θτ ∗1 + T1(θ, ρ̃11, τ , t)− ρ2

and
G3(τ , ρ̃1, θ) :=

(
ρ̃12 − ρ̃11

ρ1k

ρ11
, · · · , ρ̃1n − ρ̃11

ρ1k

ρ11

)
.

By (1.3.30), (1.3.23) and (1.3.21), resolving the system (1.3.28)-(1.3.29) is equivalent to
finding (τ , ρ̃1, θ) for which

G(τ , ρ̃1, θ) = 0. (1.3.33)

By (1.3.26), we know that a0 := (τ 0, ρ̃0
1, θ

0) is a solution of (1.3.33), where

ρ̃0
1 :=

ρ1

1− |z0|
.

Suppose that there is an another solution a = (τ , ρ̃1, θ) of (1.3.33). By a direct computation,
one gets

∂ρ̃11(1− |z|) = −ρ11

ρ̃2
11

= −(1− |z|)ρ̃−1
11 = O(1− |z|) . ε

by (1.3.31). This coupled with (1.3.19) and (1.3.24) yields

|T0(a, t)− T0(a0, t)| . ε|a− a0|+ |θ − θ′|. (1.3.34)

and

|T1(a, t)− T1(a0, t)| . ε|a− a0|. (1.3.35)

Using (1.3.35) and identifying the first component of the equation G2(τ , ρ̃1, θ) = 0 imply

|θ − θ0| ≤ |T1(a, t)− T1(a0, t)| . ε|a− a0|. (1.3.36)

By doing the same thing for G1(τ , ρ̃1, θ) = 0 and using (1.3.36), we also obtain

|ρ̃11 − ρ̃0
11| ≤ |T0(a, t)− T0(a0, t)| . ε|a− a0|.

Using the last inequality, the equality G3(τ , ρ̃1, θ) = 0 and (1.3.32), one infers

|ρ̃1 − ρ̃0
1| . |ρ̃11 − ρ̃0

11| . ε|a− a0|. (1.3.37)
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Similarly, using G1(τ , ρ̃1, θ) = 0 gives

|τ 1 − τ 0
1| ≤ |T0(a, t)− T0(a0, t)|+ |ρ̃1 − ρ̃0

1| . ε|a− a0|. (1.3.38)

Finally, using G2(τ , ρ̃1, θ) = 0 gives

|τ 2 − τ 0
2| . ε|a− a0|. (1.3.39)

Summing the inequalities from (1.3.36) to (1.3.39) and taking into account that

|a− a0| ≤ |τ 2 − τ 0
2|+ |τ 1 − τ 0

1|+ |ρ̃1 − ρ̃0
1|+ |θ − θ0|

show that a = a0. This means that (1.3.33) has a unique solution, or equivalently, so does
(1.3.27) if r0 and t are small enough. The proof is finished.

Let Ω be a simply connected subdomain of D with smooth boundary such that Ω is strictly
convex and Ω∩D = [e−iθ1 , eiθ1 ] for some θ1 ∈ (0, θ0) and Ω ⊂ B2(1, r0). By Painvelé’s theorem
as in the proof of Lemma 1.3.2, there is a smooth diffeomorphism Φ from D to Ω which is a
biholomorphism from D to Ω and Φ(1) = 1.

Define F̃ (z, τ , t) := F
(
Φ(z), τ , t

)
which is again a C2,1/2 family of analytic discs partly

attached to K.

Proposition 1.3.7. (i) There are positive constants θ̃0 and ε̃0 so that for every τ 1 ∈ Bn−1 and
t ∈ (0, t3], the restriction map F̃ (·, τ 1, t) : [e−iθ̃0 , eiθ̃0 ]×Bn−1 → K ′ is a diffeomorphism onto its
image which contains the graph of h over Bn(0, tε̃0).

(ii) Let t3 be the constant in Proposition 1.3.6. Then for any t ∈ (0, t3], the map F̃ (·, t) is a
diffeomorphism from D× B2

n−1 onto its image in Dn ⊂ Cn, and for any (z, τ ) we have∣∣detDF̃ (z, τ , t)
∣∣ & tn+1 distn−1

(
F̃ (z, τ , t),K ′

)
(1.3.40)

and

t(1− |z|) . dist
(
F̃ (z, τ , t),K ′

)
. (1.3.41)

Proof. Property (i) is a direct consequence of Propositions 1.3.5. By the differentiability of
Φ−1 on Ω, we have (1−|Φ(z)|) & 1−|z| for every z ∈ D. Hence, by (1.3.15), we get (1.3.41).
The inequality (1.3.40) follows immediately from the fact that∣∣detDF1(z, τ , t)

∣∣ & tn+1 distn−1
(
F1(z, τ , t),K ′

)
which is in turn implied by (1.3.15) and (1.3.14). The proof is finished.

Using the local coordinates of K at the beginning of this section and choosing t = t3, the
last proposition can be rephrased as follows.

Proposition 1.3.8. Let a be an arbitrary point of K. Then there exist positive constants ε̃a, θ̃a
and a C2,1/2 diffeomorphism F̃a : D × B2

n−1 → X onto its image such that the two following
properties hold:

(i) for every τ 1 ∈ Bn−1, the restriction map F̃a(·, τ 1) : [e−iθ̃a , eiθ̃a ] × Bn−1 → K is a
diffeomorphism onto its image which contains the graph of h over BK(a, ε̃a).
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(ii) there is an open relatively compact neighborhood K ′a of a in K such that for any (z, τ ),

we have ∣∣detDF̃a(z, τ )
∣∣ & distn−1

(
F̃a(z, τ ),K ′a

)
(1.3.42)

and

(1− |z|) . dist
(
F̃a(z, τ ),K ′a

)
. (1.3.43)

1.4 Some estimates for p.s.h. functions

In this section, we will prove some key estimates for p.s.h functions and their ddc on Cn.
For a Borel subset A of Rm with m ∈ N, denote by |A| the volume of A with respect to the
canonical volume form volRm . In what follows, for simplicity, we will write

∫
A f instead of∫

A fdvolRm for every Borel set A ⊂ Rm and every integrable function f on A. In particular,
this convention is applied to Cn = R2n.

Lemma 1.4.1. Let V be an open subset of Cn and let V1 be a compact subset of V. Let ϕ be a
p.s.h. function on V. Then there exists a constant c independent of ϕ such that for any Borel set
V2 ⊂ V1, we have ∫

V2

|ϕ| ≤ c|V2|max{1,− log |V2|}
∫
V
|ϕ|. (1.4.1)

Proof. If ϕ ≡ 0 or
∫
V |ϕ| = ∞, then there is nothing to prove. Now suppose ϕ 6= 0 and∫

V |ϕ| < ∞. Let ϕ1 = ϕ/
∫
V |ϕ|. We have

∫
V |ϕ1| = 1. As a result, there exist two positive

constants (c1, α1) independent of ϕ1 for which∫
V1

eα1|ϕ1| ≤ c1. (1.4.2)

Let 1V2 be the characteristic function of V2. Let µ := |V2|−11V2volCn which is a probability
measure supported in V2. We have∫

V2

|ϕ1| = α−1
1

∫
V2

log eα1|ϕ1| = α−1
1 |V2|

∫
V2

log eα1|ϕ1| dµ.

This together with the concavity of the log function implies∫
V2

|ϕ1| ≤ α−1
1 |V2| log

∫
V2

eα1|ϕ1| dµ

which, by (1.4.2), is less than or equal to

α−1
1 |V2|

(
log c1 − log |V2|

)
.

Hence (1.4.1) follows. The proof is finished.

Now let h,K ′ be as in Section 1.3. Let ε be a real positive number and K ′ε the compact
subset of Cn consisting of points of distance ≤ ε to K ′. Obviously, the volume of K ′ε is . εn.

Using Lemma 1.4.1 for V2 = K ′ε, we get the following.
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Corollary 1.4.2. Let V be an open subset of Cn containing H1. Let ϕ be a p.s.h. function on V.
Then there is a constant c independent of ϕ for which∫

K′ε

|ϕ| ≤ cεn| log ε|
∫
V
|ϕ| (1.4.3)

for every ε ≤ 1/2.

Now we will give a similar estimate for the mass of ddcϕ on K ′ε. We begin with a general
result.

Lemma 1.4.3. Let V, V1, V2 be open subsets of Cn such that V2 b V1 b V. Let T be a closed
positive current of bidimension (p, p) on V and λ a real number > 1. Let ϕ and ρ be two bounded
p.s.h. functions on V. Let A be a subset of V2 and aε,ϕ be an upper bound for |ϕ| on V1 ∩ {ρ ≤ ε}
for ε > 0. Assume that ρ is bounded by 1 on V. Then there is a constant c independent of T,A, ρ, ϕ
such that ∫

A∩{ρ≤ε}
T ∧ (ddcϕ)p ≤ c[ε−1aλε,ϕ]p‖T‖V1 , (1.4.4)

for every ε ∈ (0, 1).

Proof. We prove (1.4.4) by induction on p. When p = 0, the conclusion is obvious. Suppose
(1.4.4) holds for p−1.We need to prove its validity for p. Let χ be a smooth function compactly
supported in some V ′1 b V1 such that 0 ≤ χ ≤ 1 and χ ≡ 1 on V2. Let ε be a positive constant.
Choose a constant λ′ ∈ (1, λ). Define

ρε := max{ρ, λ′ε} −max{ρ, ε}

which is the difference of two bounded p.s.h. functions on V . Clearly, we have 0 ≤ ρε ≤
(λ′ − 1)ε and ρε = (λ′ − 1)ε on {ρ ≤ ε} and ρε = 0 on {ρ ≥ λ′ε}. This yields∫

A∩{ρ≤ε}
T ∧ (ddcϕ)p ≤ ε−1

λ′ − 1

∫
V
χρεT ∧ (ddcϕ)p . ε−1

∫
V
χρεT ∧ (ddcϕ)p (1.4.5)

which is, by integration by parts, equal to

ε−1

∫
V
ρεϕdd

cχ ∧ T ∧ (ddcϕ)p−1 + ε−1

∫
V
ϕχddcρε ∧ T ∧ (ddcϕ)p−1 +R, (1.4.6)

where

R = 2ε−1

∫
V
ϕdχ ∧ dcρε ∧ T ∧ (ddcϕ)p−1.

Denote by R1 and R2 respectively the first and second terms in (1.4.6). We are now going to
estimate R1, R and finally R2. Let ω be the canonical Kähler form on Cn. Since ddcχ . ω and
|ϕ| ≤ a2ε,ϕ on suppρε, we get

R1 ≤ ε−1aλ′ε,ϕ

∫
V ′1∩{ρ≤λ′ε}

ω ∧ T ∧ (ddcϕ)p−1.
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Applying the induction hypothesis to ω ∧ T, λ′ε in place of T, ε implies

R1 ≤ ε−1aλ′ε,ϕ

∫
V ′1∩{ρ≤λ′ε}

ω ∧ T ∧ (ddcϕ)p−1 . [ε−1aλε,ϕ]p. (1.4.7)

As to R, the Cauchy-Schwarz inequality applied to a suitable scalar product gives

|R|2 ≤ ε−2

∫
V ′1

|ϕ|1{ρ≤λ′ε}dχ ∧ dcχ ∧ T ∧ (ddcϕ)p−1

∫
V ′1

|ϕ|dρε ∧ dcρε ∧ T ∧ (ddcϕ)p−1

(1.4.8)

. [ε−1aλ′ε,ϕ]p+1

∫
V ′1

dρε ∧ dcρε ∧ T ∧ (ddcϕ)p−1

by induction hypothesis and the fact that dρε ∧ dcρε is positive and supported on {ρ ≤ λ′ε}.
Denote by R′ the last integral. Since ρε is the difference of two bounded p.s.h. functions on V,
so is ρ2

ε . More precisely, since |ρ| ≤ 1 on V we can find four p.s.h function ψj with 1 ≤ j ≤ 4

so that they are bounded independent of ε and

ρ2
ε = ψ1 − ψ2 and ρε = ψ3 − ψ4. (1.4.9)

We also have
ddcρ2

ε = 2dρε ∧ dcρε + 2ρεdd
cρε.

Note that each side of the last equality is well-defined. Substituting this to the defining for-
mula of R′, then using (1.4.9), one gets

R′ ≤
4∑
j=1

∫
V ′1∩{ρ≤λ′ε}

ddcψj ∧ T ∧ (ddcϕ)p−1

which, by induction hypothesis, is .

[ε−1aλε,ϕ]p−1
4∑
j=1

‖ddcψj ∧ T‖V ′′1 ,

where V ′′1 be a relatively compact subset of V1 which is open and contains V ′1. By the Chern-
Levine-Nirenberg inequality, the last sum is . ‖T‖V1 . Combining with (1.4.8), we obtain

R ≤ [ε−1aλε,ϕ]p‖T‖V1 . (1.4.10)

Bounding R2 is done similarly. The proof is finished.

Lemma 1.4.4. Let f be a real C2 function on an open set V ⊂ Cn. Let g(t) := |t| log(|t|+ 2) for
t ∈ R. Let ω be the canonical Kähler form on Cn. Then we have

12 ddc(g ◦ f) ≥ df ∧ dcf − 2n‖D2f‖L∞(V ) ω

as currents on V.
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Proof. By direct computations, one obtains for t > 0,

g′(t) = 1− 2

2 + t
+ log(2 + t), g′′(t) =

2

(2 + t)2
+

1

2 + t

and for t < 0,

g′(t) = −1 +
2

2− t
− log(2− t), g′′(t) =

2

(2− t)2
+

1

2− t
·

For k ≥ 3,we are going to construct a sequence of C2 convex function gk of uniformly bounded
L∞ norm converging pointwise to g. To this end, we define

qk(t) :=
2

(2 + |t|)2
+

1

2 + |t|
for t ≥ 1/k

and on [−1/k, 1/k], let qk(t) be the piece-wise affine function satisfying the two following
properties:

(i) qk is affine on [−1/k, 0] and on [0, 1/k], qk(0) = 2kg′(1/k)− qk(1/k) ≥ 1,

(ii) qk is continuous on R.
The value of q(0) is in fact chosen such that∫ 1/k

−1/k
qk(t)dt = g′(1/k)− g′(−1/k).

This property ensures the existence of a unique C2 convex function gk(t) on R satisfying
gk(t) ≡ g(t) for |t| ≥ 1/k and g′′k(t) = qk(t). One can check that gk is uniformly bounded
and gk converges to g. Hence gk(f) converges weakly to g(f) as currents. On the other hand,
direct computations give

g′′k(f) ≥ min{1/3, 2k log 2− 1} = 1/3, |g′k(t)| ≤ log 3 + 2 ≤ 4

for |t| ≤ 1 and

ddcgk(f) = g′′k(f)df ∧ dcf + g′k(f)ddcf ≥ 12−1
(
df ∧ dcf − 2n‖D2f‖L∞ ω

)
.

The proof is finished.

Proposition 1.4.5. Let ϕ be a p.s.h. function on an open set V ⊂ Cn. Let A be a generic C3

submanifold of dimension n of V. Let A1 be a compact subset of A and for ε > 0, let A1,ε be the
set of points in Cn of distance ≤ ε to A1. Then there is a constant c independent of ϕ, ε for which
we have ∫

A1,ε

ddcϕ ∧ ωn−1 ≤ cεn−1

∫
V
|ϕ|, (1.4.11)

where ω is the canonical Kähler form of Cn.
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Proof. Let δ be a small positive number which will be chosen later. Observe that the question
is local. By using a partition of unity and Lemma 1.3.1, it is enough to prove the desired
result for the case where A is the graph of a C3 map h over Bn(0, 3δ) such h(0) = Dh(0) =

D2h(0) = 0 and ‖h‖C3 is bounded independently of chosen local charts (hence, in particular,
independent of δ); and A1 is the part of the graph over Bn(0, δ). We can assume that

A1,ε = {x + iy : x ∈ Bn(0, δ), |y − h(x)| ≤ ε}

and V = Bn(0, 3δ) + iBn.
Let g be the function defined in Lemma 1.4.4. We write z = (z1, · · · , zn), y = (y1, · · · , yn)

and h = (h1, · · · , hn). Since |D2h| . δ on Bn(0, 3δ), one has

|D2
(
yj − hj(x)

)
‖ . δ

for 1 ≤ j ≤ n. Using this and Lemma 1.4.4, we see that the function

ρ(z) :=
n∑
j=1

g
(
yj − hj(x)

)
satisfies

ddcρ ≥
n∑
j=1

( i
4π
dzj ∧ dz̄j − δMdzj ∧ dz̄j

)
,

for some constant M independent of δ. Thus if δ is small enough independently of ε, the
function ρ is p.s.h. on V. It is clear that A1,ε ⊂ A1 ∩ {ρ ≤ 2nε}. Let ϕ1(z) := |y − h(x)|2. A
direct computation shows that ϕ1 is also p.s.h. on V. Note that |ϕ1| . ε2 on {ρ ≤ 2ε.} Now
applying Lemma 1.4.3 to (ρ, ϕ1) and to T := ddcϕ, we obtain∫

A1,ε

ddcϕ ∧ (ddcϕ1)n−1 . εn−1‖ddcϕ‖Bn(0,2δ)+iBn(0,1/2) . ε
n−1

∫
V
|ϕ|.

The last inequality together with the fact that ddcϕ1 & ω gives the desired result. The proof
is finished.

Note that a similar technique was used by Sibony in [69] when dealing with the extension
of positive closed currents (or more generally pluripositive currents) through a CR submani-
fold. For ε ∈ (0, 1], letK ′ε be as above. The following is just a direct consequence of Proposition
1.4.5.

Corollary 1.4.6. Let V be an open subset of Cn containing K ′1. Let ϕ be a p.s.h. function on V.
Then there is a constant c independent of ϕ, ε for which we have∫

K′ε

ddcϕ ∧ ωn−1 ≤ cεn−1

∫
V
|ϕ|, (1.4.12)

where ω is the canonical Kähler form of Cn.

Now we are going to give some applications of these above estimates to our present prob-
lem. Firstly, we prove some auxiliary lemmas. Let t3, ε̃0 and θ̃0 be the constants in Proposition
1.3.7. Let F̃ be the family of analytic discs defined there. For simplicity, from now on, we
denote F̃ (z, τ , t3) by F̃ (z, τ ). Recall that the image of F̃ is contained in Dn. Put ε̃′0 := t3ε̃0.
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Lemma 1.4.7. There exists a positive constant c0 such that for any Borel function g on Dn, we
have ∫

Bn(0,ε̃′0)
|g
(
x, h(x)

)
| ≤ c0

∫
[e−iθ̃0 ,eiθ̃0 ]×B2

n−1

|g ◦ F̃ (eiθ, τ )|. (1.4.13)

Proof. This is a direct consequence of Property (i) of Proposition 1.3.7 and the change of
variables theorem. The proof is finished.

Lemma 1.4.8. Let g be a Borel function on Dn.
(i) If n = 1, then ∫

D×Bn−1(0,1)2
|g ◦ F̃ (z, τ )| ≤ c1

∫
Dn
|g(z)|,

for some constant c1 independent of g.
(ii) Assume n > 1. Let t0 and δ0 be two positive real numbers such that t0 + δ0 > n− 1 > δ0.

Let
Mg := sup

ε∈(0,1)
ε−t0

∫
K′ε

|g(z)|

and λ0 := t0 + δ0 − n+ 1. Assume Mg <∞. Then we have∫
D×B2

n−1

(1− |z|)δ0 |g ◦ F̃ (z, τ )| ≤ 2t0c1Mg

λ0

[ ∫
Dn
|g(z)|

]λ0
t0

,

for some constant c1 independent of g, t0, δ0.

Proof. When n = 1, the desired inequality is a direct application of the change of variables
theorem and (1.3.40). Consider now n > 1. Put Y := D × B2

n−1. Let ε be a small positive
number which will be chosen later. Set

Yε,0 := {(z, τ ) ∈ Y : dist
(
F̃ (z, τ ),K ′

)
≥ ε}

and
Yε,k := {(z, τ ) ∈ Y : 2−kε ≤ dist

(
F̃ (z, τ ),K ′

)
≤ 2−k+1ε},

for k ∈ N. It is clear that Y = ∪∞k=0Yε,k. By definition of K ′ε, we have

F̃ (Yε,k) ⊂ K ′2−k+1ε. (1.4.14)

Denote by volY the canonical volume form on Y. Write∫
Y

(1− |z|)δ0 |g ◦ F̃ | dvolY =
∞∑
k=0

∫
Yε,k

(1− |z|)δ0 |g ◦ F̃ | dvolY (1.4.15)

.
∞∑
k=0

∫
Yε,k

(1− |z|)δ0 |g ◦ F̃ (z, τ )| |detDF̃ (z, τ )|
distn−1

(
F̃ (z, τ ),K ′

) dvolY
(by (1.3.40))

.
∞∑
k=0

(2−kε)−n+1+δ0

∫
Yε,k

|g ◦ F̃ | |detDF̃ | dvolY ,
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by definition of Yε,k, (1.3.41) and the fact that −n + 1 + δ0 < 0. By change of variables, the
last integral equals ∫

F̃ (Yε,k)
|g|

which is, for k ≥ 1, less than or equal to∫
H

2−k+1ε

|g| ≤ (2−k+1ε)t0Mg

by definition of Mg and (1.4.14). This coupled with (1.4.15) yields that∫
Y

(1− |z|)δ0 |g ◦ F̃ | . ε−n+1+δ0

∫
Dn
|g|+ 2t0ελ0Mg

∞∑
k=1

2−kλ0 (1.4.16)

. ε−n+1+δ0

∫
Dn
|g|+ 2t0ελ0Mg

2λ0 − 1
.

Choose ε = ‖g‖1/t0
L1(Dn)

. Using (1.4.16) and the fact that 2λ0 ≥ 1 + λ0, we get the desired
inequality. The proof is finished.

The following will be crucial for our later purpose.

Corollary 1.4.9. Let V be an open subset of Cn containing K ′1 ∪ Dn. Let ϕ be a p.s.h. function
on V. Let δ ∈ (0, 1). Define γ := δ/(n− 1) if n > 1 and γ = 1 otherwise. Then we have∫

D×B2
n−1

(1− |z|)δddc(ϕ ◦ F̃ )(z, τ ) .δ ‖ϕ‖γL1(V )
. (1.4.17)

Furthermore, we have∫
{1−2ε≤|z|≤1}×B2

n−1

(1− |z|)ddc(ϕ ◦ F̃ )(z, τ ) .δ ε
1− δ(n−1)

δ+n−1 max{‖ϕ‖γ
L1(V )

, ‖ϕ‖L1(V )}, (1.4.18)

for every ε ∈ (0, 1).

Proof. Firstly we prove (1.4.17). The case where n = 1 is clear. Consider n > 1. Let V1 b V

be an open subset of V. Fix a decreasing sequence of smooth p.s.h. functions ϕl converging
pointwise to ϕ on V1 and ‖ϕl‖L1(V1) ≤ 2‖ϕ‖L1(V ). Let δ ∈ (0, 1). Since

ddcϕl =
i

π

∑
1≤j,k≤n

∂2ϕl
∂zj∂z̄k

dzj ∧ dz̄k ≥ 0,

using Corollary 1.4.6, there is a positive constant c independent of ϕ such that for every j, k, l
we have ∫

K′ε

∣∣ ∂2ϕl
∂zj∂z̄k

∣∣ ≤ cεn−1

∫
V1

|ϕl| ≤ cεn−1‖ϕ‖L1(V ) (1.4.19)

which infers that the constant Mg, defined in Lemma 1.4.8 for

g :=
∂2ϕl
∂zj∂z̄k

, t0 = n− 1, δ0 = δ,
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is finite. Hence applying that lemma to the above mentioned (g, t0, δ0) gives∫
D×B2

n−1

(1− |z|)δddc(ϕl ◦ F̃ )(z, τ ) .δ ‖ϕ‖
δ

n−1

L1(V )
. (1.4.20)

On the other hand, since ddcϕl ◦ F̃ converges weakly to ddcϕl ◦ F̃ on D, we have

lim inf
l→∞

〈
ddc
(
ϕl ◦ F̃ (·, τ )

)
, f
〉
≥
〈
ddc
(
ϕ ◦ F̃ (·, τ )

)
, f
〉
, (1.4.21)

for every positive continuous function f on D. Letting l → ∞ in (1.4.20) and then using
(1.4.21) and Fatou’s lemma, we get the desired result.

Now we prove (1.4.18). As above, it is enough to prove it for ϕ smooth. SetW := {1−2ε ≤
|z| ≤ 1} × B2

n−1. Let r be a positive constant. Denote by W1 the subset of W containing (z, τ )

with dist
(
F̃ (z, τ ),K ′

)
≥ r and byW2 the complement ofW1 inW. Let ε be a positive constant

in (0, 1). Using (1.3.40) and the change of variables by F̃ on W1 gives∫
W1

(1− |z|)ddc(ϕ ◦ F̃ ) . ε
∫
W1

ddc(ϕ ◦ F̃ ) . εr−n+1

∫
F̃ (W1)

ddcϕ ∧ ωn−1 . εr−n+1‖ϕ‖L1(V ).

By the proof of Lemma 1.4.8 applied to g = ∂2ϕl
∂zj∂z̄k

, t0 = n− 1 and δ0 = δ, we have∫
W2

(1− |z|)ddc(ϕ ◦ F̃ ) ≤ ε1−δ
∫
W2

(1− |z|)δddc(ϕ ◦ F̃ )

.δ ε
1−δ[ ∫

F̃ (W2)
ddcϕ ∧ ωn−1

] δ
n−1 ≤ ε1−δrδ‖ϕ‖γ

L1(V )

by (1.4.12) and the fact that F̃ (W2) is contained in K ′r × B2
n−1. Choose r := ε

δ
δ+n−1 . Taking

the sume of the last two inequalities gives (1.4.18). The proof is finished.

1.5 Hölder continuity for super-potentials

Recall that C defined at Introduction is a compact subset of the set of ω-p.s.h. functions on X
with respect to L1-topology. Hence there is a positive number r0 such that

‖ϕ0‖L1(X) ≤ r0 and ‖max{ϕ1, ϕ2}‖L1(X) ≤ r0,

for every ϕ0, ϕ1, ϕ2 ∈ C . Let C ′ be the set of ω-p.s.h. functions ϕ on X such that ‖ϕ‖L1(X) ≤
2r0. In this section, we will finish the proof of Theorem 1.1.4. In order to do so, we will
prove the following which is actually equivalent to Theorem 1.1.4 by Lemma 1.5.2 below.
Remember that we are still assuming that dimK = n. Let K̃ be the compact subset of K as
in Theorem 1.1.4.

Proposition 1.5.1. Let α be a positive number strictly less than 1/(3n). Then for any ϕ1, ϕ2 ∈ C ′

such that ϕ1 ≥ ϕ2, we have∫
K̃

(ϕ1 − ϕ2)dvolK ≤ c
∫
X

(ϕ1 − ϕ2)dvolX + c

(∫
X

(ϕ1 − ϕ2)dvolX

)α
, (1.5.1)

where c is a constant independent of ϕ1, ϕ2.
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Lemma 1.5.2. Proposition 1.5.1 implies Theorem 1.1.4.

Proof. Take ϕ1, ϕ2 ∈ C . Observe that max{ϕ1, ϕ2}, ϕ1, ϕ2 ∈ C ′ and max{ϕ1, ϕ2} ≥ ϕj for
j = 1, 2. Hence, we can apply (1.5.1) to max{ϕ1, ϕ2}, ϕj with j = 1, 2. Using these two
inequalities and the fact that

|ϕ1 − ϕ2| = 2 max{ϕ1, ϕ2} − ϕ1 − ϕ2

gives
‖ϕ1 − ϕ2‖L1(1K̃volK) . max{‖ϕ1 − ϕ2‖L1(X), ‖ϕ1 − ϕ2‖αL1(X)}

which means that 1K̃volK has Hölder continuous super-potential with Hölder exponent α.
The proof is finished.

The remaining of this section is devoted to prove Proposition 1.5.1. By [7], it is enough
to prove (1.5.1) for ϕ1, ϕ2 smooth. We will firstly show that for any nonnegative C2 function
v on D, the integral of v over ∂D can be bounded by a quantity of the L1-norm of v over D
and some Hölder norm of its Laplacian. This together with the exponent estimates in the last
section are the key ingredients in the proof of Proposition 1.5.1. We will reuse the notations
from Section 2 for M = D.

Lemma 1.5.3. Let v be a nonnegative C2 functions on D. Let β ∈ (1, 2). Then we have∫
∂D
vdξ .β ‖ddcv‖C̃−β(D) +

∫
D
v. (1.5.2)

Proof. By Riesz’s representation formula, we have

v(z) =

∫ π

−π
P (eiθ, z)v(eiθ)dθ +

∫
{|η|<1}

log
|z − η|
|1− zη̄|

ddcv, (1.5.3)

for z ∈ D, where P (ξ, z) is the Poisson kernel given by

P (ξ, z) = (2π)−1(|ξ|2 − |z|2)|ξ − z|−2.

This implies that ∫
D1/2

v(z) =

∫ π

−π
v(eiθ)dθ

∫
z∈D1/2

P (eiθ, z)+ (1.5.4)

+

∫
D
ddcv(η)

∫
z∈D1/2

log
|z − η|
|1− zη̄|

.

Set

f(η) :=

∫
{|z|<1/2}

log
|z − η|
|1− zη̄|

=

∫
{|z|<1/2}

log |z − η| −
∫
{|z|<1/2}

log |1− zη̄|.

Observe that f(eiθ) = 0 because

log
|z − eiθ|
|1− ze−iθ|

= 0
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for any z ∈ D. This means that f |∂D ≡ 0. We claim that f is indeed in C̃β(D) for every
β ∈ (1, 2). Since z ∈ D1/2 and η ∈ D, the function∫

D1/2

log |1− zη̄|dxdy

is smooth in η ∈ D. Hence, we only need to take care of
∫
z∈D1/2

log |z − η|. It is clear that

∂η

∫
z∈D1/2

log |z − η| = −1

2

∫
z∈D1/2

z̄ − η̄
|z − η|2

= −1

2

∫
z∈D1/2

1

z − η
· (1.5.5)

Let g be the right-hand side of the last equation. We will show that g ∈ Cα(D) for every α ∈
(0, 1). If we can do so, then ∂ηf ∈ Cα(D), using similar argument we also gets ∂η̄f ∈ Cα(D),

hence f ∈ C̃β(D) for β ∈ (1, 2). Let α ∈ (0, 1). For (η, η′) ∈ D2, consider the difference

∣∣ 1

z − η
− 1

z − η′
∣∣ =

∣∣ η − η′

(z − η)(z − η′)
∣∣ ≤ |η − η′|α

|(z − η)(z − η′)|α

∣∣∣∣ 1

z − η
− 1

z − η′

∣∣∣∣1−α (1.5.6)

≤ |η − η′|α
[ 1

|z − η| |z − η′)|α
+

1

|z − η)|α|z − η|
]
.

It is not difficult to see that the integration of the right-hand side of (1.5.6) over z ∈ D1/2

is bounded by |η − η′|α times a constant depending only on α. Thus one gets g ∈ Cα(D). As
explained above, this yields f ∈ C̃β(D). The last property combined with (1.5.4) gives∣∣∣∣ ∫ π

−π
v(eiθ)dθ

∫
z∈D1/2

P (eiθ, z)

∣∣∣∣ ≤ ‖v‖L1(D1/2) + ‖ddcv‖C̃−β(D)‖f‖C̃β(D). (1.5.7)

By our hypothesis that v ≥ 0 and the fact that P (eiθ, z) & 1 for z ∈ D1/2, using (1.5.7), one
obtains that ∫

∂D
vdξ .β ‖v‖L1(D1/2) + ‖ddcv‖C̃−β(D). (1.5.8)

The proof is finished.

Proposition 1.5.4. Let v be a nonnegative C2 function on D. Let ε, β0 ∈ (0, 1) and β ∈ (1, 2).

Let γ be the unique real number for which β = γβ0 + (1− γ)2. Then we have∫
∂D
vdξ .(β0,β) ‖v‖L1(D) + ε−2(1−γ)‖ddcv‖γC̃−β0 (D)

‖v‖1−γ
L1(D)

+

+ ‖ddcv‖γC̃−β0 (D)

[ ∫
1−2ε≤|z|≤1

(1− |z|)|ddcv|
]1−γ

. (1.5.9)

Proof. Firstly we will estimate ‖ddcv‖C̃−2(D). Let χ ∈ C∞(R) such that 0 ≤ χ ≤ 1, χ ≡ 0 on

[−1, 1] and χ ≡ 1 outside [−2, 2]. For ε ∈ (0, 1), put χε(z) := χ(1−|z|
ε ) for z ∈ D. We have

suppχε ⊂ {z : |z| ≤ 1− ε} and χε(z) = 1 for z with |z| ≤ 1− 2ε. Let Φ be a function in C̃2(D)

with ‖Φ‖C2 ≤ 1. Since Φ ≡ 0 on ∂D we have |Φ(z)| ≤ 1− |z|. Decompose

〈ddcv,Φ〉 = 〈ddcv, χεΦ〉+ 〈ddcv, (1− χε)Φ〉.
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Denote by I1, I2 respectively the first and second terms in the right-hand side of the last
equality. By properties of Φ and χε, one gets

|I2| ≤ 2

∫
1−2ε≤|z|≤1

(1− |z|)|ddcv|.

On the other hand, performing an integration by parts gives

|I1| ≤
∫
D
|vddc(χεΦ)| . ε−2

∫
D
|v|.

Hence, we obtain

‖ddcv‖C̃−2(D) = sup
{Φ∈C̃2(D):‖Φ‖C2≤1}

∣∣〈ddcv,Φ〉∣∣ . ε−2

∫
D
|v|+

∫
1−2ε≤|z|≤1

(1− |z|)|ddcv|.

(1.5.10)

Now applying Proposition 1.2.1 to ddcv and M = D, one gets

‖ddcv‖C̃−β(D) . ‖dd
cv‖γC̃−β0 (D)

‖ddcv‖1−γC̃2(D)
.

The last inequality combined with (1.5.2) and (1.5.10) gives (1.5.9). The proof is finished.

We are now about to prove the local version of Proposition 1.5.1. Given a point a ∈ K, a
small open neighborhood K ′ of a in K can be described as in Section 1.3. Namely, there are
a C3 map h from Bn to Rn with h(0) = Dh(0) = 0 and local holomorphic coordinates in X

such that
K ′ := {x + ih(x) : x ∈ Bn} ⊂ Dn2 .

Let F̃ (z, τ ), t3, ε̃′0 and θ̃0 be as in Section 1.4. The couple (K ′,Dn2 ) is considered as the local
counterpart of (K,X). One can replace Dn2 by any polydisks Dnr with r > 1 without making
any differences in what follows.

Let β0 ∈ (0, 1). For every positive continuous (1, 1)-current T on an open neighborhood of
D, we have

‖T‖C̃−β0 (D) ≤
∫
D

(1− |z|)β0T. (1.5.11)

Let ϕ1 and ϕ2 be two C2 p.s.h. functions on Dn2 such that ϕ1 ≥ ϕ2 and ‖ϕj‖L1(Dn2 ) ≤ 1 for
j = 1, 2. Put ϕ := ϕ1 − ϕ2 which is C2 and nonnegative. Define

g1(τ ) := ‖ddc
(
ϕ ◦ F̃ (·, τ )

)
‖C̃−β0 (D)

which is less than or equal to

‖ddc
(
ϕ1 ◦ F̃ (·, τ )

)
‖C̃−β0 (D) + ‖ddc

(
ϕ2 ◦ F̃ (·, τ )

)
‖C̃−β0 (D). (1.5.12)
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Since F̃ is C2, so is ϕj ◦ F̃ for j = 1, 2. Using (1.5.11) for T = ddc
(
ϕj ◦ F̃ (·, τ )

)
and (1.4.17),

we deduce that the integral of the sum (1.5.12) with respect to τ ∈ B2
n−1 is .β0 1. This

implies ∫
B2
n−1

g1(τ )dτ .β0 1. (1.5.13)

Put
g2(τ ) := ‖ϕ ◦ F̃ (·, τ )‖L1(D).

By Corollary 1.4.2, the function ϕ satisfy the hypothesis of Lemma 1.4.8 for δ0 = 0 and
t0 = n− 1 + ε with ε ∈ (0, 1). As a result, we get∫

B2
n−1

g2(τ )dτ .ε

[ ∫
Dn2
|ϕ|
] ε
n−1+ε

. (1.5.14)

For ε′ ∈ (0, 1), we define

g3(τ , ε′) :=

∫
1−2ε′≤|z|≤1

(1− |z|)ddc
(
ϕ1 ◦ F̃ (·, τ )

)
+

∫
1−2ε′≤|z|≤1

(1− |z|)ddc
(
ϕ2 ◦ F̃ (·, τ )

)
.

By (1.4.18), we have ∫
B2
n−1

g3(τ , ε′)dτ .δ (ε′)1− δ(n−1)
n−1+δ , (1.5.15)

for any δ ∈ (0, 1).

Proposition 1.5.5. Let ϕ1 and ϕ2 be two C2 p.s.h. functions on Dn2 such that ϕ1 ≥ ϕ2 and
‖ϕj‖L1(Dn2 ) ≤ 1 for j = 1, 2. Let ϕ := ϕ1 − ϕ2. Then we have∫

Bn(0,ε′∗0 )
ϕ
(
x, h(x)

)
dx .δ ‖ϕ‖

1
3n
−δ

L1(Dn2 )
, (1.5.16)

for any δ ∈ (0, 1
3n).

Proof. Let ε, ε′, β0 ∈ (0, 1) and β ∈ (1, 2). Let g1, g2, g3 be as above. Applying Lemma 1.4.7 to
g = ϕ gives ∫

Bn(0,ε′∗0 )
|ϕ
(
x, h(x)

)
|dx .

∫
B2
n−1

dτ

∫
∂D
|ϕ ◦ F̃ (·, τ )|dξ.

Put γ := 2−β
2−β0 . Applying Proposition 1.5.4 to v = ϕ ◦ F̃ (·, τ ) ∈ C2 shows that the right-hand

side of the last inequality is

.(β0,β)

∫
B2
n−1

g2dτ + (ε′)−2(1−γ)

∫
B2
n−1

gγ1g
1−γ
2 dτ +

∫
B2
n−1

gγ1g
1−γ
3 (·, ε′)dτ .

The first term of the last sum is
.ε ‖ϕ‖

ε
n−1+ε

L1(Dn2 )
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by (1.5.14). On the other hand, by the Hölder inequality, the second one is ≤

(ε′)−2(1−γ)‖g1‖γL1‖g2‖1−γL1

and the third one is ≤
‖g1‖γL1‖g3(·, ε′)‖1−γ

L1 ,

where the L1-norm is taken over B2
n−1. Taking into account (1.5.13) and (1.5.14), one obtains

(ε′)−2(1−γ)‖g1‖γL1‖g2‖1−γL1 .β0,ε (ε′)−2(1−γ)‖ϕ‖
ε(1−γ)
n−1+ε

L1(Dn2 )
.

By (1.5.13) and (1.5.15), we have

‖g1‖γL1‖g3(·, ε′)‖1−γ
L1 .β0,δ (ε′)(1− δ(n−1)

n−1+δ
)(1−γ),

for every ε′ ∈ (0, 1). Put

a1 :=
ε

(n− 1 + ε)(3− δ(n−1)
n−1+δ )

, a2 :=
ε(1− δ(n−1)

n−1+δ )(1− γ)

(n− 1 + ε)(3− δ(n−1)
n−1+δ )

·

Choose ε′ := ‖ϕ‖a1
L1(Dn2 )

. Combining all these above inequalities, we get∫
Bn(0,ε′∗0 )

|ϕ
(
x, h(x)

)
|dx .(β0,β,δ,ε) ‖ϕ‖

a2
L1(Dn2 )

.

Observe that a2 → 1
3n as ε→ 1, β → 2, β0 → 0, δ → 0. Thus, the proof is finished.

End of the proof of Proposition 1.5.1 in the case where dimK = n. Given any a ∈ K, let F̃a
and ε̃a be as in Proposition 1.3.8. Since K̃ is compact, we can cover it by a finite number
of ball BK(a, ε̃a). Hence, in order to prove (1.5.1), it is enough to restrict ourselves to local
charts. In other words, we are now being in the situation with the model (K ′,Dn2 ) described
above. Moreover, by subtracting a suitable common smooth function, we can assume that
ϕ1, ϕ2 in (1.5.1) are C2 p.s.h. functions on Dn2 . Hence, the desired result follows directly from
Proposition 1.5.5. The proof is finished.

We now deal with the case where the dimension ofK is greater than n. Let nK := dimK >

n. Since K is generic, we have TaK + JTaK = TaX, where a ∈ K and J is the complex
structure of X. We then deduce that TaK∩JTaK is of even dimension which equals 2nK−2n.

The codimension d of K equals 2n− nK .

Proposition 1.5.6. Let a be a point in K. There exist local C2 coordinates (W,Ψ) of X around
a such that the following properties hold:

(i) Ψ : W → Cd × CnK−n is a C2 diffeomorphism onto its image which equals(
Bd + iBd(0, 2)

)
× DnK−n

and Ψ(p) = 0 and Ψ−1(z1, z2) is holomorphic in z1 for every fixed z2 ∈ DnK−n,
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(ii) there is a C2 map h(Re z1, z2) from Bd×DnK−n to Rd so that for every z2 fixed, h(·, z2) ∈
C3 and

Dj
Re z1

h(0, z2) = 0

for j = 0 or 1 and

Ψ(K ∩W ) =
{

(z1, z2) ∈
(
Bd + iRd

)
× DnK−n : Im z1 = h(Re z1, z2)

}
.

Proof. It is well-known that in suitable holomorphic local coordinates, K is given by

K =
{

(z1, z2) ∈
(
Bd + iRd

)
× DnK−n : Im z1 = h̃(Re z1,Re z2, Im z2)

}
where h̃ is a C3 map of uniformly bounded C3 norm in p and h̃(0) = Dh̃(0) = 0, see [1].
For z2 fixed, we choose the tangent space of the graph of h̃(·, z2) at 0 and its orthogonal
subspace as new holomorphic coordinates of Cd. These new coordinates depend C2 on (but
in general not holomorphically) on the parameter z2. In these new coordinates, one easily see
that K is given by the formula given in the asssertion (ii) for some C2 map h with the desired
properties. The proof is finished.

Remark 1.5.7. As in Lemma 1.3.1 we can obtain furthermore that D2
Re z1

h(0, z2) = 0 and
‖h(·, z2)‖C3 is bounded uniformly in a = (z1, z2) ∈ K̃ but in this case we will lose a unit for the
regularity in z2, i.e Ψ and h are only C1 in z2.

Thanks to Proposition 1.5.6, we can considerK locally as a family of generic submanifolds
of Cd of dimension d parameterized by z2 ∈ DnK−n. This allows us to reduce the question to
the previous case where we already dealt with generic submanifolds of minimal dimension.
By compactness of K̃, we can cover it by local charts W as in Proposition 1.5.6. From now on,
we work exclusively on a such local chart. Hence, we can identifyK with Ψ(K∩W ). Let h and
Ψ be as in that proposition. The map h will be seen as a family of maps of z1 parameterized
by z2. For z2 ∈ DnK−n, define

K ′z2 := {z1 ∈
(
Bd + iRd

)
: Im z1 = h(Re z1, z2)

}
which is identified with K ′z2 × {z2} ⊂ Cn. Then K is foliated by K ′z2 .

We are now going to construct a family of analytic discs partly attached to K. The strategy
will be almost identical with what we did. Let u0 be a function described in Lemma 1.3.2
and θu0 be the constant there. Let τ 1, τ 2 ∈ Bd−1 ⊂ Rd−1. Define τ ∗1 := (1, τ 1) ∈ Rd and
τ ∗2 := (0, τ 1) ∈ Rd and τ := (τ 1, τ 2). Let t be a positive number in (0, 1). Consider the
following modified version of the equation 1.3.11:

Uτ ,z2,t(ξ) = tτ ∗2 − T1

(
h(Uτ ,z2,t; z2)

)
(ξ)− tT1u0(ξ) τ ∗1, (1.5.17)

where U : ∂D→ Bd is Hölder continuous.
Since h(0, z2) = DRe z1h(0, z2) = 0 for every z2, we can use the same reason mentioned

in the proof of Proposition 1.3.3 to show that if t is small enough, the equation (1.5.17) has
a unique solution Uτ ,z2,t in C2,1/2(∂D× B2

d−1) for z2 fixed so that Uτ ,z2,t ∈ C1 as a function of
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(z, τ , z2). We use the same notation Uτ ,z2,t to denote the harmonic extension of Uτ ,z2,t to D.
Let Pτ ,z2,t(z) be the harmonic extension of h

(
Uτ ,z2,t(ξ), z2

)
to D. Define

F (z, τ , z2, t) := Uτ ,z2,t(z) + iPτ ,z2,t(z) + it u0(z) τ ∗1

which is a family of analytic discs to Cd parametrized by (τ , z2, t). By our choice of u0, we
have F (ξ, τ , z2, t) ∈ Kz2 for ξ ∈ [e−iθu0 , eiθu0 ]. Now define

F ′(z, τ , z2, t) :=
(
Fτ ,z2,t(z), z2

)
∈ Cn

which is a family of analytic discs to X partly attached to K. Here we used an essential fact
that the C2 coordinates (z1, z2) are holomorphic in z1. Proposition 1.3.6 with n replaced by d
implies that for two positive constants (t, r0) small enough, F ′ is a diffeomorphism on(

B2(1, r0) ∩ D
)
× B2

d−1 × DnK−n

and its differential satisfies∣∣detDF ′(z, τ , z2, t)
∣∣ & td+1 distd−1

(
F ′(z, τ , z2, t),K

′
z2

)
& t2d(1− |z|)d−1. (1.5.18)

Now applying the same arguments right before Proposition 1.3.7, one gets the following.

Proposition 1.5.8. There exists a map F̃ : D× B2
d−1 ×DnK−n → X which is a diffeomorphism

onto its image such that the following three properties hold:
(i) there are positive constants θ̃0 and ε̃0 so that for every τ 1 ∈ Bd−1 the restriction map

F̃ (·, τ 1) : [e−iθ̃0 , eiθ̃0 ]× Bd−1 × DnK−n → K is a diffeomorphism onto its image which contains
the graph of h over Bd(0, ε̃0)× DnK−n,

(ii) F̃ (·, τ , z2) is an analytic disc to X and∣∣detDF̃ (z, τ , z2)
∣∣ & distd−1

(
F̃ (z, τ , z2, t),K

′
z2

)
& (1− |z|)d−1. (1.5.19)

Proposition 1.5.8 and Remark 1.5.7 allow us to repeat all of arguments in the proof of
Theorem 1.1.4 in the case where nK = n for our present situation. Hence, this finishes the
proof of Theorem 1.1.4.



Chapter 2

Intersection de courants de grand
bidegré

Let X be a compact Kähler manifold of dimension n. Let T and S be two positive closed
currents on X of bidegree (p, p) and (q, q) respectively with p + q ≤ n. Assume that T has
a continuous super-potential. We prove that the wedge product T ∧ S, defined by Dinh and
Sibony, is a positive closed current. This chapter is based on the article [83].

2.1 Introduction

Let X be a compact Kähler manifold of dimension n. Let T and S be two positive closed
currents on X of bidegree (p, p) and (q, q) respectively with p + q ≤ n. In [18], Demailly
asked the question to define the intersection T ∧ S. The theory of intersections of currents
of bidegree (1, 1) is well developed, see, e.g., [2, 10, 17, 38]. So the question of Demailly
concerns currents of higher degree.

The problem was recently solved by Dinh and Sibony in [33] using their theory of super-
potentials (see also [28]). Assume that T has continuous super-potentials (see [33] or Section
2.2 for the terminology). Then the wedge product T ∧ S is well-defined. It is known that
this product is the difference of two positive closed currents. The operator satisfies basic
properties like the commutativity and the associativity when intersect several currents. The
Hodge cohomology class of T ∧ S is the cup product of the ones of T and S. Moreover,
T ∧ S depends continuously on S. Therefore, it is positive when S can be approximated by
smooth positive closed forms. The last property of approximation is satisfied when X is a
homogeneous manifold and also in the case of some dynamical Green currents. The purpose
of this work is to prove the positivity of T ∧ S in the general setting. We have the following
theorem.

Theorem 2.1.1. Let X be a compact Kähler manifold of dimension n. Let T and S be two
positive closed currents on X of bidegree (p, p) and (q, q) respectively with p + q ≤ n. Assume
that T has a continuous super-potential. Then the intersection current T ∧ S is a positive closed
current of bidegree (p+ q, p+ q).

In Section 2.2, we will recall some basic properties of positive closed currents and their

49
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super-potentials. In Section 2.3, we will introduce an alternative definition of T ∧ S which is
a positive closed current. We then show that this definition is equivalent to the one by Dinh
and Sibony. The above result will follow immediately. We will present now the main idea.

Suppose first that T and S are positive closed smooth forms of X. Let πj (j = 1, 2)
be the projections from X × X to the first and second components respectively. We have
T ⊗ S = π∗1(T ) ∧ π∗2(S). This is a positive closed smooth form on X × X. Then one can
compute T ∧ S via the formula

T ∧ S = (πj)∗(T ⊗ S ∧ [∆]) for j = 1, 2, (2.1.1)

where [∆] is the current of integration on the diagonal ∆ of X ×X.
Observe that because of [∆], the formula (2.1.1) can not be extended to general singular

currents T and S. We can however use the theory of intersection with (1, 1)-currents if in the
place of ∆ we have a hypersurface. This is the reason why we consider the blow-up X̂ ×X
of X ×X along ∆. Let Π be the natural projection from X̂ ×X to X ×X and ∆̂ = Π−1(∆)

be the exceptional hypersurface. Recall from [6, 81] that the blow-up of a compact Kähler
manifold along a submanifold is also Kähler. Let ω̂ be a Kähler form of X̂ ×X. Observe that
Π∗(ω̂

n−1 ∧ [∆̂]) is a non-zero positive closed current of X × X supported on ∆ and has the
same dimension as ∆. Therefore, it equals a constant times [∆], see, e.g., [17]. By normalizing
ω̂, we can suppose that

Π∗(ω̂
n−1 ∧ [∆̂]) = [∆]. (2.1.2)

Put T̂ ⊗ S = Π∗(T ⊗ S) and Πj = πj ◦Π (j = 1, 2). Then (2.1.1) can be rewritten as

T ∧ S = (Πj)∗(T̂ ⊗ S ∧ ω̂n−1 ∧ [∆̂]). (2.1.3)

In general, when T and S are only positive closed currents, one still can define T̂ ⊗ S
as a positive closed current outside ∆̂ and extend it by 0 through ∆̂. We can show that
T̂ ⊗ S ∧ ω̂n−1 ∧ [∆̂] is well-defined provided that T has a continuous super-potential. In this
case, we can use (2.1.3) as an alternative definition of T ∧ S which gives a positive closed
current, see Corollary 2.3.5. Proposition 2.3.7 below shows that this definition is equivalent
to the one of Dinh and Sibony.

2.2 Super-potential of positive closed currents

We will recall now some basic facts and refer to [33] for details. Let X be a compact Kähler
manifold of dimension n and ω be a Kähler form on X. It is well-known that the de Rham
cohomology of currents and smooth forms are canonically equal (see [41, Chap. 3]). Denote
them by Hr(X,C) with 0 ≤ r ≤ n. For any closed current T of degree r, denoted by {T} its
cohomology class in Hr(X,C). Let Hp,p(X,R) be the vector subspace of Hp,p(X,C) spanned
by the classes of closed real 2p-forms. Since a closed positive (p, p)-current is real, its class
belongs to Hp,p(X,R). If V is an analytic subset of X of dimension n− p, it defines a positive
closed current [V ] of bidegree (p, p) by integration over V. Its class will be denoted by {V } for
simplicity.
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Let Cp be the convex cone of positive closed (p, p)-currents on X and Dp be the real vector
space generated by Cp. Since the Kähler form ω is strictly positive, the set Dp contains all real
closed smooth (p, p)-forms. Let D0

p be the subspace of Dp of currents belonging to the class 0

in Hp,p(X,R). We recall the notion of ∗-norm on Dp. Consider first a positive closed current
S in Dp. Define its ∗-norm by

‖S‖∗ = |〈S, ωn−p〉|

which is equal to the mass of S. In general, since any S ∈ Dp can be written as the difference
of two positive closed currents, define

‖S‖∗ = inf(‖S+‖∗ + ‖S−‖∗),

where the infimum is taken over all S+, S− ∈ Cp such that S = S+ − S−. By compactness
property of positive closed currents, the above infimum is attained for some S+ and S−. We
say that Sk converges to S in Dp for the ∗-topology if Sk converges to S weakly as currents
and ‖Sk‖∗ is bounded independently of k. The following result is due to Dinh and Sibony, see
[33, Th. 2.4.4] and also [27, Th. 1.1].

Proposition 2.2.1. There is a positive constant c such that for all S ∈ Dp, there exist smooth
forms Sk ∈ Dp with k ∈ N such that Sn converges weakly to S and ‖Sk‖∗ ≤ c‖S‖∗ for all k.

Let T be in Dp and R be in D0
q . By ddc-lemma for currents (see [40, Th. 1.2.1]), there is a

real (q − 1, q − 1)-current UR such that ddcUR = R. We call UR a potential of R. Consider the
following important example of R. Let V be a hypersurface of X and β0 be a smooth form
of the same cohomology class with [V ]. Then R = [V ] − β0 is in D0

1. One can construct an
explicit potential UR as follows. Consider the holomorphic line bundle of X associated with
V and σ a holomorphic section whose divisor is V. Take a smooth Hermitian metric on this
line bundle and denote by | · | the norm induced by this metric. By Poincaré-Lelong formula,
there is a smooth form β1 such that

ddc log |σ| = [V ]− β1.

Since {β0} = {V } = {β1}, there is a smooth function f on X such that ddcf = β0 − β1. The
function UR := log |σ| − f is a potential of R. Note that UR is smooth outside V and if σ′ is
a holomorphic function on an open neighborhood W of a point of V such that its divisor is
V ∩W, then

UR(x)− log |σ′| is smooth on W . (2.2.1)

Consider now a current R ∈ D0
n−p+1 and an (n− p, n− p)-current UR which is a potential

of R. Let α = (α1, · · · , αh) with h = dimHp,p(X,R) be a fixed family of real smooth closed
(p, p)-forms such that the family of classes {α} = ({α1}, · · · , {αh}) is a basis of Hp,p(X,R). By
adding to UR a suitable closed smooth form, we can assume that 〈UR, αi〉 = 0 for i = 1, · · · , h.
We say that UR is α-normalized.

Definition 2.2.2. ([33, Def. 3.2.2]) Let T be a current in Dp as above. The α-normalized super-
potential UT of T is the function defined on smooth forms R ∈ D0

n−p+1 and given by

UT (R) = 〈T,UR〉,
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where UR is an α-normalized smooth potential of R. We say that T has a continuous super-
potential if UT can be extended to a function on D0

n−p+1 which is continuous with respect to the
∗-topology. In this case, the extension is also denoted by UT .

By [33, Lem. 3.2.1], UT (R) does not depend on the choice of an α-normalized UR. And
the continuity of UT does not depend on α. Observe that when {T} = 0, the α-normalized
super-potential of T does not depend on α. Indeed, in this case, it is the restriction of any
potential UT of T to the set of smooth forms in D0

n−p+1. Assume that T has a continuous
super-potential. Take any current S ∈ Dq. Let (a1, · · · , ah) be the coefficients of {T} in the
basis {α}. Define T ∧ S to be the real (p+ q, p+ q)-current satisfying

〈T ∧ S,Φ〉 := UT
(
ddcΦ ∧ S

)
+
∑

1≤j≤h
aj〈αj ,Φ ∧ S〉, (2.2.2)

for any real smooth (n− p− q, n− p− q)-form Φ.

2.3 Alternative definition for the intersection of currents

Let X, X̂ ×X,ω, ω̂,Π,Πj , πj ,∆, ∆̂ be as in the previous sections. Consider two currents T ∈
Dp and S ∈ Dq as above with p + q ≤ n. Let h, aj and αj with 1 ≤ j ≤ h be as in the
last section. From now on, assume that T is positive and has a continuous super-potential.
Note that Πj = πj ◦ Π are submersions, for a proof see [33] or the proof of Lemma 2.3.2
below. Define T̂ = Π∗1(T ) and Ŝ = Π∗2(S). They are positive closed currents on X̂ ×X. Put
α̂j = Π∗1(αj) for 1 ≤ j ≤ h.

Lemma 2.3.1. The current T̂ has a continuous super-potential.

Proof. Suppose that the classes {α̂j} are linearly dependent. Then there exist real numbers
bj with 1 ≤ j ≤ h which are not simultaneously equal to zero and a smooth form γ̂ such that∑h

j=1 bjα̂j = d(γ̂). Taking the wedge product with ω̂n in the last equality and then using the
push-forward by (Π1)∗ give

h∑
j=1

bjαj ∧ (Π1)∗(ω̂
n) = d

(
(Π1)∗(γ̂ ∧ ω̂n)

)
. (2.3.1)

Note that (Π1)∗ω̂
n is actually a nonzero constant since ω̂n is closed and positive. We de-

duce that the left-hand side of (2.3.1) is a non-trivial linear combination of αj , 1 ≤ j ≤ h.

However this contradicts the fact that {αj} are linearly independent. Hence, the classes {α̂j}
are linearly independent. Complete them to be basis α̂′ of Hp,p(X̂ ×X,R). Let U

T̂
be the

α̂′-normalized super-potential of T̂ .
Put αT =

∑h
j=1 ajαj and α̂T = Π∗1αT . Remark that αT and α̂T are in the same cohomology

classes with T and T̂ respectively. Let UT−αT be a potential of T − αT . Then U
T̂−α̂T :=

Π∗1UT−αT is a potential of T̂ − α̂T . By definition, for any smooth form R̃ ∈ D0
2n−p+1(X̂ ×X),

we have
U
T̂

(R̃) = 〈T̂ , UR̃〉 = 〈T̂ − α̂T , UR̃〉 = 〈U
T̂−α̂T , R̃〉
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By our choice of potentials, the last quantity equals

〈UT−αT , (Π1)∗R̃〉 = UT ((Π1)∗R̃).

The continuity of UT now implies immediately the same property for U
T̂
. The proof is finished.

Thanks to Lemma 2.3.1, one can define T̂ ∧ Ŝ as in (2.2.2). Recall that T ⊗ S is a positive
closed (p+q, p+q)-current onX×X depending continuously on T and S. Its action on smooth
forms can be described as follows. Let x be local coordinates of X. They induce naturally local
coordinates (x, y) on X ×X. For a smooth form Φ(x, y) of X ×X, we have

〈T ⊗ S,Φ〉 =
〈
T, S

(
Φ(x, ·)

)〉
=
〈
S, T

(
Φ(·, y)

)〉
. (2.3.2)

Let Π′ be the restriction of Π to X̂ ×X\∆̂. The current

T̂ ⊗ S = Π′∗(T ⊗ S)

is well-defined and positive closed on X̂ ×X\∆̂ because Π′ is biholomorphic. By Proposition
5.1 of [29], the mass of T̂ ⊗ S is bounded. Hence, it can be extended by zero to be a positive
closed current of X̂ ⊗X through ∆̂, see [17, 70, 75]. We still denote by T̂ ⊗ S the extended
current. Take a smooth closed (1, 1)-form β̂ with {β̂} = {∆̂}. Since ∆̂ is a hypersurface,
choose a potential

û = U
[∆̂]−β̂ (2.3.3)

of [∆̂] − β̂ as in Section 2.2. It is smooth outside ∆̂ and its behaviour near ∆̂ is described by
(2.2.1). By adding a constant to û if necessary, we can assume that û ≤ −1.

Lemma 2.3.2. The current ûŜ is well-defined. Moreover, if smooth forms Sk ∈ Dq converge to S
in the ∗-topology, then ûŜk converge weakly to ûŜ.

Proof. We prove the first assertion. For any smooth (2n− q, 2n− q)-form η̂ on X̂ ×X, we will
show that (Π2)∗(ûη̂) is a smooth form on X. This allows us to define

〈ûŜ, η̂〉 = 〈S, (Π2)∗(ûη̂)〉. (2.3.4)

To see that (Π2)∗(ûη̂) is smooth, we just need to work locally. Consider local coordinates
(W,x = (x1, · · · , xn)) on a chart W of X. Without loss of generality, we can suppose W is
diffeomorphic to the unit ball B1 in Cn. Consider induced local coordinates (x, y) on W ×W.
We have ∆ ∩ (W ×W ) = {x = y}. Define new local coordinates (x′, y) on W ×W by putting
x′ := x− y. Hence ∆ is given by the equation x′ = 0. The set Π−1(W ×W ) is biholomorphic
to the manifold M in Cn × Cn × Pn−1 defined by

M =
{

(x′, y, [v]) : y ∈ B1, x
′ + y ∈ B1, [v] ∈ Pn−1 and x′ ∈ [v]

}
,

where [v] = [v1 : v2 : · · · : vn] denotes the homogeneous coordinates of Pn−1. Let Mj (1 ≤
j ≤ n) be the open subset of M containing all points (x′, y, [v]) ∈ M with vj 6= 0. They form
an open covering of M. For (x′, y, [v]) ∈ M1, we have x′1vj = x′jv1. Choose v1 = 1, then
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x′j = x′1vj . We deduce that
(
x′1, v2, · · · , vn, y

)
are coordinates on M1 and ∆̂ ∩M1 = {x′1 = 0}.

Since Π2(x′1, v2, · · · , vn, y) = y, we see that

(Π2)∗(ûη̂) =

∫
x′1,v2,··· ,vn

û(x′1, v2, · · · , vn, y)η̂(x′1, v2, · · · , vn, y)

=

∫
x′1,v2,··· ,vn

log |x′1|η̂(x′1, v2, · · · , vn, y)

+

∫
x′1,v2,··· ,vn

û′(x′1, v2, · · · , vn, y)η̂(x′1, v2, · · · , vn, y),

where û′(x′1, v2, · · · , vn, y) is a smooth function, see (2.2.1). This implies that the last integral
defines a smooth form in y. It is also clear that the integral involving log |x′1| depends smoothly
in y. The proof of the first assertion is finished. The second assertion is a direct consequence
of the identity (2.3.4). The proof is finished.

Proposition 2.3.3. We have T̂ ∧ Ŝ = T̂ ⊗ S.

Proof. Consider first the case where S is smooth. So T̂ ∧ Ŝ is the usual wedge product of a
current with a smooth form. We then see that T̂ ∧ Ŝ = Π∗(T ⊗S) = T̂ ⊗ S outside ∆̂. Observe
that the fibers of the submersion Π1 are transverse to ∆̂. Therefore, T̂ has no mass on ∆̂.

Hence, T̂ ∧ Ŝ has no mass on ∆̂. We deduce that T̂ ∧ Ŝ = T̂ ⊗ S in this case because T̂ ⊗ S
has no mass on ∆̂ by definition.

In general, by Proposition 2.2.1, there is a sequence of smooth forms Sk ∈ Dq converging
to S in the ∗-topology. The first case and the continuity on S imply that T̂ ∧ Ŝ = T̂ ⊗ S outside
∆̂. It remains to show that the restriction 1

∆̂
(T̂ ∧ Ŝ) of T̂ ∧ Ŝ vanishes. This is equivalent to

say that ∫
∆̂
T̂ ∧ Ŝ ∧ Φ̂ = 0, (2.3.5)

for any smooth form Φ̂ of bidegree 2n−p−q. By Proposition 2.2.1, we can write S = S+−S−
where S+ and S− are approximable by smooth positive closed forms. Since T̂ ∧ Ŝ = T̂ ∧ Ŝ+−
T̂ ∧ Ŝ−, we only need to verify that 1

∆̂
(T̂ ∧ Ŝ±) = 0. Therefore, without loss of generality,

assume that T̂ ∧ Ŝ is positive. Consequently, it suffices to prove (2.3.5) for Φ̂ = ω̂2n−p−q.

Let χ be a convex increasing smooth function on R such that χ(t) = 0 if t ≤ −1/4, χ(t) = t

for t ≥ 1/4 and 0 ≤ χ′ ≤ 1. For each positive integer k, put

ûk = χ(û+ k)− k.

This is a smooth negative quasi-p.s.h. function since û ≤ −1. The functions ûk decrease to
û and −ûk/k decrease to the characteristic function 1

∆̂
of ∆̂ as k → ∞. The first property

implies that Ŝ ∧ ddcûk converges weakly to Ŝ ∧ ddcû, see Lemma 2.3.2. We also have

ddcûk = [χ′′(û+ k)]dû ∧ dcû+ χ′(û+ k)ddcû ≥ χ′(û+ k)ddcû ≥ −cω̂,

for some positive constant c. This yields that ddcûk = (ddcûk+cω̂)−cω̂ which is the difference
of two positive closed currents in the same cohomology class c{ω̂}. We deduce that ddcûk is
∗-bounded uniformly in k and then so is Ŝ ∧ ddcûk ∧ ω̂2n−p−q because we have

‖Ŝ ∧ ddcûk ∧ ω̂2n−p−q‖∗ ≤ c‖S‖∗‖ddcûk‖∗, (2.3.6)
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for a positive constant c depending only on (X,ω). It follows that

Ŝ ∧ ddcûk ∧ ω̂2n−p−q → Ŝ ∧ ddcû ∧ ω̂2n−p−q

in the ∗-topology. The equality (2.3.5) with Φ̂ = ω̂2n−p−q is equivalent to〈
T̂ ∧ Ŝ,− ûk

k
· ω̂2n−p−q〉→ 0 as k →∞. (2.3.7)

Applying the formula (2.2.2) to T̂ ∧ Ŝ gives〈
T̂ ∧ Ŝ,− ûk

k
· ω̂2n−p−q〉 = −1

k
U
T̂

(
Ŝ ∧ ddcûk ∧ ω̂2n−p−q)− 1

k

〈
α̂T , ûkŜ ∧ ω̂2n−p−q〉,

where α̂T =
∑h

j=1 ajα̂j . The last quantity converges to 0 as k →∞ for the mass norm of ûkŜ
is bounded independently of k by Lemma 2.3.2. On the other hand, the continuity of U

T̂
gives

U
T̂

(
Ŝ ∧ ddcûk ∧ ω̂2n−p−q)→ U

T̂

(
Ŝ ∧ ddcû ∧ ω̂2n−p−q)

which is finite, as k →∞. Hence we get (2.3.7). The proof is finished.

Lemma 2.3.4. The current û(T̂ ∧ Ŝ) is well-defined. Denote it by ûT̂ ∧ Ŝ for simplicity. For any
closed real smooth form Φ̂ of X̂ ×X of the right bidegree, we have

〈ûT̂ ∧ Ŝ, Φ̂〉 = U
T̂

(
ddc(ûŜ ∧ Φ̂)

)
+

h∑
j=1

aj〈Ŝ, ûα̂j ∧ Φ̂〉. (2.3.8)

In particular, 〈ûT̂ ∧ Ŝ, Φ̂〉 depends continuously on S.

Proof. Using the computation in the proof of Proposition 2.3.3, we have

〈T̂ ∧ Ŝ, û · ω̂2n−p−q〉 = lim
k→∞

U
T̂

(
Ŝ ∧ ddcûk ∧ ω̂2n−p−q)+

〈
α̂T , ûkŜ ∧ ω̂2n−p−q〉,

where ûk is defined as in Proposition 2.3.3. The same arguments at the end of the above
proposition show that the last limit is finite. The first assertion follows. Note that each smooth
closed form Φ can be written as the difference of two positive closed forms. Hence it is enough
to prove (2.3.8) for positive closed forms Φ. The computations in Proposition 2.3.3 still hold
for Φ in place of ω̂2n−p−q. Hence (2.3.8) follows.

In order to prove the last assertion, it is enough to prove it for positive closed forms Φ by
the same reason as above. Let {Sl}l∈N be a sequence of currents in Dq which converges to S
in the ∗-topology. Put Ŝl = Π∗2(Sl). It is clear that Ŝl converges to Ŝ in the ∗-topology. Lemma
2.3.2 implies that ddc(ûŜl ∧ Φ̂) converges weakly to ddc(ûŜ ∧ Φ̂) and

lim
k→∞

ddc(ûkŜl ∧ Φ̂) = ddc(ûŜl ∧ Φ̂), (2.3.9)

for any l ∈ N. Applying (2.3.6) to Sk in place of S, we see that the mass of ddc(ûkŜl ∧ Φ̂)

is bounded independently of k and l. This combined with (2.3.9) yields that the ∗-norm
of ddc(ûŜl ∧ Φ̂) is bounded independently of l. We deduces that ddc(ûŜl ∧ Φ̂) converges to
ddc(ûŜ ∧ Φ̂) in the ∗-topology. The continuity of U

T̂
now implies that the right-hand side of

(2.3.8) depends continuously on S. The proof is finished.
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Corollary 2.3.5. Define the intersection T̂ ⊗ S ∧ [∆̂] by putting

T̂ ⊗ S ∧ [∆̂] = ddc
(
ûT̂ ⊗ S

)
+ T̂ ⊗ S ∧ β̂, (2.3.10)

see (2.3.3) for the definition of β̂. Then T̂ ⊗ S ∧ [∆̂] is positive when S is positive.

Proof. We only need to prove the positivity. This property is classical since the current [∆̂] is
of bidegree (1, 1). We give here a proof for the sake of the reader. Fix a small open subset Ŵ
of X̂ ×X biholomorphic to a ball. We can find a smooth function v̂ on Ŵ such that ddcv̂ = β̂.

Hence the function û′ = û + v̂ satisfies ddcû′ = [∆̂] ≥ 0. So û′ is p.s.h. on Ŵ . We then
have T̂ ⊗ S ∧ [∆̂] = ddc

(
û′T̂ ⊗ S

)
on Ŵ . If û′k is a sequence of smooth p.s.h. functions on Ŵ

decreasing to û′, then the last current is the limit of ddc
(
û′kT̂ ⊗ S

)
which is clearly positive

since it equals ddcû′k ∧ T̂ ⊗ S. The proof is finished.

Lemma 2.3.6. Let Y be a closed subset of X. Let R be a positive (p, p)-current of X and let Rk
be a sequence of positive (p, p)-currents of X converging weakly to R as currents in X\Y. Assume
that R has no mass on Y and the masses of Rk converge to the one of R. Then Rk converges
weakly to R in X.

Proof. For each ε > 0, let Yε be the set of points in X of distance less than ε to Y. Let χε be a
continuous function on X such that 0 ≤ χε ≤ 1 and χε = 1 on X\Y2ε and χε = 0 on Y ε. Take
any continuous real form Φ on X of bidegree n− p. We need to prove that

Rk(Φ)→ R(Φ) as k →∞. (2.3.11)

Since a continuous form can be written as the difference of two continuous positive forms,
we can assume that Φ is positive. The hypothesis on Rk implies that Rk(χεΦ) converges to
R(χεΦ). Hence in order to prove (2.3.11), it is sufficient to show that

lim
ε→0

δε = 0, (2.3.12)

where

δε = lim sup
k→∞

∫
Y 2ε

Rk(Φ).

Let µk = Rk∧ωn−p and µ = R∧ωn−p be the trace measures of Rk and R respectively. Observe
that δε is less than a constant times

lim sup
k→∞

µk(Y 2ε) = ‖R‖ − lim inf
k→∞

µk(X\Y 2ε).

Since the set X\Y 2ε is an open subset of X\Y, the last limit is greater than µ(X\Y 2ε). Hence
we get

lim sup
k→∞

∫
Y 2ε

Rk(Φ) . ‖R‖ − µ(X\Y 2ε) = µ(Y 2ε).

The last quantity converges to zero as ε → 0 because µ has no mass on Y. The proof is
finished.
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Proposition 2.3.7. For j = 1 or 2, we have

T ∧ S = (Πj)∗
(
T̂ ⊗ S ∧ [∆̂] ∧ ω̂n−1

)
, (2.3.13)

where T ∧ S is defined as in (2.2.2).

Proof. As explained in Introduction, the formula (2.3.13) holds for smooth forms T and S.

We consider now the general case. We already know that T ∧ S depends continuously on S

for the ∗-topology. Let {Sk}k∈N be a sequence of smooth forms in Dq which converges to S
in the ∗-topology. Put Ŝk = Π∗2(Sk) and Rk = ûT̂ ∧ Ŝk. It follows from Lemma 2.3.4 that
the masses of Rk converge to the mass of R = ûT̂ ∧ Ŝ. Moreover, Rk converges to R in
X̂ ×X\∆̂. Applying Lemma 2.3.6 to X̂ ×X in the place of X, Rk and R, we see that the
right-hand sides of (2.3.13), which is defined in Corollary 2.3.5, also depends continuously
on S for the ∗-topology. Hence approximating S by smooth forms allows us to assume that S
is smooth. Now Lemma 2.3.2 applied to T̂ in place of Ŝ implies that the right-hand side of
(2.3.13) is continuous in T. When S is smooth, it is clear that T ∧S depends continuously on
T. Therefore, (2.3.13) holds since we can approximate T by closed smooth forms. The proof
is finished.





Chapter 3

Distribution des points de Fekete

Let L be a positive line bundle over a compact complex projective manifold X and K ⊂ X

be a compact set which is regular in a sense of pluripotential theory. A Fekete configuration
of order k is a finite subset of K maximizing a Vandermonde type determinant associated
with the power Lk of L. Berman, Boucksom and Witt Nyström proved that the empirical
measure associated with a Fekete configuration converges to the equilibrium measure of K
as k → ∞. Dinh, Ma and Nguyen obtained an estimate for the rate of convergence. Using
techniques from Cauchy-Riemann geometry, we show that the last result holds when K is a
real nondegenerate C5-piecewise submanifold of X such that its tangent space at any regular
point is not contained in a complex hyperplane of the tangent space of X at that point. In
particular, the estimate holds for Fekete points on some compact sets in Rn or the unit sphere
in Rn+1. This chapter is based on the article [82].

3.1 Introduction

The aim of this paper is to obtain an estimate on the rate of convergence of Fekete points on
some compact sets toward the equilibrium state. In the view of possible applications, the class
of compact sets that we consider is large enough and the required conditions for our compact
sets are simple to check. Before introducing the general complex setting, let us discuss a
simple but already important case of Fekete points for a compact K of the unit sphere Sn of
Rn+1.

For each k ∈ N, let Pk(K) be the real vector space of all real polynomials of degree at
most k in (n + 1) variables restricted to K. Let Nk be the dimension of Pk(K). Given a basis
S = {s1, · · · , sNk} of Pk(K), consider the Vandermonde determinant detS of S defined by
assigning each point x = (x1, · · · , xNk) ∈ (Sn)Nk to

detS(x) := det[sj(xl)]1≤j,l≤Nk .

A Fekete point of order k for K is a point x ∈ KNk maximizing the absolute function |detS|
on KNk . It is easy to see that this definition does not depend on the choice of the basis S. The
study of Fekete points is motivated by the fact that they are good choices of points for the
interpolation problem of functions by polynomials, see, e.g., [8, 76] and references therein for
more information. For any Fekete point x = (x1, · · · , xNk) of order k, the probability measure

59
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δx on K, defined by

δx :=
1

Nk

Nk∑
j=1

δxj ,

is called the Fekete measure of order k associated with x. We are interested in the distribution
of Fekete points of order k as k →∞. A natural way to formulate this question is to study the
limit points of Fekete measures in the space of probability measures on K.

Let µeq be the equilibrium measure of (K, 0) which is defined in Section 3.2. When K =

Sn, the measure µeq is simply the normalized volume form on Sn induced by the Euclidean
metric on Rn+1. In this case, J. Marzo and J. Ortega-Cerdà in [54] prove that Fekete measures
of order k converge weakly to µeq as k → ∞. In general, a recent result of R. Berman,
S. Boucksom and D. Witt Nyström in [4] shows that the weak convergence also holds for
any compact K of Sn which is non-pluripolar in the natural complexification SnC of Sn. In
fact, this result holds in a general setting of Fekete points associated with a big line bundle
over a compact complex manifold. Also in this general setting, Dinh, Ma and Nguyen [23]
introduced a notion of (Cα, Cα′)-regularity and obtained a precise estimate on the speed of
convergence of Fekete points when the compact K satisfies this property. We will show that
such a property holds for the closures K of open subsets of Sn with nondegenerate piecewise
smooth boundary (see Definition 3.1.3). As a consequence, we will have the following.

Theorem 3.1.1. Let K be the closure of an open subset of Sn with nondegenerate piecewise
smooth boundary. For every ε ∈ (0, 1), there is a positive constant cε independent of k ∈ N such
that for any Fekete measure µk of order k of K, we have

dist1(µk, µeq) ≤ cεk−1/72+ε. (3.1.1)

Recall that for any two probability measures µ, µ′ on a compact differentiable manifold X
and a real number γ > 0, define

distγ(µ, µ′) := sup
‖v‖Cγ≤1

∣∣〈µ− µ′, v〉∣∣,
where v is a smooth real-valued function. This distance induces the weak topology on the
space of probability measures on X. For two positive numbers γ, γ′ with γ < γ′, the distances
distγ and distγ′ are related by the inequalities

distγ′ ≤ distγ ≤ cdist
γ/γ′

γ′ ,

for some positive constant c, see [30, 78]. Note that dist1(µ, µ′) is equivalent to the Kantorovich-
Wasserstein distance. We have a better estimate when K = Sn.

Theorem 3.1.2. For every ε ∈ (0, 1), there is a positive constant cε depending only on (n, ε) such
that for any Fekete measure µk of order k of Sn, we have

dist1(µk, µeq) ≤ cεk−1/36+ε. (3.1.2)

It is worth mentioning also that when K is the closure of an open subset of Rn with
nondegenerate piecewise smooth boundary, one can define the Fekete points in K and Fekete
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measures in the same way as above. The analogue of the inequality (3.1.1) also holds for this
case. This could be deduced from our general result by using the compact complexification
Pn of Rn, where Pn is the complex projective space of dimension n.

In order to prove Theorem 3.1.1, we will work in the following context of complex geom-
etry. Let X be a compact n-dimensional complex projective manifold admitting an ample line
bundle L. Fix a smooth Hermitian metric h0 on L with positive curvature. Let ω0 be the first
Chern form of (L, h0) which is a Kähler form on X. For k ∈ N, let H0(X,Lk) be the complex
vector space of global holomorphic sections of Lk. We also use Nk to denote the dimension of
H0(X,Lk). This will cause no ambiguity because we discuss essentially the general case from
now on. Consider a basis

S = (s1, s2, · · · , sNk)

of H0(X,Lk) which can be seen to be a section of the vector bundle Lk × · · · ×Lk of rank Nk

over XNk . The determinant

detS(p) := det[si(pj)]1≤i,j≤Nk

with p = (p1, · · · , pNk) ∈ XNk defines a section of the determinant line bundle L�Nk of the
last bundle. The metric h0 induces naturally a metric on L�Nk . Denote by |detS| the norm
of detS measured by this natural metric on L�Nk .

Let K be a compact subset of X. Let φ be a continuous function on K. The weighted
Vandermonde determinant | detS|φ at a point p = (p1, · · · , pNk) ∈ KNk , by definition, is

| detS|φ(p) := | detS(p)|e−kφ(p1)−···−kφ(pNk ).

A Fekete configuration of order k associated with (K,φ) and (L, h0) is a point in KNk max-
imizing the above weighted Vandermonde determinant on KNk . The associated probability
measure

1

Nk

Nk∑
j=1

δpj

on K is called a Fekete measure of order k.
Recall that a convex polyhedron K ′′ in RM with M ∈ N∗ is the intersection of a finite

number of closed half-spaces in RM . Its dimension is defined to be the one of the smallest
vector subspace of RM containing it. Such subspace is said to support K ′′. We define the com-
plementary polyhedron of K ′′ to be the complement of K ′′ in the vector subspace supporting
it. That complementary polyhedron is clearly a finite union of convex ones.

Definition 3.1.3. A subset K of a real M -dimensional smooth manifold Y is called a nondegen-
erate C5-piecewise submanifold of dimension m if for every point p ∈ K, there exists a local chart
(Wp,Ψ) of Y such that Ψ is a C5-diffeomorphism from Wp to the unit ball of RM and Ψ(K∩Wp)

is the intersection with the unit ball of a finite union of convex polyhedra of the same dimension
m. In particular, when Ψ(K ∩Wp) is the intersection with the unit ball of a convex polyhedron of
dimension m or of the complementary polyhedron of a convex one of dimension m, we say that
K is a C5 submanifold of dimension m with nondegenerate piecewise boundary.

Let K be a nondegenerate C5-piecewise submanifold of dimension m of some smooth
manifold Y. A regular point of K is a point of K such that there exists an open neighborhood
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of it diffeomorphic to an open subset of Rm. The regular part of K is the set of regular points
of K. The singularity of K is the complement of the regular part of K in K.

Now let K be a nondegenerate C5-piecewise submanifold of X. Since X is a complex
manifold, its real tangent spaces have a natural complex structure. We say that K is generic in
the sense of Cauchy-Riemann geometry if the tangent space at any regular point p of K is not
contained in a complex hyperplane of the (real) tangent space at p of X. One can see without
difficulty that the dimension of a generic K is at least n. Here is our second main result.

Theorem 3.1.4. Let α be a real number in (0, 1). Let K be a compact generic nondegenerate
C5-piecewise submanifold of X. Let φ be a function of Hölder class Cα on K. Then for every
0 < γ < 2, there is a constant c > 0 such that for every integer k ≥ 1 and for every Fekete
measure µk of order k associated with (K,φ), we have

distγ
(
µk, µeq(K,φ)

)
≤ ck−βγ(log k)3βγ , (3.1.3)

where µeq(K,φ) is the equilibrium measure of (K,φ) (see Definition 3.2.1) and β = α/(48 +

24α). When K has no singularity, the constant β can be chosen to be α/(24 + 12α).

In general, when K is an arbitrary non-pluripolar compact subset of X and φ ∈ C0(K),

Boucksom, Berman and Witt Nyström in [4] proved that µk converges weakly to µeq. Using
a different technique, Lev and Ortega-Cerdà in [51] obtained an optimal speed for the dist1

provided that K = X and φ is smooth ω0-strictly p.s.h. and the metric e−2φh0 is strictly posi-
tive. Very recently, Dinh, Ma and Nguyen in [23] introduced the notion of (Cα, Cα′)-regularity
and proved an estimate for the rate of convergence for every compact K satisfying this prop-
erty, see Theorem 3.2.2. In particular, they showed that the closure of an open subset of X
with smooth boundary enjoys such regularity. Finally, we would like to remark that the case
of Fekete’s points can be regarded as the extreme case of some random point processes called
β-ensembles as β →∞. Similar equidistribution results are also obtained for the latter. We re-
fer to [5, 25, 9] and references therein for physical interpretations of β-ensembles and recent
results on them.

In this work, we will prove that the compact K in Theorem 3.1.4 satisfies the regularity
mentioned above. Hence Theorem 3.1.4 will follow immediately. For the proof, we develop
ideas from [23, Th. 2.7]. The key point is to construct families of analytic discs partly attached
to K in X with useful properties. These families will allow us to reduce the question to the
case of dimension one. The reader may consult [58, 59, 60] for applications of analytics
discs. Although there are plenty of works concerning families of analytics discs, it seems that
there is no result which can be used directly for our problem. We will establish a Bishop-type
equation and prove that it has a (unique) solution which suits our purposes. For the reader’s
convenience, a self-contained proof will be given. The construction is inspired by the work
of Merker and Porten in [58, 59]. We also underline that the case where the singularity of
K is nonempty requires much more sophisticated technical arguments than the case without
singularity although the ideas used in the both situations are similar.

In Section 3.2, we prove the aforementioned regularity property of K by admitting the
existence of special families of analytic discs whose proof is postponed until Section 3.3 and
3.4. In Section 3.3, we prove the existence of the above families of analytic discs in the
simplest case by constructing special analytic discs partly attached to Rn or (R+)n in Cn. In
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Section 3.4, we show that the required families can be obtained as small deformations of the
previous ones constructed in Section 3.3.

3.2 (Cα, Cα′
)-regularity of generic submanifolds

We first recall some definitions. Let dc := i
2π (∂̄ − ∂), hence ddc = i

π∂∂̄. A function ψ : X →
R ∪ {−∞} is called quasi-plurisubharmonic (quasi-p.s.h. for short) if it is locally the sum of
a plurisubharmonic function and a smooth one. A quasi-p.s.h. function is called ω0-p.s.h. if
ddcψ + ω0 ≥ 0. Let K be a compact subset of X and φ be a real-valued continuous function
on K. The pair (K,φ) is called a weighted compact subset of X and φ is called a weight on K.
The equilibrium weight associated with (K,φ) is the upper semi-continuous regularization φ∗K
of the function

φK := sup{ψ(z) : ψ ω0-p.s.h., ψ ≤ φ on K}.

Since the constant function −maxK |φ| is a ω0-p.s.h. and bounded above by φ on K, we have
φK ≥ −maxK |φ|. It follows that φK is bounded from below. Recall that K is said to be
pluripolar if it is locally contained in {ψ = −∞} for some (local) p.s.h. function ψ, otherwise
we say that K is non-pluripolar. It is well-known that φK is bounded from above if and only
if K is non-pluripolar. In this case, φ∗K is a bounded ω0-p.s.h. function. The Monge-Ampère
measure (ω0 +ddcφ∗K)n is hence well-defined. Its mass on X equals

∫
X ω

n
0 by Stokes’ theorem.

The equilibrium measure of (K,φ) is the normalized Monge-Ampère measure defined by

µeq(K,φ) :=

(
ddc(φ∗K) + ω0

)n∫
X ω

n
0

· (3.2.1)

Recall that µeq(K,φ) is a probability measure supported on K. It is a direct consequence of
Theorem 3.2.3 below that any compact generic nondegenerate C5-piecewise submanifold of
X is non-pluripolar.

Fix a Riemannian metric on X. For p ∈ X and r > 0, let BX(p, r) be the ball centered at p
of radius r of X. Put B∗X(p, r) := BX(p, r)\{p}. Recall that for 0 < α < 1, Cα(X) is the space
of real functions of Hölder class Cα on X with the norm defined by

‖φ‖Cα(X) := sup
p∈X
|φ(p)|+ sup

p6=p′,p,p′∈X

|φ(p)− φ(p′)|
dist(p, p′)α

,

where dist denotes the distance on X. The space Cα(K) is defined similarly.

Definition 3.2.1. For α ∈ (0, 1) and α′ ∈ (0, 1), a non-pluripolar compact K is said to be
(Cα, Cα′)-regular if for any positive constant C, the set {φK : φ ∈ Cα(K) and ‖φ‖Cα(K) ≤ C} is
a bounded subset of Cα′(X).

By definition, if K is (Cα, Cα′)-regular, for any Hölder continuous function φ of order
α > 0 on K, we have φ∗K = φK because the latter is also Hölder continuous. The notion of
(Cα, Cα′)-regularity is essential in our work. The reason is the following result.
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Theorem 3.2.2. ([23, Th. 1.5]) Let K be a non-pluripolar compact subset of X. Let α ∈ (0, 1),

α′ ∈ (0, 1) and γ ∈ (0, 2]. Assume that K is (Cα, Cα′)-regular. Let φ be a Cα real-valued function
on K. Then, there is c > 0 such that for every k > 1, we have

distγ
(
µk, µeq(K,φ)

)
≤ ck−βγ(log k)3βγ ,

with β = α′/(24 + 12α′).

Theorem 3.1.4 is a direct consequence of Theorem 3.2.2 and Theorem 3.2.3 below.

Theorem 3.2.3. Let α be an arbitrary number in (0, 1). Then any compact generic nonde-
generate C5-piecewise submanifold K of X is (Cα, Cα/2)-regular. Particularly, when K has no
singularity, K is (Cα, Cα)-regular.

When K is of maximal real dimension, the regularity of K can be improved, see Remark
3.2.7 for more details.

Remark 3.2.4. Consider the case where dimRK = n. This is the case of our great interest. Then,
the regularity of K obtained in Theorem 3.2.3 is optimal. For simplicity, let take n = 1 and
X = P1 = {[z0 : z1] : (z0, z1) ∈ C2\{0}}. Let ω0 be the Fubini-Study form on P1. Using the
local coordinates [z : 1], P1 can be seen as the compactification of C with a point at infinity. An
ω0-p.s.h. functions is equal to ψ(z)− 1

2 log(1 + |z|2) on C, where ψ is a subharmonic function on
C, such that the last difference is bounded above.

LetK = [−1, 1]. Choose φ ≡ 0 onK. Using [44, Cor. 5.4.5], we get φK(z) = log |z+
√
z2 − 1|

on C, where the square root is chosen such that

|z +
√
z2 − 1| ≥ 1.

Comparing φK(z) with 0 when z is close to 1, one sees that φK ∈ C1/2(X)\C1/2+ε(X) for any
ε > 0. In higher dimension, the same arguments also work for X = Pn, K = [−1, 1]n ⊂ Cn and
φ ≡ 0.

Before giving the proof of Theorem 3.2.3, we need to recall the definition of analytic discs
partly attached to a subset of X. Throughout the paper, let D be the open unit disc in C. An
analytic disc f in X is a holomorphic mapping from D to X which is continuous up to the
boundary ∂D of D. For an interval I ⊂ ∂D, f is said to be I-attached to a subset E ⊂ X if
f(I) ⊂ E. In particular, we say that f is half-attached to E if f(∂+D) ⊂ E, where ∂+D =

{ξ ∈ ∂D : Re ξ ≥ 0}. The crucial ingredient in the proof of Theorem 3.2.3 is Proposition 3.2.5
below which shows the existence of special families of analytic discs partly attached to K in
X. Its proof will be given in Section 3.4.

Proposition 3.2.5. There are positive constants c0, r0 and θ0 ∈ (0, π/2) such that for any p0 ∈ K
and any p ∈ B∗X(p0, r0), there exist an open neighborhood Wp0 of p0 in X independent of p
which is biholomorphic to the unit ball of Cn and a C1 analytic disc f : D → Wp0 such that f
is [e−iθ0 , eiθ0 ]-attached to K, dist(f(1), p0) ≤ c0δ with δ = dist(p, p0), ‖f‖C1 ≤ c0 and there is
z∗ ∈ D so that |1− z∗| ≤

√
c0δ and f(z∗) = p. When K has no singularity, z∗ can be chosen so

that |1− z∗| ≤ c0δ.

We will also need the following lemma in complex dimension one.
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Lemma 3.2.6. Let θ0 ∈ (0, π/2), β ∈ (0, 1) and let c > 0. Let ψ be a subharmonic function on D
and continuous on D. Assume that

ψ(eiθ) ≤ c|θ|β for θ ∈ (−θ0, θ0) and sup
θ∈[−π,π]

ψ(eiθ) ≤ c. (3.2.2)

Then, there exists a constant C depending only on (θ0, β, c) so that for any z ∈ D, we have

ψ(z) ≤ C|1− z|β.

Proof. Observe that the function |θ|β is Hölder continuous of order β in θ. By using this fact
and suitable cut-off functions in C∞(∂D), we see that there exists a function ψ1 in Cβ(∂D) so
that

ψ1(eiθ) = c|θ|β for θ ∈ (−θ0/2, θ0/2)

and
ψ1(eiθ) ≥ c for θ ∈ [−π,−3θ0/4] ∪ [3θ0/4, π].

By (3.2.2), we have ψ(eiθ) ≤ ψ1(eiθ) on ∂D. Extend ψ1 harmonically to D. Denote also by
ψ1 its harmonic extension. It is classical that ψ1 ∈ Cβ(D), see (3.3.4) for details. Since ψ is
subharmonic on D and ψ ≤ ψ1 on ∂D, we have ψ ≤ ψ1 on D. As a result,

ψ(z) ≤ ψ1(z) ≤ ψ1(1) + ‖ψ1‖Cβ |1− z|β,

for any z ∈ D. The desired inequality follows because ψ1(1) = 0. The proof is finished.

Proof of Theorem 3.2.3. By [23, Th. 2.7], the compact set X is itself (Cβ, Cβ)-regular for any
β ∈ (0, 1). Let φ̃ be the function on X defined by

φ̃(p) := min
p′∈K

[φ(p′) +Adist(p, p′)α/2]

for p ∈ X and A � ‖φ‖Cα is a fixed big constant. It is not difficult to see that φ̃ is Cα/2 and
φ̃ = φ on K. Namely, we have

|φ̃(p)− φ̃(p′)| ≤ Adist(p, p′)α/2

for all p, p′ ∈ X. By (Cα/2, Cα/2)-regularity of X, we have φ̃X = φ̃∗X which is ω0-p.s.h. and of
Hölder class Cα/2. Hence, the proof of Theorem 3.2.3 is finished if we can show that

φ∗K = φ̃X . (3.2.3)

Clearly, by definition of φ∗K and φ̃X , we have φ∗K ≥ φ̃X . Thus, to prove (3.2.3), it is enough to
prove that

φK ≤ φ̃

on X because this implies φ∗K ≤ φ̃ thanks to the continuity of the last function. Since A is big
enough and φK is bounded on X, we only need to check that

φK(p) ≤ φ̃(p), (3.2.4)

for p close to K. This inequality is clear for p ∈ K.
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Fix a p 6∈ K close to K. Let p0 be a point in K such that

dist(p, p0) = min
p′∈K

dist(p, p′).

Put δ = dist(p, p0). It is shown in the proof of [23, Th. 2.7] that φ̃(p) ≥ φ̃(p0) + A′δα/2 for
some big constant A′ independent of p (A′ →∞ if A→∞). Hence, in order to prove (3.2.4),
it suffices to prove that

φK(p) ≤ φ̃(p0) +A′δα/2 = φ(p0) +A′δα/2. (3.2.5)

As already said above, we only need to consider δ small. Precisely, we will suppose that
δ < r0, where r0 is the constant in Proposition 3.2.5. Let f , Wp0 ,c0, θ0 be the analytic disc
corresponding to (p0, p), the open neighborhood of p0 and the constants respectively in that
proposition. There is z∗ ∈ D with |1− z∗| ≤

√
c0δ so that f(z∗) = p.

Let ψ be an ω0-p.s.h. function on X so that ψ ≤ φ on K. Since Wp0 is biholomorphic to
the unit ball of Cn, there exists a smooth potential ψω0 of ω0 on Wp0 , i.e, we have

ddcψω0 = ω0 on Wp0 .

Hence, ψ0 := ψ + ψω0 is a p.s.h. function on Wp0 and ψ0 ≤ φ0 := φ + ψω0 on Wp0 ∩ K. By
the smoothness of ψω0 , the function φ0 is also Hölder continuous of order α on any compact
subset of Wp0 , hence on f(D). Define ψ1 := ψ0 ◦f, and φ1 := φ0 ◦f. Observe that ψ1 is a p.s.h.
function on D and continuous on D. We also have

ψ1(z∗) = ψ0(p) and φ1(1) = φ0

(
f(1)

)
. (3.2.6)

Since ‖f‖C1 ≤ c0, the function φ1 is Hölder continuous of order α with a Hölder constant
independent of p, p0 and f. On the other hand, since the disc f is [e−iθ0 , eiθ0 ]-attached to K,
we have ψ1(eiθ) ≤ φ1(eiθ) for θ ∈ [−θ0, θ0]. This together with the Hölder continuity of φ1

yield that

ψ1(eiθ) ≤ φ1(1) + c|θ|α,

for θ ∈ [−θ0, θ0] and for some positive constant c. Applying Lemma 3.2.6 to the subharmonic
function

(
ψ1 − φ1(1)

)
gives

ψ1(z∗) ≤ φ1(1) + C|1− z∗|α for some positive constant C. (3.2.7)

Combining (3.2.6), (3.2.7) and the definitions of ψ0, φ0, one obtains

ψ(p) ≤ φ0

(
f(1)

)
+ C|1− z∗|α,

for every ω0-p.s.h. ψ on X with ψ ≤ φ on K. Taking the supremum over all such ψ in the last
inequality and using the definition of φK give

φK(p) ≤ φ0

(
f(1)

)
+ C|1− z∗|α ≤ φ(p0) + ‖φ‖Cα |1− z∗|α + C|1− z∗|α ≤ φ(p0) +A′δα/2

because φ ∈ Cα and |1 − z∗| ≤
√
c0δ. Now consider the case where K has no singularity.

Define
φ̃′(p) := min

p′∈K
[φ(p′) +Adist(p, p′)α]
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for p ∈ X and some fixed big constant A � ‖φ‖Cα . By using the same argument as above
with φ̃′ in place of φ̃ and the fact that |1− z∗| ≤ c0δ, we get the desired conclusion. The proof
is finished.

Proof of Theorems 3.1.1 and 3.1.2. We first prove Theorem 3.1.1. Recall that we have canon-
ical inclusions: Rn+1 ⊂ Cn+1 ⊂ Pn+1. Let SnC be the complexification of Sn in Pn+1 defined by
the equation

z2
0 + · · ·+ z2

n = z2
n+1,

where [z0 : · · · : zn+1] are the homogeneous coordinates on Pn+1. We see that Sn is a compact
generic submanifold of SnC. Choose X = SnC, K = Sn, φ = 0 and L = O(1)|X is the restriction
of the hyperplane line bundle of Pn+1 to X. Observe that the restriction H0(X,Lk)|Sn of
H0(X,Lk) to Sn is a complex vector space of (complex) dimension dimR Pk(Sn). As K is
non-pluripolar in SnC, any nonzero holomorphic function on an open subset of SnC can not
annihilate on the whole K. As a result, we have dimR Pk(Sn) = dimR Pk(K). This allows one
to choose a common basis for the two vector spaces H0(X,Lk)|Sn and Pk(K) when defining
Fekete points. Therefore, Fekete points in the complex case are those defined on K as in
Introduction. Theorem 3.1.1 is now a direct corollary of Theorem 3.1.4 with the choice of
(X,L,K, φ) as above, γ = 1 and α = 1− ε, for ε > 0.

Consider the case where K = Sn, the equilibrium measure µeq(K, 0) coincides with the
normalized volume form on Sn induced by the Euclidean metric on Rn+1 because µeq(K,φ)

is preserved by the actions of the orthogonal matrix group on Sn. Theorem 3.1.2 is hence
obtained in a similar way by using the fact that Sn has no boundary. The proof is finished.

Remark 3.2.7. We discuss here very briefly the case where dimRK = 2n in which the regularity
of K can be improved. For simplicity, we consider the following simple model in the complex
dimension 1. Let X = P1 = C ∪ {∞} as in Remark 3.2.4. Let K be the compact convex polygon
in C. Denote by S1, S2, · · · , Sm the consecutive vertices of K. Let π < γj < 2π be the exterior
angle at Sj of K, for 1 ≤ j ≤ m. Put γ = max1≤j≤m γj . Then, K is (Cα, Cαπ/γ)-regular. When
γj = π for all j, we re-obtain [23, Th. 2.7]. The idea for the proof is as follows. Let φ ∈ Cα(K).

In order to get the above regularity of K, it is enough to show that given any p.s.h. function ψ
on C so that ψ ≤ φ on K, then for every j, we have ψ(z) ≤ φ(Sj) + A|z − Sj |απ/γ for every
z close to Sj and for some fixed big constant A. Let L1 be the open domain of C limited by the
two rays S1Sm and S1S2 which does not contain K. Using an affine change of coordinates, we
can suppose that S1 = 0, the ray S1S2 is {z = (x, 0) : x ≥ 0} and L1 ⊃ H := {Im z > 0}.
Using the map (z − i)/(z + i) sending H biholomorphically to D, one easily sees that the map
Ψ(z) := (zπ/γ − i)(zπ/γ + i) is a biholomorphism from L1 to D. Clearly, Ψ is Hölder continuous
of order π/γ on an open neighborhood of S1 in L1. An application of Lemma 3.2.6 to ψ ◦ Ψ−1

gives the desired result.

3.3 Two special families of analytic discs

3.3.1 Hilbert transform

Denote by z = x + iy the complex variable on C and by ξ = eiθ the variable on ∂D. For any
m ∈ N and r > 0, let Bm(0, r) be the Euclidean ball centered at 0 of radius r of Rm and
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let B∗m(0, r) = Bm(0, r)\{0}. Denote by | · | the Euclidean norm on Rm. The same notations
will be used for Cn that we sometimes identify with R2n. Let Z be a submanifold of Rm. The
Euclidean metric on Rm induces a metric on Z. For β ∈ (0, 1) and k ∈ N, let Ck,β(Z) be the
space of real-valued functions on Z which are differentiable up to the order k and whose kth

derivatives are Hölder continuous of order β. This is a Banach space with the Ck,β-norm given
by

‖v‖k,β,Z := ‖v‖k,Z + sup
ξ 6=ξ′,ξ,ξ′∈Z

‖Dkv(ξ)−Dkv(ξ′)‖
|ξ − ξ′|β

,

where ‖ · ‖k,Z := ‖ · ‖Ck(Z) and Dkv denotes the kth-differential of v. In the proof, we will only
use this norm for Z = D or ∂D.When Z is clear from the context, we will remove the subscript
Z from the above notation of norm. For any tuple v = (v0, · · · , vm) consisting of functions in
Ck,β(Z), we define its Ck,β-norm to be the maximum of the ones of its components.

Recall that an arbitrary continuous function u0(ξ) on ∂D can be extended uniquely to be
a harmonic function on D which is continuous on D. Since this correspondence is bijective,
without stating explicitly, we will freely identify u0 with its harmonic extension on D. We will
write u0(z) = u0(x + iy) to indicate the harmonic extension of u0(eiθ). It is well-known that
the Cauchy transform of u0, given by

Cu0(z) :=
1

2π

∫ π

−π
u0(eiθ)

eiθ + z

eiθ − z
dθ,

is a holomorphic function on D whose real part is u0. Decomposing the last formula into the
real and imaginary parts, we obtain that

u0(z) =
1

2π

∫ π

−π

(1− |z|2)

|eiθ − z|2
u0(eiθ)dθ. (3.3.1)

and

T u0(z) =
1

2π

∫ π

−π

(ze−iθ − z̄eiθ)
i|eiθ − z|2

u0(eiθ)dθ.

The function T u0 is harmonic on D but is not always continuous up to the boundary of D.
Let k be an arbitrary natural number and let β be an arbitrary number in (0, 1). A result of
Privalov (see [58, Th. 4.12] or [1, Sec. 6.1]) implies that if u0 belongs to Ck,β(∂D), then T u0 is
continuous up to ∂D and ‖T u0‖k,β,∂D is bounded by ‖u0‖k,β,∂D times a constant independent
of u0. Hence, the linear self-operator of Ck,β(∂D) defined by sending u0 to the restriction of
T u0 onto ∂D is bounded and called the Hilbert transform. For simplicity, we also denote it by
T . In the method of analytic discs, it is convenient to use a modified version T1 of T defined
by

T1u0 := T u0 − T u0(1).

Hence we always have T1u0(1) = 0 and

∂θT1u0 = ∂θT u0 = T ∂θu0, (3.3.2)

see [58, p.121] for a proof. The boundedness of T on Ck,β(∂D) implies that there is a constant
Ck,β > 1 such that for any v ∈ Ck,β(∂D) we have

‖T1v‖k,β,∂D ≤ Ck,β‖v‖k,β,∂D. (3.3.3)
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Extending u0, T1u0 harmonically to D. By construction, the function f(z) := −T1u0(z)+iu0(z)

is holomorphic on D and continuous on D provided that u0 is in Cβ(∂D) with 0 < β < 1. By
[59, Th. 4.2], ‖f‖k,β,D is bounded by ‖f‖k,β,∂D times a constant depending only on (k, β).

Since ‖u0‖k,β,D ≤ ‖f‖k,β,D and ‖f‖k,β,∂D ≤ (1 + Ck,β)‖u0‖k,β,∂D by (3.3.3), we have

‖u0‖k,β,D ≤ C
′
k,β‖u0‖k,β,∂D, (3.3.4)

for some constant C ′k,β depending only on (k, β). A direct consequence of the above inequal-
ities is that when u0 is smooth on ∂D, the associated holomorphic function f is also smooth
on D.

3.3.2 Analytic discs half-attached to Rn in Cn

The goal of this subsection is to construct a special family of analytic discs half-attached to Rn
in Cn. The main result is Proposition 3.3.4 presented at the end of the subsection. The reader
should keep in mind that the idea that we use below will be constantly applied later.

In what follows, we identify Cn with Rn + iRn. Let z ∈ B∗2n(0, 1). Let u = (u1, · · · , un)

be a vector with components uj ∈ Ck,β(∂D) for 1 ≤ j ≤ n such that u ≡ 0 on ∂+D. Then,
T1u := (T1u1, · · · , T1un) is a vector in

(
Ck,β(∂D)

)n
. As above, extend u and T1u harmonically

to D. By the last subsection, u and T1u belong to
(
Ck,β(D)

)n
. It follows that the map

f := −T1u+ iu

is a Ck,β mapping from D to Cn which is holomorphic on D and f |∂+D ⊂ Rn. In other words,
f is a Ck,β analytic disc half-attached to Rn in Cn with f(1) = 0. We are going to choose u
depending on the parameter z such that there exist z∗ ∈ D (depending on z) and a constant
c0 independent of z for which

‖f‖3,D ≤ c0, (3.3.5)

and

f(z∗) = z and |1− z∗| ≤ c0|z|. (3.3.6)

Recall that we will systematically identify continuous functions on ∂D with their harmonic
extension to D. Hence, for any continuous function u on ∂D, we can speak of its derivatives
in (x, y) as the ones of its harmonic extension, where z = x+ iy ∈ D.

Lemma 3.3.1. There exists a function u ∈ C∞(∂D) vanishing on ∂+D so that ∂xu(1) = −1.

Proof. Differentiating (3.3.1) gives

∂xu(1) =
1

2π

∫ π

−π

u(eiθ)

cos θ − 1
dθ.

Note that the last integral is well-defined because u vanishes on ∂+D. It is easy to choose a
smooth u so that the above integral is equal to−1 and u ≡ 0 on ∂+D. The proof is finished.



70 CHAPTER 3. DISTRIBUTION DES POINTS DE FEKETE

Lemma 3.3.2. Let u be a functions as in Lemma 3.3.1. Then there exist two smooth functions
g1, g2 defined on [0, 1] so that u(1− s+ is) = s+ s2g1(s) and −T1u(1− s+ is) = s+ s2g2(s),

for every s ∈ [0, 1].

Proof. By hypothesis, we have ∂xu(1) = −1 and ∂yu(1) = 0 because u vanishes on ∂+D.
On the other hand, the Cauchy-Riemann equations imply −∂xT1u(1) = ∂yu(1) = 0 and
−∂yT1u(1) = −∂xu(1) = 1. Now using Taylor’s expansions with integral remainders to
u(1− s+ is) and −T1u(1− s+ is) at s = 0, there exist two functions g1(s) and g2(s) satisfying
the desired property. The proof is finished.

We denote by | · |ln the usual norm of linear endomorphisms of Rm for m ∈ N. Since any
real matrix of order m can be canonically associated with a such linear endomorphism, one
can use the norm | · |ln for the real matrices. We will repeatedly use the following known
version of the inverse function theorem.

Lemma 3.3.3. Let m ∈ N∗. Let Φ0 be a function from Bm(0, 1) to Rm. Assume that there are a
nondegenerate square matrix A of order m and a M -Lipschitz function g on Bm(0, 1) for some
constant M > 0 such that

Φ0(z) = Az + g(z),

for every z ∈ Bm(0, 1) and g(0) = 0, |A−1|lnM < 1. Then, for every 0 < r < 1 and every
z̃ ∈ Bm

(
0, 1−|A−1|lnM

|A−1|ln
r
)
, there exists a unique point z∗ ∈ Bm(0, r) such that Φ0(z∗) = z̃.

Proof. Since g is M -Lipschitz on Bm(0, 1), we have

|g(z)− g(z′)| ≤M |z− z′|,

for all z, z′ ∈ Bm(0, 1). In particular, we have |g(z)| ≤ M |z| because g(0) = 0. Let z̃ be a
point in Bm

(
0, 1−|A−1|lnM

|A−1|ln
r
)
. The equation Φ0(z) = z̃ is equivalent to z = A−1

(
z̃− g(z)

)
. Let

r ∈ (0, 1). Define
R(z) := A−1

(
z̃− g(z)

)
,

for z ∈ Bm(0, r). Then R is a self-map of Bm(0, r). Indeed, we have

|R(z)| ≤ |A−1|ln|z̃− g(z)| ≤ |A−1|ln
(
|z̃|+M |z|

)
≤ |A−1|ln

(1− |A−1|lnM
|A−1|ln

r +Mr
)

= r,

for any z ∈ Bm(0, r). Additionally, similar estimates also gives

|R(z)−R(z′)| ≤ |A−1|lnM |z− z′|.

Since |A−1|lnM < 1, R is a contraction of Bm(0, r). Since the last metric space is compact,
the fixed point theorem applied to R implies that R has a unique fixed point z∗ ∈ Bm(0, r).

Equivalently, there is a unique point z∗ ∈ Bm(0, r) for which Φ0(z∗) = z̃.

For any two vectors vj = (vj1, · · · , v
j
n) ∈ Rn with j = 1 or 2, we denote by v1 · v2 the

vector in Rn whose lth component is v1
l v

2
l for 1 ≤ l ≤ n. Let u be a function as in Lemma
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3.3.1. By abuse of notation, denote also by u the vector of C∞(∂D)n whose components are
all equal to u. We define

uz,t(e
iθ) := tu(eiθ) · Im z

|z|
, (3.3.7)

for any z ∈ B∗2n(0, 1) and t ∈ (0, 1]. Extend uz,t harmonically to D. Define

F (z, z, t) := t(Re z− Im z)− T1(uz,t)(z) + iuz,t(e
iθ), (3.3.8)

for any z ∈ D, z ∈ B∗2n(0, 1) and t ∈ (0, 1]. We have following properties of F.

Proposition 3.3.4. The map F : D×B∗2n(0, 1)× (0, 1]→ Cn is smooth and the three following
properties hold:

(i) for any z ∈ B∗2n(0, 1) and t ∈ (0, 1], the mapping F (·, z, t) is a smooth analytic disc
half-attached to Rn in Cn, and F (1, z, t) = t(Re z− Im z) ∈ Bn(0, 2t) ⊂ Rn,

(ii) there exists a constant r0 > 0 so that for any z ∈ B∗2n(0, r0) and t ∈ (0, 1], there exists
z∗ ∈ B∗2n(0, 1) for which

F (1− |z∗|+ i|z∗|, z∗, t) = tz

and |z∗| ≤ 2|z|,
(iii) there exists a constant c0 > 1 so that for any z ∈ B∗2n(0, 1) and t ∈ (0, 1], we have

‖F (·, z, t)‖3 ≤ tc0 and ‖DzF (·, z, t)‖2 ≤ tc0|z|−1, (3.3.9)

where Dz is the differential with respect to z.

Proof. The properties (i) and (iii) automatically hold by our construction. It remains to prove
(ii). Fix t ∈ (0, 1]. For every z ∈ B∗2n(0, 1), define Φ(z) := F (1− |z|+ i|z|, z, t) and Φ(0) := 0.

Applying Lemma 3.3.2 to each component of uz,t and s = |z|, using (3.3.7) and (3.3.8), there
exists a smooth map g0 : [0, 1]→ Rn such that

Φ(z) = t(Re z− Im z) + t Im z + t|z|2g0(|z|) · ImT (z)

|z|
= tz + t|z|g0(|z|) · ImT (z).

Put
g(z) := t|z|g0(|z|) · ImT (z).

Let r0 < 1/16 min{‖g0‖−1
1 , 1}. Observe that g(0) = 0 and

‖g‖1,B∗2n(0,2r0) ≤ t/4 < t/2

Thus, g is t/2-Lipschitz on B2n(0, 2r0). Applying Lemma 3.3.3 to Φ in place of Φ0, A = tId

and g as above shows that for any z ∈ B∗2n(0, r0), there exists z∗ ∈ B∗2n(0, 2r0) for which
Φ(z∗) = tz. Moreover, the last equation implies that

t|z| ≥ t|z∗| − |g(z∗)| ≥ t|z∗| − t/2|z∗|.

Hence, |z∗| ≤ 2|z|. The proof is finished.

For each z ∈ B∗2n(0, r0), define f(z) := F (z, z∗, 1) and z∗ := 1− |z∗|+ i|z∗|. It is clear that
f and z∗ satisfy the two conditions (3.3.5) and (3.3.6).
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3.3.3 Analytic discs partly attached to (R+)n in Cn

The goal of this subsection is to construct a family F ′ of analytic discs which somewhat
resembles the one in Proposition 3.3.4 and partly attached to (R+)n in Cn, where R+ is the
set of nonnegative real numbers. The arguments used in the last subsection do not permit us
to control the position of the part of the boundary of the disc in Rn. The idea is to construct
discs which look like the image of F under the map (z1, · · · , zn) 7−→ (z2

1 , · · · , z2
n), this image

is half-attached to (R+)n, where F is the family in the last subsection.
At the end of this subsection, we also introduce an another family F ′τ of discs half-attached

to Rn parametrized by τ ∈ Bn(0, 2) which contains F ′ as a subfamily. Let us explain why we
need such F ′τ . In the general case considered in Section 3.4, the required analytic discs in
Proposition 3.2.5 can be obtained as a small perturbation of F ′. Due to the nonsmoothness of
(R+)n (or due to the singularity of K in the general case), any family of discs partly attached
to (R+)n is generally no longer so when being perturbed. Hence, in order to control the
perturbed family, one should embed F ′ in the bigger family F ′τ which is more stable under
perturbation.

Define

ρ1(θ) :=
1

2π(cos θ − 1)
and ρ2(θ) := − sin θ

2π(cos θ − 1)2
, (3.3.10)

for θ ∈ [−π, π].

Lemma 3.3.5. Let u be harmonic function on D and smooth on D. Assume that u vanishes on
∂+D. Then, we have ∂yu(1) = 0, ∂2

yu(1) = ∂xu(1), ∂2
xu(1) = −∂xu(1) and

∂xu(1) =

∫ π

−π
u(eiθ)ρ1(θ)dθ and ∂x∂yu(1) =

∫ π

−π
u(eiθ)ρ2(θ)dθ.

Proof. Firstly, observe that for an arbitrary C2 function u(x+ iy) on D, we have

∂θu(eiθ)|θ=0 = ∂yu(1) and ∂2
θu(eiθ)|θ=0 = ∂2

yu(1)− ∂xu(1). (3.3.11)

Now let u be the function in the statement. The last two equalities combined with the fact
that u|∂+D ≡ 0 imply that

∂yu(1) = 0, ∂2
yu(1) = ∂2

θu(1) + ∂xu(1) = ∂xu(1). (3.3.12)

Since ∆u(z) = 0, we get ∂2
xu(1) = −∂2

yu(1) = −∂xu(1). On the other hand, it is computed in
the proof of Lemma 3.3.1 that ∂xu(1) =

∫ π
−π u(eiθ)ρ1(θ)dθ. Differentiating the Poisson kernel

at (1, 0) gives

∂x|x=1∂y|y=0
1− |z|2

2π|eiθ − z|2
= 2∂x|x=1

−y|eiθ − z|2 + (1− x2 − y2) sin θ − y(1− |z|2)

2π|eiθ − (x+ iy)|4

∣∣∣∣
y=0

= 2 sin θ ∂x|x=1
1− x2

2π(x2 − 2x cos θ + 1)2

= 4 sin θ
−x

2π(x2 − 2x cos θ + 1)2

∣∣∣∣
x=1

= − sin θ

2π(cos θ − 1)2
= ρ2(θ).

Combining this with (3.3.1) shows that ∂x∂yu(1) =
∫ π
−π u(eiθ)ρ2(θ)dθ. The proof is finished.
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Corollary 3.3.6. Let u be a function as in Lemma 3.3.5. There are smooth functions g1, g2

defined on [0, 1] and g3 defined on [−π/2, π/2] so that for any s ∈ [0, 1], we have

u(1− s) = −s∂xu(1)− s2∂xu(1)

2
+ s3g1(s) and − T1u(1− s) = s2∂x∂yu(1)

2
+ s3g2(s),

and

−T1u(eiθ) = −∂xu(1)θ − ∂x∂yu(1)

2
θ2 + θ3g3(θ),

for any θ ∈ [−π/2, π/2]. Moreover, there is a constant c independent of u for which ‖gj‖0 ≤
c‖u‖4,∂D for j = 1, 2, 3.

Proof. This is an analogue of Lemma 3.3.2. Recall that we have

−∂xT1u(1) = ∂yu(1) = 0 and − ∂xT1u(z) = ∂yu(z).

Thus, −∂2
xT1u(z) = ∂x∂yu(z). Letting z = 1 in the last equality gives −∂2

xT1u(1) = ∂x∂yu(1).

Using the last equalities and (3.3.12) and Taylor’s expansions at s = 0 for u(1 − s) and for
−T1u(1− s), we get g1, g2 and the first two equalities. By (3.3.11), we have

−∂θT1u(eiθ) = −∂yT1u(1) = −∂xu(1)

and
−∂2

θT1u(eiθ) = −∂2
yT1u(1)− ∂xT1u(1) = −∂2

yT1u(1) = −∂x∂yu(1).

This combined with Taylor’s expansion at θ = 0 of −T1u(eiθ) gives g3 and the third equality.
Since gj are the remainders in Taylor’s expansions up to the order 2, we also see that there is
a constant c independent of u so that for 1 ≤ j ≤ 3,

‖gj‖0 ≤ max{‖u‖3,D, ‖T1u‖3,D} ≤ c‖u‖4,∂D,

by (3.3.4) and (3.3.3). The proof is finished.

Let z̃ ∈ D, δ ∈ (0, 1] and γ ∈ (0, 1]. We want to construct a function u on ∂D which is
differentiable enough such that ∂xu(1) and ∂x∂yu(1) equal to prescribed values. Note that we
always identify u with its harmonic extension on D. Precisely, we want to choose u so that

−δ∂xu(1)− δ2∂xu(1)

2
= Im z̃ and δ2∂x∂yu(1)

2
= Re z̃ − γ. (3.3.13)

The last system is equivalent to

∂xu(1) = − 2 Im z̃

δ(2 + δ)
and ∂x∂yu(1) = −2(γ − Re z̃)

δ2
· (3.3.14)

In order to construct a such u satisfying the last property, we will need the following lemma.

Lemma 3.3.7. Let m be a positive integer. Let {aj}1≤j≤m be real smooth functions on ∂D such
that they are linearly independent in C∞(∂D). Then there exist bj ∈ C∞(∂D) with 1 ≤ j ≤ m so
that ∫ π

−π
bj(e

iθ)aj′(e
iθ)dθ = δjj′ ,

for all 1 ≤ j, j′ ≤ m, where δjj′ is the Kronecker delta.



74 CHAPTER 3. DISTRIBUTION DES POINTS DE FEKETE

Proof. Let Lj : C∞(∂D)→ R be the linear functional defined by

Lj(v) =

∫ π

−π
aj(e

iθ)v(eiθ)dθ,

for v ∈ C∞(∂D) and 1 ≤ j ≤ m. The linear independence of aj and the density of smooth
functions in L2(∂D) imply that {Lj}1≤j≤m are linearly independent. A basic result of linear
algebra says that for any 1 ≤ j ≤ m,( ⋂

j′ 6=j
KerLj′

)
\KerLj 6= ∅.

In the other words, there is bj ∈ C∞(∂D) satisfying Lj′(bj) = δjj′ . The proof is finished.

Lemma 3.3.8. There exist two functions u1(eiθ), u2(eiθ) ∈ C∞(D) vanishing on ∂+D such that

∂xu1(1) = ∂x∂yu2(1) = 1 and ∂xu2(1) = ∂x∂yu1(1) = 0. (3.3.15)

Proof. By Lemma 3.3.5, the condition (3.3.15) is equivalent to∫ π

−π
u1ρ1dθ =

∫ π

−π
u2ρ2dθ = 1 and

∫ π

−π
u1ρ2dθ =

∫ π

−π
u2ρ1dθ = 0.

Put ∂−D = ∂D\∂+D. Let χ ∈ C∞(∂D) with suppχ ⊂ ∂−D and χ 6≡ 0. Let a1 = χρ1(θ), a2 =

χρ2(θ). Observe that these functions are linearly independent in C∞(∂D). This allows us to
apply Lemma 3.3.7 to a1, a2. Hence, we obtain b1, b2 ∈ C∞(∂D) with∫ π

−π
bjaj′dθ = δjj′ .

Let u1 := χb1 and u2 := χb2. One easily checks that u1 and u2 satisfies the desired property.
The proof is finished.

Define

uz̃,δ,γ(eiθ) = −u1(eiθ)
2 Im z̃

δ(2 + δ)
− u2(eiθ)

2(γ − Re z̃)

δ2
· (3.3.16)

We deduce from Lemma 3.3.8 and (3.3.14) that uz̃,δ,γ enjoys the property (3.3.13). The fol-
lowing explains our choice of uz̃,δ,γ .

Lemma 3.3.9. Let (z̃, δ, γ) ∈ D× (0, 1]2 so that

γ ≥ 2|z̃| and 2
√
γ ≥ δ ≥

√
γ

2
. (3.3.17)

Then, there are a positive constant θ0 independent of (z̃, δ, γ) and a smooth function gz̃,δ,γ(s)

defined on [0, 1] depending smoothly on the parameter (z̃, δ, γ) such that ‖gz̃,δ,γ‖1 is bounded
independently of (z̃, δ, γ) and the analytic disc

fz̃,δ,γ := γ − T1uz̃,δ,γ + iuz̃,δ,γ

is [e−iθ0 , eiθ0 ]-attached to R+ in C and fz̃,δ,γ(1− δ) = z̃ + δ3gz̃,δ,γ(δ). Moreover, the quantities

δ‖Dδ gδ(·)‖0 and ‖D(z̃,γ)gz̃,δ,γ(·)‖0

are bounded independently of (z̃, δ, γ), where g is considered as a function of (s, z̃, δ, γ) and
D(z̃,δ,γ) is the differential with respect to (z̃, δ, γ).
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Proof. Corollary (3.3.6), (3.3.16) and (3.3.13) show that there exist smooth functions g1, g2

defined on [0, 1] depending smoothly on (z̃, δ, γ) for which

f(1− δ) = γ + Re z̃ − γ + δ3g1(δ) + i
(

Im z̃ + δ3g2(δ)
)

= z̃ + δ3
(
g1(δ) + ig2(δ)).

Hence, it is immediate to see that the function

gz̃,δ,γ(δ) := g1(δ) + ig2(δ)

satisfies f(1− δ) = z̃ + δ3g(δ). By the hypothesis on (z̃, δ, γ), we have∣∣ 2 Im z̃

δ(2 + δ)

∣∣ ≤ 2,
1

4
≤ 2(γ − Re z̃)

δ2
≤ 12. (3.3.18)

This yields that ‖g1‖1 and ‖g2‖1 are bounded independently of (z̃, δ, γ), hence, so is ‖g‖1.
Estimating δ‖Dδ gz̃,δ,γ(·)‖0 and ‖D(z̃,γ)gz̃,δ,γ(·)‖0 is done similarly.

Now we prove that fz̃,δ,γ is partly attached to R+. To this end, it suffices to check the sign
of the real part of fz̃,δ,γ . Using again Corollary (3.3.6), (3.3.16) and (3.3.13) implies that for
θ ∈ [−π/2, π/2], we have

Re fz̃,δ,γ(eiθ) = γ +
2 Im z̃

δ(2 + δ)
θ +

2(γ − Re z̃)

δ2
θ2 + θ3g3(θ),

where g3(θ) is a smooth function on [−π/2, π/2] whose supnorm is bounded independently
of (z̃, δ, γ). Let c be a such upper bound of ‖g3‖0. Put

f̃1(θ) := γ +
2 Im z̃

δ(2 + δ)
θ +

γ − Re z̃

δ2
θ2

and
f̃2(θ) :=

γ − Re z̃

δ2
θ2 + θ3g3(θ).

We have Re fz̃,δ,γ(eiθ) = f̃1(θ) + f̃2(θ). By the second inequality of (3.3.18), one sees that

f̃2(θ) ≥ θ2/8 + θ3g3(θ) ≥ θ2
(
1/8− |θ|‖g3‖0) ≥ 0

provided that |θ| ≤ min{π/2, 1/(8c)}. Observe that f̃1(θ) is a quadratic polynomial in θ. Its
discriminant equals to

1

δ2

[
Im2 z̃

(2 + δ)2
− γ(γ − Re z̃)

]
≤ 1

δ2

[
Im2 z̃ − γ2/2

]
≤ 0,

because δ ≥ 0 and γ ≥ 2|z̃|. This means that f̃1(θ) ≥ 0 for all θ. Hence, Re fz̃,δ,γ(eiθ) ≥ 0 for
|θ| ≤ θ0 := min{π/2, 1/(8c)}. The proof is finished.

Now let z = (z1, · · · , zn) ∈ B∗2n(0, 1
2n) and let t ∈ (0, 1]. In the formula (3.3.16), let

γ = 2|z|, δ =
√
|z| and z̃ = zj ,

where zj is the jth component of z, denote by u′z;j the function uz̃,δ,γ with the above choice
of (z̃, δ, γ).
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Define u′z,t to be the vector of C∞(D)n whose jth component is equal tu′z;j , for 1 ≤ j ≤ n.

Extend u′z,t harmonically to D. Define

F ′(z, z, t) := 2t(|z|, · · · , |z|)− T1(u′z,t)(z) + iu′z,t, (3.3.19)

for z ∈ D, where (|z|, · · · , |z|) ∈ Rn. Then, F ′ is a family of analytic discs half-attached to Rn
and F ′(1, z, t) = t(|z|, · · · , |z|) ∈ (R+)n. By (3.3.14), we have

∂xu
′
z,t(1) = − 2t Im z√

|z|(2 +
√
|z|)

and ∂x∂yu
′
z,t(1) = −2t(2|z| − Re z)

|z|
, (3.3.20)

where, for simplicity, we wrote |z| for (|z|, · · · , |z|) in the last equality.

Proposition 3.3.10. The map F ′ : D×B∗2n(0, 1
2n)× (0, 1]→ Cn is smooth and there exists two

constants r′0 ∈ (0, 1/4) and c0 > 1 such that the three following conditions hold:
(i) for any z ∈ B∗2n(0, 1

2n) and t ∈ (0, 1], the mapping F ′(·, z, t) is a smooth analytic disc
[eic

−1
0 , eic

−1
0 ]-attached to (R+)n in Cn, and

F ′(1, z, t) = 2t(|z|, · · · , |z|) ∈ Bn(0, 1) ∩ (R+)n,

(ii) for any z ∈ B∗2n(0, r′0) and t ∈ (0, 1], there exists an z∗ ∈ B∗2n(0, 2r′0) for which

F ′(1−
√
|z∗|, z∗, t) = tz

and |z∗| ≤ 2|z|,
(iii) for any z ∈ B∗2n(0, 1

2n) and t ∈ (0, 1], we have

‖F ′(·, z, t)‖5 ≤ tc0 and ‖DzF
′(·, z, t)‖4 ≤ tc0|z|−1, (3.3.21)

where Dz is the differential with respect to z.

Proof. Since F ′(z, z, t) = tF ′(z, z, 1), it is enough to verify the three above conditions for
t = 1. It is clear that (γ, δ, z̃) = (2|z|,

√
|z|, zj) satisfies the condition (3.3.17) for 1 ≤ j ≤ n.

Hence, direct consequences of Lemma 3.3.9 and (3.3.19) show that there exists a constant
c0 > 1 for which the property (i) and (iii) hold. It remains to verify (ii). We will use the same
idea as in the proof of Proposition 3.3.4.

Fix t ∈ (0, 1]. Let Φ′(z) := F ′(1−
√
|z|, z, t) for z ∈ B∗2n(0, 1

2n) and Φ′(0) := 0. By the above
reason and Lemma 3.3.9, there exists a smooth map gz(s) : [0, 1] → Rn depending smoothly
on z ∈ B∗2n(0, 1

2n) such that
Φ′(z) = tz + t|z|3/2gz(

√
|z|).

Note that the homogeneity of F ′ in t implies that gz is independent of t. Put

g′(z) := t|z|3/2gz(
√
|z|).

Observe that g′(0) = 0 and

Dzg
′(z) =

3t|z|1/2

2
gz(|

√
|z|) + t|z|3/2

{
Dzgz(

√
|z|) +Dsgz(

√
|z|)Dz

√
|z|
}
.
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Lemma 3.3.9 for (γ, δ, z̃) = (2|z|,
√
|z|, zj) implies that

√
|z|Dzgz(

√
|z|) and Dsgz(

√
|z|) are

bounded independently of z. As a consequence, we have

|Dzg
′(z)| ≤ c|z|1/2t,

for some constant c independent of (z, t). Let r′0 := (2c)−2/3. The last inequality yields that
|Dzg

′(z)| ≤ t/2 for z ∈ B∗2n(0, 3r′0). Thus, g′ is t/2-Lipschitz on B2n(0, 2r′0). Applying Lemma
3.3.3 to Φ′ in place of Φ0, A = tId and g′ as above shows that for any z ∈ B∗2n(0, r′0), there
exists z∗ ∈ B∗2n(0, 2r′0) for which Φ′(z∗) = tz. Moreover, the last equation implies that

t|z| ≥ t|z∗| − |g(z∗)| ≥ t|z∗| − t/2|z∗|.

Hence, |z∗| ≤ 2|z|. The proof is finished.

As explained at the beginning, let us now introduce a new parameter τ ∈ Bn(0, 2) and a
family F ′τ of analytic discs half-attached to Rn contains F ′ as a subfamily.

Lemma 3.3.11. Let u1 be the function in Lemma 3.3.8. Then, the function ũ := 10u1 is smooth
on ∂D and vanishes on ∂+D and

∂xũ(1) = 10, ∂x∂yũ(1) = 0. (3.3.22)

Proof. This is obvious by the properties of u1. The proof is finished.

Let z and t be as above. We define

u′z,t,τ (z) := u′z,t(z) + tτ · ũ(z), (3.3.23)

where τ ∈ Bn(0, 2), see the paragraph right after Lemma 3.3.3 for the notation. The param-
eter τ will play a role as a control parameter. Define

F ′τ (z, z, t) := 2t(|z|, · · · , |z|)− T1u
′
z,t,τ (z) + iu′z,t,τ (z), (3.3.24)

for z ∈ B∗2n(0, 1
2n), t ∈ (0, 1] and τ ∈ Bn(0, 2). By construction, F ′τ is a family of discs half-

attached to Rn and when τ = 0 we have F ′0 ≡ F ′ which is the family constructed earlier.
By choosing the constant c0 in Proposition 3.3.10 big enough, for any z ∈ B∗2n(0, 1

2n), t ∈
(0, 1] and τ ∈ Bn(0, 2), we have

‖Dj
τF
′
τ (·, z, t)‖4 ≤ tc0 and ‖Dj

τDzF
′
τ (·, z, t)‖3 ≤ tc0|z|−1, (3.3.25)

for j = 0, 1 and

D2
τF
′
τ (1, z, t) ≡ 0, Dτu

′
z,t,τ (1) = 10t, (3.3.26)

where the right-hand side of the last equality denotes the diagonal matrix of order n whose
coefficients on the diagonal are all equal to 10t.
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3.4 Analytic discs partly attached to K

Fix a smooth Riemannian metric on X. Let p0 be an arbitrary point of K. Our goal is to
construct special families of analytic discs partly attached to K in a small neighborhood of
p0 in X. Since K is a generic submanifold, its dimension is at least n. We first study the case
where dimRK = n. Then we deduce the case of higher dimension by considering (local)
generic submanifolds of K. In what follows, the notations & and . respectively mean ≥ and
≤ up to a positive constant depending only on the geometry of (K,X).

3.4.1 The case where K has no singularity

In this subsection, we consider the case where K has no singularity and dimRK = n. The
C3-differentiability of K is enough for our proof. The local coordinates described in Lemma
3.4.1 below are used widely in the Cauchy-Riemann geometry. Since we need to use concrete
estimates uniform in p0, a complete proof will be presented. We refer to the beginning of
Subsection 3.3.1 for the notation of the norms of maps below.

Lemma 3.4.1. There exist constants c1, rK > 1 depending only on (K,X) and a local chart
(Wp0 ,Ψ) around p0, where Ψ : Wp0 → B2n(0, rK) is biholomorphic with Ψ(p0) = 0 such that
the two following conditions hold:

(i) we have

‖Ψ‖1 ≤ c1, ‖Ψ−1‖1 ≤ c1,

(ii) there is a C3 map h from Bn(0, 1) to Rn so that h(0) = Dh(0) = 0, where Dh denotes
the differential of h, and

Ψ(K ∩Wp0) ⊃ {(x, h(x)) : x ∈ Bn(0, 1)},

where the canonical coordinates on Cn = Rn + iRn are denoted by z = x + iy, and

‖h‖3 ≤ c1. (3.4.1)

Proof. We cover X by a finite family of charts (Wj ,Ψj), where Wj is an open subset of X
and Ψj is a biholomorphic map from Wj to the ball B2n(0, 2). We choose these charts so that
Ψ−1
j

(
B2n(0, 1)

)
also cover X. This choice is independent of p0. Consider a chart (Wj0 ,Ψj0)

such that p0 belongs to Ψ−1
j0

(
B2n(0, 1)

)
. Define Wp0 := Wj0 and Ψ := Ψj0 − Ψj0(p0). Let

z = (z1, · · · , zn) be the coordinates on Cn. Identify K∩Wp0 with Ψ(K∩Wp0) for convenience.
By the hypothesis on K, we have

TR
z K + iTR

z K = Cn.

This implies that there are a positive constant c1 independent of p0 and a linear change of
coordinates Ψ′ = (Ψ′1, · · · ,Ψ′n) of Cn such that

‖Ψ′‖1 ≤ c1, ‖Ψ′−1‖1 ≤ c1 (3.4.2)

and
Ψ′(p0) = 0 and Ψ′(TR

p0K) = {Im Ψ′k = 0, 1 ≤ k ≤ n},
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where TR
z K is considered naturally as an affine subspace of Cn. Replacing Ψ by Ψ′ ◦ Ψ, we

can suppose that Ψ(p0) = 0 and

Ψ∗(T
R
p0K) = {Im zk = 0, 1 ≤ k ≤ n} = {z = x + i0} ≡ Rn.

By rescaling Ψ (by a constant independently of p0) if necessary, the submanifold

K ∩Wp0 ∩ {z ∈ Cn : Re z ∈ Bn(0, 1)}

is the graph of a C3 map h = (h1, · · · , hn) over Bn(0, 1) of Rn. By construction, we have
h(0) = Dh(0) = 0. The compactness of K and (3.4.2) insure that there is a positive constant
c1 independent of p0 such that ‖h‖3 ≤ c1. The proof is finished.

From now on, we only use the local coordinates introduced in Lemma 3.4.1 and identify
points in Wp0 with those in B2n(0, rK) via Ψ. Property (i) of Lemma 3.4.1 implies that the
distance on X is uniformly comparable with the Euclidean distance measured by the local
coordinates given in Lemma 3.4.1. Hence, in what follows, we make no distinction between
these two distances. The estimate (3.4.1) implies that

|h(x)| ≤ c1|x|2, |Dh(x)| ≤ c1|x| for |x| ≤ 1. (3.4.3)

For each z ∈ B∗2n(0, 1) and t ∈ (0, 1], let uz,t be the map defined in (3.3.7). Let F and c0

be the family of analytic discs and the constant respectively in Proposition 3.3.4. In order to
construct an analytic disc half-attached to K, it suffices to find a map

U : ∂D→ Bn(0, 1) ⊂ Rn,

which is Hölder continuous, satisfying the following Bishop-type equation

Uz,t(ξ) = t(Re z− Im z)− T1

(
h(Uz,t)

)
(ξ)− T1uz,t(ξ), (3.4.4)

where z and t are parameters inB∗2n(0, 1) and (0, 1) respectively. Indeed, suppose that (1.3.11)
has a solution. For simplicity, we use the same notation Uz,t(z) to denote the harmonic exten-
sion of Uz,t(ξ) to D. Let Pz,t(z) be the harmonic extension of h

(
Uz,t(ξ)

)
to D. Define

F h(z, z, t) := Uz,t(z) + iPz,t(z) + iuz,t(z)

which is a family of analytic discs parametrized by (z, t). For any ξ ∈ ∂+D, the defining
formula of F h and the fact that uz,t ≡ 0 on ∂+D imply that

F h(ξ, z, t) = Uz,t(ξ) + iPz,t(ξ) = Uz,t(ξ) + ih
(
Uz,t(ξ)

)
∈ K

by Property (ii) of Lemma 3.4.1. In other words, F h is half-attached to K. Moreover we have

F h(1, z, t) = t(Re z− Im z) + ih(tRe z− t Im z).

In what follows, it is convenient to regard Uz,t(z) as a function of three variables (z, z, t).



80 CHAPTER 3. DISTRIBUTION DES POINTS DE FEKETE

Proposition 3.4.2. There is a small positive number t1 ∈ (0, 1) independent of (z, p0) so that
for any t ∈ (0, t1] and any z ∈ B∗2n(0, 1), the equation (1.3.11) has a unique solution Uz,t such
that Uz,t(ξ) is C2, 1

2 in ξ, the partial derivative DzUz,t exists and is C1, 1
2 in ξ ∈ ∂D. Moreover, the

two following estimates hold:

‖Uz,t(·)‖2, 1
2
≤ 4c0t, ‖DzUz,t(·)‖1, 1

2
≤ 4c0t|z|−1. (3.4.5)

Proposition 3.4.2 except (3.4.5) is a direct corollary of a more general result due to Tu-
manov, see [59, Th. 4.19]. Since we do not need the optimal regularity for Uz,t (whereas it is
the case for Tumanov’s result), the proof is simpler. We will follow the presentation in [59].
Firstly, we need the following preparatory lemma on the norms of the Hölder spaces.

Lemma 3.4.3. Let g1 and g2 be functions defined on ∂D with suitable differentiability. Then we
have

‖g1g2‖ 1
2
≤ ‖g1‖ 1

2
‖g2‖ 1

2
(3.4.6)

and

‖g1g2‖1, 1
2
≤ 4‖g1‖1, 1

2
‖g2‖1, 1

2
. (3.4.7)

Moreover, there exists a positive constant c(n) such that for any maps g1, g2 from ∂D to Bn(0, 1)

and any function f on Bn(0, 1), we have

‖f ◦ g1 − f ◦ g2‖1, 1
2
≤ c(n){1 + ‖g2‖1, 1

2
}‖f‖2‖g1 − g2‖1, 1

2
(3.4.8)

and

‖f ◦ g1‖1, 1
2
≤ c(n)

{
‖Df ◦ g1‖0‖g1‖1, 1

2
+ ‖f‖2‖g1‖21, 1

2

}
. (3.4.9)

and

‖f ◦ g1‖1, 1
2
≤ c(n){1 + ‖g1‖1, 1

2
}‖f‖2‖g1‖1, 1

2
. (3.4.10)

Proof. Write

g1(ξ)g2(ξ)− g1(ξ′)g2(ξ′) = g1(ξ)
(
g2(ξ)− g2(ξ′)

)
+
(
g1(ξ)− g2(ξ′)

)
g2(ξ′),

for any ξ, ξ′ ∈ ∂D. Using the last equality and the definition of the C
1
2 , one easily gets (3.4.6).

Since D(g1g2) = (Dg1)g2 + g1Dg2, using (3.4.6) and the definition of C1, 1
2 gives

‖g1g2‖1, 1
2
≤ ‖g1g2‖1 + ‖D(g1g2)‖ 1

2

≤ ‖g1‖1‖g2‖1 + ‖Dg1‖ 1
2
‖g2‖1 + ‖g1‖1‖Dg2‖ 1

2
≤ 4‖g1‖1, 1

2
‖g2‖1, 1

2
.

Hence, (3.4.7) follows.
Now we prove (3.4.8). Let g1, g2, f be as in the hypothesis of (3.4.8). We have

D
(
f(g1)−f(g2)

)
= Df(g1)Dg1−Df(g2)Dg2 = Df(g1)(Dg1−Dg2)+

(
Df(g1)−Df(g2)

)
Dg2.
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Applying (3.4.6) to the last sum shows that there exists a positive constant c′(n) depending
only on n so that

‖f(g1)− f(g2)‖1, 1
2
≤ ‖f(g1)− f(g2)‖1 + ‖D

(
f(g1)− f(g2)

)
‖ 1

2

≤ c′(n)

{
‖f‖1‖g1 − g2‖1 + ‖f‖2‖g1 − g2‖0‖g2‖1+

+ ‖Df(g1)‖ 1
2
‖Dg1 −Dg2‖ 1

2
+ ‖f‖2‖g1 − g2‖ 1

2
‖g2‖1, 1

2

}
≤ c′(n){1 + 3‖g2‖1, 1

2
}‖f‖2‖g1 − g2‖1, 1

2
.

Hence, (3.4.8) follows by choosing c(n) = 3c′(n). The inequality (3.4.9) is deduced by using
the same method and (3.4.10) is a direct consequence of (3.4.9). The proof is finished.

Proof of Proposition 3.4.2. Let C1,1/2 and C2,1/2 be the constants Ck,β appearing in (3.3.3)
with k = 1, 2 and β = 1/2. Let c(n) be the constant in Lemma 3.4.3. Define

t1 :=
(
40c0c1c(n) max{C1,1/2, C2,1/2}+ 4c0

)−2
.

Fix t ∈ (0, t1) and z ∈ B∗2n(0, 1). Let A be the set of C1, 1
2 maps

U : ∂D→ Bn(0, 4c0t)

such that ‖U‖1, 1
2
≤ 4c0t. Endow A with the C1, 1

2 -norm making it become a closed subset of a
suitable Banach space. Define

G(U) := t(Re z− Im z)− T1

(
h(U)

)
− T1uz,t. (3.4.11)

We will show that G is a well-defined self-map of A and is a contraction.
Let U ∈ A. Note that since z ∈ B∗2n(0, 1), we have |Re z − Im z| ≤ 2. By (3.3.3) and

Proposition 3.3.4, we get

‖G(U)‖1, 1
2
≤ 2t+ ‖T1‖1, 1

2
‖h(U)‖1, 1

2
+ ‖F (·, z, t)‖2 ≤ C1,1/2‖h(U)‖1, 1

2
+ 3c0t (3.4.12)

because we chose c0 > 1. The inequality (3.4.9) for f = h and g1 = U combined with (3.4.3)
yields that

‖h(U)‖1, 1
2
≤ 2c(n)c1‖U‖21, 1

2

. (3.4.13)

We deduce from (3.4.13) and (3.4.12) that

‖G(U)‖1, 1
2
≤ 2c1c(n)C1,1/2‖U‖21, 1

2

+ 3c0t ≤ 4c0t (3.4.14)

and similarly using (3.4.11) gives

‖G(U)−G(U ′)‖1, 1
2
≤ 2c1c(n)C1,1/2‖U − U ′‖21, 1

2

(3.4.15)

≤ 16c0c1c(n)C1,1/2t‖U − U ′‖1, 1
2
≤ t1/2‖U − U ′‖1, 1

2
,
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for any U,U ′ ∈ A. The inequality (3.4.14) shows that G is well-defined. And the contractivity
ofG follows from (3.4.15). By the fixed point theorem,G has a unique fixed point Uz,t ∈ A. In
other words, the equation (1.3.11) has a unique solution Uz,t ∈ C1, 1

2 (D) and ‖Uz,t‖1, 1
2
≤ 4c0t.

Now we explain why Uz,t ∈ C2, 1
2 (∂D). Define A′ to be the subset of A consisting of U with

‖U‖2, 1
2
≤ 4c0t. Since A′ is a closed subset with respect to the C2, 1

2 -norm in a suitable Banach

space and h, F ∈ C3, similar arguments as above applied to the C2, 1
2 -norm show that for t

small enough, precisely t ∈ (0, t1), G is a self-contraction of A′ and Uz,t is the unique fixed
point of G. Note that in this argument, we need to use the constant C2,1/2 which explains its

presence in the definition of t1. Therefore, Uz,t ∈ C2, 1
2 and it satisfies

‖Uz,t‖2, 1
2
≤ 4c0t.

Now we investigate the dependence of Uz,t on the parameter z. Observe that if Uz,t is
differentiable in z and DzUz,t is at least Cβ in ξ for some β ∈ (0, 1), then by (1.3.11) and
Cβ-boundedness of T1 we must have

DzUz,t = −T1

(
Dh(Uz,t)DzUz,t

)
− T1Dzuz,t. (3.4.16)

This leads us to study the equation

V = −T1

(
H · V

)
− T1Dzuz,t, (3.4.17)

where H(ξ) = Dh(Uz,t(ξ)) is a C2 matrix function in ξ ∈ ∂D. This equation is of the same
type as (1.3.11). Since

‖Dzuz,t(·)‖2 ≤ tc0|z|−1 (see (3.3.9)), (3.4.18)

and H ∈ C2, the same arguments as above show that the equation (3.4.17) has a unique
solution Vz,t in C1, 1

2 (∂D) with

‖Vz,t‖1, 1
2
≤ 4c0|z|−1t. (3.4.19)

Furthermore, if we define V ′0z,t = Dzuz,t and

V ′k+1
z,t = −T1

(
H · V ′kz,t

)
− T1Dzuz,t

for k ∈ N∗, then

‖V ′kz,t − Vz,t‖1, 1
2
≤ tk/2|z|−1 (3.4.20)

thanks to the t1/2-contractivity of the self-map defining the recurrence relation of V ′kz,t.
We now relate Vz,t to Uz,t. Note that by (3.3.9), uz,t ∈ A for t ∈ (0, t1). Let {Ukz,t}k∈N be

the sequence in A defined by

U0
z,t = uz,t, Ukz,t = G(Uk−1

z,t ) for k ≥ 1.

Since uz,t is C4 in (z, z) and h ∈ C3 and T1 is a linear C2, 1
2 -bounded operator, the functions

Ukz,t are C2, 1
2 in (z, z) for all k ≥ 0. Define

V k
z,t := DzU

k
z,t ∈ C1, 1

2 in (z, z),
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for k ∈ N. By definition of Ukz,t, the sequence V k
z,t is defined by the induction relation

V k+1
z,t = −T1

(
Dh(Ukz,t)V

k
z,t

)
− T1Dzuz,t,

for k ≥ 0. Using (3.4.18), the induction on k and the above technique in the proof of (3.4.19),
we obtain that

‖V k
z,t‖1, 1

2
≤ 4c0t|z|−1. (3.4.21)

Since G is t1/2-contraction, we have

‖Ukz,t − Uz,t‖1, 1
2
≤ tk/2. (3.4.22)

We now compare V ′kz,t and V k
z,t. Their difference is

V k+1
z,t − V

′k+1
z,t = −T1

[(
Dh(Ukz,t)−Dh(Uz,t)

)
V k
z,t

]
− T1

[
Dh(Uz,t)(V

k
z,t − V ′kz,t)

]
. (3.4.23)

Applying (3.4.7) and (3.3.3) to each term in the right-hand side of (3.4.23) gives

‖V k+1
z,t − V

′k+1
z,t ‖1, 1

2
≤ 4C1,1/2‖Dh(Ukz,t)−Dh(Uz,t)‖1, 1

2
‖V k

z,t‖1, 1
2
+ (3.4.24)

+ 4C1,1/2‖Dh(Uz,t)‖1, 1
2
‖V k

z,t − V ′kz,t‖1, 1
2
.

The second term of the right-hand side of (3.4.24) is less than or equal to

8c1c(n)C1,1/2‖Uz,t‖1, 1
2
‖V k

z,t − V ′kz,t‖1, 1
2

thanks to (3.4.10) and (3.4.1). By the first inequality of (3.4.5) and (3.4.21), the last quantity
is less than or equal to

32c0c1c(n)C1,1/2t|z|−1‖V k
z,t − V ′kz,t‖1, 1

2
.

In a similar way, the first term of the right-hand side of (3.4.24) is less than or equal to

8c1C1,1/2‖Ukz,t − Uz,t‖1, 1
2
‖V k

z,t‖ 1
2

thanks to (3.4.8) and (3.4.1). By (3.4.21) and (3.4.22), the last quantity is also less than or
equal to

32c0c1c(n)C1,1/2t
(k+2)/2|z|−1.

Hence, we just proved that

‖V k+1
z,t − V

′k+1
z,t ‖1, 1

2
≤ 32c0c1c(n)C1,1/2

[
t(k+2)/2|z|−1 + t‖V k

z,t − V ′kz,t‖1, 1
2

]
.

By induction on k and the last inequality, one easily deduces that

‖V k+1
z,t − V

′k+1
z,t ‖1, 1

2
≤ tk/2|z|−1

for all k ∈ N. Combining with the fact that V ′kz,t → Vz,t, we get V k
z,t → Vz,t. Integrating the last

limit with respect to z, one sees that Uz,t is differentiable on z and DzUz,t = Vz,t. In particular,
DzUz,t belongs to C1, 1

2 (∂D). The proof is finished.
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Let t be a real number in (0, t1) as in Proposition 3.4.2. Define the map

Φh : B2n(0, 1)→ Cn

by putting Φh(0) = 0 and Φh(z) = F h(1 − |z| + i|z|, z, t) for z 6= 0. Let Φ and g be the
maps defined in the proof of Proposition 3.3.4. Recall that Φ(z) = F (1 − |z| + i|z|, z, t) and
Φ(z) = tz + g(z) and

‖g‖1,B∗2n(0,2r0) ≤ t/4, g(0) = 0.

We want to prove that Φh
(
B2n(0, 1)

)
contains an open neighborhood of 0 just as what we did

for Φ. To this end, we compare below these two maps and their derivatives.

Lemma 3.4.4. There is a positive constant c2 independent of z, p0 and of t such that for all
z ∈ B∗2n(0, 1), we have ∣∣Φh(z)− Φ(z)

∣∣ ≤ c2t
2|z|, (3.4.25)

and ∣∣DzΦh(z)−DzΦ(z)
∣∣ ≤ c2t

2. (3.4.26)

Proof. Let z ∈ B∗2n(0, 1). Let z∗ := 1− |z|+ i|z|. We deduce from (3.4.4) and the definition of
F h that

E(z, z, t) := F h(z, z, t)− F (z, z, t) = −T1(Pz,t)(z) + iPz,t(z)

is a holomorphic map in z. Substituting z by z∗ in the last equality gives

Φh(z)− Φ(z) = E(z∗, z, t). (3.4.27)

Recall that Pz,t(ξ) = h
(
Uz,t(ξ)

)
, for ξ ∈ D. By (3.4.13), (3.4.5) and (3.3.4), we have

‖Pz,t(·)‖1, 1
2
,D . ‖Pz,t(·)‖1, 1

2
,∂D . t

2.

This yields that

‖E(·, z, t)‖1, 1
2
,D . ‖T1(Pz,t)‖1, 1

2
,D + ‖Pz,t‖1, 1

2
,D . ‖Pz,t‖1, 1

2
,D . t

2. (3.4.28)

We have
E(1, z, t) = ih

(
Uz,t(1)

)
= ih(tRe z− t Im z)

which is of modulus less than or equal to t2|Re z− Im z|2 ≤ 2t2|z|2 by (3.4.3). Using the last
inequality and (3.4.28), one has

|E(z∗, z, t)| ≤ |E(z∗, z, t)− E(1, z, t)|+ |E(1, z, t)| ≤ ‖E(·, z, t)‖1,D|1− z
∗|+ 2t2|z|2 . t2|z|.

Using this and (3.4.27), one gets (3.4.25).
Differentiating (3.4.27) gives

DzΦh(z)−DzΦ(z) = DzE(z∗, z, t) +DzE(z∗, z, t)

[
−Dz|z|
Dz|z|

]
. (3.4.29)
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By (3.4.28), we have ∣∣DzE(z∗, z, t)Dz|z|
∣∣ . t2∣∣Dz|z|

∣∣ . t2.
Hence it remains to estimate the first term in the right-hand side of (3.4.29). Observe that

DzE(z, z, t) = −T1

(
DzPz,t

)
(z) + iDzPz,t(z),

for all z ∈ D. Let H(ξ) = Dh(Uz,t(ξ)) the function defined in the proof of Proposition 3.4.2.
By definition of Pz,t, we have

DzPz,t(ξ) = H(ξ)DzUz,t(ξ).

Using (3.4.7) together with (3.4.5) gives

‖DzPz,t‖1, 1
2
,D ≤ ‖DzPz,t‖1, 1

2
,∂D ≤ 4‖H‖1, 1

2
,∂D‖DzUz,t‖1, 1

2
,∂D . t

2|z|−1.

We have DzE(1, z, t) = iDzh(tRe z−t Im z) which is clearly of absolute value . t2 by (3.4.3).
Combining this with (3.3.3) yields that

|DzE(z∗, z, t)| = |DzE(z∗, z, t)−DzE(1, z, t)|+ |DzE(1, z, t)|
≤ |1− z∗|‖DzE(·, z, t)‖1,D + t2 . |1− z∗|‖DzPz,t‖1,D + t2 . t2.

The proof is finished.

Lemma 3.4.5. Let r0 be the constant in Proposition 3.3.4. There is a positive number t2 < t1
independent of p0 and of z such that for any t ∈ (0, t2], the set Φh

(
B2n(0, r0)

)
contains the ball

B2n(0, r0t/2).

Proof. Define gh(z) := Φh(z) − tz. We have gh = Φh − Φ + g. By Lemma 3.4.4, Φh − Φ is
t/4-Lipschitz for t ≤ t2 := min{t1, (4c2)−1}. Combining with the fact that g is t/4-Lipschitz on
B2n(0, 2r0) implies that gh is t/2-Lipschitz on B2n(0, 2r0) for t ∈ (0, t2). Now, an application
of Lemma 3.3.3 to Φh = tId + gh gives the desired result. The proof is finished.

Proof of Proposition 3.2.5 for the case without singularity. In our chosen local coordinates
around p0, we have p0 = 0 and p = z. Let t ∈ (0, t2) be as in Lemma 3.4.5. For any z ∈
B∗2n(0, r0t/2), there is z∗ ∈ B2n(0, r0) for which Φh(z∗) = z. We deduce from (3.4.25) that

|z− Φ(z∗)| ≤ c2t
2|z∗| ≤ t|z∗|

4
·

At the end of the proof of Proposition 3.3.4, we proved that |Φ(z∗)| ≥ t|z∗|/2. This implies
that |z∗| ≤ 4|z|/t. Let f(z) := F h(z, z∗, t2) and z∗ = 1 − |z|+ i|z|. The last inequality implies
that

|1− z∗| ≤ 2|z∗| ≤ 8|z|/t.

The analytic disc f clearly satisfies all requirements in Proposition 3.2.5.
Now, we explain how to obtain the desired analytic discs when dimRK > n. Since we

only consider small discs near K, it is enough to work in a small chart and identify K with
a submanifold of B2n(0, 1) with 0 ∈ K. Choose a real linear space A through 0 such that A
intersects K ∩ B2n(0, 2r) transversally at a generic manifold of dimension n, where r > 0
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is a positive number. We can choose r small enough such that this property also holds for
any linear subspace A′ parallel to A which intersects K ∩ B2n(0, 2r). Let p0 ∈ K ∩ B2n(0, r)

and p ∈ B2n(0, 1) close to p0. Let K ′ be the intersection of K ∩ B2n(0, 2r) with the linear
space A′ through p0 and parallel to A. The construction in the last subsections can be applied
to (K ′, X, p0, p) without changes. We obtain analytic discs half-attached to K ′, hence half-
attached to K, with the properties described in Proposition 3.2.5. The proof is finished.

3.4.2 The case where K has singularity

We treat the case where K is a compact generic nondegenerate C5-piecewise submanifold of
X. Actually, C4-differentiability is enough for our proof but in order to avoid some involvedly
technical points, we will use C5-differentiability.

The case of higher dimension will be treated at the end of this subsection also by consid-
ering generic submanifolds of K. The following is an analogue of Lemma 3.4.1.

Lemma 3.4.6. There exist constants c1, rK > 1 depending only on (K,X) and a local chart
(Wp0 ,Ψ) around p0, where Ψ : Wp0 → B2n(0, rK) is biholomorphic with Ψ(p0) = 0 such that
the two following conditions hold:

(i) we have

‖Ψ‖1 ≤ c1, ‖Ψ−1‖1 ≤ c1,

(ii) there is a C5 map h defined on Bn(0, 1) with h(0) = Dh(0) = 0, so that

Ψ(K ∩Wp0) ⊃
{

(x, h(x)) : x ∈ (R+)n ∩Bn(0, 1)
}

and

‖h‖5 ≤ c1. (3.4.30)

Proof. Firstly, observe that by definition of K, through every point p on the singularity of K,
there exist a local chart W of p in X so that K∩W is the intersection of W with a finite union
of convex polyhedra of dimension n in R2n.Here we identifiedW andK∩W with their images
in R2n. Let K ′′ be one of these convex polyhedra containing p. Let K ′ be the intersection of
W with the linear subspace of R2n supporting K ′′. Since K ′′ ∩W is a generic submanifold of
W (because K ∩W is so), K ′ is a generic smooth submanifold without boundary of W by
shrinking W if necessary. Note that p ∈ K ′′ ⊂ K ∩W ∩K ′ and dimK ′′ = dimK ′ = n.

The above observation shows that we can cover K by a finite number of holomorphic
charts (Wj ,Ψj) of X such that there are generic n-dimensional submanifolds K ′j without
boundary of Wj and subsets K ′′j of K ′j ∩ K ∩ Wj diffeomorphic to the intersection of Wj

with a convex polyheron of dimension n via suitable local charts of X. Without loss of gen-
erality, we can suppose that Ψj are biholomorphisms from Wj to B2n(0, 2) and the open sets
Ψ−1
j

(
B2n(0, 1)

)
also cover K.

Consider a chart (Wj0 ,Ψj0) such that p0 ∈ Ψ−1
j0

(
B2n(0, 1)

)
. As above, we can suppose

that p0 ∈ K ′′j0 . Put Wp0 := Wj0 . Using the fact that K ′j0 is a generic n-dimensional smooth
submanifold of Wj0 and arguing as in Lemma 3.4.1, we see that by replacing Ψj0 by the
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composition of Ψj0 with a suitable affine linear map of Cn, one obtain Ψj0(p0) = 0 and K ′j0
contains the graph of a C5 map h(x) over Bn(0, 1) and h(0) = Dh(0) = 0.

By the choice of K ′′j0 and rescaling Ψj0 if necessary, there exist C5 functions τj(x) defined
on an open neighborhood of Bn(0, 1) with 1 ≤ j ≤ n such that

K ∩Wp0 ⊃ K ′′j0 ⊃ {(x, h(x)) : τj(x) ≥ 0 for all 1 ≤ j ≤ n}

and the Jacobian D(τ1, · · · , τn)/Dx is of maximal rank in Bn(0, 1). Write x = (x1, · · · , xn).

Since every linear change of coordinates in Rn can be extended naturally to be a complex
linear change of Cn, using a suitable complex linear change of coordinates in Cn allows one to
assume that tangent space of {τj = 0} at 0 is {xj = 0} for 1 ≤ j ≤ n. Notice that the distortion
caused by the change of coordinates is bounded independently of p0. For x ∈ Bn(0, 1), write

τj(x) = τj(0) +
n∑
l=1

∂xlτj(0)xl +O(|x|2) ≥ xj − ‖τj‖2
n∑
l=1

|xl|2. (3.4.31)

Put C = sup1≤j≤n ‖τj‖2. Define

Qn =
{
x ∈ Rn : xj ≥

1

3n

n∑
l=1

xl ∀ 1 ≤ j ≤ n
}
⊂ (R+)n.

For x ∈ Qn with |x| ≤ 1
3nC , the inequality (3.4.31) yields that

τj(x) ≥ xj − C
1

3nC

n∑
l=1

xl ≥ xj −
1

3n

n∑
l=1

xl ≥ 0,

for all 1 ≤ j ≤ n. We deduce that

K ∩Wp0 ⊃
{

(x, h(x)) : x ∈ Qn ∩Bn(0,
1

3nC
)
}
.

The composition of a suitable linear change of coordinates in Rn with a dilation in Rn will
map Qn onto (R+)n and map Bn(0, 1

3nC ) onto a neighborhood of Bn(0, 1). This map can be
extended to be a holomorphic change of coordinates Ψ′ in Cn. Composing Ψj0 with Ψ′, we
get the desired change of coordinates and the property (ii). The proof is finished.

Let Kh :=
{

(x, h(x)) : x ∈ Bn(0, 1)
}

which is a C5 submanifold of B2n(0, 1). Property (ii)

of Lemma 3.4.6 implies that

|h(x)| ≤ c1|x|2, |Dh(x)| ≤ c1|x|, for |x| ≤ 1. (3.4.32)

To establish the desired family of analytic discs in this context, we follow the same strategy
as in the previous case. Let F ′τ , u

′
z,t,τ , c0 be the maps and the constant defined in (3.3.24),

(3.3.23) and (3.3.25) respectively. As in the last subsection, consider the following Bishop-
type equation

U ′z,t,τ (ξ) = 2t(|z|, · · · , |z|)− T1

(
h(U ′z,t,τ )

)
(ξ)− T1u

′
z,t,τ (ξ), (3.4.33)
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for z ∈ B∗2n(0, 1
2n), t ∈ (0, 1] and τ ∈ Bn(0, 2). For simplicity, we use the same notation

U ′z,t,τ (z) to denote the harmonic extension of U ′z,t,τ (ξ) to D. Let P ′z,t,τ (z) be the harmonic
extension of h

(
U ′z,t,τ (ξ)

)
to D. If U ′z,t,τ is a solution of (3.4.33) which is at least Hölder

continuous, then
F ′hτ (z, z, t) := U ′z,t,τ (z) + iP ′z,t,τ (z) + iu′z,t,τ (z)

is clearly a family of analytic discs half-attached to Kh and

F ′hτ (1, z, t) = 2t(|z|, · · · , |z|) + ih(2t|z|, · · · , 2t|z|) ∈ (R+)n.

Our goal is to obtain a stronger property that F ′hτ is I-attached to K ⊂ Kh, for some interval
I ⊂ ∂D containing 1. In view of (ii) of Lemma 3.4.6, it suffices to prove that

U ′z,t,τ (ξ) ≥ 0 for ξ ∈ I.

Here for any r ∈ R and v ∈ Rn, we write v ≥ r to indicate that each component of v is
greater than or equal to r. A similar convention is applied to v ≤ r.

Proposition 3.4.7. There is a positive number t1 ∈ (0, 1) independent of (p0, z, τ ) so that for
any t ∈ (0, t1) and any z ∈ B∗2n(0, 1

2n), the equation (3.4.33) has a unique solution U ′z,t,τ such

that U ′z,t,τ (ξ) is C4, 1
2 in ξ, for 1 ≤ j ≤ 4 the differential Dj

(z,τ )U
′
z,t,τ exists and is C4−j, 1

2 in
ξ ∈ ∂D. Moreover, the following estimates hold:

‖U ′z,t,τ (·)‖4, 1
2
≤ 4c0t, ‖Dj′

τ U
′
z,t,τ (·)‖4−j, 1

2
≤ 4c0t, ‖Dj

τDzU
′
z,t,τ (·)‖3−j, 1

2
≤ 4c0|z|−1t,

(3.4.34)

for j = 0, 1, 2, 3 and j′ = 1, 2, 3, 4.

Proof. By (3.3.23)-(3.3.26), we see that the arguments in the proof of Proposition 3.4.2 still
work for this case. Hence, the proof is finished.

From now on, let t1 be the constant in Proposition 3.4.7 and let t ∈ (0, t1). Let U ′z,t,τ be the
solution of (3.4.33) described in Proposition 3.4.7. For ξ ∈ ∂D, write ξ = eiθ with θ ∈ [−π, π).

Lemma 3.4.8. There exists a constant c2 independent of (p0, z, t, τ ) so that for any (z, t, τ ), we
have

‖P ′z,t,τ (·)‖4, 1
2
,D ≤ c2t

2, ‖Dj
τP
′
z,t,τ (·)‖4−j, 1

2
,D ≤ c2t

2, (3.4.35)

for j = 1, 2, 3, 4 and

‖Dj
τDzP

′
z,t,τ (·)‖3−j, 1

2
,D ≤ c2t

2|z|−1, (3.4.36)

for j = 0, 1, 2, 3.

Proof. In view of (3.3.4), it is enough to estimate the norms of P ′z,t,τ and Dj
(z,τ )P

′
z,t,τ on ∂D,

for j = 1, 2. Since P ′z,t,τ (ξ) = h
(
U ′z,t,τ (ξ)

)
on ∂D, we have

∂ξP
′
z,t,τ (ξ) = Dh

(
U ′z,t,τ (ξ)

)
∂ξU

′
z,t,τ (ξ).
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This combined with (3.4.32) and (3.4.34) yields that

|∂ξP ′z,t,τ (ξ)| ≤ c1|U ′z,t,τ (ξ)| |∂ξU ′z,t,τ (ξ)| ≤ 4c0c1t
2.

By similar arguments, we also have |∂jξP
′
z,t,τ (ξ)| . t2 with j = 1, 2. Hence, we obtain the first

inequality in (3.4.35). For the proofs of the remaining inequalities, observe that Dj
(z,τ )P

′
z,t,τ

is the harmonic extension of Dj
(z,τ )h

(
U ′z,t,τ (·)

)
to D. Hence, analogous reasoning gives the

desired result. The proof is finished.

Lemma 3.4.9. We always have

|∂xU ′z,t,τ (1)| . t2|z|, |Dτ∂xU
′
z,t,τ (1)| . t2|z| and |Dz∂xU

′
z,t,τ (1)| . t2.

Proof. By (3.3.11), one has

∂yP
′
z,t,τ (1) = ∂θh

(
U ′z,t,τ (eiθ)

)
|θ=0 = Dh

(
U ′z,t,τ (1)

)
∂θU

′
z,t,τ (1).

Since U ′z,t(1) = 2t(|z|, · · · , |z|), using (3.4.32) and (3.4.34), we get

|∂yP ′z,t,τ (1)| . t2|z|.

The Cauchy-Riemann equations for F ′hτ give

∂xU
′
z,t,τ (z) = ∂yP

′
z,t,τ (z) + ∂yu

′
z,t,τ (z),

for all z ∈ D. Substituting z by 1 in the last equation, we obtain

∂xU
′
z,t,τ (1) = ∂yP

′
z,t,τ (1) + ∂yu

′
z,t,τ (1) = ∂yP

′
z,t,τ (1) = O(t2|z|),

because u′z,t,τ vanishes on ∂+D. Hence, the first desired inequality follows. As to the second
one, by differentiating the last inequality with respect to τ , we get

Dτ∂xU
′
z,t,τ (1) = Dτ∂yP

′
z,t,τ (1) (3.4.37)

= Dh
(
U ′z,t,τ (1)

)
Dτ∂θU

′
z,t,τ (1) +D2h

(
U ′z,t,τ (1)

){
DτU

′
z,t,τ (1), ∂θU

′
z,t,τ (1)

}
.

On the other hand, differentiating (3.4.33) with respect to τ gives

DτU
′
z,t,τ (ξ) = −T1

(
Dτh(U ′z,t,τ )

)
(ξ)− T1Dτu

′
z,t,τ (ξ).

In particular, this implies that

DτU
′
z,t,τ (1) = 0. (3.4.38)

Now using the same reason as above, (3.4.37) and (3.4.38) implies the second desired in-
equality. The third one is proved in the same way with the remark that in this case, (3.4.38)
is replaced by the equation DzU

′
z,t,τ (1) = O(t). The proof is finished.
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Lemma 3.4.10. There exist a positive constant t2 < t1 independent of (p0, z, τ , t) and a C1

function

τ (z, t) : B∗2n(0,
1

2n
)× (0, t2)→ Bn(0, 1)

so that for any (z, t) ∈ B∗2n(0, 1
2n)× (0, t2), we have

∂θU
′
z,t,τ (z,t)(e

iθ)|θ=0 =
2t Im z√
|z|(2 +

√
|z|)

(3.4.39)

and ∣∣∣∣∂2
θU
′
z,t,τ (z,t)(e

iθ)|θ=0 −
2t(2|z| − Re z)

|z|

∣∣∣∣ ≤ c2t
2. (3.4.40)

Proof. The Cauchy-Riemann equations for F ′hτ give

∂yU
′
z,t,τ (z) = −∂xP ′z,t,τ (z)− ∂xu′z,t,τ (z). (3.4.41)

Combining this with (3.3.11) gives

∂θU
′
z,t,τ (1) = ∂yU

′
z,t(1) = −∂xP ′z,t,τ (1)− ∂xu′z,t,τ (1). (3.4.42)

Fix z and t. Define Φ0(τ ) := ∂θU
′
z,t,τ (1). By definition of u′z,t,τ (1) and (3.3.20), we have

Φ0(0) = −∂xP ′z,t,0(1) +
2t Im z√
|z|(2 +

√
|z|)
· (3.4.43)

The first inequality of (3.4.35) implies that∣∣Φ0(0)− 2t Im z√
|z|(2 +

√
|z|)
∣∣ ≤ c2t

2 ≤ t3/2, (3.4.44)

for t small enough. Differentiating (3.4.42) with respect to τ gives

Dj
τΦ0(τ ) = −Dj

τ∂xP
′
z,t,τ (1)−Dj

τ∂xu
′
z,t,τ (1),

for j = 1 or 2. By (3.3.26) and (3.4.35), we see that

‖D2
τΦ0‖0 ≤ c2t

2 ≤ t3/2, (3.4.45)

and

1

ct
≥
∣∣[DτΦ0(0)]−1

∣∣
ln
≥ c[10t+ c2t

2]−1 ≥ c

11t
, (3.4.46)

for t small enough and some constant c > 0 independent of (z, t, τ ), where we recall that the
norm | · |ln of a square matrix is the one of its associated linear map. Taylor’s expansion for Φ0

at τ = 0 gives

Φ0(τ ) = Φ0(0) +DτΦ0(0)τ + g0(τ ), (3.4.47)
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where g0(τ ) is t3/2-Lipschitz by (3.4.45) and g0(0) = 0. A direct application of Lemma 3.3.3
to Φ0 with A = DτΦ0(0) and M = t3/2 implies that for t small enough, Φ0 is an injection on
Bn(0, 1) and

Φ
(
Bn(0, 1)

)
⊃ Bn

(
Φ0(0), ct

)
Note that when t is small, we see that

2t Im z√
|z|(2 +

√
|z|)
∈ Bn

(
Φ0(0), ct

)
thanks to (3.4.44). This yields that there exists a unique τ (z, t) ∈ Bn(0, 1) such that

Φ0

(
τ (z, t)

)
= − 2t Im z√

|z|(2 +
√
|z|)
·

The differentiability of τ (z, t) is implied directly from the implicit function theorem for Φ0(τ , z, t),

where we recovered the variable (z, t) to indicate the dependence of Φ0 on them. By definition
of Φ0, (3.4.39) follows.

Recall that u′z,t,τ = u′z,t+tτ ·ũ and ∂x∂yũ(1) = 0. Now differentiating (3.4.41) with respect
to y and using (3.3.11) and Lemma 3.4.9 yield

∂2
θU
′
z,t,τ (1) = ∂2

yU
′
z,t,τ (1) +O(t2) = −∂y∂xP ′z,t,τ (1)− ∂y∂xu′z,t,τ (1) +O(t2)

= −∂y∂xP ′z,t,τ (1) +
2t(2|z| − Re z)

|z|
+O(t2) (by (3.3.20)).

This combined with (3.4.35) implies (3.4.40). The proof is finished.

Corollary 3.4.11. There exists a positive constant t3 < t2 so that for any t ∈ (0, t3) we can
find a positive number θt ∈ (0, π/2) such that such that for any z ∈ B∗2n(0, 1

2n) the analytic disc
F ′hτ (z,t)(·, z, t) is [e−iθt , eiθt ]-attached to K.

Proof. Write U ′z,t,τ = (U ′z,t,τ ;1, · · · , U ′z,t,τ ;n). We only need to prove that U ′z,t,τ (z,t);j(e
iθ) ≥ 0

for |θ| small enough and 1 ≤ j ≤ n. Fix 1 ≤ j ≤ n. Put

(z̃, δ, γ) := (zj ,
√
|z|, 2|z|)

which satisfies the condition (3.3.17). We will mimic the proof of Lemma 3.3.9. By Lemma
3.4.10 and Taylor’s expansion of U ′z,t,τ ;j(e

iθ) at θ = 0, we have

t−1U ′z,t,τ (z,t);j ≥ γ +
2 Im z̃

δ(2 + δ)
θ +

2(γ − Re z̃)

δ2
θ2 − c2tθ

2 + θ3g′z(θ),

where g′z(θ) is a function on [−π/2, π/2] whose supnorm is bounded by t−1‖U ′z,t,τ (z,t)‖3 ≤ 4c0

by (3.4.34). Put

f̃1(θ) := γ +
2 Im z̃

δ(2 + δ)
θ +

γ − Re z̃

δ2
θ2

and
f̃2(θ) :=

γ − Re z̃

δ2
θ2 − c2tθ

2 + θ3g′z(θ).
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We have
t−1U ′z,t,τ (z,t);j = f̃1(θ) + f̃2(θ).

Arguing as in Lemma 3.3.9 shows that f̃1(θ) ≥ 0 for all θ ∈ [−π/2, π/2] and f̃2(θ) ≥ 0

provided that t is small enough and |θ| ≤ θt for some θt > 0 independent of z. Hence,
U ′z,t,τ (z,t);j(e

iθ) ≥ 0 for all 1 ≤ j ≤ n and t small enough and |θ| ≤ θt. The proof is finished.

We will need the following estimates on the function τ (z, t).

Lemma 3.4.12. Let t, z and τ (z, t) be as in Lemma 3.4.10. Then, there exist positive constants
c3 and t4 < t3 which are both independent of (p0, z, t) so that for any (z, t) ∈ B∗2n(0, 1

2n)×(0, t4),

we have

|τ (z, t)| ≤ c3t and |Dzτ (z, t)| ≤ c3t|z|−1. (3.4.48)

Proof. We reuse the notation in the proof of in Lemma 3.4.10. Recall that Φ0(τ , z, t) =

∂θU
′
z,t,τ (1). Thus, (3.4.34) implies that

|DzDτΦ0(τ , z, t)| ≤ 4c0t|z|−1. (3.4.49)

Since

Φ0

(
τ (z, t), z, t

)
=

2t Im z√
|z|(2 +

√
|z|)

,

using (3.4.47) and (3.4.43), we have

−∂xP ′z,t,0(1) = DτΦ0(0, z, t)τ (z, t) + g0

(
τ (z, t)

)
. (3.4.50)

Since g0 is c2t
2-Lipschitz (see (3.4.45)) and g0(0) = 0, we deduce from (3.4.46) that

|∂xP ′z,t,0(1)| ≥ ct|τ (z, t)| − c2t
2|τ (z, t)| ≥ t|τ (z, t)|(c− c2t).

This combined with (3.4.35) implies that

|τ (z, t)| ≤ t

c− c2t
. t, (3.4.51)

for t small enough. Hence, the first inequality of (3.4.48) follows.
We now prove the second one. Differentiating the equality (3.4.50) with respect to z and

using (3.4.36) give[
DτΦ0

(
0, z, t

)
+Dτ g0

(
τ (z, t)

)]
Dzτ (z, t) +DzDτΦ0

(
τ (z, t), z, t

)
τ (z, t) = O(t2|z|−1).

This together with (3.4.51) and (3.4.49) yields that[
DτΦ0

(
0, z, t

)
+Dτ g0

(
τ (z, t)

)]
Dzτ (z, t) = O(t2|z|−1).

Multiplying the two sides of the last equality by DτΦ0

(
0, z, t

)−1 and using (3.4.46) and

|Dτ g0

(
τ (z, t)

)
|ln = O(t2) (by (3.4.45)),

we get
|Dzτ |ln . t−1t2|z|−1 . t|z|−1.

The proof is finished.
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Let t ∈ (0, t4). Define the map

Φ′h : B2n(0,
1

2n
)→ Cn

by putting Φ′h(0) = 0 and Φ′h(z) = F ′hτ (z,t)(z
∗, z, t) for z 6= 0, where z∗ := 1 −

√
|z|. Our

goal is to obtain similar estimates for Φ′h as in Lemma 3.4.4. However, due to the presence
of τ , direct comparisons between Φ′h and Φ′ do not work efficiently as in the case without
singularity. In order to get the expected results, we will use the technique in Corollary 3.3.6.

Lemma 3.4.13. There is a positive constant c4 independent of z, p0 and t such that for all
z ∈ B∗2n(0, 1

2n), we have

|Φ′h(z)− tz| ≤ c4|z|(t2 + t
√
|z|), (3.4.52)

and ∣∣DzΦ′h(z)− tId
∣∣ ≤ c4(t2 + t

√
|z|). (3.4.53)

Proof. We want to study the behavior of F ′τ (z,t)(z) near z = 1. By using Taylor’s expansions,
it is sufficient to estimate its partial derivatives at 1. Put

F̃ ′(z, z, t) := F ′τ (z,t)(z, z, t).

Differentiating the last equality and using the second inequality of (3.4.48) and (3.4.34), one
has

‖DzF̃
′(·, z, t)‖3 . ‖DzF

′
τ (z,t)(·, z, t)‖3 + ‖DτF

′
τ (z,t)(z, z, t)‖3 |Dzτ (z, t)| . t|z|−1. (3.4.54)

Lemma 3.4.10 implies that

∂x Im F̃ ′(1, z, t) = −∂yU ′z,t,τ (z,t)(1) = − 2t Im z√
|z|(2 +

√
|z|)

.

On the other hand, we have

Im F̃ ′(z, z, t) = P ′z,t,τ (z,t)(z) + u′z,t,τ (z,t)(z).

Hence,

∂2
x Im F̃ ′(1, z, t) = ∂2

xP
′
z,t,τ (z,t)(1) + ∂2

xu
′
z,t,τ (z,t)(1)

= ∂2
xP
′
z,t,τ (z,t)(1) + ∂2

xu
′
z,t(1) + tτ (z, t) · ∂2

xũ(1)

= ∂2
xP
′
z,t,τ (z,t)(1) +

2t Im z√
|z|(2 +

√
|z|)

+ tτ (z, t) · ∂2
xũ(1),

by (3.3.20). By Taylor’s expansion for Im F̃ ′(·, z, t) at z = 1 up to the order 3 and using
(3.4.35) and the first inequality of (3.4.48), there is a function g′′z,t;1 defined on [0, 1] so that

g′′z,t;1(s) is C1, 1
2 in (s, z) and for any s ∈ [0, 1], we have

Im F̃ ′(1− s, z, t) = s
2t Im z√
|z|(2 +

√
|z|)

+ s2 2t Im z

2
√
|z|(2 +

√
|z|)

(3.4.55)

+ ts2τ (z, t) · ∂2
xũ(1) + s3g′′z,t;1(s),
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and
‖g′′z,t;1‖1 . ‖F ′τ (z,t)(·, z, t)‖4 . t.

Additionally, (3.4.54) also imply that

‖Dzg
′′
z,t;1‖0 . ‖DzF̃

′(·, z, t)‖3 . t|z|−1.

Define
g′z,t;1(s) := t−1sg′′z,t;1(s) + τ (z, t) · ∂2

xũ(1).

Thus,
|g′z,t;1|1 . s+ t, ‖Dzg

′
z,t;1‖0 . t|z|−1 + s|z|−1.

Letting s =
√
|z| in (3.4.55) and using (3.3.13), (3.3.14), we obtain

Im F̃ ′(1−
√
|z|, z, t) = t Im z + tg̃′t;1(z), (3.4.56)

where g̃′t;1(z) := |z|g′z,t;1(
√
|z|). Direct computations give

|g̃′t;1(z)| . (t+
√
|z|)|z| and ‖Dzg̃

′
t;1‖0 . t+

√
|z|. (3.4.57)

Analogous arguments and Lemma 3.4.9 also show that

∂x Re F̃ ′(1, z, t) = ∂xU
′
z,t,τ (z,t)(1) = O(t2|z|),

Dz∂x Re F̃ ′(1, z, t) = Dz∂xU
′
z,t,τ (z,t)(1) +Dτ∂xU

′
z,t,τ (z,t)(1)Dzτ (z, t) = O(t2),

and

∂2
x Re F̃ ′(1, z, t) = −∂2

y Re F̃ ′(1, z, t) = −∂2
θU
′
z,t,τ (z,t)(1) +O(t2) = −2t(2|z| − Re z)

|z|
+O(t2)

by (3.4.40). Hence, as above there exists a C1 function g̃′t;2(z) on B∗2n(0, 1
2n) such that

Re F̃ ′(1−
√
|z|, z, t) = tRe z + tg̃′t;2(z) (3.4.58)

and

|g̃′t;2(z)| . (t+
√
|z|)|z| and ‖Dzg̃

′
t;2‖0 . t+

√
|z|. (3.4.59)

By (3.4.56) and (3.4.58), we get

Φ′h(z) = F̃ ′(1−
√
|z|, z, t) = tz + t(g̃′t;2 + ig̃′t;1).

Using (3.4.59) and (3.4.57), we get the desired results. The proof is finished.

The proof for the following lemma is similar to Lemma 3.4.5.

Lemma 3.4.14. There are positive constant t5 < t4 and r′0 < 1/(2n) independent of (p0, z)

such that for any t ∈ (0, t5] and any z ∈ B∗2n(0, r′0), the set Φ′h
(
B2n(0, r′0)

)
contains the ball

B2n(0, r′0t/2).
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Proof of Proposition 3.2.5 for the case with singularity. In our chosen local coordinates around
p0, we have p0 = 0 and p = z. Let t ∈ (0, t5] and z ∈ B∗2n(0, r′0) as in Lemma 3.4.14. Without
loss of generality, we can suppose that

t5 +
√
r′0 ≤ 1/(2c4).

For any z ∈ B∗2n(0, r′0t/2), there exists z∗ ∈ B2n(0, r′0) for which Φ′h(z∗) = z. We deduce from
(3.4.52) that

|z− tz∗| ≤ c4|z∗|(t2 + t
√
|z|∗) ≤ |tz

∗|
2
.

Let f(z) := F ′h(z, z∗, t5) and z∗ := 1−
√
|z∗|. The last inequality implies that

|1− z∗|2 ≤ 2|z|/t.

As in the case without singularity, the analytic disc f satisfies all properties in Proposition
3.2.5.

Now, we explain how to obtain the desired analytic discs when dimRK > n. In the last
subsection, we sliced K by generic n-dimensional submanifolds K ′ in a uniform way. Then,
one just applied the previous result for K ′ to get discs partly attached to K. In our present
case, such slicing does not always work due to the fact that a hypersurface passing an edge of
K may only intersect K at that point. Hence, we do not get a such a family K ′ as above. We
will use the same idea with some additional caution. As just mentioned, we only need to take
care of the edges of K. Let pe be an edge of K. By definition of K, there exists a local chart
(W̃pe , Ψ̃) of pe in X such that Ψ̃ is a diffeomorphism from W̃pe to B2n(0, 2) and Ψ̃(K ∩ W̃pe)

is the intersection of a finite union of convex polyhedra with B2n(0, 2). For simplicity, we
identify K with Ψ̃(K) and suppose that K is just a convex polyhedron. Hence, it is easy to
choose a (3n−dimK)-dimensional subspace Hpe of R2n such that the affine subspace pe+Hpe

intersects K at a n-dimensional convex polyhedron K ′pe which is generic at pe in the sense of
the Cauchy-Riemann geometry: K ′pe +JK ′pe = R2n where J is the complex structure of X, we
identified TpeX with R2n. Since pe is an edge, the last property implies that the same thing
also holds for any p0 ∈ R2n close enough to pe, i.e, (p0 +Hpe) ∩K = Kp0 and Kp0 generic at
p0. To summarize, we just get a family of generic n-dimensional local submanifolds K ′p0 of K
uniformly in p0. Now apply the above result for each Kp0 , we get the desired conclusion. The
proof is finished.





Chapter 4

Loi de Weyl pour les résonances d’un
opérateur de Schrödinger générique

Let −∆ + V be the Schrödinger operator acting on L2(Rd,C) with d ≥ 3 odd. Here V is a
bounded real or complex function vanishing outside the closed ball of center 0 and of radius
a. Let nV (r) denote the number of resonances of −∆ + V with modulus ≤ r. We show that if
the potential V is generic in a sense of pluripotential theory then

nV (r) = cda
drd +O(rd−

3
16

+ε) as r →∞

for any ε > 0, where cd is a dimensional constant. This chapter is based on the article [35].

4.1 Introduction

Let ∆ denote the Laplacian on Rd with d odd. Let V be a bounded complex-valued function
with support in the closed ball Ba of center 0 and of radius a in Rd. The purpose of this work is
to study the asymptotic number of resonances associated to the Schrödinger operator −∆+V

acting on L2(Rd,C). The problem has a long history and was intensively investigated during
the last three decades. We refer to [12, 14, 72, 77, 80, 89, 90, 91] and to the references
therein for an introduction to the subject.

Recall that for λ ∈ C large enough with Im(λ) > 0, the operatorRV (λ) := (−∆+V −λ2)−1

on L2(Rd,C) is well-defined and is bounded. It depends holomorphically on the parameter λ.
If χ is a smooth function with compact support such that χV = V , one can extend χRV (λ)χ

to a family of operators which depends meromorphically on λ ∈ C. The poles of this family,
which are called the resonances of the operator −∆+V , and their multiplicities do not depend
on the choice of χ. Denote by nV (r) the number of resonances of modulus ≤ r counted with
multiplicity.

In dimension d = 1, Zworski obtained in [86] that

nV (r) =
4

π
ar + o(r) as r →∞, (4.1.1)

where 2a is the diameter of the support of V , see also [39, 66, 71, 90]. From now on, we
assume that d ≥ 3.

97
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The upper bound for the number of resonances is now well-understood. Define

NV (r) :=

∫ r

0

nV (t)− nV (0)

t
dt.

Generalizing some results by Melrose [55, 56, 57], Zworski obtained in [87] the following
estimate

dNV (r) ≤ cdadrd + o(rd) as r →∞,

where the sharp constant cd was identified by Stefanov in [77], see Section 4.2 for the defini-
tion of cd and [73, 79] for more general results. Lower bound for the number of resonances
is only known in special cases that we will discuss below.

For 0 < δ ≤ 1, define

Mδ
a :=

{
V ∈ L∞(Ba,C) : nV (r)− cdadrd = O(rd−δ+ε) as r →∞ for every ε > 0

}
.

This is a subset of the following family introduced by Christiansen in [15]

Ma :=
{
V ∈ L∞(Ba,C) : nV (r)− cdadrd = o(rd) as r →∞

}
.

Our first main result is the following theorem.

Theorem 4.1.1. Let V be a radial real-valued function of class C 2 on Ba. Write V (x) = V (‖x‖)
and assume that V (a) 6= 0. Then V belongs to M

3/4
a .

This result generalizes a theorem of Zworski in [88] which says that V belongs to Ma, see
also Stefanov [77, Th.3]. The proof will be given in Section 4.4. It follows Zworski’s approach
and is based on some refinements of his arguments.

Consider now a connected open set Ω in Cp and a uniformly bounded family Vϑ of po-
tentials in L∞(Ba,C) depending holomorphically on the parameter ϑ ∈ Ω. Our second main
result is the following theorem.

Theorem 4.1.2. Let Vϑ be a holomorphic family of potentials as above. Suppose there are ϑ0 ∈ Ω

and 0 < δ ≤ 1 such that Vϑ0 belongs to Mδ
a. Then there is a pluripolar set E ⊂ Ω such that

Vϑ ∈M
δ/4
a for all ϑ ∈ Ω \ E.

Note that pluripolar sets in Ω are of Hausdorff dimension at most equal to 2p − 2 and
their intersections with Rp have zero p-dimensional volume, see e.g. [26, 50, 65] and also
Section 4.5 for the definition. Therefore, in the last theorem, most of potentials Vϑ belong to
M

δ/4
a . If V is a potential as in Theorem 4.1.1 and if V ′ is an arbitrary potential in L∞(Ba,C),

then for almost every ϑ ∈ C and almost every ϑ ∈ R the potential ϑV + (1− ϑ)V ′ belongs to
M

3/16
a . For such a potential, the number of resonances is asymptotically cdadrd. Therefore, this

property holds for "most of the" potentials in L∞(Ba,C) or in L∞(Ba,R) if we only consider
real potentials. The notion of pluripolar sets can be extended to L∞(Ba,C) and the property
holds for V out of such a set. We don’t know if M3/16

a contains a dense Gδ set in L∞(Ba,C).
This question was communicated to us by Peter D. Hislop, see [16] for a partial answer.
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A version of Theorem 4.1.2 has been obtained by Christiansen in [15], where assuming
Vϑ0 ∈Ma, she proved that the counting function NVϑ(r) satisfies

lim sup
r→∞

dNVϑ(r)

rd
= cda

d

for ϑ outside a pluripolar set, see also [12, 16]. In particular, this property holds for generic
potentials V in L∞(Ba,C) or in L∞(Ba,R).

The proof of Theorem 4.1.2 will be given in Section 4.5. It partially follows Christiansen’s
approach. We also prove and use there some property of plurisubharmonic functions (see
Lemma 4.5.2 below) and an upper bound for NV (r) which generalizes the above estimate
(4.1.1) by Zworski and Stefanov, see Theorem 4.3.1 in Section 4.3 below.

Note that Christiansen constructed in [13] examples of complex Schrödinger operators
without resonances. This shows that the exceptional set E in Theorem 4.1.2 is not always
empty. In comparison with similar results from complex dynamics, it is reasonable to believe
that E is always a finite or countable union of analytic subsets of Ω, see e.g. [31].

Sá Barreto and Zworski showed in [68] that any Schrödinger operator with compactly
supported real potential admits an infinite number of resonances, see also [11, 67]. The
sharp asymptotic behavior for the number of resonances in this case is still unknown.

Notation and convention. Denote by Ba the open ball of center 0 and of radius a in Rd
and D(z, r) the disc of center z and of radius r in C. Let Sd−1 denote the unit sphere in Rd.
Define B := B1, D(r) := D(0, r), D := D(1), N∗ := N \ {0}, R± := {t ∈ R : ±t ≥ 0} and
C± := {z ∈ C : ± Im z > 0}. The functions ρ, ζ, Ai, Jν , the constant cd, the sets Ω,K+ and

the space Hl are introduced in Section 4.2; the sets Ων
c ,Ω

ν
c (k),Jνc in Section 4.4. Define

arg z := θ and log z := log r + iθ for z = reiθ with r > 0 and θ ∈ (−π, π]. All the constants
we will use depend only on a, d, ‖V ‖∞ and can be changed from line to line. The notation .
and & means inequalities up to a multiplicative constant. An expression likes f(z) ∼ g(z) as
z →∞ means f(z)/g(z)→ 1 when |z| → ∞. An expression likes

f(z) ∼ g(z)
∞∑
n=0

an
zn

means
f(z)

g(z)
=

N−1∑
n=0

an
zn

+O(z−N ) as |z| → ∞

for each N ≥ 0, see [62, p.16].

4.2 Some properties of Bessel functions

In this section, we give some properties of Bessel functions and of other auxiliary functions
that will be used later in the proofs of the main theorems. We refer to Olver [61, 62] for
details.

Let ρ be the continuous function on C+ \ {0} defined by

ρ(z) := log
1 +
√

1− z2

z
−
√

1− z2 (4.2.1)
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which extends the real-valued function in z ∈ (0, 1) given by the same formula. Let Ω be the
following union of a half-plane and a half-strip

Ω :=
{
z ∈ C : Re z < 0

}
∪
{
z ∈ C : −π < Im z < 0,Re z ≥ 0

}
.

Then, the function ρ defines a bijection between C+ \ {0} and Ω. Moreover, it is holomorphic
on C+ and sends the intervals

[1,∞), (0, 1], [−1, 0), (−∞,−1]

respectively and bijectively to

iR+,R+,
{
z ∈ C : Im z = −π,Re z ≥ 0

}
and i(−∞,−π].

A direct computation gives

∂ρ

∂z
= −
√

1− z2

z
and |ρ| ∼ const |1− z|3/2 as z → 1. (4.2.2)

As in [61, 62], one can find an injective continuous function ζ : C+ \ {0} → C− which
sends bijectively (0, 1] to R+ and satisfies

2

3
ζ3/2(z) = ρ(z). (4.2.3)

The function ζ is holomorphic on C+.
Consider the convex domain

K+ :=
{
z ∈ C+ : Re ρ(z) > 0

}
.

Its boundary is the union of the interval [−1, 1] and the curve ρ−1([−iπ, 0]) joining the two
points −1 and 1. This is the upper half of the domain K considered in [61, 62], [77, p.126]
and [88, p.377]. Note that K+ contains the half-disc D(1

2) ∩ C+.
Recall that the dimensional constant cd used in Introduction was defined in [77, 88, 87].

It is equal to

cd =
2d

π(d− 2)!

∫
z=x+iy∈C+

max(−Re ρ(z), 0)

|z|d+2
dxdy

=
2d

π(d− 2)!

∫
z=x+iy∈C+\K+

−Re ρ(z)

|z|d+2
dxdy

=
2vol(B)2

(2π)d
+

2

πd(d− 2)!

∫
∂K+

|1− z2|1/2

|z|d+1
|dz|. (4.2.4)

We will need some basic properties of the Airy function Ai(·), of its derivative Ai′(·) and
of the Bessel function Jν(·) with a large positive parameter ν. The functions Ai(·) and Ai′(·)
are entire. The function Jν(·) is holomorphic on C \ R−. For w ∈ C \ R−, define ξ := 2

3w
3/2,
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where we use the principal branch for the function w 7→ w3/2. There are real numbers us and
vs such that

Ai(w) ∼ e−ξ

2π1/2w1/4

∞∑
s=0

us
(−ξ)s

and Ai′(w) ∼ w1/4e−ξ

2π1/2

∞∑
s=0

vs
(−ξ)s

(4.2.5)

as |w| → ∞ in | argw| ≤ π − δ for every fixed constant δ > 0.
For the values of Ai(·) and Ai′(·) on C \ R+, we need other formulas. With the above

notation, there are real numbers as, bs, a′s, b
′
s such that

Ai(−w) ∼ 1

π1/2w1/4

[
cos(ξ − π

4
)
(
1 +

∞∑
s=1

as
ξ2s

)
+ sin(ξ − π

4
)
∞∑
s=0

bs
ξ2s+1

]
(4.2.6)

and

Ai′(−w) ∼ w1/4

π1/2

[
sin(ξ − π

4
)
(
1 +

∞∑
s=1

a′s
ξ2s

)
+ cos(ξ − π

4
)

∞∑
s=0

b′s
ξ2s+1

]
(4.2.7)

as |w| → ∞ with | argw| ≤ 2π
3 − δ for every fixed constant δ > 0.

For the Bessel function Jν(·), when ν → ∞, the following relation holds uniformly in
0 ≤ arg z ≤ π − δ with any fixed constant δ > 0

Jν(νz) ∼
( 4ζ

1− z2

)1/4[Ai(ν2/3ζ)

ν1/3

(
1 +

∞∑
s=1

As(ζ)

ν2s

)
+

Ai′(ν2/3ζ)

ν5/3

∞∑
s=0

Bs(ζ)

ν2s

]
, (4.2.8)

where As and Bs are holomorphic functions in ζ, see Olver [61, (4.24)]. Note that a similar
property holds for z ∈ C \ (−∞, 1] and 0 ≤ | arg z| ≤ π − δ by Schwarz reflection principle.

We will need the following estimates.

Lemma 4.2.1. Let M > 0 be a fixed constant large enough. Then, there is a constant A > 0

such that for ν large enough and for z 6= 0 with Re(z) ≥ 0, Im(z) ≥ 0 we have

|Jν(νz)| ≤ Amax(1,− log |z|)e−ν Re ρ when ν2/3|1− z| ≥M

and
|Jν(νz)| ≤ A when ν2/3|1− z| ≤M.

Proof. Assume that ν2/3|1− z| ≤M . Then z is close to 1. We deduce from (4.2.2) and (4.2.3)
that |ζ| ∼ const |1− z|. So |ζ|, |ν2/3ζ| and the first factor in the right-hand side of (4.2.8) are
bounded. Therefore, we deduce from (4.2.8) that |Jν(νz)| is bounded.

Assume now that ν2/3|1−z| ≥M . Then |ν2/3ζ| and |νρ| are bounded below by a large pos-
itive constant. This allows us to use the identities (4.2.5), (4.2.6) and (4.2.7). We distinguish
two cases. Consider first the case where −π ≤ arg(ζ) ≤ −π

2 . In this case, we have Re ρ ≤ 0.
Then, we can apply the relations (4.2.8), (4.2.6) and (4.2.7) to w := −ν2/3ζ and ξ := −iνρ.
We have

|Jν(νz)| . |w|1/4|ζ|1/4

ν1/3|1− z2|1/4
(∣∣ sin (− iνρ− π

4

)∣∣+
∣∣ cos

(
− iνρ− π

4

)∣∣)
.

|ζ|1/2

|1− z2|1/4
e−ν Re ρ.
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We obtain the result using that |ζ| . − log |z| as z → 0, |ζ| . |1− z| as z → 1 and |ζ| . |z|2/3
as z →∞.

It remains to treat the case where −π
2 ≤ arg(ζ) ≤ 0. In this case, we do not need to know

the sign of Re ρ. We can apply the relations (4.2.8) and (4.2.5) to w := ν2/3ζ and ξ := νρ.
Similar estimates as above give the result.

Recall that the zeros of the function Jν(νz), except 0, are real, simple and larger than 1,
see [61, (7.4)] and [62, p.246]. So the corresponding values of ρ belong to iR+. Fix an integer
k0 large enough. We say that a solution of Jν(νz) = 0 is of first type if the corresponding value
of ρ satisfies |νρ| < k0π and of second type otherwise. Let z̃ν,k0 , z̃ν,k0+1, . . . be the solutions
of second type of Jν(νz) = 0 written in increasing order. Define ρ̃ν,k := ρ(z̃ν,k). We will need
later the following lemma.

Lemma 4.2.2. For ν large enough the number of solutions of first type of Jν(νz) = 0 is bounded
by a constant independent of ν. Moreover, there is a constant ε0 > 0 such that for ν large enough
and for k0 ≤ k ≤ ε0ν4, we have ∣∣∣ρ̃ν,k − (3πi

4ν
+
kπi

ν

)∣∣∣ ≤ 1

ν
·

Proof. Assume that ν is large enough. Consider the solutions z of first type. As above, we can
apply (4.2.8) and (4.2.6), (4.2.7) to w := −ν2/3ζ and ξ := −iνρ. We can see using Rouché
theorem that w is almost equal to a solution of Ai(−w) = 0 in a bounded interval. So the
number of solutions of first type is bounded.

We prove now the second assertion in the lemma. Recall that the function ρ sends bijec-
tively [1,∞) to iR+. So the ρ̃ν,k are in iR+ and the sequence |ρ̃ν,k| is increasing. We will only
consider the zeros of Jν(νz) such that k0πν

−1 ≤ |ρ| < εν3 for some fixed small constant ε > 0.
For such a zero, we have |ν2/3ζ| < 2εν8/3.

We apply again (4.2.8) and (4.2.6), (4.2.7) to w := −ν2/3ζ and ξ := −iνρ. Using that
|w1/4| � ν2/3, we see that ξ is a positive number large enough (because k0 is a large constant)
satisfying an equation of the form

cos
(
ξ − π

4

)
= γν(ξ),

where γν(ξ) is a holomorphic function on the domain{
ξ ∈ C : (k0 − 1)π < |ξ| < εν4,Re ξ > 0, | Im ξ| < 1

}
such that |γν | is bounded by a very small constant independent of ν. We use here the property
that cos(ξ − π

4 ) and sin(ξ − π
4 ) are bounded on the considered domain.

Choose a constant ε0 � ε. We can now apply Rouché’s theorem and deduce that the first
ε0ν

4 − k0 + 1 zeros of second type of Jν(νz) satisfy the lemma.

Let Hl denote the vector space of harmonic homogeneous polynomials of degree l on Rd.
These polynomials are used to describe the eigenfunctions of the Dirichlet Laplacian on the
unit ball B of Rd. We recall some basic properties that will be used later. For the following
result, see Corollary 2.53 in [36].
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Lemma 4.2.3. We have

dimHl = (2l + d− 2)
(l + d− 3)!

l!(d− 2)!
=

2ld−2

(d− 2)!
+O(ld−3) as l→∞.

Define ν := l + d
2 − 1. Let m+

l (r) denote the number of positive zeros of Jν(·) which are
smaller or equal to r. It is almost equal to the maximal integer k such that z̃ν,k ≤ r

ν . The
following result is a consequence of the classical Weyl law.

Proposition 4.2.4. Assume that r is large enough. Then

(a) m+
l (r) = 0 when l ≥ r;

(b) z̃ν,k 6∈ D( rν ) if k ≥ 1
2cr for some fixed constant c > 0 large enough; in particular, we have

m+
l (r) ≤ cr;

(c) We have ∑
l≥0

m+
l (r) dimHl =

vol(B)2

(2π)d
rd +O(rd−1) as r →∞.

Proof. (a) If l ≥ r then ν > r. In this case, if z > 0 is a solution of Jν(νz) = 0, by classical
properties of Bessel functions, we have z ≥ 1. Therefore, νz > r and hence, m+

l (r) = 0.

(b) Assume that l ≤ r and k ≥ 1
2cr for c > 0 large enough. Then, by Lemma 4.2.2, ρ̃ν,k is

large and therefore z̃ν,k is larger than 2. For z in [2,∞), we have

ρ =
(√

z2 − 1 + arccos
1

z

)
i.

We deduce that νz̃ν,k & ν|ρ̃ν,k| & k and hence z̃ν,k > r
ν .

(c) Recall that the eigenvalues of the Dirichlet Laplacian on B are precisely (νz̃ν,k)
2 with

multiplicity dimHl, see Theorem 2.66 in [36] for details. So the infinite sum in the proposition
is the number of eigenvalues ≤ r2 of the Dirichlet Laplacian on B counted with multiplicities.
By Weyl law [42, Th. 29.3.3], this number is equal to

vol(B)2

(2π)d
rd +O(rd−1) as r →∞.

This completes the proof of the proposition.

4.3 Upper bound for the number of resonances

In this section, we obtain an upper bound for the number of resonances which improves a
result due to Zworski-Stefanov [77, 86]. Consider a general Schrödinger operator −∆ + V

with a bounded complex potential V vanishing outside the ball Ba. Here is the main result in
this section which is a consequence of Proposition 4.3.2 and Theorem 4.3.3 below.

Theorem 4.3.1. With the notation as in Introduction, there is a constant A > 0 depending only
on d, a and ‖V ‖∞ such that

NV (r) ≤ cda
drd

d
+Ard−1 log r as r →∞.



104 CHAPTER 4. LOI DE WEYL POUR LES RÉSONANCES

We first recall some basic notions and results, see [77, 86] for details. Let R1, R2, R3 be
real numbers such that a < R1 < R2 < R3. Choose also a smooth cut-off function χ1 (resp.
χ2) vanishing outside BR2 (resp. BR3) and equal to 1 on BR1 (resp. BR2). These numbers and
functions will be specified later.

Define two families of operators E±(λ) : L2
comp(Rd)→ L2(Sd−1) with λ ∈ C by

E±(λ)(f)(w) :=

∫
e±iλω·xf(x)dx for f ∈ L2

comp(Rd) and ω ∈ Sd−1.

Denote by E∗+(λ) the transpose operator of E+(λ) with the same Schwartz kernel. The scatter-
ing matrix associated to −∆ + V is the operator SV (λ) : L2(Sd−1)→ L2(Sd−1) given by

SV (λ) := I − i(2π)−d2
1−d
2 λd−2E−(λ)[∆, χ2]RV (λ)[∆, χ1]E∗+(λ),

where I denotes the identity operator, see [77, p.120].
The scattering determinant is defined by

sV (λ) := detSV (λ).

It satisfies sV (λ)sV (−λ) = 1. The poles of sV are called the scattering poles. They are, with a
finite number of exceptions, the resonances of −∆ + V with the same multiplicities. In what
follows, we will tend to abuse notation and identify nV (r), NV (r) with the similar counting
functions for the zeros of sV (λ) on C+. This does not affect our estimates.

The following result was obtained by Christiansen in [15, (3.2)], see also Stefanov [77,
Prop. 2].

Proposition 4.3.2. We have for r large enough∣∣∣NV (r)− 1

2π

∫ 2π

0
log |sV (reiθ)|dθ

∣∣∣ ≤ Ard−1,

where A > 0 is a constant depending only on d, a and ‖V ‖∞.

We have the following refinement of [77, Th. 5] where the function hd is defined by

hd(θ) :=
4

(d− 2)!

∫ ∞
0

max(−Re ρ(teiθ), 0)

td+1
dt for θ ∈ [0, π].

This function is continuous, positive and satisfies hd(0) = hd(π) = 0.

Theorem 4.3.3. With the above notation, there is a constant A > 0 depending only on d, a and
‖V ‖∞ such that

log |sV (reiθ)| ≤ hd(θ)adrd +Ard−1 log r

for all r large enough and θ ∈ [0, π].

In the rest of the section, we give the proof of Theorem 4.3.3. Observe that we can suppose
θ ≤ π/2 since otherwise we can reduce the problem to the first case by replacing V with V

and λ with −λ. By rescaling, we can also assume that a = 1. Choose Rj := 1+ j
r for j = 1, 2, 3.
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Choose χ1, χ2 as above such that ‖χj‖C 2 ≤ cr2 for some constant c > 0 independent of r.
Define for l ≥ 1, λ ∈ C with Reλ ≥ 0, Imλ ≥ 0 and 0 < s ≤ s′

Il(λ, s, s
′) :=

∫ s′

s
|λ|2−d|Jl+d/2−1(λt)|2tdt

and
µ?l (λ) := (2π)dIl(λ,R1, R2)1/2Il(λ,R2, R3)1/2 for λ ∈ C+.

The following lemma refines an estimate obtained by Stefanov.

Lemma 4.3.4. There is a constant A > 0 such that

log |sV (reiθ)| ≤
∞∑
l=1

(dimHl) log
(
1 +Ard+4µ?l (re

iθ)
)

(4.3.1)

for r large enough and 0 ≤ θ ≤ π
2 ·

Proof. IfQ : H → H is a bounded linear operator on a Hilbert space such that the spectrum of
(Q∗Q)1/2 is discrete, denote by µ1(Q), µ2(Q), . . . the singular values of Q, i.e. the eigenvalues
of (Q∗Q)1/2, written in decreasing order and repeated according to their multiplicities. Define

H(λ) := −i(2π)−d2
1−d
2 λd−2[∆, χ2]RV (λ)[∆, χ1]

and

F(λ) := 1R1<‖x‖<R2
E∗+(λ)E−(λ)1R2<‖x‖<R3

.

In the proof of Theorem 5 in [77, p.128], Stefanov obtained that

log |sV (reiθ)| ≤
∞∑
l=1

log
(
1 + µl(H(reiθ)F(reiθ))

)
≤

∞∑
l=1

log
(
1 + ‖H(reiθ)‖L2→L2µl(F(reiθ))

)
.

The last inequality is a consequence of the general inequality µl(AB) ≤ ‖A‖µl(B).
Stefanov also proved that, up to a permutation of elements, the sequence µl(F(reiθ)) is

constituted by the µ?l (re
iθ)’s where each number µ?l (re

iθ) is repeated (dimHl) times. Since we
only consider sums of positive numbers, this permutation does not affect our computation.
So we only have to check that

‖H(reiθ)‖L2→L2 ≤ Ard+4

for r large enough and for a large fixed constant A > 0.
Choose a smooth function ρ ≤ 1 with compact support which is equal to 1 on BR3 and

with bounded C 1-norm. Since the operators [∆, χi] are of order 1, using the above estimates
on χi, we only need to check that

‖ρRV (reiθ)ρ‖H−1→H1 = O(r2).

But, this estimate is a consequence of the classical theory of elliptic operators, see Zworski
[91] for details. The lemma follows.
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Proof of Theorem 4.3.3. Recall that we only have to consider the case where 0 ≤ θ ≤ π
2 and

we have to bound the right-hand side in (4.3.1). Observe that logµ?l (re
iθ) . r, see [62, p.59].

Therefore, we only have to consider l larger than any fixed constant.
Let M be the constant in Lemma 4.2.1. Define for ν := l + d

2 − 1

N :=
{
l ∈ N∗ : ν2/3|1− treiθ

ν
| < M for some t ∈ (R1, R3)

}
, N ′ := N∗ \N

and

N ′1 :=
{
l ∈ N ′ : rR3

ν
6∈ K+

}
, N ′2 :=

{
l ∈ N ′ : rR3

ν
≤ 1

100

}
, N ′3 := N ′ \ (N ′1 ∪N ′2).

Denote by Σ,Σ′,Σ′i the sums as in the right-hand side of (4.3.1) but only with l running
in N,N ′ or N ′i respectively. We will bound these sums separately. The theorem is a direct
consequence of the estimates given in the 4 cases below.

Case 1. Assume that l ∈ N . Since R1, R2, R3 are close enough to each other and ν is large,
we have 1

2 <
tr
ν < 2 for all t ∈ (R1, R3). In particular, we have ν < 2rR3 < 4r. Moreover, for

all t, t′ ∈ (R1, R3)

ν2/3
∣∣∣1− treiθ

ν

∣∣∣− ν2/3
∣∣∣1− t′reiθ

ν

∣∣∣ ≤ ν2/3 (R3 −R1)r

ν
< 1.

It follows that

ν2/3
∣∣∣1− treiθ

ν

∣∣∣ ≤M + 1 for every t ∈ (R1, R3).

Applying the second assertion of Lemma 4.2.1 to treiθ

ν and to M + 1 instead of z and M yields

Σ .
∑
ν<4r

(dimHl) log r .
∑
l<4r

ld−2 log r . rd−1 log r.

Case 2. Assume now that l ∈ N ′ = N ′1 ∪N ′2 ∪N ′3. Observe that the function t 7→ −Re ρ(treiθ)

is increasing since we have by (4.2.2)

−∂ Re ρ(tz)

∂t
=

Re
√

1− (tz)2

t
> 0 for z = reiθ.

Therefore, by the first assertion in Lemma 4.2.1, we have for some constant A > 0

Σ′i ≤
∑
l∈N ′i

(dimHl) log
(

1 +A(log ν)2rd+4e−2ν Re ρ
(
reiθR3

ν

))
. (4.3.2)

Case 2a. Assume that l ∈ N ′1. We have ν . r and −Re ρ
(
reiθR3
ν

)
≥ 0. Hence, by (4.3.2)

Σ′1 ≤
∑
l∈N ′1

(dimHl)
[

log
(
A(log ν)2rd+4

)
− 2ν Re ρ

(reiθR3

ν

)]
≤

∑
l∈N ′1

−4νd−1 +O(νd−2)

(d− 2)!
Re ρ

(reiθR3

ν

)
+O(rd−1 log r).
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Since the function t 7→ −Re ρ(teiθ) is increasing, we deduce from the last estimates that

Σ′1 ≤
∫
reiθR3

ν
6∈K+

−4νd−1 +O(νd−2)

(d− 2)!
Re ρ

(reiθR3

ν

)
dν +O(rd−1 log r)

≤ 4(rR3)d

(d− 2)!

∫
teiθ 6∈K+

−Re ρ(teiθ)

td+1
dt+O(rd−1 log r)

≤ 4rd

(d− 2)!

∫
teiθ 6∈K+

−Re ρ(teiθ)

td+1
dt+O(rd−1 log r).

Case 2b. Assume that l ∈ N ′2. Since r is large, we have l ≥ 90r. Observe that Re ρ(z) ≥
− log |z| − 2 when |z| ≤ 1

100 . Hence, using that log(1 + t) ≤ t for t ≥ 0, we obtain from (4.3.2)
that

Σ′2 .
∑
l≥90r

ld−2(log l)2rd+4e−2l(log l−log r−3) .
∑
l≥90r

l2d+3e−l.

It follows that Σ′2 is bounded above.

Case 2c. Assume that l ∈ N ′3. We have l ≤ ν ≤ 100rR3 < 200r. Since Re ρ( re
iθR3
ν ) is positive,

we obtain from (4.3.2) that

Σ′3 .
∑
l≤200r

ld−2 log r = O(rd−1 log r).

This completes the proof of the theorem. �

4.4 Schrödinger operators with radial potentials

In this section, we give the proof of Theorem 4.1.1. We assume that the potential V = V (‖x‖)
satisfies the hypotheses of this theorem. By rescaling, we reduce the problem to the case
a = 1. Define for c > 0

Ων
c :=

{
ρ ∈ C : Re ρ < − log(cν)

2ν

}
and

Jνc := ρ−1(Ων
c ) =

{
z ∈ C+ : Re ρ(z) < − log(cν)

2ν

}
.

Following Zworski [88, p.400], the scattering poles are related to the zeros in Jνc of a
family of holomorphic functions of the form (our notation is slightly different from Zworski’s
one)

gν(z) =
e−2νρ(z)

ν2(1− z2)
(1 + εν(z))− σ(1 + ε′ν(z)), (4.4.1)

where σ is some complex number with |σ| bounded below and above by positive constants
and εν(z), ε′ν(z) are continuous functions on J

ν
c which converge uniformly to 0 when ν →∞.

In comparison with Zworski’s notation, for our convenience, we work with variable z in C+

instead of C−.
We need to compare gν with an auxiliary function hν defined by

hν(z) :=
e−2νρ(z)

ν2(1− z2)
− σ. (4.4.2)
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In what follows, we often consider gν and hν as functions on variable ρ = ρ(z).
Let f be the bi-holomorphic map from Ω = ρ(C+) to C \ (−∞, 1] defined by

f(ρ(z)) := 1− z2.

We can extend it to a continuous map f : Ω → C \ {1} which is no more bijective. A direct
computations using (4.2.2) gives

∂f

∂ρ
= − 2z2

√
1− z2

and
∂ log f

∂ρ
= − 2z2

(1− z2)3/2
· (4.4.3)

We deduce for z ∈ C+ \ {0} outside a neighbourhood of −1 (in particular, for Im ρ ≥ −3π
4 )

that ∣∣∣∂ log f

∂ρ

∣∣∣ . 1 +
1

|ρ|
when Re ρ < 0. (4.4.4)

Define for k ∈ Z

Ων
c (k) :=

{
ρ ∈ Ων

c :
∣∣ Im ρ−

(
− arg σ

2ν
+
kπ

ν
+

π

4ν

)∣∣ < π

2ν

}
.

These half-strips are disjoint and the union of their closures is equal to Ω
ν
c .

Lemma 4.4.1. Assume that ν is large enough and k ≥ −ν
2 − 2. Then, there is a constant A > 0

independent of ν and k such that |hν(z)| ≥ A for ρ in the boundary of Ων
c (k) and also for ρ large

enough in this domain.

Proof. For ρ large enough in Ων
c (k), −Re ρ is a large positive number and |z| ∼ −Re ρ. So

|hν(z)| is a big number. Consider now the case where ρ belongs to the boundary of Ων
c (k). For

k ≥ −ν
2 − 2 and for ν large enough, Im ρ is almost larger than −π

2 and hence Re z is almost
positive. Therefore, arg f(ρ) belongs to the interval (−π, δ) for some small positive constant δ
independent of ν, k.

Assume first that ρ belongs to the horizontal part of bΩν
c (k) which is the union of two

half-lines given by

Re ρ ≤ − log(cν)

2ν
and Im ρ = −arg σ

2ν
+
kπ

ν
+

π

4ν
± π

2ν
·

The above discussion on arg f(ρ) implies that | arg(σ−1hν(z) + 1)| is bounded below by π
2 − δ.

It follows that |hν(z)| is bounded below by a positive constant.
It remains to consider the case where ρ belongs to the vertical part of bΩν

c (k). We have

Re ρ = − log(cν)

2ν
·

Therefore,
|hν(z) + σ| = c

ν|1− z2|
·

It is enough to check that the last quantity is small. Since ν is large, this is clear when z is
outside a fixed neighbourhood of 1. Otherwise, we deduce from (4.2.2) that

|1− z2| & |ρ|2/3 & |Re ρ|2/3 & ν−2/3.

The result follows.
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Lemma 4.4.2. Assume that ν is large enough and k ≥ −ν
2 − 2. Then gν and hν , as functions on

ρ, have the same number of zeros in Ων
c (k) counted with multiplicity.

Proof. We have for ρ as in Lemma 4.4.1

|gν(z)− hν(z)| ≤ 2 max
(
|εν(z)|, |ε′ν(z)|

)
max

(
|σ|, |hν(z) + σ|

)
.

Lemma 4.4.1 implies that the last factor is bounded by a constant times |hν(z)|. Since εν and
ε′ν are small, it is enough to apply Rouché’s theorem in order to obtain the result.

Lemma 4.4.3. Assume that ν is large enough. Then, for every k ∈ Z with k ≥ −ν
2 − 2, the

function gν admits a unique zero in Ω
ν
c (k) that we denote by ρν,k. Moreover, this zero is simple

and belongs to Ων
c (k).

Proof. First, we deduce from Lemma 4.4.1 that hν and gν have no zero on the boundary of
Ων
c (k). By Lemma 4.4.2, we only have to show that hν admits a unique zero in Ων

c (k) and this
zero is simple.

The zeros of hν are exactly the solutions of the following family of equations

Fν,k(ρ) = 0 with k ∈ Z, (4.4.5)

where

Fν,k(ρ) := ρ−
(
− log σ

2ν
− log ν

ν
− log f(ρ)

2ν
+
kπi

ν

)
.

Therefore, we only have to prove that (4.4.5) admits a unique solution in Ων
c which is simple

and belongs to Ων
c (k).

Consider a solution ρ ∈ Ων
c of (4.4.5). By considering the equation ImFν,k(ρ) = 0, we

see that Im ρ ≥ (k−2)π
ν . So for k ≥ −ν

2 − 2 and for ν large enough, Im ρ is almost larger than
−π

2 . Therefore, arg f(ρ) belongs to the interval (−π, δ) for some small positive constant δ. We
deduce that ∣∣∣ Im ρ−

(
− arg σ

2ν
+
kπ

ν
+

π

4ν

)∣∣∣ ≤ ∣∣∣− arg f(ρ)

2ν
− π

4ν

∣∣∣ < π

2ν
·

It follows that ρ belongs to Ων
c (k).

We now use the classical argument principle in order to count the number of zeros of Fν,k
in Ων

c (k). Observe that ImFν,k(ρ) is bounded on Ω
ν
c (k) and ReFν,k(ρ)→ −∞ when |ρ| → ∞

and ρ ∈ Ω
ν
c (k). We will show in particular that ReFν,k(ρ) changes sign twice on bΩν

c (k).
Consider first the horizontal part of bΩν

c (k) which is the union of two half-lines given by

Re ρ ≤ − log(cν)

2ν
and Im ρ = −arg σ

2ν
+
kπ

ν
+

π

4ν
± π

2ν
·

As above, we obtain that arg f(ρ) belongs to (−π, δ). We then deduce that ImFν,k(ρ) is strictly
positive on the upper half-line and strictly negative on the lower one.

Since |Re ρ| � 1
ν , the relation (4.4.4) implies that Re ρ 7→ ReFν,k(ρ) defines an increasing

function on each of the above half-lines. Therefore, in order to obtain the lemma, it suffices
to check that ReFν,k(ρ) > 0 on the vertical part of bΩν

c (k) which is contained in the line

Re ρ = − log(cν)

2ν
·
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Assume that ρ satisfies the last identity. When |ρ| > 1, |1− z| is bounded below by a pos-
itive constant. Therefore, log |f(ρ)| is bounded below and ReFν,k(ρ) > 0 for ν large enough.
Otherwise, we deduce from (4.2.2) that |f(ρ)| & |ρ|2/3. Therefore, since |Re ρ| � 1

ν , we have

log |f(ρ)| ≥ log |ρ|2/3 + const ≥ −2

3
log ν + const .

It follows that ReFν,k(ρ) is strictly positive when ν is large enough. This completes the proof
of the lemma.

Denote by zν,k the complex number in C+ such that ρ(zν,k) = ρν,k. We have the following
lemma.

Lemma 4.4.4. Assume that ν is large enough. Then, for every k ≥ −ν
2 + 2, we have Re zν,k > 0

and |zν,k| > 1
2 . Moreover, if ρ = ρ(z) in Ων

c is a zero of gν(z) with Re z ≥ 0 and Im z ≥ 0, then
z = zν,k and ρ = ρν,k for some k ≥ −ν

2 − 2.

Proof. When k ≥ −ν
2 +2, since ρν,k belongs to Ων

c (k), we have Im ρν,k > −π
2 . Hence, Re zν,k >

0. Since Re ρν,k < 0, we have zν,k 6∈ K+ and hence, |zk,ν | > 1
2 . If ρ and z are as in the lemma,

then Im ρ ≥ −π
2 . Such a point ρ should be in Ω

ν
c (k) for some k ≥ −ν

2−2. Lemma 4.4.3 implies
the result.

For l ∈ N define ν := l+ d
2 −1 (we use here the notation of Stefanov [77] which is slightly

different from the one by Zworski [88, (25)]). For r > 0, denote by n+
l (r) (resp. n−l (r))

the number of points zν,k in D( rν ) with k > 0 (resp. −ν
2 + 2 < k ≤ 0). Theorem 4.1.1 is a

consequence of the following two propositions whose proofs will be given at the end of the
section.

Proposition 4.4.5. Assume that ν and r are large enough. Then,

(a) n+
l (r) = 0 for l ≥ 2r;

(b) zν,k 6∈ D( rν ) if k > cr for a fixed constant c > 0 large enough; in particular, we have
n+
l (r) ≤ cr;

(c) We have for every constant ε > 0∑
0≤l≤2r

n+
l (r)(dimHl) =

vol(B)2

(2π)d
rd +O(rd−3/4+ε) as r →∞.

Proposition 4.4.6. Assume that ν and r are large enough. Then, n−l (r) = 0 for l ≥ 2r. Moreover,
we have for every constant ε > 0

∑
0≤l≤2r

n−l (r)(dimHl) =
rd

πd(d− 2)!

∫
∂K+

|1− z2|1/2

|z|d+1
|dz|+O(rd−3/4+ε) as r →∞.

End of the proof of Theorem 4.1.1. Using the decomposition of functions into spherical
harmonics, Zworski relates scattering poles of −∆ +V to the zeros of a sequence of functions
of the form (4.4.1) with l ∈ N. More precisely, if ρ = ρ(z) is a zero of gν(z) with z ∈ Jνc , then
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−νz is a scattering pole with multiplicity dimHl, see [86, §2]. If nl(r) is the number of zeros
of gν(z) in Jνc ∩D( rν ) with unknown z, Zworski proved that nl(r) . r and nl(r) = 0 for l > 2r,
see [88, p.386]. Therefore, we have

nV (r) =
∑
l≥0

nl(r)(dimHl) =
∑

0≤l≤2r

nl(r)(dimHl).

By Lemma 4.2.3, we only need to consider l large enough.
In our setting with a real potential, the scattering poles are symmetric with respect to the

real line Re z = 0. This and Lemma 4.4.4 imply that

2n+
l (r) + 2n−l (r) ≤ nl(r) ≤ 2n+

l (r) + 2n−l (r) + 4.

Now, in order to obtain the result, it suffices to apply Propositions 4.4.5, 4.4.6 and the identity
(4.2.4). �

We give now the proofs of the above propositions. For k ∈ Z \ {0} such that k ≥ −ν
2 + 2,

define

ρ?ν,k := − log σ

2ν
− log ν

ν
− 1

2ν
log f

(kπi
ν

)
+
kπi

ν
·

These points are easier to count and we will compare them with ρν,k.

Lemma 4.4.7. Assume that ν is large enough, k ≥ −ν
2 + 2 and |k| ≥ ν1/4. Then, we have

|Fν,k(ρ?ν,k)| � ν−6/5 and |hν(ρ?ν,k)| � ν−1/5.

Proof. Observe that

|hν(ρ?ν,k)| = |σ|
∣∣∣e−2νFν,k(ρ?ν,k) − 1

∣∣∣.
So the second inequality in the lemma is a consequence of the first one. We prove now the
first inequality. It is enough to check that∣∣∣ log f(ρ?ν,k)− log f(

kπi

ν
)
∣∣∣� ν−1/5.

Consider first the case where |k| ≤ ν. In this case, ρ?ν,k and kπi
ν are bounded. Since |k| ≥

ν1/4, we have |ρ| & ν−3/4 for ρ in Ων
c (k). This together with (4.4.4) implies that∣∣∣∂ log f

∂ρ

∣∣∣ . 1 +
1

|ρ|
. ν3/4.

Using the last inequality and the estimate∣∣∣ρ?ν,k − kπi

ν

∣∣∣ . log ν

ν
,

we obtain that ∣∣∣ log f(ρ?ν,k)− log f(
kπi

ν
)
∣∣∣ . ν3/4 log ν

ν
� ν−1/5.
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When k ≥ ν the segment joining ρ?ν,k and kπi
ν is contained in the half-plane Im ρ > π

2 .
Therefore, by (4.4.3), we have on this segment∣∣∣∂ log f

∂ρ

∣∣∣ . 1

|z|
.

1

|ρ|
.
ν

k
·

Hence, using that ∣∣∣ρ?ν,k − kπi

ν

∣∣∣ . log k

ν
,

we obtain again ∣∣∣ log f(ρ?ν,k)− log f
(kπi
ν

)∣∣∣ . ν

k

log k

ν
� ν−1/5.

This completes the proof of the lemma.

Lemma 4.4.8. Assume that ν is large enough, k ≥ −ν
2 + 2 and |k| ≥ ν1/4. Then, we have

|ρν,k − ρ?ν,k| <
2π

ν
·

Proof. Observe that | Im ρ?k,ν | �
1
ν . Using (4.2.2), we deduce that log

∣∣f(kπiν )∣∣ ≥ −2
3 log ν.

Hence,

Re ρ?ν,k ≤ −
2 log ν + const

3ν
·

Therefore, the vertical lines of equations

Re ρ− Re ρ?ν,k = ± π

2ν

are contained in Ων
c .

Let Q denote the square of size π
ν ×

π
ν limited by the above lines and the horizontal part

of bΩν
c (k). It is enough to show that ρν,k belongs to Q. Arguing as in Lemmas 4.4.1, 4.4.2 and

4.4.3, we only have to check that |hν(z)| is bounded below by a positive constant when ρ is
on the vertical part of bQ and that ReFν,k(ρ) is positive (resp. negative) on the right (resp.
left) vertical part of bQ.

We only consider the case where ρ is on the left vertical part of bQ. The other case can be
obtained in the same way. We have

Re ρ− Re ρ?ν,k = − π

2ν
· (4.4.6)

So |ρ− ρ?ν,k| .
1
ν � |ρ

?
ν,k|. As in Lemma 4.4.7, we obtain that

| log f(ρ)− log f(ρ?ν,k)| � ν−1/5. (4.4.7)

It follows from (4.4.6) and (4.4.7) that∣∣∣ hν(ρ) + σ

hν(ρ?ν,k) + σ

∣∣∣ = eπ +O(ν−1/5).

By Lemma 4.4.7, hν(ρ?ν,k) is small. Therefore, the last identity implies that |hν(ρ)| is bounded
below by a positive constant.
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We also deduce from (4.4.6) and the definition of Fν,k(ρ) that

ReFν,k(ρ)− ReFν,k(ρ
?
ν,k) ≤ −

π

2ν
+

1

2ν
| log f(ρ)− log f(ρ?ν,k)| = −

π

2ν
+O(ν−6/5).

This and Lemma 4.4.7 imply that ReFν,k(ρ) < 0. The result follows.

Lemma 4.4.9. Let ε0 be the constant given in Lemma 4.2.2. Let ε > 0 be any fixed constant.
Assume that ν is large enough and ν1/4 ≤ k ≤ ε0ν4. Then, we have

|νzν,k − νz̃ν,k| ≤ |νz̃ν,k|1/4+ε.

Proof. By Lemma 4.2.2, we have ∣∣∣ρ̃ν,k − (3πi

4ν
+
kπi

ν

)∣∣∣ ≤ 1

ν
·

Since k is positive, f(kπiν ) is real and negative. Using Lemma 4.4.8 and the definition of ρ?ν,k,
we deduce that

|ρν,k − ρ̃ν,k| ≤ |ρν,k − ρ?ν,k|+ |ρ?ν,k − ρ̃ν,k| .
1

ν
+

log k

ν
.

log k

ν
· (4.4.8)

We distinguish two cases.
Assume first that k is bounded below by a fixed small positive constant times ν. Then,

|ρν,k| and |ρ̃ν,k| are bounded below by a positive constant. It follows that ∂z
∂ρ is bounded on

the segment joining ρν,k and ρ̃ν,k. This and (4.4.8) imply that

|νzν,k − νz̃ν,k| . ν|ρν,k − ρ̃ν,k| . log k . log |νρ̃k,ν |.

On the other hand, if ρ is in iR+, we have z ∈ [1,+∞) and

ρ =
(√

z2 − 1 + arccos
1

z

)
i.

Therefore, |ρ̃ν,k| . |z̃ν,k|. We conclude that

|νzν,k − νz̃ν,k| . log |νz̃ν,k|.

Assume now that k is bounded above by a small constant times ν. Then, |ρν,k|, |ρ̃ν,k| are
small and zν,k, z̃ν,k are close to 1 . By (4.2.2), we have

∣∣∂z
∂ρ

∣∣ . |ρ|−1/3 for ρ small. In particular,

we have
∣∣∂z
∂ρ

∣∣ . (νk)1/3 for ρ in the segment joining ρν,k and ρ̃ν,k. Hence, since k ≥ ν1/4, we
obtain

|νzν,k − νz̃ν,k| . ν|ρν,k − ρ̃ν,k|
(ν
k

)1/3
. (log k)(

ν

k
)1/3 � ν1/4+ε.

This completes the proof of the lemma.

End of the proof of Proposition 4.4.5. (a) Since Re ρν,k < 0, zν,k belongs to C+ \K+. In
particular, we have |zν,k| > 1

2 . Therefore, when l ≥ 2r, we have ν ≥ 2r and zν,k 6∈ D( rν ). It
follows that n+

l (r) = 0 for l > 2r.

(b) Assume that l ≤ 2r and k ≥ cr for some constant c > 0 large enough. Then, Im ρν,k
is bounded below by a large positive constant times r

ν . Using the definition of ρ, we obtain
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that |zν,k| is almost equal to |ρν,k|. In particular, zν,k does not belong to D( rν ). It follows that
n+
l (r) ≤ cr.

(c) Observe that by (b) and Proposition 4.2.4, if l ≥ Lr := 2(cε−1
0 r)1/4 and k ≥ ε0ν4, then zν,k

and z̃ν,k do not belong to D(2r
ν ). Hence, by Lemma 4.4.9, we have for l ≥ Lr

n+
l (r) ≥ m+

l (r − r1/4+ε)− ν1/4 = m+
l (r − r1/4+ε) +O(l1/4).

This, together with Lemma 4.2.3 and Proposition 4.2.4, implies that∑
0≤l≤2r

n+
l (r)(dimHl) ≥

∑
Lr≤l≤2r

n+
l (r)(dimHl)

≥
∑

Lr≤l≤2r

[
m+
l (r − r1/4+ε) +O(l1/4)

]
(dimHl)

≥ vol(B)2

(2π)d
rd +O(rd−3/4+ε).

For the converse estimate, in the same way, we have for l ≥ Lr

n+
l (r) ≤ m+

l (r + r1/4+ε) + ν1/4 = m+
l (r + r1/4+ε) +O(l1/4).

Using parts (a) and (b), we obtain∑
0≤l≤2r

n+
l (r)(dimHl) =

∑
Lr≤l≤2r

n+
l (r)(dimHl) +O(rd/4+3/4)

≤
∑

0≤l≤2r

[
m+
l (r + r1/4+ε) +O(l1/4)

]
(dimHl) +O(rd/4+3/4)

≤ vol(B)2

(2π)d
rd +O(rd−3/4+ε).

This completes the proof of the proposition. �

Define for −ν
2 − 2 < k ≤ 0

ẑν,k := ρ−1
(kπi
ν

)
.

This point belongs to ∂K+ and Re ẑν,k ≥ 0 if and only if k ≥ −ν
2 . We have the following

lemma.

Lemma 4.4.10. Let ε > 0 be a fixed constant. Assume that ν is large enough and −ν
2 + 2 < k ≤

−ν1/4. Then, we have
|νzν,k − νẑν,k| ≤ |νẑν,k|1/4+ε.

Proof. Observe that
∣∣kπi
ν

∣∣ is bounded by π
2 . By Lemma 4.4.8, |ρν,k| is also bounded by π

2 plus
a small constant. Hence, by (4.2.2), we have for ρ in the segment joining ρν,k and kπi

ν∣∣∣∂z
∂ρ

∣∣∣ . |ρ|−1/3 .
( ν
|k|

)1/3
.

Moreover, ∣∣∣ρν,k − kπi

ν

∣∣∣ . log ν

ν
·
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It follows that

|νzν,k − νẑν,k| ≤ (log ν)
( ν
|k|

)1/3
� ν1/4+ε . (νẑν,k)

1/4+ε

since ẑν,k ∈ ∂K+. The lemma follows.

End of the proof of Proposition 4.4.6. The fact that n−l (r) = 0 for l > 2r is obtained as in
Proposition 4.4.5. Note that by definition, we have n−l (r) ≤ ν . l. We prove now the second
assertion in the proposition.

Denote by m−l (r) the number of integers k such that −ν
2 + 2 ≤ k ≤ 0 and |ẑν,k| ≤ r

ν .
Since ẑν,k ∈ ∂K+, we have m−l (r) = 0 when l > 2r. Observe that ρ defines a diffeomorphism
between ∂K+ and i[0, π]. So if we define

Γν,r :=
{
z ∈ ∂K+ : |z| ≤ r

ν
,Re z > 0, Im z > 0

}
then we have ∣∣∣m−l (r)− ν

π
length(ρ(Γν,r))

∣∣∣ ≤ 3.

Thus, ∣∣∣m−l (r)− ν

π

∫
Γν,r

idρ
∣∣∣ ≤ 3. (4.4.9)

The last inequality implies that m−l (r) . ν . l. Observe also that when l > 2r we have
Γν,r = ∅. Define Γ := {z ∈ ∂K+ : Re(z) > 0} and r′ := r − r1/4+ε. By Lemma 4.4.10, we
have

n−l (r) ≥ m−l (r′)− ν1/4 = m−l (r′) +O(l1/4).

We deduce from the above discussion that∑
0≤l≤2r

n−l (r)(dimHl) ≥
∑

0≤l≤2r

(
m−l (r′) +O(l1/4)

)
(dimHl)

=
∑
l≥0

m−l (r′)(dimHl) +O(rd−3/4).

By (4.4.9), the last sum is equal to

∑
l≥0

2ld−1

π(d− 2)!

∫
Γν,r′

idρ+O(rd−3/4) =
2

π(d− 2)!

∫
Γ
idρ

∑
ν≤ r′
|z|

ld−1 +O(rd−3/4)

=
1

π(d− 2)!

∫
∂K+

idρ
∑
ν≤ r′
|z|

ld−1 +O(rd−3/4)

=
r′d +O(r′d−1)

πd(d− 2)!

∫
∂K+

idρ

|z|d
+O(rd−3/4)

=
rd

πd(d− 2)!

∫
∂K+

idρ

|z|d
+O(rd−3/4+ε).
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We conclude that∑
0≤l≤2r

n−l (r)(dimHl) ≥
rd

πd(d− 2)!

∫
∂K+

|1− z2|1/2

|z|d+1
|dz|+O(rd−3/4+ε).

We obtain the converse inequality in the same way using that

n−l (r) ≤ m−l (r′′) + ν1/4 = m−l (r′′) +O(l1/4)

with r′′ := r + r1/4+ε. This completes the proof of the proposition. �

4.5 Generic potentials in a holomorphic family

In this section, we prove Theorem 4.1.2. We need the following result which relates the
asymptotic behavior of nV (r) and of NV (r). It holds for any bounded complex potential V
with compact support.

Proposition 4.5.1. Let δ and A be strictly positive constants such that δ < d. Then, we have
(a)⇒ (b)⇒ (c), where

(a) nV (r) = Ard +O(rd−δ) as r →∞;

(b) NV (r) = Ard

d +O(rd−δ) as r →∞;

(c) nV (r) = Ard +O(rd−
δ
2 ) as r →∞.

Proof. The proof is similar to Lemma 1 in [77]. The implication (a) ⇒ (b) follows from the
definition of NV (r). Assume that the property (b) holds. We show that (c) is also true. We
only have to consider r large enough.

Choose a constant c > 0 such that |dNV (r)−Ard| ≤ crd−δ. Define α := cr1− δ
2 . Since nV (r)

is increasing in r, we have for r large enough

nV (r)

r + α
≤ 1

α

∫ r+α

r

nV (t)

t
dt ≤ N(r + α)−N(r)

α
+
nV (0)

r
·

It follows from the above estimate on dNV (r)−Ard that

nV (r)

r + α
≤ A

d

[
(r + α)d − rd

]
+

2c(r + α)d−δ

dα
+
nV (0)

r

≤ A(r + α)d−1 +
2c(r + α)d−δ

dα
+
nV (0)

r

≤ A(r + α)d−1 +O(rd−1− δ
2 ).

Hence,
nV (r) ≤ A(r + α)d +O(rd−

δ
2 ) ≤ Ard +O(rd−

δ
2 ).

In the same way, using the inequalities

N(r)−N(r − α)

α
≤ 1

α

∫ r

r−α

nV (t)

t
dt ≤ nV (r)

r − α
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we obtain
nV (r) ≥ Ard +O(rd−

δ
2 ).

The proposition follows.

Following Christiansen [15], we will reduce the problem to the study of a family of
plurisubharmonic (p.s.h. for short) functions. The reader will find in Demailly [17] and
Lelong-Gruman [50] basic properties of p.s.h. functions.

Recall that a function Φ : Ω→ R∪{−∞} is p.s.h. if it is not identically equal to −∞ and if
its restriction to each holomorphic disc is either subharmonic or equal to −∞. A subset of Ω

is pluripolar if it is contained in the pole set {Φ = −∞} of a p.s.h. function Φ. The following
lemma is crucial for the proof of Theorem 4.1.2.

Lemma 4.5.2. Let Φn, n = 1, 2, . . ., be a sequence of p.s.h. functions on a domain Ω of Cp.
Assume there are constants c > 0 and γ > 1 such that Φn ≤ cn−γ on Ω and Φn(ϑ0) > −cn−γ
for some point ϑ0 ∈ Ω. Then for every α < γ − 1 there exists a pluripolar set E ⊂ Ω such that
Φn(ϑ) = o(n−α) for every ϑ ∈ Ω \ E.

Proof. Replacing Φn by Φn − cn−γ allows us to assume that Φn ≤ 0. Define

Φ[m] :=
m∑
n=1

nαΦn and Φ :=
∞∑
n=1

nαΦn.

So the sequence Φ[m] decreases to Φ. It is clear that Φ(ϑ0) 6= −∞. So Φ is a p.s.h. function.
Therefore, E := Φ−1(−∞) is a pluripolar set. For ϑ 6∈ E, we have nαΦn(ϑ) → 0. The lemma
follows.

For 0 < δ ≤ 1, define

M̃δ
a :=

{
V ∈ L∞(Ba,C) : dNV (r)− cdadrd = O(rd−δ+ε) as r →∞ for every ε > 0

}
.

Proposition 4.5.1 implies that
Mδ

a ⊂ M̃δ
a ⊂Mδ/2

a .

So Theorem 4.1.2 is a consequence of the following result.

Theorem 4.5.3. Let Ω be a connected open set of Cp. Let Vϑ be a uniformly bounded family of
potentials in L∞(Ba,C) depending holomorphically on the parameter ϑ ∈ Ω. Suppose there are
ϑ0 ∈ Ω and 0 < δ ≤ 1 such that Vϑ0 ∈ M̃δ

a. Then there is a pluripolar set E ⊂ Ω such that
Vϑ ∈ M̃

δ/2
a for all ϑ ∈ Ω \ E.

Proof. Define for r large enough

Ψ(r, ϑ) :=
1

2πrd

∫ 2π

0
log |sVϑ(reiθ)|dθ − cda

d

d
·

Since Vϑ depends holomorphically on ϑ, the function sVϑ depends also holomorphically on ϑ.
Hence, Ψ(r, ϑ) is p.s.h. on ϑ.
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Fix a small constant ε > 0. By Theorem 4.3.1 and Proposition 4.3.2, we have

Ψ(r, ϑ) .
log r

r
and Ψ(r, ϑ0) & −r−δ+ε.

Define for k := 2
δ

Φn(ϑ) := Ψ(nk, ϑ).

Then
Φn(ϑ) . (log n)n−k and Φn(ϑ0) & n−k(δ−ε).

Lemma 4.5.2 implies that for ϑ outside a pluripolar set Eε we have

Φn(ϑ) = o(n−k(δ−ε)+1+ε) = o(n−1+ 2ε
δ

+ε).

Hence, by Proposition 4.3.2, we have for r = nk and for ϑ 6∈ Eε

NVϑ(r) =
cda

drd

d
+O(rd−

δ
2

+ε+ εδ
2 ). (4.5.1)

Since NVϑ(r) is increasing in r, we deduce that if nk ≤ r ≤ (n+ 1)k∣∣∣NVϑ(r)− cda
drd

d

∣∣∣ . (n+ 1)kd − nkd +O(rd−
δ
2

+ε+ εδ
2 )

. nkd−1 +O(rd−
δ
2

+ε+ εδ
2 )

. O(rd−
δ
2

+ε+ εδ
2 ).

So the property (4.5.1) holds for r →∞ with r ∈ R+.
Finally, define E := ∪∞n=1E1/n. This is a pluripolar set, see e.g. [50]. We have for all ϑ 6∈ E

and ε > 0

NVϑ(r) =
cda

drd

d
+O(rd−

δ
2

+ε) as r →∞.

This completes the proof of the theorem.

Remark 4.5.4. Let K be a compact subset of Ω. Let µ be the Lebesgue measure on Ω or on a
totally real affine space through ϑ0. Then there are positive constants c > 0 and α > 0 such
that ∫

K
eα|Φ|dµ ≤ c,

see [26]. This allows to bound the size of sets of parameters in K where NV (r) does not
satisfy an estimate likes |dNVϑ(r)− cdadrd| ≤ Crd−δ+ε for a given ε > 0 and a large constant
C > 0.
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